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CHAPTER 1
Identification and Estimation of Demand
for Bundles™

Abstract. We present novel identification and estimation results for a mixed logit model of demand
for bundles with endogenous prices given bundle-level market shares. Our approach hinges on an
affine relationship between the utilities of single products and of bundles, on an essential real analytic
property of the mixed logit model, and on the existence of exogenous cost shifters. We propose
a new demand inverse in the presence of complementarity that enables to concentrate out of the
likelihood function the (potentially numerous) market-product specific average utilities, substantially
alleviating the challenge of dimensionality inherent in estimation. To illustrate the use of our methods,
we estimate demand and supply in the US ready-to-eat cereal industry, where the proposed MLE
reduces the numerical search from approximately 12000 to 130 parameters. Our estimates suggest that
ignoring Hicksian complementarity among different products often purchased in bundles may result in
misleading demand estimates and counterfactuals.

1.1 Introduction

In standard decision theory, consumer preferences are usually defined over bundles of products rather
than over single products (Debreu (1959), Varian (1992), and Mas-Colell et al. (1995)), allowing for both
substitutability and complementarity. Despite important exceptions (Manski and Sherman (1980),
Hendel (1999), Dubé (2004), Gentzkow (2007), and Thomassen et al. (2017)), the models routinely
used to estimate demand rely on the assumption that each of the products purchased in a bundle is
chosen independently, precluding the possibility of complementarity and potentially leading to incorrect
estimates and counterfactuals.

Models of demand for bundles face non-trivial identification challenges (Gentzkow, 2007), even in
settings with a limited number of products (Fox and Lazzati (2017) and Allen and Rehbeck (2019a)).
Moreover, the estimation of demand for bundles is subject to a challenge of dimensionality: the number
of parameters can be too large to be handled numerically even with parsimonious specifications (Berry
et al., 2014). These difficulties forced empirical researchers either to focus on applications with a limited
number of products (typically two or three) or to make restrictive assumptions on the parameters
capturing potential synergies among the products within bundles (typically a common parameter for
all bundles and individuals).!

We tackle these challenges and propose empirical methods that are practically useful in applications
with more than a few products. In particular, we study the identification and estimation of a mixed

*This chapter is based on Iaria, A. and Wang, A. (2020). Identification and estimation of demand for bundles, CEPR
Discussion Paper No. DP14363

!Throughout the paper, we refer to the parameters capturing the potential synergies among products within bundles
simply as demand synergies or demand synerqy parameters.
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logit model of demand for bundles with endogenous prices given observations on bundle-level market
shares. Our arguments hinge on the affine relationship between the utilities of single products and
of bundles typical of models along the lines of Gentzkow (2007)’s: the average utility of any bundle
equals the sum of the average utilities of the single products plus an extra term capturing their potential
demand synergies. This utility structure allows (%) for a novel identification approach based on the
existence of exogenous but potentially unobserved cost shifters and (77) to alleviate the challenge of
dimensionality in estimation by means of a new demand inverse in the presence of complementarity.

Our approach is based on a symmetry assumption about the average demand synergies across
markets: while the demand synergies for any specific bundle may be unobserved and heterogeneous
across individuals, their average is required to be constant across markets with the same observable
characteristics (e.g., demographics and prices). Importantly, we propose a specification test for this
symmetry assumption on the basis of partial identification methods that can be performed prior to
the estimation of the full model. Under this symmetry assumption and regularity conditions similar
to Rothenberg (1971), we derive necessary and sufficient rank conditions for the local identification of
the model with endogenous prices. This result formalizes Gentzkow (2007)’s insight that, when the
average demand synergies are “similar” across markets, the availability of data on many markets will
help identification. The “necessity” part of the result is informative about the limits of identification in
models of demand for bundles: the separate identification of demand synergies and of the distribution
of random coefficients is not immediate, and one needs observations on “enough” markets.

We provide novel sufficient conditions for the global identification of the model with endogenous
prices to hold almost everywhere. Our argument combines three main ingredients: a finite number
of elements in the identification set, an essential real analytic property of the mixed logit model,
and the existence of exogenous cost shifters. We assume that the identification set does not have
infinitely many elements and, building on Chernozhukov et al. (2007) and on Romano and Shaikh
(2012), propose testable conditions to verify this in practice. We show that the mixed logit market
share function is real analytic with respect to the market-product specific average utilities. This
further shrinks the identification set in the presence of exogenous variation in the market-product
specific average utilities. We then demonstrate that cost shifters can provide the required exogenous
variation when the endogenous prices are generated by a large class of pure components and mixed
bundling price-setting models.? We finally attain global identification almost everywhere by assuming
the existence of exogenous cost shifters that are potentially unobserved but identifiable from observed
market shares and prices. One can then interpret our identification strategy as based on the existence
of “unobserved” but “identifiable” instruments, the exogenous cost shifters.

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed bundle-
level market shares subject to sampling error and robust to price endogeneity. We account for sampling
error to accommodate the typical necessity of computing bundle-level market shares from a sample
of household-level purchases (as in Gentzkow (2007), Kwak et al. (2015), Grzybowski and Verboven
(2016), Ruiz et al. (2017), and Ershov et al. (2018)). The estimation of demand for bundles is subject
to a well known challenge of dimensionality: the number of market-product specific average utility pa-
rameters and of demand synergy parameters can be too large to be handled numerically (Berry et al.,
2014). We tackle this practical bottleneck by a novel demand inverse designed to handle complemen-

2For classic treatments of pure components and mixed bundling, see Adams and Yellen (1976), Lewbel (1985), McAfee
et al. (1989). For more recent contributions, see Armstrong and Vickers (2010), Chu et al. (2011), Armstrong (2013),
and Zhou (2017).
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tarity among products in models along the lines of Gentzkow (2007)’s. For any given value of the other
parameters, we establish a one-to-one mapping between the observed product-level market shares and
the market-product specific average utilities.> This enables to concentrate out of the likelihood the
potentially large number of market-product specific average utilities and to substantially simplify the
MLE’s numerical search: in our application, the numerical search is reduced from approximately 12000
to 130 parameters. We show that our assumptions for global identification guarantee consistency and
asymptotic normality of this estimator.

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the USA. We
revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementarity among different
RTE cereal brands in demand estimation.* The households in our data are observed to purchase two
or more different brands of RTE cereals in approximately 20% of their shopping trips. Our data record
purchases rather than consumption: the purchases of different RTE cereal brands during the same
shopping trip can clearly be motivated beyond synergies in consumption. For example, if households
face shopping costs, one-stop shopping may be preferred to multi-stop shopping (Pozzi (2012) and
Thomassen et al. (2017)). Moreover, if households delegate grocery shopping to one person, preference
for variety may lead to the purchase of multiple brands on any shopping trip to accommodate the
different needs of the household (Hendel (1999) and Dubé (2004)).

Our model encompasses these alternative mechanisms: the demand synergies are catch-all pa-
rameters that may reflect, for example, synergies in consumption, shopping costs, and preference for
variety. We try to distinguish empirically the contribution of some of these possible mechanisms to
the estimated demand synergies. Our results show that demand for RTE cereals exhibits substantial
Hicksian complementarity and that around 75% of it does not seem to be explained by shopping costs
or by preference for variety. We compare our estimation results from the full model to those from a
model of demand for single brands (similar to Nevo (2000, 2001)) and show that ignoring Hicksian
complementarity may result in misleading demand estimates and counterfactuals (see also Fosgerau
et al. (2019)). Estimates from the full model support the classic Cournot (1838)’s insight that, in the
presence of Hicksian complementarity, mergers can be welfare enhancing; while those from a standard
model that does not allow for it predict that mergers are detrimental for consumer surplus.

Related Literature. There is a growing empirical literature leveraging the estimation of demand
for bundles. Manski and Sherman (1980) study households’ choices of motor vehicle holdings; Hen-
del (1999) studies preference for variety for personal computers, while Dubé (2004) and Chan (2006)
for soft carbonated drinks; Nevo et al. (2005) study the decision of libraries to subscribe to eco-
nomics and business journals; Gentzkow (2007) and Gentzkow et al. (2014) investigate competition
and complementarity among newspapers; Augereau et al. (2006) the returns from adoption of techno-
logical standards; Liu et al. (2010a) and Grzybowski and Verboven (2016) the complementarity among
telecommunication services; Crawford and Yurukoglu (2012) and Crawford et al. (2018) the problem

*Demand inverses at the bundle-level can simply rely on the classic results by Berry (1994) and Berry et al. (2013)
as long as the bundles in the demand system are substitutes. However, if some of the products are complements, these
classic results do not imply the invertibility of the demand system at the product-level. Our product-level demand
inverse is instead based on the P-matrix property of Gale and Nikaido (1965), which does not require the products to
be substitutes.

*Following Samuelson (1974) and Gentzkow (2007), we rely on the classic Hicksian notion of complementarity: we
consider two brands as complements whenever their cross-price elasticity of (compensated) demand is negative. For
recent discussions on complementarity in empirical models of demand, see Manzini et al. (2018), Dubé (2019), and Iaria
and Wang (2019b).
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of bundling and vertical restraints in cable television, while Ho et al. (2012) in the video rental indus-
try; Kretschmer et al. (2012) study the adoption of complementary innovations; Lee et al. (2013) the
complementarity between milk and RTE cereals; Song et al. (2017) the relationship between mergers
and inter-firm bundling in the pharmaceutical industry; Ruiz et al. (2017) propose a machine learning
model of demand for bundles, Thomassen et al. (2017) study the problem of transportation costs in
grocery shopping; Ershov et al. (2018) the complementarity between potato chips and soft carbonated
drinks; and Fosgerau et al. (2019) the complementarity between different brands of RTE cereals. We
add to this empirical literature by providing novel identification and estimation methods for models
along the lines of Gentzkow (2007)’s, specifically accounting for price endogeneity and alleviating the
challenge of dimensionality inherent in estimation.

The global identification of non-linear models is notoriously complex to demonstrate (Newey and
McFadden (1994) and Lewbel (2019)). Researchers typically resume to non-verifiable abstract con-
ditions (Rothenberg (1971), Bowden (1973), and Komunjer (2012)) or focus on weaker identification
concepts altogether, such as local identification (Rothenberg (1971), Sargan (1983), and Lewbel (2012))
or partial identification (Manski (1989), Manski (2003), and Chesher and Rosen (2017)). We contribute
to this literature by providing sufficient conditions for global identification that are testable (on the
basis of partial identification methods), rooted in economic theory (to address price endogeneity), and
weaker than the classics (Rothenberg (1971), Bowden (1973), and Komunjer (2012)). The relative
advantage of our conditions follows from a real analytic property we show to be satisfied by mixed
logit models given any distribution of random coefficients (parametric or non-parametric), which allows
us to relax the strict concavity of the likelihood function (or similar criterion functions). Fox et al.
(2012) and il Kim (2014) also exploit the real analytic properties of logit models to achieve global
identification, but in more restrictive frameworks. il Kim (2014) shows the real analytic property for
multinomial logit and for nested logit models, while Fox et al. (2012) show it for mixed logit mod-
els with random coefficients defined over compact supports—ruling out, e.g., normal and log-normal
distributions.

In the context of identification of models of demand for bundles, we add to the discussions by, for
example, Fox and Lazzati (2017) and Allen and Rehbeck (2019a). Fox and Lazzati (2017) propose
sufficient conditions for the non-parametric identification of demand for bundles (and binary games
of complete information) on the basis of additively separable excluded regressors. Allen and Rehbeck
(2019a) instead study the non-parametric identification of a large class of demand models, among which
demand for bundles, by exploiting variation in the substitution and complementarity patterns among
different products. While these papers make fewer distributional assumptions and can be preferred in
situations with small choice sets and exogenous regressors, our arguments apply more readily to cases
with larger choice sets, endogenous prices, and in general lead to practically convenient estimators.

Our mixed logit model of demand for bundles can be seen as a special case of the general non-
parametric framework by Berry and Haile (2014). Berry and Haile (2014)” identification argument relies
on the availability of observed instruments both to pin down the distribution of random coefficients
and to address price endogeneity. In contrast, Gentzkow (2007)’s utility structure allows us to propose
a complementary identification strategy based on wunobserved instruments: we rely on the existence
of “unobserved” but “identifiable” cost shifters and on conditional symmetry restrictions among the
average demand synergies across markets. While less general in abstract terms, our arguments are more
applicable to cases with limited observability of instruments and give rise to sizeable computational
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advantages in estimation.’

Our estimator contributes to the modern literature on the estimation of demand systems started
by Berry et al. (1995) (henceforth BLP). For example, Berry et al. (2004b), Freyberger (2015), and
Armstrong (2016b) investigate the asymptotic properties of GMM estimators of demand systems with
endogenous prices. While these GMM estimators are more widely applicable provided the availability
of observable instruments, in the context of demand for bundles our MLE represents a numerically
convenient alternative in which the instruments need to exist but do not need to be observed. More
recently, Compiani (2019) proposes a non-parametric estimator of demand models that accommodates
complementarity among products. There is a trade-off between our proposed estimator and Compiani
(2019)’s. His non-parametric estimator is more flexible than ours, but it is subject to a curse of
dimensionality that may constrain its applicability to settings with small choice sets. Our MLE is less
affected by dimensionality and can be implemented with larger choice sets.

Since Berry (1994), the identification and the estimation of demand systems with endogenous
prices has been relying on the ability to “invert” market share equations to uniquely determine the
implied product-specific average utilities—the so called demand inverse. A standard requirement for
the invertibility of demand systems is for the products to be substitutes, see Berry et al. (2013). This
requirement can be problematic in contexts with complementary products: for example, in a model
of demand for bundles of newspapers, Fan (2013) rules out by assumption any complementarity in
order to rely on the classic demand inverse by Berry (1994) at the newspaper-level. Our novel demand
inverse addresses this issue and allows to invert product-level market share equations in the presence
of complementarity.

Organization. In the next section, we introduce model and notation. In sections 2.3 and 1.4,
we present—respectively—our local and global identification results. In section 1.5, we propose our
demand inverse and a related MLE. In section 1.6, we explore the practical relevance of our methods
with an empirical illustration. In section 1.7, we conclude the paper with some final remarks. In
(online) appendix section A, we report all the proofs and additional results.

1.2 Model and Notation

Imagine a cross-section of 1" independent markets denoted by T, where each market ¢t € T is populated
by ¢ = 1,...,I individuals. Individual ¢ in market ¢ makes purchases exclusively in market ¢ and is
a different person from individual ¢ in any other market ¢ # t. For individuals in market ¢, let J;
be the set of j = 1, ..., J; market-specific products that can be purchased in isolation or in bundles.
Let C; = Cy1 U {0} be the choice set specific to market ¢, which includes: the collection of “inside”
options Cy; and the “outside” option j = 0 (i.e., the option not to purchase any product). In turn, the
collection of inside options is defined as C;; = J; U Cyo, where Cyo denotes the set of market-specific
bundles of products. The set of all available bundles across all markets is Cy = uthlctQ. We refer to
the cardinality of these sets as: C; = |Cy|, Cy1 = |Cy1|, Cia = |Cy2|, and Co = |Cy|. We denote by b
any element of the choice set C;, whereby some abuse of notation b may refer to a bundle, a single
product, or the outside option.

5The classic identification argument based on observed instruments requires the performance of high-dimensional
demand inverses at the bundle-level, while our argument based on unobserved instruments allows for the performance
of demand inverses only at the product-level. In practice, this implies the numerical inversion of a lower-dimensional
demand system and leads to large computational advantages.
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The indirect utility of individual ¢ in market ¢ from purchasing product j is:

Uitj = witj + €itj
= 0¢j + pitj + €ij and (L.1)

Uito = €it0,

where w;t; = 0+ itj, 0¢5 is the market t-specific average utility of product j € Jy, pir; is an unobserved
individual-specific utility deviation from d;;, while €;;; and €;;0 are error terms. Throughout the paper,
we treat the market t-specific average utilities as parameters to be identified and estimated. One can
however reduce the number of parameters by using observable characteristics and making additional
functional form assumptions.®

To ease exposition, when b is a bundle, we refer to the products it contains as j € b. Following

Gentzkow (2007), the indirect utility of individual ¢ in market ¢ from purchasing bundle b € Cys is:

Uit = Z Uity + Db + €irb
jeb
= > (8tj + pit) + T + (Tirb — Ty) + €t
Jeb (1.2)

= 0+ T+ | Y it + G | + €irp
jeb jeb

= 6t (L'tb) + Hitb + Eitb,

where 'y, is the individual-specific demand synergy among the products in bundle b, which we spec-
ify as I'jsb = ' + CGitb- ['sp is the average demand synergy for the products in bundle b among
the individuals in market ¢ and (;p i1s an unobserved individual-specific deviation from this average.
ob(Tep) = > jeb 0tj + I'p is the market ¢-specific average utility for bundle b, p, is an unobserved
individual-specific deviation from s (I'sp ), and ;s is an error term.

The demand synergy parameter I';, captures the extra utility individual ¢ in market ¢ obtains from
purchasing the products in bundle b jointly rather than separately. When I';, > 0, the utility of the
bundle is super-modular with respect to the utilities of the single products and, from i’s perspective,
joint purchase brings more utility. Conversely, when 'y, < 0, from 4’s perspective the separate pur-
chase of each j € b brings more utility than their joint purchase. As we discuss below, in applications
with observable bundle-specific characteristics (e.g., bundle-specific discounts), one can specify I';p in
terms of these characteristics.

We now turn to the distributional assumptions for the unobserved components of utility: ;b =
> jeb Mitj + Citp and eip for each b € C;. We assume that p;p can be specified as a function of
a vector of random coefficients (B, so that i = pin(Bit), and that B is distributed according to
F(;;%F), where Y is a finite-dimensional parameter in a connected compact set Oy, C RF. As is
typical, b (+) can also be a function of observable demographics (e.g., i’s income) and/or observable
market-, product-, and bundle-specific characteristics (e.g., the price of bundle b in market ¢). The
error term g, is assumed to be i.i.d. Gumbel.

Even though we make the assumption that ey, is i.i.d. Gumbel, as shown by McFadden and
Train (2000), under mild regularity conditions any discrete choice model derived from random utility

5We provide more detail on this while discussing price endogeneity at the end of this section.
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maximization can be approximated arbitrarily well by mixed logit models of the kind we consider. In
addition, note that our mixed logit model is a generalization of Gentzkow (2007)’s, which restricts
F(-;XF) to be a normal distribution and 'y, = I'y, for all i’s and t’s. We add a layer of unobserved
heterogeneity to the individual preferences specific to each bundle: for reasons unobserved to the
econometrician, the products in any bundle can exhibit positive demand synergies for some individuals
and negative for others.

Denote the market ¢-specific average utility vector by 0;(I't) = (dm(I'b))bec,, and the vector
collecting all the market t-specific average demand synergies by I';. §;(T';) does not only list the ¢-
specific average utilities of bundles b € Cyy, but also those of the single products b € Cy \ Cyo
(where Cy1 \ Ci2 = Jy): given that any single product has zero demand synergies, our notation for
b =j € Cyu \ Cp is just (') = 0¢5. Given our distributional assumptions, the market share
function of b € C; for individuals in market ¢ takes the mixed logit form:

s (54(T1); Sp) = / 550 (3(Te), Bie)AF (Bie; Sp)

5tb(Ftb +1ien (Bit)
/Zb/ b/)+Mitb’(5it)dF(Bit;EF)’

/
eCy etb

(1.3)

where s;i(0:(T'¢), Bit) is individual i’s purchase probability of b in market ¢ given [;.

Complementarity and Substitutability. Following Samuelson (1974) and Gentzkow (2007), we
rely on the classic notion of Hicksian complementarity: we consider two products as complements
(substitutes) whenever their cross-price elasticity of demand is negative (positive).” In a model sim-
ilar to (2.3) with two products, j and k, and constant demand synergy parameters Cie) = Lo
Gentzkow (2007) shows that j and k are complements (substitutes) whenever I'¢; 1y > 0 (I'(jx) < 0).
On the one hand, with more products and heterogeneous demand synergies, the relationship between
Hicksian complementarity and I';y is less clear-cut and the topic of ongoing research (laria and Wang,
2019b). On the other, though, standard models of demand for single products—obtained by constrain-
ing I'ysp, = —oo for all ¢’s, t’s, and b € Cpo—rule out the possibility of Hicksian complementarity and
force any two products to be substitutes. In this paper, we take a pragmatic approach and regard the
complementarity or substitutability between products as an empirical question to be answered after
the estimation of model (2.3).

Interpretation of Demand Synergies. Model (2.3) is agnostic about the exact meaning of Iy,
which is a catch-all parameter that can reflect, for example, synergies in consumption, shopping costs,
and preference for variety. In Gentzkow (2007)’s demand for on-line and printed newspapers, I
captures synergies in the consumption of the different news outlets. However, demand synergies—and
consequently Hicksian complementarity—can also arise, for example, because of shopping costs (Pozzi
(2012) and Thomassen et al. (2017)) or preference for variety within households (Hendel (1999) and
Dubé (2004)). If individuals face shopping costs every time they visit a store, they may prefer to
purchase all of their products at once rather than over several trips (one-stop shoppers). Moreover,

"In our application, we rule out income effects so that gross complementarity (in terms of elasticities of Marshallian
demands) and Hicksian complementarity (in terms of elasticities of compensated demands) coincide. For discussions
about complementarity in models of demand for bundles similar to those studied here, see Manzini et al. (2018), Dubé
(2019), and Iaria and Wang (2019b).
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if households delegate grocery shopping to one person, then preference for variety may lead to the
purchase of multiple products on any shopping trip to accommodate the different needs within the
household. Our model can rationalize shopping costs with positive demand synergies and, as we
show in Appendix A.1, preference for variety with some additional structure on the demand synergy
parameters.

Random Intercepts and Demand Synergies. As argued by Gentzkow (2007), the random inter-
cepts (,uitj);]t:l play an important conceptual role in the identification of demand synergies in mixed
logit models of demand for bundles. Without random coefficients, the Independence from Irrelevant
Alternatives (ITA) property would imply that the relative predicted market shares of any two bundles
do not depend on the characteristics of any other bundle. Removing from the choice set a bundle
almost identical to the preferred one (e.g., same products but one) or a bundle completely different
from it (e.g., only different products) would equivalently have no impact on the remaining relative
predicted market shares. The random intercepts mitigate this limitation in an intuitive way: the in-
direct utilities of all bundles including product j will share the random intercept p;:;, so that bundles
with a larger overlap of products will also have more correlated indirect utilities. Disentangling de-
mand synergies from these random intercepts is the key identification challenge in models of demand
for bundles: as shown by Gentzkow (2007), not accounting for possible correlations across the indi-
rect utilities of bundles with overlapping products may lead to finding spurious demand synergies and
Hicksian complementarities.

Average Utilities and Price Endogeneity. We treat the average utility d;; as a fixed effect to
be identified and estimated, being unspecific about its exact dependence on price and other observed
or unobserved market-product specific characteristics. For example, following Berry (1994) and BLP,
a classical linear specification is d¢j = 247 + apsj + &, where 245 is a vector of exogenous observed
characteristics, p;; is the observed price, (7, o)l is a vector of preference parameters, and §tj s a
residual unobserved to the econometrician but observed to both individuals and price-setting firms. In
this context, endogeneity arises whenever prices are chosen by firms on the basis of ({tj)}]t:l.

Our local identification arguments are robust to cases of price endogeneity in which, for any bundle
b, the source of endogeneity is confined to o, (') = Ejeb 0tj + 'y, with T'ypy constrained to be
constant across markets with the same market-bundle specific observables. In particular, as detailed
in Assumption 2 below, we require I'yp, = I', + g(@4b, Prb; 2g), where I'y, is a bundle-specific fixed effect
and g(-,-;X,) is a function parametrized by X, of the observed characteristics x;, and of the observed
price surcharge/discount py, (the difference between the price of bundle b and ) jeb ptj). For example,
one can specify g(-,-;2g) as g(Zb, Ptb; T, ) = TibT + app. While our assumptions on I'y, allow dy;
to be any arbitrary function of (x¢j,pj, & ), they restrict the functional form of the market-bundle
specific unobservables on the basis of which firms choose prices. For instance, with the above linear
specifications for d¢; and I'y, we have 0up(I'ib) = (2tb+ - jcp Ty) T+ (P +D_ e Prj) + 2 jep &5+ b,
with the market-bundle specific unobservable restricted to > jeb &tj + b

Our global identification arguments further require restrictions on d;; and on the price-setting
model. As detailed in section 1.4.2, we require: (i) the average utility d;; to be additively separable
in &; and an arbitrary function of (x¢j,p:;) and (i) the existence of exogenous cost shifters that are
unobserved to the econometrician but identifiable from observed market shares and prices.
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1.3 Local Identification

Suppose that the econometrician observes without error the market shares 44, of each b € Cy; for
each independent market ¢ = 1,..., 7.8 We focus on the case of a fixed number of products J; and of
a fixed number of independent markets 7. We do not consider the case of panel data with repeated
observations for each market. Similar to Berry and Haile (2014), our notion of identification concerns
the conditions under which

sb(0;(T); Xp) = 3
subject to Iy, = &7y, (T) — Y 61, b € Cio (1.4)
j€b
has a unique solution for t € T and b € Cy, where 6;(I"}) = (93, (I'p))bec,, and s (6;(I}); X%) is
defined in (2.3). Define the J; x 1 market t-specific vector x5, = (6¢)je3,, and the Cy x 1 market
t-specific vectors s¢(;; Xp) = (stb (s X%)) e, and 3¢ = (91b)becy,

Definition 1. Model (2.3) is locally identified if and only if there exists a neighbourhood V' of the true
parameters (013, ..., 073, L1, ..., I'r, X ) such that (613,,....073,, 1, ..., 7, ) is the unique solution
to (1.4) in V.

Definition 1 constrains our discussion of identification to the existence of a unique solution to system
(1.4) in mixed logit model (2.3). We will refer to the existence of multiple solutions to this specific
problem as to lack of identification. Because of the non-linear nature of model (2.3), we start by
studying the problem of local identification. In section 1.4, we then investigate global identification,
which requires stronger assumptions.

Building on Berry et al. (2013), our identification arguments rely on demand inverses derived from
(1.4). Define the inverse market share for market ¢t € T as:

i (52F) = (si (2F)) pe,, - S = R, (1.5)
where sa)l(-; Y r) is the inverse market share for market ¢t = 1,...,7 and b € Cyy, and

St = {(4m)becn : 4m € (0,1), > s <1}
beCy1

is the set of all feasible market share vectors for market ¢ € T. The next Assumption imposes some
regularity conditions on the parametric distribution of the random coefficients (first requirement) and
that the products belonging to any bundle can also be purchased individually (second requirement).

Assumption 1.

1. The density of Bit, %, is continuously differentiable with respect to X' for any Bi.

2. If b € Gy, then j € Jy for any 5 € b.

8This is only for the purpose of identification, in estimation we consider observed market shares subject to sampling
€error.

9Sher and Kim (2014), Allen and Rehbeck (2019a), and Wang (2019) study a different identification problem, where
only the product-level market shares, rather than the bundle-level market shares, are observed.
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The next Lemma verifies the sufficient conditions by Berry et al. (2013) for the bundle-level demand
inverse (1.5) to be a continuously differentiable function.

Lemma 1.

o For any given X' € Ox,, the inverse market share (1.5) is a function: for each 3, € Sy, there
exists a unique &, € RO such that s;(6}; %) = 4.

e Given Assumption 1, the inverse market share, 5;1(52;2’};), s continuously differentiable with
respect to (3;,%%) in a neighbourhood of (3, XF).

Proof. See Appendix A.2. O

It is not hard to see that without further restrictions on I'; or additional external information, model
(2.3) can hardly be identified. In this paper, we build on Gentzkow (2007)’s insight that when I'y = T,
the availability of purchase data for multiple markets will help identification, and propose the following
restriction.

Assumption 2. Ty, = TI'y + 9(@m, b Xg) for t € T and b € Cyo, where I'y, is a bundle-specific
fized effect, xy a vector of observed market-bundle specific characteristics, py, an observed price
surcharge/discount for the joint purchase of the products in the bundle, and g(-,-;3,) a function of
(Ztb, Ptb) known up to and continuously differentiable with respect to ¥, € Os, C RD,

Assumption 2 restricts the variation in 'y, across markets to be fully captured by the variation in
the observables (x4p,prn) through the parametric function g(a4p, pin; X4). This allows to reduce the
dimensionality of the collection of average demand synergies from ZtT:1 Cis to D+ Cs and in particular
to treat I', as a bundle-specific fixed effect to be identified and estimated. Note that, even though
Assumption 2 requires all markets with given (x4, psp) to have the same average demand synergy
I'v + 9(ztb, Ptb; Xg), each individual in each market is allowed to have a specific demand synergy
deviation (i, so that I'yp may potentially differ across individuals for any given market and bundle.
Moreover, as we illustrate below, in applications with a large number of markets with overlapping choice
sets, Assumption 2 potentially leads to many over-identifying moment restrictions and can be weakened,
so to allow for more flexible specifications of I'y,. In those cases, one could for example specify
(Ftb72tg) = (Flbaglg) fort =1,..,11, (l‘tbjtg) = (ng,ZQQ) for t =11+ 1,...,75, and so on until
each ¢ belonged to one of @ groups of “similar” markets with (I'p, X14) # (I'ab, X2g) 7 .- # (Tob, 2Qq)-

Remark 1. Assumption 2 gives rise to testable implications and can be verified in practice. In Ap-
pendiz A.7, we present a specification test that builds on partial identification methods. Essentially, the
proposed test checks whether there exists at least one profile of parameters (013,, ..., 073, 1, ..., T, XF)
satisfying Assumption 2 that solves demand system (1.4). A rejection of the test is evidence against
Assumption 2 and highlights its incoherence with the daota.

The presence of random coefficients, i.e. dim(Xr) > 0, leads system (1.4) to have more unknowns than
equations, introducing an identification problem not present in multinomial logit models. In general
demand systems where the indirect utilities of different alternatives have no particular relationships,
this dimensionality issue is typically addressed by including additional instruments beyond those nec-
essary to address price endogeneity. However, in the case of Gentzkow (2007)’s demand for bundles,
the specific structure that links the indirect utilities of bundles to those of single products allows to
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reduce dimensionality from within the system. Assumption 2 embodies this strategy: by imposing a
symmetry restriction among the average demand synergies across markets, the model can be identified
without requiring additional instruments to those necessary to address price endogeneity.

Due to Lemma 1 and Assumption 2, at the true parameters Yp and market shares 4;, one can
re-express the first line of system (1.4) as:

Z 6tj + Fb + g(xtb,ptb; Eg) = St_bl(dt; EF>, for bundle b € CtQ
j€b (1.6)
btj = st_jl(ét; Y ), for product j € b.

By substituting (1.6) into the second line of (1.4), one gets:

Tp = s (3:5F) — Y _ 555 (36 BF) — 9(2em, P Bg), (1.7)
j€b

for t € T and bundle b € Cy. Note that the left-hand side of system (1.7) does not depend on market
t, while the right-hand side does. Consequently, at the true parameters ¥ = (X, %), true market
shares of any two markets, 4; and 4y, and any b € Cio N Cyo, one obtains:

%ﬁ(%;EF%—E:Sg%dﬁEF)—g@mmpm;Eg):SE&@ﬂ;EF%—EZSE;Qﬂ;EF)—QQWbJMb;Eﬁ-(18)
jeb jeb

Our identification strategy exploits all such moment conditions for any pair of markets ¢ # ¢’ and
any b € Cpo N Cyg. As we will see below, under certain conditions, these moment restrictions can
uniquely determine the true parameters ¥ = (Xp,%,). Then, due to (1.7), the true parameters
Y = (¥p,X,) can uniquely determine the remaining portion I'y, of the true demand synergies, for
any b € Cy. Denote g:(2g) = (9(2tb, Ptb; Xg))bec,,- Finally, because of Lemma 1, one can uniquely
recover 6¢(I" + g1(23y)) = (0t1, -+, 6tsy, (96 (b + 9(Tib,s Pib; Xg)) ) beCys)-

Note that for any b € Cs, there exists ¢t such that b € Cy. Then, for any b € C,, define
Ty, = {t : b € Cp,t € T}. If Ty, has more than one element, we order them from ¢; to tiry|- By
applying the right-hand side of (1.7) to ¢, and to t,4+1 and by taking the difference, fora = 1, ..., | Tp|—1,

we then obtain |Tp| — 1 moment conditions:!?

mb( /15‘72;; 5) = St b dtaazl Zst 7 dtaazl — S +110('5ta+1>2/ )
j€b
|Tb‘_1 (19)
+ 3 80t Gt D) + 9@y by Pryrbi Zp) — 9(Et,b, Diubi T) 7
j€b a=1

mb(Z’; 5)‘2/:2 =0.

Moment conditions (1.9) rely on relationship (1.7) and the fact that markets ¢, and t,y; have the
same bundle-specific fixed effect I'y,. As a consequence, at the true parameter values ¥/ = X,
mp (Y 3)|s=x = ([p—T )lTb| "' = 0. Define m(X') = m(¥'; 4) as a function of &’ = ( 7 2y) € Ox =

0For notational simplicity, we suppress the dependence of the moment conditions from the market-bundle specific
observables (xtb,ptb)thl.
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Ox, x Oy, that stacks together the above moment conditions for all the bundles with [T | > 2: m(X') =
(mb (X' 9))bec,, Ty |>2- We then have m(X')|sy—s = 0, which consists of } e, 1,2 (|Tb| — 1) mo-

ment conditions with P + D = dim(X’) unknowns.

In what follows, inspired by Rothenberg (1971), we show that full column rank condition rank( 877522,

dim(X) = P + D is necessary and sufficient for identification among the rank regular ¥ € Ox.1h12

TR om(3)
Rank regularity is a broader concept than full column rank: if =57

sv_y, is of full column rank, then

¥ is rank regular.'?

Theorem 1. Local Identification: Suppose Assumptions 1 cmd 2 hold, and X € Oy, is rank reqular
for 8”5(5 ), Then, model (2.3) is locally identified if and only zf dE’

1s of full column rank.

=%

Proof. See Appendix A.5 O

Theorem 1 establishes the link between the number of markets with overlapping choice sets and the
local identification of model (2.3). Note that, if the number of markets with bundle b available in
the choice set increases, so that |T| becomes larger, then the number of moment conditions in (1.9)
increases. In this sense, Theorem 1 formalizes the intuition that having data on additional markets
with overlapping choice sets, or analogously on larger overlapping choice sets for certain markets, will
help identification. Specifically, suppose that X is rank regular and that its dimension, P+ D, is greater
cannot

o 0
than the number of moment conditions, } ,cc, 1y >2 (|Tb| — 1). Then, the rank of ”5(2, ) S

exceed the number of its rows, > ycq, 1y >2 (Tl — 1), which in turn is smaller than the number of

its columns, P + D. As a consequence, %EE,/)
identified.

While theoretically useful, the concept of rank regularity is abstract and not easily verifiable. The

s_y, i not of full column rank and model (2.3) is not

next Corollary shows that whenever the dimension of ¥ is larger than the number of moment conditions
: . om(>)
and the Jacobian matrix =557~

identified.!*

is of full row rank, then ¥ is rank regular and model (2.3) is not

3=

Corollary 1. Lack of Local Identification: Suppose Assumptions 1 and 2 hold, and the number of
moment conditions, Y e, ity >2 (Tl — 1) is strictly smaller than the dimension of X, P+D. Then,

if the Jacobian matriz 8”5(22//) is of full row rank, model (2.3) is not locally identified.

X=X

Proof. See Appendix A.6. O

am(2’)

1% € Oy is rank regular for the continuously differentiable function S if there exists a neighbourhood U of ¥

such that rank(am(z/)) rank(ang/)) si_y, for each ' € U.

12Rothenberg (1971) shows the usefulness of the concept of rank regularity for local identification in non-linear models.
Our Theorem 1 adapts Rothenberg (1971)’s Theorem 1 (p. 579) to our environment. Note that the concept of rank
regularity is not vacuous in our context and there is plenty of such points: the set of rank regular points of 87:;;2,,) is

open and dense in @g For a proof of this property, see Appendix A.3.
131n fact, [%22/’)} [am(z } has positive determinant at ¥’ = . Moreover, oam(a) 4 continuously differentiable with

o5
respect to ¥'. Then, the determinant of [amg )} [BTS(EZ, )} is also continuous with respect to ¥’ and therefore positive

in a neighbourhood of ¥’ = 3. As a consequence, 8”5”(22,,) is of full column rank in a neighbourhood of ¥’ = ¥ and has

constant rank P + D in the same neighbourhood of ¥/ = .
" Note that lack of local identification is the strongest negative result one can get: if the model is not locally identified,
then for sure it will not be globally identified.

Msros
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1.4 Global Identification

Up to this point, we have focused on the local uniqueness of solutions to system (1.9). Without any
further restriction, the set of solutions to system (1.9) over the entire domain of parameters may
not be singleton. There are at least two approaches to dealing with this global multiplicity. Partial
identification, which entails the characterization of the set of global solutions to system (1.9), i.e.
the identified set, and global identification, which consists in strengthening the conditions for local
identification until the identified set is singleton over the entire domain of parameters. We opt for the
second approach and, in what follows, discuss sufficient conditions for global identification. Our choice
is motivated by estimation convenience: as detailed in section 1.5, our global identification conditions
imply a convenient MLE.

Denote by m(X'; Tg) moment conditions (1.9) constructed from the subset of markets To C T and
evaluated at ¥/ = (¥, ¥). The starting point of our global identification argument is to restrict the
number of solutions to system (1.9) with the following testable Assumption:

Assumption 3. There exists To C T such that m(X'; Tg) = 0 has a finite number of solutions in Oy.

Assumption 3 alleviates the severity of the identification problem to a finite collection of observationally
equivalent candidates. All of our global identification results go through also in the more general case
of a countable collection of solutions. However, for notational simplicity, we limit our exposition to the
finite case. Assumption 3 implies local identification, but is weaker than the typical rank conditions
used to achieve global identification. For example, the classic results by Rothenberg (1971) require
the Jacobian of the gradient of the log-likelihood function to be non-singular everywhere, so that the
log-likelihood function is strictly concave (Bowden, 1973). While strict concavity is guaranteed by logit
and probit models (Amemiya (1985) pp. 273-274), it is not by mixed logit models. Coherently with
mixed logit model (2.3), Assumption 3 does not impose strict concavity of the log-likelihood function.

Remark 2. While Assumption 3 is high-level, in Appendiz A.7 we present a verifiable sufficient con-
dition that implies it (Proposition /): % 18 of full column rank when evaluated at any of the
solutions to m(X'; To) = 0. Building on the partial identification methods by Chernozhukov et al.
(2007) and by Romano and Shaikh (2012), in Appendiz A.7 we also propose a testing procedure to
verify this sufficient condition in practice. A rejection of the test is evidence in support of Assumption

3.

Assumption 3 is not new to the global identification literature and is also used, for example, by
Komunjer (2012). To obtain global identification, Komunjer (2012) additionally requires the moment

15

function to have non-negative Jacobian and to be proper.”> We avoid these further restrictions by

relying on the following real analytic property of the mixed logit model.'®

Theorem 2. Real Analytic Property: For any F, s.(0; F) is real analytic with respect to & in
RE fort=1,..,T.

Proof. See Appendix A.8. O

'5A function f : X — Y between two topological spaces is proper if the preimage of every compact set in Y is compact
in X.

16A function f: X — R is real analytic in X if for each 2o € I, there exists a neighbourhood U of xo such that f(x)
£ (zg) ({E _

n!

is equal to its Taylor expansion Y >~ x0)" for any x € U.
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Theorem 2 shows the market share function of the mixed logit model to be real analytic with respect
to the average utilities given any distribution of random coefficients (parametric or non-parametric).
Fox et al. (2012) and il Kim (2014) also exploit the real analytic properties of logit models to achieve
global identification, but in more restrictive frameworks. il Kim (2014) shows the real analyticity of
multinomial logit and nested logit models (section IV), while Fox et al. (2012) show it for mixed logit
models with random coefficients defined over compact supports (Lemma 5 and section 6)—ruling out,
e.g., normal and log-normal distributions.

While our local identification results do not rely on the nature of the variation in d:3,, our global
identification depends on whether the variation in d.3, is exogenous across markets: price endogeneity
restricts this variation and leads to additional difficulties. To overcome these difficulties, we propose
the use of mild restrictions on the price-setting model. In what follows, we treat separately the simpler
case of exogenous variation in d;3,, and that of price endogeneity.

1.4.1 Exogenous Average Utilities

Here we consider the case of exogenous variation in d;3, across markets. Given Assumption 3, denote
the finite set of solutions to m(¥’;Tg) = 0 in Ox by S = {¥" : r = 0,..., R}, where X0 = (X}, X9)
represents the true value ¥ = (Xp,%,). On the basis of Lemma 1, define the corresponding I'" for
r = 0,1,...,R. The real analytic property of s;(d;; Xz) allows to eliminate the extra solutions X",
r = 1,..., R, by exploiting the additional variation provided by d;3, for t € T \ Ty. Intuitively, the
real analytic property guarantees that S is non-singleton, i.e. lack of identification, only on a union
of R zero measure sets of d3,, t € T \ To. Because the union of any finite number of zero measure
sets has still zero measure, the real analytic property—combined with Assumption 3—ensures global
identification almost everywhere given the additional variation provided by d3,, t € T \ T.

Define the set of matrices M = {M; : t = 1,...,T}, where each M; is a matrix of dimension
Cya x Cy1. Remember that Cyo is the number of bundles and Cy the number of inside options (i.e.,
bundles plus single products). M; is made of two sub-matrices: My = [M}, M?]. M} is a matrix of
—1’s and 0’s of dimension Cys X Ji, where the columns represent single products and the rows bundles.
Each row of ]\4Z-1 identifies with —1’s the product composition of the corresponding bundle. M}? is
instead an identity matrix I of dimension Cis X Cyo, with the rows corresponding to bundles. For
example, suppose the choice set (without outside option) in market ¢ to be {1,2,3,(1,2),(1,3),(2,3)}
and the corresponding average utility vector to be &; = (81, dr2, 0¢3, 0¢(1,2), 0¢(1,3) 5t(273))T, with Cpp =6
and Cy = 3. Then,

-1 -1 0 1 0 0
Mi=|-1 0 -1 0 1 0
0 -1 -1 0 0 1

Remember that g;(3,) = (9(2tb, Ptb; Xg))bec,, and that §;(I'+g:(34)) = (0t3,, (0tb(Tb+9(Ttb, Pib; Xg)) ) beCia )
where 6 (I'p + g(2tb, Dib; Xg)) = Zjeb 0tj + I'b + 9(z4b, Pro; Xg). For r =1,..., R, define:
AP = {(63,)sem\1, : 3t € T\ Ty such that Mys; " (s:(5(T0 + g:(39)); £%): 5F) # I + g (S5)}-

Denote by 6y, the true value of &3, for which s;(6:(I° + g¢(39));X%) = 4 and define AP =
MNp=1 RA}nD.

=1,...,
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Theorem 3. Global Identification with Exogenous Prices: Suppose Assumptions 1-3 hold and
Oy is compact. Then, it follows that:

e System (1.9) has a unique solution in Ox and model (2.3) is globally identified if and only if
(5?Jt)teT\T0 e A

o If AIP £ () for r =1,..., R, then the Lebesgue measure of xteT\TORJf \ AP s zero.

Proof. See Appendix A.9. O

While the first result of Theorem 3 provides necessary and sufficient conditions for global identification,
the second underlines their practical usefulness. The set AP is “very large” and will include the true
(6?Jt)t€T\T0 in “almost all” cases: global identification will be achieved almost everywhere.

1.4.2 Endogenous Prices

We now extend the global identification results from Theorem 3 to the case of endogenous prices,
where the variation in d,3, across markets is restricted by the price-setting behaviour of firms. We add
mild restrictions to the price-setting model and assume the existence of exogenous cost shifters that
are unobserved to the econometrician but identifiable from observed market shares and prices. Berry
and Haile (2014) rely on a similar restriction (Assumption 7b, p. 1769) for the global identification
of a simultaneous system of demand and supply by instrumental variables. However, because of the
specific utility structure of model (2.3) under Assumption 2, our argument is different and does not
require the instrumental variables (i.e., the cost shifters) to be observed to the econometrician but only
to be identifiable.

Similar to BLP, we specify the average utility d;; as additively separable in a systematic component
and an unobserved residual: §;; = Ayj(zj,pej) + &y, with x4 a vector of observed exogenous char-
acteristics, p; the observed endogenous price, As;(-,-) any arbitrary function of (x4, ptj) (potentially
different across markets and products), and &; a residual unobserved to the econometrician. Even
though we rely on the additive separability of Asj(x¢j,pr;j) and &, the target of our identification is
still their sum d;;. Endogeneity arises whenever firms choose prices (also) on the basis of the market-
specific residuals, which we denote by &3, = (&5)je3, € R7t. Because we essentially treat each 0t
as a fixed effect, price endogeneity complicates global identification to the extent that it constrains
the variation of 0.3, across markets (the key identifying variation used in Theorem 3). As an extreme
example, suppose that prices are chosen so that Ayj(z¢j,prj) = —&y, then o = 0 for every ¢ and
j. This rules out any variability in d.3,, introducing the need for alternative sources of identification.
To simplify exposition, in what follows we sometimes drop the dependence on Ayj(z;,psj) from our
notation.

Here we discuss the case of pure components pricing, where each firm chooses the prices of the
individual products it owns and the price of any bundle is given by the sum of the prices of its
components. With pure components pricing, the econometrician observes the prices of the individual
products pry, = (ptj)jes,, while the price surcharges/discounts for the joint purchase of products in
bundles are all constrained to zero, so that pg, = 0 and g (2}) = g (v, 0; ;) for t = 1,...,T and
b € Cyy. Our arguments can be readily modified to accommodate alternative pricing strategies such
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as mixed bundling (see Armstrong (2016a) for a survey on non-linear pricing).'7-1%

Denote by ¢y, = (¢45)je3, € Rf a vector of cost shifters, one for each of the products in market ¢.
These cost shifters could for example be the marginal costs of the products sold in market ¢. Similar
to &3,, also the cost shifters c;y, are assumed to be unobserved to the econometrician. In this sense,
cost shifters can be seen as “unobserved” instruments: their existence provides exogenous identifying
variation, but they do not need to be observed to the econometrician. As for the case of exogenous
average utilities, we propose a characterization of the set of unobservables (&:3,, cty,) that suffices for
the global identification of (d3,,T, %).

Let Dy x Dy, denote the domain of (§3,,¢:3,) for t € T. Suppose that the firms in mar-
ket ¢ choose prices according to pure components given the true (I, %) and (&,,c3,) € Die X
Dy.. Denote the set of equilibrium prices given &3, and ¢y, by pe, (§3,,c3,) C Rf, given &3,
by Py(&1,) = UctJteDtcpt_]t(gt_]t,CtJt), and the grand collection of all possible equilibrium prices by
P, = UgtJteDtéPt(ftJt). The vector of observed prices is an equilibrium of the price-setting model, so

that pi3, € peg, (&3, ce3,)-

Assumption 4.

e (Cost Shifters at the Product-Level) Dy. is open in R7t for t € T.

e (Identifiability of Cost Shifters) ci3, is a C' function of (&3,,pu3,) € {(&y,,003,) * &3, €
thup;,]t e Pu(&a,)}: ca, = oe(&ea,, pe3,).

The second part of Assumption 4 resembles Assumption 7b by Berry and Haile (2014) and is the key
to our global identification with price endogeneity. Berry and Haile (2014) show that their Assumption
7b is implied by a variety of common price-setting models of oligopoly with differentiated products
(Remark 1, p. 1766). Their result follows from the assumption of “connected substitutes” on the
demand system (Definition 1, p. 1759): loosely speaking, this rules out any negative cross-price
elasticity between any two products. In the case of pure components pricing, the relevant demand
system has only J; product-level equations (the system of product-level market shares) rather than Cyy
bundle-level equations. While model (2.3) satisfies the connected substitutes property at the bundle-
level, it may not at the product-level (i.e., products may be complements) and hence Remark 1 by
Berry and Haile (2014) does not apply to our case.

By combining the bundle-level connected substitutes property with the specific utility structure of
model (2.3) under Assumption 2, in Appendix A.10 we show that Assumption 4 is satisfied by common
pure components pricing models. We show that it is consistent with any number of firms (monopoly,
duopoly, or oligopoly) playing a complete information simultaneous Bertrand-Nash game with any
profile of demand synergies (substitutability and/or complementarity). Importantly, Assumption 4
leaves the cardinality of pyg, (&3,, ci3,) unrestricted: the price-setting model is allowed to have a unique,
several, or infinitely many equilibria.

Denote by s:(0;(I" + g:(37)); Pi3,, ) the market share function in market ¢ evaluated at prices

Pi3, = (Pij)jed, and structural parameters (d;5,,1", %), and remember that 0j; = A} (45, pej) + & for

'"With mixed bundling pricing, every firm chooses one price for each bundle it sells and the price of any bundle of
products owned by different firms is the sum of the prices of its components. In this case, the price surcharge/discount
for the joint purchase of products in bundles, p:b, may differ from zero for any ¢ and b € Cyo.

8T dentification results for the case of mixed-bundling are available on request.
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each j € J;. Given Assumption 3, define for each r =1, ..., R:

=P = {(€a,-cuaeemymy 3 € T\ To such that Mys; (se(S0(T + 90(S):pra, )i pra D) 7+ ()
for any PtI; € PtJ. (5tJt7CtJt)}'

and =P = N2 =P We make the following technical Assumption:

Assumption 5. For every r = 1,..., R, there exists t € T \ To, so that for almost every piy, € Py,
there exists {3, such that T + g,(X}) # Mys; (s (64(T0 + 9:(59)); peae, B%); pea, ).

Even though Assumption 5 is abstract, it is implied by more concrete conditions. The following
Corollary shows that, for example, by strengthening the real analytic property of mixed logit models
from Theorem 2, Assumption 5 is satisfied:

Corollary 2. Suppose that the following conditions hold:

o Forr=1,..,R, EP £,

e Foranyt € T\Tq and (I',X), s¢(04(T+g:(Xg)); Piy, XF) is real analytic with respect to (0,3, piy,)-
Then, Assumption 5 holds.
Proof. See Appendix A.11. O

Corollary 2 tightens the real analyticity of the market share function to hold also with respect to the
prices piy, (in addition to the average utilities ;5 ). If price enters the indirect utility linearly (as is
typical in applied work), then Corollary 2 will hold when the price coefficient is for example constant,
or bounded, or when its moments increase at most exponentially.

Denote by (£ , ¢y, ply,) the true value of (&,, cia,, peg,) for which s,(6:(T° + g,(39)); pfy,, X%) =
J¢. We now present the main identification result of the paper.

Theorem 4. Global Identification with Endogenous Prices: Suppose Assumptions 1—4 hold and
Oy, is compact. Then, it follows that:

o If (£, ¢y, )tem\To € EIP | system (1.9) has a unique solution in Ox and model (2.3) is globally
identified.

o If Assumption 5 holds, the Lebesgue measure of Xycp\r,[Die X Dic] \ 21D s zero.
Proof. See Appendix A.12. O

As for Theorem 3, the first part of Theorem 4 provides sufficient conditions for global identification,
while the second highlights that global identification will be achieved almost everywhere.

1.5 Estimation

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed bundle-level
market shares subject to sampling error and robust to price endogeneity. We account for sampling
error to accommodate the typical necessity of computing bundle-level market shares from a sample
of household-level purchases (as in Gentzkow (2007), Kwak et al. (2015), Grzybowski and Verboven
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(2016), Ruiz et al. (2017), and Ershov et al. (2018)). We consider asymptotics over the number of
individuals I within each market, keeping fixed the number of markets and bundles, and demonstrate
that our identification conditions imply the proposed MLE to be consistent and asymptotically normal.

Even though theoretically attractive, the standard MLE of model (2.3) is subject to a challenge of
dimensionality even under Assumption 2: the number of demand parameters can still be too large to
be handled numerically (Berry et al., 2014). As an example, suppose that in every market there are J
products and individuals purchase bundles of size K. Without further restrictions, model (2.3) under
Assumption 2 would imply J¥ demand synergy parameters I', P parameters ¥ for the distribution
of random coefficients, D parameters ¥, for the function g;, and J x T average utility parameters
(013, ---, 073, )- The estimation of JX + P+ D+ J x T parameters may be hard, especially because
identification requires a large T

We propose to reduce the dimensionality of the MLE’s numerical search by means of a novel
demand inversion specific to Gentzkow (2007)’s model that concentrates (dyy,,...,0py,.) out of the
likelihood function.' As a consequence, our proposed MLE effectively reduces the numerical search
from (813, 03, I", ), L.e. JE 4+ P+ D+.JxT parameters, to (I, ), i.e. JX +P+ D parameters.

Remark 3. Our estimation discussion focuses on the case of exogenous average utilities. However,
when the assumptions from the previous section hold and the model is globally identified, the estimation
results presented below will also hold for the case of price endogeneity with no modification. The
exogenous cost shifters that play the role of instruments in our tdentification arguments need to exist
but do not need to be observed. The estimation of (01y,, ..., 0y, I",X') will not require the “explicit”

use of instruments also in the presence of price endogeneity.

1.5.1 Invertibility of Product-Level Market Shares

Here we propose a novel demand inverse designed to handle complementarity among products in models
along the lines of Gentzkow (2007)’s. For any given value of the other parameters, we establish a one-
to-one mapping between the observed product-level market shares and the market-product specific
average utilities. We then illustrate how this demand inverse can be used to greatly simplify the
practical implementation of the MLE of demand for bundles.

