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préparée à ENSAE
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Chapter 1

Identi�cation and Estimation of Demand

for Bundles∗

Abstract. We present novel identi�cation and estimation results for a mixed logit model of demand
for bundles with endogenous prices given bundle-level market shares. Our approach hinges on an
a�ne relationship between the utilities of single products and of bundles, on an essential real analytic
property of the mixed logit model, and on the existence of exogenous cost shifters. We propose
a new demand inverse in the presence of complementarity that enables to concentrate out of the
likelihood function the (potentially numerous) market-product speci�c average utilities, substantially
alleviating the challenge of dimensionality inherent in estimation. To illustrate the use of our methods,
we estimate demand and supply in the US ready-to-eat cereal industry, where the proposed MLE
reduces the numerical search from approximately 12000 to 130 parameters. Our estimates suggest that
ignoring Hicksian complementarity among di�erent products often purchased in bundles may result in
misleading demand estimates and counterfactuals.

1.1 Introduction

In standard decision theory, consumer preferences are usually de�ned over bundles of products rather
than over single products (Debreu (1959), Varian (1992), and Mas-Colell et al. (1995)), allowing for both
substitutability and complementarity. Despite important exceptions (Manski and Sherman (1980),
Hendel (1999), Dubé (2004), Gentzkow (2007), and Thomassen et al. (2017)), the models routinely
used to estimate demand rely on the assumption that each of the products purchased in a bundle is
chosen independently, precluding the possibility of complementarity and potentially leading to incorrect
estimates and counterfactuals.

Models of demand for bundles face non-trivial identi�cation challenges (Gentzkow, 2007), even in
settings with a limited number of products (Fox and Lazzati (2017) and Allen and Rehbeck (2019a)).
Moreover, the estimation of demand for bundles is subject to a challenge of dimensionality: the number
of parameters can be too large to be handled numerically even with parsimonious speci�cations (Berry
et al., 2014). These di�culties forced empirical researchers either to focus on applications with a limited
number of products (typically two or three) or to make restrictive assumptions on the parameters
capturing potential synergies among the products within bundles (typically a common parameter for
all bundles and individuals).1

We tackle these challenges and propose empirical methods that are practically useful in applications
with more than a few products. In particular, we study the identi�cation and estimation of a mixed

∗This chapter is based on Iaria, A. and Wang, A. (2020). Identi�cation and estimation of demand for bundles, CEPR
Discussion Paper No. DP14363

1Throughout the paper, we refer to the parameters capturing the potential synergies among products within bundles
simply as demand synergies or demand synergy parameters.
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logit model of demand for bundles with endogenous prices given observations on bundle-level market
shares. Our arguments hinge on the a�ne relationship between the utilities of single products and
of bundles typical of models along the lines of Gentzkow (2007)'s: the average utility of any bundle
equals the sum of the average utilities of the single products plus an extra term capturing their potential
demand synergies. This utility structure allows (i) for a novel identi�cation approach based on the
existence of exogenous but potentially unobserved cost shifters and (ii) to alleviate the challenge of
dimensionality in estimation by means of a new demand inverse in the presence of complementarity.

Our approach is based on a symmetry assumption about the average demand synergies across
markets: while the demand synergies for any speci�c bundle may be unobserved and heterogeneous
across individuals, their average is required to be constant across markets with the same observable
characteristics (e.g., demographics and prices). Importantly, we propose a speci�cation test for this
symmetry assumption on the basis of partial identi�cation methods that can be performed prior to
the estimation of the full model. Under this symmetry assumption and regularity conditions similar
to Rothenberg (1971), we derive necessary and su�cient rank conditions for the local identi�cation of
the model with endogenous prices. This result formalizes Gentzkow (2007)'s insight that, when the
average demand synergies are �similar� across markets, the availability of data on many markets will
help identi�cation. The �necessity� part of the result is informative about the limits of identi�cation in
models of demand for bundles: the separate identi�cation of demand synergies and of the distribution
of random coe�cients is not immediate, and one needs observations on �enough� markets.

We provide novel su�cient conditions for the global identi�cation of the model with endogenous
prices to hold almost everywhere. Our argument combines three main ingredients: a �nite number
of elements in the identi�cation set, an essential real analytic property of the mixed logit model,
and the existence of exogenous cost shifters. We assume that the identi�cation set does not have
in�nitely many elements and, building on Chernozhukov et al. (2007) and on Romano and Shaikh
(2012), propose testable conditions to verify this in practice. We show that the mixed logit market
share function is real analytic with respect to the market-product speci�c average utilities. This
further shrinks the identi�cation set in the presence of exogenous variation in the market-product
speci�c average utilities. We then demonstrate that cost shifters can provide the required exogenous
variation when the endogenous prices are generated by a large class of pure components and mixed
bundling price-setting models.2 We �nally attain global identi�cation almost everywhere by assuming
the existence of exogenous cost shifters that are potentially unobserved but identi�able from observed
market shares and prices. One can then interpret our identi�cation strategy as based on the existence
of �unobserved� but �identi�able� instruments, the exogenous cost shifters.

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed bundle-
level market shares subject to sampling error and robust to price endogeneity. We account for sampling
error to accommodate the typical necessity of computing bundle-level market shares from a sample
of household-level purchases (as in Gentzkow (2007), Kwak et al. (2015), Grzybowski and Verboven
(2016), Ruiz et al. (2017), and Ershov et al. (2018)). The estimation of demand for bundles is subject
to a well known challenge of dimensionality: the number of market-product speci�c average utility pa-
rameters and of demand synergy parameters can be too large to be handled numerically (Berry et al.,
2014). We tackle this practical bottleneck by a novel demand inverse designed to handle complemen-

2For classic treatments of pure components and mixed bundling, see Adams and Yellen (1976), Lewbel (1985), McAfee
et al. (1989). For more recent contributions, see Armstrong and Vickers (2010), Chu et al. (2011), Armstrong (2013),
and Zhou (2017).
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tarity among products in models along the lines of Gentzkow (2007)'s. For any given value of the other
parameters, we establish a one-to-one mapping between the observed product-level market shares and
the market-product speci�c average utilities.3 This enables to concentrate out of the likelihood the
potentially large number of market-product speci�c average utilities and to substantially simplify the
MLE's numerical search: in our application, the numerical search is reduced from approximately 12000

to 130 parameters. We show that our assumptions for global identi�cation guarantee consistency and
asymptotic normality of this estimator.

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the USA. We
revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementarity among di�erent
RTE cereal brands in demand estimation.4 The households in our data are observed to purchase two
or more di�erent brands of RTE cereals in approximately 20% of their shopping trips. Our data record
purchases rather than consumption: the purchases of di�erent RTE cereal brands during the same
shopping trip can clearly be motivated beyond synergies in consumption. For example, if households
face shopping costs, one-stop shopping may be preferred to multi-stop shopping (Pozzi (2012) and
Thomassen et al. (2017)). Moreover, if households delegate grocery shopping to one person, preference
for variety may lead to the purchase of multiple brands on any shopping trip to accommodate the
di�erent needs of the household (Hendel (1999) and Dubé (2004)).

Our model encompasses these alternative mechanisms: the demand synergies are catch-all pa-
rameters that may re�ect, for example, synergies in consumption, shopping costs, and preference for
variety. We try to distinguish empirically the contribution of some of these possible mechanisms to
the estimated demand synergies. Our results show that demand for RTE cereals exhibits substantial
Hicksian complementarity and that around 75% of it does not seem to be explained by shopping costs
or by preference for variety. We compare our estimation results from the full model to those from a
model of demand for single brands (similar to Nevo (2000, 2001)) and show that ignoring Hicksian
complementarity may result in misleading demand estimates and counterfactuals (see also Fosgerau
et al. (2019)). Estimates from the full model support the classic Cournot (1838)'s insight that, in the
presence of Hicksian complementarity, mergers can be welfare enhancing; while those from a standard
model that does not allow for it predict that mergers are detrimental for consumer surplus.

Related Literature. There is a growing empirical literature leveraging the estimation of demand
for bundles. Manski and Sherman (1980) study households' choices of motor vehicle holdings; Hen-
del (1999) studies preference for variety for personal computers, while Dubé (2004) and Chan (2006)
for soft carbonated drinks; Nevo et al. (2005) study the decision of libraries to subscribe to eco-
nomics and business journals; Gentzkow (2007) and Gentzkow et al. (2014) investigate competition
and complementarity among newspapers; Augereau et al. (2006) the returns from adoption of techno-
logical standards; Liu et al. (2010a) and Grzybowski and Verboven (2016) the complementarity among
telecommunication services; Crawford and Yurukoglu (2012) and Crawford et al. (2018) the problem

3Demand inverses at the bundle-level can simply rely on the classic results by Berry (1994) and Berry et al. (2013)
as long as the bundles in the demand system are substitutes. However, if some of the products are complements, these
classic results do not imply the invertibility of the demand system at the product-level. Our product-level demand
inverse is instead based on the P -matrix property of Gale and Nikaido (1965), which does not require the products to
be substitutes.

4Following Samuelson (1974) and Gentzkow (2007), we rely on the classic Hicksian notion of complementarity: we
consider two brands as complements whenever their cross-price elasticity of (compensated) demand is negative. For
recent discussions on complementarity in empirical models of demand, see Manzini et al. (2018), Dubé (2019), and Iaria
and Wang (2019b).
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of bundling and vertical restraints in cable television, while Ho et al. (2012) in the video rental indus-
try; Kretschmer et al. (2012) study the adoption of complementary innovations; Lee et al. (2013) the
complementarity between milk and RTE cereals; Song et al. (2017) the relationship between mergers
and inter-�rm bundling in the pharmaceutical industry; Ruiz et al. (2017) propose a machine learning
model of demand for bundles, Thomassen et al. (2017) study the problem of transportation costs in
grocery shopping; Ershov et al. (2018) the complementarity between potato chips and soft carbonated
drinks; and Fosgerau et al. (2019) the complementarity between di�erent brands of RTE cereals. We
add to this empirical literature by providing novel identi�cation and estimation methods for models
along the lines of Gentzkow (2007)'s, speci�cally accounting for price endogeneity and alleviating the
challenge of dimensionality inherent in estimation.

The global identi�cation of non-linear models is notoriously complex to demonstrate (Newey and
McFadden (1994) and Lewbel (2019)). Researchers typically resume to non-veri�able abstract con-
ditions (Rothenberg (1971), Bowden (1973), and Komunjer (2012)) or focus on weaker identi�cation
concepts altogether, such as local identi�cation (Rothenberg (1971), Sargan (1983), and Lewbel (2012))
or partial identi�cation (Manski (1989), Manski (2003), and Chesher and Rosen (2017)). We contribute
to this literature by providing su�cient conditions for global identi�cation that are testable (on the
basis of partial identi�cation methods), rooted in economic theory (to address price endogeneity), and
weaker than the classics (Rothenberg (1971), Bowden (1973), and Komunjer (2012)). The relative
advantage of our conditions follows from a real analytic property we show to be satis�ed by mixed
logit models given any distribution of random coe�cients (parametric or non-parametric), which allows
us to relax the strict concavity of the likelihood function (or similar criterion functions). Fox et al.
(2012) and il Kim (2014) also exploit the real analytic properties of logit models to achieve global
identi�cation, but in more restrictive frameworks. il Kim (2014) shows the real analytic property for
multinomial logit and for nested logit models, while Fox et al. (2012) show it for mixed logit mod-
els with random coe�cients de�ned over compact supports�ruling out, e.g., normal and log-normal
distributions.

In the context of identi�cation of models of demand for bundles, we add to the discussions by, for
example, Fox and Lazzati (2017) and Allen and Rehbeck (2019a). Fox and Lazzati (2017) propose
su�cient conditions for the non-parametric identi�cation of demand for bundles (and binary games
of complete information) on the basis of additively separable excluded regressors. Allen and Rehbeck
(2019a) instead study the non-parametric identi�cation of a large class of demand models, among which
demand for bundles, by exploiting variation in the substitution and complementarity patterns among
di�erent products. While these papers make fewer distributional assumptions and can be preferred in
situations with small choice sets and exogenous regressors, our arguments apply more readily to cases
with larger choice sets, endogenous prices, and in general lead to practically convenient estimators.

Our mixed logit model of demand for bundles can be seen as a special case of the general non-
parametric framework by Berry and Haile (2014). Berry and Haile (2014)' identi�cation argument relies
on the availability of observed instruments both to pin down the distribution of random coe�cients
and to address price endogeneity. In contrast, Gentzkow (2007)'s utility structure allows us to propose
a complementary identi�cation strategy based on unobserved instruments: we rely on the existence
of �unobserved� but �identi�able� cost shifters and on conditional symmetry restrictions among the
average demand synergies across markets. While less general in abstract terms, our arguments are more
applicable to cases with limited observability of instruments and give rise to sizeable computational
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advantages in estimation.5

Our estimator contributes to the modern literature on the estimation of demand systems started
by Berry et al. (1995) (henceforth BLP). For example, Berry et al. (2004b), Freyberger (2015), and
Armstrong (2016b) investigate the asymptotic properties of GMM estimators of demand systems with
endogenous prices. While these GMM estimators are more widely applicable provided the availability
of observable instruments, in the context of demand for bundles our MLE represents a numerically
convenient alternative in which the instruments need to exist but do not need to be observed. More
recently, Compiani (2019) proposes a non-parametric estimator of demand models that accommodates
complementarity among products. There is a trade-o� between our proposed estimator and Compiani
(2019)'s. His non-parametric estimator is more �exible than ours, but it is subject to a curse of
dimensionality that may constrain its applicability to settings with small choice sets. Our MLE is less
a�ected by dimensionality and can be implemented with larger choice sets.

Since Berry (1994), the identi�cation and the estimation of demand systems with endogenous
prices has been relying on the ability to �invert� market share equations to uniquely determine the
implied product-speci�c average utilities�the so called demand inverse. A standard requirement for
the invertibility of demand systems is for the products to be substitutes, see Berry et al. (2013). This
requirement can be problematic in contexts with complementary products: for example, in a model
of demand for bundles of newspapers, Fan (2013) rules out by assumption any complementarity in
order to rely on the classic demand inverse by Berry (1994) at the newspaper-level. Our novel demand
inverse addresses this issue and allows to invert product-level market share equations in the presence
of complementarity.

Organization. In the next section, we introduce model and notation. In sections 2.3 and 1.4,
we present�respectively�our local and global identi�cation results. In section 1.5, we propose our
demand inverse and a related MLE. In section 1.6, we explore the practical relevance of our methods
with an empirical illustration. In section 1.7, we conclude the paper with some �nal remarks. In
(online) appendix section A, we report all the proofs and additional results.

1.2 Model and Notation

Imagine a cross-section of T independent markets denoted by T, where each market t ∈ T is populated
by i = 1, ..., I individuals. Individual i in market t makes purchases exclusively in market t and is
a di�erent person from individual i in any other market t′ 6= t. For individuals in market t, let Jt
be the set of j = 1, ..., Jt market-speci�c products that can be purchased in isolation or in bundles.
Let Ct = Ct1 ∪ {0} be the choice set speci�c to market t, which includes: the collection of �inside�
options Ct1 and the �outside� option j = 0 (i.e., the option not to purchase any product). In turn, the
collection of inside options is de�ned as Ct1 = Jt ∪Ct2, where Ct2 denotes the set of market-speci�c
bundles of products. The set of all available bundles across all markets is C2 = ∪Tt=1Ct2. We refer to
the cardinality of these sets as: Ct = |Ct|, Ct1 = |Ct1|, Ct2 = |Ct2|, and C2 = |C2|. We denote by b

any element of the choice set Ct, whereby some abuse of notation b may refer to a bundle, a single
product, or the outside option.

5The classic identi�cation argument based on observed instruments requires the performance of high-dimensional
demand inverses at the bundle-level, while our argument based on unobserved instruments allows for the performance
of demand inverses only at the product-level. In practice, this implies the numerical inversion of a lower-dimensional
demand system and leads to large computational advantages.
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The indirect utility of individual i in market t from purchasing product j is:

Uitj = uitj + εitj

= δtj + µitj + εitj and

Uit0 = εit0,

(1.1)

where uitj = δtj+µitj , δtj is the market t-speci�c average utility of product j ∈ Jt, µitj is an unobserved
individual-speci�c utility deviation from δtj , while εitj and εit0 are error terms. Throughout the paper,
we treat the market t-speci�c average utilities as parameters to be identi�ed and estimated. One can
however reduce the number of parameters by using observable characteristics and making additional
functional form assumptions.6

To ease exposition, when b is a bundle, we refer to the products it contains as j ∈ b. Following
Gentzkow (2007), the indirect utility of individual i in market t from purchasing bundle b ∈ Ct2 is:

Uitb =
∑
j∈b

uitj + Γitb + εitb

=
∑
j∈b

(δtj + µitj) + Γtb + (Γitb − Γtb) + εitb

=
∑
j∈b

δtj + Γtb +

∑
j∈b

µitj + ζitb

+ εitb

= δtb(Γtb) + µitb + εitb,

(1.2)

where Γitb is the individual-speci�c demand synergy among the products in bundle b, which we spec-
ify as Γitb = Γtb + ζitb. Γtb is the average demand synergy for the products in bundle b among
the individuals in market t and ζitb is an unobserved individual-speci�c deviation from this average.
δtb(Γtb) =

∑
j∈b δtj + Γtb is the market t-speci�c average utility for bundle b, µitb is an unobserved

individual-speci�c deviation from δtb(Γtb), and εitb is an error term.
The demand synergy parameter Γitb captures the extra utility individual i in market t obtains from

purchasing the products in bundle b jointly rather than separately. When Γitb > 0, the utility of the
bundle is super-modular with respect to the utilities of the single products and, from i's perspective,
joint purchase brings more utility. Conversely, when Γitb < 0, from i's perspective the separate pur-
chase of each j ∈ b brings more utility than their joint purchase. As we discuss below, in applications
with observable bundle-speci�c characteristics (e.g., bundle-speci�c discounts), one can specify Γitb in
terms of these characteristics.

We now turn to the distributional assumptions for the unobserved components of utility: µitb =∑
j∈b µitj + ζitb and εitb for each b ∈ Ct. We assume that µitb can be speci�ed as a function of

a vector of random coe�cients βit, so that µitb = µitb(βit), and that βit is distributed according to
F (·; ΣF ), where ΣF is a �nite-dimensional parameter in a connected compact set ΘΣF ⊂ RP . As is
typical, µitb(·) can also be a function of observable demographics (e.g., i's income) and/or observable
market-, product-, and bundle-speci�c characteristics (e.g., the price of bundle b in market t). The
error term εitb is assumed to be i.i.d. Gumbel.

Even though we make the assumption that εitb is i.i.d. Gumbel, as shown by McFadden and
Train (2000), under mild regularity conditions any discrete choice model derived from random utility

6We provide more detail on this while discussing price endogeneity at the end of this section.
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maximization can be approximated arbitrarily well by mixed logit models of the kind we consider. In
addition, note that our mixed logit model is a generalization of Gentzkow (2007)'s, which restricts
F (·; ΣF ) to be a normal distribution and Γitb = Γb for all i's and t's. We add a layer of unobserved
heterogeneity to the individual preferences speci�c to each bundle: for reasons unobserved to the
econometrician, the products in any bundle can exhibit positive demand synergies for some individuals
and negative for others.

Denote the market t-speci�c average utility vector by δt(Γt) = (δtb(Γtb))b∈Ct1 and the vector
collecting all the market t-speci�c average demand synergies by Γt. δt(Γt) does not only list the t-
speci�c average utilities of bundles b ∈ Ct2, but also those of the single products b ∈ Ct1 \ Ct2

(where Ct1 \ Ct2 = Jt): given that any single product has zero demand synergies, our notation for
b = j ∈ Ct1 \ Ct2 is just δtb(Γtb) = δtj . Given our distributional assumptions, the market share
function of b ∈ Ct for individuals in market t takes the mixed logit form:

stb(δt(Γt); ΣF ) =

∫
sitb(δt(Γt), βit)dF (βit; ΣF )

=

∫
eδtb(Γtb)+µitb(βit)∑

b′∈Ct e
δtb′ (Γtb′ )+µitb′ (βit)

dF (βit; ΣF ),

(1.3)

where sitb(δt(Γt), βit) is individual i's purchase probability of b in market t given βit.

Complementarity and Substitutability. Following Samuelson (1974) and Gentzkow (2007), we
rely on the classic notion of Hicksian complementarity: we consider two products as complements
(substitutes) whenever their cross-price elasticity of demand is negative (positive).7 In a model sim-
ilar to (2.3) with two products, j and k, and constant demand synergy parameters Γit(j,k) = Γ(j,k),
Gentzkow (2007) shows that j and k are complements (substitutes) whenever Γ(j,k) > 0 (Γ(j,k) < 0).
On the one hand, with more products and heterogeneous demand synergies, the relationship between
Hicksian complementarity and Γitb is less clear-cut and the topic of ongoing research (Iaria and Wang,
2019b). On the other, though, standard models of demand for single products�obtained by constrain-
ing Γitb = −∞ for all i's, t's, and b ∈ Ct2�rule out the possibility of Hicksian complementarity and
force any two products to be substitutes. In this paper, we take a pragmatic approach and regard the
complementarity or substitutability between products as an empirical question to be answered after
the estimation of model (2.3).

Interpretation of Demand Synergies. Model (2.3) is agnostic about the exact meaning of Γitb,
which is a catch-all parameter that can re�ect, for example, synergies in consumption, shopping costs,
and preference for variety. In Gentzkow (2007)'s demand for on-line and printed newspapers, Γitb
captures synergies in the consumption of the di�erent news outlets. However, demand synergies�and
consequently Hicksian complementarity�can also arise, for example, because of shopping costs (Pozzi
(2012) and Thomassen et al. (2017)) or preference for variety within households (Hendel (1999) and
Dubé (2004)). If individuals face shopping costs every time they visit a store, they may prefer to
purchase all of their products at once rather than over several trips (one-stop shoppers). Moreover,

7In our application, we rule out income e�ects so that gross complementarity (in terms of elasticities of Marshallian
demands) and Hicksian complementarity (in terms of elasticities of compensated demands) coincide. For discussions
about complementarity in models of demand for bundles similar to those studied here, see Manzini et al. (2018), Dubé
(2019), and Iaria and Wang (2019b).
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if households delegate grocery shopping to one person, then preference for variety may lead to the
purchase of multiple products on any shopping trip to accommodate the di�erent needs within the
household. Our model can rationalize shopping costs with positive demand synergies and, as we
show in Appendix A.1, preference for variety with some additional structure on the demand synergy
parameters.

Random Intercepts and Demand Synergies. As argued by Gentzkow (2007), the random inter-
cepts (µitj)

Jt
j=1 play an important conceptual role in the identi�cation of demand synergies in mixed

logit models of demand for bundles. Without random coe�cients, the Independence from Irrelevant
Alternatives (IIA) property would imply that the relative predicted market shares of any two bundles
do not depend on the characteristics of any other bundle. Removing from the choice set a bundle
almost identical to the preferred one (e.g., same products but one) or a bundle completely di�erent
from it (e.g., only di�erent products) would equivalently have no impact on the remaining relative
predicted market shares. The random intercepts mitigate this limitation in an intuitive way: the in-
direct utilities of all bundles including product j will share the random intercept µitj , so that bundles
with a larger overlap of products will also have more correlated indirect utilities. Disentangling de-
mand synergies from these random intercepts is the key identi�cation challenge in models of demand
for bundles: as shown by Gentzkow (2007), not accounting for possible correlations across the indi-
rect utilities of bundles with overlapping products may lead to �nding spurious demand synergies and
Hicksian complementarities.

Average Utilities and Price Endogeneity. We treat the average utility δtj as a �xed e�ect to
be identi�ed and estimated, being unspeci�c about its exact dependence on price and other observed
or unobserved market-product speci�c characteristics. For example, following Berry (1994) and BLP,
a classical linear speci�cation is δtj = xtjτ + αptj + ξtj , where xtj is a vector of exogenous observed
characteristics, ptj is the observed price, (τ, α)T is a vector of preference parameters, and ξtj is a
residual unobserved to the econometrician but observed to both individuals and price-setting �rms. In
this context, endogeneity arises whenever prices are chosen by �rms on the basis of (ξtj)

Jt
j=1.

Our local identi�cation arguments are robust to cases of price endogeneity in which, for any bundle
b, the source of endogeneity is con�ned to δtb(Γtb) =

∑
j∈b δtj + Γtb, with Γtb constrained to be

constant across markets with the same market-bundle speci�c observables. In particular, as detailed
in Assumption 2 below, we require Γtb = Γb +g(xtb, ptb; Σg), where Γb is a bundle-speci�c �xed e�ect
and g(·, ·; Σg) is a function parametrized by Σg of the observed characteristics xtb and of the observed
price surcharge/discount ptb (the di�erence between the price of bundle b and

∑
j∈b ptj). For example,

one can specify g(·, ·; Σg) as g(xtb, ptb; τ, α) = xtbτ + αptb. While our assumptions on Γtb allow δtj
to be any arbitrary function of (xtj , ptj , ξtj), they restrict the functional form of the market-bundle
speci�c unobservables on the basis of which �rms choose prices. For instance, with the above linear
speci�cations for δtj and Γtb, we have δtb(Γtb) = (xtb+

∑
j∈b xtj)τ+α(ptb+

∑
j∈b ptj)+

∑
j∈b ξtj+Γb,

with the market-bundle speci�c unobservable restricted to
∑

j∈b ξtj + Γb.

Our global identi�cation arguments further require restrictions on δtj and on the price-setting
model. As detailed in section 1.4.2, we require: (i) the average utility δtj to be additively separable
in ξtj and an arbitrary function of (xtj , ptj) and (ii) the existence of exogenous cost shifters that are
unobserved to the econometrician but identi�able from observed market shares and prices.
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1.3 Local Identi�cation

Suppose that the econometrician observes without error the market shares stb of each b ∈ Ct1 for
each independent market t = 1, ..., T .8,9 We focus on the case of a �xed number of products Jt and of
a �xed number of independent markets T . We do not consider the case of panel data with repeated
observations for each market. Similar to Berry and Haile (2014), our notion of identi�cation concerns
the conditions under which

stb(δ′t(Γ
′
t); Σ′F ) = stb

subject to Γ′tb = δ′tb(Γ′tb)−
∑
j∈b

δ′tj ,b ∈ Ct2
(1.4)

has a unique solution for t ∈ T and b ∈ Ct1, where δ′t(Γ
′
t) = (δ′tb(Γ′tb))b∈Ct1 and stb(δ′t(Γ

′
t); Σ′F ) is

de�ned in (2.3). De�ne the Jt × 1 market t-speci�c vector δtJt = (δtj)j∈Jt , and the Ct1 × 1 market
t-speci�c vectors st(·; Σ′F ) =

(
stb(·; Σ′F )

)
b∈Ct1 and st = (stb)b∈Ct1 .

De�nition 1. Model (2.3) is locally identi�ed if and only if there exists a neighbourhood V of the true

parameters (δ1J1 , ..., δTJT ,Γ1, ...,ΓT ,ΣF ) such that (δ1J1 , ..., δTJT ,Γ1, ...,ΓT ,ΣF ) is the unique solution

to (1.4) in V .

De�nition 1 constrains our discussion of identi�cation to the existence of a unique solution to system
(1.4) in mixed logit model (2.3). We will refer to the existence of multiple solutions to this speci�c
problem as to lack of identi�cation. Because of the non-linear nature of model (2.3), we start by
studying the problem of local identi�cation. In section 1.4, we then investigate global identi�cation,
which requires stronger assumptions.

Building on Berry et al. (2013), our identi�cation arguments rely on demand inverses derived from
(1.4). De�ne the inverse market share for market t ∈ T as:

s−1
t (·; ΣF ) =

(
s−1
tb (·; ΣF )

)
b∈Ct1 : St1 ⇒ RCt1 , (1.5)

where s−1
tb (·; ΣF ) is the inverse market share for market t = 1, ..., T and b ∈ Ct1, and

St1 = {(stb)b∈Ct1 : stb ∈ (0, 1),
∑

b∈Ct1

stb < 1}

is the set of all feasible market share vectors for market t ∈ T. The next Assumption imposes some
regularity conditions on the parametric distribution of the random coe�cients (�rst requirement) and
that the products belonging to any bundle can also be purchased individually (second requirement).

Assumption 1.

1. The density of βit,
dF (βit;Σ

′
F )

dβit
, is continuously di�erentiable with respect to Σ′F for any βit.

2. If b ∈ Ct2, then j ∈ Jt for any j ∈ b.

8This is only for the purpose of identi�cation, in estimation we consider observed market shares subject to sampling
error.

9Sher and Kim (2014), Allen and Rehbeck (2019a), and Wang (2019) study a di�erent identi�cation problem, where
only the product-level market shares, rather than the bundle-level market shares, are observed.
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The next Lemma veri�es the su�cient conditions by Berry et al. (2013) for the bundle-level demand
inverse (1.5) to be a continuously di�erentiable function.

Lemma 1.

� For any given Σ′F ∈ ΘΣF , the inverse market share (1.5) is a function: for each st ∈ St1, there

exists a unique δ′t ∈ RCt1 such that st(δ
′
t; Σ′F ) = st.

� Given Assumption 1, the inverse market share, s−1
t (s′t; Σ′F ), is continuously di�erentiable with

respect to (s′t,Σ
′
F ) in a neighbourhood of (st,ΣF ).

Proof. See Appendix A.2.

It is not hard to see that without further restrictions on Γt or additional external information, model
(2.3) can hardly be identi�ed. In this paper, we build on Gentzkow (2007)'s insight that when Γt = Γ,
the availability of purchase data for multiple markets will help identi�cation, and propose the following
restriction.

Assumption 2. Γtb = Γb + g(xtb, ptb; Σg) for t ∈ T and b ∈ Ct2, where Γb is a bundle-speci�c

�xed e�ect, xtb a vector of observed market-bundle speci�c characteristics, ptb an observed price

surcharge/discount for the joint purchase of the products in the bundle, and g(·, ·; Σg) a function of

(xtb, ptb) known up to and continuously di�erentiable with respect to Σg ∈ ΘΣg ⊆ RD.

Assumption 2 restricts the variation in Γtb across markets to be fully captured by the variation in
the observables (xtb, ptb) through the parametric function g(xtb, ptb; Σg). This allows to reduce the
dimensionality of the collection of average demand synergies from

∑T
t=1Ct2 to D+C2 and in particular

to treat Γb as a bundle-speci�c �xed e�ect to be identi�ed and estimated. Note that, even though
Assumption 2 requires all markets with given (xtb, ptb) to have the same average demand synergy
Γb + g(xtb, ptb; Σg), each individual in each market is allowed to have a speci�c demand synergy
deviation ζitb, so that Γitb may potentially di�er across individuals for any given market and bundle.
Moreover, as we illustrate below, in applications with a large number of markets with overlapping choice
sets, Assumption 2 potentially leads to many over-identifying moment restrictions and can be weakened,
so to allow for more �exible speci�cations of Γtb. In those cases, one could for example specify
(Γtb,Σtg) = (Γ1b,Σ1g) for t = 1, ..., T1, (Γtb,Σtg) = (Γ2b,Σ2g) for t = T1 + 1, ..., T2, and so on until
each t belonged to one ofQ groups of �similar� markets with (Γ1b,Σ1g) 6= (Γ2b,Σ2g) 6= ... 6= (ΓQb,ΣQg).

Remark 1. Assumption 2 gives rise to testable implications and can be veri�ed in practice. In Ap-

pendix A.7, we present a speci�cation test that builds on partial identi�cation methods. Essentially, the

proposed test checks whether there exists at least one pro�le of parameters (δ1J1 , ..., δTJT ,Γ1, ...,ΓT ,ΣF )

satisfying Assumption 2 that solves demand system (1.4). A rejection of the test is evidence against

Assumption 2 and highlights its incoherence with the data.

The presence of random coe�cients, i.e. dim(ΣF ) > 0, leads system (1.4) to have more unknowns than
equations, introducing an identi�cation problem not present in multinomial logit models. In general
demand systems where the indirect utilities of di�erent alternatives have no particular relationships,
this dimensionality issue is typically addressed by including additional instruments beyond those nec-
essary to address price endogeneity. However, in the case of Gentzkow (2007)'s demand for bundles,
the speci�c structure that links the indirect utilities of bundles to those of single products allows to
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reduce dimensionality from within the system. Assumption 2 embodies this strategy: by imposing a
symmetry restriction among the average demand synergies across markets, the model can be identi�ed
without requiring additional instruments to those necessary to address price endogeneity.

Due to Lemma 1 and Assumption 2, at the true parameters ΣF and market shares st, one can
re-express the �rst line of system (1.4) as:∑

j∈b
δtj + Γb + g(xtb, ptb; Σg) = s−1

tb (st; ΣF ), for bundle b ∈ Ct2

δtj = s−1
tj (st; ΣF ), for product j ∈ b.

(1.6)

By substituting (1.6) into the second line of (1.4), one gets:

Γb = s−1
tb (st; ΣF )−

∑
j∈b

s−1
tj (st; ΣF )− g(xtb, ptb; Σg), (1.7)

for t ∈ T and bundle b ∈ Ct2. Note that the left-hand side of system (1.7) does not depend on market
t, while the right-hand side does. Consequently, at the true parameters Σ = (ΣF ,Σg), true market
shares of any two markets, st and st′ , and any b ∈ Ct2 ∩Ct′2, one obtains:

s−1
tb (st; ΣF )−

∑
j∈b

s−1
tj (st; ΣF )−g(xtb, ptb; Σg) = s−1

t′b(st′ ; ΣF )−
∑
j∈b

s−1
t′j (st′ ; ΣF )−g(xt′b, pt′b; Σg). (1.8)

Our identi�cation strategy exploits all such moment conditions for any pair of markets t 6= t′ and
any b ∈ Ct2 ∩ Ct′2. As we will see below, under certain conditions, these moment restrictions can
uniquely determine the true parameters Σ = (ΣF ,Σg). Then, due to (1.7), the true parameters
Σ = (ΣF ,Σg) can uniquely determine the remaining portion Γb of the true demand synergies, for
any b ∈ Ct2. Denote gt(Σg) = (g(xtb, ptb; Σg))b∈Ct2 . Finally, because of Lemma 1, one can uniquely
recover δt(Γ + gt(Σg)) = (δt1, ..., δtJt , (δtb(Γb + g(xtb, ptb; Σg)))b∈Ct2).

Note that for any b ∈ C2, there exists t such that b ∈ Ct2. Then, for any b ∈ C2, de�ne
Tb = {t : b ∈ Ct2, t ∈ T}. If Tb has more than one element, we order them from t1 to t|Tb|. By
applying the right-hand side of (1.7) to ta and to ta+1 and by taking the di�erence, for a = 1, ..., |Tb|−1,
we then obtain |Tb| − 1 moment conditions:10

mb(Σ′F ,Σ
′
g; s) =

[
s−1
tab

(sta ; Σ′F )−
∑
j∈b

s−1
taj

(sta ; Σ′F )− s−1
ta+1b

(sta+1 ; Σ′F )

+
∑
j∈b

s−1
ta+1j

(sta+1 ; Σ′F ) + g(xta+1b, pta+1b; Σ′g)− g(xtab, ptab; Σ′g)

]|Tb|−1

a=1

,

mb(Σ′; s)|Σ′=Σ = 0.

(1.9)

Moment conditions (1.9) rely on relationship (1.7) and the fact that markets ta and ta+1 have the
same bundle-speci�c �xed e�ect Γb. As a consequence, at the true parameter values Σ′ = Σ,
mb(Σ′; s)|Σ′=Σ = (Γb−Γb)

|Tb|−1
a=1 = 0. De�nem(Σ′) = m(Σ′; s) as a function of Σ′ = (Σ′F ,Σ

′
g) ∈ ΘΣ =

10For notational simplicity, we suppress the dependence of the moment conditions from the market-bundle speci�c
observables (xtb, ptb)Tt=1.
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ΘΣF×ΘΣg that stacks together the above moment conditions for all the bundles with |Tb| ≥ 2: m(Σ′) =

(mb(Σ′; s))b∈C2,|Tb|≥2. We then have m(Σ′)|Σ′=Σ = 0, which consists of
∑

b∈C2,|Tb|≥2 (|Tb| − 1) mo-
ment conditions with P +D = dim(Σ′) unknowns.

In what follows, inspired by Rothenberg (1971), we show that full column rank condition rank(∂m(Σ′)
∂Σ′ )

∣∣
Σ′=Σ

=

dim(Σ) = P + D is necessary and su�cient for identi�cation among the rank regular Σ ∈ ΘΣ.11,12

Rank regularity is a broader concept than full column rank: if ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full column rank, then
Σ is rank regular.13

Theorem 1. Local Identi�cation: Suppose Assumptions 1 and 2 hold, and Σ ∈ ΘΣ is rank regular

for ∂m(Σ′)
∂Σ′ . Then, model (2.3) is locally identi�ed if and only if ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

is of full column rank.

Proof. See Appendix A.5

Theorem 1 establishes the link between the number of markets with overlapping choice sets and the
local identi�cation of model (2.3). Note that, if the number of markets with bundle b available in
the choice set increases, so that |Tb| becomes larger, then the number of moment conditions in (1.9)
increases. In this sense, Theorem 1 formalizes the intuition that having data on additional markets
with overlapping choice sets, or analogously on larger overlapping choice sets for certain markets, will
help identi�cation. Speci�cally, suppose that Σ is rank regular and that its dimension, P+D, is greater
than the number of moment conditions,

∑
b∈C2,|Tb|≥2 (|Tb| − 1). Then, the rank of ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

cannot
exceed the number of its rows,

∑
b∈C2,|Tb|≥2 (|Tb| − 1), which in turn is smaller than the number of

its columns, P +D. As a consequence, ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is not of full column rank and model (2.3) is not
identi�ed.

While theoretically useful, the concept of rank regularity is abstract and not easily veri�able. The
next Corollary shows that whenever the dimension of Σ is larger than the number of moment conditions
and the Jacobian matrix ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

is of full row rank, then Σ is rank regular and model (2.3) is not
identi�ed.14

Corollary 1. Lack of Local Identi�cation: Suppose Assumptions 1 and 2 hold, and the number of

moment conditions,
∑

b∈C2,|Tb|≥2 (|Tb| − 1) is strictly smaller than the dimension of Σ, P +D. Then,

if the Jacobian matrix ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full row rank, model (2.3) is not locally identi�ed.

Proof. See Appendix A.6.

11Σ ∈ ΘΣ is rank regular for the continuously di�erentiable function ∂m(Σ′)
∂Σ′ if there exists a neighbourhood U of Σ

such that rank( ∂m(Σ′)
∂Σ′ ) = rank( ∂m(Σ′)

∂Σ′ )
∣∣
Σ′=Σ

for each Σ′ ∈ U .
12Rothenberg (1971) shows the usefulness of the concept of rank regularity for local identi�cation in non-linear models.

Our Theorem 1 adapts Rothenberg (1971)'s Theorem 1 (p. 579) to our environment. Note that the concept of rank

regularity is not vacuous in our context and there is plenty of such points: the set of rank regular points of ∂m(Σ′)
∂Σ′ is

open and dense in ΘΣ. For a proof of this property, see Appendix A.3.

13In fact,
[
∂m(Σ′)
∂Σ′

]T [
∂m(Σ′)
∂Σ′

]
has positive determinant at Σ′ = Σ. Moreover, ∂m(Σ′)

∂Σ′ is continuously di�erentiable with

respect to Σ′. Then, the determinant of
[
∂m(Σ′)
∂Σ′

]T [
∂m(Σ′)
∂Σ′

]
is also continuous with respect to Σ′ and therefore positive

in a neighbourhood of Σ′ = Σ. As a consequence, ∂m(Σ′)
∂Σ′ is of full column rank in a neighbourhood of Σ′ = Σ and has

constant rank P +D in the same neighbourhood of Σ′ = Σ.
14Note that lack of local identi�cation is the strongest negative result one can get: if the model is not locally identi�ed,

then for sure it will not be globally identi�ed.
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1.4 Global Identi�cation

Up to this point, we have focused on the local uniqueness of solutions to system (1.9). Without any
further restriction, the set of solutions to system (1.9) over the entire domain of parameters may
not be singleton. There are at least two approaches to dealing with this global multiplicity. Partial
identi�cation, which entails the characterization of the set of global solutions to system (1.9), i.e.
the identi�ed set, and global identi�cation, which consists in strengthening the conditions for local
identi�cation until the identi�ed set is singleton over the entire domain of parameters. We opt for the
second approach and, in what follows, discuss su�cient conditions for global identi�cation. Our choice
is motivated by estimation convenience: as detailed in section 1.5, our global identi�cation conditions
imply a convenient MLE.

Denote by m(Σ′;T0) moment conditions (1.9) constructed from the subset of markets T0 ( T and
evaluated at Σ′ = (Σ′F ,Σ

′
g). The starting point of our global identi�cation argument is to restrict the

number of solutions to system (1.9) with the following testable Assumption:

Assumption 3. There exists T0 ( T such that m(Σ′;T0) = 0 has a �nite number of solutions in ΘΣ.

Assumption 3 alleviates the severity of the identi�cation problem to a �nite collection of observationally
equivalent candidates. All of our global identi�cation results go through also in the more general case
of a countable collection of solutions. However, for notational simplicity, we limit our exposition to the
�nite case. Assumption 3 implies local identi�cation, but is weaker than the typical rank conditions
used to achieve global identi�cation. For example, the classic results by Rothenberg (1971) require
the Jacobian of the gradient of the log-likelihood function to be non-singular everywhere, so that the
log-likelihood function is strictly concave (Bowden, 1973). While strict concavity is guaranteed by logit
and probit models (Amemiya (1985) pp. 273-274), it is not by mixed logit models. Coherently with
mixed logit model (2.3), Assumption 3 does not impose strict concavity of the log-likelihood function.

Remark 2. While Assumption 3 is high-level, in Appendix A.7 we present a veri�able su�cient con-

dition that implies it (Proposition 4): ∂m(Σ′;T0)
∂Σ′ is of full column rank when evaluated at any of the

solutions to m(Σ′;T0) = 0. Building on the partial identi�cation methods by Chernozhukov et al.

(2007) and by Romano and Shaikh (2012), in Appendix A.7 we also propose a testing procedure to

verify this su�cient condition in practice. A rejection of the test is evidence in support of Assumption

3.

Assumption 3 is not new to the global identi�cation literature and is also used, for example, by
Komunjer (2012). To obtain global identi�cation, Komunjer (2012) additionally requires the moment
function to have non-negative Jacobian and to be proper.15 We avoid these further restrictions by
relying on the following real analytic property of the mixed logit model.16

Theorem 2. Real Analytic Property: For any F , st(δt;F ) is real analytic with respect to δt in

RCt1, for t = 1, ..., T .

Proof. See Appendix A.8.

15A function f : X → Y between two topological spaces is proper if the preimage of every compact set in Y is compact
in X.

16A function f : X → R is real analytic in X if for each x0 ∈ X, there exists a neighbourhood U of x0 such that f(x)

is equal to its Taylor expansion
∑∞
n=0

f(n)(x0)
n!

(x− x0)n for any x ∈ U .
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Theorem 2 shows the market share function of the mixed logit model to be real analytic with respect
to the average utilities given any distribution of random coe�cients (parametric or non-parametric).
Fox et al. (2012) and il Kim (2014) also exploit the real analytic properties of logit models to achieve
global identi�cation, but in more restrictive frameworks. il Kim (2014) shows the real analyticity of
multinomial logit and nested logit models (section IV), while Fox et al. (2012) show it for mixed logit
models with random coe�cients de�ned over compact supports (Lemma 5 and section 6)�ruling out,
e.g., normal and log-normal distributions.

While our local identi�cation results do not rely on the nature of the variation in δtJt , our global
identi�cation depends on whether the variation in δtJt is exogenous across markets: price endogeneity
restricts this variation and leads to additional di�culties. To overcome these di�culties, we propose
the use of mild restrictions on the price-setting model. In what follows, we treat separately the simpler
case of exogenous variation in δtJt , and that of price endogeneity.

1.4.1 Exogenous Average Utilities

Here we consider the case of exogenous variation in δtJt across markets. Given Assumption 3, denote
the �nite set of solutions to m(Σ′;T0) = 0 in ΘΣ by S = {Σr : r = 0, ..., R}, where Σ0 = (Σ0

F ,Σ
0
g)

represents the true value Σ = (ΣF ,Σg). On the basis of Lemma 1, de�ne the corresponding Γr for
r = 0, 1, ..., R. The real analytic property of st(δ′t; Σ′F ) allows to eliminate the extra solutions Σr,
r = 1, ..., R, by exploiting the additional variation provided by δtJt for t ∈ T \ T0. Intuitively, the
real analytic property guarantees that S is non-singleton, i.e. lack of identi�cation, only on a union
of R zero measure sets of δtJt , t ∈ T \ T0. Because the union of any �nite number of zero measure
sets has still zero measure, the real analytic property�combined with Assumption 3�ensures global
identi�cation almost everywhere given the additional variation provided by δtJt , t ∈ T \T0.

De�ne the set of matrices M = {Mt : t = 1, ..., T}, where each Mt is a matrix of dimension
Ct2 × Ct1. Remember that Ct2 is the number of bundles and Ct1 the number of inside options (i.e.,
bundles plus single products). Mt is made of two sub-matrices: Mt = [M1

t ,M
2
t ]. M1

t is a matrix of
−1's and 0's of dimension Ct2×Jt, where the columns represent single products and the rows bundles.
Each row of M1

i identi�es with −1's the product composition of the corresponding bundle. M2
t is

instead an identity matrix I of dimension Ct2 × Ct2, with the rows corresponding to bundles. For
example, suppose the choice set (without outside option) in market t to be {1, 2, 3, (1, 2), (1, 3), (2, 3)}
and the corresponding average utility vector to be δt = (δt1, δt2, δt3, δt(1,2), δt(1,3), δt(2,3))

T, with Ct1 = 6

and Ct2 = 3. Then,

Mt =

−1 −1 0 1 0 0

−1 0 −1 0 1 0

0 −1 −1 0 0 1

 .
Remember that gt(Σg) = (g(xtb, ptb; Σg))b∈Ct2 and that δt(Γ+gt(Σg)) = (δtJt , (δtb(Γb+g(xtb, ptb; Σg)))b∈Ct2),
where δtb(Γb + g(xtb, ptb; Σg)) =

∑
j∈b δtj + Γb + g(xtb, ptb; Σg). For r = 1, ..., R, de�ne:

∆ID
r = {(δtJt)t∈T\T0

: ∃t ∈ T \T0 such that Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) 6= Γr + gt(Σ

r
g)}.

Denote by δ0
tJt

the true value of δtJt for which st(δt(Γ
0 + gt(Σ

0
g)); Σ0

F ) = st and de�ne ∆ID =

∩r=1,...,R∆ID
r .
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Theorem 3. Global Identi�cation with Exogenous Prices: Suppose Assumptions 1�3 hold and

ΘΣ is compact. Then, it follows that:

� System (1.9) has a unique solution in ΘΣ and model (2.3) is globally identi�ed if and only if

(δ0
tJt

)t∈T\T0
∈ ∆ID.

� If ∆ID
r 6= ∅ for r = 1, ..., R, then the Lebesgue measure of ×t∈T\T0

RJt \∆ID is zero.

Proof. See Appendix A.9.

While the �rst result of Theorem 3 provides necessary and su�cient conditions for global identi�cation,
the second underlines their practical usefulness. The set ∆ID is �very large� and will include the true
(δ0
tJt

)t∈T\T0
in �almost all� cases: global identi�cation will be achieved almost everywhere.

1.4.2 Endogenous Prices

We now extend the global identi�cation results from Theorem 3 to the case of endogenous prices,
where the variation in δtJt across markets is restricted by the price-setting behaviour of �rms. We add
mild restrictions to the price-setting model and assume the existence of exogenous cost shifters that
are unobserved to the econometrician but identi�able from observed market shares and prices. Berry
and Haile (2014) rely on a similar restriction (Assumption 7b, p. 1769) for the global identi�cation
of a simultaneous system of demand and supply by instrumental variables. However, because of the
speci�c utility structure of model (2.3) under Assumption 2, our argument is di�erent and does not
require the instrumental variables (i.e., the cost shifters) to be observed to the econometrician but only
to be identi�able.

Similar to BLP, we specify the average utility δtj as additively separable in a systematic component
and an unobserved residual: δtj = ∆tj(xtj , ptj) + ξtj , with xtj a vector of observed exogenous char-
acteristics, ptj the observed endogenous price, ∆tj(·, ·) any arbitrary function of (xtj , ptj) (potentially
di�erent across markets and products), and ξtj a residual unobserved to the econometrician. Even
though we rely on the additive separability of ∆tj(xtj , ptj) and ξtj , the target of our identi�cation is
still their sum δtj . Endogeneity arises whenever �rms choose prices (also) on the basis of the market-
speci�c residuals, which we denote by ξtJt = (ξtj)j∈Jt ∈ RJt . Because we essentially treat each δtj
as a �xed e�ect, price endogeneity complicates global identi�cation to the extent that it constrains
the variation of δtJt across markets (the key identifying variation used in Theorem 3). As an extreme
example, suppose that prices are chosen so that ∆tj(xtj , ptj) = −ξtj , then δtj = 0 for every t and
j. This rules out any variability in δtJt , introducing the need for alternative sources of identi�cation.
To simplify exposition, in what follows we sometimes drop the dependence on ∆tj(xtj , ptj) from our
notation.

Here we discuss the case of pure components pricing, where each �rm chooses the prices of the
individual products it owns and the price of any bundle is given by the sum of the prices of its
components. With pure components pricing, the econometrician observes the prices of the individual
products ptJt = (ptj)j∈Jt , while the price surcharges/discounts for the joint purchase of products in
bundles are all constrained to zero, so that ptb = 0 and gtb(Σ′g) = gtb(xtb, 0; Σ′g) for t = 1, ..., T and
b ∈ Ct2. Our arguments can be readily modi�ed to accommodate alternative pricing strategies such
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as mixed bundling (see Armstrong (2016a) for a survey on non-linear pricing).17,18

Denote by ctJt = (ctj)j∈Jt ∈ RJt+ a vector of cost shifters, one for each of the products in market t.
These cost shifters could for example be the marginal costs of the products sold in market t. Similar
to ξtJt , also the cost shifters ctJt are assumed to be unobserved to the econometrician. In this sense,
cost shifters can be seen as �unobserved� instruments: their existence provides exogenous identifying
variation, but they do not need to be observed to the econometrician. As for the case of exogenous
average utilities, we propose a characterization of the set of unobservables (ξtJt , ctJt) that su�ces for
the global identi�cation of (δtJt ,Γ,Σ).

Let Dtξ × Dtc denote the domain of (ξtJt , ctJt) for t ∈ T. Suppose that the �rms in mar-
ket t choose prices according to pure components given the true (Γ0,Σ0) and (ξtJt , ctJt) ∈ Dtξ ×
Dtc. Denote the set of equilibrium prices given ξtJt and ctJt by ptJt(ξtJt , ctJt) ⊆ RJt+ , given ξtJt
by Pt(ξtJt) = ∪ctJt∈DtcptJt(ξtJt , ctJt), and the grand collection of all possible equilibrium prices by
Pt = ∪ξtJt∈DtξPt(ξtJt). The vector of observed prices is an equilibrium of the price-setting model, so
that ptJt ∈ ptJt(ξtJt , ctJt).

Assumption 4.

� (Cost Shifters at the Product-Level) Dtc is open in RJt for t ∈ T.

� (Identi�ability of Cost Shifters) ctJt is a C1 function of (ξtJt , ptJt) ∈ {(ξ′tJt , p
′
tJt

) : ξ′tJt ∈
Dtξ, p

′
tJt
∈ Pt(ξtJt)}: ctJt = φt(ξtJt , ptJt).

The second part of Assumption 4 resembles Assumption 7b by Berry and Haile (2014) and is the key
to our global identi�cation with price endogeneity. Berry and Haile (2014) show that their Assumption
7b is implied by a variety of common price-setting models of oligopoly with di�erentiated products
(Remark 1, p. 1766). Their result follows from the assumption of �connected substitutes� on the
demand system (De�nition 1, p. 1759): loosely speaking, this rules out any negative cross-price
elasticity between any two products. In the case of pure components pricing, the relevant demand
system has only Jt product-level equations (the system of product-level market shares) rather than Ct1
bundle-level equations. While model (2.3) satis�es the connected substitutes property at the bundle-
level, it may not at the product-level (i.e., products may be complements) and hence Remark 1 by
Berry and Haile (2014) does not apply to our case.

By combining the bundle-level connected substitutes property with the speci�c utility structure of
model (2.3) under Assumption 2, in Appendix A.10 we show that Assumption 4 is satis�ed by common
pure components pricing models. We show that it is consistent with any number of �rms (monopoly,
duopoly, or oligopoly) playing a complete information simultaneous Bertrand-Nash game with any
pro�le of demand synergies (substitutability and/or complementarity). Importantly, Assumption 4
leaves the cardinality of ptJt(ξtJt , ctJt) unrestricted: the price-setting model is allowed to have a unique,
several, or in�nitely many equilibria.

Denote by st(δ′t(Γ
′ + gt(Σ

′
g)); p

′
tJt
,Σ′F ) the market share function in market t evaluated at prices

p′tJt = (p′tj)j∈Jt and structural parameters (δ′tJt ,Γ
′,Σ′), and remember that δ′tj = ∆′tj(xtj , ptj) + ξ′tj for

17With mixed bundling pricing, every �rm chooses one price for each bundle it sells and the price of any bundle of
products owned by di�erent �rms is the sum of the prices of its components. In this case, the price surcharge/discount
for the joint purchase of products in bundles, ptb, may di�er from zero for any t and b ∈ Ct2.

18Identi�cation results for the case of mixed-bundling are available on request.



1.5. Estimation 17

each j ∈ Jt. Given Assumption 3, de�ne for each r = 1, ..., R:

ΞID
r = {(ξtJt , ctJt)t∈T\T0

:∃t ∈ T \T0 such that Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) 6= Γr + gt(Σ

r
g)

for any ptJt ∈ ptJt(ξtJt , ctJt)}.

and ΞID = ∩Rr=1ΞID
r . We make the following technical Assumption:

Assumption 5. For every r = 1, ..., R, there exists t ∈ T \ T0, so that for almost every ptJt ∈ Pt,

there exists ξ′tJt, such that Γr + gt(Σ
r
g) 6= Mts

−1
t (st(δ

′
t(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ).

Even though Assumption 5 is abstract, it is implied by more concrete conditions. The following
Corollary shows that, for example, by strengthening the real analytic property of mixed logit models
from Theorem 2, Assumption 5 is satis�ed:

Corollary 2. Suppose that the following conditions hold:

� For r = 1, ..., R, ΞID
r 6= ∅.

� For any t ∈ T\T0 and (Γ,Σ), st(δ
′
t(Γ+gt(Σg)); p

′
tJt
,ΣF ) is real analytic with respect to (δ′tJt , p

′
tJt

).

Then, Assumption 5 holds.

Proof. See Appendix A.11.

Corollary 2 tightens the real analyticity of the market share function to hold also with respect to the
prices p′tJt (in addition to the average utilities δ′tJt). If price enters the indirect utility linearly (as is
typical in applied work), then Corollary 2 will hold when the price coe�cient is for example constant,
or bounded, or when its moments increase at most exponentially.

Denote by (ξ0
tJt
, c0
tJt
, p0
tJt

) the true value of (ξtJt , ctJt , ptJt) for which st(δt(Γ
0 + gt(Σ

0
g)); p

0
tJt
,Σ0

F ) =

st. We now present the main identi�cation result of the paper.

Theorem 4. Global Identi�cation with Endogenous Prices: Suppose Assumptions 1�4 hold and

ΘΣ is compact. Then, it follows that:

� If (ξ0
tJt
, c0
tJt

)t∈T\T0
∈ ΞID, system (1.9) has a unique solution in ΘΣ and model (2.3) is globally

identi�ed.

� If Assumption 5 holds, the Lebesgue measure of ×t∈T\T0
[Dtξ ×Dtc] \ ΞID is zero.

Proof. See Appendix A.12.

As for Theorem 3, the �rst part of Theorem 4 provides su�cient conditions for global identi�cation,
while the second highlights that global identi�cation will be achieved almost everywhere.

1.5 Estimation

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed bundle-level
market shares subject to sampling error and robust to price endogeneity. We account for sampling
error to accommodate the typical necessity of computing bundle-level market shares from a sample
of household-level purchases (as in Gentzkow (2007), Kwak et al. (2015), Grzybowski and Verboven
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(2016), Ruiz et al. (2017), and Ershov et al. (2018)). We consider asymptotics over the number of
individuals I within each market, keeping �xed the number of markets and bundles, and demonstrate
that our identi�cation conditions imply the proposed MLE to be consistent and asymptotically normal.

Even though theoretically attractive, the standard MLE of model (2.3) is subject to a challenge of
dimensionality even under Assumption 2: the number of demand parameters can still be too large to
be handled numerically (Berry et al., 2014). As an example, suppose that in every market there are J
products and individuals purchase bundles of size K. Without further restrictions, model (2.3) under
Assumption 2 would imply JK demand synergy parameters Γ, P parameters ΣF for the distribution
of random coe�cients, D parameters Σg for the function gt, and J × T average utility parameters
(δ1J1 , ..., δTJT ). The estimation of JK + P + D + J × T parameters may be hard, especially because
identi�cation requires a large T .

We propose to reduce the dimensionality of the MLE's numerical search by means of a novel
demand inversion speci�c to Gentzkow (2007)'s model that concentrates (δ′1J1

, ..., δ′TJT ) out of the
likelihood function.19 As a consequence, our proposed MLE e�ectively reduces the numerical search
from (δ′1J1

, ..., δ′TJT ,Γ
′,Σ′), i.e. JK+P+D+J×T parameters, to (Γ′,Σ′), i.e. JK+P+D parameters.

Remark 3. Our estimation discussion focuses on the case of exogenous average utilities. However,

when the assumptions from the previous section hold and the model is globally identi�ed, the estimation

results presented below will also hold for the case of price endogeneity with no modi�cation. The

exogenous cost shifters that play the role of instruments in our identi�cation arguments need to exist

but do not need to be observed. The estimation of (δ′1J1
, ..., δ′TJT ,Γ

′,Σ′) will not require the �explicit�

use of instruments also in the presence of price endogeneity.

1.5.1 Invertibility of Product-Level Market Shares

Here we propose a novel demand inverse designed to handle complementarity among products in models
along the lines of Gentzkow (2007)'s. For any given value of the other parameters, we establish a one-
to-one mapping between the observed product-level market shares and the market-product speci�c
average utilities. We then illustrate how this demand inverse can be used to greatly simplify the
practical implementation of the MLE of demand for bundles.

De�ne the observed product-level market share of product j ∈ Jt as stj. =
∑

b∈Ct1:j∈b stb and
denote the vector stacking stj. for all products in market t by stJt. = (stj.)j∈Jt . Similarly, de�ne the
product-level market share function of each product j ∈ Jt as stj.(δ′tJt ; Γ′,Σ′) =

∑
b∈Ct1:j∈b stb(δ′t(Γ

′+

gt(Σ
′
g)); Σ′F ) and denote the vector stacking stj.(δ′tJt ; Γ′,Σ′) for all products in market t by stJt.(·; Γ′,Σ′) =

(stj.(·; Γ′,Σ′))j∈Jt .

Theorem 5. Demand Inverse: Suppose that Assumptions 1 and 2 hold. Then, for any (Γ′,Σ′) ∈
ΘΓ ×ΘΣ, there exists at most one δ

′
tJt

such that stJt.(δ
′
tJt

; Γ′,Σ′) = stJt..

Proof. See Appendix A.13.

When (Γ′,Σ′) is equal to the true value (Γ,Σ), Theorem 7 implies that the only δ′tJt that satis�es
stJt.(δ

′
tJt

; Γ,Σ) = stJt. is the true δtJt . As a result, the function stJt.(·; Γ,Σ) is globally invertible.

19As we clarify below, our demand inverse di�ers from the classic one by Berry (1994) and Berry et al. (2013), which
in our context corresponds to the demand inverse presented in Lemma 1.
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When (Γ′,Σ′) 6= (Γ,Σ), it is possible that there is no δ′tJt such that stJt.(δ
′
tJt

; Γ′,Σ′) = stJt..
20 Because

the existence of some δ′tJt that rationalizes the observed product-level market shares can always be
veri�ed numerically (following the procedure outlined below), in what follows we assume it and denote
the bijection mapping stJt. to δ

′
tJt

by:

δ′tJt = s−1
tJt.

(stJt.; Γ′,Σ′)

= δtJt.(stJt.; Γ′,Σ′).

