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Résumé
Dans cette thèse, on étude différents aspects de la théorie de la géométrie dérivée rigide analytique. D’abord,
on étude et généralise le théorèome classique de localisation de Raynaud au cadre dérivé. Muni d’une théorie
des modéles formels, développé dans cette thése, on étude ses applications à l’étude des certains espaces de
modules dérivés. Certains exemples correspondent bien au champ d’Hilbert rigide analytique dérivé et le champ
des représentations continues des groupes fondamentales des variétés lisses sur un corps fini. La structure dérivée
sur ce dernier nos permet de comprendre totalement la théorie de déformations des représentations galoisiennes.
Enfin, on montre que ce dernier admet une structure sympléctique dérivé naturel. Ce dernier résultat s’appuye
dans le théorème de HKR en géométrie analytique qui on prouve en collaboration avec F. Petit et M. Porta.

Liste des résultats principaux
Soit X un schéma propre et lisse sur un corps algébriquement clos. On est intéressé à l’étude des systémes locaux
`-adiques étales sur X , d’un certain rang. En effet, d’après les travaux de V. Drinfeld et plus récemment de V.
Lafforgue autour de la correspondance de Langlands pour les corps de fonctions on sait que la famille de tels
objets est fortément réliée aux formes automorphes. Il semble donc naturel d’étudier le foncteur de modules
qui paramètre des systémes locaux `-adiques sur X ou, de manière équivalente, des représentations continues
`-adiques du groupe fondamentale étale, ⇡ét

1
(X). Tel foncteur est noté

LocSys`,n(X) : Afd
op

Q`
! Grpd,

où Afd
op

Q`
denote la catégorie des Q`-algèbres affinoides et Grpd la catégorie des groupoides, et il associe à chaque

Q`-algébre affinoide
A 2 Afd

op

Q`
7! LocSys`,n(X)(A) 2 Grpd,

où LocSys`,n(X)(A) correspondant au groupoide des systèmes locaux `-adiues étales sur X . Le principale but
de cette thèse est l’étude des propriétés géométriques de LocSys`,n(X). En particulier, on prouve le thérèome:

Theorem 1. Soit X un schéma propre et lisse sur un corps algébriquement clos. Alors le foncteur

LocSys`,n(X) 2 Fun
�
Afd

op

Q`
,Grpd

�

est représentable par un champ Q`-analytique géométrique. En plus, LocSys`,n(X) admet un atlas lisse par un
espace rigide Q`-analytique

LocSys
framed

`,n (X)! LocSys`,n(X),

où LocSys
framed

`,n (X) paramètre des systèmes locaux, sur X , munis d’une trivialisation. En plus, LocSys`,n(X)

admet une structure dérivée naturelle tel que si ⇢ 2 LocSys`,n(X)(Q`) alors le complexe cotangent analytique
est donné par

Lan

LocSys`,n(X),⇢ ' C
⇤
ét(X,Ad⇢)

_
[�1],

où Ad(⇢) := ⇢⌦ ⇢_ c’est la répresentation adjointe de ⇢.

Un autre résultat important concernant la géométrie de LocSys`,n(X) est l’existence d’une forme sympléc-
tique décalée sur LocSys`,n(X):

Theorem 2. Soit X un schéma propre et lisse sur un corps algébriquement clos de dimension d. Le champ Q`-
analytique LocSys`,n(X) admet une forme sympléctique (2d�2)-décalée naturelle !. En plus, la (2d�2)-forme
sur LocSys`,n(X) est induite de la dualité de Poincaré en cohomologie étale.

Pour prouver l’existence d’une telle structure dérivée naturelle sur LocSys`,n(X) on a eu besoin de généraliser
le théorème classique de localisation de Raynaud au cadre dérivé. Plus précisement, on a prouvé

Theorem 3. Soit k un corps non-archimédien dont la valuation est de rang 1 et k� son anneau des entiers. Soit
dAnk la1-catégorie des espaces k-analytiques dérivés et dfSch l’1-catégorie des schémas formels dérivés, de
type (topologiquement) fini, sur k�. Alors il existe un foncteur de rigidification

(�)rig : dfSchk� ! dAnk
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dont la restriction aux schémas formels discrets coincide avec le foncteur de rigidification de Raynaud usuel. En
plus, on a une équivalence d’1-catégories

(�)rig : dfSchk� [S
�1

]! dAnk

où S denote la classe des éclatements dérivés admissibles et génériquement strong dans dfSchk� .

Le thérèome de Raynaud dérivé a trouvé jusqu’à maintenant certaines applications importantes. Un exemple
c’est le prochain résultat prouvé en collaboration avec Mauro Porta:

Theorem 4. Soit X 2 dAnk et X 2 dfSchk� tel que (X)rig ' X dans dAnk. Alors on a une suite exacte
d’1-catégories stables

Coh
+

nil
(X)! Coh

+
(X)! Coh

+
(X),

où Coh
+

nil
(X) denote la sous-catégorie pleine de Coh

+
(X) engendré par les modules presque-parfaits sur X qui

sont supportés dans la fibre spéciale, Xsp, de X.

Enfin, on a prouvé un analogue rigide k-analytique et aussi C-analytique du théorème de HKR structuré, qui
était prouvé par B. Toën et G. Vezzosi. Ce théorème fait partir d’un travail en collaboration avec F. Petit et M.
Porta:

Theorem 5. Soit k le corps des nombres complexes, C, ou un corps non-archimédien de caractéristique 0 de
valuation non-triviale. Soit X un espace k-analytique dérivé. Alors il existe une équivalence des espaces k-
analytiques dérivés

XX⇥XX ' TX[�1],

compatibles avec la projection vers X .
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1.1 Summary
In this thesis, we study different aspects of derived k-analytic geometry. Namely, we extend the theory of classical
formal models for rigid k-analytic spaces to the derived setting. Having a theory of derived formal models at
our disposal we proceed to study certain applications such as the representability of derived Hilbert stack in the
derived k-analytic setting. We construct a moduli stack of derived k-adic representations of profinite spaces and
prove its geometricity as a derived k-analytic stack. Under certain hypothesis we show the existence of a natural
shifted symplectic structure on it. Our main applications is to study pro-étale k-adic local systems on smooth
schemes in positive characteristic. Finally, we study at length an analytic analogue (both over the field of complex
numbers C and over a non-archimedean field k) of the structured algebraic HKR, proved by Toen and Vezzosi.

1.2 Introduction
1.2.1 Introduction
Let X be a smooth and proper scheme over an algebraically closed field. One usually is interested in studying
`-adic étale local systems on X . For example, after the works of V. Drinfeld and more recently V. Lafforgue on
geometric Langlands correspondence for function fields one can relate such arithmetic objects to automorphic
forms on X . Therefore, it seems natural to study the moduli functor parametrizing étale `-adic local systems on
X . Such moduli can be described as a functor

LocSys`,n(X) : Afd
op

k ! Grpd

given on objects by the formula

A 2 Afd
op

k 7! LocSys`,n(X)(A) 2 Grpd

where LocSys`,n(X)(A) 2 Grpd denotes the groupoid of étale A-adic étale local systems on X , Afd
op

k denotes
the category of affinoid k-algebras (k a finite extension of Q`) and Grpd denotes the category of groupoids. A
main motivation of the current thesis was the study of the geometric properties of LocSys`,n(X). In particular,
we prove the following theorem:

Theorem 1.2.1.1. Let X be a smooth and proper scheme. Then the functor LocSys`,n(X) 2 Fun
�
Afd

op

k ,Grpd
�

is representable by a geometric k-analytic stack. It admits a smooth atlas by a k-analytic space

LocSys
framed

`,n (X)! LocSys`,n(X),

where LocSys
framed

`,n (X) parametrizes framed étale `-adic local systems on X . Furthermore, LocSys`,n(X)

admits a natural derived enhancement. Given ⇢ 2 LocSys`,n(X)(Q`), the analytic cotangent complex of
LocSys`,n(X) at ⇢ is naturally equivalent to

Lan

LocSys`,n(X),⇢ ' C
⇤
ét
�
X,Ad(⇢)

�_
[�1] 2 ModQ`

,

where Ad(⇢) := ⇢⌦ ⇢_ denotes the adjoint representation of ⇢.

Another important result concerning the geometry of LocSys`,n(X) is the existence of a natural shifted sym-
plectic structure on LocSys`,n(X):

Theorem 1.2.1.2. Let X be a proper and smooth scheme of dimension d. The moduli k-analytic stack LocSys`,n(X)

admits a canonical 2� 2d-shifted symplectic structure, whose underlying 2� 2d-form is induced by Poincaré du-
ality for étale cohomology (with derived coefficients).

In order to endow LocSys`,n(X) with a derived structure we had to develop new techniques to address the
existence of formal models for derived k-analytic spaces. More precisely, we generalized to derived setting a well
known theorem of Raynaud stating that the category of k-analytic spaces can be obtained as a localization of the
category of formal models over k�, satisfying certain finiteness conditions:
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Theorem 1.2.1.3. Let dAnk denote the1-category of derived k-analytic spaces and dfSchk� the1-category of
(admissible) derived k

�-adic schemes. Then there exists a derived rigidification functor

(�)rig : dfSchk� ! dAnk

which coincides with the usual rigidification functor for ordinary k
�-adic schemes. Moreover, the derived rigidi-

fication functor induces an equivalence

(�)rig : dfSchk� [S
�1

]! dAnk

of1-categories, where S denotes the class of generically strong admissible blow-ups in dfSchk� .

The above theorem has found many different applications. We have already mentioned the construction of
the derived structure on LocSys`,n(X). Other such examples concern descent results for derived 1-categories
of almost perfect modules on X 2 dAnk. One important application of the theory of formal models for derived
k-analytic spaces is the following theorem proved in a joint work with M. Porta:

Theorem 1.2.1.4. Let X be a quasi-separated and proper k-analytic space. Then the derived Hilbert stack
associated to X

RHilb(X) 2 dSt
�
Ank, ⌧ét

�

is representable by a derived k-analytic stack.

We can also show the existence of dualizing sheaves for derived k-analytic spaces, which as far as the knowl-
edge of the author is concerned it is an original result. A main ingredient in the proof of the existence of a shifted
symplectic form on LocSys`,n(X) one needs a rigid k-analytic version of the algebraic HKR theorem, proved by
B. Toën and G. Vezzosi. This is a joint work in progress with F. Petit and M. Porta.

Theorem 1.2.1.5. Let k be the field C of complex numbers or a non-archimedean field of characteristic 0 with a
non-trivial valuation. Let X be a k-analytic space. Then there is an equivalence of derived k-analytic spaces

X ⇥X⇥X X ' TX[�1]

compatible with the canonical projection to X .

1.3 Motivations

1.3.1 Non-abelian Hodge Theory
Let X be a topological space. The moduli scheme of C-local systems on X , denoted LocSysC,n(X), has been
studied extensively in classical algebraic geometry. It can be defined by means of a moduli functor

LocSysC,n(X)
framed

: A↵C ! Set

given on objects by the formula

A 2 A↵C 7! Homgrp

�
⇡
top

1
(X),GLn(A)

�
2 Set,

where Homgrp denotes the set of group homomorphisms. The moduli space LocSysC,n(X)
framed admits a canon-

ical action of the general linear group scheme GLn 2 SchC via conjugation. We can form the corresponding
universal categorical quotient, which we shall denote LocSysC,n(X). It is then possible to show via geometric
invariant theory, that LocSysC,n(X) is representable by a scheme of finite type over C, [Sim94a, §1]. By con-
struction, LocSysC,n(X) parametrizes semisimple rank n group representations of the topological fundamental
group ⇡top

1
(X).

It is a well known fact that there exists a natural bijection between the set of rank n representation of ⇡top

1
(X)

⇢ : ⇡
top

1
(X)! GLn(C)
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and the set of isomorphism classes of rank n local systems on X . The latter set can be identified with the underly-
ing set of the cohomological group H

1
�
X,GLn(C)

�
. For this reason, one can interpret the moduli LocSys`,n(X)

as a non-abelian analogue of singular cohomology H
1
�
X,C

�
on X with C-coefficients.

Suppose now that X is a complex smooth projective variety. One can canonically equip the set of C-points of
X with the structure of a topological manifold. As a consequence, to X we can associate an homotopy type

X(C) 2 S.

Concretely, the topological manifold X(C) corresponds to the underlying topological space of the analytification
X

an of X . One often refers to X(C) 2 S as the Betti realization of X . We can thus consider the moduli scheme

LocSysC,n(X) := LocSysC,n
�
X(C)

�
,

which parametrizes rank n-local systems on the Betti realization X(C) of X 2 SchC. Let us introduce two other
main ingredients in non-abelian Hodge Theory:

Definition 1.3.1.1. Let X be a projective and smooth variety over the field C of complex numbers. We define the
moduli stack ConnC,n(X) : A↵C ! S given on objects by the formula

A 2 A↵C 7! ConnC,n(X)(A) 2 S

where ConnC,n(X)(A) denotes the space of rank n flat connections with A-coefficients over X . We can also
consider the moduli stack Higgs(X) : A↵C ! S parametrizing rank n Higgs bundles with A-coefficients on X ,
see [Sim94a, §1, p. 15]. Moreover, C. Simpson in his seminal work on non-abelian Hodge theory proved that
the analytifications Conn

an

C,n(X) and Higgs
an
(X) are homeomorphic. This last result can be interpreted as a

non-abelian analogue of the degeneration of the Hodge to de Rham spectral sequence.

Remark 1.3.1.2. We can extend LocSysC,n(X) to a moduli stack via the formula

LocSysC,n(X) : A↵C ! S

given on objects by the formula

A 2 A↵C 7! Map
S

�
X(C),BGLn(A)

�
2 S. (1.3.1.1)

The above definition defines a more general object than the universal categorical quotient of LocSysframed

C,n (X).
Indeed, the latter parametrizes semisimple representations of the fundamental group ⇡top

1
(X) whereas the former

parametrizes the space of all group representations of ⇡top

1
(X). Moreover, the formula (1.3.1.1) can be easily

generalized to the derived setting. We can define the derived enhancement of LocSysC,n(X) as the derived
mapping stack

LocSys`,n(X) := Map
dSt

�
X(C),BGLn(�)

�
2 dSt

�
dA↵C, ⌧ét,Psm

�
,

where dSt
�
dA↵C, ⌧ét,Psm

�
denotes the1-category of geometric stacks with respect to the algebraic geometric

context
�
dA↵C, ⌧ét,Psm

�
. Similarly, both the moduli ConnC,n(X) and Higgs(X) can be upgraded to derived

C-Artin stacks via the equivalences of stacks

ConnC,n(X) ' Map
dSt

�
XdR,BGLn(�)

�
, Higgs(X) ' Map

dSt

�
XDolb,BGLn(�)

�
.

We refer the reader to [Por17b, §3] for the definition of the notions XdR and XDolb.

Theorem 1.3.1.3. [Por17b, Theorem 6.11] Let X be a projective smooth complex variety. The Riemann-Hilbert
correspondence induces an equivalence

LocSys
an

C,n(X) ' Conn
an

C,n(X),

in the 1-category dSt
�
dAnC, ⌧ét,Psm

�
, where LocSys

an

C,n(X) and Conn
an

C,n(X) denote the analytification of
both LocSysC,n(X) and ConnC,n(X), respectively.
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This can be regarded as a vast generalization of the usual comparison isomorphism between de Rham and Betti
cohomologies for smooth and proper varieties over C. At the heart of the proof of the above equivalence lies the
Riemann-Hilbert correspondence between the categories of rank n local systems on X and rank n flat connexions
on X .

Question 1.3.1.4. What can be said for smooth and proper schemes over a algebraically closed fields of charac-
teristic p > 0. More precisely, is there any non-abelian analogues of p-adic Hodge theory?

One main ingredient in our previous discussion was the existence of the homotopy type X(C) 2 S of C-points
of X . Unfortunaly, in positive characteristic the sole analogue of X(C) is the étale homotopy type of X , which we
shall denote Sh

ét
(X). In this case, Shét

(X) is not a homotopy type but instead Sh
ét
(X) 2 Pro(Sfc), i.e. Shét

(X)

is a profinite space or profinite homotopy type.
It has long been understood that there are deficiencies with studying study continuous representations

⇢ : ⇡
ét
1
(X)! GLn(C)

The main reason is the fact that any such ⇢ must necessarily factor via a finite subgroup of GLn(C). Nonetheless,
in positive characteristic, one usually studies rank n `-adic étale lisse sheaves on X . Therefore, the objects of our
interest correspond to continuous representations

⇢ : ⇡
ét
1
(X)! GLn(Q`). (1.3.1.2)

Ultimately, one is also interested in studying continuous representations of homotopy types

⇢ : Sh
ét
(X)! BGLn(Q`)

However, we do not have a clue of what shall mean a continuous representations of homotopy types. We present
the reader with a list of properties that we would like such continuous representations satisfy:

(i) Let A 2 CAlgQ`
be a derived Q`-algebra. There should exist a space of continuous representations

⇢ : Sh
ét
(X)! BGLn(A). (1.3.1.3)

Moreover, if A ' ⇡0(A). There should be a natural equivalence between the space of such objects (1.3.1.3)
and the space of continuous representations

⇢ : B⇡
ét
1
(X)! BGLn(A).

(ii) For each continuous representation ⇢ : Shét
(X) ! BGLn(A) one should be able to a find a commutative

diagram
U BGLn(B)

Sh
ét
(X) BGLn(A)

⇢U

⇢

where B 2 CAlgZ`
is of no `-torsion and one has furthermore an equivalence B ⌦Z` Q` ' A 2 CAlgQ`

.
Moreover U 2 Pro(Sfc)/Shét

(X) denotes a profinite space such that one has a fiber sequence

Y ! U ! Sh
ét
(X),

with Y 2 Sfc is a finite constructible space.

(iii) Let A 2 CAlgQ`
be a derived Q`-algebra. A continuous representation

⇢ : Sh
ét
(X)! BGLn(A)

should induce, via extension of scalars, a continuous representation

⇢ : Sh
ét
(X)! BGLn(B ⌦Z` F`)

where B 2 CAlgZ`
is as in (ii). We require furthermore that such continuous ⇢ factor through a finite

quotient Xi 2 Sfc of Shét
(X) 2 Pro(Sfc).
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In order to facilitate our exposition we adopt the following convention for the mapping space of continuous
representations, which we have not yet defined:

Notation 1.3.1.5. Given A 2 CAlgQ`
we shall denote by

Map
cont

�
Sh

ét
(X),BGLn(A)

�
2 S

the space of continuous representations ⇢ : Shét
(X)! BGLn(A).

Suppose we have a reasonable definition of a notion continuous representation as in (1.3.1.2). Then we can
define the moduli functor LocSys`,n(X) : dAfd

op

Q`
! S as given by

Z :=
�
Z,OZ

�
2 dAfd

op

Q`
7! Map

cont

⇣
Sh

ét
(X),�(Z)

⌘
2 S

where �(Z) denotes the global sections ring of Z, defined as ⇡⇤(OZ

�
2 CAlgQ`

.
The derived moduli stack LocSys`,n(X) is an `-adic analogue of the moduli of rank n complex local systems

for complex varieties, LocSysC,n(X).

Remark 1.3.1.6. It would be desirable that certain results of p-adic Hodge for proper smooth schemes over Qp

admit non-abelian Hodge theoretical analogues. And in such case, the moduli LocSysp,n(X) should play a role.
However, there are serious obstructions for a complete p-adic analogue as we shall see in later sections.

1.3.2 Deligne Comptage
In his seminal work [Dri81] V. Drinfeld proved a counting formula for rank 2 `-adic lisse sheaves on a smooth
and proper curve X , up to �-torsion. Drinfeld’s formula uses in an essential way his work on the Langlands
correspondence, [Dri80]. More recently, in the work of [Yu18] such formula was generalized to higher ranks and
to the open case by considering fixed monodromy at infinity.

In [Del15], P. Deligne conjectured that the counting problem of rank n `-adic étale lisse sheaves on a smooth
variety X over a finite field Fq could be stated equivalently as a Grothendieck-Lefschetz trace formula on a
suitable moduli space of `-adic local systems. In order to understand his assertion recall that Galois descent
induces a bijection between the set of `-adic lisse sheaves on X and the set of `-adic lisse sheaves over the base
change

X := X ⇥Fq Fq

which admit a Z`-lattice stable under pullback along the geometric Frobenius endomorphism of X ,

Frob: X ! X.

More precisely, given F a Q`-adic sheaf on X we can consider it as an `-adic sheaf on X , via pullback along the
canonical map f : X ! X . Moreover, the `-adic sheaf F satisfies

Frob
⇤F ' F

in the category of `-adic lisse sheaves on X . The crucial observation of P. Deligne is the fact that Drinfeld’s formula
is reminiscent of a Grothendieck-Lefschetz trace formula with respect to the pair

�
LocSys`,n(X), F

�
, where

LocSys`,n(X) should correspond to the moduli of `-adic continuous representations of the étale fundamental
group ⇡ét

1
(X) and

F : LocSys`,n(X)! LocSys`,n(X)

denotes the endomorphism of LocSys`,n(X) given on objects by the formula

F 2 LocSys`,n(X) 7! Frob
⇤F 2 LocSys`,n(X).

One would then like to confirm that F admits a finite number of fixed points and such number could be computed
by means of a trace formula for

�
LocSys`,n(X), F

�
. However, in [Del15] the author does not give any hint on how

to construct LocSys`,n(X) except for certain complex analogies, inspired mainly by non-abelian Hodge theory.
Therefore, in order to prove Deligne’s conjecture one would have to show the following statements:
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(i) There exists a natural candidate LocSys`,n(X) for the moduli of `-adic continuous representations of
⇡

ét
1
(X). Moreover, such candidate should have sufficiently geometric properties, such as being repre-

sentable by an algebraic or Q`-analytic stack. In particular, one should have a complete understanding
of its deformation theory around a closed point

⇢ : ⇡
ét
1
(X)! GLn(Q`).

(ii) There exists a reasonable cohomological theory on LocSys`,n(X), which we shall denote by

C
⇤
• (LocSys`,n(X)).

(iii) The automorphism F : LocSys`,n(X) ! LocSys`,n(X) admits a finite set of fixed points and a trace
formula holds with respect to the triplet

�
LocSys`,n(X), C

⇤
• (LocSys`,n(X)), F

�
.

Moreover, it would be interesting if one is able to prove the above conjectural statements by purely geometric
means without need to pass to the automorphic setting.

In this thesis we will answer positively to (i) and (ii). We construct LocSys`,n(X) directly as a Q`-analytic
stack, whose proof follows roughly the same lines as in the complex case. We show thereafter that it is possible
to enhance LocSys`,n(X) with a natural derived structure. Such derived structure allow us to consider derived de
Rham cohomology on LocSys`,n(X), C⇤

dR

�
LocSys`,n(X)

�
. However, we will show that LocSys`,n(X) has too

many connected components. Indeed, the moduli stack LocSys`,n(X) admits one connected component for each
residual representation

⇢ : ⇡
ét
1
(X)! GLn(F`r

�
.

Therefore, our results cannot applied directly to show Deligne’s conjecture, however we will indicate some possi-
ble future avenues in later chapters.

1.3.3 Theory of formal models for ordinary k-analytic spaces
Let us illustrate a possible route to solve the question posed in Theorem 2.1.0.15. We start by recall the main
results concerning the existence of formal models for k-analytic spaces:

Theorem 1.3.3.1 (§8 [Bos05]). Let X 2 Ank denote a quasi-paracompact and quasi-separated k-analytic space.
Then there exists an admissible formal k�-scheme X 2 fSchk� such that one has an equivalence

Xrig ' X,

in the category Ank.

Theorem 1.3.3.1 can be stated equivalently as the essential image of the functor (�)rig coincides with the
full subcategory of Ank spanned by quasi-paracompact and quasi-separated k-analytic spaces. In particular, The-
orem 1.3.3.1 implies that whenever X = Sp(A) is k-affinoid, we can find an affine formal model of the form
Spf(A0) 2 fSchk� such that A0 is an admissible k

�-algebra. In other words, A0 is topologically of finite presen-
tation and m-torsion free, where m denotes the maximal ideal of k�.

Let us illustrate how a derived analogue of Theorem 1.3.3.1 is helpful to treat the question of Theorem 2.1.0.15.
Suppose that k is a finite extension of Q`. For every A 2 AnRing

sm

k we can find a formal model A0 2 CAlg
sm

k� ,
i.e. there exists A0 verifying the following conditions:

(i) The ordinary commutative ring ⇡0(A0) admits an adic topology compatible with the one on k
�;

(ii) One has an equivalence
A0 ⌦k� k ' A

alg

in the1-category CAlgk.
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In particular, thanks to [Lur16, Remark 8.1.2.4] the derived k
�-algebra A0 can be realized as an inverse limit

A0 ' lim
n�0

A0,n

in the1-category CAlgk� , where A0,n denotes the pushout diagram

A0[t] A0

A0 A0,n

t 7!`n

t 7!0

in the1-category CAlgk� . In this case, the classifying space BGLn(A0) 2 S can be realized as an object in the
1-category Pro(Sfc) of profinite spaces. Namely, one can consider the object

BGLn(A0) := {BGLn(A0,m)}m 2 Pro(Sfc). (1.3.3.1)

Moreover, as the transition maps in (1.3.3.1) are compatible with the group structures for different m it follows
that BGLn(A0) 2 Pro(Sfc) can be promoted to an object in Mon

grp

E1

�
Pro(S)

�
.

Remark 1.3.3.2. Suppose that one is provided with a functorial assignement

A0 2 CAlg
ad

k� 7! BGLn(A0) 2 Mon
grp

E1
(Sfc),

where CAlgadk� denotes the 1-category of derived adic k
�-algebras. In this case, one could expect to define a

functor
F : AnRing

sm

k ! S

given on objects by the formula
�
A! k

�
2 AnRing

sm

k 7! Map
cont

�
B⇡

ét
1
(X),BAut(A

n
)
�
Mapcont(B⇡

ét
1 (X),BAut(kn))

{⇢} 2 S (1.3.3.2)

where Map
cont

�
B⇡

ét
1
(X),BAut(A

n
)
�

denotes the colimit

Map
cont

�
B⇡

ét
1
(X),BAut(A

n
)
�
:= colim

A0

Map
MonE1 (Pro(Sfc))

�
B⇡

ét
1
(X),BAut(A

n
0
)
�
.

over A0, varying through the1-category of formal models for A 2 AnRing
sm

k . The formula displayed in (1.3.3.2)
is already a good approximation of a formal moduli problem classifying continuous deformations of

⇢ : ⇡
ét
1
(X)! GLn(k).

However, there are still certain issues which render the formula (1.3.3.2) problematic. First, the étale homotopy
group ⇡ét

1
(X) does not classify `-adic lisse sheaves on Xét with derived coefficients. One should instead replace

the profinite group ⇡ét
1
(X) with the étale homotopy type of X , Shét

(X). Fortunately, the formula in (1.3.3.2) is
sufficiently general so that we can replace B⇡

ét
1
(X) 2 Pro(Sfc) with Sh

ét
(X) 2 Pro(Sfc) or any other profinite

space without concern.
Secondly and more importantly, formula (1.3.3.2) does not classify all deformation of ⇢, instead only those

continuous deformation of ⇢ which are power bounded. However, in general, there are many continuous deforma-
tions of ⇢ which do not factor through power bounded matrices, even in the ordinary case. Nonetheless, (1.3.3.2)
is simple enough to hint us a reasonable notion of continuity in the derived setting. We will delve this question in
further detail in §4. Also, (1.3.3.2) motivates an analogous statement of Theorem 1.3.3.1 in the derived setting.

At this point, the avid reader might object that the formula displayed in (1.3.3.2) is not necessarily functorial
on A 2 AnRing

sm

k . In order to show functoriality of (1.3.3.2) one needs to generalize the following fundamental
result due to Raynaud:
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Theorem 1.3.3.3 (Theorem 8.4.3 [Bos05]). The ordinary rigidification functor (�)rig : fSchk� ! Ank factors
through the localization fSchk� [S

�1
], where S denotes the class of admissible ups on fSchk� . Moreover, (�)rig

induces an equivalence of catgories
fSchk� [S

�1
] ' An

0
k

where An
0
k denotes the full subcategory of Ank spanned by quasi-paracompact and quasi-separated k-analytic

spaces.

If we are able to generalize ?? 1 to the derived setting then we would be able, via a formal reasoning, to show
that the assignment in (1.3.3.2) is functorial. The generalization of both ?? 1 and Theorem 1.3.3.1 are now proven
facts which make part of the current thesis project which we detail in this introduction.

1.4 Derived k�-adic and derived k-analytic geometries

1.4.1 Derived Raynaud localization theorem
A fundamental ingredient in both Theorem 1.3.3.1 and ?? 1 consists of the rigidification functor

(�)rig : fSchk� ! Ank (1.4.1.1)

which associates to a formal k�-scheme X 2 fSchk� its rigidification Xrig 2 Ank. Henceforth, in order to state
derived analogues of both Theorem 1.3.3.1 and ?? 1 one would need the following derived analogues:

(i) An1-category of derived k
�-adic schemes, dfSchk� which have been introduced in [Lur16, §8];

(ii) An1-category of derived k-analytic spaces, dAnk, introduced in [PY16a];

(iii) A derived rigidification functor (�)rig : dfSchk� ! dAnk which restricts to (1.4.1.1) on ordinary k
�-adic

schemes.

Even though items (i) and (ii) have been treated extensively in the literature, it is not clear how to directly
define a derived rigidification functor

(�)rig : dfSchk� ! dAnk.

A major obstable results from the fact that the1-category dfSchk� is defined in [Lur16, §8] based on the theory
of locally ringed1-topoi. More precisely, derived formal Deligne-Mumford stacks correspond to (X,O) where
X is an 1-topos and O 2 CAlgk�(X) is a local derived k

�-algebra on X such that the ordinary commutative
ring sheaf ⇡0

�
O)

�
2 CAlgk�(X) is equipped with an adic topology compatible with the adic topology on k

�. On
the other hand, the 1-category dAnk is defined in terms of Tan(k)-structured spaces. Unfortunately, no direct
comparison exists between adic locally ringed1-topoi and Tan(k)-structured1-topoi. A possible way to deal
with this difficulty is to redefine derived k

�-adic geometry via a structured1-topoi approach, where we consider
structured1-topoi with respect to a suitable k�-adic pregeometry, Tad(k

�
). After adopting such a viewpoint, one

is equipped for free with a transformation of pregeometries

(�)rig : Tad(k
�
)! Tan(k)

induced from the classical rigidification functor. Moreover, by a formal reasoning one can prove that such trans-
formation of pregeometries provide us with a candidate for a derived rigidification functor dfSchk� ! dAnk. For
this reason, we adopt the structured spaces point of view for derived k

�-adic geometry.

Definition 1.4.1.1. Let Tad(k
�
) denote the full subcategory of fSchk� spanned by those ordinary affine formal

k
�-schemes Spf(A) such that Spf(A) is étale over some affine n-space, An

k� . We equipp Tad(k
�
) with the étale

topology. The class of admissible morphims on Tad(k
�
) is defined as the class of étale morphisms in Tad(k

�
).

Definition 1.4.1.2. We defined the1-category of Tad(k
�
)-structured spaces as the1-category of couples (X,O)

such that X 2 TopR is an1-topos and O : Tad(k
�
)! X is a local Tad(k

�
)-structure on X.

Notation 1.4.1.3. Let X be an1-topos. The1-category of local structures on X is denoted by fCAlgk�(X).
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As in the setting of derived k-analytic geometry, one has a well defined, up to contractible indeterminacy,
underlying algebra functor

(�)alg : fCAlgk�(X)! CAlgk�(X),

given on objects by the formula

O 2 fCAlgk�(X) 7! O(A1

k�) 2 CAlgk�(X).

Moreover, this functor can be promoted to a functor whose target consists of derived k
�-algebras on X:

Lemma 1.4.1.4. The underlying algebra functor (�)alg : fCAlgk�(X) ! CAlgk�(X) can be naturally promoted
to a well defined, up to contractible indeterminacy, functor

(�)ad : fCAlgk�(X)! CAlgk�(X),

which is given on objects by the formula

O 2 fCAlgk�(X) 7! O(A1

k�) 2 CAlg
ad

k�(X)

where O(A1

k�) 2 CAlg
ad

k�(X) is equipped with natural adic topology, induced by the sequence of ideals {In}n of
⇡0(O

alg
) which correspond to the kernel of the canonical ring homomorphisms

⇡0(O
alg

)! ⇡0(O
alg ⌦k� k

�
n)

for each n � 1.

The following fundamental result implies that specifying local Tad(k
�
)-structures on X is roughly equivalent

as specifying a derived k
�-adic locally ring on X:

Theorem 1.4.1.5. Let X be an1-topos with enough geometric points. Then the functor

(�)ad : fCAlgk�(X)! CAlg
ad

k�(X)

induces an equivalence of the1-categories of topologically almost of finite presentation objects

(�)ad : fCAlgk�(X)taft ! CAlg
ad

k�(X)taft.

Remark 1.4.1.6. Theorem 1.4.1.5 can be interpreted as a rectification type statement. Indeed, specifying a local
Tad(k

�
)-structure on X consists in specifying a functor O : Tad(k

�
) ! X satisfying the admissibility conditions

of Theorem 2.1.0.2. A priori, one would expect that the required amount of higher coherence data for Tad(k
�
)-

structures should be considerably more complex than the higher coherence data specifying the underlying algebra
object Oalg. Theorem 1.4.1.5 imply that the difference can be measured by the given of an adic topology on the
ordinary ring object ⇡0(Oalg

).
Moreover, morphisms between local structures correspond to morphisms of functors Tad(k

�
) ! X which

satisfy the local condition in Theorem 2.1.0.2. Theorem 1.4.1.5 imply that these amount to the same higher
coherent data as specifying continuous adic morphisms between derived commutative k

�-algebras on X. The
latter morphisms correspond to morphisms in the1-category CAlgk�(X) satisfying a continuity condition which
can be verified directly at the level of ⇡0.

Definition 1.4.1.7. Let X := (X,O) 2 TopR
(Tad(k

�
)) be a Tad(k

�
)-structured 1-topos. We say that X is

a derived k
�-adic Deligne-Mumford stack if the k

�-adic locally ringed 1-topos Xad := (X,Oad
) is a derived

formal Deligne-Mumford stack in the sense of [Lur16, Definition 8.1.3.1].

As in [Lur16, §8] we can define a Spf-construction which will prove to be very useful for us:

Proposition 1.4.1.8. Let Spf :
�
CAlg

ad

k�
�op ! TopR

(Tad(k
�
)) be the Spf-construction. Then Spf is fully faithful

and its essential image consists of those pairs
�
X,O) such that

�
X,Oad

�
is equivalent to an affine derived k

�-adic
Deligne-Mumford stack as in [Lur16, §8].

Moreover, as in the derived k-analytic setting we can show that the category of ordinary k
�-adic Deligne-

Mumford stacks can be realized as a full subcategory of dfSch�k via the following construction:
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Construction 1.4.1.9. Let X 2 fDMk� denote an ordinary k
�-adic Deligne-Mumford stack. Consider the étale

site Xét and the hypercompletion X := Shvét(X) of the 1-localic1-topos of étale sheaves on X. We can define a
Tad(k

�
)-structure, O : Tad(k

�
)! X on X as follows: given V 2 Tad(k

�
) we associate it the sheaf O(V ) given on

objects by the formula
U 2 Xét 7! Map

fDMk� (U, V ) .

Moreover, the CAlgk�(X)-sheaf O(A1

k�) corresponds to the usual sheaf of k�-adic global section on X.

Fortunately, we are now in position to define a rigidification functor: consider the transformation of prege-
ometries (�)rig : Tad(k

�
) ! Tan(k) given by restricting the usual rigidification functor to the category Tad(k

�
).

Precomposition along (�)rig : Tad(k
�
)! Tan(k) induces a functor

(�)+ : TopR
(Tan(k))! TopR

(Tad(k
�
)) (1.4.1.2)

[Lur11c, Theorem 2.1] implies that the functor (�)+ displayed in (1.4.1.2) admits a right adjoint

(�)rig : TopR
(Tad(k

�
))! TopR

(Tan(k))

which is the natural candidate for a derived rigidification functor. Indeed one has the following results:

Proposition 1.4.1.10. The functor (�)rig : TopR
(Tad(k

�
)) ! TopR

(Tan(k)) sends derived k
�-adic Deligne-

Mumford stacks to derived k-analytic spaces, i.e. more specifically (�)rig restricts to a well defined functor of
1-categories

(�)rig : dfDMk� ! dAnk.

The following proposition implies that the restriction of (�)rig : dfDMk� ! dAnk to the category of ordinary
k
�-adic schemes coincide with the usual rigidification functor.

Proposition 1.4.1.11. Let X 2 dfDMk� be a derived k
�-adic Deligne-Mumford stack which is equivalent to an

ordinary k
�-adic scheme. Then Xrig coincides with usual rigidification functor for ordinary k

�-adic schemes.

The following two results are direct generalizations of both Theorem 1.3.3.1 and ?? 1 to the derived setting:

Theorem 1.4.1.12. Let X 2 dAnk be a quasi-paracompact and quasi-separated derived k-analytic space. Then
there exists X 2 dfDM

�
k such that one has an equivalence

Xrig ' X

in the1-category dAnk.

Theorem 1.4.1.13 (Derived Raynaud localization theorem). The rigidification functor

(�)rig : dfSchk� ! dAnk

factors through the localization 1-category dfSchk� [S
�1

] of dfSchk� , where S denotes the class of admissible
blow ups and generally strong morphisms. Moreover, it induces an equivalence of1-categories

dfSchk� [S
�1

] ' dAn
0
k

where dAn
0
k denotes the full subcategory of dAnk spanned by quasi-paracompact and quasi-separated derived

k-analytic spaces.

