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Abstract

CFD is nowadays used by research engineers as a numerical tool to design and
optimize advanced combustion devices that are employed in energy conversion
systems. In the development of advanced numerical CFD tools, one of the
main research challenges is the identification of a reduced combustion chem-
istry model able to find a compromise between accurate reproduction of the
flame structure and pollutants formation with an affordable CPU cost. In par-
ticular, pollutants formation prediction is a difficult task when complex flame
environments are encountered: flame characterized by mixture stratification,
heat loss and burnt gas recirculation. The present research work focuses on
the modeling of CO and NOx formation in complex flame conditions using a
reduced finite rate chemistry approach. CO and NOx reduced chemistry mod-
els are here developed using the recent virtual chemistry model; it consists
in designing reduced mechanisms made of a network of an optimized number
of virtual species interacting through virtual optimized reactions. In the first
step, the virtual chemistry mechanisms are developed and validated in 1-D
flames comparing the results with detailed chemistry. In a second step, they
are employed to compute several 2-D laminar and 3-D turbulent flame config-
urations which include different combustion regimes: premixed, non-premixed,
partially-premixed and non-adiabatic conditions. The obtained results are val-
idated either with experimental data or with detailed chemistry computations.

Keywords: Combustion model, Reduced mechanism, Pollutants formation,
Complex flame structures, Mixture stratification, Flame heat loss.





Résumé

La CFD est aujourd’hui utilisée par les ingénieurs de recherche comme un outil
numérique pour concevoir et optimiser les dispositifs de combustion avancés
qui sont utilisés dans les systèmes de conversion d’énergie. L’un des principaux
objectifs de la recherche, dans le développement d’outils numériques avancés
pour la CFD, est l’identification d’un modéle réduite de cinitique chimique de
la combustion qui reproduit la structure de la flamme et la formation de pol-
luants avec un coût de calcul abordable. En particulier, la prédiction de la
formation de polluants est une tâche difficile lorsque des flammes complexes
sont rencontrées: stratification du mélange, pertes de chaleur et recirculation
des gaz brûlés. Le travail de recherche mené dans cette these se concentre
sur la modélisation de la formation monoxyde de carbone (CO) et des oxy-
des d’azote (NOx) dans des conditions de flamme complexes en utilisant une
methode récemment développée et appelée chimie virtuelle: celle-ci consiste
à concevoir des mécanismes réduits constitués d’un réseau d’un nombre opti-
misé d’espèces virtuelles interagissant via des réactions virtuelles optimisées.
Dans une première étape, les mécanismes virtuels sont développés et validés
dans des configurations de flammes 1-D. Dans un deuxième temps, ceux-ci sont
utilisés pour calculer plusieurs configurations de flammes 2-D laminaires et 3-
D turbulentes sur une large gamme de régimes de combustion: prémélangé,
non prémélangé, partiellement prémélangé et non adiabatique. Les résultats
obtenus sont validés avec des données expérimentales et avec des calculs inclu-
tant une cinetique chimique détaillée.

Mots-clés: Modéle de combustion, Mècanisme réduit, Formation de pollu-
ants, Structures complexes de flamme, Stratification du mélange, Pertes ther-
mique de la flamme.
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Introduction

This thesis is part of the CLEAN-Gas project (Combustion for Low Emission
Applications of Natural Gas)( http://www.clean-gas.polimi.it.) CLEAN-
Gas project is funded by the European Community through the Horizon 2020
Actions. CLEAN-Gas Project, coordinated by Politecnico di Milano, started
January 1st, 2015; it involves 4 partners from the Academia (Politecnico di Mi-
lano, Centrale Supélec, Technische Universität Darmstadt and Université Libre
de Bruxelles), 3 industrial partners (Ansaldo Energia, Rolls-Royce Deutschland
and Numeca) and T.I.M.E. Association.
The CLEAN-Gas scientific goal is to develop new experimental and numerical
tools for improving natural gas combustion in innovative burners.
One of the main key points of the project was the mobility of the Phd canditates
among the institutions involved in the program, creating the opportunity to
strengthen research collaborations and connections.
In line with the spirit of the mobility program, the present work of thesis was
conducted in collaboration with the Department of Chemistry, Materials, and
Chemical Engineering at Politecnico di Milano.

Combustion science in the energy scenario

In 2016, the global energy demand measured in TPES (Total Primary Energy
Supply) was about 13800 Mtoe.1
Figure 1 (International Energy Agency 2018) shows a comparison between the
Total Primary Energy Supply (TPES), globally demanded respectively in 1971
and 2016, divided by energy sources. Although the amount of TPES has largely
increased through the years (of about 2.5 times), the repartition has just slightly
changed among the primary sources. It is clear that the role of the fossil fuels
still remains predominant. Hence, combustion energy technologies, that convert
chemical potential energy of fossil fuels into thermal power, are largely the most
used in the energy scenario.
Furthermore, combustion technologies are also used for energy valorization of
wastes and bio-fuels that also play a significant role in the TPES repartition
(about 10%).

1
1 Tonne of Oil Equivalent ⇠ 42GJ

http://www.clean-gas.polimi.it


2 Introduction

Figure 1: Total Primary Energy Supply (TPES) divided by fuel. Data from Inter-
national Energy Agency: World energy balance 2018 overview (https: // www. iea.
org/ ).

In the World Energy Outlook 2017 of the International Energy Agency (In-
ternational Energy Agency 2017), keeping into account the rise of final energy
demand through future years, two possible energy scenarios have been projected
until 2040, in terms of TPED, characterized by energy sources:

• The NPS (New Policies Scenario), presented in Fig. 2, is evaluated
considering the existing energetic policies and the ones announced by
the various countries.

• The SDS (Sustainable Development Scenario), presented in Fig. 3, out-
lines an integrated approach to achieve internationally agreed objectives
on climate change, air quality and universal access to modern energy in
accordance with the recent Paris Agreement COP212.

Observing at the NPS, in 2040, the global energy demand is expected to grow
by 30%. Despite the development, deployment and falling costs of renewable
energy technologies it is expected that they will cover only 40 % of this growth.
Consequently, although the transformation in energy conversion technologies

2
The result of the United Nations Framework Convention on Climate Change (UNFCCC)

Conference of the Parties 21st (COP21) meeting in December 2015

https://www.iea.org/
https://www.iea.org/
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Figure 2: Primary energy demand in the New Policies Scenario. Data from
International Energy Agency: World Energy Outlook 2017 (https: // www. iea. org/
) .

is continuing to meet the energy demand, combustion energy conversion tech-
nologies will still play a major role. However, it can be observed a stagnation
in oil and coal usage; on the contrary the natural gas demand is expected to
grow accounting for a quarter of global energy demand.
Analysing the SDS scenario, it can be observed that: besides the increase of
renewable energy technologies contribution the most important role is played
by the increase of the energy conversion efficiency and by the substitution of
oil and coal by natural gas.
It clearly appears that to follow the NPS and to gear it toward the SDS, in
order to deal with global warming and air pollution, two main routes must be
followed:

• Invest in low-carbon technologies diversifying energy sources.

• Improve the efficiency of energy conversion devices that are based largely
on combustion technologies.

The focus of the research activity conducted in this thesis is on the second route
and in particular on combustion processes.
The two main drawbacks of combustion processes are: their contribution to
global warming and to the pollution of industrial and urban areas. The en-
ergy sector, production, transformation and the use of energy, is central for the
climate change challenge. It accounts for around two-thirds of global Green
House Gases (GHG) emissions and about 90% of carbon dioxide (CO2) emis-
sions, most prevalent GHG.
The CO2 emissions are directly related to the efficiency of the combustion

https://www.iea.org/)
https://www.iea.org/)


4 Introduction

Figure 3: Primary energy demand in the Sustainable Development Scenario.
Data from International Energy Agency: World Energy Outlook 2017 ( https: //
www. iea. org/ )

devices and to the type of fuel that is used in the combustion process. Hence,
improving the efficiency of the combustion devices and looking for cleaner fuel
such as natural gas are the main objectives to pursue.
Instead, to improve the local air quality (especially in the urban and industrial
areas) the reduction of pollutant emissions from combustion processes is of
paramount importance.
Policy attention to air quality is rising because its impacts on human health is
causing great concern. Making reference to the New Policies Scenario, world-
wide premature deaths from outdoor air pollution, from 3 million today, will
have rise to more than 4 million by 2040. Fuel combustion in the energy sector
is the main origin of air pollutants: for example 85% of particulate matter and
almost all of the sulfur oxides and nitrogen oxides (International Energy Agency
2016). Therefore it is important to invest in research solutions to tackle this
issue, reconciling it with the world’s energy requirement.

Numerical simulation tools for flame modeling

Combustion engineers use numerical simulation to design and optimize com-
bustion devices. This is an alternative and sometimes cheaper solution to large
scale experiments. Furthermore, numerical simulation allows to access to flame
quantities that cannot be reached with experimental studies. Numerical tools
can reproduce the entire combustion device or a single part of it or only one
particular phenomenon involved in the process.
However, the transfer of engineering tools from the academia to industry re-
quires the research of numerical models that are reliable and at the same time

https://www.iea.org/)
https://www.iea.org/)
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relatively cheap in terms of computational cost.
CFD (Computational Fluid Dynamics) simulation, applied to the solution of
complex combustion processes, has made significant efforts in recent years,
allowing the simulation of real-scale combustion chambers such as industrial
and power generation furnaces (Vascellari et al. 2014; Galletti et al. 2013),
gas turbine combustors (Boileau et al. 2008; Philip et al. 2015; Esclapez et al.
2017) and piston engines (Hasse et al. 2010; Vermorel et al. 2009). With
the increase of available CPU power, LES models replace RANS models more
and more, even for industrial scale burner simulations. LES allows to solve the
large-scale turbulent eddies in time and space giving finer information about the
non-stationary phenomenon affecting the flame (Poinsot and Veynante 2018).
Despite the recent important research achievements, developing numerical mod-
els for combustion applications, that are suitable for LES, still constitute a
challenge for the research community.
The accurate reproduction of pollutant formation (CO, NOx, unburnt hydro-
carbons, etc...) and inner flame structure prediction in turbulent flame simu-
lations, at an affordable CPU cost, is still a research topic of interest and that
needs to be fully addressed and better understood.
Pollutant formation prediction is even a more challenging task when complex
phenomena (such as mixture stratification, heat transfer, burnt gases recircu-
lation, etc...) affect the flame.
Indeed, industrial combustion devices operate in complex flame conditions: air
and fuel are often injected separately in the combustor or they are partially pre-
mixed before entering the chamber to improve flame stability. Consequently,
coexistence of premixed and non-premixed flame structures is encountered. Fur-
thermore, in enclosed flames, the non-adiabaticity of the chamber walls lowers
the flame enthalpy affecting pollutant formation and it is at the origin of strain
and extinction phenomena. Model pollutant formation in such complex oper-
ating conditions, at an affordable CPU cost, is indeed a challenging task.

Pollutant prediction at low-CPU cost

Pollutant formation modeling (CO, NOx and polycyclic aromatic hydrocarbons
(PAHs)), requires the accurate reproduction of the inner flame structure. This
is achieved through the inclusion of complex detailed chemistry at one stage
of the modeling process: either detailed chemistry is directly included in the
computation or it is used as reference to derive a reduced combustion chemistry
model.
For hydrocarbon fuels, detailed chemistry schemes include hundreds of species
and thousands of reactions and the size of the scheme scales with the complexity
of the fuel (Lu and Law 2009). The size of the chemical mechanism employed
in the numerical simulation directly affects its CPU cost (Lu et al. 2009).
Furthermore, the direct inclusion of complex chemistry in large scale CFD
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simulations is a complex task: the time and spatial resolution scales, required
by some detailed chemistry species, are smaller than the flow ones by several
orders of magnitude.
The above motivations make detailed chemistry not suitable for multidimen-
sional CFD computations. But, 0-D reactors and 1D-flame computations are
easily carried out employing detailed chemistry.
Several reduced order chemistry models are currently employed (Fiorina et al.
2015) in multi-dimensional CFD computations to limit the simulation CPU
demand:

• Global or semi-global reduced mechanisms (Westbrook and Dryer 1981;
Jones and Lindstedt 1988; Franzelli et al. 2010).

• Tabulated chemistry (Peters 1984; Gicquel et al. 2000; Van Oijen et al.
2001; Pierce and Moin 2004).

• Systematically reduced mechanisms. (Lu and Law 2008a; Pepiot-Desjardins
and Pitsch 2008; Felden 2016).

All these reduced chemistry strategies use detailed chemistry information, com-
ing from 0-D and/or 1-D computations, in the preprocessing phase, to build up
the model and to tune its parameters.
Semi-global kinetic schemes, generally made of 1 up to 4 global reactions, are
not suitable for pollutant prediction. Pollutants species are not often included
in the mechanism. If CO is included, only its final equilibrium concentration is
correctly retrieved but the CO along the inner flame structure is not accurate
(Franzelli et al. 2013).
Tabulated chemistry methods, in the original formulation, allow to reproduce
CO when the flame regime is apriori identified and the local flame structure
stays close to the tabulated archetype. In the tabulated chemistry formalism,
when the flame regime is apriori identified, NO prediction need further modeling
assumptions (Nafe and Maas 2002). Additional coordinates have to be added
to the chemtable (Pecquery et al. 2014) and additional scalars have to be
transported in the flow solver (Ihme and Pitsch 2008; Ketelheun et al. 2011;
Godel et al. 2009).
The capability of analytically reduced chemistry to predict CO and NOx has
been recently demonstrated in laboratory scale jet flame (Jaravel et al. 2018)
and in aeronautical burners (Jaravel et al. 2017). However, the computa-
tional cost associated with this methodology still remains very high making
its applicability restrictive. The CPU cost increases rapidly with the number
of transported species and numerical difficulties arise because a wide range of
chemical time scales have to be considered (Lu et al. 2009).
Cailler (2018) has recently developed an alternative methodology called Virtual
chemistry to face the above limitations. Virtual chemistry aims at combining
low CPU cost with accurate flame structure prediction, including pollutant
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species. Cailler (2018) have demonstrated the applicability of the methodology
to multi-modal flame (premixed and non premixed) conditions for the scope of
temperature, heat release and CO prediction.

Thesis scope and contributions

In line with the combustion modeling challenges described above, the present
research work focuses on the prediction of CO and NOx formation in complex
flame conditions at reduced CPU cost. Multi-modal flame regimes and flame
heat losses are considered. Here, the words multi-modal or multi-regime stand
equivalently for coexistence of premixed and non-premixed flame structures.
In this thesis, CO and NOx reduced chemistry models are developed using the
recent virtual chemistry approach (Cailler 2018).
Once the mechanisms are developed and validated in 1-D laminar flame archetypes,
their applicability to multidimensional laminar and turbulent CFD computa-
tions is shown, demonstrating the value of the approach. The multidimensional
CFD results are either validated versus experimental data for the turbulent test
cases or compared to fully detailed chemistry computations for laminar config-
urations.
The validity domain of the virtual chemistry approach is further broadened with
respect to Cailler (2018) thesis work. The virtual chemistry applicability to
multi-dimentional CFD computations (turbulent LES and laminar) at reduced
CPU cost, is further demonstrated.
In particular, virtual chemistry is challenged and validated in the LES context
in two turbulent flame configurations:

1. Sydney inhomogeneous piloted burner (Meares and Masri 2014;
Barlow et al. 2015) representative of multi-modal turbulent flame condi-
tions.

2. Preccinsta burner (Meier et al. 2007) which is a confined flame im-
pacted by wall heat losses.

NO virtual chemistry prediction is validated in 2-D laminar premixed, non-
premixed and partially premixed configurations.
A schematic and brief overview over the thesis research scopes and achieve-
ments is presented in Fig. 4. CO and NOx emissions are modelled in CFD
computations. CO is reproduced in 3-D turbulent conditions in the Sydney
inhomogeneous piloted burner and in Preccinsta burner. Instead, NO is repro-
duced in 2-D multi-modal laminar flame benchmarks and directly compared to
detailed reference chemistry.

Thesis outline

The present thesis work is divided in 3 parts:
1. The first thesis part includes the first three chapters. Chapter 1 deals
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Figure 4: Overview on the thesis scope and achievements

with basis of the thermal and kinetic theory valid for reactive ideal gases
including the 3-D governing equations. The equations are also presented
in the LES formalism, describing the possible modeling strategies for the
unclosed terms. Chapter 2 presents the challenges related to combus-
tion chemistry description and the most used literature strategies to de-
scribe combustion chemistry at reduced CPU cost. Chapter 3 introduces
and describes the recent virtual chemistry methodology in the original
formulation proposed by Cailler (2018). Finally the research challenges
addressed by this work are briefly reminded.

2. The second part presents the virtual chemistry developments conducted in
this research work. Virtual chemistry is before enlarged to non-adiabatic
flame conditions in Chapter 4: the non adiabatic virtual chemistry model
is developed and validated in 1-D non adiabatic flame conditions. In
Chapter 5, an NO virtual chemistry mechanism is designed and validate in
1-D laminar premixed and non premixed flame conditions. The developed
NO reduced mechanism is employed to carry out a premixed, a non-
premixed and a partially premixed 2-D laminar flame computations and
compared to detailed reference chemistry simulations.

3. The third part is dedicated to the 3-D turbulent flame computations.
Chapter 6 focuses on the LES modeling of the new Sydney inhomoge-
neous piloted burner (Meares and Masri 2014). Here, LES-virtual chem-
istry results are compared with an LES-tabulated chemistry reference
solution and to experiments. In Chapter 7, LES of the Preccinsta burner
is carried out, prescribing non adiabatic boundary conditions along the
chamber walls. Eventually, LES-virtual chemistry results are compared to
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experiments and to a literature recent LES-analytic chemistry reference
solution.





Part I

Combustion chemistry modeling





Chapter 1

Combustion theoretical basis

Contents

1.1 Thermo-chemical equilibrium and detailed kinetic 14

1.2 Thermo-chemistry combustion modeling . . . . . . 16

1.2.1 Thermodynamic . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Kinetic and chemical-equilibrium theory . . . . . . . 18

1.3 Governing transport equations . . . . . . . . . . . . 20

1.3.1 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.4 Species . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Turbulent combustion . . . . . . . . . . . . . . . . . . 23

1.4.1 Numerical solution of turbulent flows . . . . . . . . . 23

1.4.2 Large Eddy Simulation . . . . . . . . . . . . . . . . 25

1.4.3 Filtered balance equations . . . . . . . . . . . . . . . 26

1.4.4 Turbulent combustion modeling in LES . . . . . . . 27

The present chapter gives the basis of the thermal and kinetic theory for
reactive ideal gases. This theory is usually employed in the generation
of thermo-chemical databases dedicated to hydrocarbon fuels oxydation.
Furthermore, laminar and turbulent flame simulation requires the cou-
pling of the thermo-chemistry with 3-D fluid transport equations (mass,
momentum, energy and species) which are also briefly introduced in
the chapter. In addition, the 3-D transport governing equations are
presented in the LES formalism to address turbulent flows description.
The combustion modeling challenges introduced by the closure of the
LES filtered scalars source term are finally discussed.
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Figure 1.1: Equilibrium adiabatic flame temperature versus equivalence ratio for
CH4/air combustion. The calculation are at atmospheric pressure and considering a
fresh mixture temperature of 300K. The reference solution (53 species) is compared
with solutions obtained with a simplified set of products.

1.1 Thermo-chemical equilibrium and detailed kinetic

A combustion process, involving a hydrocarbon fuel, does not occur in a single
global reaction, but it involves a huge number of reaction steps, involving mul-
tiple species and radicals. These steps depend from the nature of the fuel and
on the operating conditions. Starting from pure fuel and oxidizer, it takes a
certain number or chemical pathways to reach combustion products and hence
chemical equilibrium conditions.
The equilibrium state can be determined through the knowledge of thermo-
dynamic properties of the mixture. The inclusion of a sufficient number of
species in the mixture is the controlling parameter to retrieve accurately the
equilibrium conditions. For example, starting from a methane-air atmospheric
mixture, considering a constant pressure flame, the adiabatic equilibrium tem-
perature and composition depend from the number of species included in the
model.
Figure 1.1 shows the evolution of the adiabatic equilibrium temperature across
the whole flammability limit, comparing the reference solution versus simplified
ones (Franzelli et al. 2010). The reference mixture includes 53 species, as
in the GRI.3.0 detailed mechanism (Smith et al. 2011), while the simplified
ones include an increasing number of product species in the mixture: from 2
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products (CO2, H2O) to 4 products (CO2, H2O, CO, H2). At least 4 products,
in addition to the fresh species, are necessary to capture the proper equilibrium
temperature over the whole flammability limit.
Instead, the analysis of the chemical pathways that describe the transition from
fresh gases to burnt equilibrium conditions is given by chemical kinetic.
The correct description of chemical kinetic is of paramount importance in com-
bustion processes because the operating conditions and the short residence time
lead to a departure from thermo-chemical equilibrium state.
The knowledge of the detailed oxidation process of an hydrocarbons fuel is a
complex task. It involves a huge number of intermediate species, radicals and
intermediate reactions.
Detailed thermo-chemical databases are retained in this thesis as reference to
develop reduced-order chemistry models which are more suitable for multidi-
mensional simulations.

Hydrocarbons oxidation: the example of CH4/Air system To show
the complexity of the detailed kinetic description of an oxidation process, here,
the example for the CH4/Air system is presented. The oxidation process of
methane involves a large number of chemical reaction steps. A "schematic"
interaction model is presented in Fig. 1.2, as proposed by Ranzi et al. (1994)
and recently revised by Curran (2018).

C2H6

C2H5

C2H4

C2H3

C2H2

CH4

CH3

CH3OO

CH3O

CH2O

HCO

CO

CHi

CH3OOH

CH3OH

CH2OH

CO2

(+O2, O, OH, H)

(+O2)

(+O2)

(+OH)
PAH

Figure 1.2: Simplified scheme of methane and oxygen interaction.
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Figure 1.2 shows a linear progression from CH4 to CO2 including several path-
ways originating from methyl (CH3) radical. The mechanism starts with an
attack to the CH4 molecule by oxygen and/or hydrogen radicals (O, H, OH) to
produce the methyl radical. From methyl radical different paths can be covered
to reach the complete or incomplete oxidation:

• High temperature oxidation: formation of methoxy radicals (CH3O) and
successive formation of formaldehyde (CH2O).

• Low temperature oxidation: alternative routes are pursued to form CH3O
and CH2O through the intermediate production of methanol (CH3OH)
and other radicals.

• Pyrolysis reactions: ethane (C2H6) is formed as results of recombina-
tion process. Subsequently, pyrolysis reactions take place including the
possible PAH (poly-aromatic hydrocarbons) formation.

At high temperature, CH3, may also form CHi radicals that are precursors of
prompt NO formation.
The competition among the various oxidation paths strongly depends from the
operating conditions of the system such as temperature, pressure and local
equivalence ratio.

1.2 Thermo-chemistry combustion modeling

Along a combustion process, the local state of a reactive ideal gas mixture is
uniquely defined by the knowledge of ⇢, T , Yk for k=1,...,Ns. Where ⇢ is the
gas density, T the gas temperature and Yk is the mass fraction of the Ns species
present in the system. The pressure is uniquely relate to the above quantities
through the equation of state (EOS).
Considering an ideal gas mixture, at local thermal equilibrium, the EOS reads:

P =
NsX

k=1

[Xk] RT =
⇢RT

W
(1.1)

Where R1 is the universal gas constant, [Xk] is the species molar concentration
equal to ⇢Yk/Wk. Wk is the species molecular weight and W is the mixture
mean molecular weight.
W is computed from the knowledge of either the species mole fractions or the
species mass fractions, respectively as:

W =
NsX

k=1

WkXk; W =
1

P
Ns

k=1 Yk/Wk

(1.2)

1
R = 8.3143 J/(mol.K) in the S.I
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1.2.1 Thermodynamic

Each species of the gas-phase mixture is characterized by own thermodynamic
properties. In the "thermally perfect gas" hypothesis the thermodynamic prop-
erties of the species are functions of the temperature only (independent on pres-
sure), following an n-order polynomial fit function. The polynomial function
are usually expressed in accordance with the NASA formulation for gas-phase
kinetic (McBride et al. 1993). For each species, seven coefficients are needed
for each of the two temperature ranges: for temperature lower and greater than
1000 K (Burcat et al. 2005). These coefficients allow to generate the thermody-
namic functions: heat capacity, enthalpy and entropy. The molar heat capacity
is calculated as a 4th-order temperature polynomial function :

Cpk

R
= a1k + a2kT + a3kT

2 + a4kT
3 + a5kT

4 (1.3)

The species molar enthalpy Hk is given as the molar heat capacity integral, as
follows:

Hk =

Z
T

0
CpkdT + Hk(0) (1.4)

The first contribution is the sensible enthalpy while the second one in the stan-
dard enthalpy of formation evaluated at the reference temperature T0, known
also as �H0

f,k
. The reference temperature T0 is a usually chosen equal to 0 K

or 298 K. According to the NASA polynomial functions (McBride et al. 1993),
the molar enthalpy Hk is equal to:

Hk

RT
= a1k +

a2k

2
T +

a3k

3
T 2 +

a4k

4
T 3 +

a5k

5
T 4 +

a6k

T
(1.5)

The molar entropy is calculated as:

Sk =

Z
T

0

Cpk

T
dT + Sk(0) (1.6)

and using the NASA-polynomial formulation (McBride et al. 1993), it is equal
to:

Sk

R
= a1k lnT + a2kT +

a3k

2
T 2 +

a4k

3
T 3 +

a5k

4
T 4 + a7k (1.7)

Each of the three above molar properties are generically identified with a capital
letter  k that can be also expressed in mass units  k by dividing  k by the
species molecular weight Wk.



18 Chapter 1 - Combustion theoretical basis

1.2.2 Kinetic and chemical-equilibrium theory

A chemical reactive system can be formalized by the following set of stoichio-
metric equations:

NsX

k=1

↵
0
ki�k $

NsX

k=1

↵
00
ki�k (i = 1, ..., Nr) (1.8)

where Nr is the number of reversible or irreversible reactions and Ns the number
of chemical species present in the system.
↵

0
ki

and ↵
00
ki

are respectively the forward and backward stoichiometric coeffi-
cients of the kth species �k involved in the ith reaction.
The net kth species molar production rate results from a summation of individ-
ual rates qki over all the reactions:

!̇k =
NrX

i=1

qki (1.9)

The reaction progress qki of kth species in the ith reaction is expressed as the
temporal variation of [Xk] in the reaction i:

qki =
d [Xk]

dt

����
i

= ↵kiqi (1.10)

where ↵ki = ↵
00
ki

� ↵
0
ki

is the net species stoichiometric coefficient and qi the
net reaction rate for reaction i that is expressed as:

qi = kfi

NsY

k=1

[Xk]
↵
0
ki � kbi

NsY

k=1

[Xk]
↵
00
ki (1.11)

where kfi and kbi are the forward and backward rate for the reaction i.
Eq. 1.10 is valid under the hypothesis of mass-action kinetic and when the
mechanism is written in term of elementary reactions.
The forward rate constant kfi is usually expressed as a temperature-depended
modified Arrhenius function:

kfi = AiT
�i exp

✓
�Ei

a

RT

◆
(1.12)

where Ai is the pre-exponential factor, Ei
a is the activation energy and in the

modified Arrhenius law a temperature exponent �i is added. The term AT � is
the frequency factor and it accounts for the effect of the molecules size while
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the exponential part specifies the fraction of collision that have energy level
greater than the threshold activation energy Ea.
For a given chemical reaction, the Arrhenius parameters are neither functions
of the concentrations nor functions of temperature (Kuo 2005).
For the ith reaction, the equilibrium constant relates kbi to kfi as:

kbi =
kfi

Keq,i

(1.13)

The equilibrium constant is calculated from the knowledge of species thermo-
dynamic properties defined in Sec. 1.2.1, as follows:

Keq,i = Kpi

✓
Patm

RT

◆P
Ns

k=1 ↵ki

with Kpi = exp

✓
�Si

R
� �Hi

RT

◆
(1.14)

� refers to the change in standard thermodynamic properties along the reaction
i.
In elementary kinetic, species concentration reaction orders are assumed equal
to the species stoichiometric coefficients (↵0

ki
and ↵

00
ki

). Arbitrary reaction or-
ders are sometimes specified, to represent global reactions. In this case, the
species concentration proportionality follows an arbitrary reaction order con-
centration and qi is rewritten as:

qi = kfi

NsY

k=1

[Xk]
F

i

k � kbi

NsY

k=1

[Xk]
R

i

k (1.15)

Using arbitrary reaction orders, a constraints between the forward F i

k
and the

backward Ri

k
coefficients must be fulfilled to ensure that equilibrium elementary

kinetic is not modified. In fact, at equilibrium, according to elementary kinetic
the condition qi = 0 have to be fulfilled. This condition is ensures only if:

kbi

kfi

=
NsY

k=1

[Xk]
↵
0
ki

�↵
00
ki =

NsY

k=1

[Xk]
F

i

k
�R

i

k (1.16)

As consequence, in the case of arbitrary defined reaction order are used, the
proper equilibrium behaviour is retrieve, if:

F i

k � Ri

k = ↵
0
ki � ↵

00
ki for (k = 1, ..., Ns) (1.17)

In an hydrocarbon oxidation process, some reactions require a third body to
proceed. In this case, the third body concentration explicitly appears in the
expression of the rate-of-progress qi (Kee et al. 1989).
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Some reactions exhibit dependency from pressure. In this case, the reaction
rate is increased (unimolecular/recombination fall-off reactions) or decreased
(chemically activated bimolecular reactions) with increasing pressure (Kee et al.
1989).
The reaction rate parameters detailed above along with species themodynamic
properties, presented in Sec. 1.2.1 are used for the generation of detailed
thermo-kinetic databases (Kee et al. 1989).

1.3 Governing transport equations

In addition to thermodynamic species properties and chemical kinetics, the
solution of a combustion process, involves the knowledge of the flow conditions.
For that purpose, the interaction between the flow governing equations and
combustion chemistry must be described.
For a reactive gas, the derivation of the conservation equations must consider
the presence of Ns species that can be transformed each other releasing heat.
The governing equations for continuity, momentum and energy, classically used
in fluid mechanics, must be coupled to transport equations for scalars that track
the reactivity of the system.
The transported scalars usually coincide with all the species involved in the
chemistry mechanism plus the energy. Then, the number of scalar transport
equations in the flow solver is equal to Ns + 5 (3 for momentum, 1 for mass
and 1 for energy).
The general governing equations are presented in the following sections, using
Einstein notation.

1.3.1 Mass

The continuity or mass equation is:

@⇢

@t
+

@

@xi

(⇢ui) = 0 (1.18)

ui is the the ith velocity component and ⇢ is the mixture density. In a com-
bustion process, the density is not constant and it is related to temperature
pressure and composition through the EOS that for ideal gases has the formu-
lation expressed in 1.1.

1.3.2 Momentum

The flow field, through the velocity components ui, is the solution of the mo-
mentum equation:

@⇢ui

@t
+

@

@xi

(⇢uiuj) = � @p

@xi

+
@⌧ij
@xi

+ Fi (1.19)
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p is the static pressure, Fi represents the body forces and ⌧ij is the viscous
stress tensor:

⌧ij = µ

✓
@ui

@xj

+
@uj

@xi

� 2

3
�ij
@uk

@xk

◆
(1.20)

µ is the dynamic viscosity and �ij is Kronecker symbol2.

1.3.3 Energy

The energy balance equation can be expressed by using multiple formulations,
as detailed in Poinsot and Veynante (2005). In the present thesis work, the
balance equation for total enthalpy h (chemical plus sensible), as defined in
Eq.1.4, is detailed. In all the multi-species computations that are performed
in the following chapters, the total enthalpy balance equation (or equivalently
the sensible enthalpy) is considered.
The balance equation for enthalpy h is written as:

@

@t
(⇢h) +

@

@xi

(⇢uih) = �@fi

@xi

+ ⌧ij
@ui

@xj

(1.21)

and it can be rewritten in term of sensible enthalpy hs as:

@

@t
(⇢hs) +

@

@xi

(⇢uihs) = �@fi

@xi

+ ⌧ij
@ui

@xj

+ !̇T (1.22)

The diffusive heat fluxes fi include the following terms:

qi = ��@T

@x
+ ⇢

NsX

k=1

hkYkVk,i (1.23)

The first term is the heat diffusion expressed through the Fourier’s Law, while
the second is the heat transfer associated with diffusion of species.
!̇T is the heat released from the combustion proces:

!T =
NsX

k=1

�h0
f,k!̇k (1.24)

The term ⌧ij@ui/@xj describes frictional heating. It is usually neglected in
combustion application at low speed (low-Mach flames).

2 �ij=1 if i = j and 0 otherwise.
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1.3.4 Species

A balance equations for the mass fraction of each species k, involved in the
combustion process, is written:

@

@t
(⇢Yk) +

@

@xi

(⇢uiYk) = � @

@xi

(⇢Vk,iYk) + !̇k (1.25)

Vk,i is the diffusion velocities of the species k in the ith direction and !̇k is the
chemical source term, computed as in Eq. 1.9.
By definition:

NsX

k=1

YkVk,i = 0 and
NsX

k=1

!̇k = 0 (1.26)

The molecular transport process that causes the diffusive species fluxes is a
complex phenomenon that involves the kinetic theory of gases for the compu-
tation of binary diffusion coefficients Dkj .
A full description of the complex species diffusion, can be found in Williams
(1985) and in Ern and Giovangigli (1994).
In CFD codes the diffusion velocities is usually closed using an equivalent dif-
fusion coefficient Dk for each species describing the diffusion of the species k
in the rest of the mixture. One possibility is to use the Hirschfelder and Cur-
tiss approximation (Hirschfelder et al. 1954) in which the diffusion velocity is
expressed using the following formulation:

Vk,i = �Dk

Xk

@Xk

@xi

with Dk =
1 � YkP

j 6=k
Xj/Djk

(1.27)

The Hirschfelder and Curtiss approximation does not respect the mass conser-
vation (Eq. 1.18). In order to retain this approximation, the correction velocity
Vc is added (Poinsot and Veynante 2005) and the species diffusion term reads:

⇢Vk,iYk = ⇢

✓
�Dk

Wk

W

@Xk

@xi

+ YkV
c

i

◆
with V c

i =
NsX

k=1

Dk

Wk

W

@Xk

@xi

(1.28)

The mixture-averaged Hirschfelder and Curtiss approximation is used in this
thesis to conduct 1-D detailed chemistry calculations with REGATH (REal
GAs THermodynamics) solver and in the 2-D detailed chemistry done with
laminarSMOKE.
It is possible to express the mixture-averaged approximation through a Fick’s
law. In this case, the diffusion velocity is assumed to be proportional to the
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species mass fraction gradient:

⇢Vk,iYk = ⇢

✓
�Dk

@Yk

@xi

+ YkV
c

i

◆
with V c

i =
NsX

k=1

Dk

@Yk

@xi

(1.29)

The effective diffusion coefficient Dk is calculated by using either binary dif-
fusion coefficients 1.27, 1.28 or by using simplified approaches through the
knowledge of the dimensionless species Lewis number Lek and mixture aver-
aged properties:

Dk =
Dth

Lek

with Dth =
�

⇢cp

with � =
µcp

Pr
(1.30)

Where Dth is the thermal diffusion coefficient, cp is the mixture massic heat
capacity, � and µ respectively the thermal mixture conductivity and mixture
viscosity. Pr is the Prandtl number for the mixture. Species Lewis number and
Prandtl number slightly changes across the flame front (Poinsot and Veynante
2005) justifying the assumption of retaining constant values. This approach is
currently used to capture preferential diffusion effects at reduced computational
cost in skeletal and analytically reduced chemistry (Jaravel 2016).
A more simple approach is to assume unity Lewis number and as consequence
the species diffusion coefficients are all equal to the thermal one. This simplified
approach is employed in the current thesis for the virtual chemistry calculations
both for 1D-laminar flames and 3D-turbulent ones.

