
HAL Id: tel-02893847
https://theses.hal.science/tel-02893847

Submitted on 8 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis of IoT Systems using Attack Trees
Delphine Beaulaton

To cite this version:
Delphine Beaulaton. Security Analysis of IoT Systems using Attack Trees. Ubiquitous Computing.
Université de Bretagne Sud, 2019. English. �NNT : 2019LORIS548�. �tel-02893847�

https://theses.hal.science/tel-02893847
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITE DE VANNES
UNIVERSITE BRETAGNE SUD

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : (voir liste des spécialités)

Par

« Delphine BEAULATON »
« Security Analysis of IoT Systems using Attack Trees »

«»

Thèse présentée et soutenue à VANNES , le 09/12/2019
Unité de recherche : IRISA Vannes – Équipe Archware
Thèse N° : 548

Rapporteurs avant soutenance :
Chouki Tibermacine, Université de Montpellier
Christine Urtado, IMT Ales

Composition du jury :

Président :
Examinateurs : Khalil Drira LAAS-CNRS

Isabelle Borne, IRISA Vannes
Salah Sadou, IRISA Vannes
Régis Fleurquin, IRISA Vannes

Dir. de thèse : Salah Sadou
Co-dir. de thèse : Régis Fleurquin

Invité(s)

Olivier Zendra, INRIA Rennes

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

;

Titre : Analyse de sécurité de systèmes IoT à l’aide d’arbres d’at-
taques

Mot clés : Systèmes IoT, Sécurité, Arbres d’attaques

Resumé :
L’Internet des Objects (IoT) est un environne-

ment qui évolue rapidement et qui permet à des
utilisateurs d’utiliser et contrôler une large variété
d’objets connectés entre eux. Ces environnements
connectés augmentent la surface d’attaque d’un
système puisque, entre autre,m les risques sont
multipliés par le nombre d’appareils connectés.
Ces appareils sont responsables de tâches plus
ou moins critiques, et peuvent donc être la cible
d’utilisateurs malveillants. Dans ce travail de thèse
nous présentons une méthodologie pour évaluer
la sécurité de systèmes IoT. Nous proposons une
manière de représenter les systèmes IoT, cou-
plée avec des arbres d’attaques afin d’évaluer les

chances de succès d’une attaque sur un système
donné. La représentation des système est faite via
un langage formel que nous avons développé :
SOML (Security Oriented Modeling Language). Ce
langage permet de définir le comportement des dif-
férents acteurs du système et d’ajouter des pro-
babilités sur leurs actions. L’abre d’attaque nous
offre un moyen simple et formel de représenter de
possibles attaques sur le système. L’analyse pro-
babiliste sur les chances de succès des attaques
est ensuite effectuée via un outil de Statistical Mo-
del Checking : Plasma. Nous utilisons deux algo-
rithmes en parallèle pour effectuer cette analyse :
Monte Carlo et importance splitting.

Title : Security Analysis of IoT Systems using Attack Trees

Keywords : Security ; IoT systems ; Statistical Model Checking

Abstract :

IoT is a rapidly emerging paradigm that pro-
vides a way to the user to instrument and control
a large variety of objects interacting between each
other over the Internet. In IoT systems, the security
risks are multiplied as they involve hetero- geneous
devices that are connected to a shared network
and that carry out critical tasks, and hence, are tar-
gets for malicious users. In this thesis, we propose
a security-based framework for modeling IoT sys-

tems where attack trees are defined alongside the
model to detect and prevent security risks in the
system. The language we implemented (SOML)
aims to model the IoT paradigm in a simple way.
The IoT systems are composed of entities having
some communication capabilities between each
other. Two entities can communicate if (i) they are
connected through a communication protocol and
(ii) they satisfy some constraints imposed by the
protocol. In order to identify and analyze attacks on

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

the security of a system we use attack trees which
are an intuitive and practical formal methods to do
so. A successful attack can be a rare event in the
execution of a well designed system. When rare,

such attacks are hard to detect with usual model
checking techniques. Hence, we use importance
splitting as a statistical model checking technique
for rare events.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

v

Acknowledgements
Tout d’abord j4’aimerais remercie mes directeurs de thèse: Salah Sadou et Régis

Fleurquin qui m’ont offert cette opportunité de thèse.
Merci à Olivier Zendra qui a été pour moi un chef d’équipe extraordinaire et a rendu
énormément de choses possible tout en me poussant hors de mes retranchements.
Je suis infiniment reconnaissante à Ioana Cristescu, sans qui l’algèbre de processus
serait resté pour moi un monde obscur.
Pour leur soutien et leur amitié merci à Kévin Bukasa, Armel Esnault, Alexandre
Gonzalvez, Tania Richemond, Yoann Marquer, Mathieu Bagot, Nisrine Jaffri, Céline
Minh, Rymel Benabidallah, Raounak Benabidallah, Valdemar Neto, Franck Petitde-
mange, ...

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

A Pépito, Ramsès et Octana <3

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

iii

Contents

Acknowledgements v

1 Introduction 1

2 State of the art 5
2.1 Modelling Techniques for the Internet of Things 6

2.1.1 IoT and Security . 6
2.1.2 IoT Language Representations 7

2.2 Attack Representations . 8
2.2.1 Tree related representations . 9
2.2.2 Attack Graph . 14
2.2.3 Others . 16

2.3 Statistical Analysis . 16
2.3.1 Statistical Model Checking . 17
2.3.2 Rare Events Analysis . 17

3 Security Oriented Modeling Language 19
3.1 Running Example . 20
3.2 IoT Security Oriented Modeling Language 21

3.2.1 Language General Concepts . 21
3.2.2 Abstract Syntax . 22
3.2.3 Preliminaries for Operational Semantics 24
3.2.4 Operational Semantics . 24
3.2.5 Operational Semantics Application on Running Example . . . 25

3.3 Probabilistic IoT Security Oriented Modeling Language 31
3.3.1 Extended Abstract Syntax . 31
3.3.2 Operational Semantics . 31
3.3.3 Operational Semantics Application on Running Example . . . 34
3.3.4 Concrete Syntaxe . 36

3.4 Attack Representation using Attack Trees 38
3.4.1 Attack Tree Graphical Representation 38
3.4.2 Attack Tree Formal Representation 38

4 Simulation Approach 43
4.1 BIP Language . 44

4.1.2 BIP Semantics . 48
4.1.3 Interaction Between BIP Components 49
4.1.4 BIP Concrete Syntax . 52

4.2 IoT Model to BIP . 54
4.2.1 Parser Implementation . 54
4.2.2 Model transformation . 56
4.2.3 Example of Transformation . 58

4.3 Formal Transformation . 59

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

iv

4.3.1 Transformation Functions . 60
4.3.2 Entity Formal Transformation 63
4.3.3 Bisimulation . 67

4.4 Attack Tree to BIP . 74
4.4.1 Attack Tree Implementation . 74
4.4.2 BIP Monitor . 75
4.4.3 Attack Tree Formal Transformation 77
4.4.4 Running Example Monitor . 78

5 Experiments 81
5.1 Methodology . 82

5.1.1 Statistical Model Checking . 82
5.1.2 Overview . 83

5.2 Smart Hospital . 86
5.2.1 Overview . 86
5.2.2 Smart Hospital SOML model 86
5.2.3 Smart Hospital under Attacks 88
5.2.4 Smart Hospital BIP Model . 89
5.2.5 Experiments . 91

5.3 Amazon Key . 93
5.3.1 Overview . 93
5.3.2 Amazon Key IoT Model . 94
5.3.3 Amazon Key under Attacks . 96
5.3.4 Amazon Key BIP Model . 97
5.3.5 Experiments . 99

5.4 Experiments Conclusion . 102

6 Conclusion 103

Bibliography 105

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

1

Chapter 1

Introduction

We often see the Internet of Things (IoT) as a revolution to come. We picture a
world in which information is accessible everywhere and human intervention on te-
dious tasks is made unnecessary.
On your everyday life it means that your house cleans itself and you don’t need
to worry about the weekly groceries anymore. Based on your consumption habits,
whether or not you are expecting guests and taking into consideration your guests’
tastes and the occasion, your fridge will order the products. Your errands will then
be delivered, regardless of your presence at home, thanks to your smart lock. If you
were to go shopping anyway, waiting lines would be old news. You can just go into
the store, take whatever you need and just leave. Your account is automatically
charged and you are notified, depending on your preferences. Driving to work isn’t
much of driving as we see it now: your smart car is doing the biggest part of the
job. You can prepare for your meetings of the day in the morning or finish your work
while checking your kids homeworks on your way back home. Being late because of
traffic is not possible anymore anymore since it is regulated by taking into account
the main patterns of commuting, extracted from the commuters personnal data. No
more getting slowed down by the waste truck. Garbage is now automatically routed
to the closest sorting centre and processed depending on its nature. Hospitals are
never crowded as a vast majority of patients are treated at home, via a real time
connection with the health staff. Your doctor has a continuous and real time access
to metrics such as your fitness routine and performances, your calory intakes, daily
activities, your sleep schedule and quality, etc.
On the industry side, smart farming allows fields to be ploughed and harvested with-
out human physical intervention, reducing costs, accidents and increasing efficiency.
Meanwhile, the humidity, air temperature, soil quality and real time forecasts data
would be analyzed to create an optimal treatment and watering schedule. Once the
cereals have been harvested, the inventories are distributed according to needs of use
and ready to be forwarded. The logistic chains being equipped with sensors, track-
ers and other appropriated devices, the merchandises are safely conveyed, using the
most optimal way. Real time monitoring enables users to track them at any time and
make sure that the storing conditions remain compatible with the constraints of the
product.
We tend to think of this possibility as a vague and distant utopia. But this world is
not a far-off future. In fact, it has already started and IoT is getting progressively into
our routine. Amazon provides a way for you to receive your deliveries indoors and to
allows your guests to get in even in your absence. No need to trust your neighbour
with a spare key or to hide it under a rock or a doormat for that: it is made possible
with the Amazon Smart Lock. Concerning supermarkets, the Amazon Go allows you,
once you have installed the application and registered, to come inside, pick whatever
you want and just leave the store without getting by the cashier. Once you have

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

2 Chapter 1. Introduction

left, you receive the receipt on your mobile. A dozen of them are already operational
in four cities in the US, using as technology a mix of computer vision, sensor fusion
and advenced machine learning. The IoT has already entered the automotive market
with, for instance the semi project of Tesla. This project is about electric trucks and
is meant to reduce energy cost and increase security. It includes an enhanced autopi-
lot and other features such as calling 911 if the driver is not responding. Hospitals
are allowing more and more patients to take charge of their health condition at home.
They use connected devices and benefit from a real time connection with the hospital
staff which can check their metrics at any time.
All these systems provide adapted services with the aim of saving lives, time, money,
... More broadly, they share the willingness of improving the quality and efficiency of
user experience. In order to function correctly, the different devices that compose the
IoT need to have access to data and to be able to exchange them between each other.
The data can be directly provided by a user or a customer or collected through his
use of the service. But the data are not only user information, they can also concern
the environment. For instance, in the case of smart farming, the data concern the
direct surroundings of the crops and are collected by different types of sensors, before
being shared with other subsystems.
When talking about the Internet of Things, the innovative and beneficial aspects are
often the only highlighted ones. But security issues are real and, if exploited, can
cause serious damage. The IoT is composed of a variety of connected devices, and
the number of connected objects increase the attack surface of systems. In addition,
security experts often try to secure IoT systems the way we used to secure tradition-
nal devices. But these new objects have a different behaviour and other constraints.
For example, they can be memory constrained, which makes it impossible to install
software agents on them. But still, they are connected to the company wireless net-
work and receive and send sensitive data. Hospitals have been the target of numerous
attacks, including ransomware, Denial of Service attacks (DDos), etc. In their publi-
cation, Mirsky et. al. [51] show how, using penetration tests, they manage to inject
and remove lung cancer on computed tomography scans in an active radiology net-
work.
Another issue is that, sometimes, the side effects of a proper use of the system are not
taken into consideration. In other terms, new features offered by an IoT system can
generate adverse events. We can illustrate this with the use of a fitness tracking appli-
cation that disclosed the location of secret US army bases. It happened in November
2017 when Strava, a fitness tracking company, released a map of its user activities and
exercise patterns in different areas of the world. It showed the itineraries of military
personnel on active service, who didn’t turn off the tracking option of the application
when they went for a run. In this case, the device fullfills its mission perfectly, but
the scope of the data manipulated was not considered properly.
All the systems we described previously are built as an interconnection of various
kind of devices. These devices exchange data in order to reach a common goal. For
instance the different parts of the connected hospital will send each other information
in order to treat patients. The critical and confidential aspects of these data can differ
and are sometimes not taken into account. For instance, a data that doesn’t seem
sensitive can allow a malicious user to access other data which are highly confidential.
In an attempt to address these security issues we want to be able to calculate the
probabilities of success of an attack that is performed on a system by accessing dif-
ferent kinds of information. We then consider attacks where the attacker makes his
way towards highly sensitive data by collecting information from different parts of
the system that enable him to access his goal.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

Chapter 1. Introduction 3

To do that, we need to be able to model a system and more specifically the informa-
tion flow among its different subparts. We also need to be able to perform attacks
towards this system while carrying out statistical analysis to calculate their chances
of success.
The solution we propose can be divided in two parts: modeling IoT systems and
possible attacks and the statistical analysis performed on the model.
To model the IoT systems we specified a language: Security Oriented Modeling Lan-
guage (SOML). SOML is a high level language that allows us to model systems with
a certain number of specificities. Details of the model mainly include the commu-
nication between the subparts of the system and the data exchanged. The system
can also include malicious parties that attack the system. These kind of interactions
are described within the model. In order to simulate the behaviour of the system we
use a second language: BIP (Behavior Interactions Priority) [26], as well as the BIP
compiler. To do so, we implemented a parser that allows us to transform the SOML
model into an equivalent ans executable BIP model.
In order to monitor the attack happening during the execution, we add a representa-
tion of the attack that is external to the SOML model but that becomes an integral
part of the BIP model. The attack is specified using an attack tree, that becomes a
BIP monitor during the execution.
Now that we have a model that we can run, we add the option to give probabilities
to the different actions of the entities. This modifies the conduct of the execution
and can increase or decrease the chances of success of the attacker. The inclusion
of probabilities enables us to perform statistical analysis on the model. In our case,
we use Plasma Lab to carry out Statistical Model Checking on the model. This way,
we can compute the chances of success of a given attack towards a specific system,
whether they are frequent or considered as a rare event.
This work consists of several research segments that we present in the second chapter.
The State of the Art starts by looking into the definitions of the Internet of Things
into the litterature. Then it explores existing works in terms of security modeling
and the different ways of representing an attack. Finally, it delves into the Statistical
Analysis currently used, considering rare events as a subpart of it.
The third chapter is dedicated to the presentation of the IoT SOML language. For
clarity reasons we start by introducing SOML without the probabilistic aspect, and
in the second part of the chapter we add the probabilities. In both parts, using a
running example, we describe the abstract and operationnal aspects of the language.
Although the attack representation is external to the model, it is part of the execu-
tion. This is why we close the chapter by explaining how we express the attack with
the attack tree. The fourth chapter focuses on the transformation from SOML to the
BIP language. After introducing the BIP language, we detail formal and technical
aspects of the transformation. We also describe the transformation of the attack tree,
as well as the monitoring during simulations. The fifth and final chapter is devoted to
the experiments. We use two real example of IoT for them: a smart hospital and the
Amazon Smart Lock. The attack trees of both example contain a compilation of real
attacks that have been carried out on the systems either for testing or for malicious
purposes.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5

Chapter 2

State of the art

This work addresses security issues in distributed environments, and more specifically
in the Internet of Things. We aim to represent IoT systems in an abstract but re-
alistic way as well as possible attacks towards them. These representations are then
used to carry out statistical analysis to calculate the chances of success of the attacks
on the systems.
Therefore, this work can be divided into three main aspects: the system model, the
attack representation, and the statistical analysis. This chapter reflects these three
main leads that compose this thesis.
We start by giving an overview of the Internet of Things in Section 2.1, before address-
ing the security challenges that is is currently facing. Section 2.2 presents multiple
ways of representing attacks. Finally, Section 2.3 presents different ways of performing
statistical analysis methods for rare events as well as similar approaches.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

6 Chapter 2. State of the art

2.1 Modelling Techniques for the Internet of Things
Aztori et. al. [3] define the Internet of Things (IoT) as a "pervasive presence around us
of a variety of things or objects which, through unique addressing schemes, are able to
interact with each other and cooperate with their neighbors to reach common goals".
They also define different IoT paradigms, depending on the scientific community that
consider it. But the issues that arise with the omnipresence of the IoT are the same for
everyone and concern, among others, security and privacy. In this section we searched
for existing work that addressed these security issues, and in particular through secure
representation of the systems. We start by giving an overview of security oriented
representation of IoT systems is Subsection 2.1.1. Then in Subsection 2.1.2 we give a
global vision of existing languages to represent IoT systems, wether they are security
oriented or not.

2.1.1 IoT and Security

In their work, Q. Jing et. al. [34] argue that IoT systems are composed of three
successive layers: the perception layer, the transportation layer and the application
layer. The perception layer concerns information collection, object perception and
object control. Transportation layer is responsible for giving access to the first layer,
and data transmission. Finally the Application layer’s role is to support business ser-
vices and realize intelligent computation and resource allocation. This vision of IoT
systems allows to detail security features and requirements, and therefore to adapt
the security solution, depending on the target level of the device.
All the description aspect of this work is based on the technical description of the sys-
tem architecture. Indeed, by dividing the overall architecture into layers, it becomes
easier to apprehend and address the vulnerabilities, depending on their level. On the
other hand, detecting cross-layer vulnerabilities requires to see the system as a whole
and, in this case, finding the adapted security measures might be more difficult.
Because of its interconnected nature, IoT systems are vulnerable to a large spectrum
of attacks. Indeed, we have to consider that only one unsecured device can affect the
security of the overall system. A way of identifying new attack surfaces using a visual
representation has been proposed in [59]. In this work, IoT security is not considered
as a binary concept but rather as a spectrum of device vulnerability. They then offer
a new visual grammar to describe IoT systems at a high abstract level. Their rep-
resentation is presented as a three-tiered structure constructed as follows: the first
layer is the high level representation that uses the visual grammar in order to offer
a model of the IoT system. The second layer shows the object profiles and connects
the first and the third layer which provides the implementation details of the system.
The second layer maps out the hight level representation with the low level represen-
tation that gives us technical details about the connected objects that constitute the
system. To build the high level model, they use the device characterizations of all
objects that are part of the system. Then, they mapped the device descriptions to
one or several existing devices, and finally, they generate a high level representation.
The whole model is meant to provide information about the objects, the structure
they form, as well as their activities and relationships.
This work represents a link between the technical characterization of the devices that
compose an IoT system and an abstract representation of the system. But the secu-
rity aspect of this work is based on the possible vulnerabilities of each device, from
a technical point of view. The abstract representation is just meant to facilitate the

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

2.1. Modelling Techniques for the Internet of Things 7

vision of the overall environment before delving into the features of each device.

2.1.2 IoT Language Representations

In this subsection we separate two types of representations: the one that were created
for security purpose and the others.

IoT modeling

A visual representation based on the UML notation exists in [22]. The goal was to
implements a language that is powerful enough for the professionnals while being user
friendly and easy to read. In this language, the basic element of an IoT system is
called a "Thing". The thing can be either real or virtual. When things are arranged
in collections, they compose a "subsystem". Things can contain items that can be
inputs, outputs or components. All these concepts that compose the language pos-
sess a virtual repesentation inspired by the UML class diagrams. Even though this
virtual representation is not security oriented, as the SOML (Security Oriented Mod-
eling Language), we could use it as an inspiration to create a visual representation of
our language. Indeed, for now, to describe a system using SOML, one has to know
the language syntaxe. By providing an interface with visual elements we could, as
a future work, consider to generate the system model automatically from a visual
interface.
Another language, GroupeSens-L [1] offers to represent Group Activity Recognigni-
tion. The goal is to model the physical activity of a group using an EBNF based
modeling language. It allows to model the group activity with their conditions and
constraints, to make vary the level of details and to generate a billing model.
In [6], the authors use a meta model in order to help developpers build their IoT
system as part of a model driven development process. From the meta model, the
developper builds its own model and can automatically generate Java code, which is
meant to be used as the departure of its IoT system implementation. The meta model
is built around "Human Object View". It means that it represents the interconnection
between human and physical connected objects as well as the way humans use these
objects to expand their communication capabilities. This point of view shares our
vision of the communication between human and objects, but as it is not security
oriented, it does not make appear verification, of the critical aspect of the exchanged
information, which is essential in our work.
Another approach is the IRON language [13], which is an ECA (Event-Condition-
Action) based language with a formally defined semantics, meant to identify incorrect
behaviours of an IoT system. The IRON language has a static part and a dynamic
part. The static part concerns the variable declarations. The variables are the con-
nected devices that are described using an identifier and a name. The static part also
defines the constraints that ensure the validity of the exchanged information. The
dynamic part is about the ECA rules that descibe the behaviour of the devices. An
Event-Condition-Action rule indicates how an action is performed during an event
when the condition is filled. The formal semantics is able to ensure the reliability of
the results of the execution. Even though this modeling language allows the execution
of IoT model to guarantee the correct functionning of the system, the errors are only
considered from a logical point of view. The attacks towards the system, as well as
malicious users or actions are not considered.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

8 Chapter 2. State of the art

An UML extension language called SOAML4IoT [17], can be used to model SOA-
based IoT applications. SOAML4IoT is an extention of the SoaML (Service oriented
architecture Modeling Language) which is already an UML extension for SOA appli-
cations. This extention of SoaML is enriched with fundamental concepts of the IoT
models such as platforms, applications and networks. Each of these concepts possess
communication, exchange, ... capabilities that are specialized as tasks. As for the
previous work, this language is meant to be used for a static modeling during the
conception, and cannot be used in our approach but it is interesting to notice that
the same concepts (connected device, communications, ..) are highlighted for each
IoT-specialized modeling language.

IoT secure representations

The IUT Standard Specification and Description Language (SDL) [63] is an exe-
cutable language, meant to model and simulate the functionning of IoT systems or
other ditributed environments. Using SDL, one can model an IoT system as a set
of connected agents that communicate with each other. The SDL simulator allows
to verify the behaviour of the system before it is deployed. The abstract machine
semantics of the language helps define the communication architecture of the system
(communication elements with different level of abstraction) and the complete be-
haviour of the system. But if SDL allows to model the behaviours different actors
of the system, whether they are malicious or desired, it does not address potential
attacks towards the system. Its only concern is to detect security issues considering
the normal run of the system.
This approach and our work have a similar approach First, it uses a high level model
of the system and il allows running simulations in order to find anomalities in its
behaviour. But our approach is meant to simulate one or several external actors
attacking the system and observe their progression. SDL doesn’t take into account
possible external attacks. The security issues that are considered here are the one
that can occur during normal operation of the system. In this case, the model op-
erates as a realistic system replica and allows to correct issues before deploying the
environment.
IoTSec [58] is an UML based language supposed to encapsulate security knowledge
to model IoT systems. The work uses the model based system engineering approach.
It is based on the idea that to resolve safety issues in the IoT, we need to perform se-
curity design as well as vulnerability and threat analysis before implementation. This
UML/SysML extension redefines several UML diagrams to model security problems
in IoT systems such as the class diagram, the sequence diagram, the state machine
diagram, ... This work tends to address security issues in the system by modeling
them during its conception. The models are not meant to be executed and displays
vulnerabilities and threats possibilities. Therefore, these techniques could not be used
in our approach.

2.2 Attack Representations
Modeling attacks, threats, faults, etc. anything that can be a risk for the proper
functionning of a system has always been a real concern in research. The objectives
can either be to prevent it, detect it or as it is our case: estimate the probabilities
for an attack to happen. There are a variety of options with different possible ap-
plications. Following [42] we separate them into three main categories: Tree related
representations, Attack Graph and Others.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

2.2. Attack Representations 9

2.2.1 Tree related representations

This subsection describes all the attack representations that use a tree-like represen-
tation. We first start with the attack trees, which are the way we chose to represent
the on going attacks towards the system we audit. Indeed, attack trees have the
advantage of being easy to understand thanks to their intuitive representation. It is
also possible to modify the amount of information they contain, depending on our
needs for the analysis. Several alternatives, based on the attack trees exist such as
the defense trees, threat trees that we detail in this subsection. They extend the
attack trees with informations such as the defense information or economics indexes
for deeper analysis. In this work we didnt need to extend the attack tree as the infor-
mation necessary for the analysis are contained in the model of the system. But it is
possible, as a future work to consider conducting different or further analysis on the
IoT systems. In this case, another tree-like representation can be used, that would
contain different types of information concerning the attacks towards the model.

Attack Tree

Attack trees we first defined by Bruce Schneier [62] as a formal way to describe the
security of a computer system, and to be used in order to make security decisions.
One of the benefits were then to be able to make the attack trees evolve easily as the
system was developped and the security concerns changed. The aim of an attack tree
is to cover more or less exhaustively, depending of the needs, possible attacks towards
a system. We can see an example of an attack tree defined by Bruce Schneier in

Figure 2.1: Example of an attack tree as defined by Bruce Schneier

Figure 2.1. The root node represents the goal of the attack: here it is about opening
a safe. There are several ways to reach this goal, such as pick the lock or cut the safe
open. The annotations on the nodes of the tree can differ, depending on the needs.
Following the work of Schneier, Mauw et. al. propose a formal semantics for the at-
tack trees [47]. In their work, they formalize the concepts introduced by Schneier and
define writing rules to standardize the creation of attack trees. This can be useful,
for instance in computer aided threat analysis.
Due to their simplicity, attack trees can be used in various environments and they
allow users to have a global overview of the attack. But because of this, one can
argue that attack trees do not have a sufficient level of technical specificities to prop-
erly allow to represent cyber threats [23]. But T. Tidwell et. al. [65] found a way to
overcome this issue. Indeed, they propose an attack visualization system using attack
trees in which they are used to represent Internet attacks described as "multistage

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

10 Chapter 2. State of the art

attacks". An attack tree is defined with weighted nodes, indicating the likelihood of
their success. To be able to add technical details, the attack tree is used in conjunc-
tion with a parametric extension. This means that each tree is associated to a unique
specification template that captures information like the pre and post conditions of
the attack. This way, they can automatically link an attack to a given vulnerability
of a system and this helps them in performing vulnerability assessment and attack
prediction. This approach is interesting because it allows to link vulnerabilities of a
system and one or several possible attacks and add a low level point of view. But
the attack trees are still designed manually by the security expert and therefore are
inspired by the existing, they can’t be used to discover unknown attacks towards a
system.

Defense Tree

Also called Attack-Defense Tree. Defense trees appear for the first time in the work
of Bistarelli et. al. [8] as an extension of attack trees. The authors aim to provide
security managers a methodology to perform an economic evaluation of the risks via
an assessment of the possible countermeasures. The authors propose to extend attack
trees by adding countermeasures to each node representing a vulnerability and label
the countermeasure with an economic index. This method combines qualitative and
quantitative approaches. The qualitative view corresponds to an exhaustive evalua-
tion of the risks using security scenarios and represented as a tree. The quantitative
view is meant to give precise measures of the risk and consists in assigning quan-
titative indexes to each threat descibed in the tree. By extending attack trees the
authors aim to compensate the fact that attack trees do not take into account coun-
termeasures and the cost they represent. This method allows an economic evaluation
of the threats as well as their effectiveness. It can help decide if they are profitable
and effective. In [9] Bistarelli et.al. go further in the development of the quantitative
approach. The economic labels added to the tree are in fact two utility functions: the
ROI (Return on Investment) and the ROA (Return on Attack). They then transform
an attack into a strategic game with on one side the attacker and on the other the
defender. The ROI and ROA allow to calculate the Nash Equilibrium that represents
the best strategy possible for both sides of the game. One conclusion reached by
the authors is that if installing countermeasures is always worth it for the defender,
multiplying the countermeasures does not necessarily represent an increased benefit
for the company. Finally, [38] introduces a formal representation of defense trees.
The authors defined ADTerms (attack-defense terms) on which the language is based
and that allow to formally represent attack-defense scenarios.

