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The thesis covers both theoretic and applied results, which deal with the quantitative and qualitative study of the solutions to structured optimization problems, including subdierential calculus, optimization with or without constraint qualication, equilibrium problems, variational inequalities, bilevel programming problems and multi-leader-follower games. We provide new results as well as improvements of some existing ones. The underlying framework of our theoretic results is mainly innite-dimensional, covering general frameworks such as locally convex spaces, Banach spaces, or Asplund spaces, and bringing novelty even in nite dimensions. The study of bilevel programming problems and multi-leader-follower games is developed in nite-dimensional setting for the aim of simplifying the presentation of the results.

iii I.1 Contents and Structure Non-smooth problems are now present everyday and everywhere in the life of an optimizer and, in general, in the life of researchers. A non-smooth problem is simply one in which some of the data dening the problem are not necessarily smooth. The non-smooth data can also appear for instance as a result of some operations, like for example when taking the minimum or maximum of nitely and innitely many smooth functions, the value or marginal function of parametric optimization problems, and so on. One also face non-smooth data when dealing with the value functions in some formulations of Multi-Leader-Follower games undertaken in the current thesis, and, in particular, in bilevel programming problems.

Another area in which non-smooth data naturally arise is in semi-innite programming; that is, in optimization problems which have an innite number of constraints.

Non-smooth analysis is a theory that includes the smooth case, based on the consideration of relaxed notions of dierentiation, since classical dierentials might not exist or be adapted.

This will lead us to use notions of subdierentials, which are one-sided relaxations of usual dierentials as the Fréchet and the limiting subdierentials, including the so-called Fenchel and approximate subdierentials in the convex case.

The present thesis is organized by grouping the chapters in four parts, each with its own short introduction.

While Part I is dedicated to introduce the main notation and denitions used in the manuscript, Part II is focused on fuzzy calculus rules in both the convex and the non-convex frameworks. This part is developed in a general setting, possibly innite-dimensional and under possibly weak conditions, which do not require qualication conditions. In Chapter II.1, we discuss about the convex case, which corresponds to the analysis of convex and lower semi-continuous functions. Namely, we develop formulas for the normal cone to sub-level sets in locally convex and Banach spaces. In Chapter II.2, we discuss dierent calculus rules, namely for the pointwise supremum of possibly non-convex functions dened in an appropriate class of Banach spaces, including Asplund spaces.

The contribution of Part II is twofold. We rstly give approximate and fuzzy subdierential calculus rules, which are next applied to get optimality conditions for optimization problems without qualication conditions. We use proofs that are in many cases shorter than previously known ones, though most of the techniques used in our proofs are not new.

Most of the formulas are improvements even when restricted to R n . Secondly, we provide in a nite dimensional setting fuzzy optimality conditions for bilevel programming problems without any qualication condition.

More precisely, in the convex case we provide a formula for the approximate normal set to a general sub-level set of a convex function, as well as a formula for the approximate subdierential of the supremum of an arbitrary family of convex functions. Similarly, in the non-convex case, weak fuzzy optimality conditions, a rule for the supremum and a formula for the normal cone to a sublevel sets are provided, with approximation on values and with complementarity conditions, without the use of any qualication condition.

Part III deals with the analysis of non-cooperative games, and particularly, with Multi-Leader-Follower Games, which are bilevel games within each of its levels a Generalized Nash equilibrium is played. We start in Chapter III.1 by analyzing Generalized Nash Equilibrium Problems and the structure of the solutions set, and discussing constraint qualications for the equivalence of the problem with the concatenation of rst order conditions of each of the players. In Chapter III.2, we study the simple bilevel single-leader-single-follower structure, that is, a bilevel programming problem. Here we focus on the so-called pessimistic formulation of the bilevel problem and we aim at comparing the initial problem with the reformulation obtained by replacing the lower level by its parametric rst order conditions. In Chapter III.3, a kind of state of the art for multi-leader-follower games is discussed and a few new results are provided. Special attention is given to the single-leader multi-follower case.

The contribution of this part, is again twofold. Firstly, we give an overview of existence results for multi-leader-follower-games and show how constraint qualications are involved when explicit constraints are present, which are of particular importance for non-linear data.

Secondly, we discuss about equivalence between problems and reformulations that involve rst order (KKT) conditions. We recognized 1 the quite obvious fact that, in general, for the equivalence of a GNEP with the concatenation of KKT conditions, a possibly innite number of constraint qualication should be veried. Therefore, we proposed a way of reducing the number of constraint qualications in some cases yielding just a nite number of them. This analysis starts in fact in Section I.5, and continues with its consequences in Part III. Our analysis here is mainly focused on nite dimensional spaces, for simplicity.

Part IV, deals with the theory of quasi-equilibrium problems, which is a framework for studying in a unifying manner dierent problems such as generalized Nash equilibrium problems and quasi-variational inequalities. Here we consider several properties for bi-functions that are useful in the study of existence results for quasi-equilibrium problems.

Our contribution in this last part is that we give some new existence results for quasiequilibrium problems. Some of them relax the continuity properties of the constraint map and other are based on the nite intersection property for bi-functions. Next, we apply our general results to the cases of quasi-variational inequalities and generalized Nash equilibrium problems.

The rest of this introductory part states our framework, notation, denitions and some preliminary results, that are common to either the whole thesis or at least some of the chapters.

I.2 General Notation

We will use almost always the convention that upper case means sets or set-valued maps, while lower case means elements of certain sets or single-valued functions. The set of natural numbers will be denoted by N. Let R be the real line, and R + the subset of non-negative real numbers. Given x ∈ R the absolute value of x is denoted by |x| and the sign of x is denoted by sgn(x) = x/|x| if x = 0 and sgn(0) = 0.

We consider the extension of the usual ordering ≤ by adding a maximal element ∞ and a minimal -∞ and we write R := R ∪ {∞, -∞}, which we call it the extended real line. The symbol := is used to express equality by denition. We also write R := R ∪ {∞}.

We extend also the domain of the sum operation by

∞ + x := x + ∞ := ∞, if x = -∞ -∞ + x := x + (-∞) := -∞, if x = ∞ I.2
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and the multiplication operation by

∞ • x := x • ∞ := ∞, if x ≥ 0 -∞, if x < 0
Observe that we do not dene the sum ∞ + (-∞) nor the multiplications x • (-∞), and thus we will always avoid them. Also note that the multiplication 0 • ∞ is dened as ∞. This choice is convenient for our minimization purposes, since ∞ is thought as a penalization.

See [START_REF] Rockafellar | Variational analysis[END_REF] for further discussion about this convention.

For two vectors a and b in the euclidean space R d , we write a ≤ b when a k ≤ b k for all k = 1, ..., d, and we write a < b when a k < b k for all k = 1, .., d. We also write a ⊥ b whenever their product a T b is equal to 0.

By X we usually denote a space, that is, a given non-empty set. Whenever X is endowed with a topology τ and x ∈ X, we write N τ (x) (or simply N (x) if the topology is understood) to denote the set of neighborhoods of x. Given a subset S ⊂ X the interior, closure and boundary of S are denoted by int(S), cl(S) and bd(S), respectively.

In Chapter II.1 we assume X to be (at least) a locally convex space, that is, a Hausdor separated topological vector space whose topology admits a local base of convex neighborhoods of the origin. Two important cases of locally convex spaces that we consider along this thesis are Banach spaces (X, • ), where • is the norm of the space, and the topological dual X * of a locally convex space endowed with the weak star topology w * . The duality product between a locally convex space and its dual is denoted by x * , x := x * (x).

In the case of a Banach space X we write B(x, r) and B(x, r) to denote an the open ball and the closed ball, both centered at x ∈ X and with radius r > 0. We also write B(r) := B(0, r), and B := B(0, 1), and sometimes we put X as a subindex to emphasize the space. If X * is considered as a Banach space with a dual norm we write B * := B X * .

Asplund spaces, which are considered in Chapter II.2, are dened as Banach space with the property that any convex and continuous function dened in an open and convex domain is actually Fréchet dierentiable in a dense subset of the domain.

The convex hull and the closed convex hull of S ⊂ X (for X a topological vector space) are denoted by co(S) and co(S). The sum of two sets A, B ⊂ X is dened by

A + B := {x ∈ X | x = a + b, a ∈ A, b ∈ B} and the multiplication of A with a set of scalars R ⊂ R is RA := {x ∈ X | x = ra, r ∈ R, a ∈ A} .
In particular for R = R + , the set R + A is the conic hull of (or the cone generated by) A. Whenever one of the sets is a singleton, for instance A = {a} we simplify the notation and write a + B = A + B. Similarly for the multiplication, if R = {r} then we write rA = RA.

For a function f : X → R we dene its graph, its epigraph, and its hypograph, respectively, as the sets

gph f := {(x, λ) ∈ X × R : f (x) = λ} , epi f := {(x, λ) ∈ X × R : f (x) ≤ λ} , hyp f := {(x, λ) ∈ X × R : f (x) ≥ λ} .
Given λ ∈ R, we write [f ≤ λ] := {x ∈ X : f (x) ≤ λ} and [f = λ] := {x ∈ X : f (x) = λ} for the sublevel sets and level sets of f at level λ. We dene the (eective) domain of f as the set dom f := {x ∈ X : f (x) ∈ R}. We say that f is proper if dom f = ∅ and f (x) > -∞ for all x ∈ X. Given a set A ⊂ X, the indicator of A is the function χ A : X → R dened by χ A (x) = 0 if x ∈ A and χ A (x) = ∞ otherwise.

We write x → f x, whenever x → x and f (x) → f (x). This of course carries additional information only if f is not necessarily continuous.

I.3 Generalized Convexity

Assume that X is a vector space and let us recall some classical denitions of generalized convexity. A extended real valued function f : X → R is said to be • convex if, for any x, y ∈ X and t ∈ [0, 1], we have f (tx + (1 -t)y) ≤ tf (x) + (1 -t)f (y);

• quasi-convex if, for any x, y ∈ X and t ∈ [0, 1], we have f (tx + (1 -t)y) ≤ max{f (x), f (y)};

• semi-strictly quasi-convex at level α ∈ R if, for any x, y ∈ X such that f (x) ≤ α and f (y) < α, the following holds f (tx + (1 -t)y) < α for all t ∈]0, 1[.

• semi-strictly quasi-convex if it is quasi-convex and, for any x, y ∈ X such that f (x) = f (y), the following holds f (tx + (1 -t)y) < max{f (x), f (y)} for all t ∈]0, 1[.

The convexity of a function f is equivalent to the convexity of its epigraph, while the quasi-convexity of f is equivalent to the convexity of the (strict) sublevel sets of f . The semi-strictly quasi-convexity of a function has the following characterization. Proposition 1. A function f is semi-strictly quasi-convex if and only if, f is semi-strictly quasi-convex at every level α ∈ R.

Proof. First assume that f is semi-strictly quasi-convex and let α ∈ R be such that α ≥ f (x) and α > f (y). Then either α > max{f (x), f (y)} or f (x) = α > f (y) so that in any case we have the inequalities f (tx + (1 -t)y) ≤ max{f (x), f (y)} ≤ α and at least one of them being strict. This proves that f is semi-strictly quasi-convex at level α.

For the converse let us rst prove that f is quasi-convex. Fix x, y ∈ X and t ∈]0, 1[. For any α > max{f (x), f (y)} we know that f (tx + (1 -t)y) < α, and thus by taking inmum over those α we obtain that f (tx + (1 -t)y) ≤ max{f (x), f (y)}. Second, let us assume that f (x) = f (y) and t ∈]0, 1[, without loss of generality f (x) > f (y). If we take α = f (x) then obviously α > f (y) and thus f (tx + (1 -t)y) < α = max{f (x), f (y)}.

A semi-strictly quasi-convex function share with convex functions the useful property that any local minimum on a given set is actually a global minimum on that set. We do not consider equality constraints here for simplicity. Let us write C := [g ≤ 0]. A feasible solution of the above problem is a point x ∈ C. If x ∈ C is such that for any x ∈ C it holds f (x) ≤ f (x), then we call x an optimal solution or simply a solution of the problem. A point x ∈ X is said to be a local optimal solution or simply a local solution if x ∈ C and there exists U ∈ N (x) such that f (x) ≤ f (x) for all x ∈ C ∩ U .

I.4.1 Optimality Conditions

By optimality conditions we refer to certain conditions over a given point x usually written as equations, inequalities or even inclusions, that are comparable with the condition of x being a local optimal solution of problem [START_REF] Allevi | On an equilibrium problem with complementarity constraints formulation of pay-as-clear electricity market with demand elasticity[END_REF]. Thus they can be necessary optimality conditions, sucient optimality conditions or both necessary and sucient optimality conditions.

Let us here assume for simplicity that X is nite dimensional. It is clear that if x is a local solution of the above problem and ṽ ∈ T C (x) := {v = lim v n : t n → 0 + , x + t n v n ∈ C} then -∇f (x), ṽ ≤ 0. This is by denition of the normal cone to C that -∇f (x) ∈ N C (x).

So in other words 0 ∈ ∇f (x) + N C (x).

We will consider the so-called KKT optimality conditions due to Karush Kuhn and Tucker.

We say that x satisfy the KKT optimality conditions if there exists µ ∈ R d such that ∇f (x) + µ∇g(x) = 0 0 ≤ µ ⊥ -g(x) ≥ 0 [START_REF] Aubin | Set-valued analysis[END_REF] We will prove in Chapters II.1 and II.2 that some fuzzy optimality conditions for nonsmooth problems do not require any constraint qualication and they are in the smooth case of the form

   lim n ∇f (x n ) + µ∇g(x n ) = 0 0 ≤ µ n , -g(x) ≥ 0 lim n µ T n g(x n ) = 0 (3) 
for some sequences (µ n ) n ⊂ R d and x n → x.

I.4.2 Constraint Qualications

Given a smooth optimization problem with explicit constraints in the form of inequalities as

(1) and a point x in the space, a Constraint Qualication (CQ for short) is a condition on the constraint functions (not dependent on the objective) at x, or more precisely on the values and the gradients of the constraint functions at x, guaranteeing that the KKT conditions are necessary optimality conditions (see for instance [START_REF] Sherali | Nonlinear programming: Theory and algorithms[END_REF]).

There are several CQs for smooth optimization in the literature. Some of them are weaker or stronger than other in the sense of implication, but not all of them are comparable. There is one which is the weakest: Guignard's CQ, nevertheless other CQs are easier to verify in some cases, and have additional important properties related to the set of KKT/Lagrange multipliers.

We will recall some of the most classical CQs, for simplicity stated in R n . Let C = {x ∈ R n : g(x) ≤ 0}, x ∈ C and let A(x) denote the set of active indexes i, that is, i = 1, ..., d such that g i (x) = 0.

Guignard Constraint Qualication (GCQ) The normal cone to the feasible set at x is equal to the convex cone generated by the gradients of the active inequality constraints:

N C (x) = R + co {∇g i (x) | i ∈ A(x)}.
Abadie Constraint Qualication (ACQ) The linearized cone L(x) = {v ∈ X : ∇g i (x), v ≥ 0, ∀i ∈ A(x)} is equal to the tangent cone to the feasible set T C (x).

Mangazarian Fromovitz Constraint Qualication (MFCQ) There exists a direction v ∈ R n such that ∇g i (x; v) < 0 for all i ∈ A(x). An equivalent dual condition is that if µ ∈ R d + is such that µ ⊥ g(x) and d i=1 µ i • ∇g i (x) = 0, then µ = 0.

Linear Independence Constraint Qualication (LICQ) The set of gradients of the inequality constraints that are active at the point x are linearly independent. The vectors ∇g i (x) with i ∈ A(x) is linearly independent.

It is well-known that at any point, LICQ ⇒ MFCQ ⇒ ACQ ⇒ GCQ. Finally, in case that each g i is convex, MFCQ is equivalent to the following.

Slater Constraint Qualication (SCQ) There exists a point x ∈ X such that g i (x) < 0 for all i = 1, ..., d.

In the case of non-smooth problems there are also CQs but we do not consider them on this thesis.

I.5 Parametric Optimization and KKT Conditions

This section is extracted from [START_REF] Aussel | Towards tractable constraint qualications for parametric optimisation problems and applications to generalised Nash games[END_REF].

Let X be a real Banach space and P a real vector space of parameters. We consider a parametric optimization problem of the form min x f (x, p) s.t. g(x, p) ≤ 0, (P (p))

where f : X × P → R is the objective, g : X × P → R d is the joint constraint function, and p is a parameter in a non-empty set U ⊂ P . We do not consider equality constraints for simplicity. Given p ∈ P we denote by F(p) the feasible set for problem P(p), that is, the set of x ∈ X such that g(x, p) ≤ 0. We will consider the following parametric assumptions:

(H 1 ) (Parametric dierentiability) For every p ∈ U , f (•, p) and g(•, p) are dierentiable.

(H 2 ) (Parametric convexity) For every p ∈ U , f (•, p) is convex and the components of g(•, p) are quasi-convex.

We can associate to each problem P(p) the KKT rst order optimality conditions. For a I.5. Parametric Optimization and KKT Conditions point x ∈ X, the KKT(p) conditions are that there exists µ ∈ R d such that ∇ x f (x, p) + ∇ x g(x, p)µ = 0, 0 ≤ µ ⊥ -g(x, p) ≥ 0,

(KKT(p))
or more explicitly given as ∇ x f (x, p) + d k=1 µ k ∇ x g k (x, p) = 0, 0 ≤ µ k , µ k g k (x, p) = 0, -g k (x, p) ≥ 0, ∀k = 1, ..., d.

Let p ∈ U be xed for the moment. Thanks to the parametric convexity (H 2 ), the KKT(p) conditions are sucient optimality conditions for problem P(p). If the constraint function g(•, p) satises some CQs (at any x ∈ F(p), or at least on a set including the P(p)-optimal solutions), then the KKT(p) conditions are also necessary optimality conditions for P(p).

Thus, if we want to prove that the KKT(p) conditions are both necessary and sucient for every parameter p ∈ U simultaneously, one straightforward possibility is to check convexity and qualication conditions for every p ∈ U , but this could be quite demanding. Instead, we are looking for simpler constraint qualications (and reduced in number) on the joint constraint function g (possibly also on the partial constraint functions g(•, p), for some p ∈ U ) which ensures that the KKT(p) conditions are necessary and sucient optimality conditions for problem P(p), for all p ∈ U . Denition 1. A parameter p ∈ P is called

-admissible if p ∈ A := dom F, that is, ∃x ∈ X with g(x, p) ≤ 0; -interior if it is an element of int(A);
boundary if it is an element of bd(A).

Remark 1. (a)

The interior parameters are dened only in terms of the joint constraint function g and not in terms of the set U .

(b) Whenever (x, p) ∈ int {(x, p) ∈ X × P | g(x, p) ≤ 0} , then p is an interior parameter. (c) If the constraint function g is upper semi-continuous, and p is a boundary parameter, then for any x ∈ X there exists some coordinate k = 1, ..., d with g k (x, p) ≥ 0. Thus, on boundary parameters Slater's CQ cannot be fullled. Denition 2. A parametrized function h : X × P → R d is said to be jointly convex on the product space X × P if, for any k = 1, . . . , d, h k is jointly convex on X × P , that is, convex with regard to the joint variable (x, p).

Joint convexity clearly implies the parametric convexity (H 2 ), that is, h k (•, p) is convex, for each k and for each p. Nevertheless, in the forthcoming proposition and theorem, this joint convexity will be used to reduce the number of parameters for which the qualication conditions needs to be veried. Proposition 2. Assume that g is jointly convex on X × P and that the following joint qualication condition holds Joint Slater's CQ:

∃ (x, p) ∈ X × P such that g(x, p) < 0.
Then for every interior parameter p ∈ int(A) Slater's CQ holds, that is, ∃ x ∈ X such that g(x, p) < 0.

Proof. Dene on X × P the real-valued function ḡ by ḡ(x, p) := max d k=1 g k (x, p) and let (x, p) be given by joint Slater's CQ, so that ḡ(x, p) < 0. From the hypothesis, ḡ is a jointly convex function.

Assume by contradiction that there exists a p ∈ int(A) for which Slater's CQ does not hold, that is, ḡ(x, p) ≥ 0 for all x ∈ X. We clearly see that p = p. Since p ∈ int(A), then one can nd t > 0 such that p := p + t(p -p) ∈ A. Now take x such that g(x, p) ≤ 0, and thus ḡ(x, p) ≤ 0. Note that p = t 1+t p + 1 1+t p ∈ [p, p], and take x := t 1+t x + 1 1+t x, which clearly lies in [x, x]. Finally, the joint convexity of ḡ yields

0 ≤ ḡ(x, p) ≤ 1 1 + t ḡ(x, p) + t 1 + t ḡ(x, p) ≤ 1 1 + t ḡ(x, p) < 0, a contradiction.
In Proposition 2, it has been proved that under joint convexity of the constraint functions, Slater's CQ for one parameter implies Slater's CQ for all interior parameters. A natural question is whether a weaker CQ for a single parameter also imply that this CQ persist for all interior parameters.

The following example provides a negative answer for the case of Guignard's CQ. This example also provides a negative answer to another related question concerning joint

CQs. Indeed, one could wonder if a weaker joint CQ for the parametric optimization problem, under the joint convexity assumption, should persist as a parametric CQ along all interior parameters. We observe that in Example 1, the joint Guignard's CQ holds for all feasible points except those (x, p) with x = 0 and x 2 + p 2 = 1. Thus, for all interior parameters in ] -1, 0[ ∪ ]0, 1[ the joint Guignard's CQ does not hold at the boundary of the parametric feasible set.

Theorem 1. Assume (H 1 ), (H 2 ), that g is jointly convex on X × P , and that the following two conditions hold:

1. (Joint Slater's CQ) There exists a pair (x, p) such that g(x, p) < 0, 

B := {(x, p) ∈ X × P | x 2 + p 2 1 + p 2 2 ≤ 1}. It is clear that the boundary parameters are bd(A) = {p ∈ P | p 2 1 + p 2 2 = 1}.

I.6 Continuity of Set-Valued Maps

Let X and Y be two non-empty sets. A set-valued map, which we denote by T : X ⇒ Y , is a function that assigns to each point x ∈ X a (possibly empty) subset T (x) of Y . We consider set-valued maps as extensions of usual functions. These latter being the particular case when for all x ∈ X the value T (x) is a set of exactly one element. With this idea in mind we consider the graph of T as a subset of X × Y instead of a subset of X × 2 Y . The graph of a set-valued map T : X ⇒ Y is the set

gph T := {(x, y) ∈ X × Y : y ∈ T (x)} ,
and its domain is

dom T := {x ∈ X : T (x) = ∅} .
Assume now that X and Y are topological spaces. Appropriate continuity notions will be related directly to the topology of Y , and not to a topology on 2 Y . Denition 3. Let x ∈ X. We say that a set-valued map T :

X ⇒ Y is • lower semi-continuous (lsc, for short) at x if for each open set V in Y satisfying T (x) ∩ V = ∅, there exists U ∈ N X (x) such that T (x) ∩ V = ∅, ∀x ∈ U ; • upper semi-continuous (usc, for short) at x if for each open set V in Y satisfying T (x) ⊂ V , there exists U ∈ N X (x) such that T (x) ⊂ V, ∀x ∈ U ;
• continuous at x if it is both lsc and usc at x.

We say that T is lsc (usc, continuous, respectively) in a set A ⊂ X, if it is so at every x ∈ A.

In the case A = X we omit the reference to the set.

Both lsc and usc for set-valued maps coincide independently with the usual continuity of functions when the set-valued map is single-valued. Nevertheless, they are quite dierent notions of continuity in general. As shown by the following example, there are set-valued maps that are usc but not lsc, and vice-versa.

Example 2. Consider an open and non-empty subset A of X such that A = X and two arbitrary sets B, C ⊂ Y . Let T : X ⇒ Y be the set-valued map given by

T (x) = B if x ∈ A C if x / ∈ A.
Then T is lsc if and only if B ⊂ C, and T is usc if and only if C ⊂ B. In particular, taking B = C we observe that any constant set-valued map is continuous.

The domain of a set-valued map that is lsc is an open set in X. We now explain the link of these continuity notion with some topological properties of their graphs (see [START_REF] Aubin | Set-valued analysis[END_REF][START_REF] Bank | Non-linear parametric optimization[END_REF] for the proofs).

Denition 4. We say that a set-valued map T : X ⇒ Y is

• closed at x, if (x, ȳ) ∈ cl(gph T ) implies that ȳ ∈ T (x);
• open at x, if for any ȳ ∈ T (x) it holds (x, ȳ) ∈ int(gph T ).

We simply say that T is closed ( open, respectively) if T is closed (open, respectively) at x, for every point x ∈ X.

We observe that whenever Obviously, a set valued map T : X ⇒ Y is lsc and open at each point x ∈ X with T (x) = ∅ (in other words x / ∈ dom(T )), while it is usc and closed at each point with full image, that is, x ∈ dom T such that T (x) = Y . Remark 3. The denition of a map being open at a point is equivalent to its strongly lsc at that point, a notion that has been used in [START_REF] Bank | Non-linear parametric optimization[END_REF]. It is also an appropriate name since if a map T is strongly lsc/open at x, then T is also lsc at x.

T is closed (open, respectively) at x then T (x) is also closed (open, respectively) in Y . Moreover, T being closed (open, respectively) is equivalent to that the gph T is a closed (open, respectively) set in X × Y . Proposition 3. A set-valued map T is open at x if and only if the complement T c is closed at x. Proof. Given ȳ ∈ Y , since (int(gph T )) c = cl(gph T c ), the statement ȳ ∈ T (x) implies (x, ȳ) ∈ int(gph T ) is equivalent to (x, ȳ) ∈ cl(gph T c ) implies ȳ ∈ T c (x).
It is easy to see that a set-valued map T that is the union of functions which are continuous at x is lsc at x. We present the following conjecture. Conjecture 1. Any set-valued map that is lsc at x can be expressed around x as the union of a family of functions which are continuous at x. This would be somehow related to Michael's selection theorems.

There is also a link between the usc of a set-valued map at a point and its closedness at that point. Proposition 4. Let T : X ⇒ Y and x ∈ X. Assume that the topological space Y satises the separation axiom T 3 .

1. If T is usc at x and T (x) is a closed set, then T is closed at x.

2. If Y is compact and T has closed graph, then T is usc.

Without the compactness of Y in the second part of Theorem 4, the graph of T being closed is not enough to guarantee the usc of T . In fact, we have found the following result (valid in normed vector spaces) that seems to limit the possibilities for usc set-valued maps at points where the value is closed but non-compact.

Lemma 1. Assume Y is a normed space and X is a metric space. Let T : X ⇒ Y be a set-valued map such that it is usc at a point x and T (x) is closed. Then there exist r 1 > 0 and r 2 > 0 such that T (x)\B Y (r 2 ) ⊂ T (x), ∀x ∈ B X (x, r 1 ).

Proof. Assume that the conclusion is not true. Then for every n ∈ N there exist x n ∈ B X (x, 

|y n | + 1 < |y n+1 |. We will nd an open set V that contains T (x) while the condition T (x n ) ⊂ V is false for all n ∈ N, thus contradicting the usc of T at x. Since T (x) is closed and y n / ∈ T (x) there exist ε n > 0 such that B Y (y n , ε n ) ∩ T (x) = ∅, (4) 
which we can chose such that ε n < 1 2 . Now consider the set

V := n∈N y∈T (x) |yn|<|y|+ 1 2 ≤|y n+1 | B Y (y, ε n ),
where y 0 is set to be 0. 

T (x n ) ⊂ V . Given n ∈ N, let us see that y n / ∈ V . If y n ∈ V , then there exist m ∈ N and y ∈ T (x) such that |y m | < |y| + 1 2 ≤ |y m+1 | for which y n ∈ B Y (y, ε m ). If n < m then |y m | < |y| + 1 2 ≤ |y n | + ε m + 1 2 < |y n | + 1 < |y m |, a contradiction. Also note that |y n | < |y| + ε m < |y m+1 | - 1 2 + ε m < |y m+1 |, so we have n ≤ m. Thus n = m and y n ∈ B Y (y, ε n ), with y ∈ T (x). We can write then that y ∈ B Y (y n , ε n ) ∩ T (x) which is a contradiction with (4).
The previous result is related with Lemma 2.2.2 in [START_REF] Bank | Non-linear parametric optimization[END_REF]. Inspired on these results we have the following conjecture.

Conjecture 2. Assume X and Y are metric spaces. Let T : X ⇒ Y be a set-valued map that is usc at a point x and T (x) is closed. Then there exist r > 0 and C compact in Y such that T (x)\C ⊂ T (x), ∀x ∈ B X (x, r).

The following theorem, which is based on Lemma 1, corresponds to the rst part of [START_REF] Bank | Non-linear parametric optimization[END_REF]Theorem 4.2.3], when restricted to nite dimensions.

Theorem 2. Assume X is a metric spaces. Let K : X ⇒ R m and f : R m → R and consider the value function ϕ(x) := inf {f (y) | y ∈ K(x)}. If K is usc with closed values, and f is lsc, then ϕ is lsc.

Proof. If ϕ is not lsc at x, then there exist (x n ) n ⊂ X converging to x and ε > 0 such that lim ϕ(x n ) < ϕ(x) -ε. In particular, there exist

y n ∈ K(x n ) such that f (y n ) < ϕ(x) -ε for all n ≥ n 0 . Since K is usc and K(x) is closed, from Lemma 1 we see that K(x n )\B(r 2 ) ⊂ K(x)
for each n ≥ n 1 . Thus we deduce that y n ∈ B(r 2 ) for all n ≥ n 1 . Without loss of generality assume that y n → y ∈ Y . Since K has closed graph (closed valued + usc) then y ∈ K(x)

and we obtain that

lim inf f (y n ) ≥ f (y) ≥ ϕ(x) ≥ lim inf f (y n ) + ε, a contradiction. Theorem 3. Assume X and Y are metric spaces. Let K : X ⇒ Y and f : X × Y → R.
We consider the value function ϕ(x) := inf {f (x, y) | y ∈ K(x)}. If K is lsc (relative to its domain) and f is usc then ϕ is usc. Proof. Let (x n , ȳn ) ∈ S such that (x n , ȳn ) → (x, ȳ). Since S ⊂ K and K has closed graph, then (x, ȳ) ∈ K. Take y ∈ K(x) and we want to prove that f (x, ȳ) ≤ f (x, y). Assume by contradiction that f (x, ȳ) > f (x, y) and take y n ∈ K(x n ) (lsc of K) such that y n → y and without loss of generality f (

x n , y n ) < f (x, y) + ε ≤ f (x, ȳ) -ε for some ε > 0, since f is usc. But lsc of f ensures that f (x n , ȳn ) > f (x, ȳ) -ε for n large enough. We obtain f (x n , y n ) < f (x, ȳ) -ε < f (x n , ȳn ),
which is clearly a contradiction since ȳn ∈ S(x n ).

Example 3. The following four examples show that we cannot drop the hypothesis of lsc of K, nor closedness of K, nor usc of f nor lsc of f . In all of them K :

[0, 1] ⇒ [0, 1] and f : [0, 1] → [0, 1] (more precisely f : [0, 1] × [0, 1] → [0, 1] by writing f (x, y) := f (y) for all x ∈ [0, 1]).
1. Let K(0) := [0, 1] and K(x) := {0} for x > 0. Let f (y) := -y for y ∈ [0, 1]. The solution mapping is S(x) = {1} for x > 0 and S(0) = {0} which is not graph closed. Proposition 5 does not apply because K is not lsc.

2. Let K(0) := {0} and K(x) = [0, 1] for x > 0. Let f ≡ 0. The solution mapping S is equal to K which has not closed graph. Proposition 5 does not apply because K is not closed.

3. Let K(x) := [0, x] for x ∈ [0, 1] and let f (y) = 1 for y > 0 and f (1) = 0. The solution mapping is S(x) = [0, x] for x > 0 and S(0) = {1} which is not graph closed. Proposition 5 does not apply because f is not usc.

4. Let K(x) := [0, x] for x ∈ [0, 1] and let f (0) = 1 and f (y) = 0 for y > 0. The solution mapping is S(x) = (0, x] for x > 0 and S(0) = {1} which is not graph closed. Proposition 5 does not apply because f is not lsc. 

subset of Y . If T is lsc at x 0 ∈ X, then the set-valued map T V : X ⇒ Y dened by T V (x) := T (x) ∩ V, (5) 
is also lsc at x 0 .

Proof. Let V 1 be an open subset of Y such that T V (x 0 ) ∩ V 1 = ∅. We put V 2 := V 1 ∩ V , which is open. Since T V (x 0 ) ∩ V 1 = T (x 0 ) ∩ V 2
, by lower semi-continuity of T , there exists a neighborhood U of x 0 such that T (x) ∩ V 2 = ∅ for all x ∈ U , or equivalently T V (x 0 ) ∩ V 1 = ∅ for all x ∈ U , so that T V is lower semi-continuous at x 0 .

Lemma 3. Let X, Y and T be as in Lemma 2. Assume that T is lsc at x 0 ∈ X, and let a set-valued map S : X ⇒ Y such that S(x 0 ) ⊂ T (x 0 ) and T (x) ⊂ S(x), ∀x ∈ X.

Then S is lsc at x 0 .

Proof. Let V be an open subset of Y such that S(x 0 ) ∩ V = ∅. Clearly, T (x 0 ) ∩ V = ∅, and we deduce that T (x 0 ) ∩ V = ∅. Thus, by the lower semi-continuity of T there exists a neighborhood U of x 0 such that ∅ = T (x) ∩ V ⊂ S(x) ∩ V , for all x ∈ U . Lemma 4. Let X and T be as in Lemma 2, Y a topological vector space, and V an open convex subset of Y . Let x 0 ∈ X such that T (x 0 ) ∩ V = ∅. If T is lsc at x 0 and T (x 0 ) is convex, then the set-valued map T V , dened similarly as in [START_REF] Aussel | Nash equilibrium in pay-as-bid electricity market : Part 2 -best response of producer[END_REF], is lsc at x 0 .

Proof. The set-valued map T V , which is lsc at x 0 by Lemma 2, satises T V (x) ⊂ T V (x) for all x ∈ X and, due to the accessibility lemma [START_REF] Schaefer | Topological vector spaces[END_REF],

T V (x 0 ) ⊂ T (x 0 ) ∩ V = T V (x 0 ).
Thus, T V is lsc at x 0 thanks to Lemma 3.

The following lemma can be easily proved (see Lemma 2.3 in [85]).

Lemma 5. Let X, Y and T be as in Lemma 2, A a closed subset of X, and S : A ⇒ Y . We dene the set-valued map M : X ⇒ Y as

M (x) := T (x) if x ∈ X \ A S(x) if x ∈ A.
If S, T are lsc and S(x) ⊂ T (x), for all x ∈ A, then M is lsc.

The following result is Theorem 5.9(c) in [START_REF] Rockafellar | Variational analysis[END_REF].

Lemma 6. If T : R n ⇒ R m is lsc at x 0 ∈ R n , then so is the set-valued map co(T ) :

R n ⇒ R m dened as co(T )(x) := co(T (x)).
The following is a consequence of Himmelberg's xed point and Michael's selection theorems. Recall that for a set-valued map T :

C ⊂ R n ⇒ C, Fix(T ) is the set of xed points of T ; that is, x ∈ C with x ∈ T (x).
Proposition 6 (Corollary 1 in [START_REF] Cotrina | Quasi-equilibrium problems with non-self constraint map[END_REF]). Given a non-empty, convex and closed subset C of R n , if T : C ⇒ C is lsc with non-empty and convex values and T (C) is bounded, then Fix(T ) = ∅.

Given a set-valued map T : X ⇒ Y , between two sets X, Y , the bre of T at y ∈ Y is the set

T -1 (y) := {x ∈ X : y ∈ T (x)}.
The following result is a particular case of [64, Theorem 5] (see, also [ 

Part II

Non-Smooth Calculus Rules

Context and Abstract

In this part we will discuss about some extensions of the very well-known smooth calculus rules and optimality conditions for non-linear problems to the non-smooth framework by considering subdierentials of the functions. Our approach concerns fuzzy subdierential calculus rules, which are approximate rules that considers subdierentials at points that are close to the reference point. In the convex case we also consider approximate subdierentials.

In Chapter II.1 we restrict our attention to the convex case, that is, assuming convexity of the involved functions. We start recalling some known results as a small survey but we also present some recent improvements based on our work [START_REF] Hantoute | A general representation of δ-normal sets to sublevels of convex functions[END_REF], particularly in supremum rules and normal cone rules. This survey will also serve for as introducing the next chapter.

In Chapter II.2, we consider the non-smooth and non-convex case in the framework of Asplund spaces. We improve some known fuzzy optimality conditions and give estimations of the subdierential of the supremum of an arbitrary family of lower semi-continuous functions and of the normal cone to the sublevel set of a lower semi-continuous function in terms of the subdierentials of the data functions.

Chapter II.1

Calculus Rules in Convex Analysis

II.1.1 Introduction

In this chapter, we will discuss about some extensions of well-known smooth calculus rules and optimality conditions to a non-smooth convex framework.