1.4 Turbulent combustion

1.4.1 Numerical solution of turbulent flows

Industrial flames are usually stabilized using turbulent flows. Turbulent flames
allow to increase the volumetric energy density of a system in comparison with
laminar ones. For turbulent flows, the numerical solution of the governing
balance equations, presented in the previous section, is achieved according to
one of the three following strategies (Versteeg and Malalasekera 2007; Pope
2000; Echekki and Mastorakos 2010):

• Reynolds averaged Navier Stokes (RANS) (Launder and Spalding 1983).
The balance equations are formulated for the time mean flow quantities.
The effect of the turbulence on the mean flow quantities is modeled over
the whole energy turbulent spectrum.

• Large Eddy Simulations (LES) (Pope 2000; Sagaut 2006). A spatial filter
(box, Gaussian etc.) of size � is introduced and applied to the instanta-
neous flow quantities. The larger turbulent eddies are explicitly resolved
whereas the effect of smaller ones on the filtered quantities is modeled.
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Figure 1.3: RANS, LES and DNS are summarized in terms of modeled and solved
turbulent eddies in spectral and physical space when homogeneous and isotropic turbu-
lence is considered. � is the LES filter that correspond to the cut-off wave number kc

in the spectral space. The figure is reproduced from Mercier (2015).

A cut-off wave number kc corresponding to the filter size � can be also
introduced.

• Direct Numerical Simulation (DNS) (Leonard and Hill 1988). The Navier-
Stokes equations are solved without any mean and filter operation for the
flow variables. In DNS, the whole turbulent energy spectrum is solved.
Grid size �x, of the order of the Kolmogorov scale have to be utilized
(Pope 2000) to solve the smallest vortex.

Figure 1.3 summarizes the properties of RANS, LES and DNS in terms of solved
and modeled turbulent energy in physical and spectral space.
Going from RANS to DNS, the CPU cost associated with the numerical sim-
ulation enormously increases because smaller grids size are needed. The CPU
cost for a 3-D simulation scales at least with a factor of 16 reducing the grid
size by 2, if a fixed Courant number is considered.
DNS is still out reach in term of CPU cost for large scale combustion applica-
tions.
In the recent years, due the enormous increase of CPU power, LES is replacing
quickly RANS in the simulation of industrial burners, especially for aeronautical
applications. LES in comparison to RANS has the advantage to solve most
of the turbulent kinetic energy that is associated to the largest vortex (Pope
2000). Furthermore, in combustion applications, LES allows to identify the
instantaneous location of cold and burnt gases giving a finer description of the
turbulence/flame interactions and species formation (Veynante and Knikker
2006; Poinsot and Veynante 2018). In the present work, the LES approach is
retained for the turbulent flame simulations presented in Part III.
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1.4.2 Large Eddy Simulation

1.4.2.1 LES quantities

LES provides the resolved space-filtered contribution of the mass, momentum
and energy and species fields. Considering an unsteady scalar quantity Q in a
reactive flow, the LES space-filtered contribution, denoted by Q is obtained by
applying a spatial filter G to the scalar Q:

Q =

Z +1

�1
Q(x

0
, t)G(x � x

0
)dx

0
(1.31)

The LES filter G, having characteristic size �, is either a box or a Gaussian
filters (Poinsot and Veynante 2005). For variable density flows (as in combus-
tion) the filtered balance equations are simplified using the Favre spatial filter
or mass-weighted spatial filter (Veynante and Knikker 2006):

eQ =
⇢Q

⇢
(1.32)

1.4.2.2 LES statistics

The LES spatially filtered quantities cannot be directly compared to experi-
mental data (Pope 2004) and time statistical quantities (averaged and resolved
variance) are usually considered (Pope 2004). The time or ensemble average
of eQ and the corresponding resolved variance are expressed as (Vervisch et al.
2010):

D
eQ
E

=
1

�t

Z �t

0

eQ(x, t)dt (1.33)

D
eQ
E

rms

=

rD
eQ2
E

�
D
eQ
E2

(1.34)

D
eQ
E

and
D
eQ
E

rms

are usually known as Reynolds statistics.

Similarly to Reynolds temporal statistics, the mass weighted time average of eQ
and the corresponding resolved variance can be also introduced:

n
eQ
o

=

D
⇢ eQ
E

h⇢i (1.35)
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n
eQ
o

and
n
eQ
o

rms

are usually known as Favre temporal statistics. In the
present work, Reynolds and Favre statistics are compared to experiments for
the turbulent flames numerically investigated in Part III.

1.4.3 Filtered balance equations

Applying the Favre spatial filter to the system of governing equations presented
in Sec. 1.3 the following set of filtered balance equations is obtained:

@⇢

@t
+

@

@xi

(⇢eui) = 0 (1.37)
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The filtering operation leads to the generation of sub-grid unclosed terms:
• Reynolds stresses tensor: ⇢ (guiuj � eui euj)

• species and enthalpy enthalpy turbulent fluxes: ⇢
⇣
gYkui �fYk eui

⌘

and ⇢
⇣
ghui � eheui

⌘
.

• Filtered laminar diffusive fluxes for species and sensible en-
thalpy: ⇢Vk,iYk and qi

• Filtered chemical source terms: !̇k

The Reynolds stresses tensor is closed with the Boussinesq assumption while
the sub-grid laminar and turbulent fluxes are closed with gradient assumption
as detailed in Poinsot and Veynante (2005). Instead, the strategy to close the
chemical source term depends on turbulent combustion modeling approach.
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1.4.4 Turbulent combustion modeling in LES

LES is nowadays a key tool to predict the efficiency of industrial combustion
chambers. However, despite the tremendous progress in supercomputing, grids
used in practical industrial configurations remain typically coarser than the
flame thickness and small scale flame wrinkling patterns. Consequently chemi-
cal species cannot be resolved and subgrid scale models are needed for the flame
structure and its interactions with the turbulence. As discussed in the recent
review of combustion chemistry modeling (Fiorina et al. 2015), different meth-
ods have been developed to model, at reduced CPU cost, the instantaneous
chemistry reactive layer. This challenging aspect will be addressed in the next
Chapter. In addition, dedicated models are required to properly describe the in-
teraction between combustion chemistry and sub-grid turbulent flows motions.
In the literature, three approaches are identified for such purpose (Veynante
and Vervisch 2002; Fiorina et al. 2015; Poinsot and Veynante 2018):

1. Turbulent mixing approach. It is assumed that the turbulence is the
limiting process having a characteristic time scale ⌧t larger than the chem-
istry one ⌧c. The filtered reaction rate is expressed through algebraic
relations and it is assumed proportional to the turbulent mixing (Mag-
nussen and Hjertager 1977; Magnussen 1981), expressed in term of scalar
dissipation rate of progress variable or mixture fraction. Introducing the
Partially Stirred Reactor (PaSR) model (Chomiak 1990), more advanced
expressions (Kärrholm 2008) have been recently proposed to relate the
filtered species source term to the chemistry and turbulence time scales.
Originally developed for RANS, turbulent mixing models have been re-
cently extended to LES, demonstrating their applicability to MILD com-
bustion applications (Li et al. 2019).

2. Statistical approach. A Probability Density Function, named PDF
(Pope 1985) or Filtered Density Function (FDF) in LES context (Haworth
2010), is used to establish a one-point statistical relation for each trans-
ported scalar. The filtered density function is either presumed from the
first moments of selected resolved quantities or calculated as a solution of
a balance equation for each scalar. Despite the accuracy, transported FDF
methods imply a very high CPU cost and further modeling assumptions
for unclosed terms that appears in the FDF transport equations (Raman
et al. 2005). Several statistical approaches have been successfully used in
the LES context either presuming the FDF function (generally by using
a � function) (Cook and Riley 1994; Navarro-Martinez et al. 2005; Ihme
and Pitsch 2008) or more recently by transporting it (Raman et al. 2005;
Wang and Pope 2011; Rieth et al. 2019).

3. Geometrical approach. The flame front is described as a certain entity
(iso-surface) propagating from fresh to burnt gases. One approach is the
G-equation model (Kerstein et al. 1988) that consists in describing the
flame as an infinitely thin propagating surface. Another approach consists
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in the direct resolution of the flame reactive layer by:
• artificially thickening the flame front leading to the Thickened Flame

model for LES (TFLES) (Colin et al. 2000a)
• explicitly filtering the flame front in the physical space leading to the

Filtered-Tabulated Chemistry for LES (F-TACLES) (Fiorina et al.
2010).

The TFLES model is used in the present work to describe the turbulence flame
interaction and to deal with the LES under-resolution of the flame front. It
is used in combination with both FPI-tabulated chemistry and with virtual
transported chemistry in Part III.

TFLES model TFLES is nowadays considered a reliable and robust ap-
proach for turbulent combustion modeling. Indeed, it has been successfully
applied to complex laboratory scale burners (Ketelheun et al. 2013) (Proch
et al. 2017), semi-industrial burners (Benard et al. 2018) (Proch and Kempf
2015) and aeronautical chambers (Felden et al. 2018) (Jaravel et al. 2017)
(Lancien et al. 2019).
Typical LES grid (�x ⇡ 0.2 ÷ 1 mm) cannot resolve with a sufficient number
of mesh points the flame front and intermediate species. TFLES model (Colin
et al. 2000a) artificially thickens the flame front to ensure its proper resolu-
tion. The diffusion coefficient and the source term of the species equations are
respectively multiplied and divided by the thickening factor F . According to
the theoretical analysis valid for premixed flame, the laminar flame consump-
tion speed S0

l
and the thermal flame thickeness �0

l
are related to the thermal

diffusivity D and to the mean reaction rate !̇:

S0
l =

p
D!̇ (1.41)

�0l =
D

S0
l

(1.42)

As consequence, applying the flame thickening procedure, to the species and
enthalpy equations, the flame thickness is enlarged by a factor F while the
flame propagate at the same S0

l
.

However, the flame thickening introduces a modification of the interaction be-
tween chemistry and turbulence: by increasing the flame thickness to F �0

l
, the

flame becomes less wrinkled and the turbulent flame speed ST is reduced. In-
deed the thickening operation makes the flame insensitive to turbulent eddies
smaller than F �0 and less sensitive to the larger ones. To compensate this
effect, a subgrid scale wrinkling factor ⌅� is introduced in the equations. Ap-
plying a uniform thickening factor, the TFLES filtered Favre balance equation
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for the kth species mass fraction is expressed as (Colin et al. 2000a):

@⇢fYk

@t
+

@

@xi

⇣
⇢eui
fYk

⌘
=

@

@xi

 
⇢F⌅�Dk

@fYk

@xi

!
+
⌅�
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The subgrid scale wrinkling ⌅� is usually formulated using algebraic expres-
sions (Charlette et al. 2002a; Colin et al. 2000a; Pitsch and De Lageneste
2002), assuming equilibrium conditions between the flame surface density and
subgrid turbulence. But this situation is not always achieved especially during
the early stages of flame developments (Richard et al. 2007; Veynante and
Moureau 2015). To overcome this limitation, dynamic models have been re-
cently designed (Wang et al. 2011; Wang et al. 2012; Volpiani et al. 2016)
using Germano-like identities (Germano et al. 1991) to evaluate on-the-fly the
controlling parameter of the wrinkling factor.
To avoid an increase of the diffusive fluxes in mixing controlled regions, the
thickening operation is dynamically applied only in the flame reactive layer
(Legier et al. 2000). The instantaneous flame position is identified by the use
of a flame sensor �, which equals 1 in the flame front, and 0 elsewhere. Several
formulations for the flame sensor have been proposed in the literature: based
on the scalar source term (Legier et al. 2000; Franzelli et al. 2013), progress
variable gradient (Proch and Kempf 2014) or profile (Durand and Polifke 2007).
Chap. 6 gives further details about the dynamic TFLES model and its coupling
with virtual and with tabulated chemistry.
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Combustion chemistry description is a complex task because it involves
a high number of species and reactions that cover a large range of spa-
tial and time scales. Detailed chemistry mechanisms tend to include as
much as possible species and elementary reactions to accurately describe
the combustion process in multiple operating conditions. But, due to the
high number of species and reactions, detailed chemistry mechanisms,
are only suitable to perform 0-D reactors and 1-D flame archetypes sim-
ulations. Instead, in 3-D large scale computations, to overcome the
computational burden, reduced order chemistry models are employed. A
brief review of the most used literature reduced order chemistry models
is proposed in the present chapter. In particular, global mechanism, tab-
ulated chemistry and systematically reduced mechanisms (skeletal and
analytical) are described. The suitability of the various strategies to
describe multi-mode and complex combustion regimes is also discussed.

2.1 Introduction

Turbulent combustion simulation needs the introduction of a combustion chem-
istry model to have access to global flame quantities, temperature and species
concentration. For that purpose, the most accurate strategy would consist of
the direct inclusion of a detailed chemistry mechanism in the numerical simula-
tion. This choice would include in the flow solver a transported scalar equation
for each species in the mechanism, according to the formalism presented in Sec.
1.3.
Unfortunately, this chemistry modeling route cannot be usually afforded for
CPU reasons and the only practical solution is to employ reduced order chem-
istry models.
The choice of the combustion chemistry model directly influence the type of
scalars that are transported in the flow solver and the way the scalars source
term is computed. For example, in tabulated chemistry techniques, all the ther-
mochemical quantities are tabulated as function of a reduced set of scalars: only
the reduced scalars, which coincide with the table dimensions, are transported
in the flow solver. On the contrary when a reduced chemistry mechanisms
is used, the reduced number of species are transported in the flow solver and
the species source term are instantaneously computed using Arrhenius law or
analytic laws.
The current chapter gives a short state-of-the art of the most common literature
strategies used to model combustion chemistry in LES.

2.2 Detailed chemistry

Detailed thermo-chemistry databases reproduce the oxidation process of hydro-
carbon fuels including as much as possible of elementary reactions and species
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(Curran et al. 1998).
Thermodynamic species properties and elementary reactions kinetic rate pa-
rameters are usually derived either from measurements or from previous liter-
ature studies. (Miller et al. 1990; Westbrook et al. 2011).
In a second step, on the basis of sensitivity analysis, they are adjusted to match
a large variety of experimental targets such as ignition delay times, flame speeds
and species profiles for a series of canonical flame configurations (jet-stirred re-
actors and 1-D flames) (Frenklach et al. 1992). Another promising approach
is to derive the reactions rate constants directly from theoretical studies (Cav-
allotti et al. 2007; Aguilera-Iparraguirre et al. 2008) using quantum chemistry
computations.
Detailed kinetic mechanisms are designed to have access to a fine description
of the flame chemical reactive layer, in a wide variety of operating condition:
temperature, pressure, mixture composition and flame regimes (Mehl et al.
2011). The effort made by the combustion kinetic research community allows
today to have access to detailed kinetic databases, valid for a large variety of
hydrocarbon fuels and wide operating conditions (Curran 2018).
The direct inclusion of detailed kinetic in numerical simulations of flames would
allow the accurate modeling complex phenomena that are of paramount impor-
tance for modern combustion devices:

• Flame heat release and temperature profile, to correctly retrieve the ther-
mal power released by the flame and the instantaneous flame positioning
in the burner.

• Extinction and reignition phenomena, that can be caused by low temper-
ature effects or by flame strain.

• Pollutants formation, that is strongly dependent on the operating condi-
tions and from the flame regime.

As anticipated in the introduction, despite the availability of comprehensive
detailed reaction mechanisms their applicability to large scale simulation is
nowadays limited and complex (Lu and Law 2009). In fact, except for very
simple combustion systems (Echekki and Chen 2003), detailed mechanisms,
especially for heavier fuels, are too CPU expensive in 3-D LES for several
reasons.
The first reason that makes detailed chemistry not directly applicable to large
scale simulations in the enormous number of species and reactions that are
involved in the mechanism (Lu and Law 2009). For each species involved in
the mechanism a scalar must be transported in the flow solver following the
formalism expressed in Sec. 1.3.4, while increasing the number of reactions,
the size of the reaction matrix grows.
Figure 2.1, reproduced from Curran (2018), is an updated version of the one
presented by Lu and Law (2009) and by Egolfopoulos et al. (2014). It shows the
size of the most used detailed chemistry mechanisms for typical hydrocarbon
fuels. The mechanisms are sorted on the base of the included number of species
and reactions.
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Figure 2.1: Size of selected detailed mechanisms for the most common hydrocarbon
fuels. The mechanisms are positioned in the graph according with the included number
of species and reactions. The figure is reproduced from Curran (2018)

It can be observed that: i) mechanisms for C1 and C2 species already include
hundred of species and a few hundreds of reactions and ii) the size of the mech-
anisms tremendously increase if heavier hydrocarbons are considered (Dagaut
et al. 2014).
The second reason that complicates the inclusion of detailed chemistry in large
scale simulations is the large time scales range associated with species forma-
tions and/or destruction. The fastest species can feature, in some operating
conditions, a destruction time scale that is of the order of 10�9 s (Lu et al.
2009), whereas for an LES low Mach solver the typical flow time step is of the
order of 10�6 s. This makes the detailed kinetic system stiff because fast radi-
cals are rapidly produced or depleted in comparison with other species and in
comparison with the convective time step. As consequence, dedicated and CPU
costly implicit algorithms must be used to overcome this numerical difficulty.
The third issue, that limits the direct inclusion of detailed chemistry, is re-
lated to the coupling of the whole set of species with the turbulent combustion
model. Different species feature a large variety of spatial scales. The turbulent
combustions model must ensures that all of them are sufficiently resolved on
the LES grid to avoid numerical problems.
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Detailed chemical mechanisms are easily used to carry-out 0-D reactors and
1-D flame simulations. They are also used in the literature to perform 2-D
laminar flame computations, to validate their capability to predict pollutants
versus experimental data (Cuoci et al. 2013a; Jin et al. 2015). Instead, the
direct crude application, without any type of reduction, of detailed chemistry
mechanisms to 3-D turbulent flame simulations is still out of reach for the
reasons explained above.

Methane/Air detailed mechanisms GRI-3.0 mechanism (Smith et al. 2011)
is a reference detailed mechanism for methane-air oxidation largely used in the
literature. It is an optimized mechanism, designed to provide sound basic ki-
netics, including NO formation and re-burn chemistry. Recently other detailed
mechanisms have been developed for methane combustion: for example, the
Polimi CRECK mechanism (Ranzi et al. 2012) and the Aramco mechanism
(Metcalfe et al. 2013). Typically, mechanisms developed for small hydrocar-
bon (C0-C4) constitute the core for larger hydrocarbon mechanisms (Curran
2018). In this thesis work the results achieved by chemical kinetic modelers
will not be discussed but rather assumed as the reference solution to repro-
duce. The widely used GRI-3.0 mechanism (Smith et al. 2011) is retained as
reference.

2.3 Overview on the reduced order models

A review of the most commonly used strategies, to include combustion kinet-
ics, at reduced CPU cost, in numerical simulation of large scale combustion
chambers, have been proposed by Fiorina et al. (2015). Recently, an updated
state-of-the-art has been also suggested (Fiorina 2019).
Figure 2.2 (Fiorina 2019) shows the main paths that are currently used to derive
reduced order models for combustion chemistry description in LES. According
to Fiorina (2019), three main routes may be identified:

• Systematically reduced chemistry
• Tabulated chemistry
• Optimized chemistry

Each of the three strategies is characterized by multiple and combined ap-
proaches, as described in the following sections. Two of the three routes listed
above are sometimes also combined in the literature. An example of hybrid
methods has been proposed by Ribert et al. (2014) tabulating fast intermediate
species using their self-similar properties while major species are transported in
the flow solver. Recently, another hybrid method that combines systematically
reduced chemistry and optimization of reaction rate parameters, has been also
proposed by Jaouen et al. (2017).
The virtual chemistry method, introduced for the first time by Cailler et al.
(2017), is also reported among the modeling approaches that make use of op-
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Figure 2.2: Major routes employed to reduce chemistry for Large Eddy Simulation
applications. The scheme is reproduced from Fiorina (2019).

timization strategies to derive the reduced chemistry model. Being the main
topic of the current thesis, virtual chemistry is presented in detail in the next
chapter (Chap. 3).

2.4 Systematically reduced chemistry

Systematically reduced mechanisms are derived from reference detailed mecha-
nisms with the aim of reducing the level of complexity associated with chemistry
solution. The principal idea is to preserve the main reaction pathways present
in the former mechanism, reducing the number of species and reactions and
removing the numerical stiffness.
At the end of the simplification process, reduced mechanisms are able to repro-
duce a certain number of flame quantity of interests (fresh gases temperature,
flame speed, ignition delay time, species etc.) for an a-priori chosen range
of operating conditions (initial temperature, pressure, equivalence ratios etc.).
The comprehensiveness of a reduced mechanism cannot exceed the one of the
detailed mechanism from which it is reduced.
The strength of the systematically reduced chemistry approaches is the preser-
vation of the theoretical basis of detailed chemistry: the reaction formalism and
the major reaction paths of the detailed mechanism are preserved. In addition,
for analytical mechanisms, some ordinary differential equations can be replaced
by algebraic ones to further reduce the CPU cost.
The derivation of an analytical reduced mechanism usually consists in two main
reduction steps:
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• Skeletal reduction: species and reactions that are judged unimportant
are removed from the former detailed mechanism.

• Analytic reduction: a process of stiffness and species removal is applied
to the reduced skeletal mechanism, deriving algebraic equations to cal-
culate the concentration of minor species. This step is conducted using
QSS (Quasi Stady State) approximation and PE (Partial Equilibrium)
assumption.

Skeletal mechanisms may also be directly employed in LES before dimension
reduction. However, they still imply an high CPU cost because the species to
transport are numerous and some of them induce high numerical stiffness. Con-
sequently, their application to LES computations is still restricted to academic
flame configurations (Mukhopadhyay and Abraham 2012; Salehi et al. 2017).

2.4.1 Skeletal reduction

Skeletal reduction consists in removing unimportant species and reactions from
the detailed mechanism. It is the most suitable technique to be applied as first
reduction step (Lu and Law 2005).
The removal of unimportant species and reactions is usually achieved using
different reduction techniques:

• Graph based methodologies (Lu and Law 2005)
• Jacobian-based methodologies (Tomlin et al. 1997)
• Lumping (Ranzi et al. 2001)

The three strategies may also be used in combination, as discussed by Lu and
Law (2009).

2.4.1.1 Graph based methodologies

Directed Relation Graph (DRG) was introduced for the first time by Lu and
Law (2005). According to the DRG method, a reaction graph is established to
describe the interaction between the species involved in a detailed mechanism,
reporting the respective interaction magnitude.
Two nodes of the graph, representing the species of the mechanism, are con-
nected each other only if they interact in one reaction at least.
An edge, connecting two nodes, quantifies the contribution of one species to
the formation of another one. The magnitude of the contribution is quantified
through a normalized interaction coefficient rAB:

rAB =

P
Nr

i=1 |↵A,iqi�B,i|P
Nr

i=1 |↵A,iqi|
(2.1)

�B,i is equal to 1 if the species B is involved in the ith reaction and it is equal to
0 otherwise. ↵A,i is the A species stoichiometric coefficient in the ith reaction.
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rAB represents the contribution of species B to the total production rate of the
species A.
If the coefficient rAB is lower than a certain threshold, the dependency can be
considered negligible and consequently the edge is removed from the graph. To
remove edges from the graph, a parameter " is introduces which represents the
accuracy chosen for the final skeletal mechanism.
At the beginning of the procedure, the set of important species are identified:
for example fuel, oxidizer and pollutant species. Then, the interaction coeffi-
cients are evaluated and after choosing the accuracy " the DRG is constructed
representing a directed edge A!B if and only if rAB > ". Consequently, the
species that does not affect the production of the important species are imme-
diately identified and eliminated from the mechanism.

Figure 2.3: Schematic view of a reaction graph portion after applying the DRG
procedure. The nodes correspond to species, while, the edges correspond to normalized
interaction coefficients greater than the chosen threshold ". The figure is reproduced
from Lu and Law (2009).

In Fig. 2.3, a portion of a direct relation graph, proposed by Lu and Law (2009),
is shown. Each node represents a species, and each directed edge indicates the
dependence of one species on the other. The starting vertex, A, enclosed in the
bold circle, represents an important species. The species B and D are necessary
species for A prediction while C, E and F can be considered as redundant
species.
After removing redundant species from the graph, all the elementary reactions
which do not contain any of the important and necessary species are eliminated
from the mechanism.
Improvements of the DRG method were proposed by Pepiot-Desjardins and
Pitsch (2008) with the DRGEP (DRG with Error Propagation). A new defi-
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nition of the interaction coefficients is introduced, giving more importance to
primary species connected to important ones through the geometrical damping
of the error.
The DRG and DRGEP methods have been largely used in the literature to
derive skeletal mechanisms for simple and complex fuels: for n-heptane and
isooctane (Lu and Law 2006a), methyl decanoate (Herbinet et al. 2008) and
for toluene (Stagni et al. 2016). DRG and DRGEP methods are also largely
applied as first reduction step in the analytic reduction procedure (Jaravel et al.
2017).

2.4.1.2 Jacobian-based methodologies

The Jacobian matrix J contains the rate of change of species concentration in
time (Tomlin et al. 1997). Each element Jij of the Jacobian matrix indicates
the change in production rate of a species i caused by the fractional change of
the concentration of species j. An element of the normalized Jacobian matrix
is expressed as:

Jij =
@ ln !̇i

@ ln [Xj ]
(2.2)

According to Turanyi (1990), species belonging to a chemical mechanism can
be classified into three categories:

• Important species: species whose concentration prediction is the scope
of the modeling process. For example, they are reactants, products and
pollutants.

• Necessary species: they have to be accounted in the chemistry model
to accurately reproduce the concentration profiles of important species,
temperature profile or other important flame quantities.

• Redundant species: The remaining ones that may be removed from the
mechanism.

If only redundant species are on the lefthand side of a reaction, this reaction
can also be eliminated from the mechanism without any effect on the output
of the model (Turanyi 1990).
Once the set of important species is defined (Ntarget), the redundant species
are identified through the evaluation of the following coefficients:

Bj =

NtargetX

i=1

✓
@ ln !̇i

@ ln [Xj ]

◆2

(2.3)

The normalized coefficient Bj evaluates the influence of the concentration change
of a species j on the net production rate of all target species. If the coefficient
Bj is lower than a certain threshold ", the species j can be considered as re-
dundant.
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A similar approach is used to remove elementary reactions from the former
mechanism. For this purpose, normalized sensitivity coefficients have to be
evaluated. They characterize the effect of a reaction rate parameter change on
the chemical system (Turányi and Bérces 1990):

Fki =
@ ln !̇k

@ ln ki

(2.4)

An element Fki, of the log-normalized rate sensitivity matrix F, expresses the
change of the k species formation rate, caused by the rate coefficient change
of the reaction i. It is possible to consider the effect of each reaction rate
parameter on the overall production rates of target species using the following
least-squares objective function:

Fi =

NtargetX

k=1

✓
ki

!̇k

@ ln !̇k

@ ln ki

◆2

(2.5)

The overall reaction coefficients Fi can be used to rank the reactions impor-
tance in the system, at each reaction time. Consequently, the reactions, less
important in the ranking, can be removed from the system.
More sophisticated approaches are used to study the rate sensitivity matrix F
and the Jacobian matrix J, to reduce reaction mechanism, such as principal
component analysis (PCA) (Sutherland and Parente 2009) or computational
singular perturbation (CSP) (Lam 2013; Valorani et al. 2006).

2.4.1.3 Lumping

Lumping consists in grouping correlated species in order to reduce the number
of variables that describe the chemical system. Species lumping may also re-
duce the number of reactions involved in the mechanism: some reactions are
duplicated after applying the lumping species procedure.
Several lumping methodologies are found in the literature (Fournet et al. 2000;
Huang et al. 2005; Turányi and Tomlin 2014; Ranzi et al. 2001). Generally
lumping is conducted through timescale analysis, projecting the matrix that
maps the original vector of variables to a vector space having lower dimen-
sions (Lu and Law 2009). Lumping is particularly useful for large hydrocarbon
molecules because of the existence of large number of isomers that have sim-
ilar thermal and transport properties as shown in Lu and Law (2008b). Re-
duced skeletal mechanisms using lumping strategies were also used to conduct
2-dimensional CFD simulations for n-heptane and n-dodecane laminar flames
(Stagni et al. 2013).
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2.4.2 Analytic reduction: from skeletal to analytic chemistry

Dimension reduction is usually applied directly to a skeletal reduced mecha-
nism. The scope is to further decrease the number of transported species and
to attenuate the mechanism stiffness.
Analytical mechanisms are usually derived applying quasi steady state (QSS)
approximation and partial equilibrium assumption (PEA). These hypothesis
allow to relate species concentrations through algebric expressions and succes-
sively use them to calculate some intermediate species concentration.
The PEA can be applied to a reaction for which the backward rate quickly bal-
ance the forward one and the net reaction rate approximates to zero (qi ⇡ 0).
Consequently, algebraic relations between reactants and products concentra-
tions are derived.
The QSS approximation is instead done for species that are consumed with a
reaction rate much faster than the one forming them. In practice, QSS species,
as soon as produced, are rapidly consumed. Furthermore, a species can be
considered in QSS if the destruction process has a characteristic time scale ⌧k
that is faster than other processes controlling the flame.
For a QSS species k, the net production rate can be approximated to zero
(!̇k ⇡ 0). Consequently, algebraic relations among species concentrations can
be derived.
Peters (1993), for the first time, introduced the possibility to compute inter-
mediate species concentration in reduced kinetic mechanisms making use of
analytical expressions (Peters 1985) derived from PEA and QSS hypotheses.
More recently automatic procedures to look for PE reactions and QSS species
in skeletal mechanisms were introduced (Pepiot 2008). They are usually based
on time-scale analysis (Lu and Law 2006b; Lu and Law 2008a; Goussis and
Maas 2011).

2.4.3 Application to LES of large scale combustors

The automatic procedures, currently employed to derive analytically reduced
mechanisms, combine usually DRG/DRGEP (Pepiot 2008) methodologies with
time-scale analysis (Lu et al. 2001) for identification of QSS species and their
consequent removal from the set of transported species.
The application of analytic chemistry to LES of semi-industrial scale burners
in very recent because of the increase of CPU power availability and the de-
velopment of automatic procedure to derive reduced mechanisms (Pepiot 2008;
Jaravel et al. 2018).
Recently, semi-industrial burners were successfully simulated using analytically
reduced mechanisms (Franzelli et al. 2017; Jaravel et al. 2017; Felden et al.
2018; Benard et al. 2018).
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2.5 Flamelet based tabulated chemistry

Flamelet based tabulated chemistry approaches rely on the hypotheses that a
turbulent flame structure is locally approximated by a of 1-dimensional laminar
flame. Using this assumption, the thermochemical state of the combustion
process is parametrized as function of a reduced set of variables. The advantage
is that only the reduced set of variables have to be transported in the flow solver.
The relation between the thermochemical state and the reduced variables can-
not be expressed analytically but only through the use of a discrete database
(Fiorina et al. 2015).
When tabulated chemistry is employed to conduct numerical simulations of
turbulent 3-D flames, two fundamental assumptions are retained:

1. The thermo-chemical state of a 1-D flames collection (premixed or non-
premixed) can be projected in a reduced phase space.

2. The 3-D turbulent flame structure stays locally close to the tabulated
flame archetype.

Tabulated chemistry approaches have been derived by making use of different
theoretical analysis for premixed and non premixed flames. The two approaches
are detailed below.
More emphasis is given to the FPI/FGM (Gicquel et al. 2000; Van Oijen et al.
2001) premixed based tabulation technique since it is used in the present thesis
to conduct LES of the Sydney Inhomogeneous burner. A detailed description of
chemtable generation in several flame conditions can be found in Fiorina et al.
(2015) and in Van Oijen et al. (2016).

2.5.1 Premixed based tabulation

The theoretical base of tabulating premixed flames is derived from the work
of Maas and Pope (1992a) and Maas and Pope (1992b). Analysing homoge-
neous chemical 0-D reactor solutions, Maas and Pope (1992b) identified a low-
dimensional manifold that has the property to attract all chemistry trajectories.
This manifold is governed by slow time scales associated to the evolution of only
few species. Based on the Jacobian reaction matrix eigenvector and eigenvalues
analysis, the governing slow time scales are identified. Once the species associ-
ated to the slow time scales are known, all the others are mapped as function
of them and the ILDM (Intrinsic Low-Dimensional manifold) is build-up.
An example of attractive sub-space (ILDM manifold) from the work of Maas
and Pope (1992b) is presented in Fig. 2.4. The attractive subspace is projected
in the OH-CO2 space.
Starting from the ILDM theory, Gicquel et al. (2000) showed that building-up
the manifold from 1-D laminar premixed flames, at the place of 0-D reactors,
allows a better description of the low temperature flame region. The proposed
model is named FPI (Flame Prolongation of ILDM).
Van Oijen et al. (2001) simultaneously suggested the possibility to tabu-
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Figure 2.4: Example of chemical trajectories analysis projected in the OH-CO2 space.
The figure is reproduced from Maas and Pope (1992b)

late 1-D premixed flames as function of a unique progress variable in the
pre-processing phase of a CFD computation and he called the model FGM
(Flamelet-Generated Manifold).
In the FPI-FGM approach, the basic idea is the description of combustion chem-
istry as a collection of unstrained laminar one-dimensional premixed flames.
The chemical trajectories are tabulated, from premixed flamelets, in phase
space as a function of two variables: the progress variable Yc (or the normalized
one c) and the mixture fraction Z. Only the phase variables are transported in
the flow solver leading to a drastic reduction of the CPU simulation cost.
The progress variable Yc describes the reaction advancement from fresh gases
to fully burnt gases. The mixture fraction Z, in gas-phase combustion, is con-
sidered a passive scalar that describes the degree of mixing between fuel and
oxidized.
Reaction progress variable Yc must evolve monotonically between fresh and
bunt gases, to ensure a bijective relation f(Yc) with the other thermochemical
flame quantities. Yc is usually defined as a normalized temperature or as a
linear combination of reactive species. In this last case it can be normalized
by its equilibrium value (c = Yc/Y eq

c ) to be bounded between 0 and 1. The
progress variable is transported in the flow solver using a classical reactive scalar
transport equation:

@⇢Yc

@t
+

@

@xi

(⇢uiYc) =
@

@xi

✓
⇢DYc

@Yc

@xi

◆
+ !̇Yc

(2.6)

The chemical source term is locally extracted from the look-up table and the
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diffusion coefficient is classically closed with a unity Lewis assumption.
Mixture fraction instead features the following transport equation:

@⇢Z

@t
+

@

@xi

(⇢uiZ) =
@

@xi

✓
⇢DZ

@Z

@xi

◆
(2.7)

As for progress variable, a unity Lewis number assumption is usually retained
for the diffusion coefficient DZ calculation.
To ensure a one to one relation, mixture fraction has to be defined to be con-
served along a constant equivalence ratio flame front. It is usually defined either
from N2 mass fraction or from elements conservation (Bilger et al. 1990). Mix-
ture fraction is usually normalized to be one in pure fuel and zero in pure
oxidizer.
Afrter defining Yc and Z, any thermochemical variable ' may be mapped
uniquely as a function of the two coordinate ' = f(Yc, Z) and stored in a
look-up table. Fiorina et al. (2003) enlarged the FPI applicability to non
adiabatic stratified flame conditions, including the enthalpy coordinate to the
chemtable. The suitability and limitation of FPI tabulation to describe par-
tially premixed and non premixed flame conditions has been also discussed in
Fiorina et al. (2005) and in Vreman et al. (2008).