Threat Tree

Although they are sometimes assimilated with attack trees, for instance in [52], we
consider them to be different. Threat trees express vulnerabilities that can be ex-
ploited and lead to a main failure. They can be used in order to express the weaknesses
exploitable by a third party to conduct an attack, and therefore express attack scenar-
ios. In fact they don’t express the direct actions of an attacker but rather weaknesses
that could lead to an exploit. The treat modeling process expressed in [52] and [46]
is a four step process. First the system must be decomposed in order to identify its
main components. Secondly, these components become the threat targets, it is nec-
essary to identify all the threats. Thirdly the threats must be classified, usually by
descending security risk. Finally, users determine how to respond to threats. In their

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

2.2. Attack Representations 11

approach [46], the threat trees are considered to be a variation of fault trees for safety
analysis and are used to test whether a software system is secured or not. To this
end, they automatically generate security tests as well as valid and invalid test inputs
in order to expose vulnerabilities within the software. As for [55] they developped a
methodology to capture a large number of cyber threats towards large systems. The
aim of their work is to define what the threats are, catalog them and then assess what
coutermeasures can be set up. The first step is from a risk assessment process, to
build a cyber threat tree. This stage is supported by CyTML (Cyber Threat Markup
Language), a formal language defined by the authors to represent cyber threat trees.
They define their tree as a superset of fault trees and attack trees. Then the tree
representation is transformed into a MDD (Multiple-Valued Decision Diagram). This
MDD structure provides an easy way to go through the cyber threat catalog and then
identify the best way to protect the components of the system.

Fault Tree

Fault tree analysis is one of the most used techniques in the industry to evaluate the
risks within a system. Static fault trees were introduced by the Bell Labs in the 1960s
for the analysis of a balistic missile [67]. The traditionnal fault tree aims to model
how combination of components failures can lead to system failures. An application
of fault trees in the industry concerns for instance the measure of the risks faced by
employees in their workplace environment.
A fault tree, of which we can see an example in Figure 2.2, drawn from [60] is

Figure 2.2: Example of a fault tree

composed of two types of nodes. The leaves of the tree represent the model compo-
nent failures. These kind of events can be either called "basic event", which means

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

12 Chapter 2. State of the art

that they can happen spontaneously, or "intermediate events" and therefore are the
consequence of one or several other events. The internal nodes, called "gates" express
how the failure propagates throughout the system. The root node of the tree is the
"top event": it is the event that is under review. The different nodes are graphically
represented with different shapes as we can see in Figure 2.3 from [60], depending on
their types.
As for the attack trees, fault tree can be expanded: for example dynamic fault trees
add a temporal dimension. This allows to show that even if the same component fail,
some failure sequences are more dangerous to the system than others.

Figure 2.3: Different kinds of nodes in a fault tree

But fault trees can also have security purposes. In [29], fault trees are used as a way
to implement intrusion detection systems for software systems. The method is the
following: first, an intrusion is decomposed into seven stages that include a recon-
naissance and then the exploitation of the vulnerabilities identified in order to extract
and modify data. Each of these stages are represented as a distinct fault tree that
contains all the combinations of events that have to happen in order for the stage
to be complete. This means that, at least, seven fault trees (one for each stage) are
necessary to represent an intrusion.
Even though fault trees can have security applications as we saw in [29], fault trees are
not suitable for our needs. Indeed, we want to model the actions of an attacker and
the only information on the actions that we need are what information are exchanged.
The original purpose of fault trees were to model technique failures in industrial com-
ponents and therefore it focuses on technical events that can happens within a system
which is not our preoccupation.

Attack Nets

The idea behind the attack nets [48] is to use Petri Nets [57] (see Subsection 4.1.1 for
a detailed definition of Petri Nets) to model attacks for penetration testings. Places
of the Petri Nets are composed of security relevant states of the entities of interest,
and the transition, built from flaws of the system shows input event, commands or
data that allow to access those states. Tokens are used in the Petri Nets to indicate
the progression of the attack. Tokens can even be labeled to differentiate different
attackers and their actions. The idea behind this approach is by aggregating all the
Petri Nets concerning on system, to show the cumulative effects of the flaws, given

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

2.2. Attack Representations 13

that each transition represents the exploitation of a flaw. Compared to attack trees,
the Petri Nets are presented as a more expressive and direct way to show the actions
of the attacker. In this spirit, a method of collaborative attack modeling: ATiki [64]
was implemented. ATiki extends a WikiWeb-like system that acts as a vulnerability
database. An ATiki model is then composed of conditions that are the places of the
Petri Nets and that describes the system properties. As for the transitions, they
are explicited by the wiki pages and open for collaborative improvement. This work
is supposed to facilitate cooperation between security experts of various areas and
therefore allow the discovery of new vulnerabilities. But Petri Nets can also be used
in a more technical approach. In [30] attack nets are used jointly with software fault
trees for anomaly detection in software based systems. Petri Nets are automatically
generated from software fault trees with an intrusion detection system.

Threat Nets

Based on the desire of improving expressiveness and semantics of the existing threat
modeling techniques, Mirembe et. al. [50] decided to use Petri Nets for threat
analysis. They consider that to be effective, threat analysis must not be attacker
centric or threat centric. Therefore, their method captures both system attributes,
by incorporating flaws of the system design and development, and attacker profile
with his background knowledge and his time specific actions. In this work, the use of
Petri Nets is similar to the attack nets that we previsouly defined but extended with
background information about the system and the attacker. The use of Petri Nets
allows to see the threats at a micro level and then avoid propagation errors that are
possible with a high level of threat modelling.

Protection Trees

Edge et. al [20] define a version of the protection tree that is built directly from a
given attack tree. The overall structure of the protection tree stays the same: it is an
AND/OR tree structure. The root node also stays the same as in its corresponding
attack tree. But the goal when building a protection tree is to eliminate all attack
paths of the attack tree, so the rest of the tree differs. To each possible attack
represented by a path in the attack tree, the protection tree presents one or several
countermeasures expressed as a node or as a path. Each node of the protection tree
is labeled with the cost of the measure. This way, security experts can compare the
cost of the different countermeasures. This approach is similar to what we defined in
defense trees previously. The difference is that the protection tree is built in reaction
to a specific attack and the protection tree only includes defense information. The
aim is to help security experts make their decision for allocating their limited defense
resources.

Vulnerability Trees

Vidalis and Jones [66] propose to represent vulnerabilities for security assessment us-
ing vulnerability trees. The graphical representation of vulnerability trees is similar
to that of fault trees but their content vary widely. The top node of the vulnerability
tree is the "top vulnerability" or "parent vulnerability". The child nodes of the tree
represent the "child vulnerabilities": there is one for each way to exploit the top vul-
nerability. For each child vulnerability, there are one or several steps that the threat
agent has to perform in order to exploit the child vulnerability. Then, once each child
is decomposed into steps, each branch of the tree figures a detailed way to exploit

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

14 Chapter 2. State of the art

the top vulnerability. The nodes also contains information such as "TTE": Time To
Exploit that depends on the number of steps necessary, or a description of the vul-
nerability. The aim of this work is to help a security expert analyze different attack
scenarios and is meant to help him choose adequate countermeasures, by examining
vulnerabilities and their relationships.

For analysis purpose we need to be able to divide attacks into stages. We also
have a varying amount of information that we need to know for each of them. Attack
trees allow us to model the different ways to conduct an attack. There are also easy
to modify, depending on what we need to know for each step of the attack. If we
considered adding features in our process such as countereasures, costs of the attack
and of the defense, ... We could consider using an extended version of the attack tree
such as a defense tree as the structure and functionning remain the same. To get
additionnal information about defense we could also consider using protection trees,
as they would be generated from the attack tree we already have.
Threat nets capture some of the system properties. Our work has for characteristics
to clearly separate the system attributes and the attack features. Using a threat
nets would create an unnecessary overlapping of information. The same goes for the
attack nets which aim to show the cumulative effects of the flaws and the threat
trees that lists all possible exploits within a system or vulnerability trees. In a future
work, we could explore the possibility of generating an attack tree automatically from
the referenced exploits, flaws or vulnerabilities of the system, but we would need to
consider low level aspects of the system which is not our current goal. Finally, fault
trees are widely used in the existing in similar approaches but their applications are
very different to the attack trees’. Indeed, it is used for risk analysis in industrial
environments, which is very different to attack analysis.

2.2.2 Attack Graph

Concerning the attacks graphs, several approaches are possible.

"General" Attack graph

For instance, [54] uses attack graphs in the context of network security. The idea
is to build a tree that, given a set of attack goals, references the necessary security
conditions to garantee the safety of the network system. The building of the tree
starts with a sequence of exploits. The conditions are derived from these exploits
and they can be of two types. First they can be the exploits pre conditions and are
presented as initial conditions existing in the system. They represent the most urgent
security failures in the system to correct to ensure safety in the network. The other
type of conditions can be the pre and post conditions of the system, during or after
an attack. They can be influenced by the exploits performed within the system and
therefore the network administrators don’t have total control over them. So the graph
basically represents the dependencies between security conditions and exploits. Using
it, the network administrator has a vision of the measures to be taken in order to
protect his system as they go beyond possible attacks. In the ADEPTS methodology
[24], attack graphs are used to implement an automatic containment response to an
intrusion in distributed systems. The aim is to restrict the effects of an attack and
allow the users to keep using the functionnalities even though the system is currently
under assault. The attack graph, called I-GRAPH, lists several attack goals and the

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

2.2. Attack Representations 15

different steps to achieve them. The different goals can have one or several common
steps and therefore the graph shows the inter depedencies between them. From the
graph, the system can see where is the attack at and anticipate how it will most
likely spread. This allows the system to set up an automatic response to contain the
intrusion.
As we can see on these two applications of the data graphs, they can contain different
types of information, depending on the need of the security experts.

Alert Correlation Graphs

Correlation trees were firstly described by F. Cuppens et al [18] as a way to reduce
the number of alerts in Intrusion Detection Systems (IDS). To do so, they combined
several IDSs into a cooperation module. This way, when an intrusion occurs, the
system recognizes the different alerts that correspond to a certain kind of intrusion.
Then, by regrouping them, it generates a more global and synthetic alert that sums
up all of the necessary information. The displayed information contains an overview
of the current situation (what was performed by the attacker), the security state of
the system and possible options of the attacker next move. In order to anticipate
the attacker’s behaviour, the module uses a correlation function. This function maps
out an existing database of attacks to the alert database. The attack representation
includes the pre and post condition of the attack as well as several scenarios such as the
attack, detection and verification scenarios. Then from these two separate databases,
each generated alert will be correlated to one or several possible attacks. The security
administrator will therefore receive global and synthetic alerts that are meant to help
him take adapted decision in order to protect the system. A similar approach exists in
[53] with the aim of correlating alerts, using prerequisites of intrusion. Their approach
is based on the observation that most intrusions are correlated to one attack as they
represent different stages of it. The initial stages are meant to facilitate or to allow
the following ones to happen. In this work, a graph based formalism allows them to
treat a large number of data concerning alert information and attacks.

Privilege Graphs

In their work, M. Dacier et. al. [19] use a directed graph to assess security violation
due to priviledges accesses. This work is based on two main concepts: protection state
and authorization scheme. The protection state refers to the sets of rights held by
each individual of the system. The authorization scheme shows how the set of rights
evolve, how priviledges can be granted within the normal functionning of the system.
These information are synthesized in a directed graph called priviledge graph. Each
node of the graph contains a subject, an object and a set of rights. They represent a
set of priviledges that can be granted by an individual on a set of object. The edges
of the graph indicate the authorization scheme: what priviledges can be acquired
throughout the graph. An edge between a node N1 and N2 shows what additionnal
priviledges can be acquired in the node N2 when the ones of the node N1 have already
been granted. Therefore, a path in the graph represent all the priviledges that an
individual can acquire in the normal functionning of the system. Given a set of states
that violate system safety, the graph enables a security expert to identify the paths of
the graph that are in direct conflict with the security constraints. The graph gives a
boolean answer to a safety problem by answering the following question: is an unsafe
state reachable or not?

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

16 Chapter 2. State of the art

In our work, we measure the progress of the attack by the level reached in the
attack tree. Therefore having several root nodes as in the attack graph would be a
problem to get the chances of success of a specific attack. As for the alert correlation
graph, the application domain are very different as it is meant to avoid or reduce
intrusion within a system. Finally, the priviledge graph’s philosophy intersects with
ours as we try to show how an attacker grants priviledges and critical information
throughout its comunications with other actors of a system. It would be possible
to add probabilities in the priviledge graph in order to calculate the probabilities
to reach an unsafe state. But in our work, having a separate representation of the
system allows us to have a richer vision of the system with information such as the
protocols used for communication.

2.2.3 Others

Finally, there are other approaches that couldn’t fit in a tree or graph category. In
this subsection we are giving a brief overview of influence diagrams [31], kill chains
[45] and diamond model [14]. The two following works are about intrusion analysis.
The idea behind the kill chains [45] is to completely understand an intrusion in order
to set up an adapted line of defense. The kill chains system uses indicators to describe
the attack and anticipate the attacker’s behaviour that is called a "kill chain". Then,
considering the defense capabilities, it helps choosing the most appropriate one and
finally to measure its efficiency. This work is about having a very specific and adapted
way of describing the attacker’s moves and the dammages they create in the audited
system.
The diamond model [14] is a highly adaptable model meant for intrusion analysis,
meant to express insider and external threats. It uses a formal description that can
be generic and flexible and, by allowing to capture important information about the
intrusion, eases decision making. The diamond model represents the actions of an
attacker as events that have characteristics such as a timestamp, a result, resources,
etc ... Figure 2.4 shows an extended diamond model. It shows the core features of an
intrusion event: adversary, capabilities, infrastructure and victim. It allows to link
these features to fully understand the extent of an intrusion.

Figure 2.4: The diamond model of intrusion

2.3 Statistical Analysis
As the end goal is to calculate the chances of success of an attack, our work includes a
statistical analysis part. We performed this analysis using a statistical model checker.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

2.3. Statistical Analysis 17

In this section we give an overview of what model checking, how it evolved and other
verification techniques in Subsection 2.3.1. We follow by explaining what is a rare
event in Subsection 2.3.2 as some of our attacks are rare events.

2.3.1 Statistical Model Checking

Model checking is an automatic verification technique destined to finite state systems.
The original model checking method was developped by Clarke and Emerson in 1981
[16]. The goal was to automatically verify finite-state reactive systems. The specifi-
cations to check were expressed using temporal logic, and the systems were modeled
as state-transition graphs [15]. But these first model checkers were limited to small
examples as they experienced state explosion problems on larger models. This diffi-
culty was overcome by the use of ordered binary decision diagrams [11]. With this
new technique, the transition relation of the system were expressed using a boolean
formula and then converted to a binary decision diagram, that allowed to have a very
concise expression of the transition relation. This new method is called symbolic
model checking [12].
With these methods is it impossible to quantify the impact of changes made in the
model. Indeed, making changes in the design can completely change the outcome of
the verification. To be able to quantify the impacts of these changes, a finer analysis
is necessary. Using probabilistic model checking, instead of a boolean response (the
system verifies the specification or not), it is possible to measure the likelihood of a
system to satisfy a property, using tools such as PRISM [39]. It is also now possible
to add features such as real time in specifications. In fact, in some cases it is equally
important to know when the situation occurs: this is what motivated the creation of
the timed model checking methods with tools such as UPAAL [43].
Other verification techniques exist such as for instance theorem proving [35]. Theo-
rem proving is a formal method of verification in which we use specifications, written
using a mathematically based notation, and then we verify if the specifications are
satisfied. Completely checked systems using this method can be produced when the
systems are small. Compared to this method, model checking is completely auto-
matic and faster. Other methods [28] include RSML (Requirement State Machine
Language) that is based on hierarchical finite state machine and decompose the spec-
ification into a state hierarchy. This decomposition makes it easy to use on large and
complex systems but it is not flexible in language design and we couldn’t use it for
statistical analysis. Another formal method is Independant Verification and Valida-
tion, used to analyze partial informal specifications. It can be used for instance on
fault detections.
When comparing these verification methods,the result is that model checking offer
the biggest flexibility in terms of language specifications. It is also the only method
that allowed us to perform statistical analysis.

2.3.2 Rare Events Analysis

A rare event is an event that has a very low probability to happen. Rare events
simulation is important is the world of physics to answer question such as "what
is the probability of collusion between a satellite and a spatial debris?". Two main
algorithms can be used to perform rare event simulations: importance splitting and
importance sampling. Both are variant of the Monte Carlo algorithm citeimportance-
Splitting. In our work, we use the importance splitting method that we explain in
more details in the Subsection 5.1.1. The first mention of importance splitting is in

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

18 Chapter 2. State of the art

[36], where the algorithm is used to calculate the probability that neutrons would
pass through certain shielding materials.
Concerning the importance sampling, we find an approach similar to ours in [61], but
transposed into a different area. Instead of security, this work tends to estimate the
probabilities of failure of an industrial system, even though they are a rare event.
Instead of attack trees, they use dynamic fault trees. As we saw previously, fault
trees are used in reliability and safety analysis by showing how component failures
can combine to cause system failures. Dynamic fault trees, used in this work, are
an extension of the standard fault trees and include additionnal information such as
different repair policies with periodic inspections, periodic replacements, ... and allow
to model common patterns in dependability models. Unlike our work, probabilities
are included in the dynamic fault tree that shows the different paths that lead to a
system failure. Once the tree complete, they perform statistical analysis using the
importance sampling algorithm. Importance sampling, operates a change of measure
that modifies the probability distribution of the random variables in the model in
order to make the target event happen more frequently. The final probabilities are
computed using a likelihood ratio, that keeps track of the error by being updated every
time the simulator draw a sample from a random variable. The fact that this work
uses a tree structure to model issues, together with a rare event analysis matches our
approach. But as application areas differ, so do methodologies. The use of dynamic
fault trees is adapted to the industrial domain but could not be used in the security
area. As for the sampling method, the difficulty is to find a good change of measure,
and it requires to have an idea of the statistical results in order to adjust the change of
measures. In our case, we don’t know in advance what probabilities we are supposed
to have. Another main difference is that we completely separate the system model
and the attack representation. So for a given model, we can use different attack trees
that represent various attacks. In this work, a fault tree represents all the possible
failures of one system.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

19

Chapter 3

Security Oriented Modeling
Language

This chapter aims to introduce the IoT Security Oriented Modeling Language (IoT
SOML). Here we describe the language from an abstract point of view.
This chapter is built as follow: first we introduce in Section 3.1 a simple use case that
will be used throughout this part as a running example. It will allow us to illustrate
the concepts we introduce in this chapter in a more concrete manner. Then, we
present the IoT SOML language. For clarity reasons we chose to divide it in two parts.
The first part, in Section 3.2, describes the language, leaving apart its probabilistic
aspect. We give an overview of the language and its general concepts before going into
the details of its abstract syntax and operational semantics. Section 3.3 integrates
probabilities to the language, as well as some new concepts that become necessary
in order to perform probabilistic analysis on an IoT model. We present the updated
abstract syntax, the concrete syntax and operational semantics of the language and
illustrate them using the running example.
IoT SOML is able to describe an IoT model, and it also includes its interactions with
malicious persona performing an attack on it. In order to better describe the attack
that can take place within the IoT model, we step aside from the model and delve
into the details of the attack description in Section 3.4. We start by introducing the
attack tree via its graphical form, and we give an equivalent formal representation.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

20 Chapter 3. Security Oriented Modeling Language

3.1 Running Example
In this section we introduce an example involving a system and an attacker. This
simple model is used as a running example throughout this chapter. It will be used to
illustrate the concepts of the IoT Security Oriented Modeling Language (IoT SOML),
as well as how an attack against the system can be carried out. The aim of this exam-
ple is to show the nominal behaviour of a system in Figure 3.1. Then we introduce the
running example represented in Figure 3.2, by modeling a successful attack performed
on the system by an attacker.

Figure 3.1: System Example: Nominal Behaviour

Figure 3.2: Running Example: Successful Attack

We consider an IoT system composed of an employee and a server. The employee
has the server password and therefore can communicate with it via http requests.
The nominal behaviour of this system is shown in Figure 3.1 and is composed of a
communication between the employee and the server. It consists of an exchange of
information between the two of them.
In the second example in Figure 3.2, we now assume that an attacker wants to gain
access to the server. In the attack scenario, the attacker first sends a phishing email to
the employee. The employee answers the email and by doing this, leaks his password.
The attacker can now communicate with the server, using the stolen password, and
therefore access the confidential information.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.2. IoT Security Oriented Modeling Language 21

3.2 IoT Security Oriented Modeling Language
In this section, we introduce the IoT SOML, leaving out its probabilistic aspect. We
first give an overview of the language by detailing the general concepts it contains and
explaining the modeling choices we made in Subsection 3.2.1. Then, in Subsection
3.2.2, we give the language a formal perspective by defining its abstract syntax. In
Subsection 3.2.3 we make preliminary explanations for the operational semantics by
defining an equivalence relation.
Finally, in order to understand how IoT SOML behaves when it is executed we detail
its operationnal semantics in Subsection 3.2.4 and illustrate it using the running
example in Subsection 3.2.5.

3.2.1 Language General Concepts

IoT SOML describes a system as a set of entities that exchange information, using
different means of communication. The main elements of our language are the en-
tities: they can be either human or connected objects. In the running example we
distinguish three entities: the employee, the server and the attacker. An entity has
several attributes as we can see in Figure 3.3.

Figure 3.3: Entity Description

An entity has a status which can either be internal or external. An internal entity
is part of the system, while an external entity is a malicious entity that does not
belong to it. An external entity will get in contact with the system in the attempt of
stealing, successfully or not, sensitive information. In the running example, the inter-
nal entities are the employee and the server. The attacker is external to the system
and communicates with the employee for the sole purpose of gaining unauthorized
access to the server.
An entity also possesses a number of information. This information represents the
knowledge of the entity. This data can be either part of its original knowledge: the
entity knows them from the start. For example, when the employee is created he
already knows his password and his email address. But the knowledge is not static
and can be expanded as additionnal information are acquired through the exchanges
between the entities. This allow us to model the gains of access of the entities whether
they are internal or external. For instance, the attacker only knows the email of the
employee at the start. But as he communicates with internal entities, the attacker
expands his knowledge and the new information he acquires provides him new ac-
cess. For instance, we can see that through the leak of the employee’s credentials,
the attacker is then allowed to communicate with the server and can possibly access
confidential information of the server.
Each data of the system has a category. In the running example we have four data

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

22 Chapter 3. Security Oriented Modeling Language

categories: email address, credentials, message and confidential data. The assigne-
ment of a category to each data is made at the creation of the system, and it is
possible for the user to create as many categories as he deems necessary.
Concerning the interactions within the system: they can only happen between enti-
ties. Each communication is based on a protocol. Protocols integrate a verification
on a certain category of data. For instance, the email protocol verification is based
on the email addresses. So, for a communication based on the mail protocol to be
possible, both entities must possess the email address of the receiver as part of their
knowledge. This is a strong requirement and if this condition is not met, the entities
cannot communicate.
Through the different interactions existing between entities, we specify a behaviour
for each of them. The behaviour is defined as a set of ordered actions. There are
5 types of actions: Send, Receive, Leak, Collect and Internal. The Send/Receive
couple represents the usual communication between two entities when they exchange
information and is supported by a protocol. The receiver extends his knowledge with
the data he receives. Informally, the actions consists of the following tuples:

Send : {Sender, Receiver, Protocol, Data}

Receive : {Sender, Receiver, Protocol}

The Leak/Collect actions happen between an internal and an external entity. They
represent an external entity gaining access to information it is not suppose to. For
example, when the employee clicks a link on the phishing email, he leaks his password,
which is added to the attacker’s knowledge. This communication does not go through
a protocol. We express it this way:

Leak : {Sender, Receiver, Data}

Collect : {Sender, Receiver}

We decided to differentiate information obtained "legally" and information leaked to
the Attacker for several reasons. First we made the choice to make some vulnerabili-
ties of the system explicit. Secondly, the leak/collect type of verification is not based
on a protocol and therefore does not include any verification. This has consequences
for the attacker or other external entities who are always able to collect information
as this type of communication cannot be blocked.
Finally, the internal action represents a lack of communication, it can represent an
internal action that an entity does without the participation of other entities:

Internal : {}

For example, if the employee ignores the phishing email, we represent it using an
internal action.

3.2.2 Abstract Syntax

The model is composed of a set of entities E that have a unique identifier. We use e1,
e2,. . . to denote the different identifiers. The entities communicate with each others,
sometimes using a set of protocols C. We use c1, c2,. . . . to designate them. Let Val
be a set of values, described by v1, v2, . . . that can be exchanged within the system.
The behaviour of an entity is modeled by a CCS-like process [49]. The syntax of the
process is given in Figure 3.4.

The language includes 0, that performs no action. The a.P performs an action a
and continues as P . a.P + b.Q behaves as either a.P or as b.Q. We use it to model

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.2. IoT Security Oriented Modeling Language 23

Process P ,Q ::= 0 | a.P | a.P + b.Q | A
Action a, b ::= e1

c1−→
v1

e2 Send

|e2
c1←− e1 Receive

|e1 −−−�
v1

e2 Leak

|e2 � e1 Collect

|τ Internal

Definition A
def
= P

Figure 3.4: Syntax of the core IoT-calculus

a choice, so it is up to the system to decide.
We use guarded sum here. This means that the process is always preceded by an
action: we write a.P + b.Q instead of P +Q. This implies that we can’t write 0+Q,
however we can express a.0 + b.Q or just b.Q. This notation is motivated by the
fact that as future work, the language will be augmented with probabilities, similarly
to [25]. A is a definition of a (potentially recursive) process. In Figure 3.5 we can see
an example of a recursive process.

A = a.A+ b.B
B = b.A

Figure 3.5: Example of a recursive process

Entities communicate using the Send, Receive, Leak and Collect actions. During
a communication entities can exchange values. In order to add the received values
under the right protocol in the receiver’s knowledge, we define a function
protocol : Val→ C
An entity e1 can send to another entity e2 a value v1 using the protocol c1. The entity
e2 which receives a value has only to specify the identity of the participants, e1 and
e2, and the protocol c1. A leak action is another type of send, where the participants
do not need to agree on a protocol. Finally, a collect is the counterpart of receiving
in the case of a leak.
τ is an internal action, which is useful in our language for the sum construct. When
an entity has a choice in the action to perform, as in a.P + τ .Q, it either can do the
action a or not. In the latter, the internal τ action is performed instead. However,
nothing prevents a user to write a process of the form τ .P . This can represent, for
instance, an internal action that is not relevant for our model and it can be a way to
abstract these kinds of actions.
All interactions contain two entities: the sender and the receiver. This allows us to
check whether the receiver of the message is the one that was intended.
Entities’ knowledge is not fixed, it can expand through the interactions of the actors
of the system. A knowledge function associates to each entity and each protocol a
subset of values, K : E ×C → P(Val). For simplicity we write ki for the function
K(ei) : C → P(Val) and kci for the set of values "known" by entity i under protocol

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

24 Chapter 3. Security Oriented Modeling Language

c.

