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1 Introduction

The search for life beyond Earth is certainly one of the most captivating and

inspiring questions in modern science. When contemplating the boundlessness of our

universe, with its hundred billions galaxies composed of countless stars and planets, we

might fell impelled to interrogate ourselves with a simple yet meaningful question: “Are

we alone?”. It turns out that scientifically answering to this question has been proven to

be one of the toughest challenges in the cohesive scientific fields of astronomy, astrophysics

and astrobiology (see Caporael (2018), Galante et al. (2016)). Indeed, even with the most

powerful telescopes available to date, which are sensitive to electromagnetic radiation in

a wide range of wavelengths and thereby capable to probe the universe at mind-blowing

distances far away from our Solar System, no clear sign or evidence of existing life beyond

Earth was ever found yet.

1.1 Searching for potentially habitable planetary systems

From a scientific point of view, unveiling the secrets of the origin of life requires

carefully examining the environment conditions and the physicochemical processes that

favoured and sustained life. A valuable step towards that comprehension resides in searching

for potentially habitable planetary systems beyond our Solar System, so that we can

properly understand how these systems typically form and evolve. In this context, the

concept of habitable zone gives, based on the only known life-sustaining sample (the

Earth), a clue on where life as we know is (more likely) expected to be encountered.

Habitable zone (HZ), also called Goldilocks zones, may be understood as the zone

around a star where the temperature is just right (i.e. not too hot and not too cold), so that

liquid water can exist on the surface of a planet orbiting that star. Accordingly, the hotter

a star is, the farther away and the larger will be its HZ, and vice-versa. In the literature,

habitable zones are estimated based on planetary climate models such as those presented

in Kasting, Whitmire & Reynolds (1993), Kopparapu et al. (2013), Shields, Ballard &

Johnson (2016), Bin, Tian & Liu (2018). As represented in Figure 1, HZ sizes may be

more optimistic (wider) or more conservative (narrower), depending on the considered

model. According to the conservative definition (Kopparapu et al. (2013)), the Earth is

located at the inner boundary of Sun’s habitable zone.

In a judicious way, habitable zones shall not be however strictly thought in terms

of temperature only. There are other fundamental physical aspects that significantly

contribute to make a planet capable to harbour life. An atmosphere (air), for example,

is essential for the existence of life in a planet, because without it, there is not sufficient
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pressure to keep water in liquid state, even if the planet has the right temperature.

To some extent, an atmosphere also act as a protective skin against spatial objects on

collision courses with a planet, by incinerating them before they can hit the planet surface.

Persistent atmospheres require, in turn, the existence of sufficiently strong magnetic shields,

otherwise the radiation winds emitted by a star may easily vaporize the atmosphere of a

planet orbiting within its habitable zone. Hence, the conditions for the emergence and

the maintenance of life are in practice much more complex than the formal definition of

habitable zone might suggest. Yet, this concept still represents today our best guess on

where to search for potentially habitable planetary systems.

Figure 1 – Habitable zone around main sequence stars of spectral type F, G, K, and M,
as a function of the stellar temperature and the planetary orbit distance to its
host star. Boundaries of HZ may be divided into optimistic (light green) and
conservative (dark green) versions.

Source: Planetary Habitability Laboratory (PHL), University of Puerto Rico, Arecibo.

The first confirmed exoplanet discoveries dates from the 90’s (Wolszczan & Frail

(1992), Mayor & Queloz (1995)). Yet, spatial missions dedicated to widely search for new

exoplanets only started operating by the second half of the 2000’s (see Figure 2); first, the

pioneer mission Convection, Rotation and planetary Transits CoRoT (Baglin et al. (2006),

Auvergne et al. (2009), Deleuil & Fridlund (2018)) from the French Space Agency (CNES),

in 2006; then the breaking though mission Kepler (Borucki et al. (2010)) from NASA, in

2009. At the present date, both CoRoT and Kepler spacecrafts are no longer operational.

In contrast, the NASA exoplanet hunter spacecraft TESS (Ricker et al. (2014)), launched

in April of 2018, is fully operational and has already detected quite a few exoplanets.
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Additionally, the ESA spacecraft CHEOPS (Cessa et al. (2017)), expected to be launched

by the end of 2019, will observe bright targets which are already know to host super-Earth

to Neptune mass planets. The aim of this mission is to accurately determine the radii of

these planets, for which the respective masses have already been obtained by ground-based

spectroscopic surveys.

Figure 2 – Timeline of exoplanet missions.

Source: ESA.

Since the first detections, a substantial number of exoplanets were discovered and

confirmed. To date, this number adds up to 4,009 exoplanets according to the NASA

Exoplanet Archive1. However, most of these planets (see Figure 3) are either much closer to

their host star or much more massive when compared to the Earth (or both). Hence, even

considering the important advances occurred in the matter of the exoplanet search science

over the last two decades, which allowed us to discover thousands of new exoplanets, we

are still incapable to assert if there are effectively other planets like our Earth, let alone

how many of them and what type of star they orbit.

Besides, we cannot state either that Earth-like planets are simply rare, so that we

can consider that we live in an “outlier” planet. The reason is that most of the stars around

which the planets of Figure 3 were detected are, typically, relatively faint (see Figure 4).

In other words, the photometry of these stars do not have sufficient signal-to-noise ratio

(SNR) allowing Earth-sized planets – orbiting within their habitable zone – to be detected
1 <https://exoplanetarchive.ipac.caltech.edu>
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and accurately characterized in terms of mass and radii. Therefore, the fact that we have

not found yet a planet like our Earth could be owed to the fact that we have still not

observed a sufficiently large sample of bright stars.

Figure 3 – Confirmed exoplanets to date (4,009 in total).

Source: Nasa Exoplanet Archive.
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The only spatial mission – within the next few years – that is qualified to find new

exoplanets, TESS, will not be capable of making significant impact on the detection and

characterization of Earth-sized planets, except for those orbiting coolest M-type stars, for

which the mission is mostly designed for. Therefore, a clear gap exists when it comes to

find Earth-like planets orbiting the habitable zone of Sun-like stars.

Figure 4 – Magnitude of the stars hosting the planets of Figure 3.

Source: Nasa Exoplanet Archive.

In this respect, the ESA planet-hunter spatial mission PLATO appears as a

promising solution to cover this gap. Expected to start operating in 2026, the PLATO

mission takes place in the context of ESA’s long-term planning for space science missions

called Cosmic Vision. This Program was conceived to address fundamental scientific

questions related to the origin of our Universe and the physical laws that drives it, the

formation of planetary systems and the origin of life. In that thematic, PLATO aims at

investigating three major questions (ESA (2017)):

• How do planets and planetary systems form and evolve?

• Is our solar system special or are there other systems like ours?

• Are there potentially habitable planets?
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To do it, PLATO builds upon the well-proven techniques that allowed the success

of its predecessors CoRoT and Kepler missions. That is the transit method for detecting

exoplanets, along with radial velocity spectroscopy follow-up from the ground, and the

analysis of stellar oscillations via asteroseismology for characterizing their host stars.

However, PLATO stands out from any other mission of its category in the sense that it is

being specially designed to not only discover but also characterize (in terms of mass, radii,

and density) Earth-like planets orbiting within the habitable zone of bright main-sequence

Sun-like stars. Moreover, by also focusing on constraining stellar ages PLATO might be

capable of determining changes in planetary systems architecture over the time, such

as the dependency of exoplanet frequency with main-sequence stellar age (Veras et al.

(2015)). Ultimately, PLATO is expected to provide enough elements allowing us to finally

determine with accuracy whether Earth-like planets exist or not, how many of them and

which type of star they orbit (Baudin & Damiani (2019)).

The work presented in this thesis takes place in the preparation phases of PLATO

space mission, more precisely in the development of data processing algorithms.

1.2 Stellar classification

Simply stated, a star is a spherical celestial body of plasma (i.e. super hot gas)

whose formation is resulted from the gravitational collapse of molecular clouds of cold gas

– mostly composed of hydrogen and helium – that are present in the interstellar medium.

As the clouds accumulate, they form a central region – called protostar (see Campante,

Santos & Monteiro (2018)) – that becomes denser and hotter than the outer regions. At a

certain point owing to the increasing pressure, the protostar temperature becomes high

enough so that fusion reactions starts to take place in its core, thereby causing hydrogen

to be converted in helium. Such splendid moment characterizes the birth of a star. From

that point on, the star’s life expectancy is determined by the nuclear time-scale associated

to its total fusing hydrogen mass (fuel). Hence, the more massive the star, the quicker it

consumes hydrogen, thereby resulting in shorter lifespan, and vice-versa. The amount of

gas and dust material orbiting a young star, known as the circumstellar disc, may also

accumulate away from that star to form planets (Fortier et al. (2012)).

The different evolutionary states of a star throughout its lifetime (see schematic in

Figure 5) are commonly represented using a Hertzsprung–Russell diagram (HRD), which

displays the correlation between stellar surface luminosity and effective temperature. An

example of HRD produced with stars observed by Gaia (Gaia Collaboration et al., 2016)

is shown in Figure 6, with stellar luminosities normalized by that of the Sun. The diagram

clear evidences that most of the stars found in our sky belongs to the main sequence

branch, which is consistent with the fact this corresponds to the longest phase in stellar

evolution. Effective temperature and abundances of heavier elements than hydrogen or
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helium (i.e. metallicity) defines the spectral classification of a star, which is designated with

the letters O, B, A, F, G, K, and M (in order of decreasing temperature). Besides, stars are

also subdivided according to their luminosity class (Cox (2002)): I (supergiants), II (bright

giants), III (giants), IV (subgiants), and V (dwarfs or main sequence). Moreover, the

effective temperature of a star has a direct link with the colours form the electromagnetic

spectrum. Accordingly, coolest stars look redder and hotter stars look bluer.

Figure 5 – Stellar evolution scheme.

Source: Encyclopedia Britannica, Inc.

Our Sun is a main sequence (dwarf) yellow G2V-type star with effective temperature

of about 5,800K. Its total life expectancy is about 10 billion years (Campante, Santos &

Monteiro (2018)). M-type stars of the main sequence branch have a fraction of the Solar

mass, so they are relatively faint and cool (➚ 3, 500K) stars, and have an estimated lifespan

of the order of trillion years (Adams, Graves & Laughlin (2004)), thereby extremely longer

than the age of the Universe (about 13.8 billion years). In other words, such stars can be

considered relatively young in their evolution. Also, this class of star is the most commonly

encountered in the Milky Way (Henry, Kirkpatrick & Simons (1994)). Lastly, the earlier

mentioned red giants are relatively cool (K or M) spectral type stars, but much brighter

than our Sun as previously explained.

In terms of planetary formation, latest observations evidenced the existence of a

direct correlation between stellar metallicity and the occurrence of gas giants (e.g. Neptune-

and Jupiter-like) planets (Fischer & Valenti (2005), Johnson et al. (2010)), which however

do extend to small ones, more specifically for those whose radius is smaller than four times

that of the Earth (Rp ➔ 4R❵). Furthermore, analysis based on Kepler data indicate that
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terrestrial or smaller planets are not constrained by environment metallicity, suggesting

therefore that such category of planets might be relatively common across our Galaxy

(Buchhave et al. (2012)).

Figure 6 – Hertzsprung–Russell diagram of stars observed with Gaia.

Source: ESA/Gaia/DPAC.
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1.3 Probing stellar interior with asteroseismology

In astrophysics, stellar physics is the science of studying the internal structure of

stars and how these evolve throughout time, which involves understanding several physical

and chemical notions such as hydrodynamics, thermonuclear reactions, radiative transfer,

quantum mechanics and general relativity. Although there exist no actual technology

capable to directly explore the interior of stars (i.e. with physical instruments inside them),

their composition, functioning and evolution can be fairly well understood thanks to the

great advances – achieved in the last few decades – in the research field of asteroseismology

(Baglin et al. (2006), Aerts, Christensen-Dalsgaard & Kurtz (2010), Mosser & Miglio

(2016), Campante, Santos & Monteiro (2018)).

Asteroseismology is a branch of stellar physics that allows one to probe the internal

structure of stars by studying the seismic waves that propagate inside them, as analogous

to the approach used in terrestrial seismology. In other words, in the same way as analysing

the seismic waves generated by earthquakes provides information about Earth’s interior

(temperature, pressure, rocky composition etc.), analysing the oscillation modes of a star

provides us key information about its internal physical properties and dynamics (e.g. mean

density, chemical composition, rotation etc.).

Stellar oscillations cause periodic variations in star brightness that exhibit regular

patterns in the frequency domain (see Figure 7). These patterns, which carry important

information on specific characteristics of the stellar structure, can be measured by a

sufficiently sensitive (high signal-to-noise ratio) photometer. For example, the average

large separation ∆ν between larger peaks contains information about stellar mean density,

whereas the small separations δν carry finger prints of the chemical composition in the

stellar core, which can be used to infer the amount of hydrogen in it and ultimately the

corresponding stellar age. Besides, inversion techniques (Reese et al. (2012), Buldgen et al.

(2015)) can be applied to several observed and measured oscillation mode frequencies to

determine e.g. the internal rotation profile of the star. In particular, stellar rotation may

impact on both internal structure and evolution of stars (Gehan (2018)), including their

ages (Lebreton & Goupil (2014)).

Asteroseismic studies can be performed through Doppler spectroscopy from ground-

based observations. However, since measuring stellar oscillations requires sufficiently high

duty-cycle and low-noise observations, better results in asteroseismology are obtained from

spectral analysis of photometry signals extracted from stars with space-based surveys.

1.4 Detecting exoplanets

The exoplanet search science counts on a variety of detection methods, two of

which are widely employed: the transit photometry and the radial velocity. Indeed, among
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large and close to the host star, thereby producing large transit depths and having large

fractions of the celestial sphere through which observers can see it. Not surprisingly, there

is a relatively high occurrence of hot Jupiters among the confirmed exoplanets shown

in Figure 3. Terrestrial planets around Sun-like stars, in contrast, are very tough to be

detected, in particular because of the strong requirements in terms of noise performance.

Indeed, detecting such category of planets requires photometric precisions of the order

of a few dozens parts-per-million (ppm), which requires therefore observing sufficiently

bright targets.

1.4.2 The radial velocity spectroscopy method

A planet orbiting its host star causes the latter to wobble around the centre of

mass of the system formed by both celestial bodies. From an observer’s point of view, the

light it receives from the wobbling star periodically shifts in wavelength over the time,

going redder when it moves away and going bluer when it moves towards the observer (see

representation in Figure 9), analogously to the change in wavelength that occurs in sound

waves owing to the Doppler effect.

The radial velocity (or Doppler spectroscopy) method consists therefore in measur-

ing the tiny (✒ 10✁4Å) wavelength shift in the light from a wobbling star, which is then

translated into a corresponding stellar radial velocity projected in the direction of the

radius connecting the star and the observer. That velocity depends on both star and planet

masses. Since the former can be obtained from the stellar oscillation analysis through

asteroseismology, the mass of the planet can finally be determined.

Radial velocity has shown to be a powerful method for detecting and characterizing

masses of exoplanets. However, the main drawback of this method is the fact that it can

only provide unambiguous mass estimations if the inclination angle between the observer’s

line of sight and the orbital plane of the planet is known. Otherwise, the method is limited

to estimate only the planet’s “projected mass” in the direction of the observer’s line of

sight, that is the minimum planet mass (Campante, Santos & Monteiro (2018)).

1.4.3 False transit signatures

Planets orbiting stars are not the only astrophysical sources capable of producing

transit-like signals in light curves. Binary stars, which are known to exist since William

Herschel back in the 1700’s, can naturally produce transit dips as well. Therefore, if one

looks at finding new exoplanets, then one should be capable of distinguishing legitimate

planetary transits (i.e true positives) from those which are not (i.e. false positives).

In the context of the Kepler mission, a concept was created to designate statistically

significant transit-like signatures marked for further data validation: the threshold crossing

events (TCE) (see e.g Twicken et al. (2018)). Each of these events become a Kepler Object
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Figure 9 – Representation of radial velocity (Doppler spectroscopy) method.

Source: NASA.

of Interest (KOI) (i.e. a planet candidate) which shall be subjected to proper vetting

process in order to check whether they are true planets or not.

There are principally four astrophysical phenomena (Figure 10) capable of producing

statistically significant transit-like signatures (Bozza, Mancini & Sozzetti (2016)):

1. Planets orbiting stars;

2. Grazing eclipsing binaries with similar mass and size;

3. Medium- or high-mass stars with low-mass (e.g. red dwarf) stellar companions;

4. Blended eclipsing binaries.

The latest three are examples of false positives. During vetting process, some of these

false planet transits can be quickly identified by looking at their shape. For example,

grazing stellar binaries produce transit signals that are V-shaped, whereas legitimate planet

transits are U-shaped. Besides, a transit produced by eclipsing binaries with different

effective temperatures is inevitably colour-dependant, which is naturally not the case of a

true planet transit. Furthermore, eclipsing binaries periodically present two distinct transit

depths, since both stars of the system are eclipsed alternately.

A blended eclipsing binary system consists of a isolate foreground (target) star,

i.e. a star from which we are interested to extract photometry from, with a background
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from a star towards a given position of the detector. The more distorted the PSF, the

larger the number of pixels required to register the star signal on the detector, thereby the

greater is its noise contribution in the photometry. Furthermore, sources of photon flux

from the sky such as contaminant stars and scattered zodiacal and Galactic lights also

contribute to the total noise embedded in the photometry extracted from a star.

In all such context, extracting high precision light curves from stars is far from

being a straightforward task. While several photometry extraction methods exist in the

literature, they are all essentially derived from two major techniques: PSF fitting and

aperture photometry. We provide a general description of both methods in the following

sections.

1.5.1 PSF fitting photometry

The PSF fitting method consists in fitting a PSF-based image model of a star to

its measured one, such as to minimize the following functional:

χ2 ✏
➳
i,j

✁
Ii,j ✁ Îi,j

✠2

σ2
i,j

, (1.1)

where Ii,j corresponds to the measured star image, Îi,j the modelled star image and σ2
i,j

the variance of the measured flux at pixel coordinate ♣i, jq. The modelled star image Îi,j

can be defined as (Deheuvels & Ballot (2019)):

Îi,j ✏ a✂ Pi,j♣xc, ycq � b, (1.2)

where ai,j is the stellar flux at pixel coordinate ♣i, jq, bi,j is the background flux at pixel

coordinate ♣i, jq, and Pi,j♣xc, ycq is a PSF description at pixel coordinate ♣i, jq with centroid

coordinate ♣xc, ycq. Hence, the free parameters of the fit are xc, yc, a, and b.

The essential objective of this method is to determine, at pixel level, what are the

contributions of the target star flux and the background flux to each pixel of the measured

star image Ii,j. Going further, this method can be refined to include contributions from

contaminant stars present in the star image scene. By doing so, one is then capable to

optimally detach the average flux of the target star from that of contaminant sources and

the diffuse background light. Moreover, the PSF fitting technique has also the advantage

of providing relative accurate (✒ 10✁2 pixel) estimates on the centroid position of stars

and is less sensitive to satellite jitter and long-term stellar position drift. In contrast, since

– in real world scenario – uncertainties on the knowledge of the instrument PSF always

exist, this method is mostly limited by the quality of the PSF description Pi,j♣xc, ycq.





31

1.6 This thesis

The PLATO mission is expected to observe up to one million stars, depending on the

final observation strategy. In contrast, transmitting to the ground individual images from

each of these stars at sufficiently short cadence for further processing requires prohibitive

telemetry resources. Hence, for a substantial fraction of the targets, an appropriate in-flight

data reduction strategy (prior to data compression) needs to be executed. For that, the

most suitable encountered solution consists in producing their light curves on board.

In view of its acknowledged high performance and straightforward implementation,

mask-based (aperture) was adopted as photometry extraction method to produce light

curves in flight. In such context, the present work unfolds the development carried out for

defining the optimal collection of pixels (i.e. the aperture Mi,j, Equation 1.3) for extracting

photometry on board from a significant fraction of the PLATO targets. Compared to

the common approaches found in the literature to determine aperture shapes, this work

brings a novel perspective through which greater importance is given to the problematic

of background false positives (subsubsection 1.4.3). The major motivation for that is

to provide ways of eliminating astrophysical false positives as early as possible in the

planet discovery process. This is justifiable since although effective techniques exist for

detecting false positives (e.g. Bryson et al. (2013)) from the observations, in most cases

the vetting process of planet detections usually requires ground-based confirmations via

radial velocity measurements that consume (costly) telescope time. Accordingly, using

such infrastructure to identify false positives – that could be earlier rejected by the time

of the detection – represent significant waste of money and time. Furthermore, the vast

majority of light curves produced in flight will not have pixel data available on the ground

for the identification of false positives. The main challenge involved in this work relies on

the fact that it needs to propose an aperture photometry solution delivering sufficiently

high photometric precision to be in agreement with the science requirements defined for

the PLATO mission, and sufficiently low sensitivity to false planet detections; all that for

a huge number of targets with the limited CPU and memory resources available in the

spacecraft payload.

The following of this document2 is organized as follows: Chapter 2 provides an

overview of the PLATO mission including its science objectives and requirements, envisaged

observation strategies and data products. This chapter also describes the main payload

characteristics, including instrument point spread function (PSF), spectral response, and

noise. Chapter 3 gives details on the extracted data from the adopted input catalogue

(Gaia DR2). That information is used to build synthetic input images, called imagettes, to

characterize the performance of aperture photometry. A synthetic PLATO P photometric

2 This document uses the LATEX typesetting package abnTeX2 for technical and scientific documents.
This package is based on ABNT rules that are required by the University of São Paulo in Brazil.
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passband, calibrated on the VEGAMAG system, is derived to avoid the inconvenience

of having colour dependency when estimating stellar fluxes – at detector level – from

visual magnitudes. Colour relationships with Johnson’s V and Gaia G magnitudes are thus

provided. Moreover, an expression is derived to provide an estimation on the intensities

of zodiacal light entering each PLATO telescope. Chapter 4 describes the methodology

applied to find the optimal aperture model to extract photometry from stars in P5 sample.

Three models are tested, including a novel direct method for computing a weighted

aperture providing global lowest NSR. The chapter ends by showing comparative results

between all aperture models with respect to their sensitivity in detecting true and false

planet transits. Finally, Chapter 5 concludes with discussions on the presented results and

perspectives/open issues for future work.
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2 The PLATO space mission

PLAnetary Transits and Oscillations of stars (PLATO)1 (Rauer et al. (2014)) is

a space mission from ESA whose science objective is to discover and characterize new

extrasolar planets and their host stars. Expected to be launched by the end 2026, this

mission will focus on finding photometric transit signatures of Earth-like planets orbiting

the habitable zone of main-sequence Sun-like stars. Thanks to its instrumental concept

comprising multiple telescopes covering a very large field of view, PLATO will be able to

extract long duration photometry from a significantly large sample of bright stars at very

high photometric precision, allowing it to accurately characterize planetary and stellar

parameters such as mass, radii, density and age.

Figure 12 – Artist’s impression of PLATO spacecraft.

Source: OHB System AG.

1 See <https://www.cosmos.esa.int/web/plato> and <https://platomission.com/>.
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In this chapter, we provide an overview of the very foundation on which the PLATO

mission and the present work are built. We start by giving a brief history of the project

until its current development stage, then we move along the top science goals of the

mission and derived requirements, covering the aspects of observational constraints and

strategies. Next, a description of the instrument concept is given, including a summary of

the main payload characteristics containing all the instrument parameters used in this

work. We also provide a overview of the science data processing pipeline, in which context

the present work takes place.

The work presented in this chapter is partially based on Marchiori et al.

(2019). In-flight photometry extraction of PLATO targets: Optimal apertures

for detecting extra-solar planets, A&A, 627, A71.

2.1 A brief history of the project

The PLATO mission was first proposed to ESA by a broad group of European

scientists headed by Dr. Claude Catala (Paris Observatory), in response to the Call for

(M-class) mission proposals of Cosmic Vision 2015-2025 released on March of 2007. From

a total of 52 proposals, PLATO was pre-selected along with five other projects.

In June 2011, PLATO successfully completed phase A (feasibility evaluation), after

having gone through assessment and definition studies which involved two independent

industries to investigate the mission concept, and a Consortium of research Institutes and

Universities to study the payload. The proposal however was not selected for the M1 or

M2 launch opportunities as originally planned. Shortly after its non-selection, PLATO

candidature was re-submitted for the M3 launch opportunity with renewed science case

and mission design. One of the major changes in the new proposal was the transfer of

the leading role from France to Germany, with Prof. Heike Rauer (DLR) taking place as

PLATO Principal Investigator. On February 19th 2014, PLATO was selected by ESA for

the M3 launch opportunity in 2022–2024.

After the selection, the mission entered in phase B (preliminary definition), this

time involving three concurrent industrial contractors (Airbus Defence and Space, OHB

System AG, and Thales Alenia Space) for designing the spacecraft. After being subjected

to a thorough independent review at ESA, the new PLATO Science Management Plan

was approved by the ESA Science Programme Committee in June of 2016. The approved

plan included a (revised) baseline payload configuration comprising 26 telescopes with

nominal science operations of fours years (plus a verified in-orbit lifetime of 6.5 years and

eight years of consumables). The ESA Science Programme formally adopted the PLATO

mission in June of 2017. In May of 2018, OHB System AG – a subsidiary of Bremen-based

space and technology group OHB SE – was selected as the prime contractor of PLATO.

The prime is responsible for constructing the spacecraft platform (which includes the main
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satellite structure, the propulsion system, the solar panels, the attitude and orbit control

system, among others features) and integrating it with the payload.

The mission is currently in end of phase B and shall be ready to start phase C

(detailed definition and implementation) by end 2019. A recent important milestone for

the mission was the delivery to ESA of a first batch of 20 charge-coupled devices (CCDs)

in mid March of 2019.

2.2 Mission Consortium

The PLATO Mission Consortium (PMC) regroups several hundreds of scientists

from almost all ESA Member States, including a few scientists from the United States

and Brazil. The PMC is lead by the project Principal Investigator and is responsible for

building, integrating, verifying, calibrating and delivering the PLATO payload to ESA.

The payload subsystems include camera optical elements and detectors, flight hardware

and software, electronics, as well as the pipeline algorithms and modules to generate high

level scientific data products.