2.5.2 Non-premixed based tabulation

The steady flamelet model, for non-premixed diffusion flames, was proposed
for the first time by Peters (1984). From a physical hypothesis, Peters (1984)
affirmed that the combustion process in a turbulent diffusion flame occurs in
flamelets, whose properties are the same as those of steady, 1-D diffusion coun-
terflow flames. The hypothesis is that the flame remains locally thin compared
to turbulent scales.
In the flamelet model, for a given compositions of fuel and oxidizer streams,
the mixing is typically characterized through a single parameter: the mixture
fraction, whose transport equation is defined as in Eq. 2.7.
The steady flamelet chemistry table is obtained by solving the governing equa-
tions for each scalar ' together with mass and momentum in Z space, in 1-D
diffusion counter-flow flames.
Each scalar equation is written in Z space as follows:

��Z

2

@2�

@Z2
= !̇� (2.8)

where �Z = 2DZrZ · rZ is the scalar dissipation rate which depends from the
imposed flow conditions. The steady flamelet table is built solving the scalars
Eq.s 2.8 together with mass and momentum for a set of discrete values of the
scalar dissipation rate, defined at stoichiometric conditions (�Z,st).
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The thermochemical state of the mixture is then parametrized as function of
Z and �Z . Pierce and Moin (2004) proposed an improvement of the flamelet
model to take into account also unsteady phenomena. A progress variable Yc

together with mixture fraction Z are used to track the mixture thermochemical
state. The model is called Flame-Progress Variable (FPV) (Pierce and Moin
2004).

2.5.3 Application to LES of large scale combustors

Tabulated chemistry have been for several years the most used strategies to
conduct LES of laboratory scale flames and industrial configurations for two
main reasons:

1. The low CPU cost: just a few number of scalars coinciding with the
coordinates of the table need to be transported in the flow solver.

2. The absence of numerical issues related to species source term calculation:
the scalar source term is precomputed and stored in the chemtable.

Premixed based tabulated chemistry has been widely applied to simulate var-
ious flame configurations in the LES framework (Proch and Kempf 2015; Pec-
query et al. 2014) even including flame heat losses in semi-industrial flame
configurations (Chatelier et al. 2019). Recently a joint comparison have shown
that FPI-FGM tabulated chemistry methods are able to reproduce the flame
structure of a weakly stratified turbulent flame configuration (Fiorina et al.
2015).
Non-premixed based tabulated chemistry has been also extensively used in LES
in jet flame configuration (Perry et al. 2017) and complex burners (Ihme and
Pitsch 2008).
Despite the CPU efficiency, tabulated chemistry shows several limitation when
the flame regime is complex and/or not perfectly apriori identified.
For example, coexistence of premixed, non-premixed and partially premixed
flame regimes arise when fuel and air are partially premixed or separated at
the burner injection. Furthermore, in modern combustion chambers, the pres-
ence of strong recirculation of burnt gases lowers the combustion temperature,
promoting the development of complex flame regimes characterized by flame
heat losses (Lamouroux et al. 2014; Benard et al. 2018).
These complex and multiple phenomena tremendously complicate the genera-
tion of the chemtable because several flame archetypes have to be considered
and combined requiring further modeling assumptions (Lamouroux et al. 2014;
Ribert et al. 2006).

2.6 Optimized-global chemistry

Simplified reactions mechanisms including a few number of species and reac-
tions, were introduced for the first time in the work of Westbrook and Dryer
(1981) and successively in the work of Jones and Lindstedt (1988). From two
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to four reaction steps are considered and the respective reaction rate parame-
ters are optimized to achieve a satisfactory description of the two layer flame
structure encountered in premixed laminar flames: a fast fuel decomposition
and a slow oxidation of intermediate species. A sufficient number of species
need to be also added to the reduced scheme to adequately describe adiabatic
equilibrium conditions up to moderately rich equivalence ratios.
The final scope of global mechanisms is to reproduce overall flame quantities
such as equilibrium temperature and flame consumption speed for a limited
range of operating conditions.
In global mechanisms, reaction rate parameters are either empirically or system-
atically adjusted to match a reference detailed chemistry ensemble of solutions
and/or experimental data for 1-D premixed and 1-D diffusion flames. Arbitrary
reaction orders, as in Eq. 1.15, are also retained by Jones and Lindstedt (1988).
Fernandez-Tarrazo et al. (2006) for 1-step chemistry and subsequently Franzelli
et al. (2010) for two-step chemistry proposed a methodology to adapt some
reaction rate parameters, as function of the local mixture equivalence ratio, in
order to significantly improve the laminar flame consumption speed prediction
over the whole flammability limit.
Global mechanisms have been extensively used in the recent years to conduct
LES of industrial scale combustion chambers reaching a good compromise be-
tween mean flame position prediction and CPU cost efficiency (Franzelli et al.
2012; Volpiani et al. 2017; Hermeth et al. 2014). Recently the ignition process
of an annular chamber has been also reproduced (Philip et al. 2015; Lancien
et al. 2018) using two-step chemistry.
Polifke et al. (1998) developed a more systematic approach to derive the re-
action rate parameters for the global reactions. Optimization algorithms (for
example evolutionary algorithms) are used to optimize the reaction rate param-
eters of the global mechanisms, aiming at capturing heat release and species
profiles. Issue in reproducing intermediate species were however encountered.
Eventually, using global mechanisms, pollutant species and accurate inner flame
structure description are out of reach (Franzelli et al. 2013).

2.7 Combustion regimes

The literature on reduced chemistry models, described in the present chap-
ter, has been developed and a-posteriori validated over 0-D reactors and 1-D
flame configurations. Reduced chemistry results are compared versus reference
detailed chemistry solutions. 1-D premixed and 1-D non-premixed flames are
usually retained as canonical simplified flame configurations. They allow to
reproduce the chemical flame structure and its interaction with the thermal
and molecular diffusion simplifying the governing balance equations solution.
Furthermore, they are a simplified representation of the local flame structure
that can be encountered in a practical combustor.
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Figure 2.5: CH4/Air stoichiometric 1-dimensional premixed laminar flame at atmo-
spheric pressure. The flame is computed with the code REGATH (Darabiha 1992).
Mass fraction of fuel (CH4), oxidizer (O2) and major products(CO + CO2 + H2O)
are reported using different colors. Normalized temperature and heat release are also
reported. The main flame regions are schematically shown in the upper part of the
figure.

The 1-D premixed and non-premixed flames are hereafter briefly reminded along
with their main flame quantities. Eventually, the suitability of the various
reduced order chemistry models to predict the various combustion regimes is
discussed

2.7.1 Premixed flame

The 1-D unstretched prenfectly premixed freely propagating flame structure is
presented in Fig. 2.5 . A flame front separates the fresh gases from the burnt
one. The flame front propagates at the velocity Sl (laminar flame consumption
speed) toward the fresh gases. Fuel and oxidizer are mixed in burnable propor-
tions at the inlet. The key parameter that controls the proportions of fuel and
air, in fresh gases, is the equivalence ratio �.
In the flame region three main zones can be identified:

• Preheat zone: Fresh gases are heated by thermal fluxes.
• Reaction zone: Fuel and Oxidizer decompose in radicals, successively
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consumed to form secondary fuels. This zone features a characteristic
thickness size �r that changes as function of the operating conditions.

• Post-flame zone: The intermediates are converted into major combus-
tion products (CO, CO2, H2O etc.). Slow combustion processes continue
in the post-flame region as well (e.g. NOx chemistry).

The mixing between fuel and oxidizer is characterized by the equivalence ratio
�, defined as:

� = s
YF,0

YO,0
(2.9)

YF,0 and YO,0 are the fuel and oxidizer mass fractions in the fresh gases streams
while s is the stoichiometric ratio, defined as:

s =
⌫OWO

⌫F WF

(2.10)

⌫O and ⌫F are the stoichiometric coefficients when a global reaction is consid-
ered.
For a premixed flame some fundamental quantities (laminar flame speed and
flame thickness) are defined. These quantities characterize a premixed flame
structure and depend on the operating conditions such as equivalence ratio,
fresh temperature, pressure etc. The premixed flame consumption speed is
usually defined as follows (Poinsot and Veynante 2005):

Sl =
1

⇢0 (YF,�1 � YF,1)

Z 1

�1
!̇F (x)dx (2.11)

Where YF,�1 and YF,1 are the fuel mass fraction in the fresh and burnt gases,
respectively and !̇F is the fuel source term.
The laminar flame thickness is usually considered equal to the thermal thick-
ness of the flame (Poinsot and Veynante 2005) and it is computed from the
knowledge of the flame temperature gradient:

�l =
Tb � Tf

max
���dT

dx

��� (2.12)

Tf and Tb are the temperature is fresh and burnt gases, respectively.

2.7.2 Non premixed counterflow flame

The chemical and thermal structure of a non premixed diffusion flame in counter-
flow configuration is illustrated in Fig. 2.6.
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Figure 2.6: CH4/air conterflow diffusion flame at atmospheric pressure. Mass frac-
tion of fuel (CH4), oxidizer (O2) and major products(CO + CO2 + H2O) are reported
using different colors. Normalized temperature and heat release are also reported. The
various flame regions are schematically reported in the upper part of the figure.

Fuel and oxidizer diffuse toward the reaction zone, where the heat is released.
The reaction zone does not propagate but it is localized at the stagnation plate
close to the stoichiometric mixture point.
Diffusion flames are controlled by the mixing that brings fresh reactants toward
the flame region.
In a counterflow flame configuration, the mixing strength is characterized by
the scalar dissipation rate �, that measures the molecular and heat diffusion
strength. The scalar dissipation rate of the flame is linked to the external
velocity boundary conditions defined in term of flame strain rate a (Peters
2000). In the present thesis the flame strain rate is used to control the velocity
at the streams inlet for the diffusion counter-flow flames (Darabiha 1992).

2.7.3 Flame structure in practical applications

The two ideal cases, detailed above, are rarely achieved in a practical com-
bustion chamber but a coexistence of them is usually encountered. Nowadays,
industrial burners operates in complex flame regimes (Masri 2015) (premixed
and non-premixed and partially premixed) including heat losses and fresh gases
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dilution.
On one side, the not perfect premixing between fuel and air in the injection
system causes mixture stratification and consequently the developed flame ex-
hibits local equivalence ratio inhomogeneity. On the contrary, when fuel and
air are injected separately, the mixing process causes the development of par-
tially premixed flames. In such environment, coexistence of premixed and non
premixed flame structures exist.
A recent joint experimental study conducted by Sydney (Meares and Masri
2014) and Sandia (Barlow et al. 2015) over a jet burner configuration confirms
that the inhomogeneous mixing between fuel and oxidizer causes the develop-
ment of multiple flame structure and flame stability enhancement. The Inho-
mogeneous jet burner, proposed by Meares and Masri (2014), is numerically
investigated in the present thesis in Chap. 6.
Flame heat losses also causes a departure from the two ideal flame archetypes.
Indeed, heat losses lower the flame enthalpy and consequently chemistry tra-
jectories are modified, as will be shown in Chap. 4.

2.7.4 Reduced models suitability

The reduced chemistry models described in the present chapters (i.e. system-
atically reduced, tabulated and global optimized chemistry) are often designed
to reproduce detailed chemistry results on a single flame elementary regime in
adiabatic conditions. As consequence, when the local flame structure departs
from the targeted one, important discrepancies can arise. In particular, pre-
mixed based tabulated chemistry and global optimized chemistry are efficient to
describe premixed and weakly stratified combustion regimes. On the contrary,
non-premixed based tabulated chemistry is very efficient when a non-premixed
or a partially premixed two-streams injection is modeled.
To overcome the above limitations hybrid tabulated chemistry methods were
proposed in the literature: combining premixed and non-premixed flame archetypes
(Bykov and Maas 2009; Hasse and Peters 2005; Knudsen and Pitsch 2009;
Nguyen et al. 2010), tabulating partially premixed flames (Franzelli et al.
2013) or combining transported and tabulated chemistry (Ribert et al. 2014).
However, the tabulation of the multiple flamelet ingredients need additional
hypotheses (Ribert et al. 2006; Ihme et al. 2012) and causes numerical and
storage issues (Lamouroux et al. 2014; Fiorina et al. 2015). Furthermore flame
index and ad-hoc formulations must be provided to close the scalar source terms
to combine the several flamelet ingredients (Knudsen and Pitsch 2012).
A recent comparison proposed by Cailler (2018) showed the limitation of global
optimized chemistry and tabulated chemistry to describe pollutant species pro-
files on mixed combustion regimes.
As reported in Fig. 2.7 (Cailler 2018), among the canonical routes, only the
model that is based on systematically reduced chemistry (LU19) allows to ac-
curately capture CO formation on multiple combustion regimes.
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a)

b)

Figure 2.7: CO mass fraction prediction in 1-D premixed (Fig. a) and non-premixed
counterflow (Fig. b) flames. Different literature combustion chemistry models are com-
pared versus detailed chemistry (black dots). BFER-2 steps (Franzelli et al. 2010) and
JONES-4 steps(Jones and Lindstedt 1988) glabal optimized mechanisms, FPI-premixed
based tabulated (Gicquel et al. 2000) and LU19 (Lu and Law 2008a) analytically re-
duced chemistry are compared using different colors. The figure is reproduced from
Cailler (2018)
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In addition, difficulties for global optimized chemistry and tabulated chem-
istry arise when more complex pollutants such as NOx and soot have to be
described. In particular, the limitations shown by global optimized chemistry
and tabulated chemistry in the NOx prediction are discussed in Chap. 5.
These reasons, combined with increased computational resources and progresses
in numerical methods for reducing chemical kinetics, lead toward a fast-growing
interest for including semi-detailed transported finite-rate chemistry in LES.
Today, the only strategy that is currently CPU affordable, for large scale ap-
plication, is the use of analytic chemistry (Jaravel 2016; Felden 2016; Benard
et al. 2018). However, the CPU cost associated with these simulations is higher
than tabulated and global chemistry especially when heavy hydrocarbons are
considered (Cailler 2018).
The new virtual chemistry model, recently proposed by Cailler et al. (2017),
could represent a worthy alternative to the above strategies. It allows to ensure
a compromise between accurate flame structure description and CPU efficiency.
Furthermore, Cailler et al. (2017) have shown the potentiality of virtual chem-
istry to capture CO emissions in multiple combustion regimes. The virtual
chemistry approach is described in the next chapter and it is retained as the
modeling strategy in the present work.
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In the present chapter, the recently developed virtual chemistry approach
is described presenting its novelties compared to the others combustion
chemistry reduced modeling routes. The chapters details the virtual
chemistry general architecture and the optimization procedures to build-
up the main mechanism and the CO satellite one. At the end of the
chapter, it is proposed a focus on the virtual chemistry modeling new
challenges that are then the focus of the thesis

3.1 Introduction

A new and original reduced order model for combustion chemistry description,
called virtual chemistry (Cailler et al. 2017), has been recently introduced, at
EM2C laboratory, in the Phd thesis of Cailler (2018). Virtual chemistry aims
at modeling combustion kinetic, combining low CPU cost and accurate flame
structure description including the prediction of pollutant species.
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Virtual chemistry is formulated as a transported chemistry reduced model as
well as global chemistry and systematically reduced chemistry. Indeed, just
a few species are transported in the flow solver in comparison with detailed
chemistry that is instead the reference to reproduce.
Compared to systematically reduced approaches that gradually downsize the
mechanism dimension, virtual chemistry approach gradually increases the di-
mension of the model (Cailler et al. 2017).
In the classification proposed in the previous chapter, virtual chemistry is in-
cluded among the optimization based methodologies (Fiorina 2019). Indeed,
the idea of systematically fit the reaction rate parameters to reproduce a se-
lection of flame quantities of interest is similar to the global mechanism ap-
proaches. However, several novelties are introduced in comparison to global
optimized chemistry:

• The building-up of a network of an optimized number of virtual species
interacting through virtual elementary reactions.

• The optimization of virtual species thermodynamic properties.
• The use of dedicated sub-mechanisms to predict flame quantities of inter-

est, for example pollutant species.
Despite the use of virtual species and reactions, virtual chemistry still retains
the classical reaction formalism, presented in Chap. 1, for elementary gas
kinetics.
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reaction rates are closed with an Arrhenius like formulation as in Eq. 1.12.
A main virtual mechanism is optimized to give access to temperature and heat
release and it is coupled with the governing Navier-Stocks equations. In ad-
dition, dedicated pollutant sub-mechanisms are added to model the targeted
pollutants species. Each pollutant sub-mechanism features a characteristic time
scale associated to the target species.

3.2 Methodology and optimization

3.2.1 Architecture

As proposed by Cailler (2018), the procedure to build-up the virtual chemistry
mechanisms is summarized in the scheme presented in Fig. 3.1.
A reference flame library is pre-computed using a detailed chemistry thermo-
chemical database. It is made of an ensemble of target flame configurations
that, in principle, can include equilibrium computations and a selection of 0-D
reactors and 1-D flame archetypes. Reference equilibrium computations are
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Figure 3.1: Overview on the procedure to build-up virtual optimized chemical mech-
anisms. The figure is adapted from Cailler (2018).

used to optimize the virtual species thermodynamic properties. 1-D premixed
flames spanning the whole fresh gases equivalence ratio range bounded between
the lean and rich flammability limits allows to recover temperature and heat
release. Furthermore, enlarging the flamelet database, including 1-D premixed
and 1-D non premixed flamelets allows to recover CO formation in multi-regime
flames (Cailler 2018).
In a first optimization loop, the main virtual mechanism, dedicated to tempera-
ture and heat release rate prediction, is derived. Virtual species thermodynamic
and transport properties are optimized to reproduce the mean flame properties
of the reference mixture in fresh and burnt gases. Then, kinetic rate parame-
ters for the main mechanism are optimized to retrieve temperature and laminar
flame consumption speed of the reference solutions.
Once the virtual main mechanism is build-up, virtual chemistry is able to re-
produce with a certain accuracy mean mixture properties, temperature, density
and heat release of the reference database.
In the second optimization loop, as shown in Fig. 3.1, the virtual satellite
mechanisms dedicated to pollutants specie prediction (CO, NOx, PAH, etc.)
are derived. Kinetic rate parameters for the pollutant sub-mechanisms are
optimized to reproduce the desired pollutant mass fraction for the ensemble of
operating conditions considered in the reference database.
As shown in the Fig. 3.1, only the main virtual mechanism is coupled with the
flow solver balance equations (mass, momentum and energy). On the contrary,
for pollutant sub-mechanisms, only species balance equations are solved and
they do not retro-act in the closure of mass, momentum and energy governing
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equations.
As consequence, virtual species involved in pollutant sub-mechanism do not
need thermodynamic properties because they are not involved in the closure of
the energy balance equation. Hence, just kinetic rate parameters have to be
derived in pollutant dedicated sub-mechanisms.

3.2.2 Optimization problem

The virtual species properties and the kinetic rate parameters of the virtual
reactions are optimized through an evolutionary algorithm designed by Cailler
et al. (2017). The optimization problem can be formalized as a classical mini-
mization of a cost function C:

C = f
⇣
wv(�v),wd(�d)

⌘
(3.2)

where w = (⇢u, ⇢v, ⇢w, ⇢Yk, T ) is the state vector, defined as the solution of mo-
mentum, species and energy governing balance equations, function of the vector
of parameters �. Detailed state vector wd and virtual one wv are constrained
by the set of governing balance equations defined in Chap. 1.
� is the vector containing the thermo-chemistry parameters of the mixture. It
is known for the reference flame library (�d) and consequently it constitutes
an input of the optimization problems. �v, on the contrary, represents the
vector containing the thermochemical variables for the virtual mechanisms and
therefore it is the unknown of the problem (i.e. the output of the optimization
procedure).
Each thermochemical variable contained in the vector �v is bounded between
a lower and an upper bound which are user input parameters.
In practice, the cost function C is given, through the function f , by a linear
combination of normalized differences of selected flame quantities calculated
with the virtual mechanisms f(wv (�v)) and reference chemistry f(wd

�
�d
�
),

respectively.
At each optimization step (thermodynamic properties, kinetic rate parameters
for the main and pollutant sub-mechanism) the cost function is defined using
different target quantities. The various optimization step with the respective
cost function are detailed in the following sections.

3.2.3 Optimization algorithm

The evolutionary algorithm designed by Cailler (2018), implemented in the in-
house code MelOptim (Cailler 2018), is used in the present thesis to perform all
the virtual chemistry optimizations. Optimization algorithm are usually clas-
sified between local and global ones. Genetic optimization is included among
the global optimization strategy. The use of a global algorithm rather than a
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local one is preferred in the context of the chemical kinetics optimization, for
several reasons:

• The cost function f does not have an analytical expression.
• The random individuals generations used in global algorithm allows to

better span the validity domain of the parameters to optimize, preventing
to hand up in local optima.

• For local algorithm an initial guess must be provided for each thermo-
chemical parameter. The definition of this initial guess is not straightfor-
ward for virtual species and reactions parameters.

Details about the evolutionary algorithm implemented in the in-house code
MelOptim are given in Cailler et al. (2017) and in Cailler (2018)
The code MelOptim is coupled with the flame solver REGATH (Darabiha 1992)
to solve the governing balance equations and successively compute the fitness
function at each iteration of the optimization procedure.

3.3 Main-temperature mechanism

A 2-step main virtual mechanism is retained, as proposed by Cailler (2018), to
predict temperature and heat release. It has the following structure:

↵v

F F + ↵v

OxOx ! ↵v

II (RT
1 )

↵v

II !
N

v

PX

k=1

↵v

Pk
Pk (RT

2 )

where ↵v
� are the stoichiometric coefficients per mass unit of the virtual species

�. The symbols F, Ox and I, respectively, denote the fuel, the oxidizer and
a virtual intermediate species. The burnt gases composition is modeled by a
mixture of Nv

P
virtual products Pk. A non reactive dilutant species D is also

added to the virtual mixture. Two irreversible reactions steps are considered:
fuel and oxidized are transformed in an intermediate species that is successively
transformed in the virtual product mixture. Cailler et al. (2017) have shown
that a two step virtual mechanism allows to well retrieve the two layer premixed
flame structure and laminar flame speed, for the whole flammability limit, with
a sufficient accuracy.
The main virtual mechanism enables the proper capture of the temperature
and heat release profiles of the reference flame archetypes.
The building up of the main virtual mechanism involves two consecutive opti-
mization sub-steps:

1. It aims at optimizing transport and thermodynamic properties of the vir-
tual species in order to reproduce the mean properties of the reference
mixture in fresh and burnt gases respectively. In the thermodynamic opti-
mization stage, the mass stoichiometric coefficients of the virtual products
↵v

Pk
are also computed.
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2. It aims at optimizing the kinetic rate parameters for the virtual reactions
to reproduce the correct thermal inner flame structure and flame flow-field
interaction.

The second optimization step is performed only once the first one is completed
because species thermodynamic and transport properties are needed at the
second stage.
The different objective cost function C, employed at the different optimization
stages are detailed below.

3.3.1 Virtual species thermodynamic properties

The thermodynamic properties of each virtual species k is defined by the vector
 v

k
= (cv

pk
, hv

k
), where cv

pk
and hv

k
denote the heat capacity and the enthalpy,

respectively.
The virtual species thermodynamic properties cv

pk
and hv

k
are expressed by using

the same NASA temperature dependent polynomial functions (McBride et al.
1993) used for real species:

Cpk

R
= a1k + a2kT + a3kT

2 + a4kT
3 + a5kT

4 (3.3)

Hk

RT
= a1k +

a2k

2
T +

a3k

3
T 2 +

a4k

4
T 3 +

a5k

5
T 4 +

a6k

T
(3.4)

Each NASA thermodynamic coefficient av

lk
for each virtual species k is opti-

mized to correctly reproduce the mean thermodynamic properties of the refer-
ence mixture in fresh and burnt gases.
The following cost function is considered:

Cthermo =
⇣
 v �  d

⌘
(3.5)

Where  v and  d are the mean mixture thermodynamic properties for the
virtual and reference chemistry computed as follows:

 v =
NvX

k=1

Y v

k  
v

k;  d =
NdX

k=1

Y d

k  
d

k (3.6)

Y v

k
and Y d

k
are the kth species mass fractions for the virtual and detailed mixture

respectively. Nv and Nd are the number of species involved in the virtual and
detailed mechanisms, respectively.  v

k
and  d

k
represent the thermodynamic

properties for the kth species in the virtual and detailed mixture, respectively.
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Thermo-chemical equilibrium is recovered if the mixture, composed of Nv

P
vir-

tual products plus F, Ox, I and D, matches the mean thermodynamic properties
of the reference mixture, composed by Nd real species.
In practise, the cost function Cthermo is minimized to achieve a correct re-
production of the mean mixture thermodynamic properties in fresh and burnt
gases.
In fresh gases, the optimization is automatically fulfilled if real thermodynamic
properties are attributed to F, Ox and D. For example in CH4/Air combustion
the thermodynamic properties of CH4, O2 and N2 are retained.
The virtual intermediate species I is fully consumed by reaction RT

2 and there-
fore not present at equilibrium.
In the fully burnt gases, the chemical equilibrium is recovered if the mixture
composed of Nv

P
virtual products together with the remaining fuel F, oxidizer

Ox and dilutant D matches, the mean thermodynamic properties of the refer-
ence detailed chemistry mixture, composed of Nd

s real species.
Then, the cost function at equilibrium condition is formalized with the following
relation:

Cthermo =

N
v
sX

k=1

 v

kY v

k |eq �
N

d
sX

k=1

 d

kY d

k |eq (3.7)

The symbol |eq specifies that the quantity are considered at chemical equilib-
rium conditions. Separating the virtual products contribution from F, Ox and
D ones, Eq. 3.7 is rewritten as:

Cthermo =
X

k=F,Ox,D

 v

kY v

k |eq +

N
v
pX

k=1

 v

Pk
Y v

Pk
|eq �

N
d
sX

k=1

 d

kY d

k |eq (3.8)

Y v

Pk
is the mass fraction of each virtual product Pk and  Pk

its thermodynamic
property.
The virtual products mass fraction is equal to Y v

Pk
= ↵PkY v

P
, where ↵Pk is

the product stoichiometric coefficients per mass unit and Y v

P
the total virtual

products mass fraction. By using the polynomial NASA relations, the fitness
function in 3.8 is compactly re-written as:

Cthermo =
NTX

l=1

2

4
N

v
pX

k=1

av

lPk
↵Pk � �l/Y v

P |eq
3

5 (3.9)

where �l is expressed as:

�l =

N
d
sX

k=1

ad

lkY
d

k �
X

k=F,Ox,D

av

lkY
v

k for l = 1, .., NT (3.10)
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NT is the number of NASA polynomial coefficients that are considered. In
virtual chemistry considering NT = 6, heat capacity and the enthalpy are
defined.
�l is a known quantity because combination of information from the detailed
chemistry library and informations from Fuel, Oxidizer and Dilutant. The total
virtual product mass fraction at the equilibrium condition Y v

P
|eq is also a known

quantity from the stoichiometry.
Virtual product NASA thermodynamic coefficients av

lPk
and the virtual prod-

ucts stoichiometric coefficient ↵Pk are the unknowns of the problem. The cost
function Cthermo, written in Eq. 3.9 only for one operating condition, is eas-
ily generalized for the whole set of operating conditions included in the flame
library, by using the sum of them:

⇣
Cthermo

⌘tot

=
NcX

j=1

Cthermo

j (3.11)

where Nc is the number of operating conditions (fresh gases equivalence ratios)
considered in the flammability range.
The genetic algorithm minimizes the cost function

�
Cthermo

�tot, optimizing the
av

lPk
coefficients and successively computing the ↵Pk coefficients. Further details

about the thermodynamic optimization algorithm are detailed in Cailler (2018)
Phd thesis.
As shown by Cailler et al. (2017), the original idea of optimizing the ther-
modynamic properties of some virtual species allows to excellently capture the
equilibrium flame temperature over the whole flammability limit (Fig. 3.2).

3.3.2 Virtual species transport properties

The transport properties for virtual species are closed with a simplified model
assuming Lek = 1. Consequently, the diffusion velocities, in the species trans-
port equations, are expressed using the Fick’s law approximation proposed in
Eq. 1.29. The species diffusion coefficients Dk are assumed all equal to the the
thermal one Dth and they are computed through the knowledge of mean mix-
ture average dynamic viscosity as detailed in Eq. 1.30. The mixture averaged
dynamic viscosity is computed through a power law:

µv = µ0

✓
T

T0

◆�

(3.12)

µ0 is the dynamic viscosity at the reference temperature T0 (the fresh gases
temperature) and it is computed from the reference mixture.



Part I - Combustion chemistry modeling 61

0.50 0.75 1.00 1.25 1.50 1.75 2.00

�[�]

1600

1800

2000

2200
T

e
q
[K

]

Figure 3.2: Adiabatic equilibrium temperature over the whole flammability limit for
CH4/air combustion at atmospheric pressure and 300K initial temperature. Virtual
chemistry solution (squared symbols) is compared versus the adiabatic temperature
computed using a mixture of 53 species (continuous line).

In practice, the optimization of the virtual species transport properties with
the hypothesis of Lek = 1 is formalized using the following cost function:

Ctran =
⇣
µv � µd

⌘
(3.13)

Where µv and µd are the mean mixture average evaluated at stoichiometric con-
ditions for virtual and detailed chemistry, respectively. µd is a known quantity.
� is the optimized parameter that enable to fit the temperature dependency
of the dynamic viscosity at atmospheric pressure. This approach for comput-
ing the dynamic viscosity has been already validated in global chemistry by
Franzelli et al. (2010).
For CH4/Air combustion, µ0 = 1.8405[kg/(m.s)] and � = 0.6759.

3.3.3 Kinetic rate parameters

The rate of progress of the two irreversible reactions RT
1 and RT

2 is closed with
an Arrhenius like formulation using arbitrary reaction orders:
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q1 = A1(�) exp

✓
�E1

a

RT

◆
[F ]F

1
F [O]F

1
Ox (3.14)

q2 = A2 exp

✓
�E2

a

RT

◆
[I]F

2
I
(�) (3.15)

where Ai and Ea,i are the pre-exponential factor and activation energy of reac-
tion i, respectively. Fk,i is the kth species forward reaction order for the reaction
i and [k] is the kth species molar concentration. A1 and F 2

I
are tabulated as

function of the mixture equivalence ratio to satisfactorily retrieve the laminar
flame speed and temperature profile for the whole flammability limit.
Ai, Ea,i and Fk,i are optimized to minimize the following fitness function:

Ckinetic

main = ↵1
|Sv

L
� Sd

L
|

Sd

L

+ ↵2
kT v (x) � T d (x) kL2

kT d (x) kL2

(3.16)

Where SL and T (x) denote the laminar flame consumption speed and the
temperature profile along the 1-dimensional domain, respectively.
If multiple operating conditions are considered in the optimization procedure
(equivalence ratio, enthalpy or pressure), a global cost function is computed by
summing the ones evaluated for each operating condition.
The weights ↵1 and ↵2 are used to give appropriate importance to each variable
involved in the cost function evaluation.
Including in the optimization database 1-D premixed flames, whose equivalence
ratios cover whole flammability limit, Cailler et al. (2017) showed that the
virtual main mechanism is able to accurately reproduce:

• Laminar flame consumption speed over the whole flammability limit. Fig-
ure 3.3 compares the laminar flame consumption speed for virtual and
detailed chemistry showing that virtual chemistry enables a good repro-
duction of laminar flame speed in the whole flammability limit.

• Temperature profiles for 1-D premixed laminar flames over the whole
flammability limit. Figure 3.4 shows a comparison of the temperature
profiles for 1-D premixed flames computed with virtual and detailed chem-
istry for various equivalence ratios.

• Temperature profiles in 1-D diffusion counter-flow flames. Figure 3.5
shows a comparison of the virtual and detailed temperature profiles in a
1-D counter-flow diffusion flame.

3.4 Pollutant sub-mechanisms

The second optimization loop, presented in Fig. 3.1, is dedicated to the pollu-
tant sub-mechanisms optimization.
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Figure 3.3: 1-D laminar flame consumption speed for CH4/Air combustion at at-
mospheric pressure. Detailed chemistry (continuous line) is compared with virtual
chemistry (squared dots).
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Figure 3.4: 1-D premixed temperature profiles for CH4/Air combustion at atmo-
spheric pressure. Results are shown for various equivalence ratios �: lean, stoichio-
metric and rich flames. Detailed chemistry (continuous line) is compared with virtual
chemistry solution (dashed line).
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Figure 3.5: 1-D diffusion counter-flow temperature profiles for CH4/Air combustion
at atmospheric pressure. Results are shown for various values of the flame strain rate
a. Detailed chemistry (continuous line) is compared with virtual chemistry solution
(dashed line).

Pollutant sub-mechanisms aim to reproduce only detailed chemistry solutions
of targeted species (for example CO or NO).
The species diffusive fluxes are computed with the same simplified hypothesis
used for the main mechanism, considering Lek = 1.
The design of the virtual reactions network, in the pollutant dedicated sub-
mechanisms, is based on a pure physical analysis of the main chemical formation
paths affecting the considered pollutant.

3.4.1 CO sub-mechanism

As proposed by Cailler (2018), the following 3-steps mechanism is used to pre-
dict the CO:

↵v

F F + ↵v

OxOx ! ↵v

COCO + (1 � ↵v

CO) V1 (RCO
1 )

F + V1 ! F + CO (RCO
2 )

CO $ V2 (RCO
3 )

Fuel F and Oxidizer Ox are the same species involved in the main virtual
mechanism. To reduce the computational cost, F and Ox concentrations are
imposed in the CO mechanism computation since their profiles are already
known from the solution of the main mechanism.
V1 and V2 are two virtual species while CO aims at reproducing, with a certain
accuracy, the real CO profile given from detailed chemistry.
The mechanism was designed by Cailler et al. (2019) to describe the principal
CO formation and consumption chemical time scales:

• The first reaction RCO
1 describes the fast CO production from fuel oxida-

tion.
• The second reaction RCO

2 converts V1 into CO to capture the slow CO
formation processes occurring in rich conditions.
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• The reversible reaction RCO
3 between CO and V2 models the slow re-

combination processes observed in the post-flame zone. In addition, the
inclusion of an equilibrium reaction ensures the proper capture of the CO
equilibrium concentration.