3.2.3 Preliminaries for Operational Semantics

Here we describe some notions that will help us later define the operational semantics.
We define an equivalence relation on processes, denoted ≡P⊆ P × P as the

smallest equivalence relation which includes:

• commutativity and associativity laws for +:

P +Q ≡P Q+ P

(P +Q) +R ≡P P + (Q+R)

• the unfolding law: A ≡P P if A def
= P

• and is a congruence

P ≡p Q ⇐⇒ P +R ≡p Q+R

Each entity has, at any state of its computation, a running process and a knowledge.
The (global) state of the system consists of the parallel composition of all entities
states i.e. s1 | · · · | sn, where si is the current state of the entity ei. Formally, the
grammar of states is:

s ::= ∅
∣∣∣∣ 〈P , k〉

∣∣∣∣ s | s.
We also introduce a congruence relation on states ≡s⊆ s× s, as the smallest
equivalence relation which:

• inherits the congruence on processes:

P ≡P Q ⇐⇒ 〈P , k〉 ≡s 〈Q, k〉

• includes the commutativity, associativity and the identity laws for |:

s|t ≡s t|s
(s|t)|q ≡s s|(t|q)
s|∅ ≡s s

• and is a congruence

t ≡s t′ ⇐⇒ s|t ≡s s|t′

3.2.4 Operational Semantics

The operational semantics of the language explains how the formal language that we
have defined previously will be executed.
The operational semantics of the system is defined by the inference rules of Figure 3.6.
The system can execute a SendReceive interaction between two entities e1 and e2 if
they agree on the protocol c1 and if they satisfy the constraint imposed by the proto-
col: the sender has a value in its knowledge that is also known by the receiver. The

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.2. IoT Security Oriented Modeling Language 25

values received by entity e2 is added to its knowledge under the protocol c1. The
interaction LeakCollect is similar, except that there are no protocols or constraints to
be checked. Note that both the identity of the sender and the receiver are specified
in an interaction.
The rules Internal and Sum allow to do an internal action and make a non determin-
istic choice, respectively.

SendReceive
〈e1

c−→
v′
e2.P1, k1〉|〈e2

c←− e1.P2, k2〉

→ 〈P1, k1〉|〈P2, kc′
2] {v′}〉

∃v ∈ kc1 s.t. v ∈ kc2, c′ = protocol(v′)

LeakCollect 〈e1 −−−�
v′

e2.P1, k1〉|〈e2 � e1.P2, k2〉

→ 〈P1, k1〉|〈P2, kc′
2] {v′}〉

c′ = protocol(v′)

Internal
〈τ .P , k〉 → 〈P , k〉

Sum
〈Pi, ki〉|〈Pj , kj〉 → 〈P ′i , k′i〉|〈P ′j , k′j〉

〈Pi +Qi, ki〉|〈Pj +Qj , kj〉 → 〈P ′i , k′i〉|〈P ′j , k′j〉

Par
s→ s′

s | t→ s′ | t

Congruence
s ≡s t→ s′ ≡s t′

s→ s′

Figure 3.6: The operational semantics of an IoT system

The two remaining rules Par and Congruence are on states and ensure that the
rules can proceed regardless of the syntactical form of the system.

3.2.5 Operational Semantics Application on Running Example

Let’s see now the operational semantics of our running example.

Example 1. Let E = {attacker , server , employee} be three entities which communi-
cate with each other using five protocols C = {http, mail, message, credentials, confidentialData}.
The employee has access to the confidential data stored in the server thanks to his
credentials, using the http protocol. The attacker wants to get access to these con-
fidential data, therefore he must first steal the employee’s credentials (as we saw in
Figure 3.2).

• Employee :
At the beginning the employee knows his email address and his credentials to
access the server information. Whoever has his email address can communicate
with him.
Concerning his behaviour, he receives an email from the attacker . He then has

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

26 Chapter 3. Security Oriented Modeling Language

the choice between leaking his credentials or ignoring the attacker’s email.
Below is a formal representation of the employee’s behaviour and knowledge:

Employee =employee mail←−−− attacker .(employee −−−−−−−−−−−−−−�
employeeCredentials

attacker .Employee

+ τ .Employee)
kemployee ={mail = {employeeEmail},

message = ∅,
credentials = {employeeCredentials},
confidentialData = ∅,
http = ∅}

• Server :
The initial knowledge of the server is composed of the confidential information
and of a set of credentials. The credentials belong to the entities with authorized
access to the confidential information.
If the attacker manages to steal some credentials he will send a request to the
server. Following this request the server can either send him the confidential
information or ignore the request.
Formally, it becomes:

Server =server http←−− attacker .(server −−−−−−−−−−−−�
secretInformation

attacker .Server+ τ .Server)

kserver ={mail = ∅,
message = ∅,
credentials = {employeeCredentials},
confidentialData = {secretInformation}
http = ∅}

• Attacker :
Initially, the attacker ’s knowledge is composed of the employee’s email and
of different messages he plans on sending the other entities (for instance the
content of the email he sends to the employee).
We define his behaviour the following way: he can choose to either send an
email to the employee or a http request to the server .

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.2. IoT Security Oriented Modeling Language 27

Here is how we formally represent the attacker ’s behaviour and knowledge:

Attacker =attacker mail−−−−−−−−−→
giveCredentials

employee.Attacker+

attacker http−−−−−−−−−−−−−→
giveConfidentialData

server .Attacker+

attacker � employee.Attacker+ attacker � server .Attacker
kattacker ={mail = {employeeEmail},

message = {giveCredentials, giveConfidentialData},
credentials = ∅,
confidentialData = ∅
http = ∅}

Let’s see now how we represent a successful attack towards the system.

1. First, the attacker sends an email to the employee:

〈Attacker, kattacker〉 | 〈Employee, kemployee〉 →
〈Attacker, kattacker〉 | 〈PE , k′employee〉

where
PE = employee −−−−−−−−−−−−−−�

employeeCredentials
attacker .Employee+ τ .Employee

and where the knowledge of the employee changes:

k′employee =mail = {employeeEmail},
message = {giveCredentials},
credentials = {employeeCredentials},
confidentialData = ∅
http = ∅}

2. Once he receives the attacker’s email, the employee has two options:

2. a) He can leak his credentials to the attacker:

〈Attacker, kattacker〉 | 〈PE , k′employee〉 →
〈Attacker, k′attacker〉 | 〈Employee, k′employee〉

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

28 Chapter 3. Security Oriented Modeling Language

In this case, the attacker’s knowledge is changed once he acquires the credentials
:

k′attacker ={mail = {employeeEmail},
message = {giveCredentials, giveConfidentialData},
credentials = {employeeCredentials},
confidentialData = ∅
http = ∅}

2. b) or ignore the email:

〈Attacker, kattacker〉 | 〈PE , k′employee〉 →
〈Attacker, kattacker〉 | 〈Employee, k′employee〉

Here, the knowledge of the Attacker remains the same

3. Now the attacker decides to interact with the Server

3. a) Following 2.a, if the Attacker managed to steal the Employee’s credentials, he
can successfully communicate with the server. The attacker sends a http request
to the server in order to access the confidential information.

〈Attacker, k′attacker〉 | 〈Server, kserver〉 →
〈Attacker, k′attacker〉 | 〈PS , k′server〉

where PS = server −−−−−−−−−−−−�
secretInformation

attacker .Server+ τ .Server
and where the knowledge of the Server changes:

k′server ={mail = ∅,
message = {giveConfidentialData},
credentials = {employeeCredentials},
confidentialData = {secretInformation}
http = ∅}

3. b) Following 2.b, the Attacker doesn’t have the Employee’s credentials. The At-
tacker doesn’t have the mandatory information for a http communication with
the Server. The scenario stops here and the Attacker goes back to his initial
state, with his knowledge remaining unchanged.

4. Following 3.a, the Server has received the Attacker’s request and the
Server can leak the confidential information to the Attacker:

〈Attacker, k′attacker〉 | 〈PS , k′server〉 →
〈Attacker, k′′attacker〉 | 〈Server, k′server〉

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.2. IoT Security Oriented Modeling Language 29

In this case, the Attacker’s knowledge evolves and includes the secret informa-
tion of the Server:

k′′attacker ={mail = {employeeEmail},
message = {giveCredentials, giveConfidentialData},
credentials = {employeeCredentials},
confidentialData = {secretInformation}
http = ∅}

or refuse to leak them:

〈Attacker, k′attacker〉 | 〈PS , k′server〉 →
〈Attacker, k′attacker〉 | 〈Server, k′server〉

In this case, the knowledge of the Attacker remains unchanged.

From the moment the attacker has the confidential information in his knowledge,
we consider the attack to be a success.

Another way for the execution to stop is with a deadlock. To better understand
this, let’s consider an alternative scenario, where the behaviour of the Attacker is
slightly different:

Attacker =attacker mail−−−−−−−−−→
giveCredentials

employee.Attacker+

τ .attacker http−−−−−−−−−−−−−→
giveConfidentialData

server .Attacker+

attacker � employee.Attacker+ attacker � server .Attacker
kattacker ={mail = {employeeEmail},

message = {giveCredentials, giveConfidentialData},
credentials = ∅,
confidentialData = ∅
http = ∅}

In this new behaviour, the action of sending a request to the Server is preceded
by an internal action τ .
Consider now the section 3.b of the previous scenario: the Attacker wants to send
a request to the Server without having the credentials. The Attacker starts by per-
forming the action τ . The next possibility for him is attacker http−−−−−−−−−−−−−→

giveConfidentialData
server .Attacker. But this is not an option as this communication is forbidden by
the protocol verification. Therefore, the Attacker is stuck in a behaviour: he can’t
perform his only possible action. The whole system is stuck in a state and has no
other option than to stop. The execution’s interruption is reported by a deadlock.

Going back to the part 2.a of the attack scenario, we formally explain the behavior
of the Employee in Figure 3.7.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

30 Chapter 3. Security Oriented Modeling Language

〈e
m

pl
oy

ee
−−
−−
−−
−−
−−
−−
−−
−�

em
p
lo
y
ee
C
r
ed
en
ti
a
ls

at
ta

ck
er

.E
+
τ
.E

,k
e
〉|〈

at
ta

ck
er

�
em

pl
oy

ee
.A

+
...

,k
a
〉

e 1
+
e 2
≡
p
e 2

+
e 1

C
om

m
ut

at
iv

it
y

〈e
1
+
e 2

,k
e
〉≡

s
〈e

2
+
e 1

,k
e
〉

C
on

gr
ue

nc
e

〈e
1
+
e2

,k
em

pl
oy

ee
〉|A
≡
s
〈 e

2
+
e1

,k
e
〉|A
→
〈E

,k
e
〉|〈
A

,k
a
〉

C
on

gr
ue

nc
e

〈e
1,
k
e
〉|〈

at
ta

ck
er

�
em

pl
oy

ee
.A

,k
a
〉→
〈E

,k
e
〉|〈
A

,k
′ a〉

Su
m

w
he

re
e 1

=
em

pl
oy

ee
−−
−−
−−
−−
−−
−−
−−
−�

em
p
lo
y
ee
C
r
ed
en
ti
a
ls

at
ta

ck
er
.E

an
d
e 2

=
τ
.E

an
d
w
he

re
th
e
fu
ll
be

ha
vi
or

of
th
e

at
ta

ck
er

ca
n
be

w
rit

te
n

A
=

at
ta

ck
er

m
a
il

−−
−−
−−
−−
−−
→

g
iv
eC
r
ed
en
ti
a
ls

em
pl

oy
ee
.A

+
at

ta
ck

er
h
tt
p

−−
−−
−−
−−
−−
−−
−−
−→

g
iv
eS
ec
r
et
I
n
f
o
r
m
a
ti
o
n

em
pl

oy
ee
.A

+
em

pl
oy

ee
�

at
ta

ck
er
.A

+
se

rv
er

�
at

ta
ck

er
.A

.
B
ut

fo
r
cl
ar
ity

re
as
on

s,
w
e
sh
or
te
n
it

to
:

A
=

em
pl

oy
ee

�
at

ta
ck

er
.A

+
...

W
e
al
so

ap
pl
y
th
e
C
om

m
ut
at
iv
ity

an
d
C
on

gr
ue
nc
e
ru
le
s
on

th
e

at
ta

ck
er
’s
be

ha
vi
ou

r
in

or
de
r
fo
r
its

ac
tio

ns
to

be
in

th
e
rig

ht
or
de
r.

B
ut

w
e
do

n’
t
w
rit

e
it

ex
pl
ic
ite

ly
as

w
e
di
d
fo
r
th
e

em
pl

oy
ee

be
ha

vi
or

fo
r
th
e
fig

ur
e
to

be
cl
ea
re
r.

F
ig

ur
e

3.
7:

Fo
rm

al
de

sc
rip

tio
n
of

Em
pl
oy
ee

be
ha

vi
ou

r

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.3. Probabilistic IoT Security Oriented Modeling Language 31

3.3 Probabilistic IoT Security Oriented Modeling Lan-
guage

IoT SOML alongside with Statistical Model Checking are used to determine the
chances of a given attack to succeed on a system. This requires to integrate probabil-
ities on the actions of the entities. We present the extended version of the abstract
syntax in Subsection 3.3.1 and operationnal semantics as well as new concepts needed
to handle the probabilities in Subsection 3.3.2. Then, in Subsection 3.3.3 we apply the
new operational semantics on the running example to illustrate the changes made in
the language. Finally, in Subsection 3.3.4 presents the concrete syntax and describes
how we defined the grammar of the IoT Modeling Language, based on the formal
rules we set in the previous subsections.

3.3.1 Extended Abstract Syntax

As in section 3.2, each entity has a unique identifier, denoted by e1, · · · en and a
running process. The grammar of processes is defined in Figure 3.8.
We write C for a set of protocols, ranged over by c and Val for a set of values ranged
over by v. We handle the knowledge of the entities, protocols and their inherent
verifications the way we did before. The actions of a process remain unchanged and
we still distinguish between "safe" interactions consisting in sending and receiving
values and the ones that can potentially lead to security issues.
A new concept is expressed in the grammar: the threads. Processes are composed
of threads, which can only do sequential computations. In the former definition, the
processes were composed of only one thread. This means that when an entity engaged
in a behaviour, it had to execute all the successive actions in the order defined by
the behaviour, and it was a blocking process. They could not start the behaviour
and move on to another one before it was completed. Now, the entities can engage in
several parallel set of actions. In addition, when an entity has several options about
the actions to perform, the choice was previously made internally at the runtime. Now
this choice is made explicitly through the choice function, that calculates a random
number.
We write 0 for the inactive process and A for the (recursive) definitions of threads.
Actions are equipped with a probability, denoted by [n]a, for an action a and a
probability n ∈ [0, 1]. Threads can therefore do a probabilistic choice between actions,
with the restriction that the sum of the probabilities of all available actions is 1. If
there is only one available action, its probability is 1 and can be omitted.

3.3.2 Operational Semantics

Each entity has, at any state of its computation, a running process P and a knowledge
k. The global state of the system consists of the parallel composition of all entities
states s1 | · · · | sn, where si is the current state of the entity ei.

In this semantics, a probabilistic choice is always resolved locally, using the
Choice rule. A transition derived by the Choice rule is considered internal and
is labeled τ . A process can also do internal transitions using the Internal rule.

The semantics of the probabilistic language includes new elements. First, tran-
sitions now include two labels: a probabilistic one that provides the chances for the
action to happen and another one that indicates whether the transition is a Send/Re-
ceive or a Leak/Collect.
Then, there is a Congruence rule that extends the congruence relation of Section

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

32 Chapter 3. Security Oriented Modeling Language

Process P ,Q ::= T | P | Q

Thread T ,U ::= 0 | A |
∑
i∈I

[ni]ai.Ti where ni ∈ (0, 1],

∑
i∈I

ni = 1

Action a, b ::= e
c−→
v
e′ Send

|e c←− e′ Receive

|e −−�
v

e′ Leak

|e� e′ Collect

|τ Internal

Definition A
def
= T

State s ::=∅ | 〈P , k〉 | s p s.

Figure 3.8: Syntax of the probabilistic IoT-calculus

3.2, by also including the associativity and the commutativity for |, the identity ele-
ment ∅ for |.
The congruence relation on the states remains unchanged.
Another new rule is the ParProc rule that allows one to use congruence and parallel
composition on processes to derive transitions.
And finally the rules for the global states, ParState, shows how we choose a global
transition from several local ones using an uniform distribution. We rely on two aux-
iliary functions, countτ and countSR,LC that count the number of local transitions with
labels τ and labels SR (Send/Receive), LC (Leak Collect), respectively. A probabilis-
tic choice is made between all available transitions.

Definition 1 (Counting τ transitions from a state). The functions countτ : State→
N and count_procτ : Proc→N are defined as follows:

countτ (s|t) =countτ (s) + countτ (t)
countτ (〈P , k〉) =count_procτ (P)

count_procτ (0) =0
count_procτ (α.P) =0 if α 6= τ

1 if α = τ

count_procτ (
∑

αi.Pi) =
∑

count_procτ (αi.Pi)
count_procτ (P | Q) =count_procτ (P) + count_procτ (Q).

For counting the number of interactions, we have first to rewrite a state such that
it is always in the following canonical form:

s ≡sS | sR | sL | sC where sS =〈P S
1 , kS1 〉 | · · · 〈P S

nS , kSnS〉
sR =〈PR

1 , kR1 〉 | · · · 〈PR
nR, kRnR〉

sL =〈PL
1 , kL1 〉 | · · · 〈PL

nL, kLnL〉
sC =〈PC

1 , kC1 〉 | · · · 〈PC
nC , kRnC〉

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.3. Probabilistic IoT Security Oriented Modeling Language 33

Choice
〈
∑
i∈I

[ni]ai.Ti, k〉
[ni]−→
τ
〈ai.Ti, k〉

Internal
〈τ .P , k〉 [1]−→

τ
〈P , k〉

SendReceive
〈e1

c−→
v′
e2.P1, k1〉|〈e2

c←− e1.P2, k2〉
[1]−→

SR:v′
〈P1, k1〉|〈P2, kc′

2] {v′}〉
∃v ∈ kc1 s.t. v ∈ kc2, c′ = protocol(v′)

LeakCollect
〈e1 −−−�

v′
e2.P1, k1〉|〈e2 � e1.P2, k2〉

[1]−→
LC:v′

〈P1, k1〉|〈P2, kc′
2] {v′}〉

c′ = protocol(v′)

ParProc
〈Pi, ki〉|〈Pj , kj〉

[n]−→
l

〈P ′i , k′i〉|〈P ′j , k′j〉

〈Pi | Qi, ki〉|〈Pj | Qj , kj〉
[n]−→
l

〈P ′i | Qi, k′i〉|〈P ′j | Qj , k′j〉

Congruence
s ≡s t

[n]−→
l
s′ ≡s t′

s
[n]−→
l
s′

ParState
s

[n]−→
l
s′

s|t [1/m.n]−→
l

s′|t
m = countτ (s|t) + countSR,LC(s|t)

Figure 3.9: The operational semantics of a probabilistic IoT system

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

34 Chapter 3. Security Oriented Modeling Language

and where P S
i ≡ a.P and the action a is a send; nS is the number of processes of

the form above in s and i ∈ [1;nS]. Similarly we define the rest of the processes.
Note that if we cannot rewrite a state in this form then the rule ParState cannot
be applied. Moreover entities can only communicate with other entities, that is
interactions are not defined internally to an entity. We therefore only need to count
interactions between entities.

The function countSR,LC uses an auxiliary function · : action → action which
defines an action a which can synchronise with a using the rules SendReceive or
LeakCollect.

Definition 2. Let s ≡ sS | sR | sL | sC be a state in a canonical form. The function
countSR,LC : State→N is defined on s as follows:

countSR,LC(sS | sR | sL | sC) = countSR(sS , sR) + countLC(sL | sC)
countSR(〈a.P , k〉 | s, t) = count(a, t) + countSR(s, t)
countLC(〈a.P , k〉 | s, t) = count(a, t) + countLC(s, t)

count(a, 〈b.P , k〉 | t) = 1 + count(a, t) if a = b

= count(a, t) otherwise

The operational semantics of Figure 3.9, defines a transition system (S,T ,L, s0)
where we write S for a set of states, ranged over by s with s0 the initial state, L ⊆
{τ}∪ ({SR, LC}×Val) for a set of labels, ranged over by l, and T ⊆ S× [0, 1]×L×S
for a set of transitions, where each transition is decorated by a probability and by a
label.

3.3.3 Operational Semantics Application on Running Example

To illustrate the new operational semantics, we use the first part of the running
example we defined earlier (see Section 3.1). We consider only the first step of the
attack: the attacker sends an email to the employee, and the employee can either
leak his credentials, or ignore the email. Using the new operational semantics we can
assign probabilities to the employee’s actions.

Figure 3.10: Probabilistic Example

Figure 3.10 shows the first part of the running example. Once the attacker has
reached to the employee, the employee can leak or ignore the email. We consider the
chances for the employee to ignore the email to be greater so we assigned a probability
of 0.8 compared to 0.2 for the leak of his credentials.

The following example is an IoT trace for the example we described earlier in
Example 3.10. This trace shows the attacker sending an email to the employee, and
the employee leaking his credentials.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.3. Probabilistic IoT Security Oriented Modeling Language 35

Example 2. We define E the behaviour of the Employee, S the behaviour of the
Server and A the behaviour of the Attacker by:

E = employee mail←−−− attacker︸ ︷︷ ︸
e1

.([n1]τ .E + [n2] employee −−−−−−−−−−−−−−−�
employeeCredentials

attacker .E︸ ︷︷ ︸
e2

)

A =[n3] attacker mail−−−−−−−−−−→
giveCredentials

employee.A︸ ︷︷ ︸
a1

+[n4] attacker http−−−−−−−−−−−−−−−→
giveSecretInformation

server .A︸ ︷︷ ︸
a2

+ [n5] attacker � employee.A︸ ︷︷ ︸
a3

+[n6] attacker � server .A︸ ︷︷ ︸
a4

The execution gives us of the following trace:

〈e1.([n1]τ .E + [n2]e2.E), ke〉|〈[n3]a1.A+ [n4]a2.A+ [n5]a3.A+ [n6]a4.A, ka〉
[n3]−→
τ

〈e1.([n1]τ .E + [n2]e2.E), ke〉|〈a1.A, ka〉
[1]−→

SR:giveCredentials

〈[n1]τ .E + [n2]e2.E, kmaile] {giveCredentials}〉|〈A, ka〉 ≡s

〈[n1]τ .E + [n2]e2.E, ke〉|〈[n3]a1.A+ [n4]a2.A+ [n5]a3.A+ [n6]a4, ka〉
[n2]−→
τ

〈e2.E, ke〉|〈[n3]a1.A+ [n4]a2.A+ [n5]a3.A+ [n6]a4, ka〉
[n5]−→
τ

〈e2.E, ke〉|〈a3.A, ka〉
[1]−→

LC:employeeCredentials
〈E, ke〉|〈A, kcredentials′

a] {employeeCredentials}〉

In the trace, we can see that a first choice is made between the attacker ’s actions and
another choice is made between employee −−−−−−−−−−−−−−−�

employeeCredentials
attacker and τ . The

probability of the trace is then n3 · 1 · n2 · n5 · 1.
Using this example, we now want to apply the count functions on the trace.
First, we need to rewrite the states for them to match the form we defined in Defini-
tions 1 and 2.
At the initial state, we have:

sS = 〈A, ka〉
sR = 〈E, ke〉
sL = 0
sC = 〈A, ka〉

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

36 Chapter 3. Security Oriented Modeling Language

Applying the count function:

countSR(〈A, ka〉 | 〈E, ke〉) = 1
countLC(0 | 〈A, ka〉) = 0
countSR,LC(sS | sR | sL | sC) = 1
countτ (〈A, ka〉) = 0
countτ (〈E, ke〉) = 0

This means that at this stage, there is only one interaction possible: a Send/Receive
communication between the attacker and the employee.
After the first step of execution, once the attacker has sent the email to the employee
and the employee has received it:

sS = 〈A, ka〉
sR = 0
sL = 〈E′, ke〉 where E′ = τ .E + e2.E
sC = 〈A, ka〉

Applying the count function:

countSR(〈A, ka〉 | 0) = 0
countLC(〈E, ke〉 | 〈A, ka〉) = 1
countSR,LC(sS | sR | sL | sC) = 1
countτ (〈A, ka〉) = 0
countτ (〈E′, ke〉) = 1

At this point there are two possibilities: a Leak/Collect interaction between the
attacker and the employee, or a τ action from the employee.

3.3.4 Concrete Syntaxe

We defined the grammar of the language using the extended Backus-Naur form
(EBNF) notation, which is the most commonly used formalism to express a grammar.
The grammar description is contained in a file, of which we can see parts in Figure
3.11, Figure 3.12 and Figure 3.13.
The grammar definition is made of two types of rules that express the correct syntax
of the language: the lexer rules and the parser rules. The lexer rules, that we can
see in Figure 3.11, specify how the basic elements of the language are represented.
For example, in Figure 3.11 we define the term "Id", in the first line, as a mix of
letters (upper or lower case) and digits, but it has to start with a letter (either upper
or lower case). The parser rules represent elements of the language made of several
other elements.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.3. Probabilistic IoT Security Oriented Modeling Language 37

Figure 3.11: Grammar Definition: Lexer rules

Before describing the syntax of the IoT language, we need to introduce a new
concept of the language: the data category. As we know every actor of the system
possesses a basic knowledge and can send and receive data in order to expand its
knowledge. We associate a category to each data. For instance in a mail communi-
cation, both actors will interact by sending each other a message and using the email
address of the receiver as verification. We associate to the value of the message a
category "message"and the same goes for the email adress with the category "email".
According to the parser rules described in Figure 3.12, an IoT file starts with the
global definition of the protocols, categories of values and values used in the system.
First we list all the protocols of the system and link each of them with a category of
value for verification. For example, the verification of the mail protocol is performed
on the email address. As we saw previsoulsy in this chapter this means that for a
communication to be possible through the mail protocol, both entities must have the
email address of the receiver on their knowledge. Then we list all the categories of
values existing in the system. Two examples of value categories are the "email ad-
dress" and the "message" both used for an email exchange. Next, we can find all the
existing values of the system and their category, for example each email address and
message circulating in the system are declared here.
These global declarations of data, categories and protocol is meant to help us dur-
ing the parsing process. It also makes possible for the actors not to have to indicate
the category of the value they send whenever they are communicating with each other.

Then we define the entities. As shown in Figure 3.12 an entity is composed of
a name that is unique and is used as an identifiers. It also consists in data decla-
rations, action declarations and a behaviour declaration. The data represents the
initial knowledge of the entity, it can be used as verification in protocols and/or it
be communicated to other entities. The actions are declared here and used later to
compose the behaviour of the entity. It is not possible to include in the behaviour of
the entity an action that was not primarily defined here. We distinguish five types
of actions, shown in Figure 3.12, with different parameters depending on their needs.
For each action, except the Internal ones we stipulate the Sender and the Receiver,
using the names of the entities involved.

Send We add the protocol that supports the communication, and the value sent.
The category of the value sent is not specified as it was defined previously
in the global values declaration.

Receive We only specify the protocol through which the communication is carried.

Leak This communication is not based on any protocol so we only specify the
value that is leaked.

Collect Here too, there is no protocol needed, so we just need to know which are the
entities involved in the communication.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

38 Chapter 3. Security Oriented Modeling Language

Internal This action represents a lack of communication so there are no parameters.

