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Abstract 

Uncertainties of soil properties are widely encountered in the field of geotechnical 

engineering especially for earth dams which are constructed with earthen materials. In 

recent years, there is an increasing need, motivated by the deficiencies of the traditional 

deterministic approach or guided by the national regulations such as in France, of 

accounting for these uncertainties for a safe assessment of large dams particularly in 

the framework of risk analysis studies. However, probabilistic analyses are still 

complex and not so easy to implement in practice due to the limited number of in-situ 

measurements, expensive computation efforts and lack of implementation of reliability 

methods in commercial simulation tools. Moreover, most of the previous studies are 

based on academic cases and hypothetic data.  

 

This work attempts to deal with the aforementioned issues by providing a probabilistic 

analysis study for the stability of a real earth dam using available field data. This study 

includes the following main elements: (1) definition of the soil variability by using the 

available measurements; (2) development of the deterministic models; (3-4) dam 

probabilistic analyses using the random-variables and random-fields approaches; (5) 

three-dimensional reliability analysis of the considered dam. Advanced reliability 

methods, such as the adaptive surrogate modelling, are introduced for the studied earth 

dam problem. This allows accurately estimating the dam failure probability and the 

safety factor statistics with a significantly reduced calculation time. In addition, some 

issues, that remain unknown or unclear in the field of the dam probabilistic analysis, 

are discussed (e.g. global sensitivity analysis of the soil hydraulic and shear strength 

parameters; performance survey of five reliability methods; modelling/comparison of 

three different kinds of random fields: generic (unconditional-stationary), conditional 

and nonstationary). The presented work, based on real measurements, could be a good 

supplement to the existing probabilistic studies of geo-structures. Readers will find 

useful information from the obtained results in order to better solve the practical 

geotechnical problems in a probabilistic framework. 

 

 

Key words: Earth dam; Slope stability; Reliability analysis; Sensitivity analysis; 

Random field; Polynomial Chaos Expansions 
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Résumé 

Compte tenu de la nature des sols, des incertitudes sur leurs propriétés sont largement 

rencontrées en géotechnique, en particulier dans le domaine des barrages en terre. 

Actuellement, il est de plus en plus nécessaire de tenir compte de ces incertitudes pour 

l'évaluation de la sécurité des grands barrages, notamment dans le cadre des études 

d’analyse de risques. Cependant, les analyses probabilistes sont complexes et difficiles 

à mettre en œuvre en raison du nombre limité de mesures, des temps de calcul 

importants et des limites des méthodes fiabilistes implémentées dans les outils de 

simulation commerciaux. De plus, la plupart des études précédentes sont basées sur des 

cas académiques et des données hypothétiques.  

 

Ce travail tente de résoudre les problèmes mentionnés ci-dessus en fournissant une 

étude d'analyse probabiliste pour la stabilité d'un barrage réel en terre en considérant 

les données in-situ disponibles. Cette étude inclut les éléments principaux suivants: (1) 

définition de la variabilité des sols en utilisant les mesures disponibles; (2) 

développement des modèles déterministes; (3-4) analyses probabilistes bu barrage en 

utilisant des approches en variables aléatoires et en champs aléatoires; (5) analyse 3D 

de la fiabilité du barrage considéré. Des méthodes fiabilistes avancées (par exemple le 

métamodèle adaptatif) sont introduites. Cela permet d'estimer précisément la 

probabilité de rupture du barrage et les valeurs statistiques des facteurs de sécurité avec 

un temps de calcul significativement réduit. En outre, certaines questions, qui restaient 

floues dans le domaine de l'analyse probabiliste des barrages, sont discutées (e.g. 

l’analyse de sensibilité globale des paramètres hydrauliques et géo-mécaniques des 

sols ; l’étude des performances de cinq méthodes de fiabilité ; la 

simulation/comparaison de trois types de champs aléatoires : générique, conditionnel et 

non-stationnaire). Le travail présenté, basé sur des données réelles, pourrait être un bon 

complément aux études probabilistes existantes des ouvrages géotechniques. Les 

lecteurs pourront également trouver des informations utiles à partir des résultats obtenus 

afin de mieux résoudre les problèmes pratiques de géo-ingénierie dans un cadre 

probabiliste. 

 

 

Mots clés : Barrage en terre ; Stabilité des pentes ; Analyse fiabilité ; Analyse 

sensibilité ; Champ aléatoire ; Chaos Polynomiaux 
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Nomenclature 

Abbreviations  

AbSPCE Adaptive Bootstrap SPCE 

CDF Cumulative Density Function 
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FDM Finite Difference Method 
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FORM First Order Reliability Method  

FOSM First Order Second Moment 

FoS Factor of Safety 
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LSS Limit State Surface 
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MPFP Most Probable Failure Point (in FORM) 

PDF Probability Density Function 

RF Random Field 
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(S)PCE (Sparse) Polynomial Chaos Expansions 

SRM Strength Reduction Method 
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SVM Support Vector Machine 

UNnon Unconditional Non-Stationary RFs 

UNsta Unconditional Stationary RFs 

  

  

  

  

Symbols 

⚫ Latin symbols 

 Α𝑀,𝑝,𝑞 Truncation set determined by 𝑀, 𝑝 and 𝑞 

 𝐵 (𝐵𝑃𝐶𝐸) Number of generated new 𝐸𝐷𝑠 in bootstrap-PCE 

 𝑐′ Cohesion 

 𝑓𝑗(𝒙) Joint probability density function 

 𝑔 Gravity acceleration 

 𝑔(𝒙) Performance function 

 𝐾𝑠 Hydraulic conductivity 

 𝑙𝑥 (𝑙𝑧) Horizontal (vertical) autocorrelation distance 

 𝑀 Number of input variables 

 𝑁𝑐𝑎𝑙𝑙 Number of calls to the deterministic model 

 𝑁𝐸𝐷 Size of 𝐸𝐷 

 𝑁𝑀𝐶 Number of model evaluations in MCS 

 𝑁𝑅𝑉 Number of RVs 

 𝑁𝑠𝑠 Number of model evaluations in each simulation level of SS 

 𝑝 Max degree in PCE 

 𝑷∗ Design point in FORM 

 𝑃𝑓 Failure probability 

 𝑃𝑓𝑑𝑖𝑟𝑒𝑐𝑡 
Failure probability of the dam under the considered seismic 

loading 

 𝑃𝑓𝑓𝑖𝑛𝑎𝑙 Failure probability of the dam over the return period 

 𝑃𝑆𝑆 Intermediate failure probability in SS 

 𝑞 q-norm in PCE 

 𝑄2 Accuracy indicator in PCE 

 𝑅2 Coefficient of determination in PCE 

𝑅𝑓 (𝑅𝑠) Failure (safe) domain 

 𝑟𝐾 Anisotropy coefficient of 𝐾𝑠 
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 𝑆𝐾𝐿 Size of truncated K-L expansion 

 𝒙(𝑖) 𝑖-th sample (size of 𝑀) in 𝒙 

 𝑥𝑖 𝑖-th variable 

 𝑉𝑎𝑟[∙] Variance 

⚫ Greek symbols 

 𝛽𝐶′,𝜙′ Correlation coefficient between 𝐶′ and 𝜙′ 

 𝛽𝐻𝐿 Hasofer-Lind reliability index 

 𝛾𝑑 Dry density 

 휀𝑃𝑓 Acceptance threshold in AbSPCE 

 𝜇 Mean 

 𝜌(𝒙, 𝒙,) Autocorrelation function 

 𝜎 Standard devaition 

 Ψ𝜶(𝝃) Multivariate polynomials in PCE 

⚫ Other symbols 

 𝔼[∙] Expectation 

 𝜙′ Friction angle 
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1.1 Background and motivation 

Dams, which can be defined as structures allowing a permanent or temporary storage 

of a volume of water, are widely used over the world as a response to the increasing 

need of development and management of water resources. They are constructed for 

single or multiple -purpose(s) including irrigation, hydropower, water supply, flood 

control, recreation, navigation, and tailing. According to the database of the 

International Commission Of Large Dams (ICOLD), around 58 000 large dams exist 

around the world (ICOLD, 2019). 65% of them can be classified into the category of 

earth dams which were built up by using earthen materials, while this proportion can 

raise up to 75% for embankment dams in which rock-filled dams are also considered.  

 

Safety assessment is crucial for dams since their failures would induce considerable 

damages for human beings and economics. Regarding earth dams, there are mainly 

three failure modes: two related to structural failures (piping and slope instability) and 

one due to the flood overtopping. Foster et al. (2000a) presented a statistical summary 

of the embankment-dam failures occurred before 1986. The authors pointed out that the 

piping is the major reason of structural failures for these dams. They also found that the 

zoning conditions have significant impacts on the frequency of piping failures. For 

example, there was no failure report of piping in the embankment dams which are 

equipped with a central core up to 1986 whereas 16 large homogeneous earth-filled 

dams have been damaged by this type of failure. Therefore, the piping is not necessary 

the primary concern for central core earth dams and the slope stability issue should also 

be carefully treated in designing or assessing this kind of dams. 

 

Earth dams usually involve a high degree of uncertainties, especially in their material 

properties since they are constituted by natural materials (compacted soils or rockfill), 

which makes their safety evaluation a difficult task. Properly considering soil 

variabilities and quantifying their effects on the dam behaviour are of great importance 
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for these structures. Traditionally, soil variabilities are taken into account by penalising 

the soil strength parameters with partial factors which are recommended by expert 

judgment or imposed by design codes, so that the designs or calculations are 

conservative. However, this approach may lead to unsafe designs if the variability is 

large as showed for the case of two slopes in Figure 1.1. Also, the designs, determined 

by partial factors, could be too conservative thus uneconomic in some cases. The 

probabilistic analysis is an effective solution which permits to better address the above-

mentioned issues by providing complementary results. It allows accounting for soil 

variabilities in a more rational way (statistical approach) and quantifying their effects 

on the dam safety condition by using a reliability method such as the Monte Carlo 

Simulation (MCS) and the First-Order-Reliability-Method (FORM). In addition to 

providing a single safety factor estimate (as in the traditional deterministic approach), 

the available results in a probabilistic analysis include also the failure probability (𝑃𝑓), 

design points and statistical moments (mean and variance) of safety factors. A 

sensitivity analysis can also be carried out in a probabilistic framework, so the 

sensitivity index of each input variable is available as well. Having more results, 

especially the ones (e.g. 𝑃𝑓  and variance) which can reflect the effects of input 

uncertainties, are beneficial for designers to better understand the functioning mode of 

the problems and make more rational decisions. Therefore, it is worthy to implement 

probabilistic analyses for the safety assessment of earth dams, in order to account for 

soil variabilities and provide complementary information. Figure 1.2 shows the 

complementary results that a probabilistic analysis can bring to a traditional 

deterministic analysis. 
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Figure 1.1 Limitation of using only the deterministic analysis evidenced by an example of two slopes (notes: 

FoS – factor of safety; PDF - probability density function) 

 

Figure 1.2 Contributions of a probabilistic approach to a deterministic analysis 

Additionally, probabilistic analyses are being introduced into national design 

regulations in recent years such as in France. The French national codes on the safety 

of hydraulic works were modified in 2015 and request the owners of large dams to 

produce safety analysis reports in which the risk assessment is performed with 

probabilistic approaches. This represents an increasing demand of probabilistic-based 

guidelines for the safety evaluation of dams. In literature, there are some studies about 
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the probabilistic analysis of earth dams for three issues: stochastic flows inside dams 

(Ahmed, 2009; Calamak et al., 2013, 2012; Cho, 2012; Fenton and Griffiths, 1997, 

1996), dam reliability regarding its slope stability (Babu and Srivastava, 2010; Calamak 

and Yanmaz, 2014; Chen and Chang, 2011; Ghanem et al., 2007; Gui et al., 2000; 

Preziosi, 2008) and dam failure probability due to internal erosion (Andreini et al., 2016; 

Foster et al., 2000b). Although previous studies permitted a better understanding of the 

soil uncertainties role on the dam reliability with respect to different failure modes, 

some common limitations can still be found (a review of these studies is presented in 

section 2.3): (1) most of the studies were based on simple homogeneous dams while the 

zoned dam with a clayed core was seldom considered; (2) almost all the studies worked 

on academic cases with hypothetical data, so the measurements collected during the site 

investigation, construction and monitoring phases were not explored; (3) the commonly 

used reliability methods in previous studies are MCS and FORM. There was no 

application of advanced methods (e.g. subset simulation and surrogate modelling) to 

earth dam problems; (4) for the spatial modelling of soil properties, only lognormal 

stationary random fields (RFs) were used. Other RF types, such as conditional and 

nonstationary ones, were not implemented in the dam probabilistic analysis; (5) almost 

all the studies were within a two-dimensional (2D) analysis. The three-dimensional (3D) 

geometry effects on the probabilistic estimates were investigated for slopes but not for 

dams; (6) there was no Global Sensitivity Analysis (GSA) in the previous studies. The 

contribution of the considered uncertainty input parameters to the dam reliability 

remains unknown. These limitations represent some improvement possibilities for this 

work and for future studies.  

 

In a probabilistic analysis, uncertainties of soil properties can be represented by random 

variables (RVs) or random fields (RFs). The former is simple and easy to couple with 

any deterministic model in practice. In this approach, the soil is assumed to be 

homogeneous but different values are generated in different simulations for one soil 
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property according to a given distribution. Therefore, the RV method cannot explicitly 

account for the soil spatial variabilities. On the contrary, the RF approach is able to 

model the spatial variation of soils. For a soil property in one simulation, one RF, 

meaning a collection of different values in a discretized grid, is generated according to 

the soil parameter statistics and a given autocorrelation structure. However, this 

approach is more complex and needs extra computational efforts (e.g. quantification of 

the autocorrelation distances and generation of RFs) compared to the RV one. Figure 

1.3 illustrates the principle idea of the two approaches. 

 

Figure 1.3 Comparison between the RV and RF approach used in a probabilistic analysis 

1.2 Objectives  

The previous section explains the importance of the safety assessment for earth dams, 

the necessity of using probabilistic analysis for these structures and the common 

limitations of the existing studies. Motivated by all these points, the present research 

work is established and is dedicated to probabilistically evaluating the stability 

condition of a real earth dam by using the available measurements and by implementing 

advanced probabilistic methods for soil spatial modelling (e.g. with conditional RFs) 

and for reliability analysis (e.g. metamodeling and GSA). The studied dam, located in 

the west of France, is a central core earth-filled dam. An advantage of this dam is that 

there are a large number of geo-localized measurements (density ones), which are 

beneficial for the statistical representation of soil variabilities. The present work can be 

regarded as an extension of the thesis of Mouyeaux (2017) which was based on the 
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same dam for the probabilistic analysis of pore water pressures and slope stability 

(using stationary RFs and classical reliability methods).  

 

The main objectives of this work can be summarized as follows: 

• Present a comprehensive probabilistic (including reliability and sensitivity) 

analysis, based on the exploitation of the available field data, of a central core 

earth dam by using both the RV and RF approaches and applying advanced 

reliability methods such as surrogate-enhanced MCS to dam problems.  

• Provide insights into some issues that remain unknown or unclear in the field of 

dam probabilistic analysis, and give recommendations for future related studies. 

The issues treated in this work include: (1) the comparison between different 

slope stability analysis methods in a probabilistic framework (using limit-

equilibrium method LEM and numerical methods such as finite element method 

FEM and finite difference method FDM); (2) the performance survey of 

different reliability methods for high dimensional stochastic problems; (3) the 

modelling of different RFs with a given set of data by using generic RFs 

(stationary and unconditional) as well as more complex RFs (conditional and 

non-stationary); (4) the investigation about the effect of the dam 3D geometry 

on the dam reliability. 

 

In operational terms, this work aims to evaluate the slope stability of the considered 

dam in a probabilistic manner under normal operation conditions and seismic loadings. 

The obtained results can be used as a part of the risk analysis report required by the 

national regulations. More generally, this work aims to provide recommendations for 

future studies on the probabilistic analysis of dams. 
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1.3 Layout of the thesis 

The thesis is organized as follows: 

• CHAPTER Ⅰ : this chapter gives a general introduction, in which the 

motivations, the objectives and the structure of the present work are presented. 

• CHAPTER Ⅱ: this chapter aims to provide two brief reviews on respectively 

two topics: the probabilistic analysis of earth dams and the reliability methods 

commonly used in the field of geo-structures. Additionally, the probabilistic 

analysis tools that are employed in this work or adapted to the dam problem are 

presented.  

• CHAPTER Ⅲ: in this chapter, the relevant measurements are statistically 

analyzed to model the soil variabilities by means of RVs and RFs. The 

development of three deterministic models is also presented. Particularly, a two-

stage optimization procedure based on the genetic algorithm is proposed to 

enhance the performance of one deterministic model which is based on the limit 

equilibrium method (Morgenstern-Price in this work).  

• CHAPTER Ⅳ: this chapter presents the probabilistic analysis results of the dam 

with the RV approach by considering two operation conditions (normal and 

seismic) for the dam and by using two slope stability analysis methods (LEM 

combined with the genetic algorithm and FDM-based strength reduction). The 

reliability analysis is performed by using the sparse Polynomial Chaos 

Expansion (PCE) -based MCS while the sensitivity indices are obtained with 

the PCE-based Sobol solution. Particularly, an active learning algorithm is 

proposed for the PCE-based sensitivity analysis and is applied to a 10-

dimension problem involving hydraulic and geo-mechanical parameters of the 

dam compacted fill.   

• CHAPTER Ⅴ : this chapter presents the dam probabilistic analysis results 

obtained in the context of the RF approach. The effect of the horizontal 

autocorrelation distance on the dam 𝑃𝑓 is investigated. Two complementary 
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studies are conducted: one compares the performance of five reliability methods 

for high dimensional problems related to the dam, another involves the 

modelling of different RFs with the available geo-localized data. 

• CHAPTER Ⅵ : the objective of this chapter is to incorporate the dam 3D 

geometry in the probabilistic analysis and to investigate its possible impacts on 

the dam reliability. Therefore, a 3D computational model is constructed and 

coupled with the probabilistic analysis. The obtained results are compared with 

those of 2D. Particularly, the effects of input correlation and of using coarse 

mesh for deterministic models are examined. 

• CHAPTER Ⅶ: this chapter presents the concluding remarks for the studied dam 

from a probabilistic analysis point of view, the recommendations for other 

related studies and the perspectives for possible future works. 

 

The partial contents presented in CHAPTERs Ⅲ - Ⅴ were published in two papers 

((Guo et al. 2018; Guo et al. 2019)), and there are also two papers under preparation: 

one about the modelling and comparison of different RFs while another relates to 

CHAPTER Ⅵ.  
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2 CHAPTER Ⅱ: Literature review about reliability 

analysis methods and probabilistic analysis of earth dams   
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There are two main objectives in this chapter: (1) provide a general review of reliability 

analysis methods commonly used in geotechnical engineering, including a detailed 

presentation of the probabilistic approaches employed in this work; (2) provide an 

overview of previous studies on the probabilistic analysis of earth dams.  

 

Firstly, nine reliability methods, including the classical First/Second - Order Reliability 

Method, the crude Monte Carlo Simulation and three surrogate modelling techniques, 

are briefly reviewed. Basic concepts and relevant references are given for each method. 

Then, some probabilistic approaches that are employed in this work are described in 

detail. This part covers the methods used for reliability analysis (PCE), global 

sensitivity analysis (Sobol index) and spatial modelling (different kinds of RFs). The 

Latin Hypercube Sampling, iso-probabilistic transformation and variogram analysis are 

also introduced in this part. In the end of this chapter, the previous probabilistic studies 

on earth dams are reviewed by dividing them into three groups which investigated the 

following issues: seepage, slope stability and internal erosion.  

2.1 A brief review of reliability analysis methods 

This section attempts to give a brief overview on the commonly used reliability methods. 

For the sake of clarity, the methods are classified into three categories: approximation 

methods, sampling methods and surrogate modelling methods. At the beginning, some 

basic concepts of reliability analysis are defined and explained. 

2.1.1 Some basic reliability concepts 

For a structure system in civil engineering, a failure occurs if one of the system 

responses (e.g. displacement or crack length) exceeds an allowable limit value. The 

failure can be induced by exceptional loadings such as seism and strong wind, or 

degradation of material strength. 
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Considering a system response that can be defined by a random vector (𝒙) composed 

of 𝑀 random variables (𝑥1, 𝑥2, … , 𝑥𝑀), there exists then two regions in the input space 

defined by the 𝒙: safe 𝑅𝑠 and failure 𝑅𝑓. The curve (𝑀=2), surface (𝑀=3) or hyperplane 

(𝑀>3) which describes the boundary between the two domains (𝑅𝑠 and 𝑅𝑓) is the Limit 

Sate Surface (LSS). It is then possible to construct a function (𝑔(𝒙)) which can give 

positive/negative estimates for the safe/failure domain (see Eq. (2-1)). Accordingly, the 

𝑔(𝒙) equals to 0 if the 𝒙 falls on the LSS. This function 𝑔(𝒙) is called as Performance 

Function or Limit Sate Function (LSF). 

 

𝑅𝑠: 𝑔(𝒙) > 0 (2-1) 

𝑅𝑓: 𝑔(𝒙) ≤ 0  

The system failure probability (𝑃𝑓) is defined as the probability of having a response 

falling into the failure domain. If the input random vector can be described by a joint 

probability density function (𝑓𝑗(𝒙)), the 𝑃𝑓 can be expressed as follows:  

 

𝑃𝑓 =  ∫ 𝑓𝑗(𝒙)𝑑𝒙
 

𝑅𝑓

 (2-2) 

In general, the LSF is implicit for real-world engineering problems, so it is impossible 

to directly determine the failure domain 𝑅𝑓 . As a result, various techniques were 

proposed to estimate the 𝑃𝑓 through an approximation way (e.g. FORM) or by largely 

sampling in the input space (e.g. MCS). Some commonly used techniques in the field 

of geotechnical reliability analysis will be presented later. 

 

Figure 2.1 visualizes the concepts given above within a 2D example. The bold black 

line in the  𝑥1 − 𝑥2 plane is the LSS which leads to 𝑔(𝒙) = 0. The ellipses represent 

the contours of the joint PDF 𝑓𝑗(𝒙) which are obtained by projecting the 𝑓𝑗(𝒙) on the 

plane. Under such a representation, the 𝑃𝑓 is indeed the volume underneath the joint 

PDF in the 𝑅𝑓 region. 
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Figure 2.1 Demonstration of the safe/failure region, LSS, joint PDF and 𝑷𝒇 (Chang, 2015) 

2.1.2 Approximation methods 

This class of reliability methods estimates the 𝑃𝑓 by approximating the LSS locally at 

a reference point with a linear or quadratic expansion. The reference point is also called 

as design point 𝑷∗ and is considered as the Most Probable Failure Point (MPFP). 

2.1.2.1 First-Order Reliability Method (FORM) 

In the FORM, the input random vector 𝒙 is firstly transformed to a standard normal 

vector 𝒖  using the iso-probabilistic transformation method (Bourinet, 2018). The 

design point 𝑷∗ is then defined as the point that is on the LSS and closest to the origin 

of the standard normal space. The norm of 𝑷∗ is known as the Hasofer-Lind reliability 

index 𝛽𝐻𝐿 (Hasofer and Lind, 1974) and is directly related to the failure probability 𝑃𝑓: 

 

𝑃𝑓 ≈  Φ𝑆𝑁(−𝛽𝐻𝐿) =  Φ𝑆𝑁(−‖𝑷∗‖) (2-3) 

where Φ𝑆𝑁 is the standard normal cumulative density function. The Eq. (2-3) is based 

on approximating the LSF by a hyperplane tangent to the LSS at 𝑷∗ and is under the 

assumption that the LSF is continuous, smooth and differentiable in the MPFP 
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neighborhood. Figure 2.2 illustrates the above-discussed terms related to the FORM in 

a standard normal space defined by two variables 𝑢1 and 𝑢2. The length 𝑂𝑃∗ is the 

Hasofer-Lind reliability index (termed as 𝛽 in Figure 2.2) while the vector 𝒂 shows the 

direction from the origin to the design point. Concerning the LSS, the 𝐺(𝒖) is the real 

one. The 𝐺1(𝒖) and 𝐺2(𝒖)  is respectively the approximation made by FORM and 

SORM which will be presented later.      

 

Figure 2.2 Approximation of the LSS by FORM and SORM (Bourinet, 2018) 

It can be seen that the main effort of FORM lies in searching the design point 𝑷∗ using 

a suitable optimization algorithm based on the following equation: 

 

There are several methods available in literature to solve the above optimization 

problem (Lemaire et al. 2010). Most of them are based on an iterative search procedure, 

and a search direction along with a step length should be determined for each iteration. 

The search direction is highly related to the gradient of the LSF and can be assessed by 

finite differences with choosing a suitable perturbation step which has a significant 

impact on the convergence rate of the optimization algorithms for solving Eq. (2-4). 

𝑷∗ =  argmin{‖𝒖‖, 𝐺(𝒖) ≤ 0} (2-4) 
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It is worth mentioning that the above-mentioned FORM is based on two assumptions: 

the MPFP is unique and the LSS is linear or weakly nonlinear. If one of the assumptions 

cannot be fulfilled, the result provided by the introduced FORM could be biased with 

noticeable errors. The first issue, which concerns the unique MPFP, can be improved 

by using the FORM developed by Kiureghian and Dakessianb (1998) in which several 

MPFPs could be considered. 

 

Besides, the squared values of the components in the 𝜶 vector are indicative for the 

relative importance of the corresponding random inputs in the standard normal space in 

the MPFP neighborhood. These 𝛼𝑖
2 values are known as Importance Factor of FORM 

and effective for independent RVs. For the cases with correlated RVs, further efforts 

are required to deduce the Important Factors that take into account the correlation 

structure (Bourinet, 2018). 

2.1.2.2 Second-Order Reliability Method (SORM) 

The SORM is a second-order refinement of the FORM solution. It approximates the 

LSS by a tangent hyper-paraboloid at the design point 𝑷∗ identified by FORM. The 

failure probability of the SORM can be regarded as a correction of the FORM result by 

considering the curvatures of the hyper-paraboloid.  

 

For small curvatures 𝑘𝑖 < 1, the failure probability 𝑃𝑓 can be estimated by the Breitung 

formula (Breitung, 1989): 

 

𝑃𝑓𝐵 = Φ𝑆𝑁(−𝛽𝐻𝐿) ∏(1 + 𝛽𝐻𝐿𝑘𝑖)
−0.5

𝑀−1

𝑖=1

 (2-5) 

where 𝑀 represents the number of input variables. A more accurate computation of 𝑃𝑓 

is given by the Hohenbichler formula (Hohenbichler et al., 1987): 
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𝑃𝑓𝐻 = Φ𝑆𝑁(−𝛽𝐻𝐿) ∏ (1 +
𝜑𝑆𝑁(𝛽𝐻𝐿)

Φ𝑆𝑁(−𝛽𝐻𝐿)
𝑘𝑖)

−0.5𝑀−1

𝑖=1

 (2-6) 

where 𝜑𝑆𝑁 is the standard Gaussian PDF. It is noted that the curvatures of the hyper-

paraboloid can be estimated by rotating the coordinates system such that one of its axes 

is the 𝜶 vector. For more details, readers can refer to Marelli et al. (2019). 

2.1.3 Sampling methods 

The common idea for this class of methods is to draw samples, randomly or intelligently, 

from the joint PDF, and then to find a 𝑃𝑓 estimate according to the corresponding 

system responses in the outcome space. Four sampling-based methods, which are 

commonly used in the field of geotechnical reliability analysis, are presented in the 

subsequent sections. 

2.1.3.1 Monte Carlo Simulation (MCS) 

The MCS is an universal method to evaluate the complex integrals such as in Eq. (2-2) 

(Sudret, 2007). It offers a robust and simple way to estimate the distribution of a system 

response and then assess the associated 𝑃𝑓 . By introducing an indicator function 

𝐼𝑀𝐶(𝒙)  of the failure domain (i.e. 𝐼𝑀𝐶(𝒙)=1 if 𝒙  is located in 𝑅𝑓  and 𝐼𝑀𝐶(𝒙)=0 

otherwise), the 𝑃𝑓 defined in Eq. (2-2) can be rewritten as: 

 

𝑃𝑓 =  ∫ 𝑓𝑗(𝒙)𝑑𝒙
 

𝑅𝑓

= ∫ 𝐼𝑀𝐶(𝒙) ∙ 𝑓𝑗(𝒙)𝑑𝒙 =  𝔼[𝐼𝑀𝐶(𝒙)] (2-7) 

where 𝔼[∙]  represents the mathematical expectation. Practically, Eq. (2-7) can be 

approximated by the empirical mean of a large number 𝐼𝑀𝐶(𝒙) values. For a crude MCS 

with sampling 𝑁𝑀𝐶 vectors on 𝒙, the 𝑃𝑓 is given by: 

 

𝑃𝑓 ≈  
1

𝑁𝑀𝐶
 ∙  ∑ 𝐼𝑀𝐶(𝒙(𝒊))

𝑁𝑀𝐶

𝑖=1

 (2-8) 
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The number of 𝑁𝑀𝐶 should be large enough in order to obtain an accurate estimate for 

the 𝑃𝑓. The coefficient of variation (CoV) of the MCS 𝑃𝑓 estimate is given as (Phoon, 

2008): 

 

𝐶𝑜𝑉𝑃𝑓 = √(1 − 𝑃𝑓)/(𝑁𝑀𝐶 ∙ 𝑃𝑓) ∙  100% (2-9) 

It is important to mention that the 𝐶𝑜𝑉𝑃𝑓  is independent of the problem dimension 

(Bourinet, 2018). This independence is a key advantage of the MCS over other 

reliability methods such as the surrogate modelling. Additionally, the MCS works 

regardless of the LSF complexity, which is also an advantage over the FORM/SORM. 

However, a crude MCS suffers from a low computational efficiency. According to Eq. 

(2-9), around 100
𝑃𝑓⁄  model evaluations are required if the target 𝐶𝑜𝑉𝑃𝑓 is 10%.  

 

The MCS can also be combined with the finite element method and random fields to 

assess the statistics of a model response or the 𝑃𝑓 of a structure in consideration of the 

spatially varying properties. In such a specific situation, the method is called ‘random 

finite element method’ (Fenton and Griffiths, 1993; Griffiths and Fenton, 1993; Li et 

al., 2016). 

2.1.3.2 Importance Sampling (IS) 

IS is a powerful tool to reduce the variance of the MCS estimator in problems involving 

small failure probabilities. The main idea is to replace the original joint PDF by a new 

one in order to populate the failure domain more frequently.  

 

In the context of IS, Eq. (2-7) can be written in a different manner by introducing a 

conveniently chosen distribution 𝐻𝐼𝑆(𝒙) (called as IS PDF):  

 

𝑃𝑓 =  ∫ 𝐼𝑀𝐶(𝒙) ∙ 𝑓𝑗(𝒙)𝑑𝒙 =  ∫ 𝐼𝑀𝐶(𝒙) ∙
𝑓𝑗(𝒙)

𝐻𝐼𝑆(𝒙)
∙ 𝐻𝐼𝑆(𝒙)𝑑𝒙 (2-10) 
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The accuracy of the IS-based 𝑃𝑓 estimate (𝑃𝑓𝐼𝑆) is dependent on the choice of the 

𝐻𝐼𝑆(𝒙). It exists an optimal choice for the IS PDF, which can lead to the minimum of 

the 𝑃𝑓𝐼𝑆 variance. A first solution of finding the optimal 𝐻𝐼𝑆(𝒙) is to minimize the 𝑃𝑓𝐼𝑆 

variance, which involves an optimization procedure. It can also be achieved by 

adaptively adjusting the IS PDF with wisely-selected samples, such as in the algorithm 

of Morio (2012). Alternatively, a near-optimal 𝐻𝐼𝑆(𝒙) can be found through application 

of the cross-entropy method (Geyer et al. 2019). For more details about the selection of 

the 𝐻𝐼𝑆(𝒙), readers are invited to refer to Kroese et al. (2011). 

 

In the field of structural reliability, the most common and simple solution to perform 

the IS is to define a 𝐻𝐼𝑆(𝒙) with the help of the design point 𝑷∗ that is determined in 

the FORM. The related 𝐻𝐼𝑆(𝒙) reads as: 

 

𝐻𝐼𝑆(𝒙) =  𝑓𝑗(𝒙 − 𝑿𝑷
∗) (2-11) 

where 𝑿𝑷
∗ is the point obtained by transforming back the design point 𝑷∗ to the original 

input space. Indeed, this IS PDF is similar to the original joint PDF 𝑓𝑗(𝒙) but with the 

mean replaced by the point 𝑿𝑷
∗. 

2.1.3.3 Subset Simulation (SS) 

The SS, also known as adaptive multilevel splitting, consists in solving a series of 

simpler reliability problems with intermediate failure thresholds (Au and Beck, 2001) 

in order to estimate the probability of a rare event. The considered failure event 𝐸𝑆𝑆 is 

decomposed into a sequence of intermediate events [𝐸𝑆𝑆_1, 𝐸𝑆𝑆_2, … , 𝐸𝑆𝑆_𝑚], each of 

which is associated with a larger probability of occurrence, and therefore easier to 

estimate than the original 𝑃𝑓. The estimation of the final 𝑃𝑓 in the SS can be written as 

(Li and Cao, 2016): 
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𝑃𝑓 = 𝑃(𝐸𝑆𝑆) = 𝑃(𝐸𝑆𝑆_1)∏𝑃(𝐸𝑆𝑆_𝑖|𝐸𝑆𝑆_𝑖−1)

𝑚

𝑖=2

 (2-12) 

where 𝑃(𝐸𝑆𝑆_𝑖|𝐸𝑆𝑆_𝑖−1) is the conditional 𝑃𝑓 of the event 𝐸𝑆𝑆_𝑖|𝐸𝑆𝑆_𝑖−1. Given an initial 

threshold, 𝑃(𝐸𝑆𝑆_1) can be easily estimated from a crude MCS with 𝑁𝑠𝑠 samples. The 

remaining conditional probabilities can be estimated similarly, but the generated 

samples should be within the associated intermediate event. The latter can be 

accomplished by using the modified Metropolis-Hastings Markov Chain Monte Carlo 

sampling (MCMC) (Au and Beck, 2001; Papaioannou et al., 2015). In practice, the 

intermediate failure thresholds are selected so that the conditional failure probabilities 

are equal to 𝑃𝑆𝑆 which is suggested to be chosen in the range [0.1, 0.3] (Zuev et al., 

2012). 

 

As a summary and illustration, Figure 2.3 plots the distribution of the samples generated 

by the three sampling methods (MCS, IS and SS) for the ‘R-S’ problem that treated in 

Marelli et al. (2019). The MCS samples are centered on the mean point and show a 

great population (i.e. a large number of model evaluations). In the IS, the 𝐻𝐼𝑆(𝒙) is 

defined as Eq. (2-11). As a result, the IS samples are located around the point 𝑿𝑷
∗. The 

SS samples show clear a 3-level searching process. The first level is indeed a small 

MCS as shown by the blue samples. 
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Figure 2.3 Distribution of the samples generated by three reliability methods for a ‘R-S’ problem 

2.1.3.4 Moment methods (MM) 

The MM uses the statistical moments of a RV to approximate its distribution (Zhao and 

Ono, 2001). Once the distribution is determined, the reliability index and failure 

probability can be obtained easily by assuming a threshold value. A well-known MM 

is the second moment approximation (abbreviated as MM-2). It assumes that the 

random model response follows a normal distribution and uses the first two moments 

to estimate the reliability index which reads as (Babu et al. 2007): 

 

𝛽𝑀𝑀−2 = 
𝜇𝑃𝐹

𝜎𝑃𝐹
  (2-13) 

where 𝛽𝑀𝑀−2  is the reliability index estimated by the MM-2, 𝜇𝑃𝐹  and 𝜎𝑃𝐹  is 

respectively the mean and the standard deviation of the 𝑔(𝒙) values.  

 

In this work, a fourth moment approximation (noted as MM-4) is also used to perform 

the reliability analysis since it can give more accurate results compared to the MM-2 

(Napa-García et al. 2017). The adopted MM-4 is given as follows (Zhao and Ono, 2001): 
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𝛽𝑀𝑀−4 = 
3(𝛼4𝐺 − 1)𝛽𝑀𝑀−2 + 𝛼3𝐺(𝛽𝑀𝑀−2

2 − 1)

√(9𝛼4𝐺 − 5𝛼3𝐺
2 − 9)(𝛼4𝐺 − 1)

 (2-14) 

where 𝛽𝑀𝑀−4  is the reliability index estimated by the MM-4, 𝛼3𝐺  and 𝛼4𝐺  are 

respectively the third and fourth central moment of the 𝑔(𝒙) values. Eq. (2-14) is 

obtained by relating the standardized variable of 𝑔(𝒙) with the standard normal random 

variable 𝑅𝑉𝑠 through Eq. (2-15) in the context of high-order moment standardization 

method (Zhao and Ono, 2001). 