The PMC structure (Figure 13) includes the PLATO Data Centre (PDC) and the

PLATO Science Management (PSM) teams. The PDC team is responsible for developing

methods and tools for analysing, validating and calibrating the data collected by the

spacecraft. The PSM provides scientific specifications for the PDC, specifies the PLATO

input catalogue and organises preparatory and follow-up observations.

2.3 Science goals

The PLATO mission is in synergy with the fundamental questions that drives the

ESA Cosmic Vision Program. Accordingly, the core design of the mission was established

with top level science goals that can be broken down into the following specific objectives

(PLATO Study Team (2017)):

1. Determine the bulk properties (mass, radii, and mean density) of planets in a wide

range of systems, including terrestrial planets in the habitable zone of solar-like

stars;

2. Study how planets and planet systems evolve with age;

3. Study the typical architectures of planetary systems;

4. Analyse the correlation of planet properties and their frequencies with stellar param-

eters;

5. Analyse the dependence of the frequency of terrestrial planets on the environment

in which they formed;
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(2017)). Moreover, PLATO will be the first mission of its category being capable of provid-

ing a significant sample of (super) Earth-like planets orbiting within the habitable zone of

Sun-like stars (Goupil (2017)). Furthermore, coupling accurate parameters of planets with

those from their (bright) host stars should provide a consistent census of exoplanetary

systems neighbour of our own Solar System.

2.4 Science requirements

We present here below a non-exhaustive list containing the major scientific require-

ments established for both asteroseismology and exoplanet search sciences of the PLATO

mission, derived from the science goals described in the previous section. PLATO shall be

capable of (PLATO Study Team (2017), ESA (2017), Goupil (2017)):

• detect a planet orbiting a G0V star with an orbital period of one year (this is roughly

equivalent to being capable of detecting an Earth-like planet orbiting a Sun-like star

at a distance of 1 AU);

• determine – with accuracy better than 2% – radius of G0V stars as bright as V ✏ 10;

• determine – with accuracy better than 15% – mass of G0V stars as bright as V ✏ 10;

• determine – with accuracy better than 10% – ages of G0V stars as bright as V ✏ 10;

• detect and characterize terrestrial planets orbiting dwarf and sub-giants stars brighter

then V ✒ 8 and of spectral type F5 to late-K at distances including the habitable

zone of such stars;

• provide dual photometric band information for stars brighter than V ✒ 8;

• detect planets orbiting dwarf and sub-giants stars of spectral type F5 to late-K at

distances including the habitable zone of such stars;

• detect terrestrial3 planets orbiting M-dwarf stars at distances including the habitable

zone of such stars;

• determine – with accuracy better than 3% – radius of detected planets down to

Earth-size orbiting G0V stars as bright as V ✏ 10;

• determine – with accuracy better than 2% – planetary-to-stellar radius of detected

planets down to Earth-size orbiting G0V stars as bright a V ✏ 10;

3 A terrestrial planet is understood herein as being a planet whose radius Rp and mass Mp satisfy
Rp ➔ 2R❵ and Mp ➔ 10M❵.



38 Chapter 2. The PLATO space mission

• deliver photometric data allowing to determine – through radial velocity measure-

ments and with accuracy better than 10% – mass of terrestrial planets orbiting G0V

stars;

• deliver photometric data allowing to determine – with precision of the order of

0.1 µHz for main sequence stars – frequencies of normal oscillation modes above and

below the mode with the maximum amplitude;

• observe between 10% and 50% of the sky with observation durations of at least two

months;

• sustain in-orbit nominal science operations during at least four years.

The above science requirements translate – at instrument level – into noise require-

ments (see Figure 14) which can be summarized as follows

(A) the residual errors from systematic effects in the light curves of stars brighter than

V ✒ 10 must be limited to two thirds of their photon noise;

(B) The item (A) above must hold within the frequency range comprised between 20 µHz

and 40 mHz;

(C) The total random noise of stars brighter than V ✒ 10 must be limited to 34 ppm hr1④2.

(D) Noise requirements must be assured in the wavelength range between 500nm and

1000nm (visible and near infrared domains).

Satisfying the requirement (A) ensures that the total random noise in the light

curve of a star brighter than V ✒ 10 is dominated by its photon noise.

The frequency range of requirement (B) includes the time-domain interval comprised

between a few minutes for the detection stellar oscillations and a few hours for the detection

of planetary transits.

Satisfying the requirement (C) ensures that the oscillation modes of Solar-type stars

can be identified, and that Earth-like planets orbiting in the habitable zone of Sun-like

stars can be detected and their planetary-to-stellar radius characterized with accuracy

better than 2% (ESA (2017)).

The requirements (A), (B), (C), and (D) altogether also work as drivers for linking

science and engineering requirements (e.g. spacecraft pointing error, thermal control,

electronics, spectral range etc.).
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Lastly, the Sample P5 includes a massive number (→ 245, 000) of F5 to late-K dwarf

and sub-giants stars with visual magnitude in the range 8 ➚ V ➚ 13. This sample aims

to generate large statistical information on planet occurrence rate and systems evolution.

For comparison, the Kepler and TESS missions – of the same category of PLATO – were

designed to survey, in nominal terms, about 150,000 (Borucki et al. (2010)) and 200,000

(Ricker et al. (2014)) targets, respectively.

Table 1 – Summary of PLATO mission stellar samples.

Description Sample P1 Sample P2 Sample P4 Sample P5

Number of stars ➙ 15, 000 ➙ 1, 000 ➙ 5, 000 ➙ 245, 000

Spectral type F5 to K7 F5 to K7 M F5 to late-K

Magnitude in V band ➚ 11 ➚ 8.2 ➚ 16 ➚ 13

Cadence of 25 seconds 2.5 seconds 25 seconds 25 seconds
image acquisition

Data type images images images light curves
(centroids @50 sec for 5% of the targets)

(images @25 sec for at least 9,000 targets)

Data sampling 25 seconds 2.5 seconds 25 seconds 600 seconds
(50 seconds for 10% of the targets)

Source: ESA (2017).

Within PLATO’s mission design, light curves will be produced on board exclusively

for the targets of the Sample P5. For all other stellar samples, which are primarily composed

of the brightest targets, the photometry will be extracted on-ground from individual images

downlinked from the spacecraft, thereby following the same principle as that of Kepler

and TESS targets.

2.6 Observation strategies and envisaged stellar fields

To achieve the science requirements, the PLATO spacecraft shall be capable of

carrying out uninterrupted long duration (few months to several years) photometric stellar

observations of a very large sample of (bright) targets at very high photometric precision.

Considering a nominal mission duration of four years, two observation scenarios

are considered for PLATO. The first consists of two long-duration (2+2 years) observation

phases (LOP) with distinct sky fields. The second consists of a single LOP of three years

plus one step-and-stare operation phase (SOP) of one year (i.e. a (3+1 years) observation

configuration), covering multiple fields lasting a few months each.

Mission design constraints require the LOP fields to have absolute ecliptic latitude

and declination above 63✆ and 40✆, respectively. Under such conditions, two LOP fields

are actually envisaged: a southern PLATO field (SPF) centred at Galactic coordinates

l ✏ 253✆ and b ✏ ✁30✆ (towards the Pictor constellation) and a northern PLATO field
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(NPF) centred at l ✏ 65✆ and b ✏ 30✆ (towards the Lyra and Hercules constellations and

also including the Kepler target field).

An illustration containing the locations of both SPF and NPF is shown in Figure 15,

as well as the possible locations of the SOP fields. The definite pointing coordinates of the

PLATO target fields will be defined two years before launch.

Figure 15 – Sky coverage in Galactic coordinates of PLATO’s provisional SPF and NPF
long-duration LOP fields, including the possible locations of the short-duration
SOP fields (STEP 01-10). The illustration also shows some sky areas covered
by the surveys: Kepler (red), Kepler-K2 (green), TESS (Continuous Viewing
Zones-CVZ; yellow) and CoRoT (magenta).

Source: courtesy of Valerio Nascimbeni (INAF-OAPD, Italy), on behalf of the PLATO
Mission Consortium. This image is front page of A&A’s Volume 627 (July 2019).

To give an idea of the potential of PLATO observations in the matter of exoplanet

detections, with an observation baseline of 2+2 years, the estimated planet yield from

stars brighter than V ✒ 13 is of the order of 4, 600 planets (all sizes and orbital periods

comprised). This represents more than the total number of discovered exoplanets to date.

Yet, if a mission extension of two more years is granted, the total planet yield – with an

observation baseline of 3+1+2 years – might achieve expressive ✒ 13,000 planets from

stars brighter than V ✒ 13 (ESA (2017)). A mission extension of at least two years is

possible considering that the spacecraft is designed for a (nominal) in-orbit operation

lifetime of 6.5 years and will carry consumables for 8 years.
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2.7 Launch, orbit and science operations

Uninterrupted long duration and high photometric precision observations as those

specified for PLATO requires a sufficiently stable spatial environment. That is, the satellite

must be placed into an orbit where it can keep its sight permanently turned to the target

field without any viewing obstruction, and preferably with (relative) high thermal stability.

Low-Earth orbits suffer from important flux gradients of energetic particles (e.g.

due to the South Atlantic Anomaly (Baglin, Chaintreuil & Vandermarcq (2016), Nasuddin,

Abdullah & Hamid (2019)), high levels of scattered Sun-light reflected by the Earth,

frequent observation interruptions, and strong thermal variations at timescales of minutes

to hours. Hence, the PLATO spacecraft will be placed into a (sufficiently away from the

Earth) Lissajous orbit4 around the L2 Lagrangian point (Figure 16). The L2 point, which

is about 1.5 million kilometres (0.01 au) beyond the Earth orbit distance with respect

to the Sun, fulfils all the observational needs established for the mission. In L2 orbit,

PLATO will be permanently on the line that passes through the Sun and the Earth; as a

consequence, the spacecraft will have the exact same orbital period as that of the Earth.

The launch of PLATO satellite is expected to take place by end 2026 from the

Kourou base at French Guiana, possibly on a Soyuz-Fregat2-1b launcher. Once in space,

the PLATO satellite will be subjected to regular (every 30 days) station-keep manoeuvres

to compensate for dynamic orbital instabilities.

Figure 16 – Orbit location (Lagrange L2 point) of PLATO spacecraft.

Source: ESA/NASA.

The PLATO satellite will operate according to two distinct operation modes: the
4 <https://en.wikipedia.org/wiki/Lissajous_orbit>
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• Level-0: comprises light curves, images and centroid curves of target stars from all

individual telescopes, including eventual instrumental corrections applied on board

only;

• Level-1: basically consists of Level-0 data that was calibrated and corrected for

instrumental errors. These data will be mostly public available after calibration;

• Level-2: comprises planetary candidates along with their respective transit depth,

transit duration, and estimated radius; list of planetary systems confirmed with

TTVS, to be characterized by combining planetary transits and asteroseismology;

results of asteroseismology analysis including stellar rotation periods, masses, radii

and ages; and associated uncertainties;

• Level-3: list of confirmed planetary systems to be characterized by combining plane-

tary transits, asteroseismology, and ground-based radial velocity follow-up.

2.9 Instrument description

2.9.1 Overall characteristics

The PLATO payload relies on an innovative multi-telescope concept consisting of

26 small aperture (12 cm pupil diameter) and wide circular field of view (✒1,037 deg2)

telescopes mounted in a single optical bench. Each telescope is composed of an optical unit

(TOU), a focal plane assembly holding the detectors, and a front-end electronics (FEE)

unit. The whole set is divided into 4 groups of 6 telescopes (herein called normal telescopes

or N-CAM) dedicated to the core science and 1 group of 2 telescopes (herein called fast

telescopes or F-CAM) used as fine guidance sensors by the attitude and orbit control

system. The normal telescope assembly results in a overlapped field of view arrangement

(see Figure 18), allowing them to cover a total sky extent of about 2,132 deg2, which

represents almost 20 times the active field of the Kepler instrument. The N-CAM and

F-CAM designs are essentially the same, except for their distinct readout cadence (25 and

2.5 seconds, respectively) and operating mode (full-frame and frame-transfer, respectively).

In addition, each of the two F-CAM includes a bandpass filter (one bluish and the other

reddish) for measuring stellar flux in two distinct wavelength bands. Table 2 gives an

overview of the main payload characteristics based on (ESA, 2017).

2.9.2 Point Spread Function (PSF)

Starlight reaching the focal plane of PLATO cameras will inevitably suffer from

distortions caused by both optics and detectors, causing this signal to be non-homogeneously

spread out over several pixels. The physical model describing such effects is the PSF, from

which one can determine – at subpixel level – how stellar signals are distributed over the
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Table 2 – Summary of main payload characteristics.

Description Value

Optics (24+2) telescopes
axisymmetric dioptric design

TOU Spectral range 500✁ 1000 nm

Pupil diameter (per telescope) 12 cm

Detector back-illuminated
Teledyne-e2v CCD 270

(Figure 19)

N-CAM Focal Plane 4 full-frame CCDs
(4510 ✂ 4510 pixels each)

F-CAM Focal Plane 4 frame-transfer CCDs
(4510 ✂ 2255 pixels each)

Pixel size 18 µm square

On-axis plate scale (pixel field of view) 15 arcsec

Quantization noise ✒ 7.2 e✁rms px✁1

Readout noise (CCD+FEE) ✒ 50.2 e✁rms px✁1

Focal length 24.5 cm

Detector smearing noise ✒ 45 e✁ px✁1 s✁1

Detector dark current noise ✒ 4.5 e✁ px✁1 s✁1

N-CAM cadence 25 s

N-CAM exposure time 21 s

N-CAM readout time 4 s

F-CAM cadence 2.5 s

N-CAM field of view ✒ 1037 deg2 (circular)

F-CAM field of view ✒ 619 deg2

Full field of view ✒ 2132 deg2

Fractional field of view 294 deg2 (24 telescopes)
171 deg2 (18 telescopes)
796 deg2 (12 telescopes)
871 deg2 (6 telescopes)

Source: ESA (2017).

place at PLATO detectors with respect to the diffusion, the optical PSFs are convolved to

a Gaussian kernel with a standard deviation of 0.2 pixel. The resulting simulated PSF

models are shown in Figure 21 for 15 angular positions, ξ, within the field of view of one

camera. In this work, PSF shape variations due to target colour are assumed to be of

second order and are thus ignored.

To reduce the overlap of multiple stellar signals and increase photometric precision,

PLATO cameras are primarily designed to ensure that about 77% of the PSF flux is

enclosed, on average, within ✒ 2.5✂ 2.5 pixels across the field of view, or 99% within
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Figure 20 – Baseline optical layout of each PLATO telescope.

Source: the PLATO Mission Consortium.

✒ 5✂ 5 pixels. As a consequence, the size of the pixels are relatively large compared to

that of the PSF, making the distribution of energy from stars very sensitive to their

barycentre location within a pixel (see Figure 22).

2.9.3 Spectral response

The spectral response of a photometer represents its efficiency in converting incident

photons into effective counts of electrons at detector level. It is derived from the combined

effect of optical transmission and CCD quantum efficiency.

The spectral response curve SP ♣λq of PLATO cameras (see Figure 23) is defined as

SP ♣λq ✏ OP ♣λq ✂ QP ♣λq, (2.1)

where OP ♣λq is the optical transmission and QP ♣λq is the quantum efficiency of PLATO

cameras. For comparison, Figure 23 also includes the Gaia G passband7, Johnson’s V

filter from Bessell (1990), Kurucz template (alpha_lyr_stis_008) of Vega A0V star from

the CALSPEC8 database, E-4909 reference solar spectrum from ASTM and a M2V-type

star synthetic spectrum from the Pickles atlas10 (Pickles (1998)).

Numerical values of OP ♣λq, QP ♣λq, and SP ♣λq – as they are known to date – are

provided in Table 3. In Chapter 3, SP ♣λq is used to derive a PLATO P photometric

passband calibrated in the VEGAMAG system (i.e. normalized by the flux of Vega star).

7 <https://www.cosmos.esa.int/web/gaia/auxiliary-data>
8 <http://www.stsci.edu/hst/observatory/crds/calspec.html>
9 <https://www.nrel.gov/grid/data-tools.html>
10 <http://www.stsci.edu/hst/observatory/crds/pickles_atlas.html>
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Table 3 – Optical transmission OP ♣λq, detector quantum efficiency QP ♣λq and resulting
spectral response SP ♣λq of PLATO normal cameras at beginning of life, as a
function of the wavelength λ.

λ [nm] 500 550 600 650 700 750 800 850 900 950 1000

OP ♣λq 0.658 0.711 0.747 0.756 0.771 0.779 0.785 0.788 0.791 0.792 0.794

QP ♣λq 0.7370 0.8070 0.8770 0.8675 0.8580 0.7565 0.6550 0.4845 0.3140 0.1650 0.0620

SP ♣λq 0.4849 0.5738 0.6551 0.6558 0.6615 0.5893 0.5142 0.3818 0.2484 0.1307 0.0492

Source: Pertenais, Wohlfeil & Peter (2018).

2.9.4 Vignetting

Another parameter impacting instrument efficiency is vignetting, an inherent optical

feature that causes attenuation of image brightness. Such an effect increases non-linearly

as the angular position, ξ, of the source augments with respect to the optical axis (ξ ✏ 0)

of the instrument. The total vignetting, fvig, is the combined result of both natural (fN
vig)

and mechanical (fM
vig) vignetting intensities, such that

fvig ✏ 1✁ ♣1✁ fN
vigq ✂ ♣1✁ fM

vigq. (2.2)

For PLATO cameras, the natural vignetting fN
vig follows a cosine square law resulting

in

fN
vig ✏ 1✁ cos2♣ξq, (2.3)

whereas the mechanical vignetting fM
vig is computed numerically from the baseline optical

layout. Figure 24 shows the vignetting intensities of PLATO normal cameras as a function

of the off-axis angle ξ of the target. The corresponding numerical values are provided in

Table 4.

Table 4 – Combined natural and mechanical ob-
scuration vignetting, fvig, as a function
of the off-axis angle, ξ, of the target.

ξ [deg] fvig [%] ξ [deg] fvig [%] ξ [deg] fvig [%]

0.000 0.00 7.053 1.51 14.001 5.85

1.414 0.06 8.454 2.16 15.370 7.03

2.827 0.24 9.850 2.93 16.730 8.53

4.238 0.55 11.241 3.80 18.081 11.58

5.647 0.97 12.625 4.78 18.887 13.69

Source: author.
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2.10 Data processing algorithms

The PLATO data processing pipeline (Figure 25) is a critical component of the

payload. This is composed of multiple ground- and flight-based algorithms that are

necessary to convert the raw data collected by the instrument, which inevitably carries

unwanted systematic disturbances, into scientifically exploitable (Level-1) light curves as

outlined in subsection 2.8.

The major sources of systematic errors expected for PLATO are

• Uncertainties on PSF model;

• Long-term star position drift;

• Sky background light;

• Charge disturbance processes occurring in the detectors (CTI, brighter-fatter and

diffusion);

• Pixel saturation;

• Light curve outliers;

• Satellite jitter.

Extensive studies have been carried out focussed on the definition of the on-board

and on-ground data processing algorithms (Samadi et al. (2018), Grolleau et al. (2018))

that shall be applied to PLATO images and light curves to correct these for the above

sources of systematic errors. In the next few sections, we provide important considerations

with regard to some of the effects listed above, in particular to those having a stronger

connection to the present work.

2.10.1 PSF modelling

During and after launch, the space environment unavoidably causes overall changes

in the instrument response that cannot always be accurately predicted, including variations

in the PSF model. Nevertheless, accurate knowledge of the PSFs is imperative for proper

correction of systematic errors in the light curves and computing the photometric apertures,

so a strategy for reconstructing the PSFs is needed. As the individual raw images downlinked

from the spacecraft cannot describe the distribution of stellar flux on the detectors with

sufficient resolution, high resolution PSFs such as those in Figure 21 will be reconstructed

on the ground from micro-scanning sessions (Samadi et al. (2019), Mathé & Samadi

(2015)). This process, which will occur every three months during instrument calibration

phases, basically consists of collecting (in flight) a series of raw images from subpixel
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displacements following an Archimedean spiral (Figure 26). These images are then used

on ground by inverse methods to reconstruct the high resolution PSFs.

The efficiency of the inversions is mostly affected by the magnitude of the target

star and the off-axis angular position, ξ, of the camera group observing it. The amount of

flux from nearby contaminant stars also impacts on the inversion efficacy. However, recent

simulations results show that having a sufficiently good knowledge on the positions and

magnitude of the stars within the micro-scanning images makes the inversions viable even

under the presence of several contaminant stars (Reese & Marchiori (2018)). In that sense,

the high precision data from the Gaia catalogue will be of major importance.

2.10.2 Long-term star position drift

As explained in subsubsection 2.9.2, the dimensions of PLATO CCD pixels are

relatively large compared to the PSF size, making the distribution of energy from stars

very sensitive to their barycentre location within a pixel. In parallel, two physical effects

are expected to cause apparent star motion of stars on the focal plane: thermo-elastic

distortions and aberration of stars.

Thermo-elastic distortions stand for small expansion and contraction displacements

of the spacecraft platform that are caused by variations on the temperature gradient

across its structure. These mechanical disturbances propagates then to the optical bench

where the cameras are installed, thereby causing small but not negligible changes in

their positions with respect to the stars in the sky. Overall, thermo-elastic distortions are

expected to contribute with apparent stellar position drifts of about 0.5 pixel in three

months.

The aberration of stars, also known as differential velocity (kinematic) aberration

(DVA), is an astronomical relativistic phenomenon that causes apparent motion of celestial

objects about their true positions (see Figure 27). The amplitude of this effect depends on

the component of the spacecraft’s velocity vector along the line of sight. The greater this

velocity component, the smallest the DVA amplitude and vice-versa. For PLATO stars,

the DVA amplitude is expected to be up to ✒ 8 arcsec (✒ 0.5 pixel) in three months.

Considering both thermo-elastic distortions and DVA effects combined, stars in

PLATO field are therefore expected to manifest apparent position motions of the order of

✒ 1.3 pixel in three months in worst case scenarios.

2.10.3 Sky background light

In stellar photometry, fluxes originated from sources other than the stars of interest

(target stars) are considered backgrounds. Background fluxes can be distinguished between

those arising from celestial sources (e.g. zodiacal light and contaminant stars) from those
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originated at the instrument level (e.g. electronic gain and internal optical light reflections

called “ghosts”).

High-precision-stellar-photometry-based missions, like PLATO, are significantly

affected by backgrounds in basically two ways: on one hand, background random noise

increases the noise-to-signal ratio of the light curves; and on the other hand, background

average flux dilutes astrophysical transit depths, making these appear in the light curves

smaller than they naturally are.

With regards to the PLATO light curves, since the satellite will be positioned in

L2 orbit, the major celestial contributors to background flux will be the zodiacal light and

the flux from contaminant stars.

2.10.4 Pixel saturation

The total number of electrons that a CCD pixel can accommodate is finite. Beyond

that limit, known as the pixel full well capacity (FWC), any additional charge falling into

that pixel will inevitably be spilled out into adjacent pixels along the same column.

Stars that are bright enough to saturate one or more pixels are called “saturated”

stars. Extracting photometry from such stars requires a different pixel selection strategy

with respect to that applied to non-saturated stars. In that case, the typical solution

consists of collecting additional flux from an extended number of pixels along the columns,

depending on the level of saturation.

In the current instrument design, PLATO detectors are expected to exhibit sat-

uration at pixels observing stars brighter than V ✒ 8.5 beyond 25s exposure on normal

cameras. The exact saturation limit however depends on the location of the star in the

CCD and where its barycentre falls within a pixel.

2.10.5 Photometry extraction

As pointed out in subsection 2.5, light curves will be produced on board exclusively

for the targets of the Sample P5. In such context, this thesis presents the research work

carried out – within the data processing algorithm working group – to define optimal

apertures for extracting photometry of P5 targets. Within the WBS structure of the data

processing algorithms working group (Figure 25), this thesis represents the work package

with code WP 323 100 (Mask-based photometry).
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3 Image formation at PLATO detectors

During science observations, in-flight photometry extraction will be performed

independently for each target by integrating its flux over a set of selected pixels (aperture

or mask). Such pixel collection is to be chosen from a 6✂ 6 pixels square window called

imagette, assigned uniquely to each target. Characterizing the expected performance of

mask-based photometry requires building up such imagettes (i.e. realistic models of Ii,j;

Equation 1.3), which shall be composed of realistic stellar content (targets and respective

contaminants). This chapter presents in detail all the elements considered for constructing

the imagettes that are used as input for the simulations of aperture photometry presented

in Chapter 4.

The work presented in this chapter is strongly based on Marchiori et al.

(2019). In-flight photometry extraction of PLATO targets: Optimal apertures

for detecting extra-solar planets, A&A, 627, A71.

3.1 Zodiacal light

As the spacecraft will be positioned in L2 orbit (located at approximately 1.01

au from the Sun), sky background flux entering its cameras will be dominated by the

zodiacal light, i.e. sunlight scattered by interplanetary dust particles agglomerated across

the ecliptic plane. Zodiacal light brightness is conventionally expressed in counts of 10th

visual magnitude solar-type stars per square degree, also known as S10 unit.

By denoting I❞♣λq as the solar spectral irradiance at 1AU and adopting a corre-

sponding apparent visual magnitude VSun ✏ ✁26.74 mag, the S10 unit is formally defined1

as

S10 ✏ 10✁0.4♣10✁VSunq I❞♣λq deg✁2 ✏ 6.61✂ 10✁12 I❞♣λq sr✁1. (3.1)

Tabular data containing zodiacal light measurements in S10 units are available in Leinert

et al. (1998). The published data (see visual representation in Figure 28) are given as a

function of viewing directions specified in ecliptic coordinates with zero point in the Sun

(Figure 29). The corresponding values are valid for an observer located in the vicinity

of Earth and at monochromatic wavelength (500 nm). Outside these conditions, a semi-

analytical model containing a few correction factors shall be applied. Based on that model,

1 The steradian (sr), also called square radian, is a unit of solid angle in the International System of
Units (SI). Accordingly, 1 sr is equal to ♣180④πq2 deg2.







60 Chapter 3. Image formation at PLATO detectors

Table 5 – Description of the parameters of Equation 3.2.