As a corollary we obtain:

Corollary 1.4.1.14. Let f : X ! Y be a morphism in the 1-category dAnk. Then we can find a morphism
f : X! Y in dfDMk� such that one has an equivalence

(f)rig ' f

in the1-category of morphisms dAn
�

1

k .

The results on the existence of derived formal models, namely Theorem 6.2.3.15 and Theorem 3.4.4.10 have
found applications so far. In the next chapter we cover certain of these applications:
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1.4.2 Derived k-analytic Hilbert moduli stack
The contents of this chapter were proven in a joint work with M. Porta.

Let X be a proper variety. We can associate to X its Hilbert scheme, denoted Hilb(X). Hilb(X) is defined via
its functor of points. Roughly, Hilb(X) parametrizes closed subschemes of X flat over the base. More precisely,
Hilb(X) represents the functor

Hilb(X) : Schk ! Set,

which associates to a scheme S 2 Schk the set of closed subschemes of X ⇥ S which are flat over S. When
X = Pn we recover the usual Hilbert scheme Hilb(n) parametrizing closed subschemes of the projective n-
space Pn. The moduli scheme Hilb(X) plays an important role in many representability statements, including an
important role in geometric invariant theory. It would thus be desirable to extend the construction of Hilb(X) to
the k-analytic setting.

This was achieved in [CG16], in the ordinary setting. The authors prove that given a separated k-analytic
space X , one can associate it a k-analytic Hilbert space, Hilb

an
(X) which parametrizes flat families of closed

subschemes of X .
However, the requirement of flatness in the above definition is restrictive, both in the algebraic and k-analytic

settings. One would like to not only parametrize flat families of closed subschemes of X but all families of
closed subschemes of X . A possible way to deal with this issue is to consider a natural derived enhancement of
Hilb(X), namely the derived Hilbert stack RHilb(X). The representability of RHilb(X) as a geometric stack has
been establish in the context of derived algebraic geometry via the Lurie-Artin representability theorem [Lur12a,
Theorem 3.2.1].

[PY17a, Theorem 7.1] provides a derived k-analytic analogue of Lurie-Artin representability theorem. There-
fore, one could hope that the derived k-analytic Hilbert space RHilb

an
(X) could be shown to be representable

directly using [PY17a, Theorem 7.1].
However, via this approach we are allowed to prove the existence of an analytic cotangent complex of RHilb

an
(X)

only at points f : S ! RHilb
an
(X) corresponding to families of closed subschemes of j : Z ,! X⇥S which are

of finite presentation, in the derived setting. However, not all points of RHilb
an
(X) satisfy this condition, we are

typically interested with families which are almost of finite presentation.

Definition 1.4.2.1. We denote by dSt
�
dAfdk, ⌧ét,Psm

�
the 1-category of geometric stacks with respect to the

derived k-analytic geometric context. We refer to objects of dSt
�
dAfdk, ⌧ét,Psm

�
simply as derived k-analytic

stacks.

Using the techniques developped in [Ant18b] together with [PY17a, Theorem 7.1] we are then able to prove
the following main result:

Theorem 1.4.2.2. Let X be a separated ordinary k-analytic space. The derived k-analytic Hilbert stack RHilb
an
(X)

is representable by a derived k-analytic stack.

In order to prove Theorem 1.4.2.2 the authors had to generalize certain results related to the existence of
formal models for certain classes of morphisms between derived k-analytic spaces. Namely, we generalized to the
derived setting a classical result of Bosch-Lutkebohmer concerning liftings of flat morphisms f : X ! Y to flat
morphisms of formal models.

Theorem 1.4.2.3. Let f : X ! Y be a flat morphism of derived k-analytic spaces. Then there exists a flat
morphism f : X! Y of derived k

�-adic Deligne-Mumford stacks such that there exists an equivalence

f ' frig

in the1-category of morphisms dAn
�

1

k .

The main difficulty proving Theorem 1.4.2.3 was to verify the strong condition for derived morphisms at the
formal level. More precisely, the main obstruction to apply Theorem 3.4.4.10 directly was to verify the condition

⇡i

�
f⇤OY

�
' ⇡i

�
OX

�

for i > 0, where f : X ! Y is a generic formal model for f : X ! Y . This was accomplished by a reasoning at
the level of Postnikov towers plus proving refined results concerning liftings of formal models for almost coherent
modules on X . At the heart of such liftings results is the following descent result:
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Theorem 1.4.2.4. Let dfSchtaft,qcqsk� denote the 1-category of qcqs topologically almost of finite presentation
derived k

�-adic schemes. Then the functor

Coh
+

loc
:
�
dfSch

taft,qcqs
k�

�op ! Catst1

is a hypercomplete sheaf for the Zariski topology.

Theorem 1.4.2.4 is a generalization of [HPV16a, Theorem 7.3] to the case where the base is assumed to be
derived. With Theorem 1.4.2.4 at hand one is allowed to prove the following important results:

Proposition 1.4.2.5. Let X 2 dAnk be a derived k-analytic space. Let F 2 Coh
b
(X) be a bounded almost

perfect module over X . Then for any formal model X 2 dfDMk� of X , there exists G 2 Coh
b
(X) such that

Grig ' F in the 1-category Coh
+
(X). Moreover, the full subcategory of Cohb(X) ⇥

Coh
b
(X)

Coh
b
(X)/F

spanned by formal models for F is filtered.

Proposition 1.4.2.6. Let X 2 dAnk be a derived k-analytic space. Let f : F ! G be a morphism of almost coher-
ent modules in the1-category Coh+(X). Then for every formal model X 2 dfDMk� of X and a choice of formal
models F0 and G0 for F and G, respectively, there exists a sufficiently large n � 0 such that the multiplication
t
n
f : F ! G admits a formal model of the form

g : F0 ! G0

in the1-category Coh
+
(X).

As an application of Theorem 1.4.2.3 we obtain the following:

Proposition 1.4.2.7. Let f : X ! Y be a flat and proper morphism of derived k-analytic spaces. Then we have:

(i) The functor f⇤
: Coh

+
(Y )! Coh

+
(X) admits a left adjoint

f+ : Coh
+
(X)! Coh

+
(Y ).

(ii) Let f : X ! Y be a formal model for f , whose existence is guaranteed by Theorem 1.4.1.14. Define
!X/Y := !

rig

X/Y, the analytic dualizing sheaf. Then given F 2 Coh
+
(X) we have a canonical equivalence

f+(F) ' f⇤(F ⌦ !X/Y )

in the1-category Coh
+
(Y ).

(iii) The functor f !
: Coh

+
(Y )! Coh

+
(Y ) given on objects by the formula

F 2 Coh
+
(Y ) 7! f

!
(F) := f

⇤
(F ⌦ !X/Y ) 2 Coh

+
(X)

is a right adjoint for the functor f⇤ : Coh+(X)! Coh
+
(Y ).

1.5 Moduli of continuous `-adic representations of a profinite group

1.5.1 Moduli of continuous `-representations
Part of the present thesis was to study at length the moduli functor LocSys`,n(X) parametrizing continuous `-adic
representations of ⇡ét

1
(X), where X is a proper and smooth variety over an algebraically closed field of positive

characteristic p > 0.
In this context, the formal moduli problem considered in Theorem 2.1.0.15 should correspond to the formal

neighborhood of the moduli LocSys`,n(X), described in Section 1.3.2. Furthermore, Theorem 3.4.4.10 allow us
to define general continuous representations

⇢ : Sh
ét
(X)! BGLn

�
�(Z)

�
,
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where Z 2 dAfdQ` is not necessarily the spectrum of an Artinian derived Q`-algebra. Notice that when Z

is discrete we can describe and study the moduli problem associated to LocSys`,n(X) directly. Consider the
following moduli functor LocSysframed

`,n (X) : Afd
op

k ! Set given on objects via the formula

A 2 Afd
op

k 7! Homcont

�
⇡

ét
1
(X),BGLn(A)

�
2 Set,

where Homcont

�
⇡

ét
1
(X),BGLn(A)

�
denotes the set of continuous group homomorphisms ⇡ét

1
(X) ! GLn(A).

Here we consider GLn(A) as a topological group via the canonical topology on A induced by a choice of norm
compatible with the non-trivial valuation on k. We have the following fundamental result:

Theorem 1.5.1.1. Let X be a smooth and proper scheme over an algebraically closed field. The functor

LocSys
framed

`,n (X) : Afd
op

k ! Set

defined above is representable by a strict k-analytic space.

The strategy of the proof of Theorem 1.5.1.1 follows closely the scheme of Simpson’s proof the representabil-
ity of the moduli of discrete group homomorphisms for a discrete group G, see [Sim94a, §1]. However, the
continuous case is more involved as both the topologies on ⇡ét

1
(X) and on GLn(A) differ. More precisely, ⇡ét

1
(X)

is a profinite group whereas the topology on GLn(A) is far from being profinite. Nonetheless, every formal model
A0 over k� for A provides an open subgroup

GLn(A0) ✓ GLn(A)

which is a pro-group, i.e. the topology on GLn(A0) is induced via the canonical isomorphism of groups

GLn(A0) ' lim
m�0

GLn(A0,m).

In this case, every continuous group homomorphism ⇢ : ⇡
ét
1
(X)! GLn(A) admits an open subgroup U  ⇡ét

1
(X)

such that ⇢|U : U ! GLn(A) factors through the inclusion GLn(A0) ✓ GLn(A). Fortunately, the study of group
homomorphisms

⇢|U : U ! GLn(A0) (1.5.1.1)

is easier than our original problem. Therefore, it is useful to study the moduli functor F⇡ét
1 (X)

: CAlg
~,ad
k� ! Set

parametrizing continuous group homomorphisms

⇢̃ : U ! GLn(A0), A0 2 CAlg
~,ad
k� .

Nevertheless, the topology on GLn(A0) is almost never profinite, except when A0 is a finite extension of k�,
therefore some care is needed when describing the above functor by means of algebraic data. Even though F⇡ét

1 (X)

is not representable, Theorem 1.5.1.1 implies that k-analytic analogue LocSys
framed

`,n (X) is so.

Remark 1.5.1.2. The k-analytic space LocSys
framed

`,n (X) admits a natural action of the analytification of the
general linear group scheme, GLan

n . This action can be described via the morphism of k-analytic spaces

GLan

n ⇥ LocSys
framed

`,n (X)! LocSys
framed

`,n (X), (1.5.1.2)

defined by the formula
�
(g, ⇢) 2 GLan

n (A)⇥ LocSys
framed

`,n (X)(A)
�
7!

�
g⇢g

�1 2 LocSys
framed

`,n (X)(A)
�
.

One would like to define LocSys`,n(X) as the quotient k-analytic space obtained as the quotient of LocSysframed

`,n (X)

by the conjugation action of GLan

n described in Theorem 1.5.1.2. However, in the k-analytic setting there is no
solid theory of geometric invariant theory as opposed to the context of algebraic geometry. For this reason we
prefer to adopt the language of k-analytic stacks for a reasonable definition of LocSys`,n(X).
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Definition 1.5.1.3. We denote by LocSys`,n(X) the geometric realization of the simplicial objects

· · ·
�
GLan

n

�2 ⇥ LocSys
framed

`,n (X) GLan

n ⇥ LocSys
framed

`,n (X) LocSys
framed

`,n (X)

(1.5.1.3)
computed in the1-category of pre-sheaves on Afdk, denoted PShv

�
Afdk

�
:= Fun (Afd

op

k , S).

Remark 1.5.1.4. The moduli functor LocSys`,n(X) : Afd
op

k ! S satisfies descent with respect to the étale topol-
ogy on (Afdk, ⌧ét). Furthermore, it follows by construction that given A 2 Afdk the space

LocSys`,n(X)(A) 2 S

is equivalent to the 1-groupoid of continuous representations ⇢ : ⇡ét
1
(X) ! GLn(A). Therefore, LocSys`,n(X)

parametrizes continuous `-adic group representations of ⇡ét
1
(X) or equivalently rank n pro-étale local systems on

Xét as the following result illustrates:

Proposition 1.5.1.5. Let X be a smooth scheme over an algebraically closed field. Then one has a natural
equivalence of spaces

LocSys`,n(X)(A) ' Locn,pro-ét(X)(A),

where the right hand side denotes the 1-groupoid of rank n pro-étale A-linear local systems on X .

Theorem 1.5.1.1 entails through a formal reasoning the following main result:

Theorem 1.5.1.6. The moduli functor LocSys`,n(X) : Afd
op

k ! S is representable by a geometric stack with
respect to the geometric context

�
Afdk, ⌧ét,Psm

�
.

Notation 1.5.1.7. We refer to geometric stacks with respect with the geometric context
�
Afdk, ⌧ét,Psm

�
simply

as k-analytic stacks.

Theorem 1.5.1.6 provides a positive answer to condition (i) in §1.5. However, we have a very few understand-
ing of the geometry of LocSys`,n(X) and a reasonable cohomology theory for LocSys`,n(X) is still lacking. We
will try to amend these questions by constructing a natural derived structure on LocSys`,n(X).

1.5.2 Derived enhancement of LocSys`,n(X)

Let X be a geometrically connected proper and smooth scheme over an algebraically closed field. The moduli
stack LocSys`,n parametrizes varying families of rank n `-adic pro-étale local systems on X . Moreover, Theo-
rem 1.5.1.6 states that LocSys`,n(X) is representable by a k-analytic stack. In this section we will further attempt
to answer the following question:

Question 1.5.2.1. Does LocSys`,n(X) admits an analytic cotangent complex which classifies deformations of
pro-étale local systems? And if so, can we compute it explicitly?

Theorem 1.5.2.1 is basically a question on the existence of a canonical derived structure on LocSys`,n(X).
In order to attempt to answer to Theorem 1.5.2.1 one needs to allow derived coefficients in the definition of
LocSys`,n(X). More precisely, we nedd to extend the functor LocSys`,n(X) to a functor

LocSys`,n(X) : dAfd
op

k ! S,

so one needs a reasonable defintion of continuous representations with derived coefficients.
This questions has already been partially dealt in Theorem 2.1.0.15. However, to fully answer this question

one needs to make a considerable technical detour on the theory of enriched1-categories. We start by observing
that the étale fundamental group is too poor, in general, to classify `-adic lisse sheaves on Xét with derived
coefficients. One should consider instead the étale homotopy type Sh

ét
(X) of X and parametrize continuous

`-adic representations of Shét
(X).

Let Z 2 dAfdk, thanks to Theorem 3.4.4.10 there exists a formal model Spf (A0) for Z. One could try to
define continuous representations of homotopy types

⇢ : Sh
ét
(X)! BGLn

�
�(Z)

�
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as in Theorem 2.1.0.15 by considering the colimit over all such formal models for Z, i.e. by defining

Map
cont

�
Sh

ét
(X),BGLn

�
�(Z)

��
:= colim

A0

Map
MonE1 (Pro(S))

�
Sh

ét
(X),BGLn(A0)

�
2 S. (1.5.2.1)

By considering BGLn(A0) as a group-like pro-object in the1-category S via the equivalence

A0 ' lim
m�0

A0,m

in the1-category CAlgk� . Theorem 3.4.4.10 implies that such an association is functorial in Z 2 dAfdk. Even
though formula (1.5.2.1) is a good approximation for the space of continuous `-adic representations of Shét

(X) it
is certainly not a correct definition. In order to give a more reasonable construction one need to make a technical
detour on the theory of Ind(Pro(S))-enriched1-categories.

Construction 1.5.2.2. Let Z 2 Afdk be a derived k-affinoid space and consider the 1-category Perf(Z) of
perfect complexes on Z. Fix a formal model Spf(A0) 2 dfSchk� for Z. The1-categories Perf(Z) and Perf(A0)

are related. The derived rigidification theorem introduced in §3 induces a rigidification functor at the level of
1-categories of perfect modules

(�)rig : Perf(A0)! Perf(Z).

Moreover, as a first approximation we can think of Perf(Z) as the idempotent completion of the Verdier quotient
Perf(A0)/Perfnil(A0) where Perfnil(A0) ✓ Perf(A0) denotes the full subcategory spanned by m-torsion per-
fect A0-modules. In other words, Perf(Z) is roughly equivalent to the Verdier quotient Perf(A0)/Perfnil(A0)

computed in the1-category Catst,id-comp
1 .

The crucial observation is that the1-category Perf(A0) is naturally enriched over the1-category Pro
�
Sp`

�

of pro-objects on the 1-category of `-nilpotent spectra, Sp` := Sp⌦SS/`, where S 2 Sp denotes the sphere
spectrum. By a formal argument, detailed in [Ant17a], we can then consider Perf(Z) as an1-category naturally
enriched over the1-category of ind-pro-spaces, Ind

�
Pro

�
S
��

. Moreover, the formula

Z 2 Afd
op

k 7! Perf(Z) 2 ECat1,

is functorial in Z 2 Afd
op

k . Furthermore, there is a canonical inclusion functor

Pro
�
Sfc

�
,! Pro

�
S
�
,! ECat1,

where ECat1 denotes the1-category of Ind(Pro(S))-enriched1-categories. Therefore, it makes sense to con-
sider the1-category of enriched functors

FunECat1

�
Sh

ét
(X),Perf(Z)

�
2 Cat1. (1.5.2.2)

Moreover, the association displyed in (1.5.2.2) is functorial in Z. We can thus define a functor

FunECat1

�
Sh

ét
(X),Perf(�)

�
: dAfd

op

k ! Cat1

given on objects by the formula

Z 2 Afd
op

k 7! FunECat1

�
Sh

ét
(X),Perf(Z)

�
2 ECat1.

As X is geometrically connected, the profinite space Sh
ét
(X) 2 Pro(Sfc) is connected. For this reason, the

mapping space
Map

Pro(Sfc)

�
⇤, Shét

(X)
�
2 S

is contractible. As a consequence, there exists a unique, up to contractible indeterminacy, morphism

◆ : ⇤ ! Sh
ét
(X)

in the1-category Pro(Sfc). Precomposition along ◆ induces a functor of1-categories

ev : FunECat1

�
Sh

ét
(X),Perf(Z)

�
! FunECat1

�
⇤,Perf(Z)

�
' Perf(Z) 2 Cat1.
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The important observation is illustrated by the following lemma:

Lemma 1.5.2.3. Let Z 2 Afd
op

k be a derived k-affinoid space which we suppose further to be n-truncated for a
given integer n � 1. Let M 2 Perf(Z) be a perfect module on Z and let. Then the fiber of the functor

ev : FunECat1

�
Sh

ét
(X),Perf(Z)

�
! Perf(Z)

at M 2 Perf(Z) is naturally equivalent to the mapping space

Map
MonE1 (Topna)

�
⌦Sh

ét
(X),End(M)

�
2 S

where End(M) denotes the ind-pro-endomorphism space of M .

Remark 1.5.2.4. Theorem 1.5.2.3 implies that FunECat1
�
Sh

ét
(X),Perf(�)

�
: dAfd

op

k ! Cat1 parametrizes
continuous representations of Shét

(X) with values in E1-monoid objects in ind-pro-endomorphisms spaces. That
is to say, we take into account both the profinite structure on Sh

ét
(X) and the ind-pro-structure on End(M).

Definition 1.5.2.5. We define the moduli functor of perfect continuous `-adic representations of Shét
(X) as

PerfSys`(X) := (�)' � FunECat1
�
Sh

ét
(X),Perf(�)

�

which lives naturally in the1-category Fun
�
dAfd

op

k , S
�
.

Definition 1.5.2.6. Let RLocSys`,n(X) : dAfd
op

k ! S denote the substack of PerfSys`(X) spanned by rank n

objects, i.e.
RLocSys`,n(X) := ev

�1
�
Cn(Z)

�
,

where Cn(Z) ✓ Perf(Z) denotes the full subcategory spanned by rank n objects in Perf(Z).

Whenever Z is discrete and M ' �(Z)
n we recover the space of continuous representations

⇢ : ⇡
ét
1
(X)! GLn

�
A
�
, A ' �(Z).

Lemma 1.5.2.7. Let Z := Sp(A) 2 Afdk be an ordinary k-affinoid space. Then we have a natural equivalence
of spaces

LocSys`,n(X)(A) ' RLocSys`,n(X)(A).

Notation 1.5.2.8. Following our convention, we will denote RLocSys`,n(X) by LocSys`,n(X).

As promised we state an explicit computation of the cotangent complex of LocSys`,n(X)

Proposition 1.5.2.9. Let Z 2 dAfdk and let ⇢ 2 LocSys`,n(X)(Z) be a continuous `-adic representation. Then
LocSys`,n(X) admits an analytic cotangent complex at ⇢ and we have the following natural equivalence

Lan

LocSys`,n(X),⇢ ' C
⇤
ét
�
X,Ad(⇢)

�_
[�1]

in the derived1-category Modk.

Theorem 1.5.2.9 implies that deformations of ⇢ are classified by the étale homology complex C
⇤
ét
�
X,Ad(⇢)

�_
[�1].

Moreover, Porta-Yu Yue representability theorem, [PY17a, Theorem 7.1] implies the following:

Theorem 1.5.2.10. The derived moduli stack LocSys`,n(X) : dAfd
op

k ! S is representable by a geometric stack
with respect to the geometric context

�
dAfdk, ⌧ét,Psm

�
, i.e. LocSys`,n(X) is representable by derived k-analytic

stack.

Construction 1.5.2.11. Let ⇢ : ⇡ét
1
(X) ! BGLn(F`r ) be a continuous representation. We can consider at the

formal moduli problem Def⇢ : CAlg
sm

F`r
! S given on objects by the formula

A 2 CAlg
sm

F`r
7! LocSys`,n(X)(A)⇥LocSys`,n(X)(FF`r ) {⇢} 2 S.
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The functor Def⇢ paramatrizes continuous deformations of ⇢ with values in small derived F`r -algebras. Such
functor satisfies the conditions of Lurie-Schlessinger Theorem. Therefore it is pro-representable by a Noetherian
derived W (F`r )-algebra, A⇢, augmented over F`r and complete with respect with the maximal ideal

m⇢ := ker
�
⇡0(A⇢)! F`r

�
.

Let k := Frac(W (F`r )). By construction, we can consider Def⇢ as a functor defined on the 1-category
CAlgadk� . Moreover, such functor is representable by Spf(A⇢), which is a locally admissible derived k

�-adic
scheme. In this case, we can take its rigidification

Def
rig

⇢ 2 dAnk,

which is a derived k-analytic stack. We have a canonical morphism Def
rig

⇢ ! LocSys`,n(X) which is roughly
described by sending a continuous deformation of ⇢ to its corresponding continuous `-adic representation. Varying
⇢ : ⇡

ét
1
(X)! GLn(F`r ) we obtain a canonical morphism

a

⇢

Def
rig

⇢ ! LocSys`,n(X) (1.5.2.3)

in the1-category dSt
�
dAfd, ⌧ét,Psm

�
of derived k-analytic stacks.

The derived structure on LocSys`,n(X) allow us to prove the following geometric result:

Proposition 1.5.2.12. The canonical morphism displayed in (1.5.2.3) is an étale admissible inclusion of sub-
analytic derived k-analytic stacks.

One could ask if the morphism (1.5.2.3) is an equivalence of geometric stacks. The following example illus-
trates that this is not is the case in general:

Example 1.5.2.13. Let G = Zp and A = QphT i the Tate algebra in one variable. Consider the continuous
representation ⇢ : Zp ! QphT i determined by the association

1 2 Zp 7!

1 T

0 1

�
.

Then ⇢ 2 LocSysp,2(G)(QphT i) but does not belong to the disjoint union
`
⇢Def

rig

⇢ ✓ LocSys`,n(G).

However, as Theorem 1.5.2.12 suggests the derived k-analytic stack LocSys`,n(X) is highly disconnected. It
would be desirable to have a way to glue together the formal neighborhoods Def

rig

⇢ together. One could state it
more precisely as a conjecture:

Conjecture 1.5.2.14. There exists a (possibly ind-)derived k-analytic stack LocSys
gl

`,n(X) and a morphism of
derived k-analytic stacks

⇡ : LocSys`,n(X)! LocSys
gl

`,n(X)

such that ⇡ is an equivalence at closed points and it induces an equivalence of cotangent complexes at closed
points. Moreover, the moduli stack LocSys

gl

`,n(X) is equipped with an endomorphism, F , which is compatible
with Frob

⇤
: LocSys`,n(X)! LocSys`,n(X), i.e. we have a commutative diagram

LocSys`,n(X) LocSys`,n(X)

LocSys
gl

`,n(X) LocSys
gl

`,n(X)

Frob
⇤

⇡ ⇡

F

in the1-category dSt
�
dAfdk, ⌧ét,Psm

�
. Moreover, LocSysgl`,n(X) is almost of finite presentation and in partic-

ular it admits finitely many connected components.
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1.5.3 Open case
When X is assumed to be a smooth scheme over k = k of positive characteristic p 6= ` its étale fundamental
group ⇡ét

1
(X) is not topologically finitely generated (except if we assume X proper). In this case we have a short

exact sequence of profinite groups

1! ⇡
w
1
(X)! ⇡

ét
1
(X)! ⇡

t

1
(X)! 1

where ⇡w
1
(X) denotes the wild fundamental group of X a pro-p profinite group and ⇡t

1
(X) its tame fundamental

group which is topologically finitely generated. The tame fundamental group parametrizes tamely ramified at
infinity coverings of X . We cannot expect the full stack LocSys`,n(X) is representable as the profinite group
⇡

ét
1
(X) is too big. However, by bounding the ramification at infinity we can consider the substack

LocSys`,n,�(X) ,! LocSys`,n(X)

which parametrizes continuous representations ⇢ : Shét
(X)! BGLn(A) such that the restriction ⇢|⇡w

1 (X) factors
through a finite quotient q : ⇡w

1
(X)! �. We have the following result

Proposition 1.5.3.1. The moduli stack LocSys`,n,�(X) is representable by a derived k-analytic stack.

1.5.4 Shifted symplectic structure
Let X be a smooth and proper scheme over a field k = k of positive characteristic p > 0. As X is proper, Poincaré
duality for étale cohomology implies that we have a non-degenerate bilinear pairing

C
⇤
ét
�
X,Q`

�
⌦ C

⇤
ét
�
X,Q`

�_ ! Q`[�2d],

where d = dimX . When X is non-proper we should replace étale cohomology with étale cohomology with
support. Thanks to the projection formula, given a continuous representation

⇢ : ⇡
ét
1
(X)! GLn(A), A 2 Afdk,

one still obtains a non-degenerate pairing of the form

C
⇤
ét
�
X,Ad(⇢)

�
⌦ C

⇤
ét
�
X,Ad(⇢)

�_ ! Q`[�2d], (1.5.4.1)

where Ad(⇢) := ⇢⌦⇢_ denotes the adjoint representation associated to ⇢. It is possible to give a more conceptual
construction of the pairing introduced above as follows: the1-category FunECat1

�
Sh

ét
(X),Perf(A)

�
is a rigid

symmetric monoidal, that is every object is dualizable in FunECat1

�
Sh

ét
(X),Perf(A)

�
. Therefore, given ⇢ as

above one has a natural trace morphism

tr : Ad(⇢) := ⇢⌦ ⇢_ ! 1,

where 1 denotes a unit for the symmetric monoidal structure on FunECat1

�
Sh

ét
(X),Perf(A)

�
. As Ad(⇢) 2

FunECat1

�
Sh

ét
(X),Perf(A)

�
is an E1-monoid object we have a canonical multiplication morphism

mult : Ad(⇢)⌦Ad(⇢)! Ad(⇢). (1.5.4.2)

Both (1.5.4.1) and (1.5.4.2) imply the existence of a canonical morphism of the form

Map
�
1,Ad(⇢)

�
⌦Map

�
1,Ad(⇢)

�
can��! Map

�
1,Ad(⇢)⌦Ad(⇢)

�
mult���! Map

�
1,Ad(⇢)

�
tr�! Map

�
1, 1).

We can identify the above composite with the canonical map displayed in (1.5.4.1). Define O : dAfd
op

k ! CAlgk

as the sheaf on the étale site
�
dAfdk, ⌧ét

�
given on objects by the formula

Z 2 dAfdk 7! O(Z) := �(Z) 2 CAlgk.
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The canonical map C
⇤
ét
�
X,Q`

�
! Q`[�2d] in the derived1-category ModQ` induces by the projection formula

on `-adic cohomology a canonical morphism

C
⇤
ét
�
X,A

�
! A[2d]

We obtain thus a non-degenerated pairing at the level of the cotangent complex of LocSys`,n(X) at ⇢

!⇢ : Lan

LocSys`,n(X),⇢ ⌦ Lan

LocSys`,n(X),⇢ ! O
�
Sp(A)

�

The results of [Toë18, §3] imply that the pairing

! :

2^
Lan

LocSys`,n(X)
! O

is closed, i.e. it can be realized as an element in cyclic homology HC
�
LocSys`,n(X)

�
2 Modk. We obtain thus

the following important result:

Theorem 1.5.4.1. The derived k-analytic stack LocSys`,n(X) 2 dSt
�
dAfdk, ⌧ét,Psm

�
admits a canonical shifted

symplectic structure ! 2 HC
�
LocSys`,n(X)

�
of degree 2 � 2d. Moreover, given ⇢ 2 LocSys`,n(X)(Z) with

Z 2 dAfdk the underlying non-degenerate pairing is equivalent to the Poincaré pairing

C
⇤
ét(X,Ad(⇢)

�
[1]⌦ C

⇤
ét
�
X,Ad(⇢)

�
! �(Z)[2� 2d]

in `-adic cohomology.

Corollary 1.5.4.2. Let ⇢ 2 LocSys`,n(X)(Z), then the shifted symplectic form ! 2 HC
�
LocSys`,n(X)

�
induces

an equivalence
Tan

LocSys`,n(X)
' Lan

LocSys`,n(X)
[2� 2d]

between the tangent and cotangent complexes on LocSys`,n(X).

1.6 Analytic HKR theorem
The results in this section were first study in a joint collaboration work between M. Porta and F. Petit. I thank both
of them for letting me take part on the project.

1.6.1 Main results
Let k be a field of characteristic 0. In the setting of derived algebraic geometry the structured HKR theorem was
first proved in [TV15]. More precisely, the HKR theorem states that there is an equivalence of1-categories

S
1-CAlgk ' CAlgk[✏]

where the left hand side denotes the1-category of derived k-algebras equipped with an action of the circle S1 2 S,
whereas the right hand side denotes the1-category of derived k[✏] := k � k[1]-algebras. As a consequence one
has the following global results:

Theorem 1.6.1.1 ( [TV15]). Let X be a derived algebraic scheme over a field k of characteristic 0. Then one has
an equivalence of derived algebraic stacks

X ⇥X⇥X X ' TX[�1]

where the left hand side denotes the derived fiber product of X with itself over X ⇥X via the diagonal map and
the right hand side denotes the �1-shifted tangent bundle on X . Moreover the above equivalence is compatible
with the canonical projection to X .

It would be desirable to have an analytic analogue of the above result. In a joint work with M. Porta and F.
Petit the authors prove:
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Theorem 1.6.1.2. Let k be the field C of complex numbers or a non-archimedean field of characteristic 0 with a
non-trivial valuation. Let X be a k-analytic space. Then there is an equivalence of derived k-analytic spaces

X ⇥X⇥X X ' TX[�1]

compatible with the canonical projection to X .

Suppose X is a derived k-affinoid space. Let A := �(X,OX). Then Theorem 1.6.1.2 implies that we have an
equivalence of simplicial algebras

Ab⌦Ab⌦kA
A ' Sym

an

A

�
Lan

A [1]
�

where Sym
an

A denotes the analytification relative to A of the algebraic SymA. Theorem 1.6.1.2 is a consequence
of the following more general result:

Theorem 1.6.1.3. There are1-categories k[✏]-AnRingk of mixed analytic rings and S
1-AnRingk of S1-equivariant

analytic rings. These1-categories are equivalent compatibly with their forgetful functors to AnRingk.

The1-category S
1-AnRingk is defined as

S
1-AnRingk := Fun

�
BS

1
,AnRingk

�
.

By a formal argument, the 1-category S
1-AnRingk is canonically monadic over AnRingk. Let us denote the

associated monad by TS1 . However, the construction of the1-category k[✏]-AnRingk is more involved. We need
thus to assume that there exists an1-category k[✏]-AnRingk equipped with a functor

U✏ : k[✏]-AnRingk ! AnRingk

such that U✏ is conservative, commutes with sifted colimits and it admits a left adjoint

DR: AnRingk ! k[✏]-AnRingk

such that for every A 2 AnRingk there exists a canonical equivalence

U✏

�
DR(A)

�
' Sym

an

A

�
Lan

[1]
�
.

In particular, U✏ exhibits k[✏]-AnRingk as monadic over AnRingk. Let us denote the corresponding monad by
T✏.

The structured HKR theorem can be stated as:

Theorem 1.6.1.4 (Structured analytic HKR theorem). The monads TS1 and T✏ are equivalent as monads over
AnRingk. In particular, there exists an equivalence of1-categories

S
1-AnRingk ' k[✏]-AnRingk

compatible with the forgetful functors to AnRingk.

Remark 1.6.1.5. Theorem 1.6.1.4 implies both Theorem 1.6.1.2 and Theorem 1.6.1.3.

1.7 Main results
For the reader’s convenience we list the main results presented in the present thesis. The reader can find a more
precise formulation of these in the body of the text.

Theorem 1.7.0.1. Let Tad(k
�
) denote the k

�-adic pregeometry and X an1-topos. Then the exists a canonical
functor

fCAlgk�(X)! CAlg
ad

k�(X)

which is an equivalence when restricted to topologically almost of finite presentation local Tad(k
�
)-structures on

X.
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Theorem 1.7.0.2. There exists a rigidification functor

(�)rig : dfDMk� ! dAnk

which coincides with the usual Raynaud’s rigidification functor, when restricted to discrete objects. Moreover, the
functor (�)rig : dfDMk� ! dAnk is compatible with n-truncations.

Theorem 1.7.0.3. Let X 2 dAnk be a derived k-analytic space. Then there exists X 2 dfDMk� a derived k
�-adic

Deligne-Mumford stack such that one has an equivalence

Xrig ' X

in the1-category dAnk.

Theorem 1.7.0.4. The rigidification functor

(�)rig : dfDMk� ! dAnk

is a localization functor. More precisely, it induces an equivalence

dfSch[S
�1

] ' dAn
0
k

in the 1-category Cat1. Here dfSch ✓ dfDMk� denotes the full subcategory spanned by admissible derived
k
�-adic schemes, S the saturated class of generically strong morphisms and dAn

0
k ✓ dAnk the full subcategory

spanned by quasi-paracompact and quasi-separated derived k-analytic spaces.

Theorem 1.7.0.5. Let X 2 dAnk be a quasi-compact and quasi-separated derived k-analytic space and X 2
dfDMk� a formal model for X . Then we have an equivalence of stable1-categories

Coh
+
(X) ' Coh

+,�
(X)

where Coh
+,�

(X) denotes the Verdier quotient of the diagram

Coh
+

nil
(X)! Coh

+
(X)! Coh

+
(X)

computed in the1-category Catst1.

Theorem 1.7.0.6. Let X be a quasi-compact and quasi-separated derived k-analytic stack. Then the derived
Hilbert stack RHilb(X) is representable by a derived k-analytic stack.

Theorem 1.7.0.7. Let X be a smooth over an algebraically closed field. Then there exists a moduli functor

LocSys`,n(X) : dAfd
op

k ! S

which is given on objects by the formula

Z 2 dAfd
op

k 7! Map
cont

�
Sh

ét
(X),BGLn(�(Z))

�

where Sh
ét
(X) 2 Pro(Sfc) denotes the étale homotopy type of X and Map

cont
denotes the space of morphisms

⇢ : Sh
ét
(X)! BGLn(�(Z))

which preserve the canonical topologies on both Sh
ét
(X) and BGLn(�(Z)). Moreover, given a finite quotient

⇡
w
1
(X)! � of the wild fundamental group of X , there exists a derived stack

LocSys`,n,�(X) 2 dSt
�
dAfdk, ⌧ét

�

which parametrizes
⇢ : Sh

ét
(X)! BGLn(�(Z))

whose restriction to ⇡w
1
(X) factor through the quotient morphism ⇡

w
1
(X)! �.
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Theorem 1.7.0.8. Let X be a smooth and proper scheme over an algebraically closed field. Then the derived
stack LocSys`,n(X) 2 dSt(dAfd

op

k , ⌧ét) is representable by a derived geometric stack. Moreover, given ⇢ 2
LocSys`,n(X) its analytic cotangent complex at ⇢ is given by

Lan

LocSys`,n(X),⇢ ' C
⇤
ét
�
X,Ad(⇢)

�_
[�1] 2 Modk. (1.7.0.1)

In the case where X is a smooth non-proper scheme over an algebraically closed field of characteristic p > 0

(different than the residual characteristic of k), then the moduli

LocSys`,n,�(X) 2 dSt
�
dAfdk, ⌧ét

�

is representable by a derived geometric stack. Moreover, the formula displayed in (1.7.0.1) holds for the analytic
cotangent complex of LocSys`,n,�(X).

Theorem 1.7.0.9. Let X be a proper and smooth scheme over an algebraically closed field. Then the moduli
stack LocSys`,n(X) admits a natural shifted symplectic structure ! 2 A2,cl

(LocSys`,n(X)). Moreover, given
⇢ 2 LocSys`,n(X)(Z) the underlying 2-form on ⇢ coincides with the Poincaré duality morphism

!⇢ : C
⇤
ét(X,Ad(⇢))[1]⌦ C

⇤
ét(X,Ad(⇢))[1]! �(Z)[2� 2d],

where d = dim(X).

Theorem 1.7.0.10. Let X be a derived k-analytic space. Then one has an equivalence of derived k-analytic
stacks

X ⇥X⇥X X ' TX[�1],

compatible with the projection to X . In particular, if we assume further that X is a derived k-affinoid space and
we let A := �(X,OX) we have an equivalence of derived k-algebras

Ab⌦Ab⌦AA ' Sym
an

A (Lan
[1]).