We start by recalling some known results, including some recent improvements that we have made in [START_REF] Hantoute | A general representation of δ-normal sets to sublevels of convex functions[END_REF], which rely on subdierential calculus for the supremum function, the approximate normals to sub-level sets, and optimality conditions. This survey will also serve for as introducing the next chapter where the general non-smooth and non-convex case is considered.

Let X be a locally convex space and consider a function f : X → R. We recall that the eective domain of f is the set dom f := {x ∈ X : f (x) < ∞}. We say that f is convex if for any x 0 , x 1 ∈ X and λ ∈ [0, 1],

f (x λ ) ≤ λf (x 1 ) + (1 -λ)f (x 0 ), (II.1.1)
where x λ := λx 1 + (1 -λ)x 0 . Note that since the values are allowed to be +∞ we use the convention described in the general Introduction in Chapter 1.

Geometrically, the convexity of the function f is equivalent to the convexity of its epigraph,

epi f := {(x, α) ∈ X × R | f (x) ≤ α} . (II.1.2) Recall that a set C ⊂ X is convex if for all x 0 , x 1 ∈ X, the whole segment [x 0 , x 1 ] := {λx 1 + (1 -λ)x 0 | λ ∈ [0, 1]} is included in C. If f is convex, then also dom f is convex, as well as the sublevel sets [f ≤ α] := {x ∈ X : f (x) ≤ α} and the strict sublevel sets [f < α] := {x ∈ X : f (x) < α} for α ∈ R.
An important observation is that the tangential approximation of a smooth and convex function lies below the function itself. This fact led to the rst ideas of the so-called subgradients for non-smooth convex functions.

We say that x * ∈ X * is a subgradient of f at x if x * , x -y + f (x) ≤ f (y), ∀x ∈ X.

(II.1.3) A subgradient does not always exist and might not be unique. Thus, the set of subgradient of a convex function f at a given point x, which is called the subdierential of f at x and is denoted by ∂f (x) could be empty or possibly contain more than one point.

Given ε ≥ 0 the ε-subdierential of f at x ∈ dom f is the set of x * ∈ X * such that x * , x -y + f (x) ≤ f (y) + ε, ∀x ∈ X. (II.1.4)
It is clear that when ε = 0 the ε-subdierential coincide with the (exact) subdierential of a function.

The advantage of considering a positive ε > 0 is that ∂ ε f (x) is non-empty for all x ∈ dom f and as we shall see, it provides of useful information. Obviously, ∂ ε f (x) ⊂ ∂ δ f (x) whenever ε < δ, and further we also have the following simple approximation properties. Proposition 8. For any f : X → R, x ∈ dom f and ε ≥ 0 we have

∂ ε f (x) = δ>ε ∂ δ f (x) (II.1.5)
Additionally, if ∂ ε 0 f (x) = ∅ for some ε 0 > 0 (as in the case of f convex and lsc) then for any ε > ε 0 we have

∂ ε f (x) = cl   δ∈ ]0,ε[ ∂ δ f (x)   (II.1.6)
Proof. The rst relation is obvious and well-known, so we only prove the second. First,

∂ ε f (x) is closed so that the inclusion to the left follows. Second, let x * ∈ ∂ ε f (x) and consider x * 0 ∈ ∂ ε 0 f (x). For λ ∈ [0, 1] we dene x * λ := λx * + (1 -λ)x * 0 , which obviously lies in ∂ δ λ f (x), with δ λ := λε + (1 -λ)ε 0 . Since x * λ →
x * as λ → 1 with λ < 1, then x * belong to the left hand side of (II.1.6).

The directional ε-derivative of f at x in a direction v ∈ X is dened as

f ε (x, v) := inf t>0 f (x + tv) -f (x) + ε t ;
again, if ε = 0, we just call it directional derivative and write f (x, v).

Theorem 4. Given f ∈ Γ(X) and ε > 0 we have

f ε (x, v) = sup x * ∈∂εf (x)
x * , v .

The relation in Proposition 8 is related to the following lemma concerning approximate directional derivatives. The proof we present is much shorter than the one presented in [54, Lemma 24] where the analysis was made directly over the function.

Lemma 7. Let f ∈ Γ 0 (X), x ∈ dom f and v ∈ X. Then the function ε → R(ε) := f ε (x; v)
is non-decreasing and continuous on R + .

Proof. Given ε > 0, and thanks to Theorem 4, the relation (II.1.5) ensures that lim δ→ε + R(δ) = R(ε) and the relation (II.1.6) that lim δ→ε -R(δ) = R(ε). The case ε = 0 can be argued by simply interchanging the inmum over δ > 0 and the one dening the directional derivative. This proves the continuity of R.

We recall now the Ekeland variational principle.

II.1.1. Introduction Theorem 5. Let (X, d) be a complete metric space, let f : X → R a lsc function that is bounded from below. Let z ∈ X and ε > 0 satisfy f (z) < inf f + ε.

Then, for any λ > 0 there exists y ∈ X such that 1. d(z, y) ≤ λ,

2. f (y) + ελ -1 d(y, z) ≤ f (z), 3. f (x) + ελ -1 d(y, x) > f (y), for all x ∈ X\{y}.
The following theorem corresponds to the Lemma in the seminal paper [START_REF] Brøndsted | On the subdierentiability of convex functions[END_REF] in 1964. It consists basically in applying the Ekeland variational principle.

Theorem 6. Let X be a Banach space, f : X → R ∪ {∞} be a convex and lsc function and

x 0 ∈ dom f . Let x * 0 ∈ ∂ ε f (x 0 ) for ε, λ > 0.
Then there exists x ε ∈ X and x * ε ∈ ∂f (x ε ).

x ε -x 0 ≤ λ, (II.1.7) x * ε -x * 0 ≤ ελ -1 . (II.1.8)
Proof. Consider the function g = f -x * , which is convex and lsc, and satisfy g(x 0 ) ≤ inf g + ε.

From the Ekeland variational principle we know there exists x ε ∈ X which is a minimum point of the function h(x) := g(x) + ε/λ x -x ε and that g(x ε ) + ε/λ x ε -x 0 ≤ g(x 0 ). Noting also that g(x 0 ) ≤ g(x ε ) + ε, we deduce that x ε -x 0 ≤ λ. Now since h is a sum of convex functions, only one of them being possibly not continuous, we can use the sum rule of Theorem 7 and we have that

0 ∈ ∂(g + ε/λ • -x ε )(x ε ) = ∂f (x ε ) -x * 0 + ε/λB * .
We conclude thus that there exists

x * ε ∈ ∂f (x ε ) such that x * 0 -x * ε ≤ ε/λ.
Remark 5. It follows from the above theorem that the obtained points x ε and x * ε satisfy also

x ε -x 0 x * ε ≤ ε + λ x * 0 , (II.1.9) |f (x ε ) -f (x 0 )| ≤ ε + λ x * 0 , (II.1.10) x * ε ∈ ∂ 2ε f (x 0 ),
(II. 1.11) and in particular

| x ε -x 0 , x * ε | ≤ ε + λ x * 0 .
(II.1.12)

We observe thus that it is not necessary to `prove again' theorems like [START_REF] Zȃlinescu | Convex analysis in general vector spaces[END_REF]Theorem 3.1.1] or [START_REF] Borwein | A note on ε-subgradients and maximal monotonicity[END_REF]Theorem 1], which simply add some of the above conclusions to the ones in Theorem 6. Further we obtained this way a stronger complementarity condition that we will use later on.

Proof. (of remark 5). We see that by the triangular inequality

x ε -x 0 x * ε ≤ λ( x * ε -x * 0 + x * 0 ) ≤ λ(ελ -1 + x * 0 ) = ε + λ x * 0 ,
which proves the rst inequality and also (II.1.12). Thus, since x * ε ∈ ∂f (x ε ) we obtain

f (x ε ) -f (x 0 ) ≤ x * ε , x ε -x 0 ≤ ε + λ x * 0 . Moreover, since x * 0 ∈ ∂ ε f (x 0 ) then -λ x * 0 -ε ≤ x * 0 , x ε -x 0 -ε ≤ f (x ε ) -f (x 0 )
and thus we have proved the second inequality of the remark. Finally, since obviously

x * ε -x * 0 , x ε -x 0 ≤ ε, then for any x ∈ X we have x * ε , x -x 0 = x * ε , x -x ε + x * ε , x ε -x 0 ≤ f (x) -f (x ε ) + x * 0 , x ε -x 0 + ε ≤ f (x) -f (x 0 ) + ε + ε, which proves that x * ε ∈ ∂ 2ε f (x 0 ).

II.1.2 Sum Rule

Under a weak qualication condition we have the following subdierential sum rule, the Moreau-Rockafellar Theorem.

Theorem 7. Assume X is a Banach space, let f, g : X → R be convex and lower semicontinuous and let x ∈ X.

If x ∈ dom f ∩ int(dom g), then ∂(f + g)(x) = ∂f (x) + ∂g(x).
(II. 1.13) This powerful and quite simple sum rule holds at points x in dom f ∩ int(dom g) (or symmetrically in int(dom f ) ∩ dom g), but not necessarily if x belongs to dom f ∩ dom g = dom(f + g). For instance, if we take f, g : R → R given by f (x) := -√ x for x ≥ 0, f (x) := +∞ otherwise, and g(x) := f (-x), then ∂(f + g)(0) = R while ∂f (0) + ∂g(0) = ∅, since both sets in the sum are empty.

In order to avoid a qualication condition like x ∈ dom f ∩ int(dom g) it is possible to consider approximate subdierentials, which are non-empty in all the domain of a convex and lower semi-continuous function (see [START_REF] Hiriart-Urruty | Subdierential calculus using -subdierentials[END_REF]). Theorem 8. Assume X is a l.c.t.v.s., let f i : X → R be convex and lower semi-continuous and let x ∈ X.

If x ∈ dom f 1 ∩ dom f 2 , then ∂(f 1 + f 2 )(x) = ε>0 cl(∂ ε f 1 (x) + ∂ ε f 2 (x)).
(II. 1.14) In the above theorem we can apply directly Theorem 6 and obtain a fuzzy sum rule for convex functions. The following result corresponds to [START_REF] Thibault | A generalized sequential formula for subdierentials of sums of convex functions dened on banach spaces[END_REF]Theorem 3]. Theorem 9. Let X be a Banach space and f i : X → R be convex and lower semi-continuous functions and x ∈ dom(f

1 + f 2 ). Then ∂(f 1 + f 2 )(x) = lim sup x i →x f i (x i )-x * i ,x i -x →f i (x) ∂f 1 (x 1 ) + ∂f 2 (x 2 ) (II.1.15)
Proof. We will only prove the inclusion to the right, since the reverse is direct. Take x * ∈ ∂(f 1 + f 2 )(x) and let ε > 0 and L a nite dimensional subspace of X. Then by Theorem 8 there exist x *

i ∈ ∂ ε f i (x) such that x * ∈ x * 1 + x * 2 + V * L,ε .
We can apply Theorem 6 with λ = √ ε to obtain that there exist x i and

x * i ∈ ∂f (x i ) such that x i -x ≤ √ ε and x * i -x * i ≤ √ ε and x * i ∈ ∂ 2ε f i (x). Then obviously x * ∈ x * 1 + x * 2 + V * L,ε+ √ ε and moreover 0 ≤ x * i , x i -x -f i (x i ) + f i (x) ≤ 2ε
, which proves that x * belongs to the right hand side of (II.1.15). Remark 6. Under the same assumption of Theorem 9, but using a dierent technique (which is also useful in the non-convex case) it is possible to show the following formula given in [START_REF] Thibault | Limiting convex subdierential calculus with applications to integration and maximal monotonicity of subdierential[END_REF] ∂(

f 1 + f 2 )(x) = lim sup x i → f i x x * i ,x i -x →0 x * i x 1 -x 2 →0 ∂f 1 (x 1 ) + ∂f 2 (x 2 ) (II.1.16)

II.1.3 Supremum Rules

Convexity of functions is a property that is preserved under pointwise maximum or supremum, while smoothness is not.

A rst supremum rule is related with a specic kind of supremum function, the conjugate.

Given a proper function f : X → R we dene the conjugate of f as the function f * :

X * → R dened by f * (x * ) := sup x x * , x -f (x), which is a convex function on X * even if f : X → R is not necessarily convex. The bi- conjugate f * * : X → R is dened as f * * (x) := sup x * x * , x -f * (x * ),
and coincides with cof , which can be dened as the function whose epigraph is co(epi f ), provided the conjugate is proper, for instance.

The following result related with the subdierential of a conjugate function will be useful in what follows.

Lemma 8. Given a function f : X → R such that dom f * = ∅, we have that for all ε > 0

and x * ∈ Y ∂ ε f * (x * ) = cl k i=1 λ i (∂ ε i f ) -1 (x * ) | λ ∈ ∆ k , k i=1 λ i ε i ≤ ε, ε i ≥ 0, k ≥ 1 where ∆ k := {λ ∈ R k + : k i=1 λ i = 1}. Proof. Assume rst that x = k i=1 λ i x i with x i ∈ (∂ ε i f ) -1 (x * ), λ ∈ ∆ k and k i=1 λ i ε i ≤ ε, ε i ≥ 0, and k ∈ N. Then x * ∈ ∂ ε i f (x i ) and, so, x * , y -x i ≤ f (y) -f (x i ) + ε i , ∀y ∈ X, ∀i = 1, • • • , k.
Multiplying this inequality by λ i and summing up over i, and using the fact that f * * = cof we obtain

x * , y -x ≤ f (y) + k i=1 λ i (-f (x i ) + ε i ) ≤ f (y) -f * * (x) + ε. Hence, f * (x * ) + f * * (x) ≤ x * , x + ε, we get x ∈ ∂ ε f * (x *
) and we obtain the inclusion ⊃.

To establish the converse inclusion let us take x ∈ ∂ ε f * (x * ). Given δ > 0 and V ∈ N X (0),

then f * (x * ) + cof (x) ≤ x * , x + ε, (II.1.17)
Thus there are elements

x 1 , • • • , x k ∈ dom f, λ ∈ ∆ k , and k ∈ N, such that x -k i=1 λ i x i ∈ V and cof (x) ≥ k i=1 λ i f (x i ) -δ. Thus, taking ε i := f (x i ) -cof (x) + x * , x -x i + ε, we obtain k i=1 λ i ε i ≤ ε + δ and x * ∈ ∂ ε i f (x i ). Hence, x ∈ k i=1 λ i (∂ ε i f ) -1 (x *
) + V and we conclude due to the arbitrariness of δ > 0 and V , using Proposition [START_REF] Aussel | Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions[END_REF].

We give now a formula for the ε-subdierential of the supremum function that extends and improves [78, Theorem 1].

Theorem 10. Given a set T and f t ∈ Γ 0 (X), t ∈ T, we assume that f = sup t∈T f t . Then for every x ∈ X and ε > 0 we have

∂ ε f (x) = cl        λ∈∆ k , t i ∈T, β i ≥0, k≥1 k i=1 λ i (β i -ft i (x)+f (x))≤ε k i=1 λ i ∂ β i f t i (x)        . Proof. Let us rst set g := inf t∈T f * t , so that g * = sup t∈T f * * t = sup t∈T f t = f and ∂ ε f (x) = ∂ ε g * (x).
Then, according to Lemma 8, for every x ∈ X and ε > 0

∂ ε f (x) = cl k i=1 λ i (∂ ε i g) -1 (x) | λ ∈ ∆ k , k i=1 λ i ε i ≤ ε, ε i ≥ 0, k ≥ 1 . (II.1.18)
To establish the inclusion ⊂ of the theorem we pick

x * i ∈ (∂ ε i g) -1 (x), i ≤ k, where ε i ≥ 0 and k ∈ N are such that k i=1 λ i ε i ≤ ε for some λ ∈ ∆ k . Then x ∈ ∂ ε i g(x * i ) and we get inf t∈T f * t (x * i ) + f (x) = g(x * i ) + g * (x) ≤ x * i , x + ε i . Next, for γ > 0 by choosing t i ∈ T such that inf t∈T f * t (x * i ) ≥ f * t i (x * i ) -γ we obtain f * t i (x * i ) + f (x) ≤ inf t∈T f * t (x * i ) + f (x) + γ ≤ x * i , x + ε i + γ, (II.1.19)
Therefore, by dening

β i := f * t i (x * i ) + f t i (x) -x * i , x ≥ 0 we obviously have x * i ∈ ∂ β i f t i (x) and moreover k i=1 λ i (β i -f t i (x) + f (x)) ≤ k i=1 λ i ε i + γ ≤ ε + γ,
and the inclusion ⊂ follows thanks to (II.1.18) and relation (II. 1.6).

Conversely, to prove the inclusion ⊃we take

x * = k i=1 λ i x * i , where x * i ∈ ∂ β i f t i (x), δ > ε, k ∈ N, and λ ∈ ∆ k , with k i=1 λ i (β i -f t i (x)) + f (x) ≤ δ. Then f * (x * ) ≤ k i=1 λ i f * (x * i ) ≤ k i=1 λ i f * t i (x * i ) ≤ k i=1 λ i ( x, x * i + β i -f t i (x)) ≤ x, x * + δ -f (x).
so that x * ∈ ∂ δ f (x). Thus, the desired inclusion follows form the closedness of ∂ δ f (x) and the arbitrariness of δ > ε.

Corollary 1. Assume that f = sup n≥1 f n , with (f n ) n being a non-decreasing sequence of proper, convex and lsc functions. Then for every x ∈ X and ε > 0 we have

∂ ε f (x) = lim sup n→+∞ ∂ ε f n (x)
Proof. Take ξ ∈ ∂ ε f (x) and x δ > 0. According to Theorem 10, for any V ∈ N w * (0) we have that 

ξ ∈ k i=1 λ i ξ i + V for some ξ i ∈ ∂ β i f n i (x) and λ ∈ ∆ k (k ∈ N), where β i ≥ 0 and n i ∈ N (i = 1, ..., k) are such that k i=1 λ i (β i -f n i (x) + f (x)) ≤ ε + δ 2 . Put m 0 := max k i=1 n i ≥ 1. By writing the relation ξ i ∈ ∂ β i f n i (x)
y ∈ x + δ 2 V • (hence, σ V (y -x) ≤ δ 2 ), ξ, y -x ≤ k i=1 λ i ξ i , y -x + δ 2 ≤ i=1,k λ i (f n i (y) -f n i (x) + β i ) + δ 2 ≤ f m 0 (y) -f (x) + ε + δ. Then, ξ, y -x ≤ f n (y) -f n (x) + ε + δ for all n ≥ m 0 , so that ξ ∈ ∂ ε+δ (f n + χ x+ δ 2 V • )(x)
, for all n ≥ m 0 . Taking into account the sum rule of ε-subdierentials (e.g., [START_REF] Hiriart-Urruty | Subdierential calculus without qualication conditions, using approximate subdierentials: a survey[END_REF])

∂ ε+δ (f n + χ x+ δ 2 V • )(x) ⊂ ∂ ε+δ f n (x) + 2(ε + δ) δ V.
Hence, as V was arbitrarily chosen, we deduce that

ξ ∈ lim sup n→+∞ ∂ δ f n (x).
which nishes the proof, since the opposite inclusion ⊃ always holds.

We now recover the case of the maximum of nitely many convex functions; see, e.g., [START_REF] Zȃlinescu | Convex analysis in general vector spaces[END_REF].

Corollary 2. Consider a family of nitely many proper lsc convex functions f 1 , • • • , f n and f = max n i=1 f i . Then for every x ∈ X and ε ≥ 0

∂ ε f (x) = ∂ η n i=1 λ i f i (x) (x) | λ ∈ ∆ n , η = n i=1 λ i f i (x) -f (x) + ε ≥ 0 ,
and in particular

∂f (x) = ∂ n i=1 λ i f i (x) (x) | λ ∈ ∆ n , λ i = 0, ∀i / ∈ A(x) ,
where A(x) = {i = 1, ..., n :

f i (x) = f (x)}.
Proof. According to Theorem 10, we have that

∂ ε f (x) ⊂ cl n i=1 λ i ∂ β i f i (x) | λ ∈ ∆ n , n i=1 λ i (β i -f i (x)) + f (x) ≤ ε ⊂ cl ∂ ε ( n i=1 λ i f i )(x) | λ ∈ ∆ n , n i=1 λ i f i (x) ≥ f (x) -ε . (II.1.20)
The conclusion follows by using the compactness of the set ∆ n .

At this point we can consider the case ε = 0 and think of the question if we can estimate the exact subdierential of a supremum function in terms of the exact subdierential (maybe not only at the reference point). This question can be addressed in a similar way as in Theorem 9 by applying Theorems 10 and 6, and Remark 5.

Theorem 11. Assume X is a Banach space. Then 

∂f (x) = lim sup k∈N,t i ∈T,λ∈∆ k x i → f t i x, λ i (ft i (x)-f (x))→0 λ i x * i ,x i -x →0 k i=1 λ i ∂f t i (x i ) (II.
N ε C (x). If ε = 0 then of course N 0 C (x) coincide with N C (x) for every x ∈ C.
The normals to a convex set C can be viewed as subdierentials of the indicator of the set C. Recall that the indicator of C is the function χ C : X → R dened as χ C (x) = 0 for x ∈ C and χ C (x) := +∞ otherwise. We observe then that ∂ ε χ C (x) = N ε C (x) for any x ∈ X.

From this fact we deduce the following useful result.

Proposition 9. Given f ∈ Γ 0 (X), λ ∈ R, and x ∈ [f ≤ λ], for every ε > 0 we have that

N ε [f ≤λ] (x) = cl α>0 N ε [f ≤λ+α] (x) .
Proof. Let us consider the functions f n := χ [f ≤λ+1/n] for n ∈ N and f := χ [f ≤λ] , which are all in Γ 0 (X), and satisfy that f n is an increasing family that converges pointwise to f . Observe that since f n (x) = f (x) = 0 for all n ≥ 1, the sequence of sets (∂ ε f n (x)) n is non-decreasing.

We apply the supremum rule of Corollary 1 and obtain

∂ ε f (x) = lim sup n→+∞ ∂ ε f n (x) = cl n≥1 ∂ ε f n (x) . which corresponds to N ε [f ≤λ] (x) = cl n≥1 N ε [f ≤λ+ 1 n ] (x) ,
as we wanted to prove.

Lemma 9. If f (x) ≤ λ < +∞ and the Slater condition holds at λ (∃x 0 :

f (x 0 ) < λ), then N δ [f ≤λ] (x) ⊂ µ≥0 ∂ δ+µ(f (x)-λ) (µf ) (x). Proof. Given ξ ∈ N δ [f ≤λ] (x), we dene the proper lsc convex function ϕ : X → R as ϕ(x) := max {f (x) -λ, δ -ξ, x -x } .
From the denition of the δ-normal set we have that ϕ(x) ≥ 0 for all x ∈ X. Thus, since ϕ

(x) = δ, it follows that 0 ∈ ∂ δ ϕ(x). According to Corollary 2, ∂ δ ϕ(x) ⊂ α∈[0,1],η∈[0,δ] η≤αδ+(1-α)(f (x)-λ) ∂ η ((1 -α)(f -λ) + α(δ -ξ + ξ, x ))(x),
and so there exist α ∈

[0, 1] and η ∈ [0, αδ +(1-α)(f (x)-λ)] such that αξ ∈ ∂ η (1-α)f (x). If α = 0, then η = 0 (as f (x) ≤ λ)
and we get 0 ∈ ∂f (x), which contradicts the Slater condition. So, α > 0 and the number µ :

= 1-α α (≥ 0) is well-dened and satises η α ≤ δ + µ(f (x) -λ) together with ξ ∈ 1 α ∂ η (1 -α)f (x) ⊂ ∂ η α 1 -α α f (x) ⊂ ∂ δ+µ(f (x)-λ) (µf ) (x). Theorem 12. If f (x) ≤ λ < +∞ then for δ > 0 we have N δ [f ≤λ] (x) = cl µ≥0 ∂ δ+µ(f (x)-λ) (µf ) (x) (II.1.22)
and consequently

N [f ≤λ] (x) = ε>0 cl µ≥0 ∂ ε+µ(f (x)-λ) (µf ) (x) . (II.1.23)
Proof. First it is obvious that for any α > 0, f satises the Slater condition at λ + α, so that by Lemma 9 we get

N δ [f ≤λ+α] (x) ⊂ µ≥0 ∂ δ+µ(f (x)-λ-α) (µf ) (x) ⊂ µ≥0 ∂ δ+µ(f (x)-λ) (µf ) (x).
Thus, using Proposition 9 we conclude that

N δ [f ≤λ] (x) = cl α>0 N δ [f ≤λ+α] (x) ⊂ cl µ≥0 ∂ δ+µ(f (x)-λ) (µf ) (x) .
The converse implication is trivial.

Remark 7. In Theorem 12, if the space X is a reexive Banach space then the above closure can be taken with respect to the strong topology in X * .

We can obtain a formula for a normal cone to the intersection of an arbitrary family of sublevel sets of convex functions by simply combining the supremum formula in Theorem 10 and the normal cone formula in Theorem 12, Theorem 13. Let f t ∈ Γ 0 (X) and λ t ∈ R, t ∈ T and let S t := [f t ≤ λ t ]. Then for any δ > 0,

N δ t∈T St (x) = cl k i=1 µ i ∂ ε i f t i (x), k ∈ N, t i ∈ T, µ i > 0, k i=1 µ i (λ -f t i (x) + ε i ) ≤ δ (II.1.24)
Proof. We observe rst that

t∈T S t = [f ≤ 0] for f := sup t∈T f t -λ t .
Then by Theorem 12

we have

N δ t∈T St (x) = N δ [f ≤0] (x) = µ>0 µ∂ δ/µ+f (x) f (x).
Second, we apply Theorem 10 to estimate ∂ ε f (x) with ε = δ/µ + f (x). We have that

∂ δ/µ+f (x) f (x) = cl k i=1 λ i ∂ β i f t i (x) : λ ∈ ∆ k , k i=1 λ i (β i -f t i (x) + λ t i ) ≤ δ/µ
and the proof easily follows.

Our formula takes an algebraic form in the following corollary, giving rise to the result given in [START_REF] Hiriart-Urruty | Subdierential calculus without qualication conditions, using approximate subdierentials: a survey[END_REF] and originated in [START_REF] Kutateladze | Convex e-programming[END_REF]. It follows from Lemma 9.

Corollary 3. If f (x) ≤ λ < +∞ and the Slater condition holds at λ (∃x 0 : f (x 0 ) < λ), then

N [f ≤λ] (x) = µ≥0 ∂ µ(f (x)-λ) (µf ) (x).

II.1.4.1 A General Formula

We are going to prove a general formula that extends Theorem 12 including also the case

x / ∈ [f ≤ λ].
For this purpose we recall the notion of recession cone of a nonempty convex set C ⊂ X, which is dened as the set

C ∞ := {v ∈ X : ∃x ∈ C, x + tv ∈ C, ∀t > 0}. Theorem 14. Let f ∈ Γ 0 (X), x ∈ dom f , δ ≥ 0 and λ ∈ R. Assume that either δ > 0 or λ < f (x). Then N δ [f ≤λ]∪(x+[f ≤f (x)]∞) (x) = µ>0 ∂ δ+µ(f (x)-λ) (µf )(x), (II.1.25)
and consequently

N [f ≤λ]∪(x+[f ≤f (x)]∞) (x) = δ >0 µ>0 ∂ δ +µ(f (x)-λ) (µf )(x).
(II. 1.26) Proof. We will only prove the inclusion ⊂ because the converse is straight forward. We

pick a ξ ∈ N δ [f ≤λ]∪(x+[f ≤f (x)]∞) (x) such that ξ / ∈ µ>0 ∂ δ+µ(f (x)-λ) (µf )(x). (II.1.27)
Since this last set is convex and obviously closed, by the Hahn-Banach Theorem there exist

v ∈ X and α ∈ R such that ξ, v > α ≥ x * , v , for all x * ∈ µ>0 ∂ δ+µ(f (x)-λ) (µf )(x); moreover, because ∂ δ+µ(f (x)-λ) (µf )(x) = µ∂ δ/µ+f (x)-λ f (x)
taking µ → 0 we get α ≥ 0 and, so, one may suppose that α = δ. Hence, the inequalities above read: for all µ > 0

ξ, v > δ ≥ x * , v , for all x * ∈ ∂ δ+µ(f (x)-λ) (µf )(x); (II.1.28) that is µf δ/µ+f (x)-λ (x, v) ≤ δ, or, equivalently, for all ε ≥ 0 (setting ε = δ/µ) inf t>0 f (x + tv) -λ + ε t ≤ ε. (II.1.29)
Let S be the set-valued map of Lemma 10. First, we assume that S(f [START_REF] Calvete | Linear bilevel multi-follower programming with independent followers[END_REF], and this leads us to the following contradiction (recall

(x) -λ) ∩ [-1, 0] = ∅. If S(f (x) -λ) ( = ∅ by Lemma 10) contains a point s 0 ∈ [-1, 0[ , then t 0 := -1 s 0 ≥ 1 satises f (x + t 0 v) -λ ≤ 0, by (II.1.
(II.1.28)), ξ, v = t -1 0 ξ, x + t 0 v -x ≤ t -1 0 δ ≤ δ < ξ, v . (II.1.30) If S(f (x)-λ) contains 0, there would exist t n → +∞ such that lim n→+∞ t -1 n (f (x+t n v)-λ) = R(f (x) -λ) ≤ 0, which shows that sup t>0 t -1 (f (x + tv) -f (x)) = lim n→+∞ t -1 n (f (x + t n v) -f (x)) = lim n→+∞ t -1 n (f (x + t n v) -λ) ≤ 0; hence, v ∈ [f ≤ f (x)
] ∞ and we get a contradiction along of (II. 1.30). Now, we suppose that S(f

(x) -λ) ∩ [-1, 0] = ∅; that is, s < -1 for all s ∈ S(f (x) -λ).
Then two cases may occur:

(a) For every ε > f (x) -λ and s ∈ S(ε) we have s < -1. In this case we pick an s ε ∈ S(ε) 

and put t ε := -1 s ; hence, t ε < 1, so that ε -1 (f (x + t ε v) -λ) + 1 t ε ≤ 1. Since f (x + •v) is bounded from below in [0, 1], this last inequality implies that t ε → 1 as ε → +∞, as well as ε -1 (f (x + t ε v) -λ) ≤ 0 for ε large enough (because t ε < 1). Then f (x + v) = lim ε→+∞ f (x + t ε v) ≤ λ

30).

(b) There exist some ε 0 > f (x) -λ and s 0 ∈ S(ε 0 ) such that s 0 ≥ -1. Since S is a maximal monotone operator (Lemma 10), it has a convex range and, so, because s < -1 for all s ∈ S(f (x) -λ) while s 0 ≥ -1, there must exist some

ε 1 > 0 such that -1 ∈ S(ε 1 ); that is, f (x + v) -λ + ε 1 ≤ ε 1 ,
and we get x + v ∈ [f ≤ λ], which leads us to a contradiction similar to the one in (II.1.30). Consequently, (II.1.27) is not true and we must have that ξ ∈ µ>0 ∂ δ+µ(f (x)-λ) (µf )(x).

Then next lemma is somehow related with the sets of minimizers of

t → f (x + tv) -f (x) + ε t (II.1.31)
as a function of ε. But in fact this set could be empty. This can be handled by considering instead the following sets

S(ε) := {-lim n→+∞ t -1 n | lim n→+∞ t -1 n (f (x + t n v) -f (x) + ε) = f ε (x; v)}, for ε ≥ 0. It is simple to see that if t ∈ S(ε) with -t > 0 then -t is a minimizer of the function (II.1.31).
Lemma 10. Given x ∈ dom f and v ∈ X, we dene the set-valued mapping S : R ⇒ R as S(ε) = ∅ for ε < 0, and

S(ε) := {-lim n→+∞ t -1 n | lim n→+∞ t -1 n (f (x + t n v) -f (x) + ε) = f ε (x; v)}, for ε ≥ 0.
Then the following assertions hold:

(i) S(ε) = ∅ for all ε > 0 (ii) The set S(0) is a possibly empty closed interval of R - (iii) When S(0) = ∅ there exists s ε ∈ S(ε) such that s ε → -∞ as ε ↓ 0 (iv) For every ε ≥ 0 the set S(ε) is convex and closed.
Moreover S is a maximal monotone set-valued map.

Proof. (i) If ε > 0, then each sequence (t n ) realizing the inmum in the denition of R(ε) := f ε (x; v) must converge (up to a subsequence) to some t > 0 (possibly t = +∞), so that

-1 t ∈ S(ε) (with the convention that 1 +∞ = 0). (ii) If S(0) is a non-empty subset of R -, then it is closed, by the continuity of function g = f (x + •v) -f (x). If s 0 (∈ S(0) ⊂ R -) is the maximum element in S(0), then there is a sequence (t n ) of positive numbers such that s 0 = -lim n→+∞ t -1 n and lim n→+∞ t -1 n (f (x + t n v) -f (x)) = f (x; v). If s 0 < 0, then for t 0 := -1 s 0 we get f (x; v) ≤ t -1 (f (x + tv) -f (x)) ≤ t -1 0 (f (x + t 0 v) -f (x)) = f (x; v) for all t ∈ ]0, t 0 ] ; hence, ]-∞, s 0 ] ⊂ S(0). If s 0 = 0, then t n → ∞ and we obtain f (x; v) ≤ inf t>0 t -1 (f (x + tv) -f (x) ≤ sup t>0 t -1 (f (x + tv) -f (x)) = lim n→+∞ t -1 n (f (x + t n v) -f (x)) = f (x; v);
that is, ]-∞, 0] ⊂ S(0). Thus, in both cases we have ]-∞, s 0 ] ⊂ S(0).

(iii) Assume that S(0) is empty, Then, as ε ↓ 0, there always exist positive numbers s ε ∈ S(ε) such that s ε → -∞. In fact, given an ε > 0, we choose t ε > 0 such that

R(ε) + ε = g(t ε ) + ε t ε ≥ g(t ε ) t ε > R(0); (II.1.32)
such an t ε always exists, because, for otherwise, we would have

ε i ↓ 0 and t n i → n +∞ such that lim n→+∞ (t n i ) -1 (f (x + t n i v) -f (x) + ε i ) = f ε i (x; v) for all i. This would yield sup t>0 t -1 (f (x + tv) -f (x)) ≤ lim n→+∞ (t n i ) -1 (f (x + t n i v) -f (x) + ε i ) = f ε i (x; v) for all i and, so, we get sup t>0 t -1 (f (x + tv) -f (x)) ≤ f (x; v), which gives rise to S(0) = ]-∞, 0] , a contradiction.
Consequently, (II.1.32) makes sense, so that the vacuity of S(0) together with the continuity of f leads us to t ε → 0 + (recall Lemma 7). In other words, s ε = -t ε -1 goes to -∞ as ε goes to 0.

(iv) Since the function t → t -1 (g(t) + ε) (for ε > 0) is quasi-convex (has convex sublevel sets) and continuous, the set A ⊂ [0, +∞] dened as

A := {t ≥ 0 | ∃t n → t s.t. lim n→+∞ t -1 n (f (x + t n v) -f (x) + ε) = R(ε)}
is convex and closed. Moreover, 0 / ∈ A and the image of A by the function ρ(t) := -1 t (t > 0) coincides with S(ε). Hence, since function ρ is monotone and continuous we conclude that S(ε) is convex and closed. Now let us show that S is monotone. We pick (ε i , s i ) ∈ S (the graph of S), i = 0, 1, with 0 < ε 0 < ε 1 . Then for each i = 0, 1 there is a sequence (t

n i ) -1 → -s i such that lim n→+∞ (t n i ) -1 (f (x + t n i v) -f (x) + ε i ) = R(ε i ) (recall Lemma 7); hence t n i > 0. Writing R(ε 1 ) = lim n→∞ (t n ε 1 ) -1 (f (t n ε 1 ) + ε 1 ) = lim n→∞ ((t n ε 1 ) -1 (f (t n ε 1 ) + ε 0 ) + (t n ε 1 ) -1 (ε 1 -ε 0 )) ≥ R(ε 0 ) + lim inf n→∞ (t n ε 1 ) -1 (ε 1 -ε 0 ) = lim n→∞ ((t n ε 0 ) -1 (f (t n ε 0 ) + ε 0 ) + lim inf n→∞ (t n ε 1 ) -1 (ε 1 -ε 0 ) ≥ lim n→∞ ((t n ε 0 ) -1 (f (t n ε 0 ) + ε 1 ) + lim inf n→∞ (t n ε 0 ) -1 (ε 0 -ε 1 ) + lim inf n→∞ (t n ε 1 ) -1 (ε 1 -ε 0 ) ≥ R(ε 1 ) + lim inf n→∞ ((t n ε 0 ) -1 -(t n ε 1 ) -1 )(ε 0 -ε 1 ),
we deduce that (ε 0 -ε 1 )(s 0 -s 1 ) ≥ 0, and the monotonicity of S follows. To check the maximality of S, we observe that the function ψ : R → R, de ned as ψ(ε) := inf{s | s ∈ S(ε)} for ε ≥ 0 and -∞ otherwise, is non-decreasing (and satises lim ε↓0 ψ(ε) = -∞); so, it possesses left and right-limits ψ -and ψ + everywhere in R + . Then, given an ε 0 > 0, by using [124, Theorem 2.1.7] the function ϕ dened on R as ϕ(τ

) := τ ε 0 ψ(s)ds is a proper, lsc convex function with R + ⊂ dom ϕ ⊂ R, and ∂ϕ(τ ) = [ψ -(τ ), ψ + (τ )] for every τ > 0, while ∂ϕ(0) = ]-∞, ψ + (0)],
and ∂ϕ(τ ) = ∅ for all τ < 0. Since S(ε) is convex and closed for every ε ≥ 0, by Lemma 10, we infer that ∂ϕ ⊂ S and, so, by Rockafellar's theorem [START_REF] Rockafellar | Convex analysis[END_REF] we infer that S = ∂ϕ and, in particular, S is maximal monotone. Corollary 4. Given f ∈ Γ 0 (X) and x ∈ dom f, we assume that [f ≤ λ] = ∅ and f (x) > λ.