Define the observed product-level market share of product j € J; as 445 = ZbeCﬂ:jeb Jp and
denote the vector stacking 45 for all products in market ¢t by 43, = (th,)jeJt. Similarly, define the
product-level market share function of each product j € Jy as st (5, 1", X') = Yy e,y jeb Stb (0 (I +
9:(¥5)); %) and denote the vector stacking sy;.(d;5,; T, X') for all products in market ¢ by s¢g,.(-; T, %) =
(s1.(5 17, ) e,

Theorem 5. Demand Inverse: Suppose that Assumptions 1 and 2 hold. Then, for any (I',Y') €
Or X Oy, there exists at most one 5£Jt such that StJt.((SéJt;F/7E/) = 343,

Proof. See Appendix A.13. O

When (IV,%') is equal to the true value (I',%), Theorem 7 implies that the only d;5, that satisfies
StJt_(5£Jt;F,Z) = 43, is the true d,3,. As a result, the function s;3, (-;T',%) is globally invertible.

19As we clarify below, our demand inverse differs from the classic one by Berry (1994) and Berry et al. (2013), which
in our context corresponds to the demand inverse presented in Lemma 1.
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When (I, %) # (I, X), it is possible that there is no 875, such that sg,.(6;;,; T, %) = 5,3,..% Because
the existence of some 6£Jt that rationalizes the observed product-level market shares can always be
verified numerically (following the procedure outlined below), in what follows we assume it and denote
the bijection mapping 443,. to d;5, by:

i3, = sy (33,51, %)
= 043,.(3¢3,.; I, Z/)-

Theorem 7 differs from the classic demand inverse by Berry (1994) (then generalized by Berry et al.
(2013)). In our context, Berry (1994) implies a bijection between the observed bundle-level market
shares and the full vector of market-bundle specific average utilities. We rely on this classic de-
mand inverse throughout the paper and, for completeness, adapt it to our framework in Lemma 1.
Differently, Theorem 7 establishes a bijection between a transformation of the observed bundle-level
market shares—the product-level market shares—and a sub-vector of the market-bundle specific aver-
age utilities—the market-product specific average utilities. While the invertibility of the product-level
market shares on the basis of Berry (1994) would require the products to be substitutes, Theorem 7
applies also to the case of complementary products.

1.5.2 A Maximum Likelihood Estimator

We now allow for the possibility that observed market shares are subject to sampling error, due
for example to the necessity of measuring them from household-level purchase data. Denote by Iy,
the number of individuals in market ¢ observed to choose b and by 34, = Ith the corresponding
observed market share. To simplify exposition, in what follows we drop any notational dependence
from the observables and denote g¢(3}) = (9(tb, Ptb; £y))bec,,- The log-likelihood function evaluated
at (013, 073,., 1", %) can be written as:

T
(85,0 Oy T 01, 57) = 3D G log s (01(1 + g1(5)); Bp), (1.10)
t=1 beC;
where 3; = (3sp)bec, for t = 1,...,T. Denote the domain of the parameters by © = O5 x O x Oy, where
Os, Or, and Oy are compact. Given Theorem 7, we propose the following MLE that concentrates
(013, ..., 073, ) out of the log-likelihood function:

(f,f])z argmax  £7((63, (3e3,; T, XN, T, %5 54, ..., 37),
(F/,E’)EG‘)FXGZ

= argmax ($(I",Y;3,...,37) (1.11)
(F/,E/)EGFXGZ

03, = 0t3, (3e3,; T,%), t=1,...,T.

To simplify notation, denote the true parameters (d13,,...,073,,,X) by 0 = (65,I',X) and the MLE
(ég, I, f]) by 6. The next Theorem establishes the asymptotic properties of 0.

20For example, a model of demand for single products (i.e., I' = —oc) cannot rationalize situations in which the sum
of the observed product-level market shares is larger than one. (This can happen because the same J: contributes to
the product-level market share of any j € b, giving rise to “multiple counting” of 4, when summing J;. over j.) In such
cases, the demand inverse is therefore not feasible when evaluated at IV = —oo0.
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Theorem 6. MLE estimator: Suppose Assumptions 1-3 hold, the true (63,)ie\T, € AP 5 LN
dp for t = 1,....,T, b € Cy, and the standard reqularity conditions detailed in Appendix A.14 hold.
Then:

e (Consistency) 0 2 0.

e (Asymptotic Normality) There ezist matrices W1, Wy > 0 such that \/T(05—05) 4 N(0,W1) and
VI, D) - (0.D)] 5 (0, W2).

Proof. See Appendix A.14. O

Estimator (1.11) is neither a standard MLE nor a concentrated MLE. A standard MLE would maximize
(1.10) with respect to (6,I',X), while (1.11) only maximizes it with respect to (I', ¥). Differently from
a concentrated MLE, which also would maximize (1.10) only with respect to (I', X), estimator (1.11) is
however not as efficient as the standard MLE. The demand inverse from Theorem 7 only uses observed
product-level market shares (rather than bundle-level), and this causes a loss of information in the
process of concentrating out s from the log-likelihood function. MLE (1.11) trades-off computational
ease against estimation efficiency.

Implementation. In the spirit of BLP, the demand inverse from Theorem 7 enables to break down
the numerical search for (d13,,...,073,,1,%) into two steps that can be solved sequentially while
implementing (1.11):

Step 1. For any given guess of (I',%') and market ¢t = 1,...,T, compute dj5, = d¢3,.(313,;T",X’) by the
Newton-Raphson method as the unique solution to system s.3, (9} 3 ', %) = 4;3,.. To implement

D513, (815 ;T3
the Newton-Raphson method, note that the derivative % [T -M!7T] g;fc” [T -MT)T
3,

is everywhere symmetric and positive-definite, where M} is defined prior to Theorem 3. Because

the solution to the system is guaranteed to be at most unique, whenever the algorithm finds

90,
one, the numerical search can end. 2l Given this solution, compute the derivative 8(F’f"z/) =

[%Zi,:t { a?;f%')] and move on to Step 2. In case the algorithm cannot find a solution, then
Theorem 7 implies that (I, %) # (I, £): try a new guess of (I, ¥’) and go back to the beginning
of Step 1.
Step 2. Plug d;y, fort = 1,..., T from Step 1 into £7((d}y, )i= 1, ,T,F’ Y531, ..., 37) and obtain £5(I7,¥'; 31, ...
Compute its derivative with respect to (IV,X’), TS F, 2, Zt 1 a?f’ 8{3%,) + d(??z/) Check
whether the current guess of (F’ ¥') numerically maximizes ¢$(I",%'; 41, .., 37). If yes, the cur-

rent value of the parameters is 6. If not, use 8(?,62,) to search for a new guess of (IV,¥’) and go
back to Step 1.
1.6 Empirical Illustration

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the USA. We
revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementarity among different

21For a useful discussion about the Newton-Raphson method in the context of demand estimation, see Conlon and
Gortmaker (2019).
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brands in demand estimation. The households in our data are observed to purchase two or more
different RTE cereal brands in approximately 20% of their shopping trips. In the data, we observe
purchases rather than consumption. In terms of purchases, demand for bundles can arise for reasons
different from synergies in consumption (as in Gentzkow (2007)): shopping costs (as in Pozzi (2012) and
Thomassen et al. (2017)) and preference for variety (as in Hendel (1999) and Dubé (2004)) represent
two likely alternatives.

Our model can rationalize shopping costs with positive demand synergies and, as we show in
Appendix A.1, preference for variety with some additional structure on the demand synergy parameters.
We try to distinguish empirically the relative contribution of these mechanisms to the estimated demand
synergies. Our results show that demand for RTE cereals exhibits substantial Hicksian complementarity
and that around 75% of it does not seem to be explained by shopping costs or by preference for
variety. We compare our estimation results from the full model to those from a model of demand for
single brands (similar to Nevo (2000, 2001)) and show that ignoring Hicksian complementarity may
result in misleading demand estimates and counterfactuals. Despite the different econometric approach
and data, our results are in line with those by Fosgerau et al. (2019), who also document Hicksian
complementarity among different RTE cereal brands in the USA.

1.6.1 Data and Definitions

We use household-level and store-level IRI data on ready-to-eat (RTE) cereals for the period 2008-2011
for the city of Pittsfield in the USA. We report a succinct description of the data used and refer the
reader to Bronnenberg et al. (2008) for a more thorough discussion.

We focus on the I = 2897 households who are observed to purchase RTE cereals at least once from
2008 until 2011. For these households, we observe some demographics (e.g., income group and family
size) and a panel of shopping trips r = 1, ..., 756663 to 7 different grocery stores over a period of 208
weeks. A shopping trip is defined as a purchase occasion of a household to a grocery store in a given
day. Each shopping trip records all the Universal Product Codes (UPCs) purchased by a household
across all product categories sold by the store: during 83256 of these, RTE cereals are observed to be
purchased. We define a market as a store-week combination t =1, ..., 1431.

Over the sample period, the households are observed to purchase 1173 different UPCs of RTE
cereals. For feasibility, we reduce the number of different RTE cereal products by collecting UPCs into
what we call brands. We define J = 16 different brands on the basis of producers and ingredients.
We classify producers into six groups: General Mills, Kellogg’s, Quaker, Post, Small Producers, and
Private Labels. The first four correspond to the four largest RTE cereal producers, “Small Producers”
correspond to the remaining producers, and “Private Labels” correspond to the UPCs directly branded
by the retailers (i.e., the stores). We collect the UPCs of each of the producers into three types on
the basis of their ingredients: cereal type R refers to “Regular,” F//W to “Fiber/Whole Grain,” and S
to “Added Sugar.” Appendix Table B.1 lists these RTE cereal brands and their average market shares
across the shopping trips with some RTE cereal purchase.?? We use the store-level data to compute
brand-level prices for each brand j and store-week combination ¢, p;;. Each p;; is computed as the
average price per 160z across the UPCs belonging to brand j in store-week ¢.

We make the standard assumption that RTE cereal purchases do not determine store choice and
take store choice as exogenous in our econometric model. We consider household 7 to choose the outside

22Market shares are computed over the shopping trips observed in each store-week combination.
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option, which we denote by j = 0, whenever no RTE cereal brand is purchased during shopping trip r
(in general, something must be purchased for a shopping trip to be in the data). Around 89% of all
shopping trips do not involve any purchase of RTE cereals.

During each shopping trip 7, a household i is considered to purchase RTE cereal brand j whenever
they are observed to purchase at least a UPC of brand j. Households are considered to purchase
bundles only when purchasing at least two different brands of RTE cereals during the same shopping
trip. In our view, this is a conservative measure of households’ demand for bundles.?®> For compu-
tational convenience, we focus our analysis on the shopping trips with observed purchases of at most
two different RTE cereal brands, thus discarding 3.27% of the shopping trips with some RTE cereal
purchase. In 17.69% of the shopping trips with some RTE cereal purchase, households are observed to
purchase two different brands of RTE cereals.

Table 1.1 describes how the average bundle size purchased changes among households with different
observable characteristics. The top panel of Table 1.1 shows that larger families are more likely to
purchase larger bundles. This accords to the idea of preference for variety by Hendel (1999) and Dubé
(2004): in order to satisfy more heterogeneous preferences (e.g., different genders and ages), larger
households are more likely to purchase a wider variety of RTE cereal brands on each shopping trip.
The central panel of Table 1.1 highlights the potential relevance of shopping costs, as suggested by
Pozzi (2012) and Thomassen et al. (2017): households observed to shop with a higher frequency (facing
lower shopping costs) are less likely to purchase bundles of different RTE cereal brands on any shopping
trip.?* The bottom panel of Table 1.1 divides the households into three income groups and does not
suggest apparent relationships between income and average purchased bundle size.?

We construct choice sets at the level of the store-week ¢: any household during any shopping trip in
t is assumed to face choice set C;. This is made of three components: single brands, bundles of size 2,
and the outside option. From the store-level data, we observe which of the 16 brands of RTE cereals are
available in each store-week t. Denote this set of available brands by J;. Households can also purchase
bundles (j1,72) € (J¢ x Jo)\{(k1, k2)|k1 = ko} made of pairs of different RTE cereal brands. Finally,
households may decide not to purchase any RTE cereal brand, j = 0. By combining these purchase
possibilities, the choice set faced during all shopping trips in ¢ is C; = {0}UJ U(Jy x J)\{(k1, k2)|k1 =
]{72}.26

Z3For instance, the purchases of different RTE cereal brands across different shopping trips within the same ¢ are
considered as independent purchases of single brands rather than bundles. To keep the dimensionality of the problem
manageable, we do not count as bundles the purchases of multiple units of the same brand within the same shopping
trip. Accommodating either less conservative definitions of bundles or purchases of multiple units of the same brand
would not represent any conceptual challenge for the proposed methods.

2"We compute the “weekly shopping frequency” as the average number of shopping trips per week for each household
over the entire four-year period of our sample. The median among the 2897 households is 1.80 shopping trips per week.

Z5We create the three income groups on the basis of 12 income classes originally provided in the IRI data, which are
ordered in increasing level of income from 1 to 12. We code as “low income” the classes 1-4, “medium income” the classes
5-8, and we group in “high income” the remaining classes 9-12.

26The choice set C; also excludes those bundles that are never purchased during any of the shopping trips in t.
Even though all brands in J; have positive market shares by construction, some combination of brands (j1,j2) from
(J¢ x Je)\{(k1, k2)|k1 = k2} may not be observed to be jointly purchased.



1.6. Empirical Illustration 23

Table 1.1: Average Number of Different Brands per Shopping Trip

#Households Ave. Bundle Size

Family Size

1 732 1.12

2 1184 1.16

>3 981 1.22

Weekly Shopping Frequency

(0,2] 1779 1.19

(2, 3] 810 1.17

>3 308 1.14

Income Group

low 679 1.18
medium 1169 1.16
high 1049 1.19

Notes: The Table shows the distribution of family size, weekly shopping fre-
quency, and income group among the 2897 households in our data. See text for
the definitions of these variables. For each value of these variables, we report
the average number of different RTE cereal brands observed to be purchased per
shopping trip by the corresponding households.

1.6.2 Model Specification

Any household i is observed going on several shopping trips, each taking place in a specific store-week
combination ¢ (our definition of market). The indirect utility of household 7 by purchasing brand j € J;
during shopping trip r in market ¢ is:

Uirtj = witj + €irt;

= 0t + Mitj + Eirtj (1.12)

ity = —pij exp(di o + v;) + 1745

where w;;; = 045 + pitj, 0t is market t-specific average utility for RTE cereal brand j € Jy, pi; is a
household i-specific utility deviation from d;;, and ;4 is an idiosyncratic error term. py; is the price of
brand j in store-week combination ¢, and dj‘a + v; is a vector of household i-specific price coefficients
made of two components: an observable part that is a function of the household characteristics df*
(to be detailed in the next section) and an unobserved random component v;. 7;; is an unobserved
household i-specific preference for brand j, which is constant across ¢’s shopping trips and potentially
correlated across brands.

Specification (1.12) encapsulates the entire effect of price p;; in the household i-specific p;1;. In
terms of the notation used in section 1.4.2, this implies A¢;(pyj, z¢j) = 0 and 6 = &;. Even though we
use household-level data, we face price endogeneity if, for instance, the producer of RTE cereal brand
J sets price p;; taking the average utility d;; into consideration. Our proposed estimator essentially
addresses this endogeneity problem by treating the average utility d;; for each brand j in each market
t as a fixed effect.
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The indirect utility of ¢ by purchasing bundle b during shopping trip r in market ¢ is:

Uirtb = Z uitj + Uib + €ireb
j€Eb
= (8 + pitj) + Tb + Gib + Eirt
jcb
7€ (1.13)
= Z otj +T'p + Z pitg + (477 + Gn) | + irep
j€Eb Jj€Eb
= Otb + Mitb + Eirtb,
where dpp = > jcb 0tj + 'y is market t-specific average utility for bundle b, ju;, is household i-specific
utility deviation from d;p,, I';p is household i-specific demand synergy among the brands in bundle b,
and €;,4p is an idiosyncratic error term. The demand synergy parameter I';, = 'y, 4+ (b captures the
extra utility household ¢ obtains from buying the RTE cereal brands in bundle b jointly rather than
separately. It is the sum of I'y,, common to all households, and of (;p = d]y + (b, where d)7 is a
function of observed household characteristics d] (to be detailed in the next section) and (;p is an
unobserved random component. Because of pure components pricing, i.e. psp = 0, and the absence of
other bundle-specific observed product characteristics, i.e. a4, = 0, we constrain function g(-,-[3,) =0
(see Assumption 2).2” We attempt to empirically distinguish the relative contribution to I';p of two
alternative mechanisms. In particular, we specify d]7 to include measures of family size (to proxy for
preference for variety) and of average weekly shopping frequency (to proxy for shopping costs).
Finally, the indirect utility of household ¢ by choosing the outside option during shopping trip r in
market ¢ is assumed to be:
Uirto = €irto- (1.14)

Suppose that ;40 and the e;4p’s are i.i.d. Gumbel. Express pymn = pab(Bi) as a function of
the unobservable 8; = (vi,m:,¢) = (vi, (0i5) €3, (Gib)ben). 2
((¢j)jea,, 7, (I'b)beB), household i’s purchase probability of b € C; during shopping trip r in mar-
ket t is:

Then, given B; and (dy3,,a,7,T) =

eStbtHitb (Bi)

Zb’ cc, eOtbr Hiipr (Bi)

Sirth (0t3,, @, 7, 15 Bi) = (1.15)
We assume (; = (vi,7i,(;) to be normally distributed and denote its c.d.f. by ®(-;Xr). Let g €
{0,1} be an indicator for whether household ¢ purchased b during shopping trip  in market ¢, with
Zbect Yirb = 1. Let T; denote the set of markets for which we observe shopping trips by household
t. For each t € T;, define R;; as the set of shopping trips by household ¢ that took place in market
t. By integrating over the distribution of 3;, we obtain the likelihood of i’s observed purchases y; =

(yitrb)tETi ,rER;, beC,*

Li(51J1,-'.5TJT,OA%F,EF;%)I/H IT I (sirm(Oe,s 7, T5 Bi))¥ee d®(Bi; Sp).  (1.16)

teT; reR;; beCy

2TWe follow Nevo (2000, 2001) in assuming that RTE cereal producers set prices at the brand-level rather than at
the bundle-level (i.e., pure components pricing): households purchasing multiple RTE cereal brands during the same
shopping trip are assumed to pay the sum of the prices of the single brands.

28J and B are defined as, respectively, the union of all J; and of all (J; x J)\{(k1, k2)|k1 = ko2} for t = 1,...,T.
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By aggregating over the I = 2897 households, the likelihood function for the entire set of observed
purchases is:

2897

LI(51J1,---5TJT,047’Y7F72F§91,~--,?/I) = H Li(61J17 "-6TJTaOé7’y’F7 ZFvyi)- (117)
i=1

We estimate the demand parameters (013, , ...073,, @, 7, ', £F) on the basis of MLE (1.11) derived from
likelihood function (1.17).2% To get a sense of the practical advantages implied by our novel demand
inverse, in the current application the proposed MLE reduces the numerical search (with respect to a
standard MLE) from 12351 to 133 parameters, i.e. (a,v,T,XF).

Restricted Models. In what follows, we refer to the model specified in (1.15)-(1.17) as to the full
model of demand for bundles. To better evaluate the practical relevance of allowing for complemen-
tarity, we also estimate two restricted versions of the full model.

In the first restricted model, we constrain I';, = 0 in estimation for all ¢’s and b’s. A comparison of
the full model with this first restricted model highlights the importance of controlling for the demand
synergies [';p while keeping everything else unchanged. Despite the absence of demand synergies, this
restricted model can still give rise Hicksian complementarity.3°

In the second restricted model, we rule out Hicksian complementarity by constraining I';p = —o0
in estimation for all 7’s and b’s. In other words, choice sets are restricted not to include any bundle.
This amounts to specifying a standard model of demand for single RTE cereal brands (along the lines
of Nevo (2000, 2001)) with choice set C; = {0} UJ; in each ¢. This second restricted model is estimated
on the basis of the same purchase observations as the other two models. However, the observations are
used differently: the second restricted model does not differentiate between simultaneous (during the
same shopping trip) and sequential (during different shopping trips) purchases of different brands.

1.6.3 Estimates of Demand for RTE Cereal Bundles

In this section, we present our estimation results for the full model. We postpone a comparison of
the estimation results from the three different models to the next two sections, where we discuss price
elasticities and counterfactual simulations.

We capture observed heterogeneity in price sensitivity —exp(dffa + v;) by df, a vector of nine
mutually exclusive dummies indicating household i’s income group (low, medium, and high) and family
size (one, two, and larger than two). Unobserved heterogeneity in price sensitivity is instead captured
by the random coefficient v;, which we assume to be i.i.d. normal with standard deviation o,. For
each of the three estimated models, the top panel of Table 2.2 reports estimates of the average price
sensitivity E[—exp(dfa + v;)|dS] for each value of d*. These results do not seem to suggest any
systematic heterogeneity in price sensitivity among households with different incomes and family sizes.

We specify the RTE cereal brand-specific random intercepts as 1;; = 7;type + 7ij, where 1; type
captures household i’s unobserved and correlated preferences across cereal types {R, F//W, S} and 7;;

2Even though (1.17) is expressed in terms of individual purchases (yi,...,yr) rather than of sampled market shares
(31,...,37), it can be easily shown that the corresponding MLE satisfies the conditions of Theorem 6.

30Tn this first restricted model, the cross-price elasticities can still be negative because the choice set C; = {0} UJ: U
(Je x JO)\{(Kk1, k2)|k1 = k2} is not complete. C; would be complete if it included also the bundles made of two units of
the same brand. Gentzkow (2007)’s Proposition 1 at page 719, which states that a positive demand synergy is necessary
and sufficient for Hicksian complementarity, only applies to models with complete choice sets.
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captures i.i.d. unobserved preference for brand j. Remember that cereal type R refers to “Regular,”
F/W to “Fiber/Whole Grain,” and S to “Added Sugar.” Note that any two brands with similar
ingredients will share the same 7; type. We assume 7);; to be distributed normal with standard deviation
0. Following Gentzkow (2007), we also assume (n; r,7; F/w,7:,5) to be distributed jointly normal
with standard deviations and pairwise correlations denoted by, respectively, oy, . and cortyype type’s
type, type’ € {R, F/W,S}. We allow single-person households and multi-person households to have
different joint normal distributions of (1 g,n;, F/W,m75). We assume 7);; and 7; type to be mutually
independent.

The estimates of the distribution of 7;; and of the other random coefficients are reported in the central
panel of Table 2.2. Overall, the estimates are highly significant and underline the importance of
controlling for unobserved heterogeneity, not only in terms of price sensitivity, but also of brand-specific
random intercepts and of demand synergies (we return to these in more detail below). Households’
unobserved preferences for healthier F//W and children S cereal brands are positively correlated, while
unobserved preferences for regular R cereal brands seem to correlate negatively with both F/WW and
S cereal brands. Households of different family sizes do not seem to have systematically different
distributions of (1; r, 1, /W 1,5 )-

We specify the demand synergy of household ¢ for bundle b as:

Tib =Dy + dy + Cib
=Ty, + y21{family size; = 2} + y>31{family size;, > 3} (1.18)
+ vs1{normal shopping frequency;} + @'b,

where 1{-} is the indicator function and “normal shopping frequency,” denotes whether the average

31 Parameter Yk captures

weekly shopping frequency of household i lies below the 95 percentile.
systematic differences between the average demand synergies of households of family size k and single-
person households. We include family size in the specification of I';, as a proxy for preference for
variety. s instead measures differences in the average demand synergies between households observed
to shop at a normal frequency, i.e. in the bottom 95% of the distribution, and households who shop
very often, i.e. in the top 5% of the distribution. We control for normal shopping frequency in (1.18)
as a proxy for larger shopping costs. These are meant to rationalize the purchase patterns documented
in Table 1.1: larger families may have to satisfy more heterogeneous preferences within the household,
while more frequent shoppers may be less likely to purchase multiple brands on any shopping trip. Cib
represents a i-specific unobserved component of demand synergy for bundle b, which we assume to
be i.i.d. normal with standard deviation o éb allows for the possibility that the brands in bundle
b have positive demand synergies for some households and negative for others. Estimates of the I'y’s
are reported in Table 1.3, while estimates of the remaining demand synergy parameters are reported
at the bottom of Table 2.2.

The estimates from Table 1.3 suggest that several pairs of RTE cereal brands have positive I'y’s.3?
Importantly for competition policy, as we will explore in the next section, there appear to be positive
I'y’s not only among brands within the same producer, but also among brands sold by different
producers. For example, the first column of Table 1.3 shows that single-person households exhibit

3In our sample of households, the 95" percentile of the average weekly shopping frequency (i.e., the average number
of shopping trips in a week) is 3.67.

32Note that these estimates come from the full model, neither of the restricted models allows for demand synergies.
See the Table notes for an interpretation of the missing values.
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positive demand synergies between General Mills and most of the 15 remaining brands. Moreover, in
line with the evidence from Table 1.1, the estimated demand synergy shifters 2 and >3 from the
bottom panel of Table 2.2 are positive and increasing in family size, i.e. y>3 > 72. We interpret this
as evidence of preference for variety: larger families exhibit more positive demand synergies among
different RTE cereal brands than smaller families. Intuitively, larger families may be more likely to
purchase different brands in order to satisfy more heterogeneous RTE cereal tastes within the household
(e.g., adults and children of different ages). Differently, v is positive but not significantly different
from zero, highlighting that—after controlling for everything else—households with different shopping
frequencies are similarly likely to purchase bundles on any shopping trip. The standard deviation
o; of the random coefficient (;p is estimated to be small but significant, suggesting the presence of
household-specific heterogeneity in demand synergies beyond differences in family size and weekly
shopping frequency.
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Table 1.2: Demand Estimates for Full and Restricted Models

Full Model Restricted Model 1  Restricted Model 2

Pipb=0 Iip = —00
Average Price Sensitivities
low income, family size = 1 —0.44 —0.49 —1.27
(0.164) (0.196) (0.180)
family size = 2 —-0.47 —0.51 —1.30
(0.175) (0.202) (0.185)
family size > 3 —0.39 —0.38 —1.17
(0.147) (0.151) (0.167)
medium income, family size = 1 —-0.47 —0.52 —1.29
(0.174) (0.210) (0.183)
family size = 2 —0.42 —0.46 —1.27
(0.157) (0.183) (0.180)
family size > 3 —0.49 —0.49 —1.31
(0.183) (0.195) (0.185)
high income, family size = 1 —-0.39 —-0.43 —1.20
(0.146) (0.173) (0.170)
family size = 2 —0.42 —0.45 —1.26
(0.157) (0.180) (0.179)
family size > 3 —0.40 —0.41 —1.25
(0.150) (0.165) (0.177)
Random Coefficients
price, oy, 0.36 0.39 0.14
(0.004) (0.004) (0.002)
brand intercepts, o5 0.87 0.87 0.81
(0.005) (0.005) (0.005)
d d i ; 0.06
emand synergies, o; J96
Single-Person Households
Ong 0.50 0.47 0.20
(0.037) (0.046) (0.037)
0.54 0.52 0.65
onE/w (0.014) (0.024) (0.017)
Ons 0.96 0.90 0.97
(0.030) (0.034) (0.030)
COITR F /W —0.86 —0.84 —0.89
(0.014) (0.016) (0.012)
COITR,S —0.52 —0.60 —0.61
(0.042) (0.044) (0.036)
0.29 0.41 0.47
COMLR/w,s (0.042) (0.056) (0.044)
Multi-Person Households
Ong 0.10 0.37 0.45
‘ (0.016) (0.016) (0.015)
0.54 0.70 0.86
Tnr/w (0.008) (0.008) (0.009)
Ons 0.96 1.10 1.24
(0.017) (0.017) (0.015)
COITR, F/W —0.93 —-0.91 —0.95
(0.006) (0.006) (0.004)
COITR, S —0.79 —0.73 —0.78
(0.016) (0.015) (0.010)
COITp/w, g 0.73 0.81 0.85
(0.019) (0.011) (0.008)
Demand Synergies, =y
family size= 2, 2 0.14
(0.017)
family size> 3 0.36
amily size> 3, v>3 O30
1 shop. freq. 0.001
normal shop. freq., s 29018

Notes: Each column of the Table reports estimates from one of three model specifications: the
full model, restricted model 1 (which constrains I';p, = 0 in estimation), and restricted model 2
(which constrains I';p, = —oo in estimation, i.e. standard demand model for single brands). The
top panel reports the estimated average price sensitivity E[—exp(d¥a + v;)|d$] for each value of
d$ and the corresponding standard deviation (in brackets), computed as y/Var[exp(d¥a + v;)[d].
The central panel reports estimates of the parameters characterizing the distribution of the random
coefficients, while the bottom panel those of the demand synergy parameters associated to different
family sizes and weekly shopping frequencies. For the estimates in the central and bottom panel,
standard errors are reported in brackets. Cereal type R refers to “Regular,” F'/W to “Fiber/Whole
Grain,” and S to “Added Sugar.”
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Evidence in Support of Assumption 2. As discussed in Remark 1, Assumption 2 can be verified
in practice. In Appendix A.7, we present a specification test for Assumption 2 that builds on partial
identification methods. A rejection of the test is evidence against Assumption 2. In the context of
our empirical illustration, the test statistic evaluated at the estimates from Tables 2.2 and 1.3 is 9910,
which is smaller than the critical value for rejection at the 10% level, 21081 (a chi-square with 20819
degrees of freedom). This strongly suggests that ©7(T) in (A.13) is not empty, providing reassuring
evidence in support of Assumption 2.

1.6.4 Hicksian Complementarity and Demand Synergies

Table 1.4 reports the average (across markets) estimated own- and cross-price elasticities of demand
from the full model. Each entry reports the percent change in the brand-level market share of the
column RTE cereal brand with respect to a 1% increase in the price of the row RTE cereal brand.
Given the estimated market share function §;, for each b € Cy1 in market ¢, the estimated brand-level
market share function of brand j € J; is defined as 55, = Zbec“:jeb Sp- Table 1.4 provides pervasive
evidence of Hicksian complementarity. For example, the first column shows that households exhibit
statistically significant complementarity between General Mills and several of the 15 remaining brands.
According to intuition, Hicksian complementarity seems to be more pronounced among those brands
with larger positive I'p (see Table 1.3).

In our specification, Hicksian complementarity among different RTE cereal brands can be explained
by alternative mechanisms: correlation in the unobserved preferences for single brands (7;;), preference
for variety (y2 and 7>3), shopping costs (7s), bundle-specific fixed effects (I'p’s)—which, among other
things, may account for synergies in consumption—, and residual unobserved heterogeneity (@b). To
shed light on the relative contributions of these mechanisms, we sequentially “switch them off” from
the estimated full model and re-compute the cross-price elasticities. Table 1.7 summarizes the results.

Differently from Gentzkow (2007), the unobserved preferences for single brands (7;;) contribute to
the substitutability among RTE cereal brands (—2.00%), possibly because of the negative correlation
between 7; g and both 7; p/yy and ;5 (see Table 2.2). The average of the cross-price elasticities
instead increases (becoming less negative) as we progressively switch off the various components of
[jp: residual unobserved heterogeneity (+0.09%), shopping costs (+0.05%), and especially preference
for variety (+15.22%).

However, the most dramatic changes occur when we further set the bundle-specific fixed effects
I'y’s either to zero (4+54.94%) or to —oo (4+31.69%). While this is expected in the case of 'y, =
—oo (standard demand model for single brands), the average of the cross-price elasticities already
changes from negative (complementarity) to positive (substitutability) when setting each I';, to zero.
Collectively, these results suggest that most of the estimated complementarity is explained by preference
for variety and by the bundle-specific fixed effects.

Standard models of demand for single brands rule out Hicksian complementarity among different
RTE cereal brands and restrict the cross-price elasticities to be positive. Ignoring the presence of
complementarity among different brands may lead to incorrect demand estimates and misleading price
elasticities. To quantify the extent of this problem, we compare the price elasticities computed on
the basis of the estimates from the full model (Table 1.4) to those computed on the basis of the
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estimates from the restricted models (Tables 1.5 and 1.6).3% Several of the estimated cross-price
elasticities have opposite signs, mistakenly suggesting substitutability rather than complementarity
among different pairs of RT'E cereal brands. To further explore the economic consequences of accounting
for complementarity in demand estimation, we next compare counterfactual simulations implied by the
estimates from the full model to those implied by the estimates from the restricted models.

3%Demand estimates from the full model can be found in the first column of Table 2.2 and in Table 1.3, while those
from the restricted models can be found in the second and third columns of Table 2.2 (the restricted models do not
include demand synergies).
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1.6. Empirical Illustration 35

Table 1.7: Cross-Price Elasticities and Demand Synergies

Average Relative Change

Estimated Full Model —0.0126 —

Estimated Full Model, then switch off 7;; —0.0130 —2.00%
Estimated Full Model, then switch off 7;; and @b —0.0130 0.09%
Estimated Full Model, then switch off 7;;, fib, and 7y, —0.0130 0.05%
Estimated Full Model, then switch off n;;, @-b, Vs, V2, and y>3  —0.0100 15.22%
Estimated Full Model, switch off 7;; and set I';p, = 0 0.0007 54.94%
Estimated Full Model, switch off 7;; and set I';p, = —o0 0.0068 31.69%

Note: The Table reports the average (across markets) of the cross-price elasticities of all pairs of different RTE
cereal brands. All the cross-price elasticities are obtained from the full model, where the estimated parameters in
the specification of I';p from (1.18) are “switched off” sequentially. For example, the third row is obtained from the
estimated full model by setting the standard deviations of n;; and ;b t0 zero, while the fourth is obtained by further
setting the estimated vs to zero. The column “Relative Change” reports the percent change in the average of the
cross-price elasticities from any two consecutive rows: for instance, the relative change from the fourth row to the
fifth is 15.22%.

1.6.5 Counterfactuals and Comparisons with Standard Model

Here we evaluate the economic relevance of allowing for Hicksian complementarity by comparing some
counterfactuals from the full model, with T';, as in (1.18), to those from two restricted models: restricted
model 1, which constrains I';, = 0 in estimation, and restricted model 2—the standard demand model
for single brands—, which constrains I';;, = —o0 in estimation thereby forcing substitutability. For the
counterfactuals, we take the observed scenario of pure components pricing and oligopolistic competition
among RTE cereal producers as a reference (see Nevo (2000, 2001) for the institutional details), and
simulate the changes in prices, profits, and consumer surplus implied by different market structures.?

The results of these counterfactuals are reported in Table 1.8. The Table reports relative changes in
prices (top panel), profits (central panel), and consumer surplus (bottom panel) associated with each
of three counterfactual market structures (columns) as simulated by each of the three estimated models
(rows). We consider four alternative market structures: “competition,” where we suppose that each sin-
gle brand is owned and sold by a different (fictional) producer (for a total of 16 producers); “oligopoly,”
which corresponds to the observed oligopolistic competition among six producers; “duopoly,” where
we suppose that five of the producers (General Mills, Kellogg’s, Quaker, Post, and the Small Produc-
ers) perfectly collude and compete as one against the private labels (whose prices are chosen by the
retailer); and “monopoly,” where we suppose that the six producers perfectly collude as a monopolist.

The simulation results from the full model confirm the classic insight by Cournot (1838): mergers
between producers selling complementary brands can be socially desirable. In pure components pricing,
the prices of all single brands—and consequently of all bundles—decrease as the level of competition
weakens: while industry-level profit remains basically unchanged, consumer surplus increases with
market concentration. As market structure becomes more concentrated, producers internalize more of
the externalities due to complementarity and consequently choose lower prices, as can be seen from
the relative increase in consumer surplus from —5.27% for competition to +7.62% for monopoly.

34Given our estimates of demand and marginal costs, we simulate each profile of counterfactual prices—independently
for each market—using the necessary first order conditions for a Nash equilibrium of the corresponding pure components
pricing game. For example, in a monopoly, the same agent chooses a specific price for each single brand so to maximize
industry profits.
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Strikingly, the restricted models produce opposite predictions: as market structure becomes more
concentrated, prices increase and consumer surplus decreases. As shown in Tables 1.5 and 1.6, both
restricted models predict positive cross-price elasticities and therefore substitutability among any pair
of RTE cereal brands. Not surprisingly then, any merger between producers selling substitutable
brands will lead to higher prices and ultimately hurt consumers. These results underline the economic
importance of allowing for both substitutability and complementarity in demand estimation: while
estimates from the full model provide supportive evidence for the classic Cournot (1838)’s insight
that mergers can be welfare enhancing, those from a standard model that does not allow for Hicksian
complementarity can only predict that mergers will be detrimental for consumer surplus.

Table 1.8: Counterfactual Simulations

Competition Oligopoly Duopoly Monopoly

Price change

Full Model +8.08% 0% —5.03% —5.34%
(1.35%) (1.16%) (1.65%)

Restricted Model 1, T';, = 0 —0.54% 0% +3.69%  +5.26%
(0.03%) (0.21%) (0.30%)

Restricted Model 2, T';;, = —00 —0.56% 0% +4.17%  +6.06%
(0.10%) (0.72%) (1.07%)

Profit change

Full Model —0.47% 0% +0.27% +0.30%
(0.04%) (0.03%) (0.05%)

Restricted Model 1, T, = 0 —0.03% 0% +0.10%  +0.12%
(0.002%) (0.003%) (0.004%)

Restricted Model 2, T';;, = —oo —0.36% 0% +1.64% +2.00%
(0.01%) (0.03%) (0.03%)

Consumer Surplus change

Full Model —5.27% 0% +6.29% +7.62%
(0.22%) (0.37%) (0.62%)

Restricted Model 1, T';, = 0 +0.49% 0% -3.23% —4.54%
(0.01%) (0.04%) (0.06%)

Restricted Model 2, T';;, = —o0 +1.53% 0% —-11.94% —16.41%
(0.01%) (0.07%) (0.09%)

Notes: The Table reports average counterfactual changes in prices (top panel), profits (central panel), and
consumer surplus (bottom panel) of pure components pricing under alternative simulated market structures
with respect to the observed oligopoly. Each column refers to a specific market structure: the second column
refers to the observed oligopoly in the data while the others refer to simulated counterfactuals (see text for
details). Each row refers to one of three model specifications: the full model, restricted model 1 (which
constrains I';p = 0 in estimation), and restricted model 2 (which constrains I';p, = —oo in estimation,
i.e. standard demand model for single brands). The standard errors associated to the estimated relative
changes are in brackets and obtained from a parametric bootstrap as in Nevo (2000, 2001) with 50 draws.

1.7 Conclusions

We present a novel identification and estimation strategy of a mixed logit model of demand for bundles
with endogenous prices given observations on bundle-level market shares. We propose a novel demand
inverse in the presence of complementarity that allows to concentrate out of the likelihood function
the (potentially numerous) market-product specific average utilities and to substantially alleviate the
challenge of dimensionality inherent in estimation. Finally, we estimate demand and supply in the
US ready-to-eat cereal industry, where our estimator reduces the numerical search from approximately
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12000 to 130 parameters. Our results suggest that ignoring Hicksian complementarity among products
often purchased in bundles may result in misleading demand estimates and counterfactuals.

Our identification and estimation arguments are developed for mixed logit models with parametric
distributions of random coefficients. In light of the well known challenge of dimensionality that affects
the estimation of demand for bundles (Berry et al. (2014)), our priority is to propose estimation
methods that can be practically useful in applications that involve more than a few products. While
our parametric assumptions clearly help in alleviating the challenge of dimensionality in estimation,
they require the econometrician to take a stand on the functional form of the distribution of random
coefficients. An avenue for future research is the study of the semi-parametric identification of mixed
logit models of demand for bundles, where the distribution of random coefficients is allowed to be
non-parametric and more robust against misspecification.

The implementation of our methods requires the observation of bundle-level market shares rather
than of the more readily available aggregate market shares of single products. Even though direct
measures of bundle-level market shares are widely available only for a few industries, such as media
and telecommunication (Crawford and Yurukoglu (2012) and Crawford et al. (2018)), it is usually
possible to construct indirect measures of bundle-level market shares from samples of household-level
purchases (Gentzkow (2007), Kwak et al. (2015), Grzybowski and Verboven (2016), Ruiz et al. (2017),
and Ershov et al. (2018)). In some important industries, however, only measures of aggregate market
shares of single products are widely available (e.g., the car industry, see Berry et al. (1995, 2004a)) even
though households are known to purchase bundles of products (Manski and Sherman (1980)). When
only aggregate market shares of single products are available, our proposed methods do not apply. An
important direction for future research is thus the identification and estimation of models of demand
for bundles on the basis of aggregate market shares of single products (see Sher and Kim (2014), Allen
and Rehbeck (2019a), and Wang (2019)).






CHAPTER 2

A BLP Demand Model of Product-Level
Market Shares with Complementarity

Abstract. Applied researchers most often estimate the demand for differentiated products assuming
that at most one item can be purchased. Yet multiple purchases are pervasive. Ignoring this feature can
lead to erroneous counterfactuals, in particular, because complementarities are ruled out. I consider
the identification and estimation of a random coefficient discrete choice model of bundles, namely sets
of products, when only product-level market shares are available. This last feature arises when only
aggregate market shares, as opposed to individual purchases, are available, a very common phenomenon
in practice. Following the classical approach with aggregate data, I consider a two-step method. First,
using a novel inversion result where demand can exhibit Hicksian complementarity, I recover the mean
utilities of products from the product-level market shares. Second, to infer the structural parameters
from the mean utilities while dealing with price endogeneity, I use instrumental variables. 1 provide
low-level conditions under which the model is globally identified through moment conditions based on
such instruments. Finally, I illustrate the practical implementation of the methods and estimate the
demand for Ready-To-Eat (RTE) cereals and milk in the US. The demand estimates suggest that RTE
cereals and milk are overall Hicksian complementary and these complementarities are heterogeneous
across bundles. Ignoring such complementarities results in misleading counterfactuals.

2.1 Introduction

Since the seminal work of Berry (1994) and Berry et al. (1995) (henceforth BLP), BLP-type models have
been widely used in empirical demand literature and also gain popularity beyond empirical industrial
organisation.! Applied researchers most often estimate BLP models of single products. An assumption
behind these models is that individuals can only choose at most one item of a single product. Yet,
multiple purchases are pervasive. In particular, this assumption rules out Hicksian complementarities
among products.? As a result, estimating demand models of single products may lead to biased
estimates and misleading counterfactuals. To relax this assumption, researchers typically use models
of demand for bundles.? Estimating such models usually requires individual choice data at bundle level
(e.g. scanner data, survey data). However, in some important industries, only aggregate purchase data
at product level is widely available.

!For example, analysis of voting data (Rekkas (2007), Milligan and Rekkas (2008), Gordon and Hartmann (2013),
Merlo and Paula (2017), Gillen et al. (2019)), asset pricing (Koijen and Yogo, 2019).

2Hicksian complementarity is defined as negative (compensated) cross-price elasticity between two products. For a
survey of different concepts of complementarity, see Samuelson (1974).

3In the empirical literature, the terminology “bundle” is often defined as a set of products/services,/decisions purchased
by individuals. In this paper, I use this definition and formalise it in Assumption 6.

*Manski and Sherman (1980) estimated a model that explains the composition of holdings in two-vehicle households.
While the purchase data in the automotive industry is often at product level.
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This paper proposes a random coefficient discrete-choice model of demand for bundles using aggre-
gate demand at product level. Similar to classic BLP models of single products, aggregate demand at
product level is defined in form of “market share”, i.e. aggregate choice probability (or total purchase)
of a product, and is largely available in most industries. Differently, the proposed model does not re-
strict products to be substitutes and, notably, allows for Hicksian complementarities among products
that can be jointly chosen in a bundle. Moreover, it enables to encompass, in a structural way, different
mechanisms that may drive the Hicksian complementarity, and still allows for endogenous prices.” The
identification arguments of the model are constructive and lead to a practically useful Generalized
Method of Moments (GMM) estimator. In particular, it can handle potentially large choice sets of
bundles and its implementation is straightforward, essentially as a standard BLP estimator.

Different from the current literature of demand for bundles, the proposed model only requires the
availability of market shares at product level, rather than at bundle level. Consequently, the market
shares of bundles are not observed to the researcher and hence the identification and estimation of the
model become more difficult. Depending on the research questions, the task of identification is more
or less challenging. Specifically, I consider economic analyses (e.g. price elasticities, marginal costs,
mergers) under linear and nonlinear pricing.® I show that the economic analyses under linear pricing
require to identify the product-level market share functions, while those under nonlinear pricing require
to further identify the bundle-level market share functions. The latter is more challenging because only
product-level market shares are available.

I then study the identification in two sequential parts. In the first part, 1 follow the classical
approach in demand models with aggregate data and employ a two-step strategy to identify the
product-level market share functions. In the first step, I invert the product-level market shares to
the mean utilities of products. Because of possible Hicksian complementarities among products, the
typical conditions that guarantee the invertibility of product-level market shares (connected substitutes
conditions, see Berry et al. (2013)) may not hold. To solve this challenge, I use a novel demand inverse
argument that hinges on two elements. First, the affine relationship between the utilities of bundles
and its single products: the average utility of any bundle equals the sum of those of its single products
plus an extra term capturing their potential demand synergy. Second, the P-matrix property by Gale
and Nikaido (1965) which crucially does not restrict the products to be Hicksian substitutes. In the
second step, I use instrumental variables (IVs) to deal with endogenous prices and propose low-level
sufficient conditions to achieve the identification.” Concretely, 1 assume the large support of the IVs
and their independence with respect to the (unobserved) demand and supply shocks. I then leverage
Mattner (1992) and D’Haultfoeuille (2011) and show that the product-level market share functions are
identified when demand and supply shocks are normally distributed, or the random coefficients have
compact support in the models of multiple choice of products across categories.

In the second part, assuming the identification of the product-level market share functions, I study
that of the bundle-level market share functions. This requires to disentangle the demand synergies
among products from the unobserved correlations in the utilities of products (Gentzkow, 2007). I show

SExamples of such mechanisms include shopping cost (Pozzi (2012), Thomassen et al. (2017)), preference for variety
(Hendel (1999), Dubé (2004)), and synergies in consumption (Gentzkow, 2007).

SUnder linear pricing, firms set prices for single products and the price of a bundle is the sum of the prices of its
single products. Under nonlinear pricing, firms further set discounts or surcharges on the bundles of their own products.

"In general, one can leverage completeness conditions along the lines of Berry and Haile (2014) to achieve the iden-
tification. Despite its generality, these conditions are often high-level. For weaker forms of completeness conditions, the
testability, and the sufficient conditions of completeness, see Mattner (1993), D’Haultfoeuille (2011), Canay et al. (2013),
Andrews (2017), Freyberger (2017), Hu and Shiu (2018).
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that the identification of the bundle-level market share functions is achieved in often used models where
the bundle size is at most two.® Moreover, I also prove that using only product-level market shares
may have limited power in identifying bundle-level market share functions in other types of models. 1
provide an example of non-identification in a model of multi-unit choice.

I propose a GMM estimation procedure, similar to the two-step procedure in BLP models of single
products. In the first step, given a guess of the demand synergy parameters and the distribution of the
random coefficients, I invert the observed product-level market shares to the mean utilities of products.
In the second step, I instrument out the unobserved demand shocks in the mean utilities of products
and construct the GMM objective function. However, there are nontrivial challenges that BLP models
of single products do not have. In particular, the implementation of the demand inverse is complicated
due to possible Hicksian complementarities among products: the fixed-point algorithm proposed by
Berry et al. (1995) may not have the contraction-mapping property. As a result, it may not converge
when applied to implement the demand inverse in the first step above. To solve this challenge, 1
propose to use Jacobian-based algorithms. To enhance their numerical performance, I suggest using
an initial point directly constructed from the observed product-level market shares and show that using
this initial point can significantly improve the numerical performance of Jacobian-based methods. In
Monte Carlos simulations, this reduces the convergence time by 70% relative to using standard initial
point even in large applications (the number of bundles being about 10,000).

Finally, T illustrate the practical implementation of the proposed methods and estimate the demand
for Ready-To-Eat (RTE) cereals and milk in the US. First, the demand estimates suggest that RTE
cereals and milk are overall Hicksian complementary. I simulate a merger between a national RTE
cereal producer and a national milk producer. The results are aligned with Cournot (1838)’s insight: in
the presence of Hicksian complementarity, mergers can be welfare enhancing. In contrast, a BLP model
of RTE cereals (or milk) assumes Hicksian independence between RTE cereals and milk and predicts
no welfare effect in the merger simulation. Second, I find that some types of RTE cereals are more
(or less) complementary to certain types of milk and a model of demand for bundles with restricted
demand synergies may not capture this feature. In a nonlinear pricing counterfactual, I illustrate that
using such restricted models may lead to important bias in welfare prediction.

Related Literature FEmpirical literature dealing with multiple purchases typically employs demand
models of bundles with individual choice data at bundle level.® See Berry et al. (2014) for a survey
of complementary choices and sections 4.2-4.3 of Dubé¢ (2018) for a survey of econometric modeling
of complementary goods. Differently, the methods in this paper rely on aggregate demand data at
product level and can be applied when bundle-level demand data is not accessible.!® In particular,
the proposed methods are different from those in laria and Wang (2019a) in three aspects. First, the
methods in two papers work under different data availabilities. Those in this paper work when only
aggregate data at product level is available, while those of the other paper apply when bundle-level
demand data is accessible. Second, the source of identification is different. I exploit the exogenous

8See Gentzkow (2007), Fan (2013), Grzybowski and Verboven (2016).

®Examples include consumer choice in supermarket (Hendel (1999), Dubé (2004), Lee et al. (2013), Kwak et al. (2015),
Thomassen et al. (2017), Ershov et al. (2018)), household choice among motor vehicles (Manski and Sherman, 1980),
choice of telecommunication services (Liu et al. (2010b), Crawford and Yurukoglu (2012), Grzybowski and Verboven
(2016), Crawford et al. (2018)), subscription decision (Nevo et al. (2005), Gentzkow (2007)), firms’ decision on technology
adoptions (Augereau et al. (2006), Kretschmer et al. (2012)).

10 Aggregate demand data at product level, e.g. aggregate purchase data, vote shares, is standard and widely available.
While, demand data at bundle level is typically obtained via survey or scanners in the supermarket.



Chapter 2. A BLP Demand Model of Product-Level Market Shares with
42 Complementarity

variation in IVs to achieve identification, while that paper fully exploits the affine relationship between
the utilities of the bundle and its single products due to the availability of bundle-level demand data.
Third, the estimation methods are different. this paper uses a GMM estimation procedure, while that
paper proposes a likelihood-type estimator that resolves the dimensionality challenge of market-product
fixed effects.

Identifying and estimating models of demand for bundles from aggregate demand at product level
is a challenging task. Moreover, prices are often endogenous, which introduces additional difficulty in
identification. To the best of my knowledge, this is the first paper that provides a systematic treatment
of both issues in BLP-type models of demand for bundles that may exhibit Hicksian complementarity.'*
This paper differs from Fosgerau et al. (2019) who model Hicksian complementarity via overlapping
nests. Sher and Kim (2014)’s identification arguments crucially rely on substitutes assumptions in con-
sumers’ utility,'? while this paper does not restrict utility functions to be submodular or supermodular.
Allen and Rehbeck (2019a)’s main results imply the identification of the product-level market share
functions in discrete choice models with additively separable heterogeneity. Instead, the current pa-
per achieves the identification using IVs and further provides identification results of the bundle-level
market share functions. Their following paper, Allen and Rehbeck (2019b), gives identification results
of the distributional features of the random coefficients in the case of two products (and therefore one
bundle). Notably, except for Fosgerau et al. (2019), all other papers mentioned above assume away
endogenous prices.

This paper also contributes to the research agenda of the identification and estimation of discrete
choice demand models. Berry et al. (2013) propose the connected substitutes conditions that guarantee
the invertibility of the market share functions. In model of demand for bundles with only product-
level market shares being available, these conditions rely on the products to be substitutes.!®> This
paper uses a novel demand inverse argument to deal with possible Hicksian complementarities among
products. Some papers have employed similar concepts of demand inverse. In a model of multiple
choice of products across categories, Song and Chintagunta (2006) implement the demand inversion
of market shares at brand level. However, they do not have theoretical results on the invertibility
of the brand-level market share functions. lTaria and Wang (2019a) formally prove the invertibility
of the product-level market share functions in model of demand for bundles and use it to reduce
the dimensionality of fixed effects in estimation. In contrast, I use this demand inverse as a key
identification argument when only product-level market shares are available.

Organisation In the next section, I introduce the model and necessary notations. I provide several
examples in the literature that can be formulated via the model and, in particular, illustrate how
this model can allow for Hicksian complementarity. In section 2.3, I present identification results.
In section 2.4, I describe the GMM estimation procedure and its implementation. In section 2.5, I
use Monte Carlos simulations to test numerical performances of the demand inverse implemented by

"Dunker et al. (2017) also deal with price endogeneity in identification. However, instead of using the product-level
market shares, they assume the availability of a vector of bundle-level market shares that has the same dimension as the
number of products.

12When each consumer is assumed to consume at most one unit of each good, they impose submodularity restriction
in consumers’ utility (see their Assumption 2); when multi-unit demand is allowed, they use a stronger “M-natural
concavity” restriction (see their Assumption 3).

13Fan (2013) studies newspaper market in the US and assumed households subscribe to at most two newspapers. She
gives sufficient conditions for the connected substitutes conditions proposed by Berry et al. (2013) and rules out Hicksian
complementarities among different newspapers.
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Jacobian-based algorithms. In section 2.6, I examine the practical performance of the methods with
an empirical illustration. Section 2.7 concludes. All proofs are in Appendices B.1-B.6. Figures and
tables can be found in Appendix B.8.