 

𝑅𝑉𝑠 =  
𝛼3𝐺 + 3(𝛼4𝐺 − 1)𝑔𝑠(𝒙) − 𝛼3𝐺(𝑔𝑠(𝒙))2

√(5𝛼3𝐺
2 − 9𝛼4𝐺 + 9)(1 − 𝛼4𝐺)

 (2-15) 

where 𝑔𝑠(𝒙)  is the standardized variable of 𝑔(𝒙 ) and is expressed as 𝑔𝑠(𝒙) =

(𝑔(𝒙) − 𝜇𝑃𝐹) 𝜎𝑃𝐹⁄ . Once the reliability index is obtained, the associated 𝑃𝑓 can be 

estimated by Eq. (2-3). The required statistical moments (𝛼𝑖𝐺 , 𝑖 = 1,2,3,4) in the MM-

2 and MM-4 can be determined by a crude MCS which involves repeatedly running the 

deterministic model for different sets of input parameters until all the desired moments 

are converged. Alternatively, improved sampling techniques (Napa-García et al., 2017) 

can be used which focus on estimating the statistical moments in the outcome space by 

intelligently sampling in the input space. Also, the First-order second-moment (FOSM) 

(Dolinski, 1982) provides a solution to estimate the first two moments of a model 

response with a limited number of  model evaluations. 

2.1.4 Surrogate modelling techniques 

The principle of a surrogate-based reliability analysis is to firstly construct a surrogate 

model (also known as meta-model) with limited calls to the deterministic model, and 

then to perform a crude MCS (Guo and Dias, 2020) or any other sampling methods 

(Huang et al. 2016) on the obtained meta-model. The main objective is to reduce the 

total computational time of a reliability analysis especially for the cases with costly-to-

evaluate models or small failure probability. There are several mathematical tools 
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which are able to build such approximation models with a given set of samples. For 

structural reliability analysis, the most common methods are based on the three 

following techniques (Hu and Mahadevan, 2016): the Kriging, the Polynomial Chaos 

Expansion and the Support Vector Machine. These three surrogate modelling 

techniques are briefly presented in the following sections. Besides, the active learning 

process which can further enhance the performance of these techniques in estimating 

𝑃𝑓 is introduced and commented. In addition to these three techniques, the quadratic 

polynomial-based Response Surface Methodology (RSM) (Mollon et al. 2009) and the 

Artificial Neural Network (ANN) (Cho, 2009) can also provide approximations to the 

LSF of a computational model. However, the RSM requires defining the polynomial 

forms a priori, and the ANN usually relies on a large size of training samples. Therefore, 

they are not presented in this work. 

2.1.4.1 Kriging 

The Kriging model is based on the assumption that the performance function 𝑔(𝒙) is a 

realization of a Gaussian Process (GP). It predicts the value of 𝑔(𝒙) at unknown points 

by a combination of 𝑔(𝒙) at known points with a random function, which includes a 

regression part and a stochastic process as follows (Echard et al. 2011): 

 

𝑔(𝒙) = 𝒇𝒓(𝒙)𝑻𝜷𝑨𝑲 +  𝜖 (𝒙) (2-16) 

where 𝜷𝑨𝑲  is a vector of unknown coefficients, 𝒇𝒓(𝒙)  is a vector of regression 

functions, 𝒇𝒓(𝒙)𝑻𝜷𝑨𝑲  is the trend of prediction or mean of the GP, and 𝜖 (𝒙)  is 

assumed to be a GP with zero mean and covariance 𝐶𝑜𝑣[𝜖(𝒙(𝑖)), 𝜖(𝒙(𝑗))]: 

 

𝐶𝑜𝑣[𝜖(𝒙(𝑖)), 𝜖(𝒙(𝑗))] = 𝜎𝜖
2𝑅(𝒙(𝑖) − 𝒙(𝑗), 𝜽𝑲) (2-17) 

where 𝜎𝜖
2 is the constant variance of the GP, 𝜽𝑲 is a vector of unknown parameters, and 

𝑅(. , . )  is the correlation function which describes the spatial correlation between 

observations and new points. A valid correlation function needs to satisfy two 
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conditions, saying that the 𝑅(. , . )  should be symmetric and positive semi-definite. 

There are many functions which have been proven effective for these two conditions 

such as the constant, Gaussian and Matérn functions (Lataniotis et al. 2018). 

 

For the construction of a Kriging surrogate model, a set of experimental design (𝐸𝐷) 

should be provided for the estimation of the hyper-parameters which can be achieved 

by an optimization procedure (e.g. Genetic algorithm) performed on the cross-

validation error (Lataniotis et al., 2018). The term 𝐸𝐷  refers to a number of input 

samples and their corresponding model responses, which are used to determine a 

surrogate model in the field of metamodeling. 

2.1.4.2 Support Vector Machine (SVM) 

The SVMs are a class of learning techniques which are able to classify the random 

model responses into a desired number of classes. Particularly, the binary classification 

is of great interest for reliability analyses since it may label safety and failure domains 

(Bourinet, 2018). Let us consider firstly the case where the data are linearly separable 

in the original space of the input random variables. An infinite number of hyperplanes 

that separate the data may be identified. Considering a possible hyperplane (the SVM 

decision function) (Pan and Dias, 2017a): 

 

𝑓𝑠𝑣𝑚(𝒙) =  𝝎𝑻𝒙 + 𝑏 = 0 (2-18) 

where 𝝎  is perpendicular to the hyperplane and 𝑏  is a scalar factor. The optimal 

hyperplane is the one that has the largest distance to the nearest training samples 

(maximum margin). The margin can be calculated by 2 ‖𝝎‖⁄  (Bourinet, 2018). Then, 

it consists in maximizing the margin which in turn equivalent to the following equation: 

 

min
𝝎

  0.5‖𝝎‖2 (2-19) 
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Subject to: 𝑦𝑖 (𝝎
𝑻𝒙(𝑖) + 𝑏) − 1 ≥ 0 , 𝑖 =  {1,2, …𝑁𝐸𝐷} 

where 𝑁𝐸𝐷  is the number of training samples (i.e. size of the 𝐸𝐷) and 𝑦𝑖 = {−1,1} 

indicates the class of each training point. The optimization constraint of Eq. (2-19) 

ensures that there is no training sample existing inside the margin. For data which are 

non-linearly separable, the solution is to map them into a higher dimensional space (also 

known as feature space). The optimal separating hyperplane can then be determined in 

this space. This operation is carried out through a kernel function which is constructed 

under some rules so as to guarantee the existence of an underlying mapping (Moustapha 

et al., 2018).  

 

The SVM was firstly introduced in the context of the binary classification as discussed 

above. It was later extended to regression by using the 𝜖 -insentitive loss function 

(Vapnik et al. 1997). Readers can refer to Bourinet (2018) for more details about the 

SVM used in regression. 

2.1.4.3 Polynomial Chaos Expansions (PCE) 

In PCE, the meta-model is built by expanding the system response on a suitable basis 

which is a series of multivariate polynomials. By definition, a model response, having 

a finite variance, can be expanded as follows (Blatman and Sudret, 2010): 

 

𝑌 ≅ ∑ 𝒌𝜶Ψ𝛼(𝝃)

𝛼∈ℕ𝑀

 (2-20) 

where 𝝃 =  {𝜉1, 𝜉2, … , 𝜉𝑀} are independent RVs, Ψ𝜶(𝝃) are multivariate polynomials, 

𝒌𝜶  are unknown coefficients to be computed and 𝜶 = {𝛼1, … , 𝛼𝑀}  is a 

multidimensional index. The multivariate polynomial Ψ𝜶(𝝃) is the tensor product of 

univariate orthonormal polynomials 𝜓𝛼𝑖
(𝜉𝑖) . There are several families for the 

orthogonal univariate polynomials such as the Legendre polynomials and the Hermite 

polynomials (Sudret, 2014). 
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In practice, the representation of Eq. (2-20) needs to be truncated to a finite number of 

terms. The standard truncation scheme consists in selecting all the multivariate 

polynomials whose total degree |𝜶| are less than a given 𝑝. The related formula reads 

as: 

 

Once the truncated basis is selected, the coefficients {𝒌𝜶}𝜶∈𝐴𝑀,𝑝  shall be computed 

using the Least Angle Regression (LAR) method introduced in Blatman and Sudret 

(2011). The accuracy of the PCE can be estimated by the empirical mean-square 

residual error and the leave-one-out error 휀𝐿𝑂𝑂 (Blatman and Sudret, 2011). 

2.1.4.4 Adaptive algorithms for surrogate modelling 

It is found that constructing a surrogate model with only one set of 𝐸𝐷 is not enough in 

the sense that the region of interest is difficult to be covered except if a big sample size 

is given to the 𝐸𝐷. Such a region refers to the vicinity of the LSS in a reliability analysis 

and usually corresponds to a low probability. In light of this, the idea of building a 

surrogate model by gradually enriching an initial 𝐸𝐷 was come out. In the past decade, 

various algorithms were developed under this idea to enhance the efficiency and 

accuracy of surrogate-based reliability analysis. Examples can be found in Echard et al. 

(2011), Marelli and Sudret (2018) and Pan and Dias (2017a) for respectively the 

Kriging, PCE and SVM. 

 

All the developed algorithms share a same procedure in principle and can be illustrated 

by Figure 2.4. There are two important elements for an adaptive surrogate-based 

reliability analysis: learning function and stopping condition. The former consists in 

finding the next sample to be added in the current 𝐸𝐷 so that the meta-model can be 

improved in estimating the 𝑃𝑓. The latter is used to stop the 𝐸𝐷 enrichment process 

when the current surrogate model is accurate enough. 

Α𝑀,𝑝 = {𝜶 ∈ ℕ𝑀 ∶  |𝜶| = ∑ 𝛼𝑖  < 𝑝
𝑀

𝑖=1
} (2-21) 
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Figure 2.4 Flowchart of an adaptive surrogate modeling combined with MCS for reliability analysis 

2.2 Detailed presentation of the methods employed in this work 

This section aims to present in detail the probabilistic methods employed in this thesis. 

It starts with the PCE which is used, in different forms, throughout the work for the 

dam reliability analysis. Then, the Sobol-based Global Sensitivity Analysis (GSA) is 

introduced, which is utilized to identify the input parameters having a significant impact 

on the variance of the dam safety factor (FoS) values. It is followed by the RF 

generation methods. Three techniques are presented for three kinds of RFs which will 

be used in CHAPTER Ⅴ. At the end, other techniques, including the iso-probabilistic 

transformation, the Latin Hypercube Sampling and the variogram analysis, that also 

contribute to the present work, are presented and discussed. 

2.2.1 PCE, SPCE and adaptive SPCE 

2.2.1.1 Basic concepts of the PCE 

As presented before, the PCE approximates a model response by means of a series of 

multivariate polynomials Ψ𝜶(𝝃) which are orthonormal with each other so that they can 

form a basis in the Hilbert space (Sudret, 2014). The random response can be 

completely determined by its coordinates (i.e. 𝒌𝜶 in Eq. (2-20)) in this basis. The Ψ𝜶(𝝃) 
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is formed by univariate orthonormal polynomials 𝜓𝛼𝑖
(𝜉𝑖). Table 2.1 gives a summary 

of the common 𝜓𝛼𝑖
(𝜉𝑖) families and their associated distribution type for the input RVs. 

Concerning the truncation scheme on the PCE terms, the standard method shown in Eq. 

(2-21) is inefficient especially for high dimensional problems. In order to tackle this 

problem, another technique, called as the hyperbolic truncation scheme, was proposed 

by Blatman and Sudret (2011). It defines a so-called q-quasi-norm and requires the 

norm to be smaller than the maximum degree 𝑝. The corresponding truncated PCE set 

reads as: 

 

Α𝑀,𝑝,𝑞 = {𝜶 ∈ ℕ𝑀 ∶  |𝜶|𝑞 = (∑ 𝑎𝑖
𝑞

𝑀

𝑖=1
)

1
𝑞

 < 𝑝}  ( 0 < 𝑞 < 1) (2-22) 

The case 𝑞 = 1 corresponds to the standard truncation set Α𝑀,𝑝 of Eq. (2-21). As shown 

in Blatman and Sudret (2011), the size of the hyperbolic truncation set Α𝑀,𝑝,𝑞 may be 

smaller by 2-3 orders of magnitude than the one of the standard truncation scheme. 

 

The unknown coefficients {𝒌𝜶}𝜶∈𝐴𝑀,𝑝,𝑞 can be computed using a regression approach. 

Based on the least-square regression method, the unknown coefficients can be given by 

(Blatman and Sudret, 2010): 

 

�̂� =  (Φ𝑇Φ)−1Φ𝑇�̂� (2-23) 

where �̂� represents the column vector of the unknown coefficients {𝑘1, … , 𝑘𝐿}
𝑇, �̂� is 

the model evaluations of the input random vectors  {𝒙(1), … , 𝒙(𝑁𝐸𝐷)} in the 𝐸𝐷, and Φ 

is a PCE-independent data matrix of dimension 𝑁𝐸𝐷 × 𝐿. It is defined by (Blatman 

and Sudret, 2010): 

 

Φ𝑖𝑗 = (Ψ𝛼𝑗
(𝒙(𝑖)))

𝑖=1,…,𝑁𝐸𝐷
𝑗=0,…,𝐿−1

 (2-24) 
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The accuracy of the truncated PCE can be assessed by computing the coefficient of 

determination 𝑅2 and the 𝑄2 indicator. The former is related to the empirical error 𝐸𝑟𝑟𝑒 

using the model responses already existing in the 𝐸𝐷, and can be expressed as: 

 

𝑅2 = 1 − 
𝐸𝑟𝑟𝑒

𝑉𝑎𝑟[�̂�]
 (2-25) 

where 𝑉𝑎𝑟[�̂�] is the variance of the full model responses in the 𝐸𝐷. The 𝑄2 is obtained 

with the leave-one-out (LOO) cross-validation technique. The idea consists in using 

each sample in the 𝐸𝐷 as a single validation point for the meta-model constructed with 

the remaining 𝑁𝐸𝐷 − 1 samples. Computation of the 𝑄2 is given as follows: 

 

𝑄2 = 1 − 

1
𝑁𝐸𝐷

∑ [�̂�(𝑖) − 𝑀𝑃𝐶𝐸∖𝑖(𝒙(𝑖))]
2𝑁𝐸𝐷

𝑖=1

𝑉𝑎𝑟[�̂�]
 (2-26) 

where 𝑀𝑃𝐶𝐸∖𝑖(𝒙(𝑖)) represents the prediction at the sample 𝒙(𝑖) made by the PCE which 

is built by the 𝐸𝐷  excluding the 𝒙(𝑖) . For efficient solutions of estimating the 𝑄2 , 

readers can refer to Blatman (2009). 

Table 2.1 Classical families of univariate orthogonal polynomials (Sudret, 2014)   

RV distribution Orthogonal polynomials Hibertian basis 

Uniform Legendre 𝑃𝑘(𝑥) 
𝑃𝑘(𝑥)

√ 1
2𝑘 + 1

⁄
 

Gaussian Hermite 𝐻𝑒𝑘
(𝑥) 

𝐻𝑒𝑘
(𝑥)

√𝑘!
⁄  

Gamma Laguerre 𝐿𝑘
𝑎(𝑥) 

𝐿𝑘
𝑎(𝑥)

√Γ(𝑘 + 𝑎 + 1)
𝑘!

⁄
 

Beta Jacobi 𝐽𝑘
𝑎,𝑏(𝑥) 

𝐽𝑘
𝑎,𝑏(𝑥)

ℑ𝑎,𝑏,𝑘
⁄  

2.2.1.2 Sparse PCE 

The Sparse PCE (SPCE) is an extension of the PCE methodology. It was proposed by 

Blatman and Sudret (2008, 2010, 2011) for the purpose of further reducing the number 

of the involved Ψ𝜶(𝝃)  after the truncation operation when dealing with a high 
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dimensional stochastic problem. The idea came from the fact that the non-zero 

coefficients in the PCE form a sparse subset of the truncation set obtained by the 

hyperbolic truncation scheme (Sudret, 2014). Thus, it consists in building a suitable 

sparse basis instead of computing useless terms in the expansions that are eventually 

negligible. Figure 2.5 shows an example of the PCE coefficients in the truncated set 

Α𝑀,𝑝 with a max degree of 14 for the Ishigami problem (Marelli and Sudret, 2019). 

Clearly, a large number of coefficients are negligible since their ratios to the mean are 

rather small (<10-14). The significant coefficients (e.g. ratio>10-8) form indeed a sparse 

basis of the Α𝑀,𝑝. 

 

Figure 2.5 PCE coefficients in 𝚨𝑴,𝒑 with a max degree of 14 for Ishigami problem (Marelli and Sudret, 2019) 

The procedure for building a SPCE proposed by Blatman and Sudret (2010) is based 

on an iterative procedure to reach a minimal number of unknown coefficients. This 

procedure is described in Table 2.2. For other approaches of determining a sparse subset 

of PCE, readers can refer to (Papaioannou et al. 2019; Tipireddy and Ghanem 2014; 

Tsilifis et al. 2020). 
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Table 2.2 The procedure of obtaining a sparse representation of the PCE 

Step Description 

1 Select an initial experimental design 𝜒 and collect the model evaluations �̂� by performing the 

deterministic model at each sampling point. 

2 Prescribe a target accuracy 𝑄𝑡𝑔
2 , the maximal PCE degree 𝑃𝑚𝑎𝑥  and the cut-off values 휀1, 휀2. 

3 For any 𝑝 ∈  {1, … , 𝑝𝑚𝑎𝑥}: 

 3-1 

Forward step: compute the increase in the determination coefficient 𝑅2  by adding each 

candidate Ψ𝜶(𝝃) from a PCE basis set (Α𝑀,𝑝 or Α𝑀,𝑝,𝑞). Retain eventually those candidate 

terms that lead to a significant increase in 𝑅2 , i.e. greater than 휀1. Let 𝐴𝑝,+  be the final 

truncation set at this stage. 

 3-2 

Backward step: compute the decrease in 𝑅2 by removing each candidate term in 𝐴𝑝,+ of 

degree not greater than 𝑝 . Discard eventually from 𝐴𝑝,+  those terms that lead to an 

insignificant decrease in 𝑅2, i.e. less than 휀2. Let 𝐴𝑝 be the final truncation set. 

 3-3 If 𝑄𝐴𝑝
2 ≥ 𝑄𝑡𝑔

2 , stop 

2.2.1.3 The adaptive SPCE for reliability analysis 

The accuracy indicators 𝑅2 and 𝑄2 mentioned above can be used to measure the global 

behavior of the obtained PCE model. However, it lacks a local error estimate which can 

provide statistics (e.g. variability or confidence bounds) for each PCE predictions. 

Kriging-based methods can rely on the Kriging variance for this task, but PCEs do not 

provide a natural equivalent (Marelli and Sudret, 2018). To address this issue, the 

bootstrap resampling technique was implemented into the PCE by Marelli and Sudret 

(2018) to derive a local error estimator. The rationale can be briefly presented as follows. 

 

Firstly, a reference experimental design is generated from the input space. It includes 

𝑁𝐸𝐷  vectors of 𝒙 and is noted as 𝐸𝐷(𝑟𝑒𝑓) . The corresponding model responses are 

evaluated by a computational model and are represented by a vector of �̂�. Secondly, 𝐵 

new 𝐸𝐷𝑠 are generated based on the 𝐸𝐷(𝑟𝑒𝑓) by the bootstrap resampling technique. 

This is achieved by randomly assembling 𝐵  times 𝑁𝐸𝐷  realizations of 𝒙(𝑖) (𝑖 =

1…𝑁𝐸𝐷) and the relating  �̂�(𝑖). For one of the new 𝐸𝐷𝑠, it is possible to have a same 
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input vector for zero, one or more times. It is noted that the  �̂�(𝑖) in the 𝐵 new 𝐸𝐷𝑠 are 

already available since the 𝒙(𝑖) is selected from the reference one (𝐸𝐷(𝑟𝑒𝑓)). Finally, 𝐵 

different PCEs can be constructed with the new 𝐸𝐷𝑠. For the points which are not 

included in the 𝐸𝐷(𝑟𝑒𝑓), it exists then 𝐵 possible predictions by the PCEs. Therefore, 

empirical quantiles can be employed to provide local error bounds on the PCE 

prediction for such points. In the case of SPCE, performing 𝐵 times sparse least-square 

analysis can be time-consuming. Marelli and Sudret (2018) proposed a fast bootstrap-

PCE for this problem. It assumes that the sparse polynomial basis identified by the 

𝐸𝐷(𝑟𝑒𝑓) is effective for all the new 𝐸𝐷𝑠. The sparse least-square analysis is performed 

thus only one time and the bootstrapping is applied only to the unknown coefficient (�̂�) 

estimation which is based on a classic ordinary least-square. This assumption was 

checked by several academic examples and found effective (Marelli and Sudret, 2018). 

For the sake of clarity, the bootstrap-based SPCE is noted as bSPCE in this work. 

 

As discussed in section 2.1.4, the metamodeling-based reliability analysis can be 

enhanced by an adaptive experimental design algorithm. The introduced local error 

estimates by the boostrap technique provide a solution for the learning function and the 

stopping condition that could be used in an active learning SPCE. In this work, the 

stopping condition proposed by Marelli and Sudret (2018) is adopted, which focuses 

on the stability of the 𝑃𝑓 values estimated by the 𝐵 SPCE models at each iteration. The 

formula is as follows: 

 

𝑃𝑓
+ − 𝑃𝑓

−

𝑃𝑓
 ≤  휀𝑃𝑓 (2-27) 

where 휀𝑃𝑓 is an acceptance threshold with a range between 0.05 and 0.15 for typical 

usage scenarios (Marelli and Sudret, 2018), 𝑃𝑓 is the failure probability estimated with 

the SPCE which is based on the full set of the 𝐸𝐷(𝑟𝑒𝑓), and 𝑃𝑓
+ and 𝑃𝑓

− is respectively 

the maximum and minimum of the 𝑃𝑓 values provided by the 𝐵 different SPCE models.  
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Marelli and Sudret (2018) suggested stopping the active learning procedure when the 

condition of Eq. (2-27) is satisfied for two continuous iterative steps. The learning 

function (Marelli and Sudret, 2018) adopted in the work is based on the probability of 

misclassification of a candidate sample. For the sample 𝒙(𝑖) (𝑖 = 1… 𝑁𝑚𝑐), the value 

of its learning function can be represented as follows: 

 

𝐿𝐹𝑏𝑆𝑃𝐶𝐸(𝒙(𝑖)) =  |
𝑁𝑢𝑚𝑆(𝒙

(𝑖)) − 𝑁𝑢𝑚𝐹(𝒙(𝑖))

𝐵
| (2-28) 

where 𝐵  is the number of the bootstrap SPCE models, while 𝑁𝑢𝑚𝑆(𝒙
(𝑖))  and 

𝑁𝑢𝑚𝐹(𝒙(𝑖)) represent respectively the number of safe and failure for the 𝐵 different 

estimates at the sample 𝒙(𝑖). The ‘best’ next sample to be added into the 𝐸𝐷 can be 

identified by finding the sample which can minimize the value of the learning function. 

Table 2.3 provides a full procedure of the adaptive SPCE (termed as AbSPCE) for 

reliability analysis. 
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Table 2.3 The procedure of a reliability analysis performed by the AbSPCE 

Step Description 

1 Generate a Monte Carlo population in the input space using the Latin Hypercube sampling. 

It is noted as 𝑺𝑴𝑪 and composed of 𝑁𝑚𝑐  samples.  

2 Generate an initial experimental design 𝐸𝐷𝑖𝑛𝑖  with 𝑁𝑖𝑛𝑖  samples using Latin Hypercube 

sampling. Then, evaluate the corresponding model responses �̂� by a computational model.  

3  Construct an SPCE surrogate model based on the current experimental design.  

4 
 

Evaluate the failure probability 𝑃𝑓 by performing an MCS with the current SPCE 

model. 

5  Generate 𝐵 sets of new 𝐸𝐷𝑠 and construct 𝐵 SPCE models.  

6 

 

Evaluate the stopping condition of Eq. (2-27) for the adaptive experimental design 

algorithm. If the condition is not satisfied, continue to next step. Otherwise, 

directly go to step 8.  

7 

 

Choose the ‘best’ next sample from 𝑺𝑴𝑪 according to the learning function of Eq. 

(2-28). Update the current 𝐸𝐷 with the selected sample and the corresponding 

model response. Return to step 3.  

8 

 

Compute the uncertainty related to the estimated 𝑃𝑓 by Eq. (2-9). If the 𝐶𝑜𝑉𝑃𝑓  is 

smaller than 5%, continue to next step. Otherwise, enrich the MC population 𝑺𝑴𝑪 

with 𝑁𝑎𝑑𝑑  samples and return to step 4. 

9 Post-processing on the MCS results to obtain the PDF and statistics of the model response 

2.2.2 Sobol-based global sensitivity analysis 

In a probabilistic analysis, it is also of interest to quantify how each input RV 

contributes to a given quantity of interest (QoI). The Global Sensitivity Analysis (GSA), 

which focuses on assessing the sensitivity of the QoI with respect to each RV over its 

entire varying range, is a powerful tool to achieve this purpose. Among many methods 

for performing a GSA, the Sobol’ indices have received much attention since they can 

give accurate results for most models (Sudret, 2008), and are adopted in the present 

work. This section is intended to present the Sobol-based GSA and provide two 

solutions for estimating the Sobol indices: one within the framework of MCS and the 

other appeals to the PCE. 
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The Sobol index is based on the variance decomposition of the model output. The 

decomposition formula reads as (Iooss and Lemaître, 2015): 

 

ℱ(𝑥1, … , 𝑥𝑀) = ℱ0 + ∑ℱ𝑖(𝑥𝑖)

𝑀

𝑖=1

+ ∑ℱ𝑖𝑗(𝑥𝑖, 𝑥𝑗) + ⋯+ ℱ1,…,𝑀(𝑥1, … , 𝑥𝑀)

𝑀

𝑖<𝑗

  

(2-29) 

where ℱ(∙) is the computational model, 𝑀 is the number of the input variables, ℱ0 is a 

constant and equals to the expectation of ℱ(𝒙) and ℱ𝑖(𝑥𝑖) is a function only concerned 

with the variable 𝑥𝑖 and by the analogy for others (e.g. ℱ𝑖𝑗(𝑥𝑖, 𝑥𝑗)). Eq. (2-29) expands 

indeed the model ℱ(∙) to a series of functions which are related to one or more variables 

from (𝑥1, … , 𝑥𝑀). The total variance of the model output is given as: 

 

𝑉𝑡 = ∫ℱ(𝒙)𝑑𝒙 − ℱ0
2 (2-30) 

Analogously, this total variance can be decomposed as follows: 

 

𝑉𝑡 =  ∑𝑉𝑖(𝑌)

𝑀

𝑖=1

+ ∑𝑉𝑖𝑗(𝑌) + ⋯+ 𝑉1,…,𝑀(𝑌)

𝑀

𝑖<𝑗

 (2-31) 

where 𝑌 = ℱ(𝑥1, … , 𝑥𝑀)  is the model output, 𝑉𝑖(𝑌) = 𝑉𝑎𝑟[𝔼(Y ∥ 𝑥𝑖)] , 𝑉𝑖𝑗(𝑌) =

𝑉𝑎𝑟[𝔼(Y ∥ 𝑥𝑖, 𝑥𝑗)] − 𝑉𝑖(𝑌) − 𝑉𝑗(𝑌) and so on for higher order interactions (Iooss and 

Lemaître, 2015). For the 𝑉𝑎𝑟[𝔼(Y ∥ 𝑥𝑖)], the inner expectation operator 𝔼(∙) is the 

mean of 𝑌  considering all possible 𝒙~𝑖  values while keeping 𝑥𝑖  constant; the outer 

variance 𝑉𝑎𝑟(∙) is taken over all possible values of 𝑥𝑖. Then, the first-order Sobol index 

is given: 

 

𝑆𝑖 = 
𝑉𝑖(𝑌)

𝑉𝑡
 (2-32) 
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The 𝑆𝑖  is a measure about the effect of the variable 𝑥𝑖  alone. By replacing the term 

𝑉𝑖(𝑌) of Eq. (2-32) by 𝑉𝑖𝑗(𝑌) or others, higher-order Sobol indices can be obtained 

which take into account the interaction effects among different variables. There is also 

the total Sobol index for a variable 𝑥𝑖, which represents the sum of all the Sobol indices 

involving this variable. The definition can be written as:  

 

𝑆𝑇𝑖 = 𝑆𝑖 + ∑𝑆𝑖𝑗

𝑖≠𝑗

+ ⋯ 𝑆1,…,𝑀 (2-33) 

The following sections provide two numerical approaches to estimate the first-order 

and total Sobol indices. 

2.2.2.1 Sobol index obtained from the crude MCS 

The first approach is within the framework of MCS. The idea is to evaluate the 

conditional moments (e.g. 𝑉𝑎𝑟[𝔼(Y ∥ 𝑥𝑖)]) with sampling on the input joint PDF. 

 

Consider two independent sampling matrices 𝑨  and 𝑩 , with 𝑎𝑗𝑖  and 𝑏𝑗𝑖  as generic 

elements. Each of them contains 𝑁𝑠  numbers of input vectors 𝒙, so 𝑁𝑠  rows and 𝑀 

colomuns. A new matrix 𝑨𝐵
(𝑖)

 is introduced which means that all the columns are from 

the 𝑨 except the 𝑖-th column which is from the 𝑩. Then, the computation of the first-

order and total Sobol indices can be derived from the following equations which 

estimate the desired conditional moments (Saltelli et al., 2010). 

 

𝑉𝑖 = 
1

𝑁𝑠
 ∑ℱ(𝑩)𝑗

𝑁𝑠

𝑗=1

ℱ(𝑨𝐵
(𝑖)

)𝑗 − ℱ0
2 

(2-34) 

𝑉~𝑖 = 
1

𝑁𝑠
 ∑ℱ(𝑨)𝑗

𝑁𝑠

𝑗=1

ℱ(𝑨𝐵
(𝑖)

)𝑗 − ℱ0
2 

where 𝑉𝑖  is the model output variance induced only by the variable 𝑥𝑖  and 𝑉~𝑖 

represents the variance without considering the 𝑥𝑖 variation. Then, the first order Sobol 
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index can be simply calculated by Eq. (2-32). For the one of total effect, it can be 

estimated as 𝑆𝑇𝑖 = 1 − 𝑆~𝑖 = 1 − 𝑉~𝑖 𝑉𝑡⁄ . It is observed that all the desired results (𝑆𝑖 

and 𝑆𝑇𝑖) could be available with a triplet of matrices 𝑨, 𝑩 and 𝑨𝐵
(𝑖)

. Therefore, the total 

model evaluation number is 𝑁𝑠 ∙ (𝑀 + 2). The 𝑁𝑠 should be large enough in order to 

have accurate estimates. At least the 𝑁𝑠 should be equal to 500 according to Saltelli et 

al. (2010), while Iooss and Lemaître (2015) suggested to use a 𝑁𝑠 of 10 000 which is 

associated with an uncertainty of 10%. 

2.2.2.2 PCE-based Sobol index 

The second approach to estimate the Sobol indices is based on the PCE meta-model. 

The idea was proposed by Sudret (2008) for a purpose of reducing the total 

computational time of a Sobol-based GSA. It is achieved by post-processing on the 

PCE coefficients to estimate the Sobol indices. Once a PCE model is available, no 

further deterministic calculation is needed. For example, the first-order Sobol index is 

given as follows: 

 

𝑆𝑖 = 
∑ (𝑘𝑗)

2 𝔼[(Ψ𝜶)2]𝜶∈𝐴𝑖

∑ (𝑘𝑗)2 𝔼[(Ψ𝜶)2]𝜶∈𝐴
 (2-35) 

where 𝑘𝑗 are the PCE coefficients, 𝐴 is the truncation set (Α𝑀,𝑝,𝑞), 𝐴𝑖 is a subset of 𝐴 in 

which the multivariate polynomials are only functions of the random variable 𝑥𝑖 and 

𝔼[(Ψ𝛼)2] is the expectation of (Ψ𝛼)2 . For the computation of high-order and total 

Sobol indices, readers can refer to Sudret (2008). In summary, once the PCE 

coefficients are determined, the complete list of Sobol indices are available analytically. 

The main computational burden of this approach lies in constructing an accurate PCE 

model. 

2.2.2.3 Correlated variables 

The above-presented Sobol decomposition holds only for independent variables. Extra 

efforts are required to generalize the Sobol-based GSA for correlated variables. Xu and 
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Gertner (2008) proposed to divide the variance contribution of 𝑥𝑖 into two parts: one 

considers only the independent variation while the other includes the contribution due 

to the correlation with other variables. Kucherenko et al. (2012) proposed to directly 

decompose on the output variance by considering the conditional samples. The MCS 

estimation techniques are also available for the Kucherenko indices. 

2.2.3 Random-fields generation 

The RF theory is widely used for describing the soil spatial variability in geotechnical 

engineering. Theoretically, an accurate RF can be represented by an infinite set of RVs. 

In practice, the RF domain should be discretized into a grid in order to allow a 

representation by a finite set of RVs. There are mainly three groups of methods for RFs 

discretization: point discretization, average discretization and series expansions (Sudret 

and Der Kiureghian, 2000).  

 

For a stationary Gaussian RF, it can be completely described by its mean 𝜇, variance 

𝜎2 and an autocorrelation function 𝜌(𝒙, 𝒙,) (Baecher and Christian, 2005) such as the 

exponential one which is expressed below: 

 

𝜌(𝒙, 𝒙,) = exp (−
|𝑥 − 𝑥 ,|

𝐿𝑥
−

|𝑦 − 𝑦 ,|

𝐿𝑧
) (2-36) 

where (𝑥, 𝑦) and (𝑥 ,, 𝑦 ,) are the coordinates of two arbitrary points in the RF space, 𝐿𝑥 

and 𝐿𝑧  are respectively the horizontal and vertical autocorrelation length. The 

autocorrelation length is defined as the distance which can lead to a decrease from 1 to 

1/𝑒 for the autocorrelation function. 

 

The objective of this section is to present the methods that are used in CHAPTER Ⅴ to 

generate the three kinds of RFs: generic, conditional and nonstationary RFs. 

  



53 

 

2.2.3.1 Generating stationary unconditional RFs by the Karhunen-Loève 

expansion 

The Karhunen-Loève expansion (K-L) method is part of the third group mentioned 

above: series expansions, and has been widely used in geotechnical problems such as 

slopes (S. Cho, 2009), tunnels (Pan and Dias, 2017b) and foundations (Ahmed and 

Soubra, 2014). According to Sudret and Der Kiureghian (2000), the methods in this 

group can lead to the minimal number of RVs involved in the discretization, which is 

an attractive feature for reliability analysis since the input dimension is limited. 

 

The K-L method is based on the spectral decomposition of the autocovariance function 

𝐶(𝒙, 𝒙,)  which is the autocorrelation function 𝜌(𝒙, 𝒙,)  multiplied by the standard 

deviation 𝜎(𝑥) and 𝜎(𝑥 ,). This function, being symmetrical and positive definite, by 

definition, has all its eigenfunctions mutually orthogonal, and they form a complete 

orthogonal basis of Ω. Any realization of 𝐻(𝒙, 𝜃) in Gaussian distribution can thus be 

expanded over this basis as follows (Sudret and Der Kiureghian, 2000): 

 

𝐻(𝒙𝑹𝑭, 𝜃) =  𝜇 +  𝜎 ∑√𝜆𝑖𝜙𝑖(𝒙𝑹𝑭)𝜉𝑖(𝜃)

∞

𝑖=1

 

≅  𝜇 +  𝜎 ∑√𝜆𝑖𝜙𝑖(𝒙𝑹𝑭)𝜉𝑖(𝜃)

𝑆𝐾𝐿

𝑖=1

 

(2-37) 

where 𝒙𝑹𝑭  is the point location in the RF domain, {𝜉𝑖(𝜃), 𝑖 = 1,… }  denotes the 

coordinates of the realization 𝜃  of the RF in the expanded space, 𝜆𝑖  and 𝜙𝑖  are the 

eigenvalues and eigenfunctions of the autocovariance function respectively and 𝑆𝐾𝐿 is 

the size of the series expansion. The term 𝜉𝑖(𝜃) is, in fact, a set of uncorrelated standard 

normal variables as long as the realization of the RF is fixed. The value of 𝑆𝐾𝐿 strongly 

depends on the desired accuracy, the autocorrelation length and the RF size. It can be 

determined by evaluating the error estimation of the truncated series expansion. The 
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error estimate based on the variance of the truncated error for a K-L expansion with 𝑆𝐾𝐿 

terms is given by (Phoon, 2008): 

  

휀 =  
1

Ω
∫

Ω
[1 − ∑𝜆𝑖𝜙𝑖

2(𝒙𝑹𝑭)

𝑆𝐾𝐿

𝑖=1

] 𝑑Ω (2-38) 

where Ω is the RF domain.  

 

For the cases of non-Gaussian RFs, one can obtain them by performing an iso-

probabilistic transformation, which will be presented later in section 2.2.4, on the 

Gaussian RFs of the K-L expansions as shown in Eq. (2-37). The cross-correlation 

between different RFs can also be accounted for as discussed in Al-Bittar (2012). 

 

For the sake of illustration, Figure 2.6 presents two standard normal RFs generated by 

the K-L expansions for a 20m×20m site. The left one is an isotropic RF with 𝐿𝑥 = 𝐿𝑧 =

10𝑚  while the right one is anisotropic with 𝐿𝑥 = 5𝑚  and 𝐿𝑧 = 1𝑚 . They require 

respectively 150 and 1800 RVs to reach an error of around 5%. These numbers are 

determined by using Eq. (2-38) and represent indeed the size of the series expansions 

𝑆𝐾𝐿. It can be observed that the left RF is more homogeneous than the right one. Besides, 

there are some zones with relatively uniform or slightly varied values in the isotropic 

RF. In contrary, the stochastic values vary rapidly even within short distances for the 

right RF. The anisotropic character is also clearly demonstrated by this RF. 