Theorem 7 di�ers from the classic demand inverse by Berry (1994) (then generalized by Berry et al.
(2013)). In our context, Berry (1994) implies a bijection between the observed bundle-level market
shares and the full vector of market-bundle speci�c average utilities. We rely on this classic de-
mand inverse throughout the paper and, for completeness, adapt it to our framework in Lemma 1.
Di�erently, Theorem 7 establishes a bijection between a transformation of the observed bundle-level
market shares�the product-level market shares�and a sub-vector of the market-bundle speci�c aver-
age utilities�the market-product speci�c average utilities. While the invertibility of the product-level
market shares on the basis of Berry (1994) would require the products to be substitutes, Theorem 7
applies also to the case of complementary products.

1.5.2 A Maximum Likelihood Estimator

We now allow for the possibility that observed market shares are subject to sampling error, due
for example to the necessity of measuring them from household-level purchase data. Denote by Itb
the number of individuals in market t observed to choose b and by ŝtb = Itb

I the corresponding
observed market share. To simplify exposition, in what follows we drop any notational dependence
from the observables and denote gt(Σ′g) = (g(xtb, ptb; Σ′g))b∈Ct2 . The log-likelihood function evaluated
at (δ′1J1

, ..., δ′TJT ,Γ
′,Σ′) can be written as:

`I(δ
′
1J1
, ..., δ′TJT ,Γ

′,Σ′; ŝ1, ..., ŝT ) =

T∑
t=1

∑
b∈Ct

ŝtb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ), (1.10)

where ŝt = (ŝtb)b∈Ct for t = 1, ..., T . Denote the domain of the parameters by Θ = Θδ×ΘΓ×ΘΣ, where
Θδ, ΘΓ, and ΘΣ are compact. Given Theorem 7, we propose the following MLE that concentrates
(δ1J1 , ..., δTJT ) out of the log-likelihood function:

(Γ̂, Σ̂) ≡ arg max
(Γ′,Σ′)∈ΘΓ×ΘΣ

`I((δtJt.(ŝtJt.; Γ′,Σ′))Tt=1,Γ
′,Σ′; ŝ1, ..., ŝT ),

= arg max
(Γ′,Σ′)∈ΘΓ×ΘΣ

`cI(Γ
′,Σ′; ŝ1, ..., ŝT )

δ̂tJt ≡ δtJt.(ŝtJt.; Γ̂, Σ̂), t = 1, ..., T.

(1.11)

To simplify notation, denote the true parameters (δ1J1 , ..., δTJT ,Γ,Σ) by θ = (θδ,Γ,Σ) and the MLE
(θ̂δ, Γ̂, Σ̂) by θ̂. The next Theorem establishes the asymptotic properties of θ̂.

20For example, a model of demand for single products (i.e., Γ′ = −∞) cannot rationalize situations in which the sum
of the observed product-level market shares is larger than one. (This can happen because the same stb contributes to
the product-level market share of any j ∈ b, giving rise to �multiple counting� of stb when summing stj. over j.) In such
cases, the demand inverse is therefore not feasible when evaluated at Γ′ = −∞.
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Theorem 6. MLE estimator: Suppose Assumptions 1�3 hold, the true (δtJt)t∈T\T0
∈ ∆ID, ŝtb

p−→
stb for t = 1, ..., T , b ∈ Ct, and the standard regularity conditions detailed in Appendix A.14 hold.

Then:

� (Consistency) θ̂
p−→ θ.

� (Asymptotic Normality) There exist matrices W1,W2 > 0 such that
√
I(θ̂δ−θδ)

d−→N(0,W1) and√
I[(Γ̂, Σ̂)− (Γ,Σ)]

d−→N(0,W2).

Proof. See Appendix A.14.

Estimator (1.11) is neither a standard MLE nor a concentrated MLE. A standard MLE would maximize
(1.10) with respect to (δ,Γ,Σ), while (1.11) only maximizes it with respect to (Γ,Σ). Di�erently from
a concentrated MLE, which also would maximize (1.10) only with respect to (Γ,Σ), estimator (1.11) is
however not as e�cient as the standard MLE. The demand inverse from Theorem 7 only uses observed
product-level market shares (rather than bundle-level), and this causes a loss of information in the
process of concentrating out θδ from the log-likelihood function. MLE (1.11) trades-o� computational
ease against estimation e�ciency.

Implementation. In the spirit of BLP, the demand inverse from Theorem 7 enables to break down
the numerical search for (δ1J1 , ..., δTJT ,Γ,Σ) into two steps that can be solved sequentially while
implementing (1.11):

Step 1. For any given guess of (Γ′,Σ′) and market t = 1, ..., T , compute δ′tJt = δtJt.(ŝtJt.; Γ′,Σ′) by the
Newton-Raphson method as the unique solution to system stJt.(δ

′
tJt

; Γ′,Σ′) = ŝtJt.. To implement

the Newton-Raphson method, note that the derivative
∂stJt.(δ

′
tJt

;Γ′,Σ′)

∂δ′tJt
= [I -M1T

t ]
∂stCt1
∂δ′tCt1

[I -M1T
t ]T

is everywhere symmetric and positive-de�nite, where M1
t is de�ned prior to Theorem 3. Because

the solution to the system is guaranteed to be at most unique, whenever the algorithm �nds
one, the numerical search can end.21 Given this solution, compute the derivative

∂δtJt.
∂(Γ′,Σ′) =

−
[
∂stJt.
∂δ′tJt

]−1 [
∂stJt.
∂(Γ′,Σ′)

]
and move on to Step 2. In case the algorithm cannot �nd a solution, then

Theorem 7 implies that (Γ′,Σ′) 6= (Γ,Σ): try a new guess of (Γ′,Σ′) and go back to the beginning
of Step 1.

Step 2. Plug δ′tJt for t = 1, ..., T from Step 1 into `I((δ′tJt)t=1,...,T ,Γ
′,Σ′; ŝ1, ..., ŝT ) and obtain `cI(Γ

′,Σ′; ŝ1, ..., ŝT ).

Compute its derivative with respect to (Γ′,Σ′),
∂`cI

∂(Γ′,Σ′) =
∑T

t=1
∂`I
∂δ′tJt

∂δtJt.
∂(Γ′,Σ′) + ∂`I

∂(Γ′,Σ′) . Check

whether the current guess of (Γ′,Σ′) numerically maximizes `cI(Γ
′,Σ′; ŝ1, ..., ŝT ). If yes, the cur-

rent value of the parameters is θ̂. If not, use
∂`cI

∂(Γ′,Σ′) to search for a new guess of (Γ′,Σ′) and go
back to Step 1.

1.6 Empirical Illustration

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the USA. We
revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementarity among di�erent

21For a useful discussion about the Newton-Raphson method in the context of demand estimation, see Conlon and
Gortmaker (2019).
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brands in demand estimation. The households in our data are observed to purchase two or more
di�erent RTE cereal brands in approximately 20% of their shopping trips. In the data, we observe
purchases rather than consumption. In terms of purchases, demand for bundles can arise for reasons
di�erent from synergies in consumption (as in Gentzkow (2007)): shopping costs (as in Pozzi (2012) and
Thomassen et al. (2017)) and preference for variety (as in Hendel (1999) and Dubé (2004)) represent
two likely alternatives.

Our model can rationalize shopping costs with positive demand synergies and, as we show in
Appendix A.1, preference for variety with some additional structure on the demand synergy parameters.
We try to distinguish empirically the relative contribution of these mechanisms to the estimated demand
synergies. Our results show that demand for RTE cereals exhibits substantial Hicksian complementarity
and that around 75% of it does not seem to be explained by shopping costs or by preference for
variety. We compare our estimation results from the full model to those from a model of demand for
single brands (similar to Nevo (2000, 2001)) and show that ignoring Hicksian complementarity may
result in misleading demand estimates and counterfactuals. Despite the di�erent econometric approach
and data, our results are in line with those by Fosgerau et al. (2019), who also document Hicksian
complementarity among di�erent RTE cereal brands in the USA.

1.6.1 Data and De�nitions

We use household-level and store-level IRI data on ready-to-eat (RTE) cereals for the period 2008-2011
for the city of Pitts�eld in the USA. We report a succinct description of the data used and refer the
reader to Bronnenberg et al. (2008) for a more thorough discussion.

We focus on the I = 2897 households who are observed to purchase RTE cereals at least once from
2008 until 2011. For these households, we observe some demographics (e.g., income group and family
size) and a panel of shopping trips r = 1, ..., 756663 to 7 di�erent grocery stores over a period of 208
weeks. A shopping trip is de�ned as a purchase occasion of a household to a grocery store in a given
day. Each shopping trip records all the Universal Product Codes (UPCs) purchased by a household
across all product categories sold by the store: during 83256 of these, RTE cereals are observed to be
purchased. We de�ne a market as a store-week combination t = 1, ..., 1431.

Over the sample period, the households are observed to purchase 1173 di�erent UPCs of RTE
cereals. For feasibility, we reduce the number of di�erent RTE cereal products by collecting UPCs into
what we call brands. We de�ne J = 16 di�erent brands on the basis of producers and ingredients.
We classify producers into six groups: General Mills, Kellogg's, Quaker, Post, Small Producers, and
Private Labels. The �rst four correspond to the four largest RTE cereal producers, �Small Producers�
correspond to the remaining producers, and �Private Labels� correspond to the UPCs directly branded
by the retailers (i.e., the stores). We collect the UPCs of each of the producers into three types on
the basis of their ingredients: cereal type R refers to �Regular,� F/W to �Fiber/Whole Grain,� and S
to �Added Sugar.� Appendix Table B.1 lists these RTE cereal brands and their average market shares
across the shopping trips with some RTE cereal purchase.22 We use the store-level data to compute
brand-level prices for each brand j and store-week combination t, ptj . Each ptj is computed as the
average price per 16oz across the UPCs belonging to brand j in store-week t.

We make the standard assumption that RTE cereal purchases do not determine store choice and
take store choice as exogenous in our econometric model. We consider household i to choose the outside

22Market shares are computed over the shopping trips observed in each store-week combination.
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option, which we denote by j = 0, whenever no RTE cereal brand is purchased during shopping trip r
(in general, something must be purchased for a shopping trip to be in the data). Around 89% of all
shopping trips do not involve any purchase of RTE cereals.

During each shopping trip r, a household i is considered to purchase RTE cereal brand j whenever
they are observed to purchase at least a UPC of brand j. Households are considered to purchase
bundles only when purchasing at least two di�erent brands of RTE cereals during the same shopping
trip. In our view, this is a conservative measure of households' demand for bundles.23 For compu-
tational convenience, we focus our analysis on the shopping trips with observed purchases of at most
two di�erent RTE cereal brands, thus discarding 3.27% of the shopping trips with some RTE cereal
purchase. In 17.69% of the shopping trips with some RTE cereal purchase, households are observed to
purchase two di�erent brands of RTE cereals.

Table 1.1 describes how the average bundle size purchased changes among households with di�erent
observable characteristics. The top panel of Table 1.1 shows that larger families are more likely to
purchase larger bundles. This accords to the idea of preference for variety by Hendel (1999) and Dubé
(2004): in order to satisfy more heterogeneous preferences (e.g., di�erent genders and ages), larger
households are more likely to purchase a wider variety of RTE cereal brands on each shopping trip.
The central panel of Table 1.1 highlights the potential relevance of shopping costs, as suggested by
Pozzi (2012) and Thomassen et al. (2017): households observed to shop with a higher frequency (facing
lower shopping costs) are less likely to purchase bundles of di�erent RTE cereal brands on any shopping
trip.24 The bottom panel of Table 1.1 divides the households into three income groups and does not
suggest apparent relationships between income and average purchased bundle size.25

We construct choice sets at the level of the store-week t: any household during any shopping trip in
t is assumed to face choice set Ct. This is made of three components: single brands, bundles of size 2,
and the outside option. From the store-level data, we observe which of the 16 brands of RTE cereals are
available in each store-week t. Denote this set of available brands by Jt. Households can also purchase
bundles (j1, j2) ∈ (Jt × Jt)\{(k1, k2)|k1 = k2} made of pairs of di�erent RTE cereal brands. Finally,
households may decide not to purchase any RTE cereal brand, j = 0. By combining these purchase
possibilities, the choice set faced during all shopping trips in t is Ct = {0}∪Jt∪(Jt×Jt)\{(k1, k2)|k1 =

k2}.26

23For instance, the purchases of di�erent RTE cereal brands across di�erent shopping trips within the same t are
considered as independent purchases of single brands rather than bundles. To keep the dimensionality of the problem
manageable, we do not count as bundles the purchases of multiple units of the same brand within the same shopping
trip. Accommodating either less conservative de�nitions of bundles or purchases of multiple units of the same brand
would not represent any conceptual challenge for the proposed methods.

24We compute the �weekly shopping frequency� as the average number of shopping trips per week for each household
over the entire four-year period of our sample. The median among the 2897 households is 1.80 shopping trips per week.

25We create the three income groups on the basis of 12 income classes originally provided in the IRI data, which are
ordered in increasing level of income from 1 to 12. We code as �low income� the classes 1-4, �medium income� the classes
5-8, and we group in �high income� the remaining classes 9-12.

26The choice set Ct also excludes those bundles that are never purchased during any of the shopping trips in t.
Even though all brands in Jt have positive market shares by construction, some combination of brands (j1, j2) from
(Jt × Jt)\{(k1, k2)|k1 = k2} may not be observed to be jointly purchased.
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Table 1.1: Average Number of Di�erent Brands per Shopping Trip

#Households Ave. Bundle Size

Family Size
1 732 1.12
2 1184 1.16
≥ 3 981 1.22

Weekly Shopping Frequency
(0, 2] 1779 1.19
(2, 3] 810 1.17
> 3 308 1.14

Income Group
low 679 1.18

medium 1169 1.16
high 1049 1.19

Notes: The Table shows the distribution of family size, weekly shopping fre-

quency, and income group among the 2897 households in our data. See text for

the de�nitions of these variables. For each value of these variables, we report

the average number of di�erent RTE cereal brands observed to be purchased per

shopping trip by the corresponding households.

1.6.2 Model Speci�cation

Any household i is observed going on several shopping trips, each taking place in a speci�c store-week
combination t (our de�nition of market). The indirect utility of household i by purchasing brand j ∈ Jt
during shopping trip r in market t is:

Uirtj = uitj + εirtj

= δtj + µitj + εirtj ,

µitj = −ptj exp(dαi α+ vi) + ηij

(1.12)

where uitj = δtj + µitj , δtj is market t-speci�c average utility for RTE cereal brand j ∈ Jt, µitj is a
household i-speci�c utility deviation from δtj , and εirtj is an idiosyncratic error term. ptj is the price of
brand j in store-week combination t, and dαi α+ vi is a vector of household i-speci�c price coe�cients
made of two components: an observable part that is a function of the household characteristics dαi
(to be detailed in the next section) and an unobserved random component vi. ηij is an unobserved
household i-speci�c preference for brand j, which is constant across i's shopping trips and potentially
correlated across brands.

Speci�cation (1.12) encapsulates the entire e�ect of price ptj in the household i-speci�c µitj . In
terms of the notation used in section 1.4.2, this implies ∆tj(ptj , xtj) = 0 and δtj = ξtj . Even though we
use household-level data, we face price endogeneity if, for instance, the producer of RTE cereal brand
j sets price ptj taking the average utility δtj into consideration. Our proposed estimator essentially
addresses this endogeneity problem by treating the average utility δtj for each brand j in each market
t as a �xed e�ect.
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The indirect utility of i by purchasing bundle b during shopping trip r in market t is:

Uirtb =
∑
j∈b

uitj + Γib + εirtb

=
∑
j∈b

(δtj + µitj) + Γb + ζib + εirtb

=
∑
j∈b

δtj + Γb +

∑
j∈b

µitj + (dγi γ + ζ̃ib)

+ εirtb

= δtb + µitb + εirtb,

(1.13)

where δtb =
∑

j∈b δtj + Γb is market t-speci�c average utility for bundle b, µitb is household i-speci�c
utility deviation from δtb, Γib is household i-speci�c demand synergy among the brands in bundle b,
and εirtb is an idiosyncratic error term. The demand synergy parameter Γib = Γb + ζib captures the
extra utility household i obtains from buying the RTE cereal brands in bundle b jointly rather than
separately. It is the sum of Γb, common to all households, and of ζib = dγi γ + ζ̃ib, where d

γ
i γ is a

function of observed household characteristics dγi (to be detailed in the next section) and ζ̃ib is an
unobserved random component. Because of pure components pricing, i.e. ptb = 0, and the absence of
other bundle-speci�c observed product characteristics, i.e. xtb = 0, we constrain function g(·, ·|Σg) = 0

(see Assumption 2).27 We attempt to empirically distinguish the relative contribution to Γib of two
alternative mechanisms. In particular, we specify dγi γ to include measures of family size (to proxy for
preference for variety) and of average weekly shopping frequency (to proxy for shopping costs).

Finally, the indirect utility of household i by choosing the outside option during shopping trip r in
market t is assumed to be:

Uirt0 = εirt0. (1.14)

Suppose that εirt0 and the εirtb's are i.i.d. Gumbel. Express µitb = µitb(βi) as a function of
the unobservable βi = (vi, ηi, ζ̃i) = (vi, (ηij)j∈J, (ζ̃ib)b∈B).28 Then, given βi and (δtJt , α, γ,Γ) =

((δtj)j∈Jt , α, γ, (Γb)b∈B), household i's purchase probability of b ∈ Ct during shopping trip r in mar-
ket t is:

sirtb(δtJt , α, γ,Γ;βi) =
eδtb+µitb(βi)∑

b′∈Ct e
δtb′+µitb′ (βi)

. (1.15)

We assume βi = (vi, ηi, ζ̃i) to be normally distributed and denote its c.d.f. by Φ(·; ΣF ). Let yitrb ∈
{0, 1} be an indicator for whether household i purchased b during shopping trip r in market t, with∑

b∈Ct yitrb = 1. Let Ti denote the set of markets for which we observe shopping trips by household
i. For each t ∈ Ti, de�ne Rit as the set of shopping trips by household i that took place in market
t. By integrating over the distribution of βi, we obtain the likelihood of i's observed purchases yi =

(yitrb)t∈Ti,r∈Rit,b∈Ct :

Li(δ1J1 , ...δTJT , α, γ,Γ,ΣF ; yi) =

∫ ∏
t∈Ti

∏
r∈Rit

∏
b∈Ct

(sirtb(δtJt , α, γ,Γ;βi))
yitrb dΦ(βi; ΣF ). (1.16)

27We follow Nevo (2000, 2001) in assuming that RTE cereal producers set prices at the brand-level rather than at
the bundle-level (i.e., pure components pricing): households purchasing multiple RTE cereal brands during the same
shopping trip are assumed to pay the sum of the prices of the single brands.

28J and B are de�ned as, respectively, the union of all Jt and of all (Jt × Jt)\{(k1, k2)|k1 = k2} for t = 1, ..., T .
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By aggregating over the I = 2897 households, the likelihood function for the entire set of observed
purchases is:

LI(δ1J1 , ...δTJT , α, γ,Γ,ΣF ; y1, ..., yI) =

2897∏
i=1

Li(δ1J1 , ...δTJT , α, γ,Γ,ΣF , yi). (1.17)

We estimate the demand parameters (δ1J1 , ...δTJT , α, γ,Γ,ΣF ) on the basis of MLE (1.11) derived from
likelihood function (1.17).29 To get a sense of the practical advantages implied by our novel demand
inverse, in the current application the proposed MLE reduces the numerical search (with respect to a
standard MLE) from 12351 to 133 parameters, i.e. (α, γ,Γ,ΣF ).

Restricted Models. In what follows, we refer to the model speci�ed in (1.15)-(1.17) as to the full
model of demand for bundles. To better evaluate the practical relevance of allowing for complemen-
tarity, we also estimate two restricted versions of the full model.

In the �rst restricted model, we constrain Γib = 0 in estimation for all i's and b's. A comparison of
the full model with this �rst restricted model highlights the importance of controlling for the demand
synergies Γib while keeping everything else unchanged. Despite the absence of demand synergies, this
restricted model can still give rise Hicksian complementarity.30

In the second restricted model, we rule out Hicksian complementarity by constraining Γib = −∞
in estimation for all i's and b's. In other words, choice sets are restricted not to include any bundle.
This amounts to specifying a standard model of demand for single RTE cereal brands (along the lines
of Nevo (2000, 2001)) with choice set Ct = {0}∪Jt in each t. This second restricted model is estimated
on the basis of the same purchase observations as the other two models. However, the observations are
used di�erently: the second restricted model does not di�erentiate between simultaneous (during the
same shopping trip) and sequential (during di�erent shopping trips) purchases of di�erent brands.

1.6.3 Estimates of Demand for RTE Cereal Bundles

In this section, we present our estimation results for the full model. We postpone a comparison of
the estimation results from the three di�erent models to the next two sections, where we discuss price
elasticities and counterfactual simulations.

We capture observed heterogeneity in price sensitivity − exp(dαi α + vi) by dαi , a vector of nine
mutually exclusive dummies indicating household i's income group (low, medium, and high) and family
size (one, two, and larger than two). Unobserved heterogeneity in price sensitivity is instead captured
by the random coe�cient vi, which we assume to be i.i.d. normal with standard deviation σv. For
each of the three estimated models, the top panel of Table 2.2 reports estimates of the average price
sensitivity E[− exp(dαi α + vi)|dαi ] for each value of dαi . These results do not seem to suggest any
systematic heterogeneity in price sensitivity among households with di�erent incomes and family sizes.

We specify the RTE cereal brand-speci�c random intercepts as ηij = ηi,type + η̃ij , where ηi,type
captures household i's unobserved and correlated preferences across cereal types {R,F/W,S} and η̃ij

29Even though (1.17) is expressed in terms of individual purchases (y1, ..., yI) rather than of sampled market shares
(ŝ1, ..., ŝT ), it can be easily shown that the corresponding MLE satis�es the conditions of Theorem 6.

30In this �rst restricted model, the cross-price elasticities can still be negative because the choice set Ct = {0} ∪ Jt ∪
(Jt × Jt)\{(k1, k2)|k1 = k2} is not complete. Ct would be complete if it included also the bundles made of two units of
the same brand. Gentzkow (2007)'s Proposition 1 at page 719, which states that a positive demand synergy is necessary
and su�cient for Hicksian complementarity, only applies to models with complete choice sets.
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captures i.i.d. unobserved preference for brand j. Remember that cereal type R refers to �Regular,�
F/W to �Fiber/Whole Grain,� and S to �Added Sugar.� Note that any two brands with similar
ingredients will share the same ηi,type. We assume η̃ij to be distributed normal with standard deviation
ση̃. Following Gentzkow (2007), we also assume (ηi,R, ηi,F/W , ηi,S) to be distributed jointly normal
with standard deviations and pairwise correlations denoted by, respectively, σηtype and corrtype,type′ ,
type, type′ ∈ {R,F/W,S}. We allow single-person households and multi-person households to have
di�erent joint normal distributions of (ηi,R, ηi,F/W , ηi,S). We assume η̃ij and ηi,type to be mutually
independent.

The estimates of the distribution of ηij and of the other random coe�cients are reported in the central
panel of Table 2.2. Overall, the estimates are highly signi�cant and underline the importance of
controlling for unobserved heterogeneity, not only in terms of price sensitivity, but also of brand-speci�c
random intercepts and of demand synergies (we return to these in more detail below). Households'
unobserved preferences for healthier F/W and children S cereal brands are positively correlated, while
unobserved preferences for regular R cereal brands seem to correlate negatively with both F/W and
S cereal brands. Households of di�erent family sizes do not seem to have systematically di�erent
distributions of (ηi,R, ηi,F/W , ηi,S).

We specify the demand synergy of household i for bundle b as:

Γib =Γb + dγi γ + ζ̃ib

=Γb + γ21{family sizei = 2}+ γ≥31{family sizei ≥ 3}
+ γs1{normal shopping frequencyi}+ ζ̃ib,

(1.18)

where 1{·} is the indicator function and �normal shopping frequencyi� denotes whether the average
weekly shopping frequency of household i lies below the 95th percentile.31 Parameter γk captures
systematic di�erences between the average demand synergies of households of family size k and single-
person households. We include family size in the speci�cation of Γib as a proxy for preference for
variety. γs instead measures di�erences in the average demand synergies between households observed
to shop at a normal frequency, i.e. in the bottom 95% of the distribution, and households who shop
very often, i.e. in the top 5% of the distribution. We control for normal shopping frequency in (1.18)
as a proxy for larger shopping costs. These are meant to rationalize the purchase patterns documented
in Table 1.1: larger families may have to satisfy more heterogeneous preferences within the household,
while more frequent shoppers may be less likely to purchase multiple brands on any shopping trip. ζ̃ib
represents a i-speci�c unobserved component of demand synergy for bundle b, which we assume to
be i.i.d. normal with standard deviation σζ̃ . ζ̃ib allows for the possibility that the brands in bundle
b have positive demand synergies for some households and negative for others. Estimates of the Γb's
are reported in Table 1.3, while estimates of the remaining demand synergy parameters are reported
at the bottom of Table 2.2.

The estimates from Table 1.3 suggest that several pairs of RTE cereal brands have positive Γb's.32

Importantly for competition policy, as we will explore in the next section, there appear to be positive
Γb's not only among brands within the same producer, but also among brands sold by di�erent
producers. For example, the �rst column of Table 1.3 shows that single-person households exhibit

31In our sample of households, the 95th percentile of the average weekly shopping frequency (i.e., the average number
of shopping trips in a week) is 3.67.

32Note that these estimates come from the full model, neither of the restricted models allows for demand synergies.
See the Table notes for an interpretation of the missing values.
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positive demand synergies between General Mills and most of the 15 remaining brands. Moreover, in
line with the evidence from Table 1.1, the estimated demand synergy shifters γ2 and γ≥3 from the
bottom panel of Table 2.2 are positive and increasing in family size, i.e. γ≥3 ≥ γ2. We interpret this
as evidence of preference for variety: larger families exhibit more positive demand synergies among
di�erent RTE cereal brands than smaller families. Intuitively, larger families may be more likely to
purchase di�erent brands in order to satisfy more heterogeneous RTE cereal tastes within the household
(e.g., adults and children of di�erent ages). Di�erently, γs is positive but not signi�cantly di�erent
from zero, highlighting that�after controlling for everything else�households with di�erent shopping
frequencies are similarly likely to purchase bundles on any shopping trip. The standard deviation
σζ̃ of the random coe�cient ζ̃ib is estimated to be small but signi�cant, suggesting the presence of
household-speci�c heterogeneity in demand synergies beyond di�erences in family size and weekly
shopping frequency.
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Table 1.2: Demand Estimates for Full and Restricted Models

Full Model Restricted Model 1 Restricted Model 2

Γib = 0 Γib = −∞
Average Price Sensitivities

low income, family size = 1 −0.44
(0.164)

−0.49
(0.196)

−1.27
(0.180)

family size = 2 −0.47
(0.175)

−0.51
(0.202)

−1.30
(0.185)

family size ≥ 3 −0.39
(0.147)

−0.38
(0.151)

−1.17
(0.167)

medium income, family size = 1 −0.47
(0.174)

−0.52
(0.210)

−1.29
(0.183)

family size = 2 −0.42
(0.157)

−0.46
(0.183)

−1.27
(0.180)

family size ≥ 3 −0.49
(0.183)

−0.49
(0.195)

−1.31
(0.185)

high income, family size = 1 −0.39
(0.146)

−0.43
(0.173)

−1.20
(0.170)

family size = 2 −0.42
(0.157)

−0.45
(0.180)

−1.26
(0.179)

family size ≥ 3 −0.40
(0.150)

−0.41
(0.165)

−1.25
(0.177)

Random Coe�cients

price, σv 0.36
(0.004)

0.39
(0.004)

0.14
(0.002)

brand intercepts, ση̃ 0.87
(0.005)

0.87
(0.005)

0.81
(0.005)

demand synergies, σζ̃ 0.06
(0.010)

Single-Person Households

σηR 0.50
(0.037)

0.47
(0.046)

0.20
(0.037)

σηF/W
0.54

(0.014)
0.52

(0.024)
0.65

(0.017)

σηS 0.96
(0.030)

0.90
(0.034)

0.97
(0.030)

corrR,F/W −0.86
(0.014)

−0.84
(0.016)

−0.89
(0.012)

corrR,S −0.52
(0.042)

−0.60
(0.044)

−0.61
(0.036)

corrF/W,S 0.29
(0.042)

0.41
(0.056)

0.47
(0.044)

Multi-Person Households

σηR 0.10
(0.016)

0.37
(0.016)

0.45
(0.015)

σηF/W
0.54

(0.008)
0.70

(0.008)
0.86

(0.009)

σηS 0.96
(0.017)

1.10
(0.017)

1.24
(0.015)

corrR,F/W −0.93
(0.006)

−0.91
(0.006)

−0.95
(0.004)

corrR,S −0.79
(0.016)

−0.73
(0.015)

−0.78
(0.010)

corrF/W,S 0.73
(0.019)

0.81
(0.011)

0.85
(0.008)

Demand Synergies, γ

family size= 2, γ2 0.14
(0.017)

family size≥ 3, γ≥3 0.36
(0.015)

normal shop. freq., γs 0.001
(0.012)

Notes: Each column of the Table reports estimates from one of three model speci�cations: the

full model, restricted model 1 (which constrains Γib = 0 in estimation), and restricted model 2

(which constrains Γib = −∞ in estimation, i.e. standard demand model for single brands). The

top panel reports the estimated average price sensitivity E[− exp(dαi α + vi)|dαi ] for each value of

dαi and the corresponding standard deviation (in brackets), computed as
√
Var[exp(dαi α+ vi)|dαi ].

The central panel reports estimates of the parameters characterizing the distribution of the random

coe�cients, while the bottom panel those of the demand synergy parameters associated to di�erent

family sizes and weekly shopping frequencies. For the estimates in the central and bottom panel,

standard errors are reported in brackets. Cereal type R refers to �Regular,� F/W to �Fiber/Whole

Grain,� and S to �Added Sugar.�
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Evidence in Support of Assumption 2. As discussed in Remark 1, Assumption 2 can be veri�ed
in practice. In Appendix A.7, we present a speci�cation test for Assumption 2 that builds on partial
identi�cation methods. A rejection of the test is evidence against Assumption 2. In the context of
our empirical illustration, the test statistic evaluated at the estimates from Tables 2.2 and 1.3 is 9910,
which is smaller than the critical value for rejection at the 10% level, 21081 (a chi-square with 20819

degrees of freedom). This strongly suggests that ΘI(T) in (A.13) is not empty, providing reassuring
evidence in support of Assumption 2.

1.6.4 Hicksian Complementarity and Demand Synergies

Table 1.4 reports the average (across markets) estimated own- and cross-price elasticities of demand
from the full model. Each entry reports the percent change in the brand-level market share of the
column RTE cereal brand with respect to a 1% increase in the price of the row RTE cereal brand.
Given the estimated market share function ŝtb for each b ∈ Ct1 in market t, the estimated brand-level
market share function of brand j ∈ Jt is de�ned as ŝtj. =

∑
b∈Ct1:j∈b ŝtb. Table 1.4 provides pervasive

evidence of Hicksian complementarity. For example, the �rst column shows that households exhibit
statistically signi�cant complementarity between General Mills and several of the 15 remaining brands.
According to intuition, Hicksian complementarity seems to be more pronounced among those brands
with larger positive Γb (see Table 1.3).

In our speci�cation, Hicksian complementarity among di�erent RTE cereal brands can be explained
by alternative mechanisms: correlation in the unobserved preferences for single brands (ηij), preference
for variety (γ2 and γ≥3), shopping costs (γs), bundle-speci�c �xed e�ects (Γb's)�which, among other
things, may account for synergies in consumption�, and residual unobserved heterogeneity (ζ̃tb). To
shed light on the relative contributions of these mechanisms, we sequentially �switch them o�� from
the estimated full model and re-compute the cross-price elasticities. Table 1.7 summarizes the results.

Di�erently from Gentzkow (2007), the unobserved preferences for single brands (ηij) contribute to
the substitutability among RTE cereal brands (−2.00%), possibly because of the negative correlation
between ηi,R and both ηi,F/W and ηi,S (see Table 2.2). The average of the cross-price elasticities
instead increases (becoming less negative) as we progressively switch o� the various components of
Γib: residual unobserved heterogeneity (+0.09%), shopping costs (+0.05%), and especially preference
for variety (+15.22%).

However, the most dramatic changes occur when we further set the bundle-speci�c �xed e�ects
Γb's either to zero (+54.94%) or to −∞ (+31.69%). While this is expected in the case of Γib =

−∞ (standard demand model for single brands), the average of the cross-price elasticities already
changes from negative (complementarity) to positive (substitutability) when setting each Γib to zero.
Collectively, these results suggest that most of the estimated complementarity is explained by preference
for variety and by the bundle-speci�c �xed e�ects.

Standard models of demand for single brands rule out Hicksian complementarity among di�erent
RTE cereal brands and restrict the cross-price elasticities to be positive. Ignoring the presence of
complementarity among di�erent brands may lead to incorrect demand estimates and misleading price
elasticities. To quantify the extent of this problem, we compare the price elasticities computed on
the basis of the estimates from the full model (Table 1.4) to those computed on the basis of the
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estimates from the restricted models (Tables 1.5 and 1.6).33 Several of the estimated cross-price
elasticities have opposite signs, mistakenly suggesting substitutability rather than complementarity
among di�erent pairs of RTE cereal brands. To further explore the economic consequences of accounting
for complementarity in demand estimation, we next compare counterfactual simulations implied by the
estimates from the full model to those implied by the estimates from the restricted models.

33Demand estimates from the full model can be found in the �rst column of Table 2.2 and in Table 1.3, while those
from the restricted models can be found in the second and third columns of Table 2.2 (the restricted models do not
include demand synergies).
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Table 1.7: Cross-Price Elasticities and Demand Synergies

Average Relative Change

Estimated Full Model −0.0126 −
Estimated Full Model, then switch o� ηij −0.0130 −2.00%

Estimated Full Model, then switch o� ηij and ζ̃ib −0.0130 0.09%

Estimated Full Model, then switch o� ηij , ζ̃ib, and γs −0.0130 0.05%

Estimated Full Model, then switch o� ηij , ζ̃ib, γs, γ2, and γ≥3 −0.0100 15.22%

Estimated Full Model, switch o� ηij and set Γib = 0 0.0007 54.94%

Estimated Full Model, switch o� ηij and set Γib = −∞ 0.0068 31.69%

Note: The Table reports the average (across markets) of the cross-price elasticities of all pairs of di�erent RTE

cereal brands. All the cross-price elasticities are obtained from the full model, where the estimated parameters in

the speci�cation of Γib from (1.18) are �switched o�� sequentially. For example, the third row is obtained from the

estimated full model by setting the standard deviations of ηij and ζ̃ib to zero, while the fourth is obtained by further

setting the estimated γs to zero. The column �Relative Change� reports the percent change in the average of the

cross-price elasticities from any two consecutive rows: for instance, the relative change from the fourth row to the

�fth is 15.22%.

1.6.5 Counterfactuals and Comparisons with Standard Model

Here we evaluate the economic relevance of allowing for Hicksian complementarity by comparing some
counterfactuals from the full model, with Γib as in (1.18), to those from two restricted models: restricted
model 1, which constrains Γib = 0 in estimation, and restricted model 2�the standard demand model
for single brands�, which constrains Γib = −∞ in estimation thereby forcing substitutability. For the
counterfactuals, we take the observed scenario of pure components pricing and oligopolistic competition
among RTE cereal producers as a reference (see Nevo (2000, 2001) for the institutional details), and
simulate the changes in prices, pro�ts, and consumer surplus implied by di�erent market structures.34

The results of these counterfactuals are reported in Table 1.8. The Table reports relative changes in
prices (top panel), pro�ts (central panel), and consumer surplus (bottom panel) associated with each
of three counterfactual market structures (columns) as simulated by each of the three estimated models
(rows). We consider four alternative market structures: �competition,� where we suppose that each sin-
gle brand is owned and sold by a di�erent (�ctional) producer (for a total of 16 producers); �oligopoly,�
which corresponds to the observed oligopolistic competition among six producers; �duopoly,� where
we suppose that �ve of the producers (General Mills, Kellogg's, Quaker, Post, and the Small Produc-
ers) perfectly collude and compete as one against the private labels (whose prices are chosen by the
retailer); and �monopoly,� where we suppose that the six producers perfectly collude as a monopolist.

The simulation results from the full model con�rm the classic insight by Cournot (1838): mergers
between producers selling complementary brands can be socially desirable. In pure components pricing,
the prices of all single brands�and consequently of all bundles�decrease as the level of competition
weakens: while industry-level pro�t remains basically unchanged, consumer surplus increases with
market concentration. As market structure becomes more concentrated, producers internalize more of
the externalities due to complementarity and consequently choose lower prices, as can be seen from
the relative increase in consumer surplus from −5.27% for competition to +7.62% for monopoly.

34Given our estimates of demand and marginal costs, we simulate each pro�le of counterfactual prices�independently
for each market�using the necessary �rst order conditions for a Nash equilibrium of the corresponding pure components
pricing game. For example, in a monopoly, the same agent chooses a speci�c price for each single brand so to maximize
industry pro�ts.
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Strikingly, the restricted models produce opposite predictions: as market structure becomes more
concentrated, prices increase and consumer surplus decreases. As shown in Tables 1.5 and 1.6, both
restricted models predict positive cross-price elasticities and therefore substitutability among any pair
of RTE cereal brands. Not surprisingly then, any merger between producers selling substitutable
brands will lead to higher prices and ultimately hurt consumers. These results underline the economic
importance of allowing for both substitutability and complementarity in demand estimation: while
estimates from the full model provide supportive evidence for the classic Cournot (1838)'s insight
that mergers can be welfare enhancing, those from a standard model that does not allow for Hicksian
complementarity can only predict that mergers will be detrimental for consumer surplus.

Table 1.8: Counterfactual Simulations

Competition Oligopoly Duopoly Monopoly

Price change

Full Model +8.08%
(1.35%)

0% −5.03%
(1.16%)

−5.34%
(1.65%)

Restricted Model 1, Γib = 0 −0.54%
(0.03%)

0% +3.69%
(0.21%)

+5.26%
(0.30%)

Restricted Model 2, Γib = −∞ −0.56%
(0.10%)

0% +4.17%
(0.72%)

+6.06%
(1.07%)

Pro�t change

Full Model −0.47%
(0.04%)

0% +0.27%
(0.03%)

+0.30%
(0.05%)

Restricted Model 1, Γib = 0 −0.03%
(0.002%)

0% +0.10%
(0.003%)

+0.12%
(0.004%)

Restricted Model 2, Γib = −∞ −0.36%
(0.01%)

0% +1.64%
(0.03%)

+2.00%
(0.03%)

Consumer Surplus change

Full Model −5.27%
(0.22%)

0% +6.29%
(0.37%)

+7.62%
(0.62%)

Restricted Model 1, Γib = 0 +0.49%
(0.01%)

0% −3.23%
(0.04%)

−4.54%
(0.06%)

Restricted Model 2, Γib = −∞ +1.53%
(0.01%)

0% −11.94%
(0.07%)

−16.41%
(0.09%)

Notes: The Table reports average counterfactual changes in prices (top panel), pro�ts (central panel), and

consumer surplus (bottom panel) of pure components pricing under alternative simulated market structures

with respect to the observed oligopoly. Each column refers to a speci�c market structure: the second column

refers to the observed oligopoly in the data while the others refer to simulated counterfactuals (see text for

details). Each row refers to one of three model speci�cations: the full model, restricted model 1 (which

constrains Γib = 0 in estimation), and restricted model 2 (which constrains Γib = −∞ in estimation,

i.e. standard demand model for single brands). The standard errors associated to the estimated relative

changes are in brackets and obtained from a parametric bootstrap as in Nevo (2000, 2001) with 50 draws.

1.7 Conclusions

We present a novel identi�cation and estimation strategy of a mixed logit model of demand for bundles
with endogenous prices given observations on bundle-level market shares. We propose a novel demand
inverse in the presence of complementarity that allows to concentrate out of the likelihood function
the (potentially numerous) market-product speci�c average utilities and to substantially alleviate the
challenge of dimensionality inherent in estimation. Finally, we estimate demand and supply in the
US ready-to-eat cereal industry, where our estimator reduces the numerical search from approximately
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12000 to 130 parameters. Our results suggest that ignoring Hicksian complementarity among products
often purchased in bundles may result in misleading demand estimates and counterfactuals.

Our identi�cation and estimation arguments are developed for mixed logit models with parametric
distributions of random coe�cients. In light of the well known challenge of dimensionality that a�ects
the estimation of demand for bundles (Berry et al. (2014)), our priority is to propose estimation
methods that can be practically useful in applications that involve more than a few products. While
our parametric assumptions clearly help in alleviating the challenge of dimensionality in estimation,
they require the econometrician to take a stand on the functional form of the distribution of random
coe�cients. An avenue for future research is the study of the semi-parametric identi�cation of mixed
logit models of demand for bundles, where the distribution of random coe�cients is allowed to be
non-parametric and more robust against misspeci�cation.

The implementation of our methods requires the observation of bundle-level market shares rather
than of the more readily available aggregate market shares of single products. Even though direct
measures of bundle-level market shares are widely available only for a few industries, such as media
and telecommunication (Crawford and Yurukoglu (2012) and Crawford et al. (2018)), it is usually
possible to construct indirect measures of bundle-level market shares from samples of household-level
purchases (Gentzkow (2007), Kwak et al. (2015), Grzybowski and Verboven (2016), Ruiz et al. (2017),
and Ershov et al. (2018)). In some important industries, however, only measures of aggregate market
shares of single products are widely available (e.g., the car industry, see Berry et al. (1995, 2004a)) even
though households are known to purchase bundles of products (Manski and Sherman (1980)). When
only aggregate market shares of single products are available, our proposed methods do not apply. An
important direction for future research is thus the identi�cation and estimation of models of demand
for bundles on the basis of aggregate market shares of single products (see Sher and Kim (2014), Allen
and Rehbeck (2019a), and Wang (2019)).





Chapter 2

A BLP Demand Model of Product-Level

Market Shares with Complementarity

Abstract. Applied researchers most often estimate the demand for di�erentiated products assuming
that at most one item can be purchased. Yet multiple purchases are pervasive. Ignoring this feature can
lead to erroneous counterfactuals, in particular, because complementarities are ruled out. I consider
the identi�cation and estimation of a random coe�cient discrete choice model of bundles, namely sets
of products, when only product-level market shares are available. This last feature arises when only
aggregate market shares, as opposed to individual purchases, are available, a very common phenomenon
in practice. Following the classical approach with aggregate data, I consider a two-step method. First,
using a novel inversion result where demand can exhibit Hicksian complementarity, I recover the mean
utilities of products from the product-level market shares. Second, to infer the structural parameters
from the mean utilities while dealing with price endogeneity, I use instrumental variables. I provide
low-level conditions under which the model is globally identi�ed through moment conditions based on
such instruments. Finally, I illustrate the practical implementation of the methods and estimate the
demand for Ready-To-Eat (RTE) cereals and milk in the US. The demand estimates suggest that RTE
cereals and milk are overall Hicksian complementary and these complementarities are heterogeneous
across bundles. Ignoring such complementarities results in misleading counterfactuals.

2.1 Introduction

Since the seminal work of Berry (1994) and Berry et al. (1995) (henceforth BLP), BLP-type models have
been widely used in empirical demand literature and also gain popularity beyond empirical industrial
organisation.1 Applied researchers most often estimate BLP models of single products. An assumption
behind these models is that individuals can only choose at most one item of a single product. Yet,
multiple purchases are pervasive. In particular, this assumption rules out Hicksian complementarities
among products.2 As a result, estimating demand models of single products may lead to biased
estimates and misleading counterfactuals. To relax this assumption, researchers typically use models
of demand for bundles.3 Estimating such models usually requires individual choice data at bundle level
(e.g. scanner data, survey data). However, in some important industries, only aggregate purchase data
at product level is widely available.4

1For example, analysis of voting data (Rekkas (2007), Milligan and Rekkas (2008), Gordon and Hartmann (2013),
Merlo and Paula (2017), Gillen et al. (2019)), asset pricing (Koijen and Yogo, 2019).

2Hicksian complementarity is de�ned as negative (compensated) cross-price elasticity between two products. For a
survey of di�erent concepts of complementarity, see Samuelson (1974).

3In the empirical literature, the terminology �bundle� is often de�ned as a set of products/services/decisions purchased
by individuals. In this paper, I use this de�nition and formalise it in Assumption 6.

4Manski and Sherman (1980) estimated a model that explains the composition of holdings in two-vehicle households.
While the purchase data in the automotive industry is often at product level.
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This paper proposes a random coe�cient discrete-choice model of demand for bundles using aggre-
gate demand at product level. Similar to classic BLP models of single products, aggregate demand at
product level is de�ned in form of �market share�, i.e. aggregate choice probability (or total purchase)
of a product, and is largely available in most industries. Di�erently, the proposed model does not re-
strict products to be substitutes and, notably, allows for Hicksian complementarities among products
that can be jointly chosen in a bundle. Moreover, it enables to encompass, in a structural way, di�erent
mechanisms that may drive the Hicksian complementarity, and still allows for endogenous prices.5 The
identi�cation arguments of the model are constructive and lead to a practically useful Generalized
Method of Moments (GMM) estimator. In particular, it can handle potentially large choice sets of
bundles and its implementation is straightforward, essentially as a standard BLP estimator.

Di�erent from the current literature of demand for bundles, the proposed model only requires the
availability of market shares at product level, rather than at bundle level. Consequently, the market
shares of bundles are not observed to the researcher and hence the identi�cation and estimation of the
model become more di�cult. Depending on the research questions, the task of identi�cation is more
or less challenging. Speci�cally, I consider economic analyses (e.g. price elasticities, marginal costs,
mergers) under linear and nonlinear pricing.6 I show that the economic analyses under linear pricing
require to identify the product-level market share functions, while those under nonlinear pricing require
to further identify the bundle-level market share functions. The latter is more challenging because only
product-level market shares are available.

I then study the identi�cation in two sequential parts. In the �rst part, I follow the classical
approach in demand models with aggregate data and employ a two-step strategy to identify the
product-level market share functions. In the �rst step, I invert the product-level market shares to
the mean utilities of products. Because of possible Hicksian complementarities among products, the
typical conditions that guarantee the invertibility of product-level market shares (connected substitutes
conditions, see Berry et al. (2013)) may not hold. To solve this challenge, I use a novel demand inverse
argument that hinges on two elements. First, the a�ne relationship between the utilities of bundles
and its single products: the average utility of any bundle equals the sum of those of its single products
plus an extra term capturing their potential demand synergy. Second, the P-matrix property by Gale
and Nikaido (1965) which crucially does not restrict the products to be Hicksian substitutes. In the
second step, I use instrumental variables (IVs) to deal with endogenous prices and propose low-level
su�cient conditions to achieve the identi�cation.7 Concretely, I assume the large support of the IVs
and their independence with respect to the (unobserved) demand and supply shocks. I then leverage
Mattner (1992) and D'Haultfoeuille (2011) and show that the product-level market share functions are
identi�ed when demand and supply shocks are normally distributed, or the random coe�cients have
compact support in the models of multiple choice of products across categories.

In the second part, assuming the identi�cation of the product-level market share functions, I study
that of the bundle-level market share functions. This requires to disentangle the demand synergies
among products from the unobserved correlations in the utilities of products (Gentzkow, 2007). I show

5Examples of such mechanisms include shopping cost (Pozzi (2012), Thomassen et al. (2017)), preference for variety
(Hendel (1999), Dubé (2004)), and synergies in consumption (Gentzkow, 2007).

6Under linear pricing, �rms set prices for single products and the price of a bundle is the sum of the prices of its
single products. Under nonlinear pricing, �rms further set discounts or surcharges on the bundles of their own products.

7In general, one can leverage completeness conditions along the lines of Berry and Haile (2014) to achieve the iden-
ti�cation. Despite its generality, these conditions are often high-level. For weaker forms of completeness conditions, the
testability, and the su�cient conditions of completeness, see Mattner (1993), D'Haultfoeuille (2011), Canay et al. (2013),
Andrews (2017), Freyberger (2017), Hu and Shiu (2018).



2.1. Introduction 41

that the identi�cation of the bundle-level market share functions is achieved in often used models where
the bundle size is at most two.8 Moreover, I also prove that using only product-level market shares
may have limited power in identifying bundle-level market share functions in other types of models. I
provide an example of non-identi�cation in a model of multi-unit choice.

I propose a GMM estimation procedure, similar to the two-step procedure in BLP models of single
products. In the �rst step, given a guess of the demand synergy parameters and the distribution of the
random coe�cients, I invert the observed product-level market shares to the mean utilities of products.
In the second step, I instrument out the unobserved demand shocks in the mean utilities of products
and construct the GMM objective function. However, there are nontrivial challenges that BLP models
of single products do not have. In particular, the implementation of the demand inverse is complicated
due to possible Hicksian complementarities among products: the �xed-point algorithm proposed by
Berry et al. (1995) may not have the contraction-mapping property. As a result, it may not converge
when applied to implement the demand inverse in the �rst step above. To solve this challenge, I
propose to use Jacobian-based algorithms. To enhance their numerical performance, I suggest using
an initial point directly constructed from the observed product-level market shares and show that using
this initial point can signi�cantly improve the numerical performance of Jacobian-based methods. In
Monte Carlos simulations, this reduces the convergence time by 70% relative to using standard initial
point even in large applications (the number of bundles being about 10,000).

Finally, I illustrate the practical implementation of the proposed methods and estimate the demand
for Ready-To-Eat (RTE) cereals and milk in the US. First, the demand estimates suggest that RTE
cereals and milk are overall Hicksian complementary. I simulate a merger between a national RTE
cereal producer and a national milk producer. The results are aligned with Cournot (1838)'s insight: in
the presence of Hicksian complementarity, mergers can be welfare enhancing. In contrast, a BLP model
of RTE cereals (or milk) assumes Hicksian independence between RTE cereals and milk and predicts
no welfare e�ect in the merger simulation. Second, I �nd that some types of RTE cereals are more
(or less) complementary to certain types of milk and a model of demand for bundles with restricted
demand synergies may not capture this feature. In a nonlinear pricing counterfactual, I illustrate that
using such restricted models may lead to important bias in welfare prediction.

Related Literature Empirical literature dealing with multiple purchases typically employs demand
models of bundles with individual choice data at bundle level.9 See Berry et al. (2014) for a survey
of complementary choices and sections 4.2-4.3 of Dubé (2018) for a survey of econometric modeling
of complementary goods. Di�erently, the methods in this paper rely on aggregate demand data at
product level and can be applied when bundle-level demand data is not accessible.10 In particular,
the proposed methods are di�erent from those in Iaria and Wang (2019a) in three aspects. First, the
methods in two papers work under di�erent data availabilities. Those in this paper work when only
aggregate data at product level is available, while those of the other paper apply when bundle-level
demand data is accessible. Second, the source of identi�cation is di�erent. I exploit the exogenous

8See Gentzkow (2007), Fan (2013), Grzybowski and Verboven (2016).
9Examples include consumer choice in supermarket (Hendel (1999), Dubé (2004), Lee et al. (2013), Kwak et al. (2015),

Thomassen et al. (2017), Ershov et al. (2018)), household choice among motor vehicles (Manski and Sherman, 1980),
choice of telecommunication services (Liu et al. (2010b), Crawford and Yurukoglu (2012), Grzybowski and Verboven
(2016), Crawford et al. (2018)), subscription decision (Nevo et al. (2005), Gentzkow (2007)), �rms' decision on technology
adoptions (Augereau et al. (2006), Kretschmer et al. (2012)).

10Aggregate demand data at product level, e.g. aggregate purchase data, vote shares, is standard and widely available.
While, demand data at bundle level is typically obtained via survey or scanners in the supermarket.
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variation in IVs to achieve identi�cation, while that paper fully exploits the a�ne relationship between
the utilities of the bundle and its single products due to the availability of bundle-level demand data.
Third, the estimation methods are di�erent. this paper uses a GMM estimation procedure, while that
paper proposes a likelihood-type estimator that resolves the dimensionality challenge of market-product
�xed e�ects.

Identifying and estimating models of demand for bundles from aggregate demand at product level
is a challenging task. Moreover, prices are often endogenous, which introduces additional di�culty in
identi�cation. To the best of my knowledge, this is the �rst paper that provides a systematic treatment
of both issues in BLP-type models of demand for bundles that may exhibit Hicksian complementarity.11

This paper di�ers from Fosgerau et al. (2019) who model Hicksian complementarity via overlapping
nests. Sher and Kim (2014)'s identi�cation arguments crucially rely on substitutes assumptions in con-
sumers' utility,12 while this paper does not restrict utility functions to be submodular or supermodular.
Allen and Rehbeck (2019a)'s main results imply the identi�cation of the product-level market share
functions in discrete choice models with additively separable heterogeneity. Instead, the current pa-
per achieves the identi�cation using IVs and further provides identi�cation results of the bundle-level
market share functions. Their following paper, Allen and Rehbeck (2019b), gives identi�cation results
of the distributional features of the random coe�cients in the case of two products (and therefore one
bundle). Notably, except for Fosgerau et al. (2019), all other papers mentioned above assume away
endogenous prices.

This paper also contributes to the research agenda of the identi�cation and estimation of discrete
choice demand models. Berry et al. (2013) propose the connected substitutes conditions that guarantee
the invertibility of the market share functions. In model of demand for bundles with only product-
level market shares being available, these conditions rely on the products to be substitutes.13 This
paper uses a novel demand inverse argument to deal with possible Hicksian complementarities among
products. Some papers have employed similar concepts of demand inverse. In a model of multiple
choice of products across categories, Song and Chintagunta (2006) implement the demand inversion
of market shares at brand level. However, they do not have theoretical results on the invertibility
of the brand-level market share functions. Iaria and Wang (2019a) formally prove the invertibility
of the product-level market share functions in model of demand for bundles and use it to reduce
the dimensionality of �xed e�ects in estimation. In contrast, I use this demand inverse as a key
identi�cation argument when only product-level market shares are available.

Organisation In the next section, I introduce the model and necessary notations. I provide several
examples in the literature that can be formulated via the model and, in particular, illustrate how
this model can allow for Hicksian complementarity. In section 2.3, I present identi�cation results.
In section 2.4, I describe the GMM estimation procedure and its implementation. In section 2.5, I
use Monte Carlos simulations to test numerical performances of the demand inverse implemented by

11Dunker et al. (2017) also deal with price endogeneity in identi�cation. However, instead of using the product-level
market shares, they assume the availability of a vector of bundle-level market shares that has the same dimension as the
number of products.

12When each consumer is assumed to consume at most one unit of each good, they impose submodularity restriction
in consumers' utility (see their Assumption 2); when multi-unit demand is allowed, they use a stronger �M-natural
concavity� restriction (see their Assumption 3).

13Fan (2013) studies newspaper market in the US and assumed households subscribe to at most two newspapers. She
gives su�cient conditions for the connected substitutes conditions proposed by Berry et al. (2013) and rules out Hicksian
complementarities among di�erent newspapers.
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Jacobian-based algorithms. In section 2.6, I examine the practical performance of the methods with
an empirical illustration. Section 2.7 concludes. All proofs are in Appendices B.1-B.6. Figures and
tables can be found in Appendix B.8.

2.2 Model

2.2.1 Model and Notation

Denote market by t = 1, ..., T . The de�nition of market depends on the concrete application. For
example, one could have di�erent geographic areas in the case of cross sectional data, or di�erent
periods in the case of panel data, or a combination of these. For individuals in market t, let Jt be
the set of Jt market-speci�c products that can be purchased in isolation or in bundles. A bundle b is
de�ned as a collection of single products in Jt and denote the set of available bundles in market t by
Ct2. Denote the outside option by 0. Individuals in market t can either choose a product j ∈ Jt, a
bundle b ∈ Ct2, or the outside option 0. Denote by Ct1 = Jt ∪Ct2 the set of available products and
bundles, and by Ct = Ct1 ∪ {0} the choice set of individuals in market t. Let ptj denote the price of
product j in market t, and xtj ∈ RK the market-product speci�c vector of other characteristics of j in
market t. I follow the linear index assumption in BLP models of demand (see Berry and Haile (2014)).
For individual i in market t, the indirect utility from choosing product j is:

Uitj = uitj + εitj

= xtjβi − αiptj + ηij + ξtj + εitj

= x
(1)
tj β

(1) + x
(2)
tj β

(2)
i − αiptj + ηij + ξtj + εitj

= [xtjβ − αptj + ηj + ξtj ] + [x
(2)
tj ∆β

(2)
i −∆αiptj + ∆ηij ] + εitj

= δtj + µitj + εitj ,

(2.1)

where uitj = δtj + µitj with δtj = xtjβ − αptj + ηj + ξtj being market t-speci�c mean utility of

product j ∈ Jt and µitj = x
(2)
tj ∆β

(2)
i − ∆αiptj + ∆ηij being an individual i-speci�c utility deviation

from δtj , while εitj is an idiosyncratic error term. x(1)
tj ∈ RK1 is the vector of product characteristics

that enter Uitj with deterministic coe�cient(s), β(1), i.e. consumers have homogeneous taste on x(1)
tj ,

while x(2)
tj ∈ RK2 and ptj enter Uitj with potentially individual i-speci�c coe�cients, β(2)

i and αi.

They capture consumers' heterogeneous tastes on x(2)
tj and sensitivities to price change. The term ηij

captures individual i's perception of the quality of product j, with ηj capturing average quality product
j and ∆ηij individual deviation from ηj . Any characteristics of product j that does not vary across
markets is encapsulated in ηj . ξtj is a market-product speci�c demand shock of product j, observed
to both �rms and individuals but not observed to the econometrician.

Throughout the paper, denote product j being in bundle b by j ∈ b. The indirect utility for individual
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i in market t from choosing bundle b ∈ Ct2 is:

Uitb =
∑
j∈b

uitj + Γitb + εitb

=
∑
j∈b

(δtj + µitj) + Γtb + (Γitb − Γtb) + εitb

=
∑
j∈b

δtj + Γtb +

∑
j∈b

µitj + ζitb

+ εitb

= δtb(Γtb) + µitb + εitb,

(2.2)

where δtb(Γtb) =
∑

j∈b δtj + Γtb is market t-speci�c mean utility of bundle b, µitb is an individual i-
speci�c utility deviation from δtb(Γtb), Γitb and Γtb are the individual-market it- and market t-speci�c
demand synergies among the products of bundle b, ζitb is (observed or unobserved) individual deviation
from average demand synergies Γtb, and εitb is an idiosyncratic error term. Demand synergies Γitb's
are new parameters that classical demand models of single products do not have. They capture the
extra utility individual i obtains from choosing the products in bundle b's in market t jointly rather
than separately. As one will see in section 2.2.3, these parameters enable to capture rich substitution
patterns among products, and in particular, Hicksian complementarity. Moreover, Γitb's are catch-all
parameters and can encompass a wide range of mechanisms that make it more (or less) appealing to
choose products jointly than separately. Examples of such mechanisms include discount (or surcharge)
on joint purchase of products, shopping cost (one-stop vs multi-stop shoppers), preference for variety
of products (single-person vs multi-person households), and synergies in consumption. In section 2.2.2,
I will show this point via several examples of demand models in the literature.

Finally, the indirect utility of choosing the outside option 0 is normalized as Uit0 = εit0, where εit0
is an idiosyncratic error term. To compete the model, I assume that µitj = x

(2)
tj ∆β

(2)
i −∆αiptj+∆ηij =

µtj(θit;x
(2)
tJt
, ptJt) and µitb =

∑
j∈b µitj + ζitb = µtb(θit;x

(2)
tJt
, ptJt) are functions of random coe�cients

θit = (∆β
(2)
i ,∆αi, (∆ηij)j∈J, (ζitb)b∈C2), where J = ∪Tt=1Jt, C2 = ∪Tt=1Ct2, and θit is distributed

according to F ∈ ΘF .14 Moreover, εit0, εitj , and εitb are assumed to be i.i.d. Gumbel for all j ∈ Jt
and b ∈ Ct2.