2.2 Model

2.2.1 Model and Notation

Denote market by ¢ = 1,...,T. The definition of market depends on the concrete application. For
example, one could have different geographic areas in the case of cross sectional data, or different
periods in the case of panel data, or a combination of these. For individuals in market ¢, let J; be
the set of J; market-specific products that can be purchased in isolation or in bundles. A bundle b is
defined as a collection of single products in J; and denote the set of available bundles in market ¢ by
Cys. Denote the outside option by 0. Individuals in market ¢ can either choose a product j € Jy, a
bundle b € Cyo, or the outside option 0. Denote by Cy = J; U Cpo the set of available products and
bundles, and by C; = Cy; U {0} the choice set of individuals in market ¢. Let p;; denote the price of
product j in market ¢, and x4; € RX the market-product specific vector of other characteristics of j in
market ¢. I follow the linear index assumption in BLP models of demand (see Berry and Haile (2014)).
For individual ¢ in market ¢, the indirect utility from choosing product j is:

Uitj = witj + €ty
= x40 — cipej + Nij + & + Eity

= fﬂg)ﬁ(” + xﬁ?ﬁf’) — iprj + Nij + &+ Eitj (2.1)

2) A 22
= 28 — apyj + 0 + &) + [l’ﬁj)A@( )~ Aaipyj + Amig) + ei
= 05 + pitj + ity

where wi; = 04 + pi; with 0y = 2458 — apyj + n; + &; being market t-specific mean utility of

E?)Aﬁz@) — Aaypyj + An;; being an individual i-specific utility deviation
from d;j, while €5 is an idiosyncratic error term. :L'gjl)

that enter Uj; with deterministic coefficient(s), BM . ie. consumers have homogeneous taste on x

(2)

while Ty € R%2 and ptj enter U;; with potentially individual i-specific coefficients, 6£2) and «;.
(2)
tj
captures individual i’s perception of the quality of product j, with 7; capturing average quality product

product j € J; and py; = @

e RX1 is the vector of product characteristics

(1)

ty

They capture consumers’ heterogeneous tastes on x,;” and sensitivities to price change. The term n;;

j and An;; individual deviation from 7;. Any characteristics of product j that does not vary across
markets is encapsulated in 7;. &; is a market-product specific demand shock of product j, observed
to both firms and individuals but not observed to the econometrician.

Throughout the paper, denote product j being in bundle b by 5 € b. The indirect utility for individual
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i in market ¢ from choosing bundle b € Cyy is:

Uit = Z Uity + Db + €itp
jeb
= Z((Stj + titj) + Do + (Dap — T'ip) + €itb
jeb

= 0+ T+ | Y it + Gin | + i
j€b jeb

= 0ib(I'eb) + pitb + €itbs

where 0 (Typ) = D jeb 0tj + I'p, is market ¢-specific mean utility of bundle b, p;s, is an individual i-
specific utility deviation from o, (I'ep), 'itp and 'y, are the individual-market it- and market ¢-specific
demand synergies among the products of bundle b, (;sp is (observed or unobserved) individual deviation
from average demand synergies ['y,, and €44 is an idiosyncratic error term. Demand synergies ['j’s
are new parameters that classical demand models of single products do not have. They capture the
extra utility individual ¢ obtains from choosing the products in bundle b’s in market ¢ jointly rather
than separately. As one will see in section 2.2.3, these parameters enable to capture rich substitution
patterns among products, and in particular, Hicksian complementarity. Moreover, I';;p’s are catch-all
parameters and can encompass a wide range of mechanisms that make it more (or less) appealing to
choose products jointly than separately. Examples of such mechanisms include discount (or surcharge)
on joint purchase of products, shopping cost (one-stop vs multi-stop shoppers), preference for variety
of products (single-person vs multi-person households), and synergies in consumption. In section 2.2.2,
I will show this point via several examples of demand models in the literature.

Finally, the indirect utility of choosing the outside option 0 is normalized as U;g = €440, where €50
is an idiosyncratic error term. To compete the model, I assume that p;; = JEE?)ABZ@) —Aapj+An; =
pot (Ot xgz,ptjt) and pyp = Zjeb Witj + Citb = b (it xiii,tht) are functions of random coefficients
O = (AB™, Aay, (Anij)jea, (Cib)bec,), where I = UL J,, Cy = UL Cyo, and 0y is distributed
according to F' € Or.'* Moreover, 0, €itj, and g;;p are assumed to be i.i.d. Gumbel for all j € Jy
and b € Cys.

Denote the vector of market t-specific mean utilities for products in J; by ¢35, = (645)eJ,, and the vector
collecting all average demand synergies by I't = (I'tp )bec,- Define 6:(I;) = (0:3,, (0tb(T'th) )bec,,). The
market share function of b € Cy in market ¢ is:!°

Stb((St(Ft);xgl,tht,F) = /Stb(5t(rt);«’Bg)t,pt.]”@it)dF(@it)

e5tb(Ftb)+utb(9it;$g>t Ptd;) (2'3>
) it )
Zb/ c eétb/ (Ftb’)+ﬂtb/(9it;x£J)t 7tht)
€Cy

where stb(ét(I‘t);azg)t,pt.]t,eit) is individual #’s choice probability of b in market ¢ given 6;. I then
define product-level market share function of j € J; as the weighted sum of the market share functions

Y Typically, the distribution of 6;; depends on individual ¥’s demographic characteristics d; € D. In this case, F is a
mixture of distributions of 0;|di: "=}, _p m(di)F(-|d;), where 7¢(-) is the distribution of demographics in market ¢.
15T abuse the expression b € Cy; for both product j and bundle b.
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of b’s that contain j in market ¢:

2 2
st5.(0e3,; xEJiuthtvrta F) = Z wijtb(at(Ft);xl(fJ)tvthtv F)
beCy
Zbecﬂ wjbe5tb(Ftb)+utb(9it;xg)t Dt3y) (2.4)

_ dF(0),
Ot (Typr )t (it ;Ig) Pt3y,)
Zb’ECt € '

where wjp, is the number of times j appears in b and known for any j € J; and b € C;. When j ¢ b,
we have w;, = 0 and the market share of bundle b does not contribute to the product-level market
share of j. When j € b, then wjy, is a positive integer. In the setting of qualitative choices (i.e. there is
no bundle that contains multiple units of the same product) wj, = 1 for j € b. Then, (2.4) represents
the population-level marginal choice probability of j. In the setting of quantity choices (i.e. a bundle
may contain multiple units of the same product), wj is equal to the units of product j purchased in the
form of bundle b and may be larger than 1. Then, (2.4) represents the population-level total purchases
of product j. In both settings, the aggregation in (2.4) is consistent with the aggregate demand data
typically available to the researcher.

2.2.2 Examples of Model (2.4) and Interpretation of Demand Synergy Parameters

Model (2.4) is quite general and a wide range of economic models can be formulated via specific
restrictions on Cyg and/or on demand synergies I';yp,. In this section, I provide some examples in the
literature. In particular, I will explain the economic interpretation of I';;p’s in each setting.

Demand for Single Products. This model can be seen as a particular case of (2.4) with G = 0,
or equivalently, I';;p, = —o0, for all b € Coe. This restriction on ', rules out simultaneous choices of
more than one single product and restricts products to be Hicksian substitutes.

Multiple Choice of Products, within Category. Gentzkow (2007) considers household’s choice
over bundles of at most 2 different newspapers: Cip = {(j1,72) : j1 < Jj2,Jj1,J2 € Ji} and C; =
{0} UJ; U Cya. In general, one can allow for choice over bundles of up to K different products:
Ci = {1, Jk) : 71 < oo < JkyJ1,--Jik € Jt}. As shown in laria and Wang (2019a), demand
synergy [';4, can proxy various mechanisms, including preference for variety, shopping cost, synergies
in consumption.

Multiple Choice of Products, across Categories. Grzybowski and Verboven (2016) and Ershov
et al. (2018) consider choice over bundles of products across different categories. In the simplest case
where a bundle is defined as a collection of 2 different products (chips and soda) with each belonging
to a different category (salty snacks and carbonated drinks), we have Cio = J; X Jo = {(j1,72) : J1 €
Ji,72 € Jo}. In the example of potato chips and carbonated soda (Ershov et al., 2018), T';yp’s are
interpreted as synergies in consumption.

Quantity Choice: Multiple Units. As a deviation from demand models for single products,
individuals purchase not only one out of J products but also a discrete quantity of the chosen product.
This can be captured by Ci2 = {(4,...,7) : j € J, the length of (4,...,7) < L.}, where L is the maximal
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units individuals can purchase. In the simplest case, individuals can purchase the outside option 0, a
unit of product j € J (single product), or a bundle of two identical units (4, 5), j € J. Demand synergy
Lit(y.5
product j relative to the first unit: T';y(; ;) < 0(> 0) implies a decreasing (increasing) marginal utility

) is then interpreted as extra utility individual ¢’s obtains from the purchased additional unit of

of purchasing product j. If I';y(; 5y = 0, then individual ¢’s utility from purchasing the second unit of
product j remains the same as that from the first unit.

Quantity Choice: Multiple Discreteness. Demand model of multiple discreteness (see Hendel

(1999) and Dubé (2004)) can be seen as a further extension of demand for multiple units that includes

bundles defined as a collection of multiple units of different products: b = ( (j,...,J) )jey, Where
——

n;
nj is the number of units of product j. As shown in Jaria and Wang (2019a) (Appendix 8.1), Dubé
(2004)’s model of multiple discreteness can be formulated by specifying i = >3 Tig(j,....j), where

| R < 0 for any nj > 1 and j € J. The non-positive I';;, represents non-increasing marginal

it(Jy eeey ] d)
—_

"
utility of consuming additional units of product j during one consumption moment and the additivity
in T, across j € J represents the independence between consumption moments.'6

Multi-Category Multi-Store Demand. Thomassen et al. (2017) studies a multi-category multi-
store demand model, where individual purchases multiple units in each of K product categories and
purchase all the units of the same category in the same store. Consider the simplest case where
individual purchases at most one unit in each of 2 product categories (k1 and k) from 2 stores (Sy
and Sp). This can be captured by J = {j = (j1,5%) : ! = k1, ko, j2 = 51,5} and Co = {(j,7) :
j,r € J, j # r'}. A product is defined as a Cartesian product of categories and stores with first
coordinate being category and the second being store (category 1 in store 2) and a bundle is defined
as a Cartesian product of two products that differ in their first coordinate (category 1 in store 2 and
category 2 in store 2). Demand synergy D'y (;,) is interpreted as shopping cost due to store choice:
Fit(j,r
(purchase products of one category in store 1 and those of the other in store 2).

y =0if 42 = r? (purchase products of both categories in the same store), and negative otherwise

2.2.3 Demand Synergies and Hicksian Substitutions

One prominent feature of model (2.4) is that it allows for flexible substitution patterns in demand via
demand synergy parameters. In particular, the cross-price elasticities in model (2.4) can be negative,
i.e. Hicksian complementarity, which is ruled out by demand models of single products.'” In this
section, I will elaborate this point in a model of multiple choice of products within category: Co =
{(j1,J2) : j1 < Jo,J1,J2 € J}. Similar analysis can be conducted with other types of models (2.4).

To ease exposition, I drop the notation of market ¢t and product characteristics in the product-level
market share functions. We then compute the derivative of the product-level market share prices with

0sy. 0s;3.
P 0, L R0,
Op3 / Y90y (6:)

respect to prices:

Due to Dubé (2004)’s perfect substitute specification, individual will consume up to one product during one con-
sumption moment.

"Due to linear index structure, there is no income effect and therefore negative (positive) cross-price elasticities are
interpreted as Hicksian complementarity (substitutability).
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0si3. (881',7:)
where = and
a0y % ) ;res

882‘ 3.
0,

= —[sij.5ir. — sijr] = —[5.(0(); 03)57.(6(T'); 0;) — 55-(0(T); 6;)].
The cross-price elasticity between j and r is:

=2 [ aulsi B0):05.(5(T):61) ~ s, (G(T): )] (5.
See Appendix B.1 for details of computation.

Different from models of demand for single products, the cross-price elasticity ¢, has an additional
term —s;,.(6(I"); 0;). When this term is relatively large, i.e. the joint choice probability for products j
and r is relatively large, we may have a negative €., i.e. Hicksian complementarity between j and 7.
In the case of two products and one bundle, i.e. J = {1,2} and Cy = {(1,2)}, Gentzkow (2007) shows
that I';, = 0 is the cut-off value for Hicksian substitutability and complementarity: €12 < 0 if and only
if I'(12) > 0. When there are more than 2 products, even though I'(; .y = 0 may not be the cut-oft
value for Hicksian substitute or complementary between j and r, similar intuition remains valid. To see
this, note that whether j and r are substitute, complementary or independent, i.e. €, > 0, €j < 0 or
gjr = 0, is determined by the weighted average of s;; s;, — s;j-. The latter is further determined by the
magnitude of synergy parameter between j and r, I';,, relative to other demand synergy parameters.
If T';, is sufficiently negative, then s;; is close to zero and thus €j. > 0. As an extreme case, when
I'j, = —o0, i.e. bundle (j,7) is not in the choice set, j and r are always substitute and therefore ¢},
is positive. If I';, is positive and large enough relative to I'j,» for all (j,7') # (j,7), then s;; — sijr
and s; — s;j are negligible relative to s;;j.. Then, the sign of €;, is determined by the population
: ’
gjr < 0. If T'j, takes some medium value in (—o00,00), we can expect €, = 0 and therefore j and r are

average of s — s;;. Since s;j, is strictly between 0 and 1, s7;. — s;5, is always negative and therefore

independent.

2.3 Identification

I first give the assumptions the identification and estimation will rely on.
Assumption 6. For anyt e T,

(i). (Data availability) The product-level market shares, 315 = >y, Wibdm, are observed to the
econometrician for j € Jy.

(i1). (Mix and match) If bundle b € Cyg, then j € J¢, for any j € b.

(ii). (Many-market) The total number of products, | UL J;|, and bundles | UL_; Cya|, are fived while
the number of markets, T = |T|, is large.

Assumption 6(i) specifies situations where only product-level (rather than bundle-level) market shares
are available to the econometrician. To simplify the exposition, I assume that product-level market
shares are observed without error, i.e. the number of individuals in each market is infinite. In esti-
mation, one can allow for the number of individuals to increase fast enough relative to the number
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of markets and the main results of the paper still hold.'® Assumption 6(ii) clarifies that bundles are
formed because individuals mizx and maich products, i.e. a bundle is defined as a set of products cho-
sen by individuals. The definition of product may vary from application to application. If some single
products are only sold together (e.g. business-class flight is only available via bundle of business-class
seat and large allowance of luggage), as long as purchase data on such combination is available, i.e.
Assumption 6(i) holds, then one can define such combination as a product and Assumption 6(ii) is
not violated. Finally, Assumption 6(iii) focuses on the many-market setting where the numbers of
products and bundles are fixed while the number of markets increases.

As clarified in Assumption 6(iii), T consider the many-market setting in this paper. As a result,
without further restrictions, as T increases, the number of demand synergy parameters to be identified
(i.e. Tt for all ¢ € T) increases simultaneously. This challenge of dimensionality introduces substantial
difficulty in identification and incidental parameters in estimation. To overcome this challenge, 1
propose the following assumption along the lines of Gentzkow (2007)’s model of demand for bundles
(and also its generalized version in laria and Wang (2019a)):

Assumption 7. For any bundle b € Cis and t € T,
I = 9(2; Xg) + I'p,

where T, a vector of observed market-bundle specific non-price characteristics, g(-; %) a function of
Ty parametrized by and continuously differentiable with respect to ¥y € Oy, and I'y, is a bundle-specific
fized effect.

Assumption 7 reduces the dimension of the demand synergy parameters to the sum of dim(X,) and
dim(I") = dim((I'v)bec,) = |C2|, which remains fixed as 7" increases. The main motivation for this
assumption is that the bundle-level market shares are not observed to the econometrician. If they were
all available, then one could directly identify and estimate model (2.3), rather than model (2.4), a la
BLP with bundle-level instruments and then Assumption 7 is not required.

Different from the model used in Iaria and Wang (2019a), Assumption 7 assumes linear pricing
in the factual, i.e. the observed price of a bundle is the sum of the prices of its single products.
This excludes nonlinear pricing in the factual, i.e. bundle-specific discounts or surcharges. While it is
possible to extend the main results in this paper to allow for nonlinear pricing in the factual, I focus
on the situations covered by Assumption 7 and will explore this extension in future research.

Note that even with Assumption 7, one can still simulate counterfactuals under nonlinear pricing. In
such counterfactuals, this assumption implies that the source of unobserved variations across markets
is limited to the market-product specific demand shocks &;3,. Then, conditional on the observed
characteristics of products and bundles, prices vary across markets only due to variations in &, .

Assumption 7 summarizes various economic situations with or without exogenous characteristics
of bundles. Both situations can be similarly treated in the following identification and estimation
discussion. To simplify the exposition, I will focus on the leading case ¢ =0, i.e. I'yp, = I'p.

'8Tn models of demand for single products, Freyberger (2015) allows for sampling errors in the observed market shares.
He shows the consistency and asymptotic normality of the GMM estimator by requiring the number of individuals to
increase fast enough relative to the number of markets.
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2.3.1 Economic Analyses and Sufficient Demand Primitives

The demand primitives to be identified are motivated by research questions. In the context of demand
for bundles, researchers are usually interested in economic analyses under linear and nonlinear pricing
strategies. Under linear pricing strategy, firms only set prices of their single products; the price of
a bundle is defined as the sum of the prices of its single products. Under nonlinear pricing strategy,
firms can not only set prices of its single products but also on the bundles of their own products.
Then, the price of a bundle can be different from the sum of the prices of its products when there
is a discount or surcharge. Identifying the full structural parameters does allow to conduct all these
analyses. However, this may be overly sufficient. The next proposition shows precisely which demand
primitives are needed to conduct the two kinds of analyses in merger simulations.

Proposition 1. Suppose that Assumptions 6-7 hold and o; = o.'® Also suppose that the observed
prices pi3, and those after mergers are generated from a simultaneous Bertrand price-setting game
under complete information with constant marginal cost ci; for j € Jy, and are unique.

o If (o, B,m) and st_]t,(-;xg)t,I’,F) are identified, then,

— Price elasticities at py3, are identified.
— ¢t s are identified.

— The changes of prices, profits, consumer surplus, social welfare before and after the merger

under linear pricing are identified.

e If T and sip(-; acgi, F), for any b € Cy are further identified, and moreover, cip = Zjeb cij for

b € Cyo, then, the changes of prices, profits, consumer surplus, social welfare before and after
the merger under nonlinear pricing are identified.

Proof. See Appendix B.2. O

Remark 4. The condition cy, = Zjeb
bundle-specific prices. The second statement of Proposition 1 still holds if there is such additional cost

cj implies that there is no additional cost for firms to set

and it is known to the researcher.

Proposition 1 specifies the set of sufficient demand primitives with which the researcher can simulate
mergers under linear and nonlinear pricing, respectively. Identifying («, 8,7) and St.]t.(';l'gi)t,r, F) is
enough for merger simulations under linear pricing. For those under nonlinear pricing, it suffices to
further identify T and s (+; wg)t, F) for all b € Cys. In what follows, I will organise the identification

discussion in two parts. In the first part, I discuss the identification of («, 5,71) and s, (- xgz,F, F);
in the second part, I assume the identification of (a, 8,7) and su3, (- xg)t, I, F) and continue to identify
I' and Stb(-;.ng,F) for b € Cyo.

2.3.2 Identification of Product-Level Market Share Functions

I follow the classical approach in demand models of aggregate market shares and use a two-step iden-
tification strategy. In the first step, I recover the mean utilities of products using a novel demand

9Because a; = «, prices enter the indirect utilities only via the mean utilities. In this proposition and the proof, I
drop the notation pj, from st(-;xg)t,th, I, F).
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inverse to deal with possible Hicksian complementarities among products; in the second step, I con-
struct moment conditions using I'Vs to deal with endogenous prices and identify product-level demand
primitives.

Demand Inverse in Model (2.4) with Complementarity. Let J = U]_;J; denote the set of all
available single products, and Cy = UL_;Cys the set of all available bundles. The first step hinges on
the invertibility of product-level market share functions:

Theorem 7. (Theorem Demand Inverse of laria and Wang (2019a))
Suppose that Assumption 6-7 holds Then, for any (I',F'), there exists at most one 51/th such that

2
St.]t. (5£Jt ) x§J17tht7 P/7 F/) = dtJt. .
When (I, F') are the true parameters (I', F'), the vector of the true mean utilities of products, d:3,, is
the unique solution of s43, (d}5,; xgt,pt,]t, [, F) = 43,.. As aresult, the function s, (:; xg)t,pt,]t, I F)
is globally invertible. Denote its inverse by:

5tJt = Sgllt,(dt.]t.;xf]z’pt.]wer)‘ (25)

[aria and Wang (2019a) first proved this result and use it to reduce the dimensionality of fixed effects in
a likelihood estimation procedure.?’ In this paper, it is used as a fundamental identification argument
and an essential step to form moment conditions when only product-level market shares are available.
There are two key differences relative to the classical demand inverse in demand models of single
products. First, the invertibility of market share functions in demand models of single products
follows from the connected substitutes conditions (Berry et al., 2013) which require the products to
be Hicksian substitutes. These conditions may not apply to model (2.4) because the products can
be Hicksian complementary. The invertibility of product-level market share functions in Theorem 7
is built on the affine relationship between the utilities of bundles and single products (see equation
(2.2)) and on the P-matrix property by Gale and Nikaido (1965), which-crucially-does not require the
products to be Hicksian substitutes. Second, the demand inverse in Theorem 7 may not be implemented
by the fixed-point contraction mapping algorithm proposed by Berry et al. (1995). This is because
the contraction mapping property of the algorithm may not hold when (some) products are Hicksian
complementary in model (2.4). T propose to use Jacobian-based algorithms to implement this demand
inverse.?! See section 2.4.2 for details of the implementation.

When (I, F') # (T, F), it is possible that there is no &,y such that s.3, (65 ;I", F') = 3,3, In
this case, such (I, F") are directly ruled out of the identification set of (I', F'). In what follows, the
identification discussion will restrict to (I, F') such that &7, exists.

Instrumental Variable Approach. To clarify the source of identification, I suppose that J; = J
and Cyp = Cs for any t € T, i.e. there is no variation in the set of products and bundles across

20See their Theorem MLE and implementation section.

*'Conlon and Gortmaker (2019) provide a review of numerical methods for implementation of demand inverse in
demand models of single products.

22For example, if the data generating process is such that the sum of the observed product-level market shares is larger
than one, then any demand models of single products (I's = —oco for any b) cannot rationalize the observed product-level
market shares and hence the demand inverse is not feasible with I' = —oo.
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markets. Combining equation (2.5) and 03 = x438 — apig + 13 + &3, 1 obtain:

2138 — apiy +n3 + &g = 85 (3.5 iﬁg),th, I'F). (2.6)

The source of price endogeneity is &3: &3 are observed to firms and therefore p;y are set based on &3.
Consequently, p;3 and &3 are correlated, while &3 are not observed to the econometrician. Beyond
the price endogeneity, I' and F' constitute parameters that cannot be pinned down without further
assumption. I use [Vs to solve these challenges:

Assumption 8. There are random variables zi3 = (2z¢j)je3, such that E[&3|z3, x5] = 0 almost
everywhere.

Assumption 8 gives rise to conditional moment restrictions:

E[&(B,a,n T, F; 313, 243, 0t3) |23, ©e3) = 0 ace., (2.7)

for j € J, where &;(8, o, n, T, F; 313, 13, pt3) = sj_l(ﬁt,],;a:g),pt,],l“,F) — x4 3 + apij — n;. The identi-
fication of sy.(-;T, F) (or equivalently its inverse s;* (T, F')) by moment conditions (2.7) can follow
from general arguments in nonlinear models using IVs. In demand models of single products, one can
leverage completeness conditions of joint distribution of (23, %, d13., pry) with respect to (313, pry)
(Berry and Haile, 2014). Intuitively, this requires sufficiently rich variation in (zy3,zy) that can dis-
tinguish any function of endogenous variables (4.3, pry) from others. In the context of (2.7), the same
general arguments also apply. I need variation in (zyg,z3) to distinguish &5(8,a,n, T, F;---) from
&8y, T F';---) for any (8',a/,n/,T", F") # (B,a,n,T,F). As long as such variation is avail-
able, having demand synergy parameters I' does not conceptually introduce additional difficulty for
identification.

Despite the generality, these arguments and required conditions are often high-level. In what fol-
lows, I leverage usual economic settings and propose low-level sufficient conditions for the identification
of market-level market share functions. To simplify the exposition, I will focus on cost-type variables
and take product characteristics x;y as fixed.?? In Appendix B.9, I propose similar sufficient conditions
for other commonly used instruments: BLP-type instruments, exogenous product characteristics.

Suppose that the ownership of each product is the same across markets and that prices are generated
from a simultaneous Bertrand pricing game under complete information with constant marginal cost
ctj for j € J. Without loss of generality, I specify c¢;; = 2i; + wy;, where z;; is cost shifter for product
J and wy; is exogenous supply shock that is observed to firms but not observed to the econometrician.
The main identification result of the product-level market share functions is the following:

Theorem 8. Suppose that Assumptions 6-8 and reqularity condition 2 of Appendix B.3 holds. More-
over, the following conditions hold:

1. zy is independent of (&3, wsy) and the support of zy is R,
2. a;=a#0

3. Given 2P, piy = p3(Bx + 0+ &, cra; ) is a function of (Bx + 1 + &, ).

23Common examples of cost-type variables and its proxies are input prices, variables correlated with marginal costs,
prices of the same products in other markets (e.g., Hausman-type instruments).
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4. For any (T',F') # (U, F), there ewists 85 # 6 such that s3.(85;23) T, F) = s3.(8; 23, T, F')
and SJ.((S‘/],;LU(Q),F,F) = SJ.(&/]/;LU(Q),F,,F/),

Then,
o If (€,w) is Gaussian distributed, then o and sy3.(; 2, T, F) are identified.

e Suppose that the data generating process is a model of multiple choice of products across categories
(see section 2.2.2). If the distribution F' has compact support, then under reqularity condition 3
of Appendiz B.3, a and s;3.(-;2® T, F) are identified.

Remark 5. The two statements of Theorem 8 are complementary: the first statement achieves the
tdentification by restricting the distribution of demand and supply shocks and remains agnostic on
the distribution of random coefficients.?* While, the second statement restricts the distribution of the
random coefficients to have compact support and does not posit on the distribution of(&, w).

Remark 6. Once o and st,].(-;x@),F,F) are identified for any x®), 6,5 can be recovered from the
demand inverse in Theorem 7. Then, the identification of B and n follows from standard linear IV
arguments.

Proof. See Appendix B.3. O

The first condition reinforces Assumption 8 to strong exogeneity of cost shifters z;3 and assumes
large support of z;3. The second condition simplifies the price coefficient to be homogeneous for
all individuals but still allows for random coefficients on other product characteristics. The third
condition imposes the uniqueness of the Bertrand price competition and is typically necessary to
simulate counterfactuals in empirical research. The fourth condition requires that the image sets of
two different product-level market share functions intersect at two different vectors of the mean utilities
of products. This is a mild requirement. In fact, in the case of demand models of single products,
these image sets are identical and equal to {(3})jes : D59} < 1,37 > 0}

When model (2.4) degenerates to a demand model of single products, i.e. I' = —oo, Theorem 8
implies the identification of o and the market share functions of products in classic models of demand.
Then, one can invert the market share functions and recover the mean utilities of products. The
identification of 8 and n follows by applying standard linear IV arguments.

Also relying on product-level choice data, the main result of Allen and Rehbeck (2019a) implies the
identification of product-level market share functions in the context of model (2.4) with additive sepa-
rable unobservable heterogeneity. While their identification strategy crucially relies on the assumption
of additively separable unobservable heterogeneity and does not allow for endogenous prices, I exploit
exogenous variation in cost shifters and product characteristics to deal with price endogeneity and
achieve the identification of product-level market share functions.

2.3.3 Ildentification of Bundle-Level Market Share Functions

In this section, I assume that the product-level market share functions are identified and aim to

identify I and sup(+; :Uf? , F).25 Tt suffices to separably identify demand synergies I" and the distribution

?4The identification in Theorem 8 can also be achieved when the distribution of (£,w) has “fat tail”. See Mattner
(1992) and D’Haultfoeuille (2011) for details.

Z5Note that the results in this section do not require a; = o as in Proposition 1. Without loss of generality, rg) will
also include the price variable.



2.3. Identification 53

of random coefficients, F. The key challenge of this task is that only product-level market shares
are observed. I first provide identification results for a class of models widely used in the empirical

literature.26

Theorem 9. Suppose that Co = {(j,7') : 7 < j',4,7 € I}, or Co = {(j1,72) : j1 € J1,j2 € Ja},
Tyt =Ty for b € Co, and sy (-; xg), , F) is identified in R7. Then, T and sp(; xg), F) are identified

in RE! for any b € C;.
Proof. See Appendix B.4. O

Remark 7. If for some bundle b, the true I'y is equal to —oo, i.e. bundle b is not in the choice set,
then Theorem 9 implies that I'y, = —o0 is identified.

Theorem 9 shows that product-level demand data already suffices to identify bundle-level demand
primitives (synergy parameters and bundle-level market share functions) in models of multiple choices
of products within/across categories. Consequently, researchers are able to conduct the nonlinear
pricing counterfactuals in Proposition 1 using these models. It is worthy pointing out that Theorem
9 does not automatically imply that F' is identified. In BLP-type models of demand, this further step
of identification of F' can be achieved under mild conditions. For example, Wang (2020) (Theorems 2
and 3) show that it suffices to have a single variation in x,@ across markets. I refer to that paper for
more details.

However, the separable identification in Theorem 9 may not be achieved in some other kinds of

model (2.4). The following corollary gives an example.

Corollary 3 (Non-separable identification of I' and sy, (+; F')). Suppose that the data generating process
is a model of multi-unit choice: J = {1} and Cy = {(1,1)}, I'ju1) = ' > —oco. Moreover, the
product-level market share function:

65+u + 2625+2M+F
51.(0:T, F) = / e AF (). (2.8)

is identified. Then, there exists (I', ') such that the I and s 1)(+; F) are not separably identified.

Proof. See Appendix B.5. O

Corollary 3 illustrates the limited power of product-level market shares in models of multi-unit choice
to separably identify I" and F. Intuitively, one cannot distinguish I' and s 1)(+; F') because it is
impossible to shift the mean utility of the first unit without shifting that of the second unit. When
bundle-level demand data is available, Iaria and Wang (2019a) shows how to identify and estimate
model of demand for bundles by exploring the same bundle-specific fixed effects I'y, across markets.
This gives rise to additional moment restrictions that separately identify I" and sp(-; F'). With only
product-level demand data, this source of identification is no longer available in model (2.8). As a
consequence, unless imposing further assumptions on synergy parameters or the distribution of the
random coefficients, the availability of bundle-level demand data may be necessary to disentangle I'

and F and to conduct nonlinear pricing counterfactuals in models of multi-unit choice.?”

?6See Gentzkow (2007), Fan (2013), Kwak et al. (2015), Grzybowski and Verboven (2016) for example.
*TFor the identification with bundle-level demand data, see Fox and Lazzati (2017), Allen and Rehbeck (2019b), and
Taria and Wang (2019a).
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2.3.4 Summary of Identification

In section 2.3.2, I provide sufficient conditions for the identification of product-level market share
functions using [Vs. In section 2.3.3, I study the identification of bundle-level market share func-
tions assuming the identification of the product-level market share functions. The proposed sufficient
conditions may be overly sufficient. To complete the discussion, I provide a complementary but non-
constructive approach built on moment conditions (B.2). See Appendix B.10 for details.

2.4 Estimation and Implementation

In this section, I propose a GMM estimation procedure for model (2.4) and discuss its implementa-
tion. The proposed estimation procedure is conceptually similar to that used in BLP models of single
products. However, due to the nature of bundle choice, the implementation has non-trivial challenges.
I consider parametric estimation of model (2.4). Concretely, F is characterized by ¥ € Oy C RP.
Define the true value of parameter vector as 6y = (ao, Bo, M0, 20, o). T also assume that (z.3,, 23,) are
valid instruments and 6y is identified.

2.4.1 Estimation Procedure

I construct unconditional moment conditions from (B.2) using a finite set of functions of (x3,, 2:3,),
— G .
P = {¢g($tJt, ZtJt)}g:l'

G
m(9/7 {étJtathta TtJ;y Rtd, }tT:17 q)) - (E [gt] (5/7 O/a 77/7 F/7 Fla dtJt.v ajtJtatht)¢g(ZtJt7 xt.]t)])gzl 3

The finite-sample counterparts are:

1 T 1 Ji ¢
(0 {JtJmthta Ttys ZtJf}f 17 - T Z t |:Sfj jt-]t ItJtﬂthfﬂ F/ by ) - It]ﬂ + O/pt] UJ} ng(l‘tm th)
t=1 j=1 g=1
(2.9)

Then, the GMM estimator of 6y, égMM, is defined as:

é%MM = argg,; Héin mr(0'; {33, De3,s Te3,s 23, e 1 @) T Wrmap (05 {303, D3, B3, 203, He1, @),
© (2.10)
where © is a compact set and Wy € RE*C is a weighting matrix that converges to a positive-definite
matrix W in probability. If 6y lies in the interior of O, then under standard regularity conditions (see
Newey and McFadden (1994)), égM M is consistent and asymptotically normal.?®
A basic requirement for the good finite-sample performance of (2.10) is that we have at least
as many moment conditions as the dimension of (ag, By, 70,0, X0)- In particular, we have dim(Tg)
demand synergy parameters in (2.10) that BLP models of single products do not have. Therefore,
we need at least dim(I'g) more moment conditions. If the number of valid instruments or variability
of these instruments is limited, then one can also specify ¥y and reduce its dimensionality according

to the economic setting. For example, two products of the same producer, or of similar nutrition

281f some parameters (e.g., distributional parameters ) are on the boundary, the GMM estimator may not be asymp-
totically normal. See Ketz (2019) for an inference procedure that is valid when distributional parameters are on the
boundary and Andrews (2002) for a general treatment.
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ingredients, may have greater or smaller synergies. Then, one can specify the demand synergy among
the two products as a function of the distance between the characteristics of the products.

In BLP models of single products, a suggested practice is to approximate the optimal instruments in
the form of Amemiya (1977) and Chamberlain (1987) that achieve the semi-parametric efficiency bound.
Reynaert and Verboven (2014) and Conlon and Gortmaker (2019) report significant gain by using Berry
et al. (1995)’s GMM estimator with optimal instruments. However, the difficulty of approximating
optimal instruments still remains in the estimation procedure (2.10). A good approximation of optimal
instruments relies on the knowledge of the true parameters. Moreover, when the number of products
is large, even low order of such approximation may be subject to a curse of dimensionality and the
number of needed basis functions is exponentially proportional to the number of products. Gandhi
and Houde (2016) provide a solution that breaks the dependence of basis functions on the identity of
products under symmetry conditions among products. The number of basis functions is then invariant
with respect to the number of products. However, due to potentially heterogeneous synergy parameters
across bundles, the identity of products does matter in (2.10). In the empirical application of section
2.6, I do not employ the approach of optimal instruments and will explore it in future research.

2.4.2 Implementation of Demand Inverse

A key step of the estimation procedure is the implementation of the demand inverse in Theorem 7. It
seeks for the solution of the following equation:

513,013,553 D3 T/ ') = 343, = 0. (2.11)
In practice, su3,.(-; T/, F') are usually computed using Monte Carlos simulations. The researcher first
draws independently a finite number of sets of random numbers with which one can approximate the
distribution F’.?° Then, the market share functions are computed on the basis of the approximated
version of F” which is numerically a discrete distribution with finite support and therefore is defined
in a compact support. In the analysis of the numerical performance of solving (2.11), I will assume
that the distribution F’ has compact support.

In the context of demand models of single products, Berry et al. (1995) propose a fixed-point
iterative algorithm to implement the demand inverse in estimation. An essential property of this
algorithm is contraction mapping, which guarantees the convergence of the iteration. However, the
contraction-mapping property may not hold if one uses the same iterative algorithm to solve (2.11)
because products can be Hicksian complementary. To solve this challenge, I propose to use Jacobian-
based approach to solve (2.11). This approach is not new in the literature. Conlon and Gortmaker
(2019) tests performances of different Jacobian-based algorithms to solve the demand inverse in demand
models of single products and find supportive evidences for the efficiency of Jacobian-based numerical
methods. A leading example is Newton-Raphson method:

(2.12)

8 — T 0™ 503, (8ly,: 000 pa, T F) — 443,

0stg A(5/J %50(3) "PtJ IlvF/)
where Jy(0);) = ——* 8;;; -

. In the context of (2.11), Algorithm (2.12) is well-define because

29A typical method is to simulate a fixed set of random numbers from uniform distribution in [0, 1] and use (F')™! to
transform these random numbers to that under the distribution F”.
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the Jacobian matrix Js(d;5) is everywhere symmetric and positive-definite. Moreover, the uniqueness
of solution is guaranteed by Theorem 7. If (2.12) converges, then it converges to the unique solution
of (2.11).

It is well-known that the numerical performance of Jacobian-based algorithms such as (2.12) de-
pends on the quality of the initial point (9 : the closer (9 is to the solution d}3, the faster Algorithm
(2.12) converges. In general, there is no theoretical guidance for choosing a good initial point.?’ Mo-
tivated by the practical implementation of the demand inverse, i.e. F’ in (2.11) is approximated by
a discrete distribution with finite support, I propose an initial point that is directly constructed from
the observed product-level market shares. In the next proposition, I prove that in models of multiple
choice of products across K categories, the proposed initial point is “close” to the solution of (2.11):

Proposition 2. Suppose that 343 in (2.11) are generated from a model of multiple choice of products
across K categories, for K > 1 (see Section 2.2.2) and the distribution F' has compact support Dp.

Denote the solution to (2.11) by ¢5. For products of category k, define 51&2) = (53(21) 5 where
JEJK

5;21 =1In ﬁ Define 6,@ = ((5,(62));6:17,”71(. Then, there exists A(Dp,T") > 0 such that
JEIE “I-

85 — 0] < A(Dp,T").
Proof. See Appendix B.6. O

Even though it is hard to derive similar results in a general model (2.4), Proposition 2 sheds light on
how to find a good initial point for Jacobian-based algorithms: it suggests to use initial points as if
the data generate process is a multinomial logit model. In a model where the bundle size is up to size
K, such a point along the lines of Proposition 2 can be defined as: for j € Jy,

5(0) —1 3j.

O P (2.13)
! K — ZjeJt 5.

Here K — ZjeJ ;. serves as the “market share” of the outside option.?! In the next section, I will
(0)

explore potential efficiency gain of using 4, in Monte Carlos simulations.

2.5 Monte Carlos Simulations

In this section, I explore the numeric performance of Jacobian-based algorithms in the implementation
of the demand inverse of product-level market shares. I compare convergence time across different
algorithms and initial points—particularly, the proposed initial point in section 2.4.2—for different
sizes of product set.

Table 2.1 summarizes the main results of the simulations. The data generating process is a discrete
choice model of bundles up to size two and the prices are generated from a Bertrand pricing game under
complete information with constant marginal costs. [ simulate 50 markets with the same structural
parameters. The unobserved demand shocks &j are Gaussian and i.i.d. across markets. Then, I
implement the demand inverse using the true model and also using a demand model of single products in

300ne of few theoretical results on global convergence of Newton-Raphson method is Newton-Kantorovich Theorem.
3'When the bundle size is up to K, since product-level market shares of two different products overlap on up to K —1
bundle-level market shares. Consequently, the sum of all product-level market shares is strictly smaller than K.



2.6. Empirical Illustration: RTE Cereals and Milk 57

each market and report the median convergence time (in seconds).?? Moreover, I test the performances
of such demand inverses with the initial point 5 defined in (2.13) and also 6(°) = 0. I replicate this
setting for different sizes of product sets (J = 10, 50, and 100). For example, in the case of J = 100,
the true model has 5051 alternatives (100 single products, 4950 bundles of two different products,
and an outside option). The demand inverse s}_l will then treat the observed market shares as those
generated from the true model, while the demand inverse 331 will treat the same observed market
shares as if they are generated from a demand model of 100 single products. The three algorithms
used in the simulations are built-in algorithms of fsolve in Matlab.

Table 2.1: Demand Inverse of Product-Level Market Shares: Convergence Time in Seconds

Algorithm Trust-Region-Dogleg Trust-Region-Reflective Levenberg-Marquardt

55 55 55 55 55, 55
Init. Point [ 6 0 62 o 4§92 o 59 o 52 o §2 o
# Products

J=101]004 009 003 0.08 0.05 0.09 0.04 008 0.08 009 0.07 0.09
50 |1 049 145 010 264 041 131 013 034 131 192 019 0.12
100 | 4.50 12.22 0.12 3.21 3.32 12.15 0.27 0.60 12.25 20.21 0.33 0.18

Notes: Trust-region-dogleg, trust-region, and Levenberg-Marquardt algorithms are built-in algorithms
of the function fsolve in Matlab. All of them are large-scale and minimize the sum of squares of the
components of (2.11). Median convergence time (in seconds) of 50 independently simulated markets is
reported. Tolerance level in the stop criterion of all algorithms is set to 10716,

There are two main findings. First, for s}ll, using the recommended initial point (LEO) remarkably

reduces convergence time in all cases. The gain is larger when the number of products is larger. When
J = 100, trust-region-dogleg and trust-region-reflective algorithms reduce around 70% convergence

time by using 5»(«0) than using (%) = 0. The efficiency gain for s}l using (L(P)

is similar.?® Second, using
5£0) does not seem to increase the number of iterations for the algorithm to converge as the problem size
increases. For example, the convergence time for J = 100 by using the three Jacobian-based algorithms
with 5,(‘0) is roughly 100 times of that for J = 10. Because the bundle size is at most two, then the size
of choice set increases quadratically with respect to the number of products and therefore the number
of required computations for one evaluation of market share functions also increases quadratically.
While, the total convergence time when using (55‘0) seems to increase only quadratically for 33'1 with
respect to the number of products. This may imply that the number of iterations does not increase as

J increases.

2.6 Empirical Illustration: RTE Cereals and Milk

In this section, I illustrate the practical implementation of the proposed methods and estimate the
demand for Ready-To-Eat (RTE) cereals and milk in the US. I use models of demand for bundles with
different specifications of I'y,’s that are more or less flexible. Depending on the research question, some
of the specifications may be too restrictive and consequently lead to biased results. I illustrate the
potential biases due to these restrictions in several counterfactual simulations.

32The structural parameters are chosen so that the sum of the simulated product-level market shares is always smaller
than one. This allows to implement the demand inverse of single products on these simulated product-level market

shares.
3%In this demand inverse, K in (2.13) is 1.
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2.6.1 Data and Definitions

I use the store-week level datasets of the RTE cereal and milk categories from the IRI data. The IRI
data has been used in the empirical literature of demand (see Nevo (2000, 2001)). I will give a succinct
description and refer to these papers and also Bronnenberg et al. (2008) for a thorough discussion.

In this illustrative application, I focus on the period 2008-2011 and the city of Pittsfield in the US.
I define a market ¢ as a combination of store and week and obtain 1387 markets. In each market, the
sales (in lbs and dollars) of RTE cereals and fluid milk are observed at Universal Product Code (UPC)
level. For the RTE cereal category, similarly to Nevo (2001), I define a product as a combination
of brand, flavour, fortification, and type of grain. For fluid milk category, I define a product as a
combination of brand, flavour, fortification, fat content, and type of milk. Then, the sales of product
j of category k € K = {RTE cereal, fluid milk} in market t is the sum of the sales in lbs of all the
UPC’s that this product collects. The price of j of category k in market t, pfj, is defined as the ratio
between its sales in dollars and in lbs. To simplify the implementation, within each category, 1 keep
the products with the largest sales in Ibs. I then obtain 25 RTE cereal products and 20 fluid milk
products, and denote the set of these products by Jj, for k € K, respectively.3*

For each market, I consider the weekly consumption of breakfast cereals as the market size for
RTE cereal category and weekly consumption of fluid milk for milk category. To calibrate the market
size for each category, I assume that households go shopping once per week for breakfast cereals and
fluid milk. Then, the market size for RTE cereal category (or milk) is the product of the weekly per
capita consumption of breakfast cereals (or fluid milk) and the sampled population size. I obtain the
former information from external sources and the latter from the IRI data. Finally, for each market,
the product-level market share of j € Ji is then the ratio between its total sales and the market size
for category k. Appendix B.7 provides computational details of the construction of the product-level
market shares and Tables B.1-B.2 in Appendix B.8 summarize the characteristics of the products.

2.6.2 Model Specification

For each store-week combination ¢, denote the set of available products in category k € K by Jy. C Jg.
Denote by 1 the RTE cereal category, 2 the milk category, and then J; = Jy UJe. The set of bundles
Cy9 is defined as J;1 x Jso, where each bundle contains a RTE cereal product and a milk product.?>
Household’s choice set is then defined as C; = J; U Cy2 U {0}, where 0 represents the outside option.?8
The size of C; is 546 (45 products, 500 bundles, 1 outside option) if all products in J are available in
market t.

For household ¢ in market ¢, the indirect utility from choosing product j € Jy, is:

k k k| ek | _k
Uij = =P + 55 + & + €3
k k| ck k k k
= [=pija + 05 + & + [Ang — Aaupy)] + &5
k k k
= Ogj + Mitj + €itj»
1iy; = A — (diAa + v;)pf;,

34The purchase of the 25 RTE cereal products represents 38% of the total purchase of RTE cereals in the IRI data,
and that of the 20 fluid milk represents around 88%.

351 do not include bundles of products of the same category.

36 According to the definition of products and the market sizes, the outside option collects RTE cereals or milk products
not included in J;x, relevant products not present in the categories (e.g. cereal biscuits), and the bundles of these products
(e.g. cereal biscuits and milk).



2.6. Empirical Illustration: RTE Cereals and Milk 59

and
A771',ﬂav01r(j) + ATh',fortiﬁcation(j) + An;brand(jy if k=1,

Anf =

J .

A771',ﬂavor(j) + A771',for‘ciﬁcation(j) + Anzbrand(j) + Anifat content (5)? if k=2,

where 5@- is market t-specific mean utility for j € Jy, M?tj is a household i-specific utility deviation from
k k

5tja itj

and Aoy = d;Aa + v; is household i-specific price coefficient deviation from « and is the sum of an

and €7, . is an idiosyncratic error term. The coefficient « is population-average price coefficient,
observed part that is a function of the household characteristics d; (income groups) and an unobserved
component v;. Anfj is an unobserved household i-specific preference for product j of category k, where
A1 favor(j) captures household 4’s unobserved preference for the flavour of j of category & (unflavoured,
flavoured), An; fortification(;) captures i’s unobserved preference for the nutrition in product j of category
. . k
k (unfortified, fortified), Ani’brand(j)
k, and An? ) captures i’s unobserved preference for the fat content in milk j (whole fat,

i,fat content(j
low fat, skimmed). Note that because RTE cereals and milk have both the flavour and fortification

captures ¢’s unobserved preference for the brand of j of category

characteristics, then for products j € Jy and r € Jyg, if they have the same flavour (or fortification
type), then A'rh',ﬂavor(j) = Ani,ﬂavor(r) (OI‘ A771',f01rtiﬁcation(j) = A771‘,fortiﬁcation(r))'
The indirect utility of household 4 in market ¢ from choosing bundle b = (j,7) is:

Uib = [—pijoi + mjj + &5] + [—phci + 05 + &) + T + cin
= [64 + 6. + Do) + [y + 1] + it
= 0 (I'v) + Hitb + Eitb,

where 0, (I'p) = 5tlj + 02 + T is market t-specific mean utility for bundle b, p, is household i-specific

utility deviation from dm,, I'n = I'(; ) is demand synergy between RTE cereal j and milk 7, and e, is

,r
an idiosyncratic error term. The d(jeniand synergy parameter I'(; .y captures the extra utility household
obtains from buying RTE cereal j and milk r jointly rather than separately. One prominent reason
for the joint purchase is synergy in consumption, i.e. members in the household consume together
RTE cereals and milk for their breakfasts.?” The matching between the characteristics of RTE cereal

J and milk 7 may determines the extra utility I';,). Consequently, I specify I'(;,) as a function of the

characteristics of j and r: 7
L (7) =70 + 1{j is multi-grain}y; + 1{j is granola}ys
+ 1{r is skimmed}vy3 + 1{r is low fat}v4
+ 1{j is flavoured }-y5 + 1{r is chocolate milk}~g (2.14)
+ 1{j is flavored and r is chocolate milk}~y7
+ 1{j is fortified, r is chocolate milk}yg + 1{j is fortified, r is fortified }o.

The parameter vy represents the synergy in consumption of the reference bundle (unflavoured unforti-
fied uni-grain RTE cereal and unflavoured whole-fat milk).y; and 2 quantify additional synergies due
to other types of grains (multi-grain, granola). 3 and 74 measures additional synergies due to lower
fat content (skimmed, low fat). =5, 76 and 7 proxy additional synergies due to flavour combinations.

37 Another reason can be shopping cost, i.e. household may not want to go shopping twice to buy RTE cereals and
milk. However, this is assumed away by the assumption that household goes shopping once per week for breakfast cereals
and milk.
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~vg and 9 quantify additional synergies due to the combinations of fortified nutrition in RTE cereals
and milk characteristics.

Finally, the indirect utility of household ¢ in market ¢ from choosing the outside option is normalised
to be Ujo = €440. Denote the random coefficients by

Oir = (UiaAni,unﬂavoured> A771',ﬂaw0ureda A771',unfo1rtiﬁed> A771',fo1rtiﬁeda

1 2 2 2 2
{Anz’,br.}br.EBp {Anz’,br.}br.EBw A771',Whole fats A771',10W fat» A771',skimmed)ﬂ

where Bj denotes the set of brands in category k. I assume that 6; follows a Gaussian distribution
F' and the components are uncorrelated. This specification already allows for unobserved correlation

among products of the same characteristics within and across categories. Define d:3, = (51‘/1.]“,(5?_]12)
1Loog 225 K
itj S €itj’Ss and g;p’s

and py, = (p%J“,ptthQ). Write ,qu = ufj(di, Git,pfj). Finally, assume that e;0, € i

are i.i.d. Gumbel. Then, the product-level market share function of j € Jy; is:

Stj.((;tJt;tht7 s F)

65}j+utlj(di797‘,t,l?%j) 1+ Z els?T-i-M%T(di,9it7P?T)+F(j,7~)(’Y)

retia dF(0;1)d11,(d;)
= — ‘ ‘ it )AL (d;
14 ZZ e5ﬁj,+/L5j,(di,9it7pfj/) + Z eétlj,+5fr+uij,(di,Oit,pij,)+/LfT(di,eit,p?T)JrF(j/‘”(’y) ' v
k=12 j'€Ju (4" r)€T x T2
(2.15)

where II;(+) is the distribution function of demographics d; in market ¢. The formula for r € Jy is
similar.

In what follows, T will estimate three models (2.15) with different specifications of I'y,’s: Model 1
with I'y, = 0 for all b € Cy, Model II with I'y = 7, i.e. any bundle of RTE cereal and milk has
the same synergy in consumption, and a full model with T'y, specified in (2.14). Note that Model I is
equivalent to two separate BLP models of demand for single products, respectively for RTE cereals
and milk, with the same price coefficients.

2.6.3 Demand Estimates

Demand estimates are summarized in Table 2.2. In column “IV regression”, I estimate a multinomial
logit with I'y, = 0 for all b € Cy. Columns “Model 17, “Model 117, and “Full Model” show the estimates
by using Model I, Model 1I, and the full model, respectively. In all the models, I control for product-
specific intercepts and use the same Hausman-type instruments. These instruments include the prices of
the same products in the same store and week but in other cities (Boston for RTE cereals and Hartford
for milk), the prices of other products of the same category with the same product characteristics.
The price coefficient () is estimated —0.59 in the multinomial logit model.The other three models
with random coefficients show important heterogeneity in price sensitivities across income groups.
Without surprise, households with higher income are estimated to have a lower (in absolute value)
price coefficient and therefore less sensitive to price change. The standard variance of the unobserved
heterogeneity in the price coefficient (o) is estimated small. Moreover, after controlling for the product-
specific intercepts, households’ preference seem to be almost homogeneous for products within some
types (e.g. unflavoured, fortification, fat content). One potential reason is that products are little
differentiated within each of these types. In contrast, households’ preference for flavoured products
seems to be more heterogeneous. This is also intuitive because the flavours of RTE cereals and milk
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are much more horizontally differentiated and different households may have their favourite flavours.
I also find that households’ preference for RT'E cereal brands is much more heterogeneous than that
for milk brands.