55 

 

 

Figure 2.6 Two standard normal RFs generated by the K-L expansions with different autocorrelation 

distances (left: 𝑳𝒙=10m, 𝑳𝒛=10m; right: 𝑳𝒙=5m, 𝑳𝒛=1m) 

2.2.3.2 Kriging-based conditional RFs 

The generated RFs by the K-L expansions are all unconditional which means that the 

measured data and their location information are not taken into account. Geo-localized 

measurements are commonly encountered in geotechnical engineering and are project-

specific. This section presents a method which can generate the RFs conditioned on 

known data. 

 

Suppose that the random field 𝑅𝐹(𝑥, 𝑦)  has been measured at the points 

[(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝒫 , 𝑦𝒫)]  and should be simulated at points 

[(𝑥𝒫+1, 𝑦𝒫+1), (𝑥𝒫+2, 𝑦𝒫+2),… , (𝑥𝑛, 𝑦𝑛)]. The aim of conditional RF simulations is 

then to produce 𝑅𝐹(𝑥, 𝑦) realizations which exactly match the data at 𝒫 points and are 

randomly generated at the remaining (𝑛 − 𝒫)  points. In this work, the algorithm 

proposed by Griffiths and Fenton (2007) is adopted to achieve this purpose. Application 

of the algorithm in geotechnics can be found in Liu et al. (2017b) and Lloret-Cabot et 

al. (2012). This algorithm combines the Kriging model and the theory of unconditional 

RFs. The procedure is given in Table 2.4 for a conditional RF of one soil property. It 

can be seen that the final conditional RF (𝑅𝐹𝑐(𝑥, 𝑦)) exactly matches with the measured 
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data at the known locations with zero variance. This means that the measurements errors 

are ignored in the produced conditional RF. For the unknown locations, the term 

[𝑅𝐹𝑢𝑛(𝑥, 𝑦) − 𝑅𝐹𝑘−𝑢𝑛(𝑥, 𝑦)] represents a random deviation which increases with the 

separation distance between the unknown and known points. In this algorithm, it is 

assumed to use a same autocorrelation structure for the three component RFs (𝑅𝐹𝑘, 

𝑅𝐹𝑢𝑛 and 𝑅𝐹𝑘−𝑢𝑛 in Table 2.4). This can be improved by determining the correlation 

length in the Kriging RF with an optimization process and estimating the 

autocorrelation structure of the third RF for each simulation with a variogram analysis 

(presented later). Obviously, extra computational efforts are required for this solution 

so the initial assumption is kept. Then, the Kriging type (e.g. simple or ordinary) also 

needs to be selected by users. A discussion on this issue is provided in section 5.3.2. 

 

The best linear unbiased estimates (BLUE), that is involved in Table 2.4, is an approach 

to provide a best estimate of the soil properties between known data (locations of 

measurements). The basic idea is to estimate the values of a 𝑅𝐹(𝑥, 𝑦) at any point using 

a weighted linear combination of the observations. Suppose that 

[𝑋(𝑥1, 𝑦1), 𝑋(𝑥2, 𝑦2), … , 𝑋(𝑥𝒫 , 𝑦𝒫)] are known data of the RF. Then, the BLUE of 

𝑅𝐹(𝑥, 𝑦) is given by: 

 

𝑅𝐹(𝑥𝑖, 𝑦𝑖) =  ∑𝛽𝑗
𝑖

𝒫

𝑗=1

∗  𝑋(𝑥𝑗 , 𝑦𝑗) (2-39) 

where the vector of weight coefficient 𝜷𝒊 is to be determined. The goal is to find the 

best estimate at a particular point. It seems reasonable that if the point (𝑥𝑖, 𝑦𝑖) is close 

to one of the known locations, saying (𝑥𝑘, 𝑦𝑘), then the weight coefficient 𝛽𝑘
𝑖  would be 

high. The covariance between the two points is thus employed to determine the weights 

in Eq. (2-39). In the case where the mean and the standard deviation are constant for 

the whole field, the system equations of BLUE can be written as follows, 
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[
𝑲 𝑰
𝑰𝑻 0

] [
𝜷
𝜆
] =  [

𝒌
1
]   

𝑲 = 

[
 
 
 
𝐾11 𝐾12

𝐾21 𝐾22

⋯ 𝐾1𝑝

⋯ 𝐾2𝑝

⋮ ⋮
𝐾𝑝1 𝐾𝑝2

⋯ ⋮
⋯ 𝐾𝑝𝑝]

 
 
 

 (2-40) 

𝜷 = [𝛽1
𝑖 𝛽2

𝑖 ⋯ 𝛽𝑝
𝑖 ]

𝑇
  

𝒌 = [𝐾𝑖1 𝐾𝑖2 ⋯ 𝐾𝑖𝑝]𝑇, (𝑖 ∈ [𝑝 + 1, 𝑛])  

where 𝑲 is the Kriging covariance matrix; 𝐼 is a column vector of all ones with a length 

of 𝒫 ; 𝜷 is the vector of weights of the known data; 𝒌 is the vector of covariance 

between the estimated point and the known points; and 𝜆 is a Lagrange multiplier. It is 

noted that 𝐾𝑖𝑗 is the covariance between any two points, which can be determined by 

an autocorrelation function. 

Table 2.4 Procedure of the adopted conditional RFs generator 

Step Description 

1 Determine the probabilistic distributions and statistics (e.g., means, standard deviations, and 

autocorrelation structure) of the soil property. 

2 Collect the information of the measured data, including the values of soil properties and the 

corresponding data locations. Then, transform the collected data to standard Gaussian 

samples by using the iso-probabilistic method (Lebrun and Dutfoy, 2009a). 

3 Compute the BLUE of the field at the unknown points according to the measured data. This 

is a Kriging estimate and is called here as 𝑅𝐹𝑘(𝑥, 𝑦).  

4 Generate a standard Gaussian unconditional random field 𝑅𝐹𝑢𝑛(𝑥, 𝑦)  using the 

autocorrelation structure determined in step 1 with the K-L expansions. 

5 Compute the BLUE of the unknown points by regarding the 

[𝑅𝐹𝑢𝑛(𝑥1, 𝑦1), 𝑅𝐹𝑢𝑛(𝑥2, 𝑦2), … , 𝑅𝐹𝑢𝑛(𝑥𝒫, 𝑦𝒫)]  as known data. That is to say, a BLUE field 

𝑅𝐹𝑘−𝑢𝑛(𝑥, 𝑦) from the generated unconditional RF is produced.  

6 Produce the standard Gaussian conditional RF by combining the three fields: 𝑅𝐹𝑐(𝑥, 𝑦) =

 𝑅𝐹𝑘(𝑥, 𝑦) + [𝑅𝐹𝑢𝑛(𝑥, 𝑦) − 𝑅𝐹𝑘−𝑢𝑛(𝑥, 𝑦)]. 

7 Transform the standard Gaussian conditional RF to the desired distribution type using the iso-

probabilistic method with the distribution and statistics of step 1.  
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2.2.3.3 Modelling of nonstationary RFs 

It is well known that natural soil properties often exhibit non-stationary characteristics 

(Wu et al., 2019), such as linearly increasing mean value with depths for the undrained 

cohesion. In those cases, using non-stationary RFs is more appropriate for describing 

soil variability than stationary RFs. A non-stationary RF means that the mean, standard 

deviation or auto-covariance is not constant for the whole RF domain, but depends on 

its location. The most commonly used non-stationary RF is the one with a linearly 

increasing mean along depth. For generating such RFs, the algorithm proposed for the 

Lognormal distribution (Zhu et al., 2017) is given in Table 2.5. It was then modified by 

Jiang and Huang (2018) to consider the uncertainty in the increasing rate 𝑡𝑛𝑜𝑛. It can 

also be extended to other kinds of distributions by replacing the scaling factor of step 2 

with an iso-probabilistic process. 

Table 2.5 Procedure for generating non-stationary random fields (Zhu et al., 2017) 

Step Description 

1 
Determine the linear trend with depth 𝑧𝑛𝑜𝑛 according to the available measurements. The 

trend is defined by the mean at the ground surface 𝜇𝑛𝑜𝑛_0 and an increasing rate 𝑡𝑛𝑜𝑛. 

2 
Generate initially a stationary RF with the 𝜇𝑛𝑜𝑛_0 and other stationary parameters. Call this 

field as 𝑅𝐹𝑛𝑜𝑛_0. 

3 

The values at grid points of the 𝑅𝐹𝑛𝑜𝑛_0 are adjusted in order to account for the variation of 

mean by using a scaling factor and the obtained RF reads as: 

𝑅𝐹𝑛𝑜𝑛 = (
𝜇𝑛𝑜𝑛_0 + 𝑡𝑛𝑜𝑛 ∙ 𝑧𝑛𝑜𝑛

𝜇𝑛𝑜𝑛_0

) ∙ 𝑅𝐹𝑛𝑜𝑛_0 

2.2.4 Other techniques related to the performed probabilistic analysis 

This section presents some other techniques that are also implemented in the 

probabilistic analysis of the present work.  

2.2.4.1 Latin Hypercube Sampling (LHS) 

In a probabilistic analysis, one needs to draw a number of samples from a specific 

distribution. This is related to sampling strategies such as the true random sampling 
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(also called as standard Monte Carlo) and the Latin Hypercube Sampling (LHS) (Helton 

and Davis, 2003) which is adopted in the present work. 

 

The LHS was first proposed by McKay et al. (1979) and has been widely used in recent 

years for the uncertainty propagation. It can be viewed as a combination between the 

true random sampling and the stratified sampling (Helton and Davis, 2003) since many 

desirable features of the two sampling techniques are included in the LHS. In a first 

step of the LHS, the range of each RV is exhaustively divided into 𝑁𝐿𝐻𝑆, with 𝑁𝐿𝐻𝑆 

being the desired sample size, disjoint intervals of equal probability. Then, one value is 

randomly selected from each interval for the variable 𝑥1. What comes to next is to pair 

the 𝑁𝐿𝐻𝑆 values of 𝑥1, at random, with the 𝑁𝐿𝐻𝑆 values obtained identically for the 𝑥2. 

This process is continued until a set of 𝑁𝐿𝐻𝑆  𝑀-tuples is formed with 𝑀  being the 

variables’ number. These tuples constitute the Latin Hypercube samples. The above-

presented procedure is effective for independent variables. For the cases of correlated 

variables, the method developed by Iman and Conover (1982) in the context of LHS 

can be used. 

 

Compared with the true random sampling, the LHS performs better in space-filling and 

thus can avoid missing some important subsets of the input space which have low 

probability but high impacts on the analysis of uncertainty (Helton and Davis, 2003). 

Additionally, it has been demonstrated by previous studies (Olsson and Sandberg, 2002; 

Sandberg and Olsson, 1999) that the LHS is efficient for estimating mean values and 

standard deviations in stochastic structural analysis. Above all, the LHS is of great 

interest for the probabilistic analysis which involves small sample size, such as the 

surrogate modelling. Figure 2.7 compares the LHS with the true random sampling (MC) 

for drawing 50 samples from the ‘R-S’ problem (Marelli et al., 2019). It can be seen 

that some samples in MC are highly close with theirs neighbours. This phenomenon is 

unfavourable for uncertainty analysis since two similar samples usually give similar 
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outputs which are not good for capturing the model global behaviour. In contrary, using 

the LHS can avoid such issue. There are also some limitations for the LHS such as the 

aspects of correlation and variance reduction (Shields and Zhang, 2016). However, the 

LHS is widely used in the field of reliability analysis and can provide reasonable 

estimates for most cases. 

 

Figure 2.7 50 samples drawn by the LHS and the MC for the ‘R-S’ problem 

2.2.4.2 Iso-probabilistic transformation 

In some cases, there is a need of transforming the input variables into a specific space 

defined by a desired joint distribution. For example, it is required to work in the 

independent standard Gaussian space in the FORM. 

 

For uncorrelated marginal distributions, it can be achieved by a simple iso-probabilistic 

transformation expressed as follows: 

  

𝑢𝑖 = 𝑢𝐶𝐷𝐹𝑖
−1(𝑥𝐶𝐷𝐹𝑖(𝑥𝑖)) (2-41) 

where 𝑥𝑖 and 𝑢𝑖 is respectively the value before and after the transformation for the 𝑖-

th variable, 𝑥𝐶𝐷𝐹𝑖 and 𝑢𝐶𝐷𝐹𝑖 is respectively the cumulative density function (CDF) of 

the original and desired distribution for the 𝑖 -th marginal and 𝑢𝐶𝐷𝐹𝑖
−1  means the 

inverse CDF. In the case of dependent variables, the Nataf or Rosenblatt transformation 
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should be used to properly transform a sample to the desired space (Lebrun and Dutfoy, 

2009a, 2009b).  

2.2.4.3 Variogram analysis 

A variogram is a function which provides a description of how data are spatially 

correlated. The first step of a variogram analysis is to construct an experimental 

variogram which describes the correlation between any two values of the observation 

data separated by a distance ℎ . The experimental semi-variogram 𝛾∗  is defined as 

(Baecher and Christian, 2005): 

 

𝛾∗(ℎ) =  
1

2𝑁ℎ
∑(𝑉𝑎𝑖 − 𝑉𝑎𝑗)

2

ℎ

 (2-42) 

where 𝑉𝑎𝑖-𝑉𝑎𝑗 represents all the possible pairs of samples which are separated with a 

distance of ℎ, and 𝑁ℎ is the number of the pairs of 𝑉𝑎𝑖-𝑉𝑎𝑗. This calculation should be 

repeated for as many different values of ℎ as the observation data will support. Then a 

mathematical model is applied to the experimental semi-variogram in order to represent 

an autocorrelation structure over the whole study area and to estimate the 

autocorrelation distances. One of the most common variogram models is the 

exponential one, which is used in this study and its equation is (Baecher and Christian, 

2005): 

 

𝛾(ℎ) =  𝐶[1 − 𝑒−(3ℎ/𝑎)] (2-43) 

The parameter 𝑎  represents the range of the variogram (also called autocorrelation 

distance), and 𝐶 is the sill value at which the variogram levels off. The nugget is the 

intercept of the variogram and represents the small-scale variability of the data which 

can include, to some content, the measurement error. Figure 2.8 shows the 

characteristics of a variogram analysis. It provides a solution to estimate the 

autocorrelation distance defined as the length beyond which the spatial correlation is 
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only slightly remarked. This can be translated as the distance (or larger than it) leads to 

significant scattered data in space, e.g. the maximum variance shown in Figure 2.8. 

 

Figure 2.8 Characteristics of a variogram analysis 

2.3 Previous studies about probabilistic analysis of earth dams 

This section aims to provide a general review of the existing studies dealing with earth 

dam problems in a probabilistic framework. The concerned studies are divided into 

three groups corresponding to three major research topics within earth dams: (1) 

Stochastic seepage analysis; (2) Dam reliability analyses regarding its stability; (3) 

Probabilistic analysis of dams’ failure due to internal erosion. Besides, other studies 

that do not belong to any of the three groups are presented as well in this section.   

2.3.1 Stochastic flows 

The first group focuses on stochastic flows inside earth dams by considering the 

variabilities of soil hydraulic parameters. Fenton and Griffiths (1996) statistically 

studied the free surface flow in earth dams accounting for the spatial soil permeability 

variability. The statistics of the flow rate and free surface drawdown were estimated 

within an MCS framework. Besides, an empirical approach was proposed to predict the 

mean and variance of the flow rate in order to avoid performing a large number of flow 
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calculations. The same authors (Fenton and Griffiths, 1997) continued their works on 

investigating stochastic flows inside earth dams and focused on the variation of 

hydraulic gradients. Two homogeneous dams with a horizontal filter drain were 

considered. The results showed that the flow exit point was conservatively estimated in 

a deterministic analysis. The authors also suggested installing a filter drain which is 

longer than ¼ of the dam base and has a permeability value 120 times the one of the 

dam body, in order to ensure that the dam inner flows are insensitive to the permeability 

variations. Ahmed (2009) studied the free surface flow through earth dams using a finite 

element model with a focus on quantifying the flow rate statistics. The soil hydraulic 

conductivity (𝐾𝑠) was modelled by lognormal RF. It was observed that increasing the 

horizontal scale of fluctuation led to increase in the flow. Le et al. (2012) modelled the 

soil porosity (correlated with 𝐾𝑠  and water retention) of an earth embankment by 

lognormal RFs and investigated its effects on the flow rate and time to reach steady 

state in an unsaturated context. They found that increasing the standard deviation or 

correlation length of the porosity RF can lead to a decrease of the mean value of the 

time to reach steady state and to an increase of the mean value of flow rate. Cho (2012) 

performed a series of probabilistic seepage analyses on a homogeneous earth dam by 

modelling the 𝐾𝑠 as RFs. The results revealed that the influence of the autocorrelation 

distances on the seepage behaviour was dependent on the dominant component of the 

flow vector. For example, the horizontal autocorrelation distance effect is significant 

for the mean flow rate, since the dominant flow is horizontal in the dam body. Besides, 

it was found that assuming two layers (i.e. two independent RFs) for the dam body led 

to smaller mean and standard deviation estimates of the flow rate compared to a single 

layer. Calamak et al. (2012) investigated the variation of the free flow surface inside a 

homogeneous earth dam due to the 𝐾𝑠 spatial variability. Four coefficients of variation 

for the 𝐾𝑠 were considered and four locations, which represent different distances to the 

upstream hydrostatic loading, were observed for the statistical representation of the 

flow head. The authors concluded that the free surface variation increased in the flow 
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direction, and the probability distribution of the phreatic head may not be Gaussian 

especially for highly variable 𝐾𝑠. Calamak et al. (2013) continued working on the 𝐾𝑠 

spatial variability but treated a zoned earth dam within an unsaturated flow condition. 

It showed that the flow rate passing through a zoned dam is mostly affected by the 𝐾𝑠 

in the core part. If the mean 𝐾𝑠 of the core is low enough, the uncertainty in the flow 

rate will be insignificant. Liu et al. (2017) compared different autocorrelation functions 

(ACF) for a seepage problem through an embankment. They concluded that the single 

exponential ACF may underestimate the seepage flow rate while the results provided 

by the squared exponential one are conservative. Overall, the differences between 

different ACFs are not significant according to this study. Mouyeaux et al. (2019) 

established a RF representation of the 𝐾𝑠 for a real earth dam by exploiting field data 

with a geostatistical manner. It was then coupled in a random finite element framework 

to estimate the probabilistic distribution of the pore water pressure and phreatic surface. 

As an illustration, Figure 2.9 shows a result obtained by Calamak et al. (2013). It shows 

the free surface and contours of the water head for a stochastic soil with spatially 

varying 𝐾𝑠. The considered 𝐾𝑠 variation in the Core zone is higher than the one of the 

Shell. Therefore, it leads to an irregular phreatic surface in the clay zone as shown in 

the figure. 

 

Figure 2.9 Water head contour in a zoned dam considering spatially varying 𝑲𝒔 (Calamak et al., 2013) 
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2.3.2 Slope stability of dams 

The second group deals with the slope stability issue of earth dams in the context of 

reliability analysis. Liang et al. (1999) proposed an algorithm combining the FOSM and 

Fellenius limit equilibrium method to theoretically derive the reliability index. They 

applied this approach to the King Talal embankment dam to assess the dam reliability 

with respect to the stability of the upstream and downstream slopes under different 

loading conditions (e.g. rapid drawdown). Gui et al. (2000) studied the effects of the 𝐾𝑠 

variability on the slope stability of a homogeneous embankment dam. The MCS and 

the FOSM were used for respectively performing the probabilistic analysis and 

estimating the dam reliability index. Al-Homoud and Tanash (2004) investigated the 

Karameh dam reliability using the proposed probabilistic 3D slope stability analysis 

model (based on the FOSM). The uncertainties in the soil shear strength parameters and 

pore water pressure were considered by analysing the monitoring data. Ghanem et al. 

(2007) applied the polynomial chaos representation method to a benchmark problem 

related to earth dams. A strict safe condition was adopted for estimating the dam failure 

probability, saying that the failure was considered to occur if at least one point of the 

dam body satisfied the Mohr-Coulomb criterion. Preziosi (2008) presented a reliability 

analysis of a small earth-fill dam with respect to its stability (upstream and downstream 

slopes). In addition to the soil variabilities, the uncertainties of the dam geometry 

(height and crest width) and the upstream hydraulic loadings were also taken into 

account for the reliability analysis which was based on the FOSM. Babu and Srivastava 

(2010) investigated the reliability of four rehabilitated earth dams, by using the RSM in 

combination with the FORM. They found that the variabilities in the geotechnical 

parameters, in peak ground acceleration value and in the full reservoir water level, had 

a significant influence on the estimates of the dam reliability index. Nishimura, et al. 

(2010) presented a reliability-based design of an earth dam by using the MCS. The 

spatial variability of the soil strength parameters was determined by considering the 

measurements. An improvement for the design was evaluated in a reliability context 
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and the failure costs were estimated. Chen and Chang (2011) probabilistically examined 

the stability condition of a 314m-high earth dam, the Shuangjiangkou dam which is 

currently under construction and will be the highest embankment dam in the world. A 

critical slip surface was firstly determined and then a MCS was used to estimate the 

dam reliability index under different design scenarios with or without considering some 

of the following factors: spatial variability of the soil shear strength parameters, 

fluctuation of the phreatic line inside the dam, normal reservoir water level and 

upstream slope. Calamak and Yanmaz (2014) conducted a probabilistic stability 

analysis on a homogeneous earth dam regarding its instability of both upstream and 

downstream slopes by using the MCS in combination with the Limit Equilibrium 

Method (LEM). The uncertainties of the soil hydraulic conductivity and shear strength 

parameters were accounted for. They found that using a deterministic seepage flow 

model leads to higher 𝑃𝑓  estimates. The results also shown that the Janbu method 

(Janbu, 1973) was the most conservative one giving the lowest reliability indices, 

whereas the Morgenstren-Price (Morgenstern and Price, 1965) is the least conservative. 

Mouyeaux et al. (2018) presented a probabilistic stability analysis of an earth dam using 

field data. They focused on quantifying the FoS statistics of the dam by considering 

three proposed calculation configurations.  

 

In addition to earth dams, extensive research papers are available in literature for the 

probabilistic stability analysis of slopes. Examples include those in which the 

uncertainties of soil shear strength parameters (Cho 2007; Griffiths et al. 2009), the 

rainfall effects (Cho 2014; Yuan et al. 2019), or the seismic loadings (Burgess et al. 

2019; Rathje and Saygili 2008) were implemented. These studies also provided useful 

information and results for the slope problem of earth dams. For an illustration, Figure 

2.10 presents two failure mechanisms of a slope that were obtained in Griffiths et al. 

(2016) within a MCS with stochastic shear strength parameters. 
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Figure 2.10 Two failure mechanisms of a slope considering stochastic parameters (Griffiths et al., 2016) 

2.3.3 Internal erosion 

The third group investigates the dam failure due to internal erosion (sometimes called 

as piping) which refers to the loss of soil particles by seepage forces (Zhang et al., 2016). 

Four different mechanisms can be identified for internal erosion: concentrated leak 

erosion, backward erosion, soil contact erosion, and suffusion (Zhang et al., 2016). 

Foster et al. (2000b) introduced a method (termed as UNSW) for estimating the 

likelihood of failure of earth dams due to piping in a preliminary assessment stage. The 

UNSW was based on adjusting the historical piping failure frequency with weighting 

factors which can be determined by the geometry, soil properties and monitoring data 

of the studied dam. A summary about the occurred piping failures in embankment dams 

was given. Mínguez et al. (2006) assessed the filter system reliability, a way of 

preventing internal erosion in dams, by regarding different empirical criteria. The 

variability of base material and filter particle sizes was considered by means of FORM. 

Schweckendiek et al. (2014) proposed a method for updating the uncertainty modelling 

of resistance parameters and the failure probability estimates related to uplift and piping. 

The field performance observations during historical loadings, was considered by the 

Bayesian Inference to conduct the updating. Andreini et al. (2016) developed 

probabilistic models for two soil erosion parameters, the critical shear stress and the 
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coefficient of erosion. The non-cohesive and cohesive contributions were both 

considered. The proposed models were further calibrated using laboratory testing data 

within a Bayesian framework. An application of the models was shown via the 

reliability analysis of a typical earth dam. The probabilities of the erosion initiation and 

no-detection for the dam were estimated considering two probabilistically-simulated 

erosion parameters. Liang et al. (2017) conducted a probabilistic study on the piping 

considering the spatial variability of three parameters (the void ratio, 𝐾𝑠 and content of 

the movable particles) by using the MCS. An index describing the probability of 

seepage instability was proposed and further extended to develop a risk rating system. 

Andreini et al. (2019) proposed probabilistic models for the concentrated leak erosion 

in earth dams. A Bayesian approach combined with an IS simulation was implemented 

into the models for calibrating the model parameters using laboratory and in-situ data. 

According to Foster et al. (2000b), a failure induced by piping involves mainly three 

stages: initiation of piping, backward erosion and breach mechanism (e.g. settlement 

leading to overtopping). Figure 2.11 demonstrates these three stages in a homogeneous 

dam.  

 

Figure 2.11 Three stages for a failure by piping (Foster et al., 2000b) 

2.3.4 Other existing studies 

As mentioned before, some existing studies cannot be classified into any of the three 

former groups. Therefore, they are collected herein and briefly described as follows. 

Foster et al. (2000a) provided an overall statistical analysis of failures in embankment 

dams constructed before 1986. The results showed that the embankment zoning have a 
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significant impact on the occurrence of piping and slope instability. In general, the dams 

of homogeneous earth-fill, earth-fill with filter, or concrete face earth-fill have 

experienced more problems associated with the two aforementioned failure modes. U.S. 

Army Corps of Engineers (2006) provided a guidance for reliability analysis and risk 

assessment of embankment dams. The failure modes related to seepage (e.g. piping and 

heave) and slope instability were considered. Carvajal et al. (2009) proposed a 

probabilistic model for modelling the floodwater level in a dam reservoir. It permitted 

to generate numerous hydrological scenarios close to the reality of observed 

hydrological events, and to consider the seasonal variabilities in the headwater level. 

Having such a model could be useful to incorporate the variation of the hydraulic 

loadings into a reliability analysis of dams. Kartal et al. (2011) focused on the crack of 

the upstream slab in a concrete-faced rockfill dam (CFRD) from a probabilistic point 

of view. The RSM, based on a quadratic function without mixed terms, in combination 

with the MCS was adopted to perform the probabilistic analysis. It was found that the 

deterministic and probabilistic results were comparatively close each other for the 

empty reservoir condition. Pang et al. (2018) evaluated the seismic performance of high 

CFRDs considering stochastic ground motions. The generalized probability density 

evolution method combined with the spectral representation-random function method 

was used to assess the CFRDs with respect to three aspects: deformation, slope stability 

and face-slab safety. 

 

As the present study focuses on the stability of an earth dam, the probabilistic analysis 

of concrete dams is not included in the review. Readers can refer to (Hariri-Ardebili, 

2018; Hariri-Ardebili and Sudret, 2019) in which reviews on concrete dams are 

available. 
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2.4 Conclusion 

The commonly used reliability analysis methods are reviewed at first in this chapter. 

The approximation methods (F/S-ORM) have been widely used in practical engineering 

due to their efficiency and ease of implementation such as in a spreadsheet environment 

(Low and Tang, 2007). However, they may fail in giving accurate 𝑃𝑓 estimates if the 

LSS is complex (e.g. highly non-linear). In contrast, the sampling methods perform 

better in giving accurate results but require much more computational efforts. The third 

category of reliability methods (meta-modelling) can potentially address the above-

encountered issues if a satisfied surrogate model can be obtained. The efficiency and 

accuracy of these methods in estimating 𝑃𝑓 can be further improved by an adaptive 

experimental design algorithm.   

 

In a second part, the probabilistic methods that are used in this work are presented in 

detail. Firstly, the PCE technique is presented for different forms: basic PCE, sparse 

PCE and adaptive sparse PCE. These techniques are used in CHAPTERs Ⅳ, Ⅴ and Ⅵ, 

combined with the MCS, to perform the dam reliability analyses. Secondly, the Sobol-

based GSA is introduced. It allows quantifying the contribution of each soil property 

on the variance of the dam FoS as shown in CHAPTERs Ⅳ and Ⅵ, and reducing the 

input dimension as in CHAPTER Ⅴ. Thirdly, the RFs generators which are used in 

CHAPTER Ⅴ are described to produce three kinds of RFs: generic, conditional and 

nonstationary. At the end, three techniques that have also been used in the following 

chapters are presented. The LHS is adopted in the work to draw samples for the MCS 

and the PCE meta-model construction. The iso-probabilistic method serves at 

transforming samples between different distribution types, while the variogram analysis 

is used in CHAPTER Ⅲ to estimate the autocorrelation distance of the soil dry density 

according to the measurements.  
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Besides, a review on the previous studies of earth dam probabilistic analyses is given. 

Three major issues, seepage, slope stability and piping, were considered. The number 

of the conducted works is limited (around 30) regarding the great population of earth 

dams in the world and the importance of such structures for economy and human safety. 

Additionally, most of the studies were based on a simple homogenous dam with 

hypothetical data, and used the traditional reliability methods (e.g. MCS or FORM) for 

the uncertainty propagation. Global sensitivity analysis, 3D probabilistic analysis and 

spatial modelling by different types of RFs were seldom performed for dams, as 

discussed in Introduction. The present work is partially motivated by these facts to 

present a probabilistic analysis (reliability and sensitivity) of the stability of a real zoned 

dam by using various reliability methods and different kinds of RFs with exploiting the 

available field data. 
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3 CHAPTER Ⅲ: Soil variability modelling and 

computational model development 
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This chapter aims to present the necessary elements required for the probabilistic 

stability analysis of the considered dam: input uncertainty representation and 

deterministic model. Firstly, the studied dam is briefly described. A horizontal pseudo-

static acceleration is introduced for the calculation scenario in order to account for 

seismic loading effects on the dam. Then, the uncertainties of the soil properties are 

quantified by analysing the available measurements. Three soil parameters (density 𝛾𝑑, 

cohesion 𝑐′ and friction angle 𝜙′), which are highly relevant to the dam stability, are 

modelled with means of RVs or RFs. The Beta and Truncated normal distributions are 

selected to describe the soil variabilities due to their nature of bounding extreme values. 

At the end, three computational models are developed for estimating the dam FoS 

values. The two first models are based on the strength reduction method and are 

combined respectively with finite element and finite difference method. The last one 

employs the limit equilibrium method and genetic algorithm to estimate the dam FoS.  

3.1 Presentation of the studied dam 

The studied dam, constructed in 1998, is a 23.8 m high earth-filled dam located in the 

west of France. The width is around 140 m and the length in the 3rd dimension is 170 

m for the crest. The dam closes a valley covered with alluvial deposits and can retain a 

reservoir of about 5×106 m3. The normal and maximal reservoir water level is 

respectively 20 and 21.6 m. This work focuses on the dam stability under steady state 

flow conditions and the reservoir water level is fixed at a level of 20m. The soil is 

assumed to be saturated. Such an assumption is based on the two following reasons: (1) 

quantifying the variability in the soil unsaturated parameters is a difficult task given 

that there is no enough support data; (2) considering a saturated flow instead of an 

unsaturated one would lead to lower FoS estimates thus give conservative 𝑃𝑓 results. 

 

Figure 3.1 presents the main cross section of the dam. It can be seen that the dam is 

formed by three different zones including a core constituted with sandy silts and two 
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backfill zones constituted with gravelly sands in respectively the upstream and 

downstream part of the core. These three zones are respectively named as Core, Shell-

1, and Shell-2 in this work. A vertical and an horizontal drain were installed in the 

downstream part in order to collect the water flows and to lower the phreatic surface 

inside the dam. In the foundation, a waterproof grout curtain was realized with a depth 

of around 15 m. 

 

Figure 3.1 The main cross section of the studied dam 

The materials constituting the dam were collected from the vicinity of the dam site. 

Two different types of soils can be identified in the valley. The first type is gravelly 

sands resulting from the alteration of shales on slopes and uplands which dominate the 

valley. The foundation of the dam is considered as gravelly sands according to the site 

investigation. This material is used for the construction of the Shell zone. The second 

soil type, the sandy silts, can be found on the bottom of the valley and on the slopes. It 

was used for the construction of the Core zone. Figure 3.2 presents the maximum, 

average and minimum granulometry for these two soil types. The curves in Figure 3.2 

are based on 37 particle size analyses for the gravelly sands and 27 analyses for the 

sandy silts. For the latter, the average curve gives about 20% of elements smaller than 

2 μm and 28% of coarse elements (grain size bigger than 2 mm). For the gravelly sands, 

the average curve presents much more coarse elements with a percentage of 75% and 

only 5% of elements smaller than 2 μm. 
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Figure 3.2 Maximum, average (red lines) and minimum granulometry for the two soil types 

A horizontal pseudo-static acceleration is considered in this work in order to take into 

account, by a simple way, the seismic loading conditions for the dam reliability analyses. 

The value of the acceleration is set to 2.4m.s-2, which corresponds to around 0.24𝑔 (𝑔: 

gravity acceleration). It is determined as a product of a reference maximum acceleration 

for the rock and two coefficients (Loudière et al., 2014). The reference value is equal 

to 2.4m.s-2, and is selected according to the location of the considered dam with respect 

to the seismic zones in France and the category of the dam (Loudière et al., 2014). The 

two coefficients are the coefficients of soil amplification and the pseudo-static method. 

They are respectively equal to 1.5 and 2/3 for the studied case. The seismic acceleration 

used in the calculation is considered to be related with a return period of 5000 years.  

3.2 Soil variability modelling 

Different data are available for the dam in several phases: design studies, construction 

controls and structure monitoring. This work focuses on the field data which are highly 

relevant to the dam stability analysis under steady state flows: dry density 

measurements collected during the construction and the results of the triaxial tests 
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performed in laboratories. The former is directly related to the 𝛾𝑑 and the latter allows 

estimating 𝑐′ and 𝜙′. This section aims at presenting the statistical representation of the 

three soil properties by means of RVs and RFs using the measurements. For each soil 

property, the related measurements are firstly presented and followed by the variability 

modelling which consists in determining the parameters required for the RV 

distribution and for the RF autocorrelation structure.  

3.2.1 Variability modelling of the 𝜸𝒅 

3.2.1.1 The available measurements 

During the construction, the dry density and the soil water content after compaction 

were monitored in-situ using a gammadensimeter. This leads to a large number of 𝛾𝑑 

data. In total, about 1200 representative measurements of the 𝛾𝑑  were collected, 

including 469 measurements for the Core zone and 709 measurements for the Shell 

zone. The average dry density for the Shell zone is close to 2 g.cm-3, and is smaller for 

the Core zone (1.83 g.cm-3). As an illustration, the histogram of the dry density 

measurements in the Shell zone is presented in Figure 3.3.  

 

Figure 3.3 Histogram of the dry density measurements in the Shell zone 
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An advantage of these data is that they were collected following a grid monitoring 

system. This makes it possible to localize the measurements in space (along three axes). 

The grid system consists of 10 profiles in the longitudinal direction (Y axis) and 13 

profiles in the transversal direction (X axis). Such a grid system allows determining the 

location of the measurements on an X-Y plan and the knowledge of the construction 

layer gives the elevation of the measurements along the Z axis. Finally, the number of 

effective geo-localized 𝛾𝑑 measurements is 381 for the Core zone, 248 for the Shell-1 

zone and 272 for the Shell-2 zone. Figure 3.4 gives a plan view of the dam contour with 

the grid system and the location of the measurements.  

 

Figure 3.4 The collected measurements of 𝜸𝒅 with the grid system 

3.2.1.2 Random variables 

By fitting the measured data with an assumed probabilistic distribution, the 𝛾𝑑 

variability can be described by means of RVs. The physical range of the soil property 

value, i.e. minimum and maximum values, should be considered when RVs are used to 

model the soil variability, in order to avoid generating unreasonable values (Phoon and 

Kulhawy, 1999a). For this reason, the Truncated normal and Beta distributions are 

adopted. Figure 3.5 presents the histogram and cumulative density function (CDF) of 

the 𝛾𝑑 measurements in the Shell zone, together with the fitted CDF curves by a Beta 

and a Truncated normal distribution. The minimum and maximum values are derived 
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from StructX (2015) and Phoon and Kulhawy (1999a, 1999b) according to the soil type. 

The fitted CDFs are in good agreement with the one of raw data, which indicates that 

the two chosen distribution types can describe well the variability of the 𝛾𝑑 

measurements. The fitted parameters of the two distributions types are determined 

using the maximum likelihood estimation method and are given in Table 3.2 in section 

3.2.3.  

