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Chapter 1

Context

This chapter introduces the different domains of statistics to which this PhD thesis con-
tributes. The list of references is not exhaustive and may serve as an entry point to more
detailed literature that will be partially explored throughout the manuscript.

This chapter begins with a general presentation of Bayesian inference and PAC-Bayes
theory in Section 1.1. We address their computational aspects with a particular emphasis
on variational inference, and present general theoretical results assessing frequentist guar-
antees to posterior and approximate distributions. In Section 1.2, we turn to algorithmic
and theoretical aspects of online learning when data is not available at once but in a
stream. In particular, we present several algorithms and provide their statistical analysis
via regret bounds using either convex optimization tools or Bayesian theory. Finally,
Section 1.3 is devoted to robustness, a field of statistics aiming at designing relevant esti-
mators in situations where the data generating process is too complex to be approximated
using usual statistical models.

1.1 Bayesian inference: computation and theory

The aim of statistical modeling is to understand a phenomenon given some observations.
In frequentist statistics, the phenomenon is represented by a probability distribution P(n)

0
defined over a sample space X (n) equipped with a σ-algebra A(n), while the dataset X(n)

is assumed to be a random realization of the unknown phenomenon P(n)
0 . Unless explicitly

stated otherwise, we shall consider in the following the particular i.i.d. framework where
the dataset X(n) = (Xi)ni=1 is composed of n independent and identically distributed
random variables of a phenomenon P0 which is defined over a measurable space (X ,A).

The starting point of any statistical analysis is the model - a collection of probability
distributions {Pθ/θ ∈ Θ} indexed by a parameter θ, where Θ is called the parameter
set. In this thesis, most examples will be taken from parametric statistics where Θ ⊂ Rd.
Assuming that the data generating process belongs to the model, i.e. that there exists a
parameter θ0 ∈ Θ such that P0 = Pθ0 , many statistical problems actually boil down to
the estimation of the true parameter θ0 using a measurable function of the data.



1.1.1 The Bayesian paradigm

The Bayesian methodology relies on a different principle. Rather than assuming the
existence of a true parameter θ0, the parameter θ ∈ Θ is viewed as a random variable
(when equipping Θ with a suitable σ-algebra T ). Some prior distribution Π0 representing
a prior belief as to which parameters are likely to have generated the data is placed over
Θ. This prior belief is then updated and refined using the Bayes’ rule by conditioning
on the observed data X(n) = (Xi)ni=1, giving rise to the posterior distribution Πn(·) which
provides a natural way of quantifying uncertainty. For simplicity, we omit the dependence
in the data in the notation Πn and just replace it by the subscript n.

Bayes’ rule, which was first published in the reverend’s manuscript (Bayes, 1763)
posthumously, was expressed in its modern version by Laplace (1774) a few years later.
Assuming that for each θ ∈ Θ, the probability distribution Pθ is dominated by some
reference measure µ and that the density pθ = dPθ

dµ
is such that the map (x,θ)→ pθ(x) is

X×T -measurable, then the log-likelihood `n is simply defined as `n(θ) = ∑n
i=1 log pθ(Xi),

and Bayes’ formula characterizing the posterior distribution Πn(·) is defined as follows:

Πn(dθ) := exp(`n(θ))Π0(dθ)∫
exp(`n(φ))Π0(dφ) =

∏n
i=1 pθ(Xi)Π0(dθ)∫ ∏n
i=1 pφ(Xi)Π0(dφ)

where the denominator is a normalizing constant. We refer the reader to Robert (2007)
for an exhaustive monograph on Bayesian statistics.

Although Bayesian inference offers a practical probabilistic approach, a recurrent crit-
icism is the strong dependence on the statistical modeling - in particular on the statistical
model and the prior - which characterizes some subjective vision of the underlying phe-
nomenon. In machine learning, the focus is more on the predictive performance with
respect to a risk measure R(θ) than on estimation and interpretability (Breiman et al.,
2001), and thus classical Bayesian modeling appears to be too much of a constraint for
designing efficient learning procedures. Hence, several extensions of Bayes’ rule have
been considered over the years, especially in the machine learning community, and most
of these efforts are now bundled under the name generalized Bayes where the idea is to
replace the negative log-likelihood −`n(θ) by an empirical risk measure rn(θ) depending
on the dataset X(n):

Πn(dθ) := exp(−rn(θ))Π0(dθ)∫
exp(−rn(φ))Π0(dφ) . (1.1)

As soon as the normalizing constant is finite, such a machinery provides a coherent and
principled way to update beliefs on θ (Bissiri et al., 2016), although the generalized
posteriors (also referred to as pseudo-posteriors or quasi-posteriors) we obtain no longer
respect the fundamental rules of probability that underlie Bayes’ formula. Hence, general-
ized Bayes should not be regarded as the amount of knowledge obtained once the dataset
is available (according to a possible interpretation of Bayesian statistics) but simply as a
Bayesian-flavored estimator of the unknown. Of course, when the loss function is chosen
to be the negative log-likelihood rn(θ) = −`n(θ), then it boils down to classical Bayesian
inference. In the next paragraphs, we will focus on two other popular choices of the risk
leading to important generalized posteriors: the tempered and the Gibbs posteriors.
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The tempered posterior

When considering a statistical model {Pθ/θ ∈ Θ}, Zhang (2006) proposed to raise the
likelihood to an α-power (0 < α < 1) in Bayes’ formula:

Πn,α(dθ) := exp(α`n(θ))Π0(dθ)∫
exp(α`n(φ))Π0(dφ) =

∏n
i=1 pθ(Xi)αΠ0(dθ)∫ ∏n
i=1 pφ(Xi)αΠ0(dφ) , (1.2)

giving rise to the so-called tempered posterior, following an idea dating back to Vovk
(1990). Based on the fact that regular Bayesian inference may fail when the model is
wrong, i.e. when it does not contain the data generating distribution, Grünwald et al.
(2017) further investigated this idea and developed the Safe Bayes paradigm by propos-
ing an automated way of selecting the temperature parameter α that yields a robust
pseudo-posterior distribution. We will see in the following that the use of a temperature
parameter is of great interest for theoretical (Bhattacharya et al., 2016) and robustness
(Barron et al., 1999; Grünwald et al., 2017) purposes. We do not give more details right
now, and we refer the reader to Section 1.3 for an introduction to the notion of robustness.

The PAC-Bayes framework

In a statistical learning framework, no particular model for the data generating process
is assumed. In supervised learning, we observe a collection of i.i.d. random variables
Dn = (Zi, Yi)i=1,...,n from a distribution P0 defined over the sample space Z×Y (equipped
with some σ-algebra). Depending on the nature of the problem, e.g. classification or
regression, a set of predictors {fθ : Z 7→ Y ,θ ∈ Θ} indexed over a parameter space
Θ is chosen, along with a loss function measuring the discrepancy between a prediction
fθ(z) of an input z and its associated output y. The measure of performance is then
R(θ) = E[`(Y, fθ(Z))] and its empirical counterpart is rn(θ) = 1

n

∑n
i=1 `(Yi, fθ(Zi)). As

the theoretical risk function R(θ) is not available (as P0 is unknown), classical approaches
proposed in the 90s have mainly consisted in variants of the Empirical Risk Minimization
(ERM) principle (Vapnik, 1992).

The PAC-Bayes approach was developed by Shawe-Taylor and Williamson (1997a),
McAllester (1999) and Catoni (2007) in order to obtain PAC (Probably Approximately
Correct) bounds to Bayesian-based algorithms in the current model-free setting. By
tempering Formula (1.1) applied to the previous empirical risk rn(θ), we obtain the
Gibbs posterior :

Πn,α(dθ) := exp(−αrn(θ))Π0(dθ)∫
exp(−αrn(φ))Π0(dφ) (1.3)

which is a cornerstone of PAC-Bayes theory. Indeed, one of the key results of PAC-Bayes
due to Donsker and Varadhan states that the Gibbs posterior minimizes the upper bound
of some oracle inequality applied to the risk of random estimators (see Section 1.1.2 for
a precise statement). More especially, the Gibbs posterior is the solution of the following
variational problem:

min
Q

{
− α

∫
rn(θ)Q(dθ) + KL(Q‖Π0)

}
= − log

(∫
e−αrn(θ)Π0(dθ)

)

5



where the infimum, taken over the whole spaceM+
1 (Θ) of probability distributions over

Θ, is reached for Q = Πn,α, and where KL stands for the Kullback-Leibler divergence
KL(P‖R) =

∫
log

(
dP
dR

)
dP if R dominates P and +∞ otherwise. Using this fundamental

relationship, PAC-Bayes theory provides a bunch of powerful tools to derive bounds and
offers sharp theoretical guarantees to such estimators. Some recent references include
Ambroladze et al. (2007); Alquier (2008b); Parrado-Hernández et al. (2012); Guedj (2019).
PAC-Bayes bounds are to be connected with the literature on aggregation of estimators
(Leung and Barron, 2006; Dalalyan and Tsybakov, 2007; Salmon and Dalalyan, 2011).

1.1.2 Variational inference

Unfortunately, exact Bayesian inference is often computationally challenging in practice.
The most popular technique to overcome the intractability of posterior distributions is
Monte Carlo sampling, including MCMC algorithms (Andrieu et al., 2003; Robert and
Casella, 2013) and Sequential Monte Carlo (Doucet et al., 2001; Doucet and Johansen,
2009). Nevertheless, such sampling methods can be slow for practical uses when the
dataset is very large, and fast approximation methods such as Expectation Propagation
(Minka, 2001) are sometimes used in PAC-Bayes (Ridgway et al., 2014). A more and more
popular and fast alternative referred to as variational inference (VI) consists in finding a
deterministic approximation of the posterior called variational Bayes (VB) approximation
(Jordan et al., 1999; Blei et al., 2017). This approximate inference method significantly
reduces the computation cost and enables application of the Bayesian approach to many
large-scale machine learning problems (Hoffman et al., 2013; Kingma and Welling, 2013).

Two equivalent definitions of variational inference have appeared in the literature: the
KL minimization and the ELBO maximization versions. We first present VI principle via
KL minimization along with practical examples, and then we show the relationship with
ELBO maximization via Donsker and Varadhan’s lemma.

KL minimization

We choose a family Q of tractable distributions over Θ, and we define the variational
approximation of the posterior Π̃n as the closest distribution to Πn (with respect to the
KL divergence) belonging to Q:

Π̃n = arg min
Q∈Q

KL(Q‖Πn). (1.4)

Note that the choice of the variational set Q is of major interest, leading to a funda-
mental trade-off between accuracy and tractability. Indeed, when Q is the whole space
of probability distributions over Θ, then the variational approximation is the posterior
itself, but is no more tractable. At the opposite, if Q is not large enough, it may not
contain any distribution that is close to our target Πn. Several variational families have
been proposed in the literature and lead to good approximations of the posterior. Here
are a few examples.
Example 1.1.1 (The mean-field approximation). The mean-field approximation is very
popular in the variational inference community (Blei et al., 2017). This is a natural
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choice when the space of parameters is based on a decomposition Θ = Θ1 × · · · ×ΘK,
e.g. mixture models. Q is then defined as the set of product probability distributions

Q =
{
Q(θ) =

K∏
j=1

Qj(θj)/Qj ∈M+
1 (Θj) ∀j = 1, ..., K

}
.

This choice is particularly convenient as it leads to a natural fixed-point algorithm.
Indeed, the coordinatewise minimization of the optimization program (1.4) gives the fol-
lowing fixed-point conditions (Bishop, 2006):

Qj(dθj) ∝ exp
∫ {

α
n∑
i=1

log pθ(Xi) + log Π(θ)
} ∏
k 6=j

Qk(dθk)
Π0(dθj) ∀j = 1, ..., K

where ∝ means "up to a normalizing constant", which can be solved in practice by updating
successively every Qj.

Example 1.1.2 (The parametric approximation). It is also possible to consider a para-
metric approximation where the variational family Q = {Qλ/λ ∈ Λ} is indexed by a
finite-dimensional parameter set Λ. Hence, Definition (1.4) becomes a simple optimiza-
tion program with respect to λ and usual tools from optimization theory can be used. One
popular example is the d-dimensional Gaussian family with the usual mean/covariance
parameterization λ = (m,Σ):

Q = {N (m,Σ)/(m,Σ) ∈ Rd × Sd++},

where N (m,Σ) is the Gaussian family of mean m and covariance matrix Σ and Sd++ is
the set of symmetric positive definite matrices. It is also possible to combine parametric
VI with mean-field VI, by imposing for instance a diagonal covariance matrix Σ to a
Gaussian family.

In such a parametric setting, learning the variational approximation, i.e. learning
the associated variational parameter, can be easily conducted through classical black-box
optimization techniques such as gradient descent (Blei et al., 2017; Khan and Lin, 2017;
Khan and Nielson, 2018).

ELBO maximization

Another point of interest is the choice of the KL as the measure of closeness between
probability distributions. The use of this statistical divergence is particularly relevant
here. Indeed, even though it is not possible to minimize the KL divergence in (1.4) exactly
as its expression involves an intractable normalizing constant, it is possible to minimize
a function that is equal to it up to a constant. Such a function is called the Evidence
Lower Bound (ELBO), and is often taken as the definition of variational inference.

To begin with, let us introduce the exact formulation of Donsker and Varadhan’s
variational formula which is at the core of the PAC-Bayes theory. This lemma will help
us rewrite Definition (1.4) via the ELBO maximization program. We refer to Catoni
(2007) for a proof (Lemma 1.1.3).
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Lemma 1.1.1. For any probability Π on some measurable space (E, E) and any measur-
able function h : E→ R such that

∫
ehdΠ <∞,

log
∫

ehdΠ = sup
Q∈M+

1 (E)

{∫
hdQ−KL(Q‖Π)

}
,

with the convention ∞−∞ = −∞. Moreover, if h is upper-bounded on the support of
Π, then the supremum on the right-hand side is reached by the distribution of the form:

Πh(dβ) = eh(β)∫
ehdΠΠ(dβ).

As for the Gibbs posterior, this lemma leads to:

Πn = arg min
Q∈M1

+(Θ)

{
−
∫ n∑

i=1
log pθ(Xi)Q(dθ) + KL(Q‖Π0)

}
(1.5)

which is to be compared to the famous reformulation of (1.4):

Π̃n = arg min
Q∈Q

{
−
∫ n∑

i=1
log pθ(Xi)Q(dθ) + KL(Q‖Π0)

}

= arg max
Q∈Q

{∫ n∑
i=1

log pθ(Xi)Q(dθ)−KL(Q‖Π0)
}

(1.6)

when applied to the standard posterior. The quantity maximized in (1.6) is called the
ELBO, and is often taken as the criterion to maximize, particularly for people coming from
the optimization community. The ELBO also provides a nice interpretation of variational
inference based on the Minimum Description Length (MDL) principle (Rissanen, 1978;
Grünwald, 2000), a formalization of Occam’s razor that is widely used in statistics for
model selection (Hansen and Yu, 2001; Chambaz et al., 2009). We refer to the short
report Jerfel (2017) for more details on the connection between MDL and the ELBO.

Remark 1.1.1. Note that it is possible to extend (1.4) to any generalized posterior. This
gives in particular

Π̃n,α = arg min
Q∈Q

{
−α

∫ n∑
i=1

log pθ(Xi)Q(dθ) + KL(Q‖Π0)
}

(1.7)

when dealing with the tempered posterior, which will be a distribution of interest in the
rest of this manuscript.

1.1.3 Theoretical guarantees

First and foremost, the theoretical analysis of Bayesian procedures depends on the cri-
terion used to quantify the quality of the posterior distribution. The Bayesian approach
does not presume the existence of a true underlying distribution, and saying whether
the posterior behaves well or not is not straightforward. Hence, it raises the question of
finding a universal way to assess the quality of the posterior distribution.
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The most common theory adopted in the literature is the frequentist analysis of
Bayesian estimators. Indeed, from a frequentist point a view, when there exists a data
generating P0 = Pθ0 , the data-dependent posterior related to some prior distribution Π0
is a simple estimator and hence can be analyzed as any other one. Probably the most pop-
ular criterion encountered in the literature is the asymptotic convergence of the Bayesian
estimator, usually referred to as concentration of the posterior, and often associated with
a rate of convergence. Roughly speaking, the rate with respect to a distance d is usually
thought of as the smallest value rn such that the posterior probability of neighborhoods
of radius rn containing the true distribution tends towards 1 in P0-probability.

In the rest of this section, we will detail the standard conditions that are required in
order to obtain convergence of posteriors and of their variational approximations, and we
will finally provide some recent results guaranteeing convergence given such conditions.

Recent advances

The frequentist analysis of Bayesian procedures has a long and rich history. We will focus
in the next few paragraphs on recent advances, and we refer the reader to the habilitation
thesis of Castillo (2014) for a more complete historical overview.

The first convergence results date back to Doob (1949); Breiman et al. (1964) but
are from a prior’s perspective and do not match the modern conception of posterior
concentration that must hold for any value of the true distribution. A breakthrough was
achieved in Schwartz (1965) where the author gave sufficient conditions for concentration
in the i.i.d. case under a prior mass condition and the existence of exponential tests. This
work, along with those of Ghosal et al. (1999); Barron et al. (1999) which covered different
priors, paved the way to the famous prior mass and testing setting of the seminal papers of
Ghosal et al. (2000); Shen (2002) and Ghosal et al. (2007) for obtaining convergence with
rates. In particular, the prior mass condition states that the prior Π0 must give enough
mass to some neighborhood (in the Kullback-Leibler sense) of the true parameter.

A few years ago, Bhattacharya et al. (2016) revealed another benefit arising from
considering tempered posteriors rather than regular ones. The main finding of this paper
is that the testing conditions are no longer necessary when looking at the tempered
version of the posterior Πn,α, and that the prior mass condition of Ghosal et al. (2000)
alone is sufficient to obtain the concentration of Πn,α with explicit rates of convergence.
Hence, one can get concentration of the posterior to the true posterior under less stringent
conditions. Note that Walker and Hjort (2001) established fifteens years before simple
prior mass conditions under which the tempered posterior is consistent for α = 1/2.

More recently, Alquier and Ridgway (2017) and Bhattacharya et al. (2018) extended
the prior mass assumption in order to get the concentration of variational approximations
Π̃n,α of the tempered posteriors. In addition to the previous prior mass condition, this
extension requires the variational set Q to contain probability measures concentrated
around the true parameter. Furthermore, the authors provided nonasymptotic oracle-
type inequalities on Π̃n,α via PAC-Bayes theory that imply the concentration of the
posterior to the true parameter θ0 when such a θ0 exists and make it possible to quantify
the convergence of Π̃n,α in case of misspecification. In particular when Q = M+

1 (Θ),
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i.e. when there is no approximation, the extended prior mass condition of Alquier and
Ridgway (2017) simply boils down to the standard prior mass condition of Ghosal et al.
(2000). With additional testing conditions to the extended prior mass assumption, Zhang
and Gao (2017) showed that variational approximations of regular posteriors satisfy the
same properties.

At the same time, a study of the limit posterior distribution in parametric estimation
was first conducted by Laplace (1810), and then further investigated by Bernstein (1917)
and Von Mises (1931). The classical Bernstein - von Mises theorem mainly says that the
posterior can be approached, as n increases, by a Gaussian distribution centered at an
efficient pointwise estimator of θ0 and with variance the inverse of the Fisher information
matrix of the whole sample (Van der Vaart, 2000). An extension to variational approxi-
mations has been studied in Wang and Blei (2018). We will not investigate further this
notion in the following of the thesis. We also refer the reader to Banerjee et al. (2020)
and Ghosal and Van der Vaart (2017) for reviews on the properties of Bayesian methods
in high-dimensional and in nonparametric models respectively.

Posterior concentration

Let us now introduce the formal definition of posterior concentration. The definition is
the same for the tempered versions and variational approximations.

Let rn be a sequence decreasing to 0 as n goes to infinity. We assume that there is
a true parameter θ0 associated to the data generating distribution P0 = Pθ0 . Moreover,
we equip the space of distributionsM1

+(Θ) with a statistical distance d.

Definition 1.1.1. The posterior distribution Πn is said to concentrate if for any r > 0

Πn

(
θ ∈ Θ

/
d(Pθ, P0) > r

)
−−−−→
n→+∞

0

in P0-probability as n→ +∞.

For a better understanding of the asymptotic behavior of posteriors, let us now define
their rates of convergence.

Definition 1.1.2. The posterior distribution Πn is said to concentrate at rate rn if

Πn

(
θ ∈ Θ

/
d(Pθ, P0) > Mnrn

)
−−−−→
n→+∞

0

in P0-probability as n→ +∞ for any Mn → +∞.

What is generally referred to as the rate of convergence is the smallest value of rn
satisfying Definition (1.1.2). Note that when the posterior distribution concentrates at
rate rn, there exists a pointwise estimator θ̂n that converges at the same rate in P0-
probability (Ghosal et al., 2000), and hence the best rate of convergence the Bayesian
posterior can achieve is the frequentist minimax one, even though additional assumptions
on the prior may be required to establish a clear connection with minimaxity.
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Also, it is interesting to point out the importance of the statistical distance d. In-
deed, any mathematical convergence result is always obtained with respect to a metric.
Of course, the choice of such a metric depends on the statistical problem, but it is
not necessarily required to be a mathematical distance in the sense that it may not be
symmetric nor satisfy the triangle inequality. Usual appropriate choices of such a dis-
tance include the Kullback-Leibler divergence and the Hellinger distance H defined by
H(P,R)2 = 1

2
∫

(
√
dP −

√
dR)2 = 1− e− 1

2D1/2(P,R). Another statistical distance of interest
is the α-Rényi divergence Dα. It is defined as follows:

Dα(P,R) = 1
α− 1 log

∫ (
dP

dµ

)α (
dR

dµ

)1−α

dµ,

where µ is any measure which dominates both P and R, e.g. P + R. Of course, the
definition does not depend on the reference measure µ. For fixed values of P and R,
Dα(P,R) is an increasing function of α and is related to the KL divergence and Hellinger
distance through the following inequalities (Van Erven and Harremos, 2014):

2H(P,R)2 ≤ D1/2(P,R) ≤ Dα(P,R) ≤ KL(P‖R) ≤ Dβ(P,R) for 1/2 < α < 1 < β.

Prior mass condition

Let us now introduce the prior mass condition and its extended version to variational
inference as formulated in Alquier and Ridgway (2017):

Definition 1.1.3. Let us define the KL-ball B(P0, rn) centered at θ0 of radius rn:

B(P0, rn) = {θ ∈ Θ/ KL(P0‖Pθ) ≤ rn}.

Then the prior mass condition is satisfied if

Π0(B(P0, rn)) ≥ e−nrn , (1.8)

while the extended prior mass is satisfied if there exists a distribution Qn ∈ Q such that:∫
KL(P0‖Pθ)Qn(dθ) ≤ rn and KL(Qn‖Π0) ≤ nrn. (1.9)

Let us give an intuitive interpretation of Condition (1.9). First, notice that when
Q = M+

1 (Θ), then the restriction Qn of Π0 to B(P0, rn) belongs to Q, and it is easy
to see that the extended prior mass condition (1.9) is equivalent to the former prior
mass condition (1.8) of Ghosal et al. (2000). Moreover, each inequality in Condition
(1.9) play its own role. The second one characterizes the rate of convergence of the
exact posterior, while the first one characterizes the approximation error given by the
variational family Q. In particular, a large set Q means a high expressive power given
by the variational approximation. Hence the associated integral

∫
KL(P0‖Pθ)Qn(dθ) is

small and the rate of convergence is fully determined by the second part of Condition
(1.9), i.e. the concentration of the posterior.

Note that deriving such prior mass conditions in practice is a major difficulty. More
especially, it depends on the model and the prior, and must be treated on a case-by-case
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basis, see for instance Ghosal and Van Der Vaart (2001) for the estimation of Gaussian
mixtures or Rivoirard and Rousseau (2012) for the estimation of densities in the class of
Sobolev or Besov spaces. Such computations are addressed in this thesis.

The following theorem from Alquier and Ridgway (2017) presents a result of conver-
gence that implies the concentration of the α-tempered posterior and of its variational
approximation to the true distribution in α-Rényi divergence. A similar result can be
found in Bhattacharya et al. (2018). We will not present the result for regular posteriors,
and we refer the reader to Zhang and Gao (2017) for a precise statement involving testing
conditions.

We can now express a variant of Theorem 2.6 and 2.7 of Alquier and Ridgway (2017):
Theorem 1.1.2. Assume that Assumption (1.9) is satisfied. Then for any α ∈ (0, 1),

E
[ ∫

Dα(Pθ, P0)Π̃n,α(dθ)
]
≤ 1 + α

1− αrn

In particular, using Markov’s inequality, we have the concentration of the variational
approximation of the posterior:

Π̃n,α

(
θ ∈ Θ

/
d(Pθ, P0) > Mnrn

)
−−−−→
n→+∞

0

in P0-probability as n→ +∞ for any Mn → +∞. Moreover, under a slight modification
in the first inequality of Condition (1.9), we get even in case of misspecification:

E
[ ∫

Dα(Pθ, P0)Π̃n,α(dθ)
]
≤ α

1− α inf
θ∈Θ

KL(P0‖Pθ) + 1 + α

1− αrn. (1.10)

Again, we remind that the rate of convergence is the one defined in the prior mass
condition (1.9). It is worth mentioning that the oracle inequality (1.10) is not sharp be-
cause the divergence inequality on the left hand side is smaller than the one on the right
hand side, illustrating the fact that the convergence is obtained in Rényi divergence Dα

whereas the prior mass condition is required with respect to the KL one. Nevertheless,
such an asymmetry is unavoidable. For instance, Zhang and Gao (2017) obtain conver-
gence in KL divergence, which may seem more interesting, but requires at the same time
a prior mass condition with respect to a β-Rényi divergence with β > 1, which is stronger
than the one presented here. Nevertheless, both divergences are close very often in prac-
tice, and hence the oracle inequality remains informative and leads to optimal rates of
convergence in most situations.

Note that Alquier and Ridgway (2017) do not tackle the case of models
with hidden variables, in particular mixture models, which are very popu-
lar in the variational Bayes community. Similarly, the application of their
results to high dimensional models such as neural networks is not straight-
forward. Also, the ELBO is widely used as a numerical criterion for model
selection, but it has never been justified in theory. A significant part of this
thesis aims at filling this gap, and we present in Chapters 4 to 6 three papers
(Chérief-Abdellatif and Alquier, 2018; Chérief-Abdellatif, 2019a,b) that ex-
tend the results of Alquier and Ridgway (2017) to such models and contexts.
We refer to Section 2.1 for a more detailed overview of our contributions.
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1.2 Online learning: convexity and Bayes’ rule

Another popular setting in statistics and machine learning is the online learning frame-
work. It deals with sequential decision making in situations where observations are re-
vealed one after another and no specific probabilistic assumption regarding the origin
of the sequence of observations is made. Contrary to the usual batch case where the
best predictor is selected by learning on the whole training data at once, online learning
algorithms are designed to dynamically adapt to new observations and update the pre-
dictions in a sequential manner. Due to the non-stochastic nature of the problem, most
guarantees provided on these algorithms are deterministic, and thus remain available in
the worst case, in the presence of an adversary or under a simpler stochastic assumption
on the data.

In the rest of this section, we will formalize the online learning setting and motivate
its study. Then we will highlight the importance of convexity in online learning, and
briefly present and analyze the main ideas of some popular algorithms used in online
convex optimization. Finally we will explain how Bayesian inference can be formulated
in a sequential manner and derive the associated theoretical bounds.

1.2.1 The online learning setting

Online learning can be seen as an extension of the classical statistical learning setting,
where we get rid of the usual probabilistic assumptions such as i.i.d. data and where we
try to propose decisions sequentially, with only one observation being revealed at each
step. This change of paradigm deeply impacted the statistics and the machine learning
communities and built a bridge between learning and other mathematical fields such as
convex optimization and game theory.

Formally, the online learning framework can be described as follows. Lower case
notations are used to stress the absence of probabilistic assumption regarding the data
generating process. At each step t:

• Choose θ̂t from a parameter set Θ.

• Observe a datapoint xt.

• Suffer a loss `(xt, θ̂t).

Let us make some remarks. First, the parameter set Θ from which we choose θ̂t
may be allowed to change at each step, but we do not make this assumption here for
simplicity. Besides, at each step, the decision θ̂t is taken using the whole past dataset
Dt−1 := {x1, x2, . . . , xt−1}, and the quality of θ̂t is defined through a loss function `t(θ̂t) :=
`(xt, θ̂t). We consider the full-information setting where the entire loss function `t is
observed (as opposed to the bandit setting, where is it only partially observed, that will
not be considered in this thesis).

As for the statistical learning protocol, this online formulation is very general and
encompasses various problems of interest. We detail some of them in the following.
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Example 1.2.1 (Regression and classification). Let us consider the case of supervised
learning. We observe a dataset DT = (zt, yt)t=1,...,T sequentially, without making the
assumption that they are independent realizations of some true distribution P0 over Z ×
Y. Given a set of predictors {fθ : Z 7→ Y ,θ ∈ Θ}, the loss function measuring the
discrepancy between each prediction fθ(zt) and each observed output yt depends on the
nature of the problem. For instance, we may choose the hinge loss `t(θ) = (1−ytfθ(zt))+
in classification and the square loss `t(θ) = (yt − fθ(zt))2 in regression.

Example 1.2.2 (Density estimation). The goal is to estimate a probability distribution
P0 using independent realizations x1, ..., xT . The model is a set of probability distributions
indexed by the parameter set Θ, or more precisely a set of probability densities {pθ/θ ∈ Θ}
with respect to some reference measure over X equipped with some suited σ-algebra A.
The loss function for this problem is the log-loss `t(θ) := − log pθ(xt). Note that the
maximum likelihood estimator θ̂T is the parameter which minimizes the cumulative losses
`t(θ) := − log pθ(xt) until step T − 1.

Example 1.2.3 (Prediction with Expert Advice). In this example, the learner makes a
prediction at each step from the advice of K given experts. Those experts may have access
to other sources of information to make their own predictions x̂t(k) ∈ X , k = 1, ..., K.
This case was the first problem studied in online learning and was widely studied in the
community, see Cesa-Bianchi and Lugosi (2006) for more details. The goal is to perform
at each step t as well as the best expert by taking a convex combination of the expert
advice ∑K

k=1 θt(k)x̂t(k) where the parameter θt can be interpreted as a level of confidence
the learner has in each of the experts. Hence, the prediction with expert advice can
just be seen as an online optimization problem over the (K − 1)-dimensional simplex
Θ := {θ ∈ RK

+/
∑K
k=1 θ(k) = 1}. Given the true observation xt and a discrepancy

measure d(a, b) between points a and b in X , then the loss measure is simply defined as
`t(θ) = d(∑K

k=1 θt(k)x̂t(k), xt).

The goal in online learning is to design an algorithm that selects a sequence of deci-
sions (θ̂t)Tt=1 minimizing the cumulative loss ∑T

t=1 `t(θ̂t). However, the usual measure of
performance that is taken in the online learning community is not exactly the cumulative
loss but a slight variant of it, called cumulative regret or simply regret RT , and which
compares the cumulative loss of the algorithm to the smallest cumulative loss that could
have been reached in hindsight with a fixed parameter:

RT =
T∑
t=1

`t(θ̂t)− inf
θ∈Θ

T∑
t=1

`t(θ). (1.11)

Minimizing the regret takes into account the difficulty of the problem by comparing the
performance of an algorithm to the best performance that it could have achieved in
hindsight. A sub-linear value of the regret i.e. such that RT/T → 0 as T goes to infinity,
is a minimal requirement.

Obviously, even though we do not make any special assumption on a data generating
process, it is not possible to build a general theory without any assumption at all. In
such a situation, the adversary could make the cumulative loss of our algorithm arbitrarily
large. Let us for instance consider the case of a game with two possible answers, where the
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adversary waits for our decision and chooses the opposite answer as the correct solution.
Obviously, there exists an answer that leads to less than T/2 mistakes over T rounds,
and thus all algorithms perform poorly, even if we take into account the difficulty of
the problem and compare the performance of the algorithm to the best fixed strategy
in hindsight. Consequently, the power of the adversarial environment is restricted in
practice, typically by making some assumptions on the loss functions `t, such as convexity
or Lipschitzness.

Note that online learning can sometimes give alternative estimators for solving stochas-
tic learning problems. For instance, when considering i.i.d. data and an algorithm (θ̂t)Tt=1
that leads to a small regret, then the online-to-batch conversion technique provides an
estimator θ̄T = 1

T

∑T
t=1 θ̂t with small generalization risk R(θ) = E[`(X,θ)] as soon as

losses `(x, ·) are convex for any x (Shalev-Shwartz, 2012). More precisely:

EDT∼P0 [R(θ̄T )] ≤ EDT∼P0

[
1
T

T∑
t=1

`t(θ̂t)
]

where for purposes of notation, DT ∼ P0 means that all observations are independent
realizations of a variable X ∼ P0. Hence, studying learning algorithms from an online
perspective without any stochastic assumption on the data in the worst-case scenario can
lead to new estimation procedures with strong theoretical guarantees.

The aim of the next section is to present the main ideas of some popular algorithms
in online convex learning and to study the value of the regret RT that such algorithms
can achieve in terms of the number of rounds T , the geometry of the parameter set Θ,
and under different assumptions on the loss functions `t in addition to convexity. Then
we will formulate Bayes’ rule in an online fashion and present versions of regret bounds
that are suited to the analysis of Bayesian-based online algorithms.

1.2.2 Online convex optimization

Building upon the setting of Section 1.2.2, this section is devoted to the exploration
of two of the most popular algorithms in online convex learning that are follow-the-
regularized-leader (FTRL) and online projected gradient descent (OPGD). In particular,
the objective is to emphasize the importance of convexity for designing efficient online
learning algorithms, to provide an overview of the main ideas behind such algorithms,
and to give the mathematical tools and techniques in order to derive sharp regret bounds.

Convexity and online learning

Convexity is known to play a central role in optimization. Indeed, even though finding
the global optimum of a function can be a very difficult task in some situations, it is
possible to find efficiently such a global solution in many other cases for a special class
of optimization problems referred to as convex optimization problems. Here, “efficiently”
means both from a theoretical and from a practical points of view: we can solve the
problem in a reasonable amount of time, and this in time depending only polynomially
on the problem size.
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Similarly, the online version of convex optimization as introduced by Zinkevich (2003)
can be seen as a particular instance of online learning and leads to algorithms that achieve
a small regret while being efficient from a computational perspective. Moreover, various
problems and many algorithms used in online learning can be analyzed under this setting.
In the remainder of this section, we will consider a convex online optimization framework,
which is characterized by a convex domain Θ and convex losses `t with respect to θ, and
we will show how this setting can be used to derive efficient online algorithms.

Follow the leader ?

Let us begin with a basic algorithm called follow-the-leader (FTL), whose name is due
to Kalai and Vempala (2005). The idea (follow the leader !) is very simple and consists
in predicting the parameter θ that minimizes the past cumulative loss ∑T

t=1 `t(θ). This
strategy is very natural and follows the same idea than empirical risk minimization in
batch machine learning.

Algorithm 1 Follow-The-Leader (FTL)
Initialize θ1.
for t = 1, . . . , T do
The function `t is revealed,
Update θt+1 = arg min

θ∈Θ

∑t
s=1 `s(θ).

end for

Nevertheless, this algorithm is impractical because we must store all the past data
and recompute their gradients at each step to get the minimizer of the convex objective,
and can perform very poorly in theory, getting the worst value of the regret. Here is a
simple example taken from Shalev-Shwartz (2012) to illustrate this.
Example 1.2.4 (Failure of FTL). Let us consider a game with parameter set Θ = [−1, 1],
loss functions `t(θ) = θxt and observations xt such that:

xt =


−0.5 if t = 1,
+1 if t is even ,
−1 otherwise.

Hence, the predictions of the FTL algorithm initialized with θ1 = 0 are θt = −1 for odd
values of t > 1 and θt = 1 for even values of t, and their cumulative losses will be T − 1
while the cumulative loss of the constant strategy θt = 0 gives a cumulative loss of 0 !

The explanation of the limitation of FTL in the previous context is that the predictions
are not stable, and may change drastically from one round to another when only one single
loss function is added. A simple way to fix this is to regularize the objective.

Regularize the leader !

The idea of regularization is natural, and is the same than the one used in batch statis-
tical learning. As regularization in batch statistics prevents the learning algorithm from
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overfitting, regularization in online learning stabilizes the predictions and prevents the
algorithm from being fooled by an adversary. Obviously, different regularizers will lead
to different algorithms and different regret bounds.

The most general formulation of the RFTL algorithm is given in Algorithm 2 using
a learning rate α. The regularization function R is assumed to be positive, differentiable
and σ-strongly convex on Θ, which means that for any θ,θ′ ∈ Θ:

R(θ)−R(θ′)− (θ − θ′)T∇R(θ′) ≥ σ‖θ − θ′‖2

2 .

Roughly speaking, there exists a quadratic lower bound on the growth of a strongly
convex function. This assumption is very important, as will be seen later.

Algorithm 2 Follow-The-Regularized-Leader (FTRL)
Require: Learning rate α, Regularizer R.
Initialize θ1
for t = 1, . . . , T do
The function `t is revealed,

Update θt+1 = arg min
θ∈Θ

{∑t
s=1 `s(θ) + R(θ)

α

}
.

end for

Remark 1.2.1. Note that the FTRL algorithm is invariant to any positive constant added
to the regularizer R, so we can choose R such that inf R = 0 without loss of generality.

We turn now to the theoretical analysis of FTRL. Lemma 1.2.1 gives an upper bound
on the regret relative to any fixed parameter (not necessarily the best one).

Lemma 1.2.1. For all θ ∈ Θ,
T∑
t=1

`t(θt)−
T∑
t=1

`t(θ) ≤
T∑
t=1

[`t(θt)− `t(θt+1)] + R(θ)−R(θ1)
α

.

Hence, the regret for a fixed strategy θ is upper bounded by two terms, the first one
being the cumulative differences between the losses in two consecutive predictions of the
algorithm, while the second one comes from the regularizer. Intuitively, the first term,
which alone is also an upper bound for the FTL algorithm, will be small if θt ≈ θt+1
under a smoothness assumption on the loss functions `t. This quantity can be controlled
for the FTRL algorithm (contrary to the FTL case) because of the regularization term
that acts as a stabilizer, at the price of the additional term (R(θ)−R(θ1))/α.

The following lemma quantifies our intuition on the stabilization phenomenon and
ensures that for a strongly convex regularizer and a Lipschitz loss, successive points
θt and θt+1 are close, and then the differences between the losses in two consecutive
predictions are upper bounded.

Lemma 1.2.2. For L-Lipschitz losses `t,

`t(θt)− `t(θt+1) ≤ L‖θt − θt+1‖ ≤
αL2

σ
.
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Hence, we have the following regret bound for the FTRL algorithm:

Theorem 1.2.3. For L-Lipschitz losses `t,

RT ≤
supθ∈ΘR(θ)

α
+ αTL2

σ
.

In particular, if the regularizer is upper bounded by some constant B2/2, then for α =
B
√
σ

L
√

2T ,

RT ≤
BL
√

2T√
σ

.

Hence, the FTRL algorithm can achieve a sub-linear worst case regret of order
√
T

for convex and Lipschitz loss functions, which is known to be optimal with respect to T .
Note that dependence on the dimension is hidden in the Lipschitz constant L and in the
upper bound B.

Online projected gradient descent

Unfortunately, as for the FTL algorithm, FTRL is impractical as solving the optimization
problem at each step requires storing all the past data and recomputing their gradients.
Actually, it is possible to get rid of this problem by using an approximation when the
losses are differentiable. The online projected gradient descent algorithm is based on this
idea: at each step, the past convex losses `s(θ) are replaced by their linear approximations
∇θ`s(θs)Tθ at the previous points θs. The gradients being computed at the past θs, then
one just needs to store the past gradients ∇θ`s(θs) only at each step, and the algorithm
will be efficiently performed as soon as computing the gradient of the regularization term
is cheap. Moreover, the convexity of the losses ensures that for any θ:

T∑
t=1

[`t(θt)− `t(θ)] ≤
T∑
t=1
∇θ`t(θt)T [θt − θ],

and as the previous analysis of the regret still holds for linear losses with bounded gra-
dients under the assumption that Θ is bounded, then linearization exactly leads to the
same regret bound than Algorithm 2.

The basic regularization for a convex set Θ ⊂ Rd is the Euclidean penalty R(θ) =
‖θ − θ1‖2/2 for an arbitrary point θ1. Using the linearization trick, we obtain (the lazy
version of) the famous online gradient algorithm 3 (Zinkevich, 2003) which is very easy
to compute in practice, with a possible projection step when Θ is not the whole space
Rd, in which case the update may not belong to Θ. Θ is also chosen to be closed so that
the projection is well defined.

OPGD consists in updating the prediction of the algorithm at each round by moving
in the negative direction of the gradient of the observed loss and projecting back onto Θ.
It is similar to stochastic gradient descent albeit not exactly the same algorithm, as the
loss functions are different at each step.

Under a Lipschitzness assumption on loss functions `t and a boundedness assumption
on the convex set Θ, we have the following regret bound for Algorithm 3:
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Algorithm 3 Online Projected Gradient Descent (OPGD) [Lazy version]
Require: Learning rate α.
Initialize θ1
for t = 1, . . . , T do
The function `t is revealed,
Update θ̃t+1 = θ̃t − α∇θ`t(θt),
Project θ̃t+1 onto Θ in order to obtain θt+1.

end for

Theorem 1.2.4. For a closed set Θ and differentiable loss functions ft,

RT ≤
supθ∈Θ ‖θ‖2

2
2α + α

T∑
t=1
‖∇θ`t(θt)2‖2

2.

Moreover, if ft’s are L-Lipschitz and for all θ ∈ Θ, ‖θ‖ ≤ B, then for α = B
L
√

2T ,

RT ≤ BL
√

2T .

Note that there exists a more popular variant of the lazy version of OGPD presented
in Algorithm 3 referred to as the agile version of OPGD that we give in Algorithm 4.
The lazy version keeps track of the point θ̃t and projects onto Θ only at prediction time,
while the agile version preserves the feasible point θt at all times. This agile version can
be shown to give a similar regret than the lazy one, but its analysis goes beyond the
scope of this thesis.

Algorithm 4 Online Projected Gradient Descent (OPGD) [Agile version]
Require: Learning rate α.
Initialize θ1
for t = 1, . . . , T do
The function `t is revealed,
Update θ̃t+1 = θt − α∇θ`t(θt),
Project θ̃t+1 onto Θ in order to obtain θt+1.

end for

In this section, we introduced some basic tools and results from online convex opti-
mization. Of course, most algorithms and analyses presented here can be extended. For
instance, it is possible to let the learning rate α vary with the step t in order to achieve
smaller regret bounds in O(log T ) for strongly convex losses. We refer the interested
reader to Bubeck (2011); Shalev-Shwartz (2012); Hazan (2016); Cesa-Bianchi and Lugosi
(2006) for more details and developments on the methods described in this section.

In the rest of this chapter, we will no longer be working in the convex online opti-
mization setting, and we will show how to get regret bounds for Bayesian inference in
online learning.
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1.2.3 Bayes in online learning

An appealing property of Bayesian inference is that the natural representation of the
past information provided by past data can be updated in a sequential manner using the
Bayes’ rule as new data become available. This approach is particularly suited to the
online learning setting for designing online algorithms when no probabilistic modeling
of the data is assumed, as generalization of the Bayes principle can be used via loss
functions `t(θ), see Section 1.1. Moreover, the theoretical analysis holds even in case of
misspecification or in the presence of some adversarial data.

In this section, we will show that algorithms arising from generalized Bayesian in-
ference, often referred to as Exponentiated Weighted Aggregation in the online setting,
achieve low regret (Banerjee, 2006; Audibert, 2009; Gerchinovitz, 2013) and match the
ones obtained by classical online learning methods presented in the previous section.

EWA: a Bayesian strategy

Exponentially Weighted Aggregation (EWA) is a well-known strategy in sequential pre-
diction and online optimization. We adopt the same Bayesian approach and notations
than in Section 1.1. We define the setM+

1 (Θ) of all probability measures on Θ (equipped
with some suitable σ-algebra), and the prior distribution Π0 ∈ M+

1 (Θ). EWA is given
by Algorithm 5.

Algorithm 5 Exponentiated Weighted Aggregation (EWA)
Require: Learning rate α > 0, prior probability distribution Π0.
Initialize Π0,α = Π0.
for t = 1, . . . , T do
The function `t is revealed,
Update Πt+1,α(dθ) ∝ exp(−α`t(θ))Πt,α(dθ).

end for

It is important to remark that when α = 1 and `t(θ) is a log-likelihood, then this
is just standard Bayesian inference. In this case we assume that `t(θ) = − log pθ(xt)
and the xt’s are independent realizations of a distribution with density pθ0 , where θ0 is
unknown. By doing so, we have:

Πt+1,1(dθ) =
∏t
i=1 pθ(xt)Π0(dθ)∫ ∏t
i=1 pϑ(xt)Π0(dϑ) ,

which is exactly the definition of the regular posterior distribution. As mentioned in
Section 1.1, the posterior Πt,1 might not concentrate around the best approximation of
the generating distribution of the xt’s in misspecified models, whereas a suitable α < 1
in Πt,α leads to robust estimation (Grünwald et al., 2017; Bhattacharya et al., 2016).

Regret bound for EWA

In the online optimization literature, it is actually known that such results for α < 1 will
hold even without stochastic assumption on the observations, and even in adversarial
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settings.

Theorem 1.2.5. Assume that for any θ, 0 ≤ `t(θ) ≤ B. Then

T∑
t=1

∫
`t(θt)Πt,α(dθt) ≤ inf

Q∈M+
1 (Θ)

{
T∑
t=1

∫
`t(θ)Q(dθ) + αB2T

8 + KL(Q‖Π0)
α

}
.

The proof of Theorem 1.2.5 can be found in Cesa-Bianchi and Lugosi (2006) for a
finite parameter set Θ, and its general version is a special case of Theorem 4.6 in Au-
dibert (2009), see also Gerchinovitz (2013). Note that the integral on the left hand side
is the cumulated loss of the algorithm averaged over the random EWA strategy, and is
compared to an integral term on the right hand side which is the smallest cumulative
loss that could have been reached in hindsight averaging over a fixed random strategy.
Therefore, the inequality above is also referred to as a regret bound, as for upper bounds
on the true regret (1.11). Hence, this regret bound is a counterpart in the online frame-
work of the frequentist evaluation of regular and generalized Bayesian distributions, and
guarantees such as concentration or generalization bounds can be recovered under ad-
ditional assumptions (e.g. prior mass condition or convexity of the loss function) using
online-to-batch techniques.

Example 1.2.5 (Finite case). The study of algorithm 5 in the finite case card(Θ) = M
goes back to Vovk (1990); Littlestone and Warmuth (1994). It is for instance particularly
suited to the prediction with expert advice setting presented in Example 1.2.3. Taking Π0
as a uniform distribution over Θ leads to the bound

T∑
t=1

∫
`t(θt)Πt,α(dθt) ≤ inf

θ∈Θ

T∑
t=1

`t(θ) + αB2T

8 + log(M)
α

.

Thus,

E[RT ] ≤
B
√
T log(M)
√

2

for the choice α =
√

8 log(M)/(TB2) where the expectation is an average over the random
EWA strategy.

Example 1.2.6 (Link with Bayesian literature). Another interesting setting is when each
`θ is L-Lipschitz. Define Πτ,ε as Π0 restricted to B(τ, ε) = {θ ∈ Θ : ‖τ − θ‖ ≤ ε}. Then
obviously

∫
`t(θ)Πτ,ε(dθ) ≤ `t(τ) + Lε, and the bound becomes

T∑
t=1

∫
`t(θt)Πt,α(dθt) ≤ inf

τ∈Θ,ε>0


T∑
t=1

`t(τ) + T

(
αB2

8 + Lε

)
+ − log Π0(B(τ, ε))

α

.
Define θ∗ as a minimizer with respect to τ of ∑T

t=1 `t(τ). Then we make the assumption
r(ε) ≥ − log Π0(B(θ∗, ε)) which is to be compared with the usual prior mass condition
(1.8) made in the frequentist evaluation of Bayesian methods literature. Then one has

E [RT ] ≤ inf
ε>0

{
T

(
αB2

8 + Lε

)
+ r(ε)

α

}
.
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In a parametric model M ⊂ Rd, typically r(ε) ∼ d log(1/ε). The choices ε = d/(TLα)
and α =

√
d/(TB2) then lead to the regret bound

E [RT ] = O
B

√
dT log

(
LT

Bd

) .
Note that it is also possible to provide bounds with large probability instead of bounds

in expectation thanks to Hoeffding-Azuma inequality. We do not detail the technique
here and refer the interested reader to Cesa-Bianchi and Lugosi (2006) for further expla-
nations. Moreover, when the `t’s are convex, we have

∫
`t(θ)Πt,α(dθ) ≥ `t (

∫
θΠt,α(dθ)),

so replacing the random character of EWA by the average θ̂t =
∫

θΠt,α(dθ) leads to the
deterministic regret bound

T∑
t=1

`t(θ̂t) ≤ inf
Q∈M+

1 (Θ)


T∑
t=1

∫
`t(θ)Q(dθ) + αB2T

8 + KL(Q‖Π0)
α

.
Note that in the examples above, the choice of α depends on the long-term horizon T

but not on the current step t, as in batch Bayesian inference where α may possibly depend
on the sample size n but is fixed at once. As for classical online learning algorithms
presented in the previous section, the temperature parameter α could be thought of
as a learning parameter allowed to vary with t rather than a fixed value (as it is the
case in usual Bayesian inference). Similar results for α depending on t instead of T
are discussed in Cesa-Bianchi and Lugosi (2006). For example, it is known that under
additional assumptions on `t, regrets in O(log T ) or even O(1) can be reached by letting
the learning rate vary. This is for example the case when each `t is ζ-exp-concave on
Θ, that is, when θ 7→ exp(−ζ`t(θ)) is concave. Conversely, such fast rates cannot be
achieved for a fixed value of α. Hence, relaxing the purely Bayesian approach may be a
convenient way to design algorithms that have optimal guarantees in various situations
while staying inspired by the same underlying Bayesian principles.

Unfortunately, EWA distributions are often intractable, and classical
variational techniques presented in the beginning of this thesis are no longer
efficient to solve this problem as it would require computing the whole vari-
ational approximation from scratch at each step and skip the online aspect
of the problem. Nevertheless, applying efficient algorithms from the online
convex setting to the parameter of a parametric variational family (e.g. on-
line projected gradient descent to the mean-standard deviation parameter of
a Gaussian variational family), and considering the associated distributions
obtained at each step as a sequential approximation of EWA could be an in-
teresting perspective. We present in Chapter 7 a paper (Chérief-Abdellatif
et al., 2019) that proposed the first theoretical analysis of VI in the online
learning framework with streaming data. The contributions of this work are
detailed further in Section 2.2.
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1.3 Robustness to misspecification

The last section presented the online learning paradigm which does not assume that data
are generated following any particular process, but rather consider the (possibly adver-
sarial) world as being able to change at each step. This is a very different approach from
the one usually taken by statisticians, who want to represent some unknown phenomenon
and assume that their statistical model contains the data generating process that models
the underlying phenomenon they want to describe.

Nevertheless, real life and scientific reasoning are somewhere in between, as summa-
rized by the famous aphorism “all models are wrong, but some are useful” commonly
attributed to the statistician George Box. To quote him, “it would be very remark-
able if any system existing in the real world could be exactly represented by any simple
model. However, cunningly chosen parsimonious models often do provide remarkably
useful approximations. For example, the law PV = RT relating pressure P, volume V
and temperature T of an ideal gas via a constant R is not exactly true for any real gas, but
it frequently provides a useful approximation and furthermore its structure is informative
since it springs from a physical view of the behavior of gas molecules. For such a model
there is no need to ask the question is the model true? If truth is to be the whole truth
the answer must be no. The only question of interest is is the model illuminating and
useful?”. To be more precise, the question could - and should - be, is it possible to build
an inference method that does not lead to poor results when such a useful but misspecified
model is used?

In this manuscript, we are interested in robustness to misspecification and in the design
and the study of estimation procedures that satisfy in a misspecified setting (almost) the
same properties than in the well-specified setting. In Section 1.3.1, we will introduce
some motivating examples, in particular the case of contamination and dependency in
the data. In Section 1.3.2, we will present the general setting, and review some literature
dealing with the two previous notions. We will finally investigate the minimum distance
estimation approach in Section 1.3.3, that will be particularly exploited in the rest of this
thesis, see Chapter 8 and Chapter 9.

1.3.1 Motivations

One of the oldest problems in statistics is the design of a universal estimation method
with good properties in various settings. Maximum Likelihood Estimation (MLE), intro-
duced by Sir Donald Fisher in the 1920s, is probably the most famous and the first to
give a fairly general estimation procedure with strong theoretical guarantees. Indeed, it
provides a simple principle that can be applied to several models, and many other esti-
mation procedures can be interpreted as special instances of MLE such as Gauss’s least
squares estimator for Gaussian errors in regression, or the sample mean for the problem
of Gaussian mean estimation. Moreover, MLE comes with strong guarantees from a the-
oretical side. For instance, the MLE is consistent, asymptotically normal and efficient
under mild regularity conditions for parametric models (Le Cam, 1970; Van der Vaart,
2000). Respectively, this means that the estimated parameter converges to the true pa-
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rameter (both in probability and almost surely), that the MLE goes to an approximate
normal distribution as the sample size goes to infinity, and that the large-sample variance
of any other estimator will be no smaller than that of the MLE.

Sensitivity to outliers

Unfortunately, the maximum likelihood is no longer optimal nor even efficient as soon as
there are outliers in the data. The following example provides a situation of failure of
maximum likelihood estimation in the presence of at least one outlier in the data.

Example 1.3.1 (Instability in presence of outliers). Consider observations x1, ..., xn
assumed to be independent realizations of a uniform distribution on U([0,θ0]) where
{U([0,θ])/θ > 0} is the model, θ0 > 0 and U([a, b]) is the uniform distribution between
a and b. Unfortunately, there is one outlier in the data: one observation is equal to 1000
whereas all the others are between 0 and 1. In such a model, the maximum likelihood is
the maximum of the observations x(n) := max(x1, ..., xn), i.e. x(n) = 1000, while the most
reasonable value of θ0 seems to be 1... The same appears when considering a univariate
Gaussian model rather than uniform distributions, for which the empirical mean is no
longer efficient. Hence, maximum likelihood estimation is not robust to outliers.

In a similar example using probabilistic arguments and modeling the outliers in the
data by a mixture generating process, Birgé (2006) showed that the MLE may be incon-
sistent.

Example 1.3.2 (Inconsistency on approximate models). Let us consider the generating
mixture distribution is P0,n = (1− 2n−1)U([0, 0.1]) + 2n−1U([0.9, 1]) whereas the model is
still composed of uniforms U([0,θ]) with θ > 0. In this example, we use a probabilistic
argument, and thus we do not necessarily observe the data but rather consider a collection
of i.i.d. random variables X1, ..., Xn. As in the former situation, the MLE is X(n),
and U([0, 0.1]) seems to be a good approximation of the generating distribution P0,n. To
formalize this, notice that the squared Hellinger distance between both distributions is
equal to H2(P0,n,U([0, 1/10])) < 5/4n for n ≥ 4. Thus, one could expect obtaining
the consistency of the uniform distribution U([0, X(n)]) associated with the MLE X(n)
in Hellinger distance, i.e. E[H2(P 0

n ,U([0, X(n)]))] goes to 0 as n → +∞. Nonetheless,
E[H2(P 0

n ,U([0, X(n)]))] > 0.38 ! So the MLE is not even consistent in this situation where
the data generating process is very close (in Hellinger distance) to the chosen model.

Sensitivity to dependence

In many settings, usual inference techniques are based on the i.i.d. assumption. Unfortu-
nately, even in situations where independence seems to hold, such a condition may often
be unrealistic in practice, more especially when observations are successive realizations
of a stochastic process with temporal ordering. This is for instance particularly the case
in social sciences and in economics when considering variables such as inflation, employ-
ment and wage that are collected one year after another, and when the past can affect the
future. For instance, when dealing with an economic variable Y that we want to explain
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using a dependent variable Z, then the simple linear regression model with independent
Gaussian errors is widely used while the error terms are often serially correlated.
Example 1.3.3 (First-Order autoregressive error model in linear regression). Let us
consider the following simple linear regression model

Yt = a+ bZt + εt

where εt ∼ N (0, σ2) is a noise gathering all factors but Z. All εt are independent.
Actually, there may be a hidden temporal dependence in the error term εt, which would
consist of a fraction ρ of the previous error term εt−1 plus a new disturbance term Ut:

εt = ρεt−1 + ut

with ut ∼ N (0, σ2
u). ρ ∈ (−1, 1) is referred to as the autocorrelation parameter, and is

exactly equal to the autocorrelation between two consecutive error terms εt and εt+1. All ut
are independent. Of course, when ρ = 0, we recover the simple linear regression equation
and there is no correlation. In the previous example, we talk about serial correlation or
say that the errors suffer from autocorrelation, as they are correlated across time.

It is important to note that the simple linear model may seem appropriate in the
previous example even in presence of serial correlation when drawing a scatterplot. Hence,
to answer to Box’ question: the linear model may seem illuminating and useful. However,
the estimated parameters obtained by MLE (or equivalently by leasts squares) are not
efficient anymore: indeed, the BLUE (Best Linear Unbiased Estimator) property stating
that MLE achieves the lowest variance on the estimate, as compared to other unbiased
and linear estimators, is no longer available as the uncorrelated errors assumption is
violated.

Notice that Bayesian inference suffers from the same lack of robustness to misspeci-
fication. Indeed, there are situations, for instance when using a (homoskedastic) linear
regression model in the presence of heteroskedasticity, where the regular posterior distri-
bution does not concentrate and puts its mass on worse and worse models of ever higher
dimension. We do not explore this further and refer the reader to Grünwald et al. (2017)
for more details.

Hence, there is a need to look at more robust estimation procedures in both contami-
nation and dependence contexts, but more generally in any misspecified model. The next
paragraphs will be devoted to the description of the problem and to a discussion on the
previous attempts done to provide efficient estimation techniques for the contamination
and dependent settings.

1.3.2 Several notions of misspecification and robustness

In this section, we shall define a measurable space (X,X ) and a collection of n random
variables X1, ..., Xn generated following a stationary process of marginal distribution P0,
which implies in particular that all random variables are identically distributed. Of
course, this general setting includes the situation of i.i.d. variables with data generating
distribution P0. We consider a statistical model {Pθ/θ ∈ Θ} indexed by a parameter
space Θ that may be misspecified.
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Outliers contamination

A particular example of misspecification is the case where outliers are present in the
dataset. The probabilistic setting is the following. The data generating distribution P0
is a small variation of a distribution Pθ0 with θ0 ∈ Θ, so that only a small fraction of
the observations are not realizations of Pθ0 . We make the assumption that the variables
X1, . . . , Xn are independent. For instance, Hüber’s original contamination model (Hüber,
1964) is simply described as a mixture P0 = (1 − ε)Pθ0 + εQ where Q may be any con-
taminating distribution. More generally, it is possible to define a model, usually referred
to as the adversarial contamination model, which does not formulate any assumption
on the outliers. More precisely, we consider a collection of i.i.d. random variables from
Pθ0 and we remove a fraction ε and replace them with any other values. Hence, the
true data generating distribution is totally unknown, and the statistician only considers
X1, . . . , Xn where Xi can take any arbitrary value for i ∈ O, with O an arbitrary set such
that |O| ≤ εn, and Xi = X̃i for i /∈ O with independent random variables X̃i ∼ Pθ0 .

A more and more popular problem in the statistics and machine learning commu-
nities is the robust estimation of a mean θ0. In particular, the quest of a statisti-
cally optimal and computationally tractable estimator of the mean of a Gaussian model
{Pθ = N (θ, Id)/θ ∈ Rd} has received an increased interest in the last few years. Ob-
viously, the sample mean is a very bad estimator as it is very sensitive to any outlier,
and the other basic estimators that are known to work well in small dimensions such as
the coordinatewise median and the geometric median are suboptimal in high dimension,
in the sense that they do not reach the minimax rate of convergence max( d

n
, ε2) with

respect to the expected squared Euclidean distance. Chen et al. (2018) even showed
that the componentwise median achieves a rate of max( d

n
, dε2) in Hüber’s contamination

model which is only optimal with respect to the contamination ratio ε but not to d in
high dimension. It is further proved that Tukey’s median (Tukey, 1975) is optimal, but
unfortunately this estimator is not tractable and even approximate algorithm have an
O(nd) complexity (Amenta et al., 2000; Chan, 2004).

In 2016, Lai et al. (2016) and Diakonikolas et al. (2016) presented at the same time
two concurrent tractable procedures for robust estimation of the mean of a Gaussian
distribution. Both works are different but are based on the common idea that if the
empirical and the theoretical covariance matrices are close enough for a subsample of
points, then the arithmetic mean of this subsample is a good estimator of the theoretical
one. Furthermore, the analysis of Diakonikolas et al. (2017) suggests that the additional
logarithmic term log(1/ε) can not be removed in the rate of convergence when seeking a
tractable procedure. Further improvements in running time for near-optimal estimation
procedures can be found in Diakonikolas et al. (2018a); Diakonikolas and Kane (2019);
Cheng et al. (2019). Alternative approaches providing similar or better rates for tractable
estimators on weaker contamination models have been investigated in the literature. For
instance, Collier and Dalalyan (2017) achieve the minimax rate in Hüber’s contamination
model without any extra factor when ε = O(min(d−1/2, n−1/4)) and with an improved
overall complexity. More recently, Gao et al. (2019) connects robust Gaussian mean
estimation to Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Biau
et al., 2018), leading to depth-like estimators that are tractable via stochastic gradient
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descent (SGD) algorithms suited to GANs training and that satisfy (almost) the same
theoretical robustness properties than Tukey’s median in Hüber’s contamination model.
Other works investigated further the question of computational efficiency, see Hopkins
(2019); Cherapanamjeri et al. (2019); Depersin and Lecué (2019), to name but a few.

Dependence in time series

As said previously in this manuscript, one of the main goals of statistics is the un-
derstanding of existing phenomena. Consequently, the conditions and the models that
statisticians consider is influenced by the real world and by their ability to mimic the
behavior of observed data, and it is often unrealistic to assume independence.

Hence, in situations where the goal is to recover some identifiable time invariant
structure P0 using a model {Pθ/θ ∈ Θ} and an i.i.d. assumption, there is a need for
a convenient way to describe the data generating process that allows such sequential
dependence and for which the behavior of main statistics such as sums of random vari-
ables is analogous to those of independent sequences. The mixing conditions have been
introduced by Rosenblatt (1956) in order to meet this need. Roughly speaking, they
impose that the dependence between the present and the distant future is almost zero
and can be interpreted as an asymptotic independence. There are many reasons why
such mixing conditions have been the dominating assumptions for imposing a restriction
on the dependence between time series data. The most important one is that those mix-
ing conditions lead to limit theorems such as the law of large numbers (LLN) and the
central limit theorem (CLT), but also to Hoeffding-type inequalities such as McDiarmid’s
inequality (McDiarmid, 1989) which are originally only available in the i.i.d. setting and
can be extended to the dependent setting under a polynomial decay assumption on some
mixing coefficients, see Section 1.5 in Doukhan (1994) for LLN and CLT and Rio (2013,
2017b) for a dependent version of McDiarmid’s inequality. These results are of particular
interest as many inequalities and fundamental properties in independent statistics can be
obtained using them, see Chapter 3 in Boucheron et al. (2012). Hence, a lot of classical
asymptotic theorems such as almost sure convergence of a sequence of random variables
or nonasymptotic concentration inequalities providing rates of convergence can be proved
using these extensions, see Doukhan (1994).

Mixing conditions are satisfied for example for hidden Markov models (Baum and
Petrie, 1966) under mild assumptions on the transition matrix and on the order of the
model. Unfortunately, many other processes of interest in statistics are not mixing.
For instance, this is the case of a simple autoregressive process AR(1) (Andrews, 1984).
Moreover, checking mixing conditions is not always easy in practice. Hence, Doukhan and
Louhichi (1999) proposed an alternative notion of dependence called weak dependence.
Such dependence coefficients make more explicit the asymptotic independence between
the future and the past, which is progressively forgotten. More precisely, it assumes that
the covariance of some wisely chosen functions of the past and the future is small when the
distance between the past and the future is large. Also, the notion of weak dependence
is more general than mixing as it stands for a wide classes of processes. Finally, many
limit theorems and moment inequalities can be obtained for weakly dependent sequences,
please refer to Doukhan and Louhichi (1999) for more details.

27



1.3.3 Minimum distance estimation

First attempts to build a universal estimation procedure using minimum distance estima-
tion (MDE) date back to the 50s and the early work of Wolfowitz (1957). Such estimators
are obtained by minimizing some discrepancy between the data and the underlying model.
The majority of these divergences are based on probability density functions or on the
underlying probability distributions directly. Examples of distances between densities f
and g include the famous L2-distance

∫
(f − g)2 while the Cramer-von Mises distance∫

(F − G)2dF is a typical distance between cumulative distribution functions F and G.
Some metrics, such as the Hellinger distance, is formulated using densities f and g by∫

(
√
f −√g)2 but does not depend on the measure with respect to which the density is

taken, and consequently can be considered as a distance between probability measures.
Nevertheless, dealing with density models rather than probability models is not rec-

ommended. Indeed, even though the choice of a dominating measure and a density
model leads to a probability model, the converse is not true and there are many different
representations of a probability model using a reference measure and a set of densities.
Furthermore, many statistical methods such as MLE are highly sensitive to the choice
of the reference measure, as shown by the example below taken from Baraud and Birgé
(2016):

Example 1.3.4 (Dependence on the choice of the density model). We consider a sequence
of i.i.d. random variables X1, ..., Xn with Gaussian distribution Pθ0 = N (θ0, 1) where θ0
is unknown. We choose the standard Gaussian P0 = N (0, 1) as the reference measure,
and we denote the associated density pθ which is equal to

pθ(x) =

exp(θx− θ2/2) if x 6= θ or θ ≤ 0,
exp(θx− θ2/2 + exp(x2)θ2/2) otherwise.

Then, whatever the value of θ0, on a set of probability tending to 1 as n goes to infinity,
the MLE is given by X(n) := max(X1, ..., Xn) and is consequently not consistent.

Hence, we shall not consider density-based minimum distance estimators anymore in
the sequel, and formulate the principle of MDE as follows. We assume that the true
distribution P0 does not belong to the probability model {Pθ/θ ∈ Θ} which is equipped
with a statistical divergence d. We denote the empirical measure P̂n = ∑n

i=1 δ{Xi}/n.
Then the MDE θ̂n is defined as the parameter which associated distribution minimizes
the probability distance d to the empirical distribution:

d(P̂n, Pθ̂n) = inf
θ∈Θ

d(P̂n, Pθ)

if it exists and is unique. In the situation where such a minimizer does not exist, one can
select an ε-approximate solution θ̂n,ε instead of an exact minimizer:

d(P
θ̂n,ε

, P̂n) ≤ inf
θ∈Θ

d(Pθ, P̂n) + ε.

Even though MDE was pioneered by Wolfowitz in the early 50s, only a few works
followed on until the late 70s, mainly due to computational concerns. In the discussion
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of Bickel (1976), Holm suggested MDE as being the most natural method for some ro-
bustness problems, and the finding of Beran (1977) that Hellinger-based MDE can yield
both full asymptotic efficiency and robustness stands in sharp contrast with the belief
that both concepts are conflicted and cannot be achieved simultaneously. This attractive
property has raised the interest of the statistical community: Parr and Schucany (1980)
empirically showed that L2-based MDE could lead to robust estimators in some location
models, Millar (1981) proved local asymptotic minimaxity of Cramer-von Mises-based
MDE, Donoho and Liu (1988a,b) investigated robustness properties of various minimum
distance estimators and some advantages of the Cramer-Von Mises- and Hellinger-based
ones, while Parr (1981) provided a comprehensive review of the works done until the
beginning of the 80s.

Note that the trivial choice of the KL divergence for discrete measures gives the
famous maximum likelihood estimator. Unfortunately, it also leads to various problems
as already discussed in Section 1.3.1, and to the following (and natural) question: what
metric should be used in MDE ? A typical minimum distance estimate is based on the
total variation (TV) distance. Yatracos (1985) showed that TV-based MDE is uniformly
consistent in TV distance and robust to misspecification in the i.i.d. setting without any
assumption on the parameter set, with a convergence rate characterized by the entropy
of the space of measures, while Devroye and Lugosi (2001) provided a theoretical analysis
of the restriction, called Skeleton estimate, of the minimum TV estimator to the so-called
Yatracos sets. Unfortunately, as most MDE procedures, the computation of Yatracos’ and
skeleton estimates is not feasible in practice. Another robust version using Wasserstein
distance was recently studied in Bernton et al. (2017), in which the authors make use of
the recent advances in the field of computational optimal transport (Peyré, 2019) and its
efficient numerical algorithms to approximate the Wasserstein distance when the exact
computation of the minimum distance estimator is intractable, especially in generative
models where one can simulate data from the model but not evaluate its density.

More recently, Briol et al. (2019) introduced the Maximum Mean Discrepancy (MMD)
as a minimum distance estimator. The MMD distance is associated with a positive
definite kernel (Gretton et al., 2012). Given the reproducing kernel Hilbert space (RKHS)
and the corresponding distance associated with the given kernel, it is possible to define a
one-to-one mapping between the RKHS and the model, provided some mild conditions on
the kernel. Such a mapping is called kernel mean embedding. The MMD distance between
two probability distributions is then simply defined as the distance in the RKHS between
corresponding embeddings. The MMD distance has a wide range of applications from
kernel Bayesian inference (Song and Gretton, 2011) to approximate Bayesian computation
(Park et al., 2016), and includes two-sample (Gretton et al., 2012) and goodness-of-fit
testing (Jitkrittum et al., 2017), MMD GANs (Dziugaite et al., 2015; Li et al., 2015)
and autoencoders (Zhao et al., 2017). Briol et al. (2019) proved that such estimators are
consistent, asymptotically normal and robust to model misspecification, and some trade-
off between statistical efficiency and robustness can be achieved through the choice of
the kernel. As for the Wasserstein-based MDE, MMD is particularly suited to generative
models where efficient computation can be performed using a simple gradient descent
algorithm, with numerous applications such as GANs where the usual discriminator can
be replaced by a two-sample test based on MMD (Dziugaite et al., 2015).
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A significant part of this thesis is based on two papers investigating
further the properties of MMD estimation (Chérief-Abdellatif and Alquier,
2019, 2020). In Chapter 8, we show that the MMD estimator is robust
to adversarial contamination, and more generally to misspecification. Be-
sides, we go beyond the classical i.i.d framework and study robustness to
dependence between observations. We introduce a new dependence coeffi-
cient expressed as a covariance in some reproducing kernel Hilbert space
and which is very simple to use in practice. We also provide an SGD al-
gorithm for finite-dimensional models along with its theoretical analysis.
Moreover, we connect the MMD estimator to minimum L2-distance esti-
mation when the true distribution has a density relative to the Lebesgue
measure, and show that MMD estimation can be seen as a generalization
of minimum L2-distance estimation. Finally, Chapter 9 is devoted to the
study of a Bayesian version of the MMD estimator of Briol et al. (2019).
The main results of these papers are detailed in Section 2.3.
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Chapter 2

Contributions

2.1 Consistency of variational inference

As said in the previous chapter, variational inference has been extensively studied from
the computational viewpoint in the recent years, but only little attention has been put
in the literature towards theoretical properties of variational approximations until very
recently. In the wake of the work of Alquier and Ridgway (2017) which investigates the
consistency of variational approximations in general statistical models and the general
conditions that ensure such consistency, we tackle the special case of mixture models in
Chapter 4 and deep neural networks in Chapter 5. We also investigate in Chapter 6
the consistency of the ELBO criterion that is used for model selection in the variational
Bayes community.