In model II, the synergy parameter g is estimated to be 0.902 and significant. This specification
constraints all bundles of RTE cereal and milk to have the same synergy, regardless of their charac-
teristics. In the full model, the demand synergies are allowed to vary across bundles. In column “Full
Model”, 79 = —1.540 represents the synergy in consumption between the unflavoured unfortified uni-
grain RTE cereal and unflavoured whole-fat milk. Regarding the characteristics of RTE cereals, 7, is
estimated positive, meaning that multi-grain cereals are preferred (over uni-grain ones) when consumed
with milk. Moreover, granola, which contains oats and other whole grains as well ingredients such as
dried fruit and nuts, is estimated to be even preferred over multi-grain cereals (72 > ~1). Concerning
the characteristics of milk, products with lower fat are estimated to be preferred when consumed with
cereals (y3 > 74 > 0). Another interesting finding is about households’ preference for flavour com-
binations of cereals and milk. Flavoured cereals are estimated to be preferred over unflavoured ones
(75 > 0). For chocolate milk, households’ preference seems to be more complicated. When consumed
with unflavoured cereals, chocolate milk is preferred over unflavoured milk (v > 0). While, I find that
it is seldom consumed with flavoured or fortified cereals, i.e. 7 and g are estimated very negative.3®
In fact, flavoured (or fortified) RTE cereals are usually frosted. Very negative 77 and ~g may reflect
households’ disutility for bundles with too much sugar. Finally, I also find that bundles of fortified
cereals and milk are less attractive than the reference one (y9 < 0). In the data, the types of added
nutrition in RTE cereals and milk are the same, e.g. vitamins, calcium. 9 < 0 may reflect that the
same types of added nutrition in cereals and milk are substitute.

2.6.4 Price Elasticities

I compute the average (across markets) estimated self- and cross-price elasticities obtained from the
full model. Because there is no income effect in the empirical specification, negative (positive) cross-
price elasticities are then interpreted as Hicksian complementarity (substitutability). To facilitate the
exposition, I report the price elasticities at the level of product characteristics and producers. This will
illustrate how RTE cereals and milk are complementary along each of these dimensions. The results
are illustrated in Tables 2.3-2.6. Each entry reports the percent change in the sum of the product-level
market shares of the products collected by the row producer (or characteristics) with respect to a 1%
increase in the prices of the products collected by the column producer (or characteristics).?
Overall, RTE cereals are estimated to have larger self-price elasticities than milk. This may reflect
that households view milk more necessary than RTE cereals and therefore are less sensitive to changes
in the prices of milk. Given the specification of model (2.15), RTE cereals are always substitutes to
each other and the cross-price elasticities among them are positive. Similarly, the cross-price elasticities

3%1n Table 2.2, the estimates of 77 and s are —oo. This means that the model with 7,8 = —o0, i.e. the corresponding
bundles are not in the choice set, performs statistically as well as the one without these restrictions in terms of the value of
the GMM objective function. Concretely, I first estimate a model with 7 and «s being finite. I find that the components
of v7 and ~g in the minimiser of the GMM objective function are very negative. Then, I estimate the model with
~7,78 = —oo. The difference in the value of the GMM objective function is less than 10~°, or equivalently, one cannot
reject the “hypothesis” that v7,vs = —oo. In the future, I will consider a formal testing procedure.

39Concretely, denote by C,, the set of products that row (column) producer m represents. Then, the price elasticity
i€3m %3 Lredy Sir

between brands m and n, Eny, is defined as Fy,, = S
§€Im 3.

, where ¢, is the price elasticity between products

j and 7.
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among milk products are also positive. These are shown by the positive off-diagonal elements in the
diagonal blocks (RTE cereals-RTE cereals, Milk-Milk) of Tables 2.3-2.6. Differently, the cross-price
elasticities between RTE cereal and milk products, i.e. the elements in the off-diagonal blocks (RTE
cereals-Milk, Milk-RTE cereals), can be either positive or negative.

Table 2.3 show some interesting findings about the substitution patterns along the dimensions of
grain type and fat content. Granola is estimated to be complementary to milk with any level of fat
and skimmed milk is complementary to cereals with any kind of grain. Moreover, milk with lower
fat is uniformly more complementary to any kind of grain than milk with higher fat. This reveals
that households do not seek for fat in milk when drinking it with RTE cereals. As to flavours (Tables
2.4-2.5), unflavoured cereals and flavoured milk (and the reverse) are shown to be complementary.
While, flavoured cereals and chocolate milk are estimated to be (strong) substitutes. Coherent with
the estimates of 7’s in Table 2.2, the relationship between chocolate milk and RTE cereals is more
complicated. Chocolate milk is estimated to be complementary to unflavoured or unfortified cereals.
However, it is estimated to be substitute to flavoured or fortified cereals. Finally, I find that most RTE
cereals and milk are complementary at producer level.

As a comparison, the demand synergies in model I are constrained to be zero. Then, the cross-
price elasticities between RTE cereals and milk are mechanically zero. In model II, all the bundles are
restricted to have the same demand synergy which is estimated to be positive (see the column “Model
IT” of Table 2.2). I re-do the exercises in Tables 2.3-2.6 using the demand estimates from model IT (see
Tables B.3-B.6 of Appendix B.8). In contrast to those obtained from the full model, the results show
that RTE cereals and milk are complementary along every dimension.
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Table 2.2: Demand Estimates

IV Regression ModelI Model II  Full Model

I', =0 'y =0 Typ=1
Price Coef.
uniform, « —0.59
(0.011)

(baseline) low income, oy —-1.369  —1.128 —1.062
(0.042) (0.060) (0.075)
medium income, Aas 0.218 0.148 0.164
(0.164) (0.096) (0.0764)
high income, Aasg 0.947 0.718 0.712
(0.045) (0.029) (0.0269)

Random Coef.
Oy 0.115 0.086 0.046
(0.070) (0.072) (0.1244)
Ounflavoured 0.015 0.018 0.023
(2.754) (1.490) (2.6772)
Oflavoured 2.353 1.684 1.010
(0.259) (0.038) (0.1615)
Ounfortified 0.048 0.004 0.017
(3.047) (3.870) (2.2994)
Ofortified 0.010 0.010 0.015
(5.393) (2.388) (6.8129)
Oftat 0.077 0.062 0.034
(1.099) (0.660) (1.6161)
Ocereal brand 0.780 0.660 0.847
(0.049) (0.058) (0.0705)
Omilk brand 0.005 0.003 0.004
(6.156) (5.368) (6.9505)

Demand Synergies
0.902 —1.540
o (0.155) (0.3437)
multi-grain, v, 0.533
(0.0359)
granola, 7o 4.363
(0.0891)
skimmed, 3 2.880
(0.2111)
low fat, 4 0.514
(0.1282)
flavoured cereal, 5 1.816
(0.2324)
chocolate milk, g 13.625
(0.2621)

flavoured cereal and chocolate milk, ~; -0
fortified cereal, chocolate milk, g —00

fortified cereal and milk, g —1.538
(0.3512)
GMM Objective Function 0.1636 0.1599 0.1434

Notes: Standard errors are reported in brackets. For all the models, instruments are the same and
product-specific intercepts are included. In the “IV Regression”, week dummies and store dummies
are also included.
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Table 2.3: Average Estimated Own- and Cross-Price Elasticities (Full Model): Grain

Type and Fat Content

RTE cereals Milk
uni-grain multi-grain granola | skimmed low fat whole fat
RTE cereals, uni-grain | -1.407 0.194 0.009 -0.032 0.007 0.009
multi-grain 0.266 -1.492 0.009 -0.034 0.001 0.009
granola 0.220 0.168 -1.335 -0.084 -0.071 -0.005
Milk, skimmed | -0.350 -0.243 -0.053 -0.252 0.047 0.023
low fat 0.010 -0.005 -0.020 0.018 -0.262 0.028
whole fat 0.056 0.045 -0.005 0.018 0.054 -0.307

Table 2.4: Average Estimated Own- and Cross-Price Elasticities (Full

Model): Flavours

RTE cereals Milk
unflavoured flavoured | unflavoured chocolate
RTE cereals, unflavoured -1.397 0.190 0.016 -0.014
flavoured 0.145 -1.381 -0.051 0.003
Milk, unflavoured 0.031 -0.130 -0.214 0.001
chocolate -1.319 0.378 0.071 -0.264

Table 2.5: Average Estimated Own- and Cross-Price Elasticities (Full
Model): Fortification and Flavours

RTE cereals Milk
unfortified fortified | unflavoured chocolate
RTE cereals, unfortified -1.263 0.060 -0.029 -0.006
fortified 0.393 -1.668 0.043 0.002
Milk, unflavoured -0.124 0.025 -0.214 0.001
chocolate -1.004 0.063 0.071 -0.264




65

: RTE Cereals and Milk

0on

1 Tllustrat

rica

Empi

2.6.

“eYeP 9Y) Ul JoXIeW AUe UI DUII} JUILS OU) e J[(B[[eAR JOU dIe SPURI( UWIN[OD PUE MOI 97} jo sjonpoxd oY) dI0yM UOI)enIIs

91} 0} SI9JRI * dYJ, :SILON

16¢°0- G000 £00°0 €ecro 910°0 ¢c00- £00°0- TI0°'0  TOO0 9.0°0- [oqeT 9YeALld

ev0°0 L6V°0- £00°0 VIT0 G100 0€0°0- 810°0- ¢€0°0- T00°0- Pe10- POOH

9%0°0 ¥00°0 6.7°0- 61T°0 610’0 020°0- TI10°0- 900°0- T00°0 601°0- wre ] umer] ysty

¥10°0 ¢00°0 ¢10’0 €LT0- ) ' ¥00°0- %0000 €000°0- ¥¥0°0- sepmp

¥4G0°0 G000 G000 ' €¢€0- ¢€0°0- ¥10°0- 810°0- ¢00°0- ¢60°0- suIRy ¥IRIRY NN
¥60°0- 110°0- ¢10'0- ¥¥0°0- gee'T- 8€0°0 €910 €100 GLT0 [PqeT 9yeAlld

600°0- 100°0- ¢00°0- €10°0- G00°0- 0100 we'1- 9%1°0 0100 €LT°0 1s0d

¢00°0 €000°0- G000°0- 900°0 ¢00°0- 600°0 ¢€0'0  vev'1- 0100 ¢ST°0 s, 8301103

100°0- ¢000°0- €000°0- ¢00°0- G00°0- 11070 Ge0'0 ¢ST°0  8L91- Pe10 ysesy|

¢c0°0- ¥00°0- ¢00°0- ¥€0°0- 200°0- 600°0 LE00 9%T'0 6000 Wy - SIIIAL [RI9URY) ‘S[eDI00 I

[oqe] 9JeAll] POOH IR umerT  UYSI SepInr) sulreq yololer)

AN

[oqe 91eAlL 9SO S,SS0[[eY Isey S[[IA [BloUsy)

S[e9I19d TN

spuelg :([9POJN [[M) SOIIDIISB|H 9DLIJ-SSOI)) PUR -UM() PRJRWIISH 2FRIoAY :9'g SR



Chapter 2. A BLP Demand Model of Product-Level Market Shares with
66 Complementarity

2.6.5 Counterfactual Simulations

I simulate two counterfactuals using the demand estimates obtained from the full model, model I
and model II. In the factual and counterfactual scenarios, I assume that producers play a simultaneous
Bertrand price-setting game with complete information. Moreover, for each model, the market-product
specific marginal costs are assumed constant and remain unchanged in the counterfactuals. Note that
Private Label is present in both categories. I assume that it maximises the total profit generated by
its RTE cereal and milk products and their bundles in all scenarios.

Merger across category. The first scenario is a situation where General Mills and Garelick Farms
merge to a new producer and every producer after the merger still implements linear pricing strategy
as in the factual scenario. In this exercise, I compare the merger outcomes (price change, consumer
surplus change, etc.) predicted by model T and the full model. The results are summarised in Table
2.7.

In model I, because all the demand synergies between RTE cereals and milk are restricted to be
zero, their cross-price elasticities are always zero and therefore the merger between General Mills and
Garelick Farms will not lead to any change in prices and consumer surplus relative to those in the
factual scenario (row “Model T” in Table 2.7). The full model estimates that RTE cereals and milk
products exhibit substantial complementarity at the producer level (Table 2.6). The merger outcomes
are coherent with Cournot (1838)’s intuition that mergers between producers selling complementary
products can be socially desirable. Intuitively, the merged producer internalises the complementarity
in the pricing and consequently reduces the prices of General Mills RTE cereals and Garelick Farms
milk (row “Full Model” in Table 2.7). This finally leads to an increase of consumer surplus by 2.02%.
As a check, I also simulate the same merger using the demand estimates of model II. The results are
similar and illustrated in the last row of Table 2.7.

Nonlinear pricing of Private Label. To study the potential bias due to the restriction I'y, = 7 for
all b € Cy, I simulate a scenario where Private Label implements nonlinear pricing strategy on its own
products and bundles of RTE cereal and milk, while the market structures in both markets remain
the same as in the factual scenario. In this exercise, I compare the predictions (prices, consumer
surplus, etc.) on the basis of the demand estimates from model II, which restricts I', = 7o for all
b € Cy, and the full model. The estimated cross-price elasticities by both models show the existence
of substantial complementarities between RTE cereals and milk. However, model II estimates that the
RTE cereals and milk are complementary along all the dimensions (see Tables B.3-B.6), while the full
model reveals that some types of RTE cereals are more (or less) complementary to certain types of milk
and vice versa. Intuitively, the consequences of the nonlinear pricing of private label are sensitive to
the magnitude of the complementarities between private label RTE cereals and milk relative to those
between RTE cereals and milk of other producers. The main goal of this exercise is to illustrate the
extent of bias in the nonlinear pricing analysis, if the specification of the demand synergy parameters
(and therefore the substitution patterns between RTE cereals and milk) is potentially restrictive. Table
2.8 summarises the results.

Both models predict that the prices of private label products increase. At the same time, the
bundles of private label products will have price discounts. However, the full model predicts much
larger increases in the average prices of private label RTE cereals and milk and also a larger discount.
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Moreover, two models predict opposite change in consumer surplus. The full model predicts a decrease
by 0.11%, while model II predicts an increase by 1.83%.

Summary. Both model IT and the full model capture the complementarity between RTE cereals
and milk, while model I restricts them to be independent. Consequently, model II and the full model
generate similar predictions for the first counterfactual simulation where General Mills and Garelick
Farms merge to one single producer. In the second counterfactual where Private Label implements a
nonlinear pricing strategy, the magnitude of the complementarities between private label RTE cereals
and milk relative to those between products of other producers become important. Restricting all
I'y’s to be the same in model II seems too coarse and may not be appropriate in such counterfactuals.
While, specifying I'y, as a function of the characteristics of the products it includes provides more
flexibility and is more suitable for the purpose.

Table 2.7: Merger Simulation: General Mills and Garelick Farms

Price change Consumer Surplus change
RTE Cereals Milk
Full Model —0.67% —3.49% 2.02%
Model I, 'y, =0 0% 0% 0%
Model II, Ty, = —0.49% —4.49% 3.44%

Notes: The Table reports average changes in prices (first two columns) and
consumer surplus (last column) under alternative simulated market structure
with respect to the observed oligopoly. The first row refers to the full model
(column “Full Model” in Table 2.2). The second row refers to model I which
restricts all I'y’s to be 0 in estimation (column “Model I” in Table 2.2). The
third row refers to the model II which constrains all 'y = 7 in estimation
(column “Model II” in Table 2.2). The counterfactual is simulated for markets
where all RTE cereal products and private label products are available.

Table 2.8: Merger Simulation: Nonlinear Pricing of Private Label

Price change Discount Consumer Surplus
Private Label Other Brands ) change
RTE Cereals Milk  RTE Cereals Milk
Full Model 50.78% 18.92% 0.05% 0.34% 3.147 —0.11%
Model II, T'y, = 7 23.36% 1.73% —0.001% —0.27% 2.381 1.83%

Notes: The Table reports average changes in prices (first four columns), discount in dollars on the bundles
of private label RTE cereals and milk (the fifth column), consumer surplus (last column) under alternative
pricing strategy of Private Label with respect to the observed one. The first row refers to the full model
(column “Full Model” in Table 2.2). The second row refers to the model II which constrains all I'y = 7 in
estimation (column “Model II” in Table 2.2). The counterfactual simulation is conducted for markets where
all RTE cereal products and private label products are available.
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2.7 Conclusion

This paper considers the identification and estimation of a random coefficient discrete choice model
of bundles, namely sets of products, when only product-level market shares are available. This last
feature arises when only aggregate market shares, as opposed to individual purchases, are available, a
very common phenomenon in practice. Following the classical approach with aggregate data, I consider
a two-step method. First, using a novel inversion result where demand can exhibit complementarity,
I recover the mean utilities of products from the product-level market shares. Second, to infer the
structural parameters from the mean utilities while dealing with price endogeneity, I use I'Vs. I provide
low-level conditions under which the model is globally identified through moment conditions based on
such instruments. Finally, I illustrate the practical implementation of the methods and estimate the
demand for RTE cereals and milk in the US. The demand estimates suggest that RTE cereals and milk
are overall Hicksian complementary and these complementarities are heterogeneous across bundles.
Ignoring such complementarities results in misleading counterfactuals.

As shown in section 2.3, merger simulations under linear pricing only require the identification of
the product-level market share functions. This implies that one may not need to point estimate the
demand synergy parameters and the distribution of the random coefficients in the GMM procedure to
conduct such analyses. However, the estimation procedure in the current paper still assumes that the
full model is identified. An interesting avenue for future research is to develop an adapted inference
procedure for these counterfactuals that do not require the identification of the full model.

In practice, even though bundle-level market shares may not available, other bundle-level infor-
mation may still be accessible. For example, a household with a membership card may receive a
discount if she purchases a specific bundle of products. An extension of the current paper is to explore
identification under endogenous and observed bundle-level prices.

Similar to Allen and Rehbeck (2019a), the identification of the product-level market share functions
remaing agnostic about whether a bundle is in the choice set, i.e. I'y # —oc0. As shown in Theorem 9,
in some models, one can identify whether I', # —oo. However, allowing for some I'y, being —oo may
introduce boundary problems in estimation and therefore complicates inference (see Andrews (2002)).
In practice, an important question is how to select out those I'y, that are —oo.

Finally, in the context of models of demand for single products, Reynaert and Verboven (2014)
report remarkable efficiency gain by using optimal instruments. As mentioned in section 2.4, one may
have non-trivial difficulties to construct the optimal instruments in the context of demand for bundles.
An important question is whether and to what extent a similar approach can be used to further improve
the practical performance of the proposed methods.



CHAPTER 3
Estimating the Gains (and Losses) of
Revenue Management™

Abstract. If the rise of revenue management has increased flexibility in the way firms set their
prices, firms usually still impose constraints on their pricing strategy. There is yet scarce evidence on
the gains or losses of such strategies compared to uniform pricing or fully flexible strategies. In this
paper, we quantify these gains and losses and identify their underlying sources in the context of French
railway transportation. This is complicated by the censoring on demand and the absence of exogenous
price variations. We develop an original identification strategy on the demand that combines temporal
variations in relative prices and moment inequalities stemming from basic rationality on consumers’
side and weak optimality conditions on the firm’s pricing strategy. Our results suggest significant gains
of the actual revenue management compared to uniform pricing, but also substantial losses compared
to the optimal pricing strategy. Finally, we highlight the key role of revenue management for acquiring
information when demand is uncertain.

3.1 Introduction

The rise of e-commerce has led to a growing flexibility of prices. Firms seek to adjust quickly to demand
shocks and exploit consumers’ heterogeneity. This comes nevertheless at a cost. First, adjusting prices
continuously requires specialized teams or good algorithms, usually both. Also, simple rules are usually
set to simplify the pricing strategy. These rules may nonetheless be suboptimal. In this paper, we
seek to identify how much gains can be expected by adopting flexible strategies compared to uniform
pricing. We also seek to quantify the importance of losses of current strategies compared to the optimal
ones, under various constraints imposed on such strategies. Finally, by varying these constraints and
the assumptions behind the counterfactuals, we aim at identifying the main sources of these gains or
losses.

We address these questions by studying revenue management at iDTGV, a subsidiary of the French
railway monopoly, SNCF. Between 2004 and 2017, this firm provided low-cost trains from Paris to sev-
eral towns in France, and the corresponding returns. Its revenue management was based on quantities,
as is often the case in companies selling perishable goods (e.g. flight tickets, hotel rooms, rented cars
for given periods etc.), Namely, for the economy class on which we focus hereafter, 12 classes of prices
sorted in ascending order and referred to as fare classes hereafter were defined. The price within
each fare class for a given trip such as Paris-Bordeaux was set almost constant during the period we
studied. Then, for each train, revenue managers could decide, at any moment before its departure,
to close the current fare class and open the next one, therefore increasing the prices of the seats. We

*This paper is a joint work with Xavier D’Haultfceuille (CREST-ENSAE), Philippe Février (Veltys), and Lionel
Wilner (INSEE)



70 Chapter 3. Estimating the Gains (and Losses) of Revenue Management

investigate hereafter the relative benefits of this common pricing strategy compared to uniform pricing

or strategies with a higher number of fare classes.!

In order to compute such counterfactuals, we first show that in our context, recovering the price
elasticity coefficient, relative demand parameters (of, e.g. Bordeaux versus Toulouse in Paris-Toulouse
trains) and the total demand at a given price are sufficient to recover a rich set of counterfactual
revenues. In particular, these counterfactual revenues do not depend on the timing of consumers’
arrival. This is convenient here, as we do not observe such information. We can compute not only
revenues under uniform pricing, but also revenues under optimal dynamic pricing, with any number of
fare classes. Importantly also, we can compute such counterfactuals assuming either that iDTGV has
complete or incomplete information on the demand for a given train.

The identification of price elasticity, relative demand parameters and the total demand at a given
price are however complicated by two issues that are likely to arise in many markets of perishable
goods. First, and s already observed by Swan (1990), Lee (1990) and Stefanescu (2012), we face a
severe censoring problem here: demand at a given price is generally larger than the number of seats
sold at that price. Second, prices vary only within the grids of 12 prices corresponding to each of the
12 fare classes. Hence, we cannot rely on usual instruments such as cost shifters.

To identify price elasticity, we rely on a new argument tailored to our application but that may
apply to other contexts as well. Specifically, we exploit the fact that revenue management is done at a
line level (e.g. Paris-Toulouse), while the train serves several cities (e.g. Bordeaux and Toulouse). This
means that fare classes close at the same time for all destinations within the same line. Relative prices
between, e.g. Bordeaux and Toulouse, then vary simultaneously whenever a fare class closes. We prove
that by relating these variations between relative prices and the proportion of consumers buying tickets
for one destination versus another, price elasticity can be identified. This can be achieved provided
that price elasticities and the proportion of consumers seeking to buy a ticket for one destination versus
another remain constant over time. We can test both conditions empirically and our results suggest
that they are reasonable in our context.

Identification of the distribution over trains of total demand at a given price is also involved, in
particular because of the censoring problem mentioned above. We first show that basic rationality
conditions on the consumers lead to inequalities relating this total demand with the number of seats.
We complement these inequalities by weak optimality conditions on the actual revenue management.
Specifically, we assume that this revenue management was better on average than a uniform pricing
practice based on incomplete information. Given our very purpose, it is important here not to impose
too strong optimality conditions, such as optimality vis-a-vis all dynamic strategies, as these conditions
would very much drive our final results. Also, our conditions have the advantage of being relatively
simple to exploit for identification and estimation. At the end, our conditions based on consumers’
rationality and weak optimality of the actual revenue management can be combined to form a set of
moment inequalities.

Using this methodology, we first estimate a price elasticity at around -2, which is below but still
in the range of most estimates in the transportation literature (see, e.g. Jevons et al., 2005, for a
meta-analysis). Note however that using aggregated quantities and prices to estimate price elasticity,
as done by most of these studies, is likely to produce estimates that are substantially biased towards

!For a detailed review of that practice and other revenue management techniques, see Talluri and van Ryzin (2005).
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zero. Second, we show that even though based on weak conditions, the moment inequalities we use are
sufficient to produce tight bounds on most counterfactual revenues. We find that the actual revenue
management generates a gain of between 3.3 and 5.7% compared to optimal uniform pricing under
incomplete information. However, we also estimate a loss of around 16% compared to the optimal
pricing strategy under the smae restriction of 12 ascending fare classes as those actually used. These
results suggest that the actual revenue management practice was effective but still sub-optimal.

Third, we emphasize the key role of demand uncertainty on revenues. Compared to the optimal
uniform pricing under incomplete information, the actual revenue management entails a gain of between
8 and 22%. But the actual revenue is also between 6 and 16% lower than what could have been
achieve under uniform pricing with complete information on the demand. Compared to fully dynamic
strategies, we estimate the loss to be between 8 and 18%. Interestingly, these two figures remain nearly
the same under incomplete information. In other words, using the optimal quantity-based dynamic
pricing strategy mitigates almost entirely the loss entailed by demand uncertainty.

Related Literature. Our paper relates to several theoretical and empirical literatures in opera-
tional research and economics. Theoretical literature on revenue management has investigated optimal
quantity-based revenue managements, where firms segment demand by choosing either once for all or
dynamically the allocation of, say, seats into fare classes in which prices are predetermined. We refer
in particular to Littlewood (1972) and Brumelle and McGill (1993) for static solutions, and to Gallego
and Van Ryzin (1994), Feng and Gallego (1995), Feng and Xiao (2000) for dynamic solutions. These
last papers have studied optimal pricing strategies assuming that consumers arrive under some homo-
geneous Poisson process. We allow for flexible non-homogeneous Poisson arrival process, as Bitran and
Mondschein (1997), Zhao and Zheng (2000), and McAfee and te Velde (2008a). Our demand model
is close to this latter paper, but with one key difference. Whereas they assume that the firm has a
complete information on the demand parameters, we also consider an incomplete information set-up
where only the distribution of these parameters is known. The firm then updates this distribution as
consumers arrive. Such an incomplete information set-up seems more plausible when, as here, aggre-
gate demand is quite volatile. We thus extend McAfee and te Velde (2008a)’s theoretical results on
optimal revenues to this case of incomplete information. We also extend it by studying constrained
pricing strategies close to those implemented in practice.

Our results underline the important role of information and demand learning to explain the gains
and losses of revenue management. Such a point has already been made in the theoretical literature
but to our knowledge, we are the first to quantify these roles using real data. Lin (2006) studies
similar models to ours (see his sections 5.1 and 5.2) and allows for firm’s Bayesian learning from
the observed purchases (or arrivals). Instead of deriving the optimal policy, his paper focuses on a
specific policy (variable-rate) that is shown to nearly optimal in simulations. Aviv and Pazgal (2002)
studies different learning models featured by the way firm incorporates updated information. Finally,
in contrast to all these papers and ours, den Boer and Zwart (2015) consider an updating approach
based on maximizing the likelihood. We refer to den Boer (2015) for a complete survey on demand

learning in dynamic pricing.

In the empirical literature on revenue management, the closest papers to ours are Lazarev (2013)
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and Williams (2017), both of which study dynamic airline pricing in a monopolistic market.2 While
both papers accentuate price discrimination and its welfare effects, the main goal of our paper is to
quantify the potential gains and loss due to revenue management in practice. As a result, different
from their models, ours explicitly incorporates firm’s learning behaviour from the realised demand.
Moreover, we do not impose the strong optimality of the observed prices. In Lazarev (2013), since
sales are only observed quarterly, he uses a simpler model of traveller behaviour to approximate the
expected aggregate demand functions and allows travellers to be forward-looking. In contrast, we
model explicitly the demand functions at train level and reasonably assume travellers to be myopic
(buy or leave) due to the restriction of increasing prices in iDTGV’s revenue mangement. Williams
(2017) also considers the demand at flight level and dynamic adjustments of prices. Differently, he
assumes that the airline monopoly’s complete information on demand and the price adjustment is
only due to the randomness in the demand process, while we allow for incomplete information and,
consequently, price adjustments can be additionally due to updated information on demand.

The rest of the paper is organized as follows. In Section 2, we present the context and our data.
Section 3 displays the demand model and our assumptions on the supply side. Section 4 is devoted to
the identification and estimation of demand under ou assumptions and given the data at our disposal.
Section 5 presents the results. The proofs of our identification results are gathered in the appendix.

3.2 Institutional Background and Data

3.2.1 Revenue Management at iDTGYV in 2007-2009

iDTGV was a low-cost subsidiary of the French railway monopoly, SNCF, which was created in 2004
and disappeared in December 2017.% Tt owned its trains and had a pricing strategy independent from
SNCF. Its prices were generally lower than the full-rate prices of SNCF, but also associated with a
slightly lower quality of services. Namely, tickets could only be bought on Internet, were nominative
and could not be cancelled. They could be exchanged under conditions and at some cost.

Table 3.1: Routes with intermediate and final destinations

Line name Final stop(s) Intermediate stop(s) Nb. of trains
Cote d’Azur  Cannes,St Raphael,Nice  Avignon 452
Marseille Marseille Aix-en-Provence/Avignon 453
Perpignan Perpignan Nimes, Montpellier 689

St Jean de Luz,Bayonne,

Cote Basque Biarritz, Hendaye Bordeaux 405
Toulouse Toulouse Bordeaux 411
Mulhouse Mulhouse Strasbourg 499
Total 2,909

Notes: we have different number of observations for the different lines because the period we cover varies
slightly from one line to another.

2 Another recent empirical paper is Cho et al. (2018) that studies revenue management under oligopoly in hospitality
industry. Their analysis focuses on the pricing behavior of “hotel 0” (from which the demand data is obtained) in a
competing environment.

3Tts disappearance was not due to poor economic results, but rather to internal strategic considerations at SNCF.
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The lines of iDTGV were all between Paris and other towns. For each of those towns and each
day, one train was leaving Paris and another coming to Paris. Table 3.1 presents the lines we observe
in our data on our period, namely from October 2007 till February 2009. These lines have several
stops, but to simplify the analysis below, we gather them so as to form a single intermediate stop and
a single final stop. We did this aggregation according to the price schedule. For instance, we aggregate
Aix-en-Provence and Avignon together in the Paris-Marseille line since the corresponding prices are
always the same. This gathering is consistent with Assumption 1 below, as our demand model remains
valid after aggregation of cities.

Different lines may also share the same intermediate destination. For instance, Bordeaux is also
the intermediate destination of Paris-Cote Basque. Finally, no tickets are sold between the interme-
diate and the final destination, e.g. some Bordeaux-Toulouse tickets in the Paris-Toulouse line. Our
understanding is that this was done to avoid controlling people in intermediate destinations, as there

were no ticket inspectors in the trains.

As usually, the trains are split into economy class cars and business class cars of fixed sizes. Revenue
management is done almost independently between business and economic classes, i.e. under the sole
constraint that prices in economy class are always lower than in business class. We focus hereafter
on the economy class, which represents roughly 73% of the seats. In this category, there are 12 fare
classes within which prices are constant and sorted by increasing order in terms of prices. The price
corresponding to a given origin-destination trip (e.g. Paris-Bordeaux), at a peak time or off peak and
for a certain fare class remained constant for several months (e.g. from 03/01/2007 to 10/31/2007)
before being adjusted marginally, mostly to account for inflation. Contrary to SNCF, iDTGV did not
make any third-degree price discrimination, so there was no discount for young people, old people or
families.

In this context, revenue management consists in deciding at each moment to maintain the current
fare class or to close it and move to the next one, resulting in an increase in the price. Coming back to
a previous fare is impossible, so there are for instance no last minute drops in ticket prices for trains
that have still several empty seats. Also, revenue managers could decide to close from the inception
the first fare classes and begin to sell directly tickets in a higher fare class. Symmetrically, the 12th
fare class may never be reached. In practice, a Computerized Reservation System (CRS) was used to
manage reservation, which serves the basis for revenue management. Before the beginning of sales,
it fixes a seat allocation planning for all fare classes, using the history of purchases on past trains.
During sales, the CRS uses the number of tickets sold up to now to make recommendations on the size
of subsequent fare classes. Revenue management manager can nevertheless always intervene, both on

the initial and on subsequent seat allocations, according to his experience on past trains.*

Finally, and crucially for our identification strategy, the revenue management did not use separate
fare classes for a given train with several destinations. For instance, in a Paris-Toulouse train, the
closure of the first fare class occurred exactly at the same moment for both Bordeaux and Toulouse.
Hence, price changes of Paris-Bordeaux and Paris-Toulouse tickets happened exactly at the same time,
for all trains. According to discussions with people in the revenue management department, this was
done to limit the quantities of decisions to be taken at each moment.

*Manager intervention in automatized revenue management also exists in other industries. See Cho et al. (2018) for
an example in hospitality industry.
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3.2.2 Data and descriptive statistics

We have data on iDTGYV trains between October 2007 and February 2009 in economy class and for
journeys from Paris only. We first observe basic characteristics of the trains: all the stops, departure
and arrival time, day of departure (e.g. May 2, 2008) and whether it corresponds to a peak time or
not. We also observe the price grid used for that train for each fare class. For each route and type of
period (peak time or off peak), there are a limited number of such grids, as they change these grids
only a few times during the period we observe (e.g. 3 times for the Paris-Toulouse). We also observe
sales for each fare classes of all trains. On the other hand, we do not observe the purchasing dates,
nor the opening moments of each fare class.

Table 3.2 presents some descriptive statistics on our data. We observe a substantial amount of price
dispersion within trains. For instance on the Cote d’Azur line, the minimal price paid by consumers on
average over the different trains (19.3€) was three times lower than the average maximal price (68.4€).
We also observe substantial variations on the average load across lines. While trains in Paris-Marseille
were always nearly full, with an average load above 95%, this was far from being the case on the Cote
Basque line, with an average load of only 65.4%. This suggests that the actual pricing may not be
fully optimal, at least for some lines.

Table 3.2: Descriptive statistics: economy class, from Paris

Average % final Prices
Line Capacity  Load  destination Avg Avg min. Avg max.
Cote d’Azur 324 85.4% 81.5% 50.3 19.3 68.4
Marseille 328 95.5% 60.0% 49.5 19.0 70.5
Perpignan 326 88.6% 27.4% 50.0 20.2 72.6
Cote Basque 350 65.4% 64.1% 37.3 19.7 53.3
Toulouse 351 87.3% 55.3% 43.6 19.4 67.2
Mulhouse 238 79.4% 24.1% 35.0 194 50.0

Notes: Avg min. and max. are the average of the minimal and maximal prices charged for each
train, for the final destination. Capacity is the observed maximal number of sold places for each
line.

3.3 Theoretical Model

3.3.1 Demand side

We consider a demand model that is close to McAfee and te Velde (2008a). A train T is defined by
its line ¢(7T") (e.g. Paris-Toulouse) and its day of departure (e.g. May 2, 2008). For each line ¢, we
denote by ay the intermediate destination and by b, the final destination. To simplify notation and in
the absence of ambiguity, we just denote the destinations of a train 7" by a and b instead of ay7) and
be(ry- For any train T, tickets are sold between the normalized dates ¢ = 0 and t = 1. We denote the
fare classes by k € {1,..., K'}. Within fare class k, tickets for train 7" and destination d € {ayry, by(r)}
are sold at price pgrr. We recall that pgir belongs to a grid of K prices that remains fixed for several
months and depends only on the destination d and whether the train leaves at a peak time or not.
Finally, we denote by Dgr(t,t'; pg) the demand for destination d in train T between dates t and ¢’ (with
(t,') € [0,1]?) when the price is constant and equal to pg. We then assume the following condition on

this function.
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Assumption 1. (Consumers’ demand) For all d,T and 0 <t <t <1,
1. p+ Dgr(t,t';p) is non-increasing;

2. Dgr(t,t';pa) ~ P(Br(t,t")&ap,®), where e > 1, t — Br(0,t) is continuously differentiable and
inf;ejo,1) dBr/dt(0,t) > 0. Moreover, & = 1 and conditional on Br(t,t"), Dar(t,t';pq) are
independent across d.

The first condition is a weak rationality assumption on consumers. The second condition, even
though it does not imply the first, is more substantial. Following the literature on revenue management
(see, e.g. Gallego and van Ryzin, 1994), it first imposes that Dgyr(t,t'; pg) follows a non-homogeneous
Poisson process, with a constant price elasticity. As shown in Appendix C.1, this can be rationalized
by combining a non-homogeneous process of consumers’ arrival and a decision rule of purchase char-
acterized by a Pareto distribution. The separability between train-time effect, Br(t,t), destination

£

effect, {g, and price effect, p,© is key to identify of price elasticity ¢ and relative demand effect &,.

Importantly however, this condition can be tested, a point on which we come back in Section 3.4.2.

We do not impose any functional restrictions on the function (¢,¢') — Byp(t,t'). This is important
because consumers arriving at different time may differ in their willingness to pay and the conditions
of competing offers from other trains, airlines etc. may also vary with time. On the other hand, and
in line with McAfee and te Velde (2008a), we assume that price elasticities € are time invariant. This
assumption rules out for instance, late arrival of more price inelastic consumers. Note however that
we focus here on the economy class, and we can expect part of these consumers to chose the business
class. Importantly also, we test implications of this assumption in Section 3.5.1 below. Finally, remark
that &, = 1 is a mere normalization, since we can arbitrarily multiply &; by any positive constant, and
modify Brp(t,t") accordingly.

Assumption 1 together with a supply-side restriction (Assumption 3) turns out to be sufficient to
identify € and destination effects &, see Theorem 11 below. However, because of censorship, it is not
sufficient to recover the distribution of total demand By := Bp(0,1). To this end, we consider the
following restriction. Hereafter, X7 denotes the vector of train T’s characteristics that we observe,
namely the route, week day, month and whether it operates on a rush hour or not.

Assumption 2. Bp := Br(0,1) satisfies By = exp{ X80 }nr with nr|Xr ~ T'(Xo, po)-

Assumption 2 assumes that the train “fixed effect” Bp is the product of a function of X and a term
nr that is independent of Xp and follows a gamma distribution. As detailed below, the assumption of
a gamma distribution is not essential for most of our identification results, but is primarily made for
computational convenience.

3.3.2 Supply side

We now formalize the features of revenue management already discussed in section 3.2.1. First, recall
that the revenue management is operated at a line level (e.g. Paris-Toulouse) rather than for each
route of this line (e.g. Paris-Bordeaux and Paris-Toulouse for the line Paris-Toulouse). We thus make
the following assumption.
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Assumption 3. (revenue management at the line level) The opening times of fare class k € {1,..., K},
Tk, 15 a stopping time with respect to the process t — Zde{a b} Nyr(t), where Ngp(t) is the number of
purchases for d made before t.

Assumption 3 states that the decision of opening a new fare class will depend only on past total
purchases, rather than on the repartition between purchases for a and for b. Such an assumption is
fully in line with the fact that a single fare class is used for the two destinations of each line. It was
also confirmed by discussions we had with the revenue management department.

Our second assumption on the supply side is a weak optimality condition. To introduce it, let
Ry (pa,pp) denote the revenue for train 7" under a uniform pricing of (pg,ps) for destinations a and
b respectively. Let also pgrr denote the price in train 7" and fare class k € {1, ..., K'} for destination
d € {a,b}. The weak optimality condition we consider is the following:

Assumption 4. (Weak optimality of actual revenue management) We have

max B[Ry (parr, poer) | Xr] < B [Rf"|X7] (3.1)

By averaging over Xp, which only includes rough proxies of the true demand, we allow for the
possibility that revenue managers uses only incomplete information for its pricing strategy. In reality,
it seems credible that it has access to additional signals on the true demand for a specific train.
For instance, it could use the past number of purchases in each fare class on previous years for the
same exact train. If so, we would expect that Inequalities (3.1) would also hold conditional on this
information.

Importantly, Assumption 4 does not imply that the revenue management performs better than the
optimal uniform pricing, as we compare the uniform pricing strategy within the grid (12 predetermined
fare classes). Moreover, we do not impose any optimality vis-a-vis all dynamic strategies. We refrain to
do so for several reasons. First, such an assumption would conflict with our very objective to quantify
the gains or losses of the actual revenue management , compared to alternative scenarios. By definition,
assuming a strong form of optimality would result in gains against most simpler pricing strategies.

Second and related to this first point, it seems very restrictive in our setting to assume that the
optimal dynamic strategy was used among all such strategies, and given a perfect knowledge of the
demand parameters (e, & and the function Bp(.,.)). First, as we discussed in Section 3.2.1, the
revenue management applied simplified rules (increasing fares from 12 predetermined fare classes) in
the implementation of the revenue management and this only provides at most an approximation to
the optimal solution. Moreover, seat allocation decisions were also subject to the manager’s manual
intervention, which could also be a source of suboptimality. Second, even if it knew such parameters,
computing the optimal dynamic strategy is a very complicated dynamic programming problem. While
Feng and Xiao (2000) and McAfee and te Velde (2008a) have proposed an algorithm for computing the
solution for a homogeneous Poisson process, nothing has been done so far for the non-homogeneous
case, to our knowledge. Third, given that iDTGV has been merely created in 2004, we can doubt that
it knows perfectly the demand parameters, and in particular all train-specific effects By.
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3.4 Identification and Estimation

In this section, we first detail our counterfactuals and corresponding parameters of interests. We also
clarify in Theorem 10 which parameters of the demand function are needed to recover these parameters
of interest. We then proceed to studying the identification of these relevant elements of the demand
function. Finally, we show how to estimate the parameters and perform inference on them.

3.4.1 Counterfactuals and parameters of interests

We aim at comparing the current revenues with several counterfactual revenues, depending on the
type of revenue management and the information it has access to. We consider several possible pricing
strategies, from the most basic ones to the most sophisticated ones. The first, uniform pricing, simply
corresponds to fixing the price of each route in a given train once for all. We let R, denote optimal
counterfactual revenues (averaged over all trains) under this pricing regime. At the other extreme, in
“full” dynamic pricing, prices can be changed at any time. R; then corresponds to optimal counterfac-
tual revenues in this set-up. We also study pricing strategies, called stopping-time strategies hereafter,
where prices can be changed only after a ticket is sold. The corresponding optimal revenues are then
Rs. Finally, we consider constrained stopping-time strategies close to what was implemented in prac-
tice, by assuming that only M number of fares, or M increasing fares, are allowed. The corresponding
optimal revenues are denoted by Rsps and Rgpr4 respectively.

Hereafter, we consider two scenarios in terms of information available to the revenue managers.
Recalling that By = Br(0, 1), we use hereafter gr(t,t') = Byp(t,t')/Br for all t < t'.

1. (Complete information) Revenue managers fully know the expected demand for each train. Thus,
they observe &, &, ¢ but also Bp(t,t') for all (¢,t') and each train 7T

2. (Incomplete information) At ¢ = 0, revenue managers know &;, X7 and gp(¢,t') for all ¢t < ¢/,
but only fp,|x,. As time goes by, revenue managers update their information on Br according
to Bayes’ rule.

The complete information case should be seen as a benchmark. It is useful in particular to quantify
the value of information and contrast the gains of revenue management in complete and incomplete
information set-ups. The case of incomplete information is probably more realistic. In this scenario,
revenue managers know, for each train, the pattern of consumers’ arrival over time (gr(.,.)) but does
not know exactly the aggregate demand (By). The assumption that gr(.,.) is known makes especially
sense if gr(.,.) does not depend on T, in which case revenue managers can have learned from previous
trains how consumers arrive through time. If the scenario of incomplete information holds in practice,
the differences between the counterfactual revenues and the observed ones can be interpreted as the
potential gains or losses of the optimal revenue management under different constraints compared to
the actual ones.

Hereafter, we use the exponents ¢ and ¢ to specify the two information set-ups. Hence, RS denotes
for instance is the counterfactual optimal revenue under uniform pricing and complete information.
The following theorem clarifies which parameters of the demand are required to identify all the coun-
terfactual revenues we consider hereafter.
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Theorem 10. Suppose that Assumptions 1 and 3 hold. Then, RL is a function of (fBr|xr» €5 &), for
I =candr e {u,f,s,sM,sM+} or I =i and r € {u,s,sM,sM+}. The same is true for RZ} if
Assumption 2 also holds.

We do not specify here the exact forms of the counterfactual revenues, as they have no closed forms,
but more details are provided in Appendix C.3. The key result of Theorem 10 is that counterfactual
revenues do not depend on gr(.,.). This turns out to be crucial, since we have no information on
purchasing dates and thus no way to recover this function. Instead, we only have to recover the price
elasticity €, the destination effects &, and the conditional distribution of the total demand Br in order
to identify the counterfactual revenues.

McAfee and te Velde (2008b) obtains the result for the “full” dynamic pricing strategy under
complete information and a similar demand model. We extend their results in two directions. First,
we consider other types of pricing strategies, and in particular possibly constrained stopping-time
strategies, which are very common in practice and correspond to the actual revenue management.
Second, we also show a similar result in an incomplete information set-up.

Challenges in identification We face two main issues for recovering the demand parameters. First,
demand is actually unobserved; only bounds on it can be obtained. Let ngr denote the number of
sales for train T, fare class k € {1, ..., K'} and destination d € {a,b}. Then

Dar(pakr) = Dar(Tk 1, Th1,75 PakT) = NdkT

where 73, 7 is the (random) time at which the kth fare class opens, which we do not observe. Hence,
without further assumptions, we only observe a crude lower bound on the total demand at price pggr-
This point was already made in similar contexts by Swan (1990), Lee (1990), and Stefanescu (2012).

The second issue we face is the absence of usual instruments for prices. Prices only vary within
the grid specified by revenue managers, and to our knowledge, fare classes did not close for exogenous
reasons unrelated to demand. In other words, there is no exogenous variations of prices in our context.
The bottom line is that usual strategies to identify the demand function do not apply here.

We now show that despite these limitations, it is possible to point or partially identify the param-
eters (g, &, Bo, Ao, o), where (Bo, Ao, i) are defined in Assumption 2. Then, in view of Theorem 10,
we obtain bounds on the counterfactual revenues. We proceed in two steps hereafter, by first showing
point identification of (e,&,) and then partial identification of (B, Ao, fo)-

3.4.2 Identification of (¢,&,)

Our strategy to identify (g,&p) is to exploit variations in the relative prices pprr/pakr between the two
destinations and from one fare class to another. We start from ngxr = Dgr(7k, Tk+1; Parr)- Now, let
us assume first that 7, and 7541 are deterministic. Then, by Assumption 1, D7 (7k, Tk+1; Pak) and
Dy (T, Ti+1; Pok) are independent conditional on By (7k, 7,+1) and follow Poisson distributions. As a
result,

kT |NakT + Mok = 1 ~ Binomial (n, A(In(&) — € In(porr/Part))) » (3.2)

where A(z) = 1/(1 + exp(—=x)). Hence, as long as there are variations through fare classes k in the
relative prices pppr/pakr, We can identify &, and e. In the data, we do observe such variations. In
Paris-Toulouse for instance, pprr/parr vary from 1 for k =1 to 1.18 for k = 12.
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To obtain (3.2), we have assumed so far that the stopping times (7j)r=1,. x were fixed, which is
not realistic. Nonetheless, the previous result shows that (3.2) still holds provided that these stopping
times satisfy Assumption 3.

Theorem 11. Suppose that Assumptions 1 and 3 hold and k — parr /pexr 1S not constant. Then (3.2)
holds and (&, ) are point identified.

Equation (3.2) does not hold for any possible random stopping times. We can easily build coun-
terexamples by making (74 )r=1,... i, depend solely on Nyr(.), for instance. Such situations are however
ruled out by Assumption 3. Under this condition, intuitively, the stopping times will be independent
of the proportion of consumers buying tickets for a (versus b).

Beyond the identification and estimation of &, and e, Equation (3.2) can be the basis of testing
some of the conditions we have imposed. First, the separability between train effect Bp(t,t') and
destination effect &; in Assumption 1 implies that if pyrr = porr for several fare classes k, we should
observe similar proportions nyer/(nerr + nprr) for the corresponding k. Second, we can also test for
the fact that price elasticities do not evolve over time, by considering more general specifications than
(3.2). Finally, we have imposed that the price elasticity was constant for all lines. Though we could in
fact identify a different price elasticity for each line, we made that restriction for consistency, because
several lines share common origin-destination trips (e.g. Paris-Toulouse and Paris-Cote Basque share
the Paris-Bordeaux). But we can at least separate the lines that have no such trips in common into
different groups and identify a different price elasticity for each of these groups. We consider all these
robustness checks in Section 3.5.1 below.

3.4.3 Partial identification of 0y = (5, Ao, 40)

As mentioned earlier, the total demand is not directly observed. Thus, unless we impose very restrictive
conditions, we cannot point identify the parameters 6y = (B, Ao, fto) governing under Assumption 2 the
conditional distribution of Bp|X7. We then partially identify 6y by building moment inequalities based
on consumers’ rationality (Assumption 1.1) and weak optimality of the actual revenue management
(Assumption 4).

Consumers’ rationality First, by Assumption 1.1, all consumers who bought a ticket for d at price
pajT for j > k would have also bought it at price pgpr. Therefore, for all k =1, ..., K and d € {a, b},

K

Dar(parri 00) = Y ngir,
=k

where we now index total demand Dyp(par) by 6o. Let Cr denote the capacity of train 7. Then we
also have Cp > ZjK:k ngi7- Combining these inequalities and integrating over nr, we obtain, for all
k=1,..,K and d € {a, b},

K

E | Y ngr — Cr A Dar(par; )| Xr | <0. (3.3)
=k

While E[Cr A Dar(pax; 60)| Xr] does not have any closed form, we can compute it easily through
simulations.
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Next, let K1 denote the last fare class that was open. When the train is not full,

K

> “ngjir > Dar(par,r3 0o),
7j=1

since some of the consumers who purchased their ticket at the price pgrr, with k& < K7, would not
have purchased it at price pgk, 7. Therefore, when the train is not full,

Kr

Z(najT +npir) = O A (Dar (Pak T3 00) + Dyr(poic,r3 00)) - (3.4)
=

When the train is full, this inequality also holds since Zjil najT + npj7 = Cr. Hence, (3.4) holds in
all cases. Integrating over nr, we obtain

)| X7| <o. (3.5)

K
E |Cr A (Dar(Pakcym; 60) + Dor(porcy1360)) = > (Rajr + nugr)
J=1

Similarly to above, even if the first term in the expectation does not take a closed form, it can be
approximated easily using simulations.

Weak optimality condition We now rely on Assumption 4 to form additional moment inequalities.
To exploit them, we show in the proof of Theorem 10 that under Assumptions 1-2,

gapa € + gbpl
§aPa + fbpb

13 [ee]
E[R7(pa, py; 00)| X7] = / E[D([€aps® + &opy e 7% 2) A Orlgag 1o (2)d2,
0

where D(u) ~ P (u) and gy, is the density of a I'(Ao, po). In other words,

max E [R7 (pak, poer)| XT]

is an identified function h(Xp,6). Hence, (3.1) can be rewritten as:
E [W(Xr,00) — B3| X7] < 0. (3.6)
To summarize, (3.3), (3.5) and (3.6) can be stacked together, producing
E(m(Ur, 09, 0)|XT) <0, (3.7)

for some known function m(.,.,.) € RY and vy = (&, ). Here Uy is the vector of data corresponding
to train 7" and the inequality sign should be understood componentwise. In general, the inequalities
(3.7) are not sufficient to point identify 6. In turn, this implies that the counterfactual revenues are
partially identified under Assumption 1-4. Note that we let the dependence of m(.,.,.) on vy explicit
n (3.7). Even if this is immaterial for identification, it matters for inference, to which we now turn.

®See (C.27) in section C.7.2.
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3.4.4 Inference on counterfactual revenues

Because counterfactual revenues are only partially identified, we directly focus here on constructing
confidence sets for them. For that purpose, we first construct a joint confidence set on (v, 6y) (with
vy = (&,¢€)) and then apply the projection method, using Theorem 10. The projection method is
conservative but simple and as such, has been often used in empirical literature, see e.g. Ciliberto and

Tamer (2009) and Grieco (2014) for examples in empirical industrial organization.®

To construct a joint confidence set on (v, 6y), we first construct a confidence set on vy. Equation
(3.2) gives a straightforward way to estimate vy, by a logit of ¥ = 1{destination = a} on Z =
log(ppk /pak) for each (k,T). Then, for any a € (0,1), we can construct a confidence set CTi__, on 1
with coverage 1 — o by using the asymptotic distribution of the MLE.

Next, assuming first that 1 is known, we can construct construct confidence sets on 6y = (8o, Ao, o)
using the conditional moment inequalities (3.7). Specifically, because Xp is discrete in our case, we
can first transform these conditional moment inequalities into unconditional moment inequalities. We
then use the Generalized Moment Selection (GMS) of Andrews and Soares (2010). We let CI?

v,l—a
denote a confidence set on 6y obtained by this procedure if vy = v.

Now, vy actually enters into these moment inequalities. To account for this additional source of
uncertainty and construct a joint confidence set on (v, 6y), we propose to counsider, for any a; € (0, «),
the confidence sets

2
Cli_o = Uuecﬂ_al{(”v 0):0€CL 1 gt

We then have

Pr((l/g,eo) S CIlfa) =Pr (90 S 0112,071_a+a1, 1y € CI%—al)
ZPr(906C12 )+PY(V0€C11 )—1

vo,l—a+a1 1—aq

Hence, because Clj_,, (resp. CI,QJOJ,QHQ) has asymptotic coverage of 1 —ay (resp. 1—a+ay), Cli_4

will asymptotically cover (v, 0y) with probability 1 — a.

3.5 Results

3.5.1 Demand estimation
3.5.1.1 Estimation of v

We first consider the estimation of the relative demand (&) and the price elasticity (—e). The results
are displayed in Column I of Table 3.3. We obtain a price elasticity of -2.07. This result is slightly
larger but in line with the literature on the transportation industry. We refer for instance to the meta-
analysis by Jevons et al. (2005) and the studies of Wardman (1997), Wardman (2006) and Wardman
et al. (2007), which point to price elasticities in the range [—1.3;—2.2]. Unlike ours, most of the
studies rely on aggregated data. This is likely to bias upwards price-elasticity estimates, a point that
we illustrate in Appendix C.4 by running regressions based on our data aggregated at different levels.