 

Figure 3.5 Histogram and CDF of the dry density measurements in the Shell zone 

3.2.1.3 Random fields 

Representing soil variabilities by means of RVs does not take into account the spatial 

variability of soil properties. Using the RF theory for soil variability modeling can 

address this issue. A RF can be considered as a collection of a series of RVs located at 

different stochastic discretization points. By considering a stationary RF, all the RVs 

follow a same probabilistic distribution (Beta or Truncated normal determined 

previously) and they are correlated with an autocorrelation structure. This part aims at 

determining the autocorrelation structure of the 𝛾𝑑 measurements for the purpose of 

modelling 𝛾𝑑 as RFs. It could be achieved by a variogram analysis on the geo-localized 

𝛾𝑑 measurements as presented in section 2.2.4. Taking the Shell-2 zone as an example, 
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an experimental semi-variogram is firstly obtained by applying Eq. (2-42) to all the 𝛾𝑑 

measurements of this zone. Then, the autocorrelation distances can be estimated by 

fitting a mathematical model (exponential one in this work which is also commonly 

used in literature (Cho 2014; Li et al. 2017; Li et al. 2015; Wang et al. 2019)) to the 

experimental semi-variogram. Figure 3.6 shows the experimental semi-variogram of 

the Shell-2 zone together with the fitted exponential model for both horizontal and 

vertical directions. It can be observed that the variance between two measurements 

increases with the increase of its separation distance. The variance roughly reaches a 

constant value after the distance beyond 5-7m for the horizontal directions. For the 

vertical direction, it converges when the distance is bigger than 1.5m. The black points 

in Figure 3.6 represent the points which reach 95% of the sill value. It is considered that 

the abscissa of these points is the autocorrelation distance. For the cases in Figure 3.6, 

the horizontal and vertical distances are respectively 4.9 m and 1.9 m. It indicates that 

the soil is less homogeneous in the vertical direction than in the horizontal direction. 

This finding is consistent with the observations of Lumb (1970) and Tang et al. (2012). 

By repeating the same procedure to the 𝛾𝑑 measurements in the other two zones Core 

and Shell-1, all the necessary autocorrelation distances are obtained and presented in 

Table 3.4.  

 

Figure 3.6 Variogram analysis for the 𝜸𝒅 measurements in the Shell-2 zone 
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3.2.2 Variability modelling of the 𝒄′and 𝝓′ 

3.2.2.1 The available measurements 

For a long-term stability analysis of earth dams, the effective cohesion 𝑐′ and friction 

angle 𝜙′ are required. The shear strength parameters can be determined by triaxial shear 

tests. In total, 8 consolidated-undrained triaxial shear tests with pore water pressure 

measurement are available for the considered dam. Among the 8 tests, 5 tests are for 

the Shell zone and the other 3 for the Core zone. By plotting the Mohr circles of the 

effective stress at failure, the values of 𝑐′ and 𝑡𝑎𝑛𝜙′, that determine the Coulomb line, 

can be estimated using the Kf line (Figure 3.7) with Eqs. (3-1, 3-2). Using this method, 

the results of each test can be exploited to compute the values of 𝑐′and 𝜙′. According 

to the 8 available tests, the average of 𝑐′ is estimated to be equal to 9.4 kPa for the Shell 

zone and to 10 kPa for the Core zone. For 𝜙′, a value of 34.2o was obtained for the 

Shell zone and of 34.3o for the Core zone. It is noted that these average values are 

estimated with the 8 triaxial tests, thus may be different from the mean values used in 

the probabilistic analysis which are obtained using a statistical method proposed by 

Mouyeaux et al. (2018). It can be found that the shear strength parameters for long term 

of the two soils are very close to each other. In fact, the two materials are relatively 

similar as they derive from the schist alteration composing the bedrock. The considered 

dam is actually a pseudo-zoned earth dam.  

 

Figure 3.7 Interpretation of the triaxial shear test results using the method in (Aigouy et al., 2015) 
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sin𝜙′ = 𝑡𝑎𝑛𝛼 (3-1) 

𝐶′ = 
𝐼𝑛

𝑐𝑜𝑠𝜙′
 (3-2) 

3.2.2.2 Random variables 

The 8 available tests correspond to the test number typically performed for an earth dam 

design. However, it doesn’t allow to carry out a statistical study for the 𝑐′and 𝜙′ 

distribution due to the low quantity of data. The method presented in Figure 3.7 

provides a possibility to generate a large number of artificial data for 𝑐′and 𝜙′. The idea 

was introduced in the work of Mouyeaux et al. (2018) and it consists in using the first 

two statistical moments of 𝐼𝑛 and 𝑡𝑎𝑛𝛼 obtained when doing a regression analysis, to 

generate a large number of these two parameters and then compute the corresponding 

𝑐′and 𝜙′ values following Eqs. (3-1, 3-2). The procedure is given in Table 3.1. 

Table 3.1 The procedure of generating artificial data for 𝒄′and 𝝓′ 

Step  Description 

A Determination of the extreme values for the regression parameters (𝐼𝑛 and 𝑡𝑎𝑛𝛼) 

 

A.1 Determination of the physical range for 𝑐′and 𝜙′ values according to the soil 

type and the reference values recommended in StructX (2015) and Phoon and 

Kulhawy (1999a, 1999b), 

 
A.2 Computation of the extreme values for 𝐼𝑛 and 𝑡𝑎𝑛𝛼 using Eqs. (3-1, 3-2) with 

the determined physical range of 𝑐′and 𝜙′. 

B Generation of 106 samples for the parameters 𝐼𝑛 and 𝑡𝑎𝑛𝛼 between the extreme values, 

 
B.1 Plot the peak points of all the Mohr circles in the 𝜎 − 𝜏 plan, 

 

B.2 Determine the Kf line by performing a simple linear regression. The mean and 

standard deviation of the two regression parameters (𝐼𝑛  and 𝑡𝑎𝑛𝛼 ) can be 

obtained (as shown in Figure 3.8),  

 
B.3 Assume a normal distribution for both 𝐼𝑛 and 𝑡𝑎𝑛𝛼 with the previously defined 

mean and standard deviation, 

 
B.4 Generate randomly 106 samples respectively for 𝐼𝑛 and 𝑡𝑎𝑛𝛼 following the PDF 

of the normal distribution, 

C Computation of the 𝑐′and 𝜙′value corresponding to each pair of 𝐼𝑛 and 𝑡𝑎𝑛𝛼.  
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Figure 3.8 presents the 16 peak points of the Mohr circles obtained from the 5 triaxial 

tests for the Shell zone and the regression line. The mean and the standard deviation of 

the two regression parameters are also provided. Based on the two parameters, 106 

artificial samples for 𝑐′and 𝜙′  are obtained as mentioned in Table 3.1. Figure 3.9 

presents the histogram and CDF of the generated values (termed as ‘RawData’ in the 

figure) for 𝑐′  and 𝜙′  in the Shell zone. It is observed that the variable 𝑐′  are not 

symmetric around the peak, but are skewed. The peak is found near the lower end of 

the scale. The artificial data of 𝑐′and 𝜙′  are also fitted to a Beta distribution and a 

Truncated normal distribution. The minimum and maximum values for 𝑐′ and 𝜙′ are 

derived from StructX (2015) and Phoon and Kulhawy (1999a, 1999b) according to the 

soil type. From Figure 3.9, it seems that the Beta distribution describes better the 

variability of 𝑐′ data, than the Truncated normal distribution. The fitted parameters of 

the two distributions types are determined using the maximum likelihood estimation 

method and are given in Table 3.2 in section 3.2.3.  

 

Figure 3.8 Mohr circles of the tests in the Shell zone (Std: standard deviation) 
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Figure 3.9 Histogram and CDF of the generated 𝒄′ in the Shell zone 

3.2.2.3 Random fields 

The method of Mouyeaux et al. (2018) adopted for generating values of 𝑐′  and 𝜙′ 

cannot provide the location information. Therefore, it is not possible to estimate the 

autocorrelation structure for these two soil properties with the 8 triaxial tests. However, 

one can use physical or empirical relations to obtain 𝑐′ or 𝜙′ RFs by transforming the 

ones of 𝛾𝑑. The Caquot’s relation, expressed in Eq. (3-3), is adopted here to obtain the 

𝜙′ RFs since it links the friction angle with the soil void ratio 𝑒 (thus indirectly with 

dry density). The parameter 𝑘 is a constant for a given material; its value is respectively 

equal to 0.25, 0.32 and 0.22 for the Shell-1, Core and Shell-2 zones. These values, 

treated as deterministic, are obtained using Eq. (3-3) for each zone with the 

corresponding friction angle and dry density mean values (Table 3.2). The uncertainties 

in the parameter 𝑘 are difficult to be estimated due to the lack of data. A theoretical 

study could be conducted in future in order to investigate the effect of these 

uncertainties occurred in a transformation model. No effective transformation equations 

exist for estimating 𝑐′ from 𝛾𝑑 (Li et al., 2014; Mouyeaux et al., 2018). For this reason, 

the 𝑐′ variability is only represented by RVs. 
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e ∙ tan (𝜙′) = 𝑘 (3-3) 

3.2.3 Summary of the soil parameters 

Table 3.2 presents a summary of the distribution parameters determined in the previous 

sections with the maximum likelihood estimation method. The abundant number of  𝛾𝑑 

measurements in both the upstream and downstream Shell zones allows estimating 

dependent distribution parameters for the two zones (Shell-1 and Shell-2). On the 

contrary, only a global representation of the Shell zone is available for the variables  𝑐′ 

and 𝜙′. Besides, the method introduced by Mouyeaux et al. (2018) for determining the 

distribution parameters of 𝑐′ and 𝜙′ assumes that the intermediate parameters (𝐼𝑛 and 

𝑡𝑎𝑛𝛼  in Eqs. 3-1 and 3-2) are two uncorrelated normal variables. Therefore, the 

correlation between the generated artificial 𝑐′-𝜙′ pairs is supposed to be very weak and 

thus negligible according to Eq. 3-2. This is further checked by estimating the 

correlation coefficient between the abundant artificial 𝑐′-𝜙′ values which leads to a 

correlation coefficient close to 0 for the data of both the two zones (Shell and Core). In 

this work, the correlation between 𝑐′-𝜙′ is not considered at a first time (CHAPTERs 

Ⅳ and Ⅴ) and will be investigated later in CHAPTER Ⅵ. 

Table 3.2 Distribution parameters for the random variables of 𝜸𝒅,  𝒄′ and 𝝓′ 

Soil property Zone 
Beta Truncated normal Extreme values 

𝑎(1) 𝑏(1) Mean CoV(2)(%) Min Max 

𝛾𝑑  (g/cm3) Shell-1 15.7 18.0 1.99 3.21 1.63 2.40 

 Shell-2 26.7 22.2 2.05 2.65 1.63 2.40 

 Shell (all) 15.6 15.5 2.02 3.30 1.63 2.40 

 Core 22.4 27.5 1.83 3.33 1.44 2.32 

𝑐′ (kPa) Shell 1.48 2.78 10.55 57.63 0 30 

 Core 4.07 5.22 13.23 34.21 0 30 

𝜙′ (o) Shell 28.71 29.61 34.85 3.72 25 45 

 Core 231.16 192.28 34.11 2.48 15 50 

Note: (1)Beta distribution parameters; (2)Coefficient of variation 
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Table 3.3 presents the deterministic values of all necessary soil parameters for a dam 

stability analysis under steady state flow conditions. The mean values shown in Table 

3.2 are used for the 𝛾𝑑 , 𝑐′  and 𝜙′ . The others are determined according to the 

measurements or laboratory test results. For vertical and horizontal drains, the hydraulic 

conductivity is set as isotropic considering a deterministic value of 10-4 m/s. The 

foundation is composed of altered schists whose superficial layers have been purged. 

Its location is very close to the Shell zone according to the site investigation and 

granulometric analyses. Therefore, same values as the Shell zone are assigned to the 

mechanical parameters of the foundation. All the soils are assumed to follow a linear 

elastic perfectly plastic behaviour characterized by the Mohr Coulomb shear failure 

criterion in this work. 

Table 3.3 Deterministic value of the soil properties 

Soil parameters Shell-1 Core Shell-2 Foundation 

𝛾𝑑  (g/cm3) 1.99 1.83 2.05 2.02 

𝑐′ (kPa) 10.55 13.23 10.55 10.55 

𝜙′ (o) 34.85 34.11 34.85 34.85 

𝐾𝑦
(1) (m/s) 5×10-6 5×10-9 5×10-5 1×10-6 

𝐾𝑥/𝐾𝑦
(2) (m/s) 2 3 2 1 

Porosity 0.26 0.32 0.26 0.26 

Dilatancy angle 𝜓 (o) 12 12 12 12 

Young Modulus 𝐸 (MPa) 45 40 45 45 

Poisson coefficient 𝜐 0.33 0.33 0.33 0.33 

Note: (1)Verical hydraulic conductivity; (2)Ratio between horizontal and vertical hydraulic conductivity 

 

Table 3.4 presents the autocorrelation distances estimated by fitting the geo-localized 

𝛾𝑑  measurements to an exponential model. Table 3.4 indicates that a considerable 

homogeneity can be found in the Shell-1 zone, while the 𝛾𝑑 in the Shell-2 and Core is 
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likely to have more remarkable spatial variation due to the small values of 𝐿𝑥 and 𝐿𝑧. 

This difference can be explained by the better selection of the material composing the 

upstream zone and the greater attention which has given to its construction. The nugget 

effect corresponds to about a half of the variance for the upstream shoulder and to a 

slightly lower fraction for the downstream shoulder and the core. The nugget effect can 

be attributed to the mixture of the materials during their excavation from the borrow 

pits. In our case, it is considered as a short dimension structure whose scale is less than 

the sampling step.  

Table 3.4 Results of the geostatistical analysis for the 𝛄𝐝 measurements 

Zones 
Autocorrelation distance (m) 

Nugget effect 
Horizontal (𝐿𝑥) Vertical (𝐿𝑧) 

Shell-1 78.1 m 7.8 m 1.6×10-3 

Core 13.0 m 1.5 m 8.6×10-4 

Shell-2 4.9 m 1.9 m 1.0×10-3 

3.3 Development of the deterministic models 

Three deterministic models in 2D are developed in this work. The objective of the 

considered deterministic models is to estimate the dam safety factor (FoS) under steady 

flow conditions with or without a pseudo-static acceleration, once the input soil 

parameters are fixed. The first two models are based on the strength reduction method 

(SRM) (Dawson et al. 1999; Griffiths and Lane 1999; Smith et al. 2015; Zienkiewicz 

et al. 1975), combined respectively with finite element method (FEM) and finite 

difference method (FDM). These two models were compared with a previous study 

(Mouyeaux, 2017) considering its calculation configuration (unsaturated flows without 

a pseudo-static acceleration) in a deterministic framework. The computational model 

developed in Mouyeaux (2017) is based on the code Cast3M (FEM). Good agreements 

were obtained in terms of the provided FoS and the located failure surfaces among the 

three models. Such a cross comparison allows a first validation on the two models 
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developed in this work. The third one combines the limit equilibrium method (LEM) 

and genetic algorithm (GA). Particularly, a two-step search procedure is proposed for 

the third model in order to optimize and locate the non-circular critical slip surface. 

Table 3.5 gives a summary of the three models. The following sections present in detail 

the three developed deterministic models. As each model has its own positive and 

negative features, it is thus worth developing more than one deterministic model 

especially for a big project so that different models can be selected to address different 

problems. For example, it is better to use the LEM_GA (Table 3.5) if one needs fast 

estimates on the dam reliability at a preliminary stage. However, the LEM_GA has 

difficulties of accounting for the uncertainties of soil hydraulic parameters. In this case, 

the SRM_FEM is more appropriate. Additionally, having more than one models permits 

to compare the results made by different models in both deterministic and probabilistic 

frameworks. It is noted that the defects mentioned in Table 3.5 for the SRM_FEM are 

only associated with the used platform (Plaxis) and should not considered as general 

remarks to the FEM. There are several FEM codes in which random fields can be easily 

implemented. In this work, the Plaxis platform is selected since it is fast in hydraulic 

calculations and has a very user-friendly interface which can facilitate the modelling 

procedure especially in 3D for a complex geometry.  
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Table 3.5 Summary of the three deterministic models developed for the present work 

Model Name Platform Remarks 

1 SRM_FEM Plaxis (Brinkgreve 

et al. 2015) 

* 

* 

* 

Fast in hydraulic calculations 

Difficult to implement random fields 

An assumption imposed to modify pore 

water pressure during a pseudo-static 

analysis 

 

2 SRM_FDM Flac (Itasca, 2011) * 

* 

* 

Slow in hydraulic calculations 

Easy to implement random fields 

Well-established coding environment 

 

3 LEM_GA Matlab 

(Mathworks, 

2015) 

* 

* 

 

* 

Very fast in estimating the dam FoS 

Some assumptions are required for 

locating the critical slip surface 

Easy to implement random fields 

3.3.1 The model SRM_FEM 

The SRM_FEM model is a numerical one developed using a finite element code Plaxis 

(Brinkgreve et al., 2015). Figure 3.10 shows the adopted mesh which includes 4175 15-

noded plane elements and 33799 nodes. It is determined by a mesh refinement 

parametric study. A further reduction of the element size compared to the one shown in 

Figure 3.10 has a negligible effect on the computed FoS value. The effects of using a 

coarse mesh will be discussed later in CHAPTER Ⅵ. The mechanical boundary 

conditions used in this model are the following ones: the displacements are blocked 

following the horizontal and vertical axis on the base of the model; the horizontal 

displacements are blocked on the lateral edges of the model. Table 3.6 presents the 

procedure used to perform a stability analysis with the model.  

 

It is noted that the function ‘Remote Scripting’ available in Plaxis is used for the 

SRM_FEM. This function allows building models and modifying soil parameters by 

typing commands which are based on the Python language. It is thus possible to 
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automate the operations (e.g. start a calculation and read results) and to link the model 

with the reliability methods developed with other tools. Such a technique can reduce 

significantly the computational time of a probabilistic analysis by avoiding manual 

operations. 

 

Figure 3.10 The model SRM_FEM and its mesh condition 

Table 3.6 Procedure of a stability analysis using the SRM_FEM 

Step Name Description 

1 Initial equilibrium 

calculation 

Once the mesh is realized, the soil parameters are assigned and the 

boundary conditions are fixed, a mechanical calculation of the initial 

stress state is performed under the loading of the soil’s own weight. 

 

2 Flow only 

calculation 

A hydrostatic head of 20m (normal reservoir water level) is applied on 

the upstream slope and the pore water pressure distribution is 

obtained under steady state flow conditions.  

 

3 Effective stress 

calculation 

A mechanical calculation is performed with the pore pressure 

distribution determined by the step 2. This step permits to calculate the 

effective stress state of the soil. A pseudo-static acceleration could be 

added in this step. 

 

4 Stability analysis The FoS is determined using the strength reduction method in this step. 

3.3.2 The model SRM_FDM 

The SRM_FDM is also a numerical model and is created using the finite difference code 

Flac2D (Itasca, 2011). Figure 3.11 shows the mesh which consists of 18000 4-node 

quadrilateral plane elements with 18894 nodes. It is determined by a mesh sensitivity 
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parametric study as for the SRM_FEM but additionally refined in the dam body in order 

to satisfy a condition when RFs are mapped into the mesh. The condition requires that 

the largest element of the deterministic mesh in a given direction (horizontal or vertical) 

should not exceed 0.5 times the autocorrelation distance in that direction (Der 

Kiureghian and Ke, 1988). The boundary conditions are the same to the one of 

SRM_FEM and it follows also the procedure of Table 3.6 to perform a stability analysis. 

The model is defined with the FISH commands in Flac and is further linked with Matlab 

by using the function ‘system’ for the purpose of automating the probabilistic analysis. 

 

Figure 3.11 The model SRM_FDM and its mesh condition 

3.3.3 The model LEM_GA 

The third model LEM_GA is developed in Matlab. The pore water pressure field used 

in this model is determined using the ones obtained by a numerical simulation. The 

LEM_GA is based on the combination of the LEM and the genetic algorithm (GA). The 

principle is to generate a number of trial slip surfaces as an initial population at first, 

and then to search the minimum FoS value by simulating natural process along 

generations including reproduction, crossover, mutation and survivors’ selection. The 

FoS of a given slip surface is computed by using the procedure of Zhu et al. (2005) 

which is based on the Morgenstern Price method, and the slip surface generation 

method described in Cheng et al. (2008) is adopted which allows generating non-

circular slip surfaces. Compared to the two previous models, more details are given in 

the subsequent sections for this model since the LEM_GA combines various techniques 

and shows original contributions (e.g. the two-stage search procedure) to efficiently 

estimate the dam FoS. The SRM_FDM and SRM_FEM are based on the conventional 
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slope stability analysis solution (SRM with REM or FDM). They are thus briefly 

presented. 

3.3.3.1 Generation of trial slip surfaces 

It is required to generate a number of slip surfaces as initial population in GA. The slip 

surface generation method described in Cheng et al. (2008) is adopted. A brief 

description is given as follows.  

 

Consider a slip surface with four slices and five vertices as shown in Figure 3.12. The 

ground surface is represented by 𝑦 = 𝑦𝑔(𝑥) and the bedrock is given by 𝑦 = 𝑅(𝑥). The 

trial failure surface can be described by eight control variables as: 

𝑥1, 𝑥5, 𝛽1, 𝛽5, 𝛿5, 𝛿6, 𝛿7  and 𝛿8 . The vector 𝑉 = (𝑥1, 𝑥5, 𝛽1, 𝛽5, 𝛿5, 𝛿6, 𝛿7, 𝛿8)  can thus 

represent the slip surface mathematically, where 𝛿5, 𝛿6, 𝛿7, 𝛿8  are random variables 

with a range (0, 1) and 𝑥1 (𝑥5) represents the x-coordinate of the vertice 𝑉1 (𝑉5). The 

trial slip surface as shown in Figure 3.12 with solid lines is identified by using the vector 

𝑉 = [𝑥1, 𝑥5, 𝛽1, 𝛽5, 0.5, 0.5, 0.5, 0.5]𝑇. Once the values of first four variables in 𝑉 are 

given, two vertices 𝑉1, 𝑉5 and temporary vertices 𝑉6 are obtained. The x-coordinate of 

the vertices 𝑉2 can then be computed as: 

 

𝑋𝑉2
= 𝛿5 ∗ (𝑋𝑉6

− 𝑋𝑉1
) + 𝑋𝑉1

 (3-4) 

Another temporary vertice V7 is then determined as: 

 

𝑋𝑉7
= 𝛿6 ∗ (𝑋𝑉5

− 𝑋𝑉6
) + 𝑋𝑉6

 (3-5) 

Similar to 𝑉2  and 𝑉7 , we can locate 𝑉3  and 𝑉4  using respectively 𝛿7 and 𝛿8 . The 

procedure will continue until the specified number of vertices is generated. In summary, 

the trial slip surfaces of 𝑛 segments and 𝑛 + 1 vertices can be obtained by using the 

presented procedure with the vector 𝑉 = (𝑥1, 𝑥𝑛+1, 𝛽1, 𝛽𝑛+1, 𝛿5, … , 𝛿2𝑛) easily.  
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Figure 3.12 The adopted generation method for the trial slip surface 

3.3.3.2 Formulation of the problem  

Since the slip surface can be described by the vector 𝑉, the FoS is then regarded as 

being a function of 𝑉, when the soil property and slope geometry are fixed. 

 

𝐹𝑜𝑆 = 𝑓(𝑉) = 𝑓(𝑥1, 𝑥𝑛+1, 𝛽1, 𝛽𝑛+1, 𝛿5, … , 𝛿2𝑛) (3-6) 

The process of locating the critical slip surface can thus be mathematically formulated 

as an optimization problem of minimizing the objective function FoS with respect to 

the vector 𝑉. 

 

Usually, some constraints should be considered in performing an optimization 

procedure. For the problem of locating the critical slip surface, the following 

geometrical and kinematical compatibility constrains should be respected (Li et al., 

2010): 

1. The x-coordinate of the vertices must be monotonically increasing or decreasing 

and the two end vertices must be on the slope surface. 

2. All the segment lines determined by two adjacent vertices must within the 

solution domain. Any segment line which passes through the ground surface or 

bedrock is permitted. 

3. The slip surface should be concave upward in order to be kinematically 

admissible. 
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The constrain 1 and 3 are automatically satisfied if the slip surfaces are generated by 

the presented method (Cheng et al., 2008). However, the constrain 2 should be paid 

attention by eliminating the slip surfaces which break the slope or the bedrock. For the 

first four variables of 𝑉, the bound values can be specified by the users according to 

slope geometry and soil property (Li et al., 2010). 

3.3.3.3 The two-step genetic algorithm 

The GA is a search technique used to find approximate solutions of an optimization 

problem. It is a particular class of evolutionary algorithm that uses techniques inspired 

by evolutionary biology Zolfaghari et al. (2005). The main idea of GA is to first create 

an initial population and then model the evolution along generations until an optimal 

solution is converged. The natural processes such as reproduction, crossover, mutation 

and survivors’ selection are repeated for each generation. 

 

Typically, the potential solution (named chromosome in GA) is represented in binary 

as strings of 0s and 1s. Li et al. (2010) proposed a real-value representation of 

chromosome for GA and applied it in searching the critical slip surface. Here, the vector 

𝑉 = (𝑥1, 𝑥𝑛+1, 𝛽1, 𝛽𝑛+1, 𝛿5, … , 𝛿2𝑛) can be used to represent a 2𝑛 variables real-value 

solution as a chromosome.  

 

It is found that applying directly the GA proposed by Li et al. (2010) on the studied 

dam may lead to a local minimum. The result is strongly dependent to the initial 

population. For this reason, a two-step strategy is proposed to reinforce the GA of Li et 

al. (2010). This strategy allows avoiding local minima in the searching process and can 

always lead to the global optimization result. In fact, the studied dam presents a 

complex geometry with a multi-stage slope (with berms) in the downstream part. Cheng 
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et al. (2007) reported than it may exist several local minima of FoS for such slopes. 

Complementary efforts should thus be made to overcome this problem.  

 

The following flowchart (Figure 3.13) presents the procedure of the proposed two-step 

GA. It is started by a diversified initial population and it contains two steps in the 

searching process. The first step, named as Global search, aims at locating the most 

potential failure region at the slope surface. The second step, named as Local focus, 

focuses on the region found previously to locate precisely the critical slip surface. The 

first step is performed by considering a large mutation probability and a large 

generation size. These two parameters are decreased in the second step in order to focus 

on the obtained failure region and to accelerate the searching. After the flowchart, some 

specific features of the proposed two-step GA are explained in Table 3.7 and the 

adopted GA parameters are given in Table 3.8. For more details about the GA principles, 

readers are referred to Zolfaghari et al. (2005). 
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Figure 3.13 Flowchart of the proposed two-step GA 
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Table 3.7 Specific features of the proposed two-step GA (notes related to Figure 3.13)  

Note number 

in Figure 3.13 
Description and remarks 

(1) 

Population diversity is one of the most important factors in GA. Usually, it is ignored 

for the GA application on searching the critical slip surface and the initial slip 

surfaces are generated randomly. As several local minima exist for the studied dam, 

it is worth ensuring the diversity in the initial population. This is realized by dividing 

the slope surface into 5 regions ((1), (2), (3), (4) and (5)), as shown in Figure 3.14, 

and by generating an identical number of slip surfaces within each possible 

combination of regions to constitute the initial population. The possible 

combination is determined by selecting two reasonable regions as the range for the 

first and last vertices. For example, the first vertices can be limited between the 

points F and E if the region (1) is selected, and a combination (1)-(5) means that the 

end-vertices can only be generated within these two regions. 

(2) 

The techniques adopted in the paper for parent selection, crossover and mutation 

are respectively linear ranking selection, single arithmetic crossover and uniform 

mutation (Eiben and Smith, 2003). 

(3) 

A relatively large value (e.g. 0.5) is set to the mutation probability in the first step. 

For all evolutionary algorithms, the key point is to find a balance between 

‘exploration’ and ‘exploitation’. The former is given by mutation process in GA while 

the latter is given by crossover process. Giving more possibility to ‘exploration’ can 

prevent the search from falling into local minimum early. 

(4) 

The second step focuses on the regions of the best solution determined by the first 

step. We assume that the critical slip surface 𝑆𝑆𝑐  is located in the vicinity of the 

present best solution 𝑆𝑆𝑝 and 𝑆𝑆𝑝 should be moved to find the 𝑆𝑆𝑐. Therefore, we 

kill all the chromosomes, except the 𝑆𝑆𝑝 after the first step, and generate randomly 

(𝑁2 − 1) slip surfaces within the regions to constitute an initial population of size 

𝑁2 for the second step. 

(5) 
As we have found the most potential failure regions, the generation size can be 

decreased compared to the first step in order to accelerate the searching. 

(6) 

A relatively small value (e.g. 0.1) is set to the mutation probability 𝑅𝑚𝑢_2  in the 

second step since there is no need to lay more emphasis on ‘exploration’ when the 

most potential failure region is found. 
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 Figure 3.14 Division of the slope surface (the value at top of the point is the relating x-coordinate) 

Table 3.8 Values used in this work for the two-step GA parameters 

 First step Second step 

Size of one generation 𝑁1 = 40 𝑁2 = 20 

Crossover probability 𝑅𝑐𝑟𝑠 = 0.8 

Mutation probability 𝑅𝑚𝑢_1 = 0.5 𝑅𝑚𝑢_2 = 0.1 

Specified relative difference 𝜖 = 5 × 10−5 

Minimum number of generations before termination 𝑀1 = 30 𝑀2 = 120 

3.4 Conclusion 

This chapter presents the studied dam which is a zoned earth dam composed of two 

shoulders and a low-permeable core. The reservoir height in the dam upstream is fixed 

to the normal level (20m) in this work and a horizontal pseudo-static acceleration of 

0.24g is considered under seismic conditions. 

 

Then, the statistical modelling of the soil variabilities by using the available 

measurements is presented. For 𝛾𝑑, the quantity of the related data allows meaningful 

estimates of its statistics and of the autocorrelation distances which are determined by 

performing a variogram analysis on the geo-localized measurements. It will thus be 

possible to simulate 𝛾𝑑 by both RVs or RFs. For the shear strength parameters (𝑐′and 

𝜙′), a large number of artificial values are generated by using the method of Mouyeaux 

et al. (2018) with the results of 8 available triaxial tests. Then, the distribution 
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parameters of 𝑐′and 𝜙′  are estimated with respect to the artificial values using the 

maximum likelihood estimation method. A transformation equation (Caquot’s relation) 

which links 𝛾𝑑 and 𝜙′ is adopted to obtain the 𝜙′ RFs. The 𝑐′ values are only modelled 

by RVs due to the lack of enough geo-localized data and of effective transformation 

equations from 𝛾𝑑 (Li et al., 2014; Mouyeaux et al., 2018). It is noted that the Truncated 

normal and Beta distribution types are chosen to represent the soil variabilities since 

they can avoid generating unrealistic values by giving two bounds. A summary of the 

obtained values for representing soil properties is then presented. The soils are assumed 

to follow a linear elastic perfectly plastic behavior characterized by the Mohr Coulomb 

shear failure criterion. 

 

In the last part of this chapter, the three computational models developed in this work 

are presented. A two-step search procedure is proposed for the optimization of the third 

model in order to avoid local minima FoS values. Using three different deterministic 

models permits a comparative study of different slope stability analysis methods (SRM 

and LEM) in a probabilistic framework. Having more than one model allows also a 

better selection of the appropriate model for specific purposes.  
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4 CHAPTER Ⅳ: Probabilistic stability analysis with the 

random-variables approach 
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This chapter aims to present the dam probabilistic stability analysis in the context of 

the random-variables (RVs) approach which assumes the soils to be homogeneous in 

one deterministic simulation but varies certain properties for different simulations 

according to a joint probability distribution. Obviously, the soil spatial variability 

cannot be explicitly modelled in the RVs approach. However, it is simple and easy to 

be implemented in practical applications, and permits to provide fast estimates of 

reliability results. Moreover, having a large number of geo-localized data for 

determining the RFs parameters is rare in practice. Above all, the RVs approach is 

adopted in this chapter to conduct the dam probabilistic stability analysis which consists 

of, in general, two stages: (1) a sensitivity analysis to identify the soil properties to be 

modelled as RVs; (2) a reliability analysis to estimate the dam failure probability (𝑃𝑓) 

and obtain a probabilistic distribution of the dam FoS. Two exploitation conditions 

(normal and seismic) are considered in the dam probabilistic analysis. The pseudo-static 

method is adopted to perform the seismic stability analysis, and an acceleration of 

0.24𝑔 with a return period of 5000 years is considered as said in section 3.1. 

4.1 Sensitivity analysis 

4.1.1 Introduction 

A global sensitivity analysis (GSA) is first performed. It considers the uncertainties of 

both the soil geo-mechanical and hydraulic parameters. The objective is to investigate 

the effects of the variabilities related to the soil hydraulic conductivity, which was not 

explored in CHAPTER Ⅲ, on the dam stability condition. The obtained GSA results 

allow understanding the contribution of each soil property on the dam FoS variation, 

and validating the assumption of ignoring the variabilities of the hydraulic parameters. 

 

Two parameters (vertical hydraulic conductivity 𝐾𝑣  and anisotropy coefficient 𝑅𝑘 ), 

which are relevant with the steady-state flow simulations, are introduced for the GSA 

compared to the RVs defined in Table 3.2. The 𝑅𝑘 is the ratio between the horizontal 
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and vertical hydraulic conductivity. The 𝐾𝑣  is assumed to follow a Lognormal 

distribution by using the mean values given in Table 3.3 issued from the in-situ 

permeability tests. The 𝐶𝑜𝑉 is estimated by assuming that the inverse CDF at 5% is 

equal to a low value which is determined from a great number of predicted 𝐾𝑣 data. The 

available measurements of 𝛾𝑑  are used in combination with the following equation 

proposed by Chapuis and Aubertin (2003) to obtain the predicted 𝐾𝑣 values.  

 

log(𝐾𝑣) = 0.5 + 𝑙𝑜𝑔 [
𝑒3

(1 + 𝑒)𝐺𝑠
2𝑆𝑠

2
] (4-1) 

where 𝑒 is the void ratio, 𝐺𝑠 is the specific weight of solids and 𝑆𝑠 is the specific surface. 

This model is adopted since its input parameter 𝑒 is linked with the 𝛾𝑑 data thus a large 

number of 𝐾𝑣 predictions can be obtained. More details about the 𝐾𝑣 predictions for the 

studied dam can be found in Mouyeaux et al. (2019). Concerning the anisotropy, there 

is no relevant measurements available to estimate the 𝑅𝑘  statistical parameters. The 

values used in Mouyeaux et al. (2019) are thus directly taken for the present study. 

Table 4.1 gives a summary of the 4 introduced hydraulic RVs together with the 6 geo-

mechanical RVs already defined in Table 3.2. It can be seen that the Shell 𝐾𝑣 mainly 

varies between 2×10-5 and 1×10-4 m/s while the Core 𝐾𝑣 is basically bounded between 

1×10-9 and 2×10-8 m/s. The lower limit (unit in Table 4.1) for the 𝑅𝑘 permits to ensure 

that the horizontal hydraulic conductivity is always higher than the vertical one, while 

the upper limit can avoid excessive contrasts according to Smith and Konrad (2011). 

Assuming 𝑅𝑘 > 1  is logical for earth dams because these structures are usually 

constructed by layers and each layer should be vertically compacted. Finally, 10 RVs 

are considered in the sensitivity analysis. 

 

Performing directly a GSA by the MCS is time-consuming as mentioned in section 

2.2.2, given that the total number 𝑁𝑚𝑑 of deterministic evaluations in a GSA is highly 

related to the input dimension 𝑁𝑖𝑛 (Iooss and Lemaître, 2015; Saltelli et al., 2010). In 
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light of this, the PCE-based Sobol indices (section 2.2.2), are employed to investigate 

the importance of the 10 RVs for the dam stability. Particularly, an adaptive algorithm 

is proposed to reinforce the performance of the PCE for estimating the sensitivity 

indices. The proposed algorithm is described in the following section and the obtained 

results are presented. It is noted that the SRM_FEM model is selected to conduct the 

deterministic calculations in the GSA because the SRM_FEM is more efficient than the 

SRM_FDM for flow simulations. 

Table 4.1 Input probabilistic model considered for the sensitivity analysis 

Zone RV Distribution Mean 𝐶𝑜𝑉 (%) Min Max 

Shell 

𝛾𝑑  (g/cm3) Beta 2.02 3.30 1.63 2.40 

𝑐′ (kPa) Beta 10.55 57.63 0 30 

𝜙′ (o) Beta 34.85 3.72 25 45 

𝐾𝑣 (×10-5 m/s) Lognormal 5 50.2 2.05 (1) 9.75 (2) 

𝑅𝑘  Beta 2 50 1 15 

Core 

𝛾𝑑  (g/cm3) Beta 1.83 3.33 1.44 2.32 

𝑐′ (kPa) Beta 13.23 34.21 0 30 

𝜙′ (o) Beta 34.11 2.48 15 50 

𝐾𝑣 (×10-9 m/s) Lognormal 5 73.8 1.36 (1) 11.9 (2) 

𝑅𝑘  Beta 5 50 1 15 

Notes: (1)inverse CDF of 5%; (2)inverse CDF of 95%. 

4.1.2 An adaptive PCE for GSA 

As aforementioned, an adaptive algorithm is proposed for the PCE-based Sobol indices. 

The algorithm adds gradually training samples, by space-filling sampling techniques, 

to improve the PCE meta-model and ends the procedure by regarding three conditions: 

(1) the PCE model accuracy indicated by the 𝑄2 of Eq. (2-26); (2) the stability of the 

estimated principal Sobol indices; (3) the PCE order 𝑞𝑃𝐶𝐸. The idea is to improve the 

PCE global approximation performance by adding a sample which can help the current 

experimental design (𝐸𝐷 ) to better cover the whole input space, and to stop the 
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enrichment procedure once satisfying results are obtained so that unnecessary 

deterministic evaluations can be avoided. 

