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Abstract

In this thesis, after expressing concepts and prerequisites, we investigate Hermite-Hadamard

inequality for geometrically convex functions. Then, by introducing operator geometrically

convex functions, we extend the results and prove Hermite-Hadamard type inequality for

these kind of functions. In the following, by proving the log-convexity of some functions

which are based on the unitarily invariant norm and considering the relation between ge-

ometrically convex functions and log-convex functions, we present several refinements for

some well-known operator norm inequalities. We discuss about the numerical radius of an

operator which is equivalent with the operator norm and we state some related results, and

by obtaining some upper bounds for the Berezin number of an operator which is contained

in the numerical range of that operator, we finish this discussion. In the sequel, we prove

operator version of some numerical results, which were obtained for approximating a class

of convex functions, as an application, we refine Hermite-Hadamard inequality for a class of

operator convex functions.

Approximation of integrals of multivariate functions is a notoriously difficult tasks and satis-

factory error analysis is far less well studied than in the univariate case. We propose a method

to approximate the integral of all strongly convex function which are continuously differen-

tiable functions with Lipschitz continuous gradients by a family of multi-dimentional numer-

ical integration formulas (cubature formulas). We attempt to quantify their sharp approxima-

tion errors. Moreover, we show that how the Delaunay triangulation is used as a convenient

partition of the integration domain for constructing the best piecewise cubature formulas.
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Résumé

Dans cette thèse, après la présentation des notions et des introductions nécessaires, nous

étudierons linégalité Hermite-Hadamard pour quelques opérateurs linéaires. Ensuite, nous

développerons des résultats en introduisant la fonction convexe géométrique et nous confir-

merons des inégalités de type Hermite-Hadamard pour ce type de fonctions. Puis nous pro-

poserons des améliorations de certaines inégalités pour les opérateurs bien étudiés dans la

littérature, en montrant le rôle convexe logarithmique de quelques fonctions. Nous considè-

rerons aussi le lien entre les fonctions convexes géométriques et les fonctions logarithmiques

et discuterons de quelques propriétés dimage et rayon numérique. Les bornes supérieures

du nombre Berezin dun opérateur seront également données. Dans ce qui suit, nous confir-

merons les résultats numériques obtenus pour approcher une classe de fonctions convexes

pour les fonctions dopérateur.

Les méthodes de quadrature multidimensionnelle jouent un rôle important, voire fondamen-

tal, en analyse numérique. Nous proposerons une méthode dapproximation de lintégrale des

fonctions fortement convexes avec une famille de formules dintégration numérique multi-

dimensionnelles. Nous quantifierons leurs erreurs dapproximation. De plus, nous montre-

rons que la triangulation de Delaunay, utilisée comme partition du domaine dintégration,

génèrent les meilleures formules dintégration.
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Notations

General notations

R the set of real numbers

R+ = {x ∈R|x ≥ 0} the set of all nonnegative real numbers

Rd d-dimensional Euclidean space

x = (x1, x2, . . . , xd ) ∈Rd element of Rd

∥x∥ =
√

x2
1 +x2

2 +·· ·+ x2
d the Euclidean norm of x in Rd

[x , y] the line segment between x and y

∇ f (x) =
(
∂ f
∂x1

(x), ∂ f
∂x2

(x), . . . , ∂ f
∂xd

(x)
)

the gradient of f at x

∇2 f (x)
the Hessian matrix of f at x with the matrix elements given

by ∇2 f (x)i j = ∂2 f
∂xi∂x j

(x), i = 1, . . . ,d , j = 1, . . . ,d

conv the convex hull of a finite point set

ext the set of all extreme points of

vert the set of all vertices of

a(·) any affine function
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Notations

Del,Dt Delaunay triangulation

Ω◦ the interior of Ω

|Ω| measure of Ω

C (Ω) all real-valued continuous functions on Ω

C k (Ω)
all functions which are k times continuously

differentiable, where k ∈N

L1(Ω) all Lebesgue integrable functions

C 1,1
the subclass of all functions which are continuously

differentiable with Lipschitz continuous gradients

T ( f ) the trapezoid rule

|A| the absolute value of operator A

|||A||| the unitarily invariant norm of operator A

∥A∥ the opertor norm of A

s j the singular value

Sp(A) the spectrum of operator A

Mn(C) the algebra of all n ×n complex matrices

H the Hilbert space

B(H )
the set of all bounded linear operators from

H into H

x∗ the adjoint of x

B(H )+ the set of all positive operators in B(H )

x



B(H )++ the set of all strictly positive operators in B(H )

Bsa(H ) the set of all self-adjoint elements in B(H )

r (A) the spectral radius of A

♯t the t-weighted geometric mean

♯ the geometric mean

OC 1,1

the subclass of all operator functions which are

continuously differentiable with Lipschitz

continuous gradients

diag(λi ) the diagonal matrix with entries λi

S1(H ) the set of all trace class operators

S1(H )∗ the dual space of S1(H )

w(·) the numerical radius

xi





Introduction

Operator theory and matrix analysis are important research areas which are of interest to

many mathematicians and have many applications in various sciences including scientific

computing, operations research, mathematical physics, control and systems theory, statis-

tics, economics and engineering disciplines.

Many theorems in matrix analysis appear in the form of inequalities, and one of the funda-

mental fields of research in this area is matrix and operator inequality. In fact, it can be said

that matrix inequalities reflect matrix analysis from a quantitative perspective.

Inequalities can be traced in almost all areas of pure and applied mathematics. In some re-

lated fields such as differential equations theory, calculus of variations and geometry, efforts

have been made to extend and find more suitable forms than classical examples.

The concept of convex functions has indeed found an important place in Modern Mathemat-

ics as can be seen in a large number of research articles and books devoted to the field these

days. Also, the Hermite-Hadamard inequality, which, we can say, is the first fundamental

result for convex functions with a natural geometrical interpretation and many applications,

has attracted and continues to attract much interest in elementary mathematics. So, many

mathematicians have devoted their efforts to generalize, refine, counterpart and extend it for

different classes of functions.

What we are going to do in this thesis is to find an operator version of some numerical in-

equalities. It also attempts to introduce new inequalities that improve or generalize previous

results.

In applying inequalities for operators we should be careful extremely because the operator

version of an inequality is not necessarily established. For example, the following inequality

holds for any pair of positive integers a and b:

|a −b| ≤ a +b.

The operator version is expected to be as follows

|A−B | ≤ A+B , (1)
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Introduction (English)

where A and B are positive operators and | · | represents the second positive root of the oper-

ator.

But considering matrices such as A =
(

4 −2

−2 1

)
and B =

(
1 −2

−2 4

)
. It can be shown that the

inequality (1) is not always true. Maybe if we use the singular value version (instead of the

matrix itself), we get the result:

s j (A−B) ≤ s j (A+B), 1 ≤ j ≤ n. (2)

But the above examples still violate the above inequality.

The weaker version of the inequality (2) can be stated as follows:

|||A−B ||| ≤ |||A+B |||,

where ||| · ||| is the unitarily invariant norm. The above inequality is established in (R. Bhatia,

F. kittaneh, The matrix arithmetic-geometric mean inequality revisited, Linear Algebra Apple.

428 (2008) 2177-2191).

In the first chapter, the concepts, basic definitions and principles needed for the following

chapters are presented.

In the second chapter, we discuss Hermite-Hadamard inequality for geometrically convex

functions, then by providing a definition of the operator geometrically convex functions, we

prove the Hermite-Hadamard type inequality for such functions and by deriving some exam-

ples of operator geometrically convex functions and peresenting an application of the result

to the operator norm we will finish this chapter.

In Chapter 3, we first discuss the relationship between geometrically convex functions and

logarithmic convex functions, and present the Hermite-Hadamard type inequality for loga-

rithmic convex functions. Then, by proving the log-convexity of some functions which are

based on the unitarily invariant norm we present several refinements for some well-known

operator norm inequalities.

In Chapter 4, we consider the equivalent norm of the operator norm, i.e., the numerical ra-

dius norm, and study the numerical radius inequalities which are an extension of some uni-

tarily invariant norms inequalities to the context of numerical radius, and by giving contra-

dictory examples we show that due to weak unitary invariance of the numerical radius, these

extended inequalities will be weaker than the corresponding unitarily invariant norm ver-

sions. Whatsmore, we introduce the Berezin number of an operator, which is a subset of the

numerical range of that operator, and prove inequalities based on the Berezin number.

In Chapter 5, we prove operator version of some numerical results, which were obtained for

approximating a class of convex functions, as an application, we refine Hermite-Hadamard

inequality for a class of operator convex functions.

In Chapter 6, we provide a necessary and sufficient condition for the existence of the cuba-

ture formulas to approximate the integral of all strongly convex function which are contin-

uously differentiable functions with Lipschitz continuous gradients. We use the generalized

barycentric coordinates to construct a multivariate version of the classical trapezoidal rule in

2



arbitrary higher-dimensional polytopes. As a result, we get explicit lower and upper bounds

for the approximation error. Indeed, analogously to the one-dimensional estimates, we offer

sharp error estimates which only depend on the parameter of the strong convexity, the Lip-

schitz constants of the gradients and the error associated with using the quadratic function.

In the following, by using the Delaunay triangulation as a partition of a polytope, we present

an explicit construction of our sharp cubature schemes. Finally, we provide a numerical ex-

ample to illustrate the efficiency of this approach.

Contributions

The following articles are extracted from this thesis:

1- A. Taghavi, V. Darvish, T. Azimi Roushan, Hermite-Hadamard Type Inequalities For Opera-

tor Geometrically Convex Functions II, Kragujevac Journal of Mathematics, 45(2) (2021) 191-

202.

2- A. Taghavi, T. Azimi Roushan, V. Darvish, Some Refinements For The Arithmetic-Geometric

Mean and Cauchy-Schwarz Matrix Norm Interpolating Inequalities, Bulletin of the Iranian

Mathematical Society, 44(4) (2018) 927-936.

3- A. Taghavi, T. Azimi Roushan, V. Darvish, Some upper bounds for the Berezin number of

Hilbert space operators, Filomat, 33(14) (2019) 4353-4360.

4- A. Taghavi, T. Azimi Roushan, On a generalization of an approximation operator defined by

A. Guessab, Linear and Multilinear Algebra, 67(11) (2019) 1-13.

5- A. Guessab, T. Azimi Roushan, Generalized barycentric coordinates and sharp strongly nega-

tive definite multi-dimensional numerical integration, Accepted for publication in a Springer

volume, entitled: Approximation theory and analytic inequalities, (2019).
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Introduction générale

La théorie des opérateurs et lanalyse des matrices sont des domaines importants de la recherche.

Attirantes pour pas mal de mathématiciens, elles ont de nombreux emplois dans les dif-

férentes sciences entre autres les calculs scientifiques, la recherche des opérations, la physique

mathématique, la théorie du système et le contrôle, la statique, léconomie et les génies.

Dans lanalyse matricielle, beaucoup de théories apparaissent dans le cadre des inégalités de

sorte que les inégalités fonctionnelles et matricielles constituent un des centres privilégiés de

recherche de ce domaine. A dire vrai, les inégalités matricielles reflètent lanalyse matricielle

du point de vue quantitatif.

Les inégalités sont présentes dans la quasi-totalité des domaines des mathématiques pures

et appliquées. Cela est plus visible dans la théorie des équations différentielles, des calculs

des variations, de la géométrie pour trouver des exemples plus convenable que les exemples

classiques.

La théorie des fonctions convexes a pris une place de plus en plus importante dans les math-

ématiques modernes. On peut voir beaucoup de livres et darticles consacrés à ce sujet. De

plus, linégalité Hermite-Hadamard avec son interprétation géométrique naturelle et sa vaste

utilisation qui sont le résultat de lutilisation des fonctions convexes a attiré lattention des

chercheurs, ce qui est constant dans les mathématiques élémentaires. Ainsi, la plupart des

mathématiciens travaillent afin de développer, daméliorer et de généraliser cette notion pour

les autres catégories des fonctions.

Dans cette thèse, nous essayons de trouver lopération de certaines inégalités mathématiques

et de présenter de nouvelles inégalités qui aboutissent à lamélioration ou à la généralisation

des résultats précédents.

Il faut faire le maximum dattention dans lutilisation des inégalités pour les opérateurs car

lopération de chaque inégalité nexiste pas forcément. En guise dexemple, linégalité suivante

est correcte pour les deux nombres positifs a et b

|a −b| ≤ a +b.

5



Introduction (Français)

Alors on peut penser que son opération sera ainsi :

|A−B | ≤ A+B , (3)

où A et B des opérateurs positifs et | · | représentent la racine carrée positive de lopérateur.

Mais en considérant les matrices comme A =
(

4 −2

−2 1

)
et B =

(
1 −2

−2 4

)
. On peut montrer

que linégalité (3) nest pas toujours correcte. Les valeurs singulières pourraient nous con-

duisent au résultat, cest-à-dire

s j (A−B) ≤ s j (A+B), 1 ≤ j ≤ n. (4)

Mais les exemples ci-dessus confirment lexactitude de linégalité mentionnée.

Le cas plus faible que linégalité (4) est ainsi

|||A−B ||| ≤ |||A+B |||,

qui est |||·|||de la norme stable. Lexactitude de linégalité ci-dessus est confirmée dans (R. Bha-

tia, F. kittaneh, la matrice arithméthique-géométrique veut dire linégalité revisée, lalgèbre

linéaire dApple. 428 (2008) 2177-2191).

Dans le premier chapitre, il y a des définitions et des principes nécessaires pour les chapitres

suivants.

Le deuxième chapitre concerne létude de linégalité Hermite-Hadamard pour les fonctions

convexes géométriques puis en donnant une définition de la fonction convexe géométrique

opératrice, nous confirmons linégalité Hermite-Hadamard pour ces types de fonction, enfin

nous terminons le chapitre en donnant des exemples des fonctions convexes géométriques

et en présentant un de leurs emplois selon la norme opératrice.

Le chapitres 3 est commencé par la relation entre des fonctions convexes géométriques et

des fonctions convexes logarithmiques ; et la présentation de linégalité Hermite-Hadamard

pour les fonctions convexes logarithmiques. Ensuite, nous présentons lamélioration du cas

normatif de plusieurs inégalités opérationnelles célèbres en confirmant le rôle convexe et

logarithmique de certaines fonctions classées selon la norme stable.

Dans le 4 chapitre, nous considérons la norme équivalente de la norme opérateur, cest-à-

dire la norme du rayon numérique et aussi le rayon numérique de plusieurs inégalités con-

firmées par la norme stable. En plus, en donnant des contre-exemples, nous montrons que

léquitation du rayon de ces inégalités nest pas toujours correcte. Ensuite, nous confirmons

la version faible à laide des théorèmes. La dernière partie de ce chapitre est consacré à la

présentation du nombre Berezin dun opérateur et nous confirmons des inégalités selon ce

nombre.

Dans le chapitre 5, nous essayons détudier les résultats numériques pour approcher une caté-

gorie des fonctions convexes à la notion de la fonction réelle pour confirmer ensuite lopéra-

tion des résultats, enfin nous présentons un emploi des résultats afin daméliorer linégalité

Hermite-Hadamard.
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Dans le chapitre 6, nous fournissons une condition nécessaire et suffisante pour l’existence

des formules cubiques pour se rapprocher de l’intégrale de toutes les fonctions fortement

convexes qui sont continuellement différentiables. fonctionne avec les gradients continus

de Lipschitz. Nous utilisons la méthode généralisée pour construire une version multivar-

iée de la règle trapézoïdale classique en des polytopes arbitraires de dimensions supérieures.

Par conséquent, nous obtenons des limites inférieures et supérieures explicites pour l’erreur

d’approximation. En effet, comme pour les estimations unidimensionnelles, nous proposons

des estimations d’erreurs nettes qui ne dépendent que du paramètre de la forte convexité,

le Constantes de Lipschitz des gradients et de l’erreur associée à l’utilisation de la fonction

quadratique. Dans ce qui suit, en utilisant la triangulation Delaunay comme partition d’un

polytope, nous présentons une construction explicite de nos schémas cubiques aiguisés. En-

fin, nous donnons un exemple numérique pour illustrer l’efficacité de cette approche.

Contributions de la thèse

Les articles suivants sont extraits de cette thèse :

1- A. Taghavi, V. Darvish, T. Azimi Roushan, Hermite-Hadamard Type Inequalities For Opera-

tor Geometrically Convex Functions II. Kragujevac Journal of Mathematics, 45(2) (2021) 191-

202.

2- A. Taghavi, T. Azimi Roushan, V. Darvish, Some Refinements For The Arithmetic-Geometric

Mean and Cauchy-Schwarz Matrix Norm Interpolating Inequalities. Bulletin of the Iranian

Mathematical Society, 44(4) (2018) 927-936.

3- A. Taghavi, T. Azimi Roushan, V. Darvish, Some upper bounds for the Berezin number of

Hilbert space operators, Filomat, 33(14) (2019) 4353-4360.

4- A. Taghavi, T. Azimi Roushan, On a generalization of an approximation operator defined by

A. Guessab, Linear and Multilinear Algebra 67(11) (2019) 1-13.

5- A. Guessab, T. Azimi Roushan, Generalized barycentric coordinates and sharp strongly neg-

ative definite multi-dimensional numerical integration, Accepté pour dans un volume de

Springer, intitulé: Approximation theory and analytic inequalities, (2019).
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1 Introductory concepts

In this chapter, we describe the concepts and definitions which are required for our results in

the forthcoming chapters. Also, some applicable theorems used to obtain the results of the

following chapters are presented just by refering to references without proof.

1.1 Convex functions and some related inequalities

Using the standard notation R for the set of real numbers, a real- valued function f on an

interval I ⊂R is said to be convex if

f (λx + (1−λ)y) ≤λ f (x)+ (1−λ) f (y), (1.1)

for x, y ∈I and λ ∈ [0,1]. Also f is said to be concave if the inequality (1.1) be valid conversely,

or in other words, − f be convex function.

The functions f (x) = x2 and exponential function g (x) = ex are two familiar examples of

convex functions.

In the d-dimensional Euclidean space, Rd , a set C ⊂Rd is said to be convex if the inequality

(1−λ)x +λy ∈C ,

holds for every x, y ∈C and λ ∈ [0,1].

One of the simple characterizations of a convex set in Rd is that it is closed under any convex

combinations of its elements, and this is proved in [14] by induction.

Definition 1.1.1 Let C ⊂ Rd be a convex set. A point x ∈ C is called an extreme point of C if

x = t y + (1− t )z for y, z ∈C and t ∈ (0,1) implies x = y = z.

Compact convex sets can be described via their extreme points as following.

Theorem 1.1.2 (Krein-Milman theorem)[2] Let C ⊂ Rd be a compact convex set. Then the set

9



Introductory concepts

Figure 1.1 – Illustration of the inequality f (λx + (1−λ)y) ≤λ f (x)+ (1−λ) f (y).

of extreme points of C is not empty. Furthermore, every x ∈ C may be expressed as a convex

combination of finitely many extreme points of C .

A real-valued function f : C → R on a convex set C ⊂ Rd is said to be convex if it satisfies on

inequality (1.1) for every x, y ∈C and λ ∈ [0,1].

Figure 1.2 – Convex function.

10



1.1. Convex functions and some related inequalities

Figure 1.3 – Convex function.

Figure 1.4 – Concave function.

11



Introductory concepts

Figure 1.5 – Concave function.

Figure 1.6 – Neither convex nor concave.

12



1.1. Convex functions and some related inequalities

Figure 1.7 – Neither convex nor concave.

Figure 1.8 – Convex and concave.

The function in Fig.1.2 is convex, Fig.1.4 is concave and Fig.1.6 is neither. The function in

Fig.1.8 is convex on the part where it is solid and concave on the part where it is dotted.

Continuity is an important property of a convex function:

13
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Theorem 1.1.3 [16] Let C ⊂ Rd be an open convex set. Let f : C → R be convex. Then f is

continuous on C .

For a continuously differentiable function f defined on an open convex set C ⊂Rd , we denote

its gradiant at x ∈C , by

∇ f (x) =
(
∂ f

∂x1
(x),

∂ f

∂x2
(x), . . . ,

∂ f

∂xn
(x)

)
.

We say that that f is continuously differentiable on C if it is continuously differentiable on an

open set containing C .

Checking that a function is convex or not is not very easy, but fortunately several useful crite-

ria are available. Probably the simplest one is the following:

Theorem 1.1.4 [14] Let f : I → R be a continuous function. Then f is convex if and only if f

is midpoint convex, that is,

x, y ∈I implies f (
x + y

2
) ≤ f (x)+ f (y)

2
.

The following theorem gives the first order characterization of convex functions.

Theorem 1.1.5 (The first-order condition for convexity: Gradient inequality)[5] Let C ⊂Rd be

a nonempty open convex set and let f : C →Rd be a continuously differentiable function. Then

f is convex if and only if for any x, y ∈C we have

f (y) ≥ f (x)+〈∇ f (x), y −x〉.

Figure 1.9 – The first order characteristic of a convex function f .

14



1.1. Convex functions and some related inequalities

Figure 1.10 – The first order characteristic of a convex function f .

A mapping F : D ⊂Rd →Rd is increasing on D if

〈F (x)−F (y), x − y〉 ≥ 0, ∀x, y ∈ D. (1.2)

By letting F = ∇ f in the above definition, then we conclude the following theorem which

states that ∇ f of a convex function f is an increasing mapping.

Theorem 1.1.6 [5] Suppose C ⊂ Rd be a nonempty open convex set and let f : C → Rd be a

continuously differentiable function. Then f is convex on C if and only if its gradiant ∇ f is

increasing on C , i.e.,

〈∇ f (x)−∇ f (y), x − y〉 ≥ 0, ∀x, y ∈C .

We will now characterize convex functions in terms of their Hessian matrices.

Theorem 1.1.7 (The second-order condition for convexity) [5] Let C ⊂Rd be a nonempty open

convex set, and let f : C →Rd be twice continuously differentiable in C . Then, f is convex on C

if and only if ∇2 f (x) is positive semi-definite for all x ∈C .

Convex functions play an important role in the inequality theory. In the following, we present

two famous inequalities related to convex functions.

Theorem 1.1.8 (Jensen inequality)[2] Let C ⊂ Rd is a convex set and f : C → R be a convex

function. If λ1,λ2, . . . ,λk ∈ [0,1],
∑k

i=1λi = 1, and x1, x2, . . . , xk ∈C , then

f (
k∑

i=1
λi xi ) ≤

k∑
i=1

λi f (xi ). (1.3)

15
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In the above theorem, suppose f (x) =− ln x on the interval I ⊂R+ which ln is a logarithmic

function. Then we have

aνb1−ν ≤ νa + (1−ν)b, (1.4)

for a,b ∈I and ν ∈ [0,1], which is famous for Young inequality.

In the especial case ν = 1
2 , we derive the following inequality which is known as arithmetic-

geometric mean inequality: p
ab ≤ a +b

2
.

Theorem 1.1.9 (Hermite-Hadamard inequality)[16] If f : I → R be a convex function and

a,b ∈I with a < b, then

f (
a +b

2
) ≤ 1

b −a

∫ b

a
f (x)d x ≤ f (a)+ f (b)

2
. (1.5)

We remark that the above inequalities have been studied deeply in the literature. And there

has been a great deal of efforts in refining and extending them, among which we can refer the

reader to [1, 4, 7, 5, 6, 8, 18] as a sample of recent work treating such inequalities.

Now we present the notion of strong convexity, which generalizes the classical definition of

convexity.

Definition 1.1.10 Let C ⊂ Rd be nonempty convex set. A function f : C → R is µ-strongly con-

vex with convexity parameter µ > 0 if the strong Jensen inequality holds: for any x , y ∈ C and

t ∈ [0,1],

f (t x + (1− t )y) ≤ t f (x)+ (1− t ) f (y)− µ

2
t (1− t )

∥∥x − y
∥∥2 . (1.6)

Obviously, every strongly convex function is convex, or in the other words, the set of strongly

convex functions is contained in the set of convex functions. Observe also that, for instance,

affine functions are not strongly convex and if µ = 0, we can get the classical definition of

convexity.

Remark 1.1.11 For any positive real number µ the following functions are µ-strongly convex

functions:

1. ρ
2 ∥.∥2 , (µ≤ ρ).

2. Addition of a convex function to a strongly convex function gives a strongly convex func-

tion with the same modulus of strong convexity. Therefore, adding a convex function to
µ
2 ∥.∥2 does not affect µ-strong convexity.
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Throughout this thesis, for every point (vector) in d-dimensional Euclidean space,

x = (x1, x2, . . . , xd ) ∈ Rd , ∥x∥ =
√

x2
1 +x2

2 +·· ·+x2
d is the Euclidean norm. Also, for x, y ∈ Rd ,

〈x, y〉 = x1 y1 +x2 y2 +·· ·+xd yd is the usual scalar product on Rd .

Here we state a result concerning the Euclidean norm.