Theorem 1.7.0.11. There are 1-categories k[✏]-AnRingk and S
1-AnRingk of mixed derived k-analytic rings

and S
1-equivariant derived k-analytic rings, respectively. Moreover, these1-categories are monadic and comonadic

over AnRingk and there exists an equivalence of1-categories

S
1-AnRingk ' k[✏]-AnRingk

which fits into a commutative diagram

S
1-AnRingk k[✏]-AnRingk

AnRingk

of monads over AnRingk.

1.8 Notations and Conventions
We shall denote k a non-archimedean field equipped with a non-trivial valuation, k� its ring of integers and
sometimes we will use the letter t 2 k

� to denote a uniformizer for k. We denote Ank the category of strict
k-analytic spaces and Afdk the full subcategory spanned by strict k-affinoid spaces and we adopt the convention
that whenever we mention k-affinoid or k-analytic space we mean strict k-affinoid and strict k-analytic space,
respectively. We denote fSchk� the category of quasi-separated formal schemes over the formal spectrum Spf(k

�
),

where we consider k� equipped with its canonical topology induced by the valuation on k. In order to make clear
that we consider formal schemes over Spf(k�), we shall often employ the terminology k

�-adic scheme to refer to
formal scheme over Spf k�.
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Let n � 1, we shall make use of the following notations:

An
k := Spec k[T1, . . . , Tm], An

k� := Spf(k
�hT1, . . . , Tmi)

and
An

k :=
�
An

k

�an
, Bn

k := Sp(khT1, . . . Tmi),

where (�)an denotes the usual analytification functor (�)an : Schk ! Ank, see [Ber93a]. We denote by GLan

n

the analytification of the usual general linear group scheme over k, which associates to every k-affinoid algebra
A 2 Afdk the general linear group GLn(A) with A-coefficients.

In this thesis we extensively use the language of 1-categories. Most of the times, we reason model inde-
pendently, however whenever needed we prove1-categorical results using the theory of quasi-categories and we
follows closely the notations in [Lur09b]. We use caligraphic letters C, D to denote 1-categories. We denote
Cat1 the1-category of (small)1-categories. We will denote by S the1-category of spaces, Sfc the1-category
of finite constructible space, see [Lur09a, §3.1]. Let C be an1-category, we denote by Ind(C) and Pro(C) the
corresponding 1-categories of ind-objects and pro-objects on C, respectively. When C = Sfc, the 1-category
Pro(Sfc) is referred as the1-category of profinite spaces.

Let R be a derived commutative ring. We will denote by CAlgR the1-category of derived k-algebras. The
latter can be realized as the associated1-category to the usual model category of simplicial R-algebras.

We shall denote by CAlg
ad the1-category of derived adic algebras, introduced in [Lur16, §8.1]. Whenever

R admits a non-trivial adic topology, we denote CAlg
ad

R :=
�
CAlg

ad
�
R/

the 1-category of derived adic R-
algebras, i.e. derived R-algebras equipped with an adic topology compatible with the adic topology on R together
with continuous morphisms between these.

Let R be a field. We shall denote by CAlg
sm

R the1-category of small augmented derived R-algebras. When
R = k we denote by AnRing

sm

k the 1-category of small augmented derived k-analytic rings over k, which is
naturally equivalent to CAlg

sm

k , see [Por15a, §8.2].
Let R be a discrete ring. We denote by CAlg~R the 1-category of ordinary commutative rings over R. When

R admits an adic topology we shall denote CAlg
ad,~
R ✓ CAlg

ad

R the full subcategory spanned by discrete derived
adic R-algebras. Let R denote a derived ring. We denote ModR the derived 1-category of R-modules and
Coh

+
(X) ✓ ModR the full subcategory spanned by those almost perfect R-modules.

We need sometimes to enlarge the starting Grothendieck universe, and we often do not make explicit such
it procedure. Fortunately, this is innocuous for us. We will usually employ caligraphic letters X, Y,Z to de-
note1-topoi. The1-category of1-topoi together with geometric morphisms between these is denoted TopR .
Caligraphic letters such as O, A,B are often employed to denote structures on an1-topos. We will denote by
Tad(k

�
) and Tan(k) the adic and analytic pregeometries, respectively. Let X 2 TopR be an1-topos, we denote

by fCAlgk�(X) := Str
loc

Tad(k�)(X) and AnRingk(X) := Str
loc

Tan(k)(X).
We will denote by

�
dA↵k, ⌧ét,Psm

�
the algebraic geometric context and we denote by dSt

�
dA↵k, ⌧ét,Psm

�

the 1-category of derived geometric stacks with respect to
�
dA↵k, ⌧ét,Psm

�
. Similary, whenever k denotes

either the field C of complex numbers or a non-archimedean field we will denote by
�
dA↵k, ⌧ét,Psm

�
the analytic

geometric context and correspondingly dSt
�
dAnk, ⌧ét,Psm

�
the 1-category of derived geometric stacks with

respect to the analytic geometric context.
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Chapter 2

Brief overview of derived k-analytic
geometry

For the purposes of clarity we introduce a small section reviewing the main foundational results in derived k-
analytic geometry, proved in [PY16a, PY17a].

2.1 Derived rigid analytic geometry
Let k be a non-archimedean field with a non-trivial valuation. In [PY16a, PY17a] M. Porta and T. Yu Yue intro-
duced the foundations of derived k-analytic geometry. Roughly speaking, a derived k-analytic space consists of a
couple (X,Oalg

) where X is an1-topos and Oalg is a locally ringed sheaf on X having an additional k-analytic
structure.

Definition 2.1.0.1. Let Tan(k) denote the full subcategory of Ank spanned by smooth k-analytic spaces. We
endow Tan(k) with étale Grothendieck topology. We define a class of admissible morphisms on Tan(k) as the
class of étale morphisms on Tan(k).

Definition 2.1.0.2. Let X be an1-topos. We say that a functor O : Tan(k)! X is a local Tan(k)-structure on X
if the following conditions are satisfied:

(i) The functor O : Tan(k)! X commutes with finite produces in Tan(k);

(ii) The functor O : Tan(k)! X commutes with pullbacks along admissible morphisms, i.e. given a commuta-
tive diagram

U V

U
0

V
0

g (2.1.0.1)

in the category Tan(k) such that g : V ! V
0 is an admissible morphism then the induced commutative

diagram
O(U) O(V )

O(U 0
) O(V 0

)

g

in X is a pullback diagram.

(iii) Let
`
i
Ui ! U be an étale covering in Tan(k), then the corresponding morphism

`
i
O(Ui) ! O(U) is an

effective epimorphism in the1-topos X. We say that a morphism

↵ : O! O0

35



between local Tan(k)-structures on X is local if the for admissible morphism g : V ! U in Tan(k) the
induced commutative diagram

O(V ) O0
(V )

O(U) O0
(U)

is a pullback diagram in X.

Notation 2.1.0.3. Let X be an1-topos. The subcategory of Fun
�
Tan(k),X

�
spanned by local Tan(k)-structures

and local morphisms between these is denoted by AnRingk(X).

Remark 2.1.0.4. Let O : Tan(k) ! X denote a local Tan(k)-structure on X. Condition (i) in Theorem 2.1.0.2
implies that evaluation on the affine line induces a sheaf O(A1

k) 2 X which can be promoted to a CAlgk(X)-valued
sheaf on X. Similarly, the evaluation on the closed unit disk induces a CAlgk-valued sheaf O(B1

k) on X.

Definition 2.1.0.5. Let O : Tan(k)! X be a local Tan(k)-structure on X. We define its underlying algebra as the
CAlgk-valued sheaf Oalg := O(A1

k) on X. This association is functorial and the corresponding functor is denoted

(�)alg : AnRingk(X)! CAlgk(X)

and referred to as the underlying algebra functor.

Remark 2.1.0.6. The object O 2 AnRingk(X) does admit more structure than its algebraic counterpart Oalg 2
CAlgk(X). For example, we have an induced morphism of derived rings on X

O(B1

k)! Oalg

which one should interpret as the inclusion of radius-1 convergent holomorphic glocal sections on the sheaf of all
global sections Oalg on X. Therefore, Oalg admits a k-analytic structure which cannot be recovered solely by the
algebraic structure on Oalg.

Definition 2.1.0.7. The 1-category of Tan(k)-structured spaces, denoted TopR
(Tan(k)), is defined as the 1-

category of those couples (X,O) where X 2 TopR is an1-topos and O : Tan(k)! X is a local Tan(k)-structure
on X, see [Lur11c, Definition 3.1.9] for a more rigourous construction of TopR

(Tan(k)).

Example 2.1.0.8. Let X 2 Ank denote an ordinary k-analytic space. To X we can associate XX := Shv(Xét)
^,

the hypercompletion of the1-topos of sheaves on the (quasi-)étale site of X . We can define a Tan(k)-structure
on X as follows: given V 2 Tan(k) we associate it the sheaf O(V ), on X, defined on objects via the formula

U 2 Xét 7! Map
Ank

(U, V ) 2 S.

Notice that when V = A1

k, denotes the k-analytic affine line, the sheaf O(A1

k) coincides with the usual sheaf of
sections on X .

Definition 2.1.0.9. A derived k-analytic space consists of a couple X = (X,O) where X is an 1-topos and
O : Tan(k)! X is a Tan(k)-structure on X satisfying the following conditions:

(i) The 0-truncation t0X :=
�
X,⇡0(O)

�
is equivalent to an ordinary k-analytic space via Theorem 2.1.0.8.

(ii) For each i > 0, the homotopy sheaf ⇡i
�
Oalg

�
is a coherent sheaf over

�
X,⇡0(O)

�
.

Notation 2.1.0.10. We will denote by dAnk the1-category of derived k-analytic spaces.

The theory of derived k-analytic geometry is robust in the sense that in practice the main results of derived
algebraic geometry do admit analogues in the k-analytic setting. We cite some of the most relevant results in
derived k-analytic geometry:
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Theorem 2.1.0.11 (Gluing along closed immersions, Theorem 6.5 [PY17a]). Consider the following pushout
diagram

X X
0

Y Y
0

i

j

q

in the1-category TopR
(Tan(k)). Suppose further that i and j are closed immersions and X, X

0
, Y are derived

k-analytic spaces. Then Y
0 is itself a derived k-analytic space.

Theorem 2.1.0.12 (Existence of an analytic cotangent complex). Let X := (X,OX) 2 dAnk be a derived k-
analytic space and suppose we are given a morphism f : X ! Y . Consider the relative analytic derivations
functor Der

an

X/Y (�) : ModOX ! S given on objects by the formula

M 2 ModOX 7! Der
an

X (M) := Map
AnRingk(X)f�1OY //OX

(OX ,OX �M) 2 S,

where OX �M denotes the trivial square zero extension of OX by M , see [PY17a, §5]. Then Der
an

X/Y is corep-
resentable. More precisely, there exists an object Lan

X/Y , which we refer to the relative analytic cotangent complex
of f : X ! Y such that for every M 2 ModOX there exists a natural equivlence

Map
AnRingk(X)f�1OY //OX

(OX ,OX �M) ' Map
ModOX

⇣
Lan

X/Y ,M

⌘

in the1-category of spaces S. Whenever f = IdX we refer to Lan

X := Lan

X/Y as the absolute analytic cotangent
complex of X .

Moreover, the analytic cotangent complex satisfies:

(i) Let X 2 DMk denote a derived Deligne-Mumford stack over k. Then one has a natural equivalence
�
LX

�an ' Lan

X

in the1-category Coh
+
(X), where LX denotes the algebraic cotangent complex, introduced in [Lur12c,

§7.3.5].

(ii) Let f : X ! Y and g : Y ! Z be morphisms between derived k-analytic spaces. Then there exists a fiber
sequence of relative cotangent complexes of the form

f
⇤Lan

Y/Z ! Lan

X/Z ! Lan

X/Y

in the1-category Coh
+
(X).

(iii) Suppose we have a pullback square in the1-category dAnk

X
0

Y
0

X Y.

g f

Then one has a natural equivalence
g
⇤Lan

X0/Y 0 ' Lan

X/Y

in the1-category Coh
+
(X

0
).

Theorem 2.1.0.13 (Compatibility with Postnikov towers, Corollary 5.44 [PY17a]). Let X := (X,OX) 2 dAnk

be a derived k-analytic space. Then for every n � 0, the canonical map tnX ,! tn+1X is an analytic square
zero extension. More precisely, we have a pushout diagram

tnX[⇡n+1

�
OX

�
[n+ 2]] tnX

tnX tn+1X

d0

d
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in the1-category dAnk, where

tnX[⇡n+1

�
OX

�
[n+ 2]] :=

�
X,OX � ⇡n+1(OX)[n+ 2]

�
2 dAnk

denotes the trivial square extension of X by ⇡n+1(OX)[n+ 2] 2 ModOX . Moreover, d0 and d denote the trivial
square-zero extension and a suitable analytic derivation

d : Lan

tnX ! ⇡n+1(OX)[n+ 2]

in the1-category ModOX , respectively.

Theorem 2.1.0.14 (Representability theorem, Theorem 7.1 [PY17a]). Let F 2 dSt
�
dAfdk, ⌧ét

�
denote a derived

stack. Then the following assertions are equivalent:

(i) F is a geometric n-stack with respect to the geometric context
�
dAfdk, ⌧ét,Psm

�
.

(ii) F is compatible with Postnikov towers, has a global cotangent complex and its truncation t0F is repre-
sentable by an n-geometric stack with respect to the geometric context

�
Afdk, ⌧ét,Psm

�
.

We refer the reader to [PY16c, §2] for the notions of geometric context and geometric stack with respect to a
given geometric context.

The above results were proved by M. Porta and T. Yu Yue. They constitute an extensive review of derived
methods in the context of k-analytic geometry. However, certain results of classical k-analytic geometry still did
not have derived analogues prior to the current thesis. They constitute mainly the existence of formal models
for k-analytic spaces and its applications in k-analytic geometry. Certain of these lacking results were desired
in order to apply the techniques of derived k-analytic geometry to the study of certain problems coming from
representation theory. We shall exemplify one such application, which is an ubiquitous theme in the current thesis.

Example 2.1.0.15. Let X be a smooth scheme over an algebraically closed field of positive characteristic p > 0.
Let ` 6= p be a prime number and suppose we are given a continuous representation

⇢ : ⇡
ét
1
(X)! GLn

�
Q`

�
.

As ⇢ is continuous we can suppose that ⇢ factors through a finite extension k/Q`. One would like to understand
the space of continuous deformations of ⇢. These should correspond to continuous group representations

e⇢ : ⇡ét
1
(X)! GLn(A)

where A 2 AnRing
sm

k , as we are concerned with continuous deformations of ⇢.
In such case, one would like to consider the formal moduli problem F : AnRing

sm

k ! S given on objects by
the formula

�
A! k

�
2 AnRing

sm

k 7! Map
cont

�
B⇡

ét
1
(X),BGLn(A)

�
⇥

Mapcont(B⇡
ét
1 (X),BGLn(k))

{⇢} 2 S. (2.1.0.2)

Unfortunately, we still do not have a precise definition of the right hand side of (2.1.0.2). We would like to define
it as the space of continuous group-like homomorphisms

e⇢ : ⇡ét
1
(X)! Aut(A

n
) (2.1.0.3)

such that its restriction along the morphism A! k in the1-category AnRing
sm

k coincides with ⇢, up to equiva-
lence. However, we do not know what continuity means in this context. Indeed, A 2 AnRing

sm

k corresponds to a
functor

A : Tan(k)! S

satisfying certain admissibility conditions captured in Theorem 2.1.0.2. Such k-analytic structure on A do not
produce any sort of topological data. Therefore, we need to interpret A differently in order to be able to de-
fine continuous morphism of group-like objects as in (2.1.0.3). The avid reader might object by recalling the
equivalence of1-categories

AnRing
sm

k ' CAlg
sm

k
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proved in [Por15a, §8.2]. However, if we regard A 2 CAlg
sm

k as a plain E1-algebra over k we will restrict
ourselves to plain group like morphisms

e⇢ : ⇡ét
1
(X)! Aut(A

n
),

and we do not recover a good notion of continuity.

Remark 2.1.0.16. The content of Theorem 2.1.0.15 is in sharp contrast with the ordinary case. Indeed, if A 2
Afd

op

k is a k-affinoid algebra then we can equip A with a canonical topology induced by a choice of presentation

A ⇠= khT1, . . . , Tmi/I.

Such topology on A does not depend on the choice of the presentation. Moreover, we can consider the A-points
GLn(A) := GLan

n (A) as a topological group whose topology is induced by the one on A. In this case it is
reasonable to consider continuous group representations

⇢ : ⇡
ét
1
(X)! GLn(A).

Moreover, when A = k a continuous representation ⇢ : ⇡ét
1
(X) ! GLn(k) corresponds to the usual notion of

`-adic continuous representations of ⇡ét
1
(X).

39



40



Chapter 3

Derived k�-adic geometry and derived
Raynaud localization theorem

Derived k
�-adic geometry and derived Raynaud localization Theorem
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Contents

3.1 Introduction

3.1.1 Background material
Let k be a non-archimedean field of discrete valuation, k� its ring of integers and let t 2 k

� be a fixed uniformizer
for k. Denote fSchk� the category of admissible k�-adic formal schemes and An the category of k-analytic spaces.
There exists a rigidification functor (�)rig : fSchk� ! An such that every quasi-paracompact and quasi-separated
k-analytic space X admits a formal model over Spf k�. That is to say, there exists X 2 fSchk� such that

Xrig ' X.

For this reason, one is able to understand the analytic structure on X through a formal model X for X . The
following is a classical result proved by Raynaud:

Theorem 1 (Raynaud, Theorem 8.4.3 [Bos05] ). The functor (�)rig : fSchk� ! An is a localization functor.
More specifically, the functor (�)rig : fSchk� ! An factors through the localization of fSchk� at the class of
admissible blow ups, S. Moreover such functor induces an equivalence of categories

fSchk� [S
�1

]! An
0

where An
0 ✓ An denotes the full subcategory of quasi-paracompact quasi-separated k-analytic spaces.

?? 1 it allows to use methods from algebraic geometry in order to establish certain results in the context of rigid
analytic geometry. For instance, ?? 1 is useful to study flatness conditions for k-analytic spaces and base change
theorems in the setting of k-analytic geometry. Raynaud’s theory allows to bypass this problem the intrinsic
analytic difficulties by reducing this problem to its analogue at the formal level. The latter situation can then be
dealt using techniques from algebraic geometry.

3.1.2 Main results
The same situation occurs in the context of derived k-analytic geometry. Derived k-analytic geometry was devel-
oped by M. Porta and T. Yu Yue in [PY16a, PY17a]. In [Lur16, §8] the author introduces and studies at length
derived and spectral formal geometry. Our main goal in this text is to prove an analogue of ?? 1 in the derived
setting. However, in order to state a derived analogue of ?? 1 one needs another crucial ingredient, namely
the existence of a derived rigidification functor. Inspired by the construction of the derived analytification func-
tor [PY17a, §3], we will provide a construction of a derived rigidification functor. In order to so, we need to
develop a structured spaces approach to derived formal geometry over Spf k�.

This is done in §2: we develop a theory of derived t-adic formal geometry by considering certain Tad(k
�
)-

structured spaces. Therefore, we will consider couples (X,O) where X is an 1-topos and O : Tad(k
�
) ! X

is a local Tad(k
�
)-structure. To such a pair we can functorially associate a locally ringed 1-topos (X,Oalg

).
However, this construction loses information.

In general, the Tad(k
�
)-structure O : Tad(k

�
) ! X encodes more information than its algebraic counterpart

Oalg 2 CAlgk�(X). For example, one can show that (�)alg factors through the canonical functor CAlg
ad

k�(X) !
CAlgk�(X), where CAlg

ad

k�(X) denotes the1-category of k�-adic algebra objects on the1-topos X.
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More specifically, CAlg
ad

k�(X) corresponds to the 1-category whose objects are objects O 2 CAlgk�(X)
together with an adic topology on ⇡0(O) compatible with the adic topology on k

� and continuous morphisms
between these. Fortunately, we are able to fully understand the difference between the1-categories fCAlgk�(X)
and CAlgk�(X).

Theorem 3.1.2.1 (Theorem 3.3.2.4). Let X be an1-topos and consider the underlying algebra functor

(�)alg : fCAlgk�(X)! CAlgk�(X),

given on objects by the formula
(X,O) 7! (X,Oalg

).

Then, this functor factors through the functor CAlg
ad

k�(X)! CAlg(X) and the induced functor

(�)ad : fCAlgk�(X)! CAlg
ad

k�(X).

is fully faithful and moreover an equivalence of1-categories when restricted to those strictly Henselian objects
topologically almost of finite presentation.

Theorem 3.1.2.1 implies that the1-category of Tad(k
�
)-structured spaces (X,O) whose Oalg 2 CAlgk�(X) is

topologically almost of finite presentation can be recovered as locally ringed1-topoi (X,Oalg
) such that ⇡0

�
Oalg

�

comes equipped with an adic topology compatible with the t-adic topology on k
�. This can be regarded as a

rectification type result for Tad(k
�
)-structured spaces.

We will give a definition of derived formal k�-adic Deligne- Mumford stacks over k� in terms of Tad(k
�
)-

structured spaces and show that this notion agrees with the notion introduced in [Lur16, §8]. We then proceed to
study k

�-adic Postnikov tower decompositions and the k
�-adic cotangent complex with respect to maps between

derived k
�-adic Deligne-Mumford stacks, which, to the author’s best knowledge, has never been addressed before

in the literature.
In §3 we define a rigidification functor

(�)rig : RTop (Tad(k
�
))! RTop (Tan(k))

which restricts to a functor (�)rig : dfDMk� ! dAn, where dfDMk� denotes the1-category of formal derived
Deligne-Mumford stacks and dAn the1-category of derived k-anlytic spaces. We prove that the derived rigidi-
fication functor (�)rig coincides with the usual rigidification functor when restricted to the category of ordinary
formal schemes.

Whenever Z 2 dAn is such that its 0-th truncation t0(Z) is an (ordinary) quasi-separated and quasi-paracompact
k-analytic space, we prove:

Theorem 3.1.2.2 (Theorem 6.2.3.15). Let Z 2 dAn be a quasi-paracompact and quasi-separated derived k-
analytic space. There exists Z 2 dfDM such that one has an equivalence (Z)rig ' Z in the1-category dAn, in
other words Z admits a formal model Z 2 dfDMk� .

Let dfSchk� denote the full subcategory of dfDMk� spanned by those X 2 dfDMk� such that t0 (X) is equiv-
alent to an ordinary admissible quasi-paracompact formal scheme over k�. We say that a morphism f : X! Y in
dfDMk� is generically strong if for each i > 0, the induced map

⇡i

�
f
�1OY

�
! ⇡i

�
OX

�

is an equivalence in Coh
+
(X). Denote moreover dAn

0 ✓ dAn the full subcategory spanned by those X 2 dAn

such that its 0-th truncation t0X is equivalent to a quasi-paracompact and quasi-separated ordinary k-analytic
space. The following is a direct generalization of Raynaud’s localization theorem in the derived setting:

Theorem 2 (Theorem 3.4.4.10). Let S denote the saturated class generated by those morphisms f : X ! Y in
dfSchk� such that t0 (f) is an admissible blow up and generically strong. Then the rigidification functor

(�)rig : dfSchk� ! dAn
0
k.

factors through the localization1-category dfSchk� [S
�1

] and the induced functor

dfSchk� [S
�1

]! dAn
0
k.

is an equivalence of1-categories.
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Let us briefly sketch the proof of Theorem 3.4.4.10. In order to prove the statement it suffices to prove that
given X 2 dAn as in Theorem 3.4.4.10 the comma category CX :=

�
dfSch

�
X/

is contractible. We will prove a
slightly stronger result, namely CX is a filtered1-category. In order to illustrate the main ideas behind the proof
it suffices to deal with lifting a morphism f : X ! Y in dAn to a morphism f

+
: X ! Y in dfSch such that

(f
+
)
rig ' f as morphims in dAn.

The lifting is done by induction on the Postnikov tower of X . Suppose that X ' t0(X) in the1-category
dAn. Notice that ?? 1 implies that we can lift t0(f) to a morphism f

+

0
: X0 ! Y0 in the category fSchk� . As

X ! Y factors through the canonical morphism t0Y ! Y in dAn, we conclude by Theorem 3.1.2.2 together
with ?? 1 that we can find a formal model for f : X ! Y , up to an admissible blow up at the level of 0-th
truncations.

Let n � 0 be an integer. Assume moreover that we are giving a morphism (f
+

n ) : Xn ! Yn in dfSch such
that (f+

n )
rig ' tnf : tnX ! tnY . Consider the (n + 1)-st step of the Postnikov tower, namely the pushout

diagram
tnX[⇡n+1(OX)[n+ 2]] tnX

tnX tn+1X

in the1-category dAn. In order to proceed, we will need to know that the adic cotangent complex is compatible
with the analytic one via rigidification. Namely, we have the following proposition:

Proposition 3.1.2.3. Let X 2 dfSch and denote X := Xrig 2 dAn. Then the rigidification functor induces a
canonical equivalence �

Lad

X

�rig ' Lan

X

in the1-category Coh
+
(X).

The induction hypothesis, together with the universal property of both the adic and analytic cotangent com-
plexes plus refined results on the existence of formal models for almost perfect modules on X , proved in Appendix
A, imply that we can extend the morphism f

+

n : Xn ! Yn to a diagram

f
+

n  f
+

n [⇡n+1(f)
+
[n+ 2]]! tnf

+

n (3.1.2.1)

considered as an object in Fun
�
⇤
2

0
, dfSch

�
1�

, where ⇡n+1(f)
+ 2 Coh

+
(X0)

�
1

in (3.1.2.1) denotes a formal
model for ⇡n+1(f). By taking pushouts along ⇤2

0
we obtain the desired lifting f

+

n+1
: Xn+1 ! Yn+1 of tn+1(f).

The main technical difficulty of the proof comes from lifting higher coherences on diagrams of analytic deriva-
tions to suitable higher coherences of suitable diagrams of adic derivations. This is needed in order to extend
(3.1.2.1) above in the case of more complex diagrams.

3.1.3 Related works
Let us give some examples of applications: it was proven in [Ant17a] that the moduli stack of continuous t-adic
representations of a profinite group (topologically of finite generation) is representable by a geometric k-analytic
stack. This object can be upgraded as a geometric derived k-analytic stack. This additional structure is crucial if
one wants to obtain the correct cotangent complex and thus have a control of its obstruction theory. This additional
structure led us to have a better understanding of the underlying geometry of such geometric derived k-analytic
stack, in particular one is then able that it admits a shifted symplectic form.

However, the proof of the representability of such a derived k-analytic stack is not possible using only the
techniques available from the structured spaces approach to derived k-analytic geometry, as in [PY16a]. The main
drawback is that derived k-analytic spaces are defined as couples (X,O), where X denotes an (hypercomplete)
1-topos and O : Tan(k) ! X consists of a Tan(k)-local structure. This data should be interpreted as the given
of a locally ringed space together with an additional structure, such structure consisting of the data of convergent
t-adic holomorphic (derived) sections of the structure sheaf.

However such information does not provide directly any sort of topological structure on O, in contrast with
the classical setting in which O corresponds to a sheaf of Banach k-algebras. Since [Ant17a] studies continuous
representations of a profinite group and, more generally, of pro-homotopy types, one needs to be able to recover
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back this topological data at the derived level. ?? 2 provides us with an answer to this matter and it plays a crucial
role in the proof of representability of [Ant17a].

So far, Raynaud’s viewpoint in the derived setting already encountered other applications: in a joint work with
F. Petit and M. Porta one proves an HKR Theorem in the context of derived k-analytic geometry and the theory of
formal models proves to be useful in the proof of such statement. Another such application is a joint work with M.
Porta: we show the representability of the derived Hilbert stack as a derived k-analytic stack in which the theory
of formal models plays a crucial role.

3.1.4 Notations and conventions
Throughout the text, unless otherwise stated, k denotes a non-archidemean field of discrete valuation and k

�
=

{x 2 k : |x|  1} its ring of integers in k. We let t be a fixed uniformizer of k. Given an integer n � 1, we
will denote by k

�
n the reduction modulo (t

n
) of k�. We denote fSchk� the (classical) category of formal schemes

(topologically) of finite presentation over k�.
Let n � 0 be an integer, we define k

�hT1, . . . , Tni as the sub-algebra of k
�
[[T1, . . . , Tn]] consisting of

those formal power series which f = ⌃IaiT
bI
I , such that the coefficients aI ! 0 in k

�. Denote by An
k� :=

Spf k
�hT1, . . . , Tni, Bn

k := SphT1, . . . , Tni the closed unit disk and An
k :=

�
An

k

�an the k-analytic affine n-space.
We say that a morphism between two t-complete k

�-algebras A ! B is formally étale if, for each n � 0, its
mod t

n reduction is an étale homomorphism of k�/tn-algebras. We denote S the1-category of spaces and RTop
the1-category of1-topoi together with geometric morphisms between these. Let R be a commutative simplicial
ring, we denote CAlgR its1-category of derived R-algebras. Given an object B 2 CAlgR we denote by ⇡i (B)

the i-th homotopy group of the underlying space associated to B. We will denote ModR the derived1-category
of R-modules, it can be considered as an1-categorical upgrade of the usual (triangulated) derived category D(R)

of R-complexes. Throughout the text we will employ homological convention, thus given M 2 ModR we denote
by ⇡i(M) := Hi(M) its i-th homology group. Given an1-topos X we will denote CAlgR(X) := Str

loc

Tdisc(R)
(X),

CAlgshR (X) := Str
loc

Tét(R)
(X), fCAlgk�(X) := Str

loc

Tad(k�)(X) and AnRingk(X) := Str
loc

Tan(k)(X). We will often
denote a general pregeometry by the letter T. Moreover, whenever we refer to an object (X,O) 2 TopR

(T) we
assume that O 2 Str

loc

T
(X) is a local T-structure on X.
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3.2 Review on derived algebraic and analytic geometry
3.2.1 Functor of points approach
Let k 2 CAlg denote a commutative ring or more generally a derived commutative ring.

Definition 3.2.1.1. The1-category of derived affine schemes over Spec k is defined as

dA↵ :=
�
CAlgk

�op
.

Definition 3.2.1.2. Let f : A ! B be a morphism of derived rings. We say that f is étale if ⇡0(f) : ⇡0(A) !
⇡0(B) is an étale morphism of ordinary commutative rings and for each i > 0 the induced morphism

⇡i(f) : ⇡i(A)⌦⇡0(A) ⇡0(B)! ⇡i(B)

is an isomorphism of ⇡0(B)-modules.

Notation 3.2.1.3. One can equip the 1-category dA↵ with the étale topology. We shall denote (dA↵, ⌧ét) the
corresponding étale site.

Notation 3.2.1.4. Let (dA↵, ⌧ét) denote the étale Grothendieck site on the1-category dA↵ . Let X = SpecA 2
dA↵ we denote Shvét(X) := Shv(dA↵/X ,Tét) the1-topos of étale sheaves on X .
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Remark 3.2.1.5. The 1-category Shvét(X) can be realized as a presentable left localization of PShv(X) :=

Fun
�
dA↵/X , S

�
given by localizing at the class of morphisms forcing étale descent on objects of PShv(X). In

particular, the1-category Shvét(X) is presentable and indeed an1-topos.

Definition 3.2.1.6. We denote dSt
�
A↵, ⌧ét

�
✓ Shvét

�
A↵

�
the1-category of derived stacks as the full subcate-

gory spanned by those étale sheaves X 2 Shvét(A↵) which are hypercomplete.

One can give a definition of the1-category of derived schemes in terms of (derived) locally ringed spaces:

Definition 3.2.1.7. Let X be a topological space and O 2 CAlg(X) a CAlg-valued sheaf on X . We say that
O is local if at every point x 2 X , the stalk Ox 2 CAlg is a local derived ring, i.e. ⇡0(Ox) is a local ordinary
commutative ring.

Definition 3.2.1.8. Let dLocRingk denote the 1-category whose objects are pairs (X,O) where X is a topo-
logical space and O 2 CAlg(X) a local CAlg(X)-valued sheaf on X . We denote dSchk the full subcategory of
dLocRingk spanned by those couples (X,O) satisfying:

(i) Its 0-th truncation t0(X,O) := (X,⇡0(O)) is isomorphic to an ordinary scheme over k;

(ii) For every i � 0, the higher homotopy sheaf ⇡i(O) is a quasi-coherent sheaf on t0(X,O).

Remark 3.2.1.9. One can think of a pair (X,O) 2 dSchk as an infinitesimal deformation of the ordinary scheme
(X,⇡0(O)) and the higher homotopy sheaves ⇡i(O) encode the higher infinitesimal information.

Remark 3.2.1.10. One can realize the1-category as a full subcategory of dLocRingk. For this reason, we have
a canonical functor dLocRingk ! Fun

�
A↵, S

�
which associates to every (X,O) 2 dLocRingk the functor

⇣
SpecA 7! Map

dLocRingk
(SpecA, (X,O))

⌘
2 Fun

�
A↵, S

�
.

This provides a fully faithful embedding of the1-category of derived schemes in the1-category dSt
�
dA↵, ⌧ét

�
.

Example 3.2.1.11. Let X be a usual scheme and Y , Z two full subschemes of X then we can define the derived
intersection Y \ Z := Y ⇥R

X Z (in the ambient space X) as the derived scheme whose underlying topological
space corresponds to the underlying topological space of the ordinary pullback, Y ⇥X Z. Plus, the structure sheaf
on Y \ Z coincides with the derived tensor product

OY \Z := OY ⌦OX OZ .

It turns out that the 0-th truncation of Y \ Z coincides with the ordinary fiber product of Y with Z over X . More
specifically, one has ⇡0(OY \Z) ' Tor

0

OX
(OY ,OZ) and isomorphisms of coherent sheaves on Y ⇥X Z,

⇡i(OY \Z) ' Tor
i
OX

(OY ,OZ).

The Serre intersection formula implies that the Euler characteristic of the derived intersection Y \ Z agrees with
the usual intersection number associated to the intersection of Y and Z inside of X .

3.2.2 Structured spaces approach
In [Lur11c], J. Lurie introduced the notion of a (spectral) scheme, and more generally (spectral) Deligne-Mumford
stack via a structured spaces approach. Whenever k is a field of characteristic zero both approaches the functor of
points and the structured spaces to derived algebraic geometry are equivalent. We review some of these notions
which will be useful for our exposition. The reader is referred to [Lur11c] and [PY16a] for more details.

Definition 3.2.2.1. We refer (X,O) to a couple as a ringed1-topos whenever X is an1-topos and O 2 CAlg(X)
is a CAlg-valued sheaf on X. We say that a ringed1-topos is a locally ringed1-topos if for each geometric point
x⇤ : X! S the CAlg-valued sheaf x�1O on S can be identified with a local derived k-ring.

Remark 3.2.2.2. Suppose given X a topological space. We can then form its associated1-topos X := Shv(X)

of S-valued sheaves on X . The locally ringed pair (X,O) induces naturally a locally ringed1-topos (X,O), as
O can be by construction promoted to a local CAlg-valued sheaf on X.
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We now reformulate the notion of locally ringed1-topos in terms of pregeometries:

Definition 3.2.2.3. A pregeometry consists of an1-category T equipped with a class of admissible morphisms
and a Grothendieck topology, which is generated by admissible morphisms satisfying the following conditions:

(i) T admits finite products;

(ii) Pullbacks along admissible morphisms exist and are again admissible;

(iii) If f and g are morphisms in T such that g and g � f are admissible then so is f .

(iv) Retracts of admissible morphisms are again admissible.

We give a list of well known examples of pregeometries which will be useful later on.

Example 3.2.2.4. (i) Let Tdisc(k) denote the pregeometry whose underlying category consists of affine spaces
An

k and morphisms between these. The family of admissible morphisms is the family of isomorphisms in
Tdisc(k) and we equip it with the discrete Grothendieck topology.

(ii) Let TZar(k) denote the pregeometry whose underlying category has objects those affine schemes which
admit an open embedding in some n-th affine space, An

k , whose admissible morphisms correspond to open
immersions of schemes and the Grothendieck topology consists of usual Zariski topology.

(iii) Let Tét be the pregeometry whose underlying category is the full subcategory of the category affine schemes
spanned by affine schemes étale over An

k , for some n. A morphism in Tét is admissible if and only if it is an
étale morphism of affine schemes.

Definition 3.2.2.5. Let T be a pregeometry and X an1-topos. A T-local structure on X is defined as a functor
between1-categories O : T ! X satisfying the following conditions:

(i) The functor O preserves finite products;

(ii) For a pullback square of the form
U

0
X

0

U X

f

in T where f is admissible then the square

O(U 0
) O(X 0

)
O(f)

O(U) O(X)

is a pullback square in X.

(iii) Given a covering {U↵ ! U} in T consisting of admissible morphisms then the induced map
a

O(U↵)! O(U),

is an effective epimorphism in X.

A morphism O ! O0 between T-local structures is said to be local if it is a natural transformation satisfying the
additional condition that for every admissible morphism U ! X in T, the resulting diagram

O(U) O0
(U)

O(X) O0
(X),

is a pullback square in X. We denote Str
loc

T
(X) the 1-category of local T-structures on X together with local

morphisms between these.
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Construction 3.2.2.6. (i) In virtue of [Lur11c, Example 3.1.6, Remark 4.1.2], we have an equivalence of1-
categories Strloc

Tdisc
(X) ' ShvCAlg(X), where the latter denotes the1-category of CAlg-valued sheaves on

X. More explicitly, given a ringed1-topos (X,O), we can promoted it naturally to a Tdisc-structured via
the construction:

An
k 2 Tdisc 7! (On 2 Shv (X) ' X) ,

where we forget the additional ringed structure on O.