Then we have

N [f ≤λ]∪(x+[f ≤f (x)]∞) (x) = R + ∂ f (x)-λ f (x).
Proof. The result is an immediate consequence of Theorem 14.

In the following corollary we consider the case in which the sublevel set

[f ≤ λ] is empty. Corollary 5. Given f ∈ Γ 0 (X), x ∈ dom f, and λ ∈ R, we assume that [f ≤ λ] = ∅. Then, for every ε ≥ f (x) -λ, N x+[f ≤f (x)]∞ (x) = R + ∂ ε f (x).
Proof. The inclusion ⊂ follows from Theorem 14, since

µ>0 ∂ µ(f (x)-λ) (µf )(x) ⊂ R + ∂ f (x)-λ f (x) ⊂ R + ∂ ε f (x).
For the converse inclusion it is enough to prove that for any ξ

∈ ∂ ε f (x) and v ∈ [f ≤ f (x)] ∞ we have ξ, v ≤ 0. We have ξ, v ≤ f (x + v) -f (x) + ε ≤ ε. Now since [f ≤ f (x)]
∞ is a cone we deduce that ξ, v ≤ 0, which nishes the proof. But it was not until recent years (see [START_REF] Bao | Suboptimality conditions for mathematical programs with equilibrium constraints[END_REF][START_REF] Nghia | A nondegenerate fuzzy optimality condition for constrained optimization problems without qualication conditions[END_REF]) that KKT-type/non-degenerate fuzzy necessary (sub)optimality conditions for non-smooth programs were proved to be valid without any constraint qualication. Before this and even in the nite dimensional case, only FJtype/degenerate fuzzy optimality conditions were known to be valid without constraint qualications (see [START_REF] Boris | Variational Analysis and Generalized Dierentiation, I: Basic Theory, II: Applications[END_REF][START_REF] Zhu | Techniques of Variational Analysis[END_REF]). The delay might have been related to the lack of a representation of the normal cone to a (sub)level set of a (lower semi)continuous function in terms of the subgradients of the function, under the premise of no qualication condition.

In [START_REF] Bao | Suboptimality conditions for mathematical programs with equilibrium constraints[END_REF], using what we here call the epigraph approach for constrained optimization, the authors proved the validity of some non-degenerate fuzzy optimality conditions for a nonsmooth program without any constraint qualication. In [START_REF] Nghia | A nondegenerate fuzzy optimality condition for constrained optimization problems without qualication conditions[END_REF], the authors proved, rst, that the representation of the normal cone to a (sub)level was valid without any qualication condition, and second, the validity of non-degenerate fuzzy optimality condition without any constraint qualications. Furthermore, they were able to include an approximate complementarity slackness condition, both in the representation of the normal cone and in the fuzzy optimality condition.

In this chapter we use the epigraph approach to prove a stronger version of the nondegenerate weak fuzzy (sub)optimality condition for a non-smooth program without any constraint qualication. Our version is in fact stronger since it includes the approximate complementarity slackness condition for inequality constraints (proved in [START_REF] Nghia | A nondegenerate fuzzy optimality condition for constrained optimization problems without qualication conditions[END_REF]) and at the same time the convergence of the values of the inequality constraint functions. These two conditions together allow us to distinguish between active and non-active inequality constraints. In fact, for non-active inequality constraints we deduce that the corresponding Lagrange multiplier must go to zero. Our improvement is greatly important since it is desirable that necessary optimality conditions are as tight as possible.

Additionally, we use our results to prove some other fuzzy calculus rules. Firstly, we give a quite shorter proof of the representation of the normal cone to sublevel sets. Secondly, we give a formula for the subdierential of the supremum of an arbitrary family of lower semi-continuous functions dened in an Asplund space. This formula is new even in the nite dimensional setting with a nite family of functions. We are aware that Pérez-Aros in a recent work (see [START_REF] Pérez-Aros | Formulae for the conjugate and the subdierential of the supremum function[END_REF]) has obtained a similar formula that is equivalent to ours in the case of nitely many functions, while it relaxes the assumptions of uniform Lipschitz continuity of the functions as required in [START_REF] Mordukhovich | Subdierentials of nonconvex supremum functions and their applications to semi-innite and innite programs with lipschitzian data[END_REF]Theorem 3.1].

We apply all the developed machinery to give fuzzy optimality conditions for a bilevel programming problem without any qualication condition. These fuzzy optimality conditions correspond to those of [START_REF] Dempe | Sensitivity analysis for two-level value functions with applications to bilevel programming[END_REF], where several constraint qualications were used.

Along the chapter we give several examples in order to show the improvements of our formulas with respect to previously known ones.

II.2.2 Notation and Preliminaries

We follow the notation and denitions of the book [START_REF] Boris | Variational Analysis and Generalized Dierentiation, I: Basic Theory, II: Applications[END_REF], while some of the denitions are in the book consequences of the fact that we restrict ourselves to Asplund spaces.

Let X be an Asplund space with norm • , and X * its topological dual endowed with the weak* topology (no other topology will be considered in this chapter). Let B and B * denote the unit closed ball in X and in X * , respectively, let N w * (0) be the set of weak* neighborhoods of the origin in X * , and , be the duality product in X × X * .

The weak* topology in X * is dened in most text books as the weakest topology generated by the sub-base of neighborhoods of 0 given by the family of sets V * = {x * ∈ X * : x * , v ≤ ε} where ε > 0 and v ∈ X. It is also the weakest topology in X * that the preserves pointwise convergence.

We provide another similar family that conforms a local base that somehow measures the size of the neighborhoods with a positive parameter and a nite dimensional space, which is new to the best of our knowledge 1 .

Consider the family of sets in X * of the form

V * L,ε := L ⊥ + εB * , with ε > 0 and L a nite dimensional subspace of X, where L ⊥ := {x * ∈ X * | x * (x) = 0, ∀x ∈ L} is the orthogonal to L.
This family enjoys the property that for any L, M ⊂ X nite dimensional subspaces of X and ε, δ > 0 it holds

V * L,ε + V * M,δ = V * L+M,ε+δ , so that 2V * L,ε = V * L,2ε , and if X is nite dimensional obviously V * X,ε = B * ε .
Thus, this family can be seen as a 'canonical' base of neighborhoods of the weak star topology in X * .

Lemma 11. The family of sets V * L,ε := L ⊥ + εB * is a base of neighborhoods of the origin in X * for the topology w * . 1 The same construction can be done more generally in Banach spaces.

Proof. We need to prove the following assertions 1. For any V * ∈ N w * (0), there exist a nite dimensional subspace L of X and ε > 0 such that V * L,ε ⊂ V * .

2. For any nite dimensional subspace L of X and ε > 0, we have V * L,ε ∈ N w * (0).

Let us prove rst 1. Take an arbitrary V * ∈ N w * (0). We know that there exists a nite set of vectors v 1 , ..., v k in X and δ > 0 such that

k j=1 {x * ∈ X * : x * , v j < δ} ⊂ V * . (II.2.1)
Dene R := max j=1,...,k { v j } and take L := span(v 1 , ..., v k ) and ε > 0 such that εR < δ. It is easy to verify that for each j ∈ {1, ..., k}

L ⊥ + εB * ⊂ {x * ∈ X * : x * , v j < δ} . (II.2.2)
Putting (II.2.1) and (II.2.2) together we obtain that V * L,ε ⊂ V * . Now let us prove 2. Take a base {v 1 , ..., v k } of the nite dimensional subspace L. We are going to nd δ > 0 such that

k j=1 {x * ∈ X * : x * , v j < δ} ⊂ V * L,ε .
Every x ∈ L has a unique representation of the form x = k j=1 λ j v j , and so the projections λ j : L → R are well dened for j = 1, ..., k. Moreover, each λ j is linear in a nite dimensional space so there exist c j > 0 such that λ j (x) ≤ c j x , ∀x ∈ L.

Take c := c j > 0 and δ := ε/c > 0. We observe that if y * , v j < δ for all j and x ∈ B ∩ L

then x * , x = k j=1 λ j (x) x * , v j ≤ cδ = ε, and so x * ∈ {y * : y * (B X ∩ L) ≤ ε} = L ⊥ + εB * ,
where the last equality is due to the bipolar theorem.

Denition 5. [START_REF] Boris | Variational Analysis and Generalized Dierentiation, I: Basic Theory, II: Applications[END_REF]Theorem 2.35] Given a non-empty set Ω ⊂ X and a point x ∈ Ω, we dene the Fréchet normal cone as

NΩ (x) := x * ∈ X * | lim sup y→ Ω x x * , y -x y -x ≤ 0
while for x / ∈ Ω, we write NΩ (x) := ∅. The notation y → Ω x means that y → x and y ∈ Ω. The limiting/basic normal cone to Ω at x ∈ X is the set

N Ω (x) := σ * -seq lim sup x→x N(Ω; x).
Denition 6. [84, Denitions 1.77 and 1.83] Given ϕ : X → R, a point x ∈ dom ϕ. We dene the Fréchet subdierential of ϕ at x as the set

∂ϕ(x) := x * ∈ X * | (x * , -1) ∈ Nepi ϕ (x, ϕ(x)) = x * ∈ X * | lim inf y→x ϕ(x) -ϕ(y) -x * , y -x y -x ≥ 0 .
The limiting subdierential of ϕ at x ∈ X is the set

∂ϕ(x) := {x * ∈ X * | (x * , -1) ∈ N epi ϕ (x, ϕ(x))} .
The singular subdierential of ϕ at x is the set

∂ ∞ ϕ(x) := {x * ∈ X * | (x * , 0) ∈ N epi ϕ (x, ϕ(x))} .
We have the following characterizations of the limiting and the singular subdierentials in terms of the Fréchet subdierential.

Theorem 15. [84, Theorems 2.34 and 2.38] Assume X is an Asplund space, and ϕ :

X → R is lower semi-continuous around x ∈ dom ϕ. Then we have ∂ϕ(x) = σ * -seq lim sup x→ϕ x ∂ϕ(x),
and

∂ ∞ ϕ(x) = • * -lim sup x→ϕ x,µ>0 µ→0 µ ∂ϕ(x),
where y → ϕ x means that y → x and ϕ(y) → ϕ(x).

The weak fuzzy sum rule, that we present next, is the one of [128, Theorem 3.3.3] but extended to the case of functions dened on Asplund spaces. We show next how it can be extended using the separable reduction technique, though the result was in fact already known (see [6668]).

Lemma 12. Let X be an Asplund space, x ∈ X, and let ϕ i : X → R, i = 1, ..., m, be lower semi-continuous functions around x. Then for any ε > 0, x * ∈ ∂(ϕ 1 + ... + ϕ m )(x), and any weak* neighborhood V * of the origin in X * there are (x i , x * i ) ∈ ∂ϕ i such that

(x i , ϕ i (x i )) ∈ (x, ϕ i (x)) + εB X×R , (II.2.3) diam(x 1 , ..., x m ) • x * i < ε, (II.2.4) x * ∈ m i=1 x * i + V * . (II.2.5)
Proof. The result is well-known if we assume X to be Fréchet smooth (see [START_REF] Zhu | Techniques of Variational Analysis[END_REF]Theorem 3.3.3]), and the general case can be deduced from the separable reduction theorem (see [94, Theorem 6]) as follows.

We can assume without loss of generality (see Lemma 11) that V * = L ⊥ +2εB X * for a nite dimensional subspace L of X and ε > 0. Take W a separable subspace of X that contains x and L with some further hypothesis that will be imposed later. Since

x * ∈ ∂(ϕ 1 +...+ϕ m )(x), then also x * | W ∈ ∂(ϕ 1 + ... + ϕ m | W )(x) or equivalently 0 ∈ ∂(ϕ 1 + ... + ϕ m -x * | W )(x).
But separable subspaces of an Asplund space can be renormed with a Fréchet smooth norm, then we can apply Theorem 3.3.3 from [START_REF] Zhu | Techniques of Variational Analysis[END_REF] (see also [START_REF] Borwein | Viscosity solutions and viscosity subderivatives in smooth banach spaces with applications to metric regularity[END_REF]Theorem 2.10]

) in W . Then for V * | W := L ⊥ W * + εB W * (L ⊥ W * is the annihilator of L in W * ) there exist (x i , y * i,W ) ∈ ∂(ϕ i | W ), i = 1, ..., m, such that (x i , ϕ i (x i )) ∈ (x, ϕ i (x)) + εB W ×R , diam(x 1 , ..., x m ) • y * i,W W * < ε, x * | W ∈ m i=1 y * i,W + V * | W . Take extensions y * i ∈ X * of y * i,W , that is, y * i | W = y * i,W , with y * i * = y * i,W W * .
Now consider W given by the separable reduction theorem and chose η >

0 such that η max(1, diam(x 1 , ..., x m )) ≤ εm -1 . Since y * i | W ∈ ∂ϕ i (x i ), then ∂(ϕ i -y * i | W )(x i ) ∩ ηB * is non-empty. We deduce that also ∂(ϕ i -y * i | W )(x i ) ∩ ηB is non-empty, so that there exist z * i ∈ ∂(ϕ i -y * i )(x i ) = ∂ϕ i (x i ) -y * i with z * i X * ≤ η. Finally, x * i := y * i + z * i ∈ ∂ϕ i (x i ) satisfy the desired properties: diam(x 1 , ..., x m ) x * i * ≤ diam(x 1 , ..., x m )( y * i * + z * i * ) ≤ 2ε and x * - m i=1 x * i = x * - m i=1 y * i - m i=1 z * i ∈ 1 2 V * + εB X * ⊂ V * .
Remark 8. The following two lemmas are valid in normed vector spaces, but we will only make use of them in the context of Asplund spaces.

Lemma 13. Let X be a normed vector space, ϕ :

X → R and x ∈ dom ϕ. If y ≥ z ≥ ϕ(x)
then Nepi ϕ (x, y) ⊂ Nepi ϕ (x, z). Moreover, if (x * , -y * ) ∈ Nepi ϕ (x, y) then y * ≥ 0, and if y > ϕ(x) then y * = 0.

Proof. Let y > z and (x * , y * ) ∈ Nepi ϕ (x, y). Then for any ε > 0, there exists δ > 0 such that

x * , x -x + y * , y -y ≤ ε( x -x + |y -y|)
whenever x -x < δ, |y -y| < δ and y ≥ ϕ(x ) (i.e. (x .y ) ∈ epi ϕ). By dening the variable y := y -y + z we see that

x * , x -x + y * , y -z ≤ ε( x -x + |y -z|) whenever x -x < δ, |y -z| < δ and y ≥ ϕ(x ) -y + z. The last inequality holds in particular when y ≥ ϕ(x ), since y > z. But this is by denition that (x * , y * ) ∈ Nepi ϕ (x, z).

The two nal statements are trivial.

Lemma 14. Let X be a normed vector space and let ϕ : X → R be continuous around x.

Then

N[ϕ=ϕ(x)] (x) = N[ϕ≤ϕ(x)] (x) ∪ N[ϕ≥ϕ(x)] (x), (II.2.6)
and

Ngph ϕ (x, ϕ(x)) = Nepi ϕ (x, ϕ(x)) ∪ Nhyp ϕ (x, ϕ(x)). (II.2.7) Moreover, if (x * , y * ) ∈ Ngph ϕ (x, ϕ(x)) with y * < 0, then (x * , y * ) ∈ Nepi ϕ (x, ϕ(x)).
Proof. Let us assume without loss of generality that x = 0 and ϕ(x) = 0. Since [ϕ = 0] is a subset of both [ϕ ≤ 0] and [ϕ ≥ 0], then the inclusion to the left in (II.2.6) is trivial. Let us prove now the reverse inclusion.

Assume

that x * is not in N[ϕ≤0] (0) nor in N[ϕ≥0] (0). Then there exist ε > 0, (x n ) n ⊂ [ϕ ≤ 0] and (y n ) n ⊂ [ϕ ≥ 0] such that x n , y n → 0 and lim n ε x n -x * , x n < -ε, and lim n ε y n -x * , y n < -ε.
By the continuity of ϕ, for each n we can nd z n ∈ [ϕ = 0] ∩ [x n , y n ], so that z n → 0 too. Then, the convexity of x → ε x -x * , x gives us that 

lim n ε z n -x * , z n ≤ -ε,

II.2.3 Non-Degenerate Weak Fuzzy Suboptimality Conditions

We consider a constrained optimization problem of the form:

min ϕ 0 (x) s.t. ϕ i (x) ≤ 0, i = 1, ..., m, ϕ i (x) = 0, i = m + 1, ..., m + p, (II.2.8)
where X is an Asplund space, and ϕ i : X → R. We say that problem (II.2.8) is closed around a reference point x ∈ m+p i=0 dom ϕ i , if ϕ i is lower semi-continuous (continuous, respectively) for i = 0, ..., m, (for i = m + 1, ..., m + p, respectively) around x. This is a basic assumption that we will consider always.

A classical approach to obtain (sub)optimality conditions is (see [START_REF] Boris | Variational Analysis and Generalized Dierentiation, I: Basic Theory, II: Applications[END_REF][START_REF] Nghia | A nondegenerate fuzzy optimality condition for constrained optimization problems without qualication conditions[END_REF][START_REF] Zhu | Techniques of Variational Analysis[END_REF]) to transform the constrained minimization problem (II.2.8) into the unconstrained minimization of the following `penalized' function

ϕ := ϕ 0 + m i=1 χ [ϕ i ≤0] + m+p i=m+1 χ [ϕ i =0] ,
which is lower semi-continuous around x, whenever (II.2.8) is closed around x, and both problems have the same set of solutions whenever ϕ is proper (or equivalently, (II.2.8) admits a feasible solution). This approach has the disadvantage that using the sum rule we loose control over the values of the inequality constraints at the approximate points as shown in the following example.

Example 4. Consider a non-smooth optimization problem of the form min ϕ 0 (x)

s.t. ϕ 1 (x) ≤ 0, where ϕ 0 , ϕ 1 : R 2 → R are dened by ϕ 0 (x, y) := 2|x| -y ϕ 1 (x, y) :=    -1, if x = y = 0, 0, if y ≤ |x|, (x, y) = (0, 0), 1, otherwise.
The pair (x, ȳ) := (0, 0) is a solution of (4), and thus (0, 0) ∈ ∂(ϕ 0 + χ [ϕ 1 ≤0] )(x, ȳ). We observe that there is no point (x, y) = (x, ȳ) that is close in the value of ϕ 1 to (x, ȳ). From the other side, at (x, ȳ) the Fréchet subdierential of the function χ [ϕ 1 ≤0] is empty. Thus, the point (x 1 , y 1 ) associated to χ [ϕ 1 ≤0] given by the fuzzy sum rule (Lemma 12) cannot have ϕ 1 (x 1 , y 1 ) arbitrarily close to ϕ 1 (x, ȳ).

A variant of this approach is to replace the indicators χ [ϕ i ≤0] , in the sum that denes ϕ, by χ [ϕ i -ϕ i (x)≤0] . By doing so, we would gain control on the values of the inequality constraint function but we would loose information about its activeness (whether ϕ i (x) = 0 or ϕ i (x) < 0, for i = 1, ..., m).

A less frequent approach that was considered in [START_REF] Bao | Suboptimality conditions for mathematical programs with equilibrium constraints[END_REF] is what we here call the epigraph approach. It is based on the following observations

χ [ϕ i ≤0] (x) = min y∈R χ R -(y) + χ epi ϕ i (x, y), and χ [ϕ i =0] (x) = min y∈R χ {0} (y) + χ gph ϕ i (x, y),
for any x ∈ X. We observe that x is a (sub)optimal solution of (II.2.8) if and only if (x, ϕ 1 (x), ..., ϕ m+p (x)) is a (sub)optimal minimum of φ(x, y)

:= ϕ 0 (x) + χ R m -×{0} p (y) + m i=1 χ epi ϕ i (x, y i ) + m+p i=m+1 χ gph ϕ i (x, y i ).
(II.2.9)

The combination between the convergence of the values end the complementarity condition allows us to distinguish between active and non-active inequality constraints. For non-active inequality constraints the multiplier always goes to 0. With the previous result of Nghia (see [START_REF] Nghia | A nondegenerate fuzzy optimality condition for constrained optimization problems without qualication conditions[END_REF]) this was not possible unless the corresponding function were continuous.

The usual complementarity condition ensures that the multiplier associated to non-active inequality constraints is 0. In our case, we have this in the limit. Denition 7. Given ε > 0 we say that x is a ε-optimal solution of (II.2.8) if it is feasible:

(ϕ 0 (x) < +∞, ϕ i (x) ≤ 0, ∀i = 1, ..., m, ϕ i (x) = 0, ∀i = m + 1, ..., m + p), and ϕ 0 (x) < ε + inf {ϕ 0 (x) : x feasible}. In terms of the function φ dened in (II.2.9), x is ε-optimal if φ(x) < ε + inf φ < +∞.
Theorem 16. Assume X is an Asplund space, L ⊂ X a nite dimensional subspace, ε > 0 and λ > 0. If x is a ε-optimal solution of the minimization problem (II.2.8), then for each i = 0, ..., m + p there exist 

x i ∈ X with x i -x < λ, ϕ 0 (x 0 ) < ϕ 0 (x) + ε, ϕ i (x i ) -ϕ i (x) < λ, for i = 1, ..., m, |ϕ i (x i ) -ϕ i (x)| < λ, for i = m + 1, ..., m + p, and (µ i ) m+p i=1 ∈ R m+p + such that µ i ϕ i (x i ) < ε λ |ϕ i (x)| + ε, ∀i = 1, ...,
µ i |ϕ i (x i )| < ε, ∀i = m + 1, ..., m + p, (II.2.11) 0 ∈ x * 0 + m i=1 µ i ∂ϕ i (x i ) + m+p i=m+1 µ i ∂ϕ i (x i ) ∪ ∂(-ϕ i )(x i ) + V * L, ε λ .
(II.2.12)

Proof. Take x a ε-optimal solution of the constrained minimization problem (II.2.8). Since the inequality dening ε-optimality is strict, we can nd

ε 1 ∈]0, ε[ such that x is still a ε 1 - optimal solution. Then (x, ȳ) with ȳ := (ϕ 1 (x), ..., ϕ m+p (x)) ∈ R m+p is a ε 1 -minimum of φ
dened in (II.2.9). For the sake of simplicity of the notation, let us consider the case of only one (m = 1) inequality constraint function and no (p = 0) equality constraints. For the consideration of equality constraints the proof is almost the same considering (II.2.7), see also [START_REF] Bao | Suboptimality conditions for mathematical programs with equilibrium constraints[END_REF].

Step 1: By Ekeland's Variational Principle (see e.g. [128, Theorem 2.1.2]), we know there

exists (x, y) ∈ X × R such that (x, y) -(x, ȳ) < λ, (II.2.13) and φ(x, y) ≤ φ(u, v) + ε 1 λ (x, y) -(u, v) , ∀(u, v) ∈ X × R. (II.2.14)
It follows from (II.2.13) and (II.2.14) that ϕ 0 (x) < ϕ 0 (x) + ε 1 .

Step 2: We employ the weak fuzzy sum rule for (0, 0) ∈ ∂(φ + ε 1 λ • -(x, y) )(x, y) (by (II.2.14)) with threshold η > 0 (small enough), in order to nd points

(x i , y i ) ∈ (x, y) + ηB X×R , i = 0, 1, 2, along with (x * 0 , y * 0 ) ∈ ∂(ϕ 0 + χ R -)(x 0 , y 0 ) = ∂ϕ 0 (x 0 ) × NR -(y 0 ), (x * 1 , y * 1 ) ∈ Nepi ϕ 1 (x 1 , y 1 ), (x * 2 , y * 2 ) ∈ ε 1 λ B X×R such that |ϕ 0 (x) -ϕ 0 (x 0 )| < η and (x * i , y * i ) • diam {(x j , y j ) : j = 0, 1, 2} < η, (II.2.15) 2 i=0 (x * i , y * i ) ∈ V * L,η ×] -η, η[. (II.2.16)
Since (x 1 , y 1 ) ∈ epi ϕ 1 and by (II.2.13) we have that

ϕ 1 (x 1 ) ≤ y 1 ≤ y + η < ȳ + λ = ϕ 1 (x) + λ.
(II.2.17)

Step 3a: Let us rst consider the case when y * 1 < 0. By Lemma 13 we have that

y 1 = ϕ 1 (x 1 ). If y 0 = 0, then (II.2.15) implies -y * 1 |ϕ 1 (x 1 )| ≤ (x * 1 , y * 1 ) • (x 0 , y 0 ) -(x 1 , y 1 ) < η. If y 0 < 0, then y * 0 = 0 and (II.2.16) implies that -y * 1 < η + y * 2 ≤ η + ε 1 λ so that with (II.2.17)
we have

-y * 1 ϕ 1 (x 1 ) ≤ (η + ε 1 λ )(|ϕ 1 (x)| + λ) = ε λ |ϕ 1 (x)| + ε.
In this case we have that z * 1 := -x * 1 /y * 1 ∈ ∂ϕ 1 (x 1 ) and µ 1 := -y * 1 > 0 satisfy the desired properties.

Step 3b: Now consider the case when y * 1 = 0. By Lemma 13 we have

(x * 1 , 0) ∈ Nepi ϕ 1 (x 1 , y 1 ) ⊂ Nepi ϕ 1 (x 1 , ϕ 1 (x 1
)),

and then x * 1 ∈ ∂ ∞ ϕ 1 (x 1 ). Now we use Theorem 15 to nd z 1 ∈ ηB(x 1 ), z * 1 ∈ ∂ϕ 1 (z 1 ) and µ 1 ∈ ]0, η[ such that µ 1 z * 1 -x * 1 ≤ η, and |ϕ 1 (z 1 ) -ϕ 1 (x 1 )| ≤ η. Then x * 0 + µ 1 z * 1 ∈ V * L,ε . We observe also that µ 1 |ϕ 1 (z 1 )| ≤ η(|ϕ 1 (x 1 )| + η) ≤ η(|ϕ 1 (x)| + 2η) < β,
since η > 0 can be taken arbitrarily small. We can state a corollary of Theorem 16 in the way suboptimality conditions are usually stated (see for instance [START_REF] Boris | Variational Analysis and Generalized Dierentiation, I: Basic Theory, II: Applications[END_REF]Theorem 5.29] for the degenerate case without convergence of values for inequality constraints, nor complementarity condition) as follows.

Corollary 6. Let X be an Asplund space and V * ∈ N w * (0). There exist ε > 0 such that for every 0 < ε < ε and x ∈ X a ε 2 -optimal solution of (II.2.8), there are

(x i , x * i ) ∈ ∂ϕ i , i = 0, ..., m + p, with (x i , ϕ i (x i )) ∈ εB(x, ϕ i (x)) and (µ i ) m+p i=1 ∈ R m+p + such that µ i |ϕ i (x i )| < ε, ∀i = 1, ..., m, 0 ∈ x * 0 + m i=1 µ i x * i + m+p i=m+1 µ i ∂ϕ i (x i ) ∪ ∂(-ϕ i )(x i ) + V * .
Proof. Assume without loss of generality that V * = L ⊥ + εB * for a ε ∈]0, 1[ and L nite dimensional subspace of X. For any ε ∈]0, ε[ and x a ε 2 -optimal solution we just apply Theorem 16 with λ = ε.

Remark 10. In Section 5.1.4 of [START_REF] Boris | Variational Analysis and Generalized Dierentiation, I: Basic Theory, II: Applications[END_REF], suboptimality conditions (subOC) for constrained problems (like ours) are studied. Its rst result, Theorem 5.29, gives weak fuzzy subOC in a degenerate form, that is, a multiplier corresponding to the objective function may be equal or close to 0 (like Fritz-John OC). The subsequent results of that section are either about the non-degenerate case with CQs or the degenerate case without CQs, and in both cases assuming the uniform Lipschitz continuity of the constraints functions and using the basic limiting subdierentials.

Next we give an estimation of the normal cone to sublevel sets of lower semi-continuous functions.

Corollary 7. Let X be an Asplund space, x ∈ X and let ϕ : X → R be lower semi-continuous around x with ϕ(x) ≤ 0. If x * ∈ N[ϕ≤0] (x) then for any V * ∈ N w * (0) and ε > 0 there exist x ∈ X with (x, ϕ(x)) ∈ (x, ϕ(x)) + εB X×R , and µ > 0 with µ|ϕ(x)| < ε such that

x * ∈ µ ∂ϕ(x) + V * . (II.2.18) Proof. If x * ∈ N[ϕ≤0] (x) then for any ε > 0 there exists 0 < δ such that x * , y -x ≤ ε y -x + χ δB(x) (y), ∀y ∈ [ϕ ≤ 0]. (II.2.19)
Then x is an optimal solution of minimizing ϕ 0 (•

) := -x * (•) + ε • -x + χ δB(x) (•) subject to ϕ 1 (x) := ϕ(x) ≤ 0. Applying Theorem 16, then there exists x 0 , x 1 ∈ X with |ϕ(x 1 ) -ϕ(x)| < δ, x i -x < δ, x * 0 ∈ ∂ϕ 0 (x 0 ) ⊂ -x * + εB X * , x * 1 ∈ ∂ϕ(x 1
) and µ > 0 such that x * 0 + µx * 1 ∈ V * and µ|ϕ(x 1 )| < δ. Finally, we see that x * ∈ µx * 1 + V * + εB X * , which nishes the proof.

Remark 11. It would also be possible to prove Corollary 7 directly from the Fuzzy sum rule, simply by noting that

x * ∈ N[ϕ≤0] (x) is equivalent to (x * , 0) ∈ ∂(χ epi ϕ + χ X×R -)(x, ϕ(x)).
Though, this would be almost repeating the proof of Theorem 16, and is thus left to the reader.

II.2.4 Subdierential of Nonconvex Supremum Functions

We consider in this section the supremum function of an arbitrary family of non-convex lower semi-continuous functions. More precisely, given a family of lower semi-continuous functions f t : X → R, t ∈ T , with T a non-empty arbitrary (possibly innite) index set, we consider the supremum function f : X → R dened by f (x) := sup t∈T f t (x) for each x ∈ X.

The following theorem shows an estimation of the subdierential of the supremum function in terms of the subgradients of the functions of the family that denes the supremum function. It is a renement of [96, Theorem 3.8, Proposition 3.2] (see also [START_REF] Borwein | A survey of subdierential calculus with applications[END_REF]Theorem 3.18]) and it is related to [83, Theorem 3.1]. We will discuss the above mentioned relations after stating the theorem and giving its proof.

Theorem 17. Assume X is an Asplund space, the functions f t , t ∈ T are lower semi continuous, and that x ∈ X. Let x * ∈ ∂f (x), let V * ∈ N w * (0), and let ε > 0. Then there exist a nite subset S ⊂ T , x s ∈ X with (x s , f s (x s )) ∈ εB(x, f s (x)), and λ s > 0 for s ∈ S,

with s∈S λ s = 1, such that x * ∈ s∈S λ s ∂f s (x s ) + V * , (II.2.20)
and such that for each s ∈ S λ s |f s (x) -f (x)| ≤ ε.

(II.2.21)

Proof. We can assume without loss of generality that V * = L ⊥ + εB * with L ⊂ X a nite dimensional subspace. Since x * ∈ ∂f (x), there exists δ > 0 such that

x * , x -x ≤ f (x) -f (x) + ε x -x , ∀x ∈ δB(x). (II.2.22)
Let us dene the function

ϕ 0 (x, y) := y -x * , x + ε x -x + χ((x, y); Ω),
where

Ω := L∩δB(x)×[f (x)-1, f (x)+1],
and the family of functions ϕ t : X ×R → R given by ϕ t (x, y)

:= f t (x) -y. Consider the sets K := {(x, y) ∈ X × R | ϕ 0 (x, y) + δ 2 ≤ ϕ 0 (x, f (x))} and A t := {(x, y) ∈ X × R | ϕ t (x, y) > 0} , t ∈ T.
By (II.2.22) we observe that (A t ) t∈T is an open cover of K. Since K is compact, then (A t ) t∈T admits a nite subcover (A s ) s∈S of K, with S ⊂ T nite. It follows that (x, f (x)) is a δ 2 -optimal solution of the problem min ϕ 0 (x, y)

s.t. (x, y) ∈ X × R, ϕ s (x, y) ≤ 0, ∀s ∈ S.
We can thus apply the weak fuzzy sub-optimality conditions of Corollary 6 to deduce that for each s ∈ S ∪ {0} there exist ((x s , y s ), (x * s , y * s )) ∈ ∂ϕ s with

((x s , y s ), ϕ s (x s , y s )) ∈ ((x, f (x)), ϕ s (x, f (x))) + δB (X×R)×R , (II.2.23) and (µ s ) s∈S ∈ R S + such that µ s |ϕ s (x s , y s )| ≤ δ, ∀s ∈ S, (II.2.24) and 0 ∈ (x * 0 , y * 0 ) + s∈S µ s (x * s , y * s ) + V * × (-δ, δ).
(II.2.25)

We see that

x * 0 ∈ ∂x ϕ 0 (x 0 , y 0 ) ⊂ -x * + εB * + L ⊥ = -x * + V * , y * 0 = 1, and y * s = -1 for s ∈ S. Thus, s∈S µ s ∈ [1 -δ, 1 + δ], x * s ∈ ∂f s (x s ) and x * ∈ s∈S µ s x * s + V * .
We also see that |ϕ s (x s , y s ) -

ϕ s (x, f (x))| ≤ δ implies that |f s (x s ) -f s (x)| ≤ |y s -f (x)| + δ ≤ 2δ.
Finally, dene λ s := µ s / s ∈S µ s so that s∈S λ s = 1 and λ s ∈ [0, 1]. We conclude using (II.2.24) that

λ s |f s (x) -f (x)| ≤ λ s |f s (x s ) -y s | + 3δ, ≤ µ s 1 -δ |f s (x s ) -y s | + 3δ, ≤ δ 1 -δ + 3δ,
which is less that ε, by taking δ small enough.

The next example shows that our result is stronger than Theorem 3.8 in [START_REF] Pérez-Aros | Subdierential formulae for the supremum of an arbitrary family of functions[END_REF] since this last result is not exactly an extension of the nite case (Proposition 3.2(v) in [START_REF] Pérez-Aros | Subdierential formulae for the supremum of an arbitrary family of functions[END_REF]), while our result is really an extension.

Example 5. Let f 1 , f 2 : R → R be functions given by f 1 ≡ 0 and f 2 (x

) := -(n + 1) -1 if x ∈] 1 n+1 , 1 n ] for some n ∈ N and f (x) = -1 otherwise. We observe that f 1 ≥ f 2 so that f := sup t=1,2 f t = f 1 .
It can be easily seen that our formula in Theorem 17 estimates ∂f (0) = {0} by R + , while [START_REF] Pérez-Aros | Subdierential formulae for the supremum of an arbitrary family of functions[END_REF]Theorem 3.8] does estimate it by R. This fact reveals that our formula is stronger that the one proposed in [START_REF] Pérez-Aros | Subdierential formulae for the supremum of an arbitrary family of functions[END_REF]Theorem 3.8]. Moreover, it shows that their formula for the subdierential of an arbitrary family of functions is not a generalization of the case of nitely many functions [96, Proposition 3.2(v)].

In [START_REF] Mordukhovich | Subdierentials of nonconvex supremum functions and their applications to semi-innite and innite programs with lipschitzian data[END_REF]Theorem 3.1 (b)] the authors proved a similar formula under the rather strong assumption that the family (f t ) t∈T is uniformly Lipschitzian. In this case, they could restrict the functions used in the representation of ∂f (x) to the set T ε (x) of ε-active indices, that is, t ∈ T such that f t (x) + ε ≥ f (x).