2.1.1 Mixtures models

Mixture models are widely used in Bayesian statistics and machine learning, and are
applied in many fields as for instance in computer vision (Ayer and Sawhney, 1995),
computational biology (Pan et al., 2003), economics (Deb et al., 2011), transport data
analysis (Carel and Alquier, 2017), to name but a few. They are also used for model-
ing population heterogeneity, hence leading to practical clustering methods (Bouveyron
and Brunet-Saumard, 2014; McNicholas, 2016), and they have enough flexibility to ap-
proximate accurately almost every density (Bacharoglou, 2010; Kruijer et al., 2010). We
refer the interested reader to Celeux et al. (2018) for a review on the recent advances on
mixtures.

Following the spirit of Alquier and Ridgway (2017) where the theory is based on the
tempered posterior, i.e., the likelihood function is raised to a certain power α ∈ (0, 1), we
derive in Chapter 4 convergence rates for variational approximate posterior distributions,
for both the well-specified and misspecified cases. As examples, we consider multinomial
and Gaussian mixture distributions. Throughout the chapter, we also provide practi-
cal VB algorithms for approximate posterior computations and we also include a short
simulation study to illustrate our theoretical results.



A mixture model of K components is composed of distributions ∑K
j=1 ωjPθj where

the weight vector (ω1, · · · , ωK) belongs to the (K − 1)-dimensional simplex SK and each
component θj belongs to some parameter space Θ. Hence, the parameter of a mixture is
a vector θ = (ω1, ..., ωK ,θ1, ...θK) of size 2K. To estimate a mixture Pθ0 = ∑K

j=1 ω0,jPθ0,j

using a Bayesian approach, one needs to define a prior Π0(θ) = Π0,ω(ω)∏K
j=1 Π0,j(θj)

where Π0,ω ∈M+
1 (SK) is a probability distribution over the simplex SK and each Π0,j ∈

M+
1 (Θ) is a probability distribution over the parameter set Θ (both equipped with a

suited σ-algebra).
Typically, posterior distributions for mixtures are difficult-to-compute and we must

resort to approximate techniques such as variational inference. The mean-field approxi-
mation is particularly suited to mixtures as the space of parameters of the mixtures can
be decomposed as SK ×Θ× · · · ×Θ. The variational family requires the parameters of
the different components to be independent of each other, and also independent of the
weights:

Q =
{
Q(θ) = Qω(ω)

K∏
j=1

Qj(θj)/Qω ∈M+
1 (SK) , Qj ∈M+

1 (Θ) ∀j = 1, ..., K
}
.

The main result can be summarized as follows:

Theorem 2.1.1 (Informal). Assume that the extended prior mass condition (1.9) is
satisfied for each component, i.e. that for each j there exists a distribution Qn,j ∈ Q such
that: ∫

KL(Pθ0,j‖Pθj)Qn,j(dθ) ≤ rn and KL(Qn,j‖Π0,j) ≤ nrn.

Then for some Dirichlet prior on the weights and any α ∈ (0, 1),

E
[ ∫

Dα

 K∑
j=1

ωjPθj ,
K∑
j=1

ω0,jPθ0,j

 Π̃n,α(dθ)
]
≤ 1 + α

1− α2Krn.

Mainly, this theorem states that when estimation of a distribution in a model is
possible at rate rn, then it is possible to estimate a mixture of K distributions in the
model with a rate of convergence equal to Krn. Interestingly, there is no prior mass
assumption on the weights. The reason is that the prior mass assumption is satisfied
for the rate log(nK)/n when choosing a Dirichlet prior Πω = DK(β1, ..., βK) with some
minor restriction on the parameters β1, ..., βK . As in practice, the rate of convergence of
the variational approximation associated with a model is often slower than log(nK)/n,
then the rate of convergence of the approximate posterior associated with the mixture is
entirely driven by the prior mass condition on the different components. Note that this
result is remarkable as there are almost no assumptions made on the mixture model.

As an application, we tackle the case of Gaussian mixtures and we show that a single
Gaussian distribution can be estimated at a rate rn = log(n)/n. In this case, the rate of
convergence for a Gaussian rn is faster than the one for the weight log(nK)/n, and hence
the final convergence rate K log(nK)/n comes from the prior mass on the weights. This
is valid when the variance of the Gaussian is known but also when we estimate both the
mean and the variance.
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The result stating that the extended prior mass condition is satisfied for Dirichlet
priors is of interest on its own. Indeed, when dealing with mixture of V multinomials, this
result is sufficient to obtain the final rate of convergence KV log(nV )/n of the tempered
posterior. As already explained in Section 1.1.3, the prior mass condition is exactly
Πω(B) ≥ e−nKrn in this case, and the proof of the extended prior mass condition for
the weight vector goes back to the computation of the prior mass Πω(B) where B is the
KL-ball centered of radius Krn at ω0. When using Dirichlet priors, Lemma 6.1 in Ghosal
et al. (2000) addresses the computation of such a prior mass for L1-balls, that we extend
here to KL-balls.

We also provide a numerical algorithm to compute the variational approximation. A
popular technique used for mean-field approximations consists in optimizing iteratively in
all the independent components. Nevertheless, this is actually as difficult as maximizing
the log-likelihood of a mixture, which is not feasible in practice. To overcome this in-
tractability, we incorporate variables ωij’s in the optimization program without modifying
it thanks to Lemma 1.1.1. Such variables ωij’s can be interpreted as posterior means of
latent variables Zi

j’s as for the EM algorithm (Dempster et al., 1977). Then, the equiv-
alent program can be solved efficiently using coordinate descent, see Algorithm 6. Note
that when α = 1, our algorithm is exactly equivalent to the popular coordinate ascent
variational inference (CAVI) algorithm which is widely used in the VB community (Blei
et al., 2017). We finally compare our algorithm with both CAVI and EM, which achieves
comparable performance for the estimation of Gaussian mixtures.

2.1.2 Deep neural networks

In the last decade, deep learning (DL) has made major breakthroughs among practitioners
(LeCun et al., 2015; Goodfellow et al., 2016). Unfortunately, generalization properties of
DL are not well understood, and a recent line of research investigates the properties of
deep networks from a theoretical perspective. In particular, some recent works addressed
the estimation of smooth functions in a nonparametric regression framework, using either
frequentist or Bayesian tools (Schmidt-Hieber, 2017; Suzuki, 2018, 2019; Rockova and
Polson, 2018). In Chapter 5, we provide the first theoretical analysis of (tempered)
variational inference for Bayesian deep learning in nonparametric regression. We show
that when choosing a relevant variational family, then the variational approximation
retains the same properties than the posterior it approximates. We give the convergence
rate in a general framework with any regression function, and we show that in particular,
we recover the minimax optimal convergence rate (up to log-terms) for the case of Hölder
smooth functions for some network architecture.

We consider a nonparametric regression framework with a collection of i.i.d. random
variables (Xi, Yi) ∈ [−1, 1]d × R for i = 1, ..., n:Xi ∼ U([−1, 1]d),

Yi = f0(Xi) + ζi

where U([−1, 1]d) is the uniform distribution on the interval [−1, 1]d, ζ1, ..., ζn are i.i.d.
Gaussian random variables with mean 0 and known variance σ2, and f0 : [−1, 1]d → R
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is the true unknown function. We estimate f0 using sparse deep neural networks fθ of
sparsity S, depth L and width D.

Again, we adopt a Bayesian approach. We choose a sparsity inducing spike-and-slab
prior, for which a number S of selected neurons of the network follow a standard Gaussian
distribution, and all the others neurons are put to 0 with probability 1. The variational
set is also composed of Gaussian spike-and-slab distributions.

The main contribution of the paper is a nonasymptotic generalization error bound for
variational inference in sparse DL in the nonparametric regression framework:

Theorem 2.1.2 (Informal). For any α ∈ (0, 1), for any positive number B,

E
[ ∫
‖fθ − f0‖2

2Π̃n,α(dθ)
]
≤ 2

1− α inf
‖θ∗‖∞≤B

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rn,

where the rate of convergence rn is of order LS
n

log(BD).

The rate of convergence in the right-hand-side of the oracle inequality, which depends
linearly in the number of layers and the sparsity, is determined by the previous extended
prior mass condition, and recovers exactly the rate of convergence of the empirical risk
minimizer for DNNs which is obtained using different proof techniques, by computing
the local covering entropy i.e. the logarithm of the number of rn-balls needed to cover a
neighborhood of the true regression function (Schmidt-Hieber, 2017; Suzuki, 2019).

In particular, when the true regression function is Hölder smooth, assuming that
the sparsity, depth, and width of the network are appropriately chosen as suggested by
Rockova and Polson (2018), this implies that the variational approximation concentrates
towards f0 and enjoys the same near-minimax rates of convergence than those achieved
by the exact tempered and regular posteriors. The result is established by deriving the
previous PAC-Bayes oracle inequality for a Hölder regression function and applying the
approximation result of Schmidt-Hieber (2017).

We further consider the extension of the oracle inequality when the optimization
algorithm incurs error as measured by its effect on the ELBO. More precisely, when we
consider an algorithm (Π̃(j)

n,α)j for computing the ideal approximation Π̃n,α, there is an
additional term in the generalization error:

Theorem 2.1.3 (Informal). For any α ∈ (0, 1), for any positive number B and any
number of iterations j,

E
[ ∫
‖fθ − f0‖2

2Π̃(j)
n,α(dθ)

]
≤ 2

1− α · inf
‖θ∗‖∞≤B

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rn + E[∆n,j]

n
,

where ∆n,j is the difference between the maximum value of the ELBO and the value of
the ELBO at the jth iteration of the algorithm.

Hence, the algorithm Π̃(j)
n,α is consistent at the same rate rn than the ideal variational

approximation it computes Π̃n,α as soon as E[∆n,j] . LS log(BD).
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2.1.3 Model selection

The question that naturally arises when dealing with mixtures and deep neural networks is
respectively the question of the selection of the number of components and the question of
the selection of the architecture of the network. For instance, the choice of the architecture
in deep learning is crucial and can lead to faster convergence and better approximation.
Similarly, in Bayesian mixture modeling and in situations where the number of mixture
components is unknown, full hierarchical Bayes that entails putting a prior on the number
of components is often used in practice. This requires Reversible Jump Markov Chain
Monte Carlo algorithms to do computation, but designing such algorithms is a delicate
matter in many practical situations and they do not scale well with data size. Hence,
any fast VB solution to this problem is of great interest.

More generally, this raises the question of model selection, and the design of an adap-
tive model selection criterion that selects an optimal model. The ELBO maximization
criterion is widely used in the Variational Bayes community and is known to work well
in practice. More precisely, we consider several models indexed by K and associated
variational approximations Π̃K

n,α, and we assign a prior weight πK to each model. The
ELBO maximization criterion consists in choosing the model that provides the closest
approximation to the log-evidence ELBO(K), i.e. the maximum value of the ELBO as-
sociated with model K. We propose in Chérief-Abdellatif (2019a) a penalized version of
the ELBO maximization criterion that is equivalent to the usual one when considering a
finite number of models and uniform prior weights:

K̂ = arg max
K

{
ELBO(K)− log

(
1
πK

)}
.

The ELBO maximization criterion has never been justified in theory. In Chapter 6, we
show that this criterion is adaptive and selects a variational approximation that achieves
the optimal convergence rate among the competing models. In particular, we show re-
spectively in Chapter 4 and Chapter 5 that the ELBO criterion selects a number of
components and a network architecture that give the optimal rate and does not lead to
overfitting. We also show in Chapter 6 that the minimax convergence rate is achieved
for probabilistic principal component analysis.

We know from Alquier and Ridgway (2017) that as soon as there exists a true model
which satisfies the extended prior mass condition, then the variational approximation
corresponding to the true model is consistent at the rate defined by the prior mass
condition. The main message of Chérief-Abdellatif (2019a) is that even if we do not
know which model is true, the ELBO criterion provides a model (not necessarily the true
one) such that the corresponding approximation is consistent and adaptively achieves the
rate of convergence associated with the true model. More precisely:

Theorem 2.1.4 (Informal). Assume that Assumption 1.9 is satisfied for the true model
K0. Then for any α ∈ (0, 1),

E
[ ∫

Dα(Pθ, P
0)Π̃K̂

n,α(dθ)
]
≤ 1 + α

1− αrn +
log( 1

πK0
)

n(1− α) .
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Actually, the overall rate is composed of the convergence rate rn corresponding to
the true model and of a complexity term which reflects the prior belief over the different
models. For instance, if we range a countable number of models according to our prior
belief, then the complexity term will be of order K0/n when choosing πK = 2−K . In
practice, the overall term is of order rn.

The application of this result to both mixture models and deep neural networks can
be found in Chapters 4 and 5. We also consider in Chapter 6 probabilistic Principal
Component Analysis (PCA). In the next paragraphs, matrices will be denoted in bold
capital letters. We assume the model

Xi = W0Zi + εi

with independent and identically distributed Gaussian random variables Zi ∼ N (0, IK0)
and εi ∼ N (0, σ2Id), where Id and IK0 are respectively the d- andK0-dimensional identity
matrices (K0 < d), W0 ∈ Rd×K is the K0-rank matrix that contains the principal axes
and σ2 is a noisy term that is known. K0 corresponds here to the “true dimensionality”
of the data. It is unknown here and we consider several models corresponding to several
values of K = 1, ..., d and corresponding matrices W ∈ Rd×K .

We put equal prior weights πK over each integer K = 1, ..., d. Given rank K, we
place a prior over the K-rank matrix W to infer a distribution over principal axes. We
choose independent Gaussian priors on the columns of W. We also consider independent
Gaussian variational approximations on the columns of W. Using a clipping operator, it
is possible to obtain the consistency in Frobenius norm ‖ · ‖F of the selected variational
approximation to the true covariance matrix under the classical assumption that the
spectral norm ‖ · ‖2 of the true matrix W0 is bounded. The symbol O in the following
result hides universal constants that are independent of α, d, K0 and n:

Theorem 2.1.5 (Informal). For any α ∈ (0, 1), if ‖W0‖2 ≤ B, then:

E
[ ∫ ∥∥∥clipB(WWT )−W0WT

0

∥∥∥2

F
Π̃K̂
n,α(dW)

]
= O

(
1 + α

α(1− α) ·
dK0 log(dn)

n

)
,

where clipB(A) is the matrix which (i, j)-entry is equal to


Ai,j if |Ai,j| ≤ B2

B2 if Ai,j ≥ B2

−B2 otherwise.

Each of the following chapters is self-contained and all of them can be
read independently. A brief summary of their contributions is as follows:

• Chapter 5 studies the concentration of variational approximations of
posteriors for general mixtures, and we derive consistency and rates
of convergence. We also tackle the problem of selecting the number of
components by maximizing the ELBO. The work in this chapter has
been published in Chérief-Abdellatif and Alquier (2018).

• Chapter 6 provides nonasymptotic generalization bounds ensuring the
consistency of Bayesian DNNs when an approximation is used instead
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of the exact posterior distribution, along with rates of convergence. We
show that it leads to near-minimax estimation of smooth functions for
a wise choice of the architecture. We also use the ELBO criterion for
selecting the architecture. The work in this chapter has been accepted
at ICML 2020 (Chérief-Abdellatif, 2019b).

• Chapter 7 justifies the use of the ELBO maximization strategy from a
theoretical perspective. We illustrate our theoretical results by an appli-
cation to the selection of the number of principal components in prob-
abilistic PCA. The work in this chapter has been published in Chérief-
Abdellatif (2019a).

2.2 Online variational inference

Following the previous analyses in the batch setting, we investigate in Chapter 7 varia-
tional inference from an online perspective. No universal definition of variational Bayes
has been given in online learning. As already detailed in Section 1.2, keeping the stan-
dard definition of the variational approximation would be a simplistic solution that would
remove the online aspect of the problem and lead to computational issues. In Chapter 7,
we propose the first theoretical analysis of VI in the online learning framework with
streaming data. We study several classes of online algorithms that are inspired from
popular strategies used in online sequential optimization such as gradient descent and
follow-the-regularized-leader, and we provide generalization bounds in the convex case.
Our proof techniques are based on the convexity of the loss function, but we argue that
our bounds should hold more generally.

2.2.1 Variational approximations of EWA

In the literature, mainly two kinds of extensions of VB to the online setting have been
formulated. The first definition of online VB extends the definition of Bayes used in
batch statistics through Donsker-Varadhan Lemma (see Formula 1.5), and restricts the
set of minimization to a family of tractable distributions. When considering parametric
approximations Q = {Qµ/µ ∈ M}, we define variational approximations as Π̃t,α = Qµt

using a sequence of parameters (µt)t with Qµ0 = Π0:

µt = arg min
µ∈M


t∑

s=1
Eθ∼Qµ

[
`s(θ)

]
+ KL(Q‖Qµ0)

α

.
The main drawback of this method is that it loses the online aspect and requires the
entire set of data samples to be loaded in memory at each step, which is computationally
really expensive. This is though the approach adopted in Guhaniyogi et al. (2013) where
the authors propose two methods: the first one is a generalization of Equation 1.5, by
minimizing over a nonparametric convex set of distributions Q via a functional gradient
descent. The problem is that except for the trivial case where Q = M+

1 (Θ), they do
not provide any example of such sets in practice. They also use a parametric family
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Q = {Qµ, µ ∈M}. However, they change the order in KL, which involves an intractable
term that they compute using Monte-Carlo. Moreover, the regret they upper bound is
not a natural quantity and does not provide any guarantees on the initial objective, that
is minimizing the `t’s.

We notice that our variational approximation is formulated as a follow-the-regularized-
leader strategy applied to the expected loss µ → Eθ∼Qµ [`s(θ)]. Hence, we propose to
linearize the (expected) loss function as done in Section 1.2:

µt = arg min
µ∈M

µT
t∑

s=1
∇µEθ∼Qµs

[
`s(θ)

]
+ KL(Q‖Qµ0)

α

.
We shall denote this algorithm Sequential Variational Approximation (SVA) in the rest
of this manuscript, see Algorithm 10.

As for the gradient descent algorithm, there exists another formulation of this opti-
mization program. Rather than considering the cumulative loss and regularizing (using
KL) with respect to the first approximation, it is also possible to consider only the last
loss and to regularize with respect to the last approximation. Nevertheless, contrary to
gradient descent, the second formulation is not equivalent to the first one and leads to a
different optimization program:

µt = arg min
µ∈M

µT∇µEθ∼Qµt

[
`s(θ)

]
+ KL(Q‖Qµt−1)

α

.
Actually, this algorithm is in line with the other approach which extends the sequential
definition of EWA given in Algorithm 5: Πt+1,α(dθ) ∝ exp(−α`t(θ))Πt,α(dθ). This point
of view is particularly appealing as it keeps the online aspect of the problem and there
is no need to store any data. The update is obtained through a formula of the form
Π̃t,α = F (Π̃t−1,α, `t). For instance, this is the point of view adopted in Broderick et al.
(2013), which was further explored in Nguyen et al. (2017a) and Zeno et al. (2018) where
authors mixed the batch definition of VB and the online update approach to obtain the
following definition in two steps:

• An approximation step: Π̄t,α(dθ) ∝ exp(−α`t(θ))Qµt−1(dθ).

• A projection step: µt = arg minµ∈MKL(Q‖Π̄t,α).

Plugging the approximation step into the projection step leads to:

µt = arg min
Q∈Q

Eθ∼Q
[
`t(θ)

]
+ KL(Q‖Qµt−1)

α

.
Hence, our algorithm is a linearized version of the previous approximation/projection
variational approximation. We will denote this algorithm Streaming Variational Bayes
(SVB) in the sequel, see Algorithm 10. As for the approach using Donsker-Varadhan
Lemma (1.5), no rigorous analysis of the generalization properties of the approximations
obtained using this approach has been provided and it is not clear whether the compu-
tation of Π̃t,α is feasible.
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Moreover, Algorithms SVA and SVB are both tractable and have closed-form updates
for variational sets used in practice. For instance, when using the Gaussian mean-field
class of all Gaussian approximations Q(m,σ) = N (m, diag(σ2)) with mean m and diagonal
covariance matrix which diagonal is the vector σ2 = (σ2

1, . . . , σ
2
d)T , they lead to the

following gradient descent like updates:

SVA:


mt+1 ← mt − ασ2

0 ḡmt ,

gt+1 ← gt + ḡσt ,

σt+1 ← h
(

1
2ασ0gt+1

)
σ0.

SVB:

mt+1 ← mt − ασ2
t ḡmt ,

σt+1 ← h
(

1
2ασtḡσt

)
σt.

where ḡmt and ḡσt stand respectively for the gradient at (m,σ) = (mt, σt) of the expected
loss (m,σ) → E[`t(θ)] with respect to m and σ, where h(x) :=

√
1 + x2 − x and all

operations are applied componentwise for vector inputs.

2.2.2 Regret bounds

We provide in Chapter 7 regret bounds for SVA. The main required assumptions are the
Lipschitzness and the convexity of the expected loss µ → Eθ∼Qµ [`t(θ)], as well as the
strong convexity of the KL regularizer with respect to µ.

Theorem 2.2.1 (Informal). For L-Lipschitz and convex expected losses and a σ-strongly
convex KL regularizer, SVA has the following regret bound:

T∑
t=1

∫
`t(θt)Π̃t,α(dθt) ≤ inf

µ∈M


T∑
t=1

∫
`t(θ)Qµ(dθ) + αL2T

σ
+ KL(Qµ,Π0)

α

.
As desired, this result is almost the same than the one obtained in Theorem 1.2.5

where the infimum is restricted to the variational family, the upper bound B is replaced
by the Lipschitz constant L, and the factor 8 by the strong convexity parameter σ.
Nevertheless, the proof is very different and relies on arguments coming from online
convex optimization (Shalev-Shwartz, 2012; Hazan, 2016). Note that as in Section 1.2,
online-to-batch techniques can lead to generalization error bounds under a convexity
assumption on the loss function `t of order:

EDT∼P0 [R(θ̄T )] ≤ inf
θ
R(θ) +O

(
L

σ

√
d log(dT )

T

)
.

We also provide in Chapter 7 a regret bound for SVB for the Gaussian mean-field
family Q(m,σ) = N (m, diag(σ2)) with mean/standard deviation parameterization with
a dynamic and multidimensional learning rate αt = (αt,1, · · · , αt,j). The regret bound
requires a bounded parameter setM =Mm×Mσ with an additive projection step where
Mm andMσ are closed, bounded, convex subsets of Rd and Rd

≥0 respectively, with 0 ∈
Mσ. We also define the diameter D2 = sup {‖m−m′‖2

2 + ‖σ‖2
2,m,m

′ ∈Mm, σ ∈Mσ}.
Note that the strong convexity of the regularizer is always satisfied in this case.
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Theorem 2.2.2 (Informal). For convex losses `t and L-Lipschitz and convex expected
losses, and for θ̂t ∼ Q(mt,σt), we have for some choice of the learning rate:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) +DL
√

2T .

Moreover, if the expected losses are H-strongly convex, we even have a logarithmic rate:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) + L2(1 + log T )
H

.

Once again, the results are similar to the regular Bayesian case but are directly ex-
pressed in terms of the parameters θ instead of expectations. It is even possible, opti-
mizing over Mm = {m ∈ Rd : ‖m‖2 ≤ M̄} and Mσ = {σ ∈ Rd

+ : ‖σ‖2 ≤ S̄}, to get
dimension-free generalization error bounds of order L(4M̄2 + S̄2)1/2T−1/2.

2.2.3 Going beyond convexity

Our proofs are based on a convexity argument. However, we expect our bounds to hold
more generally, even for some nonconvex expected losses. This is particularly appealing
as it would help us obtain generalization guarantees for the natural-gradient variational
inference (NGVI) algorithm (Sato, 2001; Hoffman et al., 2013; Khan and Lin, 2017) using
an exponential variational family.

This algorithm is widely used in stochastic learning but can be easily modified for
the online setting. The method presented in Khan and Lin (2017) exploits the duality
between the expectation parameter µ and the natural parameter λ of the exponential
family, and can be written as follows:

λt = λt−1 − α∇µEθ∼Qµt−1
[`t(θ)],

with a possible projection step.
In particular, this natural gradient algorithm can be simply written as SVB applied

to an exponential variational family with an expectation parameterization. For instance,
when using a Gaussian mean-field family, the expectation parameter is simply composed
of the first two order moments, i.e. the mean and the correlation matrix. It is known to
perform very well in practice, and it is shown in Chérief-Abdellatif et al. (2019) that it
outperforms both SVA and SVB applied to the usual mean/standard deviation matrix
parameterization (m,σ) in several settings and with several losses. Unfortunately, the
expected loss is not convex with respect to the expectation parameter for most losses while
being convex with respect to (m,σ), and thus we are not able to analyze the performance
of NGVI.

One of the main empirical findings and suggestions of Chapter 7 is that the generaliza-
tion properties of online VI seem to go beyond the convex assumption required to obtain
the theoretical results, and that convexity of the expected loss is not the cornerstone of
the generalization of online VI.
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In Chapter 7, we derive the first generalization bounds for online varia-
tional inference. By using existing methods, we propose some online meth-
ods for variational inference, namely the SVA and SVB algorithms, and
we provide generalization bounds for both of them. We support our theo-
retical findings with numerical experiments on simulated and real data. We
observe that NGVI outperforms all the other methods, we conjecture that
the theoretical convexity assumption on the expected loss can be relaxed in
practice, and we believe that our theoretical analysis can be extended to the
NGVI algorithm. The work in this chapter has been published in Chérief-
Abdellatif et al. (2019).

2.3 Robustness via Maximum Mean Discrepancy

As already said in Section 1.3, most attempts to design a universal estimator which is si-
multaneously consistent and statistically optimal when the generating distribution of the
data belongs to the model, and robust to small departures from the model assumptions
are not computationally feasible. The recent minimum distance estimator introduced by
Briol et al. (2019) and based on the Maximum Mean Discrepancy (MMD) is consistent
at optimal rates in MMD distance when the model is well-specified, robust to misspec-
ification, and can be easily computed using stochastic gradient descent. In Chapter 8,
we show that this estimator is robust to both dependency and to the presence of out-
liers in the dataset. We also relate this MMD-based estimator to L2-estimation, and we
propose a theoretical analysis of the gradient algorithm used to compute the estimator.
We present empirical evidence in support of this. We also propose a Bayesian version in
Chapter 9, where we study its concentration properties under some prior mass condition
and provide an explicit algorithm for computing the MMD-based pseudo-Bayes posterior
using variational inference.

2.3.1 The MMD estimator

In the sequel, we consider a positive definite kernel function k, i.e a symmetric function
k : X × X → R such that for any integer n ≥ 1, for any x1, ..., xn ∈ X and for any
c1, ..., cn ∈ R:

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0,

and the corresponding reproducing kernel Hilbert space (RKHS) (Hk, 〈·, ·〉Hk) which sat-
isfies the reproducing property f(x) = 〈f, k(x, ·)〉Hk for any function f ∈ Hk and any
x ∈ X . We assume that the kernel is bounded by some positive constant, that will be
assumed to be 1 without loss of generality.

The kernel mean embedding of a probability measure P is the function µP ∈ Hk such
that:

µP (·) := EX∼P [k(X, ·)] ∈ Hk.
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We also assume that the kernel is characteristic, which means that the mapping P 7→ µP
is injective. Hence we can define the distance:

Dk(P,Q) = ‖µP − µQ‖Hk

which is the maximum mean discrepancy between P and Q.
Given a parameter set Θ, we define the MMD estimator θ̂n as in Briol et al. (2019):

Dk(Pθ̂n
, P̂n) = inf

θ∈Θ
Dk(Pθ, P̂n).

It is also possible to consider an approximate minimizer when the exact minimum does
not exist.

2.3.2 Robustness to misspecification and dependence

Chapter 8 investigates the universality properties of minimum distance estimation based
on the maximum mean discrepancy, particularly regarding dependence to misspecification
and dependence.

A generalization bound:

The first result is an oracle inequality that still holds in the dependent setting ensuring
an MMD decrease of the generalization error in n−1/2 as n→ +∞, which is known to be
optimal (Tolstikhin et al., 2017):

Theorem 2.3.1 (Informal). Under relevant weak dependence assumptions involving two
positive constants Σ and Γ, we have for any δ ∈ (0, 1), with probability at least 1− δ,

Dk

(
P

θ̂n
, P0

)
≤ inf

θ∈Θ
Dk (Pθ, P0) + 2

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

.

In particular, under the i.i.d. assumption, we have Σ = Γ = 0.

The result above is based on two main dependence assumptions. The first one is
sufficient to get a result in expectation. We introduce in Chérief-Abdellatif and Alquier
(2019) a new weak dependence coefficient in the wake of the works of Doukhan and
Louhichi (1999) which is expressed as a covariance in the RKHS associated with the
kernel. Such a coefficient is very simple to use in practice, much easier to compute than
mixing coefficients and the summability of the series of these coefficients stands for a
wider class of processes. When the sum of the series exists, we say that the stochastic
process is weakly dependent. Σ denotes the sum of the series in the previous theorem. We
investigate several examples of processes that are not mixing but still weakly dependent
in Chapter 8.

The second assumption is essential to obtain a result in probability. Indeed, a con-
centration inequality upper bounding the MMD distance between the empirical and the
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true distribution is required to get such an oracle inequality. For instance, the result
of Briol et al. (2019) is based on McDiarmid’s inequality (McDiarmid, 1989), but this
Hoeffding-type inequality is only valid in the independent setting. Hence, we exploit here
a version of McDiarmid’s inequality designed for time series which is available under a
polynomial decay assumption on some mixing dependence coefficients (γi,j)1≤i<j (Rio,
2013). Again, we adapt here the decay assumption to the RKHS Hk, and the constant Γ
in the previous theorem denotes the sum of the series of such mixing coefficients.

Bounds in L2-distance:

We also connect our bounds in MMD to other metrics, in particular to the L2-distance.
Some previous attempts to design estimators that are robust to misspecification give
bounds in TV or in Hellinger distances (Baraud and Birgé, 2016; Devroye and Lugosi,
2001), and prevent people from using that the quadratic loss as a minimum distance
estimator. The first main reason is that the L2-metric is not universal. Indeed, all
probability measures do not necessarily have a density with respect to some reference
measure (e.g. Lebesgue measure), and some of them may have one but that is not L2-
integrable. Moreover, such a density highly depends on the choice of the reference measure
as explained in Section 1.3.

We argue in Chapter 8 that for kernels of the form k(x, y) = F (‖x − y‖/γ) for a
function F : [0,+∞) → [0, 1], the maximum mean discrepancy can be expressed as an
approximation of the quadratic distance that is well-defined for any probability distribu-
tion, and that it is possible to derive oracle inequalities in L2-distance when densities exist
and are L2-integrable. For instance, for the Gaussian kernel kγ(x, y) = exp(−‖x−y‖2/γ2),
Dkγ (P,Q) ∼ π

d
4γ

d
2‖p − q‖L2 when γ → 0 and where p and q are densities of P and Q

respectively with respect to the Lebesgue measure. Hence, for γ small enough, we give
a sense to L2 estimation even for densities that are not L2-integrable. Furthermore, the
maximum mean discrepancy does not depend on any reference measure, though it de-
pends on the choice of the kernel. This dependence in k is actually an attractive feature
as it gives flexibility to take into account the underlying geometry of X via the choice of a
distance on this space, a property that explains the popularity of the Wasserstein distance
in statistics. For example, Dk(δx, δy) → 0 when x → y, a property that is shared with
the Wasserstein distance but that does not hold for the Hellinger nor the TV distance.

Robustness to adversarial contamination:

MMD-based estimation can also be used in the special case of robust parametric esti-
mation with adversarial contamination, where the target distribution Pθ0 belongs to the
model but a fraction ε of the data are contaminated by an adversary. In this setting:
Theorem 2.3.2 (Informal). Under the same assumptions than for Theorem 2.3.1, we
have for any δ ∈ (0, 1), with probability at least 1− δ:

Dk

(
P

θ̂n
, Pθ0

)
≤ 4

ε+

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

 .
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Again, it is possible to obtain a weaker result in expectation by relaxing the assump-
tion involving Γ. Note that this result still holds for Hüber’s contamination setting but
the constant 4 is replaced by the smaller one 2.

The rate achieved by the MMD estimator (in MMD) is max(1/
√
n, ε), and has the

same form than the minimax rate when estimating the mean of a Gaussian distribution.
We recover the optimal rate of convergence with respect to n without contamination when
ε . 1/

√
n, while the rate is dominated by the contamination ratio ε otherwise. Thus, the

maximum number of outliers that is tolerated without breaking down the optimal rate is√
n, and is independent of the dimension. In the particular setting of the estimation of a

Gaussian mean with covariance matrix σ2Id, we achieve via the Gaussian kernel the same
rate than the coordinatewise median, i.e. ‖θ̂n − θ0‖2 = O(max(d1/2n−1/2, d1/2ε)), while
the minimax optimal rate is max(d1/2n−1/2, ε). As a comparison, the robust Median-
of-Means methodology leads to estimation in O(max(d1/2n−1/2, ε1/2)), i.e. a maximum
number of outliers that is tolerated without breaking down the optimal rate of order
d. We believe that our rates obtained using the MMD estimator can be improved by a
proper choice of the kernel.

Computational issues:

The estimator θ̂n can be computed using a gradient-based algorithm when Θ ⊂ Rd for a
generative model, i.e. when it is possible to sample from any Pθ. The idea of exploiting
stochastic gradient descent to compute θ̂n goes back to Dziugaite et al. (2015) who used
SGD to train a generative neural network, and was discussed again in Briol et al. (2019).
The algorithm is based on a U-statistic approximation of the MMD criterion and is
detailed in Algorithm 12. We also provide a theoretical analysis of the algorithm and
numerical simulations, where we test the robust estimation of a uni- and multidimensional
univariate Gaussian, a uniform, a Cauchy, and a Gaussian mixture.

2.3.3 A Bayesian estimator

As already explained in Section 1.3, the Bayesian approach is not robust to model mis-
specification, and the posterior is not consistent in many situations (Barron et al., 1999;
Grünwald et al., 2017). We propose again in Chérief-Abdellatif and Alquier (2020) to
use the MMD distance to design a robust Bayesian estimator.

We argue in Chapter 9 that the choice of MMD distance is more suited to perform
robust estimation than the KL one. To motivate our claim, we show that in Hüber’s
contamination model for the estimation of a Gaussian mean corrupted by another Gaus-
sian distribution, we exactly recover the true mean when using the minimizer to the true
mixture distribution with respect to the MMD distance, whereas we do not when using
the KL divergence. Thus, following the core idea of the PAC-Bayes theory, we replace
the log-likelihood `n by the MMD in Bayes’ formula, and we call this pseudo-posterior
distribution MMD-Bayes:

Πn,α(dθ) ∝ exp
(
−α · D2

k(Pθ, P̂n)
)

Π0(dθ).
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In Chapter 9, we show that the MMD-Bayes concentrates to the true distribution
when the model is well-specified under a version of the prior mass condition adapted to
MMD estimation. When the metric and the radius of the MMD-neighborhoods in the
prior mass condition are respectively the MMD metric and n−1/2, then the MMD-Bayes
concentrates at the optimal rate n−1/2 in MMD distance (Tolstikhin et al., 2017).

Furthermore, when the model is misspecified, it is still possible to obtain an oracle
inequality for the pseudo-posterior when the prior mass condition is based on a neigh-
borhood of an approximation Pθ∗ = arg minPθ

Dk (Pθ, P0) of the true distribution instead
of the true distribution itself:
Theorem 2.3.3 (Informal). Under the prior mass condition applied to neighborhoods of
the best approximation, we have for any α ∈ (0, 1):

E
[∫

D2
k (Pθ, P0) Πn,α(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) + 16

n
.

Note that the parameter α does not appear in the right-hand side, this phenomenon
will be explained in Chapter 9 and has already been encountered for example in Dalalyan
et al. (2018). We also provide an example of computation of such a prior mass in this
chapter.

To overcome the intractability of the MMD-Bayes in complex models, we use varia-
tional inference in Chérief-Abdellatif and Alquier (2020). We show that its variational
approximation retains the same theoretical properties under an extended prior mass con-
dition, and we support our theoretical findings with numerical simulations using an SGD
algorithm as for MMD-based minimum distance estimation.

In Chapter 8, we provide a simple way to define universal estimation
procedures via the MMD metric. In particular:

• We give oracle inequalities that imply robust estimation under the i.i.d
assumption in Hüber’s and in the adversarial contamination models.

• We go beyond the usual i.i.d. framework. By introducing a simple
and new weak dependence coefficient expressed as a covariance in the
RKHS, we show that the MMD estimator is robust to dependence be-
tween observations.

• We also connect our MMD estimator to minimum distance estimation
using L2-metric.

• We give a theoretical analysis of an SGD algorithm used to compute
this estimator for finite dimensional models, and we provide empirical
evidence in support of this.

The work in this chapter has been submitted to Bernoulli (Chérief-Abdellatif
and Alquier, 2019).

In Chapter 9, we provide a Bayesian version of the MMD estimator that
is consistent with optimal properties in well-specified models, and which is
robust otherwise. The work in this chapter has been published in Chérief-
Abdellatif and Alquier (2020).

45





Chapter 3

Résumé substantiel

3.1 Consistence de l’inférence variationnelle

Comme indiqué dans le premier chapitre de cette thèse, l’inférence variationnelle a été
largement étudiée du point de vue computationnel ces dernières années, mais la littérature
n’a accordé que peu d’attention aux propriétés théoriques des approximations variation-
nelles jusqu’à très récemment. Dans le sillage des travaux d’Alquier and Ridgway (2017)
qui étudient la consistence des approximations variationnelles en statistique et les condi-
tions générales qui assurent cette consistence, nous abordons le cas particulier des modèles
de mélanges dans le Chapitre 4 et des réseaux de neurones profonds dans le Chapitre 5.
Dans le Chapitre 6, nous examinons également la consistence du critère ELBO utilisé
pour la sélection des modèles dans la communauté variationnelle Bayésienne.

3.1.1 Modèles de mélanges

Les modèles de mélange sont largement utilisés en statistique Bayésienne et en machine
learning, et sont appliqués dans de nombreux domaines comme par exemple la vision par
ordinateur (Ayer and Sawhney, 1995), la biologie computationnelle (Pan et al., 2003),
l’économie (Deb et al., 2011), ou encore l’analyse des données de transport (Carel and
Alquier, 2017), pour n’en citer que quelques-uns. Ils sont également utilisés pour mod-
éliser l’hétérogénéité des populations, ce qui conduit à des méthodes pratiques de cluster-
ing (Bouveyron and Brunet-Saumard, 2014; McNicholas, 2016), et ils ont suffisamment de
flexibilité pour approcher avec précision presque toutes les densités (Bacharoglou, 2010;
Kruijer et al., 2010). Nous renvoyons le lecteur intéressé à Celeux et al. (2018) pour une
revue de littérature sur les récentes avancées concernant les mélanges.

Suivant l’esprit d’Alquier and Ridgway (2017) où la théorie est basée sur la poste-
rior tempéré, c’est-à-dire lorsque la fonction de vraisemblance est élevée à une certaine
puissance α ∈ (0, 1), nous calculons dans le Chapitre 4 les vitesses de convergence pour
les approximations variationnelles, pour les cas bien spécifiés et mal spécifiés. À titre
d’exemple, nous considérons les distributions de mélange multinomiales et Gaussiennes.
Tout au long du chapitre, nous fournissons également des algorithmes pratiques pour les



calculs d’approximations de la posterior et nous incluons également de brèves simulations
pour illustrer nos résultats théoriques.

Un modèle de mélanges de K composantes est composé de distributions ∑K
j=1 ωjPθj

où le vecteur des poids (ω1, · · · , ωK) appartient au simplexe SK de dimension K−1 et où
chaque composante θj appartient à un espace de paramètres Θ. Ainsi, le paramètre du
mélange est un vecteur θ = (ω1, ..., ωK ,θ1, ...θK) de taille 2K. Pour estimer un mélange
Pθ0 = ∑K

j=1 ω0,jPθ0,j en utilisant une approche Bayésienne, nous définissons une prior
Π0(θ) = Π0,ω(ω)∏K

j=1 Π0,j(θj) où Π0,ω ∈ M+
1 (SK) est une distribution de probabilité

sur le simplexe SK et où chaque Π0,j ∈ M+
1 (Θ) est une probabilité sur l’espace des

paramètres Θ (tous deux munis d’une tribu adéquate).
Typiquement, les distributions a posteriori pour les mélanges sont incalculables en

pratique et il faut recourir à des méthodes approchées telles que l’inférence variationnelle.
L’approximation à champ moyen est particulièrement adaptée aux mélanges étant donné
que l’espace des paramètres des mélanges peut s’écrire SK × Θ × · · · × Θ. La famille
variationnelle force les paramètres de chaque composante à être indépendants entre eux,
et indépendants des poids:

Q =
{
Q(θ) = Qω(ω)

K∏
j=1

Qj(θj)/Qω ∈M+
1 (SK) , Qj ∈M+

1 (Θ) ∀j = 1, ..., K
}
.

Le résultat principal est le suivant:

Theorem 3.1.1 (Informel). Supposons que la condition de prior mass étendue (1.9) soit
satisfaite pour chaque composante, c’est-à-dire que pour chaque composante j, il existe
une distribution Qn,j ∈ Q telle que:∫

KL(Pθ0,j‖Pθj)Qn,j(dθ) ≤ rn and KL(Qn,j‖Π0,j) ≤ nrn.

Alors pour une prior de Dirichlet sur les poids, on a pour tout α ∈ (0, 1),

E
[ ∫

Dα

 K∑
j=1

ωjPθj ,
K∑
j=1

ω0,jPθ0,j

 Π̃n,α(dθ)
]
≤ 1 + α

1− α2Krn.

Ce théorème stipule principalement que lorsque l’estimation d’une distribution dans
un modèle est possible à une vitesse rn, il est alors possible d’estimer un mélange de K
distributions du modèle avec une vitesse de convergence égale à Krn. Il est intéressant
de noter qu’il n’y a pas d’hypothèse de prior mass associée aux poids. La raison est
que l’hypothèse de prior mass est satisfaite à la vitesse log(nK)/n lorsque l’on choisit
une prior de Dirichlet Πω = DK(β1, ..., βK) avec quelques restrictions mineures sur les
paramètres β1, ..., βK . Comme en pratique, la vitesse de convergence de l’approximation
variationnelle associée à un modèle est bien souvent plus lente que log(nK)/n, alors
la vitesse de convergence de l’approximation de la posterior associée au mélange est
entièrement déterminée par la condition de prior mass sur les différentes composantes.
Il est à noter que ce résultat est remarquable car le modèle de mélange ne comporte
pratiquement aucune hypothèse.
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Comme application, nous abordons le cas des mélanges de Gaussiennes et nous mon-
trons qu’une seule distribution Gaussienne peut être estimée à vitesse rn = log(n)/n.
Dans ce cas, la vitesse de convergence d’une Gaussienne rn est plus rapide que celui
du poids log(nK)/n, et donc la vitesse de convergence final K log(nK)/n provient de
l’estimation des poids du mélange. Ceci est valable lorsque la variance de la Gaussienne
est connue mais aussi lorsque nous estimons à la fois la moyenne et la variance.

Le résultat indiquant que la condition de prior mass étendue est satisfaite pour les pri-
ors de Dirichlet est intéressant en soi. En effet, lorsqu’il s’agit d’un mélange de V multino-
miales, ce résultat est suffisant pour obtenir la vitesse de convergence finaleKV log(nV )/n
de l’approximation. Comme déjà expliqué dans la partie 1.1.3, la condition de prior mass
est exactement Πω(B) ≥ e−nKrn dans ce cas, et la preuve de la condition de prior mass
étendue pour le vecteur de poids revient au calcul de la masse de la prior Πω(B) où B
est la boule KL centrée en ω0 et de rayon Krn. En utilisant une prior de Dirichlet, le
Lemme 6.1 de Ghosal et al. (2000) aborde le calcul d’une telle masse de la prior pour les
boules L1, que nous étendons ici aux boules KL.

Nous fournissons également un algorithme numérique pour calculer l’approximation
variationnelle. Une technique populaire utilisée pour les approximations à champ moyen
consiste à optimiser de manière itérative toutes les composantes indépendamment. Néan-
moins, cela est en fait aussi difficile que de maximiser la log-vraisemblance d’un mélange,
ce qui n’est pas faisable en pratique. Pour surmonter cette difficulté, nous incorporons
des variables ωij’s dans le programme d’optimisation sans le modifier grâce au Lemme
1.1.1. Ces variables ωij’s peuvent être interprétées comme des moyennes a posteriori de
variables latentes Zi

j’s comme pour l’algorithme EM (Dempster et al., 1977). Ensuite,
le programme équivalent peut être résolu efficacement en utilisant une descente de coor-
données, voir l’Algorithme 6. Notez que lorsque α = 1, notre algorithme est exactement
équivalent à l’algorithme populaire d’inférence variationnelle par montée de coordonnées
(CAVI) qui est largement utilisé dans la communauté VB (Blei et al., 2017). Nous com-
parons enfin notre algorithme avec CAVI et EM, qui permet d’obtenir des performances
comparables pour l’estimation de mélanges Gaussiens.

3.1.2 Réseaux de neurones

Au cours de la dernière décennie, le Deep Learning (DL) ou apprentissage profond a
révolutionné l’intelligence artificielle et le numérique (LeCun et al., 2015; Goodfellow
et al., 2016). Malheureusement, les propriétés de généralisation de l’apprentissage profond
ne sont pas bien comprises, et une ligne de recherche récente étudie les propriétés des
réseaux profonds d’un point de vue théorique. En particulier, certains travaux récents ont
porté sur l’estimation des fonctions continues en régression non paramétrique, en utilisant
des outils fréquentistes ou Bayésiens (Schmidt-Hieber, 2017; Suzuki, 2018, 2019; Rockova
and Polson, 2018). Dans le Chapitre 5, nous fournissons la première analyse théorique de
l’inférence variationnelle (tempérée) pour l’apprentissage Bayésien profond en régression
non paramétrique. Nous montrons, pour un choix d’une famille variationnelle pertinente,
que l’approximation variationnelle conserve les mêmes propriétés que la posterior qu’elle
approche. Nous donnons la vitesse de convergence dans un cadre général avec n’importe
quelle fonction de régression, et nous montrons qu’en particulier, nous récupérons la
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vitesse de convergence minimax (aux termes logarithmiques près) pour le cas des fonctions
continues au sens de Hölder pour certaines architectures du réseau.

Nous considérons une régression non-paramétrique avec une collection de variables
aléatoires i.i.d. (Xi, Yi) ∈ [−1, 1]d × R pour i = 1, ..., n:Xi ∼ U([−1, 1]d),

Yi = f0(Xi) + ζi

où U([−1, 1]d) est la distribution uniforme sur l’intervalle [−1, 1]d, ζ1, ..., ζn sont des vari-
ables aléatoires Gaussiennes i.i.d. centrées et de variance connue σ2, et f0 : [−1, 1]d → R
est la vraie distribution inconnue. Nous estimons f0 en utilisant des résonnes neuronaux
profonds fθ de sparsité S, de profondeur L et de largeur D.

Là encore, nous adoptons une approche Bayésienne. Nous choisissons une spike-and-
slab prior induisant de la sparsité, pour lequel un nombre S de neurones sélectionnés du
réseau suit une distribution Gaussienne centré réduite, et tous les autres neurones sont
mis à 0 avec probabilité 1. L’ensemble variationnel est également composé de Gaussiennes
spike-and-slab.

La contribution principale de l’article est une borne sur l’erreur de généralisation pour
l’inférence variationnelle en apprentissage profond sparse en régression nonparamétrique:
Theorem 3.1.2 (Informel). Pour tout α ∈ (0, 1), pour tout B > 0,

E
[ ∫
‖fθ − f0‖2

2Π̃n,α(dθ)
]
≤ 2

1− α inf
‖θ∗‖∞≤B

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rn,

où la vitesse de convergence rn est d’ordre LS
n

log(BD).

La vitesse de convergence dans le terme de droite de l’inégalité de l’oracle, qui dépend
linéairement du nombre de couches et de la sparsité, est déterminé par la condition de
prior mass étendue précédente, et on retrouve exactement la vitesse de convergence du
minimiseur du risque empirique pour les réseaux de neurones profonds qui est obtenue en
utilisant différentes techniques de preuve, en calculant notamment l’entropie de couver-
ture locale i.e. le logarithme du nombre de boules rn nécessaires pour couvrir un voisinage
de la vraie fonction de régression (Schmidt-Hieber, 2017; Suzuki, 2019).

En particulier, lorsque la véritable fonction de régression est continue au sens de
Hölder, en supposant que la sparsité, la profondeur et la largeur du réseau sont cor-
rectement choisies comme le suggèrent Rockova and Polson (2018), cela implique que
l’approximation variationnelle se concentre vers f0 et bénéficie des mêmes vitesse de
convergence quasi-minimax que celles obtenues pour les posteriors exactes tempérées et
régulières. Le résultat est établi en calculant l’inégalité oracle PAC-Bayésienne précédente
pour une fonction de régression Hölder et en appliquant le résultat d’approximation de
Schmidt-Hieber (2017).

Nous considérons en outre l’extension de l’inégalité oracle lorsque l’approximation
est calculée via un algorithme d’optimisation dont l’erreur est mesurée par son effet sur
l’ELBO. Plus précisément, lorsque nous considérons un algorithme (Π̃(j)

n,α)j pour calculer
l’approximation idéale Π̃n,α, il existe un terme supplémentaire dans l’erreur de générali-
sation :
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Theorem 3.1.3 (Informal). Pour tout α ∈ (0, 1), pour tout B > 0 et quelque soit le
nombre d’itérations j,

E
[ ∫
‖fθ − f0‖2

2Π̃(j)
n,α(dθ)

]
≤ 2

1− α inf
‖θ∗‖∞≤B

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rn + E[∆n,j]

n
,

où ∆n,j est la différence entre la valeur maximale de l’ELBO et la valeur de l’ELBO à la
jème itération de l’algorithme.

Ainsi, l’algorithme Π̃(j)
n,α converge à la même vitesse rn que l’approximation variation-

nelle idéale qu’il calcule Π̃n,α tant que E[∆n,j] . LS log(BD).

3.1.3 Sélection de modèles

La question qui se pose naturellement lorsqu’on traite de mélanges et de réseaux de
neurones profonds est respectivement la question de la sélection du nombre de com-
posantes et la question de la sélection de l’architecture du réseau. Par exemple, le choix
de l’architecture dans l’apprentissage profond est crucial et peut conduire à une conver-
gence plus rapide et à une meilleure approximation. De même, dans la modélisation
Bayésienne des mélanges et dans les situations où le nombre de composantes du mélange
est inconnu, on utilise souvent en pratique la méthode Bayésienne hiérarchique complète
qui implique de mettre une prior sur le nombre de composantes. Cela nécessite des algo-
rithmes de MCMC à saut réversible pour effectuer les calculs, mais la conception de tels
algorithmes est une question délicate dans de nombreuses situations pratiques et ils ne
s’adaptent pas bien à la dimension des données. Par conséquent, toute solution rapide à
ce problème est d’un grand intérêt.

Plus généralement, cela soulève la question de la sélection de modèles et de la con-
ception d’un critère de sélection adaptatif qui sélectionne un modèle optimal. Le critère
de maximisation de l’ELBO est largement utilisé dans la communauté VB et est connu
pour bien fonctionner en pratique. Plus précisément, nous considérons plusieurs modèles
indexés par K et les approximations variationnelles associées Π̃K

n,α, et nous attribuons
un poids πK à chaque modèle. Le critère de maximisation de l’ELBO consiste à choisir
le modèle qui fournit l’approximation la plus proche de la log-vraisemblance marginale
ELBO(K), c’est-à-dire la valeur maximale de l’ELBO associée au modèle K. Nous pro-
posons dans Chérief-Abdellatif (2019a) une version pénalisée du critère de maximisation
de l’ELBO qui est équivalent à celui qui est habituellement utilisé lorsque l’on considère
un nombre fini de modèles et des poids uniformes :

K̂ = arg max
K

{
ELBO(K)− log

(
1
πK

)}
.

Le critère de maximisation de l’ELBO n’a jamais été justifié en théorie. Dans le
Chapitre 6, nous montrons que ce critère est adaptatif et sélectionne une approximation
variationnelle qui permet d’atteindre la vitesse de convergence optimale entre les modèles
concurrents. En particulier, nous montrons respectivement dans les Chapitres 4 et 5
que le critère ELBO sélectionne un certain nombre de composantes et une architecture
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de réseau qui donnent la vitesse optimale et n’entraînent pas de surapprentissage. Nous
montrons également dans le Chapitre 6 que la vitesse de convergence minimax est atteinte
pour l’ACP probabiliste.

Nous savons par Alquier and Ridgway (2017) que dès qu’il existe un vrai modèle qui
satisfait la condition de prior mass étendue, alors l’approximation variationnelle corre-
spondant au vrai modèle est consistence à la vitesse définie par la condition de prior mass.
Le message principal de Chérief-Abdellatif (2019a) est que même si nous ne savons pas
quel modèle est le vrai, le critère ELBO fournit un modèle (pas nécessairement le vrai)
tel que l’approximation correspondante est consistente et atteint de manière adaptative
la vitesse de convergence associé au vrai modèle. Plus précisément:
Theorem 3.1.4 (Informel). Supposons que l’hypothèse 1.9 soit satisfaite pour le vrai
modèle K0. Alors pour tout α ∈ (0, 1),

E
[ ∫

Dα(Pθ, P
0)Π̃K̂

n,α(dθ)
]
≤ 1 + α

1− αrn +
log( 1

πK0
)

n(1− α) .

En fait, la vitesse globale est composé de la vitesse de convergence rn correspondant au
vrai modèle et d’un terme de complexité qui reflète la croyance sur les différents modèles.
Par exemple, si nous rangeons un nombre dénombrable de modèles en fonction de notre
croyance, alors le terme de complexité sera de l’ordre de K0/n en choisissant πK = 2−K .
En pratique, le terme global est de l’ordre de rn.

L’application de ce résultat aux modèles de mélanges et aux réseaux de neurones
profonds se trouve dans les Chapitres 4 et 5. Nous considérons également dans le Chapitre
6 le cas de l’ACP probabiliste. Dans les prochains paragraphes, les matrices seront
indiquées en majuscules et en gras. Nous considérons le modèle

Xi = W0Zi + εi

avec des variables aléatoires Gaussiennes i.i.d. Zi ∼ N (0, IK0) et εi ∼ N (0, σ2Id), où Id et
IK0 sont les matrices d’identité de dimensions respectives d et K0 (K0 < d), W0 ∈ Rd×K

est la matrice de rang K0 qui contient les axes principaux et σ2 est un terme de bruit
connu. K0 correspond ici à la “vraie dimension” des données. K0 est inconnu ici et
nous considérons différents modèles correspondant à différentes valeurs de K = 1, ..., d et
différentes matrices correspondantes W ∈ Rd×K .

Nous mettons des poids égaux sur les modèles πK pour chaque entier K = 1, ..., d.
Étant donné le rang K, nous plaçons une prior sur la matrice W de rang K afin de
définir une distribution sur les axes principaux. Nous choisissons des priors Gaussiennes
indépendantes sur les colonnes de W. Nous considérons également des approximations
variationnelles Gaussiennes indépendantes sur les colonnes de W. En utilisant un opéra-
teur de clipping, il est possible d’obtenir la consistence au sens de la norme de Frobenius
‖ · ‖F de l’approximation variationnelle sélectionnée sous l’hypothèse classique que la
norme spectrale ‖ · ‖2 de la matrice vraie W0 est bornée. Le symbole O dans le résultat
suivant cache des constantes universelles qui sont indépendantes de α, d, K0 et n:
Theorem 3.1.5 (Informel). Pour tout α ∈ (0, 1), si ‖W0‖2 ≤ B, alors:

E
[ ∫ ∥∥∥clipB(WWT )−W0WT

0

∥∥∥2

F
Π̃K̂
n,α(dW)

]
= O

(
1 + α

α(1− α) ·
dK0 log(dn)

n

)
,
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où clipB(A) est la matrice dont le coefficient (i, j) est égal à


Ai,j if |Ai,j| ≤ B2

B2 si Ai,j ≥ B2

−B2 sinon.

Chacun des chapitres suivants est autonome et peut être lu indépendam-
ment. Voici un bref résumé de leurs contributions :

• Le Chapitre 5 étudie la consistence des approximations variationnelles
de posteriors tempérées pour les mélanges, et donne des vitesse de
convergence. Nous abordons également le problème de la sélection du
nombre de composantes en maximisant l’ELBO. Ce travail a fait l’objet
d’une publication (Chérief-Abdellatif and Alquier, 2018).

• Le Chapitre 6 fournit des bornes de généralisation non asymptotiques
assurant la consistence des réseaux de neurones Bayésiens lorsqu’une
approximation est utilisée à la place de la distribution a posteriori ex-
acte, ainsi que des vitesse de convergence. Nous montrons qu’elle con-
duit à une estimation quasi-minimax de fonctions continues pour un
choix judicieux de l’architecture. Nous utilisons également le critère
ELBO pour la sélection de l’architecture. Ce travail a fait l’objet d’un
article accepté à ICML 2020 (Chérief-Abdellatif, 2019b).

• Le Chapitre 7 justifie l’utilisation de la stratégie de maximisation de
l’ELBO d’un point de vue théorique. Nous illustrons nos résultats
théoriques par une application à la sélection du nombre de composantes
principales pour l’ACP probabiliste. Ce travail a fait l’objet d’une pub-
lication (Chérief-Abdellatif, 2019a).

3.2 Inférence variationnelle en ligne

Après les analyses précédentes dans le cas batch, nous étudions l’inférence variation-
nelle dans le Chapitre 7 en apprentissage séquentiel. Aucune définition consensuelle de
l’inférence variationnelle Bayésienne n’a été donnée en apprentissage en ligne. Comme
déjà détaillé dans la partie 1.2, conserver la définition standard de l’approximation vari-
ationnelle serait une solution simpliste qui retirerait l’aspect sq́uentiel du problème et
conduirait à des problèmes d’ordre computationnel. Dans le Chapitre 7, nous proposons
la première analyse théorique de VI dans le cadre de l’apprentissage en ligne avec des
données séquentielles. Nous étudions plusieurs classes d’algorithmes en ligne qui sont in-
spirés de stratégies populaires utilisées en optimisation en ligne telles que la descente en
gradient et follow-the-regularized-leader, et nous fournissons des bornes de généralisation
dans le cas convexe. Nos techniques de preuve sont basées sur la convexité de la fonction
de perte, mais nous soutenons qu’elles devraient pouvoir tenir dans un cadre plus général.
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3.2.1 Approximations variationnelles d’EWA

Dans la littérature, deux extensions principales du VB au cadre en ligne ont été formulés.
La première définition de VB en ligne étend la définition de Bayes utilisée en statistique
batch par le lemme de Donsker-Varadhan (voir la formule 1.5), et restreint l’ensemble de
minimisation à une famille de distributions tractables. Lorsque l’on considère les approx-
imations paramétriques Q = {Qµ/µ ∈ M}, on définit les approximations variationnelles
comme Π̃t,α = Qµt en utilisant une suite de paramètres (µt)t avec Qµ0 = Π0 :

µt = arg min
µ∈M


t∑

s=1
Eθ∼Qµ

[
`s(θ)

]
+ KL(Q‖Qµ0)

α

.
Le principal inconvénient de cette méthode est qu’elle perd l’aspect en ligne et exige que
l’ensemble des échantillons de données soit chargé en mémoire à chaque étape, ce qui est
très coûteux en termes de calcul. C’est pourtant l’approche adoptée dans Guhaniyogi
et al. (2013) où les auteurs proposent deux méthodes : la première est une généralisation
de l’Équation 1.5, en minimisant sur un ensemble convexe non paramétrique de distri-
butions Q via une descente de gradient fonctionnel. Le problème est qu’à l’exception du
cas trivial où Q = M+

1 (Θ), ils ne fournissent aucun exemple de tels ensembles en pra-
tique. Ils utilisent également une famille paramétrique Q = {Qµ, µ ∈ M}. Cependant,
ils modifient l’ordre dans le terme en KL, ce qui implique un terme intraitable qu’ils
calculent en utilisant du Monte-Carlo. De plus, la quantité apparaissant dans leur borne
de regret n’est pas naturelle et ne donne aucune garantie sur l’objectif initial, à savoir la
minimisation des `t.

Nous remarquons que notre approximation variationnelle est formulée comme une
stratégie de type FTRL appliquée à la perte espérée µ→ Eθ∼Qµ [`s(θ)]. Nous proposons
donc de linéariser la fonction de perte (espéré) comme proposé dans la partie 1.2:

µt = arg min
µ∈M

µT
t∑

s=1
∇µEθ∼Qµs

[
`s(θ)

]
+ KL(Q‖Qµ0)

α

.
Nous désignerons cet algorithme Sequential Variational Approximation (SVA) dans le
reste de ce manuscrit, voir l’Algorithme 10.

Quant à l’algorithme de descente de gradient, il existe une autre formulation de ce
programme d’optimisation. Plutôt que de considérer la perte cumulée et de régulariser
(en utilisant une norme induite par la divergence KL) par rapport à la première approx-
imation, il est également possible de ne considérer que la dernière perte et de régulariser
par rapport à la dernière approximation. Néanmoins, contrairement à la descente de
gradient, la deuxième formulation n’est pas équivalente à la première et conduit à un
programme d’optimisation différent :

µt = arg min
µ∈M

µT∇µEθ∼Qµt

[
`s(θ)

]
+ KL(Q‖Qµt−1)

α

.
En fait, cet algorithme est conforme à l’autre approche qui étend la définition séquentielle
de l’EWA donnée dans l’Algorithme 5 : Πt+1,α(dθ) ∝ exp(−α`t(θ))Πt,α(dθ). Ce point
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de vue est particulièrement séduisant car il permet de conserver l’aspect en ligne du
problème et il n’est pas nécessaire de stocker les données. La mise à jour est obtenue par
une formule de la forme Π̃t,α = F (Π̃t−1,α, `t). C’est par exemple le point de vue adopté
par Broderick et al. (2013), qui a été approfondi par Nguyen et al. (2017a) et Zeno et al.
(2018) où les auteurs ont combiné la définition batch de VB et l’approche de mise à jour
en ligne pour obtenir la définition suivante en deux étapes :

• Étape d’approximation : Π̄t,α(dθ) ∝ exp(−α`t(θ))Qµt−1(dθ).

• Étape de projection : µt = arg minµ∈MKL(Q‖Π̄t,α).

En intégrant l’étape d’approximation dans l’étape de projection, on obtient

µt = arg min
Q∈Q

Eθ∼Q
[
`t(θ)

]
+ KL(Q‖Qµt−1)

α

.
Par conséquent, notre algorithme est une version linéarisée de l’approximation variation-
nelle précédente d’approximation/projection. Nous désignerons notre algorithme Stream-
ing Variational Bayes (SVB) dans la suite, voir l’Algorithme 10. Quant à l’approche
utilisant le lemme de Donsker-Varadhan (1.5), aucune analyse rigoureuse des propriétés
de généralisation des approximations obtenues par cette approche n’a été fournie et il
n’est pas certain que le calcul de Π̃t,α soit réalisable.

En outre, les algorithmes SVA et SVB sont tous deux calculables et disposent de for-
mules de mises à jour explicites pour les ensembles variationnels utilisés en pratique.
Par exemple, en utilisant la classe des approximations Gaussiennes à champ moyen
Q(m,σ) = N (m, diag(σ2)) de moyenne m et de matrice de covariance diagonale dont
la diagonale est le vecteur σ2 = (σ2

1, . . . , σ
2
d)T , SVA et SVB conduisent aux mises à jour

de type descente de gradient suivantes:

SVA:


mt+1 ← mt − ασ2

0 ḡmt ,

gt+1 ← gt + ḡσt ,

σt+1 ← h
(

1
2ασ0gt+1

)
σ0.

SVB:

mt+1 ← mt − ασ2
t ḡmt ,

σt+1 ← h
(

1
2ασtḡσt

)
σt.

où ḡmt et ḡσt représentent respectivement le gradient de la perte attendue (m,σ) →
E[`t(θ)] par rapport à m et σ évalué en (m,σ) = (mt, σt), où h(x) :=

√
1 + x2 − x et

toutes les opérations vectorielles sont appliquées composantes par composantes.

3.2.2 Bornes de regret

Nous prévoyons dans le Chapitre 7 des bornes de regret pour SVA. Les principales hy-
pothèses requises sont le caractère Lipschitz et la convexité de la perte espéré µ →
Eθ∼Qµ [`t(θ)], ainsi que la forte convexité de la régularisation KL par rapport à µ.
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Theorem 3.2.1 (Informel). Pour des pertes espérées L-Lipschitz et convexes et un régu-
larisateur KL fortement convexe, SVA a les regrets suivants:

T∑
t=1

∫
`t(θt)Π̃t,α(dθt) ≤ inf

µ∈M


T∑
t=1

∫
`t(θ)Qµ(dθ) + αL2T

σ
+ KL(Qµ,Π0)

α

.
Comme souhaité, ce résultat est presque le même que celui obtenu dans le Théorème

1.2.5 où l’infimum est limité à la famille variationnelle, la borne supérieureB est remplacée
par la constante de Lipschitz L, et le facteur 8 par le paramètre de forte convexité σ. Néan-
moins, la preuve est très différente et repose sur des arguments provenant de l’optimisation
convexe en ligne (Shalev-Shwartz, 2012; Hazan, 2016). Notez que comme dans la partie
1.2, les techniques online-to-batch peuvent conduire à des erreurs de généralisation sous
une hypothèse de convexité sur la fonction de perte `t d’ordre :

EDT∼P0 [R(θ̄T )] ≤ inf
θ
R(θ) +O

(
L

σ

√
log(dT )
T

)
.

Nous fournissons également dans le Chapitre 7 un regret pour SVB pour la famille
Gaussienne à champs moyensQ(m,σ) = N (m, diag(σ2)) avec comme paramétres moyenne/écart
type en prenant un pas d’apprentissage dynamique et multidimensionnel αt = (αt,1, · · · , αt,j).
Le regret nécessite un ensemble de projection des paramètresM =Mm ×Mσ avec une
étape supplémentaire de projection oùMm etMσ sont des sous-ensembles fermés, bornés
et convexes de Rd et Rd

≥0 respectivement, avec 0 ∈ Mσ. Nous définissons également le
diamètre D2 = sup {‖m−m′‖2

2 + ‖σ‖2
2/m,m

′ ∈Mm, σ ∈Mσ}. Notons que la forte con-
vexité de la régularisation est toujours satisfaite dans ce cas.

Theorem 3.2.2 (Informel). Pour des pertes convexes `t et des pertes espérées L-Lipschitz
et convexes, et pour θ̂t ∼ Q(mt,σt), nous avons pour un certain choix du pas d’apprentissage:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) +DL
√

2T .

De plus, si les pertes attendues sont fortement convexes, nous atteignons même une vitesse
logarithmique:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) + L2(1 + log T )
H

.

Une fois de plus, les résultats sont similaires au cas Bayésien classique mais sont
directement exprimés en termes de paramètres θ au lieu de leurs espérances. Il est même
possible, en optimisant surMm = {m ∈ Rd : ‖m‖2 ≤ M̄} etMσ = {σ ∈ Rd

+ : ‖σ‖2 ≤ S̄},
d’obtenir des erreurs de généralisation d’ordre L(4M̄2 + S̄2)1/2T−1/2 indépendantes de la
dimension.

3.2.3 Au-delà de la convexité

Nos preuves sont basées sur un argument de convexité. Cependant, nous nous attendons
à ce qu’elles restent valables plus généralement, même pour certaines pertes espérées
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non convexes. Cela est particulièrement intéressant car cela nous aiderait à obtenir des
garanties de généralisation pour l’algorithme d’inférence variationnelle à gradient naturel
(NGVI) (Sato, 2001; Hoffman et al., 2013; Khan and Lin, 2017) en utilisant une famille
variationnelle exponentielle.

Cet algorithme est largement utilisé en apprentissage stochastique mais peut être
facilement modifié pour le cadre en ligne. La méthode présentée dans Khan and Lin
(2017) exploite la dualité entre le paramètre des moments µ et le paramètre naturel λ de
la famille exponentielle, et s’écrit:

λt = λt−1 − α∇µEθ∼Qµt−1
[`t(θ)],

avec une éventuelle étape de projection.
En particulier, cet algorithme de gradient naturel peut être s’écrire simplement comme

l’Algorithme SVB appliqué à une famille variationnelle exponentielle avec un paramètre
des moments. Par exemple, en utilisant une famille Gaussienne à champ moyen, le
paramètre des moments est simplement composé des deux premiers moments, c’est-à-dire
la moyenne et la matrice de corrélation. On sait qu’il fonctionne très bien en pratique,
et il est démontré dans Chérief-Abdellatif et al. (2019) qu’il surpasse à la fois SVA et
SVB appliqués à la paramétrisation usuelle moyenne/écart type (m,σ) dans plusieurs
cadres et pour différentes pertes. Malheureusement, la perte espérée n’est pas convexe
par rapport au paramètre des moments pour la plupart des pertes bien qu’elle soit convexe
par rapport à (m,σ), et nous ne sommes donc pas en mesure d’analyser les performances
de l’Algorithme NGVI.

L’une des principales conclusions et suggestions empiriques du Chapitre 7 est que les
propriétés de généralisation de l’inférence variationnelle en ligne semblent aller au-delà
de l’hypothèse convexe requise pour obtenir les résultats théoriques, et que la convexité
de la perte espérée n’est pas la pierre angulaire de la généralisation de VB en ligne.

Dans le Chapitre 7, nous calculons les premières limites de généralisa-
tion de l’inférence variationnelle en ligne. En utilisant les méthodes exis-
tantes, nous proposons quelques méthodes en ligne pour l’inférence varia-
tionnelle, à savoir les algorithmes SVA et SVB, et nous fournissons des
bornes de généralisation. Nous étayons nos conclusions théoriques avec
des expériences numériques sur des données simulées et réelles. Nous ob-
servons que l’Algorithme NGVI surpasse toutes les autres méthodes, nous
conjecturons que l’hypothèse théorique de convexité sur la perte espérée peut
être relâchée en pratique, et nous pensons que notre analyse théorique peut
être étendue à l’algorithme NGVI. Ce travail a fait l’objet d’une publication
(Chérief-Abdellatif et al., 2019).

3.3 Robustesse via Maximum Mean Discrepancy

Comme indiqué dans le Chapitre 1.3, la plupart des estimateurs qui sont à la fois consis-
tents et statistiquement optimaux lorsque la distribution génératrice des données appar-
tient au modèle et robuste aux petits écarts par rapport aux hypothèses du modèle ne
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sont pas tractables en pratique. L’estimateur par minimisation de distance récemment
introduit par Briol et al. (2019) et basé sur la Maximum Mean Discrepancy (DMM) est
consistent avec des vitesses optimales lorsque le modèle est bien spécifié, robuste aux
erreurs de spécification, et peut être facilement calculé en utilisant une descente de gra-
dient stochastique. Dans le Chapitre 8, nous montrons que cet estimateur est robuste
à la fois à la dépendance et à la présence de valeurs aberrantes dans le jeu de données.
Nous relions également cet estimateur basé sur le MMD à l’estimation L2, et nous pro-
posons une analyse théorique de l’algorithme de gradient utilisé pour calculer l’estimateur.
Nous appuyons notre analyse théorique par des simulations numériques. Nous proposons
également une version Bayésienne dans le Chapitre 9, où nous étudions ses propriétés de
concentration sous une condition de prior mass et fournissons un algorithme explicite pour
calculer la pseudo postérieure basée sur la MMD en utilisant l’inférence variationnelle.