Lemma 1.1.12 [12] Let u, v be in Rd and t ∈ [0,1]. Then the following identity holds:

(1− t )∥x∥2 + t
∥∥y

∥∥2 −∥∥(1− t )x + t y
∥∥2 = t (1− t )

∥∥x − y
∥∥2 . (1.7)

According to Definition 1.1.10 and identity (1.7), we can conclude that µ-strong convexity of

f is equivalent to the convexity of g := f − µ
2 ∥.∥2. Indeed, if f is µ-strongly convex, then by

identity (1.7) we get

g (t x + (1− t )y) = f (t x + (1− t )y)− µ

2
∥t x + (1− t )y∥2

≤ t f (x)+ (1− t ) f (y)− µ

2
t (1− t )∥x − y∥2 − µ

2
∥t x + (1− t )y∥2

= t f (x)+ (1− t ) f (y)− µ

2
t∥x∥2 − µ

2
(1− t )∥y∥2

= t g (x)+ (1− t )g (y),

which yields the convexity of g . Conversely, if g is a convex function, then again by Lemma

1.1.12 we have

f (t x + (1− t )y) = g (t x + (1− t )y)+ µ

2
∥t x + (1− t )y∥2

≤ t g (x)+ (1− t )g (y)+ µ

2
(t∥x∥2 + (1− t )∥y∥2 − t (1− t )∥x − y∥2)

= t (g (x)+ µ

2
∥x∥2)+ (1− t )(g (y)+ µ

2
∥y∥2)− µ

2
t (1− t )∥x − y∥2

= t f (x)+ (1− t ) f (y)− µ

2
t (1− t )∥x − y∥2,

which shows that f is strongly convex with convexity parameter µ.

When the function is differentiable, an alternative characterization of strong convexity is in

terms of the gradient inequality as following.

Theorem 1.1.13 [12] Let f be a continuously differentiable function defined on an open convex

set C ⊂ Rd . Then f is strongly convex with parameter µ > 0 if and only if for any x, y ∈ C we

have

f (y) ≥ f (x)+⟨∇ f (x), y −x
⟩+ µ

2

∥∥x − y
∥∥2 .

The following result is a characterization of strongly convex functions via the strong mono-
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tonicity of the gradient.

Theorem 1.1.14 [5] Let f be a continuously differentiable function defined on an open convex

set C ⊂ Rd . Then f is strongly convex with parameter µ > 0 if and only if its gradient ∇ f is

uniformly monotone i.e.,

〈∇ f (x)−∇ f (y), x − y〉 ≥µ∥x − y∥2, x, y ∈C .

1.2 Concepts of operator theory and operator inequality

Let B(H ) stand for algebra of all bounded linear operators on a complex Hilbert space H and

assume that operator multiplication corresponds to operator composition. Then by operator

norm

∥T ∥ = sup{∥T x∥ : ∥x∥ ≤ 1},

B(H ) is a Banach space.

Definition 1.2.1 [20] A Banach algebra is a algebra A over the field of complex numbers C

such that

1. A be a Banach space with the norm ∥ ·∥,

2. for every x and y in A , ∥x y∥ ≤ ∥x∥∥y∥.

Whatsmore, A is called unital if it has a unit e. In this case, it should be ∥e∥ = 1.

Example 1.2.2 [20]

1. If K is a compact Hausdorff space, then C (K ) (the set of all continuous functions from

K to C) is a Banach algebra with the sup-norm and pointwise operations. The constant

funtion with value 1 is the multiplicative unit.

2. If X be a Banach space, then B(X ) (the set of all bounded linear operator from X into

X ) with operator norm and operator multiplication (i.e., composition) is a Banach al-

gebra and the identity operator I is the multiplicative unit. As a result, B(H ) is also a

Banach algebra.

Let A is a Banach algebra and x ∈ A . Spectrum of x denoted by σ(x) (or Sp(x)), and defined

as follows:

σ(x) = {λ ∈C : λe −x is not invertible in A },

whatsmore, for x ∈A we let r (x) denote the spectral radius of it and defined as following:

r (x) = sup{|λ| : λ ∈σ(x)}.

18
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Definition 1.2.3 [20] A C∗-algebra is a Banach algebra A together with a mapping x → x∗ on

A satisfying the following conditions:

(a) (x∗)∗ = x for all x ∈A ,

(b) (ax +by)∗ = āx∗+ b̄y∗ for all x, y ∈A and a,b ∈C,

(c) (x y)∗ = y∗x∗ for all x, y ∈A ,

(d) ∥x∗x∥ = ∥x∥2 for all x ∈A .

Any mapping x → x∗ on an algebra satisfying (a), (b), and (c) is called an involution on the

algebra. The element x∗ is usually called the adjoint of x.

Example 1.2.4 A =C with z∗ = z̄ is the simplest C∗-algebra.

Example 1.2.5 A = B(H ) with the usual adjoint operation as involution is a C∗-algebra. If

H is n-dimensional, then B(H ) = Mn(C)is the algebra of all n ×n complex matrices and the

adjoint of a matrix in Mn(C) is its conjugate transpose.

Definition 1.2.6 [20] Suppose A is a C∗-algebra and x ∈A .

(a) We say that x is self-adjoint if x = x∗.

(b) We say that x is normal if x∗x = xx∗.

(c) We say that x is unitary if x∗x = xx∗ = 1A , or equivalently x∗ = x−1.

(d) We say that x is contraction if x∗x ≤ 1A .

(e) We say that x is positive if x = y∗y for some y in A .

It is clear that both self-adjoint and unitary elements are normal. It is also clear that positive

elements are self-adjoint.

According to part (e) of above definition, an operator A ∈ B(H ) is said to be positive (semi-

definite positive) and denoted by A ≥ 0 if for all x ∈ H , 〈Ax, x〉 ≥ 0. Also, we say it is strictly

positive (definite positive) if for every non-zero x ∈H we have 〈Ax, x〉 > 0.

The positive operator A ∈B(H ) is strictly positive (A ∈B(H )++) if and only if it is invertible.

Theorem 1.2.7 [20] If A ∈B(H ) is normal, then r (A) = ∥A∥.

19



Introductory concepts

Theorem 1.2.8 [15] If A ∈ B(H ) be a self-adjoint operator, then σ(A) ⊆ R. Also, spectrum of a

positive operator included in the set of non-negative real numbers.

If A ∈ B(H ) is a positive operator, A
1
2 is the unique positive element B which B 2 = A. We also

write |A| =p
A∗A be absolute value of operator A ∈B(H ). It is clear that |A| ≥ 0 for all A.

The mapping ϕ : B(H ) → B(H ) is called positive, if for any positive operator A ∈ B(H ), ϕ(A)

be positive operator in B(H ).

Definition 1.2.9 [15] Let X is a Banach space, we say T ∈ B(X ) is finite rank, if it has a finite

dimensional range.

Eigenvalues of the self-adjoint operator A in Mn(C) are arranged as λ1(A) ≥λ2(A) ≥ ·· · ≥λn(A)

and the singular values of an arbitrary operator A ∈ Mn(C) as s1(A) ≥ s2(A ≥ ·· · ≥ sn(A) are the

eigenvalues of the positive operator |A| .

Definition 1.2.10 [20] Suppose A and B are C∗-algebra. A mapping Φ : A →B is said to be

a C∗-homomorphism if

• Φ(ax +by) = aΦ(x)+bΦ(y) for all a,b ∈C and x, y ∈A ,

• Φ(x y) =Φ(x)Φ(y) for all x, y ∈A ,

• Φ(x∗) =Φ(x)∗ for all x ∈A ,

• Φ maps the unit in A to the unit in B.

IfΦ is further one-to-one, we say thatΦ is a C∗-isomorphism. Two C∗-algebras are C∗-isomorphic

if there exists a C∗-isomorphism from one onto the other.

Let A be a self-adjoint operator on a Hilbert space H . The Gelfand map [20] establishes a C∗-

isometrically isomorphism ϕ between the set C (Sp(A)) of all continuous functions defined on

the spectrum of A and the C∗-algebra C∗(A), generated by A and the identity operator I , such

that for all f , g ∈C (Sp(A)) and α,β ∈C we have

• ϕ(α f +βg ) =αϕ( f )+βϕ(g ),

• ϕ( f g ) =ϕ( f )ϕ(g ) and ϕ( f̄ ) =ϕ( f ∗),

• ∥ϕ( f )∥ = ∥ f ∥ := supt∈Sp(A) | f (t )|,

• ϕ( f0) = 1H and ϕ( f1) = A where f0(t ) = 1 and f1(t ) = t , for t ∈ Sp(A).

With this notation we define

f (A) =ϕ( f ), ∀ f ∈C (Sp(A)),

20



1.2. Concepts of operator theory and operator inequality

and we call it the continuous functional calculus for a self-adjoint operator A, [9].

Self-adjoint elements in B(H ) form a real subspace which denoted by Bsa(H ) and can be

considered by a partial order which for A,B ∈ Bsa(H ) we say that A ≤ B if and only if B −
A ≥ 0. Also, A < B if and only if B − A > 0. Especially, if m, M be two real numbers, then

m ≤ A ≤ M if and only if m ≤ 〈Ax, x〉 ≤ M for every unit vector x ∈ H . This partial order

is called operator order and the inequality by this order is called as operator inequality. In

fact, in operator inequality both sides of the inequality deal with self-adjoint operators, hence

continuous functional calculus is a very useful tool for achieving these kind of inequalities.

However, it should be noted that many numerical inequalities are not extendable to operators

or their operator version are different from numerical form. For instance, triangular inequality

for two matrices A and B as |A+B | ≤ |A|+ |B | is not always true.

If A is a self-adjoint operator and f is a real-valued continuous function on Sp(A) then f (t ) ≥ 0

for any t ∈ Sp(A) implies that f (A) ≥ 0, i.e., f (A) is a positive operator. Moreover, if g (t ) be a

real-valued continuous function on Sp(A) such that f (t ) ≤ g (t ) for any t ∈ Sp(A) implies that

f (A) ≤ g (A).

Definition 1.2.11 [19] A real-valued continuous function on an interval I is said to be opera-

tor convex if

f (λA+ (1−λ)B) ≤λ f (A)+ (1−λ) f (B),

for λ ∈ [0,1] and self-adjoint operators A and B on the Hilbert space H with spectrum in I .

Notice that a function f is operator concave if − f is operator convex.

Definition 1.2.12 [19] A real-valued continuous function on an interval I is said to be op-

erator monotone with respect to the operator order, i.e., A ≤ B with Sp(A),Sp(B) ⊂ I imply

f (A) ≤ f (B).

We notice that f : [0,∞) → [0,∞) is operator monotone if and only if it is operator concave, see

[11, Theorem 2.5.2].

Example 1.2.13 [9] The function f (t ) = t r is operator monotone on (0,∞) if and only if 0 ≤ r ≤
1. In addition, the function f (t ) = t r is operator convex on (0,∞) if and only if r ∈ [−1,0]∪[1,2].

The logarithmic function f (t ) = ln t is operator monotone on (0,∞). The exponential function

f (t ) = e t is neither operator convex nor operator monotone.

Remark 1.2.14 It should be noted that every operator convex function is a convex function in

the sense of the real-valued function, but it does not hold vice versa. Moreover, every operator

monotone function is an increasing function in the sense of real-valued function, but it is not

valid conversely.

Example 1.2.15 The function f (t ) = t 3 on [0,∞) is convex, but it is not operator convex. Be-
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cause, by considering

A =
(

2 1

1 1

)
, B =

(
1 0

0 0

)
then

A3 +B 3

2
− (

A+B

2
)3 = 1

4

(
11 9

9 7

)
≱ 0.

Whatsmore, by utilizing these two matrices A and B we can conclude that the increasing func-

tion f (t ) = t 2 on [0,∞) is not operator monotone. Because, A ≥ B ≥ 0 but A2 ≱B 2. Namely

A2 −B 2 =
(

4 3

3 2

)
≱ 0.

For the basic results on operator convex functions (operator concave) and operator monotone,

we can refer the reader to [9].

As we know, in the operator inequalities both sides of the inequality should be self-adjoint.

Therefore, we are not allowed to multiply both sides in a self-adjoint operator, because the self-

adjoint property may not be valid after multiplication. The following lemma shows how the

multiplication of an operator in the both sides can be done.

Lemma 1.2.16 [15] Let A,B ∈Bsa(H ) and A ≤ B. Then for C ∈B(H ) we have

C∗AC ≤C∗BC .

1.3 Operator norms

One of the remarkable topics in the field of inequalities, are norm inequalities that deal with

operator norms. In this section, we introduce some operater norms.

As we know, in spaces with a finite dimension, all norms are equivalent. In the other words, for

every pair of norms ∥·∥α and ∥·∥β, there are some constants like c1 and c2 such that for every x

c1∥x∥α ≤ ∥x∥β ≤ c2∥x∥α.

Therefore in a finite dimension vector space all norms produce the same topology, hence upon

their properties they will be selected

The norm ||| · ||| on Mn(C) is said to be unitarily invariant if |||U AV ||| = |||A||| for every A and

unitaries U ,V . The singular value decomposition theorem states that for every A ∈ Mn(C) there

are unitary matrices U and V such that A =U (s1(A), s2(A), . . . , sn(A))V . As a result, unitarily

invariant norms are functions of singular values. In [13, 3], Von Neumann proved that these

are symetric guage functions, i.e., these norms correspond to the function Φ on Rn , which have

the following properties.

• Φ(P x) =Φ(x) for all permutable matrices P and x ∈Rn .
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1.3. Operator norms

• If ϵ j =±1, then Φ(ϵ1x1,ϵ2x2, . . . ,ϵn xn) =Φ(x1, x2 . . . , xn).

There is a one-to-one correspondence between unitarily invariant norm ||| · |||Φ and symetric

guage function Φ which are related together as following:

|||A|||Φ =Φ(s1(A), s2(A), . . . , sn(A)),

for every A ∈ Mn(C).

In fact, this norm is closed in the topology generated by ||| · |||Φ and is called the norm ideal

dependent on ||| · |||Φ.

For 1 ≤ p ≤∞, Schatten p-norm of the matrix A is defined as following:

∥A∥p = (Tr |A|p )
1
p = {

n∑
j=1

(s j (A))p }
1
p ,

where Tr is the trace functional. The Schatten p-norms are important examples of unitarily

invariant norms, where p = 1, p = 2, and p = ∞ correspond to the trace norm, the Hilbert-

Schmidt norm, and the spectral (usual operator) norm, respectively. Namely, based on Schat-

ten p-norms, operator norm defines as follows:

∥A∥ = ∥A∥∞ ≡ s1(A) = lim
p→∞∥A∥p .

Another kind of unitarily invariant norms, are Fan k-norms which are defined as

∥A∥(k) =
k∑

j=1
s j (A), 1 ≤ k ≤ n,

and by this notation, operator norm is given by:

∥A∥ = ∥A∥∞ = ∥A∥(1).

Lemma 1.3.1 (Fan dominance principle)[3] Let A and B be two matrices in Mn(C). If

∥A∥(k) ≤ ∥B∥(k)

for k = 1,2, . . . ,n, then

|||A||| ≤ |||B |||,
holds for all unitarily invariant norms.

For every three matrices A, B, and C we have

|||ABC ||| ≤ ∥A∥|||B |||∥C∥.
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Now, we discuss about another norm on B(H ) which is equivalent to the operator norm.

The numerical range of an operator A ∈ B(H ) denoted by W (A) is the subset of the complex

numbers C given by:

W (A) = {〈Ax, x〉 : x ∈H , ∥x∥ = 1}.

Based on the definition of W (A) the following properties are immediate.

• W (αI +βA) =α+βW (A), for every α,β ∈C.

• W (U AU∗) =W (A), for every unitary operator U .

• W (A∗) = (W (A))∗.

The following interesting properties of numerical range are proved in [10].

Proposition 1.3.2 Suppose A ∈B(H ). Then

• W (A) is a convex subset of C.

• The spectrum of A is contained in the closure of its numerical range, i.e., σ(A) ⊆W (A).

The numerical radius w(A) of an operator A in B(H ) is defined by

w(A) = sup{|λ|, λ ∈W (A)} = sup{|〈Ax, x〉| : x ∈H , ∥x∥ = 1}. (1.8)

It is well-known that w(·) is a norm on the B(H ):

• For every A ∈B(H ) we have w(A) ≥ 0, and w(A) = 0 if and only if A = 0,

• w(λA) = |λ|w(A) for every λ ∈C and A ∈B(H ),

• w(A+B) ≤ w(A)+w(B) for every A and B in B(H ).

This norm is equivalent to the operator norm. In fact, we have the following exact result [10].

Theorem 1.3.3 For every A ∈B(H ) we have

w(A) ≤ ∥A∥ ≤ 2w(A). (1.9)

Both inequalities in (1.9) are sharp. The first inequality becomes an equality if A is a self-

adjoint operator. The second inequality becomes an equality if A2 = 0.

Also, it is a basic fact that w(·) satisfies the power inequality

w(An) ≤ w(A)n ,
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for every A and every natural number n. Another basic property of the numerical radius, is

that it is weakly unitarily invariant, i.e.,

w(U AU∗) = w(A),

for every unitary operator U . One of the interesting property of w(·) is that it is not submulti-

plicative, i.e.,

w(AB) ≤ w(A)w(B)

does not hold in general, even if A and B commute to eact other.

Example 1.3.4 Suppose that A =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 . Then w(A) < 1 and w(A2) = w(A3) = 1
2 , there-

fore w(A3)⩽̸ w(A)w(A2).

In the following proposition submultiplicative property of the numeriacl radius is expressed

[10].

Proposition 1.3.5 Let A,B ∈B(H ). Then

• w(AB) ≤ 4w(A)w(B).

• If AB = B A, then w(AB) ≤ 2w(A)w(B).

• If AB = B A and A be a normal operator, then w(AB) ≤ w(A)w(B).
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2 Hermite-Hadamard inequality for op-
erator geometrically convex functions

In this chapter, first we discuss Hermite-Hadamrad inequality for geometrically convex func-

tions and summarize the obtained results. Then we introduce operator geometrically convex

functions and present Hermite-Hadamard type inequality for this kind of functions. At the end,

as an application of the result which we proved, we refine a norm inequality.

2.1 Inequalities for geometrically convex functions

Definition 2.1.1 [11] A continuous function f : I ⊆ R+ = (0,∞) → R+ is said to be geometri-

cally convex if

f (aλb1−λ) ≤ f (a)λ f (b)1−λ,

for a,b ∈I such that a < b and λ ∈ [0,1].

Every polynomial P (x) with non-negative coefficients is a geometrically convex function on

(0,∞). More generally, every real analytic function f (x) = ∑∞
n=0 cn xn with non-negative coef-

ficients is geometrically convex function on (0,R) where R denotes the radius of convergence

[11].

The author of [5] proved the following Hermite-Hadamard type inequality for operator geo-

metrically convex funtions.

Theorem 2.1.2 Let f : I ⊆ R+ → R+ be a geometrically convex function and a,b ∈ I which
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Hermite-Hadamard inequality for operator geometrically convex functions

a < b. If f ∈ L1[a,b], then

f (
p

ab) ≤ 1

lnb − ln a

∫ b

a

1

t

√
f (t ) f (

ab

t
)d t

≤ 1

lnb − ln a

∫ b

a

f (t )

t
d t

≤ f (b)− f (a)

ln f (b)− ln f (a)

≤ f (a)+ f (b)

2
.

By changing the variable t = aλb1−λ in the above theorem, we have

1

lnb − ln a

∫ b

a

f (t )

t
d t =

∫ 1

0
f (aλb1−λ)dλ.

Remark 2.1.3 For positive scalers a and b, we have

min{a,b} ≤G(a,b) =
p

ab ≤ L(a,b) = b −a

lnb − ln a
≤ A(a,b) = a +b

2
≤ max{a,b}.

The following lemma shows the relation between convex and geometrically convex functions.

Lemma 2.1.4 [11] Let I be an interval in R+ and f : I → (0,∞) be a geometrically convex

function. Then

F = log◦ f ◦exp : log(I ) →R

is convex function. Conversly, if J be a subinterval in R+ and F : J →R be a convex function.

Then

f = exp◦F ◦ log : exp(J ) →R+

is a geometrically convex function.

On the other hand, in [12] the authors by considering Hermite-Hadamard inequality for con-

vex function f : [a,b] →R seperately on each intervals [a, a+b
2 ] and [ a+b

2 ,b], and then by suma-

tion resulted inequalities, they presented a refinement of Hermite-Hadamard inequality for
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2.2. Operator geometrically convex functions

convex function f : [a,b] →R as following

f

(
a +b

2

)
≤ 1

2

(
f

(
3a +b

4

)
+ f

(
a +3b

4

))
≤ 1

b −a

∫ b

a
f (x)d x

≤ 1

2

(
f

(
a +b

2

)
+ f (a)+ f (b)

2

)
≤ f (a)+ f (b)

2
. (2.1)

Also, in [10] based on Lemma 2.1.4 and inequality (2.1) and by considering I = [a,b] with

logI = [log a, logb], the following refinement of Hermite-Hadamard inequaity for geometri-

cally convex function is proved.

Theorem 2.1.5 Let f be a geometrically convex function on [a,b] such that 0 < a < b. Then

f (
p

ab) ≤
√(

f (a
3
4 b

1
4 ) f (a

1
4 b

3
4 )

)
≤ exp

(
1

logb − log a

∫ b

a

log f (t )

t
d t

)
≤

√
f (
p

ab). 4
√

f (a). 4
√

f (b)

≤
√

f (a) f (b). (2.2)

2.2 Operator geometrically convex functions

In [4] Dragomir investigated operator version of Hermite- Hadamard inequality for operator

convex functions and proved the following result.

Theorem 2.2.1 Let f : I → R be an operator convex function defined on I . Then for any self-

adjoint operators A and B with spectra in I , the following inequalities hold:

f

(
A+B

2

)
≤ 1

2

[
f

(
3A+B

4

)
+ f

(
A+3B

4

)]
≤

∫ 1

0
f ((1− t )A+ tB)d t

≤ 1

2

[
f

(
A+B

2

)
+ f (A)+ f (B)

2

]
≤ f (A)+ f (B)

2
. (2.3)
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Hermite-Hadamard inequality for operator geometrically convex functions

Proof Since the function f is continuous, the operator valued integral
∫ 1

0 f ((1− t )A + tB)d t

exists for any selfadjoint operators A and B with spectra in I .

According to the definition of an operator convex function, we have

f

(
C +D

2

)
≤ 1

2

[
f ((1− t )C + tD)+ f ((1− t )D + tC )

]
≤ 1

2

[
f (C )+ f (D)

]
, (2.4)

for t ∈ [0,1] and selfadjoint operators A and B with spectra in I .

Integrating the inequality (2.4) over [0,1] and taking into account that∫ 1

0
f ((1− t )C + tD)d t =

∫ 1

0
f ((1− t )D + tC )d t ,

then we deduce the Hermite-Hadamard inequality for operator convex functions

f (
C +D

2
) ≤

∫ 1

0
f ((1− t )C + tD)d t ≤ f (C )+ f (D)

2
, (2.5)

that holds for any C ,D ∈Bsa(H ) with spectra in I .

Now, on making use of the change variable u = 2t we have

∫ 1
2

0
f ((1− t )A+ tB)d t = 1

2

∫ 1

0
f ((1−u)A+u

A+B

2
)du,

and by the change of variable u = 2t −1 we get∫ 1

1
2

f ((1− t )A+ tB)d t = 1

2

∫ 1

0
f ((1−u)

A+B

2
+uB)du.

Hence, by utilising inequality (2.5) we obtain

f (
3A+B

4
) ≤

∫ 1

0
f ((1−u)A+u

A+B

2
) ≤ 1

2

[
f (A)+ f (

A+B

2
)

]
,

and

f (
A+3B

4
) ≤

∫ 1

0
f ((1−u)

A+B

2
+uB) ≤ 1

2

[
f (B)+ f (

A+B

2
)

]
,

which by sumation and division by two we get the desired result.

Dragomir in [4], presented another proof of above theorem. He proved that

φ(t ) = 〈 f (t A+ (1− t )B)x, x〉

for all A,B ∈ Bsa(H ) with spectra in I and x ∈ H which ∥x∥ = 1, is a convex function on

[0,1]. Then by utilising Hermite-Hadamard inequality for real-valued convex function φ on

32



2.2. Operator geometrically convex functions

each subintervals [0, 1
2 ] and [ 1

2 ,1], produced the desired result.

As we mentioned in chapter one, the function f (t ) = t r is operator convex on (0,∞) if either

−1 ≤ r ≤ 0 or 1 ≤ r ≤ 2. Dragomir in [4] by replacing this function as a sample of operator

convex function in inequality (2.3), obtained the following inequalities:

(
A+B

2
)r ≤ 1

2

[
(

3A+B

4
)r + (

A+3B

4
)r

]
≤

∫ 1

0
((1− t )A+ tB)r d t

≤ 1

2

[
(

A+B

2
)r + Ar +B r

2

]
≤ Ar +B r

2
, r ∈ [−1,0]∪ [1,2]. (2.6)

Now we are going to introduce operator geometrically convex functions.