Finally, we specify the entity behaviour. A behaviour is a set of ordered actions. The
actions can be preceded by a weight, or not. The weight is what is later transformed in
probabilities when the model is executed. One entity can possess several behaviours,
but we have to precise a "main" behaviour that is the entry point.

Going back to our running example, we can see in Figure 3.13 how we define it in
IoT SOML.

3.4 Attack Representation using Attack Trees
As for now we can represent an IoT system with its internal entities performing their
nominal behaviour. We can also perform an attack on this system, using external
entities and associate probabilities to the different actors’ actions. To do so, the
behaviour of the attacker and other external entities (like Malwares, infected devices,
etc) are already described in the IoT model. This means that the IoT model expresses,
in addition to its normal behaviour, one or several successful attacks. But, so far,
nothing in our model permits to identify a successful attack, or even to be able to
tell if an attack is currently in progress: this is why we need attack trees.
In Section 2.2.1, we pointed out the benefits of attack trees and explained how they
can be used. Here, we first describe how an attack tree is built, using a visual example
in Subsection 3.4.1. Then, in Subsection 3.4.2 we give a formal representation of the
attack trees that we use in our work.

3.4.1 Attack Tree Graphical Representation

An attack tree is meant to represent an attack and the multiple steps that compose it.
The ultimate goal of the attack is expressed in the root node of the tree: it describes
when an attack succeeds. For instance, it can be for instance to access confidential
information, steal money or data. This objective is decomposed into simple actions
or steps that the Attacker must carry out in order to complete the attack.
To represent the behaviour of the Attacker we have two different types of nodes: the
internal nodes and the leaves. A leaf is a node without children and an internal node
has, in our case, two or more successors that can be either leaves, internal nodes or
both.
The leaves represent the actions carried out by the Attacker. For example, in Figure
3.14 we have four simple actions that the Attacker can choose to perform: a, b, c and
d. The internal nodes express a subgoal of the Attacker and how to achieve it. There
are two types of internal nodes: the AND node and the OR node. The AND node
means that all its children must be completed in order for the subgoal to be reached.
In the example described in the Figure 3.14, subgoal1 is completed only if actions a
and b are done. In the same way, the root is reached and the attack successful only
if subgoal1 and subgoal2 are achieved. As for an OR node, only one action among its
successors must necessarily be executed in order to complete it. In the example of
the Figure 3.14, subgoal2 is reached if c or d are taken.

3.4.2 Attack Tree Formal Representation

Syntaxic Definition of Attack Trees

Definition 3 (Attack Tree). Let ∆ ⊆ {SR,LC} ×Val be a set of events. An attack
tree t is a term constructed recursively from the set ∆ using the operators ∨ and ∧.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.4. Attack Representation using Attack Trees 39

We denote T to be the set of attack trees.
The height and the depth of the attack tree are important notions that we need

in order to perform a successful analysis of the on-going attack.

Definition 4 (Height and depth in an attack tree). The height of t, denoted h(t), is
defined recursively as follows:

h(t) =
{

1 if t ∈ ∆
1 +max(h(t1),h(t2)) if t = t1 ∧ t2 or t = t1 ∨ t2

Each node n in a tree t has a depth, defined as follows:

d(n, t) =

0 if n = t
1 + d(n, t1) if t = t1 ∧ t2 or t = t1 ∨ t2 and n ∈ t1
1 + d(n, t2) if t = t1 ∧ t2 or t = t1 ∨ t2 and n ∈ t2

Considering the attack tree t represented in figure 3.15, we can compute its height
and the depth of several nodes of its nodes.

The height of the tree t can be computed in the following way:

h(t) = 1 +max(h(t1),h(t2))

We need then to calculate the depth of t1 and t2. We define

h(t1) = 1 +max(1,h(t3)) = 3

and
h(t2) = 1 +max(h(i),h(j)) = 2

We can conclude that
h(t) = 4

Using the definition above we can compute the depth of the nodes of the tree t.
For instance we have

d(A, t) = 0

d(i, t) = 1 + d(i, t2) = 1 + (1 + d(i, i)) = 2

d(g, t) = 1 + d(g, t1) = 1 + (1 + d(g, t3)) = 1 + (1 + (1 + d(g, g))) = 3

Semantics Definition of Attack Trees

In the following definition we introduce a Boolean variable ve for every event e ∈ ∆
such that e 6= e′ ⇐⇒ ve 6= ve′ .

Definition 5 (Attack Tree Semantics). Let t ∈ T an attack tree. The semantics of t,
denoted [[t]], consists of a propositional formula defined by recursion on t as follows:

• if t ∈ ∆ then [[t]] = vt;

• if t = t1 ∧ t2 then [[t]] = [[t1]] ∧ [[t2]];

• if t = t1 ∨ t2 then [[t]] = [[t1]] ∨ [[t2]].

The semantics of an attack tree is given with respect to a valuation of the Boolean
variables. Let X : ∆ → {true, false} be a valuation for ∆, then the semantics of t

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

40 Chapter 3. Security Oriented Modeling Language

w.r.t. X, denoted [[t]](X) ∈ {true, false}, consists in evaluating the associated Boolean
formula [37].

In order to assess whether an attack was successful, we monitor the executions
of a system. Given an execution trace σ, its corresponding valuation X(σ) sets ve
to true if the event e occurred in σ. If [[t]](X(σ)) is true then the execution σ is a
successful attack of t.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

3.4. Attack Representation using Attack Trees 41

Figure 3.12: Grammar Definition: Actions and Behaviour

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

42 Chapter 3. Security Oriented Modeling Language

Figure 3.13: Grammar Example

Figure 3.14: Attack Tree Example

Figure 3.15: Attack Tree Example for Height and Depth

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

43

Chapter 4

Simulation Approach

In this chapter we focus on the transformation of an IoT model written using SOML
into an executable model (a BIP model). This BIP model connects the attack model
and the IoT system model.
We start by introducing in Section 4.1 the BIP language, first formally and then using
a concrete syntax. We study several aspects of the BIP language such as how BIP
components communicate with each other, or how to write a BIP file.
Section 4.2, shows the differents elements of the transformation. After an overview of
the technical implementation of the parser we see how the transformation is operated,
from an IoT system model to a BIP model. This transformation has a formal repre-
sentation, which we develop in Section 4.3. We also detail the bisimulation between
the two languages, first formally, and then using an example for a more concrete
explanation.
Finally, Section 4.4 explains how the attack tree is turned into a BIP component and
connected to the rest of the model. This will help us understand the role of the attack
tree in the modeling process.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

44 Chapter 4. Simulation Approach

4.1 BIP Language
The BIP framework is a component based model introduced in [26]. BIP stands for
Behavior, Interaction and Priority, that is, the three layers used for the definition of
components and their composition in this framework. In this section we describe the
key concepts of BIP.

BIP allows the construction of complex, hierarchically structured models from
atomic components characterized by their behaviour and their interfaces. Such com-
ponents are transition systems enriched with data. Each time a transition is taken,
component data, modeled as variables, may be assigned new values computed by
user-defined functions (in C). Atomic components are composed by layered applica-
tion of interactions and priorities.
Interactions express synchronization constraints and data transfer between the inter-
acting components. Priorities are used to filter among possible interactions and to
steer the system evolution so as to meet performance requirements e.g., to express
scheduling policies.

The use of the BIP language can be explained by the necessity of running the IoT
model we want to perform analysis on. SOML possesses an abstract and a conccrete
semantic and BIP makes possible for us to run the models with respect to those rules
we defined. Indeed, the BIP model that is generated from the SOML model behaves
in the same way as we prove it in the Subsection 4.3.3. The choice of BIP resides
in the fact that first, the key concepts of BIP makes the transformation towards an
equivalent model possible. Also, the BIP Engine and its functionnalities allows us to
run the simulations as well as to keep traces of them and therefore makes us able to
perform the Statistical Model Checking as we see in Chapter 5.

4.1.1 BIP Abstract Syntax

We consider the BIP components to be safe Petri Nets. Therefore, before going into
the details of the BIP components, we need to define the Petri Nets.

Petri Nets Introduction

Petri Nets is a modeling language for distributed systems. Petri Nets [57] are rep-
resented as state-transition systems. Petri Nets are composed of places, transitions
and arcs, as we can see in Figure 4.1. The places represent the states of the system,
transitions are actions of the system and both are connected by directed arcs. In
Figure 4.1 we identify four places: L1, L2, L3 and L4. To go from place to place we
need to pass through transitions. There are three transitions in the example: T1, T2
and T3.
Places contain a discrete number of tokens, that move from place to place with the
execution of actions. The tokens condition the transitions and can be used to model
concurrent systems. Petri Nets transitions can be labeled with weights. They repre-
sent the maximum amount of tokens authorized to go through during a transition.
In the same way, places can be labeled with a capacity that gives the highest number
of tokens that they can hold at once, this is used to model concurrent system. In our
case, we considered that both weights and capacities values are 1, as we don’t try to
mdoel concurrent systems, and therefore we don’t need to write them explicitly.
In the general case, a transition is possible when the amount of tokens hold in each
of its input places is at least equal to the weight of the arc connecting the place to

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.1. BIP Language 45

the transition. A possible transition may fire at any time. When fired, the tokens in
the input places go to output places, depending on the arc weights and output place
capacities. Each transition results in a new distribution of the tokens. The token
distributions are called markings.
The Petri Nets we consider in this subsection are called safe Petri Nets and they have
the property that no reachable markings puts more than one token in any place.

Figure 4.1: Petri Net Example

Definition 6 (Petri Net). A Petri Net consists of the tuple N = (L,L0,T ,F), where

• L is a finite set of places,

• L0 is the markings,

• T is a finite set of transitions,

• the places L and transitions T are disjoint (L∩ T = ∅),

• F ⊆ (L× T) ∪ (T ×L) is the flow relation.

The flow illustrates how the system is executed. For instance, going from L1 to
{L2,L3} is possible in two steps of execution. The first step is the one that enables
T1, and the second one executes T1 and arrives to {L2,L3}.

Example 3. Let us transcribe the example of the Figure 4.1.

N = (L,L0,T ,F)

with

L = {L1,L2,L3,L4}
T = {T1,T2,T3}
F = ({L1}, {T1}), ({T1}, {L2,L3}), ({L2,L3}, {T2}), ({T2}, {L4}), ({L4}, {T3}), ({T3}, {L1})
L0 = {L1}

We define markings as the set of functions m : L → {0, 1}. Given two markings
m1, m2 we define inclusion m1 ⊆ m2 ⇐⇒ for all l ∈ L, m1(l) ⊆ m2(l).
Now that the markings are fixed, we can simplify the definition of the Petri Net N .
We redefine transitions as a set of input places and output places: T is a finite set
of transitions T = (•t, t•), where •t are the input places of T and t• are the output

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

46 Chapter 4. Simulation Approach

places of T .
We define the token flow relation by F = {(L,T) | L ⊆ •t} ∪ {(T ,L) | L ⊆ t•},
where:

• L is a set of places

• T is a set of transitions

• •t are the input places of T

• t• are the output places of T

We consider that F can be deduced from T and therefore we define the extended safe
Petri Net by (L,L0,T).

Example 4. Using the new definition, let us transcribe the Petri Net of the Figure
4.1.

N = (L,L0,T)

with

L = {L1,L2,L3,L4}
L0 = {L1}
T = {T1,T2,T3}
T1 = ({L1}, {L2,L3})
T2 = ({L2,L3}, {L4})
T3 = ({L4}, {L1})

Definition 7 (Union of Petri Nets). We consider a set of Petri NetsNi = (Li,L0,i,Ti),
with i ∈ I, where I is a set of indexes such that I = 1, ...,n, with n the number of
Petri Nets.
We consider the union of these Petri Nets to be a Petri Net N = ∪i∈INi. N is defined
by: N = (L,L0, T), where:

• L = ∪i∈ILi

• L0 = ∪i∈IL0,i

• T = ∪i∈ITi

Preliminary Definitions

Let us have a set of data domains denoted {Di}i, including several domains, such as
N, etc.. and including the Boolean domain DBool = {true, false}.
Let us suppose that we have a set of variables V .
Let Expr be a set of operators, that we denote e1, e2, e3, ..
We denote by Expr[V] the set of expressions constructed from a set of variables V
and operators in Expr.
We designate by Asgn[V] a set of assignments to variables in V . An assignment
is denoted by v := e and included in the domain V ×Expr[V]. As an expression
is a function on a set of variables, we can write v := f(V), whenever v := e with

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.1. BIP Language 47

e := f(V) and e ∈ Expr[V].
A valuation for the variables in V is a function X : V → ∪j∈JDj which assigns values
to variables. We denote X(v) the valuation of the variable v ∈ V and X(e) the
valuation of the expression e ∈ Expr[V] according to values of V .
We distinguish between two types of variables: the deterministic variables and the
random variables, used for encoding the stochastic behavior. A deterministic variable
is assigned a value throught a function. On the other hand, a random variable v is
associated with a probability distribution µ over its valuation domain D, denoted as
v ∼ µ, where µ : D → [0, 1] and

∑
x∈D µ(x) = 1.

| · | denotes the cardinality of a set.

Stochastic Atomic Components

Let us give a formal definition of a BIP system, in particular of atomic components
and their composition.

Definition 8 (Stochastic Atomic Components). A stochastic atomic component con-
sists of the tuple B = (P ,V ,N), where

• P is a set of communication ports. We distinguish respectively input ports
P in ⊆ P , output ports P out ⊆ P and internal ports P internal ⊆ P . We assume
they are disjoint, P in ∩ P out ∩ P internal = ∅. For every port p ∈ P in ∪ P out
we denote by Xp the subset of variables exported and available for interaction
through p.

• V = V d] V p, with

– V d = {vd1 , . . . , vdn} a set of deterministic variables,
– V p = {vp1 , . . . , vpm} a set of random variables with an associated probability

distribution vpi ∼ µi, for i ≤ m.

• N = (L,L0,T) is a Petri-Net where

– L is a set of places,
– L0 ⊆ L is a set of initial places,
– T is a finite set of transitions t = (•t, 〈p, g, f〉, t•).
•t (resp. t•) represent the set of input (resp. output) places of t.
Transitions are labeled by the triple 〈p, g, f〉 where:
p ∈ P is the port triggered by t, g ∈ Expr[V] is the guard of t and
f = (fd,Rp) is the update function of t, such that
fd = {v := f(V) | v ∈ V d} ∈ Asgn[V] is a set of functions that update
the deterministic variables and Rp ⊆ V p is a subset of random variables
to be updated.

A transition is possible only if the guard is true. Note that the update for deter-
ministic variables is made via a function whereas the random variables are updated
thanks to the random function. We sometimes write pt, gt and fdt , R

p
t for the label of

a transition t.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

48 Chapter 4. Simulation Approach

4.1.2 BIP Semantics

Let us now focus on the execution of a BIP model through the semantic of its atomic
components.
We consider a SBIP component B = (P ,V ,N). P are the ports of the component,
V are its variables and N the Petri Net describing its behaviour.
B uses a transition systemM obtained from its Petri-Net N . The states inM are of
the form (m, X) where m is a marking of the Petri-Net N and where X is a valuation
of V . The random variables engender a probabilistic choice over transitions of M.
To illustrate these semantics, we use a simple example of a BIP component described
in Figure 4.2, taken from [7].

Figure 4.2: Example of a stochastic atomic component B and its
behaviour

Figure 4.2 represents a component B, which Petri Net includes two states: L1 and
L2. B has a transition going from L1 to L2 using port p and possesses a probabilistic
variable v.
At his initial state, L1, the variable v is initialized with the value x0. The transition
on p updates the random variable v according to a distribution µ. We consider the
guard on this transition to be always true, which means that p is always available.
As we can see on Figure 4.2, on the part describing the behaviour of B, there are
several possible transitions from state ({l1},x0) to states ({l2},xi) for all xi ∈ D,
where D is the valuation domain of v. The probabilities of these transitions is given
by µ.
Atomic components with random variables lead to behaviours that combine both
stochastic and non-deterministic aspects. A transition is possible if a communication
is ready on its associated port. For a given state, several ports can be available and
therefore several transitions are possible whether they are associated with random
variables or not.

Non-determinism is always resolved in SBIP to a probabilistic choice on an uni-
form distribution. To formally state this, consider a stochastic component B =
(P ,V ,N) with N = (L,L0,T) its Petri-Net and let m be a marking.

Definition 9 (Enabled). We denote with Enabled(m; X) the set of transitions in T
that are enabled by m for a valuation X:

Enabled(m; X) = {t ∈ T | •t ≤ m and X(gt) is true}.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.1. BIP Language 49

Remark that |Enabled(m;X)| can be greater than one.

In the associated semantics of B, first a transition is selected with a uniform
distribution from the set of enabled transitions. Then, the next state is selected
according to the distributions attached to the random variables.

Definition 10 (Semantics of a stochastic atomic component). The semantics of a
stochastic atomic component B = (P ,V ,N) with N = (L,L0,T) its Petri-Net and
with Xinit an initial valuation, is defined as a probabilistic transition systemM, such
that:
M = 〈Q,P ,π, q0〉, where:

• Q is the set of states, where each state (m, X) consists of m, a marking, and of
X, a valuation of the variables in V .

• P is the set of ports.

• π is a set of transitions such that π ⊆ Q× P ×Q and defined as follows:
For t ∈ T , •t ⊆ m, m′ = m \• t∪ t•, X(gt) = true.
Concerning the variables, we consider the deterministic variable vd such that
vd ∈ V d and the probabilistic variable vp such that vp ∈ Rpt , vp ∼ µ.
After the transition, both kind of variables are updated. A deterministic vari-
able uses the update function and a probabilistic variable uses the random
function.
We define the variables update by: X′ = [vd := X(fdt), vp := random(µ)].
We express t: (m, X)

pt−→ (m′, X′)

• q0 = (m0, Xinit) is the initial state.
In the Petri Net, m0 is the marking associated to L0, i.e. m0(l) = 1 ⇐⇒ l ∈ L0
and 0 otherwise.

Lastly, we defined the probability of a transition as follows:

P
(
q

p−→ q′
)
=

1
|Enabled(m; X)|

·
∏

vi∈Rp,vi∼µi
µi(X

′(vi)).

In the definition above we say that the state (m′, X′) is a successor of state
(m, X), if t is a transition of T enabled by the marking m, the guard gt evaluates
to true and the new valuation X′ on the variables V d ∪ V p is obtained by applying
fdt on the deterministic variables V d and updating the random variables in Rpt . The
probability of a transition, as explained above, is given by an uniform distribution on
the enabled interactions and by the probabilistic distribution of the random variables
updated during the interaction.

4.1.3 Interaction Between BIP Components

Now that we defined the syntax and the semantics of BIP components, let us consider
the interactions between these components. Data are transferred between components
through their external ports . For simplicity and because it is consistent with our
models, we consider the data transfer functions to be deterministic.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

50 Chapter 4. Simulation Approach

Definition 11 (Interaction between components). We consider a set of BIP compo-
nents Bi = (Pi,Vi,Ni), with i ∈ I, where I is a set of indexes.
We define an interaction between these components by: γ = (Pγ ,Gγ ,Fγ) where:

• Pγ is a disjoint set of ports: Pγ = {pi | pi ∈ Pi, i ∈ I}.
Each BIP component that takes part in the interaction has exactly one port
included on the set.

• Gγ is the global guard of the interaction. The verification is made on variables
that belong to the BIP components, thus it is defined on Vγ = ∪i∈IVi.

• Fγ is the global update function that defines the exchange of value between the
components.
Fγ = {v := F (Vγ) | v ∈ ∪i∈IV d

i }, with V d
i a set of deterministic variables such

that V d
i ⊆ Vi

Definition 12 (Composition of components). We consider a set of n BIP components
Bi = (Pi,Vi,Ni), with Ni = (Li,L0,i,Ti) and i ∈ I, where I is a set of indexes, with
I = {0, ...,n}.
We define Γ as the set of interactions between these components. The resulting of
these interactions is a composite component Γ(B1, ...,Bn) where a component B =
(Γ,V ,N)is defined as follows:

• Γ = ∪j∈Jγi is the set of interactions γi in which the components takes part,
with j ∈ J , where J is a set of indexes, and J = {0, ...,m} with m the highest
number of interactions possible.

• V = ∪i∈IVi is the union of the sets of variables from all the components Bi

• N is a Petri Net defined as N = (L,L0,T) with:

– L = ∪i≤nLi is the disjoint set of places of the component
– L0 = ∪i≤nL0,iis the disjoint set of initial places
– T is the set of transitions defined by T = {(•Tγ , 〈γ, g, f〉,T •γ)|γ ∈ Γ}

with Tγ = {ti | pi ∈ Pγ} is the set of transitions that compose the interac-
tion γ ∈ Γ.
•Tγ and T •γ represent respectively the input and output places of Tγ with:
•Tγ = ∪t∈Tγ •t = {l | l ∈ •ti, ti ∈ Tγ} and
T •γ = ∪t∈Tγ t• = {l | l ∈ t•i , ti ∈ Tγ}
Each transition is labeled using the triple 〈γ, g, f〉 where:
∗ γ is the label of the transition and includes the names of the ports
that interact and allow this transition
∗ g = Gγ ∧ (∧ti∈Tγgti) is the guard of the interactions that includes

the global guard of the transition as well as the local guards of the
transitions of each component taking part in the interaction.
∗ f = (tti∈Tγfti) ◦ Fγ is the update fonction of the interaction, where
Fγ is the global update function on the interaction, it can, for instance,
represent an exchange of value during the interaction,
and tti∈Tγfti is the disjoint union of all the local update functions
of the components that are part of the interaction. These functions
update values within the components during the transition triggered
by the interaction, but are not part of the interaction.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.1. BIP Language 51

Figure 4.3: Example of Component Composition in BIP

Illustrating this definition, Figure 4.3 shows the semantics of a BIP composition.
The first part represents the two separate components: A and B connected through
their external ports. We recall that in BIP, the transitions are triggered by the ports.
Both components have a probabilistic behaviour. For component A, the probabilistic
variable vA conditions the transition on port p1. If this transition is fired, then the
port of the component A will synchronize with the component B using either the
port p2, or port p3, depending on the value of the probabilistic variable vB. We see in
Figure 4.3, the separate behaviours of the components. On the last part of the figure,
we see the behaviour of the component C which is the result of the composition
of components A and B. Concerning the resulting behaviour of component C, two
combinations are possible: p1 − p2 or p1 − p3. The choice between these two is a
uniform choice, made by the BIP engine.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

52 Chapter 4. Simulation Approach

4.1.4 BIP Concrete Syntax

In order to better understand the transformations that we detail in the two following
sections, it seems important to know what are the concepts expressed in BIP files.
To do so, we use a simple example that represents two components, denoted A and
B. Figure 4.4 shows the BIP code of the example and Figure 4.5 shows its graphical
representation.
The BIP compiler makes it possible to use C library within the BIP code. This means
that we can use existing functions and data types, or define them in an external C
file and they are available for us to call from the BIP file.

Figure 4.4: BIP simple example code

In the BIP file of the Figure 4.4 , this is expressed by (1) the import of the C
libraries and external C file and by (2), the declaration of the external functions that
are used within the BIP file. The rest of the file is used for defining the BIP compo-
nents and their interactions.
In (3) we see the ports and connectors definition. We recall from the previous sub-
section that BIP components communicate with each other through ports. BIP offers
the possibility to define types of ports. In Figure 4.4 we define two different types of
port. The type p_data that has one integer argument and the type p no arguments.
As it does for the ports, BIP allows the definition of several kind of connectors. The

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.1. BIP Language 53

Figure 4.5: BIP simple example

connectors take as parameters all the types of ports they link and define the ac-
tions performed when the connection happens. So, we need to define a connector
that allows components to communicate by linking the types of ports we defined and
describing what occurs during the connection. In our example, the components com-
municate using only the p_data ports so the A component can send the value d to
the component B. We only need to declare one connector type: p_connector. The
p_connector type is a connector with two arguments which are two p_data ports.
This indicates that this connector type can link two p_data ports. It is possible to
declare a connector type that can link more than two ports of different types. Now
that we defined the correct arguments, which specifies the number and types of ports
that are linked, we need to describe the actions that happens when the ports are
connected. We do this in the up and down parts of the connector.
First, let’s consider the down code block. It is used to describe an exchange of in-
formation when a sender component wants to broadcast content to one or several
other components that are receiver components. In our example, the sender port s
transfers a value to the receiving port r. The up code block, provides a way to use
the connector as a port
Part (4) shows the declaration of a BIP component. When instantiating an compo-
nent of type A, we have to give it a parameter value in order to initialize the variable
d. The component A declares two ports. The first one is a p_data port preceded by
the keyword exported. This indicates that this port is able to communicate with the
outside world. This port also has a parameter which is the component variable d.
Therefore, any communication through this port involves the variable d. Depending
on A’s role in the communication, either the value of variable d is sent, either d is
updated with a received value. The second port is not exported, we call it an internal
port. It is not used in order to communicate with other components but rather to
execute an internal action.
The places represent the possible states of the component. The initial and final state
is A0 and there is an extra place: A1.
In the definition of the B type component in (5), we see several new concepts appear.
The yellow part is a guard: it is a condition for the transition to take place. Here,
the condition is on the value of the variable d that must be superior to 1. The orange
part is an update function which updates the value of the variable d at the moment
of the transition.
Finally, the part (6) shows the compound creation. Earlier, we created types of com-
ponents and ways of connecting them via the port and connector types definitions.
In the compound, we instantiate objects and execute the model. So we create two

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

54 Chapter 4. Simulation Approach

atomic components, one of type A and one of type B and compose them. For the
A component, we initialize the variable d =3. Then we create an instance of the
p_connector, called p_c, to which we give as parameters the names of the exported
ports of the components. This instance of the connector triggers the communications
between the two BIP components.

4.2 IoT Model to BIP
IoT Security Oriented Description Language is meant to model an IoT system from
a security point of view. It has a syntax of its own, as well as an operational seman-
tics. BIP allows us to run simulations of the system behaviour with respect to these
semantics rules. To be able to execute an IoT model, we decided to use the BIP
engine. To do so, we need to have a corresponding BIP model to run. Previously, we
detailed the technical functioning of the parser. In this section, we first see how we
implemented a parser, based on the concrete syntax of IoT SOML, that converts an
IoT model to a BIP model. We go into details on the parsing process by explaining
the creation of the lexer and the parser and their roles in Subsection 4.2.1.
We then delve into the details of the transformation itself, in Subsection 4.2.2 by
describing the BIP code the parser generates, depending on the IoT concepts ex-
pressed in IoT models. We illustrate the transformation using the running example
in Subsection 4.2.3.

4.2.1 Parser Implementation

After defining the concrete syntax, in Subsection 3.3.4, we need to implement a tool
that can recognize a file written using this grammar and transform it into a BIP
FIle. This tool, called a parser or a syntax analyzer, is able to identify the different
elements of the SOML file, for instance the entities or the protocol definitions. From
there it generates BIP elements as we see in more details in Subsection 4.2.2.
To create the foundations of the parser, we decided to use ANTLR4 [56]. ANTLR4
is a parser generator created by Terence Parr. There are several reasons for why we
decided to use a parser generator, and ANTLR4 in particular. First IoT Modeling
Language is evolving, and being able to generate parts of the parser automatically
for each change saved us a considerable amount of time. Using ANTLR4 also helped
us minimize the potential errors, which was important considering that these files
are the foundation of the parser. Finally, the code generated by ANTLR4 is clear
and gives us total control over multiple aspects of the parsing process such as error
reporting, error recovery, etc. ANTLR4 equally provides several output languages,
we chose to implement the parser in Java.