Denote the vector of market t-speci�c mean utilities for products in Jt by δtJt = (δtj)j∈Jt , and the vector
collecting all average demand synergies by Γt = (Γtb)b∈C2 . De�ne δt(Γt) = (δtJt , (δtb(Γtb))b∈Ct2). The
market share function of b ∈ Ct1 in market t is:15

stb(δt(Γt);x
(2)
tJt
, ptJt , F ) =

∫
stb(δt(Γt);x

(2)
tJt
, ptJt , θit)dF (θit)

=

∫
e
δtb(Γtb)+µtb(θit;x

(2)
tJt
,ptJt )∑

b′∈Ct e
δtb′ (Γtb′ )+µtb′ (θit;x

(2)
tJt
,ptJt )

dF (θit),
(2.3)

where stb(δt(Γt);x
(2)
tJt
, ptJt , θit) is individual i's choice probability of b in market t given θit. I then

de�ne product-level market share function of j ∈ Jt as the weighted sum of the market share functions

14Typically, the distribution of θit depends on individual i's demographic characteristics di ∈ D. In this case, F is a
mixture of distributions of θi|di: F =

∑
di∈D πt(di)F (·|di), where πt(·) is the distribution of demographics in market t.

15I abuse the expression b ∈ Ct1 for both product j and bundle b.
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of b's that contain j in market t:

stj.(δtJt ;x
(2)
tJt
, ptJt ,Γt, F ) =

∑
b∈Ct1

wjbstb(δt(Γt);x
(2)
tJt
, ptJt , F )

=

∫ ∑
b∈Ct1 wjbe

δtb(Γtb)+µtb(θit;x
(2)
tJt
,ptJt )∑

b′∈Ct e
δtb′ (Γtb′ )+µtb′ (θit;x

(2)
tJt
,ptJt )

dF (θit),

(2.4)

where wjb is the number of times j appears in b and known for any j ∈ Jt and b ∈ Ct1. When j /∈ b,
we have wjb = 0 and the market share of bundle b does not contribute to the product-level market
share of j. When j ∈ b, then wjb is a positive integer. In the setting of qualitative choices (i.e. there is
no bundle that contains multiple units of the same product) wjb = 1 for j ∈ b. Then, (2.4) represents
the population-level marginal choice probability of j. In the setting of quantity choices (i.e. a bundle
may contain multiple units of the same product), wjb is equal to the units of product j purchased in the
form of bundle b and may be larger than 1. Then, (2.4) represents the population-level total purchases
of product j. In both settings, the aggregation in (2.4) is consistent with the aggregate demand data
typically available to the researcher.

2.2.2 Examples of Model (2.4) and Interpretation of Demand Synergy Parameters

Model (2.4) is quite general and a wide range of economic models can be formulated via speci�c
restrictions on Ct2 and/or on demand synergies Γitb. In this section, I provide some examples in the
literature. In particular, I will explain the economic interpretation of Γitb's in each setting.

Demand for Single Products. This model can be seen as a particular case of (2.4) with Ct2 = ∅,
or equivalently, Γitb = −∞, for all b ∈ Ct2. This restriction on Γitb rules out simultaneous choices of
more than one single product and restricts products to be Hicksian substitutes.

Multiple Choice of Products, within Category. Gentzkow (2007) considers household's choice
over bundles of at most 2 di�erent newspapers: Ct2 = {(j1, j2) : j1 < j2, j1, j2 ∈ Jt} and Ct =

{0} ∪ Jt ∪ Ct2. In general, one can allow for choice over bundles of up to K di�erent products:
Ct2 = {(j1, ..., jk) : j1 < ... < jk, j1, ..., jK ∈ Jt}. As shown in Iaria and Wang (2019a), demand
synergy Γitb can proxy various mechanisms, including preference for variety, shopping cost, synergies
in consumption.

Multiple Choice of Products, across Categories. Grzybowski and Verboven (2016) and Ershov
et al. (2018) consider choice over bundles of products across di�erent categories. In the simplest case
where a bundle is de�ned as a collection of 2 di�erent products (chips and soda) with each belonging
to a di�erent category (salty snacks and carbonated drinks), we have Ct2 = J1 × J2 = {(j1, j2) : j1 ∈
J1, j2 ∈ J2}. In the example of potato chips and carbonated soda (Ershov et al., 2018), Γitb's are
interpreted as synergies in consumption.

Quantity Choice: Multiple Units. As a deviation from demand models for single products,
individuals purchase not only one out of J products but also a discrete quantity of the chosen product.
This can be captured by Ct2 = {(j, ..., j) : j ∈ J, the length of (j, ..., j) ≤ L.}, where L is the maximal
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units individuals can purchase. In the simplest case, individuals can purchase the outside option 0, a
unit of product j ∈ J (single product), or a bundle of two identical units (j, j), j ∈ J. Demand synergy
Γit(j,j) is then interpreted as extra utility individual i's obtains from the purchased additional unit of
product j relative to the �rst unit: Γit(j,j) < 0(> 0) implies a decreasing (increasing) marginal utility
of purchasing product j. If Γit(j,j) = 0, then individual i's utility from purchasing the second unit of
product j remains the same as that from the �rst unit.

Quantity Choice: Multiple Discreteness. Demand model of multiple discreteness (see Hendel
(1999) and Dubé (2004)) can be seen as a further extension of demand for multiple units that includes
bundles de�ned as a collection of multiple units of di�erent products: b = ( (j, ..., j︸ ︷︷ ︸

nj

) )j∈J, where

nj is the number of units of product j. As shown in Iaria and Wang (2019a) (Appendix 8.1), Dubé
(2004)'s model of multiple discreteness can be formulated by specifying Γitb =

∑
j∈J Γit(j,...,j), where

Γit(j, ..., j︸ ︷︷ ︸
nj

) ≤ 0 for any nj > 1 and j ∈ J. The non-positive Γit(j,...,j) represents non-increasing marginal

utility of consuming additional units of product j during one consumption moment and the additivity
in Γitb across j ∈ J represents the independence between consumption moments.16

Multi-Category Multi-Store Demand. Thomassen et al. (2017) studies a multi-category multi-
store demand model, where individual purchases multiple units in each of K product categories and
purchase all the units of the same category in the same store. Consider the simplest case where
individual purchases at most one unit in each of 2 product categories (k1 and k2) from 2 stores (S1

and S2). This can be captured by J = {j = (j1, j2) : j1 = k1, k2, j
2 = S1, S2} and C2 = {(j, r) :

j, r ∈ J, j1 6= r1}. A product is de�ned as a Cartesian product of categories and stores with �rst
coordinate being category and the second being store (category 1 in store 2) and a bundle is de�ned
as a Cartesian product of two products that di�er in their �rst coordinate (category 1 in store 2 and
category 2 in store 2). Demand synergy Γit(j,r) is interpreted as shopping cost due to store choice:
Γit(j,r) = 0 if j2 = r2 (purchase products of both categories in the same store), and negative otherwise
(purchase products of one category in store 1 and those of the other in store 2).

2.2.3 Demand Synergies and Hicksian Substitutions

One prominent feature of model (2.4) is that it allows for �exible substitution patterns in demand via
demand synergy parameters. In particular, the cross-price elasticities in model (2.4) can be negative,
i.e. Hicksian complementarity, which is ruled out by demand models of single products.17 In this
section, I will elaborate this point in a model of multiple choice of products within category: C2 =

{(j1, j2) : j1 < j2, j1, j2 ∈ J}. Similar analysis can be conducted with other types of models (2.4).
To ease exposition, I drop the notation of market t and product characteristics in the product-level

market share functions. We then compute the derivative of the product-level market share prices with
respect to prices:

∂sJ.
∂pJ

= −
∫
αi
∂siJ.
∂δJ

dF (θi),

16Due to Dubé (2004)'s perfect substitute speci�cation, individual will consume up to one product during one con-
sumption moment.

17Due to linear index structure, there is no income e�ect and therefore negative (positive) cross-price elasticities are
interpreted as Hicksian complementarity (substitutability).
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where ∂siJ.
∂δJ

=
(
∂sij.
∂δr

)
j,r∈J

and

∂sij.
∂δr

= −[sij.sir. − sijr] = −[sj.(δ(Γ); θi)sr.(δ(Γ); θi)− sjr(δ(Γ); θi)].

The cross-price elasticity between j and r is:

εjr =
pr
sj.

∫
αi[sj.(δ(Γ); θi)sr.(δ(Γ); θi)− sjr(δ(Γ); θi)]dF (θi).

See Appendix B.1 for details of computation.

Di�erent from models of demand for single products, the cross-price elasticity εjr has an additional
term −sjr(δ(Γ); θi). When this term is relatively large, i.e. the joint choice probability for products j
and r is relatively large, we may have a negative εjr, i.e. Hicksian complementarity between j and r.
In the case of two products and one bundle, i.e. J = {1, 2} and C2 = {(1, 2)}, Gentzkow (2007) shows
that Γjr = 0 is the cut-o� value for Hicksian substitutability and complementarity: ε12 < 0 if and only
if Γ(1,2) > 0. When there are more than 2 products, even though Γ(j,r) = 0 may not be the cut-o�
value for Hicksian substitute or complementary between j and r, similar intuition remains valid. To see
this, note that whether j and r are substitute, complementary or independent, i.e. εjr > 0, εjr < 0 or
εjr = 0, is determined by the weighted average of sij.sir.−sijr. The latter is further determined by the
magnitude of synergy parameter between j and r, Γjr, relative to other demand synergy parameters.
If Γjr is su�ciently negative, then sijr is close to zero and thus εjr > 0. As an extreme case, when
Γjr = −∞, i.e. bundle (j, r) is not in the choice set, j and r are always substitute and therefore εjr
is positive. If Γjr is positive and large enough relative to Γj′r′ for all (j′, r′) 6= (j, r), then sij. − sijr
and sir. − sijr are negligible relative to sijr. Then, the sign of εjr is determined by the population
average of s2

ijr − sijr. Since sijr is strictly between 0 and 1, s2
ijr − sijr is always negative and therefore

εjr < 0. If Γjr takes some medium value in (−∞,∞), we can expect εjr = 0 and therefore j and r are
independent.

2.3 Identi�cation

I �rst give the assumptions the identi�cation and estimation will rely on.

Assumption 6. For any t ∈ T,

(i). (Data availability)The product-level market shares, stj. =
∑

b∈Ct1 wjbstb, are observed to the

econometrician for j ∈ Jt.

(ii). (Mix and match) If bundle b ∈ Ct2, then j ∈ Jt, for any j ∈ b.

(iii). (Many-market) The total number of products, | ∪Tt=1 Jt|, and bundles | ∪Tt=1 Ct2|, are �xed while

the number of markets, T = |T|, is large.

Assumption 6(i) speci�es situations where only product-level (rather than bundle-level) market shares
are available to the econometrician. To simplify the exposition, I assume that product-level market
shares are observed without error, i.e. the number of individuals in each market is in�nite. In esti-
mation, one can allow for the number of individuals to increase fast enough relative to the number
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of markets and the main results of the paper still hold.18 Assumption 6(ii) clari�es that bundles are
formed because individuals mix and match products, i.e. a bundle is de�ned as a set of products cho-
sen by individuals. The de�nition of product may vary from application to application. If some single
products are only sold together (e.g. business-class �ight is only available via bundle of business-class
seat and large allowance of luggage), as long as purchase data on such combination is available, i.e.
Assumption 6(i) holds, then one can de�ne such combination as a product and Assumption 6(ii) is
not violated. Finally, Assumption 6(iii) focuses on the many-market setting where the numbers of
products and bundles are �xed while the number of markets increases.

As clari�ed in Assumption 6(iii), I consider the many-market setting in this paper. As a result,
without further restrictions, as T increases, the number of demand synergy parameters to be identi�ed
(i.e. Γt for all t ∈ T) increases simultaneously. This challenge of dimensionality introduces substantial
di�culty in identi�cation and incidental parameters in estimation. To overcome this challenge, I
propose the following assumption along the lines of Gentzkow (2007)'s model of demand for bundles
(and also its generalized version in Iaria and Wang (2019a)):

Assumption 7. For any bundle b ∈ Ct2 and t ∈ T,

Γtb = g(xtb; Σg) + Γb,

where xtb a vector of observed market-bundle speci�c non-price characteristics, g(·; Σg) a function of

xtb parametrized by and continuously di�erentiable with respect to Σg ∈ ΘΣg , and Γb is a bundle-speci�c

�xed e�ect.

Assumption 7 reduces the dimension of the demand synergy parameters to the sum of dim(Σg) and
dim(Γ) = dim((Γb)b∈C2) = |C2|, which remains �xed as T increases. The main motivation for this
assumption is that the bundle-level market shares are not observed to the econometrician. If they were
all available, then one could directly identify and estimate model (2.3), rather than model (2.4), à la
BLP with bundle-level instruments and then Assumption 7 is not required.

Di�erent from the model used in Iaria and Wang (2019a), Assumption 7 assumes linear pricing
in the factual, i.e. the observed price of a bundle is the sum of the prices of its single products.
This excludes nonlinear pricing in the factual, i.e. bundle-speci�c discounts or surcharges. While it is
possible to extend the main results in this paper to allow for nonlinear pricing in the factual, I focus
on the situations covered by Assumption 7 and will explore this extension in future research.

Note that even with Assumption 7, one can still simulate counterfactuals under nonlinear pricing. In
such counterfactuals, this assumption implies that the source of unobserved variations across markets
is limited to the market-product speci�c demand shocks ξtJt . Then, conditional on the observed
characteristics of products and bundles, prices vary across markets only due to variations in ξtJt .

Assumption 7 summarizes various economic situations with or without exogenous characteristics
of bundles. Both situations can be similarly treated in the following identi�cation and estimation
discussion. To simplify the exposition, I will focus on the leading case g ≡ 0, i.e. Γtb = Γb.

18In models of demand for single products, Freyberger (2015) allows for sampling errors in the observed market shares.
He shows the consistency and asymptotic normality of the GMM estimator by requiring the number of individuals to
increase fast enough relative to the number of markets.
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2.3.1 Economic Analyses and Su�cient Demand Primitives

The demand primitives to be identi�ed are motivated by research questions. In the context of demand
for bundles, researchers are usually interested in economic analyses under linear and nonlinear pricing
strategies. Under linear pricing strategy, �rms only set prices of their single products; the price of
a bundle is de�ned as the sum of the prices of its single products. Under nonlinear pricing strategy,
�rms can not only set prices of its single products but also on the bundles of their own products.
Then, the price of a bundle can be di�erent from the sum of the prices of its products when there
is a discount or surcharge. Identifying the full structural parameters does allow to conduct all these
analyses. However, this may be overly su�cient. The next proposition shows precisely which demand
primitives are needed to conduct the two kinds of analyses in merger simulations.

Proposition 1. Suppose that Assumptions 6-7 hold and αi = α.19 Also suppose that the observed

prices ptJt and those after mergers are generated from a simultaneous Bertrand price-setting game

under complete information with constant marginal cost ctj for j ∈ Jt, and are unique.

� If (α, β, η) and stJt.(·;x
(2)
tJt
,Γ, F ) are identi�ed, then,

� Price elasticities at ptJt are identi�ed.

� ctj's are identi�ed.

� The changes of prices, pro�ts, consumer surplus, social welfare before and after the merger

under linear pricing are identi�ed.

� If Γ and stb(·;x(2)
tJt
, F ), for any b ∈ Ct1 are further identi�ed, and moreover, ctb =

∑
j∈b ctj for

b ∈ Ct2, then, the changes of prices, pro�ts, consumer surplus, social welfare before and after

the merger under nonlinear pricing are identi�ed.

Proof. See Appendix B.2.

Remark 4. The condition ctb =
∑

j∈b ctj implies that there is no additional cost for �rms to set

bundle-speci�c prices. The second statement of Proposition 1 still holds if there is such additional cost

and it is known to the researcher.

Proposition 1 speci�es the set of su�cient demand primitives with which the researcher can simulate
mergers under linear and nonlinear pricing, respectively. Identifying (α, β, η) and stJt.(·;x

(2)
tJt
,Γ, F ) is

enough for merger simulations under linear pricing. For those under nonlinear pricing, it su�ces to
further identify Γ and stb.(·;x

(2)
tJt
, F ) for all b ∈ Ct2. In what follows, I will organise the identi�cation

discussion in two parts. In the �rst part, I discuss the identi�cation of (α, β, η) and stJt.(·;x
(2)
tJt
,Γ, F );

in the second part, I assume the identi�cation of (α, β, η) and stJt.(·;x
(2)
tJt
,Γ, F ) and continue to identify

Γ and stb(·;x(2)
tJt
, F ) for b ∈ Ct2.

2.3.2 Identi�cation of Product-Level Market Share Functions

I follow the classical approach in demand models of aggregate market shares and use a two-step iden-
ti�cation strategy. In the �rst step, I recover the mean utilities of products using a novel demand

19Because αi = α, prices enter the indirect utilities only via the mean utilities. In this proposition and the proof, I
drop the notation ptJt from st(·;x(2)

tJt
, ptJ,Γ, F ).
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inverse to deal with possible Hicksian complementarities among products; in the second step, I con-
struct moment conditions using IVs to deal with endogenous prices and identify product-level demand
primitives.

Demand Inverse in Model (2.4) with Complementarity. Let J = ∪Tt=1Jt denote the set of all
available single products, and C2 = ∪Tt=1Ct2 the set of all available bundles. The �rst step hinges on
the invertibility of product-level market share functions:

Theorem 7. (Theorem Demand Inverse of Iaria and Wang (2019a))

Suppose that Assumption 6-7 holds Then, for any (Γ′, F ′), there exists at most one δ′tJt such that

stJt.(δ
′
tJt

;x
(2)
tJt
, ptJt ,Γ

′, F ′) = stJt..

When (Γ′, F ′) are the true parameters (Γ, F ), the vector of the true mean utilities of products, δtJt , is
the unique solution of stJt.(δ

′
tJt

;x
(2)
tJt
, ptJt ,Γ, F ) = stJt.. As a result, the function stJt.(·;x

(2)
tJt
, ptJt ,Γ, F )

is globally invertible. Denote its inverse by:

δtJt = s−1
tJt.

(stJt.;x
(2)
tJt
, ptJt ,Γ, F ). (2.5)

Iaria and Wang (2019a) �rst proved this result and use it to reduce the dimensionality of �xed e�ects in
a likelihood estimation procedure.20 In this paper, it is used as a fundamental identi�cation argument
and an essential step to form moment conditions when only product-level market shares are available.

There are two key di�erences relative to the classical demand inverse in demand models of single
products. First, the invertibility of market share functions in demand models of single products
follows from the connected substitutes conditions (Berry et al., 2013) which require the products to
be Hicksian substitutes. These conditions may not apply to model (2.4) because the products can
be Hicksian complementary. The invertibility of product-level market share functions in Theorem 7
is built on the a�ne relationship between the utilities of bundles and single products (see equation
(2.2)) and on the P-matrix property by Gale and Nikaido (1965), which-crucially-does not require the
products to be Hicksian substitutes. Second, the demand inverse in Theorem 7 may not be implemented
by the �xed-point contraction mapping algorithm proposed by Berry et al. (1995). This is because
the contraction mapping property of the algorithm may not hold when (some) products are Hicksian
complementary in model (2.4). I propose to use Jacobian-based algorithms to implement this demand
inverse.21 See section 2.4.2 for details of the implementation.

When (Γ′, F ′) 6= (Γ, F ), it is possible that there is no δ′tJt such that stJt.(δ
′
tJt

; Γ′, F ′) = stJt..
22 In

this case, such (Γ′, F ′) are directly ruled out of the identi�cation set of (Γ, F ). In what follows, the
identi�cation discussion will restrict to (Γ′, F ′) such that δ′tJt exists.

Instrumental Variable Approach. To clarify the source of identi�cation, I suppose that Jt = J

and Ct2 = C2 for any t ∈ T, i.e. there is no variation in the set of products and bundles across

20See their Theorem MLE and implementation section.
21Conlon and Gortmaker (2019) provide a review of numerical methods for implementation of demand inverse in

demand models of single products.
22For example, if the data generating process is such that the sum of the observed product-level market shares is larger

than one, then any demand models of single products (Γb = −∞ for any b) cannot rationalize the observed product-level
market shares and hence the demand inverse is not feasible with Γ′ = −∞.
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markets. Combining equation (2.5) and δtJ = xtJβ − αptJ + ηJ + ξtJ, I obtain:

xtJβ − αptJ + ηJ + ξtJ = s−1
J. (stJ.;x

(2)
tJ , ptJ,Γ, F ). (2.6)

The source of price endogeneity is ξtJ: ξtJ are observed to �rms and therefore ptJ are set based on ξtJ.
Consequently, ptJ and ξtJ are correlated, while ξtJ are not observed to the econometrician. Beyond
the price endogeneity, Γ and F constitute parameters that cannot be pinned down without further
assumption. I use IVs to solve these challenges:

Assumption 8. There are random variables ztJ = (ztj)j∈J, such that E[ξtJ|ztJ, xtJ] = 0 almost

everywhere.

Assumption 8 gives rise to conditional moment restrictions:

E [ξj(β, α, η,Γ, F ; stJ., xtJ, ptJ)|ztJ, xtJ] = 0 a.e., (2.7)

for j ∈ J, where ξj(β, α, η,Γ, F ; stJ., xtJ, ptJ) = s−1
j (stJ.;x

(2)
tJ , ptJ,Γ, F )− xtjβ + αptj − ηj . The identi-

�cation of sJ.(·; Γ, F ) (or equivalently its inverse s−1
J. (·; Γ, F )) by moment conditions (2.7) can follow

from general arguments in nonlinear models using IVs. In demand models of single products, one can
leverage completeness conditions of joint distribution of (ztJ, xtJ, stJ., ptJ) with respect to (stJ., ptJ)

(Berry and Haile, 2014). Intuitively, this requires su�ciently rich variation in (ztJ, xtJ) that can dis-
tinguish any function of endogenous variables (stJ., ptJ) from others. In the context of (2.7), the same
general arguments also apply. I need variation in (ztJ, xtJ) to distinguish ξJ(β, α, η,Γ, F ; · · · ) from
ξJ(β′, α′, η′,Γ′, F ′; · · · ) for any (β′, α′, η′,Γ′, F ′) 6= (β, α, η,Γ, F ). As long as such variation is avail-
able, having demand synergy parameters Γ does not conceptually introduce additional di�culty for
identi�cation.

Despite the generality, these arguments and required conditions are often high-level. In what fol-
lows, I leverage usual economic settings and propose low-level su�cient conditions for the identi�cation
of market-level market share functions. To simplify the exposition, I will focus on cost-type variables
and take product characteristics xtJ as �xed.23 In Appendix B.9, I propose similar su�cient conditions
for other commonly used instruments: BLP-type instruments, exogenous product characteristics.

Suppose that the ownership of each product is the same across markets and that prices are generated
from a simultaneous Bertrand pricing game under complete information with constant marginal cost
ctj for j ∈ J. Without loss of generality, I specify ctj = ztj + wtj , where ztj is cost shifter for product
j and wtj is exogenous supply shock that is observed to �rms but not observed to the econometrician.
The main identi�cation result of the product-level market share functions is the following:

Theorem 8. Suppose that Assumptions 6-8 and regularity condition 2 of Appendix B.3 holds. More-

over, the following conditions hold:

1. ztJ is independent of (ξtJ, wtJ) and the support of ztJ is RJ .

2. αi = α 6= 0

3. Given x(2), ptJ = pJ(βx+ η + ξtJ, ctJ;x(2)) is a function of (βx+ η + ξtJ, ctJ).

23Common examples of cost-type variables and its proxies are input prices, variables correlated with marginal costs,
prices of the same products in other markets (e.g., Hausman-type instruments).
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4. For any (Γ′, F ′) 6= (Γ, F ), there exists δ′J 6= δ′′J such that sJ.(δ
′
J;x(2),Γ, F ) = sJ.(δ

′
J;x(2),Γ′, F ′)

and sJ.(δ
′′
J;x(2),Γ, F ) = sJ.(δ

′′
J;x(2),Γ′, F ′).

Then,

� If (ξ, w) is Gaussian distributed, then α and stJ.(·;x(2),Γ, F ) are identi�ed.

� Suppose that the data generating process is a model of multiple choice of products across categories

(see section 2.2.2). If the distribution F has compact support, then under regularity condition 3

of Appendix B.3, α and stJ.(·;x(2),Γ, F ) are identi�ed.

Remark 5. The two statements of Theorem 8 are complementary: the �rst statement achieves the

identi�cation by restricting the distribution of demand and supply shocks and remains agnostic on

the distribution of random coe�cients.24 While, the second statement restricts the distribution of the

random coe�cients to have compact support and does not posit on the distribution of(ξ, w).

Remark 6. Once α and stJ.(·;x(2),Γ, F ) are identi�ed for any x(2), δtJ can be recovered from the

demand inverse in Theorem 7. Then, the identi�cation of β and η follows from standard linear IV

arguments.

Proof. See Appendix B.3.

The �rst condition reinforces Assumption 8 to strong exogeneity of cost shifters ztJ and assumes
large support of ztJ. The second condition simpli�es the price coe�cient to be homogeneous for
all individuals but still allows for random coe�cients on other product characteristics. The third
condition imposes the uniqueness of the Bertrand price competition and is typically necessary to
simulate counterfactuals in empirical research. The fourth condition requires that the image sets of
two di�erent product-level market share functions intersect at two di�erent vectors of the mean utilities
of products. This is a mild requirement. In fact, in the case of demand models of single products,
these image sets are identical and equal to {(s′j)j∈J :

∑
j∈J s

′
j < 1, s′j > 0}.

When model (2.4) degenerates to a demand model of single products, i.e. Γ = −∞, Theorem 8
implies the identi�cation of α and the market share functions of products in classic models of demand.
Then, one can invert the market share functions and recover the mean utilities of products. The
identi�cation of β and η follows by applying standard linear IV arguments.

Also relying on product-level choice data, the main result of Allen and Rehbeck (2019a) implies the
identi�cation of product-level market share functions in the context of model (2.4) with additive sepa-
rable unobservable heterogeneity. While their identi�cation strategy crucially relies on the assumption
of additively separable unobservable heterogeneity and does not allow for endogenous prices, I exploit
exogenous variation in cost shifters and product characteristics to deal with price endogeneity and
achieve the identi�cation of product-level market share functions.

2.3.3 Identi�cation of Bundle-Level Market Share Functions

In this section, I assume that the product-level market share functions are identi�ed and aim to
identify Γ and stb(·;x(2)

J , F ).25 It su�ces to separably identify demand synergies Γ and the distribution

24The identi�cation in Theorem 8 can also be achieved when the distribution of (ξ, w) has �fat tail�. See Mattner
(1992) and D'Haultfoeuille (2011) for details.

25Note that the results in this section do not require αi = α as in Proposition 1. Without loss of generality, x
(2)
tj will

also include the price variable.
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of random coe�cients, F . The key challenge of this task is that only product-level market shares
are observed. I �rst provide identi�cation results for a class of models widely used in the empirical
literature.26

Theorem 9. Suppose that C2 = {(j, j′) : j < j′, j, j′ ∈ J}, or C2 = {(j1, j2) : j1 ∈ J1, j2 ∈ J2},
Γitb = Γb for b ∈ C2, and sJ.(·;x

(2)
tJ ,Γ, F ) is identi�ed in RJ . Then, Γ and sb(·;x(2)

tJ , F ) are identi�ed

in RC1 for any b ∈ C1.

Proof. See Appendix B.4.

Remark 7. If for some bundle b, the true Γb is equal to −∞, i.e. bundle b is not in the choice set,

then Theorem 9 implies that Γb = −∞ is identi�ed.

Theorem 9 shows that product-level demand data already su�ces to identify bundle-level demand
primitives (synergy parameters and bundle-level market share functions) in models of multiple choices
of products within/across categories. Consequently, researchers are able to conduct the nonlinear
pricing counterfactuals in Proposition 1 using these models. It is worthy pointing out that Theorem
9 does not automatically imply that F is identi�ed. In BLP-type models of demand, this further step
of identi�cation of F can be achieved under mild conditions. For example, Wang (2020) (Theorems 2
and 3) show that it su�ces to have a single variation in x(2)

t across markets. I refer to that paper for
more details.

However, the separable identi�cation in Theorem 9 may not be achieved in some other kinds of
model (2.4). The following corollary gives an example.

Corollary 3 (Non-separable identi�cation of Γ and sb(·;F )). Suppose that the data generating process
is a model of multi-unit choice: J = {1} and C2 = {(1, 1)}, Γi(1,1) = Γ > −∞. Moreover, the

product-level market share function:

s1.(δ; Γ, F ) =

∫
eδ+µ + 2e2δ+2µ+Γ

1 + eδ+µ + e2δ+2µ+Γ
dF (µ). (2.8)

is identi�ed. Then, there exists (Γ, F ) such that the Γ and s(1,1)(·;F ) are not separably identi�ed.

Proof. See Appendix B.5.

Corollary 3 illustrates the limited power of product-level market shares in models of multi-unit choice
to separably identify Γ and F . Intuitively, one cannot distinguish Γ and s(1,1)(·;F ) because it is
impossible to shift the mean utility of the �rst unit without shifting that of the second unit. When
bundle-level demand data is available, Iaria and Wang (2019a) shows how to identify and estimate
model of demand for bundles by exploring the same bundle-speci�c �xed e�ects Γb across markets.
This gives rise to additional moment restrictions that separately identify Γ and sb(·;F ). With only
product-level demand data, this source of identi�cation is no longer available in model (2.8). As a
consequence, unless imposing further assumptions on synergy parameters or the distribution of the
random coe�cients, the availability of bundle-level demand data may be necessary to disentangle Γ

and F and to conduct nonlinear pricing counterfactuals in models of multi-unit choice.27

26See Gentzkow (2007), Fan (2013), Kwak et al. (2015), Grzybowski and Verboven (2016) for example.
27For the identi�cation with bundle-level demand data, see Fox and Lazzati (2017), Allen and Rehbeck (2019b), and

Iaria and Wang (2019a).
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2.3.4 Summary of Identi�cation

In section 2.3.2, I provide su�cient conditions for the identi�cation of product-level market share
functions using IVs. In section 2.3.3, I study the identi�cation of bundle-level market share func-
tions assuming the identi�cation of the product-level market share functions. The proposed su�cient
conditions may be overly su�cient. To complete the discussion, I provide a complementary but non-
constructive approach built on moment conditions (B.2). See Appendix B.10 for details.

2.4 Estimation and Implementation

In this section, I propose a GMM estimation procedure for model (2.4) and discuss its implementa-
tion. The proposed estimation procedure is conceptually similar to that used in BLP models of single
products. However, due to the nature of bundle choice, the implementation has non-trivial challenges.
I consider parametric estimation of model (2.4). Concretely, F is characterized by Σ ∈ ΘΣ ⊂ RP .
De�ne the true value of parameter vector as θ0 = (α0, β0, η0,Σ0,Γ0). I also assume that (xtJt , ztJt) are
valid instruments and θ0 is identi�ed.

2.4.1 Estimation Procedure

I construct unconditional moment conditions from (B.2) using a �nite set of functions of (xtJt , ztJt),
Φ = {φg(xtJt , ztJt)}Gg=1:

m(θ′; {stJt , ptJt , xtJt , ztJt}Tt=1,Φ) = (E [ξtj(β
′, α′, η′,Γ′, F ′; stJt., xtJt , ptJt)φg(ztJt , xtJt)])

G
g=1 ,

The �nite-sample counterparts are:

mT (θ′; {stJt , ptJt , xtJt , ztJt}Tt=1,Φ) =

 1

T

T∑
t=1

1

Jt

Jt∑
j=1

[
s−1
tj (stJt.;x

(2)
tJt
, ptJt ,Γ

′,Σ′)− xtjβ′ + α′ptj − η′j
]
φg(xtj , ztj)

G

g=1

.

(2.9)
Then, the GMM estimator of θ0, θ̂GMM

T , is de�ned as:

θ̂GMM
T = arg min

θ′∈Θ
mT (θ′; {stJt , ptJt , xtJt , ztJt}Tt=1,Φ)TWTmT (θ′; {stJt , ptJt , xtJt , ztJt}Tt=1,Φ),

(2.10)
where Θ is a compact set and WT ∈ RG×G is a weighting matrix that converges to a positive-de�nite
matrix W in probability. If θ0 lies in the interior of Θ, then under standard regularity conditions (see
Newey and McFadden (1994)), θ̂GMM

T is consistent and asymptotically normal.28

A basic requirement for the good �nite-sample performance of (2.10) is that we have at least
as many moment conditions as the dimension of (α0, β0, η0,Γ0,Σ0). In particular, we have dim(Γ0)

demand synergy parameters in (2.10) that BLP models of single products do not have. Therefore,
we need at least dim(Γ0) more moment conditions. If the number of valid instruments or variability
of these instruments is limited, then one can also specify Σ0 and reduce its dimensionality according
to the economic setting. For example, two products of the same producer, or of similar nutrition

28If some parameters (e.g., distributional parameters Σ) are on the boundary, the GMM estimator may not be asymp-
totically normal. See Ketz (2019) for an inference procedure that is valid when distributional parameters are on the
boundary and Andrews (2002) for a general treatment.
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ingredients, may have greater or smaller synergies. Then, one can specify the demand synergy among
the two products as a function of the distance between the characteristics of the products.

In BLP models of single products, a suggested practice is to approximate the optimal instruments in
the form of Amemiya (1977) and Chamberlain (1987) that achieve the semi-parametric e�ciency bound.
Reynaert and Verboven (2014) and Conlon and Gortmaker (2019) report signi�cant gain by using Berry
et al. (1995)'s GMM estimator with optimal instruments. However, the di�culty of approximating
optimal instruments still remains in the estimation procedure (2.10). A good approximation of optimal
instruments relies on the knowledge of the true parameters. Moreover, when the number of products
is large, even low order of such approximation may be subject to a curse of dimensionality and the
number of needed basis functions is exponentially proportional to the number of products. Gandhi
and Houde (2016) provide a solution that breaks the dependence of basis functions on the identity of
products under symmetry conditions among products. The number of basis functions is then invariant
with respect to the number of products. However, due to potentially heterogeneous synergy parameters
across bundles, the identity of products does matter in (2.10). In the empirical application of section
2.6, I do not employ the approach of optimal instruments and will explore it in future research.

2.4.2 Implementation of Demand Inverse

A key step of the estimation procedure is the implementation of the demand inverse in Theorem 7. It
seeks for the solution of the following equation:

stJt.(δ
′
tJt ;x

(2)
tJt
, ptJt ,Γ

′, F ′)− stJt. = 0. (2.11)

In practice, stJt .(·; Γ′, F ′) are usually computed using Monte Carlos simulations. The researcher �rst
draws independently a �nite number of sets of random numbers with which one can approximate the
distribution F ′.29 Then, the market share functions are computed on the basis of the approximated
version of F ′ which is numerically a discrete distribution with �nite support and therefore is de�ned
in a compact support. In the analysis of the numerical performance of solving (2.11), I will assume
that the distribution F ′ has compact support.

In the context of demand models of single products, Berry et al. (1995) propose a �xed-point
iterative algorithm to implement the demand inverse in estimation. An essential property of this
algorithm is contraction mapping, which guarantees the convergence of the iteration. However, the
contraction-mapping property may not hold if one uses the same iterative algorithm to solve (2.11)
because products can be Hicksian complementary. To solve this challenge, I propose to use Jacobian-
based approach to solve (2.11). This approach is not new in the literature. Conlon and Gortmaker
(2019) tests performances of di�erent Jacobian-based algorithms to solve the demand inverse in demand
models of single products and �nd supportive evidences for the e�ciency of Jacobian-based numerical
methods. A leading example is Newton-Raphson method:

δ(0) = δ(0),

δ(n+1) = δ(n) − J−1
s (δ(n))[stJt.(δ

′
tJt ;x

(2)
tJt
, ptJt ,Γ

′, F ′)− stJt.],
(2.12)

where Js(δ′tJ) =
∂stJt.(δ

′
tJt

;x
(2)
tJt
,ptJt ,Γ

′,F ′)

∂δ′tJ
. In the context of (2.11), Algorithm (2.12) is well-de�ne because

29A typical method is to simulate a �xed set of random numbers from uniform distribution in [0, 1] and use (F ′)−1 to
transform these random numbers to that under the distribution F ′.
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the Jacobian matrix Js(δ′tJ) is everywhere symmetric and positive-de�nite. Moreover, the uniqueness
of solution is guaranteed by Theorem 7. If (2.12) converges, then it converges to the unique solution
of (2.11).

It is well-known that the numerical performance of Jacobian-based algorithms such as (2.12) de-
pends on the quality of the initial point δ(0) : the closer δ(0) is to the solution δ′tJ, the faster Algorithm
(2.12) converges. In general, there is no theoretical guidance for choosing a good initial point.30 Mo-
tivated by the practical implementation of the demand inverse, i.e. F ′ in (2.11) is approximated by
a discrete distribution with �nite support, I propose an initial point that is directly constructed from
the observed product-level market shares. In the next proposition, I prove that in models of multiple
choice of products across K categories, the proposed initial point is �close� to the solution of (2.11):

Proposition 2. Suppose that stJ. in (2.11) are generated from a model of multiple choice of products

across K categories, for K ≥ 1 (see Section 2.2.2) and the distribution F ′ has compact support DF .

Denote the solution to (2.11) by δ′J. For products of category k, de�ne δ
(0)
k∗ =

(
δ

(0)
jk∗

)
j∈Jk

, where

δ
(0)
jk∗ = ln

sj.
1−

∑
j∈Jk

sj.
. De�ne δ

(0)
∗ = (δ

(0)
k∗ )k=1,...,K . Then, there exists A(DF ,Γ

′) > 0 such that

|δ′J − δ
(0)
∗ | ≤ A(DF ,Γ

′).

Proof. See Appendix B.6.

Even though it is hard to derive similar results in a general model (2.4), Proposition 2 sheds light on
how to �nd a good initial point for Jacobian-based algorithms: it suggests to use initial points as if
the data generate process is a multinomial logit model. In a model where the bundle size is up to size
K, such a point along the lines of Proposition 2 can be de�ned as: for j ∈ Jt,

δ
(0)
j∗ = ln

sj.

K −
∑

j∈Jt sj.
. (2.13)

Here K −
∑

j∈J sj. serves as the �market share� of the outside option.31 In the next section, I will

explore potential e�ciency gain of using δ(0)
∗ in Monte Carlos simulations.

2.5 Monte Carlos Simulations

In this section, I explore the numeric performance of Jacobian-based algorithms in the implementation
of the demand inverse of product-level market shares. I compare convergence time across di�erent
algorithms and initial points�particularly, the proposed initial point in section 2.4.2�for di�erent
sizes of product set.

Table 2.1 summarizes the main results of the simulations. The data generating process is a discrete
choice model of bundles up to size two and the prices are generated from a Bertrand pricing game under
complete information with constant marginal costs. I simulate 50 markets with the same structural
parameters. The unobserved demand shocks ξtJ are Gaussian and i.i.d. across markets. Then, I
implement the demand inverse using the true model and also using a demand model of single products in

30One of few theoretical results on global convergence of Newton-Raphson method is Newton-Kantorovich Theorem.
31When the bundle size is up to K, since product-level market shares of two di�erent products overlap on up to K − 1

bundle-level market shares. Consequently, the sum of all product-level market shares is strictly smaller than K.
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each market and report the median convergence time (in seconds).32 Moreover, I test the performances
of such demand inverses with the initial point δ(0)

∗ de�ned in (2.13) and also δ(0) = 0. I replicate this
setting for di�erent sizes of product sets (J = 10, 50, and 100). For example, in the case of J = 100,
the true model has 5051 alternatives (100 single products, 4950 bundles of two di�erent products,
and an outside option). The demand inverse s−1

J. will then treat the observed market shares as those
generated from the true model, while the demand inverse s−1

J will treat the same observed market
shares as if they are generated from a demand model of 100 single products. The three algorithms
used in the simulations are built-in algorithms of fsolve in Matlab.

Table 2.1: Demand Inverse of Product-Level Market Shares: Convergence Time in Seconds

Algorithm Trust-Region-Dogleg Trust-Region-Re�ective Levenberg-Marquardt

s−1J. s−1J s−1J. s−1J s−1J. s−1J

Init. Point δ
(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0

# Products

J = 10 0.04 0.09 0.03 0.08 0.05 0.09 0.04 0.08 0.08 0.09 0.07 0.09

50 0.49 1.45 0.10 2.64 0.41 1.31 0.13 0.34 1.31 1.92 0.19 0.12

100 4.50 12.22 0.12 3.21 3.32 12.15 0.27 0.60 12.25 20.21 0.33 0.18

Notes: Trust-region-dogleg, trust-region, and Levenberg-Marquardt algorithms are built-in algorithms

of the function fsolve in Matlab. All of them are large-scale and minimize the sum of squares of the

components of (2.11). Median convergence time (in seconds) of 50 independently simulated markets is

reported. Tolerance level in the stop criterion of all algorithms is set to 10−16.

There are two main �ndings. First, for s−1
J. , using the recommended initial point δ(0)

∗ remarkably
reduces convergence time in all cases. The gain is larger when the number of products is larger. When
J = 100, trust-region-dogleg and trust-region-re�ective algorithms reduce around 70% convergence
time by using δ(0)

∗ than using δ(0) = 0. The e�ciency gain for s−1
J using δ(0)

∗ is similar.33 Second, using

δ
(0)
∗ does not seem to increase the number of iterations for the algorithm to converge as the problem size
increases. For example, the convergence time for J = 100 by using the three Jacobian-based algorithms
with δ(0)

∗ is roughly 100 times of that for J = 10. Because the bundle size is at most two, then the size
of choice set increases quadratically with respect to the number of products and therefore the number
of required computations for one evaluation of market share functions also increases quadratically.
While, the total convergence time when using δ(0)

∗ seems to increase only quadratically for s−1
J. with

respect to the number of products. This may imply that the number of iterations does not increase as
J increases.

2.6 Empirical Illustration: RTE Cereals and Milk

In this section, I illustrate the practical implementation of the proposed methods and estimate the
demand for Ready-To-Eat (RTE) cereals and milk in the US. I use models of demand for bundles with
di�erent speci�cations of Γb's that are more or less �exible. Depending on the research question, some
of the speci�cations may be too restrictive and consequently lead to biased results. I illustrate the
potential biases due to these restrictions in several counterfactual simulations.

32The structural parameters are chosen so that the sum of the simulated product-level market shares is always smaller
than one. This allows to implement the demand inverse of single products on these simulated product-level market
shares.

33In this demand inverse, K in (2.13) is 1.
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2.6.1 Data and De�nitions

I use the store-week level datasets of the RTE cereal and milk categories from the IRI data. The IRI
data has been used in the empirical literature of demand (see Nevo (2000, 2001)). I will give a succinct
description and refer to these papers and also Bronnenberg et al. (2008) for a thorough discussion.

In this illustrative application, I focus on the period 2008-2011 and the city of Pitts�eld in the US.
I de�ne a market t as a combination of store and week and obtain 1387 markets. In each market, the
sales (in lbs and dollars) of RTE cereals and �uid milk are observed at Universal Product Code (UPC)
level. For the RTE cereal category, similarly to Nevo (2001), I de�ne a product as a combination
of brand, �avour, forti�cation, and type of grain. For �uid milk category, I de�ne a product as a
combination of brand, �avour, forti�cation, fat content, and type of milk. Then, the sales of product
j of category k ∈ K = {RTE cereal, f luid milk} in market t is the sum of the sales in lbs of all the
UPC's that this product collects. The price of j of category k in market t, pktj , is de�ned as the ratio
between its sales in dollars and in lbs. To simplify the implementation, within each category, I keep
the products with the largest sales in lbs. I then obtain 25 RTE cereal products and 20 �uid milk
products, and denote the set of these products by Jk for k ∈ K, respectively.34

For each market, I consider the weekly consumption of breakfast cereals as the market size for
RTE cereal category and weekly consumption of �uid milk for milk category. To calibrate the market
size for each category, I assume that households go shopping once per week for breakfast cereals and
�uid milk. Then, the market size for RTE cereal category (or milk) is the product of the weekly per
capita consumption of breakfast cereals (or �uid milk) and the sampled population size. I obtain the
former information from external sources and the latter from the IRI data. Finally, for each market,
the product-level market share of j ∈ Jk is then the ratio between its total sales and the market size
for category k. Appendix B.7 provides computational details of the construction of the product-level
market shares and Tables B.1-B.2 in Appendix B.8 summarize the characteristics of the products.

2.6.2 Model Speci�cation

For each store-week combination t, denote the set of available products in category k ∈ K by Jtk ⊂ Jk.
Denote by 1 the RTE cereal category, 2 the milk category, and then Jt = Jt1 ∪Jt2. The set of bundles
Ct2 is de�ned as Jt1 × Jt2, where each bundle contains a RTE cereal product and a milk product.35

Household's choice set is then de�ned as Ct = Jt ∪Ct2 ∪ {0}, where 0 represents the outside option.36

The size of Ct is 546 (45 products, 500 bundles, 1 outside option) if all products in J are available in
market t.
For household i in market t, the indirect utility from choosing product j ∈ Jtk is:

Ukitj = −pktjαi + ηkij + ξktj + εkitj

= [−pktjα+ ηkj + ξktj ] + [∆ηkij −∆αip
k
tj ] + εkitj

= δktj + µkitj + εkitj ,

µkitj = ∆ηkij − (di∆α+ vi)p
k
tj ,

34The purchase of the 25 RTE cereal products represents 38% of the total purchase of RTE cereals in the IRI data,
and that of the 20 �uid milk represents around 88%.

35I do not include bundles of products of the same category.
36According to the de�nition of products and the market sizes, the outside option collects RTE cereals or milk products

not included in Jtk, relevant products not present in the categories (e.g. cereal biscuits), and the bundles of these products
(e.g. cereal biscuits and milk).
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and

∆ηkij =

 ∆ηi,�avor(j) + ∆ηi,forti�cation(j) + ∆η1
i,brand(j), if k = 1,

∆ηi,�avor(j) + ∆ηi,forti�cation(j) + ∆η2
i,brand(j) + ∆η2

i,fat content(j), if k = 2,

where δktj is market t-speci�c mean utility for j ∈ Jtk, µkitj is a household i-speci�c utility deviation from
δktj , and εkitj is an idiosyncratic error term. The coe�cient α is population-average price coe�cient,
and ∆αi = di∆α + vi is household i-speci�c price coe�cient deviation from α and is the sum of an
observed part that is a function of the household characteristics di (income groups) and an unobserved
component vi. ∆ηkij is an unobserved household i-speci�c preference for product j of category k, where
∆ηi,�avor(j) captures household i's unobserved preference for the �avour of j of category k (un�avoured,
�avoured), ∆ηi,forti�cation(j) captures i's unobserved preference for the nutrition in product j of category
k (unforti�ed, forti�ed), ∆ηki,brand(j) captures i's unobserved preference for the brand of j of category
k, and ∆η2

i,fat content(j) captures i's unobserved preference for the fat content in milk j (whole fat,
low fat, skimmed). Note that because RTE cereals and milk have both the �avour and forti�cation
characteristics, then for products j ∈ Jt1 and r ∈ Jt2, if they have the same �avour (or forti�cation
type), then ∆ηi,�avor(j) = ∆ηi,�avor(r) (or ∆ηi,forti�cation(j) = ∆ηi,forti�cation(r)).

The indirect utility of household i in market t from choosing bundle b = (j, r) is:

Uitb =
[
−p1

tjαi + η1
ij + ξ1

tj

]
+
[
−p2

trαi + η2
ir + ξ2

tr

]
+ Γb + εitb

=
[
δ1
tj + δ2

tr + Γb

]
+
[
µ1
itj + µ2

itr

]
+ εitb

= δtb(Γb) + µitb + εitb,

where δtb(Γb) = δ1
tj +δ2

tr+Γb is market t-speci�c mean utility for bundle b, µitb is household i-speci�c
utility deviation from δtb, Γb = Γ(j,r) is demand synergy between RTE cereal j and milk r, and εitb is
an idiosyncratic error term. The demand synergy parameter Γ(j,r) captures the extra utility household
obtains from buying RTE cereal j and milk r jointly rather than separately. One prominent reason
for the joint purchase is synergy in consumption, i.e. members in the household consume together
RTE cereals and milk for their breakfasts.37 The matching between the characteristics of RTE cereal
j and milk r may determines the extra utility Γ(j,r). Consequently, I specify Γ(j,r) as a function of the
characteristics of j and r:

Γ(j,r)(γ) = γ0 + 1{j is multi-grain}γ1 + 1{j is granola}γ2

+ 1{r is skimmed}γ3 + 1{r is low fat}γ4

+ 1{j is �avoured}γ5 + 1{r is chocolate milk}γ6

+ 1{j is �avored and r is chocolate milk}γ7

+ 1{j is forti�ed, r is chocolate milk}γ8 + 1{j is forti�ed, r is forti�ed}γ9.

(2.14)

The parameter γ0 represents the synergy in consumption of the reference bundle (un�avoured unforti-
�ed uni-grain RTE cereal and un�avoured whole-fat milk).γ1 and γ2 quantify additional synergies due
to other types of grains (multi-grain, granola). γ3 and γ4 measures additional synergies due to lower
fat content (skimmed, low fat). γ5, γ6 and γ7 proxy additional synergies due to �avour combinations.

37Another reason can be shopping cost, i.e. household may not want to go shopping twice to buy RTE cereals and
milk. However, this is assumed away by the assumption that household goes shopping once per week for breakfast cereals
and milk.
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γ8 and γ9 quantify additional synergies due to the combinations of forti�ed nutrition in RTE cereals
and milk characteristics.

Finally, the indirect utility of household i in market t from choosing the outside option is normalised
to be Uit0 = εit0. Denote the random coe�cients by

θit = (vi,∆ηi,un�avoured,∆ηi,�avoured,∆ηi,unforti�ed,∆ηi,forti�ed,

{∆η1
i,br.}br.∈B1 , {∆η2

i,br.}br.∈B2 ,∆η
2
i,whole fat,∆η

2
i,low fat,∆η

2
i,skimmed),

where Bk denotes the set of brands in category k. I assume that θit follows a Gaussian distribution
F and the components are uncorrelated. This speci�cation already allows for unobserved correlation
among products of the same characteristics within and across categories. De�ne δtJt = (δ1

tJt1
, δ2
tJt2

)

and ptJt = (p1
tJt1

, p2
tJt2

). Write µkitj = µktj(di, θit, p
k
tj). Finally, assume that εit0, ε

1
itj 's, ε

2
itj 's, and εitb's

are i.i.d. Gumbel. Then, the product-level market share function of j ∈ Jt1 is:

stj.(δtJt ; ptJt , γ, F )

=

∫ eδ
1
tj+µ

1
tj(di,θit,p

1
tj)

[
1 +

∑
r∈Jt2

eδ
2
tr+µ

2
tr(di,θit,p

2
tr)+Γ(j,r)(γ)

]
1 +

∑∑
k=1,2 j′∈Jtk

e
δk
tj′+µ

k
tj′ (di,θit,p

k
tj′ ) +

∑
(j′,r)∈Jt1×Jt2

e
δ1
tj′+δ

2
tr+µ

1
tj′ (di,θit,p

1
tj′ )+µ

2
tr(di,θit,p

2
tr)+Γ(j′,r)(γ)

dF (θit)dΠt(di),

(2.15)
where Πt(·) is the distribution function of demographics di in market t. The formula for r ∈ Jt2 is
similar.

In what follows, I will estimate three models (2.15) with di�erent speci�cations of Γb's: Model I
with Γb = 0 for all b ∈ C2, Model II with Γb = γ0, i.e. any bundle of RTE cereal and milk has
the same synergy in consumption, and a full model with Γb speci�ed in (2.14). Note that Model I is
equivalent to two separate BLP models of demand for single products, respectively for RTE cereals
and milk, with the same price coe�cients.

2.6.3 Demand Estimates

Demand estimates are summarized in Table 2.2. In column �IV regression�, I estimate a multinomial
logit with Γb = 0 for all b ∈ C2. Columns �Model I�, �Model II�, and �Full Model� show the estimates
by using Model I, Model II, and the full model, respectively. In all the models, I control for product-
speci�c intercepts and use the same Hausman-type instruments. These instruments include the prices of
the same products in the same store and week but in other cities (Boston for RTE cereals and Hartford
for milk), the prices of other products of the same category with the same product characteristics.

The price coe�cient (α) is estimated −0.59 in the multinomial logit model.The other three models
with random coe�cients show important heterogeneity in price sensitivities across income groups.
Without surprise, households with higher income are estimated to have a lower (in absolute value)
price coe�cient and therefore less sensitive to price change. The standard variance of the unobserved
heterogeneity in the price coe�cient (σv) is estimated small. Moreover, after controlling for the product-
speci�c intercepts, households' preference seem to be almost homogeneous for products within some
types (e.g. un�avoured, forti�cation, fat content). One potential reason is that products are little
di�erentiated within each of these types. In contrast, households' preference for �avoured products
seems to be more heterogeneous. This is also intuitive because the �avours of RTE cereals and milk
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are much more horizontally di�erentiated and di�erent households may have their favourite �avours.
I also �nd that households' preference for RTE cereal brands is much more heterogeneous than that
for milk brands.

In model II, the synergy parameter γ0 is estimated to be 0.902 and signi�cant. This speci�cation
constraints all bundles of RTE cereal and milk to have the same synergy, regardless of their charac-
teristics. In the full model, the demand synergies are allowed to vary across bundles. In column �Full
Model�, γ0 = −1.540 represents the synergy in consumption between the un�avoured unforti�ed uni-
grain RTE cereal and un�avoured whole-fat milk. Regarding the characteristics of RTE cereals, γ1 is
estimated positive, meaning that multi-grain cereals are preferred (over uni-grain ones) when consumed
with milk. Moreover, granola, which contains oats and other whole grains as well ingredients such as
dried fruit and nuts, is estimated to be even preferred over multi-grain cereals (γ2 > γ1). Concerning
the characteristics of milk, products with lower fat are estimated to be preferred when consumed with
cereals (γ3 > γ4 > 0). Another interesting �nding is about households' preference for �avour com-
binations of cereals and milk. Flavoured cereals are estimated to be preferred over un�avoured ones
(γ5 > 0). For chocolate milk, households' preference seems to be more complicated. When consumed
with un�avoured cereals, chocolate milk is preferred over un�avoured milk (γ6 > 0). While, I �nd that
it is seldom consumed with �avoured or forti�ed cereals, i.e. γ7 and γ8 are estimated very negative.38

In fact, �avoured (or forti�ed) RTE cereals are usually frosted. Very negative γ7 and γ8 may re�ect
households' disutility for bundles with too much sugar. Finally, I also �nd that bundles of forti�ed
cereals and milk are less attractive than the reference one (γ9 < 0). In the data, the types of added
nutrition in RTE cereals and milk are the same, e.g. vitamins, calcium. γ9 < 0 may re�ect that the
same types of added nutrition in cereals and milk are substitute.

2.6.4 Price Elasticities

I compute the average (across markets) estimated self- and cross-price elasticities obtained from the
full model. Because there is no income e�ect in the empirical speci�cation, negative (positive) cross-
price elasticities are then interpreted as Hicksian complementarity (substitutability). To facilitate the
exposition, I report the price elasticities at the level of product characteristics and producers. This will
illustrate how RTE cereals and milk are complementary along each of these dimensions. The results
are illustrated in Tables 2.3-2.6. Each entry reports the percent change in the sum of the product-level
market shares of the products collected by the row producer (or characteristics) with respect to a 1%

increase in the prices of the products collected by the column producer (or characteristics).39

Overall, RTE cereals are estimated to have larger self-price elasticities than milk. This may re�ect
that households view milk more necessary than RTE cereals and therefore are less sensitive to changes
in the prices of milk. Given the speci�cation of model (2.15), RTE cereals are always substitutes to
each other and the cross-price elasticities among them are positive. Similarly, the cross-price elasticities

38In Table 2.2, the estimates of γ7 and γ8 are −∞. This means that the model with γ7, γ8 = −∞, i.e. the corresponding
bundles are not in the choice set, performs statistically as well as the one without these restrictions in terms of the value of
the GMM objective function. Concretely, I �rst estimate a model with γ7 and γ8 being �nite. I �nd that the components
of γ7 and γ8 in the minimiser of the GMM objective function are very negative. Then, I estimate the model with
γ7, γ8 = −∞. The di�erence in the value of the GMM objective function is less than 10−9, or equivalently, one cannot
reject the �hypothesis� that γ7, γ8 = −∞. In the future, I will consider a formal testing procedure.

39Concretely, denote by Cm the set of products that row (column) producer m represents. Then, the price elasticity

between brandsm and n, Emn, is de�ned as Emn =
∑

j∈Jm
sj.

∑
r∈Jn

εjr∑
j∈Jm

sj.
, where εjr is the price elasticity between products

j and r.
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among milk products are also positive. These are shown by the positive o�-diagonal elements in the
diagonal blocks (RTE cereals-RTE cereals, Milk-Milk) of Tables 2.3-2.6. Di�erently, the cross-price
elasticities between RTE cereal and milk products, i.e. the elements in the o�-diagonal blocks (RTE
cereals-Milk, Milk-RTE cereals), can be either positive or negative.

Table 2.3 show some interesting �ndings about the substitution patterns along the dimensions of
grain type and fat content. Granola is estimated to be complementary to milk with any level of fat
and skimmed milk is complementary to cereals with any kind of grain. Moreover, milk with lower
fat is uniformly more complementary to any kind of grain than milk with higher fat. This reveals
that households do not seek for fat in milk when drinking it with RTE cereals. As to �avours (Tables
2.4-2.5), un�avoured cereals and �avoured milk (and the reverse) are shown to be complementary.
While, �avoured cereals and chocolate milk are estimated to be (strong) substitutes. Coherent with
the estimates of γ's in Table 2.2, the relationship between chocolate milk and RTE cereals is more
complicated. Chocolate milk is estimated to be complementary to un�avoured or unforti�ed cereals.
However, it is estimated to be substitute to �avoured or forti�ed cereals. Finally, I �nd that most RTE
cereals and milk are complementary at producer level.

As a comparison, the demand synergies in model I are constrained to be zero. Then, the cross-
price elasticities between RTE cereals and milk are mechanically zero. In model II, all the bundles are
restricted to have the same demand synergy which is estimated to be positive (see the column �Model
II� of Table 2.2). I re-do the exercises in Tables 2.3-2.6 using the demand estimates from model II (see
Tables B.3-B.6 of Appendix B.8). In contrast to those obtained from the full model, the results show
that RTE cereals and milk are complementary along every dimension.
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Table 2.2: Demand Estimates

IV Regression Model I Model II Full Model

Γb = 0 Γb = 0 Γb = γ0
Price Coef.

uniform, α −0.59
(0.011)

(baseline) low income, α1 −1.369
(0.042)

−1.128
(0.060)

−1.062
(0.075)

medium income, ∆α2 0.218
(0.164)

0.148
(0.096)

0.164
(0.0764)

high income, ∆α3 0.947
(0.045)

0.718
(0.029)

0.712
(0.0269)

Random Coef.

σv 0.115
(0.070)

0.086
(0.072)

0.046
(0.1244)

σun�avoured 0.015
(2.754)

0.018
(1.490)

0.023
(2.6772)

σ�avoured 2.353
(0.259)

1.684
(0.038)

1.010
(0.1615)

σunforti�ed 0.048
(3.047)

0.004
(3.870)

0.017
(2.2994)

σforti�ed 0.010
(5.393)

0.010
(2.388)

0.015
(6.8129)

σfat 0.077
(1.099)

0.062
(0.660)

0.034
(1.6161)

σcereal brand 0.780
(0.049)

0.660
(0.058)

0.847
(0.0705)

σmilk brand 0.005
(6.156)

0.003
(5.368)

0.004
(6.9505)

Demand Synergies

γ0 0.902
(0.155)

−1.540
(0.3437)

multi-grain, γ1 0.533
(0.0359)

granola, γ2 4.363
(0.0891)

skimmed, γ3 2.880
(0.2111)

low fat, γ4 0.514
(0.1282)

�avoured cereal, γ5 1.816
(0.2324)

chocolate milk, γ6 13.625
(0.2621)

�avoured cereal and chocolate milk, γ7 −∞
forti�ed cereal, chocolate milk, γ8 −∞

forti�ed cereal and milk, γ9 −1.538
(0.3512)

GMM Objective Function 0.1636 0.1599 0.1434

Notes: Standard errors are reported in brackets. For all the models, instruments are the same and

product-speci�c intercepts are included. In the �IV Regression�, week dummies and store dummies

are also included.
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Table 2.3: Average Estimated Own- and Cross-Price Elasticities (Full Model): Grain
Type and Fat Content

RTE cereals Milk

uni-grain multi-grain granola skimmed low fat whole fat

RTE cereals, uni-grain -1.407 0.194 0.009 -0.032 0.007 0.009

multi-grain 0.266 -1.492 0.009 -0.034 0.001 0.009

granola 0.220 0.168 -1.335 -0.084 -0.071 -0.005

Milk, skimmed -0.350 -0.243 -0.053 -0.252 0.047 0.023

low fat 0.010 -0.005 -0.020 0.018 -0.262 0.028

whole fat 0.056 0.045 -0.005 0.018 0.054 -0.307

Table 2.4: Average Estimated Own- and Cross-Price Elasticities (Full
Model): Flavours

RTE cereals Milk

un�avoured �avoured un�avoured chocolate

RTE cereals, un�avoured -1.397 0.190 0.016 -0.014

�avoured 0.145 -1.381 -0.051 0.003

Milk, un�avoured 0.031 -0.130 -0.214 0.001

chocolate -1.319 0.378 0.071 -0.264

Table 2.5: Average Estimated Own- and Cross-Price Elasticities (Full
Model): Forti�cation and Flavours

RTE cereals Milk

unforti�ed forti�ed un�avoured chocolate

RTE cereals, unforti�ed -1.263 0.060 -0.029 -0.006

forti�ed 0.393 -1.668 0.043 0.002

Milk, un�avoured -0.124 0.025 -0.214 0.001

chocolate -1.004 0.063 0.071 -0.264
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2.6.5 Counterfactual Simulations

I simulate two counterfactuals using the demand estimates obtained from the full model, model I
and model II. In the factual and counterfactual scenarios, I assume that producers play a simultaneous
Bertrand price-setting game with complete information. Moreover, for each model, the market-product
speci�c marginal costs are assumed constant and remain unchanged in the counterfactuals. Note that
Private Label is present in both categories. I assume that it maximises the total pro�t generated by
its RTE cereal and milk products and their bundles in all scenarios.