The coefficient ↵CO is smaller than 1 only if � >= 1.4. It activates the reaction
RCO

3 only for rich conditions.
The rate of progress for the three reactions are expressed using and Arrhenius-
like formulation:

qCO

1 = A1(�) exp

✓
�Ea,1

RT

◆
[F ]F

1
F [Ox]F

1
Ox (3.17)

qCO

2 = A2(�) exp

✓
�Ea,2

RT

◆
[F ]F

2
F [V1]

F
2
V1 (3.18)

qCO

3 = A3(�) exp

✓
�Ea,3

RT

◆ 
[CO]F

3
CO [V2]

F
3
V2 � [CO]R

3
CO [V2]

R
3
V2

KCO
c,3

!

(3.19)

q3 has the same expression as q1 (Eq. 5.6) and it conserves the same kinetic
rate parameters as well.
Rk,i represents the kth species reverse reaction order for the reaction i. Reverse
reaction orders are considered just for the reaction RCO

3 as it follows an equilib-
rium formalism. All the kinetic rate parameters involved in Eq.s 3.18 and 3.19
and the stoichiometric coefficient ↵CO are optimized, by using the following
cost function:

Ckinetic

CO =
kY v

CO
(x) � Y d

CO
(x) kL2

kY d

CO
(x) kL2

(3.20)

A2 and A3 have to be tabulated as function of the fresh gases equivalence ratio,
to satisfactorily retrieve the CO peak value and the CO post-flame formation
in rich conditions.
The equilibrium constant Kv

c,3 for the reaction 3.19 is calculated in concentra-
tion units according to the equilibrium theory presented in 1.16:

Kc,3 =
[V2]

v |eq

[CO]d |eq
(3.21)

where [V2]
v |eq and [CO]d |eq are the molar species concentration, at equilibrium

conditions, for the species V 2 and CO, respectively. [CO]d |eq is extracted from
detailed chemistry equilibrium computations while [V2]

v |eq can be computed
from mass conservation.
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Figure 3.6: CO mass fraction profile in an adiabatic premixed laminar flame for � =
1 and in a counterflow diffusion flame at a = 150s�1. Detailed chemistry (continuous
line) is compared with virtual chemistry solution (dashed line).

3.4.2 Validation results

Cailler (2018) showed that the above CO sub-mechanism structure allows a
proper capture of CO formation in mixed combustion regimes: premixed and
diffusion flames. This results is achieved only is the two flame archetypes are
added to the flamelet learning library.
Figure 3.6 shows CO mass fraction comparison between virtual and detailed
chemistry for both a 1-D premixed laminar flame and a 1-D counterflow diffu-
sion flame. Indeed, satisfactory results are achieved.

3.5 Conclusion

As introduced by Cailler (2018), virtual chemistry is a new and promising
methodology to model combustion chemistry in flame numerical simulations
combining low CPU cost and pollutant description. Cailler (2018) has shown
that virtual chemistry allows to describe in multi-mode combustion regimes:

• temperature profile and heat release,
• CO emissions,

by using a few number of virtual species and reactions.
However, the potentialities of the approach are numerous and yet unexplored.
The capability to describe more complex flame conditions such as the non-
adiabatic ones need to be assessed. In addition to CO emissions, the potentiality
to describe slow chemistry pollutants such as NOx need also to be demonstrated.
Finally, the application of the virtual chemistry approach to turbulent flame
LES need to be further validated.
The present thesis work gives answer to the above research key points.
In Part II:
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• Chap. 4 extends virtual chemistry to non adiabatic laminar flame condi-
tions.

• Chap. 5 proposes a new pollutant satellite sub-mechanism for NO emis-
sion prediction. The mechanism is validated in 2-D laminar flame simu-
lations including several flame conditions (premixed, non-premixed and
partially premixed).

In Part III, the suitability of the virtual chemistry approach to conduct LES is
demonstrated. In particular, the two following turbulent flame configurations
are numerically investigated:

• in Chap 6, the Sydney compositionally inhomogeneous jet burner (Meares
and Masri 2014; Barlow et al. 2015). It is characterized by the coexistence
of premixed and non-premixed flame structures.

• in Chap. 7, the Preccinsta semi-industrial chamber. In this configuration,
the flame is exposed to wall heat losses. A comparison of the virtual chem-
istry results versus the most advanced analytic chemistry computation,
conducted by Benard et al. (2018), is also shown.
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The aim of the present chapter is the development of a comprehensive
reduced chemistry model able to account for the impact of heat losses
on chemical flame structure. Virtual chemistry is trained to recover
flame quantities of an ensemble of target flames including non adia-
batic conditions. Burner-stabilized flamelets are added in the reference
optimization database to capture the influence of heat-losses on flame
heat release and CO pollutant formation. The approach is a-posteriori
validated in 1-D laminar burner stabilized flames and further assessed
in a radiative freely propagating flame configuration.

4.1 Introduction

By reducing the temperature and the flame consumption speed, heat exchanges
affect the flame stabilization mechanisms (Fiorina et al. 2015; Mercier et al.
2016) as well as major species and pollutant formation (Jainski et al. 2017). In
addition, heat losses promote local extinction, at the origin of incomplete fuel
consumption (Guiberti et al. 2015). The proper capture of flame heat losses
is therefore crucial for chemistry models employed in numerical simulations of
industrial combustion chambers (Proch and Kempf 2015).
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Figure 4.1: CO mass fraction profiles for burner stabilized flame computed at constant
equivalence ratio (� = 0.8), atmospheric pressure and fresh gases temperature of 300K
with REGATH code (Darabiha 1992) using GRI3.0 mechanism (Smith et al. 2011).
The four flames are computed for different enthalpy defect values with respect to a
freely propagating adiabatic flame.

For example, heat losses strongly affect CO formation. Figure 4.1 shows the
CO mass fraction profiles for a series of constant pressure premixed burner
stabilized flames (Kee et al. 1985) computed with detailed chemistry. Different
flame enthalpy values are considered from near adiabatic conditions (�h = 0.0
J.kg�1) to near extinction (�h = 6.0E + 05 J.kg�1). Indeed, Increasing heat
losses, the CO peak reduces up to 50% and the thickness of the CO layer is
modified.
As argued in previous Chapters, detailed chemistry cannot be employed to
conduct 3-D large scale LES computations. Reliable reduced order chemistry
models that aims at capture non-adiabatic flame conditions must correctly ac-
count for flame heat losses sensitivity, as in detailed chemistry.
As widely discussed in Chap. 2, three main reduction routes are currently em-
ployed (Fiorina et al. 2015). i) Mechanism reduction leading to analytically
reduced mechanism (Lu and Law 2008a; Pepiot-Desjardins and Pitsch 2008).
Despite the recent promising application of analytic chemistry to a swirled
combustor (Jaravel et al. 2017), the computational costs along with numeri-
cal stiffness remain restrictive. ii) Chemistry tabulation (Fiorina et al. 2015;



Part II - Extending the Virtual Chemistry range of applications 73

Van Oijen et al. 2016). Heat transfers are handled by adding a dedicated co-
ordinate (usually the enthalpy) to the look-up table (Van Oijen et al. 2001;
Fiorina et al. 2003; Ihme and Pitsch 2008). However, tabulated chemistry
shows some limitations when the encountered flame structures differ from the
tabulated archetype (Fiorina et al. 2005). Multiple flame archetypes have to
be considered, which both complicates the generation of the chemical look-up
table (Bykov and Maas 2007a; Nguyen et al. 2010; Franzelli et al. 2013) and
causes memory issues (Ihme et al. 2007; Veynante et al. 2008). iii) Empirically
reduced global mechanisms (Westbrook and Dryer 1981; Jones and Lindstedt
1988) constitute another CPU efficient strategy, currently used to perform LES
of industrial scale combustion chambers (Berger et al. 2016; Franzelli et al.
2010). However, these schemes only capture global flame properties on a lim-
ited range of operating condition and cannot predict pollutants.
Virtual chemistry (Cailler et al. 2017; Cailler et al. 2019), as introduced in
Chap. 3, is an alternative reduced chemistry model that can allow to face some
of the above limitations.
The aim of the present chapter is the development of a comprehensive virtual
chemistry model able to account for the impact of heat losses on flame structure
(temperature and heat release) and CO prediction in premixed stratified flame
conditions.
Main and CO virtual mechanisms are trained to recover the properties of
an ensemble of adiabatic and non-adiabatic target flames. Burner-stabilized
flamelets, in addition to freely propagating, are introduced in the reference
database to capture the influence of heat-losses on temperature and CO forma-
tion of premixed stratified flames.
The main virtual mechanism and the CO dedicated sub-mechanism are re-
optimized to capture non adiabatic flame conditions. A dependency to flame
enthalpy of products mass stoichiometric coefficients and kinetic rate parame-
ters is added.
The virtual schemes are developed in Sec 4.3 and a-posteriori validated in 1-D
laminar flame configurations primarily included in the optimization database
such as burner stabilized flames from nearly adiabatic conditions to extinction.
In Sec. 4.4, a radiative freely propagating flame configuration, not included in
the training database, is computed. It is considered an intermediate test, for
the developed non-adiabatic virtual mechanism, before moving to a turbulent
flame application in Chap 7.

4.2 Burner stabilized flame archetype

1-D flame configuration representative of non adiabatic conditions must be
introduced in the virtual chemistry learning database to take into account of
flame heat losses. Laminar premixed flames stabilized on a porous isothermal
burner (Kee et al. 1985) are chosen to study heat losses impact on chemistry.
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In steady state conditions, 1-D burner stabilized premixed flames are governed
by the following set of equations (Fiorina et al. 2003):

ṁ = ⇢u (4.1)

cpṁ
dT

dx
=

d

dx

✓
�

dT

dx

◆
� dT

dx

NsX

k=1

[CpkJk] �
NsX

k=1

[!̇khk] (4.2)

ṁ
dYk

dx
= � d

dx
(Jk) + ⇢!̇k (k = 1, ..., Ns) (4.3)

p = ⇢
R

W
T (4.4)

where x is the spatial coordinate, ṁ = Ṁ/A the mass flow rate per unity area.
u denotes the fluid velocity, ⇢ the density, T the temperature and Yk the species
mass fractions. � is the mixture thermal conductivity, cp the constant pressure
heat capacity and hk the enthalpy of kth species. !̇k and Jk = ⇢YkVk denote
respectively the source term and molecular diffusive flux of species k.
The prescription of heat fluxes at the burner nozzle, is ensured by imposing the
following boundary conditions on the left flame side:

⇢nun = ṁ (4.5)

Y n

k = Y f

k
�

Jn

k

ṁ
(4.6)

Tn = T f (4.7)

where the superscript f denotes the state of the fresh gases entering the porous
isothermal burner while the superscript n refers to the gas state at the nozzle
which coincides with the first point of the simulated domain at x = 0. The
user-imposed mass flow rate per unit area ṁ controls the amount of heat losses
submitted to the flame. When ṁ is reduced below the adiabatic limit, the flame
anchoring shifts on the first point of the computational domain. Because of a
non zero temperature gradient at the nozzle, conductive heat fluxes, associated
to species fluxed, take place between the burner nozzle and the edge of the flame.
As a consequence, the enthalpy level of the flame is reduced in comparison with
the adiabatic conditions. The enthalpy defect can be evaluated by integrating
the temperature balance equation (Eq. 4.2) along the computational domain:

�h = hf (�) � heq (�, ṁ) =


�

ṁ

dT

dx

�

x=0

(4.8)

where heq(�, ṁ) is the enthalpy of the fully burnt gases. The adiabatic case
(�h = 0) is obtained for a mass flow rate ṁ = ⇢fS0

l
, where ⇢f is the fresh gases

density and S0
l

the laminar flame speed. The adiabatic flame degenerates into
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a 1-D freely propagating flame and no heat exchange occurs between the flame
and the porous burner.
The adiabatic laminar flame consumption speed S0

l
is defined as the integral

of the burning rate across the flame brush (Poinsot and Veynante 2005). This
definition can be extended to burner stabilized flames, as introduced in Mercier
et al. (2014), by integrating, for the fuel, Eq. 4.3 along the direction normal
to the flame front:

Sl =
1

⇢f (Y eq

F
� Y n

F
)

✓Z +1

0
⇢!̇F (x,�,�h) dx + Jn

F

◆
(4.9)

Y eq

F
and Y n

F
are the fuel mass fractions respectively in the fully burnt gases and

at the burner nozzle. Jn

F
is the molecular diffusive flux of fuel at the burner

nozzle. This formula degenerates to the classical definition in case of a freely
propagating flame for Jn

F
= 0.

4.3 Non-adiabatic virtual chemical scheme

As detailed in Chap. 3, a virtual chemical scheme is decomposed into a main
mechanism and satellite sub-mechanisms dedicated to pollutant formation pre-
diction.
Here, the main 2-step mechanism, which aims to predict the heat release and
the flame temperature has the same structure, presented in Chap. 3:

↵v

F F + ↵v

OxOx ! ↵v

II (RT
1 )

↵v

II !
N

v

PX

k=1

↵v

Pk
Pk (RT

2 )

The burnt gases composition is modeled by a mixture composed of 4 virtual
products Pk. A non reactive dilutant species D is added to the virtual mix-
ture having the same thermo-chemical properties as the real species N2. Real
thermo-chemical properties are attributed to fuel F and oxidizer Ox, as well.
As detailed in Chap. 3, the 3-step mechanism is retained to predict CO forma-
tion:

↵v

F F + ↵v

OxOx ! ↵v

COCO + (1 � ↵v

CO) V1 (RCO
1 )

F + V1 ! F + CO (RCO
2 )

CO $ V2 (RCO
3 )

4.3.1 Thermochemical equilibrium

Enthalpy losses impact on the thermochemical equilibrium state. Indeed, fix-
ing the equivalence ratio and the initial temperature and lowering the flame en-
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thalpy, equilibrium temperature reduces and consequently chemical equilibrium
composition changes. Virtual chemistry mechanisms have to account for such
phenomena if non adiabatic flame conditions are faced. The strategies retained
here to correctly recover the enthalpy defect effect on equilibrium temperature
and on CO equilibrium concentration are detailed below.

4.3.1.1 Temperature

As introduced in Chapter 3, the thermodynamic properties of each species k are
defined by the vector  k = (cpk

, hk). cpk
and hk, denote the heat capacity and

the enthalpy, respectively. Thermochemical equilibrium is properly recovered if
the mixture composed of Nv

P
virtual species plus the fuel F, the oxidizer Ox and

the dilutant D matches the thermodynamic properties given by the reference
detailed scheme composed of Nd

s real species. This condition is formalized by
the following relation:

N
d
sX

k=1

 d

kY d

k |eq =
X

k=F,Ox,D

 v

kY v

k |eq +

N
v
pX

k=1

 v

Pk
Y v

Pk
|eq (4.10)

The virtual intermediate species I is fully consumed by reaction RT
2 and there-

fore not present at equilibrium. The equality 4.10 is applied to each equilibrium
state of the mixture (characterized at constant pressure, by the equivalence
ratio � and enthalpy h). In the Eq. 4.10, the reference burnt gas composi-
tion Y d

k
(�,�h) is given by thermochemical equilibrium computations, where

�h = had � h is the enthalpy defect with respect to adiabatic conditions had.
 k are in practice modeled by a NASA (Chase et al. 1975) temperature de-
pendent polynomial functions of coefficient al,k, suitable for ideal gas states, as
detailed in Chapters 1 and 3. By identifying each polynomial term, Eq. 4.10
is then recast into the following system of equations, valid for each state of the
mixture:

N
v
pX

k=1

av

lPk
↵Pk =

�l (�,�h)

Y v

P
(�)

for l = 1, ..., 6 (4.11)

where

�l (�,�h) =

N
d
sX

k=1

ad

lkY
d

k (�,�h) �
X

k=F,Ox,D

av

lkY
v

k (�) (4.12)

Y v

P
is the total mass fraction of virtual products and Y v

Pk
= ↵PkY v

P
where

↵Pk are the product stoichiometric coefficients per mass unit. The strategy to
recover the equilibrium thermodynamical state for all equivalence ratio � and
enthalpy defect �h conditions consists in the two following steps:
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Figure 4.2: Non-adiabatic equilibrium temperature versus equivalence ratio for differ-
ent enthalpy defects, where �h = 0 corresponds to adiabatic conditions. The mixture
is composed of methane and air at an initial temperature of 300 K under atmospheric
pressure conditions. Lines is the reference detailed thermochemical equilibrium solu-
tion obtained with 53 species whereas the symbols are the virtual chemistry prediction,
using 4 virtual products.

• Equilibrium temperature under adiabatic conditions. For that purpose, as
detailed in Chap. 3 (Cailler et al. 2017), the number of virtual species
Nv

P
, the stoichiometric coefficients ↵v

Pk
(�) and the thermodynamic prop-

erties  v

k
of virtual products are optimized to minimize the cost func-

tion 3.8 in adiabatic conditions (�h = 0) with the arbitrary constraint
PN

v
p

k=1 ↵Pk (�) = 1. For methane/air combustion, an accurate estimation
of the adiabatic flame temperature is obtained with four virtual products,
i.e. with Nv

p = 4 (Cailler et al. 2017).
• Equilibrium temperature under non-adiabatic conditions. The number of

virtual species Nv

P
and their thermo-properties  v

k
identified under adia-

batic conditions are conserved. A dependency on enthalpy defect is added
to the stoichiometric coefficients ↵Pk (�,�h), retaining the arbitrary con-
straint

PN
v
p

k=1 ↵Pk (�,�h) = 1. ↵Pk (�,�h) are computed by inverting
the system of algebraic equations Eqs. 4.11 for each operating condition
(�,�h). This formalism adapts the virtual species composition to mimic
the "real" thermo-chemical equilibrium state dependency to heat losses.

Figure 4.2 shows that the non-adiabatic flame temperature is indeed well re-
trieved by a virtual product mixture composed by 4 species over a wide range
of equivalence ratio and enthalpy defect conditions.
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Figure 4.3: Non-adiabatic equilibrium CO mass fraction versus equivalence ratio
for different enthalpy defects, where �h = 0 corresponds to adiabatic conditions. The
mixture is composed of methane and air at an initial temperature of 300 K under atmo-
spheric pressure conditions. Lines is the reference detailed thermochemical equilibrium
solution obtained with 53 species while symbols are the virtual chemistry prediction.

4.3.1.2 CO mass fraction

The CO mass fraction at equilibrium is given by the equilibrium constant KCO
c,3

(Cailler et al. 2019) of the reversible reaction RCO
3 . Function of equivalence

ratio for adiabatic condition, a dependency on the enthalpy defect is added to
account for heat losses, as follows:

KCO

c,3 (�,�h) =
[V2]

v |eq (�,�h)

[CO]d |eq (�,�h)
(4.13)

where [CO]d |eq (�,�h) is obtained from reference thermochemic equilibrium
computations. As V1 is entirely consumed in the burnt gases, [V2]

v |eq(�) is
deduced from mass conservation. As shown in Fig. 4.3, the equilibrium pre-
dicted by virtual CO sub-mechanism agrees with complex detailed chemistry
equilibrium computations.

4.3.2 Chemical kinetics

4.3.2.1 Heat release and flame consumption speed

The rate of progress of reactions RT
1 and RT

2 reads:

q1 = A1(�,�h) exp

✓
�Ea,1

RT

◆
[F ]FF,1 [O]FOx,1 (4.14)

q2 = A2 exp

✓
�Ea,2

RT

◆
[I]FI,2(�,�h) (4.15)
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where Ar and Ea,r are the pre-exponential factor and activation energy of re-
action r, respectively, A1 and FI,2 being both function of equivalence ratio and
enthalpy defect. Fk,r is the kth species reaction order for the reaction r and [k]
is the kth species molar concentration. All these parameters are optimized by
using a genetic algorithm in order to minimize the following fitness function:

Ckinetic

main (Ar, Ea,r, Fk,r) =

NcX

j=1

↵1

|Sv

Lj
� Sd

Lj
|

Sd

Lj

+ ↵2
kT v

j
(x) � T d

j
(x) kL2

kT d
j

(x) kL2

, (4.16)

where SLj
and Tj (x) are the laminar flame consumption speed and the tem-

perature profile of the jth set of operating conditions (�,�h). The weights ↵1

and ↵2 are imposed equal to 0.01 and 0.99, respectively, to give appropriate
influence to both criteria.
The optimization of kinetic rate parameter (Ar, Ea,r, Fk,r) is first performed
by targeting a set of adiabatic freely-propagating 1-D flames computed with
the GRI 3.0 (Smith et al. 2011) detailed mechanism (Cailler et al. 2017), as
detailed in Chap. 3.
Then, to identify the dependency on A1 and FI,2 to heat losses, a second op-
timization step is realized by targeting non-adiabatic flamelets. The archetype
retained for that purpose is the 1-D burner stabilized flame configuration de-
scribed in 4.2, used in many non-adiabatic chemistry tabulation methods (Van Oi-
jen et al. 2001; Fiorina et al. 2003; Mercier et al. 2014).
By acting on the fresh gases mass flow rates, the range of enthalpy defect is
covered from adiabatic (�h = 0) up to the extinction limit (�h = �hq). Dur-
ing the optimization step, the objective function Ckinetic

main
is computed through

Eq. 4.16 by using the definition of flame consumption speed, valid in both freely-
propagating and burner-stabilized flame configurations introduced in Sec. 4.2.
A series of burner stabilized flames, computed at � = 0.8 with the non-adiabatic
virtual scheme, are compared against detailed chemistry solutions in Fig 4.4 for
three ratios �h/�hq. With only 4 virtual species and 2 virtual reactions the
temperature profiles are fairly reproduced compared to the detailed chemistry
prediction which includes instead 53 species and 325 reactions.
As shown in Fig 4.6, the flame consumption speed given by Eq. 4.9, a-posteriori
predicted by the non-adiabatic virtual mechanism, compares well against the
detailed chemistry reference solution.
Burner stabilized flames are also computed with the original adiabatic virtual
mechanism developed in Cailler et al. (2017). In this last case, the flame
consumption speed shown by empty circles in Fig.4.6 presents significant bias
whose magnitude increases with �h. Indeed, as the adiabatic formulation of
the virtual chemistry involves temperature dependent Arrhenius reaction rates,
a sensitivity of the flame speed to the mixture enthalpy is expected. However,
as shown in Fig. 4.6, the prediction is not accurate and the non-adiabatic
developments correct this mis-prediction.
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Figure 4.4: Temperature profiles computed for burner stabilized flames at � = 0.8.
�h is normalized using the quenching maximum value (5.7 ⇥ 105J.kg�1). Lines:
detailed chemistry solutions. Symbols: virtual chemistry solutions.
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Figure 4.5: Laminar flame consumption speed computed on freely propagating adia-
batic (dashed-line) and burner stabilized (solid line) configurations versus equivalence
ratio for different enthalpy defects. �h is normalized using the quenching maximum
value at stoichiometry (8.1 ⇥ 105J.kg�1). Lines: detailed chemistry. Squares: non-
adiabatic virtual chemical scheme. Empty circle: adiabatic virtual scheme.
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Figure 4.6: Dimensionless laminar flame speed computed at stoichiometric conditions
for different flame enthalpy losses. �h is normalized using the quenching maximum
value at stoichiometry (8.1 ⇥ 105J.kg�1). Lines: detailed chemistry. Squares: non-
adiabatic virtual chemical scheme. Empty circle: adiabatic virtual scheme.

According to Mercier et al. (2014), the dimensionless laminar flame speed � is
introduced:

� (�,�h) =
Sl(�,�h)

Sad

l
(�)

(4.17)

The superscript ad denotes the adiabatic flame conditions.
Figure 4.6 shows the evolution of � factor as function of the enthalpy defect
at stoichiometric conditions. Virtual mechanism reproduces well the laminar
flame consumption speed up to extinction, only if non adiabatic flamelets are
added in the optimization database.

4.3.2.2 CO formation

The rate of progress of reactions RCO
1 , RCO

2 and RCO
3 are modeled by retaining

the formulation along with the adiabatic kinetic rate parameters proposed in
Chap. 3, according to Cailler et al. (2019). Extension to heat losses is achieved
by applying the optimization procedure developed for the main mechanism
and described in section 4.3.2.1, with pre-exponential constants A1(�,�h),
A2(�,�h) and A3(�,�h) tabulated in terms of both equivalence ratio and
enthalpy defect:
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In the optimization process, burner-stabilized flames are retained to constitute
the target database with a fitness function based on the CO mass fraction
profiles:

Ckinetic

CO =
kY v

CO
(x) � Y d

CO
(x) kL2

kY d

CO
(x) kL2

(4.21)

where Y v

COj
and Y d

COj
are the the CO mass fraction for virtual and detailed

chemistry. The cost function is evaluated for each operating condition (�, �h)
included in the flamelet library.
Figure 4.7 compares, for a 1-D burner stabilized flame at fixed � and en-
thalpy defect, the computed CO mass fractions profiles obtained with the
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non-adiabatic virtual scheme and with the adiabatic one versus the reference
solution. Significant differences are observed between the two solutions demon-
strating the value of the developments. In particular, the influence of heat
losses on the YCO peak is well predicted only with non adiabatic scheme.

4.4 1-D radiative flames

The non-adiabatic temperature and CO virtual schemes are challenged in a
1-D laminar premixed flames submitted to radiative heat losses, which have
not been considered during the optimization step. Radiative fluxes modeled by
q̇ = ✏�(T 4 � T 4

0 ) are added to the energy balance equation of the 1-D flame
solver REGATH (Darabiha 1992) according to the following equation:

u⇢cp

dT

dx
� d

dx

✓
�

dT

dx

◆
+
X

k

(⇢YkVkcpk
)
dT

dx
+
X

k

hk!̇k+�✏
�
T 4 � T 4

0

�
= 0 (4.22)

� is the Stefan-Boltzmann constant, ✏ the gas emissivity, T is the local gas tem-
perature and T0 the fresh gases temperature. Detailed chemistry simulations,
performed with this basic radiative model, will serve as a reference. Even not
realistic, this crude radiative model is however sufficient to verify the ability of
non adiabatic virtual chemistry to capture the impact of radiative heat losses
on the chemical flame structure.
Figures 4.8 and 4.9 compare temperature and YCO predicted by detailed and
virtual chemistry for different values of gas emissivity ". Temperature compar-
isons show reasonably good agreement between virtual and detailed chemistry,
with small discrepancies observed for high emissivity values. The flame front is
not affected by radiative heat losses and consequently all CO profiles converge
toward the ones obtained for " = 0 (i.e. no radiative flame). In the post flame
region, instead, radiative heat losses affect the burnt gases composition and
consequently CO profiles. Virtual chemistry predicts well the CO sensitivity to
radiative heat losses in the post flame.
The virtual chemical scheme still perform well in non-adiabatic configurations
not included in the target learning database. This confirms that enthalpy vari-
ations act identically on the chemical flame structure regardless of the origin
of heat losses as observed in Fiorina et al. (2003).

4.5 Conclusion

Virtual chemistry has been extended to account for the effect of heat losses
on flame temperature profiles, laminar flame speed and CO production. The
validity domain of the model has been enlarged without adding species and
reactions to the reduced schemes. Detailed chemistry phenomena are well
reproduced in non adiabatic premixed laminar flame simulations. After the
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premixed laminar flame submitted to radiative heat losses for 3 different values of
gas emissivity, respectively, " = 0.0, " = 0.1, " = 0.5. Continuous lines: detailed
chemistry. Dashed lines: non adiabatic virtual chemistry.
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improvements, virtual chemistry predicts well CO even in non-adiabatic lam-
inar flame configurations (1-D radiative flame) that are not included in the
optimization database.
In Chap. 7 the non adiabatic virtual scheme is used to perform a 3-D turbulent
computation to further validate the approach.
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A reduced order kinetic model for NO (Nitric Oxide) prediction, based
on the recent virtual chemistry methodology, is developed. Two vir-
tual chemistry mechanisms are here employed: a main mechanism for
calculating the temperature and heat release rate and a second mech-
anism dedicated to NO prediction. To recover the chemical structure
of multi-mode combustion, both premixed and non-premixed flamelets
are included in the learning database used to optimize the virtual NO
mechanism. A multi-zone optimization procedure is developed to ac-
curately capture both fast and slow NO chemistry that include prompt,
thermal and reburning pathways. The proposed NO sub-mechanism and
optimization methodology are applied to CH4/air combustion. Laminar
1-D premixed and non-premixed flamelet configurations are first tested.
The approach is then further assessed in 2-D CFD laminar flame sim-
ulations, by providing a direct comparison against detailed chemistry.
2-D premixed, non-premixed and partially premixed flame configurations
are numerically investigated. For all cases, the virtual mechanism fairly
captures temperature and NOx chemistry with only 12 virtual species
and 8 virtual reactions with a drastic CPU time reduction compared to
detailed chemistry.

5.1 Introduction

Nitrogen oxides (NOx) emitted in the atmosphere, even in small quantities,
cause problems to the local quality of the air. They contribute to acid rain,
ozone production and smog formation. Combustion processes are the main
source of nitrogen oxides emissions (International Energy Agency 2016). To
limit their production engineers need numerical tools to design and optimize
combustion devices. The numerical prediction of NOx emission is a challenging
task for three main reasons: i) NOx are produced in very small quantities;
ii) NOx formation and consumption feature multiple chemical time scales and
iii) NOx chemical paths vary with the operating conditions (fuel, temperature,
pressure, equivalence ratio, etc.). At the combustion chamber exit, NOx are
mainly composed of NO (Lefebvre 1998), whose chemistry complexity is well
illustrated in Fig. 5.1. The detailed chemistry solutions of stoichiometric and
rich (� = 1.6) premixed 1-D freely propagating laminar flames, obtained us-
ing REGATH solver (Darabiha 1992) and GRI3.0 detailed mechanism (Smith
et al. 2011) for CH4/air combustion, are shown. A thin flame front region
zone, of the order of the millimeter, is first identified within the thermal flame
thickness. NO chemistry has here a characteristic time scale comparable to the
fuel oxidation process. The chemical pathway, leading to this flame front NO
formation, is identified as prompt route (Fenimore 1971; Hayhurst and Vince
1980). A second zone is observed in the post-flame region where temperature
and major species reach chemical equilibrium, while NO mass fraction still
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Figure 5.1: Temperature and NO mass fraction profiles from CH4/air 1-D premixed
flames computed at two different equivalence ratios (stoichiometric and rich) with the
GRI3.0 mechanism Smith, Golden, Frenklach, Eiteener, Goldenberg, Bowman, Han-
son, Gardiner, Lissianski, and Qin (2011). Pressure is equal to 1 atm and the initial
temperature equals 300K. The computational domain covers 1 m and includes the flame
front and post-flame regions. The inner zoom plots show the NO mass fraction with a
domain length comparable with the flame thermal thickness.

evolves slowly. Furthermore, in the post-flame zone, NO chemistry exhibits
two different behaviours:

• For lean, stoichiometric and moderately rich conditions: a slow, mono-
tonic, NO production is observed until the chemical equilibrium is reached.
This process is mainly governed by the thermal (Zeldovich 2014) route.

• For very rich conditions (� � 1.4): the slow NO formation competes
with NO recombination (Kuo 2005) causing a non-monotonic evolution
of NO mass fraction. The NO consumption is known as reburning process
(Faravelli et al. 2003; Frassoldati et al. 2003).

Detailed chemistry mechanisms currently include and combine prompt, ther-
mal and reburning pathways, to describe NO formation in as many as possible
flame conditions (Glarborg et al. 2018). However hydrocarbons detailed chem-
ical mechanisms involve hundreds of species and reactions (Lu and Law 2009)
and their size further increase with the consideration of NO chemistry. For
example in the GRI3.0 mechanism (Smith et al. 2011), widely used to describe
CH4 oxidation, the NOx chemistry subset adds 17 species and 108 reactions
to the initial mechanism made of 36 species and 217 reactions. As detailed in
Chap. 2, the direct inclusion of detailed chemistry in CFD simulations causes
CPU cost issues (Lu et al. 2009). Consequently, reduced order models are
needed to mitigate the computational burden (Wang and Frenklach 1991; Lu
and Law 2009; Fiorina et al. 2015). Three main modeling strategies are cur-
rently employed in the literature to model combustion chemistry at reduced
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CPU cost (Fiorina et al. 2015; Fiorina 2019): global mechanisms (Westbrook
and Dryer 1981; Jones and Lindstedt 1988), tabulated chemistry (Peters 1984;
Gicquel et al. 2000; Van Oijen et al. 2001) and analytically reduced chemistry
(Lu and Law 2008a; Pepiot-Desjardins and Pitsch 2008).
A widely used technique to capture main combustion chemistry properties is to
develop and optimize empirical global and semi-global mechanisms (Fernandez-
Tarrazo et al. 2006; Franzelli et al. 2010), containing from 1 to 4 reaction
steps. Unfortunately these mechanisms are not suitable to predict NO because,
including only a few number of species, they do not contain NO chemistry
species.
An alternative strategy is the systematic reduction of detailed mechanisms.
Analytically reduced mechanisms (Lu and Law 2009) have been especially de-
veloped to capture NO formation (Jaravel et al. 2017). This strategy allows to
predict NO formation (Lu and Law 2008a) over multiple flame regimes with an
acceptable error. However, the application of analytically reduced mechanisms
to large scale simulations (Jaravel et al. 2017; Jaravel et al. 2018) is still CPU
costly.
The last standard route for chemistry reduction is the “tabulated chemistry”
formalism (Peters 1984; Maas and Pope 1992a). It aims at pre-computing, in a
preliminary step, the reduced manifold in which the chemical subspace evolves.
The manifold is finally coupled with a CFD solver to model the combustion
process. In flamelet based tabulated chemistry methods, all detailed chemistry
ingredients are included within a chemical table build-up from a collection of 0-
D reactors or 1-D flame archetypes (Gicquel et al. 2000; Van Oijen et al. 2001;
Bykov and Maas 2007b). The definition and the coordinates of the chemical
database depend on the complexity of the targeted computed flame regime. In
the literature, the potential of tabulated chemistry for NO formation prediction
has been investigated first by Nafe and Maas (2002). Analysing PSRs (Perfectly
Stirred Reactors) solutions, using the ILDM (intrincsic low-dimensional man-
ifolds) (Maas and Pope 1992a) approach, they conclude that additional slow
time scales associated with NO chemistry exist.
In the flamelet framework one strategy, to model NO formation, is to include ni-
trogen species the progress variable definition and to add a dedicated transport
equation for NO mass fraction in the flow solver (Godel et al. 2009; Vreman
et al. 2008). Another strategy, originally developed in the FPV formalism
(flamelet/progress variable) (Ihme and Pitsch 2008) and then adapted to the
FGM model (flamelet generated manifolds) (Ketelheun et al. 2011), consists
in splitting the NO chemical source term in a production and a consumption
contributions and in adding an additional transport equation for the NO mass
fraction in the flow solver. An original tabulated chemistry approach, called
NOMANI model, has been proposed by Pecquery et al. (2014) in the FPI
(flame prolongation of ILDM) context. In the NOMANI model, the NO source
term is split in a flame front contribution and in a burnt gases contribution
which are extracted from two separate look-up tables (carbon and nitrogen),
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parametrised from two different progress variables. The NORA model (NO
Relaxation Approach) (Vervisch et al. 2011), dedicated to thermal NO predic-
tion in internal combustion engines, is another example of tabulated chemistry
application to NO prediction using a collection of PSRs solutions. However par-
ticular attention is required when NO mass fraction is retained as a progress
variable in the post-flame region. As shown in Fig 5.1b, in rich conditions, NO
mass fraction is not strictly monotonous and cannot be considered as progress
variable. Godel et al. (2009) overcame this limitation, by using an optimized
combination of N-species to build-up an appropriate NO chemistry progress
variable valid also for rich conditions.
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Figure 5.2: NO mass fraction flamelet trajectories for a CH4/air mixture, at atmo-
spheric pressure and initial temperature of 300K, computed with GRI3.0 mechanism
(Smith et al. 2011). The data are plotted as a function of progress variable (c) over the
stoichiometric mixture fraction (Zst) cut-plane. Data are extracted from a premixed
and a non-premixed database.