We will show that we can also get this stronger result with a condition which is weaker than the uniform Lipschitzianity of the family (f t ) t∈T . But before this, let us look at the following example which shows that in general we cannot restrict to indexes in the set T ε (x) for ε arbitrarily small. Example 6. Let f 1 , f 2 : R → R be functions dened by f 1 ≡ 1 and f 2 (x) := 2 for x = 0 and f 2 (0) := 0. The supremum function f := max(f 1 , f 2 ) is attained at each point by only one of the functions. More precisely

, if ε ∈ [0, 1[ then T ε (x) = {1} , x = 0, {2} , x = 0.
Consider the point x = 0. We observe that ∂f (x) = R. At this point, the only function that is ε-active, for ε > small (less than 1), is f 1 , whose subdierential is everywhere equal to {0}. If instead we consider points x such that |f t (x) -f (x)| < ε, then we are reduced again to t = 1.

Thus, for the representation of the subdierential of the supremum function in Theorem 17, we cannot only consider points whose values, in some of the functions of the family, are close to the supremum function.

We say that (see Denition 2.17 in [START_REF] Dolecki | Convergence of functions: equisemicontinuity[END_REF]) the family (f t ) t∈T is equi-upper semi-continuous (equi-usc) at x if for any ε > 0 there exists δ > 0 such that

f t (x) + ε ≥ f t (x), ∀x ∈ δB(x), ∀t ∈ T. (II.2.26)
Of course, the uniform Lipschitzianity implies (and is in general quite weaker than) our equi-usc. We observe that if (f t ) t∈T is equi-usc at x, then f = sup t∈Tε(x) f t in a ball δB(x) for some δ > 0. Since the subdierential is a local object, then applying Theorem 17 to this family we recover [83, Theorem 3.1(ii)]. Remark 12. Note that the equi-usc of (f t ) t∈T implies that the supremum f is usc. But the usc of f is not enough to deduce f = sup t∈Tε(x) f t in any ball around x. For instance, take real functions f 0 (x) := -|x| and f 1 (x) := 0 for x = 0 and f 1 (0) = -1. The max between f 0 and f 1 is the constant f ≡ 0 which is obviously continuous, but T ε (0) = 1 for ε ∈]0, 1[ so that the supremum over this subset is not equal to f in any neighborhood of 0. Moreover, we can impose that each function of the family (f t ) t∈T is continuous at x and the supremum function f is continuous, but still the representation restricted to the subfamily T ε (x) is not locally the same as f . In fact, take f 0 as before and f t (x) := -1 for x ∈ [-t, t] and f t (x) := 0 else. Again the supremum is f ≡ 0 but the ε-active representation does not hold locally around x.

Corollary 8. Assume X is an Asplund space and let x ∈ X. Assume moreover that the functions f t , t ∈ T , are lower semi continuous, and that the family (f t ) t∈T is equi-usc at x. Let x * ∈ ∂f (x), V * ∈ N w * (0), and ε > 0. Then there exist a nite subset S ⊂ T ε (x), x s ∈ x + εB, and λ s > 0 for s ∈ S, with s∈S λ s = 1, such that

x * ∈ s∈S λ s ∂f s (x s ) + V * .
(II.2.27) Corollary 9. Assume X is an Asplund space, T is non-empty and nite, and the functions f t , t ∈ T , are continuous. Let x ∈ X and x * ∈ ∂f (x). Then for any V * ∈ N w * (0) and ε > 0, there exist x s ∈ x + εB, and λ s > 0 for s ∈ T 0 (x), with s∈T 0 (x) λ s = 1, such that

x * ∈ s∈T 0 (x) λ s ∂f s (x s ) + V * . (II.2.28)
In the following examples we discuss some diculties concerning the use of the singular and limiting subdierentials under no qualication condition at the reference point. The rst example shows that non-active functions cannot be discarded not even by replacing their use by the singular subdierential of the max function at the reference point. The second example shows that it is not enough to consider only the limiting and singular subdierentials of the functions at the reference point.

Example 7. Let f 1 := χ R -and f 2 (x) := -1 -

√

x for x ≥ 0 and f 2 (x) := -x for x < 0. Consider the max function f := max(f 1 , f 2 ). The functions f 1 , f 2 , and thus also f , are lower semi-continuous. We analyze the Fréchet subdierential of f at x = 0, which is ∂f (0) = [-1, +∞). Since f 2 (0) = -1 < 0 = f (0) then applying Theorem 17 the multiplier λ 2 goes to 0, but for x * 2 ∈ ∂f 2 (x 2 ) the limit of x * 2 /|x * 2 |(= -1) does not belong to ∂ ∞ f (0) = R + . In the other hand, if we force λ 2 = 0 then the subdierential of f 1 would yield mostly R + .

Example 8. Let f 1 , f 2 : R 2 → R be functions given by

f 1 (x, y) := - √ x + y, if x ≥ 0, ∞, otherwise, and f 2 (x, y) := f 1 (-x, y) for all (x, y) ∈ R 2 . Then f := max(f 1 , f 2 ) is then equal to y +χ [x=0] .
Then we have ∂f (0, y) = R × {1} .

(II.2.29)

In the other hand, the limiting subdierentials of f 1 and f 2 are empty at (0, y) and their singular subdierentials are

∂ ∞ f 1 (0, y) = R + × {0} and ∂ ∞ f 2 (0, y) = R -× {0} .

II.2.5 Application to Bilevel Programming

In this section, we obtain fuzzy optimality conditions for a bilevel programming problem without any qualication condition, by using the tools developed in the previous sections.

For simplicity, we will restrict ourselves to the case of nite dimensions and smooth data. The functions F, f : R n × R m → R, G : R n → R p , g : R n × R m → R q are assumed to be smooth along this section.

First we give a lemma that will be used in deriving the fuzzy optimality conditions in Theorem 18. Our Lemma 15 can be compared with Theorem 5.7 in [START_REF] Dempe | Sensitivity analysis for two-level value functions with applications to bilevel programming[END_REF], which has a small mistake: Caratheodory's Theorem works for each point, not for a set. Lemma 15. Let x * ∈ ∂(-ϕ)(x). Then, for any ε > 0 there exists a nite set S ⊂ Y and for each y ∈ S there exists x f,y , x g,y ∈ x + εB, λ y ≥ 0, and µ y ≥ 0 such that

y∈S λ y = 1, λ y |f (x f,y , y) -ϕ(x)| ≤ ε (II.2.32) µ y |g(x g,y , y)| ≤ ε, (II.2.33)
x * ∈ -y∈S λ y (∇ x f (x f,y , y) + µ g,y ∇ x g(x g,y , y)) + εB.

(II. 2.34) Proof. Note that since f is smooth, then there exists K > 0 such that We apply now the fuzzy sum rule, the fact that the subdierential of the distance to a set is included in the normal cone to the set [70, Proposition 1.30], and the fuzzy representation of the normal cone (see Corollary 7) for each y ∈ S to deduce that there exists x f,y , x g,y ∈ x+εB and µ g,y ≥ 0 with µ g,y |g(x g,y , y)| ≤ ε such that

ϕ(x) = inf y f (x, y) + Kd [g(x,•)≤0] (y) , for instance K = sup x,y ∇ x f (x, y) . Therefore, -ϕ is a supremum of the (lower semi)continuous functions x → -f (x, y) -Kd [g(•,y)≤0] (x).
x * y ∈ -∇ x f (x f,y , y) -µ g,y ∇ x g(x g,y , y) + εB.

Theorem 18. Let x be a local solution of (II.2.30) and assume that S o is inner semi-compact at x. Then there exist µ > 0, x F , x G , x f , x g ∈ εB(x), y F ∈ S o (x F ), y f , y g ∈ εB(y F ), µ G ≥ 0, µ g ≥ 0, a nite set S ⊂ Y and for each y ∈ S there exist x f,y , x g,y ∈ εB(x) and µ y ≥ 0, λ y ∈ [0, 1] such that y∈S λ y = 1 and

∇ x F (x F , y F ) + ∇ x G(x G ) T µ G + µ ∇ x f (x f , y f ) -y∈S λ y ∇ x f (x f,y , y) +∇ x g(x g , y g ) T µ g -µ y∈S λ y ∇ x g(x g,y , y) T µ y ∈ εB, (II.2.36) 
∇ y F (x F , y F ) + µ∇ y f (x f , y f ) + ∇ y g(x g , y g ) T µ g ∈ εB,

(II.2.37)

λ y |f (x f,y , y) -ϕ(x)| ≤ ε, (II.2.38)
|g(x g,y , y) T µ y | ≤ ε.

(II.2.39)

Proof. Let x be a local solution of (II.2.30). Then there exist x F , x G close to x along with

x * F ∈ ∂ϕ o (x F ) and x * G ∈ ∂G(x G ), and µ G ≥ 0 with |G(x G ) T µ G | ≤ ε such that x * F + µ G x * G ≤ ε. Since S o is inner semi-compact and F is strictly dierentiable then we have ∂ϕ o (x F ) ⊂ ∂ϕ o (x F ) ⊂ y F ∈So(x F ) {∇ x F (x F , y F ) + D * S(x F , y F )(∇ y F (x F , y F ))} so that there exists y F ∈ S o (x F ) such that x * F -∇ x F (x F , y F ) ∈ D * S(x F , y F )(∇ y F (x F , y F )).
This is equivalent to

(x * F -∇ x F (x F , y F ), -∇ y F (x F , y F )) ∈ N gph S (x F , y F ) = N [φ≤0] (x F , y F )
where φ(x, y) := f (x, y) -ϕ(x) + χ [g≤0] with ϕ(x) := inf y {f (x, y) : g(x, y) ≤ 0}. Since ϕ is upper semi-continuous then φ is lower semi-continuous. We can thus apply Corollary 7 in order to nd µ > 0, (x, ỹ) close to (x F , y F ) and (x * , ỹ * ) ∈ ∂φ(x, ỹ) such that µ(x * , ỹ * ) is close to the vector

(x * F -∇ x F (x F , y F ), -∇ y F (x F , y F )).
Then by the fuzzy sum rule there exist (x i , y i ), i := f, g, ϕ close to (x, ỹ) along with

(x * f , y * f ) ∈ ∂f (x f , y f ), (x * ϕ ) ∈ ∂(-ϕ)(x ϕ ) and (x * g , y * g ) ∈ N[g≤0] (x g , y g ) such that (x * , ỹ * ) ∈ (x * f , y * f ) + (x * ϕ , 0) + (x * g , y * g ) + εB (II.2.40)
By applying Lemma 15 we easily obtain the points that satisfy the desired result.

Part III

Multi-Leader-Follower Games

Non-Cooperative Game Theory

A game is an interdependent decision problem for several players who have individual objectives. In fact, a game is fully described by a nite set of players, each of them having: (i) a variable, (ii) an objective function and (iii) a feasible set, where both the objective function and the feasible set of a given player could depend on the variable of the other players, that is, of his rivals. This is what makes a game an interdependent problem.

Roughly speaking, the aim of each player is to decide about his variable within his feasible set in order to get the least value of his objective function, that is, minimize his objective (or maximize, see Remark in Section I.4).

In a non-cooperative game each player has control over and decides about his own variable, but he cannot directly control the variables of his rivals. Since we only will focus on noncooperative games we will usually simply talk about games, and omit the `non-cooperative' adjective.

Concerning the dependency of objectives and constraints on rivals' strategies there are two extreme cases: independent constraints, but dependent objectives, i.e. a classic game;

or independent objectives, but dependent constraints, that is, a special case of a generalized game.

Of course, if both the constraints and the objective of each player are independent of his rivals' strategies, then we simply face a collection of independent optimization problems for which game theory has not much interesting things to say.

We have now reached a crucial point on the discussion, and a natural question arises.

What can we expect as an outcome of a game?

The answer in my opinion is not at all obvious. Even though the aim of each player in a game has been already stated in an apparently precise way as the minimization of an objective, it is not clear at all what would be an outcome of the game. In fact, the variables of a player's rivals can be seen as an uncertain parameter, making his problem somehow ambiguous.

Dierent notions of equilibria have been proposed in the literature as expected possible outcomes, and they are based on the players' behavior facing this uncertainty. A natural idea is that each player makes a conjecture about his rivals' decision. A major distinction of the conjecture of a player A about player B's decision is that either (i) xed conjecture of B's decision, independently of A's decision, or (ii) dependent conjecture of B's decision, as dependent on A's decision.

If player A makes a xed conjecture about each rival B, then it is natural that he will make a best response to that xed conjectures. Now, if every player behave like A with respect to rivals, and the conjectures are coherent, then we reach a so-called Nash equilibrium (Cournot or Bertrand equilibrium in economy). This is the topic of chapter III.1.

The concept of Nash equilibrium is interesting because in an equilibrium no player has incentives for deviating from his decision, unilaterally, and thus the conjectures should not change. But away from an equilibrium the idea of xed conjectures is less intuitive. For instance, if two players A and B make decisions with coherent xed conjectures, A making best response to B but B making a non-optimal response. Then B has incentives to change his decision, but if B changes his decision then A's conjecture about B's decision would not be coherent any more.

On the other hand, some players could make dependent conjectures about some of the rivals based on optimal reaction. This leads to many dierent possibilities including the so-called bilevel programming problem and multi-leader-follower games, which are the topic of Chapters III.2 and III.3, respectively.

The bilevel programming problem consists of a game with two players called the leader and the follower. The leader conjectures that the behavior of the follower is to best respond to the leader, so the leader makes dependent conjectures about rivals' decision (dependent on the leader's decision, see (ii)). The leader takes into account the dependent conjectures, if single-valued (see discussion in Chapter III.2), and plug them inside his optimization problem.

If these conjectures are coherent with the behavior of the follower this would lead to a socalled Stackelberg equilibrium. In this case we say that the leader is the upper level player while the follower is the lower level player.

If two players trying to be leaders make the dependent conjectures that the rival's behavior is to best respond to the player, then both players would solve a bilevel programming problem and the combination of decision is a so-called Bowley equilibrium. A Bowley equilibrium with coherent conjectures will unlikely exist, but if one such exists it would also correspond to a Nash equilibrium. Moreover, in this case we cannot distinguish between upper level or lower level because it would depend on whose perspective we are choosing.

In case of several players, the possibilities are more complex since the dependency of one rival decision might depend on another rival's decision. This leads, even in the case of coherent conjectures, to complex models with more than two levels and/or possibly more than one player in each of the levels. In Chapter III.3 we will discuss about the case of Multi-Leader-Follower games, that is, the case of two levels with possibly more than one player at each of the levels.

Chapter III.1

Generalized Nash Equilibrium Problems

This chapter is based on the paper [START_REF] Aussel | Some remarks about existence of equilibria, and the validity of the epcc-reformulation for multi-leader-follower games[END_REF] but includes also some material from [START_REF] Aussel | Towards tractable constraint qualications for parametric optimisation problems and applications to generalised Nash games[END_REF].

III.1.1 Notation and Basics

A Generalized Nash Equilibrium Problem (GNEP for short) consists in several players solving each one a parametric optimization problem, the strategy of each player being a parameter for the others. To be more precise, let J be a nite set of players. Player j ∈ J, controlling his strategy y j ∈ R m j , aims at minimizing his objective f j , which depends on the joint vector of strategies y := (y 1 , ..., y |J| ) ∈ R m with m := j∈J m j . The minimization is done by player j within his feasible set Y j (y -j ) := {y j ∈ R m j | g j (y j , y -j ) ≤ 0} , where g j : R m → R d j is the joint constraint function of player j. Following classical notations, m -j and y -j ∈ R m -j stands respectively for m -j := j =j m j and the joint vector of strategies of all players except player j, so that, up to a reordering of the vector, we have y = (y j , y -j ).

Given an opponent strategy y -j , a best response of player j is a solution y j ∈ R m j of the parametric optimization problem: min y j f j (y j , y -j ) s.t. g j (y j , y -j ) ≤ 0 (P j (y -j ))

and we denote by S j (y -j ) the set of its solutions. A joint strategy y is said to be feasible for the GNEP if, for all j ∈ J, y j ∈ Y j (y -j ) and the set of all joint feasible strategies (y : y j ∈ Y j (y -j ) for all j ∈ J) is denoted by Y . This set will be called the feasible region of the GNEP. The GNEP consists in nding a joint strategy y such that for each j ∈ J, y j ∈ S j (y -j ). We will call such a y an equilibrium of the game, and the set of all equilibria will be denoted by GNEP. In the case where the feasible set is constant (not depending of the opponent strategy), one calls the problem a Nash Equilibrium Problem (NEP for short).

III.1.2 Existence for GNEP

The following theorem, which was originally given in [START_REF] Ichiishi | Decentralization for the core of a production economy with increasing return[END_REF], gives conditions under which we can ensure the existence of equilibria for the GNEP in a general setting. In the survey [START_REF] Facchinei | Generalized nash equilibrium problems[END_REF], some relaxation of the hypothesis are discussed.

Theorem 19 [START_REF] Ichiishi | Decentralization for the core of a production economy with increasing return[END_REF]. Let a GNEP be given and suppose that 1. For each j ∈ J there exist a non-empty, convex and compact set K j ⊂ R n j such that the set-valued map Y j : K -j ⇒ K j , is both upper and lower semi-continuous with non-empty closed and convex values, where K -j := j =j K j .

2. For every player j, the function f j is continuous and f j (•, y -j ) is quasi-convex on Y j (y -j ).

Then a generalized Nash equilibrium exists.

Note that in [START_REF] Aussel | Generalized nash equilibrium problem, variational inequality and quasiconvexity[END_REF] an alternative proof of existence of equilibria has been given, under the assumption of Rosen's law, by using the normal approach technique.

III.1.3 Uniqueness for GNEP

Uniqueness of solutions for GNEPs is usually not possible to guarantee. We rst show an example of a NEP whose (joint) objectives are strictly convex, and whose set of equilibria is a closed segment, each equilibrium with dierent value for both of the players. Compare with Example 1 in [START_REF] Facchinei | Generalized nash equilibrium problems[END_REF], where the same conclusions holds for a GNEP (in our case it is a NEP).

Example 9. Consider the following NEP between two players. Let x = (x 1 , x 2 ) ∈ [0, 1] 2 and f j (x 1 , x 2 ) := (x 1 -x 2 ) 2 + (x -j ) 2 be the objective of player j. Then the best response (or reaction) maps are S j (x -j ) = x -j , for j = 1, 2. Thus the solution of the NEP are the pairs (x 1 , x 2 ) with x 1 = x 2 ∈ [0, 1]. Note also that the values of the objectives at the equilibria are all dierent

f 1 (α, α) = f 2 (α, α) = α 2 , ∀α ∈ [0, 1].
In this example, the objectives are jointly strictly convex.

The following example exhibits the case of a linear GNEP for which multiple solution exists with dierent optimal values.

Example 10. Let consider a two players game with objectives f 1 , f 2 : R 2 → R dened by

f 1 (x) := x 1 and f 2 (x) := -x 2 for x = (x 1 , x 2 ) ∈ R 2 .
Let the constraint for player 1 be dened by the set

X 1 (x 2 ) := {x 1 ∈ R | x 2 -x 1 ≤ 0} and for player 2 by the set X 2 (x 1 ) := {x 2 ∈ R | x 2 -x 1 ≤ 0}.
Note that all the involved functions are linear, and the unique optimal response to a given opponent strategy x -j is x j = x -j so that the equilibria of the game is the set {(x 1 , x 2 ) ∈ R 2 | x 1 = x 2 = α, α ∈ R} and the value for both players at an equilibrium point (α, α) is α, for α ∈ R.

III.1.4 Structure of the Set of Solutions of a GNEP

The structure of the set of equilibria of a GNEP (even of a NEP) may be quite complicated.

For instance, it is not necessarily convex. An example, with a non-convex set of solutions, can be easily constructed by noting that the graph of the solution of a parametric convex optimization problem (convex on both the optimization variable and the parameter) is not convex in general. Using the above fact, we show a (G)NEP whose solution is not even connected.

Example 11. Let x = (x 1 , x 2 ) ∈ [0, 4] 2 and f j (x) := d T j (x) 2 , where T 1 is the triangle with vertices (0, 0), (0, 4) and (1, 2), and T 2 is the triangle whose vertices are (0, 0), (4, 0) and (2, 1). Let S j (x -j ) := argmin Let us end this subsection by showing that, even if the GNEP is linear, the set of equilibria can be non-connected, actually composed of two isolated points (see also [START_REF] Sudermann-Merx | Linear Generalized Nash Equilibrium Problems[END_REF]).

x j {f j (x 1 , x 2 ) | x j ∈ [0, 4]}. We see that S 1 (x 2 ) = {x 1 ∈ [0, 4] | (x 1 , x 2 ) ∈ T 1 } for x 2 ∈ [0, 1] and S 1 (x 2 ) = {2} for all x 2 ∈ (1, 4]). Similarly, S 2 (x 1 ) = {x 2 ∈ [0, 4] | (x 1 , x 2 ) ∈ T 2 } for x 1 ∈ [0,
Example 12. Let there be two players with variables x 1 and x 2 , both in R. Let the problem of player 1 be min

x 1 {x 1 | x 1 ∈ [0, 1], x 1 ≥ 2x 2 -1}
and the problem of player 2 be min

x 2 {x 2 | x 2 ∈ [0, 1], x 2 ≥ 2x 1 -1} .
It is easy to note that, for a given opponent's strategy, each of these problems has a unique solution, and that the reaction maps are given by x 1 (x 2 ) = max {0, 2x 2 -1} and x 2 (x 1 ) = max {0, 2x 1 -1}, for player 1 and 2, respectively. Thus, the equilibria are the points (0, 0) and (1, 1).

III.1.5 GNEP and First Order Stationarity Conditions

Following the same lines as in the case of parametric optimization (see Section I.5 in Chapter I), all along this section we will make the following assumptions on the GNEP:

(H 1 ) (Player dierentiability) For every j ∈ J and every y -j ∈ R m -j , f j (•, y -j ) and g j (•, y -j ) are dierentiable.

(H 2 ) (Player convexity) For every j ∈ J and every y -j ∈ R m -j , f j (•, y -j ) is convex and the components of g j (•, y -j ) are quasi-convex functions.

In order to compute an equilibrium of a Generalized Nash game, it is commonly used to consider the complementarity problem composed by the concatenation of the KKT conditions of each of the players. For player j, given its own strategy y j and an opponent strategy y -j , let Λ j (y j , y -j ) denote the set of Lagrange multipliers µ j of the problem (P j (y -j )) at the point y j , that is, µ j ∈ R d j satisfying ∇ y j f j (y j , y -j ) + ∇ y j g j (y j , y -j )µ j = 0 0 ≤ µ j ⊥ -g j (y j , y -j ) ≥ 0 (K KT j (y -j ))

Given y -j , the set of points y j such that Λ j (y j , y -j ) = ∅ is denoted by SP j (y -j ) (standing for Stationary Points). Moreover, let cSP denote the solution of the concatenation of stationary point/KKT conditions of all players, that is, cSP := {y = (y 1 , ..., y |J| ) : ∀ j ∈ J, y j ∈ SP j (y -j )} = {y = (y 1 , ..., y |J| ) : ∀ j ∈ J, ∃ µ j ∈ R d j with (y j , µ j ) solution of KKT j (y -j )}.

With assumptions (H 1 ),(H 2 ), the KKT conditions are sucient for GNEP, that is, cSP ⊂ GNEP . Thus, a computed solution of the concatenation of KKT conditions yields a solution of the GNEP, but there could be some GNEP solutions that cannot be obtained from a cSP solution. We are interested in studying constraint qualications that ensure the concatenation of KKT conditions to be also necessary optimality/equilibrium conditions for the GNEP, that is, cSP = GNEP. In this case, we would be able to nd any Nash equilibrium of the game by solving the concatenated KKT conditions.

In a GNEP, a player may face a possibly innite number of dierent optimization problems indexed in the opponents strategies. Let us recall that not only the cost function depends on the opponent strategy, but in a GNEP the constraint set of each player depends on the opponent strategy. Thus, at a rst glance, one would require that for each player and for each opponent strategy, some constraint qualication should be fullled at each optimum strategy of this player. But the optimum strategies are not known in advance and thus one is forced to assume/verify the constraint qualications at every feasible strategy. Under such strong conditions, one obviously has that GNEP = cSP.

Indeed, we already know that, thanks to the convexity assumption (H 2 ), cSP ⊂ GNEP. On the other hand for any y ∈ GNEP and for any j, y j ∈ S j (y -j ), and thus, if a constraint qualication (Guignard's CQ for instance) holds at this point, then y j ∈ SP j (y -j ) showing the equivalence between the generalized Nash game and the corresponding cSP.

Proposition 10. Assume (H 1 ), (H 2 ) and that for each player j and each feasible joint strategy y = (y j , y -j ) ∈ Y , Guignard's CQ holds for player j's constraint g j (•, y -j ) ≤ 0 at y j . Then GNEP = cSP.

of conditions can be done if the constraint functions g j,k (•, y -j ) are (not only quasi-convex but) convex, and using Slater's CQs instead of Guignard's CQs.

Corollary 10. Assume (H 1 ) and (H 2 ). Moreover assume that, for each player j, both following properties hold:

1. Each g j,k (•, y -j ) is convex, for k = 1, ..., d j ;

2. For any y -j such that ∃ y j ∈ R m j with (y j , y -j ) ∈ Y , Slater's CQ holds: there exists ỹj such that g j (ỹ j , y -j ) < 0.

Then GNEP = cSP .

III.1.5.1 Joint Convexity and Reduction on Number of CQs

As in Section I.5, we would like to reduce as much as possible the number of constraint qualications to be veried in order to obtain the desired equivalence between a GNEP and its associated problem cSP. To this aim, we will assume some joint convexity1 (in the sense of Denition 2) of the components g j of the constraint functions.

Remark 13. Joint convexity is a stronger condition on the constraints than player convexity (H 2 ). For instance, a bilinear function g(y 1 , y 2 ) := ay 1 y 2 , for y 1 , y 2 ∈ R, is player convex while it is not jointly convex (unless a is equal to 0).

We are interested in nding simple qualication conditions over the joint constraint functions g j which imply Guignard's CQ for any opponent strategy. The following denition is related to Denition 1 for general parametric optimization problems.

Denition 8. Let j ∈ J. An opponent strategy vector ŷ-j ∈ R m -j is called admissible (for player j) if ŷ-j ∈ A j := dom Y j , that is, there exists y j such that g j (y j , ŷ-j ) ≤ 0;

interior (for player j) if it is an element of int(A j );

boundary (for player j) if it is an element of bd(A j ).

Combining the joint convexity of the constraint functions, joint Slater's constraint qualications and constraint qualication only for boundary opponent strategy, one can conclude the equivalence between the GNEP and its associated cSP.

Theorem 20. Assume (H 1 ), (H 2 ) and that, for each j ∈ J, each the three properties hold:

1. (Joint convexity) The function g j is jointly convex on R m ; 2. (Joint Slater's CQ) There exists a joint strategy ỹ(j) ∈ R m such that g j (ỹ(j)) < 0;

3. (Guignard's CQ for boundary opponent strategies) For any ŷ-j ∈ bd(A j ) and y j such that (y j , ŷ-j ) ∈ Y , Guignard's CQ holds for j's problem at y j .

constraint functions g k (y) = y -q k 2 -5 2 , k = 1, 2, where y = (y 1 , y 2 ). These functions clearly satisfy the two rst assumptions of Theorem 20, but not the third. The feasible region is Y := B(p, 5) ∩ B(q, 5). Consider the joint strategy (y 1 , y 2 ) = (0, 0, 3) ∈ Y . The gradients of g 1 , g 2 w.r.t. y 1 at the point (0, 0, 3) are parallel to each other so they cannot characterize the normal cone to player 1's feasible set Y 1 (3) = {(0, 0)}, which is two dimensional. So, Guignard's CQ does not hold for player 1's problem, and taking for instance, the cost functions as f 1 (y 1 , y 2 ) = y 1,2 and f 2 (y 1 , y 2 ) = -y 2 , then y = (y 1 , y 2 ) = (0, 0, 3) is a generalized Nash equilibrium but it is not a solution of the corresponding concatenated KKT system (see Figure

III.1.3). y 1,1 y 1,2 y 2 ∇ y 1 g 1 ∇ y 1 g 2 -∇ y 1 f 1 Figure III.1.3:
In Example 14, the point y 1 = (0, 0) is the unique feasible point in the y 1 -plane with height y 2 = 3. The joint strategy (y 1 , y 2 ) = (0, 0, 3) ∈ GNEP, but no multipliers exist for player 1.

In the case of (non generalized) Nash games, boundary parameters do not exist so that we can deduce from Theorem 20 the following simpler form:

Corollary 11 (Nash game version). Assume (H 1 ), (H 2 ) and that, for each player j ∈ J, the constraint function g j does not depend on the other players' variable y -j Moreover assume that, for each player j ∈ J, 1. (Joint convexity) The constraint function g j is jointly convex on R m ; 2. (Joint Slater's CQ) There exists a (joint) strategy ỹ(j) ∈ R m j such that g j (ỹ(j)) < 0.

Then GNEP = cSP .

III.1.5.2 Finite Number of CQs

Our approach in Theorem 20 is to verify only a reduced set of constraint qualications and obtain the same conclusion as in Proposition 10. But Assumption 3) of Theorem 20 still requires this verication of constraint qualications for a possibly innite set of boundary parameters. In this subsection, we will consider two feasibility conditions that makes this third assumption trivially satised, by avoiding the existence of boundary opponent strategies. The rst condition we dene is a strong one but very simple to express. Denition 9. A GNEP is said to be fully inter-feasible if:

∀j ∈ J : A j = R m -j . (III.1.1)
In other words, a GNEP is fully inter-feasible if for all y -j ∈ R m -j , there exist a feasible strategy y j ∈ Y j (y -j ) = {y j | g j (y j , y -j ) ≤ 0}. Clearly, the feasibility condition (III.1.1) implies the unboundedness of gph Y j , but it really makes sense. It could be read as follows: for each player j, the strategies of the other players may aect his feasible set (even reduce it to a singleton), but cannot make his problem infeasible.

The second condition we consider is weaker than condition (III.1.1), but still avoids the existence of boundary opponent strategies in the game. Denition 10. We say that a GNEP strictly inter-feasible if: ∀j ∈ J : P -j (Y ) ⊂ int(A j ). where P -j (Y ) := {y -j | ∃ y j : (y j , y -j ) ∈ Y }.

The following corollary is then a direct consequence of Theorem 20.

Corollary 12. Assume (H 1 ), (H 2 ) and that the GNEP is either fully inter-feasible or strictly inter-feasible. Assume moreover that for each j ∈ J both of the following properties holds:

1. (Joint Convexity) The constraint function g j is jointly convex with respect to y; 2. (Joint Slater's CQ) There exists a joint strategy ỹ(j) ∈ R m such that g j (ỹ(j)) < 0.

Then GNEP = cSP.

To give an insight of what condition (III.1.2) means, let us see the following GNEP which is strictly inter-feasible but not fully inter-feasible.

Example 15. Let us consider a game composed of two players with real variables y 1 and y 2 , respectively, and constraint functions g 1 , g 2 : R 2 → R given by g 1 (y 1 , y 2 ) := 4(y

1 -3) 2 + (y 2 - 3) 2 -4 and g 2 (y 1 , y 2 ) := (y 1 -3) 2 + 4(y 2 -3) 2 -4 (see the feasible set in Figure III.1.4).
Let us analyze the feasibility conditions for player 1's problem. First, condition (III. 1.1) is not satised, since for instance, y 2 = 0 / ∈ A 1 . Second, the condition (III.1.2) is satised. In fact, we have that P 2 (Y ) = [START_REF] Aubin | Set-valued analysis[END_REF][START_REF] Aussel | Nash equilibrium in pay-as-bid electricity market : Part 1 -existence and characterisation[END_REF] is obviously included in the interior of A 1 = [START_REF] Allevi | On an equilibrium problem with complementarity constraints formulation of pay-as-clear electricity market with demand elasticity[END_REF][START_REF] Aussel | Nash equilibrium in pay-as-bid electricity market : Part 2 -best response of producer[END_REF]. Given the symmetry of the problem we conclude that condition (III.1.2) is also fullled for player 2. Chapter III.2

Bilevel Programming Problems

This chapter corresponds to the paper [START_REF] Aussel | Is pessimistic bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF].

III.2.1 Introduction

A bilevel programming problem, or simply a bilevel problem, is a hierarchical optimization problem which models a game between two players: In economics it is called a Stackelberg game. One of the players is the leader and the second one is the follower. Each player tries to minimize its own cost function which depends on the decision of both players, but the leader decides rst knowing that then the follower will react in an optimal way given the decision of the leader. Thus, the leader optimizes his objective based on a conjectured reaction of the follower.

There is a certain ambiguity, as noticed in [START_REF] Dempe | Foundations of bilevel programming[END_REF], in the formulation of the upper level problem; an ambiguity that occurs in the case of non-uniqueness of the lower level optimal solutions. To handle this diculty it has been proposed in the literature to consider an optimistic and a pessimistic approach, also known as strong Stackelberg game and weak Stackelberg game, respectively. The optimistic approach occurs when the leader can convince the follower to cooperate that is, the leader can select in between all the optimal reactions of the follower, the one with least cost for him. Alternatively, if the cooperation of the follower may not be possible, for instance if cooperation is not allowed by law, or if, for some reasons, the follower systematically chooses the worst case for the leader then the leader would need to bound the damages resulting from undesirable decisions of the follower. This kind of interactions is perfectly modeled by the pessimistic approach of the bilevel problem.

The pessimistic approach has often been put aside while the optimistic one has received much more attention [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF][START_REF] Dempe | Sensitivity analysis for two-level value functions with applications to bilevel programming[END_REF][START_REF] Ye | New necessary optimality conditions for bilevel programs by combining the mpec and value function approaches[END_REF]. However, some work has been done for the pessimistic approach: existence of solutions has been studied in [START_REF] Lignola | Topological existence and stability for stackelberg problems[END_REF][START_REF] Loridan | Weak via strong stackelberg problem: new results[END_REF]; optimality conditions were studied in [START_REF] Dassanayaka | Methods of variational analysis in pessimistic bilevel programming[END_REF][START_REF] Dempe | Necessary optimality conditions in pessimistic bilevel programming[END_REF]; it has been proposed approximating (a certain class of ) pessimistic bilevel problems by sequences of optimistic ones in [START_REF] Loridan | Weak via strong stackelberg problem: new results[END_REF]; a solution procedure based on semi-innite programming was presented in [START_REF] Ye | New necessary optimality conditions for bilevel programs by combining the mpec and value function approaches[END_REF] and for the linear case some procedures have been developed in [START_REF] Zheng | A solution approach to the weak linear bilevel programming problems[END_REF]. The pessimistic approach has also been useful in a more general setting of several followers (playing a non-cooperative game between them, see Chapter III.3) to model a certain water resources optimal allocation problem in [START_REF] Zheng | Pessimistic referential-uncooperative linear bilevel multi-follower decision making with an application to water resources optimal allocation[END_REF]. Despite the simplicity of the optimistic approach it has the drawback of non-realistic assumptions in the model: the cooperation of the follower with the leader but without any reward considered in the objective. By the contrary, the pessimistic approach has a simple interpretation of bounding damages and minimizing the risk worst case.

Let us now discuss the main problem/question studied in this chapter. In order to compute some solutions for the bilevel programming problem, it is commonly used to reformulate it as a mathematical program with complementarity constraints (MPCC for short): this is done by replacing the lower level problem, (which we assume to be convex) by its KKT optimality conditions. This reformulation plays a central role in the numerical treatment of the dicult bilevel problem since it is usually the MPCC reformulation that is (locally) solved by the use of any of the available algorithms. It is thus very important to know if the bilevel programming problem and its reformulation are equivalent. In particular, one needs to know if the solution obtained by solving the MPCC may generate a solution of the initial bilevel model. As it will be shown later on, the answer to this questionis no for the important case of local solutions. Actually, as it will be observed (see Example 16 and Remark 20), this bad situation is not a pathological (or exceptional) one. Indeed, this example shows a local solution of the MPCC reformulation of an elementary bilevel problem which does not correspond to any local solution of the (pessimistic) bilevel programming problem. The concept of local solutions used for the example and for the relation of the bilevel and the MPCC problems will be precised in the following sections.

The interrelation between solutions of the optimistic bilevel problem and solutions of its associated MPCC, in the optimistic case, has been fully addressed in [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF]. More precisely, Dempe and Dutta have shown that, even in the optimistic case, this interrelation is not so direct and that, for a point to be local solution of the optimistic bilevel problem, some Slater type constraint qualications of the lower level problem are needed and local optimality of the associated MPCC must be satised for all Lagrange multipliers (see [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF]Theorem 3.2]).

Our aim in this chapter is to provide a counterpart, for the pessimistic bilevel problems, of the pioneering analysis driven by Dempe and Dutta in [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF] for the optimistic approach.