Merger across category. The �rst scenario is a situation where General Mills and Garelick Farms
merge to a new producer and every producer after the merger still implements linear pricing strategy
as in the factual scenario. In this exercise, I compare the merger outcomes (price change, consumer
surplus change, etc.) predicted by model I and the full model. The results are summarised in Table
2.7.

In model I, because all the demand synergies between RTE cereals and milk are restricted to be
zero, their cross-price elasticities are always zero and therefore the merger between General Mills and
Garelick Farms will not lead to any change in prices and consumer surplus relative to those in the
factual scenario (row �Model I� in Table 2.7). The full model estimates that RTE cereals and milk
products exhibit substantial complementarity at the producer level (Table 2.6). The merger outcomes
are coherent with Cournot (1838)'s intuition that mergers between producers selling complementary
products can be socially desirable. Intuitively, the merged producer internalises the complementarity
in the pricing and consequently reduces the prices of General Mills RTE cereals and Garelick Farms
milk (row �Full Model� in Table 2.7). This �nally leads to an increase of consumer surplus by 2.02%.
As a check, I also simulate the same merger using the demand estimates of model II. The results are
similar and illustrated in the last row of Table 2.7.

Nonlinear pricing of Private Label. To study the potential bias due to the restriction Γb = γ0 for
all b ∈ C2, I simulate a scenario where Private Label implements nonlinear pricing strategy on its own
products and bundles of RTE cereal and milk, while the market structures in both markets remain
the same as in the factual scenario. In this exercise, I compare the predictions (prices, consumer
surplus, etc.) on the basis of the demand estimates from model II, which restricts Γb = γ0 for all
b ∈ C2, and the full model. The estimated cross-price elasticities by both models show the existence
of substantial complementarities between RTE cereals and milk. However, model II estimates that the
RTE cereals and milk are complementary along all the dimensions (see Tables B.3-B.6), while the full
model reveals that some types of RTE cereals are more (or less) complementary to certain types of milk
and vice versa. Intuitively, the consequences of the nonlinear pricing of private label are sensitive to
the magnitude of the complementarities between private label RTE cereals and milk relative to those
between RTE cereals and milk of other producers. The main goal of this exercise is to illustrate the
extent of bias in the nonlinear pricing analysis, if the speci�cation of the demand synergy parameters
(and therefore the substitution patterns between RTE cereals and milk) is potentially restrictive. Table
2.8 summarises the results.

Both models predict that the prices of private label products increase. At the same time, the
bundles of private label products will have price discounts. However, the full model predicts much
larger increases in the average prices of private label RTE cereals and milk and also a larger discount.
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Moreover, two models predict opposite change in consumer surplus. The full model predicts a decrease
by 0.11%, while model II predicts an increase by 1.83%.

Summary. Both model II and the full model capture the complementarity between RTE cereals
and milk, while model I restricts them to be independent. Consequently, model II and the full model
generate similar predictions for the �rst counterfactual simulation where General Mills and Garelick
Farms merge to one single producer. In the second counterfactual where Private Label implements a
nonlinear pricing strategy, the magnitude of the complementarities between private label RTE cereals
and milk relative to those between products of other producers become important. Restricting all
Γb's to be the same in model II seems too coarse and may not be appropriate in such counterfactuals.
While, specifying Γb as a function of the characteristics of the products it includes provides more
�exibility and is more suitable for the purpose.

Table 2.7: Merger Simulation: General Mills and Garelick Farms

Price change Consumer Surplus change

RTE Cereals Milk

Full Model −0.67% −3.49% 2.02%

Model I, Γb = 0 0% 0% 0%

Model II, Γb = γ0 −0.49% −4.49% 3.44%

Notes: The Table reports average changes in prices (�rst two columns) and

consumer surplus (last column) under alternative simulated market structure

with respect to the observed oligopoly. The �rst row refers to the full model

(column �Full Model� in Table 2.2). The second row refers to model I which

restricts all Γb's to be 0 in estimation (column �Model I� in Table 2.2). The

third row refers to the model II which constrains all Γb = γ0 in estimation

(column �Model II� in Table 2.2). The counterfactual is simulated for markets

where all RTE cereal products and private label products are available.

Table 2.8: Merger Simulation: Nonlinear Pricing of Private Label

Price change Discount Consumer Surplus

Private Label Other Brands ($) change

RTE Cereals Milk RTE Cereals Milk

Full Model 50.78% 18.92% 0.05% 0.34% 3.147 −0.11%

Model II, Γb = γ0 23.36% 1.73% −0.001% −0.27% 2.381 1.83%

Notes: The Table reports average changes in prices (�rst four columns), discount in dollars on the bundles

of private label RTE cereals and milk (the �fth column), consumer surplus (last column) under alternative

pricing strategy of Private Label with respect to the observed one. The �rst row refers to the full model

(column �Full Model� in Table 2.2). The second row refers to the model II which constrains all Γb = γ0 in

estimation (column �Model II� in Table 2.2). The counterfactual simulation is conducted for markets where

all RTE cereal products and private label products are available.
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2.7 Conclusion

This paper considers the identi�cation and estimation of a random coe�cient discrete choice model
of bundles, namely sets of products, when only product-level market shares are available. This last
feature arises when only aggregate market shares, as opposed to individual purchases, are available, a
very common phenomenon in practice. Following the classical approach with aggregate data, I consider
a two-step method. First, using a novel inversion result where demand can exhibit complementarity,
I recover the mean utilities of products from the product-level market shares. Second, to infer the
structural parameters from the mean utilities while dealing with price endogeneity, I use IVs. I provide
low-level conditions under which the model is globally identi�ed through moment conditions based on
such instruments. Finally, I illustrate the practical implementation of the methods and estimate the
demand for RTE cereals and milk in the US. The demand estimates suggest that RTE cereals and milk
are overall Hicksian complementary and these complementarities are heterogeneous across bundles.
Ignoring such complementarities results in misleading counterfactuals.

As shown in section 2.3, merger simulations under linear pricing only require the identi�cation of
the product-level market share functions. This implies that one may not need to point estimate the
demand synergy parameters and the distribution of the random coe�cients in the GMM procedure to
conduct such analyses. However, the estimation procedure in the current paper still assumes that the
full model is identi�ed. An interesting avenue for future research is to develop an adapted inference
procedure for these counterfactuals that do not require the identi�cation of the full model.

In practice, even though bundle-level market shares may not available, other bundle-level infor-
mation may still be accessible. For example, a household with a membership card may receive a
discount if she purchases a speci�c bundle of products. An extension of the current paper is to explore
identi�cation under endogenous and observed bundle-level prices.

Similar to Allen and Rehbeck (2019a), the identi�cation of the product-level market share functions
remains agnostic about whether a bundle is in the choice set, i.e. Γb 6= −∞. As shown in Theorem 9,
in some models, one can identify whether Γb 6= −∞. However, allowing for some Γb being −∞ may
introduce boundary problems in estimation and therefore complicates inference (see Andrews (2002)).
In practice, an important question is how to select out those Γb that are −∞.

Finally, in the context of models of demand for single products, Reynaert and Verboven (2014)
report remarkable e�ciency gain by using optimal instruments. As mentioned in section 2.4, one may
have non-trivial di�culties to construct the optimal instruments in the context of demand for bundles.
An important question is whether and to what extent a similar approach can be used to further improve
the practical performance of the proposed methods.



Chapter 3

Estimating the Gains (and Losses) of

Revenue Management∗

Abstract. If the rise of revenue management has increased �exibility in the way �rms set their
prices, �rms usually still impose constraints on their pricing strategy. There is yet scarce evidence on
the gains or losses of such strategies compared to uniform pricing or fully �exible strategies. In this
paper, we quantify these gains and losses and identify their underlying sources in the context of French
railway transportation. This is complicated by the censoring on demand and the absence of exogenous
price variations. We develop an original identi�cation strategy on the demand that combines temporal
variations in relative prices and moment inequalities stemming from basic rationality on consumers'
side and weak optimality conditions on the �rm's pricing strategy. Our results suggest signi�cant gains
of the actual revenue management compared to uniform pricing, but also substantial losses compared
to the optimal pricing strategy. Finally, we highlight the key role of revenue management for acquiring
information when demand is uncertain.

3.1 Introduction

The rise of e-commerce has led to a growing �exibility of prices. Firms seek to adjust quickly to demand
shocks and exploit consumers' heterogeneity. This comes nevertheless at a cost. First, adjusting prices
continuously requires specialized teams or good algorithms, usually both. Also, simple rules are usually
set to simplify the pricing strategy. These rules may nonetheless be suboptimal. In this paper, we
seek to identify how much gains can be expected by adopting �exible strategies compared to uniform
pricing. We also seek to quantify the importance of losses of current strategies compared to the optimal
ones, under various constraints imposed on such strategies. Finally, by varying these constraints and
the assumptions behind the counterfactuals, we aim at identifying the main sources of these gains or
losses.

We address these questions by studying revenue management at iDTGV, a subsidiary of the French
railway monopoly, SNCF. Between 2004 and 2017, this �rm provided low-cost trains from Paris to sev-
eral towns in France, and the corresponding returns. Its revenue management was based on quantities,
as is often the case in companies selling perishable goods (e.g. �ight tickets, hotel rooms, rented cars
for given periods etc.), Namely, for the economy class on which we focus hereafter, 12 classes of prices
sorted in ascending order and referred to as fare classes hereafter were de�ned. The price within
each fare class for a given trip such as Paris-Bordeaux was set almost constant during the period we
studied. Then, for each train, revenue managers could decide, at any moment before its departure,
to close the current fare class and open the next one, therefore increasing the prices of the seats. We

∗This paper is a joint work with Xavier D'Haultf÷uille (CREST-ENSAE), Philippe Février (Veltys), and Lionel
Wilner (INSEE)
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investigate hereafter the relative bene�ts of this common pricing strategy compared to uniform pricing
or strategies with a higher number of fare classes.1

In order to compute such counterfactuals, we �rst show that in our context, recovering the price
elasticity coe�cient, relative demand parameters (of, e.g. Bordeaux versus Toulouse in Paris-Toulouse
trains) and the total demand at a given price are su�cient to recover a rich set of counterfactual
revenues. In particular, these counterfactual revenues do not depend on the timing of consumers'
arrival. This is convenient here, as we do not observe such information. We can compute not only
revenues under uniform pricing, but also revenues under optimal dynamic pricing, with any number of
fare classes. Importantly also, we can compute such counterfactuals assuming either that iDTGV has
complete or incomplete information on the demand for a given train.

The identi�cation of price elasticity, relative demand parameters and the total demand at a given
price are however complicated by two issues that are likely to arise in many markets of perishable
goods. First, and s already observed by Swan (1990), Lee (1990) and Stefanescu (2012), we face a
severe censoring problem here: demand at a given price is generally larger than the number of seats
sold at that price. Second, prices vary only within the grids of 12 prices corresponding to each of the
12 fare classes. Hence, we cannot rely on usual instruments such as cost shifters.

To identify price elasticity, we rely on a new argument tailored to our application but that may
apply to other contexts as well. Speci�cally, we exploit the fact that revenue management is done at a
line level (e.g. Paris-Toulouse), while the train serves several cities (e.g. Bordeaux and Toulouse). This
means that fare classes close at the same time for all destinations within the same line. Relative prices
between, e.g. Bordeaux and Toulouse, then vary simultaneously whenever a fare class closes. We prove
that by relating these variations between relative prices and the proportion of consumers buying tickets
for one destination versus another, price elasticity can be identi�ed. This can be achieved provided
that price elasticities and the proportion of consumers seeking to buy a ticket for one destination versus
another remain constant over time. We can test both conditions empirically and our results suggest
that they are reasonable in our context.

Identi�cation of the distribution over trains of total demand at a given price is also involved, in
particular because of the censoring problem mentioned above. We �rst show that basic rationality
conditions on the consumers lead to inequalities relating this total demand with the number of seats.
We complement these inequalities by weak optimality conditions on the actual revenue management.
Speci�cally, we assume that this revenue management was better on average than a uniform pricing
practice based on incomplete information. Given our very purpose, it is important here not to impose
too strong optimality conditions, such as optimality vis-à-vis all dynamic strategies, as these conditions
would very much drive our �nal results. Also, our conditions have the advantage of being relatively
simple to exploit for identi�cation and estimation. At the end, our conditions based on consumers'
rationality and weak optimality of the actual revenue management can be combined to form a set of
moment inequalities.

Using this methodology, we �rst estimate a price elasticity at around -2, which is below but still
in the range of most estimates in the transportation literature (see, e.g. Jevons et al., 2005, for a
meta-analysis). Note however that using aggregated quantities and prices to estimate price elasticity,
as done by most of these studies, is likely to produce estimates that are substantially biased towards

1For a detailed review of that practice and other revenue management techniques, see Talluri and van Ryzin (2005).
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zero. Second, we show that even though based on weak conditions, the moment inequalities we use are
su�cient to produce tight bounds on most counterfactual revenues. We �nd that the actual revenue
management generates a gain of between 3.3 and 5.7% compared to optimal uniform pricing under
incomplete information. However, we also estimate a loss of around 16% compared to the optimal
pricing strategy under the smae restriction of 12 ascending fare classes as those actually used. These
results suggest that the actual revenue management practice was e�ective but still sub-optimal.

Third, we emphasize the key role of demand uncertainty on revenues. Compared to the optimal
uniform pricing under incomplete information, the actual revenue management entails a gain of between
8 and 22%. But the actual revenue is also between 6 and 16% lower than what could have been
achieve under uniform pricing with complete information on the demand. Compared to fully dynamic
strategies, we estimate the loss to be between 8 and 18%. Interestingly, these two �gures remain nearly
the same under incomplete information. In other words, using the optimal quantity-based dynamic
pricing strategy mitigates almost entirely the loss entailed by demand uncertainty.

Related Literature. Our paper relates to several theoretical and empirical literatures in opera-
tional research and economics. Theoretical literature on revenue management has investigated optimal
quantity-based revenue managements, where �rms segment demand by choosing either once for all or
dynamically the allocation of, say, seats into fare classes in which prices are predetermined. We refer
in particular to Littlewood (1972) and Brumelle and McGill (1993) for static solutions, and to Gallego
and Van Ryzin (1994), Feng and Gallego (1995), Feng and Xiao (2000) for dynamic solutions. These
last papers have studied optimal pricing strategies assuming that consumers arrive under some homo-
geneous Poisson process. We allow for �exible non-homogeneous Poisson arrival process, as Bitran and
Mondschein (1997), Zhao and Zheng (2000), and McAfee and te Velde (2008a). Our demand model
is close to this latter paper, but with one key di�erence. Whereas they assume that the �rm has a
complete information on the demand parameters, we also consider an incomplete information set-up
where only the distribution of these parameters is known. The �rm then updates this distribution as
consumers arrive. Such an incomplete information set-up seems more plausible when, as here, aggre-
gate demand is quite volatile. We thus extend McAfee and te Velde (2008a)'s theoretical results on
optimal revenues to this case of incomplete information. We also extend it by studying constrained
pricing strategies close to those implemented in practice.

Our results underline the important role of information and demand learning to explain the gains
and losses of revenue management. Such a point has already been made in the theoretical literature
but to our knowledge, we are the �rst to quantify these roles using real data. Lin (2006) studies
similar models to ours (see his sections 5.1 and 5.2) and allows for �rm's Bayesian learning from
the observed purchases (or arrivals). Instead of deriving the optimal policy, his paper focuses on a
speci�c policy (variable-rate) that is shown to nearly optimal in simulations. Aviv and Pazgal (2002)
studies di�erent learning models featured by the way �rm incorporates updated information. Finally,
in contrast to all these papers and ours, den Boer and Zwart (2015) consider an updating approach
based on maximizing the likelihood. We refer to den Boer (2015) for a complete survey on demand
learning in dynamic pricing.

In the empirical literature on revenue management, the closest papers to ours are Lazarev (2013)
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and Williams (2017), both of which study dynamic airline pricing in a monopolistic market.2 While
both papers accentuate price discrimination and its welfare e�ects, the main goal of our paper is to
quantify the potential gains and loss due to revenue management in practice. As a result, di�erent
from their models, ours explicitly incorporates �rm's learning behaviour from the realised demand.
Moreover, we do not impose the strong optimality of the observed prices. In Lazarev (2013), since
sales are only observed quarterly, he uses a simpler model of traveller behaviour to approximate the
expected aggregate demand functions and allows travellers to be forward-looking. In contrast, we
model explicitly the demand functions at train level and reasonably assume travellers to be myopic
(buy or leave) due to the restriction of increasing prices in iDTGV's revenue mangement. Williams
(2017) also considers the demand at �ight level and dynamic adjustments of prices. Di�erently, he
assumes that the airline monopoly's complete information on demand and the price adjustment is
only due to the randomness in the demand process, while we allow for incomplete information and,
consequently, price adjustments can be additionally due to updated information on demand.

The rest of the paper is organized as follows. In Section 2, we present the context and our data.
Section 3 displays the demand model and our assumptions on the supply side. Section 4 is devoted to
the identi�cation and estimation of demand under ou assumptions and given the data at our disposal.
Section 5 presents the results. The proofs of our identi�cation results are gathered in the appendix.

3.2 Institutional Background and Data

3.2.1 Revenue Management at iDTGV in 2007-2009

iDTGV was a low-cost subsidiary of the French railway monopoly, SNCF, which was created in 2004
and disappeared in December 2017.3 It owned its trains and had a pricing strategy independent from
SNCF. Its prices were generally lower than the full-rate prices of SNCF, but also associated with a
slightly lower quality of services. Namely, tickets could only be bought on Internet, were nominative
and could not be cancelled. They could be exchanged under conditions and at some cost.

Table 3.1: Routes with intermediate and �nal destinations

Line name Final stop(s) Intermediate stop(s) Nb. of trains

Côte d'Azur Cannes,St Raphael,Nice Avignon 452
Marseille Marseille Aix-en-Provence/Avignon 453
Perpignan Perpignan Nîmes, Montpellier 689

Côte Basque
St Jean de Luz,Bayonne,

Bordeaux 405
Biarritz,Hendaye

Toulouse Toulouse Bordeaux 411
Mulhouse Mulhouse Strasbourg 499

Total 2,909

Notes: we have di�erent number of observations for the di�erent lines because the period we cover varies

slightly from one line to another.

2Another recent empirical paper is Cho et al. (2018) that studies revenue management under oligopoly in hospitality
industry. Their analysis focuses on the pricing behavior of �hotel 0� (from which the demand data is obtained) in a
competing environment.

3Its disappearance was not due to poor economic results, but rather to internal strategic considerations at SNCF.
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The lines of iDTGV were all between Paris and other towns. For each of those towns and each
day, one train was leaving Paris and another coming to Paris. Table 3.1 presents the lines we observe
in our data on our period, namely from October 2007 till February 2009. These lines have several
stops, but to simplify the analysis below, we gather them so as to form a single intermediate stop and
a single �nal stop. We did this aggregation according to the price schedule. For instance, we aggregate
Aix-en-Provence and Avignon together in the Paris-Marseille line since the corresponding prices are
always the same. This gathering is consistent with Assumption 1 below, as our demand model remains
valid after aggregation of cities.

Di�erent lines may also share the same intermediate destination. For instance, Bordeaux is also
the intermediate destination of Paris-Côte Basque. Finally, no tickets are sold between the interme-
diate and the �nal destination, e.g. some Bordeaux-Toulouse tickets in the Paris-Toulouse line. Our
understanding is that this was done to avoid controlling people in intermediate destinations, as there
were no ticket inspectors in the trains.

As usually, the trains are split into economy class cars and business class cars of �xed sizes. Revenue
management is done almost independently between business and economic classes, i.e. under the sole
constraint that prices in economy class are always lower than in business class. We focus hereafter
on the economy class, which represents roughly 73% of the seats. In this category, there are 12 fare
classes within which prices are constant and sorted by increasing order in terms of prices. The price
corresponding to a given origin-destination trip (e.g. Paris-Bordeaux), at a peak time or o� peak and
for a certain fare class remained constant for several months (e.g. from 03/01/2007 to 10/31/2007)
before being adjusted marginally, mostly to account for in�ation. Contrary to SNCF, iDTGV did not
make any third-degree price discrimination, so there was no discount for young people, old people or
families.

In this context, revenue management consists in deciding at each moment to maintain the current
fare class or to close it and move to the next one, resulting in an increase in the price. Coming back to
a previous fare is impossible, so there are for instance no last minute drops in ticket prices for trains
that have still several empty seats. Also, revenue managers could decide to close from the inception
the �rst fare classes and begin to sell directly tickets in a higher fare class. Symmetrically, the 12th
fare class may never be reached. In practice, a Computerized Reservation System (CRS) was used to
manage reservation, which serves the basis for revenue management. Before the beginning of sales,
it �xes a seat allocation planning for all fare classes, using the history of purchases on past trains.
During sales, the CRS uses the number of tickets sold up to now to make recommendations on the size
of subsequent fare classes. Revenue management manager can nevertheless always intervene, both on
the initial and on subsequent seat allocations, according to his experience on past trains.4

Finally, and crucially for our identi�cation strategy, the revenue management did not use separate
fare classes for a given train with several destinations. For instance, in a Paris-Toulouse train, the
closure of the �rst fare class occurred exactly at the same moment for both Bordeaux and Toulouse.
Hence, price changes of Paris-Bordeaux and Paris-Toulouse tickets happened exactly at the same time,
for all trains. According to discussions with people in the revenue management department, this was
done to limit the quantities of decisions to be taken at each moment.

4Manager intervention in automatized revenue management also exists in other industries. See Cho et al. (2018) for
an example in hospitality industry.
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3.2.2 Data and descriptive statistics

We have data on iDTGV trains between October 2007 and February 2009 in economy class and for
journeys from Paris only. We �rst observe basic characteristics of the trains: all the stops, departure
and arrival time, day of departure (e.g. May 2, 2008) and whether it corresponds to a peak time or
not. We also observe the price grid used for that train for each fare class. For each route and type of
period (peak time or o� peak), there are a limited number of such grids, as they change these grids
only a few times during the period we observe (e.g. 3 times for the Paris-Toulouse). We also observe
sales for each fare classes of all trains. On the other hand, we do not observe the purchasing dates,
nor the opening moments of each fare class.

Table 3.2 presents some descriptive statistics on our data. We observe a substantial amount of price
dispersion within trains. For instance on the Côte d'Azur line, the minimal price paid by consumers on
average over the di�erent trains (19.3¤) was three times lower than the average maximal price (68.4¤).
We also observe substantial variations on the average load across lines. While trains in Paris-Marseille
were always nearly full, with an average load above 95%, this was far from being the case on the Côte
Basque line, with an average load of only 65.4%. This suggests that the actual pricing may not be
fully optimal, at least for some lines.

Table 3.2: Descriptive statistics: economy class, from Paris

Average % �nal Prices
Line Capacity Load destination Avg Avg min. Avg max.

Côte d'Azur 324 85.4% 81.5% 50.3 19.3 68.4
Marseille 328 95.5% 60.0% 49.5 19.0 70.5
Perpignan 326 88.6% 27.4% 50.0 20.2 72.6
Côte Basque 350 65.4% 64.1% 37.3 19.7 53.3
Toulouse 351 87.3% 55.3% 43.6 19.4 67.2
Mulhouse 238 79.4% 24.1% 35.0 19.4 50.0

Notes: Avg min. and max. are the average of the minimal and maximal prices charged for each

train, for the �nal destination. Capacity is the observed maximal number of sold places for each

line.

3.3 Theoretical Model

3.3.1 Demand side

We consider a demand model that is close to McAfee and te Velde (2008a). A train T is de�ned by
its line `(T ) (e.g. Paris-Toulouse) and its day of departure (e.g. May 2, 2008). For each line `, we
denote by a` the intermediate destination and by b` the �nal destination. To simplify notation and in
the absence of ambiguity, we just denote the destinations of a train T by a and b instead of a`(T ) and
b`(T ). For any train T , tickets are sold between the normalized dates t = 0 and t = 1. We denote the
fare classes by k ∈ {1, ...,K}. Within fare class k, tickets for train T and destination d ∈ {a`(T ), b`(T )}
are sold at price pdkT . We recall that pdkT belongs to a grid of K prices that remains �xed for several
months and depends only on the destination d and whether the train leaves at a peak time or not.
Finally, we denote by DdT (t, t′; pd) the demand for destination d in train T between dates t and t′ (with
(t, t′) ∈ [0, 1]2) when the price is constant and equal to pd. We then assume the following condition on
this function.
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Assumption 1. (Consumers' demand) For all d, T and 0 ≤ t < t′ ≤ 1,

1. p 7→ DdT (t, t′; p) is non-increasing;

2. DdT (t, t′; pd) ∼ P(BT (t, t′)ξdp
−ε
d ), where ε > 1, t 7→ BT (0, t) is continuously di�erentiable and

inft∈[0,1] dBT /dt(0, t) > 0. Moreover, ξa = 1 and conditional on BT (t, t′), DdT (t, t′; pd) are

independent across d.

The �rst condition is a weak rationality assumption on consumers. The second condition, even
though it does not imply the �rst, is more substantial. Following the literature on revenue management
(see, e.g. Gallego and van Ryzin, 1994), it �rst imposes that DdT (t, t′; pd) follows a non-homogeneous
Poisson process, with a constant price elasticity. As shown in Appendix C.1, this can be rationalized
by combining a non-homogeneous process of consumers' arrival and a decision rule of purchase char-
acterized by a Pareto distribution. The separability between train-time e�ect, BT (t, t′), destination
e�ect, ξd, and price e�ect, p−εd is key to identify of price elasticity ε and relative demand e�ect ξb.
Importantly however, this condition can be tested, a point on which we come back in Section 3.4.2.

We do not impose any functional restrictions on the function (t, t′) 7→ BT (t, t′). This is important
because consumers arriving at di�erent time may di�er in their willingness to pay and the conditions
of competing o�ers from other trains, airlines etc. may also vary with time. On the other hand, and
in line with McAfee and te Velde (2008a), we assume that price elasticities ε are time invariant. This
assumption rules out for instance, late arrival of more price inelastic consumers. Note however that
we focus here on the economy class, and we can expect part of these consumers to chose the business
class. Importantly also, we test implications of this assumption in Section 3.5.1 below. Finally, remark
that ξa = 1 is a mere normalization, since we can arbitrarily multiply ξd by any positive constant, and
modify BT (t, t′) accordingly.

Assumption 1 together with a supply-side restriction (Assumption 3) turns out to be su�cient to
identify ε and destination e�ects ξb, see Theorem 11 below. However, because of censorship, it is not
su�cient to recover the distribution of total demand BT := BT (0, 1). To this end, we consider the
following restriction. Hereafter, XT denotes the vector of train T 's characteristics that we observe,
namely the route, week day, month and whether it operates on a rush hour or not.

Assumption 2. BT := BT (0, 1) satis�es BT = exp{X ′Tβ0}ηT with ηT |XT ∼ Γ(λ0, µ0).

Assumption 2 assumes that the train ��xed e�ect� BT is the product of a function of XT and a term
ηT that is independent of XT and follows a gamma distribution. As detailed below, the assumption of
a gamma distribution is not essential for most of our identi�cation results, but is primarily made for
computational convenience.

3.3.2 Supply side

We now formalize the features of revenue management already discussed in section 3.2.1. First, recall
that the revenue management is operated at a line level (e.g. Paris-Toulouse) rather than for each
route of this line (e.g. Paris-Bordeaux and Paris-Toulouse for the line Paris-Toulouse). We thus make
the following assumption.
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Assumption 3. (revenue management at the line level) The opening times of fare class k ∈ {1, ...,K},
τk, is a stopping time with respect to the process t 7→

∑
d∈{a,b}NdT (t), where NdT (t) is the number of

purchases for d made before t.

Assumption 3 states that the decision of opening a new fare class will depend only on past total
purchases, rather than on the repartition between purchases for a and for b. Such an assumption is
fully in line with the fact that a single fare class is used for the two destinations of each line. It was
also con�rmed by discussions we had with the revenue management department.

Our second assumption on the supply side is a weak optimality condition. To introduce it, let
RT (pa, pb) denote the revenue for train T under a uniform pricing of (pa, pb) for destinations a and
b respectively. Let also pdkT denote the price in train T and fare class k ∈ {1, ...,K} for destination
d ∈ {a, b}. The weak optimality condition we consider is the following:

Assumption 4. (Weak optimality of actual revenue management) We have

max
k=1,...,K

E [RT (pakT , pbkT )|XT ] ≤ E
[
Robs
T |XT

]
. (3.1)

By averaging over XT , which only includes rough proxies of the true demand, we allow for the
possibility that revenue managers uses only incomplete information for its pricing strategy. In reality,
it seems credible that it has access to additional signals on the true demand for a speci�c train.
For instance, it could use the past number of purchases in each fare class on previous years for the
same exact train. If so, we would expect that Inequalities (3.1) would also hold conditional on this
information.

Importantly, Assumption 4 does not imply that the revenue management performs better than the
optimal uniform pricing, as we compare the uniform pricing strategy within the grid (12 predetermined
fare classes). Moreover, we do not impose any optimality vis-à-vis all dynamic strategies. We refrain to
do so for several reasons. First, such an assumption would con�ict with our very objective to quantify
the gains or losses of the actual revenue management , compared to alternative scenarios. By de�nition,
assuming a strong form of optimality would result in gains against most simpler pricing strategies.

Second and related to this �rst point, it seems very restrictive in our setting to assume that the
optimal dynamic strategy was used among all such strategies, and given a perfect knowledge of the
demand parameters (ε, ξb and the function BT (., .)). First, as we discussed in Section 3.2.1, the
revenue management applied simpli�ed rules (increasing fares from 12 predetermined fare classes) in
the implementation of the revenue management and this only provides at most an approximation to
the optimal solution. Moreover, seat allocation decisions were also subject to the manager's manual
intervention, which could also be a source of suboptimality. Second, even if it knew such parameters,
computing the optimal dynamic strategy is a very complicated dynamic programming problem. While
Feng and Xiao (2000) and McAfee and te Velde (2008a) have proposed an algorithm for computing the
solution for a homogeneous Poisson process, nothing has been done so far for the non-homogeneous
case, to our knowledge. Third, given that iDTGV has been merely created in 2004, we can doubt that
it knows perfectly the demand parameters, and in particular all train-speci�c e�ects BT .
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3.4 Identi�cation and Estimation

In this section, we �rst detail our counterfactuals and corresponding parameters of interests. We also
clarify in Theorem 10 which parameters of the demand function are needed to recover these parameters
of interest. We then proceed to studying the identi�cation of these relevant elements of the demand
function. Finally, we show how to estimate the parameters and perform inference on them.

3.4.1 Counterfactuals and parameters of interests

We aim at comparing the current revenues with several counterfactual revenues, depending on the
type of revenue management and the information it has access to. We consider several possible pricing
strategies, from the most basic ones to the most sophisticated ones. The �rst, uniform pricing, simply
corresponds to �xing the price of each route in a given train once for all. We let Ru denote optimal
counterfactual revenues (averaged over all trains) under this pricing regime. At the other extreme, in
�full� dynamic pricing, prices can be changed at any time. Rf then corresponds to optimal counterfac-
tual revenues in this set-up. We also study pricing strategies, called stopping-time strategies hereafter,
where prices can be changed only after a ticket is sold. The corresponding optimal revenues are then
Rs. Finally, we consider constrained stopping-time strategies close to what was implemented in prac-
tice, by assuming that only M number of fares, or M increasing fares, are allowed. The corresponding
optimal revenues are denoted by RsM and RsM+ respectively.

Hereafter, we consider two scenarios in terms of information available to the revenue managers.
Recalling that BT = BT (0, 1), we use hereafter gT (t, t′) = BT (t, t′)/BT for all t < t′.

1. (Complete information) Revenue managers fully know the expected demand for each train. Thus,
they observe ξa, ξb, ε but also BT (t, t′) for all (t, t′) and each train T .

2. (Incomplete information) At t = 0, revenue managers know ξd, XT and gT (t, t′) for all t < t′,
but only fBT |XT . As time goes by, revenue managers update their information on BT according
to Bayes' rule.

The complete information case should be seen as a benchmark. It is useful in particular to quantify
the value of information and contrast the gains of revenue management in complete and incomplete
information set-ups. The case of incomplete information is probably more realistic. In this scenario,
revenue managers know, for each train, the pattern of consumers' arrival over time (gT (., .)) but does
not know exactly the aggregate demand (BT ). The assumption that gT (., .) is known makes especially
sense if gT (., .) does not depend on T , in which case revenue managers can have learned from previous
trains how consumers arrive through time. If the scenario of incomplete information holds in practice,
the di�erences between the counterfactual revenues and the observed ones can be interpreted as the
potential gains or losses of the optimal revenue management under di�erent constraints compared to
the actual ones.

Hereafter, we use the exponents c and i to specify the two information set-ups. Hence, Rcu denotes
for instance is the counterfactual optimal revenue under uniform pricing and complete information.
The following theorem clari�es which parameters of the demand are required to identify all the coun-
terfactual revenues we consider hereafter.
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Theorem 10. Suppose that Assumptions 1 and 3 hold. Then, RIr is a function of (fBT |XT , ε, ξb), for

I = c and r ∈ {u, f, s, sM, sM+} or I = i and r ∈ {u, s, sM, sM+}. The same is true for Rif if

Assumption 2 also holds.

We do not specify here the exact forms of the counterfactual revenues, as they have no closed forms,
but more details are provided in Appendix C.3. The key result of Theorem 10 is that counterfactual
revenues do not depend on gT (., .). This turns out to be crucial, since we have no information on
purchasing dates and thus no way to recover this function. Instead, we only have to recover the price
elasticity ε, the destination e�ects ξb and the conditional distribution of the total demand BT in order
to identify the counterfactual revenues.

McAfee and te Velde (2008b) obtains the result for the �full� dynamic pricing strategy under
complete information and a similar demand model. We extend their results in two directions. First,
we consider other types of pricing strategies, and in particular possibly constrained stopping-time
strategies, which are very common in practice and correspond to the actual revenue management.
Second, we also show a similar result in an incomplete information set-up.

Challenges in identi�cation We face two main issues for recovering the demand parameters. First,
demand is actually unobserved; only bounds on it can be obtained. Let ndkT denote the number of
sales for train T , fare class k ∈ {1, ...,K} and destination d ∈ {a, b}. Then

DdT (pdkT ) ≥ DdT (τk,T , τk+1,T ; pdkT ) = ndkT ,

where τk,T is the (random) time at which the kth fare class opens, which we do not observe. Hence,
without further assumptions, we only observe a crude lower bound on the total demand at price pdkT .
This point was already made in similar contexts by Swan (1990), Lee (1990), and Stefanescu (2012).

The second issue we face is the absence of usual instruments for prices. Prices only vary within
the grid speci�ed by revenue managers, and to our knowledge, fare classes did not close for exogenous
reasons unrelated to demand. In other words, there is no exogenous variations of prices in our context.
The bottom line is that usual strategies to identify the demand function do not apply here.

We now show that despite these limitations, it is possible to point or partially identify the param-
eters (ε, ξb, β0, λ0, µ0), where (β0, λ0, µ0) are de�ned in Assumption 2. Then, in view of Theorem 10,
we obtain bounds on the counterfactual revenues. We proceed in two steps hereafter, by �rst showing
point identi�cation of (ε, ξb) and then partial identi�cation of (β0, λ0, µ0).

3.4.2 Identi�cation of (ε, ξb)

Our strategy to identify (ε, ξb) is to exploit variations in the relative prices pbkT /pakT between the two
destinations and from one fare class to another. We start from ndkT = DdT (τk, τk+1; pdkT ). Now, let
us assume �rst that τk and τk+1 are deterministic. Then, by Assumption 1, DaT (τk, τk+1; pak) and
DbT (τk, τk+1; pbk) are independent conditional on BT (τk, τk+1) and follow Poisson distributions. As a
result,

nbkT |nakT + nbkT = n ∼ Binomial (n,Λ(ln(ξb)− ε ln(pbkT /pakT ))) , (3.2)

where Λ(x) = 1/(1 + exp(−x)). Hence, as long as there are variations through fare classes k in the
relative prices pbkT /pakT , we can identify ξb and ε. In the data, we do observe such variations. In
Paris-Toulouse for instance, pbkT /pakT vary from 1 for k = 1 to 1.18 for k = 12.
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To obtain (3.2), we have assumed so far that the stopping times (τk)k=1,...,K were �xed, which is
not realistic. Nonetheless, the previous result shows that (3.2) still holds provided that these stopping
times satisfy Assumption 3.

Theorem 11. Suppose that Assumptions 1 and 3 hold and k 7→ pakT /pbkT is not constant. Then (3.2)
holds and (ξb, ε) are point identi�ed.

Equation (3.2) does not hold for any possible random stopping times. We can easily build coun-
terexamples by making (τk)k=1,...,KT depend solely on NaT (.), for instance. Such situations are however
ruled out by Assumption 3. Under this condition, intuitively, the stopping times will be independent
of the proportion of consumers buying tickets for a (versus b).

Beyond the identi�cation and estimation of ξb and ε, Equation (3.2) can be the basis of testing
some of the conditions we have imposed. First, the separability between train e�ect BT (t, t′) and
destination e�ect ξd in Assumption 1 implies that if pbkT = pakT for several fare classes k, we should
observe similar proportions nbkT /(nakT + nbkT ) for the corresponding k. Second, we can also test for
the fact that price elasticities do not evolve over time, by considering more general speci�cations than
(3.2). Finally, we have imposed that the price elasticity was constant for all lines. Though we could in
fact identify a di�erent price elasticity for each line, we made that restriction for consistency, because
several lines share common origin-destination trips (e.g. Paris-Toulouse and Paris-Côte Basque share
the Paris-Bordeaux). But we can at least separate the lines that have no such trips in common into
di�erent groups and identify a di�erent price elasticity for each of these groups. We consider all these
robustness checks in Section 3.5.1 below.

3.4.3 Partial identi�cation of θ0 = (β0, λ0, µ0)

As mentioned earlier, the total demand is not directly observed. Thus, unless we impose very restrictive
conditions, we cannot point identify the parameters θ0 = (β0, λ0, µ0) governing under Assumption 2 the
conditional distribution of BT |XT . We then partially identify θ0 by building moment inequalities based
on consumers' rationality (Assumption 1.1) and weak optimality of the actual revenue management
(Assumption 4).

Consumers' rationality First, by Assumption 1.1, all consumers who bought a ticket for d at price
pdjT for j ≥ k would have also bought it at price pdkT . Therefore, for all k = 1, ...,K and d ∈ {a, b},

DdT (pdkT ; θ0) ≥
K∑
j=k

ndjT ,

where we now index total demand DdT (pdk) by θ0. Let CT denote the capacity of train T . Then we
also have CT ≥

∑K
j=k ndjT . Combining these inequalities and integrating over ηT , we obtain, for all

k = 1, ...,K and d ∈ {a, b},

E

 K∑
j=k

ndjT − CT ∧DdT (pdk; θ0)

∣∣∣∣XT

 ≤ 0. (3.3)

While E[CT ∧ DdT (pdk; θ0)|XT ] does not have any closed form, we can compute it easily through
simulations.
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Next, let KT denote the last fare class that was open. When the train is not full,

K∑
j=1

ndjT ≥ DdT (pdKTT ; θ0),

since some of the consumers who purchased their ticket at the price pdkT , with k < KT , would not
have purchased it at price pdKTT . Therefore, when the train is not full,

KT∑
j=1

(najT + nbjT ) ≥ CT ∧ (DaT (paKTT ; θ0) +DbT (pbKTT ; θ0)) . (3.4)

When the train is full, this inequality also holds since
∑K

j=1 najT + nbjT = CT . Hence, (3.4) holds in
all cases. Integrating over ηT , we obtain

E

CT ∧ (DaT (paKTT ; θ0) +DbT (pbKTT ; θ0))−
K∑
j=1

(najT + nbjT )

∣∣∣∣XT

 ≤ 0. (3.5)

Similarly to above, even if the �rst term in the expectation does not take a closed form, it can be
approximated easily using simulations.

Weak optimality condition We now rely on Assumption 4 to form additional moment inequalities.
To exploit them, we show in the proof of Theorem 10 that under Assumptions 1-2,5

E[RT (pa, pb; θ0)|XT ] =
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

∫ ∞
0

E[D([ξap
−ε
a + ξbp

−ε
b ]eX

′
T β0z) ∧ CT ]gλ0,µ0(z)dz,

where D(u) ∼ P(u) and gλ0,µ0 is the density of a Γ(λ0, µ0). In other words,

max
k=1,...,K

E [RT (pakT , pbkT )|XT ]

is an identi�ed function h(XT , θ0). Hence, (3.1) can be rewritten as:

E
[
h(XT , θ0)−Robs

T |XT

]
≤ 0. (3.6)

To summarize, (3.3), (3.5) and (3.6) can be stacked together, producing

E(m(UT , θ0, ν0)|XT ) ≤ 0, (3.7)

for some known function m(., ., .) ∈ RL and ν0 = (ξb, ε). Here UT is the vector of data corresponding
to train T and the inequality sign should be understood componentwise. In general, the inequalities
(3.7) are not su�cient to point identify θ0. In turn, this implies that the counterfactual revenues are
partially identi�ed under Assumption 1-4. Note that we let the dependence of m(., ., .) on ν0 explicit
in (3.7). Even if this is immaterial for identi�cation, it matters for inference, to which we now turn.

5See (C.27) in section C.7.2.
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3.4.4 Inference on counterfactual revenues

Because counterfactual revenues are only partially identi�ed, we directly focus here on constructing
con�dence sets for them. For that purpose, we �rst construct a joint con�dence set on (ν0, θ0) (with
ν0 = (ξb, ε)) and then apply the projection method, using Theorem 10. The projection method is
conservative but simple and as such, has been often used in empirical literature, see e.g. Ciliberto and
Tamer (2009) and Grieco (2014) for examples in empirical industrial organization.6

To construct a joint con�dence set on (ν0, θ0), we �rst construct a con�dence set on ν0. Equation
(3.2) gives a straightforward way to estimate ν0, by a logit of Y = 1{destination = a} on Z =

log(pbk/pak) for each (k, T ). Then, for any α ∈ (0, 1), we can construct a con�dence set CI11−α on ν0

with coverage 1− α by using the asymptotic distribution of the MLE.

Next, assuming �rst that ν0 is known, we can construct construct con�dence sets on θ0 = (β0, λ0, µ0)

using the conditional moment inequalities (3.7). Speci�cally, because XT is discrete in our case, we
can �rst transform these conditional moment inequalities into unconditional moment inequalities. We
then use the Generalized Moment Selection (GMS) of Andrews and Soares (2010). We let CI2ν,1−α
denote a con�dence set on θ0 obtained by this procedure if ν0 = ν.

Now, ν0 actually enters into these moment inequalities. To account for this additional source of
uncertainty and construct a joint con�dence set on (ν0, θ0), we propose to consider, for any α1 ∈ (0, α),
the con�dence sets

CI1−α = ∪ν∈CI11−α1
{(ν, θ) : θ ∈ CI2ν,1−α+α1

}.

We then have

Pr ((ν0, θ0) ∈ CI1−α) = Pr
(
θ0 ∈ CI2ν0,1−α+α1

, ν0 ∈ CI11−α1

)
≥ Pr

(
θ0 ∈ CI2ν0,1−α+α1

)
+ Pr

(
ν0 ∈ CI11−α1

)
− 1

Hence, because CI11−α1
(resp. CI2ν0,1−α+α1

) has asymptotic coverage of 1−α1 (resp. 1−α+α1), CI1−α
will asymptotically cover (ν0, θ0) with probability 1− α.

3.5 Results

3.5.1 Demand estimation

3.5.1.1 Estimation of ν0

We �rst consider the estimation of the relative demand (ξb) and the price elasticity (−ε). The results
are displayed in Column I of Table 3.3. We obtain a price elasticity of -2.07. This result is slightly
larger but in line with the literature on the transportation industry. We refer for instance to the meta-
analysis by Jevons et al. (2005) and the studies of Wardman (1997), Wardman (2006) and Wardman
et al. (2007), which point to price elasticities in the range [−1.3;−2.2]. Unlike ours, most of the
studies rely on aggregated data. This is likely to bias upwards price-elasticity estimates, a point that
we illustrate in Appendix C.4 by running regressions based on our data aggregated at di�erent levels.

6An alternative to projection is to conduct direct inference on functions of parameters, see in particular Bugni et al.
(2017); Kaido et al. (2019). But our parameters of interest are non-linear with respect to (ν0, θ0) and their computation
is costly. This makes the direct approaches either not applicable (as the parameters are not linear in (µ0, θ0)) or
computationally prohibitive.
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Table 3.3: Binomial model of demand

All fare classes First 11 fare classes
I II III I' II'

Price elasticity (-ε)
Constant −2.07

(0.06)
−2.20
(0.06)

−1.98
(0.06)

−1.94
(0.07)

−2.32
(0.07)

Southwest 0.34
(0.07)

Weekend/national holidays −0.74
(0.08)

Peak hour 0.009
(0.08)

Final (vs intermediate)
Destination e�ect (ln ξb)
Côte d'Azur (vs Avignon) 1.53

(0.007)
1.54

(0.007)

Marseille (vs Aix-Avignon) 0.41
(0.005)

0.42
(0.005)

Perpignan (vs Nîmes-Montpellier) −0.87
(0.005)

−0.89
(0.005)

Côte Basque (vs Bordeaux) 0.59
(0.007)

0.58
(0.007)

Toulouse (vs Bordeaux) 0.27
(0.006)

0.27
(0.006)

Mulhouse (vs Strasbourg) −1.15
(0.008)

−1.15
(0.008)

Dest. characteristics Wd

Population 0.941
(0.006)

0.951
(0.006)

0.958
(0.006)

Regional capital 0.44
(0.004)

0.44
(0.004)

0.45
(0.004)

Trav. time by train −1.90
(0.001)

−1.90
(0.001)

−1.88
(0.001)

Trav. time by train squared 0.25
(0.0002)

0.25
(0.0002)

0.25
(0.0002)

Trav. Dist. by car 0.32
(0.002)

0.34
(0.002)

0.33
(0.002)

Trav. Dist. by car, squared −0.025
(0.0001)

−0.027
(0.0001)

−0.026
(0.0001)

Notes: The total number of trains is 2,909. In speci�cations with all fare classes, the total number of

observations (fare classes × trains) is 21,988. Southwest correspond to the lines to Côte Basque, Toulouse

and Perpignan. In the speci�cations including Wd, we replace ln(ξd) by W ′dζ. Population is measured

in 1 million inhabitants, traveling time is measured in hours and traveling distance is measured in 100

kilometers.

Regarding our estimates of relative demand coe�cients (ln(ξb)), a positive coe�cient should be read
as a higher demand for the terminal than for the intermediate stop, and its exponential corresponds to
the ratio of demand. For instance, the demand for Mulhouse (the terminal) is equal to exp(−1.15) ≈
0.32 times the demand for Strasbourg, which is the intermediate stop. To check whether the results on
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relative demand make sense, we re-estimate the model adding some structure on these relative demand
parameters. Namely, instead of letting ln(ξd) unspeci�ed, we replace it by W ′dζ, where Wd includes
the population of the town, the traveling time from Paris by train and its square, and the traveling
distance by car from Paris and its square. The latter captures the outside option of traveling by car.
Note that with such a speci�cation, we do not have to impose the normalization ξa = 1 anymore.
Instead, we just replace ln(ξb/ξa) by (Wb −Wa)

′ζ, and estimate ζ.

The results are presented in Column II. The estimated price elasticity remains similar as in Column
I (-2.20). The e�ect of the population size, traveling time by train and distance by car are as expected.
Larger cities lead to higher demand and a longer traveling time (resp. distance) by train (resp. car)
leads to a lower (resp. higher) demand for train tickets. The e�ect of traveling time is nonetheless
attenuated for long journeys, as the positive coe�cient of the square of traveling time indicates.

We also estimate the demand model by allowing price elasticity to vary across lines and across trains
and the results are shown in Column III. The estimated price elasticities are quantitatively close to the
estimates in Columns I-II. We �nd that travelers of lines from Paris to the southwest of France (namely,
the lines to Côte Basque, Toulouse and Perpignan) are less sensitive to price than those of other lines.
Travelers on weekend or national holidays have a larger price elasticity (in absolute value) than those
on other days. This may stem from a larger proportion of people traveling for business reason during
weekdays. Finally, once controlling for weekend and national holidays, individuals traveling during
peak hours appear to have a similar elasticity than the others.

We now check the plausibility of Assumption 1, on which the identi�cation of ν0 relies. First, we
investigate the separability between train-time e�ect (BT (t, t′)), destination e�ect (ξd) and price e�ect
(p−εd ). This separability implies that the proportions nbkT /(nakT +nbkT ) remain constant through fare
classes k satisfying pbkT = pakT . A convenient way to check this is to restrict ourselves on two lines,
Paris-Marseille and Paris-Mulhouse, for which pbkT = pakT for all k ∈ {1, ...,K}. By taking the �rst
fare class as a reference, we simply regress nbkT /(nakT + nbkT ) over the other 11 fare class dummies
and test whether the corresponding coe�cients are all equal to zero.
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Table 3.4: Test of the separability in Assumption 1

Paris-Marseille Paris-Mulhouse
Fare class Coe�cient estimates

2 0.019 -0.003
3 0.042∗∗∗ 0.009
4 0.022 0.010
5 0.009 0.010
6 0.008 0.027∗∗

7 0.004 0.021
8 0.016 0.004
9 -0.023 -0.004
10 0.018 -0.002
11 0.011 −0.063∗∗

12 0.020 −0.100∗∗∗

Joint test of nullity p-values
2-12 0.09 0.0047
2-11 0.05 0.08

Notes: Coe�cient estimates of the regression of nbkT /(nakT + nbkT )

on fare class dummies, with Fare class 1 taken as the reference. The in-

termediate stops for Paris-Marseille are Avignon and Aix-en-Provence.

The intermediate stop for Paris-Mulhouse is Strasbourg.

The results are presented in Table 3.4. As the �rst part of the table emphasizes, most coe�cients
are not signi�cant, despite the large number of observations (453 and 499 for the two lines). For Paris-
Marseille, the p-value of the joint test is larger than 0.05. For Pairs-Mulhouse, the p-value is lower, but
it appears that this result is mostly driven by the last fare class. The coe�cient of the 12th fare class
is indeed negative and quite large for this line, indicating that there would be more �late consumers�
traveling to Strasbourg. To see whether this pattern could in�uence our results beyond this speci�c
line, we re-estimate ν0 using only the �rst 11 fare classes. The results are shown in columns I' and
II' of Table 3.3. We obtain respectively a price elasticity of -1.94 and -2.32, both of which are very
close to their baseline estimates in columns I and II. The relative demand parameters and parameters
in destination e�ects are also very close. Considering only the �rst 10 fare classes also lead to almost
identical results, with in particular price elasticities of -1.94 and -2.27.

Finally, we test that the price elasticity remains constant over time. To this end, we replace
Λ(ln(ξb)− ε ln(pbkT /pakT )) in (3.2) by

Λ [ln(ξb)− (εearly1{k < S}+ εlate1{k ≥ S}) ln(pbkT /pakT )] , (3.8)

for some threshold S that we vary. We can then compare εearly to εlate to assess the credibility of this
assumption of constant price elasticities. We consider threshold values S equal to 3, 11 and 12.

The results are displayed in the �rst lines of Table 3.5. The resulting price elasticities are close
to the baseline elasticities (-2.07 and -2.20), except for S = 3, where εearly, while still including in
its 95% con�dential interval the estimate of ε, is lower in magnitude. Note that intertemporal price
discrimination would suggest the opposite, namely that price elasticity of early birds would be higher
in absolute value. Next, we consider three classes of elasticities instead of two, by separating early,
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middle and late travelers. In the speci�cation 1-2, 3-10, 11-12 for instance, we separate the �rst two
fare classes, the third to tenth fare classes and the last two classes. Again, in this speci�cation and
the other 1-2, 3-11, 12, we obtain again similar results. As before, the baseline elasticity is still within
the 95% con�dential intervals of εearly and one can not reject that they are equal at 95% con�dential
level. Note that when early travelers are de�ned as whose who arrive before the opening of the 2nd
fare class, the prices for both destinations of the 1st fare class are the same, pa1T = pb1T . Then, we
can not identify εearly in this case.

Table 3.5: Test of constant elasticity over time

Segmentation without structure on ξd with structure on ξd
Early(/Middle)/Late travelers εearly εmiddle εlate εearly εmiddle εlate

1-2, 3-12 −1.65
(0.37)

� −2.07
(0.06)

−2.17
(0.41)

� −2.23
(0.06)

1-10, 11-12 −2.13
(0.07)

� −1.92
(0.13)

−2.35
(0.07)

� −2.15
(0.11)

1-11, 12 −2.15
(0.06)

� −1.47
(0.20)

−2.33
(0.07)

� −2.17
(0.13)

1, 2-10, 11-12 � −2.12
(0.07)

−1.99
(0.11)

� −2.41
(0.07)

−2.00
(0.11)

1, 2-11, 12 � −2.06
(0.07)

−2.10
(0.13)

� −2.33
(0.07)

−2.17
(0.13)

1-2, 3-11, 12 −1.46
(0.41)

−2.06
(0.07)

−2.09
(0.13)

−2.20
(0.41)

−2.33
(0.07)

−2.17
(0.13)

1-2, 3-10, 11-12 −1.49
(0.41)

−2.13
(0.07)

−1.98
(0.11)

−2.16
(0.41)

−2.44
(0.07)

−2.00
(0.11)

Notes: In the three �rst lines, we consider only two di�erent elasticities, in line with (3.8). In the fourth

and �fth lines, we consider three di�erent elasticities for fare classes 1, 2-10, 11-12 and 1, 2-11, 12.

Because prices for all destinations in the �rst fare class are the same for all lines, the corresponding price

elasticity is not identi�ed. Standard errors are reported under parenthesis.

3.5.2 Counterfactuals

We now turn to the counterfactual optimal revenues under di�erent pricing strategies, namely uniform,
stopping-time, and full dynamic pricing. Table 3.6 summarizes average revenues over all lines under
di�erent pricing strategies. Our results �rst show that the actual revenue management achieves an
expected revenue of 12.2K¤, which is between 3.3 and 5.7% higher than the optimal uniform pricing
strategy under incomplete information (line u.2 of Table 3.6). Note that Assumption 4 did not impose
this condition, since we only suppose that the actual revenue management leads to a higher revenue
than uniform pricing with prices constrained to belong to the grid set by revenue managers (i.e. line
u.1). Actually, this grid seems �ne enough to approximate correctly optimal prices, as the revenue under
uniform pricing with such constrained prices (line u.1) is very close to that without price constraints
(line u.2). More precisely, we estimate a loss of only 200¤, or 1.7%, by imposing such constraints on
prices.
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Table 3.6: Optimal revenues under di�erent pricing strategies

Estimate 95% CI
Scenario (in thousands of ¤)
Observed pricing strategy 12.21 [12.05, 12.36]

Optimal uniform pricing strategy
u.1 incomplete information, constrained prices [11.35,11.59]
u.2 incomplete information, unconstrained prices [11.55,11.82]
u.3 complete information, constrained prices [13.48,13.76]
u.4 complete information, unconstrained prices [14.48,14.81]

Optimal stopping-time pricing strategy
s.1 incomplete information, 2 increasing fares [13.73, 14.04]
s.2 incomplete information, 2 fares [14.16, 14.48]
s.3 incomplete information [14.72, 15.05]
s.4 complete information, 2 increasing fares [14.61, 14.95]
s.5 complete information, 2 fares [14.68 ,15.01]
s.6 complete information [14.74, 15.09]

Optimal �full� dynamic pricing strategy
f.1 incomplete information [14.73,15.07]
f.2 complete information [14.76,15.10]

Notes: With �constrained prices� (resp. �unconstrained prices�), optimization is conducted over

the actual price grid (resp. over all positive real numbers). Revenues are averaged over all lines.

We use bootstrap (5000) to compute CI for observed revenue. To compute 95% CIs of other

revenues under di�erent counterfactuals, we use the GMS procedure and projection method as

described in Section 3.4.4.

Our results also suggest that even compared to the incomplete information benchmark, the actual
revenue management was suboptimal. In practice, revenue managers could use stopping-time strategies
with up to 12 increasing fares chosen from a predetermined set. By using stopping-time strategies with
2 increasing fares, revenue managers could have already obtained around 13.93K¤, a gain around
14.1% relative to the actual practice; with 12 increasing fares, they would have obtained a gain around
19.0% (see Table 3.7).7 These results justify our weak optimality assumption on the supply side.

7We also computed the optimal revenue under 2 increasing fares chosen from the actual price grid and also obtained
that this pricing strategy achieves on average a better revenue than the observed one.
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Table 3.7: Optimal revenues under constrained stopping-time pricing

Complete information Incomplete information
No increasing No increasing

Number of fares constraint fares constraint fares

(unif. pricing) 1 14.685 11.751
2 14.884 14.822 14.368 13.929
3 14.925 14.856 14.729 14.324
4 14.939 14.869 14.824 14.440
5 14.946 14.876 14.864 14.485
6 14.949 14.880 14.885 14.507
7 14.951 14.882 14.899 14.518
8 14.953 14.884 14.908 14.525
9 14.954 14.885 14.915 14.528
10 14.954 14.886 14.920 14.530
11 14.955 14.886 14.924 14.531
12 14.955 14.887 14.928 14.532

Notes: the revenues are computed at a set of parameters �at the middle� of con�dential

region, i.e., the set of parameters satis�es the GMS criterion and is not rejected by

the data, as described in Sections 3.4.4 and ??.

A related �nding is that restricting to stopping-time pricing strategies incur virtually no loss,
compared to �full� dynamic pricing. By changing prices only when a purchase is observed, the �rm
can secure around 99% of the revenue gain from uniform pricing to dynamic pricing regimes (compare
lines s.4 and f.1, or similarly lines s.6 and f.2 in Table 3.6). Hence, the optimal stopping-time pricing
strategy provides a simple yet very good approximation to the optimal dynamic pricing strategy. This
�nding seems valuable in particular when changing prices incurs a non-negligible cost.

We now turn to the comparison with the complete information set-up. Table 3.6 �rst shows that
compared to its actual revenue management, the �rm could have expected at most a gain between
17.3% and 19.1% (see line f.2), which corresponds to the full dynamic pricing case under complete
information. Also, the di�erence in pricing strategies are notably modest in this complete information
case. In particular, the di�erence in revenue between uniform pricing with unconstrained prices and
full dynamic pricing is only around 2%.8 This �gure sharply contrasts with the 28% gain we estimate
under incomplete information (cf. line f.1 v.s. u.2). Intuitively, dynamic pricing still helps in the
complete information case because of the randomness of the demand process. But this randomness
plays a much more minor role than the variations in overall demand (BT ). The only substantial loss
we observe in the complete information case (around 7%) is when prices are constrained to belong to
the grid, see lines u.3 and u.4. Intuitively, this is because demand may be very high occasionally, and
the maximal price in the grid is still too cheap to be close to pro�t maximization

The di�erence between the gains of full dynamic pricing under complete and incomplete information
shows that revenue management is an e�ective instrument for demand learning. By learning from
consumers' purchases, it can gradually pin down the uncertainty on BT in a Bayesian way. Pricing

8Our results under complete information are consistent with simulation results in operational research and empirical
results in economics. For example, Zhao and Zheng (2000) shows a similar improvement by between 2.4% and 7.3%.
Williams (2017) estimates a revenue improvement due to optimal dynamic pricing of around 2% in airline industry.
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decision then take this renewed information into account, improving total revenue. And actually, this
demand learning can compensate almost all revenue loss due to ex ante uncertainty on demand. The
di�erence in revenues under optimal uniform pricing between incomplete and complete information is
around 3K¤(lines u.4 and u.2), while this di�erence decreases to around 0.03K¤only (see lines f.2 and
f.1 in Table 3.6) under optimal dynamic pricing.