5An alternative to projection is to conduct direct inference on functions of parameters, see in particular Bugni et al.
(2017); Kaido et al. (2019). But our parameters of interest are non-linear with respect to (v, 60) and their computation
is costly. This makes the direct approaches either not applicable (as the parameters are not linear in (uo,6o)) or
computationally prohibitive.
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Table 3.3: Binomial model of demand

All fare classes First 11 fare classes
I I1 II1 r I
Price elasticity (-¢)
Constant —2.07 —-2.20 —-1.98 —-1.94 —2.32
(0.06) (0.06) (0.06) (0.07) (0.07)
Southwest 0.34
(0.07)
Weekend /national holidays —0.74
(0.08)
Peak hour 0.009
(0.08)
Final (vs intermediate)
Destination effect (In &)
Cote d’Azur (vs Avignon) 1.53 1.54
(0.007) (0.007)
Marseille (vs Aix-Avignon) 0.41 0.42
(0.005) (0.005)
Perpignan (vs Nimes-Montpellier) —0.87 —0.89
(0.005) (0.005)
Cote Basque (vs Bordeaux) 0.59 0.58
(0.007) (0.007)
Toulouse (vs Bordeaux) 0.27 0.27
(0.006) (0.006)
Mulhouse (vs Strasbourg) —1.15 —1.15
(0.008) (0.008)
Dest. characteristics Wy
Population 0.941 0.951 0.958
(0.006)  (0.006) (0.006)
Regional capital 0.44 0.44 0.45
(0.004)  (0.004) (0.004)
Trav. time by train —-1.90 —1.90 —1.88
(0.001)  (0.001) (0.001)
Trav. time by train squared 0.25 0.25 0.25
(0.0002)  (0.0002) (0.0002)
Trav. Dist. by car 0.32 0.34 0.33
(0.002)  (0.002) (0.002)
Trav. Dist. by car, squared —0.025 —0.027 —0.026
(0.0001)  (0.0001) (0.0001)

Notes: The total number of trains is 2,909. In specifications with all fare classes, the total number of
observations (fare classes X trains) is 21,988. Southwest correspond to the lines to Céte Basque, Toulouse
and Perpignan. In the specifications including Wy, we replace In(£y4) by W(QC. Population is measured
in 1 million inhabitants, traveling time is measured in hours and traveling distance is measured in 100
kilometers.

Regarding our estimates of relative demand coefficients (In(&p)), a positive coefficient should be read
as a higher demand for the terminal than for the intermediate stop, and its exponential corresponds to
the ratio of demand. For instance, the demand for Mulhouse (the terminal) is equal to exp(—1.15) ~
0.32 times the demand for Strasbourg, which is the intermediate stop. To check whether the results on
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relative demand make sense, we re-estimate the model adding some structure on these relative demand
parameters. Namely, instead of letting In(¢;) unspecified, we replace it by W/(, where Wy includes
the population of the town, the traveling time from Paris by train and its square, and the traveling
distance by car from Paris and its square. The latter captures the outside option of traveling by car.
Note that with such a specification, we do not have to impose the normalization £, = 1 anymore.
Instead, we just replace In(&,/&,) by (Wy — W,,)'¢, and estimate .

The results are presented in Column II. The estimated price elasticity remains similar as in Column
I (-2.20). The effect of the population size, traveling time by train and distance by car are as expected.
Larger cities lead to higher demand and a longer traveling time (resp. distance) by train (resp. car)
leads to a lower (resp. higher) demand for train tickets. The effect of traveling time is nonetheless
attenuated for long journeys, as the positive coeflicient of the square of traveling time indicates.

We also estimate the demand model by allowing price elasticity to vary across lines and across trains
and the results are shown in Column III. The estimated price elasticities are quantitatively close to the
estimates in Columns [-11. We find that travelers of lines from Paris to the southwest of France (namely,
the lines to Cote Basque, Toulouse and Perpignan) are less sensitive to price than those of other lines.
Travelers on weekend or national holidays have a larger price elasticity (in absolute value) than those
on other days. This may stem from a larger proportion of people traveling for business reason during
weekdays. Finally, once controlling for weekend and national holidays, individuals traveling during
peak hours appear to have a similar elasticity than the others.

We now check the plausibility of Assumption 1, on which the identification of 1 relies. First, we
investigate the separability between train-time effect (Brp(t,t’)), destination effect (§;) and price effect
(p;°)- This separability implies that the proportions nyr/(narr + nyer) remain constant through fare
classes k satisfying pprr = Pakr. A convenient way to check this is to restrict ourselves on two lines,
Paris-Marseille and Paris-Mulhouse, for which pyrr = pagr for all k € {1,..., K'}. By taking the first
fare class as a reference, we simply regress nprr/(nerr + nekr) over the other 11 fare class dummies
and test whether the corresponding coefficients are all equal to zero.
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Table 3.4: Test of the separability in Assumption 1

Paris-Marseille Paris-Mulhouse

Fare class Coefficient estimates
2 0.019 -0.003
3 0.042%** 0.009
4 0.022 0.010
5 0.009 0.010
6 0.008 0.027**
7 0.004 0.021
8 0.016 0.004
9 -0.023 -0.004
10 0.018 -0.002
11 0.011 —0.063**
12 0.020 —0.100***
Joint test of nullity p-values
2-12 0.09 0.0047
2-11 0.05 0.08

Notes: Coeflicient estimates of the regression of nyxr/(nakT + npkT)
on fare class dummies, with Fare class 1 taken as the reference. The in-
termediate stops for Paris-Marseille are Avignon and Aix-en-Provence.
The intermediate stop for Paris-Mulhouse is Strasbourg.

The results are presented in Table 3.4. As the first part of the table emphasizes, most coefficients
are not significant, despite the large number of observations (453 and 499 for the two lines). For Paris-
Marseille, the p-value of the joint test is larger than 0.05. For Pairs-Mulhouse, the p-value is lower, but
it appears that this result is mostly driven by the last fare class. The coefficient of the 12th fare class
is indeed negative and quite large for this line, indicating that there would be more “late consumers”
traveling to Strasbourg. To see whether this pattern could influence our results beyond this specific
line, we re-estimate 1y using only the first 11 fare classes. The results are shown in columns I’ and
IT’ of Table 3.3. We obtain respectively a price elasticity of -1.94 and -2.32, both of which are very
close to their baseline estimates in columns I and II. The relative demand parameters and parameters
in destination effects are also very close. Considering only the first 10 fare classes also lead to almost
identical results, with in particular price elasticities of -1.94 and -2.27.

Finally, we test that the price elasticity remains constant over time. To this end, we replace
A(ln(fb) — 8ln(pka/pakT)) in (32) by

A [ln(fb) — (5early1{k < S} + 5late1{k > S}) ln(pka/pakT)} s (38)

for some threshold S that we vary. We can then compare gearly to c1ate to assess the credibility of this
assumption of constant price elasticities. We consider threshold values S equal to 3, 11 and 12.

The results are displayed in the first lines of Table 3.5. The resulting price elasticities are close
to the baseline elasticities (-2.07 and -2.20), except for S = 3, where €eary, while still including in
its 95% confidential interval the estimate of ¢, is lower in magnitude. Note that intertemporal price
discrimination would suggest the opposite, namely that price elasticity of early birds would be higher
in absolute value. Next, we consider three classes of elasticities instead of two, by separating early,
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middle and late travelers. In the specification 1-2, 3-10, 11-12 for instance, we separate the first two
fare classes, the third to tenth fare classes and the last two classes. Again, in this specification and
the other 1-2, 3-11, 12, we obtain again similar results. As before, the baseline elasticity is still within
the 95% confidential intervals of a1y and one can not reject that they are equal at 95% confidential
level. Note that when early travelers are defined as whose who arrive before the opening of the 2nd
fare class, the prices for both destinations of the 1st fare class are the same, pyir7 = pp1r- Then, we
can not identify eear1y in this case.

Table 3.5: Test of constant elasticity over time

Segmentation without structure on &gy with structure on &4
Early(/Middle)/La,te travelers €early  €middle €late €early  Emiddle €late
1-2, 3-12 —1.65 - —-2.07 -—-2.17 - —2.23
(0.37) (0.06) (0.41) (0.06)
1-10, 11-12 —-2.13 - —-1.92 -2.35 - —2.15
(0.07) (0.13) (0.07) (0.11)
1-11, 12 —-2.15 - —1.47 —2.33 - —2.17
(0.06) (0.20) (0.07) (0.13)
1, 2-10, 11-12 - —2.12 —-1.99 - —2.41 -=2.00
(0.07) (0.11) (0.07) (0.11)
1, 2-11, 12 - —-2.06 -—2.10 - —-2.33 —2.17
(0.07) (0.13) (0.07) (0.13)
1-2, 3-11, 12 —-1.46 —-2.06 -2.09 -220 -—-233 -—217
(0.41) (0.07) (0.13) (0.41) (0.07) (0.13)
1-2, 3-10, 11-12 —-1.49 -213 -198 —-2.16 —-244 -2.00
(0.41) (0.07) (0.11) (0.41) (0.07) (0.11)

Notes: In the three first lines, we consider only two different elasticities, in line with (3.8). In the fourth
and fifth lines, we consider three different elasticities for fare classes 1, 2-10, 11-12 and 1, 2-11, 12.
Because prices for all destinations in the first fare class are the same for all lines, the corresponding price
elasticity is not identified. Standard errors are reported under parenthesis.

3.5.2 Counterfactuals

We now turn to the counterfactual optimal revenues under different pricing strategies, namely uniform,
stopping-time, and full dynamic pricing. Table 3.6 summarizes average revenues over all lines under
different pricing strategies. Our results first show that the actual revenue management achieves an
expected revenue of 12.2K€, which is between 3.3 and 5.7% higher than the optimal uniform pricing
strategy under incomplete information (line u.2 of Table 3.6). Note that Assumption 4 did not impose
this condition, since we only suppose that the actual revenue management leads to a higher revenue
than uniform pricing with prices constrained to belong to the grid set by revenue managers (i.e. line
u.1). Actually, this grid seems fine enough to approximate correctly optimal prices, as the revenue under
uniform pricing with such constrained prices (line u.1) is very close to that without price constraints
(line u.2). More precisely, we estimate a loss of only 200€, or 1.7%, by imposing such constraints on
prices.
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Table 3.6: Optimal revenues under different pricing strategies

Estimate 95% CI

Scenario (in thousands of €)
Observed pricing strategy 12.21 [12.05, 12.36]
Optimal uniform pricing strategy

u.1l incomplete information, constrained prices [11.35,11.59]
u.2 incomplete information, unconstrained prices [11.55,11.82]
u.3 complete information, constrained prices [13.48,13.76]
u.4 complete information, unconstrained prices [14.48,14.81]
Optimal stopping-time pricing strategy

s.1 incomplete information, 2 increasing fares [13.73, 14.04]
8.2 incomplete information, 2 fares [14.16, 14.48]
s.3 incomplete information [14.72, 15.05]
s.4 complete information, 2 increasing fares [14.61, 14.95]
8.5 complete information, 2 fares [14.68 ,15.01]
5.6 complete information [14.74, 15.09]
Optimal “full” dynamic pricing strategy

f.1 incomplete information [14.73,15.07]
f.2 complete information [14.76,15.10]

Notes: With “constrained prices” (resp. “unconstrained prices”), optimization is conducted over
the actual price grid (resp. over all positive real numbers). Revenues are averaged over all lines.
We use bootstrap (5000) to compute CI for observed revenue. To compute 95% CIs of other
revenues under different counterfactuals, we use the GMS procedure and projection method as
described in Section 3.4.4.

Our results also suggest that even compared to the incomplete information benchmark, the actual
revenue management was suboptimal. In practice, revenue managers could use stopping-time strategies
with up to 12 increasing fares chosen from a predetermined set. By using stopping-time strategies with
2 increasing fares, revenue managers could have already obtained around 13.93K<€, a gain around
14.1% relative to the actual practice; with 12 increasing fares, they would have obtained a gain around
19.0% (see Table 3.7).7 These results justify our weak optimality assumption on the supply side.

"We also computed the optimal revenue under 2 increasing fares chosen from the actual price grid and also obtained
that this pricing strategy achieves on average a better revenue than the observed one.
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Table 3.7: Optimal revenues under constrained stopping-time pricing

Complete information Incomplete information
No increasing No increasing
Number of fares | constraint fares constraint fares
(unif. pricing) 1 14.685 11.751
2 14.884 14.822 14.368 13.929
3 14.925 14.856 14.729 14.324
4 14.939 14.869 14.824 14.440
5 14.946 14.876 14.864 14.485
6 14.949 14.880 14.885 14.507
7 14.951 14.882 14.899 14.518
8 14.953 14.884 14.908 14.525
9 14.954 14.885 14.915 14.528
10 14.954 14.886 14.920 14.530
11 14.955 14.886 14.924 14.531
12 14.955 14.887 14.928 14.532

Notes: the revenues are computed at a set of parameters “at the middle” of confidential
region, i.e., the set of parameters satisfies the GMS criterion and is not rejected by
the data, as described in Sections 3.4.4 and 77.

A related finding is that restricting to stopping-time pricing strategies incur virtually no loss,
compared to “full” dynamic pricing. By changing prices only when a purchase is observed, the firm
can secure around 99% of the revenue gain from uniform pricing to dynamic pricing regimes (compare
lines 8.4 and f.1, or similarly lines 5.6 and {.2 in Table 3.6). Hence, the optimal stopping-time pricing
strategy provides a simple yet very good approximation to the optimal dynamic pricing strategy. This
finding seems valuable in particular when changing prices incurs a non-negligible cost.

We now turn to the comparison with the complete information set-up. Table 3.6 first shows that
compared to its actual revenue management, the firm could have expected at most a gain between
17.3% and 19.1% (see line f.2), which corresponds to the full dynamic pricing case under complete
information. Also, the difference in pricing strategies are notably modest in this complete information
case. In particular, the difference in revenue between uniform pricing with unconstrained prices and
full dynamic pricing is only around 2%.8 This figure sharply contrasts with the 28% gain we estimate
under incomplete information (cf. line f.1 v.s. u.2). Intuitively, dynamic pricing still helps in the
complete information case because of the randomness of the demand process. But this randomness
plays a much more minor role than the variations in overall demand (Bp). The only substantial loss
we observe in the complete information case (around 7%) is when prices are constrained to belong to
the grid, see lines u.3 and u.4. Intuitively, this is because demand may be very high occasionally, and
the maximal price in the grid is still too cheap to be close to profit maximization

The difference between the gains of full dynamic pricing under complete and incomplete information
shows that revenue management is an effective instrument for demand learning. By learning from
consumers’ purchases, it can gradually pin down the uncertainty on By in a Bayesian way. Pricing

80ur results under complete information are consistent with simulation results in operational research and empirical
results in economics. For example, Zhao and Zheng (2000) shows a similar improvement by between 2.4% and 7.3%.
Williams (2017) estimates a revenue improvement due to optimal dynamic pricing of around 2% in airline industry.
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decision then take this renewed information into account, improving total revenue. And actually, this
demand learning can compensate almost all revenue loss due to ex ante uncertainty on demand. The
difference in revenues under optimal uniform pricing between incomplete and complete information is
around 3K€(lines u.4 and u.2), while this difference decreases to around 0.03K<€only (see lines f.2 and
f.1 in Table 3.6) under optimal dynamic pricing.

The reason of this very modest loss compared to the complete information set-up is that information
accumulates quickly. To illustrate this, we computed expected revenues under a class of intermediate
stopping-time pricing strategies, where the firm is only allowed to dynamically price the first K seats
while uniform pricing is applied to the remaining seats. Thus, K = 0 and K = C correspond re-
spectively to the optimal uniform and stopping-time pricing strategies. Even if such a class of pricing
strategy is not covered by Theorem 10, we show in Appendix C.8 that the same reasoning as for other
strategies apply, and we can partially identify the corresponding optimal revenues in a very similar way.
By quantifying the revenue gain from K to K + 1, we can characterize how much can be marginally
gained from being able to update its information on one additional purchase and optimally adjust its
pricing.

Figure 3.1: Expected revenues under intermediate pricing strategies
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The optimal revenues under these intermediate pricing strategies are displayed in Figure 3.1. Under
incomplete information, demand learning is rather quick, as we can see from the important concavity of
the red line. With just K = 3, the firm can already achieve a revenue equal to the observed one, while
by learning from the first 50 purchases, it can already achieve a revenue only 3% lower than that of the
complete information. On the other hand, the blue line shows that the revenue gains under complete
information is small. The incremental revenue from K to K + 1 is almost constant and barely reaches
~1€. This latter result could be exepected, given that the difference between uniform pricing and
the full stopping-time pricing is small under complete information (1.8%). The comparison between
the incremental gains of the two curves allows one to identify the pure effect of the learning on Br,
once the effect of learning on the demand process (for a given Br) has been removed. In line with our
previous results, it appears that the former effect largely dominates the latter.

Finally, as a robustness check, we conduct the same counterfactual exercises with a lognormal
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specification on np instead of a gamma distribution. The results are overall similar, see Table C.2 in
Appendix C.5.

3.6 Conclusion

In this paper, we quantify the gains and losses of revenue management and identify their underlying
sources in the context of French railway transportation. We first clarify that many counterfactual
revenues only depend on prie elasticity and total demand, and not on the precise timing of consumers’
arrival. This is convenient when, as here, no details on the dates of purchases are available. Still,
demand estimation is complicated in such a context by the absence of exogenous variations in prices,
and censorship. Such problems are likely to appear in many cases where perishable goods are sold.
To tackle such issues, we develop an original identification strategy combining exogenous variations
in relative prices and moment inequalities built on basic rationality on consumer’s side and weak
optimality conditions on the firm’s pricing strategy.

Even though such conditions only yield partial identification in theory, they turn out to be quite
informative. Our results show that the actual revenue management enhances revenue with respect to
the optimal uniform pricing strategy, but that it incurs a loss between 17.1 and 19.0% compared to the
optimal dynamic pricing under incomplete information. Dynamic pricing appers to be in particular
effective under demand uncertainty, as information cumulates quickly.

Our work has some limitations, that are in part common to the literature and in part related to
the nature of our data. First, we assume that price elasticity is constant. This assumption seems
reasonable in our context but may be less in others. Observing consumers’ purchasing dates could
help alleviate this restriction, and price changes resulting from the closure of a fare class could be used
to identify demand in a flexible way. Second, while we take into account demand uncertainty in our
counterfactuals, we still assume that the firm knows the pattern of consumers’ arrival. If consumers’
purchasing dates were observed, it could be possible to relax this assumption. Ex ante uncertainty in
this dimension could however substantially complicate the computation of counterfactuals.
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APPENDIX A

Appendix to Chapter 1

A.1 Hendel (1999) and Dubé (2004) as Special Cases of Model (2.3)

In this Appendix, we illustrate that the model of preference for variety originally proposed by Hendel
(1999) in the context of demand for computers and then applied by Dubé (2004) in the context of
demand for soft drinks is a special case of model (2.3). In particular, Hendel (1999)’s model is a
version of model (2.3) in which each demand synergy parameter I';;, is restricted to be negative in a
special way. Hendel (1999)’s model is about individuals who go shopping less often than they consume.
During any purchase occasion, individuals may buy several units of different products in anticipation
of the various consumption occasions they will face before the next shopping trip. Suppose there are
J different products and denote by J their collection. Denote by 0 the outside option, the choice of
consuming none of the J products. Denote by R; € N the maximal number of units of any product that
individual ¢ can consume during any consumption occasion, and by K; the number of consumption
occasions in between any two shopping trips. On any consumption occasion, Hendel (1999) assumes
that different products are perfect substitutes, so that each individual will effectively choose a certain
number of units of at most one product j. As a consequence, the actual choice set faced by individual
7 on any consumption occasion can be defined as:

Ai={(j,...j): forjed, qg=1,.., R} U{0},
~——

q

where ¢ is the number of units of any product j that could be consumed on this consumption occasion
and 0 is the outside option. Then, individual ¢’s choice set during any purchase occasion is:

Ci = Ai X ... X Ai,
N———
K;

where each element of C; is a bundle of size up to R; x K;. To ease exposition, we represent each
bundle b € C; by b = (ji, qk)f:il, where (ji, qi) refers to the chosen product and to the corresponding
number of units on consumption occasion k. Denote by (jk, qx) = (0,0) the decision of not consuming
anything on consumption occasion k.

For the rest of this Appendix, we focus on Dubé (2004)’s notation, which specializes Hendel (1999)’s
model to the case of demand for bundles in grocery shopping. Following Dubé (2004)’s equation
(2) at page 68, denote by (¥;;,1qx)*S; the indirect utility of individual ¢ from choosing (jg,qx) on
consumption occasion k: W;;, 1 is i’s perceived quality for product j, on consumption occasion k, S;
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is an i-specific scaling factor, and a € (0, 1) captures the curvature of the utility function.! Moreover,
denote by pj, the price of one unit of product j; and by y; the income of individual 7. Then, from
Dubé (2004)’s equation (6) at page 69, the indirect utility of individual ¢ from purchasing bundle
b = ((jl,ql), ey (jKi’in)) € G, is:

K;
Uib = Z(\Ilmkk(ﬂc ijka + Yi

k=1
K; K; K; K;

= (Wi @) Si+ > (Wijon)*Siae — Y (Vijer) “Siqk — Y Pjptk + i
k=1 k=1 k=1 k=1
K; K; K; qk

= Z( z]kak S + Z Z ijk’ S Z zykk qu - Z ijk + i (Al)
k=1 k=1g=1 k=1 q=1
Ki qk Kz

= Z Z zgkk pjk + Z zyk: k - Qk] + i
k=1 q=1 k=1
K; g

wijk + Tiv + i,

ﬁ
—_
Il
i

q

where u;j, 1, = (Wij,k)* S — pj,, and T = Zfzil(\lfijkk)aSi lay — qi]. The sum over g, on the right hand
side of (A.1) is zero when ¢ = 0. Note that Dubé (2004) assumes W;j,, > 0. As a consequence, the
demand synergy I';, will be constrained to be strictly negative as long as W;j,, > 0. Dubé (2004)’s
demand model is therefore a special case of model (2.3) with non-positive demand synergies and without
the i.i.d. Gumbel error terms.

A.2 Proof of Lemma 1

To prove the first statement, we show that given a distribution function for By, F(-;¥%), there exists
a unique 0, € R for t = 1,..., T that solves s;(d}; $7) = ;. This is equivalent to showing that given
F(-;X/), the market share function s;(-; ¥%) is invertible for ¢ = 1, ..., T. Because our arguments with
regard to the first statement do not depend on whether F' is parametric or non-parametric, hereafter
we denote F(-; X) simply by F.

Given a distribution F, for market ¢t = 1,...,T, define the Jacobian matrix of the market share
function s:(-; F') from (2.3) by:

aSt &Stb
/. _ 22t sl — /.
1ok F) = guir) = (gewem) (A2

Corollary 2 from Berry et al. (2013) provides sufficient conditions for the invertibility of differentiable
market share functions. We now verify that market share function (2.3) satisfies the two sufficient
conditions of Corollary 2 from Berry et al. (2013): (a) weak substitutes (Assumption 2 in Berry

Note that Dubé (2004)’s equation (2) at page 68 reports the direct utility function defined over the entire vector
(qjk)‘jjzl of possible units for each product j € J on consumption occasion k. However, because of the assumption of
perfect substitutes mentioned earlier, positive units g;i > 0 will be chosen for at most one product j on any consumption
occasion k. For this reason, here we simplify the discussion and immediately consider the indirect utility of choosing
(Jk, qr) With gjx = gi-
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et al. (2013)) and (b) non-singularity of the Jacobian matrix J;(0;; F'). We first compute J;(d;; F) for
b,b' € Cyy,b £ b':
Osip
9%,

(51 F) = [ im0 B (1 = si0s B ()
Dsum (A.3)
e ) = = [ 50k B su (0 B AF (50)

As discussed by Berry et al. (2013), the weak substitutes condition does not rule out complementarity
in a discrete choice model in which alternatives are defined as bundles, as in demand model (2.3). In
practice, the weak substitutes condition requires that for all ¢t = 1,...,7 and b € Cy, sup(d;; F) be
weakly decreasing in 0y, for any b’ # b,b’ € Cy;. This is immediate from the second equation in
(A.3). In what follows, we verify that J:(d;; F') is non-singular.

Define the Cy1 x 1 vector si(3y; Bit) = (Sitb (945 Bit) )bec,, - By using (A.3), we can re-write J¢(0;; F')
as:

Ju(03; F) = / [Diag(sit(8}; Bit)) — sit(6}; Bit)sit(84; Bie) ' | dF (Bir), (A4)

where Diag(s;(9}; Bit)) is a diagonal matrix with the elements of s;.(d}; 5i+) on the main diagonal. We
first show that the symmetric matrix Diag(s(05; Bir)) — sit(61; Bit)sit (875 Bit) T is positive-definite. This
is equivalent to showing that its eigenvalues are all positive. Note that every element of s;(d}; Bit) is
strictly positive and that their sum is strictly less than one:

sitb (035 Bit) > 0,
> sin(0f: Bi) < 1.

beCyi1

Denote any of the eigenvalues of Diag(s:(}; Bit)) — sit(0); Bit)sit(0); Bir)T by A and its corresponding
(non-degenerate) eigenvector by 2. Without loss of generality, suppose that the maximal element of
vector z in absolute value is its first element x1 # 0:

|x1] > |zp| for any b € Cy.
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Then, we have:

[Diag(sit(01; Bit)) — sit(07; Bit) sit (03 Bir) T = = A\
= 8ib(0f; Bit)n — Sim (64 Bit) Y Siwr (3]; Bit)wpr = Axp, for all b € Cypy

b’eCty
= sin(04; ie)er — sinn (0 Bit) Z Sitbr (073 Bit) Ty = Ax1
b’eC
! Sitb’ 5/7 it | Th’!
— A = su1(6%: B <1 ~ Yvecy 12:.1( 1 Bi) T >
/ S ’ 57 T
> sit1(0; Bit) ( > brec, Sitv' (01 Bi)Tb )
ia|
S ’ (57 Thr
> Sit1 5t7ﬁ1t (1 Z b’eCyy zi‘kl;l(’ t 5175)‘ b |>

> sit1(63; Bat) Sitb/((%;ﬁit)
b’ECtl
>0
Any eigenvalue of Diag(s;;(6L; Bit)) — sit(04; Bit)sit (01; Bit)T is thus strictly positive: for any v € R,
v [Diag(sit(57; Bit)) — sit(61; Bie)sit (543 Bie) "] > 0.

As a consequence,

v I(8); F)v = /UT[Diag(Sit((%; Bit)) — sit(61; Bit) sit (61 Bir) " Jvd F (Bir)

> 0.

Thus, given F, for any d; € RC1 Ji(0}; F) is positive-definite and non-singular. Because both condi-
tions (a) and (b) of Corollary 2 by Berry et al. (2013) are satisfied, then the market share function
s¢(0}; F) is invertible with respect to 8}, for t = 1,...,T. This completes the proof of the first statement.

We now prove the second statement of the Lemma. According to Assumption 1, the density func-
tion %ﬁtz%) is continuously differentiable with respect to ¥X.. As a consequence, s:(d;;X%) — 4;

is continuously differentiable with respect to (97, 37, X%). As we showed above, the Jacobian matrix
O[s(04;X7) =3y _ :

tafsiF ’ (07,97, 5%)=(0t,9t,2F) = Ju(0s;
tion Theorem, in a neighbourhood of (0, 4, X ), for any (47, X/%) there exists a unique J; such that
s1(6);57%) = 4, and s; ' (9);%%) = &, is continuously differentiable with respect to (4;,%%). This
completes the proof of the second statement.

F(-;XF)) is invertible. Then, according to the Implicit Func-

A.3 Proof of Rank Regularity Property

Without loss of generality, suppose that Oy, C T is a compact set, where T C RP*P is a topological
m(3)

space of RF+P . Moreover, according to Assumption 1, 82/ is continuous with respect to ¥’ € T.

According to Property 4 from Lewis (2009), the set of rank regular points for 33(22//) is open and dense

in Y. This completes the proof.
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A.4 Preliminaries for Theorem 1

Here we report a preliminary Lemma useful to prove Theorem 1.

Lemma 2. If Assumptions 1 and 2 hold, and the Jacobian matrix a(z)

sy, 18 of full column rank,

then X is locally uniquely determined by moment conditions (1.9).

Proof. The differentiability of moment conditions (1.9) with respect to ¥’ follows from the second
statement of Lemma 1 and the differentiability of g(¥X4) with respect to 3, in Assumption 2. It then
suffices to show that the true ¥ is the unique local solution to m(X’) = 0. From the definition of model
(2.3), m(X) = 0. We prove the result by contradiction.

Suppose that X is not the unique local solution to m(X') = 0. As a consequence, there exists a
sequence of Xy such that ¥y — ¥ as N — oo, and m(Xy) = 0. Because m(¥’) is continuously
differentiable in a neighbourhood of ¥/ = X, by applying the first-order Taylor expansion, we have:

om(x’
m(Xy) =m(X) + ”;(2,) (Ex — %) +o(|lZy — 2,
B=x A.
om(%) v-% _ o(Eny -3 (A-5)
82/ E/:E|EN_E’ |EN—E‘

where o(|Xy — X|) is such that hm M = 0. Note that

XN =] |E | belongs to the unit sphere in

b .
RP+P | which is compact Then, there exists a subsequence {ﬁ} and v € RP*P with |v| = 1,
-5
such that ﬁ — v. By applying the second equation of (A.5) to the subsequence {IZ 5 }, and
by combining ¥y, — ¥ and the continuous differentiability of m(-) in a neighbourhood of 2 we obtain
rarg(zz,,) s_sxv = 0. Because dwal(z, ) sv_s, is of full column rank, any vector x € REP+D that satisfies
d’g(zz, ) su_x® = 0 must be zero. Then v = 0, which contradicts the fact that |v| = 1. As a consequence,
¥ is the unique local solution to m(¥') = 0. O

A.5 Proof of Theorem 1

Sufficiency. We prove sufficiency by contradiction. Suppose that model (2.3) is not locally identified:
there exists a sequence of solutions to system (1.4), (5{\51, - 6§VJT,I’N, wNY £ (613, -, 673,, T, %) for
any N, such that (67 ,...,005 , IV, EY) = (615, ..., 673,,T, %) as N — co. Applying (1.6) and (1.7)

to each element of the sequence, one obtains:

O (T + 9(@im, pb; B3) = s (95 57,
N _ 1/, .vNy .
05 = Sy (Jt,ZF) j €b, (A6)

N
Iy = s (955 ZS (36: 58) — 9(Tb, Pib; B ).
Jj€b

Then, by constructing moment conditions (1.9) for each element of the sequence, we have m(X')|sy_sv =
0 for any N. Because the Jacobian matrix dwdl(z, ) Sr%
then ¥ is uniquely locally determined by moment conditions (1.9). Hence, there exists Ny such that
for all N > Ny, £ = . Because of the third equation of (A.6), then for all N > Ny, 'Y = Ty,

Moreover, because of the first two equations of (A.6), we have 63 = 0, for all N > Ny, t = 1,...,T

is of full column rank, according to Lemma 2,
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and b € C;1. As a consequence, (5{\31, ...,(5]TVJT,FN, YNY = (613,, -, 073,, T, ) for all N > Np, which
contradicts (5{\31, . 5]TVJT,FN, SNY #£ (613, -y 0735, , %) for any N.

Necessity. To simplify notation, denote the number of moment conditions > e, i1y >2 (ITb| — 1)
by Q and the rank of 2207y
11, there exists a neighbourhood of the true X, U, such that rank( 8(2,)) = rank( 8(22,/)) su_y = 1 for
each ¥/ € U. By applying the Constant Rank Theorem at ¥/ = 3, there are open sets Uy, Uy € RPTP
and Us € RY and diffeomorphisms ¢ : Uy — Us , ¢ : U3 — Us such that ¥ € U; € U and
Ypomoog l(a) = (xy,...,2.,0,...,0) for all 2’ € Uy.?

Define x = (x1,...,xpyp) = (b(E) and a sequence {zV = (z]',...,a¥, )} such that 2}’ = xy, for
{=1,...,r and xé\f =xp+ %, for N large enough so that 2V # 2 and 2 € Us,. Note that

s by 7. According to the definition of rank regularity in footnote

Yomoo¢l(z) = (x1,..2,,0,...,0)
= (2, ..2N,0,...,0) (A7)

— Yomogl(zY)

and that ) .
Yomog¢ (x) =vomog (4(X))

=1 om(D) (A.8)

= 1(0).
As a consequence, Yomod ! (zN) = 1(0). Because 1 is a diffeomorphism, we obtain m(¢~!(2V)) = 0.
Because ¢ and its inverse ¢! are diffeomorphisms and z # 2V — 2 = ¢(X) as N — oo, we construct
a sequence LV = ¢~ (zV) = ¢7(z) = ¥ with £V # ¥ such that m(XY) = 0 for each N. According
to (A.6) from the proof of sufficiency, given ¥V, we can construct a (51J . 57]YJ , TNV, ¥N) such that
it is a solution to (1.4). Consequently, model (2.3) is not locally identified and this concludes the proof.

A.6 Proof of Corollary 1

am(z)

Because o is

Y=% ¥'=x

/=¥ 1S positive. oreover, since 7 1S

Bm(Z’)] [am(E’):|T

is of full row rank, then the positive definite matrix [ 5 557

T
- - - om(=)] [om()
not singular and its determinant Det <[ TgE, ] [ 732, }

. . , am(=)] [omE) T . : : / :
continuous with respect to ', Det [ 5 ] [ 57 } is also continuous with respect to ¥’ and is
positive in a neighbourhood of ¥ = 3. This implies that 85?’ ) is of full row rank in a neighbourhood

of ¥ = 3, and its rank, rank <8n5(2, )>, is constant and equal to the number of rows in %EE,/)

Consequently, % is rank regular for 673(22/) Note that the number of rows in 22 8(22/l)

=5

is equal to

DAY
the number of moment conditions ) e, i1, >2 (ITb| — 1) and it is strictly smaller than the dimension
of ¥. The latter is equal to the number of columns in 8737(22/) si_y- Lhen, argig/) sy

column rank. According to Theorem 1, model (2.3) is not locally identified and this concludes the

is not of full

proof.

®For the details of the Constant Rank Theorem, see Theorem 7.1 by Boothby (1986).



A.7. Testing Procedures for Assumption 2 and Assumption 3 99

A.7 Testing Procedures for Assumption 2 and Assumption 3

In this section, we develop testing procedures for Assumptions 2 and 3 on the basis of partial identifica-
tion methods. For a given subset of markets T¢ C T, the identification set of = ((043,)tet,, s 2F, Xg)
is defined by the moment equalities:

stb(0t(T' + 9¢(24)); XF) = 91bs (A.9)

fort € Toand b € Cyy, where g:(3,) = (9(2tb, Ptb; Xg))bec,, and 6;(I'+g:(Xg)) = (0¢1, ., 6175 (S (Tp+
9(Ztb, Pib; Xg)) )bec,,). We denote by O(Ty) the identification set of § defined by (A.9) and by
Q((3¢)tery, ') the following criterion function:

QU3t)iem,0) = Y (3:(G1(L + gu(0)): £p) — 30) T (52 (1L + 90(2)): £) — a0). (A.10)
teTo

Note that Q((3¢)te,,0’) = 0 if and only if ' € ©(Ty). Denote by I, the number of individuals in
market ¢ observed to choose b and by 3;, = Ith the corresponding observed market share. As I increases
to infinity, 3 = s and VI(d; — 3;) = ¥ (0,) for t =1,...,T, b € C;, where Q, = (Wibb! )b b/eCyy
with wipy = 91b(1 — 94) when b = b’ and wip = —dp iy otherwise. Denote by (), an estimator
of €, that satisfies Oy 2 €, and \ﬁ(Qt — Q) = Oy(1).3 We then define the sample counterpart of
criterion function Q(-) as:

Qr((Behero ) = Y (se(G1I" + ge(0)) Zp) = 30 Q4 (00 (1 + 9e(£9)): £) — ). (ALL)
teTo

Testing Procedure for Assumption 2. In this section, we maintain Ty = T. Note that Assump-
tion 2 holds if and only if ©(T) # 0, i.e., there is at least a profile of 6 that satisfies moment equalities
(A.9). Hence, we propose a specification test on the basis of the following hypotheses:

Hp : ©(T) # 0 versus Hy : ©(T) = 0. (A.12)

Denote by qga
t

et Ct

) the 1 — o quantile of x? (ZteT Ctl) and define the following random set:

Or(T)={0'€ ©:1-Qr((3t)eT,0’) < quT cnt- (A13)

If ©;(T) = 0, then we reject Hy from (A.12).

Proposition 3. Under Hy from (A.12), limsup sup Pr[0;(T)=0] < a.
I—o0c 0/€O(T)

Proof. Under Hy from (A.12), for any 6’ € ©(T), we have:
Pr(©;(T) =0] <Pr[¢' ¢ ©;(T)]

=Pr {I -Qr((31)ter, 0) > inT Ctl]

(A.14)
T
_ 2 A—1 _ -«
= Pr [Z [\/f(at at)} Q; [\/f(at at)} > thETC“] .
teT
3SllCh an estimator can be Qt = (wtbb/)byb/ectl, where (’t}tbb/ = 3tb(1 — 3tb) when b = b/ and Ut}tbb' = _gtbgtb’

otherwise.
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Since & Q; (and hence Q7 F B Q7Y and VI(3; — 3¢) & #(0,), for t € T, we obtain:

T ,

Z [\ﬁ(dt - 31‘/)} Q! [\ﬁ(dt - 3,5)] S 2 <Z Cﬂ) .

teT teT

Note that the probability on the right-hand side of (A.14) converges to « and does not depend on ¢'.
Then,

limsup sup Pr[0;(T)=10] < a.
I—+00 0'cO(T)

The proof is completed. O

Testing Procedure for Assumption 3. In this section, we assume that ©(T) # () and therefore
that ©(Ty) # 0 for any Ty C T. Given Ty, we first derive a consistent estimator for ©(Ty):

Lemma 3. Define a sequence of random sets:
G(ar) ={0' € ©:I-Qr((3t)tery, 0') < ar},
where ay > 0 satisfies a; — 0o and aTI — 0. Then,

li inf Pr[O(T € =1
Py P 1OT0) < Elan)]

and

lim sup dg(©(Ty),€(ar)) =0,
I—)ooo/e@(rro)

where dg (-, -) is the Hausdorff metric: dp(A, B) = sup,e 4 infpep |a — b| + supyecp infaca [b — al.
Proof. See Theorem 3.1 by Chernozhukov et al. (2007). O

The choice of ay is up to the econometrician. For example, one can choose a; = In T (see Chernozhukov
et al. (2007) for a detailed discussion). In what follows, we focus on situations in which ©(Ty) contains
only interior points of ©. While Assumption 3 is abstract and not easy to test directly, we propose the
following Condition and show that it implies Assumption 3:

Condition 1. There exists Tog C T such that %Z,}TO) 1s of full column rank when evaluated at any

of the solutions to m(X'; Ty) = 0.

Remark 8. Denote by Ox(To) the set of solutions to m(¥X';To) = 0. Since the true parameters
Yo € Ox(Ty), Condition 1 implies that % is of full column rank when evaluated at X' = Y.
As a consequence, model (2.3) is locally identified according to Theorem 1.

Remark 9. As shown in section 2.3, 0' € ©(Ty) holds if and only if m(X'; To) = 0. Then, Ox(To)
is the projection of ©(Ty) along the dimensions of ¥. Moreover, because of Lemma 3, the projec-
tion of €(an) along the dimensions of ¥ also defines a consistent estimator for ©x(To) which covers
asymptotically Ox(To) with probability 1 and that we denote by Ex(ay).

The next Proposition shows that Condition 1 is sufficient for Assumption 3:

Proposition 4. If Condition 1 holds, then Assumption 3 holds.
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Proof. We prove this by contradiction. Denote the solution set of m(X’; Ty) = 0in Oy by S. Suppose
that S contains infinitely many elements. Because S is a closed subset of the compact set Oy, S is itself
compact. Consequently, because S has infinitely many elements, then there exists an accumulation
point ¥ € S: in any neighbourhood of Xf, we can find another Zg € S, i.e. another solution
to m(¥X; Tgp) = 0. Due to Assumption 3, we know that at 3{ € S, the corresponding Jacobian

Om(X;To)

matrix =, s, is of full column rank. Then, locally, ¥ = ¥ must be the unique solution to
-0

Z/
m(X'; To) = 0. This contradicts ¥, being an accumulation point in S. O

We then propose a test for Assumption 3 on the basis of the following hypotheses:

Hp : Condition 1 does not hold. versus H; : Condition 1 holds. (A.15)

Hy from (A.15) is equivalent to the hypothesis that there exists some 6’ € ©(T() such that %EIZTO)

is rank deficient when evaluated at ¥' = (¥}, 27). Define the following function:
Assumption 9. Suppose that J((3])teT,,2) : Xter, St X Ox — Ry U {0} satisfies:
e J>0.
e J =0 if and only if %E,,TO) 1s Tank deficient.
where 8§ = {s; € RO : 3 >0 and Y pcc,, 91p <1, b€ Cu.}.

Example 1. The determinant function

<am<z'; To) ) ! <8m<z'; To>>

J((éllf)tETov E/) = Det < oy oy

)

Example 2. The minimal eigenvalue function

T(4)eery, 5) = |H1:fl)\T [<8m(§E/;IT0)> T (E)m(;g;/To)) A,
where \ is unit vector of dimension P + D.
Define the criterion function J*((4;)ier,) = Efe(ianzf(To)J«d;’)teTo’E/)' Note that J*((4¢)te,) = 0 if
and only if Hy from (A.15) holds. We then propose the following test statistic:
I ((Be)eer) =, inf  J((3t)tery, X) (A.16)

S €% (an)
and the next two Theorems establish its properties.
Theorem 12. Suppose Assumptions 1, 2 and 9 hold. Moreover, /I1(3; — 4;) LA N(0,9) fort e T.

o If J is continuous in Xiem,St X Ox, then J7((3t)et,) TN J*((3¢)ten,), uniformly for 6 € ©(Ty).

o If J is Lipschitz continuous in Xier,8t X Ox, then under Hy from (A.15), VI - JF((3)tem,) =
O,(1).
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Proof. For any 6 € ©(T), on the stochastic event {©(Ty) C €(ar)}, we can write:

S ((3)ieo) = J((31)remo, X),

i i (A17)
J7((3t)tero) = J((3t)teTos X7),

where ¥* € argmin J((3¢)ier,,X’) and X} € argmin J((3¢)ier,, ). Note that ¥* € ©(Ty) C
¥'€Ox(To) Ye@x(ar)
€xX(as). Then, we have:

J7((3e)tety) — I ((3t)tety) < J((38)tetos X7) — J((9t)teTy, E7)- (A.18)

By construction, Ox(Tp) is a compact set. Then, there exists X% € Ox(Tp) such that d(X%, ©x(T)) =
d(X%,3%). Hence, we obtain:

JH((30)emy) = I ((01eme) = |T((30)eems 1) = J(Goreros £1)] + | I ((Gohremss £1) = I (90)eem, 27)]
+ [T ((0)remo £1) = T (90)emy =)
>

[ (Geiero B1) = (Godiero, 51| + [T((Gediene, 5) = T(a0)iees 7))

(A.19)

According to Lemma 3, dgr(©(Ty), €(ar)) — 0 uniformly for @ € ©(Ty). We then obtain d(X%, £%) — 0
uniformly for 8 € ©(Ty).

Suppose that J is continuous in X¢c1,8: X ©x. Then, in a compact set $* x ©, where §* is a
compact neighbourhood of (3;)seT,, J is uniformly continuous. Together with d(X7, f]f) — 0 uniformly
for § € ©(Ty), we obtain that the right-hand side of (A.18) and that of (A.19) converge to 0 on
{©(Ty) C €(as)}, uniformly for § € ©(Ty). Note that {©(Ty) C €(as)} holds asymptotically with
probability 1, uniformly for § € ©(Ty). This proves the first statement.

Suppose that J is Lipschitz continuous in e, 8 xOyx. Under Hy from (A.15), we have J*((4¢)tet, )
0. Then, by applying the Mean Value Theorem on the right-hand side of (A.18), we obtain that on
{@(To) C %(aj)}:

0 < Ji(()eer,) = J1 ((3t)ter,) — I ((3t)ees) (A.20)
S J((3t>tETan*) _J((Jt)tETan*) SL|3_d|7 .

where L is the Lipschitz constant of J(-). Then, by using v/T(J; — 4;) 4 N(0,82), we obtain that:
0 < VI-Ji((d)eero) < LIVI(3 = 3)| = Op(1) (A.21)
and the second statement is proved. O

We now illustrate how to approximate the quantiles of J((3¢)teT,) under Hy from (A.15) by bootstrap
methods building on Romano and Shaikh (2012). Denote by PL = {P! : s ¢ RF 5, > 0,1 | 5, =1}
the set of multinomial distributions with R outcomes out of I trials. Define the distance p on Pé as
p(PL, Pl) = SE s, — sl and PT = XteTOPIctl as the set of joint distributions P = (P! );ct,, where

St

each PSIt is independently distributed across ¢ € Ty. Note that p can be extended to any pl = (Pslt)teTo
and Q' = (P))ier, in P! as: p(P,Q) =Y, p(PL, P?,

¢ s ,
of P, we can define the non-negative random variable J; (w; P) = J;((%)

). For any I and any realization w = (it)teT,

teTo)' Denote the distribution
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function of J}(w; P) evaluated at z > 0 by Gy(zx, P).

Theorem 13. Suppose the same Assumptions of Theorem 12 hold. If J is Lipschitz continuous in
XteT, St X Ox, then under Hy from (A.15), for any a1, ag such that o >0, ag >0, ag + a2 < 1,

liminf inf Pr [G Yaq, Py < VT-J5((31)ser,) < Gl - ag, PHY| >1— a1 — as,
I—o0 9€®(T0)

where P1 = (Pglt)tETo-

Proof. Our proof builds on Theorem 2.4 of Romano and Shaikh (2012). It suffices to verify two
conditions. First, we show that for any sequences Q! and P! in P/ satisfying p(Q’, P') — 0, we have:

lim sup{|G(z, Q") — Gr(z, PT)|} = 0.

I—o0 x>0

This can be seen from the construction of J(w; P). For any x > 0, we have:

Gz, PrJr(w

)
= Prp [ (t)teTy : ((;) > < 33]
teTy
= PI‘P [ Zt teTy - Elelgnzf( I)J ((th . 72’) < Qf]
a teTo

Zt teTy - Zt tEToe'/V( J()QI7I7TO):|7

(A.22)

Prp

where A (z, J(-),ar, I, To) is the set of realizations for which infyycgy (q;) J ((
Then, given (x, J(+),ar, I, Ty), we obtain:

i, ) < @ bolds.

~|S

G1(2,Q") — Gi(x, P")| = |Prgr [(i)ier, : (it)yer, € ¥ (2, J(),ar, I, To)]
- PI"PI [(it)tETo : (it)teTo € /V(JL’, J(): ar, I, TO)} ‘
< p(Q",PT).

Because sup,>o{|G1(z, Q) =G (z, P)|} < p(Q', PT) and p(Q', P') — 0, the first condition is verified.
We now move on to verifying the second condition. For any sequence Pl e {(P])ter, : s:(0:(T +
9:(29)): ZF) = 41, (33,1, 5F, %) € O(Ty)}, we have p(P!, PT) £ 0. This condition holds because 3
converges in probability to 4; for any t € T. This completes the proof. O

Finally, for 0 < a < 1, we propose the following rejection region for test (A.16):
{(VI-Ji((5)eer,) > G (1 —a, P}

According to Theorem 12, test (A.16) has asymptotically unit power, uniformly for § € ©(Ty). More-
over, according to Theorem 13, the size of test (A.16) is controlled by «, uniformly for 8 € ©(Ty).
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A.8 Proof of Theorem 2

For this result, our arguments do not depend on whether the distribution of random coefficients is

parametric or non-parametric and we then denote F'(-; X ) simply by F. Remember that
st (04 F') = /Sitb(5t§ Bit)dF (Bit)

6tb+,“‘ztb(B'Lt)
F(Bit).
/Zblec ed tb""ﬁ%’tb/(ﬁit)d (B t)

To prove the real analytic property of the market share function s, (d¢;

9'si1b (513 B4t)

My eo.. 6.2
b'eCy1 “itb/

where [ is an integer and ) /cq,,

Lemma 4. For any non-negative integer [,

' sim (645 Bit)
> | S| < A,
‘Shﬁzt tb
where A; = (e — 1)} Zk 07 kk'
Lo .
Proof. Define a; = sup M . Note that:
5f76it tb
eétb-i-uitb(ﬁit) = Siub Z €6tb/+“itb’(6it)
b’eC;
ldtb+pritn (Bit
eéthruitb(ﬁit) = M
8(51{]0
al (Sitb Zb’eCt e(stb’+uitb’(5it))
- l
6y,
Z ka Sitb o' Zb’ECt eeo Tt (Bit)
ook 20"
s, 1 o
N a?tb Z oo Hhinps (Fie) +chk a?tb 5tb+#ztb(61t)
b beC; k=0 tb
=S5 1— Ck i
1 itb I 3 ,
o > o,
1. -1 k.
aS'lLtb < 1+ Clk 0 Sll:b 7
P k=0 Doy,
-1
aj <1 + Z Cl ag,
k=0
ap < 1 =1 ag 1
=1 —~ k(1= k)

We now show that 7 < A; by induction.

lpy = 1. We first prove the following Lemma.

F), it suffices to study

(A.23)

For | = 0, the result holds trivially. For [ = 1, we
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have a1 = sup %‘:sﬁ“) = sup [sib(1 — sib)| < % < e = Ay. Suppose that % < Aj holds for

Ot Bt 0t,Bit

k=1,..,1 — 1. Note that 4; = % + (e—1)A;_1 > A1, for any [ > 0. Then,

a1 §ma 1
TR K (= k)
k=0

IA
=| ~
+

E o~

M
N
El

(A.24)

IA

—

|

—_
S —~
|
Mz

=

IA
| =
+
=
&)
!
=

lq. .3.
As a consequence, the inequality holds for any [ > 0 and a; = sup %ﬁ*ﬂ“)‘ < A;l!. This completes
0t,Bit tb

the proof. ]

The next Lemma controls the size of %&’ﬁ?)/.

b
b’/ €Cyy 86{[;’

Lemma 5. Suppose Cy > 2. For any b € Cyy and 1 > 0,

Ctl 6—1 H lb/

b’eCyy

alsitb(6t§ Bit)
)
Hb/ECtl 65;1;’

where Y ly =1.
b/GCtl

Proof. We prove the result by induction. For [ = 0, the result holds trivially. For | = 1, the result
follows directly from Lemma 4 with [ = 1. For [ = 2 and [y = 2, according to Lemma 4, we have

2.
8872”'[’ < A22!. For [ = 2 and lb/ = lb// = 1,b/ 75 b”:
tb/
e§tb+,uitb(ﬁit) = Sub Z €5tb/+uitb/(ﬂit)7
b’eC;
a23'tb“ o 0sitb 0sitb
0= —4b" to! Hizn (Bit) + eOtb! T (Bir) 9 Sitb + eOebr Thitpr (Bir) Z2ith A2
a5tb’65tb” b%(:]t aétb” a(stb’7 ( : 5)
Psip g, Osub o Osip
D41 D01y o Doy
852 881 8281' 0s; 0s; 2
By using |Z#R| < 7 < 1 and |52 | < 1, we have ‘Bétblégtb S || tlaem| =2 < [Ci(e — 1))

Note that A2 = (e 1) (14+2 + = 1)2) [Ci1(e—1)]2 for Cy1 > 2. As a consequence, the conclusion
holds for [ =2 and ) [y =2.
b’cCy
Suppose that for £ = 0,...,1 — 1 the inequality holds for any > Il = k. First, remember that
b’eCy1
A= (e—1)! Zk 07 kk:" as defined in Lemma 4, is smaller than [Cy; (e —1)]' because Cy; > 2. Then,
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the conclusion holds for any | > 0 with I,y = [ and lp» = 0, b” # b’. It remains to show that the
conclusion holds when there exist b’ and b” such that Ity > 0 and lp» > 0.

By taking Ip-th derivatives of both sides of the first equation in (A.23) with respect to dyp, we

obtain:
Ol eOtb+1itb (Bit)

eOtbthith (Bit) —
]
a6,
o (Sitb Zblect Ot Tt (5%))
- aoe
t
lzb k O sin 0 e, Orwr Thivpt (Bit) (A.26)
k lo—F
P 0oy, 0oy,
lp—1
3" sit, 5ot b s,
- o it (Bit) | oOptptirn (Bit) k O Sitb
= a5lb Zetb b/ (Pit) 1 o0tbthitb (it chb e
b beC: k=0 tb

Note that, by taking derivatives of both sides of equation (A.26) with respect to dy, b’ # b, the left
hand-side vanishes and we obtain:

Iy —1 lp—1

b+l o. b+ k-1
= M Z eOtbr i (5it)+e5tb/+ﬂz‘tb/ (Bit) Z Ck o' S”b + edtbtHitb (Bit) Z lk O sit
Ib o5l I oslo qsk b ok ashy
06,p.00,p, beCy k=0 903,003, k=0 963,00,
(A.27)
By taking l},-th derivatives with respect to oy, for all b’ € Cyy:
I —1
lo. b =l +k .
0= Lbl Z eOtbr i (Bit) + Z Sy HHiupr (Bit) Z O s tb/l ’
b/ b//
Hb’ECtl 86tb’ b"eCy b’eCy1 k=0 8(Stb’ Hb”;ﬁb’ 94 tb”’
I, —1
8lsitb 3 8l_lb’+ks~tb/
lb’ = Z Sitb! Z Clb/ lb” )

Hb’GCtl 8(Stb’ b’eCyy k=0 tb’ Hb”;éb’ a(Stb”

! 1=l +k
87Ltbb/ -1 kd b Sitb’lb// (A.28)
Hb/ectl 86“;,/ - Z Sithy Z tb’ Hb”;ﬁb’ 86“)//

K2 )
Hb’GCﬂ lb/ b’eCyy . lb’ - ' k' Hb”;ﬁb’ lb/
alsztb I 1 6l7lb,+k itb’
’ b/ —
Hblecn 861&2’ b/ [Torr s 96 EZ

p [Ten®® | 5 5Ly

50,6 | Hbrecy, ! b, = lb/_ 51 B k!]‘[b,, L U
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Then, applying the conclusion for any £ =0, ..., — 1 on the last equation in (A.28), we obtain:

!
Hb’ffzz‘;tgi L Il +k
e | < 3 X Gy —glOn(e =)
Ly
=[Cule—=1)" > Y 'C’ﬂe—l (A.29)
b’eCy k=1
< [Cy(e — 1)]'Cp (elCre=DI7 1)
< [Cale— 1) el = 1]
< [Ch(e—1).