3.3.1 L’estimateur MMD

Dans la suite, nous considérons un noyau défini positif k, c’est-à-dire une fonction symétrique
k : X × X → R telle que pour tout entier n ≥ 1, pour tout x1, ..., xn ∈ X et pour tout
c1, ..., cn ∈ R :

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0,

et l’espace de Hilbert à noyau reproduisant correspondant (RKHS) (Hk, 〈·, ·〉Hk) qui sat-
isfait la propriété de reproduction f(x) = 〈f, k(x, ·)〉Hk pour toute fonction f ∈ Hk et
tout x ∈ X . Nous supposons que le noyau est borné par une constante positive, disons 1
sans perte de généralité.

Nous définissons la norme induite ‖m‖Hk = 〈m,m〉Hk et la boule unité Bk = {m ∈
Hk : ‖m‖Hk ≤ 1}.

Le kernel mean embedding d’une mesure de probabilité P est l’application µP ∈ Hk

telle que :
µP (·) := EX∼P [k(X, ·)] ∈ Hk.

Nous supposons également que le noyau est caractéristique, ce qui signifie que P 7→ µP
est injectif. Nous pouvons alors définir la distance :

Dk(P,Q) = ‖µP − µQ‖Hk

qui est la distance MMD entre P et Q.
Étant donné un ensemble de paramètres Θ, nous définissons l’estimateur MMD θ̂n

comme dans Briol et al. (2019):

Dk(Pθ̂n
, P̂n) = inf

θ∈Θ
Dk(Pθ, P̂n).

Il est également possible d’envisager un minimiseur approché lorsque le minimum exact
n’existe pas.
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3.3.2 Robustesse à la spécification et à la dépendance

Le Chapitre 8 examine les propriétés d’universalité de l’estimation MMD, notamment en
ce qui concerne la dépendance à une mauvaise spécification et à la dépendance.

Une borne de généralisation:

Le premier résultat est une inégalité oracle qui est valable même en case de dépendance
entre les variables et qui induit une décroissance en n−1/2 de l’erreur de généralisation
mesurée en la distance MMD, vitesse qui est optimale(Tolstikhin et al., 2017):

Theorem 3.3.1 (Informal). Sous certaines hypothèses de dépendance faible impliquant
deux constantes Σ et Γ, nous avons pour tout δ ∈ (0, 1), avec probabilité supérieure ou
égale à 1− δ,

Dk

(
P

θ̂n
, P 0

)
≤ inf

θ∈Θ
Dk

(
Pθ, P

0
)

+ 2

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

.

En particulier, sous l’hypothèse i.i.d. Σ = Γ = 0.

Le résultat ci-dessus est basé sur deux principales hypothèses de dépendance. La
première est suffisante pour obtenir un résultat en espérance. Nous introduisons dans
Chérief-Abdellatif and Alquier (2019) un nouveau coefficient de dépendance faible dans
le sillage des travaux de Doukhan and Louhichi (1999) qui est exprimé sous la forme
d’une covariance dans le RKHS associé au noyau. Un tel coefficient est très simple à
utiliser en pratique, est beaucoup plus facile à calculer que les coefficients de mélange
et la sommabilité de la série des coefficients inclut une classe plus large de processus.
Lorsque la somme des séries existe, on dit que le processus stochastique est faiblement
dépendant. Σ désigne la somme des séries dans le théorème précédent. Nous étudions
plusieurs exemples de processus qui ne sont pas mélangeant pas mais qui sont malgré
tout faiblement dépendants dans le Chapitre 8.

La deuxième hypothèse est fondamentale pour obtenir un résultat en probabilité. En
effet, une inégalité de concentration majorant la distance MMD entre la distribution
empirique et la vraie distribution est nécessaire pour obtenir une telle inégalité oracle.
Par exemple, le résultat de Briol et al. (2019) est basé sur l’inégalité de McDiarmid
(McDiarmid, 1989), mais cette inégalité de type Hoeffding n’est valable que dans le
cadre indépendant. Nous exploitons donc ici une version de l’inégalité de McDiarmid
conçue pour les séries temporelles, qui est disponible sous une hypothèse de décroissance
polynomiale sur certains coefficients de mélange (γi,j)1≤i<j (Rio, 2013). Ici encore, nous
adaptons l’hypothèse de décroissance au RKHS Hk, et la constante Γ dans le théorème
précédent dśigne la somme des séries de ces coefficients de mélange.

Bornes en distance L2:

Nous relions également nos bornes en distance MMD à d’autres métriques, en partic-
ulier à la distance L2. Certaines tentatives passées de conception d’estimateurs robustes
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aux erreurs de mauvaise spécification donnent des bornes en TV ou en distances de
Hellinger (Baraud and Birgé, 2016; Devroye and Lugosi, 2001), et l’utilisation de cette
perte quadratique comme estimateur par minimisation de distance est déconseillée. La
première raison principale est que la métrique L2 n’est pas universelle. En effet, toutes
les mesures de probabilité n’ont pas nécessairement une densité par rapport à une mesure
de référence (par exemple, la mesure de Lebesgue), et certaines d’entre elles peuvent en
avoir une mais elle n’est pas L2-intégrée. En outre, une telle densité dépend fortement
du choix de la mesure de référence, comme expliqué dans la partie 1.3.

Nous soutenons dans le Chapitre 8 que pour les noyaux de la forme k(x, y) = F (‖x−
y‖/γ) pour une fonction F : [0,+∞)→ [0, 1], la distance MMD peut être exprimé comme
une approximation de la distance quadratique qui est bien définie pour toute distribution
de probabilité, et qu’il est possible d’obtenir des inégalités oracle dans la distance L2
lorsque les densités existent et sont intégrables. Par exemple, pour le noyau Gaussien
kγ(x, y) = exp(−‖x − y‖2/γ2), Dkγ (P,Q) ∼ π

d
4γ

d
2‖p − q‖L2 lorsque γ → 0 et où p et q

sont des densités de P et Q respectivement par rapport à la mesure Lebesgue. Ainsi,
pour γ assez petit, nous donnons un sens à l’estimation L2 même pour des densités qui
ne sont pas L2-intégrables. En outre, la distance MMD ne dépend d’aucune mesure de
référence, bien qu’il dépende du choix du noyau. Cette dépendance en k est en fait une
caractéristique intéressante car elle donne la possibilité de prendre en compte la géométrie
sous-jacente de X via le choix d’une distance sur cet espace, une propriété qui explique
la popularité de la distance de Wasserstein en statistique. Par exemple, Dk(δx, δy) → 0
quand x → y, une propriété qui est partagée avec la distance de Wasserstein mais qui
n’est valable ni pour la distance de Hellinger ni pour la distance TV.

Robustesse à la contamination adversariale:

L’estimation basée sur la distance MMD peut également être utilisée dans le cas partic-
ulier de l’estimation paramétrique robuste avec contamination adversariale, où la distri-
bution cible Pθ0 appartient au modèle mais une fraction ε des données est contaminée
par un adversaire. Dans ce cadre, nous obtenons le résultat suivant :

Theorem 3.3.2 (Informel). Sous les mêmes hypothèses que pour le Théorème 2.3.1, nous
avons pour tout δ ∈ (0, 1), avec une probabilité d’au moins 1− δ :

Dk

(
P

θ̂n
, Pθ0

)
≤ 4

ε+

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

 .

Là encore, il est possible d’obtenir un résultat plus faible en espérance en assouplissant
l’hypothèse impliquant Γ. Notons que ce résultat est toujours valable pour le paramètre
de contamination de Hüber, mais la constante 4 est remplacée par la constance plus petite
2.

La vitesse obtenu par l’estimateur MMD (en MMD) est max(1/
√
n, ε), et a la même

forme que la vitesse minimax pour l’estimation de la moyenne d’une distribution Gaussi-
enne. Nous retrouvons la vitesse de convergence optimale par rapport à n sans contam-
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ination lorsque ε . 1/
√
n, alors que la vitesse est dominé par le ratio de contamina-

tion ε sinon. Ainsi, le nombre maximum de valeurs aberrantes tolérées sans affecter la
vitesse sans outliers est de

√
n, et est indépendant de la dimension. Dans le cas par-

ticulier de l’estimation d’une moyenne Gaussienne avec la matrice de covariance σ2Id,
nous obtenons via le noyau Gaussien la même vitesse que la médiane coordonnées par
coordonnées, i. e. ‖θ̂n − θ0‖2 = O(max(d1/2n−1/2, d1/2ε)), tandis que la vitesse minimax
est max(d1/2n−1/2, ε). À titre de comparaison, la méthodologie Median-of-Means conduit
à une estimation en O(max(d1/2n−1/2, ε1/2)), c’est-à-dire un nombre maximum de valeurs
aberrantes qui est toléré sans affecter la vitesse sans outliers est d’ordre d. Nous pensons
que nos vitesse obtenues à l’aide de l’estimateur MMD peuvent être améliorés par un
choix approprié du noyau.

Considérations computationnelles:

L’estimateur θ̂n peut être calculé à l’aide d’un algorithme de gradient lorsque Θ ⊂ Rd

pour un modèle génératif, c’est-à-dire lorsqu’il est possible de simuler à partir de n’importe
quel Pθ. L’idée d’exploiter la descente de gradient stochastique pour calculer θ̂n remonte
à Dziugaite et al. (2015) qui a utilisé la SGD pour un réseau de neurones génératif, et a été
à nouveau discutée dans Briol et al. (2019). L’algorithme est basé sur une approximation
en U-statistique du critère MMD et est détaillé dans l’Algorithme 12. Nous fournissons
également une analyse théorique de l’algorithme et des simulations numériques, où nous
testons l’estimation robuste d’une uni- et multidimensionnelle Gaussienne univariée, une
uniforme, une Cauchy, et un mélange Gaussien.

3.3.3 Un estimateur Bayésien

Comme déjà expliqué dans Section 1.3, l’approche Bayésienne n’est pas robuste à la
mauvaise spécification, et la posterior n’est pas consistente dans de nombreuses situations
(Barron et al., 1999; Grünwald et al., 2017). Nous proposons à nouveau dans Chérief-
Abdellatif and Alquier (2020) d’utiliser la distance MMD pour concevoir un estimateur
Bayésien robuste.

Nous soutenons dans le Chapitre 9 que le choix de la distance MMD est plus adapté
pour effectuer une estimation robuste que la divergence KL. Pour justifier notre affirma-
tion, nous montrons que dans le modèle de contamination de Hüber pour l’estimation
d’une moyenne Gaussienne corrompue par une autre distribution Gaussienne, nous retrou-
vons exactement la vraie moyenne lorsque nous utilisons le minimiseur en MMD par rap-
port au vrai mélange, alors que nous n’y parvenons pas avec la divergence KL. Ainsi, suiv-
ant l’idée centrale de la théorie PAC-Bayésienne, nous remplaçons la log-vraisemblance
`n par la MMD dans la formule de Bayes, et nous appelons cette pseudo-posterior MMD-
Bayes:

Πn,α(dθ) ∝ exp
(
−α · D2

k(Pθ, P̂n)
)

Π0(dθ).

Dans le Chapitre 9, nous montrons que la MMD-Bayes se concentre en la vraie dis-
tribution lorsque le modèle est bien spécifié sous une version de la condition de prior
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mass adaptée à l’estimation MMD. Lorsque la métrique et le rayon des voisinages MMD
dans la condition de prior mass sont respectivement la métrique MMD et n−1/2, alors la
MMD-Bayes se concentre à vitesse optimale n−1/2 en MMD (Tolstikhin et al., 2017).

En outre, lorsque le modèle est mal spécifié, il est encore possible d’obtenir une in-
égalité oracle pour la pseudo-posterior lorsque la condition de prior mass est basée sur
un voisinage d’une approximation Pθ∗ = arg minPθ

Dk (Pθ, P0) de la vraie distribution au
lieu de la vraie distribution elle-même :
Theorem 3.3.3 (Informel). Sous la condition de prior mass appliquée aux voisinage de
la meilleure approximation, nous avons pour tout α ∈ (0, 1) :

E
[∫

D2
k (Pθ, P0) Πn,α(dθ)

]
≤ 8 inf

Θ
D2
k (Pθ, P0) + 16

n
.

Le paramètre α n’apparaît pas dans le terme de droite de l’inégalité, ce phénomène
sera expliqué en détails au Chapitre 9 et a déjà été rencontré par exemple dans Dalalyan
et al. (2018). Nous fournissons également un exemple de calcul d’une telle masse de la
prior dans ce chapitre.

Pour surmonter l’intractibilité de la MMD-Bayes dans les modèles complexes, nous
utilisons l’inférence variationnelle dans Chérief-Abdellatif and Alquier (2020). Nous mon-
trons que son approximation variationnelle conserve les mêmes propriétés théoriques dans
une condition de prior mass étendue, et nous étayons nos conclusions théoriques avec des
simulations numériques en utilisant un algorithme SGD comme pour l’estimation par
minimisation de distance basée sur la MMD.

Dans le Chapitre 8, nous donnons un moyen simple de définir des procé-
dures d’estimation universelles via la métrique MMD. En particulier:

• Nous donnons des inégalités oracle qui impliquent une estimation ro-
buste sous l’hypothèse i.i.d dans les modèles de Hüber et de contami-
nation adversariale.

• Nous allons au-delà de l’hypothèse i.i.d. classique en introduisant un
nouveau coefficient de dépendance faible simple et exprimé sous forme
de covariance dans le RKHS, nous montrons que l’estimateur MMD
est robuste à la dépendance entre les observations.

• Nous relions également notre estimateur MMD à l’estimation par min-
imisation de distance en utilisant métrique L2.

• Nous donnons une analyse théorique d’un algorithme de descente de
gradient stochastique utilisé pour calculer cet estimateur pour les mod-
èles fini-dimensionnels, que nous justifions empiriquement.

Ce travail a fait l’objet d’un article actuellement soumis à Bernoulli (Chérief-
Abdellatif and Alquier, 2019).

Dans le Chapitre 9, nous donnons une version Bayésienne de l’estimateur
MMD qui est consistente avec des propriétés optimales dans le cas bien spé-
cifié, et qui est robuste dans le cas contraire. Ce travail dans ce chapitre a
fait l’objet d’une publication (Chérief-Abdellatif and Alquier, 2020).
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Part II

Consistency of variational inference
for estimation and model selection

63





Chapter 4

Consistency of Variational Bayes
Inference for Estimation and Model
Selection in Mixtures

Mixture models are widely used in Bayesian statistics and machine learning and proved
their efficiency in many fields such as computational biology or natural language process-
ing... Variational inference, a technique for approximating intractable posteriors thanks
to optimization algorithms, is extremely popular in practice when dealing with complex
models such as mixtures. The contribution of this chapter is two-fold. First, we study the
concentration of variational approximations of posteriors, which is still an open problem
for general mixtures, and we derive consistency and rates of convergence. We also tackle
the problem of model selection for the number of components: we study the approach
already used in practice, which consists in maximizing a numerical criterion (ELBO).
We prove that this strategy indeed leads to strong oracle inequalities. We illustrate our
theoretical results by applications to Gaussian and multinomial mixtures.

4.1 Introduction

This chapter studies the statistical properties of variational inference as a tool to tackle
two problems of interest: estimation and model selection in mixture models. Mixtures are
often used for modelling population heterogeneity, leading to practical clustering methods
(Bouveyron and Brunet-Saumard, 2014; McNicholas, 2016). Moreover they have enough
flexibility to approximate accurately almost every density (Bacharoglou, 2010; Kruijer
et al., 2010). Mixtures are used in many various areas such as computer vision (Ayer and
Sawhney, 1995), genetics (Pan et al., 2003), economics (Deb et al., 2011), transport data
analysis (Carel and Alquier, 2017)... We refer the reader to Celeux et al. (2018) for an ac-
count of the recent advances on mixtures. The most famous procedure for mixture density
estimation in the frequentist literature is probably Expectation-Maximization (Dempster
et al., 1977), a maximum-likelihood algorithm that yields increasingly higher likelihood.
At the same time, the Bayesian paradigm has raised great interest among researchers and
practitioners, especially through the Variational Bayes (VB) framework which aims at



maximizing a quantity referred to as Evidence Lower Bound on the marginal likelihood
(ELBO). Variational Bayes inference is a privileged tool for approximating intractable
posteriors. It is known to work well in practice for mixture models: one of the most
recent survey on VB (Blei et al., 2017) chooses mixtures as an example of choice to illus-
trate the power of the method. Moreover, Blei et al. (2017) states: "the [evidence lower]
bound is a good approximation of the marginal likelihood, which provides a basis for
selecting a model. Though this sometimes works in practice, selecting based on a bound
is not justified in theory". The main contribution of this chapter is to prove that VB is
consistent for estimation in mixture models, and that the ELBO maximization strategy
used in practice is consistent for model selection. Thus we solve the question raised by
Blei et al. (2017).

Variational Bayes is a method for computing intractable posteriors in Bayesian statis-
tics and machine learning. Markov Chain Monte Carlo (MCMC) algorithms remain the
most widely used methods in computational Bayesian statistics. Nevertheless, they are
often too slow for practical uses when the dataset is very large. A more and more popu-
lar alternative consists in finding a deterministic approximation of the target distribution
called Variational Bayes approximation. The idea is to minimize the Kullback-Leibler
divergence of a tractable distribution ρ with respect to the posterior, which is also equiv-
alent to maximizing the ELBO. This optimization procedure is much faster than MCMC
sampling and proved its efficiency in many different fields: matrix completion for collabo-
rative filtering (Cottet and Alquier, 2018), computer vision (Sudderth and Jordan, 2009),
computational biology (Carbonetto and Stephens, 2012) and natural language processing
(Hoffman et al., 2013), to name a few prominent examples.

However, variational inference is mainly used for its practical efficiency and only little
attention has been put in the literature towards theoretical properties of the VB ap-
proximation until very recently. In Alquier et al. (2016) the properties of variational
approximations of Gibbs distributions used in machine learning are derived. The results
are essentially valid for bounded loss functions, which makes them difficult to use be-
yond the problem of supervised classification. Based on some technical advances from
Bhattacharya et al. (2016), Alquier and Ridgway (2017) removed the boundedness as-
sumption in Alquier et al. (2016), allowing to study more general statistical models. In
Bhattacharya et al. (2018), the authors extended the range of models covered by Alquier
et al. (2016). They even studied mixture of Gaussian distributions as a short example.
Many questions are still left unanswered: model selection, and the estimation of mixture
of non-Gaussian distributions. For example mixture of multinomials are widely used in
practice (Carel and Alquier, 2017), as well as more intricated examples such as nonpara-
metric mixtures (Gassiat et al., 2018). Note that all the results in Bhattacharya et al.
(2016); Alquier and Ridgway (2017); Bhattacharya et al. (2018) are limited to so-called
tempered posteriors, that is, where the likelihood is taken to some power α. Still, the use
of tempered posteriors is highly recommended by many authors as a way to overcome
model misspecification, see Grünwald et al. (2017) and the references therein. Indeed
some results in Alquier and Ridgway (2017) are valid in a misspecified setting. Note that
alternative approaches were developed to study VB: Wang and Blei (2018) established
Bernstein-von-Mises type theorems on the variational approximation of the posterior.
They provide very interesting results for parametric models but it is unclear whether
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these results can be extended to model selection or misspecified case. More recently,
Zhang and Gao (2017) succeeded in adapting the now classical results of Ghosal et al.
(2000) to Variational Bayes and showed that a slight modification in the three classical
"prior mass and testing conditions" leads to the convergence of their variational approx-
imations, again under the assumption that the model is true. The first contribution of
this chapter is to study the statistical properties of VB for general mixture models, both
in the well-specified and misspecified setting.

The other point addressed in this chapter is model selection. This is a natural question
which can be interpreted in this context as the determination of the number of components
of the approximating mixture. This point is crucial: indeed, too many components can
lead to estimates with too large variances whereas with too few components, we may
obtain mixtures which are not able to fit the data properly. This is a common issue and a
lot of statisticians worked on this question. In the literature, criteria such as AIC (Akaike,
1974) and BIC (Schwarz, 1978) are popular. It is well known that in some collections
of models, AIC optimizes the prediction ability while BIC recovers with high probability
the true model (when there is one). These two objectives are not compatible in general
(Yang, 2005). Anyway, these results depend on asssumptions that are not satisfied by
mixtures. It seems thus more natural to develop criteria suited to a given objective. For
example, Biernacki et al. (1999) proposed a procedure to select a number of components
that is the most relevant for clustering. A non-asymptotic theory of penalization has
been developed during the last two decades using oracle inequalities (Massart, 2007). In
the wake of those works, this chapter studies mixture model selection based on the ELBO
criterion. We prove a general oracle inequality. This result establishes the consistency of
ELBO maximization when the primary objective is the estimation of the distribution of
the data.

The rest of this chapter is organized as follows. In Section 4.2 we introduce the back-
ground and the notations that will be adopted. Consistency of the Variational Bayes for
estimation in a mixture model is studied in Section 4.3. First, we give the general results
under a "prior mass" assumption, as well as a general form for the algorithm to compute
the VB approximation (Subsection 4.3.1). We then apply these results to mixtures of
multinomials (Subsection 4.3.2) and Gaussian mixtures (Subsection 4.3.3). In each case,
we provide a rate of convergence of VB and discuss its numerical implementation. We
extend the setting to the misspecified case in Subsection 4.3.4. Finally, we address the
issue of selecting based on the ELBO in Section 4.4. Section 4.6 is dedicated to the
proofs.

4.2 Background and notations

Let us precise the notations and the framework we adopt in this chapter . We observe
in a measurable space

(
X,X

)
a collection of n i.i.d. random variables X1,...,Xn sampled

from a probability distribution which density with respect to some dominating measure
µ is denoted by P 0. We put (X1, ..., Xn) = Xn

1 . The goal is to estimate the generat-
ing distribution P 0 of the Xi’s by a K-components mixture model. We will study the
(frequentist) properties of variational approximations of the posterior. The extension to
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selection of the number of components is also tackled in this chapter , but in a first time
we deal with a fixed K. We introduce a collection of distributions {Qθ/θ ∈ Θ} indexed
by a parameter space Θ from which we will take the different components of our mixture
model. We assume that for each θ ∈ Θ, the probability distribution Qθ is dominated by
the reference measure µ and that the density qθ = dQθ

dµ
is such that the map (x, θ)→ qθ(x)

is X × T -measurable, T being some sigma-algebra on Θ. Unless explicitly stated oth-
erwise, all the distributions that will be considered in this chapter will be characterized
by their density with respect to the dominating measure µ. We can now consider the
statistical mixture model of K ≥ 1 components defined as:

K∑
j=1

pjqθj
/
θj ∈ Θ for j = 1, ..., K, p = (p1, ..., pK) ∈ SK


where SK =

{
p = (p1, ..., pK) ∈ RK

/
pj ≥ 0 for j = 1, ..., K and ∑K

j=1 pj = 1
}
is the

K − 1 dimensional simplex. We will write θ = (p1, ..., pK , θ1, ...θK) ∈ ΘK for short, where
p ∈ SK , θj ∈ Θ for j = 1, ..., K and ΘK = SK × ΘK . The mixture corresponding to
parameter θ = (p1, ..., pK , θ1, ..., θK) will be denoted Pθ = ∑K

j=1 pjqθj .
First, we consider the well-specified case, assuming that the true distribution belongs

to the K-components mixture model. Thus, we define the true distribution P 0 from
which data are sampled:

X1, ..., Xn ∼
K∑
j=1

p0
jqθ0

j
with θ0

j ∈ Θ for j ∈ 1, ..., K and p0 ∈ SK .

Hence, we want to estimate the true distribution Pθ0 using a Bayesian approach. There-
fore, we define a prior π = πp

⊗K
j=1 πj on θ, πp ∈M+

1 (SK) being a probability distribution
on some measurable space (SK ,A), and each πj ∈ M+

1 (Θ) a probability distribution on
the measurable space (Θ, T ). We will also consider in this chapter the misspecified case
where the true distribution does not belong to our statistical model i.e. is not necessarily
a mixture, but the specific notations and framework will be precised later.

Let us remind some notations. The likelihood will be denoted by Ln and the log-
likelihood by `n, that is, for any θ = (p1, ..., pK , θ1, ...θK),

Ln(θ) =
n∏
i=1

K∑
j=1

pjqθj , `n(θ) =
n∑
i=1

log
(

K∑
j=1

pjqθj

)
.

The negative log-likelihood ratio rn between two distributions P and R is given by

rn(P,R) =
n∑
i=1

log
(
R(Xi)
P (Xi)

)

(note that rn(θ, θ′) is used by many authors instead of rn(Pθ, Pθ′) but our notation is
more convenient for the extension to the misspecified case). The Kullback-Leibler (KL)
divergence between two probability distributions P and R is given by

K(P,R) =


∫

log
(
dP
dR

)
dP if R dominates P ,

+∞ otherwise.
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If some measure λ dominates both P and R distributions represented here by their
densities f and g with respect to this measure, we have

K(P,R) =
∫
f log

(
f

g

)
dλ

and we will use K(P,R) or K(f, g) to denote this quantity, depending on the context.
We also remind that the α-Renyi divergence between P and R,

Dα(P,R) =

 1
α−1 log

∫ (dP
dR

)α−1
dP if R dominates P ,

+∞ otherwise.

When for some λ we have P = f.λ and R = g.λ,

Dα(P,R) = Dα(f, g) = 1
α− 1 log

∫
fαg1−αdλ.

Some useful properties of Renyi divergences can be found in Van Erven and Har-
remos (2014). In particular, the Renyi divergence between two probability distributions
P and R can be related to the classical total variation TV and Hellinger H distances
respectively defined as TV (P,R) = 1

2
∫
|dP − dR| and H(P,R)2 = 1

2
∫

(
√
dP −

√
dR)2 =

1− e− 1
2D1/2(P,R) through:

TV (P,R)2 ≤ 2H(P,R)2 ≤ D1/2(P,R) and Dα(P,R) ↗−−→
α→1

K(P,R).

The tempered Bayesian posterior πn,α(.|Xn
1 ), which is our target here, is defined for

0 < α ≤ 1 by

πn,α(dθ|Xn
1 ) = eαrn(Pθ,P 0)π(dθ)∫

eαrn(Pφ,P 0)π(dφ)
∝ Ln(θ)απ(dθ)

(it is also referred to as fractional posterior, for example in Bhattacharya et al. (2016)).
Note that when α = 1, then we recover the "true" Bayesian posterior, but the case α < 1
has many advantages: it is often more tractable from a computational perspective (Neal,
1996; Behrens et al., 2012), it is consistent under less stringent assumptions than required
for α = 1 (Bhattacharya et al., 2016) and it is more robust to misspecification (Grünwald
et al., 2017).

We are now in position to define the VB approximation π̃n,α(.|Xn
1 ) of the tempered

posterior with respect to some set of distributions F : it is the projection, with respect to
the Kullback-Leibler divergence, of the tempered posterior onto the mean-field variational
set F ,

π̃n,α(.|Xn
1 ) = arg min

ρ∈F
K
(
ρ, πn,α(.|Xn

1 )
)
.

The mean-field approximation is very popular in the Variational Bayes literature. It
is based on a decomposition of the space of parameters ΘK as a product. Then F
consists in compatible product distributions. Here, a natural choice (Blei et al., 2017) is
ΘK = SK ×Θ× · · · ×Θ and

F =
{
ρp

K⊗
j=1

ρj/ρp ∈M+
1 (SK), ρj ∈M+

1 (Θ) ∀j = 1, ..., K
}
.
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We will work on this particular set in the following and we will often use ρ instead of
ρp
⊗K
j=1 ρj or (ρp, ρ1, ..., ρK) to ease notation.

We end this section by recalling Donsker and Varadhan’s variational formula. Refer
for example to Catoni (2007) for a proof (Lemma 1.1.3).

Lemma 4.2.1. For any probability λ on some measurable space (E, E) and any measur-
able function h : E→ R such that

∫
ehdλ <∞,

log
∫

ehdλ = sup
ρ∈M+

1 (E)

{∫
hdρ−K(ρ, λ)

}
,

with the convention ∞−∞ = −∞. Moreover, if h is upper-bounded on the support of λ,
then the supremum on the right-hand side is reached by the distribution of the form:

λh(dβ) = eh(β)∫
ehdβλ(dβ).

This technical lemma is one of the main ingredients for the proof of our results, but
it is also very helpful to understand variational approximations. Indeed, for E = ΘK and
using the definition of πn,α(.|Xn

1 ), we get:

πn,α(·|Xn
1 ) = arg min

ρ∈M1
+(ΘK)

{
α
∫
rn(Pθ, P 0)ρ(dθ) +K(ρ, π)

}

and simple calculations give

π̃n,α(·|Xn
1 ) = arg min

ρ∈F

{
α
∫
rn(Pθ, P 0)ρ(dθ) +K(ρ, π)

}

= arg max
ρ∈F

{
α
∫
`n(θ)ρ(dθ)−K

(
ρ, π

)}
(4.1)

= arg min
ρ∈F

{
− α

n∑
i=1

∫
log

(
K∑
j=1

pjqθj(Xi)
)
ρ(dθ) +K

(
ρp, πp

)
+

K∑
j=1
K
(
ρj, πj

)}
.

(4.2)

The quantity maximized in (4.1) is called the ELBO in the litterature (ELBO stands for
Evidence Lower Bound), and many authors actually take this as the definition of VB
(Blei et al., 2017).

4.3 Variational Bayes estimation of a mixture

4.3.1 A PAC-Bayesian inequality

We start with a result for general mixtures. Later in this section we provide corollaries
obtained by applying this theorem to special cases: mixture of multinomials and Gaussian
mixtures.
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Theorem 4.3.1. For any α ∈ (0, 1),

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1

p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]

≤ inf
ρ∈F

{
α

1− α

[ ∫
K(p0, p)ρp(dp) +

K∑
j=1

∫
K(qθ0

j
, qθj)ρj(dθj)

]
+
K(ρp, πp) +∑K

j=1K(ρj, πj)
n(1− α)

}
.

As a special case, when there exists rn,K such that there are distributions ρp,n ∈M+
1 (SK)

and ρj,n ∈M+
1 (Θ) (j = 1, ..., K) such that for j = 1, ..., K∫
K(p0, p)ρp,n(dp) ≤ Krn,K ,

∫
K(qθ0

j
, qθj)ρj,n(dθj) ≤ rn,K (4.3)

and
K(ρp,n, πp) ≤ Knrn,K , K(ρj,n, πj) ≤ nrn,K , (4.4)

then for any α ∈ (0, 1)

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1

p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]
≤ 1 + α

1− α2Krn,K .

The proof is given in Section 4.6. This theorem provides the consistency of the
Variational Bayes for mixture models as soon as (4.3) and (4.4) are satisfied. In Alquier
and Ridgway (2017), the authors use similar conditions ((3) and (4) in their Theorem
2.6), and show that they are strongly linked to the assumptions on the prior used by
Ghosal et al. (2000); Bhattacharya et al. (2016) to derive concentration of the posterior.
Thus they cannot be removed in general. Theorem 4.3.1 states that finding rn,K filling
(4.3) and (4.4) independently for the weights and for each component is sufficient to
obtain the rate of convergence Krn,K of the VB estimator towards the true distribution.

Note that there always exists a distribution ρp,n ∈ M+
1 (SK) such that the two quan-

tities corresponding to the weights
∫
K(p0, p)ρp,n(dp) and K(ρp,n, πp) are bounded as re-

quired in Theorem 4.3.1 for rn,K = 4 log(nK)
n

when the chosen prior is a Dirichlet dis-
tribution πp = DK(α1, ..., αK) under some minor restriction on α1, ..., αK . This result
summarized below for any K ≥ 2 help find explicit rates of convergence for the VB
approximation.

Lemma 4.3.2. For rn,K = 4 log(nK)
n

and a prior πp = DK(α1, ..., αK) ∈ M+
1 (SK) with

2
K
≤ αj ≤ 1 for j = 1, ..., K, we can find a distribution ρp,n ∈M+

1 (SK) such that
∫
K(p0, p)ρp,n(dp) ≤ Krn,K

and
K(ρp,n, πp) ≤ Knrn,K .

Thus, conditions among (4.3) and (4.4) applying on the components of the mixtures
are always sufficient for guarantying consistency of the Variational Bayes in mixtures and
obtaining its rate of convergence.
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Remark 4.3.1. When K = 1, Lemma 4.3.2 does not apply as 2
K
> 1. Nevertheless, as

there is only one component, then any p ∈ SK is equal to 1 and the two conditions are
immediately satisfied for any prior πp and any rate rn,K with ρp,n = πp.

The central idea of the proof of Lemma 4.3.2 (given in details in Section 4.6) is to
consider the ball B centered at p0 of radius Krn,K defined as:

B =
{
p ∈ SK/ K(p0, p) ≤ Krn,K

}
.

Hence, when considering the restriction ρp,n ∈ M+
1 (SK) of π to B, condition (4.3) is

trivially satisfied and condition (4.4) is restricted to

πp(B) ≥ e−nKrn,K .

This is a very classical assumption stated in many papers to study the concentration of
the posterior (Ghosal et al., 2000; Alquier and Ridgway, 2017; Zhang and Gao, 2017).
However, the computation of such a prior mass πp(B) is a major difficulty. Lemma 6.1 in
Ghosal et al. (2000) treated the case of L1-balls for Dirichlet priors. Since then, only a
few papers in the literature addressed this issue. Our result extends the work in Ghosal
et al. (2000) to KL-balls, which is of great interest in our study. Moreover, the range of
Dirichlet priors for which Lemma 4.3.2 is available is the same as the one in Ghosal et al.
(2000).

We conclude Subsection 4.3.1 by a short discussion on the implementation of the VB
approximation. Indeed, VB methods are meant to be practical objects, so there would be
no point in proving the consistency of a VB approximation that would not be computable
in practice. Many algorithms have been studied in the literature, with good performances
– see Blei et al. (2017) and the references therein. In the case of mean-field approximation,
the most popular method is to optimize iteratively with respect to all the independent
components. Here this might seem difficult: it is indeed as difficult as maximizing the
likelihood of a mixture. But a trick widely used in practice (see for example Section 7 in
Hershey and Olsen (2007)) is to use the equality

for any i = 1, ..., K −log
(

K∑
j=1

pjqθj(Xi)
)

= min
ωi∈SK

{
−

K∑
j=1

ωij log(pjqθj(Xi))+
K∑
j=1

ωij log(ωij)
}
.

This equality is once again a consequence of Lemma 4.2.1 (take E = {1, ..., K}, λ =
(1/K, ..., 1/K) and h(j) = log(pjqθj(Xi))). This leads to the program:

min
ρ∈F , w∈SnK

{
− α

n∑
i=1

K∑
j=1

ωij

(∫
log(pj)ρp(dp) +

∫
log(qθj(Xi))ρj(dθj)

)

+ α
n∑
i=1

K∑
j=1

ωij log(ωij) +K(ρp, πp) +
K∑
j=1
K(ρj, πj)

}
.

This version can be solved by coordinate descent, see Algorithm 1. Update formulas once
again follow from Lemma 4.2.1 (for instance, line 7 can be obtained with E = {1, ..., K},
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λ = (1/K, ..., 1/K) and h(j) =
∫

log(pj)ρp(dp) +
∫

log(qθj(Xi))ρj(dθj), more details are
provided in Section 4.6). This algorithm is, in the case α = 1, exactly equivalent to the
popular CAVI algorithm (Bhattacharya et al., 2018; Blei et al., 2017; Hoffman et al.,
2013), where the ωij’s are interpreted as the posterior means of the latent variables Zi

j’s.
A very short numerical study is provided in the Supplementary Material but note that
CAVI has already been extensively tested in practice (Blei et al., 2017).

Algorithm 6 Coordinate Descent Variational Bayes for mixtures
Require: A dataset (X1, ..., Xn), priors πp,{πj}Kj=1 and a family {qθ/θ ∈ Θ}, initial
variational factors ρp, {ρj}Kj=1.
repeat
for i = 1, ..., n do
for j = 1, ..., K do

set wij = exp
( ∫

log(pj)ρp(dp) +
∫

log(qθj(Xi))ρj(dθj)
)

end for
normalize (wij)1≤j≤K

end for
set ρp(dp) ∝ exp

(
α

n∑
i=1

K∑
j=1

ωij log(pj)
)
πp(dp)

for j = 1, ..., K do

set ρj(dθj) ∝ exp
(
α

n∑
i=1

ωij log(qθj(Xi))
)
πj(dθj)

end for
until convergence of the objective function

4.3.2 Application to multinomial mixture models

We present in this section an application to the multinomial mixture model frequently
used for text clustering (Rigouste et al., 2007), transport schedule analysis (Carel and
Alquier, 2017)... The parameter space is the V −1 dimensional simplex Θ = SV with V ∈
N∗. We choose conjugate Dirichlet priors as in Rigouste et al. (2007) πp = DK(α1, ..., αK)
and πj = DV (β1, ..., βV ) with 2

K
≤ αj ≤ 1 for j = 1, ..., K and 2

V
≤ β` ≤ 1 for ` = 1, ..., V .

The following corollary of Theorem 4.3.1 states that convergence of the VB approxima-
tion for the multinomial mixture model is achieved at rate KV log(nV )

n
as soon as V V ≥ K,

which is the case in many text mining models such as Latent Dirichlet Allocation (Blei
et al., 2003) for which the size of the vocabulary is very large:
Corollary 4.3.3. For any α ∈ (0, 1),

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1
p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]
≤ 1 + α

1− α

[
8KV log(nV )

n

∨ 8K log(nK)
n

]
.

The proof is in Section 4.6. We also explicit Algorithm 1 in this setting: see Algorithm
2. There ψ denotes the Digamma function, ψ(x) = d

dx log[Γ(x)] where Γ stands for the
Gamma function Γ(x) =

∫∞
0 exp(−t)tx−1dt.
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Algorithm 7 Coordinate Descent Variational Bayes for multinomial mixtures
Require: Initial variational parameters (φ1, ..., φK) ∈ RK

+ , (γ1j, ..., γV j) ∈ RV
+ and cor-

responding variational distributions ρp = DK(φ1, ..., φK), ρj = DV (γ1j, ..., γV j) for
j = 1, ..., K.
repeat
for i = 1, ..., n do
for j = 1, ..., K do

set wij = exp
(
ψ(φj)− ψ(

K∑̀
=1
φ`) + ψ(γXi,j)− ψ

( V∑
v=1

γvj
))

end for
normalize (wij)1≤j≤K

end for
set φj = αj + α

n∑
i=1

ωij for j = 1, ..., K
set ρp = DK(φ1, ..., φK)
for j = 1, ..., K do
set γvj = βv + α

n∑
i=1

ωij1(Xi = v) for v = 1, ..., V
set ρj = DV (γ1j, ..., γV j)

end for
until convergence of the objective function

4.3.3 Application to Gaussian mixture models

Let us now address the case of the Gaussian mixture model. This is one of the most
popular mixture models for many applications including model based clustering (Bou-
veyron and Brunet-Saumard, 2014; McNicholas, 2016) and VB approximations have been
studied in depth for this model (Nasios and Bors, 2006). First, we will explicit rates of
convergence of the VB approximation of the tempered posterior when the variance is
known, and then when the variance is unknown.

First, we consider mixtures of V 2-variance Gaussians. The mean parameter space is
Θ = R. We select priors πp = DK(α1, ..., αK) and πj = N (0,V2) with 2

K
≤ αj ≤ 1 for

j = 1, ..., K and V2 > 0. The following result gives a rate of convergence Krn,K of the
VB approximation:

Corollary 4.3.4. Let us define rn,K = 4 log(nK)
n

∨K
j=1

1
n

[
1
2 log

(
n
2

)
+ V 2

nV2 +log
(
V
V

)
+ (µ0

j )
2

2V2 −

1
2

]
. Then, for any α ∈ (0, 1),

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1

p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]
≤ 1 + α

1− α2Krn,K .

One can see that for n large enough, the consistency rate is K log(nK)
n

, which comes
from the estimation of the weights of the mixture.

We can also provide a similar result when the variance of each component is unknown.
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The consistency rate remains the same, and is entirely characterized by the weights
consistency rate. The parameter space is now Θ = R × R∗+. We consider again a
Dirichlet prior πp = DK(α1, ..., αK) with 2

K
≤ αj ≤ 1 for j = 1, ..., K on p ∈ SK , and

we will provide our results for two different priors πj frequently used in the literature:
a Normal-Inverse-Gamma prior (Stoneking, 2014) and a factorized prior (Watier et al.,
1999).

Corollary 4.3.5. Let us fix α ∈ (0, 1).

• For a Normal-Inverse-Gamma prior πj = NIG(0,V2, 1, γ2) for each j = 1, ..., K.
With
rn,K = 4 log(nK)

n

∨K
j=1

1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 + (µ0
j )

2

2(σ0
j )2V2 − 1

2 + log
(

(σ0
j )2

γ2

)
+ γ2−(σ0

j )2

(σ0
j )2

]
,

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1

p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]
≤ 1 + α

1− α2Krn,K .

• For the factorized prior πj = N (0,V2)⊗ IG(1, γ2) for each j = 1, ..., K. With

rn,K = 4 log(nK)
n

∨K
j=1

1
2(σ0

j )2n

∨K
j=1

1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 + (µ0
j )

2

2V2 − 1
2 + log

(
(σ0
j )2

γ2

)
+

γ2−(σ0
j )2

(σ0
j )2

]
,

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1

p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]
≤ 1 + α

1− α2Krn,K .

One can see that even when the variance has to be estimated, the consistency rate
still achieves K log(nK)

n
for n large enough, whatever the form of the prior - factorized or

not.
We give in Algorithm 3 a version of Algorithm 1 for unit-variance Gaussian mixtures

with priors πp = DK(α1, ..., αK) and πj = N (0,V2) where 2
K
≤ αj ≤ 1 for j = 1, ..., K

and V2 > 0.

4.3.4 Extension to the misspecified case

From now we do not assume any longer that the true distribution P 0 belongs to the
K-mixtures model. We still consider a prior π = πp

⊗K
j=1 πj on θ ∈ ΘK for which

πp ∈M+
1 (SK) and πj ∈M+

1 (Θ) for j = 1, ..., K.
For some value rn,K , we introduce the set ΘK(rn,K) of parameters θ∗ ∈ ΘK such that:

• there exists a set An,K ⊂ SK satisfying:

– for each p ∈ An,K , for each j = 1, ..., K, log
(
p∗j
pj

)
≤ Krn,K ,

– πp(An,K) ≥ e−nKrn,K .
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Algorithm 8 Coordinate Descent Variational Bayes for Gaussian mixtures
Require: Initial variational parameters (φ1, ..., φK) ∈ (R∗+)K , (nj, s2

j) ∈ R × R∗+ and
corresponding variational distributions ρp = DK(φ1, ..., φK), ρj = N (nj, s2

j) for j =
1, ..., K.
repeat
for i = 1, ..., n do
for j = 1, ..., K do

set wij = exp
(
ψ(φj)− ψ(

K∑
`=1

φ`)− 1
2

{
s2
j + (nj −Xi)2

})
end for
normalize (wij)1≤j≤K

end for
set φj = αj + α

n∑
i=1

ωij for j = 1, ..., K
set ρp = DK(φ1, ..., φK)
for j = 1, ..., K do
set nj = α

∑n

i=1 ω
i
jXi

1/V2+α
∑n

i=1 ω
i
j

and s2
j = 1

1/V2+α
∑n

i=1 ω
i
j

set ρµ,j = N (nj, s2
j)

end for
until convergence of the objective function

• there are distributions ρj,n ∈M+
1 (Θ) (j = 1, ..., K) such that for j = 1, ..., K:

∫
E
[

log
(
qθ∗j (X)
qθj(X)

)]
ρj,n(dθj) ≤ rn,K , K(ρj,n, πj) ≤ nrn,K . (4.5)

Let us discuss this definition. To begin with, the first item of the definition of ΘK(rn,K)
can seem quite restrictive. It is even a much more stronger assumption than (4.3) and
(4.4). Nevertheless, the way to find the required measures ρp,n in Lemma 4.3.2 in the
well-specified case implies constructing in the proof such sets An,K for the true parameter
weight p0. As a consequence, it might seem reasonable to replace conditions (4.3) and
(4.4) by the first part of the definition of ΘK(rn,K). On the other hand, the condition
given by (4.5) looks like those of Theorem 2.7 in Alquier and Ridgway (2017). Once
again, the difference is that inequalities must be satisfied here for each component. A
condition on both the true distribution P 0 and the considered parameter θ∗ is required
through the expectation term. Besides, condition (4.5) is equivalent to (4.3) and (4.4)
when the model is well-specified.

Theorem 4.3.6. For any α ∈ (0, 1),

E
[ ∫

Dα

(
K∑
j=1

pjqθj , P
0
)
π̃n,α(dθ|Xn

1 )
]
≤ α

1− α inf
θ∗∈ΘK(rn,K)

K(P 0, Pθ∗) + 1 + α

1− α2Krn,K .

Remark 4.3.2. If there is no rn,K such that ΘK(rn,K) is not empty, then the right-hand
side is equal to infinity (by convention) for any value of rn,K and the inequality is useless.
Nevertheless, this is not the case in models used in practice. We show an example below.
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It is worth mentioning that even if this is not exactly an oracle inequality as the
risk function in the left-hand side (α-Renyi divergence) is lower than the right-hand
side one (Kullback-Leibler divergence), but the theorem still remains of great interest.
Indeed, when the minimizer of K(P 0, Pθ) with respect to θ ∈ ΘK(rn,K) exists and is such
that the corresponding Kullback-Leibler divergence is small, then our oracle inequality is
informative as it gives a small bound on the expected risk of the Variational Bayes.

To illustrate the relevance of Theorem 4.3.6, we provide the following result available
for a wide range of generating distributions when considering the family of unit-variance
Gaussian mixtures with priors πp = DK(α1, ..., αK) ∈ M+

1 (SK) with 2
K
≤ αj ≤ 1 for

j = 1, ..., K (K ≥ 2) and πj = N (0,V2) ∈M+
1 (R) for j = 1, ..., K with V2 > 0:

Corollary 4.3.7. Assume that the true distribution P 0 is such that E|X| < +∞. Let
L > 0.
For rn,K = 4 log(nK)

n

∨K
j=1

1
n

[
1
2 log

(
n
2

)
+ 1

nV2 + log
(
V
)

+ L2

2V2 − 1
2

]
, we get SK × [−L,L]K ⊂

ΘK(rn,K) and for any α ∈ (0, 1),

E
[ ∫

Dα

(
K∑
j=1

pjqθj , P
0
)
π̃n,α(dθ|Xn

1 )
]
≤ α

1− α inf
θ∗∈SK×[−L,L]K

K(P 0, Pθ∗) + 1 + α

1− α2Krn,K .

Remark 4.3.3. If the true distribution is a mixture of unit-variance Gaussians with
components means between −L and L, then E|X| < +∞ and the first term of the right-
hand side of the inequality is equal to zero, which gives directly for any α ∈ (0, 1),

E
[ ∫

Dα

(
K∑
j=1

pjqθj , P
0
)
π̃n,α(dθ|Xn

1 )
]
≤ 1 + α

1− α2Krn,K .

4.4 Variational Bayes model selection

In this section, we extend the problem to a larger family of distributions. We want
to model the generating distribution P 0 using mixtures with an unknown number of
components in a possibly misspecified setting. Thus, we consider a countable collection
{MK/K ∈ N∗} of statistical mixture models

MK =

PθK =
K∑
j=1

pj,Kqθj,K / θK ∈ ΘK


with ΘK = SK × ΘK , SK = {pK = (p1,K , ..., pK,K) ∈ [0, 1]K/∑K

j=1 pj,K = 1} and the
general notation θK = (pK , θ1,K , ..., θK,K). We precise that the notations are slightly
different as the size of each component parameter depends on the model complexity K.
The entire parameter space Ω is the union of all parameter spaces ΘK associated with
each model index K: Ω = ∪∞K=1ΘK , and we can think of a whole statistical modelM =
∪∞K=1MK as the union of all collectionsMK . First, we can notice that different models
MK never overlap as parameters in each one do not have the same length. Nonetheless,
parameters in complex models (models MK with large K) can be sparse and therefore
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contain the "same information" as parameters in less complex ones, i.e. can lead to the
same density Pθ.

The prior specification is a crucial point. As mentioned above, each parameter depends
on the number of components. Then, we specify a prior weight πK assigned to the model
MK and a conditional prior ΠK(.) on θK ∈ ΘK given model MK . More precisely, we
define our conditional prior on θK = (pK , θ1,K , ..., θK,K) as follows: given K, the weight
parameter pK = (p1,K , ..., pK,K) is supposed to follow a distribution πp,K on M+

1 (SK);
finally, given K, we set independent priors πj,K for the component parameters θj,K where
each πj,K is a probability distribution onM+

1 (Θ). In a nutshell:

π =
+∞∑
K=1

πKΠK

with

ΠK(θK) = πp,K(pK)
K∏
j=1

πj,K(θj,K).

We have to adapt the notations for the VB approximations. The tempered posteriors
πKn,α(.|Xn

1 ) on parameter θK ∈ ΘK given modelMK , is defined again as

πKn,α(dθK |Xn
1 ) ∝ Ln(θK)αΠK(dθK).

The Variational Bayes π̃Kn,α(.|Xn
1 ) is the projection of the tempered posterior onto some

set FK following the mean-field assumption: the variational factor corresponding to the
weight parameter pK = (p1,K , ..., pK,K) is any distribution ρp on M+

1 (SK); besides, we
consider independent variational distributions ρj(θj,K) for the component parameters θj,K
where each ρj is a probability distribution on M+

1 (Θ). Then, FK = {ρp
⊗K

j=1 ρj/ρp ∈
M+

1 (SK), ρj ∈M+
1 (Θ) ∀j = 1, ..., K}, and

π̃Kn,α(.|Xn
1 ) = arg min

ρK∈FK
K
(
ρK , π

K
n,α(.|Xn

1 )
)
.

We recall that an alternative way to define the variational estimate is to use the Evidence
Lower Bound via the optimization program (4.1):

π̃Kn,α(.|Xn
1 ) = arg max

ρK∈FK

{
α
∫
`n(θK)ρK(dθK)−K

(
ρK ,ΠK

)}

where the function inside the argmax operator is the ELBO L(ρK). For simplicity, we
will just call ELBO L(K) the closest approximation to the log-evidence, i.e. the value of
the lower bound evaluated in its maximum:

L(K) = α
∫
`n(θK)π̃Kn,α(dθK |Xn

1 )−K(π̃Kn,α(.|Xn
1 ),ΠK).

The objective is to propose a data-driven estimate K̂ of the number of components
from which we will pick up our final VB estimate π̃K̂n,α(.|Xn

1 ) and derive an oracle inequality
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in the spirit of Massart (2007). It is stated in Blei et al. (2017) that arg maxK≥1 L(K) is
widely used in practice, without any theoretical justification. We propose

K̂ = arg max
K≥1

{
L(K)− log

(
1
πK

)}

which is a penalized version of the ELBO. Note that taking (πK) as uniform on a finite
set {1, 2, . . . , Kmax} leads to the procedure described in Blei et al. (2017). We discuss
below the choice πK = 2−K .

We can now state the following result which provides an oracle-type inequality for
π̃K̂n,α(.|Xn

1 ):

Theorem 4.4.1. For any α ∈ (0, 1),

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
≤ inf

K≥1

{
α

1− α inf
θ∗∈ΘK(rn,K)

K(P 0, Pθ∗)+
1 + α

1− α2Krn,K+
log( 1

πK
)

n(1− α)

}
.

This oracle inequality shows that our variational distribution adaptively satisfies the
best possible balance between bias (misspecification error) and variance (estimation er-
ror). If we assume that there is actually a K0 and θ∗ ∈ ΘK0 such that P 0 = Pθ∗ then the
theorem will imply

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
≤ 1 + α

1− α2K0rn,K0 +
log( 1

πK0
)

n(1− α) .

Note that this does not mean that K̂ = K0, but this means that the convergence rate of
Pθ to P 0 π̃K̂n,α(.|Xn

1 ) is as good as is we actually knew P0. The objective of estimatingK0 is
a completely different task (Yang, 2005). Estimating K0 would also require identifiability
conditions that are not necessary for our results.

The variance term is composed of two parts. The first one, Krn,K up to a multiplica-
tive constant, corresponds to the rate obtained when approximating the true distribution
with mixtures of model MK . The second part of the overall rate can be interpreted
as a complexity term over the different models reflecting our prior belief. For instance,
if we want to penalize more heavily complex models, we can take πK = 2−K and the
corresponding term will be of order K/n. In practice, as soon as 1

n
. rn,K , then this

penalty term is negligible when compared to the approximating rate Krn,K : this means
that this choice can be considered as safe, it does not interfere with the estimation rate.

4.5 Conclusion

Using variational inference, we studied consistency of variational approximations for es-
timation and model selection in mixtures. When considering tempered posteriors, we
showed that the Variational Bayes is consistent and we gave statistical guaranties to se-
lecting based on the ELBO. For further investigation, it would be interesting to explore
the case of Bayesian posteriors when α = 1. The recent work of Zhang and Gao (2017)
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gives the tools for tackling such an issue, and allows to consider risk functions different
than α-Renyi divergence. But the conditions would be more stringent, and misspecifica-
tion would be more problematic in this case.

Another point of interest is the study of the non-convex optimization program (4.2).
Indeed, the proposed coordinate optimization can lead to a local extremum, which implies
paying attention to the initialization. The same problem actually arises with EM. In
practice, users often run EM or CAVI several times with different initial distributions.
Many practical ideas were proposed to target the global extrema more efficiently with
EM (O’Hagan et al., 2012) and could be extended to CAVI. But the question of the
convergence remains open in theory.

Finally, note that our results are remarkable as there is almost no conditions on the
mixtures considered. The counterpart are about the estimation of the true probability
distribution P 0, even in the well-specified result. We have no results on the estimation of
the parameters. In the case of mixtures, these results are extremely difficult to obtain even
for Gaussian mixtures (Wu and Yang, 2018). They require restrictions on the parameters
set and lead to different rates of convergence. The consistency of VB for the estimation
of the parameters remains open.

4.6 Proofs

4.6.1 Some useful lemmas

We provide in this section two useful lemmas required in many proofs below.

An upper bound on the Kullback-Leibler divergence between two mixtures

The lemma below was first stated by Singer and Warmuth (1999) for mixtures of Gaus-
sians, Do (2003) checked that the proof remains valid for general mixtures. It is a tool
widely used in signal processing (Hershey and Olsen, 2007). We provide the proof for the
sake of comprehension.

Lemma 4.6.1. Let p, p0 ∈ SK and θj, θ0
j ∈ Θ for j = 1, ..., K. Then,

K

 K∑
j=1

p0
jqθ0

j
,
K∑
j=1

pjqθj

 ≤ K(p0, p) +
K∑
j=1

p0
jK(qθ0

j
, qθj)

Proof. For any nonnegative numbers α1, ..., αK and positive β1, ..., βK , we have:
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 K∑
j=1

αj

 log
(∑K

j=1 αj∑K
j=1 βj

)
=
 K∑
j=1

βj

(∑K
j=1 αj∑K
j=1 βj

)
log

(∑K
j=1 αj∑K
j=1 βj

)

=
 K∑
j=1

βj

 K∑
j=1

βj∑K
l=1 βl

αj
βj

 log
 K∑
j=1

βj∑K
l=1 βl

αj
βj


=
 K∑
j=1

βj

 f
 K∑
j=1

βj∑K
l=1 βl

αj
βj


where f is the convex function x 7−→ x log(x). As ∑K

j=1
βj∑K

l=1 βl
= 1, then using Jensen’s

inequality: K∑
j=1

αj

 log
(∑K

j=1 αj∑K
j=1 βj

)
=
 K∑
j=1

βj

 f
 K∑
j=1

βj∑K
l=1 βl

αj
βj


≤

 K∑
j=1

βj

 K∑
j=1

βj∑K
l=1 βl

f

(
αj
βj

)

=
 K∑
j=1

βj

 K∑
j=1

βj∑K
l=1 βl

αj
βj

log
(
αj
βj

)

=
K∑
j=1

αj log
(
αj
βj

)
.

The inequality remains available when some or all βj’s are zero. Indeed, assume that
βj = 0. If αj 6= 0, then the jth term of the sum in the right-hand side is αj log(αj/βj) =
+∞, and the result is obvious. Otherwise, αj = 0, hence the jth term of each sum in the
inequality is zero as αj log(αj/βj) = 0, and the inequality can be obtained considering
only the other numbers.
Thus, for p, p0 ∈ SK and θj, θ0

j ∈ Θ for j = 1, ..., K:

K

 K∑
j=1

p0
jqθ0

j
,
K∑
j=1

pjqθj

 =
∫  K∑

j=1
p0
jqθ0

j

 log
∑K

j=1 p
0
jqθ0

j∑K
j=1 pjqθj


≤
∫ K∑

j=1
p0
jqθ0

j
log

p0
jqθ0

j

pjqθj


=
∫ K∑

j=1
p0
jqθ0

j
log

(
p0
j

pj

)
+
∫ K∑

j=1
p0
jqθ0

j
log

(
qθ0
j

qθj

)

=
K∑
j=1

p0
j log

(
p0
j

pj

)(∫
qθ0
j

)
+

K∑
j=1

p0
j

∫
qθ0
j

log
(
qθ0
j

qθj

)

= K(p0, p) +
K∑
j=1

p0
jK(qθ0

j
, qθj).

which ends the proof.
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KL-divergence between Gaussian distributions and between Normal-Inverse-
Gamma distributions

We give in this section the Kullback-Leibler divergence between 1-dimensional Gaussian
distributions and between Normal-Inverse-Gamma distributions. To begin with, one
definition:

Definition 4.6.1. The Normal-Inverse-Gamma NIG(µ, θ2, a, b) is the distribution which
density f with respect to Lebesgue measure is defined by f(x, y) = g(x|µ, y

θ2 )h(y|a, b),
where g(.|µ, σ2) is the density function of a Gaussian distribution of mean µ and variance
σ2, and h(.|a, b) is the density distribution of an Inverse-Gamma of parameters a and b.

Lemma 4.6.2. We denote u and v the density functions of the respective Gaussian
distributions N (µu, σ2

u) and N (µv, σ2
v). Similarly, we denote p and q the two densities of

NIG(µ1, θ
2
1, a1, b1) and NIG(µ2, θ

2
2, a2, b2). Then:

K(u, v) = 1
2 log

(
σ2
v

σ2
u

)
+ σ2

u

2σ2
v

+ (µv − µu)2

2σ2
v

− 1
2

and

K(p, q) = 1
2 log

(
θ2

1
θ2

2

)
+ θ2

2
2θ2

1
+ θ2

2(µ2 − µ1)2

2
a1

b1
− 1

2

+ (a1 − a2)ψ(a1) + log
(

Γ(a2)
Γ(a1)

)
+ a2 log

(
b1

b2

)
+ a1

b2 − b1

b1
.

Proof. The first equality is extremely classical so we don’t provide the proof. For the
second one,

K(p, q) =
∫
R∗+

∫
R
p(x, y) log

(
p(x, y)
q(x, y)

)
dxdy

=
∫
R∗+

∫
R
p(x|Y = y)pY (y) log

(
p(x|Y = y)
q(x|Y = y)

pY (y)
qY (y)

)
dxdy

=
∫
R∗+
pY (y)

(∫
R
p(x|Y = y) log

(
p(x|Y = y)
q(x|Y = y)

)
dx

)
dy +

∫
R∗+
pY (y) log

(
pY (y)
qY (y)

)
dy

= EY∼IG(a1,b1)

[
K(p(.|Y ), q(.|Y ))

]
+K(pY , qY ).

Using the KL-divergence between Gaussians:

K(p(.|Y ), q(.|Y )) = 1
2 log

(
θ2

1
θ2

2

)
+ θ2

2
2θ2

1
+ θ2

2(µ2 − µ1)2

2Y − 1
2

hence

EY∼IG(a1,b1)

[
K(p(.|Y ), q(.|Y ))

]
= 1

2 log
(
θ2

1
θ2

2

)
+ θ2

2
2θ2

1
+ θ2

2(µ2 − µ1)2

2 EY∼IG(a1,b1)

[
1
Y

]
− 1

2
i.e.

EY∼IG(a1,b1)

[
K(p(.|Y ), q(.|Y ))

]
= 1

2 log
(
θ2

1
θ2

2

)
+ θ2

2
2θ2

1
+ θ2

2(µ2 − µ1)2

2
a1

b1
− 1

2 ,
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and using the KL-divergence between Inverse-Gamma distributions

K(pY , qY ) = (a1 − a2)ψ(a1) + log
(

Γ(a2)
Γ(a1)

)
+ a2 log

(
b1

b2

)
+ a1

b2 − b1

b1

where Γ and ψ are respectively the Gamma and Digamma functions, we have:

K(p, q) = 1
2 log

(
θ2

1
θ2

2

)
+ θ2

2
2θ2

1
+ θ2

2(µ2 − µ1)2

2
a1

b1
− 1

2

+ (a1 − a2)ψ(a1) + log
(

Γ(a2)
Γ(a1)

)
+ a2 log

(
b1

b2

)
+ a1

b2 − b1

b1
.

4.6.2 Proof of Theorem 4.3.1

This result relies on an application of Theorem 2.6 in Alquier and Ridgway (2017) to
mixture models. The proof of Theorem 2.6 in Alquier and Ridgway (2017) itself relies
mostly on a deviation inequality from Bhattacharya et al. (2016) and on PAC-Bayesian
theory (Catoni, 2004; Massart, 2007).

Proof. Fix 0 < α < 1. Theorem 2.6 from Alquier and Ridgway (2017) gives:

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1

p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]

≤ inf
ρ∈F

{
α

1− α

∫
K
(

K∑
j=1

p0
jqθ0

j
,
K∑
j=1

pjqθj

)
ρ(dθ) + K(ρ, π)

n(1− α)

}
.

Thanks to Lemma 4.6.1

K
(

K∑
j=1

p0
jqθ0

j
,
K∑
j=1

pjqθj

)
≤ K(p0, p) +

K∑
j=1

p0
jK(qθ0

j
, qθj).

Then

K(ρ, π) = K
ρp K⊗

j=1
ρj, πp

K⊗
j=1

πj

 = K(ρp, πp) +
K∑
j=1
K(ρj, πj)

the last inequality being obtained thanks to Theorem 28 in Van Erven and Harremos
(2014). Gathering all the pieces together leads to

E
[ ∫

Dα

(
K∑
j=1

pjqθj ,
K∑
j=1

p0
jqθ0

j

)
π̃n,α(dθ|Xn

1 )
]

≤ inf
ρ∈F

{
α

1− α

[ ∫
K(p0, p)ρp(dp) +

K∑
j=1

∫
K(qθ0

j
, qθj)ρj(dθj)

]
+
K(ρp, πp) +∑K

j=1K(ρj, πj)
n(1− α)

}

that is the result stated in Theorem 4.3.1.
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4.6.3 Proof of Lemma 4.3.2

Proof. Let us define ρp,n ∈ M+
1 (SK) by the following formula ρp,n(dp) ∝ 1(p ∈ B)π(dp)

with

B =
{
p ∈ SK/K(p0, p) ≤ Kr′n,K

}

and

r′n,K = max
(

1
K(n− 1) ,

log(n(K − 1)Γ(A)
K
K−1/M0

p )
n

)

where A = 2
K

and M0
p = max{p0

j/j = 1, ..., K}. We adopt the notation S = ∑K
j=1 αj in

the following. We recall that we consider that K ≥ 2 and then A = 2
K
≤ 1.

First,
∫
K(p0, p)ρp,n(dp) ≤ Kr′n,K .

Then, let us show that K(ρp,n, πp) ≤ Knr′n,K . For that, let us define

A =
{
p ∈ RK/p0

je
−Kr′n,K ≤ pj ≤ p0

je
−Kr′n,K+ p0

K

n(K − 1) for j = 1, ..., K−1, pK = 1−
K−1∑
j=1

pj

}

where K is such that p0
K = max{p0

j/j = 1, ..., K} (this assumption can always be held
by relabelling the components of the vector). Then, p0

K ≥ 1
K

(otherwise, the sum of the
components of p0 would be strictly lower than 1 and the vector would not be included
in SK). We will show that A ⊂ B and that πp(A) ≥ e−Knr

′
n,K . Then, we will conclude

thanks to the following formula: K(ρp,n, πp) = − log(πp(B)).
First, let us show that A ⊂ B.
Let p ∈ A. As pK = 1 −∑K

j=1 pj, we just need to check that K(p0, p) ≤ Kr′n,K and
that pj ≥ 0 for each j = 1, ..., K.

The first part can be proven using the definition ofA. According to theK−1 left-hand
side inequalities in the definition of A,

K(p0, p) =
K−1∑
j=1

p0
j log

(
p0
j

pj

)
+ p0

K log
(
p0
K

pK

)
≤

K−1∑
j=1

p0
j log(eKr′n,K ) + p0

K log
(
p0
K

pK

)

=
K−1∑
j=1

p0
jKr

′
n,K + p0

K log
(
p0
K

pK

)

= (1− p0
K)Kr′n,K + p0

K log
(
p0
K

pK

)
.

All we need to show now is that log
(
p0
K

pK

)
≤ Kr′n,K . This comes from the following

inequalities:
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log
(
p0
K

pK

)
= log

(
p0
K

1−∑K−1
j=1 pj

)
≤ log

(
p0
K

1−∑K−1
j=1 p0

je
−Kr′n,K − p0

K

n

)

= log
(

p0
K

1− (1− p0
K)e−Kr′n,K − p0

K

n

)

≤ p0
K

1− (1− p0
K)e−Kr′n,K − p0

K

n

− 1

=
p0
K − 1 + (1− p0

K)e−Kr′n,K + p0
K

n

1− (1− p0
K)e−Kr′n,K − p0

K

n

i.e.

log
(
p0
K

pK

)
≤
p0
K − 1 + (1− p0

K)e−Kr′n,K + p0
K

n

1− (1− p0
K)e−Kr′n,K − p0

K

n

=
p0
K

n
− (1− p0

K)(1− e−Kr′n,K )
p0
K(1− 1

n
) + (1− p0

K)(1− e−Kr′n,K )

=
1
n
− ( 1

p0
K
− 1)(1− e−Kr′n,K )

(1− 1
n
) + ( 1

p0
K
− 1)(1− e−Kr′n,K )

≤
1
n

1− 1
n

= 1
n− 1

≤ Kr′n,K .

Hence K(p0, p) ≤ (1−p0
K)Kr′n,K+p0

K log
(
p0
K

pK

)
≤ (1−p0

K)Kr′n,K+p0
KKr

′
n,K = Kr′n,K .

On the other hand, for j = 1, ..., K − 1, pj ≥ p0
je
−Kr′n,K ≥ 0 and:

pK = 1−
K−1∑
j=1

pj ≥ 1−
K−1∑
j=1

(
p0
je
−Kr′n,K + p0

K

n(K − 1)
)

= 1−
(

(1− p0
K)e−Kr′n,K + p0

K

n

)
≥ 1− (1− p0

K)e−Kr′n,K − p0
K

= (1− p0
K)(1− e−Kr′n,K )

≥ 0.
Then, p ∈ B, and finally A ⊂ B.
Now, let us show that πp(A) ≥ e−Knr

′
n,K .

Let us denote f the density of the πp = DK(α1, ..., αK) Dirichlet distribution:

f (p) =
Γ
(
S
)

K∏
j=1

Γ(αj)

K∏
j=1

p
αj−1
j 1(p ∈ B).

Thus, we can lower bound πp(A):

85



πp(A) =
∫
A
f(p1, ..., pK)dp =

∫
A

Γ
(
S
)

K∏
j=1

Γ(αj)

K∏
j=1

p
αj−1
j 1(p ∈ B)dp

≥
Γ
(
S
)

K∏
j=1

Γ(αj)

K−1∏
j=1

∫ p0
je
−Kr′

n,K+
p0
K

n(K−1)

p0
je
−Kr′

n,K
p
αj−1
j dpj

as for p ∈ A, 0 ≤ p0
je
−Kr′n,K ≤ pj ≤ p0

je
−Kr′n,K + p0

K

n(K−1) ≤ 1 for each j = 1, ..., K (as
A ⊂ B), and then pαj−1

j ≥ 1.

Then, by definition of r′n,K ,
p0
K

n(K−1) ≥ Γ(A)
K
K−1 e−nr

′
n,K , and using inequalities Γ(A) ≥

Γ(αj) as A ≤ αj ≤ 1 and Γ(S) ≥ 1 as S ≥ 2,

πp(A) ≥
Γ
(
S
)

K∏
j=1

Γ(αj)

K−1∏
j=1

∫ p0
je
−Kr′

n,K+Γ(A)
K
K−1 e

−nr′
n,K

p0
je
−Kr′

n,K
p
αj−1
j dpj

≥
Γ
(
S
)

K∏
j=1

Γ(αj)

K−1∏
j=1

∫ p0
je
−Kr′

n,K+Γ(A)
K
K−1 e

−nr′
n,K

p0
je
−Kr′

n,K
dpj

=
Γ
(
S
)

K∏
j=1

Γ(αj)

K−1∏
j=1

Γ(A)
K
K−1 e−nr

′
n,K

=
Γ
(
S
)

K∏
j=1

Γ(αj)
Γ(A)Ke−n(K−1)r′n,K

≥ e−nKr
′
n,K .

Hence, asA ⊂ B, πp(B) ≥ πp(A) ≥ e−nKr
′
n,K , and finally, K(ρp,n, πp) = − log(πp(B)) ≤

Knr′n,K .
We just proved the lemma but with the rate r′n,K instead of the value rn,K used in

the lemma. We can conlude by noticing that the result is available for every r such that
r′n,K ≤ r, and that in particular r′n,K ≤ rn,K . This last result comes from the inequality:

Γ(A) ≤
Γ(1 + A

2 )(
A
2

)1−A2

which is a direct application of the left-hand side of inequality (3.2) part 3 in Laforgia and
Natalin (2013) with x = A

2 > 0 and λ = A
2 ∈ (0, 1). As, 1 + A

2 ∈ [1, 2], then Γ(1 + A
2 ) ≤ 1,

and 1

(A2 )1−A2
= K1−A2 ≤ K. Thus:

Γ(A) ≤ K

and as K ≥ 2 and p0
K ≥ 1

K
, it follows that

log((K − 1)Γ(A)
K
K−1/p0

K) ≤ log(K(K)
K
K−1K) ≤ log(K(K)2K) ≤ log(K4)
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i.e. r′n,K ≤ max( 1
K(n−1) ,

log(nK4)
n

) ≤ max( 1
K(n−1) ,

4 log(nK)
n

). Besides, n
n−1 = 1 + 1

n−1 ≤ 2
implies 1

K(n−1) ≤
1

2(n−1) ≤
1
n
≤ 4 log(2)

n
≤ 4 log(nK)

n
, and finally r′n,K ≤

4 log(nK)
n

= rn,K .

4.6.4 Proof of Corollary 4.3.3

Proof. According to the Lemma 4.3.2, there exists a distribution ρp,n ∈ M+
1 (SK) such

that ∫
K(p0, p)ρp,n(dp) ≤ K

4 log(nK)
n

and
K(ρp,n, πp) ≤ Kn

4 log(nK)
n

.

Similarly, the same result states that there exists distributions ρj,n ∈ M+
1 (SV ) for

j = 1, ..., K such that ∫
K(θ0

j , θj)ρj,n(dθj) ≤
4V log(nV )

n

and
K(ρj,n, πj) ≤ n

4V log(nV )
n

.

We conclude using theorem 4.3.1:

E
[ ∫

Dα(
K∑
j=1

pjqθj ,
K∑
j=1
p0
jqθ0

j
)π̃n,α(dθ|Xn

1 )
]
≤ 1 + α

1− α

[
8KV log(nV )

n

∨ 8K log(nK)
n

]
.

4.6.5 Proof of Corollary 4.3.4

Proof. For Rj,n = 1
n

∨ 1
n

[
1
2 log

(
n
2

)
+ V 2

nV2 + log
(
V
V

)
+ (µ0

j )
2

2V2 − 1
2

]
(for j = 1, ..., K), there

exists distributions ρj,n ∈M+
1 (SK) for j = 1, ..., K such that∫
K(qµ0

j
, qµj)ρj,n(dµj) ≤ Rj,n

and
K(ρj,n, πj) ≤ nRj,n.