(ii) Let O : TZar(k)! X be a TZar(k)-local structure on the1-topos. We can restrict it to a Tdisc(k)-structure
on X via the natural inclusion functor Tdisc(k) ! TZar which thus induces a CAlg-valued sheaf on X,
which we still denote by O. Condition (iii) in Theorem 3.2.2.5 implies that O can be identified with a local
CAlg-valued, see [Lur11c, Proposition 4.2.3].

(iii) Similarly a Tét(k)-local structure on X corresponds to a CAlgk-valued sheaf on X whose stalks are strictly
Henselian. We refer the reader to [Lur16, Lemma 1.4.3.9] for a detailed proof of this result.

Definition 3.2.2.7. A T-structured space is a pair X := (X,O) where X is an1-topos and O is T-local structure
on X. We denote by TopR

(T) the1-category of T-structured topoi, see [Lur11c, Definition 3.1.9].

Definition 3.2.2.8. A derived Deligne-Mumford stack is a couple (X,O), where O : Tét ! X is a Tét-structure on
X verifying the following conditions:

(i) The 0-truncation t0 (X,O) :=
�
X,⇡0(O

alg
)
�

is equivalent to an (ordinary) Deligne-Mumford stack;

(ii) For each i > 0, the higher homotopy sheaf ⇡i
�
Oalg

�
is a quasi-coherent sheaf on (X,O).

3.2.3 Derived k-analytic geometry
Let k denote a non-archimedean field of non-trivial valuation. Derived k-analytic geometry as introduced in
[PY16a] is a vast generalization of the classical theory of rigid analytic geometry. It is far more complicated to
introduce derived k-analytic geometry through a functor of points approach. The main drawback comes from the
fact that there is no reasonable description of the 1-category of (derived) affinoid spaces. For this reason, we
prefer to adopt a structured spaces approach as in [PY16a]. We will review the basic definitions and we shall refer
the reader to [PY16a, PY17a] for a detailed account of the foundational aspects of the theory.

Definition 3.2.3.1. Let Tan(k) denote the pregeometry whose underlying category consists of those k-analytic
spaces which are smooth and whose admissible morphisms correspond to étale maps between these. We equip
Tan(k) with the étale topology.

Construction 3.2.3.2. Let X be an ordinary k-analytc space and denote Xét the associated small étale site on X .
Let X := Shvét(Xét)^ denote the hypercompletion of the1-topos of étale sheaves on X . We can attach to X a
Tan(k)-structure on X as follows: given U 2 Tan(k), we define the sheaf O(U) 2 X by

Xét 3 V 7! HomAn (V, U) 2 S.

As in the algebraic case, we can canonically identify O(A1

k) with the usual sheaf of analytic functions on X .

Definition 3.2.3.3. We say that Tan(k)-structured1-topos (X,O) is a derived k-analytic space if the following
conditions are satisfied:

(i) X is hypercomplete and there exists an effective epimorphism
`

i Ui ! 1X on X verifying:

(ii) For each i, the couple (X|Ui
,⇡0(O

alg|Ui)) is equivalent in the 1-category TopR
(Tan(k)) to an ordinary

k-analytic space, by means of Theorem 3.2.3.2.

(iii) For each index i and j � 1, the ⇡j(Oalg|Ui) is a coherent sheaf over ⇡0(Oalg|Ui)-modules on Xi.
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3.3 Derived k�-adic geometry
In this section we will introduce the k�-adic pregeometry, Tad(k

�
), and study the corresponding theory of Tad(k

�
)-

structured spaces. Let TopR
(Tad(k

�
)) denote the1-category of Tad(k

�
)-structured spaces. Our first goal is to

make precise the assertion that a Tad(k
�
)-structured1-topos (X,O) can be realized as a locally ringed1-topos

(X,Oalg
) together with an adic topology on ⇡0

�
Oalg

�
. We will prove such assertion in §2.1 in the case where O is

almost of finite presentation. We will also extend the Spf-construction introduced in [Lur16, §8.2] to the context
of Tad(k

�
)-structured spaces. We will then proceed to a formal study of the theory of modules and obstruction

theory in this context.
We show that Postnikov towers for Tad(k

�
)-structured spaces exist and they are controlled by the adic cotan-

gent complex.

3.3.1 Derived k�-adic spaces
Definition 3.3.1.1. Denote Tad(k

�
) the full subcategory of the category of k�-formal schemes spanned by those

formal affine schemes which are formally étale over some An
k� . We consider Tad(k

�
) as a pregeometry by defining

the class of admissible morphisms on Tad(k
�
) to be the class of étale morphisms. We equip Tad(k

�
) with the étale

topology.

Notation 3.3.1.2. Denote by TopR
(Tad(k

�
)) the1-category of Tad(k

�
)-structured1-topoi. Given X 2 TopR

an1-topos we define fCAlgk�(X) := Str
loc

Tad(k�)(X) the1-category of local Tad(k
�
)-structures on X.

Notation 3.3.1.3. We have canonical transformation of pregeometries, denoted

(�)^t : Tdisc(k
�
)! Tad(k

�
), (�)^t : Tét(k

�
)! Tad(k

�
)

obtained by performing completion along the t-locus. Precomposition along these transformations induce functors
at the level of the1-categories of structured1-topoi:

(�)alg : TopR
(Tad(k

�
))! TopR

(Tdisc(k
�
)),

(�)sh : TopR
(Tad(k

�
))! TopR

(Tét(k
�
))

which are determined by the association

(X,O) 2 TopR
(Tad(k

�
)) 7! (X,Oalg

) 2 TopR
(Tdisc(k

�
))

(X,O) 2 TopR
(Tad(k

�
)) 7! (X,Osh

) 2 TopR
(Tét(k

�
)).

Let X 2 TopR be an 1-topos. Both functors (�)alg : TopR
(Tad(k

�
)) ! TopR

(Tdisc(k
�
)) and

(�)sh : TopR
(Tad(k

�
)) ! TopR

(Tét(k
�
)) induce well defined functors at the level of 1-categories of struc-

tures on X:

(�)alg : fCAlgk�(X)! CAlgk�(X),

(�)sh : fCAlgk�(X)! CAlg
sh

k�(X)

which we refer to as the underlying algebra functor and the underlying Tét(k
�
)-structure functor, respectively.

Remark 3.3.1.4. Let X 2 TopR be an 1-topos. The underlying algebra functor (�)alg : fCAlgk�(X) !
CAlgk�(X) can be upgraded as a functor (�)ad : fCAlgk�(X) ! CAlg

ad

k�(X) as follows: for each integer n � 1

and for each A 2 fCAlgk�(X), consider the canonical morphism Aalg ! Aalg ⌦k� k
�
n 2 CAlgk�(X). Denote

by In := ker
�
⇡0(A

alg
)! ⇡0(A

alg ⌦k� k
�
n)
�
. The sequence of ideals {In}n�1 defines an adic structure on Aalg

which is moreover compatible with the t-adic topology on k
�. Moreover, for every morphism f : A ! B in

fCAlgk�(X) the forgetful falg
: Aalg ! Balg is compatible with the adic topologies on both Aalg and Balg: this

can be checked at the level of ⇡0 in which case follows from the fact that every morphism Aalg ! Balg !
Balg ⌦k� k

�
n induces a unique, up to contractible space of choices, morphism Aalg ⌦k� k

�
n ! Balg ⌦k� k

�
n.

Therefore, by the universal property of CAlg
ad

k�(X) as a pullback we conclude that the (�)alg : fCAlgk�(X) !
CAlgk�(X) can be upgraded to a functor

(�)ad : fCAlgk�(X)! CAlg
ad

k�(X),

as desired.
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Proposition 3.3.1.5. Both (�)alg : TopR
(Tad(k

�
))! TopR

(Tdisc(k
�
)) and (�)sh : TopR

(Tad(k
�
))! TopR

(Tét(k
�
))

admit right adjoints

L : TopR
(Tdisc(k

�
))! TopR

(Tad(k
�
))

L
sh
: TopR

(Tét(k
�
))! TopR

(Tad(k
�
))).

Proof. This is an immediate consequence of [Lur11c, Theorem 2.1].

We now proceed to have a better understanding of the action of L at the level of Tdisc-structures:

Construction 3.3.1.6. Let (X,O) 2 TopR
(Tad(k

�
)) be a Tad(k

�
)-structured 1-topos. Consider the comma

1-category fCAlgk�(X)/O which is a presentable1-category thanks to [Por15a, Corollary 9.4]. The underlying
algebra functor induces a well defined functor at the level of comma1-categories:

(�)alg : fCAlgk�(X)/O ! CAlgk�(X)/Oalg .

Thanks to [Por15a, Corollary 9.5] the above functor commutes with limits and sifted colimits. Thanks to the
Adjoint functor theorem it follows that (�)alg : fCAlgk�(X)/O ! CAlgk�(X)/Oalg admits a left adjoint which we
shall denote  X : CAlgk�(X)/Oalg ! fCAlgk�(X)/O, or simply  if the underlying1-topos X is made explicit.

We refer the reader to [Lur16, §7.3] for the notion of t-completeness of modules.

Construction 3.3.1.7. Let A 2 CAlgk�(X)/Oalg be a Tdisc-structure on X. We define An as the pushout of the
diagram

A[u] A

A An

u 7!tn

u 7!0

(3.3.1.1)

in the1-category CAlgk�(X)/Oalg
n

. Where Oalg

n is defined in a similar way and A[u] denotes the free algebra on
one generator in degree 0 over A. As  is a left adjoint we obtain a pushout square

 (A[u])  (A)

 (A)  (An)

u 7!tn

u 7!0

(3.3.1.2)

in the1-category fCAlgk�(X)On . Moreover, as in an1-topos every epimorphism is effective, and  preserves
epimorphisms, see Theorem .3.0.1. We deduce that the top horizontal morphism displayed in (3.3.1.2) is an
effective epimorphism in X. As the transformation of pregeometries Tdisc(k

�
) ! Tad(k

�
) is unramified, see

Appendix B, we deduce thanks to [Lur11a, Proposition 10.3] that we have a pushout diagram

 (A[u])
alg

 (A)
alg

 (A)
alg

 (An)
alg

u 7!tn

u 7!0

in the 1-category CAlgk�(X)/Oalg
n

. Therefore, for each integer n � 1 the unit of the adjunction ( , (�)alg)
induces morphisms

fA,n : An !  (A)
alg

n

such that the ideal In := ker (⇡0(A)! ⇡0(An)) is sent to the ideal Jn := ker
�
⇡0

�
 (A)

alg
�
! ⇡0

�
 (A)

alg

n

��
.

Therefore, the universal property of t-completion induces a canonical morphism

fA : A^
t !  (A)

alg
,

in the1-category CAlgk�(X).
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Remark 3.3.1.8. Let A 2 CAlgk�(X)Oalg be as in Theorem 3.3.1.7. The natural morphism

fA : A^
t !  (A)

alg
,

is continuous if we equip both A and (A)
alg with the adic topologies determined by the ideals {In}n and {Jn}n

as in Theorem 3.3.1.7, respectively. In this case we can upgrade the morphism fA to a morphism in the1-category
CAlgadk�(X) thanks to Theorem 3.3.1.4.

Definition 3.3.1.9. Let (X,O) 2 TopR
(Tét). Let A 2 CAlgk�(X)/O, we say that A is strictly Henselian if it

belongs to the essential image of the functor CAlg
sh

k�(X)/O ! CAlgk�(X)/Oalg given on objects by the formula

A 2 CAlg
sh

k�(X)/O 7! Aalg
:= A � ◆ 2 CAlgk�(X)/Oalg

where ◆ : Tdisc(k
�
)! Tét(k

�
) is the canonical transformation of pregeometries.

Remark 3.3.1.10. Notice that the functor CAlg
sh

k�(X)/O ! CAlgk�(X)/O introduced in Theorem 3.3.1.9 is
fully faithful. This follows from [Lur11c, Proposition 4.3.19, Remark 2.5.13] together with [Lur09b, Proposition
7.2.1.14] and the proof of [Por15a, Proposition 9.2]. Therefore, we will usually abusively consider CAlg

sh

k�(X)/O
as a full subcategory of CAlgk�(X)/O.

We can now understand explicitly the composite (�)alg � :

Proposition 3.3.1.11. Let (X,O) 2 TopR
(Tdisc(k

�
)) such that the underlying1-topos X has enough geometric

points and O is stricly Henselian. Let A 2 CAlgk�(X)/O be an almost of finite presentation Tdisc(k
�
)-structure

on X which we assume further to be strictly Henselian. Then the canonical map

fA : A^
t !  (A)

alg

introduced in Theorem 3.3.1.7 is an equivalence in the1-category CAlg
ad

k�(X)/ (O)alg .

Proof. We wish to show that the natural map

fA : A^
t !  (A)

alg

constructed in Theorem 3.3.1.7 is an equivalence whenever A 2 CAlgk�(X)/Oalg is almost of finite presentation.
By hypothesis X has enough geometric points. Thus in order to show that fA is an equivalence it suffices to

show that its inverse image under any geometric point (x�1
, x⇤) : X ! S, x�1

fA, is an equivalence in the 1-
category CAlgk� . Set A := x

�1A. Thanks to [Por15c, Theorem 1.12] we deduce that  S(A)
alg ' x

�1
 (A)

alg.
We are thus reduced to the case where X = S.

The1-category (CAlgk�)/Oalg is generated under sifted colimits by free objects of the form {k�[T1, . . . , Tm]}m�1.
Thanks to Theorem .3.0.1 we conclude that (fCAlgk�)/O := (fCAlgk�)/O (S) is generated under sifted colimits
by the family { (k�[T1, . . . Tm])}m. As A 2 (CAlgk�)/x�1Oalg is almost of finite presentation we conclude that
it can be written as a retract of a filtered colimit of a diagram of the form

A0 ! A1 ! A2 ! . . . ,

where A0 is an ordinary commutative ring of finite presentation over k� and Ai+1 can be obtained from Ai as the
following pushout

k
�
[S

n
] k

�
[X]

Ai Ai+1,

(3.3.1.3)

where k
�
[S

n
] is the free simplicial k�-algebra generated in degree n by a single generator. Notice that, since A is

almost of finite presentation we can choose the above diagram in such a way that for i > 0 sufficiently large, we
have surjections ⇡0(Ai) ! ⇡0(Ai+1). As  is a left adjoint it commutes, in particular, with pushout diagrams.
We conclude that the diagram

 (k
�
[S

n
])  (k

�
[X])

 (Ai)  (Ai+1),

(3.3.1.4)
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is a pushout diagram in the 1-category fCAlgk�(X)/O and the morphism  (Ai) !  (Ai+1) is moreover an
epimorphism on ⇡0. For each n > 0, the morphism k

�
[S

n
] ! k

�
[X] is an effective epimorphism. As  is a left

adjoint, the morphism  (k�[Sn
])!  (k

�
[X]) is an epimorphism in the (hypercomplete)1-topos X and thus an

effective epimorphism. Thanks to [PY16a, Proposition 3.14] it follows that the morphism

 (k
�
[S

n
])
alg !  (k

�
[X])

alg

is an effective epimorphism. Therefore, as the transformation of pregeometries ✓ : Tét(k
�
) ! Tad(k

�
) is unrami-

fied, see Appendix B, [Lur11a, Propositon 10.3] implies that the diagram,

 (k
�
[S

n
])
alg

 (k
�
[X])

alg

 (Ai)
alg

 (Ai+1)
alg

,

(3.3.1.5)

is a pushout square in CAlgk� . By induction we might assume that  (Ai)
alg is equivalent to (Ai)

^
t .

The transformation of pregeometries (�)^t : Tét(k
�
) ! Tad(k

�
) is given by t-completion along the (t)-locus.

Therefore, one has a canonical equivalence

 (k
�
[X])

alg ' k
�hXish,

where latter the t-completion of the strictly Henselianization of k�[X]. We claim that the natural map

 (k
�
[S

n
])
alg !

�
k
�
[S

n
]
sh
�^
t

is an equivalence: notice that k[Sn
] fits into a pushout diagram

k
�
[S

n�1
] k

�
[X]

k
�
[X] k

�
[S

n
],

the result then follows by induction on n � 0 and the case n = 0 was already treated. Since

 (Ai)
alg !  (Ai+1)

alg

is surjective on ⇡0, it follows that ⇡0( (Ai+1)
alg

) is t-complete. For each i � 0 the ⇡0
�
 (Ai+1)

alg
�
-modules

⇡n

�
 (Ai+1)

alg
�

are of finite presentation, thus t-complete ⇡0( (Ai+1)
alg

)-modules. It follows that  (Ai+1)
alg

is t-complete by [Lur16, Theorem 7.3.4.1].
Let Ai+1 ! B be a morphism in CAlgk� whose target is strictly Henselian and t-complete. Thanks to

(3.3.2) such morphism induces morphisms Ai ! B and k
�
[T ] ! B compatible with both k

�
[S

n
] ! k

�
[T ] and

k
�
[S

n
] ! Ai, in the 1-category CAlgk� . By induction the effect of (�) �  on Ai, k�[Sn

] and k
�
[X] agrees

with strictly henselianization followed by t-completion. As B is both strictly henselian and t-complete it follows
that the map Ai+1 ! B induces a well defined morphism from the diagram displayed in (3.3.1.5) to B. It follows
that  (Ai+1)

alg satisfies the universal property of t-completion for the derived k
�-algebra Ai+1. As  (Ai+1)

alg

is t-complete we conclude that the morphism

fAi+1 : (A
sh

i+1
)
^
t !  (Ai+1)

alg
,

where A
sh

i+1
denotes the strict henselianization of Ai+1, is necessarily an equivalence. Let A := colimi Ai in the

1-category CAlgk� . Fix i � 0, then ⌧i (A)
alg ' ⌧i (Aj)

alg for j sufficiently large. We conclude then that
⇡i( (A)

alg
) is t-complete for i � 0. [Lur16, Theorem 7.3.4.1] implies that  (A)

alg is t-complete. Reasoning as
before we conclude that it satisfies the universal property of t-completion with respect to A. It follows that

fA : A
^
t !  (A)

alg

is an equivalence in the1-category CAlgk� , the result now follows.
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Warning 3.3.1.12. The functor (�)alg � is not in general equivalent to the t-completion functor (�)^t . In fact,
both (�)alg and  commute with filtered colimits, thus also their composite (�)alg � . Therefore, the composite
(�)alg � commutes with filtered colimits which is not the case of the t-completion functor, in general.

We will need also the following ingredient:

Construction 3.3.1.13. Denote by k
�
n the reduction of k� modulo (t

n
). Reduction modulo (t

n
) induces a trans-

formation of pregeometries

pn : Tad(k
�
)! Tdisc(k

�
n)

Spf R 7! SpecRn

where Rn := R⌦k� k
�
n. Precomposition along pn induces a morphism at the level of structured1-topoi

p
�1

n : TopR
(Tdisc(k

�
n))! TopR

(Tad(k
�
))

which is given on objects by the formula

(X,O) 2 TopR
(Tdisc(k

�
)) 7! (X,O � pn) 2 TopR

(Tad(k
�
)).

Given X 2 TopR we obtain an induced functor at the level of structures p�1

n : CAlgk�
n
(X) ! fCAlgk�(X) given

on objects by the formula

O 2 CAlgk�
n
(X) 7! p

�1

n O := O � pn 2 fCAlgk�(X).

Notice that, we have a commutative triangle of the transformations of pregeometries of the form

Tdisc(k
�
) Tad(k

�
)

Tdisc(k
�
n)

(�)
^
t

�⌦k�k�
n

pn .

For this reason, for every X 2 TopR , it follows that the composite (�)alg � p�1

n : CAlgk�
n
(X) ! CAlgk�(X)

coincides with the usual forgetful functor CAlgk�
n
(X) ! CAlgk�(X) along the induced map of derived rings

k
� ! k

�
n. Notice that the latter functor admits a left adjoint which is given by extension of scalars along k

� ! k
�
n,

i.e. it is given on objects by the formula

O 2 CAlgk�(X) 7! O⌦k� k
�
n 2 CAlgk�(X)

Notation 3.3.1.14. We will denote by (�)n : CAlgk�(X)! CAlgk�
n
(X) the functor given by extension of scalars

along the canonical morphism of derived rings k� ! k
�
n:

O 2 CAlgk�(X) 7! On := O⌦k� k
�
n 2 CAlgk�(X)

It follows by [Lur11c, Theorem 2.1] that p�1

n admits a right adjoint Ln : TopR
(Tad(k

�
))! TopR

(Tdisc(k
�
n))

which we can explicitly describe:

Proposition 3.3.1.15. The functor p�1

n : TopR
(Tdisc(k

�
n))! TopR

(Tad(k
�
)) admits a right adjoint

Ln : TopR
(Tad(k

�
))! TopR

(Tdisc(k
�
n))

whose restriction to the full subcategory of TopR
(Tad(k

�
)) spanned by those couples (X,O) such that the under-

lying1-topos X has enough points is given on objects by the formula

(X,O) 2 TopR
(Tad(k

�
)) 7! (X,Oalg

n ) 2 TopR
(Tdisc(k

�
n)).
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Proof. The existence of a left adjoint Ln : TopR
(Tad(k

�
)) ! TopR

(Tdisc(k
�
n)) follows directly from [Lur11c,

Theorem 2.1]. Let (X,O) 2 TopR
(Tdisc(k

�
n)) and (Y,O0

) 2 TopR
(Tad(k

�
)) be such that X 2 TopR has enough

points. Given any geometric morphism (f
�1

, f⇤) : X! Y we have a morphism of fiber sequences of the form

Map
fCAlgk� (X)

�
f
�1O0

, p
�1

n O
�

Map
TopR (Tad(k�))

�
(X, p�1

n O), (Y,O0
)
�

Map
TopR (X,Y)

Map
CAlgk�

n
(X)

�
(f

�1O0
)
alg

n ,O
�

Map
TopR (Tdisc(k�

n))

�
(X,O), (Y, (O0

)
alg

n )
�

Map
TopR (X,Y)

q p

(3.3.1.6)
where q : Map

fCAlgk� (X)

�
f
�1O0

, p
�1

n ,O
�
! Map

CAlgk�
n
(X)

�
(f

�1O0
)
alg

n ,O
�

coincides with the composite

Map
fCAlgk� (X)

�
f
�1O0

, p
�1

n O
�

Map
CAlgk� (X)

�
(f

�1O0
)
alg

, p
�1

n Oalg
�

Map
CAlgk�

n
(X)

�
(f

�1O0
)
alg

n ,O
�
.

(-)alg

In order to prove the assertion of the proposition it suffices to show that the morphism p displayed in (3.3.1.6) is
an equivalence of mapping spaces. Thanks to the fact that the horizontal arrow diagrams in (3.3.1.6) form fiber
sequences we are reduced to prove that q is an equivalence of mapping spaces. As X has enough points we reduce
ourselves to prove the statement of the Theorem at the level of stalks. For this reason we can assume from the start
that X = S. Both target and source of q commute with filtered colimits on the first argument, thus we are reduced,
as in the proof of Theorem 3.3.1.11 to prove that q is an equivalence whenever f�1O0 '  (k

�
[T1, . . . , Tn]). We

have natural equivalences of mapping spaces

Map
fCAlgk�

�
 (k

�
[T1, . . . Tm]), p

�1

n O
�
' Map

CAlgk�

�
k
�
[T1, . . . Tm], (p

�1

n O)alg
�

' Map
CAlgk�

n

�
k
�
[T1, . . . Tm]n, (p

�1

n O)alg
�

' Map
CAlgk�

n
(k

�
n[T1, . . . Tm],O) .

The result now follows from the observation that  (k
�
[T1, . . . Tm])

alg

n ' k
�
n[T1, . . . , Tm] in the 1-category

CAlgk�
n

, which is a direct consequence Theorem 3.3.1.11.

Corollary 3.3.1.16. Let X 2 TopR be an 1-topos. The functor Ln : TopR
(Tad(k

�
)) ! TopR

(Tdisc(k
�
n))

introduced in Theorem 3.3.1.15 induces a well defined functor at the level of the corresponding1-categories of
structures

(�)adn : fCAlgk�(X)! CAlgk�
n
(X),

given on objects by the formula

O 2 fCAlgk�(X) 7! Oalg

n 2 CAlgk�
n
(X).

Moreover, the functor (�)adn is a left adjoint to the forgetful p�1

n : CAlgk�
n
(X)! fCAlgk�(X)

Proof. The existence of (�)adn is guaranteed by Theorem 3.3.1.15. The fact that (�)adn is a left adjoint to
p
�1

n : CAlgk�
n
(X) ! fCAlgk�(X) follows from the proof of Theorem 3.3.1.15 together with the fact that both

(�)adn and p
�1

n are defined at the level of1-categories of structures on the same underlying1-topos.

Notation 3.3.1.17. Consider the forgetful functor TopR
(Tdisc(k

�
n)) ! TopR

(Tdisc(k
�
)) given by restriction of

scalars along the morphism k
� ! k

�
n. We will denote�⇥Spec k�Spec k

�
n : : TopR

(Tdisc(k
�
))! TopR

(Tdisc(k
�
n))

its right adjoint.

Corollary 3.3.1.18. For each n � 1, the composite Ln � L : TopR
(Tdisc(k

�
)) ! TopR

(Tdisc(k
�
n)) coincides

with the base change functor

�⇥Spec k� Spec k
�
n : TopR

(Tdisc(k
�
))! TopR

(Tdisc(k
�
)),

(X,O) 2 TopR
(Tdisc(k

�
)) 7! (X,O)⇥Spec k� Spec k

�
n 2 TopR

(Tdisc(k
�
n))

Proof. This is a direct consequence of the definitions together with the commutative triangle displayed in Theo-
rem 3.3.1.13.
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3.3.2 Comparison with derived formal geometry
Our main goal now is to give comparison statements between Tad(k

�
)-structured1-topoi and locally adic ringed

1-topoi. The latter corresponding to couples (X,O) where O is a CAlg
ad

k� -valued sheaf on the 1-topos X. We
shall moreover fix a couple (X,O) 2 fCAlgk�(X)/O throughout this whole §.

Definition 3.3.2.1. Let X be an1-topos and A 2 CAlg
ad

k�(X) be a CAlg
ad

k� -valued sheaf on X. We say that A is
topologically almost of finite presentation if A is t-complete, the sheaf ⇡0(A) is topologically finitely generated
and for each i > 0 the homotopy sheaf ⇡i(A) is finitely generated as a ⇡0(A)-module.

Definition 3.3.2.2. Let X be an1-topos and consider the functor (�)ad : fCAlgk�(X)! CAlg
ad

k�(X) introduced
in Theorem 3.3.1.4. We say that A 2 fCAlgk�(X) is topologically almost of finite presentation if the underlying
sheaf of adic algebras Aad is topologically almost of finite presentation. We denote fCAlg

taft

k� (X) the1-category
of topologically almost of finite presentation local Tad(k

�
)-structures on X.

Construction 3.3.2.3. Consider the adjunction
�
 , (�)alg

�
: CAlgk�(X)/Oalg ! fCAlgk�(X)/O of Theorem 6.2.3.5

and let
(�)disc : CAlg

ad

k�(X)! CAlgk�(X)

denote the canonical functor obtained by forgetting the adic structure. Then the couple
�
 � (�)disc, (�)ad

�
: CAlg

ad

k�(X)/Oad ! fCAlgk�(X)/O

forms an adjunction pair after restriction
�
 

ad
, (�)ad

�
:=

�
 � (�)disc, (�)ad

�
: CAlg

ad,taft
k� (X)/Oad ! fCAlg

taft

k� (X)/O,

where CAlgad,taftk� (X)/Oad denotes the full subcategory of CAlg
ad

k�(X)/Oad spanned by those objects A 2 CAlg
ad

k�(X)
topologically almost of finite presentation.

In order to see this consider the unit id ! (�)alg �  of the adjunction in Theorem 6.2.3.5. It follows by the
construction of (�)ad : fCAlgk�(X)! CAlg

ad

k�(X) that we have an equivalence

(�)alg ' (�)disc � (�)ad

in the1-category Fun
�
fCAlgk�(X)/O,CAlgk�(X)/Oalg

�
. Therefore, for each A 2 CAlg

ad,taft
k� (X)/Oad the unit

of adjunction

Adisc !
�
 (Adisc

)
�alg

induces a canonically defined, up to a contractible space of choices, morphism

A ' A^
t !

�
 

ad
(A)

�ad
.

This construction is functorial and thanks to our previous considerations it satisfies the universal property of a
unit of adjunction. Therefore we obtain an adjunction

�
 

ad
, (�)ad

�
: CAlg

ad,taft
k� (X)/Oad ! fCAlg

taft

k� (X)/O, as
desired.

Theorem 3.3.2.4. Let X be an1-topos with enough geometric points. Consider the functor

(�)ad : fCAlgk�(X)/O ! CAlg
ad

k�(X)/Oad

introduced in Theorem 3.3.1.4. Then the induced restriction functor

(�)ad : fCAlgtaftk� (X)/O ! CAlg
ad

k�(X)/Oad

is fully faithful and its essential image coincides precisely with the full subcategory of CAlg
ad

k�(X)/Oad spanned by
those strictly henselian A 2 CAlg

ad

k�(X)/Oad topologically almost of finite presentation.
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Proof. Consider the adjunction
�
 

ad
, (�)ad

�
: CAlg

ad,taft
k� (X)/Oad ! fCAlg

taft

k� (X)/O constructed in Theo-
rem 3.3.2.3. Thanks to Theorem 3.3.1.11 the composite (�)ad �  ad is an equivalence when restricted to the
subcategory C ✓ CAlg

ad,taft
k� (X) spanned by strictly Henselian objects. Therefore the left adjoint functor

 
ad

: CAlg
ad,taft
k� (X)/Oad ! fCAlgk�(X)/O

is fully faithfully when restricted to the full subcategory C. [PY16a, Lemma 3.13] implies that the right adjoint
functor (�)ad is conservative, the conclusion now follows.

Remark 3.3.2.5. Theorem 3.3.2.4 can be interpreted as a rectification statement. Indeed, an element A 2
fCAlgk�(X) corresponds to a functor A : Tad(k

�
) ! X satisfying the axioms for a Tad(k

�
)-structure on X.

Morphisms in A! B in fCAlgk�(X) correspond to local morphisms in Fun (Tad(k
�
),X).

On the other hand, objects in the 1-category CAlg
ad

k�(X) correspond to a derived k
�-algebra on X, A 2

CAlg(X), together with the given of an adic topology on the sheaf of ordinary k
�-algebras, ⇡0(A). Moreover,

morphisms in CAlg
ad

k�(X) correspond to morphisms on CAlg(X) which are continuous adic morphisms at the
level of ⇡0. Therefore, a priori, one could expect that specifying morphisms in the 1-category fCAlg

taft

k� (X)
would require an increase amount of higher coherence data when compared to the adic case.

Construction 3.3.2.6 (The Spf-construction). Let A 2 CAlg
ad

k� be a derived adic k
�-algebra. We can asso-

ciate to A an object Spf A := (XA,OA) 2 TopR
(Tad(k

�
)) as follows: we let XA := HShv

ad

A 2 TopR de-
note the hypercompletion of the 1-topos Shv

ad

A introduced in [Lur16, Notation 8.1.1.8]. We define moreover
OA : Tad(k

�
)! XA as the Tad(k

�
)-structure on XA determined by the formula

Spf(R) 2 Tad(k
�
) 7!

⇣
B 2 CAlg

ad,ét
A 7! Map

CAlg
ad
k�

(R,B)

⌘

where CAlgad,ét
A denotes the full subcategory of CAlg

ad

A spanned by those derived A-algebras B étale over A. One
checks directly that OA : Tad(k

�
) ! XA is indeed a Tad(k

�
)-structure on XA. Such association is functorial in

A 2 CAlgadk� and we thus obtain a well defined functor (up to contractible space of choices)

Spf :

⇣
CAlgadk�

⌘op

! TopR
(Tad(k

�
)),

which we refer as the Spf-construction functor.

Remark 3.3.2.7. Given A 2 CAlg
ad

k� , it follows immediately by the definitions that Spf(A)
alg 2 TopR

(Tdisc(k
�
))

agrees with the Spf-construction introduced in [Lur16, §8.1.1]

Remark 3.3.2.8. Let n � 1 and consider the right adjoint functor Ln : TopR
(Tad(k

�
)) ! TopR

(Tdisc(k
�
n))

introduced in Theorem 3.3.1.14. Given A 2 CAlg
ad

k� , it follows that Ln (Spf(A)) ' (XA,OA,n) where OA,n :=

Oalg

A ⌦k� k
�
n 2 CAlgk�(X).

Proposition 3.3.2.9. The functor Spf :
�
CAlg

ad

k�
�op ! TopR

(Tad(k
�
)) is fully faithful. Moreover, its essentially

image corresponds precisely to the full subcategory of TopR
(Tad(k

�
)) spanned by those couples

(X,O) 2 TopR
(Tad(k

�
)) such that (X,Oalg

) 2 TopR
(Tdisc(k

�
)) is equivalent to a formal spectrum.

Proof. Let A, B 2 CAlg
ad

k� and consider the corresponding formal spectrums Spf(A) and Spf(B) 2 TopR
(Tad(k

�
)).

The datum of a morphism of local Tad(k
�
)-structures f : Spf(A) ! Spf(B) is equivalent to the datum of a ge-

ometric morphism of 1-topoi (f�1
, f⇤) : XA ! YB together with a natural transformation ↵ : f�1OB ! OA.

Applying the underlying algebra functor at the level of structures we obtain a morphism

↵
alg

: f
�1

�
Oad

B

�alg !
�
Oad

A

�alg

in the 1-category fCAlgk�(XA). The unit of the adjunction (f
�1

, f⇤) produces a well defined morphism of
derived k

�-algebras � : B ! A, up to contractible indeterminacy.
By the construction of the underlying 1-topoi of both Spf(A) and Spf(B) together with [Lur16, Remark

8.1.1.7] it follows that the morphism � : B ! A is continuous with respect to the adic topologies for both A and
B. We obtain thus a well defined morphism of mapping spaces

� : Map
TopR (Tad(k�)) (Spf A, Spf B)! Map

CAlg
ad
k�

(B,A) .
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Let � : B ! A be a continuous morphism of derived adic k
�-algebras. In order to show that the functor

Spf :
�
CAlg

ad

k�
�op ! TopR

(Tad(k
�
))

is fully faithful it suffices to show that the fiber Z� := fib�(�) is contractible for any such �. To any continuous
adic morphism, we can attach a well defined, up to contractible indeterminacy, morphism on the corresponding
(formal) étale sites. We have thus a canonical morphism at the level of mapping spaces

✓ : Map
CAlg

ad
k�

(B,A)! Map
TopR (XA,YB) .

Let (f�1
, f⇤) : XA ! YB be a morphism of1-topoi such that it lies in the essential image of � under ✓. The fiber

over (f�1
, f⇤) induces a fiber sequence of mapping spaces:

Map
fCAlgk� (X)

�
f
�1OB ,OA

�
Map

TopR (Tad(k�)) (Spf A, Spf B) Map
TopR (XA,YB) .

✓

Consider the commutative diagram in the1-category S

Z� Map
fCAlgk� (X)

�
f
�1OB ,OA

�
Map

TopR (Tad(k�)) (Spf(A), Spf(B))

{�} W Map
CAlg

ad
k�

(B,A)

{(f�1
, f⇤)} Map

TopR (XA,YB)

(3.3.2.1)

where both the upper rectangle and and the bottom right square are pullback diagrams. It follows then that we can
identify Z� with the pullback

Z� ' Map
fCAlgk� (X)

�
f
�1OB ,OA

�
⇥W {�}.

Let F : Spf(A) ! Spf(B) be a morphism of Tad(k
�
)-structured 1-topoi such that �(F ) ' �. It follows

by [Lur16, Remark 8.1.1.7] that the induce geometric morphism (f
�1

, f⇤) : XA ! YB can be identified with the
restriction to closed subtopoi of the geometric morphism of1-topoi XA ! YB . Thanks to the proof of [Lur16,
Proposition 1.4.2.4] it follows that the latter is uniquely determined up to a contractible space of choices. For this
reason (f

�1
, f⇤) is also uniquely determined by �, up to a contractible space of choices. As a consequence we

can identify Z� with the fiber product:

Z� ' Map
fCAlgk� (X)

�
f
�1OB ,OA

�
⇥W {�}.

We have a sequence of equivalences of mapping spaces

Map
fCAlgk� (X)

�
f
�1OB ,OA

�
⇥W {�} ' Map

fCAlgk� (X)

�
f
�1OB , limn�1 (OA,n)

�
⇥W {�}

'
⇣
limn�1Map

fCAlgk� (X)

�
f
�1OB ,OA,n

�⌘
⇥W {�}

We can further identify the last term with
⇣
limn�1Map

fCAlgk� (X)

�
f
�1OB ,OA,n

�⌘
⇥W {�} '

⇣
limn�1Map

CAlgk�
n
(X)

�
f
�1OB,n,OA,n

�⌘
⇥W {�}

For each n � 1, denote �n the base change of � to k
�
n. Passing to the limit over n � 1 we can further identify the

last term with

limn�1

⇣
Map

CAlgk�
n
(X)

�
f
�1OB,n,OA,n

�
⇥Wn {�n}

⌘
' limn�1

⇣
Map

TopR (Tdisc(k�
n))

(An, Bn)⇥Wn {�n}
⌘
,

(3.3.2.2)

58



where Wn is defined as the fiber product of the corresponding diagram obtained as the reduction modulo t
n of

the bottom right square, displayed in (3.3.2.1). Thanks to the proof of [Lur16, Corollary 1.2.3.5.] each term in
displayed limit displayed in (3.3.2.2) can be identified with

Map
CAlgk�

n
(Bn, An)⇥CAlgk�

n
(Bn,An)

{�n}

which is thus a contractible space. The result now follows by a simple analysis on the corresponding Milnor exact
fiber sequence.