For any two strictly positive operators A and B in B(H ) and t ∈R, A♯t B is defined as followng:

A♯t B = A
1
2 (A− 1

2 B A− 1
2 )t A

1
2 , (2.7)

which is a strictly positive operator in B(H ). In the case 0 ≤ t ≤ 1, the operator A♯t B is called

the t- weighted geometric mean of A and B. In particular, for t = 1
2 , the operator A♯B := A♯ 1

2
B

is called the geometric mean of A and B.

In [8] the following properties of A♯t B is represented.

Lemma 2.2.2 [8] If A,B ∈B(H )++ and t ∈R. Then

(i) A♯t B = A1−t B t for AB = B A.

(ii) (a A)♯t (bB) = a1−t bt (A♯t B) for a,b > 0.

(iii) A♯t B = B♯1−t A and (A♯t B)−1 = A−1♯t B−1.

Proposition 2.2.3 [13] Let A,B ∈ B(H )++ such that Sp(A),Sp(B) ⊆ I and t ∈ [0,1]. Then

Sp(A♯t B) ⊆I .

Proof Let I = [m, M ] for some positive real numbers m and M with m < M. Since Sp(A),Sp(B) ⊆
I , we have

m1H ≤ A ≤ M1H , (2.8)

m1H ≤ B ≤ M1H . (2.9)
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Hermite-Hadamard inequality for operator geometrically convex functions

So according to Theorem 1.2.16 and by multiplying both sides of inequality (2.9) by A− 1
2 , we

obtain

A− 1
2 m A− 1

2 ≤ A− 1
2 B A− 1

2 ≤ A− 1
2 M A− 1

2

⇒ m A−1 ≤ A− 1
2 B A− 1

2 ≤ M A−1.

Now by considering operator monotonicity property of function f (x) = x t on (0,∞) for t ∈ [0,1]

we have

mt A−t ≤ (A− 1
2 B A− 1

2 )t ≤ M t A−t , (2.10)

by multiplying inequality (2.10) in A
1
2 from both sides, inequalities

mt A1−t ≤ A♯t B ≤ M t A1−t ,

hold, so according to inequality (2.8) we have

mt m1−t 1H ≤ mt A1−t ≤ A♯t B ≤ M t A1−t ≤ M t M 1−t 1H ,

or

m1H ≤ A♯t B ≤ M1H ,

which is equivalent to

σ(A♯t B) ⊆I = [m, M ].

Now by considering Proposition (2.2.3), we represent the following definition.

Definition 2.2.4 [13] A continuous function f : I ⊆ R+ → R+ is said to be operator geometri-

cally convex function if

f (A♯t B) ≤ f (A)♯t f (B)

for A,B ∈B(H )++ such that Sp(A),Sp(B) ⊆I and t ∈ [0,1].

Now the question is that, whether we can present Hermite-Hadamard inequality for operator

geometrically convex functions or not?

In the following we present some results which we derived in answering the above question.
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2.2. Operator geometrically convex functions

2.2.1 Inequalities for operator geometricallty convex functions

We need the following lemmas and theorem for proving our results.

Lemma 2.2.5 [7, 8] Let A,B ∈B(H )++ and t , s,u ∈R. Then

(A♯t B)♯s(A♯uB) = A♯(1−s)t+suB.

Lemma 2.2.6 [7] Let A,B ,C ,D be operators in B(H )++ and t ∈R. Then

A♯t B ≤C♯t D,

for A ≤C and B ≤ D.

According to Lemma 2.2.6, we can prove Proposition 2.2.3 in a shorter way as following:

Proof Second proof of Proposition 2.2.3: By utilizing inequalities (2.8) and (2.9), since A ≤
M1H and B ≤ M1H , according to lemma 2.2.6 we obtain

A♯t B ≤ (M1H )♯t (M1H ) = M . (2.11)

We also have m1H ≤ A and m1H ≤ B. By using lemma 2.2.6 again, we have

m = (m1H )♯t (m1H ) ≤ A♯t B. (2.12)

According to the inequalities (2.11) and (2.12), the proof will be completed.

The following characterization of operator convex functions holds.

Theorem 2.2.7 [4] (Operator Jensen inequality) Let H and K be Hilbert spaces. Let f be a

real valued continuous function on an interval I . Let A and Ai be selfadjoint operators on H

with spectra contained in I , for each i = 1,2, . . . ,k. Then the following conditions are mutually

equivalent:

(i) f is operator convex on I .

(ii) f (C∗AC ) ≤ C∗ f (A)C for every selfadjoint operator A : H → H and isometry C : K →
H , i.e., C∗C = 1K .

Lemma 2.2.8 [13] Let A,B ∈B(H )++. If f : I ⊆R+ →R+ be a continuous function, then∫ 1

0
f
(

A♯t B
)
♯ f

(
A♯1−t B

)
d t ≤

(∫ 1

0
f
(

A♯t B
)

d t

)
♯

(∫ 1

0
f
(

A♯1−t B
)

d t

)
(2.13)

which Sp(A),Sp(B) ⊆I .
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Hermite-Hadamard inequality for operator geometrically convex functions

Proof Since the function t
1
2 is operator concave, we can write

((∫ 1

0
f (A♯1−uB)du

) −1
2

(∫ 1

0
f (A♯uB)du

)(∫ 1

0
f (A♯1−uB)du

) −1
2

) 1
2

By change of variable v = 1−u

=
((∫ 1

0
f (A♯v B)d v

) −1
2

(∫ 1

0
f (A♯uB)du

)(∫ 1

0
f (A♯v B)d v

) −1
2

) 1
2

=
(∫ 1

0

(∫ 1

0
f (A♯v B)d v

) 1
2

f (A♯uB)

(∫ 1

0
f (A♯v B)d v

) 1
2

du

) 1
2

=
(∫ 1

0

(∫ 1

0
f (A♯v B)d v

) −1
2

( f (A♯1−uB))
1
2

(
( f (A♯1−uB))

−1
2 f (A♯uB)( f (A♯1−uB))

−1
2

)

× ( f (A♯1−uB))
1
2

(∫ 1

0
f (A♯v B)d v

) −1
2

du

) 1
2

By the operator Jensen inequality

≥
∫ 1

0

(∫ 1

0
f (A♯v B)d v

) −1
2

( f (A♯1−uB))
1
2

((
( f (A♯1−uB))

−1
2 f (A♯uB)( f (A♯1−uB))

) −1
2

) 1
2

× ( f (A♯1−uB))
1
2

(∫ 1

0
f (A♯v B)d v

) −1
2

du

=
(∫ 1

0
f (A♯v B)d v

) −1
2

∫ 1

0
( f (A♯1−uB))

1
2

((
( f (A♯1−uB))

−1
2 f (A♯uB)( f (A♯1−uB))

) −1
2

) 1
2

× ( f (A♯1−uB))
1
2 du

(∫ 1

0
f (A♯v B)d v

) −1
2

By change of variable u = 1− v

=
(∫ 1

0
f (A♯1−uB)du

) −1
2

∫ 1

0
( f (A♯1−uB))

1
2

((
( f (A♯1−uB))

−1
2 f (A♯uB)( f (A♯1−uB))

) −1
2

) 1
2

× ( f (A♯1−uB))
1
2 du

(∫ 1

0
f (A♯1−uB)du

) −1
2

.

So, we got

((∫ 1

0
f (A♯1−uB)du

) −1
2

(∫ 1

0
f (A♯uB)du

)(∫ 1

0
f (A♯1−uB)du

) −1
2

) 1
2

≥
(∫ 1

0
f (A♯1−uB)du

) −1
2

∫ 1

0
( f (A♯1−uB))

1
2

((
( f (A♯1−uB))

−1
2 f (A♯uB)( f (A♯1−uB))

) −1
2

) 1
2

× ( f (A♯1−uB))
1
2 du

(∫ 1

0
f (A♯1−uB)du

) −1
2

.
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Multiplying both sides of above inequality by
(∫ 1

0 f (A♯1−uB)du
) 1

2
, we concluded

(∫ 1

0
f
(

A♯uB
)

du

)
♯

(∫ 1

0
f
(

A♯1−uB
)

du

)
≥

∫ 1

0
f
(

A♯uB
)
♯ f

(
A♯1−uB

)
du.

Before giving our theorems in this section, we mention the following remark.

Remark 2.2.9 Let p(x) = x t and q(x) = xs on [1,∞), where 0 ≤ t ≤ s. If f (A) ≤ f (B), then

Sp( f (A)−
1
2 f (B) f (A)−

1
2 ) ⊆ [1,∞). By functional calculus, we have

p
(

f (A)
−1
2 f (B) f (A)

−1
2

)
≤ q

(
f (A)

−1
2 f (B) f (A)

−1
2

)
.

So, (
f (A)

−1
2 f (B) f (A)

−1
2

)t ≤
(

f (A)
−1
2 f (B) f (A)

−1
2

)s
.

Now, we are ready to prove Hermite- Hadamard type inequality for operator geometrically con-

vex functions.

Theorem 2.2.10 [13] Let f be an operator geometrically convex function. Then, we have

f
(

A♯B
)≤ ∫ 1

0
f
(

A♯t B
)

d t ≤
∫ 1

0
f (A)♯t f (B)d t . (2.14)

Moreover, if f (A) ≤ f (B), then we have∫ 1

0
f (A♯t B)d t ≤

∫ 1

0
f (A)♯t f (B)d t ≤ 1

2
(( f (A)♯ f (B))+ f (B)) (2.15)

for A,B ∈B(H )++.

Proof Let f be an operator geometrically convex function, then we have

f
(

A♯B
) = f

((
A♯t B

)
♯
(

A♯1−t B
))

By lemma 2.2.5

≤ f
(

A♯t B
)
♯ f

(
A♯1−t B

)
f is operator geometrically convex
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Taking integral of the both sides of the above inequalities on [0,1] we obtain

f
(

A♯B
) ≤

∫ 1

0
f
(

A♯t B
)
♯ f

(
A♯1−t B

)
d t

≤
(∫ 1

0
f
(

A♯t B
)

d t

)
♯

(∫ 1

0
f
(

A♯1−t B
)

d t

)
By Lemma 2.13

=
∫ 1

0
f
(

A♯t B
)

d t

≤
∫ 1

0
f (A)♯t f (B)d t .

For the case f (A) ≤ f (B), by applying Remark 2.2.9 for s = 1
2 we have

(
f (A)−

1
2 f (B) f (A)−

1
2

)t ≤
(

f (A)−
1
2 f (B) f (A)−

1
2

) 1
2

.

By integrating the above inequality over t ∈ [0, 1
2 ], we obtain

∫ 1
2

0

(
f (A)−

1
2 f (B) f (A)−

1
2

)t
d t ≤ 1

2

(
f (A)−

1
2 f (B) f (A)−

1
2

) 1
2

.

Multiplying both sides of the above inequality by f (A)
1
2 , we have

∫ 1
2

0
f (A)

1
2

(
f (A)−

1
2 f (B) f (A)−

1
2

)t
f (A)

1
2 d t

≤ 1

2

(
f (A)

1
2

(
f (A)−

1
2 f (B) f (A)−

1
2

) 1
2

f (A)
1
2

)
.

It follows that

∫ 1
2

0
f (A)♯t f (B) ≤ f (A)♯ f (B)

2
. (2.16)

On the other hand, by considering Remark 2.2.9 for s = 1 we have(
f (A)−

1
2 f (B) f (A)−

1
2

)t ≤ f (A)−
1
2 f (B) f (A)−

1
2 .

Integrating the above inequality over t ∈ [ 1
2 ,1], we get∫ 1

1
2

(
f (A)−

1
2 f (B) f (A)−

1
2

)t
d t ≤ 1

2

(
f (A)−

1
2 f (B) f (A)−

1
2

)
.
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By multiplying both side of above inequality by f (A)
1
2 , we have∫ 1

1
2

f (A)
1
2

(
f (A)−

1
2 f (B) f (A)−

1
2

)t
f (A)

1
2 d t ≤ f (B)

2
.

It follows that∫ 1

1
2

f (A)♯t f (B) ≤ f (B)

2
. (2.17)

From inequalities (2.16) and (2.17) we obtain

∫ 1
2

0
f (A♯t B)d t +

∫ 1

1
2

f (A♯t B)d t ≤
∫ 1

2

0
f (A)♯t f (B)d t +

∫ 1

1
2

f (A)♯t f (B)d t

≤ f (A)♯ f (B)

2
+ f (B)

2
.

It follows that ∫ 1

0
f (A♯t B)d t ≤

∫ 1

0
f (A)♯t f (B)d t ≤ 1

2
(( f (A)♯ f (B))+ f (B)).

By making use of inequalities (2.14) and (2.15), we have the following result.

Corollary 2.2.11 [13] Let f be an operator geometrically convex functions. Then, if f (A) ≤
f (B) we have

f (A♯B) ≤
∫ 1

0
f
(

A♯t B
)

d t ≤ 1

2

(
( f (A)♯ f (B))+ f (B)

)
(2.18)

for A,B ∈B(H )++.

Remark 2.2.12 It is interesting to note that we can not replace the last part of either inequal-

ities (2.15) or (2.18) with a smaller bound f (A)♯ f (B). Because, by considering f (t ) = t , A = I

and B = eI as an example, which e is the Euler constant, we have∫ 1

0
( f (A)♯t f (B))d t =

∫ 1

0
I 1−t × (eI )t d t =

∫ 1

0
e t d t = e −1.

On the other hand

f (A)♯ f (B) = I ♯(eI ) = I
1
2 × (eI )

1
2 = e

1
2 .

So, it results

e −1 = 1.71≮ e
1
2 = 1.64.
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Theorem 2.2.13 [13] Let f be an operator geometrically convex function. Then, for A,B ∈
B(H )++ we have

f
(

A♯B
)≤ ∫ 1

0
f
(

A♯t B
)
♯ f

(
A♯1−t B

)
d t ≤ f (A)♯ f (B). (2.19)

Proof In fact

f (A♯B) = f
(
(A♯t B)♯(A♯1−t B)

)
By Lemma 2.2.5

≤ f (A♯t B)♯ f (A♯1−t B) f is opertor geometrically convex function

≤ (
f (A)♯t f (B)

)
♯
(

f (A)♯1−t f (B)
)

By Lemma 2.2.6

= f (A)♯ f (B).

It follows that

f (A♯B) ≤ f (A♯t B)♯ f (A♯1−t B) ≤ f (A)♯ f (B).

Integrating the above inequality over t ∈ [0,1] we obtain the desired result.

We divide the interval [0,1] to the interval [ν,1−ν] when ν ∈ [0, 1
2 ) and to the interval [1−ν,ν]

when ν ∈ ( 1
2 ,1]. Then we have the following inequalities.

Theorem 2.2.14 [13] Let A,B ∈B(H )++ such that f (A) ≤ f (B). Then we have

1. For ν ∈ [0, 1
2 )

f (A)♯ν f (B) ≤ 1

1−2ν

∫ 1−ν

ν
f (A)♯t f (B)d t ≤ f (A)♯1−ν f (B). (2.20)

2. For ν ∈ ( 1
2 ,1]

f (A)♯1−ν f (B) ≤ 1

2ν−1

∫ ν

1−ν
f (A)♯t f (B)d t ≤ f (A)♯ν f (B). (2.21)

Proof Let ν ∈ [0, 1
2 ), then by Remark 2.2.9 we have

(
f (A)

−1
2 f (B) f (A)

−1
2

)ν ≤
(

f (A)
−1
2 f (B) f (A)

−1
2

)t

≤
(

f (A)
−1
2 f (B) f (A)

−1
2

)1−ν
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2.2. Operator geometrically convex functions

for ν ≤ t ≤ 1−ν, and A,B ∈ B(H )++ such that Sp(A),Sp(B) ⊆ I . By integrating the above

inequality over t ∈ [ν,1−ν] we obtain

∫ 1−ν

ν

(
f (A)

−1
2 f (B) f (A)

−1
2

)ν
d t ≤

∫ 1−ν

ν

(
f (A)

−1
2 f (B) f (A)

−1
2

)t
d t

≤
∫ 1−ν

ν

(
f (A)

−1
2 f (B) f (A)

−1
2

)1−ν
d t .

It follows that

(
f (A)

−1
2 f (B) f (A)

−1
2

)ν ≤ 1

1−2ν

∫ 1−ν

ν

(
f (A)

−1
2 f (B) f (A)

−1
2

)t
d t

≤
(

f (A)
−1
2 f (B) f (A)

−1
2

)1−ν
.

Multiplying the both sides of the above inequality by f (A)
1
2 gives us

f (A)♯ν f (B) ≤ 1

1−2ν

∫ 1−ν

ν
f (A)♯t f (B)d t ≤ f (A)♯1−ν f (B).

Also, we know that

lim
ν→ 1

2

f (A)♯ν f (B) = lim
ν→ 1

2

1

1−2ν

∫ 1−ν

ν
f (A)♯t f (B)d t

= lim
ν→ 1

2

f (A)♯1−ν f (B)

= f (A)♯ f (B).

Similarily, for ν ∈ ( 1
2 ,1], by a same proof as above we get

f (A)♯1−ν f (B) ≤ 1

2ν−1

∫ ν

1−ν
f (A)♯t f (B)d t ≤ f (A)♯ν f (B).

Hence, the proof will be completed.

By definition of geometrically convex function and (2.20) we have

f
(

A♯νB
) ≤ 1

1−2ν

∫ 1−ν

ν
f
(

A♯t B
)

d t

≤ 1

1−2ν

∫ 1−ν

ν
f (A)♯t f (B)d t

≤ f (A)♯1−ν f (B),
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for ν ∈ [0, 1
2 ).

We should mention here that by Hopital’s rule we have

lim
ν→ 1

2

1

1−2ν

∫ 1−ν

ν
f
(

A♯t B
)

d t = lim
ν→ 1

2

f (A♯νB) = f (A♯B).

On the other hand, by definition of geometrically convex function and (2.21) we have

f
(

A♯1−νB
) ≤ 1

2ν−1

∫ ν

1−ν
f
(

A♯t B
)

d t

≤ 1

2ν−1

∫ ν

1−ν
f (A)♯t f (B)d t

≤ f (A)♯ν f (B)

for ν ∈ ( 1
2 ,1].

2.2.2 Examples of operator geometrically convex functions

In this section we represent some examples of operator geometrically convex functions. At the

end, we derive a refinement of an norm inequality.

Remark 2.2.15 For operators A,B ∈ B(H )++, Ando proved in [1] that if Ψ is a positive linear

map, then we have

Ψ(A♯νB) ≤Ψ(A)♯νΨ(B), ν ∈ [0,1].

The above inequality shows that we can find some examples of operator geometrically convex

functions f when they are linear.

Example 2.2.16 According to Lemma 2.2.2, part (i i i ), we can easily check that the function

f (t ) = t−1 is operator geometrically convex function on B(H )++.

Theorem 2.2.17 [3] Let A and B be two strictly positive operators. Then the block-matrix[
A X

X ∗ B

]
is positive if and only if A ≥ X B−1X ∗.

Definition 2.2.18 [1] Let ϕ be a map on C∗-algebra B(H ). We say that ϕ is 2-positive if the

2×2 operator matrix

[
A B

B∗ C

]
≥ 0 then we have

[
ϕ(A) ϕ(B)

ϕ(B∗) ϕ(C )

]
≥ 0.

In [9], M. Lin gave an example of a 2-positive map over contraction operators (i.e., (∥A∥ < 1)).

He proved that

ϕ(t ) = (1− t )−1 (2.22)
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2.2. Operator geometrically convex functions

is 2-positive. In the following example, we show that this function is operator geometrically

convex function.

Example 2.2.19 [13] Let A and B be two contraction operators in B(H )++. Then

∥A♯B∥2 ≤ ∥A∥∥B∥ < 1,

or in the other words, A♯B is a contraction operator. Also, we have A♯B = B♯A and

A = (A♯B)B−1(A♯B),

so, according to Theorem 2.2.17 we can conclude that the positivity of operator matrix[
A A♯B

A♯B B

]
.

Hence, by (2.22) we obtain [
(I − A)−1 (I − (A♯B))−1

(I − (A♯B))−1 (I −B)−1

]
is positive.

On the other hand, by Ando’s characterization of the geometric mean if X is a Hermitian oper-

ator and [
A X

X B

]
≥ 0.

Then X ≤ A♯B.

So we conclude that (I − (A♯B)−1) ≤ (I − A)−1♯(I −B)−1. Therefore, the function ϕ(t ) = (1− t )−1

is operator geometrically convex function.

Also, Lin proved that the function

ψ(t ) = 1+ t

1− t

is 2-positive over contractions. By the same argument as above example we can say the above

function is operator geometrically convex too.

Example 2.2.20 [13] In the proof of [6, Theorem 4.12], by applying Hölder-McCarthy inequal-

ity the authors showed the following inequalities

〈A♯αB x, x〉 =
⟨(

A
−1
2 B A

−1
2

)α
A

1
2 x, A

1
2 x

⟩
≤

⟨(
A

−1
2 B A

−1
2

)
A

1
2 x, A

1
2 x

⟩α⟨
A

1
2 x, A

1
2 x

⟩1−α

= 〈Ax, x〉1−α〈B x, x〉α
= 〈Ax, x〉♯α〈B x, x〉
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Hermite-Hadamard inequality for operator geometrically convex functions

for x ∈H and α ∈ [0,1]. By taking the supremum over unit vector x, we obtain that f (x) = ∥x∥
is geometrically convex function for usual operator norms.

By the above example and Corollary 2.2.11, when ∥A∥ ≤ ∥B∥ we have

∥A♯B∥ ≤
∫ 1

0
∥A♯t B∥d t ≤ 1

2
(
√
∥A∥∥B∥+∥B∥)

for A,B ∈B(H )++, which is a norm inequality with the operator norm.
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3 Refinements for some inequalities
related to unitarily invariant norm

Another kind of convex functions, are log-convex functions. This chapter deals with these func-

tions. By utilizing the results which we derive, we give some refinements on interpolation be-

tween the arithmetic-geometric mean and Cauchy-Schwarz matrix norm inequalities.

3.1 Some inequalities for arithmetic-geometric convex functions

Definition 3.1.1 A continuous function f : I ⊂ R → R+ is said to be an AG-convex function

(arithmetic-geometrically or log convex function) if

f (λa + (1−λ)b) ≤ f (a)λ f (b)1−λ, (3.1)

for a,b ∈I and λ ∈ [0,1], i.e., log f is convex.

As an example, f (t ) = e t is an arithmetic-geometric convex function.

According to Young inequality, we can write inequality (3.1) as following

f (λa + (1−λ)b) ≤ f (a)λ f (b)1−λ ≤λ f (a)+ (1−λ) f (b),

it means that every arithmetic-geometric convex function is a convex function.

Remark 3.1.2 [7] The condition (3.1) can be written as following

f ◦ log(exp(λa)exp((1−λ)b)) ≤ ( f ◦ log(exp(a)))λ( f ◦ log(exp(b)))1−λ, (3.2)

then we observe that f : I →R+ is AG-convex on I if and only if f ◦ log is G-convex (geometri-

cally or multiplicative convex) on exp(I ) := {exp(x), x ∈I }.
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Refinements for some inequalities related to unitarily invariant norm

If I = [a,b], then exp(I ) = [exp(a),exp(b)].

The authors of [10] represented Hermite-Hadamard type inequality for arithmetic-geometric

convex functions. To complete the discussion we bring the proof here in a short way.

Theorem 3.1.3 [10] Let f be an AG-convex function defined on [a,b]. Then, we have

f

(
a +b

2

)
≤

√
f

(
3a +b

4

)
f

(
a +3b

4

)
≤ exp

(
1

b −a

∫ b

a
log◦ f (u)du

)

≤
√

f

(
a +b

2

)
. 4
√

f (a). 4
√

f (b)

≤
√

f (a) f (b), (3.3)

Proof Let f : [a,b] →R+ be an AG-convex function. Then by Remark 3.1.2, f ◦ log is G-convex
on [exp(a),exp(b)]. By applying (2.2), we obtain

f ◦ log(
√

exp(a)exp(b)) ≤
√

f ◦ log
(
exp(a)

3
4 exp(b)

1
4

)
f ◦ log

(
exp(a)

1
4 exp(b)

3
4

)
≤ exp

(
1

logexp(b)− logexp(a)

∫ exp(b)

exp(a)

log◦ f ◦ log(t )

t
d t

)
≤

√
f ◦ log

√
exp(a)exp(b). 4

√
f ◦ logexp(a). 4

√
f ◦ logexp(b)

≤
√

f ◦ logexp(a) f ◦ logexp(b).

Hence, we can write

f ◦ log

(
exp

(
a +b

2

))
≤

√(
f ◦ logexp

(
3a +b

4

))(
f ◦ logexp

(
a +3b

4

))
≤ exp

(
1

logexp(b)− logexp(a)

∫ exp(b)

exp(a)

log◦ f ◦ log(t )

t
d t

)

≤
√

f ◦ logexp

(
a +b

2

)
. 4
√

f ◦ logexp(a). 4
√

f ◦ logexp(b)

≤
√

f ◦ logexp(a) f ◦ logexp(b).