The reason of this very modest loss compared to the complete information set-up is that information
accumulates quickly. To illustrate this, we computed expected revenues under a class of intermediate
stopping-time pricing strategies, where the �rm is only allowed to dynamically price the �rst K seats
while uniform pricing is applied to the remaining seats. Thus, K = 0 and K = C correspond re-
spectively to the optimal uniform and stopping-time pricing strategies. Even if such a class of pricing
strategy is not covered by Theorem 10, we show in Appendix C.8 that the same reasoning as for other
strategies apply, and we can partially identify the corresponding optimal revenues in a very similar way.
By quantifying the revenue gain from K to K + 1, we can characterize how much can be marginally
gained from being able to update its information on one additional purchase and optimally adjust its
pricing.

Figure 3.1: Expected revenues under intermediate pricing strategies

The optimal revenues under these intermediate pricing strategies are displayed in Figure 3.1. Under
incomplete information, demand learning is rather quick, as we can see from the important concavity of
the red line. With just K = 3, the �rm can already achieve a revenue equal to the observed one, while
by learning from the �rst 50 purchases, it can already achieve a revenue only 3% lower than that of the
complete information. On the other hand, the blue line shows that the revenue gains under complete
information is small. The incremental revenue from K to K + 1 is almost constant and barely reaches
∼1¤. This latter result could be exepected, given that the di�erence between uniform pricing and
the full stopping-time pricing is small under complete information (1.8%). The comparison between
the incremental gains of the two curves allows one to identify the pure e�ect of the learning on BT ,
once the e�ect of learning on the demand process (for a given BT ) has been removed. In line with our
previous results, it appears that the former e�ect largely dominates the latter.

Finally, as a robustness check, we conduct the same counterfactual exercises with a lognormal
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speci�cation on ηT instead of a gamma distribution. The results are overall similar, see Table C.2 in
Appendix C.5.

3.6 Conclusion

In this paper, we quantify the gains and losses of revenue management and identify their underlying
sources in the context of French railway transportation. We �rst clarify that many counterfactual
revenues only depend on prie elasticity and total demand, and not on the precise timing of consumers'
arrival. This is convenient when, as here, no details on the dates of purchases are available. Still,
demand estimation is complicated in such a context by the absence of exogenous variations in prices,
and censorship. Such problems are likely to appear in many cases where perishable goods are sold.
To tackle such issues, we develop an original identi�cation strategy combining exogenous variations
in relative prices and moment inequalities built on basic rationality on consumer's side and weak
optimality conditions on the �rm's pricing strategy.

Even though such conditions only yield partial identi�cation in theory, they turn out to be quite
informative. Our results show that the actual revenue management enhances revenue with respect to
the optimal uniform pricing strategy, but that it incurs a loss between 17.1 and 19.0% compared to the
optimal dynamic pricing under incomplete information. Dynamic pricing appers to be in particular
e�ective under demand uncertainty, as information cumulates quickly.

Our work has some limitations, that are in part common to the literature and in part related to
the nature of our data. First, we assume that price elasticity is constant. This assumption seems
reasonable in our context but may be less in others. Observing consumers' purchasing dates could
help alleviate this restriction, and price changes resulting from the closure of a fare class could be used
to identify demand in a �exible way. Second, while we take into account demand uncertainty in our
counterfactuals, we still assume that the �rm knows the pattern of consumers' arrival. If consumers'
purchasing dates were observed, it could be possible to relax this assumption. Ex ante uncertainty in
this dimension could however substantially complicate the computation of counterfactuals.
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Appendix to Chapter 1

A.1 Hendel (1999) and Dubé (2004) as Special Cases of Model (2.3)

In this Appendix, we illustrate that the model of preference for variety originally proposed by Hendel
(1999) in the context of demand for computers and then applied by Dubé (2004) in the context of
demand for soft drinks is a special case of model (2.3). In particular, Hendel (1999)'s model is a
version of model (2.3) in which each demand synergy parameter Γitb is restricted to be negative in a
special way. Hendel (1999)'s model is about individuals who go shopping less often than they consume.
During any purchase occasion, individuals may buy several units of di�erent products in anticipation
of the various consumption occasions they will face before the next shopping trip. Suppose there are
J di�erent products and denote by J their collection. Denote by 0 the outside option, the choice of
consuming none of the J products. Denote by Ri ∈ N the maximal number of units of any product that
individual i can consume during any consumption occasion, and by Ki the number of consumption
occasions in between any two shopping trips. On any consumption occasion, Hendel (1999) assumes
that di�erent products are perfect substitutes, so that each individual will e�ectively choose a certain
number of units of at most one product j. As a consequence, the actual choice set faced by individual
i on any consumption occasion can be de�ned as:

Ai = {(j, ..., j)︸ ︷︷ ︸
q

: for j ∈ J, q = 1, ..., Ri} ∪ {0},

where q is the number of units of any product j that could be consumed on this consumption occasion
and 0 is the outside option. Then, individual i's choice set during any purchase occasion is:

Ci = Ai × ...×Ai︸ ︷︷ ︸
Ki

,

where each element of Ci is a bundle of size up to Ri × Ki. To ease exposition, we represent each
bundle b ∈ Ci by b = (jk, qk)

Ki
k=1, where (jk, qk) refers to the chosen product and to the corresponding

number of units on consumption occasion k. Denote by (jk, qk) = (0, 0) the decision of not consuming
anything on consumption occasion k.

For the rest of this Appendix, we focus on Dubé (2004)'s notation, which specializes Hendel (1999)'s
model to the case of demand for bundles in grocery shopping. Following Dubé (2004)'s equation
(2) at page 68, denote by (Ψijkkqk)

αSi the indirect utility of individual i from choosing (jk, qk) on
consumption occasion k: Ψijkk is i's perceived quality for product jk on consumption occasion k, Si
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is an i-speci�c scaling factor, and α ∈ (0, 1) captures the curvature of the utility function.1 Moreover,
denote by pjk the price of one unit of product jk and by yi the income of individual i. Then, from
Dubé (2004)'s equation (6) at page 69, the indirect utility of individual i from purchasing bundle
b = ((j1, q1), ..., (jKi , qKi)) ∈ Ci is:

Uib =

Ki∑
k=1

(Ψijkkqk)
αSi −

Ki∑
k=1

pjkqk + yi

=

Ki∑
k=1

(Ψijkkqk)
αSi +

Ki∑
k=1

(Ψijkk)
αSiqk −

Ki∑
k=1

(Ψijkk)
αSiqk −

Ki∑
k=1

pjkqk + yi

=

Ki∑
k=1

(Ψijkkqk)
αSi +

Ki∑
k=1

qk∑
q=1

(Ψijkk)
αSi −

Ki∑
k=1

(Ψijkk)
αSiqk −

Ki∑
k=1

qk∑
q=1

pjk + yi

=

Ki∑
k=1

qk∑
q=1

[(Ψijkk)
αSi − pjk ] +

Ki∑
k=1

(Ψijk)
αSi[q

α
k − qk] + yi

=

Ki∑
k=1

qk∑
q=1

uijkk + Γib + yi,

(A.1)

where uijkk = (Ψijkk)
αSi−pjk and Γib =

∑Ki
k=1(Ψijkk)

αSi[q
α
k − qk]. The sum over qk on the right hand

side of (A.1) is zero when qk = 0. Note that Dubé (2004) assumes Ψijkk ≥ 0. As a consequence, the
demand synergy Γib will be constrained to be strictly negative as long as Ψijkk > 0. Dubé (2004)'s
demand model is therefore a special case of model (2.3) with non-positive demand synergies and without
the i.i.d. Gumbel error terms.

A.2 Proof of Lemma 1

To prove the �rst statement, we show that given a distribution function for βit, F (·; Σ′F ), there exists
a unique δ′t ∈ RCt1 for t = 1, ..., T that solves st(δ′t; Σ′F ) = st. This is equivalent to showing that given
F (·; Σ′F ), the market share function st(·; Σ′F ) is invertible for t = 1, ..., T . Because our arguments with
regard to the �rst statement do not depend on whether F is parametric or non-parametric, hereafter
we denote F (·; Σ′F ) simply by F .

Given a distribution F , for market t = 1, ..., T , de�ne the Jacobian matrix of the market share
function st(·;F ) from (2.3) by:

Jt(δ′t;F ) =
∂st
∂δ′t

(δ′t;F ) =

(
∂stb
∂δ′tb′

(δ′t;F )

)
b,b′∈Ct1

. (A.2)

Corollary 2 from Berry et al. (2013) provides su�cient conditions for the invertibility of di�erentiable
market share functions. We now verify that market share function (2.3) satis�es the two su�cient
conditions of Corollary 2 from Berry et al. (2013): (a) weak substitutes (Assumption 2 in Berry

1Note that Dubé (2004)'s equation (2) at page 68 reports the direct utility function de�ned over the entire vector
(qjk)Jj=1 of possible units for each product j ∈ J on consumption occasion k. However, because of the assumption of
perfect substitutes mentioned earlier, positive units qjk > 0 will be chosen for at most one product j on any consumption
occasion k. For this reason, here we simplify the discussion and immediately consider the indirect utility of choosing
(jk, qk) with qjkk = qk.
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et al. (2013)) and (b) non-singularity of the Jacobian matrix Jt(δ′t;F ). We �rst compute Jt(δ′t;F ) for
b,b′ ∈ Ct1,b 6= b′:

∂stb
∂δ′tb

(δ′t;F ) =

∫
sitb(δ′t;βit)(1− sitb(δ′t;βit))dF (βit)

∂stb
∂δ′tb′

(δ′t;F ) = −
∫
sitb(δ′t;βit)sitb′(δ

′
t;βit)dF (βit).

(A.3)

As discussed by Berry et al. (2013), the weak substitutes condition does not rule out complementarity
in a discrete choice model in which alternatives are de�ned as bundles, as in demand model (2.3). In
practice, the weak substitutes condition requires that for all t = 1, ..., T and b ∈ Ct1, stb(δ′t;F ) be
weakly decreasing in δ′tb′ for any b′ 6= b,b′ ∈ Ct1. This is immediate from the second equation in
(A.3). In what follows, we verify that Jt(δ′t;F ) is non-singular.

De�ne the Ct1× 1 vector sit(δ′t;βit) = (sitb(δ′t;βit))b∈Ct1 . By using (A.3), we can re-write Jt(δ′t;F )

as:
Jt(δ′t;F ) =

∫ [
Diag(sit(δ

′
t;βit))− sit(δ′t;βit)sit(δ′t;βit)T

]
dF (βit), (A.4)

where Diag(sit(δ
′
t;βit)) is a diagonal matrix with the elements of sit(δ′t;βit) on the main diagonal. We

�rst show that the symmetric matrix Diag(sit(δ
′
t;βit))− sit(δ′t;βit)sit(δ′t;βit)T is positive-de�nite. This

is equivalent to showing that its eigenvalues are all positive. Note that every element of sit(δ′t;βit) is
strictly positive and that their sum is strictly less than one:

sitb(δ′t;βit) > 0,∑
b∈Ct1

sitb(δ′t;βit) < 1.

Denote any of the eigenvalues of Diag(sit(δ
′
t;βit)) − sit(δ′t;βit)sit(δ′t;βit)T by λ and its corresponding

(non-degenerate) eigenvector by x. Without loss of generality, suppose that the maximal element of
vector x in absolute value is its �rst element x1 6= 0:

|x1| ≥ |xb| for any b ∈ Ct1.
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Then, we have: [
Diag(sit(δ

′
t;βit))− sit(δ′t;βit)sit(δ′t;βit)T

]
x = λx

=⇒ sitb(δ′t;βit)xb − sitb(δ′t;βit)
∑

b′∈Ct1

sitb′(δ
′
t;βit)xb′ = λxb, for all b ∈ Ct1

=⇒ sit1(δ′t;βit)x1 − sit1(δ′t;βit)
∑

b′∈Ct1

sitb′(δ
′
t;βit)xb′ = λx1

=⇒ λ = sit1(δ′t;βit)

(
1−

∑
b′∈Ct1 sitb′(δ

′
t;βit)xb′

x1

)
≥ sit1(δ′t;βit)

(
1−

∣∣∣∣
∑

b′∈Ct1 sitb′(δ
′
t;βit)xb′

x1

∣∣∣∣)
≥ sit1(δ′t;βit)

(
1−

∑
b′∈Ct1 sitb′(δ

′
t;βit)|xb′ |

|x1|

)

≥ sit1(δ′t;βit)

1−
∑

b′∈Ct1

sitb′(δ
′
t;βit)


> 0.

Any eigenvalue of Diag(sit(δ
′
t;βit))− sit(δ′t;βit)sit(δ′t;βit)T is thus strictly positive: for any v ∈ RCt1 ,

vT[Diag(sit(δ
′
t;βit))− sit(δ′t;βit)sit(δ′t;βit)T]v > 0.

As a consequence,

vTJt(δ′t;F )v =

∫
vT[Diag(sit(δ

′
t;βit))− sit(δ′t;βit)sit(δ′t;βit)T]vdF (βit)

> 0.

Thus, given F , for any δ′t ∈ RCt1 , Jt(δ′t;F ) is positive-de�nite and non-singular. Because both condi-
tions (a) and (b) of Corollary 2 by Berry et al. (2013) are satis�ed, then the market share function
st(δ

′
t;F ) is invertible with respect to δ′t, for t = 1, ..., T . This completes the proof of the �rst statement.
We now prove the second statement of the Lemma. According to Assumption 1, the density func-

tion
dF (βit;Σ

′
F )

dβit
is continuously di�erentiable with respect to Σ′F . As a consequence, st(δ′t; Σ′F ) − s′t

is continuously di�erentiable with respect to (δ′t, s
′
t,Σ
′
F ). As we showed above, the Jacobian matrix

∂[st(δ′t;Σ
′
F )−s′t]

∂δ′t

∣∣
(δ′t,s

′
t,Σ
′
F )=(δt,st,ΣF )

= Jt(δt;F (·; ΣF )) is invertible. Then, according to the Implicit Func-

tion Theorem, in a neighbourhood of (δt, st,ΣF ), for any (s′t,Σ
′
F ) there exists a unique δ′t such that

st(δ
′
t; Σ′F ) = s′t and s−1

t (s′t; Σ′F ) = δ′t is continuously di�erentiable with respect to (s′t,Σ
′
F ). This

completes the proof of the second statement.

A.3 Proof of Rank Regularity Property

Without loss of generality, suppose that ΘΣ ⊂ Υ is a compact set, where Υ ⊂ RP+D is a topological
space of RP+D. Moreover, according to Assumption 1, ∂m(Σ′)

∂Σ′ is continuous with respect to Σ′ ∈ Υ.

According to Property 4 from Lewis (2009), the set of rank regular points for ∂m(Σ′)
∂Σ′ is open and dense

in Υ. This completes the proof.
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A.4 Preliminaries for Theorem 1

Here we report a preliminary Lemma useful to prove Theorem 1.

Lemma 2. If Assumptions 1 and 2 hold, and the Jacobian matrix ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full column rank,

then Σ is locally uniquely determined by moment conditions (1.9).

Proof. The di�erentiability of moment conditions (1.9) with respect to Σ′ follows from the second
statement of Lemma 1 and the di�erentiability of g(Σg) with respect to Σg in Assumption 2. It then
su�ces to show that the true Σ is the unique local solution to m(Σ′) = 0. From the de�nition of model
(2.3), m(Σ) = 0. We prove the result by contradiction.

Suppose that Σ is not the unique local solution to m(Σ′) = 0. As a consequence, there exists a
sequence of ΣN such that ΣN → Σ as N → ∞, and m(ΣN ) = 0. Because m(Σ′) is continuously
di�erentiable in a neighbourhood of Σ′ = Σ, by applying the �rst-order Taylor expansion, we have:

m(ΣN ) = m(Σ) +
∂m(Σ′)

∂Σ′

∣∣∣∣
Σ′=Σ

(ΣN − Σ) + o(|ΣN − Σ|),

∂m(Σ′)

∂Σ′

∣∣∣∣
Σ′=Σ

ΣN − Σ

|ΣN − Σ|
= −o(|ΣN − Σ|)

|ΣN − Σ|
,

(A.5)

where o(|ΣN − Σ|) is such that lim
N→∞

o(|ΣN−Σ|)
|ΣN−Σ| = 0. Note that ΣN−Σ

|ΣN−Σ| belongs to the unit sphere in

RP+D, which is compact. Then, there exists a subsequence
{

ΣN`−Σ

|ΣN`−Σ|

}
and v ∈ RP+D with |v| = 1,

such that
ΣN`−Σ

|ΣN`−Σ| → v. By applying the second equation of (A.5) to the subsequence
{

ΣN`−Σ

|ΣN`−Σ|

}
, and

by combining ΣN` → Σ and the continuous di�erentiability of m(·) in a neighbourhood of Σ, we obtain
∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

v = 0. Because ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full column rank, any vector x ∈ RP+D that satis�es
∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

x = 0 must be zero. Then v = 0, which contradicts the fact that |v| = 1. As a consequence,
Σ is the unique local solution to m(Σ′) = 0.

A.5 Proof of Theorem 1

Su�ciency. We prove su�ciency by contradiction. Suppose that model (2.3) is not locally identi�ed:
there exists a sequence of solutions to system (1.4), (δN1J1

, ..., δNTJT ,Γ
N ,ΣN ) 6= (δ1J1 , ..., δTJT ,Γ,Σ) for

any N , such that (δN1J1
, ..., δNTJT ,Γ

N ,ΣN )→ (δ1J1 , ..., δTJT ,Γ,Σ) as N →∞. Applying (1.6) and (1.7)
to each element of the sequence, one obtains:

δNtb(ΓNb ) + g(xtb, ptb; ΣN
g ) = s−1

tb (st; ΣN
F ),

δNtj = s−1
tj (st; ΣN

F ), j ∈ b,

ΓNb = s−1
tb (st; ΣN

F )−
∑
j∈b

s−1
tj (st; ΣN

F )− g(xtb, ptb; ΣN
g ).

(A.6)

Then, by constructing moment conditions (1.9) for each element of the sequence, we havem(Σ′)|Σ′=ΣN =

0 for any N . Because the Jacobian matrix ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full column rank, according to Lemma 2,
then Σ is uniquely locally determined by moment conditions (1.9). Hence, there exists N0 such that
for all N ≥ N0, ΣN = Σ. Because of the third equation of (A.6), then for all N ≥ N0, ΓNb = Γb.
Moreover, because of the �rst two equations of (A.6), we have δNtb = δtb, for all N ≥ N0, t = 1, ..., T
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and b ∈ Ct1. As a consequence, (δN1J1
, ..., δNTJT ,Γ

N ,ΣN ) = (δ1J1 , ..., δTJT ,Γ,Σ) for all N ≥ N0, which
contradicts (δN1J1

, ..., δNTJT ,Γ
N ,ΣN ) 6= (δ1J1 , ..., δTJT ,Γ,Σ) for any N .

Necessity. To simplify notation, denote the number of moment conditions
∑

b∈C2,|Tb|≥2 (|Tb| − 1)

by Q and the rank of ∂m(Σ′)
∂Σ′ )

∣∣
Σ′=Σ

by r. According to the de�nition of rank regularity in footnote

11, there exists a neighbourhood of the true Σ, U , such that rank(m(Σ′)
∂Σ′ ) = rank(m(Σ′)

∂Σ′ )
∣∣
Σ′=Σ

= r for
each Σ′ ∈ U . By applying the Constant Rank Theorem at Σ′ = Σ, there are open sets U1, U2 ⊂ RP+D

and U3 ⊂ RQ and di�eomorphisms φ : U1 → U2 , ψ : U3 → U3 such that Σ ∈ U1 ⊂ U and
ψ ◦m ◦ φ−1(x′) = (x′1, . . . , x

′
r, 0, . . . , 0) for all x′ ∈ U2.2

De�ne x = (x1, ..., xP+D) = φ(Σ) and a sequence {xN = (xN1 , ..., x
N
P+D)} such that xN` = x`, for

` = 1, ..., r and xN` = x` + 1
N , for N large enough so that xN 6= x and xN ∈ U2. Note that

ψ ◦m ◦ φ−1(x) = (x1, ...xr, 0, . . . , 0)

= (xN1 , ...x
N
r , 0, . . . , 0)

= ψ ◦m ◦ φ−1(xN )

(A.7)

and that
ψ ◦m ◦ φ−1(x) = ψ ◦m ◦ φ−1(φ(Σ))

= ψ ◦m(Σ)

= ψ(0).

(A.8)

As a consequence, ψ◦m◦φ−1(xN ) = ψ(0). Because ψ is a di�eomorphism, we obtain m(φ−1(xN )) = 0.
Because φ and its inverse φ−1 are di�eomorphisms and x 6= xN → x = φ(Σ) as N →∞, we construct
a sequence ΣN = φ−1(xN )→ φ−1(x) = Σ with ΣN 6= Σ such that m(ΣN ) = 0 for each N . According
to (A.6) from the proof of su�ciency, given ΣN , we can construct a (δN1J1

, ..., δNTJT ,Γ
N ,ΣN ) such that

it is a solution to (1.4). Consequently, model (2.3) is not locally identi�ed and this concludes the proof.

A.6 Proof of Corollary 1

Because ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full row rank, then the positive de�nite matrix
[
∂m(Σ′)
∂Σ′

] [
∂m(Σ′)
∂Σ′

]T ∣∣
Σ′=Σ

is

not singular and its determinant Det

([
∂m(Σ′)
∂Σ′

] [
∂m(Σ′)
∂Σ′

]T ∣∣
Σ′=Σ

)
is positive. Moreover, since ∂m(Σ′)

∂Σ′ is

continuous with respect to Σ′, Det

([
∂m(Σ′)
∂Σ′

] [
∂m(Σ′)
∂Σ′

]T)
is also continuous with respect to Σ′ and is

positive in a neighbourhood of Σ′ = Σ. This implies that ∂m(Σ′)
∂Σ′ is of full row rank in a neighbourhood

of Σ′ = Σ, and its rank, rank
(
∂m(Σ′)
∂Σ′

)
, is constant and equal to the number of rows in ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

.

Consequently, Σ is rank regular for ∂m(Σ′)
∂Σ′ . Note that the number of rows in ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

is equal to
the number of moment conditions

∑
b∈C2,|Tb|≥2 (|Tb| − 1) and it is strictly smaller than the dimension

of Σ. The latter is equal to the number of columns in ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

. Then, ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is not of full
column rank. According to Theorem 1, model (2.3) is not locally identi�ed and this concludes the
proof.

2For the details of the Constant Rank Theorem, see Theorem 7.1 by Boothby (1986).
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A.7 Testing Procedures for Assumption 2 and Assumption 3

In this section, we develop testing procedures for Assumptions 2 and 3 on the basis of partial identi�ca-
tion methods. For a given subset of markets T0 ⊂ T, the identi�cation set of θ = ((δtJt)t∈T0 ,Γ,ΣF ,Σg)

is de�ned by the moment equalities:

stb(δt(Γ + gt(Σg)); ΣF ) = stb, (A.9)

for t ∈ T0 and b ∈ Ct1, where gt(Σg) = (g(xtb, ptb; Σg))b∈Ct2 and δt(Γ+gt(Σg)) = (δt1, ..., δtJt , (δtb(Γb+

g(xtb, ptb; Σg)))b∈Ct2). We denote by Θ(T0) the identi�cation set of θ de�ned by (A.9) and by
Q((st)t∈T0 , θ

′) the following criterion function:

Q((st)t∈T0 , θ
′) =

∑
t∈T0

(st(δ
′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− st)

TΩ−1
t (st(δ

′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− st). (A.10)

Note that Q((st)t∈T0 , θ
′) = 0 if and only if θ′ ∈ Θ(T0). Denote by Itb the number of individuals in

market t observed to choose b and by ŝtb = Itb
I the corresponding observed market share. As I increases

to in�nity, ŝtb
p−→ stb and

√
I(ŝt − st)

p→ N(0,Ωt) for t = 1, ..., T , b ∈ Ct, where Ωt = (ωtbb′)b,b′∈Ct1
with ωtbb′ = stb(1 − stb) when b = b′ and ωtbb′ = −stbstb′ otherwise. Denote by Ω̂t an estimator
of Ωt that satis�es Ω̂t

p→ Ωt and
√
I(Ω̂t − Ωt) = Op(1).3 We then de�ne the sample counterpart of

criterion function Q(·) as:

QI((ŝt)t∈T0 , θ
′) =

∑
t∈T0

(st(δ
′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− ŝt)

TΩ̂−1
t (st(δ

′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− ŝt). (A.11)

Testing Procedure for Assumption 2. In this section, we maintain T0 = T. Note that Assump-
tion 2 holds if and only if Θ(T) 6= ∅, i.e., there is at least a pro�le of θ that satis�es moment equalities
(A.9). Hence, we propose a speci�cation test on the basis of the following hypotheses:

H0 : Θ(T) 6= ∅ versus H1 : Θ(T) = ∅. (A.12)

Denote by q1−α∑
t∈T Ct1

the 1− α quantile of χ2
(∑

t∈TCt1
)
and de�ne the following random set:

ΘI(T) = {θ′ ∈ Θ : I ·QI((ŝt)t∈T, θ′) ≤ q1−α∑
t∈T Ct1

}. (A.13)

If ΘI(T) = ∅, then we reject H0 from (A.12).

Proposition 3. Under H0 from (A.12), lim sup
I→∞

sup
θ′∈Θ(T)

Pr [ΘI(T) = ∅] ≤ α.

Proof. Under H0 from (A.12), for any θ′ ∈ Θ(T), we have:

Pr [ΘI(T) = ∅] ≤ Pr
[
θ′ /∈ ΘI(T)

]
= Pr

[
I ·QI((ŝt)t∈T, θ′) > q1−α∑

t∈T Ct1

]
= Pr

[∑
t∈T

[√
I(st − ŝt)

]T
Ω̂−1
t

[√
I(st − ŝt)

]
> q1−α∑

t∈T Ct1

]
.

(A.14)

3Such an estimator can be Ω̂t = (ω̂tbb′)b,b′∈Ct1
, where ω̂tbb′ = ŝtb(1 − ŝtb) when b = b′ and ω̂tbb′ = −ŝtbŝtb′

otherwise.
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Since Ω̂t
p→ Ωt (and hence Ω̂−1

t
p→ Ω−1

t ) and
√
I(ŝt − st)

p→N(0,Ωt), for t ∈ T, we obtain:

∑
t∈T

[√
I(st − ŝt)

]T
Ω̂−1
t

[√
I(st − ŝt)

]
d→ χ2

(∑
t∈T

Ct1

)
.

Note that the probability on the right-hand side of (A.14) converges to α and does not depend on θ′.
Then,

lim sup
I→∞

sup
θ′∈Θ(T)

Pr [ΘI(T) = ∅] ≤ α.

The proof is completed.

Testing Procedure for Assumption 3. In this section, we assume that Θ(T) 6= ∅ and therefore
that Θ(T0) 6= ∅ for any T0 ⊂ T. Given T0, we �rst derive a consistent estimator for Θ(T0):

Lemma 3. De�ne a sequence of random sets:

C(aI) = {θ′ ∈ Θ : I ·QI((ŝt)t∈T0 , θ
′) ≤ aI},

where aI ≥ 0 satis�es aI →∞ and aI
I → 0. Then,

lim
I→∞

inf
θ′∈Θ(T0)

Pr [Θ(T0) ⊂ C(aI)] = 1

and

lim
I→∞

sup
θ′∈Θ(T0)

dH(Θ(T0),C(aI)) = 0,

where dH(·, ·) is the Hausdor� metric: dH(A,B) = supa∈A infb∈B |a− b|+ supb∈B infa∈A |b− a|.

Proof. See Theorem 3.1 by Chernozhukov et al. (2007).

The choice of aI is up to the econometrician. For example, one can choose aI = ln I (see Chernozhukov
et al. (2007) for a detailed discussion). In what follows, we focus on situations in which Θ(T0) contains
only interior points of Θ. While Assumption 3 is abstract and not easy to test directly, we propose the
following Condition and show that it implies Assumption 3:

Condition 1. There exists T0 ( T such that ∂m(Σ′;T0)
∂Σ′ is of full column rank when evaluated at any

of the solutions to m(Σ′;T0) = 0.

Remark 8. Denote by ΘΣ(T0) the set of solutions to m(Σ′;T0) = 0. Since the true parameters

Σ0 ∈ ΘΣ(T0), Condition 1 implies that ∂m(Σ′;T0)
∂Σ′ is of full column rank when evaluated at Σ′ = Σ0.

As a consequence, model (2.3) is locally identi�ed according to Theorem 1.

Remark 9. As shown in section 2.3, θ′ ∈ Θ(T0) holds if and only if m(Σ′;T0) = 0. Then, ΘΣ(T0)

is the projection of Θ(T0) along the dimensions of Σ. Moreover, because of Lemma 3, the projec-

tion of C(an) along the dimensions of Σ also de�nes a consistent estimator for ΘΣ(T0) which covers

asymptotically ΘΣ(T0) with probability 1 and that we denote by CΣ(an).

The next Proposition shows that Condition 1 is su�cient for Assumption 3:

Proposition 4. If Condition 1 holds, then Assumption 3 holds.
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Proof. We prove this by contradiction. Denote the solution set of m(Σ′;T0) = 0 in ΘΣ by S. Suppose
that S contains in�nitely many elements. Because S is a closed subset of the compact set ΘΣ, S is itself
compact. Consequently, because S has in�nitely many elements, then there exists an accumulation
point Σ′0 ∈ S: in any neighbourhood of Σ′0, we can �nd another Σ

′′
0 ∈ S, i.e. another solution

to m(Σ′;T0) = 0. Due to Assumption 3, we know that at Σ′0 ∈ S, the corresponding Jacobian
matrix ∂m(Σ′;T0)

∂Σ′ Σ′=Σ′0
is of full column rank. Then, locally, Σ′ = Σ′0 must be the unique solution to

m(Σ′;T0) = 0. This contradicts Σ′0 being an accumulation point in S.

We then propose a test for Assumption 3 on the basis of the following hypotheses:

H0 : Condition 1 does not hold. versus H1 : Condition 1 holds. (A.15)

H0 from (A.15) is equivalent to the hypothesis that there exists some θ′ ∈ Θ(T0) such that ∂m(Σ′;T0)
∂Σ′

is rank de�cient when evaluated at Σ′ = (Σ′F ,Σ
′
g). De�ne the following function:

Assumption 9. Suppose that J((s′t)t∈T0 ,Σ
′) : ×t∈T0St ×ΘΣ → R+ ∪ {0} satis�es:

� J ≥ 0.

� J = 0 if and only if ∂m(Σ′;T0)
∂Σ′ is rank de�cient.

where St = {s′t ∈ RCt1 : s′tb > 0 and
∑

b∈Ct1 s
′
tb < 1, b ∈ Ct1.}.

Example 1. The determinant function

J((s′t)t∈T0 ,Σ
′) = Det

([(
∂m(Σ′;T0)

∂Σ′

)T(∂m(Σ′;T0)

∂Σ′

)])

Example 2. The minimal eigenvalue function

J((s′t)t∈T0 ,Σ
′) = inf

|λ|=1
λT

[(
∂m(Σ′;T0)

∂Σ′

)T(∂m(Σ′;T0)

∂Σ′

)]
λ,

where λ is unit vector of dimension P +D.

De�ne the criterion function J∗((s′t)t∈T0) = inf
Σ′∈ΘΣ(T0)

J((s′t)t∈T0 ,Σ
′). Note that J∗((st)t∈T0) = 0 if

and only if H0 from (A.15) holds. We then propose the following test statistic:

J∗I ((ŝt)t∈T0) = inf
Σ′∈CΣ(an)

J((ŝt)t∈T0 ,Σ
′) (A.16)

and the next two Theorems establish its properties.

Theorem 12. Suppose Assumptions 1, 2 and 9 hold. Moreover,
√
I(ŝt − st)

d→N(0,Ωt) for t ∈ T.

� If J is continuous in ×t∈T0St×ΘΣ, then J
∗
I ((ŝt)t∈T0)

p→ J∗((st)t∈T0), uniformly for θ ∈ Θ(T0).

� If J is Lipschitz continuous in ×t∈T0St × ΘΣ, then under H0 from (A.15),
√
I · J∗I ((ŝt)t∈T0) =

Op(1).
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Proof. For any θ ∈ Θ(T), on the stochastic event {Θ(T0) ⊂ C(aI)}, we can write:

J∗((st)t∈T0) = J((st)t∈T0 ,Σ
∗),

J∗I ((ŝt)t∈T0) = J((ŝt)t∈T0 ,Σ
∗
I),

(A.17)

where Σ∗ ∈ arg min
Σ′∈ΘΣ(T0)

J((st)t∈T0 ,Σ
′) and Σ∗I ∈ arg min

Σ′∈CΣ(aI)
J((ŝt)t∈T0 ,Σ

′). Note that Σ∗ ∈ Θ(T0) ⊂

CΣΣ(aI). Then, we have:

J∗I ((ŝt)t∈T0)− J∗((st)t∈T0) ≤ J((ŝt)t∈T0 ,Σ
∗)− J((st)t∈T0 ,Σ

∗). (A.18)

By construction, ΘΣ(T0) is a compact set. Then, there exists Σ̃∗I ∈ ΘΣ(T0) such that d(Σ∗I ,ΘΣ(T0)) =

d(Σ∗I , Σ̃
∗
I). Hence, we obtain:

J∗I ((ŝt)t∈T0)− J∗((st)t∈T0) =
[
J((ŝt)t∈T0 ,Σ

∗
I)− J((ŝt)t∈T0 , Σ̃

∗
I)
]

+
[
J((ŝt)t∈T0 , Σ̃

∗
I)− J((st)t∈T0 , Σ̃

∗
I)
]

+
[
J((st)t∈T0 , Σ̃

∗
I)− J((st)t∈T0 ,Σ

∗)
]

≥
[
J((ŝt)t∈T0 ,Σ

∗
I)− J((ŝt)t∈T0 , Σ̃

∗
I)
]

+
[
J((ŝt)t∈T0 , Σ̃

∗
I)− J((st)t∈T0 , Σ̃

∗
I)
]
.

(A.19)
According to Lemma 3, dH(Θ(T0),C(aI))→ 0 uniformly for θ ∈ Θ(T0). We then obtain d(Σ∗I , Σ̃

∗
I)→ 0

uniformly for θ ∈ Θ(T0).

Suppose that J is continuous in ×t∈T0St × ΘΣ. Then, in a compact set S∗ × Θ, where S∗ is a
compact neighbourhood of (st)t∈T0 , J is uniformly continuous. Together with d(Σ∗I , Σ̃

∗
I)→ 0 uniformly

for θ ∈ Θ(T0), we obtain that the right-hand side of (A.18) and that of (A.19) converge to 0 on
{Θ(T0) ⊂ C(aI)}, uniformly for θ ∈ Θ(T0). Note that {Θ(T0) ⊂ C(aI)} holds asymptotically with
probability 1, uniformly for θ ∈ Θ(T0). This proves the �rst statement.

Suppose that J is Lipschitz continuous in×t∈T0St×ΘΣ. Under H0 from (A.15), we have J∗((st)t∈T0) =

0. Then, by applying the Mean Value Theorem on the right-hand side of (A.18), we obtain that on
{Θ(T0) ⊂ C(aI)}:

0 ≤ J∗I ((ŝt)t∈T0) = J∗I ((ŝt)t∈T0)− J∗((st)t∈T0)

≤ J((ŝt)t∈T0 ,Σ
∗)− J((st)t∈T0 ,Σ

∗) ≤ L|ŝ− s|,
(A.20)

where L is the Lipschitz constant of J(·). Then, by using
√
I(ŝt − st)

d→N(0,Ωt), we obtain that:

0 ≤
√
I · J∗I ((ŝt)t∈T0) ≤ L|

√
I(ŝ− s)| = Op(1) (A.21)

and the second statement is proved.

We now illustrate how to approximate the quantiles of J∗I ((ŝt)t∈T0) under H0 from (A.15) by bootstrap
methods building on Romano and Shaikh (2012). Denote by PI

R = {P Is : s ∈ RR, sr > 0,
∑R

r=1 sr = 1}
the set of multinomial distributions with R outcomes out of I trials. De�ne the distance ρ on PI

R as
ρ(P Is , P

I
s′) =

∑R
r=1 |sr− s′r| and PI = ×t∈T0P

I
Ct1

as the set of joint distributions P = (P Ist)t∈T0 , where
each P Ist is independently distributed across t ∈ T0. Note that ρ can be extended to any P I = (P Ist)t∈T0

and QI = (P Is′t
)t∈T0 in PI as: ρ(P,Q) =

∑
t∈T0

ρ(P Ist , P
I
s′t

). For any I and any realization ω = (it)t∈T0

of P , we can de�ne the non-negative random variable J∗I (ω;P ) = J∗I (
(
it
I

)
t∈T0

). Denote the distribution
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function of J∗I (ω;P ) evaluated at x ≥ 0 by GI(x, P ).

Theorem 13. Suppose the same Assumptions of Theorem 12 hold. If J is Lipschitz continuous in

×t∈T0St ×ΘΣ, then under H0 from (A.15), for any α1, α2 such that α1 ≥ 0, α2 ≥ 0, α1 + α2 < 1,

lim inf
I→∞

inf
θ∈Θ(T0)

Pr
[
G−1
I (α1, P̂

I) <
√
I · J∗I ((ŝt)t∈T0) ≤ G−1

I (1− α2, P̂
I)
]
≥ 1− α1 − α2,

where P̂ I = (P I
ŝt

)t∈T0.

Proof. Our proof builds on Theorem 2.4 of Romano and Shaikh (2012). It su�ces to verify two
conditions. First, we show that for any sequences QI and P I in PI satisfying ρ(QI , P I)→ 0, we have:

lim
I→∞

sup
x≥0
{|GI(x,QI)−GI(x, P I)|} → 0.

This can be seen from the construction of J∗I (ω;P ). For any x ≥ 0, we have:

GI(x, P ) = Pr [J∗I (ω;P ) ≤ x]

= PrP

[
(it)t∈T0 : J∗I

((
it
I

)
t∈T0

)
≤ x

]

= PrP

[
(it)t∈T0 : inf

Σ′∈CΣ(aI)
J

((
it
I

)
t∈T0

,Σ′

)
≤ x

]
= PrP

[
(it)t∈T0 : (it)t∈T0

∈N(x, J(·), aI , I,T0)
]
,

(A.22)

where N(x, J(·), aI , I,T0) is the set of realizations for which infΣ′∈CΣ(aI) J
((

it
I

)
t∈T0

,Σ′
)
≤ x holds.

Then, given (x, J(·), aI , I,T0), we obtain:

|GI(x,QI)−GI(x, P I)| = |PrQI
[
(it)t∈T0 : (it)t∈T0

∈N(x, J(·), aI , I,T0)
]

− PrP I
[
(it)t∈T0 : (it)t∈T0

∈N(x, J(·), aI , I,T0)
]
|

≤ ρ(QI , P I).

Because supx≥0{|GI(x,QI)−GI(x, P I)|} ≤ ρ(QI , P I) and ρ(QI , P I)→ 0, the �rst condition is veri�ed.
We now move on to verifying the second condition. For any sequence P I ∈ {(P Ist)t∈T0 : st(δt(Γ +

gt(Σg)); ΣF ) = st, (δJ,Γ,ΣF ,Σg) ∈ Θ(T0)}, we have ρ(P̂ I , P I)
p→ 0. This condition holds because ŝt

converges in probability to st for any t ∈ T0. This completes the proof.

Finally, for 0 < α < 1, we propose the following rejection region for test (A.16):

{
√
I · J∗I ((ŝt)t∈T0) > G−1

I (1− α, P̂ I)}.

According to Theorem 12, test (A.16) has asymptotically unit power, uniformly for θ ∈ Θ(T0). More-
over, according to Theorem 13, the size of test (A.16) is controlled by α, uniformly for θ ∈ Θ(T0).
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A.8 Proof of Theorem 2

For this result, our arguments do not depend on whether the distribution of random coe�cients is
parametric or non-parametric and we then denote F (·; ΣF ) simply by F . Remember that

stb(δt;F ) =

∫
sitb(δt;βit)dF (βit)

=

∫
eδtb+µitb(βit)∑

b′∈Ct e
δtb′+µitb′ (βit)

dF (βit).

To prove the real analytic property of the market share function stb(δt;F ), it su�ces to study
∂lsitb(δt;βit)∏
b′∈Ct1

∂δ
lb′
tb′

, where l is an integer and
∑

b′∈Ct1 lb′ = l. We �rst prove the following Lemma.

Lemma 4. For any non-negative integer l,

sup
δt,βit

∣∣∣∣∂lsitb(δt;βit)

∂δltb

∣∣∣∣ ≤ All!,
where Al = (e− 1)l

∑l
k=0

1
(e−1)kk!

.

Proof. De�ne al = sup
δt,βit

∣∣∣∂lsitb(δt;βit)

∂δltb

∣∣∣. Note that:
eδtb+µitb(βit) = sitb

∑
b′∈Ct

eδtb′+µitb′ (βit)

eδtb+µitb(βit) =
∂leδtb+µitb(βit)

∂δltb

=
∂l(sitb

∑
b′∈Ct e

δtb′+µitb′ (βit))

∂δltb

=
l∑

k=0

Ckl
∂ksitb

∂δktb

∂l−k
∑

b′∈Ct e
δtb′+µitb′ (βit)

∂δl−ktb

=
∂lsitb

∂δltb

∑
b′∈Ct

eδtb′+µitb′ (βit) +

l−1∑
k=0

Ckl
∂ksitb

∂δktb
eδtb+µitb(βit),

∂lsitb

∂δltb
= sitb

(
1−

l−1∑
k=0

Ckl
∂ksitb

∂δktb

)
,

∣∣∣∣∂lsitb∂δltb

∣∣∣∣ ≤ 1 +
l−1∑
k=0

Ckl

∣∣∣∣∂ksitb∂δktb

∣∣∣∣ ,
al ≤ 1 +

l−1∑
k=0

Ckl ak,

al
l!
≤ 1

l!
+

l−1∑
k=0

ak
k!

1

(l − k)!
.

(A.23)

We now show that al
l! ≤ Al by induction. For l = 0, the result holds trivially. For l = 1, we
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have a1 = sup
δt,βit

∣∣∣∂sitb(δt;βit)
∂δtb

∣∣∣ = sup
δt,βit

|sitb(1− sitb)| ≤ 1
4 < e = A1. Suppose that ak

k! ≤ Ak holds for

k = 1, ..., l − 1. Note that Al = 1
l! + (e− 1)Al−1 > Al−1, for any l ≥ 0. Then,

al
l!
≤ 1

l!
+

l−1∑
k=0

ak
k!

1

(l − k)!

≤ 1

l!
+

l−1∑
k=0

Ak
1

(l − k)!

≤ 1

l!
+Al−1

l−1∑
k=0

1

(l − k)!

≤ 1

l!
+Al−1(e− 1)

= Al.

(A.24)

As a consequence, the inequality holds for any l > 0 and al = sup
δt,βit

∣∣∣∂lsitb(δt;βit)

∂δltb

∣∣∣ ≤ All!. This completes
the proof.

The next Lemma controls the size of ∂lsitb(δt;βit)∏
b′∈Ct1

∂δ
lb′
tb′

.

Lemma 5. Suppose Ct1 ≥ 2. For any b ∈ Ct1 and l ≥ 0,∣∣∣∣∣ ∂lsitb(δt;βit)∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣ ≤ [Ct1(e− 1)]l
∏

b′∈Ct1

lb′ !,

where
∑

b′∈Ct1
lb′ = l.

Proof. We prove the result by induction. For l = 0, the result holds trivially. For l = 1, the result
follows directly from Lemma 4 with l = 1. For l = 2 and lb′ = 2, according to Lemma 4, we have∣∣∣∣∂2sitb
∂δ2
tb′

∣∣∣∣ ≤ A22!. For l = 2 and lb′ = lb′′ = 1,b′ 6= b′′:

eδtb+µitb(βit) = sitb
∑

b′∈Ct

eδtb′+µitb′ (βit),

0 =
∂2sitb′′

∂δtb′∂δtb′′

∑
b′∈Ct

eδtb′+µitb′ (βit) + eδtb′+µitb′ (βit)
∂sitb
∂δtb′′

+ eδtb′′+µitb′′ (βit)
∂sitb
∂δtb′

,

∂2sitb
∂δtb′∂δtb′′

= −sitb′
∂sitb
∂δtb′′

− sitb′′
∂sitb
∂δtb′

,

(A.25)

By using
∣∣∣∂sitb∂δtb

∣∣∣ ≤ 1
4 < 1 and

∣∣∣∂sitb∂δtb′

∣∣∣ ≤ 1, we have
∣∣∣ ∂2sitb
∂δtb′∂δtb

∣∣∣ ≤ ∣∣∣∂sitb∂δtb

∣∣∣ +
∣∣∣∂sitb∂δtb′

∣∣∣ ≤ 2 ≤ [Ct1(e − 1)]2.

Note that A2 = (e−1)2(1+ 1
e−1 + 1

2(e−1)2 ) ≤ [Ct1(e−1)]2 for Ct1 ≥ 2. As a consequence, the conclusion
holds for l = 2 and

∑
b′∈Ct1

lb′ = 2.

Suppose that for k = 0, ..., l − 1 the inequality holds for any
∑

b′∈Ct1
lb′ = k. First, remember that

Al = (e−1)l
∑l

k=0
1

(e−1)kk!
, as de�ned in Lemma 4, is smaller than [Ct1(e−1)]l because Ct1 ≥ 2. Then,
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the conclusion holds for any l > 0 with lb′ = l and lb′′ = 0, b′′ 6= b′. It remains to show that the
conclusion holds when there exist b′ and b′′ such that lb′ > 0 and lb′′ > 0.

By taking lb-th derivatives of both sides of the �rst equation in (A.23) with respect to δtb, we
obtain:

eδtb+µitb(βit) =
∂lbeδtb+µitb(βit)

∂δlbtb

=
∂lb(sitb

∑
b′∈Ct e

δtb′+µitb′ (βit))

∂δlbtb

=

lb∑
k=0

Cklb
∂ksitb

∂δktb

∂lb−k
∑

b′∈Ct e
δtb′+µitb′ (βit)

∂δlb−ktb

=
∂lbsitb

∂δlbtb

∑
b′∈Ct

eδtb′+µitb′ (βit) + eδtb+µitb(βit)
lb−1∑
k=0

Cklb
∂ksitb

∂δktb
.

(A.26)

Note that, by taking derivatives of both sides of equation (A.26) with respect to δtb′ , b′ 6= b, the left
hand-side vanishes and we obtain:

0 =
∂lb+lb′sitb

∂δlbtb∂δ
lb′
tb′

∑
b′′∈Ct

eδtb′′+µitb′′ (βit)+eδtb′+µitb′ (βit)
lb′−1∑
k=0

Ckl′b
∂lb+ksitb

∂δlbtb∂δ
k
tb′

+eδtb+µitb(βit)
lb−1∑
k=0

Cklb
∂k+lb′sitb

∂δktb∂δ
lb′
tb′

.

(A.27)
By taking lb′-th derivatives with respect to δtb′ , for all b′ ∈ Ct1:

0 =
∂lsitb∏

b′∈Ct1 ∂δ
lb′
tb′

∑
b′′∈Ct

eδtb′′+µitb′′ (βit) +
∑

b′∈Ct1

eδtb′+µitb′ (βit)
lb′−1∑
k=0

Cklb′
∂l−lb′+ksitb′

∂δktb′
∏

b′′ 6=b′ ∂δ
lb′′
tb′′

,

∂lsitb∏
b′∈Ct1 ∂δ

lb′
tb′

= −
∑

b′∈Ct1

sitb′

lb′−1∑
k=0

Cklb′
∂l−lb′+ksitb′

∂δktb′
∏

b′′ 6=b′ ∂δ
lb′′
tb′′

,

∂lsitb∏
b′∈Ct1

∂δ
lb′
tb′∏

b′∈Ct1 lb′ !
= −

∑
b′∈Ct1

sitb′

lb′−1∑
k=0

1

(lb′ − k)!

∂l−lb′+ksitb′

∂δk
tb′

∏
b′′ 6=b′ ∂δ

lb′′
tb′′

k!
∏

b′′ 6=b′ lb′ !
,

sup
δt,βit

∣∣∣∣∣∣∣
∂lsitb∏

b′∈Ct1
∂δ
lb′
tb′∏

b′∈Ct1 lb′ !

∣∣∣∣∣∣∣ ≤
∑

b′∈Ct1

lb′−1∑
k=0

1

(lb′ − k)!
sup
δt,βit

∣∣∣∣∣∣∣∣
∂l−lb′+ksitb′

∂δk
tb′

∏
b′′ 6=b′ ∂δ

lb′′
tb′′

k!
∏

b′′ 6=b′ lb′ !

∣∣∣∣∣∣∣∣ .

(A.28)
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Then, applying the conclusion for any k = 0, ..., l − 1 on the last equation in (A.28), we obtain:

sup
δt,βit

∣∣∣∣∣∣∣
∂lsitb∏

b′∈Ct1
∂δ
lb′
tb′∏

b′∈Ct1 lb′ !

∣∣∣∣∣∣∣ ≤
∑

b′∈Ct1

lb′−1∑
k=0

1

(lb′ − k)!
[Ct1(e− 1)]l−lb′+k

= [Ct1(e− 1)]l
∑

b′∈Ct1

lb′∑
k=1

1

k!
[Ct1(e− 1)]−k

≤ [Ct1(e− 1)]lCt1(e[Ct1(e−1)]−1 − 1)

≤ [Ct1(e− 1)]l[e(e−1)−1 − 1]

< [Ct1(e− 1)]l.

(A.29)

Hence, the conclusion holds for
∑

b′∈Ct1
lb′ = l, and sup

δt,βit

∣∣∣∣∣ ∂lsitb∏
b′∈Ct1

∂δ
lb′
tb′

∣∣∣∣∣ ≤ [Ct1(e−1)]l
∏

b′∈Ct1 lb′ ! for any

l > 0 and
∑

b′∈Ct1
lb′ = l. The proof is completed.

The size of the l-th derivative of stb(δt;F ) with respect to δt can then be controlled as:∣∣∣∣∣ ∂lstb(δt;F )∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣ ∂lsitb(δt;βit)∏

b′∈Ct1 ∂δ
lb′
tb′

∣∣∣∣∣ dF (βit)

≤ [Ct1(e− 1)]l
∏

b′∈Ct1

lb′ !

(A.30)

and, consequently, the Taylor expansion of stb(.;F ) at some δ′t around δt as:∣∣∣∣∣∣∣
∞∑
L=0

1

L!

 ∑
b′∈Ct1

(δ′tb′ − δtb′)
∂

∂δtb′

L stb(δt;F )

∣∣∣∣∣∣∣ ≤
∞∑
L=0

1

L!
dL

∑
∑
lb′=L

L!∏
b′∈Ct1 lb′!

∣∣∣∣∣ ∂Lstb(δt;F )∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣
≤
∞∑
L=0

dLCLt1[Ct1(e− 1)]L,

(A.31)
where d = |δ′t− δt|. Consequently, whenever d < d∗ = 1

C2
t1(e−1)

, the Taylor expansion (A.31) converges.

Finally, by applying Taylor's Theorem to the multivariate function stb(δ′t;F ), we obtain for any R > 0

and uniformly for |δ′t − δt| < d∗

2 :∣∣∣∣∣∣∣stb(δ′t;F )−
R∑
L=0

1

L!

 ∑
b′∈Ct1

(δ′tb′ − δtb′)
∂

∂δtb′

L stb(δt;F )

∣∣∣∣∣∣∣
≤dR+1

∑
∑
lb′=R+1

1∏
lb′ !

sup|δ′t−δt|<d

∣∣∣∣∣∂R+1stb(δ′t;F )∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣
≤dR+1[Ct1(e− 1)]R+1CR+1

t1

→0.



108 Appendix A. Appendix to Chapter 1

In conclusion, the market share function stb(δ′t;F ) is equal to its Taylor expansion and therefore real
analytic with respect to δ′t. This completes the proof.

A.9 Proof of Theorem 3

The necessity part of the �rst statement is immediate. To prove su�ciency, note that when (δ0
tJt

)t∈T\T0
∈

∆ID = ∩Rr=1∆ID
r , for any r = 1, .., R there exists some market t ∈ T \ T0 such that Mts

−1
t (st; Σr

F ) 6=
Γr + gt(Σ

r
g) and therefore m(Σr;T) 6= 0 for r = 1, ..., R. Remember that the set of solutions to

m(Σ′;T0) = 0 in ΘΣ is S = {Σr : r = 0, ..., R}. Consequently, the set of solutions to m(Σ′;T) = 0 is a
subset of S. Given that m(Σr;T) 6= 0 for r = 1, ..., R, and that m(Σ0;T) = 0, Σ′ = Σ0 is the unique
solution to system (1.9) in ΘΣ. The remaining parameters of model (2.3) can then be uniquely pinned
down by the demand inverse from Lemma 1 and model (2.3) is globally identi�ed.

To prove the second statement, we �rst note that

×t∈T\T0
RJt \∆ID = ∪Rr=1

[
×t∈T\T0

RJt \∆ID
r

]
.

It is then su�cient to show that the Lebesgue measure of ×t∈T\T0
RJt \∆ID

r is zero. Note that

×t∈T\T0
RJt \∆ID

r = {(δtJt)t∈T\T0
: for any t ∈ T \T0, Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) = Γr + gt(Σ

r
g)}

= ×t∈T\T0
{δtJt : Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) = Γr + gt(Σ

r
g)}

= ×t∈T\T0
Zrt ,

where Zrt is the zero set of functionMts
−1
t (st(δt(Γ

0+gt(Σ
0
g)); Σ0

F ); Σr
F )−Γr−gt(Σr

g). Because ∆ID
r 6= ∅,

there exists some t ∈ T\T0 for which the zero set Zrt ( RJt , i.e. Mts
−1
t (st(δt(Γ

0 +gt(Σ
0
g)); Σ0

F ); Σr
F )−

Γr − gt(Σr
g) is not equal to zero for some δtJt ∈ RJt . It is then enough to show that, for this speci�c

Zrt ( RJt , the Lebesgue measure is zero.

For any Γ and ΣF , because st(δt(Γ); ΣF ) is a composition of two real analytic functions, δt(Γ) :

RJt → RCt1 and st(·; ΣF ) : RCt1 → (0, 1)Ct1 (from Theorem 2), it is itself a real analytic function from
RJt to (0, 1)Ct1 . Moreover, because st(·; Σr

F ) is real analytic with respect to δt ∈ RCt1 , the inverse
market share function from Lemma 1, s−1

t (·; Σr
F ), is also real analytic with respect to s′t ∈ (0, 1)Ct1 .

Then, the composition of Mts
−1
t (s′t; Σr

F ) − Γr − gt(Σr
g) and s′t = st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ) is also real
analytic with respect to δtJt ∈ RJt . Consequently, Zrt is the zero set of the real analytic function
Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) − Γr − gt(Σ

r
g). There are two cases to be considered. When

Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) − Γr − gt(Σ

r
g) is a constant di�erent from zero, Zrt = ∅ and it

has zero Lebesgue measure. Similarly, when Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) − Γr − gt(Σr

g) is not
a constant, according to Mityagin (2015), Zrt has also zero Lebesgue measure.4 This completes the
proof.

4More generally, the zero set of a non-constant real analytic function de�ned on a P -dimensional domain can be
written as the union of j-dimensional sub-manifolds, with j ranging from 0 to P − 1. As a consequence, the zero set has
zero Lebesgue measure. For details, see the second statement of Theorem 6.3.3 (Lojasiewicz's Structure Theorem for
Varieties) from Krantz and Parks (2002).
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A.10 Price-Setting Models Consistent with Assumption 4

Here we show that Assumption 4 is consistent with commonly employed pure components pricing
models with any pro�le of demand synergies (substitutability and/or complementarity).

To simplify notation, in this Appendix we drop the market index t. Denote by Jf the collection
of products owned by �rm f and by J−f the set of products owned by the other �rms, where J =

Jf ∪J−f = {1, ..., J} is the collection of all products available in the market. Let cj denote the constant
marginal cost of product j ∈ J, pf = (pj)j∈Jf the vector of prices chosen by �rm f for the products
it owns, and p−f = (pk)k∈J−f the vector of prices chosen by the other �rms. With pure components
pricing, the price of a bundle b is given by the sum of the prices of its components pb =

∑
j∈b pj ,

where each pj is chosen by the �rm that owns it. Then, the pro�t function of �rm f takes the following
form:

πf (pf , p−f ) =
∑
j∈f

sj.(pJ)(pj − cj), (A.32)

where sj.(pJ) =
∑

b:b3j sb(pJ) is the product-level market share function of product j and pJ =

(p1, ..., pJ). Denote the ownership matrix Ω = (ajj′)j,j′=1,...,J where ajj′ = 1 if j and j′ are owned by
the same �rm and 0 otherwise. Under complete information, the necessary �rst-order conditions for a
Bertrand-Nash equilibrium in pure components are:[

∂sJ.
∂pJ

� Ω

]
(pJ − cJ) + sJ.(pJ) = 0, (A.33)

where � denotes the Hadamard product, or element-by-element multiplication, sJ. = (sj.(pJ))j∈J is
the vector of product-level market share functions, pJ = (pj)j∈J, and cJ = (cj)j∈J. Given di�erent con-
�gurations of the ownership matrix, (A.33) specialize to di�erent market structures such as monopoly,
duopoly, or oligopoly.

The identi�ability of cJ is determined by the invertibility of the matrix
∂sJ.
∂pJ
�Ω. As long as ∂sJ.∂pJ

�Ω

is invertible, we obtain:

cJ = pJ +

[
∂sJ.
∂pJ

� Ω

]−1

sJ.(pJ).

We now show that for any ownership matrix, ∂sJ.
∂pJ
� Ω is invertible. Let p = (pJ, (pb)b∈C2) denote

the vector of prices for all single products and bundles in the choice set. Moreover, we assume that
pj enters linearly in uij = δj + µij(βi) with individual-speci�c coe�cient αi < 0, which is part of the
vector of random coe�cients βi. Then, by using the notation M1

t introduced prior to Theorem 3, we
can write:

∂sJ.
∂pJ

=

∫
[I M1T

t ]
∂si(βi)

∂pJ
dF (βi)

=

∫
αi[I -M1T

t ]
∂si(βi)

∂ui
[I -M1T

t ]TdF (βi),

(A.34)

where ui = (δb + µib(βi))b∈C1 . As shown in the proof of Lemma 1 (see Appendix A.2), ∂si(βi)
∂ui

is
positive-de�nite for any βi. Moreover, [I -M1T

t ] is of full row rank and therefore [I -M1T
t ]T is of full

column rank. Consequently, [I -M1T
t ]∂si(βi)∂ui

[I -M1T
t ]T is positive-de�nite for any βi. Because αi < 0,

∂sJ.
∂pJ

is negative-de�nite. Note that Ω is a symmetric block diagonal matrix that contains only 1's and

0's. Then, ∂sJ.∂pJ
� Ω is also block diagonal. Because each block is a principal sub-matrix of ∂sJ.∂pJ

, these
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blocks are also negative-de�nite. Then, ∂sJ.∂pJ
� Ω is negative-de�nite and thus invertible.

A.11 Proof of Corollary 2

Take Σ = Σr and Γ = Γr. Because st(δ′t(Γ
r+gt(Γ

r
g)); p

′
tJt
,Σr

F ) is real analytic with respect to (δ′tJt , p
′
tJt

),
then the inverse market share function, s−1

t (s′t; p
′
tJt
,Σr

F ), is real analytic with respect to (s′t, p
′
tJt

).
Consequently, Mts

−1
t (s′t; p

′
tJt
,Σr

F )−Γr−gt(Σr
g) is real analytic with respect to (s′t, p

′
tJt

). Moreover, for
Σ = Σ0 and Γ = Γ0, st(δ′t(Γ

0 + gt(Γ
0
g)); p

′
tJt
,Σ0

F ) is real analytic with respect to (δ′tJt , p
′
tJt

). Then, the
composition Mts

−1
t (st(δ

′
t(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )−Γr− gt(Σr

g) is real analytic with respect to
(δ′tJt , p

′
tJt

).