Definition 3.3.2.10. A derived k
�-adic Deligne-Mumford stack is a couple (X,O) 2 TopR

(Tad(k
�
)) such that

(X,Oalg
) formal derived Deligne-Mumford stack as in [Lur16, Definition 8.1.3.1]. We say that a derived k

�-adic
Deligne-Mumford stack (X,O) is topologically almost of finite presentation if the underlying 1-topos X is co-
herent (cf. [Lur11e, §3]) and the Tad(k

�
)-structure O 2 fCAlgk�(X) is topologically almost of finite presentation.

Notation 3.3.2.11. We denote dfDMk� (resp., dfDM
taft

k� ) the full subcategory of TopR
(Tad(k

�
)) spanned by

derived k
�-adic Deligne-Mumford stacks (resp., topologically almost of finite presentation k

�-adic Deligne-
Mumford stacks).

Definition 3.3.2.12. We denote by dfSch the full subcategory of dfDM spanned by those objects X = (X,O)
such that (X,⇡0Oalg

) is equivalent to an ordinary derived formal scheme over k�. We refer to objects in dfSch

as derived k
�-adic formal schemes. We also define the 1-category of topological almost of finite presentation

derived k
�-adic schemes as dfSchtaft := dfDM

taft \ dfSch.

Remark 3.3.2.13. The functor Spf : CAlg
ad

k� ! TopR
(Tad(k

�
)) factors through the fully faithful embedding

dfSch ,! TopR
(Tad(k

�
)).

Remark 3.3.2.14 (Global spectrum construction). Let fDMk� denote the category of ordinary Deligne-Mumford
stacks and let X 2 fDMk� be a Deligne-Mumford stack. To X we can associate a Tad(k

�
)-structured 1-topos

as follows: Let Xfét denote the formally étale site on X. Denote by X := Shvét(X)^ the hypercompletion of the
1-topos Shv(Xfét,Tfét). We define a Tad(k

�
)-structure on X by the formula

Spf(R) 2 Tad(k
�
) 7!

�
Y 2 Xfét 7! Map

fDMk� (Y, Spf(R)) 2 S
�
.

In this case, O(A1

k�) 2 CAlgk�(X) corresponds to the usual structure sheaf of continuous adic functions on X.
This association is functorial and it provides us with a fully faithful embedding

fDMk� ✓ dfDMk�

of1-categories.

3.3.3 Derived1-categories of modules for Tad(k�
)-structured spaces

Definition 3.3.3.1. Let X := (X,O) 2 TopR
(Tad(k

�
)). We define the1-category of modules on X as

ModO := Sp
�
Ab

�
fCAlgk�(X)/O

��
,

where Ab denotes the abelianization functor, see [Lur12c, §1.4], and Sp the stabilization functor.

Remark 3.3.3.2. Let (X,O) be as above. The1-category ModO is stable.

Construction 3.3.3.3. Given (X,O) 2 TopR
(Tad(k

�
)) we can also consider the1-category of modules on its

algebraization (X,Oalg
) defined as ModOalg := ShvD(Ab) (X), where D(Ab) := ModZ denotes the derived

1-category of Z-modules. Thanks to [Lur12c, Theorem 7.3.4.13] one has a natural equivalence

ModOalg ' Sp (Ab (CAlgk�(X)Oalg)) ,

in the1-category Catst1. As the underlying algebra functor (�)alg : fCAlgk�(X)/O ! CAlgk�(X)/Oalg is a right
adjoint it induces an exact functor at the level of derived1-categories of modules denoted

g
alg

: ModO ! ModOalg .
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We claim that the left adjoint  : CAlgk�(X)/Oalg ! fCAlgk�(X) induces also a well defined functor

f
ad

: ModOalg ! ModO,

which is a left adjoint to g
alg. It suffices to prove that  commutes with finite limits. We start by observing that as

the composite (�)alg � agrees with the t-completion functor on the full subcategory of almost of finite presen-
tation objects CAlgk�(X)

afp

/O it commutes with small limits on CAlgk�(X)
afp

/Oalg . As (�)alg is a conservative right

adjoint, it follows that  itself commutes with finite limits on CAlgk�(X)
afp

/Oalg . Let now A 2 CAlgk�(X)/Oalg be
a general object. We can realize A as a filtered colimit of almost of finite presentation objects in CAlgk�(X)/Oalg .
Let {Ai}i be a diagram indexed by a finite1-category I , and for each i 2 I choose a presentation

Ai ' colim
m2J

Ai,m,

where Ai,m is almost of finite presentation and J is a filtered1-category. We have thus a sequence of equivalences
in the1-category CAlgk�(X)/Oalg

 (lim
i
Ai)

alg ' colim
m

 (lim
i
Ai,m)

alg

' colim
m

lim
i
(Ai,m)

^
t ' lim

i
colim

m
(Ai,m)

^
t

' lim
i

colim
m

 (Ai,m)
alg ' lim

i
 (Ai,m)

alg

and the conclusion now follows as in the preceding case.

Proposition 3.3.3.4. Suppose X has enough geometric points and  (Oalg
)
alg ' Oalg. Then the functor

g
alg

: ModO ! ModOalg

is an equivalence of stable1-categories.

Proof. Let fad
: ModOalg ! ModO denote a left adjoint to g

alg which is induced by the functor  introduced
in §3.1. We want to show that fad is an inverse to g

alg, as functors. Notice that the functor galg is conservative
as (�)alg was already conservative. Therefore, we are reduced to show that fad is a fully faithfully functor. It
suffices to show that the unit ⌘ of the adjunction (f

ad
, g

alg
) is an equivalence.

As X has enough geometric points we reduce ourselves to check the last assertion at the level of stalks. We are
thus reduced to the case X = S. In this case, the1-category ModOalg is compactly generated by Oalg 2 ModOalg .
The (�)alg commutes with filtered colimits (even sifted colimits) thus we deduce that also g

alg commutes with
filtered colimits. As galg is an exact functor between stable1-categories we conclude that it commutes with all
colimits. Therefore, the unit ⌘ commutes with colimits. We are thus reduced to check that ⌘ is an equivalence on
the compact generator Oalg 2 ModOalg . By our assumption on Oalg the result follows thanks to Theorem 3.3.1.11.

Remark 3.3.3.5. The equivalence of stable 1-categories provided in Theorem 3.3.3.4 allow us to define a t-
structure on the1-category ModO by means of the functor galg.

Definition 3.3.3.6. Let X = (X,O) 2 TopR
(Tad(k

�
)). We define the1-category of coherent O-modules on X,

denoted Coh
+
(X) as the full subcategory ModO spanned by those F such that for each integer i the homotopy

sheaves ⇡i(F) are coherent ⇡0(Oalg
)-modules and vanish for sufficiently small i.

3.3.4 k�-adic cotangent complex
In this §we will introduce the notion of formal cotangent complex, which will prove to be of fundamental impor-
tance to us: we have a projection functor

⌦
1
ad

: ModO ! fCAlgk�(X)/O,

which is given by evaluation on the object (S0
, ⇤) 2 Sfin⇤ ⇥ TAb. The functor ⌦1

ad
admits a left adjoint

⌃
1
ad

: fCAlgk�(X)/O ! ModO.

We refer the reader to [PY17a, §5.1] and [Lur12c, §7.5] for more details about these constructions.
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Definition 3.3.4.1. Let M 2 ModO we shall refer to O�M := ⌦
1
ad
(M) as the trivial adic square-zero extension

of O by the module M .

Definition 3.3.4.2. Let X := (X,O) 2 TopR
(Tad(k

�
)) and let A 2 fCAlgk�(X)/O be a Tad(k

�
) structure on X.

Given M 2 ModO, we define the space of A-linear adic derivations of O with values in M as

Der
ad

A
(O,M) := Map

fCAlgk� (X)A//O
(O,O�M) 2 S.

Proposition 3.3.4.3. The functor
Der

ad

A
(O,�) : ModO ! S,

is corepresentable by an object
Lad

O/A 2 ModO

which we refer to as the adic cotangent complex relative to O! A.

Proof. The proof is a direct consequence of the existence of a left adjoint ⌃1
ad

: fCAlgk�(X)/O ! ModO. Set
Lad

O/A := ⌃
1
ad

(O⌦A O). For every M 2 ModO we have a sequence of natural equivalences of mapping spaces
of the form

Der
ad

A
(O,M) ' Map

fCAlgk� (X)A//O
(O,O�M)

' Map
fCAlgk� (X)A//O

(O,⌦1
a d(M))

' Map
fCAlgk� (X)O//O

(O⌦A O,O�M)

' Map
ModO

(⌃
1
ad
(O⌦A O),O)

' Map
ModO

⇣
Lad

O/A,M

⌘
,

and the result follows.

Proposition 3.3.4.4. Let A ! B be a morphism in fCAlgk�(X)/O topologically almost of finite presentation.
Then Lad

B/A is a compact object in the1-category ModO.

Proof. The proof of [Lur16, Proposition 4.1.2.1] applies.

Remark 3.3.4.5. Notice that we have a commutative diagram of1-categories

ModO ModOalg

fCAlgk�(X)/O CAlgk�(X)/Oalg ,

galg

⌦
1
ad ⌦

1

(�)
alg

therefore passing to left adjoints we obtain a commutative diagram

ModO ModOalg

fCAlgk�(X)/O CAlgk�(X)/O

fad

⌃
1
ad ⌃

1

 

(3.3.4.1)

in the1-category Cat1. The commutative of (3.3.4.1) provide us with a natural map

f
ad

�
LBalg/Aalg

�
! Lad

B/A

in the1-category ModO.

Proposition 3.3.4.6. Let A! B be a morphism in fCAlgk�(X)/O and consider the algebraic cotangent complex
LBalg/Aalg associated to the morphism Aalg ! Balg. Then the natural map introduced in Theorem 3.3.4.5

f
ad

�
LBalg/Aalg

�
' Lad

B/A

is an equivalence in the1-category ModO.
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Proof. The construction of the adic cotangent complex commutes with filtered colimits of local Tad(k
�
)-structures.

Therefore we can suppose that the morphism A ! B is topologically almost of finite presentation and A and B
and A is itself topologically almost of finite presentation. Let A ! B be a morphism in fCAlgk�(X)/O and
consider LBalg/Aalg 2 ModOalg the algebraic cotangent complex associated to Aalg ! Balg. By applying the
functor

f
ad

: ModOalg ! ModO,

we obtain the following sequence of equivalences of mapping spaces

Map
ModO

�
f
ad
(LBalg/Aalg),M

�
' Map

Mod
Oalg

�
LBalg/Aalg , g

alg
(M)

�

' Map
CAlgk� (X)/Oalg

�
Aalg

,Aalg � g
alg

(M)
�

' Map
CAlgk� (X)/Oalg

�
Aalg

, (A�M)
alg

�

' Map
fCAlgk� (X)/O

(A,A�M)

where the latter equivalence holds by fully faithfulness of the functor (�)alg, as A is topologically almost of
finite presentation and t-complete and whenever M is coherent, which we can assume from the start thanks to
Theorem 3.3.4.4.

Proposition 3.3.4.7. Let f : A ! B and g : B ! C be morphisms in the1-category fCAlgk�(X)/O. Then one
has a fiber sequence

Lad

B/A ⌦B C! Lad

C/A ! Lad

C/B

in ModO.

Proof. This is a direct consequence of [PY17a, Proposition 5.10].

Proposition 3.3.4.8. Suppose we are given a pushout diagram

A B

C D

in the1-category fCAlgk�(X)/O. Then the natural morphism

Lad

B/A ⌦B D! Lad

D/C

is an equivalence in the1-category ModO.

Proof. The assertion is a particular case of [PY17a, Proposition 5.12].

3.3.5 Postnikov towers of k�-adic spaces
Definition 3.3.5.1. Let X = (X,O) 2 TopR

(Tad(k
�
)) and M 2 (ModO)�1

be an O-module concentrated in
homological degrees � 1. A k

�-adic square zero extension of X by M consists of a Tad(k
�
)-adic structured

1-topos X0
= (X,O0

) equipped with a morphism f : X! X0 satisfying:

(i) The underlying geometric morphism of f is equivalent to the identity of X;

(ii) There exists an k
�-adic derivation

d : Lad

X !M [1] 2 ModO

such that we have a pullback diagram in the1-category fCAlgk�(X)/O

O0 O

O O�M [1]

d

d0

where d0 denotes the trivial k�-adic derivation.
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Definition 3.3.5.2. Let T be a pregeometry and let n � �1 be an integer. We say that T is compatible with
n-truncation if for every1-topos X, every T-structure O : T ! X and every admissible morphism U ! V in T,
the induced square

O(U) ⌧nO(U)

O(V ) ⌧nO(U)

is a pullback diagram in X.

Remark 3.3.5.3. The above definition is equivalent to require that given a couple (X,O) 2 TopR
(T), the trunca-

tion (X, ⌧nO), where ⌧n : X ! X denotes the n-truncation functor on X, is again an object of the1-category
TopR

(T), or in other terms, ⌧nO : T ! X is still a T-structure on X.

Notation 3.3.5.4. Let T be a preogeometry compatible with n-truncations. We will denote TopR
(T)n ✓

TopR
(T) the full subcategory spanned by those couples (X,O) such that the T-structure O : T ! X is n-truncated.

Remark 3.3.5.5. The inclusion functor TopR
(T)n ✓ TopR

(T) admits a right adjoint tn : TopR
(T) !

TopR
(T)n which is given on objects by the formula

(X,O) 2 TopR
(T) 7! (X, ⌧nO) 2 TopR

(T)n
.

Lemma 3.3.5.6. The pregeometry Tad(k
�
) is compatible with n-truncations.

Proof. We follow closely [Lur11c, Proposition 4.3.28]. Reasoning as in the proof of the cited reference or as in
the proof of Theorem 3.3.1.11 it suffices to prove the following assertion: let U ! V be an admissible morphism
in Tad(k

�
) and O 2 fCAlgk�(S) then the commutative square

O(U) ⌧0O(U)

O(U) ⌧0(V )

(3.3.5.1)

is a pullback square in the 1-topos S. By the definition of Tad(k
�
), there are t-complete ordinary k

�-algebras
A and B such that U ⇠= Spf A and V ⇠= Spf B. Moreover, by construction, B is étale over some ring of the
form k

�hT1, . . . Tmi. [dJ+, Tag A0R1, Lemma 8.0.10.3] implies that there exists an étale k
�
[T1, . . . Tm]-algebra

B
0 such that B ⇠= (B

0
)
^
t . The morphism U ! V being admissible in Tad(k

�
) implies that the induced morphism

B ! A is formally étale. [dJ+, Tag A0R1, Lemma 7.9.10.3] implies that the morphism B ! A can be realized
as the t-completion of k�-algebras B0 ! A

0, where A
0 is an étale k

�
[T1, . . . , Tn] itself. Therefore, the morphism

of spaces
O(U)! O(V )

can be identified with a morphism
Osh

(SpecA
0
)! Osh

(SpecB
0
)

and similaryly for the morphism ⌧0O(U)! T0O(V ). Therefore we can identify the diagram (3.3.5.1) with

Osh
(SpecA

0
) ⌧0O

sh
(SpecA

0
)

Osh
(SpecB

0
) ⌧0O

sh
(SpecB

0
)

in the1-category S. The result now follows thanks to [Lur11c, Proposition 4.3.28].

Definition 3.3.5.7. Let X = (X,O) 2 TopR
(Tad(k

�
)). We define its n-th truncation tn(X) := (X, ⌧nO) 2

TopR
(Tad(k

�
)).
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Proposition 3.3.5.8. Let X = (X,O) 2 TopR
(Tad(k

�
)). Then for each integer n � 0, the n + 1-th truncation

tn+1(X) is a square zero extension of tn(X). In particular, when X is a derived k
�-adic Deligne-Mumford

stack then for each n � 0 the n-truncation tn(X) is again a derived k
�-adic Deligne-Mumford stack.

Proof. We have a canonical morphism tn(X) ,! tn+1(X) induced by the identity functor on the underlying
1-topos X and the natural map ⌧n+1O ! ⌧nO at the level of structures. Let B := ⌧n+1O and A := ⌧nO.
Thanks to [Lur12c, Corollary 7.4.1.28] we deduce that the induced morphism at the level of underlying algebras

Balg ! Aalg

is a square zero extension. Thus we can identify Balg with the pullback of the diagram

Balg Aalg

Aalg Aalg � LBalg/Aalg

d

d0

(3.3.5.2)

in the1-category CAlgk�(X)/⌧nO
. Consider the induced k

�-adic derivation

f
ad
(d) : Lad

A
! Lad

B/A

and form the pullback diagram
B0 A

A A� Lad

B/A
d0

(3.3.5.3)

in the1-category fCAlgk�(X)/A. In this way the canonical morphism B0 ! A is a k�-adic square zero extension
and we have a canonical map B ! B0. As filtered colimits commute with finite limits we reduce ourselves to
the case that O, and therefore both A and B, are topologically almost of finite presentation. Thanks to Theo-
rem 3.3.1.11, the functor  applied to the pullback diagram (6.3.2.12) is the identity. Thus by conservativity of
(�)alg it follows that the diagram

 (Balg
)  (Aalg

)

 (Aalg
)  (Aalg � LBalg/Aalg)

d

d0

(3.3.5.4)

is a pullback diagram in the 1-category fCAlgk�(X)/A. Thanks to Theorem 3.3.2.4, one concludes that the
diagram (3.3.5.4) is equivalent to the pullback diagram (3.3.5.3). Therefore, the canonical map B0 ! B is an
equivalence in the1-category fCAlgk�(X)/O, as desired.

3.4 Derived rigidification functor
3.4.1 Construction of the rigidification functor
Raynaud’s generic fiber construction [Bos05, §8], induces a transformation of pregeometries

(�)rig : Tad(k
�
)! Tan(k),

which is moreover a localization of categories with respect to those morphisms Spf(A)! Spf(B) such that there
exists there exists a k

�-adic complete algebra C together with continuous adic morphisms C ! A and C ! B

such that they induce equivalence after inverting t,

A⌦k� k ' C ⌦k� k ' B ⌦k� k.
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Proposition 3.4.1.1. Precomposition along the transformation of pregeometries (�)rig : Tad(k
�
) ! Tan(k) in-

duces a functor
(�)+ : TopR

(Tan(k))! TopR
(Tad(k

�
)),

which admits a right adjoint denoted

(�)rig : TopR
(Tad(k

�
))! TopR

(Tan(k)).

referred to as the (derived) rigidification functor.

Proof. It is a direct consequence of [Lur11c, Theorem 2.1].

Lemma 3.4.1.2. For each integer n � 0, we have a commutative diagram

TopR
(Tan(k)) TopR

(Tad(k
�
))

TopR
(Tan(k))

n TopR
(Tad(k

�
))

n

(�)
+

(�)
+

of1-categories, where both1-categories TopR
(Tan(k))

n and TopR
(Tad(k

�
))

n are as in Theorem 3.3.5.4.

Proof. It follows immediately from the fact that both preogemetries Tan(k) and Tad(k
�
) are compatible with

n-truncations, see [PY16a, Theorem 3.23] and Theorem 3.3.5.6.

Corollary 3.4.1.3. Let n � �1 be an integer. The diagram

TopR
(Tad(k

�
)) TopR

(Tan(k))

TopR
(Tad(k

�
))

n TopR
(Tan(k))

(�)
rig

tn tn

(�)
rig

is commutative.

Proof. It follows by taking right adjoints in the diagram displayed in Theorem 3.4.1.2.

These considerations imply the following useful result:

Corollary 3.4.1.4. Let X = (X,O) be a Tad(k
�
)-structured space which is equivalent to an ordinary k

�-adic
formal scheme topologically of finite presentation. Then Xrig is equivalent to an ordinary k-analytic space which
agrees with the usual generic fiber of X.

Proof. The question is local on X. We can thus assume that X ' Spf(A), where A 2 CAlg
ad

k� , where A is a
topologically of finite presentation ordinary k

�-adic algebra. Therefore, choosing generators and relations for A
we can find an (underived) pullback diagram of the form

Spf(A) Am
k�

Spf(k
�
) An

k�

(3.4.1.1)

of ordinary k
�-adic formal schemes. Let Z denote the (derived) pullback associated to (3.4.1.1) in the1-category

dfSch, whose existence is guaranteed by [Lur16, Proposition 8.1.6.1]. It follows that t0(Z) ' Spf(A). As Am
k� ,

An
k� and Spf(k

�
) are objects of the pregeometry Tad(k

�
) and (�)rig is induced by the usual generic fiber functor

if follows that
Spf(k

�
)
rig ' Sp k, (Am

k�)
rig ' Am

k , (An
k�)

rig ' An
k .
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As (�)rig is a right adjoint, it commutes with pullback diagrams. We thus have a pullback diagram in the 1-
category TopR

(Tan(k))

Z
rig Am

k

Sp(k) An
k

Theorem 3.4.1.3 implies that t0

�
Z

rig
�
' t0(Z)

rig. As t0(Z) ' Spf(A) we deduce that (Spf(A))
rig is

equivalent to the (underived) pullback diagram

Spf(A)
rig Am

k

Sp(k) An
k

computed in the category of rigid k-analytic spaces. This is precisely the usual generic fiber construction applied
to Spf A.

Lemma 3.4.1.5. Let f : Z! X be a closed immersion of derived k
�-adic Deligne-Mumford stacks topologically

almost of finite presentation. Then f
rig is a closed immersion in the1-category dAn.

Proof. It suffices to show that the truncation t0(f
rig
) : t0(Zrig

) ! t0(Xrig
) is a closed immersion. Last

assertion is a consequence of Theorem 3.4.1.4.

Proposition 3.4.1.6. Let X be a topological almost of finite presentation derived k
�-derived Deligne-Mumford

stack. Then Xrig is a derived k-analytic space.

Proof. Our proof is inspired on [PY17a, Proposition 3.7]. The question is étale local by [Lur11c, Lemma 2.1.3].
We can thus reduce ourselves to the case X = Spf(A), where A 2 CAlg

ad

k� is a t-complete topological of finite
presentation derived k

�-algebra. We wish to prove that Spf(A)
rig is a derived k-affinoid space. Let C denote

the full subcategory of dfDMk� spanned by those affine derived k
�-adic formal Deligne-Mumford stacks Spf(A)

such that Spf(A)
rig is equivalent to a derived k-affinoid space. We have:

(i) The1-category C contains the essential image of Tad(k
�
) thanks to [Lur11c, Proposition 2.3.18].

(ii) C is closed under pullbacks along closed immersions: Let

W Z

Y X,
f

(3.4.1.2)

be a pullback diagram in the1-category dfDMk� such that X, Y and Z 2 C and that f : Y ! X is a closed
immersion. By unramifiedness of the pregeometry Tad(k

�
), Theorem .2.0.3, the diagram (3.4.1.2) is also a

pullback diagram in the1-category TopR
(Tad(k

�
)). As (�)rig is a right adjoint the diagram

Wrig Zrig

Yrig Xrig

(3.4.1.3)

is a pullback diagram in the 1-category TopR
(Tan(k)). The 1-category dAn is closed under pullbacks

along closed immersions thanks to [PY16a, Proposition 6.2]. Theorem 3.4.1.5 then implies that the diagram
(3.4.1.3) is a pullback square in the1-category dAn. Thus W 2 C, as desired.
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(iii) The1-category C is closed under finite limits. It suffices to prove that C is closed under finite products and
pullbacks. [PY16a, Lemma 6.4] implies that C is closed under finite products. General pullback diagrams
can be constructed as pullbacks along along closed immersions as in the proof of [PY16a, Theorem 6.5].
Thanks to Theorem 3.4.1.4, (�)rig commutes with finite products of ordinary formal schemes and preserves
closed immersions by Theorem 3.4.1.5, the assertion follows.

(iv) C is closed under retracts: let X 2 C and let

Y X Y,
j p

be a retract diagram in the 1-category dfDMk� . Assume further that Y is affine. By assumption, Xrig 2
dAn and t0(Y)rig 2 dAn thanks to Theorem 3.4.1.4. It suffices to prove that for each i > 0, the homotopy
sheaf ⇡i

�
Orig

Y

�
is a coherent sheaf over ⇡0

�
Orig

Y

�
. The latter is a retract of ⇡i

�
Orig

X

�
, which is a coherent

sheaf over ⇡0
�
Orig

X

�
. In this way, it follows that ⇡i

�
Orig

Y

�
is coherent over ⇡0

�
Orig

X

�
. As ⇡0

�
Orig

Y

�
is a retract

of ⇡0
�
Orig

X

�
we deduce that ⇡i

�
Orig

Y

�
is coherent over ⇡0

�
Orig

Y

�
, as desired.

Let now X 2 dfDM
taft

k� be an affine object. Write X ' Spf(A) for some adic derived k
�-algebra A 2 CAlg

ad

k�

topologically almost of finite presentation. We wish to prove that X 2 C. Theorem 3.4.1.4 guarantees that
t0

�
Xrig

�
is a k-analytic space. We are thus reduced to show that ⇡i

�
Orig

X

�
is a coherent sheaf over ⇡0

�
Orig

X

�
. For

every n � 0 the algebra ⌧n(A) is a compact object in the1-category
�
CAlg

ad

k�
�n of n-truncated derived adic

k
�-algebras. We can thus find a finite diagram of free simplicial k�-algebras

g : I ! CAlgk� ,

such that ⌧nA is a retract of ⌧n(B), where

B := colim
I

(g)
^
t 2 CAlg

ad

k� ,

where (g)^t denotes the t-completion of the diagram g : I ! CAlgk� . As the t-completion functor commutes with
finite colimits it follows that

B ' B
^
t ,

and in particular B is t-complete. As C is closed under finite limits and objects in the pregeometry Tad(k
�
), we

conclude that Spf(B) 2 C. In particular Spf (⌧nB) 2 C. As C is moreover closed under retracts, it follows that
Spf (⌧nA) 2 C as well. It follows, that for each 0  i  n, ⇡n

�
Orig

X

�
is coherent over ⇡0

�
Orig

X

�
. Repeating the

argument for every n � 0 we conclude.

3.4.2 Rigidification of structures
Construction 3.4.2.1. Let X = (X,O) 2 TopR

(Tan(k)) be a Tan(k)-structured1-topos. Suppose further that
there exists X = (Z,O0) 2 TopR

(Tad(k
�
)) such that we have an equivalence Xrig ' X in TopR

(Tan(k)).
Precomposition along the transformation of pregeometries

(�)rig : Tad(k
�
)! Tan(k)

induces a functor at the level of1-categories of structures

(�)+ : AnRingk(X)/O ! fCAlgk�(X)/O+

given on objects by the formula

A 2 AnRingk(X)/O 7! A+
:= A � (�)rig 2 fCAlgk�(X)/O+ .

The functor of presentable1-categories (�)+ : AnRingk(X)/O ! fCAlgk�(X)/O+ preserves limits and filtered
colimits. Thanks to the Adjoint functor theorem it follows that there exists a left adjoint

(�)rig,� : fCAlgk�(X)/O+ ! AnRingk(X)/O. (3.4.2.1)
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The counit of the adjunction
�
(�)+, (�)rig

�
: TopR

(Tad(k
�
)) ! TopR

(Tan(k)) produces a well defined, up to
contractible indeterminacy, morphism

f : X
+
= (X,O+

)! (Z,O0) = X (3.4.2.2)

in the1-category TopR
(Tad(k

�
)). Let (f�1

, f⇤) ! X ! Z denote the underlying geometric morphism associ-
ated to f . Then f

�1
: Z! X induces a well defined functor

f
�1

: fCAlgk�(Z)/O0
! fCAlgk�(X)/f�1O0

. (3.4.2.3)

Moreover, the morphism (3.4.2.2) induces a morphism at the level of structures

✓ : f
�1O0 ! O+

,

which induces a well defined functor at the level of1-categories of structures

✓ : fCAlgk�(X)/f�1O0
! fCAlgk�(X)/O+ (3.4.2.4)

given on objects by the formula
�
A! f

�1O0

�
2 fCAlgk�(X)/f�1O0

7!
�
A! O+

�
2 fCAlgk�(X)/O+ .

Therefore the composite (�)rig := (�)rig,� � ✓ � f�1 induces a functor

(�)rig : fCAlgk�(Z)/O0
! AnRingk(X)/O

which we refer to as the rigidification functor at the level of structures.

Remark 3.4.2.2. Notations as in Theorem 3.4.2.1 and suppose further that X is a derived k-analytic space and
X 2 dfDM

taft

k� . Thanks to Theorem 3.4.1.4 the geometric morphism underlying f : X
+ ! X corresponds to the

classical specialization morphism at the level of1-topoi X! Z.

Notation 3.4.2.3. We will denote the geometric morphism introduced in Theorem 3.4.2.1 (f
�1

, f⇤) : X ! Z by
sp = (sp

�1
, sp⇤).

Construction 3.4.2.4. Notations as in Theorem 3.4.2.1. Consider the following square of pregeometries

Tdisc(k
�
) Tdisc(k)

Tad(k
�
) Tan(k)

�⌦k�k

(�)
^
t (�)

an

(�)
rig

(3.4.2.5)

Notice that (3.4.2.5) is not commutative. The lower composite sends

A1

k� 2 Tdisc 7! A1

k 2 Tan(k)

whereas the top composite sends
A1

k� 2 Tdisc 7! B1

k 2 Tan(k),

where B1

k 2 Tan(k) denotes the closed unit disk. Let A 2 fCAlgk�(Z)/O0
, the counit of the adjunction

((�)+, (�)rig) induces a natural morphism at the level of Tad(k
�
)-structures on X

✓A : sp
�1A! Arig,+

:=
�
Arig

�+
.

Applying the underlying algebra functor (�)alg : fCAlgk�(X)/O+ ! CAlgk�(X)/O+,alg to the morphism ✓A we
obtain a morphism

✓
alg

A
: (sp

�1A)
alg ! Arig,+,alg (3.4.2.6)
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in the1-category CAlgk�(X)/O+,alg . As Arig,+,alg lives naturally over the non-archimedean field k we obtain by
adjunction a morphism

✓
alg

A
: (sp

�1A)
alg ⌦k� k ! Arig,+,alg

:=
�
Arig,+

�alg
,

in the1-category CAlgk(X)O+,alg . We can identify Arig,+,alg ' A(B1

k). There is a natural inclusion of k-analytic
spaces B1

k ! A1

k. We obtain thus a canonical morphism

A(B1

k)! A(A1

k), (3.4.2.7)

in the1-category CAlgk(X)/O(A1
k)
. Composing both (3.4.2.6) with (3.4.2.7) we obtain a natural morphism

✓A : (sp
�1A)

alg ⌦k� k ! Arig
(A1

k) (3.4.2.8)

in the1-category CAlg(X)/O(A1
k)

. We will take as (a probably confusing) convention to denote precomposition
with (�)an in (3.4.2.5) by

(�)alg : AnRingk(X)/O ! CAlgk(X)/Oalg .

In this case, we might as well write (3.4.2.8) as

✓A : (sp
�1A)

alg ⌦k� k ! Arig,alg
:=

�
Arig

�alg
.

Proposition 3.4.2.5. Let X = (X,O) 2 dAn and suppose there exists X = (Z,O0) 2 dfDMk� such that
Xrig ' X, in the1-category dAn. Then for every A 2 fCAlgk�(Z)/O0

the natural morphism

✓A : (sp
�1A)

alg ⌦k� k ! Arig,alg

introduced in Theorem 3.4.2.4 is an equivalence in the1-category CAlgk(X)/Oalg .

Proof. Both the underlying 1-topoi of X and X have enough points, as these are hypercomplete and 1-localic.
Therefore, thanks to [Por15c, Theorem 1.12], we are reduced to check the statement of the proposition on stalks,
(notice that given a geometric point x⇤ : S! X the composite sp⇤ � x⇤ : S! Z is also a geometric point).

By doing so, we might assume from the start that X = S = Z. Both composites (�)alg � (�)rig and�
(�)alg � sp�1

�
⌦k� k commute with sifted colimits. The proof of Theorem 3.3.1.11 implies that the1-category

fCAlgk�(S)/O0
is generated under sifted colimits by the family { (k

�
[T1, . . . , Tm])}m, where the Ti’s sit in

homological degree 0. It thus suffices to show that

✓A : (sp
�1A)

alg ⌦k� k ! Arig,alg

is an equivalence whenever A '  
�
k
�
[T1, . . . , Tm]

�
. But in this case, we have natural equivalences

(sp
�1
 (k

�
[T1, . . . , Tm])

alg ⌦k� k ' khT1, . . . , Tmi,

and as  (k
�
[T1, . . . , Tm]) can be identified with (a germ) of Am

k� 2 TopR
(Tad(k

�
)) it follows that

 (k
�
[T1, . . . , Tm])

rig,alg ' khT1, . . . , Tmi,

in the1-category CAlgk(X)/Oalg . The result now follows.

3.4.3 Rigidification of modules
Definition 3.4.3.1. Let X = (X,O) 2 dAn be a derived k-analytic space. Its1-category of modules is defined
as

ModO := Sp
�
Ab

�
AnRingk(X)/O

��

One has the following result:

Proposition 3.4.3.2. [PY17a, Theorem 4.5] There exists a canonical equivalence of1-categories

ModO ' ModOalg .
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Lemma 3.4.3.3. Let X = (X,O) 2 TopR
(Tan(k)) and X = (Z,O0) 2 TopR

(Tad(k
�
)) such that Xrig ' X in

the1-category TopR
(Tan(k)). The rigidification functor (�)rig : fCAlgk�(Z)/O0

! AnRingk(X)/O induces a
well defined functor, up to contractible indeterminacy,

(�)rig : ModO0 ! ModO

which we shall refer to as the rigidification of modules functor.

Proof. It suffices to show that the functor (�)rig : fCAlgk�(Z)/O0
! AnRingk(X)/O commutes with finite limits.

Thanks to Theorem 3.4.2.5 the composite functor (�)alg � (�)rig agrees with localization at t and therefore it
commutes with finite limits. As (�)alg is a conservative right adjoint it follows that (�)rig : fCAlgk�(Z)/O0

!
AnRingk(X)/O commutes with finite limits as well, and the proof is finished.

We have a natural projection functor ⌦1
an

: ModO ! AnRingk(X)/O. We shall denote O �M := ⌦
1
an
(M)

and refer to it as the analytic split square zero extension of O by M . The functor ⌦1
an

admits a left adjoint
⌃

1
an

: AnRingk(X)/O ! ModO.
Suppose we are given A 2 AnRingk(X)/O and consider the1-category AnRingk(X)A//O. We can consider

the analytic derivations functor Der
an

A
(O,�) : ModO ! S given on objects by the formula

M 2 ModO 7! Map
AnRingk(X)A//O

(O,O�M) .

Such functor is corepresentable by the analytic cotangent complex relative to A! O, which we denote by Lan

O/A.
Explicitly, one has a natural equivalence of mapping spaces

Map
ModO

⇣
Lan

O/A,M

⌘
' Der

an

A
(O,M) .

We can describe explicitly Lan

O/A ' ⌃1
an

(O⌦A O) 2 ModO.

Lemma 3.4.3.4. Let X = (X,O) 2 TopR
(Tan(k)) and X = (Z,O0) 2 TopR

(Tad(k
�
)) such that Xrig ' X in

the1-category TopR
(Tan(k)). Then the diagram

ModO0 ModO

fCAlgk�(Z)/O0
AnRingk(X)/O

(�)
rig

⌃
1
ad

(�)
rig

⌃
1
an

is commutative up to coherent homotopy.

Proof. It suffices to prove that the corresponding diagram of right adjoints

ModO0 ModO

fCAlgk�(Z)/O0
AnRingk(X)/O

⌦
1
ad

(�)
+

⌦
1
ad

(�)
+

is commutative. But this is immediate from the definitions and the result follows.

Corollary 3.4.3.5. We have a natural equivalence
�
Lad

O/A

�rig ' Lan

Orig/Arig

in the1-category ModO.

Proof. It is an immediate consequence of Theorem 3.4.3.4 above.

Definition 3.4.3.6. Let M 2 Coh
+
(X). We say that M admits a formal model if there exists an O0-module

M0 2 Coh
+
(O0) such that

M
rig

0
'M 2 ModO.

Proposition 3.4.3.7. Let X = (Z,O0) 2 dfDMk� and let X = (X,O) := Xrig denote its rigidification. Then the
functor (�)rig : ModO0 ! ModO is t-exact.

Proof. The statement follows readily from Theorem .1.1.4 and [HPV16a, Corollary 2.9].
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3.4.4 Main results
In this §we our two main results. The first one concerns the existence of formal models for quasi-paracompact
and quasi-separated derived k-analytic spaces. The second is a direct generalization of Raynaud’s localization
theorem.

Definition 3.4.4.1. Let A 2 CAlg
ad

k� . We say that A is an admissible adic derived k
�-algebra if A is topologically

almost of finite presentation and t-complete and moreover, for every i � 0, the homotopy sheaf ⇡i(A) is t-torsion
free. We denote CAlg

adm

k� the full subcategory of CAlg
ad

k� spanned by admissible adic derived k
�-algebras.

Definition 3.4.4.2. Let X 2 dfDMk� we say that X is a derived admissible k
�-adic Deligne-Mumford stack (or

derived admissible k
�-adic scheme) if X 2 dfDM

taft

k� (resp., X 2 dfSch
taft) and we can find a covering

a

i

Spf(Ai)! X

such that for each i, Ai 2 CAlg
adm

k� . We denote by dfDM
adm

k� (resp., dfSchadm) the 1-category of derived
admissible k

�-adic Deligne-Mumford stacks (resp. derived admissible k
�-adic schemes).

Definition 3.4.4.3. Let X = (X,O) be a derived k-analytic space. We say that X is quasi-paracompact and
quasi-separated if the 0-th truncation t0(X) is equivalent to a quasi-paracompact and quasi-separated ordinary
k-analytic space.