 

Table 4.2 describes the proposed algorithm step by step. The advantages over the 

existing algorithms are the following ones: (1) the PCE order is determined by a 

comparison test instead of being imposed by users. It is achieved by testing a range of 

PCE orders and selecting the one (𝑞𝑜𝑝𝑡) which leads to the maximum 𝑄2. The 𝑞𝑜𝑝𝑡 is 

then considered as the optimal order for the current 𝐸𝐷 and used for the PCE model 

construction. (2) the 𝐸𝐷  size is determined by an adaptive process. Users are not 

required to specify the ‘proper sample size’ for a given probabilistic analysis which is 

usually unknown a priori. One can start a simulation with a small 𝐸𝐷 and then enrich 

it until the stopping conditions are met. (3) the convergence of the obtained Sobol 

indices is guaranteed. An error estimate 휀𝑖𝑆𝐴 which measures the stability of the Sobol 

indices is proposed. To compute the 휀𝑖𝑆𝐴 , the RVs which have non-negligible 

contribution to the model response variance are selected at first. For example, the 

variable whose current total Sobol index (at iteration 𝑖) is higher than 1% of the global 

sum can be chosen. For each selected variable, a vector of size 𝑁𝑆𝐴 is formed using its 

Sobol index from the iteration  (𝑖 − 𝑁𝑆𝐴 + 1)  to the current iteration 𝑖 . Then the 

absolute error of all possible pairs for each vector is calculated. The maximum error for 

all pairs of all vectors is considered as the error estimate 휀𝑖𝑆𝐴. When 휀𝑖𝑆𝐴 is lower than 

a small value (e.g. 5%), the convergence of the Sobol indices is reached and it means 

that further adding training samples leads to insignificant improvement for the GSA 

results.  

 

Concerning the sampling strategy, the LHS is used to generate the initial 𝐸𝐷 and is 

enriched with new samples by using the technique introduced in Lataniotis et al. (2019) 

which is similar to the one of Sheikholeslami and Razavi (2017). The LHS aims to 

spread the sample points more evenly across all possible values with the concept of 
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Latin square as mentioned in section 2.2.4. The generated samples are ‘space-filling’ 

and can be considered as a good representation of the whole variability domain 

compared to the MC samples. The LHS enrichment technique (Lataniotis et al., 2019; 

Sheikholeslami and Razavi, 2017) adds samples such that the progressive 𝐸𝐷 can better 

capture the global information of the whole input space. In other words, it preserves the 

desired distributional properties of the LHS while the sample size grows during the 

analysis. 

Table 4.2 Description of the proposed adaptive PCE for GSA 

Step Description 

1  Generate an initial 𝐸𝐷(1) according to the input joint distribution using the LHS  

2  Evaluate the model response of the samples in the 𝐸𝐷 using a deterministic model 

 3.1 

 

Construct a sparse PCE(2) with the current 𝐸𝐷 using the method presented in 

section 2.2.1. The PCE order 𝑞𝑜𝑝𝑡 is determined by testing a range of values 

(2: 𝑞𝑚𝑆𝐴
(3)). The PCE accuracy indicator is noted as 𝑄𝑖𝑆𝐴

2 . 

 3.2 
 

Estimate the Sobol index (first-order and total effect) of each input variable with 

the PCE coefficients using the method presented in section 2.2.2.  

 3.3  Stop condition 1: if 𝑞𝑜𝑝𝑡 ≥ 𝑞𝑡𝑆𝐴
(4) continue to next step, otherwise, go to step 3.6. 

 3.4  Stop condition 2: if 𝑄𝑖𝑆𝐴
2 ≥ 𝑄𝑡𝑆𝐴

2 (5) continue to next step, otherwise, go to step 3.6. 

 3.5  Stop condition 3: if 휀𝑖𝑆𝐴  ≤  휀𝑡𝑆𝐴
(6) go to the step 4, otherwise, go to step 3.6.  

 3.6 

 

Enrich the current LHS samples by adding a new one with the technique described 

in (Lataniotis et al., 2019; Sheikholeslami and Razavi, 2017). Evaluate the model 

response of the added sample using a deterministic model and update the current 

𝐸𝐷. Then go back to step 3.1. 

4  Collect the results (Sobol indices, 𝑞𝑜𝑝𝑡 and 𝑄𝑖𝑆𝐴
2 ) of the current iteration; the Sobol index 

of each input variable is obtained. 

Notes:(1)a small size (30 in this work) can be used for the initial 𝐸𝐷; (2)Hermite polynomials are used in 

this work; (3)the PCE order is tested between 2 and 10 in this work; (4)the minimum PCE order is set as 

4; (5)the target accuracy is 0.98; (6)the tolerance error is 5% and the 𝑁𝑆𝐴 is set as 10. 
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4.1.3 Numerical results 

This section presents the GSA results of the dam for two design scenarios: normal and 

seismic. The latter refers to a pseudo-static acceleration of 0.24𝑔 applied to the dam. 

The method of Table 4.2 is employed to investigate the contribution of the ten RVs 

defined in Table 4.1 with respect to the dam stability. Two sparse PCE meta-models 

are finally obtained to estimate the Sobol indices for the two scenarios. For the normal 

condition, 109 deterministic calculations are performed according to Table 4.2 and an 

8-order sparse PCE with a 𝑄2  of 0.9898 is adopted at the last iteration. As for the 

seismic condition, the total number of deterministic calculations is 126 and the obtained 

PCE is a 5-order one with a 𝑄2 of 0.9808. Figure 4.1 presents the GSA results estimated 

by the coefficients of the two PCE models. The first-order and total Sobol indices are 

both shown in this figure. As a reminder to section 2.2.2, the first-order Sobol index 

gives the influence of each variable taken alone while the total one evaluates the total 

effects of one variable by accounting for possible interaction effects with others. 

 

By observing Figure 4.1, one can have an insight into the contribution of each variable 

on the dam FoS variance. Firstly, it can be concluded that the 𝑐′of the Shell takes the 

first place among the 10 parameters and has the most important influence on the FoS 

variance with a Sobol index higher than 0.8. This is not surprising since nearly all the 

slip surfaces take place in the downstream part of the dam under steady-state flow 

conditions and the variable 𝑐′  in the Shell zone has the biggest variability (𝐶𝑜𝑉 =

57.63%) among the 10 variables, as shown in Table 4.1. The next most important 

parameter is the Shell 𝜙′ with a Sobol index varied between 0.1 and 0.2. The other 

variables have a lower influence on the FoS variability since their Sobol indices (even 

the total one) are all smaller than 0.01. This finding is consistent with previous studies 

(Fenton and Griffiths, 1997; Wu, 2013): Wu (2013) remarked that the dry density has 

very limited impacts on the variability of slope stability analysis results; Fenton and 

Griffiths (1997) found that the variability of soil permeability did not significantly add 
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variability to the phreatic surface for the dams equiped with filter drains as long as the 

drain permeability is high enough and the effective filter length is long enough. The 

computed total Sobol indices show that the hydraulic parameters (𝐾𝑣 and 𝑅𝑘) are not 

influential even if possible iterations with other variables are considered. Therefore, the 

variabilites of the soil hydraulic parameters are ignored in the following studies for the 

sake of simplicity.  

 

Figure 4.1 First-order and Total Sobol indices of the ten parameters 

4.2 Reliability analysis results 

The reliability analyses in this chapter are performed by using the SPCE-based MCS. 

It consists in constructing a SPCE model as an approximation to a computational model, 

then performing a crude MCS with the surrogate model. Once an SPCE model is 

available, the Sobol indices can also be derived as shown in the previous section. 

Therefore, this approach allows obtaining more results (e.g. 𝑃𝑓, FoS distribution and 

GSA results) than other reliability methods such as the SS, IS and FORM which focus 

on evaluating the 𝑃𝑓. The PCE, also called as stochastic response surface method by 

some researchers, is selected to construct the surrogate model since it has been widely 

used in the field of geotechnical reliability analysis for tunnels (Mollon et al. 2011; Pan 



109 

 

and Dias 2017b), dams (Ghanem et al., 2007; Hariri-Ardebili and Sudret, 2019), 

foundations (Al-Bittar and Soubra, 2014, 2013) and slopes (Li et al. 2011; Pan et al. 

2017). The SPCE is an improvement to the original PCE by limiting the number of 

involved multivariate polynomials and thus reducing the number of required 

deterministic calculations. The following values are adopted for the user-defined 

parameters which are necessary for the procedure of Table 2.2: the target accuracy 

𝑄𝑡𝑔
2 = 0.99, the maximal polynomial degree 𝑃𝑚𝑎𝑥 = 5, the cut-off values 휀1 = 휀2 =

5 × 10−5  and the q-quasi-norm q = 0.7. These values are consistent with the ones 

adopted in existing studies (Al-Bittar and Soubra, 2013; Pan and Dias, 2017b). 

 

Concerning the soil variability modelling, all the variables are firstly assumed to follow 

a Beta distribution with the parameters given in Table 3.2. The effect of using a different 

distribution type (Truncated normal) for input variables will be discussed in a second 

time. For each exploitation condition (normal and seismic), two reliability analyses are 

performed using respectively the SRM_FDM and the LEM_GA as the deterministic 

model for a purpose of comparing the two slope stability analysis methods (SRM and 

LEM) in a probabilistic framework. Comparison between the SRM and the LEM within 

deterministic calculations has been widely reported. However, evaluating and 

comparing the performance of the two methods in reliability analyses are seldom 

performed in literature. This study attempts to provide first insights into this issue. 

Particularly, the SRM_FDM instead of SRM_FEM is chosen to represent the SRM since 

the latter has an assumption during a pseudo-static analysis which does not permit it to 

be directly compared with the LEM. The assumption, imposed by Plaxis (Brinkgreve 

et al., 2015), increases the pore water pressure and the hydrostatic loadings with a ratio 

related to the pseudo-static acceleration in order to take into account the hydrodynamic 

overpressure.  

  



110 

 

4.2.1 Normal exploitation condition 

This section presents the reliability analysis results of the dam under normal 

exploitation condition. Figure 4.2 gives the PDF of the FoS, and Table 4.3 presents the 

reliability results including failure probability, mean and standard deviation of the FoS. 

Plotting the PDF allows having a global idea on the FoS distribution and its major 

variation range. The results in Table 4.3 are derived from the SPCE-based MCS 

estimates, i.e. a large number of FoS values. The results based on the FoS evaluation 

by the SRM_FDM and the LEM_GA model are both provided. By post-processing the 

SPCE coefficients, the sensitivity index of each input variable can be determined and 

are presented in Figure 4.3.  

 

From Figure 4.2, one can observe that the PDFs of the dam FoS are not symmetric. The 

two curves are considered to be negatively skewed with a relatively bigger tail at the 

left. Thus, more data in the left tail, i.e. more small values of FoS, would be expected 

than a normal distribution. It can be explained by the fact that the distribution of the 

input variables is not symmetric and that some variables have more small values, such 

as 𝑐′  in the Shell zone as shown in Figure 3.9. The PDF curve obtained with the 

numerical model – SRM_FDM (𝑃𝐷𝐹𝑠𝑟𝑚) is more skewed to the right side than the one 

obtained with the analytical model – LEM_GA (𝑃𝐷𝐹𝑙𝑒𝑚). An interpretation of this 

point will be given later in section 4.3.1. 
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Figure 4.2 PDF of the studied dam FoS under normal exploitation condition 

According to Table 4.3, the failure probability of the considered dam is estimated to be 

6.5×10-6 or 2.7×10-6 by the two models. The SRM_FDM leads to a slightly higher 

failure probability than the LEM_GA. Concerning the first two statistical moments of 

FoS, the LEM_GA gives a smaller mean value and a smaller standard deviation. The 

differences are not significant.  

Table 4.3 Summary of the reliability results (normal exploitation condition) 

Model 𝑃𝑓  𝑀𝑒𝑎𝑛𝐹𝑜𝑆 𝑆𝑡𝑑𝐹𝑜𝑠  𝐶𝑜𝑉𝐹𝑜𝑆 

SRM_FDM 6.5×10-6 2.37 0.245 10.3% 

LEM_GA 2.7×10-6 2.32 0.242 10.5% 

 

The GSA results shown in Figure 4.3 are in good agreement with Figure 4.1. It is 

observed that the Shell 𝑐′ and 𝜙′ contribute more to the variance of the dam FoS while 

other variables are not influential since their Sobol indices are all smaller than 0.005. 

Another remark is that the results obtained by the two deterministic models are 

consistent with each other. 
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Figure 4.3 Sobol indices of each variable (Normal exploitation condition) 

4.2.2 Exploitation under seismic loading condition 

This section presents the reliability analysis results of the dam under seismic loading 

conditions. A pseudo-static acceleration of 0.24𝑔 with a return period of 5000 years is 

considered. Figure 4.4 gives the PDF of the FoS, and Table 4.4 presents the reliability 

results. The results based on the FoS evaluation by the SRM_FDM and the LEM_GA 

model are both provided. Additionally, a direct MCS and a direct GSA with respect to 

the LEM_GA are performed. The aim is to evaluate the accuracy of the reliability and 

sensitivity results provided by the SPCE meta-model.  

 

According to Figure 4.4, the observations made in the previous section for the FoS 

distribution under normal exploitation condition remain valid. The PDF curves obtained 

with the two deterministic models are both not symmetric and are negatively skewed. 

The 𝑃𝐷𝐹𝑠𝑟𝑚  is more skewed to the right side than the 𝑃𝐷𝐹𝑙𝑒𝑚.  
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Figure 4.4 PDF of the studied dam FoS under seismic loading conditions 

In Table 4.4, two kinds of 𝑃𝑓 are given: 𝑃𝑓𝑐𝑜𝑛  and 𝑃𝑓𝑠𝑐𝑒 . The first one is obtained 

directly by the AbSPCE procedure (or a direct MCS) and represents the structure 

reliability under the considered seismic loading (a pseudo-static acceleration of 0.24𝑔). 

Therefore, it is a failure probability (i.e. 𝑃𝑟 (𝐷𝑎𝑚𝐹𝑎𝑖𝑙𝑢𝑟𝑒|0.24𝑔)) conditioned on the 

loading and termed as 𝑃𝑓𝑐𝑜𝑛 in this work. Then, the probability of the analyzed scenario 

𝑃𝑟 (𝐷𝑎𝑚𝐹𝑎𝑖𝑙𝑢𝑟𝑒 ∩ 0.24𝑔) , termed as 𝑃𝑓𝑠𝑐𝑒 , can be assessed with the following 

formula using the conditional probability theory: 𝑃𝑓𝑠𝑐𝑒 = 𝑃𝑓𝑐𝑜𝑛 × 𝑃𝑟 (0.24𝑔) in which 

𝑃𝑟 (0.24𝑔)  is the occurrence probability of the seismic event having a maximum 

acceleration of 0.24𝑔. The 𝑃𝑓𝑠𝑐𝑒 involves the occurrence of both of the two events: the 

dam failure and an earthquake of 0.24𝑔. According to the recommendations given in 

Loudière et al. (2014), the considered pseudo-static loading (0.24𝑔) corresponds to a 

return period of 5000 years for the dam site. This means, by the definition of the return 

period, that the probability of having a seismic event exceeding the considered loading 

(i.e. 0.24𝑔) is 1/5000 in any one year. Then, it is assumed in this work to adopt simply 

the value of 1/5000 for the 𝑃𝑟 (0.24𝑔) . Therefore, the failure probability of the 

analyzed scenario (𝑃𝑓𝑠𝑐𝑒 ) can be approximated by 𝑃𝑓𝑐𝑜𝑛 × 1/5000 . Assuming a 
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𝑃𝑟 (0.24𝑔) of 1/5000 leads to a higher estimate on the 𝑃𝑓𝑠𝑐𝑒 so conservative results. 

Using a more sophisticated approach for the 𝑃𝑟 (0.24𝑔) estimation is beyond the scope 

of this work and could be of interest for a future study by having more information on 

the dam site seismic records. Then, for obtaining a total failure probability of the dam 

in which all the possible seismic events are considered, one option is to prepare the dam 

fragility curve (𝑃𝑓𝑐𝑜𝑛  with respect to different seismic loadings) and estimate the 

occurrence probability of each possible seismic event. With the introduced reliability 

method (SPCE), it seems feasible to carry out such a study in future and the total 

computational time is expected to be acceptable. From Table 4.4, the 𝑃𝑓𝑐𝑜𝑛 is estimated 

to 2.4×10-2 by the SRM_FDM model, and to 1.4×10-2 by the LEM_GA model. These 

values are then multiplied by a coefficient of 1/5000 and respectively become equal to 

4.7×10-6 and to 2.8×10-6. They are in the same order of magnitude of the dam 𝑃𝑓 under 

normal exploitation condition, and are all quite small. Concerning the first two 

statistical moments of FoS, the LEM_GA model gives a smaller mean value and a 

smaller standard deviation compared to those of the SRM_FDM. The differences are 

not significant.  

Table 4.4 Summary of the probabilistic results (seismic) 

Model Method 𝑃𝑓𝑐𝑜𝑛 𝑃𝑓𝑠𝑐𝑒  𝑀𝑒𝑎𝑛𝐹𝑜𝑆 𝑆𝑡𝑑𝐹𝑜𝑠  𝐶𝑜𝑉𝐹𝑜𝑆 

SRM_FDM SPCE-MCS 2.4×10-2 4.7×10-6 1.28 0.119 9.2% 

LEM_GA SPCE-MCS 1.4×10-2 2.8×10-6 1.24 0.108 8.7% 

LEM_GA Direct MCS 1.2×10-2 2.4×10-6 1.24 0.106 8.6% 

 

According to Figure 4.5, the main conclusions related to the GSA remain the same 

compared to Figures 4.1 and 4.3: (1) the sensitivity analysis results obtained by the two 

deterministic models are in good agreement with each other; (2) the variables 𝑐′ and 

𝜙′ in the Shell zone are the most two important variables for the FoS variance with a 

sum of Sobol index around 0.99; (3) the dry density has almost no impact on the FoS 

variability.  
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Figure 4.5 Sobol index of each variable (Seismic loading conditions) 

As mentioned before, a direct MCS and a direct GSA using the LEM_GA are performed 

in this section in order to validate the reliability and sensitivity results issued from the 

SPCE. 15 000 deterministic calculations are performed in the direct MCS, ensuring that 

the 𝐶𝑜𝑉 of the estimated 𝑃𝑓 is lower than 8%. For the direct GSA, 8 000 simulations 

on the LEM_GA are conducted. It is found in Figure 4.4 that the 𝑃𝐷𝐹𝑙𝑒𝑚 is almost 

superposed with the PDF obtained by the direct MCS. This indicates that the surrogate 

model constructed by the SPCE can replace well the original model to predict the dam 

FoS values. Then, the results in Table 4.4 show that the 𝑃𝑓𝑐𝑜𝑛 values by the SPCE-MCS 

is very close to the reference ones (direct MCS), and the FoS statistics are almost 

identical between the two methods. These findings show a good accuracy of the SPCE-

MCS in estimating reliability results. Additionally, it is observed in Figure 4.5 that the 

Sobol indices based on the SPCE coefficients are very similar to those obtained with a 

direct GSA. This permits to validate the SPCE in estimating the sensitivity analysis 

results for the considered dam. The idea of constructing a surrogate model in a 

probabilistic analysis is to reduce the computational time. Following the procedure of 

Table 2.2, it needs around 200 deterministic simulations to obtain a satisfied SPCE 
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meta-model. Then, the running time of an MCS or a GSA based on the meta-model is 

negligible. The total computational time of performing an SPCE-based reliability and 

sensitivity analyses with the LEM_GA is about 35 mins on an Intel Xeon CPU E5-1620 

3.5 GHz PC. On the contrary, it requires around 42 hours for a direct MCS and 24 hours 

for a direct GSA using the LEM_GA. Such a comparison highlights the advantage of 

using SPCE in this work. In summary, the employed SPCE method can provide 

accurate estimates for reliability and sensitivity results with a greatly reduced 

calculation time.  

4.3 Discussions 

This section discusses two issues which are not explained in detail (comparison between 

the SRM-LEM) or not considered (effect of distribution type for input variables) in the 

previous sections. 

4.3.1 Comparison between the two deterministic models 

According to the previous sections, it can be concluded that the two deterministic 

models can give similar results in terms of 𝑃𝑓, mean value, standard deviation and 

sensitivity indices. The obtained PDF curves have also a similar shape. These findings 

are consistent with the comparison between the two methods (SRM and LEM) in a 

deterministic framework, as pointed out by Cheng et al. (2007). However, some 

differences between the two methods in a probabilistic framework are highlighted as 

well in the study. 

 

The SRM_FDM model leads to a slightly higher failure probability compared to the 

LEM_GA, and the 𝑃𝐷𝐹𝑠𝑟𝑚 is more skewed to the right side than the 𝑃𝐷𝐹𝑙𝑒𝑚. According 

to Figures 4.2 and 4.4, the right part to the peak point of the 𝑃𝐷𝐹𝑠𝑟𝑚 has less variability 

than the 𝑃𝐷𝐹𝑙𝑒𝑚 one. It means that the SRM_FDM, compared to the LEM_GA, is less 

sensitive to the variation of the input variables when they varied within great values. 

An interpretation of this phenomenon is the following one. For the FoS computation 
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using the SRM_FDM, the SRM is adopted. It reduces the shear strength parameters (𝑐′ 

and 𝑡𝑎𝑛(𝜙′)) by a factor and re-calculates the stress of each element. This process is 

repeated for different values of reduction factor until the model becomes unstable. As 

the same reduction factor is applied to both the strength parameters each time, the 

parameter with a relatively small value is thus the crucial parameter which defines the 

final reduction factor (i.e. FoS) since it is easier to reach its critical value which can 

lead to an instability. For the encountered problem, the variable 𝑡𝑎𝑛(𝜙′
𝑆ℎ𝑒𝑙𝑙

) becomes 

the crucial parameter when great values are set to the input variables. Because the 

𝜙′
𝑆ℎ𝑒𝑙𝑙

 has a lower variance than the one of 𝑐′
𝑆ℎ𝑒𝑙𝑙. It is more probable to generate a 

high value for 𝑐′
𝑆ℎ𝑒𝑙𝑙 such as 25 kPa which is over two times than its mean value, than 

for 𝜙′
𝑆ℎ𝑒𝑙𝑙

 which varies mainly between 32o and 38o (Figure 3.9). As a result, the 

𝑃𝐷𝐹𝑠𝑟𝑚 has a very small variability for its right part. For the LEM_GA, the negative 

skewness of the 𝑃𝐷𝐹𝑙𝑒𝑚 is simply due to the fact that the 𝑐′
𝑆ℎ𝑒𝑙𝑙, which is the most 

important variable for FoS variance, has much more small values. Therefore, the right 

part of the 𝑃𝐷𝐹𝑠𝑟𝑚 peak point has a lower variability than the 𝑃𝐷𝐹𝑙𝑒𝑚 one.  

 

An advantage of using the LEM_GA is that it can reduce considerably the computation 

time of a reliability analysis. The time required to perform one deterministic simulation 

using the SRM_FDM is about 20 minutes on an Intel Xeon CPU E5-1620 3.5GHz PC, 

while it is just 10 seconds for the LEM_GA. Then, the time of performing a direct MCS, 

coupled with the LEM_GA, is acceptable (2~3 days) for the cases with a relatively high 

𝑃𝑓 (> 10−2). The surrogate model (e.g. SPCE) can be used optionally for a further time 

reduction (e.g. reduced to 30 mins as showed in section 4.2.2) and obtaining more 

results (e.g. sensitivity indices). However, for the cases with a lower 𝑃𝑓 (< 10−3), it 

seems necessary to appeal to the surrogate modelling technique or other methods since 

the time of a direct MCS could be several weeks or months if the target 𝐶𝑜𝑉𝑃𝑓 is 10%, 

even an efficient deterministic model (i.e. 10 seconds for one simulation) is used. 
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4.3.2 Effect of the distribution type for input variables 

In the previous section, all the variables are assumed to follow Beta distributions. 

Although it seems that this type of distribution can describe better the soil variability of 

the studied dam according to Figure 3.9, the effect of using another distribution type 

for input variables on the reliability results is investigated.  

 

In this section, all the variables are assumed to follow Truncated normal distributions 

instead of Beta distributions. The results are compared to those obtained in section 4.2. 

The statistical parameters are taken from Table 3.2. Only the LEM_GA model is used 

for this study since it can provide similar results to the SRM_FDM and is faster. The 

aim is to study the effect of distribution type on the probabilistic results. 

 

Figure 4.6 compares the PDFs of the FoS under two exploitation conditions obtained 

by assuming two distribution types for the RVs, and Table 4.5 presents the reliability 

results. For the sensitivity indices, they are presented in Figure 4.7. 

 

It can be observed from Figure 4.6 that the PDF curve obtained by truncated normal 

distributions (𝑃𝐷𝐹𝑁) is taller and narrower than the one of beta distribution (𝑃𝐷𝐹𝐵), for 

both the two exploitation conditions. For the part left to the peak point of the PDF curve, 

the 𝑃𝐷𝐹𝐵 presents a higher variability and a higher value of probability density than the 

𝑃𝐷𝐹𝑁. It indicates that using a Beta distribution gives a higher probability to obtain a 

small FoS value. This is because the probability of generating a small value of 𝑐′ in the 

Shell zone drawn from the fitted Beta distribution is higher than the Truncated normal 

distribution, as presented in Figure 3.9. Please note that the variable 𝑐′ in the Shell zone 

has the most important influence on the FoS variance which is evidenced by the GSA 

results. In addition, the four curves are negatively skewed. The reason has been given 

in the previous section. 
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Figure 4.6 Comparison between the PDFs obtained by Beta and Truncated Normal distribution 

According to Table 4.5, one can conclude that assuming Truncated normal distributions 

for the input variables lead to a smaller failure probability than Beta distributions. It 

should be noted that the failure probabilities presented in Table 4.5 for seismic loading 

conditions are the one considering a return period of 5000 years. Concerning the first 

two moments of FoS, a bigger mean value and a smaller standard deviation are obtained 

when Truncated normal distributions are used. This is in agreement with the 

observation of the PDF shapes in Figure 4.6. The differences are not significant. 

Table 4.5 Reliability results obtained by two distribution types 

Exploitation condition Distribution 𝑃𝑓𝑠𝑐𝑒  𝑀𝑒𝑎𝑛𝐹𝑜𝑆 𝑆𝑡𝑑𝐹𝑜𝑠  𝐶𝑜𝑉𝐹𝑜𝑆  

Seismic 
Beta 2.8×10-6 1.24 0.108 8.7% 

T. Normal 0.9×10-6 1.25 0.096 7.6% 

Normal 
Beta 2.7×10-6 2.32 0.242 10.5% 

T. Normal 1.0×10-6 2.35 0.218 9.26% 

 

As for the sensitivity index of each variable, Figure 4.7 gives a comparison between the 

two distribution types for the two exploitation conditions. Comparable results are 
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obtained from the two distributions types. The most two important variables are the 

same as the previous analyses. In addition, it is observed that the Sobol index of the 

variable 𝑐′  in the Shell zone decreases while the one of 𝜙′  is increasing when the 

truncated normal distribution is used. The reason is that the variability of the variable 𝑐 

in the Shell zone is decreased when the fitted distribution type is changed from Beta to 

Truncated normal, as presented in Figure 3.9. 

 

In summary, the two distribution types give comparable reliability results. Assuming 

Beta distribution for the input variables can lead to a higher 𝑃𝑓  compared to a 

Truncated normal distribution. The assumption is thus conservative. However, this 

assumption is more realistic since it can represent better the soil variability of the 

considered dam than the Truncated normal distribution as shown in Figure 3.9.  

 

Figure 4.7 Sobol index of each variable for different distribution type of input variables 

4.4 Conclusion 

This chapter uses the RVs approach to probabilistically evaluate the dam stability 

condition. A global sensitivity analysis is performed at first for the purpose of 

understanding the contribution of each soil property on the dam FoS variation with a 
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focus on the effects of the soil hydraulic parameters. It is observed that the two most 

significant variables are 𝑐′ and 𝜙′ of the Shell zone with a sum of the first-order Sobol 

index around 0.99 for both the two cases (normal and seismic operation). Another 

important remark is that the variabilities of the hydraulic conductivity (𝐾𝑣 and 𝑅𝑘) have 

almost no effect on the FoS variation. This finding can support the simplification made 

for the following studies in which the uncertainties related to 𝐾𝑣 and 𝑅𝑘 are ignored.  

 

The dam reliability is assessed under two exploitation conditions (normal and seismic) 

by using the SPCE-MCS. The obtained failure probabilities related to the dam sliding 

stability are all in the order of 10-6, indicating a good design of the studied dam for these 

two conditions. The effectiveness of the method SPCE is also checked by comparing it 

with a direct MCS and a direct GSA using the LEM_GA model under the seismic 

exploitation condition. The results show that using the SPCE can provide accurate 

estimates of the 𝑃𝑓 , FoS statistics and sensitivity indices with a greatly reduced 

computational time compared to the direct analyses. 

 

Additionally, two technical issues related to the dam probabilistic analysis are discussed 

in the chapter: one about the effects of using different distribution types for the input 

variables and another one about the comparison between the SRM and the LEM in 

probabilistic analyses. It is found that using Beta distributions can lead to a higher 𝑃𝑓 

compared to Truncated normal ones. Thus, the Beta is considered being conservative 

for the studied case. For the second issue, the results show that the two deterministic 

models can give basically similar results in terms of failure probability, distribution of 

the FoS and sensitivity index of each variable. However, a different performance 

between the two methods (SRM and LEM) within great FoS values for the present case 

is highlighted as shown in Figures 4.2 and 4.4. This is due to the fact that the variable 

𝜙′ varies within a very narrow range compared to the 𝑐′ while the SRM applies the 

same reduction factor to 𝑡𝑎𝑛 (𝜙′) and 𝑐′  leading to the FoS with great values are 
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mainly influenced by 𝜙′, thus showing a low variability at the region of these values. 

By using the LEM_GA model for the dam FoS evaluation, the computation time of a 

reliability analysis can be drastically reduced. It is thus recommended for a dam 

probabilistic analysis and could be applied at the preliminary dam design stage. 
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5 CHAPTER Ⅴ: Probabilistic analysis using the random-

fields approach 
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This chapter improves the dam probabilistic analysis of CHAPTER Ⅳ by introducing 

random fields (RF) of soils properties 𝛾𝑑, 𝜙′ and 𝑐′. The 𝛾𝑑 RFs are based on the geo-

localised measurements while the 𝜙′ RFs are obtained by transforming those of 𝛾𝑑 . 

Considering the lack of geo-localized 𝑐′ data, the effect of 𝑐′ RFs is also discussed in 

this chapter by adopting hypothetical values. The objective is to account for the soil 

spatial variability, which is unavoidable for earthen structures, in the dam reliability 

analysis. In accordance with the conclusions of the previous chapter, only the seismic 

scenario (considering a pseudo-static acceleration of 0.24𝑔 ) is considered in the 

following chapter, by the fact that the dam under normal exploitation conditions has a 

low failure probability (in the order of 10-6). Two complementary studies, which could 

be beneficial for future applications, are conducted in the context of RFs-implemented 

probabilistic analysis. The first one compares five reliability methods for high 

dimensional stochastic problems and permits to provide relevant recommendations. 

The present dam problem is high dimensional since a large number of RVs are 

generated to represent the desired RFs for each simulation. The second study models 

the soil spatial variability by different kinds of RFs (e.g. conditional) and investigates 

their effects on the dam reliability.  

 

This chapter starts with a performance survey of the LEM_GA model for 

nonhomogeneous soils. Then, the two complementary studies mentioned above are 

conducted in order to discuss the method selection for high dimensional cases and the 

modelling of different RFs. 

5.1 Performance survey of the model LEM_GA within spatially varied soils 

As presented before, three deterministic models are developed in this work. The 

SRM_FDM and LEM_GA can both be coupled with RFs easily, while the SRM_FEM 

presents difficulties for implementing RFs because a direct modification of the soil 

properties for each element is not permitted in the adopted platform (Plaxis). The 



125 

 

LEM_GA is preferred to the SRM_FDM because of its computational efficiency which 

enables a large number of deterministic calculations required for the subsequent studies 

(MCS, comparison of reliability methods and effects of different RFs). Indeed, 

according to the results of CHAPTER Ⅳ, the LEM_GA is able to provide similar 

reliability analysis results compared to the SRM_FDM in the context of RVs. This 

section aims to evaluate the LEM_GA performance for spatially varied soils modelled 

by RFs. To achieve this purpose, a comparison study is carried out. It involves 

generating a number of RFs for 𝜙′ and 𝛾𝑑, and RVs for c′, and estimating the dam FoS 

for each set of input parameters by using both the two deterministic models (LEM_GA 

and SRM_FDM). In total 150 sets of input parameters are considered in the comparison 

study. Each set of input parameters is obtained randomly and is composed of three RFs 

of  𝛾𝑑, three RFs of 𝜙′ and two RVs of 𝑐′ which is the typical scenario considered for 

the following studies. Figure 5.1 presents a direct comparison of the FoS values 

computed by the two models for the 150 different input sets. It is shown that the results 

are close to the unit line and the relative errors are mainly smaller or around 5%. These 

observations indicate that the LEM_GA is able to provide reasonable estimates of the 

dam FoS considering RFs. Therefore, the LEM_GA effectiveness is validated for the 

cases of RFs and can be used for the following analyses. 

 

Figure 5.1 Comparison of the FoS estimates obtained by the two models for 150 random input sets 
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Additionally, a comparison concerning the failure surface location determined by the 

two models is conducted, and the results are presented in Figure 5.2. Two different 

cases are considered for the comparison: the first one (case 1) is randomly selected from 

the previous 150 sets of input parameters while the second one (case 2) is obtained by 

randomly generating RFs for all the three soil properties ( 𝛾𝑑 , 𝑐′  and 𝜙′ ). The 

corresponding FoS estimates are also provided in Figure 5.2; a good agreement between 

the two models is observed. For the failure surface, it is found that the LEM_GA surface 

is not exactly the same as the one given by the SRM_FDM, but the two surfaces are 

similar and comparable with each other for both cases. For case 2, the failure surface is 

apparently non-circular according to SRM_FDM. This result is expected since the three 

soil properties are all modelled by RFs and the soil is more nonhomogeneous. This non-

circular feature is also captured by the LEM_GA due to the non-circular trial slip 

surfaces generation method (Cheng et al., 2008), although it is not the same with the 

SRM_FDM. On the contrary, the failure surface of case 1 is close to a circular shape by 

the fact that the variabilities of 𝛾𝑑  and 𝜙′ , which are modelled by RFs, are not 

significant (their CoVs are lower than 5% according to Table 3.2). It is noted that the 

comparison of the critical slip surfaces shown in Figure 5.2 is less important than Figure 

5.1 since the focus of using the deterministic model lies in providing the dam FoS 

estimates in this work. However, such as study helps to have an idea about the LEM_GA 

performance of locating the failure surface in nonhomogeneous soils, and could be 

useful for future studies which would consider the failure soil volume, for example, in 

a risk/damage assessment. 

 

In order to obtain a sufficient accuracy in terms of the variance error for RFs, Li and 

Der Kiureghian (1993) recommended that the stochastic grid size can be set equal to 

0.2 times the autocorrelation distance. This condition is well satisfied for all the RFs 

generation in this work with respect to the values of 𝐿𝑥 and 𝐿𝑧 given in Table 3.4. 



127 

 

 

Figure 5.2 Comparison of the failure surfaces determined by the two models for two cases 

5.2 Comparison of five reliability methods for high dimensional problems 

As presented in section 2.2.3, a K-L expansion should be truncated to a limited number 

of series terms 𝑆𝐾𝐿 for practical applications of RFs simulations. The value of 𝑆𝐾𝐿 can 

be determined by evaluating the error defined by Eq. (2-38) with a prescribed accuracy. 

This error is dependent to the autocorrelation distances and the RF size. For an accuracy 

close to 10%, the 𝑆𝐾𝐿 is estimated to 30, 368 and 1710 for respectively the Shell-1, Core 

and Shell-2 zone (considering their site dimension and the relevant autocorrelation 

distances presented in Table 3.4). It means that, for example, at least 1710 RVs are 

needed to represent accurately a 𝛾𝑑  RF for the Shell-2 zone (downstream shell). 

Therefore, the present study involves a high dimensional stochastic problem due to the 

small autocorrelation distances determined with the measurements. 

 

This section conducts a comparative study of several reliability methods with the 

purpose of evaluating their performance for high dimensional problems. In literature, 

few studies exist for the comparison of different reliability methods in real engineering 

problems, and no study has been done for the stochastic problems with more than 1000 

RVs in the geotechnical field. The comparison results obtained in this section are 
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expected to help engineers/researchers in the method selection for such complex 

problems.  