Hence, the conclusion holds for >~ Iy =1, and sup < [Cule—1D)]TTpec,, ! for any
b’cCiy 6¢,Bit

[ >0and > lIp =1. The proof is completed. O
b’eCy

The size of the I-th derivative of s, (d;; F') with respect to d; can then be controlled as:

[ - F l . ..
8 Stb(6t7 ll))/ é / a Sltb(5t7 Blll;)l dF(BZt)
Hb’ectl 85tb’ HbIECtl a(Stb’ (A.30)
Ctl 6 - ]. H lb’
b’eCy;
and, consequently, the Taylor expansion of s;,(.; F') at some §; around §; as:
g L
— 1 0 L 9"spp (13 F)
>~ =S )——— | s (6 Z —dL > ‘
, Z (871, th tb(0t; F T

= U viec, 0o =L Sy = o Hiec,, o [oec,, 995

< S dEChCute — 1%,
L=0 (A.31)

where d = |0} — §;|. Consequently, whenever d < d* = the Taylor expansion (A.31) converges.

1
C?(e—1)’
Finally, by applying Taylor’s Theorem to the multivariate function s, (9;; F'), we obtain for any R > 0

and uniformly for |5, — 6] < &

R L
1 0
stb (03 F) — Z 7! Z (Ot — 5tb')85 stb(01; F)
L=0""" |b'eCy
6R+15 b((;/. F)
dR+1 Z up t t)
|6;—6¢|<d 1.,

Zlb’ R+1 Hl Hb/GCﬂ 8615?)’

Sd1’~2+1[cﬂ (6 . 1)]R+1c£+1

—0.
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In conclusion, the market share function s, (d}; F') is equal to its Taylor expansion and therefore real
analytic with respect to d;. This completes the proof.

A.9 Proof of Theorem 3

The necessity part of the first statement is immediate. To prove sufficiency, note that when (5?Jt JteT\ T, €
AP =l AP for any r = 1,.., R there exists some market ¢ € T \ Tg such that M;s; ' (3;; 5%.) #
I + g:(¥7) and therefore m(X";T) # 0 for r = 1,..., R. Remember that the set of solutions to
m(X';To) =0in Op is S ={X" : r =0, ..., R}. Consequently, the set of solutions to m(X; T) =0is a
subset of S. Given that m(X";T) # 0 for » = 1,..., R, and that m(X%,T) = 0, ¥’ = X is the unique
solution to system (1.9) in Oy. The remaining parameters of model (2.3) can then be uniquely pinned
down by the demand inverse from Lemma 1 and model (2.3) is globally identified.

To prove the second statement, we first note that
J 1D R J D
XtET\ToR ¢ \A = Ur:l [XtET\TOR t \ AT‘ :| .
It is then sufficient to show that the Lebesgue measure of xteT\TOR‘]ﬁ \ AP is zero. Note that

XtET\ToRJt \AP = {(6t3,)tem\1, : for any t € T \ Ty, Mys; ' (s4(6,(T° + gt(ES)); 23 Eh) =I7+ g:(35)}
= e\ To {0, : Misy ' (se(6:(T0 + 9:(39)); £5); ) = I + (7))}

.
X4eT\To 241 »

where Z] is the zero set of function Mtst_l(st(ét(F0+gt(22)); %9); X%) =" —g¢(37). Because AP £
there exists some ¢t € T\ Ty for which the zero set Z C R i.e. Mys; ' (s¢(6;(T° +9:(39)); £%); %) —
' — gt(Eg) is not equal to zero for some &3, € R7t. 1t is then enough to show that, for this specific
Z7 C R/t the Lebesgue measure is zero.

For any I' and X, because s:(6:(I'); £r) is a composition of two real analytic functions, §;(I") :
R7t — R and s4(-; ) : RY — (0,1)% (from Theorem 2), it is itself a real analytic function from
R7 to (0,1)¢1. Moreover, because s5¢(+; X%) is real analytic with respect to 6, € RC1 | the inverse
market share function from Lemma 1, st_l(-; ¥7.), is also real analytic with respect to 4; € (0, 1)Cn,
Then, the composition of M;s;*(s};%%.) — 7 — 9:(37) and 3f = s5,(6,(I° + g,(X7)); £%) is also real
analytic with respect to d;3, € R”’. Consequently, Z] is the zero set of the real analytic function
Mys; !t (s4(8:(T0 + gt(Zg));EOF);E}) —I" — g:(¥). There are two cases to be considered. When
Mys; ' (se(6:(T° + g¢(£9)); 5%); £5) — I'™ — g¢(57) is a constant different from zero, Z] = @ and it
has zero Lebesgue measure. Similarly, when M;s; ' (s:(6;(T0 + gt(Eg)); ¥0); ) — " — 9:(¥5) is not

4

a constant, according to Mityagin (2015), Z] has also zero Lebesgue measure.” This completes the

proof.

“More generally, the zero set of a non-constant real analytic function defined on a P-dimensional domain can be
written as the union of j-dimensional sub-manifolds, with j ranging from 0 to P — 1. As a consequence, the zero set has
zero Lebesgue measure. For details, see the second statement of Theorem 6.3.3 (Lojasiewicz’s Structure Theorem for
Varieties) from Krantz and Parks (2002).
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A.10 Price-Setting Models Consistent with Assumption 4

Here we show that Assumption 4 is consistent with commonly employed pure components pricing
models with any profile of demand synergies (substitutability and/or complementarity).

To simplify notation, in this Appendix we drop the market index ¢. Denote by J; the collection
of products owned by firm f and by J_; the set of products owned by the other firms, where J =
JrUJ_y ={1,..., J} is the collection of all products available in the market. Let ¢; denote the constant
marginal cost of product j € J, py = (pj)jle the vector of prices chosen by firm f for the products
it owns, and p_y = (px)key_, the vector of prices chosen by the other firms. With pure components
pricing, the price of a bundle b is given by the sum of the prices of its components p, = Zjeb Dj,
where each p; is chosen by the firm that owns it. Then, the profit function of firm f takes the following
form:

wr(prp-f) = Y55 (03) (05 — &), (A.32)
JESf
where s;(py) = Zb:baj sp(py) is the product-level market share function of product j and py =

p1,...,ps). Denote the ownership matrix Q = (a;; 1.7 where a; = 1if j and j’ are owned by
33 ; 33

J,3'=1,
the same firm and 0 otherwise. Under complete information, the necessary first-order conditions for a

Bertrand-Nash equilibrium in pure components are:

0s
{8.] ® Q} (p3 —c3) +53.(p3) =0, (A.33)
PJy
where ©® denotes the Hadamard product, or element-by-element multiplication, sy = (s;.(py));es is

the vector of product-level market share functions, py = (pj);cs, and ¢y = (¢;) c3. Given different con-
figurations of the ownership matrix, (A.33) specialize to different market structures such as monopoly,
duopoly, or oligopoly.

The identifiability of ¢y is determined by the invertibility of the matrix g‘; -©€. Aslong as %;JJ JO1Y/
is invertible, we obtain:
0sy. -1
¢y =p3+ [8 ® Q} $3.(p3)-
PJ
We now show that for any ownership matrix, % ® Q is invertible. Let p = (p1, (Pb)bec,) denote

the vector of prices for all single products and bundles in the choice set. Moreover, we assume that
p; enters linearly in wu;; = 6; + py;(0;) with individual-specific coefficient a; < 0, which is part of the
vector of random coefficients 8;. Then, by using the notation M} introduced prior to Theorem 3, we

% _ 11195 (Bi) )

= [ - (s,

can write:

(A.34)

where u; = (db + fib(5i))bec,- As shown in the proof of Lemma 1 (see Appendix A.2), 88555” is

positive-definite for any 8;. Moreover, [I -M}"] is of full row rank and therefore [I -M!T]T is of full

column rank. Consequently, [I —MtlT]aséigi)[I -M}T)T is positive-definite for any ;. Because a; < 0,
g‘; - is negative-definite. Note that € is a symmetric block diagonal matrix that contains only 1’s and

0’s. Then, %;JJ - ® () is also block diagonal. Because each block is a principal sub-matrix of %, these
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blocks are also negative-definite. Then, aa‘;ﬁ' ®  is negative-definite and thus invertible.

A.11 Proof of Corollary 2

Take X = ¥"and I' = I'". Because s¢(6;(I"+g:(I'})); piy,, X) is real analytic with respect to (d;5,, piy, ),
then the inverse market share function, s{l(dg;p;Jt,E}), is real analytic with respect to (3},py,).
Consequently, Mts;l(dg;p;Jt, ¥) —T7 —gi(¥7) is real analytic with respect to (3, piy,). Moreover, for
X =%%and I' =T7 5,(6;(T° + g:(T'9)); p}5,, £%) is real analytic with respect to (8};,,p}y,)- Then, the
composition Mys; ! (s4(8)(T° +9:(30)); ea B%); pea,, ) —I7 — go(E5) is real analytic with respect to
(013, Ptg,)-

We now prove Corollary 2 by contradiction. Suppose that Assumption 5 does not hold. Then,
for some r = 1,..., R and t € T \ Ty, there exists a set f’t C Py such that ].575 has positive Lebesgue
measure and

I7 + g1(3) = Mys; " (:(5,(T° + 9:(29)); pea,» S5 ); e, B

for any &y, € R7t. We then obtain that the zero set of the real analytic function M;s; *(s:(,(T0 +
gt(Eg));tht,EOF);tht, ¥5) = T7 — g:(X7) is at least P; x R7. Because the Lebesgue measure of Py
is positive, then the Lebesgue measure of P, x Rt is also positive. According to Mityagin (2015),
Mysy(s(64(T0 + gt(Zg));tht,E%);tht,E}) —I" — gi(%}) is then constant and equal to zero on
P, x R’t. This contradicts EiD being non-empty. This completes the proof.

A.12 Proof of Theorem 4

Here we rely on the same notation for M, as introduced prior to Theorem 3. M, is a matrix of dimension
Cya X Cy1. Remember that Cyo is the number of bundles and Cy; the number of inside options (bundles
plus single products). M; is made of two sub-matrices: My = [M}, M?]. M} is a matrix of —1’s and
0’s of dimension Cyy X J;, where the columns represent individual products and the rows represent
bundles. Each row of Mi1 identifies with —1’s the product composition of the corresponding bundle.
M? is instead an identity matrix I of dimension Cjy x Cj2, with the rows corresponding to bundles.

The proof of the first statement is similar to that of Theorem 3. On the one hand, when (ftOJt’ Cth JteT\ T, €
=0 =k =D for any r = 1, .., R there exists some market ¢t € T\ Tg such that Mys; (565 pra, s Xh) #
[ + g1(X}) and therefore m(X";T) # 0 for r = 1,..., R.
Remember that the set of solutions to m(X'; Tp) = 0in Oxis S = {X" : r =0, ..., R}. Consequently,
the set of solutions to m(X’; T) = 0 is a subset of S. Given that m(X";T) # 0 for r = 1,..., R, and
that m(X% T) = 0, ¥’ = X0 is the unique solution to system (1.9) in ©x. The remaining parameters
of model (2.3) can then be uniquely pinned down by the demand inverse from Lemma 1 and model

(2.3) is globally identified.

To prove the second statement, we first note that

e\ mo[Dte X Dic] \ ' = UL [xem\ 1y [Die X Dic] \ EP]
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It is then sufficient to show that the Lebesgue measure of X;em\1,[Die X Dyc] \ Z1° is zero. Note that

e\ To[Die X Diel \ EP = {(&1a,> cta e\,
for any ¢t € T \ To, Mys; ' (s:(6:(T° + gz(ES));sz“ %) pa, ) =T + g:(X7)
for some pyy, € prg, (3,5 t3,)}
= Xper\ro{ (&a,rcea,) © T+ ge(S5) € Mysy  (se(6:(T0 + g0(20)): pea, (Sea,- 23, ) B8 pea, (Gea,- e, ), BF)

— +7r
= XtET\TUZt ),

where Z;rr is the zero set of (&u3,, ctg,) such that Mtst_l(st(ét(f‘o —i—gt(Zg));tht, E%);pwt, X)) — I —
9:(X5) = 0 for some py3, € pr3, (3., c3,)- It then suffices to show that there exists a ¢ € T \ Tg such
that the Lebesgue measure of Z,'" is zero.

The Lebesgue measure of Z;" in Dye x Dy is

me(Z?T) = / 1{Zt+r}d(ctJﬁ£tJr,)

J Dye X Die

= / {(&acea) : T4 ge(5)) € Mysy (s:(06(T% + g(20))s pea, (§e3, €23, ), B%)s pea, (&4, €23, ), B5) Y (&g, caa, )
Die X Dy

where 1{-} denotes the indicator function. Define ® : (&y3,,p:3,) — (&3, ¢(&3,,03,)). According
to Assumption 4, ® is a C! mapping from (&3,,p13,) € {(&l3,>Pi3,) + &3, € Die,pig, € Pu(&a,)} to
(&3,,ct3,) € Die x Dy and onto. Let Card[® 1] (&y,,ctg,) denote the cardinality of the inverse image
of @ at (&3,,c:3,)- Note that Card[®1](&,,c3,) is equal to the number of Nash equilibria of the
pricing game at (&3,,cy,) and therefore belongs to € N, U{oo} according to Assumption 4. Then, by
Theorem 1.16-2 of Ciarlet (2013) and Fubini’s Theorem, we obtain:

me(Z;) < /D . {(&a,rcea) : I7 + ge(55) € Mys; (se(8:(T° + ge(20)): pea, (€ea,- ce3,)s E%); e, (§e3, ce,), ) }Card[@ (€, » e, ) d(&a, » c2a,)
e X Dtc

d(&t3,,Pe3,)

- _ . " P,
(&g pra,) = T+ ge(3h) = Mesy (se(00(T° + g¢(59)); pa,» £%): pea, ) } ‘Wf‘;”(fthmt)
2 tJdt

/{ (€5, D3, €L, €D1e ), €Pe(Era, )}
.

Suppose that Assumption 5 holds. Denote by Ay, = (Aj(z4),pe5))jed,. Because 63,(Av,, &3,) =
Avy, +&13,, given pyg, (and therefore Ayz,) and by applying Theorem 2, we obtain that the market share

Oy,
i, (63,5 113,)

&, o T+ gui(Sh) = Mysg (se(0e(T° + ge(29)): pea,» %); e, ) } ‘ s, | dpua,.

~/Pt [(AWEI TN

function s;(8;(I" + g¢(},)); pea,, ) is also real analytic with respect to &g, € R”*. Then, given pyg,,
by the Inverse Function Theorem for real analytic functions, s; ' (s¢(6;(I'° +gt(22));pﬂt, S0 pia,, )
is real analytic with respect to &j,, and therefore Mys; *(s(; (T + gt(Eg));tht, S0 pia,, X)) =TT —
gt(Z‘g) is real analytic with respect to &j,. For each r = 1,..., R, we focus on the market t € T \ Ty
that satisfies Assumption 5: for any pyy, € Py, there exists &3, € Dy such that Mtst_l(st(ét(l“o +
9t (E0); o3, 291 pea, s B) # T7 + go(50), dee., Mysy  (s:(8(T0 + g¢(50)); pea,» %); pa,, ) — T7 —
gt(Eg) is not always equal to zero in Dge. Similar to the proof of the second statement of Theorem 3,
{&3, + Mys; ' (s4(0:(T0 + 9+(39)); Peas X%); pea, X)) = T + g1(X})} has thus zero Lebesgue measure
in Dy and

_ o]
{6, © sy (50 (B0 + i (20):pua, 5%): i3, ) = I+ i (25)} | 9235 (pua,: £43,)| = 0 almost everywhere.

It then follows that

- r r r Ocy,
o6 om, et o Msy ™ (56(0:(T° + 0¢(29)): e, X)s pra Bp) = I7 + g0(35)} ‘ 9 (pray; s T 20)| déya, = 0,

3PtJt
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and finally me(Z,"") < 0. Consequently, me(Z;”") = 0. This completes the proof.

A.13 Proof of Theorem 7

We first introduce some notation. Denote the collection of demand synergies that can rationalize the ob-

served product-level market shares 343,. in market ¢ by ©4(X') = {I" : 365, € R’ such that sy,.(5,5,; 1", %)

4t3,.} and across all T markets by Or = Usvcgy, NE_; OL(Z). Define also Oy = {¥' : N, 0L() # 0}
étr and Oy, collect the values of I” and of ¥/ that can rationalize the observed product-level market
shares. When X' ¢ Oy or I" ¢ ML, ©4(%'), then there exists no §,; such that s, (6,5,; T, %) = 343,
for any t = 1,...,T (i.e., the demand inverse is not defined at (I'V,%’)). The remainder of the proof
focuses on the case of ¥/ € Oy and I € N[_;OL(X) (i.e., the demand inverse is defined at (I",%')),
and in particular on showing the uniqueness of the corresponding ¢; 1,

We rely on the same notation for M; as introduced prior to Theorem 3 and in the proof of Theorem
4. Note that M; is of full row rank and therefore M, is of full column rank. Without loss of generality,
we prove Theorem 7 for market £.

Denote by 1 a vector of 1’s and define S2(313,.) = {}c,, %10,y = (I1)beCra> It > 0, =M T3l <
dtJt,,(Mtlel{CtQ + dt,]t,,égcﬂ)Tl < 1}, as the collection of admissible vectors of market shares of
bundles consistent with the observed product-level market shares, 4;3,. Given any AQCQ € Sia(413,.)
and observed product-level market shares 4.3,, we can construct an admissible vector of market shares
31 = ((34))jeas> 31c,,)> Where 35 = 315, — D pcc,yjeb d1p- Because of Lemma 1, given X' we can invert
44 and obtain the corresponding &, € R :

8 = ((61;) e, (61p)becs) ™

=s; ' (3;;5)

= St_l((dtj- - Z 'jilﬁb)jEJtﬂ ‘#Ctg; 2/F)ﬂ where
beCy2:j€b
(A.35)
-1
Igj = S ((dtf - Z dllfb)jGJtv d;CQ; E/F)a
beCy2:j€b
-1
tb = S (1. — Z 31b)i€dis 31Cum B F)-
beCy2:j€b
Using the matrix M;, we can recover an admissible I'; from ¢} by:
F; + gt(zg) = M, 1/fa
[} = M6, — g1 (3
¢ = My — g:(5) (A.36)
= Mys; (35— Y. Sb)icdi S, Br) — 9:i(5))
beCy2:j€b

= Mys; (M} 3jc,, + (373,,0,..,0) "5 5%) — g (2).

Consequently, for any 4, there exists a Ty = ['y(3}¢,,;dt3,., %) such that (A.35) holds. We now
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compute from (A.36) the derivative of I'; = I't(3;,,; 313,., &) with respect to 4;c,,:

dr st
y L= M, at, (M{3ic,, + (343,.,0, ..., 00T ) MF
'thtQ (A37)
8St -1
— M, [85, (67; Xl )] M}

Because g;? (8}; %) is positive-definite and M is of full column rank, -7
tC +2

therefore positive quasi-definite for any éécﬂ € Sia(4:3,.).° Note that Syo(ds3,.) is convex. According
to Theorem 6 by Gale and Nikaido (1965), p. 88, I' = T't(3;¢,,; 913, ') is globally invertible as a
function of sjc , € St2(d43,.) and therefore we can express J;c , as a function of Ty € OF, given 43,

is also positive-definite and

and X1 3jq, . = 510, (T} 913,., %), Then, by plugging 3{c,, = 3ic,,(I"; 313,., ¥') into (A.35), we can
express each 6 from &;5, = (0y;)jea, as a function of the observed product-level market shares 4., :

~1
0 =55 (G = Y I)iedis 3o TF)
beCya:j€b
S (CT Z S (I's 913,.,5)) jeass 51 (s 913,, 5); X)
bECtQZjeb

= s (913,51, %)

and determine the remaining 0y, for each b € Cy by d; = deb 6’ + T} + 9o (Ttb, Pib; Xf), so that
stb(07 (T + g¢(X)); X%) = 25, for each b € Cyy. Then, for any j € Jt, we obtain s (d;5,; F’ Y) = 4.
and finally:

StJt-(ééJt; F,, E/) = JtJ,.-

This shows existence. To prove uniqueness, suppose that there exists another d;; # d;5, such that
st3,.(013,; T, 2") = 343, Then, & # ;. Because ¥’ is given, according to Lemma 1, s;(d'(I" +
91(25)); X)) # se(0(T" + g¢(X})); X). Moreover, because also 443,. is given, then there must ex-
ist some b € Cyp for which s (57 (T + g:(X5)); ¥%) # sb(0p(I" + g:(25)); X%). This contradicts
510, (I'; 343,.,2) being a function of IV.

A.14 Proof of Theorem 6

We start by proving a useful Lemma. Denote the log-likelihood function evaluated at the market shares
observed without sampling error by:

T
00y, oes Oy, TS Z Z Sub 10g s (3 (T + :(20)); Shp). (A.38)
t=1 beCy

Lemma 6. If Assumptions 1-3 hold and the true (6,3,)iem\T, € AP, then the true (013, ..., 613,,T, %)
is the unique mazimizer of €(0\y,, ..., 0py,, 1", %) in ©.

Proof. We first show that £(0y,,...,d75,,1",¥’) is maximized at the true (d13,,...,0r3,,T,%). Note
that for any t = 1,...,T and b € Cy, 3, = s1p(0:(I'+ 9¢(X4)); ¥r). Then, by using Jensen’s inequality,

5A square matrix B is positive quasi-definite if %(B + B7T) is positive-definite.
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for any (4}, ...,5’1JT,F’,E’) we have:

seb (01 (T + g1 (2)); X

U815, oo Oy T 5) = £(813, s ooy 6737, T, ) Z 3 s log — gD _F
=1 beC, s (0

(A.39)

We now show the uniqueness by contradiction. Suppose that there exists a (5131, ...,StJT,f,i) #*
(6135 - 073, 1, %) such that (d13,,...,073,,T,%) is also a maximizer of 0(S1g3,5 5073, T, 27). Ac-
cording to Jensen’s inequality (A.39), this is equivalent to having s, (0:(I' + ¢¢(2g)); Xr) = 9y for
each t = 1,...,T and b € Cy. As a consequence, we have my,(3;T) = 0 and hence m(3;T) = 0 in
addition to m(E T) = 0. Note that Y # %. Otherwise, by Lemma 1, 5t_]t = 03, and I =T and
this would be inconsistent with (5131, - 5t_1T,F, E) # (613,,---,073,,1,2). However, because the true
(0t3,)tem\ Ty € A" Theorem 3 rules out the possibility of having any other % different from ¥ for

which system (1.9) holds, giving rise to a contradiction. O
We assume the following regularity conditions.
1. 0 is an interior point of ©;

2. gi(¥y) is twice continuously differentiable with respect to ¥, and the market share function
st(05; %), t =1,...,T and b € Cy, is twice continuously differentiable with respect to (d;, ¥%);

3. VI3 — 5) N H(0,9;) independently for ¢t = 1, ..., T, where €, is positive-definite;

4. 31 GGy is positive-definite, where Gy = ([quge;tb N Blggelsto]

9/=9) beCir

9%¢(0’
5. 240

g/—g 18 mON-singular.

Condition 3 is compatible with cases in which the individuals in market ¢t make independent purchase
decisions. Condition 4 can be obtained when G is a full row rank matrix for each t = 1,...,T. Define
¢¢(T", %) on the basis of (A.38):

EC(F/72 ) E(((St-]t (‘jtJt ,F ¥ ))t 1’FI ¥ )

Throughout the proof, we assume that &;3,.(3;3,; T, 2') and 83, (3:3,; T/, Y') exist. As discussed in the
main text, existence can always be verified numerically during estimation. Provided existence, then
Theorem 7 guarantees that dz3, (;I7,X’) is a global bijection. Our proof for the consistency statement
is mainly based on Theorem 2.1 by Newey and McFadden (1994), according to which we need to verify
four conditions.

1. (T, X) is the unique maximizer of £¢(I",¥’) in Op x Ox. Given Assumptions 1-3 and that the true
(613, )tem\1, € AP, Lemma 6 guarantees that the true (613,, ..., 073, T, ¥) is the unique maximizer of
€(313, - 073,, 1", %) in ©. Theorem 7 then implies that (I',X) is the unique maximizer of ¢¢(I", ')
in @F X @E~
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2. Or x Oy is compact. This is guaranteed by the definition of ©.

3. (¢(I",Y) is continuous with respect to (I, ¥') in Op x Ox. According to regularity condition 2, for
any ¢t = 1,...,T and b € C;, the market share function s;(0;; X% ) is twice continuously differentiable
with respect to (d;,X%). Remember that 6 = (d13,,...,073,,1,X). Then, £(¢') in (A.38) is twice
continuously differentiable in ©. Moreover, the inverse market share function, s, 1(dt; ¥,) is continuous
with respect to (4, ¥'), and therefore continuous with respect to ((4tb)bec,,: X)- In addition, g(>)
is continuously differentiable with respect to ¥y. Then, T'y((3tb)bec,y, 2'), as defined in the proof of
Theorem 7, is continuous with respect to ((dtb)bec,,, X' ). By applying the invertibility result from
Theorem 7 and the continuous dependence with respect to ¥/, we obtain that dy3, (413, ;T7,%) is
continuous with respect to (I, X). Combining this with the continuity of £(¢’) in (A.38), we obtain
the desired condition.

4. sup 5T, %351, ..., d7) — £6(T7,27)] & 0. Note that
(I",%)€Or xOx

sup ’€§(F,7 Z/a 317 ey 'BT) - EC(F,) E/)| < sup |€I(9/7 517 ey ‘3T) - 6(9/)|
(I'",X")€Or xOx 0'co

+ sup (0 (B T X)L TR = (8, (33,5 T )i, T, )|
(F/,E’)e@rxex

First, we prove that sup|¢7(6'; 31, ..., 37) — £(6")| £ 0. To see this, note that:
0'cO

sup |€I(9/7 51) ey '3T) - 6(9/)|

0'ce
T
=sup| Y > I logsm (6T + gi(})); O) Z 31w 10g sup (6,(T" + g:(25)); Xl
€8l =1 vec, t=1 beC; (A.40)
T
< QSU% | log 51 (0, (T + g:(2)) Z Z b — Itb|.
/e : C

t=1,...,T,beC;

Because log sy (0;(I" + g:(27)); £ is continuous in © and © is compact, log sy (6:(I" + g:(27)); )
is uniformly bounded in ©. Moreover, because both the number of markets, T, and C} are finite,

sup | log s (0, (T + gt(E'g)); Y| < oo.

Note that da4 2 4 for t = 1,...,T and b € C;. Then, the right-hand side of (A.40) converges to zero
in probability. Consequently, sup|¢;(#'; 31, ..., 37) — £(8")] 2 0.
0'cO

Second, we prove

Sup w(((sﬂt (dtJt ¢F > ))t 17F/ ) - E(((St-]t (dtJt 7F > ))t 17F, E/)’ 0. (A'41)
(F',E/)Eepxeg

Note that for each ¢, ds3, (475, ; ', %) is uniformly continuous with respect to (475, , ', %) in a compact
set Uy,;, X Or X Oy, where U,,; is a compact neighbourhood of 3;3,.. Moreover, £(0") is uniformly
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continuous with respect to 6’ € ©. Consequently, £((83,.(375, ; 1", %")){;,T,%’) is uniformly contin-
uous with respect to (475, ){=1,I",%'). Because dyg,. L 443, for t = 1,...,T, we obtain (A.41) and
finally proved the desired condition.

According to Theorem 2.1 by Newey and McFadden (1994), the four conditions verified above
guarantee the consistency of (f, f]) By applying the invertibility result from Theorem 7 and Slutsky’s
Theorem, 05 is also consistent. This completes the proof of consistency. The proof of asymptotic
normality is based on Theorem 3.1 by Newey and McFadden (1994), according to which we need to
verify the following six conditions.

1. ([,%) 3 (I, %). This has just been shown above.
2. (I',%) is an interior point of O x Oy. This is guaranteed by regularity condition 1.

3. (5(I',%;3q,...,37) is twice continuously differentiable in Op x Oy. According to regularity con-
dition 2, the market share function su,(6;;X%), t = 1,...,7 and of b € Cy, is twice continuously
differentiable with respect to (&;, $%), the inverse market share function s, (4f; %7, is thus twice con-
tinuously differentiable with respect to (s3; ¥'). Moreover, g;(¥}) is twice continuously differentiable
with respect to E’g. As a consequence, by applying the invertibility result from Theorem 7, we ob-
tain that d.3, (375, ;1",¥') is twice continuously differentiable with respect to (4, ,I',¥’). Because
(4(T", %" 31, ..., 37) is a composition of £1(dy3,,T", X'; 31, ..., 37) and of &3,.(3;5, ;T', %), and both func-
tions are twice continuously differentiable, ¢5(I,%’; 31, ..., 37) is also twice continuously differentiable
with respect to (I, %).

4. I 5=t ) converges to a centered normal distribution. We can write:

a( 1“/ 5 }(r/ =T,
T

oee 06.3,. ot
VIgw s fz o, %) aatJ T

8313, dlr
= || ===+ I\ VI—
[(a(r’, 2/)),517,,,771 ] faef

It suffices to prove that v/T % converges to a centered normal distribution at §' = 6.

(A.42)
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Define £/(8") = Y e, 9tb 108 b (0;(T" + g:(%})); ). Note that £/(¢') is maximized at 6’ = 6, for
g—p =0 fort =1,...,T. Then,

t
t=1,...,T. As a consequence, 89,

ol a log Osi1
I— =1 5 t
f@@/ 6'=6 fz Z o 00" |g—g
t=1 beC;
-
. Olog s ot
= \/j thi -
; b;t 89, 0'=0 80/ 0’'=0
-
. Olog s . dlog s
= \/j Z ['jtb - th] # + [Jt() — 31}0] a%/ 10 (A43)
t=1 | beCn 0'=0 0'=0
T
A Olog sy, 0log sy
:Z \ﬁ[étb—dtb] [ 00 — BY B
t=1 beCyy 0'=0
T
Olog s dlog s )
:Z([ o aéfto] ) VIla = a].
t=1 0'=0/ beCyy

where I denotes the identity matrix. According to regularity condition 3, v/T [3; — 4] 4 (0,€) inde-

. , . d
pendently for t = 1, ..., T. By using Slutsky’s Theorem, we obtain that \ﬁ% gy — N (0, Zthl GuGY),

where Zthl GG} is positive-definite according to regularity condition 4. As a consequence, v/1 %

(7,5 =(T".%
converges to a centered normal distribution.

5. sup %(F’, ) — H(I', %) | & 0, where
(F/,E/)G@FX@Z ’
020((63,. (343, ; T/, 2N, TV, %)
H F/ E/ — t- te9 9 t=1> )
( ) ) a(r/ Z/)2

A .44

_ ET: S 2 108 0 00 T ). 4 1(): ) (A44)

- tb 8(1—‘/,2,) )

t=1 beC;

where 5t(5th.(5tJt.§ F,7 E/)7 F/+gt(zlg)) = (5tJt.(5tJt.§ Flv E,), (Zjeb 5tj.(dtJtA; Flu b )+Fb+gtb(zg))bect2)~
Under regularity condition 2, H(I”,Y’) is continuous in Op x Oy. Note that, similarly to (A.40), we
have:

0248

W(I",E') — H(T',%)

sup
(I",5/)€Op xOx,

02 10g s (8¢ (013, (313, T, 1), T + g4(4)); X

a(T", x/)? |3t — 91p]

S Y
t=1,...T,beC, (I">)€Or xO

9?10 [sb(0:(0r3,. (313, T, X)), T + g1(3))); B5) — 500(06(813,. (313, s T, 5), T + 96(5)); Xp) |
(F’,E')Q

+ Z Itb sup
t=1,..,T,bec, (["¥)EOrxOs

(A.45)
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Due to the twice continuous differentiability of s (d5; %) and of ¢y, (3¢3,;T7, %) in the compact set
Or x Oy, for t =1,...,T and b € C;, we have:

9?10g sub (8¢ (013, (3t3,: T, X)), T/ + g4(2)); £p)
sSup ESNY < 00.
(I",5/)€6r xOx, oI, 3)
Because 4; 2 4; for t = 1,..., T, then the first part on the right-hand side of (A.45) converges to zero in
probability. For the second part, note that s, (6;(I" + g:(37)); £ r) is twice continuously differentiable
with respect to (93,,1",%) and that &3, (373, ; 1", %) is twice continuously differentiable with respect

to (345, ,1",¥') in a compact set U,,;, x Or x Oy, where U,,; is a compact neighbourhood of 45, ,
02108 541, (8¢ (813, (33, T, 2"), T 4+9:(37));57)
(7 ,5)2
continuous in Umt' X Or x Oyx. Combining this with 4 LN gy for t = 1,...,T, we obtain that the
second part on the right-hand side of (A.45) also converges to zero in probability. Consequently,

| sk (I, ) = H(I, )| & 0.

fort = 1,...,T and b € C4, we then obtain that is uniformly

sup

B F’,Z’ 2
(I7,3)eOr xOx, ( )

6. H(, %)= 2,

= W{(F/7Z,):(F’E) is non-singular. Note that

82£((5t-]t~(‘jt-]t-; Flv 2/))?:17 Flv 2/)

1oy
H(F 2> ) - 8(F/’ 2/)2
T 2 T 2
oy | O Dby N O %
2 |9, x) 053, \ oI, %) a(I", ") )y O(T", )

o 0%,
> 957, (T, 372

t=1 jeJ;
T
dd 0% 0%
+Z /tJt./ / / ! + / AV
£ (1", 57) O(T", 207y, -+ AT, %)

At (F/’E/) = (F7E), 51/5-]15 = (5tJt_(JtJt,;F,Z) = 6tJt and % = 0. Then,
t

T
003, I 9%0(0") 063, I
oI, %) t=1,...,T 90" |y | \O(I", %) t=1,..,T ’

B Q0w 1| is of full k and | 2249) i ingul ding t
ccause 3(F’,E’) =T 1S OI 1Tull TOW rank an 9072 0—p 1S non—smgu ar accor mg oregu—

HI,Y) =

larity condition 5, H(I', ) is therefore non-singular.
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All the six conditions of Theorem 3.1 by Newey and McFadden (1994) are satisfied and there exists
Wy such that VI[(T, ) — (I, )] 4 N (0,Ws). By applying the invertibility result from Theorem 7,

we have:

\/j(gt.]t - 6t.]t) = \/T(dt.]t.('gt.]t.a f) 2) - 6tJt.(3tJt.7 Fv E) + 5t.]t.(3t.]t.7]~—‘7 E) - 5tJt.<'ﬁt.]t.7 F7 2))
N 85tJt.(5tJt.§F/72,)

\/j[(f‘7 2) - (Fv Z)]

oI, %) (I",2)=(I'%)
85tJ '(d, ,P,E) .
+ : t;]t' , _ \/j(ﬁtJt. — JtJt.).
93,3,. 313, =9t3,.

Using the following Taylor expansion of (l?ffz,) around (I', X):

aes ot 0t s
_ _ 0,9 - (T,
0 AT, X @ =15 oI, X)) l(1o)= (rz)+6(1“’,2’) ‘(r' )= (ri)[( %) — ([0, 2)),
we obtain
A 82€C ol
\/j[(ra E) - (F) E)} - [a(r[ E/ (F/ Z/ F7 ):| 1’\/ E/) (F/7ZI)Z(F,E)
B 0%¢5
T o, x)2 F' =(T",%)
T
0043, ] 8log s Olog sto] ) VI3
I [ét — ét] .
[(8(1“’ X)) ., tz:; 0o’ o0y’ =0/ bec,,

Since VI (3¢ — ;) converges to a centered normal distribution, by using Slutsky’s Theorem and the con-
sistency of 0;3, and (I, %), we conclude that /I (83, —d;3,) converges to a centered normal distribution.
This completes the proof.
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A.15 Appendix Tables

Table A.1: RTE Cereal Brands and Market Shares

RTE Cereal Brands

Average Market Shares

General Mills
Kellogg’s

Quaker

Post

Private Labels

Small Producers

Fiber/Whole Grain
Regular
Fiber/Whole Grain
Added Sugar
Regular
Fiber/Whole Grain
Added Sugar
Regular
Fiber/Whole Grain
Added Sugar
Regular
Fiber/Whole Grain
Added Sugar
Regular
Fiber/Whole Grain
Added Sugar

34.99%
8.46%
17.30%
4.45%
1.42%
9.09%
0.76%
0.04%
8.31%
0.69%
3.21%
3.12%
2.01%
0.14%
4.30%
1.71%

Notes: The Table lists the 16 RTE cereal brands obtained by aggregating UPCs
as described in the text. For each brand, we report the average market share
across the 83256 shopping trips with some RTE cereal purchases. Market shares
are computed over the shopping trips observed in each store-week combination.



APPENDIX B

Appendix to Chapter 2

B.1 Cross-Price Elasticities

For the cross-price elasticity between j and 7:

aszb
/ b% apr
/mZ%E

b:b3j

= _/ai — D sinSib+ Sijr — SirSige | AF(6;)

b:b>j,r¢b

_ / i [315.80m. — 5030] AF(6:).

B.2 Proof of Proposition 1

Without loss of generality, I fix 23, = = and ignore the notation ¢, re-writing the product-level (bundle-
level) market share functions as sy (1;I', F') (sp(+; F')). Denote the ownership matrix in the factual by
Q and that the after-merger by €,,.

First statement. For the price elasticity € at py between j and r, I obtain:

, pj 8.(03; 1, F)
Ejr = adj. s

If s3.(;T, F) is identified, then %&F’F) is also identified. Moreover, because of the invertibility of

s3. (T, F) in Theorem 7, 0y is also identified from 3. Consequently, €, is identified.
For the marginal costs cj, I first derive the first-order conditions (FOCs) of the Bertrand game in
the factual:

0sy
—o [QG&S] (py —c3) +33.(65;T,F) = 0.

As shown in laria and Wang (2019a), Q @ 8S~' is a positive-definite symmetric matrix and therefore

invertible. Then, ¢y = py — = [Q ©%F 8SJ } SJ.((SJ; I, F) is identified.
Given the uniqueness of the prices after the merger, it suffices to examine the FOCs of the Bertrand
pricing game after the merger that uniquely determine the prices. In the case of mergers under linear
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pricing, the FOCs are:

Js
a {Qm@a;} (W5 — c3) + 52,033 T, F) =0, (B.1)
J
where pJ' denote the prices after merger and 05" = —ap + Bz + n + &5 denote the mean utilities of

products after merger. Note that sy (-;T', F) (and its derivatives) and («, 3,7n) are known. Moreover,
given 43 and py, 03 and &y are identified due to the invertibility of sy (-;T', F') in Theorem 7. In addition,
cy are already identified. According to (B.1), p}* is uniquely determined by s5.(;I', F), (o, 5,1,&3),
and cy. Because the profit after merger is a function of the prices and product-level market shares, the
profit change is also identified. Finally, denote the consumer surplus function by

V(05;T,F) = Eluym) = Ep, |In | 1+ Z %0 (I'n)+1(0in)
beJuCy
. , . . . OV(65 T F) . . : m
By using Roy’s identity, I obtain a5, = 53.(03; T, F'). Because s3.(+;I", F') is known and ¢y and 6}
are also identified, then the consumer surplus change before and after merger AV = |, 5?” s3.(05; T, F)ddy
is identified.

Second statement. Suppose that I' and bundle-level market share functions are further identified.
Moreover, because ¢ip = D jeb Ctis then bundle-level marginal costs are also identified. Then, one can
apply similar arguments to those in the proof of the first statement to mergers under nonlinear pricing.

B.3 Proof of Theorem 8

To start with, I plug the definition of £3(-) into (2.7):

_ 2
E[S_].l(ét.].; UUEJ),PtJ’Fv F) +apiy — Pry — U‘ZtJ =2z, Tty = 33] =0, (B'Q)

where z € D, and x € D, and D, and D, denotes the support of z;5 and x5, respectively. In what
follows, I fix 2;3 = x.! For a given z, (B.2) defines a set of moment restrictions: (a, 3,n,T, F) should
be such that the left-hand side of (B.2) is equal to zero. I assume the following regularity condition:

Condition 2. For any (I, F') and any z € D,, there exists M, > 0, such that
E |:‘83.1(<jt.].;xg.zj)vth7raF)‘ ‘Z:| 7E |:|th‘ ‘Z] S Mz

Sketch of the proof. The proof is proceeded in three steps. In the first step, I prove that under
conditions 1-3 in Theorem 8, the identification by moment restrictions (2.7) is equivalent to uniquely
solving a convolution equation. This convolution equation is generated by the distribution of the
demand and shocks and the translation in the convolution equation is defined by z,5 € R7. In the
second step, by further using condition 4, I prove that the property that the zero function is the unique
solution to the convolution equation is sufficient for the identification of a and sy3 (-;2(®), ", F). In the
final step, by leveraging the completeness of location families in Mattner (1992), I demonstrate that

LAll the conditions and results in this section should be considered as being conditioned on x5 = x.
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when (&3, wy) is Gaussian distributed (or their joint distribution satisfies some “fat-tail” conditions),
the property that the zero function is the unique solution to the convolution equation will hold; under
regularity condition 3 of Appendix B.3, by leveraging the polynomial completeness in D’Haultfoeuille
(2011), I prove that the same property will hold when F' has compact support and the data generating
process is a model of multiple choice of products across categories.

B.3.1 Conditional Moment Restrictions and Convolution Equation

The following theorem equivalently transforms (B.2) to a convolution equation:

Theorem 14. Suppose that Assumptions 6-8 and reqularity condition 2 hold. Moreover, the following
conditions hold:

1. z13 is independent of ({13, wig).
2. s =a#0
3. Given 29, piy = py (Bx +n+ &3, ag; $(2)) is a continuous function of (Bx +n+ &, cy).

Then, for any z € D, (¢, 8", ,T', F') satisfies moment conditions (B.2) if and only if the following
convolution equation

/G(t;alaﬁlvnlarlaF/)AG(t_Z;fﬁ,w)dt: 07 (B3>
holds, where

G(tv O/a BI: 77’» Flv F/) = 53.1 (SJ.(*QPJ(Oa ta ‘T(Q))a ‘T(Q)v Fa F)7 *T(Q)a P/v F/) + QIPJ(Oa t7 I(Q)) + (%ﬂ - B/) T+ %TI - 77/7

AelA few) = [ afeulato = X) = bz =, w)dv,
and fe . is the density function of (§,w).

Proof. Since z is fixed, I drop this notation in this proof and also the dependence of py(-) and
sy. (T, F') on :rg) Because «; = o, moment restrictions (B.2) can be further simplified to:

E[s}il(dt‘]_; IF)+apy — fx —nlzg = 2] = 0. (B.4)

To start with, I prove the following Lemma:
Lemma 7. Suppose that a; = o and py(Bx + 1+ &3, c3) is a function of (Bx +n + &3, c3). Then,
for any A € R7,

p3(Br + 1+ &y + al, ey + A) = p3(Br + 1+ &, c) + A

Proof. Denote by 2 the factual ownership matrix. Then, I can derive the FOCs of the simultaneous
Bertrand pricing game:

0
—a|Q0 L (g — ciy) + 53.(6;T, F) = 0, (B.5)
0643

where 0,3 = —apyy + Sx +n+ &y, Suppose that ¢y increases by A and Bz + n + &3 increases by aA.
Then, the FOCs (B.5) with p3(&, ) + A, cig + A and Bz + 1+ &y + A still hold because d;3 and
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Pty — ¢y remain unchanged. Due to the uniqueness of p;y as function of (Sz + n + &3, c¢3), I obtain
that py(Bx +n+ &3 + oA, c3 + A) = py(Br +n + &3, ¢3) + A O

First, I prove the sufficiency of Theorem 14. For any A € R’, by using Lemma 7, T obtain:

Elpiglag = 2] = /pJ(ﬁx + 0+ &g, 2+ wig) few(&ea, wig)d(Eeg, wig)

=/ [pJ(O,Z+th - Bx+n+£tJ) + Prtntia Jeaw(&ea, wez)d(&g, wey)  (B.6)

« (6%
63:+77+§m) Bx+mn

(67

= /pJ(O, R Jew(&ea, weg)d(Eeg, weg) +

Similarly, for (o/, 8,7/, T, F') satisfying (B.4), [ compute
E[sil (30317, F)| 23 = 2]

= /SJ_l(SJ.(ﬁﬂf + 1+ & — aps(Br + 0+ &,z +weg); T F) T FY) fe (€3 wey)d(Eeas weg) (B.7)

W%gﬂ); T, F); T F') fe (&g, wig)d (&g, wiy)

= /SJ_l(SJ.(aPJ(O,Z+U)tJ -
I now plug (B.6) and (B.7) in (B.4) evaluated at (o/,8,n/,I’,F’), and make the transformation

(13, weg) to (2 + wig — %/MJ):

E[sy (30T, F') + a'py — Bz — 1|21y = 2]
B o o
— /[sJ_l(s.]A(—osz(O7 )T, F); T F') + o'py(0,t) + <Eﬁ — 6’) T+ En — 7/]ozf§7w(oz(z +wyy —t) — Ba — n, wg)d(t, wey)

/

_ /'[sgl(sJ,(fapJ(o, £):T, F):; I, F') + a'py(0,1) + (%B - 5’) x4 %n — ) AG(t — 2 fe)dt.

The proof of sufficiency is completed. For the necessity part, one can reverse the argument of the
sufficiency. O

B.3.2 Unique Solution for the Convolution Equation (B.3) and Identification of
Product-Level Market Share Functions

Denote the identification set defined by moment conditions (B.2) as
e ={(,s,n, ", F) : (B.2) holds at (/,8,n/,T', F") for any 2z € D, },
and that by (B.3) as
O¢ ={(, 8,7, F') : (B.3) holds for any z € D,}

Theorem 14 establishes © = O¢. Define % = {(«/, 8,7/, I", F') : G(; &/, 8,0/, I', F') = 0}, the set of
parameters that delivers G(-) = 0. Note that (9% C O¢ and the true parameters (o, 3,1, T, F) € G)% C
©g = ©. Then, a necessary condition for the identification of («, 8,n,T', F') by moment conditions
(B.2),ie. © = {(a,B,n,T,F)},is 0% = O¢. Equivalently, G = 0 is the unique solution of convolution
equation (B.3), i.e. the completeness of the location families generated by Ag(:; few). The next
theorem characterizes the implications of this completeness on identification:
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Theorem 15. Suppose that conditions of Theorem 14 hold.
1. If© ={(a, 8,0, T, F)}, then ©F = O¢.

2. Suppose that for any (I',F') # (T, F), there exists 85 # 84 such that sy (8};23), T, F) =
SJ.((Sf];.’If(z),P,,F/) andsJ,(ég;x(z),F,F) = SJ,(ég;x(2),F’,F’). If0% = Og, then o and s3.(; 23, T, F)
are identified.

Remark 10. According to Theorem 15, the completeness of the location families (0% = Og) is nec-
essary for the identification of the full model by moment conditions (2.7). Moreover, as shown in
the second statement, it is also sufficient for the identification of o and sy (;2®) T, F) under mild
conditions.

Proof. For the first statement, if © = {(«, 8,7,T, F)}, then % = O = {(a, ,n,T, F)}.
To prove the second statement, note that if G(t;o/, 8/, n/,I', F') = 0 for any t € R”, then we have

53.(—ap3(0,t);T, F) = s3.(—a'p3(0,t) + v; ', F'), (B.8)

for any t € R’ where v = <%5 — B’) T+ O‘Eln —1'. As shown in Taria and Wang (2019a) (Appendix
8.10), marginal costs ¢,y are identifiable: for any pj;, there exists a unique ¢}y such that the FOCs
of the Bertrand pricing game hold. Moreover, this mapping from p}; to c}; is C'. Because p3(0,c,;)
is continuous, then pi; = py(0,c};) defines a continuous bijection between prices and marginal costs.
Consequently, D, = {p’ € R’ : p' = p3(0, ¢13/), cr3r € R7} is an open set in R’ and (B.8) holds in D,,.
Finally, according to Taria and Wang (2019a) (Theorem Real Analytic Property), given any (I', F"),
sp(0;3; T, F") is real analytic with respect to d;5. Then, sy (0;5;T", F") is real analytic with respect
to ;5. Consequently, sy (—ap,y; T, F) and sy (—a'py; + v; I, F') are both real analytic with respect
to p;;. Because these two real analytic functions coincide on an open set D, C R according to (B.8),
then they coincide for all p;; € R’: (B.8) holds for any p;3 € R’7. Moreover, there exist at least two
/ ' . _ LT . _ ". : _ 4
0 # 05 such that s3.(05; ', F) = s3.(01; 1", F') and s5.(65; T, F') = s3.(07; I, F"). Setting pyg = —2
and plugging this into (B.8), we obtain:

/
a
s3.(05; T, F) = SJ.(E(SS +u; T F') = s5.(65; T/, F').

1

Similarly, setting pyg = —%‘, we obtain:
/
s3. (61T, F) = s3. (0" + v T, F') = s5. (80T, F).
e
Because sy (-; IV, F) is bijective, we obtain:

/
(6
E(S‘/]‘i"l) :(53,

Oé,

1/ 1/
—03 + v = 0j3.
o J J

Then, (%/ —1)(85 — d5) = 0, and therefore o/ = o and v = 0. Finally, we obtain s5 (8;5;T, F) =
s3.(6;3; T/, F") for any &}; € R7. The proof of the second statement is completed. O
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B.3.3 Sufficient Conditions for the Completeness of Location Families

In general, depending on the regularity of G(-) (bounded, polynomially bounded, integrable with
respect to Ag(-), etc.), the completeness of location families can be achieved with different sufficient
conditions on Ag(-) (and hence on f¢,,).2 In the setting of mixed logit models, the next theorem
establishes two sets of sufficient conditions for the completeness of location families (0% = O¢):

Theorem 16. Suppose that (B.3) holds for = € R”.
o If fe. is Gaussian, then O = Og.

e Suppose that the data generating process is a model of multiple choice of product across categories
(see section 2.2.2). If F and F' have compact support. Then under reqularity condition 3,
0% =0g.

Proof. Note that the location families are generated by Aq(-; fe ), which is the density function of a
translation of demand and supply shocks in model (2.4). For the first statement, when f¢ ,, is Gaussian,
Ac(X; few) is also Gaussian. Then, the first statement follows directly from Theorem 2.4 of Mattner
(1993).

For the second statement, I leverage Theorem 2.1 of D’Haultfoeuille (2011). To do so, I require the
following regularity conditions:

Condition 3.
(i). (&3, wey) are continuous random variables with finite moments.

(ii). The characteristics function of Ag is infinitely often differentiable in R’ except for some finite
set. Moreover, the characteristics function of Ag does not vanish on R”.

111 /. ere exrists an ) Suc a th ,Ct_] ~ CtJ B whnere |.| rejers to uciiaean norm.
i5i). Th ists B and [ h that 0 < Blegg|t, wh to Euclid

Condition 3(i) implies Assumption A3 of D’Haultfoeuille (2011) and quite standard. Condition 3(ii)
implies his Assumption A4. The differentiability requirement and the zero-freeness requirement are
satisfied by many commonly used distributions. Condition 3(iii) restricts pricing behaviors to be
controlled by a polynomial of marginal costs and is satisfied at least by the mixed logit demand models
of single products. Moreover, together with Condition 3(i), it implies Assumption A5 of D’Haultfoeuille
(2011).
First, I re-write G as a function of p;3(0,t):
/

_ o a
G = G(pig) = s5 " (s3.(—apy; T, F); T, F') + o/pyy + <a5 - 5') T+ - n.

To apply statement (ii) of Theorem 2.1 in D’Haultfoeuille (2011), it is enough to prove that G can be
polynomially controlled by p;j:

Lemma 8. There exists A, M > 0, such that |G (pi3)| < Alpsg| + M, for any p;g € RY.

Combining this lemma with Conditions 3(i)-(iii), I can apply the P-completeness result in Theorem
2.1 of D’Haultfoeuille (2011): if G satisfies convolution equation (B.3) for any z € R’ then G = 0. In
the remaining part, I prove Lemma 8.