Indeed, let us define ρj,n as a Gaussian distribution of mean µ0
j and variance 2V 2

n
.

According to Lemma 4.6.2:

K(qµ0
j
, qµj) =

(µj − µ0
j)2

2V 2 .
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Then,
∫
K(qµ0

j
, qµj)ρj,n(dµj) = 1

2V 2Eµj∼ρj,n [(µj − µ0
j)2]

= 1
2V 2 ×

2V 2

n

= 1
n

≤ Rj,n.

We can finally conclude using the formula using again Lemma 4.6.2:

K(ρj,n, πj) = 1
2 log

(
nV2

2V 2

)
+ V 2

nV2 +
(µ0

j)2

2V2 −
1
2

= 1
2 log

(
n

2

)
+ V 2

nV2 + log
(
V
V

)
+

(µ0
j)2

2V2 −
1
2

= n× 1
n

[
1
2 log

(
n

2

)
+ V 2

nV2 + log
(
V
V

)
+

(µ0
j)2

2V2 −
1
2

]
≤ nRj,n.

In addition, let us recall that there also exists a distribution ρp,n ∈M+
1 (SK) such that

∫
K(p0, p)ρp,n(dp) ≤ K

4 log(nK)
n

and
K(ρp,n, πp) ≤ nK

4 log(nK)
n

.

For rn,K = 4 log(nK)
n

∨K
j=1Rj,n = 4 log(nK)

n

∨ 1
n

∨K
j=1

1
n

[
1
2 log

(
n
2

)
+ V 2

nV2 +log
(
V
V

)
+ (µ0

j )
2

2V2 −

1
2

]
i.e. rn,K = 4 log(nK)

n

∨K
j=1

1
n

[
1
2 log

(
n
2

)
+ V 2

nV2 + log
(
V
V

)
+ (µ0

j )
2

2V2 − 1
2

]
, we finally obtain

the required inequality using theorem 4.3.1.

4.6.6 Proof of Corollary 4.3.5

Normal-Inverse-Gamma prior

Proof. First, let us focus on the first result, when the chosen prior is the Normal-Inverse-
Gamma πj = NIG(0,V2, 1, γ2) for each j = 1, ..., K. In order to obtain the required
rate

rn,K = 4 log(nK)
n

K∨
j=1

1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 +
(µ0

j)2

2(σ0
j )2V2 −

1
2 +log

(
(σ0

j )2

γ2

)
+
γ2 − (σ0

j )2

(σ0
j )2

]
,

we proceed as previously and find a variational density on both the mean and the variance
such that the two different terms

∫
K(q(µ0

j ,(σ
0
j )2), q(µj ,σ2

j ))ρj,n(dµj, dσ2
j ) and K(ρj,n, πj) are

upper bounded for j = 1, ..., K.
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Let us define ρj,n as a Normal-Inverse-Gamma distribution NIG(µ0
j , λn, an, bn) where

λn, an and bn are hyperparameters that we will precise later. Using Lemma 4.6.2:

K(q(µ0
j ,(σ

0
j )2), q(µj ,σ2

j )) = 1
2 log

(
σ2
j

(σ0
j )2

)
+

(σ0
j )2

2σ2
j

+
(µj − µ0

j)2

2σ2
j

− 1
2 .

Then,
∫
K(q(µ0

j ,(σ
0
j )2), q(µj ,σ2

j ))ρj,n(dµj) = 1
2E(µj ,σ2

j )∼ρj,n

[
log

(
σ2
j

(σ0
j )2

)]
+ E(µj ,σ2

j )∼ρj,n

[
(σ0

j )2

2σ2
j

]

+ E(µj ,σ2
j )∼ρj,n

[
(µj − µ0

j)2

2σ2
j

]
− 1

2 .

As
E(µj ,σ2

j )∼ρj,n

[
(σ0

j )2

2σ2
j

]
=

(σ0
j )2

2 E(µj ,σ2
j )∼ρj,n

[
1
σ2
j

]
=

(σ0
j )2

2
an
bn
,

E(µj ,σ2
j )∼ρj,n

[
log

(
σ2
j

(σ0
j )2

)]
= 1

2
(

log(bn)− ψ(an)
)
− 1

2 log((σ0
j )2)

and

E(µj ,σ2
j )∼ρj,n

[
(µj − µ0

j)2

2σ2
j

]
= Eσ2

j∼IG(an,bn)

[
1

2σ2
j

.E
µj∼N (µ0

j ,
σ2
j
λn

)
[(µj − µ0

j)2]
]

i.e.
E(µj ,σ2

j )∼ρj,n

[
(µj − µ0

j)2

2σ2
j

]
= Eσ2

j∼IG(an,bn)

[
1

2σ2
j

.
σ2
j

λn

]
= 1

2λn
,

we get:∫
K(q(µ0

j ,(σ
0
j )2), q(µj ,σ2

j ))ρj,n(dµj) = −1
2+

(σ0
j )2

2
an
bn

+ 1
2λn

+1
2
(

log(bn)−ψ(an)
)
−1

2 log((σ0
j )2).

Now, we compute the term K(ρj,n, πj) using the fomula giving the Kullback-Leibler
divergence between two Gaussian-Inverse-Gamma distributions. Using Lemma 4.6.2:

K(ρj,n, πj) = 1
2 log

(
λn
V−2

)
+ V

−2

2λn
+
V−2(µ0

j)2

2
an
bn
− 1

2

+ (an − 1)ψ(an) + log
(

1
Γ(an)

)
+ log

(
bn
γ2

)
+ an

γ2 − bn
bn

.

Then, for λn = n, an = 1 and bn = (σ0
j )2:

∫
K(q(µ0

j ,(σ
0
j )2), q(µj ,σ2

j ))ρj,n(dµj) = 1
2n ≤ Rj,n

and

K(ρj,n, πj) = 1
2 log

(
nV2

)
+ 1

2nV2 +
(µ0

j)2

2(σ0
j )2V2 −

1
2 + log

(
(σ0

j )2

γ2

)
+
γ2 − (σ0

j )2

(σ0
j )2

= n× 1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 +
(µ0

j)2

2(σ0
j )2V2 −

1
2 + log

(
(σ0

j )2

γ2

)
+
γ2 − (σ0

j )2

(σ0
j )2

]
≤ nRj,n.
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with Rj,n = 1
2n
∨ 1

n

[
1
2 log

(
nV2

)
+ 1

2nV2 + (µ0
j )

2

2(σ0
j )2V2 − 1

2 + log
(

(σ0
j )2

γ2

)
+ γ2−(σ0

j )2

(σ0
j )2

]

We end the proof by remaining that there also exists a distribution ρp,n ∈ M+
1 (SK)

such that ∫
K(p0, p)ρp,n(dp) ≤ K

4 log(nK)
n

and
K(ρp,n, πp) ≤ nK

4 log(nK)
n

.

We can finally conclude using again Theorem 4.3.1 with

rn,K = 4 log(nK)
n

K∨
j=1

Rj,n

= 4 log(nK)
n

∨ 1
2n

K∨
j=1

1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 +
(µ0

j)2

2(σ0
j )2V2−

1
2+log

(
(σ0

j )2

γ2

)
+
γ2 − (σ0

j )2

(σ0
j )2

]

i.e.

rn,K = 4 log(nK)
n

K∨
j=1

1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 +
(µ0

j)2

2(σ0
j )2V2 −

1
2 +log

(
(σ0

j )2

γ2

)
+
γ2 − (σ0

j )2

(σ0
j )2

]
.

Factorized prior

Proof. Let us focus now on the case of independant priors πj = N (0,V2)⊗ IG(1, γ2) for
j = 1, ..., K. The proof is almost the same as previously.

We define here ρj,n as the product measure of Normal distribution N (µ0
j , θ

2
n) and of

an Inverse-Gamma distribution IG(an, bn) where θ2
n, an and bn are hyperparameters to

be detailed later. Then, we have again:

K(q(µ0
j ,(σ

0
j )2), q(µj ,σ2

j )) = 1
2 log

(
σ2
j

(σ0
j )2

)
+

(σ0
j )2

2σ2
j

+
(µj − µ0

j)2

2σ2
j

− 1
2 .

Hence,∫
K(q(µ0

j ,(σ
0
j )2), q(µj ,σ2

j ))ρj,n(dµj) = 1
2Eσ

2
j∼IG(an,bn)

[
log

(
σ2
j

(σ0
j )2

)]
+ Eσ2

j∼IG(an,bn)

[
(σ0

j )2

2σ2
j

]

+ Eµj∼N (µ0
j ,θ

2
n)

[
(µj − µ0

j)2
]
Eσ2

j∼IG(an,bn)

[
1

2σ2
j

]
− 1

2 .

i.e.∫
K(q(µ0

j ,(σ
0
j )2), q(µj ,σ2

j ))ρj,n(dµj) = −1
2+ an

2bn

(
(σ0

j )2+θ2
n

)
+1

2
(

log(bn)−ψ(an)
)
−1

2 log((σ0
j )2).
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Then we compute the term K(ρj,n, π) as the sum of the Kullback-Leibler divergence
between two Gaussian distributions and between two Inverse-Gamma distributions:

K(ρj,n, πj) = 1
2 log

(
V2

θ2
n

)
+ θ2

n

2V2 +
(µ0

j)2

2V2 −
1
2

+ (an − 1)ψ(an) + log
(

1
Γ(an)

)
+ log

(
bn
γ2

)
+ an

γ2 − bn
bn

.

Then, for θ2
n = 1

n
, an = 1 and bn = (σ0

j )2:

∫
K(q(µ0

j ,(σ
0
j )2), q(µj ,σ2

j ))ρj,n(dµj) = 1
2(σ0

j )2n
≤ Rj,n

and

K(ρj,n, πj) = 1
2 log

(
nV2

)
+ 1

2nV2 +
(µ0

j)2

2V2 −
1
2 + log

(
(σ0

j )2

γ2

)
+
γ2 − (σ0

j )2

(σ0
j )2

= n× 1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 +
(µ0

j)2

2V2 −
1
2 + log

(
(σ0

j )2

γ2

)
+
γ2 − (σ0

j )2

(σ0
j )2

]
≤ nRj,n

with Rj,n = 1
2(σ0

j )2n

∨ 1
n

[
1
2 log

(
nV2

)
+ 1

2nV2 + (µ0
j )

2

2V2 − 1
2 + log

(
(σ0
j )2

γ2

)
+ γ2−(σ0

j )2

(σ0
j )2

]
.

The end of the proof is the same as the one used in the Normal-Inverse-Gamma case.

4.6.7 Proof of Theorem 4.3.6

Proof. We assume that ΘK(rn,K) is not empty (otherwise, this is obvious). Applying
Theorem 2.7 in Alquier and Ridgway (2017) for any α ∈ (0, 1), θ∗ ∈ ΘK(rn,K):

E
[ ∫

Dα(Pθ,P 0)π̃n,α(dθ|Xn
1 )
]
≤ α

1− αK(P 0, Pθ∗)

+ inf
ρ∈F

{
α

1− α

∫
E
[

log Pθ
∗(Xi)

Pθ(Xi)

]
ρ(dθ) +

K(ρp, πp) +∑K
j=1K(ρj, πj)

n(1− α)

}
.

Let us take ρj,n and An,K from the definition of ΘK(rn,K), and ρp,n(dp) ∝ 1(p ∈
An,K)π(dp):

E
[ ∫

Dα(Pθ,P 0)π̃n,α(dθ|Xn
1 )
]
≤ α

1− αK(P 0, Pθ∗)

+ α

1− α

∫
E
[

log Pθ
∗(Xi)

Pθ(Xi)

]
ρp,n(dp)

K∏
j=1

ρj,n(dθj) +
K(ρp,n, πp) +∑K

j=1K(ρj,n, πj)
n(1− α) .
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We have K(ρp,n, πp) = − log(πp(An,K)) ≤ nKrn,K and K(ρj,n, πj) ≤ nrn,K for each j
by definition of ΘK(rn,K). Moreover, as for Lemma 4.6.1:

log Pθ
∗(X)

Pθ(X) = 1
Pθ∗(X)Pθ

∗(X) log Pθ
∗(X)

Pθ(X)

≤ 1
Pθ∗(X)

K∑
j=1

p∗jqθ∗j (X) log
p∗jqθ∗j (X)
pjqθj(X)

=
K∑
j=1

p∗jqθ∗j (X)
Pθ∗(X) log

p∗j
pj

+
K∑
j=1

p∗jqθ∗j (X)
Pθ∗(X) log

qθ∗j (X)
qθj(X)

≤
K∑
j=1

p∗jqθ∗j (X)
Pθ∗(X) log

p∗j
pj

+
K∑
j=1

log
qθ∗j (X)
qθj(X)

and thus, as the support of ρp,n is on An,K on which log p∗j
pj
≤ Krn,K ,∫

E
[

log Pθ
∗(X)

Pθ(X)

]
ρp,n(dp)

K∏
j=1

ρj,n(dθj) ≤
∫
P 0

K∑
j=1

p∗jqθ∗j
Pθ∗

log
p∗j
pj
dµ ρp,n(dp)

+
K∑
j=1

∫
E
[

log
qθ∗j (X)
qθj(X)

]
ρj,n(dθj)

≤
∫
P 0

K∑
j=1

p∗jqθ∗j
Pθ∗

Krn,K dµ ρp,n(dp) +Krn,K

= 2Krn,K
which ends the proof as it holds for any θ∗ ∈ ΘK(rn,K).

4.6.8 Proof of Corollary 4.3.7

Proof. It is sufficient to show that SK × [−L,L]K ⊂ ΘK(rn,K) for

rn,K = 4 log(nK)
n

K∨
j=1

1
n

[
1
2 log

(
n

2

)
+ 1
nV2 + log

(
V
)

+ L2

2V2 −
1
2

]
,

the oracle inequality being a direct corollary. For that, let us take any θ∗ ∈ SK× [−L,L]K
and show that it satisfies the conditions in the definition of ΘK(rn,K).

The existence of a set An,K filling the first condition has already been done in the
proof of Lemma 4.3.2 as 4 log(nK)

n
≤ rn,K .

We define distributions ρj,n ∈ M+
1 (Θ) by Gaussians of mean θ∗j and variance 2

n
(j =

1, ..., K) and we show that for j = 1, ..., K:∫
E
[

log
(
qθ∗j (X)
qθj(X)

)]
ρj,n(dθj) ≤ rn,K , K(ρj,n, πj) ≤ nrn,K .

We start from
log

(
qθ∗j (X)
qθj(X)

)
=

(θj − θ∗j )2

2 − (X − θ∗j )(θj − θ∗j )
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and if we take the mean of this quantity with respect to P 0, we obtain:

E
[

log
(
qθ∗j (X)
qθj(X)

)]
=

(θj − θ∗j )2

2 − (EX − θ∗j )(θj − θ∗j )

and as θj − θ∗j is a zero-mean random variable, we have:∫
E
[

log
(
qθ∗j (X)
qθj(X)

)]
ρj,n(dθj) = 1

2Eθj∼ρj,n [(θj − θ∗j )2]− (EX − θ∗j )Eθj∼ρj,n [θj − θ∗j ]

= 1
2 ×

2
n

≤ rn,K .

Then, we conclude according to Lemma 4.6.2:

K(ρj,n, π) = 1
2 log

(
nV2

2

)
+ 1
nV2 +

(θ∗j )2

2V2 −
1
2

= 1
2 log

(
n

2

)
+ 1
nV2 + log

(
V
)

+
(θ∗j )2

2V2 −
1
2

≤ n× 1
n

[
1
2 log

(
n

2

)
+ 1
nV2 + log

(
V
)

+ L2

2V2 −
1
2

]
≤ nrn,K .

4.6.9 Proof of Theorem 4.4.1

Here, we cannot directly use a result from Alquier and Ridgway (2017). So we start
the proof from scratch, using the main lines of Bhattacharya et al. (2016); Alquier and
Ridgway (2017) with adequate adaptation.

Proof. For any α ∈ (0, 1) and θ ∈ Ω, by definition of the Renyi divergence and using
Dα(P⊗n, R⊗n) = nDα(P,R) as data are i.i.d.:

E
[

exp
(
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)]
= 1

Thus, integrating and using Fubini’s theorem,

E
[ ∫

exp
(
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)
π(dθ)

]
= 1

Using Lemma 4.2.1,

E
[

exp
(

sup
ρ∈M+

1 (Ω)

{∫ (
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)
ρ(dθ)−K(ρ, π)

})]
= 1.

Note that Bhattacharya et al. (2016); Alquier and Ridgway (2017) also used Lemma
4.2.1 in their proofs, this is inspired by the PAC-Bayesian theory (Catoni, 2004, 2007).
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It is interesting to note that Lemma 4.2.1 is at the core of VB: it is used to provide
approximation algorithms, and also to prove the consistency of VB. Thanks to Jensen’s
inequality,

E
[

sup
ρ∈M+

1 (Ω)

{∫ (
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)
ρ(dθ)−K(ρ, π)

}]
≤ 0

Therefore, when considering π̃K̂n,α(.|Xn
1 ) as a distribution onM+

1 (Ω) with all its mass on
Θ
K̂
,

E
[ ∫ (

− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)
)
π̃K̂n,α(dθ|Xn

1 )−K(π̃K̂n,α(.|Xn
1 ), π)

]
≤ 0

Using K(π̃K̂n,α(.|Xn
1 ), π) = K(π̃K̂n,α(.|Xn

1 ),Π
K̂

) + log( 1
π
K̂

), we rearrange terms:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ E
[

α

1− α

∫ rn(Pθ, P 0)
n

π̃K̂n,α(dθ|Xn
1 ) +

K(π̃K̂n,α(.|Xn
1 ),Π

K̂
)

n(1− α) +
log( 1

π
K̂

)

n(1− α)

]

Thus, by definition of K̂,

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ E
[

inf
K≥1

{
α

1− α

∫ rn(Pθ, P 0)
n

π̃Kn,α(dθ|Xn
1 ) +

K(π̃Kn,α(.|Xn
1 ),ΠK)

n(1− α) +
log( 1

πK
)

n(1− α)

}]

which leads to

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ inf
K≥1

{
E
[

α

1− α

∫ rn(Pθ, P 0)
n

π̃Kn,α(dθ|Xn
1 ) +

K(π̃Kn,α(.|Xn
1 ),ΠK)

n(1− α) +
log( 1

πK
)

n(1− α)

]}

and by definition of π̃Kn,α(.|Xn
1 ),

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ inf
K≥1

{
E
[

inf
ρ∈M+

1 (ΘK)

{
α

1− α

∫ rn(Pθ, P 0)
n

ρ(dθ) + K(ρ,ΠK)
n(1− α)

}
+

log( 1
πK

)
n(1− α)

]}
.

Then,

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
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≤ inf
K≥1

inf
ρ∈M+

1 (ΘK)

{
E
[

α

1− α

∫ rn(Pθ, P 0)
n

ρ(dθ) + K(ρ,ΠK)
n(1− α) +

log( 1
πK

)
n(1− α)

]}
.

And finally,

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
≤ inf

K≥1
inf

ρ∈M+
1 (ΘK)

{
α

1− α

∫
K(P 0, Pθ)ρ(dθ)+K(ρ,ΠK)

n(1− α) +
log( 1

πK
)

n(1− α)

}
.

To conclude, we just need to upper bound the function inside the infimum over all integers
K’s by α

1−α infθ∗∈ΘK(rn,K)K(P 0, Pθ∗) + 1+α
1−α2Krn,K +

log( 1
πK

)
n(1−α) . This is direct: if the set

ΘK(rn,K) is not empty (otherwise the inequality is obvious) we notice that K(P 0, Pθ) =

K(P 0, Pθ∗) + E
[

log Pθ∗ (Xi)
Pθ(Xi)

]
for any θ∗ ∈ ΘK(rn,K) and then we follow the sketch of the

proof of Theorem 4.3.6.

4.6.10 Algorithms

We now provide the derivations leading to the algorithms described in the paper.

Algorithm 1

We apply a coordinate descent on variables ω1 ∈ SK ,..., ωn ∈ SK , ρp ∈ M+
1 (SK),

ρ1 ∈M+
1 (Θ),..., and ρK ∈M+

1 (Θ) in order to solve the optimization program:

min
ρ∈F , w∈SnK

{
− α

n∑
i=1

K∑
j=1

ωij

(∫
log(pj)ρp(dp) +

∫
log(qθj(Xi))ρj(dθj)

)

+ α
n∑
i=1

K∑
j=1

ωij log(ωij) +K(ρp, πp) +
K∑
j=1
K(ρj, πj)

}
.

We explain how to obtain Algorithm 1.

Optimization with respect to ωi ∈ SK:

First, we fix ω` ∈ SK for ` 6= i, ρp ∈ M+
1 (SK) and ρj ∈ M+

1 (Θ) for j = 1, ..., K, and we
solve the program with respect to ωi ∈ SK , which becomes:

min
ωi∈SK

{
K∑
j=1

ωij

(
log(ωij)−

∫
log(pj)ρp(dp)−

∫
log(qθj(Xi))ρj(dθj)

)}
.

Put E = {1, ..., K}, λ =
(

1
K
, ..., 1

K

)
and h(j) =

∫
log(pj)ρp(dp) +

∫
log(qθj(Xi))ρj(dθj)

and use Lemma 4.2.1 to obtain:

wij ∝ exp
(∫

log(pj)ρp(dp) +
∫

log(qθj(Xi))ρj(dθj)
)
.
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Optimization with respect to ρp ∈M+
1 (SK):

Now, we fix ωi ∈ SK for i = 1, ..., n, and ρj ∈ M+
1 (Θ) for j = 1, ..., K, and we solve the

program with respect to ρp ∈M+
1 (SK), which becomes:

min
ρp∈M+

1 (SK)

{
− α

n∑
i=1

K∑
j=1

ωij

∫
log(pj)ρp(dp) +K(ρp, πp)

}
.

Using Lemma 4.2.1 for E = SK , λ = πp and h(p) = α
n∑
i=1

K∑
j=1

ωij log(pj), we get directly
the solution:

ρp(dp) ∝ exp
(
α

n∑
i=1

K∑
j=1

ωij log(pj)
)
πp(dp).

Optimization with respect to ρj ∈M+
1 (Θ):

Now, we fix ωi ∈ SK for i = 1, ..., n, ρp ∈ M+
1 (SK) and ρ` ∈ M+

1 (Θ) for ` 6= j, and we
solve the program with respect to ρj ∈M+

1 (Θ), which becomes:

min
ρj∈M+

1 (Θ)

{
− α

n∑
i=1

ωij

∫
log(qθj(Xi))ρj(dθj) +K(ρj, πj)

}
.

Using Lemma 4.2.1 for E = Θ, λ = πj and h(θj) = α
n∑
i=1

ωij log(qθj(Xi)), we get directly
the solution:

ρj(dθj) ∝ exp
(
α

n∑
i=1

ωij log(qθj(Xi))
)
πj(dθj)

Application to multinomial mixture models

We simply use

∫
log(pj)ρp(dp) = Ep∼ρp [log(pj)] = ψ(φj)− ψ(

K∑
`=1

φ`),

∫
log(qθj(Xi))ρj(dθj) = Eθj∼ρj [log(θXi,j)] = ψ(γXi,j)− ψ

( V∑
v=1

γvj
)
,

exp
(
α

n∑
i=1

K∑
j=1

ωij log(pj)
)
πp(p) =

K∏
j=1

p
αj+α

∑n

i=1 ω
i
j−1

j ,

exp
(
α

n∑
i=1

ωij log(qθj(Xi))
)
πj(θj) =

V∏
v=1

θ
βv+α

n∑
i=1

ωij1(Xi=v)−1

vj .

We recognize a Dirichlet distribution.
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Application to Gaussian mixture models

For Gaussian mixtures, use
∫

log(pj)ρp(dp) = Ep∼ρp [log(pj)] = ψ(φj)− ψ(
K∑
`=1

φ`),

∫
log(qθj(Xi))ρj(dθj) = −1

2Eθj∼ρj [(θj −Xi)2] + cst = −1
2
{
s2
j + (nj −Xi)2

}
+ cst,

exp
(
α

n∑
i=1

K∑
j=1

ωij log(pj)
)
πp(p) =

K∏
j=1

p
αj+α

∑n

i=1 ω
i
j−1

j ,

exp
(
α

n∑
i=1

ωij log(qθj(Xi))
)
πj(θj) ∝ exp

(
− α

2

n∑
i=1

ωij(θj −Xi)2
)

exp
(
− 1

2V2 θ
2
j

)

∝ exp
(
−

1/V2 + α
∑n
i=1 ω

i
j

2

(
θj −

α
∑n
i=1 ω

i
jXi

1/V2 + α
∑n
i=1 ω

i
j

)2)
.

We recognize a Gaussian distribution.
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Supplementary material

We provide in this supplementary material a very short simulation study. Our objective
is not to compare extensively EM to CAVI as this was already done in many papers
(mentioned in the main body of the paper). We just show on a low-dimensional example
that the properties of VB with α = 1/2 and α = 1 (CAVI) are very close one to each
other, and to the ones of EM.

We compare our algorithm for α = 0.5 and α = 1 (equivalent to CAVI) to EM
algorithm for unit-variance Gaussian mixture parameters estimation. We consider 10
different unit-variance Gaussian mixtures which parameters (p0, θ0

1, θ
0
2, θ

0
3) are generated

independently from a Dirichlet distribution p0 ∼ DK(2/3, 2/3, 2/3) and Gaussians θ0
j ∼

N (0, 10) for j = 1, 2, 3. From these mixtures, we create 10 different datasets which contain
1000 i.i.d. realizations of the corresponding mixtures. We compare our algorithms using
the Mean Average Error (MAE) between the estimates and the true parameters. For
each dataset, we run each algorithm 5 times and keep the one with the lowest MAE in
order to avoid situations where the initialization leads to a local optimum. Then, we
average the resulting MAEs over the different datasets to obtain the final values of the
MAE. We also record the standard deviation of the MAE over the different datasets.
The following table summarizes the results. Values in brackets represent the standard
deviations of the series of MAEs, and the three components are ordered in ascending
values. The three estimations are comparable both in terms of estimation precision and
computational efficiency :

Algorithm p θ1 θ2 θ3
VB (α = 0.5) 0.033 (0.020) 0.137 (0.297) 0.383 (1.108) 0.054 (0.047)
VB (α = 1) 0.033 (0.020) 0.139 (0.207) 0.364 (0.968) 0.056 (0.039)

EM 0.033 (0.021) 0.141 (0.219) 0.364 (0.968) 0.059 (0.047)
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Chapter 5

Convergence Rates of Variational
Inference in Sparse Deep Learning

Variational inference is becoming more and more popular for approximating intractable
posterior distributions in Bayesian statistics and machine learning. Meanwhile, a few re-
cent works have provided theoretical justification and new insights on deep neural networks
for estimating smooth functions in usual settings such as nonparametric regression. In
this chapter, we show that variational inference for sparse deep learning retains the same
generalization properties than exact Bayesian inference. In particular, we highlight the
connection between estimation and approximation theories via the classical bias-variance
trade-off and show that it leads to near-minimax rates of convergence for Hölder smooth
functions. Additionally, we show that the model selection framework over the neural net-
work architecture via ELBO maximization does not overfit and adaptively achieves the
optimal rate of convergence.

5.1 Introduction

Deep learning (DL) is a field of machine learning that aims to model data using complex
architectures combining several nonlinear transformations with hundreds of parameters
called Deep Neural Networks (DNN) (LeCun et al., 2015; Goodfellow et al., 2016). Al-
though generalization theory that explains why DL generalizes so well is still an open
problem, it is widely acknowledged that it mainly takes advantage of large datasets con-
taining millions of samples and a huge computing power coming from clusters of graphics
processing units. Very popular architectures for deep neural networks such as the mul-
tilayer perceptron, the convolutional neural network (Lecun et al., 1998), the recurrent
neural network (Rumelhart et al., 1986) or the generative adversarial network (Goodfel-
low et al., 2014) have shown impressive results and have enabled to perform better than
humans in various important areas in artificial intelligence such as image recognition,
game playing, machine translation, computer vision or natural language processing, to
name a few prominent examples. An outstanding example is AlphaGo (Silver et al.,
2017), an artificial intelligence developed by Google that learned to play the game of Go
using deep learning techniques and even defeated the world champion in 2016.



The Bayesian approach, leading to popular methods such as Hidden Markov Models
(Baum and Petrie, 1966) and Particle Filtering (Doucet and Johansen, 2009), provides a
natural way to model uncertainty. Some prior distribution is put over the space of param-
eters and represents the prior belief as to which parameters are likely to have generated
the data before any datapoint is observed. Then this prior distribution is updated using
the Bayes rule when new data arrive in order to capture the more likely parameters given
the observations. Unfortunately, exact Bayesian inference is computationally challenging
for complex models as the normalizing constant of the posterior distribution is often in-
tractable. In such cases, approximate inference methods such as variational inference (VI)
(Jordan et al., 1999) and expectation propagation (Minka, 2001) are popular to overcome
intractability in Bayesian modeling. The idea of VI is to minimize the Kullback-Leibler
(KL) divergence with respect to the posterior given a set of tractable distributions, which
is also equivalent to maximizing a numerical criterion called the Evidence Lower Bound
(ELBO). Recent advances of VI have shown great performance in practice and have been
applied to many machine learning problems (Hoffman et al., 2013; Kingma and Welling,
2013).

The Bayesian approach to learning in neural networks has a long history. Bayesian
Neural Networks (BNN) have been first proposed in the 90s and widely studied since then
(MacKay, 1992b; Neal, 1995). They offer a probabilistic interpretation and a measure
of uncertainty for DL models. They are more robust to overfitting than classical neural
networks and still achieve great performance even on small datasets. A prior distribution
is put on the parameters of the network, namely the weight matrices and the bias vec-
tors, for instance a Gaussian or a uniform distribution, and Bayesian inference is done
through the likelihood specification. Nevertheless, state-of-the-art neural networks may
contain millions of parameters and the form of a neural network is not adapted to exact
integration, which makes the posterior distribution be intractable in practice. Modern
approximate inference mainly relies on VI, with sometimes a flavor of sampling tech-
niques. A lot of recent papers have investigated variational inference for DNNs (Hinton
and van Camp, 1993; Graves, 2011; Blundell et al., 2015) to fit an approximate posterior
that maximizes the evidence lower bound. For instance, Blundell et al. (2015) introduced
Bayes by Backprop, one of the most famous techniques of VI applied to neural networks,
which derives a fully factorized Gaussian approximation to the posterior: using the repa-
rameterization trick (Opper and Archambeau, 2008), the gradients of ELBO towards
parameters of the Gaussian approximation can be computed by backpropagation, and
then be used for updates. Another point of interest in DNNs is the choice of the prior.
Blundell et al. (2015) introduced a mixture of Gaussians prior on the weights, with one
mixture tightly concentrated around zero, imitating the sparsity-inducing spike-and-slab
prior. This offers a Bayesian alternative to the dropout regularization procedure (Srivas-
tava et al., 2014) which injects sparsity in the network by switching off randomly some
of the weights of the network. This idea goes back to David MacKay who discussed in
his thesis the possibility of choosing a spike-and-slab prior over the weights of the neural
network (MacKay, 1992a). More recently, Rockova and Polson (2018) introduced Spike-
and-Slab Deep Learning (SS-DL), a fully Bayesian alternative to dropout for improving
generalizability of deep ReLU networks.
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5.1.1 Related work

Although deep learning is extremely popular, the study of generalization properties of
DNNs is still an open problem. Some works have been conducted in order to investigate
the theoretical properties of neural networks from different points of view. The literature
developed in the past decades can be shared in three parts. First, the approximation
theory wonders how well a function can be approximated by neural networks. The first
studies were mostly conducted to obtain approximation guarantees for shallow neural
nets with a single hidden layer (Cybenko, 1989; Barron, 1993). Since then, modern re-
search has focused on the expressive power of depth and extended the previous results
to deep neural networks with a larger number of layers (Bengio and Delalleau, 2011;
Yarotsky, 2016; Petersen and Voigtländer, 2017; Grohs et al., 2019). Indeed, even though
the universal approximation theorem (Cybenko, 1989) states that a shallow neural net-
work containing a finite number of neurons can approximate any continuous function
on compact sets under mild assumptions on the activation function, recent advances
showed that a shallow network requires exponentially many neurons in terms of the di-
mension to represent a monomial function, whereas linearly many neurons are sufficient
for a deep network (Rolnick and Tegmark, 2018). Second, as the objective function in
deep learning is known to be nonconvex, the optimization community has discussed the
landscape of the objective as well as the dynamics of some learning algorithms such
as Stochastic Gradient Descent (SGD) (Baldi and Hornik, 1989; Stanford et al., 2000;
Soudry and Carmon, 2016; Kawaguchi, 2016; Kawaguchi et al., 2019; Nguyen et al., 2019;
Allen-Zhu et al., 2019; Du et al., 2019). Finally, the statistical learning community has
investigated generalization properties of DNNs, see Barron (1994); Zhang et al. (2017);
Schmidt-Hieber (2017); Suzuki (2018); Imaizumi and Fukumizu (2019); Suzuki (2019).
In particular, Schmidt-Hieber (2017) and Suzuki (2019) showed that estimators in non-
parametric regression based on sparsely connected DNNs with ReLU activation function
and wisely chosen architecture achieve the minimax estimation rates (up to logarithmic
factors) under classical smoothness assumptions on the regression function. In the same
time, Bartlett et al. (2017) and Neyshabur et al. (2018) respectively used Rademacher
complexity and covering number, and PAC-Bayes theory to get spectrally-normalized
margin bounds for deep ReLU networks. More recently, Imaizumi and Fukumizu (2019)
and Hayakawa and Suzuki (2019) showed the superiority of DNNs over linear operators
in some situations when DNNs achieve the minimax rate of convergence while alter-
native methods fail. From a Bayesian point of view, Rockova and Polson (2018) and
Suzuki (2018) studied the concentration of the posterior distribution while Vladimirova
et al. (2019) investigated the regularization effect of prior distributions at the level of the
units.

Such as for generalization properties of DNNs, only little attention has been put in
the literature towards the theoretical properties of VI until recently. Alquier et al. (2016)
studied generalization properties of variational approximations of Gibbs distributions in
machine learning for bounded loss functions. Alquier and Ridgway (2017); Zhang and
Gao (2017); Sheth and Khardon (2017); Bhattacharya et al. (2018); Chérief-Abdellatif
and Alquier (2018); Chérief-Abdellatif (2019a); Jaiswal et al. (2019a) extended the pre-
vious guarantees to more general statistical models and studied the concentration of
variational approximations of the posterior distribution, while Wang and Blei (2018) pro-
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vided Bernstein-von-Mises’ theorems for variational approximations in parametric mod-
els. Huggins et al. (2018); Campbell and Li (2019); Jaiswal et al. (2019b) discussed
theoretical properties of variational inference algorithms based on various divergences
(respectively Wasserstein and Hellinger distances, and Rényi divergence). More recently,
Chérief-Abdellatif et al. (2019) presented generalization bounds for online variational in-
ference. All these works show that under mild conditions, the variational approximation
is consistent and achieves the same rate of convergence than the Bayesian posterior dis-
tribution it approximates. Note that Alquier and Ridgway (2017); Bhattacharya et al.
(2018); Chérief-Abdellatif and Alquier (2018); Chérief-Abdellatif (2019a) restricted their
studies to tempered versions of the posterior distribution where the likelihood is raised
to an α-power (α < 1) as it is known to require less stringent assumptions to obtain con-
sistency and to be robust to misspecification, see respectively Bhattacharya et al. (2016)
and Grünwald et al. (2017). Nevertheless, some questions remain unanswered, as the
theoretical study of generalization of variational inference for deep neural networks.

5.1.2 Contributions

this chapter aims at filling the gap between theory and practice when using variational
approximations for tempered Bayesian Deep Neural Networks. To the best of our knowl-
edge, this is the first paper to present theoretical generalization error bounds of varia-
tional inference for Bayesian deep learning. Inspired by the related literature, our work
is motivated by the following questions:

• Do consistency of Bayesian DNNs still hold when an approximation is used instead
of the exact posterior distribution, and can we obtain the same rates of conver-
gence than those obtained for the regular posterior distribution and frequentist
estimators?

• Is it possible to obtain a nonasymptotic generalization error bound that holds for
(almost) any generating distribution function and that gives a general formula?

• What about the consistency of numerical algorithms used to compute these varia-
tional approximations?

• Can we obtain new insights on the structure of the networks?

The main contribution of this chapter, a nonasymptotic generalization error bound for
variational inference in sparse DL in the nonparametric regression framework, answers
the first two questions. This generalization result is similar to theoretical inequalities
in the seminal works of Suzuki (2018); Imaizumi and Fukumizu (2019); Rockova and
Polson (2018) on generalization properties of deep neural networks, and is inspired by the
general literature on the consistency of variational approximations (Alquier and Ridgway,
2017; Bhattacharya et al., 2018). In particular, it states that under the same conditions,
sparse variational approximations of posterior distributions of deep neural networks are
consistent at the same rate of convergence than the exact posterior.

It also raises the question of finding a relevant general definition of consistency that can
be used to provide theoretical properties for the exact Bayesian DNNs distribution and
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their variational approximations. Indeed, a classical criterion used to assess frequentist
guarantees for Bayesian estimators is the concentration of the posterior (to the true
distribution) which is defined as the asymptotic concentration of the Bayesian estimator
to the true distribution (Ghosal et al., 2000). Nevertheless, posterior concentration to
the true distribution only applies when the model is well specified, or at least when
the model contains distributions in the neighborhood of the true distribution, which is
problematic for misspecified models e.g. when the neural network does not sufficiently
approximate the generating distribution. And although the posterior distribution may
concentrate to the best approximation of the true distribution in KL divergence in such
misspecified models, there exists pathological cases where the regular Bayesian posterior
is not consistent at all, see Grünwald et al. (2017). This is the reason why we focus here on
tempered posteriors which are robust to such misspecification. Therefore, we introduce in
Section 5.2 a notion of consistency of a Bayesian estimator which is closely related to the
notion of concentration - even stronger - and which enables a more robust formulation of
generalization error bounds for variational approximations. See Appendix 5.6.1 for more
details on the connection between the notions of consistency and concentration.

Then we focus on optimization aspects. We no longer assume an ideal optimization, as
done for instance in Schmidt-Hieber (2017); Imaizumi and Fukumizu (2019). We address
in this chapter the question of the consistency of numerical algorithms used to compute
our ideal approximations. We consider an optimization error given by any algorithm and
independent to the statistical error, and we show how it affects our generalization result.
Our upper bound highlights the connection between the consistency of the variational
approximation and the convergence of the ELBO.

We also provide insights on the structure of the network which leads to optimal rates
of convergence, i.e. its depth, its width and its sparsity. Indeed, in our first generalization
error bound, the structure of the network is ideally tuned for some choice of the generating
function, and we show how to choose such a structure. Nevertheless, the characteristics of
the regression function may be unknown, e.g. we may know that the regression function is
Hölder continuous but we ignore its level of smoothness. We propose here an automated
method for choosing the architecture of the network. We introduce a classical model
selection framework based on the ELBO criterion (Chérief-Abdellatif, 2019a), and we
show that the variational approximation associated with the selected structure does not
overfit and adaptively achieves the optimal rate of convergence even without any oracle
information.

The rest of this chapter is organized as follows. Section 5.2 introduces the notations
and the framework that will be considered in the paper, and presents sparse spike-and-slab
variational inference for deep neural networks. Section 5.3 provides theoretical general-
ization error bounds for variational approximations of DNNs and shows the optimality
of the method for estimating Hölder smooth functions. Finally, insights on the choice
of the architecture of the network are given in Section 5.4 via the ELBO maximization
framework. All the proofs are deferred to the appendix.
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5.2 Sparse deep variational inference

Let us introduce the notations and the statistical framework we adopt in this chapter. For
any vector x = (x1, ..., xd) ∈ [−1, 1]d and any real-valued function f defined on [−1, 1]d,
d > 0, we denote:

‖x‖∞ = max
1≤i≤d

|xi| , ‖f‖2 =
(∫

f 2
)1/2

and ‖f‖∞ = sup
y∈[−1,1]d

|f(y)|.

For any k ∈ {0, 1, 2, ...}d, we define |k| = ∑d
i=1 ki and the mixed partial derivatives when

all partial derivatives up to order |k| exist:

Dkf(x) = ∂|k|f

∂k1x1...∂kdxd
(x).

We also introduce the notion of β-Hölder continuity for β > 0. We denote bβc
the largest integer strictly smaller than β. Then f is said to be β-Hölder continuous
(Tsybakov, 2008) if all partial derivatives up to order bβc exist and are bounded, and if:

‖f‖Cβ := max
|k|≤bβc

‖Dkf‖∞ + max
|k|=bβc

sup
x,y∈[−1,1]d,x 6=y

|Dkf(x)−Dkf(y)|
‖x− y‖β−bβc∞

< +∞.

‖f‖Cβ is the norm of the Hölder space Cβ = {f/‖f‖Cβ < +∞}.

5.2.1 Nonparametric regression

We consider the nonparametric regression framework. We have a collection of random
variables (Xi, Yi) ∈ [−1, 1]d × R for i = 1, ..., n which are independent and identically
distributed (i.i.d.) with the generating process:Xi ∼ U([−1, 1]d),

Yi = f0(Xi) + ζi

where U([−1, 1]d) is the uniform distribution on the interval [−1, 1]d, ζ1, ..., ζn are i.i.d.
Gaussian random variables with mean 0 and known variance σ2, and f0 : [−1, 1]d → R is
the true unknown function. For instance, the true regression function f0 may belong to
the set Cβ of Hölder functions with level of smoothness β.

5.2.2 Deep neural networks

We call deep neural network any map fθ : Rd → R defined recursively as follows:
x(0) := x,

x(`) := ρ(A`x(`−1) + b`) for ` = 1, ..., L− 1,
fθ(x) := ALx

(L−1) + bL
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where L ≥ 3. ρ is an activation function acting componentwise. For instance, we can
choose the ReLU activation function ρ(u) = max(u, 0). Each A` ∈ RD`×D`−1 is a weight
matrix such that its (i, j) coefficient, called edge weight, connects the j-th neuron of
the (` − 1)-th layer to the i-th neuron of the `-th layer, and each b` ∈ RD` is a shift
vector such that its i-th coefficient, called node vector, represents the weight associated
with the i-th node of layer `. We set D0 = d the number of units in the input layer,
DL = 1 the number of units in the output layer and D` = D the number of units in the
hidden layers. The architecture of the network is characterized by its number of edges
S, i.e. the total number of nonzero entries in matrices A` and vectors b`, its number of
layers L ≥ 3 (excluding the input layer), and its width D ≥ 1. We have S ≤ T where
T = ∑L

`=1D`(D`−1 + 1) is the total number of coefficients in a fully connected network.
By now, we consider that S, L and D are fixed, and d = O(1) as n→ +∞. In particular,
we assume that d ≤ D, which implies that T ≤ LD(D + 1). We also suppose that the
absolute values of all coefficients are upper bounded by some positive constant B ≥ 2.
This boundedness assumption will be relaxed in the appendix, see Appendix 5.6.7. Then,
the parameter of a DNN is θ = {(A1, b1), ..., (AL, bL)}, and we denote ΘS,L,D the set of all
possible parameters. We will also alternatively consider the stacked coefficients parameter
θ = (θ1, ..., θT ).

5.2.3 Bayesian modeling

We adopt a Bayesian approach, and we place a spike-and-slab prior π (Castillo et al.,
2015) over the parameter space ΘS,L,D (equipped with some suited sigma-algebra) that
is defined hierarchically. The spike-and-slab prior is known to be a relevant alternative
to dropout for Bayesian deep learning, see Rockova and Polson (2018). First, we sample
a vector of binary indicators γ = (γ1, ..., γT ) ∈ {0, 1}T uniformly among the set SST of
T -dimensional binary vectors with exactly S nonzero entries, and then given γt for each
t = 1, ..., T , we put a spike-and-slab prior on θt that returns 0 if γt = 0 and a random
sample from a uniform distribution on [−B,B] otherwise:γ ∼ U(SST ),

θt|γt ∼ γt U([−B,B]) + (1− γt)δ{0}, t = 1, ..., T

where δ{0} is a point mass at 0 and U([−B,B]) is a uniform distribution on [−B,B]. We
recall that the sparsity level S is fixed here and that this assumption will be relaxed in
Section 5.4.

Remark 5.2.1. We consider uniform distributions for simplicity as in similar works
(Rockova and Polson, 2018; Suzuki, 2018), but Gaussian distributions can be used as
well when working on an unbounded parameter set ΘS,L,D, see Theorem 5.6.2 in Appendix
5.6.7.

Then we define the tempered posterior distribution πn,α on parameter θ ∈ ΘS,L,D

using prior π for any α ∈ (0, 1):

πn,α(dθ) ∝ exp
(
− α

2σ2

n∑
i=1

(Yi − fθ(Xi))2
)
π(dθ),
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which is a slight variant of the definition of the regular Bayesian posterior (for which
α = 1). This distribution is known to be easier to sample from, to require less stringent
assumptions to obtain concentration, and to be robust to misspecification, see respectively
Behrens et al. (2012), Bhattacharya et al. (2016) and Grünwald et al. (2017).

5.2.4 Sparse variational inference

The variational Bayes approximation π̃n,α of the tempered posterior is defined as the
projection (with respect to the Kullback-Leibler divergence) of the tempered posterior
onto some set FS,L,D:

π̃n,α = arg min
q∈FS,L,D

KL(q‖πn,α).

which is equivalent to:

π̃n,α = arg min
q∈FS,L,D

{
α

2σ2

n∑
i=1

∫
(Yi − fθ(Xi))2q(dθ) + KL(q‖π)

}
(5.1)

where the function inside the argmin operator in (5.1) is the opposite of the evidence
lower bound Ln(q).

We choose a sparse spike-and-slab variational set FS,L,D - see for instance Tonolini
et al. (2019) - which can be seen as an extension of the popular mean-field variational set
with a dependence assumption specifying the number of active neurons. The mean-field
approximation is based on a decomposition of the space of parameters ΘS,L,D as a product
θ = (θ1, ..., θT ) and consists in compatible product distributions on each parameter θt,
t = 1, ..., T . Here, we fit a distribution in the family that matches the prior: we first
choose a distribution πγ on the set SST that selects a T -dimensional binary vector γ with
S nonzero entries, and then we place a spike-and-slab variational approximation on each
θt given γt: γ ∼ πγ,

θt|γt ∼ γt U([lt, ut]) + (1− γt)δ{0} for each t = 1, ..., T

where −1 ≤ lt ≤ ut ≤ 1, with the distribution πγ and the intervals [lt, ut], t = 1, ..., T as
the hyperparameters of the variational set FS,L,D. In particular, if we choose a determin-
istic πγ = δ{γ′} with γ′ ∈ SST , then we will obtain a parametric mean-field approximation.
See Section 6.6 of the PhD thesis of Gal (2016) for a more detailed discussion on the
connection between Gaussian mean-field and sparse spike-and-slab posterior approxima-
tions.

The generalization error of the tempered posterior πn,α and of its variational approx-
imation π̃n,α is the expected average of the squared L2-distance to the true generating
function over the Bayesian estimator:

E
[ ∫
‖fθ − f0‖2

2πn,α(dθ)
]

and E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]
.

We say that a Bayesian estimator is consistent at rate rn → 0 if its generalization er-
ror is upper bounded by rn. Notice that consistency of the Bayesian estimator implies
concentration to f0. Again, see Appendix 5.6.1 for the connection between these two
notions.
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5.3 Generalization of variational inference for neural
networks

The first result of this section is an extension of the result of Rockova and Polson (2018)
on the Bayesian distribution for Hölder regression functions. Indeed, we provide a con-
centration result on the posterior distribution for the expected L2-distance instead of
the empirical L2-distance, which enables generalization instead of reconstruction on the
training datapoints. This result is then extended again to the variational approximation
for our definition of consistency: we show that we can still achieve near-optimality using
an approximation of the posterior without any additional assumption. Finally, we explain
how we can incorporate optimization error in our generalization results.

5.3.1 Concentration of the posterior

Rockova and Polson (2018) gives the first posterior concentration result for deep ReLU
networks when estimating Hölder smooth functions in nonparametric regression with
empirical L2-distance. The authors highlight the flexibility of DNNs over other methods
for estimating β-Hölder smooth functions as there is a large range of values of the level of
smoothness β for which one can obtain concentration, e.g. 0 < β < d for a DNN against
0 < β < 1 for a Bayesian tree.

The following theorem provides the concentration of the tempered posterior distribu-
tion πn,α for deep ReLU neural networks when using the expected L2-distance for some
suitable architecture of the network:

Theorem 5.3.1. Let us assume that α ∈ (0, 1), that f0 is β-Hölder smooth with 0 < β < d
and that the activation function is ReLU. We consider the architecture of Rockova and
Polson (2018) for some positive constant CD independent of n:

L = 8 + (blog2 nc+ 5)(1 + dlog2 de),

D = CDbn
d

2β+d/ log nc,
S ≤ 94d2(β + 1)2dD(L+ dlog2 de).

Then the tempered posterior distribution πn,α concentrates at the minimax rate rn = n
−2β
2β+d

up to a (squared) logarithmic factor for the expected L2-distance in the sense that:

πn,α

(
θ ∈ ΘS,L,D

/
‖fθ − f0‖2

2 > Mn · n
−2β
2β+d · log2 n

)
−−−−→
n→+∞

0

in probability as n→ +∞ for any Mn → +∞.

In order to prove Theorem 5.3.1, we actually have to check that the so-called prior
mass condition is satisfied:

π

(
θ ∈ ΘS,L,D

/
‖fθ − f0‖2

2 ≤ rn

)
≥ e−nrn . (5.2)
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This assumption, introduced in Ghosal et al. (2000) in order to obtain the concentration
of the regular posterior distribution states that the prior must give enough mass to
some neighborhood of the true parameter. As shown in Bhattacharya et al. (2016),
this condition is even sufficient for tempered posteriors. Actually, this inequality was
first stated using the KL divergence instead of the expected L2-distance (see Condition
2.4 in Theorem 2.1 in Ghosal et al. (2000)), but the KL metric is equivalent to the
squared L2-metric in regression problems with Gaussian noise. This prior mass condition
gives us the rate of convergence of the tempered posterior rn = n

−2β
2β+d (up to a squared

logarithmic factor) which is known to be optimal when estimating β-Hölder smooth
functions (Tsybakov, 2008). Note that the log2 n term is common in the theoretical deep
learning literature (Imaizumi and Fukumizu, 2019; Suzuki, 2019; Schmidt-Hieber, 2017).

Remark 5.3.1. The number of parameters of order n
2d

2β+d/ log n ∈ [n2/3/ log(n), n2/ log(n)]
is high compared to standard machine learning methods, which may lead to overfitting and
hence prevent the procedure from achieving the minimax rate of convergence. The sparsity
parameter S which gives a network with a small number of nonzero parameters along with
the spike-and-slab prior help us tackle this issue and obtain optimal rates of convergence
(up to logarithmic factors).

5.3.2 A generalization error bound

The result we state in this subsection applies to a wide range of activation functions,
including the popular ReLU activation and the identity map:

Assumption 5.3.1. In the following, we assume that the activation function ρ is 1-
Lispchitz continuous (with respect to the aboluste value) and is such that for any x ∈ R,
|ρ(x)| ≤ |x|.

We do not assume any longer that the regression function is β-Hölder and we consider
any structure (S, L,D). The following theorem gives a generalization error bound when
using variational approximations instead of exact tempered posteriors for DNNs. The
proof is given in Appendix 5.6.2 and is based on PAC-Bayes theory (Massart, 2007;
Guedj, 2019):

Theorem 5.3.2. For any α ∈ (0, 1),

E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]
≤ 2

1− α inf
θ∗∈ΘS,L,D

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rS,L,Dn , (5.3)

with

rS,L,Dn = LS

n
log(BD) + 2S

n
log(BLD) + S

n
log

(
7dLmax

(n
S
, 1
))
.

The oracle inequality (5.3) ensures consistency of variational Bayes for estimating neu-
ral networks and provides the associated rate of convergence given the structure (S, L,D).
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Indeed, if f0 is a neural network with structure (S, L,D), then the infimum term on the
right hand side of the inequality vanishes and we obtain a rate of convergence of order

rS,L,Dn ∼ max
(
S log(nL/S)

n
,
LS logD

n

)
,

which underlines a linear dependence on the number of layers and the sparsity. In fact,
this rate of convergence is determined by the extended prior mass condition (Alquier and
Ridgway, 2017; Chérief-Abdellatif and Alquier, 2018; Chérief-Abdellatif, 2019a), which
requires that in addition to the previous prior mass condition of Ghosal et al. (2000) and
Bhattacharya et al. (2016), the variational set FS,L,D must contain probability distribu-
tions q that are concentrated enough around the true generating function f0. One of the
main findings of Theorem 5.3.2 is that our choice of the sparse spike-and-slab variational
set FS,L,D is rich enough and that both conditions are actually similar and lead to the
same rate of convergence. Hence, the rate of convergence is the one that satisfies the prior
mass condition (5.2). In particular, as the prior distribution is uniform over the parameter
space, the negative logarithm of the prior mass of the neighborhood of the true regression
function in Equation (5.2) is a local covering entropy, that is the logarithm of the number
of rS,L,Dn -balls needed to cover a neighborhood of the true regression function. Especially,
it has been shown in previous studies that this local covering entropy fully characterizes
the rate of convergence of the empirical risk minimizer for DNNs (Schmidt-Hieber, 2017;
Suzuki, 2019). The rate rS,L,Dn we obtain in this work is exactly of the same order than
the upper bound on the covering entropy number given in Lemma 5 in Schmidt-Hieber
(2017) and in Lemma 3 in Suzuki (2019) which derive rates of convergence for the empir-
ical risk minimizer using different proof techniques. Note that replacing a uniform by a
Gaussian in the prior and variational distributions leads to the same rate of convergence,
see Appendix 5.6.7.

Nevertheless, deep neural networks are mainly used for their computational efficiency
and their ability to approach complex functions, which makes the task of estimating
a neural network not so popular in machine learning. As said earlier, Imaizumi and
Fukumizu (2019) used neural networks for estimating non-smooth functions. In such a
context where the neural network model is misspecified, our generalization error bound is
robust and still holds, and satisfies the best possible balance between bias and variance.

Indeed, the upper bound on the generalization error on the right-hand-side of (5.3)
is mainly divided in two parts: the approximation error of f0 by a DNN fθ∗ in ΘS,L,D

(i.e. the bias) and the estimation error rS,L,Dn of a neural network fθ∗ in ΘS,L,D (i.e.
the variance). For instance, even if the generalization power is decreasing linearly with
respect to the number of layers compared to the logarithmic dependence on the width
due to the variance term, this effect is compensated by the benefits of depth in the ap-
proximation theory of deep learning. Then, as there exists relationships between the
bias/the variance and the architecture of a neural network (respectively due to the ap-
proximation theory/the form of rS,L,Dn ), Theorem 5.3.2 gives both a general formula for
deriving rates of convergence for variational approximations and insight on the way to
choose the architecture. We choose the architecture that minimizes the right-hand-side
of (5.3), which can lead to minimax estimators for smooth functions. It also connects
the approximation and estimation theories following previous studies. This was done for
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instance by Schmidt-Hieber (2017); Suzuki (2019); Imaizumi and Fukumizu (2019) who
exploited the effectiveness of ReLU activation function in terms of approximation ability
(Yarotsky, 2016; Petersen and Voigtländer, 2017) for Hölder/Besov smooth and piecewise
smooth generating functions.

Now we illustrate Theorem 5.3.2 on Hölder smooth functions. The following result
shows that the variational approximation achieves the same rate of convergence than the
posterior distribution it approximates, and even the minimax rate of convergence if the
architecture is well chosen. We present both consistency and concentration results.

Corollary 5.3.3. Let us fix α ∈ (0, 1). We consider the ReLU activation function.
Assume that f0 is β-Hölder smooth with 0 < β < d. Then with L, D and S defined as in
Theorem 5.3.1, the variational approximation of the tempered posterior distribution π̃n,α
is consistent and hence concentrates at the minimax rate rn = n

−2β
2β+d (up to a squared

logarithmic factor):

π̃n,α

(
θ ∈ ΘS,L,D

/
‖fθ − f0‖2

2 > Mn · n
−2β
2β+d · log2 n

)
−−−−→
n→+∞

0

in probability as n→ +∞ for any Mn → +∞.

5.3.3 Optimization error

In this subsection, we discuss the effect of an optimization error that is independent on
the previous statistical error. Indeed, in the variational Bayes community, people use
approximate algorithms in practice to solve the optimization problem (5.1) when the
model is non-conjugate, i.e. the VB solution is not available in closed-form. This is the
case here when considering a sparse spike-and-slab variational approximation in FS,L,D for
DNNs with hyperparameters φ = (πγ, (φt)1≤t≤T ) and an algorithm that gives a sequence
of hyperparameters (φk)k≥1 and associated variational approximations (π̃kn,α)k≥1. The
following theorem gives a statistical guarantee for any approximation π̃kn,α, k ≥ 1:

Theorem 5.3.4. For any α ∈ (0, 1),

E
[ ∫
‖fθ − f0‖2

2π̃
k
n,α(dθ)

]
≤ 2

1− α inf
θ∗
‖fθ∗ − f0‖2

2 + 2
1− α

(
1 + σ2

α

)
rS,L,Dn

+ 2σ2

α(1− α) ·
E[L∗n − Lkn]

n
,

where L∗n is the maximum of the evidence lower bound i.e. the ELBO evaluated at π̃n,α,
while Lkn is the ELBO evaluated at π̃kn,α.

We establish a clear connection between the convergence (in mean) of the ELBO Lkn to
L∗n and the consistency of our algorithm π̃kn,α. Indeed, as soon as the ELBO Lkn converges
at rate ck,n, then our variational approximation π̃kn,α is consistent at rate:

max
(
ck,n
n
,
S log(nL/S)

n
,
SL logD

n

)
.
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In particular, as soon as k is such that ck,n ≤ max(S log n, S logD), then we obtain
consistency of π̃kn,α at rate rS,L,Dn , i.e. π̃kn,α and π̃n,α have the same rate of convergence.

However, deriving the convergence of the ELBO is a hard task. For instance, when
considering a simple Gaussian mean-field approximation without sparsity, the variational
objective Ln can be maximized using either stochastic (Graves, 2011; Blundell et al.,
2015) or natural gradient methods (Khan et al., 2018) on the parameters of the Gaussian
approximation. The convergence of the ELBO is often met in practice (Buchholz et al.,
2018; Mishkin et al., 2018) and the recent work of Osawa et al. (2019) even showed that
Bayesian deep learning enables practical deep learning and matches the performance of
standard methods while preserving benefits of Bayesian principles. Nevertheless, the
objective is nonconvex and hence it is difficult to prove the convergence to a global
maximum in theory. Some recent papers studied global convergence properties of gradient
descent algorithms for frequentist classification and regression losses (Du et al., 2019;
Allen-Zhu et al., 2019) that we may extend to gradient descent algorithms for the ELBO
objective such as Variational Online Gauss Newton or Vadam (Khan et al., 2018; Osawa
et al., 2019).

Another point is to develop and study more complex algorithms than simple gradi-
ent descent that deal with spike-and-slab sparsity-inducing variational inference, as for
instance Titsias and Lázaro-Gredilla (2011) did for multi-task and multiple kernel learn-
ing. Also, Louizos et al. (2018) connected sparse spike-and-slab variational inference with
L0-norm regularization for neural networks and proposed a solution to the intractability
of the L0-penalty term through the use of non-negative stochastic gates, while Bellec
et al. (2018) proposed an algorithm preserving sparsity during training. Nevertheless,
these optimization concerns fall beyond the scope of this chapter and are left for further
research.

5.4 Architecture design via ELBO maximization

We saw in Section 5.3 that the choice of the architecture of the neural network is crucial
and can lead to faster convergence and better approximation. In this section, we formulate
the architecture design of DNNs as a model selection problem and we investigate the
ELBO maximization strategy which is very popular in the variational Bayes community.
This approach is different from Rockova and Polson (2018) which is fully Bayesian and
treats the parameters of the network architecture, namely the depth, the width and the
sparsity, as random variables. We show that the ELBO criterion does not overfit and is
adaptive: it provides a variational approximation with the optimal rate of convergence,
and it does not require the knowledge of the unknown aspects of the regression function
f0 (e.g. the level of smoothness for smooth functions) to select the optimal variational
approximation.

We denote MS,L,D the statistical model associated with the parameter set ΘS,L,D.
We consider a countable number of models, and we introduce prior beliefs πS,L,D over
the sparsity, the depth and the width of the network, that can be defined hierarchically
and that are known beforehand. For instance, the prior beliefs can be chosen such that
πL = 2−L, πD|L follows a uniform distribution over {d, ...,max(eL, d)} given L, and πS|L,D
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a uniform distribution over {1, ..., T} given L and D (we recall that T is the number of
coefficients in a fully connected network). This particular choice is sensible as it allows
to consider any number of hidden layers and (at most) an exponentially large width
with respect to the depth of the network. We still consider spike-and-slab priors on
θS,L,D ∈ ΘS,L,D given modelMS,L,D.

Each tempered posterior associated with modelMS,L,D is denoted πS,L,Dn,α . We recall
that the variational approximation π̃S,L,Dn,α associated with modelMS,L,D is defined as the
distribution into the variational set FS,L,D that maximizes the Evidence Lower Bound:

π̃S,L,Dn,α = arg max
qS,L,D∈FS,L,D

Ln(qS,L,D).

We will simply denote in the following L∗n(S, L,D) the closest approximation to the log-
evidence i.e., the value of the ELBO evaluated at its maximum:

L∗n(S, L,D) = Ln(π̃S,L,Dn,α ).

The model selection criterion we use here to select the architecture of the network is
a slight penalized variant of the classical ELBO criterion (Blei et al., 2017) with strong
theoretical guarantees (Chérief-Abdellatif, 2019a) :

(Ŝ, L̂, D̂) = arg max
S,L,D

{
L∗n(S, L,D)− log

(
1

πS,L,D

)}
.

For any choice of the prior beliefs πS,L,D, compute the ELBO for each model MS,L,D

using an algorithm that will converge to L∗n(S, L,D) and choose the architecture that
maximizes the penalized ELBO criterion. It is possible to restrict to a finite number of
layers in practice (for instance, a factor of n or log n).

The following theorem shows that this ELBO criterion leads to a variational approx-
imation with the optimal rate of convergence:

Theorem 5.4.1. For any α ∈ (0, 1),

E
[ ∫
‖fθ − f0‖2

2π̃
Ŝ,L̂,D̂
n,α (dθ)

]
≤ inf

S,L,D

{
2

1− α inf
θ∗∈ΘS,L,D

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rS,L,Dn

+ 2σ2

α(1− α)
log( 1

πS,L,D
)

n

}
.

This inequality shows that as soon as the complexity term log(1/πS,L,D)/n that reflects
the prior beliefs is lower than the effective rate of convergence that balances the accuracy
and the estimation error rS,L,Dn , the selected variational approximation adaptively achieves
the best possible rate. For instance, it leads to (near-)minimax rates for Hölder smooth
functions and selects the optimal architecture even without the knowledge of β, which
was required in the previous section. Note that for the previous choice of prior beliefs
πL = 2−L, πD|L = 1/(max(eL, d)− d+ 1), πS|L,D = 1/T , we get:

log( 1
πS,L,D

)
n

≤ 2 log(D + 1) + logL+ max(L, log d) + L log 2
n

that is lower than rS,L,Dn (up to a factor) and hence the ELBO criterion does not overfit.
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5.5 Discussion

In this chapter, we provided theoretical justifications for neural networks from a Bayesian
point of view using sparse variational inference. We derived new generalization error
bounds and we showed that sparse variational approximations of DNNs achieve (near-
)minimax optimality when the regression function is Hölder smooth. All our results
directly imply concentration of the approximation of the posterior distribution. We also
proposed an automated method for selecting an architecture of the network with optimal
consistency guarantees via the ELBO maximization framework.

We think that one of the main challenges here is the design of new computational
algorithms for spike-and-slab deep learning in the wake of the work of Titsias and Lázaro-
Gredilla (2011) for multi-task and multiple kernel learning, or those of Louizos et al.
(2018) and Bellec et al. (2018). In the latter paper, the authors designed an algorithm for
training deep networks while simultaneously learning their sparse connectivity allowing
for fast and computationally efficient learning, whereas most approaches have focused on
compressing already trained neural networks.

In the same time, a future point of interest is the study of the global convergence of
these approximate algorithms in nonconvex settings i.e. study of the theoretical conver-
gence of the ELBO. This work was conducted for frequentist gradient descent algorithms
(Allen-Zhu et al., 2019; Du et al., 2019). Such studies should be investigated for Bayesian
gradient descents, as well as for algorithms that preserve the sparsity of the network dur-
ing training.

5.6 Proofs and additional results

5.6.1 Connection between concentration and consistency

In this appendix, we show the connection between the notions of consistency and con-
centration.

The Bayesian estimator ρ (e.g. the tempered posterior πn,α or its variational approx-
imation π̃n,α) is said to be consistent if its generalization error goes to zero as n→ +∞:

E
[ ∫
‖fθ − f0‖2

2ρ(dθ)
]
−−−−→
n→+∞

0.

We say that the Bayesian estimator ρ concentrates at rate rn (Ghosal et al., 2000) if in
probability (with respect to the random variables distributed according to the generating
process), the estimator concentrates asymptotically around the true distribution as n→
+∞, i.e.:

ρ

(
θ ∈ ΘS,L,D

/
‖fθ − f0‖2

2 > Mnrn

)
−−−−→
n→+∞

0.

in probability as n→ +∞ for any Mn → +∞.
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The consistency of the Bayesian distribution ρ at rate rn implies its concentration at
rate rn. Indeed, if we we assume that ρ is consistent at rate rn, i.e.:

E
[ ∫
‖fθ − f0‖2

2ρ(dθ)
]
≤ rn,

then, using Markov’s inequality for any Mn → +∞ as n→ +∞:

E
[
ρ

(
θ ∈ ΘS,L,D

/
‖fθ − f0‖2

2 > Mnrn

)]
≤

E
[ ∫
‖fθ − f0‖2

2ρ(dθ)
]

Mnrn
≤ rn
Mnrn

= 1
Mn

→ 0.

Hence, we have the convergence in mean of ρ
(
θ ∈ ΘS,L,D

/
‖fθ− f0‖2

2 > Mnrn
)
to 0, and

then the convergence in probability of ρ
(
θ ∈ ΘS,L,D

/
‖fθ − f0‖2

2 > Mnrn
)
to 0, i.e. the

concentration of ρ to f0 at rate rn.

5.6.2 Proof of Theorem 5.3.2

The structure of the proof of Theorem 5.3.2 is composed of three main steps. The first one
consists in obtaining the general shape of the inequality using PAC-Bayes inequalities,
and the two others in finding a rate that satisfies the extended prior mass condition.

First step: we obtain the general inequality

We start from inequality 2.6 in Alquier and Ridgway (2017) that provides an upper
bound on the generalization error but in α-Rényi divergence. We denote P 0 the generating
distribution of any (Xi, Yi) and Pθ the distribution characterizing the model. Then, for
any α ∈ (0, 1):

E
[ ∫

Dα(Pθ, P 0)π̃n,α(dθ)
]
≤ inf

q∈FS,L,D

{
α

1− α

∫
KL(P 0, Pθ)q(dθ) + KL(q‖π)

n(1− α)

}
.

Moreover, the α-Rényi divergence is equal to Dα(Pθ, P 0) = α
2σ2‖fθ − f0‖2

2 and the KL
divergence is KL(P 0‖Pθ) = 1

2σ2‖fθ − f0‖2
2, and for any θ∗, ‖fθ − f0‖2

2 ≤ 2‖fθ − fθ∗‖2
2 +

2‖fθ∗ − f0‖2
2. Hence, for any θ∗ ∈ ΘS,L,D:

E
[ ∫ α

2σ2‖fθ − f0‖2
2π̃n,α(dθ)

]

≤ α

1− α
2

2σ2‖fθ∗ − f0‖2
2 + inf

q∈FS,L,D

{
α

1− α

∫ 2
2σ2‖fθ − fθ∗‖

2
2q(dθ) + KL(q‖π)

n(1− α)

}
,

i.e. for any θ∗ ∈ ΘS,L,D,

E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]
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≤ 2
1− α‖fθ

∗ − f0‖2
2 + inf

q∈FS,L,D

{
2

1− α

∫
‖fθ − fθ∗‖2

2q(dθ) + 2σ2

α

KL(q‖π)
n(1− α)

}
.

From now on, the rest of the proof consists in finding a distribution q∗n ∈ FS,L,D that
satisfies for θ∗ = arg minθ∈ΘS,L,D ‖fθ − f0‖2 the extended prior mass condition, i.e. that
satisfies both: ∫

‖fθ − fθ∗‖2
2q
∗
n(dθ) ≤ rn (5.4)

and
KL(q∗n‖π) ≤ nrn (5.5)

with rn = SL
n

log(BD) + S
n

log(BL(D+ 1)2) + S
2n log

(
4n
S

{
3 + (d+ 2)2L2

})
that is smaller

than rS,L,Dn as 3 + (x+ 2)2L2 ≤ 10x2L2 for x ≥ 1 and L ≥ 3. This will lead to:

E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]
≤ 2

1− α inf
θ∗∈ΘS,L,D

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rS,L,Dn .

Second step: we prove Inequality (5.4)

To begin with, we define the loss of the `th layer of the neural network fθ:

r`(θ) = sup
x∈[−1,1]d

sup
1≤i≤D

|f `θ(x)i − f `θ∗(x)i|

where f `θs are defined as the partial networks:f 0
θ (x) := x,

f `θ(x) := ρ(A`f `−1
θ (x) + b`) for ` = 1, ..., L.

We also define the loss of the output layer:

r`(θ) = sup
x∈[−1,1]d

|fLθ (x)− fLθ∗(x)| = sup
x∈[−1,1]d

|fθ(x)− fθ∗(x)|.

We will prove by induction that for any ` = 1, ..., L:

r`(θ) ≤ (BD)`
(
d+ 1 + 1

BD − 1

) ∑̀
u=1

Ãu +
∑̀
u=1

(BD)`−ub̃u

where Ãu = supi,j |Au,i,j − A∗u,i,j| and b̃u = supj |bu,j − b∗u,j|. To do so, we will also prove
by induction that:

c` ≤ B`D`−1
(
d+ 1 + 1

BD − 1

)
where c` = supx∈[−1,1]d sup1≤i≤D |f `θ∗(x)i| for ` = 1, ..., L,

cL = supx∈[−1,1]d |fθ∗(x)|,
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using the formula:

xn ≤ unxn−1 + vn =⇒ xn ≤
n∑
i=2

(
n∏

j=i+1
uj

)
vi +

(
n∏
j=2

uj

)
x1 (5.6)

for any n ≥ 2 with the convention ∏n
j=n+1 uj = 1.

Indeed, we have according to Assumption 5.3.1:

• Initialization:

c1 = sup
x∈[−1,1]d

sup
1≤i≤D

|f 1
θ∗(x)i|

≤ sup
x∈[−1,1]d

sup
1≤i≤D

∣∣∣∣∣
d∑
j=1

A∗1ijxj + b∗1i

∣∣∣∣∣
≤ sup

x∈[−1,1]d
sup

1≤i≤D

{
d∑
j=1
|A∗1ij| · |xj|+ |b∗1i|

}
≤ d ·B · 1 +B

= (d+ 1)B.

• For any layer `:

c` ≤ sup
x∈[−1,1]d

sup
1≤i≤D

∣∣∣∣∣
D∑
j=1

A∗`ijf
`−1
θ∗ (x)j + b∗`i

∣∣∣∣∣
≤ sup

x∈[−1,1]d
sup

1≤i≤D

{
D∑
j=1
|A∗`ij| · |f `−1

θ∗ (x)j|+ |b∗`i|
}

≤ D ·B · c`−1 +B.