Description Symbol Value Unit

Zodiacal light tabulated data fZL see Leinert et al. (1998) S10

Planck’s constant h 6.63 ✂ 10✁34 J s

Speed of light in vacuum c 2.99 ✂ 108 m s✁1

Field-of-view solid angle (per pixel) Ω 4.2 ✂ 10✁9 sr

Entrance pupil surface (per camera) ΘP 113.1 cm2

Spectral range rλ1, λ2s r500, 1000s nm

Sun’s spectral irradiance I❞♣λq ASTM’s E-490 spectrum W④cm2④nm

Correction factor for L2 point fL2 0.975 adim

Instrument vignetting fvig see Table 4 adim

Redenning correction factor fred♣λq see Leinert et al. (1998) adim

Spectral response SP ♣λq see Figure 23 adim

Source: author.

3.2 The input stellar catalogue

Input stellar catalogues are essential tools for space missions dedicated to astero-

seismology and exoplanet searches. Besides its crucial role in field and target selection, it

is also noticeably useful for estimating and characterizing the performance of photometry

extraction methods prior to mission launch. Indeed, an input catalogue allows one to

produce synthetic sky images containing realistic stellar distributions, including their

relative positions, apparent magnitudes, effective temperatures, gravities, metallicities and

more. At the present date, a PLATO Input Catalogue (PIC) is being developed based

on the ultra-high precision astrometric data from the Gaia mission (Gaia Collaboration

et al., 2016). In the future, the PIC might also include information available from other

sky surveys such as the Large Synoptic Survey Telescope (LSST) (IVEZIĆ et al., 2019),

Panoramic Survey Telescope and Rapid Response System (PanSTARSS) (Chambers et

al., 2016), and SkyMapper Wolf et al. (2018). The PIC will provide abundant and detailed

stellar information for optimized target selection vis-à-vis mission science goals. As the

PIC was not yet available by the time that the present work was started, we have adopted

the Gaia DR2 (Gaia Collaboration et al., 2018b) as input catalogue, which provides all

the information needed for the present work.

The development of this thesis is fully based on the Gaia stars that are located in

the fraction of SPF (see Figure 15) that is equivalent to the area covered by a single PLATO

camera (✒ 1037 deg2) centred at SPF centre. This stellar field is denoted hereafter as the

input field (IF). That represents roughly half of the SPF area in the sky and encompasses

about 12.8 million stars listed in the Gaia DR2 catalogue with G magnitude comprised

between 2.45 and 21. Table 6 presents, in different reference systems, the coordinates of
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IF centre, hereafter referred to as IF line of sight (IFLoS). Figure 31 illustrates the sky

area covered by IF in ecliptic coordinates with zero point ϕ❞ in the Sun. Three cases are

represented: ϕLoS shifted by ✁110✆ with respect to ϕ❞; ϕLoS aligned with ϕ❞; and ϕLoS

shifted by �110✆ with respect to ϕ❞. It is also indicated in the same figure, i the zodiacal

light intensities – as described in subsection 3.1 – perceived by an observer located in L2

orbit. Figure 32 shows the expected temporal variations of zodiacal light during a one-year

period, at three different latitudes within SPF: (1) at the latitude closest to the ecliptic

plane (β ✒ ✁46✆), i.e. where the zodiacal intensities are expected to reach their maximum

in the field; (2) at IFLoS latitude (β ✒ ✁70✆), i.e. around the centre of the field; and (3) at

the south ecliptic pole (β ✏ ✁90✆), i.e. where the zodiacal intensities are expected to be

invariant and near minimum in the field. The plots show that, for stars located on the

lowest absolute latitudes within SPF, the temporal variation of zodiacal light might be up

to ✒ 160% peak to peak over three months. Around IFLoS, this variation might reach up

to ✒ 40% peak to peak over the same time scale.

Table 6 – Coordinates of the input field line of
sight (IFLoS) in different reference sys-
tems.

Reference System Longitude Latitude

Galactic lLoS ✏ 253✆ bLoS ✏ ✁30✆

Equatorial αLoS ✏ 86.80✆ δLoS ✏ ✁46.40✆

Ecliptic ϕLoS ✏ 83.62✆ βLoS ✏ ✁69.77✆

Source: author.

3.3 Determining stellar positions on the focal plane

Accurately evaluating photometric performance requires properly determining

stellar positions at detector (pixel) level. In this subsection, mathematical expressions

are provided for transforming star positions from celestial (equatorial) coordinates to

Cartesian coordinates at the focal plane of one PLATO camera.

We define herein an arbitrary camera reference frame (see Figure 33) with angular

coordinates ♣ξ, ζq, where ξ is the off-axis angle, i.e. the angular position of the star in the

sky (see Figure 21) with respect to the camera optical axis, and ζ is the azimuthal angle.

In this reference frame, the corresponding Cartesian coordinates with axes ♣x, y, zq are

such that the z-axis is superimposed to the camera optical axis, and both x and y axes

have origin in the centre of the focal plane, i.e. in the centre of the total surface covered

by the ♣2 ✂ 2q CCD array. The azimuthal angle ζ is measured in the counter-clockwise

sense from the x-axis. A star with nominal position ♣ξ0, ζ0q in the camera’s reference frame
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3.5 A synthetic PLATO P photometric passband

3.5.1 Definition

The PLATO mission was designed based on stellar magnitudes specified in the

visible band. Nevertheless, to avoid the inconvenience of having colour dependency when

estimating stellar fluxes at camera detectors, from the visual magnitudes, it is more

appropriate to work in a proper instrument photometric band. Therefore, a synthetic P

magnitude calibrated in the VEGAMAG system is established herein

P ✏ ✁2.5 log10

☎
✝✝✝✆

➺ λ2

λ1

I✍♣λqSP ♣λqλ dλ➺ λ2

λ1

IVega♣λqSP ♣λqλ dλ

☞
✍✍✍✌� PVega, (3.15)

where I✍♣λq is the spectral irradiance of a given star, IVega♣λq is the spectral irradiance

of the Vega star and PVega is its magnitude in the P band, assumed to be equal to

VVega ✏ 0.023 mag (Bohlin (2007)). P band zero point is given by

zp ✏ 2.5 log10

✂
♣h cq✁1 ΘP

➺ λ2

λ1

IVega♣λqSP ♣λqλ dλ

✡
� PVega. (3.16)

This constant (see Table 7) provides a straightforward way for switching between stellar

flux and magnitudes using

P ✏ ✁2.5 log10

✂
♣h cq✁1 ΘP

➺ λ2

λ1

I✍♣λqSP ♣λqλ dλ

✡
� zp. (3.17)

Thus, having the zero point constant zp and the magnitude P of a given star, its cor-

responding photometric flux fP (per camera and expressed in units of e✁ s✁1) can be

estimated with

fP ✏ 10✁0.4♣P✁zpq. (3.18)

3.5.2 Relationship with Johnson’s V band

For switching between P and V magnitudes, a V ✁ P relationship is determined

using the Johnson-Cousins V filter (Figure 23) and modelling I✍♣λq with (A- to M-type)

synthetic stellar spectra extracted from the POLLUX database6 (Palacios et al. (2010)).

The template alpha_lyr_stis_008 (Figure 23) from CALSPEC is adopted for modelling

IVega♣λq, i.e. the calibration star Vega. The resulting V ✁P samples are shown in Figure 39

as a function of the effective temperature T✍ of the synthetic spectra I✍♣λq, the former

6 Extensive description of its content is available at <http://npollux.lupm.univ-montp2.fr/user-s-guide>.
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Table 7 – Zero points zp of the synthetic P , G, GBP

and GRP photometric passbands calibrated
with Vega alpha_lyr_stis_008 model.

Photometric Vega zp zp dev. (A) zp dev. (B)
Passband [mag] [mag] [mag] [mag]

P 0.023 20.62

G 0.029 25.6879 4.6✂ 10✁4 4.70✂ 10✁2

GBP 0.039 25.3510 4.3✂ 10✁4 1.10✂ 10✁2

GRP 0.023 24.7450 1.69✂ 10✁2 1.50✂ 10✁2

Source: author.

Note: Vega magnitudes for Gaia passbands are extracted from
Casagrande & VandenBerg (2018). Deviations (zp dev.) of
G, GBP and GRP zero points are computed with respect
to the reference DR2 magnitudes presented in Evans et

al. (2018) (A) and the revised versions in Weiler (2018)
(B).

ranging from 4,000K to 15,000K by steps of 500K. The corresponding third order fitted

polynomial for V ✁ P is

V ✁ P ✏ ✁1.184✂ 10✁12♣T✍q3 � 4.526✂ 10✁8♣T✍q2 ✁ 5.805✂ 10✁4T✍ � 2.449. (3.19)

Therefore, for a star with known visual magnitude V and effective temperature T✍, one

can determine its P magnitude with Equation 3.19 and then apply Equation 3.18 for

estimating the corresponding photometric flux at PLATO detectors. Table 8 shows the

predicted flux f ref
P for a reference PLATO target – i.e. a 6,000K G0V spectral type star –

as a function of its V and P magnitudes. The values include brightness attenuation due

to vignetting for a source at ξ ✏ 14✆ (see Figure 21). In this scenario, a reference PLATO

star with V ✏ 11 has P ✏ 10.66 and f ref
P ✏ 9.074 ke✁ s✁1 per camera, or ✒ 218 ke✁ s✁1

when cumulating over 24 cameras.

3.5.3 Obtaining P and V from Gaia magnitudes

Since the present work is based on stars observed with Gaia, expressions need to

be derived for converting from the magnitude scales available in this catalogue to our

synthetic V and P magnitudes. Gaia collects data in three photometric systems: G, GBP,

and GRP. As defined in Jordi et al. (2010), all of them are calibrated in the VEGAMAG

system, following therefore the same philosophy as Equation 3.15, Equation 3.16, and

Equation 3.17, i.e. with fluxes being integrated over the corresponding bandwidth limited

spectral responses SG♣λq, SGBP
♣λq and SGRP

♣λq. To keep consistency with the definitions

of our V and P bands, we apply the same Vega model for producing synthetic Gaia
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Table 8 – Normal camera (N-CAM) predicted flux f ref
P for a reference 6,000K

G0V star as a function of its V and P magnitudes. Respective
photon noise is computed by integrating the flux over one exposure
and sampling it at each cadence, resulting in 144 samples over
one hour.

V P f ref
P (per camera) f ref

P (24 cameras) Photon noise (24 cameras)

rmags rmags r103 e✁④ss r103 e✁④ss rppm hr1④2s

8.0 7.66 143.820 3,451.7 9.8

8.5 8.16 90.745 2,177.9 12.3

9.0 8.66 57.256 1,374.1 15.5

9.5 9.16 36.126 867.0 19.5

10.0 9.66 22.794 547.1 24.6

10.5 10.16 14.382 345.2 31.0

11.0 10.66 9.074 217.8 39.0

11.5 11.16 5.726 137.4 49.1

12.0 11.66 3.613 86.7 61.8

12.5 12.16 2.279 54.7 77.7

13.0 12.66 1.438 34.5 97.9

13.5 13.16 0.907 21.8 123.2

14.0 13.66 0.573 13.7 155.1

14.5 14.16 0.361 8.7 195.3

15.0 14.66 0.228 5.5 245.9

15.5 15.16 0.144 3.5 309.5

16.0 15.66 0.091 2.2 389.7

Source: author.

Note: Values include vignetting (see Table 4) for a source at ξ ✏ 14✆ (see Figure 21)
and are consistent with the current status of PLATO’s instrument parameters
described in Börner et al. (2018).

bands. Consequently, we impose to this model the corresponding Vega magnitudes listed

in Casagrande & VandenBerg (2018). Table 7 summarizes the obtained zero points for

the synthetic G, GBP, and GRP bands from this approach. We note that these zero

points present satisfactorily low deviations with respect to the reference DR2 magnitudes

published in Evans et al. (2018), and the later improved versions in Weiler (2018).

For obtaining both P and V magnitudes from the Gaia G magnitude, we determine

the G✁ P and V ✁ P relationships by means of the GBP ✁GRP colour index, resulting in

the plots shown in Figure 39. The corresponding fitted polynomials are

G✁P ✏ 0.00652 ♣GBP✁GRPq
3✁0.08863 ♣GBP✁GRPq

2�0.37112 ♣GBP✁GRPq�0.00895. (3.20)
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V ✁P ✏ ✁0.00292 ♣GBP✁GRPq
3�0.10027 ♣GBP✁GRPq

2�0.37919 ♣GBP✁GRPq�0.00267. (3.21)

Unlike Equation 3.19, the expressions in Equation 3.20 and Equation 3.21 are described

as a function of the GBP ✁GRP color index, rather than the effective temperature T✍. The

reason for that is the low availability of effective temperatures in DR2 (less than 10% of

the sources). In contrast, GBP and GRP magnitudes are simultaneously available for more

than 80% of the sources. To verify the consistency of the synthetic calibrations derived

from synthetic stellar spectra, we compare our V ✁G ✏ ♣V ✁ P q ✁ ♣G✁ P q relationship

with the V ✁G polynomial fit (Busso et al. (2018)) derived from Landolt7 standard stars

(398 sources) observed with Gaia. As shown in Figure 39, the synthetic V ✁G curve from

this work exhibits satisfactory agreement with the V ✁G polynomial fit obtained from the

true Gaia observations. The maximum absolute error between both curves is 9.8✂ 10✁2

mag at GBP ✁GRP ✏ 2.75 mag. Hence, for the purposes of this work, we assume that the

polynomials of Equation 3.20 and Equation 3.21 provide sufficiently accurate estimates of

P and V magnitudes from the G magnitude of the DR2 catalogue.

3.6 Identifying target and contaminant stars

This subsection delineates the ensemble of target and contaminant stars, from

the input catalogue, that shall be used to build input images for simulating aperture

photometry. First, the position of each star within IF is determined at the focal plane

array of one PLATO camera (as explained in subsection 3.2, IF covers exactly the field

of a single camera). Next, following the definition of the P5 sample, we assign as targets

all stars located within IF that have 0.57 ↕ GBP ✁ GRP ↕ 1.84 (F5 to late-K spectral

types) and P magnitude in the range 7.66 ↕ P ↕ 12.66, the latter corresponding to

8.0 ↕ V ↕ 13.0 for a reference PLATO target, i.e. a 6,000K G0V star. This accounts for

about 127,000 sources. Target selection based on the P band is more convenient than

the V band, as it allows us to overcome the colour dependency of the latter. In other

words, this approach ensures that all targets assume flux values within a fixed range

(that of Table 8), regardless of their effective temperature. This is thus consistent with a

target selection strategy driven by noise performance, magnitude, and, spectral type. As

for the contaminant stars, they correspond to all existing sources in the input catalogue

located within 10 pixel radius around all targets. This accounts for about 8.3 million stars

with P magnitude comprised in the range 2.1 ➚ P ➚ 21.1. We note that only sources

satisfying ✁0.227 ↕ GBP ✁GRP ↕ 4.524 are included in the ensemble of contaminant stars

to conform with the range of applicability of the polynomials described in Equation 3.20

and Equation 3.21. According to the above description, Figure 40 presents some statistics

7 <https://www.eso.org/sci/observing/tools/standards/Landolt.html>.
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(distances and differential magnitudes) on the distribution of contaminant stars relative to

their corresponding targets.

3.7 Setting up the imagettes

Now that both target and contaminant stars from IF are properly identified and

their respective fluxes can be accurately predicted using Equation 3.20 and Equation 3.18,

the input imagettes can finally be computed. For that, the following procedure is applied:

a) Use the input catalogue and derived properties to obtain magnitudes, fluxes and

the locations of target and contaminant stars at intrapixel level. From that, we

consider a stellar subset composed of 50,000 targets (from the total of ✒ 127k

targets within IF). These are neighboured by ✒3.25 million contaminant stars;

b) Employ the PSFs presented in Section 2.9.2 as models of both instrument

optical and detector responses to stellar flux;

c) By convention, the pixels of an imagette are selected such that the centre of the

resulting imagette is located at no more than an absolute euclidean distance

of 0.5 pixel from any of the x and y coordinates of the target barycentre (see

examples in Figure 22). This is done to maximize the amount of target energy

falling within its imagette;

d) Translate each star position deviation ♣∆xk, ∆ykq of the satellite pointing time-

series from Figure 38 into a corresponding shifted imagette with respect to the

nominal position (zero). The resulting set of shifted imagettes shall be used as

input to compute the amount of jitter noise in the photometry.

Following this process, an input image (reference frame) like that illustrated in

Figure 41 was generated for each target (including respective contaminants). Shifted images

to account for satellite motion are therefore computed target by target with respect to

their respective reference frames.

3.8 Discussions

In this chapter, we described in detail the primary inputs needed for constructing

images (imagettes) to be used for simulating the performance of aperture photometry,

including

a) an expression for estimating the per camera intensities of zodiacal light, which

is the dominant source of diffuse sky light at Lagrange-L2 orbit where PLATO

spacecraft will be launched in;
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b) the input stellar catalogue (Gaia DR2) and the input field, the latter corre-

sponding to the sky area covered by a single PLATO camera centred at the

centre of the Southern PLATO Field (SPF);

c) a PLATO P photometric passband calibrated in the VEGAMAG system for

consistently estimating stellar flux on PLATO detectors, including color rela-

tionships (polynomials) with Gaia and Johnson’s V magnitude scales;

d) identification of potential PLATO target stars based on their P magnitude and

spectral type (F5 to late-K type stars), according to the scientific requirements

defined for the P5 sample (see subsection 2.5);

e) identification of all contaminant stars located at up to 10-pixel radius around

all considered targets stars;

f) mathematical expressions for projecting stellar positions from the sky onto the

focal plane of one PLATO camera centred at SPF centre;

g) a procedure for generating imagettes considering stellar positions at both pixel

and intrapixel level, and including satellite jitter.

A few important considerations shall be taken into account about some of the items

from the above list. In relation to item a), the expression for estimating the zodiacal light

at PLATO detectors considers the current status of the instrument design. Hence, such an

expression is subjected to change in the future, depending on the evolution of the PLATO

instrument parameters, notably its spectral response SP ♣λq.
In regard to item c), the synthetic PLATO P photometric passband shown in this

chapter assumes that an absolute empty space exists between the instrument and the

stars it observes. That is, the calibration of the P band derived in this work does not

account for spectral changes on stellar fluxes caused by the Interstellar Medium (ISM),

such as the total stellar abortion A (extinction). However, as long as the flux of a given

star is sufficiently well characterized in other magnitude systems (such as Gaia G and

Johnson’s V ), converting it then to the corresponding P magnitude – using the calibration

adopted in this work – should logically give sufficiently reliable results in the PLATO

magnitude. Besides, PLATO targets are mostly composed of bright (close) stars, so the

effects of stellar extinction are not expected to represent a significant impact on the

statistical noise performance characterization of aperture photometry presented in this

thesis. Moreover, the current P magnitude will inevitably require further recalibration once

the final spectral response of the instrument is characterized. At a certain extent hence, the

actual uncertainties on the instrument design are still likely to represent greater impact on

stellar flux estimations than those related to stellar abortion. Concerning item d), selecting

targets based on the P band, compared to visual V , avoids the inconvenience of obtaining

colour-dependant noise performance. We can infer from Figure 39 that different stars with
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the same V magnitude may effectively have identical fluxes on PLATO detectors (and

vice-versa), which is ambiguous.

In regard to item e), the particular choice of considering contaminant stars located

at up to 10-pixel radius around the targets was made to make sure that all contaminant

stars with sufficient flux to generate false background transits, should they be eclipsed, are

taken into account in the present study. In the next chapter, some results are presented

and discussed evidencing that such a threshold is more than enough for the purposes of

this work.

Finally, a few considerations are necessary concerning the sources in Gaia DR2.

Evans et al. (2018) reported some very likely saturation and imperfect background sub-

traction issues affecting sources with G ➚ 3.5 and G ➪ 17, respectively. Since the central

point in this work is to establish a relative performance comparison between different

photometric aperture models – particularly in scenarios of high stellar crowding – those

sources were not removed from the working subset of stars. The inaccuracies resulting

from the mentioned issues will ultimately be evenly propagated to all tested mask models,

having therefore no potential to significantly impact the comparative basis analysis.
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4 Aperture photometry

As explained in subsection 1.6, in-flight (aperture) photometry extraction will be

applied to a significantly large number of targets from PLATO’s P5 stellar sample (Table 1).

In that context, this chapter describes in detail the approach adopted for determining the

optimal collection of pixels (aperture) to perform such task, with special attention given

to the problematic of false positives caused by background eclipsing objects.

The work presented in this chapter is strongly based on Marchiori et al.

(2019). In-flight photometry extraction of PLATO targets: Optimal apertures

for detecting extra-solar planets, A&A, 627, A71.

4.1 State of the art

There is a noteworthy number of publications on the theme of photometric masks.

Among the oldest, some emphasis should be given to the work of Howell (1989), in which

the idea of a growth curve (signal-to-noise ratio as a function of aperture radius) for

point-source observations is introduced, showing how much the photometric performance

of an aperture varies as a function of its size in pixels. This simple and useful feature also

helped, at the time, better evidencing that the collection of pixels providing maximum

signal-to-noise ratio is greatly dependant on the brightness of the source. Also dating

from the late 1980s, the stellar photometry package DAOPHOT1 (Stetson (1987)) is still

used today to perform point-source photometry using circular apertures approximated as

irregular polygons (Bajaj & Khandrika (2017)). Similarly, the Python package PhotUtils2

allows us to extract photometry from astronomical sources based on circular, elliptical or

rectangular apertures. Coming next, Naylor (1998) proposes employing weighted masks for

imaging photometry, providing improved (✒ 10%) noise-to-signal ratio (NSR) performance

compared to non-weighted (binary) masks. Later on, and oriented to planet transit finding

and asteroseismology, Llebaria & Guterman (2006) and Bryson et al. (2010) developed

strategies to compute optimized binary masks for extracting light curves from CoRoT and

Kepler targets, respectively. In the particular context of Kepler’s data processing pipeline,

binary masks are referred to as simple aperture photometry. They were primarily designed

to minimize noise for maximum transit detection sensitivity and as input for determining

a halo of pixels to be downlinked along with the aperture pixels. More recently, Smith et

al. (2016) propose a new method to assign apertures for Kepler targets, focused on planet

detection and mitigation of systematic errors, through an optimization scheme based on

1 <http://www.star.bris.ac.uk/~mbt/daophot/>
2 <https://photutils.readthedocs.io/en/stable/index.html>
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NSR and Combined Differential Photometric Precision (CDPP)3 (Jenkins et al. (2010b)).

As described in Kepler’s Data Processing Handbook4, this method is implemented within

the Photometry Analysis (PA) component of Kepler’s science pipeline. Alongside, Aigrain

et al. (2015) and Lund et al. (2015) provide techniques for mask pixel selection for Kepler

K2 targets. The former proposes soft-edging top-hat-like apertures, which has satisfactory

performance for sufficiently bright targets and is relatively robust to uncertainties on

the knowledge of the PSF. The latter uses clustering of pixels, which best fits the flux

distribution of several nearby targets, being therefore more suitable for dense fields. A

modified version of this method is employed in Handberg & Lund (2016) for reducing the

data of Kepler K2 targets from campaigns 0 to 4. Besides, it is also considered as one of

the possible solutions for extracting light curves from TESS targets (Lund et al. (2017)).

4.2 Proposed approach for PLATO P5 targets

As pointed out in subsection 2.5, the primary focus of the P5 stellar sample is

to generate large statistics on planet occurrence rate. Hence, the aperture photometry

methods developed for the space missions CoRoT, Kepler and TESS are of greater interest

in the context of the present work, as these are the greatest references in the domain

of exoplanet search. Considering these three examples, it is noticeable that the term

optimal is recurrently employed to distinguish apertures that minimize NSR or some

noise-related metric such as CDPP. That is, of course, a reasonable way to proceed because

the sensitivity at which a planet transit can be found in a light curve, for instance, is

strongly correlated to its noise level. On the other hand, the higher the ease in identifying

a transit-like signal, either because of sufficiently low NSR or CDPP, the higher the

probability that a background object in the scene generates a TCE. This background

object could be, for example, an EB mimicking a true planet transit. Although background

false positives may be efficiently identified in certain cases when, besides the light curves,

the corresponding pixel data is also available – as demonstrated by Bryson et al. (2013) –

most of the stars in P5 unfortunately lack that extra information (see Table 1) because of

telemetry constraints related to the large number of tagetes in this stellar sample. In this

particular unfavoured scenario, conceiving photometric masks based uniquely on how well

a transit-like signal can be detected, ignoring potential false positives may not be the best

strategy. To verify the consistence of this hypothesis, two science metrics are introduced

for directly quantifying the sensitivity of an aperture in detecting true and false5 planet

transits. The idea is then to verify whether or not the best compromise between these two

parameters is obtained from apertures having overall lower NSR.

3 Roughly speaking, CDPP is an estimate of how well a transit-like signal can be detected (Smith et al.

(2016)).
4 <https://archive.stsci.edu/kepler/manuals/>
5 This work addresses the occurrence of false planet transits caused by background eclipsing objects, in

particular EBs.
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4.3 Photometric precision

4.3.1 Nominal NSR

The NSR is the principal performance indicator for evaluating the exploitability of

photometry signals. For PLATO stellar light curves derived from aperture photometry

applied to imagettes, we use the following metric to compute the per cadence NSR (NSR✝;

see parameters description in Table 9):

NSR✝ ✏

❞
36➦

n✏1

✂
σ2

FTn
�

NC➦
k✏1

σ2
FCn,k

� σ2
Bn
� σ2

Dn
� σ2

Qn

✡
w2

n

36➦
n✏1

FTn
wn

. (4.1)

A per cadence light curve sample corresponds to the integrated mask flux over one exposure

interval of the detectors, which corresponds to 21 seconds (Table 2) for PLATO N-CAM. In

the context of PLATO, NSR scales over multiple independent samples and measurements,

NSR ✏ 106

12
❄

td NT

NSR✝, (4.2)

where td is the observation duration in hours and NT is the number of telescopes observing

the star. The constant in the denominator of the above expression stands for the square

root of the number of samples in one hour, i.e.
❛

3600s④25s ✏ 12, based on the 25 seconds

cadence (Table 2) of the PLATO N-CAMs. The NSR of a signal with duration of one hour

(NSR1h) is therefore (expressed in units of ppm hr1④2)

NSR1h ✏ 106

12
❄

NT

NSR✝. (4.3)

We note that the flux noise induced by satellite jitter is not included in Eq. 4.1. In fact,

attempting to do so would be a fairly complicated task because jitter contribution depends

on the final shape of the aperture (Fialho et al. (2007)). Considering that the nominal

jitter amplitudes of PLATO spacecraft have a scatter of the order of a few milipixel at

detector level (see Figure 38), jitter noise can be included a posteriori to the determination

of the apertures. Later in subsection 4.9, we discuss in what circumstances this might be

an acceptable approach.