Then, we have the desired result.
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3.2 Inequalities related to unitaritly invariant norms of operators

For a,b ∈C arithmetic-geometric mean inequality is as following.

|ab| ≤ |a|2 +|b|2
2

. (3.4)

The norm version of above inequality is

|||AB∗||| ≤ 1

2
|||A∗A+B∗B ||| (3.5)

where A,B ∈ Mn(C).

A generalization of the above inequality has been given in [4] that asserts that for A,B , X ∈
Mn(C) we have

|||AX B∗||| ≤ 1

2
|||A∗AX +X B∗B |||. (3.6)

On the other hand, the Cauchy-Schwarz inequality for ai ,bi ∈R+ is

n∑
i=1

ai bi ≤
(

n∑
i=1

a2
i

) 1
2
(

n∑
i=1

b2
i

) 1
2

. (3.7)

The norm version of the Cauchy-Schwarz inequality for A,B ∈ Mn(C) is as follows.

|||AB∗|||2 ≤ |||A∗A||||||B∗B |||. (3.8)

A generalization of the above inequality asserts that if A,B , X ∈ Mn(C), we have

|||AX B∗|||2 ≤ |||A∗AX ||||||X B∗B |||. (3.9)

We refer the readers to [3] for more results about the Cauchy-Schwarz inequality.

Recently, it has been proved in [2] that for all A,B ∈ Mn(C) and all ν ∈ [0,1], we have

|||AB∗|||2 ≤ |||νA∗A+ (1−ν)B∗B ||||||(1−ν)A∗A+νB∗B |||. (3.10)

The above inequality interpolates between arithmetic-geometric mean inequality (3.5) and

Cauchy-Schwarz inequality (3.8) by letting ν= 1
2 and ν= 1, respectively.

In [6], the author has proved inequality (3.10) in a different way.

A generalization of inequality (3.10) has been derived in [11] which asserts that if A,B , X ∈
Mn(C) we have

|||AX B∗|||2 ≤ |||νA∗AX + (1−ν)X B∗B ||||||(1−ν)A∗AX +νX B∗B |||. (3.11)

The above inequality interpolates between inequalities (3.6) and (3.9).

In the following, we give examples of arithmetic-geometric convex functions and then by using
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Hermite-Hadamard inequalities for them, we derive an interpolation between the arithmetic-

geometric mean and Cauchy-Schwarz matrix norm inequalities.

The author of [5] proved that if A,B , X ∈ B(H ) such that A and B are positive operators, then

for 0 ≤ ν≤ 1 we have

|||AνX B 1−ν||| ≤ |||AX |||ν|||X B |||1−ν. (3.12)

In the following we show the log-covexity of a function which the idea of proof comes from [8,

Lemma 2.1].

For T ∈B(H ), when we consider ||| · |||, we are implicity assuming that the operator T belongs

to the norm ideal associated with ||| · |||.

Lemma 3.2.1 [9] Let A,B , X ∈B(H ) such that A and B are positive operators. Then

f (t ) = |||At X B 1−t |||

is AG-convex on [0,1].

Proof We should prove that f (αt + (1−α)s) ≤ f (t )α f (s)1−α, for α ∈ (0,1) and s, t ∈ [0,1].

f (αt + (1−α)s) = |||Aαt+(1−α)s X B 1−(αt+(1−α)s)|||
= |||Aα(t−s) As X B 1−t B (1−α)(t−s)|||
≤ |||At−s As X B 1−t |||α|||As X B 1−t B t−s |||1−α by (3.12)

= |||At X B 1−t |||α|||As X B 1−s |||1−α
= f (t )α f (s)1−α.

So, f (t ) = |||At X B 1−t ||| is an AG-convex function.

Applying inequalities (3.3) to the function f (t ) = |||(A∗A)t X (B∗B)1−t ||| on the interval [ν,1−ν]

when ν ∈ [0, 1
2 ) and on the interval [1−ν,ν] when ν ∈ ( 1

2 ,1], we obtain the following theorem.

Theorem 3.2.2 [9] Let A,B , X ∈B(H ) and ν ∈ [0,1]. Then

|||(A∗A)
1
2 X (B∗B)

1
2 ||| ≤ |||(A∗A)

1+2ν
4 X (B∗B)

3−2ν
4 ||| 1

2 |||(A∗A)
3−2ν

4 X (B∗B)
1+2ν

4 ||| 1
2

≤ exp

(
1

1−2ν

∫ 1−ν

ν
log |||(A∗A)u X (B∗B)1−u |||du

)
≤ |||(A∗A)

1
2 X (B∗B)

1
2 ||| 1

2 |||(A∗A)νX (B∗B)1−ν||| 1
4 |||(A∗A)1−νX (B∗B)ν||| 1

4

≤ |||(A∗A)νX (B∗B)1−ν||| 1
2 |||(A∗A)1−νX (B∗B)ν||| 1

2 .
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Proof Let ν ∈ [0, 1
2 ), then by inequalities (3.3) for operator AG-convex function f , we have

f

(
ν+1−ν

2

)
≤

√
f

(
3ν+1−ν

4

)
f

(
ν+3(1−ν)

4

)
≤ exp

(
1

1−2ν

∫ 1−ν

ν
log◦ f (u)du

)

≤
√

f

(
ν+1−ν

2

)
. 4
√

f (ν). 4
√

f (1−ν)

≤
√

f (ν) f (1−ν).

Now by considering f (t ) = |||(A∗A)t X (B∗B)1−t |||, since it is AG-convex according to Lemma
3.2.1, by replacing it in the above inequalities we conclude:

|||(A∗A)
1
2 X (B∗B)

1
2 ||| ≤ |||(A∗A)

1+2ν
4 X (B∗B)

3−2ν
4 ||| 1

2 |||(A∗A)
3−2ν

4 X (B∗B)
1+2ν

4 ||| 1
2

≤ exp

(
1

1−2ν

∫ 1−ν

ν
log |||(A∗A)u X (B∗B)1−u |||du

)
≤ |||(A∗A)

1
2 X (B∗B)

1
2 ||| 1

2 |||(A∗A)νX (B∗B)1−ν||| 1
4 |||(A∗A)1−νX (B∗B)ν||| 1

4

≤ |||(A∗A)νX (B∗B)1−ν||| 1
2 |||(A∗A)1−νX (B∗B)ν||| 1

2 .

Similarly, for ν ∈ ( 1
2 ,1] we have

|||(A∗A)
1
2 X (B∗B)

1
2 ||| ≤ |||(A∗A)

1+2ν
4 X (B∗B)

3−2ν
4 ||| 1

2 |||(A∗A)
3−2ν

4 X (B∗B)
1+2ν

4 ||| 1
2

≤ exp

(
1

2ν−1

∫ ν

1−ν
log |||(A∗A)u X (B∗B)1−u |||du

)
≤ |||(A∗A)

1
2 X (B∗B)

1
2 ||| 1

2 |||(A∗A)νX (B∗B)1−ν||| 1
4 |||(A∗A)1−νX (B∗B)ν||| 1

4

≤ |||(A∗A)νX (B∗B)1−ν||| 1
2 |||(A∗A)1−νX (B∗B)ν||| 1

2 .

Since

lim
ν→ 1

2

exp

(
1

1−2v

∫ 1−ν

ν
log |||(A∗A)u X (B∗B)1−u |||du

)
= |||(A∗A)

1
2 X (B∗B)

1
2 |||.

This completes the proof.
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Refinements for some inequalities related to unitarily invariant norm

Theorem 3.2.3 [9] Let A,B , X be operators in B(H ). Then

|||(A∗A)
1
2 X (B∗B)

1
2 ||| ≤ |||(A∗A)

1
4 X (B∗B)

3
4 ||| 1

2 |||(A∗A)
3
4 X (B∗B)

1
4 ||| 1

2

≤ exp

(∫ 1

0
log |||(A∗A)u X (B∗B)1−u |||du

)
≤ |||(A∗A)

1
2 X (B∗B)

1
2 ||| 1

2 |||(A∗A)X ||| 1
4 |||X (B∗B)||| 1

4

≤ |||(A∗A)X ||| 1
2 |||X (B∗B)||| 1

2 . (3.13)

Proof By the use of inequalities (3.3) and Lemma 3.2.1 for a = 0 and b = 1 we get the result.

Remark 3.2.4 The authors of [1] proved the following inequality for A,B , X ∈ Mn(C) and ν ∈
[0,1]

|||AX B∗|||2 ≤ |||(A∗A)νX (B∗B)1−ν||||||(A∗A)1−νX (B∗B)ν|||, (3.14)

for every unitarily invariant norm.

Let v = 1
2 , then we have

|||AX B∗|||2 ≤ |||(A∗A)
1
2 X (B∗B)

1
2 ||||||(A∗A)

1
2 X (B∗B)

1
2 |||. (3.15)

By considering (3.15), the inequalities of Theorem 3.2.2 is a refinement of inequality (3.14) as

the following.

|||AX B∗||| ≤ |||(A∗A)
1+2ν

4 X (B∗B)
3−2ν

4 ||| 1
2 |||(A∗A)

3−2ν
4 X (B∗B)

1+2ν
4 ||| 1

2

≤ exp

(
1

1−2ν

∫ 1−ν

ν
log |||(A∗A)u X (B∗B)1−u |||du

)
≤ |||(A∗A)

1
2 X (B∗B)

1
2 ||| 1

2 |||(A∗A)νX (B∗B)1−ν||| 1
4 |||(A∗A)1−νX (B∗B)ν||| 1

4

≤ |||(A∗A)νX (B∗B)1−ν||| 1
2 |||(A∗A)1−νX (B∗B)ν||| 1

2 . (3.16)

Remark 3.2.5 We recall inequality (3.10) which is due to K. Audernaert [2] and it states that

that for A,B ∈ Mn(C) and ν ∈ [0,1], we have

|||AB∗|||2 ≤ |||νA∗A+ (1−ν)B∗B ||||||(1−ν)A∗A+νB∗B |||. (3.17)
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3.2. Inequalities related to unitaritly invariant norms of operators

By knowing that |||(A∗A)ν(B∗B)1−ν||| ≤ |||νA∗A+ (1−ν)B∗B ||| holds for all A, B and ν ∈ [0,1],

inequalities (3.16) for X = I gives a refinement for inequality (3.17) as following

|||AB∗||| ≤ |||(A∗A)
1+2ν

4 (B∗B)
3−2ν

4 ||| 1
2 |||(A∗A)

3−2ν
4 (B∗B)

1+2ν
4 ||| 1

2

≤ exp

(
1

1−2ν

∫ 1−ν

ν
log |||(A∗A)u(B∗B)1−u |||du

)
≤ |||(A∗A)

1
2 (B∗B)

1
2 ||| 1

2 |||(A∗A)ν(B∗B)1−ν||| 1
4 |||(A∗A)1−ν(B∗B)ν||| 1

4

≤ |||(A∗A)ν(B∗B)1−ν||| 1
2 |||(A∗A)1−ν(B∗B)ν||| 1

2

≤ |||νA∗A+ (1−ν)B∗B ||| 1
2 |||(1−ν)A∗A+νB∗B ||| 1

2 .

From now on, we try to give a refinement of the following inequality

|||AνX Bν||| ≤ |||X |||1−ν|||AX B |||ν (3.18)

for 0 ≤ ν≤ 1 and A,B , X ∈ B(H ) such that A and B are positive operators. This inequality has

been proved in [5]. Our refinement is a special case when ν= 1
2 .

Lemma 3.2.6 [9] Let A,B , X ∈B(H ) such that A and B are positive operators. Then

f (s) = |||As X B s |||

is AG-convex on [0,1].

Proof Similar to Lemma 3.2.1, we should prove that

f (αt + (1−α)s) ≤ f (t )α f (s)1−α

for α ∈ (0,1) and s, t ∈ [0,1].

f (αt + (1−α)s) = |||Aαt+(1−α)s X Bαt+(1−α)s |||
= |||Aα(t−s) As X B t B (1−α)(s−t )|||
≤ |||At−s As X B t |||α|||As X B t B s−t |||1−α by (3.12)

= |||At X B t |||α|||As X B s |||1−α
= f (t )α f (s)1−α.

So, f (s) = |||As X B s ||| is an AG-convex function.

By applying inequalities (3.3) to the function f (t ) = |||At X B t ||| on the interval [ν,1−ν] when

ν ∈ [0, 1
2 ) and on the interval [1−ν,ν] when ν ∈ ( 1

2 ,1], we obtain the following theorem.
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Refinements for some inequalities related to unitarily invariant norm

Theorem 3.2.7 [9] Let A,B , X ∈B(H ) such that A and B be positive operators. Then

|||A 1
2 X B

1
2 ||| ≤ |||A 1+2ν

4 X B
1+2ν

4 ||| 1
2 |||A 3−2ν

4 X B
3−2ν

4 ||| 1
2

≤ exp

(
1

1−2ν

∫ 1−ν

ν
log |||Au X B u |||du

)
≤ |||A 1

2 X B
1
2 ||| 1

2 |||AνX Bν||| 1
4 |||A1−νX B 1−ν||| 1

4

≤ |||AνX Bν||| 1
2 |||A1−νX B 1−ν||| 1

2 .

Proof Utilizing inequalities (3.3) and Lemma 3.2.6, the proof is similiar to Theorem 3.2.2.

Let ν= 0 in the above theorem. Then, we have the following result.

Corollary 3.2.8 Let A,B , X be operators in B(H ) and A and B be positive operators. Then

|||A 1
2 X B

1
2 ||| ≤ |||A 1

4 X B
1
4 ||| 1

2 |||A 3
4 X B

3
4 ||| 1

2

≤ exp

(∫ 1

0
log |||Au X B u |||du

)
≤ |||A 1

2 X B
1
2 ||| 1

2 |||X ||| 1
4 |||AX B ||| 1

4

≤ |||X ||| 1
2 |||AX B ||| 1

2 ,

which is a refinement for inequality (3.18) for the especial case ν= 1
2 .
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4 Extension of some inequalities to the
numerical radius version

As we mentioned in Chapter 1, the numerical radius is a weakly unitarily invariant norm

which is equivalent to the operator norm. Actually

1

2
∥A∥ ≤ w(A) ≤ ∥A∥. (4.1)

Improvements and generalizations of inequalities (4.1) have been presented in recent years. For

example, Kittaneh in [12] proved that if A ∈B(H ), then

w(A) ≤ 1

2
(∥A∥+∥A2∥ 1

2 ),

and
1

4
∥|A|2 +|A∗|2∥ ≤ w2(A) ≤ 1

2
∥|A|2 +|A∗|2∥.

In [4] Dragomir also proved the inequality below, which in fact is a refinement for the second

inequality (4.1):

w2(A) ≤ 1

2
(w(A2)+∥A∥2),

for every A ∈B(H ).

Among the objects in the field of numerical radius, which are very much considered, it is im-

portant to find an answer to questions such as, can one prove the unitarily invariant norm

inequalities for numerical radius and vice versa? The inequalities that have been proved for

the spectral radius have a numerical radius version or not? Or by reducing and weakening the

conditions whether the proved inequalities again hold or not. Also, such inequalities can be

generalized or improved?

In the next section, we will discuss some of these questions in more detail.
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Extension of some inequalities to the numerical radius version

4.1 Numerical radius inequalities via convexity

In this section, using the convexity of certain numerical radius functions we can extend some

unitarily invariant norms inequalities, such as Heinz and Young inequalities, to the context

of numerical radius. However, due to weak unitary invariance of the numerical radius, these

extensions will be weaker than the corresponding unitarily invariant norms versions.

In [3] it has been proved that for A,B , X ∈ Mn(C) such that A and B are positive operators and

0 ≤ t ≤ 1

2|||A 1
2 X B

1
2 ||| ≤ |||At X B 1−t + A1−t X B t ||| ≤ |||AX +X B |||. (4.2)

This pair of inequalities is usually referred to as Heinz inequality: in which the middle term

are the Heinz means which interpolate between the geometric and arithmetic means.

On the other hand, the following Hölder-type inequality has been peresented for the same pa-

rameters in [14]:

|||At X B t ||| ≤ |||X |||1−t |||AX B |||t . (4.3)

As an application of inequality (4.3), it was proved in [14] the following inequality

|||At X B 1−t ||| ≤ |||AX |||t |||X B |||1−t , (4.4)

which implies the following Young-type inequality

|||At X B 1−t ||| ≤ t |||AX |||+ (1− t )|||X B |||. (4.5)

A stronger version than (4.5) would be

|||At X B 1−t ||| ≤ |||t AX + (1− t )X B |||. (4.6)

Unfortunately, (4.6) does not hold for arbitrary unitarily invariant norm. However, it is true

for the Hilbert-Schmidt norm, see [7].

A weaker version of (4.6) by letting X = I is true, [2].

The main purpose of this section is to study inequalities similar to those in above, for the nu-

merical radius.

In [19], utilizing the following lemma, it was given an example as a counterexample showing

that the inequalities (4.2) and (4.5) are not exactly true for the numerical radius:

Lemma 4.1.1 [8] Suppose A =
[

a b

0 c

]
∈ M2 and ac̄ is real. Then

w(A) = 1

2
(|a + c|+

√
|b|2 +|a − c|2).
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4.1. Numerical radius inequalities via convexity

Example 4.1.2 Let A = I2, B = diag( 4+p12
2 ,1), ν = 1

2 and X =
[

1
4+p12

3

0 −2

]
. Then AX B =[

1
2 3

0 −2

]
and A2X +X B 2 =

[
2 6

0 −4

]
. Now by Lemma 4.1.1 we have

w(AX B) ≃ 2.7025 > 2.6213 ≃ 1

2
w(A2X +X B 2).

Also A2X = X and X B 2 =
[

2+p3
2 3

0 −2

]
, hence

w(AX B) ≃ 2.702, w(A2X ) ≃ 2.77 and w(X B 2) ≃ 2.514.

From these numbers and by easy computation one can easily see that

w(AX B) > w(A2X )+w(X B 2)

2
.

The entrywise product of two matrices A and B is called their Schur (or Hadamard) product

and denoted by A ◦B. With this multiplication Mn becomes a commutative algebra and the

matrix J with all entries equal to one is its unit.

Proposition 4.1.3 [6] Let A = (ai j )n
i , j=1 is a n×n positive matrix and B is arbitrary n×n matrix.

Then w(A ◦B) ≤ (maxi ai i )w(B).

According to the above proposition, the following lemma is represented in [17].

Lemma 4.1.4 Let A ≥ 0 and X ∈ Mn . Then

w(AX A) ≤ 1

2
w(A2X +X A2).

Proof Suppose A = diag(λi ) withλi ≥ 0. Then AX A = Y ◦(A2X+X A2), which Y = (λi
1

λ2
i +λ2

j
λ j )i j .

It is clear Y ≥ 0. By Proposition 4.1.3, we get

w(AX A) ≤ max
i

yi i w(A2X +X A2)

= 1

2
w(A2X +X A2).

This complete the proof when A is diagonal. If A is not diagonal, then by using the spectral

decomposition A = U diag(λi )U∗ and considering weak unitary invariance of the numerical

radius, the result be implied.
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Extension of some inequalities to the numerical radius version

Now we are ready to present the main result.

Theorem 4.1.5 [17] For A > 0 and X ∈ Mn the function

f (t ) = w(At X A1−t + A1−t X At )

is convex on R, and attains its minimum at t = 1
2 .

Proof Since f is continuous on R, it is suffices to show that f is mid-convex. So, let t , s ∈ R.

Then

f (
t + s

2
) = w(A

t+s
2 X A1− t+s

2 + A1− t+s
2 X A

t+s
2 )

= w[A
t−s

2 (As X A1−t + A1−t X As)A
t−s

2 ]

≤ 1

2
w[At−s(As X A1−t + A1−t X As)+ (As X A1−t + A1−t X As)At−s]

= 1

2
w(At X A1−t + A1−s X As + As X A1−s + A1−t X At )

≤ 1

2
[w(At X A1−t + A1−t X At )+w(As X A1−s + A1−s X As)]

= f (t )+ f (s)

2
,

which the first inequality implied by Lemma 4.1.4 and the second inequality is due to w(·) is a

norm. Hence, the convexity of f is proved.

Since f is convex and symmetric about t = 1
2 , it follows that it decreases on (−∞, 1

2 ] and in-

creases on [ 1
2 ,∞), so it attains it minimum at t = 1

2 . This completes the proof.

From the above theorem, w-version of Heinz inequality, however in the weaker form for the

case A = B, can be stated as follows:

Corollary 4.1.6 [17] Let A ≥ 0 and X ∈ Mn . Then

w(A
1
2 X A

1
2 ) ≤ 1

2
w(At X A1−t + A1−t X At ) ≤ w(AX +X A),

for 0 ≤ t ≤ 1.

Proof Since f attaines its minimum at t = 1
2 , it is decreasing for t ≤ 1

2 and increasing for t ≥ 1
2

the result is immediate.

On the other hand, a reverse of the above inequality can be found as follows.
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4.1. Numerical radius inequalities via convexity

Corollary 4.1.7 [17] Let A ≥ 0 and X ∈ Mn . Then for t ̸∈ [0,1],

w(At X A1−t + A1−t X At ) ≥ w(AX +X A).

Proof By the monotonicity property of f we have f (t ) ≥ f (1) = f (0) when t ̸∈ [0,1]. This im-

plies the result.

Now we present another result which is a Young-Type inequality for numerical radius.

Theorem 4.1.8 [17] Let A > 0 and X ∈ Mn . Then

g (t ) = w(At X A1−t )

is a convex function on R.

Proof Again, it is suffices to show that f is a mid-convex function. If t , s ∈ R, then by Lemma

4.1.4 we have

g (
t + s

2
) = w(A

t+s
2 X A1− t+s

2 )

= w[A
t−s

2 (As X A1−t )A
t−s

2 ]

≤ 1

2
w[At−s(As X A1−t )+ (As X A1−t )At−s]

≤ 1

2
[w(At X A1−t )+w(As X A1−s)]

= g (t )+ g (s)

2
.

Corollary 4.1.9 [17] Suppose A > 0 and X ∈ Mn . If 0 ≤ t ≤ 1, then

w(At X A1−t ) ≤ t w(AX )+ (1− t )w(X A).

On the other hand, if t ̸∈ [0,1], then

w(At X A1−t ) ≥ t w(AX )+ (1− t )w(X A).

Proof For convex function g (t ) = w(At X A1−t ), we have

g (t ) = g ((1− t ).0+ t .1) ≤ (1− t )g (0)+ t g (1), 0 ≤ t ≤ 1,

which implies the first inequality. We can also get the second inequality by knowing that for

t ̸∈ [0,1], we have g (t ) ≥ (1− t )g (0)+ t g (1).
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Extension of some inequalities to the numerical radius version

In [16], the following one-term refinement for a convex function y = y(t ) on [0,1] is given by

the formula

y(t )+2min{t ,1− t }(y(1)+ y(0)−2y(
1

2
)) ≤ (1− t )y(0)+ t y(1); 0 ≤ t ≤ 1.

Applying this refinement to the function f (t ) = w(At X A1−t + A1−t X At ) implies

w(At X A1−t + A1−t X At )+4min{t ,1− t }(w(AX +X A)−w(A
1
2 X A

1
2 ))

≤ w(AX +X A), 0 ≤ t ≤ 1,

which refines the Heinz inequality.

It is notable that in dealing with unitarily invariant norms, we have the stronger result that

the function f (t ) = |||At X B t ||| is convex for A,B > 0. But this is not true with the numer-

ical radius instead of unitarily invariant norm. In fact, mappings such as t → w(At X B t ),

t → w(At X B 1−t ) and t → w(At X B 1−t + A1−t X B t ) are not convex, otherwise they are in con-

tradiction with Example 4.1.2.

The question posed by Sababheh in [17] is, in the inequality

w(At X B 1−t ) ≤ cw t (AX )w1−t (X B), 0 ≤ t ≤ 1

where A,B ≥ 0 and X is an arbitrary matrix in Mn(C), what is the smallest positive constant c?

Noting the inequalities (4.1) and applying Hölder inequality, for 0 ≤ t ≤ 1,

w(At X B 1−t ) ≤ ∥At X B 1−t∥ ≤ ∥AX ∥t∥X B∥1−t ≤ 2w t (AX )w1−t (X B).

In the other words

w(At X B 1−t ) ≤ 2w t (AX )w1−t (X B), (4.7)

on the other hand, by Example 4.1.2 we know that

w(At X B 1−t ) > w t (AX )w1−t (X B). (4.8)

So, according to inequalities (4.7) and (4.8) we must have 1 < c ≤ 2. But the exact amount has

not been fixed yet.

4.2 Some upper bounds for the Berezin number of an operator

In this section, we obtain some Berezin number inequalities based on the definition of Berezin

symbol.

Before presenting the results, we introduce the Berezin number.

A functional Hilbert space is the Hilbert space of complex-valued functions on some set Ω such
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4.2. Some upper bounds for the Berezin number of an operator

that the evaluation functional φλ = f (λ), λ ∈ Ω are continuous on H . Then by the Riesz

representation theorem for each λ ∈Ω, there exists a unique function kλ ∈H such that f (λ) =
〈 f ,kλ〉 for all f ∈ H . The family {kλ : λ ∈Ω} is called the reproducing kernel of the space H .