®For different concepts of completeness, see Mattner (1992, 1993), D’Haultfoeuille (2011), and Andrews (2017).
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Without loss of generality, normalize the support of F and F’ to [0,1]%, where K is the dimension
of random coefficients. Note that it is sufficient to prove

537 (s3.(—apg; T, F); T FN| < Allpgg| + M

for some constant A’ and M’. TFirst, consider demand models of single products. For any & € R”,
denote 45 = s3.(05; F) = s3.(0}; F'). Then, we have for any j € J:

Pt i(6;)
f 45 ;5,j+ﬂt‘j(9i) dF(al)
dF(6;)

Ins; —Ingp =9, +1In

1
f 1+2j6.] e0j Tt (65)

= 5] + lutj(g)ﬂ
where 6 is some value in [0,1]%. We apply the same arguments to F’ and obtain:
In 35 — In 49 = 5; + ,utj(él),

where @ is some value in [0,1]%. Then, we have §; — & = 1145(0') — 1t (0). Because both 6 and
¢ are bounded by 1, then () and ju;(6’) are also bounded. Then, we obtain that there exists
a constant M; that does not depend on dj, such that [0; — 07| < M;. Consequently, [0 — §'| <

M= \/m or equivalently, [s;'(s5.(65;T, F); T, F') — 65| < M’ for any 65 € R’. Plug
d3 = —apy into this inequality, we obtain |sy* (s5.(~apu; T, F); T, F') + ap| < M’ and therefore
|3 (s3.(—apes; T, F); I, F)| < alpg| + M.

For models of multiple choice of products across K categories, for any 0} € RY, denote 43 =
$3.(05; T, ) = s5.(65; I, I'). Take product category J; and define 3o =1 — 3.5 ;. Note that

eZkK=2 8y, +Fb+Z§:2 Htjy, (6:)

I = dF(el)

~ / Zb:((jk)jkEJk,k:Q ,,,,, K)

ohe1 8y b+ heb (0:)

and for j € Jq,

8+ (0:) g e 8y A b0 )+ R Bty (0)

5, = / Zb:((jk)jkEJk,kzlm,K)e dF(6;).

Z . 6215:1 6]'k +Fb+,“tb(0i)
b:(]k)jke.]k,kzl,m,K

Then, similar to demand models of single products, we obtain:

Ins; —In Jg = 0 + i (0) + FBU{J'} T

where 6 is some value in [0,1]% and b is some bundle without 7 € J1. We apply the same arguments
to (I, F') and obtain:

Ing; —Ingg = 5} + /th(é/) + FB’U{j} — FB”
where 0’ is some value in [0,1]% and b’ is some bundle without j € J;. Then, similar arguments in
demand models of single product apply and |§; — 5;] is bounded by some constant that only depends
on the support of # and 6’ and the bounds of I'. The proof of the second statement is completed. [
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Combining Theorems 14-16, we obtain Theorem 8.

B.4 Proof of Theorem 9

The proof is proceeded in two steps. In the first step, I prove I'(;, is identified for j,r € J, j # r. In

the second step, I prove that the sb(-;xgz), F) is identified for b € C;. To simplify exposition, I fix

xg) and drop this notation. Suppose that there exist (I, F’) such that

;.05 T, F') = 5.(05;T, F)

for any j € J and § € R’. Throughout the proof, denote the Fourier transformation of function ¢ by
F ().

Step 1: TV = I'. Without loss of generality, we show L) = F(l 2 First, note that by letting
all d;,’s, I # 1,2 tend to —oo, market shares of single products [ and of all bundles that contain any
product [ # 1,2 converge to zero. Consequently, we obtain that:

s1.(6] T o0, F) = 51.(6, ;T , B,
(123 T2y ) = 51012y Ta,2)0 F) (B.9)

( 1,2} F/(1 2)» Fl) (57/:{1,2}§ F(1,2)7 F),

for any (5;{1 oy = (611, 0}5) € R2. Take the first equation in (B.9) and compute the partial derivatives
with respect to djy:

0510112 T2 ) _ / (Xt Cu) @iy (1) — 1) dF"(6,)
8(522 (1 +€5£1+ut1(0it) +e5£2+ﬂt2(9¢t) +65£1+/"‘t1(0it)+5£1+/—‘t1(0it)+1—‘2172))2 it)s
831‘((52{172};F(172),F) B (e 5t1+5t2+ut1(Git)+ﬂt2(9it))(eF(1,2) —1) F(0)
0522 o (1 4 0111 (i) Te 0ot pe2(0ie) + 65,/514‘/»%1(91‘,15)+5£1+Mt1(9“)+1—‘(1’2))2 i)
681.(52{1’2}; F,(1’2), F/) _ 831.(57/5{1’2}; F(1,2)7 F)
o o5,
8, T F 9s1.(5 F ,
I can then cancel out e%1+% in the nominators of —- ! R D and 24! t{lgg’ T )' Letting
t2 2
Ot — —00, I obtain:
o eter(Oie)+pe2(0ir) , r ete1(Oie)+pe2(0ie)
(1,2) _ ) = [efa2) — .
e 1 / o a0 = ¢ 1] / A mmE O (10

From (B.10), if T'(; 9y = 0, then F(l 2y = L2 = 0.3 Suppose [(1,2) # 0. Denote the density functions
of wit = (Wit1, Hir2) = (,uﬂ( t), te2(0it)) for 04 ~ F and 0;y ~ F' by f, and fu» respectively. Then, I
can re-write (B.10) as

r etit1+Hit2 , , r etit1+Hit2 ,
[e” 2 —1] / mfu(ﬂitl — Op1s pit2)dpie = [e0 42 — 1] / mfu(ﬂitl — Oy, pit2)dfit.

®In fact, the sign of I'(; 2) is already identified from (B.10).
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Define g(\) = . Then,

e}\
e a2 — 1] /Q(Nzﬂ)ﬁ(um — 841)dpinn = [e" 2 — 1] /Q(Mitl)fu(um — d1)dpan, (B.11)

where ]Z(,Uzitl) = feﬂ“zf,a(/iitl,uit2)duit2 and fy(,ujﬂ) = [eri2 f, (wir1, pirz2)dpio. Either side of (B.11)
defines a convolution system. Note that g(-), f,,, fu € L'(R). Consequently, I apply Fourier transfor-
mation on both sides of (B.11) and obtain:

"2 — UF (g)(1)F (f,) (1) = ["0» = 1)F () ()F ([) (1),
for any t € R. Particularly, at t = 0, F(g)(0) > 0. Then,
"0 — YF(F)(0) = 702 — UF (£,)(0), (B.12)

Note that 9(,}2)@) = Ejplel*] and F(fu)t) = Egeti2]. If they are equal, then F/(1,2) =T(12. In
particular, if T'(; 9y = —o0, i.e. bundle (1,2) is not in the choice set, I obtain that F’(l gy = —O0 and
therefore identify that bundle (1,2) is not in the choice set. In what follows, we prove E 7 [eFir2] =

Ef [eﬂit2 ] .

Take the second equation of (B.9) and let ¢/,; — —occ. I then obtain:

6522—%##2 , 6622—%##2
/f (pit) :/fu(ﬂit)- (B.13)

1+ eOtatitz  H 1+ e0ta it

I cancel out €% from the nominators on both sides of (B.13) and let 8}, — —oo. I then obtain
J et fi(pie) = [ €2 fu(par), ice. Efletiz] = Ezlet2].

Step 2: sp(d3; F') = sp(dy; F) for any b € C;. I prove this result for for the model of multiple
choice of products within category. The proof is similar for the model of multiple choice of products
across two categories.

Recall that the density function of p;y = pig(0i) for 6 ~ F' and 6;; ~ F are flL and f,,
respectively. It suffices to prove that f;L = f, almost everywhere. In the model of multiple choice of
products within category in Theorem 9, plug I” = I into the product-level market share function of j.
I then have for any 0,5 € R, 5;(6/5;T, F) = s;.(0,3; T, F'). According to the arguments in Appendix
8.13 of Taria and Wang (2019a), given the product-level market share functions and I', one can uniquely
determine the bundle-level market shares, as function of d;3. Because both the product-level market
share functions and I' are identified, then s, (04(T'); F'), where 0,(T') = (¢1, ..+, 0t7, (Otb)bec, + ), is
identified as a function of d;3, for any b € C;. Consequently, the market share function of the outside
option, so(6:(I); F'), is identified as a function of &;3: for any &;; € R’

$0(033(T); F) = s0(035(1); ). (B.14)
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I compute the higher-order cross derivative of both sides of (B.14):

97s0(0,5(T); F) [ Pr(Su1 + Mitts s 0t + Hity)
/ / - ] - fﬂ(/‘l’it)d;uita
96515 -, 001 5 Qr(0s1 + fit1, -5 Or7 + fity)
97s0(0,5(1); F') Pr(6m + pit1s -5 0ty + titg) ,
) — wly ) 2 ; d ; B15
A0y, ..., 00} ; Qr(6s1 + fit1, -y Org + Mity) Sulkie)dpar ( )
8J50(52J(F); F) _ 8J30(5£J(F); F)
90y, ..., 00} ; N 90y, ...,00,,
where
Qr(Wit1y -y uitJ) =1+ Z eliti | Z el (") eWiti Tigj
JjedJ Jj<j’
and

euzt(,}:J’) H Zb ba] e Witb
5 Qr(

Pr(w, ..., uip7) = A(S
(Wit s Uies) Z <)(jjl.,_)[€SQF(Uitlau-auitJ T (Witt s ooy Wit y)

Ses

N F(j’,'/)
= H elits Z A(S) (H o 6 J H
3.3')€s

jed ses (uzth .- uth

y B.16
1 + Z /¢J ztj +F(j,j’) ( )

Qr (witt, ..., Uity)

where S is a partition of {1, ..., J} with each part being at most size 2, S collects all such partitions

which are the results of the hlgher order cross derivative ﬁ, and A(S) is a constant depending

190
on the partition S € S. An example of S is {{1},{2,5}, {lei {3, 6}} Each term in the products of Pr
corresponds to the choice probability of either bundle (j, j') or the product-level choice probability of

product j, evaluated at u;y and I', and bounded by 1. From (B.15), I obtain:

Pr((e)jeg)
Qr((etti)ey)

for any 0;; € R7. T prove the following lemma:

[fu( ity = ) f/t( itd tJ)]d)‘itJ =0, (B-17)

Lemma 9.

Pr((e);e3) 1
¢ Qr((e™);es) € LA (R).

A.
o The zero set of F M in R is of zero Lebesque measure.
Qr((e™)jea)

Note that the right-hand side of (B.17) is a convolution. Because of the first statement of Lemma 9, I
can apply Fourier transformation on both sides and obtain:

FE)e )
g(QF((e’\j)jeJ)>g(fu fu)=0.

Applying the second statement of Lemma 9, I obtain F(f,) = #(f,,) almost everywhere. Due to the
continuity of characteristics functions, #(f,,) = #(f,,) everywhere and hence the distribution of y;; is
identified. In the remaining part, I prove Lemma 9.
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Proof. First, we make the transformation of variables \j to e

/PF(( Y)jes )d)\J_/RJ

Qr((eM)jea)
For the first statement, because of (B.16), it suffices to prove that for each S € S,

PF(ylw-wa) 1 dyJ
Qr(yr, - y7) [T, v

1 H er(“ H 1+ Z] 12 Yjre INCRD) (B 18)
Qr(yi, - yJs) Gi)es Qr(yt,...,ys) Qr(yt,...,ys) '

is integrable in R‘] To show this, I divide R;{_ into 27 regions: R+ = ><J 11;, where I; = (0, 1], (1, 4+00).

Then, it is enough to prove that (B.18) is 1ntegrable in each of these regions. Without loss of generality,
suppose that the region is Ry = {(y1,...,y7) 1 y; € (0,1),5=1,...,k; yy > 1,5/ =k +1,...,J}. Then,
for a given j, we have four cases to control:

1. j <k and j appears in S as (j,7).

2. 7 <k and j appears in S as j.

3. j >k and j appears in S as (j,5').

4. j > k and j appears in S as j.

Note that for cases 1 and 2, the corresponding terms in (B.18) can be controlled by el'™ with I, =
r, ..
e (Jv]l) m

P Qr(yreys) — Yy

max{0, (T'(; j»y)j<j}. For case 3

' r,. .
1+ Zj’;éj yje (43" - 1+ Zj’;éj yje (43" i - el'm

Qr(ylu‘"ayJ) o Yj "’Zjl;éj yjyjfer(j’j/) B Yj N Yj

Moreover,

1

C sk Yi t Dkcjay YiYie G
2

(J=k)(J =k + )T kcjey /eF(J]))mH e yJJ_W

Qr(yi, ..., ys) <

<

The last step is due to the inequality of arithmetic and the geometric means. Then, for all the four
cases, we have:

eRD) 1—}—2] 145 Y5 € Lan J 12
< A(J,k,T ST (B9
T G 1T <Auk) ] o (B.19)

QF Y1, - 7yJ . ES 5. ayJ QF yla"ayJ) j=k+1

. R
where A(J, k,T) = 2e” 5 . Note that H‘j]:kH y. 77FtT is integrable
(J=R) (T kA1) ([T g € G3) T=RCFFD ’
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in Ry and A(J, k,T') is a constant. Then,

H NCRD Hl—kz,#]y]/e (4,3")
QF Y1, -- ,?/J QF(?/la- 7yJ QF Y1, -- wa)

is integrable in {(y1,...,y5) s y; € (0,1),5 =1,...,k; yy > 1,5/ = k+1,...,J}. The proof of the first
statement is completed.

To prove the second statement, according to Mityagin (2015), it suffices to show that the real (or

Pr((eY)e3)

< is non-constant real analytic function. In order to prove the real
Qr((e™7)je)

imaginary) part of & <

A .
analytic property, the key is to control the higher order derivatives of & <C§F((((G;J))J€J))> (y):
rite 7)jes

OLF <PF((5AJ)JEJ)> (y) J |
Qr((¢);ea) 3 . M
mhar ALY e | (320

where Z“.]_ j = L and i is the imaginary unit. I now prove that this higher order derivative can be
controlled by (‘] +1) H}I:l [;!. This result will then imply that for any y € RY, there exist 0 < € < J%Ll
Pr((€")jeq)
Qr((eY)jes)

converges to F M (v). C tly, & ( Fele e i h | analytic i
g y'). Consequently, L (y) is everywhere real analytic in
QF((e J)]EJ) QF((e J)]EJ)

R’. It is not constantly zero because % is not constantly zero. In the remaing part of the proof, I

such that for y’ € R’ and |/ —y| < ¢, the Taylor expansion of F ( ) (y') around y uniformly

prove (B.20) can be controlled by (% L

It suffices to study [ ‘H (|A;])t 1%67])363) d), or equivalently,

Qr((eV)er)

J

wohi FrWijes) 1
/Ri ]1;[1(“ vl Qr((y;)iea) T, v) -

I follow the same technique as in the proof of the first statement and evaluate, for each S € S,

J

[T(my;) v )

J=1

el (") 1—1—2, yjre R
H o 7 (B.21)

Y1, -- )y] Y1, -- 7y] QF Y1, -- wa)

in each of the 2/ regions. Without loss of generality, for region Ry, using (B.19), we have:

J

[T(my;D"

j=1

INCRD) 1—|—E, yje R
H € H #j
%

QF Y1, -- ,?/J (?/17~ 7yJ QF Y1, -- '7yJ)

k J

12
< AWET) T Iyl H gy, T

j=1 j=k+1
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Finally,
J
e i
/ / / / A(J k,T) H|lny\7 H |lnyj|lfyj T dyy
j=k+1
J—-k+1 _
:A(J,k,r)(T)L” ’szj!
j=1
J+1 ., J+1
<A@k e

j:

Consequently, when I sum over all the integrals in the 27 regions and all S € S,

J

nus VY Pr((yj)jes) 1
/Ri E(H uil) Qr((yj)iea) TT, vs w

will be bounded by (%)L H}]:1 [;! multiplied by some constant only depending on J and I'. The
proof is completed. O

B.5 Proof of Corollary 3

In this proof, I will construct (I'g, F{)) and (', Fo) such that T'g # I'y and Fyy # Fyj, while s;.(+; T, F) =
51.(+ 10, Fo). Because Fy # Fy, then s(; 1)(+; Fo) # sa,1)(+; Fp) in (2.8).
First, I compute the derivative of s (0;I", F') with respect to J:

0s1.(6; T, F) _/ eOH1 4 4e20+2u+T
U

EYS 1+ edTh + 2512 T)2 dF ()

(B.22)
— [ R+ wsTaE ()

where R(z;I") = et e Note that R(;T) € LY(R). Define v = €' and

(1+ez+621+F)
1+ 4rt
= R(z;T")dx = ——dt
/R (i D) /R+(1+t+vt2)2

V(y) is a continuous function of v € [0,00), with V(0) = 1 > V(oo) = 0. Moreover, lim+% =
v—0

+00 > 0. As a consequence, there exist g # 7, and 70,7, > 0, such that V(o) = V(v(). Therefore,
there exists g = Inyy > —oo and I'j = Inj > —oo, such that Ty # I'y and Vo = [p R(x;T) =

Jz R(x;Tf)dz. Note that R( FO) and 2L a6 both well-defined but different density functions. Denote

Vo
the corresponding dlstrlbutlon functions as Fy and F{j, respectively: % = R(*‘”/OFO) and ddiu R(“L/OF o)

9s1.(8;T0,F}) 0s1.(0;1°,Fo) |
35 and 35 :

Based on (B.22), consider the Fourier transformation of

7 (2 ) = # (R (05 (52) ),

7 (PO ) = F e (50) 0
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Then,
851.(5;F0,F6) 681,((5;116,}70)
Fl———— ) =F | ———— | (¢
(=) o AR YOS
Consequently, 881'(%1;0’%) = asl‘(%};&’%) for § € R. Then, s1.(6;T%, Fo) — s1.(0; To, F{) is a constant

function in R. Taking 6 = 400, we obtain that this constant is zero and hence s (6;17, Fp) =
s1.(0; To, Fyy) for 6 € R. The construction is completed.

B.6 Proof of Property 2

The proof directly follows from that of Lemma 8.

B.7 Construction of Product-Level Market Shares

I provide computational details of the product level market shares from the market-level sales data. I
suppress t to simplify the exposition. Suppose that there are I households and the size of household
i=1,..,Tisn; € {1,...,N}. Denote by ¢x the weekly per capita consumption of the relevant products
of category k (breakfast cereals or milk). Then, for product j in category k, the total consumption
Djy, is:

I
Dy = Z Z 1{i chooses b}n;qs

i=1 b:b3j

N I
= Zn Z Z 1{i chooses b,n; = n}

n=1 b:baji=1

N I .
.. 1{7 chooses b,n; =n

n=1 b:b3j

Denote by 4, the average choice probability of bundle b among households of size n. Then, when I is

very large,
N I .
Dy, _ . Z > ;-1 1{i chooses b,n; = n}
IQk n=1 b:b>j I
N
~Yom Y 4
n=1 b:b>j
N
=Y nr
n=1
N
Dy
j —
= ~ TTnd i = *jj.a
INg, ; J

where N = 227:1 nm, is the average household size and {7,}Y_, is the distribution of household
sizes weighted by size. Note that when computing the product-level market shares, one should use
the weighted distribution {7, }"_, rather than {m,})_, to properly take into account heterogeneous
consumption across households of different sizes.

Under the assumptions in section 2.6, Dj; is equal to the sales in lbs of product j of category k.
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Moreover, the IRI dataset contains information on the set of sampled households with which we can
infer the number of households I and the distribution of their demographic characteristics. Finally,
for di, k € K, I use external sources: the weekly per capita consumption of breakfast cereals is 0.19
Ibs and that of fluid milk is 3.4 1bs.* Based on these pieces of information, we construct the observed

product-level market shares éj.’s.‘:’

B.8 Main Tables

Table B.1: RTE Cereal Products

Brand Flavour Fortification Grain

General Mills Cherrios Toasted Missing WHOLE GRAIN OAT
General Mills Cinnamon TST CR  Cinnamon Toast 12 ESSNTL VIMN&MNRL ~ WHOLE WHEAT AND RICE
General Mills Cinnamon TST CR  Cinnamon Toast Missing WHOLE WHEAT AND RICE
General Mills Honey Nut Cheer Honey Nut Missing WHL GRAIN OAT & BRLY
General Mills Honey Nut Cheer Honey Nut Missing WHOLE GRAIN OAT
General Mills Lucky Charms Toasted CALCIUM & VITAMIN D WHOLE GRAIN OAT
General Mills Lucky Charms Toasted Missing WHOLE GRAIN OAT
General Mills Multi Grain Che. Regular 10 VITAMINS&MINERALS MULTI GRAIN

Kashi Go Lean Crunch Regular Missing MULTI GRAIN
Kellogg’s Apple Jacks Apple Cinnamon Missing 3 GRAIN

Kellogg’s Corn Flakes Regular Missing CORN

Kellogg’s Frosted Flakes Regular VITAMIN D CORN

Kellogg’s Frosted Mini Wheats Regular Missing WHOLE GRAIN WHEAT
Kellogg’s Raisin Bran Regular Missing WHL GRN WHT WHT BRN
Kellogg’s Rice Krispies Toasted Missing RICE

Kellogg’s Special K Toasted Missing RICE

Kellogg’s Special K Fruit & Yo Regular Missing OAT RICE WHEAT
Kellogg’s Special K Red Berrie Regular Missing RICE AND WHEAT
Kellogg’s Special K Vanilla AL Regular Missing RICE AND WHEAT
Post Grape Nuts Regular Missing WHOLE GRN WHT & BRLY
Post Honey Bunches of Oats Honey Missing WHOLE GRAIN OAT
Post Honey Bunches of Oats Honey Roasted Missing WHOLE GRAIN OAT
Post Raisin Bran Regular Missing WHOLE GRAN WHT & BRN
Post Selects Great Grains Regular Missing MULTI GRAIN
Private Label Regular Missing GRANOLA

“See https://hypertextbook.com /facts/2006/LauraFalci.shtml for a collection of these reports.

5 Another implicit assumption is that the ratio of consumption between breakfast cereals and fluid milk is the same
acorss households of different sizes. However, it is possible that this is not true. For example, households with children
may consume relatively more fluid milk.
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Table B.2: Milk Products

Brand Flavour Fortification Fat Content  Type of Milk
GARELICK FARMS WHITE VITAMIN A & D skimmed dairy
GARELICK FARMS WHITE VITAMIN A & D low fat dairy
GARELICK FARMS WHITE VITAMIN D whole fat dairy
GARELICK FARMS TRUMOO CHOCOLATE MISSING low fat dairy
GUIDAS WHITE VITAMIN A & D skimmed dairy
GUIDAS WHITE VITAMIN A & D low fat dairy
GUIDAS WHITE VITAMIN D whole fat dairy
HIGH LAWN FARM WHITE VITAMIN A & D whole fat dairy
HIGH LAWN FARM WHITE VITAMIN A & D skimmed dairy
HIGH LAWN FARM WHITE VITAMIN A & D low fat dairy
HOOD WHITE VITAMIN A C D W CLCM skimmed dairy
HOOD WHITE VITAMIN A C D W CLCM low fat dairy
HOOD WHITE VIT C D CALCIUM whole fat dairy
HOOD LACTAID WHITE VITAMIN A & D low fat dairy
HOOD SIMPLY SMART WHITE VIT A & D W/CALC&PROTN skimmed dairy
PRIVATE LABEL CHOCOLATE MISSING low fat dairy
PRIVATE LABEL WHITE VITAMIN A & D skimmed dairy
PRIVATE LABEL WHITE VITAMIN A & D W/CALC skimmed dairy
PRIVATE LABEL WHITE VITAMIN A & D low fat dairy
PRIVATE LABEL WHITE VITAMIN D whole fat dairy

Table B.3: Average Estimated Own- and Cross-Price Elasticities (Model II): Grain
Type and Fat Content

RTE cereals Milk
uni-grain multi-grain  granola | skimmed low fat whole fat
RTE cereals, uni-grain | -1.512 0.231 0.009 -0.007 -0.017 -0.008
multi-grain 0.318 -1.642 0.010 -0.007 -0.018 -0.009
granola 0.214 0.185 -1.518 -0.009 -0.019 -0.009
Milk, skimmed | -0.078 -0.061 -0.005 -0.327 0.056 0.029
low fat | -0.079 -0.061 -0.005 0.022 -0.280 0.029
whole fat | -0.078 -0.061 -0.005 0.022 0.056 -0.319

Table B.4: Average Estimated Own- and Cross-Price Elasticities (Model
II): Flavours

RTE cereals Milk
unflavoured flavoured | unflavoured chocolate
RTE cereals, unflavoured -1.504 0.179 -0.036 -0.0003
flavoured 0.137 -1.425 -0.028 -0.001
Milk, unflavoured -0.071 -0.072 -0.235 0.002
chocolate -0.036 -0.185 0.096 -0.366
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B.9 Identification of Product-Level Market Share Functions Using
Other I'Vs.

In this Appendix, I develop similar identification arguments with other types of IVs. I will focus on
BLP-type instruments and exogenous product characteristics.

BLP-type instruments Cost shifters are not always available to the econometrician. Moreover,
the validity of Hausman-type instruments requires independence of demand shocks across markets
of the same region or of the same time period. This can be violated whenever there is unobserved
correlated demand shock across markets, such as national advertisement. In demand models of single
products, Berry et al. (1995) proposed to use characteristics (and their functions) of other products in
the same market as instruments. Their validity follows from the intuition that products with similar
characteristics are closer substitutes. Then, “distance” in the space of product characteristics will be a
good proxy of substitution among products.

Because such variables for product j, denoted as x; _;, are excluded from indirect utility of j,
then, they can provide useful variation in price py; via the markup of product j that identifies (I', F').
Formally, in (B.2), for the equation of product j, one can fix x;; = x; and let x; _j = (z4)r»; varies
in R/—1

It is worth noting that, different from cost shifters, BLP instruments may not always be able
to provide useful variation even though they vary exogenously. For example, if prices ps;’s are not
responsive to x; _j, then there is no variation in p;; due to the variation of x; _;. The unresponsiveness
of prices with respect to BLP instruments can occur in a large-market setting when the number of
products increases to infinity and therefore the competition between two products becomes very weak.5
Asymptotically, product prices are no more functions of characteristics of other products, but only of
their own characteristics. Then, BLP instruments (say, x¢; for product different from j) does not enter
pricing functions of any other product (p;_;) and hence do not produce any exogenous variation in
prices. In this paper, because I focus on many-market settings and the number of products is fixed
(see Assumption 6(iii)), BLP instruments are still valid for the identification of the price coefficient,
demand synergy parameters, and the distribution of the random coefficients.

B.9.1 Exogenous product characteristics

I focus on x4, the k" element in vector T¢j, as example and treat other product characteristics z3
as fixed. Suppose that prices are generated from a linear pricing simultaneous Bertrand game under
complete information with constant marginal cost c;; for j € J. I abstract from cost shifters in ¢;; and
denote the joint density function of (&, ci3) by fe,.. In this section, I assume the following regularity
condition:

Condition 4. For any (I, F') and any zy, € Dy, , there exists M, > 0, such that

E HSJ'_.I(J?SJ.;x£§)>thaF7F)’ ‘zt.] = Z:| 7E[|pt.]‘ ‘ZtJ = Z] < MZ>

6 Assuming that the distribution of random coefficients is priorly identified, Armstrong (2016b) provides conditions
under which BLP instruments are weak for prices and therefore invalid for the identification of price coefficient. Intuitively,
because prices and BLP instruments are correlated via markups, in his large-market setting, when the number of products
increases fast enough, markups converge to constants fast enough that this correlation disappears.



B.9. Identification of Product-Level Market Share Functions Using Other I'Vs. 139

D57 (943 AU o F') 0sy (5tJ'x(2) I',F) Opy 9
E J. oy et AOtI ey 5 s ) — 2| <M.
[ 0313 Doty dcyy 0.t525) ‘ZtJ =0
£ 119P3 o 4 @ _
0,t;2,5) ‘th =z| < M,.
Ociy

I propose the following identification result:

Theorem 17. Suppose that Assumptions 6-8 and regularity condition 4 hold. If the following conditions
hold:

1. zy is independent of (&3, w3) and z € RY.

2. aj=a#0, Bix = B

3. Given 2@, pyy = py(Bz + 1+ &, coas ) is a C1 function of (Bx + 1 + &, cia)-
4. The following condition holds:

(i). Forany (I, F') # (I', F), there exists 0 # 0% such that s3(d7; ﬂsg),F, F)= s,;(é&;acg), I, F")
and SJ(&&I;.%I?]),F,F) = SJ(ég;xgi),F’,F’).

(ii). For such feasible 65 and 65 in Condition (i), there exist a pair (85, 0%) such that 05 — 675 and
t' —t" are not collinear, where t' and t" are defined as —apz(0,t") = 05 for t" =1t',t".

o If (&, ¢) is Gaussian distributed, then (o, Bx) and SJ.(‘;IEE?I),F,F) are identified.

o Suppose that the data generating process is a model of multiple choice of products across categories
(see section 2.2.2). Then, under reqularity condition 5, (o, By) is identified and SJ.(';I'E.?),F,F)
1s identified.

Remark 11. Once «, Sk, and SJ.(';IE;?[),F,F) are identified for any xg), by combining the demand

inverse in Theorem 7, we can recover 6;3. Then, identification of B_; and n follows from standard

linear IV arguments.

As the proof of Theorem 8, the proof is proceeded in three steps.

Conditional Moment Restrictions and Convolution Equation. Differently from cost-type in-
struments, x4, is not excluded from demand equation. Consequently, function G defined in (B.3) also
directly depends on x5 and hence (B.3) is no more a convolution equation. To solve this problem,
instead of using G in (B.3), I use its derivative with respect to z.y.

Fixing a reference point ;3 = (x;);c3 and varying x3; with A, = (Aji);=3, we obtain:

E[Sj__l(dw.;a?g),pw, L, F)|zgr = o + Akl — E[Sj__l(dtJ.;wg),PtJ, L, F)|xy, = o] (B.23)
= —a(Elpylzign = zx + Ak] — Elpgjlzian = xi]) + Bulji,

where fy, is the coefficient for z4;,. Given a Ay, (B.23) defined a moment restriction of («, B, I, F).

Theorem 18. Suppose that Assumptions 6-8, reqularity condition 4 hold. Suppose the following con-
ditions hold:
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1. a3k is independent of (£, ¢3), and the domain of xi3x, Dy, , is an open set in RY.
2. a; =a#0,By = By
3. Given :cg), ey = p3(Bx +n+ &g, ¢y xg)) is a C1 function of (Bx +n+ &g,¢))-

Then, for any xj, € Dy, , (¢, 5,17, F') satisfies moment conditions (B.23) if and only if the following
equation

/H(t; o B, U FAg (t + %xk; fee)dt =0, (B.24)
holds, where
H(t; al7/8;67r/7 Fl)

_ qasf(sm( aps(0,0);2, 1, F);22, 17, )] [ 9s5.(—apa 0,122, 1, F)]

0d3

0443

and
BkXt3—k + N

- de.
o ¢),c)de

w0 fee) = [ afecl-alr+
Proof. Since x_y, is fixed, I drop this notation in this proof and also the dependence of py(-) and
sy. (T, F') on $§J) For Aj, € R’, by using Lemma 7, we obtain:

Elpiy|ziae = o + D] = /p.](ﬁ—kxt.],—k + 14 &g + Be(wear + D), ca) f (&g, ca)d(Eea, cia)

w3k + 1+ &3+ Be(Tegr + A B_key—k + 0+ &3 + Br(rear + A
/|:Z)J(O ct,]—ﬂ kT3, —k T E;J Br(xi3k k))+/ ETE3,—k + 1 5:1 Br(eak k) FE ca)d(Enss cia)

B_ kX3 —k +1n+ + Br(xegi + A 3_Lx +n+
:/pJ(O,CtJ—[ kT3, —k + 1 5:;1 (e k))f(ftJaCtJ)d(ftJ»CtJ)+ E[B_: tJ(I; ) 5t.1]

(»L 3k + D)
Then,
Elpiy|zeae = o + Ag] — Elpeg|ear = @)

B Bke3,—k + 1+ &3 + Bre(@un + Ag) B—rTeg,—k + 1+ &3 + BeTear
= [ |p3(0,c3 — " ) — 030,05 — "

) f(&a,ca)d(&ea, ca) + %Ak-

As Ay — 0, under regularity condition 4, we obtain:

OE[pia|wegk = w] _ op3 I 0y — Br@ry,—k + 1+ & +Bk$th)ka(£tJ,CtJ) d(Erz, cry) + Br
043k dery CtJ Q o o
0 - —k+
- 6pJ (0, )\)ka( (A + &xwk + e ki cty), cey)d(A, cey) + D
CtJ «
_ 51€ Ip3 2 )\)AH()\+6—xth,f)d)\+ Bk
Ociy

where Ag(+) is defined in Theorem 18. Similarly, we compute

E[sil(dtl; I, F)) |2 = o + Ay

_ _ A
= /33.1(81(—04%(07 cy — Poited,k ¥ 0¥ 52] * Bul@wan + Ak)

)? T, F)? Fla F/)f(ftJ, CtJ)d(ftJ, CtJ)
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Then, as A — 0,

OB[s; (135", F') |20y = 2]

axth:

053" (s3.(—aps(0,\);T, F); T, F') | [0s3.(—aps(0,A);T, F)] ps Br
= ' - — ' R 0, VA (A + —x31; f)dA.

wf [ 9201 900 oy NI i)
Because moment conditions (B.23) holds for all z; € D,, and D,, is an open set, we obtain that:
3E[5;1(3tJ,§F/,F/)|$th = x] _ 7a,OIE[th|:Eth = xg] + A

O35 0z434,

—1 _ . LTV AW _ . /! Pa / /
— / ({585. (s.( OépJa(‘j;JA)vRF)»T ) 9sa.( apg(gg’ ML F) 21} %(O, N+ (% - %) 1) An(h+ %xm;f)d)\ =0,

for x, € Dg,. The proof of the sufficiency is completed. One can reverse the arguments of the
sufficiency to obtain the necessity part. O

Unique Solution for the Convolution Equation (B.24) and Identification of Product-Level
Market Share Functions. Define

0 ={(d, B, T, F") : (B.23) hold at (o, B, T, F') for z € Dy, },

and
O = {(d, B, T, F") : (B.24) holds for =}, € Dy, }

Theorem 18 establishes © = Op. Define 0%, = {(«/, 8, I", F') : H(;;d/, 8;,,I", F') = 0}. Note that
the true parameters («, g, I', F') € @% C ©p = O. Then, a necessary condition for the identification
of (o, Bk, I, F) by moment conditions (B.23), i.e. © = {(a, Bk, I, F)}, is Y = O, ie. H =0 1is
the unique solution for convolution equation (B.24). This is the completeness of the location families
generated by Ag(-; few). Similar to Theorem 15, the next theorem characterizes the implications of
this completeness:

Theorem 19. Suppose that conditions of Theorem 18 hold.
1. If O = {(a, B, T, F)}, then 0% = Oy.
2. Suppose the following conditions hold:
(i). Forany (I', F') # (I, F), there exists 8 # 0% such that SJ(d_/];CL'g‘Q]),F,F) = SJ(éﬁ;mg),F’,F’)
and s,;(é&’;a:g),f‘,F) = 83(5g;x£§),F’7F’).
i1). For such feasible 8 and 8 in Condition (i), there exist a pair (8%,07) such that 8% — 6% and
(1) J J J: 93 J 93
t' —t" are not collinear, where t' and t” are defined as —apz(0,t") = 05 for t" =1t',t".
If 0% = Oy, then a, By, and sy.(:; acg),I’, F) are identified.

Remark 12. While Condition (i) of Theorem 19 is the same as that in the second statement of
Theorem 15, Condition (it) further requires non-collinearity between 85 — 065 and t' —t", where t' and t”
satisfy —apy(0,t7) = 85, t7 =t',t". Typically, py(-) is highly nonlinear and this additional requirement
is satisfied.
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Proof. For the first statement, if © = {(«, Bk, T, F)}, then 0% = Oy = {(a, By, T, F)}.
For the second statement, note that if H(-;a/, 5, I, F') = 0, then there exists a constant vector v
such that

/
sy (—api3(0,t); T, F) = s3. <—0/th(0, t)+ (of — gka)t + ;T F’> , (B.25)
k
for any t € R’. Similar to the arguments in the proof of Theorem 15, (B.25) holds for all p}; € R:
/. _ /1 / 5]; LT /
sy (—apy; T F) =s3. | —a'pyy + (o — Fa)t +u; T, F ), (B.26)
k

According to Condition (i) of Theorem 19, given (I, F'), there exist at least two 0 # 05 such that
53.(05; T, F) = s3.(05; T, F') and s3. (05; T, F) = s5.(65; I, F'). Then, combining these with (B.26), we
obtain:

/ /
53.(05; T, F) = SJ,(OZ—(S.'] + (o — ﬁcz)t/ +u; IV, F') = s5.(05:; T/, F'),
o k
1, . 047, " /7/872; " oy ",
s3.(05; T, F) = s3.(—03 + (« a)t’" +u; I F) = s3.(05; 17, F').
«Q k
Because sy (+; 7, F”) is bijective, we obtain that
a/ B/
—8 + (o — ZEa)t + v = 8,
i+ (0! = St 40 = 3
Oé/ B/
75//+ a/_ika t//—i_U:(S,/.
55+ (0!~ Fha) j

Then, (%l - 1)(8f = &%) + (¢ — %a)(t’ —t") = 0. Due to the non-collinearity of Condition (ii) in
Theorem 19, we can find (0%, 65) such that 65 — 0 and ¢’ —¢” are not collinear. Consequently, for such
a pair, we must have @ = o’ and 8, = (). Then, v = 0 and the identification of the product-level
market share functions follows from (B.26), v =0, a = o/, and S = ' O

Sufficient Conditions for the Completeness of Location Families. In general, depending on
regularities of H(-) (bounded, polynomially bounded, integrable with respect to Ag(-), etc.), the
completeness of location families can be achieved with different sufficient conditions on Ag(-) (and
hence on f¢,,) and large-support condition D,, = RY. The following theorem establishes two sets of
sufficient conditions for H(-) = 0 being the unique solution to (B.24):

Theorem 20. Suppose that (B.24) holds for x;, € R7.
o If fe . is Gaussian, then @% =0y.

e Suppose that the data gemerating process is a model of multiple choice of products across K
categories (see section 2.2.2). Then, under regularity condition 5, @9{ = 0Opg.

Proof. The proof of the first statement is the same as the first statement of Theorem 16. For the second
statement, note that H defined in equation (B.24) only depends on functional p3(0,t).” Therefore,
(B.24) defines a convolution equation. In this proof, I assume the following regularity conditions:

-1
"Note that 55‘} (0,¢) can be written as [ oc (07pJ(0,t))] .

Opty
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Condition 5.

(i). The characteristics function of Ay do not vanish on R,
(7).
(11i). Suppose that (T, F') is such that for each category k =1, ..., K, there exists l, > 0 such that

f(l - Zje.]k Sij-) HjEJk Sij.dF(ei) >
(L =2>"jes, 950 jes, 35 B

Gl (o,t)’ e L®(RY).

uniformly for 3 € RY.

As argued by D’Haultfoeuille (2011), Condition 5(i), i.e, zero-freeness, is an usual assumption in
deconvolution problem and many commonly used distributions satisfy this condition. Moreover, classic
results on bounded completeness show that the location families generated by Ag(-; f¢ ) is bounded
complete if and only if this condition holds (see Theorem 2.1 of Mattner (1993) and Ghosh et al.
(1966)). Consequently, under this zero-freeness condition, as long as H(-) € L>(R”) and (B.24) holds
for x;, € R’, we obtain H(-) = 0 and the proof will be completed.

To prove that H is bounded, i.e. H(-) € L®(R’), T require Condition 5(ii). Condition 5(iii)
restricts the family of (I', ). This family includes many distributions with compact support (e.g., F' is
degenerated). In what follows, given Conditions 5(i)-(iii), I prove H(-) € L>=(R”). It suffices to prove
the following lemma:

Lemma 10. ) ) )
953 (53 (6,3; 22 T, F); 22 TV F') 0s5.(813; 22, T, F)
adt,], 85t_]

€ L™ (RY).

Proof. Since xg) is fixed, I drop this notation in the proof. For product category k, denote the market
share of the outside option in category k by 4§ = 1 — ZjeJk 4j.. The key of the proof relies on the

following “pseudo” demand inverse defined in each category k: for j € Jy,

j.
~_1 ]
S (93,.) = lnd—k,
0
J 3
500yt = (2t ).
0 0
and
65J1 e(SJK
5(5‘]1’“.’5‘]1{) - FPERED) = .
L+, @7 T Sy, o
Note that

953 (53.(03; T, F); TV, F') Ds3 (8033 T, F)  [85 1 (43,.) s3.(8)5; T, F')] 7 [957 Y (43,.) Ds5.(0,3; T, F)
8315,]_ (9(5,5‘] N 83,]1 85t_j GJJJ_ (9(515.] ’

_— .
where &5 = s7'(s3.(63; T, F); I, F'). In what follows, I show that both [658;‘4“‘1‘) 65J»(6‘5(§3JF’F)] and
: >

[ag—%,) 9s3.(6,:" F")

-1
Jis, 95 } are uniformly bounded for 6,5 € R”.
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=1
First, w is block-wise diagonal: w = Diag(D;, ..., Dk ), where Dy, = Dlag( )Jejk +
J-

035 ;.
~—1 . U 4 /
1 1,..., 1)T(1’ ..., 1). Consequently, |:836é‘(]ﬁ.]‘]‘) BSJ.((%;,RF)} (and [asaj‘(]ﬁ.]‘]‘) 9s3. (051", F") ) is block—w1se
J- J-

ék 861
dlagonal

957 1(33,) 953 (63;T, F)
8JJJ. aCStJ

where Ej, = Dy, [(Diag(si;.)jeq, — (Sij-)jTeJk (8ij.)je3,,)dF(0;). Then, it suffices to prove that each block

‘ . 8571(5‘11) 0s3.(6¢3;T,F)
E}, is uniformly bounded to prove [ 931 . 903

the inverse of Fj, is uniformly bounded and the bound does not depend on (I', F'). As a consequence,

95 1(s3,.) 0 L .
[ ® 5 Jg 1) 953.09; T )} is also uniformly bounded.
.

:| = Diag(El, ...,EK),

} is uniformly bounded. I will also prove that

For diagonal elements in ek in Fy, take j = 1 in category k as example:

1 1
ellcl - I <31. — /s?l'dF> + oF /311 Z 5ij.
. 0

JEJK

1 — i1 — dF
zl—j/szzldF_f‘dl f(81( S) )

46

_1—/ s dF + fs“slodF

It is bounded by 2, with the sum of first two terms bounded by 1 and the last term by 1. Similarly,

for off-diagonal elements e]: in Fj, without loss of generality, take 5 = 1,7 = 2. Then, I obtain

et = _Jsnsipdf [ se. S’O . It is also bounded by 2. Therefore, E} is uniformly bounded.

J1. JO

I now prove that the inverse of Ej is also uniformly bounded. I make use of the adjugate form

of matrix inverse Ek_1 = )adJ(Ek) where adj(Ey) is the ajudgate matrix of Ej. Because Fj is

I)et(
uniformly bounded, then adj(E}) is also uniformly bounded. Then, it suffices to show that m is
uniformly bounded away from zero. Recall that Ey, = Dy, [(Diag(si;.) ed, — (Sij-)jTeJk (8i5.)je3,,)dF(0;).

Then,
Det(Ey) = Det(Dy)Det (/(Diag(sz‘j.)jeh - (Sij-);reJk(Sij-)jEJk)dF(ei)) :

Moreover, by Sylvester’s determinant theorem, I obtain

1 41. I, \T
Det(Dy,) = =—— Det (IJ,XJ T (1,...,1)>
IIJGJkdj' e jg dg
= ———Det (1 + (1, e, (= ey =) >

1

= 7]@ ' .
35 [ Ljea, %

For the determinant of [(Diag(si;.)jes, — (Sij)gTeJk (8ij.)jea,,)dF(0;), note that every square matrix
inside the integral is positive-definite. Then, due to the super-additivity of determinant for positive-
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definite matrices and Sylvester’s determinant theorem:

Det (/(Diag(sij.)jeJk - (Sij.)]TeJk(Sij.)jeJk)dF(Qi)>
> / Det ((Diag(si;.)jex, — (8ij.)jes, (5i7.)jea,)) dF (6:)

= / sty [ sis.dF ().

JEIk
Finally, combining the formula of Det(Dj) and Condition 5(iii), I obtain:

/ 5?0 HjeJk sij.dF'(6;)
Jg HjeJk 3j.

Det(Ey) > > .

This implies that each element of E,- ! is bounded and the bound is independent of (I, F'). The proof
is completed. O

O

Combining Theorems 18-20, I obtain Theorem 17.

B.10 Complementary Approach of Identification

In this appendix, I provide a complementary identification argument that applies to cost shifters,
BLP instruments and exogenous product characteristics. Let wyy = (245, 25) jes = (wij)jes € W C
RE+L)*J denote the collection of exogenous product characteristics x¢; and additional instruments
ztj, where W denotes the support of w3, K is the dimension of x;;, and L is the dimension of z;.
Moment conditions (B.2) can then be written as:

- 2
E[Sjll(dt']';ng)yth7F’F)|th = w] = x]ﬁ —_ Oé]E[ptj"LUtJ — w] +77],

for j € J and for any w € W. Define wy = ({:c]TO,ijO})jT:LmJ € W as a reference point. For any
w € W, we have:

E[S;l(dtJ.;x£§)7tha Fa F)‘wt.] = w] - ]E[S;l(dt,],;fﬁg?]),pt.], F, F)\wt.] = wo]

= (75 — xj0)B — a (Elpj|lwig = w] — E[pj|lwig = wo)) -

Ti— Zip
= (87, -« A
( ) Elpijlwiy = w] — Elpyjlwiy = wol
and then:

E[Sj_,l(dt‘].;mgi)vpt.lv Fa F)‘wt.] = w} - E[SII(JtJ,;I’gi),pt‘],F,F)‘wt‘] = wo]
(_17 BT7_O4) Tj — Tj0 =0
Elptjlwis = w] — Elpjlwiy = wo)
(B.27)
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Equation (B.27) provides a necessary condition for the identification of (I', F): there exists some /3
and «, such that for any w € W, (I', F') satisfies (B.27). More in general, define

E[Sj__l(ﬁw.; xﬁ?,pw, L, F)|wg = w] — E[sj__l(dtl; xg),pw, T, F)|wig = wo)
AT, F;w) = z; — 50 € RIE+2)xJ
Elpejlwes = w] — E[pejlweg = wol ie3
and
AL, F; W) = (AT, Fyw))yew: € REFDXIIWD, (B.28)
for a finite subset W’ of W. Then, the true parameters (I, F') satisfy that the minimal eigenvalue of
the symmetric semi-positive definite matrix A(T, F; W)A(T, F; W)T e RE+2X(E+2) i5 zero for any
finite subset W’ of W. Let Apin[P] denote the minimal eigenvalue of square matrix P. The following
Lemma illustrates more variations in w help identification of (T', F):

Lemma 11. A\ [A(T, F'; W) AT, F'; Wo) 1) > Mpin[AT, F'; W) AT, F'; W) 1, for any (T, F')
and W1 Q W2.

Proof. Note that A(I", F'; W3) = [A(T", F'; W1), A(I", F/; W5 \ W})]. Then,
A F',Wo) A F'; Wo)t = A, F/, W) AL, F/, W) b
+ A", F'; Wy \ WA, F/; Wy \ W) T.

Because A(I", F'; Wo \ W) A(I", F’; Wy \ W1)7T is semi-positive definite, then for the unit eigenvector
v € R7*! that corresponds to the minimal eigenvalue of A(I”, F'; Wo)A(I", F'; W5)T | 1 obtain:
Amin[A(T, F'; W) AT, F/; WQ)T] = ’UTA(F/, F'yWo) AT, F'; WQ)TU
> T A, F'; W) AT, F'; W) T
> Amin[A(, F'; W) AT, F'; W) ).

The next theorem gives a sufficient condition for the identification of (T, F'):

Theorem 21. If for any (I', F') # (T, F), there exists a set W' such that
Amin[ AT, F'; WHAT, F'; WHT] > 0.
Then (T, F) is identified.

Lemma 11 illustrates the intuition that more variations in instruments help identification. Then, the
sufficient condition in Theorem 21 requires useful variations in wyy that can distinguish (I, F") # (T, F)
from (T, F) by shifting the minimal eigenvalue of A(I”, F’; W/)A(I', F'; W')* up to positive. This
identification argument is not constructive. However, it does not require additional restrictions on the

support of w;jy.



APPENDIX C

Appendix to Chapter 3

C.1 A Micro-foundation of Assumption 1

In this section, we provide a set of assumptions that can rationalize Assumption 1. Suppose that
consumers arrive randomly and the arrival process for destination d, Agr(.), follows a non-homogeneous

Poisson process:
i L (Aar(t+h) — Aar(t) = 1)
h—0 h

- )\dT (t)7
where A\gp(t) is train-time-destination specific arrival rate.

Assumption 5. (Consumers’ arrival) A\gp(t) = Eqvr(t) for (d,t) € {a,b} x[0,1]. Given vy(.), Aar(.)
and Apr(.) are independent. Also, &, = 1.

Assumption 5 states that the temporal profile of consumers’ arrival (namely, v7(.)) is the same for
both destinations. his assumption, combined with our restriction on consumers’ valuation, generates
the stochastic consumers’ demand in Assumption 1. Next, we impose the following condition on
consumers’ valuations. Hereafter, we let x A y denotes the minimum between x and y.

Assumption 6. (Consumers’ valuation) The valuation Vi of a random consumer arriving at t € [0, 1]
and intending to buy a ticket for d € {a,b} satisfies

—&
v
-1 (i)
vp(t)
for some € > 0. Moreover, for all t € [0,1] and all trains, vy (t) < par. Finally, the valuation of a
given consumer are constant or decreasing over time.

Hence, valuations are supposed to be distributed according to a Pareto distribution, with parame-
ters € and vp(t).

The final restriction in Assumption 6 is that consumers’ valuation are weakly decreasing over time.
Under this assumption, a consumer arriving at date t decides immediately either to buy the ticket
or to leave forever. He will have no incentive to wait, since prices are increasing and his valuation is

weakly decreasing over time.!

Given the assumptions above, the demand Dgyr(t,t'; pg) for destination d € {a,b} between t > 0
and ¢’ € [t,1] and served by train T satisfies

Dar(t,t';pq) ~ P (Br(t, t)éapy)

'In this sense, this differs from that of Li et al. (2014), where prices may decrease over time, and therefore consumers
have incentive to delay their purchases.
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where By(t,t') = ftt/ vp(uw)fvp(u)du. Given Byp(t,t'), the independence of Dyr(t,t'; pg) across d comes
from the independence between A,p(.) and App and the independent decision making of consumers
arriving for destinations a and b.

C.2 Proof of Theorem 11

First, suppose that (3.2) holds for the stopping times satisfying Assumption 3. Because we can identify
the conditional distribution of nppp, we identify the function (pg,ps) — A(In(&) — eln(py/pa)) is
identified on the set & = UiiISupp(pakT,pakT). By monotonicity of A(:), we then recover In(&,) —
eln(py/pa) for (pa,pp) € D. Because the ratio In(py/p,) is not constant on P, we separately identify
In(&,) and e.

We now prove (3.2). First, note that because the realization of 74 is determined by the Poisson
process before 75, and is independent of Dgr(7k, Tk+1,; parr) for d € {a,b}, it suffices to show (3.2)
if 7, is replaced by any fixed number that we suppose equal to 0 without loss of generality. To ease
the exposition, we often omit the index T hereafter and define Ay = &pyS, p = Ma/(Aa + Ap) and
by = 0Br(0,t)/0t. We also introduce Dy, = Dgr(0, 7; parr) for d € {a,b}, D, = Dq -, + Dy -, and
T, = inf{t > 0: Dy > n} A 1. We will show that for all n > 1,

Dq +.|Ds,, Br(.,.) ~ Binomial (D, , p) . (C.1)

Given the previous discussion and because the right-hand side of (C.1) does not depend on Br(.,.),
(3.2) will follow from (C.1).

To prove (C.1), we introduce, for any n > 1, the hitting times o,, = inf{¢t € [0,1] : D; > n}, with
op = 21if D1 < n. Let us also fix t € (0,1) and let us partition the interval I = [¢, 1] into m intervals
I, ..., I, of equal length At = (1 —t)/m. Finally, for all ¢ < n, let

Pensk = Pr[Da g, = ¢|Dg, =n,0, € I]. (C.2)

By Lemma 12, there exists (¢, ¢, ), independent of k and m, such that for all £ =1,...,m,

—ci(14+n)At < pepk — (Z) p(1—p)" ¢ < ¢ At.

Moreover, we have

’;Cn:l Pr[Dayon = ¢, DUn =MN,0n S Ik]

Pr|D =c|D = T, € Il =
r[ a,on C‘ on = 1, 0n ] Z?:l PI'[DU,L =n,on € Ik]

€ min &, Mmax A
|:k 1 mpc,n7 ey mpc,n7

11111111

Consequently,

—c(1+n)At < Pr[Dgy, = ¢|Dy, =n,0, € I] — <n> Pl —p)" <At
c
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By letting m — oo and then let ¢ — 0, we obtain
PilDus, = Az, = o <1 = (1) 1= (©3)
c

Now, because D, = nif and only if 0, < 1, we obtain (C.1) in this case. Further, because D,, =n' <n
if and only if D1 = n’ and o, = 2, we have

Pr[Dq.r, = c|D., =n'] = Pr[Dy1 = ¢|D1 =1, 0, = 2]
=Pr[Dg1 = c|D; =n/]

()

Thus, (C.1) also holds when D, =n/, n" < n. The result follows.