4.3.2 NSR including satellite jitter

Once the apertures are determined, we include jitter noise in the photometry using

the shifted imagettes described in Section 3.7. Let NSRjitter
✝ be the per cadence NSR,

which includes star motion due to satellite jitter. NSRjitter
✝ is given by

NSRjitter
✝ ✏ NSR✝

❞
1�
✂

σ2
J

σ2
✝

✡
, (4.4)



82 Chapter 4. Aperture photometry

Table 9 – Description of the parameters of Equation 4.1.

Description Symbol

Photon noise from the target star σ2
FT

Photon noise from a contaminant star σ2
FC

Background noise from the zodiacal light σ2
B

Overall detector noise (including readout, smearing and dark current) σ2
D

Quantization noise σ2
Q

Average flux from the target star FT

Average flux from a contaminant star FC

Mask weight in the interval r0, 1s w

imagette pixel index = t1, 2, 3, . . . , 36✉ n

Contaminant star index = t1, 2, 3, . . . , NC✉ k

Number of contaminant stars within 10-pixel radius around the target NC

Source: author.

where σJ is the photometric jitter noise obtained from the shifted imagettes and σ✝

corresponds to the numerator of the expression in Equation 4.1. The above expression

assumes stationary random noise for both photometric flux and satellite jitter.

4.4 Confusion

We present herein the SPR. This factor allows us to quantify the average fractional

contaminant flux from background stars captured by an aperture. Letting FC,k be the

photometric flux contribution from a single contaminant star k and Ftot the total flux, we

have

FC,k ✏
36➳

n✏1

FCn,k
wn, (4.5)

Ftot ✏
36➳

n✏1

✄
FTn

�Bn �
NC➳
k✏1

FCn,k

☛
wn, (4.6)

where Bn is the average background flux at pixel n from the zodiacal light. SPRk is denoted

as the fractional flux from the contaminant star k with respect to the total photometric

flux (target plus contaminants and zodiacal light), i.e.

SPRk ✏ FC,k

Ftot

. (4.7)
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Accordingly, the fractional flux from all contaminant stars is

SPRtot ✏
NC➳
k✏1

SPRk. (4.8)

It is worthy noticing that SPRtot is complementary to the crowding metric r defined in

Batalha et al. (2010), i.e. SPRtot ✏ 1✁ r.

4.5 Detectability of planet transits

When a planet eclipses its host star, it produces a maximum transit depth δp which

is, at first order approximation6, equal to the square of the ratio between the planet radius

and the star radius

δp ✏ ♣Rp④R✍q2 . (4.9)

In practice, δp is always diluted by the contaminant flux from surrounding stars and

background light, such that the observed transit depth δobs is a fraction of the original

transit depth δp

δobs ✏ ♣1✁ SPRtotq δp. (4.10)

Traditionally, a planet detection is not considered scientifically exploitable unless it has

been observed at least three times. Furthermore, observed transits must reach a certain

level of statistical significance, η, of the total noise, σ. In this work, we adopt the threshold7

of 7.1σ (ηmin ✏ 7.1) as the minimum condition for characterizing a TCE with three transits.

This yields

δobs ➙ ηmin σ ✏ 7.1σ. (4.11)

The total noise σ scales with the signal (transit) duration td and with the number of

transit events ntr, resulting

σ ✏ NSR1h④
❄

td ntr. (4.12)

By combining the above expressions, we can determine the range of detectable planet

radius (c.f. Batalha et al. (2010))

Rp ➙ R✍

❞
η

♣1✁ SPRtotq
NSR1h❄

td ntr

. (4.13)

6 Discussions on how to compute planetary transit depths more accurately are provided in Heller (2019).
7 This criterion was established to ensure that no more than one false positive due to random statistical

fluctuations occurs over the course of the Kepler mission (Jenkins et al. (2010)).
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Earth-like planets located at about 1au from Sun-like stars have δp ✒ 84 ppm and td ✒ 13

hours. Consequently, it is required that NSR1h ➚ 74ppm hr1④2 for that type of planet to be

detected at η ✏ ηmin ✏ 7.1, ntr ✏ 3 and SPRtot ✏ 0. From Equation 4.13, we can obtain

the statistical significance η at which a planet can be detected

η ✏ δp

❄
td ntr ♣1✁ SPRtotq ④NSR1h. (4.14)

We denote hereafter N
good
TCE as the frequency of target stars satisfying η ➙ ηmin for ntr ➙ 3.

Accordingly, the aperture model providing the largest N
good
TCE is that being more likely in a

statistical sense to detect true planet transits.

4.6 Sensitivity to background false transits

In this section, we derive a metric for evaluating the sensitivity of an aperture in

detecting false planet transits originated from astrophysical eclipses of contaminant stars.

Such events may occur, in particular, when the contaminant star in question is part of an

EB system and is sufficiently bright and sufficiently close to a target star. False planet

transits caused by grazing EBs are thus not addressed herein.

When a given contaminant star k is eventually eclipsed, the raw photometry reveals

a within aperture fractional flux decrease ∆F raw
C,k and a corresponding within aperture

fractional magnitude increase ∆mraw
C,k , such that

∆mraw
C,k ✏ ✁2.5 log10

✄
F raw

C,k ✁∆F raw
C,k

F raw
C,k

☛
. (4.15)

By denoting ∆mraw
C,k as the background transit depth δback,k in mag units and ∆F raw

C,k ④Ftot as

the resulting observed transit depth δobs,k in the raw light curve, relative to the contaminant

star k, we obtain

δobs,k ✏ SPRraw
k

�
1✁ 10✁0.4δback,k

✟
, (4.16)

with

SPRraw
k ✏ F raw

C,k

Ftot

. (4.17)

This expression shows that the background transit depth δback,k affects the light curve

as an observed transit depth δobs,k, which is proportional to SPRraw
k , i.e. the SPR of the

contaminant star k in the raw photometry. Because δobs,k is the result of a false planet

transit, we want this depth to be sufficiently small to prevent a TCE to be triggered, i.e.

δobs,k ➔ ηmin σ. (4.18)

Although the above statement holds if, and only if, the SPRk is below a certain level for

given δback,k, η, td, and ntr. We denote such a threshold as the critical SPR (SPRcrit
k ) of
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the contaminant star k. It can be determined with

SPRcrit
k ✏ η�

1✁ 10✁0.4δback,k

✟ NSR1h❄
td ntr

. (4.19)

We denote hereafter N bad
TCE as the frequency of target stars satisfying SPRraw

k ➙ SPRcrit
k for

η ➙ ηmin ✏ 7.1 and ntr ➙ 3. Accordingly, the aperture model providing the smallest N bad
TCE

is that more likely in a statistical sense to naturally reject false planet transits caused by

background eclipsing objects.

4.7 Background flux correction

Background correction refers to subtracting, from the raw photometry, flux contribu-

tions from contaminant sources and scattered stray light (e.g. zodiacal and Galactic lights).

The spatial distribution of background light is commonly described using polynomial mod-

els, whose coefficients are determined based on flux measurements taken at strategically

selected pixels Drummond et al. (2008), Twicken et al. (2010). For PLATO, the strategy

for background correction is not yet characterized at the present date, thus no accurate

information on this subject is available for inclusion in this study. Notwithstanding, we

investigate in this section the impact of an ideally perfect background correction on the

science metrics N
good
TCE and N bad

TCE, i.e. what happens when Bn ✏ FC,k ✏ SPRk ✏ SPRtot ✏ 0.

In this case, the observed depth of a legitimate planet transit simply converges to

its true depth, i.e. δobs ✏ δp (the transit dilution is completely cancelled). In parallel, the

parameter η (Eq. 4.14) increases, meaning that the apertures become more sensitive to

detect true planet transits, which ultimately implies an increase in N
good
TCE as well.

Analysing the impact on N bad
TCE is not as straightforward as it is for N

good
TCE. First,

we denote hereafter F corr
tot as the total photometric flux resulted after the background

correction, which only contains signal from the target

F corr
tot ✏

36➳
n✏1

FTn
wn. (4.20)

Next, we define ∆F raw
C,k ④F corr

tot as the resulting observed transit depth δcorr
obs,k, after

background correction, caused by an eclipse of the contaminant star k. This leads us, using

Equation 4.15, to an expression for δcorr
obs,k which is similar to that of Equation 4.16, except

that the term (F raw
C,k ④F corr

tot ) appears in place of SPRraw
k , resulting in

δcorr
obs,k ✏

�
F raw

C,k ④F corr
tot

✟ �
1✁ 10✁0.4δback,k

✟
. (4.21)

The above identity shows that removing the background flux from the photometry does not

suppress the false transit caused by a background EB. Indeed, although the average flux

from the eclipsing contaminant star goes to zero (FC,k ✏ 0) in the corrected photometry,
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the transit depth δcorr
obs,k depends on the intrinsic (raw) contaminant flux F raw

C,k that is

present in the scene, which is thus independent of any further processing applied in the

photometry. Besides, this result is consistent with the fact that the background correction

only removes the nominal (out-of-transit) average flux of the contaminant source from

the photometry, therefore becoming no longer effective if such signal changes after the

correction (e.g. owing to an eclipse, i.e. when δback,k ✘ 0).

For convenience, we define hereafter the apparent SPR (SPRapp
k ), which is mani-

fested during the eclipse of a contaminant star k in a light curve with flux fully corrected

for the background

SPRapp
k ✏ F raw

C,k

F corr
tot

. (4.22)

This yields

δcorr
obs,k ✏ SPRapp

k

�
1✁ 10✁0.4δback,k

✟
. (4.23)

Comparing Equation 4.16 and Equation 4.23, it is simple to verify that δcorr
obs,k → δobs,k

because SPRapp
k → SPRraw

k . This means that the apertures become more sensitive to detect

false planet transits from background eclipsing objects when the corresponding photometry

is corrected for the average background flux. This happens because the background

correction reduces the dilution of such transits.

From all the above considerations, it is possible to state therefore that the back-

ground correction is expected to increase both N
good
TCE and N bad

TCE metrics.

4.8 Aperture models

4.8.1 Gradient mask

As noise-to-signal ratio is the main performance parameter to be evaluated, a

logical mask model to experiment with is the one having weights wn providing, for each

target, the global minimum NSR✝. Since the masks have by definition the same dimension

of the imagettes, i.e. 6✂ 6 pixels, those which are optimal could be determined without

much effort by exhaustive search, i.e. by simple trials of several wn combinations, keeping

the one giving the smallest NSR✝. Naturally, that kind of approach is far from being

efficient, especially considering that this procedure must be executed for tens of thousands

of target stars. To avoid this inconvenience, we developed a direct method for calculating

the optimal (minimum) NSR weights. To determine such a mask, we rely on the fact that

NSR✝, at its minimum, shall have a gradient identically equal to zero (∇NSR✝ ✏ 0) with

respect to its (6✂ 6 ✏ 36) weights, i.e.

❇NSR✝

❇w1

✏ ❇NSR✝

❇w2

✏ ❇NSR✝

❇w3

✏ ☎ ☎ ☎ ✏ ❇NSR✝

❇w36

✏ 0. (4.24)
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From the above expression we obtain 36 non-linear equations of the form

wn σ2
n

36➳
i✏1

wi FTi
✏ FTn

36➳
i✏1

w2
i σ2

i , (4.25)

where n is the mask weight index ✏ t1, 2, 3, . . . , 36✉, i.e. one for each partial derivative of

Equation 4.24, and σ2 corresponds to the total variance resulted from all noise contributors

of Equation 4.1. One simple solution beyond the trivial one for wn satisfying the above

equality can be calculated directly with

wn ✏ FTn

σ2
n

. (4.26)

Conventionally, all wn are then normalized by maxrwns to satisfy 0 ↕ wn ↕ 1, so that

each weight wn directly represents the fraction of the imagette flux being caught by the

aperture at the corresponding pixel n. For illustration, Figure 43a shows the resulting

gradient mask for the input image example of Figure 41.

In order to simplify terminology, the masks wn obtained from Equation 4.26 are

hereafter referred to as gradient masks, based on the fact that they are determined from

the mathematical gradient of NSR✝ expression. Each time they are mentioned however,

we should keep in mind that they correspond to the masks providing the global minimum

noise-to-signal ratio from all the possible combinations of mask weights wn in Equation 4.1.

In other words, gradient masks are the optimal NSR masks in the strict sense.

4.8.2 Gaussian mask

Having examined the shape of gradient masks applied to several stars, we noticed

that they look quite similar to a bell shaped curve. Therefore, we decided to test Gaussian-

like masks to verify whether they could provide near-best NSRs when compared to gradient

masks. Depending on the performance difference, the advantage of having an analytical

mask that requires fewer parameters to be computed could justify its choice over the

gradient mask. On these terms, we calculate the weights wn of a Gaussian mask using the

conventional symmetric Gaussian function expression

wx,y ✏ exp

✄
✁♣x ✁ x✍q2 � ♣y ✁ y✍q2

2σ2
w

☛
, (4.27)

where

♣x, yq are Cartesian coordinates of the imagette pixels with shape 6 ✂ 6;

♣x✍, y✍q are the coordinates of the target barycentre within the imagette;

σw is the mask width in pixels on both x and y dimensions;

wx,y is the mask weight in the interval r0, 1s at ♣x, yq.
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As the imagette dimension is fixed and the target position within it is well known

thanks to the input catalogue, choosing a Gaussian mask for a given target reduces to

finding a proper width. To accomplish it, we simply iterate over different values of σw

and keep that giving the lowest NSR✝, as shown in Figure 42. For illustration, Figure 43b

shows the resulting Gaussian mask for the input image example of Figure 41.

4.8.3 Binary mask

Binary masks are non-weighted apertures, meaning that the photometry is extracted

by fully integrating pixel fluxes within the mask domain and discarding those which are

outside it. This type of aperture was extensively employed to produce light curves of CoRoT

and Kepler targets, so this solution is well known for delivering satisfactory performance.

In the context of PLATO, we applied the following routine to compute a binary mask for

each target imagette.

1. Arrange all pixels n from the target imagette in increasing order of NSRn

NSRn ✏

❞
σ2

FTn
�

NC➦
k✏1

σ2
FCn,k

� σ2
Bn

� σ2
Dn

� σ2
Qn

FTn

. (4.28)

2. Compute the aggregate noise-to-signal NSRagg♣mq, as a function of the increasing

number of pixels m ✏ t1, 2, 3, . . . , 36✉, stacking them to conform to the arrangement

in the previous step and starting with the pixel owning the smallest NSRn

NSRagg♣mq ✏

❞
m➦

n✏1

✂
σ2

FTn
�

NC➦
k✏1

σ2
FCn,k

� σ2
Bn

� σ2
Dn

� σ2
Qn

✡
m➦

n✏1

FTn

. (4.29)

3. Define as the aperture the collection of pixels m providing minimum NSRagg♣mq.

As the binary mask gets larger following the above routine, the NSR typically

evolves as illustrated in Figure 42. Accordingly, the resulting best NSR binary mask for

the input image example of Figure 41 is shown in Figure 43c.

4.9 Performance results

This section presents the photometric performance results of the three aperture

models defined in subsection 4.8. These results are given in terms of NSR, SPR, N
good
TCE, and

N bad
TCE; and were obtained by applying each aperture model to all 50,000 input imagettes

from subsection 3.7.
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4.9.4 Detectability of planet transits

With both NSR and SPR determined, it is now possible to estimate the number

N
good
TCE of target stars with sufficiently low NSR permitting the detection of eventual planets

orbiting them. Table 11 and Table 12 show the values for N
good
TCE for the case of an Earth-

like planet orbiting a Sun-like star, respectively, for the scenarios of SPRtot as given by

Figure 47 (no background correction) and SPRtot ✏ 0 (perfect background correction).

The results show that the advantage of weighted masks regarding NSR performance,

which is up to ✒ 7.5% better with respect to the binary mask for the faintest and most

numerous targets (see Figure 45), does not translate into a proportionally better sensitivity

in detecting true planet transits. Indeed, the mask with lowest NSR, called the gradient

mask, provides only ✒0.8% more chance of detecting Earth-like planets orbiting Sun-like

stars at 1au. The difference between Gaussian and binary masks is even smaller, i.e. ✒0.4%.

All three masks are equally capable of detecting Jupiter-like planets, no matter the number

of telescopes observing the host star. To understand this, we need to compare Figure 45

and Figure 48. Taking the case of detecting Earth-like planets at about 1 au from Sun-like

stars, the analyses show that the limiting magnitude8 for aperture photometry is of the

order of P ✒ 11.7 (V ✒ 12 @6,000K) at 7.1σ, ntr ✏ 3 and NT ✏ 24. Therefore, for most of

the magnitude range (11 ➚ P ↕ 12.66) where the binary mask present the most degraded

NSR performance with respect to the weighted masks, the latter do not provide any

advantage in detecting such planets after all. Thus the small differences in N
good
TCE between

binary and weighted masks, for the considered scenario, are consistent.

Correcting for the background results in an almost negligible impact (➚ 0.6%

increase) in the overall sensitivity of the apertures in detecting true planet transits. Also, it

has no significant impact in the comparative basis analysis between the different aperture

models. It is important to stress however that inefficient background correction may

significantly limit the accuracy with which planet transit depths can be determined.

Hence, from a planet transit finding perspective, designating an optimal solution

for extracting photometry from the P5 stellar sample now becomes substantially less

obvious. To this extent, looking at how each aperture performs in terms of false planet

transit rejection may give us a hint about which is effectively the most appropriate choice.

4.9.5 Sensitivity to background false transits

The parameters SPRraw
k (Equation 4.17) and SPRapp

k (Equation 4.22) are now com-

pared with SPRcrit
k (Equation 4.19), to determine the number N bad

TCE of contaminant stars

with sufficiently high average flux to generate false positives. Two scenarios are considered

herein: N bad
TCE representing the number of contaminant sources for which SPRraw

k ➙ SPRcrit
k ,

8 This threshold is likely to be diminished by the presence of stellar activity in the noise (Gilliland et al.

(2011)).
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Table 11 – Number N
good
TCE of target stars for which η ➙ ηmin, as a function of the

number NT of telescopes observing them and the applied aperture
model.

NT Gradient Mask Gaussian Mask Binary Mask

24 19,063 (38.1%) 18,674 (37.3%) 18,201 (36.4%)

18 15,105 (30.2%) 14,753 (29.5%) 14,469 (28.9%)

12 10,629 (21.3%) 10,368 (20.7%) 10,202 (20.4%)

6 5,528 (11.1%) 5,395 (10.8%) 5,357 (10.7%)

weighted 10,067 (20.1%) 9,833 (19.7%) 9,667 (19.3%)

Source: author.

Note: the values in this table corresponds to the case of an Earth-like planet with δp ✏ 84
ppm, td ✏ 13h, ntr ✏ 3 and SPRtot given by the simulated values presented in Figure 47
(i.e. assuming no background correction). They were determined from the dataset of

50,000 target stars. The weighted values correspond to the effective N
good
TCE , obtained by

assuming uniform star distribution and a fractional field of view as given in Figure 47.

Table 12 – Same as Table 11, but for SPRtot ✏ 0 (i.e. assuming a perfect back-
ground correction).

NT Gradient Mask Gaussian Mask Binary Mask

24 19,608 (39.2%) 19,319 (38.6%) 18,637 (37.3%)

18 15,510 (31.0%) 15,264 (30.5%) 14,806 (29.6%)

12 10,909 (21.8%) 10,701 (21.4%) 10,441 (20.9%)

6 5,625 (11.2%) 5,527 (11.1%) 5,456 (10.9%)

weighted 10,318 (20.6%) 10,141 (20.3%) 9,884 (19.8%)

Source: author.

Note: a scatter plot of η, as a function of target P magnitude, is illustrated in Figure 48 for
NT ✏ 24.

which supposes no background correction in the photometry; and N bad
TCE representing the

number of contaminant sources for which SPRapp
k ➙ SPRcrit

k , which supposes a perfect back-

ground correction in the photometry. In both cases, we define SPRcrit
k with δback,k ✏ 8.5%

(✒ 0.1 mag), td ✏ 4h, η ✏ 7.1, and ntr ✏ 3. The chosen value for δback,k corresponds to the

median depth (Figure 49) of the sources in the Kepler Eclipsing Binary Catalogue (Third

Revision)9, considering both primary (pdepth) and secondary (sdepth) depths together.

The chosen value for td corresponds to the median transit duration (Figure 49) of the

offset false positive sources listed in the Certified False Positive Table at NASA Exoplanet

Archive. The transit duration values themselves were retrieved form the Threshold Crossing

Events Table, by crossmatching the ID columns (KepID) from both tables. It is worthy

9 <http://keplerebs.villanova.edu>
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Figure 49 – Statistics on transit depth and transit duration of eclipsing binaries.

Source: Kepler Eclipsing Binary Catalogue (Third Revision) and NASA Exoplanet Archive.

surely mostly because of the high enclosure energy of PLATO PSFs, but the optimization

scheme applied to each aperture model, privileging low NSR, is also key in this context.

Nevertheless, the results also clearly show that compared to the binary mask employing

weighted masks substantially increases the predicted occurrence of events mimicking planet

transits. The Gaussian mask is expected to deliver up to ✒ 40% higher N bad
TCE than the

binary mask, which is notably a huge discrepancy. The differences between gradient and

binary masks are smaller, but still very significant: N bad
TCE is up to ✒ 20% higher for the

gradient mask. Either correcting for the background or not, these differences rest roughly

the same, so background correction has no significant impact in the comparative basis

analysis between the different aperture models. In absolute terms though, the results
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indicate that fully removing the background leads to an overall increase of more than 10%

in N bad
TCE, which is consistent with the analysis presented in subsection 4.7.

Overall, the obtained results for N bad
TCE, in comparison to those of N

good
TCE presented

in the previous section, makes the scenario of choosing weighted masks become highly

unfavoured even though that kind of mask provides better overall performance in terms

of NSR. Still, it would be legitimate to ask whether the obtained values for N bad
TCE are

indeed significant in an absolute sense, since they represent less than 5% of our full set of

contaminant stars composed of ✒3.25 million sources. Properly answering this question

requires carefully modelling the parameters δback,k and td for the PLATO target fields,

which is though beyond the scope of this work. However, it is possible to obtain a rough

idea of the occurrence of EBs (Nbeb) that could potentially result from the weighted values

shown in Table 13 and Table 14. First, we need to consider that these values refer to

about 20% of the minimum number of expected targets for the P5 sample. Second, we

may assume that the frequency of EBs (Feb) for the PLATO mission might be of the order

of 1%10. Accordingly, the expected occurrence of EBs at 7.1σ, for the P5 sample could be

approximately estimated with Nbeb ✒ 5✂N bad
TCE✂ 1%. From the weighted values presented

in Table 13 and Table 14, that gives 1, 600 ➚ Nbeb ➚ 2, 500 (all three tested aperture

models comprised). This allows us to conclude that N bad
TCE is thus not negligible. Moreover,

considering that the total number of targets in the P5 sample is comparable to the total

number of observed targets by the Kepler mission, we verified that our approximative

estimate on the expected Nbeb, for the P5 sample, is very consistent to the statistics of

background false positives of the Kepler mission. Indeed, the Certified False Positive Table

on the NASA exoplanet archive gives at the present date 1,287 offset false positives out of

9,564 Kepler objects of interest. Such a consistency attests that our study is satisfactorily

realistic. We stress however that accurate false positive estimates for the P5 sample cannot

be provided by our study alone, in particular because it needs to be consolidated with

PLATO’s science exoplanet pipeline.

As a complement to the results presented in this section, Figure 51 shows, for each

aperture model, a two-dimensional histogram containing the distribution of contaminant

stars having SPRapp
k ➙ SPRcrit

k , as a function of the differential P magnitude and the

Euclidean distance between these sources and the corresponding targets. The parameters

used to calculate SPRcrit
k were δback,k ✏ 0.8 mag, td ✏ 4h, NT ✏ 24, η ✏ 7.1, and ntr ✏ 3.

This plot is of particular interest since it illustrates that the contaminant stars having

sufficiently high average flux to produce background false positives are typically less than

✒ 10 mag fainter and located at less than ✒ 4 pixels away from the targets. Consequently,

from the point of view of the distances, we verified that our approach of considering

10 Fressin et al. (2013) give Feb ✏ 0.79% for the Kepler mission. They defined it as being the fraction
of EBs found by Kepler, including detached, semi-detached, and unclassified systems, divided by the
number of Kepler targets.
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contaminant sources located at up to 10 pixels distant from the targets was largely enough

for the purposes of this work. From the point of view of the differential magnitude, three

important aspects need to be considered when interpreting the results.

First, we note that stars in our input catalogue are limited in magnitude to P ✒ 21.1.

This means that for the faintest (and most numerous) P5 targets, for which P magnitude is

as high as 12.66, the maximum differential magnitude from their contaminants is therefore

as small as 21.1✁ 12.66 ✏ 8.44 mag, i.e. smaller than the limit of ✒ 10 mag suggested by

the histograms. In contrast, P5 has targets as bright as 7.66 mag, so that the differential

magnitude may be as high as 21.1✁ 7.66 ✏ 13.44 mag. Hence, well above that limit.

Second, Figure 51 suggests an absence of stars at distances near zero, in particular

at differential magnitudes above 5 mag. Such an anomaly is understood to be related to

what was already pointed out in subsection 3.6 concerning bad estimates of the fluxes of

stars fainter than G ✒ 17 in the DR2 catalogue. This issue is reported in Evans et al. (2018)

and assumed to be caused by factors such as poor background estimation, observation

taken in the proximity of bright sources, binarity, and crowding. In these conditions, the

capability to isolate stars is therefore compromised. Taking into account that the most

problematic cases were removed from the DR2 release according to the authors, the lack

of stars in the above mentioned areas of Figure 51 is justified. Yet scenarios of differential

magnitude higher than 10 mag, at the same time that SPRapp
k ➙ SPRcrit

k , should mostly

occur at distances shorter than ✒ 0.5 pixel, where the occurrence of contaminant stars is

substantially smaller than that at longer distances (see Figure 40).