Therefore we used ANTLR4 to generate a parse tree and its associated tree walker.
The parse tree, also called Abstract Syntax Tree, is in charge of recognizing the gram-
mar patterns. The tree walker provides ways to exploit these patterns, for instance
by generating the corresponding BIP code. But to better understand what they
represent, let’s take a closer look to ANTLR4’s process and what parsing really is.

The parsing process results in the generation of a parse tree which requires two
steps as we can see in Figure 4.6. From the g4 file in which we specified the grammar,
ANTLR4 first creates a lexer and then a parser that are specific to the IoT Modeling
Language. The lexer, or Lexical Analyzer is in charge of transforming a sequence of
characters into a sequence of tokens. A token is a string that corresponds to a lexical
symbol, which means that it is a character sequence with an identified meaning. It

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.2. IoT Model to BIP 55

Figure 4.6: ANTLR4

consists of a pair {name; value}. The name is the category of the lexical unit and
the value may or may not be null.
Then, ANTLR4 generates the parser, or syntax analyzer. The parser’s role concerns
the second part of the analysis: from the tokens previously formed, the Parser builds
the parse tree . The parse tree records how the parser recognized the structure of
the input (the IoT file) sentences and component phrases. We can use our running

Figure 4.7: Lexing and Parsing

example to illustrate the above explanation, as shown in Figure 4.7. When describing
the system with the IoT Modeling Language we start by the global declaration of
the protocols. The running example starts with the declaration of the mail proto-
col this way: "Protocol mail checks email". The terms "Protocol" and "checks" are
fixed, unlike "mail" and "email"which are the name of the protocol and the category
of data on which we perform the verification. The Lexer recognises the protocol dec-
laration pattern and can associate it to its value. The same thing happens for the
"protocol_name" and the "category_name". However, "Protocol" and "checks" being
keywords of the protocol declaration don’t have an associated value.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

56 Chapter 4. Simulation Approach

So now we are able to parse an IoT file and generate a parse tree. We then need
to exploit this tree in order to generate a BIP model that we can execute. ANTLR
provides us a way to do so with the combined use of the tree walker and the parse
tree listener interface. In Java, event listeners are interfaces responsible to handle
events. This interface provides enter and exit methods for each rule we defined in
the grammar. It then responds to events triggered by the built-in tree walker. This
means that when the tree walker goes through the syntax tree, it triggers two events.
One event is triggered when the walker first meets an object, before exploring it. The
second event is triggered when the walker leaves the object after going through it.
To this extend, we can walk through the tree and associate actions, for example the
creation of BIP elements, every time we trigger events in the listener implementation.
Figure 4.8 shows in more details the java files generated by ANTLR4.

Figure 4.8: Java Classes generated by ANTLR4

4.2.2 Model transformation

The IoT model specifies a certain amount of information about the system. This
information must be relevant and adequate for the parser to be able to build a well
formed BIP file that behaves during its execution in the way that we specified in the
IoT model. Figure 4.9 shows how IoT objects and BIP objects are linked. We recall
that in BIP, it is mandatory to create a type for objects (ports, connectors, compo-
nents, ..) in order to instantiate them. All the information concerning the types of
BIP objects can be found in the IoT file.

As a preliminary, it is necessary to indicate that BIP language handles certain
data formats such as string, int and float. In order to use another format, the user
has to define it by himself, in C and import the C file in the BIP model as an external
library. For our model we created a string_set type, which is a one dimension string

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.2. IoT Model to BIP 57

Figure 4.9: IoT Equivalence in BIP

table, and defined several functions to manipulate it.
For reason of clarity we start with the entity declaration of the IoT files. An entity
declaration results, in the BIP model, in the creation of a type of atomic component.
The name of the entity becomes the name of the component type.
In IoT, we declare the initial knowledge of an entity as a series of data declaration. In
BIP, the knowledge is represented as a series of string_set. For each existing category
of data declared in the IoT file, the BIP components have corresponding string_set.
The initial knowledge is given as parameters to the components and added, at the
initial state, to the string_set of their category. This choice of design satisfies the
need of having data category in IoT, which is not possible in BIP. Indeed in IoT Mod-
eling Language one can create all the data categories needed. During the exchanges
of information the entities are able to send and receive all the data, regardless of their
category. This is why each component has a data set for each category: it has to be
able to receive every kind of data and add it to its knowledge. This also facilitates
protocol verifications. As the protocol verification is performed on a certain category
of data. In BIP, we make the verification on the corresponding set of strings: if the
sender and the receiver have a common value in their respective sets, then the com-
munication is allowed.
Let us now look at the actions and the behaviours of the entities. In BIP, the actions
of the components are specified as a set of transitions. These transitions are triggered
by their ports. To enable the interactions between the ports, there are connectors.
Both port types and connectors types must be declared prior to their use. So for each
protocol declared in the IoT file, there is a port type in the BIP file. In addition, a
specific connector type that connects two ports of the same kind is created, allowing
the ports to exchange information. Having a specific port for each protocol simplifies
the equivalence with the IoT Modeling Language, as we will see in Subsection 4.3.3.
The connector also includes the verification on the corresponding type of data. We
had no choice but to have the protocol verification in the connector rather than hav-
ing it on the entity port, using a guard. Indeed, the connector has access to the data
of both the receiving component and the sending component and can perform the
verification. Whereas a component has only access to its own data and is then not

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

58 Chapter 4. Simulation Approach

able to know if the preconditions for a communication are fulfilled. On the component
level, for each action of the IoT entity, the BIP component possesses a corresponding
port, which type depends on the type of communication. Indeed, if the port is used
for a Send/Receive type on, for instance, the http protocol, the BIP component will
have a port of type "http_protocol".
Let us now consider the Leak/Collect types of exchange. We first create two types of
ports: a leak type and a collect type. A connector type is defined which allows the
leak port to transfer data to the collect port, without performing any type of verifi-
cation. However, the way we attribute these ports to the entities differs. We recall
that the entities have a status: they can be either Internal or External. The External
entities try to make the Internal entities leak confidential information. So in BIP,
we assign a leak port to the internal entities for each leak they perform. The collect
ports are automatically given to the external entities, whether they are expressed in
the IoT file or not. They have a collect port for each internal entity of the system.
This way, when an internal entity leaks an information, the collect counterpart of the
communication is performed by its associated port on the Attacker side.
The behaviour is also expressed differently, depending on the status of the entity. In-
deed, if the entity is External, the collect is always available. This means that, even
in the middle of a sequence of actions, the external entity is able to collect information.

4.2.3 Example of Transformation

Going back to the running example, we can see in Figure 4.10 an internal entity: the
Employee and in Figure 4.11 an external entity: the Attacker once they have been
turned into BIP components.

Data We can see that both components have a string_set of data for each
category of the system: email, credentials, message, confidential data.
In addtion they both have two variables: "category" and "value". The
variable "category" is used to check the category of a received value
in order to put it in the correct set. The variable "value" is initialized
with either the value the component is about to send, or the value it
just received.

Ports • External Ports: For each transition performed (outside of the
Leak/Collect ones), both components have an external port that
corresponds to a transition in their behaviour.
– Leak Port: For the employee, we can see that the BIP

component has a leak type of port that corresponds to him,
leaking his credentials to the attacker.

– Collect Ports: We can see in Figure 4.11 that the attacker
has a "collect" port for each internal entity of the system:
one for the employee and one for the server. We can also
notice that the "collect" transitions are performed in parallel
with their nominal behaviour. This shows that at anytime,
the attacker is able to collect information from any internal
entity.

• Internal Ports: They are used to provide the component a way
of making an internal transition, without communicating with
another component.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 59

Figure 4.10: BIP component of the Employee

Let’s now take a look at how the weights we added on the actions of the IoT
entities become probabilities on the BIP component transitions.
As we can see in Figure 4.10, from the EmployeeChoice state, two transitions are
possible: employeeInternal or leakCredentials. The transition taken depends on the
value of variable choice. If the value of choice is in the [0;0,95] interval, the employee
won’t leak his credentials, but if choice’s value is within]0,95;1] he will then leak
them to the attacker.
The value of choice is obtained via a random function.
The calculation of the value intervals is based on the weights we assigned to the
actions in the IoT file. To transform the weight into probabilities we carry out the
following steps:

1. from the current state we check all the possible transitions

2. we calculate the total weight by adding together all the weights of possible
transitions

3. each weight is divided by the total weight, which gives a value within [0;1]

4. we calculate the intervals using the new weight value

Now that we have a better idea of how the transformation occur thanks to a
concrete example, let’s see how we define it formally.

4.3 Formal Transformation
During the transformation, entities of an IoT model become atomic components in
SBIP and the communication between them are represented with interactions. To
model this we define an atomic component as the union of several Petri Nets, which
all have a common set of variables, guards and update functions. The deterministic
variables are used to model the entity’s knowledge. The random variables, similarly
to the transformation of DTMC into SBIP of [7], encode the probabilities associated
to actions in a summation process.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

60 Chapter 4. Simulation Approach

Figure 4.11: BIP component of the Attacker

We need to formally prove the bisimulation between the IoT model and the SBIP
model. In order to show that this equivalence exists between both languages, we
need to keep track of the transformation. The bisimulation shows that for a given
transition in the IoT model, a similar transition exists in the SBIP model.
Consequently, in the transformation we annotate places and random variables using
the function `. This function exploits the notations of the original IoT system. In ad-
dition, we identify places that have congruent notations, i.e. l1 ≡L l2 ⇐⇒ `(l1) ≡P
`(l2), with l1 and l2 being places of the BIP model. We write lT when `(l) = T , and
vT when `(v) = T , with l a place and v a variable of the BIP model.
First we introduce a number of transformation functions used in the formal definition
as preliminaries in the Subsection 4.3.1. In Subsection 4.3.2, we propose a definition
of the transformation of the behaviour part of the IoT entity. Finally, in Subsection
4.3.3, we formally describe the bisimulation between the two languages.

4.3.1 Transformation Functions

Considering a thread T , we define three functions:

• [[T]]v defines random variables used by the thread T .

• [[T]]s defines places for the thread T .

• [[T]]t defines the transitions for T .

Following each function definition we give an application of it using the attacker’s
behaviour of the running example that we defined in Example 2.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 61

We will then consider the following thread:

A =[n3] attacker mail−−−−−−−−−−→
giveCredentials

employee.A︸ ︷︷ ︸
a1

+[n4] attacker http−−−−−−−−−−−−−−−→
giveSecretInformation

server .A︸ ︷︷ ︸
a2

+ [n5] attacker � employee.A︸ ︷︷ ︸
a3

+[n6] attacker � server .A︸ ︷︷ ︸
a4

These functions can be applied on all types of threads whether they are recursive or
not. However on the case of a recursive thread, it must be written on its entirety
without deploying the thread in infinity. We have to be able to see all the possible
actions of the thread appear for the function application to be correct.

Definition 13 (Random variable Function for Thread). This function takes as input
a thread and generates a set of random variables or an empty set.

[[
∑
i∈I

[ni]ai.Ti]]v =
⋃
i∈I

[[ai.Ti]]v ∪ {vT | vT ∼ µ s.t. µ(ai.Ti) = ni,∀i ∈ I}

where T =
∑
i∈I

[ni]ai.Ti and |I| > 1

[[a.T]]v =[[T]]v

[[A]]v = [[0]]v =∅

Whenever a thread T is of the form
∑
i∈I [ni]ai.Ti, we introduce a new random vari-

able vT , that will allow the system to make a probabilistic choice when necessary
between all available options.
The valuation domain D for vT is the set of states associated to the possible con-
tinuations i.e. D = {ai.Ti}i∈I . The probability distribution of vT is defined by the
probabilities ni i.e. µ(ai.Ti) = ni.
If T is not a sum, no random variable is necessary as the aim of the random variable
is to make a choice between the different threads that compose the sum.

Example 5.

[[A]]v =[[a1.A]]v ∪ [[a2.A]]v ∪ [[a3.A]]v ∪ [[a4.A]]v∪
{vA | vA ∼ µ s.t. µ(a1.A) = n3, µ(a2.A) = n4, µ(a3.A) = n5, µ(a4.A) = n6}

with

[[a1.A]]v = [[A]]v = ∅
[[a2.A]]v = [[A]]v = ∅
[[a3.A]]v = [[A]]v = ∅
[[a4.A]]v = [[A]]v = ∅

This thread is composed of a choice between four possible actions. So we only need
to create one probabilistic variable vA. The choice between these four actions will be
made depending on the value of vA.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

62 Chapter 4. Simulation Approach

Definition 14 (Place Function for Thread). This function takes a thread as input
and generates a set of places.

[[
∑
i∈I

[ni]ai.Ti]]s =
⋃
i∈I

[[Ti]]s ∪ {lT , l?T }, where T =
∑
i∈I

[ni]ai.Ti and |I| > 1

[[a.T]]s =[[T]]s ∪ {la.T }
[[A]]s ={lA}
[[0]]s ={l0}

Each thread, regardless of its form, possesses an initial place. The initial place its
definition and represents the entry point of the thread.
For a thread T of the form

∑
i∈I [ni]ai.Ti, we introduce two variables lT and l?T where

lT represents the initial state of the thread T and l?T denotes the state in which the
random variable vT is updated.
If T is not a sum, we don’t need to create an additionnal state for a random variable
to be updated. So we only create a place for each possible continuation of the thread.

Example 6.

[[A]]s = [[a1.A+ a2.A+ a3.A+ a4.A]]s
= [[A]]s ∪ {lA, l?A}
= {lA} ∪ {lA, l?A}
= {lA, l?A}

In this example, we need two places: lA and l?A. lA represents the initial and the final
place of the Petri net.

Definition 15 (Transition Function for Thread). This function takes as input a
thread and generates a set of transitions.

[[
∑
i∈I

[ni]ai.Ti]]t =
⋃
i∈I

(
({l?T }, 〈ai, g = (vT == ai.Ti), f〉, {lTi}) ∪ [[Ti]]t

)
∪ ({lT }, 〈τ , true, f?〉, {l?T }) where T =

∑
i∈I

[ni]ai.Ti and |I| > 1

[[a.T]]t =({la.T }, 〈a, true, f〉, {lT }) ∪ [[T]]t
[[A]]t =[[0]]t = ∅

where f is the update function such that f = (fd,Rp), with fd = {v := v|v ∈ V d} ∈
Asgn[V], and Rp = ∅ and f? defined as f but with Rp = {vT }. g is the guard on the
transition. The guards are only used when making a probabilistic choice: Suppose
we are currently running thread T and we wish to go from state l?T to a state lTi . The
guard then checks that the value of the random variable vT is updated to ai.Ti. For
the rest of transitions, the guard is the constant true. If the thread is not constituted
of a sum, the guard is the constant true and we only need one transition by action
that is part of the thread.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 63

Example 7.

[[A]]t =(({l?A}, 〈a1, g = (vA == a1.A), f〉, {lA}) ∪ [[A]]t)∪
(({l?A}, 〈a2, g = (vA == a2.A), f〉, {lA}) ∪ [[A]]t)∪
(({l?A}, 〈a3, g = (vA == a3.A), f〉, {lA}) ∪ [[A]]t)∪
(({l?A}, 〈a4, g = (vA == a4.A), f〉, {lA}) ∪ [[A]]t)∪
({lA}, 〈τ , true, f?〉, {l?A})

with

f? = (f?d,Rp) where f?d = {v := v | v ∈ V d} and Rp = {vA}
f = (fd,Rp) where fd = {v := v | v ∈ V d} and Rp = ∅
V d = {vemail, vcredentials, vhttp, vmessages, vconfidentialData}
[[A]]t = [[0]]t = ∅

In this example, we have one transition for each action. We also have a transition
labeled τ that allows us to update the value of the random variable.

Using these three functions we generate a certain number of transitions, places and
probabilistic variables that we represent as a Petri Net in Figure 4.12. For simplicity
reasons , the transitions of the figure are only partially labeled with the ports and
the update functions.

Figure 4.12: Petri Net corresponding to the thread A

4.3.2 Entity Formal Transformation

For clarity reasons we specify the transformation of the entity’s thread and the entity
itself in two different definitions.
First we encode each thread of the entity’s process in Definition 16. We use a distinct
Petri Net for each thread in order to clearly separate the behaviour of the different
threads. We use disjoint union for combining the Petri Nets of the different threads.
This is coherent in the BIP model because different threads in an entity cannot inter-
act with each other, but only with other entities. Following, Definition 17 formally
describes the composition of a BIP component.

Let us consider an IoT entity described in IoT SOML has having:

• a set of data, possibly belonging to different categories, defining its knowledge

• a set of actions that it can perform

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

64 Chapter 4. Simulation Approach

• a behaviour, composed of one or several threads that uses the actions previously
defined

Definition 16 (Transformation of a Thread into a Petri Net). To each thread in
an entity, we associate a corresponding Petri Net that specify the behaviour of the
BIP atomic component. As the behaviour of an entity can be composed of several
threads, we can define several Petri Nets. However, if several Petri Nets belong to the
same component, they don’t share any probabilistic variables or places between them.
The probabilistic variables are defined by V p being the disjoint set of probabilistic
variables for the thread T , defined by V p = [[T]]v. We define a thread T by the Petri
Net N = (L,L0,TN) where:

• L is the set of places of T defined by L = [[T]]s

• L0 is the set initial places, which represents the entry point of the thread and
is defined by L0 ⊆ L. For each separate thread of the behaviour of an entity
we create a distinct initial place.
More formally, for a thread T , we define an initial place LT .

• TN is a finite set of transitions defined by TN = [[T]]t

Now that we defined how each thread is encoded in a Petri Net, let us define the
entire BIP component built from the IoT entity. The sets of places, transitions and
probabilistic variables that are composing the process of the entities are the disjoint
unions of the sets that we defined for the threads.

Definition 17 (Transformation of an IoT Entity into an Atomic BIP component).
For an IoT entity E, we define the transformation to be a tuple B = (P ,V ,N), with

• P are the ports of the atomic component that correspond to the actions of the
IoT entity such that P = P in]P out]P internal with P in being the input ports,
P out the output ports and P internal the internal ports;

• V are the variables of the BIP component such that V = V d] V p where

– V d is the set of deterministic variables, V d = {vc = kci | c is a protocol
used in the entity and k the initial knowledge of the entity };

– V p is the set of probabilistic variables, such that V p =
⋃
i∈I V

p
i , and I =

{0, ...,n} with n the number of threads;

• N is the union of Petri Nets that constitute the behaviour of the BIP component
such that N = ∪i∈INi.

Example 8. To better understand the formal transformation of an entity let us use
as an example the transformation of the employee entity into a BIP component.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 65

The behaviour of the Employee is defined by the recursive threads:

kemployee ={mail = {employeeEmail},
message = ∅,
credentials = {employeeCredentials},
confidentialData = ∅,
http = ∅}

E = employee mail←−−− attacker︸ ︷︷ ︸
e1

.C

C =[n1]τ .E + [n2] employee −−−−−−−−−−−−−−−�
employeeCredentials

attacker︸ ︷︷ ︸
e2

.E

Transformation of the Behaviour of the Employee into a Petri Net

In this example, the thread is recursive. As we explained before, to correctly
apply the functions on a recursive thread, it is necessary to unfold the thread. This
way, we can see the whole behaviour appear, without deploying it to the infinity. To
show the unfolding of the thread, and for readability reasons, we added indices to
the thread definition. This way, [[E]]1 indicates the first time that we see the thread
and that it has not been fully deployed. As for [[E]]2, it shows that the thread E has
already been deployed and that it is not necessary to unfold it anymore. Whenever
we declare a thread without any indice, it means that the thread has no definition
and doesn’t need to be deployed, therefore we consider the indice to be 1 and do not
write it.

Generation of the random variables:

[[E]]1v = [[e1.C]]v
= [[C]]v

[[C]]v = [[[n1]τ .E + [n2]e2.E]]v
= [[τ .E]]v ∪ [[e2.E]]v ∪ {vC | vC ∼ µ s.t. µ(τ .E) = n1, µ(e2.E) = n2}
= [[E]]2v ∪ [[E]]2v ∪ {vC | vC ∼ µ s.t. µ(τ .E) = n1, µ(e2.E) = n2}

with

[[E]]2v = ∅

Generation of the places:

[[E]]1s = [[e1.C]]s
= [[C]]s ∪ {le1.C}

[[C]]s = [[[n1]τ .E + [n2]e2.E]]s
= [[E]]2s ∪ [[E]]2s ∪ {lC , l?C}
= {lC , l?C}

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

66 Chapter 4. Simulation Approach

with

[[E]]2s = ∅

Generation of the transitions:

[[E]]1t =[[e1.C]]t
=({le1.C}, 〈e1, true, f〉, {lC}) ∪ [[C]]t

[[C]]t =[[[n1]τ .E + [n2]e2.E]]t
=({l?C}, 〈τ , g = (vC == τ .E), f〉, {lE}) ∪ [[E]]2t ∪
({l?C}, 〈e2, g = (vC == e2.E), f〉, {lE}) ∪ [[E]]2t ∪
({lC}, 〈τ , true, f?〉, {l?C})

In the transitions generated, we can see that there is a place lE . Yet, we have
e1.C ≡P E, and so we consider le1.C ≡L lE .

f? = (f?d,Rp) where f?d = {v := v | v ∈ V d} and Rp = {vC}
f = (fd,Rp) where fd = {v := v | v ∈ V d} and Rp = {∅}
[[E]]2t = ∅

Definition of the ports of the entity:

• P in = {e1}

• P outE = {e2}

• P internalE = {τ}

Definition of the variables of the entity:
VE = V d

E] V
p
E , with

• V d
E = {vemail, vcredentials, vhttp, vmessages, vconfidentialData}, with, at the initial

state

– vemail = {employeeEmail}
– vmessages = ∅
– vcredentials = {employeeCredentials}
– vconfidentialData = ∅
– vhttp = ∅

• V p
E = {vC | vC ∼ µ s.t. µ(τ .E) = n1, µ(e2.E) = n2}

Figure 4.13 illustrates the formal transformation we operated.
Communications between two IoT entities e1 and e2 in the IoT language are

converted into a set of, possibly guarded, interactions between components Be1 and
Be2 corresponding to e1 and e2, respectively.

Definition 18 (Interactions for an IoT state). Let us consider two BIP atomic com-
ponents Be1 and Be2 that are the respective transformations of two IoT entities: e1

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 67

Figure 4.13: Illustration of the Formal Transformation of an Entity

and e2.
We denote the two atomic components Be1 = (P1,V1,N∞) and Be2 = (P2,V2,N∈).
We write Actions = ∪i≤2Pi, with i ∈ I, with I a set of indices such that I = {0, ..n}
for all the actions a of both BIP components.
We saw earlier in Chapter 3 that for an IoT system to be semantically correct, for
each action in the system, there need to be a counterpart action.
We have that if a ∈ Actions, then if:

• a = e1
c−→
v
e2 there is an action a′ ∈ Actions such that a′ = e2

c←− e1,

• a = e1 −−�
v

e2 there is an action a′ ∈ Actions such that a′ = e2 � e1.

If for a given action, there is a counterpart action in the system, we define the inter-
action: γ=(P ,G,F) where:

• P = {a, a′}, represents the couple of actions;

• G is the guard of the interaction such that:

– if the communication is based on a protocol (actions of type Send/Receive),
the guard will check that the protocol conditions are met:
if a = e1

c−→
v
e2 then G = (∃x ∈ v1

c s.t. x ∈ v2
c) for v1

c ∈ V d
1 , v2

c ∈ V d
2

– otherwise no protocol verification is required and G = true

• F is the update function of the transition. After a Send or Collect action,
depending on the protocol associated to the variable, we add the variable to the
knowledge of e2:
if a = e1

c−→
v
e2 or if a = e2 � e1,

then F = {v2
c′ := v2

c′ ∪ {v} | protocol(v) = c′, v2
c′ ∈ V d

2 }

where V d
1 , V d

2 are the deterministic variables of Be1 and Be2 , respectively.
Atomic components can also carry out internal interactions that we define by:
({τ}, true,F), where F = {v := v | v ∈ V d}, for every component Be = (P ,V ,N).

4.3.3 Bisimulation

In order to show a correspondance between the Security Oriented Modeling Language
and the BIP language, we are going show first a correspondance in the transformation

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

68 Chapter 4. Simulation Approach

from IoT to BIP and then in the transformation from BIP to IoT. In order to do that
we need to define a few preliminaries concepts and notations.
First, we recall that a transition is defined, either for a pair of Send/Receive, Leak/-
Collect interactions or for an Internal transition.
For an IoT system composed of n entities and of an initial state s0, we write Γ for
the set of interactions between these entities as we did in Definition 11.
We write Γ(B1, ...,Bn) the composition of n IoT components as we defined it in Def-
inition 12 and (Γ(B1, ...,Bn)) the corresponding BIP system.

Theorem 1 (Bisimulation). We consider an IoT system of n entities with an initial
state s0 such that s0 = 〈P1, k1〉|...|〈Pn, kn〉, where 〈Pi, ki〉 is the initial state of an
entity ei, i ≤ n.
We denote Bei the BIP transformation of the IoT system, Xi

init the initial valuation
of the variables Vi of the entity ei and Γ its set of interactions.
ForM = 〈Q,P ,π, q0〉 the semantics of the BIP counterpart model with the valuation
X1

init t · · ·Xn
init, there exists R ⊆ S ×Q a symmetric relation such that, following

the rules of the equivalence between two languages we consider that:

• For each intial state existing in the IoT model, there is only one equivalent
initial state in the BIP model
(s0, q0) ∈ R;

• For each transition in the IoT system, there exists a corresponding transition
in the BIP system
if (s, q) ∈ R then for all s′ ∈ S and s

[n]−→
l

s′ ∈ T there exists q′ ∈ Q and

q
γ−→ q′ ∈ π with P(q

γ−→ q′) = n such that (s′, q′) ∈ R.

Lemma 1. Any two congruent IoT states have the same transformation in SBIP
systems.

Proof. We proceed by cases on the congruence relation. First consider the congruence
relation on states: For the monoid laws on |, note that the transformation results in
a set of atomic components and therefore the order of states in the parallel composi-
tion does not matter. In the case where processes are congruent, we distinguish two
subcases:
(i) Threads in a parallel composition translate into tuples of states in the transfor-
mation of a process (Definition 16) where the order of the states does not matter;
(ii) For the rest we use the fact that inside an atomic component the states that have
congruent labels are identified.

Theorem 1. Let e1, · · · , en be n entities of an IoT system (S,L,T , s0) with the initial
states 〈P1, k1〉, · · · , 〈Pn, kn〉.
Bei = (Pi,Vi,Ni) with Ni = (Li,Li,0, Ti), is the transformation of the current state
of the entity ei, for i ≤ n.
Also let Vi = V p

i ∪ V d
i . We write (Q,P ,π, q0) for the semantics of Γ(Be1 , · · · Ben) =

(Γ, V, N) with N = (L, L0, T). Lastly Xinit is the initial valuation.
To construct the relation R ⊆ S ×Q required by the theorem, we first set some

notations and constraints below. Informally, these constraints establish the relation
between the processes and knowledge functions in states of S and the markings and
the valuations, respectively, in states of Q.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 69

1. Correspondance between Processes and Markings. Let us consider two
threads: T and U . Let us write mT for the marking associated with T and
defined as follows:

mT (l) =1 if `(l) = T or `(l) = U?,U = [n1]T1 + ..., for some threads T
0 otherwise

where (P ,V ,N) and N = (L,L0,T ,) is obtained as in Definition 16 and where
l ∈ L. For a process P = T1 | · · · | Tm, let us write mP for the marking
associated with P and defined as mT1 + · · ·+mTm .