Despite the extensive and successful applications, tabulated chemistry fails
when the local flame structure differs from the tabulated archetype (Fiorina
et al. 2005; Nguyen et al. 2010; Bykov and Maas 2009). As an example, Fig.
5.2 shows the trajectories projection in the YNO-progress variable (c) sub-space
over the stoichiometric cut-plane (Z = Zst), of both premixed and non-premixed
1-D flamelets. The 1-D flames are computed using REGATH solver (Darabiha
1992) and GRI3.0 detailed mechanism (Smith et al. 2011) for CH4/air mixture.
The NO mass fraction trajectories show significant differences (up to an order
of magnitude) between the two databases for the same mixture fraction (Zst)
and the same progress variable (c) values. This demonstrates that tabulated
chemistry, does not perform well for NO formation in multi-mode combustion,
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if a single flame regime is accounted in the database generation.
An alternative reduction chemistry route, named virtual chemistry, has been
recently developed by Cailler et al. (2017), as described in previous chap-
ters. The method consists in building-up empirical mechanisms made of virtual
species and reactions. As in tabulated chemistry, an ensemble of reference flame
archetypes is first computed. However instead of "tabulating" low-dimensional
manifolds, thermodynamic and chemical properties of the virtual components
are optimized to fit an ensemble of targeted flame solutions. It has been ob-
served by Cailler et al. (2019) that multi-mode combustion regimes are well
captured with a limited number of virtual species and virtual reactions an soon
as both premixed and non-premixed flame elements are included in the learning
database. CO emissions have been accurately predicted in a turbulent confined
aeronautical combustor exposed to heat losses (Maio et al. 2019). Virtual
chemistry is then a good candidate to model NO formation in hybrid flame
structures.
The objective of the present study is to propose a new reduced mechanism in the
virtual chemistry formalism able to predict NO in hybrid combustion regimes.
The challenge is to account for all the NO chemistry pathways, included in
detailed chemistry for premixed and non-premixed flames. In section 5.2, the
NO mechanism is introduced whereas the optimization strategy and the appli-
cation to CH4/air combustion are described in section 5.3. Section 5.4 shows
and discusses the validation results in 1-D premixed freely propagating flames
and in non-premixed counterflow flames, comparing the virtual chemistry re-
sults against simulations carried out with the detailed kinetic mechanism. In
section 5.5, the proposed mechanism is further assessed in 2-D CFD laminar
flame simulations, employing the open source solver laminarSMOKE (Cuoci
et al. 2013a). A premixed, a non-premixed and a partially premixed flame
configuration are studied.

5.2 Virtual mechanism architecture

5.2.1 Principle

Virtual chemistry architecture and theoretical bases, already described in Chap.
3, are here briefly reminded. Virtual chemistry is a reduced order model which
aims to describe global flame quantities, temperature and pollutant formation
(Cailler et al. 2017; Cailler et al. 2019; Maio et al. 2019). The strategy
consists in designing virtual mechanisms composed of a reduced set of virtual
species interacting through a reduced number of virtual reactions (Cailler et al.
2017). Virtual species thermo-chemical properties and virtual reactions kinetic
constants are optimized to target “real” flame properties of interest such as tem-
perature, heat release and pollutant concentration. As discussed in Cailler et al.
(2019), a virtual chemical mechanism is composed of one main mechanism and
several satellite virtual sub-mechanisms. The virtual main mechanism is trained
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to reproduce the mean mixture properties, temperature, density and heat re-
lease rate. The learning database is made of an ensemble of flame archetypes
computed with detailed chemistry. The main mechanism is coupled with the
flow solver through the mass, momentum and energy equations. Detailed chem-
istry ingredients are accounted for during the optimization stage of the main
mechanism but, as integrated flame quantities (flame speed, heat release, etc.)
and temperature are targeted, individual species informations are not accessi-
ble anymore. Satellite virtual sub-mechanisms have therefore been introduced
to access specific species mass fractions of interest. As an example, a virtual
sub-mechanism dedicated to CO prediction has been developed in Cailler et al.
(2019).
A virtual mechanism for NO prediction is designed in this section. For that
purpose, the virtual chemistry formalism is first presented (section 5.2.2) and
the main virtual mechanism is then briefly reminded in section 5.2.3. A novel
virtual chemistry architecture dedicated to NO prediction is discussed in section
5.2.4.

5.2.2 Virtual chemistry theoretical base

A virtual mechanism X includes Ns virtual species and Nr virtual reactions.
The virtual mechanism X is composed by an ensemble of reversible virtual
reactions RX

i
:

N
i
sX

k=1

↵
0
ki⌫k $

N
i
sX

k=1

↵
00
ki⌫k (5.1)

where N i
s is the number of virtual species involved in the virtual reaction RX

i
.

⌫k denotes the kth virtual species whereas ↵0
ki

and ↵
00
ki

are the reactant and
product mass stoichiometric coefficients, respectively. The reaction progress
qi, for the reaction RX

i
, is closed using a finite rate formulation with modified

reaction orders:

qi = kfi

NsY

k=1

[Xk]
F

i

k � kbi
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k=1

[Xk]
B

i

k i = RX

i (5.2)

[Xk] is the kth molar species concentration, F i

k
and Bi

k
are the forward and

backward reaction orders corresponding to the kth species in the ith reaction.
kfi and kbi are the forward and backward rate constants. kfi is expressed using
an Arrhenius-like formulation:

kfi = AiT
�i exp

✓
�Ei

a

RT

◆
i = RX

i (5.3)



94 Chapter 5 - NO virtual sub-mechanism

Ai is the pre-exponential factor, Ei
a is the activation energy and in the modified

Arrhenius law a temperature exponent �i is added. When RX
i

is a reversible
reaction, the backward rate constant is related to the forward one through the
equilibrium constant Keq,i:

kbi =
kfi

Keq,i

i = RX

i (5.4)

The kinetic rate parameters of virtual reactions in the virtual mechanism X
are optimized through the evolutionary algorithm proposed by Cailler et al.
(2017). The optimization problem consists in minimizing the following cost
function C:

C = f
⇣
wv (�v) ,wd

⇣
�d
⌘⌘

(5.5)

where w = (⇢u, ⇢v, ⇢w, ⇢Yk, T ) is the state vector, defined as the solution of mo-
mentum, species and energy governing balance equations, function of the vector
of parameters �. The vector � includes the set of thermodynamic, transport
and kinetic rate parameters, whereas d and v superscripts refer to detailed and
virtual chemistry, respectively. The cost function C aims to compare the vir-
tual and detailed chemistry solutions through a linear combination of selected
normalized flame quantities. �d is given by the detailed thermo-chemistry
database, retained as a reference, whereas �v is the set of thermo-chemistry
and transport parameters to optimize, which constitutes the output of the op-
timization procedure.

5.2.3 Main mechanism

The 2-step main virtual mechanism proposed in (Cailler et al. 2017) is retained:

↵1
F F + ↵1

OxOx ! I (RT
1 )

I !
N

v

PX

k=1

↵2
Pk

Pk (RT
2 )

A non reactive dilutant species D is added to the mixture. The reaction
progresses of the two irreversible reactions RT

1 and RT
2 are closed with an

Arrhenius-like formulation as follows:

q1 = A1 (Z) exp
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The pre-exponential constant A1 and the forward reaction order F 2
I

are tabu-
lated as a function of the local mixture fraction. In practice, the local mixture
fraction Z is identified from the non reactive dilutant mass fraction YD as no
preferential species diffusion is considered. A one-to-one relation can be estab-
lished between YD and Z, according to the following equation:

Z =
YD � YD|Ox

YD|F � YD|Ox
(5.8)

where the superscripts F and Ox denotes the conditions in pure fuel and oxi-
dizer, respectively.
This 2-step structure captures equilibrium flame properties, laminar flame con-
sumption speed and temperature in both lean and rich regimes. Further details
and validation cases are developed in Cailler et al. (2017).

5.2.4 NO mechanism

A mechanism architecture is proposed to account for the whole NO chemical
pathways evidenced previously in Fig. 5.1: prompt, thermal and reburning. For
that purpose, the following NO virtual sub-mechanism, composed of 6 reactions,
is proposed:

↵1
F F + ↵1

OxOx ! ↵1
V1

V1 + ↵1
V2

V2 + ↵1
V3

V3 (RNO
1 )

V1 + F + Ox ! ↵2
NONO + ↵2

V2
V2 + F + Ox (RNO

2 )
F + NO ! F + V2 (RNO

3 )
V3 ! NO (RNO

4 )
V3 ! V2 (RNO

5 )
V2 $ NO (RNO

6 )

where ↵i

k
are the mass stoichiometric coefficients associated to species k in the

reaction Ri. An ensemble of virtual species V1, V2 and V3 is first produced
through the initiation reaction RNO

1 . To ensure consistency in fuel (F) and
oxidizer (Ox) consumption, the kinetic rate parameters of reaction RNO

1 are
identical to those of the initiation reaction RT

1 of the main virtual mechanism.
Reactions RNO

2 and RNO
3 are dedicated to model the fast NO chemistry, which

is dominant at the flame front scale. RNO
3 is designed to reproduce the fast NO

reburning that is especially relevant when an excess of hydrocarbon radicals is
present in the system (Frassoldati et al. 2003). In addition, as it will be shown
in section 5.4.3, using two reactions (RNO

2 -RNO
3 ) to model fast NO formation,

instead of one (RNO
2 ), enables a better prediction of both premixed and non-

premixed NO profiles.
Virtual reactions RNO

4 to RNO
6 describe the NO formation associated with slow

post-flame chemistry. It includes thermal NO pathway and slow NO reburning
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phenomena. As discussed later in section 5.4.2, the combination of three re-
actions allows an efficient description of slow NO post-flame pathways in both
lean and rich regimes. Finally, the equilibrium reaction RNO

6 ensures that the
chemical equilibrium conditions are well retrieved.
The rate of progress for the reactions set RNO

1 -RNO
6 are closed using the fol-

lowing Arrhenius-like expressions:
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The equilibrium constant for the reversible reaction RNO
6 is computed as fol-

lows:

K6
c =

[NO]d |eq

[V2]
v |eq (5.15)

where [NO]d |eq is the equilibrium NO molar concentration obtained from de-
tailed thermodynamical equilibrium computations. [V2]

v |eq is computed from
the knowledge of V2 mass fraction at equilibrium condition. By convention, the
sum of virtual species mass fractions equals one Cailler, Darabiha, and Fiorina
(2019), therefore:

N
NO
sX

k=1

Yk = 1 (5.16)

NNO
s is the number of species involved in the NO virtual sub-mechanism. Con-

sequently, YV2 is computed from Eq. 5.16 as:

YV2 |eq = 1 � YF |eq � YOx|eq � YNO|eq � YD|eq � YV1 |eq � YV3 |eq (5.17)
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YV1 |eq and YV3 |eq are theoretically equal to zero at equilibrium since the species
V1 and V3 are completely consumed through the reactions RNO

2 , RNO
4 and RNO

5 .
YF |eq, YOx|eq and YD|eq are known quantities from the main virtual mechanism
solution while YNO|eq is assumed equal to the reference one.
However, it has been noticed that for very lean and rich conditions YV1 6= 0
at equilibrium. In the 2ZONE optimization, detailed in section 5.3.3, YV1 |eq is
however a known quantity at the end of the flame-front block optimization and
it is easily accounted for in Eq. 5.17 for computing YV2 |eq, before performing
the post-flame block optimization.
RNO

6 reaction orders are constrained by the following equations to ensure a net
reaction rate equal to zero at equilibrium:

B6
NO = F 6

NO + 1 (5.18)
B6

V2
= F 6

V2
� 1 (5.19)

The set of kinetic rate parameters to optimize includes the pre-exponential
constants Ai the activation energies Ei

a, forward reaction orders F i

k
and species

stoichiometric coefficients ↵i

k
for reactions RNO

1 to RNO
6 and the temperature

exponent �2
T
. To limit the number of parameters to optimize, F and Ox reaction

order are set equal to 1 and the kinetic parameters for the reaction RNO
1 are

kept equal to the RT
1 ones. To capture the dependency of NO mass fraction

production/consumption to the equivalence ratio the pre-exponential constants
A2, A4, A5 and A6 depend on the mixture fraction Z, computed from the local
dilutant mass fraction YD (as in Eq. 5.8).
Reactions RNO

4 and RNO
5 are needed to retrieve the slow NO formation and its

successive recombination characterizing rich flame conditions, as discussed in
section 5.1. This phenomenon is observed in the NO detailed profiles starting
from � = 1.4. In practice, reactions RNO

4 and RNO
5 are activated for � � 1.4

through the stoichiometric coefficient ↵1
V3

. Section 5.4.2 discusses the impor-
tance of adding reactions RNO

4 and RNO
5 for rich conditions. The following

section 5.3 gives details about the optimization procedure.

5.3 Optimization of the NO virtual scheme

5.3.1 Principle

Figure 5.3 summarizes the general NO mechanism optimization procedure. The
vector �v contains the ensemble of selected kinetic rate parameters for the
virtual NO sub-mechanism, as discussed in the previous section. N random
individuals, corresponding to N �v

n vectors, evolve for a certain number of gen-
erations Ngen, in the optimization loop, according to the evolutionary algorithm
designed by Cailler et al. (2017). Each parameter of the vector �v

n may mutate
in the genetic optimization loop within user-defined lower and upper bounds.
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Figure 5.3: Schematic view of the general procedure employed to optimize the kinetic
rate parameters of the NO virtual mechanism.

After a pre-defined number of genetic generations Ngen, the best individual
(best �v vector) is identified as output.
As discussed in Cailler et al. (2019), to capture pollutant formation in multi-
mode combustion, the learning database must include informations from both
1-D premixed flames and 1-D non-premixed counterflow flames. To account
for these two different flamelet archetypes, the cost function CNO used in the
optimization procedure is computed as:

CNO = CP

NO + CNP

NO (5.20)

where CP

NO
and CNP

NO
are the cost functions relative to premixed flamelet library

and non-premixed one, respectively. CP

NO
is defined from the NO mass fraction

L2 norm as follows:
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(5.21)

where Y P,v

NO
and Y P,d

NO
are the NO mass fraction of a freely propagating premixed

flame computed with the virtual and detailed mechanism, respectively. N� is
the number of premixed flamelets included in the learning database. �0

i
is

the fresh gases equivalence ratio of the ith flamelet. x is the premixed flame
coordinate normal to the flame front. x 2 AP , where AP is the spatial subspace
targeted during the optimization procedure for each premixed flamelet. If the
whole flame domain is targeted during the optimization process, then AP =
[�1, +1], where x = �1 and x = +1 correspond to fresh and burn gases
conditions, respectively.
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CNP

NO
is defined from the NO mass fraction maximum value along the non-

premixed flame domain:
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where Y NP,v

NO
and Y NP,d

NO
are the NO mass fraction of a non-premixed counterflow

flame computed with the virtual and detailed mechanism, respectively. Na is
the number of non-premixed flamelets included in the learning database and
aj is the strain rate of the jth flamelet. aj 2 ANP , where ANP is the range of
strain rates targeted. If the whole non-premixed flamelet library is considered,
then ANP = [a0, aNa

], where a0 and aNa
correspond to null and quenching

strain rates aq, respectively. y is the 1-D flame coordinate. Two optimization
strategies, based on 1 or 2 zones, are now compared in the following sections.

5.3.2 Single zone optimization (1ZONE)

The 1-zone optimization (1ZONE) is a brute-force approach that consists in
optimizing all reactions rate parameters included in the vector �v in one step.
During this step, the whole spatial dimension of the N� reference premixed
flames is targeted: AP = [�1, +1]. Simultaneously the entire range of steady
state strained non-premixed flamelets is also considered: ANP = [a0, aq]. Dur-
ing this step, all kinetic parameters of reactions RNO

1 -RNO
6 are optimized. As

it will be shown further, the too high number of kinetic rate parameters op-
timized in a single step causes the failure of the optimization algorithm. A
2-zone optimization method is therefore introduced.

5.3.3 2-zone optimization (2ZONE)

The optimization procedure is split into two consecutive steps dedicated to the
optimization of fast and slow NO formations process, respectively. To reduce
the number of free kinetic rate parameters to account at each step, reaction
RNO

1 -RNO
6 are optimized through the two following steps:

1. Flame front block optimization. Virtual elementary reactions RNO
1 -RNO

3

designed to capture flame front NO formation are trained to reproduce
only fast time scales phenomena. Fast time scales learning regions rep-
resentative of NO formation need to be extracted from the whole set of
target flames, which gathers here premixed and non-premixed flames.

2. Post-flame block optimization. The virtual elementary reactions RNO
4 -

RNO
6 are optimized to recover the post-flame NO formation which mostly

characterize premixed flames burnt gases. During the post-flame block
optimization, kinetic parameters of reactions RNO

1 -RNO
3 , issued from the

first step, are conserved.
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A criterion is required to distinguish the learning subspaces dedicated to the
Flame front and Post-flame optimization steps, respectively. The definition of
the criterion and the subspaces separation procedure is detailed in Appendix A.
For that purpose, two physical quantities (�FF and aFF ), dedicated respectively
to premixed and non-premixed flamelets, are defined to distinguish the fast
NO formation time scale from the slow one. �FF is the critical length scale
for premixed flamelets. For x 2 [�1, �FF ], fast time scales, characteristics
of prompt NO, dominate. At the opposite thermal and reburning are more
important for x 2 [�FF , +1]. aFF is the critical strain rate for non-premixed
strained flamelets. For a 2 [aFF , aq] fast NO time scales dominate while for
a 2 [0, aFF ] slow time scales are more important.
The optimization process is then split into two steps:

Step 1 The Flame front block is optimized using flame data characteristic of
prompt NO process. In practice, the cost functions CP

NO
and CNP

NO
, computed

by Eq.s 5.21 and 5.22, are restricted to the subspaces AP = [�1, �FF ] and
ANP = [aFF , aq]. During this step, only kinetic parameters of reactions RNO

1 -
RNO

3 are optimized.

Step 2 The Post-flame block is optimized using flame data characteristic of
slow NO processes. In practice, the cost functions CP

NO
and CNP

NO
, computed by

Eq.s 5.21 and 5.22, include the entire premixed flamelet space AP = [�1, +1].
Analysis of DNS of partial-oxidation processes have shown than, in post-flame
regions characterized by slow chemistry phenomena, molecular diffusion is less
important than chemical reactions (Caudal et al. 2015). According to ILDM
theory Maas and Pope (1992a), chemical trajectories followed by premixed
and non premixed flames in the composition space are therefore identical. In
the present work, only premixed flamelets are therefore targeted to optimize
slow NO chemistry: ANP = ?. During this step, only kinetic parameters of
reactions RNO

4 -RNO
6 are optimized. The two learning procedures, 1ZONE and

2ZONE, are now compared on a simple test case.

5.3.4 Comparison of 1ZONE and 2ZONE optimization proce-

dures

The learning database retained to optimize the NO virtual mechanism is made
of a single stoichiometric CH4/air premixed flamelet. Both 1ZONE and 2ZONE
optimized solutions are a-posteriori compared against the targeted solution in
Fig. 5.4. The slow NO formation, visible over the entire computational domain,
from x = 0 to x = 5 m, is fairly well captured by the two algorithms. But
the 1ZONE (dashed line) optimized scheme fails to capture the prompt NO
formation, as evidenced in the inner graph which focuses on the thermal flame
thickness (from x = 0 to x = 25 mm). This inaccuracy is corrected by the
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Figure 5.4: Comparison of the NO mass fraction computed with virtual chemistry and
reference detailed chemistry, at stoichiometric conditions. Virtual chemistry results
are shown for the 1-zone optimization (1ZONE) and the 2-zone optimization (2ZONE).
The comparison is proposed either over the whole computational domain and in the
flame front region.

2ZONE (dotted line) algorithm which is able to predict both fast and slow NO
chemistry.
To understand the difference between 1ZONE and 2ZONE, the error ✏ between
the targeted flame data and the two optimized solutions a-posteriori obtained
with the virtual mechanism is introduced:

✏(A0) =
kY P,v

NO

�
x,�0

�
� Y P,d

NO

�
x,�0

�
kL2

kY P,d

NO
(x,�0) kL2

for x 2 A0 (5.23)

where A0 is the 1-D spatial subspace on which the error ✏ is computed. The
three subspaces A0 = [�1, +1], A0 = [�1, �FF ] and A0 = [�FF , +1] are
retained to measure ✏ along the the whole flame, flame front region and post-
flame region, respectively.
Figure 5.5 plots the evolution of these three errors as function of the generation
number Ngen for both 1ZONE and 2ZONE algorithms. The error computed
over the whole domain decreases as expected with the 1ZONE procedure during
15-20 generations and then it reaches a plateau around 2% (Fig. 5.5, left).
However, better results are observed with the 2ZONE mechanism. With the
1ZONE procedure, a very poor convergence of the error is observed in the flame
front, which stays above 1000% (Fig. 5.5, center). The limited accuracy of the
1ZONE solution is actually due to failure of the optimization process, where
the number of kinetic rate parameters optimized in a single step is too high.
Results are greatly improved by the 2ZONE algorithm where the convergence
of the error in the flame front is ensured. As a consequence, the error on the
prompt NO prediction decreases below 5% after 20 generations. In addition,
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Figure 5.5: Error evolution during the optimization procedure. Ngen is the generation
number performed by the evolutionary algorithm. The error is shown for the single zone
optimization (VM-1ZONE) and for the two zone optimization (VM-2ZONE) and it is
computed using three subspaces: whole flame, flame front and post-flame regions.

the post-flame error of the 2ZONE optimization procedure is also decreased by
more than an order of magnitude compared with the 1ZONE (Fig. 5.5, right).

5.4 Results: 1-D flames

This section presents the 1-D results of the RNO
1 -RNO

6 NO virtual mechanism
optimized according to the 2ZONE strategy over CH4/air hybrid flamelets.
Results for premixed freely propagating flames, for several mixture equivalence
ratios, and for diffusion flames for several flame strain rates are presented and
compared to simulations carried out with the detailed kinetic mechanism.

5.4.1 Virtual mechanism optimization for multi-mode combus-

tion

Figure 5.6 describes the 2ZONE optimization procedure. The reference detailed
chemistry premixed and non-premixed flamelets are computed using the GRI3.0
mechanism (Smith et al. 2011).
The N� premixed flamelets retained to compute the cost function CP

NO
from

Eq. 5.21 cover the whole flammability limit: 0.6< �0 <1.8. The equivalence
ratio step between two flamelets (��) is equal to 0.1. For 1-D non-premixed
counterflow flames, NO profiles representative of flames having a strain rate a
greater than the critical value aFF = 50s�1 are included. For this application,
the subspace ANP = {50, 150, 300} s�1 is retained to build up the non-premixed
learning library.
Three virtual mechanisms of different sizes are generated in order to assess the
influence of the number of virtual species and reactions. The complete virtual
mechanism RNO

1 -RNO
6 is indicated with the abbreviation VM-6R. Two smaller

mechanisms VM-4R and VM-5R are also considered. VM-4R is obtained by
removing RNO

4 and RNO
5 from the VM-6R mechanism before the optimization
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Figure 5.6: Virtual NO mechanism optimization procedure applied to CH4/air com-
bustion. The 2ZONE optimization is applied.

Table 5.1: Summary of the three optimized virtual NO mechanisms. The virtual
reactions that are included in each mechanism are indicated.

Mechanism Reactions
Nb of reactions for

Flame front
Nb of reactions for

Post flame Nb of species

VM-6R RNO
1 -RNO

6 3 3 6

VM-4R
RNO

1 -RNO
3

RNO
6 3 1 5

VM-5R
RNO

1 -RNO
2

RNO
4 -RNO

6 2 3 6

procedure. Whereas three reactions RNO
1 -RNO

3 are dedicated to capture fast
processes, only RNO

6 is kept to handle slow time scales and to retrieve equilib-
rium conditions. At the opposite VM-5R is designed by removing RNO

3 from the
VM-6R mechanism. The three elementary reactions RNO

4 -RNO
6 are retained for

slow process but the number of "fast" elementary reactions is restricted to RNO
1

and RNO
2 . Table 5.1 presents a summary of the three mechanism’s properties.

Molecular diffusive fluxes of species belonging to both main and NO virtual
schemes are modeled with a unity Lewis number assumption. However, as dis-
cussed in Cailler et al. (2019), this assumption still enables a correct prediction
of unstretched laminar flame consumption speed and species profiles across pla-
nar flame fronts, as the targeted 1-D flame solutions used to calibrate the main
virtual scheme include differential diffusion effects.
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Figure 5.7: NO mass fraction profiles for a lean (� = 0.6), a stoichiometric (� = 1.0)
and a rich (� = 1.6) equivalence ratio. Virtual chemistry VM-6R NO solution is
compared versus the reference detailed chemistry one. Results are presented at the
flame front (upper figures) and post-flame (lower figures) spatial scales.
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Figure 5.8: Comparison of NO mass fraction from detailed chemistry and virtual
chemistry for a rich (left) and a stoichiometric (right) 1-D premixed flames. Two
virtual mechanism are shown: the first retains 1 reaction only in the post-flame block
(VM-4R) and the second retains the whole post-flame block (VM-6R).

5.4.2 Premixed flames

VM-6R results are a-posteriori compared versus the reference detailed chem-
istry solutions, for three different equivalence ratios: lean (� = 0.6), stoichio-
metric (� = 1.0) and rich (� = 1.6). The results are presented in the flame
front and in the post-flame regions in Fig.5.7. The proposed 6-reactions mech-
anism allows to correctly reproduce prompt and thermal post-flame NO for-
mation characterizing lean and stoichiometric conditions. The post-flame NO
re-burning phenomena, encountered in rich flame conditions, are also correctly
described.
A comparison is proposed to stress the role of reactions RNO

4 and RNO
5 in the

mechanism. Figure 5.8 compares, for a rich (at � = 1.6) and a stoichiometric
flames, the results obtained with the two mechanisms VM-4R and VM-6R ver-
sus the detailed chemistry solutions. It is evident that the two reactions RNO

5

and RNO
6 are required to capture the slow NO reburning already illustrated in

Fig. 5.1. These reactions are not needed in lean, stoichiometric and moderately
rich conditions (� < 1.4), where reburning phenomena do not occur. Conse-
quently VM-4R and VM-6R solutions collapse on the same one for � < 1.4 as
illustrated in Fig. 5.8 (right).

5.4.3 Non-premixed flames

1-D non-premixed counterflow flames are a-posteriori computed with the en-
tire optimized virtual mechanism VM-6R. Figure 5.9 shows the NO profile com-
puted with the whole virtual NO mechanism VM-6R, compared to the reference
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Figure 5.9: Diffusion opposed jet flames NO mass fraction profiles. Detailed chem-
istry and virtual chemistry results are compared. Two virtual mechanisms are shown:
the first considers 1 reaction only in the flame front block (VM-5R) and the second
considers the whole flame front block (VM-6R). Different colors are used for different
stain rates.

profiles, for two different flame strain rates.
The proposed virtual NO mechanism optimized to fit both premixed and non-
premixed flame archetypes retrieves the high sensitivity of the NO profile to the
flame strain rate. Decreasing the flame strain rate, the residence time increases
and consequently the NO formation is higher.
However, virtual NO mechanism VM-6R does not perfectly describe the fast
NO mass fraction decay on the flame rich side, which characterizes detailed
chemistry profiles. It turns out difficult to find a better compromise between
premixed and non-premixed flames in the flame front region with only two
reactions (RNO

2 -RNO
3 ).

Comparison between VM-6R and VM-5R, in which reaction RNO
3 has been re-

moved before the optimization process, is also shown in Fig. 5.9. The large
discrepancy observed between VM-5R and the detailed chemistry solutions con-
firms that RNO

3 is required in the flame front block to capture NO formation in
non-premixed flames. Without it, the virtual mechanism does not have enough
degree of freedom to capture NO formation in both premixed and non-premixed
flame regimes.

5.5 2-D slots burner flames

In the current section, virtual chemistry is challenged in 2-D CFD computations
and compared against detailed chemistry simulations. The simulations are
carried out for several 2-D laminar flame benchmarks including a premixed, a
non-premixed and a partially premixed flame.
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Figure 5.10: 2-D premixed slot burner numerical set-up. On the left schematic view
of the computational domain with the corresponding dimensions and the boundary
conditions. On the right the normalized heat release rate from numerical simulation
shown on the computational grid.

The CFD code laminarSMOKE (Cuoci et al. 2013a) is used to perform the
computations for both detailed chemistry and virtual chemistry. The lami-
narSMOKE code is based on the open-source suite OpenFOAM (OpenFOAM
2019). It has already shown capability to accurately model laminar flames in-
cluding detailed chemistry using hundreds of species and reactions (Cuoci et al.
2013b; Stagni et al. 2013). The transport equations of mass, momentum, en-
ergy, and species are solved based on the operator-splitting approach (Day and
Bell 2000).

5.5.1 Premixed flame

The premixed single slot burner geometry consists of a 2-D rectangular com-
putational domain whose dimensions are shown in Fig. 5.10. The boundary
conditions include an inlet, an outlet and adiabatic walls. Since the configura-
tion is axial-symmetric only a half of the computational domain is simulated.
The other half of the computational domain is obtained by symmetric reflection
of the first part. Therefore a symmetry boundary condition is imposed along
the axis.
At the inlet, a developed laminar parabolic velocity profile is prescribed in
the axial direction using a mean value Um = 0.6 m/s, whereas the others
velocity components are set equal to zero. A cartesian grid is considered in the
simulation. The characteristic cell size is of about ⇠ 0.015 mm. This cell size
allows to fully resolve the thermal flame thickness and the heat release rate of
a premixed laminar flame. In particular, the employed mesh size ensures 15 to
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20 cells across the thermal flame thickness.
A zoom on the computational grid, in the flame tip region, is made in Fig. 5.10
and an example of normalized heat release rate is also shown on the computa-
tional grid. Indeed the heat release rate is properly solved over the employed
grid.
Figure 5.11 shows the temperature and NO field for the 2-D premixed burner
at three different equivalence ratios (0.8, 1.0 and 1.2). Virtual chemistry results
are directly compared to detailed chemistry ones.
The temperature field predicted by the main virtual mechanism is in good
agreement with the detailed chemistry, for the three equivalence ratios. It is
remarkable that the flame height is properly captured by virtual chemistry. At
� = 1.2 the height is slightly underestimated by about 10%. Virtual chemistry
correctly reproduces the temperature evolution, from fresh to burnt gases with
a small difference in flame curvature description.
The virtual NO field agrees well with the temperature field: when temperature
increases earlier for virtual chemistry (as for � = 1.2), NO increases earlier
too. The 2-D slot burner configuration, retained in the present work allows
to observe mostly the whole prompt NO formation and the first part of the
thermal one. However, as observed in the 1-D premixed profiles in Fig. 5.8,
NO is further produced in the burnt gases, for longer residence time, through
the thermal route. A slight underestimation of the NO level is observed at � =
0.8 and 1.0, whereas a better prediction is observed for � = 1.2. This behaviour
is in accordance with the 1-D profiles shown in Fig. 5.7 at the flame front scale.
For the stoichiometric slot burner flame, 1-D temperature and NO mass fraction
profiles are extracted from the 2-D field over both axial and a radial directions.
The 1-D sections, used for the comparison, are indicated by white lines in Fig.
5.11. Figure 5.12 shows the temperature and NO profiles from virtual and from
detailed chemistry computations along the two lines in the axial (r=0 mm) and
for a radial section (x= 2 mm).
The excellent temperature agreement in the axial direction confirms that the
flame height is well retrieved even if a slight shifting in the radial direction is
observed. This discrepancy is due to the not perfect reproduction of the flame
curvature. Indeed preferential diffusion effects coupled to flame stretch are not
well captured by virtual chemistry because of simple assumptions for diffusive
fluxes closure. NO virtual profiles are consistent with the results obtained in
1-D flame computations shown in Fig. 5.7.

5.5.2 Non-premixed flame

A 2-D non-premixed laminar coflow flame is simulated in the present section.
The considered configuration along with the main burner dimensions and the
boundary conditions set-up are schematized in Fig. 5.13. The figure also shows
a normalized heat release rate field over half of the computational domain re-
gion close to the burner nozzle. A fuel jet is surrounded by a pure air coflow
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Figure 5.11: Temperature and NO mass fraction colormaps for the 2-D laminar
single slot burner (Bunsen flame). Virtual chemistry solution is compared with detailed
chemistry one.
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Figure 5.12: Virtual chemistry (symbols + lines) is compared against detailed chem-
istry (lines) for temperature (dashed lines) and NO mass fraction (solid lines). Top:
axial profiles. Bottom: radial profiles at the centerline distance x= 2 mm.
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Figure 5.13: Numerical set-up of the coflow diffusion flame burner. On the left a
schematic view of the 2-D simulated domain is presented. The main burner dimensions
and the prescribed boundary conditions type are shown. On the right an example of
normalized heat release rate computed from detailed chemistry simulation is shown.

allowing the development of a non-premixed diffusion flame. The computa-
tional geometry is symmetric with respect to the centreline axis, as for the
premixed single slot burner; consequently, just a half of the computational do-
main is computed. Adiabatic walls are imposed close to the air inlet whereas an
inlet/outlet boundary condition (OpenFOAM 2019) is prescribed on the burner
side.
A 2-D non uniform structured rectangular mesh is used in the simulations as
proposed by Cuoci et al. (2013a), Cuoci et al. (2013b). The characteristic mesh
size in the flame front region is of about ⇠ 0.05 mm which is sufficient to en-
sure a proper flame resolution in diffusion flame conditions. Velocity boundary
conditions are tuned to ensure the flame attachment to the burner lip avoiding
any flame lift-off. Flat velocity profiles at 0.15 m/s are prescribed in the two
streams. Pure CH4 and pure air at 300 K are injected in the Fuel Inlet and
the Air Inlet, respectively.
Figure 5.14 shows the temperature and NO mass fraction fields for the 2-D diffu-
sion flame configuration, comparing virtual chemistry to the detailed chemistry
results. The virtual chemistry flame shape is close to the detailed chemistry
one, but it appears slightly more compact. In the virtual chemistry simulation,
temperature increases faster than with detailed chemistry.
The NO mass fraction field predicted by virtual chemistry is correctly located
in the computational domain with respect to temperature field.
Figure 5.15 compares the temperature and NO mass fraction along the flame
axis. As virtual chemistry temperature rises faster, NO mass fraction presents
an early peak at x = 0 mm. Successively the small NO reburning corresponding
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Figure 5.14: Temperature and NO mass fraction fields from numerical simulations
for the diffusion flame. The virtual chemistry results are compared versus the reference
GRI3.0 solutions.
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Figure 5.15: Temperature (dashed lines) and NO mass fraction (solid lines) along
the centerline axis (x=0 mm) of the 2-D coflow non-premixed flame. Virtual chemistry
(symbols + lines) is compared against detailed chemistry (lines).

to detailed chemistry is overestimated by virtual chemistry. This reburning
phenomenon in coflow flame configuration has been already observed by Cuoci
et al. (2013a).
The max NO peak prediction, corresponding to the temperature peak is cor-
rectly predicted. However, the amplitude of NO mass fraction is relatively
overestimated. This phenomenon is attributed to the slight temperature over-
estimation. After the peak zone, the NO reduction due to consumption and/or
dilution effects is correctly captured.