Third, the parameters used to build the histograms of Figure 51 correspond in

practice to a near worst case scenario in terms of the expected occurrences of false transits

caused by background eclipsing objects. Indeed, it considers photometry perfectly corrected

for the background; contaminants stars being observed by 24 cameras (maximum sensitivity

to transit signatures); and contaminant stars generating background transit depths of

0.8 mag (✒ 52%), which is significantly high for a binary system. This means that the

maximum differential magnitude is typically much smaller than 10 mag.

Taking into account all the above considerations, it is possible to state that Figure 51

gives a sufficiently realistic and unbiased representation of distances and differential

magnitudes of contaminant stars that are likely to cause background false planet transits,

regardless of the limitation in maximum magnitude of the adopted input catalogue.

Furthermore, it is important to clarify that the missing fraction (✒0.01%) of PSF energy in

the images of Figure 21 entails no significant impact in our analysis. This small fractional

energy may be non-negligible uniquely in cases in which the differential magnitude between

target and contaminant stars is ➚ ✁4 mag. These are however extremely rare scenarios in

our input stellar field, and thus statistically insignificant to our analysis. Indeed, less than

0.5% of the contaminant sources in Figure 51 have differential magnitude smaller than
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✁2.6 mag.

Ultimately, the unique set of contaminant stars, from all three histograms presented

in Figure 51, was extracted to build a histogram of the fractional distribution of contaminant

stars having SPRapp
k ➙ SPRcrit

k (i.e. the fractional distribution of N bad
TCE) as a function of

Galactic latitude. The resulting plot is shown in Figure 52. It suggests that the occurrences

of false positives caused by background eclipsing stars might increase exponentially towards

the Galactic plane, which is consistent with the distributions of offset transit signals

presented in Bryson et al. (2013). It is worthy mentioning that since the distribution

of stars within IF privileges certain latitudes, because of its circular shape, such bias is

prevented from being propagated to Figure 52 by considering contaminant sources within

a sufficiently narrow Galactic longitude range lLoS ✟ 1.5 rdegs (see Table 6).

Table 13 – Number N bad
TCE of contaminant stars for which SPRraw

k ➙ SPRcrit
k , which

supposes photometry with no background correction, as a function of the
number NT of telescopes observing the host star and the aperture model.
The roman numerals correspond to the areas indicated in Figure 50. The
percentiles indicate the amount of deviation of the values from weighted
masks with respect to those from binary mask. The weighted values in the
lower row correspond to the effective N bad

TCE, obtained by assuming uniform
star distribution and a fractional field of view as given in Table 2.

NT Binary Mask Gradient Mask Gaussian Mask
♣I� IIq ✏ ♣V �VIq (I + III) (V + VII)

24 40,135 48,005 55,520

18 36,835 43,690 50,785

12 32,830 38,485 44,565

6 26,545 31,050 35,995

weighted 31,591 37,178 (+17.7%) 43,073 (+36.3%)

NBEB 1,580 1,859 2,154

Source: author.

Note: The presented values were determined from our dataset of ✒ 3.25 million contaminant stars.
The SPRcrit

k was computed with δback,k ✒ 0.1 mag, td ✏ 4h, η ✏ 7.1, and ntr ✏ 3.

4.9.6 Long-term drift

As explained earlier in subsubsection 2.9.2, the pixels of PLATO detectors are

relatively broad compared to the size of the PSFs. During observations, this will cause

aperture photometry to be quite sensitive to the long-term star position drift occurring

on the focal plane. To verify the corresponding impact on performance, this subsection

presents the results of a long-term star position drift simulation applied to a given target

star of IF that has P ✏ 11 (see corresponding PSF and imagette in Figure 53).
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Table 14 – Same as Table 13, but now representing the contaminant stars for which
SPRapp

k ➙ SPRcrit
k , which supposes photometry with perfect background

correction.

NT Binary Mask Gradient Mask Gaussian Mask
♣I � IIq ✏ ♣V � VIq (I + III) (V + VII)

24 45,180 54,720 63,555

18 41,575 50,185 58,540

12 37,055 44,380 51,885

6 30,185 35,820 41,570

weighted 35,731 42,774 (+19.7%) 49,814 (+39.4%)

NBEB 1,787 2,139 2,491

Source: author.

To apply such a simulation, the first step consisted in determining how the pa-

rameters flux, NSR, and SPR of the photometry vary as a function of the intrapixel

location of the target’s barycentre. As pointed out in subsection 3.7, by convention the

x and y CCD coordinates of the target barycentre are (each) located at no more than

an absolute euclidean distance of 0.5 pixel from the imagette centre. As a consequence,

there is a well defined region of the imagette within which the target barycentre can be

located. This region is delimited by the white solid square represented in Figure 53. The

three parameters (flux, NSR, and SPR) were therefore computed within this region for all

intrapixel positions defined by a uniform grid of 1/100 pixel resolution on both x and y

axis. It is important to mention that an exclusive aperture was calculated, according to

the computation schemes described in subsection 4.8, at each individual intrapixel position

in this grid. By doing so, the 2D maps of Figure 54 were obtained. These maps clearly

show that both flux and SPR parameters may significantly vary depending on the target

barycentre location within the area delimited by the white square, no matter the aperture

model considered. In terms of NSR, all three aperture models provide stable performance

throughout the different intrapixel positions. Readers might notice that, by symmetry, the

pattern given by each map repeats itself beyond the square area.

The second step of the simulation consisted in drawing a light curve from the data

of the flux maps, in order to compare the photometric flux evolution over the time among

the different aperture models. In principle, stars can move following any trajectory across

the CCDs. For the sake of simplicity, it is assumed herein an arbitrary motion of the target

star along y ✏ 0.15 [px] of the flux maps of Figure 54, starting at x ✏ ✁0.50 [px] and

going all the way to x ✏ �0.50 [px], which corresponds to a time scale of about three

months (90 days). This resulted in the light curves presented in Figure 55. Although the

chosen trajectory is not perfectly realistic, since stars will not move perfectly straight from

one point to another, this is still well representative of the flux variations that are likely
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4.10.3 Sensitivity to satellite jitter

This chapter also presented some results showing at which extent the spacecraft

jitter might impact on the noise performance of apertures photometry. These results

allowed verifying that the effect of jitter does not required being taken into account in

the calculation schemes (subsection 4.8) used to compute the apertures, since the noise

performance degradation caused by the pointing error is almost negligible at nominal

conditions. In contrast, in the eventual scenario of degraded pointing performance, the

jitter contribution to the total noise might become not negligible at all, which could then

justify taking it into consideration on the computation scheme that defines the aperture

shape.

4.10.4 Detector saturation

It is important to clarify that the results presented in this chapter are valid for non-

saturated stars. It implies that only one mask is attributed to each target, and each mask

is limited in size by the (6✂ 6) shape of an imagette. This is a fundamental assumption

for the study presented herein. In the current instrument design, PLATO detectors are

expected to exhibit saturation at pixels observing stars brighter than P ✒ 8.16✟ 0.5 (i.e.

V ✒ 8.5✟ 0.5 @6,000K) after a 25s exposure (normal cameras). The exact saturation limit

depends on the location of the star in the CCD and where its barycentre falls within a

pixel. The brightest stars used in this study are thus at the very lower bound of this broad

saturation threshold.
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5 Conclusions and perspectives

The ESA PLATO space mission is devoted to unveiling and characterizing new

extrasolar planets and their host stars. Compared to other missions of the same category,

PLATO has unique characteristics that makes it much more than a simple mission dedicated

to provide a large statistical sample of planetary systems. Indeed, PLATO was conceived

to not only detect, but also to precisely characterize – in terms of radii, mass, mean density,

age, atmosphere etc. – tens of small and low-mass planets orbiting within the habitable

zone of bright Sun-like stars. With the observational accuracy envisaged for the mission,

for example, it is expected a decrease on the uncertainties of planetary density from the

current 30 to 50% to about 10% only (ESA (2017)). Such an improvement shall represent

a compelling step forward towards the exploration of planetary diversity. Furthermore,

the PLATO mission is concretely in position to confirm whether planets like the Earth

indeed exist, including how many of them and what type of star they orbit.

PLATO satellite will encompass a very large (>2,100 deg2) field of view, granting it

the potential to survey up to one million stars depending on the final observation strategy.

The telemetry budget of the spacecraft cannot handle transmitting individual images for

such a huge stellar sample at the right cadence, so the development of an appropriate

strategy to perform on-board data reduction is mandatory. To achieve it, mask-based

(aperture) photometry was selected as the method to produce stellar light curves in flight

because of its excellent compromise between scientific performance and implementation

complexity. That is, such a method delivers noise performance comparable to that of more

complex solutions such as PSF fitting, but runs much faster and consumes much less

computational resources.

Aiming to maximize the scientific exploitability of the reduced data produced on-

board of the PLATO spacecraft, the present research work has primarily focused on finding

the optimal photometric apertures for extracting photometry of more than 250,000 PLATO

targets (the P5 stellar sample). Accordingly, the development of this work considered three

distinct aperture models: a weighted mask providing global minimum noise-to-signal ratio

(gradient mask), obtained through a novel direct calculation method; a weighted Gaussian

mask giving sub-optimal noise-to-signal ratio; and a narrower binary mask to reduce the

impact of contamination. Taking into account the massive number of targets in the P5

sample, a statistical approach was adopted for characterizing the photometric performance

of all three aperture models: each one was tested on tenths of thousands of synthetic

images (imagettes) containing realistic stellar distribution, which overall comprises 50,000

potential PLATO targets surrounded by ✒ 3.25 million neighbouring contaminant stars.

The stellar population used for building the imagettes was extracted from the Gaia DR2
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catalogue and is representative of the provisional long-pointing southern PLATO field

(SPF).

As a result, this work represents a realistic, comprehensive and unique characteri-

zation of the photometric performance expected from PLATO targets, in fact as never

done before for any other mission of the same category. Overall, the ensemble of results

and discussions derived from this work constitutes a significant contribution to the design

of both on-board and on-ground science data processing pipelines of the PLATO mission.

5.1 Conclusions

5.1.1 Background light

Characterizing the intensities of background light is key for obtaining realistic

estimates on the NSR of stellar photometry, in particular for faint stars. Yet even more

crucial than that, accurate knowledge on the level of background light is mandatory

for obtaining reliable estimates on the true planetary transit depths (and consequently

on planetary radius) from the diluted observed depths (Equation 4.10). This becomes

particularly relevant in the context of PLATO, taking into account that this mission is

being conceived to not only detect, but also to accurately determine planetary radius at

down to 3% accuracy.

Within PLATO’s Lagrange-L2 orbit, scattered sky background light will be domi-

nated by the zodiacal light. In subsection 3.1, an expression was provided for estimating

the per camera intensities of zodiacal light on PLATO detectors. From that, it was possible

to characterize, both spatially (across PLATO SPF) and temporally (over the course of a

one-year orbit), the expected level of zodiacal light for the PLATO mission. The obtained

results show that the spatial gradient of zodiacal light is expected to be considerably strong

(up to ✒ 260%; Figure 32) between the minimum and maximum ecliptic latitudes of SPF,

which is not surprising considering its large sky coverage (✒ 2132 deg2). In addition, the

results show that the temporal gradient is also expected to be quite significant in this field:

up to ✒ 160% variation over a time scale of three months for stars located at the lowest

ecliptic latitudes; and up to ✒ 40% variation over the same time scale for stars located

around IFLoS. Besides the zodiacal light, another important source of background light

impacting the accuracy at which planetary radius can be determined is the flux originating

from contaminant stars. The fractional flux contribution of an individual contaminant star,

SPRk (Figure 46), might be particularly significant when such a star is located at less than

✒ 2.5 pixels from a target. The total fractional flux contribution from several contaminant

stars, SPRtot (Figure 47), is more likely in a statistical sense to cause significant transit

dilution on faint (P ➪ 12) stars.

It is unambiguous to conclude, therefore, that important variations in background
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light will occur over the course of the PLATO mission. As a consequence, these variations

will unavoidably cause meaningful discrepancies between the measured depths of distinct

transit events produced by the same planet, notably in cases when the corresponding

orbital period is of the order of a few months. Moreover, background changes over the time

create spurious signatures in the power spectrum of light curves, which limit the accuracy

at which stellar oscillation frequencies can be determined. In the long run hence, a proper

follow-up of the background light will need to be performed throughout the observations,

so that light curves can be properly corrected for the (average) background.

5.1.2 Long-term drift

From the results presented in subsubsection 4.9.6, it is possible to verify that the

long-term star position drift is expected to impact the photometry of PLATO targets

in quite different ways depending on the considered aperture model. The gradient mask

delivers the smallest number of discontinuities in the light curves, which translates into

a better stability of the photometric flux. The Gaussian mask generates quite numerous

(→ 20) yet very small (➔ 1%) jump discontinuities in the photometry. The binary mask is

the method producing the largest (✒ 3✁ 10 %) jump discontinuities, but these occur much

less frequently than those produced by the Gaussian mask. Indeed, typically only a few

(✒ 5) events are expected to be produced by the binary mask over a time scale of three

months. Before entering in any kind of comparison between the results obtained from each

mask model, a few aspects need to be considered first as discussed in the next paragraph.

Correcting for discontinuities in light curves, including those produced by sudden

pixel sensitivity dropout (SPSD) (Aigrain et al. (2017)), requires them to be properly

detectable and characterizable. In a broad sense, both detection and characterization

steps consist of identifying respectively the existence and the nature of the discontinuity.

From the point of view of the mask update problematic in PLATO (Samadi et al. (2019)),

characterizing its discontinuities should be in theory a relatively simple task, considering

that the timestamps of all updates will be known on ground, as well as the PSF that is

used to correct them. In contrast, the ease in detecting unexpected discontinuities depends

basically on their aspect and amplitude, which is quite distinct for each aperture model as

seen in the results illustrated in Figure 55.

From the above considerations, it is possible to state that, in terms of flux, the

gradient mask is the method providing the best results in terms of flux stability, since this

mask delivers the least number of discontinuities and their type (removable discontinuity)

make them relatively easy to identify. The Gaussian mask presents several jump disconti-

nuities which are typically small enough for being of the same order of the noise amplitude

in the light curves. As a consequence, these discontinuities might be particularly difficult to

identify and to correct from an algorithmic point of view. The Gaussian mask also present
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removable discontinuities which are sharper – and thus easier to identify – than those

produced by the gradient mask. The binary mask produces jump discontinuities which

are typically strong and hence not difficult to identify. In a direct comparison between

Gaussian and binary masks therefore, the discontinuities produced by the latter should be

more efficiently corrected overall, notably because these can be more easily identified.

Since the masks were calculated to maximize the NSR at each intrapixel position

of the grid, the NSR does not vary significantly across the pixel for any of the three masks.

The 2D maps (Figure 54) show however significantly variations of the SPR parameter,

in particular for the Gaussian and the binary masks. The fact that the gradient mask

presents significantly less variations of the SPR across the pixel can be explained by its

highly adaptable weights to the level of signal and contamination at each pixel individually.

In contrast, the weights of the Gaussian mask are limited to the Gaussian function, and

the binary mask weights are either zero or one, thereby explaining why these two masks

cannot deliver the same stability of the SPR parameter as that of the gradient mask.

Overall, the SPR sensitivity to intrapixel location of target stars reinforces the statement

of the previous section that points for the need of establishing a proper follow-up of the

background light to account for event-varying transit depths caused by instrumental (i.e.

non-astrophysical) effects.

5.1.3 Optimal aperture

To determine the optimal aperture model for extracting photometry from the P5

targets, an innovative criterion was proposed based on two new science metrics: simulated

number of target stars for which a planet orbiting it would be detected, denoted as

N
good
TCE (to be maximized); and simulated number of contaminant stars that are sufficiently

bright to generate false positives when eclipsed, denoted as N bad
TCE (to be minimized). Both

metrics depend on noise-to-signal ratio, stellar pollution ratio and simulated frequency

of threshold crossing events at 7.1σ; they allow us to direct evaluate the sensitivity of

apertures in detecting true and false planet transit signatures. Accordingly, we designated

as optimal the model providing the best compromise between sensitivity to detect true

and false planet transits. Such an approach distinguishes itself from previous works in

the sense that it provides science metrics from which the performance between different

aperture models can be compared, being therefore not limited to an instrument level

comparison only, and thus more consistent to the scientific needs of the mission. Indeed,

Kepler and TESS missions adopt, analogous to the stellar pollution (SPR), the crowding

metric r (Batalha et al. (2010)) and the dilution parameter D (Sullivan et al. (2015)),

respectively, to quantitatively distinguish photometric fluxes originating from targets and

other sources. However, these are instrumental level parameters that are not taken into

account for choosing their apertures. From the results presented in subsection 4.9, we verify

that compared to the binary mask, weighted masks (gradient and Gaussian) best fit the
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instrumental PSF at pixel resolution, thus providing lower NSR in general; however their

larger wings inevitably encompass more fractional flux from contaminant stars. From a

science perspective, all three mask models present comparable overall efficiency in detecting

legitimate planet transits, but the binary mask is substantially (up to ✒30%) less likely to

produce background false positives when compared to weighted masks. These results led

us to choose the binary mask as the optimal solution for extracting photometry in flight

from P5 targets, since it provides the best compromise between maximizing N
good
TCE and

minimizing N bad
TCE.

The present approach currently represents a consistent contribution to the science

of exoplanet searches. It confirms that the ordinary concept adopted in the literature

for finding apertures, which typically relies on noise minimization for maximum transit

detection, without directly taking into account the impact from false positives, is not

necessarily the best strategy. Indeed, this statement holds for PLATO’s P5 sample, as

the conventional approach would suggest us the use of weighted masks instead of the

binary mask. Furthermore, the approach for choosing apertures proposed in this thesis has

been proven to be decisive for the determination of a mask model capable of providing

near maximum planet yield and substantially reduced occurrence of false positives for the

PLATO mission, thereby significantly reducing the amount of (useless) radial velocity

follow-up of false planet transits. Overall, this work constitutes an important step in the

design of both on-board and on-ground science data processing pipelines.

5.1.4 Flight software budget

PLATO data processing pipeline requires implementing dedicated algorithms in the

flight software, including an aperture photometry method for producing light curves for the

P5 targets. Following the computation schemes described in subsection 4.8, the performance

of three different aperture methods were compared by assigning them individually for

50,000 potential PLATO targets within SPF.

Considering the case of the gradient mask, which provides the lowest values of

NSR, having such performance on board requires a unique mask shape per target to

be uploaded to the flight software. This demands, in turn, prohibitive telemetry and

time resources, especially considering that the total telemetry budget needs to be shared

between 26 cameras. In addition, as explained in subsection 4.10, the masks will have to

be regularly updated in flight to compensate for long-term star position drift, thus making

the employment of gradient masks unfeasible.

For the Gaussian mask the outlook is not much more favourable, as this solution

would require a massive set of widths (practically one per target) to guarantee the

NSR performance results presented in Figure 45. Otherwise, one could in principle take

advantage of the fact that the Gaussian mask has an analytical form – with small number
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The binary mask, in turn, provides a virtually unbeatable capacity for compressing

combinations of mask shapes without loss of performance. It can be visualized by looking

at the data concerning the morphology of binary masks provided in Figure 56a. These

data give the accumulated unique combinations of binary mask shapes computed from

the set of binary masks used to extract photometry from all ✒ 127 thousand target stars

within IF. It shows that the unique set saturates to about only 1,350 mask shapes, thereby

giving a compression factor of almost 99%. This represents another significant advantage

of employing the binary mask, since no weighted mask is actually capable of providing

such compression capabilities – resulting in less on-board memory usage – while keeping

the original performance of the full set of masks unchanged.

Furthermore, binary masks offers the advantage of permitting the flight software

to perform calculations – involving the apertures – with integer numbers rather than float

ones (as would be the case with weighted masks). This translates into less CPU usage on

board. Indeed, in the context of the PLATO flight software, the Gaussian mask is almost

50% more CPU consuming than the binary mask. That represents a significant difference

considering the typically tight CPU budgets involved in spatial missions.

5.1.5 Number of background eclipsing binaries

The work developed in this thesis allowed us to obtain a first estimate on the

expected occurrence of background eclipsing binaries for the PLATO P5 stellar sample.

From our results, this number is expected to be of the order of 80 occurrences per ten

thousand target stars observed. Accordingly, for an observation scenario comprising two

long-pointing fields (2� 2 years), this ratio leads to a total of ✒ 2, 000 eclipsing binary

occurrences over approximately 245,000 observed targets. Such number is notably large

if compared to the expected planet yield under the same observation scenario, which is

✒ 4, 600 planets considering both P1 and P5 stellar samples (ESA (2017)). In that sense,

the fact that the binary mask is expected to deliver up to 30% less occurrence of eclipsing

binaries than weighted masks represents a significantly gain in terms of the amount of

time spent to confirm transit-like events with ground-based radial velocity follow-up. In

other words, the use of binary mask allows, from a statistical point of view, RV telescopes

to be used much more efficiently, i.e. dedicating much more of their time in confirming

legitimate planet transits rather than identifying false ones.

5.1.6 Weighted masks

Beyond the P5 sample, the weighted masks may be exploited as additional photom-

etry extraction methods for the targets whose light curves will be produced on the ground

from imagettes. Compared to more complex methods based on PSF fitting photometry

(e.g. Silva et al. (2006), Deheuvels & Ballot (2019), Libralato et al. (2015), Nardiello et



116 Chapter 5. Conclusions and perspectives

al. (2016)), the gradient and Gaussian masks are much simpler and faster to calculate.

They might be suitable for not too crowded fields or in situations where the existence of

contaminants may not be too critic (e.g. for asteroseismology targets). We note however

that these masks adapt their size to the presence of contaminant stars. This is possible

since the expression for the NSR (Equation 4.1) takes into account the fluxes coming

from contaminant companions, so whenever their signal are sufficiently strong, compared

to that of the targets, the mask are reduced in width to keep NSR as low as possible.

Moreover, the weighted masks can be implemented with ease in both Kepler and TESS

data processing pipelines, so their usage is not limited to PLATO targets.

5.1.7 PLATO P photometric passband

The PLATO P photometric passband presented in subsection 3.5 allowed evidencing

that stars specified in Johnson’s V band have color-dependant fluxes on PLATO detectors.

Quantitatively, the differences between V and P magnitudes are particularly large (➪ 0.8

mag) for cold (T✍ ➚ 4000K) stars (see Figure 39). This is consistent with the fact that the

spectral response of PLATO telescopes collects substantially more flux beyond λ ✒ 600nm

when compared to the V filter (see Figure 23). These results are important because they

reveal that using the V band for characterizing the photometric performance of PLATO

targets may lead to strong bias, since stars with identical V magnitudes may present

significantly distinct fluxes at instrument level. Such bias does not occur when using the

P band, making it therefore a more appropriate choice for e.g. selecting targets. Besides,

stellar fluxes can be straightforwardly estimated from their corresponding P magnitudes

by applying Equation 3.18. Furthermore, the color relationship presented in Equation 3.20

provides a straightforward and accurate way to switch between Gaia G and PLATO P

magnitude systems.

5.2 Perspectives

5.2.1 Detecting background false positives with double photometry

Despite the relevant contributions of the present study towards minimizing the

frequency of background false positives in the P5 sample, a particular concern might still

arise with regard to the potential difficulties in properly identifying, based on a single

light curve per target, the false positives from the P5 detections. Indeed, detecting false

positives under such condition is, when not impossible, a typically difficult task. Hence,

it would be beneficial for the P5 photometry overall the development of an alternative

(non-image-dependant) method for identifying false positives. With that in mind, the idea

of applying double photometry in flight has emerged.

As already mentioned, only a limited number of targets of the P5 sample will have

imagettes available on ground for extracting their photometry, which means that the vast
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Thus, a good strategy would be to place the secondary mask over the contaminant

star presenting the greatest SPRk among the set of contaminants given in Figure 51.

Doing it increases the probability of placing an aperture over a contaminant star that will

effectively produce a background false positive.

Finally, to statistically verify the hit ratio of such a method, it is necessary as a

future work to compute secondary masks for the set of contaminants mentioned above

and check for how many cases the noise-to-signal ratio and the level of dilution of the

secondary photometry is adequately enough allowing us to state that if a transit depth

in the secondary photometry is higher than in the primary one, then the transit signal

observed in the primary photometry does not originate from a planet orbiting the target

star. In fact, the frequency of targets for which such an statement is true corresponds

to the expected frequency of background transit depths that the method is potentially

capable of identifying. Fully characterizing the validity and the applicability of this method

represents one of the major works in perspective.

5.2.2 Impact of PSF modelling and background correction uncertainties on planetary radius

estimation

The SPR metric presented in this work is essential for quantifying the dilution

level of observed planetary transit depths, and hence crucial for accurately determining

the radii of new detected planets (Equation 4.8). In practice however, the SPR cannot

be perfectly known owing (primarily) to imperfections associated to the PSF inversion

process, background flux correction and uncertainties on stellar magnitudes. Accordingly,

an important work to be performed in the future consists in quantifying the expected

contributions of PSF modelling and background correction uncertainties on planetary

radii estimation errors. This is particularly important in the context of the PLATO

mission, considering its challenging science requirements on the accuracy of planetary

raddi estimations (subsection 2.4).

In order to perform such work, one can simply replicate the study presented in this

thesis by considering inverted PSFs (instead of the theoretical ones shown in Figure 21) and

background flux values B (zodiacal light) given by the background modelling algorithm of

WP 322 000 (Figure 25). Statistically speaking, that would give a realistic idea on how the

PSF inversion and the background correction might impact on PLATO’s exoplanet search

science. Furthermore, it would also be possible to derive more scientifically meaningful

metrics to assess the effectiveness of the PSF inversions. Today, the performance of inverted

PSFs is evaluated exclusively in terms of L1 and L2 norms1.

1 The p-norm of an N -dimension vector v is defined as ⑤⑤vp⑤⑤ ✏ ♣vp
1 � v

p
2 � v

p
3 � ... � v

p
N q

♣1④pq
.
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5.2.3 Updating the binary masks used on board

Because of long-term star position drift (subsubsection 4.9.6), mask-target assign-

ments performed during each calibration phase become, soon or later, no longer optimal

since the flux distributions of the targets is significantly impacted by the intrapixel loca-

tions of their corresponding barycentres (Figure 22). To compensate for this effect, the

proposed solution consists in tracking the targets by updating the placement of their

apertures on board, as explained in Samadi et al. (2019). This will involve both ground

and flight segments of the mission, as the apertures will first be computed on the ground

and then transmitted to the spacecraft. Both criteria and timescale on which such actions

shall be performed are yet to be defined.