For A a bounded linear operator on H , the Berezin symbol of A is the function Ã on Ω defined

by

Ã(λ) = 〈Ak̂λ(z), k̂λ(z)〉,
where k̂λ := kλ

∥kλ∥ is the normalized reproducing kernel of the space H [9, 10, 11].

Berezin set and Berezin number of operator A are defined respectively by

Ber(A) := {Ã(λ) : λ ∈Ω} and ber(A) := sup{|Ã(λ)| : λ ∈Ω}.

It is clear that the Berezin symbol Ã is the bounded function on Ω whose value lies in the nu-

merical range of the operator A and hence for any A ∈B(H ),

Ber(A) ⊆W (A) and ber(A) ≤ w(A).

The Berezin number of an operator A satisfies the following properties:

(i) ber(αA) = |α|ber(A) for all α ∈C,

(ii) ber(A+B) ≤ ber(A)+ber(B).

In the following we obtain some upper bounds for the Berezin number of the geometric mean

of A and B. Whatsmore, we establish some inequalities involving generalization of Berezin

number inequalities.

To prove our Berezin number inequalities, we need the following well-known results.

For a,b > 0 and 0 ≤ ν≤ 1, the Young inequality says that

aνb1−ν ≤ νa + (1−ν)b, (4.9)

which was mentioned in the first chapter.

Recently Kittaneh and Manasrah in [15] refined inequality (4.9) as following

aνb1−ν+ r0(
p

a −
p

b)2 ≤ νa + (1−ν)b, (4.10)

where r0 = min{ν,1−ν}.

Furthermore, in [1] they generalized inequality (4.10) in the following form.

(aνb1−ν)m + r m
0 (a

m
2 −b

m
2 )2 ≤ (νa + (1−ν)b)m , (4.11)

for m = 1,2,3, · · · .
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Extension of some inequalities to the numerical radius version

From the spectral theorem for positive operators and Jensen inequality we have:

Lemma 4.2.1 [13] Let A be a positive operator in B(H ) and let x be any unit vector in H .

Then

1. 〈Ax, x〉r ≤ 〈Ar x, x〉 for r ≥ 1,

2. 〈Ar x, x〉 ≤ 〈Ax, x〉r for r ≤ 1.

Dragomir in [5] obtained an useful extension for four operators of the Schwarz inequality as

following.

Theorem 4.2.2 Let A,B ,C ,D ∈B(H ). Then for x, y ∈H we have the inequality

|〈DC B Ax, y〉|2 ≤ 〈A∗|B |2 Ax, x〉〈D|C∗|2D∗y, y〉. (4.12)

From now on, our means of r0 and R0, are min{ν,1−ν} and max{ν,1−ν}, respectively.

4.2.1 Main results

Now we are in a position to present our first result.

Theorem 4.2.3 [21] Let A,B , X ∈ B(H ) such that A,B > 0 and ν ∈ [0,1]. Then for all r ≥
2m (m = 1,2,3, . . .), and α≥ 0

berr ((A♯αB)X ) ≤ ber
(
ν(X ∗AX )

r
2mν + (1−ν)(A♯2αB)

r
2m(1−ν)

)m − r m
0 inf

λ∈Ω
ζ(k̂λ), (4.13)

where ζ(k̂λ) =
(
〈(X ∗AX )

r
2m k̂λ, k̂λ〉

m
2ν −〈(A♯2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2
.

Proof Let k̂λ be the normalized reproducing kernel of H (Ω) , then

|〈(A♯αB)X k̂λ, k̂λ〉|r = |〈A
1
2 (A− 1

2 B A− 1
2 )

α
A

1
2 X k̂λ, k̂λ〉|r

By Theorem 4.2.2

≤ 〈X ∗AX k̂λ, k̂λ〉
r
2 〈A

1
2 (A− 1

2 B A− 1
2 )2αA

1
2 k̂λ, k̂λ〉

r
2

=
(
〈X ∗AX k̂λ, k̂λ〉

r
2m 〈(A♯2αB)k̂λ, k̂λ〉

r
2m

)m

≤
(
〈(X ∗AX )

r
2m k̂λ, k̂λ〉〈(A♯2αB)

r
2m k̂λ, k̂λ〉

)m
By Lemma 4.2.1(1).
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Now, by refinement of Young inequality (4.11) we have(
〈(X ∗AX )

r
2m k̂λ, k̂λ〉〈(A♯2αB)

r
2m k̂λ, k̂λ〉

)m

≤
(
ν〈(X ∗AX )

r
2m k̂λ, k̂λ〉

1
ν + (1−ν)〈(A♯2αB)

r
2m k̂λ, k̂λ〉

1
1−ν

)m

− r m
0

(
〈(X ∗AX )

r
2m k̂λ, k̂λ〉

m
2ν −〈(A♯2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2

≤
(
ν〈(X ∗AX )

r
2mν k̂λ, k̂λ〉+ (1−ν)〈(A♯2αB)

r
2m(1−ν) k̂λ, k̂λ〉

)m

− r m
0

(
〈(X ∗AX )

r
2m k̂λ, k̂λ〉

m
2ν −〈(A♯2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2
By Lemma 4.2.1 (2)

=
⟨(

ν(X ∗AX )
r

2mν + (1−ν)(A♯2αB)
r

2m(1−ν)

)
k̂λ, k̂λ

⟩m

− r m
0

(
〈(X ∗AX )

r
2m k̂λ, k̂λ〉

m
2ν −〈(A♯2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2

≤ ber
(
ν(X ∗AX )

r
2mν + (1−ν)(A♯2αB)

r
2m(1−ν)

)m

− r m
0

(
〈(X ∗AX )

r
2m k̂λ, k̂λ〉

m
2ν −〈(A♯2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2

Now, by taking supremum over λ ∈Ω, we get the desired inequality.

Choosing m = 1 in the proof of Theorem 4.2.3 we have:

Corollary 4.2.4 [21] Let A,B , X ∈B(H ) such that A,B > 0 and ν ∈ [0,1]. Then for all r ≥ 2R0

berr ((A♯αB)X ) ≤ ber
(
ν(X ∗AX )

r
2ν + (1−ν)(A♯2αB)

r
2(1−ν)

)
− r0 inf

λ∈Ω
ζ(k̂λ), (4.14)

where ζ(k̂λ) = (〈(X ∗AX )k̂λ, k̂λ〉
r

4ν −〈(A♯2αB)k̂λ, k̂λ〉
r

4(1−ν) )2.

By letting α = 1
2 and m = 1 in the proof of Theorem 4.2.3, since A♯B = B♯A we obtain the

following corollary which was proved earlier in [20] for the numerical radius in (p, q)-version.

Corollary 4.2.5 [21] Let A,B , X ∈B(H ) such that A,B > 0 and ν ∈ [0,1]. Then for all r ≥ 2R0

berr ((A♯B)X ) ≤ ber
(
νA

r
2ν + (1−ν)(X ∗B X )

r
2(1−ν)

)
− r0 inf

λ∈Ω
ζ(k̂λ), (4.15)

where ζ(k̂λ) = (〈Ak̂λ, k̂λ〉
r

4ν −〈X ∗B X k̂λ, k̂λ〉
r

4(1−ν) )2.

Remark 4.2.6 [21] Note that, if we set X = I , r = 2 and ν= 1
2 , in (4.15), then we have

ber2(A♯B) ≤ ber
(

A2 +B 2

2

)
− 1

2
inf
λ∈Ω

ζ(k̂λ), (4.16)

where ζ(k̂λ) = 〈(A − B)k̂λ, k̂λ〉2. Actually, (4.16) is an operator Berezin number version for

arithmetic-geometric mean.
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The next result reads as follows.

Theorem 4.2.7 [21] Let A,B be positive definite operators in B(H ) and ν ∈ [0,1]. Then for

α ∈ [0,1] and all r ≥ R0/α

berr (A♯αB) ≤ ber
(
νA

(1−α)r
ν + (1−ν)B

αr
1−ν

)
− r0 inf

λ∈Ω
ζ(k̂λ), (4.17)

where ζ(k̂λ) = (〈Ak̂λ, k̂λ〉
(1−α)r

2ν −〈Bk̂λ, k̂λ〉
αr

2(1−ν) )2.

Proof If k̂λ is the normalized reproducing kernel of H (Ω), then

〈(A♯αB)k̂λ, k̂λ〉r = 〈A
1
2 (A− 1

2 B A− 1
2 )

α
A

1
2 k̂λ, k̂λ〉r

= 〈(A− 1
2 B A− 1

2 )
α

A
1
2 k̂λ, A

1
2 k̂λ〉r

≤ ∥A
1
2 k̂λ∥(2−2α)r 〈(A− 1

2 B A− 1
2 )A

1
2 k̂λ, A

1
2 k̂λ〉αr By Lemma 4.2.1(2)

= 〈A
1
2 k̂λ, A

1
2 k̂λ〉(1−α)r 〈(A− 1

2 B A− 1
2 )A

1
2 k̂λ, A

1
2 k̂λ〉αr

= 〈Ak̂λ, k̂λ〉(1−α)r · 〈Bk̂λ, k̂λ〉αr

≤ ν〈Ak̂λ, k̂λ〉
(1−α)r

ν + (1−ν)〈Bk̂λ, k̂λ〉
αr

1−ν

− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν −〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2
By inequality (4.10)

≤ ν〈A
(1−α)r

ν k̂λ, k̂λ〉+ (1−ν)〈B αr
1−ν k̂λ, k̂λ〉

− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν −〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2
By Lemma 4.2.1(1)

=
⟨(

νA
(1−α)r

ν + (1−ν)B
αr

1−ν
)

k̂λ, k̂λ

⟩
− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν −〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2

≤ ber
(
νA

(1−α)r
ν + (1−ν)B

αr
1−ν

)
− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν −〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2
.

Now, by taking supremum over λ ∈Ω, we get the inequality.

Remark 4.2.8 If we put α= 1
2 , r = 2 and ν= 1

2 in (4.17), we get the inequality in (4.16).

Finally, we end this section by the following results.

Theorem 4.2.9 [21] Let A,B ∈B(H ) be positive definite operators and α ∈ [0,1], then

ber(A♯αB) ≤ ber1−α(A)berα(B).

In particular,

ber(A♯B) ≤
√

ber(A)ber(B).
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Proof let k̂λ be the normalized reproducing kernel of H (Ω), then

〈(A♯αB)k̂λ, k̂λ〉 = 〈A
1
2 (A− 1

2 B A− 1
2 )

α
A

1
2 k̂λ, k̂λ〉

= 〈(A− 1
2 B A− 1

2 )
α

A
1
2 k̂λ, A

1
2 k̂λ〉

≤ 〈(A− 1
2 B A− 1

2 )A
1
2 k̂λ, A

1
2 k̂λ〉α〈A

1
2 k̂λ, A

1
2 k̂λ〉(1−α)

= 〈Ak̂λ, k̂λ〉(1−α) · 〈Bk̂λ, k̂λ〉α.

Now, by taking supremum over λ ∈Ω, we get the first inequality. In particular, for α = 1
2 we

obtain the second one.

Corollary 4.2.10 [21] Let A,B ∈B(H ) be positive definite operators which commute with each

other and α ∈ [0,1], then

ber(A1−αBα) ≤ ber1−α(A)berα(B).

In particular, if α= 1
2 , then

ber(
p

AB) ≤
√

ber(A)ber(B).

4.2.2 Additional results

To prove our results in this section, the following basic lemmas are also required.

Lemma 4.2.11 [13] Let A be an operator in B(H ), and f , g be nonnegative functions on [0,∞)

which are continuous and satisfy the relation f (t )g (t ) = t for all t ∈ [0,∞). Then for all x, y in

H ,

|〈Ax, y〉| ≤ ∥ f (|A|)x∥∥g (|A∗|)y∥. (4.18)

Lemma 4.2.12 [18] Let ai be positive real numbers, (i = 1,2, . . . ,n). Then(
n∑

i=1
ai

)r

≤ nr−1
n∑

i=1
ar

i ∀r ≥ 1. (4.19)

The following result is proved in [18], for the numerical radius.

Theorem 4.2.13 [21] Let Ai ,Bi , Xi ∈ B(H ) (i = 1,2, . . . ,n), and let f and g be nonnegative

continuous functions on [0,∞) which satisfy the relation f (t )g (t ) = t for all t ∈ [0,∞). Then

berr

(
n∑

i=1
A∗

i Xi Bi

)
≤ nr−1

2
ber

(
n∑

i=1
([A∗

i g 2(|X ∗
i |)Ai ]r + [B∗

i f 2(|Xi |)Bi ]r )

)
(4.20)

for all r ≥ 1.
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The proof is similiar to that in [18], but we bring here with more details. If k̂λ is the normalized
reproducing kernel of H (Ω), then∣∣∣∣∣

⟨(
n∑

i=1
A∗

i Xi Bi

)
k̂λ, k̂λ

⟩∣∣∣∣∣
r

=
∣∣∣∣∣ n∑
i=1

〈A∗
i Xi Bi k̂λ, k̂λ〉

∣∣∣∣∣
r

≤
(

n∑
i=1

|〈A∗
i Xi Bi k̂λ, k̂λ〉|

)r

=
(

n∑
i=1

|〈Xi Bi k̂λ, Ai k̂λ〉|
)r

≤
(

n∑
i=1

〈 f 2(|Xi |)Bi k̂λ,Bi k̂λ〉
1
2 〈g 2(|X ∗

i |)Ai k̂λ, Ai k̂λ〉
1
2

)r

By (4.2.11)

≤ nr−1
n∑

i=1
〈B∗

i f 2(|Xi |)Bi k̂λ, k̂λ〉
r
2 〈A∗

i g 2(|X ∗
i |)Ai k̂λ, k̂λ〉

r
2 By (4.2.12)

≤ nr−1
n∑

i=1

⟨
(B∗

i f 2(|Xi |)Bi )r k̂λ, k̂λ

⟩ 1
2
⟨

(A∗
i g 2(|X ∗

i |)Ai )r k̂λ, k̂λ

⟩ 1
2 By Lemma 4.2.1

≤ nr−1

2

n∑
i=1

(⟨
[B∗

i f 2(|Xi |)Bi ]r k̂λ, k̂λ

⟩+⟨
[A∗

i g 2(|X ∗
i |)Ai ]r k̂λ, k̂λ

⟩)
By (4.9)

= nr−1

2

⟨
n∑

i=1

(
[B∗

i f 2(|Xi |)Bi ]r + [A∗
i g 2(|X ∗

i |)Ai ]r )
k̂λ, k̂λ

⟩

≤ nr−1

2
ber

(
n∑

i=1
([A∗

i g 2(|X ∗
i |)Ai ]r + [B∗

i f 2(|Xi |)Bi ]r )

)

Now, by taking supremum over λ ∈Ω, we get the desired inequality.

If we take f (t ) = tα and g (t ) = t 1−α, α ∈ (0,1), in inequality (4.20), we get the following in-

equality.

Corollary 4.2.14 [21] Let Ai ,Bi , Xi ∈B(H ) (i = 1,2, . . . ,n), 0 <α< 1. Then

berr

(
n∑

i=1
A∗

i Xi Bi

)
≤ nr−1

2
ber

(
n∑

i=1
([A∗

i |X ∗
i |2(1−α) Ai ]r + [B∗

i |Xi |2αBi ]r )

)
(4.21)

for r ≥ 1.

Inequality (4.21) includes some special cases as follows.

Corollary 4.2.15 [21] Let A,B , X ∈B(H ). Then

• berr (A) ≤ 1
2 ber(|A|r +|A∗|r ) ∀r ≥ 1,

• ber(A∗B) ≤ 1
2 ber(A∗A+B∗B),
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• ber(A∗X B) ≤ 1
2 ber(A∗|X ∗|A+B∗|X |B).

Now, we want to generalize inequality (4.20) in the following form.

Theorem 4.2.16 [21] Let Ai ,Bi , Xi ∈ B(H ) (i = 1,2, . . . ,n), and let f and g be nonnegative

functions on [0,∞) which are continuous and satisfy the relation f (t )g (t ) = t for all t ∈ [0,∞).

Then for ν ∈ [0,1] and r ≥ 2R0

berr

(
n∑

i=1
A∗

i Xi Bi

)
≤ nr−1ber

(
n∑

i=1
ν(B∗

i f 2(|Xi |)Bi )
r

2ν + (1−ν)(A∗
i g 2(|X ∗

i |)Ai )
r

2(1−ν)

)
. (4.22)

Proof let k̂λ be the normalized reproducing kernel of H (Ω), then∣∣∣∣∣
⟨(

n∑
i=1

A∗
i Xi Bi

)
k̂λ, k̂λ

⟩∣∣∣∣∣
r

=
∣∣∣∣∣ n∑
i=1

〈A∗
i Xi Bi k̂λ, k̂λ〉

∣∣∣∣∣
r

≤
(

n∑
i=1

|〈A∗
i Xi Bi k̂λ, k̂λ〉|

)r

=
(

n∑
i=1

|〈Xi Bi k̂λ, Ai k̂λ〉|
)r

≤
(

n∑
i=1

〈 f 2(|Xi |)Bi k̂λ,Bi k̂λ〉
1
2 〈g 2(|X ∗

i |)Ai k̂λ, Ai k̂λ〉
1
2

)r

By (4.2.11)

≤ nr−1
n∑

i=1

⟨
B∗

i f 2(|Xi |)Bi k̂λ, k̂λ

⟩ r
2
⟨

A∗
i g 2(|X ∗

i |)Ai k̂λ, k̂λ

⟩ r
2 By (4.2.12)

By inequality (4.9) and Lemma 4.2.1

≤ nr−1
n∑

i=1

(
ν

⟨
(B∗

i f 2(|Xi |)Bi )
r

2ν k̂λ, k̂λ

⟩
+ (1−ν)

⟨
(A∗

i g 2(|X ∗
i |)Ai )

r
2(1−ν) k̂λ, k̂λ

⟩)
= nr−1

⟨
n∑

i=1

(
ν(B∗

i f 2(|Xi |)Bi )
r

2ν + (1−ν)(A∗
i g 2(|X ∗

i |)Ai )
r

2(1−ν)

)
k̂λ, k̂λ

⟩

≤ nr−1ber

(
n∑

i=1

(
ν(B∗

i f 2(|Xi |)Bi )
r

2ν + (1−ν)(A∗
i g 2(|X ∗

i |)Ai )
r

2(1−ν)

))

Now, the result follows by taking the supremum over λ ∈Ω.

By letting Ai = Bi = I (i = 1,2, . . . ,n), and f (t ) = tα and g (t ) = t 1−α, α ∈ (0,1), in inequality

(4.22), we obtain the following inequalities.

Corollary 4.2.17 [21] Let Xi ∈ B(H ) (i = 1,2, . . . ,n) and 0 < α < 1. Then for ν ∈ [0,1] and

r ≥ R0α

berr

(
n∑

i=1
Xi

)
≤ nr−1ber

(
n∑

i=1
ν|Xi |

rα
ν + (1−ν)|X ∗

i |
r (1−α)

1−ν

)
. (4.23)
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In particular, if X1 = X2 = ·· · = Xn = X , then

berr (X ) ≤ ber
(
ν|X | αr

ν + (1−ν)|X ∗| (1−α)r
1−ν

)
. (4.24)

As special cases of (4.22), (4.23) and (4.24), we present the following inequalities.

• berr (A) ≤ ber
(
ν|A| r

2ν + (1−ν)|A∗| r
2(1−ν)

)
,

• berr (A∗B) ≤ ber
(
ν|B | r

ν + (1−ν)|A| r
1−ν

)
,

• berr (A∗X B) ≤ ber
(
ν(B∗|X |B)

r
2ν + (1−ν)(A∗|X ∗|A)

r
2(1−ν)

)
.
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5 Approximation of differentiable con-
vex functions

We begin this chapter with giving two equivalent definitions of a polytope and then state some

well-known fundamental theorems and properties of such a geometric object. In the third

section, we define the notion of generalized barycentric coordinates with respect to an arbitrary

set of points in Rd , or equivalently, with respect to a (convex) polytope. In the sequel, we deal

with the discussion of the approximation of differentiable convex functions in the concept of

real functions, and then we use the powerful tools of the Double Operator Integral (DOI) and

continuous functional calculus to extend the results into the operator differentiable convex

functions. Finally, we apply the obtained results for the Hermite-Hadamard inequality.

5.1 Convex polytopes

Convex polytopes are fundamental geometric objects. In the following, we give two different

versions of the definition of a polytope. The two versions are mathematically, but not algo-

rithmically, equivalent. The proof of equivalence between the two concepts is nontrivial, see

[25].

Definition 5.1.1 (polytope) A V -polytope is the convex hull of a finite set of points in some

Rd . An H- polyhedron is an intersection of finitely many closed halfspaces in some Rd . An

H-polytope is an H- polyhedron that is bounded in the sense that it does not contain a ray

{x + t y : t ≥ 0} for any y ̸= 0.

Now we present a basic version of the representation theorem for polytopes.

Theorem 5.1.2 (Main theorem for polytopes)[25] A subset P ⊂ Rd is the convex hull of a finite

point set (a V -polytope )

P = conv(V ) for someV ⊂Rd

if and only if it is a bounded intersection of halfspaces (an H-polytope)

P = P (A, z) = {x ∈Rd : Ax ≤ z} for some A ∈Rm×d , z ∈Rm .
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Approximation of differentiable convex functions

Figure 5.1 – The left figure shows a pentagon constructed as a V -polytope as the convex
hull of five points; the right figure shows the same pentagon as an H-polytope.

In the above theorem, Ax ≤ z is namely 〈a1, x〉 ≤ z1, . . . ,〈am , x〉 ≤ zm , where a1, . . . , am are the

rows of A, and z1, . . . , zm are the components of z.

A compact convex set C ⊂ Rd is a polytope provided extC (the set of all extreme points of C )

is a finite set. From the results of [9, Section 2.4 and Theorem 2.3.4] it follows that polytopes

may equivalently be defined as convex hulls of finite sets. For a polytope C , it is customary to

call the points of extC as vertices. We denote them by vertC . The dimension of a polytope is

the dimension of its affine hull. A d-polytope is a polytope of dimension d in some Re (e ≥
d). For examples, zero-dimensional polytopes are points, one-dimensional polytopes are line

segments, two-dimensional polytopes are called polygons. A polygon with n vertices is called

an n-gon. Convexity here requires that the interior angles (at the vertices) are all smaller than

π. The following illustrations show a convex 6-gon, or hexagon, also, the tetrahedron which

is a familiar geometric object (a 3-dimensional polytope) in R3. Similarly, its d-dimensional

generalization forms the first (and simplest) infinite family of higher-dimensional polytopes

we want to consider.

Figure 5.2 – 6-gon or hexagon.
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5.2. Barycentric coordinates

Figure 5.3 – The tetrahedron in R3.

Theorem 5.1.3 [25] For any compact subset M of Rd , the convex hull conv(M) is again com-

pact.

Since any finite set is compact, the following result is immediate.

Corollary 5.1.4 Any convex polytope P in Rd is a compact set.

In the following proposition we give some simple but basic facts about polytopes and their

vertices, see [25, Proposition 2.2].

Proposition 5.1.5 The following statements hold:

(i) Every polytope P is the convex hull of its vertices: P = conv(vert(P )),

(ii) If a polytope P can be written as the convex hull of a finite point set, then the set contains

all the vertices of the polytope: P = conv(V ) implies that vert(P ) ⊆V .

5.2 Barycentric coordinates

One of the important concepts related to the concept of polytopes, is the notion of barycentric

coordinates, which were first introduced by August Ferdinand Möbius (1790-1816) in his book

the barycentric calculus [12].These coordinates are useful for simply representing a point in a

triangle as a convex combination of its vertices, and frequently occur in computer graphics,

modelling geometry triangular meshes, terrain modelling and the finite element method.

For simplices, barycentric coordinates are very common tool in many computations. Basically,

they are defined as follows: let X d = {v 0, v 1, . . . , v d } be a set of d +1 affinely independent points

75



Approximation of differentiable convex functions

in Rd , the simplex T with the set of vertices X d is the convex hull of X d , (e.g., a triangle in 2D

or a tetrahedron in 3D). Let Ai (x) be the signed volume (or area) of the subsimplex of T created

with the vertex v i replaced by x . Then the barycentric coordinate functions {λ0,λ1, . . . ,λd } of

the simplex T with respect to its vertices are uniquely defined by

λi (x) = Ai (x)

vol(T )
(5.1)

where vol(T ) will mean the volume measure of T . It is easily seen that each point x of T has a

(unique) representation, that x = ∑d
i=0λi (x)v i and the barycentric coordinates {λ0,λ1, . . . ,λd }

are nonnegative affine functions on T . The uniqueness of this representation allows the weights

λi (x) to be interpreted as an alternative set of coordinates for point x , the so-called barycentric

coordinates. Note that a d-simplex is a special polytope given as the convex hull of d+1 vertices

in d dimensions, each pair of which is joined by an edge. For n > d, which is the case of interest

in this chapter, the linear constraints form an under-determined system.

In our study we need to deal with polytope in higher dimension too, thus we need to generalize

these coordinates to any polytope in Rd .