Definition 3.4.4.4. Let X = (X,O) be a derived k-analytic space. We say that X admits a formal model if there
exists X 2 dfDMk� such that

X ' Xrig
,

in the1-category dAn.

Thanks to [Bos05, Theorem 3, page 204] it follows that if t0(X) is quasi-paracompact and quasi-separated
then it admits a classical formal model. We generalize this result to the derived setting:

Theorem 3.4.4.5. Let X = (X,O) be a quasi-paracompact and quasi-separated derived k-analytic space. Then
X admits a derived formal model X = (Z,O0) 2 dfSch.

Proof. Let X0 := t0(X) denote the 0-truncation of X . Thanks to [Bos05, Theorem 3, page 204] it follows that
X0 admits a formal model X0 2 fSchk� such that X0 is admissible (i.e. it can be Zariski locally covered by affine
formal spectrums of admissible k

�-algebras). We inductively construct a sequence of derived admissible k
�-adic

schemes
X0 ! X1 ! X2 ! . . . ,

such that we have equivalences
(Xn)

rig ' tn(X),

for each n � 0.The case n = 0 being already dealt it suffices to treat the inductive step. Suppose Xn = (Z,O0,n

has already been constructed, for n � 0. As X is a derived k-analytic space, for each n � 0 the homotopy sheaf
⇡n(O) is a coherent module over ⇡0(O). Thanks to [PY17a, Corollary 5.42] there exists an analytic derivation
d : Lan

tnX
! ⇡n+1(O)[n+ 2] together with a pullback diagram

⌧n+1O ⌧nO

⌧nO ⌧nO� ⇡n+1O)[n+ 2],
d0

(3.4.4.1)

in the 1-category AnRingk(X)/⌧nO
. Here d0 denotes the trivial analytic derivation. Theorem .1.2.1 and its

proof imply that we can find a formal model for d in the stable1-category Coh
+
(Xn)

� : Lad

Xn
!Mn+1[n+ 2],
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where Mn+1 2 Coh
+
(Xn)

~ is of no t-torsion and we have that M rig

n+1
' ⇡n+1(O) in the1-category Coh

+
(⌧nX).

We define On+1 2 fCAlgk�(Z)/O0,n
as the pullback of the diagram

O0,n+1 O0,n

O0,n O0,n �Mn+1[n+ 2]

�

d0

(3.4.4.2)

in fCAlgk�(Z)/O0,n
. Define Xn+1 := (Z,O0,n+1). It is a derived k

�-adic Deligne-Mumford stack and by con-
struction it is admissible. Both Xrig and tn+1(X) have equivalent underlying1-topoi. The rigidification functor
(�)rig : fCAlgk�(Z)/O0

! AnRingk(X)/O commutes with finite limits. Thus the diagram (3.4.4.2) remains a
pullback diagram after rigidification. For this reason, we obtain a canonical morphism

↵n+1 : (O0,n+1)
rig ! ⌧n+1O

in the1-category AnRingk(X)/⌧n+1O
. We have thus a canonical morphism

✓n+1 : tn+1(X)! Xrig

n+1
.

We claim that ✓n+1 is an equivalence in the 1-category TopR
(Tan(k)). It suffices to show that ↵n+1 is an

equivalence of structures. Thanks to Theorem 3.4.2.5 we have an equivalence

⇣
Orig

0,n+1

⌘alg

'
�
sp

�1O0,n+1

�alg ⌦k� k.

By the inductive hypothesis together with the pullback diagrams (3.4.4.2) and it follows that

(sp
�1O0,n+1)

alg ⌦k� k ' (⌧n+1O)
alg

is an equivalence. By conservativity of (�)alg it follows that

↵n+1 : O
rig

0,n+1
' ⌧n+1O

in the1-category AnRingk(X)/⌧n+1O
. We conclude that

✓n+1 : X
rig

n+1
' tn+1X

is an equivalence in TopR
(Tan(k)). We define

X := colim
n�0

Xn.

We claim that X is again an admissible derived k
�-adic Deligne-Mumford stack: the question being local on

X reduce ourselves to the case X = Spf A and Xn ' Spf An, for A, An 2 CAlg
adm

k� , for each n � 0. By
construction, Tn�1An ' An�1 for each n � 1. We have moreover an identification

X ' Spf (limn�0An) .

As An is admissible we conclude that limn�0An is also admissible. We have thus proved that X is an admissible
derived k

�-adic Deligne-Mumford stack.
We are finished if we prove that Xrig ' X . We have a sequence of equivalences

tn(X
rig
) ' (tnX)

rig ' Xrig

n ' tn(X)

by convergence of derived k-analytic stacks, see [PY17a, §7]. Assembling these equivalences together produces a
map

f : Xrig ! X
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in the 1-category dAn. The underlying morphism of 1-topoi is an equivalence. The morphism f induces
equivalences, for each i � 0,

⇡i(O
rig

0
) ' ⇡i(O),

where O0 := limn�0O0,n. By hypercompletion of the X it follows that

Orig

0
' O.

Thus proving that f is an equivalence, finishing the proof.

We now deal with our main result. We start with a useful lemma:

Lemma 3.4.4.6. Let F : C ! D be a functor between1-categories. Suppose that for any D 2 D the following
assertions are satisfied:

(i) The1-category C/D := C⇥D D/D is contractible;

(ii) let C0
/D denote the full subcategory of C/D spanned by those objects (C, : F (C) ! D) such that  is

an equivalence in D. Suppose further that C0
/D is non-empty and moreover the inclusion C0

/D ! C/D is
cofinal.

Then F : C! D induces an equivalence of1-categories C[S�1
]! D, where S denotes the class of morphisms

f 2 C�
1

such that F (f) is an equivalence.

Proof. Let E be an1-category. We have to prove that precomposition along F induces a fully faithful embedding
of1-categories

F
⇤
: Fun (D,E)! Fun (C,E)

whose essential image consists of those functors G : C ! E which send morphisms in S to equivalences in D.
Given any functor G : D ! E, the composite G � F : C ! E sends each morphism in S to an equivalence E as
F does (in D). Thanks to the colimit formula for left Kan extensions together with conditions (i) and (ii) in the
statement of the Lemma, we conclude that given a functor G : C ! E such that any morphism in S is sent to an
equivalence, its left Kan extension F!(G) 2 Fun (D,E) exists and we have natural. equivalence F! � F ⇤ ' id

and F
⇤ � F! ' id. The result now follows from the fact that F! is an inverse to F

⇤ when restricted to the full
subcategory of Fun (C,E) spanned by those functors sending every morphism in S to an equivalence in E.

Remark 3.4.4.7. Theorem 3.4.4.6 implies that the localization functor of classical Raynaud theorem is 1-
categorical, i.e. the usual category An

0 of quasi-paracompact and quasi-separated k-analytic spaces is the 1-
categorical localization of fSchk� . This is not a common phenomenon: if C is a 1-category and S a collection of
morphisms in C then the1-categorical localization C[S�1

] is typically a genuine1-category.

Definition 3.4.4.8. Let dAn
0 ✓ dAn denote the full subcategory of dAn spanned by those quasi-paracompact

and quasi-separated derived k-analytic spaces X 2 dAn.

Definition 3.4.4.9. Let f : X! Y be a morphism between derived k
�-adic schemes. We say that f is generically

strong if for each i > 0 the induced morphism

⇡i (f
⇤OY)

rig ! ⇡i (OX)
rig

is an equivalence in the1-category Coh
+
(Xrig

).

Theorem 3.4.4.10 (Derived Raynaud Localization Theorem). Let S denote the saturated class of morphism of
dfSch

adm generated by those generically strong morphisms f : X! Y such that t0(f) is an admissible blow-up
of ordinary k

�-adic schemes. Then the rigidification functor

(�)rig : dfSchadm ! dAn
0

induces an equivalence of1-categories

dfSch
adm

[S
�1

] ' dAn
0
.
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Theorem 3.4.4.10 is an immediate consequence of Theorem 3.4.4.6 together with the following Proposition:

Proposition 3.4.4.11. The rigidification functor (�)rig : dfSchadm ! dAn
0 satisfies the dual assumptions of the

statement in Theorem 3.4.4.6.

Proof. The verification of the assumptions of Theorem 3.4.4.6 are made simultaneously: Let X 2 dAn
0, CX :=�

dfSch
adm

�
X/

and p0 : CX ! dfSch, p1 : CX ! dAn
0 denote the canonical projections. We will show that for

every finite space K and every functor f : K ! CX we can extend f to a (cone) functor fC
: K

C ! CX in such
a way that fC

(1) is a formal model for X 2 dAn
0, where 1 2 K

C denotes the cone point. This will imply
that CX is a cofiltered 1-category, hence of contractible homotopy type and moreover the inclusion of the full
subcategory of formal models for X is final in CX .

Let us first sketch the rough idea of proof: By induction on Postnikov towers we allow ourselves to lift
commutative diagrams of derived k-analytic spaces to the formal level. This is done, by reducing questions
of lifting of Tad(k

�
)-structures on certain 1-topoi to lifting questions at the level of 1-categories of coherent

modules, using the universal property of the adic cotangent complex. The corresponding questions for coherent
modules can be dealt using the refined results in Appendix A. The main technical difficulty is thus keeping track
of higher coherences for commutative diagrams when passing from the analytic1-category to the k

�-adic one.
We will construct a sequence {(Xn, tnX ! Xrig

) 2 CtnX}n2N such that Xn := (Xn,OXn) 2 dfSch
adm

satisfies the following conditions:

(i) For each n � 0, Xn is n-truncated.

(ii) For each n � 0, we have an equivalence
�
Xn

�rig ' tnX.

(iii) For each n � 0, we have a canonical morphism

Xn ! tn+1Xn

in the1-category dfSch
adm which is moreover an equivalence. This implies, in particular, that the under-

lying1-topoi Xn 2 TopR are all equivalent, for n � 0.

(iv) For each n � 0, there is a functor fC
n 2 Fun

�
K

C
,CtnX

�
whose restriction (f

C
n )|K is naturally equivalent

to tnf in the1-category Fun
�
K,CtnX

�
and such that p0 (fC

n (1)) ' Xn.

Assume that we have constructed such a sequence {(Xn, tnX ! Xrig
) 2 CtnX}n2N satisfying conditions

(i) through (iv). Define X := colimn�0 Xn and notice that in such case the morphisms tnX ! Xrig

n assemble to
induce a morphism

X ! Xrig
,

in the1-category dAn. Moreover, by the universal property of filtered limits the diagrams fC
n 2 Fun

�
K

C
,CtnX

�

assemble thus producing a well defined (up to contractible indeterminacy) extension f
C 2 Fun (K

C
,CX) of

f : K ! CX . As the rigidification functor is compatible with n-truncations it follows that the functor fC ob-
tained in this way implies that p1

�
f
C
(1)

�
2
�
dAn

0�
X/

corresponding to the morphism

X ! Xrig
,

in the1-category dAn, is an equivalence. This finishes the proof of the claim. Therefore, we are reduced to prove
the existence of a sequence {(Xn, tnX ! Xrig

n ) 2 CtnX}n2N satisfying conditions (i) through (iv) above.

Step 1
(Case n = 0) Let X0 := t0X 2 An denote the underlying ordinary k-analytic space to X . By the universal
property of n-truncation we can assume without loss of generality that for each vertex x 2 K the component�
Yx, x : X0 ! Yrig

x

�
:= f(x) 2 CX0 is actually discrete, i.e. YX is an ordinary k

�-adic formal scheme. The
result is now a direct consequence of [Bos05, Theorem 3, page 204].
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Step 2
(Inductive assumptions) Suppose now, that for n � 0 we have constructed a diagram f

C
n 2 Fun

�
K

C
,CtnX

�

satisfying conditions (i) through (iv) above. Denote by ↵n,x : Xn ! Yn,x the morphism associated to1 ! x in
K

C, where Yn,x := tnYx =
�
Yn,x,On,x

�
. The functor fC

n 2 Fun
�
K

C
,CtnX

�
corresponds to the following

given:

(i) A diagram f
C
n,⇤ : K

C ! TopR such that f(1) ' Xn and for each x 2 K a morphism ↵n,x,⇤ : Xn ! Yn,x

in TopR . We remark that this data is constant for 0  m  n.

(ii) A diagram f
C,�1

n : K
C,op ! fCAlgk�(Xn)/OXn

such that fC,�1
(1) ' idOXn

and f
C,�1

(x) corresponds
to a morphism hn,x : ↵

�1

n,xOYn,x ! OXn in the1-category fCAlgk�(Xn)/OXn
.

A similar analysis for the diagram tn+1f : K ! Ctn+1X together with the Postnikov decomposition imply
that we have a functor f�1

n+1
: K

op⇥
�
�1

�2 ! fCAlgk�(Xn)/OXn
such that for each x 2 K the induced morphism

f
�1

n+1,x :
�
�1

�2 ! fCAlgk�(Xn)/OXn

corresponds to a pullback diagram of the form

⌧n+1↵
�1

x OYx ⌧n↵
�1

x OYx

⌧n↵
�1

x OYx ⌧n↵
�1

x OYx � ↵�1

x ⇡n+1

�
OYx

�
[n+ 2]

dn,x

d0
n,x

(3.4.4.3)

in the 1-category fCAlgk�(Xn)/OXn
, where dn,x denotes a suitable k

�-adic derivation and d
0

n,x the trivial adic
derivation.

Step 3
(Functoriality of the construction fCAlgk�(X)O//O) Consider the functor I : fCAlgk�(Xn)/OXn

! Cat1 given
on objects by the formula

�
O! OXn

�
2 fCAlgk�(Xn)/OXn

7! fCAlgk�(Xn)O//O 2 Cat1

whose transition morphisms correspond to (suitable) base change functors. Let D ! fCAlgk�(Xn)/OXn
de-

note the corresponding coCartesian fibration obtained via the unstraightening construction. Notice that pullback
along O ! OXn induces a functor gO : fCAlgk�(Xn)OXn//OXn

! fCAlgk�(Xn)O//O, which admits a left ad-
joint fO : fCAlgk�(Xn)O//O ! fCAlgk�(Xn)OXn//OXn

, obtained via base change along O ! OXn . Therefore,
applying the unstraightening construction, we obtain a well defined functor

G : fCAlgk�(Xn)OXn//OXn
⇥ fCAlgk�(Xn)/OXn

! D

over fCAlgk�(Xn)/OXn
, whose fiber at (O ! OXn) 2 fCAlgk�(Xn)/OXn

coincides with gO introduced above.
Thanks to the (dual) discussion proceding [PY16c, Corollary 8.6] it follows that G admits a left adjoint F : D!
fCAlgk�(Xn)OXn//OXn

⇥ fCAlgk�(Xn)/OXn
.

Step 4
(Base change of (3.4.4.3) along the morphism ⌧n↵

�1

x OYx ! OXn ) The zero derivations d
0

n,x in (3.4.4.3) as-
semble to give a a well defined functor d

0

n : K
op ! D and similarly the dn,x induce a well defined functor

dn : K
op ! D. Denote �0 := F � d0n and � := F � dn : Kop ! fCAlgk�(Xn)OXn//OXn

, respectively. Notice
that �0 : K

op ! fCAlgk�(Xn)OXn//OXn
is given on objects by the formula

x 2 K
op 7!

✓
OXn ! OXn � ↵⇤

x⇡n+1

�
OYx

�
[n+ 2]

d0
n,x���! OXn

◆
2 fCAlgk�(Xn)OXn//OXn

75



and similarly for � : K
op ! fCAlgk�(Xn)OXn//OXn

we have

x 2 K
op 7!

✓
OXn ! OXn � ↵⇤

x⇡n+1

�
OYx

�
[n+ 2]

dn,x���! OXn

◆
2 fCAlgk�(Xn)OXn//OXn

.

By construction, both functor �0 and � factor through the full subcategory

fCAlg
der

k� (Xn)OXn//OXn
✓ fCAlgk�(Xn)OXn//OXn

spanned by those objects OXn ! A! OXn which correspond to k
�-adic derivations.

Step 5
(Reduction of the above diagrams to diagrams of modules) The universal property of the k

�-adic cotangent com-
plex implies that we have an equivalence of1-categories

(�)der : fCAlg
der

k� (Xn)OXn//OXn
'

�
ModOXn

�
Lad
OXn

/

.

Therefore, the functors�0 and� as above correspond, under the equivalence (�)der, to functors�0, � : K
op !�

ModOXn

�
Lad
OXn

given on objects by the formulas

x 2 K
op 7!

�
d
0

n,x : Lad

OXn
! ↵

⇤
x⇡n+1

�
OYx

�
[n+ 2]

�
2
�
ModOXn

�
Lad
OXn

/

and
x 2 K

op 7!
�
dn,x : Lad

OXn
! ↵

⇤
x⇡n+1

�
OYx

�
[n+ 2]

�
2
�
ModOXn

�
Lad
OXn

/

,

respectively. Thanks to the proofs of both [PY17a, Lemma 5.35 and Corollary 5.38] the k�-adic cotangent complex
Lad

OXn
is coherent and connective. Therefore the functors�0, � : K

op !
�
ModOXn

�
Lad
OXn

/

factor through the full

subcategory Coh
+
(OXn)Lad

OXn
/ ✓

�
ModOXn

�
Lad
OXn

/

.

Step 6
(Rigidification of the corresponding diagrams of modules) Consider now the composites

�
rig

0
:= (�)rig ��0, �

rig
:= (�)rig �� : K

op ! Coh
+
(Orig

Xn
)Lan

X
rig
n

/.

The same reasoning as above applied to the rigidification of the diagram tn+1f : K ! Ctn+1X produces
extensions

e�rig

0
, e�rig

: K
C,op ! Coh

+
(Orig

Xn
)Lan

O
rig
Xn

of (�)rig ��0 and of (�)rig ��, respectively, satisfying:

(i) We have equivalences �f�0

�
|Kop ' (�)rig ��0,

e�|Kop ' (�)rig ��

in the1-category Fun
�
K

op
,Coh

+
(Orig

Xn
)Lan

X
rig
n

/

�
.

(ii) We have moreover equivalences

f�0

rig

(1) '
✓
d0 : Lan

O
rig
Xn

! ⇡n+1

�
OX

�
[n+ 2]

◆
,

and
e�rig

(1) '
✓
d : Lan

O
rig
Xn

! ⇡n+1

�
OX

�
[n+ 2]

◆

in the1-category Coh
+
(tn(X))Lan

tnX/.
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Where the derivations d0 and d considered above are induced by the pullback diagram

⌧n+1OX ⌧nOX

⌧nOX ⌧nOX � ⇡n+1

�
OX

�
[n+ 2]

d

d0

(3.4.4.4)

in the1-category AnRingk(X)/OX
.

Step 7

(Lifting of f�0

rig

and e�rig to diagrams in Coh
+
(Xn).) Thanks to Theorem .1.2.1 and its proof, we can lift both

diagrams e�rig

0
and e�rig to (formal model) diagrams �

0
, � : K

op ! Coh
+
(OXn)Lad

OXn
/
, respectively. We have

moreover equivalences
�

0|Kop ' �0, �|Kop ' �.

and

�
0
(1) '

⇣
�0 : Lad

OXn
! N [n+ 2]

⌘
(3.4.4.5)

�(1) '
⇣
� : Lad

OXn
! N [n+ 2]

⌘
(3.4.4.6)

where N 2 Coh
+
(OXn) denotes a t-torsion free formal model of ⇡n+1(OXn), concentrated in degree 0. The

choice of such N 2 Coh
+
(OXn) can be realized as follows: First choose a given formal model N 2 Coh

+
(OXn)

for ⇡n+1(OX). As the rigidification functor (�)rig is compatible with n-truncations, we can replace N with
⌧nN and thus suppose that N is truncated to begin with. We can kill the t-torsion on N by multiplying it
by a sufficiently large power of t, i.e. consider tmN for m > 0 sufficiently large such that tmN is t-torsion
free. The conclusion now follows thanks to the fact that the canonical map t

m
N ! N induces an equivalence�

t
m
N
�rig ' N

rig.

Step 8
(Recovering the extension of the extension of the original diagram f

�1

n+1
by means of the right adjoint G above)

Notice that the rigidication of both (3.4.4.5) and (3.4.4.6) concides with the derivations d0 and d displayed in
(3.4.4.4), respectively. We can also consider the diagrams�

0
and� as morphisms�0 ! �0 and�! � in the1-

category Fun
�
K

op
, fCAlgk�(Xn)OXn//OXn

�
. Thanks to [Lur09b, Proposition 3.3.3.2] we can lift both diagrams

�
0

and � as functors K
C,op ! fCAlgk�(Xn)OXn//OXn

⇥ fCAlgk�(Xn)/OXn
whose projection along the first

component agrees with�
0

and�, respectively, and whose projection along the second component agrees with the
composition F �fC,�1. By adjunction, we obtain thus diagrams D0, D : K

C,op ! D inducing D
0
0
, D

0
: K

C,op⇥
�

2 ! fCAlgk�(Xn)OXn/ given on vertices x 2 K by the formula

x 2 K
op

7!
✓
⌧n↵

�1

x OYx

d0,n���! ⌧n↵
�1

x OYx � ⇡n+1

�
OYx

�
[n+ 2]! ⌧n↵

�1

x OYx

◆
2 fCAlgk�(Xn)OXn/

x 2 K
op

7!
⇣
⌧n↵

�1

x OYx

dn�! ⌧n↵
�1

x OYx � ⇡n+1

�
OYx

�
[n+ 2]! ⌧n↵

�1

x OYx

⌘
2 fCAlgk�(Xn)OXn/,

respectively. Moreover, their value at1 correspond to

OXn

d0�! OXn �N [n+ 2]! OXn , OXn

d�! OXn �N [n+ 2]! OXn ,

respectively.
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Step 9
(Obtaining an extension f

C
n+1

of the diagram tn+1f ) By taking fiber products along over each {x} ⇥ ⇤2

2
we

obtain thus a diagram f
C
n+1

: K
C,op ! fCAlgk�(Xn)OXn

whose value on each x 2 K agrees with

f
C
n+1

(x) ' ⌧n+1↵
�1

x OYx .

More precisely, we have a canonical equivalence
�
f
C
n+1

�
|K ' ⌧n+1f

�1. Moreover, for fC
n+1

(1) ' On+1 2
fCAlgk�(Xn) such that

Orig

n+1
' ⌧n+1OX ,

in the1-category AnRingk(X). Let Xn+1 := (Xn,On+1). We obtain thus a well defined functor

f
C
n+1

: K
C ! dfSch

adm

whose rigidification coincides with
⌧n+1f : K !

�
dAn

0�
tn+1X/

.

Assembling these diagrams together we obtain a functor fC
n+1

: K
C ! CX satisfying requirements (i) through

(iv) above, which concludes the proof.

The proof of Theorem 6.2.3.15 also implies:

Corollary 3.4.4.12. Let f : X ! Y be a morphism between quasi-paracompact and quasi-separated derived
k-analytic spaces. Then f admits a formal model, i.e. there exists a morphism f : X ! Y in dfSch

adm such that
frig ' f in the1-category dAn.

Corollary 3.4.4.13. Let S be the saturated class generated by those morphisms f : A! B in CAlg
adm

k� such that
the induced map �

Spf f
�rig

: Spf(B)
rig ! Spf(A)

rig

is an equivalence in the 1-category of derived k-affinoid spaces dAfd. Then the rigidification functor
(�)rig :

�
CAlgadmk�

�op ! dAfd factors as

�
CAlg

adm

k�
�op

[S
�1

]! dAfd

and the latter is an equivalence of1-categories.

Proof. The result is a direct application of the proof of Theorem 3.4.4.10 when X 2 dAfd.
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.1 Verdier quotients and Lemma on Coh
+

The results in this section were proved in a joint work with M. Porta on the representability of the derived Hilbert
stack, many of the statements and proofs are due to him.

.1.1 Verdier Quotients
In this §we let X be a quasi-compact and quasi-separated scheme and Z denote the formal completion of X along
the (t)-locus. Consider also Z

rig 2 An its rigidification. We have a rigidification functor at the level of the derived
1-categories of almost perfect complexes

(�)rig : Coh+
�
Z
�
! Coh

+
�
Z

rig
�
.

Notation .1.1.1. Let CatEx

1 denote the1-category of small stable1-categories and exact functors between them.

Proposition .1.1.2. [HPV16a, Theorem B.2] Let C be a stable1-category and A ,! C a full stable subcategory.
Then the pushout diagram

A C

0 D

exists in the1-category CatEx

1 .

Definition .1.1.3. Let A, C and D as in Theorem .1.1.2. We refer to D as the Verdier quotient of C by A.

Proposition .1.1.4. Let X be a quasi-compact quasi-separated derived scheme almost of finite type over k�. We
denote Z its formal (t)-completion and Z

rig 2 dAfd its rigidification. Then there exists a cofiber sequence

K(Z) ,! Coh
+
(Z)! Coh

+
�
Z

rig
�

(.1.1.1)

in the1-category CatEx

1 . Moreover, the functors in (.1.1.1) are t-exact. In particular, the rigidification functor

(�)rig : Coh+(Z)! Coh
+
�
Z

rig
�

exhibits Coh+
�
Z

rig
�

as a (t-exact) Verdier quotient of Coh+(Z).

Proof. Let K(Z) denote the full subcategory of Coh+(Z) spanned by t-torsion almost perfect modules on Z.
Recall that M 2 Coh

+
(Z) is of t-torsion if ⇡⇤(M) is of t-torsion. Consider the (quasi-compact) étale site Xét of

X . We define a functor
Coh+(�)/K(�) : Xét ! CatEx

1

given on objects by the formula

U ! X quasi-compact and étale 7! Coh
+
(U

^
t )/K(U

^
t ) 2 CatEx

1

where U^
t denotes the formal completion of U along the (t)-locus. Thanks to [HPV16a, Theorem 7.3] this defines

a uniquely, up to contractible indeterminacy, defined CatEx

1 -valued sheaf for the étale topology.
We will also need the following ingredient: define a functor

Coh+
rig

: Xét ! CatEx

1

given on objects by the formula

U ! X quasi-compact and étale 7! Coh
+
�
(U

^
t )

rig
�
2 CatEx

1 .

We remark that Coh+ : An ! CatEx

1 satisfies fpqc descent for k-analytic spaces which follows by the main
theorem in [Con03a] together with the usual reasoning by induction on the Postnikov towers for almost perfect
modules in order to reduce the statement for Coh+ to a similar statement concerning the heart Coh+,~. Moreover,
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the formal completion and rigidification functors are morphisms of sites. As a consequence we conclude that the
assignment Coh+r ig : Xét ! CatEx

1 is a sheaf for the étale topology on X .
The universal property of pushout induces a canonical morphism of sheaves : Coh+(�)/K(�)! Coh+

rig
in

the1-category Shvét(X,CatEx

1 ). We affirm that  is an equivalence in Shvét(X,CatEx

1 ). By descent, it suffices
to prove the statement on affine objects of Xét. In such case, the result follows readily from the observation that
for a derived k

�-algebra A0 the1-category Coh
+
�
A0⌦k� k

�
2 CatEx

1 is obtained from Coh
+
(A0) by ”modding

out” the full subcategory spanned by t-torsion almost perfect modules. Moreover, thanks to [PY18a, Theorem
3.1] we have a canonical equivalence

Coh
+
�
(Spf A0)

rig
�
' Coh

+
�
�
�
(Spf A0)

rig
��

in the1-category CatEx

1 , where �
�
(Spf A0)

rig
�
2 CAlgk denotes the derived global sections of Spf Arig

0
. On the

other hand �
�
(Spf A0)

rig
�
' A0 ⌦k� k and the result follows.

.1.2 Existence of formal models for modules
In this §we prove some results concerning the existence of formal models with respect to the functor (�)rig : Coh+(X)!
Coh

+
(X) which prove to be fundamental in the proof of Theorem 3.4.4.10. I am thankful to Mauro Porta as the

results in this §were proved in a joint work.

Proposition .1.2.1. Let X 2 dAn be a derived k-analytic stack admitting a formal model X 2 dfSch, i.e.
(X)rig ' X in dAn. Let F 2 Coh

+
(X) be concentrated in finitely many cohomological degrees. Then F admits

a formal model, i.e. there exists G 2 Coh
+
(X) such that Grig ' F in Coh

+
(X). Moreover, the 1-category of

those formal models for F is a filtered1-category.

Proof. Let F 2 Coh
+
(X), be as in the stament of the Theorem .1.2.1. Assume moreover that F is connective,

i.e. its non-zero cohomology lives in non-positive degrees. Notice that, by definition of ind-completion, F 2
Ind

�
Coh

+
(X)

�
is a compact object.

Let � : Ind(Coh
+
(X)) ! Ind(Coh

+
(X)) denote a fully faithful right adjoint to (�)rig. It follows from the

construction of Ind-completion that we have a canonical equivalence

� (F) ' colim
G2Coh

+
(X)/�(F)

G, (.1.2.1)

in Ind
�
Coh

+
(X)

�
, where, by construction, the limit indexing 1-category appearing on the right hand side of

(.1.2.1) is filtered. As � is a fully faithful functor, the counit of the adjunction
�
(�)rig,�

�
is an equivalence. Our

argument now follows by an inductive reasoning using the Postnikov tower as we now detail:
Suppose first that F 2 Coh

+
(X) has cohomology concentrated in degree 0, then it is well known that F admits

a formal model eF 2 Coh
+,~

(X), which we can moreover choose to be of no t-torsion. Moreover, we can choose
eF in such a way that we have a monomorphism eF ,! F in the heart Coh+,~

(X)), whose rigidification becomes
an equivalence, in the (heart of) Ind

�
Coh

+
(X)

�
. We are then dealt with the base of our inductive reasoning.

Suppose now that F lives in cohomological degrees [�n, 0], by the inductive hypothesis Tn�1F 2 Coh
+
(X)

admits a formal model ^Tn�1F 2 Coh
+
(X), which lives in cohomological degrees [�n + 1, 0] and is moreover

of no t-torsion and we have a map ^Tn�1F ! Tn�1F in the1-category Ind
�
Coh

+
(X)

�
, whose rigidification

becomes an equivalence. We have a fiber sequence

F Tn�1F ⇡n (F) [n+ 1],

in the1-category Coh
+
(X). By applying the exact functor � we also obtain a fiber sequence in the1-category

Coh
+
(X).

As ^Tn�1F 2 Ind
�
Coh

+
(X)

�
is a compact object, the composite ^Tn�1F ! Tn�1F ! ⇡n (F) [n + 1]

factors through G[n + 1], for an almost perfect complex G 2 Coh
+
(X)~, such that Grig ' ⇡n (F), which by the

base step, we can choose to be of no p-torsion and admitting a monomorphism G ! ⇡n (F) in the heart of the
1-category Ind

�
Coh

+
(X)

�
.

82



Using the fact that � is a right adjoint and the counit is an equivalence, the rigidification of the constructed
map ^Tn�1F ! G[n+ 1] is equivalent to Tn�1F ! ⇡n(F)[n+ 1].

Therefore eF := fib

⇣
^Tn�1F ! G[n+ 1]

⌘
is a formal model for F, which lives in cohomological degrees

[�n, 0], of no t-torsion and admitting a map eF ! F in the 1-category Ind
�
Coh

+
(X)

�
, which become an

equivalence after rigidification. The first part of Theorem .1.2.1 now follows.
We are now left to prove that the full subcategory CF of the filtered1-category Coh

+
(X)/F spanned by those

objects
⇣
eF, : eFrig ! F

⌘
such that  is an equivalence, is also filtered.

By construction, the 1-category Coh
+
(X)/F is filtered. In order to prove that CF is filtered, it suffices to

show that every
�
G,� : Grig ! F

�
2 Coh

+
(X)/F admits a morphism to an object in CF.

We first treat the case where F 2 Coh
+
(X) lies in the heart so then we can write F ' colimi2I Gi in

Ind
�
Coh

+
(X)

�~, where I is filtered. Moreover, we can assume that the Gi 2 Coh
+
(X)~ are (of no t-torsion)

and for each i 2 I they admit monomorphisms Gi ! F such that after rigidification one has Grig

i ' F in
Ind

�
Coh

+
(X)

�~. The structural morphism  : Grig ! F corresponds by adjunction to a morphism G! �(F) '
colimi2I �(Gi). By compactness of G 2 Coh

+
(X) if follows that the later factors through one of the Gi. To

summarize, we have obtained a morphism G ! Gi which induces a morphism in Coh
+
(X)/F whose source

corresponds to
�
G,� : Grig ! F

�
and the target is an object lying in CF, as desired.

Suppose now that F 2 Coh
+
(X) is connective whose non-zero cohomology lives in degress [�n, 0]. Given�

G,� : Grig ! F
�
2 Coh

+
(X)/F we know by induction that

�
G,Grig ! F ! Tn�1F

�
2 Coh

+
(X)/Tn�1F

admits a factorization through one object
⇣

^Tn�1F, ^Tn�1Frig ! Tn�1F
⌘
2 Coh

+
(X)/Tn�1F

,

as before. We have a commutative diagram

⌧nG Tn�1G ⇡n(G)[n+ 1]

F Tn�1F ⇡n(F)[n+ 1],

where the horizontal maps form fiber sequences in the 1-category IndCoh
+
(X). Moreover, there exists a suf-

ficiently large formal model Hn 2 Coh
+
(X)~ for ⇡n(F), without t-torsion together with a monomorphism

Hn ! ⇡n(F) in Ind
�
Coh

+
(X)

�~ such that both the composites

Tn�1G! ^Tn�1F ! Tn�1F ! ⇡n(F)[n+ 1]

and
Tn�1G! ⇡n(G)[n+ 1]! ⇡n(F)[n+ 1]

factor through Hn[n+1]. Thus we have a commutative diagram of fiber sequences in the1-category Ind
�
Coh

+
(X)

�

⌧nG Tn�1G ⇡n(G)[n+ 1]

eF ^Tn�1F Mn[n+ 1]

F Tn�1F ⇡n(F)[n+ 1]

which provides a factorization
�
G,� : Grig ! F

�
!

⇣
eF, : eFrig ! F

⌘
in the 1-category Coh

+
(X)/F where

⇣
eF, : eFrig ! F

⌘
2 CF, this concludes the proof.
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Corollary .1.2.2. Let X 2 dAn and f : F ! G be a morphism Coh
+
(X), where G is of bounded cohomology,

i.e. G 2 Coh
b
(X). Suppose we are given a formal model X 2 dfSch

taft

k� for X .
Then we can find a morphism f : F0 ! G0 in Coh

+
(X) such that frig lies in the same connected component of

f in the mapping space Map
Coh

+
(X)

(F,G).

Proof. We will actually prove more: Fix F0 2 Coh
+
(X) a formal model for F, whose existence is guaranteed by

Theorem .1.2.1 then we can find a formal model G0 2 Coh
+
(X) for G such that the morphism

f : F ! G,

in the1-category Coh
+
(X) lifts to a morphism,

f : F0 ! G0
,

in the 1-category Coh
+
(X). Assume thus F0 2 Coh

+
(X) fixed. Given a generic G0 2 Coh

+
(X), denote by

Hom (F0
,G0

) 2 QCoh((X)) the Hom-sheaf of (quasi-coherent) OX-modules. Notice that if G0 2 Coh
b
(X) then

the Hom-sheaf Hom (F0
,G0

) is still an object lying in the1-category Coh
+
(X)

By our assumption on G 2 Coh
+
(X), we can find a cohomogically bounded formal model G0 2 Coh

b
(X) for

G, and thus Hom (F0
,G0

) 2 Coh
+
(X). Consider the colimit,

colim
G02C

Hom (F0
,G0

) ' Hom (F0
, G (G)) (.1.2.2)

' Hom

⇣
(F0

)
rig

,G
⌘
' G (Hom (F,G)) , (.1.2.3)

where C denotes the 1-category of (cohomological bounded) formal models for G. The first equivalence in
(.1.2.2) follows from the fact that F0 2 Coh

+
(X) is a compact object in Ind(Coh

+
(X)), thus the Hom-sheaf, with

source F0, commutes with filtered colimits, and the second equivalence follows from adjunction. By applying the
global sections functor on both sides of (.1.2.2) we obtain an equivalence of spaces (notice that � being a right
adjoint respects global sections)

colim
G02C

Map(F0
,G0

) ' Map
Coh

+
(X)

(F,G).

We conclude thus that there exists G0 2 C and f : F0 ! G0 such that (f)rig and f lie in the same connected
component of Map

Coh
+
(X)

(F,G), as desired.

Corollary .1.2.3. Let X 2 dAn and f : F ! G be a morphism Coh
+
(X), where G is of bounded cohomology,

i.e. G 2 Coh
b
(X). Suppose we are given a formal model X for X together with formal models F0

, G0 2 Coh
+
(X)

for F and G, respectively, where we assume moreover that G0 2 Coh
b
(X). Then given an arbitrary f : F ! G in

Coh
+
(X) we can find f : F0 ! G0 in Coh

+
(X) lifting t

n
f : F ! G, for a sufficiently large n > 0.

Proof. Consider the sequence of equivalences in (.1.2.2). Then by applying the same argument as in the proof of
Theorem .1.2.1 we obtain that an equivalence,

(Hom(F0
,G0

))
rig ' Hom(F,G),

in the1-category Coh
+
(X). Therefore, by taking global sections we obtain,

Map
Coh

+
(X)(F

0
,G0

)[t
�1

] ' Map
Coh

+
(X)

(F,G),

where the left hand side term denotes the colimit colimmult by t Map
Coh

+
(X)(F

0
,G0

). Therefore, by multiplying
f 2 Map

Coh
+
(X)

(F,G) by a sufficiently large power of t, say t
n, then t

n
f should lie in a connected component

of Map
Coh

+
(X)(F

0
,G0

), as desired.

.2 Unramifiedness of Tad(k�)

In this §we prove that the k�-adic pregeometry Tad(k
�
) together with the transformation of pregeometries (�)^t : Tét(k

�
)!