In Section III.2.2, we explain the notation we use, we dene the pessimistic bilevel problem and the associated (pessimistic) MPCC, and we {analyze what we call the basic assumption, that is somehow inevitable for considering the pessimistic approach. In Section III.2.3, we focus on global solution concepts for both the pessimistic bilevel problem and its associated MPCC and investigate the interrelation of the solution sets of those problems. Section III.2.4 is dedicated to the important case of local solutions of both the pessimistic bilevel programming problem and its MPCC reformulation. For such minimax problems, we have dened notions of local solutions in both variables of the leader and the follower. Let us emphasize that, as far as we know, no local concept of solutions for those pessimistic problems has been previously dened in the literature. We show that the interrelations between the solution sets of the two problems are far from trivial and depend (in the same spirit as for the optimistic problem) on some Slater type constraint qualication of the lower level problem.

The subtlety of the situation is illustrated through two simple examples (See Example 16

and Remark 20). In Section III.2.5, we give some nal comments to summarise the work.

III.2.2 Preliminaries and Problem Statement

In this section, we describe more precisely the bilevel problem, and the MPCC reformulation, in their pessimistic forms.

Let the vectors x ∈ R n and y ∈ R m be the decisions of the leader and the follower III.2.2. Preliminaries and Problem Statement respectively. The problem of the leader, that we also refer to as the upper level problem, is

" min x∈X {F (x, y) | y ∈ S(x)}, (III.2.1)
where X is a non-empty closed subset of R n , F : R n × R m → R is the leader's cost function and S(x) stands for the solution set of the following lower level problem, also called the follower's problem,

min y∈R m {f (x, y) | g(x, y) ≤ 0} , (III.2.2)
where f : R n × R m → R is the follower's cost function and g : R n × R m → R d is the follower's constraint function. Through all the text, f and the components g i , i = 1, ..., d are assumed to be convex and dierentiable with respect to the lower level variable y, and F to be continuous on y.

The quotation marks in (III.2.1) have been used to emphasize the ambiguity in the formulation of the leader's problem: as it has been commented in the introduction, it occurs when the follower has possibly more than one optimal reaction (that is x → S(x) is not single-valued) and it is handled in the pessimistic approach by minimizing the highest value of its cost, giving rise to the following minmax problem

min x∈X max y∈S(x) F (x, y). (PB)
The optimistic approach is just as (PB) but with a min-min instead of the min-max.

We assume through all this text that the lower level problem is everywhere solvable, that is, S(x) = ∅, for every x ∈ X.

(III.2.3) This is a very basic assumption, which ensures that the max in (PB) is taken over a non-empty set, and is implied, for instance, by the compactness of the constraint region {(x, y) ∈ R n × R m : g(x, y) ≤ 0} and the non-emptiness of {y ∈ R m : g(x, y) ≤ 0} for each x ∈ X.

For any given x ∈ X, let us dene the (partial) pessimistic value function by

ϕ p (x) := max y∈S(x) F (x, y)
and S p (x) the solution set of this partial optimization problem that is the set of y ∈ S(x) which attain the maximum in the denition of ϕ p (x). This set S p (x) actually describes the optimal reactions of the follower that are the worst for the leader and, for any decision x of the leader, ϕ p (x) is the worst value that the leader could face. Observe that assumption (III.2.3) is needed to have ϕ p (x) > -∞. Note that in the denitions of (PB), and thus of ϕ p , a maximum is involved and not a supremum. We will therefore assume the following general assumption:

S p (x) = ∅, for every x ∈ X.

(III.2.4)

This can be obtained, for instance, under the same conditions as for (III.2.3).

In practice, to solve problem (PB) the constraint y ∈ S(x) is commonly replaced by the KKT system of the lower level problem, giving place to a Mathematical program with complementarity constraints (MPCC). Recall that a point y satises the KKT conditions of the parametrized optimization problem (III.2.2), if there exists µ ∈ R d , called Lagrangemultiplier, for which the couple (y, µ) ∈ R m × R d satises the KKT system ∇ y f (x, y) + µ T ∇ y g(x, y) = 0, 0 ≤ µ ⊥ -g(x, y) ≥ 0.

(III.2.5)

For xed x ∈ X the set of pairs (y, µ) which solve the system (III.2.5) is denoted by KKT (x), and we denote by SP (x) (for Stationary Points) the set of those y such that for some µ, (y, µ) ∈ KKT (x). Fixing also y, let Λ(x, y) be the set of Lagrange multipliers, that is, µ ∈ R d satisfying (III.2.5).

Therefore, the pessimistic (MPCC) associated with (PB) is

min x∈X max (y,µ)∈KKT (x)
F (x, y).

(MPCC)

As for the (PB) we make the following assumption

KKT (x) = ∅, ∀x ∈ X, (BA)
that we call the Basic Assumption. Note that this assumption is equivalent to SP (x) = ∅ for all x ∈ X. Assumption (BA) is more delicate to verify than (III.2.3), but it is an inevitable assumption for considering problem (MPCC) so that the max is taken over a non-empty set.

An easily veriable condition that implies the (BA) is the following:

Slater's CQ: for any x ∈ X, there exists y(x) such that g i (x, y(x)) < 0, for all i = 1, ..., d.

Similarly to the rst problem, given x ∈ X, let ψ p (x) := max (y,µ)∈KKT (x) F (x, y) and KKT p (x) the couples (y, µ) that attain the maximum in the denition of ψ p (x). Similarly, let SP p (x) be the set of y in R n for which there exists µ ∈ R d satisfying (y, µ) ∈ KKT p (x).

Let us summarize the dierent set-valued maps that we dened and that will play a (central) role in the sequel. The maps S, S p , SP, SP p : R n ⇒ R m and KKT, KKT p : R n ⇒ R m+p are respectively dened by -S(x) = {y ∈ R m : y solution of the lower level problem}; -S p (x) = {y ∈ S(x) : y global solution of max y ∈S(x) F (x, y )};

-SP (x) = {y ∈ R m : Λ(x, y) = ∅}; -SP p (x) = {y ∈ SP (x) : y global solution of max y ∈SP (x) F (x, y )}; -KKT (x) = {(y, u) ∈ R m+d : u ∈ Λ(x, y)}; -KKT p (x) = {(y, µ) ∈ KKT (x) : (y, µ) global solution of max (y ,µ )∈KKT (x) F (x, y )}.

III.2.3 Global Solution Concepts

This section is dedicated to the analysis of interrelations between the (global) solution sets of the pessimistic bilevel problem and the associated MPCC. Dierent concepts of global solution are considered.

III.2.3. Global Solution Concepts

Let us rst describe two dierent, but at the same time natural, denitions of global solution to (PB). The rst one has been considered in [START_REF] Dempe | Necessary optimality conditions in pessimistic bilevel programming[END_REF] and corresponds to saying that to solve (PB), the leader has to choose an x that minimizes the worst value ϕ p (x).

Denition 11. A point x ∈ R n is an original solution of (PB), if x ∈ X and for all x ∈ X, ϕ p (x) ≤ ϕ p (x).

A second denition was considered in the reference monograph [START_REF] Dempe | Foundations of bilevel programming[END_REF], which involves at the same time both the decision vectors of the leader and of the follower, and we call it here conventional solution. The terms original and conventional are taken as the names given to the corresponding optimistic problems in [START_REF] Dempe | Sensitivity analysis for two-level value functions with applications to bilevel programming[END_REF].

Denition 12. A pair (x, ȳ) ∈ R n × R m is a conventional solution of (PB), if x ∈ X,
ȳ ∈ S p (x) and ϕ p (x) ≤ ϕ p (x), for all x ∈ X.

Equivalently, one can say that a pair (x, ȳ) ∈ R n × R m is a conventional solution of (PB) if (x, ȳ) is in the graph of the set-valued map S p and x minimizes ϕ p over X.

Remark 14. It is clear from the denition that if (x, ȳ) is a conventional solution, then the rst coordinate x is an original solution of (PB). Conversely, if x is an original solution, then for any ȳ ∈ S p (x) the couple (x, ȳ) is a conventional solution of (PB).

While for the pessimistic bilevel problem (PB) two concepts of solutions were dened above, for its associated (MPCC), three denitions of global solutions naturally arise.

A rst type of solution is dened which considers only the variable of the leader x, and is, in essence, analogous to Denition 11. Denition 13. A point x is an original solution of (MPCC) if x ∈ X and ψ p (x) ≤ ψ p (x), for all x ∈ X. Now considering both variables of leader and follower, another denition of global solution can be considered. Denition 14. A couple (x, ȳ) is a conventional solution of (MPCC) if x ∈ X, ȳ ∈ SP p (x) and ψ p (x) ≤ ψ p (x), for all x ∈ X.

Remark 15. As for the pessimistic bilevel problem, it is direct that if (x, ȳ) is a conventional solution of (MPCC), then x is an original solution of (MPCC). Conversely, if x is an original solution of (MPCC), then for any ȳ ∈ SP p (x) the pair (x, ȳ) is a conventional solution of (MPCC). Now, since the (MPCC) involves the Lagrange multipliers µ, a third concept of global solution can be dened. Denition 15. A triplet (x, ȳ, μ) is a full solution of (MPCC) if x ∈ X, (ȳ, μ) ∈ KKT p (x) and ψ p (x) ≤ ψ p (x), for all x ∈ X.

We call it full because it considers all the variables including µ, even though µ is not a variable of the function. Remark 16. The relation between full and conventional solutions for (MPCC) is very simple.

If (x, ȳ) is a conventional solution, then Λ(x, ȳ) is non-empty and (x, ȳ, μ) is a full solution for each μ ∈ Λ(x, ȳ). Conversely, if (x, ȳ, μ) is a full solution, then (x, ȳ) is a conventional solution.

Now we have come to the main point in this section of comparing the global solutions of the pessimistic bilevel problem (PB) with those of (MPCC). Recall that (MPCC) appears by replacing the lower level problem by its associated KKT system. Then, to answer the question posed in the title it is convenient to recall the relation between the KKT system with the lower level problem. Under the general convexity assumption of the lower level, it is well known that the KKT conditions are sucient, that is SP (x) ⊂ S(x), ∀x ∈ X.

The KKT conditions to be necessary depends on some regularity condition known as constraint qualication. For instance, it is well known that if for a given x, Slater's CQ holds for the lower level (III.2.2), then S(x) and SP (x) coincide. Now we prove that these sets still coincide under a weaker condition. Proposition 11. Assume that the lower level problem (III.2.2) is convex. Let x ∈ X be such that KKT (x) = ∅. Then SP (x) = S(x).

Proof. Let x ∈ X be xed. We only need to prove that S(x) ⊂ SP (x). Take y ∈ S(x). Since KKT (x) = ∅, SP (x) is non-empty, so take y 0 ∈ SP (x). Then the set of Lagrange multipliers Λ(x, y 0 ) is non-empty. We know that SP (x) ⊂ S(x) so that y 0 ∈ S(x). But in the convex case the set of Lagrange multipliers is the same for all solutions of the lower level problem (see [57, Proposition 3.1.1, VII]), so then Λ(x, y) = Λ(x, y 0 ) = ∅. Thus y ∈ SP (x) and the proof is completed.

Remark 17. Consider a xed x ∈ X. Since F does not depend on µ, and Λ(x, y) is a constant (non-empty) set for all y ∈ SP (x), we observe that the maximization in the denition of KKT p (x) can be seen as only in the variable y ∈ SP (x). In fact, we have the following representation KKT p (x) = S p (x) × Λ(x, y), ∀y ∈ SP (x).

As a direct consequence of the above proposition, the convexity assumption added to our (BA) gives us that SP (x) = S(x) for each x ∈ X. Taking this into account we adapt this result for the setting of bilevel programming. Theorem 21. Assume that the lower level problem (III.2.2) is convex. i) Assume that KKT (x) = ∅ and that x is an original (resp. (x, ȳ) is a conventional) solution of (MPCC). Then x is an original (resp. (x, ȳ) is a conventional) solution of (PB).

ii) Assume that (BA) holds and that x is an original (resp. (x, ȳ) is a conventional) solution of (PB). Then x is an original (resp. (x, ȳ) is a conventional) solution of (MPCC).

Proof. i) The convexity assumption gives us that SP (x) ⊂ S(x), and so taking supremum over these two sets we get that ψ p (x) ≤ ϕ p (x), for all x ∈ X. But since SP (x) is non-empty, by Proposition 11 we have that SP (x) = S(x), and thus ϕ p (x) = ψ p (x). Since x is an original solution of (MPCC), then

ϕ p (x) = ψ p (x) ≤ ψ p (x) ≤ ϕ p (x), ∀x ∈ X
and therefore x is also an original solution of (PB). The proof is similar for the conventional concepts.

ii) The equivalence between problem (PB) and (MPCC) in terms of the concepts of original solution is a direct consequence of the combination of Proposition 11 with the assumption (BA) since in this case ϕ p (x) = ψ p (x), for any x ∈ X. For the equivalence in terms of conventional solutions just note that since SP (x) = S(x), then also SP p (x) = S p (x).

Remark 18. In Theorem 21, it seems that the assumption for (i) is weaker than the one for (ii), but this is not the case. The hypothesis SP (x) = ∅ with x being an original solution of (MPCC), implies that -∞ < ψ p (x) ≤ ψ p (x) for all x ∈ X so that SP (x) is non-empty for each x ∈ X, that is, (BA) holds.

Finally, we state the connection between conventional solutions of (PB) and full solutions of (MPCC) under (BA), which follows from Remark 16 and Theorem 21.

Corollary 13. Assume that the lower level problem (III.2.2) is convex.

i) If KKT (x) = ∅ then: (x, ȳ, μ) is a full solution of (MPCC) implies that (x, ȳ) is a conventional solution of (PB).

ii) If (BA) holds then: (x, ȳ) is a conventional solution of (PB) implies that Λ(x, ȳ) = ∅ and (x, ȳ, μ) is a full solution of (MPCC), for each μ ∈ Λ(x, ȳ).

x orig. sol of (MPCC)

(x, ȳ) conv. sol of (MPCC) (x, ȳ, μ) full sol of (MPCC)
x orig. sol of (PB) 

(x, ȳ) conv.

III.2.4 Local Solution Concepts

In this section, we are concerned with the relationship between local solutions to the pessimistic bilevel programming problem with those of the associated MPCC. Since few local concepts of solution of pessimistic for bilevel or MPCC problems are dened in the literature, we propose four dierent notions for (PB) and three for (MPCC) and establish some interrelations between them.

All along this section, we will make the additional assumption that the gradients ∇ y f (x, y) and ∇ y g(x, y) are continuous with respect to the vector (x, y). This ensures (see e.g. [START_REF] Robinson | Generalized equations and their solutions, part ii: Applications to nonlinear programming[END_REF]) that the set-valued map (x, y) → Λ(x, y) is closed graph.

III.2.4.1 Globally Feasible Local Solutions

Corresponding to the original global solution, dened in the previous section, we recall the following denition of local solution (which was considered in [START_REF] Dempe | Necessary optimality conditions in pessimistic bilevel programming[END_REF]). Denition 16. We say that a point x is an original local solution for (PB) if x ∈ X and there exists a neighborhood U of x such that

ϕ p (x) ≤ ϕ p (x), ∀x ∈ X ∩ U.
Clearly, if U = R n then we recover the denition of (global) original solution (see Denition 11). When we regard both variables x and y, as in the conventional global solution, we can dene some more types of solution.

Remark 19. A notion of local solution to problem (PB) considered in [START_REF] Dempe | Foundations of bilevel programming[END_REF] is the following: a pair (x, ȳ) is said to be a local solution for (PB), if (x, ȳ) ∈ gph S p and there exists a neighborhood U of x such that

ϕ p (x) ≤ ϕ p (x), ∀x ∈ X ∩ U.
It is interesting to notice that, in this denition, the locality is just for the variable x, and nothing is asked for the variable y more than to be in S p (x). Clearly, we have the following relation between conventional concept and this new one: for any ȳ ∈ S p (x), x is an original local solution of (PB), if and only if, (x, ȳ) is a local solution of (PB). Given its proximity to the original local solution we do not refer to this denition in the sequel.

With our general assumptions we have that S p (x) = ∅ for all x ∈ X, and F (x, y) = ϕ p (x) whenever y ∈ S p (x). Then problem (PB) can be stated equivalently as the following minimization problem min (x,y)∈gph Sp F (x, y), (III.2.6) and thus we will refer to the elements of gph S p as feasible pairs for problem (PB). Taking into account the above consideration we can dene a new type of local solution for (PB). Denition 17. We say that a pair (x, ȳ) is a conventional type I local solution to problem (PB), if (x, ȳ) ∈ gph S p and there exists a neighborhood V of (x, ȳ) such that F (x, ȳ) ≤ F (x, y), ∀(x, y) ∈ gph S p ∩ V.

One can now consider to dene some notions of conventional local solutions to problem (MPCC) that extend the global ones dened in the previous section. But they would lead to totally trivial links between them and the corresponding denitions for the problem (PB) since, under our assumptions, one has SP (x) = S(x), for all x ∈ X (see Proposition 11 and the tight similarity between the denition of conventional global solution for (MPCC) and the conventional global solution for (PB)).

The same would occur with the denition of original local solutions. For instance, we can dene x to be an original local solution of (MPCC), whenever x ∈ X and there exists a neighborhood U of x such that ψ p (x) ≤ ψ p (x), ∀x ∈ X ∩ U.

Again since SP (x) = S(x), then ψ p (x) = ϕ p (x), for all x ∈ X, and then the denition of original local solution for (MPCC) and (PB) coincide.

Taking these arguments into account we will no longer consider the local concept of original or conventional solutions for (MPCC) and we will thus only concentrate on three notions of, so-called, full local solutions of (MPCC) and their interrelations with the conventional concepts of local solutions for (PB). The chosen terminology expresses the fact that, as in the (global) Denition 15, triplets (x, y, µ) will be considered. Denition 18. We say that a triplet (x, ȳ, μ) is a full type I local solution of (MPCC) , if (x, ȳ, μ) ∈ gph KKT p and there exists a neighborhood W of (x, ȳ, μ) such that

F (x, ȳ) ≤ F (x, y), ∀(x, y, µ) ∈ gph KKT p ∩ W.
Let us start by investigating the link between conventional type I local solutions for (PB) and the full type I local solutions for (MPCC). Theorem 22. Assume that the lower level problem is convex. i) If (x, ȳ) is a conventional type I local solution for (PB), then for each μ ∈ Λ(x, ȳ), (x, ȳ, μ) is a full type I local solution for (MPCC).

ii) Conversely, assume that Slater's CQ holds on a neighborhood of x, ȳ ∈ SP (x), and for all μ ∈ Λ(x, ȳ), (x, ȳ, μ) is a full type I local solution of (MPCC). Then, (x, ȳ) is a conventional type I solution of (PB).

Proof. We follow here the same lines as in the proof of [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF]Theorem 3.2]. Let us rst observe that whenever Slater's CQ holds for x, then (x, y) ∈ gph S p is equivalent to the fact that there exists µ such that (x, y, µ) ∈ gph KKT p . For assertion i), if μ ∈ Λ(x, ȳ) then by the initial comment (x, ȳ, μ) ∈ gph KKT p . If (x, ȳ, μ) is not a full type I local solution for (MPCC), then there exists a sequence (x k , y k , µ k ) k∈N ⊂ gph KKT p converging to (x, ȳ, μ) such that, for any k, F (x k , y k ) < F (x, ȳ). A contradiction thus occurs with the fact that (x, ȳ) is a conventional type I local solution for (PB) since the sequence (x k , y k ) k∈N ⊂ gph S p converges to (x, ȳ).

Now, let us prove ii). Clearly, since (x, ȳ, μ) ∈ gph KKT p then one has (x, ȳ) ∈ gph S p . If (x, ȳ) is not a conventional type I local solution for (PB), then there exists a sequence (x k , y k ) k∈N ⊂ gph S p converging to (x, ȳ) and such that, for any k, F (x k , y k ) < F (x, ȳ). By the initial comments we know that for each k there exist µ k such that (x k , y k , µ k ) ∈ gph KKT p , and in particular µ k ∈ Λ(x k , y k ). Moreover, Slater's qualication condition guarantees that Λ is locally bounded, and it has closed graph [START_REF] Robinson | Generalized equations and their solutions, part ii: Applications to nonlinear programming[END_REF]Theorem 2.3], so that one can assume without loss of generality that the sequence (u k ) k∈N is bounded and converges to some μ ∈ Λ(x, ȳ). Then since (x k , y k , µ k ) → (x, ȳ, μ), the triplet (x, ȳ, μ) cannot be a full type I local solution of (MPCC), raising a contradiction. 

S(x) :=    {1}, if x < 0, {-1}, if x > 0, R, if x = 0.
Clearly, for each x = 0 and y (the associated unique solution of the lower level problem), there is only one Lagrange multiplier, namely µ = -1 2xy , and it diverges when x goes to 0. By the contrary, for x = 0 and for any y in S(0) = R, the set of Lagrange multipliers Λ(x, y) is the whole half line R + . Slater's CQ is not fullled for x = 0, but Abadie's CQ does (see Chapter I Section I.4.2). Since multipliers exist for any optimal reaction, then we see that (BA) is fullled in this example. We can easily see that (x, ȳ) = (0, -1) is not a conventional type I local solution of (PB), while for any µ ∈ Λ(0, -1) = R + the triplet (0, -1, µ) Remark 20. On the other hand, Example 3.4 in [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF] provides a linear bilevel programming problem with unique lower level solution (thus also working for pessimistic case) for which a point (x, ȳ, μ) is a full type I local solution of (MPCC) at which Slater's CQ is satised, but (x, ȳ) is not a conventional type I local solution of (PB). In this case, again Theorem 22 cannot be applied since there exists another multiplier µ ∈ Λ(x, ȳ)\{μ} such that (x, ȳ, µ) is not a full type I local solution of (MPCC), thus showing that the hypotheses of ii) of Theorem 22 cannot be easily weakened.

The following example ( [START_REF] Aussel | Is pessimistic bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF] Example 3.2) shows an optimistic BLP (one leader, one follower) and the associated MPCC, for which points (x, ȳ, μ) are local solutions of MPCC for all μ ∈ Λ(x, ȳ)\ {μ 0 }, except one μ0 ∈ Λ(x, ȳ), but the pair (x, ȳ) is not a local solution of BLP. This example highlights that it is not enough to check that for some μ ∈ Λ(x, ȳ) the triplet (x, ȳ, μ) is a local solution of the MPCC to guarantee that (x, ȳ) is a local solution of the optimistic BLP.

Let the lower level problem be min y -y s.t.

x + y ≤ 0 y ≤ 0 The lower level solution map is single-valued and it is given by S

(x) = {min {0, -x}} for x ∈ X = [-1, 1]. Consider as an upper level problem to minimize F (x, y) = x subject to x ∈ [-1, 1] and y ∈ S(x) ({y} = S(x)).
Consider now the associated MPCC. First, note that Slater's CQ holds for all x ∈ [-1, 1].

The set of Lagrange multipliers for this problem is given by

Λ(x, S(x)) =    {(µ 1 , µ 2 ) = (0, 1)} , x < 0 {(µ 1 , µ 2 ) = (1, 0)} , x > 0 {(µ 1 , µ 2 ) | µ 1 + µ 2 = 1, µ 1 , µ 2 ≥ 0} , x = 0
Then it can be noticed that (x, ȳ, µ 1 , µ 2 ) = (0, 0, µ 1 , µ 2 ), with (µ 1 , µ 2 ) ∈ Λ(0, 0), is a local solution of MPCC, if and only if µ 1 > 0. And it is clear that there is no local solution for BLP except the unique global solution (x, ȳ) = (-1, 0) of BLP.

III.2.4.2 Locally Feasible Local Solutions

Even though, in the denitions of local solution given in Subsection III.2.4.1, neighborhoods are considered in terms of both x and y, the maximum that denes S p (x) is still actually a global maximum. This can appear to be quite articial, especially if one considers that each of the three optimization problems composing (PB) are solved through local solvers.

Note that since the lower level problem is actually convex, there is no need to consider local solution concepts for it.

Let us thus dene the set S loc p (x) of local maxima of max y∈S(x)

F (x, y),

(III.2.7)
that is, the set of y ∈ S(x) such that there is a neighborhood N of y with F (x, y) = max y ∈S(x)∩N F (x, y ). A pair (x, y) is said to be locally feasible for (PB), whenever (x, y) ∈ gph S loc p . We clearly have gph S p ⊂ gph S loc p , while the reverse inclusion does not hold in general. In other words, there could be some locally feasible pairs that are not feasible for (PB).

A local feasible pair (x, y) is basically a strategy x along with a locally-worst best-response of the follower. The leader may consider this as a possible outcome since it might be that he is only able to compute a locally worst optimal reaction and not a (real/global) worst optimal reaction of the follower. Denition 19. We say that a pair (x, ȳ) is a conventional type II local solution of (PB) if ȳ ∈ S loc p (x) and there exists a neighborhood U of x such that, for each x ∈ X ∩ U , there exists an y x ∈ S loc p (x) with F (x, ȳ) ≤ F (x, y x ).

In other words, the idea of the above denition is to guarantee that, whenever (x, ȳ) is a conventional type II local solution of (PB), then:

a) The follower's strategy ȳ is a locally-worst best-response for the leader's strategy x;

b) For any leader's strategy x suciently close to x, the leader is able to compute at least one locally-worst best-response y x of the follower such that F (x, ȳ) ≤ F (x, y x ).

This means that the leader is convinced that he has no incentive to change his strategy x by another one close to x. Let us note that using the pessimistic value function one has that, if (x, ȳ) is a conventional type II local solution of (PB), then (x, ȳ) ∈ gph S loc p and there exists a neighborhood U of x such that F (x, ȳ) ≤ ϕ p (x), ∀ x ∈ X∩U.

In general, the denitions of conventional local solutions are independent. In the case when the function y → F (x, y) is concave for each x ∈ X, then gph S p = gph S loc p and thus any conventional type II local solution is a conventional type I local solution of (PB). In the next remark, we show that a conventional type I local solution need not to be a conventional type II local solution.

Remark 21. Consider the bilevel problem described in Example 16. One can observe that the pair (x, ȳ) = (0, 0) is a conventional type I local solution of (PB), while it is not a conventional type II local solution of (PB).

Finally, based on the denition of S loc p , one can dene a last, and quite natural, denition of local solution of (PB). Denition 20. We say that a pair (x, ȳ) is a conventional type III local solution of (PB) if (x, ȳ) ∈ gph S loc p and there exists a neighborhood V of (x, ȳ) such that is denoted by KKT loc p (x), that is, the set of (y, µ) ∈ KKT (x) such that there is a neighborhood M of (y, µ) with F (x, y) = max (y ,µ )∈KKT (x)∩M F (x, y ). The elements of gph KKT loc p will further be called locally feasible triplet of (MPCC). Now, based on this notation, we will give two new denitions of local solution for (MPCC), each of them being analogous to Denition 19 and Denition 20, respectively. Denition 21. We say that a triplet (x, ȳ, μ) is a full type II local solution of (MPCC) if (ȳ, μ) ∈ KKT loc p (x) and there exists a neighborhood U of x such that for each x ∈ X∩U there exists an (y x , µ x ) ∈ KKT loc p (x) satisfying

F (x, ȳ) ≤ F (x, y), ∀(x, y) ∈ gph S loc p ∩ V.
F (x, ȳ) ≤ F (x, y x ).
Denition 22. We say that a triplet (x, ȳ, μ) is a full type III local solution of (MPCC) if (x, ȳ, μ) ∈ gph KKT loc p and there exists a neighborhood W of (x, ȳ, μ) such that Proof. Take (x, y) ∈ gph S loc p , that is, y ∈ S(x) such that there is a neighborhood N of y with F (x, y) = max

F (x, ȳ) ≤ F (x, y), ∀(x, y, µ) ∈ gph KKT loc p ∩ W.
y ∈S(x)∩N F (x, y ).
Take also µ ∈ Λ(x, y) so that (y, µ) ∈ KKT (x). Recall again that Proposition 11 gives that S(x) = SP (x). Now, we can consider the neighborhood

M := N × R d of (y, µ). Then F (x, y) = max (y ,µ )∈KKT (x)∩M F (x, y ).
and thus the triplet (x, y, µ) is an element of gph KKT loc p .

For the converse, assume that (x, y, µ) is an element of gph KKT loc p . If y is not in S loc p (x) this means that there exists a sequence (y k ) k∈N converging to y such that, for any k, y k ∈ S(x) and F (x, y k ) > F (x, y). Since y and y k are in S(x) = SP (x) (by Proposition 11), then they have the same set of Lagrange multipliers (see [57, Proposition 3.1.1, VII]), and thus µ ∈ Λ(x, y) = Λ(x, y k ), for each k. The sequence (y k , µ) k∈N ⊂ KKT (x) converges to (y, µ) and F (x, y k ) > F (x, y), so that (x, y, µ) is not an element of gph KKT loc p , thus providing a contradiction.

As a consequence of Proposition 12, we have the following interrelations between conventional (type II/type III) and the full (type II/type III) local solution of the associated (MPCC). Theorem 23. Assume the convexity condition of the lower level problem and that (BA) holds. Then i) If (x, ȳ) is a conventional type II local solution of (PB), then Λ(x, ȳ) is non empty and for all μ ∈ Λ(x, ȳ) the triplet (x, ȳ, μ) is a full type II local solution of (MPCC).

Conversely, if there exists at least one μ ∈ Λ(x, ȳ) such that (x, ȳ, μ) is a full type II local solution of (MPCC), then (x, ȳ) is a type II local solution of (PB).

ii) If (x, ȳ) is a conventional type III local solution for (PB), then for each μ ∈ Λ(x, ȳ), (x, ȳ, μ) is a full type III local solution of (MPCC).

Conversely, assume that Slater's CQ holds on a neighborhood of x, that ȳ ∈ SP (x), and for all µ ∈ Λ(x, ȳ), (x, ȳ, µ) is a full type III local solution of (MPCC). Then, (x, ȳ) is a conventional type III local solution of (PB).

Proof. Let's prove assertion i). Assume (x, ȳ) is a conventional type II local solution of (PB) with U given as in Denition 19. In particular, (x, ȳ) is locally feasible for (PB). From Proposition 11 and BA, we see that Λ(x, ȳ) = ∅. If we take μ ∈ Λ(x, ȳ), by Proposition 12, we deduce that (x, ȳ, μ) is locally feasible for (MPCC). If we take another (x, y, µ) that is locally feasible for (MPCC) with x ∈ X ∩ U , then (again by Proposition 12) (x, y) is locally feasible for (PB), so that F (x, ȳ) ≤ F (x, y). Thus, we conclude that (x, ȳ μ) is a full type II local solution of (MPCC). The converse is similar.

For assertion ii), the proof follows a similar line as the one for Theorem 22, and is thus left to the reader. Thus, and as a nal conclusion, the general answer to the question posed in the title is negative: pessimistic bilevel problems cannot be considered as special cases of pessimistic mathematical programs with complementarity constraints. Even if the pessimistic formulation is clearly more dicult to handle than the optimistic formulation, the conclusion is by the way similar to the one obtained in [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF] for optimistic bilevel problems.

Chapter III.3

Multi-Leader-Follower Games

This chapter is based on the paper [START_REF] Aussel | Some remarks about existence of equilibria, and the validity of the epcc-reformulation for multi-leader-follower games[END_REF] and the chapter [START_REF] Aussel | A short state-of-the-art on multi-leader-follower games[END_REF].

Multi-Leader-Follower games are bilevel models mixing the (Nash-) equilibrium structure of usual non-cooperative game theory within each level, and a hierarchical feature between the two levels, see Chapters III.1 and III.2.

III.3.1 Notations and Examples of Applications

For a game with N leaders and M followers, with their respective variables x 1 , . . . x N and y 1 , . . . y M , the MLMFG can be expressed as:

" min " min

x 1 F 1 (x, y) s.t. x 1 ∈ X 1 (x -1 ) y ∈ GN EP (x) . . . " min xn F N (x, y) s.t. x N ∈ X N (x -N ) y ∈ GN EP (x) ↓↑ ↓↑ min y 1 f 1 (y 1 , x, y -1 ) s.t. y 1 ∈ Y 1 (x, y -1 ) . . . min y M f M (y M , x, y -M ) s.t. y M ∈ Y M (x, y -M )
x F (x, y)

s.t.
x ∈ X y ∈ GN EP (x) ↓↑

min y 1 f 1 (y 1 , x, y -1 ) s.t. y 1 ∈ Y 1 (x, y -1 ) . . . min y M f M (y M , x, y -M ) s.t. y M ∈ Y M (x, y -M ) Figure III.3.2: SLFMG
where for any j = 1, . . . , M , the set-valued map Y j (x, y -j ) expresses the constraints, parametrized by x and y -j that the decision variable of player j must satisfy and where GN EP (x) stands for the set of (generalized) Nash equilibria of the non-cooperative game between the followers.

The notation " min is used here to highlight that this is simply a rst rough denition that is not free of ambiguities. In particular, if the reaction of the followers is not uniquely determined, the leader cannot anticipate which (GNEP)-reaction will take place and thus the upper level problem becomes ill-posed/ambiguous. This kind of question will be addressed in Section III.

One application for which the model SLMFG has proved its eciency is the optimal design of industrial eco-parks. This new way to design industrial parks is based on the sharing of uids (water, vapor, etc) or of energy between companies in order to reduce their production costs and, at the same time, the ecological impact of the production of the participating companies (measured by the total amount of wastes and/or of the incoming raw materials:

water, energy, vapor, etc.). This problem, already considered in the 60's, has been treated in the literature using the multi-objective optimization approach.

However, this technique has shown its limits in particular because it requires a selection process between the obtained Pareto points which almost always is based on a prioritization scheme between the companies (through weighted sum, goal programming, etc.). Recently in [START_REF] Ramos | Water integration in eco-industrial parks using a multi-leader-follower approach[END_REF], a Multi-Leader-Follower approach has been proposed with success. In such a model, the followers are the companies, interacting in a non-cooperative way (GNEP), each of them aiming at minimizing their production cost. The unique leader is the designer/manager of the industrial park whose target is to minimize the ecological impact (total water consumption, waste volumes, etc). The designer will also ensure the clearance of the process. Thus for example in the case of the design of the water network developed in [START_REF] Ramos | Water integration in eco-industrial parks using a multi-leader-follower approach[END_REF] the variable of the designer is the vector x of ows of clear water coming to each process of each company while the variable of each company j is the vector y j of shared ows between the processes of the company j and the processes of the concurrent companies. The resulting SLMFG model is as follows Thanks to the use of this approach, an important reduction of the global water consumption has been obtained while ensuring the reduction of the production cost of all of the participating companies. Other recent developments of this approach can be found in [START_REF] Van | Optimal design of exchange networks with blind inputs -part 2 : applications to eco-industrial parks[END_REF][START_REF] Ramos | Water exchanges in eco-industrial parks through multiobjective optimization and game theory[END_REF][START_REF] Salas | Optimal design of exchange networks with blind inputs -part 1 : theoretical analysis[END_REF].

min x,y i x i s.t.                x i ≥ 0, ∀ i ∀ j, y j solution of: min z j cost j (z j , x, y -j ) s.t.       
Note that even if historically industrial eco-parks have been focusing on water exchanges, several other things can also be shared between the companies, see e.g. [START_REF] Ramos | Utility network optimization in eco-industrial parks by a multi-leader follower game methodology[END_REF] for an optimal design of the energy and water exchange in an eco-park.

Symmetrically to the SLMFG, whenever the set of followers is reduced to only one player, then the bilevel model leads to the so-called Multi-Leader-Single-Follower game:

" min

x 1 , y F 1 (x, y) s.t. x 1 ∈ X 1 (x -1 ) y ∈ S(x)
. . .

" min

x N , y F N (x, y) Those dicult models cover a very large class of application in dierent real-life elds and in particular in the management of energy. For example the MLMFG provides a perfect model for the description of so-called day-ahead electricity markets. The leaders are the members of the market (suppliers and/or retailers) whose decision variables x i are market oers (usually energy/price blocks or ane bid curves) while the unique and common follower is the regulator of the market (often called Independent System Operator -ISO) who, reacting to these oers, xes the price of electricity and the decision concerning the oers of the leaders (see [START_REF] Allevi | On an equilibrium problem with complementarity constraints formulation of pay-as-clear electricity market with demand elasticity[END_REF][START_REF] Aussel | Nash equilibrium in pay-as-bid electricity market : Part 1 -existence and characterisation[END_REF][START_REF] Aussel | Nash equilibrium in pay-as-bid electricity market : Part 2 -best response of producer[END_REF][START_REF] Aussel | Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions[END_REF][START_REF] Aussel | Electricity spot market with transmission losses[END_REF][START_REF] Escobar | Monopolistic competition in electricity networks with resistance losses[END_REF][START_REF] Juan | Equilibrium analysis of electricity auctions[END_REF][START_REF] Henrion | Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market[END_REF][START_REF] Hu | Using EPECs to model bilevel games in restructured electricity markets with locational prices[END_REF] and references therein).

s.t. x N ∈ X N (x -N ) y ∈ S(x) ↓↑ min y f (y, x) s.t. y ∈ Y (x)
The main tasks of the regulator is to ensure clearance of the decision process and to maximize the total welfare of the market or equivalently minimizing the total cost of production if the total demand is assumed to be xed (assumption of no elasticity on the market). The regulator/follower variable is the vector y of decisions (acceptances/rejections) of the bids of the producers. As a by product of the resolution of the follower problem, the Lagrange multiplier associated to the balance constraint will be the unit marginal price of electricity on the market. The corresponding MLMFG, in a simplied form, is thus as follows:

For any i, or some equity property on the decision process (see [START_REF] Aussel | Nash equilibrium in pay-as-bid electricity market : Part 1 -existence and characterisation[END_REF][START_REF] Aussel | Nash equilibrium in pay-as-bid electricity market : Part 2 -best response of producer[END_REF]).

min x i ,y prof it(x i , y, x -i ) s.t.            x i

III.3.2 Single-Leader-Multi-Follower Games

In this section we consider the case where there is a single leader and multiple followers, which we refer to as a SLMFG and we use the notations of the corresponding diagram of Section III.3.1.