5.2.1 The considered reliability methods for the comparative study 

For a reliability analysis, the MCS is always considered as a standard reference to test 

other methods (Rubinstein, 1981; Sudret and Der Kiureghian, 2000). However, it 

suffers from a very low computational efficiency. Based on the MCS, one advanced 

sampling method (SS (Au and Beck, 2001)) was proposed to reduce the variance of the 

MCS estimator with a limited number of deterministic model calls. It is applicable for 

the problems with spatially varying soils (Ahmed and Soubra, 2014) since the method 

is independent of the input dimension. Another reliability method is the Moment 

Method (MM) (Rosenblueth, 1975) which uses approximation by Taylor series to 

estimate the first moments of a system response and then to compute the reliability 

index with the estimated moments. Alternatively, the first moments can also be 

determined by performing an MCS until the convergence is reached. The MM, based 

on the MCS, is independent to the input dimension, so it is applicable for the present 

problem. Furthermore, the F/S-ORM are also commonly used in the field of reliability 

analysis (Babu and Srivastava, 2010; Mollon et al., 2009). The main task of these 

methods is to locate a so-called design point by solving a constrained problem. 

Unfortunately, these methods are not able to handle too many RVs (Pan and Dias, 

2017b). During the last decades, meta-modelling techniques have received much 

attention in the reliability analysis due to their efficiency and accuracy (Sudret et al. 

2017). In the context of high dimensional stochastic problems, some dimension 

reduction techniques were introduced and combined with the meta-modelling technique 

to improve its performance, such as the SPCE combined with the GSA (termed as 

SPCE/GSA) (Al-Bittar and Soubra, 2014) and the SPCE combined with the Sliced 

Inverse Regression (termed as SPCE/SIR) (Pan and Dias, 2017c) which were proposed 

in recent years. They use respectively the GSA and the SIR to reduce the number of the 
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involved RVs at first stage, and then to construct an accurate SPCE meta-model based 

on the reduced dimension.  

 

In summary, the selected reliability methods for the comparative study are thus: a 

reference method (MCS), a variance reduced MCS (SS), an MCS-based moment 

method (MM), and two meta-modelling approaches (the SPCE/GSA and the 

SPCE/SIR). The first three methods are consistent with the presentations given in 

section 2.1.3. Specifically, the number of calls to the deterministic model in the MCS 

is determined by considering a 𝐶𝑜𝑉𝑃𝑓 around or lower than 5%; the intermediate failure 

threshold 𝑃𝑆𝑆  is selected as 0.2 and the model evaluation number 𝑁𝑆𝑆  of each 

intermediate level is 1000 for the SS. Concerning the MM, the fourth moment 

approximation (Eq. 2-14) is used to estimate the reliability index and then the 𝑃𝑓 by 

Eq. 2-3. The convergence of the four required moments is evaluated by adopting a 

dynamic criterion which can be satisfied only when a selected error is lower than a 

value 휀𝑀𝑀  for 𝑁𝑀𝑀  continuous steps. In this work, the selected error is the relative 

difference of the target moment between two continuous iterations. The 휀𝑀𝑀 and 𝑁𝑀𝑀 

is set respectively as 0.1% and 100. Such a severe convergence criterion can guarantee 

that the values of the four moments, which are primary elements for the MM, are 

accurate enough.  

 

The last two methods are based on the SPCE and share a similar analysis procedure in 

general. Figure 5.3 shows a flowchart for describing the procedure. It is followed by a 

brief presentation of the two dimension-reduction techniques (GSA and SIR) which are 

not reviewed in CHAPTER Ⅱ. As mentioned above, the present dam problem is high 

dimensional due to the RF discretization. Directly using the metamodeling technique to 

create a surrogate is inefficient and reducing the input dimension is necessary under 

such a situation. It is noted that the SPCE surrogate model in the two methods are 

constructed with respect to the procedure of Table 2.2. 
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Figure 5.3 Flowchart for the methods SPCE/GSA and SPCE/SIR 

For the SPCE/GSA, the dimension reduction is achieved by performing a SPCE-based 

GSA and regarding the negligible variables as deterministic according to the GSA 

results. At this stage, the SPCE is in 2nd order which needs a smaller 𝐸𝐷 than a high-

order one. It is noted that the order of the SPCE has insignificant effects on the estimated 

Sobol indices (Al-Bittar and Soubra, 2014; Sudret, 2008). Particularly, this work 

proposes to select the variables by using a threshold for the sum of the obtained Sobol 

indices. Firstly, all the input variables are sorted with a descending order according to 

the GSA results. Then, the first 𝑁𝐺𝑆𝐴 variables would be selected so that the sum of the 

selected Sobol indices is greater than a target value, saying 0.98 of the global sum in 

this work. This technique guarantees that the reduced dimension covers at least 98% of 

the total input variance. For the SPCE/SIR, it reduces the input dimension by using the 

SIR which is based on the principle that a few linear combinations of original input 

variables could capture essential information of a model response. It aims to find an 

effective dimension reduction space by considering an inverse regression relation 

which regresses input variables against model responses. For more details about these 

two dimension reduction techniques, readers are referred to (Guo et al., 2019a; Pan and 

Dias, 2017c). 
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5.2.2 Reliability analysis using the reference method MCS 

This section aims to present the dam reliability analysis by using the MCS (reference 

for the comparative study) in combination with the computational model LEM_GA. 

This model has been proven to be effective for nonhomogeneous soils. The 𝛾𝑑 and 𝜙′ 

are represented by RFs while the 𝑐′ is considered as RVs due to the lack of geo-localised 

data. Besides, the effects of the 𝛾𝑑 RFs autocorrelation distance on the dam reliability 

are examined by testing several values recommended in literature. 

5.2.2.1 Numerical results 

Similar to section 4.3.2, two distribution types are considered (Beta and Truncated 

normal) for the soil properties 𝛾𝑑 , 𝑐′  and 𝜙′ . For each distribution type, 20 000 

deterministic calculations are performed within the MCS framework. With regard to 

one deterministic simulation, three standard-normal 𝛾𝑑 RFs, for three different zones 

(Shell-1, Core and Shell-2), are firsty generated by using the K-L expansions with the 

parameters given in Table 3.4. They are then transform into physical-values space for 

the target distribution type by using the iso-probabilistic method (Cho and Park, 2010; 

Li et al., 2011) with the parameters shown in Table 3.2. Then the three 𝜙′ RFs are 

obtained with the Caquot’s relation. The 𝑐′ values for the zones Shell and Core are 

generated with the LHS. Figure 5.4 shows the PDF of the obtained 20 000 FoS values 

for the two distribution types, and Table 5.1 gives the reliability analysis results.  

 

From Figure 5.4, it can be observed that the PDF curve obtained by the Truncated 

normal distribution (𝑃𝐷𝐹𝑁) is taller and narrower than the one of Beta distribution 

(𝑃𝐷𝐹𝐵 ). It means that the FoS values are less dispersive if a Truncated normal 

distribution is assumed for the random input variables. More precisely, the two PDF 

curves are almost superposed for relatively high FoS values (higher than 1.4), while the 

𝑃𝐷𝐹𝑁 is significantly lower than the 𝑃𝐷𝐹𝐵 for relatively small FoS values (smaller than 

1.2). This is because the probability of generating a small value of 𝑐′ in the Shell zone 

drawn from the fitted Beta distribution is higher than the Truncated normal distribution, 
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as presented in Figure 3.9. In addition, the two curves are not symmetric. They are 

considered to be negatively skewed with a relatively bigger tail at the left. The reasons 

have been discussed in section 4.2.1. 

 

Figure 5.4 PDF of the FoS values obtained with RFs and MCS 

Table 5.1 shows the failure probability and the statistical moments of FoS obtained by 

MCS. The direct failure probability 𝑃𝑓𝑐𝑜𝑛 of the dam under a pseudo-static acceleration 

of 2.4 m.s-2 is estimated to be equal to 0.022 and 0.016 respectively by the Beta and 

Normal distributions. These values are then multiplied by the probability of the 

earthquake (simply assumed to be 1/5000) and become equal to 4.4×10-6 and 3.2×10-6 

respectively. As for the statistical moments of the FoS values, the Beta assumption 

gives a slightly lower value for the mean but a higher value for the standard deviation. 

A high value of standard deviation means a high level of data scatter. This is consistent 

with the observations in Figure 5.4. According to Table 4.4, the 𝑃𝑓𝑐𝑜𝑛  of the Beta 

distribution is equal to 0.012. This is obtained by simulating 𝛾𝑑, 𝑐′ and 𝜙′ with RVs. It 

is close to the estimated result with RFs (0.022) in this section and both are relatively 

high. This is attributed to the variable 𝑐′ which is dominant for the FoS variance (thus 

𝑃𝑓𝑐𝑜𝑛) as presented in Figure 4.5 and is modelled identically by RVs in both cases. It is 
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also found that the 𝑃𝑓𝑐𝑜𝑛 of this section is slightly higher than the one of Table 4.4. This 

finding is due to the different approaches for modelling the Shell-2 𝜙′  in the two 

analyses, given that this variable is the second most important one as shown in Figure 

4.5. In this section, the 𝜙′ is considered by RFs and is obtained by transforming 𝛾𝑑 RFs, 

while, in section 4.2.2, it is represented by RVs with the parameters of Table 3.2. By 

randomly generating 10 𝛾𝑑 RFs for the zone Shell-2, 10 𝜙′ RFs are obtained and the 

related mean and CoV are estimated as respectively equal to 34.8 and 7.5%. The mean 

value is approximately the same as the one used in section 4.2.2. However, the CoV is 

significantly increased with regard to the value of 3.7% presented in section 4.2.2. This 

observation explains why the 𝑃𝑓𝑐𝑜𝑛 is slightly increased in this section.  

 

In conclusion, the dam failure probability ( 𝑃𝑓𝑠𝑐𝑒 ) under a pseudo-static loading 

condition and using RFs is estimated to be around 4×10-6. The two distribution 

assumptions lead to similar results with the same order of magnitude. The Beta 

distribution gives slightly more conservative results in terms of the failure probability. 

As the Beta distribution describes better the variability of the soil properties as shown 

in Figure 3.9 and is conservative in the design, this type of distribution is adopted for 

the following studies. 

Table 5.1 Reliability analysis results obtained with RFs and MCS  

Distribution 
Failure probability Statistical moments of FoS 

𝑃𝑓𝑐𝑜𝑛 𝑃𝑓𝑠𝑐𝑒  𝐶𝑜𝑉𝑃𝑓  Mean Standard deviation 

Beta 0.022 4.4×10-6 4.71% 1.232 0.108 

Truncated normal 0.016 3.2×10-6 5.61% 1.248 0.097 

5.2.2.2 Influence of the autocorrelation distance 

One of the factors which can influence the reliability results of RFs cases is the 

autocorrelation distance. It defines, by means of an autocorrelation function, the 

autocorrelation structure of an RF. According to a literature review given by El-Ramly 
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et al. 2003), the autocorrelation distance for natural soils is usually within a range of 

10-40 m in the horizontal direction, while it varies between 1 and 3 m in the vertical 

direction. It is found that the 𝐿𝑥 and 𝐿𝑧 in the Shell-1 zone (Table 3.4) are bigger than 

the values indicated in El-Ramly et al. (2003) while the 𝐿𝑥 in the Shell-2 zone is smaller 

than expected values. Therefore, careful attention must be done to these parameters and 

their induced influence on the reliability analysis. 

 

Finally, the impact investigation is focused on the value of 𝐿𝑥 in the Shell-2 zone while 

the estimated autocorrelation distances in the Shell-1 zone are accepted for the values 

in Table 3.4. The reasons are as follows: 1) the obtained large values of 𝐿𝑥 and 𝐿𝑧 are 

expected for the Shell-1 zone since the materials were carefully selected and more 

attention were given to its construction; 2) the upstream part of the backfill embankment 

is considered to have a very limited influence on the dam stability under steady-state 

flow conditions; 3) large values of autocorrelation distances may lead to higher failure 

probabilities so conservative designs, as pointed in (Cho, 2007; Guo et al., 2019b). 

 

For the 𝐿𝑥  value in the Shell-2 zone, a first improvement is made by fitting the 

experimental semi-variogram with other theoretical variogram models such as the 

Gaussian and the spherical models (Fenton and Griffiths, 2008). The 𝐿𝑥 is estimated to 

be equal to 6.7m for the Gaussian model, and 4.7m for the spherical model. These 

values are both different to the one estimated with the exponential model (4.9m) as 

shown in Table 3.4, and these differences may induce an impact on the dam failure 

probability. 

 

In order to quantify the influence induced by different values of 𝐿𝑥, a parametric study 

is conducted. Several values of 𝐿𝑥 in the Shell-2 zone are tested using the MCS. The 

objective is to investigate the evolution of the dam failure probability with the 𝐿𝑥 value. 

For the sake of simplicity and clarity, the other values of autocorrelation distance are 
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rounded to integer values (see details in Table 5.2). In addition, the 𝐿𝑥 value in the Core 

zone is also varied. Totally, four cases are selected for the parametric study. The 𝐿𝑥 

value in the Core and Shell-2 zones are decreased from 80 to 10m. These four cases 

allow investigating the influence of the horizontal autocorrelation distance in the Core 

and Shell-2 zones on the dam failure probability. The reference case in Table 5.2 refers 

to the values estimated by the variogram analysis with the exponential model (see Table 

3.4). As an illustration, one random realization of 3 𝛾𝑑 RFs generated with the 𝐿𝑥-𝐿𝑧 

values of Table 5.2 is presented in Figures 5.5 and 5.6 for respectively the case 1 and 

reference case. It can be seen that there exist some relatively uniform zones with high 

or small values in the Upstream RF for both two cases. This is due to the high values 

of 𝐿𝑥-𝐿𝑧 considered in the two cases for this zone. Significant difference between the 

two figures is observed for the Core and Downstream RFs. In case 1, the 𝐿𝑥 is rather 

higher than the 𝐿𝑧 for the two RFs; so, the vertical variation is more remarkable and 

relatively uniform layers are developed. In reference case, the 𝐿𝑥 is reduced from 80m 

to less than 15m which leads to a more significant fluctuation in the horizontal direction. 

The modelled soil property is thus more heterogeneous. The generated RFs do not 

appear to be completely random. They have a streaky appearance which suggests a 

structure that could be related to the correlation distances and/or possible problems with 

the K-L method. Figures 5.5 and 5.6 show more pronounced streakiness in the 

horizontal direction which is consistent with the correlation distances used (𝐿𝑥 > 𝐿𝑧). 

This streakiness also appears (but less remarkable) in Figure 2.6 using 𝐿𝑥 = 𝐿𝑧, which 

would appear to be associated with the K-L. The streakiness could have an effect in the 

numerical analysis of geotechnical stability, where a point area of weakness could 

trigger a slope failure. Careful investigations are required in future works in order to 

have better understanding on the induced effects and give relevant recommendations of 

using the K-L. 
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Table 5.2 Selected values of 𝑳𝒙 and 𝑳𝒛 for the parametric study 

 Shell-1 Core Shell-2 

 𝐿𝑥  (m) 𝐿𝑧 (m) 𝐿𝑥  (m) 𝐿𝑧 (m) 𝐿𝑥  (m) 𝐿𝑧 (m) 

Case1 80 8 80 2 80 2 

Case2 80 8 40 2 40 2 

Case3 80 8 20 2 20 2 

Case4 80 8 10 2 10 2 

Reference case 78.1 7.8 13 1.5 4.9 1.9 

 

Figure 5.5 One random realization of 3 𝛄𝐝 RFs generated for case 1 (unit: g/cm3) 

 

Figure 5.6 One random realization of 3 𝛄𝐝 RFs generated for reference case (unit: g/cm3) 
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By adopting different values of autocorrelation distance as shown in Table 5.2, four 

complementary MCSs are performed. Figure 5.7 plots the four obtained failure 

probabilities (𝑃𝑓𝑐𝑜𝑛) together with the one of the reference case (section 5.2.2). The 

first two moments of the dam FoS for each case are also given in Figure 5.7. It can be 

observed that the 𝐿𝑥 in the Core and Shell-2 zones have an influence on the dam failure 

probability. The 𝑃𝑓𝑐𝑜𝑛 is decreased when decreasing 𝐿𝑥. For example, a reduction of 

 𝐿𝑥 from 80 to 10 m results in a drop of about 10% for the 𝑃𝑓 (from 0.0295 to 0.0259). 

This finding has already been confirmed by many researchers for different geotechnical 

works (Cho, 2007; Guo et al., 2019b; Pan and Dias, 2017b). A possible explanation is 

as follows. Taking a soil block of a length equal to 20m as an example (the thickness is 

fixed at 1m), a large 𝐿𝑥 value (e.g. 40 or 80m) means that all the RF grid values within 

this soil body are strongly correlated and there is a great probability of forming a 

uniform weak area if the RF value at one side of the soil block is small. However, the 

probability of having a weak area covering the soil block is low if small 𝐿𝑥 values (e.g. 

10 or 4.9m) are considered since there are probably high values generated within the 

soil body by the nature of randomness and the weak correlation between two points 

over a distance larger than the 𝐿𝑥 (see Figure 5.6). Therefore, the number of small FoS 

estimates is reduced in the case of low 𝐿𝑥  values, and the 𝑃𝑓𝑐𝑜𝑛  is decreased. 

Concerning the statistical moments, the mean value remains almost constant whereas 

the standard deviation is increased when increasing the  𝐿𝑥. This indicates that the  𝐿𝑥 

has no impact on the mean value of the dam FoSs, whereas it affects the FoSs dispersion 

of the dam. The reference case corresponds to the lowest failure probability and the 

smallest standard deviation.  
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Figure 5.7 Influence of the 𝑳𝒙 on the dam failure probability (𝑷𝒇𝒄𝒐𝒏) 

5.2.3 Comparison results from five reliability methods 

The parametric study on the autocorrelation distance conducted with MCS (the 

reference method presented in section 5.2.2) is re-performed by the four selected 

reliability methods (SS, MM, SPCE/GSA and SPCE/SIR). The obtained results from 

the five reliability methods in terms of the failure probability (𝑃𝑓𝑐𝑜𝑛) for each case are 

plotted in Figure 5.8, and the numbers of calls to the deterministic model (𝑁𝑐𝑎𝑙𝑙) for 

each case are summarized in Table 5.3. In this table, the number of the required RVs 

(𝑁𝑅𝑉 = 𝑁𝑅𝑉_𝐾𝐿 + 2) for representing 𝑐′, 𝜙′ 𝑎𝑛𝑑 𝛾𝑑 by means of RFs or RVs is given as 

well. The 𝑁𝑅𝑉_𝐾𝐿 is the RVs number needed for generating relatively accurate 𝛾𝑑 RFs 

by using the K-L method, and the number 2 represents the two RVs of 𝑐′ in the Shell 

and the Core zone. The information in Table 5.3 helps to visualise the efficiency of each 

method by comparing the 𝑁𝑅𝑉 with the 𝑁𝑐𝑎𝑙𝑙. 

 

A quick review of Figure 5.8 reveals that the four methods can all give relatively 

accurate 𝑃𝑓𝑐𝑜𝑛 estimates compared to the MCS results. The values are varied within a 



139 

 

same order of magnitude for different methods. For example, the 𝑃𝑓𝑐𝑜𝑛  is between 

0.015 and 0.024 for the Reference case according to the five methods.  

 

Figure 5.8 Comparison of the failure probability obtained by the five reliability methods 

Concerning the efficiency comparison presented in Table 5.3, it is found that all the 

approximated methods need fewer calls of the deterministic model than the direct MCS. 

This is the reason why these methods are alternatives to the MCS for reliability analyses. 

Besides, the 𝑁𝑅𝑉  value is increased from Case 1 to Case 4, and the 𝑁𝑅𝑉  of the 

Reference Case is the biggest one. This is because the autocorrelation distance 𝐿𝑥 value 

in the Core and Shell-2 zones are decreased from 80 to 10m. Smaller values of the 

autocorrelation distance mean that it needs more RVs to represent an RF with a specific 

error variance. By comparing the 𝑁𝑅𝑉 with the 𝑁𝑐𝑎𝑙𝑙 of each method, it is observed that 

the 𝑁𝑐𝑎𝑙𝑙 of the methods MCS, SS and MM is almost changeless to the 𝑁𝑅𝑉. In other 

words, the efficiency of these three methods is not related to the number of input RVs, 

but depends on, in fact, the value of the target failure probability. However, the 𝑁𝑐𝑎𝑙𝑙 

of the two meta-modelling methods (SPCE/GSA and SPCE/SIR) is increased rapidly 

with increasing the 𝑁𝑅𝑉 . This indicates that the efficiency of the meta-modelling 

methods strongly depends on the number of input RVs. Indeed, more input variables 
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mean that more information is needed. Thus, a higher 𝑁𝑐𝑎𝑙𝑙  will be required for 

constructing a meta-model which will be used to replace the original mechanical model. 

Table 5.3 Approximated number of calls to the deterministic model for the five reliability methods 

 Case 1 Case 2 Case 3 Case 4 Reference case 

𝑁𝑅𝑉
(1) 225 370 647 1207 2110 

MCS 20000 20000 20000 20000 20000 

SS 3000 3000 3000 3000 3000 

SPCE/SIR 1000 5000 8000 10000 15000 

SPCE/GSA 3000 5000 8000 13000 18000 

MM 1900 1800 2100 2000 2000 

Note: (1) Number of required RVs for representing 𝑐′, 𝜙′ 𝑎𝑛𝑑 𝛾𝑑  by means of RFs or RVs  

 

The following section gives a detailed interpretation of the comparative study for the 

four alternative reliability methods. Some concluding remarks of the comparative study 

are also provided. 

5.2.4 Discussions on the results 

5.2.4.1 The SS 

This method is efficient for high dimensional stochastic problems, according to Table 

5.3, which requires only 3000 (an approximated value) calls to the deterministic model. 

The 𝑁𝑐𝑎𝑙𝑙  of the SS is much less than the MCS one and is constant with the 𝑁𝑅𝑉 

variation. This finding is not surprising since the target failure probability is relatively 

high (around 0.022) and changes slightly between the different cases in the present 

problem. If a conditional probability 𝑃𝑆𝑆 of 0.2 is adopted for each simulation level, 

only 3 simulation levels are needed to reach the final failure domain. In this study, the 

𝑃𝑆𝑆 is set to 0.2 and the sample numbers in each simulation level (𝑁𝑆𝑆) is set to 1000. 

However, it is found that the SS cannot produce a consistent evolution of 𝑃𝑓 with  𝐿𝑥. 

The obtained values of 𝑃𝑓 are fluctuated from the Case 2 to 4, while they are expected 
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to be monotone decreasing as shown by the MCS. This limitation originates from the 

generation of the conditional samples in the SS. As a large number of RVs are 

considered, and more importantly those used for RF generation have no physical 

meanings, it is thus difficult to generate effective conditional samples. This results in a 

large number of repeated samples in the SS. Given that the number of these repeated 

samples is not constant (i.e. random) for each SS, the obtained results are thus not steady. 

The obtained results by considering a 𝑁𝑆𝑆 of 1000 are better than the ones of 𝑁𝑆𝑆=200 

presented in Guo et al. (2019a)g. However, the 𝑃𝑓 inconstancy is still observed. Other 

algorithms (e.g. (Papaioannou et al., 2015)) can be tested in a next work in order to 

further investigate the SS performance for the stochastic problems with RFs (i.e. a large 

number of RVs with no physical meanings). 

5.2.4.2 The SPCE/SIR 

According to Figure 5.8, this method always gives slightly lower failure probability 

than the MCS. This can be explained by the fact that a dimension reduction technique 

is employed. As the dimension is reduced, the variability of the input parameters is 

reduced. The estimated 𝑃𝑓 is thus smaller. Compared to the SS, this method has a better 

performance in the parametric study, i.e. the obtained values show a clear reduction 

trend of 𝑃𝑓  with decreasing  𝐿𝑥 . Concerning the efficiency, the 𝑁𝑐𝑎𝑙𝑙  is found not 

constant for different cases but is increased from the Case 1 to the Reference case. The 

𝑁𝑐𝑎𝑙𝑙 for the Reference case is even very close to the MCS one. An explanation is given 

as follows. The required number of input RVs for the RF generation is increased since 

the  𝐿𝑥  becomes smaller. Therefore, the construction of a meta-model needs more 

training samples, i.e. more deterministic simulations. As a result, it is not recommended 

to use this method if the 𝑁𝑅𝑉 is large (e.g. >2500) from a point of view of efficiency. 

5.2.4.3 The SPCE/GSA 

This method shows a good accuracy in estimating the 𝑃𝑓 according to Figure 5.8. The 

obtained 𝑃𝑓 values are close to the ones of the MCS. Except to this remark, similar 
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observations to the SPCE/SIR can also be noted: (1) the estimated 𝑃𝑓 values are all 

lower than those of the MCS; (2) the parametric study can be correctly conducted; (3) 

the 𝑁𝑐𝑎𝑙𝑙 is increased with decreasing the  𝐿𝑥 and the 𝑁𝑐𝑎𝑙𝑙 for the Reference case is 

even very close to the one of the MCS. The interpretation to these observations given 

above remains valid as well for this method. Besides, it is found that this method is 

always less efficient than the SPCE/SIR. This difference originates from the different 

dimension reduction techniques employed in the two methods. For the SPCE/GSA, it 

should always construct a 2-order meta-model with the full dimension. On the contrary, 

the dimension is reduced before constructing meta-models in the SPCE/SIR. For high 

dimensional stochastic problems, considerable deterministic simulations are required 

even for constructing a 2-order SPCE meta-model. 

5.2.4.4 The MM 

This method is also efficient and shows a good performance in estimating the value of 

𝑃𝑓. Given its simplicity and easy implementation procedure, it is a good alternative to 

the MCS for such a very high dimensional stochastic problem. However, this work only 

evaluates the MM for the cases of relative high failure probability. Careful attention 

should be paid when applying this method to calculate low failure probabilities since it 

may lead to significant errors as pointed out in Napa-García et al. (2017). Besides, this 

method is not able to carry out a parametric study of  𝐿𝑥 as expected since the obtained 

𝑃𝑓 results fluctuate. Theoretically, the collection of all the moments (of all orders, from 

0 to ∞) uniquely describes a bounded distribution. Then, the 𝑃𝑓 can be determined by 

estimating the tail area of the distribution. In the present study, only four moments are 

collected, and the tail area is estimated by an approximated way (Eqs. 2-14 and 2-3). 

The induced errors are not related to the 𝑁𝑅𝑉 or 𝐿𝑥 of the problem but depend on the 

complexity of the FoS distribution and the target value of the dam 𝑃𝑓 (tail area). It may 

lead to a large error for a lower 𝑃𝑓 but a small error for a higher 𝑃𝑓. As a result, the 

obtained 𝑃𝑓 values in the parametric study are not monotonously decreasing. 



143 

 

5.2.4.5 Concluding remarks 

Here gives a summary of the remarks observed in Figure 5.8 and Table 5.3. 

a) All the four methods can provide reasonable 𝑃𝑓  estimates compared to the 

reference method – MCS.  

b) The two sampling methods (SS and MM) show good efficiency for the considered 

cases which are high dimensional, while the efficiency of the two meta-modelling 

methods strongly depends on the number of input variables. 

c) The sampling methods cannot produce a consistent evolution of the dam 𝑃𝑓 in the 

performed parametric study. The inconsistency observed in the SS is due to the 

difficulty of generating effective conditional samples, while the limited statistical 

moments and the assumed distribution type in the MM lead to biased 𝑃𝑓 estimates. 

However, it seems that the considered meta-modelling methods perform well for 

providing a desired 𝑃𝑓 evolution. 

d) The two meta-modelling methods give smaller estimates of 𝑃𝑓 compared to the 

MCS. This is because that dimension reduction techniques are employed in these 

two methods.  

 

It should be noted that the conducted comparative study is related to a case of a 

relatively high failure probability (order of 10-2). The performance of the four methods 

for estimating low failure probabilities (e.g. <10-4) in the context of very high 

dimensional stochastic problems is not investigated and thus unknown. This is a 

difficult issue in the field of reliability analysis to assess an approximated method for 

very low 𝑃𝑓, since the consuming time of running an MCS is very high even with a 

simplified deterministic model. The present study provides first insights into the 

performance of the four reliability methods in the context of very high dimensional 

stochastic problems, and some concluding remarks can be extended to the cases of low 

𝑃𝑓.  
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5.3 Modelling and comparison of different random fields 

5.3.1 Introduction 

Having implemented the RFs of 𝛾𝑑  and 𝜙′ in the dam reliability analysis in section 

5.2.2, this section aims to improve the modelling of the soil spatial variability by 

introducing two complex RFs: conditional and nonstationary (a varied mean). The 

induced effects on the reliability analysis results by using different RFs are also 

investigated. The previous sections are based on the generic RFs which refer to the 

unconditional and stationary type (noted as RF-a). Conditional RF means that the 

generated RF is conditioned on the available measurements of the site. The simulated 

values of the RF at the measurement locations are not stochastic but related to the 

collected data. Using this type of RFs can avoid wasting site investigations and reduce 

the variance of the underlying RF. As for nonstationary RFs, they account for the 

variation of the RF statistics (e.g. mean, coefficient of variation and covariance function) 

which are assumed to be constant over the whole domain in stationary RFs. It is well 

known that natural soil properties often exhibit nonstationary characteristics (Wu et al., 

2019), such as linearly increasing mean value with depths for the undrained cohesion. 

In those cases, using nonstationary RFs is more appropriate for describing soil 

variability than stationary RFs. Examples of using the two mentioned complex RFs in 

probabilistic geotechnical analyses can be found in (Griffiths and Yu 2015; Jiang et 

al .2017, 2018; Kim and Sitar 2013; Li et al. 2015; Li et al. 2014; Liu et al. 2017; Schöbi 

and Sudret 2017; Wu et al. 2019; Zhu et al. 2017). However, most of the previous 

studies are based on hypothetical engineering cases for RF modellings, without 

exploiting the construction or monitoring data in probabilistic analyses.  

 

Compared to the studies in section 5.2, one assumption is proposed and adopted in this 

section in order to focus on the effects of different RFs. The assumption leads to 

ignoring the soil variability in the zones Core and Shell-1. In other words, this section 

takes into account only the soil variability in the downstream part (Shell-2) of the dam 
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and models the soil properties of other zones in a deterministic framework (with their 

mean values as given in Table 3.3). This assumption is based on the following two 

reasons: (1) under such a design scenario (steady-state flow conditions and a horizontal 

pseudo-static acceleration towards downstream), almost all slope failures will occur in 

the downstream part. Additionally, the results of section 4.2 indicate that the soil 

variability of the Core zone has a very limited influence on the dam reliability; (2) 

Neglecting the soil variability of the other zones than the Shell-2 can make the 

reliability analysis simpler and faster. More importantly, it allows focusing on the 

different RFs effects of only one zone.  

 

Since the present study is based on the dam main cross-section, only the measurements 

located in this section (the profile Y6 in Figure 3.4) are adopted. Figure 5.9 presents the 

location of the considered measurements (with a quantity of 32) in the main cross-

section. These 32 measurements are used to determine the Beta distribution parameters 

for 𝛾𝑑  and considered as observations in the generation of conditional RFs. The 

estimated 𝛾𝑑  distribution parameters are given in Table 5.4. It is noted that the 

autocorrelation distances (𝐿𝑥  and 𝐿𝑧 ) and the distribution parameters of the shear 

strength properties (𝑐′ and 𝜙′) used in this section are the same to the ones of Tables 

3.2 and 3.4. 

 

Figure 5.9 The 32 𝜸𝒅 measurements located in the downstream shell of the main cross-section 



146 

 

Table 5.4 Probabilistic parameters of the soil properties for section 5.3 

  𝛾𝑑  (g/cm3) 𝜙′ (o) 𝑐′ (kPa) 

Statistical 

moments 

Mean 2.02 34.85 10.55 

CoV(%) 3.09 3.72 57.63 

Parameters for 

Beta distributions 

A(1) 18.71 28.71 1.48 

B(1) 18.03 29.61 2.78 

Min 1.63 25 0 

Max 2.40 45 30 

Autocorrelation 

length (m) 

Horizontal (𝐿𝑥) 4.9 - - 

Vertical (𝐿𝑧) 1.9 - - 

Modelling approach Random fields Random fields(2) 
Random 

variables 

Note: (1)Beta distribution parameters; (2)Obtained by transforming the 𝛾𝑑  RFs with the Caquot’s relation 

(Mouyeaux et al., 2018). 

 

In total, three reliability analyses are performed in this section with respect to the three 

types of RFs defined in Table 5.5. All the analyses follow a same MCS procedure. The 

only difference lies in the way of representing the RFs. Comparison between the two 

first analyses allows investigating the effects of conditional RFs on the dam reliability, 

while the last one helps to understand the influences of the depth-dependent mean 

variation.  

Table 5.5: The conducted three analyses with the three types of RFs  

Analysis RF Name Description Generation method 

A RF-a Unconditional and stationary KLE(1) 

B RF-b Conditional KLE + Kriging 

C RF-c Nonstationary (a depth-dependent mean) KLE + transformation(2) 

Notes: (1) K-L expansions; (2) Iso-probabilistic or Nataf transformation 
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5.3.2 Modelling of different RFs for 𝜸𝒅 with the available data 

This section presents in detail about how to generate the three types of 𝛾𝑑 RFs with the 

available data. 

5.3.2.1 The unconditional-stationary RFs (RF-a) 

Firstly, a standard-normal RF is generated by using K-L expansion. The exponential 

autocorrelation function is adopted in this study since it is recommended to be used in 

conjunction with K-L expansion according to Sudret and Der Kiureghian (2000). Then, 

the initial RF is transformed to the physical-values space via the iso-probabilistic 

transformation with the Beta-distribution parameters given in Table 5.4. In order to 

obtain a sufficient accuracy in terms of the variance error for RFs, Li and Der 

Kiureghian (1993) recommended that the stochastic grid size can be set equal to 0.2 

times the autocorrelation distance. This condition is well satisfied for all the RFs 

generation in this study with respect to the 𝐿𝑥 and 𝐿𝑧 of Table 5.4. Figure 5.10 shows 

the location of the 32 measurements together with their values within the Shell-2 zone. 

The 𝛾𝑑 values vary between 1.9 and 2.15 g/cm3. It can be observed that the data is 

basically homogeneous in the sense that the variation is not significant (a small CoV of 

3.09% as presented in Table 5.4) and there is no trend with depth or along the X axis. 

Figure 5.11 plots the 𝛾𝑑 values against the depth in order to explore the possible depth-

dependent variation. This figure further confirms that the data has no depth-related 

trend, such as the linearly increasing relation which was reported in (Griffiths and Yu, 

2015; Li et al., 2014; Zhu et al., 2017) for natural soils. Thus, the RFs modelling was 

performed without a de-trending process.  
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Figure 1.10 Location of the 32 measurements and their 𝜸𝒅 values within the downstream shell 

 

Figure 5.11 Variation of the 𝜸𝒅 values with depth (32 measurements) 

5.3.2.2 The conditional RFs (RF-b) 

In this work, the conditional RFs are obtained by following the procedure given in Table 

2.4. Firstly, the 32 measurements are transformed into the standard normal samples 

with the Beta parameters of Table 5.4. Then, three RFs (𝑅𝐹𝑘(𝑥, 𝑦), 𝑅𝐹𝑢𝑛(𝑥, 𝑦) and 
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𝑅𝐹𝑘−𝑢𝑛(𝑥, 𝑦)) are generated with K-L expansions or the Kriging theory. A conditional 

RF in the standard normal space 𝑅𝐹𝑐𝑜𝑛_𝑠𝑛 can be obtained by combining the three RFs. 

At the end, the 𝑅𝐹𝑐𝑜𝑛_𝑠𝑛 is transformed back to the physical-values space and the final 

conditional RF is obtained. For the three components of the 𝑅𝐹𝑐𝑜𝑛_𝑠𝑛, the 𝑅𝐹𝑢𝑛(𝑥, 𝑦) is 

an unconditional RF generated by K-L expansions with zero mean and unit standard 

deviation. Both the 𝑅𝐹𝑘(𝑥, 𝑦) and the 𝑅𝐹𝑘−𝑢𝑛(𝑥, 𝑦) are Kriging estimates over the RF 

domain but with respect to different sets of observations. The former is based on the 32 

measurements shown in Figure 5.10 while the latter uses the simulated values of the 

𝑅𝐹𝑢𝑛(𝑥, 𝑦) at the 32-measurements locations as observations. It is noted that a simple 

Kriging is employed for generating the 𝑅𝐹𝑘(𝑥, 𝑦) and the 𝑅𝐹𝑘−𝑢𝑛(𝑥, 𝑦) following the 

suggestion given in Johari and Gholampour (2018). This is because the mean and the 

standard deviation for the Kriging RF are already known (Table 5.4). It is then not 

necessary to estimate these statistics in the context of other Kriging types. Another 

reason of imposing the parameters of Table 5.4 into the conditional RFs is to be 

consistent with the previous RF type (RF-a). All the three components are based on a 

same covariance structure for the RF generation, saying the assumed exponential 

autocorrelation function and the autocorrelation distances of Table 5.4. By using the 

final obtained conditional RF, the 32 measurements can be perfectly respected, which 

means that the simulated values at such points are constant and equal to the collected 

measurements. Figure 5.12 shows an example of the obtained conditional RF mapped 

to the downstream shell. The position of the 32 data and the corresponding values of 

𝛾𝑑 are presented as well.  
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Figure 5.12 An example of the obtained conditional RF and the 32 𝜸𝒅 measurements (g/cm3) 

5.3.2.3 The nonstationary RFs (RF-c) 

Abundant site-specific data have confirmed that there are nonstationary characteristics 

within the soil profile (Jiang and Huang, 2018). One commonly encountered case is that 

the mean value of soil property changes with depth as pointed out in Lumb (1966). This 

case is considered in the present study for the modelling of the nonstationary RFs.  