5.5.3 Partially-premixed flame

The developed NO virtual mechanism is finally assessed in a partially premixed
flame configuration. The considered geometry and mesh are the same as the
diffusion flame configuration, described in the previous section. In the central
jet (Fuel Inlet) a premixed mixture of fuel and air, above the flammability limit,
is injected. An equivalence ratio equal to 2.5 and a temperature of 300K are
prescribed.
Pure ambient air at 300K, as for the diffusion flame configuration, is injected
through the Air Inlet tube. Inlet velocities are tuned to stabilize the flame at
the burner lips, without having any lift-off. A flat velocity profiles of 0.35 m/s
and 0.05 m/s are prescribed at the Fuel Inlet and the Air Inlet, respectively.
Figures 5.16 shows the temperature and NO mass fraction 2-D fields for the
partially premixed flame. The flame is stabilized at the same position with
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Figure 5.16: Temperature and NO mass fraction fields from numerical simulations
for the partially-premixed flame. The virtual chemistry results are compared versus the
reference GRI3.0 solutions.
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Figure 5.17: Temperature (dashed lines) and NO mass fraction (solid lines) along
the centerline axis (x=0 mm) of the 2-D coflow partially premixed flame. Virtual
chemistry (symbols + lines) is compared against detailed chemistry (lines).

Table 5.2: CPU cost comparison between detailed reference chemistry and virtual
chemistry computations. Main temperature mechanism and the NO one are considered
for virtual chemistry.

Mechanism Nb. species C = t/tv

GRI3.0 (Smith et al. 2011) 53 39
Virtual Mech. 12 1

detailed and virtual chemistry. NO field is correctly located over the computa-
tional domain, but the NO peak value is overestimated.
Figure 5.17 shows the temperature and NO profiles along the axis. The NO 1-D
profile confirms the correct prediction of the NO peak position but its value is
overestimated.

5.5.4 CPU cost comparison

A comparison to evaluate the CPU ratio between detailed chemistry and vir-
tual chemistry simulation was carried out. The stoichiometric 2-D premixed
slot burner is computed for the same physical time (10 ms), using the same
numerical set-up and employing the same numbers of processors for virtual
and detailed chemistry. Table 5.2 summarizes the results of the comparison.
The CPU time ratio C = td/tv that compares the detailed (td) and virtual
chemistry (tv) computational time, is equal to = 39. The drastic CPU cost
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reduction is mainly due to the species and reactions reduction. The observed
CPU speed-up is equal to:

C =
td

tv
'
✓

nd

nv

◆2.5

(5.24)

where nd (=53) and nv(=12) are respectively the number of species included in
the detailed and virtual mechanisms. This result is in accordance with previous
numerical studies that use implicit solvers. (Law 2007; Lu and Law 2007;
Pepiot 2008). This CPU result analysis is valid for any 2-dimensional laminar
computation (premixed, non-premixed and partially premixed) performed with
laminarSMOKE solver (Cuoci et al. 2013a).

5.6 Conclusions

The virtual chemistry strategy has been retained to develop a new pollutant
reduced mechanism devoted to NO prediction. The original virtual chemistry
formulation has been used to predict flame temperature and heat release rate.
An NO virtual mechanism has been designed using a reduced set of virtual
species and reactions and trained over a hybrid flamelet database, made of
premixed and non-premixed 1-D flames.
A two-step optimization strategy has been developed to separate and to inde-
pendently optimize the virtual reactions dedicated to flame front and post-flame
NO chemistry, respectively. The proposed model is able to describe all the NO
chemistry pathways exhibited by the reference flame solution. In particular
prompt NO, thermal NO and post-flame NO reburning are correctly described
by the virtual chemistry model. The developed NO virtual mechanism has
been tested in 2-D laminar premixed, non-premixed and partially premixed
flame computations. A comparison to detailed reference chemistry has also
been proposed. In the CFD computations, the final CPU cost associated with
the virtual chemistry simulation is drastically smaller than with detailed chem-
istry one (of about 40 times).
Despite the accurate and promising results, at the current stage, the number of
virtual species along with the virtual reactions network are empirically designed.
The virtual chemistry architecture is based on the pure observation of the
physical phenomenon to account for. Consequently, the number of degree of
freedom (virtual species and reaction) may be not the optimal one and/or
some important chemical pathways may be missed. To overcome this current
limitation, new modeling strategies that provide an automatic build-up of the
virtual chemistry network, from a time scale analysis of the reference chemical
system, are in progress.
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The present chapter focuses on the LES study of the piloted jet flame
with inhomogeneous inlet called "Sydney inhomogeneous burner" or
"Inhomogeneous piloted burner". Virtual chemistry is here tested for
the first time to model combustion chemistry in a multi-mode turbulent
flame configuration. The virtual chemistry-LES results are compared
to a FPI-LES tabulated chemistry simulation. Eventually, the com-
putations are compared to the available measurements to evaluate the
impact of the chemical description on temperature and CO prediction.

6.1 Introduction

In industrial combustion chambers, fuel and air are usually injected separately
and consequently the fuel-air mixing promotes the development of multiple-
flame structures: premixed, non-premixed and partially premixed (Masri 2015).
The description of such complex combustion regime represents a big challenge
for the turbulent combustion modeling community (Barlow 2018). Indeed,
the chemistry modeling of combined multiple flame structures causes numerous
modeling difficulties (Knudsen and Pitsch 2012): heat release, temperature and
species concentrations have to be reproduced according to the different encoun-
tered flame trajectories (Fiorina 2019). In particular, in a multi-mode flame
environment, pollutants formation is very sensitive to the local combustion
regime and then extremely difficult to model. Fiorina et al. (2005) and more
recently Cailler et al. (2019) have shown that predicting CO in non-premixed
combustion regime using premixed based flamelets trajectories or vice-versa
leads to important bias. The same observation is valid for nitric oxide (NO) as
shown in Chap. 5.
Most of the available literature combustion chemistry models are based on tab-
ulated chemistry (Peters 1988; Maas and Pope 1992b; Gicquel et al. 2000;
Van Oijen et al. 2001) and they are derived to target a single flame regime
(Gicquel et al. 2000; Van Oijen et al. 2001; Pierce and Moin 2004). Conse-
quently, they are often not efficient outside the tabulated flamelet trajectories
(Cailler et al. 2019), especially for pollutant prediction (Fiorina 2019).
Reduced chemistry models, based on transported finite rate chemistry, have
demonstrated to be more suitable for complex flame environment (Felden et al.
2018). Reduced mechanisms can be derived mixing informations from premixed
and non premixed flames (Lu and Law 2008a). Furthermore, they do not
need additional modeling assumptions to simulate multi-injector problems and
flame heat losses, differently from tabulated chemistry (Hasse and Peters 2005;
Fiorina et al. 2003; Franzelli et al. 2010).
One finite rate chemistry strategy consists in the use of global optimized mecha-
nisms (Westbrook and Dryer 1981; Jones and Lindstedt 1988). Although robust
for global flame quantities and CPU efficient (Franzelli et al. 2010), they are
not suitable for accurate flame structure and pollutants description. Two pos-
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sible finite rate chemistry strategies are instead currently used to conduct LES
of complex burners combining flame structure and pollutant predictions, at an
affordable CPU cost. One consolidated strategy consists in the use of non-stiff
Analytically Reduced Chemistry (ARC). ARC mechanisms have been recently
used to perform simulations of complex burners (Jaravel et al. 2017; Felden
et al. 2018), demonstrating also the importance of retaining finite rate chem-
istry effects for CO modeling (Benard et al. 2019). A second emerging finite
rate chemistry approach is the virtual chemistry methodology (Cailler et al.
2017; Cailler et al. 2019). Its suitability to model CO emissions in LES have
been recently demonstrated for a turbulent confined aeronautical combustor
exposed to heat losses (Maio et al. 2019). But, its capability to reproduce
multi-mode turbulent flame condition need to be fully explored. Virtual chem-
istry (Cailler et al. 2017), as presented in Chap. 3, has shown the ability to
describe flame structure and CO formation (Cailler et al. 2019) in combined
laminar premixed and non premixed combustion regimes.
The objective of the present chapter is to challenge, for the first time, virtual
chemistry in turbulent mixed combustion regimes in LES.
Sydney Inhomogeneous burner, designed at Sydney University (Meares and
Masri 2014) and experimented at both Sydney University (Meares et al. 2015)
and Sandia National Laboratories (Barlow et al. 2015) is an academic jet flame
configuration operating in multi-regime flame conditions. The burner set-up
and the inflow conditions are designed to promote mixed combustion regimes.
Therefore, it is a well-suited test case candidate to validate virtual chemistry
in multi-regime turbulent flame conditions.
The virtual chemistry LES computation is also compared with an FPI-FGM
(Gicquel et al. 2000; Van Oijen et al. 2001) tabulated chemistry LES simula-
tion. FPI-FGM is instead a well established literature combustion chemistry
approach.
The two combustion chemistry models are coupled with the thickened flame
model for LES to deal with the under-resolution of the flame front and to
account for chemistry turbulence interaction at the sub-grid scale.
The two LES computations are performed with the unstructured finite-volume
low Mach number code YALES2 (Moureau et al. 2011a).
In the present chapter, first a brief state of the art on the recent numerical
studies on the Sydney Inhomogeneous burner is discussed. Then, the employed
combustion modeling strategies are presented. Successively, an overview on the
burner configuration and on the most relevant experimental studies is given.
After presenting the numerical set-up, non reactive inert simulations and reac-
tive ones are shown and compared to experiments.
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Table 6.1: Literature modelling studies on the Sydney Inhomogeneous piloted burner.

Publication Chemistry model Combustion model

Meares et al. (2015) reduced chemistry Eulerian stochastic field
Wu and Ihme (2016) premixed or non-premixed flamelet presumed-PDF

Kleinheinz et al. (2017) multi-regime flamelet presumed-PDF
Johnson et al. (2017) non-premixed flamelet presumed-PDF
Perry et al. (2017) partially premixed diffusion flamelet presumed-PDF

Galindo et al. (2017) non-premixed flamelet MMC-LES
Perry and Mueller (2018) partially premixed diffusion flamelet presumed-PDF
Tian and Lindstedt (2018) reduced chemistry transported PDF

Rieth et al. (2019) reduced chemistry/premixed flamelet transported PDF

6.2 State of the art

Sydney inhomogeneous burner have been recently numerically investigated in
the literature by several research groups, using Large Eddy Simulation models
(Meares et al. 2015; Wu and Ihme 2016; Kleinheinz et al. 2017; Johnson et al.
2017; Perry et al. 2017; Galindo et al. 2017; Tian and Lindstedt 2018; Rieth
et al. 2019). Different combustion chemistry and turbulent combustion models
are employed in these studies. A summary, of the recently published works
with the corresponding combustion modeling approaches, is presented in Tab.
6.1.
It shows that most of the studies make use of flamelet libraries combined with
presumed PDF (Wu and Ihme 2016; Kleinheinz et al. 2017; Johnson et al.
2017; Perry et al. 2017; Perry and Mueller 2018) or transported PDF (Ri-
eth et al. 2019) turbulent combustion models. While only few studies employ
transported complex chemistry combined with transported PDF (Kleinheinz
et al. 2017; Tian and Lindstedt 2018) because of the very high CPU cost as-
sociated. An hybrid model, that combines reduced transported chemistry and
tabulated chemistry with PDF transport, has been recently introduced by Rieth
et al. (2019) to limit the CPU cost. Compared to transported chemistry mod-
els, tabulated chemistry has the advantage to be less CPU demanding. But,
when used in complex flame conditions such as Sydney inhomogeneous burner,
it requires important modeling assumptions and simplifications that are not
needed by a reduced mechanism: the choice of the flame archetypes to tabulate
(Perry et al. 2017), the selection of the reduced set of table-coordinates (Perry
and Mueller 2018) and the closure of the scalar source terms (Kleinheinz et al.
2017). All these assumptions restrict the evolution of the flame trajectories and
can lead to import discrepancies, especially for intermediate species prediction
(for example CO) (Wu and Ihme 2016). In the literature, the application of
transported finite rate chemistry models in Sydney burner simulation remains
restricted as well as the demonstration of the related advantages in CO predic-
tion. These reasons motivates the scope of this work.
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6.3 Combustion modeling

6.3.1 Chemistry modeling

Two reduced order models are used in the current chapter, to model combustion
chemistry in the Sydney inhomogeneous burner simulations:

• FPI-tabulated chemistry approach (Gicquel et al. 2000): flame trajec-
tories are mapped from premixed flamelets using mixture fraction and
progress variable.

• virtual chemistry model (Cailler et al. 2017): the main 2-step mechanism
and the CO dedicated sub-mechanism are used, as described in Chap. 3.

6.3.1.1 FPI tabulated chemistry

The FPI (Flame Prolongation of ILDM) (Gicquel et al. 2000) or equivalen-
tely FGM (Flamelet-Generated Manifolds) (Oijen and Goey 2000) combustion
chemistry models rely on the pre-tabulation of flame trajectories using premixed
flamelet archetypes.
A one to one relation ensures that each thermochemical quantity  ⇤, com-
puted from a collection of 1-D premixed flamelets, is only function of the two
chemtable coordinates Z and Yc, which map the fresh gases equivalence ra-
tion and the coordinate normal to the flame front, respectively. Then, each
flame thermochemical quantity  is tabulated in a lookup-table according to
the relation  =  ⇤[Yc, Z]
In this work, a flamelet database made of 1-D premixed freely propagating
flames is computed, with the REGATH (Darabiha 1992) thermochemistry pack-
age, using the detailed chemistry GRI.3.0 (Smith et al. 2011) mechanism, in-
volving 53 species and 325 reactions. Differential diffusion effects are accounted
using the Hirschfelder and Curtiss approximation (Hirschfelder et al. 1954) de-
tailed in Sec. 1.3.4.
To make the tabulation suitable for partially-premixed combustion, the fresh
gas equivalence ratio is varied within the whole flammability limits (i.e 0.5 <
� < 2.0).
Z and Yc are defined as follows:

• The mixture fraction Z is used to identify the fresh gas equivalence ratio,
varying from 0 in pure air and 1 in pure fuel.

• The progress variable Yc is used to map the rate of progress. It is bounded
between 0 in fresh gases and Y eq

c in fully burnt gases. Yc is defined as
a linear combination of species mass fractions, describing the reaction
progress. In the present work Yc is chooses equel to YCO + YCO2 as
supported by Fiorina et al. (2003). The normalized progress variable C =
Yc/Y eq

c , bounded between 0 and 1, is also defined. It’s use is equivalent
to Yc

The FPI chemtable, obtained from the collection of the 1-D premixed flames, is
discretized in 200 points in C uniformly spaced and in 520 points in Z non uni-
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formly spaced. Outside the flammability limit, where no flamelet informations
are available, the thermochemical quantities are extrapolated.
Figure 6.1 shows the tabulated temperature and progress variable source term,
as function of Z and C, extracted from the built lookup table.
The FPI-FGM tabulated chemistry method has been used in the LES frame-
work in combination with several approaches for turbulence-chemistry interac-
tion modeling: presumed PDF (Domingo et al. 2008) and transported PDF
(Rieth et al. 2019), explicit flame filtering approach (Fiorina et al. 2010)
and by using artificially thickened of the flame front (TFLES) (Auzillon et al.
2011), (Kuenne et al. 2011), (Proch and Kempf 2014), (Proch et al. 2017).
Among the various strategies, in the present work, the artificially thickened
model (TFLES) is used. This choice facilitates the comparison with virtual
chemistry.

6.3.1.2 Virtual chemistry

Virtual chemistry, differently from FPI tabulation, is a transported chemistry
reduced model. Few species, compared to detailed chemistry, are directly trans-
ported in the flow solver and the chemical species source term is directly com-
puted at each time step.
In the LES computation of the Sydney inhomogeneous burner, virtual chemistry
is employed using the formulation proposed and validated by Cailler (2018) and
already described in Chap. 3.
The main virtual mechanism and the CO dedicated sub-mechanism are used
to compute temperature, flame global quantities (flame speed and heat release)
and CO formation.
The CO virtual sub-mechanism, as done by Cailler (2018), is optimized over
a learning database made of combined premixed and non premixed flames to
recover the CO flame regime affinity.
Virtual chemistry equivalence ratio dependent parameters are expressed, in
this chapter, as function of a mixture fraction Z, normalized between 0 and
1, in pure air and fuel, respectively. This definition is consistent with the one
used for tabulated chemistry. The same mixture fraction is also compared to
experimental data, to evaluate the local mixing between fuel and air.

6.3.2 Coupling with LES

The two combustion chemistry models, detailed in the previous section, are
coupled with the TFLES (Thickened Flame model for LES) turbulent combus-
tion model (Colin et al. 2000b), using a tabulated and a transported chemistry
formalism, respectively. SGS flame wrinkling is closed with the same model, as
proposed by Charlette et al. (2002a). The use of the same modeling approach
strengthens the value of the comparison. The details about the coupling of the
two chemistry approaches with TFLES are given in the following sections.
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Figure 6.1: 2D look-up table. Temperature (T) and the normalized progress variable
source term !C are shown as function of the mixture fraction Z and the normalized
progress variable C.
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6.3.2.1 TFLES-FPI tabulated chemistry

In premixed tabulated chemistry the dynamic TFLES model (Legier et al.
2000) is applied to the filtered progress variable eYc balance equation:
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(6.1)

The same operation was used in the FGM formalism (Kuenne et al. 2011;
Hernández-Pérez et al. 2011) and in the FPI one (Auzillon et al. 2011). As
detailed in Poinsot and Veynante (2005), the unresolved sub-grid convective
fluxes are closed using a gradient assumption introducing a turbulent Schmidt
number Sct and a turbulent viscosity µt. Hence, µ and µt are the laminar and
the turbulent viscosity, respectively; instead, Sc and Sct are the laminar and
the turbulent Schmidt numbers, respectively. A thickening factor FYc

is applied
to both diffusion and the source term of the filtered progress variable balance
equation. ⌅� is the subgrid wrinkling flame surface and � the flame sensor.
In TFLES-FPI formalism (Auzillon et al. 2011) the filtered progress variable
source term ġ!Yc

is directly extracted from the chemtable as a function of Z and
Yc:

ė!Yc
= !̇⇤

Yc
[Yc, Z] (6.2)

The superscript ⇤ denotes quantities that are extracted from the flamelet database.
The same operation is here performed for the dynamic viscosity (µ = µ⇤[Yc, Z])
and for the correction parameter ↵Y c (↵Y c = ↵⇤

Y c
[Yc, Z]). The correction pa-

rameter ↵Y c, proposed by (Mercier et al. 2014), allows to account for differential
diffusion effects in the direction normal to a premixed flame front, retrieving
the correct flame propagation speed. Originally introduced for the F-TACLES
formalism (Mercier et al. 2014), it is here adapted to TFLES-FPI model. ↵Y c is
tabulated from the premixed flamelet database, comparing the diffusive fluxes
evaluated with mixture-averaged approximation (Hirschfelder et al. 1954) and
the simplified transport model used in Eq. 6.1, as follows:
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(6.3)

In partially premixed combustion environment, to map the mixture stratifica-
tion, a balance equation for the filtered mixture fraction eZ is also introduced
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in the flow solver (Auzillon et al. 2011; Proch et al. 2017):
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eZ is transported as a non-reactive scalar and the unresolved sub-grid convective
fluxes are closed with the same gradient assumption used in Eq. 6.1 (Poinsot
and Veynante 2005).

Dynamic thickening A grid adaptive thickening factor is defined as follows
(Franzelli 2011):

FYc
= max(1 + (Fmax � 1)�, 1) (6.5)

where Fmax reads:

Fmax = n
�x

�l[Z]
(6.6)

�x is the local cell size and �l[Z] is the laminar flame thermal thickness which
is tabulated as function of local mixture fraction. n is the minimum number
of mesh points required across the flame front to correctly resolve the flame
structure. Here, it is chosen equal to 6. By introducing the flame sensor � the
thickening is locally applied only where the flame is detected. � is here based
on the progress variable source term (Franzelli 2011; Jaravel 2016) and defined
as follows:

⇢
� = 1 if !Yc

> !0
Yc

� = 0 otherwise
(6.7)

where !0
Yc

is a threshold value defined as:

!0
Yc

= max(!Yc
[Z]) ⇤ Tr (6.8)

Max(!Yc
[Z]) is the maximum value of the progress variable source term which

is tabulated in the computation as function of the local mixture fraction. While
Tr is a threshold value chosen equal to 0.05.
As discussed by Franzelli (2011), the flame sensor is then filtered with a Gaus-
sian function to avoid numerical problems.
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6.3.2.2 TFLES-virtual chemistry

TFLES is coupled with virtual chemistry using a transported chemistry for-
malism, as in its original formulation (Colin et al. 2000b). The virtual main
mechanism and pollutant CO sub-mechanism are coupled with the TFLES
using a thickening factor F and a flame sensor gamma � that are properly de-
fined for transported chemistry. Differently from the FPI tabulation method,
where only a reduced set of scalars are transported in the flow solver, here each
species that is involved in the mechanisms is transported. The TFLES balance
equation for each filtered species mass fraction fYk is formulated as follows:
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⌅� is the subgrid wrinkling flame surface. !̇Yk
is the thickened reaction rate

which is closed with the Arrhenius formulations presented in Chap. 3.

Dynamic thickening The flame sensor � and a thickening factor F are
defined according to the work of Mercier et al. (2017a). Dedicated species
thickening factors FYk

and flame sensors �Yk
are before introduced:

FYk
= max(1 + (Fmax � 1)�, 1) with Fmax = nk

�x

�lk [Z]
(6.10)

⇢
�Yk

= 1 if !Yk
> !0

Yk

�Yk
= 0 otherwise

(6.11)

where !0
Yk

is a threshold value defined as:

!0
Yk

= max(!Yk
[Z]) ⇤ Trk (6.12)

�lk [Z] is the reaction thickness of the species k (width at half maximum of the
species source term) while nk the minimum number of mesh points required
across �lk to ensure its proper resolution. Trk is a species source term threshold
value while Max(!Yk

[Z]) is the maximum value of the species source term that
is function of the local mixture fraction. Max(!Yk

[Z]) and �lk [Z] are tabulated
as function of a passive scalar Z, from a collection of 1-D premixed laminar
flames, varying the fresh gases equivalence ratio in the whole flammability limit.
This species flame sensor definition, based on species source term, and the dy-
namic thickening definition are close to the one used for FPI-tabulated chem-
istry in Sec. 6.3.2.1.
The global flame sensor � and the global thickening factor F applied in Eq. 6.9
are written as a boolean union of the �Yk

and FYk
defined in Eq. 6.11 and in

Eq. 6.10, respectively. In practice, � and F are expressed as follows:
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Table 6.2: Dynamic TFLES parameters for computing �Yk and FYk .

F P2 CO V2

nk 3.0 2.0 3.0 2.0
Trk 0.1 0.1 0.05 0.05

� = max (0,�Yk
) for k 2 [1, Ns] (6.13)

F = max (0, FYk
) for k 2 [1, Ns] (6.14)

Where Ns is the number of selected species to build-up � and F . For Sydney
inhomogeneous burner 4 species are selected: Fuel (F) and the virtual product
P2 from the main mechanism, CO and V2 from the CO virtual sub-mechanism.
With this species combination, � allows to properly encompass the flame re-
active zone and F to properly solve the whole reactive layer and consequently
the heat release rate. nk and Trk are species depended parameters and they
are chosen to retrieve a proper reproduction of the species reactive layer. Typ-
ical values of nk are bounded between 2 and 5 while typical values of Trk are
bounded between 0.05 and 0.2
For Sydney Inhomogeneous burner, the nk and Trk employed parameters are
summarized in Tab. 6.2. The same TFLES virtual chemistry strategy has been
also successfully applied in recent previous works: the computations of the
Cambridge stratified swirl burner (Mercier et al. 2017a) and Preccinsta burner
in adiabatic (Cailler 2018) and non adiabatic (Maio et al. 2019) conditions.

6.3.2.3 Validation test case

1-D stoichiometric flames are computed using both FPI tabulated chemistry
and virtual chemistry combined with the TFLES model employing the param-
eters detailed in the previous section. For the thickened flame simulations a
mesh size of 0.2 mm is considered. It is a representative mesh size in the flame
region in the 3-D LES of the Sydney inhomogeneous burner. Both thickened
flame computations are compared with fully resolved unthickened ones employ-
ing a mesh size of 0.02 mm. All 1-D flames are computed with YALES2 solver
(Moureau et al. 2011a).
Figure 6.2 shows, on the left, the flame sensor and the dimensionless TFLES
heat release rate and, on the right, the TFLES temperature profiles compared
to the fully resolved unthickened ones. The upper figures refers to the FPI-
tabulated chemistry computations while the bottom ones to the virtual chem-
istry computations. Indeed, with the employed dynamic TFLES parameters,
described above, heat release rate and as well as temperature profile are well
described after the thickening operation. This ensure that the laminar flame
speed in conserved with an error of 2.5% for FPI tabulated chemistry and 4%
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Figure 6.2: TFLES stoichiometric 1-D flames with FPI tabulated chemistry and
virtual chemistry. On the left: the flame sensor � (solid line) and the dimension-
less heat release rate (dashed line). On the right: temperature profile of the TFLES
computation (dashed line) compared to the temperature profile of the fully resolved,
unthickened flame (solid line). The dots represents the mesh points of the thickened
flame simulation. a) FPI tabulated chemistry. b) virtual chemistry
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for virtual chemistry. The virtual chemistry flame sensor, evaluated considering
multiple chemical time scale (4 species), is visibly wider than the FPI tabulated
chemistry one. This is due to the inclusion of product species in the flame sen-
sor computation (P2 and V2). Howhever, this choice ensure a correct resolution
of the product species but does not affect the laminar flame consumption speed
prediction.

6.3.2.4 Wrinkling model

The analytic formulation proposed by Charlette et al. (2002a) and successively
improved by Wang et al. (2011) is retained to model the SGS flame wrinkling:

⌅� =

 
1 + min

"
�

�L
� 1, f�

u
0
�

SL

#!�

(6.15)

where �L, SL and � are the laminar flame thickness, laminar flame speed
and the flame test filter size, respectively. u

0
� is the sub-grid scale velocity

fluctuation and f� a parameter for including flame strain effect in the model.
� is the fractal dimension of the flame and it is the controlling parameter for
⌅�. More details about the theoretical formulation and derivation of ⌅� are
given in Charlette et al. (2002a), Charlette et al. (2002b) and Wang et al.
(2011). In the present work SL and �L are computed from 1-D premixed flames
and tabulated as function of the local mixture fraction Z. � is chosen equal to
0.5.

6.4 Burner overview

6.4.1 Experimental set-up

The burner assembly shown in Fig 6.3 (Barlow et al. 2015) consists of two
concentric tubes surrounded by a pilot annulus. It is centered in a wind tunnel
supplying a co-flowing air stream at fixed velocity (the nominal co-flow velocity
is equal to 15m/s). The particularity of the burner consists in the possibility to
investigate different inhomogeneous flame configurations, simply by changing
the geometry. The inner tube can be recessed in the outer one at different
distances Lr from the burner exit plane, from 0 mm to 300 mm. When Lr = 0,
fuel and air are injected separately in the chamber, promoting a diffusion flame.
When Lr = 300, an homogeneous mixing between fuel and air is observed in
the mixing tube, before the injection in the combustion chamber. For 0 < Lr <
300, inhomogeneous mixing occurs and the partially premixed fuel-air mixture
is injected in the chamber. It is also possible to feed alternatively air in the
outer tube and fuel in the inner tube (FJ configuration) or fuel through the
outer tube and air within the central tube (FA configuration). The way of
feeding the tubes (FJ or FA) and the recession distance are the controlling
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a) b)

Figure 6.3: The figure shows: a) a schematic 3D cut of the burner. b) a 2D sec-
tion with the main burner lengths expressed in mm. The two figures are reproduced
from Meares and Masri (2014)

parameters to manage the degree of mixing between the streams. Different
flame configurations may be stabilized at the burner exit, including cases in
which stratified premixed and non-premixed flame structures co-exist.
At the beginning, the burner was designed to investigate the influence of mix-
ture inhomogeneities on stabilization proces of partially premixed flames (Meares
and Masri 2014). Then, different studies were conducted on a selected num-
ber of burner configurations with the scope to investigate the flame structure
(Meares et al. 2015), (Barlow et al. 2015), issuing the partially premixed
burner. The experimental databases (Masri 2016) (http://web.aeromech.
usyd.edu.au/thermofluids/database.php) provides measurements for sev-
eral burner configurations, obtained in different experimental campaigns, chang-
ing the fuel (compressed natural gas or methane) and the pilot composition
(3-gas pilot or 5-gas pilot). Sydney University have provided velocity measure-
ments by laser Doppler anemometry and high-speed OH PLIF imaging, while
Sandia National Laboratory have provided measurements of temperature and
major species mass fractions, using line-imaged Raman/Rayleigh scattering and
laser-induced fluorescence (LIF) of CO.

6.4.2 Target case

The FJ case is preferred to the FA case for stability reasons. Volumetric air
to fuel ratio VA/VF is fixed to 2. Employing methane as fuel, the prescribed
air/fuel volumetric ratio corresponds to bulk equivalence ratio of 4.76.
The recession distance Lr is set to 75mm because it allows to reach the maxi-
mum blow-off velocity (114.3 m/s) for CH4-air flames series. The pilot stream

http://web.aeromech.usyd.edu.au/thermofluids/database.php
http://web.aeromech.usyd.edu.au/thermofluids/database.php
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Figure 6.4: Nomenclature used by experimental research groups to uniquely identify
a flame configuration for Sydney inhomogensous burner.

Table 6.3: Main characteristics of the target flame configurations investigated in the
thesis and in the 14th TNF workshop edition. Lr is the recession distance of the inner
pipe. Ub is the mean bulk flow velocity of the main jet. Ubo is the blow off velocity.
UF and UA are the bulk velocity at the fuel and air tube inlets respectively.

Flame configuration Lr[mm] Ub[m/s] Ub/Ubo UA[m/s] UF [m/s] Re Hr(kW )

FJ200-5GP-Lr75-80 75 80 0.7 83.4 93.8 37500 38.6

is feed with 5 gases mixture whose composition is defined to recover the equilib-
rium adiabatic flame temperature and composition of a stoichiometric methane-
air flame (Barlow et al. 2015).
The chosen configuration, according to the nomenclature used by experimental
groups to identify uniquely each burner configuration is explained in Fig. 6.4,
is the FJ200-5GP-Lr75-80. In Table 6.3, the main operating parameters of the
selected configuration are summarized including the bulk Reynolds number Re
and the thermal power released by the flame Hr.
The bulk velocity of the investigated case corresponds to 70% of the blow-off
limit. This operating point is shown in the blow-off plot in Fig. 6.5. It shows
the experimental blow-off limit as function of the recession distance (Barlow
et al. 2015). The enhancement in flame stabilization for the Lr75 case is
experimentally attributed to the development of a premixed stratified flame
structure close to the burner exit (Barlow et al. 2015). Then, within the first
ten main tube diameters downstream, the flame relaxes toward a non-premixed
combustion mode (Barlow et al. 2015).
The FJ200-5GP-Lr75-80 have been judged the most interesting cases for the
numerical study for two main reasons: i) it exhibits the presence of multi-mode
flame regimes (Barlow et al. 2015) ii) the widest experimental database exists
for this configurations, including cold and hot inert data (Masri 2016).
For clarity and shortness reasons, the selected configuration is referred with the
name Lr75Ub80 in the following part of the chapter.
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Figure 6.5: Bulk jet velocity of the simulated flame (stars circled by red bound). It
is placed in the graph that plots the measured blow off velocity Ubo versus recession
distance Lr for the FJ and FA cases. The figure is reproduced from Barlow et al.
(2015).

Figure 6.6: Schematic view of the two computational domains. The non-reacting
fluel/air mixing computational domain, simulated by Perry et al. (2017), is bounded
in red. The reacting computational domain, simulated in the present work, is bounded
in blue.

6.5 Numerical set-up

6.5.1 Computational domain

The whole inhomogeneous flame geometry includes the burner assembly (pipe/annulus
region and mixing tube) and the combustion chamber. The computation of the
whole configuration is too CPU expensive, because an highly resolved LES is
required to capture the mixing process between fuel and air.
Therefore, as shown in Fig. 6.6, two separate computational domains are re-
tained: one for the mixing tube and the other for the combustion chamber.
For the combustion chamber domain, the boundary condition in correspondence
of the main inlet must be provided as the output of the mixing tube region
computation.
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Figure 6.7: 2D colormap of instantaneous and mean mixture fraction profiles at main
jet inlet. The instantaneous profiles are interpolated from the Princeton boundary
conditions database and the temporal mean in done over 2.5 ms of physical time.

The non-reacting simulations of the flow within the mixing tube is not per-
formed here. The results provided by the Princeton group (Perry et al. 2017;
Perry and Mueller 2018) and shared in the context of the TNF workshop, are
retained.
Perry et al. (2017) conducted the non-reacting LES of the flow upstream of
the main jet exit plane, splitting the domain domain into two regions that
are separately computed. Firstly, the fully developed flow in the pipe/annulus
region is simulated, secondly the turbulent mixing tube region is computed.
Perry et al. (2017) stored the output of the mixing tube computation over a
plane, placed 1D (D is the main jet diameter) upstream the burner exit plane.
2-dimensional velocity and mixture fraction data are given in the database as
function of the simulation time and the spatial coordinates. Mixture fraction
and velocity profiles are time varying as the flow is turbulent and a non sta-
tionary LES is performed.