Tad(k
�
) are unramified.
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Definition .2.0.1. Let T be a pregeometry. We say that T is unramified if for every morphism f : X ! Y in T
and every object Z 2 T, the diagram

X ⇥ Z X ⇥ Y ⇥ Z

X X ⇥ Y

induces a pullback diagram
XX⇥Z XX⇥Y⇥Z

XX XX⇥Y

in TopR , where XX⇥Z , XX⇥Y⇥Z , XX and XX⇥Y denote the underlying 1-topoi associated to the absolute
spectrum construction, introduced in [Lur11c, §2.2].

Remark .2.0.2. Both the pregeometries Tét(k) and Tan(k) are unramified, see [Lur11a, Proposition 4.1] and
[PY16a, Corollary 3.11], respectively.

Proposition .2.0.3. The pregeometry Tad(k
�
) is unramified.

Proof. Let Z 2 Tad(k
�
) and denote XZ denote the underlying1-topos of the corresponding absolute spectrum

Spec
Tad(k

�
)
(Z). The1-topos XZ is equivalent to the hypercompletion of the étale1-topos on the special fiber of

Z. As pullback diagrams are preserved by taking special fibers the result follows by unramifiedness of Tét(k
�
).

There is also a notion of relative unramifiedness:

Definition .2.0.4. Let ' : T ! T0 be a transformation of pregeometries, and let � : TopR
(T0

) ! TopR
(T) the

induced functor given on objects by the formula

(X,O) 2 TopR
(T0

) 7! (X,O � ') 2 TopR
(T).

We say that the transformation f is unramified if the following conditions are satisfied:

(i) Both T and T0 are unramified;

(ii) For every morphism f : X 2 Y and every object Z 2 T, we have a pullback diagram

�
�
Spec

T
0 �
X ⇥ Z

��
�
�
Spec

T
0 �
X ⇥ Y ⇥ Z

��

�
�
Spec

T
0 �
Z
��

�
�
Spec

T
0 �
X ⇥ Y

��

in the1-category TopR
(T).

Proposition .2.0.5. The transformation of pregeometries (�)^t : Tét(k
�
)! Tad(k

�
) is unramified.

Proof. It suffices to prove condition (ii) in Theorem .2.0.4. This follows from the fact that �
�
Spec

Tad(k
�
)
(�)

�
is

an ind-étale spectrum, thus such construction commutes with finite limits.

.3 Useful Lemma
In this § we will prove a formal statement that proved to be useful in the proof of Theorem 3.3.1.11:

Lemma .3.0.1. Let (F,G) : C! D be an adjunction of presentable1-categories. Suppose further that:

(i) Any epimorphism in C is effective;
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(ii) G is conservative, preserves epimorphisms and sifted colimits;

Then epimorphisms in D are also effective, moreover, if {X↵} is a family of compact generators for C the family
{F (X↵)} generates D under sifted colimits.

Proof. Let g : V ! Y be an epimorphism in the1-category D. We wan to show that it is effective, that is the
canonical morphism g

0
: Y

0 := |Č(g)|Y , where Y
0 denotes the geometric realization of the Cech nerve of g, is

an equivalence in D. By assumption, G(g) is an epimorphism. Since G is a right adjoint, we have a canonical
equivalence

G
�
Č(g)

�
' Č (G(g)) .

As G commutes with sifted colimits, we see that G(Y
0
) ' |Č (G(g)) | ' G(Y ). We thus conclude that Y 0 ' Y

using the conservativity of G. This finishes the proof of the first assertion.
Let Y 2 D. We can find a filtered category I and a diagram T : I ! C such that

colim
↵2I

T↵ ' G(Y ) 2 C.

Consider the composition F � T : I ! D. For every ↵ 2 I , we obtain a natural map

'↵ : F (T↵)! F (G(Y ))! Y,

where the latter morphism is induced by the counit of the adjunction (F,G). These maps '↵ can be arranged into
a cocone from F � T to Y . For each ↵, we can form the Čech nerve Č('↵). This produces a functor

eT : I ⇥�op ! D,

informally defined by
(↵, n) 7! Č('↵)

n
.

There is a natural cocone from eT to Y , and we claim that the induced map

 : colim
(↵,n)2I⇥�op

eT (↵, n)! Y

is an equivalence. We remark that

colim
(↵,n)2I⇥�op

eT (↵, n) ' colim
n2�op

colim
↵2I

eT (↵, n).

Since G is conservative, it is enough to check that G( ) is an equivalence. Observe that, ,since G commutes with
sifted colimits, we have

G

✓
colim
n2�op

colim
↵2I

eT (↵, n)
◆
' colim

n2�op
colim
↵2I

G

⇣
eT (↵, n)

⌘
.

Since I is a filtered category and G is a right adjoint, we obtain:

G

✓
colim
↵2I

Č('↵)
n

◆
' Č

✓
colim
↵2I

G(F (T↵))! G(Y )

◆n

.

The unit of the adjunction (F,G) provide us with maps ⌘↵ : T↵ ! G(F (T↵)) such that the induced composition

colim
↵2I

T↵ ! colim
↵2I

G(F (T↵))! G(Y )

is an equivalence. In particular, the map

colim
↵2I

G(F (T↵))! G(Y )

is an effective epimorphism. In particular,

colim
↵2I

G(F (T↵))! G(Y )

is an effective epimorphism. Thus„

colim
(↵,n)2�op

G( eT (↵, n)) ' |Č(colim
↵2I

G(F (T↵))! G(Y )| ' G(Y ).

Thus, G( ) is an equivalence, and so we conclude that  was an equivalence to start with.
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4.1 Introduction
Let k be a non-archimedean field equipped with a non-trivial valuation of rank 1. We let k� denote its ring of
integers, m an ideal of definition. We furthermore assume that m is finitely generated. Given a separated k-analytic
space X , we are concerned with the existence of the derived moduli space RHilb(X), which parametrizes flat
families of closed subschemes of X . The truncation of RHilb(X) coincides with the classical Hilbert scheme
functor, Hilb(X), which has been shown to be representable by a k-analytic space in [CG16]. On the other hand,
in algebraic geometry the representability of the derived Hilbert scheme is an easy consequence of Artin-Lurie
representability theorem. In this paper, we combine the analytic version of Lurie’s representability obtained by T.
Y. Yu and the second author in [PY17b] together with a theory of derived formal models developped by the first
author in [Ant18a]. The only missing step is to establish the existence of the cotangent complex.

Indeed, the techniques introduced in [PY18b] allows to prove the existence of the cotangent complex at points
x : S ! RHilb(X) corresponding to families of closed subschemes j : Z ,! S ⇥ X which are of finite pre-
sentation in the derived sense. However, not every point of RHilb(X) satisfies this condition: typically, we are
concerned with families which are almost of finite presentation. The difference between the two situations is gov-
erned by the relative analytic cotangent complex LanZ/S⇥X : Z is (almost) of finite presentation if LanZ/S⇥X is
(almost) perfect. We can explain the main difficulty as follows: if p : Z ! S denotes the projection to S, then the
cotangent complex of RHilb(X) at x : S ! RHilb(X) is computed by p+(LanZ/S⇥X). Here, p+ is a (partial)
left adjoint for the functor p⇤, which has been introduced in the k-analytic setting in [PY18b]. However, in loc.
cit. the functor p+ has only been defined on perfect complexes, rather than on almost perfect complexes. From
this point of view, the main contribution of this paper is to provide an extension of the construction p+ to almost
perfect complexes. Our construction relies heavily on the existence results for formal models of derived k-analytic
spaces obtained by the first author in [Ant18a]. Along the way, we establish three results that we deem to be of
independent interest, and which we briefly summarize below.

Let X be a derived formal k�-scheme topologically almost of finite presentation. One of the main construction
of [Ant17b, Ant18a, ?] is the generic fiber Xrig, which is a derived k-analytic space. The formalism introduced in
loc. cit. provides as well an exact functor

(�)rig : Coh+(X) �! Coh
+
(Xrig

), (4.1.0.1)

where Coh+ denotes the stable1-category of almost perfect complexes on X and on Xrig. When X is underived,
this functor has been considered at length in [HPV16b], where in particular it has been shown to be essentially
surjective, thereby extending the classical theory of formal models for coherent sheaves on k-analytic spaces. In
this paper we extend this result to the case where X is derived, which is a key technical step in our construction of
the plus pushforward. In order to do so, we will establish the following descent statement, which is an extension
of [HPV16b, Theorem 7.3]:

Theorem 3. The functor Coh+
loc

: dAnk ! Cat
st

1, which associates to every derived formal derived scheme

X 2 dfDM 7! Coh
+
(Xrig

) 2 Cat
st

1,

satisfies Zariski hyper-descent.
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We refer the reader to Theorem 4.3.1.7 for the precise statement. S consequence of ?? 3 above is the following
statement, concerning the properties of 1-categories of formal models for almost perfect complexes on X 2
dAnk:

Theorem 4 (Theorem 4.3.3.10). Let X 2 dAnk be a derived k-analytic space and let F 2 Coh
+
(F) be a

bounded below almost perfect complex on X . For any derived formal model X of X , there exists G 2 Coh
+
(X)

and an equivalence Grig ' F. Furthermore, the full subcategory of Coh+(X)⇥Coh
+
(X) Coh

+
(X)/F spanned by

formal models of F is filtered.

?? 4 is another key technical ingredient in the proof of the existence of a plus pushforward construction. The
third auxiliary result we need is a refinement of the existence theorem for formal models for morphisms of derived
analytic spaces proven in [Ant18a]. It can be stated as follows:

Theorem 5 (Theorem 4.4.0.1). Let f : X ! Y be a flat map between derived k-analytic spaces. Then there are
formal models X and Y for X and Y respectively and a flat map f : X ! Y whose generic fiber is equivalent to
f .

The classical analogue of ?? 5 was proven by Bosch and Lutkëbohmert in [BLR95b]. The proof of this theorem
is not entirely obvious: indeed the algorithm provided in [Ant18a] proceeds by induction on the Postnikov tower
of both X and Y , and at each step uses [HPV16b, Theorem 7.3] to choose appropriately formal models for
⇡i(OXalg) and ⇡i(OY alg). In the current situation, however, the flatness requirement on f makes it impossible to
freely choose a formal model for ⇡i(OXalg). We circumvent the problem by proving a certain lifting property for
morphisms of almost perfect complexes:

Theorem 6 (Theorem 4.3.3.11). Let X 2 dAnk be a derived k-analytic space and let f : F ! G be a morphism
in Coh

+
(X). Let X denote a given formal model for X . Suppose, futhermore, that we are given formal models

eF, eG 2 Coh
+
(X) for F and G, respectively. Then, there exists a non-zero element t 2 m such that the map t

n
f

admits a lift ef : eF ! eG, in the1-category Coh
+
(X).

Finally, the techniques of the current text allow us to prove the following generalization of [PY18b, Theorem
8.6]:

Theorem 7 (Theorem 4.6.0.3). Let S be a rigid k-analytic space. Let X,Y be rigid k-analytic spaces over S.
Assume that X is proper and flat over S and that Y is separated over S. Then the 1-functor MapS(X,Y ) is
representable by a derived k-analytic space separated over S.

Notation and conventions In this paper we freely use the language of1-categories. Although the discussion is
often independent of the chosen model for1-categories, whenever needed we identify them with quasi-categories
and refer to [Lur09c] for the necessary foundational material.

The notations S and Cat1 are reserved to denote the1-categories of spaces and of1-categories, respectively.
If C 2 Cat1 we denote by C' the maximal 1-groupoid contained in C. We let Catst1 denote the 1-category
of stable1-categories with exact functors between them. We also let PrL denote the1-category of presentable
1-categories with left adjoints between them. Similarly, we let PrL

st
denote the1-categories of stably presentable

1-categories with left adjoints between them. Finally, we set

Catst,⌦1 := CAlg(Catst1) , PrL,⌦
st

:= CAlg(PrL
st
).

Given an1-category C we denote by PSh(C) the1-category of S-valued presheaves. We follow the conven-
tions introduced in [PY16d, §2.4] for1-categories of sheaves on an1-site.

For a field k, we reserve the notation CAlgk for the1-category of simplicial commutative rings over k. We
often refer to objects in CAlgk simply as derived commutative rings. We denote its opposite by dA↵k, and we
refer to it as the1-category of derived affine schemes. We say that a derived ring A 2 CAlgk is almost of finite
presentation if ⇡0(A) is of finite presentation over k and ⇡i(A) is a finitely presented ⇡0(A)-module.1 We denote
by dA↵

afp

k the full subcategory of dA↵k spanned by derived affine schemes Spec(A) such that A is almost of
finite presentation. When k is either a non-archimedean field equipped with a non-trivial valuation or is the field
of complex numbers, we let Ank denote the category of analytic spaces over k. We denote by Sp(k) the analytic
space associated to k.

1Equivalently, A is almost of finite presentation if ⇡0(A) is of finite presentation and the cotangent complex LA/k is an almost perfect
complex over A.
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4.2 Preliminaries on derived formal and derived non-archimedean ge-
ometries

Let k denote a non-archimedean field equipped with a rank 1 valuation. We let k� = {x 2 k : |x|  1} denote its
ring of integers. We assume that k� admits a finitely generated ideal of definition m.

Notation 4.2.0.1. (i) Let R be a discrete commutative ring. Let Tdisc(R) denote the full subcategory of R-
schemes spanned by affine spaces An

R. We say that a morphism in Tdisc(R) is admissible if it is an isomor-
phism. We endow Tdisc(R) with the trivial Grothendieck topology.

(ii) Let Tad(k
�
) denote the full subcategory of k�-schemes spanned by formally smooth formal schemes which

are topologically finitely generated over k�. A morphism in Tad(k
�
) is said to be admissible if it is formally

étale. We equip the category Tad(k
�
) with the formally étale topology, ⌧ét.

(iii) Denote Tan(k) the category of smooth k-analytic spaces. A morphism in Tan(k) is said to be admissible if
it is étale. We endow Tan(k) with the étale topology, ⌧ét.

In what follows, we will let T denote either one of the categories introduced above. We let ⌧ denote the
corresponding Grothendieck topology.

Definition 4.2.0.2. Let X be an1-topos. A T-structure on X is a functor O : T ! X which commutes with finite
products, pullbacks along admissible morphisms and takes ⌧ -coverings in effective epimorphisms. We denote by
StrT(X) the full subcategory of FunT (T,X) spanned by T-structures. A T-structured1-topos is a pair (X,O),
where X is an1-topos and O 2 StrT(X).

We can assemble T-structured1-topoi into an1-category denoted TopR
(T). We refer to [Lur11d, Defini-

tion 1.4.8] for the precise construction. The functor Fun(T,�) : Cat1 ! Cat1 restricts to a functor

Fun(T,�) :
�

TopR
�
op �! Cat1,

which sends a geometric morphism (f
�1

, f⇤) to the functor induced by composition with f
�1. Since the left

adjoint of a geometric morphism preserves finite limits, it follows that it respects the full subcategories of T-
structures. In other words, we obtain a well defined functor

StrT :
�

TopR
�
op �! Cat1.

This defines a Cartesian fibration pStr : TopR
(T) ! TopR

op and we can identify objects of TopR as pairs
(X,O), where X 2 TopR and O 2 StrT(X). We say that an object of TopR

(T) is a T-structured1-topos.

Definition 4.2.0.3. Let X be an1-topos. A morphism of T-structures ↵ : O! O0 is said to be local if for every
admissible morphism f : U ! V in T the diagram

O(U) O(V )

O0
(U) O0

(V )

O(f)

↵U ↵V

O
0
(f)

is a pullback square in X. We denote by Str
loc

T
(X) the (non full) subcategory of StrT (X) spanned by local

structures and local morphisms between these.
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Example 4.2.0.4. (i) Let R be a discrete commutative ring. A Tdisc(R)-structure on an1-topos X is simply
a product preserving functor O : Tdisc(R) ! X. When X = S is the 1-topos of spaces, we can there-
fore use [Lur09c, Proposition 5.5.9.2] to identify the 1-category StrTdisc(R)(X) with the underlying 1-
category CAlgR of the model category of simplicial commutative R-algebras. It follows that StrTdisc(R)(X)
is canonically identified with the 1-category of sheaves on X with values in CAlgR. For this reason, we
write CAlgR(X) rather than Str

loc

Tdisc(R)
(X).

(ii) Let X denote a formal scheme over k� complete along t 2 k
�. Denote by Xfét the small formal étale site on

X and denote X := Shv(Xft, ⌧ét)
^ denote the hypercompletion of the1-topos of formally étale sheaves on

X. We define a Tad(k
�
)-structure on X as the functor which sends U 2 Xfét to the sheaf O(U) 2 X defined

by the association
V 2 Xfét 7! HomfSchk� (V, U) 2 S.

In this case, O(A1

k�) corresponds to the sheaf of functions on X whose support is contained in the t-locus of
X. To simplify the notation, we write fCAlgk�(X) rather than Str

loc

Tad(k�)(X).

(iii) Let X be a k-analytic space and denote Xét the associated small étale site on X . Let X := Shv(Xét, ⌧ét)^
denote the hypercompletion of the1-topos of étale sheaves on X . We can attach to X a Tan(k)-structure
on X as follows: given U 2 Tan(k), we define the sheaf O(U) 2 X by

Xét 3 V 7! HomAnk (V, U) 2 S.

As in the previous case, we can canonically identify O(A1

k) with the usual sheaf of analytic functions on X .
We write AnRingk(X) rather than Str

loc

Tan(k)(X).

Construction 4.2.0.5. Let X be an 1-topos. We can relate the 1-categories StrTdisc(k�)(X), StrTdisc(k)(X),
StrTad(k�)(X) and StrTan(k)(X) as follows. Consider the following functors

(i) the functor
�⌦k� k : Tdisc(k

�
) �! Tdisc(k).

induced by base change along the map k
� ! k.

(ii) The functor
(�)^t : Tdisc(k

�
) �! Tad(k

�
).

induced by the (t)-completion.

(iii) The functor
(�)an: Tdisc(k) �! Tan(k),

induced by the analytification.

(iv) The functor
(�)rig : Tad(k

�
) �! Tan(k)

induced by Raynaud’s generic fiber construction (cf. [Bos14, Theorem 8.4.3]).

These functors respect the classes of admissible morphisms and are continuous morphisms of sites. It follows that
precomposition with them induce well defined functors

StrTdisc(k)(X) �! StrTdisc(k�)(X) , (�)alg : StrTad(k�)(X) �! StrTdisc(k�)(X)

(�)+ : StrTan(k)(X) �! StrTad(k�)(X) , (�)alg : StrTan(k)(X) �! StrTdisc(k)(X).

The first functor simply forgets the k-algebra structure to a k
�-algebra one via the natural map k

� ! k. We refer
to the second and fourth functors as the underlying algebra functors. The third functor is an analogue of taking
the subring of power-bounded elements in rigid geometry.

Using the underlying algebra functors introduced in the above construction, we can at last introduce the defi-
nitions of derived formal scheme and derived k-analytic space. They are analogous to each other:
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Definition 4.2.0.6. A Tad(k
�
)-structured1-topos X := (X,OX) is said to be a derived formal Deligne-Mumford

stackk�-stack if there exists a collection of objects {Ui}i2I in X such that
`

i2I Ui ! 1X is an effective epimor-
phism and the following conditions are met:

(i) for every i 2 I , the Tad(k
�
)-structured1-topos (X/Ui

,⇡0(OX|Ui)) is equivalent to the Tad(k
�
)-structured

1-topos arising from an affine formal k�-scheme via the construction given in Theorem 4.2.0.4.

(ii) For each i 2 I and each integer n � 0, the sheaf ⇡n(OXalg|Ui) is a quasi-coherent sheaf over (X/Ui
,⇡0(OX|Ui)).

We say that X = (X,OX) is a formal derived k
�-scheme if it is a derived formal Deligne Mumford stack and

furthermore its truncation t0(X) := (X,⇡0(OX)) is equivalent to the Tad(k
�
)-structured1-topos associated to a

formal scheme via Theorem 4.2.0.4.

Definition 4.2.0.7. A Tan(k)-structured 1-topos X := (X,OX) is said to be a derived k-analytic space if X
is hypercomplete and there exists a collection of objects {Ui}i2I in X such that

`
i2I Ui ! 1X is an effective

epimorphism and the following conditions are met:

(i) for each i 2 I , the Tan(k)-structured 1-topos (X/Ui
,⇡0(OX |Ui)) is equivalent to the Tan(k)-structured

1-topos arising from an ordinary k-analytic space via the construction given in Theorem 4.2.0.4.

(ii) For each i 2 I and each integer n � 0, the sheaf ⇡n(OXalg|Ui) is a coherent sheaf on (X/Ui
,OX |Ui).

Theorem 4.2.0.8 (cf. [Ant18a,Lur11b,PY16b] ). Derived formal Deligne-Mumford stackk�-stacks and derived k-
analytic spaces assemble into1-categories, denoted respectively dfDMk� and dAnk, which enjoy the following
properties:

(i) fiber products exist in both dfDMk� and dAnk;

(ii) The constructions given in Theorem 4.2.0.4 induce full faithful embeddings from the categories of ordinary
formal Deligne-Mumford stackk�-stacks fDMk� and of ordinary k-analytic spaces Ank in dfDMk� and
dAnk, respectively.

Following [?, §8.1], we let CAlg
ad denote the 1-category of simplicial commutative rings equipped with

an adic topology on their 0-th truncation. Morphisms are morphisms of simplicial commutative rings that are
furthermore continuous for the adic topologies on their 0-th truncations. We set

CAlg
ad

k� := CAlg
ad

k�/,

where we regard k
� equipped with its m-adic topology. Thanks to [Ant18a, Remark 3.1.4], the underlying alge-

bra functor (�)alg : fCAlgk�(X) ! CAlgk�(X) factors through CAlg
ad

k�(X). We denote by (�)ad the resulting
functor:

(�)ad : fCAlgk�(X) �! CAlg
ad

k�(X).

Definition 4.2.0.9. Let A 2 fCAlgk�(X). We say that A is topologically almost of finite type over k
� if the

underlying sheaf of k�-adic algebras Aad is t-complete, ⇡0(Aalg) is sheaf of topologically of finite type k
�-adic

algebras and for each i > 0, ⇡i(A) is finitely generated as ⇡0(A)-module.
We say that a derived formal Deligne-Mumford stackstack X := (X,OX) if topologically almost of finite type

over k� if its underlying1-topos is coherent (cf. [Lur11f, §3]) and OX 2 fCAlgk�(X) is topologically almost of
finite type over k�. We denote by dfDM

taft (resp. dfSchtaft) the full subcategory of dfDMk� spanned by those
derived formal Deligne-Mumford stackstacks X that are topologically almost of finite type over k

� (resp. and
whose truncation t0(X) is equivalent to a formal k�-scheme).

The transformation of pregeometries

(�)rig : Tad(k
�
) �! Tan(k)

induced by Raynaud’s generic fiber functor induces TopR
(Tan(k)) ! TopR

(Tad(k
�
)). [Lur11d, Theorem

2.1.1] provides a right adjoint to this last functor, which we still denote

(�)rig : TopR
(Tad(k

�
)) �! TopR

(Tan(k)).

We refer to this functor as the derived generic fiber functor or as the derived rigidification functor.
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Theorem 4.2.0.10 ( [Ant18a, Corollary 4.1.4, Proposition 4.1.6]). The functor (�)rig : TopR
(Tad(k

�
)) !

TopR
(Tan(k)) enjoys the following properties:

(i) it restricts to a functor
(�)rig : dfDM

taft �! dAnk.

(ii) The restriction of (�)rig : dfDM
taft ! dAnk to the full subcategory fSch

taft

k� is canonically equivalent to
Raynaud’s generic fiber functor.

(iii) Every derived analytic space X 2 dAnk whose truncation is an ordinary k-analytic space2 lies in the
essential image of the functor (�)rig.

Fix a derived formal Deligne-Mumford stackstack X := (X,OX) and a derived k-analytic space Y := (Y,OY ).
We set

OX-Mod := OXalg-Mod , OY -Mod := OY alg-Mod.

We refer to OX-Mod as the stable 1-category of OX-modules. Similarly, we refer to OY -Mod as the stable
1-category of OY -modules. The derived generic fiber functor induces a functor

(�)rig : OX-Mod �! OXrig -Mod.

Definition 4.2.0.11. Let X 2 dfDMk� be a derived k
�-adic Deligne-Mumford stackstack and let X 2 dAnk be

a derived k-analytic space. The1-category Coh
+
(X) (resp. Coh+(X)) of almost perfect complexes on X (resp.

on X) is the full subcategory of OX-Mod (resp. of OX -Mod) spanned by those OX-modules (resp. OX -modules)
F such that ⇡i(F) is a coherent sheaf on t0(X) (resp. on t0(X)) for every i 2 Z and ⇡i(F) ' 0 for i⌧ 0.

For later use, let us record the following result:

Proposition 4.2.0.12 ( [?] & [PY18b, Theorem 3.4]). Let X be a derived affine k
�-adic scheme. Let A :=

�(X;OXalg). Then the functor �(X;�) restricts to

Coh
+
(X) �! Coh

+
(A)

and furthermore this is an equivalence. Similarly, if X is a derived k-affinoid space,3 and B := �(X;OXalg),
then �(X;�) restricts to

Coh
+
(X) �! Coh

+
(B),

and furthermore this is an equivalence.

To complete this short review, we briefly discuss the notion of the k�-adic and k-analytic cotangent complexes.
The two theories are parallel, and for sake of brevity we limit ourselves to the first one. We refer to the introduction
of [PY17b] for a more thorough review of the k-analytic theory.

In [Ant18a, §3.4] it was constructed a functor

⌦
1
ad

: OX-Mod �! fCAlgk�(X)/OX
,

which we refer to as the k�-adic split square-zero extension functor. Given F 2 OX-Mod, we often write OX �F
instead of ⌦1

ad
(F).

Remark 4.2.0.13. Although the1-category OX-Mod is not sensitive to the Tad(k
�
)-structure on OX, the functor

⌦
1
ad

depends on it in an essential way.

Definition 4.2.0.14. The functor of k�-adic derivations is the functor

Der
ad

k�(X;�) : OX-Mod �! S

defined by
Der

ad

k�(X;F) := Map
fCAlgk� (X)/OX

(OX,OX � F).

2The 1-category dAnk also contains k-analytic Deligne-Mumford stackstacks.
3By definition, X is a derived k-affinoid space if t0(X) is a k-affinoid space.
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For formal reasons, the functor Der
ad

k�(X;�) is corepresentable by an object Lad

X 2 OX-Mod. We refer to it
as the k

�-adic cotangent complex of X. The following theorem summarizes its main properties:

Theorem 4.2.0.15 ( [Ant18a, Proposition 3.4.4, Corollary 4.3.5, Proposition 3.5.8]). Let X := (X,OX) be a
derived k

�-adic Deligne-Mumford stackstack. Let tnX := (X, ⌧nOX) be the n-th truncation of X. Then:

(i) the k
�-adic cotangent complex Lad

X belongs to Coh
+
(X);

(ii) in Coh
+
(Xrig

) there is a canonical equivalence

(Lad

X )
rig ' LanXrig ,

where LanXrig denotes the analytic cotangent complex of the derived k-analytic space Xrig;

(iii) the algebraic derivation classifying canonical map (X, ⌧n+1OX)! (X, ⌧nOX) can be canonically lifted
to a k

�-adic derivation
Lad

tnX �! ⇡n+1(OX)[n+ 2].

4.3 Formal models for almost perfect complexes
4.3.1 Formal descent statements
We assume that k� admits a finitely generated ideal of definition m. We also fix a set of generators t1, . . . , tn 2 m.
We start by recalling the notion of m-nilpotent almost perfect complexes.

Definition 4.3.1.1. Let X be a derived k
�-adic Deligne-Mumford stackstack topologically almost of finite presen-

tation. We let Coh+
nil
(X) denote the fiber of the generic fiber functor (4.1.0.1):

Coh
+

nil
(X) := fib

✓
Coh

+
(X)

(�)
rig

����! Coh
+
(Xrig

)

◆
.

We refer to Coh
+

nil
(X) as the full subcategory of m-nilpotent almost perfect complexes on X .

A morphism f : X! Y in dfDM
taft

k� induces a commutative diagram

Coh
+
(Y) Coh

+
(X)

Coh
+
(Yrig

) Coh
+
(Xrig

).

f⇤

(�)
rig

(�)
rig

(frig)⇤

(4.3.1.1)

In particular, we see that f⇤ preserves the subcategory of m-nilpotent almost perfect complexes on X . Moreover,
as both Coh

+
(X) and Coh

+
(Xrig

) satisfy étale descent, we conclude that Coh+
nil
(X) satisfies étale descent as

well.

Lemma 4.3.1.2. Let X be a derived k
�-adic Deligne-Mumford stackstack. Then an almost perfect sheaf F 2

Coh
+
(X) is m-nilpotent if and only if for every i 2 Z the coherent sheaf ⇡i(F) is annihilated by some power of

the ideal m.

Proof. The question is étale local on X. In particular, we can assume that X is a derived formal affine scheme
topologically of finite presentation. Write

A := �(X,OXalg).

Let X := Xrig. Then [Ant18a, Corollary 4.1.3] shows that

t0(X
rig
) ' (t0(X))

rig
.

In particular, we deduce that X is a derived k-affinoid space. Write

B := �(X,OXalg).
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We can therefore use Theorem 4.2.0.12 to obtain canonical equivalences

Coh
+
(X) ' Coh

+
(Aalg) , Coh

+
(X) ' Coh

+
(B).

Under these identifications, the functor (�)rig becomes equivalent to the base change functor

�⌦A B : Coh
+
(A) �! Coh

+
(B).

Moreover, it follows from [Ant18a, Proposition A.1.4] that there is a canonical identification

B ' A⌦k� k.

In particular, (�)rig : Coh+(X)! Coh
+
(X) is t-exact. The conclusion is now straightforward.

Definition 4.3.1.3. Let X be a derived k
�-adic Deligne-Mumford stackstack. Let F 2 Coh

+
(Xrig

). We say that
F 2 Coh

+
(X) is a formal model for F if there exists an equivalence Frig ' F in Coh

+
(Xrig

). We let FM(F)
denote the full subcategory of

Coh
+
(X)/F := Coh

+
(X)⇥Coh

+
(Xrig) Coh

+
(Xrig

)/F

spanned by formal models of F.

Our goal in this section is to study the structure of FM(F), and in particular to establish that it is non-empty and
filtered when X is a quasi-compact and quasi-separated derived k

�-adic scheme. Notice that saying that FM(F)
is non-empty for every choice of F 2 Coh

+
(X) is equivalent to asserting that the functor (4.1.0.1)

(�)rig : Coh+(X) �! Coh
+
(X)

is essentially surjective.

Lemma 4.3.1.4. If X is a derived k
�-affine scheme topologically almost of finite presentation, then the functor

(4.1.0.1) is essentially surjective.

Proof. We let
A := �(X,OXalg) , B := �(Xrig

,OXrig).

Then as in the proof of Theorem 4.3.1.2, we have identifications Coh
+
(X) ' Coh

+
(A) and Coh

+
(Xrig

) '
Coh

+
(B), and under these identifications the functor (�)rig becomes equivalent to

�⌦A B : Coh
+
(A) �! Coh

+
(B).

As B ' A⌦k� k, we see that A! B is a Zariski open immersion. The conclusion now follows from [HPV16b,
Theorem 2.12].

To complete the proof of the non-emptiness of FM(F), it would be enough to know that the essential image
of the functor Coh+(X)! Coh

+
(Xrig

) satisfies descent. This is analogous to [HPV16b, Theorem 7.3].

Definition 4.3.1.5. Let X be a derived k
�-adic Deligne-Mumford stackstack locally topologically almost of finite

presentation. We define the stable1-category Coh
+

loc
(X) of m-local almost perfect complexes as the cofiber

Coh
+

loc
(X) := cofib

�
Coh

+

nil
(X) ,! Coh

+
(X)

�
.

We denote by L: Coh
+
(X)! Coh

+

loc
(X) the canonical functor. We refer to L as the localization functor.

We summarize below the formal properties of m-local almost perfect complexes:

Proposition 4.3.1.6. Let X be a derived k
�-adic Deligne-Mumford stack-stack locally topologically almost of

finite presentation. Then:

(i) there exists a unique t-structure on the stable 1-category Coh
+

loc
(X) having the property of making the

localization functor
L: Coh

+
(X) �! Coh

+

loc
(X)

t-exact.
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(ii) The functor (�)rig : Coh+(X)! Coh
+
(Xrig

) factors as

⇤ : Coh
+

loc
(X) �! Coh

+
(Xrig

).

Moreover, the essential images of (�)rig and ⇤ coincide.

(iii) If X is affine, then the functor ⇤ is an equivalence.

Proof. We start by proving (1). Using [HPV16b, Corollary 2.9] we have to check that the t-structure on Coh
+
(X)

restricts to a t-structure on Coh
+

nil
(X) and that the inclusion

i : Coh
~
nil
(X) ,�! Coh

~
(X)

admits a right adjoint R whose counit i(R(X)) ! X is a monomorphism for every X 2 Coh
~
(X). For the first

statement, we remark that it is enough to check that the functor (�)rig : Coh+(X) ! Coh
+
(Xrig

) is t-exact. As
both Coh

+
(X) and Coh

+
(Xrig

) satisfy étale descent in X, we can test this locally on X. When X is affine, the
assertion follows directly from Theorem 4.2.0.12. As for the second statement, we first observe that

Coh
~
(X) ' Coh

~
(t0(X)).

We can therefore assume that X is underived. At this point, the functor R can be explicitly described as the functor
sending F 2 Coh

~
(X) to the subsheaf of F spanned by m-nilpotent sections. The proof of (1) is thus complete.

We now turn to the proof of (2). The existence of ⇤ and the factorization (�)rig ' ⇤ � L follow from the
definitions. Moreover, L: Coh+(X)! Coh

+

loc
(X) is essentially surjective (cf. [HPV16b, Lemma 2.3]). It follows

that the essential images of (�)rig and of ⇤ coincide.
Finally, (3) follows directly from Theorem 4.2.0.12 and [HPV16b, Theorem 2.12].

The commutativity of (4.3.1.1) implies that a morphism f : X! Y in dfDM
taft

k� induces a well defined functor

f�⇤ : Coh+
loc

(Y) �! Coh
+

loc
(X).

It is a simple exercise in1-categories to promote this construction to an actual functor

Coh
+

loc
:
�
dfDM

taft

k�
�
op �! Catst1.

Having Theorem 4.3.1.4 and Theorem 4.3.1.6 at our disposal, the question of the non-emptiness of FM(F) is
essentially reduced to the the following:

Theorem 4.3.1.7. Let dfSchtaft,qcqsk� denote the1-category of derived k
�-adic schemes which are quasi-compact,

quasi separated and topologically almost of finite presentation. Then the functor

Coh
+

loc
:
�
dfSch

taft,qcqs
k�

�
op �! Catst1

is a hypercomplete sheaf for the formal Zariski topology.

Proof. A standard descent argument reduces us to prove the following statement: let f• : U• ! X be a derived
affine k

�-adic Zariski hypercovering. Then the canonical map

f�⇤• : Coh
+

loc
(X) �! lim[n]2�Coh

+

loc
(U•) (4.3.1.2)

is an equivalence. Using [HPV16b, Lemma 3.20] we can endow the right hand side with a canonical t-structure.
It follows from the characterization of the t-structure on Coh

+

loc
(X) given in Theorem 4.3.1.6 that f�⇤• is t-exact.

We will prove in Theorem 4.3.2.4 that f�⇤• is fully faithful. Assuming this fact, we can complete the proof as
follows. We only need to check that f�⇤• is essentially surjective. Let C be the essential image of f�⇤• . We now make
the following observations:
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(i) the heart of lim�Coh
+

loc
(U•) is contained in C. Indeed, Theorem 4.3.1.4 implies that

⇤n : Coh
+

loc
(Un) �! Coh

+
(Urig

n )

is an equivalence. These equivalences induce a t-exact equivalence

Coh
+
(Xrig

) ' lim[n]2�Coh
+

loc
(U•). (4.3.1.3)

Passing to the heart and using the canonical equivalences

Coh
~
loc

(X) ' Coh
~
loc

(t0(X)) , Coh
~
(Xrig

) ' Coh
~
(t0(X

rig
)),

we can invoke the classical Rayanaud’s theorem on formal models of coherent sheaves to deduce that the
heart of the target of f�⇤• is contained in its essential image.

(ii) The subcategory C is stable. Indeed, let

F0 F F00'  

be a fiber sequence in Coh
+
(Xrig

) ' lim�Coh
+

loc
(U•) and suppose that two among F, F0 and F00 belong

to C. Without loss of generality, we can assume that F and F00 belong to C. Then choose elements F and F00

in Coh
+

loc
(X) representing F and F00. Since f�⇤• is fully faithful, we can find a morphism e : F! F00 lifting

 . Set
F0

:= fib( e : F! F00
).

Then ⇤(F0
) ' F0, which means that under the equivalence (4.3.1.3) the object F0 belongs to C.

These two points together imply that f�⇤• is essentially surjective on cohomologically bounded elements. As both
the t-structures on source and target of f⇤• are left t-complete, the conclusion follows.

Corollary 4.3.1.8. Let X 2 dfSch
taft

k� and assume moreover that X is quasi-compact and quasi-separated. Then
the canonical map

⇤ : Coh
+

loc
(X) �! Coh

+
(Xrig

)

introduced in Theorem 4.3.1.6 is an equivalence.