C.3 Expressions for the counterfactual revenues

In this appendix, we list the formulas for the counterfactual revenues. The proofs of these formulas
can be found in section C.7 in the Online Appendix. The formulas are given conditional on X7 and for
simplicity, we assume here that Cr = C, a constant; if not, the results should just be seen conditional
on Cr. We both consider arbitrary distributions for By and the gamma distribution in Assumption 2.
Finally, D(q) denotes a random variable satisfying D(q) ~ 2(q) and gy, is the density of the I'(\, 1)
distribution.

C.3.1 Complete information

We display the general formulas; those under Assumption 2 are the same up to a single change, namely
1 _
E[B}|X1] = exp(Xf8o/e)g /T (Ao +1/2) /T (ho).

1
Uniform pricing R, = max,> {q_%E[D(q) A C]} [€a + §b]éE[B§|XT].

1
Full-dynamic pricing R} = af (& + fb]%IE[B:ﬂXT], where of ; = 0 and for all k > 1, aj , =
(o —af1 ) = (1- 1/e)" .

L 1
Stopping-time pricing RS = acc,s[ga + &)= E[Bf|Xr], where af ; = 0 and for all k£ > 1,

1
aj, s = max {qi(l —e 1)+ QE—LS/ qe *1(1 — s)ids} )
q>0 0
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1 1
Stopping-time pricing with M fares R, = a¢ / [§o + &)= E[Bf | Xr], where a¢,  ,, = maxg>o ac,m (),

aro(q) = ¢ *E[D(q) A k] and for all k € {1,..,C},

1 ) )
() = { [ a7 47 @y a1~ )1 - )]

max/ol e~ [q—% + g tmo1(q(1 — 2))(1 — z)%} dz}.

q>0

o =

1
Stopping-time pricing with M increasing fares R{), = af ., [0 + &) E[Bf|X7], where

QG M4 = MAXg>0 ag,M(q) with a/:r,o(Q) = ag,o(q) and

1 1 1
oaf (@) =maxsq [ e |qg = +a |, o p(a(1—2)(1-2)F|dz,
, ; mA(k—1)

1
max o/ [0 [ oy, (- 2)(1- ) de).
a'e(04]  Jo ’

C.3.2 Incomplete Information

1
€

Uniform pricing R! = [¢, + &)< max,~o {fR+ qfiE[D(qz) A C]f(z)dz} .

Full-dynamic pricing Under Assumption 2, R} = ag, ;(Xo) (€ + &) exp(X1B0)/10) "5, where
aé7f(A) = 0 for any A > 0 and for all k € {1,...,C},

1

aj, f(A) = A <1 - €>€1 [—a};_lvf(A + 1)+ (1 + Als)a;;vf(A)] H.

Stopping-time pricing R = ozicﬁ(f) (€ + fb]%, where af)’s(f) =0 and for any k € {1,..,C},

k) =maga [ [+ (0w al (1 00 [

and T'(f;q) is a transformation of density function f defined in Lemma 13 below. Under Assumption
2

?

o |=

(ga + gb)eXTﬁ())
Ho

R = iy, (M) (

where aas()\) =0 for A >0, and for all k € {1,...,C},

ds.

1 1
. A 1 1—s5\¢ .
L) = — 2 g4+ (—2) o (A+1
s (A) 131133<Q/0 AT gs) [q + (1+q8> Wpo1,s(A+1)



C.3. Expressions for the counterfactual revenues 151

o |

Stopping-time pricing with M fares Ms(M, ) =ai (f) [ + &)
and for all k, cxo(q, f) = q: JE[D(qz) A k]f(2)dz and

, where aiM(f) = maxg>o0 co,m (g, f)

1
chnlaef) = mac{a [ [ 2= @)z [ a0 = 0. T qu)

1
<1—u>}mtnqu/‘/éeﬁwaqu'”@+%lmlmdu—ux

q'>0

T(f;¢w)(1 - u)* | du}

for any m € {1,...,k}, T being the same transform as in the case of stopping-time pricing. Further
under Assumption 2,

(§a + §b)€XTﬁO] :

ZMwwmm=¢MMﬂ
Ho

where () = maxg>o con(g, ) with, for all k, cxo(g, \) = qfi JE[D(gz) A klgx1(z)dz and for all

ke{l,..,C}and all m € {1, ..., k},
) 1- 1—u\*
q c +Ck71,m/\(k71) (qf +qz)a)‘+ 1) (1 _’_q/l/;) ] d’U/,

1
A
Chom (Qs A) =maX{Q/O 0+ qurt
1 1
A 1 qd(1—u) 1—u \*
! P EE—— a —1,m— 7A 1 d .
720! /0 I+ qurt |4 G- ( Trgu "7 1+ qu “

Stopping-time pricing with M increasing fares R.,  (M,f) = o, (C) [§a+§b]%, where
o/asMJr = maxg>0 caM(q, f) with, for any k € {0, ...,C}, C:,O(‘L f) =ckol(q, f) and for any m > 1,

1
Cﬁﬁmﬁznm{qﬁL/w”wﬂdwh*“+¢gmmcMﬂbﬂmTUmw)

(1—U) du qrg(zgz]Q/ / ze P f(z ['_1/5+C£1,m71(Q’(1—U)7

T(f;qw)(1 - w)* |du

Under Assumption 2, we have

<&+m&ﬂji

Ripr (M, Mo, o) = alpry (No) [ o

where aiMJr(/\) = maXy>0 caM(q, A) with c;m(q, A) = c;m(q, gx1) as defined above. Further, we have

the following simplifications:
(-w 1—u))*
_1 q —u \°©
q +c;:—1,'m/\(k'—1) ( 1+ )‘+ ) < +qu> ] du7

1
A
e ,A) = max / —_—
rim{(0:3) Jy Trqup
1
1 q(1—u) 1—u \¢
q/ 5"‘6;:71,77171 (]-_’_q/u,)\—Fl 1+q/u du ;.

—_

! A
max q’/ —
7€0,q " Jo (14 qu)rt?
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C.4 Demand Estimation with Aggregated Data

The difference between our results and those from studies relying on aggregated data comes precisely
from the fact that we dispose of micro-level data. The approach based on aggregate data is likely to to
bias upwards the price-elasticity estimates. Average prices are endogenous, since the weights associated
to each price or, equivalently, to each fare class, is fully driven by the demand. Basically, trains in
high demand are likely to have a few number of seats available at a low price, resulting in a higher
average price. To illustrate this point, we aggregate our micro data and estimate the corresponding
price elasticities. For instance, we propose to aggregate data over fare classes at the train level, and
thus to consider an average price for every train. Then we regress the logarithm of total purchases on
the logarithm of this average price.

We first aggregate the data at the train and destination level. Let Qg4 be the total quantity of
tickets purchased for destination d in the train T, Q41 = Zszl ngrr- The corresponding average price
Dyt 15 given by:

S NAkTPAkT
ST nawr

We then consider a constant elasticity demand model with train fixed effects:

Dar =

In(Qqar) = —¢ Wn(py) + 97 + &q + var. (C.4)

As in our main specification, &; accounts for a destination-specific component.

We then aggregate further our data at the train level, by considering Q1 = Q.7 + Qpr and defining
the corresponding average price:

K

 Dodefab) 2ko1 NdkPdkT

o K
Dodefap) 2okt Nk

We consider a similar model as (C.4), except that at that level of aggregation, we cannot include train

pr

and destination fixed effects. Instead, we include day of departure and route fixed effects:

In(Qr) = —eln(pr) + &) + &e(1) + V1 (C.5)

where ¢(T') and 7(T") denote the day of departure and the route of train 7. Finally, the most aggregated
approach consists in aggregating these demands at a weekly or monthly level, either by train route or
at the national level.

Results are given in Table C.1. The first line presents the price elasticity estimate for the less
disagregated specification. Strikingly, the estimate (—1.02) is already much higher than ours. It is
close to the estimate of -0.70 obtained by Sauvant (2002) on SNCF aggregated data. By aggregating
further at the train level, we exacerbate the bias and obtain already a positive coefficient (0.15).
Aggregating further at the week or at the month level increases further the coefficient, up to 1.14.
Using data aggregated at the national level leads to somewhat lower coefficients, but still positive ones
(0.14 and 0.56 for weekly and monthly data, respectively).
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Table C.1: Estimated price elasticities with aggregated data

Model Price elasticity
Train and destination level (Equation (C.4)) —1.02
(0.24)
Train level (Equati C.5 0.15
rain level (Equation (C.5)) &3
Weekx line level 0.29
(0.12)
Month x line level 1.14
(0.40)
Week level (whole France) 0.14
(0.09)
Month (France) 0.56
(0.33)

Notes. We refer to the text for o detailed explanation of each model

C.5 Robustness check: lognormal distribution on np

Table C.2: Average revenues under optimal pricing strategies: robustness check

Scenarios Estimate 95% CI
(in thousands of €)
Observed pricing strategy 12.21 [12.06, 12.36]
Optimal uniform pricing strategy
incomplete information, constrained prices [9.67, 11.28]
incomplete information, unconstrained prices [9.73, 11.35]
complete information, constrained prices [12.33, 14.22]
complete information, unconstrained prices [12.94, 15.10]
% of information needed to attain the observed revenue? [59.65%, 99.65%)|
Optimal “full” dynamic pricing strategy
complete information [13.18, 15.38]

Notes: With “constrained prices” (resp. “unconstrained prices”), optimization is conducted over the actual
price grid (resp. over all positive real numbers). Revenues are averaged over all lines. We use bootstrap
(500) to compute CI for observed revenue. To compute 95% CIs of other expected revenues under different
counterfactuals, we use the GMS procedure and projection method.
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Online Appendix

C.6 A key lemma for Theorem 11

We use below the notation introduced in Theorem 11.

Lemma 12. Suppose that Assumption 1 holds. Then, there exists ¢; and c,, independent of k and m,
such that for all k =1,...,m,

— (1 +n)At < pepi — (Z) P —p)" ¢ < e At (C.6)

Proof. First, observe that {0y, € Iy} = {Dip—1)at <N, Dyykas > n}. Then

[Da.s, = ¢, Dy, =n,op, € Ii]
=Pr[Dog, = ¢, Do, =1, Diy(i—1)at <1, Dyyiar > 1)
[Dao, = ¢ Do, =1, Dy (ki—1yar =1 — 1, Diygar > 1l
+Pr[Dy, = ¢, Do, =1, Dy u—1yar <n —1, Dyypae > 1) (C.7)

We first show that the second term in (C.7) is negligible, as being of order (At)2. Simple algebra shows
that if U ~ P(\), then Pr(U > 2) < A%, Hence,
Pr[Dyg, = ¢, Dy, =1, Dypu—yar <n —1, Dyppar > 1)
<Pr[Diykar — Digk—1)at > 2]

N 2
(M + \) / bds

t+(k—1)At

<

< [(ha + M)A,
where b = sup;¢(g 1 b Now, the first term in (C.7) satisfies:

Pr[Dqyg, = ¢, Dy, = n, D;+(k—1)At =n—1, Diipas > n
=Pr[Dy,0, =n, Dy, =n, D;+(k—1)At =n—1, Diipas = n|

+Pr[Dy, = ¢, Dy, = n, Dy (k—1yae =n—1, Diyrar > nl,
where the second term can be similarly controlled as above:

Pr[Dgq, = ¢, Dy, =n, D§+(k—1)At =n—1, Diipar > n] < Pr[Dyppas — Dt-&-(k—l)At > 2]
< [(ha + Mp)bAL%.
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As a consequence,

Pr[Da,crn =¢, Dy, =n, D§+(k—1)At =n—1, Dyppar = n|
<Pr[Dgyq, = ¢, Dy, =n,0, € Ij]
<Pr[Dp, =c¢, Dy, =n, DH(k—l)At =n—1, Dyipas = n)
+2[(Aa + Ap)bJ* (AL)?. (C.8)

Now, we have

Pr[Dqg, = ¢, Dy, = n, D;+(k—1)At =n—1, Diipar = nl
= Pr[Da,an = ¢, Diypar = n, D§+(k—1)At =n—1]
Pr[Da,an =C, D§+kAt =n, D§+(k71)At =N — 1}

=Pr[Doc, = ¢, Ditkar =1, Di1yae =1 — 1, Dy e—1)ae = ¢ — 1]
+ Pr[Dqoq, =c, Diykat = n, D§+(k71)At =n-—1, Da,§+(k71)At = (|
=Pr[Dogrrar = ¢ Divkar =1, Dipe—1yar =1 — 1, Dogpo—nyae = ¢ — 1]

+Pr[Dggykat = ¢, Dirpar =1, Dipg—vyar =1 — 1, Dy iy (e—1)at = |- (C.9)

Now, by independence between (Dy)i>0 and (Dp+)i>0, and independence between Dy 15 — Dgy and
Dgy for all s >0 and d € {a, b},

Pr[Dosikat = ¢, Dyykar =1, Dipe—1yar =n — 1, Do qk—1yar = ¢ — 1]
=Pr[Dy sy -1)at = ¢ — Y Pr[Dagrkar = ¢| Doy (k-1)ae = ¢ — 1]

X Pr[Dy i (—1yae = n — | Pr[Dy g rine = n — | Dy 4 (i—1yae = 1 — ¢

n—1
A E (ST DR ) thRAL N
— ' ' exp {—()\a + ) / bsds} / bsds.
(n—c)l(c—1)! 0 t+(k—1)At

Similarly,

Pr[Dgtikat = ¢, Dyykar =1, Dipe—1yar =1 — 1, Doty k—1)at = ¢
n—1

)\2)\;}*0 ( 0;+(k:—1)At bsd.s) t+kAt t+kAL
- = exp {—()\a + )\b)/ bsds}/ bsds.
(n —c—1)l! 0 t+(k—1)At

By plugging the last two equalities into (C.9), we obtain

Pr[Dyo, = ¢, Dypkar =1, Dipe-1yac =n — 1]

n—1
nAGN) ¢ (foﬁ(k_l)m bsds> t+kAL t+kAL
— o exp {—()\a + \p) / bsds} (Ao + Np) / bsds.
(n —o)le! 0 t+(k—1)At
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Inequality (C.8) then becomes

nAE \P—¢ t4+(E—1)At bst n—1 t+kAL t+kAtL
A Uy = ) exp{—(A\a + )\b)/ beds}(Ng + /\b)/ beds
(n—c)le! 0 t+(k—1)At
<P(Dqyp, = ¢, Dy, =n,0p € Ii)
nAE N\ ¢ t+(k—1)At bst n—1 t+kAL t+EAL
< Uo = ) exp{—(\s + )\b)/ beds}(Aq + /\b)/ beds
(n—c)le! 0 t+(k—1)At
+2[(Aa + Ap)B]* (At). (C.10)

By summing (C.10) over ¢ = 0,1,...,n, we obtain

n(Aa + Ap) (fEFEDR ggyn—t
n!

<P(D,, =n,o, € I)

(Aa + Ap)(fEFEDA ggyn—t
n!

t+EAL kAL
exp{—(A\a + \p) / bsds}(Aa + Ap) / bsds
0 t+(k—1)At

n
<

L kAL t4+kAL
exp{—(Aa + A) / beds} (e + Ny) / b.ds.
0 t+(k—1)At

+2(n + 1)[(Aa + Xo)0)%(AL)2. (C.11)

By combining (C.10), (C.11), and (C.2), we obtain the following inequalities:

n
a1+ A < e ()1 0 < (A,

where

2(n + 1)[(Aa + Ap)B]?

exp{—(Aa + A\p) 0§+kAt bsds}(Aa + Ap) fj&éﬁmt bsds

Crf =
" n(Aat+Ap)" (JoH F DA pds)n -1

n!

n _
Clk = Crk <C>PC(1 —p)" "

Finally, note that ¢, At < ¢, where

_ 200+ D[ + M)BP exp{(ha + M) fy bads}

n((t s)n—
Qo t ) g badS)™ 7 ) L3 inf e b

n!

r

Moreover, ¢, does not depend on k and m. Finally, defining ¢; = ¢, (Z) p¢(1—p)"~ €, ¢; does not depend
on k and m either, and (C.6) holds for all k =1,...,m.
O

C.7 Proof of Theorem 10

We show the formulas in Appendix C.3, which also proves the theorem. Given the numerous formulas,
the proof is long but two key properties that hold in all cases are worth mentioning. First, because
the demands for the two destinations are independent (Assumption 1) and the revenue management
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is implemented at the train rather than at the train-destination level (Assumption 3), revenues only
depend on the total demand at the train level and on a weighted average of the two prices corresponding
to the two destinations. Second, as a consequence of the first point, the optimal prices for both
destinations can be proved to be equal. We then have only one control variable, i.e. the price for both
destinations, in the Bellman equations. Finally, as in Appendix C.3, we always reason (implicitly)
conditional on (Xp,Cr) and let C = Cp and D(q) ~ P(q). Additionally, we let p = (pq,pp) and
define Dp(t,t';p) = Dar(t,t'; pa) + Dyr(t,t'; pp).

C.7.1 Complete Information

Uniform pricing Given By, the revenue under uniform prices p = (pg, py) for destinations a and b
is

R; (p, Br) = E[paDar(0,7¢ A 1504) + ppDyr (0, 7¢ A 15 py) | B, (C.12)

where 7¢ = inf{t : D,7(0,¢;ps) + Dyr(0,t;pp) > C} is the stopping time of selling out all C' seats.
Then, from (C.12), we obtain

Ry (p, Br) =E[E[peDo7(0,7¢ A 1;p4) + poDyr(0, 7¢ A 1;p)| B, D1 (0, 7 A 15 p))| B
=E [po D71 (0, 7¢ A 1;p) + (pp — pa)E[Dpr (0, 7¢ A 1; )| Br, Dr(0,7¢ A 1;p)]| Br] -

Moreover, by Equation (C.1),

—€
DbT(Oa TC N\ 17pb)|BT> DT(OvTC A 1ap) ~ Binomial <DT(0a oA 17p)7 _E—bpb_g> .
§aPa +§bpb
Consequently, E[Dyr(0,7¢ A 1;p)|Br, Dr(0,7¢ A 1;p)] = %DT(O,TC A 1;p). Moreover,
aPa bPy
D7 (0,7¢ A 1;p) = Dp(0,1;p) A C. Then,

ElpaDar (0, 7c A 1;pa) + ppDyr (0, 7¢ A 15 pp) | Br, D7 (0, 70 A 1; p)]
:fap}fs + gbpll,_g
§aPa® + &0y ©

Hence,

_ &aba 6P,
gap(;a + gbpb_s

Hence, given &up;° + &py, ©, the maximum of Rf(p, Br) is determined by and increasing with respect

to Eupl=c + pré_s. Therefore, it suffices to maximize £,pl=¢ + §bpl1)_5 given &,p; © + &py, ©. The unique
solution to this problem satisfies p, = pp. Then,

RZ(p> BT) E[DT(O>1ap) /\C|BT]7

RZ(BT) = max cht(pv b, BT)
p>0

= max pE[D((&, + &)p " Br) A C|Br].
p>0

We obtain the result by defining ¢ = (&, + &)p~°Br and integrate over Brp.
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Full dynamic pricing. Denote by Vi (¢, p) the expected revenue when there remains k vacant seats
before the departure and the current seat is priced at p = (pq,pp) at time 1 — ¢. Let us denote its
optimal value by V;*(t). Define br(t) = limy 4 Br(t,t')/(t' —t). From 1—t to 1 —t+ At, the probability

Eapa” “+Ebpy ©
fapgs""gbpb_g
is sold. With probability o(At), more than one seats are sold. Then, following Gallego and Van Ryzin

(1994) (Section 2.2.1 on page 1004), we have:

of selling one seat is by (1 —t)(£ap, © + &py, ) At + 0(At) and generates revenue if one seat

fap}fs + gbpzl)_a
fapgs + fbpzjs

[ = (1 = )(Eapa® + &py VAV (L= AL + o(AD) }. (C.13)

Vi (t) = max {bT(l —t)(€ape © + Ebpy, ©) AL (

Pa;pp>0

+ Vi (t— At))

Letting At — 0, this equation shows that V' is continuous. Further, by considering (V;*(t) — V*(t —
At))/At and letting At — 0, we obtain that V;* is differentiable, with

gaptll—a + fbpéis
gap;s + gbpb_5

Vi (t) = max bp(1 —t)(&apy® + &opy ©)
Pa,pp>0

+ Vil (1) = Vi (@)

The maximum on the right-hand side is obtained with p, = pp. As a result,
V' (t) = maxbr(1 = )(6a + &)p ™ [p+ Vi () = Vi ()], (C.14)

with boundary conditions V;*(0) = 0 for any £ = 1,...,C and V*(t,0) = 0 for any ¢ € [0,1]. As a
consequence, the optimal price pj, can be obtained from the first-order condition of the right-hand

side of (C.14): .

P = ——7 Vi @®) = Vil (0] - (C.15)

By plugging p}, into (C.14) and using Br(t,1) = j;l br(s)ds, we obtain:

ga‘i‘gb

e—1

Ve = o1 - e S (10 1) i - v o) (.16)

where 0; By denotes the derivative of Br with respect to its j-th argument. We now prove by induction
on k that

1
€

Vi) = ag ¢[(&a + &) Br(1 —t,1)]

for all k € {0,...,C’}, with a$(0) = 0 and af ; = (af ; —a§_; ;)'~= (1 - 1),

€

(C.17)

The result holds for k = 0 since V{f(t) = 0. Next, suppose that (C.17) holds for £ —1 > 0 and let
us show that the result holds for k. By plugging this solution for £ — 1 into the differential equation
(C.14), we obtain:

Vk*,(t) = BlBT(l —t, 1)

fat fb (1 - i) [Vk*(t) — Oéz—l,f[(ga +&)Br(1 —t, 1)]%] e , (C.18)

with V;7(0) = 0. We can check that V;*(t) = af ;[(a + &)Br(1 — ¢, 1)]Y/# is a solution to (C.18).
1—¢
To show uniqueness, let ¢(v,z) = 5%1 (1 — %)E [v — az_ljzl/e . Consider the diffeomorphism
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z(t) = (& + &)Br(1 —t,1) and define V;*(2) = Vi*(¢(z)). Then, (C.18) can be written as

V' (2) = ¢(Vi (), 2), (C.19)

with V;*(0) = 0. It is enough to prove that V}* is the unique solution of (C.19) and we prove this
by contradiction. Suppose that there is another differentiable solution Vj(.) different from Vi(z) =
aéle/s. Without loss of~generalit}i, Vi(20) > V;*(20) for some zp > 0. Bec~ause Vk(O)_: ViE(0) = 0,
then 2, = sup{z < 2o : Vi(20) < V}/(20)} exists and 2, < z9. Moreover, Vi(2m) = Vi (2m). Then,
(C.19) implies the contradiction

0 < Viteo) = Vi (ao) = [ 0(Vi2),2) — 0(V (), )}z < 0,

where the second inequality follows from the fact that ¢ is a decreasing function of z and Vj(s) > Vi (s)
for all s € (2, 20]. Finally, we conclude that Vk*() is the unique solution. Hence, the result holds for
k, and (C.17) holds. By taking ¢t = 1,k = C and integrating over Br, we obtain the formula in Section
C.3.

Stopping-time pricing. Denote by Vi (t, p) the expected optimal revenue at time 1 —¢ when pricing
the next seat at p and with k remaining seats. In this scenario, prices do not change until the next
seat is sold. Define 7y p = inf{s > 0: Dy(1 —¢,1 —t + s;p) > 1}. Then,

Pr[Tl—t;p > 5] = PI'[D(l —t,1—t+ S7p) = O]
=exp{—Br(1 —t,1—t+s)(&ap, + &p; )}

and the density of 71_¢p is
Fricen(s) = (Eapa® +&py *)02Br(1 —t,1 — t 4 s)e” Pri-bImrro)Canatam, ), (C.20)

Then, the Bellman equation is

§ap¢117€ + fbpl%_e
1. — ® 4V (t—-Ti— ,
T1—t,p<t ( fapa £ _|_ é—bpb £ k 1( t P)

t 1— l—e

gapa € + gbp *

— [ o) (ST v () ) ds
0 §aba "~ + gbpb

t —e —€
— / (Eapa® + &op, )02 Br(1 —t,1 —t + s)e Bri—tl=t+s)(€apa"+6p, ")
0

% §apclfs + ‘prg_e
faptzs + gbpl;s

+ Vi (t— 8)) ds. (C.21)

l—e

Given &upy© + &p, ©, Vi(t,p) is maximized if and only if Eapi=e + &p, © is maximized. Again,
this implies that p, = py. Consequently, maxy, p,~0 Vi(t,p) = maxpso Vi(t,p,p). Let V() =
max,~o Vi(t,p,p). We now show by induction that

Vi (t) = aj s[(§a + &) Br(1 — t, 1)z, (C.22)
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where a$(0) = 0 and

1
Ozi,s—max{q 5(1—6 ) + af_ 15/ qesq(l—s);ds}.
0

q>0
The result holds for k = 0 since V(1 —t) = 0. Now, suppose that (C.22) is true for k —1 > 0. First,
by (C.21) and the fact that p, = p, = p at optimum, we have
Vi(t,p,p) = / (a4 &)p "0 Br(1 — 1,1 — t 4 s)e” Pri-tImtr) Gt
[p+ Vi (t—s)]ds (C.23)
By using the change of variable z = Bp(1 —t,1 —t+s)/Br(1 —t,1) and applying (C.22) for V;*_,(¢)
in Equation (C.23), we get
1 —&
Vii(t,p,p) = / (b + &) Br(1 —t,1)p e Pri-tDEra)p™e
0
1 C
(p+ (6 +&)Br(L = £, 1)(1 = 2)]Faf ) dz

1 1 1 1
=[(&a +&)Br(1 —t,1)]= <q_s(1 —e )+ a2173/0 qge” (1 — z)edz) ,

where ¢ = (&, + &) Br(1 —t,1)p~¢. As a consequence,

Vi(t) = max Vi(t,p,p)

1 1 1
(& + &)Br(— D) m x{q e ragy, | qe—qzu—z)sdz}

>0

= af J[(& + &) Br(1—t, 1)<,

and (C.22) is true for k. Thus, (C.22) holds for all k£ € {0,...,C}. Finally, by taking t = 1,k = C and
the expectation with respect to Br| X, we obtain the expression in Appendix C.3.

Stopping-time pricing with M fares. As before, one can prove that the optimal prices should be
the same for intermediate and final destinations for a given train. As a result, we have p = p, = pp.
Then, let us denote by V4 (0;¢, p,m) (resp. Vi(1;t,p,m)) the expected revenue of the firm at time 1 —¢,
with a current price p, a remaining capacity k and a remaining number of fares m, if it decides to keep
the same price p (resp. to choose a new price). Then, we have the following Bellman equations:

Vk(l’t’p’ 1;12;%(/ le tp’p’ +Vk 1( S’pljm—l)] d87
Vk(oa tapa m) = / le*t,p,p(S) [p + Vk*fl(t — S8,D, m)] dS, (024)
Vk*(t7p7 ) - H{lia)i} Vk(d t,p,m )7
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with initial conditions V' (¢, p,m) = 0. We show by induction on k that for all (k,m) € {0,...,C} x N,

m =

Vi (t,p,m) = agm(q(t,p)) [(§a + &) Br(1 —t,1)]=, (C.25)

where q(t,p) =p~*({a + &)Br(1 —t,1), au0(q) = q_%E[D(q) A k] and for m > 1,

1
onnle) = max {a |7 47 oot lall = 2)(1 = )2

max ¢ /1 e 1 [q’*% + agp—1m-1(¢'(1 = 2))(1 — 2)¢ } dz. }

q'>0

Because for any m > k and d € {0,1}, we have Vi(d;t,p,m) = Vi(d;t,p, k), it suffices to prove the
result for m < k. The result holds for £ = m = 0 since Vj(t,p,m) = 0. Now, suppose that (C.25)
holds for k —1 >0 and all m < k — 1. If m = 0, the price cannot be changed anymore, so V;*(t,p,m)
is simply the revenue with price p from 1 —¢ to 1, and (C.25) holds.

If m > 1, we have, by Equations (C.20), (C.24), the change of variable z = Bp(1 —t,1 — ¢t +
s)/Br(1 —t,1) and the induction hypothesis,

Vi(03t,p,m)
= /Ot Friceps(8) [P+ Vi (t = 5,p,m A (k= 1))] ds
= /Ot(ﬁa +&)p %0 Br(1 — t,1 — t + s)e Eat&olp = Bri=ti-t+s)

[+ 0kt a1y (o + @) Br(1 = 4 5,1)p7) (€ + &) Br(1 — t +5,1)]¢ | ds
:/O (€0 + &)p “Br(1 —t,1)e Eat&)p " Br(i-t1)z

[+ @t (€ + &) Br(l =, )p~ (1= 2)[(& + &) Br(L = £, 1)) (1 = 2)¢ | d
=[(& + &)Br(1 -, 1)

1
X /0' Q(tvp)e_q“’p)z [Q(tvp)_é + ak—l,mA(k—l)(Q(tap)(l - Z))(l - Z)% dz, (C26)

With the same reasoning, we also obtain

Vi(1;t,p,m)
_1;12%{/ fTI t;n/p’ +Vk 1( s,p/,m—l)] ds

1 1 1
=[(éa + &) Br(1 —t,1)]7 Iggg/o qge” ¥ [qu + ak—1m-1(q(1 — 2))(1 — 2)= | d2.

Then,

Vit p,m) = H%af}vk(d ;t,p,m)

= agm(q(t,p))[(§a + &)Br(1 — ¢, 1),
Thus, (C.25) holds for k, and hence for all k& € {0, ...,C}. By setting ¢t = 0 and optimizing V*(t, p, m)

m\»—t
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over p (or equivalently over ¢(¢,p)) and taking the expectation with respect to Bp|Xr, we obtain the
desired expression in Appendix C.3.

Stopping-time pricing with M increasing prices. The reasoning is very similar to the previous
case. The only change in (C.24) is in the formula of Vi (1;¢,p,m): the maximization is now over p’ > p
rather than p’ > 0, since the new price has to be higher than the current one. Then, following a similar
strategy by induction, we get

o |=

Vi (tp,m) = ol (a(t,p)) [(6a + &) Br(1 — £, 1)),

where azo(q) = oy,0(q) and

L Y 1
al_c‘_,m(Q) = maX{Q/O e 1 |:q =+ 0‘;1,m/\(k71)(Q(1 —z))(1 - Z)5:| dz,

1
max q'/ e [q 7t ol (-2 - )t a2 ).
q'€(0,q] 0 ’

We obtain the result by taking ¢ = 0, k = C' and defining o, ;,,, = maxg>o ozaM(q).

C.7.2 Incomplete Information

Uniform pricing. As in the case of complete information, the revenue R’ (p; Br) with a price vector
p and conditional on Br satisfies

R(p; Br) = E[paDar(0,7¢ A 1;04) + poDr(0,7¢ A 15 pb)| B
_ &apa 6y
gapge + 5bp;€

E[D([¢aps” + &py, *]Br) A C|Br],

Then, the expected revenue (taken with respect to By) with prices p is

_ EaPa "+ 6y
fapgs + fbpge
gk 6l

gapge + fbpb_€

R.,(p)

Epix, [EID([Capa” + &y | Br) A C]

/ EID(a "+ 605 12) A CLY (). (C.27)

As above, the function p — R’ (p) reaches its maximum when p, = p,. Thus,
R’Z = max Rz(p7p> faa Ebv g, f)
p>0

= maxp /  EID(E+ 752 A Ol ()

By the change of variable g = [£, + &|p~¢, we obtain the desired formula. If Assumption 2 also holds,
the result follows using the change of variable ¢ = [¢, + &]p—ceX1/0.

Full dynamic pricing. Define Vi (¢, p, f) as the expected revenue at time 1 — ¢ when there remains
k vacant seats before the departure, the current seat is priced at p and the density of np, given the
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current information, is f. Let also Vj*(t, f) = max,, p,>0 Vi(t,p, f). When nr ~ I'(A\, ), we use
respectively Vi (t,p, A\, ) and V¥ (¢, A, u) instead of Vi (¢, p, gx ) and Vi (t, g u)-

Between 1—t and 1—t+At, if one seat is sold, which occurs with probability ({.py ®+&py, ©)01 Br(1—
t,1)At + o(At), the posterior cumulative distribution function (cdf) of nr, Fi(-; At) satisfies

F1(n; At) o< [(€apy© + &, )X 01g(1 — £, 1)nAt + o At)p e,

and the corresponding density is

A1

i1 A0) =M s ol A)

As At — 0, the posterior density converges to gay1,,. If the seat is not sold between 1—t and 1 —t+At,
then the posterior cdf of nr is

Fo(n; At) oc ™ exp(—pul(t, At, p)n),
where p(t, At,p) = p + (Eapa® + &y, < )eXTPgr(1 —t,1 — t + At). Therefore, the posterior density is
I pu(t,At,p)- Then, the Bellman equation can be written as:
Vi(t,p, A ) = / {[(fapga + &y e TR0 g(1 — 1) At + o(At)]

| api e+ &pp )
(€apa® + &bpy ©)

+ [1 — (€apy® + &py S )ne P01 g(1 — ¢, 1) At — O(At)}

X V(= At 1P, 1, A)) boau(n)dn.

+ Vi1 (t — At, fi(+; At))

The maximum of V (¢, p, f) is reached when p, = pp, and Vi (¢, p, \, ) = Vi(t, p, p, \, u) satisfies

Vit p, A ) =Vi (8 — At A\, ) + / {[(éa +&)p e Pondg(1 — t, 1) At + o(At)]
X [p4+ Vi (t = At, fr(5 A)] + [V (= A, w(p, t, At)) — ViE(E — At A, )]
—Vii (t = At p(pyt, A)[(Ea + &)p e P00 g(1 — ¢, 1) At + O(At)]}gx,u(n)dn-
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Then, using V' (¢, A\, ) = maxp>o Vi(t,p, A, 1) and letting At — 0, we obtain:
alvk* (t7 >\a /’L)

= rggg/ {(ﬁa +&)p e e TPonoig(1 —,1) [p+ Vi (A + 1) — Vi (6, A )]

: s

=01g(1 —t,1)(&a + &)e I;lggc/ {p*n [P+ Vi (6, A+ 1, u) — ViE(E A, )]

+ 03Vi (t, A, u)p’s}gx,u(n)dn
A

=01g(1 —t,1)(& + &)e*XT7 max {p_eﬁ [P+ Vi (A +1,0) = Vit A, )]
+ O3Vi (A, )y

Solving for the optimal price, we then obtain:

e A\
61Vk*(t, A, M) = |:€ i 1:| ,U,(E — 1) 819(1 — 1, 1)(§a + fb)eXTﬁo

l—e

VA + L) + V(A ) = S0sV (8 A )

Letting z(t) = g(1 —t,1)(& + &)e X750 and V*(2(t), \, ) = V*(t, A\, 1), we obtain:

_ € € A . .
&wmxmz[ } ~ {—wxnumm+muwm

e—1 e—1)
_ 1—¢
~hovpan] (©.29)
We prove by induction on k that for all k& € {0, ...,C}.
1
* 2\°
i) = (2) a0, (C.29)

where a’]}((), A) =0 and for k > 1,
€

ol ;(\) = A <1 _ 1>€_1 [_a;_u(A 1)+ <1 + ;6) a;;f(x)} -

The result holds for £ = 0 since V{f(z, A, ) = 0. Suppose that (C.29) holds for k —1. Then, (C.28)
and the induction hypothesis yield

1—¢ 1
— g )\ Z\¢ Tk
Vi (2, A p) = L — 1] e —1) [— (N) a1 A+ 1)+ Vi (2, A )

1—¢
——i&ﬁ?@w&uﬁ . (C.30)
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The function (z, A, p) — a};7f(A) (z/u)l/€ is a solution to (C.30). We now show that V;*(z, A, u) is equal
to this solution. First, note that V,*(¢, A, ) remains unchanged if the distribution of Br(¢,t) remains
unchanged. Now,

Br(t,t') = gr(t, t")eXmPnp = (gr(t, t')eX7% /8) x (6nr),

with énp ~ T'(A\, p/6). Hence, V*(t,\, u) remains unchanged if we replace p by p/d and z(t) =
g(1 —t,1)(& + &)eXP by 2(t)/5. Given the definition of V;*(z, A, i), this implies V;*(2/6, A, 1/0) =
Vi (2, A\, p) for all § > 0. Then, to prove the induction step, we only need to show that V(z) :=
Vi (z, A\, 1) satisfies V(z) = a};7f(A)x1/E. By Equation (C.30),

. 1—¢
[—x%az,lﬁf@ +1)+ V() + §v'<x) , (C.31)

€ T_E A

Vie) = [ c 1

e—1
with initial condition V(0) = 0. Suppose that (C.31) has two distinct solutions Vi, V2 and let xg be
such that Vi(zg) # Va(xo), say Vi(zo) > Va(xp). Define x,, = sup{z < z¢ : Vi(z) < Va(x)}. Because
V1(0) = V5(0) and Vi(xo) > Va(mg), we have 0 < zp, < zo and Vi(xz) > Va(z) for x € (zm, xo).
Moreover, because both solutions are continuous, Vi(z,,) = Va(zy). According to (C.31), because
e > 1, as long as Vi(z) > Va(z), we have V] (z) < V5(z). Then,

zo
Vatoo) = Va(ao) = [ [Vi(e) = Vi(a)] do <0,
which contradicts Vi(zg) > Va(zp). Hence, V(z) = aiyf()\):cl/s, and the induction step holds. Thus,
(C.29) is satisfied for k € {0, ...,C}. Finally, we obtain the result in Appendix C.3 by taking ¢ = 0 and
k=C.

Stopping-time pricing The difference from the stopping-time pricing under complete information
is that the firm updates in a Bayesian way its belief on the distribution of Bp. Even if the firm
continuously updates its belief, only moments where a sale occurs matter, since this is the time where
it can decide to change its prices. Thus, starting at time 1 — ¢, we can focus on time 1 —t 4 7; 5. The
next lemma characterizes the corresponding posterior distribution of Br.

Lemma 13. Suppose that the density function of Br|Xr at time 1 —t is f and the firm prices the
next seat at p. Then, the posterior distribution of Br|ti—yp = s is T(f;q(t,s,p)), with q(t,s,p) =
(€apa® +&p, S)9r(1 —t,1 —t+5)) and

ze " f(2)

T(f;u)(2) = T f(2)ds’

Proof. As Equation (C.20) shows, given Br = z, the density function of 71_¢ is

FriooplBr(s12) = (€apa® + &y, ) 20297 (1 — 8,1 =t + s)e2405P), (C.32)

Then, the joint distribution of (71—t p, Br) is

FriopBr (5, 2) =(Eapa® + &py =) 200g7(1 — t,1 — t + 5)e 1E5P)2 f(2)

The result follows. O
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Now, using the same notation as in the full dynamic pricing case above and the same arguments
as in proof of (C.21), we have

gapa 8+£bp1 ) * e .
il 5= [ Jol e e Vit = s Tl s, p) ] ds

—&

Given & ° + &p, °, Vi(t,p, f) is maximized if and only if Eapie + §bpg is maximized. Thus,

Vi(t,p, f) is maximized at p, = pp and

Vet ) = mas [ 6) o+ Vit Tl 5.00)] ds. (€33)
where q(t, s,p) = q(t, s, p,p). We now prove by induction on k that for all k& € {0,...,C},

Vi £) = (€0 + &)ar(1 — £, )] ad (). (C.34)

where (0, f) = 0 and for all k € {1,..,C},

1 1. 00
o) = maxa [ [a7 4 (=)ol (@) [ s dzdu,

q>0

The result holds for k = 0 since V{f(¢; f) = 0. Suppose that it holds for £k —1 > 0. First, by (C.32),
we have

JricipBr(8,2) = / (Eapg © + &up, ©)20297(1 —t,1 —t + s)e_q(t’s’p)zf(z)dz. (C.35)
0

Then, letting q(t,p) = q(t,t,p) and using (C.33), we obtain

o |=

Vet f) = max/ - >{p+[<fa+§b>gT<1—t+s )

% ol (T (fqlt, s,p>>>}ds

1 o)
:max/ [/ q(t,p)ze_q(t’p)“zf(z)dz]
p>0 Jo LJo

‘ {p (6t &)gr(— £ 1)1 —w)E ady (T(F: q(t,p>u>>}du
1 1 ')
=[(&a + &)gr(1 —¢,1)]= I;l%((J/O [/0 zequzf(z)dz}
< [a7 4 (= wF ek (T(F:qu) ] du.

The second equality follows using the change of variable u = gp(1 —t,1 —t+ s)/gr(1 —t,1) and the
third by the change of variable ¢ = ¢(t,p). Hence, the induction step holds, and (C.34) is satisfied for
all k € {0,...,C}. We obtain the desired expression by taking ¢ =0 and k = C.

If Assumption 2 also holds, we obtain by Lemma 13 that if f = gx ., then T(f;u) = gx11 jtexp(X].50)u-
Let Vi(t,p; A\, i) and Vi (t; A, i) be defined as in the full dynamic pricing case. Then, by the same
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induction as above, we have, for all k£ € {0,...,C},

eX7Po — °
(§a + &) MQT(l t’l)] PO, (C.36)

where o (0,\) = 0 for A > 0, and

1 1
. A 1 1—s\= .
V] I —g 1 1
ap s(A) = anfg)(q/o (1 + gs) 1 [q (1 qs> ap_1s(A+1)

The result follows by taking ¢ = 0 and & = C, we obtain the desired expression.

ds.

Stopping-time pricing with M fares. Like previously, one can show that the optimal prices should
satisfy p, = pp = p. Asin the complete information case, let Vi (0;t, p, m) (resp. Vi(1;t,p,m, f)) denote
the optimal revenue at time 1 — ¢, with a current price p, a remaining capacity k, a remaining number
of fares m and a density of f for np (conditional on the current information) if the firm decides to keep
the same price (resp. to change it). Then, as (C.24), we have:

t
Vi(0;t,p,m, f) = /0 Fricep, () [P+ Vil it — s,p,m, T(f;q(t, s,p)))] ds, (C.37)

t
Vk(l; t,p,m, f) = I;}E;%{/ le_t,plyp/(S) [p/ + Vk*—l(t - 5,])/, m — 1’T(f; Q(ta S,p)))] ds,

with the initial conditions V{f(¢,p,m, f) = 0. We prove by induction on k that for all (k,m) €
{0,...,C} x N,
(C.38)

Vi (tpom, f) = crna(t,p), ) (6o + G)gr(1 — 1, 1)]7
where ¢ 0(q, f) = q: J E[D(qz) N k]f(2)dz and

1
cunla,f) =i {q [ [ =€ =07+ sy (0l = 0. T )
(1 —wu)= dumaxq/ /ze qz“f [' 1/e
q'>0
1
+ h i mer(d (1= ), T(f5qw)(1 = ) du},
The result holds for & = 0 since ¢p,, = V' (t,p,m, f) = 0. Suppose that it holds for k — 1 > 0 and

all m < k — 1 (recall that V' (¢t,p,m, f) = Vi (t,p,m Ak, f)). If m =0, the price cannot be changed
anymore, so V;*(t,p,m) is simply the revenue with price p from 1 —¢ to 1, and (C.25) holds.
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If m > 1, we have, using (C.35) and (C.37) and the same change of variables as above, we obtain
Vi (0st,p,m, f)
= /t [/Oo(fa +&)p “Ogr(1 —t,1 -t + s)ze_q(t’s’p)zf(z)dz]
o LJo
[p + k-t ma—1) (@ = 5,0), T(f5a(t, 5,p))[(Ca + &)gr(1 =t + 5, 1)]5} ds
1 00 b
:/o [/o Q(t,p)zefq(t’p)uzf(z)dz [P + Ch—1mak—1)(q(t, p)(1 — u),
T(f:q(t. p)u)) (€ + &)gr(1 —t, D]
11 poo
= — é —q(t,p)uz
60+ &or = 0D ate) [ | [T se o sy

x {Q(t,p)‘l/a + c—1,mae-1) (gt P) (1 = w), T(f; (¢, p)u))(1 - “)%]d”'

(1-— u)é]du

By the same reasoning and the change of variable ¢ = ¢(¢, p),

Villitpm. ) = (6 -+ Ear(1 6. ))F maxa [ 1 [ [ e f(@dz}

q>0
1

[ + a0l = 0. T qu)(1 = )]

Then’
k ( 1L ) ) / { } ( Y p? ? )

m =

=ckm(q(p); (& + &)gr(1 — ¢, 1)]=.
This concludes the induction step, proving that (C.38) holds for all k£ € {0, ...,C}.

Stopping-time pricing with M increasing fares The proof follows by making the same changes
of the previous case as those made in the complete information set-up.

C.8 Intermediate-K stopping time pricing

We extend Theorem 10 to pricing strategies called intermediate- K stopping-time pricing where the firm
can only adjust prices for the first K < C seats. Then a uniform pricing applies from the (K + 1)
seat till departure. These pricing strategies connect uniform pricing and stopping-time pricing, since
the former corresponds to K = 0 and the latter to K = C. More importantly, we can infer from an
increase in K how uncertainty is swept out under complete and incomplete information, and quantify
its impact on revenues. They are simulated with the estimated parameters and the results are used to
depict the blue curve of Figure 3.1.

Complete information As above, let V*(¢; K,C) denote the optimal revenue at time 1 — ¢ with
k > C' — K remaining seats. For such k, we have

Vit K, C) = ¢, l(€a + &) Br(1 — t,1)]%,
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where ¢ i = maxgso qféE[D(q) A (C — K)| and, for any k > C — K,

1
Chk = man_é(l —e N+, K/ ge (1 — s)%ds.
’ q>0 ) 0

The proof is the same as that for (C.22) except for the initial value because the firm must apply
uniform pricing whenever there remain C' — K seats. Thus, the Bellman equation and the updating
of the constants C;v, i take the same form as under the stopping-time pricing strategy in (C.22) for
k > C — K and the initial value becomes ¢-_j -, which comes from the optimal uniform pricing with
C — K seats.

Incomplete information Let V;*(t; K,C, A, 1) denote the optimal expected revenue at time 1 —¢
with k > C' — K remaining seats if ny ~ T'(A, ). Then, for any k € {C — K +1,...,C},

Vit K, C A p) =

a Xiboge(t,1)]*
(5 +§b)eu gT( )] ck,K(A)a

where i _je i (A) = maxg>o g ¢ f]& E[D(qz) A (C — K)]gx1(2)dz and for k > C — K,

1 A
ax [ ————
>0 Jy (14 gs) 1 4

1
1—5\¢
e (22) o

ds.
1+4gs 8

C;C,K(A) =

As with complete information, the proof is the same as for (C.36), with the same change due to a
different initial value based on uniform pricing.
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sation industrielle empirique

revenue management

Résumé : La thése se compose de trois chapitres qui
étudient les modéles microéconométriques de la de-
mande et leurs applications dans 'organisation indus-
trielle empirique.

Les deux premiers articles se concentrent sur les
modeles de demande de bundles et étudient l'iden-
tification et I'estimation sous différentes disponibilités
de données. Le premier article est un travail conjoint
avec Alessandro laria (Université de Bristol) et se
concentre sur les situations ou les données d’achat au
niveau du bundle sont disponibles. Nous présentons
de nouveaux résultats d’identification et d’estimation
pour un modele logit mixte de demande de faisceaux.
En particulier, nous proposons un nouvel inverse de
la demande en présence de complémentarité qui
permet de concentrer hors de la fonction de vrai-
semblance les effets fixes (potentiellement nombreux)
spécifiques aux produits de marché, atténuant sen-
siblement le défi de dimensionnalité inhérent a l'es-
timation. Pour illustrer I'utilisation de nos méthodes,
nous estimons la demande et I'offre dans l'indus-
trie américaine des céréales prétes a consommer,
ol le MLE proposé réduit la recherche numérique
d’environ 12 000 a 130 paramétres. Nos estimations
suggerent que le fait d’ignorer la complémentarité
hicksienne entre différents produits souvent achetés
en lots peut entrainer des estimations de la demande
et des contrefactuels trompeurs.

Le deuxiéme article se concentre sur les situations
ou seules des données d’achat agrégées au niveau
du produit sont disponibles. Il propose un modéle
de demande de Berry, Levinsohn et Pakes (BLP,
1995). Comparé aux modeles BLP de demande de
produits uniques, ce modele ne restreint pas les
produits a étre des substituts et, notamment, per-
met des complémentarités hicksiennes entre les pro-
duits qui peuvent étre choisis conjointement dans un
bundle. En s’appuyant sur I'inverse de la demande
du premier article, il propose des arguments d’iden-
tification constructifs du modele et un estimateur de

Titre : Trois essais sur les modeles microéconométriques de la demande et leurs applications dans I'organi-

Mots clés : organisation industrielle empirique, econométrie structurelle, identification, demande de bundles,

la méthode généralisée des moments (GMM) pra-
tiguement utile. En particulier, cet estimateur peut
gérer des ensembles de choix potentiellement im-
portants et sa mise en ceuvre est simple, essentiel-
lement comme un estimateur BLP standard. Enfin,
jillustre la mise en ceuvre pratique des méthodes
et jévalue la demande de céréales et de lait préts-
a-manger (PAM) aux Etats-Unis. Les estimations de
la demande suggerent que les céréales et le lait
PAM sont globalement complémentaires Hicksian et
ces complémentarités sont hétérogeénes entre les pa-
quets. Ignorer ces complémentarités entraine des
contrefactuels trompeurs.

Le troisieme article est un travail conjoint avec Xa-
vier d’Haultfoeuille, Philippe Fevrier et Lionel Wilner
et porte sur la gestion des revenus. Bien que cette
gestion ait considérablement accru la flexibilité dans
la fagon dont les entreprises fixent les prix, les en-
treprises imposent toujours des contraintes a leur
stratégie de prix. |l existe encore peu de preuves
des gains ou des pertes de telles stratégies par rap-
port a des prix uniformes ou a des stratégies tota-
lement flexibles. Dans cet article, nous quantifions
ces gains et pertes et identifions leurs sources sous-
jacentes dans le contexte du transport ferroviaire
francais. Cela est compliqué par la censure a la de-
mande et 'absence de variations de prix exogenes.
Nous développons une stratégie d’identification ori-
ginale sur la demande qui combine les variations
temporelles des prix relatifs et les inégalités de mo-
ment résultant de la rationalité de base du cété des
consommateurs et des faibles conditions d’optima-
lité de la stratégie de tarification de I'entreprise. Nos
résultats suggerent des gains importants de la gestion
des revenus réels par rapport a une tarification uni-
forme, mais également des pertes substantielles par
rapport a la stratégie de tarification optimale. Enfin,
nous soulignons le réle clé de la gestion des revenus
pour I'acquisition d’'informations lorsque la demande
est incertaine.
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Abstract : The thesis consists of three chapters that
study microeconometric models of demand and their
applications in empirical industrial organisation.

The first two papers focus on models of demand for
bundles and study the identification and estimation
under different data availabilities. The first paper is a
joint work with Alessandro laria (University of Bristol)
and focuses on the situations where purchase data
at bundle-level is available. We present novel identi-
fication and estimation results for a mixed logit mo-
del of demand for bundles. In particular, we propose
a new demand inverse in the presence of comple-
mentarity that enables to concentrate out of the li-
kelihood function the (potentially numerous) market-
product specific fixed effects, substantially alleviating
the challenge of dimensionality inherent in estimation.
To illustrate the use of our methods, we estimate de-
mand and supply in the US ready-to-eat cereal indus-
try, where the proposed MLE reduces the numerical
search from approximately 12000 to 130 parameters.
Our estimates suggest that ignoring Hicksian comple-
mentarity among different products often purchased
in bundles may result in misleading demand estimates
and counterfactuals.

The second paper focuses on the situations where
only aggregate purchase data at product-level is avai-
lable. It proposes a Berry, Levinsohn and Pakes (BLP,
1995) model of demand for bundles. Compared to
BLP models of demand for single products, this mo-
del does not restrict products to be substitutes and,
notably, allows for Hicksian complementarities among
products that can be jointly chosen in a bundle. Le-
veraging the demand inverse of the first paper, it pro-
poses constructive identification arguments of the mo-

del and a practically useful Generalized Method of
Moments (GMM) estimator. In particular, this estima-
tor can handle potentially large choice sets and its im-
plementation is straightforward, essentially as a stan-
dard BLP estimator. Finally, | illustrate the practical
implementation of the methods and estimate the de-
mand for Ready-To-Eat (RTE) cereals and milk in the
US. The demand estimates suggest that RTE cereals
and milk are overall Hicksian complementary and
these complementarities are heterogeneous across
bundles. Ignoring such complementarities results in
misleading counterfactuals.

The third paper is a joint work with Xavier d’Hault-
foeuille, Philippe Fevrier and Lionel Wilner and fo-
cuses on revenue management. Despite that this ma-
nagement has greatly increased flexibility in the way
firms set prices, firms usually still impose constraints
on their pricing strategy. There is yet scarce evidence
on the gains or losses of such strategies compared to
uniform pricing or fully flexible strategies. In this pa-
per, we quantify these gains and losses and identify
their underlying sources in the context of French rail-
way transportation. This is complicated by the censo-
ring on demand and the absence of exogenous price
variations. We develop an original identification stra-
tegy on the demand that combines temporal varia-
tions in relative prices and moment inequalities stem-
ming from basic rationality on consumers’ side and
weak optimality conditions on the firm’s pricing stra-
tegy. Our results suggest significant gains of the ac-
tual revenue management compared to uniform pri-
cing, but also substantial losses compared to the op-
timal pricing strategy. Finally, we highlight the key
role of revenue management for acquiring information
when demand is uncertain.

Institut Polytechnique de Paris
91120 Palaiseau, France
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