5.3 Generalized barycentric coordinates on polytopes

For a (convex) polytope P ⊆ Rd we will use generalized barycentric coordinates (they are often

called generalized barycentric coordinates to distinguish them from the original barycentric

coordinates, which were only defined with respect to simplices). While barycentric coordinates

are unique for simplices, there are many possible solutions for polygons with more sides. Usual

Barycentric coordinates are natural coordinates for meshes, and have many useful applica-

tions, ranging from Gouraud and Phong shading, rendering of quadrilaterals, image warping,

mesh deformation and finite element applications, see, e.g., [13, 23]. From now on, let Ω⊂ Rd

be a compact convex polytope of positive measure, and let X := {x0, x1, ..., xn} be a finite subset

that includes the vertices of Ω. Thus, the convex hull of X must be equal to Ω. We wish to

construct one coordinate function λi (x) per point x i for all x ∈Ω and we will consider it in the

next chapter. These functions are called barycentric coordinates with respect to x0, x1, ..., xn (or

Ω) if they satisfy three properties. First, the coordinate functions are nonnegative on Ω,

λi (x) ≥ 0, for all x ∈Ω. (5.2)

Secondly, the functions form a partition of unity, which means that the equation

n∑
i=0

λi (x) = 1, for all x ∈Ω. (5.3)
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Finally, the functions act as coordinates in that, given a value of x , weighting each point x i by

λi (x) returns back x i.e.,

x =
n∑

i=0
λi (x)x i for all x ∈Ω. (5.4)

The last property is also sometimes referred to as linear precision since the coordinate functions

can reproduce linear functions. For most potential applications, it is also preferable that these

coordinate functions are as smooth as possible. Constructing the barycentric coordinates of a

point x with respect to some given points in a polytope Ω is often not a trivial task. The first

result on the existence of barycentric coordinates for more general types of polytopes was due

to Kalman:

Theorem 5.3.1 [10] Let P be a polytope in Rd , {x0, x1, ..., xn} its vertices. Then there exist non-

negative real-valued continuous functions on P,

λ= {λ0,λ1, ...,λn}

such that

x =
n∑

i=0
λi (x)x i and

n∑
i=0

λi (x) = 1 for each x ∈ P. (5.5)

Note also that Equations (5.5) can be rewritten in the following general way:

n∑
i=0

λi (x) (x −x i ) = 0, (5.6)

which obviously implies

n∑
i=0

∫
P
λi (x) (x −x i ) d x = 0. (5.7)

5.4 Approximation of a class of convex functions

In this section, after expressing the definitions and necessary preconditions, we investigate

some of the results which derived by Guessab in [7].

Suppose that Xn = {xi }n
i=0 is a finite set of pairwise distinct points in Rd , and P = conv(Xn) be

a polytope of the points in Xn . In [7] the author approximated an unknown scaler-valued con-

tinuous convex function f : P → R from given function values f (x0), f (x1), . . . , f (xn) sampled

at Xn , by considering a weighted average of the function values at data points of the following

form

Bn[ f ](x) =
n∑

i=0
λi (x) f (xi ), (5.8)
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which the function λi : P → R, i = 0,1, . . . ,n are barycentric coordinates and Bn is referred as

barycentric approximation.

By decreasing the dimension to d = 1 we can simplify P := {x0, x1, . . . , xn} as a partition of an

interval I := [a,b] such that a = x0 < x1 < ·· · < xn = b, and approximate f : I → R in the

following form

Bn[ f ](x) =
n∑

i=0
λi (x) f (xi ), (x ∈ [a,b])

where

λi (x) =


x−xi−1
xi−xi−1

, if xi−1 ≤ x ≤ xi ;
xi+1−x
xi+1−xi

, if xi ≤ x ≤ xi+1;

0, for all other x.

Here, it was considered x−1 := a and xn+1 := b.

Definition 5.4.1 Let C is an open subset of Rd . A differentiable function f : C → R has a

Lipschitz-continuous gradient with costant l ≥ 0 if and only if

∥∇ f (x)−∇ f (y)∥ ≤ l∥x − y∥, ∀x, y ∈C .

Definition 5.4.2 The mapping F : Rd → Rd is said to be co-coercive with constant c if for all

x, y ∈Rd

〈F (x)−F (y), x − y〉 ≥ c∥F (x)−F (y)∥2.

The following theorem offers simple ways to characterize differentiable convex function with

Lipschitz-continuous gradient.

Theorem 5.4.3 [14] Let f be a differentiable convex function defined onRd . Then the following

properties are equivalent.

1. ∇ f is Lipschitz-continuous with constant l .

2. The function f satisfies for all x, y ∈Rd

f (x)+〈∇ f (x), y −x〉 ≤ f (y) ≤ f (x)+〈∇ f (x), y −x〉+ l

2
∥y −x∥2.

3. The function f satisfies for all x, y ∈Rd

1

2l
∥∇ f (x)−∇ f (y)∥2 + f (x)+〈∇ f (x), y −x〉 ≤ f (y).

78



5.4. Approximation of a class of convex functions

4. ∇ f is co-coercive mapping with constant 1
l . That is

〈∇ f (x)−∇ f (y), x − y〉 ≥ 1

l
∥∇ f (x)−∇ f (y)∥2, ∀x, y ∈Rd .

We know from Theorem 5.4.3 part (4), that if f ∈ C 1,1(P ) with l f > 0 and, in addition, f be

convex. Then ∇ f satisfies the following property

1

l f
∥∇ f (y)−∇ f (x)∥2 ≤ 〈∇ f (y)−∇ f (x), y −x〉, ∀x, y ∈ P, (5.9)

where C 1,1(P ) denote the subclass of all functions f which continuously differentiable on P

with Lipschitz-continuous gradient, i.e., there exists a constant l f , which can not be replaced

by smaller one, such that

∥∇ f (x)−∇ f (y)∥ ≤ l f ∥x − y∥, (∀x, y ∈ P ).

For a convex function f ∈C 1,1(P ), the exclusive symbol

En[ f ](x) := En[ f ,λ](x) =
n∑

i=0
λi (x) f (xi )− f (x) (5.10)

was reserved to show the error which is imposed by barycentric approximation of f .

By inequality (5.9) we have the following result (see [6, Proposition 2.2]).

Proposition 5.4.4 If f ∈C 1,1(P ) with Lipschitz constant l f > 0, then the functions

g± := l f

2
∥ ·∥2 ± f

are both convex and belong to C 1,1(P ). If in addition f is convex, then lg− ≤ l f .

Proof The proof is similiar to that in [7], but we bring here with more details.

We need to show that the function g± also belong to C 1,1(P ). Indeed, they are obviously differ-

entiable and it is easy to check that

∥∇g±(y)−∇g±(x)∥ = ∥l f (y −x)± (∇ f (y)−∇ f (x))∥,

which by triangle inequality it implies

∥∇g±(y)−∇g±(x)∥ ≤ l f ∥y −x∥+∥∇ f (y)−∇ f (x)∥ ≤ 2l f ∥y −x∥,

Hence, we have lg± ≤ 2l f . Moreover, since f ∈C 1,1(P ), then by the Cauchy-Schwartz inequality
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we obtain

±〈∇ f (y)−∇ f (x), y −x〉 ≤ |〈∇ f (y)−∇ f (x), y −x〉|
≤ ∥∇ f (y)−∇ f (x)∥∥y −x∥
≤ l f ∥y −x∥∥y −x∥,

then

±〈∇ f (y)−∇ f (x), y −x〉 ≤ l f ∥y −x∥2

and so

l f ∥y −x∥2 ±〈∇ f (y)−∇ f (x), y −x〉 ≥ 0.

From this, it is immediate

〈∇g±(y)−∇g±(x), y −x〉 = l f ∥y −x∥2 ±〈∇ f (y)−∇ f (x), y −x〉 ≥ 0,

which according to theorem 1.1.6 means that g± are convex.

What remains to be shown is that if f is in addition convex, we have lg− ≤ l f . Since function

g− has a Lipschitz-continuous gradient, then due to convexity of f and inequality (5.9) we get

∥∇g−(y)−∇g−(x)∥2 ≤ lg−〈∇g−(y)−∇g−(x), y −x〉
= lg−〈l f (y −x)− (∇ f (y)−∇ f (x)), y −x〉
= lg− · l f ∥y −x∥2 − lg−〈∇ f (y)−∇ f (x)), y −x〉
≤ lg− · l f ∥y −x∥2.

So,

∥∇g−(y)−∇g−(x)∥ ≤
√

lg− · l f ∥y −x∥.

Since lg− is the smallest possible Lipschitz constant, we have

lg−∥y −x∥ ≤
√

lg− · l f ∥y −x∥,

this allows us to conclude that lg− ≤ l f , and this completes the proof.

Utilizing Proposition (5.4.4), in [7] Guessab stated and proved an elegant characterization of

all upper approximation operators, which we bring here with more details.

Theorem 5.4.5 [7] Let T : C 1(P ) → C (P ) be a linear operator. The following statements are

equivalent:
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(i) For every convex function g ∈C 1,1(P ), we have

g (x) ≤ T [g ](x), (x ∈ P ). (5.11)

(ii) For every f ∈C 1,1(P ) with a Lipschitz constant l f , we have

| f (x)−T [ f ](x)| ≤ l f

2
(T [∥ ·∥2](x)−∥x∥2). (5.12)

Equality is attained for all functions of the form

f (x) = a(x)+ c∥x∥2, (5.13)

where c ∈R and a(·) is any affine function.

Proof Let f ∈ C 1,1(P ) with a Lipschitz constant l f and suppose that (i ) holds. Define the two

following functions

g± := l f

2
∥.∥2 ± f .

Due to Proposition (5.4.4), we know that both of these functions are convex and belonge to

C 1,1(P ). Therefore, since T is linear, statement (i ) implies

T

[
l f

2
∥ ·∥2 ± f

]
≥ l f

2
∥ ·∥2 ± f

⇒ T

[
l f

2
∥ ·∥2

]
±T [ f ] ≥ l f

2
∥ ·∥2 ± f

⇒ l f

2
T [∥ ·∥2]±T [ f ] ≥ l f

2
∥ ·∥2 ± f ,

which gives the error estimate in statement (i i ). Let x ∈ P, so there exists y ∈ Rd and a real

constant c such that a(x) = 〈x, y〉+ c. Hence, the case of equality is easily verified.

Conversely, let g ∈C 1,1(P ) be a convex function, and suppose that statement (i i ) holds. Let the

function f is given by

f := lg

2
∥ ·∥2 − g .

And set E := T − I , where I is the identity on C 1,1(P ). Utilizing Proposition 5.4.4 again. we have

f ∈C 1,1(P ) with l f ≤ lg . Now, the error estimate (i i ), applied to f , implies that

E

[
lg

2
∥ ·∥2 − g

]
≤ l f

2
E [∥ ·∥2] ≤ lg

2
E [∥ ·∥2],

therefore
lg

2
E [∥ ·∥2]−E [g ] ≤ lg

2
E [∥ ·∥2].
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This shows that E [g ] ≥ 0, and the proof be completed.

According to Jensen inequality and Theorem 5.4.5, the following result has been derived.

Corollary 5.4.6 [7] Let Bn is barycentric approximation (5.8). Then for all f ∈ C 1,1(P ) with

Lipschitz constant l f we have

| f (x)−Bn[ f ](x)| ≤ l f

2
(Bn[∥ ·∥2](x)−∥x∥2). (5.14)

Equality is attained for all functions of the form (5.13).

According to (5.14), error estimate of convex function f in C 1,1(P ) is as follows.

0 ≤ En[ f ](x) ≤ l f

2
En[∥ ·∥2](x), (x ∈ P ). (5.15)

For deriving a practical error estimate which led to computationally attractive barycentric ap-

proximation, in [7], it was derived a novel upper bound which is somewhat poorer than (5.15)

and is formulated in terms of the smallest enclosing ball SEB(P ) containing P

SEB(P ) := {x ∈ P ⊂Rd : ∥x −cseb∥ ≤ rseb}.

Actually by this formulation, the error will be as follows.

0 ≤ En[ f ](x) ≤ l f

2
((rseb)2 −∥x −cseb∥2), (5.16)

for x ∈ P and convex function f ∈C 1,1(P ).

5.5 On a generalization of an approximation operator defined by A.

Guessab

As mentioned at the beginning of this chapter, in this section we prove the numerical results of

the previous section in a completely different way for the operator version.

Suppose {ei }i∈I is the orthonormal basis for the complex Hilbert space H , we say A ∈ B(H ) is

a trace class operator if

∥A∥1 := ∑
i∈I

〈|A|ei ,ei 〉 <∞.

The definition of ∥A∥1 does not depend on the choice of the orthonormal basis {ei }i∈I .

We denote by S1(H ) the set of all trace class operators in B(H ).

Theorem 5.5.1 The following properties hold.
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• For every A ∈ S1(H )

∥A∥1 = ∥A∗∥1.

• S1(H ) is an ideal in B(H ), i.e.,

B(H )S1(H )B(H ) ⊆ S1(H ).

• (S1(H ),∥ ·∥1) is a Banach space.

• The following isometry property holds.

S1(H )∗ ∼=B(H ),

where S1(H )∗ is the dual space of S1(H ).

For function f on R the following equivalence is well-known:

(a) There exists a positive number C such that

∥ f (A)− f (B)∥ ≤C∥A−B∥,

for all bounded self-adjoint operators A and B;

(b) There exists a positive number C such that

∥ f (A)− f (B)∥1 ≤C∥A−B∥1,

for all bounded self-adjoint operators A and B with A−B belongs to trace class S1(H ).

Note that the minimal value of the constant C is the same in (a) and (b). For more information

see [13].

Functions satisfying (a) are called operator Lipschitz functions. We denote by OL(R) the space

of operator Lipschitz function on R. For f ∈OL(R), we define ∥ f ∥OL(R) as following:

∥ f ∥OL(R) = sup

{∥ f (A)− f (B)∥
∥A−B∥ : A and B are self-adjoint, A−B is bounded

}
= sup

{∥ f (A)− f (B)∥1

∥A−B∥1
: A and B are self-adjoint, A−B ∈ S1

}
.

We consider the notation OC 1,1(I ) for the subclass of all functions which are operator contin-

uously differentiable on an interval I with operator Lipschitz continuous gradiants, i.e., there

exist constant ∥ f ∥OL such that

∥∇ f (B)−∇ f (A)∥ ≤ ∥ f ∥OL∥B − A∥,
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for all A,B ∈Bsa(H ) with spectra in I .

Double Operator Integral (DOI) is an useful tool in many problems of spectral theory of self-

adjoint and unitary operators in the Hilbert space. To prove the main results of this section this

tool is required.

In formal expression, DOI are objects of the form

Φ=
∫
χ

∫
Υ
ϕ(λ,µ)dE(λ)T dF (µ),

where (χ,E(·)) and (Υ,F (·)) are two spaces with spectral measure. The values of the measure

E(·) are orthogonal projections in a separable Hilbert space F, and similiar for the measure F (·)
in the Hilbert space B. The scaler- valued function ϕ(λ,µ) (the symbol of the DOI) is defined

on χ×Υ. Finally, T is a linear bounded operator acting from B to F (notation T ∈ B(B,F)).

It is clear that under any reasonable definition, the result Φ of integration is also an operator

acting from B to F. If ∫
χ

∫
Υ
ϕ(λ,µ)dE(λ)T dF (µ) ∈ S1

for every T ∈ S1(H ), we say that ϕ is a Schur multiplier of S1 associated with the spectral

measures E and F . We denote by m(E ,F ) the space of all Schur multipliers of S1 with respect to

E and F . The norm ∥ϕ∥m(E ,F ) of ϕ in the space m(E ,F ) is, by definition, the norm of the linear

transformer

T →
∫
χ

∫
Υ
ϕ(λ,µ)dE(λ)T dF (µ)

on the class S1(H ).

If ϕ ∈m(E ,F ), one can define by duality Double Operator Integrals of the form∫
χ

∫
Υ
ϕ(λ,µ)dE(λ)T dF (µ),

for an arbitrary bounded linear operator T . For more information we can refer the reader to

the fruitful and valuble papers [2, 11].

We also remind here that according to [1, Section 3.3], we know that a continuous function f on

R is operator Lipschitz if and only if it is differentiable every where and the divided difference

D f (x, y) := f (x)− f (y)

x − y
, x, y ∈R,

be a Schur multiplier.

Consider x ∈ H , ∥x∥ = 1 and arbitrary self-adjoint operators A and Bwith spectra in I . For

t ∈ [0,1], define the function φx,A,B : [0,1] → R as φx,A,B (t ) = 〈 f ((1 − t )A + tB)x, x〉. In [4],

Dragomir proved that if f be an operator convex function, then φx,A,B is a convex function:
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Since f is operator convex, then for any t1, t2 ∈ [0,1] and λ ∈ [0,1], we have

φx,A,B (λt1 + (1−λ)t2)

= 〈 f ((1− (λt1 + (1−λ)t2))A+ (λt1 + (1−λ)t2)B)x, x〉
= 〈 f (λ[(1− t1)A+ t1B ]+ (1−λ)[(1− t2)A+ t2B ])x, x〉
≤λ〈 f ([(1− t1)A+ t1B ])x, x〉+ (1−λ)〈 f ([(1− t2)A+ t2B ])x, x〉
=λφx,A,B (t1)+ (1−λ)φx,A,B (t2),

which yields the convexity of function φx,A,B on [0,1].

Now, suppose that f ∈OC 1,1(I ), we show that φ ∈C 1,1([0,1]).

By considering DOI with the symbol

ψ f (x, y) = f (x)− f (y)

x − y

as following:

Tψ f (A−B) =
∫
σ(A)

∫
σ(B)

ψ f (x, y)dE A(x)(A−B)dE B (y),

Daletskii-Krien formula [3], yields Tψ f (A−B) = f (A)− f (B). So, the property of being operator

gradiant Lipschitz is equivalent to the boundedness of the corresponding DOI on B(H ). By du-

ality, this boundedness implies the boundedness of the same DOI on the predual, the trace class

S1(H ). As we are concerning the behavior of the DOI on rank one operators, the boundedness

of DOI on the trace class gets the result.

Now, by utilizing Theorem 5.4.5 for φx,A,B instead of f and g , we can extend it to the operator

version as following:

Theorem 5.5.2 [15] Let T : C 1(I ) → C (I ) be a linear operator. The following statements are

equivalent:

(i) For every operator convex function g ∈OC 1,1(I ),we have

g (A) ≤ T [g ](A), (for A ∈Bsa(H ) with spectra in I ).

(ii) For every f ∈OC 1,1(I ),with a Lipschitz constant ∥ f ∥OL ,we have

∥ f (A)−T [ f ](A)∥ ≤ ∥ f ∥OL

2
(T [(·)2](x)−x2), (x ∈ [0,1])

Equality occurs for all functions in the form of

f (A) = (a(x)+ cx2)I , (5.17)

where c ∈R and a(·) is any affine function.
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Proof Suppose that statement (i ) holds, so for I = [0,1] and all operator convex functions

g ∈OC 1,1([0,1]) we have

g (A) ≤ T [g ](A), (for A ∈Bsa(H ) with spectra in I ).

As a result

g (xI ) ≤ T [g ](xI ), (x ∈σ(A)),

for all operator convex functions g ∈ OC 1,1([0,1]). So, it is also valid for all convex functions

g ∈C 1,1([0,1]).

Now by Theorem 5.4.5, we have

| f (x)−T [ f ](x)| ≤ l f

2
(T [(·)2](x)−x2),

for all f ∈ C 1,1([0,1]). Since for all A,B ∈ Bsa(H ) with spectra in I , and f ∈ OC 1,1(I ) the

function φ :=φx,A,B ∈C 1,1([0,1]), we have

|φ(t )−T [φ](t )| ≤ ∥ f ∥OL

2
(T [(·)2](t )− t 2), (t ∈ [0,1]).

By definition of φ, we get

|〈 f ((1− t )A+ tB)x, x〉−T [〈 f ((1− t )A+ tB)x, x〉]|

≤ ∥ f ∥OL

2
(T [(·)]2(t )− t 2), (t ∈ [0,1]),

by the continuity of T , it follows

|〈( f ((1− t )A+ tB)−T [ f ((1− t )A+ tB)])x, x〉|

≤ ∥ f ∥OL

2
(T [(·)]2(t )− t 2), (t ∈ [0,1]).

Now by taking supremum over x ∈ H with ∥x∥ = 1, and by considering A := (1− t )A + tB we

get

∥ f (A)−T [ f ](A)∥ ≤ ∥ f ∥OL

2
(T [(·)2](t )− t 2), (t ∈ [0,1]),

which yields the error estimate in statement (i i ). For the equality case, from (??) we know that

for

φ(t ) = a(t )+ ct 2, t ∈ [0,1],

equality in Theorem (5.4.5) part (i i ) will also be valid. Hence, by definition of φ we have

〈 f ((1− t )A+ tB)x, x〉 = a(t )+ ct 2

= 〈a(t )+ ct 2x, x〉, (∥x∥ = 1).
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Now, by letting A := (1− t )A+ tB we get (5.25).

Conversely, suppose that (i i ) holds. So it is also be valid for I = [0,1] and all f ∈C 1,1([0,1]), as

follows:

| f (x)−T [ f ](x)| ≤ l f

2
(T [(·)2](x)−x2), x ∈ [0,1].

By Theorem (5.4.5), we have

g (x) ≤ T [g ](x),

for all convex function g ∈C 1,1([0,1]). By replacing φ :=φx,A,B instead of g , we obtain

φ(t ) ≤ T [φ](t ), (t ∈ [0,1]),

which results

〈 f ((1− t )A+ tB)x, x〉 ≤ T [〈 f ((1− t )A+ tB)x, x〉],
where A,B ∈Bsa(H ) with spectra in I . By letting A := (1− t )A+ tB

〈 f (A)x, x〉 ≤ T [〈 f (A)x, x〉],

since T is linear, we have

〈 f (A)x, x〉 ≤ 〈T [ f (A)]x, x〉,
which yields that for all operator convex functions in OC 1,1(I )

f (A) ≤ T [ f ](A),

and this completes the proof.

Corollary 5.5.3 Let Bn be the barycentric approximation. Then for every function f ∈OC 1,1(I )

with a Lipschitz constant ∥ f ∥OL , we have

∥ f (A)−Bn[ f ](A)∥ ≤ ∥ f ∥OL

2
(Bn[(·)2](x)−x2),

for A ∈Bsa(H ) with spectra in I and x ∈ [0,1].

Proof Since f ∈ OC 1,1(I ), we can consider inequality (5.14) for function φx,A,B on [0,1] as

following:

|φx,A,B (t )−Bn[φx,A,B ](t )| ≤ ∥ f ∥OL

2
(Bn[(·)2](t )− t 2), t ∈ [0,1].

By definition of φx,A,B we have

|〈 f ((1− t )A+ tB)x, x〉−
n∑

i=0
λi (t )〈 f ((1− ti )A+ ti B)x, x〉|

≤ ∥ f ∥OL

2
(

n∑
i=0

λi (t )t 2
i − t 2), (5.18)
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for t , ti ∈ [0,1], and λi as barycentric coordinates.

Inequality (5.18) yields

〈( f ((1− t )A+ tB)−
n∑

i=0
λi (t ) f ((1− ti )A+ ti B))x, x〉|

≤ ∥ f ∥OL

2
(

n∑
i=0

λi (t )t 2
i − t 2),

by letting A := (1− t )A + tB and Ai := (1− ti )A + ti B, and taking supremum over x ∈ H with

∥x∥ = 1, we get

∥ f (A)−
n∑

i=0
λi (t ) f (Ai )∥ ≤ ∥ f ∥OL

2
(

n∑
i=0

λi (t )t 2
i − t 2),

which is equivalent to

∥ f (A)−Bn[ f ](A)∥ ≤ ∥ f ∥OL

2
(Bn[(·)2](t )− t 2).

Now, by considering the inequality (5.15) for function φx,A,B with the operator convex function

f in OC 1,1(I ) we deduce the following result.

Theorem 5.5.4 [15] For every operator convex function f ∈ OC 1,1(I ) with Lipschitz constant

∥ f ∥OL , we have

0 ≤ En[ f ](A) ≤ (
∥ f ∥OL

2
En[(·)2](x))I , (5.19)

for A ∈Bsa(H ) with σ(A) ⊂I and x ∈ [0,1].

Proof As the proof of previous result, by using inequality (5.15) for φx,A,B we obtain

0 ≤ En[φx,A,B ](t ) ≤ ∥ f ∥OL

2
En[(·)2](t ), t ∈ [0,1].

By definition of En[·], we have

0 ≤
n∑

i=0
λi (t )φx,A,B (ti )−φx,A,B (t ) ≤ ∥ f ∥OL

2

[
n∑

i=0
λi (t )t 2

i − t 2

]
, t ∈ [0,1],

which results

0 ≤
n∑

i=0
λi (t )〈 f ((1− ti )A+ ti B)x, x〉−〈 f ((1− t )A+ tB)x, x〉

≤ ∥ f ∥OL

2
[

n∑
i=0

λi (t )t 2
i − t 2], (5.20)
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by letting A := (1− t )A+ tB and Ai := (1− ti )A+ ti B, we obtain

0 ≤ En[ f ](A) ≤ (
∥ f ∥OL

2
En[(·)2](t ))I , t ∈ [0,1],

which yields the result.