As observed in [START_REF] Calvete | Linear bilevel multi-follower programming with independent followers[END_REF], if none of the constraint maps Y j nor the objectives f j depend on the decision variable of the other followers then the SLMFG admits an equivalent reformulation as a classical bilevel problem with only one follower. This can be seen by dening a (unique) follower's variable as y := (y 1 , . . . , y M ), the objective f (x, y) := M j=1 f j (y j , x) and the aggregated constraint map Y : R n ⇒ R m dened by Y (x) := {y | y j ∈ Y j (x), ∀ j}. Thus, under this particular structure, several analyzes on the single-leader-single-follower case (see Chapter III.2) can be directly extended to multiple followers, while in general having multiple followers does bring new diculties. Now if for any decision x of the leader, there exists (implicitly or explicitly) a unique equilibrium y(x) = (y 1 (x), . . . , y M (x)) among followers then, the SLMFG can be treated as a classical mathematical programming problem min x F (x, y(x)), with x ∈ X where of course some good properties (semi-continuity, dierentiability, convexity, etc) of the response function y(x) must be satised for the reformulation to be useful. But in the general case the formulation of SLMFG carries some ambiguities. The ambiguity coming from the possible non-uniqueness of the lower level equilibrium problem, which is already present in the case of one leader and one follower, is in our setting of several followers an even more inevitable situation. Indeed, since the lower level is an equilibrium problem (GNEP), the uniqueness of an equilibrium can rarely be ensured, and it cannot be avoided simply by assuming strict convexity, see for instance the examples in Chapter III.1. Despite this argument for general problems, there are some cases where the lower level problem might have unique responses as in [START_REF] Sherali | Stackelberg-nash-cournot equilibria: characterizations and computations[END_REF] and others.

The most common approach to tackle this ambiguity is the optimistic approach, which consists in considering the best equilibrium reaction of the followers with regard to the leader's objective. It can be argued as a kind of cooperation of the followers with the leader. In fact, it is often the case in applications that the leader is assumed to take his decision before the followers, and thus he can after having computed his optimal decision suggest the followers to take certain equilibrium reaction that is convenient to him. Each of the followers will then have no incentive to unilateral deviate from the proposed equilibrium strategy, because of the nature of equilibria. Denition 23. We say that (x, ȳ) ∈ R n × R m is an optimistic equilibrium of the SLMFG if Example 17. Given x ∈ R, let the problem of two followers be given by min

y 1 y 1 s.t.    y 1 ≥ 0 2y 2 -y 1 ≤ 2 y 1 + y 2 ≥ x min y 2 y 2 s.t.    y 2 ≥ 0 2y 1 -y 2 ≤ 2 y 1 + y 2 ≥ x Follower 1's reaction is S 1 (x, y 2 ) = {max(0, 2(y 2 -1))} if x ≥ max(y 2 , 3y 2 -2)
, and empty otherwise, while follower 2's reaction is S 2 (x, y 1 ) = {max(0, 2(y 1 -1))} if x ≥ max(y 1 , 3y 1 -2), and empty otherwise. Thus, the solution of the followers' parametric GNEP is given by Notice that the function 4[ is not lower semi-continuous, so that Weierstrass theorem argument cannot be applied. And in fact, the value of the problem of the leader is -4, while there does not exist a point x ∈ [0, 4] with that value. The pessimistic linear single-leader-two-follower problem has no optimal solution.

GNEP(x) =    {(0, 0), (2, 2)} if x ≥ 4, {(0, 0)} if x ∈ [0, 4[ ∅ otherwise.
ϕ p (x) := max y∈GNEP(x) -x + (y 1 + y 2 ) = 0 if x = 4 -x if x ∈ [0,

III.3.2.3 Reformulations

Reformulating a SLMFG is a way of considering it within a framework where a well-developed theory exists for either nding an equilibrium or better understanding the properties of the problem.

We will restrict our discussion here to reformulations of the optimistic approach of the SLMFG, though for the pessimistic approach corresponding reformulations can also be considered.

Two reformulations of the SLMFG are the most classical and can be considered as particular cases of Mathematical Programs with Equilibrium Constraints (MPECs) in certain references. In both cases the reformulation is based on the replacement of the lower level (generalized) Nash equilibrium problem by a related problem.

A rst possibility is to replace the lower level problem by the (quasi-)Variational Inequality problem (VI) associated to the gradients of the objectives (assuming the objective functions are dierentiable), or the normal operator (see [START_REF] Aussel | New developments in quasiconvex optimization[END_REF][START_REF] Aussel | Generalized nash equilibrium problem, variational inequality and quasiconvexity[END_REF][START_REF] Aussel | Adjusted sublevel sets, normal operator, and quasiconvex programming[END_REF] for quasi-convex objective functions), while keeping the constraints. The resulting problem is the so-called Optimization Problem with Variational Inequality Constraints (OPVIC).

OPQVIC reformulation

An OPQVIC (see for instance [START_REF] Lignola | Existence of solutions to generalized bilevel programming problem[END_REF][START_REF] Wu | A smoothing newton method for mathematical programs constrained by parametrized quasi-variational inequalities[END_REF][START_REF] Wu | An inexact newton method for stationary points of mathematical programs constrained by parameterized quasi-variational inequalities[END_REF]) is a problem of the form min x,y

F (x, y) x ∈ X, y ∈ QVI(T (x, •), K(x, •))
where QVI(T (x, •), K(x, •)) stands for the solutions set of the following parametric Quasi Variational Inequality problem: nd y ∈ K(x, y) such that T (x, y), y -z ≥ 0, ∀z ∈ K(x, y).

(III.3.2)
The OPQVIC reformulation of an optimistic SLMFG consists in considering a parametric QVI dened by T (x, y) := (∇ y j f j (x, y)) M j=1 and K(x, y) := M j=1 Y j (x, y -j ).

In the case where the lower level is a parametric (non-generalized) Nash equilibrium problem, the resulting reformulation reduces to an OPVIC (Variational Inequality Constraints).

This specic problem has received much more attention since it is a more tractable case. See for instance [START_REF] Outrata | A numerical approach to optimization problems with variational inequality constraints[END_REF][START_REF] Ye | Necessary optimality conditions for optimization problems with variational inequality constraints[END_REF].

It is easy to see that the OPQVIC reformulation is equivalent to the (optimistic) SLMFG whenever the problems of the followers satisfy the following parametric convexity assumption:

for each follower j the objective f j (x, •, y -j ) is pseudo-convex with respect to y j and the constraint sets Y j (x, y -j ) are convex.

Thus, under these convexity assumptions the existence of optimistic equilibria for the SLMFG could be deduced also from [START_REF] Harker | Existence of optimal solutions to mathematical programs with equilibrium constraints[END_REF]. Note that Theorem 24 does not require any such convexity assumption.

In some cases it is possible to write the OPVIC as a nonlinear program (see [START_REF] Ye | Exact penalization and necessary optimality conditions for generalized bilevel programming problems[END_REF]), but some usual constraint qualications like the MFCQ, are in general not satised for that nonlinear program. Therefore, some well adapted constraint qualication for this class of optimization problems have been developed in the literature [START_REF] Ye | Constraint qualications and necessary optimality conditions for optimization problems with variational inequality constraints[END_REF].

MPCC reformulation

Another classical technique consists in replacing the lower level GNEP by the concatenation of the associated parametric KKT conditions of each of the followers and obtaining a so-called Mathematical Program with Complementarity Constraints (MPCC).

In fact, to each follower's problem we can associate its KKT optimality conditions, that is (y, µ j ) satisfying ∇ y j f j (x, y) + d j k=1 µ jk ∇ y j g jk (x, y) = 0 0 ≤ µ j ⊥ -g j (x, y) ≥ 0

We denote by cKKT (x) the set of solutions of the concatenation of KKT conditions of all the followers, that is, (y, µ) such that, for each j = 1, ..., M , (y j , µ j ) solves the KKT system given the parameters (x, y -j ).

Thus the MPCC reformulation of the SLMFG consists of the following optimization problem min x,y,µ

F (x, y) x ∈ X, (y, µ) ∈ cKKT (x)
Numerical methods for such a reformulation can be found for instance in [START_REF] Guo | Solving mathematical programs with equilibrium constraints[END_REF]. See also [START_REF] Fukushima | Smoothing methods for mathematical programs with equilibrium constraints[END_REF][START_REF] Luo | Mathematical programs with equilibrium constraints[END_REF].

An important dierence between the OPVIC and the MPCC reformulations is that in the latter a new variable, the Lagrange multipliers µ, appears as part of the denition of the optimization problem. Moreover, to consider the MPCC reformulation it is important to analyze constraint qualications of the lower level problem for the existence of Lagrange multipliers and their well-behavior.

To be more precise, in order to have a notion of equivalence between the global solutions of the initial SLMFG and those of its MPCC reformulation an (in general) innite number of constraint qualications have to be veried. This fact was rst noticed in [START_REF] Ehrenmann | Equilibrium problems with equilibrium constraints and their application to electricity markets[END_REF].

We make the following basic hypotheses:

(H 1 ) (Follower's dierentiability) For any j ∈ J and any (x, y -j ) ∈ X × R m -j , f j (x, •, y -j ) and g j (x, •, y -j ) are dierentiable;

(H 2 ) (Follower's player convexity) For any j ∈ J and any (x, y -j ) ∈ X × R m -j , f j (x, •, y -j ) is convex and the components of g j (x, •, y -j ) are quasi-convex functions.

Since the lower level equilibrium problem is player convex the concatenated KKT optimality conditions are sucient. If we somehow knew that the KKT conditions were also necessary, then it is quite simple to deduce that global solutions of SLMFG yields solutions of the MPCC reformulation, and vice versa.

Theorem 25. Assume (H 1 ) and (H 2 ). The relation between solutions of the SLMFG and its MPCC reformulation are as follows.

1. If (x, ȳ) ∈ SLMFG and μ ∈ Λ(x, ȳ), then (x, ȳ, μ) ∈ (MPCC).

2. Assume that for each x ∈ X, for each j ∈ J, and for each joint strategy y = (y j , y -j ) which is feasible for all followers the Guignard's CQ holds for the constraint g j (x, •, y -j ) ≤ 0 at the point y j . If (x, ȳ, μ) ∈ (MPCC), then (x, ȳ) ∈ SLMFG.

The new family of problems would be min

x,y,µ

F (x, y)         
x ∈ X, ∇ y j f j (x, y) + d j k=1 µ jk ∇ y j g jk (x, y) = 0 0 ≤ µ j , 0 ≤ -g j (x, y) -µ j g j (x, y) ≤ ε with ε > 0 tending to 0.

The limit of a solution of such problems as ε tends to 0 is a C-stationary solution of the usual MPCC, under suitable constraint qualications, see e.g. [START_REF] Scholtes | Convergence properties of a regularization scheme for mathematical programs with complementarity constraints[END_REF].

III.3.3 Multi-Leader-Multi-Follower Games

Let us now focus on Multi-Leader-Follower games in which there are several leaders.

In the case of multiple leaders, some of the ideas of the single-leader case can also be used. In fact, the selection approach can be directly applied since each leaders' function is determined by the leaders' strategies and the selection. The set-valued optimization approach can also be extended (See [START_REF] Guillerme | Nash equilibrium for set-valued maps[END_REF]). In both approaches it is clear what is the value for leaders' objectives a single value for the selection approach, and a set of values in the other.

By the contrary, the idea of the optimistic approach as a cooperation of the followers with the leader now arise the question of with which of the leaders the followers will cooperate.

The cooperation with leader 1 could be opposite to the cooperation with leader 2. Anyway, we can consider the conjectures made by the leaders about which optimal reaction of the followers will take place. Of course, the conjectures made by dierent leaders need not to be equal. We will denote y i := (y 1,i , ..., y N,i ) ∈ GNEP(x) ⊂ R m the conjecture made by leader i about the followers' optimal reaction, given x = (x i , x -i ).

As a simple example one can consider the following MLMFG: let us dene a game with two leaders and a follower for which respective variables and objective functions are x 1 , x 2 , y and

F 1 (x 1 , x 2 , y) = (x 1 -2) 2 -y, F 2 (x 2 , x 1 , y) = (x 2 -2) 2 + y, f (y, x) = x 1 x 2 -(y -1) 2 + 1.
Let us assume that the only constraint on the variables is that the three of them are non negative. Then x = (2, 2) while S 1 (2, 2) = {2} and S 2 (2, 2) = {0}. This diculty/ambiguity which is fundamental and intrinsically associated to MLMFG with possibly several optimal responses for the follower's problem, is unfortunately often neglected in the literature, in particular in works dedicated to applications.

We can dene what we call a multi-optimistic solution of the MLFG as the equilibrium of the upper level GNEP each leader taking as his conjecture that the followers will cooperate with him.

Denition 28. We dene a multi-optimistic equilibrium of the MLFG to be a vector (x, ȳ1 , ..., ȳN ), where (x i , ȳi ) is a solution of the problem min x i ,y

F i (x i , x-i , y) s.t. x i ∈ X i (x -i ) y ∈ GNEP(x i , x-i )
an oligopolistic Stackelberg-Nash-Cournot competition, a group of rms (the leaders) have objectives F i (x, y) := x i p( k x k + j y j ) -c i (x i ) while the rest of the rms (the followers) have objectives f j (x, y) := y j p( i x i + l y l )-c j (y j ), where p is the inverse demand function and the c i , c j are cost functions.

It is proved in [108, Lemma 1, Theorem 3] that under some reasonable assumption on the inverse demand function p and on the cost functions, the Fi 's are convex in x i . The corresponding existence result ( [108, Theorem 2]) can be then expressed as follows:

Theorem 27. Assume that p is strictly decreasing, twice dierentiable and p (z) + zp (z) ≤ 0 for each z ≥ 0, and that c i and c j are non-negative, non-decreasing, convex and twice dierentiable and there exists z u > 0 such that c i (z) ≥ p(z) and c j (z) ≥ p(z) for all z ∈ [0, z u ].

If the map x → j y j (x) is convex (if for instance, p is linear), where y(x) is the unique equilibrium response of the followers, then the MLMFG has at least one equilibrium.

Fukushima and Hu's existence results (Theorems 4.3 and 4.4 in [START_REF] Hu | Multi-leader-follower games: models, methods and applications[END_REF]) are also obtained using the same technique but in a more general setting that considers uncertainty in both levels and a robust approach.

A dierent technique has been proposed in [START_REF] Kulkarni | An existence result for hierarchical stackelberg v/s stackelberg games[END_REF] which is based on the ideas of potential game theory, see [START_REF] Monderer | Potential games[END_REF]. A rst possibility is again based on the uniqueness of the lower level responses, that is, condition (A1). A MLMFG is implicitly potential if there exists a so-called potential function π for the game dened by the functions Fi , that is, for all i and for all x = (x i , x -i ) and x i it holds

Fi (x i , x -i ) -Fi (x i , x -i ) = π(x i , x -i ) -π(x i , x -i ). (III.3.4)
Let us notice that, as in the previous technique, the existence of the potential for the implicit description of the functions Fi is also an intricate condition. A variant of this approach was proposed also in [START_REF] Kulkarni | An existence result for hierarchical stackelberg v/s stackelberg games[END_REF], where it is not assumed that the lower level responses are unique. The game is said to be a quasi-potential game if there exist functions h and π such that the functions F i have the following structure

F i (x, y) := φ i (x) + h(x, y) (III.3.5)
and the family of functions φ i , i = 1, ..., N , admit π as a potential function, that is

φ i (x i , x -i ) -φ i (x i , x -i ) = π(x i , x -i ) -π(x i , x -i ). (III.3.6)
The existence of equilibria for the MLMFG can be deduced, in the rst case from the existence of a global minimizer of the potential function, as usual in potential games. In the second case, the existence of equilibria for MLFG can be deduced from the minimization of π + h, which is not strictly speaking a potential function for the F i . In fact, π + h is dened in the space X 1 × ... × X N × Y , while a potential function for the quasi-potential game should be dened on the product of the strategy spaces (X 1 × Y ) × ... × (X N × Y ), for instance as ψ(x 1 , y 1 , ..., x N , y N ) := π(x) + i h(x, y i ). We can thus call the function π + h a quasi-potential function for the game.

The following theorem [START_REF] Kulkarni | An existence result for hierarchical stackelberg v/s stackelberg games[END_REF] shows a way of computing an equlibrium in a pseudo potential MLMFG.

Theorem 28. Assume that the MLMFG is a pseudo-potential game, and that the constraints set of player i is a constant set equal to a non-empty compact and convex K i . Then any minimizer of the pseudo potential function π + h corresponds to a solution of the MLMFG.

III.3.3.2 Non-existence for MLFG and a remedial model

In [START_REF] Pang | Quasi-variational inequalities, generalized nash equilibria, and multi-leader-follower games[END_REF], Pang and Fukushima give a nice example of a simple MLFG, which we recall here, which admits no solution. This is related to the non-convexity of the values of the best response map of one of the leaders (and assumption (A4) does not hold), which does not allow to apply Proposition 13.

Example 18. Consider a game between two leaders and one follower. Given leaders' strategies x 1 ∈ X 1 and x 2 ∈ X 2 with X 1 , X 2 := [0, 1], the follower reacts by solving the optimization problem min y≥0 y(x 1 + x 2 -1) + y 2 /2 , whose unique solution is given by y = max {0, 1 -x 1 -x 2 }. Taking into account the optimal reaction of the follower, and the opponent leader's strategy as a parameter, leader 1 solves the optimization problem L 1 (x 2 ) : min

x 1 ,y 1 2 x 1 + y s.t. x 1 ∈ [0, 1] y = max {0, 1 -x 1 -x 2 }
and leader 2 solves L 2 (x 1 ) : min

x 2 ,y - 1 2 x 2 -y s.t. x 2 ∈ [0, 1] y = max {0, 1 -x 1 -x 2 }
The reaction maps R 1 : X 2 → X 1 , R 2 : X 1 → X 2 that capture the best response for leaders 1 and 2, respectively, are given by:

R 1 (x 2 ) = {1 -x 2 } , x 2 ∈ [0, 1] and R 2 (x 1 ) =    {0} , x 1 ∈ [0, 1/2) {0, 1} , x 1 = 1/2, {1} , x 1 ∈ (1/2, 1]
It is easy to see that R := R 1 × R 2 has no xed points and thus the game has no equilibrium.

In [START_REF] Kulkarni | A shared-constraint approach to multi-leader multi-follower games[END_REF], Kulkarni and Shanbhag propose a remedial model for MLFG that consists in including in each leader's constraint also the opponents' equilibrium constraints. In the above example, the modied problem of leader 1 would be L 1 (x 2 , y 2 ) : min

x 1 ,y 1 1 2 x 1 + y 1 s.t.    x 1 ∈ [0, 1] y 1 = max {0, 1 -x 1 -x 2 } y 2 = max {0, 1 -x 1 -x 2 }
and for leader 2

L 2 (x 1 , y 1 ) : min

x 2 ,y 2 - 1 2 x 2 -y 2 s.t.    x 2 ∈ [0, 1] y 1 = max {0, 1 -x 1 -x 2 } y 2 = max {0, 1 -x 1 -x 2 }
Each leader's problem has now two parameters: the opponent's variable and the opponent's conjecture about the follower. For this new model a solution does exist and is given by (x 1 , y 1 ) = (0, 0) and (x 2 , y 2 ) = (1, 0). In fact, for leader 2 the unique feasible solution (1, 0) is optimal, and for leader 1 the feasible set is [0, 1] × {0} for which we clearly deduce that (0, 0) is optimal.

The last example is not a particular one for which the modied formulation admits solutions. In fact, we will see that for any game which admits a potential for the leaders, at least one solution exists in the modied formulation. The reformulation of the MLFG, proposed in [START_REF] Kulkarni | A shared-constraint approach to multi-leader multi-follower games[END_REF], is the so-called All Equilibrium formulation. Actually, in [START_REF] Kulkarni | A shared-constraint approach to multi-leader multi-follower games[END_REF], the authors consider an EPCC formulation of the problem instead of a MLFG, that is the lower level problem is described by a Variational Inequality in place of the lower level GNEP. Both approaches coincide whenever each of the followers' problem is convex (that is f j (x, y j , y -j ) and g j,k (x, y j ) are convex with respect to y j ) and with a feasible set not depending on the other followers' variables. It is a modied game, (or equilibrium problem) denoted by E ae , that extends the initial MLFG E in the sense that the set of solutions of E ae includes all the solutions of the initial game E, but for which proving existence is easier.

Let us dene what is the All Equilibrium formulation E ea . A leader i has the same objective and the constraints of the initial game dened by the set-valued map

Ω i (x -i ) := {(x i , y i ) | x i ∈ X i (x -i ), y i ∈ GNEP(x)}
given opponent strategies x -i , but also the constraints y i ∈ GNEP(x) for all i = i, that actually depend on the conjecture y -i made by other leaders. Thus, the constraints for player i in E ea is dened by the set-valued map

Ω ae i (x -i , y -i ) := {(x i , y i ) | x i ∈ X i (x -i ), y i ∈ GNEP(x), ∀i = 1, ..., N } ,
which is contained in the previous one, and now does depend on both the opponents' strategy and conjecture (x -i , y -i ). So, given x -i the feasible set for player i does also depend on y -i and is a subset of the initial feasible set: Ω ea i (x -i , y -i ) ⊂ Ω i (x -i ) for any y -i . We use also the notation F := {(x, y) | (x i , y i ) ∈ Ω i (x -i ), ∀i}. We also note that in E ae , a (upper level) GNEP with the special structure of shared constraints is played among the leaders.

We now give a denition of solutions of the modied game E ea that corresponds to Definition 28 for E. It is basically the same denition, but replacing the set-valued map Ω i by Ω ae i for each leader i = 1, ..., N .

Denition 29. We dene a (multi-optimistic) solution/equilibrium of E ae to be a joint strategy (x, ȳ1 , ..., ȳN ) where for each i = 1, ..., N , the pair (x i , ȳi ) is a solution of the problem

min x i ,y i F i (x i , x-i , y i ) s.t. x i ∈ X i (x -i ) y i ∈ GNEP(x i , x-i ), ∀i = 1, ..., N
with ȳi ∈ GNEP(x) the conjecture made by leader i about the followers' reaction.

for player i) which, under the hypothesis, does not admit other x i than xi . We deduce from (III.3.8) that (x i , ȳi ) is a best response of player i to (x -i , ȳ-i ). Since the same analysis can be done for all the players, we deduce that (x, ȳ) is an equilibrium of E ae .

Thus, looking to the above examples, it is clear that the All Equilibrium approach can generate in some cases a very large set of equilibria, which can be quite dicult to interpret in applications.

III.3.3.3 Reformulations

As explained in the previous section, the analysis of MLMFG in the literature is mostly focused on the case of a unique lower level response. Under this assumption, the lower level response can be plugged into the leaders objectives transforming the initial MLMFG simply into a Nash equilibrium problem, though with quite complicated objective functions, in general non-smooth and non-convex. Then, the usual techniques used for solving Nash equilibrium problems can be used for this formulation.

In particular, in [START_REF] Hu | Existence, uniqueness, and computation of robust nash equilibria in a class of multi-leader-follower games[END_REF][START_REF] Hu | Multi-leader-follower games: models, methods and applications[END_REF] the function of (unique) lower level responses are linear with respect to the leaders variables and can be somehow plugged into the leaders objective because of the specic structure that is considered (there is a term in the leaders' objective that is also present in the followers' objective but with negative sign). The resulting Nash equilibrium problem is reformulated as a variational inequality and a forward-backward splitting method is applied to solve the variational inequality.

In the case of non-uniqueness of the lower level problem, and considering the (possibly inconsistent) multi-optimistic MLMFG, we can extend the approach of the SLMFG case by replacing the lower level equilibrium problem by the concatenation of KKT conditions of the followers. The resulting reformulation is a so-called Equilibrium Problem with Complementarity Constraints (EPCC, for short).

A rst question to address concerns the equivalence between the initial MLMFG and its EPCC reformulation, facing similar arguments as for SLMFG, that is requiring an innite number of CQs to be veried. The analysis made for the case of one leader in the previous section can be easily extended to the case of multiple leaders as done in [17, Theorem 4.9], by considering the joint convexity of the followers' constraint functions and the joint Slater's CQ.

Let us precise what is the corresponding EPCC for the case of the multi-optimistic approach. In leader i's problem, for any given x -i , we replace the condition y ∈ GNEP(x i , x -i )

by the concatenation of KKT conditions of the followers, that is, ∇ y j f j (x, y) + µ j ∇ y j g j (x, y) = 0 0 ≤ µ j ⊥ -g j (x, y) ≥ 0 ∀j = 1, ..., M.

(III.3.9)

Let us denote by cKKT (x) for the set of vectors (y, u) = (y 1 , ..., y M , µ 1 , ..., µ M ) that satisfy the concatenated KKT conditions (III.3.9). We write Λ(x, y) for the set of vectors µ such that (y, µ) ∈ cKKT (x).

The EPCC reformulation of a MLFG (in the multi-optimistic approach) is a GNEP played by the leaders where the constraint y ∈ GNEP(x) is replaced by (y, µ) ∈ cKKT (x). More precisely, Denition 30. We dene an equilibrium for the EPCC reformulation of the (multi-optimistic) MLFG to be a vector (x, ȳ1 , ..., ȳN , μ1 , ..., μN ) where for each i = 1, ..., N , (x i , ȳi , μi ) is a solution of the problem min x i ,y,µ

F i (x i , x-i , y) s.t. x i ∈ X i (x -i ) (y, µ) ∈ cKKT (x i , x-i )
In the case of only one leader, an equilibrium is called a global solution of the MPCC. We dene a global optimal solution of the MPCC reformulation of a SLMF game to be a vector (x, ȳ) that solves the problem min

x,y,µ F (x, y)

s.t.
x ∈ X (y, µ) ∈ cKKT (x)

Note that even though the upper level cost function F is not dependent on the multiplier variable µ, it is considered as a variable, because it appears in the constraints of each leaders' problem. This will be of special importance when studying local solutions.

We will discuss here the relation between the MLFG and the EPCC reformulation. First, in Subsection III.3.3.3 we focus on global solutions of both the problem and the reformulation, and in Subsection III.3.3.3 we will make the analysis for local solutions. Both of these cases were rst investigated in [START_REF] Dempe | Is bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF] in the case of one leader and one follower for the optimistic approach while in [START_REF] Aussel | Is pessimistic bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF] the pessimistic counterpart was studied.

One reason for considering this reformulation is that it allows us to use the machinery/theory of MPCCs to solve the problem. But an important question is what is the relation between solutions of the optimistic BLP (respectively MLFG) and solutions to the MPCC-reformulation (respectively EPCC). Of course, some assumptions on the lower level problem have to be made. To ensure that the concatenation of KKT conditions of the followers are necessary and sucient equilibrium conditions for the lower level GNEP, we will assume some basic convexity conditions, and some constraint qualications for the followers' problems.

Global solutions relation

We show in the next theorem some relations between solution of a MLFG and the corresponding EPCC, where the lower level is replaced by the concatenation of KKT conditions of the followers.

Theorem 30 (Global solution relations for MLFG). Assume that the followers' problems are player convex, that is, f j (x, •, y -j ) and the components g j,k (x, •, y -j ) are convex for all followers j.

(1) Let (x, ȳ) be a multi-optimistic equilibrium of the MLFG, for which Slater's CQ is satised for each follower. Then Λ(x, ȳ) = ∅ and for each μ ∈ Λ(x, ȳ), the point (x, ȳ, μ) is an equilibrium of the EPCC-reformulation in the sense of Denition 30.

(2) Let (x, ȳ, μ) be an equilibrium of the EPCC-reformulation of the MLFG, and assume that for each follower j's problem for each x ∈ X and each y j , Slater's CQ is fullled. Then (x, ȳ) is a multi-optimistic equilibrium of MLFG.

Proof. For [START_REF] Allevi | On an equilibrium problem with complementarity constraints formulation of pay-as-clear electricity market with demand elasticity[END_REF], since ȳ ∈ GNEP(x) and thanks to Slater's CQ for each follower, we deduce that Λ(x, ȳ) = ∅ and that for any μ ∈ Λ(x, ȳ) the vector (x, ȳ, μ) is feasible for EPCC. In the other hand, and thanks to the convexity condition of the followers, the projection of the solution of the KKT system into the variable y is included into the solution of the GNEP, so that the optimality of (x, ȳ, μ) directly comes from the optimality of (x, ȳ) as a subset of inequalities.

For [START_REF] Aubin | Set-valued analysis[END_REF], the stronger CQ assumptions in this case guarantee that the projection of the KKT system of the lower level into the y variable coincide with the lower level GNEP, so that the equivalence between MLFG and its EPEC reformulation follows.

The main diculty of part (2) (the interesting part) of Theorem 30 is the possibly innite number of qualication conditions that have to be satised. In [START_REF] Aussel | Towards tractable constraint qualications for parametric optimisation problems and applications to generalised Nash games[END_REF], it was proposed to consider not only player convexity of the lower level GNEP but joint convexity of the lower level constraint functions in order to reduce signicantly the number of CQ to be veried for the desired equivalence. Also for the case of SLMF (and BLP) the convexity of the constraint functions of the follower in the full vector of strategies of the leader and the followers, allows us to reduce the number of CQs. Here we make a simple extension of this result for the case of several leaders. In the following theorem we only show the dicult and interesting subset-relation of solutions.

Let us consider the feasible set of follower j dened by Y j (x, y -j ) := {y j | g j (x, y j , y -j ) ≤ 0}

and the following feasibility assumption ∀j = 1, ..., , M, ∀x ∈ R n , ∀y -j ∈ R m -j , Y j (x, y -j ) = ∅, (III. 3.10) in other words, dom Y j = R n × R m j for all j = 1, .., M .

Theorem 31 (Global solution relations for MLFG). Assume that the followers' objectives f j are convex on y j and that the component of the constraint functions g j,k are jointly convex (on (x, y)). Assume that the feasibility assumption (III.3.10) holds and that Joint Slater's CQ is fullled: For each follower j there exist a joint strategy (x, y) such that g j,k (x, y) < 0 for all k = 1, ..., d j . If (x, ȳ1 , ..., ȳN , μ1 , ..., μN ) is an equilibrium of the EPCC reformulation of a multi-optimistic MLFG, then (x, ȳ1 , ..., ȳN ) is an equilibrium of the multi-optimistic MLFG.

Proof. We just verify the hypothesis of Theorem 30 [START_REF] Aubin | Set-valued analysis[END_REF]. These hypotheses follow from Theorem 1 applied for a follower j whose constraint function g j is parametrized on the vector (x, y -j ).

Local solutions relation

We dene here the local concept of solution that corresponds to Denition 28.

Denition 31. We dene a multi-optimistic local equilibrium of the MLFG to be a vector (x, ȳ1 , ..., ȳN ), where (x i , ȳi ) is a local solution of the optimization problem 

min x i ,y F i (x i , x-i , y) s.t. x i ∈ X i (x -i ) y ∈ GNEP(x i , x-i )
F i (x i , x-i , y) s.t. x i ∈ X i (x -i ) (y, µ) ∈ cKKT (x i , x-i )
The following theorem explains how local equilibria of the MLFG and local equilibria of the EPCC reformulation are related: this relation is more complicated than for global equilibrium.

Theorem 32. Assume that the objectives f j and the components of the constraints g j,k of the followers are convex on their variable y j , and for each follower j's problem Slater's CQ is satised for the parameter (x, ȳ-j ). Proof. Similarly to Theorem 31, the proof follows from applying Theorem 1 to each follower's problem now parametrized on (x, y -j ).

Another example [START_REF] Aussel | Is pessimistic bilevel programming a special case of a mathematical program with complementarity constraints?[END_REF]Example 1.1] shows that even with (x, ȳ, μ) a local solution of MPCC, it can occur that (x, ȳ) is NOT a local solution of BLP.

III.3.3.4 Algorithms

The above mentioned EPEC reformulation of the MLMFG is an equilibrium problem (among leaders) so that we could be tempted to use the machinery for equilibrium problems to solve the MLFG. Nevertheless, considering that the specic type of constraints (equilibrium constraints) are very ill-behaved non-convex and non-smooth, solving the equilibrium problem is in fact extremely challenging.

If we are facing a pseudo-potential game (see previous subsection), then the problem can be solved by minimizing the pseudo-potential function, constrained by the equilibrium problem, thus going back to the SLMF case (see Theorem 28).

III.3.4 Conclusion and Future Challenges

The aim of the present chapter was to present the recent advances for dierent kinds of Multi-Leader-Follower games. The cases of a single leader game SLMFG and of a single follower MLMFG play particular roles in applications and it is one of the reasons why the general case MLMFG has been actually less investigated in the literature. However we have seen that, for all the models, a special attention must be addressed to avoid an ill-posed problem and to x possible ambiguities. Let us add that, as observed for MLMFG in [START_REF] Aussel | Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions[END_REF],

IV.1. Quasi-Equilibrium Problems This part is based on the two unpublished papers [START_REF] Cotrina | Existence for quasi-equilibrium problems on unbounded sets[END_REF] and [START_REF] Cotrina | Finite intersection property for bifunctions and existence for quasi-equilibrium problems[END_REF].

The theory of equilibrium problems is a quite general one which presents in a unied manner several problems of optimization, game theory, complementarity problems and quasivariational inequalities.

We will start dening a standard version of the quasi-equilibrium problem and its dual version, the Minty quasi-equilibrium problem. We will be primarily interested on the question of existence of equilibria, that is, solutions of the problems. In the next sections we will discuss some of the special cases of equilibrium problems. In each case, we also show how the results of the general theory are applied, recovering this way some known results in the literature and even improving some other.

IV.1 Quasi-Equilibrium Problems

Let X be a non-empty set. A function of the form f : X × X → R will be called here a bi-function. Consider also a set-valued map K : X ⇒ X, which we refer here to as the constraint map.

The standard version of the quasi-equilibrium problem is to nd

x ∈ Fix K such that f (x, y) ≥ 0 for all y ∈ K(x).

(

This problem is sometimes referred to as the Stampacchia quasi-equilibrium problem. In a dual way, the Minty quasi-equilibrium problem is to nd

x ∈ Fix K such that f (y, x) ≤ 0 for all y ∈ K(x).

(

We denote by QEP(f, K) and MQEP(f, K).

In case of a constant constraint map K(x) := C for all x ∈ X, the above problems simply reduce to the equilibrium problem, which is to nd

x ∈ C such that f (x, y) ≥ 0 for all y ∈ C.

(
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and the Minty equilibrium problem, which is to nd

x ∈ C such that f (x, y) ≥ 0 for all y ∈ C.

There is of course a symmetry in the denitions of Stampacchia and Minty quasi-equilibrium problems. In fact, changing the roles of the two variables and the sign of the bi-function.

Therefore, we will focus on existence results for the Stampacchia-type, though the Minty-type solutions will serve sometimes as a tool to prove existence for Stampacchia. The assumptions are thus usually one-sided. In the general (quasi-) setting, both the quasi-equilibrium problem and the Minty quasiequilibrium problem associated with this f and a constraint map K coincide with the so-called quasi-equilibrium problem dened as follows

x ∈ Fix K such that g(x) ≤ g(y) for all y ∈ K(x).

( In applications (see Example 20 and next sections) it is often the case that f D = 0, where D := {(x, x) | x ∈ X}, because of the structure of f as a dierence of functions. We do not make this a blanket assumption but in some cases it is implicitly required by other assumptions as we shall see.

In order to study the existence of equilibria, we shall use properties of set-valued maps and also some generalized convexity properties, discussed in other chapters. Additionally, we will dene some properties that are specic for bi-functions.