• Hence, using Formula (5.6), we get:

c` ≤
∑̀
u=2

( ∏̀
v=u+1

DB

)
B +

( ∏̀
v=2

BD

)
c1

≤ B
∑̀
u=2

(DB)`−u + (BD)`−1(d+ 1)B

= B
`−2∑
u=0

(DB)u + (d+ 1)D`−1B`

= B
(BD)`−1 − 1
BD − 1 + (d+ 1)D`−1B`

≤ B`D`−1
(
d+ 1 + 1

BD − 1

)
.

Let us now come back to finding an upper bound on losses of the partial networks f `θs.
As previously, we have:
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• Initialization:

r1(θ) = sup
x∈[−1,1]d

sup
1≤i≤D

|f 1
θ∗(x)i − f 1

θ (x)i|

≤ sup
x∈[−1,1]d

sup
1≤i≤D

{
d∑
j=1
|A1ij − A∗1ij| · |xj|+ |b1i − b∗1i|

}

≤ d · Ã1 + b̃1.

• For any layer `:

r`(θ) ≤ sup
x∈[−1,1]d

sup
1≤i≤D

{
D∑
j=1
|A`ijf `−1

θ (x)j − A∗`ijf `−1
θ∗ (x)j|+ |b`i − b∗`i|

}

≤ sup
x∈[−1,1]d

sup
1≤i≤D

{
D∑
j=1

[
|A`ij − A∗`ij| · |f `−1

θ∗ (x)j|+ |A`ij| · |f `−1
θ∗ (x)j − f `−1

θ (x)j|
]

+ |b`i − b∗`i|
}

≤ Dc`−1Ã` +BDr`−1(θ) + b̃`

≤ BDr`−1(θ) + Ã`B
`−1D`−1

(
d+ 1 + 1

BD − 1

)
+ b̃`.

• Finally, using Formula (5.6):

r`(θ) ≤
∑̀
u=2

( ∏̀
v=u+1

BD

)(
Ãu(BD)u−1

{
d+ 1 + 1

BD − 1

}
+ b̃u

)
+
( ∏̀
v=2

BD

)
r1(θ)

=
∑̀
u=2

(BD)`−uÃu(BD)u−1
(
d+ 1 + 1

BD − 1

)
+
∑̀
u=2

(BD)`−ub̃u + (BD)`−1r1(θ)

≤
(
d+ 1 + 1

BD − 1

) ∑̀
u=2

(BD)`−1Ãu +
∑̀
u=2

(BD)`−ub̃u + (BD)`−1dÃ1

+ (BD)`−1b̃1

≤ (BD)`−1
(
d+ 1 + 1

BD − 1

) ∑̀
u=1

Ãu +
∑̀
u=1

(BD)`−ub̃u.

Then, for any distribution q:∫
‖fθ − fθ∗‖2

2q(dθ) ≤
∫
‖fθ − fθ∗‖2

∞q(dθ) =
∫
rL(θ)2q(dθ)

≤
∫

2(BD)2L−2
(
d+ 1 + 1

BD − 1

)2( L∑
`=1

Ã`

)2

q(dθ) +
∫

2
(

L∑
`=1

(BD)L−`b̃u
)2

q(dθ)

= 2(BD)2L−2
(
d+ 1 + 1

BD − 1

)2(∫ L∑
`=1

Ã2
`q(dθ) + 2

∫ L∑
`=1

`−1∑
k=1

Ã`Ãkq(dθ)
)

+ 2
(∫ L∑

`=1
(BD)2(L−`)b̃2

l q(dθ) + 2
∫ L∑

`=1

`−1∑
k=1

(BD)L−`(BD)L−kb̃`b̃kq(dθ)
)
.
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Here, we define q∗n(θ) as follows:γ∗t = I(θ∗t 6= 0),
θt ∼ γ∗t U([θ∗t − sn, θ∗t + sn]) + (1− γ∗t )δ{0} for each t = 1, ..., T.

with s2
n = S

4n(BD)−2L
{(

d+ 1 + 1
BD−1

)2
L2

(BD)2 + 1
(BD)2−1 + 2

(BD−1)2

}−1

. Hence:

∫
Ã2
`q
∗
n(dθ) =

∫
sup
i,j

(A`,i,j − A∗`,i,j)2q∗n(dA`,i,j) ≤ s2
n,

and ∫
Ã`Ãkq

∗
n(dθ) =

(∫
sup
i,j
|A`,i,j − A∗`,i,j|q∗n(dθ)

)(∫
sup
i,j
|Ak,i,j − A∗k,i,j|q∗n(dθ)

)
≤ |sn| · |sn| = s2

n,

and similarly,
∫
b̃2
`q
∗
n(dθ) ≤ s2

n and
∫
b̃`b̃kq

∗
n(dθ) ≤ s2

n.
Then∫
‖fθ − fθ∗‖2

2q
∗
n(dθ)

≤ 2(BD)2L−2
(
d+ 1 + 1

BD − 1

)2(∫ L∑
`=1

Ã2
`q(dθ) + 2

∫ L∑
`=1

`−1∑
k=1

Ã`Ãkq(dθ)
)

+ 2
(∫ L∑

`=1
(BD)2(L−`)b̃2

l q(dθ) + 2
∫ L∑

`=1

`−1∑
k=1

(BD)L−`(BD)L−kb̃`b̃kq(dθ)
)

≤ 2(BD)2L−2
(
d+ 1 + 1

BD − 1

)2

s2
n

(
L+ 2

L−1∑
`=0

`

)

+ 2s2
n

L−1∑
`=0

(BD)2` + 4s2
n

L∑
`=1

L−1∑
k=L−`+1

(BD)L−`(BD)k

= 2(BD)2L−2
(
d+ 1 + 1

BD − 1

)2

s2
nL

2

+ 2s2
n

(BD)2L − 1
(BD)2 − 1 + 4s2

n

L∑
`=1

`−2∑
k=0

(BD)L−`(BD)k(BD)L−`+1

= 2s2
n(BD)2L−2

(
d+ 1 + 1

BD − 1

)2

L2

+ 2s2
n

(BD)2L − 1
(BD)2 − 1 + 4s2

n

L∑
`=1

(BD)L−` (BD)`−1 − 1
BD − 1 (BD)L−`+1

≤ 2s2
n(BD)2L−2

(
d+ 1 + 1

BD − 1

)2

L2

+ 2s2
n

(BD)2L − 1
(BD)2 − 1 + 4s2

n

1
BD − 1

L∑
`=1

(BD)2L−`
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= 2s2
n(BD)2L−2

(
d+ 1 + 1

BD − 1

)2

L2

+ 2s2
n

(BD)2L − 1
(BD)2 − 1 + 4s2

n

1
BD − 1(BD)L (BD)L − 1

BD − 1

≤ 2s2
n(BD)2L−2

(
d+ 1 + 1

BD − 1

)2

L2 + 2s2
n

(BD)2L − 1
(BD)2 − 1 + 4s2

n

1
(BD − 1)2 (BD)2L

≤ 2s2
n(BD)2L

{(
d+ 1 + 1

BD − 1

)2
L2

(BD)2 + 1
(BD)2 − 1 + 2

(BD − 1)2

}

= S

2n
≤ rn

which proves Equation (5.4).

Third step: we prove Inequality (5.5)

We will use the fact that for any K, any p, p0 ∈ [0, 1]K such that ∑K
k=1 pk = ∑K

k=1 p
0
k =

1 and any distributions Qk, Q
0
k for k = 1, ..., K, we have:

K
(

K∑
k=1

p0
kQ

0
k

∥∥∥∥∥
K∑
k=1

pkQk

)
≤ K(p0‖p) +

K∑
k=1

p0
kK(Q0

k‖Qk). (5.7)

Please refer to Lemma 6.1 in Chérief-Abdellatif and Alquier (2018) for a proof. Then we
write q∗n and π as mixtures of independent products of mixtures of two components:

q∗n =
∑
γ∈SST

I(γ = γ∗)
T⊗
t=1

{
γt U([lt, ut]) + (1− γt)δ{0}

}

and

π =
∑
γ∈SST

(
T

S∗

)−1 T⊗
t=1

{
γt U([−B,B]) + (1− γt)δ{0}

}

Hence, using Inequality 5.7 twice and the additivity of KL for independent distributions:

KL(q∗n‖π) ≤ KL
(
{I(γ = γ∗)}γ∈SST

∥∥∥∥∥
{(

T ∗

S∗

)−1}
γ∈SST

)
+
∑
γ∈SST

I(γ = γ∗)

KL
(

T⊗
t=1

{
γt U([lt, ut]) + (1− γt)δ{0}

}∥∥∥∥∥
T⊗
t=1

{
γt U([−B,B]) + (1− γt)δ{0}

})

= log
(
T

S

)
+

T∑
t=1

KL
(
γ∗t U([lt, ut]) + (1− γ∗t )δ{0}

∥∥∥∥∥γ∗t U([−B,B]) + (1− γ∗t )δ{0}
)

≤ log
(
T

S

)
+

T∑
t=1

γ∗tKL
(
U([lt, ut])

∥∥∥∥∥U([−B,B])
)

+
T∑
t=1

(1− γ∗t )KL
(
δ{0}‖δ{0}

)
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≤ S log(T ) +
T∑
t=1

γ∗t log
(

2B
ut − lt

)

= S log(T ) +
T∑
t=1

γ∗t log
(

2B
2sn

)

= S log(T ) + S log(B) + S

2 log
(

1
s2
n

)
= S log(T ) + S log(B)

+ S

2 log
(

4n
S

(BD)2L
{(

d+ 1 + 1
BD − 1

)2

L2 + 1
(BD)2 − 1 + 2

(BD − 1)2

})
,

and hence,

KL(q∗n‖π) ≤ S log(T ) + S log(B)

+ S

2 log
(

4n
S

(BD)2L
{(

d+ 1 + 1
BD − 1

)2

L2 + 1
(BD)2 − 1 + 2

(BD − 1)2

})
≤ S log(L(D + 1)2) + S log(B) + LS log(BD)

+ S

2 log
(

4n
S

{(
d+ 1 + 1

BD − 1

)2

L2 + 1
(BD)2 − 1 + 2

(BD − 1)2

})
≤ nrn,

which ends the proof.

5.6.3 Proof of Corollary 5.3.3

Corollary 5.3.3 is a direct consequence of Theorem 5.3.2, and we just need to find an
upper bound on infθ∗∈ΘS,L,D ‖fθ∗ − f0‖2

∞ and rS,L,Dn . Indeed, according to Theorem 5.3.2:

E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]
≤ 2

1− α inf
θ∗∈ΘS,L,D

‖fθ∗ − f0‖2
∞ + 2

1− α

(
1 + σ2

α

)
rn. (5.8)

We directly use the rate rn in the proof of Theorem 5.3.2 rather than rS,L,Dn .

Let us assume that f0 is β-Hölder smooth with 0 < β < d. Then according to Lemma
5.1 in Rockova and Polson (2018), we have for some positive constant CD independent of
n (see Theorem 6.1 in Rockova and Polson (2018)) a neural network with architecture :

L = 8 + (blog2 nc+ 5)(1 + dlog2 de),

D = CDbn
d

2β+d/ log nc,
S ≤ 94d2(β + 1)2dD(L+ dlog2 de),

with an error ‖f−f0‖∞ that is at most a constant multiple of D
n

+D−β/d ≤ CDn
−2β
2β+d/ log n+

C
−β/d
D n

−β
2β+d logβ/d n ≤ (CD/ log n+C

−β/d
D log n)n

−β
2β+d , which gives an upper bound on the

first term of the right-hand-side of Inequality 5.8 of order n
−2β
2β+d log2 n.
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In the same time, we have for some constants C,C ′ that do not depend on n:

rn ≤
SL

n
log(BD) + S

n
log(2BL(D + 1)2) + S

2n log
(

4n
S

{
3 + (d+ 2)2L2

})

≤ C

(
DL2

n
logD + DL

n
log(LD) + DL

n
log n

)

≤ C ′
n

d
2β+d

n
log2 n = C ′n

−2β
2β+d log2 n.

Then the tempered posterior distribution πn,α concentrates at the minimax rate rn =
n
−2β
2β+d up to a (squared) logarithmic factor for the expected L2-distance in the sense that:

πn,α

(
θ ∈ ΘS,L,D

/
‖fθ − f0‖2

2 > Mnn
−2β
2β+d log2 n

)
−−−−→
n→+∞

0.

in probability as n→ +∞ for any Mn → +∞.

5.6.4 Proof of Theorem 5.3.1

We could prove Theorem 5.3.1 using the prior mass condition (5.2) but we will use
instead the same proof than for Theorem 5.3.2. Indeed, we can easily show that for any
θ∗ ∈ ΘS,L,D,

E
[ ∫
‖fθ−f0‖2

2πn,α(dθ)
]
≤ 2

1− α‖fθ
∗−f0‖2

2+inf
q

{
2

1− α

∫
‖fθ−fθ∗‖2

2q(dθ)+
2σ2

α

KL(q‖π)
n(1− α)

}

where the infimum is taken over all the probability distributions on ΘS,L,D. We have:

inf
q

{
2

1− α

∫
‖fθ − fθ∗‖2

2q(dθ) + 2σ2

α

KL(q‖π)
n(1− α)

}

≤ inf
q∈FS,L,D

{
2

1− α

∫
‖fθ − fθ∗‖2

2q(dθ) + 2σ2

α

KL(q‖π)
n(1− α)

}

≤ 2
1− α

(
1 + σ2

α

)
rS,L,Dn ,

which implies

E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]
≤ 2

1− α inf
θ∗∈ΘS,L,D

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rS,L,Dn

≤ 2
1− α inf

θ∗∈ΘS,L,D
‖fθ∗ − f0‖2

∞ + 2
1− α

(
1 + σ2

α

)
rS,L,Dn .

The rest of the proof follows the same lines than the one of Corollary 5.3.3.
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5.6.5 Proof of Theorem 5.3.4

First, we need Donsker and Varadhan’s variational formula. Refer to Lemma 1.1.3. in
Massart (2007) for a proof.

Theorem 5.6.1. For any probability λ on some measurable space (E, E) and any mea-
surable function h : E→ R such that

∫
ehdλ <∞,

log
∫

ehdλ = sup
q

{∫
hdq −KL(q, λ)

}
,

where the supremum is taken over all probability distributions over E and with the con-
vention ∞−∞ = −∞. Moreover, if h is upper-bounded on the support of λ, then the
supremum is reached by the distribution of the form:

λh(dβ) = eh(β)∫
ehdλλ(dβ).

Let us come back to the proof of Theorem 5.3.4. Here, we can not directly use Theorem
2.6 in Alquier and Ridgway (2017). Thus we begin from scratch. For any α ∈ (0, 1) and
θ ∈ ΘS,L,D, using the definition of Rényi divergence and Dα(P⊗n, R⊗n) = nDα(P,R) as
data are i.i.d.

E
[

exp
(
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)]
= 1

where rn(Pθ, P 0) = 1
2σ2

∑n
i=1{(Yi−fθ(Xi))2−(Yi−f0(Xi))2} is the negative log-likelihood

ratio. Then we integrate and use Fubini’s theorem,

E
[ ∫

exp
(
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)
π(dθ)

]
= 1.

According to Theorem 5.6.1,

E
[

exp
(

sup
q

{∫ (
− αrn(Pθ, P 0) + (1 − α)nDα(Pθ, P 0)

)
q(dθ) − KL(q||π)

})]
= 1

where the supremum is taken over all probability distributions over ΘS,L,D. Then, using
Jensen’s inequality,

E
[

sup
q

{∫ (
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)
q(dθ)−KL(q||π)

}]
≤ 0,

and then,

E
[ ∫ (

− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)
)
π̃kn,α(dθ)−KL(π̃kn,α||π)

]
≤ 0.

We rearrange terms:

E
[ ∫

Dα(Pθ, P 0)π̃kn,α(dθ)
]
≤ E

[
α

1− α

∫ rn(Pθ, P 0)
n

π̃kn,α(dθ) +
KL(π̃kn,α||π)
n(1− α)

]
,
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that we can write:

E
[ ∫

Dα(Pθ, P 0)π̃kn,α(dθ)
]
≤ E

[
α

1− α

∫ rn(Pθ, P 0)
n

π̃n,α(dθ) + KL(π̃n,α||π)
n(1− α)

]

+ E
[

α

1− α

∫ rn(Pθ, P 0)
n

π̃kn,α(dθ) +
KL(π̃kn,α||π)
n(1− α)

]

− E
[

α

1− α

∫ rn(Pθ, P 0)
n

π̃n,α(dθ) + KL(π̃n,α||π)
n(1− α)

]
.

Let us precise that E
[
rn(Pθ,P 0)

n

]
= KL(P 0||Pθ) = ‖f0−fθ‖22

2σ2 , and:

Ln(q) = − α

2σ2

n∑
i=1

∫
(Yi − fθ(Xi))2q(dθ)−KL(q‖π) up to a constant.

Then:

E
[ ∫

Dα(Pθ, P 0)π̃kn,α(dθ)
]
≤ E

[
α

1− α

∫ rn(Pθ, P 0)
n

π̃n,α(dθ)+KL(π̃n,α||π)
n(1− α)

]
+E[L∗n − Lkn]

n(1− α) .

We conclude by interverting the infimum and the expectation and the same inequalities
than in Theorem 5.3.2:

E
[

α

1− α

∫ rn(Pθ, P 0)
n

π̃n,α(dθ) + KL(π̃n,α‖π)
n(1− α)

]

= E
[

inf
q∈FS,L,D

{
α

1− α

∫ rn(Pθ, P 0)
n

q(dθ) + KL(q‖π)
n(1− α)

}]

≤ inf
q∈FS,L,D

{
E
[

α

1− α

∫ rn(Pθ, P 0)
n

q(dθ) + KL(q‖π)
n(1− α)

]}

≤ α

1− α
2

2σ2 inf
θ∗∈ΘS,L,D

‖fθ∗ − f0‖2
2 + α

2σ2
2

1− α

(
1 + σ2

α

)
rS,L,Dn .

5.6.6 Proof of Theorem 5.4.1

We start from the last inequality obtained in the proof of Theorem 3 in Chérief-Abdellatif
(2019a) that provides an upper bound in α-Rényi divergence for the ELBO model selec-
tion framework. We still denote P 0 the generating distribution and Pθ the distribution
characterizing the model. Then, for any α ∈ (0, 1):

E
[ ∫

Dα(Pθ, P 0)π̃Ŝ,L̂,D̂n,α (dθ)
]

≤ inf
S,L,D

{
inf

q∈FS,L,D

{
α

1− α

∫
KL(P 0, PθS,L,D)q(dθS,L,D) + KL(q,ΠS,L,D)

n(1− α)

}
+

log( 1
πS,L,D

)
n(1− α)

}

where ΠS,L,D denotes the prior over the parameter set ΘS,L,D and πS,L,D the prior belief
over model (S, L,D).
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As for the proof of Theorem 5.3.2, for any S, L,D and any θ∗ ∈ ΘS,L,D:

E
[ ∫ α

2σ2‖fθ − f0‖2
2π̃

Ŝ,L̂,D̂
n,α (dθ)

]

≤ α

1− α
2

2σ2‖fθ∗ − f0‖2
2 + inf

q∈FS,L,D

{
α

1− α

∫ 2
2σ2‖fθ − fθ∗‖

2
2q(dθ) +KL(q,ΠS,L,D)

n(1− α)

}

+
log( 1

πS,L,D
)

n(1− α) ,

and then for any S, L,D and any θ∗ ∈ ΘS,L,D,

E
[ ∫
‖fθ − f0‖2

2π̃
Ŝ,L̂,D̂
n,α (dθ)

]
≤ 2

1− α‖fθ
∗ − f0‖2

2 + 2
1− α

(
1+σ

2

α

)
rS,L,Dn

+ 2σ2

α(1− α)
log( 1

πS,L,D
)

n
,

which finally leads to Theorem 5.4.1.

5.6.7 Result for sparse Gaussian approximations

In this appendix, we consider non-bounded parameter sets ΘS,L,D and Gaussians instead
of uniform distributions in spike-and-slab priors on θ ∈ ΘS,L,D:γ ∼ U(SST ),

θt|γt ∼ γt N (0, 1) + (1− γt)δ{0}, t = 1, ..., T

and Gaussian-based sparse spike-and-slab approximations:γ ∼ πγ,

θt|γt ∼ γt N (mt, s
2
n) + (1− γt)δ{0} for each t = 1, ..., T.

The following theorem states that using Gaussians instead of uniform distributions still
leads to consistency with the same rate of convergence. Note that the infimum in the
RHS of the inequality is taken over a bounded neural network model.

Theorem 5.6.2. Let us introduce the sets ΘB
S,L,D that contain the neural network param-

eters upper bounded by B (in L∞-norm). Then for any α ∈ (0, 1), for any B ≥ 2,

E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]
≤ 2

1− α inf
θ∗∈ΘBS,L,D

‖fθ∗ − f0‖2
2 + 2

1− α

(
1 + σ2

α

)
rS,L,Dn

with

rS,L,Dn = SL

n
log(2BD) + S

4n

(
12 log(LD) +B2

)
+ S

n
log

(
11dmax(n

S
, 1)
)
.
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Proof. The proof follows the same structure than for Theorem 5.3.2. We fix B ≥ 2.

First step: we obtain the general inequality

We can directly write for any θ∗ ∈ ΘS,L,D,

E
[ ∫
‖fθ − f0‖2

2π̃n,α(dθ)
]

≤ 2
1− α‖fθ

∗ − f0‖2
2 + inf

q∈FS,L,D

{
2

1− α

∫
‖fθ − fθ∗‖2

2q(dθ) + 2σ2

α

KL(q‖π)
n(1− α)

}
.

We define θ∗ = arg minθ∈ΘBS,L,D
‖fθ − f0‖2. Again, the rest of the proof consists in finding

a distribution q∗n ∈ FS,L,D that satisfies the extended prior mass condition:∫
‖fθ − fθ∗‖2

2q
∗
n(dθ) ≤ rn (5.9)

and
KL(q∗n‖π) ≤ nrn (5.10)

with rn = SL
n

log(2BD)+ S
n

log(L(D+1)2)+ S log log(3D)
n

+ SB2

4n + S
2n log

(
16n
S

{
3+(d+2)2

})
≤

rS,L,Dn as 3 + (x+ 2)2 ≤ 7x2 for x ≥ 1.

Second step: we prove Inequality (5.9)

All coefficients of parameter θ∗ are upper bounded by B. Hence, we still have:

c` ≤ B`D`−1
(
d+ 1 + 1

BD − 1

)
.

However, the upper bound on r`(θ) is not the same, as |A`,i,j| can not be upper bounded
by B directly and must be upper bounded by |A∗`,i,j|+ Ã` ≤ B + Ã`:

r`(θ) ≤ sup
x∈[−1,1]d

sup
1≤i≤D

{
D∑
j=1

[
|A`ij − A∗`ij| · |f `−1

θ∗ (x)j|+ |A`ij| · |f `−1
θ∗ (x)j − f `−1

θ (x)j|
]

+ |b`i − b∗`i|
}

≤ sup
x∈[−1,1]d

sup
1≤i≤D

{
D∑
j=1

[
|A`ij − A∗`ij| · |f `−1

θ∗ (x)j|+ (B + Ã`) · |f `−1
θ∗ (x)j − f `−1

θ (x)j|
]

+ |b`i − b∗`i|
}

≤ Dc`−1Ã` + (B + Ã`)Dr`−1(θ) + b̃`

≤ (B + Ã`)Dr`−1(θ) + Ã`B
`−1D`−1

(
d+ 1 + 1

BD − 1

)
+ b̃`.
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Then, using Formula 5.6:

r`(θ) ≤
∑̀
u=2

( ∏̀
v=u+1

(B + Ãv)D
)(

Ãu(BD)u−1
{
d+ 1 + 1

BD − 1

}
+ b̃u

)

+
( ∏̀
v=2

(B + Ãv)D
)
r1(θ)

≤
∑̀
u=2

D`−u ∏̀
v=u+1

(B + Ãv)Ãu(BD)u−1
(
d+ 1 + 1

BD − 1

)

+
∑̀
u=2

D`−u ∏̀
v=u+1

(B + Ãv)b̃u +D`−1 ∏̀
v=2

(B + Ãv)r1(θ),

and using inequality r1(θ) ≤ d · Ã1 + b̃1:

r`(θ) ≤ D`−1
(
d+ 1 + 1

BD − 1

) ∑̀
u=2

Bu−1 ∏̀
v=u+1

(B + Ãv)Ãu +
∑̀
u=2

D`−u ∏̀
v=u+1

(B + Ãv)b̃u

+ dD`−1 ∏̀
v=2

(B + Ãv)Ã1 +D`−1 ∏̀
v=2

(B + Ãv)b̃1

≤ D`−1
(
d+ 1 + 1

BD − 1

) ∑̀
u=1

Bu−1 ∏̀
v=u+1

(B + Ãv)Ãu +
∑̀
u=1

D`−u ∏̀
v=u+1

(B + Ãv)b̃u.

Then we have for any distribution q(θ) = q1(θ1)× ...× qT (θT ):∫
‖fθ − fθ∗‖2

2q(dθ) ≤
∫
‖fθ − fθ∗‖2

∞q(dθ) =
∫
rL(θ)2q(dθ)

≤
∫

2D2L−2
(
d+ 1 + 1

BD − 1

)2( L∑
`=1

B`−1
L∏

v=`+1
(B + Ãv)Ã`

)2

q(dθ)

+
∫

2
(

L∑
`=1

DL−`
L∏

v=`+1
(B + Ãv)b̃`

)2

q(dθ)

= 2D2L−2
(
d+ 1 + 1

BD − 1

)2(∫ L∑
`=1

B2`−2
L∏

v=`+1
(B + Ãv)2Ã2

`q(dθ)

+ 2
∫ L∑

`=1

`−1∑
k=1

B`−1Bk−1
L∏

v=`+1
(B + Ãv)Ã`

L∏
v=k+1

(B + Ãv)Ãkq(dθ)
)

+ 2
(∫ L∑

`=1
D2(L−`)

L∏
v=`+1

(B + Ãv)2b̃2
`q(dθ)

+ 2
∫ L∑

`=1

`−1∑
k=1

DL−`DL−k
L∏

v=`+1
(B + Ãv)b̃`

L∏
v=k+1

(B + Ãv)b̃kq(dθ)
)

= 2D2L−2
(
d+ 1 + 1

BD − 1

)2( L∑
`=1

B2`−2
L∏

v=`+1

∫
(B + Ãv)2q(dθ)

∫
Ã2
`q`(dθ`)

+ 2
L∑
`=1

`−1∑
k=1

B`−1Bk−1
L∏

v=`+1

∫
(B + Ãv)2q(dθ)

∫
Ã`q`(dθ`)

∏̀
v=k+1

∫
(B + Ãv)q(dθ)

∫
Ãkq(dθ)

)
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+ 2
(

L∑
`=1

D2(L−`)
L∏

v=`+1

∫
(B + Ãv)2q(dθ)

∫
b̃2
`q(dθ)

+ 2
L∑
`=1

`−1∑
k=1

DL−`DL−k
L∏

v=`+1

∫
(B + Ãv)2q(dθ)

∫
b̃`q(dθ)

∏̀
v=k+1

∫
(B + Ãv)q(dθ)

∫
b̃kq(dθ)

)
.

Here, we define q∗n(θ) as follows:γ∗t = I(θ∗t 6= 0),
θt ∼ γ∗t N (θ∗t , s2

n) + (1− γ∗t )δ{0} for each t = 1, ..., T.

with s2
n = S

16n log(3D)−1(2BD)−2L
{(

d+ 1 + 1
BD−1

)2

+ 1
(2BD)2−1 + 2

(2BD−1)2

}−1

.

We upper bound the expectation of the supremum of absolute values of Gaussian
variables:∫

Ã`q
∗
n(dθ) =

∫
sup
i,j
|A`,i,j − A∗`,i,j|q∗n(dθ) ≤

√
2s2

n log(2D2) =
√

4s2
n log(3D),

and use Example 2.7 in Boucheron et al. (2003):∫
Ã2
`q
∗
n(dθ) =

∫
sup
i,j

(A`,i,j −A∗`,i,j)2q∗n(dθ) ≤ s2
n(1 + 2

√
log(D2) + log(D2)) = 4s2

n log(3D),

which also give:∫
(B + Ã`)q∗n(dθ) = B +

∫
Ã`q

∗
n(dθ) ≤ B +

√
4s2

n log(3D) ≤ 2B,

and ∫
(B + Ã`)2q∗n(dθ) = B2 + 2B

∫
Ã`q

∗
n(dθ) +

∫
Ã2
`q
∗
n(dθ)

≤ B2 + 2B
√

4s2
n log(3D) + 4s2

n log(3D)
≤ 4B2

as
√

4s2
n log(3D) ≤ B (s2

n ≤
LD(D+1)

16n (2BD)−2L ≤ 2LD2

16n 4−2LD−2L ≤ 1).

Similarly, ∫
b̃`q
∗
n(dθ) ≤

√
4s2

n log(3D)

and ∫
b̃2
`q
∗
n(dθ) ≤ 4s2

n log(3D).

Then∫
‖fθ − fθ∗‖2

2q
∗
n(dθ) ≤ 2D2L−2

(
d+ 1 + 1

BD − 1

)2( L∑
`=1

B2`−2(4B2)L−`4s2
n log(3D)

+ 2
L∑
`=1

`−1∑
k=1

B`−1Bk−1(4B2)L−`
√

4s2
n log(3D)(2B)`−k

√
4s2

n log(3D)
)
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+ 2
(

L∑
`=1

D2(L−`)(4B2)L−`4s2
n log(3D)

+ 2
L∑
`=1

`−1∑
k=1

DL−`DL−k(4B2)L−`
√

4s2
n log(3D)(2B)`−k

√
4s2

n log(3D)
)
,

i.e.∫
‖fθ − fθ∗‖2

2q
∗
n(dθ)

≤ 2D2L−2
(
d+ 1 + 1

BD − 1

)2(
B2L−24s2

n log(3D)
L−1∑
`=0

4`

+ 2B2L−24s2
n log(3D)

L∑
`=1

`−1∑
k=1

2L−`2L−k
)

+ 2
(

4s2
n log(3D)

L∑
`=1

(2BD)2L−2` + 8s2
n log(3D)

L∑
`=1

`−1∑
k=1

(2BD)L−`(2BD)L−k
)

≤ 2D2L−2
(
d+ 1 + 1

BD − 1

)2(
B2L−24s2

n log(3D)4L − 1
4− 1

+ 2B2L−24s2
n log(3D)

L∑
`=1

2L−`2L−`+1
`−2∑
k=0

2k
)

+ 2
(

4s2
n log(3D)

L−1∑
`=0

(2BD)2` + 8s2
n log(3D)

L∑
`=1

(2BD)L−`(2BD)L−`+1
`−2∑
k=0

(2BD)k
)

≤ 2D2L−2
(
d+ 1 + 1

BD − 1

)2(
B2L−24s2

n log(3D)4L
3

+ 2B2L−24s2
n log(3D)

L∑
`=1

2L−`2L−`+12`−1
)

+ 2
(

4s2
n log(3D) (2BD)2L

(2BD)2 − 1 + 8s2
n log(3D)

L∑
`=1

(2BD)L−`(2BD)L−`+1 (2BD)`−1

2BD − 1

)

≤ 2D2L−2
(
d+ 1 + 1

BD − 1

)2(
B2L−24s2

n log(3D)4L
3 + 2B2L−24s2

n log(3D)2L
L−1∑
`=0

2`
)

+ 2
(

4s2
n log(3D) (2BD)2L

(2BD)2 − 1 + 8s2
n log(3D)

L−1∑
`=0

(2BD)` (2BD)L
2BD − 1

)

≤ 2D2L−2
(
d+ 1 + 1

BD − 1

)2(
B2L−24s2

n log(3D)4L
3 + 2B2L−24s2

n log(3D)22L
)

+ 2
(

4s2
n log(3D) (2BD)2L

(2BD)2 − 1 + 8s2
n log(3D) (2BD)2L

(2BD − 1)2

)

= 2D2L−2
(
d+ 1 + 1

BD − 1

)2

4s2
n log(3D)

(
B2L−2 4L

3 + 2B2L−222L
)

+ 2
(

(2BD)2L

(2BD)2 − 1 + 2 (2BD)2L

(2BD − 1)2

)
4s2

n log(3D),
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and consequently, as BD ≥ 2,∫
‖fθ − fθ∗‖2

2q
∗
n(dθ)

≤ 8s2
n log(3D)

{
D2L−2

(
d+ 1 + 1

BD − 1

)2 7
3B

2L−222L

+ (2BD)2L
(

1
(2BD)2 − 1 + 2

(2BD − 1)2

)}

= 8s2
n log(3D)

{
(2BD)2L 1

(BD)2

(
d+ 1 + 1

BD − 1

)2 7
3

+ (2BD)2L
(

1
(2BD)2 − 1 + 2

(2BD − 1)2

)}

≤ 8s2
n log(3D)(2BD)2L

{(
d+ 1 + 1

BD − 1

)2

+ 1
(2BD)2 − 1 + 2

(2BD − 1)2

}

= S

2n
≤ rn.

which ends Step 2.

Third step: we prove Inequality (5.10)

We end the proof:

KL(q∗n‖π) ≤ log
(
T

S

)
+

T∑
t=1

γ∗tKL
(
N (θ∗t , s2

n)
∥∥∥∥∥N (0, 1)

)

≤ S log(T ) +
T∑
t=1

γ∗t

{
1
2 log

(
1
s2
n

)
+ s2

n + θ∗2t
2 − 1

2

}

≤ S log(T ) +
T∑
t=1

γ∗t

{
1
2 log

(
1
s2
n

)
+ s2

n +B2

2 − 1
2

}

= S log(T ) + S

2 s
2
n + S

2
B2 − 1

2 + S

2 log
(

1
s2
n

)

≤ S log(T ) + S

2 + S

2
B2 − 1

2

+ S

2 log
(

16n
S

log(3D)(2BD)2L
{(

d+ 1 + 1
BD − 1

)2

+ 1
(2BD)2 − 1 + 2

(2BD − 1)2

})

≤ S log(L(D + 1)2) + B2S

4 + LS log(2BD) + S

2 log log(3D)

+ S

2 log
(

16n
S

{(
d+ 1 + 1

BD − 1

)2

+ 1
(BD)2 − 1 + 2

(BD − 1)2

})
≤ nrn.
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Chapter 6

Consistency of ELBO maximization
for model selection

The Evidence Lower Bound (ELBO) is a quantity that plays a key role in variational
inference. It can also be used as a criterion in model selection. However, though extremely
popular in practice in the variational Bayes community, there has never been a general
theoretic justification for selecting based on the ELBO. In this chapter, we show that the
ELBO maximization strategy has strong theoretical guarantees, and is robust to model
misspecification while most works rely on the assumption that one model is correctly
specified. We illustrate our theoretical results by an application to the selection of the
number of principal components in probabilistic PCA.

6.1 Introduction

Approximate Bayesian inference is at the core of modern Bayesian statistics and machine
learning. While exact Bayesian inference is often intractable, variational inference has
proved to provide an efficient solution when dealing with large datasets and complex
probabilistic models. Variational Bayes (VB) aims at maximizing a numerical quantity
referred to as Evidence Lower Bound on the marginal likelihood (ELBO), and thus makes
use of optimization techniques to converge faster than Monte Carlo sampling approach.
Blei et al. (2017) provides a comprehensive survey on variational inference. Although
VB is mainly used for its practical efficiency, little attention has been put towards its
theoretical properties during the last years. While Alquier et al. (2016) studied the prop-
erties of variational approximations of Gibbs distributions used in machine learning for
bounded loss functions, Alquier and Ridgway (2017); Zhang and Gao (2017); Wang and
Blei (2018); Bhattacharya et al. (2018); Chérief-Abdellatif and Alquier (2018) extended
the results to more general statistical models.

At the same time, model selection remains a major problem of interest in statistics
that naturally arises in the course of scientific inquiry. The statistician aims at selecting
a model among several candidates given an observed dataset. To do so, one can perform
cross validation as in Vehtari et al. (2014) or maximize a numerical criterion to make the
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final choice, see the review of Rao and Wu (2001). In the literature, penalized criteria
such as AIC and BIC respectively introduced by Akaike (1974) and Schwarz (1978)
are popular. While AIC aims at optimizing the prediction performance, BIC is more
suitable for recovering with high probability the true model (when such a model exists),
see Yang (2005). Thus, it is necessary to define a criterion suited to a given objective.
Meanwhile, a non-asymptotic theory of penalization using oracle inequalities has been
developed during the last two decades, and offers a simple way to assess the quality of a
given model selection criterion. We refer the interested reader to Catoni (2007) for more
details.

In this chapter, we are interested in finding an estimate of the distribution of the
data, and we need to choose from among competing models. Blei et al. (2017) states that
"the [evidence lower] bound is a good approximation of the marginal likelihood, which
provides a basis for selecting a model. Though this sometimes works in practice, selecting
based on a bound is not justified in theory". Since then, authors of Chérief-Abdellatif and
Alquier (2018) have provided an analysis of model selection based on the ELBO in the
case of mixture models. We extend their result to the general case of independent and
identically distributed (i.i.d.) data, and we provide an oracle inequality on the ELBO
criterion that justifies the consistency of ELBO maximization when the objective is the
estimation of the distribution of the data. In particular, as soon as there exists a true
model, we show that the ELBO criterion is adaptive and that the selected estimator
achieves the convergence rate of the variational approximation associated with the true
model.

The rest of this chapter is organized as follows. Section 6.2 introduces the setting
and the key concepts needed to understand our results. In Section 6.3, we prove that the
ELBO criterion provides a variational approximation that is consistent with the sample
size as soon as there exists a true model. We also extend the result to misspecified models.
We finally illustrate the main theorem of this chapter by an application to the selection
of the number of principal components in probabilistic Principal Component Analysis
(PCA) in Section 6.4. All the proofs are deferred to the appendix.

6.2 Framework

Let us introduce the notations and the framework we adopt in this chapter. We consider
a collection of i.i.d. random variables X1,...,Xn distributed according to some probability
distribution P 0 in a measurable space

(
X,X

)
. We denoteXn

1 = (X1, ..., Xn). We consider
a countable collection {MK/K ≥ 1} of statistical mixture models MK = {PθK / θK ∈
ΘK} where ΘK is the parameter set associated with index K. We make no assumptions
on ΘK ’s nor on PθK . Parameter spaces may overlap or have inclusion relationships. Let
M+

1 (ΘK) be the set of all probability distributions over ΘK .
We use a Bayesian approach, and we define a prior π over the full parameter space

∪K≥1ΘK (equipped with some suited sigma-algebra). First, we specify a prior weight πK
assigned to model MK , and then a conditional prior ΠK(.) on θK ∈ ΘK given model
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MK :
π =

∑
K≥1

πKΠK .

The Kullback-Leibler divergence between two probability distributions P and R is

KL(P,R) =


∫

log
(
dP
dR

)
dP if R dominates P ,

+∞ otherwise.

For any α 6= 1, authors of Van Erven and Harremos (2014) detail the properties of the
α-Rényi divergence between two probability distributions P and R which is equal to:

Dα(P,R) =

 1
α−1 log

∫ (dP
dR

)α−1
dP if R dominates P ,

+∞ otherwise.

We define the tempered posterior distribution πKn,α(.|Xn
1 ) on parameter θK ∈ ΘK given

modelMK using prior ΠK and likelihood Ln for any α ∈ (0, 1):

πKn,α(dθK |Xn
1 ) ∝ Ln(θK)αΠK(dθK).

This definition is a slight variant of the regular Bayesian posterior (for which α = 1), and
is also referred to as Bayesian fractional posterior in Bhattacharya et al. (2016). This
posterior is easier to sample from, more robust to model misspecification and requires
less stringent conditions to obtain consistency, see respectively Behrens et al. (2012),
Grünwald et al. (2017) and Bhattacharya et al. (2016).

The Variational Bayes approximation π̃Kn,α(.|Xn
1 ) of the tempered posterior associated

with model MK is then defined as the projection, with respect to the Kullback-Leibler
divergence, of the tempered posterior onto some set FK :

π̃Kn,α(.|Xn
1 ) = arg min

ρK∈FK
KL(ρK , πKn,α(.|Xn

1 )).

The choice of the variational set FK is crucial: the variational approximation must be
close enough to the target distribution (as an approximation of the tempered posterior)
but not too close (in order to be tractable). A classical variational set FK is the parametric
family which leads to a tractable parametric approximation, e.g. a Gaussian distribution.
Another popular set FK in the VB community is the mean-field approximation that is
based on a partition of the space of parameters, and which consists in a factorization of
the variational approximation over the partition.

Alternatively, the variational approximation is often defined as the distribution into
FK that maximizes the Evidence Lower Bound:

π̃Kn,α(.|Xn
1 ) = arg max

ρK∈FK

{
α
∫
`n(θK)ρK(dθK)−KL

(
ρK ,ΠK

)}

where the function inside the argmax operator is the ELBO (as a function of K and
ρK) and `n is the log-likelihood. In the following, we will just call ELBO(K) the closest
approximation to the log-evidence, i.e. the value of the ELBO evaluated at its maximum:

ELBO(K) = α
∫
`n(θK)π̃Kn,α(dθK |Xn

1 )−KL(π̃Kn,α(.|Xn
1 ),ΠK).

133



In the variational Bayes community, researchers and practitioners use the ELBO in
order to select the model from which they will consider the final variational approximation
π̃K̂n,α(.|Xn

1 ), as stated in Blei et al. (2017). We propose to consider a penalized version of
the ELBO criterion

K̂ = arg max
K≥1

{
ELBO(K)− log

(
1
πK

)}
which is a slight variant of the classical definition, although choosing a uniform prior over
a finite number of models leads to maximizing the ELBO. Note that the penalty term
is not just an artefact in order to ease the theoretical proof, but it is a complexity term
that reflects our prior beliefs over the different models.

We will provide in the next section a theoretical justification to such a selection crite-
rion and show that the selected variational estimator π̃K̂n,α(.|Xn

1 ) is consistent under mild
conditions as soon as there exists a true model. We will adopt the definition of con-
sistency used in Alquier and Ridgway (2017) and Chérief-Abdellatif and Alquier (2018)
that is, the Bayesian estimator is said to be consistent if, in expectation (with respect
to the random variables distributed according to P 0), the average Rényi loss between a
distribution in the selected model and the true distribution (over the Bayesian estimator)
goes to zero as n→ +∞:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
−−−−→
n→+∞

0.

This definition is closely related to the notion of concentration which is defined in Ghosal
et al. (2000) as the asymptotic concentration of the Bayesian estimator around the true
distribution, and which is usually used to assess frequentist guarantees for Bayesian es-
timators. It is sometimes also referred to as contraction (or even consistency). See
Appendix 6.5.1 for more details on the connection between the notions of consistency
and concentration.

6.3 Consistency of the ELBO criterion

In this section, unless explicitly stated otherwise, we assume that there exists a true
modelMK0 that contains the true distribution P 0, i.e. that there exists K0 and θ0 ∈ ΘK0

such that P 0 = Pθ0 .
A key assumption introduced in Ghosal et al. (2000) in order to obtain the concentra-

tion of the regular posterior distribution πK0
n,1(.|Xn

1 ) associated with the true modelMK0

is a prior mass condition which states that the prior ΠK0 must give enough mass to some
neighborhood (in the Kullback-Leibler sense) of the true parameter. Bhattacharya et al.
(2016) showed that this condition was sufficient when considering tempered posteriors
πK0
n,α(.|Xn

1 ). Alquier and Ridgway (2017) extended this assumption in order to obtain the
concentration and the consistency of variational approximations of the tempered poste-
riors π̃K0

n,α(.|Xn
1 ). In addition to the previous prior mass condition, this extension requires

the variational set FK0 to contain probability distributions concentrated around the true
parameter. Note that when FK0 =M+

1 (ΘK0), this goes back to the standard prior mass
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condition. This extended prior mass condition is standard in the variational Bayes com-
munity, see Alquier and Ridgway (2017); Chérief-Abdellatif and Alquier (2018), and can
be formulated as follows:

Assumption : We assume that there exists rn for which there is a distribution ρK0,n ∈
FK0 such that:∫

KL(P 0, PθK0
)ρK0,n(dθK0) ≤ rn and KL(ρK0,n,ΠK0) ≤ nrn. (6.1)

Remark 6.3.1. Define the KL-ball B centered at θ0 of radius rn:

B = {θ ∈ ΘK0/ KL(Pθ0 , Pθ) ≤ rn},

and consider the restriction ρK0,n of ΠK0 to B. Then it is clear that when ρK0,n ∈ FK0,
Assumption 6.1 becomes equivalent to the former prior mass condition of Ghosal et al.
(2000), i.e. ΠK0(B) ≥ e−nrn. The computation of the prior mass ΠK0(B) is a major
difficulty. It has been raised as a question of interest in Ghosal et al. (2000), and is
addressed for categorical distributions and Dirichlet priors in Ghosal et al. (2000) (but for
an L1-ball) and in Chérief-Abdellatif and Alquier (2018) (for a KL-ball). Unfortunately,
ρK0,n does not belong to FK0 in general and the computation of the prior mass is no
longer sufficient. Nevertheless, the strategy of computing the prior mass of KL-balls
remains of interest when dealing with mixture models and mean-field approximation sets,
see Chérief-Abdellatif and Alquier (2018) where the authors showed that studying the
prior mass condition of Ghosal et al. (2000) independently on the weights and on each
component becomes sufficient.

Remark 6.3.2. When FK0 is parametric, it is often possible to overcome the difficulty
presented above in order to find a rate rn as in Assumption 6.1. Indeed, the point is to
express the distribution ρK0,n using the general parametric form of the variational family,
and to find relevant values of the parameters that will lead to fast rates of convergence
rn. This is the strategy we follow in Section 6.4 for probabilistic PCA. See Alquier and
Ridgway (2017); Chérief-Abdellatif and Alquier (2018) for other examples of such com-
putations.

Alquier and Ridgway (2017) showed that the variational approximation π̃K0
n,α(.|Xn

1 ) as-
sociated with a true model is consistent under Assumption 6.1 and that the convergence
rate is equal to rn. Nevertheless, in model selection, we do not necessarily know which
model is true and the challenge is to be able to find one such that the corresponding
approximation is consistent at a comparable convergence rate. We show that the varia-
tional approximation π̃K̂n,α(.|Xn

1 ) associated with the selected model is also consistent at
rate rn as soon as Assumption 6.1 is satisfied:

Theorem 6.3.1. Assume that Assumption 6.1 is satisfied. Then for any α ∈ (0, 1),

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
≤ 1 + α

1− αrn +
log( 1

πK0
)

n(1− α) .
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The inequality in Theorem 6.3.1 shows the adaptivity of our procedure. Indeed,
whatever the value of K̂ (which can be different from K0), we obtain the consistency of
the selected variational approximation at the same rate of convergence than the estimator
associated with the true model (as soon as the additional term in the upper bound is lower
than rn, which is the case for prior weights used in practice). We recall that we look for
a good estimation of the true distribution P 0 and not for an estimation of the true model
index K0 which is a different task that would require identifiability assumptions that are
stronger than those in our theorem. The overall rate is composed of the convergence rate
associated with the true model MK0 , and of a complexity term that reflects the prior
belief over the (unknown) true model. For example, if we range a countable number of
models according to our prior belief, and we take πK = 2−K , then the corresponding term
will be of order K0/n. More generally, when 1

n
. rn, we obtain the consistency at the

rate associated with the true model.
As a short example, Chérief-Abdellatif and Alquier (2018) investigated the case of mix-

ture models. For instance, authors obtained a convergence rate equal to K0 log(nK0)/n
for Gaussian mixtures when there exists a true K0-components mixture model. We study
another example in Section 6.4.

We can also extend this result to misspecified models. In the model selection literature,
only little attention has been put to misspecification when the true distribution does not
belong to any of the models, see Lv and Liu (2013). Now, we do not assume any longer
that there exists a true model, and we show that our ELBO criterion is robust to model
misspecification:

Theorem 6.3.2. For each index K, let us define the set ΘK(rK,n) of parameters θ∗K ∈
ΘK, for which there is a distribution ρK,n ∈ FK such that:

∫
E
[

log
Pθ∗K (Xi)
PθK (Xi)

]
ρK,n(dθK) ≤ rK,n and KL(ρK,n,ΠK) ≤ nrK,n. (6.2)

Then for any α ∈ (0, 1),

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ inf
K≥1

{
α

1− α inf
θ∗K∈ΘK(rK,n)

KL(P 0, Pθ∗K ) + 1 + α

1− αrK,n +
log( 1

πK
)

n(1− α)

}
.

Note that when there exists a true model MK0 such that P 0 = Pθ0 with θ0 ∈ ΘK0 ,
then under Assumption 6.1, we get θ0 ∈ ΘK0(rK0,n), and we recover Theorem 6.3.1.
Furthermore, the oracle inequality in Theorem 6.3.2 shows that the selected variational
approximation adaptively achieves the best upper bound among the different models
MK , where each upper bound is a trade-off between two terms: a bias due to the error
of approximating the true distribution by a distribution in model MK , and a variance
term rK,n (as soon as the penalty term is lower than rK,n) that is defined in Condition
6.2.
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6.4 Application to probabilistic PCA

We consider here the probabilistic Principal Component Analysis (PCA) problem as an
application of our work. From now on, matrices will be denoted in bold capital letters.
We assume the model

Xi = WZi + σ2Id
with i.i.d. Gaussian random variables Zi ∼ N (0, IK), where Id and IK are respectively
the d- and K-dimensional identity matrices (K < d), W ∈ Rd×K is the K-rank matrix
that contains the principal axes and σ2 is a noisy term that is known. We suppose here
that data are centred. Hence, the distribution of each Xi is

PW := N (0,WWT + σ2Id).

We are not interested here in estimating the principal axes W and selecting the number
of components K, but in estimating the true distribution of the Xi’s.

Each model corresponds to a rankK. We place an equal prior weight over each integer
K = 1, ..., d. Hence the optimization problem is equivalent to maximizing the ELBO as
in Blei et al. (2017). Given rank K, we place a prior over the K-rank matrix W to infer
a distribution over principal axes. We choose independent Gaussian priors N (0, s2Id)
on the columns W1, ...,WK of W. We also consider Gaussian independent variational
approximations N (µj,Σj) for the columns of W. Then, as soon as there exists a true
model, i.e. there exists K0 and W0 ∈ Rd×K0 such that the true distribution of each Xi

is PW0 = N (0,W0WT
0 + σ2Id), under the assumption that the coefficients of W0 are

bounded, then Theorem 6.4.1 provides an explicit rate of convergence of our variational
estimator even when K0 is unknown:

Theorem 6.4.1. For any α ∈ (0, 1), as soon as there exists a true modelMK0 such that
P 0 = PW0 with W0 ∈ Rd×K0 and such that the coefficients of W0 are bounded, then:

E
[ ∫

Dα(PW, PW0)π̃K̂n,α(dW|Xn
1 )
]

= O
(
dK0 log(dn)

n

)
.

The proof as well as the computation of the ELBO are detailed in the appendix. Note
that this corollary can directly lead to a result in Frobenius distance between covariance
matrices WWT + σ2Id and W0WT

0 + σ2Id instead of the Rényi divergence between
the corresponding distributions even when W and W0 are not equal-sized matrices.
We denote ‖.‖F the Frobenius norm and ‖.‖2 the spectral norm of a matrix, which are
respectively defined as the square root of the sum of the absolute squares of the elements
of a matrix and as its largest singular value.

The following corollary assesses the consistency of the selected variational approxima-
tion to the true covariance matrix in Frobenius norm. The idea, borrowed from Alquier
and Ridgway (2017), is to project matrices onto some set of bounded matrices under the
assumption that the spectral norm of the true matrix W0 is also bounded:

Corollary 6.4.2. For any α ∈ (0, 1), as soon as there exists a true modelMK0 such that
P 0 = PW0 with W0 ∈ Rd×K0 and such that the spectral norm of W0 is upper bounded by
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a positive constant B > 0, then:

E
[ ∫ ∥∥∥clipB(WWT )−W0WT

0

∥∥∥2

F
π̃K̂n,α(dW|Xn

1 )
]

= O
(
dK0 log(dn)

n

)

where clipB(A) is the matrix which (i, j)-entry is equal to


Ai,j if |Ai,j| ≤ B2

B2 if Ai,j ≥ B2

−B2 otherwise.

The requirement in our corollary is that the spectral norm of the true matrix W0 is
bounded by some positive constant B, which implies the boundedness of the coefficients
of the matrix as required in Theorem 6.4.1. In particular, the coefficients of the matrix
W0WT

0 are bounded by B2:

|(W0WT
0 )i,j| =

∣∣∣∣∣
K0∑
k=1

(W0)i,k(W0)j,k
∣∣∣∣∣ ≤

(
K0∑
k=1

(W0)2
i,k

)1/2( K0∑
k=1

(W0)2
j,k

)1/2

= ‖W0ei‖2

‖ei‖2

‖W0ej‖2

‖ej‖2
≤ ‖W0‖2

2 ≤ B2

using Cauchy-Schwarz inequality and the property ‖W0‖2 = maxx 6=0
‖W0x‖2
‖x‖2 where e` is

the vector of Rd which components are all equal to 0 except for the `-th one that is set
to 1. Hence it seems sensible to project (with respect to the Frobenius distance) any
estimator WWT onto the set of all matrices whose entries lie in the interval [−B2, B2],
which is exactly what the clipB application does. Note that the spectral norm of Matrix
W0 is equal to the largest eigenvalue of W0WT

0 , so our assumption comes back to upper
bounding the eigenvalues of the covariance matrix W0WT

0 + σ2Id, which is a classical
assumption when estimating covariance matrices, see for instance Cai et al. (2015).

It is also possible to obtain a consistent pointwise covariance matrix estimator with
the same convergence rate:

Corollary 6.4.3. For any α ∈ (0, 1), as soon as there exists a true modelMK0 such that
P 0 = PW0 with W0 ∈ Rd×K0 and such that the spectral norm of W0 is bounded by B.
Let us define a pointwise estimator of the covariance matrix:

Σ̂ =
∫

clipB(WWT )π̃K̂n,α(dW|Xn
1 ) + σ2Id.

Then,

E
[∥∥∥Σ̂− (W0WT

0 + σ2Id)
∥∥∥2

F

]
= O

(
dK0 log(dn)

n

)
.

Discussion

In this chapter we proved the consistency of ELBO maximization in model selection. By
penalizing the variational lower bound using our prior beliefs over the different models,
we showed that under mild conditions, the variational approximation associated with
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the selected model is consistent at the same convergence rate than the approximation
associated with the true model. Moreover, the oracle inequality in Theorem 6.3.2 proved
that the selected approximation is robust to misspecification. An application to the
selection of the number of principal components in probabilistic PCA was provided as a
short example.

We discuss in Appendix 6.5.1 the connection between the notions of consistency and
concentration. This justifies the use of the α parameter in the definition of the evidence
lower bound, as the regular posterior distribution is not robust to model misspecification.
Indeed, authors of Grünwald et al. (2017) explain that there are pathologic cases where
the regular posterior does not concentrate to the true distribution.

A point of interest when dealing with model selection is the question of recovering the
true model (when it exists). This issue falls beyond the scope of this chapter which treats
the question of estimating the true distribution, and can be the object of future works.
The true model recovery would require stronger assumptions, but the implementation in
Section 5 in Bishop (1999) suggests that those may hold for probabilistic PCA.

Also, it would be interesting to study cross-validation instead of ELBO maximization.
However, the tools used in this work such as the theory of penalized criteria and oracle
inequalities were particularly suited to the ELBO, and thus a different theory should be
used in order to obtain the consistency of validation log-likelihood in the VB framework.
This question is left for future research.

6.5 Proofs and additional results

6.5.1 Connection between consistency and concentration.

In this appendix, we highlight the connection between the notions of consistency used in
Alquier and Ridgway (2017) and Chérief-Abdellatif and Alquier (2018) and concentration.
We consider a true modelMK0 to which the true distribution P 0 = Pθ0 belongs, θ0 ∈ ΘK0 .
We recall that the Bayesian estimator π̃K̂n,α(.|Xn

1 ) is said to be consistent if, in expectation
(with respect to the random variables distributed according to P 0), the average Rényi loss
between a distribution in the selected model and the true distribution (over the Bayesian
estimator) goes to zero as n→ +∞:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
−−−−→
n→+∞

0.

Similarly, we give the definition of concentration at rate sn of the selected variational
approximation to P 0 as stated in Ghosal et al. (2000), that is, in probability (with respect
to the random variables distributed according to P 0), the approximation concentrates
asymptotically around the true distribution as n→ +∞, i.e. in probability:

π̃K̂n,α

(
Dα(Pθ, P 0) > Msn|Xn

1

)
−−−−→
n→+∞

0

for any constant M > 0. The reference metric here is the α-Rényi divergence.
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We show in this appendix that the consistency of the selected variational approxima-
tion to P 0 at rate rn implies the concentration of the selected variational approximation
to P 0 at any rate sn such that rn = o(sn) and sn → 0 as n → +∞, as for instance
sn = rn log(log(n)) when the consistency rate rn is slower than a log-logarithmic one.

To do so, we assume that the selected variational approximation is consistent to P 0

at rate rn, i.e.:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
≤ rn.

Then, using Markov’s inequality for any sn such that rn = o(sn) and sn → 0 and any
constant M > 0:

E
[
π̃K̂n,α

(
Dα(Pθ, P 0) > Msn|Xn

1

)]
≤

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

Msn
≤ rn
Msn

−−−−→
n→+∞

0.

Hence, we obtain the convergence in mean of π̃K̂n,α
(
Dα(Pθ, P 0) > Msn|Xn

1

)
to 0, which

implies the convergence in probability of π̃K̂n,α
(
Dα(Pθ, P 0) > Msn|Xn

1

)
to 0, i.e. the

concentration of π̃K̂n,α(.|Xn
1 ) to P 0 at rate sn.

6.5.2 Proof of Theorem 6.3.1.

First, we need Donsker and Varadhan’s famous variational formula. Refer for example
to Catoni (2007) for a proof (Lemma 1.1.3).

Lemma 6.5.1. For any probability λ on some measurable space (E, E) and any measur-
able function h : E→ R such that

∫
ehdλ <∞,

log
∫

ehdλ = sup
ρ∈M+

1 (E)

{∫
hdρ−KL(ρ, λ)

}
,

with the convention ∞−∞ = −∞. Moreover, if h is upper-bounded on the support of λ,
then the supremum on the right-hand side is reached by the distribution of the form:

λh(dβ) = eh(β)∫
ehdλλ(dβ).

We come back to the proof of Theorem 6.3.1. We adapt the proof of Theorem 4.1 in
Chérief-Abdellatif and Alquier (2018).

Proof. For any α ∈ (0, 1) and θ ∈ Ω := ∪K≥1ΘK , using the definition of Rényi divergence
and Dα(P⊗n, R⊗n) = nDα(P,R) as data are i.i.d.:

E
[

exp
(
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)]
= 1
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where rn(Pθ, P 0) = ∑n
i=1 log(P 0(Xi)/Pθ(Xi)) is the negative log-likelihood ratio. Then

we integrate and use Fubini’s theorem,

E
[ ∫

exp
(
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)
π(dθ)

]
= 1.

Using Lemma 6.5.1,

E
[

exp
(

sup
ρ∈M+

1 (Ω)

{∫ (
−αrn(Pθ, P 0)+(1−α)nDα(Pθ, P 0)

)
ρ(dθ)−KL(ρ, π)

})]
= 1.

Then, using Jensen’s inequality,

E
[

sup
ρ∈M+

1 (Ω)

{∫ (
− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)

)
ρ(dθ)−KL(ρ, π)

}]
≤ 0.

Now, we consider π̃K̂n,α(.|Xn
1 ) as a distribution onM+

1 (Ω) with all its mass on Θ
K̂
,

E
[ ∫ (

− αrn(Pθ, P 0) + (1− α)nDα(Pθ, P 0)
)
π̃K̂n,α(dθ|Xn

1 )−KL(π̃K̂n,α(.|Xn
1 ), π)

]
≤ 0.

We use KL(π̃K̂n,α(.|Xn
1 ), π) = KL(π̃K̂n,α(.|Xn

1 ),Π
K̂

) + log( 1
π
K̂

), and we rearrange terms:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ E
[

α

1− α

∫ rn(Pθ, P 0)
n

π̃K̂n,α(dθ|Xn
1 ) +

KL(π̃K̂n,α(.|Xn
1 ),Π

K̂
)

n(1− α) +
log( 1

π
K̂

)

n(1− α)

]
.

By definition of K̂,

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ E
[

inf
K≥1

{
α

1− α

∫ rn(Pθ, P 0)
n

π̃Kn,α(dθ|Xn
1 ) +

KL(π̃Kn,α(.|Xn
1 ),ΠK)

n(1− α) +
log( 1

πK
)

n(1− α)

}]

which gives

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ inf
K≥1

{
E
[

α

1− α

∫ rn(Pθ, P 0)
n

π̃Kn,α(dθ|Xn
1 ) +

KL(π̃Kn,α(.|Xn
1 ),ΠK)

n(1− α) +
log( 1

πK
)

n(1− α)

]}

and hence, by definition of π̃Kn,α(.|Xn
1 ),

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
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≤ inf
K≥1

{
E
[

inf
ρ∈FK

{
α

1− α

∫ rn(Pθ, P 0)
n

ρ(dθ) + KL(ρ,ΠK)
n(1− α)

}
+

log( 1
πK

)
n(1− α)

]}
.

which leads to,

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ inf
K≥1

inf
ρ∈FK

{
E
[

α

1− α

∫ rn(Pθ, P 0)
n

ρ(dθ) + KL(ρ,ΠK)
n(1− α) +

log( 1
πK

)
n(1− α)

]}
.

Finally,

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ inf
K≥1

{
inf

ρK∈FK

{
α

1− α

∫
KL(P 0, PθK )ρK(dθK) + KL(ρK ,ΠK)

n(1− α)

}
+

log( 1
πK

)
n(1− α)

}
.

The theorem is a direct corollary of this inequality as soon as Assumption 6.1 is satisfied.

6.5.3 Proof of Theorem 6.3.2.

Proof. Fix α ∈ (0, 1) and let us prove Theorem 6.3.2. Let us recall that ΘK(rK,n) is
defined as the set of parameters θ∗K ∈ ΘK , for which there is a distribution ρK,n ∈ FK
such that: ∫

E
[

log
Pθ∗K (Xi)
PθK (Xi)

]
ρK,n(dθK) ≤ rK,n and KL(ρK,n,ΠK) ≤ nrK,n.

We begin from:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]

≤ inf
K≥1

{
inf

ρK∈FK

{
α

1− α

∫
KL(P 0, PθK )ρK(dθK) + KL(ρK ,ΠK)

n(1− α)

}
+

log( 1
πK

)
n(1− α)

}
.

Then, we write for any K, any θK ∈ ΘK , θ∗K ∈ ΘK :

KL(P 0, PθK ) = KL(P 0, Pθ∗K ) + E
[

log
Pθ∗K (Xi)
PθK (Xi)

]

which gives:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
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≤ inf
K≥1

{
inf

θ∗K∈ΘK

{
α

1− αKL(P 0, Pθ∗K ) + inf
ρK∈FK

{
α

1− α

∫
E
[

log
Pθ∗K (Xi)
PθK (Xi)

]
ρK(dθK)

+ KL(ρK ,ΠK)
n(1− α)

}}
+

log( 1
πK

)
n(1− α)

}
.

Hence, using the definition of ΘK(rK,n) and upper bounding the right-hand-side of the
previous inequality by an inf over ΘK(rK,n), we conclure:

E
[ ∫

Dα(Pθ, P 0)π̃K̂n,α(dθ|Xn
1 )
]
≤ inf

K≥1

{
α

1− α inf
θ∗∈ΘK(rK,n)

KL(P 0, Pθ∗K )+1 + α

1− αrK,n+
log( 1

πK
)

n(1− α)

}
.

6.5.4 Proof of Theorem 6.4.1.

Proof. We still consider the framework of probabilistic PCA in Section 6.4. We assume
that there exists a true rank K0 and a matrix W0 ∈ Rd×K0 with bounded coefficients
such that the true distribution of each Xi is N (0,W0WT

0 + σ2Id), and we place a prior
ΠK0 = N (0, s2Id)⊗K0 and a variational approximation ρK0 = ρ⊗K0 on W given K = K0
where we denote ρ = N (0, 1

dn2 Id). We recall that πK = 1
d
for any K = 1, ..., d.

To obtain the rate of convergence rn = dK0 log(nd)/n for probabilistic PCA, we just
need to show that the quantities in Assumption 6.1 are upper bounded by rn (up to a
constant) as we have log(1/πK0)/n much smaller than rn:

∫
KL

(
N (0,W0WT

0 + σ2Id),N (0,WWT + σ2Id)
)
ρK0(dθK) ,

KL(ρK0 ,ΠK0)
n

.

We have two terms. The first one, i.e. the Kullback-Leibler term, provides a rate of
convergence of dK0 log(dn)/n as:

KL(ρK0 ,ΠK0) =
K0∑
j=1

KL
(
N (0, 1

dn2 Id),N (0, s2Id)
)

= K0

2

(
1

n2s2 − d+ d log(s2) + d log(dn2)
)

≤ K0

2n2s2 −
dK0

2 + dK0 log(s2)
2 + dK0 log(dn).

The integral is much more complicated to deal with. We will show that it leads to a
rate faster than dK0 log(dn)/n. If we denote E the expectation with respect to ρK0 , then
the integral will be equal to:

1
2E
[
Tr
(

(WWT + σ2Id)−1(W0WT
0 + σ2Id)

)]
− d

2 + 1
2E
[

log
(

det(WWT + σ2Id)
det(W0WT

0 + σ2Id)

)]
.
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The expectation of the log-ratio is easy to upper bound. We denote λ1, ..., λd the
positive eigenvalues of the positive definite matrix W0WT

0 + σ2Id. Then for each j =
1, ..., d, λj ≥ σ2 and using Jensen’s inequality and the log-concavity of the determinant:

E
[

log
(

det(WWT + σ2Id)
)]
≤ log

(
det

(
E[WWT ] + σ2Id

))

= log
(

det
(
W0WT

0 + σ2Id + 1
dn2 Id

))

=
d∑
j=1

log
(
λj + 1

dn2

)

=
d∑
j=1

log(λj) +
d∑
j=1

log
(

1 + 1
λjdn2

)

= E
[

log
(

det(W0WT
0 + σ2Id)

)]
+

d∑
j=1

log
(

1 + 1
λjdn2

)

≤ E
[

log
(

det(W0WT
0 + σ2Id)

)]
+

d∑
j=1

1
λjdn2

≤ E
[

log
(

det(W0WT
0 + σ2Id)

)]
+ 1
n2σ2

and then the expectation of the log-ratio provides a rate of convergence of 1/n2:

E
[

log
(

det(WWT + σ2Id)
det(W0WT

0 + σ2Id)

)]
≤ 1
n2σ2 .

The remainder can be bounded as follows:

E
[
Tr
(

(WWT + σ2Id)−1(W0WT
0 + σ2Id)

)]
− d

= E
[
Tr
(

(WWT + σ2Id)−1(W0WT
0 −WWT )

)]

≤ E
[
‖(WWT + σ2Id)−1‖F × ‖W0WT

0 −WWT‖F
]

≤
√
dE
[
‖(WWT + σ2Id)−1‖2 × ‖W0WT

0 −WWT‖F
]

=
√
dE
[
σmax

(
(W0WT

0 + σ2Id)−1
)
× ‖W0WT

0 −WWT‖F
]

=
√
dE
[
σmin(W0WT

0 + σ2Id)−1 × ‖W0WT
0 −WWT‖F

]

i.e.

E
[
Tr
(

(WWT + σ2Id)−1(W0WT
0 + σ2Id)

)]
− d ≤

√
dE
[
(σ2)−1 × ‖W0WT

0 −WWT‖F
]
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=
√
d

σ2 E
[
‖W0WT

0 −WWT‖F
]

where ‖.‖F is the Frobenius norm on matrices, ‖.‖2 the spectral norm, and σmin(A),
σmax(A) the lowest and largest singular values of a matrix A. We use the fact that for a
symmetric semi-definite positive matrix: σmax(A−1) =

(
σmin(A)

)−1
and σmin(A+σ2Id) ≥

σ2, as well as the inequality ‖A‖F ≤
√
d‖A‖2 for any d× d matrix A.

The only thing left to do is to upper bound the expectation of the Frobenius norm of
W0WT

0 −WWT by a multiple of
√
dK0 log(dn)

n
. We use the triangle and Cauchy-Schwarz’s

inequalities:

E
[
‖W0WT

0 −WWT‖F
]
≤ E

[
‖WWT −WWT

0 ‖F
]

+ E
[
‖WWT

0 −W0WT
0 ‖F

]

≤ E
[
‖W(W−W0)T‖F

]
+ E

[
‖(W−W0)WT

0 ‖F
]

≤ E
[
‖W‖F‖W−W0‖F

]
+ E

[
‖W−W0‖F‖W0‖F

]

≤
√
E
[
‖W‖2

F

]
E
[
‖W−W0‖2

F

]
+
√
E
[
‖W−W0‖2

F

]
E
[
‖W0‖2

F

]
≤
√
E
[
‖W‖2

F

]
E
[
‖W−W0‖2

F

]
+ ‖W0‖F

√
E
[
‖W−W0‖2

F

]
.

We can upper bound ‖W0‖F =
√∑d

i=1
∑K0
j=1(W0)2

i,j by
√
dK0C where C is an upper

bound on each of the coefficients of matrix W0.

Also, we can notice that dn2‖W −W0‖2
F = ∑d

i=1
∑K0
j=1

(√
dn(Wi,j − (W0)i,j)

)2
is a

sum of squares of independent standard normal random variables. Thus dn2‖W−W0‖2
F

follows a chi-squared distribution with dK0 degrees of freedom and its expectation is
equal to dK0. Hence:

E
[
‖W−W0‖2

F

]
= K0

n2 .

Similarly, as Wi,j − (W0)i,j is centered, we get:

E
[
‖W‖2

F

]
= E

[
d∑
i=1

K0∑
j=1

W2
i,j

]

=
d∑
i=1

K0∑
j=1

E
[(
Wi,j − (W0)i,j

)2
+ (W0)2

i,j − 2(W0)i,j
(
Wi,j − (W0)i,j

)]

= E
[
‖W−W0‖2

F

]
+ ‖W0‖2

F

≤ K0

n2 + dK0C
2

=
(
dC2 + 1

n2

)
K0.
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Thus, we obtain:

E
[
‖W0WT

0 −WWT‖F
]
≤
√
K0

n

√
K0

√
dC2 + 1

n2 +
√
dK0C

√
K0

n

= K0

n

√
dC2 + 1

n2 +
√
dK0C

n

≤ K0

n

(√
dC + 1

n

)
+
√
dK0C

n

= K0

n

(
2
√
dC + 1

n

)
.

Hence, the order of the upper bound of the expectation of the Fobrenius norm of
matrix W0WT

0 −WWT is
√
dK0
n

<
√
dK0 log(dn)

n
.

Finally, the consistency rate associated with the integral term is dK0
n
, and the overall

rate of convergence is dK0 log(dn)
n

.

6.5.5 Computation of the ELBO for probabilistic PCA.

We consider the framework of probabilistic PCA detailed in Section 6.4. Given rank
K, we place independent Gaussian priors on the columns W1, ...,WK of W such that
ΠK = N (0, s2Id)⊗K , and Gaussian independent variational approximations N (µj,Σj)
for the columns of W. The ELBO associated with rank K and variational approximation
ρK = ⊗Kj=1N (µj,Σj) is given by:

ELBOK(ρK) = α
∫
`n(W)ρK(dW)−KL

(
ρK ,ΠK

)
.