 

According to the procedure given in Table 2.5, there are three steps to be followed to 

obtain a RF with a varied mean value. A linear trend should be determined at first. 

However, the present data has no clear trend (monotone increase or decrease) with 

depth as shown in Figure 5.11. For this reason, a technique is proposed to describe the 

mean value variation. It is then implemented in the nonstationary RFs generation. The 

technique is presented as follows: For each depth 𝑍𝑅𝐹, the measurements located within 

the range [𝑍𝑅𝐹 − 𝐿𝑧 , 𝑍𝑅𝐹 + 𝐿𝑧] (see Figure 5.13) are considered for computing the 

average at 𝑍𝑅𝐹. The obtained average is regarded as the mean value of 𝛾𝑑 at this depth. 

𝐿𝑧, being 1.9m, represents the vertical autocorrelation distance of the 𝛾𝑑 for the Shell-

2 zone. According to the definition of the 𝐿𝑧, the data within this zone are strongly 
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correlated. They are thus representative for determining the mean value of the zone. 

This solution guarantees that the obtained mean variation is conditioned on the 

measured data. Also, it is more flexible for describing the complex variation of mean 

value than the assumption of a linear trend as in the studies of (Griffiths and Yu, 2015; 

Jiang and Huang, 2018; Li et al., 2014). Figure 5.14 (left part) presents the obtained 

variation of the 𝛾𝑑 mean values. The global average value (see Table 5.4) determined 

by all the 32 measurements is presented as well. Due to the fact that only a small number 

of  𝛾𝑑  measurements are available near to the dam crest for the Shell-2 zone, it is 

impossible to estimate the 𝛾𝑑  statistics within the range [𝑍𝑅𝐹 − 𝐿𝑦, 𝑍𝑅𝐹 + 𝐿𝑦]  at 

several depths. The solution adopted in the study is to use the global average of 𝛾𝑑 for 

the depths with no data. This leads to a vertical line (constant estimate) in Figure5.14 

at high Z-axis values, saying from 21-23.8m. It can be observed from Figure 5.14 that 

the variation is basically around the global average with small fluctuations for medium 

and low Z-axis values. An exception is found for the depths between 17m and 21m, for 

which the mean value is significantly higher than the global average.  

 

The second step of Table 2.5 is to generate an initial stationary RF. In this study, it is 

achieved by simulating a standard normal stationary RF (𝑅𝐹𝑠𝑠) with K-L expansions. 

Then, the nonstationary RF is obtained by adjusting the values of 𝑅𝐹𝑠𝑠 at each depth. 

Table 2.5 uses a scaling factor for the adjustment in case of a Lognormal distribution 

while the iso-probabilistic transformation is employed in this study for the purpose. At 

each depth, the 𝑅𝐹𝑠𝑠 is transformed to a physical-values space which is defined by the 

mean value at this depth (left part of Figure 5.14) and the standard deviation of Table 

5.4. For illustration, an example of the generated non-stationary RFs (RF-c) is shown 

in Figure 5.14 (right part). The simulated values in the presented RF are basically 

between 1.85 and 2.15, and approximately follow the mean values shown at the left part 

of Figure 5.14.   
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Figure 5.13 The measurements used for the estimation of 𝜸𝒅 mean value 

 

Figure 5.14 Left - variation of the 𝛄𝐝 mean value; Right - an example of the obtained nonstationary RFs 

5.3.3 The obtained reliability analysis results 

For each RF type defined in Table 5.5, an MCS-based reliability analysis is performed. 

The number of model evaluations (𝑁𝑀𝐶𝑆 ) in the MCSs is equal to 15000 which 

guarantees that the estimated 𝑃𝑓 is accurate enough (i.e.  𝐶𝑜𝑉𝑃𝑓𝑑𝑖𝑟
< 5%). 

 

Figure 5.15 plots the PDF of 15 000 FoS values obtained by the three analyses. The 

PDF curves are estimated with a normal kernel function on the FoS values. It is 
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observed that the PDF of Analysis C (𝑃𝐷𝐹𝑐) is similar to the one of Analysis A (𝑃𝐷𝐹𝑎) 

and the two curves are almost superposed. Analysis B leads to a PDF (𝑃𝐷𝐹𝑏) slightly 

different than the other two analyses, with more dispersed FoS values. A detailed 

interpretation of the obtained results and discussion on the effect of different RFs are 

given later. Additionally, it is found that the three PDF curves are all negatively skewed 

with a bigger tail at the left. This is due to the fact that the input parameters are 

negatively skewed. 

 

Figure 5.15 PDFs of the three analyses 

Table 5.6 presents the post-processing results on the 15 000 FoS values for each 

analysis, including failure probability and statistical moments of the FoS. According to 

Table 5.6, the 𝑃𝑓𝑠𝑐𝑒 is lower than 1.3×10-5 for the three analyses. This proves that the 

dam was well designed. It is found that the 𝑃𝑓𝑐𝑜𝑛  varies between 0.059 and 0.064. 

Analyses A and C lead to the same estimate of 𝑃𝑓𝑐𝑜𝑛, and are both bigger than the one 

of Analysis B. It is consistent with the observations made for Figure 5.15, in which the 

𝑃𝐷𝐹𝑐 and 𝑃𝐷𝐹𝑎 are almost superposed and are higher than the 𝑃𝐷𝐹𝑏 for the part 𝐹𝑜𝑆 ≤

1. In conclusion, considering conditional RF leads to a slight underestimation of the 

𝑃𝑓𝑐𝑜𝑛 while the employed nonstationary RFs have practically no effect on the 𝑃𝑓𝑐𝑜𝑛. 
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Some statistics of the FoS values are presented as well in Table 5.6. The mean values 

are nearly the same for the three analyses. For the standard deviation, a slightly higher 

value is found for Analysis B. This is in accordance with Figure 5.15 where the FoS 

values of Analysis B are more dispersed than the other two PDF curves.  

Table 5.6 Reliability results of the three analyses 

Analysis 
Failure probability Statistical moments of FoS 

𝑃𝑓𝑐𝑜𝑛 (×10-2) 𝑃𝑓𝑠𝑐𝑒  (×10-5) 𝐶𝑜𝑉𝑃𝑓𝑐𝑜𝑛
(%) Mean Standard deviation 

A 6.35 1.27 3.13 1.180 0.110 

B 5.89 1.18 3.26 1.183 0.114 

C 6.35 1.27 3.13 1.177 0.110 

5.3.4 Effects of using the two complex RFs 

This section attempts to discuss and explain the effects of using a complex RF 

(conditional or nonstationary) on the dam probabilistic stability analysis by analyzing 

the results presented in Figure 5.15 and Table 5.6. In general, the differences in the 

obtained results (𝑃𝑓  and FoS statistics) induced by using a complex RF are not 

remarkable. The 𝑃𝑓𝑐𝑜𝑛 values of the three analyses are varied within a narrow range 

[0.059, 0.064], and the differences among the FoS statistics (mean and standard 

deviation) can be found only after the second decimal number. This is due to the low 

variability of the considered measurements as shown in Figure 5.10. As each layer of 

the dam was constructed with a same material and was compacted identically, the 

collected 𝛾𝑑 data after the compaction are similar with each other: most of the 𝛾𝑑 values 

shown in Figure 5.10 are close to the global average (2.024 g/cm3) with a difference 

lower than 3%. Therefore, the simulated complex RFs introduce only insignificant 

differences since they are all based on the 32 measurements which are relatively 

‘homogeneous’. Consequently, the results obtained by the different RFs are only 

slightly changed. The following two subsections give a detailed interpretation on the 

effects of the two complex RFs. 
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5.3.4.1 Effects of the conditional RFs (RF-b) 

As shown in Table 5.6, modelling the 𝛾𝑑 variability by conditional RFs leads to lower 

estimates of the 𝑃𝑓. The mean of the FoS values is nearly unchanged but the data 

dispersion slightly increases by using conditional RFs compared to RF-a. A possible 

interpretation about these observations is given as follows.  

 

It is recalled that the variability of the three soil properties ( 𝛾𝑑 , 𝑐′  and 𝜙′ ) are 

considered in the three analyses (A, B and C). The 𝛾𝑑 and 𝜙′ are modelled by RFs while 

the 𝑐′ is represented by RVs. The modelling technique, including the distribution and 

the relating parameters, is constant for the 𝑐′ among the three analyses. The differences 

of the obtained reliability results shown in Table 5.6 are induced by the different ways 

of modelling the RFs of 𝛾𝑑  and 𝜙′ . Particularly, the RF of 𝜙′  is obtained by 

transforming the one of 𝛾𝑑 with an empirical relation. It can be understood that the 

variability of 𝑐′, which are modelled identically in the three analyses, define a reference 

PDF form (i.e. basic variation) for the estimated FoS values. The variabilities of 𝛾𝑑 and 

𝜙′, which are considered with different ways, will modify differently the reference form 

to obtain final PDF curves (i.e. the ones shown in Figure 5.15). The probability of 

getting a particular FoS value is different among the three analyses due to the presence 

of different RFs. As the probability of having high FoS values (>1.35) is bigger and 

there is less small FoS values by using conditional RFs, Analysis B leads to lower 𝑃𝑓 

and more scattered FoS values. Figure 5.16 and Figure 5.17 can explain why higher 

FoS values and less small FoS values can be found in Analysis B. In Figure 5.16, 50 

possible critical slip surfaces are plotted with 50 random sets of soil properties (𝛾𝑑 and 

𝜙′: RF; 𝑐′: RV) in Analysis B. It is observed that the majority of the critical slip surfaces 

pass through the main body of the downstream shell (from the crest to the toe). 

Although there will be some other forms of critical slip surfaces that are not covered by 

the 50 cases, Figure 5.16 shows a clear area which can comprise most of possible slip 

surfaces in the probabilistic analysis. The area is called as Principle Critical Slip Surface 
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Area (PCSSA) in this article and is illustrated in Figure 5.17. The 𝜙′  values at the 

measurement locations are presented as well in Figure 5.17. These values are obtained 

by transforming the 𝛾𝑑 values (shown in Figure 5.10) with the Caquot’s relation. It is 

observed that around 16 measurements are located inside or around the area PCSSA. 

11 of them are bigger than 33o which is the average of 𝜙′ for Analysis A. In conditional 

RFs, the 𝜙′ values of the zones that are close to the 11 values, are also probably bigger 

than 33o. As a result, most of the critical slip surfaces in conditional RFs pass more 

frequently through the zones with high 𝜙′ values than the case of RF-a. The probability 

of having high FoS values is thus bigger in Analysis B. This explains the larger tail at 

right for the 𝑃𝐷𝐹𝑏 (Figure 5.15). In addition, as most of the critical slip surfaces are 

large enough with respect to the dam dimension, it is difficult to avoid all the zones 

with high 𝜙′  values in calculating the minimum FoS value of one realization. The 

probability of leading to very low FoS values is thus reduced. This explains why the 

𝑃𝐷𝐹𝑏 is lower than the 𝑃𝐷𝐹𝑎 at left tail (see Figure 5.15). Note that the 𝛾𝑑 effects on 

the variation of the FoS values are negligible as pointed out in Guo et al. (2018). 

 

Figure 5.16 Slip surfaces with 50 random realizations of simulations (RF-b) 
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Figure 5.17 The principle area of slip surface and the 32 measurements with their values (𝝓′ in degree) 

5.3.4.2 Effects of the nonstationary RFs (RF-c) 

According to Figure 5.15 and Table 5.6, using the nonstationary RFs, which consider 

the variation of the 𝛾𝑑 mean value, has no significant effects on the reliability results. 

The obtained failure probability and the statistics of the FoS values are almost the same 

to the ones of stationary RFs. This is due to the ‘homogeneity’ of the collected 

measurements. As shown in Figure 5.10, the 𝛾𝑑 values of the 32 measurements are not 

dispersed but varied with a small range (1.95 g/cm3 – 2.1 g/cm3). The variation of the 

mean values with depth is thus not significant as well. The estimated mean values 

fluctuate around the global average and they are mainly between 1.99 g/cm3 and 2.04 

g/cm3. The most scattered value is found near the crest and is around 2.117 g/cm3 which 

corresponds to an error less than 5% compared to the global average. Non-stationarity 

is therefore only slightly marked in this case study. As shown in Figure 5.16, most of 

the critical slip surfaces start nearly from the crest and ends at the toe. Therefore, the 

FoS values are not significantly affected. Using the nonstationary RFs (RF-c) thus leads 

to very similar reliability results to stationary RFs for the case study. 
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The present study determines the variation of the mean value with depth by defining a 

zone related to the vertical autocorrelation distance. This is different to the traditional 

way (for natural soils) of modelling non-stationary characteristics for RFs which 

assumes a linearly increasing mean (Jiang and Huang, 2018). However, the parameters 

themselves (e.g. start value and slope) of the linear assumption are related to some 

uncertainties (Jiang and Huang, 2018). Also, not all the soil properties follow a simple 

linear increase with depth as the one shown in Figure 5.10, in particular for 

embankments with layers that have been compacted according to the same protocol. 

Therefore, the proposed technique is recommended to determine the nonstationary 

characteristics of a RF, since it is more flexible than a linear assumption. 

5.3.5 Discussions of the obtained results 

The previous section presents and compares the reliability results obtained by 

considering three types of RFs. A possible solution, which is based on the principle 

failure surface area, is provided to explain the effects of using a complex RF. Basically, 

the differences among the three analysis results are not remarkable since the considered 

data is relatively ’homogeneous’. Therefore, for the geo-structures realized under a 

high-quality construction control (e.g. careful selection of the construction materials 

and identical compaction), it is not necessary to employ a complex RF which requires 

extra computational efforts while using the generic one (unconditional and stationary) 

is sufficient to provide satisfactory results. 

 

It is noted that the recommendation given above is only valid when a large number of 

geo-localized data are available since it permits to check if the construction was well 

controlled or not by regarding the homogeneity of the data. Then, for most cases, it is 

rare to have many measurements and know their location information. Considering this, 

it is better to use the conditional RFs in a probabilistic analysis. Such a suggestion is 

based on the following reasons: 
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▪ Adopting conditional RFs allows a full use of the available measurements and 

avoids waste of site investigation. It also permits to update the spatial modelling 

and the reliability results by adding new data that could be collected during a new 

project investigation or from monitoring phases. 

▪ The input uncertainty can be reduced by conditioning RFs on the measurements. 

As mentioned in the next point, the variance at the measured points and their 

neighbors can be largely decreased. Theoretically, the uncertainty is reduced when 

considering more data and the obtained reliability results are thus more precise. 

▪ Conditional RFs are also nonstationary. The non-stationarity of a soil property can 

be considered and determined by the data in a conditional RF. The variance is small 

for the points close to the measured locations and increases with the separate 

distance between known and unknown locations. Conditional RFs allows to 

directly consider non-stationarity by the geo-localized measurements (without 

making assumptions to describe the variation of mean and/or variance in space).  

▪ Using conditional RFs usually leads to lower 𝑃𝑓 estimates thus economic designs. 

This is supported by the results of Table 5.6 and other existing studies (Liu et al., 

2017b; Lloret-Cabot et al., 2012). 

 

In order to further check the last point within the framework of the studied dam which 

is a real engineering problem, two complementary reliability analyses are carried out 

here. Table 5.7 describes these two analyses. The idea is to implement the spatial 

modelling of 𝑐′ into the dam probabilistic analysis and compare the obtained results 

between conditional and unconditional RFs. To this end, 32 𝑐′ values are randomly 

generated according to the Beta distribution defined in Table 5.4 and are randomly 

assigned to the 32 𝛾𝑑 measurements’ locations. These 𝑐′ values are then regarded as 

observations for the RF generation. Figure 5.18 shows the generated 𝑐′ values together 

with an example of the 𝑐′ RFs conditioned on these data. It is noted that all the RFs in 
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this section are based on the exponential autocorrelation function with the 𝐿𝑥 and 𝐿𝑧 of 

Table 5.4.  

Table 5.7 Definition of the two complementary analyses 

Analysis 
Soil variability modelling 

Generation method 
𝛾𝑑   𝜙′  𝑐′  

A’ RF-a RF-a(1) RF-a(2) KLE 

B’ RF-b RF-b(1) RF-b(2) KLE + Kriging 

Notes: (1) obtained by transforming the 𝛾𝑑  RFs; (2) considering the values shown in Figure 5.18 as 

observations. 

 

Figure 5.18 An example of the obtained 𝒄′ conditional RF and the 32 𝒄′ data (kPa) 

Figure 5.19 presents the obtained results of the two complementary analyses (A’ and 

B’) which are performed by using MCS. The number of model evaluations (𝑁𝑀𝐶𝑆) is 

taken equal to 5000 for each MCS in order to have an efficient estimate on the dam 𝑃𝑓 

and a global picture of the FoS distribution. It is observed from this figure that the FoS 

varies within a narrower range in Analysis B’ than in A’ which corresponds to a smaller 

FoS standard deviation (𝜎𝐹𝑜𝑆). This finding shows the capacity of conditional RFs on 

the uncertainty reduction. Consequently, the dam 𝑃𝑓 is lower in Analysis B’, which 
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confirms the recommendation made above concerning the use of conditional RFs for 

an economic design. The mean of the FoS (𝜇𝐹𝑜𝑆) remains almost unchanged in the two 

analyses as also found in Table 5.6. 

 

Then it is possible to compare the results of Figure 5.19 with the ones of Table 5.6. The 

only difference between the current analyses (A’ and B’) with the previous ones (A and 

B) lies in the way of modelling the 𝑐′ uncertainty: RV is used in A and B, while RF is 

adopted in A’ and B’. Based on this comparison, it is found that modelling 𝑐′ by RFs 

instead of RVs can reduce the output variance (𝜎𝐹𝑜𝑆) and the dam 𝑃𝑓. This observation 

is consistent with many existing studies (Al-Bittar and Soubra, 2013; Guo et al., 2020; 

Pan and Dias, 2017b).  

 

Figure 5.19 Reliability results of the two complementary analyses 

5.4 Conclusion 

This chapter presents the dam probabilistic analysis and discusses the obtained results 

in the context of RFs. Firstly, the performance of the LEM_GA model is assessed for 

spatially varied soils. By comparing with the SRM_FDM one, it is found that the 

LEM_GA is able to provide reasonable estimates of the dam FoS under the condition of 
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RF-simulated soil properties. Besides, the located critical slip surfaces by the LEM_GA 

are also comparable with the ones of SRM_FDM for heterogeneous soils. In 

consideration of the calculation efficiency, the LEM_GA is adopted in this chapter as 

the deterministic model. 

 

Two studies related to the dam RFs are conducted. The first one compares the 

performance of different reliability methods for high dimensional stochastic problems. 

For this comparison, the reliability analysis of the dam is carried out beforehand with 

the MCS, which is considered as the reference method. The MCS is performed for two 

different input distribution types (Beta and Truncated normal). The obtained  

𝑃𝑓 is close to 0.02 under the considered seismic loading and is lower than 5×10-6 for 

the scenario. It is also found that the Beta assumption leads to a slightly higher 𝑃𝑓, 

which is in agreement with the observation of section 4.3.2 in the context of RVs. A 

parametric study about the autocorrelation distance is also performed. It investigates 

the effects of the Shell-2 𝐿𝑥, which is smaller than the values recommended in literature. 

The obtained results indicate that the dam 𝑃𝑓 is increased with increasing the 𝐿𝑥, and 

the 𝑃𝑓 varies within a narrow range for the considered different 𝐿𝑥 values. Then, the 

comparison study aims to evaluate the performance of four reliability methods (SS, 

MM, SPCE/GSA and SPCE /SIR) for high dimensional stochastic problems by 

comparing them with the MCS results. It is found that all the four methods can give 

relatively accurate estimates of the dam 𝑃𝑓  with a lower number of deterministic 

calculations compared to the MCS. The efficiency of the two meta-modelling 

techniques (SPCE/GSA and SPCE/SIR) strongly depends on the number of input 

variables, and they give usually smaller 𝑃𝑓 estimates due to the dimension reduction. 

The two sampling-based methods (SS and MM) are insensitive to the input dimension, 

but are not able to produce expected 𝑃𝑓  evolution with the 𝐿𝑥  change due to the 

complexity of generating effective conditional samples in SS and the approximated 

technique of estimating 𝑃𝑓 in MM. 



163 

 

 

The second complementary study involves the modelling of different RFs with the 

available measurements and the investigation of their induced effects on the dam 

reliability. Two complex RFs (conditional and nonstationary) are introduced in this 

study and coupled with the same reliability analysis procedure performed for the 

generic RFs. Three different types of RFs are thus used to model the spatial variability 

of dam material properties 𝛾𝑑 and 𝜙′. Basically, the differences between the results of 

the three kinds of RFs are not significant on the dam reliability. This is due to the low 

variability and the ‘homogeneity’ of the considered 32 measurements. Therefore, a 

simple RF can be used in practice without developing a complex one if the dam 

construction is well controlled. Additionally, two complementary analyses are carried 

out in which the 𝑐′ spatial variability is also considered by regarding the artificial values 

as measurements. The results confirm that using conditional RFs can lead to lower 𝑃𝑓 

estimates (so economic designs). 
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6 CHAPTER Ⅵ: Three-dimensional probabilistic analysis   



166 

 

The conducted studies of previous chapters are based on 2D simulations. A cross-

section, profile Y6 of Figure 3.4, was selected to evaluate the 2D dam stability condition. 

This chapter introduces the dam three-dimensional (3D) stability analysis and 

implements it into a probabilistic assessment procedure. The objective is to investigate 

the dam 3D geometry effects in a reliability analysis framework. The dam length in the 

third dimension is around 170 m for the crest and 50 m for the base, which are not long 

enough compared to the dam height (24 m) and width (140 m) to support the assumption 

of regarding the dam as an infinite one. Therefore, the obtained results (FoS and 𝑃𝑓) in 

a 2D context are biased and it is interesting to compare them with 3D ones in order to 

understand the dam geometry effects. For this purpose, a 3D computational model of 

the studied dam is constructed at first. Secondly, a probabilistic analysis is performed 

by using the 3D model and the target results (𝑃𝑓 and FoS statistics) are obtained. They 

are then compared with the 2D results. Additionally, the effects of two influential 

factors for the dam reliability are discussed for both 2D and 3D analyses. The first one 

is about the correlation between the 𝑐′ and 𝜙′, which is not accounted for in the previous 

chapters due to the lack of data. The second factor involves the discretization mesh used 

for the numerical model. As a number of deterministic calculations should be carried 

out in a probabilistic analysis, a possible way to alleviate the total computational burden 

is to use a relatively coarse mesh for the numerical model. This study aims to investigate 

the impacts of using a coarse deterministic mesh in a probabilistic analysis. It is noted 

that, in accordance with the previous chapters, a pseudo-static acceleration of 0.24𝑔 is 

considered for all the simulations in this chapter. 

6.1 Construction of the 3D computational model 

Figure 6.1 gives an aerial view of the studied dam. As stated in section 3.1, the dam 

closes a narrow valley which is covered with alluvial deposits. The first soil layer of 

the valley is composed of cracked schists and the depth varies between 3 and 8m. The 

second layer corresponds to a zone of the bedrock decompression and can be found 
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until a depth of 11 to 19m. The filter drain system of the dam is constituted by two parts: 

a continuous vertical filter wall and 19 separated horizontal drains. They are all 

composed of coarse gravels with diameters varying between 10 and 50mm. The filter 

wall is placed 8.5m to the central axis (X-axis=0 in Figure 3.1) in the downstream side, 

and its thickness is 1m. The 19 horizontal drains are separately distributed on the 

contact between the dam downstream part and the foundation with a centre distance of 

5m. Each drain presents a width of 2.5m and a height of 0.5m. 

 

Figure 6.1 Aerial view of the studied dam 

The objective of this section is to construct a 3D computational model which can respect 

as much as possible the real 3D geometry (dam, valley and filter system), and enable 

the dam stability analysis considering a pseudo-static acceleration and a steady-state 

water flow. For the 3D slope stability analysis, some approximation methods (Wei et 

al., 2009), based on the extension and combination of various 2D techniques, exist to 

estimate the FoS. However, these methods present difficulties of considering complex 

3D geometries which is the case for the studied dam, and are based on several 

assumptions which are difficult to justify for practical cases (e.g. failure direction and 

symmetry of the failure volume) (Huang et al., 2002). Besides, properly estimating the 

pore water pressure distribution inside the dam is an issue for these methods, given that 
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the filter wall and the horizontal drains should be considered. Therefore, it is necessary 

to create a numerical model which can address the above-mentioned problems. Between 

Plaxis and Flac, which are respectively the platforms for the SRM_FEM and SRM_FDM 

models, the former software is finally selected for the following two reasons: (1) Plaxis 

has a user-friendly interface which significantly facilitates the creation of the complex 

3D model and the mesh discretization; (2) the flow calculations using Plaxis are faster 

than those of Flac. 

 

Figure 6.2 shows the constructed 3D model in Plaxis. The model size is respectively 

240m, 310m and 53.8m for the three directions (X, Y and Z -axis in Figure 6.2). The 

first soil layer (schist) of the valley is assumed to be 6 m for the thickness. Lower than 

the schist layer, a bedrock formation is modelled by considering high shear strength 

values. The model base is fully blocked and the four lateral faces are normally fixed. A 

reservoir water level of 50 m high is applied on the upstream slope. The mesh condition 

of the numerical model is also presented in Figure 6.2. There are in total 181149 10-

noded tetrahedron elements for the mesh corresponding to 251870 nodes. As for the 

dam body (Shell-1 + Core + Shell-2), the elements number is equal to 68703. The 

adopted mesh is determined by a sensitivity analysis and a further discussion of using 

different mesh conditions for the dam reliability analysis will be provided later. 

 

Figure 6.2 The 3D numerical model in Plaxis  
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Concerning the model creation procedure, a cubic soil volume with two layers should 

be defined at first. Then, the valley profile is represented by plotting several lines in the 

Y-Z plan and is extruded along the X-axis to form the valley. This procedure is repeated 

but by extruding the dam cross-section along the Y-axis to form the dam contour. The 

valley profile is determined by the field data which were collected during a geology 

survey before the dam construction, while the cross-section is consistent with the one 

shown in Figure 3.1 and considers the dam three zones (Shell-1, Core and Shell-2) 

together with the vertical filter wall. The next step is to split the original surfaces into 

smaller and independent ones by using the tool ‘Intersect’, and to delete the soil blocks 

which are unnecessary for the 3D model. Concerning the horizontal drains, they are 

added manually to the model according to their dimensions and the available 

installation map. Figure 6.3 shows an inner view of the model in order to illustrate the 

parts that are hided in Figure 6.2, including the Core zone, the filter wall and the 19 

horizontal drains.  

 

Figure 6.3 Illustration of the Core zone and of the drain system from an inner view 

Figure 6.4 illustrates the failure surface determined by the 3D model with the mean 

values shown in Table 3.3. A view of the Shell-2 from the upstream part and a cut in 

the profile Y6 are provided as well. The incremental total displacements are used to 

visualize the failure surface. It is observed that the slip soil volume is principally located 
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in the Shell-2 zone and the deepest failure approximately takes place in the centre. The 

largest failure is found in the first stage of the downstream slope (lower than the crest) 

with a distance of about 60 m from the Y-axis. 

 

Figure 6.4 Failure surface of the dam in 3D with mean values of the soil properties 

6.2 3D probabilistic analysis results 

This section presents the dam probabilistic analysis results by using the created 3D 

numerical model. Firstly, a reference case is considered, which refers to the input 

configuration defined in Table 3.2 and assumes that the 𝑐′ and 𝜙′ are uncorrelated. 

Then, the effects of the 𝑐′ − 𝜙′ correlation on the dam 3D reliability are investigated 

by testing two values (-0.5 and 0.5) for the correlation coefficient 𝛽𝑐′,𝜙′ . The soil 

variabilities are modelled by means of RVs and there are six RVs for three soil 

properties (𝛾𝑑, 𝑐′ and 𝜙′) of two zones (Shell and Core). This is consistent with the 

analyses of section 4.2.2. All the six RVs follow a Beta distribution considering the 

parameters of Table 3.2. The reliability analyses in this chapter are performed by using 

the Adaptive bootstrap-based SPCE (termed as AbSPCE) method which is described in 

section 2.2.1. It consists in constructing a SPCE meta-model to replace the original 

deterministic model and then running an MCS to estimate the 𝑃𝑓 and FoS statistics. 

Particularly, the meta-model is obtained by using an active learning algorithm which 

adds carefully-selected training samples to the Experimental Design (𝐸𝐷) and thus 
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gradually improves the model performance. This algorithm can lead to accurate 

estimates of the 𝑃𝑓 with a limited number of calls to the deterministic model. Therefore, 

the total computational time of a reliability analysis can be significantly reduced. The 

procedure of Table 2.3 is followed to carry out the AbSPCE method. The necessary 

user-defined parameters are assumed as follows: the accepted tolerance error 휀𝑃𝑓  is 

equal to 0.15, the Bootstrap number 𝐵𝑃𝐶𝐸 = 20, the 𝑞-quasi-norm is 0.75, the size for 

the initial 𝐸𝐷 is 30 and the maximal polynomial degree is tested between 2 and 10. The 

values of these parameters are in agreement with the recommendations given in Marelli 

and Sudret (2018).  

6.2.1 Results for the reference case 

The dam reliability is firstly assessed under a reference scenario as defined previously. 

By following the procedure of Table 2.3 for the AbSPCE method, 52 deterministic 

calculations are performed. It means that 22 training samples are gradually added to the 

initial 𝐸𝐷 whose size is 30. The finally obtained SPCE meta-model is 10-order with a 

𝑄2 of 0.986. The accuracy of the adopted surrogate models for predicting the dam FoS 

in 3D will be discussed later. The number of the MCS population size 𝑁𝑚𝑐 is set large 

enough so that the 𝐶𝑜𝑉𝑃𝑓, evaluated by Eq. (2-9), is smaller than 5%. 

 

Figure 6.5 plots the PDF and CDF of the FoS values obtained by an MCS which is 

based on the final SPCE meta-model. According to the two curves in Figure 6.5, almost 

all possible FoS values for the dam in 3D under the considered pseudo-static load are 

varied between 0.9 and 1.6. The PDF is not symmetric but with a bigger tail at its left 

(negatively skewed). This observation is consistent with the 2D one and the reasons 

discussed before remain valid for the 3D results. Plotting the CDF allows fast estimating 

the probability of being lower or higher than any a given threshold. For example, if the 

acceptable FoS for the dam stability condition is increased from unit to 1.2, the related 

𝑃𝑓 is around 0.18 based on the CDF. 
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Figure 6.5 PDF and CDF of the dam possible FoS values obtained by the AbSPCE-MCS method 

Table 6.1 presents other results of the reference case which are also available in the 

AbSPCE-MCS method including the failure probability (𝑃𝑓𝑐𝑜𝑛), FoS statistics and the 

sensitivity index of each input variable. The dam 𝑃𝑓𝑐𝑜𝑚 in 3D is estimated to be equal 

to 0.016 under a seismic loading of 0.24𝑔. This value is of the same order to the estimate 

obtained previously in 2D by using RVs or RFs. A detailed comparison between the 2D 

and 3D reliability analysis results will be given in the next section. The average of the 

possible FoS values is 1.318 which shows an increase compared with the 2D results, 

and the data scatter (𝐶𝑜𝑉𝐹𝑜𝑆) is increased as well. Concerning the sensitivity indices, 

the 3D results are in agreement with the 2D ones. The two most important variables are 

𝑐′ and 𝜙′ of the Shell zone. The Core 𝑐′ and the Shell 𝛾𝑑 are the following ones with 

slightly noticeable impacts while the other two have almost no effects. 
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Table 6.1 Probabilistic analysis results for the 3D reference case 

Reliability analysis results FoS statistics 
Sobol index (total effect) (%) 

Core Shell 

𝑃𝑓𝑐𝑜𝑛 𝑃𝑓𝑠𝑐𝑒  𝐶𝑜𝑉𝑃𝑓𝑐𝑜𝑛
 𝑀𝑒𝑎𝑛𝐹𝑜𝑆  𝑆𝑡𝑑𝐹𝑜𝑠 𝐶𝑜𝑉𝐹𝑜𝑆  𝛾𝑑  𝑐′ 𝜙′ 𝛾𝑑  𝑐′ 𝜙′ 

0.016 3.2×10-6 2.5% 1.318 0.135 10.2% ≈0 0.7 ≈0 0.2 88.7 11.5 

6.2.2 Influence of the correlation between 𝒄′ and 𝝓′ 

This section aims to investigate the 𝑐′ − 𝜙′ correlation effects on the dam reliability in 

a 3D context. It is commonly recognized that there exists a correlation between the soil 

shear strength parameters. A negative correlation coefficient 𝛽𝑐′,𝜙′ is often encountered 

according to the laboratory tests (Javankhoshdel and Bathurst, 2016; Lumb, 1970; 

Wang and Akeju, 2016) and its value is usually in the range between -0.24 and -0.7 

(Lumb, 1970; Yucemen et al., 1973). Besides, some studies also reported a positive 

correlation between the 𝑐′ and 𝜙′, such as 𝛽𝑐′,𝜙′=0.25 in Wolff (1985). Therefore, two 

𝛽𝑐′,𝜙′ values (-0.5 and 0.5) are selected and two complementary reliability analyses are 

conducted with correlated 𝑐′ − 𝜙′ in this section. It is noted that a same 𝛽𝑐′,𝜙′ is applied 

for both the two zones (Shell and Core). The objective is to quantify the effects of 

considering a nonzero 𝛽𝑐′,𝜙′  on the estimated 𝑃𝑓  which remain unknown for the 

studied dam. 

 

The AbSPCE-MCS method is also employed to perform the two complementary 

analyses with the user-defined parameters given before. Particularly, the already 

existing 52 deterministic calculations are used as the initial 𝐸𝐷 for the case of 𝛽𝑐′,𝜙′=-

0.5. Considering a nonzero 𝛽𝑐′,𝜙′  will modify the joint distribution of the input 

variables and the MCS samples will be changed accordingly. Then, the active learning 

algorithm is carried out to select the best next samples from the new MCS candidate 

pool. This process will permit to improve the model performance for estimating the 𝑃𝑓. 

The algorithm is stopped when the stability of the 𝑃𝑓 estimates is reached with respect 

to Eq. (2-27). Finally, 46 new samples are added to obtain the adopted SPCE meta-



174 

 

model. As for the case of 𝛽𝑐′,𝜙′=0.5, the current available 98 deterministic results are 

used for the initial 𝐸𝐷. The active learning algorithm is stopped with 32 new samples. 

 

Figure 6.6 plots the PDF of the dam FoS values obtained in the two complementary 

analyses together with the one of the independent case. The three PDF curves are all 

negatively skewed with a bigger tail at left. This is due to the nature of the most 

important input variable (the 𝑐′  of the Shell) which has more small values in its 

distribution according to Figure 3.9. For the parts with high or low FoS values (higher 

than 1.55 or lower than 1.1), Figure 6.6 clearly shows that the PDF of 𝛽𝑐′,𝜙′ =0.5 

(𝑃𝐷𝐹0.5) is the tallest while the one of 𝛽𝑐′,𝜙′=-0.5 (𝑃𝐷𝐹−0.5) is the smallest. This means 

that more high or small FoS values can be found if the 𝛽𝑐′,𝜙′ is equal to 0.5, while 

considering a 𝛽𝑐′,𝜙′  of -0.5 can reduce the number of these extreme values. A possible 

explanation is given as follows. When a negative correlation between the 𝑐′ and 𝜙′ is 

considered, the probability of simultaneously generating two low or high values for the 

𝑐′ − 𝜙′ pairs is reduced compared to the case of independent 𝑐′ − 𝜙′. As a result, less 

small or high FoS values will be obtained. In contrast, a positive 𝛽𝑐′,𝜙′  is favourable 

for having two low or high 𝑐′ − 𝜙′ values in one simulation. The number of possible 

extreme FoS values is thus increased. This interpretation explains also why 𝑃𝐷𝐹0.5  is 

wider than the other two cases. 



175 

 

 

Figure 6.6 PDF of the dam possible FoS values in 3D considering different 𝜷𝑪′,𝝓′ values 

Table 6.2 presents the reliability analysis results for the three analyses with three 𝛽𝑐′,𝜙′ 

values (-0.5, 0 and 0.5). It is observed that the 𝑃𝑓𝑐𝑜𝑛 is reduced with decreasing the 𝑐′ −

𝜙′ correlation coefficient. Considering a 𝛽𝑐′,𝜙′ of -0.5 can induce a change of one order 

of magnitude: from 1.6×10-2 to 2.1×10-3 for the 𝑃𝑓𝑐𝑜𝑛. This finding is consistent with 

the previous studies of (Babu and Srivastava, 2010; Guo et al., 2019b) and can be 

attributed to the fact that the cases of having a low value for both 𝑐′ and 𝜙′ are partially 

avoided by accounting for a 𝛽𝑐′,𝜙′ of -0.5. The dam failure probabilities (𝑃𝑓𝑠𝑐𝑒) are all 

lower than 7×10-6, indicating a low instability risk of the dam for the scenario. As for 

the FoS statistics, the mean value remains almost constant for the three analyses. 