2. Correspondance between Knowledge and the Deterministic Variables.
From Definition 16 it follows that for each thread Tj in a process Pi we define
the set V d

i = {vc | c is a protocol used in Tj}. From Definition 17 then the set
of variables of Pi = T1 | · · · | Tm is ∪j≤mVj = {vc | c is a protocol used in Pi}.
Then, if Xi the current valuation of entity ei, we require that Xi(vc) = ki(c),
for i ≤ n, c ∈ C and vc ∈ V d

i . Recall that we write C for the set of protocols
used in the IoT system and ki for the knowledge function of an entity ei.

3. Correspondance between Probabilistic Choices in Processes and the
Random Variables. For every summation thread U in a process Pi, we have
that there exists a random variable vU ∈ V p

i , by Definition 16. Moreover, if T
a thread of Pi, belongs to a summation, i.e. U = [n]T + T ′, for some threads
T ′,U , then for the current valuation Xi we have that Xi(vU) = T . For a process
P = T1 | · · · | Tm we use Definition 17 and have that V p is the disjoint union
of all V p

j , where V
p
j is the set of random variables for Tj , j ≤ m.

We define the following relation between the states of S and the states of Q:

R =
{
(〈P1, k1〉 | · · · | 〈Pn, kn〉,(m = mP1 + · · ·mPn , X = X1 t · · · tXn)) |

the conditions 1-3 above hold
}

.

We show that R is the relation required in Theorem 1. First we have to show
that (s0, q0) ∈ R.

We use Definition 16 from which we have that L0 ⊆ L is the initial place in the
transformation of a thread T . Then, by Definition 17, L0 =]j≤mLj0 =]j≤m{lTj} is
the initial set of places in the transformation of a process P = T1 | · · · | Tm. From
Definition 12 it follows that L0 =]i≤nL0,i. By Definition 10 the initial marking in
q0 = (m0, Xinit) is defined as m0(l) = 1 ⇐⇒ l ∈ L0 and 0 otherwise. Hence we can
write m0 = mP1 + · · ·+mPn . This shows condition 1 of R.

From Definition 17 we have that for each entity ei, Xinit(vc) = ki(c), for all
protocols c used by ei. From Definition 12 the set of variables of the composed Bei
components is the disjoint union Vi, i.e. V =]i≤nVi, in particular Vd =]i≤nV d

i .
Then a valuation for V is the disjoint composition of the individual valuations for
Vi, from which it follows the required decomposition of Xinit in q0 = (m0, Xinit).
Therefore condition 2 of R holds. For condition 3 to hold it suffices to note that
there is no probabilistic choice made yet in any process and therefore there is no
correspondence to show. We can take any initial valuation we want for the random
variables.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

70 Chapter 4. Simulation Approach

On the transformation from IoT to BIP

Let us now suppose that (s, q) ∈ R and that s [n]−→
l

s′, for some label l ∈ L, some
probability n and state q′ ∈ Q. We have to show that there exists q′ ∈ Q and
q

p−→ q′ ∈ π with P(q
p−→ q′) = n such that (s′, q′) ∈ R. We reason by cases on the

label l of the transition s [n]−→
l
s′.

• In the case of an interaction between two entities
Let e1 and e2 be the two communicating entities, and l = SR : v or l = LC : v.
We can write the transition as follows using Definition 10:

s = 〈P1, k1〉 | 〈P2, k2〉 | 〈P3, k3〉 | . . . | 〈Pn, kn〉
[1/m]−→
l

s′ = 〈Q1, k′1〉 | 〈Q2, k′2〉 | 〈Q3, k′3〉 | . . . | 〈Qn, k′n〉

where we can decompose P1 ≡P a1.T1 | P ′1 and P2 ≡P a2.T2 | P ′2, Q1 ≡P T1 | P ′1
and Q2 ≡P T2 | P ′2, again by Lemma 1 and from the rules of Figure 3.6. Here
we suppose w.l.o.g. that a1 and a2 are the two synchronizing actions in P1 and
P2, respectively. Also suppose w.l.o.g. that a1 is a send (or a leak) and that a2
is a receive (or a collect). Let c be the protocol used for the communication in
case l = SR : v.
From (s, q) ∈ R we have that q = (mP1 + · · ·mPn , X1 t · · · tXn) and that
mPi = mai.Ti +mP ′

i
, for i ≤ 2. Also from condition 1 of R, mai.Ti = {li} with

either `(li) = ai.Ti, or `(li) = U?i , for some summation threads U1,U2.

– If `(l1) = a1.T1 then we use the transformation of Definition 16 to show
that there exists the place l′1 ∈ L1, with `(l′1) = T1 and the transition
t1 = ({la1.T1}, 〈a1, g1 = true, f1〉, {lT1}) in B1.
∗ If `(l2) = a2.T2 then as above, there exists l′2 ∈ L2, with `(l′2) = T2

and the transition t2 = ({la2.T2}, 〈a2, g2 = true, f2〉, {lT1}) in B2.
∗ `(l2) = U?2 , with U2 = [n2]a2.T2 +U ′2 , for some threads U2,U ′2. As in
the case above, from Definition 16 we have that there exists the places
l′2 ∈ L2 with `(l′2) = T2. We also have, from condition 3 ofR that there
exists a random variable vU2 ∈ V

p
2 with X(vU2) = a2.T2. Moreover we

have the transition t2 = ({lU?2 }, 〈a2, g2 = (vU2 == a2.T2), f2〉, {lT2})
in B2.

– the other case is similar.

Note that in all cases above, fi = {v := v | v ∈ V d} with Rpi = ∅, i ≤ n.
Using Definition 11 we have that there exists an interaction γ = ({a1, a2},G,F)
such that

– If l = SR : v then G = (∃x ∈ v1
c such that x ∈ v2

c) for v1
c ∈ V1 and v2

c ∈ V2.
– If l = LC : v then G = true.

Also, F = {v2
c′ := v2

c′ ∪ {v′} | protocol(v′) = c′, v2
c′ ∈ V2} for both l = SR : v

and l = LC : v.
We now use Definition 12 and have that there exists the transition

T = ({l1, l2}, 〈γ, g1 ∧ g2 ∧G, (f1 t f2) ◦ F 〉, {l′1, l′2}) ∈ T.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 71

We have to show that the guard g = g1 ∧ g2 ∧G holds for the current valuation
X:

– If g1 = (vU1 == a1.T1) then X(g1) holds from condition 3 of R; otherwise
g1 = true. We proceed similarly for g2.

– If l = SR : v then G = (∃x ∈ v1
c such that x ∈ v2

c) for v1
c ∈ V1 and

v2
c ∈ V2. From condition 2 of R we have that X(vic) = ki(c), i ≤ n. Then
the guard holds as it is the condition of rule SendReceive in Figure 3.6.
If l = LC : v then G = true.

Therefore, by Definition 10, there exists the transition

q = (mP1 +mP2 + · · ·mPn , X1 t · · · tXn)
γ−→ q′ = (m′, X′)

where we have to show that conditions 1-3 of R hold. For condition 1 we have
to show that m′ = mQ1 +mQ2 + · · ·mPn . Using Definition 10 it follows that

m′ = m−• T + T • = m− {l1, l2}+ {l′1, l′2}.

As L0 =]i≤nL0,i, from Definition 12, it follows that

m′ = (mP1 − {l1}+ {l′1}) + (mP2 − {l2}+ {l′2}) + · · ·+mPn .

Using condition 1 of R on mP1 and mP2 we have that mP1 −{l1}+ {l′1} = mQ1

and similarly for mQ2 .
Let us now show condition 2, i.e. X′ = X′1tX′2t · · · tXn and X′i(vc′) = k′i(c

′),
i ≤ 2. Using the function F above we have that X′i(vc′) = Xi(vc′) ∪ {v}. From
rules SendReceive and LeakCollect we also get that k′i(c′) = ki(c) ∪ {v},
i ≤ 2.
As Rp1 = Rp2 = ∅ condition 3 is trivial.
Lastly, the two transitions have the same probability: |Enabled(m; X)| = m,
and therefore P

(
q

p−→ q′
)
= 1/m.

• In the case of an internal transition
Let l = τ ; let e1 be the entity that triggers the internal transition. Using
Lemma 1 we can rewrite the states in the transition as follows:

s = 〈P1, k1〉 | 〈P2, k2〉 | 〈P3, k3〉 | . . . | 〈Pn, kn〉
[n]−→
l

s′ = 〈Q1, k′1〉 | 〈P2, k2〉 | 〈P3, k3〉 | . . . | 〈Pn, kn〉.

There are two possibilities: either P1 ≡P
∑
i∈I1 ai.Ti | P

′
1 where Q1 = a1.T1

w.l.o.g. or P1 ≡P τ .T1 | P ′1 with Q1 = T1. We write U =
∑
i∈I1 ai.Ti or

U = τ .T1 depending on which of the two cases we are.
From (s, q) ∈ R we have that q = (mP1 + · · ·mPn , X1 t · · · tXn) and that
mP1 = {l}+mP ′

1
, `(l) = U . We use the transformation of Definition 16 to

show that there exists the place l′ ∈ L1 and the transition t = ({l}, 〈τ , g =
true, f〉, {l′}) in B1.

– If U =
∑
i∈I1 ai.Ti then `(l

′) = U?, f = {v := v | v ∈ V d
1 } and Rp = {vU}.

– If U = τ .T1 then `(l′) = T1, f = {v := v | v ∈ V d
1 } and Rp = ∅.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

72 Chapter 4. Simulation Approach

Using Definition 11 we have that there exists an interaction γ = ({τ},G =
true,F) with F = {v := v | v ∈ V d

1 }.
From Definition 12 there exists the transition

T = ({l}, 〈γ, g1 ∧G = true, f ◦ F 〉, {l′}) ∈ T.

The guard trivially holds and we obtain the transition

q = (mP1 ++ · · ·mPn , X1 t · · · tXn)
γ−→ q′ = (m′, X′)

where we have to show that conditions 1-3 of R hold. As in the first case,
condition 1 follows from m′ = m− {l}+ {l′} = mQ1 + · · ·mPn . Condition 2
trivially hold as the update functions f and F are the identity and therefore
X1
′ = X1. Indeed the knowledge function of k1 is not modified by the rules

Choice or Internal.
To show condition 3 we use Definition 16 from which we have that there exists
vU ∈ V p

1 , vU ∼ µ, where µ(a1.T1) = n1. Then we can take X′(vU) = a1.T1. We
also this argument to show that the two transitions have the same probabilities:
by Lemma 1, |Enabled(m; X)| = m and therefore P

(
q

p−→ q′
)
= 1/m× n1.

On the transformation from BIP to IoT

Hereafter we prove the similarity of the IoT system to its corresponding SBIP model.
Let us suppose that (q, s) ∈ R and that q γ−→ q′, for a transition labelled with γ,

where q, q′ ∈ Q. We have to show that there is a state s′ ∈ S with s [n]−→
l
s′, for some

label l ∈ L, such that (s′, q′) ∈ R. We define s = 〈P1, k1〉 | 〈P2, k2〉 | · · · | 〈Pn, kn〉.
Here we also reason by cases: whether the transition is an interaction between two
components Be1 and Be2 or an internal transition.

• In the case of an interaction
We consider the communication is an interaction γ = ({a1, a2},G,F) between
Be1 and Be2 :

q = (mP1 +mP2 + · · ·mPn , X1 tX2 t · · · tXn)
γ−→ q′ = (m′, X′)

As it is an interaction between two entities, from Definition 12 we have that
there exists the transitions ti = (mi, 〈pi, gi, fi〉,m′i) ∈ Ti, for i ∈ {1, 2}. From
the Definition 11, mi = mPi , pi = ai, gi = true and fi are the constant
update functions. From (q, s) ∈ R we have that mP1 = ma1.T1 +mP ′

1
, mP2 =

ma2.T2 +mP ′
2
with P1 = a1.T1 | P ′1 and P2 = a2.T2 | P ′2. Moreover, from the

Definition 10 there exists the transition

T = (mP1 +mP2 , 〈{a1, a2}, g1 ∧ g2 ∧G, (f1 t f2) ◦ F 〉,mQ1 +mQ2) ∈ T

with mQ1 = mT1 +mP ′
1
, mQ2 = mT2 +mP ′

2
.

We distinguish between the two types of interactions:

– a1 = e1
c−→
v′
e2 and there exists a2 ∈ Actions such that a2 = e2

c←− e1,

– or a1 = e1 −−−�
v′

e2 and there exists a2 ∈ Actions such that a2 = e2 � e1

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.3. Formal Transformation 73

Following the Definition 11 we have the following guards:

– if G = (∃x ∈ v1
c such that x ∈ v2

c) for v1
c ∈ V1 and v2

c ∈ V2 then l = SR

– if G = true then l = LC

We can then apply the rules SendReceive or LeakCollect from Figure 3.6.
Hence we derive an interaction between e1 and e2 exists for which we have to
show that conditions 1-3 of R holds.

s = 〈P1, k1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉
[n]−→
l

s′ = 〈Q1, k′1〉 | 〈Q2, k′2〉 | . . . | 〈Pn, kn〉.

From above, it follows that m′ = mQ1 +mQ2 + · · ·mPn , which is the first
condition of R.
In the interaction γ, we apply the update function F = {v2

c′ := v2
c′ ∪{v′} | protocol(v′) =

c′, v2
c′ ∈ V2} for both l = SR : v and l = LC : v, then X′i(vc′) = Xi(vc) ∪ {v}.

Therefore we can write X′ = X′1 tX′2 · · ·Xn. With the interaction s [n]−→
l
s′, we

apply rules SendReceive or LeakCollect from Figure 3.6 where k′i(c′) =
ki(c) ∪ {v}. Hence the condition 2 holds, i.e. X′i(vc′) = k′i(c

′). With the ex-
ecution of the γ interaction, the probabilistic distribution Rp1 = Rp2 = ∅, and
from the SendReceive or LeakCollect from Figure 3.6 is the same, then
the condition 3 trivially holds. The two transitions have the same probability:
P
(
q

p−→ q′
)
= 1/m, and therefore |Enabled(m; X)| = m.

• In the case of an internal transition
We consider the transition to be an internal transition τ in component Be1 .
From lemma 1 we can write the transition:

q = (mP1 +mP2 + · · ·mPn , X1 tX2 t · · · tXn)
γ−→ q′ = (m′, X′)

where s = 〈P1, k1〉 | 〈P2, k2〉 | · · · | 〈Pn, kn〉, from (q, s) ∈ R, we distinguish
two cases of transition execution:

– A probabilistic choice: mP1 = {l}+mP ′
1
where `(l) =

∑
i∈I [ni]ai.Ti and

P1 =
∑
i∈I ai.Ti|P ′1. From the transformation of Definition 16, the transi-

tion:

t = ({lT }, 〈τ , true, f?〉, {lT ?}) ∈ T1

can be executed where f? = ({v := v | v ∈ V d} and Rp = {vT }). From
relations of Figure 3.6, there exists a Choice transition in IoT system such
that

s = 〈P1, k1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉
[n1]−→
l

s′ = 〈Q1, k′1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉

where Q1 = a1.T1. Now we can verify if the conditions 1-3 of R holds.
We have that mQ1 = {`}? and m′ = mQ1 +mP2 + · · ·mPn . As the update
function f is the identity function the condition 2 trivially hold and the
knowledge k′1 = k1. To show condition 3 , we note that there exists

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

74 Chapter 4. Simulation Approach

vT1 ∈ V
p

1 , vT1 ∼ µ such that X′(vT1) = a1.T1. We use Definition 16 from
which we have that where µ(a1.T1) = n1.

– An internal transition: mP1 = mτ .T1 +mP ′
1
and P1 = τ .T1|P ′1. From the

transformation of definition 16, the transition T = ({la.T }, 〈a, true, f〉, {lT })
can be executed where f = ({v := v | v ∈ V d} and Rp = ∅). From re-
lations of Figure 3.6, there exists an Internal transition in IoT system
such that

s = 〈P1, k1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉
[n]−→
l

s′ = 〈Q1, k′1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉

where Q1 = T1|P ′1. Now we can verify if the conditions 1-3 of R holds. We
have that mQ1 = mT1 +mP ′

1
and m′ = mQ1 +mP2 + · · ·mPn .

As the update function f is the identity function the condition 2 trivially
hold and the knowledge k′1 = k1. Then X′ = X′1tX2t · · ·tXn. Likewise,
since Rp = ∅ the condition 3 trivially holds.

4.4 Attack Tree to BIP
The attack tree describes the attack implementation by the attacker. It includes all
the possible ways to reach the goal of the attack as, and for each way, all the steps
to conduct the attack.
We include the attack tree in our methodology as a way to monitor the attack.
We specify it in the form of a json file, containing a certain number of information
as we can see in Subsection 4.4.1. The parser transforms the json file into a BIP
component that, without taking part in the execution, helps us following its progress,
as we describe in Subsection 4.4.2.

4.4.1 Attack Tree Implementation

To describe attacks tree we store it in a json file which is called textural representation.
The json format, which we have an example in Figure 4.14, provides the following
information:

• the name of the node

• the type of the node

• the children nodes if the node is internal

If the node is an internal node, its name is the one we assigned to the subgoal and
its type value is either "AND" or "OR". If the node is a leaf it represents an action
possibly taken by the Attacker. We consider the actions to be either sending or re-
ceiving information through a protocol, either leaking or collecting information. As
we have seen in Definition 3 the name of the leaf is the value of the exchanged infor-
mation and is either "SR" for Send/Receive, either "LC" for Leak/Collect. Therefore
it is possible to monitor what data the Attacker had access to and by what kind of
communication it happened. Using our running example in 4.15, let’s see how the
attack tree is represented. The Attacker needs to collect the employee credentials in
order to connect to the server and collect the sensitive information stored on it. The

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.4. Attack Tree to BIP 75

Figure 4.14: Running Example: Attack Tree JSON File

Figure 4.15: Running Example: Attack Tree

left leaf of the tree represents the employee leaking his credentials. The value of the
leaf is "employeeCredentials" which is the leaked value and its type is "LC" . The
same goes for the right leaf that represents the leak of the server private informa-
tion. Another case that is not represented here would be to have a "SR" type of node
which would mean that the value gathered by the Attacker was received through a
safe communication. The root of the node is an "AND" type of node, which means
that in order for the attack to be successful, the Attacker must have collected both
the employee credentials and the server secret information.

4.4.2 BIP Monitor

The monitor is turned into an atomic BIP component by the parser. This component
that we can see an example of in Figure 4.18, contains only one state but a variety
of transitions. For each step of the attack tree the monitor contains one transition.
The transition is fired when the attacker makes the corresponding action. Each step
of the attack is also represented in the monitor via a boolean value that indicates
whether or not the attacker made the action.
In addition, the monitor contains a score variable. This variable is a float which value
is initialised to "0". Throughout the actions of the attacker, the value is incremented
so it matches how "far" the attack is. When the score value is equal to the height
of the tree, it means that the root of the tree has been reached and that the attack
has been successfully conducted. During a transition the monitor does the following
operations:

• the corresponding boolean variable is updated to "TRUE"

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

76 Chapter 4. Simulation Approach

Figure 4.16: Correspondance between Monitor and Attack Tree

• the monitor checks if this boolean variable is connected in the tree to an internal
node of type "AND"or "OR"

– if the parent node is of type "OR", then the boolean variable that represents
the internal node is updated to "TRUE"

– if the parent node is of type "AND", and all other sibling nodes’ value is
"TRUE" then the boolean variable is updated to "TRUE", otherwise its
value remains the same

• the variable score is incremented, depending on the height of the node in the
tree (see Definition 4)

To perform these variable updates, the monitor has to know when the attacker is
taking an action and what is the action. To be aware of the execution of the attack,
we need to connect the monitor and the model somehow, without the monitor being
able to influence the running of the model in any way.
We recall that the components of the model communicate with each other using their
exported ports which are connected by different kinds of connectors. To export the
actions of the components outside of the model, we add a port on the connectors,
that can be exported outside of the model. This allows the connector to export
information about the communication going on. On the monitor side, we add an
exported port on each of his transitions Indeed, the monitor contains 2 exported ports:
one for the interactions of type Leak/Collect, and another one for the interactions of
type Send/Receive. This way we can connect the transitions of the monitor to the
information received from the outside.
The connection between the model and the monitor is realized in a third BIP file
called "model_monitor". In the file we declare a type of connector that can connect
the exported ports of the model and the exported ports of the monitor, and that
transmits information about the action performed in the model to the monitor. This
way, the monitor is in a passive position: he only receives information, without having
the possibility to interfere with the model operations. The BIP file also includes an
instance of the model and one of the monitor and is used as an entry point of the
execution.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.4. Attack Tree to BIP 77

Figure 4.16 shows a concrete example of the correspondance between the monitor
and the attack tree. We can see that the internal nodes "goal1" and "goal" are rep-
resented as internal transitions in the monitor. We can also see that for each action
taken by the attacker that corresponds to a node in the tree, the score variable in
incremented. It is important to notice that the value of the score corresponds to
the height of the highest node the attacker is at. For instance if the attacker has
successfully performed "action3", the score value is "2", which is the height of the
corresponding node. When the attack is dones, the score value will be equal to the
tree height.

4.4.3 Attack Tree Formal Transformation

Here, we formally define the BIP monitor as well as its creation from the attack tree.
We recall that the leaves of the attack tree contain possible actions that the attacker
can take to conduct an attack and the internal nodes define how these actions must
be combined.
Considering an attack tree t composed of n nodes (including the leaves and the
internal nodes). In the monitor built from t, for each node, we create a boolean
variable denoted vn. The value of each variable vn is updated depending on the
actions taken by the attacker.
For the tree t, we denote h(t) its height and d(n, t) the depth of the node n, that we
defined in Definition 4. The monitor also contains a variable score that keeps up with
the progress of the attacker depending on his actions. This variable has a maximum
value of smax = h(t) that can be reached or not during an execution according to the
success of the attack. The score of an execution is written s = h(t)− d(n, t), where
n is the highest node for which vn is true.
Definition 19 (Monitor). The monitor Mt of an attack tree t, is a BIP component
Mt = (P ,V ,N) where:
• P = {pSR, pLC ,∪i≤npi} consists of two external ports: one for the Send/Receive

and one for the Leak/Collect interactions, that are input ports, as the monitor
only receives information. In addition, each internal node of the tree leads to
the creation of an internal port.

• V = V d ∪ V p, where V d = {score} ∪ {vn|n is a node of t} and V p = ∅

• N = ({lo}, {lo},T) is a Petri Net with only one place and with
T = {{(lo, 〈p, true, f〉, l0)|p ∈ {PSR,PLC}} ∪ {(lo, 〈p, g, f〉, l0)|p ∈ ∪i≤nPi}}}

The interactions between the monitor and the system have as unique target to
allow the monitor to observe the attacker behaviour and keep traces of the system
state. From the information its receives, the monitor updates the value of the boolean
variables for them to reflect the progress of the attack. All ports, whether they are
internal or external update the score variable depending on their attributed height.
Definition 20 (Interaction between the monitor and the BIP system). Let Γ be a
set of interactions of a BIP system. We define Γ′ the set of interactions between the
system and the monitor Mt = (P ,V ,N).
For all interaction γ = ({a, a′},Gγ ,Fγ) ∈ Γ, happening in the system, we define a cor-
responding interaction between the system and the monitor: γ′ = ({a, a′, p},Gγ ,Fγ t
f) ∈ Γ′ where:
• if a = e1

c−→
v
e2, then p = pSR and f = {vn := true|v = v′}

• a = e1 −−�
e 2

, then p = pLC and f = {vn := true|v = v′}

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

78 Chapter 4. Simulation Approach

4.4.4 Running Example Monitor

The monitor is a BIP atomic component, contained in a separate BIP file from the
model. We can see the BIP code of the monitor component in Figure 4.17 and its
graphical representation in Figure 4.18.

Figure 4.17: BIP Code of the Monitor

We recall that the attack tree of the running example, displayed in Figure 4.14
and in Figure 4.15 contains three nodes, in which one is internal. Once the monitor
receives a notification of a successful interaction of any type happening, it will check
the value received by the attacker. If this value matches the value indicated by
the attack tree, it has the indication that a step of the attack has been successfully
conducted and this will have an effect on several monitor variables as we can see
below.
We can see in Figure 4.17 that the BIP monitor also contains three boolean variables,
one for each node of the attack tree. On the initial state, before the attack can
begin, they are set to "FALSE". Then, for the two variables matching the actions of
the attacker, their value are set to "TRUE" when the attacker has carried them out
successfully. In the running example, the attack is a success if both the employee and
the server have leaked information.
Once both of the actions are recognised as successful, it is necessary for the monitor
to also update the boolean variable correponding to the internal node of type "AND".
To do so, the monitor checks that both boolean variables of the actions are true,
and then set the third variable to "TRUE". In the case of an "OR" type of internal
node, only one of the variable corresponding to a subnode would need to be of value
"TRUE".
In addition to updating boolean variables, for each action, the monitor updates the

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

4.4. Attack Tree to BIP 79

score variable. To each node of the tree, there is an associated value, corresponding
to his height in the tree. In the running example, both leak actions have a value of
"1" and the internal node’s value is "2". So when the score’s value matches the height
of the attack tree (here the maximum value is "2"), then we know that the attack was
completed.

Figure 4.18: BIP component of the Monitor

Now let us see how the monitor is connected to the rest of the model. The monitor
has two exported ports: one for the Send/Receive communications and another one
for the Leak/Collect communications. This is how it is aware of the actions of the
system. Let us focus now on how the model transmits these information to the
monitor.
On each Send/Receive or Leak/Collect type of connector we add a port. This port
takes a variable as a parameter. This variable is initialized using the value exchanged
in the communication. This is how we can access, in the monitor, the value sent during
the exchange. Figure 4.19 shows an example of the BIP code of a connector with an
exported port. The connector declaration of Figure 4.19 allows the communication

Figure 4.19: Example of a Connector with an Exported Port

using the protocol "mail". We add to it the port "check_value" that takes a variable
"checked_value" as a parameter. The variable "checked_value" is initialized using the
value exchanged via the "mail" protocol in the "up" part of the connector.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

80 Chapter 4. Simulation Approach

Finally, the actual connection between the model and the monitor is done in a third
file, which we illustrate in a simplified way in Figure 4.20. For readability reasons,
in Figure 4.20 we only represent one send and collect port in the attacker component
when, in reality there is one external port for each action of this component. We also
chose to not represent the internal ports as they are not part of the communication
between the model and the monitor.
The third file includes an instance of the monitor, an instance of the model as well
a connector declaration. The type of connector created makes the monitor able to
connect the exported port of the model and the ports of the monitor. In Figure

Figure 4.20: BIP component of the Monitor

4.20, we can see two exported ports on the model that are placed on the interactions
that are described in the attack tree. These actions are the Leak/Collect interations
between the employee and the attacker and between the server and the attacker. We
can also see that these interactions correspond to transitions in the monitor.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

81

Chapter 5

Experiments

This last chapter contains concrete applications of our methodology through two use
cases.
We first start in Section 5.1 by a brief recap of the process that lead us to the sta-
tistical analysis. We then delve into the statistical modeling by explaining the two
algorithms that we use to perform the analysis: Monte Carlo and Importance Split-
ting.
The two following sections develop the concrete use cases we chose to test the method-
ology. Section 5.2 presents a Smart Hospital and Section 5.3 the Amazon Key system.
Each section is constructed as follows.
They start with a presentation of the system: its nominal behaviour and of all of its
actors using SOML. Next, we describe possible attacks towards the systems and their
representations with an attack tree, as well as the corresponding BIP model. Finally,
we show and comment the analysis results.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

82 Chapter 5. Experiments

5.1 Methodology
Before presenting the actual results that we obtained with our models, let’s introduce
the methodology we followed to conduct the analysis. This section is composed of
two parts. First, in Subsection 5.1.1, we explain what Statistical Model Checking
is and the two algorithms we are using: Monte Carlo and Importance Splitting.
Next, in Subsection 5.1.2, we start by a brief summary of the overall process and
present the different parameters we chose for the analysis. This section also includes
a presentation of the tools we used for the experiments.