The Kullback-Leibler term KL
(
ρK ,ΠK

)
is equal to:

1
2

K∑
j=1

{
Tr(Σj)
s2 +

µTj µj

s2 − log
(

det(Σj)
)}
− dK

2 + dK log(s2)
2

while the average log-likelihood
∫
`n(W)ρK(dW) is:

−dn2 log(2π)−n2

∫
log

(
det(WWT+σ2Id)

)
ρK(dW )−1

2

n∑
i=1

∫
XT
i (WWT+σ2Id)−1Xi ρK(dW)

where both integrals can be computed thanks to Monte-Carlo sampling approximations:
∫

log
(

det(WWT + σ2Id)
)
ρK(dW) ≈

N∑
`=1

log
(

det(W(`)W(`)T + σ2Id)
)

and ∫
XT
i (WWT + σ2Id)−1Xi ρK(dW) ≈

N∑
`=1

XT
i (W(`)W(`)T + σ2Id)−1Xi

146



where W(1), ...,W(N) are N i.i.d. data sampled from ρK .
The inverse matrix (WWT + σ2Id)−1 can be derived thanks to classical inversion

algorithms. For instance, it is possible to do so in O(Kd2) operations instead of the
classical O(d3) inversion procedure thanks to Sherman-Morrison formula: for any matrix
A ∈ Rd×d and vectors u, v ∈ Rd such that A + uvT is invertible,

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

We write

WWT + σ2Id = σ2Id +
K∑
j=1

WjW
T
j =

(
σ2Id +

K−1∑
j=1

WjW
T
j

)
+WKW

T
K

and iterateK times Sherman-Morrison formula. The first time, we apply it toA = σ2Id+∑K−1
j=1 WjW

T
j and u = v = WK , then to A = σ2Id + ∑K−2

j=1 WjW
T
j and u = v = WK−1,

and so on. We finally obtain (WWT + σ2Id)−1 = MK where:

{ M0 = σ2Id
∀j = 1, ..., K, Mj = Mj−1 − 1

1+WT
j Zj

ZjZ
T
j with Zj = Mj−1Wj.

In order to compute the maximum value ELBO(K) of the ELBO associated with rank
K, one can use a stochastic gradient descent on (µ1,Σ1, ..., µK ,ΣK) that will converge to
a local maximum and will give the variational estimator for rank K. Then, maximizing
ELBO(K) over desired values of K leads to the optimal number of principal components
and to the associated optimal variational approximation.

6.5.6 Results in matrix norm for probabilistic PCA.

To prove Corollaries 6.4.2 and 6.4.3, we need the two lemmas presented behind. We
introduce some notations first. We refer the interested reader to Forth et al. (2014) for
more details.

Notations : Let us call S+
d the set of d×d symmetric positive semi-definite matrices,

and XM =
{
A ∈ S+

d /‖A‖2 ≤M
}
. We define the vectorization of Matrix A ∈ Rp×q with

columns X1, ..., Xq:
Vec(A) = (AT

1 , ...,AT
q )T ∈ Rp×q.

We define the Frobenius inner product of two matrices A ∈ Rp×q and Ã ∈ Rp×q, that is
the sum of componentwise products:

A · Ã = Vec(A)TVec(Ã).

Notice that ‖A‖2
F = A ·A = Vec(A)TVec(A).

We also introduce the Kronecker and Box products of two matrices A ∈ Rp1×q1 and
Ã ∈ Rp2×q2 which are respectively the matricesA⊗Ã ∈ Rp1p2×q1q2 andA�Ã ∈ Rp1p2×q1q2

such that their coefficients are defined as:

(A⊗ Ã)p2(i−1)+j,q2(k−1)+l = Ai,kÃj,l,
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(A� Ã)p2(i−1)+j,q1(k−1)+l = Ai,lÃj,k

for any integers i, j, k, l such that 1 ≤ i ≤ p1, 1 ≤ j ≤ q1, 1 ≤ k ≤ p2, 1 ≤ l ≤ q2.
We have the following properties for any matrix P:

(A⊗ Ã)Vec(P) = Vec(ÃPAT ),

(A� Ã)Vec(P) = Vec(ÃPTAT ).

We also define the gradient ∇f(A) ∈ Rp×q and the Hessian ∇2f(A) ∈ Rpq×pq of a
differentiable function f : Rp×q → R at matrix A:

(∇f(A))p2(i−1)+j,q2(k−1)+l = ∂f(A)
∂Ai,j

,

(∇2f(A))p2(j−1)+i,p2(l−1)+k = ∂2f(A)
∂Ai,j∂Ak,l

for any integers i, j, k, l such that 1 ≤ i, k ≤ p, 1 ≤ j, l ≤ q where ∂f is the partial
derivative of f .

We say that a differentiable function f : Rp×q → R is s-strongly convex in S ⊂ Rpq×pq

with respect to the norm ‖.‖ as soon as one of the two following equivalent properties is
satisfied:

f(A) ≥ f(Ã) +∇f(A) · (A− Ã) + s

2‖A− Ã‖2

or
Vec(P)T∇2f(A)Vec(P) ≥ s‖P‖2

for any matrix A, Ã ∈ S and any symmetric matrix P ∈ Rpq×pq.

Lemma 6.5.2. Then, function f : A→ − log
(

det(A +MId)
)
is 1/(M + σ2)2 strongly

convex in XM with respect to the Frobenius norm.

Proof. The proof follows the same steps than the proof of Theorem 3.1 in Moridomi et al.
(2018).

The Hessian of function f at any symmetric matrix in A ∈ XM is given by (see Forth
et al. (2014)):

∇2f(A) =
(

(A +MId)−1
)T
� (A +MId)−1 = (A +MId)−1 � (A +MId)−1.

Then, we have for any A ∈ XM and any symmetric matrix P ∈ Rpq×pq:

Vec(P)T∇2f(A)Vec(P) = Vec(P)T
(

(A +MId)−1 � (A +MId)−1
)
Vec(P)

= Vec(P)TVec
(

(A +MId)−1PT (A +MId)−1
)

= Vec(P)TVec
(

(A +MId)−1P(A +MId)−1
)
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= Vec(P)T
(

(A +MId)−1 ⊗ (A +MId)−1
)
Vec(P).

Note that the eigenvalues of a Kronecker product A ⊗ P are the products of an
eigenvalue of A and an eigenvalue of P, and the eigenvalues of P−1 are the inverse of the
eigenvalues of P. Moreover, the maximum eigenvalue of A + MId is ‖A‖2 + σ2, so the
minimum eigenvalue of (A + MId)−1 ⊗ (A + MId)−1 is equal to (‖A‖2 + σ2)−2. Hence,
for any matrix A ∈ XM , we get:

Vec(P)T
(

(A +MId)−1 ⊗ (A +MId)−1
)
Vec(P)T ≥ (‖A‖2 + σ2)−2Vec(P)TVec(P)

≥ 1
(M + σ2)2Vec(P)TVec(P),

and we conclude using the definition of the strong convexity and ‖P‖2
F = Vec(P)TVec(P).

Lemma 6.5.3. For any α ∈ (0, 1) and any matrices W ∈ Rd×K1 and W̃ ∈ Rd×K2, as
soon as the spectral norms of WWT and W̃W̃

T
are bounded by a constant B2, then:

Dα(PW, PW̃) ≥ α

16(B2 + σ2)2

∥∥∥W̃W̃
T
−WWT

∥∥∥2

F
.

Proof. We recall that function f : A → − log
(

det(A + MId)
)
is 1/(M + σ2)2 strongly

convex in XM with respect to the Fobrenius norm according to Lemma 6.5.2. Hence, for
any matrices A and Ã in XM , we have:

− log
(

det((1− α)A + αÃ)
)
≤ −(1− α) log

(
det(A)

)
− α log

(
det(Ã)

)
− 1

2α(1− α) 1
4M2‖Ã−A‖2

F .

We rearrange terms:

log
(det

(
(1− α)A + αÃ

)
det(A)1−α det(Ã)α

)
≥ α(1− α)

8M2 ‖Ã−A‖2
F .

Now, we use the fact that:

Dα

(
N (0,A),N (0, Ã)

)
= 1

2(1− α) log
(det

(
(1− α)A + αÃ

)
det(A)1−α det(Ã)α

)

to get for any matrices W ∈ Rd×K1 and W̃ ∈ Rd×K2 such that ‖W̃W̃
T

+ σ2Id‖2 ≤ M
and ‖WWT + σ2Id‖F ≤M :

Dα

(
PW, PW̃

)
≥ α

16M2‖W̃W̃
T

+ σ2Id −WWT − σ2Id‖2
F .

Moreover, for any matrix W ∈ Rd×K such that the spectral norm of WWT is bounded
by B2, we have ‖WWT + σ2Id‖2 ≤ B2 + σ2. We conclude using the previous inequality
for M = B2 + σ2.
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Now, let us go back to the proof of Corollary 6.4.2.

Proof. We assume that there exists a true modelMK0 such that P 0 = PW0 with W0 ∈
Rd×K0 and such that the spectral norm of W0 is bounded by B (hence the coefficients of
W0 are also bounded). As clipB is a projection onto a closed convex set with respect to
the Frobenius norm, we have for any matrix W ∈ Rd×K̂ :∥∥∥clipB(WWT )− clipB(W0WT

0 )
∥∥∥
F
≤
∥∥∥WWT −W0WT

0

∥∥∥
F

and as the coefficients of W0WT
0 are bounded by B2:∥∥∥clipB(WWT )−W0WT

0

∥∥∥
F

=
∥∥∥clipB(WWT )− clipB(W0WT

0 )
∥∥∥
F
.

According to Lemma 6.5.3, we get for any matrix W ∈ Rd×K̂ :
∥∥∥clipB(WWT )−W0WT

0

∥∥∥2

F
≤ 16(B2 + σ2)2

α
Dα

(
PW1 , PW2

)
.

Thus:

E
[ ∫ ∥∥∥clipB(WWT )−W0WT

0

∥∥∥2

F
π̃K̂n,α(dW |Xn

1 )
]

≤ 16(B2 + σ2)2

α
E
[ ∫

Dα(PW , PW0)π̃K̂n,α(dW |Xn
1 )
]

and we use Theorem 6.4.1:

E
[ ∫

Dα(PW, PW0)π̃K̂n,α(dW |Xn
1 )
]

= O
(
dK0 log(dn)

n

)
.

which ends the proof.

We can obtain Corollary 6.4.3 using a simple convexity argument.
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Part III

Theoretical bounds for online
variational inference algorithms
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Chapter 7

A Generalization Bound for Online
Variational Inference

Bayesian inference provides an attractive online-learning framework to analyze sequen-
tial data, and offers generalization guarantees which hold even under model mismatch
and with adversaries. Unfortunately, exact Bayesian inference is rarely feasible in prac-
tice and approximation methods are usually employed, but do such methods preserve the
generalization properties of Bayesian inference? In this chapter, we show that this is
indeed the case for some variational inference (VI) algorithms. We propose new online,
tempered VI algorithms and derive their generalization bounds. Our theoretical result re-
lies on the convexity of the variational objective, but we argue that our result should hold
more generally and present empirical evidence in support of this. Our work in this chapter
presents theoretical justifications in favor of online algorithms that rely on approximate
Bayesian methods.

7.1 Introduction

Bayesian methods, such as Kalman Filtering (Kalman, 1960), Hidden Markov Model
(Baum and Petrie, 1966) and Particle Filtering (Doucet and Johansen, 2009), are pop-
ular methods to analyze sequential data. The posterior distribution provides a natural
representation of the past information and can be updated sequentially using the Bayes
rule whenever new data is available. Generalizations of Bayesian inference, such as those
that temper the likelihood, offer good generalization guarantees (Banerjee, 2006; Audib-
ert, 2009; Gerchinovitz, 2013). Such bounds hold even when the model is misspecified
or when an adversary manipulates the stream of data. These generalization bounds are
in fact very similar and sometimes even identical to the ones obtained by online learn-
ing methods commonly used in the optimization community (Cesa-Bianchi and Lugosi,
2006). The Bayesian principle offers a new perspective which can be used to advance
online-learning methods used in areas such as convex optimization, machine learning,
reinforcement learning, continual learning, and lifelong learning.

Unfortunately, exact Bayesian inference is computationally challenging in cases where
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the normalizing constant of the posterior distribution is a high-dimensional integral. Ap-
proximation methods, such as variational inference (VI) (Jordan et al., 1999) and ex-
pectation propagation (Minka, 2001), can dramatically reduce the computation cost and
enable application of the Bayesian principle to large-scale problems. Despite concerns
about their approximation error, these methods have extensively been applied to many
machine-learning problems where they show satisfactory performance in practice (Blei
and Lafferty, 2006; Hoffman et al., 2013; Kingma and Welling, 2013).

The practical success of such approximation methods points to the gap between the
theory and practice. A few recent works have established generalization bounds of the
approximation methods such as variational inference, but these are restricted to the batch
or offline setting (Alquier and Ridgway, 2017; Bhattacharya et al., 2018; Zhang and Gao,
2017). Extending such results to the online setting, without making strong assumption
about the model mismatch and adversaries, is the main focus of this chapter.

We propose online version of variational inference with tempered likelihoods, and
derive new generalization bound, which has very similar form to the bound of exact
Bayesian inference. Unlike existing proof techniques, our proof extend to the case when
approximations are used instead of the exact Bayesian update. Our derivation relies on
the convexity of the variational objective. This covers a few important cases, but can be
limiting. We argue that the generalization bound is likely to hold more generally, and
present empirical evidence in support of these arguments. Our work takes a step towards
establishing the generalization properties of online approximate Bayesian methods.

7.1.1 Related works

Variational inference is extremely popular in statistics and machine learning, yet its
theoretical properties are not investigated until recently. Generalization bounds for gen-
eralized versions of variational approximations are derived in Alquier et al. (2016); Cottet
and Alquier (2018). Similarly, Bernstein-von Mises’ theorems for variational approxima-
tions in parametric models are proved in Wang and Blei (2018), while concentration of
the posterior in general models is studied in Alquier and Ridgway (2017); Sheth and
Khardon (2017); Bhattacharya et al. (2018); Zhang and Gao (2017); Chérief-Abdellatif
and Alquier (2018); Chérief-Abdellatif (2019a); Jaiswal et al. (2019b). These works show
that variational approximations does enjoy the same consistency properties as the poste-
rior distribution under general conditions. All of these results however only apply to the
batch setting and their extension to the online setting is not straightforward.

It is known that the Bayesian approach leads to good online predictions for a stream
of data; see Banerjee (2006), and Cesa-Bianchi and Lugosi (2006); Audibert (2009);
Gerchinovitz (2013) for generalized posteriors in machine learning. However, there are
only a few attempts to study the online properties of variational inference, and the proofs
used in Cesa-Bianchi and Lugosi (2006) cannot easily be extended to online variational
inference.

Generalization bounds for online approximations of the posterior are studied in Guhaniyogi
et al. (2013), but the algorithms analyzed there are different from the ones used in prac-
tice and the feasibility of these algorithms is not proven. Recently Nguyen et al. (2017a)
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give some results, but the order of magnitude of the bounds are not explicitly written
and in many contexts it is not clear that the bound will even be small enough to ensure
consistency. Even though stochastic/online versions of variational inference are known to
give good results in practice (Sato, 2001; Hoffman et al., 2010; Wang et al., 2011; Hoffman
et al., 2013; Khan and Lin, 2017; Nguyen et al., 2017b; Khan and Nielson, 2018; Osawa
et al., 2019; Zeno et al., 2018), existing works have not been able to derive theoretical
results confirming their generalization properties. Our results fill this gap between theory
and practice for some types of variational approximations obtained with specific types of
online algorithms.

7.2 Generalization Properties of Bayesian Inference
for Online Learning

Given a stream of data, the goal of online learning is to learn to make good decisions, esti-
mations, or predictions on future data examples. The quality of such decisions is defined
with a loss function `(Dt, θ̂t), denoted by `t(θ̂t) for brevity, where Dt is the data at time
t and θ̂t is a quantity computed using the past data, i.e., D1:(t−1) := {D1,D2, . . . ,Dt−1}.
This definition of the loss includes popular supervised and unsupervised learning meth-
ods. For example, in maximum-likelihood training of a parameterized model pθ, θ̂t is
the parameter estimate and the loss is `t(θ) := − log pθ(Dt). Similarly, for a classi-
fication task with input-output pair Dt := (Xt, Yt), the loss could be the hinge loss
`t(θ) = (1−Ytfθ(Xt))+ with a classifier fθ. In the whole paper, we assume that θ 7→ `t(θ)
is convex. By using losses `t until time t, our ultimate goal is to find a θt which is as close
as possible to the minimizer θ∗ of the generalization error E∗(θ) = ED∼P∗ [`(D, θ)] where
P∗ is the true distribution of the data. We would want to do this without many strong
assumptions such as assuming the data stream to be i.i.d., or the absence of adversaries.

Since E∗ is unavailable at time t, to ensure the quality of θ̂t, online-learning algorithms
aim at minimizing the cumulative error ∑t

i=1 `i(θ̂t) until time t. Many algorithms are
known with bounds on the regret of the decision θ̂t , that is the gap in the cumulative error
and the minimal cumulative error that could have been reached with a fixed parameter:

T∑
t=1

`t(θ̂t)− inf
θ∈Θ

T∑
t=1

`t(θ). (7.1)

Bounds on this quantity are known as regret bounds, e.g., see Cesa-Bianchi and Lugosi
(2006); Bubeck (2011); Shalev-Shwartz (2012); Hazan (2016). Fortunately, bounding the
regret also leads to upper bounds on the generalization gap, e.g., by using the average
θ̄T = 1

T

∑T
t=1 θ̂t we can bound the gap E∗(θ̄T ) − E∗(θ∗). Due to such properties, regret

bounds are useful to study generalization properties of an online algorithm. Moreover,
the bound holds with very little assumptions on the data and is valid when the data is
not i.i.d. and even when it is corrupted by an adversary.

For online learning, Bayesian inference algorithms have good generalization properties,
e.g., the following tempered posterior distribution introduced by Vovk (1990); Littlestone
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and Warmuth (1994) has a controlled regret:

pηt (θ) := 1
Zηt

π(θ)e−η
∑t−1

i=1 `t(θ) (7.2)

where η > 0 is a learning rate, π is a prior distribution, and Zηt is the normalizing constant
of the posterior distribution. Each loss `t here can be interpreted as the log-likelihood of
a data example Dt. When the loss is indeed equal to − log pθ(D) and η = 1, the above
algorithm is equivalent to Bayesian inference whose generalization properties are usually
established under the assumption of no model mismatch (e.g., see Ghosal and Van der
Vaart (2017)). The tempered version η < 1 can be shown to generalize well even when
the model is misspecified (Grünwald et al., 2017) or when an adversary manipulates the
stream of data. Such tempered versions have also been studied in depth in the machine-
learning literature by using the PAC-Bayesian bounds (Shawe-Taylor and Williamson,
1997b; McAllester, 1999; Catoni, 2007; Seldin and Tishby, 2010; Suzuki, 2012; Seldin
et al., 2011; Cuong et al., 2013; Germain et al., 2016; Catoni and Giulini, 2017; Guedj,
2019; Tsuzuku et al., 2019).

Algorithm 9 Tempered Bayesian Inference, a.k.a Exponentially Weighted Aggregration
Require: Learning rate η > 0, prior π(θ), pη1 ← π.
for t = 1, ..., do
1. θ̂t ← Eθ∼pηt (θ),

2. Observe Dt to suffer a loss `t(θ̂t).

3. Update pηt+1(θ) ∝ pηt (θ) exp [−η`t(θ)].
end for

In the online-learning literature, the regret bound of this algorithm has been studied
extensively under a variety of names, e.g., algorithms such as multiplicative update,
weighted majority algorithm, exponentially weighted aggregation (EWA) are all specific
cases of tempered Bayesian inference. Algorithm 9 shows a pseudo-code for EWA which
performs tempered Bayesian inference in an online fashion (Step 3 implements Equation
(7.2)). Below, we state a theorem which shows an example of regret bound1, proved in
Theorem 4.6 in Audibert (2009) for the algorithm shown in Algorithm 9.

Theorem 7.2.1. Assuming that the loss is bounded, i.e., 0 ≤ `t(θ) ≤ B, ∀Dt, θ, the
cumulative regret has the following upper bound when θ̂t = Eθ∼pηt [θ] is the posterior mean:

T∑
t=1

`t(θ̂t) ≤ inf
p∈S

{
Eθ∼p

[
T∑
t=1

`t(θ)
]

+ ηB2T

8 + K(p, π)
η

}
(7.3)

where S is the set of all probability distributions over Θ and K is the Küllback-Leibler
(KL) divergence.

1In online-learning literature such results are usually stated for finite decision space, e.g., see similar
results for EWA in Cesa-Bianchi and Lugosi (2006). The result above holds for a more general continuous
setting but under a bounded loss.
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A proof is given in Appendix 7.7.5 for the sake of completeness.
The above regret bound is useful to derive explicit bounds in expectation on the

generalization error E∗ of an estimator that is defined as the average decision θ̄T :=∑
t θ̂t/T . For example, we can show that, when a classical prior mass condition2 on the

prior is satisfied and when Dt are actually independent and identically distributed from
P∗, the generalization error has the following bound:

ED1:T∼P∗

[
E∗(θ̄T )

]
≤ E∗(θ∗) +B

√
d

2T log
(
T

d

)
(7.4)

for some well-chosen η ∼
√
d/T and d > 0 is a complexity measure of the parameter

space (often the dimension). This bound shows that when Dt are i.i.d. from P ∗ then
Bayesian inference achieves generalization error at a rate

√
d/T . An exact statement and

a complete proof are given in Theorem 7.7.3 Subsection 7.7.3 in the appendix. The proof
is based on a technique called online-to-batch analysis. Similar bounds can be derived
even for the cases when the model is misspecified and an adversary is present.

The regret bound derived in Theorem 7.2.1 assumes that pηt is computed exactly,
which is extremely challenging and many a times infeasible. The difficulty arises due
to the computation of Zηt which is a high-dimensional integral when the space of θ is
large. Approximate Bayesian inference methods approximate the integral by finding
an approximation of pηt in a restricted family of distributions F = {qµ, µ ∈ M}, e.g.,
Gaussian distribution with µ being the mean and variance. Our focus in this chapter is
to derive bounds similar to Theorem 7.2.1 for approximate Bayesian inference methods.

Unfortunately, deriving similar bounds as Theorem 7.2.1 for approximate inference
is not possible using existing proof techniques. This is because these techniques do not
work when pηt and S in (7.3) are replaced by qµt and M respectively. As shown in
Appendix 7.7.5, these proofs rely on cancellation of many terms in a telescoping sum.
This cancellation does not take place when an approximation is used instead, and the
error accumulates making the regret bound practically useless. In this chapter, we solve
this problem using a different proof for tempered, online variational inference algorithms
discussed in the next section.

7.3 Online Variational Inference

In this section, we introduce approximate Bayesian inference methods that can obtain
tractable approximations in an online fashion. The methods available in the approximate
inference literature are not always suitable for our purpose. Therefore, we present mod-
ifications of those methods that lead to feasible online variants of the Bayesian update
shown in (7.2). To simplify the notation, we will denote the expectation of the loss under
an approximation qµ(θ) by L̄t(µ) := Eθ∼qµ [`t(θ)].

2The exact condition is that the prior π(θ) has mass bigger than εd on an ε-ball around θ∗ for some
d.
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7.3.1 Sequential Variational Approximation

An advantage of variational inference is that it can be directly written as a constrained
optimization version of Bayesian inference. To see this we first note that the posterior
given in (7.2) can be obtained by solving the following optimization problem (Dai et al.,
2016):

pηt+1(θ) = arg min
p∈S

{
Eθ∼p

[
t∑
i=1

`i(θ)
]

+ K(p, π)
η

}

We can obtain an approximation by simply restricting the set S:

qµt := arg min
µ∈M

{
Eθ∼qµ

[
t−1∑
i=1

`i(θ)
]

+ K(qµ, π)
η

}
(7.5)

where the set M is the set of parameters for the set F := {qµ, µ ∈ M}. The above
approximation therefore is a variational approximation of the exact Bayesian inference.

Unfortunately, the update (7.5) may not be feasible in practice. The Bayesian update
of (7.2) takes a convenient form where update of pηt+1 can be written in terms of pηt ; see
line 3 in Algorithm 9. For update (7.5), this is not possible in most cases, i.e., we cannot
express the optimization problem for qµt+1 in terms of qµt . Typically, one need to store
all the past data examples Di and recompute their gradients, and then run the optimizer
until it converges. This can be very expensive, especially for large t.

We propose a sequential version which solves these problems by using an approxima-
tion. We follow the ideas used in online gradient algorithms, e.g., such as those used
in Shalev-Shwartz (2012), and replace Eθ∼qµ [`i(θ)] = L̄i(µ) ≈ µT∇µL̄i(µi). This leads to

µt+1 = arg min
µ∈M

 t∑
i=1

µT∇µL̄i(µi) + K(qµ, π)
η

. (7.6)

Note that the gradients in the approximation are computed at the past µi, rather
than the current one µt. This results in an algorithm summarized in Algorithm 10 which
we call sequential variational approximation (SVA). When computing the gradient of the
KL divergence term is feasible, this algorithm can be cheaply performed.

7.3.2 Streaming Variational Bayes

An alternative approach is to remove the term K(qµ, π) since π is already included in qµt :

µt+1 = arg min
µ∈M

µT∇µL̄t(µt) + K(qµ, qµt)
η

. (7.7)

This step, contained in Algorithm 10, is tractable whenever computing the gradient of
the KL term is feasible, e.g., when the expectation parameterization is used. This type of
update has been proposed in many recent works, e.g., Nguyen et al. (2017a), Zeno et al.
(2018). These updates can be seen as a special case of Broderick et al. (2013). Due to
this connection, we call this algorithm streaming variational Bayes (SVB).
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Algorithm 10 Online Variational Inference
Require: Learning rate η > 0, a prior π(θ) ∈ F , qµ1 ← π.
for t = 1, ..., do
1. θ̂t ← Eθ∼qµt [θ],

2. Observe Dt to suffer a loss `t(θ̂t).

3. Update depending on the type of algorithm.

a) For SVA, solve (7.6).

b) For NGVI, solve (7.8).

c) For SVB, solve (7.7).

end for

7.3.3 Natural Gradient Variational Inference

The algorithm described in the previous sections are closely related to existing natural-
gradient variational inference (NGVI) algorithm (Sato, 2001; Hoffman et al., 2013; Khan
and Lin, 2017). These algorithms are typically applied for stochastic learning but can be
easily modified for online setting. We will consider the method of Khan and Lin (2017)
because it applies to the most general setting (other methods require strong conjugacy
assumptions on the loss `t(θ) and prior π(θ)). The NGVI algorithm is typically applied
to obtain exponential-family approximations, but as we will show the updates are similar
to our SVA algorithm which also reveals a more general way of implementing these
algorithms in the online setting.

The advantage of using NGVI for online learning is that it obtains closed-form updates
for qµt+1 which can be expressed in terms of qµt . This is done by exploiting the expectation
parameterization3 of the exponential family. Throughout this section, we denote the
expectation parameter by µ and natural parameterization of the exponential family by λ.
Khan and Lin (2017) propose the following update4 in the expectation-parameter space:

min
µ∈M

µT∇µL̄t(µt) + K(qµ, π)
η

+ K(qµ, qµt)
α

, (7.8)

where α > 0 is a step size. The difference from (7.6) is that now the linear term does
not contain a sum over all past examples i, rather only the current one. Instead, we
add another KL divergence term which contains the past information in the previous
approximation qµt . Therefore, NGVI algorithm, summarized in Algorithm 10, employs

3Expectation parameters are expectations of the sufficient statistics, e.g., Gaussian approximation
has two expectation parameters: mean vector and correlation matrix respectively.

4The exact update proposed in Khan and Lin (2017) is written differently but can be shown to be
equivalent to (7.8). This can be done by using their Lemma 1 and setting 1/α := 1/β − 1/η where β is
the step-size used in their paper. We use this form since it makes it easier to establish connections to
SVA.
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a different way to add the past information, but as we show next, it results in a very
similar update as SVA. In the appendix, we provide a closed-form solution to (7.8).

7.3.4 Example: Mean-Field Gaussian VI

We now give a concrete example of the algorithms introduced in this section. We will
use the mean-field Gaussian VI where F is the class of all Gaussian approximations
with diagonal covariance matrix. We denote the mean vector of the Gaussian by m =
(m1, . . . ,md)T and the diagonal of the covariance matrix by σ2 = (σ2

1, . . . , σ
2
d)T . To

derive the updates for SVA and SVB, we used µ = {m,σ} while for NGVI we used the
expectation parameters µ = {m,m2 + σ2}. (Here, and until (7.10) below, the squares
and multiplications on vectors are to be understood componentwise). We also assume
the prior π(θ) to be a Gaussian with mean 0 and variance s2Id where Id is the identity
d× d matrix.

Denoting the gradients ḡmt := ∂L̄t
∂m

and ḡσt := ∂L̄t
∂σ

, we give the update for each method
below (here h(x) :=

√
1 + x2 − x, applied componentwise for vector inputs):

SVA: mt+1 ← mt − ηs2ḡmt , gt+1 ← gt + ḡσt ,

σt+1 ← h
(

1
2ηsgt+1

)
s, (7.9)

SVB: mt+1 ← mt − ησ2
t ḡmt ,

σt+1 ← σth
(

1
2ησtḡσt

)
. (7.10)

7.4 Generalization Bounds for Online VI

In this section, we present regret bounds for online VI algorithms discussed in the previous
section. Our bounds take similar form to the one presented in Theorem 7.2.1, and can
be used to obtain generalization bounds similar to (7.4). Our proofs require convexity
of L̄t(µ) := Eqµ [`t(θ)] with respect to µ, which is a strong assumption. Due to this we
are able to derive bounds for SVA and SVB. We expect our bound to hold for NGVI
too, due to its similarity to SVA. Specifically, all of our results use the following minimal
assumption.

Assumption 7.4.1. L̄t is L-Lipschitz and convex.

Some results require the following stronger assumption.

Assumption 7.4.2. L̄t is H-strongly convex where H > 0, i.e., for any two µ, µ′ ∈ M,
the following holds:

L̄t(µ′)− L̄t(µ) ≥ (µ′ − µ)T∇L̄t(µ) + H

2 ‖µ
′ − µ‖2.

Finally, some results also require strong convexity for KL.

Assumption 7.4.3. The KL divergence µ 7→ K(qµ, qµ1) is α-strongly convex.
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All of these assumption depend heavily on the parametrization of {qµ, µ ∈ M}. For
some parameterization, these assumptions do hold although such cases are limited. For
example, for Gaussian approximations and convex `, the assumptions are satisfied, as
pointed out by Challis and Barber (2013). This result has recently been extended
by Domke (2019) to more generals location-scale family. We give a formal statement
below.

Proposition 1 (Theorem 1 in Domke (2019)). Assuming that qµ belongs to a location-
scale family F = {qm,C} where m is a d-length vector and C is a d × d matrix with
qm,C(θ) = [det(C)]−1/2ψ(C−1/2(θ − m)) for some fixed density ψ, then L̄t is convex.
Moreover when each θ 7→ `t(θ) is H-strongly convex and ψ is the density of a centered
random variable with identity variance matrix, then Assumption 7.4.2 is also satisfied.

The results for Gaussian approximation can be obtained as a special case.

Proposition 2. Assume that θ 7→ `t(θ) is L′-Lipschitz. Assume that we use the Gaussian
approximation family F =

{
qm,C = N (m,CTC), (m,C) ∈M

}
, M ⊂ Rd × UT (d) where

UT (d) is the set of full-rank upper triangular d× d real matrices. Then L̄t is L-Lipschitz
with L =

√
2L′.

Finally, we remind the formula for the KL divergence between two Gaussian distri-
butions. Let qm,C = N (m,CTC) for any (m,C) ∈ Rd × UT (d). Then

K(qm,C , qm̄,C̄) = 1
2

(
(m− m̄)T C̄T C̄(m− m̄) + tr[(C̄T C̄)−1(CTC)] + log

(
det(C̄T C̄)
det(CTC)

)
− d

)

is known to be strongly convex on Rd × MC where MC is a closed bounded subset
of UT (d). Thus, Assumption 7.4.3 is satisfied with a Gaussian prior and a Gaussian
approximation family.

We are now ready to state our regret bounds for SVA and SVB.

7.4.1 Bounds for SVA

Theorem 7.4.1. Under Assumptions 7.4.1 and 7.4.3, SVA has the following regret bound:

T∑
t=1

`t(θ̂t) ≤ inf
µ∈M

Eθ∼qµ
[
T∑
t=1

`t(θ)
]

+ ηL2T

α
+ K(qµ, π)

η

. (7.11)

The above bound is almost identical to the bound given in Theorem 7.2.1 where we
can replace p by qµ, S byM, the bound B by the Lipschitz constant L, and factor of 8
by the strong convexity parameter α. However, our proof of Theorem 7.4.1 is completely
different from the one for Theorem 7.2.1. It relies on arguments from online convex
optimization that can be found in Shalev-Shwartz (2012); Hazan (2016). A detailed
proof is given in Appendix 7.7.5.
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Similar to the Bayesian update case discussed in Section 7.2, using the online-to-batch
analysis detailed in Appendix 7.7.3, we can show that the average θ̄T = (1/T )∑T

t=1 θ̂t
satisfies

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
µ∈M

Eθ∼qµ [E∗(θ)] + ηL2

α
+ K(qµ, π)

ηT

. (7.12)

As an example consider the mean-field Gaussian approximation and assume that for any
D, `(D, ·) is L/2-Lipschitz (note that these are the assumptions of Proposition 2 ensuring
that Assumption 7.4.1 is satisfied). Then Eθ∼qµ [E∗(θ)] = E∗(m) + ‖σ‖L/2 . Therefore,
given the expression of the KL-divergence between Gaussian distributions, taking a vector
σ with σj = Lη/(α

√
d), η = (1/L)

√
αd log(T/d)/T , and considering only the regret with

respect to bounded means m leads to

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
m∈[−M̄,M̄ ]d

E∗(m) + (1 + o(1))2L
α

√
d log (dT )

T
.

This again is very similar to the generalization error shown in (7.4).

7.4.2 Bounds for SVB

Similarly to the SVA case, we can derive a regret bound, however our proof only applies
to the Gaussian case. For this case, we require a dynamic learning ηt. We use a different
learning rate for each element of θj which we denote by ηt,j. The result also works for a
bounded parameter spaceM =Mm ×Mσ that will imply a projection step in addition
to the update in (7.10):

SVB: mt+1 ← ΠMm

[
mt − ησ2

t ḡmt
]
,

σt+1 ← ΠMσ

[
σth

(
1
2ησtḡσt

)]
.

where ΠMm and ΠMσ denote the orthogonal projection on Mm and Mσ respectively.
The following theorem states the result.

Theorem 7.4.2. We consider the mean-field Gaussian family qµ = N (m, diag(σ2)) and
M =Mm ×Mσ whereMm andMσ are closed, bounded, convex subsets of Rd and Rd

+
respectively, and 0 ∈ Mσ. Define D2 = sup {‖m−m′‖2

2 + ‖σ‖2,m,m′ ∈Mm, σ ∈Mσ}.
Then, under Assumption 7.4.1, with the choice ηt,j = D

√
2

L
1√
tσ2
t,j

we get:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) +DL
√

2T . (7.13)

Under Assumptions 7.4.1 and 7.4.2, the choice ηt = 2/Htσ2
t leads to:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) + L2(1 + log T )
H

. (7.14)
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Here again the results are similar to the Bayesian inference case but now expressed in
terms of the parameters µ instead of expectations.

A similar bound on the generalization error can also be proved. Define θ̄T = (1/T )∑T
t=1 θ̂t.

Here, the online-to-batch analysis directly leads to

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
θ∈Mm

E∗(θ) + DL
√

2√
T

in the convex case and

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
θ∈Mm

E∗(θ) + L2(1 + log T )
HT

in the strongly convex case.
Note the in the online optimization setting studied in Shalev-Shwartz (2012), it is

usual to optimize on Euclidean balls. Here, Mm = {m ∈ Rd : ‖m‖ ≤ M̄} and Mσ = {σ ∈
Rd

+ : ‖σ‖ ≤ S̄} leads to D = 4M̄2 + S̄2 leads to dimension-free bounds.
On the other hand, the choice Mm = [−M̄, M̄ ]d and Mσ = [0, S̄]d implies D2 =

d(4M̄2 + S̄2), and so the bound in the convex case is

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
θ∈Mm

E∗(θ) +
L
√

2d(4M̄2 + S̄2)
√
T

and its dependence in d is the same as in the bound on SVA.

7.4.3 Generalization

We expect our bounds to hold for NGVI as well. When expectation parameterization
is used, the assumptions are satisfied only in very limited models. This is because the
results of Propositions 1 and 2 do not directly apply to expectation parameterization.
However, the NGVI update shown in (7.8) can be applied in other parameterization as
well, in which case some of our result can be extended to NGVI too.

7.5 Experiments

In this section, we conduct experiments on real and simulated datasets, in classifica-
tion and linear/nonlinear regression. The objective is twofold: check the convergence of
SVA/SVB, with and without the convexity assumption on L̄t, and compare SVA, NGVI
and SVB.

7.5.1 Experimental setup

We compare the empirical performance of the algorithms we present in this chapter
through classification and regression tasks on several toy and real-world datasets. We

163



also include the classical online gradient descent and the online gradient descent on the
expected loss as benchmarks. Please refer to Appendix 7.7.2 for more details on these
algorithms. In the following, OGA will stand for the classical online gradient descent while
OGA-EL for the OGA on the expected loss (Algorithm 10). We recall that SVA, NGVI
and SVB respectively refer to the sequential variational approximation (7.6), natural
gradient variational inference (7.8) and streaming variational Bayes (7.7).

Binary classification We consider first a classification problem. At each round t
the learner receives a data point xt ∈ Rd and predicts its label yt ∈ {−1,+1} using
〈xt, θt〉. The adversary reveals the true value yt, then the learner suffers the loss `t(θt) =
(1− ytθTt xt)+, where a+ = a if a > 0 and a+ = 0 otherwise.

Regression At each round t, the learner receives a set of features xt ∈ Rd and predicts
yt ∈ R using 〈xt, θt〉. Then the adversary reveals the true value yt and the learner suffers
the loss `t(θt) = (yt−fθt(xt))2. We will consider both the linear case when the predictions
are linear fθ(xt) = θTxt and the nonlinear case where the predictions are outputs of a one-
hidden-layer neural network with a ReLU activation. The first case of linear predictions
leads to a convex loss with respect to θ, while the latter leads to a nonconvex loss.

Variational family For both tasks, we use a Gaussian mean-field variational family
F = {qµ = N (m, diag(σ2)) /µ = (m,σ) ∈Mm×Mσ}, Mm = [−20, 20]d andMσ = [0, 1]d.

Datasets We consider here six different datasets: one toy and three real datasets
for classification, and one real world dataset for both linear and nonlinear regression.
The three real world datasets used for the binary classification problem are the popular
Breast Cancer, the Pima Indians and the Forest Cover Type datasets, while those used
for regression are the Boston Housing and the California Housing datasets respectively for
the convex and the nonconvex case. All come from the UCI machine learning repository.
Note that in some databases, the data are ordered according to some criterion such as
the date or the label. In order to avoid any effect linked to this, we randomly permuted
the observations.
The toy dataset is as follows: we sample n = 104 points yt according to a Bernoulli
distribution Be(2/3). Then

xt|(yt = 1) ∼ N
((

1
1

)
,

(
1 1
1 3

))
and xt|(yt = 0) ∼ N

((
−1
−1

)
,

(
1 0
0 1

))
.

Dataset T d Dataset T d
Toy classification 10000 2 Cover Type 581012 54
Breast cancer 569 30 Boston Housing 506 13
Pima Indians 768 8 California Housing 20640 9

7.5.2 Experimental results

For each task and each dataset, we plot the evolution of the average cumulative loss∑t
i=1 `i(θi)/t as a function of the step t = 1, ..., T , where T is the number of instances

of the dataset and θi is the decision made by the learner at step i. We compare this
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Figure 7.1: Average cumulative losses on different datasets for classification and regres-
sion tasks with OGA (yellow), OGA-EL (red), SVA (blue), SVB (purple) and NGVI
(green) for the convex hinge loss and the squared loss functions. The black line shows the
average total cumulative loss in hindsight. We see that in most cases NGVI outperforms
the other algorithms. The last plot (California Housing dataset) shows the consistency of
our algorithms for a nonconvex loss L̄t.
quantity to the best average total cumulative loss in hindsight infθ∈Mm

1
T

∑T
t=1 `t(θ) which

is represented by a straight black horizontal line in Figure 7.1.
Parameters setting We initialize all means to 0 and all values of the variance to 1.

For simplicity, the values of the learning rates are set to η = 1/
√
T for OGA, OGA-EL

and SVA while ηt = 1/σ2
t

√
t for SVB and ηt = 1 for NGVI respectively. It is possible to

optimize the values of the step sizes. Nevertheless, we draw attention to the fact that a
simple cross validation technique would not be valid here as it would require to know the
whole dataset before selecting the step size, which is not possible in an online setting,
and using such a strategy at each step t using the past data would change the learning
rate of OGA, OGA-EL and SVA at each step.

Conclusions The results are reported in Figure 7.1 that shows the consistency of
our algorithms. The goal of our simulations is to observe the empirical performance of
our algorithms in practice, and to see if it is possible to go further than the convexity
assumption that is required in Section 7.4. Looking at the plots, the two main findings
of our experiments are the following:

• the generalization properties of online variational inference seem to go beyond the
convex assumption we stated in the previous theoretical parts.
• even though SVA and SVB exhibit good performances, NGVI is the best method

in practice as it converges faster on all the datasets.

7.6 Conclusion

In this chapter, we derive the first generalization bounds for some online variational
inference algorithms. Our proof techniques applies to cases where existing methods do
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not work. By using existing variational methods, we proposed a few online methods for
variational inference. We provided generalization bounds for the SVA algorithm, and
related them to the NGVI methods. We also derived a bound for a special case of SVB.
We provided numerical results to establish consistency of our results. We observed that
NGVI outperforms all the other methods, and that the theoretical convexity assumption
is not needed in practice.

We believe that it is possible to extend our proof techniques to NGVI case. Currently,
our proofs strongly rely on the convexity of Eθ∼qµ [`t(θ)] with respect to µ. This analysis
cannot directly be used for the parameterization of Khan and Lin (2017). However, it
can be applied to a general formulation where our assumptions hold. We believe that
generalization bounds for NGVI is possible to derive and will pursue this direction in the
future.

7.7 Proofs and additional results

7.7.1 Closed-form solutions for NGVI

The expectation parameterization of NGVI enables closed-form solution. This is because
the gradient of the KL diverence with respect to expectation parameter is available in
closed-form (see Eq. 10 in Khan and Nielson (2018)). The closed update is given in Eq.
(50) in Khan and Lin (2017) using which we obtain the following update:

λt+1 = (1− β)λt + βλ1 − ηβ∇µL̄t(µt), (7.15)

where 1/β := 1/α + 1/η. Given λt+1, we can get µt+1 = ∇λA(λt+1) where A is the
log-partition function of the exponential family.

Now we show that this closed-form update is similar to SVA. By using induction
similar to Lemma 4 in Khan and Lin (2017), we can write the update in terms of all past
gradients:

λt+1 = λ1 − η
t∑
i=1

wi∇µL̄i(µi) (7.16)

where wi := β
∏(1 − β)i−2. This can be compared to the SVA update in the expecta-

tion parameterization where applying the gradient to (7.6) gives us the following update
similar to (7.15) but where wi = 1 for all i:

λt+1 = λ1 − η
t∑
i=1
∇µL̄i(µi) (7.17)

Therefore, SVA takes a gradient step assuming that all gradients are equally important,
which is similar to the Bayesian update (7.2) where all loss `i are treated equally. In
contrast, in NGVI, the past gradients are discounted using β and ultimately forgotten.
Weighting past gradients makes sense when we do not want the current mistakes to affect
the future. However, the choice of step-size is crucial to know the rate at which the past
gradients should be discounted.
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NGVI is typically applied using expectation parameterization, but the formulation
(7.8) is more general although could be computationally difficult. The theoretical results
in the paper further assume that L̄i is convex in µ. Still, in our experiments, NGVI gives
good performance in an online setting compared to many other algorithms.

7.7.2 Online gradient algorithm on the expected loss (OGA-EL)

It is possible to directly use the online gradient algorithm (OGA) on the expected loss
Eθ∼qµ [`t(θ)], see Algorithm 11.

Algorithm 11 OGA-EL
Require: Learning rate η > 0, a prior π(θ) ∈ F , qµ1 ← π.
for t = 1, ..., do
1. θ̂t ← Eθ∼qµt [θ],

2. Observe Dt to suffer a loss `t(θ̂t).

3. Update µt+1 = µt − η∇L̄t(µt).
end for

Note first that from Shalev-Shwartz (2012) step (iii) is actually equivalent to

µt+1 = arg min
µ∈M

 t∑
i=1

µT∇L̄i(µi) + ‖µ− µ1‖2

η

,
which means that we replaced the Küllback-Leibler divergence by the Euclidean norm in
SVA.

Also, when µ = (m,σ) ∈ Rd × (R+)d and qµ = N (m, diag(σ)), then Algorithm 11
becomes

mt+1 = mt − ηs2∂L̄t
∂m

(mt, σt),

σt+1 = σt − ηs2∂L̄t
∂σ

(mt, σt).

We have regret bounds for this method, similar to the one for EWA:

Theorem 7.7.1. Under Assumption 7.4.1, Algorithm 11 leads to:
T∑
t=1

`t(θ̂t) ≤ inf
µ∈M

Eθ∼qµ
[
T∑
t=1

`t(θ)
]

+ ηL2T + ‖µ− µ1‖2

η

,
and moreover, under Assumptions 7.4.3 and 7.4.1, Algorithm 11 leads to:

T∑
t=1

`t(θ̂t) ≤ inf
µ∈M

Eθ∼qµ
[
T∑
t=1

`t(θ)
]

+ ηL2T + αK(qµ, π)
2η

.
The proof of this result is given below with the other proofs of the paper.
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7.7.3 Online-to-batch conversion

Many times in the paper, we derived generalization error bounds from regret bounds,
using the online-to-batch conversion. We here give a formal statement for this result,
note that this result is essentially Theorem 5.1 in Shalev-Shwartz (2012). We also provide
a proof for the sake of completeness.

Theorem 7.7.2. Assume that D1, . . . ,DT are i.i.d from P∗. Assume we use an online
algorithm on the data that produce a sequence of parameters θ̂1, . . . , θ̂T . That is, θ̂t =
θ̂(D1, . . . ,Dt−1). Define the estimator

θ̄T = 1
T

T∑
t=1

θ̂t.

Then
ED1:T∼P∗ [E∗(θ̄T )] ≤ ED1:T∼P∗

[
1
T

T∑
t=1

`t(θ̂t)
]
.

Proof. We have:

E∗(θ̄T ) = ED∼P∗
[
`(D, θ̄T )

]
= ED∼P∗

[
`

(
D, 1

T

T∑
t=1

θ̂t

)]
≤ 1
T

T∑
t=1

ED∼P∗
[
`
(
D, θ̂t

)]
by Jensen’s inequality. The key is that as θ̂t = θ̂t(D1, . . . ,Dt−1) does not depend on Dt,
we can rewrite:

ED∼P∗
[
`
(
D, θ̂t

)]
= EDt∼P∗

[
`
(
Dt, θ̂t

)]
= EDt∼P∗

[
`t(θ̂t)

]
and so we have

ED1:T∼P∗

[
E∗(θ̄T )

]
≤ ED1:T∼P∗

{
1
T

T∑
t=1

ED∼P∗
[
`t(θ̂t)

]}

= 1
T

T∑
t=1

ED1:T∼P∗

[
`t(θ̂t)

]
= ED1:T∼P∗

[
1
T

T∑
t=1

`t(θ̂t)
]
.

As an application, we state an exact version of (7.4) and prove it from Theorem 7.2.1
and Theorem 7.7.2.

Theorem 7.7.3. Assume that the loss ` is bounded by B as in Theorem 7.2.1 and that
D1, . . . ,DT are i.i.d from P∗. Assume that there is some d > 0 such that

r(ε) ≤ d log(1/ε)

where r(ε) = log[1/π(B(θ∗, ε))] and B(θ∗, ε) = {θ ∈ Θ : E(θ) − E(θ∗) ≤ ε}. Use on this
data the EWA strategy with η = (1/2

√
2B)

√
(d/T ) log(d/T ), then

ED1:T∼P∗ [E∗(θ̂T )] ≤ E∗(θ∗) +B

√
d

2T log
(
T

d

)
+ d

T
.
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Note that the prior mass condition is classical in the PAC-Bayesian literature and in
the frequentist analysis of Bayesian estimators, see e.g Catoni (2007); Rousseau (2016);
Bhattacharya et al. (2016); Ghosal and Van der Vaart (2017). The estimator θ̄T averaging
the decisions θ̂t was first introduced by Catoni (2004) as the "double mixture rule".

Proof. Define pε as π restricted to B(θ∗, ε) and note that

K(pε, π) = − log π (B(θ∗, ε)) = r(ε) ≤ d log(1/ε).

From Theorem 7.2.1, for any ε,
T∑
t=1

`t(θ̂t) ≤ Eθ∼pε

[
T∑
t=1

`t(θ)
]

+ ηB2T

8 + d log(1/ε)
η

.

From Theorem 7.7.2,

ED1:T∼P∗ [E∗(θ̂T )] = ED1:T∼P∗

[
1
T

T∑
t=1

`t(θ̂t)
]

≤ ED1:T∼P∗

{
Eθ∼pε

[
1
T

T∑
t=1

`t(θ)
]}

+ ηB2

8 + d log(1/ε)
Tη

= Eθ∼pε [E∗(θ)] + ηB2

8 + d log(1/ε)
Tη

≤ E∗(θ∗) + ε+ ηB2

8 + d log(1/ε)
Tη

where the last inequality comes from the definition of pε. Taking ε = d/T gives:

ED1:T∼P∗ [E∗(θ̂T )] ≤ E∗(θ∗) + d

T
+ ηB2

8 + d log(T/d)
Tη

.

Finally, substitute its value to η to get

ED1:T∼P∗ [E∗(θ̂T )] ≤ E∗(θ∗) +B

√
d

2T log
(
T

d

)
+ d

T
.

7.7.4 A tool for the proofs

We remind the following classical lemma. We refer the reader for example to Catoni
(2007) for a proof of this result, where it is stated as Lemma 1.1.3 (page 16).

Lemma 7.7.4. Let h : Θ→ R be a bounded measurable function and π ∈ S(Θ). Then

sup
p∈S(Θ)

{Eθ∼p[h(θ)]−K(p, π)} = logEθ∼π[exp(h(θ))]

and the supremum is actually reached for

p(θ) ∝ exp[h(θ)]π(θ).

This lemma will actually turn out to be a fundamental tool for some of the proofs.
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7.7.5 Proofs

Proof of Theorem 7.2.1. Note that this proof is classical and is reminded here for the
sake of completeness. We have first:

exp
[
−η`t(θ̂t)

]
= exp

[
−η`t(Eθ∼pηt (θ))

]
≥ exp

[
−ηEθ∼pηt (`t(θ))

]
≥ Eθ∼pηt

{
exp

[
−η`t(θ)−

η2B2

8

]}

where we used respectively Jensen and Hoeffding’s inequality. So

`t(θ̂t) ≤
ηB2

8 − 1
η

logEθ∼pηt exp [−η`t(θ)] . (7.18)

Remind that by definition,

pηt (θ) =
exp

(
−η∑t−1

i=1 `i(θ)
)
π(θ)

Nt

where Nt is the normalisation constant given by

Nt = Eθ∼π
[
exp

(
−η

t−1∑
i=1

`i(θ)
)]

.

But note that then
logEθ∼pηt exp [−η`t(θ)] = log

(
Nt+1

Nt

)
.

We plug this into (7.18) and sum for t = 1, . . . , T . We obtain
T∑
t=1

`t(θ̂t) ≤
ηB2T

8 − 1
η

T∑
t=1

log
(
Nt+1

Nt

)

= ηB2T

8 − 1
η

log
(
NT+1

N1

)

= ηB2T

8 − 1
η

log
(
Eθ∼π

[
exp

(
−η

T∑
t=1

`t(θ)
)])

.

Lemma 7.7.4 leads to
T∑
t=1

`t(θ̂t) ≤
ηB2T

8 + inf
p∈S(Θ)

{
Eθ∼p

[
T∑
t=1

`t(θ)
]

+ K(p, π)
η

}
.

Proof of Proposition 2. Let ϕm,C(·) denote the p.d.f of the Gaussian distribution with
mean m and variance matrix C. Let (m1, C1), (m2, C2) ∈M ,

|L̄t(m1, C1)− L̄t(m2, C2)| =
∣∣∣∣∫ `t(θ)ϕm1,C1(θ)dθ −

∫
`t(θ)ϕm2,C2(θ)dθ

∣∣∣∣
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≤
∫
|`t(m1 + C1u)− `t(m2 + C2u)|ϕ0,Id(u)du

≤ L′‖m1 −m2‖+ L′
∫
‖(C1 − C2)u‖ϕ0,Id(u)du.

For any C = (Ci,j) ∈ UT (d), we have∫
‖Cu‖ϕ0,Id(u)du ≤

√∫
‖Cu‖2ϕ0,Id(u)du

=

√√√√√∫ d∑
i=1

 d∑
j=1

Ci,juj

2

ϕ0,Id(u)du =

√√√√√ d∑
i=1

d∑
j=1

C2
i,j

which leads to

|L̄t(m1, C1)− L̄t(m2, C2)| ≤ L′‖m1 −m2‖+ L′

√√√√√ d∑
i=1

d∑
j=1

(C1 − C2)2
i,j

≤
√

2L′‖(m1, C1)− (m2, C2)‖.

This ends the proof.

Proof of Theorem 7.4.1. First, Assumption 7.4.1 ensures that the L̄t’s are convex. By
definition of the subgradient of a convex function,

T∑
t=1

`t(θ̂t)−
T∑
t=1

Eθ∼qµ [`t(θ)] =
T∑
t=1

`t
(
Eθ∼qµt (θ)

)
−

T∑
t=1

Eθ∼qµ [`t(θ)]

≤
T∑
t=1

Eθ∼qµt [`t(θ)]−
T∑
t=1

Eθ∼qµ [`t(θ)]

=
T∑
t=1

L̄t(µt)−
t∑
t=1

L̄t(µ)

≤
T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µT∇L̄t(µt). (7.19)

Then, following the general proof scheme detailed in Chapter 2 in Shalev-Shwartz
(2012), we prove by recursion on T that for any µ ∈M,

T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µT∇L̄t(µt) ≤
T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µTt+1∇L̄t(µt) + K(qµ, π)
η

(7.20)

which is exactly equivalent to
T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µT∇L̄t(µt) + K(qµ, π)
η

. (7.21)

Indeed, for T = 0, (7.21) just states that K(qµ, π) ≥ 0 which is a well-known property of
KL. Assume that (7.21) holds for some integer T − 1. We then have, for all µ ∈M ,

T∑
t=1

µTt+1∇L̄t(µt) =
T−1∑
t=1

µTt+1∇L̄t(µt) + µTT+1∇L̄T (µT )
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≤
T−1∑
t=1

µT∇L̄t(µt) + K(qµ, π)
η

+ µTT+1∇L̄T (µT )

as (7.21) holds for T − 1. Apply this to µ = µT+1 to get

T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µTT+1∇L̄t(µt) + K(pµT+1 , π)
η

= min
m∈M

[
T∑
t=1

mT∇L̄t(µt) + K(pm, π)
η

]
, by definition of µT+1

≤
T∑
t=1

µT∇L̄t(µt) + K(qµ, π)
η

for all µ ∈ M. Thus, (7.21) holds for T . Thus, by recursion, (7.21) and (7.20) hold for
all T ∈ N.

The last step is to prove that for any t ∈ N,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≤
ηL2

α
. (7.22)

Indeed,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) = (µt − µt+1)T∇L̄t(µt)
≤ ‖µt − µt+1‖‖∇L̄t(µt)‖ by Cauchy-Schwarz
≤ L‖µt − µt+1‖ (7.23)

as L̄t is L Lipschitz (Assumption 7.4.1). Define

Gt(µ) =
t−1∑
i=1

µT∇L̄i(µi) + K(qµ, π)
η

.

Note that from Assumption 7.4.3, µ 7→ K(qµ, π)/η is α/η-strongly convex. As the sum
of a linear function and an α/η-strongly convex function, Gt is α/η-strongly convex. So,
for any (µ, µ′),

Gt(µ′)−Gt(µ) ≥ (µ′ − µ)T∇Gt(µ) + α‖µ′ − µ‖2

2η .

As a special case, using the fact that µt is a minimizer of Gt, we have

Gt(µt+1)−Gt(µt) ≥
α‖µt+1 − µt‖2

2η .

In the same way,
Gt+1(µt)−Gt+1(µt+1) ≥ α‖µt+1 − µt‖2

2η .

Summing the two previous inequalities gives

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≥
α‖µt+1 − µt‖2

η
,

172



and so, combined with, this gives:

‖µt+1 − µt‖ ≤
√
η

α

[
µTt ∇L̄t(µt)− µTt+1∇L̄t(µt)

]
.

Combining this inequality with (7.23) leads to (7.22).
Plugging (7.19), (7.20) and (7.22) together gives

T∑
t=1

`t(θ̂t)−
T∑
t=1

Eθ∼qµ [`t(θ)] ≤
ηTL2

α
+ K(qµ, π)

η
,

that is the statement of the theorem.

Proof of Theorem 7.4.2. We prove this theorem from scratch and use the main techniques
outlined in Hazan (2016). As previously, the idea is to study differences L̄t(µt)− L̄t(µ).
However, in this case, we have, for any µ = (m,σ), using Jensen’s inequality,

L̄t(m,σ) = Eθ∼qm,σ [`t(θ)] ≥ `t(m) = L̄t(m, 0).

So, we can assume from the beginning that µ = (m, 0).

Convex case:

First, we assume that each function L̄t is convex, for all m = (m1, ...,md) ∈ Mm and
µ = (m, 0):

L̄t(µt)− L̄t(µ) ≤ ∇L̄t(µt)T (µt − µ) =
d∑
j=1

[
∂L̄t
∂mj

(mt, σt)(mt,j −mj) + ∂L̄t
∂σj

(mt, σt)σt,j
]
.

Using the update formulas 7.10:

(mt+1,j −mj)2 = (mt,j −mj)2 + η2
t,jσ

4
t,j

∂L̄t
∂mj

(mt, σt)2 − 2ηt,jσ2
t,j

∂L̄t
∂mj

(mt, σt)(mt,j −mj)

and

σ2
t+1,j = σ2

t,j +
η2
t,jσ

4
t,j

2
∂L̄t
∂σ j

(mt,j, σt,j)2− ηt,jσ2
t,j

√√√√√1 +
(
ηt,jσt,j

∂L̄t
∂σj

(mt, σt)
2

)2
∂L̄t
∂σj

(mt, σt)σt,j.

Rearranging the terms, we get:

∂L̄t
∂mj

(mt, σt)(mt,j −mj) = (mt,j −mj)2 − (mt+1,j −mj)2

2ηt,jσ2
t,j

+
ηt,jσ

2
t,j

∂L̄t
∂mj

(mt, σt)2

2

and

∂L̄t
∂σj

(mt, σt)σt,j =
σ2
t,j − σ2

t+1,j

ηt,jσ2
t,j

√√√√1 +
(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
+

ηt,jσ
2
t,j
∂L̄t
∂σj

(mt, σt)2

2

√√√√1 +
(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
.
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We also use the boundedness of the gradients: for any (m,σ) ∈M, at any date t,
d∑
j=1

[
∂L̄t
∂mj

(m,σ)2 + ∂L̄t
∂σj

(m,σ)2
]
≤ L2.

We upper bound the inverse of the square root by 1, the gradient by L and we sum over
time:

T∑
t=1

L̄t(µt)− L̄t(µ) ≤
d∑
j=1

T∑
t=1

(mt,j −mj)2

2

[
1

ηt,jσ2
t,j

− 1
ηt−1,jσ2

t−1,j

]

+
d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2
∂L̄t
∂mj

(mt, σt)2

+
d∑
j=1

T∑
t=1

σ2
t,j

2

[
2

ηt,jσ2
t,j

− 2
ηt−1,jσ2

t−1,j

]

+
d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2
∂L̄t
∂σj

(mt, σt)2

=
d∑
j=1

T∑
t=1

(mt,j −mj)2

2

[
1

ηt,jσ2
t,j

− 1
ηt−1,jσ2

t−1,j

]

+
d∑
j=1

T∑
t=1

σ2
t,j

2

[
2

ηt,jσ2
t,j

− 2
ηt−1,jσ2

t−1,j

]

+
T∑
t=1

ηt,jσ
2
t,j

2

d∑
j=1

[
∂L̄t
∂mj

(mt, σt)2 + ∂L̄t
∂σj

(mt, σt)2
]

≤
d∑
j=1

T∑
t=1

(mt,j −mj)2 + σ2
t,j

[ 1
ηt,jσ2

t,j

− 1
ηt−1,jσ2

t−1,j

]

+
T∑
t=1

ηt,jσ
2
t,j

2

d∑
j=1

[
∂L̄t
∂mj

(mt, σt)2 + ∂L̄t
∂σj

(mt, σt)2
]
.

The key point in the following is that the difference
1

ηt,jσ2
t,j

− 1
ηt−1,jσ2

t−1,j

does not depend on j on account of the formula ηt,j = K/(
√
tσ2
t,j) > 0. We also recall

that
d∑
j=1

(mt,j −mj)2 + σ2
t,j ≤ D2.

Moreover,
T∑
t=1

1√
t
≤ 2
√
T ,

so setting ηt,j = K√
tσ2
t,j

> 0 with K = D
√

2
L

, we finally have:

T∑
t=1

L̄t(µt)− L̄t(µ) ≤ 1
K

T∑
t=1

(
√
t−
√
t− 1)

d∑
j=1

[(mt,j −mj)2 + σ2
t,j] +

T∑
t=1

K√
t
L2
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≤ D2

K

T∑
t=1

(
√
t−
√
t− 1) + KL2

2

T∑
t=1

1√
t

=
(
D2

K
+ KL2

2

)√
T

= DL
√

2T ,

where K is chosen so that it minimizes the bound.

Strongly convex case:

Now, we assume that each function L̄t is H-strongly convex, for all m ∈ Mm and µ =
(m, 0):

L̄t(µt)− L̄t(µ) ≤ ∇L̄t(µt)T (µt − µ)− H

2 ‖µt − µ‖
2

=
d∑
j=1

[
∂L̄t
∂mj

(mt, σt)(mt,j −mj) + ∂L̄t
∂σj

(mt, σt)σt,j −
H

2 (mt,j −mj)2 − H

2 σ
2
t,j

]
.

Again,

∂L̄t
∂mj

(mt, σt)(mt,j −mj) = (mt,j −mj)2 − (mt+1,j −mj)2

2ηt,jσ2
t,j

+
ηt,jσ

2
t,j

∂L̄t
∂mj

(mt, σt)2

2

and

∂L̄t
∂σj

(mt, σt)σt,j =
σ2
t,j − σ2

t+1,j

ηt,jσ2
t,j

√√√√1 +
(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
+

ηt,jσ
2
t,j
∂L̄t
∂σj

(mt, σt)2

2

√√√√1 +
(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
,

and then as previously with ηt,j = 2
Htσ2

t,j
:

T∑
t=1

L̄t(µt)− L̄t(µ) ≤
d∑
j=1

T∑
t=1

(mt,j −mj)2

2

 1
ηt,jσ2

t,j

− 1
ηt−1,jσ2

t−1,j
−H


+

d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2
∂L̄t
∂mj

(mt, σt)2

+
d∑
j=1

T∑
t=1

σ2
t,j

2

[
2

ηt,jσ2
t,j

− 2
ηt−1,jσ2

t−1,j
−H

]

+
d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2
∂L̄t
∂σj

(mt, σt)2

≤
d∑
j=1

T∑
t=1

(mt,j −mj)2

2

[
tH

2 −
(t− 1)H

2 −H
]
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+
d∑
j=1

T∑
t=1

σ2
t,j

2

[
tH − (t− 1)H −H

]

+
T∑
t=1

1
Ht

d∑
j=1

[
∂L̄t
∂mj

(mt, σt)2 + ∂L̄t
∂σj

(mt, σt)2
]

≤
d∑
j=1

T∑
t=1

(mt,j −mj)2

2

[
H

2 −H
]

+ 0 +
T∑
t=1

L2

Ht

≤ L2

H
(1 + log(T )),

which ends the proof.

Proof of Theorem 7.7.1. The proof is exactly the same as for Theorem 7.4.1. As previ-
ously, we first prove by recursion on T that

∀µ ∈M,
T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µT∇L̄t(µt) + ‖µ− µ1‖2

η
. (7.24)

It is obvious that it holds for T = 0. Assume now that (7.24) holds for some integer
T − 1. Then for all µ ∈M ,

T∑
t=1

µTt+1∇L̄t(µt) =
T−1∑
t=1

µTt+1∇L̄t(µt) + µTT+1∇L̄T (µT )

≤
T−1∑
t=1

µT∇L̄t(µt) + ‖µ− µ1‖2

η
+ µTT+1∇L̄T (µT )

as (7.24) holds for T − 1. Apply this again to µ = µT+1:

T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µTT+1∇L̄t(µt) + ‖µ− µ1‖2

η

= min
m∈M

[
T∑
t=1

mT∇L̄t(µt) + ‖µ− µ1‖2

η

]
, by definition of µT+1

≤
T∑
t=1

µT∇L̄t(µt) + ‖µ− µ1‖2

η

for all µ ∈M. Thus, (7.24) holds for T , and thus for integers.
We prove now that for any t ∈ N,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≤ ηL2. (7.25)

Indeed,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) = (µt − µt+1)T∇L̄t(µt)
≤ ‖µt − µt+1‖‖∇L̄t(µt)‖
≤ L‖µt − µt+1‖ (7.26)
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as previously. Define

Gt(µ) =
t−1∑
i=1

µT∇L̄t(µi) + ‖µ− µ1‖2

η
.

Obviously, Gt is 1/η-strongly convex: for any (µ, µ′),

Gt(µ′)−Gt(µ) ≥ (µ′ − µ)T∇Gt(µ) + ‖µ
′ − µ‖2

2η .

In particular, µt is a minimizer of Gt:

Gt(µt+1)−Gt(µt) ≥
‖µt+1 − µt‖2

2η .

Similarly,
Gt+1(µt)−Gt+1(µt+1) ≥ ‖µt+1 − µt‖2

2η .

Hence:
L̄t(µt)− L̄t(µt+1) ≥ ‖µt+1 − µt‖2

η
,

and then

‖µt+1 − µt‖ ≤
√
η
[
µTt ∇L̄t(µt)− µTt+1∇L̄t(µt)

]
which combined with (7.26) leads to (7.25).

Finally, as for Theorem 7.4.1:

T∑
t=1

`t(θ̂t)−
T∑
t=1

Eθ∼qµ [`t(θ)] ≤ ηTL2 + ‖µ− µ1‖2

η
,

which ends the proof.
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Part IV

Robustness to misspecification via
Maximum Mean Discrepancy
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Chapter 8

Finite sample properties of
parametric MMD estimation:
robustness to misspecification and
dependence

Many works in statistics aim at designing a universal estimation procedure. This question
is of major interest, in particular because it leads to robust estimators, a very hot topic in
statistics and machine learning. In this chapter, we tackle the problem of universal esti-
mation using a minimum distance estimator presented in Briol et al. (2019) based on the
Maximum Mean Discrepancy. We show that the estimator is robust to both dependence
and to the presence of outliers in the dataset. We also highlight the connections that may
exist with minimum distance estimators using L2-distance. Finally, we provide a theo-
retical study of the stochastic gradient descent algorithm used to compute the estimator,
and we support our findings with numerical simulations.

8.1 Introduction

One of the main challenges in statistics is the design of a universal estimation proce-
dure. Given data, a universal procedure is an algorithm that provides an estimator of the
generating distribution which is simultaneously statistically optimal when the true dis-
tribution belongs to the model, and robust otherwise. Typically, a universal estimator is
consistent for any model, with minimax-optimal or fast rates of convergence and is robust
to small departures from the model assumptions (Bickel, 1976) such as sparse instead of
dense effects or non-Gaussian errors in high dimensional linear regression. Unfortunately,
most statistical procedures are based upon strong assumptions on the model or on the
corresponding parameter set, and very famous estimation methods such as maximum
likelihood estimation (MLE), method of moments or Bayesian posterior inference may
fail even on simple problems when such assumptions do not hold. For instance, even
though MLE is consistent and asymptotically normal with optimal rates of convergence
in parametric estimation under suitable regularity assumptions (Le Cam, 1970; Van der

181



Vaart, 2000) and in nonparametric estimation under entropy conditions, this method be-
haves poorly in case of misspecification when the true generating distribution of the data
does not belong to the chosen model.

Let us investigate a simple example presented in Birgé (2006) that illustrates the non-
universal characteristic of MLE. We observe a collection of n independent and identically
distributed (i.i.d) random variables X1, ..., Xn that are distributed according to some mix-
ture distribution P 0

n = (1− 2n−1)U([0, 1/10]) + 2n−1U([1/10, 9/10]) where U([a, b]) is the
uniform distribution between a and b. We consider the parametric model of independent
uniform distributions U([0, θ]), 0 ≤ θ < 1, and we choose the squared Hellinger distance
h2(·, ·) as the risk measure. Here the maximum likelihood is the maximum of the observa-
tions X(n) := max(X1, ..., Xn), and U([0, 1/10]) is a good approximation of the generating
distribution P 0

n as h2(P 0
n ,U([0, 1/10])) < 5/4n for n ≥ 4. Hence, one would expect that

E[h2(P 0
n ,U([0, X(n)]))] goes to 0 as n → +∞, which is actually not the case. We do not

even have consistency: E[h2(P 0
n ,U([0, X(n)]))] > 0.38. Hence, the MLE is not robust to

this small deviation from the parametric assumption. Other problems can arise for the
MLE: for instance, the quadratic risk can be much bigger than the minimax risk, and
the performance of the MLE may be too sensitive to the choice of the family of densities
used in the model, see respectively Birgé (2006) and Baraud and Birgé (2016). The same
happens in Bayesian statistics: the regular posterior distribution is not always robust to
model misspecification. Indeed, authors of Barron et al. (1999); Grünwald et al. (2017)
show pathologic cases where the posterior does not concentrate to the true distribution.

Universal estimation is all the more important since it provides a generic approach
to tackle the more and more popular problem of robustness to outliers under the i.i.d
assumption, although definitions and goals involved in robust statistics are quite different
from the universal estimation perspective. Hüber introduced a framework that models
situations where a small fraction ε of data is contaminated, and he assumes that the
true generated distribution can be written (1− ε)Pθ0 + εQ where Q is the contaminating
distribution and ε is the proportion of corrupted observations (Hüber, 1964). The goal
when using this approach is to estimate the true parameter θ0 given a misspecified model
{Pθ/θ ∈ Θ} with θ0 ∈ Θ. A procedure is then said to be robust in this case if it leads
to a good estimation of the true parameter θ0. More generally, when a procedure is
able to provide a good estimate of the generating distribution of i.i.d data when a small
proportion of them is corrupted, whatever the values of these outliers, then such an
estimator is considered as robust.