Another challenge related to the mask update issue is the impracticability to

upload all binary mask shapes (see Figure 56a) at once (e.g. during calibration phases) at

a reasonable amount of time. Hence, instead of uploading all the mask shapes to stock

them on board, they will rather be uploaded to the spacecraft at an on-demand basis, i.e.

in conformity to the drift path being followed by the target stars during the observations.

However, determining the required upload frequency is far from being a trivial problem

to tackle, in particular owing to the large number of targets involved and the relatively

limited telemetry resources available for transferring data between the spacecraft and

the ground segment. Furthermore, the adopted frequency shall be consistent with the

assumptions and constraints of on-ground operations.

Results from a preliminary study suggests the needed for a mask update frequency

of once every 15 days per target star on average. However, such study still need to be refined

to include e.g. the temporal gradient of zodiacal light (Figure 32) and the capabilities of

the jitter correction algorithm, as this can also be used to correct sufficiently small drifts –

contributing therefore to reduce the average frequency of mask updates.

5.2.4 Quantifying photometric performance of target stars fainter than V ✒ 13

PLATO can take advantage of the many directions on the sky it will potentially

observe throughout its lifetime, with high photometric precision, to perform studies of

Galactic archaeology2. In that case, red giant (high luminosity) stars play a important role

as these can be probed out to larger distances from our Solar System. Aperture photometry

will also be widely employed to extract light curves in flight of (red giant) stars as faint

as V ✒ 16. Hence, an extended characterization of the aperture photometry performance

(presented in Table 15) including stars down to P ✏ 15.66 (V ✏ 16 @ 6,000K) is necessary

for determining what is the achievable seismic and planet detection performances from

stars fainter than V ✒ 13. In that particular context, Mosser et al. (2019) developped

seismic performance metrics that can be applied to existing and future asteroseismic

2 <http://www.ifa.hawaii.edu/~dhuber/archeology.html>
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observations, including PLATO. However, the performance values derived for the PLATO

mission are still based on the old photometric noise models published in Rauer et al.

(2014). Therefore, the characterization of aperture photometry for fainter stars can be

used to revisit the seismic performance of red giants to make it more consistent with the

current status of the PLATO instrument performance.
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APPENDIX A – Photometric performance breakdown of PLATO P5

stellar sample

Table 15 – Predicted binary mask photometric performance, relatively to PLATO’s P5 stellar sample. Noise values in this table represent
medians plus the corresponding upper and lower bounds at 90% confidence level, computed over the number of targets indicated
at each row. These values are consistent with those presented in Börner et al. (2018). Values of the column NSRjitter

1h correspond
to the plot of Figure 45, thereby valid for NT ✏ 24 telescopes. Noise (σ) values represent the fractional contributions to NSRjitter

1h

due to noise originating from target stars (FT ), contaminant stars (FC), background zodiacal light (B), detector (D), quantization
(Q) and photometric jitter (J).

P magnitude Number Number of Average contam. σFT
σFC

σB σD σQ σJ NSRjitter
1h SPRtot

♣✟0.1q of targets contaminants counts per target rppm hr1④2s rppm hr1④2s rppm hr1④2s rppm hr1④2s rppm hr1④2s rppm hr1④2s rppm hr1④2s [ppm]

7.66 82 3,251 39.6 10.5�0.6
✁0.5 0.1�0.7

✁0.1 0.7�0.2
✁0.1 1.5�0.2

✁0.2 0.2�0.0
✁0.0 0.2�0.3

✁0.1 10.6�0.7
✁0.6 178�6,313

✁177

8.16 127 5,132 40.4 12.7�0.8
✁0.8 0.2�1.2

✁0.2 1.0�0.3
✁0.2 2.1�0.3

✁0.4 0.2�0.0
✁0.0 0.2�0.3

✁0.1 12.9�0.8
✁0.8 270�13,314

✁267

8.66 224 8,594 38.4 16.0�1.0
✁0.9 0.3�2.0

✁0.3 1.5�0.5
✁0.3 3.1�0.5

✁0.5 0.4�0.1
✁0.1 0.4�0.9

✁0.3 16.4�1.2
✁1.0 414�18,888

✁413

9.16 380 15,023 39.5 20.1�1.3
✁1.2 0.4�3.3

✁0.4 2.2�0.9
✁0.4 4.6�1.0

✁0.6 0.5�0.1
✁0.1 0.5�1.0

✁0.4 20.8�1.7
✁1.4 488�32,134

✁487

9.66 648 27,489 42.4 25.4�1.7
✁1.5 0.7�3.8

✁0.7 3.3�1.2
✁0.6 6.9�1.3

✁1.0 0.8�0.2
✁0.1 0.7�1.6

✁0.6 26.7�2.1
✁1.6 819�29,566

✁818

10.16 1045 44,341 42.4 32.2�2.2
✁1.9 1.0�6.7

✁1.0 5.0�1.9
✁0.9 10.6�1.7

✁1.8 1.2�0.2
✁0.2 1.0�2.5

✁0.8 34.5�3.1
✁2.3 964�50,807

✁962

10.66 1596 67,728 42.4 40.8�2.8
✁2.4 1.5�8.0

✁1.4 7.6�3.0
✁1.5 16.0�3.0

✁3.0 1.9�0.4
✁0.4 1.4�3.0

✁1.0 44.8�4.1
✁3.1 1, 238�45,401

✁1237

11.16 2472 108,392 43.8 52.0�3.6
✁3.2 2.2�12.9

✁2.2 11.7�4.7
✁2.4 24.6�4.8

✁4.6 2.9�0.6
✁0.5 1.9�4.1

✁1.4 59.2�6.2
✁4.4 1, 745�70,036

✁1743

11.66 3729 160,505 43.0 66.1�5.2
✁4.3 3.3�20.7

✁3.2 17.8�7.5
✁3.7 37.6�7.4

✁6.9 4.4�0.9
✁0.8 2.6�6.4

✁2.0 79.1�9.7
✁6.6 2, 262�106,434

✁2260

12.16 5705 254,262 44.6 84.3�7.1
✁5.8 4.7�28.6

✁4.6 27.2�11.7
✁5.5 57.3�12.1

✁10.5 6.7�1.4
✁1.2 3.6�7.8

✁2.7 106.8�14.8
✁10.1 2, 838�119,402

✁2835

12.66 7733 334,293 43.2 102.6�9.2
✁7.4 6.4�37.8

✁6.2 38.5�16.7
✁7.7 81.1�17.0

✁15.0 9.6�2.0
✁1.8 4.3�8.6

✁3.2 138.5�20.1
✁14.7 3, 362�133,603

✁3358

Source: author.
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ABSTRACT

Context. The ESA PLATO space mission is devoted to unveiling and characterizing new extrasolar planets and their host stars. This
mission will encompass a very large (>2100 deg2) field of view, granting it the potential to survey up to one million stars depending
on the final observation strategy. The telemetry budget of the spacecraft cannot handle transmitting individual images for such a huge
stellar sample at the right cadence, so the development of an appropriate strategy to perform on-board data reduction is mandatory.
Aims. We employ mask-based (aperture) photometry to produce stellar light curves in flight. Our aim is thus to find the mask model
that optimizes the scientific performance of the reduced data.
Methods. We considered three distinct aperture models: binary mask, weighted Gaussian mask, and weighted gradient mask giving
lowest noise-to-signal ratio, computed through a novel direct method. Each model was tested on synthetic images generated for 50 000
potential PLATO targets. We extracted the stellar population from the Gaia DR2 catalogue. An innovative criterion was adopted for
choosing between different mask models. We designated as optimal the model providing the best compromise between sensitivity
to detect true and false planet transits. We determined the optimal model based on simulated noise-to-signal ratio and frequency of
threshold crossing events.
Results. Our results show that, although the binary mask statistically presents a few percent higher noise-to-signal ratio compared to
weighted masks, both strategies have very similar efficiency in detecting legitimate planet transits. When it comes to avoiding spurious
signals from contaminant stars however the binary mask statistically collects considerably less contaminant flux than weighted masks,
thereby allowing the former to deliver up to ∼30% less false transit signatures at 7.1σ detection threshold.
Conclusions. Our proposed approach for choosing apertures has been proven to be decisive for the determination of a mask model
capable to provide near maximum planet yield and substantially reduced occurrence of false positives for the PLATO mission. Overall,
this work constitutes an important step in the design of both on-board and on-ground science data processing pipelines.

Key words. instrumentation: photometers – planets and satellites: detection – techniques: photometric – methods: numerical –
catalogs – zodiacal dust

1. Introduction

PLAnetary Transits and Oscillations of stars (PLATO)1

Rauer et al. (2014) is a space mission from the European Space
Agency (ESA) whose science objective is to discover and char-
acterize new extrasolar planets and their host stars. Expected to
be launched by end 2026, this mission will focus on finding pho-
tometric transit signatures of Earth-like planets orbiting the hab-
itable zone of main-sequence Sun-like stars. Thanks to its very
large field of view (∼2132 deg2) covered by multiple (6 to 24)
telescopes, PLATO will be able to extract long duration (few

1 https://www.cosmos.esa.int/web/plato

months to several years) photometry from a significantly large
sample of bright targets (V < 11) at very high photometric pre-
cision (∼50 ppm h1/2). The resulting scientific data are expected
to provide stellar ages with accuracy as low as 10% and radii of
Earth-like planets with accuracy as low as 3% (ESA 2017, see
also Goupil 2017).

The PLATO data processing pipeline is a critical compo-
nent of the payload, which is composed of multiple ground-
and flight-based algorithms. These are necessary to convert the
raw data acquired by the instrument, which inevitably carries
unwanted systematic disturbances, into scientifically exploitable
light curves. Typical examples of systematic errors are the long-
term star position drift, pointing error due to satellite jitter,

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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charge transfer inefficiency (CTI) from the detectors, pixel sat-
uration, outliers, and sky background. To work around these
errors, extensive studies have been carried out focussed on the
definition of data processing algorithms. These studies include
the development of photometry extraction methods which are
key for the success of the mission and motivate the present work.

The PLATO photometer will be capable to produce light
curves for up to one million stars, depending on the final obser-
vation strategy. In contrast, transmitting individual images for
each target, at sufficiently short cadence2 for further ground-
based processing requires prohibitive telemetry resources.
Hence, for a substantial fraction of the targets, an appropriate
data reduction strategy (prior to data compression) needs to be
executed. In that case, the most suitable encountered solution
consists in producing their light curves on board, in a similar
way as performed for the targets of COnvection ROtation and
planetary Transits (CoRoT; Auvergne et al. 2009) Space Tele-
scope. By doing so, the spacecraft transmits data packages to
the ground segment containing a single flux value per cadence
for each star rather than multiple flux values from several pixels.
Within the mission design of PLATO, the group of targets whose
light curves will be produced on board are part of a stellar sample
called P5. Considering a scenario of two long pointing observa-
tions, this set represents more than 245 000 F5 to late-K spectral
class dwarf and sub-giant stars with V magnitude ranging from 8
to 13; it was idealized to generate large statistical information on
planet occurrence rate and systems evolution. For all other stellar
samples, which are primarily composed of the brightest targets
(more details in ESA 2017), the photometry will be extracted on
the ground from individual images, thereby following the same
principle as that of Kepler Space Telescope (Borucki et al. 2010)
and Transiting Exoplanet Survey Satellite (TESS; Ricker et al.
2014) targets.

In view of its acknowledged high performance and straight-
forward implementation, mask-based (aperture) was adopted as
in-flight photometry extraction method to be implemented in the
PLATO data processing pipeline. In such technique, each light
curve sample is generated by integrating the target flux over a
limited number of pixels, which shall be appropriately selected to
maximize the scientific exploitability of the resulting time-series
light curve. In this context, the present work unfolds the develop-
ment carried out for defining the optimal collection of pixels for
extracting photometry from non-saturated stars in the P5 sample.

There is a noteworthy number of publications on the theme
of photometric masks. Among the oldest, we put some empha-
sis on the work of Howell (1989), in which the idea of a
growth curve (signal-to-noise ratio as a function of aperture
radius) for point-source observations is presented; on the stel-
lar photometry package DAOPHOT3 from Stetson (1987), which
is still widely used today; and on the solution proposed by
Naylor (1998), which consists of employing weighted masks
for imaging photometry, providing improved noise-to-signal
ratio (NSR) performance compared to binary masks. Later on,
and orientated to planet transit finding and asteroseismology,
Llebaria & Guterman (2006) and Bryson et al. (2010) developed
strategies to compute optimized binary masks4 for extracting

2 Based on mission science requirements, PLATO light curves will be
sampled at either 25, 50, or 600 s (see ESA 2017).
3 http://www.star.bris.ac.uk/~mbt/daophot/.
4 In the context of Kepler’s data processing pipeline, such an aperture
is referred to as simple aperture photometry. It was primarily designed
to minimize noise for maximum transit detection sensitivity and as input
for determining a halo of pixels to be downlinked along with the aper-
ture pixels.

light curves from CoRoT and Kepler targets, respectively. More
recently, Smith et al. (2016) proposed a new method to assign
apertures for Kepler targets, focussed on planet detection and
mitigation of systematic errors, through an optimization scheme
based on NSR and Combined Differential Photometric Preci-
sion (CDPP)5 (Jenkins et al. 2010a). As described in Kepler’s
Data Processing Handbook6, this method is implemented within
the photometry analysis component of Kepler’s science pipeline.
Alongside, Aigrain et al. (2015) and Lund et al. (2015) provided
techniques for mask pixel selection for Kepler K2 targets. The
former proposes circular apertures, which has satisfactory per-
formance for sufficiently bright targets and is relatively robust
to systematic errors. The latter uses clustering of pixels, which
best fits the flux distribution of the targets, being therefore more
suitable for dense fields. A modified version of this method is
employed in Handberg & Lund (2016) for reducing the data of
Kepler K2 targets from campaigns 0 to 4. Besides, it is also con-
sidered as one of the possible solutions for extracting light curves
from TESS targets (Lund et al. 2017).

In this paper, we are evidently interested in solutions that
are better suited for both exoplanet search and asteroseismology,
which brings thus our attention to those that were developed for
the space missions CoRoT, Kepler, and TESS. Considering these
three examples, we notice that the notion of optimal aperture is
employed to distinguish apertures that minimize NSR or some
noise-related metric such as CDPP. That is, of course, a reason-
able way to proceed because the sensitivity at which a planet
transit can be found in a light curve, for instance, is strongly
correlated to its noise level. On the other hand, the higher the
ease in identifying a transit-like signal, either because of suf-
ficiently low NSR or CDPP, the higher the probability that a
background object in the scene generates a threshold crossing
event (TCE)7. This background object could be, for example,
a stellar eclipsing binary (EB) mimicking a true planet tran-
sit. Background false positives may be efficiently identified in
certain cases when, besides the light curves, the correspond-
ing pixel data is also available, as demonstrated by Bryson et al.
(2013); however, most of the stars in P5 unfortunately lack that
extra information8 because of telemetry constraints already men-
tioned. Under such an unfavourable scenario, conceiving pho-
tometric masks based uniquely on how well a transit-like sig-
nal can be detected, paying no attention to potential false posi-
tives may not be the best strategy. To verify the consistence of
this hypothesis, we introduce in this paper two science metrics
that allow us to directly quantify the sensitivity of an aperture
in detecting true and false9 planet transits. Then we determine
whether or not the best compromise between these two parame-
ters is obtained from apertures having overall lower NSR.

This paper is organized as follows (see Fig. 1). Section 2
describes the main payload characteristics, including instrument
point spread function (PSF), spectral response, and noise. Also,

5 Roughly speaking, CDPP is an estimate of how well a transit-like
signal can be detected (Smith et al. 2016).
6 https://archive.stsci.edu/kepler/manuals/
7 This concept was created in the context of the Kepler science pipeline
and designates a statistically significant transit-like signature marked for
further data validation (e.g. see Twicken et al. 2018).
8 For an observation scenario covering two long pointing fields, the
telemetry budget dedicated to the P5 sample includes, in addition to the
light curves, more than 9000 imagettes – at 25 s cadence – and centre of
brightnesses (COB) for 5% of the targets (ESA 2017).
9 In this paper, we address the occurrence of false planet transits caused
by background eclipsing objects, in particular EBs.
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Table 5. Normal camera (N-CAM) predicted flux, f ref
P

, for a reference
6000 K G0V star as a function of its V and P magnitudes.

V P f ref
P

(per camera) f ref
P

(24 cameras)
(mag) (mag) (103 e− s−1) (103 e− s−1)

8.0 7.66 143.820 3451.7
8.5 8.16 90.745 2177.9
9.0 8.66 57.256 1,374.1
9.5 9.16 36.126 867.0
10.0 9.66 22.794 547.1
10.5 10.16 14.382 345.2
11.0 10.66 9.074 217.8
11.5 11.16 5.726 137.4
12.0 11.66 3.613 86.7
12.5 12.16 2.279 54.7
13.0 12.66 1.438 34.5

Notes. Values include vignetting for a source at α = 14◦ (Table 2) and
are consistent with the current instrument design.

where f (λ) is the spectral flux of a given star, fVega(λ) is the
spectral flux of the Vega A0V type star (see Fig. 6), and PVega
is its magnitude in the P band, the latter assumed to be equal
to VVega = 0.023 mag (Bohlin 2007). The P band zero point is
given by

zp = 2.5 log10

(

(h c)−1 Θ

∫ λ2

λ1

fVega(λ) S (λ) λ dλ

)

+ PVega. (5)

This constant (see Table 6) provides a straightforward way for
switching between stellar flux and magnitudes using

P = −2.5 log10

(

(h c)−1 Θ

∫ λ2

λ1

f (λ) S (λ) λ dλ

)

+ zp. (6)

Thus, having the zero point zp and the magnitude P of a given
star, its respective total flux fP (per camera and expressed in units
of e− s−1) can be estimated with

fP = 10−0.4(P−zp). (7)

For switching between P and V magnitudes, we determine the
V − P relationship using the Johnson-Cousins V filter (Fig. 6)
and modelling f (λ) with synthetic stellar spectra extracted from
the POLLUX database (Palacios et al. 2010). As for the calibra-
tion star Vega, we adopted the template alpha_lyr_stis_008
(Fig. 6) from CALSPEC. The resulting V −P samples are shown
in Fig. 9 as a function of the effective temperature Teff , the latter
ranging from 4000 K to 15 000 K in steps of 500 K. The corre-
sponding fitted polynomial is

V − P = −1.184 × 10−12(Teff)3 + 4.526 × 10−8(Teff)2

− 5.805 × 10−4Teff + 2.449. (8)

Therefore, for a star with specified visual magnitude and Teff ,
we can determine its P magnitude with Eq. (8) and then applied
Eq. (7) to estimate the respective flux at detector level. Table 5
shows the predicted flux f ref

P
for a reference PLATO target, i.e.

a 6000 K G0V spectral type star, as a function of its V and P
magnitudes. The values include brightness attenuation due to
vignetting for a source at α = 14◦. In this scenario, a reference
PLATO star with V = 11 has P = 10.66 and f ref

P
= 9.074 ke− s−1

per camera, or ∼218 ke− s−1 when cumulating over 24 cameras.

Table 6. Zero points zp of our synthetic P, G, GBP, and GRP photometric
passbands calibrated with Vega alpha_lyr_stis_008 model.

Synthetic Vega zp zp dev. (A) zp dev. (B)
passband (mag) (mag) (mag) (mag)

P 0.023 20.62
G 0.029 25.6879 4.6 × 10−4 4.70 × 10−2

GBP 0.039 25.3510 4.3 × 10−4 1.10 × 10−2

GRP 0.023 24.7450 1.69 × 10−2 1.50 × 10−2

Notes. Vega magnitudes for Gaia passbands are extracted from
Casagrande & VandenBerg (2018). Absolute deviations (zp dev.) of G,
GBP, and GRP zero points are computed with respect to the reference
DR2 magnitudes presented in Evans et al. (2018) (A) and the revised
versions in Weiler (2018) (B).

3.2.2. Obtaining P and V from Gaia magnitudes

We also need to determine expressions for converting from
the magnitude scales available in our adopted input catalogue
(Gaia DR2) to our synthetic V and P magnitudes. Gaia col-
lects data in three photometric systems: G, GBP, and GRP. As
defined in Jordi et al. (2010), all of these systems are calibrated
in the VEGAMAG system, following therefore the same philos-
ophy as Eqs. (4)–(6). To keep consistency with our previously
adopted V and P bands, we applied the same Vega model to
derive synthetic calibrations for the three Gaia bands. Conse-
quently, we imposed to the latter the corresponding Vega magni-
tudes listed in Casagrande & VandenBerg (2018). Table 6 sum-
marizes the obtained zero points for our synthetic G, GBP, and
GRP bands from this approach. They present satisfactorily low
deviations with respect to the reference DR2 magnitudes pub-
lished in Evans et al. (2018) and the later improved versions in
Weiler (2018). Then, to obtain both P and V magnitudes from
the Gaia G band, we determined G − P and V − P relationships
by means of the GBP − GRP colour index, resulting in the plots
shown in Fig. 9. The corresponding fitted polynomials, within
the range −0.227 ≤ GBP −GRP ≤ 4.524, are

G − P = 0.00652 (GBP −GRP)3 − 0.08863 (GBP −GRP)2

+ 0.37112 (GBP −GRP) + 0.00895; (9)

V − P = −0.00292 (GBP −GRP)3 + 0.10027 (GBP −GRP)2

+ 0.37919 (GBP −GRP) + 0.00267. (10)

Unlike Eq. (8), the expressions in Eqs. (9) and (10) are described
as a function of the GBP −GRP colour index, rather than the Teff .
The reason for that is the low availability of effective temper-
atures in DR2 (less than 10% of the sources). In contrast, GBP
and GRP magnitudes are simultaneously available for more than
80% of the sources. To verify the consistency of our synthetic
calibrations derived from synthetic stellar spectra, we compared
our V−G = (V−P)−(G−P) relationship with the V−G polyno-
mial fit (Busso et al. 2018) derived from Landolt15 standard stars
(398 sources) observed with Gaia. As shown in Fig. 9, our syn-
thetic V−G curve exhibits satisfactory agreement with the V−G
polynomial fit obtained from the true Gaia observations. The
maximum absolute error between both curves is 9.8 × 10−2 mag
at GBP −GRP = 2.75 mag. Hence, for the purposes of this paper,
we consider that the polynomials of Eqs. (9) and (10) give suf-
ficiently accurate estimates of P and V magnitudes from the G
magnitude of the DR2 catalogue.

15 https://www.eso.org/sci/observing/tools/standards/

Landolt.html
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Table 7. Description of the parameters of Eq. (11).

Description Symbol

Photon noise from the target star σ2
FT

Photon noise from a contaminant star σ2
FC

Background noise from the zodiacal light σ2
B

Overall detector noise σ2
D

(including readout, smearing, and dark current)
Quantization noise σ2

Q
Average flux from the target star FT
Average flux from a contaminant star FC
Mask weight in the interval [0, 1] w
imagette pixel index= {1, 2, 3, . . . , 36} n
Contaminant star index= {1, 2, 3, . . . ,NC} k
Number of contaminant stars within NC
10 pixel radius around the target

NSR =
106

12
√

td NT
NSR∗, (12)

where td is the observation duration in hours and NT is the num-
ber of telescopes observing the star. The constant in the denom-
inator of the above expression stands for the square root of the
number of samples in one hour, i.e.

√
3600 s/25 s = 12, based on

the 25 s cadence (Table 1) of the PLATO N-CAMs. For a signal
with duration of one hour we use (expressed in units of ppm h1/2)

NSR1 h =
106

12
√

NT
NSR∗. (13)

We note that flux noise induced by satellite jitter is not included
in Eq. (12) at this stage. To do so would be a fairly complicated
task because jitter contribution depends on the final shape of the
aperture (see Fialho et al. 2007). Later in this paper we explain
how to include jitter noise in the NSR expressions, subsequent
to the determination of the apertures.

4.2. Stellar pollution ratio

We present herein the SPR. This factor permits us to quantify the
average fractional contaminant flux from background stars cap-
tured by an aperture. We let FC,k be the photometric flux con-
tribution from a single contaminant star k and Ftot the total flux.
We have

FC,k =

36
∑

n=1

FCn,k wn, (14)

Ftot =

36
∑

n=1

















FTn + Bn +

NC
∑

k=1

FCn,k

















wn, (15)

where Bn is the average background flux at pixel n from the zodi-
acal light. We denote SPRk as the fractional flux from the con-
taminant star k with respect to the total photometric flux (target
plus contaminants and zodiacal light), i.e.

SPRk =
FC,k

Ftot
. (16)

Accordingly, the fractional flux from all contaminant stars is

SPRtot =

NC
∑

k=1

SPRk. (17)

We note that SPRtot is complementary to the crowding metric r
defined in Batalha et al. (2010), i.e. SPRtot = 1 − r.

4.3. Detectability of planet transits

When a planet eclipses its host star, it produces a maximum transit
depth δp which is, at first order approximation, equal to the square
of the ratio between the planet radius and the star radius

δp =
(

Rp/R⋆
)2
. (18)

In practice, δp is always diluted by the contaminant flux from
surrounding stars and background light, such that the observed
transit depth δobs is a fraction of the original transit depth δp

δobs = (1 − SPRtot) δp. (19)

Traditionally, a planet detection is not considered scientifically
exploitable unless it has been observed at least three times. Fur-
thermore, observed transits must reach a certain level of statisti-
cal significance, η, of the total noise, σ. In this paper, we adopted
the threshold16 of 7.1σ (ηmin = 7.1) as a minimum condition for
characterizing a TCE with three transits. It yields

δobs ≥ ηmin σ = 7.1σ. (20)

The total noise σ scales with the signal (transit) duration td and
with the number of transit events ntr, resulting

σ = NSR1 h/
√

td ntr. (21)

By combining the above expressions we can determine the range
of detectable planet radius (cf. Batalha et al. 2010)

Rp ≥ R⋆

√

η

(1 − SPRtot)
NSR1h√

td ntr
· (22)

Earth-like planets located at about 1au from Sun-like stars have
δp ∼ 84 ppm and td ∼ 13 h. Consequently, it is required that
NSR1h . 74 ppm h1/2 for that type of planet to be detected at
η = ηmin = 7.1, ntr = 3 and SPRtot = 0. From Eq. (22), we
can obtain the statistical significance η at which a planet can be
detected

η = δp
√

td ntr (1 − SPRtot) /NSR1h. (23)

Therefore, an aperture model providing the highest number of
targets stars with η ≥ ηmin (i.e. highest N

,good
TCE ), for ntr ≥ 3, is

that being more likely in a statistical sense to detect true planet
transits.