IV.2 Properties of Bi-functions IV.2.1 Generalized Monotonicity

Firstly, we recall some of the so-called generalized monotonicity properties for bi-functions. Denition 33. We say that f : X × X → R is:

• cyclically monotone if n i=1 f (x i , x i+1 ) ≤ 0 for all n ∈ N and x 1 , ..., x n+1 ∈ X such that x n+1 = x 1 ;

• cyclically quasi-monotone if min n i=1 f (x i , x i+1 ) ≤ 0 for all n ∈ N and x 1 , ..., x n+1 ∈ X such that x n+1 = x 1 ;

• monotone if f (x, y) + f (y, x) ≤ 0 for all x, y ∈ X;

• pseudo-monotone if f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0 for all x, y ∈ X; • quasi-monotone if f (x, y) > 0 ⇒ f (y, x) ≤ 0 for all x, y ∈ X.
It is clear that cyclic (quasi-)monotonicity implies (quasi-)monotonicity, simply by taking n = 2, x 1 = x, and x 2 = y. We observe also that monotonicity implies pseudo-monotonicity, and that pseudo-monotonicity implies quasi-monotonicity (see Figure 1). Moreover, the pseudo-monotonicity of a bi-function has the following characterization. Proposition 16. A bi-function f is pseudo-monotone if and only if f (x, y) > 0 ⇒ f (y, x) < 0, ∀x, y ∈ X. [START_REF] Aussel | Genericity analysis of multi-leaderfollower games[END_REF] Proof. Let x, y ∈ X. Each implication f (x, y) > 0 ⇒ f (y, x) < 0 and f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0 can be obtained from the other by simply swapping the roles of x and y. 

h : X → R such that f (x, y) ≤ h(y) -h(x).
Proposition 18. A bi-function f : X × X → R is cyclically quasi-monotone if and only if for any nite and non-empty subset A of X there exists x ∈ A such that max a∈A f (a, x) ≤ 0.

Proof. Assume rst the condition of the proposition. Let x 1 , .., x n+1 ∈ X with x n+1 = x 1 . Then for the nite set A = {x i | i = 1, ..., n} there exists x = x i for some i ∈ {1, ..., n} such that f (a, x i ) ≤ 0 for all a ∈ A. In particular, f (x i , x i+1 ) ≤ 0. So we deduce that f is cyclically quasi-monotone.

Let us now prove the direct implication. Reasoning by contradiction, suppose that there exists A = {x 1 , x 2 , . . . , x n } ⊂ C such that ( n i=1 F x i )∩A = ∅, where F x i = {y ∈ C : f (x i , y) ≤ 0}. This is equivalent to

n i=1 F c x i ∪ A c = C. (7) 
Set x i(1) = x 1 , equality [START_REF] Aussel | A trilevel model for best response in energy demand-side management[END_REF] implies that there exists x j with x j = x 1 such that x 1 ∈ F c j , that means f (x j , x 1 ) > 0. We set x i(2) = x j and apply the equality [START_REF] Aussel | A trilevel model for best response in energy demand-side management[END_REF] again. Continuing in this way, we dene a sequence (x i(n) ) n∈N such that f (x i(k+1) , x i(k) ) > 0 [START_REF] Aussel | Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions[END_REF] for all k ∈ N.

Since the set {x 1 , x 2 , . . . , x n } is nite, there exist m, k ∈ N with m < k such that x i(k+1) = x i(m) . We now consider the points x1 = x i(m) , x2 = x i(k) , x3 = x i(k-1) , . . . , xk+1-m = x i(m+1) which, due to the inequality (8), satisfy f (x j , xj+1 ) > 0 for all j = 1, . . . , k+1-m, with xk+2-m = x1 . This means that f is not cyclic quasi-monotone and we get a contradiction.

2. C is a convex subset of a vector space, and f has the upper sign property on C.

Then EP(f, C) ⊂ MEP(f, C). The following result states that cyclic quasi-monotonicity implies proper quasi-monotonicity, under quasi-convexity assumption.

Proposition 21. Let C be a convex subset of X and f : X × X → R be a bi-function such that f is quasi-convex in its second argument. If f is cyclic quasi-monotone on C, then f is properly quasi-monotone on C.

Proof. It is a simple and straightforward adaptation of Proposition 4.4 in [START_REF] Daniilidis | On the subdierentials of quasiconvex and pseudoconvex functions and cyclic monotonicity[END_REF].

Note that the quasi-convexity of f in its second argument cannot be dropped from the assumptions. For instance consider the bi-function f dened by [START_REF] Aussel | Quasimonotone quasivariational inequalities: existence results and applications[END_REF] which is always cyclically quasi-monotone but it is properly quasi-monotone if and only if the function h is quasi-convex (see part 2 of Proposition 6.2 in [START_REF] Cotrina | Equilibrium problems: Existence results and Applications[END_REF]).

IV.2.2 The Finite Intersection Properties

In this section we introduce the notion of nite intersection property and one variant, for bi-functions. We discuss their relation with the generalized monotonicity properties, namely proper quasi-monotonicity, quasi-monotonicity and cyclic quasi-monotonicity, in Propositions 23 and 24, and Remark 25, respectively. Denition 34. The bi-function f : X × X → R is said to have:

• The nite intersection property (p) on C a subset of X if, for any nite and non-empty subset A of C, there exists x ∈ C such that max a∈A f (a, x) ≤ 0.

• The star nite intersection property (p * ) on C a convex subset of X if, for any nite and non-empty subset A of C, there exists x ∈ co(A) such that max a∈A f (a, x) ≤ 0.

Nessah and Tian, in [START_REF] Nessah | Existence of solution of minimax inequalities, equilibria in games and xed points without convexity and compactness assumptions[END_REF], introduced a condition called the α-locally dominatedness of a bi-function, which corresponds in the case of α = 0 to a bi-function with the p by switching the roles of the variables. They discussed the relation of this property with the nite intersection property for families of sets. In fact, for each x ∈ C we dene the set Clearly, f has the p on C if and only if, the family of sets {F x } x∈C has the nite intersection property. Similarly, f has the p * on C if and only if for any non-empty and nite subset A of C it holds that a∈A F a ∩ co(A) = ∅.

It is also possible given a family of subsets of X to construct a natural bi-function that has the p if and only if the family of sets has the nite intersection property, as follows. Proposition 22. Let Λ be a subset of X and F = {C x } x∈Λ be a family of subsets of X. If F has the nite intersection property, then there exists a bi-function f : X × X → R with p on X such that set F x , dened as in [START_REF] Aussel | Electricity spot market with transmission losses[END_REF], coincides with C x for all x ∈ Λ.

Proof. Consider us the bi-function f : X × X → R dened as

f (x, y) :=    0, x / ∈ Λ 0, x ∈ Λ ∧ y ∈ C x 1, x ∈ λ ∧ y / ∈ C x which satises F x = {y ∈ X : f (x, y) ≤ 0} = X, x / ∈ Λ C x , x ∈ Λ .
Now, it is not dicult to see that the family of sets {F x } x∈X has the nite intersection property if and only if the family {F x } x∈Λ also has it. Therefore, f has the p on X.

Observe that under p * by taking A x = {x} we have f (x, x) ≤ 0 for every x ∈ X, while p does not guarantee this in general. Otherwise, if diam A = max a,b∈A |a-b| > 1/2, then there exist a 0 , a 1 ∈ A such that a 0 < 1/2+ a 1 and therefore 1/2 ∈ [a 0 , a 1 ] ⊂ co A. So taking x = 1/2 we have again that max a∈A f (a, x) = 0. Thus f has the p * on [0, 1]. But we observe that f is not cyclic quasi-monotone on [0, 1], in fact, not even quasi-monotone, since f (1, 0) = f (0, 1) > 0.

Now we present a simple case of bi-functions which have the p * .

Example 24. Let h : X → R be a function and C be a subset of X. Consider the bi-function f : X × X → R dened by f (x, y) := h(y) -h(x). [START_REF] Aussel | Quasimonotone quasivariational inequalities: existence results and applications[END_REF] It is clear that f is cyclic monotone, thus cyclic quasi-monotone and due to Proposition 18 it satises the nite intersection property. Moreover, if C is convex, then again by Proposition 18 we deduce that f satises p * on C.

Following the proof of Proposition 2.1 in [START_REF] Nessah | Existence of solution of minimax inequalities, equilibria in games and xed points without convexity and compactness assumptions[END_REF] we will show that a properly quasi-monotone bi-function has the p * whenever it is lower semi-continuous on its second argument.

Proposition 23. Let C be a convex and non-empty subset of X (normed space) and f :

X × X → R be a bi-function such that for each x ∈ C the function f (x, •) is lower semicontinuous. If f is properly quasi-monotone on C, then it has the p * on C.

Proof. Let us assume by contradiction that f does not have the p * . So, there exists {x 1 , ..., x m } ⊂ C such that for any x ∈ K := co({x 1 , ..., x m }), we have max i=1,...,m f (x i , x) > 0.

By means of the sets F x i := {y ∈ K : f (x i , y) ≤ 0}, this can be stated equivalently as m i=1 F x i = ∅. Thus, since the sets F x i are closed (due to the lower semi-continuity of f in its second argument) then the function g : K → R + dened by x i , is continuous too. By Schauder-Tychono Fixed Point Theorem we deduce that there exists

x ∈ K such that h(x) = x. Consider the set of indices J := {i = 1, ..., m : d(x, F x i ) > 0}

which is non-empty by a simple argument similar to the one used to prove that g(x) > 0.

Then, x ∈ co({x i : i ∈ J}) we have that min i∈J f (x i , x) > 0, but this contradicts the proper quasi-monotonicity of f applied for the nite set of points {x i } i∈J and its convex combination x.

The previous result is also true if we replace the lsc of f (x, •) by the condition that the sublevel sets [f (x, •) ≤ 0] is closed for each x.

Analogous to Proposition 1.2 in [START_REF] Bianchi | A note on equilibrium problems with properly quasimonotone bifunctions[END_REF], we will show that p * implies quasi-monotonicity under suitable assumptions.

Proposition 24. Let f : X × X → R be a bi-function such that -f is semi-strictly quasiconvex in its second argument and f D ≥ 0. If f has the p * on X, then it is quasi-monotone on X.

Proof. Let x, y ∈ X such that f (x, y) > 0. Since f (x, x) ≥ 0 then by semi-strict quasiconvexity of -f (x, •) we obtain that f (x, tx + (1 -t)y) > 0, for all t ∈]0, 1[. Thus, from the p * we deduce f (y, x) ≤ 0.

Example 23 shows that the semi-strict quasi-convexity of f in its second argument is essential in Proposition 24. In fact, the example proposes a bi-function that has the p * and vanishes on the diagonal, while it is not quasi-monotone.

It is direct, that whenever MEP(f, C) is non-empty, then f has the p on C. Moreover, we have the following result.

Lemma 16. Let C be a topological space, and f : C × C → R be a bifunction and consider the sets F x as dened in [START_REF] Aussel | Electricity spot market with transmission losses[END_REF]. Assume that for each x ∈ C, the set F x is closed and that there exists x ∈ C such that the set F x is compact, and that f has the p on C. Then, MEP(f, C) is non-empty.

Proof. It is clear that MEP(f, C) = x∈C F x . Since {F x } x∈C has the nite intersection property due to the fact that f has the p on C, and some F x is compact we deduce that the set MEP(f, C) is non-empty.

IV.3 Existence for Quasi-Equilibrium Problems

We present here three general existence results for quasi-equilibrium problems that extend several results from the literature. For simplicity, we will assume that X = R n and we consider the following hypothesis.

(H) C is non-empty, closed and convex, K has non-empty convex values.

Denition 35. We say that f and K satisfy the uniform coercivity condition (UCC, for short) at ρ > 0 if:

1. K(x) ∩ B ρ = ∅, for all x ∈ C ∩ B ρ ;

2. for each x ∈ Fix(K) with x = ρ, there exists y ∈ K(x) such that y < ρ and f (x, y) ≤ 0.

Given ρ > 0, we dene the set C ρ := C ∩ B ρ and the set-valued map K ρ : C ρ ⇒ C ρ as K ρ (x) := K(x) ∩ B ρ .

(
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The following proposition, which is an extension of Lemma 2.2 in [START_REF] Bianchi | Coercivity Conditions for Equilibrium Problems[END_REF], provides conditions under which we have QEP(f, K ρ ) ⊂ QEP(f, K) for an appropriate ρ > 0.

Proposition 25. We assume that f and K satisfy (H) and (UCC) at some ρ > 0. If x 0 ∈ Fix(K ρ ) is such that f (x 0 , x 0 ) ≤ 0, f (x 0 , •) is semi-strictly quasi-convex at level 0, and f (x 0 , y) ≥ 0 for all y ∈ K(x 0 ) ∩ B ρ , then x 0 ∈ QEP(f, K).

that is, ty + (1 -t)x 0 ∈ G(x 0 ), a contradiction.

In the second case we proceed similarly. We consider R ρ : Fix(K ρ ) ⇒ C dened as R ρ (x) := R(x) ∩ B ρ , which is lsc (Lemma 2) with convex values. Thus, the set-valued map M 2 : C ⇒ C dened as

M 2 (x) := K ρ (x) x ∈ C \ Fix(K ρ ) R ρ (x) x ∈ Fix(K ρ )
is lsc with convex values. If M 2 is non-empty valued, then again by Proposition 6 there exists x 0 ∈ M 2 (x 0 ), this means x 0 ∈ Fix(K ρ ) and x 0 ∈ R ρ (x 0 ), which in turn implies f (x 0 , x 0 ) < 0. So, we get a contradiction. Hence, there exists x 0 ∈ C such that M 2 (x 0 ) = ∅. Thus, x 0 ∈ Fix(K ρ ) and R ρ (x 0 ) = ∅, i.e.

f (x 0 , y) ≥ 0, for all y ∈ K(x 0 ) ∩ B ρ .

Finally, and in both cases, since f (x 0 , x 0 ) ≤ 0, by semi-strictly quasi-convexity of f at level 0, we infer using Proposition 25 that x 0 ∈ QEP(f, K).

Since (UCC) holds at a suciently large ρ when C is compact, we obtain the following result.

Corollary 16. Let C be a non-empty, compact and convex subset of R n and assume that f is properly quasi-monotone, semi-strictly quasi-convex at level 0 in the second argument, and has the upper sign property. If the set {y ∈ C : f (x, y) ≤ 0} is closed, for each x ∈ C, then EP(f, C) = ∅.

Proof. First, the constant set-valued map K(x) := C, x ∈ C, is obviously lsc and has convex and non-empty values. Also, we have that Fix(K) = C, which is obviously closed. Then condition (UCC) trivially holds, as well as hypothesis (H). According to Theorem 34, it suces to show that the mapping G, dened in Theorem 34, is lsc. Indeed, by the current assumption, for each y ∈ C, the ber

G -1 (y) = {x ∈ C : f (y, x) > 0},
is open, and this easily implies the lower semi-continuity of G.

Corollary 16 is given in Proposition 2.1 in [START_REF] Bianchi | Coercivity Conditions for Equilibrium Problems[END_REF], where instead of the upper sign property of f , the authors assume that f is quasi-convex in the second argument and f D = 0, as well as the upper sign continuity (see [START_REF] Bianchi | Coercivity Conditions for Equilibrium Problems[END_REF]) of f ; that is, inf t∈]0,1[ f (tx + (1 -t)y, y) ≥ 0 ⇒ f (x, y) ≥ 0, ∀x, y ∈ C.

It is known that the last three conditions ensure the upper sign property of f (see Lemma 3 in [START_REF] Castellani | Renements of existence results for relaxed quasimonotone equilibrium problems[END_REF]). Remark 26. It is worth recalling that, instead of the semi-strict quasi-convexity at level 0 of the function f in Corollary 16, Proposition 2.1 in [START_REF] Bianchi | Coercivity Conditions for Equilibrium Problems[END_REF] uses the so-called sign preserving property; that is, for all x, y, z ∈ C, (f (x, y) = 0 ∧ f (x, z) < 0) ⇒ f (x, ty + (1 -t)z) < 0, for all t ∈]0, 1[ . We observe that, under the quasi-convexity of the functions f (x, •), x ∈ C, both the sign preserving property and the semi-strict quasi-convexity at level 0 are equivalent. Corollary 17 (Theorem 4.5 in [11]). Let f : R n × R n → R be a function, C be a convex, compact and non-empty subset of R n , and K : C ⇒ C be a set-valued map. Suppose that the following properties hold 1. K is closed and lsc with convex values, and int(K(x)) = ∅, for all x ∈ C; 2. f is properly quasi-monotone; 3. f is semi-strictly quasi-convex and lower semi-continuous with respect to its second argument;

4. for all x, y ∈ R n and all sequence (y k ) k ⊂ R n converging to y, the following implication holds lim inf k→+∞ f (y k , x) ≤ 0 ⇒ f (y, x) ≤ 0, 5. f has the upper sign property.

Then, QEP(f, K) is non-empty.

Proof. Since C is compact, the set-valued map G in Theorem 34 can be described by G(x) = {y ∈ K(x) : f (y, x) > 0} for every x ∈ Fix(K). We can prove the lower semi-continuity of G following the same steps of the proof of Corollary 7 in [START_REF] Cotrina | Quasi-equilibrium problems with non-self constraint map[END_REF], and thus the conclusion follows applying Theorem 34.

Theorem 35. We assume that f and K satisfy (H) and (UCC) at some large ρ > 0, K is closed and (i) f (•, y) is upper semi-continuous, for all y ∈ C, Clearly, V = {x ∈ C ρ : T (x) ∩ K ρ (x) = ∅} and the set-valued map K ρ is closed since gph(K ρ ) = gph(K) ∩ (C ρ × C ρ ). The (UCC) at ρ and (i) imply that K ρ is upper semi-continuous with As a consequence of Theorem 36 we recover the following result.

Corollary 19 (Proposition 4.5 in [START_REF] Aussel | Quasimonotone quasivariational inequalities: existence results and applications[END_REF]). Let h : X → R be a continuous and quasi-convex function, C be a convex, compact and non-empty subset of X and K : C ⇒ C be a closed and lower semi-continuous set-valued map with convex and non-empty values. Then there exists x ∈ Fix(K) such that h(x) ≤ h(y), for all y ∈ K(x).

Proof. Clearly the bi-function f dened as in Example 24 has the p * on C and it is continuous and quasi-convex in its second argument. Moreover, by the part 2 of [32, Proposition 6.2], it has the upper sign property. Thus, Theorem 36 guarantees the existence of a point

x ∈ QEP(f, K), which is equivalent to x ∈ K(x) and h(y) ≥ h(x), for all y ∈ K(x).

The problem associated to the previous corollary is well-known in the literature as quasioptimization.

Remark 27. Theorem 36 is strongly related with Theorem 4.5 in [START_REF] Aussel | An existence result for quasi-equilibrium problems[END_REF] and Theorem 4.3 in [START_REF] Flores-Bazán | Existence Theorems for Generalized Noncoercive Equilibrium Problems: The Quasi-Convex Case[END_REF]. However these results are established under generalized monotonicity and quasiconvexity, which are stronger than the nite intersection property.

IV.4 Applications

In this section, we consider applications on the study of existence of solutions for two wellknown problems: (i) the quasi-variational inequality problem, and (ii) the generalized Nash equilibrium problem.

IV.4.1 Quasi-Variational Inequality Problem

Given a subset C of R n and two set-valued maps T : R n ⇒ R n and K : C ⇒ C, the set QVI(T, K) denotes the solution set of the quasi-variational inequality problem associated to T and K, {x ∈ C : x ∈ K(x), ∃x * ∈ T (x) such that x * , y -x ≥ 0, ∀y ∈ K(x)}.

We say that T and K satisfy the uniform coerciveness condition at ρ if the following two conditions hold:

1. K(x) ∩ B ρ = ∅, for all x ∈ C ∩ B ρ , 2. for each x ∈ Fix K such that x = ρ there exists y ∈ K(x) with y < ρ such that x * , y -x ≤ 0 for every x * ∈ T (x). x * , y -x .

(

) 12 
The next Lemma relates the quasi-variational inequality with the quasi-equilibrium problem whose bi-function is f T . We observe though that a converse construction, from a quasiequilibrium problem to a quasi-variational inequality problem, has been done in [START_REF] Aussel | About the links between equilibrium problems and variational inequalities[END_REF] under quite general conditions.

Lemma 17. Given any ρ > 0, T and K satisfy the uniform coerciveness condition at ρ if and only if f T and K satises the (UCC) at ρ. Moreover, if T has non-empty and compact values then QEP(f T , K) = QVI(T, K).

Proof. Direct from the denition of f T .

As a direct consequence of Lemma 17 and Theorem 34 we obtain the following existence result for quasi-variational inequality problems.

Theorem 37. Let C be a closed, convex and non-empty subset of R n , and T : R n ⇒ R n , K : C ⇒ C be two set-valued maps. Assume that (T, K) satises the uniform coerciveness condition at ρ > 0 suciently large, and that the following conditions are satised:

1. T has compact and non-empty values, 2. T is properly quasi-monotone on C i.e., for all x 1 , . . . , x m ∈ C and any x ∈ co({x 1 , . . . , x m }), there exists i such that

x * i , x -x i ≤ 0, for all x * i ∈ T (x i ),

3.
T is upper sign-continuous on C, that means for all x, y ∈ C, the following implication holds ∀t ∈]0, 1[, inf

x * t ∈T (xt)

x * t , y -x ≥ 0 ⇒ sup

x * ∈T (x)
x * , y -x ≥ 0, where x t = tx + (1 -t)y., x * , y -x > 0 is lsc.

Then, QVI(T, K) is non-empty.

Proof. Clearly f T is properly quasi-monotone and has the upper sign property. Therefore, the result follows from the fact QVI(T, K) = QEP(f T , K) and Theorem 34.

Remark 28. A few remarks about Theorem 37:

1. The previous result is not a consequence of Theorem 1 in [START_REF] Aussel | Quasi-variational inequality problems with non-compact valued constraint maps[END_REF], because T here is properly quasi-monotone (not pseudo-monotone) and the closedness of K is relaxed to the closedness of Fix(K). Theorem 3 in [START_REF] Aussel | Quasi-variational inequality problems with non-compact valued constraint maps[END_REF] proposes an existence result under quasimonotonicity, that means for all (x, x * ) and (y, y * ) in the graph of T the following implication holds

x * , y -x > 0 ⇒ y * , y -x ≥ 0, but in this case it needs more regularity assumptions on the constraint map.

2. The fourth assumption in Theorem 37 holds, for instance, when the map K is closed and the set (x, y) ∈ C × C : sup

x * ∈T (x)

x * , y -x ≤ 0 is closed.
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I. 4 .

 4 Optimality Conditions and Constraint Qualifications I.4 Optimality Conditions and Constraint Qualications Let f : X → R and g : X → R d , and consider an optimization problem in the following form

Example 1 .

 1 Let D be the unit closed ball of R 2 and g : R 2 → R 3 be the constraint mapping given by g(x, p) := (d 2 D (x, p), x -1, -1 -x), where d D (x, p) := inf{ (x, p) -(x , p ) : (x , p ) ∈ D}. The set of interior parameters is clearly the interval ] -1, 1[, while the set of boundary parameters is {-1, 1}. Guignard's CQ is satised for the parameter p = 0 at every feasible point (x ∈ [-1, 1]). But for the parameters 0 = p ∈ [-1, -1] no CQ holds at the points x in the boundary of the feasible set, since the unique active function at the boundary is d 2 D (•), whose derivative is 0 at these points and does not represent the normal directions to the feasible set at the boundary points.

  Now we want to analyze the properties of the solution mapping dened by S(x) := argmin y {f (x, y) | y ∈ K(x)}, assuming conditions over f : X × Y → R and a set-valued map K : X → Y . The following result is related to [40, Theorem 4.3]. Proposition 5. Assume X and Y are metric spaces. Let K : X ⇒ Y and f : X×Y → R. If K is lsc and closed, and f is continuous, then the solution set-valued map S(x) := argmin y {f (x, y) | y ∈ K(x)} is closed too.

74 ,Remark 4 .

 744 Theorem 4 of 5]). Proposition 7. Let C ⊂ R n be a compact, convex and non-empty set, and let S, T : C ⇒ C be two set-valued maps such that 1. S is usc with convex, compact and non-empty values, 2. T is convex-valued with open bers and Fix(T ) = ∅, 3. the set V := {x ∈ C : S(x) ∩ T (x) = ∅} is open in C. Then there exists x ∈ Fix(S) such that S(x) ∩ T (x) = ∅. The previous result includes, in one hand, Kakutani Fixed Point Theorem (taking gph T = ∅), and on the other hand, the Fan-Browder Fixed Point Theorem (taking gph S = C × C).

  and we get a contradiction as in (II.1.

Chapter II. 2 Fuzzy

 2 Calculus Rules in Non-smooth Analysis II.2.1 Introduction Weak fuzzy subdierential calculus rules have the advantage over the exact ones, because they do not require any qualication condition, this being true for lower semi-continuous functions dened on Asplund spaces. Maybe one of the most old and known rules is the fuzzy sum rule, which was rst proved by Ioe in 1984 in the case of nite dimension, and subsequently extended to innite dimensional Asplund spaces.

  which implies that x * / ∈ N[ϕ=0] (0). The validity of (II.2.7) follows from considering the lower semi-continuous function φ(x, y) := ϕ(x) -y, for which [φ ≤ 0] = epi ϕ, [φ ≥ 0] = hyp ϕ, and [φ = 0] = gph ϕ.The last conclusion follows from Lemma 13. Remark 9. The idea of (II.2.6) of Lemma 14 can be found in the proof of [88, Theorem 4.4]. The second part of Lemma 14 allows us to avoid repeating some arguments as done in [128, Theorem 3.3.5] and [84, Theorem 2.40].

  Before going further, let us precisely recall what is suboptimality (ε-optimality) for a minimization problem, in the sense of [84, Subsection 5.1.4].

  Consider an optimistic bilevel programming problem (see Chapter III.2 for more about bilevel problems) of the following form,min x ϕ o (x), s.t. G(x) ≤ 0,(II.2.30) where ϕ o (x) := inf y {F (x, y) : y ∈ S(x)}, and S(x) stands for the solution of the following lower level problem min y f (x, y), s.t. g(x, y) ≤ 0.(II.2.31) 

1 ]

 1 and S 2 (x 1 ) = {2} for all x 1 ∈ (1, 4]). In Figure III.1.1, the graphs of S 1 (in blue) and of S 2 (in red) are drawn. The two points of intersection of these graphs (in black) are the equilibrium points of the (G)NEP.

x 1 x 2 S 1 Figure III. 1 . 1 :

 2111 Figure III.1.1: In red the reaction map of player 1 and in blue the reaction map of player 2. The two nodes in black (the intersection of these maps) are the equilibrium points of the NEP of Example 11

y 1 y 2 P 2 1 Figure III. 1 . 4 :

 22114 Figure III.1.4: In Example 15, all opponent-feasible strategies y 2 ∈ P 2 (Y ) are interior parameters for player 1 (and similarly for player 2).

Figure III. 2 . 1 :

 21 Figure III.2.1: Global solution comparison graph.

Figure III. 2 . 2 :

 22 Figure III.2.2: Type I local solutions comparison graph

  is a full type I local solution of (MPCC) (see Figure III.2.3).

  The point (0, 1) is not a conventional type I local solution of (PB), because one can move continuously along gph S p (= gph S) in the direction of -∇F decreasing the value of F . But the points (0, 1, µ) with µ ∈ R + (in the (yµ) half plane), are full type I local solution of (MPCC) since one cannot move continuously along gph KKT p (= gph KKT ) in the direction of -∇F .

Figure

  Figure III.2.3: A bilevel problem (PB) and a local solution (0, 1, µ) of the associated (MPCC)such that (0, -1) is not a local solution of (PB) (seeExample 16) 

Now, mimicking the

  denition of the local solution set S loc p (x), for any x ∈ X, the set of local solutions of the optimization problem max (y,µ)∈KKT (x) F (x, y), (III.2.8)

Finally, in order

  to explore the interrelation between the locally feasible local solution concepts, let us rst state the following proposition. Proposition 12. Assume that the lower level problem (III.2.2) is convex. If (x, y) ∈ gph S loc p , then for each µ ∈ Λ(x, y), (x, y, µ) ∈ gph KKT loc p . Conversely, if (x, y, µ) ∈ gph KKT loc p , then (x, y) ∈ gph S loc p .

Figures III. 2 .Figure III. 2 . 4 :Figure III. 2 . 5 :

 22425 Figures III.2.4 and III.2.5 summarize the interrelations obtained in Theorem 23.

Figure III. 3 . 1 :

 31 Figure III.3.1: MLMFG

1 .

 1 Notations and Examples of Applications

Figure III. 3 . 3 :

 33 Figure III.3.3: MLSFG

(

  III.3.1) Now, consider the objective of one leader given by F (x, y) := -x + y 1 + y 2 , and the constraint x ∈ [0, 4]. The pessimistic problem of the leader is of the form min x∈[0,4] max y∈GNEP(x) -x + (y 1 + y 2 ).

  One of the most simple examples we will have in mind is the case where the bi-function is the dierence of a univariate function evaluated in both variables (further examples will be discussed in Section IV.4). Example 20. Consider the problem of minimizing a function g : X → R over a non-empty set C ⊂ X. If we dene f (x, y) := g(y) -g(x), then the minimization problem has the same set of solutions as the equilibrium problem and the Minty equilibrium problem (associated to f and C): argmin C g = EP(f, C) = MEP(f, C).

) Remark 24 .

 24 In Example 20, by swapping the roles of the variables (or changing the sign of f ) we dene f (x, y) := f (y, x) = g(x) -g(y), and we obtain argmax C g = EP( f , C) = MEP( f , C).

Figure 1 :

 1 Figure 1: Generalized monotonicity properties

  Proof. The rst case was proved in[11, Proposition 3.1] and the second in [35, Proposition 2]. Proposition 20. If f is upper sign continuous and quasi-monotone (or properly quasimonotone) then f D = 0.

F

  x := {y ∈ C : f (x, y) ≤ 0}.

Remark 25 .

 25 From Proposition 18 it is clear that cyclic quasi-monotonicity implies p, and moreover, if C is a convex set then cyclic quasi-monotonicity implies p * and p * implies p. The converses to these implication are in general not true, as shown by the following two simple examples. Example 22. The bi-function f (x, y) := xy, for x, y ∈ [0, 1] has the p, which can be observed since x = 0 ∈ MEP(f, C). However, f does not have the p * on [0, 1]. Indeed, for A= {1} we have max a∈A f (a, x) = f (1, 1) = 1 > 0, for all x ∈ co({1}). Example 23. Let f : [0, 1] × [0, 1] → R be dened as f (x, y) := 0, if |x -y| ≤ 1/2 1, otherwise.Let us see that f has the p * . Consider a non-empty and nite set A ⊂ [0, 1]. If diam A = max a,b∈A |a -b| ≤ 1/2, then by taking any point x ∈ A we obtain max a∈A f (a, x) = 0.

  , F x i ), satises g(x) > 0 for all x ∈ K, and is continuous. Further, the function h :K → K dened as h(x) := m i=1 d(x, F x i ) g(x)

(

  ii) f (x, •) is quasi-convex, for all x ∈ C, (iii) the set V = {x ∈ C ρ : inf y∈Kρ(x) f (x, y) < 0} is open in C ρ , (iv) f D = 0, (v) for each x ∈ Fix(K), f (x, •) is semi-strictly quasi-convex at level 0.Then QEP(f, K) is non-empty.Proof. Consider the set-valued map T : C ρ ⇒ C ρ dened as T (x) := {y ∈ C ρ : f (x, y) < 0}.

Now, we consider

  the bi-function f T : R n × R n → R ∪ {-∞, +∞} dened as f T (x, y) := sup x * ∈T (x)

4 .

 4 K is lsc with convex and non-empty values 5. The set Fix(K) is closed and the set-valued map G : Fix(K) ⇒ C dened as G(x) := y ∈ K(x) ∩ B ρ : sup x * ∈T (x)

  From the assumptions and Proposition 2 we obtain that for each p ∈ U the problem P(p) is convex and either Slater's CQ holds or Guignard's CQ holds for each feasible point. Thus we conclude that P(p) is equivalent to the KKT(p) system for each p ∈ U . Remark 2. The less the number of boundary parameters in U , the less conditions have to be veried to apply Theorem 1. But boundary parameters usually exist. If the set R := {(x, p) ∈ X × P | g(x, p) ≤ 0} is non-empty closed and bounded, then there exist at least one boundary parameter. Even for a two dimensional parameter an innite number of boundary parameter could arise. Take, for example, X = R and P = R 2 and B the closed unit ball in X × P , that is

Then, for any p ∈ U , the KKT(p) conditions are necessary and sucient optimality conditions for problem P(p).

Proof.

  Thus, T open at x is equivalent to T c closed at x. Example 2 the set-valued map T is closed if and only if B and C are closed and B ⊂ C. Similarly, T is open if and only if B and C are open and C ⊂ B.

	In

  Note that |y n | ≥ n and so lim |y n | = +∞. Then we can assume without loss of generality that |y n | is increasing, and moreover, that

1 n ) and y n ∈ T (x n ) such that y n / ∈ T (x) and y n / ∈ B Y (n).

  into an inequality form and, next, summing over i, we obtain, for all

  C ⊂ X be a non-empty convex set and x ∈ C. A functional x * ∈ X * is said to be normal to C if x * , y -x ≤ 0 for all y ∈ C. The set of all normals to C is denoted by N C (x). More generally, given ε ≥ 0 the set of all x * ∈ X * satisfying x * , y -x ≤ ε, for all y ∈ C is the ε-normal set to C and is denoted by

	II.1.4 Normal Cone and Approximate Normal Sets
	1.21)

Let

  In the literature the result of Lemma 12 is usually stated in the general context of Asplund spaces but with a weaker conclusion which does not include estimation (II.2.4) (see for instance[START_REF] Boris | Variational Analysis and Generalized Dierentiation, I: Basic Theory, II: Applications[END_REF] Lemma 5.27],[START_REF] Bao | Suboptimality conditions for mathematical programs with equilibrium constraints[END_REF] Theorem 2.2]). It turns out that the additional condition

(II.2.4) is very important, as we shall see in our analysis in the next sections.

  So, we can apply Theorem 17 to obtain that II.2.5. Application to Bilevel Programming there exist a nite set S ⊂ Y and points x y close to x and λ y ≥ 0, y∈S λ y = 1 and x * y ∈ ∂(-f (•, y) -Kd [g(•,y)≤0] )(x y ) with λ y |f (x y , y) -ϕ(x)| ≤ ε such that x

* ∈ y∈S λ y x * y + εB. (II.2.35)

  It can be clearly noticed here that if the regulator/follower's problem admits possibly more than one solution for a given leader strategy x, then the overall MLMFG problem is ill-posed, carrying some ambiguity; see beginning of Section III.3.3. In electricity market modeling, the uniqueness of the solution of the regulator/follower's problem is guaranteed by some strict convexity of the total_welfare function with regard to variable z thanks to specic assumptions on the bid structure (strictly convex quadratic bid curves -see e.g.[START_REF] Allevi | On an equilibrium problem with complementarity constraints formulation of pay-as-clear electricity market with demand elasticity[END_REF][START_REF] Escobar | Monopolistic competition in electricity networks with resistance losses[END_REF][START_REF] Henrion | Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market[END_REF][START_REF] Hu | Using EPECs to model bilevel games in restructured electricity markets with locational prices[END_REF])

	admissible bid		
	y solution of: min z T otal_welf are(z, x)
	s.t.	 	∀ k, z k decision concerning bids of producer k
			demand/oer balance

  III.3.4. Conclusion and Future ChallengesDenition 32. We dene an local equilibrium for the EPCC reformulation of the (multioptimistic) MLFG to be a vector (x, ȳ1 , ..., ȳN , μ1 , ..., μN ) where for each i = 1, ..., N , (x i , ȳi , μi )

	is a local solution of the optimization problem
	min x i ,y,µ

  1. If (x, ȳ1 , ..., ȳN , μ1 , ..., μN ) is a local equilibrium of the EPCC reformulation of a MLFG for all μ ∈ Λ(x, ȳ), then the point (x, ȳ1 , ..., ȳN ) is a local equilibrium of the MLFG.

2. If (x, ȳ1 , ..., ȳN ) is a local equilibrium of the MLFG, then for all μ ∈ Λ(x, ȳ), (x, ȳ, μ) is a local equilibrium of the EPCC reformulation of the MLFG.

We are aware that this fact was also recognized by Ehrenmann in his PhD thesis[START_REF] Ehrenmann | Equilibrium problems with equilibrium constraints and their application to electricity markets[END_REF], but has been underestimated by several authors.

Note that in Proposition 10, the constraint qualications are assumed for each feasible joint strategies y = (y j , y -j ). A rst reduction on the number (in the sense of a smaller set)

This concept is not the joint convexity of a game as dened by Rosen. In general they are not comparable, but our assumption is stronger when all players has the same constraint, i.e. g j = g, for all j ∈ J.
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Then GNEP = cSP.

Proof. For each player j ∈ J, the hypotheses of Theorem 1 for player j's parametric optimization problem holds with U := {y -j | ∃y j : (y j , y -j ) ∈ Y }, so that Y ∩ gph S j = Y ∩ gph cSP j . By taking intersection over j ∈ J, and recalling that GNEP ⊂ Y , we conclude that GNEP = cSP. Now we present two examples that will illustrate the use of the assumptions in Theorem 20. In the rst one, two players face some boundary opponents strategies but still the hypotheses of Theorem 20 are satised. In the second example, we show a shared constraints GNEP for which the rst and second assumptions of Theorem 20 are satised, but not the third one: at some boundary opponent strategies the constraint qualications are not fully satised. We also exhibit a GNEP solution that is not an element of cSP, thus, showing that it is not possible to drop Assumption 3) in Theorem 20.