6.5.2 Inlet boundary conditions

6.5.2.1 Main tube

The Princeton database (Perry et al. 2017) is employed in this work to pre-
scribe, as function of the simulation time, the 3 velocity components and the
inhomogeneous mixture 1D upstream the main jet flame inlet. Each instan-
taneous solution is spatially interpolated from the Princeton mesh to the em-
ployed one.
Figure 6.7 shows 2-D instantaneous mixture fraction profiles prescribed at the
main jet inlet. The figure shows an instantaneous snapshot and the mean profile
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Figure 6.8: Axial velocity mean profile at 0.1D downstream the burner exit plane.
The red dots and the blue dots refer to two different experimental campaign aimed at
measuring the pilot and the coflow velocity, respectively. The experimental velocity
data (red and blue dots) are compared versus two different simulations. Dashed line:
simulation conducted imposing, at the burner exit plane (z/D = 0), a flat axial ve-
locity profile, equal to the experimental nominal one. Solid line: simulation conducted
prescribing velocity boundary layers, fitted to retrieve the experimental mean velocity
data available at z/D = 0.1. The vertical green lines indicate the thickness of the
burner lips between the main jet and the pilot tube and between the pilot tube and the
coflow stream, respectively.

computed over 2.5ms of physical time.

6.5.2.2 Pilot and Coflow

6.5.2.2.1 Velocity Laminar velocity profiles are prescribed at pilot and at
the coflow inlets because the two streams exhibit laminar bulk flow Reynolds
numbers.
The experimental database (Masri 2016) provides mean axial velocity mea-
surements at 0.1D downstream the burner exit plane, in reactive conditions,
in correspondence of the pilot and coflow streams. These measurements are
plotted in Fig. 6.8.
The experimental measurements have been performed along the burner diam-
eter and are plotted as function of the radial distance r. It can be observed,
that the experimental data are not exactly symmetric with respect to the center
of the burner because of the presence of small asymmetry in the experimental
set-up (Meares et al. 2015; Cutcher et al. 2017).
Two shear layers are observed at z/D = 0.1 downstream (z is the axial dis-
tance): at the interface between the the pilot and the main jet and at the
interface between the coflow stream and the pilot tube, respectively.
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Figure 6.9: 2D instantaneous velocity magnitude field on the chamber mid-plane
with 10 m/s iso-line in white. Two different velocity profiles are prescribed in pilot
and coflow jets. On the left: the experimental nominal bulk velocity is imposed. On the
right: a non uniform axial velocity profile is polynomially fitted to match the velocity
measurements at z/D = 0.1. In both cases the simulation are conducted using the
TFLES-FPI tabulated chemistry model, described in Sec. 6.3.2.1.

To find the best velocity profile to prescribe at the pilot and coflow inlet tubes,
two different simulations have been performed, imposing the pilot and coflow
inlet velocity according to the two different criteria:

1. Flat velocity profile, using the bulk nominal value given by the experi-
mental database.

2. A numerical polynomial axial velocity profile fitted to match the experi-
mental data available at z/D = 0.1.

Figure 6.8 shows the radial numerical mean velocity profiles from the two sim-
ulations, compared aposteriori to experimental data at 0.1D downstream.
Indeed, the prescription of a numerical fitted velocity profile, for the pilot and
coflow inlets, allows to better retrieve the shear layer that develops at the
interface between the jets.
Figure 6.9 compares, over a 2-D cut-plane, the instantaneous velocity magni-
tude field for the two cases. When the tube boundary layers are reconstructed
(right figure), the shear layers between the jets are more intense. The isocon-
tour at 10m/s (white line) confirms the velocity drops at the shear layers. This
drop is not present when the flat velocity profile is imposed (left figure).
It can be observed that, when a fitted profile is imposed, the shear layers become
unstable and some velocity instabilities are convected downstream.
It is also shown in Fig. 6.9, that the shear layer between the pilot and the
coflow is more sensitive to the boundary conditions modification than the shear
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Figure 6.10: 1-dimensional radial rms temperature profile at z/D = 1 and z/D = 5.
LES results are compared to experimental data. Dots: Experimental data. Solid lines:
computation that consider numerically fitted profiles at the pilot and coflow inlets.
Dashed line: nominal bulk velocity is considered at the pilot and coflow inlets. Blue:
FPI tabulated chemistry. Orange: Virtual chemistry.

layer between the main jet and the pilot. Indeed the velocity drop affects a
longer distance in the outer shear layer; it is confirmed by the velocity 10m/s
isocontour which is shorter for the inner shear layer.
The instability originated at the pilot-coflow shear layer affect the scalars com-
puted fluctuations.
Figure 6.10 shows temperature rms profiles over 1-D radial probes at 1D and 5D
downstream the burner exit. Experiments are compared to LES results. The
two shear layers (main/pilot and pilot/coflow) induce two rms temperature
peaks. When flat velocity injection is imposed at the pilot and coflow inlets
the second rms peak is completely missed. Contrarily, prescribing numerical
injection profiles, pilot-coflow shear layer fluctuations are enhanced at 1D and
5D downstream. However, at 1D, the magnitude of the fluctuations is improved
but still underestimated.
From the analysis conducted in Fig. 6.8, Fig. 6.9 and Fig. 6.10, the numer-
ically fitted polynomial profile is preferred and imposed as velocity boundary
condition for the pilot and coflow inlets for the reactive simulations.

6.5.2.2.2 Scalars In addition to velocity profiles, the scalars values must
be prescribed for the pilot and coflow inlets. The coflow tube is fed with pure
air at 295 K both in cold and in reactive conditions. Instead, the pilot tube is
fed differently in cold and reactive conditions. In cold conditions, ambient air
is injected at 295 K.
While, in reactive conditions, the pilot tube is fed with a mixture of 5 gases
(H2, C2H2, O2, N2, CO2), designed in the experimental study.
The fresh gases composition injected upstream of the pilot flame is reported in
Tab. 6.4
The mixture is defined to recover the adiabatic equilibrium temperature and
C/H composition of a stoichiometric CH4/air flame (Barlow et al. 2015).



Part III - Application to turbulent flames 139

Table 6.4: Measured pilot gases composition. Fresh inlet row: reactants measured
upstream of the pilot flames holder. z/D = 1 row: pilot products composition measured
at z/D = 1D. The corresponding temperature is also given.

Pilot composition C2H2 H2 N2 CO2 O2 H2O CO

Fresh inlet (295 K) 2.80E-02 1.16E-02 7.24E-01 5.66E-02 1.78E-01 - -
z/D = 1 (2094 K) - 1.30E-03 7.07E-01 1.18E-01 2.47E-02 1.17E-01 3.01E-02

Indeed, the pilot flame temperature estimated from an equilibrium computation
performed at constant pressure and constant enthalpy, is equal to 2221K. This
value is very close to the equilibrium adiabatic temperature of a stoichiometric
CH4/Air mixture (2223K), in the same conditions.
Pilot products and temperature near the burner exit plane (z/D = 1) are also
measured (Barlow et al. 2015) and reported in Tab. 6.4. It can be observed that
this mixture does not match adiabatic equilibrium conditions. Temperature is
equal to 2094 K, which is lower than its adiabatic equilibrium value (2221K).
Two possible reasons can cause this mismatch:

1. Heat losses: pilot products lower their enthalpy because of heat looses in
the tubes.

2. Partial mixture oxidation: pilot gases do not have enough time to reach
adiabatic equilibrium conditions and they remain partially oxidized at
z/D = 1.

By conducting an equilibrium computation, at constant pressure and enthalpy,
using the measured temperature and composition at z/D = 1, the equilibrium
temperature (2240K) and composition are very close to the adiabatic one.
Consequently, it is possible to concluded that heat losses is not the leading
phenomena, but the pilot mixture is only partially oxidized at z/D = 1.
In order to make the simulation injection close to the experimental one, a
normalized progress variable C = T/T eq is defined for a 1-D premixed stoichio-
metric flamelet. The condition at the pilot inlet are tuned moving the injection
conditions along the flamelet trajectory. The injection point is found when the
LES computation is able to match the mean experimental bulk temperature in
correspondence of the pilot stream, at 1D downstream, accepting an error of
1%.
In practice, the inlet pilot conditions are defined for the two combustion chem-
istry models as follows:

• In the FPI tabulated chemistry simulation: the pilot composition is spec-
ified using the mixture fraction Z and the progress variable C. The
flamelet values are given in Tab. 6.5.

• In the virtual chemistry simulation: the inlet temperature and virtual
species composition are specified. The flamelet values are given in Tab.
6.6.

Figure 6.11 compares the FPI-tabulated chemistry and the virtual chemistry
mean temperature from LES with experiments, at 1D downstream. Indeed,
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Table 6.5: Inlet pilot gases scalars for FPI tabulated chemistry computation

Z C

0.055 0.941

Table 6.6: Inlet pilot gases scalars for virtual chemistry computation: mass fractions
of the species in Main and CO mechanisms.

Temp F Ox I P1 P2

1950 K 0.22E-02 0.829E-02 0.206E+00 0.1909E-02 0.2056E-01

P3 P4 N2 CO V1 V2

0.6431E-02 0.2909E-01 7.2466E-01 0.198E-01 0.0 2.44E-01

Figure 6.11: 1 dimensional radial mean temperature profile at z/D = 1. LES results
are compared to experimental data. Dots: Experimental data. Dashed lines: equilib-
rium pilot scalars are imposed at the inlet. Continuous line: non-equilibrium pilot
scalars are imposed at the inlet. Blue: FPI tabulated chemistry. Orange: Virtual
chemistry.
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Figure 6.12: 3D view of the Inhomogeneous piloted burner reactive geometry. Half-
portion of the whole geometry. On the 3-D cut the cell edges along with the geometry
lengths and injections are reported.

by adjusting the pilot inlet conditions to match the mean bulk temperature,
the whole mean temperature profile at 1D is correctly reproduced with both
chemistry models. Instead, when equilibrium conditions are prescribed, at pilot
inlet (i.e. C = 1), temperature, at 1D downstream, is overestimated of the same
amount with both combustion chemistry models.

6.5.3 Mesh and numerical parameters

Figure 6.12 shows a 3-D-cut of the computational domain employed in the
numerical simulation of the Sydney Inhomogeneous burner. The length and
the width of the domain are 80D and 30D, respectively. The computational
domain is larger than the flame zone of interest to avoid outlet and wall effects
on the flame. However, the computational cost it is not affected by this choice,
because employing a tetrahedral unstructured mesh, the cell size is largely
increased far from the zone of interest, as shown in Fig. 6.13.
The tetrahedral mesh features 10.1M nodes and the mesh size varies from
0.015mm in correspondence of the burner lips, to 5mm far from the flame
zone. In the flame region of interest (up to 15D downstream) the mean cell size
in around 0.2mm.
The maximum Mach number Ma encountered, in correspondence of the main
jet exit, is ⇡ 0.3. This value is low enough to retain the low Mach number
hypothesis, valid for flow with Ma  0.3 (Kraushaar 2011).
The calculations are performed with the unstructured finite-volume low Mach
number code YALES2 Moureau et al. (2011a). A centered fourth-order scheme
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80 D

Figure 6.13: Zoom of the above 3-D cut close to the injection tubes. The cut surface
is coloured by the tetrahedral cell characteristic size clipped at 1mm maximum and
0.01mm minimum.

Table 6.7: Boundary conditions for the three injections in the different computations.

Lr75Ub80 Main-jet Pilot Coflow

Cold Air/Fuel mixture Cold air Cold air

Hot non-reactive Cold air Hot gases (Sec. 6.5.2.2.2) Cold air
Reactive (FPI/Virtual) Air/Fuel mixture Hot gases (Sec. 6.5.2.2.2) Cold air

in space and time is used for the numerical integration of the convective terms.
The sub-grid Reynolds stresses tensor is closed with the WALE model (Nicoud
and Ducros 1999).
Cold flow, hot non reactive and reactive simulations results are presented in
the following sections.
The injection characteristics of the simulations, conducted in this chapter, are
summarized in the Tab. 6.7.
Favre averaged LES statistics are computed and compared to experimental data
in the following sections.
The hot non-reactive flow simulation is added as an intermediate numerical
step, to analyse the impact of the pilot gases on the shear layers and on the
mixing process. The details of this particular computation are given below.
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6.6 Cold and non-reactive flow simulations

The validation of the numerical set-up for prediction of the aerodynamic field
and of the non-reactive mixing is conducted through two intermediate steps:

1. Cold simulation: pilot is switched off and the partial premixed air-fuel
mixture, as in Sec. 6.5.2.1, is injected through the central main jet.

2. Hot non-reactive simulation(inert): the pilot is switched on, as detailed
in Sec. 6.5.2.2.2 but only air flows through the central pipe, to prevent
chemical reaction. A mixture fraction is numerically defined to quantify
the mixing between the pilot and the main jet steams.

The hot non-reactive simulation is an additional validation step, established in
agreement with the TNF community, to further asses the robustness of the nu-
merical set-up in the Sydney inhomogeneous burner simulation. This validation
step is possible since Masri (2016) has provided, for the Lr75Ub80 case, velocity
measurements in the same operating condition defined in the simulations.
The inert simulations (cold and hot non-reactive), in addition to validate the
numerical set-up, allow to analyse and quantify the effect of the pilot stream
in the mixing and flow processes.

6.6.1 Results

Mean and rms axial velocity profiles are shown in Figs. 6.14 and 6.15 for cold
and hot non-reactive simulations, respectively. Results refer to the Lr75Ub80
case and they are shown at four different axial locations from the burner exit.
In the cold flow simulation, the mean and rms profiles compare fairly well
with the experimental data. At z/D=1 (z is the axial coordinate) the mean
parabolic shape, issuing the main jet, observed in the experiments, is however
not perfectly retrieved in the simulation. This discrepancy is observed also in
the simulations conducted by the others TNF numerical groups (Barlow 2018).
We have concluded, after discussing with the other TNF members, that it
can be attributed to the boundary conditions database that does not perfectly
characterize the penetration of the fuel jet in the air one, inside the mixing
tube. The bulk rms in slightly underpredicted in the core of the jet even if
its global shape is retrieved. The magnitude of the shear layer rms peak is
correctly reproduced. Downstream, from z=5D, mean and rms solutions show
that the jet velocity dissipation is very well reproduced.
The hot non-reactive simulation (Fig.6.15) velocity statistics compare also fairly
well versus experiments. From 1D to 10D, the mean axial velocity shows a bulk
profile, which is in accordance with experiments. Downstream, at z=20D, the
simulation predicts a faster velocity decrease than experiments.
Figure 6.16 presents a comparison of the mixing process between the cold case
and the hot non reactive case.
As anticipated above, in the hot non-reactive case, it is still possible to numer-
ically define a mixture fraction to quantify the mixing between the pilot and
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Figure 6.14: Cold flow simulation. Axial velocity statistics (mean and rms) compared
versus experimental data.
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Figure 6.15: Non reactive simulation. Axial velocity statistics (mean and rms) com-
pared versus experimental data.
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Figure 6.16: Comparison of the mixture fraction statistics in cold and non reactive
simulation. In non reactive simulation mixture fraction demarcate the air coming from
the fuel jet.



Part III - Application to turbulent flames 147

Figure 6.17: 2D instantaneous velocity magnitude field on the chamber mid-plane.
On the left: cold simulation results are shown. On the right: hot non-reactive simula-
tion results are shown.

the main inflow steam.
Pilot hot gases prevent the mixing between the two streams: the main jet gases
mix less with the coflow ones when the pilot is switched-on
Figure 6.17 compares the velocity 2-D instantaneous field for the cold and the
hot non reactive simulations. In cold condition the low velocity pilot stream is
not able to stabilize a long shear layer between the jets. The fast breakdown
of the pilot-coflow shear layer, makes the coflow rapidly mixes with the main
jet gases. On the contrary, in hot non-reactive conditions, the hot gases issuing
the pilot tube, at higher velocity (bulk velocity around 25 m/s), create a layer
which prevents the mixing between the main and coflow jets.
The mixing process in hot non-reactive conditions is closer to the reactive case
one, presented in Fig. 6.19.

6.7 Reactive simulations

In reactive simulations, the mesh and numerical set-up applied in cold and hot
non-reactive conditions are conserved. Velocity and scalars boundary condi-
tions in the main jet and in the pilot are prescribed, in accordance with the
analysis conducted in Sec. 6.5.2.
FPI-tabulated chemistry simulation and a virtual chemistry one are conducted
in combination with TFLES turbulent combustion model, using the formalism
presented in Sec. 6.3
LES results are presented for the Lr75Ub80 configuration, as for the cold and
hot non-reactive case.
The analysis of the flame focuses mainly from the region close to the jet exit
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(z=1D) to 15D downstream. This region has been identified, from the exper-
imental studies, as crucial for flame stability behaviour (Barlow et al. 2015;
Cutcher et al. 2017). The stability enhancement is experimentally attributed
to the stratified premixed combustion regime close to the burner exit (Barlow
et al. 2015). The flame regime relaxes to a non-premixed combustion one after
5D.
LES temporal statistics and instantaneous data (scatter plots) are compared to
the experiments at different axial locations from the burner exit plane. Eventu-
ally, the scatter data are post-processed to compute the Wasserstein metric, as
proposed by Johnson et al. (2017). This methodology helps to quantitatively
quantify the discrepancy between the two combustion chemistry models (FPI
and virtual chemistry) and experiments (Barlow 2018).

6.7.1 Radial statistics

Mean and rms 1-D LES radial profiles are presented and compared to the ex-
periments, for axial velocity and scalars (mixture fraction, temperature and
CO mass fraction). In the simulations, data are Favre-averaged in time, ac-
cording to the definition given in Sec. 1.4.2.2. Then, LES statistics are spatial-
azimuthally averaged to accelerate the statistical convergence. Results for both
TFLES-FPI and TFLES-virtual chemistry are shown and compared.

6.7.1.1 Velocity

Figure 6.18 compares the axial velocity numerical statistics versus the experi-
mental ones. At 1D downstream, a good agreement between experiments and
numerical results is observed, in line with the profile shown in cold and hot
non-reactive conditions (in Sec. 6.6.1). Further downstream, at 5D and 20D,
in numerical simulations, despite the correct mean velocity shape is reproduced,
the jet expansion is overestimated. RMS shape and peak are overall well repro-
duced at the different axial locations. The comparison between FPI-tabulated
chemistry simulations and virtual chemistry results highlights no remarkable
differences. Hence, the aerodynamic field is here weakly dependent on the
combustion chemistry model. Instead, it is more sensitive to the inflow condi-
tions injected in the 3 streams as supported by the TNF joint numerical study
(Barlow 2018).

6.7.1.2 Mixture fraction

In the experimental database, Bilger’s formulation (Bilger et al. 1990) is used
for mixture fraction definition. In the simulations, the mixture fraction is de-
fined as a conservative passive scalar both for FPI-tabulated and for virtual
chemistry models. The numerical mixture fraction definition is consistent with
experiments: it is defined to be normalized between 0 and 1 in pure air and in
pure fuel, respectively.
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Figure 6.18: Axial velocity statistics. Comparison of the FPI-tabulated and virtual
chemistry results versus experimental data. At 15D experimental measurements are
not available
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Figure 6.19: Mixture fraction statistics. Comparison of the FPI-tabulated and virtual
chemistry results versus experimental data.
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Figure 6.19 shows the mixture fraction numerical radial profiles compared ver-
sus experiments. An overall good agreement is observed for mean and rms
values. At 1D and 5D downstream, the mean and rms mixture fraction profiles
compare well to experiments. A slight underestimation of the rms peak, in
correspondence of the shear layer, established between the main jet and the
pilot, is observed. The small rms peak, in correspondence of the pilot-coflow
shear layer is underestimated at 1D but it is well reproduced at 5D. At 15D
downstream, the mean profiles show that simulations over-predict the mixing
with respect to experiments, with both chemistry models. The rms are also
slightly underestimated in the core of the jet.
The FPI-tabulated results and virtual chemistry ones do not show a remarkable
difference in mixture fraction statistics. As for velocity, also the mixing shows a
weak dependence from the combustion chemistry model but it is more sensitive
to the inflow (Barlow 2018).

6.7.1.3 Temperature

Figure 6.20 compares the temperature numerical statistics versus the experi-
mental ones. As pointed out in 6.5.2.2, the pilot inlet scalars are adjusted, over
a flamelet trajectory, to reproduce the correct experimental mean pilot bulk
temperature at 1D. The rms peak at the main jet-pilot shear layer is correctly
reproduced but rms peak underestimation is observed in correspondence of the
pilot-coflow shear layer.
At 5D, the mean temperature is correctly reproduced, especially in the virtual
chemistry simulation. The temperature rms peaks at the shear layers are very
well reproduced both with the FPI-tabulated model and virtual chemistry.
At 15D, some discrepancies exist, in mean temperature prediction with both
combustion chemistry models. The temperature discrepancies affect the cen-
terline region (r < 5mm) and the flame front region (5mm < r < 12mm).
In the flame front region, temperature discrepancies are directly related to the
mixing overprediction, observed in the previous section.
A further investigation of temperature statistics is conducted through the anal-
ysis of conditional means: the mean temperature is plotted in the mean mixture
fraction space for the same axial location of the radial profiles (Fig. 6.21). Con-
ditional mean data are useful to isolate temperature misprediction related to
mixing misprediction.
In Fig. 6.21 experimental conditional mean data are reported for the positive
and the negative radius, confirming a slight asymmetry in the burner set-up
(Barlow et al. 2015). The effect of the asymmetry is mostly visible at 1D and
5D and it vanishes at 15D.
Conditional mean data confirm the transition from a stratified premixed flame
structure, close to the burner nozzle, toward a non premixed like combustion
mode starting from 5D.
At 1D, the experimental dip, in correspondence of the stoichiometric line, is
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Figure 6.20: Temperature statistics. Comparison of the FPI-tabulated and virtual
chemistry results versus experimental data.
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Figure 6.21: Conditional mean temperature in mean mixture fraction space. Ex-
perimental data are plotted on the positive and negative radial side and compared to
FPI-tabulated and virtual chemistry statistics. Dots: experiments. blue line: TFLES-
FPI computation. Orange line: TFLES-virtual chemistry computation. The vertical
mixture fraction stoichiometric line is also reported.

correctly reproduced by the simulation results with both models. At 5D small
discrepancy are only observed on the rich side. At z=15D, the lean, stoichio-
metric and moderately rich conditions are correctly retrieved by simulations
especially with virtual chemistry. However, the mean temperature values on
the rich side are slightly overestimated by both models.
This zone correspond, in the radial direction, to the centerline zone (core of the
main jet).
Eventually, from the analysis of the conditional means, it is possible to conclude
that: the radial mean temperature misprediction observed at 15D, in Fig. 6.20,
are caused by mixing prediction errors in correspondence of the flame front,
located in the peak temperature region, close to the stoichiometric mixture
fraction (r ⇠ 7mm in Fig. 6.20 at 15D).
Contrarily, the discrepancy observed in correspondence of the jet centerline
zone (r < 5mm in Fig. 6.20), are not entirely due to mixing problems as the
conditional mean temperature overpredict the experimental values in the rich
region.
This model discrepancy may be explained by multiple reasons: the uncorrect
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Figure 6.22: Temperature 2D instantaneous snapshot on the chamber mid-plane.
FPI-tabulated results are compared versus virtual-chemistry results. The different re-
dial positions are also identified in the field.

reproduction of the flame sensitivity to extinction and/or the uncorrect repro-
duction of heat release/aerodynamic field interaction.
Figure 6.22 shows temperature instantaneous snapshots from numerical simula-
tion for both FPI-tabulated chemistry and for virtual chemistry computations.
At 15D, some hot spots are convected toward the center of the jet. This phe-
nomenon that causes the temperature increase in the centerline region (rich
flame region) is not observed in the experiments.

6.7.1.4 CO mass fraction

1-D radial statistics of CO mass fraction, obtained from simulation, are com-
pared versus experiments in Fig. 6.23. The agreement is very good up to 5D
downstream, where temperature and mixing are also correctly predicted. Vir-
tual chemistry results are better than FPI-tabulated chemistry ones. Indeed,
when mixed combustion regimes are encountered (as at 5D), virtual chemistry
is expected to perform better. It is optimized to predict CO in mixed com-
bustion regime differently from FPI tabulated chemistry, which is based on
flamelets trajectories accounting only for a premixed combustion regime.
At 1D, although, the mixing and temperature are well reproduced, numerical
CO mean mass fraction underestimates experimental data both with virtual
chemistry and with the FPI-tabulated chemistry models. A further investiga-
tion of the CO deviation at 1D, is proposed in the subsequent Section (Sec.
6.7.1.5).
RMS levels are well reproduced especially at 1D and 5D. Important discrep-
ancies are observed at 15D downstream for mean and rms CO radial profiles,
particularly when tabulated chemistry is used. This discrepancy is directly con-
nected to temperature overestimation, at the same radial location, observed in
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Figure 6.23: CO mass fraction statistics. Comparison of the FPI-tabulated and
virtual chemistry results versus experimental data.



156 Chapter 6 - LES of the Sydney Inhomogeneous burner

250 500 750 1000 1250 1500 1750 2000 2250
T [K]

0.00

0.01

0.02

0.03

0.04

0.05
Y C

O
[�

]

y = Y Exp�1D
CO

x = T Exp�1D

Figure 6.24: Comparison of the flamelets trajectories in temperature/CO mass frac-
tion phase space. The two flames are characterized by two different inlet conditions.
Dashed line: 5-gases pilot inlet. Continuous line: CH4 stoichiometric mixture. The
vertical (x = TExp�1D) and the horizontal line (y = Y Exp�1D

CO
) show the measured

mean temperature and CO mass fraction, respectively, at z=1D.

the previous Section (Sec. 6.7.1.3).

6.7.1.5 5-gases pilot: flamelet analysis

A flamelet analysis is conducted to analyse the discrepancy observed in the
mean CO prediction at 1D downstream,. Due to the experimental injection,
the pilot bulk gases are supposed to evolve over a 1-D stoichiometric flamelet
trajectory for the first simulation diameter.
Two unstretched laminar premixed flames are computed, with the code RE-
GATH (Darabiha 1992), by changing the inlet composition:

• 1) Stoichiometric CH4/Air mixture at 295K. This flamelet is supposed to
represent the numerical simulation evolution.

• 2) 5-gases pilot composition (Tab. 6.4) at 295K. This flamelet is supposed
to represent the experimental pilot gases evolution.

The two flamelets are plotted in the CO mass fraction/temperature space
(Fig.6.24). The measured pilot bulk mean temperature TExp�1D and mean
YExp�1D

CO
values are also reported in the plot. At the experimental tempera-

ture, the two flamelts values are both close to the mean numerical bulk CO
value observed in the radial profiles at 1D, in Fig. 6.23 (YCO between 0.15 and
0.2). This means that the numerical LES scalar evolutions, in the pilot bulk
region, for the first simulation diameter, is well approximated by a stoichiomet-
ric flamelet, as expected from the imposed injection. Instead, the experimental
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YExp�1D

CO
exhibits an important departure from the premixed flame trajectory

(YExp�1D

CO
⇠ 0.3).

This analysis allows to conclude that, at 1D, a strong influence of the pilot
boundary conditions persists for CO profiles. These boundary conditions need
further insights in the future both from numerical and experimental studies.

6.7.2 Scatter plots

In order to analyse the flame trajectories, temperature and CO scatter instan-
taneous data are plotted in mixture fraction space in Fig. 6.25 and Fig. 6.26,
respectively.
Numerical scatter data are collected, using annular radial probes, in accordance
to experimental ones: several time shots are included considering a radial space
between the centerline and 2D. 150000 samples are gathered and plotted for
both simulations and experiments. As for radial statistics, results are shown
for 3 axial positions , z =1D, 5D and 15D, where z is the axial coordinate.

6.7.2.1 Temperature

Barlow et al. (2015) and Cutcher et al. (2017) observed experimentally that
the inhomogeneous Lr75Ub80 flame configuration exhibits stratified premixed
combustion mode close to the injection and non premixed combustion mode
further downstream.
Figure 6.25 shows temperature instantaneous scatter data in mixture fraction
space, at different axial location from the burner exit plane, for both FPI-
tabulated and virtual chemistry simulations. The stoichiometric mixture frac-
tion vertical line is also reported. To underline the importance of the most
populated regions, the scatter plots are colored by the local density of points.
The numerical scatter plots are qualitatively in good agreement with the exper-
imental ones. The overall flame trajectories described by numerical simulations
and measurements are comparable and the higher population regions are cor-
rectly captured.
As pointed out in the experimental study (Barlow et al. 2015), for the Lr75Ub80
inhomogeneous case, various flame structures are encountered. Near the burner
exit, at z/D=1, a stratified premixed combustion mode is observed from the
steep temperature in correspondence to the stoichiometric mixture fraction re-
gion. Further downstream, at z/D=5, the flame evolves toward a diffusion
non-premixed like structure and the signs of premixed-stratified combustion
gradually diminish. The transition to a non-premixed flame structure is con-
firmed for z=15D.
At z/D=15, experimental data cover a broader temperature spatial range than
simulations. Furthermore, in experiments, low temperature samples around the
stoichiometry are present, differently from simulations. These low temperature
points, are experimentally attributed to extinction events (Barlow et al. 2015),
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Figure 6.25: Scatter instantaneous data in temperature-mixture fraction space at
several axial planes from the burner exit (z/D = 1D, 5D, 15D). Experiments and
simulations are compared. The local density of points is evaluated by uniformly dividing
the domain in a grid of 500 points in both temperature and mixture fraction space and
by clusterizing each scatter data in a cell of the mesh. Then, each scatter data is
coloured by the local density of points. A vertical dashed dotted line is also drawn in
correspondence of the stoichiometric mixture fraction value (Z = 0.055).
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as the flame configuration is close to the blow-off limit (70% of the blow-off
velocity).
Hence, extinction phenomena are underestimated by numerical simulations
both with FPI-tabulated chemistry and with virtual chemistry models. How-
ever, virtual chemistry results are closer to experiments in the high temperature
region near the stoichiometric mixture fraction.
For the three axial locations (z/D=1,5,15), in the experiments, the peak tem-
perature position is slightly shifted on the rich side and this phenomenon is
better captured by virtual chemistry. The tabulated chemistry defects are here
attributed to the unsuitability of the premixed flamelets trajectories to describe
multiple flame structures. These phenomena are instead better retrieved using
virtual transported chemistry.

6.7.2.2 CO mass fraction

CO mass fraction LES instantaneous data are scattered in mixture fraction
space and conditioned by the respective temperature values (Fig. 6.26). The
conditioning is performed to distinguish low temperature samples, representa-
tive of the cold mixing regions, from high temperature ones, encountered in the
flame region.
The results are shown at the same axial positions of the temperature scatter
plots (z= 1D, 5D, 15D). CO scatter data confirm the progressive evolution from
a stratified premixed flame region at 1D toward a non-premixed flame region at
15D. This evolution, as for temperature, is well retrieved in both simulations.
At 1D diameter the high temperature CO band, retrieved from numerical sim-
ulations is thinner than the experimental one, with both combustion chemistry
models. The CO peak position, close to the stoichiometric mixture fraction, at
high temperature, is however well retrieved. In the FPI-tabulated chemistry
data, non correct CO trajectories are observed for lean mixture fraction values.
At 5D, the high temperature CO scatter data are close to experiments with
both models but the CO peak region is slightly overestimated especially in
FPI-tabulated chemistry simulation.
The overestimation increases only for FPI-tabulated chemistry at 15D, while
for virtual chemistry the flame trajectories are very close to experiments.
This confirms that CO is better predicted by virtual chemistry in multi-mode
flames. Indeed, with virtual transported chemistry, including premixed and
non-premixed flamelets in the model, CO is better predicted when multiple
combustion regimes are encountered (Cailler 2018).
To confirm the differences observed in the CO scatter plots between the two
combustion chemistry models, CO instantaneous 2-D fields are shown in Fig.
6.27. With FPI-tabulated chemistry the CO filtered mass fraction levels are
higher than virtual chemistry ones. The overestimation is more pronounced
starting from 5D downstream, when the non premixed combustion mode con-
tribution becomes relevant.



160 Chapter 6 - LES of the Sydney Inhomogeneous burner

Figure 6.26: Scatter instantaneous data in CO mass fraction-mixture fraction space
coloured by local temperature. Data are shown over different axial planes from the
burner exit (z/D = 1D, 5D, 15D). Experiments are compare to the simulations con-
ducted with FPI-tabulated and with virtual chemistry. A vertical dashed dotted line is
traced in correspondence of the stoichiometric mixture fraction value (Z = 0.055).
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Figure 6.27: CO mass fraction 2-D instantaneous snapshot on the chamber mid-
plane. FPI-tabulated results are compared versus virtual-chemistry results.

6.8 Wasserstein metric

The scatter data comparison, performed in the previous section, allows only a
qualitative assessment of the two combustion chemistry models. To overcome
this limitation, the Wasserstein metric (Dudley 1976; Pele and Werman 2009)
is here used to post-process the scatter data.
Wasserstein metric was applied for the first time by Johnson et al. (2017), as
a post processing tool for quantitative evaluation of combustion models versus
experiments for Sydney Inhomogeneous burner.
In particular, the Wasserstein metric provides a single discrepancy measure that
compares simulation scatter data with experimental ones combining multiple
scalar quantities.
Here, the multi-scalar 2nd Wasserstein metric (Su et al. 2015) is computed,
using the code provided by Johnson et al. (2017). The metric is evaluated
for both FPI-tabulated and virtual chemistry computations, retaining three
scalars: Z, T and YCO.
Numerical scatter data and experimental ones constitute two empirical distri-
butions N and E, respectively. Each element of the empirical distributions
ni and ej contains information for the three considered scalars. As proposed
by Johnson et al. (2017) data are normalized by the standard deviation of the
experimental distribution to give appropriate importance to all retained scalars.
The 2nd Wasserstein metric is computed as solution of the following minimiza-



162 Chapter 6 - LES of the Sydney Inhomogeneous burner

FPI-tabulated Virtual-chemistry
Chemistry Model

0.0

0.2

0.4

0.6

0.8

1.0

1.2
W

2
(Z

,T
,Y

C
O
),

N
or

m
al

iz
ed

Z/D=5

Z/D=5

Z/D=15

Z/D=15

Z

T
YCO

Figure 6.28: Cumulative multi-scalar normalized 2nd Wasserstein metric for two dif-
ferent awial locations z/D = 5, 15. W2(Z, T, YCO) is compared for the two combustion
chemistry models. The metric is decomposed in the single variable contributions to
better analyse the results.

tion problem:

W2(Z, T, YCO) = min�

0

@
nX

i=1

n
0

X

j=1

�ijcij

1

A
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(6.16)

where � is the optimal transport matrix having elements �ij and dimension
n ⇥ n

0 . The unit transportation cost cij is defined as the 2nd power of the
pair-wise Euclidean distance:

cij =
NvX

v=1

(nk,i � ek,j)
2 (6.17)

where Nv is the number of scalar quantities that are considered that here is
equal to 3 (Z, T and YCO).
To compute W2, 1000 random samples are sorted both from the numerical and
experimental database made of 50000 samples. 1000 were enough to ensure the
convergence toward the same results.
Figure 6.28 shows the cumulative Wasserstein metric for z/D = 5,15 for both
FPI-tabulated and virtual chemistry models. At z/D =1 data are not shown
because a strong dependence from the pilot inlet boundary conditions has been
observed (Sec. 6.7.1.5).
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The cumulative W2 decreases with the axial evolution with both combustion
models. This trend is due to the decay of the turbulence and mixing intensity
as explained by Johnson et al. (2017). The cumulative performance of the
virtual chemistry model is better than tabulated chemistry one, in accordance
with the scatter data qualitative results. Furthermore, the variable contribution
separation helps to conclude that the better virtual chemistry performance is
mainly due to a better YCO prediction.