Utilizing the continuous functional calculus we can state the operator version of (5.16) as fol-

lows.

Theorem 5.5.5 For every operator convex function f ∈ OC 1,1(I ) with a constant ∥ f ∥OL , we

have

0 ≤ En[ f ](A) ≤ ∥ f ∥OL

2
(

1

4
−|x − 1

2
|2)I , (5.21)

for A ∈Bsa(H ) with σ(A) ⊂I and x ∈ [0,1].

Proof let f be an operator convex function belongs to OC 1,1(I ), by replacing φx,A,B in (5.16),

we have

0 ≤ En[φ](t ) ≤ ∥ f ∥OL

2
(

1

4
−|t − 1

2
|2)I , t ∈ [0,1],

equivalently

0 ≤
n∑

i=0
λi (t )φ(ti )−φ(t ) ≤ ∥ f ∥OL

2
(

1

4
−|t − 1

2
|2)I , t ∈ [0,1]. (5.22)

Now by definition of φ and using the methods which used in the proof of the previous theorem,

we get the result.

It is notable that the bound which is represented in (5.21) for error of barycentric approxima-

tion does not depend on the choice of barycentric coordinates.

Example 5.5.6 Let f ∈ OC 1,1(I ) be an operator convex function, A and B be two self-adjoint

operators with spectra in I , and consider t0 = 0, t1 = 1
4 , t2 = 3

4 and t3 = 1 as a partition of

interval [0,1]. For t = 1
2 , we obtain barycentric coordinates as following:

λ0(
1

2
) = 0, λ1(

1

2
) = 1

2
, λ2(

1

2
) = 1

2
, λ3(

1

2
) = 0.

By replacing the quantities of t , ti and λi (t ) (i = 0,1,2,3) in (5.20), and by easy computations

we obtain

0 ≤ 1

2

[
f (

3A+B

4
)+ f (

A+3B

4
)

]
− f (

A+B

2
) ≤ ∥ f ∥OL

32
I . (5.23)
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In the other hand, according to (5.22), by using the same barycentric coordinates as above, we

get

0 ≤ 1

2

[
f (

3A+B

4
)+ f (

A+3B

4
)

]
− f (

A+B

2
)

≤ ∥ f ∥OL

2
(

1

4
−|1

2
− 1

2
|2)I = ∥ f ∥OL

8
I , (5.24)

as we mentioned before, this estimation is not in terms of barycentric coordinates, but it is

poorer than upper bound in (5.23), ( 1
8 > 1

32 ).

In [8, Section 7.1] has been proved a theorem which is a characterization of any integration

formula in Rd , which admits an upper or a lower Hermite-Hadamard inequality. For d = 1 we

can state it as follows.

Theorem 5.5.7 Let f : [a,b] →R is a convex function, αi (i = 0,1, . . . ,n) are positive real num-

bers and xi as a partition of [a,b]. Define the integration formula via∫ b

a
f (x)d x =

n∑
i=0

αi f (xi )+E( f ),

and let σ ∈ {−1,1}.

(i) For every operator convex function g ∈OC 1,1(I ),we have

σE [g ] ≥ 0,

(ii) For every f ∈OC 1,1(I ),with a Lipschitz constant l f ,we have

|E [ f ]| ≤σE [(·)2]
l f

2
.

Equality occurs for all functions in the form of

f (x) = a(x)+ cx2, (5.25)

where c ∈R and a(·) is any affine function.

According to above theorem and Theorem 5.5.2 we can state:

Theorem 5.5.8 Let A and B be two self-adjoint operators with spectra in I . Define the inte-

gration formula via∫ 1

0
f ((1− t )A+ tB)d t =

n∑
i=0

αi f ((1− ti )A+ ti B)+E [ f ],
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5.5. On a generalization of an approximation operator defined by A. Guessab

where αi , i = 0,1, . . . ,n are positive real numbers and for i = 0,1, . . . ,n, ti ∈ [0,1] is a partition

of interval [0,1], and let σ ∈ {−1,1}. Then, the following two statements are equivalent:

(i) For every operator convex function g ∈OC 1,1(I ),we have

σE [g ] ≥ 0.

(ii) For every f ∈OC 1,1(I ),we have

∥E [ f ]∥ ≤σE [(·)2]
∥ f ∥OL

2
.

Equality valids for all functions in the form of

f ((1− t )A+ tB) = (a(t )+ ct 2)I ,

where c ∈R and a(·) is any affine function.

According to Theorem 2.3, we have the refinement of Hermite-Hadamard inequality for opera-

tor convex function f : I →R as following:

f (
A+B

2
) ≤ 1

2

[
f (

3A+B

4
)+ f (

A+3B

4
)

]
≤

∫ 1

0
f ((1− t )A+ tB)d t

≤ f (A)+ f (B)

2
, (5.26)

where A,B ∈Bsa(H ) with spectra in I .

Now consider f ∈OC 1,1(I ) be an operator convex function, so we have∫ 1

0
f ((1− t )A+ tB)d t = 1

2

[
f (

3A+B

4
)+ f (

A+3B

4
)

]
+E [ f ],

by inequalities (5.26) we know that E [ f ] ≥ 0, so by Theorem (5.5.8) statement (i i ) and Example

(5.5.6), we get

0 ≤
∫ 1

0
f ((1− t )A+ tB)d t − 1

2

[
f (

3A+B

4
)+ f (

A+3B

4
)

]
≤ ∥ f ∥OL

32
I . (5.27)

Namely, by inequalities (5.27) we obtained a bound according to barycentric coordinates, for

the difference between the left and right hand side of the second inequality in (5.26).

As an example, we can refer the function f (t ) = t r on (0,∞) which is operator convex function

if either 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0. This function belongs to OC 1,1(R), so, for positive operators A
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and B with spectra in I = [0,1], according to inequalities (5.27) we have

o ≤
∫ 1

0
((1− t )A+ tB)r d t − 1

2

[
(

3A+B

4
)r + (

A+3B

4
)r

]
≤ r (r −1)

32
I .
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6 Generalized barycentric coordinates
and sharp strongly negative definite
multidimensional numerical integra-
tion

This chapter is based on our paper [9], which constitutes the progression of recent works [6,

7, 8, 11] where focused on the study of some classes of multi-dimensional numerical integra-

tion in the context of the classical notion of convexity. Here, our objective is to extend the re-

sults given there for strongly convex functions. Indeed, we study and construct a family of

multi-dimensional numerical integration formulas (cubature formulas), which approximate

all strongly convex functions from above. We call them strongly negative definite cubature

formulas (or for brevity snd-formulas). We attempt to quantify their sharp approximation

errors when using continuously differentiable functions with Lipschitz continuous gradients.

We show that the error estimates based on such cubature formulas are always controlled by the

Lipschitz constants of the gradients and the error associated with using the quadratic function.

Moreover, assuming the integrand is itself strongly convex, we establish sharp upper as well

as lower refined bounds for their error estimates. Based on the concepts of barycentric coordi-

nates with respect to an arbitrary polytope P, we provide a necessary and sufficient condition

for the existence of a class of snd-formulas on P: It consists of checking that such coordinates

exist on P. Then, the Delaunay triangulation is used as a convenient partition of the integra-

tion domain for constructing the best piecewise snd-formulas in L1 metric. Finally, we present

numerical examples illustrating the proposed method.

6.1 Introduction, motivation and terminology

To describe our problem of integration from a numerical standpoint more precisely, let Ω⊂Rd

be a nonempty compact convex set and let f : Ω→ R be a given function. We sometimes know

beforehand that the function f satisfies various known structural and regularity properties.

For example, it may be known that f has some additional kind of convexity, therefore we would

wish to use this information in order to get most appropriate methods for numerical integra-
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tion of f . To get a better approximation of the integral of our function, we try to approximate it

using cubature formulas, which approximate the integral of all strongly convex functions from

above. The strongly convex functions are widely applied in economic theory (see [24]), and are

also central to optimization theory (see [18]). Indeed, in the framework of function minimiza-

tion, this convexity notion has important and well-known implications. As we will see, the key

advantage of using cubature formulas of such kind is that their associated approximation er-

rors can always be controlled by the error associated with using the quadratic function. Hence,

if we want a more accurate approximation of the integral of our function, we need to find a

better approximation of the integral of the quadratic function.

To appreciate the problem more clearly, let us start by describing briefly a specific one-dimensional

example, since its simplicity helps us better understand all the necessary steps through very

simple explicit computations. Assume that µ is a fixed nonnegative real number. In one-

dimensional numerical integration, say on an interval [a,b], a simple way of approximating

the integral of a given real µ-strongly convex function f : [a,b] → R is first to choose a parti-

tion P := {x0, x1, . . . , xn} of the interval [a,b], such that a = x0 < x1 < . . . < xn = b, and then to

apply the classical local trapezoidal quadrature rule Ti ( f ) = f (xi−1)+ f (xi )
2 on each subinterval

Ii := [xi−1, xi ], i = 1,2, . . . ,n, and summing up the results. Among its many important proper-

ties, this rule satisfies the well-known Hermite-Hadamard inequality, which ensures an upper

estimate for the exact value of the integral of any convex function:

1

xi −xi−1

∫ xi

xi−1

f (t )d t ≤ Ti ( f ), (i = 1,2, . . . ,n), (6.1)

where the sign of equality being achieved if f is an affine function. Recall that the local trape-

zoidal rule Ti ( f ) could be obtained by integrating the barycentric approximation operator:

Bi [ f ](x) :=λi−1(x) f (xi−1)+λi (x) f (xi ), (x ∈ Ii ),

where λi−1(x) and λi (x) are the barycentric coordinates of x with respect to Ii , that are defined

as:

λi−1(x) := x −xi

xi−1 −xi
, λi (x) := x −xi−1

xi −xi−1
, (x ∈ Ii ).

Observe that Bi is a first order barycentric polynomial interpolating f at two points, xi−1 and

xi and that the weights λi−1,λi can expressed as

λi−1(x) = 1

length(Ii )

∣∣∣∣∣1 x

1 xi

∣∣∣∣∣, λi (x) = 1

length(Ii )

∣∣∣∣∣1 xi−1

1 x

∣∣∣∣∣.
Rearranging terms, it is clear that these weights are nonnegative on Ii and moreover they satisfy

λi−1(x)+λi (x) = 1, x =λi−1(x)xi−1 +λi (x)xi , (x ∈ Ii ). (6.2)
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The trapezoidal rule is the simplest, most well-known and widely used quadrature rule. The

reason for this popularity lies in the large number of useful theoretical and computational

properties of this rule. It actually served as basic ingredients for constructing more accurate and

adaptive formulas. For this reason, this rule together with its fundamental inequality (6.1) has

been an effective starting point for several subsequent investigations, see [4, 10]. Furthermore,

in the local error analysis of the rule Ti ( f ) :

ETi ( f ) := Ti ( f )− 1

xi −xi−1

∫ xi

xi−1

f (t )d t ,

estimate of (6.1), is a very useful tool. Indeed, let (.)2 denote the square function t → t 2, and

assume that the first derivative of f is a Lipschitz function with a Lipschitz constant L( f ′) in

[a,b] ( or f ∈C 1,1[a,b]), then Hermite-Hadamard inequality implies the following upper local

estimation:

∣∣ETi ( f )
∣∣ ≤ ETi

(
(.)2

)
2

L( f ′) (6.3)

=
Ti

((
.− xi−1+xi

2

)2
)

3
L( f ′) (6.4)

= (xi −xi−1)2

12
L( f ′), (6.5)

where equality is attained for all quadratic functions. In addition, if f is µ-strongly convex

then the following lower local estimation also holds for all i = 1,2, . . . ,n,

ETi ( f ) ≥ ETi
(
(.)2

)
2

µ (6.6)

=
Ti

((
.− xi−1+xi

2

)2
)

3
µ (6.7)

= (xi −xi−1)2

12
µ. (6.8)

We did not find any reference to such result. However, the above mentioned estimates can be

derived as an immediate consequence of our multivariate general results, see Remark 6.4.5.

Estimates (6.3) and (6.6) say that for the trapezoidal rule, we can always control its approx-

imation error by the Lipschitz constants of the first derivative, the parameter (of the strong

convexity) and the error associated with using the quadratic function. It should also be noted
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that equalities in (6.3) and (6.6) are satisfied for all µ-strongly convex functions of the form

f (x) = a(x)+ µ

2
x2, (6.9)

where a(·) is any affine function. Therefore, in this sense, the error estimates (6.3) and (6.6) are

sharp for the class of µ-strongly convex functions having Lipschitz continuous first derivatives.

This provides the starting point of this chapter study. Indeed, the contributions of this chap-

ter are two-fold: first, we would like to consider the general multivariate variable case. More

precisely, we deal with the problem of approximation of the integral of multivariate functions

by snd-formulas, that is, those which approximate from above all strongly convex functions

with Lipschitz-continuous gradients. Geometrically, if a function f belongs to such class, then

its gradient ∇ f cannot change too quickly and it cannot change too slowly either. Functions

satisfying these conditions are widely used in the optimization literature, we refer to Nesterov’s

book [18].

Secondly, under the assumption of strong convexity and the standard Lipschitz continuity of

the gradient, we prove some results that pertain to sharp estimates of the error arising from

such approximations.

Hence, the questions that arise, as a natural consequence of the estimates (6.3) and (6.6), are

the following:

• Can we extend the one-dimensional approach to construct a natural multivariate ver-

sion of the trapezoidal quadrature rule in any polytope?

• Can the approximation errors for such cubature formulas satisfy similar lower and up-

per bounds in the multi-dimensional case?

We will answer these questions positively by defining and studying a class of snd-formulas on

an arbitrary polytope to approximate the integral of a function by piecewise cubature formulas.

Our extensions are derived in a natural way by using the generalized barycentric coordinates,

which turn out to be appropriate to the more general multivariate setting. In particular, we will

show how the Delaunay triangulation can be used as a convenient partition of the integration

domain for constructing the best piecewise snd-formulas in L1 metric.

Now, we present a very useful tool in our study which is triangulations of a point set and the

Delaunay triangulation.

Definition 6.1.1 (triangulation of a point set) Let S be a finite set of points in the plane. A

triangulation of S is a simplicial complex T such that S is the set of vertices in T, and the union

of all the simplices in T is the convex hull of S, that is |T| = conv(S).

A simplicial complex is a collection of simplices that intersect only in mutual faces (The convex

hull of any nonempty subset of the n +1 points that define an n-simplex is called a face of the

simplex). i.e., any face of a simplex from simplicial complex T is also in T and the intersection

of any two simplices σ1,σ2 ∈T is either ; or a face of both σ1 and σ2.
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Definition 6.1.2 (triangulation of a point set in Rd ) The definition (6.1.1) defines a triangula-

tion of a set of points to be simplicical complex whose vertices are the points and whose union

is the convex hull of the points. With no change, the definition holds in any finite dimension

d, i.e., a simplex in Rd is a d-dimensional simplex (d-simplex), which is defined by its (d +1)

vertices, and a triangulation of a set of points in Rd is a simplicial decomposition of the convex

hull of the point set where the vertices of the triangles are contained in the point set.

Every finite point set in Rd has a triangulation, see [21, Section 2.1]. One of the famous and op-

timal triangulation is the Delaunay triangulation which is a geometric structure that engineers

have used for meshes since mesh generation was in its infancy. The Delaunay triangulation of

a point set S, introduced by Boris Nikolavich Delaunay in 1934, is characterized by the empty

circumdisk property: no point in S lies in the interior of any triangles circumscribing disk; see

[21, Definition 1.17].

Delaunay triangulations can be generalized easily to higher dimensions (Rd ).

Definition 6.1.3 (The Delaunay triangulation in Rd ) Let S be a finite point set in Rd , and let

k be the dimension of its affine hull. A Delaunay triangulation of S, Del(S) is a triangulation

of S in which every k-simplex is Delaunay and therefore, every simplex is Delaunay. i.e., the

Delaunay triangulation of a set of points in Rd is defined to be the triangulation such that the

circumsphere of every triangle in the triangulation contains no point from the set in its interior.

Figure 6.1 – Every triangle in a Delaunay triangulation has an empty open circumdisk.

Such a triangulation exists for every point set in Rd , see[21, Section 2.2].

In the forthcoming sections of this chapter, first we establish two general characterization re-

sults (see Lemma 6.2.1 and Lemma 6.2.2). These general results provide two equivalent condi-

tions for a linear functional to be negative in the set of convex functions. We then use them to es-

tablish a first characterization of the approximation error of our class of cubature formulas. In
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the sequel, we provide a necessary and sufficient condition for the existence of the snd-formulas.

It consists of checking the existence of a set of these coordinates. Section 6.4 uses the generalized

barycentric coordinates to construct a multivariate version of the classical trapezoidal rule in

arbitrary higher-dimensional polytopes. As a result we get explicit lower and upper bounds

for the approximation error when using continuously differentiable functions with Lipschitz

continuous gradients. Indeed, analogously to the one-dimensional estimates (6.3) and (6.6),

we offer sharp error estimates which only depend on the parameter of the strong convexity, the

Lipschitz constants of the gradients and the error associated with using the quadratic function.

In the following, by using the Delaunay triangulation as a partition of a polytope, we present

an explicit construction of our sharp cubature schemes. Finally, we provide a numerical exam-

ple to illustrate the efficiency of this approach.

6.2 General setting

Our main results in this section first concern two characterization results of any negative lin-

ear functional in the set of convex functions, which hold in a general framework and will be

repeatedly applied in the sequel.

Let Ω be a subset of Rd . As usual, we mean by Ω◦ the interior of Ω. We say that Ω is measurable

if it has a finite Lebesgue measure, which we denote by |Ω|. For measurable Ω, the class L1(Ω)

comprises all Lebesgue integrable functions f : Ω→R. A property holds almost everywhere (ab-

breviated by a.e.) on Ω if it holds on Ω except for a set of measure zero. Furthermore, we denote

by C (Ω) the class of all real-valued continuous functions on Ω and by C k (Ω), where k ∈N, the

subclass of all functions which are k times continuously differentiable. It is convenient to agree

that C 0(Ω) =C (Ω).

Now we state a first characterization result of linear functionals, which are negative in the set

of convex functions. It is shown that in order to prove such property for the given functional E,

it suffices to check that E is negative in a subset of strongly convex functions with a given fixed

strong convexity parameter.

Lemma 6.2.1 Let Ω ⊂ Rd be a compact convex set. Let µ be a positive fixed real number and

let E be a linear functional defined on C (Ω). Then, the following conditions are equivalent:

(i) For every convex function f ∈C (Ω), we have

E( f ) ≤ 0.

(ii) For every µ-strongly convex function f ∈C (Ω), we have

E( f ) ≤ 0.

Proof (i) implies (ii) is the trivial part of the proof. Indeed, assume that (i) holds. Let f be

µ-strongly convex function. Set g := f − µ
2 ∥.∥2. By definition, g is therefore convex. Hence,

100



6.2. General setting

applying property (i), it follows, by linearity of E

E( f ) ≤ µ

2
E(∥.∥2).

Since ∥.∥2 is convex, then again by (i) we have E(∥.∥2) ≤ 0. This shows that (ii) holds.

Now, assume that (ii) holds. Let ε be a positive real number and let f be a convex function.

Define the function g by

g := f + ε

2
∥.∥2.

Noting that
µ

ε
f = µ

ε
g − µ

2
∥.∥2

and since µ
ε f is convex, then by the definition of strong convexity µ

ε g is µ-strongly convex.

Hence, by (ii) we can conclude that

E(
µ

ε
g ) ≤ 0.

Thus it follows that

E(g ) ≤ 0,

or equivalently, by virtue of the linearity of E,

E( f ) ≤−ε

2
E(∥.∥2).

In view of the fact that this inequality holds for all ε> 0, then by letting ε ↓ 0, it follows that

E( f ) ≤ 0.

Hence, the desired statement (i) is valid and thus means that these two statements are equiva-

lent.

If in addition, the functions belong to C 1,1(Ω), then our second characterization result is given

in the following:

Lemma 6.2.2 Let Ω ⊂ Rd be a compact convex set. Let E : C k (Ω) → R, where k ∈ {0,1}, be

a linear functional and let µ a positive real number. Then, the two following statements are

equivalent:

(i) For every µ-strongly convex function g ∈C 1,1(Ω), we have

E
[
g
]≤ 0. (6.10)

(ii) For every f ∈C 1,1(Ω) with L(∇ f )-Lipschitz gradient, we have

|E [
f
] | ≤ −E

[∥.∥2] .
L(∇ f )

2
. (6.11)
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Equality is attained for all functions of the form

f (x) := a(x)+ c∥.∥2, (6.12)

where c ∈R and a(·) is any affine function.

Proof First we prove (i) implies (ii). Let f be any function from C 1,1(Ω) with L(∇ f )-Lipschitz

gradient. Define the following two functions

g± := ∥.∥2 L(∇ f )

2
± f .

Then, according to Proposition 5.4.4, we know that both of these functions belong to C 1,1(Ω)

and are also convex. Hence, by (i) and Lemma 6.2.1, it follows that the functions g− and g+
satisfy

E
[
g±

]≤ 0.

Then, by linearity of E and a simple manipulation we find that

E
[∥.∥2] L(∇ f )

2
≤ E

[
f
]≤−E

[∥.∥2] L(∇ f )

2
.

This is equivalent to (6.11) and shows that property (ii) also holds.

Now, let us assume that (ii) holds. Then, we deduce that

E
[∥.∥2]≤ 0, (6.13)

Let g ∈C 1,1(Ω) be any µ-strongly convex function and set

f := L(∇g )

2
∥.∥2 − g .

Then, according to Proposition 5.4.4, we have

f ∈C 1,1(Ω) and L(∇ f ) ≤ L(∇g ). (6.14)

Since

g = L(∇g )

2
∥.∥2 − f ,

it can be written as follows

g =
(
∥.∥2 L(∇ f )

2
− f

)
+∥.∥2

(
L(∇g )

2
− L(∇ f )

2

)
,
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we therefore obtain

E
[
g
]= E

[
∥.∥2 L(∇ f )

2
− f

]
+E

[∥.∥2](
L(∇g )

2
− L(∇ f )

2

)
.

Finally, by combining (ii), (6.13) and (6.14) we can conclude that (i) is valid. For the statement

on the occurrence of equality, it is enough to note that a linear functional E satisfying (6.10) for

all convex functions must vanish for affine functions.

Lemma 6.2.2 extends the result given in Theorem5.4.5 for convex functions to the case of strongly

convex functions.

We now define our new general class of cubature formulas, which we formulate as follows:

Definition 6.2.3 Let Ω⊂Rd be a compact set and let µ be a positive real number. For n points

x1, x2, . . . , xn ∈Ω, called nodes, and associated positive numbers A1, A2, . . . , An , we say that{
(Ai , x i ) : i = 1,2, . . . ,n

}
, (6.15)

defines the µ-strongly negative definite cubature formula∫
Ω

f (x)d x =
n∑

i=1
Ai f (x i )+E

[
f
]

, (6.16)

if the approximation error E satisfies

E
[

f
]≤ 0, (6.17)

for all µ-strongly convex functions f ∈C (Ω).

We say that (6.16) is a µ snd-formula for short. We also call (6.15) a µ snd-system, which is

said to be of length n if the points x1, x2, . . . , xn are distinct. Let us mention that any µ snd-

cubature formula approximates the exact value of the integral of a µ-strongly convex function

from above. This means that the approximation error for such cubature formulas is negative

on the set of µ-strongly convex functions.

Remark 6.2.4 Note that a µ snd-cubature formula as specified in Definition 6.2.3 is always

of order two. In fact, by Lemma 6.2.2 inequality (6.11) the functional E vanishes for affine

functions and so the order is at least two. However, if the order were greater than two, then

(6.11) would imply that E
[

f
] = 0 for all f ∈ C 1,1(Ω). Recall that, in the univariate case, a

quadrature rule is snd-formula if and only if its second Peano kernel is greater than zero or less

than zero, respectively; see [1, Chap.II.4] or [3, Chap. 4.3].

In the theory of inequalities, inequality (6.17), with E defined by (6.16) and valid for all µ-

strongly convex functions, has also been called upper Hermite-Hadamard inequality.

103



Generalized barycentric coordinates and sharp strongly negative definite
multidimensional numerical integration

Remark 6.2.5 Let f ∈C 1,1(Ω) be µ-strongly convex function, then by Theorem 1.1.14 we have

〈∇ f (x)−∇ f (y), x − y〉 ≥µ∥x − y∥2 (6.18)

∥∇ f (x)−∇ f (y)∥ ≤ L(∇ f )∥x − y∥. (6.19)

Using Cauchy-Schwarz inequality on the first term of (6.18), µ∥x − y∥ ≤ ∥∇ f (x)−∇ f (y)∥, then

according to (6.19) we conclude that µ≤ L(∇ f ). Hence, µ should be less than or equal to L(∇ f )

if the function is both µ-strongly convex and its gradient is L(∇ f )-Lipschitz continuous.