Therefore, the 𝑐′ − 𝜙′ correlation is considered to have negligible effects on the FoS 

mean. However, Table 6.2 shows a clear increase of the FoS standard deviation and 

𝐶𝑜𝑉 with increasing the 𝛽𝑐′,𝜙′. This observation is in good agreement with Figure 6.6 

in which the 𝑃𝐷𝐹0.5 is wider while the 𝑃𝐷𝐹−0.5 is narrower compared to the 𝑃𝐷𝐹0. 
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Table 6.2 Reliability analysis results in 3D for different 𝜷𝒄′,𝝓′  values 

𝛽𝑐′ ,𝜙′  
Reliability analysis results FoS statistics 

𝑃𝑓𝑐𝑜𝑛 (×10-3) 𝑃𝑓𝑠𝑐𝑒  (×10-7) 𝐶𝑜𝑉𝑃𝑓𝑐𝑜𝑛
 𝑀𝑒𝑎𝑛𝐹𝑜𝑆  𝑆𝑡𝑑𝐹𝑜𝑠  𝐶𝑜𝑉𝐹𝑜𝑆 

-0.5 2.1 4.2 3% 1.320 0.114 8.6% 

0 16.2 32 2.5% 1.318 0.135 10.2% 

0.5 31.5 63 1.8% 1.318 0.150 11.4% 

6.3 Comparison with 2D results 

As stated before, one objective of this chapter is to quantify the effects of the dam 3D 

geometry on the reliability analysis results. This can be achieved by comparing the 3D 

results, obtained previously, with the 2D ones. For this purpose, a 2D computational 

model is created in the same numerical platform as the 3D one using Plaxis. The 

geometry of the 2D model is an exact cut section of the 3D one considering the line Y6 

shown in Figures 6.2 and 6.4 in order to be comparable with each other. Figure 6.7 

shows the established 2D model together with the determined failure surface by 

considering the mean soil properties values shown in Table 3.3. It is observed that a 

global failure mechanism (from crest to slope toe) is formed and the shape is similar to 

the one of the cut section shown in Figure 6.4. The mesh used for the numerical 2D 

simulations is also illustrated in Figure 6.7. It includes 8294 15-noded triangular 

elements and 66877 nodes. The element number for the dam body is equal to 5335. 

 

Figure 6.7 2D model and failure surface considering mean values of Table 3.3 
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The three reliability analyses of the previous section are performed again herein but 

with the 2D model. Other settings remain the same as before: the 6 Beta RVs of Table 

3.2, the pseudo-static acceleration of 0.24 𝑔  and the method AbSPCE-MCS. The 

technique proposed above for the AbSPCE is also employed here, which involves using 

the total deterministic results of the previous analysis as the initial 𝐸𝐷 for the next 

analysis. This can avoid wasting the deterministic results which are time expensive-to-

evaluate, and accelerate the active learning process. Finally, 134 calls to the 2D 

computational models are required to obtain the target results for the three analyses by 

using the AbSPCE-MCS with the proposed technique. 

 

Figure 6.8 compares the dam 𝑃𝑓𝑐𝑜𝑛 estimates between the 2D and 3D models for the 

three considered cases. The corresponding 𝑃𝑓𝑐𝑜𝑛 values are given in Table 6.3. First 

observation is that the 𝑃𝑓 in 2D is also increased by increasing the 𝛽𝑐′,𝜙′, as found in 

3D. Then, it can be seen that using a 3D model always leads to a lower 𝑃𝑓 estimate 

than in 2D, with a reduction ratio of at least 43%. This means that the assumption of 

being infinite in the 3rd dimension, which is adopted in the 2D simulations, could give 

conservative results in terms of the 𝑃𝑓. This finding is expected for the studied dam 

since the 3D dam geometry is beneficial for the downstream slope stability, given that 

the dam closes a narrow valley and the length (3rd dimension size) is decreased from 

the central axis to the downstream slope toe (Figures 6.1 and 6.2). Table 6.3 also 

presents the FoS statistics in 2D and 3D for the three cases. It is observed that improving 

the dam simulation from 2D to 3D can increase the FoS mean from 1.19 to 1.32. The 

discussions made above about the favourable 3D geometry for the downstream slope 

stability remain valid to explain this observation. Additionally, the data scatter of the 

possible FoS values is increased as well by using a 3D model, because the 𝑆𝑡𝑑𝐹𝑜𝑆 and 

𝐶𝑜𝑉𝐹𝑜𝑆 values are higher in 3D than in 2D. This is due to the fact that the 3D model 

covers all the 2D failure possibilities, and presents additional failure mechanisms. On 

one hand, there are some high FoS values in 3D that cannot be provided in 2D. On the 
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other hand, the 3D model also gives similar small FoS estimates as by 2D if low strength 

parameters are considered, since local (small) failure surfaces will be formed and the 

3D geometry effects are negligible for such cases. Therefore, the possible FoS values 

in 3D vary in a wider range than in 2D.    

 

When comparing with the results of section 4.2.2, it is found that the 2D dam 𝑃𝑓𝑐𝑜𝑛 of 

uncorrelated 𝑐′ − 𝜙′  (0.038) is close to the previous one (0.024) shown in Table 4.4. 

The differences between the two estimates, although insignificant, can be explained by 

the following factors: (1) different numerical codes are used for the two analyses (Flac 

and Plaxis); (2) the previous analysis simplifies the dam geometry by linking the two 

drains and replacing the bedrocks with the schists; (3) the pore water pressures are 

slightly increased by default in the pseudo-static simulations of Plaxis as they consider 

the hydrodynamic overpressure effect, as discussed in section 4.2. Basically, the present 

𝑃𝑓𝑐𝑜𝑛 estimate is in relatively good agreement with the previous result of Table 4.4. 

 

Figure 6.8 Comparison of the 𝑷𝒇𝒄𝒐𝒏 values obtained by the 2D and 3D models 
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Table 6.3 Comparison of the reliability analysis results between the 2D and 3D cases 

𝛽𝑐′,𝜙′  2D or 3D 𝑃𝑓𝑐𝑜𝑛 (×10-3) 𝑀𝑒𝑎𝑛𝐹𝑜𝑆 𝑆𝑡𝑑𝐹𝑜𝑠  𝐶𝑜𝑉𝐹𝑜𝑆  (%) 

-0.5 
2D 26.1 1.191 0.081 6.8 

3D 2.1 1.320 0.114 8.6 

0 
2D 37.7 1.187 0.099 8.3 

3D 16.2 1.318 0.135 10.2 

0.5 
2D 56.0 1.195 0.100 8.4 

3D 31.5 1.318 0.150 11.4 

 

An interesting finding from Figure 6.8 and Table 6.3 is that the 3D geometry effects on 

the dam 𝑃𝑓 for the case of 𝛽𝑐′,𝜙′=-0.5 are much more significant than for the other two 

cases. The 𝑃𝑓𝑐𝑜𝑛 is reduced from 2.6×10-2 to 2.1×10-3 when the 𝑐′ − 𝜙′ correlation is 

set equal to -0.5, corresponding to a change of one order of magnitude and a reduction 

factor of 99.2%. On the contrary, the 𝑃𝑓𝑐𝑜𝑛 remains in a same order of magnitude and 

the reduction factors are both smaller than 58% for the other two cases. This finding 

means that using a 2D model will lead to a highly overestimated 𝑃𝑓 if the 𝛽𝑐′,𝜙′  is 

considered to be equal to -0.5, while the results of assuming 2D simulations are 

acceptable (close to 3D results) if the 𝛽𝑐′,𝜙′ is equal to 0 or 0.5. Figure 6.9 provides a 

possible explanation for the mentioned observation. As the FoS variation is mostly 

contributed by two variables (𝑐′ and 𝜙′ of the Shell) and the impact of other variables 

are negligible according to the sensitivity analysis results shown in Table 6.1, it is 

possible to only focus on these two RVs for understanding the findings about the 𝑃𝑓 

decrease, which in turn enables a visualization in plot. Figure 6.9 plots 10 000 random 

LHS samples (𝑐′ − 𝜙′ pairs) respectively for the independent case and a negative 𝛽𝑐′,𝜙′ 

(-0.5). It is observed that the 𝑐′ values are mainly between 0 and 25 kPa, while the 𝜙′ 

RV varies within a narrower range ([32o, 38o]). In general, accounting for a negative 

𝛽𝑐′,𝜙′ leads to a clockwise rotation of the samples. Figure 6.9 also presents the limit 

state surface (LSS) for the dam in 2D and 3D. The part left to the LSS represents the 
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failure domain, while the rest of the area represents the safe domain. The LSSs are 

estimated by directly searching the 𝑐′ − 𝜙′ pairs which lead to unit FoS within physical 

ranges with the help of the SPCE surrogate models constructed previously. It can be 

seen that using a 3D model results in a more linear LSS and a movement towards the 

area where the joint probability densities are low which means low probabilities of 

generating samples in such area. Therefore, the 𝑃𝑓 in 3D is smaller than the 2D one. In 

the case of a negative 𝛽𝑐′,𝜙′, there is an additional samples-rotation effect, which leads 

to a further 𝑃𝑓  reduction compared to the uncorrelated case. A 𝛽𝑐′,𝜙′  of -0.5 can 

noticeably rotate the samples, as shown in Figure 6.9, so induces a significant 𝑃𝑓 

decrease. For the sake of clarity, the samples of 𝛽𝑐′,𝜙′=0.5 are not plotted in Figure 6.9 

since the results can be predicted. Considering a positive 𝛽𝑐′,𝜙′  will also rotate the 

samples but in an anticlockwise way. Such a rotation is unfavourable for reducing the 

𝑃𝑓 estimate so the 𝑃𝑓 decrease from the 2D to the 3D is less remarkable than for the 

other two cases, as shown in Figure 6.8 and Table 6.3. 

 

Figure 6.9 The LSS and 10 000 random samples for the 2D and 3D cases  
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6.4 Effects of using a coarse deterministic mesh 

In a probabilistic analysis, a number of deterministic simulations should be performed. 

Having an unnecessary refined mesh for numerical models would aggravate the 

computational burden of one simulation, and thus significantly increase the total 

calculation time especially for complex situations (e.g. 3D simulation and large-scale 

models). Therefore, it is preferred to employ a relatively coarse mesh for these cases, 

as in Mollon et al. (2011). A coarse mesh can be determined by a mesh sensitivity study 

with deterministic input values (e.g. average of each input variable). This section aims 

to investigate the effects of using a simplified deterministic mesh on the dam reliability 

estimates in 2D and 3D. The objective is to check if a coarse-mesh model, which gives 

reasonable estimates in a deterministic framework with mean values, is able to provide 

acceptable reliability results or not?  

 

At first, a mesh sensitivity analysis is performed for respectively the 2D and 3D model. 

The dam FoS for the 2D and 3D cases with deterministic input values (Table 3.3) are 

estimated by using 5 different mesh conditions. Figure 6.10 plots the obtained FoS 

estimates against different numbers of elements generated for the dam body (Shell-1, 

Core and Shell-2). It is observed that from the 4th mesh condition, a strict convergence 

is obtained for both the 2D and 3D since the difference between the two successive FoS 

estimates can be found only for the 3rd digit after the decimal point. The 4th mesh is thus 

adopted for the deterministic model and has been used for the previous analyses. 

However, other mesh conditions can also give satisfied FoS results. For example, the 

2nd mesh leads to a FoS error lower than 2% for both the 2D and 3D cases. From a point 

of view of deterministic calculations, the 2nd mesh can also be accepted which is more 

favourable than the 4th one for a probabilistic analysis since it can reduce the CPU time 

of each simulation. Figure 6.11 illustrates the two 2D mesh conditions selected for the 

comparison study of this section: a coarse mesh (2nd one in Figure 6.10) and a refined 

mesh (noted as Adopted mesh in Figure 6.10). The former has 931 elements for the dam 



182 

 

body while there are 5335 elements in the latter. As for the 3D, Figure 6.12 shows the 

two selected mesh configurations with respectively 11275 and 68703 elements for the 

dam body. Using the coarse mesh instead of the adopted one can reduce the time of one 

deterministic calculation from 4.3 mins to 1 min in 2D, and from 73 mins to 17 mins in 

3D.   

 

Figure 6.10 Dam FoS estimates for different mesh conditions 

  

Figure 6.11 Illustration of the two mesh conditions in 2D (left: coarse mesh; right: adopted mesh) 
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Figure 6.12 Illustration of the two mesh conditions in 3D (left: coarse mesh; right: adopted mesh) 

For a purpose of comparison, the analyses shown in Figure 6.8 are conducted again but 

with the coarse-mesh model for both the 2D and 3D cases. Other settings, referring to 

the AbSPCE and the probabilistic input parameters, remain unchanged. Figure 6.13 

presents the dam 𝑃𝑓𝑐𝑜𝑛 estimates for different 𝛽𝑐′,𝜙′ values obtained with the coarse 

mesh. The existing results of the adopted mesh are plotted as well. The comparison of 

the FoS statistics between the two mesh conditions is presented in Table 6.4. It is 

observed from Figure 6.13 that using a coarse mesh will underestimate the dam 𝑃𝑓 for 

any 𝛽𝑐′,𝜙′ values in 2D and 3D. The underestimation effect in 2D corresponds to a 𝑃𝑓 

decrease lower than 30% and the 𝑃𝑓 remains in a same order of magnitude according 

to Table 6.4. This indicates that the results obtained by using the coarse-mesh model 

are roughly satisfied in 2D. However, using a 3D simplified mesh leads to unreasonable 

𝑃𝑓 estimates with a decrease over 60%. Especially, in the case of  𝛽𝑐′,𝜙′=-0.5, the 𝑃𝑓 

of the coarse mesh presents a difference of two orders of magnitude compared to the 

adopted one. Therefore, it is not recommended to use a coarse mesh in 3D, although 

the total computational time can be reduced, since the mesh-related error is propagated 

and amplified in a probabilistic analysis which leads to inaccurate 𝑃𝑓 estimates.                   

 

From Table 6.4, it can be concluded that using a coarse mesh will slightly overestimate 

the 𝑀𝑒𝑎𝑛𝐹𝑜𝑆, but provide less scattered data (i.e. smaller 𝑆𝑡𝑑𝐹𝑜𝑆). As a model with a 

rationally refined mesh enables more forms of failure mechanism, the possible FoS 

values by the adopted mesh are more dispersed than those of the coarse mesh.  
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Figure 6.13 Comparison of the 𝑷𝒇 estimates obtained by the two mesh conditions in 2D and 3D 

Table 6.4 Comparison of the reliability analysis results obtained by the two mesh conditions in 2D and 3D 

𝛽𝑐′,𝜙′  2D or 3D Mesh 𝑃𝑓𝑐𝑜𝑛 (×10-3) 𝑀𝑒𝑎𝑛𝐹𝑜𝑆 𝑆𝑡𝑑𝐹𝑜𝑠  𝐶𝑜𝑉𝐹𝑜𝑆  (%) 

-0.5 2D Coarse 18.6 1.200 0.079 6.6 

Adopted 26.1 1.191 0.081 6.8 

3D Coarse 0.09 1.338 0.094 7.0 

Adopted 2.1 1.320 0.114 8.6 

0 2D Coarse 27.2 1.204 0.077 6.4 

Adopted 37.7 1.187 0.099 8.3 

3D Coarse 3.3 1.335 0.113 8.5 

Adopted 16.2 1.318 0.135 10.2 

0.5 2D Coarse 42.3 1.204 0.086 7.1 

Adopted 56.0 1.195 0.100 8.4 

3D Coarse 13.2 1.333 0.133 10.0 

Adopted 31.5 1.318 0.150 11.4 
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Concerning why the 2D-3D differences of 𝛽𝑐′,𝜙′=-0.5 are more noticeable than for 

other cases, Figure 6.14 can help for a better understanding. Similar to Figure 6.9, 

10 000 random LHS 𝐶′ − 𝜙′ samples are plotted in Figure 6.14 for respectively 𝛽𝑐′,𝜙′ 

equalling to 0 and -0.5. The LSSs determined by the two 3D mesh conditions are 

provided as well. It can be seen that the coarse mesh approximately translates the LSS 

towards the failure domain, which leads to a decrease of the failure area so a 𝑃𝑓 

reduction. When 𝛽𝑐′,𝜙′ is equal to -0.5, the samples are rotated such that most of the 

samples, which are originally located in the failure domain, are escaped from this zone. 

As a result, a very small 𝑃𝑓 estimate (9×10-5) is obtained in such case. 

 

Figure 6.14 The LSS of 3D and 10 000 samples for the two cases with different 𝜷𝒄′,𝝓′  values 

It should be noted that this comparison study is based on the 𝑃𝑓 estimate which is 

obtained by simply counting the number of the failure samples (i.e. FoS≤1). The 

sliding mass and the induced damage (risk analysis) are not considered in the 

comparison. The increase in the 𝑃𝑓 estimate by using a refined mesh is probably or at 

least partially due to the fact that some shallow slip surfaces can be captured by a refined 

mesh since the mesh sizes near to the surfaces are sufficiently small. Very shallow 

failures are of less interest for engineers since they are sometimes not realistic or 
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associated with limited damages. By giving a minimum sliding mass or considering the 

induced damages, the issue of very shallow failures could be addressed and the 

difference between a coarse and a refined mesh is expected to be decreased. A further 

study is necessary to make the discussions above clearer. The objective of the current 

comparison study (Figure 6.13) aims to provide first insights into the mesh effects on 

the dam reliability in 2D and 3D. Some findings could be useful for practitioners, for 

example it requires more attention when determining the mesh for a problem with a 

negatively correlated 𝑐′ − 𝜙′. 

6.5 Accuracy investigation of the constructed surrogate models 

The reliability analyses in this chapter are performed by using a surrogate-based MCS. 

The surrogate model is obtained by the SPCE with an active learning algorithm. This 

section aims to evaluate the performance of the obtained SPCE models. As the 

calculation time of one deterministic simulation is not negligible, performing a direct 

MCS to assess the AbSPCE results is infeasible especially for the 3D case. Therefore, 

100 input sets are considered for the accuracy investigation. The 100 samples are 

generated with the LHS technique which can guarantee that they could reasonably cover 

the whole input space. The original computational model created in Plaxis and the 

SPCE model obtained previously are both used to estimate the dam FoS for the 100 

cases in 2D and 3D. All the FoS estimates are then collected and sorted by an ascending 

order according to the results of the 3D Plaxis model.  

 

Figure 6.15 plots the FoS values of each case for 2D and 3D provided by the two models 

(Plaxis and SPCE). It reveals that the SPCE results fluctuate around the line of the 

Plaxis model. This indicates that the predictions made by the SPCE for the dam FoS 

are close to the reference values in 2D and 3D. For the parts where the FoS is near to 

the unit, the results given by the two models are extremely similar. This highlights the 

great accuracy of the SPCE surrogate model for the FoS values close to the limit state 
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surface, and can be explained by the employed active learning process. Additionally, 

this figure clearly shows that using a 3D model will give higher FoS estimates and the 

2D-3D difference increases with increasing the FoS. Table 6.5 presents the errors of the 

SPCE predictions for the 100 samples by regarding the Plaxis results as a reference. It 

is seen that the maximum error is respectively equal to 12% and 5% for the 2D and 3D 

cases. The average errors are both smaller than 2.5%, indicating a good accuracy of the 

SPCE models. The term 𝑁𝐹−𝑆 in Table 6.5 means the number of misjudging failure 

samples, and is equal to 0 for both the two cases. Moreover, the FoS statistics estimated 

by the 100 FoS values of the Plaxis model are provided as well for a purpose of 

comparison. As the 100 samples are generated by assuming a 𝛽𝑐′,𝜙′ of 0, the results of 

the uncorrelated case given in Table 6.1 are considered for the comparison. It is shown 

that the SPCE models provide extremely close estimates for the 𝑀𝑒𝑎𝑛𝐹𝑜𝑆 and slightly 

higher 𝑆𝑡𝑑𝐹𝑜𝑆  values. In conclusion, the SPCE models, used to replace the original 

computational models, are accurate in predicting the dam FoS in 2D and 3D.  

 

Figure 6.15 FoS estimates for the 100 samples by the original computational model and the SPCE model  
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Table 6.5 Accuracy survey of the SPCE models based on the 100 random samples 

  Surrogate model accuracy FoS statistics 

 Model Max error Average error 𝑁𝐹−𝑆
(1) 𝑀𝑒𝑎𝑛𝐹𝑜𝑆  𝑆𝑡𝑑𝐹𝑜𝑠 

2D 
Plaxis 

12% 2.2% 0 
1.192 0.091 

SPCE 1.187 0.099 

3D Plaxis 
5% 1% 0 

1.317 0.130 

 SPCE 1.318 0.135 

Notes: (1) number of misjudging failure samples 

6.6 Conclusions 

This chapter presents the dam reliability analyses by using a 3D computational model. 

One major objective is to account for the 3D dam geometry, which is ignored in 

previous chapters, and to quantify its effects on the probabilistic analysis results. Firstly, 

a 3D deterministic model, which describes the real geometry of the dam and valley, is 

created using the finite element software Plaxis. Such a model enables the dam stability 

calculation by considering a steady-state flow and a pseudo-static acceleration. Then, 

this model is coupled with the AbSPCE-MCS method to evaluate the dam reliability. 

The soil variabilities are modelled as in section 4.2.2 with means of RVs which follows 

the Beta distributions defined in Table 3.2. The 𝑐′ − 𝜙′ correlation is also considered 

in the analyses by testing two 𝛽𝑐′,𝜙′ values (-0.5 and 0.5). The obtained results show 

that the dam 𝑃𝑓𝑐𝑜𝑛 is equal to 0.016 in 3D. Assuming a 𝛽𝑐′,𝜙′ of 0.5 will increase the 

value to 0.032, while a significant reduction in the 𝑃𝑓 (from 0.016 to 0.002) will be 

observed if the 𝛽𝑐′,𝜙′  is equal to -0.5. The results are then compared with the ones 

obtained in 2D which are based on the profile Y6 cross-section (Figure 6.2) of the 3D 

model. According to the comparison, it can be concluded that taking into account the 

3D dam geometry leads to smaller estimates of the dam 𝑃𝑓. The reduction ratio of the 

𝑃𝑓 is about 50% for the cases of 𝛽𝑐′,𝜙′=0 or 0.5, but can reach 99% when the 𝑐′ − 𝜙′ 

correlation coefficient is equal to -0.5 corresponding to a change of one order of 
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magnitude for the 𝑃𝑓. These findings can be explained by the movement of the LSS 

and the rotation of the MCS samples (Figures 6.9 and 6.14). 

 

Additionally, the effects of using a coarse deterministic mesh on the dam reliability 

estimates are investigated. Two mesh conditions are selected for this study: a relatively 

coarse mesh and a refined mesh which is the one adopted for the previous analyses. 

Both of them can provide accurate FoS values in a deterministic framework considering 

the mean values of each soil property. However, the performance of the coarse mesh in 

a probabilistic analysis is not satisfactory, given that such a simplified mesh 

underestimates the dam 𝑃𝑓𝑐𝑜𝑛 with an error of 30% for the 2D and 60% for the 3D case. 

For the case of 𝛽𝑐′,𝜙′=-0.5 in 3D, using the coarse mesh leads to a change of two orders 

of magnitude for the 𝑃𝑓 estimates. Therefore, a careful attention should be paid when 

using a coarse deterministic mesh to reduce the total computational time of a 

probabilistic analysis. The sliding mass and the induced damages are not considered in 

the mesh effect investigation. These factors can be added in a further study in order to 

complete the observations concerning the effect of using a coarse mesh in a 

probabilistic analysis and a risk analysis. Besides, the effectiveness of the obtained 

SPCE models, used for replacing the original Plaxis models in the MCS, is assessed. It 

is achieved by comparing the FoS predictions made by the adopted SPCE models with 

the FoS estimates provided by the Plaxis models for 100 random LHS samples. The 

accuracy of the constructed SPCE models is validated since the average error of the 

FoS predictions for the 100 cases is equal to 2.2% for the 2D and 1% for the 3D case. 

 

The present study is based on the RVs which assume that the soil properties are 

homogeneous for one simulation. A possible future research will be to incorporate the 

RFs into the 3D dam model in order to investigate the effects of the soil spatial 

variability in the 3rd dimension on the dam reliability. 
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7 CHAPTER Ⅶ: General conclusions, recommendations 

and perspectives 
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Due to the complexity of the construction materials (soils) and the non-uniform 

compaction of one layer or different layers, uncertainties exist in the material properties 

of earth dams. Recently, there is an increasing need of accounting for these uncertainties 

and quantifying their effects for a safe assessment of large dams, in particular, in the 

framework of risk analysis studies. Therefore, it is of great interest to implement 

probabilistic analyses into the safety assessment of these structures. Motivated by this 

fact, and by the limitations of the existing studies also the new requirement of national 

regulations, this work is established and is dedicated to presenting a comprehensive 

probabilistic stability analysis of an earth dam by using real measurements. It also 

permits to give insights for some issues that remain unknown or unclear in the field of 

dam probabilistic analyses.     

 

In a first stage, the available data, that are relevant to the dam stability, are statistically 

analysed in order to model the soil variabilities by means of RVs or RFs. Then, three 

deterministic models (LEM_GA, SRM_FEM, SRM_FDM), used as the tool to estimate 

the dam FoS under steady state flow conditions, are developed. The second stage 

consists in performing the dam probabilistic analyses (reliability and sensitivity) within 

the framework of the RV approach which is simpler and faster than the RF one. Two 

deterministic models are employed and compared at this stage and the dam reliability 

is evaluated under two operation conditions. Then, the RF approach is utilized in the 

third stage, so that the soil spatial variability can be considered. Two complementary 

studies are carried out in the RF context: the first one compares five reliability methods 

including the classical MCS and advanced reliability methods (e.g. SPCE/GSA), while 

the second one generates different types of RFs for the dam including generic RFs and 

complex RFs (e.g. conditional and non-stationary). The previous analyses are all based 

on 2D computations. The fourth stage introduces a 3D model into the dam probabilistic 

analysis in order to investigate the 3D dam effect (e.g. narrow valley) on the reliability 
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results. Additionally, the influence of considering an input correlation and the mesh 

density of the deterministic model are examined as well.    

7.1 Concluding remarks from the studied dam 

This section gives a summary of the concluding remarks drawn from the obtained 

results based on the studied dam. They can be gathered by two groups: (1) remarks 

specific to the case study and (2) those which can be extended to more general cases. 

 

The specific remarks can be listed as follows: 

• The dam, regarding its stability of the downstream slope, has a very high safety 

probability under normal exploitation conditions since the estimated 𝑃𝑓 with 

the RV approach is quite small (in the order of 10-6).  

• The dam 𝑃𝑓𝑐𝑜𝑛 varies within the order of 10-2 if a pseudo-static acceleration of 

0.24𝑔 is considered regardless of whether the 𝛾𝑑 and 𝜙′ are modelled by RVs 

or RFs. In the RV framework, the effects of the 3D geometry and the 𝑐′- 𝜙′ 

correlation are also investigated. It is shown that the dam 𝑃𝑓𝑐𝑜𝑛 always falls into 

the same order of magnitude. An exception occurs in 3D when the 𝑐′ -  𝜙′ 

correlation coefficient is considered equal to -0.5 which leads to a 𝑃𝑓𝑐𝑜𝑛  of 

2.1x10-3. The above-mentioned 𝑃𝑓 values represent the dam vulnerability under 

such a seismic loading. In order to consider the seismic occurrence probability, 

these values are multiplied by 1/5000 in this work (a simple assumption from 

the return period) so that the dam 𝑃𝑓 for the scenario (𝑃𝑓𝑠𝑐𝑒) can be obtained. 

The value of the dam 𝑃𝑓𝑠𝑐𝑒 is in the order of 10-6. 

• According to the sensitivity indices provided by the PCE-based Sobol solution, 

the most significant variable for the dam FoS variance is the 𝑐′ of the Shell while 

the 𝜙′  of the Shell is the second important one under the current input 

configuration (Table 3.2). Other variables, including 𝛾𝑑, 𝑐′- 𝜙′ of the Core and 
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the hydraulic parameters, are considered to have a lower impact on the dam FoS 

variance since their sensitivity indices are all smaller than 0.01. 

• The Beta distribution describes better the soil variabilities and provides 

conservative 𝑃𝑓 estimates. 

• For the considered high dimensional stochastic problems, the SPCE/GSA shows 

good accuracy in estimating the dam 𝑃𝑓. The SS performs well in both the 

accuracy and efficiency, but cannot produce a consistent evolution of the dam 

𝑃𝑓 considering varied 𝐿𝑥. 

• Modelling the 𝛾𝑑  and 𝜙′  by different types of RFs lead to insignificant 

differences on the 𝑃𝑓  estimates. This is due to the ‘homogeneity’ of the 𝛾𝑑 

measurements (at least for the main cross section) and the low variation of the 

two variables. 

 

The following remarks can be extended, with caution, to general cases: 

• The two slope stability analysis methods (SRM and LEM) are basically in good 

agreement for estimating the dam reliability results. However, it is also found 

that they have different performances within relatively great FoS values if the 

variation of one variable amongst the two strength parameters (𝑐′ and  𝜙′) is 

rather higher than the other one. 

• The technique that combines the LEM, an optimization procedure (e.g. GA) and 

a non-circular slip surface generation method could be a good alternative to the 

SRM implemented in the FEM or FDM numerical models. It permits efficiently 

to provide reasonable results in both deterministic and probabilistic frameworks. 

• In the context of the RF approach, the 𝑃𝑓  estimate will be increased when 

increasing the horizontal autocorrelation distance (𝐿𝑥 ). This finding of the 

present work can be complemented by the fact that increasing the vertical 

autocorrelation distance (𝐿𝑧) also leads to an higher 𝑃𝑓 estimate, which has 

been proven by other studies (Al-Bittar and Soubra, 2013; Cho and Park, 2010; 
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Guo et al., 2019b; Pan and Dias, 2017b) for different geo-structures. Recently, 

Zhu et al. (2018) pointed out that it exists a worst case for the autocorrelation 

distances which means that the relation between 𝑃𝑓 and 𝐿𝑥 (𝐿𝑧) is not always 

monotonously increasing. Therefore, using the RV approach, which assumes 

the 𝐿𝑥 and 𝐿𝑧 being infinite, for conservative designs should be conducted with 

a great caution. 

• For a numerical computational model, the mesh density, which is sufficient for 

a deterministic calculation (mean values for each input), could be questionable 

for giving accurate reliability estimates. This work shows that a relatively coarse 

mesh, although providing reasonable FoS for a deterministic analysis, can lead 

to non-negligible errors in the 𝑃𝑓 estimate. As discussed in section 6.4, a next 

study is necessary to have more investigations on the mesh density effects in a 

risk analysis context in which the sliding mass and the induced damages can be 

accounted for. 

• Considering a negative (respectively positive) correlation between 𝑐′- 𝜙′, the 

𝑃𝑓  estimate will be decreased (respectively increased). This observation is 

consistent with previous studies (Babu and Srivastava, 2010; Guo et al., 2020; 

Pan and Dias, 2017b). It is also found in this work that the correlation effect is 

more significant in 3D than in 2D. This conclusion is effective if the dam or 

slope is built in a narrow valley. 

7.2 Recommendations for relative studies 

Based on the present work, some recommendations can be given to engineers and 

researchers, so they can better understand the functioning mode of such problems in 

geotechnical probabilistic analyses. The recommendations are listed as follows: 

• It is important to collect and localise the measurements (e.g. density) for a great 

number after the compaction of each layer for earth dams. These data are useful 
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for the soil variability modelling and the determination of the autocorrelation 

structure. 

• Having more than one deterministic model is a good idea for moderate or big 

projects since it permits a comparison/validation of the results and to select the 

appropriate model for a specific purpose. For example, the simplified model 

(e.g. LEM and limit analysis etc.) can be used at a preliminary design stage for 

fast estimates of 𝑃𝑓 and FoS variance. The obtained results are also indicative 

for a further advanced analysis.  

• The (sparse) PCE is a powerful tool for reliability and sensitivity analysis. It 

allows considerably reducing the computational time of a probabilistic analysis 

compared to the direct MCS, and providing a variety of interesting results (𝑃𝑓, 

distribution of FoS and sensitivity indices). For a reliability analysis which 

focuses on estimating the 𝑃𝑓, the adaptive experimental design algorithm (e.g. 

the one of Table 2.3) is highly recommended.   

• Concerning high dimensional problems, for cases where the number of RVs 

remains below 1000, the SPCE combined with a dimension reduction technique 

(GSA or SIR) is efficient and accurate. However, for the problems with more 

than 1000 RVs, these algorithms are less efficient and the SS, which is 

independent to the input dimension, could be used in such case. 

• If the dam construction was well controlled (e.g. careful selection of the 

construction materials and controlled compaction), indicating a relatively 

homogenous field, it is then not necessary to describe the soil spatial 

variabilities by complex RFs (e.g. conditional or nonstationary) because using 

other RFs rather than the generic (unconditional and stationary) ones will add 

extra efforts but will only lead to insignificant differences in terms of reliability 

results. Alternatively, the conditional RFs are recommended since this type of 

RF allows a full use of the measurements, considers automatically the non-

stationarity and normally leads to lower 𝑃𝑓 estimate. Besides, one can also use 
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the spatial averaging method (Papaioannou and Straub, 2017) to consider 

nonstationary or conditional RFs. 

• Performing a sensitivity analysis is suggested for the engineering problems 

which are related to uncertainties since it provides multiple benefits for 

designers/researchers: (1) better understand the role/contribution of each 

random input on the quantity of interest; (2) guide the future investigations/tests 

and variability modelling on the highly concerned variables. (3) reduce the 

computational time by treating certain random inputs as deterministic or 

modelling only the selected variables with RFs in a further sophisticated 

probabilistic analysis according to the sensitivity indices; (4) help in interpreting 

the obtained results. For example, the finding that the 𝑐′and 𝜙′ of the Shell are 

dominant for the FoS variance, makes it possible to regard the LSS in 2D (𝑐′-

 𝜙′ plan), while it cannot be plotted in the original space (6 dimensions). 

7.3 Limitations and future works 

This section attempts to discuss the limitations of the present work and some possible 

ideas for future developments which are of interest in the field of earth dam probabilistic 

analyses. 

 

Firstly, the limitations of this work are discussed as follows: 

• Due to the lack of relevant support information, the foundation is treated as 

deterministic in this work. This may be improved by adopting hypothetical data 

from literature so that some soil properties of foundation can be modelled in a 

probabilistic way.   

• In the determination of the autocorrelation distance (𝐿𝑥  and 𝐿𝑧 ) using the 

variogram analysis, the exponential autocorrelation model is assumed to fit the 

experimental semi-variogram since it is commonly used in literature (Cho 2014; 

Li et al. 2017; Li et al. 2015; Wang et al. 2019). Although using different 
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autocorrelation models would lead to insignificant differences in 𝐿𝑥 and 𝐿𝑧 for 

the case study according to Mouyeaux et al. (2018) thus also similar 𝑃𝑓 

estimates as shown in Figure 5.7, such a subjective choice can be avoided by 

using the Bayesian theory as discussed in (Cao and Wang, 2014; Montoya-

Noguera et al., 2019; Tian et al., 2016).  

• Only the soil inherent variabilities are considered in the present work. The soil 

variations from other sources such as the measurement errors and 

transformation errors (e.g. the used Caquot’s relation for predicting 𝜙′) are 

ignored. Additionally, the uncertainties related to external loadings (hydrostatic 

or seismic) need to be accounted for in a future work. 

• Due to the difficulty of statistically quantifying the unsaturated soil parameters, 

the present work assumes that the soil is saturated. This assumption is 

conservative in terms of dam FoS and 𝑃𝑓 estimates. 

 

The limitations given above highlight the directions of ongoing works which are 

intended to further improve and extend the present work. Besides, the obtained results 

suggest some future works which could be interesting for dams engineering. The 

possible future works are listed as follows:   

• The soil spatial modelling can be improved by using the Bayesian theory. The 

BUS method (Bayesian Updating with Structural reliability methods), proposed 

by Straub and Papaioannou (2015) and applied in Jiang et al. (2018, 2017), is a 

powerful tool for this purpose. It should be of interest to be applied in a dam 

context. An adaptation of the BUS to the RF modelling of hydraulic parameters 

can be done. In this case, the piezometric measurements of earth dams should 

be considered, so the distribution parameters can be updated/improved 

according to the monitoring data which are usually geo-localized and collected 

with time. In addition, the problem related to ‘streaky appearance’ of the K-L 

RFs, as discussed in section 5.2.2.2, needs further investigations. 
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• The sensitivity analysis performed in this work focuses on quantifying the 

contribution of each variable to the output variance. Other types of sensitivity 

indices, such as the one which measures the importance of each variable with 

respect to the failure (Bourinet, 2018; Ehre et al., 2020), could be used. 

• A risk analysis regarding the dam slope instability could be carried out. The idea 

is to take into account the soil slip volume of each possible failure, which is 

related to the damage for the probabilistic analysis. Then a new reliability 

indicator in which the small local failures should have small weights could be 

proposed. Such an analysis can also improve the comparison study made for the 

coarse and refined mesh. 

• As discussed in CHAPTER Ⅱ, the probabilistic analysis of earth dams’ failure 

due to piping remains an open issue since only few studies exist on this topic.  

• In practice, soil properties vary in 3 dimensions. It will be of interest to 

incorporate 3D RFs for dams in order to investigate the effect of the 3rd-

dimension spatial variability on the dam reliability.  

• For a long-term design, a system reliability analysis could be performed in 

which other operation conditions for dams (e.g. rapid drawdown, strong rainfall 

and real seismic loadings) will be considered simultaneously.   
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