4.4. Sensitivity to background false transits

In this section, we derive a metric to evaluate the sensitivity of an
aperture in detecting false planet transits originating from astro-
physical eclipses of contaminant stars. Such events may occur,
in particular, when the contaminant star in question is part of an
EB system and is sufficiently bright and sufficiently close to a
target star. False planet transits caused by grazing EBs are thus
not addressed herein.

When a given contaminant star k is eventually eclipsed, we
observe in the raw photometry a within aperture fractional flux

16 This criterion was established to ensure that no more than one false
positive due to random statistical fluctuations occurs over the course of
the Kepler mission (Jenkins et al. 2010b).
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decrease ∆Fraw
C,k and a corresponding within aperture fractional

magnitude increase ∆mraw
C,k , such that

∆mraw
C,k = −2.5 log10

(

Fraw
C,k − ∆Fraw

C,k

Fraw
C,k

)

. (24)

By denoting ∆mraw
C,k as the background transit depth δback,k in mag

units and ∆Fraw
C,k/Ftot as the resulting observed transit depth δobs,k

in the raw light curve, relative to the contaminant star k, we
obtain

δobs,k = SPRraw
k

(

1 − 10−0.4δback,k
)

, (25)

with

SPRraw
k =

Fraw
C,k

Ftot
· (26)

This expression shows that the background transit depth
δback,k affects the light curve as an observed transit depth δobs,k,
which is proportional to SPRraw

k , i.e. the SPR of the contaminant
star k in the raw photometry. Because δobs,k is the result of a
false planet transit, we want it to be sufficiently small to prevent
it triggering a TCE, i.e.

δobs,k < ηmin σ. (27)

Although the above statement holds if, and only if, the SPRk
is below a certain level for given δback,k, η, td, and ntr. We denote
such a threshold as the critical SPR (SPRcrit

k ) of the contaminant
star k. It can be determined with

SPRcrit
k =

η
(

1 − 10−0.4δback,k
)

NSR1h√
td ntr
. (28)

Therefore, an aperture model providing the lowest number of
contaminant stars for which SPRraw

k ≥ SPRcrit
k (i.e. lowest Nbad

TCE),
for η ≥ ηmin = 7.1 and ntr ≥ 3, is that more likely in a sta-
tistical sense to naturally reject false planet transits caused by
background eclipsing objects.

4.5. Background flux correction

Background correction refers to subtracting, from the raw
photometry, flux contributions from contaminant sources and
scattered stray light (e.g. zodiacal and Galactic lights). The spa-
tial distribution of background light is commonly describe using
polynomial models, whose coefficients are determined based on
flux measurements taken at strategically selected pixels (see e.g.
Drummond et al. 2008; Twicken et al. 2010). For PLATO, the
strategy for background correction is not yet characterized at
the present date, thus no accurate information on this subject is
available for inclusion in our study. Notwithstanding, we inves-
tigate in this section what would be the impact of an ideally
perfect background correction on the science metrics N

good
TCE and

Nbad
TCE. We assume therefore a hypothetical scenario in which

Bn = FC,k = SPRk = SPRtot = 0.
In this case, the observed depth of a legitimate planet tran-

sit simply converges to its true depth, i.e. δobs = δp (the tran-
sit dilution is completely cancelled). In parallel, the parameter
η (Eq. (23)) increases, meaning that the apertures become more
sensitive to detect true planet transits, which ultimately implies
an increase in N

good
TCE as well.

Analysing the impact on Nbad
TCE is not as straightforward as it

is for N
good
TCE . First, we denote hereafter Fcorr

tot as the total photo-
metric flux resulted after the background correction, which only

contains signal from the target

Fcorr
tot =

36
∑

n=1

FTn wn. (29)

Next, we denote ∆Fraw
C,k/F

corr
tot as the resulting observed transit

depth δcorr
obs,k, after background correction, caused by an eclipse

of the contaminant star k. This leads us, using Eq. (24), to
an expression for δcorr

obs,k which is similar to that of Eq. (25),
except that the term (Fraw

C,k/F
corr
tot ) appears in place of SPRraw

k ,
resulting in

δcorr
obs,k =

(

Fraw
C,k/F

corr
tot

) (

1 − 10−0.4δback,k
)

. (30)

The above identity shows that removing the background flux
from the photometry does not suppress the false transit caused
by a background EB. Indeed, although the average flux from the
eclipsing contaminant star goes to zero (FC,k = 0) in the corrected
photometry, the transit depth δcorr

obs,k depends on the intrinsic (raw)
contaminant flux Fraw

C,k that is present in the scene, which is thus
independent of any further processing applied in the photome-
try. Besides, this result is consistent with the fact that the back-
ground correction only removes the nominal (out-of-transit) aver-
age flux of the contaminant source from the photometry, there-
fore becoming no longer effective if such signal changes after the
correction (e.g. owing to an eclipse, i.e. when δback,k , 0).

For convenience, we define herein the apparent SPR
(SPRapp

k ), which is manifested during the eclipse of a contam-
inant star k in a light curve with flux fully corrected for the
background

SPRapp
k =

Fraw
C,k

Fcorr
tot
. (31)

This yields

δcorr
obs,k = SPRapp

k

(

1 − 10−0.4δback,k
)

. (32)

Comparing Eqs. (25) and (32), we note that δcorr
obs,k is greater

than δobs,k, since SPRapp
k > SPRraw

k . This means that the aper-
tures become more sensitive to detect false planet transits from
background eclipsing objects when the corresponding photom-
etry is corrected for the average background flux. This happens
because the background correction reduces the dilution of such
transits. From all the above considerations, it is possible to state
therefore that the background correction is expected to increase
both N

good
TCE and Nbad

TCE metrics.

4.6. Aperture models

From a purely scientific point of view on planet detection, an
ideal aperture is that which is fully sensitive to all true, and fully
insensitive to all false, planet transits. However, apertures can-
not perfectly disentangle the flux of targets from that of their
contaminant sources, so the ideal mask is physically impossible
to achieve. Indeed, Eqs. (23) and (28) show us that maximizing
the yield of true planet transits and minimizing the occurrences
of false planet transits are conflicting objectives: the former
requires minimizing NSR and the latter maximizing it. There-
fore, the concept of optimal aperture, in the context of this work,
is defined as offering the best compromise regarding these two
facets, even if the priority is of course to maximize the probabil-
ity of finding true planet transits. With that in mind, we present

A71, page 11 of 20



A&A 627, A71 (2019)

in this section three mask models, each having a different shape
and thus supplying distinct performance in terms of NSR and
SPR. This gives us elements to check whether a solution giving
overall best NSR also has satisfactory performance in terms of
SPR and vice versa.

4.6.1. Gradient mask

As NSR is the main performance parameter to be evaluated, a
logical mask model to experiment with is that having weights
wn providing the best NSR∗ for each target. Since the masks
have by definition the same dimension of the imagettes, i.e. mod-
est 6 × 6 pixels, it would be suitable to compute the collection
of pixels providing minimum NSR by exhaustive search, i.e. by
simple trials of several wn combinations, keeping that with low-
est NSR∗. Naturally, that kind of approach is far from efficient,
especially considering that this procedure must be executed for
tens of thousands of target stars. To avoid this inconvenience,
we developed a direct method for calculating wn giving the best
NSR. To determine such a mask, we rely on the fact that NSR∗,
at its minimum, should have a gradient identically equal to zero
(∇NSR∗ = 0) with respect to the weights. From this, we obtain
36 non-linear equations of the form

wn σ
2
n

36
∑

i=1

wi FTi
= FTn

36
∑

i=1

w2
i σ

2
i , (33)

where i is the imagette pixel index = {1, 2, 3, . . . , 36}. One simple
solution beyond the trivial with wn satisfying the above equality
can be calculated directly with

wn =
FTn

σ2
n
. (34)

Conventionally, all wn are then normalized by max[wn] to sat-
isfy 0 ≤ wn ≤ 1, so that each weight wn directly represents the
fraction of the imagette flux being caught by the aperture at the
corresponding pixel n. For illustration, Fig. 14a shows the result-
ing gradient mask for the input image example of Fig. 11.

In order to simplify our terminology, the masks wn obtained
from Eq. (34) are hereafter referred to as gradient masks based
on the fact that they are determined from the mathematical gra-
dient of NSR∗ expression. Each time they are mentioned how-
ever we should keep in mind that they correspond to the masks
providing the global minimum NSR from all the possible com-
binations of mask weights wn in Eq. (11).

4.6.2. Gaussian mask

Having examined the shape of gradient masks applied to sev-
eral stars, we noticed that they look very similar to a bell shaped
curve. Therefore, we decided to test Gaussian-like masks to ver-
ify whether they could provide near-best NSRs when compared
to gradient masks. Depending on the performance difference,
the advantage of having an analytical mask that requires fewer
parameters to be computed could justify its choice over the gra-
dient mask. On these terms, we calculate the weights wn of a
Gaussian mask using the conventional symmetric Gaussian func-
tion expression

wx,y = exp

(

− (x − x⋆)2 + (y − y⋆)2

2σ2
w

)

, (35)

where (x, y) are Cartesian coordinates of the imagette pixels with
shape 6 × 6; (x⋆, y⋆) are the coordinates of the target barycentre

within the imagette; σw is the mask width in pixels on both x
and y dimensions; wx,y is the mask weight in the interval [0, 1]
at (x, y).

As the imagette dimension is fixed and the target position
within it is well known thanks to the input catalogue, choosing
a Gaussian mask for a given target reduces to finding a proper
width. For that, we simply iterate over different values of σw and
keep that giving the lowest NSR∗, as shown in Fig. 13. For illus-
tration, Fig. 14b shows the resulting best NSR Gaussian mask
for the input image example of Fig. 11.

4.6.3. Binary mask

Binary masks are non-weighted apertures, meaning that the pho-
tometry is extracted by fully integrating pixel fluxes within the
mask domain and discarding those which are outside it. This type
of aperture was extensively employed to produce light curves of
CoRoT and Kepler targets, so it is well known for delivering satis-
factory performance. In the context of PLATO, we applied the fol-
lowing routine to compute a binary mask for each target imagette.
1. Arrange all pixels n from the target imagette in increasing

order of NSRn

NSRn =

√

σ2
FTn
+

NC
∑

k=1
σ2

FCn,k
+ σ2

Bn
+ σ2

Dn
+ σ2

Qn

FTn

· (36)

2. Compute the aggregate noise-to-signal NSRagg(m), as a func-
tion of the increasing number of pixels m = {1, 2, 3, . . . , 36},
stacking them to conform to the arrangement in the previous
step and starting with the pixel owning the smallest NSRn

NSRagg(m) =

√

m
∑

n=1

(

σ2
FTn
+

NC
∑

k=1
σ2

FCn,k
+ σ2

Bn
+ σ2

Dn
+ σ2

Qn

)

m
∑

n=1
FTn

·

(37)

3. Define as the aperture the collection of pixels m providing
minimum NSRagg(m).

As the binary mask gets larger following the above routine, the
NSR typically evolves as illustrated in Fig. 13. Accordingly, the
resulting best NSR binary mask for the input image example of
Fig. 11 is shown in Fig. 14c.

5. Performance assessment

We present in this section the photometric performance of the
three aperture models defined in Sect. 4.6. The results are
presented in terms of NSR, SPR, number N

good
TCE of target stars

with sufficiently low NSR permitting the detection of planets
orbiting them, and number Nbad

TCE of contaminant stars with suffi-
ciently high SPR to produce, should they be eclipsed, false posi-
tives. The results were obtained by applying each aperture model
to all 50 000 input imagettes from Sect. 3.4.

5.1. Noise-to-signal ratio

As already pointed out in Sect. 4.1, the per cadence NSR∗ from
Eq. (12) does not include photometric flux noise induced by
spacecraft jitter because of its dependency on aperture weights.
Once the apertures are computed however, we can include jit-
ter noise in the photometry using the shifted imagettes described
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general, but their larger wings inevitably encompass more frac-
tional flux from contaminant stars. From a science perspective,
all three mask models present comparable overall efficiency in
detecting legitimate planet transits, but the binary mask is sub-
stantially (up to ∼30%) less likely to produce background false
positives with respect to the weighted masks. These results led
us to select the binary mask as the optimal solution for extracting
photometry in flight from P5 targets, since this provides the best
compromise between maximizing N

good
TCE and minimizing Nbad

TCE.
Besides, this mask model offers a significant implementation
advantage, since it requires a relatively small number of unique
mask shapes to extract photometry from a large set of stars; we
found that about 1350 unique binary masks are sufficient to extract
optimal photometry from ∼127k targets.

Our approach currently represents a consistent contribution
to the science of exoplanet searches. It confirms that the ordinary
concept adopted in the literature for finding apertures, which typ-
ically relies on noise minimization for maximum transit detec-
tion without directly taking into account the impact from false
positives, is not necessarily the best strategy. This statement
was initially raised as a hypothesis earlier in this paper, and our
results confirm that it holds for the PLATO P5 sample. Indeed,
the conventional approach would suggest the use of weighted
masks instead of the binary mask.

Beyond the P5 sample, the weighted masks may be exploited
as additional photometry extraction methods for the targets
whose light curves will be produced from the ground from
imagettes. Compared to more complex methods based on PSF
fitting photometry (e.g. Libralato et al. 2015; Nardiello et al.
2016), our gradient and Gaussian masks are much simpler and
faster to calculate. They might be suitable for not too crowded
fields or in situations in which the existence of contaminants
may not be too critical (e.g. for asteroseismology targets). We
note however that these masks adapt their size to the presence of
contaminant stars. This is possible since our expression for the
NSR (Eq. (11)) takes into account the fluxes coming from con-
taminant companions, so whenever their signals are sufficiently
strong compared to those of the targets the masks are reduced in
width to keep NSR as low as possible. Moreover, our weighted
masks can be implemented with ease in both Kepler and TESS
data processing pipelines, so their usage is not limited to PLATO
targets. We expect that the ensemble of results and discussions
derived from this work might be particularly useful during the
next steps of the preparation phases of the PLATO mission, in
particular for the definition of algorithms in the exoplanet vali-
dation pipeline, for the construction of the PIC, and later on for
the selection of targets.

Finally, despite the relevant contributions of the present
study towards minimizing the frequency of background false
positives in the P5 sample, a particular concern might still arise
with regard the potential difficulties in properly identifying,
based on the light curves alone, the false positives from the
P5 detections. We highlight however that for an observation
scenario covering two long pointing fields the P5 photometry
includes, in addition to light curves, a dedicated data share com-
prising more than 9000 imagettes – with 25 seconds cadence –
and COBs for 5% of the targets (see ESA 2017). Allocating these
resources to the P5 targets is expected to be flexible enough so
that they can be employed following the principle of an alert
mode, for example whenever transit signals are detected in the
light curves available on the ground. Therefore, the P5 sample
will be composed of a photometry extraction method (binary
masks) that is intrinsically insensitive to detect most of the
potential background false positives, plus a non-negligible num-

ber of imagettes and COBs that can be strategically allocated
to targets of interest. Overall, that should be enough to iden-
tify properly a substantial fraction of the TCEs, which will be
dominated by short period transits, in the P5 sample. Aside from
that, the PLATO data processing team is currently studying the
feasibility and effectiveness of applying imagette-independent
methods for identifying background false positives from the
P5 detections.
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ABSTRACT

Context. ESA’s PLATO space mission, to be launched by the end of 2026, aims to detect and characterise Earth-like planets in their
habitable zone using asteroseismology and the analysis of the transit events. The preparation of science objectives will require the
implementation of hare-and-hound exercises relying on the massive generation of representative simulated light-curves.
Aims. We developed a light-curve simulator named the PLATO Solar-like Light-curve Simulator (PSLS) in order to generate light-
curves representative of typical PLATO targets, that is showing simultaneously solar-like oscillations, stellar granulation, and magnetic
activity. At the same time, PSLS also aims at mimicking in a realistic way the random noise and the systematic errors representative
of the PLATO multi-telescope concept.
Methods. To quantify the instrumental systematic errors, we performed a series of simulations at pixel level that include various
relevant sources of perturbations expected for PLATO. From the simulated pixels, we extract the photometry as planned on-board and
also simulate the quasi-regular updates of the aperture masks during the observations. The simulated light-curves are then corrected
for instrumental effects using the instrument point spread functions reconstructed on the basis of a microscanning technique that will
be operated during the in-flight calibration phases of the mission. These corrected and simulated light-curves are then fitted by a
parametric model, which we incorporated in PSLS. Simulation of the oscillations and granulation signals rely on current state-of-the-
art stellar seismology.
Results. We show that the instrumental systematic errors dominate the signal only at frequencies below ∼20 µHz. The systematic
errors level is found to mainly depend on stellar magnitude and on the detector charge transfer inefficiency. To illustrate how realistic
our simulator is, we compared its predictions with observations made by Kepler on three typical targets and found a good qualitative
agreement with the observations.
Conclusions. PSLS reproduces the main properties of expected PLATO light-curves. Its speed of execution and its inclusion of
relevant stellar signals as well as sources of noises representative of the PLATO cameras make it an indispensable tool for the
scientific preparation of the PLATO mission.

Key words. asteroseismology – stars: oscillations – techniques: image processing – techniques: photometric – methods: numerical

1. Introduction

ESA’s PLATO1 space mission is expected to be launched by the
end of 2026 with the goal of detecting and characterising Earth-
like planets in the habitable zone of dwarf and sub-giant stars
of spectral types F to K (Rauer et al. 2014). The age and mass
of planet-hosting stars will be determined by applying stellar
seismic techniques to their solar-like oscillations (see e.g. Gizon
et al. 2013; Van Eylen et al. 2014, 2018; Huber et al. 2019).
The determination of these stellar parameters is a complex pro-
cedure since it relies on both the precise seismic analysis of the
individual mode frequencies and the use of sophisticated stel-

1 https://platomission.com/

lar modelling techniques (see e.g. Lebreton et al. 2014a,b). To
develop and test such complex procedures, realistic simulated
light-curves are needed. These simulated light-curves are, for
instance, typically used to conduct hare-and-hounds exercises2

involving various teams in charge of the seismic analysis and
stellar modelling (see e.g. Reese et al. 2016, and references
therein). They are also used to conduct massive Monte Carlo
simulations that enable one to assess the performances of seis-
mic analysis pipelines (e.g. de Assis Peralta et al. 2018, and

2 Hare-and-hounds exercises typically involve several teams: one team
produces a set of artificial observations while the other teams try to infer
the physical model/properties behind these observations.

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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reference therein). The simulated light-curves must be suffi-
ciently realistic to accurately account for the properties of the
modes but also for the other sources of stellar noise such as the
granulation noise and the instrumental random noise that – to a
large extent – limit the precision of the age and mass determi-
nation. Similar hare-and-hounds exercises are also planned to be
carried out to test the efficiency of planet detection and the accu-
racy of the derived transit parameters. Since planetary transits
are expected to last several hours, their analysis is quite sensi-
tive to the noises occurring at low frequencies (typically below a
few ten of µHz). Finally, simulated light-curves are also used to
prepare the analysis of the PLATO light-curves for a variety of
other scientific objectives that are also relevant at low frequen-
cies. We can, for instance, mention the characterisation of stellar
granulation, the detection and characterisation of rotational mod-
ulations, among others. Accordingly, it is necessary to simulate
in a realistic way the different sources of noise that dominate the
signal at low frequencies. Among them, we have predominantly
the stellar activity signal, but systematic instrumental errors may
also intervene.

The CoRoT (Baglin et al. 2006b,a) and Kepler (Borucki et al.
2010) space missions, allowed us to carry out seismic studies of
several thousands of pulsating red-giant stars (De Ridder et al.
2009; Kallinger et al. 2010; Stello et al. 2013) thus enabling
important progress in our understanding of stellar interiors
(see e.g. the reviews by Mosser & Miglio 2016; Hekker &
Christensen-Dalsgaard 2017). These observations opened up the
path to what we now call ensemble asteroseismology (see e.g.
Huber et al. 2011; Belkacem et al. 2013; Miglio et al. 2015) with
various applications in the field of Galactic archaeology (Miglio
et al. 2017).PLATOcanpotentiallyobservea largenumberof faint
red giants. The number of targets that can be observed in addition
to the targets of the core program is nevertheless limited to about
40 000 per pointing. An optimal choice of those targets can rely
on the seismic performance tool of Mosser et al. (2019). On the
other hand, the design and the development of seismic analysis
pipelines that are able to process in an automatic way a large num-
ber of red giants require the generation of simulated light-curves
representative of such stars.

To our knowledge the light-curve simulator developed by
De Ridder et al. (2006) in the framework of the Eddington
space project is the first code made available to the commu-
nity that simulates solar-like oscillations together with the stel-
lar granulation noise and the instrumental sources of noise. This
simulator relies on a description of the modes and stellar granu-
lation noise that predates CoRoT and Kepler space missions.
However, our knowledge of solar-like oscillations and stellar
granulation has greatly improved since that time. Very recently,
Ball et al. (2018) proposed a light-curve simulator dedicated
to the TESS mission and that includes an up-to-date descrip-
tion of solar-like oscillators and the granulation background.
However, in this simulator, white noise is the only non-stellar
source of noise; this means that systematic errors are not
included. However, the latter, which are very specific to a given
instrument and its space environment, are in general frequency
dependent and can only be realistically quantified with simula-
tions made at detector pixel level. Furthermore, the level of the
white noise (random noise) also strongly depends on the imple-
mented photometry method and the performance of the instru-
ment. Finally, these simulators do not include planetary transits
and are not suited for red giant stars. Indeed, red giants show
the presence of numerous mixed-modes, and calculating mixed-
mode frequencies with pulsation codes requires a very high num-
ber of mesh points in the stellar models thus making the massive

generation of corresponding simulated light-curves numerically
challenging.

The PLATO mission has some characteristics that make it
very different from other space-based mission based on high-
precision photometry such as CoRoT, Kepler or TESS. Indeed,
one of the main specificities of the mission is that it relies on
a multi-telescope concept. Among the 26 cameras that com-
pose the instrument, two of them are named “fast” cameras and
work at a 2.5 s cadence while the remaining 24 are named “nor-
mal” cameras and work at a 25 s cadence. The normal cameras
are divided into four groups of six cameras, with large fields
of view (∼1100 square degrees) that partially overlap. Each
camera is composed of four Charge Couple Devices (CCD here-
after) which are read out at the cadence of 25 s with a time-
shift of 6.25 s between each of them. Accordingly, the obser-
vations made for a given target by various groups of camera will
be time-shifted thereby allowing us to perform super-Nyquist
seismic analysis (Chaplin et al. 2014). Because of the large
field of view and the long-term change of the pointing direc-
tion of each individual camera, star positions will slowly drift on
the camera focal plane by up to 1.3 pixels during the 3-month
uninterrupted observation sequences. As a consequence, stars
will slowly leave the aperture photometry (i.e. masks), leading
obviously to a long-term decrease of their measured intensities.
Furthermore, during the life of the mission, the instrument will
be continuously exposed to radiation (mostly proton impacts).
This will generate more and more traps in the CCD thus increas-
ing the Charge Transfer Inefficiency (CTI hereafter, see e.g.
Massey et al. 2014, and references therein) over time. Coupled
with the long-term drift of the stellar positions, the CTI will
induce an additional long-term variability of the photometric
measurements.

To mitigate the flux variations induced by the instrument and
the observational conditions, the aperture masks used on-board
will be updated on a quasi-regular basis. This will neverthe-
less leave residual flux variations of about several % over three
months, which remain high w.r.t. the science requirements. The
residual flux variations will fortunately be corrected a posteri-
ori on-ground on the basis of the knowledge of the instrumental
point spread function (PSF). Nevertheless, such a correction will
leave systematic errors in the power spectrum that will rapidly
increase with decreasing frequency. All of these instrumental
systematic errors together with the stellar activity noise compo-
nent can in principle impact the detection and characterisation of
the planetary transits, limit the seismic analysis of very evolved
red giant stars, and affect any science analysis of the signal at
rather low frequencies.

The Plato Stellar Light-curve Simulator3 (PSLS) aims at
simulating stochastically-excited oscillations together with plan-
etary transits, stellar signal (granulation, activity) and instru-
mental sources of noise that are representative of the PLATO
cameras. The simulator allows us to simulate two different
types of oscillation spectra: (i) oscillation spectra computed
on the basis of the so-called Universal Pattern by Mosser
et al. (2011) optionally including mixed-modes following the
asymptotic gravity mode spacing (Mosser et al. 2012b) and (ii)
oscillation spectra computed using a given set of theoretical

3 The PSLS source code is available for download from the PSLS web-
site (http://psls.lesia.obspm.fr) as well as from Zenodo.org
(http://doi.org/10.5281/zenodo.2581107). The source code is
free: you can redistribute it and/or modify it under the terms of the GNU
General Public License (for more details see http://www.gnu.org/
licenses). The present paper describes the version 0.8.
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frequencies pre-computed with the ADIPLS pulsation code
(Christensen-Dalsgaard 2008).

The instrumental noise level is quantified by carrying out
realistic simulations of the instrument at CCD pixel level using
the Plato Image Simulator (PIS) for three-month observation
sequences. These simulations are performed for different stellar
magnitudes, and for both the beginning of life (BOL4) and end of
life (EOL5) observation conditions. The photometry is extracted
from these simulated images in the same manner as planned
on-board, that is using binary masks that minimise the noise-to-
signal ratio (NSR) of each target. The corresponding simulated
light-curves are then corrected using PSFs reconstructed on the
basis of a microscanning technique, which will be operated in-
flight before each three-month observation sequence and which
we also simulate in the present work. This set of simulated light-
curves, corrected for the instrumental errors, then enables us to
quantify the expected level of residual systematic errors. These
simulations are then used to derive – as a function of the stellar
magnitude – a parametric model of the residual errors in the time
domain. This model is in turn implemented into PSLS.