8.1.1 Related work

Several authors attempted to design a general universal estimation method. Sture Holm
(Bickel, 1976) suggested that Minimum Distance Estimators (MDE) were the most nat-
ural procedures being robust to misspecification. Motivated by Wolfowitz (1957); Parr
and Schucany (1980), MDE consists in minimizing some probability distance d between
the empirical distribution and a distribution in the model. The MDE θ̂n is defined by:

d(P̂n, Pθ̂n) = inf
θ∈Θ

d(P̂n, Pθ)

182



where P̂n is the empirical measure and Θ the parameter set associated to the model.
If the minimum does not exist, then one can consider a ε-approximate solution. In
fact, this minimum distance estimator is used in many usual procedures. Indeed, the
generalized method of moments (Hansen, 1982) is actually defined as minimizing the
weighted Euclidean distance between moments of P̂n and Pθ while the MLE minimizes
the KL divergence. When the distance d is wisely chosen, among others, it must be
bounded, then MDE can be robust and consistent. A typical choice of the metric is
the Total Variation (TV) distance (Yatracos, 1985; Devroye and Lugosi, 2001). Yatracos
(1985) showed that under the i.i.d assumption, the minimum distance estimator based
on the TV metric is uniformly consistent in TV distance and is robust to misspecification
without any assumption on the parameter set, with a rate of convergence depending on the
Kolmogorov entropy of the space of measures. A few decades later, Devroye and Lugosi
studied in details the skeleton estimate, a variant of the estimator of (Yatracos, 1985) that
is based on the TV-distance restricted to the so-called Yatracos sets, see (Devroye and
Lugosi, 2001). Unfortunately, the skeleton estimate and the original Yatracos estimate
are not computationally tractable.

In Baraud and Birgé (2016) and Baraud et al. (2017), Baraud, Birgé and Sart intro-
duced in the independent framework the so-called ρ-estimators, a universal method that
retains some appealing properties of the MLE such as efficiency under some regularity
assumptions, while being robust to Hellinger deviations. ρ-estimation is inspired from
T-estimation (Birgé, 2006), itself inspired from earlier works of Le Cam (1973, 1975) and
Birgé (1983), and goes beyond the classical compactness assumption used in T-estimation.
In compact models, ρ-estimators can be seen as variants of T-estimators also based on
robust tests, but they can be extended to noncompact models such as linear regression
with fixed or random design with various error distributions. As T-estimators, they enjoy
robustness properties, but involve other metric dimensions which lead to optimal rates of
convergence with respect to the Hellinger distance even in cases where T-estimators can
not be defined. Moreover, note that when the sample size is large enough, ρ-estimation
recovers the usual MLE in density estimation when the model is parametric, well-specified
and regular enough. Hence, ρ-estimation can be seen as a robust version of the MLE,
but once again, such a strategy is intractable.

More recently, Briol et al. (2019) showed that using the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) as a minimum distance estimator leads to both robust and
tractable estimation in the i.i.d case. MMD, a metric based on embeddings of probability
measures into a reproducing kernel Hilbert space, has been applied successfully in a wide
range of problems such as kernel Bayesian inference (Song and Gretton, 2011), approx-
imate Bayesian computation (Park et al., 2016), two-sample (Gretton et al., 2012) and
goodness-of-fit testing (Jitkrittum et al., 2017), and MMD GANs (Dziugaite et al., 2015;
Li et al., 2015) and autoencoders (Zhao et al., 2017), to name a few prominent examples.
Such minimum MMD-based estimators are proved to be consistent, asymptotically nor-
mal and robust to model misspecification. The trade-off between the statistical efficiency
and the robustness is made through the choice of the kernel. The authors investigated the
geometry induced by the MMD on the finite-dimensional parameter space and introduced
a (natural) gradient descent algorithm for efficient computation of the estimator. This
algorithm is inspired from the stochastic gradient descent (SGD) used in the context of
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MMD GANs where the usual discriminator is replaced with a two-sample test based on
MMD (Dziugaite et al., 2015). These results were extended in the Bayesian framework
by Chérief-Abdellatif and Alquier (2020).

8.1.2 Contributions

In this chapter, we further investigate universality properties of minimum distance esti-
mation based on MMD distance (Briol et al., 2019). Inspired by the related literature,
our contributions in this chapter are the following:

• We go beyond the classical i.i.d framework. Indeed, we prove that the the estima-
tor is robust to dependence between observations. To do so, we introduce a new
dependence coefficient expressed as a covariance in some reproducing kernel Hilbert
space, and which is very simple to use in practice.

• We show that our oracle inequalities imply robust estimation under the i.i.d assump-
tion in the Hüber contamination model and in the case of adversarial contamination.

• We also highlight the connection between our MMD estimator and minimum dis-
tance estimation using L2-distance for radial kernels.

• We propose a theoretical analysis of the SGD algorithm used to compute this esti-
mator in Briol et al. (2019) and Dziugaite et al. (2015) for some finite dimensional
models. We provide numerical simulation to illustrate our theoretical results.

The first result of this chapter is a generalization bound in the non-i.i.d setting. It
states that under a very general dependent assumption, the generalization error with
respect to the MMD distance decreases in n−1/2 as n → +∞. This result extends the
inequalities in Briol et al. (2019) that are only available in the i.i.d framework, and is
obtained using dependence concepts for stochastic processes. Since the seminal work
of Rosenblatt (1956), many mixing conditions, that is, restrictions on the dependence
bewteen observations, were defined. These conditions lead to limit theorems (LLN, CLT)
useful to analyze the asymptotic behavior of time series (Doukhan, 1994). Nevertheless,
checking mixing assumptions is difficult in practice and many classes of processes that
are of interest in statistics such as elementary Markov chains are sometimes not mixing.
More recently, Doukhan and Louhichi (1999) proposed a new weak dependence condition
for time series that is built on covariance-based coefficients which are much easier to
compute than mixing ones, and that is more general than mixing as it stands for most
relevant classes of processes. We introduce in this chapter a new dependence coefficient in
the wake of Doukhan and Louhichi (1999) which can be expressed as a covariance in some
reproducing kernel Hilbert space associated with MMD, which can be easily computed in
many situations and which may be related to usual mixing coefficients such as the popular
β-mixing one. We show that a weak assumption on this new dependence coefficient can
relax the i.i.d assumption of Briol et al. (2019) and can lead to valid generalization bounds
even in the dependent setting.

Also, we provide inequalities in L2-distance. Previous attempts of designing a uni-
versal estimator lead to bounds in TV or Hellinger distances (Baraud and Birgé, 2016;
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Devroye and Lugosi, 2001), but state that the quadratic loss is to be avoided as a mini-
mum distance estimator, in particular because this metric exclude distributions for which
no density is available. We show here that for radial kernels, the MMD distance is a good
approximation of the L2-metric when densities exist, and thus can be seen as a "uni-
versalized" and robustified version of the L2-distance-based minimum distance estimator.
We introduce conditions on the kernel leading to valid generalization bounds in quadratic
loss. Moreover, we show how our results can be used in the context of robust estima-
tion with contamination, and how they can provide statistically optimal robust Gaussian
mean estimation with respect to the Euclidean distance.

Regarding computational issues, we provide a Stochastic Gradient Descent algorithm
as in Briol et al. (2019); Dziugaite et al. (2015) involving a U-statistic approximation of
the expectation in the formula of the MMD distance. We theoretically analyze this algo-
rithm in parametric estimation using a convex parameter set. We also perform numerical
simulations that illustrate the efficiency of our method, especially by testing the behavior
of the algorithm in the presence of outliers.

The rest of this chapter is organized as follows. Section 8.2 defines the MMD-based
minimum distance estimator and our new dependence coefficient based on the kernel
mean embedding. Section 8.3 provides nonasymptotic bounds in the dependent and
misspecified framework, with results in robust parametric estimation and the connection
with density estimation using quadratic loss. Section 8.4 illustrates the efficiency of
our method in several different frameworks. We finally present an SGD algorithm with
theoretical convergence guarantees in Section 8.5 and we perform numerical simulations
in Section 8.6. Section 8.7 is dedicated to the proofs.

8.2 Background and definitions

In this section, we introduce first some notations and present the statistical setting of the
paper in Section 2.1. Then we remind in Section 2.2 some theory on reproducing kernel
Hilbert spaces (RKHS) and we define both the maximum mean discrepancy (MMD) and
our minimum distance estimator based on the MMD. Finally, we introduce in Section 2.3
a new dependence coefficient expressed as a covariance in a RKHS.

8.2.1 Statistical setting

We shall consider a dependent setting throughout the paper. We observe in a measurable
space

(
X,X

)
a collection of n random variables X1,...,Xn generated from a stationary

process. This implies that the Xi’s are identically distributed, we will let P 0 denote their
marginal distribution. Note that this include as an example the case where the Xi’s
are i.i.d with generating distribution P 0. We introduce a statistical model {Pθ/θ ∈ Θ}
indexed by a parameter space Θ.
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8.2.2 Maximum Mean Discrepancy

We consider a positive definite kernel function k, i.e a symmetric function k : X×X→ R
such that for any integer n ≥ 1, for any x1, ..., xn ∈ X and for any c1, ..., cn ∈ R:

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0.

We then consider the reproducing kernel Hilbert space (RKHS) (Hk, 〈·, ·〉Hk) associated
with the kernel k which satisfies the reproducing property f(x) = 〈f, k(x, ·)〉Hk for any
function f ∈ Hk and any x ∈ X. From now on, we assume that the kernel is bounded by
some positive constant, that will be assumed to be 1 without loss of generality.

Now we introduce the notion of kernel mean embedding, a Hilbert space embedding
of a probability measure that can be viewed as a generalization of the original feature
map used in support vector machines and other kernel methods. The basic idea is to
map measures into the RKHS Hk, enabling to apply all various kernel methods to the
underlying measures. Given a probability measure P , we define the mean embedding
µP ∈ Hk as:

µP (·) := EX∼P [k(X, ·)] ∈ Hk.

All the applications and the theoretical properties of those embeddings have been well
studied (Muandet et al., 2017). In particular, the mean embedding µP satisfies the
relationship EX∼P [f(X)] = 〈f, µP 〉Hk for any function f ∈ Hk, and induces a semi-metric
1 on measures called maximum mean discrepancy and defined for two measures P and Q
as follows:

Dk(P,Q) = ‖µP − µQ‖Hk
or alternatively

D2
k(P,Q) = EX,X′∼P [k(X,X ′)]− 2EX∼P,Y∼Q[k(X, Y )] + EY,Y ′∼Q[k(Y, Y ′)].

A kernel k is said to be characteristic if P 7→ µP is injective. This ensures that Dk is
a metric, and not only a semi-metric. Subsection 3.3.1 of the thorough survey Muan-
det et al. (2017) provides a wide range of conditions ensuring that k is characteris-
tic. They also provide many examples of characteristic kernels, see their Table 3.1.
Among others, the Gaussian kernel k(x, y) = exp(−‖x− y‖2/γ2) and the Laplace kernel
k(x, y) = exp(−‖x − y‖/γ), that we will use in all of our applications, are known to be
characteristic. From now, we will assume that k is characteristic.

Note that there are many applications of the kernel mean embedding and MMD in
statistics such as two-sample testing (Gretton et al., 2012), change-point detection (Arlot
et al., 2012), detection (Lerasle et al., 2019), we refer the reader to Liu et al. (2019) for a
thorough introduction to the applications of kernels and MMD to computational biology.

Here, we will focus on estimation of parameters based on MMD. This principle was
used to train generative networks (Dziugaite et al., 2015; Li et al., 2015), it’s only recently

1 This means that P → ‖µP ‖Hk
satisfies the requirements of a norm besides ‖µP − µQ‖Hk

= 0 only
for µP = µQ.
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that it was studied as a general principle for estimation (Briol et al., 2019). Following
these papers we define the MMD estimator θ̂n such that:

Dk(Pθ̂n , P̂n) = inf
θ∈Θ

Dk(Pθ, P̂n)

where P̂n = (1/n)∑n
i=1 δXi is the empirical measure, i.e.:

θ̂n = arg min
θ∈Θ

{
EX,X′∼Pθ [k(X,X ′)]− 2

n

n∑
i=1

EX∼Pθ [k(X,Xi)]
}
.

It could be that there is no minimizer, see the discussion in Theorem 1 page 9 in Briol
et al. (2019). In this case, we can use an approximate minimizer. More precisely, for any
ε > 0 we can always find a θ̂n,ε such that:

Dk(Pθ̂n,ε , P̂n) ≤ inf
θ∈Θ

Dk(Pθ, P̂n) + ε.

In what follows, we will consider the case where the minimizer exists (that is, ε = 0) but
when this is not the case, everything can be easily extended by considering θ̂n,1/n.

8.2.3 Covariances in RKHS

In this subsection, we introduce and discuss a new dependence coefficient based on the
kernel mean embedding. This coefficient allows to go beyond the i.i.d case and to show
that the MMD estimator of Briol et al. (2019) is actually robust to dependence. Please
refer to Briol et al. (2019) for results in the i.i.d case.

Definition 8.2.1. We define, for any t ∈ N,

%t =
∣∣∣E 〈k(Xt, ·)− µP 0 , k(X0, ·)− µP 0〉Hk

∣∣∣ .
In the i.i.d case, note that %t = 0 for any t ≥ 1. In general, the following assumption

will ensure the consistency of our estimator:

Assumption 8.2.1. There is a Σ < +∞ such that, for any n, ∑n
t=1 %t ≤ Σ.

Our mean embedding dependence coefficient may be seen as a covariance expressed
in the RKHS Hk. We shall see throughout the paper that the kernel mean embedding
coefficient %t can be easily computed in many situations, and that it is closely related to
the widely used mixing coefficients. In particular, we will show in Section 4.2 that our
coefficient %t is upper-bounded by the celebrated β-mixing coefficient for radial kernels in
the case of a strictly stationary time series. More importantly, we exhibit in Section 4.3
an example of a non-mixing process such that ∑+∞

t=1 βt = ∑+∞
t=1 αt = +∞ but for which %t

is exponentially decaying and hence Assumption 8.2.1 still holds, which means that %t is a
more general and weaker dependence coefficient than usual mixing coefficients, due to its
covariance structure. Hence, Assumption 8.2.1 may be referred to as a weak dependence
condition in the wake of the concept of weak dependence introduced in Doukhan and
Louhichi (1999). Using a Hoeffding-like inequality due to Rio (2017b), we will show in the
next section that under Assumption 8.2.1, we can obtain a nonasymptotic generalization
bound of the same order than in the i.i.d case.
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8.3 Nonasymptotic bounds in the dependent, mis-
specified case

In this section, we provide nonasymptotic generalization bounds in MMD distance for
the minimum MMD estimator. In particular, we show in Subsection 8.3.1 that under a
weak dependence assumption, it is robust to both dependence and misspecification, and
is consistent at the same n−1/2 rate than in the i.i.d case. In particular, we give explicit
bounds in the Hüber contamination model and in a more general adversarial setting in
Subsection 8.3.2. Finally, we connect in Subsection 8.3.3 our MMD-based estimator to
an L2-based one when densities exist. We discuss conditions on the kernel and provide
oracle inequalities in L2-distance.

8.3.1 Estimation with respect to the MMD distance

First, we begin with a theorem that gives an upper bound on the generalization error,
i.e the expectation of Dk(Pθ̂n , P

0). The rate of convergence of this error is of order n−1/2

independently of the dimensions d and the property of the kernel.

Theorem 8.3.1. We have:

E
[
Dk

(
P
θ̂n
, P 0

)]
≤ inf

θ∈Θ
Dk

(
Pθ, P

0
)

+ 2
√

1 + 2∑n
t=1 %t

n
.

As a consequence, under Assumption 8.2.1:

E
[
Dk

(
P
θ̂n
, P 0

)]
≤ inf

θ∈Θ
Dk

(
Pθ, P

0
)

+ 2
√

1 + 2Σ
n

.

We remind that all the proofs are deferred to Section 8.7. It is also possible to provide
a result that holds with large probability as in Briol et al. (2019) and in Dziugaite et al.
(2015). Naturally, it requires stronger assumptions, and the conditions on the dependence
become more intricate in this case. Here, we use a condition introduced in Louhichi (1998)
for generic metric spaces that we adapt to the kernel embedding and to stationarity:

Assumption 8.3.1. Assume that there is a family (γ`)` of nonnegative numbers such
that, for any integer n, for any ` ∈ {1, . . . , n−1} and any function g : H`

k → R such that

|g(a1, . . . , a`)− g(b1, . . . , b`)| ≤
∑̀
i=1
‖ai − bi‖Hk ,

we have,
∣∣∣∣E[g(µδX`+1

, . . . , µδXn )|X1, . . . , X`]− E[g(µδX`+1
, . . . , µδXn )]

∣∣∣∣ ≤ γ1 + · · ·+ γn+`−1,
almost surely. Assume that there is a Γ = ∑

`≥1 γ` <∞.

Again, note that in the case of independence, we can take all the γi,j = 0 and hence
Γ = 0 in addition to Σ = 0. We can now state our result in probability:
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Theorem 8.3.2. Assume that Assumptions 8.2.1 and 8.3.1 are satisfied. Then, for any
δ ∈ (0, 1),

P

Dk

(
P
θ̂n
, P 0

)
≤ inf

θ∈Θ
Dk

(
Pθ, P

0
)

+ 2

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

 ≥ 1− δ.

Assumption 8.3.1 is fundamental to obtain a result in probability. Indeed, the rate
of convergence in Theorem 8.3.2 is characterized by some concentration inequality upper
bounding the MMD distance between the empirical and the true distribution as done in
Briol et al. (2019). Nevertheless, the proof of this inequality in Briol et al. (2019) is based
on a Hoeffding-type inequality known as McDiarmid’s inequality (McDiarmid, 1989) that
is only valid for independent variables, which makes this inequality not applicable in our
dependent setting. Hence we use a version of McDiarmid’s inequality for time series
obtained by Rio (2013) which is available under a polynomial decay assumption on some
mixing dependence coefficients (γi,j)1≤i<j. This decay assumption is expressed here in
the RKHS Hk of Kernel k as Assumption 8.3.1.

Remark 8.3.1 (The i.i.d case). Note that when the Xi’s are i.i.d, Assumptions 8.2.1
and 8.3.1 are always satisfied with Σ = Γ = 0 and thus Theorem 8.3.1 gives simply

E
[
Dk

(
P
θ̂n
, P 0

)]
≤ inf

θ∈Θ
Dk

(
Pθ, P

0
)

+ 2√
n

while Theorem 8.3.2 gives

P

Dk

(
P
θ̂n
, P 0

)
≤ inf

θ∈Θ
Dk

(
Pθ, P

0
)

+ 2
1 +

√
2 log

(
1
δ

)
√
n

 ≥ 1− δ.

8.3.2 Robust parametric estimation

Contamination models

As explained in the introduction, when all observations but a small proportion of them
are sampled independently from a generating distribution Pθ0 (θ0 ∈ Θ), robust parametric
estimation consists in finding estimators being both rate optimal and resistant to outliers.
Two among the most popular frameworks for studying robust estimation are the so-called
Hüber’s contamination model and the adversarial contamination model.

Hüber’s contamination model is as follows. We observe a collection of random vari-
ables X1, ..., Xn. We consider a contamination rate ε ∈ (0, 1/2), latent i.i.d random
variables Z1, ..., Zn ∼ Ber(ε) and some noise distribution Q, such that the distribution of
Xi given Zi = 0 is Pθ0 , and that the distribution of Xi given Zi = 1 is Q. Hence, the
observations Xi’s are independent and sampled from the mixture P 0 = (1− ε)Pθ0 + εQ.

The adversarial model is more general. Contrary to Hüber’s contamination where out-
liers were all sampled from the contaminating distribution, we do not make any particular
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assumption on the outliers here. Hence, we shall adopt slightly different notations. We
assume that X1, . . . , Xn are identically distributed from Pθ0 for some θ0 ∈ Θ. However,
the statistician only observes X̃1, . . . , X̃n where X̃i can be any arbitrary value for i ∈ O,
where O is an arbitrary set subject to the constraint O ≤ εn, and X̃i = Xi for i /∈ O.
The estimators are built based on these observations X̃1, . . . , X̃n.

Literature

One hot research trend in robust statistics is focused on the search of both statistically
optimal and computationally tractable procedures for the Gaussian mean estimation
problem {Pθ = N (θ, Id)/θ ∈ Rd} in the presence of outliers under the i.i.d assumption,
which remains a major challenge. Usual robust estimators such as the coordinatewise
median and the geometric median are known to be suboptimal in this case, and there
is a need to look at more complex estimators such as Tukey’s median that achieves the
minimax optimal rate of convergence max( d

n
, ε2) with respect to the squared Euclidean

distance, where d is the dimension, n is the sample size and ε is the proportion of cor-
rupted data. Unfortunately, computation of Tukey’s median is not tractable and even
approximate algorithms lead to an O(nd) complexity (Chan, 2004; Amenta et al., 2000).
This has led to the rise of the recent studies in robust statistics which adress how to build
robust and optimal statistical procedures, in the wake of the works of Tukey (1975) and
Hüber (1964), but that are also computationally efficient.

This research area started with two seminal works presenting two procedures for the
normal mean estimation problem: the iterative filtering (Diakonikolas et al., 2016) and
the dimension halving (Lai et al., 2016). These algorithms are based upon the idea of
using higher moments in order to obtain a good robust moment estimation, and are
minimax optimal up to a poly-logarithmic factor in polynomial time in the adversarial
contamination model. This idea was then used in several other problems in robust statis-
tics, for instance in sparse functionals estimation (Du et al., 2017), clustering (Kothari
et al., 2018), mixtures of spherical Gaussians learning (Diakonikolas et al., 2018b), and
robust linear regression (Diakonikolas et al., 2018c). In Hüber’s contamination model,
a recent paper of Collier and Dalalyan (2017) achieves the minimax rate without any
extra factor in the ε = O(min(d−1/2, n−1/4)) regime with an improved overall complexity.
Meanwhile, Gao et al. (2019) offers a different perspective on robust estimation and con-
nects the robust normal mean estimation problem with Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014; Biau et al., 2018), what enables computing robust es-
timators using efficient tools developed for training GANs. Hence, the authors compute
depth-like estimators that retain the same appealing robustness properties than Tukey’s
median and that can be trained using stochastic gradient descent (SGD) algorithms that
were originally designed for GANs.

Another popular approach for the more general problem of mean estimation under the
i.i.d assumption in the presence of outliers is the study of finite-sample sub-Gaussian de-
viation bounds. Indeed, designing estimators achieving sub-Gaussian performance under
minimal assumptions ensures robustness to outliers that are inevitably present when the
generating distribution is heavy-tailed. In the univariate case, some estimators present
a sub-Gaussian behavior for all distributions under first and second order moments. A
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simple but powerful strategy, the Median-of-Means (MOM), dates back to Nemirovski
and Yudin (1983); Jerrum et al. (1986); Alon et al. (2008). This method consists in
randomly splitting the data into several equal-size blocks, then computing the empiri-
cal mean within each block, and finally taking the median of them. Most MOM-based
procedures lead to estimators that are simultaneously statistically optimal (Lugosi and
Mendelson, 2016; Devroye et al., 2016; Lecué et al., 2018; Lerasle et al., 2019; Chinot
et al., 2019) and computationally efficient (Hopkins, 2019; Cherapanamjeri et al., 2019;
Depersin and Lecué, 2019). Moreover, this approach be easily extended to the multi-
variate case (Minsker, 2015; Hsu and Sabato, 2016). An important advantage is that
the MOM estimator has good performance even for distributions with infinite variance.
An elegant alternative to the MOM strategy is due to Catoni, whose estimator is based
on PAC-Bayesian truncation in order to mitigate heavy tails (Catoni, 2012). It has the
same performance guarantees than the MOM method but with sharper and near-optimal
constants. In Catoni and Giulini (2017), Catoni and Giulini proposed a very simple and
trivial-to-compute multidimensional extension of Catoni’s M-estimator defined as an em-
pirical average of the data, with the observations with large norm shrunk towards zero,
and that still satisfies a sub-Gaussian concentration using PAC-Bayes inequalities. The
influence function of Catoni and Giulini has been widely used since then, see Giulini
(2017, 2018); Holland (2019a,b). We refer the reader to the excellent review of Lugosi
and Mendelson (2019) for more details on those mean estimation procedures.

Robust MMD estimation

In this section, we show the properties of our MMD-based estimator in robust parametric
estimation with outliers, both in Hüber’s and in the adversarial contamination model.
Our bounds are obtained by working directly in the RKHS rather than in the parameter
space, and going back and forth between the two spaces.

First we consider Hüber’s contamination model (Hüber, 1964). The objective is to
estimate Pθ0 by observing contaminated random variables X1, ..., Xn with actual distri-
bution is P 0 = (1 − α)Pθ0 + αQ for some Q, and some 0 ≤ α ≤ ε. We state the key
following lemma:

Lemma 8.3.3. We have: |Dk(Pθ̂n , P
0)− Dk(Pθ̂n , Pθ0)| ≤ 2ε.

As a consequence of Lemma 8.3.3 and Theorem 8.3.1, we have the following result.

Corollary 8.3.4. Assume that X1, . . . , Xn are identically distributed from P 0 = (1 −
α)Pθ0 + αQ for some θ0 ∈ Θ, some Q, with 0 ≤ α ≤ ε. Then:

E
[
Dk

(
P
θ̂n
, Pθ0

)]
≤ 2ε+ 2

√
1 + 2∑n

t=1 %t
n

.

If moreover we assume that Assumptions 8.2.1 and 8.3.1 are satisfied, then for any δ ∈
(0, 1),

P

Dk

(
P
θ̂n
, Pθ0

)
≤ 2

ε+

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n


 ≥ 1− δ.
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We obtain a rate max(1/
√
n, ε) (in MMD distance) that can be expressed in the

same way than the minimax rate (in the Euclidean distance) when estimating a Gaussian
mean. When ε . 1/

√
n, then we recover the minimax rate of convergence without

contamination, and when 1/
√
n . ε, then the rate is dominated by the contamination

ratio ε. Hence, the maximum number of outliers which can be tolerated without breaking
down the minimax rate is nε �

√
n.

This result can also be extended to the adversarial contamination setting, where no
assumption is made on the outliers.

Proposition 3. Assume that X1, . . . , Xn are identically distributed from from P 0 = Pθ0

for some θ0 ∈ Θ. However, the statistician only observes X̃1, . . . , X̃n where X̃i can be
any arbitrary value for i ∈ O, O is any arbitrary set subject to the constraint O ≤ εn,
and X̃i = Xi for i /∈ O and builds the estimator θ̃n based on these observations:
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and, under Assumptions 8.2.1 and 8.3.1, for any δ ∈ (0, 1),
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One can see that the rate of convergence we obtain without making any assumption on
the outliers is exactly the same than in Hüber’s contamination model. The only different
thing is that the constant in the right hand side of the inequality is tighter in Hüber’s
contamination model.

8.3.3 Density estimation with quadratic loss

To obtain universal oracle inequalities in statistics is a goal that has been studied by many
authors, and that leads to the question: what distance should be used between proba-
bility measures? Results with the total variation (TV) norm were obtained by Yatracos
(1985), and more recently, the monograph Devroye and Lugosi (2001) gives a complete
overview of estimation with TV. While the Kullback-Leibler distance seems natural as
it leads to maximum likelihood estimation, it leads to many problems, including a very
strong sensitivity to misspecification, see for example the discussion in Baraud and Birgé
(2016). There, the authors derive universal inequalities for the Hellinger distance. The
Wasserstein distance became recenly extremely popular, partly due to its ability to take
into account the geometry of the space X , see Peyré (2019). Some attempts to obtain
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universal estimation with the Wasserstein distance can be found in Bernton et al. (2017);
Tat Lee et al. (2018). Note that in Devroye and Lugosi (2001) and in Baraud and Birgé
(2016), it is argued that the L2-distance between densities is not a good distance. Among
others:

• it is not universal, as some probability measures don’t have densities, while some
others have densities that are not in L2,

• it depends on the choice of the reference measure (usually taken as the Lebesgue
measure).

Regarding the first objection, we argue here that for reasonable kernels, the MMD
distance is an approximation of the L2-distance that is defined for any probability distri-
bution. Thus, from the oracle inequalities on the MMD distance it is possible to derive
oracle inequalities on the L2-distance. On the other hand, the MMD distance remains
well-defined for any probability measure, even those without density. To this regard,
estimation with respect to the MMD distance can be seen as a universal approximation
of density estimation in L2.

Regarding the second objection, our estimator does not depend on any reference
measure, but it depends on the choice of the kernel. However, we believe that this can
actually be an attractive property – indeed, the popularity of the Wasserstein distance
is due to the fact that it takes into account the geometry of X through the choice of a
distance on X . But the same argument hold for MMD-based estimation, the geometry of
X being taken into account through the choice of the kernel. For example, Dk(δx, δy)→ 0
when x→ y, a property shared with the Wasserstein distance, and which does not hold
for the Hellinger nor the TV distance.

Let us come back to the link with the L2 distance. Consider for example the Gaussian
kernel kγ(x, y) = exp(−‖x− y‖2/γ2). On the one hand, when γ → +∞, kγ(x, y) ' 1 for
any (x, y), this leads to Dkγ (P,Q) ' 0 for any P and Q. This case is not very useful as it
does not “see” the difference between any probability distributions. On the other hand,
when γ → 0, assume that P and Q have densities p and q with respect to the Lebesgue
measure respectively. Under suitable regularity and integrability assumptions on p and
q, we have

EX∼P,Y∼Q[kγ(X, Y )] ∼ π
d
2γd

∫
p(x)q(x)dx

when γ → 0, and thus
Dkγ (P,Q) ∼ π

d
4γ

d
2‖p− q‖L2 .

Considering γ small enough, but not zero, will then allow to give a sense to L2 estimation
even for densities that are not in L2. Of course, when p and q are not regular, these
approximations can become wrong. Thus, the regularity of the model is something im-
portant in the link between MMD and L2 distance. In order to make this discussion more
formal, let us first introduce a measure of the distortion between the MMD and the L2
distance.

Assumption 8.3.2. Assume that X = Rd and that k(x, y) = kγ(‖x− y‖) where kγ(h) =
k1(h/γ) and k1 : R+ → [0, 1].
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When Assumption 8.3.2 is satisfied, we will use the notation Dkγ = Dk.

Assumption 8.3.3. For any θ ∈ Θ, Pθ has density pθ ∈ L2 w.r.t the Lebesgue measure.

Definition 8.3.1. When Assumptions 8.3.2 and 8.3.3 are satisfied, we define:

L(γ) = inf
(θ,θ′)∈Θ

Dkγ (Pθ, Pθ′)
‖pθ − pθ′‖L2

, and

U(γ) = sup
(θ,θ′)∈Θ

Dkγ (Pθ, Pθ′)
‖pθ − pθ′‖L2

.

Assumption 8.3.4. The true distribution P 0 has density p0 ∈ L2 w.r.t the Lebesgue
measure.

When all these assumptions are satisfied, the model and the true distribution are
well-behaved and it possible to derive from MMD estimation a bound for L2 estimation.
The tightness of the bound will depend on the ratio U(γ)/L(γ).

Theorem 8.3.5. Under Assumptions 8.3.2, 8.3.3 and 8.3.4,

E
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]
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inf
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n

)
%t

n
.

If moreover we assume that Assumptions 8.2.1 and 8.3.1 are satisfied,

P

‖p
θ̂n
− p0‖L2 ≤

(
1 + 2U(γ)

L(γ)

)
inf
θ∈Θ
‖pθ − p0‖L2 + 2

√
1 + 2Σ + (1 + Γ)

√
2 log(1/δ)

L(γ)
√
n

 ≥ 1−δ.

We end this subsection by a proposition that allows to upper bound 1/L(γ) and
U(γ)/L(γ). We remind the definition of the Fourier transform of a function f :

F [f ](t) =
∫
f(x) exp(−2iπ 〈t, x〉)dx.

Assumption 8.3.5. The kernel K1 is such that F [K1](t) = µ(t) for some function µ
with

1. D > µ(t) > 0 for any t,

2.
∫
µ(t)dt = C for some C > 0,

3. there is an a such that ‖t‖ ≤ a⇒ µ(t) ≥ b2 > 0.

Example 8.3.1. All these conditions are satisfied by the Gaussian kernel: k1(h) =
exp(−‖h‖2) and kγ(h) = exp(−‖h‖2/γ2). Then k1 ≤ 1 as required. Moreover: F [k1](t) =
πd/2 exp(−‖t‖2/4) and so we have 1) and 2) with C = D = (2π)d/2 and 3) with a = 1
and b = 1/e.
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Proposition 4. Under 1. and 2. in Assumption 8.3.5,

U(γ) ≤ D1/2γd/2.

Under 3. in Assumption 8.3.5,

L(γ) ≥ bγd/2A
(
a

γ

)

where

A(ξ) := inf
(θ,θ′)∈Θ2

√√√√∫‖t‖≤ξ |F [pθ − pθ′ ](t)|2 dt∫
Rd |F [pθ − pθ′ ](t)|2 dt

.

Let us now discuss the consequences of Theorem 8.3.5 and Proposition 4 for L2 density
estimation, as well as the role of A and γ. For the sake of simplicity we stick to the
bound in expectation in the discussion, but the the same comments apply to the bound
in probability. First, pluging Proposition 4 into Theorem 8.3.5 gives:
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(8.1)
and, in the well-specified case,

E
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n
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n
. (8.2)

It is clear that the optimization with respect to γ might change the way the bound
in (8.1) depends on d, but will not affect the way it depends on n. The first examples in
Section 8.4 will clearly illustrate this fact. So, in small dimensions, one can always take
γ = 1 to obtain the bound:

E
(
‖p

θ̂n
− p0‖L2

)
≤
(

1 + 2
√
D

bA(a)

)
inf
θ∈Θ
‖pθ − p0‖L2 + 2

bA(a)

√√√√1 + 2∑n
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1− t

n

)
%t

n
.

However, in large dimension, the dependence on d matters. Note that the function A
satisfies:

• A(0) = 0,

• A is nondecreasing,

• A(∞) = 1.

For a fixed ξ, A(ξ) is the ratio between the energy in low frequencies and the whole
energy of pθ − pθ′ which might exhibit different behaviors depending on the smoothness
of θ 7→ pθ.
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When pθ − pθ′ has enough energy in its low frequencies for any θ and θ′, then one
can expect A(ξ) ∼ ξd/2 for ξ → 0. In this case, the function γd/2A(a/γ) would satisfy
limγ→0 γ

d/2A(a/γ) = 0 and limγ→+∞ γ
d/2A(a/γ) = ad/2, which means that even though

the function might have a global minimum somewhere in between 0 and ∞, taking γ as
large as possible cannot really hurt in (8.2) – even though it will make the first term in
the right-hand side of (8.1) explode, which means that taking γ too large is unsafe in
case of misspecification.

For nonsmooth models, one can however have A(ξ)/ξd/2 → 0 for ξ → 0. In this case,
both γ → 0 and γ →∞ will make the r.h.s explode both in (8.2) and (8.1). In this case,
a careful optimization w.r.t γ is in order.

8.4 Examples

8.4.1 Independent observations

In this subsection, we focus on i.i.d observations. That is, %t = 0 for any t ≥ 1. Moreover,
we will only use the Gaussian kernel kγ(x, y) = exp(−‖x − y‖2/γ2). Note that for this
kernel, Proposition 4 gives U(γ) ≤ (2π)1/4γ1/2. We will use this bound in some situations,
however, in the Gaussian model, we will see that it is possible to derive the explicit
dependence between the L2 norm and the MMD norm, thus avoiding Proposition 4. We
assume that Assumption 8.3.4 is satisfied in this whole section.

Estimation of the mean in a Gaussian model

Here, X = Rd and we are interested in the estimation of the mean in a Gaussian model.
For the sake of simplicity, we assume that the variance is known. In this case, the
proof of Proposition 5 below will show that we have explicit formulas, for any (θ, θ′), for
‖Pθ − Pθ′‖Hk and for ‖pθ − pθ′‖L2 , both as functions of ‖θ− θ′‖. In particular, this leads
to exact formulas

L(γ) = 4σ2

4σ2 + γ2

(
4πσ2γ2

4σ2 + γ2

)d/2
and U(γ) =

(
4πσ2γ2

4σ2 + γ2

)d/2
.

The complete proof is postponed to Section 8.7.

Proposition 5. Assume that Pθ = N (θ, σ2Id) for θ ∈ Θ = Rd. Then, for any δ > 0,

P

‖p
θ̂n
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1 + 4σ2 + γ2

2σ2
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inf
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 ≥ 1− δ. (8.3)
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Moreover, the second term in the upper bound is minimized for γ2 = 2dσ2 which leads to

‖p
θ̂n
− p0‖L2 ≤ (3 + d) inf

θ∈Θ
‖pθ − p0‖L2 + e(d+ 2)

(4πσ2) d2
2 + 2

√
2 log(1/δ)
√
n

, (8.4)

still with probability 1 − δ. Finally, assume that we are in an adversarial contamina-
tion model where a proportion at most ε of the observations is contaminated, then, with
probability 1− δ,

‖θ̃n − θ0‖2 ≤ −2σ2(d+ 2) log

1− 8e

ε+
1 +

√
2 log

(
1
δ

)
√
n


2 . (8.5)

Note that when ε is small and n is large,

‖θ̃n − θ0‖2 ≤ −2σ2(d+ 2) log

1− 16e
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∼ 32eσ2(d+ 2)

ε2 +
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√
2 log

(
1
δ

))2

n

 .
According to Theorems 2.1 and 2.2 in Chen et al. (2018), the minimax rate with respect
d, ε and n is ε2 + d/n. Hence, we obtain a convergence rate dε2 + d/n that achieves a
quadratic dependence in ε, contrary to most popular robust estimators such as Median-
of-Means which dependence in ε is linear. Note that the rate of convergence we obtain is
the one achieved by the geometric median.

Cauchy model

Here, X = R and Pθ = C(θ, 1) where C(θ, s) has density 1/[πs(1+(x−θ)2/s2)]. This time,
we use the generic upper bound U(γ) ≤ (2π)1/4γ1/2 and prove a lower bound L(γ) ≥ 1/3
for γ = 2 thanks to Proposition 4. We obtain the following result.

Proposition 6. Assume that Pθ = C(θ, 1) for θ ∈ Θ = R. Then, taking γ = 2 leads to,
for any δ > 0,

P

‖p
θ̂n
− p0‖L2 ≤ 14 inf

θ∈Θ
‖pθ − p0‖L2 +

6 + 6
√

2 log (1/δ)
√
n

 ≥ 1− δ.

Moreover, assume that we are in an adversarial contamination model where a proportion
at most ε of the observations is contaminated, then, with probability 1− δ,

(θ̃n − θ0)2 ≤ 4
1− 1

1− 96π
(
ε2 + 2+4 log(1/δ)

n

)
 .
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Note that

(θ̃n − θ0)2 ≤ 4
1− 1

1− 96π
(
ε2 + 2+4 log(1/δ)

n

)
 ∼ 384π

(
ε2 + 2 + 4 log(1/δ)

n

)
.

Again, we achieve the optimal quadratic dependence in ε.

Uniform model

Here, X = R and Pθ = U [θ − 1/2, θ + 1/2].

Proposition 7. Assume that Pθ = U [θ − 1/2, θ + 1/2], θ ∈ Θ = R Then, taking γ = 2
leads to, for any δ > 0,

P

‖p
θ̂n
− p0‖L2 ≤ 23.4 inf

θ∈Θ
‖pθ − p0‖L2 +

10 + 10
√

2 log(1/δ)
√
n

 ≥ 1− δ.

Note that the proof shows that in the well specified case p0 = pθ0 , ‖pθ̂n − p0‖L2 =
min(1, |θ̂n − θ0|). Thus, for n large enough to ensure that the bound is smaller than 1,
Proposition 7 states that, with probability at least 1− δ,

|θ̂n − θ0| ≤
10 + 10

√
2 log(1/δ)
√
n

.

Note that in this model, the moment estimator reaches the rate 1/
√
n but the MLE

reaches the rate 1/n. In practice, we indeed observe in the simulations that for γ ∼ 1,
the MMD estimator is “as bad” as the moment estimator. However, on the contrary to
MLE and moment estimators, it is highly robust to the presence of outliers.

Moreover, for γ → 0, we observe that the MMD estimator becomes as good as the
MLE in the nice situation (correct specification, no outliers). We were not able to explain
this with our theoretical analysis and leave it to future works.

Estimation with a dictionary

We consider here estimation of the density as a linear combination of given functions in
a dictionary. This framework actually appears in various models:

• first, when the dictionary contains densities, this is simply a mixture of known
components. In this case, the linear combination is actually a convex combination.
This context is for example studied in Dalalyan and Sebbar (2017).

• in nonparametric density estimation, we can use this setting, the dictionary being
a basis of L2. This is for example the point of view in Alquier (2008a); Bunea et al.
(2007, 2010).
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We will here focus on the first setting, but an extension to the second one is quite
straightforward. Let {Φ1, . . . ,Φd} be a family of probability measures over X = RD. For
1 ≤ i ≤ d we remind that

µΦi(·) =
∫
k(x, ·)Φi(dx).

Define the measure Pθ = D(θ; Φ1, . . . ,Φd) = ∑d
i=1 θiΦi with respect to the Lebesgue

measure, and we define the model {Pθ, θ ∈ Θ ⊂ Rd}. We could consider Θ = Rd in a
general framework, but as we only study the mixture case, we assume that Θ ⊆ Sd = {θ ∈
Rd

+ : ∑d
i=1 θi = 1}. Note that in the fisrt case, most Pθ’s are not probability measures,

but this is in accordance with our definition of a statistical model. The estimator is then

θ̂n = arg min
θ∈Θ

∥∥∥∥∥
d∑
`=1

θ`µΦ`(·)− µP̂n

∥∥∥∥∥
2

Hk

.

Assuming that each Φi has a density with respect to the Lebesgue measure φi ∈ L2, each
Pθ has a density pθ = ∑d

i=1 θiφi and we have:

Dkγ (Pθ, Pθ′)
‖pθ − pθ′‖L2

=
∑

1≤i,j≤n(θi − θ′i)(θj − θ′j)
〈
µΦi , µΦj

〉
Hk∑

1≤i,j≤n(θi − θ′i)(θj − θ′j)
〈
µΦi , µΦj

〉
L2

.

This immediately leads to the following result.

Proposition 8. Assume that Pθ = ∑
i=1 θiΦi where Φi has density φi ∈ L2, and let pθ de-

note the density of Pθ. Define the matrices G =
(〈
µΦi , µΦj

〉
L2

)
and Gγ =

〈
µΦi , µΦj

〉
Hkγ

.
Letting λmin(·) and λmax(·) denote respectively the smallest and largest eigenvalue of a
symmetric matrix, we have:

U(γ) = λmax(Gγ)
λmin(G) and L(γ) = λmin(Gγ)

λmax(G) .

Let C(·) = λmax(·)/λmin(·) denote the condition number of a matrix. Then

P

‖p
θ̂n
− p0‖L2 ≤

[
1 + 2C(G)C(Gγ)

]
inf
θ∈Θ
‖pθ − p0‖L2 + 2λmax(G)

λmin(Gγ)
1 + 1

√
2 log(1/δ)
√
n

 ≥ 1−δ.

8.4.2 β-mixing observations

We now consider non-independent random variables: as in the general framework pre-
sented above, (Xt)t∈Z is a strictly stationary time series, with stationary distribution P 0,
and that we observe X1, . . . , Xn. We will exhibit some condition on the dependence of
the Xi’s ensuring that we can still estimate P 0 with the MMD method.

There is a very rich literature on limit theorems and exponential inequalities under
conditions on various dependence coefficients. Mixing coefficients and their applications
are detailed in the monographs Doukhan (1994); Rio (2017a), weak dependence coeffi-
cients in Dedecker et al. (2007). In this subsection, we show that our coefficient %t can
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be upper-bounded by the β-mixing coefficients. So for any β-mixing process, the esti-
mation of P 0 using MMD remains possible. We also remind some examples of β-mixing
processes. Note that we will show in the next subsection that Theorem 8.3.1 can be
successfully applied to non β-mixing processes.

We start by a reminder of the defintion of the β-mixing coefficients, from page 4
(Chapter 1) in Dedecker et al. (2007).

Definition 8.4.1. Given two sigma algebras A and B,

β(A,B) = 1
2 sup

I, J ≥ 1
U1, . . . , UI
V1, . . . , VJ

∑
1≤i≤I

∑
1≤j≤J

|P(Ui ∩ Vj)− P(Ui)P(Vj)|

where (U1, . . . , UI) is any partition of A and V1, . . . , Vj any partition of B. Put:

β
(X)
t = β(σ(X0, X−1, . . . ), σ(Xt, Xt+1, . . . )).

Section 1.5 in Doukhan (1994) provides summability conditions on the β(X)
t leading

to a law of large numbers and to a central limit theorem. Examples are also discussed.

Example 8.4.1. Assume in this example that (Xt) is an homogeneous Markov chain
given by its transition kernel P and X0 ∼ π where πP = π. Assume that there is a
0 < c ≤ 1 and a probability measure Q on Rd such that, for some integer r ≥ 1 and for
any measurable A, P r(x,A) ≥ cQ(A). Then it is known, see e.g. Theorem 1 page 88
in Doukhan (1994) that

β
(X)
t ≤ 2(1− c) tr−1.

We now compare our % coefficients with the β-mixing coefficients.

Proposition 9. Assume that k(x, y) = F (‖x − y‖) were F (a) =
∫∞
a f(b)db for some

nonnegative continuous function f with
∫∞

0 f(b)db = 1. Then we have

%t ≤ 2β(σ(X0), σ(Xt)) ≤ 2βt.

Note that k(x, y) = exp(−‖x − y‖/γ) and k(x, y) = exp(−‖x − y‖2/γ2) for example
trivially work, respectively with f(b) = exp(−b/γ)/γ and f(b) = 2b exp(−b2/γ2)/γ2.

Hidden Markov chains

Assume here that (Yt)t∈N is a Markov chain on {1, . . . , d}, and that Xt|(Yt = i) is in-
dependent from all the other values Yt′ and is drawn in RD from a probability measure
Φi. The Φi’s are known and X1, . . . , Xn are observed but the (Yt)t∈N are not observed.
Note that this is a dependend extension of the misture model D(θ; Φ1, . . . ,Φd) discussed
above. Indeed, we consider this as a case of misspecification: the statistician uses the
mixture model D(θ; Φ1, . . . ,Φd) with Θ = Sd, being not aware that the data is actually
not independent.
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Letting P denote the transition matrix of Y , we assume that there exists c > 0 and an
integer r ≥ 0 such that P r(i, j) ≥ c/d for any (i, j) ∈ {1, . . . , d}2. Then we have β(Y )

t ≤
2(1− c)t/r−1. This also implies that there is a unique π such that πP = π and we assume
that Y0 ∼ π. Then the distribution P 0 of each Xt is given by P 0(x) = ∑d

i=1 πiΦi(x).
Also, note that

%t = β(σ(X0), σ(Xt)) ≤ β(σ(X0, Y0), σ(Xt, Yt)) = β(σ(Y0), σ(Yt)) ≤ 2(1− c)t/r−1.

So, a direct application of Theorem 8.3.1 gives:

E
[
‖G−1/2(θ̂ − π)‖

]
= E

[
Dk

(
P
θ̂n
, P 0

)]
≤ 2

√√√√1 + (1− c) 1
r
−1(3 + c)

n[1− (1− c) 1
r ]

.

Note that we can add a second layer in the process: assume that an opponent is allowed
to replace a fraction ε of the Xt, as in Proposition 3. This result in the observation of X̃t

such that X̃t = Xt for a proportion (1 − ε) of the data, and X̃t can be anything for the
remaining ε. For example, the opponent can try fo fool the learner, by drawing from the
wrong Φi. The MMD estimator θ̃ still satisfies, from Proposition 3,

E
[
Dk

(
P
θ̂n
, P 0

)]
≤ 4ε+ 4

√√√√1 + (1− c) 1
r
−1(3 + c)

n[1− (1− c) 1
r ]

.

8.4.3 Non-mixing processes

In this subsection, we provide an example of non-mixing process, with βt = 1/4 and so∑∞
t=1 βt =∞, such that ∑∞t=1 %t <∞. We then provide statistical application.

Examples of non-mixing processes with ∑
t %t <∞

First, we remind a classical example of non-mixing process, in the sense that∑∞t=1 βt =∞.
See for example Section 1.5 page 8 in Dedecker et al. (2007) where it is also proven that
it is neither α-mixing. The process id defined by Xt+1 = Xt/2 + εt+1, where the εt are
i.i.d Be(1/2) and X0 ∼ U([0, 1]). As for any t, Xt = f(Xt+1) where f is the measurable
function f(x) = 2x − b2xc, it is possible to take I = J = 2, V1 = U1 and V2 = U2 = U c

1
for some U1 with P(U1) = 1/2 in Definition 8.4.1. This leads to β(σ(X0), σ(Xt)) ≥ 1/4.

However, the %t will decay exponentially. This is a consequence of the more general
following proposition.

Proposition 10. Assume that k(x, y) = F (‖x− y‖) where F is an L-Lipschitz function
and assume that Xk can be written as Xk = Gk(X0, Bk) where Bk is independent of X0
and Gk is Lk-Lipschitz in its first component: ‖Gk(x, b)−Gk(x′, b)‖ ≤ Lk‖x− x′‖. Then
%k ≤ 2LLkE(‖X0‖).

In the previous example, Gk(X0, Bk) = X0/2k+Bk withBk = εk+εk−1/2+· · ·+ε1/2k−1

is indeed independent of X0. So Gk is Lk-Lipschitz in x with Lk = 1/2k. Moreover, as
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Xt ∼ U([0, 1]) for any t, E(|X0|) = E(X0) = 1/2. So

%k ≤ 2LLkE(|X0|) = L

2k .

With a Gaussian kernel k(x, y) = exp(−|x− y|2/γ2) one has L = 2/[exp(1/γ)γ] and so

%k = 1
γ exp(1/γ)2k .

Another classical example of non-mixing process is a reversed version of the previous
one. We draw X0 ∼ U([0, 1]) and simply define Xt+1 = f(Xt) where we still have
f(x) = 2x − b2xc. Note that apart from X0, the process is entirely deterministic, and
thus non-mixing. Properties of (generalized versions) of such processes are studied in
Section 3.3 page 28 in Dedecker et al. (2007). Still, following step by step the proof of
Proposition 10, we can show that if X0 can be written as X0 = G′k(Xk, Bk) where Bk

is independent of Xk and G′k is L′k-Lipschitz in its first component, then we still have
%k ≤ 2LLkE(‖X0‖). Thus, this process also satisfies %k ≤ L/2k.

8.5 Stochastic gradient algorithm for MMD estima-
tion

In this section, we briefly discuss gradient-based algorithms to compute the estimator
θ̂n when Θ ⊂ Rd. In Subsection 8.5.1 we provide an expression of the gradient of the
criterion to be minimized. We briefly provide a special case where this gradient can
be computed explicitly. However, in general, this is not the case, but we can provide
unbiased estimators of this gradient as soon as we are able to sample from Pθ, in this
case the model is often refered to as a generative model. Thus it is possible to use a
stochastic gradient algorithm when {Pθ, θ ∈ Θ} is a generative model. We describe this
algorithm in Subsection 8.5.2, and remind its theoretical properties in Subsection 8.5.3.

Note that the idea to use a stochastic gradient algorithm to compute θ̂n was first used
to train a generative neural network by Dziugaite et al. (2015). In Briol et al. (2019)
the authors propose to use a stochastic natural gradient algorithm instead. By providing
adaptation to the geometry of the problem, the natural gradient will lead to better results
but increase the computational burden when the dimension of the problem is large.

8.5.1 Gradient of the MMD distance

We remind that in this whole section, Θ ⊂ Rd. To compute θ̂n, one must minimize, with
respect to θ ∈ Θ,

Dk(Pθ, P̂n) = EX,X′∼Pθ [k(X,X ′)]− 2
n

n∑
i=1

EX∼Pθ [k(Xi, X)] + 1
n2

∑
1≤i,j≤n

k(Xi, Xj)
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or, equivalently,

Crit(θ) = EX,X′∼Pθ [k(X,X ′)]− 2
n

n∑
i=1

EX∼Pθ [k(Xi, X)].

In order to use gradient algorithms or any first order method, a first step is to compute
the gradient of this quantity with respect to θ.

Proposition 11. Assume that, for any x, θ 7→ pθ(x) is differentiable with respect to θ and
that there is a nonnegative function g(x, x′) such that, for any θ ∈ Θ, |k(x, x′)∇θ[pθ(x)pθ(x′)]| ≤
g(x, x′) and

∫∫
g(x, x′)µ(dx)µ(dx′) <∞. Then

∇θCrit(θ) = 2EX,X′∼Pθ
[(
k(X,X ′)− 1

n

n∑
i=1

k(Xi, X)
)
∇θ[log pθ(X)]

]
.

Note that the gradient of Crit(θ) is given by an expectation with respect to Pθ. So, as
soon as it is feasible to sample from Pθ, on can provide unbiased estimates of ∇θCrit(θ),
and thus implement a stochastic gradient algorithm.

Remark 8.5.1. It might be that in special cases, we have explicit formulas for the ex-
pectations in Crit(θ) and its gradient. For example, assume that we are a translation
parameter, that is: pθ(x) = f(x − θ) for some density f , and that the kernel k is given
by k(x, x′) = K(x− x′) for some function K. Then

Crit(θ) =
∫∫

K(x− x′)f(x− θ)f(x′ − θ)µ(dx)µ(dx′)− 2
n

n∑
i=1

∫
K(Xi − x)f(x− θ)µ(dx)

=
∫∫

K(x− x′)f(x)f(x′)µ(dx)µ(dx′)− 2
n

n∑
i=1

∫
K(θ + x−Xi)f(x)µ(dx).

For example, in the case Pθ = U [θ − 1/2, θ + 1/2] we have

Crit(θ) =
∫∫

[−1/2,1/2]2
K(x− x′)dxdx′ − 2

n

n∑
i=1

∫ 1/2

−1/2
K(θ + x−Xi)dx

=
∫∫

[−1/2,1/2]2
K(x− x′)dxdx′ − 2

n

n∑
i=1

∫ θ+1/2−Xi

θ−1/2−Xi
K(u)du

and thus
∇θCrit(θ) = − 2

n

n∑
i=1

[K(θ + 1/2−Xi)−K(θ − 1/2−Xi)].

So, in this special case, the estimation of the gradient is unnecessary and we can use a
gradient algorithm to compute θ̂n.

8.5.2 Projected stochastic gradient algorithm for the MMD es-
timator

From Proposition 11,

∇θCrit(θ) = 2EX,X′∼Pθ
[(
k(X,X ′)− 1

n

n∑
i=1

k(Xi, X)
)
∇θ[log pθ(X)]

]
.
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So, if we can compute ∇[log pθ(x)] and if it is feasible to simulate from Pθ, we can easily
compute a Monte Carlo estimator of ∇θCrit(θ) and thus use a stochastic gradient descent
(SGD). First, simulate (Y1, . . . , YM) i.i.d from Pθ, then put

∇̂θCrit(θ) = 2
M

M∑
j=1

 1
M − 1

∑
6̀=j
k(Yj, Y`)−

1
n

n∑
i=1

k(Xi, Yj)
∇θ[log pθ(Yj)].

We now provide the details of a projected stochastic gradient algorithm (PSGA). The
projection step is necessary if Θ ( Rd. Thus, we assume that Θ ⊂ Rd is a closed and
convex subset and let ΠΘ denote the orthogonal projection on Θ.

Algorithm 12 PSGA for MMD
Require: A dataset (X1, ..., Xn), a model (Pθ, θ ∈ Θ ⊂ Rd) a kernel k, a sequence of
steps (ηt)t≥1, an integer M , a stopping time T , an initial point θ(0) ∈ Θ.
X0 ∼ ν0
for t = 1, · · · , T do
draw (Y1, . . . , YM) i.i.d from Pθ(t−1)

θ(t) = ΠΘ
{
θ(t−1) − 2ηt

M

∑M
j=1

[
1

M−1
∑
`6=j k(Yj, Y`)− 1

n

∑n
i=1 k(Xi, Yj)

]
∇θ(t−1) [log pθ(t−1)(Yj)]

}
end for

8.5.3 Theoretical analysis of the algorithm

In its original version, the stochastic gradient algorithm was proposed with a sequence
of steps (η)t such that ηt → 0 and ∑t ηt =∞. However, Nemirovski et al. (2009) proved
that the method can be made more robust by taking a constant step size ηt = η and by
averaging the parameters. The following proposition is actually a direct application of
the results of Nemirovski et al. (2009).

Proposition 12. Under the conditions of Proposition (11) above, and under the assump-
tion that Θ is closed, convex and bounded with D = sup(θ,θ′)∈Θ2 ‖θ − θ′‖, define

θ̂(T )
n = 1

T

T∑
t=1

θ(t)

where the θ(t)’s are given by Algorithm 1 above. Assume that, for any θ ∈ Θ,

E
[
‖∇̂θCrit(θ)‖2

]
≤M2.

Assume that Crit(θ) is a convex function of θ. Then the choice η = D/(M
√
T ) leads to

E
[
Crit(θ̂(T )

n )− Crit(θ̂n)
]
≤ DM√

T
, (8.6)

where the expectation E is taken with respect to drawings of the Yi’s in Algorithm 1.
Moreover

E
[
Dk

(
P
θ̂
(T )
n
, P 0

)]
≤ inf

θ∈Θ
Dk(Pθ, P 0) + 3

√
1 + 2∑n

t=1 %t
n

+
√
DM√
T
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where the expectation is taken with repect to the sample and to the Yi’s, and the choice
T = n2 leads to

E
[
Dk

(
P
θ̂
(n2)
n

, P 0
)]
≤ inf

θ∈Θ
Dk(Pθ, P 0) +

√
DM + 3

√
1 + 2∑n

t=1 %t

n
.

The restrictive assumption in this proposition is the convexity assumption on the
criterion. However, it is satisfied in some of the examples of Section 8.4.
Example 8.5.1. Let us come back to the “estimation with a dictionary” example of
Section 8.4: Pθ is given by its density

pθ =
d∑
`=1

θ`Φ`.

As mentioned in Section 8.4, if θ is unrestricted (Θ = Rd) we cannot apply Proposition 12
but there is an explicit formula for θ̂n. Now, let us assume that Θ = Sd and the Φ`’s are
probability densities (this is the mixture of densities case). Then Θ closed, convex and
bounded with D = 1. Moreover,

∇̂θCrit(θ) = 2
M

M∑
j=1

 1
M − 1

∑
6̀=j
k(Yj, Y`)−

1
n

n∑
i=1

k(Xi, Yj)
∇θ[log pθ(Yj)].

and

∇θ[log pθ(Yj)] =


Φ1(Yj)∑d

`=1 θ`Φ`(Yj)...
Φd(Yj)∑d

`=1 θ`Φ`(Yj)

 .
Consequently,
∥∥∥∇̂θCrit(θ)

∥∥∥2
=

d∑
`=1

 2
M

M∑
j=1

 1
M − 1

∑
`6=j

k(Yj, Y`)−
1
n

n∑
i=1

k(Xi, Yj)
 Φ`(Yj)∑d

`=1 θ`Φ`(Yj)

2

≤
d∑
`=1

4
M2

∑
1≤j,k≤M

Φ`(Yj)Φ`(Yk)(∑d
`=1 θ`Φ`(Yj)

) (∑d
`=1 θ`Φ`(Yk)

)
= 4
M2

∑
1≤j,k≤M

∑d
`=1 Φ`(Yj)Φ`(Yk)
pθ(Yj)pθ(Yk)

,

and then

E
(∥∥∥∇̂θCrit(θ)

∥∥∥2)
≤
∫∫

4
∑d
`=1 Φ`(y)Φ`(y′)
pθ(y)pθ(y′)

pθ(y)pθ(y′)dydy′

= 4
∫∫ d∑

`=1
Φ`(y)Φ`(y′)dydy′

= 4d.
Hence Proposition 12 leads to

E
[
Crit(θ̂(T )

n )− Crit(θ̂n)
]
≤
√

4d
T

= 2
√
d

T
.
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8.6 Simulation study

In this section, we test our stochastic gradient algorithm on several synthetic datasets
composed of n = 200 datapoints that were generated independently using four different
distributions: a uni- and multidimensional univariate Gaussian, a uniform, a Cauchy, and
a Gaussian mixture. All datasets are corrupted by outliers whose proportion ranges from
0 to 0.20 with a step-size of 0.025 in the experiments. We chose a number of Monte-
Carlo samples equal to n and a step-size of ηt = 1/

√
t, and we used the Gaussian kernel

k(x, y) = e−‖x−y‖
2
2/d where d is the dimension. Each experiment is repeated 100 times.

Gaussian mean estimation: First, we estimate the mean of a Gaussian distribution
N (θ, Id) where Id is the identity matrix of dimension d and where θ is the vector with all
components equal to 2. All the outliers are generated using a standard Cauchy distribu-
tion C(0, 1) independently for each component. The MMD gradient descent is compared
with the componentwise median (MED) and the maximum likelihood estimator (MLE)
which is here the arithmetic mean. The metric considered here is the square root of the
mean square error (MSE) over all the 100 repetitions. We can see in the two plots below
that our algorithm achieves the smallest error as the proportion of outliers grows, clearly
outperforming the MLE and being comparable to the componentwise median, and grows
linearly as the ratio of outliers increases.

Figure 8.1: Comparison of the square root of the MSE for the MMD estimator, the
MLE and the componentwise median (MED) in the robust unidimensional Gaussian mean
estimation problem for several values of the proportion of outliers.

Uniform location parameter estimation: Then we estimate the location param-
eter of a uniform distribution [θ− 1/2, θ+ 1/2] with θ = 1. Outliers are generated from a
Cauchy distribution C(0, 1) with a location parameter equal to 1. We compare the mean
of the variational approximation with the MLE (i.e the average between the largest and
the lowest values) and the method of moments estimator (i.e the arithmetic mean). We
use again the square root of the MSE over the 200 repetitions as the metric. Figure 3
clearly shows that the MMD estimator is the best estimator and is not affected by a
reasonable proportion of outliers, contrary to the method of moments which square root
of MSE is increasing linearly with the proportion of outliers and to the MLE that fails
as soon as there is one outlier in the data.
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Figure 8.2: Comparison of the square root of the MSE for the MMD estimator, the
MLE and the componentwise median (MED) in the robust 20-dimensional Gaussian mean
estimation problem for several values of the proportion of outliers.

Figure 8.3: Comparison of the square root of the MSE for the MMD estimator, the MLE
and the method of moments in the robust estimation of the location parameter of a uniform
distribution for several values of the proportion of outliers.

Cauchy estimation: We also estimate the location parameter of a Cauchy C(θ, 1)
where θ = 2. We corrupt the data using a standard Cauchy distribution, and we multiply
this noise by 2. Note that the theoretical mean of a C(2, 1) is not defined and that its
theoretical median is equal to θ = 2. The estimators we will use here to be compared
with the MMD procedure are the arithmetic mean and the geometric median. We still
consider the square root of the MSE. The plots in Figure 4 show similar results to those
obtained for the Gaussian mean estimation problem, with an unstable mean estimator
and comparable median and MMD estimators.

Gaussian mixture estimation: In the last experiment, we sample data according
to a three component Gaussian mixture 0.3.N (−3.72, 1)+0.3.N (0.11, 1)+0.4.N (4.54, 1).
Here, we use the same approach than in Section 8.4.1. We try to estimate the mixture
as a linear combination of mixture in a dictionary composed of all Gaussians of vari-
ance 1 and whose means range from -5 to 5 with a stepsize of 0.02. Note that the
Gaussian N (0.11, 1) is not even in the dictionary. The goal is to estimate the weights
of each Gaussian in the dictionary. This estimation method is compared to the gold
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Figure 8.4: Comparison of the square root of the MSE for the MMD estimator, the
arithmetic mean and the componentwise median in the robust estimation of the location
parameter of a Cauchy distribution for several values of the proportion of outliers.

standard Expectation-Maximization (EM) (Dempster et al., 1977) algorithm and to the
tempered Coordinate Ascent Variational Inference (CAVI) algorithm (Chérief-Abdellatif
and Alquier, 2018; Blei et al., 2017) that estimate directly the means and the weights of
the three-component mixture, using ten random initializations. The experiment is con-
ducted first without any outlier, and then with an outlier equal to 100. Here, the MSE
metric is more complicated to define. Indeed, we try to estimate the difference between
densities rather than parameters as the parameters that are estimated are not the same
for the different methods (weights over the whole dictionary versus weights and means
over the three components). First, we sample 10.000 datapoints independently according
to the true mixture. Then, we evaluate the square of the difference between the true
density p0 and the estimated density p

θ̂n
evaluated at each of the 10.000 datapoints, and

we finally take the average:


z1, ..., zN

i.i.d∼ p0 where N = 10.000,
MSE = 1

N

N∑̀
=1

∣∣∣p0(z`)− pθ̂n(z`)
∣∣∣ .

Again, the final metric is the average over 100 repetitions of the experiment. Figures 5,
6 and 7, and Table 1 clearly show that our estimator performs comparably to both the
EM and the CAVI algorithms in the well-specified case, while it is the only one that is
not sensitive to the outlier and that gives a consistent estimate.

Algorithm Without the outlier With the outlier
MMD 0.0135 0.0142
CAVI 0.0192 0.0314
EM 0.0136 0.0280

Table 8.1: Square root of the MSE for the Gaussian mixture with and without the outlier
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Figure 8.5: Plot of the estimated densities using different methods without outliers. The
blue curve represents the true density, the red one the MMD density, the green one the
CAVI density and the black one the EM density.

Figure 8.6: Plot of the estimated densities using different methods in presence of 1 outlier
at 100. The blue curve represents the true density, the red one the MMD density, the
green one the CAVI density and the black one the EM density. The EM estimate has a
small component at 100, and CAVI only one component at 100.

Figure 8.7: Zoom of Figure 6, without the component of EM at 100.
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8.7 Proofs

8.7.1 A preliminary lemma: convergence of P̂n to P 0 with re-
spect to Dk

Lemma 8.7.1. We have

E
[
D2
k

(
P̂n, P

0
)]
≤

1 + 2∑n
t=1

(
1− t

n

)
%t

n
.

Proof.

E
[
D2
k

(
P̂n, P

0
)]

= E


∥∥∥∥∥ 1
n

n∑
i=1

[k(Xi, ·)− µP 0 ]
∥∥∥∥∥

2

Hk


= 1
n2E


n∑
i=1
‖k(Xi, ·)− µP 0‖2

Hk + 2
∑

1≤i<j≤n
〈k(Xi, ·)− µP 0 , k(Xj, ·)− µP 0〉Hk


≤ 1
n2

n+ 2
∑

1≤i<j≤n
%|i−j|

 =
1 + 2∑n

t=1

(
1− t

n

)
%t

n
.

Note that in the i.i.d case, this leads to

E
[
D2
k

(
P̂n, P

0
)]
≤ 1
n

and thus
E
[
Dk

(
P̂n, P

0
)]
≤
√
E
[
D2
k

(
P̂n, P 0

)]
≤ 1√

n
.

The rate 1/
√
n is known to be minimax in this case: Theorem 1 in Tolstikhin et al.

(2017).

8.7.2 Proof of Theorem 8.3.1

Proof. First,

Dk

(
P
θ̂n
, P 0

)
≤ Dk

(
P
θ̂n
, P̂n

)
+ Dk

(
P̂n, P

0
)
≤ Dk

(
Pθ, P̂n

)
+ Dk

(
P̂n, P

0
)

for any θ ∈ Θ, by definition of θ̂n, and thus, using the triangular inequality again,

Dk

(
P
θ̂n
, P 0

)
≤ Dk

(
Pθ, P

0
)

+ 2Dk

(
P̂n, P

0
)
.

Take the expectation on both sides and note that

E
[
Dk

(
P̂n, P

0
)]
≤
√
E
[
D2
k

(
P̂n, P 0

)]
≤

√√√√1 + 2∑n
t=1

(
1− t

n

)
%t

n
≤
√

1 + 2∑n
t=1 %t

n

where the second inequality is given by Lemma 8.7.1.
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8.7.3 Proof of Theorem 8.3.2

We start by reminding the following result from Briol et al. (2019); similar results can be
found in Song (2008) or Gretton et al. (2009).

Lemma 8.7.2 (Lemma 1 page 10 (Briol et al., 2019)). For any δ > 0,

P
(
Dk

(
P̂n, P

0
)
≤ 1√

n

(
1 +

√
log (1/δ)

))
≥ 1− δ.

This result (that we won’t use here) relies on McDiarmid inequality (McDiarmid,
1989) who proposed a beautiful way to control the difference between a function of
the data, f(X1, . . . , Xn), and its expectation. The idea relies on writing this func-
tion as a martingale, f(X1, . . . , Xn) = Mn where Mt, for t ≤ n, is given by Mt =
E[f(X1, . . . , Xn)|X1, . . . , Xt], and controling the martingale increments. It appears that
many inequalities can be proven by using this technique, this is discussed in details in
Chapter 3 in Boucheron et al. (2012). Using this technique, Rio (2017b) proved a version
of McDiarmid’s inequality for series satisfying Assumption 8.3.1 (note that the paper is
written in French, a more recent paper by the same author (Rio, 2013) in English contains
this result and new ones). We start by reminding Rio’s result.

Lemma 8.7.3 (Theorem 1 page 906 (Rio, 2017b)). Assume that f : Hn
k → R satisfies:∣∣∣∣f(a1, . . . , an)− f(a′1, . . . , a′n)

∣∣∣∣ ≤ n∑
i=1
‖ai − a′i‖Hk .

Then, for any t > 0,

E exp
[
tf(µδX1

, . . . , µδX1
)− tE[f(µδX1

, . . . , µδX1
)]
]
≤ exp

(
t2(1 + Γ)2n

2

)
.

This allows us to state our variant of Lemma 8.7.2.

Lemma 8.7.4. Under Assumptions 8.2.1 and 8.3.1,

P

Dk

(
P̂n, P

0
)
≤

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

 ≥ 1− δ.

Proof of Lemma 8.7.4. Define

f(a1, . . . , an) =
∥∥∥∥∥
n∑
i=1

(ai − µP 0)
∥∥∥∥∥
Hk

.

Under Assumption 8.3.1, the conditions of Lemma 8.7.3 are satisfied, and thus, for any
x > 0 and any t > 0,

P
(
Dk

(
P̂n, P

0
)
− E[Dk

(
P̂n, P

0
)
] ≥ x

)
= P

(
f(µδX1

, . . . , µδXn )
n

− E[Dk

(
P̂n, P

0
)
] ≤ x

)
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≤ exp
(
t2(1 + Γ)2

2n − tx
)

= exp
(
− x2n

2(1 + Γ)2

)

where we chose t = xn/(1 + Γ)2. Put x = (1 + Γ)
√

2 log(1/δ)/n to get:

P

Dk

(
P̂n, P

0
)
≤ E[Dk

(
P̂n, P

0
)
] + (1 + Γ)

√√√√2 log
(

1
δ

)
n

 ≥ 1− δ.

Plug Theorem 8.7.1 to get the result:

P

Dk

(
P̂n, P

0
)
≤
√

1 + 2Σ
n

+ (1 + Γ)

√√√√2 log
(

1
δ

)
n

 ≥ 1− δ.

We are now in position to prove Theorem 8.3.2.

Proof of Theorem 8.3.2. With probability 1− δ, for any θ ∈ Θ,

Dk

(
P
θ̂n
, P 0

)
≤ Dk

(
P
θ̂n
, P̂n

)
+ Dk

(
P̂n, P

0
)

≤ Dk

(
Pθ, P̂n

)
+

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

≤ Dk

(
Pθ, P

0
)

+ Dk

(
P̂n, P

0
)

+

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

≤ Dk

(
Pθ, P

0
)

+ 2

√
1 + 2Σ + (1 + Γ)

√
2 log

(
1
δ

)
√
n

8.7.4 Proof of Lemma 8.3.3 and of Proposition 3

Proof of Lemma 8.3.3. We have∣∣∣Dk(Pθ̂n , P
0)− Dk(Pθ̂n , Pθ0)

∣∣∣ ≤ Dk(P, P 0)

=
∥∥∥(1− ε)µPθ0 + εµQ − µPθ0

∥∥∥
Hk

=
∥∥∥ε(µQ − µPθ0 )

∥∥∥
Hk

≤ 2ε.
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Proof of Proposition 3. Let us put

P̃n = 1
n

n∑
i=1

δ
X̃i
.