We now prove Corollary 2 by contradiction. Suppose that Assumption 5 does not hold. Then,
for some r = 1, ..., R and t ∈ T \ T0, there exists a set P̃t ⊂ Pt such that P̃t has positive Lebesgue
measure and

Γr + gt(Σ
r
g) = Mts

−1
t (st(δ

′
t(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )

for any ξ′tJt ∈ RJt . We then obtain that the zero set of the real analytic function Mts
−1
t (st(δ

′
t(Γ

0 +

gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) − Γr − gt(Σr

g) is at least P̃t × RJt . Because the Lebesgue measure of P̃t

is positive, then the Lebesgue measure of P̃t × RJt is also positive. According to Mityagin (2015),
Mts

−1
t (st(δ

′
t(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) − Γr − gt(Σ

r
g) is then constant and equal to zero on

Pt × RJt . This contradicts ΞID
r being non-empty. This completes the proof.

A.12 Proof of Theorem 4

Here we rely on the same notation forMt as introduced prior to Theorem 3. Mt is a matrix of dimension
Ct2×Ct1. Remember that Ct2 is the number of bundles and Ct1 the number of inside options (bundles
plus single products). Mt is made of two sub-matrices: Mt = [M1

t ,M
2
t ]. M1

t is a matrix of −1's and
0's of dimension Ct2 × Jt, where the columns represent individual products and the rows represent
bundles. Each row of M1

i identi�es with −1's the product composition of the corresponding bundle.
M2
t is instead an identity matrix I of dimension Ct2 × Ct2, with the rows corresponding to bundles.

The proof of the �rst statement is similar to that of Theorem 3. On the one hand, when (ξ0
tJt
, c0
tJt

)t∈T\T0
∈

ΞID = ∩Rr=1ΞID
r , for any r = 1, .., R there exists some market t ∈ T\T0 such thatMts

−1
t (st; ptJt ,Σ

r
F ) 6=

Γr + gt(Σ
r
g) and therefore m(Σr;T) 6= 0 for r = 1, ..., R.

Remember that the set of solutions tom(Σ′;T0) = 0 in ΘΣ is S = {Σr : r = 0, ..., R}. Consequently,
the set of solutions to m(Σ′;T) = 0 is a subset of S. Given that m(Σr;T) 6= 0 for r = 1, ..., R, and
that m(Σ0;T) = 0, Σ′ = Σ0 is the unique solution to system (1.9) in ΘΣ. The remaining parameters
of model (2.3) can then be uniquely pinned down by the demand inverse from Lemma 1 and model
(2.3) is globally identi�ed.

To prove the second statement, we �rst note that

×t∈T\T0
[Dtξ ×Dtc] \ ΞID = ∪Rr=1

[
×t∈T\T0

[Dtξ ×Dtc] \ ΞID
r

]
.
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It is then su�cient to show that the Lebesgue measure of ×t∈T\T0
[Dtξ ×Dtc] \ ΞID

r is zero. Note that

×t∈T\T0
[Dtξ ×Dtc] \ ΞID

r = {(ξtJt , ctJt)t∈T\T0
:

for any t ∈ T \T0, Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)

for some ptJt ∈ ptJt(ξtJt , ctJt)}
= ×t∈T\T0

{(ξtJt , ctJt) : Γr + gt(Σ
r
g) ∈Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt(ξtJt , ctJt),Σ

0
F ); ptJt(ξtJt , ctJt),Σ

r
F )

= ×t∈T\T0
Z+r
t ,

where Z+r
t is the zero set of (ξtJt , ctJt) such that Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )− Γr −

gt(Σ
r
g) = 0 for some ptJt ∈ ptJt(ξtJt , ctJt). It then su�ces to show that there exists a t ∈ T \T0 such

that the Lebesgue measure of Z+r
t is zero.

The Lebesgue measure of Z+r
t in Dtξ ×Dtc is

me(Z+r
t ) =

∫
Dtξ×Dtc

1{Z+r
t }d(ctJt , ξtJt)

=

∫
Dtξ×Dtc

1{(ξtJt , ctJt) : Γr + gt(Σ
r
g) ∈Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt(ξtJt , ctJt),Σ

0
F ); ptJt(ξtJt , ctJt),Σ

r
F )}d(ξtJt , ctJt),

where 1{·} denotes the indicator function. De�ne Φ : (ξtJt , ptJt) → (ξtJt , φ(ξtJt , ptJt)). According
to Assumption 4, Φ is a C1 mapping from (ξtJt , ptJt) ∈ {(ξ′tJt , p

′
tJt

) : ξ′tJt ∈ Dtξ, p
′
tJt
∈ Pt(ξtJt)} to

(ξtJt , ctJt) ∈ Dtξ ×Dtc and onto. Let Card[Φ−1](ξtJt , ctJt) denote the cardinality of the inverse image
of Φ at (ξtJt , ctJt). Note that Card[Φ−1](ξtJt , ctJt) is equal to the number of Nash equilibria of the
pricing game at (ξtJt , ctJt) and therefore belongs to ∈ N+ ∪{∞} according to Assumption 4. Then, by
Theorem 1.16-2 of Ciarlet (2013) and Fubini's Theorem, we obtain:

me(Z+r
t ) ≤

∫
Dtξ×Dtc

1{(ξtJt , ctJt) : Γr + gt(Σ
r
g) ∈Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt(ξtJt , ctJt),Σ

0
F ); ptJt(ξtJt , ctJt),Σ

r
F )}Card[Φ−1](ξtJt , ctJt)d(ξtJt , ctJt)

=

∫
{(ξ′tJt ,p

′
tJt

):ξ′tJt
∈Dtξ,p′tJt∈Pt(ξtJt )}

1{(ξtJt , ptJt) : Γr + gt(Σ
r
g) = Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )}

∣∣∣∣ ∂ΦtJt

∂(ξtJt , ptJt)
(ξtJt , ptJt)

∣∣∣∣ d(ξtJt , ptJt)

=

∫
Pt

[∫
Pt(ξtJt )3ptJt

1{ξtJt : Γr + gt(Σ
r
g) = Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )}

∣∣∣∣∂φtJt∂ptJt
(ξtJt , ptJt)

∣∣∣∣ dξtJt
]
dptJt .

Suppose that Assumption 5 holds. Denote by ∆tJt = (∆tj(xtj , ptj))j∈Jt . Because δtJt(∆tJt , ξtJt) =

∆tJt+ξtJt , given ptJt (and therefore ∆tJt) and by applying Theorem 2, we obtain that the market share
function st(δt(Γ′ + gt(Σ

′
g)); ptJt ,Σ

′
F ) is also real analytic with respect to ξtJt ∈ RJt . Then, given ptJt ,

by the Inverse Function Theorem for real analytic functions, s−1
t (st(δt(Γ

0 +gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )

is real analytic with respect to ξtJt , and therefore Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )−Γr −

gt(Σ
r
g) is real analytic with respect to ξtJt . For each r = 1, ..., R, we focus on the market t ∈ T \ T0

that satis�es Assumption 5: for any ptJt ∈ Pt, there exists ξtJt ∈ Dtξ such that Mts
−1
t (st(δt(Γ

0 +

gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) 6= Γr + gt(Σ

r
g), i.e., Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) − Γr −

gt(Σ
r
g) is not always equal to zero in Dtξ. Similar to the proof of the second statement of Theorem 3,

{ξtJt : Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)} has thus zero Lebesgue measure

in Dtξ and

1{ξtJt : Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)}
∣∣∣∂φtJt∂ptJt

(ptJt ; ξtJt)
∣∣∣ = 0 almost everywhere.

It then follows that

∫
Pt(ξtJt )3ptJt

1{ξtJt : Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)}
∣∣∣ ∂ctJt∂ptJt

(ptJt ; ξtJt ,Γ
0,Σ0)

∣∣∣ dξtJt = 0,
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and �nally me(Z+r
t ) ≤ 0. Consequently, me(Z+r

t ) = 0. This completes the proof.

A.13 Proof of Theorem 7

We �rst introduce some notation. Denote the collection of demand synergies that can rationalize the ob-
served product-level market shares stJt. in market t by Θ̄t

Γ(Σ′) = {Γ′ : ∃δ′tJt ∈ RJt such that stJt.(δ
′
tJt

; Γ′,Σ′) =

stJt.} and across all T markets by Θ̄Γ = ∪Σ′∈ΘΣ
∩Tt=1 Θ̄t

Γ(Σ′). De�ne also Θ̄Σ = {Σ′ : ∩Tt=1Θ̄t
Γ(Σ′) 6= ∅}.

Θ̄t
Γ and Θ̄Σ collect the values of Γ′ and of Σ′ that can rationalize the observed product-level market

shares. When Σ′ /∈ Θ̄Σ or Γ′ /∈ ∩Tt=1Θ̄t
Γ(Σ′), then there exists no δ′tJt such that stJt.(δ

′
tJt

; Γ′,Σ′) = stJt.

for any t = 1, ..., T (i.e., the demand inverse is not de�ned at (Γ′,Σ′)). The remainder of the proof
focuses on the case of Σ′ ∈ Θ̄Σ and Γ′ ∈ ∩Tt=1Θ̄t

Γ(Σ′) (i.e., the demand inverse is de�ned at (Γ′,Σ′)),
and in particular on showing the uniqueness of the corresponding δ′tJt .

We rely on the same notation forMt as introduced prior to Theorem 3 and in the proof of Theorem
4. Note thatMt is of full row rank and thereforeMT

t is of full column rank. Without loss of generality,
we prove Theorem 7 for market t.

Denote by 1 a vector of 1's and de�ne St2(stJt.) = {s′tCt2 : s′tCt2 = (s′tb)b∈Ct2 , s
′
tb > 0,−M1T

t s′tCt2 <

stJt., (M
1T
t s′tCt2 + stJt., s

′
tCt2

)T1 < 1}, as the collection of admissible vectors of market shares of
bundles consistent with the observed product-level market shares, stJt.. Given any s′tCt2 ∈ St2(stJt.)

and observed product-level market shares stJt., we can construct an admissible vector of market shares
s′t = ((s′tj)j∈Jt , s

′
tCt2

), where s′tj = stj. −
∑

b∈Ct2:j∈b s
′
tb. Because of Lemma 1, given Σ′ we can invert

s′t and obtain the corresponding δ′t ∈ RCt1 :

δ′t = ((δ′tj)j∈Jt , (δ
′
tb)b∈Ct2)T

= s−1
t (s′t; Σ′F )

= s−1
t ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2 ; Σ′F ), where

δ′tj = s−1
tj ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2 ; Σ′F ),

δ′tb = s−1
tb ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2 ; Σ′F ).

(A.35)

Using the matrix Mt, we can recover an admissible Γ′t from δ′t by:

Γ′t + gt(Σ
′
g) = Mtδ

′
t,

Γ′t = Mtδ
′
t − gt(Σ′g)

= Mts
−1
t ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2 ; Σ′F )− gt(Σ′g)

= Mts
−1
t (MT

t s
′
tCt2 + (sTtJt., 0, ..., 0)T; Σ′F )− gt(Σ′g).

(A.36)

Consequently, for any s′tCt2 there exists a Γ′t = Γt(s
′
tCt2

; stJt.,Σ
′) such that (A.35) holds. We now
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compute from (A.36) the derivative of Γ′t = Γt(s
′
tCt2

; stJt.,Σ
′) with respect to s′tCt2 :

dΓt
ds′tCt2

= Mt
∂s−1

t

∂s′t
(MT

t s
′
tCt2 + (sTtJt., 0, ..., 0)T; Σ′F )MT

t

= Mt

[
∂st
∂δ′t

(δ′t; Σ′F )

]−1

MT
t .

(A.37)

Because ∂st
∂δ′t

(δ′t; Σ′F ) is positive-de�nite andMT
t is of full column rank, dΓt

ds′tCt2
is also positive-de�nite and

therefore positive quasi-de�nite for any s′tCt2 ∈ St2(stJt.).
5 Note that St2(stJt.) is convex. According

to Theorem 6 by Gale and Nikaido (1965), p. 88, Γ′t = Γt(s
′
tCt2

; stJt.,Σ
′) is globally invertible as a

function of s′tCt2 ∈ St2(stJt.) and therefore we can express s′tCt2 as a function of Γ′t ∈ Θ̄t
Γ, given stJt.

and Σ′: s′tCt2 = s̃tCt2(Γ′t; stJt.,Σ
′). Then, by plugging s′tCt2 = s̃tCt2(Γ′; stJt.,Σ

′) into (A.35), we can
express each δ′tj from δ′tJt = (δ′tj)j∈Jt as a function of the observed product-level market shares stJt.:

δ′tj = s−1
tj ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2 ; Σ′F )

= s−1
tj ((stj. −

∑
b∈Ct2:j∈b

s̃tb(Γ′; stJt.,Σ
′))j∈Jt , s̃tCt2(Γ′; stJt.,Σ

′); Σ′F )

= s−1
tj. (stJt.; Γ′,Σ′)

and determine the remaining δ′tb for each b ∈ Ct2 by δ′tb =
∑

j∈b δ
′
tj + Γ′b + gtb(xtb, ptb; Σ′g), so that

stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ) = s′tb for each b ∈ Ct1. Then, for any j ∈ Jt, we obtain stj.(δ′tJt ; Γ′,Σ′) = stj.

and �nally:
stJt.(δ

′
tJt ; Γ′,Σ′) = stJt..

This shows existence. To prove uniqueness, suppose that there exists another δ′′tJt 6= δ′tJt such that
stJt.(δ

′′
tJt

; Γ′,Σ′) = stJt.. Then, δ′′t 6= δ′t. Because Σ′ is given, according to Lemma 1, st(δ′′t (Γ′ +

gt(Σ
′
g)); Σ′F ) 6= st(δ

′
t(Γ
′ + gt(Σ

′
g)); Σ′F ). Moreover, because also stJt. is given, then there must ex-

ist some b ∈ Ct2 for which stb(δ′′t (Γ′ + gt(Σ
′
g)); Σ′F ) 6= stb(δ′t(Γ

′ + gt(Σ
′
g)); Σ′F ). This contradicts

s̃tCt2(Γ′; stJt.,Σ
′) being a function of Γ′.

A.14 Proof of Theorem 6

We start by proving a useful Lemma. Denote the log-likelihood function evaluated at the market shares
observed without sampling error by:

`(δ′1J1
, ..., δ′TJT ,Γ

′,Σ′) =

T∑
t=1

∑
b∈Ct

stb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ). (A.38)

Lemma 6. If Assumptions 1�3 hold and the true (δtJt)t∈T\T0
∈ ∆ID, then the true (δ1J1 , ..., δTJT ,Γ,Σ)

is the unique maximizer of `(δ′1J1
, ..., δ′TJT ,Γ

′,Σ′) in Θ.

Proof. We �rst show that `(δ′1J1
, ..., δ′IJT ,Γ

′,Σ′) is maximized at the true (δ1J1 , ..., δIJT ,Γ,Σ). Note
that for any t = 1, ..., T and b ∈ Ct, stb = stb(δt(Γ + gt(Σg)); ΣF ). Then, by using Jensen's inequality,

5A square matrix B is positive quasi-de�nite if 1
2
(B +BT) is positive-de�nite.
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for any (δ′1J1
, ..., δ′IJT ,Γ

′,Σ′) we have:

`(δ′1J1
, ..., δ′TJT ,Γ

′,Σ′)− `(δ1J1 , ..., δTJT ,Γ,Σ) =
T∑
t=1

∑
b∈Ct

stb log
stb(δ′t(Γ

′ + gt(Σ
′
g)); Σ′F )

stb(δt(Γ + gt(Σg)); ΣF )

≤
T∑
t=1

log
∑
b∈Ct

stb
stb(δ′t(Γ

′ + gt(Σ
′
g)); Σ′F )

stb(δt(Γ + gt(Σg)); ΣF )

≤ 0.

(A.39)

We now show the uniqueness by contradiction. Suppose that there exists a (δ̃1J1 , ..., δ̃tJT , Γ̃, Σ̃) 6=
(δ1J1 , ..., δTJT ,Γ,Σ) such that (δ̃1J1 , ..., δ̃TJT , Γ̃, Σ̃) is also a maximizer of `(δ′1J1

, ..., δ′IJT ,Γ
′,Σ′). Ac-

cording to Jensen's inequality (A.39), this is equivalent to having stb(δ̃t(Γ̃ + gt(Σ̃g)); Σ̃F ) = stb for
each t = 1, ..., T and b ∈ Ct1. As a consequence, we have mb(Σ̃;T) = 0 and hence m(Σ̃;T) = 0 in
addition to m(Σ;T) = 0. Note that Σ̃ 6= Σ. Otherwise, by Lemma 1, δ̃tJt = δtJt and Γ̃ = Γ and
this would be inconsistent with (δ̃1J1 , ..., δ̃tJT , Γ̃, Σ̃) 6= (δ1J1 , ..., δTJT ,Γ,Σ). However, because the true
(δtJt)t∈T\T0

∈ ∆ID, Theorem 3 rules out the possibility of having any other Σ̃ di�erent from Σ for
which system (1.9) holds, giving rise to a contradiction.

We assume the following regularity conditions.

1. θ is an interior point of Θ;

2. gt(Σ′g) is twice continuously di�erentiable with respect to Σ′g, and the market share function
stb(δ′t; Σ′F ), t = 1, ..., T and b ∈ Ct, is twice continuously di�erentiable with respect to (δ′t,Σ

′
F );

3.
√
I(ŝt − st)

d−→N(0,Ωt) independently for t = 1, ..., T , where Ωt is positive-de�nite;

4.
∑T

t=1GtΩtG
T
t is positive-de�nite, where Gt =

([
∂ log stb
∂θ′ − ∂ log st0

∂θ′

] ∣∣
θ′=θ

)
b∈Ct1

.

5. ∂2`(θ′)
∂θ′2

∣∣
θ′=θ

is non-singular.

Condition 3 is compatible with cases in which the individuals in market t make independent purchase
decisions. Condition 4 can be obtained when Gt is a full row rank matrix for each t = 1, ..., T . De�ne
`c(Γ′,Σ′) on the basis of (A.38):

`c(Γ′,Σ′) = `((δtJt.(stJt.; Γ′,Σ′))Tt=1; Γ′,Σ′).

Throughout the proof, we assume that δtJt.(stJt.; Γ′,Σ′) and δtJt.(ŝtJt.; Γ′,Σ′) exist. As discussed in the
main text, existence can always be veri�ed numerically during estimation. Provided existence, then
Theorem 7 guarantees that δtJt.(·; Γ′,Σ′) is a global bijection. Our proof for the consistency statement
is mainly based on Theorem 2.1 by Newey and McFadden (1994), according to which we need to verify
four conditions.

1. (Γ,Σ) is the unique maximizer of `c(Γ′,Σ′) in ΘΓ×ΘΣ. Given Assumptions 1�3 and that the true
(δtJt)t∈T\T0

∈ ∆ID, Lemma 6 guarantees that the true (δ1J1 , ..., δTJT ,Γ,Σ) is the unique maximizer of
`(δ′1J1

, ..., δ′TJT ,Γ
′,Σ′) in Θ. Theorem 7 then implies that (Γ,Σ) is the unique maximizer of `c(Γ′,Σ′)

in ΘΓ ×ΘΣ.
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2. ΘΓ ×ΘΣ is compact. This is guaranteed by the de�nition of Θ.

3. `c(Γ′,Σ′) is continuous with respect to (Γ′,Σ′) in ΘΓ×ΘΣ. According to regularity condition 2, for
any t = 1, ..., T and b ∈ Ct, the market share function stb(δ′t; Σ′F ) is twice continuously di�erentiable
with respect to (δ′t,Σ

′
F ). Remember that θ = (δ1J1 , ..., δIJT ,Γ,Σ). Then, `(θ′) in (A.38) is twice

continuously di�erentiable in Θ. Moreover, the inverse market share function, s−1
t (st; Σ′F ) is continuous

with respect to (st,Σ
′
F ), and therefore continuous with respect to ((stb)b∈Ct2 ,Σ

′
F ). In addition, gt(Σ′g)

is continuously di�erentiable with respect to Σ′g. Then, Γt((stb)b∈Ct2 ,Σ
′), as de�ned in the proof of

Theorem 7, is continuous with respect to ((stb)b∈Ct2 ,Σ
′). By applying the invertibility result from

Theorem 7 and the continuous dependence with respect to Σ′, we obtain that δtJt.(stJt.; Γ′,Σ′) is
continuous with respect to (Γ′,Σ′). Combining this with the continuity of `(θ′) in (A.38), we obtain
the desired condition.

4. sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`cI(Γ′,Σ′; ŝ1, ..., ŝT )− `c(Γ′,Σ′)| p−→ 0. Note that

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`cI(Γ′,Σ′; ŝ1, ..., ŝT )− `c(Γ′,Σ′)| ≤ sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)|

+ sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`((δtJt.(ŝtJt.; Γ′,Σ′))Tt=1,Γ
′,Σ′)− `((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)|

First, we prove that sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)| p−→ 0. To see this, note that:

sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)|

= sup
θ′∈Θ

∣∣∣∣ T∑
t=1

∑
b∈Ct

ŝtb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )−

T∑
t=1

∑
b∈Ct

stb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )

∣∣∣∣
≤ sup

θ′∈Θ
t=1,...,T,b∈Ct

| log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )|

T∑
t=1

∑
b∈Ct

|ŝtb − stb|.

(A.40)

Because log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ) is continuous in Θ and Θ is compact, log stb(δ′t(Γ

′ + gt(Σ
′
g)); Σ′F )

is uniformly bounded in Θ. Moreover, because both the number of markets, T , and Ct are �nite,

sup
θ′∈Θ

t=1,...,T,b∈Ct

| log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )| <∞.

Note that ŝtb
p−→ stb for t = 1, ..., T and b ∈ Ct. Then, the right-hand side of (A.40) converges to zero

in probability. Consequently, sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)| p→ 0.

Second, we prove

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`((δtJt.(ŝtJt.; Γ′,Σ′))Tt=1,Γ
′,Σ′)− `((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)| p→ 0. (A.41)

Note that for each t, δtJt.(s
′
tJt.

; Γ′,Σ′) is uniformly continuous with respect to (s′tJt.,Γ
′,Σ′) in a compact

set UstJt.
× ΘΓ × ΘΣ, where UstJt.

is a compact neighbourhood of stJt.. Moreover, `(θ′) is uniformly
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continuous with respect to θ′ ∈ Θ. Consequently, `((δtJt.(s
′
tJt.

; Γ′,Σ′))Tt=1,Γ
′,Σ′) is uniformly contin-

uous with respect to ((s′tJt.)
T
t=1,Γ

′,Σ′). Because ŝtJt.
p→ stJt. for t = 1, ..., T , we obtain (A.41) and

�nally proved the desired condition.
According to Theorem 2.1 by Newey and McFadden (1994), the four conditions veri�ed above

guarantee the consistency of (Γ̂, Σ̂). By applying the invertibility result from Theorem 7 and Slutsky's
Theorem, θ̂δ is also consistent. This completes the proof of consistency. The proof of asymptotic
normality is based on Theorem 3.1 by Newey and McFadden (1994), according to which we need to
verify the following six conditions.

1. (Γ̂, Σ̂)
p−→ (Γ,Σ). This has just been shown above.

2. (Γ,Σ) is an interior point of ΘΓ ×ΘΣ. This is guaranteed by regularity condition 1.

3. `cI(Γ
′,Σ′; ŝ1, ..., ŝT ) is twice continuously di�erentiable in ΘΓ × ΘΣ. According to regularity con-

dition 2, the market share function stb(δ′t; Σ′F ), t = 1, ..., T and of b ∈ Ct, is twice continuously
di�erentiable with respect to (δ′t,Σ

′
F ), the inverse market share function s−1

t (s′t; Σ′F ) is thus twice con-
tinuously di�erentiable with respect to (s′t; Σ′F ). Moreover, gt(Σ′g) is twice continuously di�erentiable
with respect to Σ′g. As a consequence, by applying the invertibility result from Theorem 7, we ob-
tain that δtJt.(s

′
tJt.

; Γ′,Σ′) is twice continuously di�erentiable with respect to (s′tJt.,Γ
′,Σ′). Because

`cI(Γ
′,Σ′; ŝ1, ..., ŝT ) is a composition of `I(δtJt ,Γ

′,Σ′; ŝ1, ..., ŝT ) and of δtJt.(s
′
tJt.

; Γ′,Σ′), and both func-
tions are twice continuously di�erentiable, `cI(Γ

′,Σ′; ŝ1, ..., ŝT ) is also twice continuously di�erentiable
with respect to (Γ′,Σ′).

4.
√
I

∂`cI
∂(Γ′,Σ′)

∣∣
(Γ′,Σ′)=(Γ,Σ)

converges to a centered normal distribution. We can write:

√
I

∂`cI
∂(Γ′,Σ′)

=
√
I

T∑
t=1

∂δtJt.
∂(Γ′,Σ′)

∂`I
∂δtJt

+
∂`I

∂(Γ′,Σ′)

=

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

]
√
I
∂`I
∂θ′

(A.42)

It su�ces to prove that
√
I ∂`I∂θ′ converges to a centered normal distribution at θ′ = θ.
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De�ne `t(θ′) =
∑

b∈Ct stb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ). Note that `t(θ′) is maximized at θ′ = θ, for

t = 1, ..., T . As a consequence, ∂`
t

∂θ′

∣∣
θ′=θ

= 0 for t = 1, ..., T . Then,

√
I
∂`I
∂θ′

∣∣∣∣
θ′=θ

=
√
I

T∑
t=1

∑
b∈Ct

ŝtb
log ∂stb
∂θ′

∣∣∣∣
θ′=θ

=
√
I

T∑
t=1

∑
b∈Ct

ŝtb
∂ log stb
∂θ′

∣∣∣∣
θ′=θ

− ∂`t

∂θ′

∣∣∣∣
θ′=θ


=
√
I

T∑
t=1

 ∑
b∈Ct1

[ŝtb − stb]
∂ log stb
∂θ′

∣∣∣∣
θ′=θ

+ [ŝt0 − st0]
∂ log st0
∂θ′

∣∣∣∣
θ′=θ


=

T∑
t=1

∑
b∈Ct1

√
I [ŝtb − stb]

[
∂ log stb
∂θ′

− ∂ log st0
∂θ′

] ∣∣∣∣
θ′=θ

=
T∑
t=1

([
∂ log stb
∂θ′

− ∂ log st0
∂θ′

] ∣∣∣∣
θ′=θ

)
b∈Ct1

√
I [ŝt − st] .

(A.43)

where I denotes the identity matrix. According to regularity condition 3,
√
I [ŝt − st]

d−→N(0,Ωt) inde-

pendently for t = 1, ..., T . By using Slutsky's Theorem, we obtain that
√
I ∂`I∂θ′

∣∣
θ′=θ

d→N(0,
∑T

t=1GtΩtG
T
t ),

where
∑T

t=1GtΩtG
T
t is positive-de�nite according to regularity condition 4. As a consequence,

√
I

∂`cI
∂(Γ′,Σ′)

∣∣
(Γ′,Σ′)=(Γ,Σ)

converges to a centered normal distribution.

5. sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣ ∂2`cI
∂(Γ′,Σ′)2 (Γ′,Σ′)−H(Γ′,Σ′)

∣∣∣ p−→ 0, where

H(Γ′,Σ′) =
∂2`((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)

∂(Γ′,Σ′)2

=
T∑
t=1

∑
b∈Ct

stb
∂2 log stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ

′
g)); Σ′F )

∂(Γ′,Σ′)2
,

(A.44)

where δt(δtJt.(stJt.; Γ′,Σ′),Γ′+gt(Σ
′
g)) = (δtJt.(stJt.; Γ′,Σ′), (

∑
j∈b δtj.(stJt.; Γ′,Σ′)+Γ′b+gtb(Σ′g))b∈Ct2).

Under regularity condition 2, H(Γ′,Σ′) is continuous in ΘΓ × ΘΣ. Note that, similarly to (A.40), we
have:

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣ ∂2`cI
∂(Γ′,Σ′)2

(Γ′,Σ′)−H(Γ′,Σ′)

∣∣∣∣
≤

∑
t=1,...,T,b∈Ct

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣∣∂2 log stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ
′
g)); Σ′F )

∂(Γ′,Σ′)2

∣∣∣∣∣ |ŝtb − stb|

+
∑

t=1,...,T,b∈Ct

ŝtb sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣∣∂2 log
[
stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ

′
g)); Σ′F )− stb(δt(δtJt.(ŝtJt.; Γ′,Σ′),Γ′ + gt(Σ

′
g)); Σ′F )

]
∂(Γ′,Σ′)2

∣∣∣∣∣
(A.45)
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Due to the twice continuous di�erentiability of stb(δ′t; Σ′) and of δtJt.(stJt.; Γ′,Σ′) in the compact set
ΘΓ ×ΘΣ, for t = 1, ..., T and b ∈ Ct, we have:

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣∣∂2 log stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ
′
g)); Σ′F )

∂(Γ′,Σ′)2

∣∣∣∣∣ <∞.
Because ŝt

p−→ st for t = 1, ..., T , then the �rst part on the right-hand side of (A.45) converges to zero in
probability. For the second part, note that stb(δ′t(Γ

′+ gt(Σ
′
g)); ΣF ) is twice continuously di�erentiable

with respect to (δ′Jt ,Γ
′,Σ′) and that δtJt.(s

′
tJt.

; Γ′,Σ′) is twice continuously di�erentiable with respect
to (s′tJt.,Γ

′,Σ′) in a compact set UstJt.
× ΘΓ × ΘΣ, where UstJt.

is a compact neighbourhood of stJt.,

for t = 1, ..., T and b ∈ Ct1, we then obtain that
∂2 log stb(δt(δtJt.(stJt.;Γ

′,Σ′),Γ′+gt(Σ′g));Σ′F )

∂(Γ′,Σ′)2 is uniformly

continuous in UstJt.
× ΘΓ × ΘΣ. Combining this with ŝt

p−→ st for t = 1, ..., T , we obtain that the
second part on the right-hand side of (A.45) also converges to zero in probability. Consequently,

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣ ∂2`cI
∂(Γ′,Σ′)2 (Γ′,Σ′)−H(Γ′,Σ′)

∣∣∣ p−→ 0.

6. H(Γ,Σ) = ∂2`c(Γ′,Σ′)
∂(Γ′,Σ′)2

∣∣
(Γ′,Σ′)=(Γ,Σ)

is non-singular. Note that

H(Γ′,Σ′) =
∂2`((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)

∂(Γ′,Σ′)2

=

T∑
t=1

[
∂δtJt.

∂(Γ′,Σ′)

∂2`

∂δ
′2
tJt

(
∂δtJt.

∂(Γ′,Σ′)

)T
+

∂δtJt.
∂(Γ′,Σ′)

∂2`

∂δ′tJt∂(Γ′,Σ′)

]

+

T∑
t=1

∑
j∈Jt

∂`

∂δ′tj

∂2δtj.
∂(Γ′,Σ′)2

+

T∑
t=1

∂δtJt.
∂(Γ′,Σ′)

∂2`

∂(Γ′,Σ′)∂δ′tJt
+

∂2`

∂(Γ′,Σ′)2
.

At (Γ′,Σ′) = (Γ,Σ), δ′tJt = δtJt.(stJt.; Γ,Σ) = δtJt and
∂`

∂δ′tJt
= 0. Then,

H(Γ,Σ) =

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

] [
∂2`(θ′)

∂θ′2

]
θ′=θ

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

]T
,

Because

[(
∂δtJt.
∂(Γ′,Σ′)

)
t=1,...,T

I

]
is of full row rank and

[
∂2`(θ′)
∂θ′2

]
θ′=θ

is non-singular according to regu-

larity condition 5, H(Γ,Σ) is therefore non-singular.
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All the six conditions of Theorem 3.1 by Newey and McFadden (1994) are satis�ed and there exists

W2 such that
√
I[(Γ̂, Σ̂) − (Γ,Σ)]

d−→ N(0,W2). By applying the invertibility result from Theorem 7,
we have:

√
I(δ̂tJt − δtJt) =

√
I(δtJt.(ŝtJt., Γ̂, Σ̂)− δtJt.(ŝtJt.,Γ,Σ) + δtJt.(ŝtJt.,Γ,Σ)− δtJt.(stJt.,Γ,Σ))

=
∂δtJt.(ŝtJt.; Γ′,Σ′)

∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

√
I[(Γ̂, Σ̂)− (Γ,Σ)]

+
∂δtJt.(s

′
tJt.

; Γ,Σ)

∂s′tJt.

∣∣∣
s′tJt.

=s̃tJt.

√
I(ŝtJt. − stJt.).

Using the following Taylor expansion of
∂`cI

∂(Γ′,Σ′) around (Γ,Σ):

0 =
∂`cI

∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ̂,Σ̂)

=
∂`cI

∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ,Σ)

+
∂2`cI

∂(Γ′,Σ′)2

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

[(Γ̂, Σ̂)− (Γ,Σ)],

we obtain

√
I[(Γ̂, Σ̂)− (Γ,Σ)] = −

[
∂2`cI

∂(Γ′,Σ′)2

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

]−1√
I

∂`cI
∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ,Σ)

= −
[

∂2`cI
∂(Γ′,Σ′)2

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

]−1

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

]
T∑
t=1

([
∂ log stb
∂θ′

− ∂ log st0
∂θ′

] ∣∣∣∣
θ′=θ

)
b∈Ct1

√
I [ŝt − st] .

Since
√
I(ŝt−st) converges to a centered normal distribution, by using Slutsky's Theorem and the con-

sistency of δ̂tJt and (Γ̂, Σ̂), we conclude that
√
I(δ̂tJt−δtJt) converges to a centered normal distribution.

This completes the proof.
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A.15 Appendix Tables

Table A.1: RTE Cereal Brands and Market Shares

RTE Cereal Brands Average Market Shares

General Mills Fiber/Whole Grain 34.99%
Kellogg's Regular 8.46%

Fiber/Whole Grain 17.30%
Added Sugar 4.45%

Quaker Regular 1.42%
Fiber/Whole Grain 9.09%
Added Sugar 0.76%

Post Regular 0.04%
Fiber/Whole Grain 8.31%
Added Sugar 0.69%

Private Labels Regular 3.21%
Fiber/Whole Grain 3.12%
Added Sugar 2.01%

Small Producers Regular 0.14%
Fiber/Whole Grain 4.30%
Added Sugar 1.71%

Notes: The Table lists the 16 RTE cereal brands obtained by aggregating UPCs

as described in the text. For each brand, we report the average market share

across the 83256 shopping trips with some RTE cereal purchases. Market shares

are computed over the shopping trips observed in each store-week combination.



Appendix B

Appendix to Chapter 2

B.1 Cross-Price Elasticities

For the cross-price elasticity between j and r:

∂sj.
∂pr

=

∫ ∑
b:b3j

∂sib
∂pr

dF (θi)

= −
∫
αi
∑
b:b3j

∂sib
∂δir

dF (θi)

= −
∫
αi

− ∑
b:b3j,r /∈b

sir.sib + sijr − sir.sijr

 dF (θi)

=

∫
αi [sij.sir. − sijr] dF (θi).

B.2 Proof of Proposition 1

Without loss of generality, I �x xtJt = x and ignore the notation t, re-writing the product-level (bundle-
level) market share functions as sJ.(·; Γ, F ) (sb(·;F )). Denote the ownership matrix in the factual by
Ω and that the after-merger by Ωm.

First statement. For the price elasticity εjr at pJ between j and r, I obtain:

εjr = −α pj
sj.

sj.(δJ; Γ, F )

∂δr
.

If sJ.(·; Γ, F ) is identi�ed, then sj.(δJ;Γ,F )
∂δr

is also identi�ed. Moreover, because of the invertibility of
sJ.(·; Γ, F ) in Theorem 7, δJ is also identi�ed from sJ.. Consequently, εjr is identi�ed.

For the marginal costs cJ, I �rst derive the �rst-order conditions (FOCs) of the Bertrand game in
the factual:

−α
[
Ω� ∂sJ.

∂δJ

]
(pJ − cJ) + sJ.(δJ; Γ, F ) = 0.

As shown in Iaria and Wang (2019a), Ω � ∂sJ.
∂δJ

is a positive-de�nite symmetric matrix and therefore

invertible. Then, cJ = pJ − 1
α

[
Ω� ∂sJ.

∂δJ

]−1
sJ.(δJ; Γ, F ) is identi�ed.

Given the uniqueness of the prices after the merger, it su�ces to examine the FOCs of the Bertrand
pricing game after the merger that uniquely determine the prices. In the case of mergers under linear
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pricing, the FOCs are:

− α
[
Ωm �

∂sJ.
∂δJ

]
(pmJ − cJ) + sJ.(δ

m
J ; Γ, F ) = 0, (B.1)

where pmJ denote the prices after merger and δmJ = −αpmJ + βx + η + ξJ denote the mean utilities of
products after merger. Note that sJ.(·; Γ, F ) (and its derivatives) and (α, β, η) are known. Moreover,
given sJ. and pJ, δJ and ξJ are identi�ed due to the invertibility of sJ.(·; Γ, F ) in Theorem 7. In addition,
cJ are already identi�ed. According to (B.1), pmJ is uniquely determined by sJ.(·; Γ, F ), (α, β, η, ξJ),
and cJ. Because the pro�t after merger is a function of the prices and product-level market shares, the
pro�t change is also identi�ed. Finally, denote the consumer surplus function by

V (δJ; Γ, F ) = E[uitb] = Eθi

ln

1 +
∑

b∈J∪C2

eδb(Γb)+µ(θib)

 .
By using Roy's identity, I obtain ∂V (δJ;Γ,F )

∂δJ
= sJ.(δJ; Γ, F ). Because sJ.(·; Γ, F ) is known and δJ and δmJ

are also identi�ed, then the consumer surplus change before and after merger ∆V =
∫ δmJ
δJ

sJ.(δ
′
J; Γ, F )dδ′J

is identi�ed.

Second statement. Suppose that Γ and bundle-level market share functions are further identi�ed.
Moreover, because ctb =

∑
j∈b ctj , then bundle-level marginal costs are also identi�ed. Then, one can

apply similar arguments to those in the proof of the �rst statement to mergers under nonlinear pricing.

B.3 Proof of Theorem 8

To start with, I plug the de�nition of ξJ(·) into (2.7):

E[s−1
J. (stJ.;x

(2)
tJ , ptJ,Γ, F ) + αptJ − βxtJ − η|ztJ = z, xtJ = x] = 0, (B.2)

where z ∈ Dz and x ∈ Dx and Dz and Dx denotes the support of ztJ and xtJ, respectively. In what
follows, I �x xtJ = x.1 For a given z, (B.2) de�nes a set of moment restrictions: (α, β, η,Γ, F ) should
be such that the left-hand side of (B.2) is equal to zero. I assume the following regularity condition:

Condition 2. For any (Γ′, F ′) and any z ∈ Dz, there exists Mz > 0, such that

E
[∣∣∣s−1

J. (stJ.;x
(2)
tJ , ptJ,Γ, F )

∣∣∣ ∣∣z] ,E [|ptJ| ∣∣z] ≤Mz.

Sketch of the proof. The proof is proceeded in three steps. In the �rst step, I prove that under
conditions 1-3 in Theorem 8, the identi�cation by moment restrictions (2.7) is equivalent to uniquely
solving a convolution equation. This convolution equation is generated by the distribution of the
demand and shocks and the translation in the convolution equation is de�ned by ztJ ∈ RJ . In the
second step, by further using condition 4, I prove that the property that the zero function is the unique
solution to the convolution equation is su�cient for the identi�cation of α and stJ.(·;x(2),Γ, F ). In the
�nal step, by leveraging the completeness of location families in Mattner (1992), I demonstrate that

1All the conditions and results in this section should be considered as being conditioned on xtJ = x.
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when (ξtJ, wtJ) is Gaussian distributed (or their joint distribution satis�es some �fat-tail� conditions),
the property that the zero function is the unique solution to the convolution equation will hold; under
regularity condition 3 of Appendix B.3, by leveraging the polynomial completeness in D'Haultfoeuille
(2011), I prove that the same property will hold when F has compact support and the data generating
process is a model of multiple choice of products across categories.

B.3.1 Conditional Moment Restrictions and Convolution Equation

The following theorem equivalently transforms (B.2) to a convolution equation:

Theorem 14. Suppose that Assumptions 6-8 and regularity condition 2 hold. Moreover, the following

conditions hold:

1. ztJ is independent of (ξtJ, wtJ).

2. αi = α 6= 0

3. Given x(2), ptJ = pJ(βx+ η + ξtJ, ctJ;x(2)) is a continuous function of (βx+ η + ξtJ, ctJ).

Then, for any z ∈ Dz, (α′, β′, η′,Γ′, F ′) satis�es moment conditions (B.2) if and only if the following

convolution equation ∫
G(t;α′, β′, η′,Γ′, F ′)ΛG(t− z; fξ,w)dt = 0, (B.3)

holds, where

G(t;α′, β′, η′,Γ′, F ′) = s−1
J. (sJ.(−αpJ(0, t;x(2));x(2),Γ, F );x(2),Γ′, F ′) + α′pJ(0, t;x(2)) +

(
α′

α β − β
′
)
x+ α′

α η − η
′,

ΛG(λ; fξ,w) =

∫
αfξ,w(α(w − λ)− βx− η, w)dw,

and fξ,w is the density function of (ξ, w).

Proof. Since x is �xed, I drop this notation in this proof and also the dependence of pJ(·) and
sJ.(·; Γ′, F ′) on x(2)

tJ . Because αi = α, moment restrictions (B.2) can be further simpli�ed to:

E[s−1
J. (stJ.; Γ, F ) + αptJ − βx− η|ztJ = z] = 0. (B.4)

To start with, I prove the following Lemma:

Lemma 7. Suppose that αi = α and pJ(βx + η + ξtJ, ctJ) is a function of (βx + η + ξtJ, ctJ). Then,

for any ∆ ∈ RJ ,

pJ(βx+ η + ξtJ + α∆, ctJ + ∆) = pJ(βx+ η + ξtJ, ctJ) + ∆.

Proof. Denote by Ω the factual ownership matrix. Then, I can derive the FOCs of the simultaneous
Bertrand pricing game:

− α
[
Ω� ∂sJ.

∂δtJ

]
(ptJ − ctJ) + sJ.(δtJ; Γ, F ) = 0, (B.5)

where δtJ = −αptJ + βx+ η+ ξtJ. Suppose that ctJ increases by ∆ and βx+ η+ ξtJ increases by α∆.
Then, the FOCs (B.5) with pJ(ξtJ, ctJ) + ∆, ctJ + ∆ and βx+ η + ξtJ + α∆ still hold because δtJ and
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ptJ − ctJ remain unchanged. Due to the uniqueness of ptJ as function of (βx + η + ξtJ, ctJ), I obtain
that pJ(βx+ η + ξtJ + α∆, ctJ + ∆) = pJ(βx+ η + ξtJ, ctJ) + ∆.

First, I prove the su�ciency of Theorem 14. For any ∆ ∈ RJ , by using Lemma 7, I obtain:

E[ptJ|ztJ = z] =

∫
pJ(βx+ η + ξtJ, z + wtJ)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

=

∫ [
pJ(0, z + wtJ −

βx+ η + ξtJ
α

) +
βx+ η + ξtJ

α

]
fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

=

∫
pJ(0, z + wtJ −

βx+ η + ξtJ
α

)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ) +
βx+ η

α

(B.6)

Similarly, for (α′, β′, η′,Γ′, F ′) satisfying (B.4), I compute

E[s−1
J. (stJ.; Γ′, F ′)|ztJ = z]

=

∫
s−1
J. (sJ.(βx+ η + ξtJ − αpJ(βx+ η + ξtJ, ztJ + wtJ); Γ, F ); Γ′, F ′)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

=

∫
s−1
J. (sJ.(−αpJ(0, z + wtJ −

βx+ η + ξtJ
α

); Γ, F ); Γ′, F ′)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

(B.7)

I now plug (B.6) and (B.7) in (B.4) evaluated at (α′, β′, η′,Γ′, F ′), and make the transformation
(ξtJ, wtJ) to (z + wtJ − βx+η+ξtJ

α , wtJ):

E[s−1
J. (stJ.; Γ′, F ′) + α′ptJ − β′x− η′|ztJ = z]

=

∫
[s−1

J. (sJ.(−αpJ(0, t); Γ, F ); Γ′, F ′) + α′pJ(0, t) +

(
α′

α
β − β′

)
x+

α′

α
η − η′]αfξ,w(α(z + wtJ − t)− βx− η, wtJ)d(t, wtJ)

=

∫
[s−1

J. (sJ.(−αpJ(0, t); Γ, F ); Γ′, F ′) + α′pJ(0, t) +

(
α′

α
β − β′

)
x+

α′

α
η − η′]ΛG(t− z; fξ,w)dt.

The proof of su�ciency is completed. For the necessity part, one can reverse the argument of the
su�ciency.

B.3.2 Unique Solution for the Convolution Equation (B.3) and Identi�cation of

Product-Level Market Share Functions

Denote the identi�cation set de�ned by moment conditions (B.2) as

Θ = {(α′, β′, η′,Γ′, F ′) : (B.2) holds at (α′, β′, η′,Γ′, F ′) for any z ∈ Dz},

and that by (B.3) as

ΘG = {(α′, β′, η′,Γ′, F ′) : (B.3) holds for any z ∈ Dz}

Theorem 14 establishes Θ = ΘG. De�ne Θ0
G = {(α′, β′, η′,Γ′, F ′) : G(·;α′, β′, η′,Γ′, F ′) = 0}, the set of

parameters that delivers G(·) = 0. Note that Θ0
G ⊂ ΘG and the true parameters (α, β, η,Γ, F ) ∈ Θ0

G ⊂
ΘG = Θ. Then, a necessary condition for the identi�cation of (α, β, η,Γ, F ) by moment conditions
(B.2), i.e. Θ = {(α, β, η,Γ, F )}, is Θ0

G = ΘG. Equivalently, G = 0 is the unique solution of convolution
equation (B.3), i.e. the completeness of the location families generated by ΛG(·; fξ,w). The next
theorem characterizes the implications of this completeness on identi�cation:
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Theorem 15. Suppose that conditions of Theorem 14 hold.

1. If Θ = {(α, β, η,Γ, F )}, then Θ0
G = ΘG.

2. Suppose that for any (Γ′, F ′) 6= (Γ, F ), there exists δ′J 6= δ′′J such that sJ.(δ
′
J;x(2),Γ, F ) =

sJ.(δ
′
J;x(2),Γ′, F ′) and sJ.(δ

′′
J;x(2),Γ, F ) = sJ.(δ

′′
J;x(2),Γ′, F ′). If Θ0

G = ΘG, then α and sJ.(·;x(2),Γ, F )

are identi�ed.

Remark 10. According to Theorem 15, the completeness of the location families (Θ0
G = ΘG) is nec-

essary for the identi�cation of the full model by moment conditions (2.7). Moreover, as shown in

the second statement, it is also su�cient for the identi�cation of α and sJ.(·;x(2),Γ, F ) under mild

conditions.

Proof. For the �rst statement, if Θ = {(α, β, η,Γ, F )}, then Θ0
G = ΘG = {(α, β, η,Γ, F )}.

To prove the second statement, note that if G(t;α′, β′, η′,Γ′, F ′) = 0 for any t ∈ RJ , then we have

sJ.(−αpJ(0, t); Γ, F ) = sJ.(−α′pJ(0, t) + v; Γ′, F ′), (B.8)

for any t ∈ RJ , where v =
(
α′

α β − β
′
)
x + α′

α η − η
′. As shown in Iaria and Wang (2019a) (Appendix

8.10), marginal costs ctJ are identi�able: for any p′tJ, there exists a unique c′tJ such that the FOCs
of the Bertrand pricing game hold. Moreover, this mapping from p′tJ to c′tJ is C1. Because pJ(0, c′tJ)

is continuous, then p′tJ = pJ(0, c′tJ) de�nes a continuous bijection between prices and marginal costs.
Consequently, Dp = {p′ ∈ RJ : p′ = pJ(0, ctJ′), ctJ′ ∈ RJ} is an open set in RJ and (B.8) holds in Dp.
Finally, according to Iaria and Wang (2019a) (Theorem Real Analytic Property), given any (Γ′′, F ′′),
sb(δ′tJ; Γ′′, F ′′) is real analytic with respect to δ′tJ. Then, sJ.(δ

′
tJ; Γ′′, F ′′) is real analytic with respect

to δ′tJ. Consequently, sJ.(−αp′tJ; Γ, F ) and sJ.(−α′p′tJ + v; Γ′, F ′) are both real analytic with respect
to p′tJ. Because these two real analytic functions coincide on an open set Dp ⊂ RJ according to (B.8),
then they coincide for all p′tJ ∈ RJ : (B.8) holds for any ptJ ∈ RJ . Moreover, there exist at least two

δ′J 6= δ′′J such that sJ.(δ′J; Γ, F ) = sJ.(δ
′
J; Γ′, F ′) and sJ.(δ′′J; Γ, F ) = sJ.(δ

′′
J; Γ′, F ′). Setting ptJ = − δ′J

α

and plugging this into (B.8), we obtain:

sJ.(δ
′
J; Γ, F ) = sJ.(

α′

α
δ′J + v; Γ′, F ′) = sJ.(δ

′
J; Γ′, F ′).

Similarly, setting ptJ = − δ′′J
α , we obtain:

sJ.(δ
′′
J; Γ, F ) = sJ.(

α′

α
δ′′J + v; Γ′, F ′) = sJ.(δ

′′
J; Γ′, F ′).

Because sJ.(·; Γ′, F ′) is bijective, we obtain:

α′

α
δ′J + v = δ′J,

α′

α
δ′′J + v = δ′′J.

Then, (α
′

α − 1)(δ′J − δ′′J) = 0, and therefore α′ = α and v = 0. Finally, we obtain sJ.(δ
′
tJ; Γ, F ) =

sJ.(δ
′
tJ; Γ′, F ′) for any δ′tJ ∈ RJ . The proof of the second statement is completed.
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B.3.3 Su�cient Conditions for the Completeness of Location Families

In general, depending on the regularity of G(·) (bounded, polynomially bounded, integrable with
respect to ΛG(·), etc.), the completeness of location families can be achieved with di�erent su�cient
conditions on ΛG(·) (and hence on fξ,w).2 In the setting of mixed logit models, the next theorem
establishes two sets of su�cient conditions for the completeness of location families (Θ0

G = ΘG):

Theorem 16. Suppose that (B.3) holds for z ∈ RJ .

� If fξ,w is Gaussian, then Θ0
G = ΘG.

� Suppose that the data generating process is a model of multiple choice of product across categories

(see section 2.2.2). If F and F ′ have compact support. Then under regularity condition 3,

Θ0
G = ΘG.

Proof. Note that the location families are generated by ΛG(·; fξ,w), which is the density function of a
translation of demand and supply shocks in model (2.4). For the �rst statement, when fξ,w is Gaussian,
ΛG(λ; fξ,w) is also Gaussian. Then, the �rst statement follows directly from Theorem 2.4 of Mattner
(1993).

For the second statement, I leverage Theorem 2.1 of D'Haultfoeuille (2011). To do so, I require the
following regularity conditions:

Condition 3.

(i). (ξtJ, wtJ) are continuous random variables with �nite moments.

(ii). The characteristics function of ΛG is in�nitely often di�erentiable in RJ except for some �nite

set. Moreover, the characteristics function of ΛG does not vanish on RJ .

(iii). There exists B and l, such that |ptJ(0, ctJ)| ≤ B|ctJ|l, where |.| refers to Euclidean norm.

Condition 3(i) implies Assumption A3 of D'Haultfoeuille (2011) and quite standard. Condition 3(ii)
implies his Assumption A4. The di�erentiability requirement and the zero-freeness requirement are
satis�ed by many commonly used distributions. Condition 3(iii) restricts pricing behaviors to be
controlled by a polynomial of marginal costs and is satis�ed at least by the mixed logit demand models
of single products. Moreover, together with Condition 3(i), it implies Assumption A5 of D'Haultfoeuille
(2011).

First, I re-write G as a function of ptJ(0, t):

G = G(ptJ) = s−1
J. (sJ.(−αptJ; Γ, F ); Γ′, F ′) + α′ptJ +

(
α′

α
β − β′

)
x+

α′

α
η − η′.

To apply statement (ii) of Theorem 2.1 in D'Haultfoeuille (2011), it is enough to prove that G can be
polynomially controlled by ptJ:

Lemma 8. There exists A,M > 0, such that |G(ptJ)| ≤ A|ptJ|+M , for any ptJ ∈ RJ .

Combining this lemma with Conditions 3(i)-(iii), I can apply the P-completeness result in Theorem
2.1 of D'Haultfoeuille (2011): if G satis�es convolution equation (B.3) for any z ∈ RJ , then G ≡ 0. In
the remaining part, I prove Lemma 8.

2For di�erent concepts of completeness, see Mattner (1992, 1993), D'Haultfoeuille (2011), and Andrews (2017).
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Without loss of generality, normalize the support of F and F ′ to [0, 1]K , where K is the dimension
of random coe�cients. Note that it is su�cient to prove

s−1
J. (sJ.(−αptJ; Γ, F ); Γ′, F ′)| ≤ A′|ptJ|+M ′

for some constant A′ and M ′. First, consider demand models of single products. For any δ′J ∈ RJ ,
denote sJ = sJ.(δJ;F ) = sJ.(δ

′
J;F ′). Then, we have for any j ∈ J:

ln sj − ln s0 = δj + ln

∫
eµtj(θi)

1+
∑
j∈J e

δj+µtj(θi)
dF (θi)∫

1

1+
∑
j∈J e

δj+µtj(θi)
dF (θi)

= δj + µtj(θ̃),

where θ̃ is some value in [0, 1]K . We apply the same arguments to F ′ and obtain:

ln sj − ln s0 = δ′j + µtj(θ̃
′),

where θ̃′ is some value in [0, 1]K . Then, we have δj − δ′j = µtj(θ̃
′) − µtj(θ̃). Because both θ̃ and

θ̃′ are bounded by 1, then µtj(θ̃) and µtj(θ̃
′) are also bounded. Then, we obtain that there exists

a constant Mj that does not depend on δJ, such that |δj − δ′j | ≤ Mj . Consequently, |δ − δ′| ≤

M ′ =
√∑J

j=1M
2
j , or equivalently, |s−1

J. (sJ.(δJ; Γ, F ); Γ′, F ′) − δJ| ≤ M ′ for any δJ ∈ RJ . Plug

δJ = −αptJ into this inequality, we obtain |s−1
J. (sJ.(−αptJ; Γ, F ); Γ′, F ′) + αptJ| ≤ M ′ and therefore

|s−1
J. (sJ.(−αptJ; Γ, F ); Γ′, F ′)| ≤ α|ptJ|+M ′.

For models of multiple choice of products across K categories, for any δ′J ∈ RJ , denote sJ =

sJ.(δJ; Γ, F ) = sJ.(δ
′
J; Γ′, F ′). Take product category J1 and de�ne s̃0 = 1−

∑
j∈J1

sj.. Note that

s̃0 =

∫ ∑
b=((jk)jk∈Jk,k=2,...,K) e

∑K
k=2 δjk+Γb+

∑K
k=2 µtjk (θi)∑

b=(jk)jk∈Jk,k=1,...,K
e
∑K
k=1 δjk+Γb+µtb(θi)

dF (θi)

and for j ∈ J1,

sj. =

∫ ∑
b=((jk)jk∈Jk,k=2,...,K) e

δj+µtj(θi)e
∑K
k=2 δjk+Γb∪{j}+

∑K
k=2 µtjk (θi)∑

b=(jk)jk∈Jk,k=1,...,K
e
∑K
k=1 δjk+Γb+µtb(θi)

dF (θi).

Then, similar to demand models of single products, we obtain:

ln sj. − ln s̃0 = δj + µtj(θ̃) + Γb̃∪{j} − Γb̃,

where θ̃ is some value in [0, 1]K and b̃ is some bundle without j ∈ J1. We apply the same arguments
to (Γ′, F ′) and obtain:

ln sj. − ln s0 = δ′j + µtj(θ̃
′) + Γb̃′∪{j} − Γb̃′ ,

where θ̃′ is some value in [0, 1]K and b̃′ is some bundle without j ∈ J1. Then, similar arguments in
demand models of single product apply and |δj − δ′j | is bounded by some constant that only depends
on the support of θ̃ and θ̃′ and the bounds of Γ. The proof of the second statement is completed.
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Combining Theorems 14-16, we obtain Theorem 8.

B.4 Proof of Theorem 9

The proof is proceeded in two steps. In the �rst step, I prove Γ(j,r) is identi�ed for j, r ∈ J, j 6= r. In

the second step, I prove that the sb(·;x(2)
t , F ) is identi�ed for b ∈ C1. To simplify exposition, I �x

x
(2)
tJ and drop this notation. Suppose that there exist (Γ′, F ′) such that

sj.(δJ; Γ′, F ′) = sj.(δJ; Γ, F )

for any j ∈ J and δ ∈ RJ . Throughout the proof, denote the Fourier transformation of function φ by
F(φ).

Step 1: Γ′ = Γ. Without loss of generality, we show Γ(1,2) = Γ′(1,2). First, note that by letting
all δ′tl's, l 6= 1, 2 tend to −∞, market shares of single products l and of all bundles that contain any
product l 6= 1, 2 converge to zero. Consequently, we obtain that:

s1.(δ
′
t{1,2}; Γ′(1,2), F

′) = s1.(δ
′
t{1,2}; Γ(1,2), F ),

s2.(δ
′
t{1,2}; Γ′(1,2), F

′) = s2.(δ
′
t{1,2}; Γ(1,2), F ),

(B.9)

for any δ′t{1,2} = (δ′t1, δ
′
t2) ∈ R2. Take the �rst equation in (B.9) and compute the partial derivatives

with respect to δ′t2:

∂s1.(δ
′
t{1,2}; Γ′(1,2), F

′)

∂δ′t2
=

∫
(eδ
′
t1+δ′t2+µt1(θit)+µt2(θit))(e

Γ′
(1,2) − 1)

(1 + eδ
′
t1+µt1(θit) + eδ

′
t2+µt2(θit) + e

δ′t1+µt1(θit)+δ′t1+µt1(θit)+Γ′
(1,2))2

dF ′(θit),

∂s1.(δ
′
t{1,2}; Γ(1,2), F )

∂δ′t2
=

∫
(eδ
′
t1+δ′t2+µt1(θit)+µt2(θit))(eΓ(1,2) − 1)

(1 + eδ
′
t1+µt1(θit) + eδ

′
t2+µt2(θit) + eδ

′
t1+µt1(θit)+δ′t1+µt1(θit)+Γ(1,2))2

dF (θit),

∂s1.(δ
′
t{1,2}; Γ′(1,2), F

′)

∂δ′t2
=
∂s1.(δ

′
t{1,2}; Γ(1,2), F )

∂δ′t2
.

I can then cancel out eδ
′
t1+δ′t2 in the nominators of

∂s1.(δ′t{1,2};Γ
′
(1,2)

,F ′)

∂δ′t2
and

∂s1.(δ′t{1,2};Γ
′
(1,2)

,F ′)

∂δ′t2
. Letting

δt2 → −∞, I obtain:

[e
Γ′

(1,2) − 1]

∫
eµt1(θit)+µt2(θit)

(1 + eδ
′
t1+µt1(θit))2

dF ′(θit) = [eΓ(1,2) − 1]

∫
eµt1(θit)+µt2(θit)

(1 + eδ
′
t1+µt1(θit))2

dF (θit). (B.10)

From (B.10), if Γ(1,2) = 0, then Γ′(1,2) = Γ(1,2) = 0.3 Suppose Γ(1,2) 6= 0. Denote the density functions
of µit = (µit1, µit2) = (µt1(θit), µt2(θit)) for θit ∼ F and θit ∼ F ′ by fµ and f ′µ, respectively. Then, I
can re-write (B.10) as:

[e
Γ′

(1,2) − 1]

∫
eµit1+µit2

(1 + eµit1)2
f ′µ(µit1 − δ′t1, µit2)dµit = [eΓ(1,2) − 1]

∫
eµit1+µit2

(1 + eµit1)2
fµ(µit1 − δ′t1, µit2)dµit.