5.1.1 Statistical Model Checking

To conduct our experiments, we used Plasma Lab, which is a Statistical Model
Checker (SMC). Several algorithms are implemented in Plasma Lab and the ones
that serves our needs are Monte Carlo and Importance Splitting.

Monte Carlo

The Monte Carlo method allows us to estimate the probability to satisy a requirement.
To conduct the experiments we need to specify the property to verify and the number
of simulations that we want to run. Here the requirement is the success of the attack.
The score of the monitor must then be equal to the height of the tree, as the root
node represents the attack success. The probability of success is computed from the
ratio of successful simulations compared to the total number of simulations.

Importance Splitting

Importance splitting is a method designed to calculate the probability of rare events
to happen, Importance splitting decomposes the verification of the property into sev-
eral properties that define a set of levels that a trace need to satisfy before the main
property is satisfied. In our work, the property is the success of the attack that is
represented by the root node of the attack tree. The subproperties that needs to
be verified are the steps of the attack and therefore the nodes and the leaves of the
attack tree.
The importance splitting algorithm [27] estimates the probabilities of passing from
one level to the next by the proportion of a constant number of simulations reaching
the upper level from the lower. The failing simulations are replaced by new simula-
tions and are started from the states chosen uniformly from the terminal states of
successful simulations. Figure 5.1 illustrates the process. The overall estimate is the
product of the estimates of going from one level to the next.

We can express the overall estimate this way:
We consider γ to be the probability for an arbitrary execution trace to verify the
temporal logic property ϕ.
We have: γ =

∏n
i=1 P (l > li|l > li−1) for the probability of reaching level li, with

l being an abstract level of a path. For more details about the importance splitting
process and algorithm, please refer to [33].

To conduct the experiments using the importance splitting algorithm with Plasma
lab, we need to use a RML Observer (RDF Mapping Language). The observer will
specify the requirement for the simulation trace to be successful. The property to ver-
ify is expressed using BLTL (Bounded Linear Temporal Logic). Plasma Lab includes
a tool that transforms the BLTL property into a RML observer. As in the Monte

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.1. Methodology 83

Figure 5.1: Importance Splitting algorithm

Carlo algorithm, we specify the success property (the score of the monitor equals the
height of the associated attack tree) and the number of simulation that we want to run.

Concerning the practical aspect, we used Plasma lab (Platform for Learning and
Advanced Statistical Model checking Algorithms) to perform the statistical analysis.
It was introduced in [32] as a flexible SMC platform that included a built-in compiler
and a virtual machine for the simulations. At its creation, it was able to perform rare
event analysis, using the importance sampling algorithm. Afterwards it was upgraded
with different model checking modes [10] such as Mont Carlo and importance splitting.
The current Plasma Lab architecture [44], that we can see in Figure 5.2 enables
Plasma Lab to perform model checking using external simulators.

Figure 5.2: Plasma lab Architecture

5.1.2 Overview

Figure 5.3 shows a representation of the whole process from the inputs to the final
results of the statistical analysis. As we recall from the previous chapters, the first
step is to model a system, using SOML. The second step is to model different attacks,
which have a common goal and could happen on the system using an attack tree.
These two files represent the inputs of the process as we can see in Figure 5.3.
Then, in order to perform the simulations used for the analysis, we transform the
model as well as the attack tree into a BIP model. This is made possible thanks to
the parser that we implemented. The SOML model is converted into an equivalent

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

84 Chapter 5. Experiments

BIP model, and the attack tree into a BIP monitor that observes the behaviour of
the model during the simulation and keeps track of the attack happening. A third
BIP file is generated in order to connect the model to the monitor. This way, the
monitor can receive updates from the model.
The simulations are carried out by the BIP Engine. Throughout this process, the
BIP Engine exchanges information with Plasma Lab which is the Statistical Model
Checker we use.

Figure 5.3: Process Overview

To be able to use Plasma lab, we developped a plugin that allowed us to connect
the Plasma checker and the BIP engine as a simulator.

As we described in the previous subsection, SMC requires a property to verify.
The probabilities computed are the chances for the system to verify this property.
The property that we used for our simulations concerns the score of the monitor. As
we know, from Subsection 4.4.3, the BIP monitor has a score variable. This score
is incremented, depending on the node of the attack tree reached by the attacker
during the simulations. When the monitor score variable reaches its highest value,
it means that the attack has succeeded. Therefore, we specify as a property to the
model checker that the monitor score must reach a certain value, corresponding to
its highest possible score.

Concerning the conduct of the experiments, the results that we can see in Figure
5.8 and Figure 5.14 were obtained by taking the average of ten iterations for each
model, for optimal reliability.
Between the different cases, the two varying parameters were the probabilities in the
model and the number of simulations.
The probabilities, unlike the model and the attacks, are not based on real life exam-
ples. We simply increased the chances of failure for the attacker. At a certain point,
the success of the attack becomes rare enough for it to be considered a rare event.
For this purpose, anytime an entity had an action of leaking or sending information
to the attacker that could benefit his attack, we decreased the chances for this entity
to take this action. For instance, let’s consider that the attacker sends an email to
an employee, requesting his password. The employee has two choices: either he leaks

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.1. Methodology 85

his password, or he just ignores the email which is modeled by an internal action. To
decrease the chances for the attacker to access the password, and therefore to be one
step closer to carrying out his attack, we put a higher weight on the internal action.
We start both experiments with a model without any probabilities and therefore a
uniform choice between all possibilities. Then, we assign a weight of 1 to the leak
actions, or other actions of the internal entities that benefit the attacker. Throughout
the experiments, we increase the weight on the internal counterpart actions that are
meant to make the attacker fail. On the result tabs, we indicate the values of the
weights on the internal actions for each experiment.
Since we want to know the probabilities for an attack to succeed as well as compare
the efficiency of the Monte Carlo and Importance Splitting algorithms, we ran an
increasing number of simulations for each case. This way we could see for each algo-
rithm the minimum number of simulation necessary to give us a precise result as well
as obtain the actual result.
By increasing the number of simulation on both algorithms, we also increased the
necessary resources to conduct the experiments. We ran the simulations on the clus-
ter from the Igrida Grid of INRIA Research Center Rennes Bretagne Atlantique. We
allocated a node with 20 Gb of RAM.
The simulations were run using the 2018 version of the BIP engine.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

86 Chapter 5. Experiments

5.2 Smart Hospital
This section describes the Smart Hospital use case. We first give a brief description
of the system and its general concepts in Subsection 5.2.1. Subsection 5.2.2 shows
the SOML model implemented for the experiments, and Subsection 5.2.3 the possible
attacks towards it. Then, in Subsection 5.2.4, we introduce the BIP model built
from the SOML model. Finally, Subsection 5.2.5 shows the results of the statistical
analysis on the model.

5.2.1 Overview

IoT systems are used to push the boundaries of the hospital. Connected medical
devices allow the medical staff to treat the patients remotely and give the staff real
time access to their metrics. As the hospitals expand their limits, they increase their
attack surface and are therefore more vulnerable. The migration from a hospital
to a smart hospital usually happens by adding devices and features to the existing
system, and often the security and the infrastructure are not updated. This lack of
security upgrade and adaptation leaves the system vulnerable. In addition to that,
the hospital staff who operate on the IT System on a daily basis are not sensitized to
the risks.

5.2.2 Smart Hospital SOML model

The Smart Hospital example is constituted of four internal entities, and two external
entities that conduct an attack.
The internal entities are the following:

Hospital IT It is part of the interconnected Hospital information system. It
provides an interface for employees and patients. Users can con-
nect to it and access different services and information. For in-
stance, the hospital staff can create a ticket if they encounter
technical issues, and patients can update their data.

Hospital DataBase It contains the information the Hospital needs to function prop-
erly. These information can be confidential (patient data, pass-
words for example) or not.

Employee He is part of the Hospital staff. He can be a caregiver or not. He
has credentials that give him access to critical information stored
in the Hospital DataBase. He has a phone number and an email
address which allow him to be contacted.

Medical Device It can be an implantable, wearable networked device. It allows
the hospital staff and systems to access real time measurements
of key vital signs. Information is transmitted via network connec-
tions. They also allow medical staff to perform remote actions,
for example administer a medical dose.

Two external entities perform an attack towards the system:

Attacker This entity communicates with every internal entity he can reach in order
to steal information. To this end, every existing protocol can be exploited.

Malware This entity is a tool used by the attacker to infiltrate the system. Each
information the malware accesses is transmitted to the attacker.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.2. Smart Hospital 87

Figure 5.4: Initial State of the Smart Hospital System

Figure 5.4 represents the intial state of the system: all entities and their initial
knowledge. Amongst other things, these data allow the entities to communicate with
each other through protocols. We distinguish eight distinct protocols in the system:

• url: this protocol is used when communicating with the Hospital IT. The veri-
fication is made on the url of the Hospital IT.

• phone: entities can communicate with each other using their phones. In order
to call someone it is necessary to know the receiver phone number.

• ssh: the attack and malware send each other information using the ssh protocol.
To access this channel, one must have the ssh key.

• https: represents the secure connection with the server. A successful commu-
nication with the server is only possible for users with valid credentials.

• mail: a possible way for entities to communicate with each other is through
emails. The verification is performed on the email addresses.

• malware installation: one of the attack includes the attacker installing a
malware on an employee computer. In order to do that the employee must
accept the installation, which can happen when he doesn’t realize what he is
actually agreeing to. This protocol represents the communication between the
attacker and its employee target. The verification is performed on the email
address of the target.

• bluetooth: the medical devices send and receive metrics via unprotected blue-
tooth. In order to connect to it, it is only necessary to be in the emission range
of the device. This protocol then checks the physical location of the entity that
tries to access it.

• device communication: medical devices transmit the patient metrics to the
hospital database through this protocol. This protocol checks the device iden-
tification number before allowing an exchange.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

88 Chapter 5. Experiments

5.2.3 Smart Hospital under Attacks

Here, we model several attacks towards the Smart Hospital. All these attacks are
conducted with the intent of accessing the confidential data of the Hospital DataBase.
The steps composing the attacks are represented in the attack tree of the Figure 5.5.

Figure 5.5: Attack Tree Smart Hospital

For this attack scenario, we drew on a number of existing attacks towards hospi-
tals, described, in particular on the ENISA report [21] and on the TrapX reports [41].
To access the confidential data, we considered two possibilities. First, the attacker
starts by gaining access to credentials and then can connect to the DataBase (1, 2
and 3). A second possibility is that the attacker hacks into the DataBase and gets
direct access to the data (4). The rest of this section details the stages of each attack.

Qui Pro Quo Attack In this attack, represented in part (1) of the attack tree, the
attacker gathers general information: employees phone numbers
and technical issues that affect employees. Using these, the
attacker calls employees, posing as technical support and ask
them for their password. If an employee leaks his credentials
on the phone, the first part of the attack is a success.

Phishing Attack This a well known attack that we show in part (2) of the attack
tree: the attacker gets access to email adresses of the hospital
employee. He sends spam emails, requesting the user to click
on a link and then connect, using their password. This leads,
once again, to the leak of their credentials.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.2. Smart Hospital 89

Medjack Medjack is a new term to describe the attack through the hack
of connected medical devices: it is the contraction of "medi-
cal"and "hijack" and it is shown in part (3) of the attack tree.
It appeared for the first time in the reports of the TrapX Se-
curity organization [40]. In this case, the attacker takes control
of a medical device that sends patient data via bluetooth. The
attacker replaces the medical data by a SQL Injection. SQL
(Structured Query Language) is a language designed for man-
aging data held in a database. A SQL injection is a technique
in which malicious SQL statement is inserted into an entry field
for execution. So, instead of sending regular metrics, the device
transfers a SQL request to the database in charge of collecting
patient data. The SQL statement requests the display of all
passwords, including the admin one. If the database is not pro-
tected against SQL Injections, it will execute the request and
leak the passwords.

These three attacks have one thing in common: they represent a first step towards
gaining access to the confidential information of the hospital database. For the attack
to be a success they now need to connect to the server, using the stolen credentials.
There is a risk that the password is wrong or does not provide enough clearance to
the Attacker for him to access the information he seeks.

Malware Attack This attack allows the Attacker to directly access confidential
information. As we can see in part (4) of the attack tree, the at-
tacker starts by sending an email infected with a malware to an
employee. If the employee opens the email, his computer which
is connected to the network, can be infected. Once installed, the
malware moves through the netwok, until it reaches the confi-
dential information. These information are then transmitted to
the Attacker by the malware via their ssh connection. For sim-
plicity reasons, alternative steps of the attack such as parallel
moves (steps where the malware moves through the system and
makes information requests to the different entities it infects
until it finds interesting information) of the malware within the
IT system do not appear in the model.

5.2.4 Smart Hospital BIP Model

Once we have modeled the SOML model as well as the attack tree, there are both
transformed into a BIP model in order to perform the simulation. Figure 5.6 shows
the BIP model of the hospital. For readability reasons, the data of each component
are not showed in the figure.
First, we can see that each SOML entity has a corresponding BIP component. In
the transformation, each action of the entity leads to the creation of a unique port
in the BIP model. In Figure 5.6 only one port for each protocol used by the entity
is represented, for clarity purpose. For the same reason we only represent external
ports and ignore the internal ones.
The BIP components’ behaviours are represented using Petri Nets, and we can see
that the entity and its matching BIP component behave in the exact same way.

Figure 5.7 shows a part of the BIP monitor generated from the attack tree of Fig-
ure 5.5. The figure focuses on the Phishing part of the attack, described previously in

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

90 Chapter 5. Experiments

Figure 5.6: Smart Hospital BIP representation

Subsection 5.2.3. The two leaves "getCredentialPhishing" and "employee1email" rep-
resent values exchanged between the attacker and other entities through Send/Receive
and Leak/Collect interactions. There are two external ports: one for the Send/Re-
ceive interactions, and another for the Leak/Collect ones. So whenever the attacker
exchanges values with another entity, one of these two ports are triggered, depend-
ing on the kind of communication. The monitor compares the value exchanged with
the ones on the attack tree and if they match, the boolean value that corresponds
to the leaf is set to true. For instance, let’s consider that the employee leaks the
value "employee1email" to the attacker. The monitor "leak_collect" external port is
triggered. In Figure 5.7, we can see that in the leak_collect transition, the monitor
verifies what value was leaked to the attacker. Once it finds a match, the boolean
variable "bool_leak_collect_employee1email" corresponding to the action is set to
true and the score of the monitor is increased to the height of the leaf, here to "2".
The internal node "Phishing" is transformed in BIP into an internal port as well as in
a boolean variable. For the internal port to be triggered, both boolean variable corre-
sponding to its leaves, as it is an "AND" type of node, must be true. It represents the
fact that both steps of this subgoal are complete. If they are true, during the transi-
tion, the boolean variable corresponding to the internal node, here "bool_Phishing"
is set to true and the score variable is incremented.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.2. Smart Hospital 91

Figure 5.7: Smart Hospital BIP monitor

5.2.5 Experiments

In this part, we conducted the statistical analysis on the model that we introduced in
Subsection 5.2.1. The results are presented in Figure 5.8. They are composed of three
tables that display the probabilities of the success of an attack considering different
probabilities in the model.

Table 1 In this table, there are no probabilities in the model which leads to a uniform
distribution for all choices. This means that, when given a choice, an entity
has the same probabilities to leak information than to ignore the malicious
request. We can see here that the chances of success of the attacker cannot
be considered to be a rare event. In this case, Monte Carlo is faster than
Importance Splitting and gives precise results even with the lowest number
of simulation.
As for Importance Splitting, it is precise and not significantly slower that
Monte Carlo for 1 000 simulations. But we can see that from the highest
number of simulations, Importance Splitting starts behaving incorrectly.

Table 2 In this example, we gave 50 more chances for an entity to ignore a malicious
request from the attacker than to leak confidential data. To do so, we put a
weight of "1" to all leak actions and a weight of "50" to their internal action
counterparts. The result is that the possibilities of success of the attacker
are fewer, without being a rare event.
Monte Carlo gives less specific results than in the first simulation, even with
the highest number of simulations. Importance Splitting is twice slower than
Monte Carlo but more specific for the first two simulations. However, for the
highest number of simulations, it is giving incoherent results.

Table 3 This model decreases again the chances of success of the attacker. Here, the
weight of the leak actions is 1 while the internal counterpart action has a
weight of 100. Under 10000 simulation it seems impossible for the Monte

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

92 Chapter 5. Experiments

Carlo algorithm to give an estimate. With the two highest number of simu-
lations, Monte Carlo can give us a value approach but there is nothing spe-
cific. The estimate is considerably smaller than the number of simulations,
and thus we don’t have a lot of confidence in Monte Carlo. Importance split-
ting helps here to confirm, or add confidence in the result. Alternatively,
Monte Carlo for a large number of simulations, can confirm the results of
importance splitting on a few simulations.

Figure 5.8: Smart Hospital Experiments Results

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.3. Amazon Key 93

5.3 Amazon Key
This section describes the Amazon Key use case. After a brief description of the
system and its general concepts in Subsection 5.3.1, we introduce the corresponding
SOML model in Subsection 5.3.2. Then we describe the possible and existing attacks
towards the system that we included in the attack tree of the Subsection 5.3.3. The
Subsection 5.3.4 presents the corresponding BIP model and Subsection 5.3.5 shows
the results of the statistical analysis, performed on this use case.

5.3.1 Overview

Amazon Key is a service, provided by Amazon, that allows customers to have an
automated control over the access to their house. Using a Smart Lock, the customer
can allow other people to enter his home while he is not there. A set of cameras
provides him with real time images of his house, supposed to increase the security of
the delivery.
The door can be controlled by a code, sent to the Smart Lock, using a smart phone
or another device. The code can be a permanent one, used by the people living in
the house, or temporary. The temporary code is meant to be used by a specific and
punctual visitor: a guest, a deliverer or a house worker for instance. In the case of a
visit, the Amazon cloud cam gets involved for security reasons. It records the front
door of the house owner, allowing him to have a real-time footage of the process. The
Cloud Cam and the Smart Lock are connected via a low-power ZigBee connection.
The camera is notified to start and stop recording by the Smart Lock through this
connection.
For a better understanding of the procedure, we illustrate an indoor delivery process
in Figure 5.9.
The indoor delivery is meant for a customer to have his order delivered inside of his

Figure 5.9: Amazon Key Behaviour

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

94 Chapter 5. Experiments

house while he is gone. The different steps of the procedure are showed in Figure 5.9
and are as follows:

1. The customer makes a purchase on the Amazon Website and asks for an indoor
delivery. The customer must have an Amazon account and his house has to be
equipped with the Smart Lock.

2. The Amazon server creates a delivery number, which figures on the package in
the form of a barcode.

3. Once the package is ready, the deliverer goes to the drop point: the customer
house. The deliverer then identifies himself by scanning the delivery barcode
with an Amazon application. This application sends the order number to the
Amazon Server. The Amazon Server is then notified that the delivery person
needs to open the door.

4. If the delivery information provided are consistent, the Amazon Server replies
with the temporary code for the Lock.

5. The deliverer sends this code to the Lock to unlock the door. If the code is
accepted, the door is unlocked.

6. The Lock sends a notification to the camera via bluetooth or ZigBee protocol,
to start recording.

7. The recording is sent to the Amazon Server.

8. The Amazon Server transmits the footage to the customer who can watch it in
real time or access it later.

9. Once the package is dropped, the delivery person sends a lock instruction to
the Smart Lock, which also notifies the camera to stop recording, and leaves.

5.3.2 Amazon Key IoT Model

To model the system using SOML, we use five internal entities that we can see in
Figure 5.10:

Customer He is the one requesting the delivery. His initial information are his
customer number that he uses to log on the Amazon Server. He also
possesses an email and an address.

Cloud Camera It is in charge of surveillance. The footage recorded are key to en-
sure the safe and successful conduct of the delivery. It also has an
identification number to be recognized by the Amazon Server and
the Smart Lock.

Smart Lock It can be opened via a code either temporary or permanent, de-
pendening on the needs. It communicates via bluetooth or ZigBee
protocol with the camera, to notify it of when to start and stop
recording.

Amazon Server It is in charge of the coordination of the events. He makes the con-
nection between the camera and the customer by transmitting the
footage. He is also in charge of creating door codes upon request of
the customer and sending them to different actors of the system.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.3. Amazon Key 95

Figure 5.10: Initial State of the Amazon Key System

Deliverer He is an Amazon employee and therefore has an id that allows him
to communicate with the Server. This communication allows him
to access his different tasks and receive the information necessary to
accomplish them.

Attacker He starts his attack with only the customer’s email address. His
final goal is to gather enough information in order to get inside of
the house without being seen. This means that he has to open the
door and disable the camera.

We defined several protocols for this model, each of them supported by a different
verification.

Customer Communication It models the exchanges between the Amazon Server and
the customer that can happen at different stages of the
delivery. The security of these interactions is based on the
knowledge of the customer identification number, that is
known only by the customer himself.

Staff Communication This is used by the Amazon Server and the deliverer to
communicate outside of the delivery process. This proto-
col is used for instance when the Amazon Server assigns
a task to the deliverer. The verification is made on the
deliverer identification number.

Delivery This protocol is used for the communication between the
deliverer and the Amazon Server during a delivery. The
communication is allowed only if the deliverer sends the
correct delivery number to the Amazon Server that an-
swers by sending him a door code.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

96 Chapter 5. Experiments

Door Control The exchange between the Smart Lock and people who
want to unlock the door. The verification is performed on
the code sent to the Smart Lock. When trying to send
an incorrect code to the lock, the communication is not
possible.

Camera Detection This represents the fact that to be able to communicate
with the camera, it is necessary to be in its communication
range. This verification is made on the address of the
entities as we consider it represents the physical location
of an entity.

Camera Communication This protocol allows to control the camera in order to
ask it to start and stop recording, as well as to retrieve
the footage. For instance, this happens when the lock
notifies it to start or stop recording and when the camera
sends the footage to the Amazon Server, to transmit it to
the customer. This protocol bases the verification on the
identification number of the camera.

Mail The customer can be contacted by email, under the con-
dition of knowing his email address.

5.3.3 Amazon Key under Attacks

There are two known attacks towards the Amazon Key system. The first one was
posted on Twitter by a Bay Area security researcher, aims to disrupt the communi-
cation between the Smart Lock and the device used to open and close it (for instance
during a delivery). This is achieved by using a "break and enter dropbox" device
within the communication range of the lock. Details of the device were not made
public by the researcher, but it seems to be some kind of minicomputer. What hap-
pens is that once the delivery person arrives to the customer house, he opens the door
using the code, drops the package. Once this is done, he hits the lock command on
his smartphone and leaves. Because of the malicious device, the lock request doesn’t
work and the door remains open. The attacker can just open the door and walk inside
the house once the deliverer left.
The second attack was discovered by Rhino Labs Security [2]. They found that by
using known wifi vulnerabilities, they can disconnect the camera from its router.
In our simulation we consider an attack successful if the attacker manages to open
the door and to disable the camera. This way he can enter the house without being
spotted. The attack showed in the attack tree of the Figure 5.11 are inspired by the
existing hacks. The house is considered vulnerable if the attacker manages to open
the door and to disable the camera.
To open the door the attacker needs to know the house location. This can be achieved
in two ways: either the customer leaks his identifier, which allows the attacker to con-
nect to his profile and then get access to the information. The second way is that
we consider that the customer’s computer is infected. If this is the case, the attacker
can access to the order validation of Amazon. We model this with a leak of the order
information to the attacker from Amazon.
Once the attacker knows the location and hour of the delivery, he needs to be able
to get the door code. Using the hack posted on Twitter, we consider that there is a
chance for the attacker to intercept the code sent to the Smart Lock by the deliverer

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.3. Amazon Key 97

Figure 5.11: Amazon Key Attack Tree

when he opens the door. We model that with a possible leak action from the deliverer
towards the attacker. If the attacker has access to the door code, he has to send a
request to the Smart Lock through the door control protocol and the Smart Lock can
respond positively or not to this code. We model the attacker successfully opening
the door with a leak of the value "unlocked" from the Smart Lock to the Attacker,
otherwise the Smart Lock will just ignore the attacker’s request.
Adding more steps to the door opening process that there are in the real hack is
meant to add difficulty for the attacker and then model the incertainty that exists in
real life when hacking a system.
The other requirement for the attack to succeed is that the camera is disabled. To
do so, first the attacker needs to be physically in the communication range of the
camera. We model this using the "camera detection" protocol. To be able to detect
the camera and so to communicate with it, the attacker must know the address of
the customer. This is made possible through another phishing email that asks the
customer for this information. The customer can leak his address or just ignore the
email. Once the attacker is able to detect the camera, he will try to hack it. This is
modeled by a request made by the attacker: the camera will, or not, leak its iden-
tifier. If the answer of the camera is positive and the attacker possesses the camera
identifier in his knowledge, we consider that he can control the camera and therefore,
the second requirement of the attack is complete.

5.3.4 Amazon Key BIP Model

The transformation towards a BIP model using the SOML model of the Amazon Key
system and the attack tree follows the same principles that we detailed previously, in
Subsection 5.2.4.
Figure 5.12 shows part of the BIP model. For readability reason, the component
variables and internal ports are not shown and the exported ports are limited to one
for each protocol used by the entity.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

98 Chapter 5. Experiments

Figure 5.12: Amazon Key BIP representation

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.3. Amazon Key 99

Figure 5.13: Amazon Key BIP monitor

Figure 5.13 shows part of the monitor for readability reasons.
For this model, the attack steps are only composed of information leaks. No Send/Re-
ceive interaction is considered. As we can see in the monitor representation, the
"send_receive" port doesn’t do anything. The value comparisons lead to the same
update of the boolean variables and of the score variable as seen before.

5.3.5 Experiments

In this subsection, we present the results of the experiments that we conducted on
the Amazon Key model. The results are presented in Figure 5.14. As previously
the probabilities of the model vary as we want to make the success of the attack a
rare event. The approach is the same as for the previous model, Table 1 shows the
results of the experiments performed on a model without any probabilities. We slowly
decrease the chances of success, until the completion of the attack becomes a rare
event.
More experiments have been performed in this case than previously because the bal-
ance between the attack success becoming a rare event and the memory resources for
the experiment becoming insufficiant was harder to find.

Table 1 Here, the attack success is not a rare event and both algorithms
are equivalent in terms of accuracy as we can see that they con-
verge towards the same value. The importance splitting algo-
rithm takes more time but the time difference is not significant.
We can see that the chances of success of the attack are lower
than in the previous use case even though the attack tree is
smaller and seems easier to perform. This can be explained by
the fact that the previous attack tree included more paths and
alternatives for the attack success and required for the attacker
to get access to less distinct information.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

100 Chapter 5. Experiments

Table 2 Even though in this second model the attack success is not a rare
event yet, we can see that the Monte Carlo algorithm becomes
less specific.

Table 3 and Table 4 To give an estimate of the success probabilities, Monte Carlo
needs at least 10000 simulations.