First, note that for any probability measure Q,∣∣∣Dk(Q, P̃n)− Dk(Q, P̂n)
∣∣∣ ≤ Dk(P̂n, P̃n)

=
∥∥∥∥∥ 1
n

n∑
i=1

(
k(Xi, ·)− k(X̃i, ·)

)∥∥∥∥∥
Hk

≤ 1
n

n∑
i=1

∥∥∥k(Xi, ·)− k(X̃i, ·)
∥∥∥
Hk

= 1
n

∑
i∈O

∥∥∥k(Xi, ·)− k(X̃i, ·)
∥∥∥
Hk

≤ 2|O|
n

≤ 2ε.

Consider Q = P
θ̃n
. Then:

Dk(Pθ̃n , P
0) ≤ Dk(Pθ̃n , P̃n) + Dk(P̃n, P 0)
≤ Dk(Pθ̂n , P̃n) + Dk(P̃n, P 0) by definition of θ̃n
≤
[
2ε+ Dk(Pθ̂n , P̂n)

]
+
[
2ε+ Dk(P̂n, P 0)

]
where we used the previous derivations for Q = P

θ̂n
and then Q = P 0 respectively. So:

Dk(Pθ̃n , P
0) ≤ 4ε+ Dk(Pθ̂n , P̂n) + Dk(P̂n, P 0)
≤ 4ε+ Dk(Pθ0 , P̂n) + Dk(P̂n, P 0) by definition of θ̂n
= 4ε+ 2Dk(P̂n, P 0)

as it is here assumed that P 0 = Pθ0 .

8.7.5 Proof of the results in Subsection 8.3.3

Proof of Theorem 8.3.5. With probability at least 1− ε, for any θ ∈ Θ,

‖p
θ̂n
− p0‖L2 ≤ ‖p

θ̂n
− pθ‖L2 + ‖pθ − p0‖L2

≤
Dkγ (Pθ̂n , Pθ)
L(γ) + ‖pθ − p0‖L2

≤
Dkγ (Pθ̂n , P̂n) + Dkγ (Pθ, P̂n)

L(γ) + ‖pθ − p0‖L2

≤
2Dkγ (Pθ, P̂n)
L(γ) + ‖pθ − p0‖L2
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≤
2Dkγ (Pθ, P 0) + 2Dkγ (P 0, P̂n)

L(γ) + ‖pθ − p0‖L2

=
(

1 + 2U(γ)
L(γ)

)
‖pθ − p0‖L2 + 2

L(γ)Dkγ (P̂n, P 0).

Take expectation on both sides to obtain

E
(
‖p

θ̂n
− p0‖L2

)
≤
(

1 + 2U(γ)
L(γ)

)
‖pθ − p0‖L2 + 2

L(γ)E
(
Dkγ (P̂n, P 0)

)

≤
(

1 + 2U(γ)
L(γ)

)
‖pθ − p0‖L2 + 2

L(γ)

√√√√1 + 2∑n
t=1

(
1− t

n

)
%t

n

from Lemma 8.7.1. The proof of the result in probability is similar, except that we use
Lemma 8.7.2 to bound Dkγ (P̂n, P 0) is probability rather than in expectation.

Proof of Proposition 4. We remind a few properties of the Fourier transform. First,

F [kγ](t) = γdF [K1](γt) = γdµ(γt).

Let ? denote the convolution product:

p ? q(x) =
∫
p(x− t)q(t)dt

and we remind the classical result F [p ? q] = F [p]F [q]. Finally, we remind that∫
|p|2(x)dx =

∫
|F [p](t)|2dt.

Keeping this in mind,

D2
kγ (Pθ, Pθ′) =

∫∫
kγ(y − x)[pθ(x)− pθ′(x)][pθ(y)− pθ′(y)]dxdy

=
∫

[kγ ? (pθ − pθ′)](y)[pθ(y)− pθ′(y)]dy

=
∫
F [kγ ? (pθ − pθ′)](t)F [pθ − pθ′ ](t)dt

=
∫
F [kγ]F [pθ − pθ′ ](t)F [pθ − pθ′ ](t)dt

=
∫
γdµ(γt) |F [pθ − pθ′ ](t)|2 dt.

To obtain the upper bound, note that:∫
γdµ(γt) |F [pθ − pθ′ ](t)|2 dt ≤ γdD

∫
|F [pθ − pθ′ ](u)|2 du = γdD‖pθ − pθ′‖2

L2 .

The lower bound is given by∫
γdµ(γt) |F [pθ − pθ′ ](t)|2 dt ≥ b2γd

∫
‖γt‖≤a

|F [pθ − pθ′ ](t)|2 dt

= b2γd
∫
‖t‖≤ a

γ

|F [pθ − pθ′ ](t)|2 dt ≥ b2γdA
(
a

γ

)2

‖pθ − pθ′‖2
L2 .
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8.7.6 Proofs of Section 8.4

Proof of Proposition 5. We remind that Pθ = N (θ, σ2Id) where θ ∈ Θ = Rd. When X
and Y are independent, respectively from Pθ and Pθ′ , we have (X−Y ) ∼ N (θ−θ′, 2σ2Id).
Thus,

(X − Y )√
2σ2

∼ N
(

(θ − θ′)√
2σ2

, Id

)
and thus the square of this random variable is a noncentral chi-square random variable:

‖X − Y ‖2

2σ2 ∼ χ2
(
d,
‖θ − θ′‖2

2σ2

)
.

It is known that when U ∼ χ2(d,m) we have E[exp(tU)] = exp(mt/(1− 2t))/(1− 2t)d/2.
Taking t = −(2σ2)/γ2, this leads to

〈
µPθ , µPθ′

〉
H

= EX∼Pθ,Y∼Pθ′
[
exp

(
−‖X − Y ‖

2

γ2

)]
=
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ − θ

′‖2

4σ2 + γ2

)
(8.7)

and thus

D2
kγ (Pθ, Pθ′) = 2

(
γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

′‖2

4σ2 + γ2

)]
.

We also have:

〈pθ, pθ′〉L2 =
exp

(
−‖θ−θ

′‖2
4σ2

)
(4πσ2)d/2 ⇒ ‖pθ − pθ′‖2
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2
[
1− exp

(
−‖θ−θ

′‖2
4σ2

)]
(4πσ2)d/2 .

So:

D2
kγ (Pθ, Pθ′)
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=
(

4πσ2γ2

4σ2 + γ2

)d/2 1− exp
(
−‖θ−θ

′‖2
4σ2+γ2

)
1− exp

(
−‖θ−θ′‖24σ2

) .
Consider the function f defined, for u > 0, by

f(u) =
1− exp(− u

4σ2+γ2 )
1− exp(− u

4σ2 ) .

Note that f(u)→ 4σ2

4σ2+γ2 when u→ 0, f is nondecreasing and f(∞) = 1. This leads to

L(γ) = 4σ2

4σ2 + γ2

(
4πσ2γ2

4σ2 + γ2

)d/2
and U(γ) =

(
4πσ2γ2

4σ2 + γ2

)d/2
.

Pluging this into Theorem 8.3.5 gives, with probability at least 1− δ,

‖p
θ̂n
−p0‖L2 ≤

(
1 + 4σ2 + γ2

2σ2

)
inf
θ∈Θ
‖pθ−p0‖L2+4σ2 + γ2

2σ2

(
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√

2 log(1/δ)
√
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.
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This proves (8.3). Note that the second term in the right-hand side is

1
2σ2(4πσ2) d2

2 + 2
√

2 log(1/δ)
√
n

g(γ)

where

g(γ) = (4σ2 + γ2)d/2+1

γd
.

That is,

g′(γ) =
2
(
d
2 + 1

)
(4σ2 + γ2)d/2 γd+1 − d (4σ2 + γ2)d/2+1

γd−1

γ2d

and thus g′(γ) = 0 is equivalent to:

2
(
d

2 + 1
)
γ2 = d(4σ2 + γ2),

that is γ2 = 2σ2d. From now, we consider γ2 = 2σ2d, this leads to

4σ2 + γ2

2σ2 = 4σ2 + 2σ2d

2σ2 = 2 + d,

while
g(γ) =

(
1 + 2

d

)d/2
2σ2(d+ 2) ≤ 2eσ2(d+ 2)

that is
1

2σ2(4πσ2) d2
2 + 2

√
2 log(1/δ)
√
n

g(γ2) ≤ e(d+ 2)
(4πσ2) d2

2 + 2
√

2 log(1/δ)
√
n

and thus (8.3) becomes

‖p
θ̂n
− p0‖L2 ≤ (3 + d) inf

θ∈Θ
‖pθ − p0‖L2 + e(d+ 2)

(4πσ2) d2
2 + 2

√
2 log(1/δ)
√
n

that is (8.4).
Let us now consider the estimation of the parameter θ0 in the context of Proposition 3.

From (8.7) and Proposition 3, we obtain, with probability at least 1− δ,

2
(

d

d+ 2

)d/2 [
1− exp
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,
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√
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2

,
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and thus

‖θ̃n − θ0‖2 ≤ −2σ2(d+ 2) log

1− 8e

ε+
1 +

√
2 log

(
1
δ

)
√
n


2 .

This is (8.5).

Proof of Proposition 6. We have

〈pθ, pθ′〉L2 = 2
π[(θ − θ′)2 + 4] ⇒ ‖pθ − pθ

′‖2
L2 = 1

π

1− 1
(θ−θ′)2

4 + 1

 .
We use Theorem 8.3.5 and the upper bound U(γ) ≤ (2π)1/4γ1/2. Regarding L(γ), note
that

F [pθ − pθ′ ](t) = [exp(−itθ)− exp(−itθ′)] exp(−|t|)
and so

D2
kγ (Pθ, P ′θ)
‖pθ − p′θ‖2
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= π

∫
γµ(γt) |[exp(−itθ)− exp(−itθ′)] exp(−|t|)|2

1− 1
(θ−θ′)2

4 +1

≥ π
∫
γµ(γt) |[exp(−itθ)− exp(−itθ′)] exp(−t2 − 1)|2
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3

for γ = 2. So:

P

‖pθ̂n − p0‖L2 ≤ 6(2π)1/4√2 inf
θ∈Θ
‖pθ − p0‖L2 +

6 + 6
√

2 log (1/δ)
√
n

 ≥ 1− δ.

We actually have 6(2π)1/4√2 ≤ 14 and so

P

‖pθ̂n − p0‖L2 ≤ 14 inf
θ∈Θ
‖pθ − p0‖L2 +

6 + 6
√

2 log (1/δ)
√
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 ≥ 1− δ.

Regarding the parameter estimation in the adversarial contamination case:

(θ̂n − θ0)2 = 4
[
1− 1

1− π‖p
θ̃
− pθ0‖2

]

≤ 4
[
1− 1

1− 3πD2
Kγ (Pθ̃, Pθ0)

]
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≤ 4
1− 1

1− 96π
(
ε2 + 2+4 log(1/δ)

n

)


from Proposition 3.

Proof of Proposition 7. For the upper bound, we still use U(γ) ≤ (2π)1/4γ1/2, and thus
U(2) = 23/4π1/4 < 2.24. Let us now focus on the lower bound. We begin, as usual, by
the calculation of the L2 norm:

〈pθ, pθ′〉L2 = (1− |θ − θ′|)+ ⇒ ‖pθ − pθ′‖2
L2 = 2 min (1, |θ − θ′|) .

Then, note that
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∫ θ+ 1

2

θ− 1
2

∫ θ′+ 1
2

θ′− 1
2

exp
(
−(x− y)2

γ2

)
dxdy

=
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=
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2

|θ−θ′|− 1
2

exp
(
−(u− v)2

γ2

)
dudv

where the last equality comes from the symmetry with respect to θ and θ′. So

Dkγ (Pθ, Pθ′) =
∫ 1

2

− 1
2

du
[
2
∫ 1

2

− 1
2

exp
(
−(u− v)2

γ2

)
dv − 2

∫ |θ−θ′|+ 1
2

|θ−θ′|− 1
2

exp
(
−(u− v)2

γ2

)
dv
]
.

First, condider the case where |θ − θ′| ≤ 1. Then

Dkγ (Pθ, Pθ′) =
∫ 1

2

− 1
2

du
[
2
∫ |θ−θ′|− 1

2

− 1
2

exp
(
−(u− v)2

γ2

)
dv + 2

∫ |θ−θ′|+ 1
2

1
2

exp
(
−(u− v)2

γ2

)
dv
]

≥
∫ 1

2

− 1
2

du
[
2
∫ |θ−θ′|+ 1

2

1
2

exp
(
−(u− v)2

γ2

)
dv
]

≥ 2|θ − θ′| exp

−
(

1
2 + 1

2 + |θ − θ′|
)2

γ2


= 2|θ − θ′| exp

(
− 4
γ2

)
.

For |θ − θ′| > 1, note that

Dkγ (Pθ, Pθ′) =
∫ 1

2

− 1
2

du
[
2
∫ 1

2

− 1
2

exp
(
−(u− v)2

γ2

)
dv − 2

∫ |θ−θ′|+ 1
2

|θ−θ′|− 1
2

exp
(
−(u− v)2

γ2

)
dv
]

≥
∫ 1

2

− 1
2

du
[
2
∫ 1

2

− 1
2

exp
(
−(u− v)2

γ2

)
dv − 2

∫ 3
2

1
2

exp
(
−(u− v)2

γ2

)
dv
]
.

As a special case, for γ = 2, we have

DK2(Pθ, Pθ′) ≥ 2 min

 |θ − θ′|e ,
∫ 1

2

− 1
2

du
[∫ 1

2

− 1
2

exp
(
−(u− v)2

4

)
dv −

∫ 3
2

1
2

exp
(
−(u− v)2

4

)
dv
]
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and a Monte-Carlo integration shows that the integral above is ' 0.19 > 0.10. We thus
have

L(2) ≥ DK2(Pθ, Pθ′)
‖pθ − pθ′‖L2

≥
min

(
2
e |θ − θ

′|, 2
10

)
min(|θ − θ′|, 1) = 2

10 = 1
5 .

Thus, Theorem 8.3.5 gives, with probability at least 1− δ,

‖p
θ̂n
− p0‖L2 ≤ (1 + 2× 2.24× 5) inf

θ∈Θ
‖pθ − p0‖L2 +

5
(
2 + 2

√
2 log(1/δ)

)
√
n

= 23.4 inf
θ∈Θ
‖pθ − p0‖L2 +

10 + 10
√

2 log(1/δ)
√
n

.

Proof of Proposition 9. We remind that P0:t is the distribution of (X0, Xt). Then

%t =
∣∣∣∣E 〈µδXt − µP 0 , µδX0

− µP 0

〉
Hk

∣∣∣∣
=
∣∣∣∣∫ k(x, y)P0:t(d(x, y))−

∫∫
k(x, y)P 0(dx)P 0(dy)

∣∣∣∣
=
∣∣∣∣∫ (∫

1{u≥‖x−y‖}f(u)du
)
P0:t(d(x, y))−

∫∫ (∫
1{u>‖x−y‖}

)
f(u)duP 0(dx)P 0(dy)

∣∣∣∣
=
∣∣∣∣∫ ∞

0

(∫
1{u≥‖x−y‖}P0:t(d(x, y))−

∫∫
1{u≥‖x−y‖} P 0(dx)P 0(dy)

)
f(u)du

∣∣∣∣ .
For any partition (Ai)i∈I of Rd denote I(u) = {i ∈ I : (x, y) ∈ A2

i ⇒ ‖x− y‖ ≤ u}. Then∑
i∈I(u)

1Ai(x)1Ai(y) ≤ 1{‖x−y‖≤u}

and moreover 1{‖x−y‖≤u} is the supremum of this sum over all possible measurable parti-
tions, that is, for any ε > 0, we can find a partition (Ai)i∈I such that

1{‖x−y‖≤u} − ε ≤
∑
i∈I(u)

1Ai(x)1Ai(y) ≤ 1{‖x−y‖≤u}.

So,

%t ≤

∣∣∣∣∣∣
∫ ∞

0

∑
i∈I(u)

[P0:t(Ai × Ai)− P 0(Ai)2]f(u)du

∣∣∣∣∣∣+ ε

≤
∫ ∞

0

∑
i∈I(u)

∣∣∣P0:t(Ai × Ai)− P 0(Ai)2
∣∣∣ f(u)du+ ε

≤
∫ ∞

0

∑
i∈I

∣∣∣P0:t(Ai × Ai)− P 0(Ai)2
∣∣∣ f(u)du+ ε

≤
∫ ∞

0
2βtf(u)du+ ε = 2βt + ε.
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Proof of Proposition 10. Let Pb denote the distribution of Bk. We have

%t =
∣∣∣∣∫ k(x, y)P0:t(d(x, y))−

∫∫
k(x, y)P 0(dx)P 0(dy)

∣∣∣∣
=
∣∣∣∣∫∫ k(x,Gt(x, b))P 0(dx)Pb(db)−

∫∫∫
k(x,Gt(x′, b))P 0(dx)P 0(dx′)Pb(db)

∣∣∣∣
≤
∫∫∫
|k(x,Gt(x, b))− k(x,Gt(x′, b))|P 0(dx)P 0(dx′)Pb(db)

≤
∫∫∫

L ‖Gt(x, b)−Gt(x′, b)‖P 0(dx)P 0(dx′)Pb(db)

≤
∫∫

LLk ‖x− x′‖P 0(dx)P 0(dx′)

≤
∫

2LLk ‖x‖P 0(dx)

= 2LLkE(‖X0‖).

8.7.7 Proofs of Section 8.5

Proof of Proposition 11. Note that we can rewrite

Crit(θ) =
∫∫

k(x, x′)pθ(x)pθ(x′)µ(dx)µ(dx′)− 2
n

n∑
i=1

∫
k(x,Xi)pθ(x)µ(dx).

The assumption of the proposition ensure that we can interexchange the ∇ and
∫∫

sym-
bols, and so

∇θCrit(θ) =
∫∫

k(x, x′)∇θ[pθ(x)pθ(x′)]µ(dx)µ(dx′)− 2
n

n∑
i=1

∫
k(x,Xi)∇θ[pθ(x)]µ(dx)

= 2
∫∫

k(x, x′)pθ(x)pθ(x′)∇θ[log pθ(x)]µ(dx)µ(dx′)

− 2
n

n∑
i=1

∫
k(x,Xi)∇θ[log pθ(x)]pθ(x)µ(dx)

= 2EX,X′∼Pθ{k(X,X ′)∇θ[log pθ(X)]} − 2
n

n∑
i=1

EX∼Pθ{k(Xi, X)∇θ[log pθ(X)]}

= 2EX,X′∼Pθ
{[
k(X,X ′)− 1

n

n∑
i=1

k(Xi, X)
]
∇θ[log pθ(X)]

}
.

This ends the proof.

Proof of Proposition 12. The assumption that Θ is bounded with radius D ensures that
(2.17) in Nemirovski et al. (2009) is satisfied, and the assumption on the expectation of
the norm of the gradient ensures that (2.5) in Nemirovski et al. (2009) is also satisfied.
Thus, (2.21) is also satisfied, ant that is exactly the statement of our (8.6). Then, we
have:

E
[
Dk

(
P
θ̂
(T )
n
, P 0

)]
≤ Dk

(
P
θ̂
(T )
n
, P̂n

)
+ Dk

(
P̂n, P

0
)

220



=
√
D2
k

(
P
θ̂
(T )
n
, P̂n

)
+ Dk

(
P̂n, P

0
)

≤
√
D2
k

(
P
θ̂n
, P̂n

)
+ DM√

T
+ Dk

(
P̂n, P

0
)

thanks to (8.6). We upper bound the second term thanks to Lemma 8.7.1:

Dk

(
P̂n, P

0
)
≤
√

1 + 2∑n
t=1 %t

n
.

For the first term, we use:√
D2
k

(
P
θ̂n
, P̂n

)
+ DM√

T
≤ Dk

(
P
θ̂n
, P̂n

)
+
√
DM√
T

≤ inf
θ∈Θ

Dk

(
Pθ, P̂n

)
+ 2

√
1 + 2∑n

t=1 %t
n

+
√
DM√
T

thanks to Theorem 8.3.1. Putting everything together leads to

E
[
Dk

(
P
θ̂
(T )
n
, P 0

)]
≤ inf

θ∈Θ
Dk

(
Pθ, P̂n

)
+ 3

√
1 + 2∑n

t=1 %t
n

+
√
DM√
T

which ends the proof.

8.8 Conclusion

Parametric estimation with MMD provides a simple way to define universally consistent,
robust estimators. In many, but not in all, settings, these estimators also have optimal
rates of convergence. The computation of the MMD-based estimator can generally be
done through a stochastic gradient descent. We thus believe that it is a practically
reasonable and nice alternative to many robust estimation procedures.

Interestingly, Proposition 5 provides a natural calibration to the kernel parameter,
which is usually a problem in practice. However, in more general settings, the calibration
of this parameter, and the choice of the kernel, remain important open questions.

The application of this method to more sophisticated models in statistics and in
machine learning (time series models, regression) should be investigated in details and
will be the object of future works.
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Chapter 9

MMD-Bayes: Robust Bayesian
Estimation via Maximum Mean
Discrepancy

In some misspecified settings, the posterior distribution in Bayesian statistics may lead to
inconsistent estimates. To fix this issue, it has been suggested to replace the likelihood by
a pseudo-likelihood, that is the exponential of a loss function enjoying suitable robustness
properties. In this chapter, we build a pseudo-likelihood based on the Maximum Mean
Discrepancy, defined via an embedding of probability distributions into a reproducing ker-
nel Hilbert space. We show that this MMD-Bayes posterior is consistent and robust to
model misspecification. As the posterior obtained in this way might be intractable, we also
prove that reasonable variational approximations of this posterior enjoy the same proper-
ties. We provide details on a stochastic gradient algorithm to compute these variational
approximations. Numerical simulations indeed suggest that our estimator is more robust
to misspecification than the ones based on the likelihood.

9.1 Introduction

Bayesian methods are very popular in statistics and machine learning as they pro-
vide a natural way to model uncertainty. Some subjective prior distribution π is up-
dated using the negative log-likelihood `n via Bayes’ rule to give the posterior πn(θ) ∝
π(θ) exp(−`n(θ)). Nevertheless, the classical Bayesian methodology is not robust to model
misspecification. There are many cases where the posterior is not consistent (Barron
et al., 1999; Grünwald et al., 2017), and there is a need to develop methodologies yielding
robust estimates. A way to fix this problem is to replace the log-likelihood `n by a rele-
vant risk measure. This idea is at the core of the PAC-Bayes theory (Catoni, 2007) and
Gibbs posteriors (Syring and Martin, 2018); its connection with Bayesian principles are
discussed in Bissiri et al. (2016). Knoblauch et al. (2019) builds a general representation
of Bayesian inference in the spirit of Bissiri et al. (2016) and extends the representa-
tion to the approximate inference case. In particular, the use of a robust divergence has
been shown to provide an estimator that is robust to misspecification (Knoblauch et al.,
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2019). For instance, Hooker and Vidyashankar (2014) investigated the case of Hellinger-
based divergences, Ghosh and Basu (2016), Futami et al. (2018), and Nakagawa and
Hashimoto (2019) used robust β- and γ-divergences, while Catoni (2012), Baraud and
Birgé (2016) and Holland (2019b) replaced the logarithm of the log-likelihood by wisely
chosen bounded functions. Refer to Jewson et al. (2018) for a complete survey on robust
divergence-based Bayes inference.

In this chapter, we consider the Maximum Mean Discrepancy (MMD) as the al-
ternative loss used in Bayes’ formula, leading to a pseudo-posterior that we shall call
MMD-Bayes in the following. MMD is built upon an embedding of distributions into
a reproducing kernel Hilbert space (RKHS) that generalizes the original feature map to
probability measures, and allows to apply tools from kernel methods in parametric esti-
mation. Our MMD-Bayes posterior is related to the kernel-based posteriors in Fukumizu
et al. (2013), Park et al. (2016) and Ridgway (2017), even though it is different. More
recently, Briol et al. (2019) introduced a frequentist minimum distance estimator based
on the MMD distance, that is shown to be consistent and robust to small deviations from
the model. We show that our MMD-Bayes retains the same properties, i.e is consistent
at the minimax optimal rate of convergence as the minimum MMD estimator, and is
also robust to misspecification, including data contamination and outliers. Moreover, we
show that these guarantees are still valid when considering a tractable approximation of
the MMD-Bayes via variational inference, and we support our theoretical results with
experiments showing that our approximation is robust to outliers for various estimation
problems. All the proofs are deferred to the appendix.

9.2 Framework and definitions

Let us introduce the background and theoretical tools required to understand the rest of
the paper. We consider in a measurable space

(
X,X

)
a collection of n independent and

identically distributed (i.i.d) random variables X1, ..., Xn ∼ P0 where P0 is the generating
distribution. We index a statistical model {Pθ/θ ∈ Θ} by a parameter space Θ, without
necessarily assuming that the true distribution P0 belongs to the model.

Let us consider some integrally strictly positive definite kernel k 1 bounded by a
positive constant, say 1. We then denote the associated RKHS (Hk, 〈·, ·〉Hk) satisfying
the reproducing property f(x) = 〈f, k(x, ·)〉Hk for any f ∈ Hk and any x ∈ X. We define
the notion of kernel mean embedding, a Hilbert space embedding that maps probability
distributions into the RKHS Hk. Given a distribution P , the kernel mean embedding
µP ∈ Hk is

µP (·) := EX∼P [k(X, ·)] ∈ Hk.

Then we define the MMD between two probability distributions P and Q simply as the
distance in Hk between their kernel mean embeddings:

Dk(P,Q) = ‖µP − µQ‖Hk .
1 This means that the positive definite kernel satisfies EX,Y∼P [k(X,Y )] 6= 0 for any distribution P .

This includes the Gaussian kernel k(x, y) = exp(−‖x− y‖2/γ2). For this property, and the properties of
MMD discussed in this section, we refer the reader to Muandet et al. (2017).
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Under the assumptions we made on the kernel, the kernel mean embedding is injective
and the maximum mean discrepancy is a metric, see Briol et al. (2019). We motivate the
use of MMD as a robust metric in Appendix 9.7.4.

In this chapter, we adopt a Bayesian approach. We introduce a prior distribution
π over the parameter space Θ equipped with some sigma-algebra. Then we define our
pseudo-Bayesian distribution πβn given a prior π on Θ:

πβn(dθ) ∝ exp
(
−β · D2

k(Pθ, P̂n)
)
π(dθ),

where P̂n = (1/n)∑n
i=1 δXi is the empirical measure and β > 0 is a temperature parame-

ter.

9.3 Theoretical analysis of MMD-Bayes

In this section, we show that the MMD-Bayes is consistent when the true distribution
belongs to the model, and is robust to misspecification.

To obtain the concentration of posterior distributions in models that contain the
generating distribution, Ghosal et al. (2000) introduced the so-called prior mass condition
that requires the prior to put enough mass to some neighborhood (in Kullback-Leibler
divergence) of the true distribution. This condition was widely studied since then for more
general pseudo-posterior distributions (Bhattacharya et al., 2016; Alquier and Ridgway,
2017; Chérief-Abdellatif and Alquier, 2018). Unfortunately, this prior mass condition is
(by definition) restricted to cases when the model is well-specified or at least when the
true distribution is in a very close neighborhood of the model. We formulate here a robust
version of the prior mass condition which is based on a neighborhood of an approximation
θ∗ of the true parameter instead of the true parameter itself. The following condition is
suited to the MMD metric, recovers the usual prior mass condition when the model is
well-specified and still makes sense in misspecified cases with potentially large deviations
to the model assumptions:

Prior mass condition: Let us denote θ∗ = arg minθ∈Θ Dk (Pθ, P0) and its neighborhood
Bn = {θ ∈ Θ/Dk (Pθ, Pθ∗) ≤ n−1/2}. Then (π, β) is said to satisfy the prior mass
condition C(π, β) when π(Bn) ≥ e−β/n.

In the usual Bayesian setting, the computation of the prior mass is a major difficulty
(Ghosal et al., 2000), and it can be hard to know whether the prior mass condition
is satisfied or not. Nevertheless, here the condition does not only hold on the prior
distribution π but also on the temperature parameter β. Hence, it is always possible to
choose β large enough so that the prior mass condition is satisfied. We refer the reader to
Appendix 9.7.5 for an example of computation of such a prior mass and valid values of β.
The following theorem expressed as a generalization bound shows that the MMD-Bayes
posterior distribution is robust to misspecification under the robust prior mass condition.
Note that the rate n−1/2 is exactly the one obtained by the frequentist MMD estimator
of Briol et al. (2019) and is minimax optimal (Tolstikhin et al., 2017):
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Theorem 9.3.1. Under the prior mass condition C(π, β):

E
[∫

D2
k (Pθ, P0) πβn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) + 16

n
. (9.1)

The second theorem investigates concentration of the MMD-Bayes posterior in the
well-specified case. It shows that the prior mass condition C(π, β) ensures that the
MMD-Bayes concentrates to P0 at the minimax rate n−1/2:
Theorem 9.3.2. Let us consider a well-specified model. Then under the prior mass
condition C(π, β), we have in probability for any Mn → +∞:

πβn

(
Dk(Pθ, P0) > Mn · n−1/2

)
−−−−→
n→+∞

0. (9.2)

Note that we obtain the concentration to the true distribution P0 = Pθ∗ at the mini-
max rate n−1/2 for well-specified models.

9.4 Variational inference

Unfortunately, the MMD-Bayes is not tractable in complex models. In this section, we
provide an efficient implementation of the MMD-Bayes based on VI retaining the same
theoretical properties. Given a variational set of tractable distributions F , we define the
variational approximation of πβn as the closest approximation (in KL divergence) to the
target MMD posterior:

π̃βn = arg min
ρ∈F

KL(ρ‖πβn).

Under similar conditions to those in Theorems 9.3.1 and 9.3.2, π̃βn is guaranteed to
be n−1/2-consistent as the MMD-Bayes. Most works ensuring the consistency or the
concentration of variational approximations of posterior distributions use the extended
prior mass condition, an extension of the prior mass condition that applies to variational
approximations rather than on the distributions they approximate (Alquier et al., 2016;
Alquier and Ridgway, 2017; Bhattacharya et al., 2018; Chérief-Abdellatif and Alquier,
2018; Chérief-Abdellatif, 2019a,b). Here, we extend our previous prior mass condition
to variational approximations but also to misspecification. In addition to the prior mass
condition inspired from Ghosal et al. (2000), the variational set F must contain probabil-
ity distributions that are concentrated around the best approximation Pθ∗ . This robust
extended prior mass condition can be formulated as follows:

Assumption : We assume that there exists a distribution ρn ∈ F such that:∫
D2
k(Pθ, Pθ∗)ρn(dθ) ≤ 1

n
and KL(ρn‖π) ≤ β

n
. (9.3)

Remark 9.4.1. When the restriction of π to the MMD-ball Bn centered at θ∗ of radius
n−1/2 belongs to F , then Assumption (9.3) becomes the standard robust prior mass con-
dition, i.e. π(Bn) ≥ e−β/n. In particular, when F is the set of all probability measures
– that is, in the case where there is no variational approximation – then we recover the
standard condition.
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Now, we can state the following theorem for variational approximations:

Theorem 9.4.1. Under the extended prior mass condition (9.3),

E
[∫

D2
k (Pθ, P0) π̃βn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) + 16

n
. (9.4)

Moreover, if the model is well-specified, then under the prior mass condition C(π, β), we
have in probability for any Mn → +∞:

π̃βn

(
Dk(Pθ, P0) > Mn · n−1/2

)
−−−−→
n→+∞

0. (9.5)

9.5 Numerical experiments

In this section, we show that the variational approximation is robust in practice when
estimating a Gaussian mean and a uniform distribution in the presence of outliers. We
consider here a d-dimensional parametric model and a Gaussian mean-field variational
set F = {N (m, diag(s2))/m ∈ M, s ∈ S}, M ⊂ Rd,S ⊂ Rd

>0, using componentwise
multiplication. Inspired from the stochastic gradient descent of Dziugaite et al. (2015),
Li et al. (2015) and Briol et al. (2019) based on a U-statistic approximation of the
MMD criterion, we design a stochastic gradient descent that is suited to our variational
objective. The algorithm is described in details in Appendix 9.7.7.

We perform short simulations to provide empirical support to our theoretical results.
Indeed, we consider the problem of Gaussian mean estimation in the presence of outliers.
The experiment consists in randomly sampling n = 200 i.i.d observations from a Gaussian
distribution N (2, 1) but some corrupted observations are replaced by samples from a
standard Cauchy distribution C(0, 1). The fraction of outliers used was ranging from 0
to 0.20 with a step-size of 0.025. We repeated each experiment 100 times and considered
the square root of the mean square error (MSE). The plots we obtained demonstrate that
our method performs comparably to the componentwise median (MED) and even better
as the number of outliers increases, and clearly outperforms the maximum likelihood
estimator (MLE). We also conducted the simulations for multidimensional Gaussians
and for the robust estimation of the location parameter of a uniform distribution. We
refer the reader to Appendix 9.7.8 for more details on these simulations.

9.6 Conclusion

In this chapter, we showed that the MMD-Bayes posterior concentrates at the minimax
convergence rate and is robust to model misspecification. We also proved that reasonable
variational approximations of this posterior retain the same properties, and we proposed
a stochastic gradient algorithm to compute such approximations that we supported with
numerical simulations. An interesting future line of research would be to investigate if
the i.i.d assumption can be relaxed and if the MMD-based estimator is also robust to
dependency in the data.
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Figure 9.1: Comparison of the square root of the MSE for the MMD estimator, the MLE
and the median in the robust Gaussian mean estimation problem for various values of the
proportion of outliers. The MMD estimator is the mean of the variational approximation.

9.7 Proofs and additional results

9.7.1 Proof of Theorem 9.3.1.

In order to prove Theorem 9.3.1, we first need two preliminary lemmas. The first one
ensures the convergence of the empirical measure P̂n to the true distribution P0 (in MMD
distance Dk) at the minimax rate n−1/2, and which is an expectation variant of Lemma
1 in Briol et al. (2019) that holds with high probability:

Lemma 9.7.1. We have
E
[
D2
k

(
P̂n, P0

)]
≤ 1
n
.

Proof.

E
[
D2
k

(
P̂n, P0

)]
= E

∥∥∥∥∥ 1
n

n∑
i=1

[k(Xi, ·)− µP0 ]
∥∥∥∥∥

2

Hk


= 1
n2E

 n∑
i=1
‖k(Xi, ·)− µP0‖

2
Hk + 2

∑
1≤i<j≤n

〈k(Xi, ·)− µP0 , k(Xj, ·)− µP0〉Hk


≤ 1
n2

n+ 2
∑

1≤i<j≤n
0
 = 1

n
.

The rate n−1/2 is known to be minimax in this case, see Theorem 1 in Tolstikhin et al.
(2017).

The second lemma is a simple triangle-like inequality that will be widely used through-
out the proofs of the paper:
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Lemma 9.7.2. We have for any distributions P , P ′ and Q:

D2
k (P, P ′) ≤ 2D2

k (P,Q) + 2D2
k (Q,P ′) .

Proof. The chain of inequalities follow directly from the triangle inequality and inequality
2ab ≤ a2 + b2.

D2
k (P, P ′) ≤

(
Dk (P,Q) + Dk (Q,P ′)

)2

= D2
k (P,Q) + D2

k (Q,P ′) + 2Dk (P,Q)Dk (Q,P ′)
≤ D2

k (P,Q) + D2
k (Q,P ′) + D2

k (P,Q) + D2
k (Q,P ′)

= 2D2
k (P,Q) + 2D2

k (Q,P ′) .

Let us come back to the proof of Theorem 9.3.1. An important point is that the
MMD-Bayes can also be defined using an argmin over the setM1

+(Θ) of all probability
distributions absolutely continuous with respect to π and the Kullback-Leibler divergence
KL(·‖·):

πβn = arg min
ρ∈M1

+(Θ)

{∫
D2
k(Pθ, P̂n)ρ(dθ) + KL(ρ‖π)

β

}
.

This is an immediate consequence of Donsker and Varadhan’s variational inequality, see
e.g Catoni (2007). Using the triangle inequality, Lemma 9.7.1, Lemma 9.7.2 for different
settings of P , P ′ and Q, and Jensen’s inequality:

E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤ 2E

[∫
D2
k

(
Pθ, P̂n

)
πβn(dθ)

]
+ 2E

[
D2
k

(
P̂n, P0

)]
≤ 2E

[∫
D2
k

(
Pθ, P̂n

)
πβn(dθ)

]
+ 2
n

≤ 2E
[∫

D2
k

(
Pθ, P̂n

)
πβn(dθ) + KL(πβn‖π)

β

]
+ 2
n

= 2E
[
inf
ρ

{∫
D2
k

(
Pθ, P̂n

)
ρ(dθ) + KL(ρ‖π)

β

}]
+ 2
n

≤ 2 inf
ρ
E
[∫

D2
k

(
Pθ, P̂n

)
ρ(dθ) + KL(ρ‖π)

β

]
+ 2
n
,

which gives, using Lemma 9.7.1 and the triangle inequality again:

E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤ 2 inf

ρ
E
[∫

D2
k

(
Pθ, P̂n

)
ρ(dθ) + KL(ρ‖π)

β

]
+ 2
n

≤ 2 inf
ρ
E
[∫

D2
k (Pθ, P0) ρ(dθ) + KL(ρ‖π)

β

]
+ 4E

[
D2
k

(
P̂n, P0

)]
+ 2
n

= 2 inf
ρ
E
[
2
∫
D2
k (Pθ, P0) ρ(dθ) + KL(ρ‖π)

β

]
+ 6
n
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≤ 8D2
k (Pθ∗ , P0) + 2 inf

ρ
E
[
4
∫
D2
k (Pθ, Pθ∗) ρ(dθ) + KL(ρ‖π)

β

]
+ 6
n

We remind that θ∗ = arg minθ∈Θ Dk (Pθ, P0).
This bound can be formulated in the following way when ρ is chosen to be equal to π

restricted to Bn :

E
[∫

D2
k (Pθ, P0) πβn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) + 8

n
+ 2− log π(B)

β
+ 6
n
.

Finally, as soon as the prior mass condition C(π, β) is satisfied, we get:

E
[∫

D2
k (Pθ, P0) πβn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) + 16

n
.

9.7.2 Proof of Theorem 9.3.2.

In case of well-specification, Formula (9.1) simply becomes according to Jensen’s inequal-
ity:

E
[∫

Dk (Pθ, P0) πβn(dθ)
]
≤
√
E
[∫

D2
k (Pθ, P0) πβn(dθ)

]
≤
√

16
n

= 4√
n
.

Hence, it is sufficient to show that the inequality above implies the concentration of the
MMD-Bayes to the true distribution. This is a simple consequence of Markov’s inequality.
Indeed, for any Mn → +∞:

E
[
πβn

(
Dk(Pθ, P0) > Mn · n−1/2

)]
≤

E
[ ∫

Dk(Pθ, P0)πβn(dθ)
]

Mn · n−1/2 ≤ 4n−1/2

Mn · n−1/2 −−−−→n→+∞
0,

which guarantees the convergence in mean of πβn
(
Dk(Pθ, P0) > Mn · n−1/2

)
to 0, which

leads to the convergence in probability of πβn
(
Dk(Pθ, P0) > Mn · n−1/2

)
to 0, i.e. the

concentration of MMD-Bayes to P0 at rate n−1/2.

9.7.3 Proof of theorem 9.4.1.

Formula (9.4) can be proven easily as for the proof of Theorem 9.3.1. Indeed, we use the
expression of the variational approximation of the MMD-Bayes using an argmin over the
set F :

π̃βn = arg min
ρ∈F

{∫
D2
k(Pθ, P̂n)ρ(dθ) + KL(ρ‖π)

β

}
.

This is yet an application of Donsker and Varadhan’s lemma. Then, as previously:

E
[∫

D2
k (Pθ, P0) π̃βn(dθ)

]
≤ E

[∫
D2
k

(
Pθ, P̂n

)
π̃βn(dθ)

]
+ 2
n

by Lemma 9.7.1

≤ 2E
[∫

D2
k

(
Pθ, P̂n

)
π̃βn(dθ) + KL(πβn‖π)

β

]
+ 2
n
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= 2E
[
inf
ρ

{∫
D2
k

(
Pθ, P̂n

)
ρ(dθ) + KL(ρ‖π)

β

}]
+ 2
n

≤ 2 inf
ρ
E
[∫

D2
k

(
Pθ, P̂n

)
ρ(dθ) + KL(ρ‖π)

β

]
+ 2
n

≤ 2 inf
ρ
E
[
2
∫
D2
k (Pθ, P0) ρ(dθ) + KL(ρ‖π)

β

]
+ 6
n

≤ 8D2
k (Pθ∗ , P0) + 2 inf

ρ
E
[
4
∫
D2
k (Pθ, Pθ∗) ρ(dθ) + KL(ρ‖π)

β

]
+ 6
n
.

Hence, under the extended prior mass condition (9.3), we have directly:

E
[∫

D2
k (Pθ, P0) π̃βn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) + 16

n
.

The proof of Formula (9.5) follows the lines of the proof of Theorem 9.3.2.

9.7.4 An example of robustness of the MMD distance.

In this appendix, we try to give some intuition on the choice of MMD-Bayes rather
than the classical regular Bayesian distribution. To do so, we show a simple misspecified
example for which the MMD distance is more suited than the classical Kullback-Leibler
(KL) divergence used in the Bayes rule in the definition of the classical Bayesian posterior.

We consider the Huber’s contamination model described as follows. We observe a
collection of random variables X1, ..., Xn. There are unobserved i.i.d random variables
Z1, ..., Zn ∼ Ber(ε) and a distribution Q, such that the distribution of Xi given Zi = 0 is
a Gaussian N (θ0, σ2) where the distribution of Xi given Zi = 0 is Q. The observations
Xi’s are independent. This is equivalent to considering a true distribution P0 = (1 −
ε)N (θ0, σ2) + εQ. Here, ε ∈ (0, 1/2) is the contamination rate, σ2 is a known variance
and Q is the contamination distribution that is taken here as N (θc, σ2), where θc is the
mean of the corrupted observations. The true parameter of interest is θ0 and the model
is composed Gaussian distributions {Pθ = N (θ, σ2)/θ ∈ Rd}. The goal in this appendix
is to show that we exactly recover the true parameter θ0 with the minimizer of the MMD
distance to the true distribution P0, whereas it is not the case with the KL divergence.
We use a Gaussian kernel k(x, y) = exp(−‖x− y‖2/γ2).

Computation of the MMD distance to the true distribution:

We have remind that Pθ = N (θ, σ2Id) where θ ∈ Θ = Rd. For independent X and Y
following respectively Pθ and Pθ′ , we get (X − Y ) ∼ N (θ − θ′, σ2Id). Hence,

X − Y√
2σ2

∼ N
(
θ − θ′√

2σ2
, Id

)
and the square of this random variable is a noncentral chi-square random variable:

‖X − Y ‖2

2σ2 ∼ χ2
(
d,
‖θ − θ′‖2

2σ2

)
.
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It is known that for U ∼ χ2(d,m), we have E[exp(tU)] = exp(mt/(1 − 2t))/(1 − 2t)d/2,
and then t = −(2σ2)/γ2 gives:

〈µPθ , µPθ′ 〉Hk = EX∼Pθ,Y∼Pθ′
[
exp

(
−‖X − Y ‖

2

γ2

)]

=
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ − θ

′‖2

4σ2 + γ2

)
.

Thus,

〈µPθ , µPθ〉Hk =
(

γ2

4σ2 + γ2

) d
2

,

〈µPθ , µP0〉Hk = (1− ε)〈µPθ , µPθ0 〉Hk + ε〈µPθ , µPθc 〉Hk

= (1− ε)
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ − θ

0‖2

4σ2 + γ2

)

+ ε

(
γ2

4σ2 + γ2

) d
2

exp
(
−‖θ − θc‖

2

4σ2 + γ2

)
,

and

〈µP0 , µP0〉Hk = (1− ε)2〈µPθ0 , µPθ0 〉Hk + 2ε(1− ε)〈µPθ0 , µPθc 〉Hk + ε2〈µPθc , µPθc 〉Hk

= (1− ε)2
(

γ2

4σ2 + γ2

) d
2

+ ε2
(

γ2

4σ2 + γ2

) d
2

+ 2ε(1− ε)
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ

0 − θc‖2

4σ2 + γ2

)

=
(

1− 2ε(1− ε)
)(

γ2

4σ2 + γ2

) d
2

+ 2ε(1− ε)
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ

0 − θc‖2

4σ2 + γ2

)
.

Hence

D2
k (P0, Pθ) = ‖µPθ − µP0‖2

Hk = 〈µPθ , µPθ〉Hk − 2〈µPθ , µP0〉Hk + 〈µP0 , µP0〉Hk

= 2
(

1− ε(1− ε)
)(

γ2

4σ2 + γ2

) d
2

− 2ε
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ − θc‖

2

4σ2 + γ2

)

+ 2ε(1− ε)
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ

0 − θc‖2

4σ2 + γ2

)

− 2(1− ε)
(

γ2

4σ2 + γ2

) d
2

exp
(
−‖θ − θ

0‖2

4σ2 + γ2

)

= 2(1− ε)
(

γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

0‖2

4σ2 + γ2

)]
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+ 2ε
(

γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θc‖

2

4σ2 + γ2

)]

− 2ε(1− ε)
(

γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ

0 − θc‖2

4σ2 + γ2

)]
.

Hence, the minimizer of Dk (P0, Pθ) w.r.t θ, i.e the maximizer of:

(1− ε) exp
(
−‖θ − θ

0‖2

4σ2 + γ2

)
+ ε exp

(
−‖θ − θc‖

2

4σ2 + γ2

)
.

is θ0 itself as ε ≤ 1/2.

Computation of the KL divergence to the true distribution:

In this case, easy computations lead for any θ to:

KL(P0‖Pθ) = KL
(

(1− ε)N (θ0, σ2) + εN (θc, σ2)‖N (θ, σ2)
)

= C + (1− ε)H(θ0‖θ) + εH(θc‖θ)

= C + d log(2πσ2)
2 + dσ2

2 + (1− ε)‖θ − θ
0‖2

2σ2 + ε
‖θ − θc‖2

2σ2 ,

where

H(θ′‖θ) = −
∫

log
(
N (x|θ, σ2)

)
N (x|θ′, σ2)dx

= d log(2πσ2)
2 + dσ2

2 + ‖θ − θ
′‖2

2σ2

is the cross-entropy of Pθ and Pθ′ , and

C = (1− ε)
∫

log
(

(1− ε)N (x|θ0, σ2) + εN (x|θc, σ2)
)
N (x|θ0, σ2)dx

+ ε
∫

log
(

(1− ε)N (x|θ0, σ2) + εN (x|θc, σ2)
)
N (x|θc, σ2)dx,

where N (x|m,σ2) is the probability density function of N (m,σ2) evaluated at x.
Hence, the minimizer of KL (P0‖Pθ) w.r.t θ, i.e the minimizer of:

(1− ε)‖θ − θ0‖2 + ε‖θ − θc‖2.

is (1− ε)θ0 + εθc, which can be far away from θ0 in situations when the corrupted mean
θc is very far from the true parameter θ0.
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9.7.5 An example of computation of a robust prior mass.

In this appendix, we tackle the computation of a prior mass in the Gaussian mean esti-
mation problem, and we show that it leads to a wide range of values of β satisfying the
prior mass condition C(π, β) for a standard normal prior π.

We recall that the prior mass condition C(π, β) is satisfied as soon as there exists a
function f such that:

β ≥ − log π(Bn)n.
In practice, lower bounds of the form π(Bn) ≥ Le−f(θ∗) naturally appear when computing
the prior mass π(Bn). Only f(θ∗) depends on the parameter θ∗ corresponding to the best
approximation in the model of the true distribution in the MMD sense, that is the true
parameter itself when the model is well-specified. Hence, it is sufficient to choose a value
of the temperature parameter β ≥

(
f(θ∗) − logL

)
n in order to obtain the prior mass

condition.
We conduct the computation in a misspecified case, where we assume that a propor-

tion 1 − ε of the observations are sampled i.i.d from a σ2-variate Gaussian distribution
of interest Pθ0 , but that the remaining observations are corrupted and can take any ar-
bitrary value. We consider the model of Gaussian distributions {Pθ = N (θ, σ2)/θ ∈ Rd}.
This adversarial contamination model is more general than Huber’s contamination model
presented in Appendix 9.7.4. Note that when ε = 0, then the model is well-specified and
the distribution of interest Pθ0 is also the true distribution P0. We use the Gaussian
kernel k(x, y) = exp(−‖x− y‖2/γ2) and the standard normal prior π = N (0, Id).

We write the inequality defining parameters θ belonging to Bn:

D2
k (Pθ∗ , Pθ) ≤ n−1. (9.6)

Note that when the model is well-specified, the we get θ∗ = θ0.
According to derivations performed in Appendix 9.7.4, we have for any θ:

D2
k (Pθ, Pθ∗) = 〈µPθ , µPθ〉Hk − 2〈µPθ , µPθ∗ 〉Hk + 〈µPθ∗ , µPθ∗ 〉Hk

= 2
(

γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

∗‖2

4σ2 + γ2

)]
.

Hence, Inequality (9.6) is equivalent to:

2
(

γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

∗‖2

4σ2 + γ2

)]
≤ 1
n

i.e to

1− 1
2n

(
1 + 4σ2

γ2

) d
2

≤ exp
(
−‖θ − θ

∗‖2

4σ2 + γ2

)

We denote sn =
√

4σ2+γ2

2n

(
1 + 4σ2

γ2

) d
4 and B(θ, sn) the ball of radius sn and centered at θ.

Let us compute the prior mass of Bn:

π(Bn) = π

(
1− 1

2n

(
1 + 4σ2

γ2

) d
2

≤ exp
(
−‖θ − θ

∗‖2

4σ2 + γ2

))
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≥ π

(
1− 1

2n

(
1 + 4σ2

γ2

) d
2

≤ 1− ‖θ − θ
∗‖2

4σ2 + γ2

)
using inequality e−x ≥ 1− x

= π

(
‖θ − θ∗‖2 ≤ (4σ2 + γ2) 1

2n

(
1 + 4σ2

γ2

) d
2
)

= π
(
θ ∈ B(θ∗, sn)

)
=
∫
B(θ∗,sn)

(2π)−d/2e−‖θ‖2/2dθ.

Actually, the point that minimizes θ → e−‖θ‖
2/2 on B(θ∗, sn) is θ∗(1 + sn/‖θ∗‖). Thus:

π(Bn) ≥
∫
B(θ∗,sn)

(2π)−d/2 exp
(
−‖θ‖2

2

)
dθ

≥ (2π)−d/2 exp
(
−(‖θ∗‖+ sn)2

2

)
vol
(
B(θ∗, sn)

)
.

We recall the formula of the volume of the d-dimensional ball:

vol
(
B(θ∗, sn)

)
= πd/2

Γ(d/2 + 1)s
d
n.

Hence:

π(Bn) ≥

(
4σ2 + γ2

) d
2
(
1 + 4σ2

γ2

) d2
4

Γ(d/2 + 1) exp
(
− 1

2

{
‖θ∗‖+

√
4σ2 + γ2

2n

(
1 + 4σ2

γ2

) d
4
}2) 1

nd/2
.

As could be expected for a standard normal prior, the larger the value of ‖θ∗‖, the smaller
can be the prior mass.

We denote

L =

(
4σ2 + γ2

) d
2
(
1 + 4σ2

γ2

) d2
4

Γ(d/2 + 1) · 1
nd/2

and

f(x) = 1
2

{
‖x‖+

√
4σ2 + γ2

2n

(
1 + 4σ2

γ2

) d
4
}2

so that π(Bn) ≥ Le−f(θ∗).
Hence, for the standard normal prior π, values of β leading to consistency of the

MMD-Bayes are:
β ≥ (f(θ∗)− logL)n

= n

2

{
‖θ∗‖+

√
4σ2 + γ2

2n

(
1 + 4σ2

γ2

) d
4
}2

+ dn log n
2

− dn

2 log(4σ2 + γ2)− d2n

4 log
(

1 + 4σ2

γ2

)
+ n log Γ(d/2 + 1).

In particular, when γ2 is of order d, then using Stirling’s approximation, we get a
lower bound on the valid values of β of order (up to a logarithmic factor):

nmax
(
‖θ∗‖2, d

)
. β.
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9.7.6 Computation of the extended prior mass.

The computation of Condition (9.3) is of major interest. We investigate here the case
of a Gaussian model Pθ = N (θ, σ2), a Gaussian mean-field variational approximation
F = {N (m, diag(s2))/m ∈ Rd, s ∈ Rd

>0}, a standard Gaussian prior π = N (0, 1) and a
Gaussian kernel k(x, y) = exp(−‖x− y‖2/γ2).

Let us define ρn = N
(
θ∗, s2Id

)
where s2 = 4σ2+γ2

2dn

(
1 + 4σ2

γ2

) d
2 . Then:

KL(ρn‖π) = 1
2

d∑
j=1

{
θ∗2j + s2 − log(s2)− 1

}

= 4σ2 + γ2

2dn

(
1 + 4σ2

γ2

) d
2

+ d log(2dn) + ‖θ∗‖2 − d− d log(4σ2 + γ2)
2

− d2

4 log
(

1 + 4σ2

γ2

)
,

and ∫
D2
k(Pθ∗ , Pθ)ρn(dθ) = 2

(
γ2

4σ2 + γ2

) d
2
(

1−
∫

exp
(
−‖θ − θ

∗‖2

4σ2 + γ2

)
ρn(dθ)

)

= 2
(

γ2

4σ2 + γ2

) d
2
(

1−
∫
e−‖θ‖

2N
(
dθ

∣∣∣∣∣0, s2

4σ2 + γ2 Id

))

= 2
(

γ2

4σ2 + γ2

) d
2
(

1−Det
(
Id + 2 s2

4σ2 + γ2 Id

)−1/2 )

= 2
(

γ2

4σ2 + γ2

) d
2
(

1−
d∏
j=1

(
1 + 2s2

4σ2 + γ2

)−1/2 )

= 2
(

γ2

4σ2 + γ2

) d
2
(

1−
1 +

(
1 + 4σ2

γ2

) d
2 1
dn

−d/2 )

≤ 2
(

γ2

4σ2 + γ2

) d
2
(

1−
1− d

2

(
1 + 4σ2

γ2

) d
2 1
dn

) = 1
n
.

Hence, the robust extended prior mass condition is satisfied as soon as

β ≥ 4σ2 + γ2

2d

(
1 + 4σ2

γ2

) d
2

+n(d log(2dn) + ‖θ∗‖2 − d− d log(4σ2 + γ2))
2

− d2n

4 log
(

1 + 4σ2

γ2

)
.

When γ2 is of order d, this leads to a bound of order (up to a logarithmic factor):

nmax
(
‖θ∗‖2, d

)
. β,

and we recover the bound that we found for the exact MMD-Bayes.
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9.7.7 Projected Stochastic Gradient Algorithm for VI.

In this section, we provide details of a stochastic gradient algorithm (PSGAVI) to compute
the Gaussian mean-field approximation, with a necessary projection step ifM ( Rd and
S ( Rd

>0. We assume thatM⊂ Rd and S ⊂ Rd
>0 are closed and convex sets so that the

orthogonal projection ΠM on M and ΠS on S are well-defined. We choose a standard
Gaussian prior π = N (0, 1).

Another important assumption is that the model is generative, i.e that one can easily
sample from distributions belonging to the model {Pθ, θ ∈ Θ}. The main idea of the
algorithm (Dziugaite et al., 2015; Li et al., 2015; Briol et al., 2019) is then to approxi-
mate the gradient of the criterion to minimize KL(N (m, diag(s2))‖πβn) using an unbiased
U-statistic estimate based on random samples from the generative model, and to use
a projected stochastic gradient algorithm. We recall that we use the componentwise
multiplication.

Criterion to minimize:

As explained in Appendix 9.7.6, the optimization program is equivalent to minimizing:

arg min
(m,s)∈M×S

{∫
D2
k(Pθ, P̂n)N (dθ|m, diag(s2)) + 1

2β

d∑
j=1

[
m2
j + s2

j − log(s2
j)− 1

]}
.

We know that:

D2
k(Pθ, P̂n) = EX,X′∼Pθ [k(X,X ′)]− 2

n

n∑
i=1

EX∼Pθ [k(Xi, X)] + 1
n2

∑
1≤i,j≤n

k(Xi, Xj).

Hence, the criterion to minimize is:

Rn(m, s) :=
∫

EX,X′∼Pθ [k(X,X ′)]N (dθ|m, diag(s2))

−
∫ 2
n

n∑
i=1

EX∼Pθ [k(Xi, X)]N (dθ|m, diag(s2)) + 1
2β

d∑
j=1

{
m2
j + s2

j − log(s2
j)− 1

}
.

Gradient computation:

The first-order gradient algorithm PSGAVI requires the computation of the gradient of
the criterion Rn with respect to m and s. In the following, we will use componentwise
operations.

The expression ofRn contains two terms that can be written as
∫
f(θ)N (dθ|m, diag(s2)),

and the derivative of this expectation can be hard to evaluate. We use the so-called repa-
rameterization trick which is very popular in the variational inference community and
approximate the expectation by a stochastic gradient estimator:∫

∇mf(m+ sθ)N (dθ|0, Id) ≈
1
M

M∑
k=1
∇mf(m+ sθk)
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and ∫
∇sf(m+ sθ)N (dθ|0, Id) ≈

1
M

M∑
k=1
∇sf(m+ sθk)

where M denotes the number of samples θk drawn from the standard Gaussian.
Hence, the gradients of the criterion are:

∇mRn(m, s) ≈ 1
M

M∑
k=1
∇mEX,X′∼P

m+sθk
[k(X,X ′)]

− 1
M

2
n

M∑
k=1

n∑
i=1
∇mEX∼P

m+sθk
[k(Xi, X)] + 1

β
·m,

∇sRn(m, s) ≈ 1
M

M∑
k=1
∇sEX,X′∼P

m+sθk
[k(X,X ′)]

− 1
M

2
n

M∑
k=1

n∑
i=1
∇sEX∼P

m+sθk
[k(Xi, X)] + 1

β
(s− s−1).

Moreover, using the log-derivative trick for differentiable log-densities:

∇θEX,X′∼Pθ [k(X,X ′)] = 2EX,X′∼Pθ
[
k(X,X ′)∇θ[log pθ(X)]

]
,

∇θEX∼Pθ [k(Xi, X)] = EX∼Pθ

[
k(Xi, X)∇θ[log pθ(X)]

]
.

Hence, we obtain stochastic gradients using i.i.d samples (Y1, . . . , YM) from Pθ:

∇̂mRn(m, s) = 2
M2

M∑
k=1

M∑
j=1

{
1

M − 1
∑
`6=j

k(Yj, Y`)−
1
n

n∑
i=1

k(Xi, Yj)
}
∇m[log pm+sθk(Yj)]

+ 1
β
·m

and

∇̂sRn(m, s) = 2
M2

M∑
k=1

M∑
j=1

{
1

M − 1
∑
`6=j

k(Yj, Y`)−
1
n

n∑
i=1

k(Xi, Yj)
}
∇s[log pm+sθk(Yj)]

+ 1
β

(s− s−1).

Note that when the log-density log pθ(x) is not differentiable, it is often possible to
compute the stochastic gradients involving θ1, ..., θM directly, without using the Monte
Carlo samples Y1, ..., YM . For instance, when the model is a uniform distribution Pθ =
U([θ − a, θ + a]) and when the kernel can be written as k(x, y) = K(x − y) for some
function K (such as Gaussian kernels), we have:

EX,X′∼Pθ [k(X,X ′)] =
∫ θ+a

θ−a

∫ θ+a

θ−a
K(x− x′)dxdx′ =

∫ +a

−a

∫ +a

−a
K(x− x′)dxdx′,
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and
EX∼Pθ [k(Xi, X)] =

∫ θ+a

θ−a
K(x−Xi)dx =

∫ θ+a−Xi

θ−a−Xi
K(x)dx.

Hence,
∇mEX,X′∼P

m+sθk
[k(X,X ′)] = 0,

∇sEX,X′∼Pθ [k(X,X ′)] = 0,

and

∇mEX∼P
m+sθk

[k(Xi, X)] = K(m+ sθk + a−Xi)−K(m+ sθk − a−Xi),

∇sEX∼P
m+sθk

[k(Xi, X)] = sK(m+ sθk + a−Xi)− sK(m+ sθk − a−Xi).

PSGAVI algorithm:

The Projected Stochastic Gradient Algorithm for Variational Inference is the following:

Algorithm 13 PSGAVI
Require: A dataset (X1, ..., Xn), a model {Pθ, θ ∈ Θ ⊂ Rd}, a kernel k, a sequence of
steps (ηt)t≥1, a batch size M , a stopping time T , closed and convex setsM⊂ Rd and
S ⊂ Rd

>0, an initial mean m(0) ∈ M, an initial covariance matrix diag(s(T )2) where
s(0) ∈ S.
X0 ∼ ν0
for t = 1, ..., T do
draw (Y1, . . . , YM) i.i.d from Pm(t−1)

m(t) = ΠM
(
m(t−1) − ηt∇̂mRn(m(t−1), s(t−1))

)
s(t) = ΠS

(
s(t−1) − ηt∇̂sRn(m(t−1), s(t−1))

)
end for

A theoretical analysis of the algorithm, in the spirit of Chérief-Abdellatif et al. (2019),
goes beyond the scope of this chapter and will be the object of future works.

9.7.8 Numerical simulations.

In this section, we provide numerical experiments that support our theoretical results. We
studied three different and simple problems: the robust unidimensional Gaussian mean
estimation, the robust multidimensional Gaussian mean estimation, and the uniform
location parameter estimation.

In each experiment, we compared the mean of the variational approximation of the
MMD-Bayes to other estimators: the median estimator and the MLE in the Gaussian
mean estimation problem, i.e the componentwise median and the arithmetic mean, and
the method of moments and the MLE in the uniform location parameter estimation
problem, i.e the arithmetic mean and the average between the largest and the lowest
values. We chose a value of β of end, a number of Monte-Carlo samples equal to n and a
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step-size of ηt = 1/
√
t. We used the Gaussian kernel k(x, y) = e−‖x−y‖

2/d where d is the
dimension and we repeated each experiment 100 times.

Gaussian mean estimation problem: for both the uni- and the multidimensional
cases, we randomly sampled n = 200 i.i.d observations from a Gaussian distribution
N (θ, Id) where Id is the identity matrix of dimension d and θ is the vector with all
components equal to 2. Some proportion ε ∈ [0, 0.2] of corrupted observations is replaced
by independent samples which components are independently sampled from a standard
Cauchy distribution C(0, 1). We compared the mean of the variational approximation with
the MLE (i.e the arithmetic mean) and the componentwise median using the squared root
of the MSE.

Figure 9.2: Comparison of the square root of the MSE for the MMD estimator, the MLE
and the median in the robust multidimensional Gaussian mean estimation problem for
various values of the proportion of outliers. Here d = 15.

Uniform location parameter estimation problem: we randomly sampled n =
200 i.i.d observations from a uniform distribution U

(
[θ− 1

2 , θ+ 1
2 ]
)
where θ = 1. Following

the previous set of experiments, the proportion ε ∈ [0, 0.2] of data is replaced by outliers
from a Gaussian N (20, 1). We compared the mean of the variational approximation with
the MLE (i.e the average between the largest and the lowest values) and the method of
moments estimator (i.e the arithmetic mean) using again the square root of the MSE.

Figure 9.3: Comparison of the square root of the MSE for the MMD estimator, the MLE
and the method of moments in the robust estimation of the location parameter of a uniform
distribution for various values of the proportion of outliers.
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Results: The error of our estimators as a function of the contamination ratio ε is
plotted in Figures 1, 2 and 3. These plots show that our method is applicable to various
problems and leads to a good estimator for all of them. Indeed, the plots in Figures 1
and 2 show that the MSE for the MMD estimator performs as well as the componentwise
median and even better when the number of outliers in the dataset increases, much better
than the MLE in the robust Gaussian mean estimation problem, and is not affected
that much by the presence of outliers in the data. For the uniform location parameter
estimation problem addressed in Figure 3, the MMD estimator is clearly the one that
performs the best and is not affected by a reasonable proportion of outliers, contrary to
the method of moments which square root of MSE is increasing linearly with ε and to
the MLE that gives inconsistent estimates as soon as there is an outlier in the data.
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Titre : Contributions à l’étude théorique de l’inférence variationelle et à la robustesse
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Résumé : Cette thèse de doctorat traite de l’inférence
variationnelle et de la robustesse en statistique
et en machine learning. Plus précisément, elle se
concentre sur les propriétés statistiques des approxi-
mations variationnelles et sur la conception d’al-
gorithmes efficaces pour les calculer de manière
séquentielle. Elle étudie par ailleurs les estimateurs
basés sur le Maximum Mean Discrepancy comme
règle d’apprentissage et montre leur robustesse en
case de mauvaise spécification du modèle.
Ces dernières années, l’inférence variationnelle a
été largement étudiée du point de vue computa-
tionnel, cependant, la littérature n’a accordé que
peu d’attention à ses propriétés théoriques jusqu’à
très récemment. Dans cette thèse, nous étudions la
consistence des approximations variationnelles dans
divers modèles statistiques et les conditions qui as-
surent leur consistence. En particulier, nous abordons
le cas des modèles de mélange et des réseaux de
neurones profonds. Nous justifions également d’un
point de vue théorique l’utilisation de la stratégie de
maximisation de l’ELBO, un critère numérique qui
est largement utilisé dans la communauté VB pour
la sélection de modèle et dont l’efficacité a déjà été
confirmée en pratique.
En outre, l’inférence Bayésienne offre un cadre
d’apprentissage en ligne attrayant pour analyser
des données séquentielles, et offre des garan-
ties de généralisation qui restent valables même
en cas de mauvaise spécification des modèles
et en présence d’adversaires. Malheureusement,
l’inférence Bayésienne exacte est rarement tractable
en pratique et des méthodes d’approximation sont
généralement employées. Ces méthodes préservent-
elles les propriétés de généralisation de l’inférence

Bayésienne ? Dans cette thèse, nous montrons
que c’est effectivement le cas pour certains algo-
rithmes d’inférence variationnelle. Nous proposons
de nouveaux algorithmes tempérés en ligne et nous
en déduisons des bornes de généralisation. Notre
résultat théorique repose sur la convexité de l’objectif
variationnel, mais nous soutenons que notre résultat
devrait être plus général et présentons des preuves
empiriques à l’appui. Notre travail donne des justifica-
tions théoriques en faveur des algorithmes en ligne
qui s’appuient sur des méthodes Bayésiennes ap-
prochées.
Une autre question d’intérêt majeur en statistique et
qui est abordée dans cette thèse est la conception
d’une procédure d’estimation universelle. Cette ques-
tion est d’un intérêt majeur, notamment parce qu’elle
conduit à des estimateurs robustes, un thème d’ac-
tualité en statistique et en machine learning. Nous
abordons le problème de l’estimation universelle en
utilisant un estimateur de minimisation de distance
basé sur le Maximum Mean Discrepancy. Nous mon-
trons que l’estimateur est robuste à la fois à la
dépendance et à la présence de valeurs aberrantes
dans le jeu de données. Nous mettons également en
évidence les liens qui peuvent exister avec les estima-
teurs de minimisation de distance utilisant la distance
L2. Enfin, nous présentons une étude théorique d’un
algorithme de descente de gradient stochastique uti-
lisé pour calculer l’estimateur, et nous étayons nos
conclusions par des simulations numériques. Nous
proposons également une version Bayésienne de
notre estimateur, que nous étudions à la fois d’un
point de vue théorique et d’un point de vue compu-
tationnel.
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Keywords : Statistics, Machine learning, Variational inference, Robustness

Abstract : This PhD thesis deals with variational in-
ference and robustness. More precisely, it focuses on
the statistical properties of variational approximations
and the design of efficient algorithms for computing
them in an online fashion, and investigates Maximum
Mean Discrepancy based estimators as learning rules
that are robust to model misspecification.
In recent years, variational inference has been exten-
sively studied from the computational viewpoint, but
only little attention has been put in the literature to-
wards theoretical properties of variational approxima-
tions until very recently. In this thesis, we investigate
the consistency of variational approximations in va-
rious statistical models and the conditions that ensure
the consistency of variational approximations. In par-
ticular, we tackle the special case of mixture models
and deep neural networks. We also justify in theory
the use of the ELBO maximization strategy, a model
selection criterion that is widely used in the Variational
Bayes community and is known to work well in prac-
tice.
Moreover, Bayesian inference provides an attractive
online-learning framework to analyze sequential data,
and offers generalization guarantees which hold even
under model mismatch and with adversaries. Unfor-
tunately, exact Bayesian inference is rarely feasible in
practice and approximation methods are usually em-
ployed, but do such methods preserve the generaliza-

tion properties of Bayesian inference? In this thesis,
we show that this is indeed the case for some varia-
tional inference algorithms. We propose new online,
tempered variational algorithms and derive their ge-
neralization bounds. Our theoretical result relies on
the convexity of the variational objective, but we argue
that our result should hold more generally and present
empirical evidence in support of this. Our work pre-
sents theoretical justifications in favor of online algo-
rithms that rely on approximate Bayesian methods.
Another point that is addressed in this thesis is the
design of a universal estimation procedure. This ques-
tion is of major interest, in particular because it leads
to robust estimators, a very hot topic in statistics and
machine learning. We tackle the problem of universal
estimation using a minimum distance estimator ba-
sed on the Maximum Mean Discrepancy. We show
that the estimator is robust to both dependence and to
the presence of outliers in the dataset. We also high-
light the connections that may exist with minimum dis-
tance estimators using L2-distance. Finally, we pro-
vide a theoretical study of the stochastic gradient des-
cent algorithm used to compute the estimator, and we
support our findings with numerical simulations. We
also propose a Bayesian version of our estimator, that
we study from both a theoretical and a computational
points of view.

Institut Polytechnique de Paris
91120 Palaiseau, France


	I Introduction
	Context
	Bayesian inference: computation and theory
	Online learning: convexity and Bayes' rule
	Robustness to misspecification

	Contributions
	Consistency of variational inference
	Online variational inference
	Robustness via Maximum Mean Discrepancy

	Résumé substantiel
	Consistence de l'inférence variationnelle
	Inférence variationnelle en ligne
	Robustesse via Maximum Mean Discrepancy


	II Consistency of variational inference for estimation and model selection
	Consistency of Variational Bayes Inference for Estimation and Model Selection in Mixtures
	Introduction
	Background and notations
	Variational Bayes estimation of a mixture
	Variational Bayes model selection
	Conclusion
	Proofs

	Convergence Rates of Variational Inference in Sparse Deep Learning
	Introduction
	Sparse deep variational inference
	Generalization of variational inference for neural networks
	Architecture design via ELBO maximization
	Discussion
	Proofs and additional results

	Consistency of ELBO maximization for model selection
	Introduction
	Framework
	Consistency of the ELBO criterion
	Application to probabilistic PCA
	Proofs and additional results


	III Theoretical bounds for online variational inference algorithms
	A Generalization Bound for Online Variational Inference
	Introduction
	Generalization Properties of Bayesian Inference for Online Learning
	Online Variational Inference
	Generalization Bounds for Online VI
	Experiments
	Conclusion
	Proofs and additional results


	IV Robustness to misspecification via Maximum Mean Discrepancy
	Finite sample properties of parametric MMD estimation: robustness to misspecification and dependence
	Introduction
	Background and definitions
	Nonasymptotic bounds in the dependent, misspecified case
	Examples
	Stochastic gradient algorithm for MMD estimation
	Simulation study
	Proofs
	Conclusion

	MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
	Introduction
	Framework and definitions
	Theoretical analysis of MMD-Bayes
	Variational inference
	Numerical experiments
	Conclusion
	Proofs and additional results

	Bibliography