3In fact, the sign of Γ(1,2) is already identi�ed from (B.10).
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De�ne g(λ) = eλ

(1+eλ)2 . Then,

[e
Γ′

(1,2) − 1]

∫
g(µit1)f̃ ′µ(µit1 − δ′t1)dµit1 = [eΓ(1,2) − 1]

∫
g(µit1)f̃µ(µit1 − δ′t1)dµit1, (B.11)

where f̃ ′µ(µit1) =
∫
eµit2f ′µ(µit1, µit2)dµit2 and f̃µ(µit1) =

∫
eµit2fµ(µit1, µit2)dµit2. Either side of (B.11)

de�nes a convolution system. Note that g(·), f̃ ′µ, f̃µ ∈ L1(R). Consequently, I apply Fourier transfor-
mation on both sides of (B.11) and obtain:

[e
Γ′

(1,2) − 1]F(g)(t)F(f̃ ′µ)(t) = [eΓ(1,2) − 1]F(g)(t)F(f̃µ)(t),

for any t ∈ R. Particularly, at t = 0, F(g)(0) > 0. Then,

[e
Γ′

(1,2) − 1]F(f̃ ′µ)(0) = [eΓ(1,2) − 1]F(f̃µ)(0), (B.12)

Note that F(f̃ ′µ)(t) = Ef̃ ′ [e
µit2 ] and F(f̃µ)(t) = Ef̃ [eµit2 ]. If they are equal, then Γ′(1,2) = Γ(1,2). In

particular, if Γ(1,2) = −∞, i.e. bundle (1, 2) is not in the choice set, I obtain that Γ′(1,2) = −∞ and
therefore identify that bundle (1, 2) is not in the choice set. In what follows, we prove Ef̃ ′ [e

µit2 ] =

Ef̃ [eµit2 ].

Take the second equation of (B.9) and let δ′it1 → −∞. I then obtain:∫
eδ
′
t2+µit2

1 + eδ
′
t2+µit2

f ′µ(µit) =

∫
eδ
′
t2+µit2

1 + eδ
′
t2+µit2

fµ(µit). (B.13)

I cancel out eδ
′
t2 from the nominators on both sides of (B.13) and let δ′2t → −∞. I then obtain∫

eµit2f ′µ(µit) =
∫
eµit2fµ(µit), i.e. Ef̃ ′ [e

µit2 ] = Ef̃ [eµit2 ].

Step 2: sb(δJ;F ′) = sb(δJ;F ) for any b ∈ C1. I prove this result for for the model of multiple
choice of products within category. The proof is similar for the model of multiple choice of products
across two categories.

Recall that the density function of µitJ = µtJ(θit) for θit ∼ F ′ and θit ∼ F are f ′µ and fµ,
respectively. It su�ces to prove that f ′µ = fµ almost everywhere. In the model of multiple choice of
products within category in Theorem 9, plug Γ′ = Γ into the product-level market share function of j.
I then have for any δ′tJ ∈ RJ , sj.(δ′tJ; Γ, F ) = sj.(δ

′
tJ; Γ, F ′). According to the arguments in Appendix

8.13 of Iaria and Wang (2019a), given the product-level market share functions and Γ, one can uniquely
determine the bundle-level market shares, as function of δtJ. Because both the product-level market
share functions and Γ are identi�ed, then sb(δt(Γ);F ), where δt(Γ) = (δt1, ..., δtJ , (δtb)b∈C2 + Γ), is
identi�ed as a function of δtJ, for any b ∈ C1. Consequently, the market share function of the outside
option, s0(δt(Γ);F ), is identi�ed as a function of δtJ: for any δ′tJ ∈ RJ

s0(δ′tJ(Γ);F ) = s0(δ′tJ(Γ);F ′). (B.14)
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I compute the higher-order cross derivative of both sides of (B.14):

∂Js0(δ′tJ(Γ);F )

∂δ′t1, ..., ∂δ
′
tJ

=

∫
PΓ(δt1 + µit1, ..., δtJ + µitJ)

QΓ(δt1 + µit1, ..., δtJ + µitJ)
fµ(µit)dµit,

∂Js0(δ′tJ(Γ);F ′)

∂δ′t1, ..., ∂δ
′
tJ

=

∫
PΓ(δt1 + µit1, ..., δtJ + µitJ)

QΓ(δt1 + µit1, ..., δtJ + µitJ)
f ′µ(µit)dµit,

∂Js0(δ′tJ(Γ);F )

∂δ′t1, ..., ∂δ
′
tJ

=
∂Js0(δ′tJ(Γ);F ′)

∂δ′t1, ..., ∂δ
′
tJ

,

(B.15)

where
QΓ(uit1, ..., uitJ) = 1 +

∑
j∈J

euitj +
∑
j<j′

eΓ(j,j′)euitj+uitj′ .

and

PΓ(uit1, ..., uitJ) =
∑
S∈S

A(S)
∏

(j,j′)∈S

euit(j,j′)

QΓ(uit1, ..., uitJ)

∏
j∈S

∑
b:b3j e

uitb

QΓ(uit1, ..., uitJ)

=
∏
j∈J

euitj
∑
S∈S

A(S)
∏

(j,j′)∈S

eΓ(j,j′)

QΓ(uit1, ..., uitJ)

∏
j∈S

1 +
∑

j′ 6=j e
uitj′+Γ(j,j′)

QΓ(uit1, ..., uitJ)

(B.16)

where S is a partition of {1, ..., J} with each part being at most size 2, S collects all such partitions
which are the results of the higher-order cross derivative ∂J

∂δ′t1,...,∂δ
′
tJ
, and A(S) is a constant depending

on the partition S ∈ S. An example of S is {{1}, {2, 5}, {4}, {3, 6}}. Each term in the products of PΓ

corresponds to the choice probability of either bundle (j, j′) or the product-level choice probability of
product j, evaluated at uitJ and Γ, and bounded by 1. From (B.15), I obtain:∫

PΓ((eλitj )j∈J)

QΓ((eλitj )j∈J)
[fµ(λitJ − δ′tJ)− fµ(λitJ − δ′tJ)]dλitJ = 0, (B.17)

for any δ′tJ ∈ RJ . I prove the following lemma:

Lemma 9.

�

PΓ((eλj )j∈J)

QΓ((eλj )j∈J)
∈ L1(RJ).

� The zero set of F

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
in RJ is of zero Lebesgue measure.

Note that the right-hand side of (B.17) is a convolution. Because of the �rst statement of Lemma 9, I
can apply Fourier transformation on both sides and obtain:

F

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
F(fµ − f ′µ) = 0.

Applying the second statement of Lemma 9, I obtain F(fµ) = F(f ′µ) almost everywhere. Due to the
continuity of characteristics functions, F(fµ) = F(f ′µ) everywhere and hence the distribution of µit is
identi�ed. In the remaining part, I prove Lemma 9.
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Proof. First, we make the transformation of variables λJ to eλJ :∫ ∣∣∣∣PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

∣∣∣∣ dλJ =

∫
RJ+

∣∣∣∣∣PΓ(y1, ..., yJ)

QΓ(y1, ..., yJ)

1∏J
j=1 yj

∣∣∣∣∣ dyJ.
For the �rst statement, because of (B.16), it su�ces to prove that for each S ∈ S,∣∣∣∣∣∣ 1

QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)

∏
j∈S

1 +
∑

j′ 6=j yj′e
Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣ (B.18)

is integrable in RJ+. To show this, I divide RJ+ into 2J regions: RJ+ = ×Jj=1Ij , where Ij = (0, 1], (1,+∞).
Then, it is enough to prove that (B.18) is integrable in each of these regions. Without loss of generality,
suppose that the region is Rk = {(y1, ..., yJ) : yj ∈ (0, 1), j = 1, ..., k; yj′ ≥ 1, j′ = k + 1, ..., J}. Then,
for a given j, we have four cases to control:

1. j ≤ k and j appears in S as (j, j′).

2. j ≤ k and j appears in S as j.

3. j > k and j appears in S as (j, j′).

4. j > k and j appears in S as j.

Note that for cases 1 and 2, the corresponding terms in (B.18) can be controlled by eΓm with Γm =

max{0, (Γ(j,j′))j≤j′}. For case 3, e
Γ(j,j′)

QΓ(y1,...,yJ ) ≤
eΓm
yj
. For case 4,

1 +
∑

j′ 6=j yj′e
Γ(j,j′)

QΓ(y1, ..., yJ)
≤

1 +
∑

j′ 6=j yj′e
Γ(j,j′)

yj +
∑

j′ 6=j yjyj′e
Γ(j,j′)

=
1

yj
≤ eΓm

yj
.

Moreover,

QΓ(y1, ..., yJ) ≤ 1∑
j>k yj +

∑
k<j<j′ yjyj′e

Γ(j,j′)

≤ 2

(J − k)(J − k + 1)(
∏
k<j<j′ e

Γ(j,j′))
2

(J−k)(J−k+1)
∏J
j=k+1 y

2
J−k+1

j

.

The last step is due to the inequality of arithmetic and the geometric means. Then, for all the four
cases, we have:∣∣∣∣∣∣ 1

QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)

∏
j∈S

1 +
∑

j′ 6=j yj′e
Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣ ≤ A(J, k,Γ)

J∏
j=k+1

y
−1− 2

J−k+1

j , (B.19)

where A(J, k,Γ) = 2eJΓm

(J−k)(J−k+1)(
∏
k<j<j′ e

Γ(j,j′) )
2

(J−k)(J−k+1)

. Note that
∏J
j=k+1 y

−1− 2
J−k+1

j is integrable
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in Rk and A(J, k,Γ) is a constant. Then,∣∣∣∣∣∣ 1

QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)

∏
j∈S

1 +
∑

j′ 6=j yj′e
Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣
is integrable in {(y1, ..., yJ) : yj ∈ (0, 1), j = 1, ..., k; yj′ ≥ 1, j′ = k + 1, ..., J}. The proof of the �rst
statement is completed.

To prove the second statement, according to Mityagin (2015), it su�ces to show that the real (or

imaginary) part of F

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
is non-constant real analytic function. In order to prove the real

analytic property, the key is to control the higher order derivatives of F

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
(y):

∂LF

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
(y)∏J

j=1 ∂y
lj
j

= F

 J∏
j=1

(−iλj)lj
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

 (y), (B.20)

where
∑J

j=1 lj = L and i is the imaginary unit. I now prove that this higher order derivative can be

controlled by
(
J+1

2

)L∏J
j=1 lj !. This result will then imply that for any y ∈ RJ , there exist 0 < ε < 2

J+1

such that for y′ ∈ RJ and |y′−y| < ε, the Taylor expansion ofF

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
(y′) around y uniformly

converges to F

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
(y′). Consequently, F

(
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

)
(y) is everywhere real analytic in

RJ . It is not constantly zero because PΓ
QΓ

is not constantly zero. In the remaing part of the proof, I

prove (B.20) can be controlled by
(
J+1

2

)L∏J
j=1 lj !.

It su�ces to study
∫ ∣∣∣∣∏J

j=1(|λj |)lj
PΓ((eλj )j∈J)

QΓ((eλj )j∈J)

∣∣∣∣ dλ, or equivalently,
∫
RJ+

∣∣∣∣∣∣
J∏
j=1

(| ln yj |)lj
PΓ((yj)j∈J)

QΓ((yj)j∈J)

1∏J
j=1 yj

∣∣∣∣∣∣ dyJ.
I follow the same technique as in the proof of the �rst statement and evaluate, for each S ∈ S,∣∣∣∣∣∣

J∏
j=1

(| ln yj |)lj
1

QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)

∏
j∈S

1 +
∑

j′ 6=j yj′e
Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣ (B.21)

in each of the 2J regions. Without loss of generality, for region Rk, using (B.19), we have:∣∣∣∣∣∣
J∏
j=1

(| ln yj |)lj
1

QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)

∏
j∈S

1 +
∑

j′ 6=j yj′e
Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣
≤ A(J, k,Γ)

k∏
j=1

| ln yj |lj
J∏

j=k+1

| ln yj |ljy
−1− 2

J−k+1

j .
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Finally, ∫ 1

0
, ...,

∫ 1

0

∫ ∞
1

...

∫ ∞
1

A(J, k,Γ)
k∏
j=1

| ln yj |lj
J∏

j=k+1

| ln yj |ljy
−1− 2

J−k+1

j dyJ

= A(J, k,Γ)(
J − k + 1

2
)L+J−k

J∏
j=1

lj !

≤ A(J, k,Γ)(
J + 1

2
)J(

J + 1

2
)L

J∏
j=1

lj !

Consequently, when I sum over all the integrals in the 2J regions and all S ∈ S,

∫
RJ+

∣∣∣∣∣∣
J∏
j=1

(| ln yj |)lj
PΓ((yj)j∈J)

QΓ((yj)j∈J)

1∏J
j=1 yj

∣∣∣∣∣∣ dyJ
will be bounded by (J+1

2 )L
∏J
j=1 lj ! multiplied by some constant only depending on J and Γ. The

proof is completed.

B.5 Proof of Corollary 3

In this proof, I will construct (Γ0, F
′
0) and (Γ′0, F0) such that Γ0 6= Γ′0 and F0 6= F ′0, while s1.(·; Γ0, F

′
0) =

s1.(·; Γ′0, F0). Because F0 6= F ′0, then s(1,1)(·;F0) 6= s(1,1)(·;F ′0) in (2.8).

First, I compute the derivative of s1.(δ; Γ, F ) with respect to δ:

∂s1.(δ; Γ, F )

∂δ
=

∫
eδ+µ + 4e2δ+2µ+Γ

(1 + eδ+µ + e2δ+2µ+Γ)2
dF (µ)

=

∫
R(δ + µ; Γ)dF (µ),

(B.22)

where R(x; Γ) = ex+4e2x+Γ

(1+ex+e2x+Γ)2 . Note that R(·; Γ) ∈ L1(R). De�ne γ = eΓ and

V (γ) =

∫
R
R(x; Γ)dx =

∫
R+

1 + 4γt

(1 + t+ γt2)2
dt

V (γ) is a continuous function of γ ∈ [0,∞), with V (0) = 1 > V (∞) = 0. Moreover, lim
γ→0+

dV
dγ =

+∞ > 0. As a consequence, there exist γ0 6= γ′0 and γ0, γ
′
0 > 0, such that V (γ0) = V (γ′0). Therefore,

there exists Γ0 = ln γ0 > −∞ and Γ′0 = ln γ′0 > −∞, such that Γ0 6= Γ′0 and V0 =
∫
RR(x; Γ0) =∫

RR(x; Γ′0)dx. Note that R(·;Γ0)
V0

and R(·;Γ′0)
V0

are both well-de�ned but di�erent density functions. Denote

the corresponding distribution functions as F0 and F ′0, respectively:
dF0
dµ = R(µ;Γ0)

V0
and dF ′0

dµ =
R(µ;Γ′0)
V0

.

Based on (B.22), consider the Fourier transformation of ∂s1.(δ;Γ0,F ′0)
∂δ and ∂s1.(δ;Γ′0,F0)

∂δ :

F

(
∂s1.(δ; Γ0, F

′
0)

∂δ

)
(t) = F (R(·; Γ0)) (t)F

(
dF ′0
dµ

)
(t),

F

(
∂s1.(δ; Γ′0, F0)

∂δ

)
(t) = F(R(·; Γ′0))(t)F

(
dF0

dµ

)
(t).
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Then,

F

(
∂s1.(δ; Γ0, F

′
0)

∂δ

)
(t) = F

(
∂s1.(δ; Γ′0, F0)

∂δ

)
(t),

Consequently, ∂s1.(δ;Γ0,F ′0)
∂δ =

∂s1.(δ;Γ′0,F0)
∂δ for δ ∈ R. Then, s1.(δ; Γ′0, F0) − s1.(δ; Γ0, F

′
0) is a constant

function in R. Taking δ = +∞, we obtain that this constant is zero and hence s1.(δ; Γ′0, F0) =

s1.(δ; Γ0, F
′
0) for δ ∈ R. The construction is completed.

B.6 Proof of Property 2

The proof directly follows from that of Lemma 8.

B.7 Construction of Product-Level Market Shares

I provide computational details of the product level market shares from the market-level sales data. I
suppress t to simplify the exposition. Suppose that there are I households and the size of household
i = 1, ..., I is ni ∈ {1, ..., N}. Denote by qk the weekly per capita consumption of the relevant products
of category k (breakfast cereals or milk). Then, for product j in category k, the total consumption
Djk, is:

Djk =
I∑
i=1

∑
b:b3j

1{i chooses b}niqk

= qk

N∑
n=1

n
∑
b:b3j

I∑
i=1

1{i chooses b, ni = n}

= Iqk

N∑
n=1

n
∑
b:b3j

∑I
i=1 1{i chooses b, ni = n}

I
.

Denote by snb the average choice probability of bundle b among households of size n. Then, when I is
very large,

Djk

Iqk
=

N∑
n=1

n
∑
b:b3j

∑I
i=1 1{i chooses b, ni = n}

I

≈
N∑
n=1

nπn
∑
b:b3j

snb

=
N∑
n=1

nπns
n
j.,

Djk

IN̄qk
≈

N∑
n=1

π̄ns
n
j. = sj.,

where N̄ =
∑N

n=1 nπn is the average household size and {π̄n}Nn=1 is the distribution of household
sizes weighted by size. Note that when computing the product-level market shares, one should use
the weighted distribution {π̄n}Nn=1 rather than {πn}Nn=1 to properly take into account heterogeneous
consumption across households of di�erent sizes.

Under the assumptions in section 2.6, Djk is equal to the sales in lbs of product j of category k.
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Moreover, the IRI dataset contains information on the set of sampled households with which we can
infer the number of households I and the distribution of their demographic characteristics. Finally,
for dk, k ∈ K, I use external sources: the weekly per capita consumption of breakfast cereals is 0.19

lbs and that of �uid milk is 3.4 lbs.4 Based on these pieces of information, we construct the observed
product-level market shares sj.'s.5

B.8 Main Tables

Table B.1: RTE Cereal Products

Brand Flavour Forti�cation Grain

General Mills Cherrios Toasted Missing WHOLE GRAIN OAT

General Mills Cinnamon TST CR Cinnamon Toast 12 ESSNTL VTMN&MNRL WHOLE WHEAT AND RICE

General Mills Cinnamon TST CR Cinnamon Toast Missing WHOLE WHEAT AND RICE

General Mills Honey Nut Cheer Honey Nut Missing WHL GRAIN OAT & BRLY

General Mills Honey Nut Cheer Honey Nut Missing WHOLE GRAIN OAT

General Mills Lucky Charms Toasted CALCIUM & VITAMIN D WHOLE GRAIN OAT

General Mills Lucky Charms Toasted Missing WHOLE GRAIN OAT

General Mills Multi Grain Che. Regular 10 VITAMINS&MINERALS MULTI GRAIN

Kashi Go Lean Crunch Regular Missing MULTI GRAIN

Kellogg's Apple Jacks Apple Cinnamon Missing 3 GRAIN

Kellogg's Corn Flakes Regular Missing CORN

Kellogg's Frosted Flakes Regular VITAMIN D CORN

Kellogg's Frosted Mini Wheats Regular Missing WHOLE GRAIN WHEAT

Kellogg's Raisin Bran Regular Missing WHL GRN WHT WHT BRN

Kellogg's Rice Krispies Toasted Missing RICE

Kellogg's Special K Toasted Missing RICE

Kellogg's Special K Fruit & Yo Regular Missing OAT RICE WHEAT

Kellogg's Special K Red Berrie Regular Missing RICE AND WHEAT

Kellogg's Special K Vanilla AL Regular Missing RICE AND WHEAT

Post Grape Nuts Regular Missing WHOLE GRN WHT & BRLY

Post Honey Bunches of Oats Honey Missing WHOLE GRAIN OAT

Post Honey Bunches of Oats Honey Roasted Missing WHOLE GRAIN OAT

Post Raisin Bran Regular Missing WHOLE GRAN WHT & BRN

Post Selects Great Grains Regular Missing MULTI GRAIN

Private Label Regular Missing GRANOLA

4See https://hypertextbook.com/facts/2006/LauraFalci.shtml for a collection of these reports.
5Another implicit assumption is that the ratio of consumption between breakfast cereals and �uid milk is the same

acorss households of di�erent sizes. However, it is possible that this is not true. For example, households with children
may consume relatively more �uid milk.
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Table B.2: Milk Products

Brand Flavour Forti�cation Fat Content Type of Milk

GARELICK FARMS WHITE VITAMIN A & D skimmed dairy

GARELICK FARMS WHITE VITAMIN A & D low fat dairy

GARELICK FARMS WHITE VITAMIN D whole fat dairy

GARELICK FARMS TRUMOO CHOCOLATE MISSING low fat dairy

GUIDAS WHITE VITAMIN A & D skimmed dairy

GUIDAS WHITE VITAMIN A & D low fat dairy

GUIDAS WHITE VITAMIN D whole fat dairy

HIGH LAWN FARM WHITE VITAMIN A & D whole fat dairy

HIGH LAWN FARM WHITE VITAMIN A & D skimmed dairy

HIGH LAWN FARM WHITE VITAMIN A & D low fat dairy

HOOD WHITE VITAMIN A C D W CLCM skimmed dairy

HOOD WHITE VITAMIN A C D W CLCM low fat dairy

HOOD WHITE VIT C D CALCIUM whole fat dairy

HOOD LACTAID WHITE VITAMIN A & D low fat dairy

HOOD SIMPLY SMART WHITE VIT A & D W/CALC&PROTN skimmed dairy

PRIVATE LABEL CHOCOLATE MISSING low fat dairy

PRIVATE LABEL WHITE VITAMIN A & D skimmed dairy

PRIVATE LABEL WHITE VITAMIN A & D W/CALC skimmed dairy

PRIVATE LABEL WHITE VITAMIN A & D low fat dairy

PRIVATE LABEL WHITE VITAMIN D whole fat dairy

Table B.3: Average Estimated Own- and Cross-Price Elasticities (Model II): Grain
Type and Fat Content

RTE cereals Milk

uni-grain multi-grain granola skimmed low fat whole fat

RTE cereals, uni-grain -1.512 0.231 0.009 -0.007 -0.017 -0.008

multi-grain 0.318 -1.642 0.010 -0.007 -0.018 -0.009

granola 0.214 0.185 -1.518 -0.009 -0.019 -0.009

Milk, skimmed -0.078 -0.061 -0.005 -0.327 0.056 0.029

low fat -0.079 -0.061 -0.005 0.022 -0.280 0.029

whole fat -0.078 -0.061 -0.005 0.022 0.056 -0.319

Table B.4: Average Estimated Own- and Cross-Price Elasticities (Model
II): Flavours

RTE cereals Milk

un�avoured �avoured un�avoured chocolate

RTE cereals, un�avoured -1.504 0.179 -0.036 -0.0003

�avoured 0.137 -1.425 -0.028 -0.001

Milk, un�avoured -0.071 -0.072 -0.235 0.002

chocolate -0.036 -0.185 0.096 -0.366
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B.9 Identi�cation of Product-Level Market Share Functions Using

Other IVs.

In this Appendix, I develop similar identi�cation arguments with other types of IVs. I will focus on
BLP-type instruments and exogenous product characteristics.

BLP-type instruments Cost shifters are not always available to the econometrician. Moreover,
the validity of Hausman-type instruments requires independence of demand shocks across markets
of the same region or of the same time period. This can be violated whenever there is unobserved
correlated demand shock across markets, such as national advertisement. In demand models of single
products, Berry et al. (1995) proposed to use characteristics (and their functions) of other products in
the same market as instruments. Their validity follows from the intuition that products with similar
characteristics are closer substitutes. Then, �distance� in the space of product characteristics will be a
good proxy of substitution among products.

Because such variables for product j, denoted as xt,−j , are excluded from indirect utility of j,
then, they can provide useful variation in price ptj via the markup of product j that identi�es (Γ, F ).
Formally, in (B.2), for the equation of product j, one can �x xtj = xj and let xt,−j = (xtr)r 6=j varies
in RJ−1.

It is worth noting that, di�erent from cost shifters, BLP instruments may not always be able
to provide useful variation even though they vary exogenously. For example, if prices ptj 's are not
responsive to xt,−j , then there is no variation in ptj due to the variation of xt,−j . The unresponsiveness
of prices with respect to BLP instruments can occur in a large-market setting when the number of
products increases to in�nity and therefore the competition between two products becomes very weak.6

Asymptotically, product prices are no more functions of characteristics of other products, but only of
their own characteristics. Then, BLP instruments (say, xtj for product di�erent from j) does not enter
pricing functions of any other product (pt,−j) and hence do not produce any exogenous variation in
prices. In this paper, because I focus on many-market settings and the number of products is �xed
(see Assumption 6(iii)), BLP instruments are still valid for the identi�cation of the price coe�cient,
demand synergy parameters, and the distribution of the random coe�cients.

B.9.1 Exogenous product characteristics

I focus on xtjk, the kth element in vector xtj , as example and treat other product characteristics xtJ,−k
as �xed. Suppose that prices are generated from a linear pricing simultaneous Bertrand game under
complete information with constant marginal cost ctj for j ∈ J. I abstract from cost shifters in ctj and
denote the joint density function of (ξtJ, ctJ) by fξ,c. In this section, I assume the following regularity
condition:

Condition 4. For any (Γ′, F ′) and any xk ∈ Dxk , there exists Mz > 0, such that

E
[∣∣∣s−1

j. (stJ.;x
(2)
tJ , ptJ,Γ, F )

∣∣∣ ∣∣∣ztJ = z
]
,E[|ptJ|

∣∣ztJ = z] ≤Mz,

6Assuming that the distribution of random coe�cients is priorly identi�ed, Armstrong (2016b) provides conditions
under which BLP instruments are weak for prices and therefore invalid for the identi�cation of price coe�cient. Intuitively,
because prices and BLP instruments are correlated via markups, in his large-market setting, when the number of products
increases fast enough, markups converge to constants fast enough that this correlation disappears.
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E

[∣∣∣∣∣∂s−1
J. (stJ.;x

(2)
tJ ,Γ

′, F ′)

∂stJ.

∂sJ.(δtJ;x
(2)
tJ ,Γ, F )

∂δtJ

∂pJ
∂ctJ

(0, t;x
(2)
tJ )

∣∣∣∣∣ ∣∣∣ztJ = z

]
≤Mz,

E
[∣∣∣∣ ∂pJ∂ctJ

(0, t;x
(2)
tJ )

∣∣∣∣ ∣∣∣ztJ = z

]
≤Mz.

I propose the following identi�cation result:

Theorem 17. Suppose that Assumptions 6-8 and regularity condition 4 hold. If the following conditions

hold:

1. ztJ is independent of (ξtJ, wtJ) and z ∈ RJ .

2. αi = α 6= 0, βik = βk.

3. Given x(2), ptJ = pJ(βx+ η + ξtJ, ctJ;x(2)) is a C1 function of (βx+ η + ξtJ, ctJ).

4. The following condition holds:

(i). For any (Γ′, F ′) 6= (Γ, F ), there exists δ′J 6= δ′′J such that sJ(δ′J;x
(2)
tJ ,Γ, F ) = sJ(δ′J;x

(2)
tJ ,Γ

′, F ′)

and sJ(δ′′J;x
(2)
tJ ,Γ, F ) = sJ(δ′′J;x

(2)
tJ ,Γ

′, F ′).

(ii). For such feasible δ′J and δ′′J in Condition (i), there exist a pair (δ′J, δ
′′
J) such that δ′J− δ′′J and

t′ − t′′ are not collinear, where t′ and t′′ are de�ned as −αpJ(0, tr) = δrJ for tr = t′, t′′.

� If (ξ, c) is Gaussian distributed, then (α, βk) and sJ.(·;x
(2)
tJ ,Γ, F ) are identi�ed.

� Suppose that the data generating process is a model of multiple choice of products across categories

(see section 2.2.2). Then, under regularity condition 5, (α, βk) is identi�ed and sJ.(·;x
(2)
tJ ,Γ, F )

is identi�ed.

Remark 11. Once α, βk, and sJ.(·;x
(2)
tJ ,Γ, F ) are identi�ed for any x

(2)
tJ , by combining the demand

inverse in Theorem 7, we can recover δtJ. Then, identi�cation of β−k and η follows from standard

linear IV arguments.

As the proof of Theorem 8, the proof is proceeded in three steps.

Conditional Moment Restrictions and Convolution Equation. Di�erently from cost-type in-
struments, xtjk is not excluded from demand equation. Consequently, function G de�ned in (B.3) also
directly depends on xtJ and hence (B.3) is no more a convolution equation. To solve this problem,
instead of using G in (B.3), I use its derivative with respect to xtJ.

Fixing a reference point xtJ = (xj)j∈J and varying xtJk with ∆k = (∆jk)j=J, we obtain:

E[s−1
j. (stJ.;x

(2)
tJ , ptJ,Γ, F )|xtJk = xk + ∆k]− E[s−1

j. (stJ.;x
(2)
tJ , ptJ,Γ, F )|xtJk = xk]

= −α(E[ptj |xtJk = xk + ∆k]− E[ptj |xtJk = xk]) + βk∆jk,
(B.23)

where βk is the coe�cient for xtjk. Given a ∆k, (B.23) de�ned a moment restriction of (α, βk,Γ, F ).

Theorem 18. Suppose that Assumptions 6-8, regularity condition 4 hold. Suppose the following con-

ditions hold:
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1. xtJk is independent of (ξtJ, ctJ), and the domain of xtJk, Dxk , is an open set in RJ .

2. αi = α 6= 0, βik = βk.

3. Given x
(2)
tJ , ptJ = pJ(βx+ η + ξtJ, c

′
tJ;x

(2)
tJ ) is a C1 function of (βx+ η + ξtJ, c

′
tJ).

Then, for any xk ∈ Dxk , (α′, β′k,Γ
′, F ′) satis�es moment conditions (B.23) if and only if the following

equation ∫
H(t;α′, β′k,Γ

′, F ′)ΛH(t+
βk
α
xk; fξ,c)dt = 0, (B.24)

holds, where

H(t;α′, β′k,Γ
′, F ′)

=

([
∂s−1

J. (stJ.(−αpJ(0, t);x
(2)
tJ ,Γ, F );x

(2)
tJ ,Γ

′, F ′)

∂stJ.

][
∂sJ.(−αpJ(0, t);x

(2)
tJ ,Γ, F )

∂δtJ

]
− α′

α
I

)
∂pJ
∂ctJ

(0, t) +

(
α′

α
−
β′k
βk

)
I,

and

ΛH(λ; fξ,c) =

∫
αfξ,c(−α(λ+

β−kxtJ,−k + η

α
− c), c)dc.

Proof. Since x−k is �xed, I drop this notation in this proof and also the dependence of pJ(·) and
sJ.(·; Γ′, F ′) on x(2)

tJ . For ∆k ∈ RJ , by using Lemma 7, we obtain:

E[ptJ|xtJk = xk + ∆k] =

∫
pJ(β−kxtJ,−k + η + ξtJ + βk(xtJk + ∆k), ctJ)f(ξtJ, ctJ)d(ξtJ, ctJ)

=

∫ [
pJ(0, ctJ −

β−kxtJ,−k + η + ξtJ + βk(xtJk + ∆k)

α
) +

β−kxtJ,−k + η + ξtJ + βk(xtJk + ∆k)

α

]
f(ξtJ, ctJ)d(ξtJ, ctJ)

=

∫
pJ(0, ctJ −

β−kxtJ,−k + η + ξtJ + βk(xtJk + ∆k)

α
)f(ξtJ, ctJ)d(ξtJ, ctJ) +

E[β−kxtJ,−k + η + ξtJ]

α
+
βk
α

(xtJk + ∆k)

Then,

E[ptJ|xtJk = xk + ∆k]− E[ptJ|xtJk = xk]

=

∫ [
pJ(0, ctJ −

β−kxtJ,−k + η + ξtJ + βk(xtJk + ∆k)

α
)− pJ(0, ctJ −

β−kxtJ,−k + η + ξtJ + βkxtJk
α

)

]
f(ξtJ, ctJ)d(ξtJ, ctJ) +

βk
α

∆k.

As ∆k → 0, under regularity condition 4, we obtain:

∂E[ptJ|xtJk = xk]

∂xtJk
= −

∫
∂pJ
∂ctJ

(0, ctJ −
β−kxtJ,−k + η + ξtJ + βkxtJk

α
)
βk
α
f(ξtJ, ctJ)d(ξtJ, ctJ) +

βk
α

= −α
∫

∂pJ
∂ctJ

(0, λ)
βk
α
f(−α(λ+

βk
α
xtJk +

β−kxtJ,−k + η

α
− ctJ), ctJ)d(λ, ctJ) +

βk
α

= −βk
α

∫
∂pJ
∂ctJ

(0, λ)ΛH(λ+
βk
α
xtJk; f)dλ+

βk
α
,

where ΛH(·) is de�ned in Theorem 18. Similarly, we compute

E[s−1
J. (stJ.; Γ′, F ′)|xtJk = xk + ∆k]

=

∫
s−1
J. (sJ.(−αpJ(0, ctJ −

β−kxtJ,−k + η + ξtJ + βk(xtJk + ∆k)

α
); Γ, F ); Γ′, F ′)f(ξtJ, ctJ)d(ξtJ, ctJ)
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Then, as ∆k → 0,

∂E[s−1
j. (stJ.; Γ′, F ′)|ztJ = z]

∂xtJk

= βk

∫ [
∂s−1

J. (sJ.(−αpJ(0, λ); Γ, F ); Γ′, F ′)

∂stJ.

] [
∂sJ.(−αpJ(0, λ); Γ, F )

∂δtJ

]
∂pJ
∂ctJ

(0, λ)ΛH(λ+
βk
α
xtJk; f)dλ.

Because moment conditions (B.23) holds for all xk ∈ Dxk and Dxk is an open set, we obtain that:

∂E[s−1
j. (stJ.; Γ′, F ′)|xtJk = xk]

∂xtJk
= −α′∂E[ptJ|xtJk = xk]

∂xtJk
+ β′kI

⇐⇒
∫ ([

∂s−1
J. (sJ.(−αpJ(0, λ); Γ, F ); Γ′, F ′)

∂stJ.

∂sJ.(−αpJ(0, λ); Γ, F )

∂δtJ
− α′

α
I

]
∂pJ
∂ctJ

(0, λ) +

(
α′

α
−
β′k
βk

)
I

)
ΛH(λ+

βk
α
xtJk; f)dλ = 0,

for xk ∈ Dxk . The proof of the su�ciency is completed. One can reverse the arguments of the
su�ciency to obtain the necessity part.

Unique Solution for the Convolution Equation (B.24) and Identi�cation of Product-Level

Market Share Functions. De�ne

Θ = {(α′, β′k,Γ′, F ′) : (B.23) hold at (α′, β′k,Γ
′, F ′) for xk ∈ Dxk},

and
ΘH = {(α′, β′k,Γ′, F ′) : (B.24) holds for xk ∈ Dxk}

Theorem 18 establishes Θ = ΘH . De�ne Θ0
H = {(α′, β′k,Γ′, F ′) : H(·;α′, β′k,Γ′, F ′) = 0}. Note that

the true parameters (α, βk,Γ, F ) ∈ Θ0
H ⊂ ΘH = Θ. Then, a necessary condition for the identi�cation

of (α, βk,Γ, F ) by moment conditions (B.23), i.e. Θ = {(α, βk,Γ, F )}, is Θ0
H = ΘH , i.e. H = 0 is

the unique solution for convolution equation (B.24). This is the completeness of the location families
generated by ΛH(·; fξ,w). Similar to Theorem 15, the next theorem characterizes the implications of
this completeness:

Theorem 19. Suppose that conditions of Theorem 18 hold.

1. If Θ = {(α, βk,Γ, F )}, then Θ0
H = ΘH .

2. Suppose the following conditions hold:

(i). For any (Γ′, F ′) 6= (Γ, F ), there exists δ′J 6= δ′′J such that sJ(δ′J;x
(2)
tJ ,Γ, F ) = sJ(δ′J;x

(2)
tJ ,Γ

′, F ′)

and sJ(δ′′J;x
(2)
tJ ,Γ, F ) = sJ(δ′′J;x

(2)
tJ ,Γ

′, F ′).

(ii). For such feasible δ′J and δ′′J in Condition (i), there exist a pair (δ′J, δ
′′
J) such that δ′J− δ′′J and

t′ − t′′ are not collinear, where t′ and t′′ are de�ned as −αpJ(0, tr) = δrJ for tr = t′, t′′.

If Θ0
H = ΘH , then α, βk, and sJ.(·;x

(2)
tJ ,Γ, F ) are identi�ed.

Remark 12. While Condition (i) of Theorem 19 is the same as that in the second statement of

Theorem 15, Condition (ii) further requires non-collinearity between δ′J−δ′′J and t′− t′′, where t′ and t′′

satisfy −αpJ(0, tr) = δrJ, t
r = t′, t′′. Typically, pJ(·) is highly nonlinear and this additional requirement

is satis�ed.
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Proof. For the �rst statement, if Θ = {(α, βk,Γ, F )}, then Θ0
H = ΘH = {(α, βk,Γ, F )}.

For the second statement, note that if H(·;α′, β′k,Γ′, F ′) = 0, then there exists a constant vector v
such that

sJ.(−αptJ(0, t); Γ, F ) = sJ.

(
−α′ptJ(0, t) + (α′ −

β′k
βk
α)t+ v; Γ′, F ′

)
, (B.25)

for any t ∈ RJ . Similar to the arguments in the proof of Theorem 15, (B.25) holds for all p′tJ ∈ RJ :

sJ.(−αp′tJ; Γ, F ) = sJ.

(
−α′p′tJ + (α′ −

β′k
βk
α)t+ v; Γ′, F ′

)
, (B.26)

According to Condition (i) of Theorem 19, given (Γ′, F ′), there exist at least two δ′J 6= δ′′J such that
sJ.(δ

′
J; Γ, F ) = sJ.(δ

′
J; Γ′, F ′) and sJ.(δ′′J; Γ, F ) = sJ.(δ

′′
J; Γ′, F ′). Then, combining these with (B.26), we

obtain:

sJ.(δ
′
J; Γ, F ) = sJ.(

α′

α
δ′J + (α′ −

β′k
βk
α)t′ + v; Γ′, F ′) = sJ.(δ

′
J; Γ′, F ′),

sJ.(δ
′′
J; Γ, F ) = sJ.(

α′

α
δ′′J + (α′ −

β′k
βk
α)t′′ + v; Γ′, F ′) = sJ.(δ

′′
J; Γ′, F ′).

Because sJ.(·; Γ′, F ′) is bijective, we obtain that

α′

α
δ′J + (α′ −

β′k
βk
α)t′ + v = δ′J,

α′

α
δ′′J + (α′ −

β′k
βk
α)t′′ + v = δ′′J.

Then, (α
′

α − 1)(δ′J − δ′′J) + (α′ − β′k
βk
α)(t′ − t′′) = 0. Due to the non-collinearity of Condition (ii) in

Theorem 19, we can �nd (δ′J, δ
′′
J) such that δ′J− δ′′J and t′− t′′ are not collinear. Consequently, for such

a pair, we must have α = α′ and βk = β′k. Then, v = 0 and the identi�cation of the product-level
market share functions follows from (B.26), v = 0, α = α′, and βk = β′.

Su�cient Conditions for the Completeness of Location Families. In general, depending on
regularities of H(·) (bounded, polynomially bounded, integrable with respect to ΛH(·), etc.), the
completeness of location families can be achieved with di�erent su�cient conditions on ΛH(·) (and
hence on fξ,w) and large-support condition Dxk = RJ . The following theorem establishes two sets of
su�cient conditions for H(·) = 0 being the unique solution to (B.24):

Theorem 20. Suppose that (B.24) holds for xk ∈ RJ .

� If fξ,c is Gaussian, then Θ0
H = ΘH .

� Suppose that the data generating process is a model of multiple choice of products across K

categories (see section 2.2.2). Then, under regularity condition 5, Θ0
H = ΘH .

Proof. The proof of the �rst statement is the same as the �rst statement of Theorem 16. For the second
statement, note that H de�ned in equation (B.24) only depends on functional pJ(0, t).7 Therefore,
(B.24) de�nes a convolution equation. In this proof, I assume the following regularity conditions:

7Note that ∂pJ
∂ctJ

(0, t) can be written as
[
∂c
∂ptJ

(0, pJ(0, t))
]−1

.
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Condition 5.

(i). The characteristics function of ΛH do not vanish on RJ .

(ii).
∣∣∣ ∂pJ∂ctJ

(0, t)
∣∣∣ ∈ L∞(RJ).

(iii). Suppose that (Γ, F ) is such that for each category k = 1, ...,K, there exists lk > 0 such that∣∣∣∣∣
∫

(1−
∑

j∈Jk sij.)
∏
j∈Jk sij.dF (θi)

(1−
∑

j∈Jk sj.)
∏
j∈Jk sj.

∣∣∣∣∣ ≥ lk
uniformly for δJ ∈ RJ .

As argued by D'Haultfoeuille (2011), Condition 5(i), i.e, zero-freeness, is an usual assumption in
deconvolution problem and many commonly used distributions satisfy this condition. Moreover, classic
results on bounded completeness show that the location families generated by ΛH(·; fξ,w) is bounded
complete if and only if this condition holds (see Theorem 2.1 of Mattner (1993) and Ghosh et al.
(1966)). Consequently, under this zero-freeness condition, as long as H(·) ∈ L∞(RJ) and (B.24) holds
for xk ∈ RJ , we obtain H(·) = 0 and the proof will be completed.

To prove that H is bounded, i.e. H(·) ∈ L∞(RJ), I require Condition 5(ii). Condition 5(iii)
restricts the family of (Γ, F ). This family includes many distributions with compact support (e.g., F is
degenerated). In what follows, given Conditions 5(i)-(iii), I prove H(·) ∈ L∞(RJ). It su�ces to prove
the following lemma:

Lemma 10.
∂s−1

J. (sJ.(δtJ;x
(2)
tJ ,Γ, F );x

(2)
tJ ,Γ

′, F ′)

∂stJ.

∂sJ.(δtJ;x
(2)
tJ ,Γ, F )

∂δtJ
∈ L∞(RJ).

Proof. Since x(2)
tJ is �xed, I drop this notation in the proof. For product category k, denote the market

share of the outside option in category k by sk0 = 1 −
∑

j∈Jk sj.. The key of the proof relies on the
following �pseudo� demand inverse de�ned in each category k: for j ∈ Jk,

s̃−1
kj.(sJk.) = ln

sj.

sk0
,

s̃−1(sJ1., ..., sJK .) =

(
ln

sJ1.

s1
0

, ..., ln
sJK .

sK0

)
.

and

s̃(δJ1 , ..., δJK ) =

(
eδJ1

1 +
∑

j∈J1
eδj

, ...,
eδJK

1 +
∑

j∈JK e
δj

)
.

Note that

∂s−1
J. (sJ.(δtJ; Γ, F ); Γ′, F ′)

∂stJ.

∂sJ.(δtJ; Γ, F )

∂δtJ
=

[
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δ
′
tJ; Γ′, F ′)

∂δtJ

]−1 [
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δtJ; Γ, F )

∂δtJ

]
,

where δ′tJ = s−1
J. (sJ.(δtJ; Γ, F ); Γ′, F ′). In what follows, I show that both

[
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δtJ;Γ,F )
∂δtJ

]
and[

∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δ
′
tJ;Γ′,F ′)
∂δtJ

]−1

are uniformly bounded for δtJ ∈ RJ .
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First,
∂s̃−1(sJJ .)

∂sJJ .
is block-wise diagonal:

∂s̃−1(sJJ .)

∂sJJ .
= Diag(D1, ..., DK), where Dk = Diag( 1

sj.
)j∈Jk +

1
sk0

(1, ..., 1)T(1, ..., 1). Consequently,
[
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δtJ;Γ,F )
∂δtJ

]
(and

[
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δ
′
tJ;Γ′,F ′)
∂δtJ

]
) is block-wise

diagonal: [
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δtJ; Γ, F )

∂δtJ

]
= Diag(E1, ..., EK),

where Ek = Dk

∫
(Diag(sij.)j∈Jk−(sij.)

T
j∈Jk(sij.)j∈Jk)dF (θi). Then, it su�ces to prove that each block

Ek is uniformly bounded to prove
[
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δtJ;Γ,F )
∂δtJ

]
is uniformly bounded. I will also prove that

the inverse of Ek is uniformly bounded and the bound does not depend on (Γ, F ). As a consequence,[
∂s̃−1(sJJ .)

∂sJJ .

∂sJ.(δ
′
tJ;Γ′,F ′)
∂δtJ

]−1

is also uniformly bounded.

For diagonal elements in ejjk in Ek, take j = 1 in category k as example:

e11
k =

1

s1.

(
s1. −

∫
s2
i1.dF

)
+

1

sk0

s1. −
∫
si1.

∑
j∈Jk

sij.

 dF


= 1− 1

s1.

∫
s2
i1.dF +

s1. −
∫

(si1.(1− ski0)dF )

sk0

= 1− 1

s1.

∫
s2
i1.dF +

∫
si1.s

k
i0dF

sk0
.

It is bounded by 2, with the sum of �rst two terms bounded by 1 and the last term by 1. Similarly,
for o�-diagonal elements ejrk in Ek, without loss of generality, take j = 1, r = 2. Then, I obtain

e12
k = −

∫
si1.si2.dF

s1.
−

∫
si2.s

k
i0.dF

sk0
. It is also bounded by 2. Therefore, Ek is uniformly bounded.

I now prove that the inverse of Ek is also uniformly bounded. I make use of the adjugate form
of matrix inverse E−1

k = 1
Det(Ek)adj(Ek), where adj(Ek) is the ajudgate matrix of Ek. Because Ek is

uniformly bounded, then adj(Ek) is also uniformly bounded. Then, it su�ces to show that 1
Det(Ek) is

uniformly bounded away from zero. Recall that Ek = Dk

∫
(Diag(sij.)j∈Jk−(sij.)

T
j∈Jk(sij.)j∈Jk)dF (θi).

Then,

Det(Ek) = Det(Dk)Det

(∫
(Diag(sij.)j∈Jk − (sij.)

T
j∈Jk(sij.)j∈Jk)dF (θi)

)
.

Moreover, by Sylvester's determinant theorem, I obtain

Det(Dk) =
1∏

j∈Jk sj.
Det

(
IJk×Jk + (

s1.

sk0
, ...,

sJk.

sk0
)T(1, ..., 1)

)
=

1∏
j∈Jk sj.

Det

(
1 + (1, ..., 1)(

s1.

sk0
, ...,

sJk.

sk0
)T
)

=
1

sk0
∏
j∈Jk sj.

.

For the determinant of
∫

(Diag(sij.)j∈Jk − (sij.)
T
j∈Jk(sij.)j∈Jk)dF (θi), note that every square matrix

inside the integral is positive-de�nite. Then, due to the super-additivity of determinant for positive-
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de�nite matrices and Sylvester's determinant theorem:

Det

(∫
(Diag(sij.)j∈Jk − (sij.)

T
j∈Jk(sij.)j∈Jk)dF (θi)

)
≥
∫

Det
(
(Diag(sij.)j∈Jk − (sij.)

T
j∈Jk(sij.)j∈Jk)

)
dF (θi)

=

∫
ski0
∏
j∈Jk

sij.dF (θi).

Finally, combining the formula of Det(Dk) and Condition 5(iii), I obtain:

Det(Ek) ≥
∫
ski0
∏
j∈Jk sij.dF (θi)

sk0
∏
j∈Jk sj.

≥ lk.

This implies that each element of E−1
k is bounded and the bound is independent of (Γ, F ). The proof

is completed.

Combining Theorems 18-20, I obtain Theorem 17.

B.10 Complementary Approach of Identi�cation

In this appendix, I provide a complementary identi�cation argument that applies to cost shifters,
BLP instruments and exogenous product characteristics. Let wtJ = (xtj , ztj)j∈J = (wtj)j∈J ∈ W ⊆
R(K+L)×J denote the collection of exogenous product characteristics xtj and additional instruments
ztj , where W denotes the support of wtJ, K is the dimension of xtj , and L is the dimension of ztj .
Moment conditions (B.2) can then be written as:

E[s−1
j. (stJ.;x

(2)
tJ , ptJ,Γ, F )|wtJ = w] = xjβ − αE[ptj |wtJ = w] + ηj ,

for j ∈ J and for any w ∈ W. De�ne w0 = ({xTj0, zTj0})Tj=1,...,J ∈ W as a reference point. For any
w ∈W, we have:

E[s−1
j. (stJ.;x

(2)
tJ , ptJ,Γ, F )|wtJ = w]− E[s−1

j. (stJ.;x
(2)
tJ , ptJ,Γ, F )|wtJ = w0]

= (xj − xj0)β − α (E[ptj |wtJ = w]− E[ptj |wtJ = w0]) .

= (βT,−α)

(
xj − xj0

E[ptj |wtJ = w]− E[ptj |wtJ = w0]

)

and then:

(−1, βT,−α)

E[s−1
j. (stJ.;x

(2)
tJ , ptJ,Γ, F )|wtJ = w]− E[s−1

j. (stJ.;x
(2)
tJ , ptJ,Γ, F )|wtJ = w0]

xj − xj0
E[ptj |wtJ = w]− E[ptj |wtJ = w0]

 = 0

(B.27)
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Equation (B.27) provides a necessary condition for the identi�cation of (Γ, F ): there exists some β
and α, such that for any w ∈W, (Γ, F ) satis�es (B.27). More in general, de�ne

A(Γ, F ;w) =

E[s−1
j. (stJ.;x

(2)
tJ , ptJ,Γ, F )|wtJ = w]− E[s−1

j. (stJ.;x
(2)
tJ , ptJ,Γ, F )|wtJ = w0]

xj − xj0
E[ptj |wtJ = w]− E[ptj |wtJ = w0]


j∈J

∈ R(K+2)×J ,

and
A(Γ, F ;W′) = (A(Γ, F ;w))w∈W′ ∈ R(K+2)×(J |W′|), (B.28)

for a �nite subset W′ of W. Then, the true parameters (Γ, F ) satisfy that the minimal eigenvalue of
the symmetric semi-positive de�nite matrix A(Γ, F ;W′)A(Γ, F ;W′)T ∈ R(K+2)×(K+2) is zero for any
�nite subset W′ of W. Let λmin[P ] denote the minimal eigenvalue of square matrix P . The following
Lemma illustrates more variations in w help identi�cation of (Γ, F ):

Lemma 11. λmin[A(Γ′, F ′;W2)A(Γ′, F ′;W2)T] ≥ λmin[A(Γ′, F ′;W1)A(Γ′, F ′;W1)T], for any (Γ′, F ′)

and W1 ⊆W2.

Proof. Note that A(Γ′, F ′;W2) = [A(Γ′, F ′;W1), A(Γ′, F ′;W2 \W1)]. Then,

A(Γ′, F ′;W2)A(Γ′, F ′;W2)T = A(Γ′, F ′;W1)A(Γ′, F ′;W1)T

+A(Γ′, F ′;W2 \W1)A(Γ′, F ′;W2 \W1)T.

Because A(Γ′, F ′;W2 \W1)A(Γ′, F ′;W2 \W1)T is semi-positive de�nite, then for the unit eigenvector
v ∈ RJ×1 that corresponds to the minimal eigenvalue of A(Γ′, F ′;W2)A(Γ′, F ′;W2)T, I obtain:

λmin[A(Γ′, F ′;W2)A(Γ′, F ′;W2)T] = vTA(Γ′, F ′;W2)A(Γ′, F ′;W2)Tv

≥ vTA(Γ′, F ′;W2)A(Γ′, F ′;W2)Tv

≥ λmin[A(Γ′, F ′;W1)A(Γ′, F ′;W1)T].

The next theorem gives a su�cient condition for the identi�cation of (Γ, F ):

Theorem 21. If for any (Γ′, F ′) 6= (Γ, F ), there exists a set W′ such that

λmin[A(Γ′, F ′;W′)A(Γ′, F ′;W′)T] > 0.

Then (Γ, F ) is identi�ed.

Lemma 11 illustrates the intuition that more variations in instruments help identi�cation. Then, the
su�cient condition in Theorem 21 requires useful variations in wtJ that can distinguish (Γ′, F ′) 6= (Γ, F )

from (Γ, F ) by shifting the minimal eigenvalue of A(Γ′, F ′;W′)A(Γ′, F ′;W′)T up to positive. This
identi�cation argument is not constructive. However, it does not require additional restrictions on the
support of wtJ.
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Appendix to Chapter 3

C.1 A Micro-foundation of Assumption 1

In this section, we provide a set of assumptions that can rationalize Assumption 1. Suppose that
consumers arrive randomly and the arrival process for destination d, AdT (.), follows a non-homogeneous
Poisson process:

lim
h→0

P (AdT (t+ h)−AdT (t) = 1)

h
= λdT (t),

where λdT (t) is train-time-destination speci�c arrival rate.

Assumption 5. (Consumers' arrival) λdT (t) = ξd νT (t) for (d, t) ∈ {a, b}× [0, 1]. Given νT (.), AaT (.)

and AbT (.) are independent. Also, ξa = 1.

Assumption 5 states that the temporal pro�le of consumers' arrival (namely, νT (.)) is the same for
both destinations. his assumption, combined with our restriction on consumers' valuation, generates
the stochastic consumers' demand in Assumption 1. Next, we impose the following condition on
consumers' valuations. Hereafter, we let x ∧ y denotes the minimum between x and y.

Assumption 6. (Consumers' valuation) The valuation Vt of a random consumer arriving at t ∈ [0, 1]

and intending to buy a ticket for d ∈ {a, b} satis�es

P (Vt ≥ v) = 1 ∧
(

v

vT (t)

)−ε
,

for some ε > 0. Moreover, for all t ∈ [0, 1] and all trains, vT (t) ≤ pd1T . Finally, the valuation of a

given consumer are constant or decreasing over time.

Hence, valuations are supposed to be distributed according to a Pareto distribution, with parame-
ters ε and vT (t).

The �nal restriction in Assumption 6 is that consumers' valuation are weakly decreasing over time.
Under this assumption, a consumer arriving at date t decides immediately either to buy the ticket
or to leave forever. He will have no incentive to wait, since prices are increasing and his valuation is
weakly decreasing over time.1

Given the assumptions above, the demand DdT (t, t′; pd) for destination d ∈ {a, b} between t ≥ 0

and t′ ∈ [t, 1] and served by train T satis�es

DdT (t, t′; pd) ∼ P
(
BT (t, t′)ξd p

−ε
d

)
,

1In this sense, this di�ers from that of Li et al. (2014), where prices may decrease over time, and therefore consumers
have incentive to delay their purchases.
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where BT (t, t′) =
∫ t′
t vT (u)ενT (u)du. Given BT (t, t′), the independence of DdT (t, t′; pd) across d comes

from the independence between AaT (.) and AbT and the independent decision making of consumers
arriving for destinations a and b.

C.2 Proof of Theorem 11

First, suppose that (3.2) holds for the stopping times satisfying Assumption 3. Because we can identify
the conditional distribution of nbkT , we identify the function (pa, pb) 7→ Λ(ln(ξb) − ε ln(pb/pa)) is
identi�ed on the set D = ∪12

k=1Supp(pakT , pakT ). By monotonicity of Λ(·), we then recover ln(ξb) −
ε ln(pb/pa) for (pa, pb) ∈ D. Because the ratio ln(pb/pa) is not constant on D, we separately identify
ln(ξb) and ε.

We now prove (3.2). First, note that because the realization of τk is determined by the Poisson
process before τk and is independent of DdT (τk, τk+1, ; pdkT ) for d ∈ {a, b}, it su�ces to show (3.2)
if τk is replaced by any �xed number that we suppose equal to 0 without loss of generality. To ease
the exposition, we often omit the index T hereafter and de�ne λd = ξdp

−ε
dk , ρ = λa/(λa + λb) and

bt = ∂BT (0, t)/∂t. We also introduce Dd,τn = DdT (0, τn; pdkT ) for d ∈ {a, b}, Dτn = Da,τn +Db,τn and
τn = inf{t > 0 : Dt ≥ n} ∧ 1. We will show that for all n ≥ 1,

Da,τn |Dτn , BT (., .) ∼ Binomial (Dτn , ρ) . (C.1)

Given the previous discussion and because the right-hand side of (C.1) does not depend on BT (., .),
(3.2) will follow from (C.1).

To prove (C.1), we introduce, for any n ≥ 1, the hitting times σn = inf{t ∈ [0, 1] : Dt ≥ n}, with
σn = 2 if D1 < n. Let us also �x t ∈ (0, 1) and let us partition the interval I = [t, 1] into m intervals
I1, ..., Im of equal length ∆t = (1− t)/m. Finally, for all c ≤ n, let

pc,n;k = Pr[Da,σn = c|Dσn = n, σn ∈ Ik]. (C.2)

By Lemma 12, there exists (cl, cr), independent of k and m, such that for all k = 1, ...,m,

−cl(1 + n)∆t ≤ pc,n;k −
(
n

c

)
ρc(1− ρ)n−c ≤ cr∆t.

Moreover, we have

Pr[Da,σn = c|Dσn = n, σn ∈ I] =

∑m
k=1 Pr[Da,σn = c,Dσn = n, σn ∈ Ik]∑m

k=1 Pr[Dσn = n, σn ∈ Ik]

∈
[

min
k=1,...,m

pc,n;k, max
k=1,...,m

pc,n;k

]
.

Consequently,

−cl(1 + n)∆t ≤ Pr[Da,σn = c|Dσn = n, σn ∈ I]−
(
n

c

)
ρc(1− ρ)n−c ≤ cr∆t.
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By letting m→∞ and then let t→ 0, we obtain

Pr[Da,σn = c|Dσn = n, σn ≤ 1] =

(
n

c

)
ρc(1− ρ)n−c. (C.3)

Now, becauseDτn = n if and only if σn ≤ 1, we obtain (C.1) in this case. Further, becauseDτn = n′ < n

if and only if D1 = n′ and σn = 2, we have

Pr[Da,τn = c|Dτn = n′] = Pr[Da,1 = c|D1 = n′, σn = 2]

= Pr[Da,1 = c|D1 = n′]

=

(
n′

c

)
ρc(1− ρ)n

′−c.

Thus, (C.1) also holds when Dτn = n′, n′ < n. The result follows.

C.3 Expressions for the counterfactual revenues

In this appendix, we list the formulas for the counterfactual revenues. The proofs of these formulas
can be found in section C.7 in the Online Appendix. The formulas are given conditional on XT and for
simplicity, we assume here that CT = C, a constant; if not, the results should just be seen conditional
on CT . We both consider arbitrary distributions for BT and the gamma distribution in Assumption 2.
Finally, D(q) denotes a random variable satisfying D(q) ∼ P(q) and gλ,µ is the density of the Γ(λ, µ)

distribution.

C.3.1 Complete information

We display the general formulas; those under Assumption 2 are the same up to a single change, namely

E[B
1
ε
T |XT ] = exp(X ′Tβ0/ε)µ

−1/ε
0 Γ(λ0 + 1/ε)/Γ(λ0).

Uniform pricing Rcu = maxq>0

{
q−

1
εE[D(q) ∧ C]

}
[ξa + ξb]

1
εE[B

1
ε
T |XT ].

Full-dynamic pricing Rcf = αcC,f [ξa + ξb]
1
εE[B

1
ε
T |XT ], where αc0,f = 0 and for all k ≥ 1, αck,f =

(αck,f − αck−1,f )1−ε (1− 1/ε)ε−1.

Stopping-time pricing Rcs = αcC,s[ξa + ξb]
1
εE[B

1
ε
T |XT ], where αc0,s = 0 and for all k ≥ 1,

αck,s = max
q>0

{
q−

1
ε (1− e−q) + αck−1,s

∫ 1

0
qe−sq(1− s)

1
ε ds

}
.
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Stopping-time pricing withM fares RcsM = αcC,sM [ξa + ξb]
1
ε E[B

1
ε
T |XT ], where αcC,sM = maxq>0 αC,M (q),

αk,0(q) = q−
1
εE[D(q) ∧ k] and for all k ∈ {1, .., C},

αk,m(q) = max
{∫ 1

0
qe−qz

[
q−

1
ε + αk−1,m∧(k−1)(q(1− z))(1− z)

1
ε

]
dz,

max
q>0

∫ 1

0
qe−qz

[
q−

1
ε + αk−1,m−1(q(1− z))(1− z)

1
ε

]
dz
}
.

Stopping-time pricing with M increasing fares RcsM = αcC,sM+ [ξa + ξb]
1
ε E[B

1
ε
T |XT ], where

αcC,sM+ = maxq>0 α
+
C,M (q) with α+

k,0(q) = αk,0(q) and

α+
k,m(q) = max

{
q

∫ 1

0
e−qz

[
q−

1
ε + α+

k−1,m∧(k−1)(q(1− z))(1− z)
1
ε

]
dz,

max
q′∈(0,q]

q′
∫ 1

0
e−q

′z
[
q′−

1
ε + α+

k−1,m−1(q′(1− z))(1− z)
1
ε

]
dz.
}
.