Table 5 In this last simulation, the attack success is a rare event. We
can see that with the available resources to perform the experi-
ments, it seems impossible to have an accurate result using the
Monte Carlo algorithm. However, with the use of the same re-
sources and number of simulations, Importance Splitting is able
to compute results that seem accurate.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

5.3. Amazon Key 101

Figure 5.14: Amazon Key Experiments Results

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

102 Chapter 5. Experiments

5.4 Experiments Conclusion
As we saw in this chapter, we conducted the experiments on two distinct IoT systems.
First, the Smart Hospital shows how an important and complex system operates
whereas the Amazon Key gave an overview of how IoT systems can be integrated,
on a small scale, to the life of every individual. The size also makes a difference on
the attack surface. This is visible for instance on the size of the attack tree: the
Smart Hospital has a bigger attack tree, and we have seen that attacks have higher
probabilities to succeed on it than on the Smart Lock. This can be explained by
the fact that the Smart Hospital is composed of a large number of complex systems
and this increases its vulnerability, as there are more ways to attack it and then to
access its confidential information. On the other hand, the Smart Key is smaller and
therefore more difficult to attack. Its attack tree is smaller as the attacker has to
exploit very specific vulnerabilities in order to conduct the attack, and for most of
the steps, there are no alternatives. Another element is that the hospital is a public
system and there are more available public information, such as email addresses, its
physical address, ... whereas the Smart Lock belongs to an actual person whose
information are not as easy to access (even though with the increasing use of social
media, individuals make their information more and more easy to obtain).
Concerning the Monte Carlo and the importance splitting algorithms that we used
to compute the probabilities, our findings are these. When probabilities are high,
Monte Carlo turns out to be faster than importance splitting for a same degree of
accuracy. But when the probabilities get close to be rare events, Monte Carlo needs a
higher number of simulations than importance splitting in order to compute a result,
that, in the end, seems less relevant. Importance splitting can be considered to be
more accurate when the number of simulations are low, but on a high number of
simulations it behaves incorrectly and therefore cannot be trusted. We argue that
both algorithms must be used in a complementary fashion in order to give accurate
results.
The use of these two algorithms and the results that they provide validate the fact
that our methodology allows us to calculate the chances of an attack whether it is a
rare event or not.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

103

Chapter 6

Conclusion

We started this work with the objective of computing the success probabilities of an
attack on a given system. The attacks were performed by one or several attacker
with the objective of accessing sensitive and confidential data. We started by finding
a way to model an IoT system. We didn’t find any formal language that was adapted
to connected environments and therefore to IoT systems, and that allowed us to use
probabilities. We then decided to implement our own language: Security Oriented
Modeling Language (SOML).
SOML is presented in [4] that presents both its abstract and concrete semantics, both
of them are expressed formally. SOML is meant to give users a way to describe an
IoT system easily by expressing each actor and connected device as an entity. For
all entities of the system, we define a knowledge and a behaviour. Then, by showing
how an entity can expand its knowledge and access information that it shouldn’t
have we are able to express attacks happening within the system. SOML allows us to
add probabilities on the actions of the entities. By varying the probabilities on their
behaviour, we can make "illegal" actions more or less likely to happen and therefore
have an impact on the chances for the attack to succeed.
This bring us to the second part of the process: once we have a system model with
defined probabilities on the actions, we want to be able to run the experiments and
to compute the actual attack probabilities. For that we need two additionnal steps:
first, explicitly model the attack that we want to measure the chances of and run
simulations of the system. The overall process was published in [5].
The simulations are run using the BIP language that provides us a way to make
the entities interact and run the attack within the system. To be able to use BIP,
we implemented a transpiler that transforms a SOML model into an equivalent BIP
model. Using the formal expressiom of both languages, we proved this equivalence
by showing a bisimulation between the languages in Section 4.3.3.
The attack is expressed within the model and through the behaviour of its entities,
but we have no way to flag the success or failure of an attack. Indeed, during the
simulations we see the entities interact with each other and get access to information
but we have no specifica idea of if this entity is supposed to get these information
or not. To remedy this situation, we implement an external representation of the
attacks using an attack tree. In the tree, we describe the attack by showing what
information the attacker will try to access, and the types of communication he will
use to do so. During the conversion process, the attack tree is transformed into a
BIP component, called monitor, that interacts with the BIP system that corresponds
to the system representation. The monitor’s role is to observe the system’s running,
without interfering, and flag an attack success. To do so, he receives information from
the system about the entities’ actions and is able to know at a given time where is
the attack at. Thanks to the monitor’s following of the attack progress, we are able
to determine when an attack has been conducted and compute its probabilities.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

104 Chapter 6. Conclusion

The probability part is carried out by Plasma lab, which is a statistical model checker.
As we said earlier, we make the chances of success vary by modifying the probabilities
within the system. When the attack has a probability to happen that is inferior to
10−6, we call it a "rare event". Plasma lab is able to calculate the chances of success
of an attack whether it is a rare event or not, using several algorithms that we de-
scribe in Section 5.1. We decided to use two different algorithms: Monte Carlo and
Importance Splitting, that is specifically designed for rare events. Throughout the
experiments we were able to compare the efficiency and accuracy of both algorithms.
We conclude that both algorithms should be used in a complementary way. Indeed,
when the probabilities are high, Monte Calro tends to be more efficient, for a shorter
time of simulations but requires a higher number of simulation as the probabilities
decrease to keep on being accurate. When we arrive to a point of rare event, Monte
Carlo requires a number of simulations that is too high for the resources we had to
give us a result. On the other hand, Importance Splitting takes a longer time than
Monte Carlo to compute probabilities when they are high. But as we get closer to a
rare event, Importance Splitting is able to give us a more accurate result that Monte
Carlo for the same number of simulations. For these reasons we argue that both algo-
rithms have a complementary role towards each other. The simulations were applied
on two different IoT models: a smart hospital and the Amazon Key. The models are
very distinct in sizes and applications from each other. These use cases showed us
that SOML and the subsequent probabilities analysis can be applyed on a variety of
IoT systems.
Throughout this work we created a new way of modeling connected environments
using SOML. SOML is a formal language that puts an emphasis on how the different
parts of the system communicate by showing the communication protocols and defin-
ing types of data. We also implemented a compiler that takes as inputs the SOML
model and an attack tree and generate an executable model that allows us to perform
simulations of attacks towards the model. As we separate the system model and the
attack expression, it is possible to play various kind of assaults on one model. Then,
by coupling the engine that plays the simulations with a statistical model checker we
calculate the probabilities for the attack to succeed.
One of the limitation of this work is the manual implementation of the attack and
of the attacker. An improvement would be to have a visual representation of the
language that would enable users to create the representation of the system via a vi-
sual interface. The SOML code would be automatically generated from this graphical
view. Also, to implement the attack tree, we had to look for real life attacks that
happened on similar system. We then had to create one or several attack entities and
design their behaviour so it would match the attack tree. An improvement would be
to be able to automatically generate attackers and attack trees related to a system. A
way of doing it would be to label some parts of the system as critical and tag some of
the system vulnerabilities. Fom there, we could generate a set of attacks which goal
is to access the confidential parts of the system. An attacker would also be generated
as an entity who exploits the vulnerabilities of the system in order to conduct an
attack.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

105

Bibliography

[1] A. B. Abkenar, S. W. Loke, and A. Zaslavsky. “IoT-Enabled Group Activity
Recognition Services Using a Modeling Language Approach”. In: 2018 3rd In-
ternational Conference On Internet of Things: Smart Innovation and Usages
(IoT-SIU). 2018, pp. 1–6. doi: 10.1109/IoT-SIU.2018.8519854.

[2] Amazon Key Security: CloudCam Subject to Disruption Attacks. 2018. url:
https : / / rhinosecuritylabs . com / internet - of - things / amazon - key -
security-cloudcam-disruption-attacks/.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things: A
Survey”. In: Comput. Netw. 54.15 (Oct. 2010), pp. 2787–2805. issn: 1389-1286.
doi: 10.1016/j.comnet.2010.05.010. url: http://dx.doi.org/10.1016/
j.comnet.2010.05.010.

[4] D. Beaulaton et al. “A Language for Analyzing Security of IOT Systems”. In:
2018 13th Annual Conference on System of Systems Engineering (SoSE). 2018,
pp. 37–44. doi: 10.1109/SYSOSE.2018.8428704.

[5] D. Beaulaton et al. “Security Analysis of IoT Systems using Attack Trees”. In:
GramSec 2019. 2019.

[6] T. Ben Hassine, O. Khayati, and H. Ben Ghezala. “An IoT domain meta-model
and an approach to software development of IoT solutions”. In: 2017 Interna-
tional Conference on Internet of Things, Embedded Systems and Communica-
tions (IINTEC). 2017, pp. 32–37. doi: 10.1109/IINTEC.2017.8325909.

[7] Saddek Bensalem et al. “Statistical Model Checking Qos Properties of Systems
with SBIP”. In: Proceedings of the 5th International Conference on Leveraging
Applications of Formal Methods, Verification and Validation: Technologies for
Mastering Change - Volume Part I. 2012. doi: 10.1007/978-3-642-34026-
0_25.

[8] S. Bistarelli, F. Fioravanti, and P. Peretti. “Defense trees for economic evalua-
tion of security investments”. In: First International Conference on Availability,
Reliability and Security (ARES’06). 2006, 8 pp.–423. doi: 10.1109/ARES.2006.
46.

[9] Stefano Bistarelli, Marco Dall’Aglio, and Pamela Peretti. “Strategic Games on
Defense Trees”. In: vol. 4691. Sept. 2007, pp. 1–15. doi: 10.1007/978-3-540-
75227-1_1.

[10] Benoit Boyer et al. “PLASMA-lab: A Flexible, Distributable Statistical Model
Checking Library”. In: vol. 8054. Aug. 2013, pp. 160–164. doi: 10.1007/978-
3-642-40196-1_12.

[11] Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”. In:
IEEE Transactions on Computers C-35.8 (1986), pp. 677–691. issn: 0018-9340.
doi: 10.1109/TC.1986.1676819.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

https://doi.org/10.1109/IoT-SIU.2018.8519854
https://rhinosecuritylabs.com/internet-of-things/amazon-key-security-cloudcam-disruption-attacks/
https://rhinosecuritylabs.com/internet-of-things/amazon-key-security-cloudcam-disruption-attacks/
https://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/SYSOSE.2018.8428704
https://doi.org/10.1109/IINTEC.2017.8325909
https://doi.org/10.1007/978-3-642-34026-0_25
https://doi.org/10.1007/978-3-642-34026-0_25
https://doi.org/10.1109/ARES.2006.46
https://doi.org/10.1109/ARES.2006.46
https://doi.org/10.1007/978-3-540-75227-1_1
https://doi.org/10.1007/978-3-540-75227-1_1
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1109/TC.1986.1676819

106 BIBLIOGRAPHY

[12] J. R. Burch et al. “Sequential Circuit Verification Using Symbolic Model Check-
ing”. In: Proceedings of the 27th ACM/IEEE Design Automation Conference.
DAC ’90. Orlando, Florida, USA: ACM, 1990, pp. 46–51. isbn: 0-89791-363-9.
doi: 10.1145/123186.123223. url: http://doi.acm.org/10.1145/123186.
123223.

[13] D. R. Cacciagrano and R. Culmone. “Formal Semantics of an IoT-Specific
Language”. In: 2018 32nd International Conference on Advanced Information
Networking and Applications Workshops (WAINA). 2018, pp. 579–584. doi:
10.1109/WAINA.2018.00148.

[14] Sergio Caltagirone, Andy Pendergast, and Chris Betz. “The Diamond Model of
Intrusion Analysis A Summary By Sergio Caltagirone”. In: 2013.

[15] Edmund M. Clarke. “Model checking”. In: Foundations of Software Technology
and Theoretical Computer Science. Ed. by S. Ramesh and G. Sivakumar. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 54–56. isbn: 978-3-540-69659-
9.

[16] Edmund M. Clarke and E. Allen Emerson. “DESIGN AND SYNTHESIS OF
SYNCHRONIZATION SKELETONS USING BRANCHING TIME TEMPO-
RAL LOGIC”. In: 25 Years of Model Checking: History, Achievements, Perspec-
tives. Ed. by Orna Grumberg and Helmut Veith. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 196–215. isbn: 978-3-540-69850-0. doi: 10.1007/
978-3- 540- 69850-0_12. url: https://doi.org/10.1007/978-3-540-
69850-0_12.

[17] Bruno Costa, Paulo F. Pires, and Flavia C. Delicato. “Modeling SOA-Based IoT
Applicationswith SoaML4IoT”. In: 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT). 2019.

[18] F. Cuppens and A. Miege. “Alert correlation in a cooperative intrusion detection
framework”. In: Proceedings 2002 IEEE Symposium on Security and Privacy.
2002, pp. 202–215. doi: 10.1109/SECPRI.2002.1004372.

[19] Marc Dacier and Yves Deswarte. “Privilege graph: An extension to the typed
access matrix model”. In: Computer Security — ESORICS 94. Ed. by Dieter
Gollmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 319–334.
isbn: 978-3-540-49034-0.

[20] K. S. Edge et al. “Using Attack and Protection Trees to Analyze Threats and
Defenses to Homeland Security”. In:MILCOM 2006 - 2006 IEEE Military Com-
munications conference. 2006, pp. 1–7. doi: 10.1109/MILCOM.2006.302512.

[21] ENISA. Smart Hospitals, Security and Resilience for Smart Health Service and
Infrastructures. Tech. rep. 2016.

[22] T. Eterovic et al. “An Internet of Things visual domain specific modeling lan-
guage based on UML”. In: 2015 XXV International Conference on Informa-
tion, Communication and Automation Technologies (ICAT). 2015, pp. 1–5. doi:
10.1109/ICAT.2015.7340537.

[23] O. Flaten and Mass Soldal Lund. “How Good are Attack Trees for Modelling
Advanced Cyber Threats”. In: 2014.

[24] B. Foo et al. “ADEPTS: adaptive intrusion response using attack graphs in an
e-commerce environment”. In: 2005 International Conference on Dependable
Systems and Networks (DSN’05). 2005, pp. 508–517. doi: 10.1109/DSN.2005.
17.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

https://doi.org/10.1145/123186.123223
http://doi.acm.org/10.1145/123186.123223
http://doi.acm.org/10.1145/123186.123223
https://doi.org/10.1109/WAINA.2018.00148
https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1109/SECPRI.2002.1004372
https://doi.org/10.1109/MILCOM.2006.302512
https://doi.org/10.1109/ICAT.2015.7340537
https://doi.org/10.1109/DSN.2005.17
https://doi.org/10.1109/DSN.2005.17

BIBLIOGRAPHY 107

[25] Rob Van Glabbeek, Scott Smolka, and Bernhard Steffen. “Reactive, Gener-
ative, and Stratified Models of Probabilistic Processes”. In: Information and
Computation 121.1 (1995). doi: https://doi.org/10.1006/inco.1995.1123.

[26] Imene Ben Hafaiedh, Susanne Graf, and Sophie Quinton. “Building Distributed
Controllers for Systems with Priorities”. In: J. Log. Algebr. Program. 80.3
(2011), pp. 194–218.

[27] K. Havelund et al. Formal Methods: 22nd International Symposium, FM 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
15-17, 2018, Proceedings. Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2018. isbn: 9783319955827. url: https://books.google.
fr/books?id=LtNjDwAAQBAJ.

[28] Mats Heimdahl and N.G. Leveson. “Completeness and Consistency Analysis of
State-Based Requirements”. In: Jan. 1995, pp. 3–3. isbn: 0-89791-708-1.

[29] Guy Helmer et al. “A Software Fault Tree Approach to Requirements Analysis
of an Intrusion Detection System”. In: Requirements Engineering 7.4 (2002),
pp. 207–220. issn: 1432-010X. doi: 10.1007/s007660200016. url: https:
//doi.org/10.1007/s007660200016.

[30] Guy Helmer et al. “Software Fault Tree and Colored Petri Net Based Specifica-
tion, Design and Implementation of Agent-Based Intrusion Detection Systems”.
In: International Journal of Information and Computer Security 1 (Sept. 2002).

[31] Amin Hosseinian-Far, Hamid Jahankhani, and Elias Pimenidis. “Evaluating
Influence Diagrams”. In: Mar. 2012.

[32] Cyrille Jegourel, Axel Legay, and Sean Sedwards. “A Platform for High Per-
formance Statistical Model Checking – PLASMA”. In: Mar. 2012, pp. 498–503.
doi: 10.1007/978-3-642-28756-5_37.

[33] Cyrille Jegourel, Axel Legay, and Sean Sedwards. “Importance Splitting for Sta-
tistical Model Checking Rare Properties”. In: Computer Aided Verification. Ed.
by Natasha Sharygina and Helmut Veith. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 576–591. isbn: 978-3-642-39799-8.

[34] Qi Jing et al. “Security of the Internet of Things: perspectives and challenges”.
In: Wireless Networks 20.8 (2014), pp. 2481–2501. issn: 1572-8196. doi: 10.
1007/s11276-014-0761-7. url: https://doi.org/10.1007/s11276-014-
0761-7.

[35] C. B. Jones. “Theorem proving and software engineering”. In: Software Engi-
neering Journal 3.1 (1988), pp. 2–. doi: 10.1049/sej.1988.0001.

[36] H. Kahn and Harris. “Estimation of particle transmission by random sampling”.
In: Bureau of Standards applied mathematics series (1951).

[37] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. “Computational Aspects
of Attack–Defense Trees”. In: Security and Intelligent Information Systems. Ed.
by Pascal Bouvry et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 103–116.

[38] Barbara Kordy et al. “Foundations of Attack–Defense Trees”. In: Formal As-
pects of Security and Trust. Ed. by Pierpaolo Degano, Sandro Etalle, and Joshua
Guttman. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 80–95. isbn:
978-3-642-19751-2.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

https://doi.org/https://doi.org/10.1006/inco.1995.1123
https://books.google.fr/books?id=LtNjDwAAQBAJ
https://books.google.fr/books?id=LtNjDwAAQBAJ
https://doi.org/10.1007/s007660200016
https://doi.org/10.1007/s007660200016
https://doi.org/10.1007/s007660200016
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/s11276-014-0761-7
https://doi.org/10.1007/s11276-014-0761-7
https://doi.org/10.1007/s11276-014-0761-7
https://doi.org/10.1007/s11276-014-0761-7
https://doi.org/10.1049/sej.1988.0001

108 BIBLIOGRAPHY

[39] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Prob-
abilistic Real-time Systems”. In: Proc. 23rd International Conference on Com-
puter Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer.
Vol. 6806. LNCS. Springer, 2011, pp. 585–591.

[40] TrapX Labs. Anatomy of an Attack MEDJACK (Medical Device Hijack). Tech.
rep. 2015.

[41] TrapX Labs. MEDJACK 2.0 Hospitals under siege. Tech. rep. 2016.
[42] H. S. Lallie, K. Debattista, and J. Bal. “An Empirical Evaluation of the Ef-

fectiveness of Attack Graphs and Fault Trees in Cyber-Attack Perception”.
In: IEEE Transactions on Information Forensics and Security 13.5 (2018),
pp. 1110–1122. issn: 1556-6013. doi: 10.1109/TIFS.2017.2771238.

[43] Kim G. Larsen et al. “Scenario-based Analysis and Synthesis of Real-time
Systems Using UPPAAL”. In: Proceedings of the Conference on Design, Au-
tomation and Test in Europe. DATE ’10. Dresden, Germany: European Design
and Automation Association, 2010, pp. 447–452. isbn: 978-3-9810801-6-2. url:
http://dl.acm.org/citation.cfm?id=1870926.1871032.

[44] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. “Plasma Lab: A Mod-
ular Statistical Model Checking Platform”. In: vol. 9952. Oct. 2016, pp. 77–93.
doi: 10.1007/978-3-319-47166-2_6.

[45] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. “Intelligence-Driven
Computer Network Defense Informed by Analysis of Adversary Campaigns and
Intrusion Kill Chains”. In: Leading Issues in Information Warfare and Security
Research 1 (Jan. 2011).

[46] A. Marback et al. “Security test generation using threat trees”. In: 2009 ICSE
Workshop on Automation of Software Test. 2009, pp. 62–69. doi: 10.1109/
IWAST.2009.5069042.

[47] Sjouke Mauw and Martijn Oostdijk. “Foundations of Attack Trees”. In: In-
formation Security and Cryptology - ICISC 2005. Ed. by Dong Ho Won and
Seungjoo Kim. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 186–
198. isbn: 978-3-540-33355-5.

[48] J. P. McDermott. “Attack Net Penetration Testing”. In: Proceedings of the 2000
Workshop on New Security Paradigms. NSPW ’00. Ballycotton, County Cork,
Ireland: ACM, 2000, pp. 15–21. isbn: 1-58113-260-3. doi: 10.1145/366173.
366183. url: http://doi.acm.org/10.1145/366173.366183.

[49] R. Milner. A Calculus of Communicating Systems. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1982. isbn: 0387102353.

[50] D. P. Mirembe and M. Muyeba. “Threat Modeling Revisited: Improving Expres-
siveness of Attack”. In: 2008 Second UKSIM European Symposium on Computer
Modeling and Simulation. 2008, pp. 93–98. doi: 10.1109/EMS.2008.83.

[51] Yisroel Mirsky et al. “CT-GAN: Malicious Tampering of 3D Medical Imagery
using Deep Learning”. In: CoRR abs/1901.03597 (2019). arXiv: 1901.03597.
url: http://arxiv.org/abs/1901.03597.

[52] I. Morikawa and Y. Yamaoka. “Threat Tree Templates to Ease Difficulties in
Threat Modeling”. In: 2011 14th International Conference on Network-Based
Information Systems. 2011, pp. 673–678. doi: 10.1109/NBiS.2011.113.

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

https://doi.org/10.1109/TIFS.2017.2771238
http://dl.acm.org/citation.cfm?id=1870926.1871032
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1109/IWAST.2009.5069042
https://doi.org/10.1109/IWAST.2009.5069042
https://doi.org/10.1145/366173.366183
https://doi.org/10.1145/366173.366183
http://doi.acm.org/10.1145/366173.366183
https://doi.org/10.1109/EMS.2008.83
http://arxiv.org/abs/1901.03597
http://arxiv.org/abs/1901.03597
https://doi.org/10.1109/NBiS.2011.113

BIBLIOGRAPHY 109

[53] Peng Ning, Yun Cui, and Douglas S. Reeves. “Analyzing Intensive Intrusion
Alerts via Correlation”. In: Recent Advances in Intrusion Detection. Ed. by
Andreas Wespi, Giovanni Vigna, and Luca Deri. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 74–94. isbn: 978-3-540-36084-1.

[54] S. Noel et al. “Efficient minimum-cost network hardening via exploit depen-
dency graphs”. In: 19th Annual Computer Security Applications Conference,
2003. Proceedings. 2003, pp. 86–95. doi: 10.1109/CSAC.2003.1254313.

[55] P. Ongsakorn et al. “Cyber threat trees for large system threat cataloging and
analysis”. In: 2010 IEEE International Systems Conference. 2010, pp. 610–615.
doi: 10.1109/SYSTEMS.2010.5482351.

[56] Terence Parr. Ed. by Susannah Davidson Pfalzer. The Pragmatic Programmers.
isbn: 1934356999.

[57] C. A. Petri. “Communication with automata”. In: 1966.
[58] D. A. Robles-Ramirez, P. J. Escamilla-Ambrosio, and T. Tryfonas. “IoTsec:

UML Extension for Internet of Things Systems Security Modelling”. In: 2017
International Conference on Mechatronics, Electronics and Automotive Engi-
neering (ICMEAE). 2017, pp. 151–156. doi: 10.1109/ICMEAE.2017.20.

[59] A. Rodriguez-Mota et al. “Towards IoT cybersecurity modeling: From malware
analysis data to IoT system representation”. In: 2016 8th IEEE Latin-American
Conference on Communications (LATINCOM). 2016, pp. 1–6. doi: 10.1109/
LATINCOM.2016.7811597.

[60] Enno Ruijters and Mariëlle Stoelinga. “Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools”. In: Computer Science Review
15-16 (2015), pp. 29 –62. issn: 1574-0137. doi: https://doi.org/10.1016/
j.cosrev.2015.03.001. url: http://www.sciencedirect.com/science/
article/pii/S1574013715000027.

[61] Enno Ruijters et al. “Rare Event Simulation for Dynamic Fault Trees”. In: Com-
puter Safety, Reliability, and Security. Ed. by Stefano Tonetta, Erwin Schoitsch,
and Friedemann Bitsch. Cham: Springer International Publishing, 2017, pp. 20–
35. isbn: 978-3-319-66266-4.

[62] Bruce Schneier. “Attack Trees”. In: Dr. Dobb’s Journal 24.12 (1999), pp. 21–29.
[63] Edel Sherratt et al. “SDL - The IoT Language”. In: SDL 2015: Model-Driven

Engineering for Smart Cities. Ed. by Joachim Fischer et al. Cham: Springer
International Publishing, 2015, pp. 27–41. isbn: 978-3-319-24912-4.

[64] Jan Steffan and Markus Schumacher. “Collaborative Attack Modeling”. In: Pro-
ceedings of the 2002 ACM Symposium on Applied Computing. SAC ’02. Madrid,
Spain: ACM, 2002, pp. 253–259. isbn: 1-58113-445-2. doi: 10.1145/508791.
508843. url: http://doi.acm.org/10.1145/508791.508843.

[65] Terry Tidwell et al. “Modeling Internet Attacks”. In:
[66] Stilianos Vidalis and andH. Lewis Jones. “Using Vulnerability Trees for Decision

Making in Threat Assessment”. In: 2003.
[67] H.A. Watson. In: Launch control safety study 1.24 (1961).

Security Analysis of IoT Systems using Attack Trees Delphine Beaulaton 2019

https://doi.org/10.1109/CSAC.2003.1254313
https://doi.org/10.1109/SYSTEMS.2010.5482351
https://doi.org/10.1109/ICMEAE.2017.20
https://doi.org/10.1109/LATINCOM.2016.7811597
https://doi.org/10.1109/LATINCOM.2016.7811597
https://doi.org/https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2015.03.001
http://www.sciencedirect.com/science/article/pii/S1574013715000027
http://www.sciencedirect.com/science/article/pii/S1574013715000027
https://doi.org/10.1145/508791.508843
https://doi.org/10.1145/508791.508843
http://doi.acm.org/10.1145/508791.508843

	Acknowledgements
	Introduction
	State of the art
	Modelling Techniques for the Internet of Things
	IoT and Security
	IoT Language Representations

	Attack Representations
	Tree related representations
	Attack Graph
	Others

	Statistical Analysis
	Statistical Model Checking
	Rare Events Analysis

	Security Oriented Modeling Language
	Running Example
	IoT Security Oriented Modeling Language
	Language General Concepts
	Abstract Syntax
	Preliminaries for Operational Semantics
	Operational Semantics
	Operational Semantics Application on Running Example

	Probabilistic IoT Security Oriented Modeling Language
	Extended Abstract Syntax
	Operational Semantics
	Operational Semantics Application on Running Example
	Concrete Syntaxe

	Attack Representation using Attack Trees
	Attack Tree Graphical Representation
	Attack Tree Formal Representation

	Simulation Approach
	BIP Language
	BIP Abstract Syntax
	BIP Semantics
	Interaction Between BIP Components
	BIP Concrete Syntax

	IoT Model to BIP
	Parser Implementation
	Model transformation
	Example of Transformation

	Formal Transformation
	Transformation Functions
	Entity Formal Transformation
	Bisimulation

	Attack Tree to BIP
	Attack Tree Implementation
	BIP Monitor
	Attack Tree Formal Transformation
	Running Example Monitor

	Experiments
	Methodology
	Statistical Model Checking
	Overview

	Smart Hospital
	Overview
	Smart Hospital SOML model
	Smart Hospital under Attacks
	Smart Hospital BIP Model
	Experiments

	Amazon Key
	Overview
	Amazon Key IoT Model
	Amazon Key under Attacks
	Amazon Key BIP Model
	Experiments

	Experiments Conclusion

	Conclusion
	Bibliography