Finally, the other components of the stellar signal (granula-
tion signal, and planetary transits) are included in PSLS follow-
ing prescriptions found in the literature.

2. General principle

The stochastic nature of the different phenomena (i.e. white
noise, stellar granulation and stochastically-excited oscillations)
are simulated following Anderson et al. (1990, see also Baudin
et al. 2007). As detailed below, the properties of the simulated
stellar signal are first modelled in the Fourier domain, we next
add a random noise to simulate the stochastic nature of the sig-
nal, and finally we perform an inverse Fourier transform to come
back into the time domain and derive the corresponding time-
series (i.e. light-curve). We note that other authors (e.g. Chaplin
et al. 1997; De Ridder et al. 2006) have proposed instead to work
directly in the time domain. Although, rigorously equivalent, it
is more convenient to describe the stellar signal in the Fourier
domain since this is the common way signals (such as pulsation,
granulation, and activity) are analysed in solar-like pulsators.

Let F (ν) be the Fourier Transform (FT hereafter) of the sim-
ulated light-curve S(t), and P(ν) the expectation of the Power
Spectral Density (PSD) associated with the stellar signal (i.e. the
PSD one would have after averaging over an infinite number of
realisations). If the frequency bins of the PSD are uncorrelated,
we can then show that

F (ν) =

√

P (u + i v) , (1)

where u, and v are two uncorrelated Normal distributions of zero
mean and unit variance, and i is the imaginary unit (i2 = −1). We
finally compute the inverse Fourier Transform of F̂(ν) to derive
the simulated light-curve S(t) for a given realisation. We note
that the PSD P(ν) associated with a given realisation verifies

P(ν) = |F (ν)|2 = P
(

u2 + v2
)

. (2)

Our PSD is “single-sided”, which means that the integral of the
PSD from ν = 0 (excluded) to the Nyquist frequency is equal to
the variance of the time-series.

4 I.e. in the absence of CTI.
5 I.e. with the level of CTI expected at the end of the mission, that is
6 years after launch by definition.

Here, the expectation P(ν) is the sum of an activity compo-
nent A(ν), the granulation background G(ν), and the oscillation
spectrum O(ν), that is

P(ν) = A(ν) +G(ν) + O(ν). (3)

In accordance with our initial hypothesis, all these components
are uncorrelated. However, some interferences can in principle
exist between the various stellar signal components, such as the
activity, the granulation and the oscillations. For instance there
are some observational evidences about correlations between
granulation (i.e. convection) and modes. Indeed, solar mode
profiles slightly depart from symmetric Lorentzian profiles
(Duvall et al. 1993). Likewise, pieces of evidence for similar
asymmetries were recently found in stars observed by Kepler
(Benomar et al. 2018). Helioseicmic data clearly show that
this asymmetry is reversed between velocity and intensity mea-
surements (e.g. Duvall et al. 1993; Nigam et al. 1998; Barban
et al. 2004). This reversal is believed to be the signature of a
correlation between convection and oscillations (Roxburgh &
Vorontsov 1997; Nigam et al. 1998). However, the departures
from symmetric Lorentzian profiles are small w.r.t. the mode
linewidths. Hence, we consider this as an indication of a small
level of correlation between convection (i.e. granulation) and
oscillations. Finally, concerning possible interferences between
activity and convection, to our knowledge there are no pieces of
evidence. For these reasons, in this work, we decided to neglect
the correlations between the stellar signal components.

Once the FT associated with the stellar signal is simulated
on the basis of Eq. (1), we perform an inverse Fourier transform
to come back into the time domain. This then provides the stel-
lar signal as a function of time. However, in order to take into
account the fact that each group of cameras are time-shifted by
∆t = 6.25 s, we multiply Eq. (1) by the phase term ei2π∆t prior to
calculating its inverse Fourier Transform.

The instrumental signal component (i.e. the systematic errors
plus the instrumental random sources of noise) is simulated in
the time domain as explained in Sect. 4. Finally, once the instru-
mental signal is simulated, it is multiplied by the stellar signal
and the planetary transit (which as the instrumental component is
simulated in the time domain) to get finally the simulated light-
curve averaged over a given number of cameras. We describe
in the following sections the way each simulated component is
modelled.

3. Solar-like oscillations

In this section, we describe the modelling of the oscillation spec-
trum O(ν). It is the sum over the different normal modes

O(ν) =
∑

i

Li(ν), (4)

where each individual resolved mode of frequency νi is
described by a Lorentzian profile

Li(ν) =
Hi

1 + (2 (ν − νi) /Γi)
2
, (5)

where Hi is the mode height, and Γi its linewidth. A mode is con-
sidered to be resolved when Γi > 2δ f where δ f is the frequency
resolution (or equivalently the inverse of the observation dura-
tion). In contrast, for an unresolved mode the profile is given by
(see, e.g. Berthomieu et al. 2001),

Li(ν) =
πΓi Hi

2δν
sinc2 [π (ν − νi)] , (6)
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where δν is the resolution of the spectrum.
To go further, one needs to determine the mode frequen-

cies, heights, and line-widths. To do so, we consider two dif-
ferent methods for the frequencies. For main-sequence and sub-
giant stars, the method consists in computing a set of theoretical
mode frequencies using the ADIPLS adiabatic pulsation code
while for red giant stars we consider the method developed by
Mosser et al. (2011), which relies on what is commonly known
as the Universal Pattern. This distinction is motivated by the
difficulty to compute red giant frequencies. Indeed, for evolved
stars, a proper modelling of the normal frequencies requires an
important number of grid points in the innermost layers. While
still feasible, this makes the computation more demanding. We
therefore adopt a more flexible and affordable method based on
asymptotic considerations to ensure the possibility of using the
simulator on a massive scale.

3.1. Main-sequence and sub-giant stars

The oscillation spectrum is constructed using a set of the-
oretical eigenfrequencies computed using the ADIPLS code
(Christensen-Dalsgaard 2008). The program allows one to
include uniform rotational splittings as specified by an input sur-
face rotation period Trot = 2π/Ωsurf where Ωsurf is the surface
rotation rate. The set of frequencies included in the model are

ν
(0)
n,ℓ,m
= νn,ℓ +

m

Trot

(

1 − cn,ℓ

)

, (7)

where n is the radial order, ℓ the angular (or harmonic) degree, m
the azimuthal order, and cn,ℓ the Ledoux constant (see, e.g. Unno
et al. 1989) provided by ADIPLS. We consider all the modes
from n = 1 up to the cut-off frequency, with angular degrees
ranging from ℓ = 0 to 3 inclusive. Near-surface effects are even-
tually added using the empirical correction proposed by Sonoi
et al. (2015):

νn,ℓ,m = ν
(0)
n,ℓ,m
+ a νmax





















1 − 1

1 +
(

ν
(0)
n,ℓ,m
/νmax

)b





















, (8)

where a and b are two parameters, which are expressed in terms
of Teff and log g thanks to the scaling laws provided in Eqs. (10)
and (11) of Sonoi et al. (2015), respectively.

The mode height of each given mode is computed
according to

Hn,ℓ,m = G(νn,ℓ,m; δνenv) V2
ℓ r2

n,ℓ,m(i) Hmax, (9)

where Vℓ is the mode visibility (V0 = 1, V1 = 1.5, V2 = 0.5,
V3 = 0.05), Hmax the mode height at the peak frequency, and
rn,ℓ,m the (relative) visibility of a mode of azimuthal order m
within a multiplet for a given inclination angle i. The ratio rn,ℓ,m

is computed according to Dziembowski (1971, see also Gizon
& Solanki 2003) and represents – at fixed values of n and ℓ –
the ratio of the mode height for a given inclination angle i to
the mode height at i = 0◦. Finally, G is the Gaussian envelope
defined as

G(νn,ℓ,m; δνenv) = exp

[−(νn,ℓ,m − νmax)2

δν2env/4 ln 2

]

, (10)

where δνenv is the full width at half maximum, which is supposed
to scale as (Mosser et al. 2012a):

δνenv = 0.66 ν0.88
max. (11)

This scaling relation was established for red giants. The
applications presented in Sect. 6 show that it provides rather
good results for less evolved stars.

To compute Eq. (9), we now need to specify Hmax. For
a single-side PSD, the mode height is related to the mode
linewidth as (see, e.g. Baudin et al. 2005)6

Hmax =
2 A2

max

πΓmax
, (12)

where Amax is the rms of the mode amplitude at the peak fre-
quency. The latter is related to the bolometric amplitude Amax,bol
using the correction proposed for Kepler’s spectral band by Bal-
lot et al. (2011)

Amax = Amax,bol

(

Teff

5934 K

)−0.8

. (13)

We note that the CoRoT spectral band results in very similar
corrections (see Michel et al. 2009). Finally, Amax,bol is derived
from the scaling relations derived by Corsaro et al. (2013) and
defined as

ln(Amax,bol) = ln(Amax,bol,⊙) + (2s − 3t) ln(νmax/νmax,⊙)

+ (4t − 4s) ln(∆ν/∆ν⊙)

+ (5s − 1.5t − r + 0.2) ln(Teff/Teff,⊙) + ln(β), (14)

where Amax,bol,⊙ = 2.53 ppm (rms) is the maximum of the bolo-
metric solar mode amplitude (Michel et al. 2009), and s, t, r and
β are coefficients that depend on the star’s evolutionary status
(see Tables 3 and 4 in Corsaro et al. 2013).

Finally, one needs to specify the mode line-widths. To this
end, we note that the product of the mode line-width and the
mode inertia has a parabolic shape (Belkacem et al. 2011, see
Fig. 2). Therefore,

Γn,ℓ,m = Γmax

(

Imax

In,ℓ

)

γ(νn,ℓ,m), (15)

where In,ℓ is the mode inertia, Imax is the mode inertia of the
radial modes interpolated at ν = νmax, Γmax is the mode linewidth
at ν = νmax derived from two different scaling relations (see
below), and the function γ(ν) models the frequency dependence
of the product Γn,ℓ,mIn,ℓ around νmax. The latter is modelled
empirically as follows

γ(ν) = 1 + A
(

1 −G(νn,ℓ,m; 2δνenv)
)

, (16)

where G is the Gaussian function defined by Eq. (10), A is a con-
stant, and δνenv is given by the scaling relation of Eq. (11). With
A = 2 for ν ≥ νmax and A = 6 for ν < νmax, Eq. (16) repro-
duces rather well the variation with frequency of the solar mode
linewidths. Given the objectives targeted by the simulator, we
assume that this empirical description is sufficiently represen-
tative for other stars. An alternative approach would have been
to use the relation describing the frequency dependence derived
from Kepler observations by Appourchaux et al. (2014, see its
corrigendum in Appourchaux et al. (2016)). However, this rela-
tion was established for a limited number of targets and hence
in limited ranges in effective temperatures, surface gravities and
surface metal abundances. Therefore, to avoid extrapolations we
prefer to adopt Eq. (15). In addition, the relation inferred by

6 The additional factor of two comes from the fact we assume here a
single-sided PSD while Baudin et al. (2005) assumed a double-sided
one.
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Appourchaux et al. (2014) was established on limited frequency
intervals. Since the mode line-widths scale as the inverse of the
mode inertia (Eq. (15)), this scaling relation allows us instead to
derive the frequency dependence of Γn,ℓ,m for the whole acoustic
spectrum of a given star.

Finally, the mode line-width at the peak frequency, Γmax,
is determined on the basis of the scaling relation derived by
Appourchaux et al. (2012) from main-sequence Kepler targets,
that is

Γmax = Γmax,0 + β

(

Teff

Teff,⊙

)s

, (17)

where Γmax,0 = 0.20 µHz, β = 0.97, and s = 13.0.

3.2. Red-giant stars

Each mode frequency νn,ℓ is computed according to the Univer-
sal Pattern proposed by Mosser et al. (2011)

νn,ℓ,m = n +
ℓ

2
+ ε(∆ν) − d0ℓ(∆ν) +

αℓ

2

(

n − νmax

∆ν

)2
∆ν

+ m δνrot + δn,ℓ, (18)

where ε is an offset, d0ℓ, the small separation, αℓ the curva-
ture, ∆ν the large separation, δνrot the rotational mode splitting
(included only for dipolar modes, as will be explained later on),
and finally δn,ℓ a term that accounts for a possible coupling with
the gravity modes, which results in the deviation of the mode fre-
quency from its uncoupled solution (“pure” acoustic mode) and
gives the mode its mixed-mode nature. For a dipole mode, δn,ℓ
is computed according to the asymptotic gravity-mode spacing
(Mosser et al. 2012b)

δn,ℓ =
∆ν

π
arctan

[

q tan π

(

1
∆Π1νn,ℓ

− ǫg
)]

, (19)

where q is the coupling coefficient, ∆Π1 the asymptotic period
spacing of the (pure) dipole gmodes, and ǫg an offset fixed to the
value 0.25, which is representative for most red giants (Mosser
et al. 2017). For radial modes, one obviously has δn,0 = 0, while
for all modes with angular degree ℓ ≥ 2 we neglect the deviation
and assume δn,ℓ = 0.

The mode height of each given mode (n, ℓ,m) is given by

Hn,ℓ = G(νn,ℓ) V2
ℓ Hmax, (20)

where G(νn,ℓ) is given by Eq. (15), Vℓ, is the mode visibility
determined from Mosser et al. (2012a) and Hmax is the maximum
of the mode heights derived from the scaling relation established
by de Assis Peralta et al. (2018), that is

Hmax = 2.01 × 107 ν−1.9
max . (21)

Concerning the mode linewidths Γn,ℓ, they are assumed to
be constant with frequency. This assumption is motivated by
the fact that modes are observed in a relatively small frequency
range compared to main-sequence and sub-giant stars. This con-
stant value is determined from the theoretical scaling relation of
Vrard et al. (2018), which depends on the effective temperature,
Teff , and stellar mass as follows

Γmax = Γmax,0

(

Teff

4800 K

)αT

, (22)

where Γmax,0 = 0.1 µHz and αT is a coefficient which depends
on the stellar mass range (see Vrard et al. 2018). The dipolar

mixed modes have, however, much smaller line-widths than their
associated “pure” acoustic modes. This is mainly because their
inertia is much larger as a consequence of the fact they behave
as gravity modes in the inner layers. Indeed, the mode line-width
scales as the inverse of the mode inertia (see, e.g., Belkacem
& Samadi 2013). Let Im

n,ℓ
(resp. Γ(m)

n,ℓ
) be the mode inertia (resp.

mode line-width) of a dipolar mixed-mode and I0
n,ℓ

(resp. Γ(0)
n,ℓ

)
that of a “pure” acoustic mode of the same radial order. We then
have

Γ
(m)
n,ℓ
= Γ

(0)
n,ℓ















I0
n,ℓ

Im
n,ℓ















, (23)

where according to our previous assumption Γ(0)
n,ℓ
= Γmax for any

couple (n, ℓ). In Eq. (23), it is assumed that radiative damping
in the radiative interior of red giants is negligible. The validity
of this assumption has been thoroughly investigated by Grosjean
et al. (2014).

To go further, we use the following relation from Goupil
et al. (2013):

I0
n,ℓ

Im
n,ℓ

≃ 1 − Icore

I
= 1 − ζ, (24)

where Icore is the contribution of the core to the mode inertia,
and ζ is calculated according to Eq. (4) in Gehan et al. (2018).
Finally, the rotational splitting for dipolar modes (the term δνrot
in Eq. (18)) is computed on the basis of Eq. (22) in Goupil et al.
(2013) by neglecting the surface rotation (see e.g. Mosser et al.
2015; Gehan et al. 2018). Accordingly, we have

δνrot =
ζ

2

(

Ωcore

2π

)

, (25)

where Ωcore is the core rotation rate (in rad/s).
The oscillation spectrum is then constructed by summing a

Lorentzian profile for each mode. We include modes with radial
orders ranging from n = 1 up to n = integer (νc/∆ν), where νc
is the cutoff-frequency (see Eq. (28)), and with angular degrees
from ℓ = 0 to ℓ = 3.

The simulator requires three main input parameters, νmax,
Teff and ∆ν, from which all the other parameters are established
using scaling relations, except ∆Π1 and q which can be provided
as optional inputs (otherwise no mixed modes are included). In
case ∆ν is not provided, it is computed according to the scaling
relation (Mosser et al. 2013)

∆ν = 0.274 ν0.757
max . (26)

The stellar mass used for the granulation scaling relations is
determined by combining the scaling relation for νmax and
∆ν (see Belkacem 2012; Mosser et al. 2010, and references
therein):

m = M⊙

(

νmax

νmax,⊙

)3 (

∆ν

∆ν⊙

)−4 (

Teff

Teff,⊙

)3/2

. (27)

Finally, the cutoff frequency νc is derived from the following
scaling relation:

νc = νc,⊙
g

g⊙

√

Teff,⊙
Teff
, (28)

where νc,⊙ = 5300 µHz.
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4. Instrumental errors

Our objective here is to quantify the instrumental sources of error,
namely the systematic error and the random noise, and to imple-
ment them into PSLS. For the former, a set of simulations at CCD
pixel level is carried out while for the random noise we rely on the
work made by Marchiori et al. (2019) as explained in Sect. 4.4.

4.1. The Plato instrument

PLATO is composed of 24 cameras (named normal cameras)
working at a cadence of 25 s and two cameras (named fast cam-
eras) working at a cadence of 2.5 s. Each group of cameras is
composed of six normal cameras that see half of the full field of
view (2200 square degrees). The fast cameras point towards the
centre of the field of view, and provide the platform with point-
ing errors for the Attitude Control System. Four Charge Coupled
Devices (CCDs) are mounted on the focal plane of each camera.
The pixels have a size of 18 µm and their projected size in the
sky represents approximately 15 arcsec.

Every three months, the platform is rotated by 90◦ in order
to maintain the solar panel in the direction of the Sun. Due to the
thermal distortion of the platform, changes in the pointing direc-
tion of each individual camera are expected during the uninter-
rupted three-month observation sequences. These variations will
lead to long-term star drifts on the focal plane of up to 0.8 pixels
in three months. Furthermore, because of the large field of view,
the kinematic aberration of light will induce drifts of the stellar
positions of up to 0.5 pixels in three months at the edge of the
field of view. Both effects add together and result in drifts of up
to 1.3 pixels in three months (in the worst case, at the edge of
field of view).

4.2. The Plato Image Simulator

To quantify the instrumental systematic errors, we generate time-
series of small imagettes with the Plato Image Simulator (PIS).
This simulator, developed at the LESIA-Observatoire de Paris
since the early phases of the PLATO project, has very simi-
lar capabilities as the PLATOSim code (Marcos-Arenal et al.
2014). PIS can simulate imagettes representative of PLATO
CCDs. It includes various sources of perturbations, such as shot-
noise (photon noise), readout noise, background signal, satel-
lite jitter, long-term drift, smearing, digital saturation, pixel
response non-uniformity (PRNU), intra pixel response non-
uniformity (IPRNU), charge diffusion, and charge transfer inef-
ficiency (CTI). Since our goal is to quantify systematic errors,
we turned off all random sources of noise in our instrumental
simulations, except in the calculation of the NSR, see Sect. 4.4;
these are the shot-noise, the readout-noise, and the satellite jit-
ter. CTI is simulated following Short et al. (2013) and activated
for end-of-life (EOL) simulations only. Charge diffusion within
the CCD pixels is not activated because we still lack a reliable
estimate of its amplitude (see the discussion in Sect. 7).

To take into account the impact of long-term drifts of the stel-
lar positions, simulations are generated over 90 days and include
a linear drift of 1.3 pixels in three months. To be more realistic,
the instrumental point spread functions (PSF) used during these
simulations include optical manufacturing errors and integration
and alignment tolerances to the nominal design for the nominal
focus position. These input PSFs do not include effects due to
the detector or the spacecraft (such as the satellite jitter). How-
ever, most of them (like PRNU, IPRNU, CTI, and satellite jitter)
are in any case included in PIS.

Table 1. Simulation parameters used with the PIS code.

Parameters Value

Reference flux at V = 11 BOL 2.17 × 105 e-/exp.
EOL 2.13 × 105 e-/exp.

Sky background 120 e-/s/pixels
PRNU 1.00%
IPRNU 0.50%

Integration time 21s
Readout time 4s

Gain 25 e-/ADU
Electronic offset 1000 ADU

Photon noise Disabled
Readout noise Disabled

e-Satellite jitter Disabled

4.3. Simulation parameters and data sets

The flux of each simulated star behaves differently according to
their magnitude, position over the CCD, and even position within
a pixel (hereafter named intra-pixel position). In order to cover
the largest combination of these factors, we use PIS to run 630
artificial star simulations using a combination of:

– 9 stellar magnitudes (from V = 9 to V = 13 with a step of
0.5),

– 14 focal plane positions over the focal plan (from 1.41◦ to
18.08◦ from the optical centre),

– 5 intra-pixel positions for each of the 14 focal plane posi-
tions.

The simulations are carried out using the parameters relevant for
BOL and EOL conditions. Thus, regarding EOL simulations, the
CTI is enabled and the mean optical transmission is assumed to
be lower than the BOL one. The CTI model used by PIS requires
specifying the number of trap species and their characteristics in
terms of density, release time, and cross sections. To this end,
Prod’homme et al. (2016) have studied CTI on a representative
PLATO CCD that has been irradiated on purpose. This study
allowed the authors to identify four trap species and to calibrate
their corresponding parameters. We used the parameters derived
by Prod’homme et al. (2016). However, the trap densities are re-
scaled so that the level of CTI reaches the mission specifications
at the EOL. The adopted values of the simulation parameters are
reported in Table 1.

4.4. Photometry extraction

Of the ∼120 000 targets observed by each camera during a given
pointing, about 14 000 of them will have their 6× 6 imagettes
downloaded on-ground at a cadence of 25 s. For these targets,
the photometry will be extracted on-ground on the basis of more
sophisticated methods, which are not yet fully established. The
photometry of the remaining targets will necessarily have to be
performed on-board.

Before computing the photometry, we start with a basic pre-
processing of the imagettes aiming to subtract the electronic off-
set and the background, convert ADU to electrons using the
gain, and finally subtract the smearing for each column of the
imagette.

Photometry extraction is performed on-board by integrat-
ing the stellar flux over a collection of pixels called the aper-
ture or the mask. Different strategies for determining the most
adequate aperture shape have been the subject of a detailed study
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rotation existing at the interface between the convective envelope
and the internal radiative zone is believed to be at the origin of
the stellar dynamo while convection is believed to be responsible
for the diffusion of the magnetic field in the convective zone (see
e.g. Montesinos et al. 2001, and references therein).

Finally, one other missing activity-related signal is the rota-
tional modulation due to the presence of rather large spots on
the stellar surface. It is hence planned to implement in the near
future some of the existing spot models (for a review on this
problem see Lanza 2016). However, one difficulty is to have at
our disposal representative prescriptions for the model param-
eters, for instance typically the number of spots, their sizes and
their lifetimes. To our knowledge, such prescriptions do not exist
yet. Therefore, as a starting point we plan to let the user chose
these parameters.

8. Conclusion

We have presented here a light-curve simulator, named the
PLATO Solar-like Light-curve Simulator (PSLS), that aims at
simulating, as realistically as possible, solar-like oscillations
together with other stellar signals (granulation, activity, plan-
etary transits) representative of stars showing such pulsations.
One of the specificities of this tool is its ability to account for
instrumental and observational sources of errors that are repre-
sentative of ESA’s PLATO mission. The latter were modelled on
the basis of the Plato Image Simulator (PIS), which simulates the
signal at the CCD pixel level. At the Beginning Of Life, we show
that the systematic errors are always compliant with the specifi-
cations, whereas at the End Of Life they marginally exceed the
specifications between 10 µHz and 100 µHz approximately (see
Fig. 6) as a result of Charge Transfer Inefficiency (CTI). How-
ever, some mitigation options for the CTI are currently under
study (e.g. charge injection, increasing the camera shielding).
Although the procedure is not yet fully established, existing cor-
rection algorithms can be implemented in the context of PLATO
(e.g. Short et al. 2013; Massey et al. 2014).

The PIS code is however not adapted to generating in a mas-
sive way simulated long-duration light-curves (e.g. up to two
years in the case of PLATO). This is why a parametric descrip-
tion of the systematic errors expected in the time domain has
been derived from the PIS simulations. This model reproduces
both the residual long-term flux variations due to the instrument
as well as the jumps induced by the mask-updates for those of the
targets (the large majority of the targets of sample P5) for which
photometry is extracted on-board. Implemented into PSLS, this
parametric model enables us to mimic in a realistic and effi-
cient way the instrument systematic errors representative of the
PLATO multi-telescope concept. Hence, with the inclusion of
stellar signal components that are the most representative for the
PLATO targets together with a realistic description of the instru-
ment response function, this light-curve simulator becomes an
indispensable tool for the preparation of the mission. Its adapta-
tion to other future space missions is in principle possible, pro-
vided that some analytical prescriptions for the instrumental and
environmental sources of errors representative of the mission are
available.

Light-curves simulated with PSLS allow us to conclude that
the systematic errors remain negligible above about 100 µHz and
only start to dominate over the stellar signal below ∼20 µHz.
Accordingly, they should not impact the core science objectives
of PLATO. One the other hand, they can potentially impact the
analysis of the signal below ν ∼ 20 µHz. In both cases, however,
firm conclusions deserve dedicated studies, which are beyond

the scope of the present work. It must further be made clear that
the level of systematic errors predicted by the present modelling
is, strictly speaking, only representative for those targets for
which the photometry is extracted on-board (i.e. the large major-
ity of the sample P5). For all the other samples, in particular the
main sample (P1), the photometry will be extracted on-ground
and thus will not suffer from the quasi-regular mask updates.
Therefore, a lower level of systematic errors are expected for
these samples. Accordingly, the use of PSLS must be considered
as a conservative approach for these samples.

This simulator is based on our current knowledge of the
instrument and of the current development of the correction
pipeline. Although already well advanced, this knowledge will
improve in the near future as soon as a first flight model of
the camera will be available and fully characterized (around the
beginning of 2021). At that time, it will be relatively easy to
update our pixel-level simulations and subsequently the param-
eters used by the model for the systematic errors as well as the
Noise-to-Signal Ratio (NSR) table.
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Appendix A: Configuration file for the main-sequence star KIC 12069449 (16 Cyg B)
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Appendix B: Configuration file for the red giant star KIC 9882316
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