C.3.2 Incomplete Information

Uniform pricing Riu = [ξa + ξb]
1
ε maxq>0

{∫
R+ q

− 1
εE[D(qz) ∧ C]f(z)dz

}
.

Full-dynamic pricing Under Assumption 2, Rif = αiC,f (λ0) ((ξa + ξb) exp(XTβ0)/µ0)1/ε, where
αi0,f (λ) = 0 for any λ > 0 and for all k ∈ {1, ..., C},

αik,f (λ) = λ

(
1− 1

ε

)ε−1 [
−αik−1,f (λ+ 1) + (1 +

1

λε
)αik,f (λ)

]1−ε
.

Stopping-time pricing Ris = αiC,s(f)[ξa + ξb]
1
ε , where αi0,s(f) = 0 and for any k ∈ {1, .., C},

αik,s(f) = max
q>0

q

∫ 1

0

[
q−1/ε + (1− u)

1
εαik−1,s(T (f ; qu))

] [∫ ∞
0

ze−quzf(z)dz

]
du

and T (f ; q) is a transformation of density function f de�ned in Lemma 13 below. Under Assumption
2,

Ris = αiC,s(λ0)

(
(ξa + ξb)e

XT β0

µ0

) 1
ε

,

where αi0,s(λ) = 0 for λ > 0, and for all k ∈ {1, ..., C},

αik,s(λ) = max
q>0

q

∫ 1

0

λ

(1 + qs)λ+1

[
q−

1
ε +

(
1− s
1 + qs

) 1
ε

αik−1,s(λ+ 1)

]
ds.
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Stopping-time pricing withM fares RiM,s(M,f) = αisM (f) [ξa + ξb]
1
ε , where αisM (f) = maxq>0 cC,M (q, f)

and for all k, ck,0(q, f) = q−
1
ε

∫
E[D(qz) ∧ k]f(z)dz and

ck,m(q, f) = max
{
q

∫ 1

0

∫
ze−qzuf(z)dz

[
q−1/ε + ck−1,m∧(k−1)(q(1− u), T (f ; qu))

(1− u)
1
ε

]
du, max

q′>0
q′
∫ 1

0

∫
ze−q

′zuf(z)dz
[
q′−1/ε + ck−1,m−1(q′(1− u),

T (f ; q′u))(1− u)
1
ε

]
du
}

for any m ∈ {1, ..., k}, T being the same transform as in the case of stopping-time pricing. Further
under Assumption 2,

RisM (M,λ0, µ0) = αisM (λ0)

[
(ξa + ξb)e

XT β0

µ0

] 1
ε

,

where αisM (λ) = maxq>0 cC,M (q, λ) with, for all k, ck,0(q, λ) = q−
1
ε

∫
E[D(qz) ∧ k]gλ,1(z)dz and for all

k ∈ {1, ..., C} and all m ∈ {1, ..., k},

ck,m(q, λ) = max

{
q

∫ 1

0

λ

(1 + qu)λ+1

[
q−

1
ε + ck−1,m∧(k−1)

(
q(1− u)

1 + qu
, λ+ 1

)(
1− u
1 + qu

) 1
ε

]
du,

max
q′>0

q′
∫ 1

0

λ

(1 + q′u)λ+1

[
q′−

1
ε + ck−1,m−1

(
q′(1− u)

1 + q′u
, λ+ 1

)(
1− u

1 + q′u

) 1
ε

]
du

}
.

Stopping-time pricing with M increasing fares RisM+(M,f) = αisM+(C) [ξa + ξb]
1
ε , where

αiC,sM+ = maxq>0 c
+
C,M (q, f) with, for any k ∈ {0, ..., C}, c+

k,0(q, f) = ck,0(q, f) and for any m ≥ 1,

c+
k,m(q, f) = max

{
q

∫ 1

0

∫
ze−qzuf(z)dz

[
q−1/ε + c+

k−1,m∧(k−1)(q(1− u), T (f ; qu))

(1− u)
1
ε

]
du, max

q′∈(0,q]
q′
∫ 1

0

∫
ze−q

′zuf(z)dz
[
q′−1/ε + c+

k−1,m−1(q′(1− u),

T (f ; q′u))(1− u)
1
ε

]
du
}

Under Assumption 2, we have

RisM+(M,λ0, µ0) = αisM+(λ0)

[
(ξa + ξb)e

XT β0

µ0

] 1
ε

,

where αisM+(λ) = maxq>0 c
+
C,M (q, λ) with c+

k,m(q, λ) = c+
k,m(q, gλ,1) as de�ned above. Further, we have

the following simpli�cations:

c+k,m(q, λ) = max

{
q

∫ 1

0

λ

(1 + qu)λ+1

[
q−

1
ε + c+k−1,m∧(k−1)

(
q(1− u)

1 + qu
, λ+ 1

)(
1− u
1 + qu

) 1
ε

]
du,

max
q′∈(0,q]

q′
∫ 1

0

λ

(1 + q′u)λ+1

[
q′−

1
ε + c+k−1,m−1

(
q′(1− u)

1 + q′u
, λ+ 1

)(
1− u

1 + q′u

) 1
ε

]
du

}
.
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C.4 Demand Estimation with Aggregated Data

The di�erence between our results and those from studies relying on aggregated data comes precisely
from the fact that we dispose of micro-level data. The approach based on aggregate data is likely to to
bias upwards the price-elasticity estimates. Average prices are endogenous, since the weights associated
to each price or, equivalently, to each fare class, is fully driven by the demand. Basically, trains in
high demand are likely to have a few number of seats available at a low price, resulting in a higher
average price. To illustrate this point, we aggregate our micro data and estimate the corresponding
price elasticities. For instance, we propose to aggregate data over fare classes at the train level, and
thus to consider an average price for every train. Then we regress the logarithm of total purchases on
the logarithm of this average price.

We �rst aggregate the data at the train and destination level. Let QdT be the total quantity of
tickets purchased for destination d in the train T , QdT =

∑K
k=1 ndkT . The corresponding average price

pdT is given by:

pdT =

∑KT
k=1 ndkT pdkT∑KT
k=1 ndkT

·

We then consider a constant elasticity demand model with train �xed e�ects:

ln(QdT ) = −ε ln(pT ) + δT + ξd + νdT . (C.4)

As in our main speci�cation, ξd accounts for a destination-speci�c component.

We then aggregate further our data at the train level, by considering QT = QaT +QbT and de�ning
the corresponding average price:

pT =

∑
d∈{a,b}

∑KT
k=1 ndkpdkT∑

d∈{a,b}
∑KT

k=1 ndk
.

We consider a similar model as (C.4), except that at that level of aggregation, we cannot include train
and destination �xed e�ects. Instead, we include day of departure and route �xed e�ects:

ln(QT ) = −ε ln(pT ) + δt(T ) + ξr(T ) + νT , (C.5)

where t(T ) and r(T ) denote the day of departure and the route of train T . Finally, the most aggregated
approach consists in aggregating these demands at a weekly or monthly level, either by train route or
at the national level.

Results are given in Table C.1. The �rst line presents the price elasticity estimate for the less
disagregated speci�cation. Strikingly, the estimate (−1.02) is already much higher than ours. It is
close to the estimate of -0.70 obtained by Sauvant (2002) on SNCF aggregated data. By aggregating
further at the train level, we exacerbate the bias and obtain already a positive coe�cient (0.15).
Aggregating further at the week or at the month level increases further the coe�cient, up to 1.14.
Using data aggregated at the national level leads to somewhat lower coe�cients, but still positive ones
(0.14 and 0.56 for weekly and monthly data, respectively).
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Table C.1: Estimated price elasticities with aggregated data

Model Price elasticity

Train and destination level (Equation (C.4)) −1.02
(0.24)

Train level (Equation (C.5)) 0.15
(0.03)

Week× line level 0.29
(0.12)

Month× line level 1.14
(0.40)

Week level (whole France) 0.14
(0.09)

Month (France) 0.56
(0.33)

Notes. We refer to the text for a detailed explanation of each model

C.5 Robustness check: lognormal distribution on ηT

Table C.2: Average revenues under optimal pricing strategies: robustness check

Scenarios Estimate 95% CI
(in thousands of ¤)

Observed pricing strategy 12.21 [12.06, 12.36]

Optimal uniform pricing strategy
incomplete information, constrained prices [9.67, 11.28]
incomplete information, unconstrained prices [9.73, 11.35]
complete information, constrained prices [12.33, 14.22]
complete information, unconstrained prices [12.94, 15.10]

% of information needed to attain the observed revenue2 [59.65%, 99.65%]

Optimal �full� dynamic pricing strategy
complete information [13.18, 15.38]

Notes: With �constrained prices� (resp. �unconstrained prices�), optimization is conducted over the actual

price grid (resp. over all positive real numbers). Revenues are averaged over all lines. We use bootstrap

(500) to compute CI for observed revenue. To compute 95% CIs of other expected revenues under di�erent

counterfactuals, we use the GMS procedure and projection method.
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Online Appendix

C.6 A key lemma for Theorem 11

We use below the notation introduced in Theorem 11.

Lemma 12. Suppose that Assumption 1 holds. Then, there exists cl and cr, independent of k and m,

such that for all k = 1, ...,m,

− cl(1 + n)∆t ≤ pc,n;k −
(
n

c

)
ρc(1− ρ)n−c ≤ cr∆t. (C.6)

Proof. First, observe that {σn ∈ Ik} = {Dt+(k−1)∆t < n, Dt+k∆t ≥ n}. Then

Pr[Da,σn = c,Dσn = n, σn ∈ Ik]
= Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t < n, Dt+k∆t ≥ n]

= Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t ≥ n]

+ Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t < n− 1, Dt+k∆t ≥ n] (C.7)

We �rst show that the second term in (C.7) is negligible, as being of order (∆t)2. Simple algebra shows
that if U ∼ P(λ), then Pr(U ≥ 2) ≤ λ2. Hence,

Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t < n− 1, Dt+k∆t ≥ n]

≤Pr[Dt+k∆t −Dt+(k−1)∆t ≥ 2]

≤

[
(λa + λb)

∫ t+k∆t

t+(k−1)∆t
bsds

]2

≤
[
(λa + λb)b̄∆t

]2
,

where b = supt∈[0,1] bt. Now, the �rst term in (C.7) satis�es:

Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t ≥ n]

= Pr[Da,σn = n,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t = n]

+ Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t > n],

where the second term can be similarly controlled as above:

Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t > n] ≤ Pr[Dt+k∆t −Dt+(k−1)∆t ≥ 2]

≤
[
(λa + λb)b̄∆t

]2
.
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As a consequence,

Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t = n]

<Pr[Da,σn = c,Dσn = n, σn ∈ Ik]
≤Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t = n]

+ 2[(λa + λb)b̄]
2(∆t)2. (C.8)

Now, we have

Pr[Da,σn = c,Dσn = n,Dt+(k−1)∆t = n− 1, Dt+k∆t = n]

= Pr[Da,σn = c,Dt+k∆t = n, Dt+(k−1)∆t = n− 1]

Pr[Da,σn = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1]

= Pr[Da,σn = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1, Da,t+(k−1)∆t = c− 1]

+ Pr[Da,σn = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1, Da,t+(k−1)∆t = c]

= Pr[Da,t+k∆t = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1, Da,t+(k−1)∆t = c− 1]

+ Pr[Da,t+k∆t = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1, Da,t+(k−1)∆t = c]. (C.9)

Now, by independence between (Da,t)t≥0 and (Db,t)t≥0, and independence between Dd,t+s −Dd,t and
Dd,t for all s > 0 and d ∈ {a, b},

Pr[Da,t+k∆t = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1, Da,t+(k−1)∆t = c− 1]

= Pr[Da,t+(k−1)∆t = c− 1] Pr[Da,t+k∆t = c|Da,t+(k−1)∆t = c− 1]

× Pr[Db,t+(k−1)∆t = n− c] Pr[Db,t+k∆t = n− c|Db,t+(k−1)∆t = n− c]

=
λcaλ

n−c
b

(∫ t+(k−1)∆t
0 bsds

)n−1

(n− c)!(c− 1)!
exp

{
−(λa + λb)

∫ t+k∆t

0
bsds

}∫ t+k∆t

t+(k−1)∆t
bsds.

Similarly,

Pr[Da,t+k∆t = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1, Da,t+(k−1)∆t = c]

=
λcaλ

n−c
b

(∫ t+(k−1)∆t
0 bsds

)n−1

(n− c− 1)!c!
exp

{
−(λa + λb)

∫ t+k∆t

0
bsds

}∫ t+k∆t

t+(k−1)∆t
bsds.

By plugging the last two equalities into (C.9), we obtain

Pr[Da,σn = c, Dt+k∆t = n, Dt+(k−1)∆t = n− 1]

=
nλcaλ

n−c
b

(∫ t+(k−1)∆t
0 bsds

)n−1

(n− c)!c!
exp

{
−(λa + λb)

∫ t+k∆t

0
bsds

}
(λa + λb)

∫ t+k∆t

t+(k−1)∆t
bsds.
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Inequality (C.8) then becomes

nλcaλ
n−c
b (

∫ t+(k−1)∆t
0 bsds)

n−1

(n− c)!c!
exp{−(λa + λb)

∫ t+k∆t

0
bsds}(λa + λb)

∫ t+k∆t

t+(k−1)∆t
bsds

<P (Da,σn = c,Dσn = n, σn ∈ Ik)

≤
nλcaλ

n−c
b (

∫ t+(k−1)∆t
0 bsds)

n−1

(n− c)!c!
exp{−(λa + λb)

∫ t+k∆t

0
bsds}(λa + λb)

∫ t+k∆t

t+(k−1)∆t
bsds

+ 2[(λa + λb)b̄]
2(∆t)2. (C.10)

By summing (C.10) over c = 0, 1, ..., n, we obtain

n(λa + λb)
n(
∫ t+(k−1)∆t

0 bsds)
n−1

n!
exp{−(λa + λb)

∫ t+k∆t

0
bsds}(λa + λb)

∫ t+k∆t

t+(k−1)∆t
bsds

<P (Dσn = n, σn ∈ Ik)

≤
n(λa + λb)

n(
∫ t+(k−1)∆t

0 bsds)
n−1

n!
exp{−(λa + λb)

∫ t+k∆t

0
bsds}(λa + λb)

∫ t+k∆t

t+(k−1)∆t
bsds.

+ 2(n+ 1)[(λa + λb)b̄]
2(∆t)2. (C.11)

By combining (C.10), (C.11), and (C.2), we obtain the following inequalities:

−cl,k(1 + n)(∆t)2 ≤ pc,n;k −
(
n

c

)
ρc(1− ρ)n−c ≤ cr,k(∆t)2,

where

cr,k =
2(n+ 1)[(λa + λb)b̄]

2

n(λa+λb)n(
∫ t+(k−1)∆t
0 bsds)n−1

n! exp{−(λa + λb)
∫ t+k∆t

0 bsds}(λa + λb)
∫ t+k∆t
t+(k−1)∆t bsds

,

cl,k = cr,k

(
n

c

)
ρc(1− ρ)n−c.

Finally, note that cr,k∆t ≤ cr where

cr =
2(n+ 1)[(λa + λb)b̄]

2 exp{(λa + λb)
∫ 1

0 bsds}
n(λa+λb)n(

∫ t
0 bsds)

n−1

n! (λa + λb) infs∈I bs

.

Moreover, cr does not depend on k and m. Finally, de�ning cl = cr
(
n
c

)
ρc(1−ρ)n−c, cl does not depend

on k and m either, and (C.6) holds for all k = 1, ...,m.

C.7 Proof of Theorem 10

We show the formulas in Appendix C.3, which also proves the theorem. Given the numerous formulas,
the proof is long but two key properties that hold in all cases are worth mentioning. First, because
the demands for the two destinations are independent (Assumption 1) and the revenue management
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is implemented at the train rather than at the train-destination level (Assumption 3), revenues only
depend on the total demand at the train level and on a weighted average of the two prices corresponding
to the two destinations. Second, as a consequence of the �rst point, the optimal prices for both
destinations can be proved to be equal. We then have only one control variable, i.e. the price for both
destinations, in the Bellman equations. Finally, as in Appendix C.3, we always reason (implicitly)
conditional on (XT , CT ) and let C = CT and D(q) ∼ P(q). Additionally, we let p = (pa, pb) and
de�ne DT (t, t′;p) = DaT (t, t′; pa) +DbT (t, t′; pb).

C.7.1 Complete Information

Uniform pricing Given BT , the revenue under uniform prices p = (pa, pb) for destinations a and b
is

Rcu(p, BT ) = E[paDaT (0, τC ∧ 1; pa) + pbDbT (0, τC ∧ 1; pb)|BT ], (C.12)

where τC = inf{t : DaT (0, t; pa) + DbT (0, t; pb) ≥ C} is the stopping time of selling out all C seats.
Then, from (C.12), we obtain

Rcu(p, BT ) =E[E[paDaT (0, τC ∧ 1; pa) + pbDbT (0, τC ∧ 1; pb)|BT , DT (0, τC ∧ 1;p)]|BT ]

=E [paDT (0, τC ∧ 1;p) + (pb − pa)E[DbT (0, τC ∧ 1; pb)|BT , DT (0, τC ∧ 1;p)]|BT ] .

Moreover, by Equation (C.1),

DbT (0, τC ∧ 1; pb)|BT , DT (0, τC ∧ 1;p) ∼ Binomial

(
DT (0, τC ∧ 1;p),

ξbp
−ε
b

ξap
−ε
a + ξbp

−ε
b

)
.

Consequently, E[DbT (0, τC ∧ 1; pb)|BT , DT (0, τC ∧ 1;p)] =
ξbp
−ε
b

ξap
−ε
a +ξbp

−ε
b

DT (0, τC ∧ 1;p). Moreover,

DT (0, τC ∧ 1;p) = DT (0, 1;p) ∧ C. Then,

E[paDaT (0, τC ∧ 1; pa) + pbDbT (0, τC ∧ 1; pb)|BT , DT (0, τC ∧ 1;p)]

=
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

DT (0, 1;p) ∧ C.

Hence,

Rcu(p, BT ) =
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

E[DT (0, 1;p) ∧ C|BT ],

Hence, given ξap−εa + ξbp
−ε
b , the maximum of Rcu(p, BT ) is determined by and increasing with respect

to ξap1−ε
a + ξbp

1−ε
b . Therefore, it su�ces to maximize ξap1−ε

a + ξbp
1−ε
b given ξap−εa + ξbp

−ε
b . The unique

solution to this problem satis�es pa = pb. Then,

Rcu(BT ) = max
p>0

Rcu(p, p,BT )

= max
p>0

pE[D((ξa + ξb)p
−εBT ) ∧ C|BT ].

We obtain the result by de�ning q = (ξa + ξb)p
−εBT and integrate over BT .
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Full dynamic pricing. Denote by Vk(t,p) the expected revenue when there remains k vacant seats
before the departure and the current seat is priced at p = (pa, pb) at time 1 − t. Let us denote its
optimal value by V ∗k (t). De�ne bT (t) = limt′↓tBT (t, t′)/(t′−t). From 1−t to 1−t+∆t, the probability

of selling one seat is bT (1− t)(ξap−εa + ξbp
−ε
b )∆t+o(∆t) and generates

ξap
1−ε
a +ξbp

1−ε
b

ξap
−ε
a +ξbp

−ε
b

revenue if one seat

is sold. With probability o(∆t), more than one seats are sold. Then, following Gallego and Van Ryzin
(1994) (Section 2.2.1 on page 1004), we have:

V ∗k (t) = max
pa,pb>0

{
bT (1− t)(ξap−εa + ξbp

−ε
b )∆t

(
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

+ V ∗k−1(t−∆t)

)
+ [1− bT (1− t)(ξap−εa + ξbp

−ε
b )∆t]V ∗k (t−∆t) + o(∆t)

}
. (C.13)

Letting ∆t → 0, this equation shows that V ∗k is continuous. Further, by considering (V ∗k (t) − V ∗k (t −
∆t))/∆t and letting ∆t→ 0, we obtain that V ∗k is di�erentiable, with

V ∗k
′(t) = max

pa,pb>0
bT (1− t)(ξap−εa + ξbp

−ε
b )

[
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

+ V ∗k−1(t)− V ∗k (t)

]
.

The maximum on the right-hand side is obtained with pa = pb. As a result,

V ∗k
′(t) = max

p>0
bT (1− t)(ξa + ξb)p

−ε [p+ V ∗k−1(t)− V ∗k (t)
]
, (C.14)

with boundary conditions V ∗k (0) = 0 for any k = 1, ..., C and V ∗(t, 0) = 0 for any t ∈ [0, 1]. As a
consequence, the optimal price p∗tk can be obtained from the �rst-order condition of the right-hand
side of (C.14):

p∗tk =
ε

ε− 1

[
V ∗k (t)− V ∗k−1(t)

]
. (C.15)

By plugging p∗tk into (C.14) and using BT (t, 1) =
∫ 1
t bT (s)ds, we obtain:

V ∗k
′(t) = ∂1BT (1− t, 1)

ξa + ξb
ε− 1

(
1− 1

ε

)ε [
V ∗k (t)− V ∗k−1(t)

]1−ε
, (C.16)

where ∂jBT denotes the derivative of BT with respect to its j-th argument. We now prove by induction
on k that

V ∗k (t) = αck,f [(ξa + ξb)BT (1− t, 1)]
1
ε (C.17)

for all k ∈ {0, ..., C}, with αcf (0) = 0 and αck,f = (αck,f − αck−1,f )1−ε (1− 1
ε

)ε−1
.

The result holds for k = 0 since V ∗0 (t) = 0. Next, suppose that (C.17) holds for k − 1 ≥ 0 and let
us show that the result holds for k. By plugging this solution for k − 1 into the di�erential equation
(C.14), we obtain:

V ∗k
′(t) = ∂1BT (1− t, 1)

ξa + ξb
ε− 1

(
1− 1

ε

)ε [
V ∗k (t)− αck−1,f [(ξa + ξb)BT (1− t, 1)]

1
ε

]1−ε
, (C.18)

with V ∗k (0) = 0. We can check that V ∗k (t) = αck,f [(ξa + ξb)BT (1 − t, 1)]1/ε is a solution to (C.18).

To show uniqueness, let φ(v, z) = 1
ε−1

(
1− 1

ε

)ε [
v − αck−1,fz

1/ε
]1−ε

. Consider the di�eomorphism
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z(t) = (ξa + ξb)BT (1− t, 1) and de�ne V̄ ∗k (z) = V ∗k (t(z)). Then, (C.18) can be written as

V̄ ∗k
′(z) = φ(V̄ ∗k (z), z), (C.19)

with V̄ ∗k (0) = 0. It is enough to prove that V̄ ∗k is the unique solution of (C.19) and we prove this
by contradiction. Suppose that there is another di�erentiable solution Ṽk(.) di�erent from V̄ ∗k (z) =

αck,fz
1/ε. Without loss of generality, Ṽk(z0) > V̄ ∗k (z0) for some z0 > 0. Because Ṽk(0) = V̄ ∗k (0) = 0,

then zm = sup{z ≤ z0 : Ṽk(z0) ≤ V̄ ∗k (z0)} exists and zm < z0. Moreover, Ṽk(zm) = V̄ ∗k (zm). Then,
(C.19) implies the contradiction

0 < Ṽk(z0)− V̄ ∗k (z0) =

∫ z0

zm

[φ(Ṽk(z), z)− φ(V̄ ∗k (z), z)]dz ≤ 0,

where the second inequality follows from the fact that φ is a decreasing function of z and Ṽk(s) > V̄ ∗k (s)

for all s ∈ (zm, z0]. Finally, we conclude that V̄ ∗k (.) is the unique solution. Hence, the result holds for
k, and (C.17) holds. By taking t = 1, k = C and integrating over BT , we obtain the formula in Section
C.3.

Stopping-time pricing. Denote by Vk(t,p) the expected optimal revenue at time 1−t when pricing
the next seat at p and with k remaining seats. In this scenario, prices do not change until the next
seat is sold. De�ne τ1−t,p = inf{s > 0 : DT (1− t, 1− t+ s;p) ≥ 1}. Then,

Pr[τ1−t;p > s] = Pr[D(1− t, 1− t+ s;p) = 0]

= exp{−BT (1− t, 1− t+ s)(ξap
−ε
a + ξbp

−ε
b )},

and the density of τ1−t,p is

fτ1−t,p(s) = (ξap
−ε
a + ξbp

−ε
b )∂2BT (1− t, 1− t+ s)e−BT (1−t,1−t+s)(ξap−εa +ξbp

−ε
b ). (C.20)

Then, the Bellman equation is

Vk(t,p) = E

[
1τ1−t,p<t

(
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

+ V ∗k−1(t− τ1−t,p)

)]

=

∫ t

0
fτ1−t,p(s)

(
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

+ V ∗k−1(t− s)

)
ds

=

∫ t

0
(ξap

−ε
a + ξbp

−ε
b )∂2BT (1− t, 1− t+ s)e−BT (1−t,1−t+s)(ξap−εa +ξbp

−ε
b )

×

(
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

+ V ∗k−1(t− s)

)
ds. (C.21)

Given ξap
−ε
a + ξbp

−ε
b , Vk(t,p) is maximized if and only if ξap1−ε

a + ξbp
1−ε
b is maximized. Again,

this implies that pa = pb. Consequently, maxpa,pb>0 Vk(t,p) = maxp>0 Vk(t, p, p). Let V ∗k (t) =

maxp>0 Vk(t, p, p). We now show by induction that

V ∗k (t) = αck,s[(ξa + ξb)BT (1− t, 1)]
1
ε , (C.22)
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where αcs(0) = 0 and

αck,s = max
q>0

{
q−

1
ε (1− e−q) + αck−1,s

∫ 1

0
qe−sq(1− s)

1
ε ds

}
.

The result holds for k = 0 since V ∗0 (1− t) = 0. Now, suppose that (C.22) is true for k − 1 ≥ 0. First,
by (C.21) and the fact that pa = pb = p at optimum, we have

Vk(t, p, p) =

∫ t

0
(ξa + ξb)p

−ε∂2BT (1− t, 1− t+ s)e−BT (1−t,1−t+s)(ξa+ξb)p
−ε

[
p+ V ∗k−1(t− s)

]
ds (C.23)

By using the change of variable z = BT (1− t, 1− t+ s)/BT (1− t, 1) and applying (C.22) for V ∗k−1(t)

in Equation (C.23), we get

Vk(t, p, p) =

∫ 1

0
(ξa + ξb)BT (1− t, 1)p−εe−BT (1−t,1)(ξa+ξb)p

−εz(
p+ [(ξa + ξb)BT (1− t, 1)(1− z)]

1
εαck−1,s

)
dz

=[(ξa + ξb)BT (1− t, 1)]
1
ε

(
q−

1
ε (1− e−q) + αck−1,s

∫ 1

0
qe−qz(1− z)

1
ε dz

)
,

where q = (ξa + ξb)BT (1− t, 1)p−ε. As a consequence,

V ∗k (t) = max
p>0

Vk(t, p, p)

= [(ξa + ξb)BT (1− t, 1)]
1
ε max
q>0

{
q−

1
ε (1− e−q) + αck−1,s

∫ 1

0
qe−qz(1− z)

1
ε dz

}
= αck,s[(ξa + ξb)BT (1− t, 1)]

1
ε ,

and (C.22) is true for k. Thus, (C.22) holds for all k ∈ {0, ..., C}. Finally, by taking t = 1, k = C and
the expectation with respect to BT |XT , we obtain the expression in Appendix C.3.

Stopping-time pricing with M fares. As before, one can prove that the optimal prices should be
the same for intermediate and �nal destinations for a given train. As a result, we have p = pa = pb.
Then, let us denote by Vk(0; t, p,m) (resp. Vk(1; t, p,m)) the expected revenue of the �rm at time 1− t,
with a current price p, a remaining capacity k and a remaining number of fares m, if it decides to keep
the same price p (resp. to choose a new price). Then, we have the following Bellman equations:

Vk(1; t, p,m) = max
p′>0

∫ t

0
fτ1−t,p′,p′ (s)

[
p′ + V ∗k−1(t− s, p′,m− 1)

]
ds,

Vk(0; t, p,m) =

∫ t

0
fτ1−t,p,p(s)

[
p+ V ∗k−1(t− s, p,m)

]
ds,

V ∗k (t, p,m) = max
d∈{0,1}

Vk(d; t, p,m),

(C.24)
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with initial conditions V ∗0 (t, p,m) = 0. We show by induction on k that for all (k,m) ∈ {0, ..., C}×N,

V ∗k (t, p,m) = αk,m(q(t, p)) [(ξa + ξb)BT (1− t, 1)]
1
ε , (C.25)

where q(t, p) = p−ε(ξa + ξb)BT (1− t, 1), αk,0(q) = q−
1
εE[D(q) ∧ k] and for m ≥ 1,

αk,m(q) = max
{
q

∫ 1

0
e−qz

[
q−

1
ε + αk−1,m∧(k−1)(q(1− z))(1− z)

1
ε

]
dz,

max
q′>0

q′
∫ 1

0
e−q

′z
[
q′−

1
ε + αk−1,m−1(q′(1− z))(1− z)

1
ε

]
dz.
}
.

Because for any m ≥ k and d ∈ {0, 1}, we have Vk(d; t, p,m) = Vk(d; t, p, k), it su�ces to prove the
result for m ≤ k. The result holds for k = m = 0 since V ∗0 (t, p,m) = 0. Now, suppose that (C.25)
holds for k − 1 ≥ 0 and all m ≤ k − 1. If m = 0, the price cannot be changed anymore, so V ∗k (t, p,m)

is simply the revenue with price p from 1− t to 1, and (C.25) holds.

If m ≥ 1, we have, by Equations (C.20), (C.24), the change of variable z = BT (1 − t, 1 − t +

s)/BT (1− t, 1) and the induction hypothesis,

Vk(0; t, p,m)

=

∫ t

0
fτ1−t,p,p(s)

[
p+ V ∗k−1(t− s, p,m ∧ (k − 1))

]
ds

=

∫ t

0
(ξa + ξb)p

−ε∂2BT (1− t, 1− t+ s)e−(ξa+ξb)p
−εBT (1−t,1−t+s)[

p+ αk−1,m∧(k−1)((ξa + ξb)BT (1− t+ s, 1)p−ε)[(ξa + ξb)BT (1− t+ s, 1)]
1
ε

]
ds

=

∫ 1

0
(ξa + ξb)p

−εBT (1− t, 1)e−(ξa+ξb)p
−εBT (1−t,1)z[

p+ αk−1,m∧(k−1)((ξa + ξb)BT (1− t, 1)p−ε(1− z))[(ξa + ξb)BT (1− t, 1)]
1
ε (1− z)

1
ε

]
dz

=[(ξa + ξb)BT (1− t, 1)]
1
ε

×
∫ 1

0
q(t, p)e−q(t,p)z

[
q(t, p)−

1
ε + αk−1,m∧(k−1)(q(t, p)(1− z))(1− z)

1
ε

]
dz, (C.26)

With the same reasoning, we also obtain

Vk(1; t, p,m)

= max
p′>0

∫ t

0
fτ1−t,p′,p′ (s)

[
p′ + V ∗k−1(t− s, p′,m− 1)

]
ds

=[(ξa + ξb)BT (1− t, 1)]
1
ε max
q>0

∫ 1

0
qe−qz

[
q−

1
ε + αk−1,m−1(q(1− z))(1− z)

1
ε

]
dz.

Then,
V ∗k (t, p,m) = max

d∈{0,1}
Vk(d; t, p,m)

= αk,m(q(t, p))[(ξa + ξb)BT (1− t, 1)]
1
ε ,

Thus, (C.25) holds for k, and hence for all k ∈ {0, ..., C}. By setting t = 0 and optimizing V ∗k (t, p,m)
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over p (or equivalently over q(t, p)) and taking the expectation with respect to BT |XT , we obtain the
desired expression in Appendix C.3.

Stopping-time pricing with M increasing prices. The reasoning is very similar to the previous
case. The only change in (C.24) is in the formula of Vk(1; t, p,m): the maximization is now over p′ ≥ p
rather than p′ ≥ 0, since the new price has to be higher than the current one. Then, following a similar
strategy by induction, we get

V ∗k (t, p,m) = α+
k,m(q(t, p)) [(ξa + ξb)BT (1− t, 1)]

1
ε ,

where α+
k,0(q) = αk,0(q) and

α+
k,m(q) = max

{
q

∫ 1

0
e−qz

[
q−

1
ε + α+

k−1,m∧(k−1)(q(1− z))(1− z)
1
ε

]
dz,

max
q′∈(0,q]

q′
∫ 1

0
e−q

′z
[
q′−

1
ε + α+

k−1,m−1(q′(1− z))(1− z)
1
ε

]
dz.
}
.

We obtain the result by taking t = 0, k = C and de�ning αcC,sM+ = maxq>0 α
+
C,M (q).

C.7.2 Incomplete Information

Uniform pricing. As in the case of complete information, the revenue Riu(p;BT ) with a price vector
p and conditional on BT satis�es

Riu(p;BT ) = E[paDaT (0, τC ∧ 1; pa) + pbDbT (0, τC ∧ 1; pb)|BT ]

=
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

E[D([ξap
−ε
a + ξbp

−ε
b ]BT ) ∧ C|BT ],

Then, the expected revenue (taken with respect to BT ) with prices p is

Riu(p) =
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

EBT |XT [E[D([ξap
−ε
a + ξbp

−ε
b ]BT ) ∧ C]]

=
ξap

1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

∫
z>0

E[D([ξap
−ε
a + ξbp

−ε
b ]z) ∧ C]f(z)dz. (C.27)

As above, the function p 7→ Riu(p) reaches its maximum when pa = pb. Thus,

Riu = max
p>0

Riu(p, p; ξa, ξb, ε, f)

= max
p>0

p

∫
z>0

E[D([ξa + ξb]p
−εz) ∧ C]f(z)dz.

By the change of variable q = [ξa + ξb]p
−ε, we obtain the desired formula. If Assumption 2 also holds,

the result follows using the change of variable q = [ξa + ξb]p
−εeX

′
T β0 .

Full dynamic pricing. De�ne Vk(t,p, f) as the expected revenue at time 1− t when there remains
k vacant seats before the departure, the current seat is priced at p and the density of ηT , given the
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current information, is f . Let also V ∗k (t, f) = maxpa,pb>0 Vk(t,p, f). When ηT ∼ Γ(λ, µ), we use
respectively Vk(t,p, λ, µ) and V ∗k (t, λ, µ) instead of Vk(t,p, gλ,µ) and V ∗k (t, gλ,µ).

Between 1−t and 1−t+∆t, if one seat is sold, which occurs with probability (ξap
−ε
a +ξbp

−ε
b )∂1BT (1−

t, 1)∆t+ o(∆t), the posterior cumulative distribution function (cdf) of ηT , F1(·; ∆t) satis�es

F1(η; ∆t) ∝ [(ξap
−ε
a + ξbp

−ε
b )eXT β0∂1g(1− t, 1)η∆t+ o(∆t)]ηλ−1e−µη,

and the corresponding density is

f1(η; ∆t) =ηλe−µη
µλ+1

Γ(λ+ 1)
+ o(∆t).

As ∆t→ 0, the posterior density converges to gλ+1,µ. If the seat is not sold between 1−t and 1−t+∆t,
then the posterior cdf of ηT is

F0(η; ∆t) ∝ ηλ−1 exp(−µ(t,∆t,p)η),

where µ(t,∆t,p) = µ+ (ξap
−ε
a + ξbp

−ε
b )eXT β0gT (1− t, 1− t+ ∆t). Therefore, the posterior density is

gλ,µ(t,∆t,p). Then, the Bellman equation can be written as:

Vk(t,p, λ, µ) =

∫ {
[(ξap

−ε
a + ξbp

−ε
b )ηeXT β0∂1g(1− t, 1)∆t+ o(∆t)]

×

[
(ξap

1−ε
a + ξbp

1−ε
b )

(ξap
−ε
a + ξbp

−ε
b )

+ V ∗k−1(t−∆t, f1(·; ∆t))

]
+
[
1− (ξap

−ε
a + ξbp

−ε
b )ηeXT β0∂1g(1− t, 1)∆t− o(∆t)

]
× V ∗k (t−∆t, λ, µ(p, t,∆))

}
gλ,µ(η)dη.

The maximum of V (t,p, f) is reached when pa = pb, and Vk(t, p, λ, µ) = Vk(t, p, p, λ, µ) satis�es

Vk(t, p, λ, µ) =V ∗k (t−∆t, λ, µ) +

∫ {
[(ξa + ξb)p

−εeXT β0η∂1g(1− t, 1)∆t+ o(∆t)]

×
[
p+ V ∗k−1(t−∆t, f1(·; ∆t))

]
+ [V ∗k (t−∆t, λ, µ(p, t,∆t))− V ∗k (t−∆t, λ, µ)]

−V ∗k (t−∆t, λ, µ(p, t,∆))[(ξa + ξb)p
−εeXT β0η∂1g(1− t, 1)∆t+ o(∆t)]

}
gλ,µ(η)dη.
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Then, using V ∗k (t, λ, µ) = maxp>0 Vk(t, p, λ, µ) and letting ∆t→ 0, we obtain:

∂1V
∗
k (t, λ, µ)

= max
p>0

∫ {
(ξa + ξb)p

−εeXT β0η∂1g(1− t, 1)
[
p+ V ∗k−1(t, λ+ 1, µ)− V ∗k (t, λ, µ)

]
+ lim

∆t→0

V ∗k (t−∆t, λ, µ(t,∆t,p))− V ∗k (t−∆t, λ, µ)

∆t

}
gλ,µ(η)dη

=∂1g(1− t, 1)(ξa + ξb)e
XT β0 max

p>0

∫ {
p−εη

[
p+ V ∗k−1(t, λ+ 1, µ)− V ∗k (t, λ, µ)

]
+ ∂3V

∗
k (t, λ, µ)p−ε

}
gλ,µ(η)dη

=∂1g(1− t, 1)(ξa + ξb)e
XT β0 max

p>0

{
p−ε

λ

µ

[
p+ V ∗k−1(t, λ+ 1, µ)− V ∗k (t, λ, µ)

]
+ ∂3V

∗
k (t, λ, µ)p−ε

}
.

Solving for the optimal price, we then obtain:

∂1V
∗
k (t, λ, µ) =

[
ε

ε− 1

]−ε λ

µ(ε− 1)
∂1g(1− t, 1)(ξa + ξb)e

XT β0

×
[
−V ∗k−1(t, λ+ 1, µ) + V ∗k (t, λ, µ)− µ

λ
∂3V

∗
k (t, λ, µ)

]1−ε
.

Letting z(t) = g(1− t, 1)(ξa + ξb)e
XT β0 and V̄ ∗(z(t), λ, µ) = V ∗(t, λ, µ), we obtain:

∂1V̄
∗
k (z, λ, µ) =

[
ε

ε− 1

]−ε λ

µ(ε− 1)

[
− V ∗k−1(z, λ+ 1, µ) + V̄ ∗k (z, λ, µ)

− µ

λ
∂3V̄

∗
k (z, λ, µ)

]1−ε
. (C.28)

We prove by induction on k that for all k ∈ {0, ..., C}.

V̄ ∗k (z, λ, µ) =

(
z

µ

) 1
ε

αik,f (λ), (C.29)

where αif (0, λ) = 0 and for k ≥ 1,

αik,f (λ) = λ

(
1− 1

ε

)ε−1 [
−αik−1,f (λ+ 1) +

(
1 +

1

λε

)
αik,f (λ)

]1−ε
.

The result holds for k = 0 since V ∗0 (z, λ, µ) = 0. Suppose that (C.29) holds for k− 1. Then, (C.28)
and the induction hypothesis yield

∂1V̄
∗
k (z, λ, µ) =

[
ε

ε− 1

]1−ε λ

µ(ε− 1)

[
−
(
z

µ

) 1
ε

αik−1,f (λ+ 1) + V̄ ∗k (z, λ, µ)

− µ

λ
∂3V̄

∗
k (z, λ, µ)

]1−ε
. (C.30)
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The function (z, λ, µ) 7→ αik,f (λ) (z/µ)1/ε is a solution to (C.30). We now show that V̄ ∗k (z, λ, µ) is equal
to this solution. First, note that V ∗k (t, λ, µ) remains unchanged if the distribution of BT (t, t′) remains
unchanged. Now,

BT (t, t′) = gT (t, t′)eXT β0ηT = (gT (t, t′)eXT β0/δ)× (δηT ),

with δηT ∼ Γ(λ, µ/δ). Hence, V ∗k (t, λ, µ) remains unchanged if we replace µ by µ/δ and z(t) =

g(1 − t, 1)(ξa + ξb)e
XT β0 by z(t)/δ. Given the de�nition of V̄ ∗k (z, λ, µ), this implies V̄ ∗k (z/δ, λ, µ/δ) =

V̄ ∗k (z, λ, µ) for all δ > 0. Then, to prove the induction step, we only need to show that V (x) :=

V ∗k (x, λ, 1) satis�es V (x) = αik,f (λ)x1/ε. By Equation (C.30),

V ′(x) =

[
ε

ε− 1

]1−ε λ

ε− 1

[
−x

1
εαik−1,f (λ+ 1) + V (x) +

x

λ
V ′(x)

]1−ε
, (C.31)

with initial condition V (0) = 0. Suppose that (C.31) has two distinct solutions V1, V2 and let x0 be
such that V1(x0) 6= V2(x0), say V1(x0) > V2(x0). De�ne xm = sup{x ≤ x0 : V1(x) ≤ V2(x)}. Because
V1(0) = V2(0) and V1(x0) > V2(x0), we have 0 ≤ xm < x0 and V1(x) > V2(x) for x ∈ (xm, x0].
Moreover, because both solutions are continuous, V1(xm) = V2(xm). According to (C.31), because
ε > 1, as long as V1(x) > V2(x), we have V ′1(x) < V ′2(x). Then,

V1(x0)− V2(x0) =

∫ x0

xm

[
V ′1(x)− V ′2(x)

]
dx < 0,

which contradicts V1(x0) > V2(x0). Hence, V (x) = αik,f (λ)x1/ε, and the induction step holds. Thus,
(C.29) is satis�ed for k ∈ {0, ..., C}. Finally, we obtain the result in Appendix C.3 by taking t = 0 and
k = C.

Stopping-time pricing The di�erence from the stopping-time pricing under complete information
is that the �rm updates in a Bayesian way its belief on the distribution of BT . Even if the �rm
continuously updates its belief, only moments where a sale occurs matter, since this is the time where
it can decide to change its prices. Thus, starting at time 1− t, we can focus on time 1− t+ τt,p. The
next lemma characterizes the corresponding posterior distribution of BT .

Lemma 13. Suppose that the density function of BT |XT at time 1 − t is f and the �rm prices the

next seat at p. Then, the posterior distribution of BT |τ1−t;p = s is T (f ; q(t, s,p)), with q(t, s,p) =

(ξap
−ε
a + ξbp

−ε
b )gT (1− t, 1− t+ s)) and

T (f ;u)(z) =
ze−uzf(z)∫
ze−uzf(z)dz

.

Proof. As Equation (C.20) shows, given BT = z, the density function of τ1−t;p is

fτ1−t,p|BT (s|z) = (ξap
−ε
a + ξbp

−ε
b )z∂2gT (1− t, 1− t+ s)e−zq(t,s,p). (C.32)

Then, the joint distribution of (τ1−t,p, BT ) is

fτ1−t,p,BT (s, z) =(ξap
−ε
a + ξbp

−ε
b )z∂2gT (1− t, 1− t+ s)e−q(t,s,p)zf(z)

The result follows.
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Now, using the same notation as in the full dynamic pricing case above and the same arguments
as in proof of (C.21), we have

Vk(t,p, f) =

∫ t

0
fτ1−t,p(s)

[ξap1−ε
a + ξbp

1−ε
b

ξap
−ε
a + ξbp

−ε
b

+ V ∗k−1(t− s;T (f ; q(t, s,p)))
]
ds.

Given ξap
−ε
a + ξbp

−ε
b , Vk(t,p, f) is maximized if and only if ξap1−ε

a + ξbp
1−ε
b is maximized. Thus,

Vk(t,p, f) is maximized at pa = pb and

V ∗k (t, f) = max
p>0

∫ t

0
fτ1−t,p,p(s)

[
p+ V ∗k−1(t− s;T (f ; q(t, s, p)))

]
ds. (C.33)

where q(t, s, p) = q(t, s, p, p). We now prove by induction on k that for all k ∈ {0, ..., C},

V ∗k (t; f) = [(ξa + ξb)gT (1− t, 1)]
1
ε αik,s(f). (C.34)

where αis(0, f) = 0 and for all k ∈ {1, .., C},

αik,s(f) = max
q>0

q

∫ 1

0

[
q−1/ε + (1− u)

1
εαik−1,s(T (f ; qu))

] ∫ ∞
0

ze−quzf(z)dzdu.

The result holds for k = 0 since V ∗0 (t; f) = 0. Suppose that it holds for k− 1 ≥ 0. First, by (C.32),
we have

fτ1−t,p,BT (s, z) =

∫ ∞
0

(ξap
−ε
a + ξbp

−ε
b )z∂2gT (1− t, 1− t+ s)e−q(t,s,p)zf(z)dz. (C.35)

Then, letting q(t, p) = q(t, t, p) and using (C.33), we obtain

V ∗k (t, f) = max
p>0

∫ t

0
fτ1−t,p,p(s)

{
p+ [(ξa + ξb)gT (1− t+ s, 1)]

1
ε

× αik−1,s(T (f ; q(t, s, p)))

}
ds

= max
p>0

∫ 1

0

[ ∫ ∞
0

q(t, p)ze−q(t,p)uzf(z)dz

]
×
{
p+ [(ξa + ξb)gT (1− t, 1)(1− u)]

1
ε αik−1,s(T (f ; q(t, p)u))

}
du

= [(ξa + ξb)gT (1− t, 1)]
1
ε max
q>0

q

∫ 1

0

[∫ ∞
0

ze−quzf(z)dz

]
×
[
q−1/ε + (1− u)

1
εαik−1,s(T (f ; qu))

]
du.

The second equality follows using the change of variable u = gT (1− t, 1− t + s)/gT (1− t, 1) and the
third by the change of variable q = q(t, p). Hence, the induction step holds, and (C.34) is satis�ed for
all k ∈ {0, ..., C}. We obtain the desired expression by taking t = 0 and k = C.

If Assumption 2 also holds, we obtain by Lemma 13 that if f = gλ,µ, then T (f ;u) = gλ+1,µ+exp(X′T β0)u.
Let Vk(t,p;λ, µ) and V ∗k (t;λ, µ) be de�ned as in the full dynamic pricing case. Then, by the same
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induction as above, we have, for all k ∈ {0, ..., C},

V ∗k (t;λ, µ) =

[
(ξa + ξb)e

X′T β0gT (1− t, 1)

µ

] 1
ε

αik,s(λ), (C.36)

where αis(0, λ) = 0 for λ > 0, and

αik,s(λ) = max
q>0

q

∫ 1

0

λ

(1 + qs)λ+1

[
q−

1
ε +

(
1− s
1 + qs

) 1
ε

αik−1,s(λ+ 1)

]
ds.

The result follows by taking t = 0 and k = C, we obtain the desired expression.

Stopping-time pricing withM fares. Like previously, one can show that the optimal prices should
satisfy pa = pb = p. As in the complete information case, let Vk(0; t, p,m) (resp. Vk(1; t, p,m, f)) denote
the optimal revenue at time 1− t, with a current price p, a remaining capacity k, a remaining number
of fares m and a density of f for ηT (conditional on the current information) if the �rm decides to keep
the same price (resp. to change it). Then, as (C.24), we have:

Vk(0; t, p,m, f) =

∫ t

0
fτ1−t,p,p(s)

[
p+ V ∗k−1(t− s, p,m, T (f ; q(t, s, p)))

]
ds, (C.37)

Vk(1; t, p,m, f) = max
p′>0

∫ t

0
fτ1−t,p′,p′ (s)

[
p′ + V ∗k−1(t− s, p′,m− 1, T (f ; q(t, s, p)))

]
ds,

V ∗k (t, p,m, f) = max
d∈{0,1}

Vk(d; t, p,m, f),

with the initial conditions V ∗0 (t, p,m, f) = 0. We prove by induction on k that for all (k,m) ∈
{0, ..., C} × N,

V ∗k (t, p,m, f) = ck,m(q(t, p), f) [(ξa + ξb)gT (1− t, 1)]
1
ε , (C.38)

where ck,0(q, f) = q−
1
ε

∫
E[D(qz) ∧ k]f(z)dz and

ck,m(q, f) = max
{
q

∫ 1

0

∫
ze−qzuf(z)dz

[
q−1/ε + ck−1,m∧(k−1)(q(1− u), T (f ; qu))

(1− u)
1
ε

]
du,max

q′>0
q′
∫ 1

0

∫
ze−q

′zuf(z)dz
[
q′−1/ε

+ ck−1,m−1(q′(1− u), T (f ; q′u))(1− u)
1
ε

]
du
}
.

The result holds for k = 0 since c0,m = V ∗0 (t, p,m, f) = 0. Suppose that it holds for k − 1 ≥ 0 and
all m ≤ k − 1 (recall that V ∗k (t, p,m, f) = V ∗k (t, p,m ∧ k, f)). If m = 0, the price cannot be changed
anymore, so V ∗k (t, p,m) is simply the revenue with price p from 1− t to 1, and (C.25) holds.
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If m ≥ 1, we have, using (C.35) and (C.37) and the same change of variables as above, we obtain

Vk(0; t, p,m, f)

=

∫ t

0

[∫ ∞
0

(ξa + ξb)p
−ε∂2gT (1− t, 1− t+ s)ze−q(t,s,p)zf(z)dz

]
[
p+ ck−1,m∧(k−1)(q(t− s, p), T (f ; q(t, s, p)))[(ξa + ξb)gT (1− t+ s, 1)]

1
ε

]
ds

=

∫ 1

0

[∫ ∞
0

q(t, p)ze−q(t,p)uzf(z)dz

] [
p+ ck−1,m∧(k−1)(q(t, p)(1− u),

T (f ; q(t, p)u))[(ξa + ξb)gT (1− t, 1)]
1
ε (1− u)

1
ε

]
du

=[(ξa + ξb)gT (1− t, 1)]
1
ε q(t, p)

∫ 1

0

[∫ ∞
0

ze−q(t,p)uzf(z)dz

]
×
[
q(t, p)−1/ε + ck−1,m∧(k−1)(q(t, p)(1− u), T (f ; q(t, p)u))(1− u)

1
ε

]
du.

By the same reasoning and the change of variable q = q(t, p),

Vk(1; t, p,m, f) = [(ξa + ξb)gT (1− t, 1)]
1
ε max
q>0

q

∫ 1

0

[∫ ∞
0

ze−qzuf(z)dz

]
[
q−1/ε + ck−1,m−1(q(1− u), T (f ; qu))(1− u)

1
ε

]
du.

Then,
V ∗k (t, p,m, f) = max

d∈{0,1}
Vk(d; t, p,m, f)

=ck,m(q(p), f)[(ξa + ξb)gT (1− t, 1)]
1
ε .

This concludes the induction step, proving that (C.38) holds for all k ∈ {0, ..., C}.

Stopping-time pricing with M increasing fares The proof follows by making the same changes
of the previous case as those made in the complete information set-up.

C.8 Intermediate-K stopping time pricing

We extend Theorem 10 to pricing strategies called intermediate-K stopping-time pricing where the �rm
can only adjust prices for the �rst K ≤ C seats. Then a uniform pricing applies from the (K + 1)th

seat till departure. These pricing strategies connect uniform pricing and stopping-time pricing, since
the former corresponds to K = 0 and the latter to K = C. More importantly, we can infer from an
increase in K how uncertainty is swept out under complete and incomplete information, and quantify
its impact on revenues. They are simulated with the estimated parameters and the results are used to
depict the blue curve of Figure 3.1.

Complete information As above, let V ∗k (t;K,C) denote the optimal revenue at time 1 − t with
k ≥ C −K remaining seats. For such k, we have

V ∗k (t,K,C) = c′k,K [(ξa + ξb)BT (1− t, 1)]
1
ε ,
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where c′C−K,K = maxq>0 q
− 1
εE[D(q) ∧ (C −K)] and, for any k > C −K,

c′k,K = max
q>0

q−
1
ε (1− e−q) + c′k−1,K

∫ 1

0
qe−qs(1− s)

1
ε ds.

The proof is the same as that for (C.22) except for the initial value because the �rm must apply
uniform pricing whenever there remain C −K seats. Thus, the Bellman equation and the updating
of the constants c′k,K take the same form as under the stopping-time pricing strategy in (C.22) for
k ≥ C −K and the initial value becomes c′C−K,K , which comes from the optimal uniform pricing with
C −K seats.

Incomplete information Let V ∗k (t;K,C, λ, µ) denote the optimal expected revenue at time 1 − t
with k ≥ C −K remaining seats if ηT ∼ Γ(λ, µ). Then, for any k ∈ {C −K + 1, ..., C},

V ∗k (t;K,C, λ, µ) =

[
(ξa + ξb)e

X′T β0gT (t, 1)

µ

] 1
ε

c′k,K(λ),

where c′C−K,K(λ) = maxq≥0 q
− 1
ε

∫
R+

E[D(qz) ∧ (C −K)]gλ,1(z)dz and for k > C −K,

c′k,K(λ) = max
q>0

∫ 1

0

λ

(1 + qs)λ+1
q

[
q−

1
ε +

(
1− s
1 + qs

) 1
ε

c′k−1,K(λ+ 1)

]
ds.

As with complete information, the proof is the same as for (C.36), with the same change due to a
di�erent initial value based on uniform pricing.
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Titre : Trois essais sur les modèles microéconométriques de la demande et leurs applications dans l’organi-
sation industrielle empirique

Mots clés : organisation industrielle empirique, econométrie structurelle, identification, demande de bundles,
revenue management

Résumé : La thèse se compose de trois chapitres qui
étudient les modèles microéconométriques de la de-
mande et leurs applications dans l’organisation indus-
trielle empirique.

Les deux premiers articles se concentrent sur les
modèles de demande de bundles et étudient l’iden-
tification et l’estimation sous différentes disponibilités
de données. Le premier article est un travail conjoint
avec Alessandro Iaria (Université de Bristol) et se
concentre sur les situations où les données d’achat au
niveau du bundle sont disponibles. Nous présentons
de nouveaux résultats d’identification et d’estimation
pour un modèle logit mixte de demande de faisceaux.
En particulier, nous proposons un nouvel inverse de
la demande en présence de complémentarité qui
permet de concentrer hors de la fonction de vrai-
semblance les effets fixes (potentiellement nombreux)
spécifiques aux produits de marché, atténuant sen-
siblement le défi de dimensionnalité inhérent à l’es-
timation. Pour illustrer l’utilisation de nos méthodes,
nous estimons la demande et l’offre dans l’indus-
trie américaine des céréales prêtes à consommer,
où le MLE proposé réduit la recherche numérique
d’environ 12 000 à 130 paramètres. Nos estimations
suggèrent que le fait d’ignorer la complémentarité
hicksienne entre différents produits souvent achetés
en lots peut entraı̂ner des estimations de la demande
et des contrefactuels trompeurs.

Le deuxième article se concentre sur les situations
où seules des données d’achat agrégées au niveau
du produit sont disponibles. Il propose un modèle
de demande de Berry, Levinsohn et Pakes (BLP,
1995). Comparé aux modèles BLP de demande de
produits uniques, ce modèle ne restreint pas les
produits à être des substituts et, notamment, per-
met des complémentarités hicksiennes entre les pro-
duits qui peuvent être choisis conjointement dans un
bundle. En s’appuyant sur l’inverse de la demande
du premier article, il propose des arguments d’iden-
tification constructifs du modèle et un estimateur de

la méthode généralisée des moments (GMM) pra-
tiquement utile. En particulier, cet estimateur peut
gérer des ensembles de choix potentiellement im-
portants et sa mise en œuvre est simple, essentiel-
lement comme un estimateur BLP standard. Enfin,
j’illustre la mise en œuvre pratique des méthodes
et j’évalue la demande de céréales et de lait prêts-
à-manger (PAM) aux États-Unis. Les estimations de
la demande suggèrent que les céréales et le lait
PAM sont globalement complémentaires Hicksian et
ces complémentarités sont hétérogènes entre les pa-
quets. Ignorer ces complémentarités entraı̂ne des
contrefactuels trompeurs.

Le troisième article est un travail conjoint avec Xa-
vier d’Haultfoeuille, Philippe Fevrier et Lionel Wilner
et porte sur la gestion des revenus. Bien que cette
gestion ait considérablement accru la flexibilité dans
la façon dont les entreprises fixent les prix, les en-
treprises imposent toujours des contraintes à leur
stratégie de prix. Il existe encore peu de preuves
des gains ou des pertes de telles stratégies par rap-
port à des prix uniformes ou à des stratégies tota-
lement flexibles. Dans cet article, nous quantifions
ces gains et pertes et identifions leurs sources sous-
jacentes dans le contexte du transport ferroviaire
français. Cela est compliqué par la censure à la de-
mande et l’absence de variations de prix exogènes.
Nous développons une stratégie d’identification ori-
ginale sur la demande qui combine les variations
temporelles des prix relatifs et les inégalités de mo-
ment résultant de la rationalité de base du côté des
consommateurs et des faibles conditions d’optima-
lité de la stratégie de tarification de l’entreprise. Nos
résultats suggèrent des gains importants de la gestion
des revenus réels par rapport à une tarification uni-
forme, mais également des pertes substantielles par
rapport à la stratégie de tarification optimale. Enfin,
nous soulignons le rôle clé de la gestion des revenus
pour l’acquisition d’informations lorsque la demande
est incertaine.



Title : Three essays on microeconometric models of demand and their applications in empirical industrial
organisation

Keywords : empirical industrial organisation, structural econometrics, identification, demand for bundles, re-
venue management

Abstract : The thesis consists of three chapters that
study microeconometric models of demand and their
applications in empirical industrial organisation.

The first two papers focus on models of demand for
bundles and study the identification and estimation
under different data availabilities. The first paper is a
joint work with Alessandro Iaria (University of Bristol)
and focuses on the situations where purchase data
at bundle-level is available. We present novel identi-
fication and estimation results for a mixed logit mo-
del of demand for bundles. In particular, we propose
a new demand inverse in the presence of comple-
mentarity that enables to concentrate out of the li-
kelihood function the (potentially numerous) market-
product specific fixed effects, substantially alleviating
the challenge of dimensionality inherent in estimation.
To illustrate the use of our methods, we estimate de-
mand and supply in the US ready-to-eat cereal indus-
try, where the proposed MLE reduces the numerical
search from approximately 12000 to 130 parameters.
Our estimates suggest that ignoring Hicksian comple-
mentarity among different products often purchased
in bundles may result in misleading demand estimates
and counterfactuals.

The second paper focuses on the situations where
only aggregate purchase data at product-level is avai-
lable. It proposes a Berry, Levinsohn and Pakes (BLP,
1995) model of demand for bundles. Compared to
BLP models of demand for single products, this mo-
del does not restrict products to be substitutes and,
notably, allows for Hicksian complementarities among
products that can be jointly chosen in a bundle. Le-
veraging the demand inverse of the first paper, it pro-
poses constructive identification arguments of the mo-

del and a practically useful Generalized Method of
Moments (GMM) estimator. In particular, this estima-
tor can handle potentially large choice sets and its im-
plementation is straightforward, essentially as a stan-
dard BLP estimator. Finally, I illustrate the practical
implementation of the methods and estimate the de-
mand for Ready-To-Eat (RTE) cereals and milk in the
US. The demand estimates suggest that RTE cereals
and milk are overall Hicksian complementary and
these complementarities are heterogeneous across
bundles. Ignoring such complementarities results in
misleading counterfactuals.

The third paper is a joint work with Xavier d’Hault-
foeuille, Philippe Fevrier and Lionel Wilner and fo-
cuses on revenue management. Despite that this ma-
nagement has greatly increased flexibility in the way
firms set prices, firms usually still impose constraints
on their pricing strategy. There is yet scarce evidence
on the gains or losses of such strategies compared to
uniform pricing or fully flexible strategies. In this pa-
per, we quantify these gains and losses and identify
their underlying sources in the context of French rail-
way transportation. This is complicated by the censo-
ring on demand and the absence of exogenous price
variations. We develop an original identification stra-
tegy on the demand that combines temporal varia-
tions in relative prices and moment inequalities stem-
ming from basic rationality on consumers’ side and
weak optimality conditions on the firm’s pricing stra-
tegy. Our results suggest significant gains of the ac-
tual revenue management compared to uniform pri-
cing, but also substantial losses compared to the op-
timal pricing strategy. Finally, we highlight the key
role of revenue management for acquiring information
when demand is uncertain.
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