We now present a characterization of our class of cubature formulas in terms of their associated

error functionals. Indeed, we show that for functions in C 1,1(Ω), the error estimates based on

such cubature formulas are always controlled by the Lipschitz constants of the gradients, the

strong convexity parameter and the error associated with using the quadratic function. This

result is a direct consequence of Lemmas 6.2.1 and 6.2.2.

Theorem 6.2.6 Let Ω ⊂ Rd be a compact convex set. A cubature formula (6.16) is µ-strongly

snd-formula if and only if for all µ-strongly convex functions f ∈ C 1,1(Ω), its error functional

satisfies

L(∇ f )

2
E

[∥.∥2]≤ E
[

f
]≤ µ

2
E

[∥.∥2] . (6.20)

In (6.20), equality is attained for all functions of the form

f (x) := a(x)+ µ

2
∥.∥2,

where a(·) is any affine function.

Proof The error lower bound is a direct consequence of Lemma 6.2.2. So it remains to check

that the upper bound holds, too. Assume that cubature formula (6.16) be a snd-formula. So,

for every strongly convex function f with fixed parameter µ, E [ f ] ≤ 0. Hence, by Lemma 6.2.1

for every convex function g , E [g ] ≤ 0. Let g = f − µ
2 ∥.∥2, since g is convex so

E [g ] = E
[

f − µ

2
∥.∥2

]
≤ 0.

By the linearity of E we have

E [ f ]− µ

2
E

[∥.∥2]≤ 0,

which yields

E [ f ] ≤ µ

2
E

[∥.∥2] .

Conversely, if the error functional satisfies in the inequalities (6.20), since for all µ-strongly

convex functions f ∈C 1,1(Ω) we have µ≤ l (∇ f ), so according to Lemma 6.2.2 we conclude that
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E [ f ] ≤ 0. It means that cubature formula (6.16) is a snd-formula. The equality case can be

verified easely.

6.3 Characterization of snd-cubature formulas in terms of the exis-

tence of a set of barycentric coordinates

Let Ω ⊂ Rd be a compact convex polytope of positive measure, and let X := {x1, x2, ..., xn} be a

finite subset that includes the vertices of Ω. Thus, the convex hull of X must be equal to Ω.

The cubature formulae considered in [11] is introduced as follows:

Definition 6.3.1 For n points X := {x1, x2, ..., xn} ∈ Ω, called nodes, and associated positive

numbers A1, A2, . . . , An , we say that{
(Ai , x i ) : i = 1,2, . . . ,n

}
, (6.21)

defines the definite cubature formula∫
Ω

f (x)d x =
n∑

i=1
Ai f (x i )+Rn

[
f
]

, (6.22)

if there exists a σ ∈ {−1,1} such that σRn
[

f
]≥ 0 for all convex functions f ∈C (Ω).

Then it was characterized the definite cubature formula as follows:

Theorem 6.3.2 [11] A set {(Ai , x i ) : i = 1,2, . . . ,n} defines a negative definite cubature formula

on Ω if and only if there exists a partition of unity {φ1,φ2, . . . ,φn} on Ω such that

x =
n∑

i=1
φi (x)x i (a.e. on Ω), (6.23)

and

Ai =
∫
Ω
φi (x)d x (i = 1,2, . . . ,n). (6.24)

Now, we utilize the above theorem to provide a necessary and sufficient condition for the ex-

istence of the snd-formulas. It consists of checking the existence of a set of barycentric coordi-

nates.

Theorem 6.3.3 A set a= {(Ai , x i ) : i = 1,2, . . . ,n} defines a µ snd-cubature formula on Ω if and

only if there exists a set of barycentric coordinates {λ1,λ2, . . . ,λn} on Ω such that

x =
n∑

i=1
λi (x)x i (a.e. on Ω), (6.25)
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and

Ai =
∫
Ω
λi (x)d x (i = 1,2, . . . ,n). (6.26)

Proof Let {(Ai , x i ) : i = 1,2, . . . ,n} defines a µ snd-cubature formula on Ω. Then, according to

the definition the error functional E satisfies

E
[

f
]≤ 0, (6.27)

for any µ-strongly convex function f . We deduce then by Lemma 6.2.1 that, for every convex

function g ∈C (Ω), we have

E
[
g
]≤ 0. (6.28)

This means that the estimate ∫
Ω

g (x)d x ≤
n∑

i=1
Ai g (x i ),

holds for every convex function g ∈C (Ω). Hence by Theorem 6.3.2, there exists a set of barycen-

tric coordinates {λ1,λ2, . . . ,λn} on Ω, which satisfies the required conditions (6.25) and (6.26).

Conversely, assume that there exists a set of barycentric coordinates {λ1,λ2, . . . ,λn} on Ω, such

that conditions (6.25) and (6.26) hold. Let f be convex on Ω. Then, since f is convex, by Jensen’s

inequality it follows from (6.25) that

f (x) ≤
n∑

i=1
λi (x) f (x i ).

Integrating both sides over Ω and using (6.26), we obtain the inequality

E
[

f
]

:=
∫
Ω

f (x)d x −
n∑

i=1
Ai f (x i ) ≤ 0.

Since the above inequality holds for every convex function, then according to Lemma 6.2.1 we

also have, for every µ-strongly convex function,

E
[

f
]≤ 0. (6.29)

This shows that {(Ai , x i ) : i = 1,2, . . . ,n} defines a µ snd-cubature formula on Ω.

6.4 Integral Approximation using barycentric coordinates

Many of useful properties of the classical trapezoidal quadrature rule (6.1) on the interval [a,b]

can be carried over directly to the d-dimensional hypercube
∏d

i=1[ai ,bi ] by using tensor prod-

ucts of d copies of this latter. Non-tensorial constructions of the trapezoidal curbature formula

are rare in the case of an arbitrary polytope. In general, leaving the tensor-product setting
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causes a lot of difficulties in theoretical as well as in computational aspects. From the theoreti-

cal point of view it gets harder to find a suitable set of barycentric coordinates needed for their

constructions as we did for the one-dimensional case. An example of a non-tensorial construc-

tion on surplices with the derivation of an efficient computational scheme for the trapezoidal

cubature formulas can be found in [10]. Using generalized barycentric coordinates, this section

shows how the simple univariate trapezoidal rule (6.1) can be extended to arbitrary higher-

dimensional polytopes. To this end, let Xm = {x i }m
i=0 be a given finite set of pairwise distinct

points in Ω⊂ Rd , with Ω= conv(Xm) denoting the convex hull of the point set Xm . We are in-

terested in approximating the integral of an unknown function f : Ω→R from given function

values f (y 0), f (y 1), . . . , f (y n) where Yn := {
y i

}n
i=0 ⊂Ω. In order to obtain a simple and stable

global approximation of the integral of f on Ω, we may consider a µ snd-cubature formula of

the following form:

In[ f ] :=
n∑

i=0
Ai f (y i ). (6.30)

Theorem 6.3.3 tells us that there exists a set of barycentric coordinates {λ1,λ2, . . . ,λn} on Ω such

that

x =
n∑

i=0
λi (x)y i (a.e. on Ω), (6.31)

and

Ai =
∫
Ω
λi (x)d x (i = 0,1, . . . ,n). (6.32)

For any function f ∈C 1,1(Ω), the functional

En[ f ] := En[ f ,λ] = In[ f ]−
∫
Ω

f (x) d x , (6.33)

will be reserved exclusively to denote the incurred approximation error between the integral of

f and its approximation In[ f ].

We now give a simple expression of the error En[∥.∥2] in terms of the barycentric coordinates

{λ0, . . . ,λn}.

Lemma 6.4.1 The error En[∥.∥2] when approximating the integral of the quadratic function

∥.∥2 by In[∥.∥2] can be expressed as:

En[∥.∥2](x) =
n∑

i=0

∫
Ω
λi (x)

∥∥x − y i

∥∥2 d x . (6.34)
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Proof For f (x) = ∥x∥2 , we find by a simple calculation that

f (x)+⟨∇ f (x), y i −x
⟩= ∥∥y i

∥∥2 −∥∥x − y i

∥∥2 .

Hence, multiplying on each side by λi , summing up with respect to i from 0 to n, using the

linear precision property of barycentric coordinates and rearranging, we get the desired result

and completes the proof of the Lemma.

The following Lemma shows that if the cubature formula In approximates every strongly con-

vex function from above, then it generates a sharp lower bound for the error of any strongly

convex function.

Lemma 6.4.2 Let µ be a positive real number. If the parycentric coordinate approximation

functional In approximates every µ-strongly convex function from above then for every µ-

strongly convex function f , it holds

µ

2

n∑
i=0

∫
Ω
λi (x)

∥∥x − y i

∥∥2 d x ≤ In[ f ]−
∫
Ω

f (x) d x . (6.35)

Equality in (6.35) is attained for all functions of the form

f (x) = a(x)+ µ

2
∥x∥2, (6.36)

where a(·) is any affine function.

Proof Let us fix f as a µ-strongly convex function on C , then for any x, y ∈C

f (t y + (1− t )x) ≤ t f (y)+ (1− t ) f (x)− µ

2
t (1− t )∥x − y∥2.

Hence

t f (y)+ (1− t ) f (x) ≥ f (t y + (1− t )x)+ µ

2
t (1− t )∥x − y∥2,

which yields

t f (y)+ f (x)− t f (x) ≥ f (t y + (1− t )x)+ µ

2
t (1− t )∥x − y∥2.

This can be expressed as

t ( f (y)− f (x)) ≥ f (t y + (1− t )x)− f (x)+ µ

2
t (1− t )∥x − y∥2.

Dividing the above inequality by t gives

f (y)− f (x) ≥ f (t y + (1− t )x)− f (x)

t
+ µ

2
(1− t )∥x − y∥2.
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Therefore, letting t → 0 yields

f (y) ≥ f (x)+⟨∇ f (x), y −x
⟩+ µ

2

∥∥x − y
∥∥2 .

By letting yi instead of y we have

f (y i ) ≥ f (x)+⟨∇ f (x), y i −x
⟩+ µ

2

∥∥x − y i

∥∥2 .

Multiplying on each side by λi , summing up with respect to i from 0 to n and integrating each

term, we get the desired result and completes the proof of the Lemma. The case of equality is

easily verified.

The following Lemma gives an upper bound for the absolute value of the error of any function

possessing Lipschitz continuous gradient:

Lemma 6.4.3 The following error estimate holds for every function f ∈C 1,1(Ω) :∣∣∣∣In[ f ]−
∫
Ω

f (x) d x

∣∣∣∣≤ L(∇ f )

2

n∑
i=0

∫
Ω
λi (x)

∥∥x − y i

∥∥2 . (6.37)

Equality in (6.37) is attained for all functions of the form

f (x) = a(x)+ µ

2
∥x∥2, (6.38)

where a(·) is any affine function.

Proof This Lemma is an immediate consequence of Theorem 6.2.6 and Lemma 6.4.1. The case

of equality is easily verified.

Now everything is set for giving an upper bound and a lower bound for the approximation

error estimate En[ f ] = In[ f ]−∫
Ω f (x) d x of any µ-strongly convex function f , having Lipschitz

continuous gradient.

Theorem 6.4.4 Let µ be a positive real number. Then, for every µ-strongly convex function

f ∈C 1,1(Ω) and any x ∈Ω, it holds:

µ

2

n∑
i=0

∫
Ω
λi (x)

∥∥x − y i

∥∥2 ≤ In[ f ]−
∫
Ω

f (x) d x ≤ L(∇ f )

2

n∑
i=0

∫
Ω
λi (x)

∥∥x − y i

∥∥2 . (6.39)

Equality in (6.39) is attained for all functions of the form

f (x) = a(x)+ µ

2
∥x∥2, (6.40)

where a(·) is any affine function.
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Proof This is an immediate consequence of Lemmas 6.4.1, 6.4.2, 6.4.3 and Theorem 6.2.6. The

case of equality is easily verified.

Remark 6.4.5 In the univariate case, a simple inspection of the error estimates (6.39) reveals

that (6.39) is nicely reduced to the simple form given in (6.3) and (6.6).

6.5 Practical Construction of snd-Cubature Formulas

We now turn to a practical construction of snd-cubature formulas. To this end, let us first

consider the case where Ω is a non-degenerate simplex in Rd with x i , i = 1,2, . . . ,d +1, being

the set of its vertices. Then each x ∈Ω has a unique representation as a convex combination

x =
d+1∑
i=1

λi (x)x i , (6.41)

where λi is the restriction to Ω of the affine function that attains the value 1 at x i and is zero

at all the other vertices of Ω. The value λi (x) is the barycentric coordinate of x with respect to

x i . Then, if f is convex, by Jensen’s inequality it follows from (6.41) that

f (x) ≤
d+1∑
i=1

λi (x) f (x i ).

Integrating both sides over Ω and using the fact that
∫
Ωλi (x)d x = |Ω|

d+1 , i = 1,2, . . . ,d +1, (it is

well-known that the integral of an affine function f over a simplex Ω is the arithmetic mean

of the values of f at the vertices of Ω times |Ω|), we deduce that∫
Ω

f (x)d x ≤QTraR( f ), (6.42)

QTraR( f ) :=
d+1∑
i=1

|Ω|
d +1

f (x i ). (6.43)

Consequently, by Lemma 6.2.1, the set of barycentric coordinates λ1,λ2, . . . ,λd+1 produces the

snd-system {( |Ω|
d +1

, x i

)
: i = 1,2, . . . ,d +1

}
.

It is the only snd-system on Ω which has no other nodes than the vertices.

Now let X = {
x i ∈Rd , i = 1,2, . . . ,n

}
be an arbitrary set of points of Rd . The previous approach

can be generalized when Ω = conv(X ) is an arbitrary polytope in Rd . A triangulation T of

Ω with respect to X is a decomposition of Ω into d-dimensional simplices such that X is the

set of all their vertices, and the intersection of any two simplices consists of a common lower-
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dimensional simplex or is empty. As we mentioned in section 6.1, triangulations of compact

convex polytopes exist 1. Indeed, given any finite set X of points that do not all lie on a hyper-

plane, Chen and Xu [2, p. 301] describe a lifting-and-projection procedure which results in a

triangulation of the convex hull of X with respect to X . For an explicit statement on the exis-

tence of triangulations with a proof based on an algorithmic method, see [12, Theorem 3, part

a].

Now let S1,S2, . . . ,Sl be the simplices of T, and let Ni be the set of all integers j such that x i is

a vertex of S j . If x ∈ S j and j ∈ Ni , then we denote by λi j (x) the barycentric coordinate of x

with respect to x i for the simplex S j . It is easily verified that if x ∈ S j
∩

Sk , then λi j (x) =λi k (x)

if j ,k ∈ Ni and λi j (x) = 0 if j ∉ Ni . Therefore, setting

ϕi (x) :=
λi j (x) if x ∈ S j and j ∈ Ni

0 otherwise

for i = 1,2, . . . ,n, we obtain a well-defined barycentric coordinatesϕ1,ϕ2, . . . ,ϕn . This obviously

produces the snd-formula∫
Ω

f (x)d x =Q tra( f )+E [ f ], (6.44)

where

Q tra( f ) =
n∑

i=1

( ∑
j∈Ni

|S j |
d +1

)
f (x i ). (6.45)

Let T(Ω) be any triangulation of the point set Xn . Then λT(Ω) :=
{
λT(Ω)

i

}n

i=0
denotes the set of

barycentric coordinates associated with each x i of Xn . Now we list the basic properties of λT(Ω)

which are particularly relevant to us:

(1) They are well-defined, piecewise linear and nonnegative real-valued continuous func-

tions.

(2) The function λT(Ω)
i satisfies the delta property, which equals 1 at x i and 0 at all other

points in X n \ {x i } , that is, λT(Ω)
i (x j ) = δi j (δ is the Kronecker delta).

We denote by

ET(Ω)
n [ f ](x) :=

n∑
i=0

λT(Ω)
i (x) f (x i )− f (x). (6.46)

As regard the error estimates (6.46), in [6] it was established that every set of barycentric co-

ordinates generated by a Delaunay triangulation is optimal, in the sense that for all possible

1It seems that in dimension d = 3 the existence was already known to mathematicians like Euler and Dirichlet.
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barycentric coordinates, Delaunay triangulation provides the minimal barycentric approxi-

mation error En[∥ ·∥2]:

Theorem 6.5.1 Let T(Ω) be a triangulation of the point set X n . Then the following statements

are equivalent.

(i) T(Ω) is a Delaunay triangulation.

(ii) For any set of barycentric coordinates λ= {λi }n
i=0 and for all x ∈Ω, there holds

0 ≤ ET(Ω)
n [∥ · ∥2](x) ≤ En[∥ ·∥2,λ](x).

This optimality condition also characterizes Delaunay triangulation.

6.6 Numerical experiments in 3D

In this section we provide numerical test, which we perform in order to validate our theoretical

predictions. We have considered the following function of three variables as test function

g (x, y, z) = exp(ax +by + cz),

and the domain of integration is the pyramid P yr given in the Cartesian coordinate system

(x, y, z) by the inequalities:

P yr = {(x, y ; z) ∈R3 : 0.3z < x < 1−0.3z, 0.3z < y < 1−0.3z, 0 < z < 1}. (6.47)

The algorithm for computing the approximate values of the integral is as follows:

1. Pyramid should be decomposed into tetrahedra, see Figure 6.2, a.

2. Each of tetrahedra should be mapped onto the reference one, see Figure 6.2, b.

3. For integration of function g over the reference tetrahedron the method, QTraR(g ) should

be applied, where QTraR(g ) is defined by the formula (6.43).

4. The results are the sums of approximate values of integrals over all tetrahedra in the

decomposition of the pyramid.
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Figure 6.2 – Domain of the pyramid and its decomposition into tetrahedra generated by
DistMesh (a). The characteristic linear size of tetrahedra is 1/21. Reference tetrahedron
(b)

Let us give more details about these steps.

For decomposition of the domain P yr the DistMesh package was used that is a simple triangu-

lar mesh generator in MATLAB based on Delaunay triangulation. A detailed description of the

program is provided in [19, 20] or http://persson.berkeley.edu/distmesh. Specifically, we used

the code of the Problem #3 from the webpage available at the address :

https://people.sc.fsu.edu/~jburkardt/m_src/distmesh_3d/distmesh_3d.html

For computing the errors of our methods we need to compute the exact value of integral of

function g (x, y, z) over the pyramid P yr , assuming that P yr is given by its H-representation

(6.47) or, alternatively, in its corresponding V-representation. We should mention that some

useful methods for computing such integrals are discussed in [15, Section 2]. The exact value

of this integral is

Ipyr (g ) = K
(

Aa3 +B a2b +C a2c +Db2a +Eb2c +F b3 +Gc3 +Hc2a + I c2b + Jabc
)
,

where K = 10

ab(3a −3b −10c)(3a +3b −10c)(3a −3b +10c)(3a +3b +10c)
,

A = 27(eb −ea +ea+b +α+β−γ−θ−1),

B = 27(eb −ea −ea+b −α+β−γ+θ+1),

C = 90(ea+b −ea −eb −α+β+γ−θ+1),

D = 27(ea −eb −ea+b −α−β+γ+θ+1),

E = 90(−ea −eb +ea+b −α+β+γ−θ+1),

F = 27(ea −eb +ea+b +α−β+γ−θ−1),

G = 1000(ea +eb −ea+b +α−β−γ+θ−1),
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N 4 8 16 32 64 128

E Tra
N (g ) 3.441E-01 6.520E-02 1.478E-02 3.420E-03 8.312E-04 2.074E-04

Table 6.1 – Errors obtained while integrating g with a = 1, b = 2, c = 3 over pyramid P yr

N 8 16 32 64

E Tra
N (g ) 2.46763 2.14976 2.13358 2.05323

Table 6.2 – Orders of convergence obtained while integrating g with a = 1, b = 2, c = 3 over
the pyramid P yr

H = 300(ea −eb −ea+b −α−β+γ+θ+1),

I = 300(eb −ea −ea+b −α+β−γ+θ+1),

J = 180(−ea −eb −ea+b +α+β+γ+θ−1),

α= e0.3a+0.3b+c , β= e0.7a+0.3b+c , γ= e0.3a+0.7b+c , θ = e0.7a+0.7b+c .

After applying the above algorithm we got the asymptotics of the relative errors of our formulas

for the case of function g with a = 1, b = 2, c = 3. The expression of the relative error for Q3

cubature formula is as follows:

E Tra
N (g ) = Q tra(g )− Ipyr (g )

Ipyr (g )
,

where Q tra(g ) is defined by the formula (6.45). In Table 6.1, the values of the relative errors of

integration are given for the case of test with a = 1, b = 2, c = 3. Table 6.2 shows the orders of

convergence obtained for the test with a = 1, b = 2, c = 3. The orders are close to 2.
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Conclusion and final remarks

As our main results are appeared in chapters two to five, we are going to discuss about these

chapters briefly and separately to mention the main results and final remarks of each chapter

as follows:

In extending the definition of convex function to operator convex function, since we deal only

with the sum of the operators with respect to continuous functional calculus it can be easily

done but in defining the operator geometrically convex functions as we are dealing with the

multiplication of operators and since the multiplication of operators are not commutable one

must be cautious. In chapter two, by the definition of weighted geometric mean, using some

lemmas and theorems, we defined operator geometrically convex functions, and we tried to

prove the Hermite-Hadamard types inequality for these functions. At the beginning of the dis-

cussion we sought to prove the exact inequality of Hermite-Hadamard for operator geometri-

cally convex functions, but we found that there would be a contradiction if established, because,

the mid term and the last one are the log-mean and the geometric mean, respectively, and it

is known that the log-mean is greater than the geometric mean. By giving some samples we

finished this chapter.

Audenaert obtained inequality (3.17) for unitarily invariant norms that interpolates between

the arithmetic-geometric mean inequality and the Cauchy-Schwarz inequality for matrices.

A refined version of this inequality was given in [1] of chapter three for the Hilbert-Schmidt

norm by applying kth antisymetric tensor powers of the matrices and their properties. In this

chapter, we refined the mentioned inequality for general case, that is for all unitarily invariant

norms, not just for Hilbert-Schmidt norm and by completely different approach. In this regard,

we refined two other well-known inequalities too.

In chapter four, the main goal was to present numerical radius inequalities for matrices and

extend some unitarily invariant norms inequality, such as Heinz and Young inequalities, to

the context of numerical radius, but it is notable that due to weak unitary invariant of the nu-

merical radius, one can not expect the exact form holds true. Actually, the obtained inequality

maybe is weaker than the corresponding version. In the sequel, we obtained some Berezin num-

ber inequalities based on the definition of Berezin symbol and we established some inequalities
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involving generalization of Berezin number inequalities.

In chapter five, first we discussed about approximation a class of convex functions. Namely, it

was provided by Guessab a simple and elegant characterization of upper approximation oper-

ators then it was showed that it is possible to apply the given error estimate to a differentiable

convex function with Hölder continuous gradient. In this chapter, we tried to extend the result

to operator version, and apply the obtained result to refining the Hermite-Hadamard inequal-

ity.

In chapter six, we established a new and efficient way of approximating a given function of

multiple variables by linear operators, which approximate integral of all strongly convex func-

tions from above. We also assumed that these functions are continuously differentiable func-

tions with Lipschitz continuous gradients. This additional information is used to characterize

sharp error estimates which are always controlled by the Lipschitz constants of the gradients,

the strong convexity parameter and the error associated with using the quadratic function.

Then, we turned to a practical construction of snd-cubature formulas. Finally, we provided

some numerical tests, which we performed in order to validate our theoretical predictions.

118


	Acknowledgements
	Abstract (English)
	Résumé (Français)
	Table of contents
	Notations
	Introduction (English)
	Introduction (Français)
	Introductory concepts 
	Convex functions and some related inequalities
	Concepts of operator theory and operator inequality
	Operator norms

	Bibliography
	Hermite-Hadamard inequality for operator geometrically convex functions
	Inequalities for geometrically convex functions
	Operator geometrically convex functions
	Inequalities for operator geometricallty convex functions
	Examples of operator geometrically convex functions


	Bibliography
	Refinements for some inequalities related to unitarily invariant norm
	Some inequalities for arithmetic-geometric convex functions
	Inequalities related to unitaritly invariant norms of operators

	Bibliography
	Extension of some inequalities to the numerical radius version 
	Numerical radius inequalities via convexity
	Some upper bounds for the Berezin number of an operator
	Main results
	Additional results


	Bibliography
	Approximation of differentiable convex functions
	Convex polytopes
	Barycentric coordinates
	Generalized barycentric coordinates on polytopes
	Approximation of a class of convex functions
	On a generalization of an approximation operator defined by A. Guessab

	Bibliography
	Generalized barycentric coordinates and sharp strongly negative definite multidimensional numerical integration
	Introduction, motivation and terminology
	General setting
	Characterization of snd-cubature formulas in terms of the existence of a set of barycentric coordinates 
	Integral Approximation using barycentric coordinates
	Practical Construction of snd-Cubature Formulas
	Numerical experiments in 3D

	Bibliography
	Conclusion and final remarks