6.9 Summary and discussion

It has been shown that the pilot-coflow velocity boundary conditions strongly
impact the aerodynamic field established in the flame as well as the reactive
scalars fluctuations in correspondence of the pilot-coflow shear layer. The pre-
scription of a numerical velocity profile in the pilot and coflow tubes, fitting the
closest experimental velocity measurements, allows to improve mean velocity
and temperature fluctuation predictions.
By Prescribing Princeton boundary conditions at the main jet inlet, the per-
formed LES is able to correctly reproduce the aerodynamic field in cold and
hot non reactive conditions. However, it is observed a strong difference, in the
mixing process, for cold and hot non-reactive conditions. In cold conditions the
mixing process is faster because the two pilot shear layers break down earlier
due to the pilot lower velocity.
In reactive conditions, the comparison between the virtual chemistry and FPI-
tabulated combustion chemistry models have shown negligible impact on the
velocity and mixing prediction but remarkable impact on temperature and CO
statistics. In particular, when mixing is well predicted (at 5D downstream)
virtual chemistry performs better than FPI-tabulated chemistry on tempera-
ture and CO mass fraction prediction. Indeed virtual transported chemistry
is trained to recover flame trajectories in multi-mode flame conditions, dif-
ferently from FPI tabulated chemistry where flame trajectories are tabulated
from premixed flame archetypes. The scatter data post-processing, employing
the Wasserstein metric, quantitatively confirms the better performance of the
virtual chemistry model. The improving concerns mainly CO prediction.
Despite the numerous conclusions achieved in the present study, several open
questions still remain unanswered for Sydney Inhomogeneous burner. They
are mainly related to the correct characterization of the boundary conditions
(velocity and scalars) imposed at the inlets and their impact on the shear lay-
ers and consequently on the mixing field. A deep joint experimental/numerical
comparative study on Sydney Inhomogeneous burner was conducted during two
last editions of the TNF14 (Barlow 2018) workshop. A summary of the work-
shops joint study conclusions are reported in the TNF14 Workshop Proceedings
(Barlow 2018).
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The non adiabatic virtual mechanism developed and validated in laminar
flame conditions in Chap. 4 is used to carry-out the LES of a premixed
turbulent combustion chamber exposed to wall heat losses. Comparison
against experiment shows that non adiabatic simulation captures well
the flame shape, the temperature and the CO prediction. The results are
also compared to a recent analytic chemistry computation from literature
to further demonstrate the validity of the virtual chemistry results.

7.1 Introduction

The main and CO non-adiabatic virtual schemes, developed in Chap 4, are used
here to conduct an LES of the semi-industrial Preccinsta turbulent combustion
chamber designed by Meier et al. (2007). Both adiabatic and non-adiabatic
LES of the Preccinsta combustor are performed to investigate the capability



166 Chapter 7 - LES of Preccinsta burner using non-adiabatic virtual

chemistry

Air
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Figure 7.1: Schematic drawing of the Preccinsta gas turbine model combustor and
photo of a typical flame. Figure is adapted from Dem et al. (2015).

of the virtual chemistry approach to capture the effect of heat losses on flame
shape and CO formation. Finally a mesh refinement analysis is performed to
investigate the impact of the turbulent combustion model on the numerical
results.

7.2 Configuration and numerical set-up

7.2.1 Experimental configuration

The Preccinsta combustor is made of a plenum, a swirler and a combustion
chamber (Meier et al. 2007).
Figure 7.1 shows a schematic drawing along with the main combustion chamber
dimensions of the Preccinsta burner, as proposed by Dem et al. (2015).
In the experimental set up, dry air, at ambient temperature, is injected via the
plenum (diameter = 78 mm) and fuel is fed through small holes (diameter =
1 mm), placed within the swirler. After mixing inside the swirler, the air/fuel
mixture is injected in the combustion chamber in correspondence of the nozzle
(diameter = 27.85 mm). Burnt gases are exhausted through a cone-shaped
exhaust pipe (diameter = 40 mm).
The swirled injector promotes the development of a flame structure character-
ized by a Central Recirculation Zone (CRZ) and 2 Outer Recirculation Zones
(ORZ).
Measurements are available for two different flame configurations: 1) An un-
steady, thermoacoustic pulsating flame operated at 25 kW with a global equiv-
alence ratio of � = 0.70, 2) a stable configuration, operating at 30 kW with a
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global equivalence ratio of � = 0.83.
The "quiet", stable configuration is investigated in this work. LDV velocity
measurements, OH⇤ chemiluminescence detection and Laser Raman scatter-
ing measurements for temperature, major species and CO mass fraction are
available (Meier et al. 2007).

7.2.2 Previous numerical studies

Many numerical simulations of the Preccinsta combustor have been conducted
in the literature to validate several LES turbulent combustion models (Moureau
et al. 2007; Galpin et al. 2008; Franzelli et al. 2012; Roux et al. 2005; Albouze
et al. 2009; Fiorina et al. 2010; Moureau et al. 2011b; Wang et al. 2014;
Mercier et al. 2015; Volpiani et al. 2017) .
All these simulations reproduce fairly well the flow dynamics as well as the
mean flame front position, but fail to predict the flame temperature and CO
production in the outer recirculation zone. These differences are attributed to
the adiabatic wall assumption (Moureau et al. 2011b; Franzelli et al. 2012)
not representative of the real experimental conditions where convective heat
transfers occur through the injector system and quartz windows. A recent
numerical study, conducted by Benard et al. (2018), demonstrates the value of
retaining non adiabatic boundary conditions for the correct prediction of the
external flame front lift-off.

7.2.3 Numerical set-up

Differently from the experiments, where fuel and air are injected separately, here
the plenum is directly fed with a premixed mixture (� = 0.83) at a constant
mass flow rate ṁ = 12.9 g.s�1.
Franzelli et al. (2012) has shown that the perfect premixed hypotheses weakly
impacts on temperature and species statistics for the "quiet", stable configura-
tion.
Figure 7.2 shows the computational domain retained in this work. The numer-
ical geometry has been designed, in accordance with experimental lengths, and
validated by Moureau et al. (2011b).
Two unstructured grids are used in the present simulations: a coarser grid made
of 2.7 millions of nodes and a finer one composed of 20.9 millions of nodes. The
characteristic mesh size in the flame region is equal to 0.6 mm and 0.3 mm in
the coarser and finer mesh, respectively.
LES are conducted using the YALES2 low-Mach number, unstructured finite
volume flow solver (Moureau et al. 2011a). A fourth-order temporal scheme is
used to perform time integration of convective terms while a centered fourth-
order scheme is used for spatial discretization. The sub-grid Reynolds stresses
tensor is closed using the WALE model (Nicoud and Ducros 1999). Combus-
tion chemistry is modeled using the non adiabatic virtual mechanism solving
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Figure 7.2: Numerical computational domain used for the LES YALES2 simulations.

both the two-step main mechanism and the CO dedicated sub-mechanism, as
developed in the previous chapter.

7.2.3.1 Coupling Virtual chemistry with TFLES model

TFLES combustion model (Colin et al. 2000b) has been widly used in the
simulation of the Preccinsta burner coupled with global (Franzelli et al. 2012;
Volpiani et al. 2017; Albouze et al. 2009), analytic (Franzelli et al. 2013) and
skeletal (Benard et al. 2018) reduced chemistry.
Here, virtual chemistry is coupled with turbulence using the Thickened Flame
model for LES (TFLES) using the same approach employed for Sydney Inho-
mogeneous burner simulations.
Flame sensor and thickening are numerically computed using the same approach
detailed in Sec. 6.3.2.2.
The modeling strategy has been before validated in a 1-D unstrained laminar
flame at � = 0.83.
Figure 7.3 shows, on the left, the flame sensor and the TFLES dimensionless
heat release rate and on the right the TFLES temperature profile compared to
the fully resolved, unthickened one. The thickened flame is computed over a
computational domain having a mesh size �x =0.3 mm representative of the
Preccinsta 3-D mesh.
Indeed, with the employed TFLES-Virtual chemistry numerical parameters,
the heat release rate as well as temperature profile are well described. A slight
distortion of the temperature profile, on the burned gases side, is observed.
Such phenomenon is due to the dynamic thickening procedure. The laminar
flame speed is conserved after the dynamic thickening procedure.
The Charlette model (Charlette et al. 2002a) is used to close the subgrid scale
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Figure 7.3: 1D flame at phi = 0.83 computed with virtual chemistry coupled with
TFLES model using a local thickening formulation. On the left: the flame sensor �
(continous line) and the dimensionless heat release rate (dashed line). On the right:
temperature profile of the TFLES computation (dashed line) compared to the tempera-
ture profile of the fully resolved flame (continuous line). The dots represents the mesh
points of the thickened flame simulation.

flame wrinkling, setting the constant parameter � = 0.5.

7.2.3.2 Set wall heat losses

Adiabatic and non adiabatic simulations are performed.
As the wall temperature was not measured experimentally, a trial and error
procedure based on non-adiabatic computation with the LU17 skeletal scheme
(Sankaran et al. 2007) has been conducted by Benard et al. (2018). Wall
temperature Dirichlet boundary conditions have been identified to match the
experimental measurements of temperature and CO in the near wall region.
The imposed wall temperature profile, along the chamber axial coordinate,
is shown in Fig. 7.4. Adiabatic boundary conditions are retained over the
injector nozzle. Instead heat transfer affects the external wall of the injector,
the chamber base and the chamber lateral walls.
Figure 7.5 shows the 3D computational domain colored by the wall temperature
imposed in the non adiabatic simulations.

7.2.3.3 Computations

Firstly, a cold flow simulation is performed to validate the LES aerodynamic
predictions, comparing numerical results versus the LDV cold velocity measure-
ments. Then, the three following reactive simulations are performed: adiabatic
on the coarse grid (AC), non-adiabatic on the coarse grid (NAC) and non-
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Figure 7.4: Wall temperature profiles imposed along the flame side wall chamber.

Figure 7.5: 3D computational domain colored by the wall temperature.
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Table 7.1: Main characteristics of the three reactive LES conducted in this work.

Flame configuration AC NAC NAF

Boundary conditions Adiab N. Adiab N. Adiab

Grid nodes 2.7M 2.7M 20.9M

�x Flame region 0.6mm 0.6mm 0.3mm
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Figure 7.6: Mean and rms axial velocity radial profiles at several axial locations from
the injector. Circle: Experimental data. Continuous lines: LES cold flow simulation
with employing the coarser mesh.

adiabatic on the fine grid (NAF).
Table 7.1 summarizes the main characteristics of the three reactive LES.

7.3 Cold flow simulation

LES cold non reactive simulation results are here compared versus experimental
data, over radial profiles, at various distances from the burner exit. Figures 7.6
and 7.7 compares the mean and rms statistical quantities for the axial and
circumferential velocity components. A good agreement is observed for the
various radial probes. Indeed, the aerodynamic field is correctly captured by
the simulation. This allows to validate both the mesh and the sub-grid LES
turbulence model.

7.4 Reactive simulation

The three reactive simulations (AC, NAC and NAF) are here compared. Tem-
perature and CO mass fraction statistics are shown and compared to the ex-
perimental data. Mean heat release rate 2-D field is compared qualitatively to
the experimental OH-chemiluminescence. Instantaneous 2-D heat release rate
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Figure 7.7: Mean and rms circumferential velocity radial profiles at several axial
locations from the injector. Circle: Experimental data. Continuous lines: LES cold
flow simulation with employing the coarser mesh.

and CO fields from numerical simulations are also analysed.

7.4.1 Temperature and heat release

Non-adiabatic virtual chemistry predicts very well the mean and RMS temper-
ature profiles, as shown in Fig. 7.8. In particular, the comparison between
AC and NAC demonstrates that accounting for heat losses clearly improves
both mean and RMS temperature predictions in the near wall region, where
the outer recirculation zone is located.
The mesh refinement (NAF results) does not reveal an important impact on
temperature statistics, confirming the robustness of the TFLES model with
respect to temperature profile and flame speed prediction.
Instantaneous heat release rate from the three numerical computations are
compared on the chamber mid-plane in Fig.7.9. The adiabatic simulation
shows a stable M-shape flame in accordance with the previous numerical works
(Moureau et al. 2011b; Volpiani et al. 2017). The heat losses included in NAC
induce a thinner outer branch of the flame and local flame extinctions in the
outer recirculation zone. This observation is confirmed in NAF where the flame
resolution is improved. A prevalent V-shape flame is retrieved in the non adi-
abatic simulations, accordingly to experimental observation. This observation
agree with the recent numerical work of Benard et al. (2018) where exactly the
same wall boundary conditions are prescribed.
Figure 7.10 qualitative compares OH experimental chemiluminescence with the
mean computed heat release for AC and NAC computations. Unlike to experi-
mental OH-LIF and OH-chemiluminescence measurements (Meier et al. 2007),
AC predicts a M-shape flame. The experimental V-shape flame is better repro-
duced by NAC simulation.
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Figure 7.8: Mean and rms temperature radial profiles at several axial locations from
the injector. Circle: Experimental data. Squared dotted lines: AC results. Dashed
lines: NAC results. Continuous lines: NAF results.



174 Chapter 7 - LES of Preccinsta burner using non-adiabatic virtual

chemistry

1e+9 2e+90.000e+00 2.500e+091e+9 2e+90.000e+00 2.500e+091e+9 2e+90.000e+00 2.500e+09

Figure 7.9: Instantaneous heat release rate from the three numerical simulations
normalized between 0 and 2.5 ⇥ 109 W.m�3. From left to right: AC, NAC and NAF
computations.

Figure 7.10: Qualitative comparison between experimental OH chemiluminescence
and computed mean heat release for NAC and AC simulations. The heat release rate
is normalized between 0 and 1 ⇥ 109 W.m�3.
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7.4.2 CO mass fraction

Figure 7.11 compares 2-D instantaneous CO snapshot on the chamber mid-
plane for the three reactive computations.
The predicted chemical flame structure, identified here through an intermedi-
ate species concentration, differs significantly whether or not heat losses are
considered. In accordance with the heat release rate analysis, CO snapshot
confirms the transition from a n M-shape flame to a V-shape one if heat losses
are considered. Furthermore, CO snapshots show an impact of the mesh re-
finement: in the NAF computation the CO layer is thinner than the NAC and
the outer CO branch tends to vanish close to the burner exit.
Mean and RMS CO mass fraction are compared in Fig. 7.12. Adiabatic simu-
lation overestimates the mean CO production in the outer recirculation zone.
In particular, a peak of CO, not observed in the experiments, is predicted in
AC at (r=17 mm; Z= 6 mm) and (r=22 mm; Z= 15 mm). The amplitude of
this peak is drastically reduced by NAC which accounts for the impact of heat
losses on the CO chemistry. Mesh refinement analysis, differently from mean
temperature, shows an overall reduction of the CO mean profiles. Although
mean CO prediction is improved in the NAF virtual chemistry computation,
an overestimates of the CO peak, in the outer recirculation zone, still exists.
RMS CO profiles are well reproduced by the non adiabatic simulations with a
weak impact of the mesh refinement.

7.5 TFLES impact on mean CO profiles

The mesh refinement analysis reveals an impact on the TFLES turbulent com-
bustion model on CO mean profiles. The undesirable behavior is due to the
artificial thickening of the flame front. This observation is in accordance with
recent numerical studies that analyse the combined bad effect of the thickening
factor (Mercier et al. 2017b; Benard et al. 2018) and the sub-grid efficiency
function (Mercier et al. 2019; Mehl 2018) on CO prediction when the TFLES
formalism is used.
To demonstrate the spurious effect observed in the mean CO profile in Fig.
7.12, the 1-D structure of a mean flame brush is manufactured from a random
distribution of 100,000 1-D flamelet solutions, as proposed by Vervisch et al.
(2010). The distribution of flamelet positions is adjusted to recover the PREC-
CINSTA mean flame brush thickness that is estimated to be about 5 mm at the
first axial measurement (z=6 mm). The Reynolds averaging of this flamelets
ensemble provides a reference mean CO mass fraction solution, shown in solid
line in Fig. 7.13. The solution expected by the TFLES approach is also manu-
factured by randomly distributing a set of 1-D thickened flames. The Reynolds
averaging of this ensemble of thickened flamelets is also performed. Results are
plotted in Fig. 7.13 for the values F=4.5 and F= 2.25, which corresponds to
the maximum values of flame thickening factors computed in coarse and fine
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Figure 7.11: Instantaneous CO filtered mass fraction snapshot on the middle-plane
of the combustion chamber. From top to bottom: AC, NAC, NAF.
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Figure 7.12: Mean CO mass fraction radial profiles at several axial locations from
the injector. Circle: Experimental data with the corresponding experimental errorbar.
Squared dotted lines: AC results. Dashed lines: NAC results. Continuous lines: NAF
results.
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Figure 7.13: Thin lines: Some of the random distributed flamelet solutions for the
various thickening factors. Bold lines: Reynolds averaged mean profiles for the corre-
sponding thickening factors.

meshes at z= 6 mm, respectively. (dashed and dotted lines). The comparison
between mean reference and thickened CO profiles shows that TFLES overes-
timates the peaks of mean intermediate species. The overestimation increases
with F. As observed in Fig. 7.13, refining the mesh enable to decrease the
thickening factor and limits its spurious influence on the species production.

7.6 Discussion

The virtual non adiabatic scheme is coupled with the TFLES turbulent com-
bustion model to perform the LES of the Preccinsta chamber. The comparison
between adiabatic and non adiabatic results shows a significant improvement in
flame shape, temperature and CO mass fraction fields prediction. Non adiabatic
simulations predicts a V shape like flame which is closer to the experimental
observations.
Virtual chemistry LES results (temperature and CO mass fraction statistics)
are also compared with the simultaneous computation conducted by Benard
et al. (2018), who uses the LU17 skeletal scheme (Sankaran et al. 2007).
The same boundary conditions and the same meshes are used for both virtual
chemistry and skeletal chemistry computations.
The comparison (Fig. 7.14 and Fig. ??) shows that virtual chemistry tem-
perature and CO prediction are very close to reference skeletal chemistry, in
adiabatic and non adiabatic cases.
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Figure 7.14: Temperature mean and RMS comparison. Virtual chemistry results
(black lines) are compared to the CORIA (Benard et al. 2018) one (red lines). Adia-
batic (continuous line) and non adiabatic (dashed lines) results are shown for the same
mesh.
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Figure 7.15: CO mass fraction mean and RMS comparison. Virtual chemistry re-
sults (black lines) are compared to the CORIA (Benard et al. 2018) one (red lines).
Adiabatic (continuous line) and non adiabatic (dashed lines) results are shown for the
same mesh.
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Despite the improvements, discrepancies in CO mass fraction prediction still
exist in the outer recirculation zone with respect to experiments. This mis-
direction is first attributed to the artificial thickening of the flame front and
a numerical justification is found in accordance with recent numerical works.
However the chemical flame structure and consequently CO are also sensitive
to strain effects (Mercier et al. 2016) which are not considered in the non
adiabatic virtual chemistry model. An improvement would be to enlarge the
reference database used to train the virtual chemical scheme by adding for
instance strained flamelets.





Conclusion

The main achievement of the present work has been the development and vali-
dation of reduced kinetic mechanisms able to combine accurate pollutants pre-
diction (CO and NO) with low CPU cost. In particular, the research challenges
associated with CO modeling in multi-modal and non adiabatic flame condi-
tions and NO modeling in multi-modal flame conditions have been addressed.
The recently developed virtual chemistry approach has been retained as mod-
eling route to buid-up the reduced mechanisms. This work enlarges the virtual
chemistry validity domain with respect to Cailler (2018) thesis work. In partic-
ular, a strategy to account for non-adiabatic flame conditions has been proposed
and a new NO dedicated virtual sub-mechanism has been designed.
The developed NO virtual mechanism was tested in 2-D laminar premixed, non-
premixed and partially premixed flame computations, proposing a direct com-
parison with detailed reference chemistry. This comparison showed a drastic
CPU cost reduction in virtual chemistry computations with respect to detailed
chemistry ones.
The applicability of virtual chemistry to model combustion chemistry in turbu-
lent flame at low CPU cost has been also supported by two LES computations.
Sydney Inhomogeneous burner LES has demonstrated that virtual chemistry
is suitable to model multi-modal turbulent flame conditions predicting tem-
perature and CO formation. It has been shown that virtual chemistry allows
to achieve better results than premixed based tabulated chemistry, especially
for CO prediction. Eventually, Preccinsta burner LES has shown that virtual
chemistry is able to capture non-adiabatic turbulent flame conditions, giving
comparable results to an analytically reduced chemistry literature computation.

Perspectives

Despite the promising results achieved, currently, the number of virtual species
along with the virtual reactions network are empirically designed. The vir-
tual chemistry architecture is based on the pure observation of the physical
phenomenon to account for. Consequently, the number of degree of freedom
(virtual species and reaction) may be not the optimal one and/or some impor-
tant chemical pathways may be missed. To overcome this current limitation,
new modeling strategies that provide an automatic build-up of the virtual chem-
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istry network, from a time scale analysis of the reference chemical system, are
in progress in the Phd thesis of Maldonado Colmán (2020).
In future works, it would be also challenging to employ the virtual NO scheme to
compute a turbulent flame and to apply the same methodology to aeronautical
fuels and bio-fuels: works are in progress in the Phd thesis of Nguyen Van
(2020).
The application of virtual chemistry to soot prediction is also extremely chal-
lenging. For this purpose, a PAH dedicated sub-mechanism development is in
progress in the the Phd thesis of Maldonado Colmán (2020).
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Appendix A

NO optimization criterion: zone

separation and learning

database definition

A.1 Introduction

The objective is to find a criterion to dissociate learning subspaces character-
istic of fast (prompt) and slow (thermal and reburning) NO chemistry in both
premixed and non-premixed flame archetypes. For premixed flames a spatial
length scale �FF is defined to separate the computational domain in a flame
front region and a post-flame one. A corresponding mixing time scale aFF is
identified for non-premixed flames.

A.1.1 Criterion definition

In the premixed flamelet database, for each fresh gases equivalence ratio �0,
targeted thermo-chemical variables ' such as the temperature and the species
mass fractions are expressed in terms of the spatial coordinate x, that corre-
spond to the direction normal to the flame front. ' therefore reads:

' = 'p

�
�0, xp

�
(A.1)

where p subscript denotes solutions of premixed flame configurations.
Examples of NO mass fractions profiles are plotted in Fig. A.1 for three different
fresh gas equivalence ratio (the corresponding mixture fraction value is also
indicated in the figure). The transition between fast NO (in the flame front)
and slow NO (in the post-flame) kinetics affects the second order material
derivative of NO mass fraction, related to the second order derivative of YNO
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Figure A.1: NO mass fraction and the dimensionless ⌘+ and �+ quantities from de-
tailed chemistry computations for different equivalence ratio values. The corresponding
mixture fraction Z is also indicated for each flame.
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in steady state, as follows:

D2YNO

Dt2
= u2 d2YNO

dxp
2

= � (xp) (A.2)

where u is the flow velocity. The dimensionless � and the dimensionless YNO

second derivative are defined as follows:

�+ =
|� (xp)|

max |� (xp)|
; ⌘+ =

���d
2
YNO(xp)
dxp

2

���

max
⇣���d

2YNO

dxp
2

���
⌘ (A.3)

Figure A.1 also plots �+ and ⌘+ in the three premixed CH4/air flames pre-
viously introduced. The transition between flame front and post-flame NO
formation is identified using the dimensionless absolute value of the second
derivative ⌘+.
When ⌘+ becomes lower than a certain threshold on the post-flame side the
transition between fast and slow NO formation phenomena is defined at the
spatial location xp which satisfy the following condition:

⌘+ = " (A.4)

where " is a user-defined threshold value. Equation A.4 admits an ensemble of
solutions {xp

1, ..., x
p
n}. Among this ensemble of solutions, the flame front NO

reaction layer �FF is defined so that fast NO chemistry is completed within the
interval [�1, �FF ]:

�FF (�0) = max{xp1, ..., xpn
} (A.5)

where xp = 0 represents the beginning of the flame, defined here as the loca-
tion where the flame temperature T rises 10K with respect to the fresh gas
temperature T fg. For premixed flame configurations, the flame front region
and the post-flame one corresponds to the 1-D domains AP = [�1, �FF ] and
AP = [�FF , 1, ], respectively.
A cut-off time scale ⌧FF between fast and slow NO chemistry is also introduced
as the Lagrangian residence time taken by the fresh gases to reach �FF in
premixed flames. ⌧FF is defined as follows:

⌧FF (�0) =

Z
�FF (�0)

0

1

up(�0)
dx, (A.6)

A mixture fraction Z is uniquely defined from the fresh gases equivalence ratio
values �0 to reach 0 in pure air and 1 in pure fuel. ⌧FF is plotted in Fig. A.2 as
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Figure A.2: Flame front residence time as function of mixture fraction. The stoi-
chiometric mixture fraction, lean and rich flammability limits are also shown through
the three vertical lines.

function of the mixture fraction Z in the whole flammability limit. The cut-off
time scale averaged over the whole flammability domain reads:

⌧FF =
1

(Zr � Z l)

Z
Zr

Zl

⌧FF (Z)dZ, (A.7)

where Z l and Zr are values of mixture fraction at the lean and rich flammability
limits, respectively.

A.1.2 Extension to non-premixed counterflow flames

To identify the non-premixed flames that have to be included in the flame
front optimization database, the averaged cut-off time scale ⌧FF , previously
defined, is used. It is assumed that the transition time scale between fast
and slow NO chemistry is of the same order of magnitude for premixed and
non-premixed flames. As consequence, ⌧FF is here employed to estimate the
critical strain rate, characteristic of non-premixed counterflow flames using the
following simplified relation:

aFF = 1/⌧FF . (A.8)

All flamelets computed with a strain rate higher than aFF (ANP = [aFF , aq])
will serve as a target for optimizing the flame front chemistry block (reactions
RNO

1 -RNO
3 ).
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Synthèse en français

Les deux principaux inconvénients des processus de combustion impliqués dans
les dispositifs de conversion d’énergie sont: la contribution au réchauffement
climatique et la pollution des zones industrielles et urbaines. Le secteur de l’
énergie (production, transformation et utilisation) est largement basé sur les
dispositifs de combustion et il est donc au cœur du probléme du changement
climatique. Il contribue environ au deux tiers des émissions mondiales de gaz
à effet serre et environ le 90% des émissions de dioxyde de carbone (CO2).
Les émissions de CO2 sont directement liées à l’efficacité des systèmes de com-
bustion et au type de combustible utilisé dans le processus. Par conséquent,
l’amélioration de l’efficacité des appareils de combustion et la recherche de
combustibles a plus faible contenu de carbone tels que le gaz naturel sont les
principaux objectifs à poursuivre. En plus, pour améliorer la qualité de l’air
local (en particulier dans les zones urbaines et industrielles), la réduction des
émissions de polluants provenant des processus de combustion est d’une impor-
tance capitale.
Les ingénieurs utilisent la simulation numérique pour concevoir et optimiser
les appareils de combustion afin d’améliorer leur efficacité et de réduire les
émissions de polluants. La simulation CFD (Computational Fluid Dynamic),
appliquée à la solution de processus de combustion complexes, a fait des ef-
forts importants ces dernières années, permettant la simulation de chambres de
combustion à échelle réelle. Toutefois, la reproduction précise de la formation
de polluants (CO, NOx, hydrocarbures imbrûlés, etc...) et de la prévision de la
structure de la flamme dans des simulations de flammes turbulentes, à un coût
de calcul abordable, est toujours un sujet de recherche d’intérêt et qui doit être
pleinement abordé et mieux compris. Pour faire face aux défis de modélisation
de la combustion décrits ci-dessus, le présent travail de recherche se concen-
tre sur la prédiction de la formation de CO et de NO dans des conditions de
flamme complexes à un coût de calcul réduit. Les régimes de flammes multi-
modales et les pertes thermiques des flammes sont pris en compte. Ici, le mot
multimodal signifie coexistence de structures de flamme prémélangées et non
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prémélangées. Dans cette thése, des modéles de chimie rèduite pour la prédic-
tion du CO et du NO sont développés en utilisant le récente modèle de chimie
virtuelle. La chimie virtuelle est un modèle d’ordre réduit qui vise à décrire
les quantités globales de flammes, la température et la formation des pollu-
ants. La stratégie consiste à concevoir des mécanismes virtuels composés d’un
ensemble réduit d’espèces virtuelles interagissant à travers un nombre réduit
de réactions virtuelles. Les propriétés thermochimiques des espèces virtuelles
et les constantes cinétiques des réactions virtuelles sont optimisées pour cibler
les propriétés de flamme "réelles" d’intérêt telles que la température, le dé-
gagement de chaleur et la concentration de polluants. Le mécanisme chimique
virtuel est composé d’un mécanisme principal et de plusieurs sous-mécanismes
virtuels satellites. Dans ce travail, des mécanismes virtuels sont développés et
validés dans des archétypes de flamme laminaire 1-D. Ensuite, leur applicabilité
aux calculs CFD laminaires et turbulents multidimensionnels est conduit, qui
montrent la valeur de l’approche pour les applications industrielles. Les résul-
tats multidimensionnels de de les simulations CFD sont soit validés par rapport
aux données expérimentales pour les cas de tests turbulents, soit comparés à
des calculs de chimie détaillés pour les configurations laminaires. Par rapport
aux travaux de littérature précédents, le domaine de validité de l’approche de la
chimie virtuelle est encore élargi. En plus, l’applicabilité de la chimie virtuelle
aux calculs CFD multidimensionnels à un coût de calcul réduit, est démontrée.
En particulier, la chimie virtuelle est mise à l’épreuve et validée dans le contexte
LES (Large Eddy Simulation) dans deux configurations de flammes turbulentes
pour prédire les émissions de CO: 1) "Sydney inhomogeneous piloted burner":
représentatif des conditions de flammes turbulentes multimodales. Dans cette
simulation le champ de CO prédit par le calcul numérique 3-D LES, en util-
isant le nouveau modéle de chimie virtuelle optimisé, est en bon accord avec
les expériences. 2) Brûleur "Preccinsta": une flamme confinée semi-industrielle
impactée par les pertes de chaleur aux parois. Dans ce calcul, le champ 3-D
prédit par la simulation numérique LES, en utilisant le nouveau modéle de
chimie virtuelle, decrit bien les données expérimentales de température et de
CO.
Un nouveau et original modéle cinétique d’ordre réduit pour la prédiction de
NO (oxyde nitrique), basé sur la méthodologie de chimie virtuelle, est égale-
ment développé dans cette thése. Pour prédire la formation de NO de la com-
bustion multimode, des "flamelets" prémélangées et non prémélangées sont
incluses dans la base de données d’apprentissage utilisée pour optimiser le mé-
canisme NO virtuel. Une procédure d’optimisation "multizone" est dévelop-
pée pour capturer avec précision à la fois la chimie du NO rapide (”prompt
NO") et lente ("thermal NO" et "reburning"). Ensuite, le sous-mécanisme
NO et la méthodologie d’optimisation proposés sont appliqués à la combus-
tion méthane/air. Le modèle est d’abord testé dans des configurations de
"flamelets" prémélangées et non prémélangées 1-D. L’approche est ensuite validé
dans des simulations CFD de flamme laminaire 2-D, en fournissant une com-
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paraison directe avec la chimie détaillée. Des configurations de flammes 2-D
prémélangées, non prémélangées et partiellement prémélangées sont étudiées
numériquement. Dans tous les cas, le mécanisme virtuel capture assez bien
la température et la formation d’ NO avec seulement 12 espèces virtuelles et
8 réactions virtuelles a la place de 53 espèces et 325 réactions de la chimie
détaillée. Par conséquence, dans les calculs de chimie virtuelle une réduction
drastique du temps de calcul est constaté (d’un facteur 40) par rapport à la
chimie détaillée.
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Résumé: La CFD est aujourd’hui utilisée
par les ingénieurs de recherche comme un outil
numérique pour concevoir et optimiser les dis-
positifs de combustion avancés qui sont utilisés
dans les systèmes de conversion d’énergie. L’un
des principaux objectifs de la recherche, dans
le développement d’outils numériques avancés
pour la CFD, est l’identification d’un modéle
réduite de cinitique chimique de la combustion
qui reproduit la structure de la flamme et la
formation de polluants avec un coût de cal-
cul abordable. En particulier, la prédiction de
la formation de polluants est une tâche diffi-
cile lorsque des flammes complexes sont ren-
contrées: stratification du mélange, pertes de
chaleur et recirculation des gaz brûlés. Le travail
de recherche mené dans cette these se concentre
sur la modélisation de la formation monoxyde
de carbone (CO) et des oxydes d’azote (NOx)

dans des conditions de flamme complexes en
utilisant une methode récemment développée et
appelée chimie virtuelle: celle-ci consiste à con-
cevoir des mécanismes réduits constitués d’un
réseau d’un nombre optimisé d’espèces virtuelles
interagissant via des réactions virtuelles opti-
misées. Dans une première étape, les mécan-
ismes virtuels sont développés et validés dans
des configurations de flammes 1-D. Dans un
deuxième temps, ceux-ci sont utilisés pour cal-
culer plusieurs configurations de flammes 2-
D laminaires et 3-D turbulentes sur une large
gamme de régimes de combustion: prémélangé,
non prémélangé, partiellement prémélangé et
non adiabatique. Les résultats obtenus sont
validés avec des données expérimentales et avec
des calculs inclutant une cinetique chimique dé-
taillée.
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Abstract: CFD is nowadays used by research
engineers as a numerical tool to design and opti-
mize advanced combustion devices that are em-
ployed in energy conversion systems. In the
development of advanced numerical CFD tools,
one of the main research challenges is the iden-
tification of a reduced combustion chemistry
model able to find a compromise between ac-
curate reproduction of the flame structure and
pollutants formation with an affordable CPU
cost. In particular, pollutants formation predic-
tion is a difficult task when complex flame envi-
ronments are encountered: flame characterized
by mixture stratification, heat loss and burnt
gas recirculation. The present research work
focuses on the modeling of CO and NOx for-
mation in complex flame conditions using a re-

duced finite rate chemistry approach. CO and
NOx reduced chemistry models are here devel-
oped using the recent virtual chemistry model; it
consists in designing reduced mechanisms made
of a network of an optimized number of virtual
species interacting through virtual optimized re-
actions. In the first step, the virtual chem-
istry mechanisms are developed and validated
in 1-D flames comparing the results with de-
tailed chemistry. In a second step, they are em-
ployed to compute several 2-D laminar and 3-
D turbulent flame configurations which include
different combustion regimes: premixed, non-
premixed, partially-premixed and non-adiabatic
conditions. The obtained results are validated
either with experimental data or with detailed
chemistry computations.
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