Example 13. Let q 1 , q 2 and r be three xed real numbers and consider a GNEP for which the constraints for player 1 and for player 2 are respectively y 1 ≥ 0 g(y 1 , y 2 ) ≤ 0 and y 2 ≥ 0 g(y 1 , y 2 ) ≤ 0 where the function g is dened as g(y 1 , y 2 ) := (y 1 -q 1 ) 2 + (y 2 -q 2 ) 2 -r 2 . The constraint y 1 y 2 q Figure III.1.2: Feasible region of the GNEP of Example 13 with q 1 , q 2 < 0. In blue the feasible region for player 1, and in red the feasible region for player 2 functions are clearly jointly convex. If r > √ 2 max(-q 1 , -q 2 , 0) it is easy to nd a Joint Slater strategy/point (the same for both players): (y 1 , y 2 ) ∈ R 2 such that y 1 , y 2 > 0 and g(y 1 , y 2 ) < 0. For simplicity, let us analyse only the case when q 1 , q 2 ≤ 0, (the other case is left to the reader). A player j has two boundary parameters, one positive and one negative. The negative one is not feasible for player -j, and the positive one gives only one feasible point at which the gradients of y j and g with respect to the variable y j generates the normal cone R if and only if q j < 0, i.e. Guignard's CQ holds if and only if q j < 0. Thus, applying Theorem 20 for any GNEP with dierentiable and convex player objectives and whose constraints are the ones just described, we conclude that the set of generalized Nash equilibria coincide with the solution set of the corresponding KKT system if and only if q 1 , q 2 < 0.

Example 14. Consider now two players with variables y 1 ∈ R 2 and y 2 ∈ R, respectively.

Fix two points q 1 = (-4, 0, 0), q 2 = (4, 0, 0) ∈ R 3 and let both players share the following two it is a solution of the following optimization problem min x,y F (x, y)

x ∈ X, y ∈ GNEP(x) An opposite approach is the pessimistic one, which consists for the leader in minimizing the worst possible equilibrium reaction with regard to the leader objective. Thus, it is based on a minmax problem. Denition 24. We say that (x, ȳ) ∈ R n × R m is an pessimistic equilibrium of the SLMFG if it is a solution of the following minmax problem min x max y F (x, y)

x ∈ X, y ∈ GNEP(x)

Apart from these two approaches, there are other possibilities based on selections of the lower level problem (see e.g. [START_REF] Escobar | Monopolistic competition in electricity networks with resistance losses[END_REF]) and on set-valued optimization but we do not discuss them here. Note also that an alternative approach has been developed in [START_REF] Van Ackooij | Optimizing power generation in the presence of micro-grids[END_REF] in a specic context.

III.3.2.1 Existence of Optimistic Equilibria in SLMFG

Here we discuss conditions under which a SLMFG admits at least one equilibrium. We present a positive result for the case of optimistic equilibrium. Nevertheless, for the pessimistic case it has been shown an example of an apparently very well behaved problem (linear and compact) which admits no equilibria (see [START_REF] Aussel | Some remarks about existence of equilibria, and the validity of the epcc-reformulation for multi-leader-follower games[END_REF]Example 3.2]).

The mathematical tools that are often used in this analysis when the lower level reaction is not unique (which is mostly the case in our setting, see previous paragraphs) are part the so-called set-valued maps theory (see Chapter I.6).

We present now a slight renement of [START_REF] Aussel | Some remarks about existence of equilibria, and the validity of the epcc-reformulation for multi-leader-follower games[END_REF]Theorem 3.1] (see also [START_REF] Lignola | Existence of solutions to generalized bilevel programming problem[END_REF]Corollary 4.4] for analysis in the case of strategy sets that are subsets of reexive Banach spaces). It is based on continuity properties of both functions and set-valued maps dening the SLMFG.

In particular, it assumes the lower semi-continuity of the set-valued maps that denes the feasible set of the followers, that is, for j = 1, ..., M the set-valued map Y j : R n ×R m -j ⇒ R m j . Theorem 24. Assume for the SLMFG that (1) F is lower semi-continuous and X is closed, (2) for each j = 1, ..., M , f j is continuous, (3) for each j = 1, ..., M , Y j is lower semi-continuous relative to its non-empty domain and has closed graph, and (4) either F is coercive or, X is compact and at least for one j, the images of Y j are uniformly bounded.

If the graph of the lower level GNEP is non-empty, then the SLMFG admits an optimistic equilibrium.

Proof. As in the proof of [START_REF] Aussel | Some remarks about existence of equilibria, and the validity of the epcc-reformulation for multi-leader-follower games[END_REF]Theorem 3.1], assumptions (2) and (3) ensure the closedness of the constraints of the leader's problem in both variables x and y, see Proposition 5. Thus, the classical Weierstrass theorem can be applied to prove the existence of a minimum of the leaders' optimization problem, which constitutes an optimistic equilibrium of the SLMFG.

Usually the constraints of the followers are described as level sets of certain functions:

We recall what is the MFCQ for the parametric optimization problems of the followers (see, e.g. the appendix in [START_REF] Bank | Non-linear parametric optimization[END_REF]). Denition 25. The MFCQ for the followers' problems is satised at (x, ȳ) if for each j the family of gradients there exist a j ∈ R m j such that ∇ y j g jk (x, ȳ)a j < 0 ∀k ∈ A j (x, ȳ).

where A j (x, ȳ) := {k = 1, ., , , d j : g jk (x, ȳ) = 0}.

We provide conditions on these data functions that ensure the existence of optimistic equilibrium of the SLMFG. As a particular case we recover Theorem 5.2 in [START_REF] Dempe | Foundations of bilevel programming[END_REF]. The forthcoming corollary is just a consequence of our previous result, since the conditions on the data functions imply the continuity properties of the constraint set-valued maps (see [START_REF] Dempe | Foundations of bilevel programming[END_REF]Theorem 4.3]).

Corollary 14. Let us assume that

(1) F is lower semi-continuous and X is closed, (2) for each j = 1, ..., M , f j is continuous, (3) for each j = 1, ..., M , Dom Y j is non-empty, g j is continuous on R n × R m and satisfy MFCQ at each feasible point, and (4) either F is coercive or, X is compact and at least for one j, the images of Y j are uniformly bounded.

If the graph of the lower level GNEP is non-empty, then the SLMFG admits an optimistic equilibrium. Remark 22. Condition (4) in Theorem 24 and Corollary 14 is assumed to obtain the compactness of the graph of the set-valued map GNEP which assigns to a leader strategy x the set of solutions of the lower level GNEP(x).

III.3.2.2 Example of SLMFG with no Pessimistic Equilibrium

It is known that in the case of one leader and one follower with fully linear objectives and constraint, the pessimistic bilevel programming problems admits a solution under mild assumption: compactness and feasibility (see [START_REF] Dempe | Pessimistic bilevel linear optimization[END_REF][START_REF] Lucchetti | Existence theorems of equilibrium points in stackelberg[END_REF]). But when there are two followers, the existence cannot be guaranteed as shown in the following example. Remark 23. Let us observe that the assumptions of Theorem 25 are not really tractable i.e. quite hard to verify. Indeed, the Guignard's constraint qualication should hold true for each joint strategy being feasible for all follower, that is such that g l (x, y) ≤ 0, for every follower l ∈ J. On the other hand these assumptions (of Theorem 25) are in some sense minimal. Indeed, the weakest condition that makes SLMFG equivalent to its MPCC reformulation independently of the objective of the leader is that GNEP(x) = cKKT (x), ∀x ∈ X.

(III. 3.3) Moreover, for a given x ∈ X, the weakest condition that makes GNEP(x) = cKKT (x), independently of the objectives of the followers, is in fact the huge set of Guignard's CQs described in the assumptions of Theorem 25.

However, using the techniques developed in [START_REF] Aussel | Towards tractable constraint qualications for parametric optimisation problems and applications to generalised Nash games[END_REF], we can reduce signicantly the conditions to be veried in order to have the desired equivalence, as we explain now.

Assume that the followers' constraint functions g jk are jointly convex with respect to the vector (x, y). Denition 26. Let j ∈ J. An opponent strategy (x, ŷ-j ) ∈ R n × R m j is said to be -an admissible opponent strategy (for player j) if (x, ŷ-j ) ∈ A j := dom Y j , that is, such that there exists y j ∈ X with g j (x, y j , ŷ-j ) ≤ 0;

-an interior opponent strategy if it is in int(A j );

-a boundary opponent strategy if it is in bd(A j ).

Theorem 26. Assume (H 1 ), (H 2 ) and that for each j ∈ J, the three following properties hold:

(1) (Joint Convexity) Each g jk is jointly convex with respect to (x, y);

(2) (Joint Slater's CQ) There exists a joint strategy (x(j), ỹ(j)) such that g j (x(j), ỹ(j)) < 0;

(3) (Guignard's CQs for boundary opponent strategies) For any boundary opponent strategy (x, ŷ-j ) ∈ bd(A j ) Guignard's CQ is satised at any feasible point y j ∈ Y j (x, ŷ-j ).

If (x, ȳ, μ) ∈ (MPCC), then (x, ȳ) ∈ SLMFG.

Proof. Let j ∈ J and x ∈ X, and take a y = (y j , y -j ) that is feasible for all followers, so that (x, y -j ) is an admissible parameter. Let us now verify that Guignard's CQ holds for the constraint g j (x, •, y -j ) ≤ 0 at the point y j . If (x, y -j ) is a boundary opponent strategy we know from Assumption (26) that Guignard's CQ is satised at y j . Otherwise, (x, y -j )

is an interior opponent strategy. Then by Proposition 2.1 in [START_REF] Aussel | Towards tractable constraint qualications for parametric optimisation problems and applications to generalised Nash games[END_REF], Slater's CQ holds for this parameter, which itself imply Guignard's CQ at y j . Thus the conclusion follows by applying Theorem 25.

Denition 27. We say that the lower level of a SLMFG is fully feasible if for any follower

The above denition does not allow boundary opponent strategies to exist. Thus, the third assumption of Theorem 26 is trivially satised, leading to the following corollary.

Corollary 15. Assume (H 1 ), (H 2 ) and that the lower level is fully feasible (in the sense of Denition 27). For each j ∈ J we make the following assumptions:

1. (Joint Convexity) Each g j is jointly convex with respect to (x, y);

2. (Joint Slater's CQ) There exists a joint strategy (x(j), ỹ(j)) such that g j (x(j), ỹ(j)) < 0.

If (x, ȳ, μ) ∈ (MPCC), then (x, ȳ) ∈ SLMFG.

III.3.2.4 Algorithms

There exist actually very few algorithms tackling directly the SLMFG model. In the seminal paper [START_REF] Sherali | Stackelberg-nash-cournot equilibria: characterizations and computations[END_REF] where the case of an oligopoly was studied, a rst simple algorithm was proposed.

The idea of the algorithm was rst to divide the interval of strategies of the leader into nite subinterval, in each of them a linearization of the lower level reaction function is considered, and to minimize the leader's objective composed with the linearization of the lower level problem in the subinterval. The new points are added to the grid. When a termination criterion is satised, the best point of the grid is the proposed approximate solution. This idea was then adapted to the case where there is an uncertainty in the problem of the leader [START_REF] Wolf | A stochastic version of a stackelberg-nash-cournot equilibrium model[END_REF].

Apart from this direct algorithm most of the papers rst start with a reformulation and then use algorithms for solving the corresponding reformulation. In [START_REF] Xu | An mpcc approach for stochastic stackelbergnashcournot equilibrium[END_REF] an MPCC reformulation was considered and then the problem was solved using a smoothing approach of the complementarity constraints.

The MPCC reformulation is commonly preferred (see discussion in [START_REF] Aussel | Some remarks about existence of equilibria, and the validity of the epcc-reformulation for multi-leader-follower games[END_REF]) since it benets from a more explicit expression. On the other hand, the OPVIC reformulation, being a more direct one, is preferred whenever the constraint qualications of the lower level problem cannot be established or are too dicult to be proven.

Numerical approaches for the OPQVIC reformulation have been considered in [START_REF] Wu | A smoothing newton method for mathematical programs constrained by parametrized quasi-variational inequalities[END_REF][START_REF] Wu | An inexact newton method for stationary points of mathematical programs constrained by parameterized quasi-variational inequalities[END_REF] for the general case, while OPVIC have been considered in [START_REF] Ye | Constraint qualications and necessary optimality conditions for optimization problems with variational inequality constraints[END_REF].

On the other hand algorithms developed for the resolution of the MPCC reformulation face the diculty of the treatment of the complementarity constraints involving the Lagrange multipliers. The main numerical techniques are the smoothing, the decomposition, the penalization, and the relaxation approaches.

Simply to illustrate one of these approaches we give below the main steps of the application of the relaxation method to SLMFG. In the KKT system, the constraints of the form 0 ≤ µ j ⊥ -g j (x, y) ≥ 0 can be described by the nonlinear system

The source of main diculties is the product constraint. One approach due to Scholtes is to enlarge the feasible set by imposing instead -µ j g j (x, y) ≤ ε. By doing this the relaxed problem might now satisfy some CQs and some usual methods (like interior point method used in [START_REF] Demiguel | A two-sided relaxation scheme for mathematical programs with equilibrium constraints[END_REF]) for solving the new nonlinear problem can be applied.

with ȳi ∈ GNEP(x) the conjecture of leader i. If the game has only one leader, we just call (x, ȳ) a optimistic equilibrium.

Note that the multi-optimistic equilibrium notion does dene a GNEP between the leaders. Nevertheless, the question about existence of solutions cannot be deduced directly from the existence result for GNEPs (Theorem 19), because the constraint set-valued map for the leaders (including the followers' reaction map) fail in general to be lower semi-continuous.

We know that the GNEP of the lower level could have non-unique solutions, and we can overcome this with the multi-optimistic approach. Nevertheless, the constraint of each leader involves the graph of a parametric GNEP so that, even with very nice data, this constraint set is not necessarily convex, not even connected (see examples in Chapter III.1). Thus, the problem of each leader is in general a non-convex program.

III.3.3.1 Existence for MLFG

In the literature, existence results for MLMFG games are scarce and most of them (if not all, see for instance [START_REF] Hu | Existence, uniqueness, and computation of robust nash equilibria in a class of multi-leader-follower games[END_REF][START_REF] Sherali | A multiple leader stackelberg model and analysis[END_REF]) are based on a technique that we present now. The technique is basically to reduce the MLMFG to a Nash equilibrium problem by `plugging' the unique lower level response into the leaders' objectives, and then trying to prove some good properties of the resulting Nash equilibrium problem:

x N ∈ X N (x -N )

The general assumptions for this technique are:

(A1) for each leaders' prole of strategies x there exists a unique lower level response y(x), (A2) for any i, the leaders' objectives F i and the best response function y are continuous, (A3) for any i, there exist a non-empty, convex and compact set K i ∈ R n i such that the set- valued map X i : K i ⇒ K -i is both upper and lower semi-continuous with non-empty closed and convex values, where K -i := k =i K k , (A4) for any i, the composition functions Fi (x) := F i (x, y(x)) are quasi-convex with respect to x i .

Proposition 13. Assume the above conditions (A1) to (A4). Then the MLMFG admits a solution.

Proof. According to [START_REF] Ichiishi | Decentralization for the core of a production economy with increasing return[END_REF] the Nash equilibrium problem dened by the objectives Fi , i = 1, ..., N admits an equilibrium. Thus, x along with the corresponding reaction of the followers ȳ := y(x) yield an equilibrium (x, ȳ) of the MLMFG.

The most intricate condition is (A4). In fact, since usually y(x) is only described implicitly, verifying the quasi-convexity of that composition is very dicult in general, but in some cases it is though possible as has been shown by some researchers.

Sherali in [108, Theorem 2] provided, to the best of our knowledge, the rst existence result for a particular class of MLFG, by somehow using this technique. In the context of In this reformulation, given the upper level strategies x, the selection y i has no additional constraints, but x is constrained implicitly by the other players conjecture in y i ∈ GNEP(x), for i = i. In [71, Proposition 3.1, (iii)], it was proved that E ae is an extension of E, in the following sense. Proposition 14. Any solution of the game E is a solution of the game E ea . Now, for the enhanced game it is proved in [START_REF] Kulkarni | A shared-constraint approach to multi-leader multi-follower games[END_REF]Theorem 3.3] that solutions do exist under mild assumptions. For instance, if the leaders admits a potential: there exists π continuous such that

for all x i , xi , y i , ỹi , x -i , y -i , and the set of strategies is contained in a compact set, then an equilibrium of E ae exists. Theorem 29. Assume that there is a potential π for the leaders, that all the cost functions F i and f j are continuous, and that f j (x, y j , y -j ) and g j,k (x, y j ) are convex with respect to y j . If there exists a minimizer of π over F (for instance, if either π is coercive on F, or if F is compact), then E ae admits an equilibrium.

The All-Equilibrium formulation is an extension of the initial game which guarantees existence of solutions under reasonable assumptions. It is possible that some joint strategies that were not solution of the initial game E are now solution of E ae , even if there exist solutions for the initial game. The question now is how far do we get with this extension.

The simple example below shows that the All-Equilibrium concept is somehow a too big extension.

Example 19. Let there be two leaders and one follower with cost functions given by

It is direct to see that, given x 1 , x 2 ∈ [0, 1], the unique optimal reaction of the follower is y = x 1 +x 2 , so that the conjectures of both players are the actual reaction of the follower. Note that in this example, the reaction of the follower does not aect the leaders' costs, and thus it is very easy to check that there is only one equilibrium which is (x 1 , x2 , ȳ1 , ȳ2 ) = (0, 0, 0, 0).

By the contrary, in the All Equilibrium formulation any combination of leaders' feasible strategies (x 1 , x 2 ) ∈ [0, 1] 2 , with the corresponding conjectures y 1 = y 2 = x 1 + x 2 , yield a solution (x 1 , x 2 , x 1 + x 2 , x 1 + x 2 ) of E ae . Actually, the above example is only one item of a more general family of counterexamples. Proposition 15. Consider any multi-leader-follower game with at least two leaders, with the following assumption for each leader i:

Then, every strategy x of the leaders which is a xed point of K is automatically a solution of the All Equilibrium formulation of the game.

Proof. Let x be any joint strategy of the leaders that is a xed point of X, and let ȳi ∈ GNEP(x) be an optimistic conjecture made by leader i, that is,

Now, consider a leader i = i and his optimistic conjecture ȳi . In the All Equilibrium formulation, leader i has the constraint ȳi ∈ GNEP(x i , x-i ) (where ȳi and x-i are parameters those ambiguities are even more tricky when one deals with reformulation involving Lagrange multipliers. Applications of MLFG are numerous and have been well explored (energy or water management, economics, pollution control, telecommunications, metro pricing [START_REF] Printezis | Pricing and capacity allocation under asymmetric information using Paris metro pricing[END_REF], etc.) but from a theoretical point of view a lot of questions are still open concerning SLMFG, MLMFG and of course even more for MLMFG. For example, to our knowledge, very few papers (see e.g. [START_REF] Jia | Existence and stability of weakly Pareto-Nash equilibrium for generalized multiobjective multi-leaderfollower games[END_REF]) consider sensitivity/stability analysis for MLFG. In the same vein, gap functions has not been studied for this class of problems.

We restricted ourself to deterministic versions of MLFG because considering stochastic models would have been beyond the scope of this chapter. But it is important to mention that some models and results in settings with uncertainties or random variables have been recently studied, see e.g. [START_REF] Mallozzi | Multi-leader multi-follower model with aggregative uncertainty[END_REF][START_REF] Van Ackooij | Optimizing power generation in the presence of micro-grids[END_REF].

Models with more than two levels were also not considered here. Some preliminary studies appeared (see e.g. [START_REF] Aussel | A trilevel model for best response in energy demand-side management[END_REF][START_REF] Aussel | A multi-leader-follower game for energy demand-side management[END_REF]) but applications are calling for more analysis of such models.

Finally we would like to emphasize that one keystone to push further the analysis of MLFG could be to consider, at least as a rst step, some specic structures/models like the concept of Multi-Leader-Disjoint-Follower problem presented in [START_REF] Aussel | Genericity analysis of multi-leaderfollower games[END_REF]. Indeed in those particular interactions between leaders and followers could intrinsically carry properties that allow to obtain more powerful results.

Part IV

Quasi-Equilibrium Problems and

Bi-Functions

Proposition 18 states that the cyclic quasi-monotonicity of f is equivalent to that EP(f, A) is non-empty, for any nite and non-empty A ⊂ C. It was recently proved in [69, Theorem 2.7] that cyclic quasi-monotonicity allows to give an existence result for quasi-equilibrium problem that extends Weierstrass theorem. Theorem 33. Assume C is non-empty and compact, that -f is cyclically quasi-monotone on C, and that the sublevel set [f ≤ 0] is closed. Then EP(f, C) is non-empty.

We observe that the generalized monotonicity properties are preserved under the product with a non-negative scalar. The (cyclic) monotonicity is also preserved under addition, while the (cyclic) quasi-monotonicity is preserved under the maximum operation.

Example 21. We give some example in order to show that all the implications in the graph of Figure 1 are strict, in the sense that the converses are not valid in general. Consider X = [0, 1] 1. f (x, y) := max(0, y -x) is quasi-monotone but not pseudo-monotone; 2. f (x, y) := max(y -x, 2(y -x)) is pseudo-monotone but not monotone; 3. f (x, y) := sgn(y -x) is (quasi-)monotone but not cyclic (quasi-)monotone.

The quasi-monotonicity of a bi-function f , and thus also any of the generalized monotonicity properties, implies that the bi-function has non-positive values on the diagonal, that is, f D ≤ 0. Now let us assume that X is a vector space. Another property that implies non-positive values in the diagonal is the KKM property. A bi-function f is said to have the KKM property (in some places called proper quasi-monotonicity ) on a convex subset C of X if for any non-empty and nite set A ⊂ C and x ∈ co(A), we have min y∈A f (y, x) ≤ 0.

If f has the KKM property on C, then we have f (x, x) ≤ 0 for all x ∈ C. In particular, the bi-function f in Example 20 has the KKM property.

A property that implies that the bi-function has non-negative values is the upper sign property. A bi-function f is said to have the upper sign property if for every x, y ∈ X the following implication holds

As it can be readily seen, the upper sign property has a strong link with pseudo-monotonicity.

In fact, if f has the upper sign property with f D ≤ 0 and f is quasi-convex in its rst argument, then -f is pseudo-monotone. Conversely, if -f is pseudo-monotone and is lower semi-continuous in its rst argument, then f has the upper sign property.

Next it is shown that some of these genralized monotonicity properties allows us to link the solution of the equilibrium problem with those of the Minty equilibrium problem. Proposition 19. Assume that at least one of the following conditions hold:

∈ QEP(f, K), then there would exist y 0 ∈ K(x 0 ) such that f (x 0 , y 0 ) < 0. Since f (x 0 , x 0 ) ≤ 0, by the semi-strictly quasi-convexity of f (x 0 , •) at level 0 we have that f (x 0 , y t ) < 0, for all t ∈ ]0, 1[, where y t := (1 -t)x 0 + ty 0 . If x 0 < ρ, then for t closed enough to 0, we would have that y t ∈ K(x 0 ) ∩ B ρ and f (x 0 , y t ) < 0, which is a contradiction. Otherwise, if x 0 = ρ, then by (UCC) there exists y 1 ∈ K(x 0 ) ∩ B ρ such that f (x 0 , y 1 ) ≤ 0. Then, by proceeding as above we nd an element z t := (1 -t)y 1 + ty 0 , for small t ∈ ]0, 1[, which yields the contradiction f (x 0 , z t ) < 0.

Theorem 34. We assume that f and K satisfy (H) and (UCC) at some large ρ > 0, K is lsc, Fix(K) is closed, and f (x, •) is semi-strictly quasi-convex at level 0 for every x ∈ Fix(K).

Moreover, assume that one of the following assertions hold 1. f is properly quasi-monotone, has the upper sign property on C, and the set-valued map G : Fix(K) ⇒ C dened as

Then QEP(f, K) is non-empty.

Proof. We may assume that ρ is suciently large so that C ρ = ∅. Then, by (UCC),

and so the mapping K ρ dened in [START_REF] Aussel | An existence result for quasi-equilibrium problems[END_REF] has non-empty and convex values. Moreover, due to Lemma 4, the relation above also ensures that K ρ is lsc.

In case 1, we dene the set-valued map M 1 :

which is lsc due to Lemmas 5 and 6. The map M 1 does not have any xed point. In fact, every xed point x of M 1 is also a xed point of K ρ , and hence a xed point of co(G); that is, x ∈ co{x i , i = 1, • • • , k} for some x i ∈ G(x). Hence, min i=1•••k f (x i , x) > 0 and this contradicts the proper quasi-monotonicity of f . Now, since the lsc mapping M 1 has convex values and M 1 (C ρ ) ⊂ B ρ , by Proposition 6 there exists x 0 ∈ C ρ such that M 1 (x 0 ) = ∅. Thus, x 0 ∈ Fix(K ρ ) and G(x 0 ) = ∅. To show that x 0 ∈ QEP(f, K ρ ), we suppose by contradiction that f (x 0 , y) < 0 for some y ∈ K ρ (x 0 ). Then the upper sign property yields some t ∈ ]0, 1[ such that f (ty + (1 -t)x 0 , x 0 ) > 0;

convex, compact and non-empty values. Moreover, from (ii), (iii) and (iv), we deduce that T is convex-valued with open bers and Fix(T ) = ∅. Hence, by Theorem 7 there exists x ∈ Fix(K ρ ) such that K ρ (x) ∩ T (x) = ∅, that means x ∈ QEP(f, K ρ ). The conclusion follows from applying Proposition 25.

Our Theorem 35 has some similarities with Theorem 3 in [START_REF] Tian | Quasi-variational inequalities without the concavity assumption[END_REF], but the set of assumptions in both results dier in two important aspects. Firstly, in [START_REF] Tian | Quasi-variational inequalities without the concavity assumption[END_REF] it was assumed that f is 0diagonally convex on the second variable, while in our case we assume that f is quasi-convex in its second argument and that f vanishes on the diagonal of C × C. Examples in [START_REF] Zhou | Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities[END_REF] show that these assumptions are not comparable in general. Secondly, there is a dierence on the coerciveness conditions. In [START_REF] Tian | Quasi-variational inequalities without the concavity assumption[END_REF] the authors considered a quite restrictive coerciveness condition, which in particular imply that in a non-empty set the images of K are compact.

The following corollary is related to [START_REF] Noor | On general nonlinear complementary problems and quasiequilibria[END_REF]Theorem 3], where a slightly less general kind of quasi-equilibrium problem was considered. Our condition 3 in the corollary is a consequence of this restriction. Corollary 18. Let C be a compact, convex and non-empty subset of R n , let K, K C : C ⇒ R n be set-valued maps such that K C (x) = K(x) ∩ C, and f : C × C → R be a function. If the following assumptions hold 1. K C is usc and lsc with convex, compact and non-empty values,

Proof. The set QEP(f, K C ) is non-empty, due to Theorem 35. The result follows since Assumption 4 implies QEP(f, K C ) ⊂ QEP(f, K).

To end this section we now provide an existence result for quasi-equilibrium problems that is based on the notion of p * .

Theorem 36. Let f : X × X → R be a bi-function, C be a non-empty, convex and compact subset of X and K : C ⇒ C be a set-valued map. If the following assumptions hold:

1. the map K is closed and lsc, with convex and non-empty values, 2. f has both the upper sign property and the p * on C,

for each x ∈ C, the set F x (dened as in [START_REF] Aussel | Electricity spot market with transmission losses[END_REF]) is convex;

then the quasi-equilibrium problem admits at least one solution.

Proof. We dene g : X × X → R ∪ {+∞} as g(x, y) := χ K (x, y) = 0, y ∈ K(x) +∞, otherwise .

Since K is closed, we deduce that g is lower semi-continuous. Moreover, as K is convex valued, the bi-function g is convex with respect to its second argument. So, for each x, w ∈ C, we dene the set G x (w) := {y ∈ C : f (w, y) + g(x, y) ≤ g(x, w)}.

On the one hand if w / ∈ K(x), then G x (w) = C. On the other hand, if w ∈ K(x) we have G x (w) = F w ∩ K(x). Thus, G x (w) is a compact, convex and non-empty subset of C. Since f has the p * on C, for any w 1 , . . . , w n ∈ C, we have

Indeed, put J := {i ∈ {1, . . . , m} :

Thus, there exists z ∈ co(

So, for each x ∈ C, the family of sets {G x (w)} w∈C has the nite intersection property. Since each G x (w) is compact, we have w∈C G x (w) = ∅. Thus, the set-valued map S :

is compact, convex and non-empty valued. We will show now that S is closed. Indeed, let (x i , y i ) i∈I be a net in the graph of S such that it converges at (x, y). For all i ∈ I f (w, y i ) + g(x i , y i ) ≤ g(x i , w) for all w ∈ C.

Taking w ∈ K(x i ) we deduce y i ∈ K(x i ), which in turn implies y ∈ K(x). As K is lower semi-continuous, for all w ∈ K(x) there exists a subnet (x ϕ(j) ) j∈J of (x i ) i∈I and a net (w j ) j∈J converging to w such that w j ∈ K(x ϕ(j) ) for all j ∈ J. So f (w j , y ϕ(j) ) ≤ 0 for all j ∈ J. By the closeness of set M , one has f (w, y) ≤ 0. So, it holds f (w, y) + g(x, y) ≤ g(x, w) for all w ∈ C.

Thus, y ∈ S(x). Additionally, as S(C) is relatively compact, S is upper semi-continuous. Thus, S admits at least a xed point, due to Theorem 7 and Remark 4, that means there exists x 0 ∈ C such that f (w, x 0 ) + g(x 0 , x 0 ) ≤ g(x 0 , w) for all w ∈ C.

Taking w ∈ K(x 0 ) in the previous inequality we have x 0 ∈ K(x 0 ). Therefore, x 0 ∈ MQEP(f, K). Thus, by Proposition 3.1 in [START_REF] Aussel | An existence result for quasi-equilibrium problems[END_REF], x 0 is a solution of the quasi-equilibrium problem.

IV.4.2 Generalized Nash Equilibrium Problem

Here we use the notation of Chapter III.1. Recall that given a rival strategy x -j , player j chooses a strategy x j such that it solves the following optimization problem min x j f j (x j , x -j ), subject to x j ∈ K j (x -j ), [START_REF] Aussel | About the links between equilibrium problems and variational inequalities[END_REF] for any given strategy vector x -j of the rival players. If we denote by S j (x -j ) the solution set of problem (13) a generalized Nash equilibrium is a vector x such that xj ∈ S j (x -j ), for any j.

We can associate to a GNEP, the following bi-function f N I : R n × R n → R, dened by

which is called Nikaidô-Isoda function and was introduced in [START_REF] Nikaidô | Note on noncooperative convex games[END_REF]. Additionally, we consider the set-valued map K : C ⇒ C dened as

Lemma 18. A vector x is a solution of the GNEP if and only if, x ∈ QEP(f N I , K).

A GNEP satises the coerciveness condition at ρ > 0 if 1. K(x) ∩ B ρ = ∅, for all x ∈ C ∩ B ρ ;

2. for each x ∈ Fix(K), such that x = ρ there exists y ∈ K(x) with y < ρ such that f j (y j , x -j ) ≤ f j (x) for each j.

If we consider in R n the product norm given by the maximum of the norms of all the R n j , then the above condition is equivalent to that for each j

2. for each x ∈ Fix(K ρ ), if x j R n j = ρ then there exists y j ∈ K(x -j ) with y j R n j < ρ such that f j (y j , x -j ) ≤ f j (x).

Lemma 19. If the GNEP satises the coerciveness condition at ρ > 0, then the pair f N I and K satises the (UCC) at ρ.

Proof. It is enough to see that if for each j we have f j (y j , x -j ) ≤ f j (x), then

Thanks to Lemmas 18 and 19, we have the following result on the existence of solutions of a GNEP, which is a direct consequence of Theorems 34 and 35.

Theorem 38. For any j ∈ {1, 2, ..., p}, let C j be a non-empty, closed and convex subset of R n j , f j : R n → R be a continuous function and K j : C -j ⇒ C j be a set-valued map. Assume that the GNEP satises the coerciveness condition at ρ, that for each j, f j is convex with respect to the x j variable, and at least one of the following assumptions hold: A1 (a) The set Fix(K) is closed, (b) for each j, the map K j is lower semi-continuous with non-empty and convex values.

A2 (a) for each j, the map K j is closed with non-empty convex values, (b) the set

Then the GNEP admits a solution.

Proof. It is clear that f N I is continuous and convex in its second argument and the map K is closed with convex and non-empty values. By Lemma 19, we have that f N I and K satisfy the UCC at ρ. In case A1, the map K is lsc with convex and non-empty values. Hence, the set-valued map R dened in the second case of Theorem 34 is also lsc with convex values.

So, the result follows from Theorem 34 and Lemma 18.

In case A2 it holds

f N I (x, y) < 0 .

Hence, the result follows from Theorem 35 and Lemma 18.

The previous result is related to Theorem 5 in [START_REF] Aussel | Quasi-variational inequality problems with non-compact valued constraint maps[END_REF]. However, we notice that in assumption A1 the constraint set-valued maps K j are not necessarily closed, while for A2 the maps K j are not necessarily lsc. Moreover, none of the cases assume any dierentiability, and the images of the constraint maps K j are allowed to have empty interior. Finally, their `coerciveness condition' is somehow weaker than ours. In fact, f j (y j , x -j ) ≤ f j (x j , x -j ) clearly implies their condition ∇ x j f j (x), x j -y j ≥ 0, due to the convexity assumption, while the converse implication is not true in general.

We can also use the concept of nite intersection property in this context. Les us consider the bi-function f 0 : R n × R n → R given by

We consider also the important situation of joint constraints, introduced by Rosen in 1965

(see [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave n-person games[END_REF]) and has recently been considered in [START_REF] Aussel | Generalized nash equilibrium problem, variational inequality and quasiconvexity[END_REF][START_REF] Facchinei | Generalized nash equilibrium problems[END_REF][START_REF] Nasri | Equilibrium problems and generalized Nash games[END_REF]. This case is described with a non-empty subset C of X by letting the constraint set-valued maps be dened as

for any j and x = (x j , x -j ) ∈ C. The following result (similar to Lemma 18) states that every solution of the Minty equilibrium problem is a solution of the generalized Nash equilibrium problem in the joint case.

Lemma 20. Let us assume, for any j the subset K j (x -j ) is dened as in [START_REF] Aussel | A multi-leader-follower game for energy demand-side management[END_REF]. Then every solution of MEP(f 0 , C) is a generalized Nash equilibrium.

Proof. Let x be an element of MEP(f 0 , C). For each j and any y j ∈ K j (x -j ) we have f j (x) -f j (y j , x-j ) = f 0 (y, x) ≤ 0, where y = (y j , x-j ) ∈ C, which in turn implies f j (x) ≤ f j (y j , x-j ). The result follows.

Corollary 20. Assume that C is compact and non-empty and for any j the subset K j (x -j ) is dened as in [START_REF] Aussel | A multi-leader-follower game for energy demand-side management[END_REF]. If f 0 dened as in [START_REF] Aussel | Adjusted sublevel sets, normal operator, and quasiconvex programming[END_REF] has the p on C and the set F x = {y ∈ C : f 0 (x, y) ≤ 0} is closed for all x ∈ C, then there exists a generalized Nash equilibrium.

Proof. It follows from Lemma 16 and Lemma 20.

We have that [69, Corollary 4.6] is a direct consequence of Corollary 20, thanks to Proposition 18 . The next result establishes sucient conditions to guarantee the p * of f 0 .

Proposition 26. Assume that each X j is a topological vector space and the set C is convex.

If each objective function is continuous and convex with respect to the variable of its player, then the bifunction f 0 dened as in [START_REF] Aussel | Adjusted sublevel sets, normal operator, and quasiconvex programming[END_REF] has p * on C.

Proof. It is clear -f 0 (•, y) is (quasi-) convex and f 0 vanishes on the diagonal of X × X. By Proposition 1.1 in [START_REF] Bianchi | A note on equilibrium problems with properly quasimonotone bifunctions[END_REF], we deduce f 0 is properly quasi-monotone. Since f 0 is continuous, the result follows from Proposition 23.

Remark 29. An important instance (see [START_REF] Khanh | Versions of the Weierstrass theorem for bifunctions and solution existence in optimization[END_REF]) where f 0 is cyclically quasi-monotone is when each objective function f j has separable variables, that is, it can be written as f j (x j , x -j ) := g j (x j ) + h j (x -j ). Indeed, this follows from writing f 0 (x, y) = p j=1 g j (y j ) -g j (x j ) = ϕ(y) -ϕ(x),

where ϕ(z) = p j=1 g j (z j ), and Example 24.
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