Proof. Let f• : U• ! X be a derived affine k
�-adic Zariski hypercover. Consider the induced commutative dia-

gram

Coh
+

loc
(X) lim[n]2�Coh

+

loc
(Un)

Coh
+
(Xrig

) lim[n]2�Coh
+
(Urig

n ),

f⇤•

⇤ ⇤•

f⇤
•

where we set f• := (f•)rig. The right vertical map is an equivalence thanks to Theorem 4.3.1.6. On the other
hand, Coh+(Xrig

) satisfies descent in X, and therefore the bottom horizontal map is also an equivalence. Fi-
nally, Theorem 4.3.1.7 implies that the top horizontal map is an equivalence as well. We thus conclude that
⇤ : Coh

+

loc
(X)! Coh

+
(Xrig

) is an equivalence.

Corollary 4.3.1.9. Let X 2 dfSch
taft

k� and assume moreover that it is quasi-compact and quasi-separated. For
any F 2 Coh

+
(Xrig

), the1-category FM(F) is non-empty.

Proof. The localization functor L: Coh+(X) ! Coh
+

loc
(X) is essentially surjective by construction. Since X is

a quasi-compact and quasi-separted derived k
�-adic scheme topologically of finite presentation, Theorem 4.3.1.8

implies that ⇤ : Coh+
loc

(X)! Coh
+
(Xrig

) is an equivalence. The conclusion follows.
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4.3.2 Proof of Theorem 4.3.1.7: fully faithfulness
The only missing step in the proof of Theorem 4.3.1.7 is the full faithfulness of the functor (4.3.1.2). We will
address this question by passing to the1-categories of ind-objects. Let X be a quasi-compact and quasi-separated
derived k

�-adic scheme locally topologically almost of finite presentation.

f : U �! X

be a formally étale morphism. Then f induces a commutative diagram

Ind(Coh
+
(X)) Ind(Coh

+

loc
(X))

Ind(Coh
+
(U)) Ind(Coh

+

loc
(U)).

f⇤

LX

f�⇤

LU

The functors f⇤ and f�⇤ commute with colimits, and therefore they admit right adjoints f⇤ and f�⇤. In particular, we
obtain a Beck-Chevalley transformation

✓ : LX � f⇤ �! f�⇤ � LU. (4.3.2.1)

A key step in the proof of the full faithfulness of the functor (4.3.1.2) is to verify that ✓ is an equivalence when
evaluated on objects in Coh

~
(U). Let us start with the following variation on [HPV16b, Lemma 7.14]:

Lemma 4.3.2.1. Let
KC C QC

KD D QD

iC

FK

LC

F FQ

iD LD

(4.3.2.2)

be a diagram of stable1-categories and exact functors between them. Assume that:

(i) the functors iC and iD are fully faithful and admit right adjoints RC and RD, respectively;

(ii) the functors LC and LD admit fully faithful right adjoints jC and jD, respectively;

(iii) the rows are fiber and cofiber sequences in Catst1;

(iv) the functors F , FK and FQ admit right adjoints G, GK and GQ, respectively.

Let X 2 D be an object. Then the following statements are equivalent:

(i) the Beck-Chevalley transformation

qX : LC(G(X)) �! GQ(LD(X))

is an equivalence;

(ii) the Beck-Chevalley transformation

RD(X) : iC(GK(RD(X))) �! G(iD(RD(X)))

is an equivalence.

Proof. Since jC and iC are fully faithful, it is equivalent to check that

jC(LC(G(X))) �! jC(GQ(LD(X)))

is an equivalence if and only if RD(X) is an equivalence. Using the natural equivalences

jC �G ' GjD , GK �RD ' RC �G
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we obtain the following commutative diagram

iC(RC(G(X))) G(X) jC(LC(G(X)))

G(iD(RD(X))) G(X) G(jD(LD(X))).

Moreover, since the rows of the diagram (4.3.2.2) are Verdier quotients, we conclude that the rows in the above
diagram are fiber sequences. Therefore, the leftmost vertical arrow is an equivalence if and only if the rightmost
one is.

Lemma 4.3.2.2. The Beck-Chevalley transformation (4.3.2.1) is an equivalence whenever evaluated on objects
in Coh

~
(U).

Proof. Using Theorem 4.3.2.1, we see that it is enough to prove that the Beck-Chevalley transformation associated
to the square

Ind(Coh
+

nil
(X)) Ind(Coh

+
(X))

Ind(Coh
+

nil
(U)) Ind(Coh

+
(U))

f⇤ f⇤

is an equivalence when evaluated on objects of Coh~
nil
(U). As the horizontal functors are fully faithful, it is enough

to check that the functor
f⇤ : Ind(Coh

+
(U)) �! Ind(Coh

+
(X))

takes Coh
~
nil
(U) to Ind(Coh

+

nil
(X)). Let F 2 Coh

~
nil
(U). We have to verify that (f⇤(F))rig ' 0. Since F is

coherent and in the heart and since U is quasi-compact we see that there exists an element a 2 m such that the map
µa : F ! F given by multiplication by a is zero. Therefore f⇤(µa) : f⇤(F) ! f⇤(F) is homotopic to zero. Since
f⇤(µa) is equivalent to the endomorphism f⇤(F) given by multiplication by a, we conclude that (f⇤(F))rig ' 0.
The conclusion follows.

Having these adjointability statements at our disposal, we turn to the actual study of the full faithfulness of the
functor (4.3.1.2). Let

U• : �op �! dfSch
taft

k�

be an affine k�-adic Zariski hypercovering of X and let f• : U• ! X be the augmentation morphism. The morphism
f• induces functors

f⇤• : Ind(Coh
+
(X)) �! lim[n]2�Ind(Coh

+
(Un))

and
f�⇤• : Ind(Coh

+

loc
(X)) �! lim[n]2�Ind(Coh

+

loc
(Un)).

These functors commute by construction with filtered colimits, and therefore they admit right adjoints, that we
denote respectively as

f•⇤ : lim[n]2�Ind(Coh
+
(Un)) �! Ind(Coh

+
(X))

and
f�•⇤ : lim[n]2�Ind(Coh

+

loc
(Un)) �! Ind(Coh

+

loc
(X)).

Moreover, the functors f⇤• and f�⇤• fit in the following commutative diagram:

Ind(Coh
+
(X)) lim[n]2�Ind(Coh

+
(U•))

Ind(Coh
+

loc
(X)) lim[n]2�Ind(Coh

+

loc
(U•)).

L

f⇤•

L•

f�⇤•

In particular, we have an associated Beck-Chevalley transformation

✓ : L � f•⇤ �! f�•⇤ � L•. (4.3.2.3)
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Proposition 4.3.2.3. The Beck-Chevalley transformation (4.3.2.3) is an equivalence when restricted to the full
subcategory lim�Coh

~
(U•) of lim�Ind(Coh

+
(U•)).

Proof. The discussion right after [PY16d, Corollary 8.6] allows us to identify the functor

f•⇤ : lim[n]2�Ind(Coh
+
(Un)) �! Ind(Coh

+
(X))

with the functor informally described by sending a descent datum F• 2 lim�Ind(Coh
+
(U•)) to

lim[n]2�fn⇤Fn 2 Ind(Coh
+
(X)).

Similarly, the functor f�•⇤ sends a descent datum F• 2 lim�Ind(Coh
+

loc
(U•) to

lim[n]2�f�n⇤Fn 2 Ind(Coh
+

loc
(X)).

We therefore have to show that the Beck-Chevalley transformation

✓ : L

✓
lim[n]2�fn⇤Fn

◆
�! lim[n]2�f�n⇤(LnFn)

is an equivalence whenever each Fn belongs to Coh
~
(Un). First notice that the functors f•⇤ and f�•⇤ are left

t-exact. In particular, if F• 2 lim�Ind(Coh
~
(U•)) then both Lf•⇤(F•) and f�•⇤(F•) are coconnective. As the

t-structures on lim�Ind(Coh
+
(U•)) and on lim�Ind(Coh

+

loc
(U•)) are right t-complete, we conclude that it is

enough to prove that ⇡i(✓) is an isomorphism for every i 2 Z. We now observe that for m � i+ 2 we have

⇡i

✓
lim[n]2�f�n⇤(LnFn)

◆
' ⇡i

✓
lim[n]2�m

f�n⇤(LnFn)

◆
,

and similarly

⇡i

✓
L

✓
lim[n]2�fn⇤Fn

◆◆
' L

✓
⇡i

✓
lim[n]2�fn⇤Fn

◆◆
' L

✓
⇡i

✓
lim[n]2�m

fn⇤Fn⇤

◆◆
.

It is therefore enough to prove that for every m � 0 the canonical map

L

✓
lim[n]2�m

fn⇤Fn

◆
�! lim[n]2�m

f�n⇤(LnFn)

is an equivalence. As L commutes with finite limits, we are reduced to show that the canonical map

L(fn⇤Fn) �! f�n⇤(LnFn)

is an equivalence whenever Fn 2 Coh
~
(Un), which follows from Theorem 4.3.2.2.

Corollary 4.3.2.4. Let X and f• : U• ! X be as in the above discussion. Then the functor

f�⇤• : Coh
+

loc
(X) �! lim[n]2�Coh

+

loc
(Un)

is fully faithful.

Proof. As the functor f�⇤• is t-exact and the t-structure on both categories is left complete, we see that it is enough
to reduce ourselves to prove that f⇤• is fully faithful when restricted to Coh

b

loc
(X). Consider the following commu-

tative cube:

Coh
+
(X) lim[n]2�Coh

+
(Un)

Ind
�
Coh

+
(X)

�
lim[n]2�Ind

�
Coh

+
(Un)

�

Coh
+

loc
(X) lim[n]2�Coh

+

loc
(Un)

Ind
�
Coh

+

loc
(X)

�
lim[n]2�Ind

�
Coh

+

loc
(Un)

�
.

f⇤•

f⇤•

LX

LU•
f�⇤•

f�⇤•

(4.3.2.4)
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First of all, we observe that the diagonal functors are all fully faithful. It is therefore enough to prove that the
functor

f�⇤• : Ind(Coh
+

loc
((X)) �! lim[n]2�Ind(Coh

+

loc
(Un))

is fully faithful when restricted to Coh
+

loc
(X). As this functor admits a right adjoint f�•⇤, it is in turn enough to

verify that for every F 2 Coh
b

loc
(F) the unit transformation

⌘ : F �! f�•⇤f
�⇤
• (F)

is an equivalence. Proceeding by induction on the number of nonvanishing homotopy groups of F, we see that it
is enough to deal with the case of F 2 Coh

~
loc

(F).
As the functor LX : Coh

+
(X)! Coh

+

loc
(X) is essentially surjective and t-exact, we can choose F 2 Coh

~
(X)

and an equivalence
LX(F) ' F.

Moreover, the unit transformation
F �! f•⇤f

⇤
•F

is an equivalence. It is therefore enough to check that the Beck-Chevalley transformation associated to the front
square is an equivalence when evaluated on objects in lim�Coh

~
(Un). This is exactly the content of Theo-

rem 4.3.2.3.

4.3.3 Categories of formal models
Let X 2 dfSch

taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topologically almost of finite

presentation. We established in Theorem 4.3.1.9 that for any F 2 Coh
+
(Xrig

) the1-category of formal models
FM(F) is non-empty. Actually, we can use Theorem 4.3.1.8 to be more precise about the structure of FM(F). We
are in particular interested in showing that it is filtered. We start by recording the following immediate consequence
of Theorem 4.3.1.8:

Lemma 4.3.3.1. Let X 2 dfSch
taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topologically

almost of finite presentation. Then the functor

(�)rig : Ind(Coh+(X)) �! Ind(Coh
+
(Xrig

))

admits a right adjoint
j : Ind(Coh

+
(Xrig

)) �! Ind(Coh
+
(X)),

which is furthermore fully faithful.

Proof. Theorem 4.3.1.8 implies that the functor (�)rig induces the equivalence

⇤ : Coh
+

loc
(X)

⇠�! Coh
+
(Xrig

).

In other words, we see that the diagram

Coh
+

nil
(X) Coh

+
(X)

0 Coh
+
(Xrig

)

(�)
rig

is a pushout diagram in Catst1. Passing to ind-completions, we deduce that Ind(Coh+(Xrig
)) is a Verdier quotient

of Ind(Coh+(X)). Applying [HPV16b, Lemma 2.5 and Remark 2.6] we conclude that Ind(Coh+(Xrig
)) is an

accessible localization of Ind(Coh+(X)). As these categories are presentable, we deduce that the localization
functor (�)rig admits a fully faithful right adjoint, as desired.

Notation 4.3.3.2. Let X 2 dfDMk� . Given F,G 2 Ind(Coh
+
(X)) we write HomX(F,G) 2 Modk� for the

k
�-enriched stable mapping space in Ind(Coh

+
(X)).
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Lemma 4.3.3.3. Let X 2 dfSch
taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topologically

almost of finite presentation. Let F 2 Coh
+
(X) and G 2 Coh

+

nil
(X). Then

HomX(F,G)⌦k� k ' 0.

In other words, HomX(F,G) is m-nilpotent in Modk� .

Proof. Since X is quasi-compact, we can find a finite formal Zariski cover Ui = Spf(Ai) by formal affine schemes.
Let U• be the Čech nerve. Since this is a formal Zariski cover, there exists m� 0 such that

HomX(F,G) ' lim[n]2�m
HomUn(F|Un ,G|Un).

Since the functor � ⌦k� k : Modk� ! Modk is exact, it commutes with finite limits. Therefore, we see that it is
enough to prove that the conclusion holds after replacing X by Um. Since X is quasi-compact and quasi-separated,
we see that each Um is quasi-compact and separated. In other words, we can assume from the very beginning that
X is quasi-compact and separated. In this case, each Um will be formal affine, and therefore we can further reduce
to the case where X is formal affine itself.

Assume therefore X = Spf(A). In this case, Coh+(X) ' Coh
+
(A) lives fully faithfully inside ModA. Notice

that A! A⌦k� k is a Zariski open immersion. Therefore,

HomA(F,G)⌦k� k ' HomA(F,G)⌦A (A⌦k� k) ' HomA(F ⌦A k
�
,G⌦A k

�
) ' 0.

Thus, the proof is complete.

Corollary 4.3.3.4. Let X be as in the previous lemma. Given F,G 2 Coh
+
(X), the canonical map

HomX(F,G)⌦k� k �! HomXrig(Frig
,Grig

)

is an equivalence.

Proof. Denote by R : Ind(Coh
+
(X))! Ind(Coh

+

nil
(X)) the right adjoint to the inclusion

i : Ind(Coh
+

nil
(X)) ,! Ind(Coh

+
(X)).

Then for any G 2 Coh
+
(X) we have a fiber sequence

iR(G) �! G �! j(Grig
).

In particular, we obtain a fiber sequence

HomX(F, iR(G)) �! HomX(F,G) �! HomX(F, j(G
rig
)).

Now observe that
HomX(F, j(G

rig
)) ' HomXrig(Frig

,Grig
).

Notice also that since k
� ! k is an open Zariski immersion, HomXrig(Frig

,Grig
) ⌦k� k ' HomXrig(Frig

,Grig
).

In particular, applying �⌦k� k : Modk� ! Modk we find a fiber sequence

HomX(F, iR(G))⌦k� k �! HomX(F,G)⌦k� k �! HomXrig(Frig
,Grig

).

It is therefore enough to check that HomX(F, iR(G))⌦k� k ' 0. Since i is a left adjoint, we can write

iR(G) ' colim
↵2I

G↵,

where I is filtered and G↵ 2 Coh
+

nil
(X). As F is compact in Ind(Coh

+
(X)), we find

HomX(F, iR(G))⌦k� k '
✓
colim
↵2I

HomX(F,G↵)

◆
⌦k� k ' colim

↵2I
HomX(F,G↵)⌦k� k.

Since each G↵ belongs to Coh
+

nil
(X), Theorem 4.3.3.3 implies that HomX(F,G↵) ⌦k� k ' 0. The conclusion

follows.
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Remark 4.3.3.5. Notice that Theorem 4.3.3.4 holds without no bounded conditions on the cohomological am-
plitude on the considered almost perfect complexes. The key ingredient is the fact that the morphism Spec k ,!
Spec k

� is an open immersion. Compare with [?, Lemma 6.5.3.7].

Construction 4.3.3.6. Choose generators t1, . . . , tn for m. We consider Nn as a poset with order given by

(m1, . . . ,mn)  (m
0
1
, . . . ,m

0
n) () m1  m

0
1
,m2  m

0
2
, . . . ,mn  m

0
n

Introduce the functor
K : Nn �! Ind(Coh

~
(Spf(k

�
)))

defined as follows: K sends every object to k
�, and it sends the morphism m  m0 to multiplication by t

m0�m.
By abuse of notation, we still denote the composition of K with the inclusion Ind(Coh

~
(k

�
))! Ind(Coh

+
(k

�
))

by K.
Let now X 2 dfSch

taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topologically almost

of finite presentation. Let F 2 Coh
+
(X). The natural morphism q : X! Spf(k

�
) induces a functor

q
⇤
: Ind(Coh

+
(Spf(k

�
))) �! Ind(Coh

+
(X)).

We define the functor KF as

KF := q
⇤
(K(�))⌦ F : Nn �! Ind(Coh

+
(X)).

We let Floc denote the colimit of the functor KF.
Let G 2 Coh

+
(Xrig

) and let ↵ : Frig ! G be a given map. Notice that the natural map

Frig �! colim
Nn

(KF(�))rig

is an equivalence. Therefore ↵ induces a cone

(KF(�))rig �! G,

which is equivalent to the given of a cone
KF(�) �! j(G).

Specializing this construction for ↵ = idFrig , we obtain a canonical map

�F : Floc �! j(Frig
).

Lemma 4.3.3.7. Let X 2 dfSch
taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topologically

almost of finite presentation. Let F 2 Coh
+

nil
(X). Then Floc ' 0.

Proof. For any G 2 Coh
+
(X), we write HomX(G,F) 2 Modk� for the k

�-enriched mapping space. As G is
compact in Ind(Coh

+
(X)), we have

HomX(G,F
loc

) ' colim
Nn

HomX(G,KF(�)) ' HomX(G,F)⌦k� k.

Theorem 4.3.3.4 implies that

HomX(G,F)⌦k� k ' HomXrig(Grig
,Frig

) ' 0.

It follows that Floc ' 0.

Lemma 4.3.3.8. Let X 2 dfSch
taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topologically

almost of finite presentation. Let F 2 Coh
+
(X). Then for any G 2 Coh

+

nil
(X), one has

Map
Ind(Coh

+
(X))

(G,Floc
) ' 0.
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Proof. It is enough to prove that for every i � 0 we have

⇡iMap
Ind(Coh

+
(X))

(G,Floc
) ' 0.

Up to replacing F by F[i], we see that it is enough to deal with the case i = 0. Let therefore ↵ : G ! Floc be
a representative for an element in ⇡0Map

Ind(Coh
+
(X))

(G,Floc
). As G is compact in Ind(Coh

+
(X)), the map ↵

factors as ↵0
: G! F, and therefore it induces a map e↵ : Gloc ! Floc making the diagram

G F

Gloc Floc

↵0

e↵

commutative, where both compositions are equivalent to ↵. Now, Theorem 4.3.3.7 implies that Gloc ' 0, and
therefore ↵ is nullhomotopic, completing the proof.

Lemma 4.3.3.9. Let X 2 dfSch
taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topologically

almost of finite presentation. Let F 2 Coh
+
(X). Then the canonical map

�F : Floc �! j(Frig
)

is an equivalence.

Proof. Let G 2 Coh
+

nil
(X). Then

Map
Ind(Coh

+
(X))

(G, j(Frig
)) ' Map

Ind(Coh
+
(Xrig))(G

rig
,F) ' 0.

Theorem 4.3.3.8 implies that the same holds true replacing j(Frig
) with Floc. As Coh

+

nil
(X) is a stable full

subcategory of Coh+(X), it follows that

HomX(G, j(F)) ' HomX(G,F
loc

) ' 0.

Let H := fib(�F). Then for any G 2 Coh
+

nil
(X), one has

HomX(G,H) ' 0.

On the other hand,
Hrig ' fib(�

rig

F
) ' 0.

It follows that H 2 Ind(Coh
+

nil
(X)), and hence that H ' 0. Thus, �F is an equivalence.

Theorem 4.3.3.10. Let X 2 dfSchk� be a quasi-compact and quasi-separated derived k
�-adic scheme. Let

F 2 Coh
+
(Xrig

). Then the1-category FM(F) of formal models for F is non-empty and filtered.

Proof. We know that FM(F) is non-empty thanks to Theorem 4.3.1.9. Pick one formal model F 2 FM(F). Then
Theorem 4.3.3.9 implies that the canonical map

�F : Floc �! j(Frig
) ' j(F)

is an equivalence. We now observe that FM(F) is by definition a full subcategory of

Coh
+
(X)/F := Coh

+
(X)⇥Ind(Coh

+
(X)) Ind(Coh

+
(X))/j(F).

As this1-category is filtered, it is enough to prove that every object G 2 Coh
+
(X)/F admits a map to an object

in FM(F). Let ↵ : G ! j(F) be the structural map. Using the equivalence �F and the fact that G is compact in
Ind(Coh

+
(X)), we see that ↵ factors as G! F, which belongs to FM(F) by construction.
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Corollary 4.3.3.11. Let X 2 dAnk and f : F ! G be a morphism Coh
+
(X). Suppose we are given a formal

model X for X together with formal models F,G 2 Coh
+
(X) for F and G, respectively. Then there exists a

morphism f : F0 ! G0 in the1-category Coh
+
(X) lifting

t
m1
1

. . . t
mn
n f : F ! G, in Coh

+
(X)

for suitable non-negative integers m1, . . . ,mn � 0.

Proof. Any map F ! G induces a map F ! j(F) ! j(G). Using the equivalence j(G) ' Gloc and the fact that
F is compact in Ind(Coh

+
(X)), we see that the map F! j(G) factors as F! G. Unraveling the definition of the

functor KG(�), we see that the conclusion follows.

For later use, let us record the following consequence of Theorem 4.3.3.9:

Corollary 4.3.3.12. Let X 2 dfSch
taft

k� be a quasi-compact and quasi-separated derived k
�-adic scheme topolog-

ically almost of finite presentation. Let F 2 Coh
+
(X). Then F is m-nilpotent if and only if Floc ' 0.

Proof. If F is m-nilpotent, the conclusion follows from Theorem 4.3.3.7. Suppose vice-versa that Floc ' 0. Then
Theorem 4.3.3.9 implies that

j(Frig
) ' Floc ' 0.

Now, Theorem 4.3.3.1 shows that j is fully faithful. In particular it is conservative and therefore Frig ' 0. In
other words, F belongs to Coh

+

nil
(X).

4.4 Flat models for morphisms of derived analytic spaces
Using the study of formal models for almost perfect complexes carried out in the previous section, we can prove
the following derived version of [BL93b, Theorem 5.2]:

Theorem 4.4.0.1. Let f : X ! Y be a proper map of quasi-paracompact derived k-analytic spaces. Assume
that:

(i) the truncations of X and Y are k-analytic spaces.4

(ii) The map f is flat.

Then there exists a proper flat formal model f : X! Y in dfSch
taft

k� for f .

Proof. We construct, by induction on n, the following data:

(i) derived k
�-adic schemes Xn and Yn equipped with equivalences

Xrig

n ' tn(X), Yrig

n ' tn(Y ).

(ii) Morphisms Xn ! Xn�1 and Yn ! Yn�1 exhibiting Xn�1 and Yn�1 as (n � 1)-truncations of Xn and
Yn, respectively.

(iii) A proper flat morphism fn : Xn ! Yn and homotopies making the cube

Xrig

n Yrig

n

Xrig

n�1
Yrig

n�1

tn(X) tn(Y )

tn�1(X) tn�1(Y )

frign

frign�1

commutative.
4As opposed to k-analytic Deligne-Mumford stackstacks.
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Having these data at our disposal, we set

X := colim
n

Xn, Y := colim
n

Yn,

and we let f : X! Y be map induced by the morphisms fn. The properties listed above imply that f is proper and
flat and that its generic fiber is equivalent to f .

We are therefore left to construct the data listed above. When n = 0, we can apply the flattening tech-
nique of Raynaud-Gruson (see [BL93b, Theorem 5.2]) to produce a proper flat formal model f0 : X0 ! Y0 for
t0(f) : t0(X)! t0(Y ). Assume now that we constructed the above data up to n and let us construct it for n+ 1.
Set F := ⇡n+1(OX)[n + 2] and G := ⇡n+1(OY )[n + 2]. Using [PY17b, Corollary 5.44], we can find analytic
derivations d↵ : (tnX)[F]! tnX and d� : (tnY )[G]! tnY making the following cube

(tnX)[F] tnX

tnX tn+1X

(tnY )[G] tnY

tnY tn+1Y

d0

d↵

fn

d0

d�

fn+1

(4.4.0.1)

commutative. Here d0 denote the zero derivation and we set fn := tn(f), fn+1 := tn+1(f). The derivations
d↵ and d� correspond to morphisms ↵ : LantnX ! F and � : LantnY ! G, respectively. Moreover, the
commutativity of the left side square in (4.4.0.1) is equivalent to the commutativity of

f
⇤
nLantnY f

⇤
nG

LantnX F

f⇤
n�

↵

in Coh
+
(tnX). Notice that, since f is flat, the morphism f

⇤
nF ! G is an equivalence. Using Theorem 4.2.0.15

and the induction hypothesis, we know that Lad

Yn
is a canonical formal model for LantnX . Using Theo-

rem 4.3.3.10, we can therefore find a formal model � : Lad

Yn
! G for the map �. We now set

F := f⇤nG.

Using Theorem 4.3.3.11, we can find m 2 Nn and a formal model e↵ : Lad

Xn
! F for tm↵ together with a homotopy

making the diagram

f⇤nLad

Yn
f⇤nG

Lad

Xn
F

tmf⇤n�

↵̃

commutative. Set e� := t
m
� : Lad

Yn
! G. Then e↵ and e� induce a commutative square

Xn[F] Xn

Yn[G] Yn.

d↵̃

fn

d�̃

(4.4.0.2)
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We now define Xn+1 and Yn+1 as the square-zero extensions associated to e↵ and e�. In other words, they are
defined by the following pushout diagrams:

Xn[F] Xn

Xn Xn+1

d↵̃

d0

,

Yn[G] Yn

Yn Yn+1.

d0

d�̃

The commutativity of (4.4.0.2) provides a canonical map fn+1 : Xn+1 ! Yn+1, which is readily verified to be
proper and flat. We are therefore left to verify that fn+1 is a formal model for fn+1. Unraveling the definitions,
we see that it is enough to produce equivalences a : (tnX)[F]

⇠�! (tnX)[F] and b : (tnY )[G]
⇠�! (tnY )[G]

making the following diagrams

(tnX)[F] tnX

(tnX)[F] tnX

dtm↵

a

d↵

,

(tnY )[G] tnY

(tnY )[G] tnY

dtm�

b

d�

(4.4.0.3)

commutative. The situation is symmetric, so it is enough to deal with tnX . Consider the morphism

t
�m

: F �! F,

which exists because all the elements ti 2 m are invertible in k. For the same reason it is an equivalence, with
inverse given by multiplication by t

m. This morphism induces a map

a : (tnX)[F] �! (tnX)[F],

which by functoriality is an equivalence. We now observe that the commutativity of (4.4.0.3) is equivalent to the
commutativity of

LantnX F

LantnX F,

tm↵

t�m

↵

which is immediate. The proof is therefore achieved.

4.5 The plus pushforward for almost perfect sheaves
Let f : X ! Y be a proper map between derived k-analytic spaces of finite tor-amplitude. In [PY18b, Definition
7.9] it is introduced a functor

f+ : Perf(X) �! Perf(Y ),

and it is shown in Proposition 7.11 in loc. cit. that for every G 2 Coh
+
(Y ) there is a natural equivalence

Map
Coh

+
(X)

(F, f⇤G) ' Map
Coh

+
(Y )

(f+(F),G).

In this section we extend the definition of f+ to the entire Coh
+
(X), at least under the stronger assumption of f

being flat.

Remark 4.5.0.1. In algebraic geometry, the extension of f+ to Coh
+
(X) passes through the extension to QCoh(X) '

Ind(Perf(X)). This is ultimately requires being able to describe every element in Coh
+
(X) as a filtered colimit

of elements in Perf(X), which in analytic geometry is possible only locally.

Therefore, this technique cannot be applied in analytic geometry. When dealing with non-archimedean analytic
geometry, formal models can be used to circumvent this problem.
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Proposition 4.5.0.2. Let f : X! Y be a proper map between derived k
�-adic schemes. Assume that f has finite

tor amplitude. Then the functor
f
⇤
: Coh

+
(Y)! Coh

+
(X)

admits a left adjoint
f+ : Coh

+
(X)! Coh

+
(Y).

Proof. Let Xn := X⇥Spf(k�)Spec(k
�
/mn

) and define similarly Yn. Let fn : Xn ! Yn be the induced morphism.
Then by definition of k�-adic schemes,

X ' colim
n2N

Xn, Y ' colim
n2N

Yn,

and therefore
Coh

+
(X) ' limn2NCoh

+
(Xn), Coh

+
(Y) ' limn2NCoh

+
(Yn).

Combining [?, Remark 6.4.5.2(b) & Proposition 6.4.5.4(1)], we see that each functor

f
⇤
n : Coh

+
(Yn) �! Coh

+
(Xn)

admits a left adjoint fn+. Moreover, Proposition 6.4.5.4(2) in loc. cit. implies that these functors fn+ can be
assembled into a natural transformation, and that therefore they induce a well defined functor

f+ : Coh
+
(X) �! Coh

+
(Y).

Now let F 2 Coh
+
(X) and G 2 Coh

+
(Y). Let Fn and Gn be the pullbacks of F and G to Xn and Yn, respectively.

Then

Map
Coh

+
(X)

(F, f⇤
(G)) ' limn2NMap

Coh
+
(Xn)

(Fn, f
⇤
n(Gn))

' limn2NMap
Coh

+
(Yn)

(fn+(Fn),Gn)

' Map
Coh

+
(Y)

(f+(F),G),

which completes the proof.

Corollary 4.5.0.3. Let f : X ! Y be a proper map between derived analytic spaces. Assume that f is flat. Then
the functor

f
⇤
: Coh

+
(Y )! Coh

+
(X)

admits a left adjoint
f+ : Coh

+
(X)! Coh

+
(Y ).

Proof. Using Theorem 4.4.0.1, we can choose a proper flat formal model f : X ! Y for f . Thanks to Theo-
rem 4.5.0.2, we have a well defined functor

f+ : Coh
+
(X) �! Coh

+
(Y).

We claim that it restricts to a functor

f+ : Coh
+

nil
(X) �! Coh

+

nil
(Y).

Using Theorem 4.3.3.12, it is enough to prove that

f+(F)
loc ' 0.

Extending f+ to a functor f+ : Ind(Coh
+
(X))! Ind(Coh

+
(Y)), we see that

f+(F)
loc ' f+(F

loc
) ' 0.

Using Theorem 4.3.1.8, we get a well defined functor

f+ : Coh
+
(X) �! Coh

+
(Y ).
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We only have to prove that it is left adjoint to f
⇤. Let F 2 Coh

+
(X) and G 2 Coh

+
(Y ). Choose a formal model

F 2 Coh
+
(X). Then unraveling the construction of f+, we find a canonical equivalence

f+(F) ' f+(F)
rig
.

We now have the following sequence of natural equivalences:

Map
Coh

+
(Y )

(f+(F),G) ' Map
Coh

+
(Y )

((f+(F))
rig
,Grig

)

' Map
Coh

+
(X)

(f+(F),G)⌦k� k by Theorem 4.3.3.4

' Map
Coh

+
(X)

(F, f⇤G)⌦k� k

' Map
Coh

+
(X)

(Frig
, (f⇤G)

rig
) by Theorem 4.3.3.4

' Map
Coh

+
(X)

(F, f⇤G).

The proof is therefore complete.

Corollary 4.5.0.4. Let f : X ! Y be a proper and flat map between derived analytic spaces. Let p : Z ! Y be
any other map and consider the pullback square

W X

Z Y.

q

g f

p

Then for any F 2 Coh
+
(X) the canonical map

g+(q
⇤
(F)) �! p

⇤
(f+(F))

is an equivalence.

Proof. Using Theorem 4.4.0.1, we find a flat formal model f : X ! Y. Choose a formal model p : Z ! Y for
p : Z ! Y , and form the pullback square

W X

Z Y.

q

g f

p

Choose also a formal model F 2 Coh
+
(X) for F. It is then enough to prove that the canonical map

g+(q
⇤
(F)) �! p⇤(f+(F))

is an equivalence. This follows at once by [?, Proposition 6.4.5.4(2)].

4.6 Representability of RHilb(X)

Let p : X ! S be a proper and flat morphism of underived k-analytic spaces. We define the functor

RHilb(X/S) : dAfdSop �! S

by sending T ! S to the space of diagrams

Y T ⇥S X

T

i

qT pT

(4.6.0.1)

where i is a closed immersion of derived k-analytic spaces, and qT is flat.
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Proposition 4.6.0.1. Keeping the above notation and assumptions, RHilb(X/S) admits a global analytic cotan-
gent complex.

Proof. Let x : T ! RHilb(X/S) be a morphism from a derived k-affinoid space T 2 dAfdS . It classifies a
diagram of the form (4.6.0.1). Unraveling the definitions, we see that the functor

Der
an

RHilb(X/S),x(T ;�) : Coh
+
(T ) �! RHilb(X/S)

can be explicitly written as

Der
an

RHilb(X/S),x(T ;F) ' Map
Coh

+
(Y )

(LanY/T⇥SX , q
⇤
T (F)).

Since qT : Y ! T is proper and flat, Theorem 4.5.0.3 implies the existence of a left adjoint qT+ : Coh
+
(Y ) !

Coh
+
(T ) for q⇤T . Moreover, [PY17b, Corollary 5.40] implies that LanY/T⇥SX 2 Coh

+� 0(Y ). Therefore, we
find

Der
an

RHilb(X/S),x(T ;F) ' Map
Coh

+
(T )

(qT+(LanY/T⇥SX),F),

and therefore RHilb(X/S) admits an analytic cotangent complex at x. Using Theorem 4.5.0.4, we see that it
admits as well a global analytic cotangent complex.

Theorem 4.6.0.2. Let X be a k-analytic space. Then RHilb(X) is a derived analytic space.

Proof. We only need to check the hypotheses of [PY17b, Theorem 7.1]. The representability of the truncation is
guaranteed by [CG16, Proposition 5.3.3]. The existence of the global analytic cotangent complex has been dealt
with in Theorem 4.6.0.1. Convergence and infinitesimal cohesiveness are straightforward checks. The theorem
follows.

As a second concluding applications, let us mention that the theory of the plus pushforward developed in this
paper allows to remove the lci assumption in [PY18b, Theorem 8.6]:

Theorem 4.6.0.3. Let S be a rigid k-analytic space. Let X,Y be rigid k-analytic spaces over S. Assume that X
is proper and flat over S and that Y is separated over S. Then the1-functor MapS(X,Y ) is representable by a
derived k-analytic space separated over S.

Proof. The same proof of [PY18b, Theorem 8.6] applies. It is enough to observe that Corollaries 4.5.0.3 and
4.5.0.4 allow to prove Lemma 8.4 in loc. cit. by removing the assumption of Y ! S being locally of finite
presentation.

4.7 Coherent dualizing sheaves
It should be possible to apply the formalism of this paper to get a reasonable construction for the dualizing sheaf
of a morphism of derived k-analytic schemes.

Definition 4.7.0.1. Let f : X ! Y be a morphism of derived k-analytic schemes. Choose a formal model
f : X! Y and let !X/Y be a dualizing sheaf. We set

!X/Y := (!X/Y)
rig
.

Proposition 4.7.0.2. Suppose f : X ! Y is proper and flat. Then:

(i) We have
f+(F) = f⇤(F ⌦ !X/Y ).

(ii) the functor
F 7! f

!
(F) := f

⇤
(F ⌦ !X/Y )

is a right adjoint for the functor f⇤.
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5.1 Introduction
5.1.1 Main results
Let X be a proper and smooth scheme over an algebraically closed field. The goal of the present text is to show
the existence of the moduli of rank n étale p-adic lisse sheaves on X , study its geometry and its corresponding
deformation theory. More precisely, let k denote a non-archimedean field extension of Qp. We will construct a
functor

LocSys`,n(X) : Afd
op

k ! S,

where Afdk denotes the category of k-affinoid spaces and S the1-category of1-groupoids, given on objects by
the formula

A 2 Afd
op

k 7! LocSys`,n(X)(A) 2 S

where LocSys`,n(X)(A) denotes the groupoid of conjugation classes of continuous morphisms

⇢ : ⇡
ét
1
(X)! GLn(A)

where we endow GLn(A) with the topology induced by the non-archimedean topology on A 2 Afd
op

k . Our first
main result is the following:

Theorem 5.1.1.1. The moduli functor

LocSys`,n(X) : Afd
op

k ! S

is representable by a k-analytic stack. More precisely, there exists a k-analytic space LocSys
framed

`,n (X) 2 Ank

together with a canonical smooth map

q : LocSys
framed

`,n (X)! LocSys`,n(X)

which exhibits LocSys
framed

`,n (X) as a smooth atlas of LocSys`,n(X). Moreover, LocSysframed

`,n (X) admits a
canonical action of the k-analytic group GLan

n and LocSys`,n(X) can be realized as the stack quotient of
LocSys

framed

`,n (X) by the GLan

n -action.

We can construct LocSysframed

`,n (X) explicitly via its functor of points. Explicitly, LocSysframed

`,n (X) represents
the functor Afdopk ! Set given on objects by the formula

A 2 Afd
op

k 7! Homcont

�
⇡

ét
1
(X),GLn(A)

�
2 Set. (5.1.1.1)

Showing that the functor given by formula (5.1.1.1) is representably by a k-analytic space LocSys
framed

`,n (X) 2
Ank will occupy most of §2. Our proof follows the scheme of proof of the analogous result for smooth and
proper schemes over the field of complex numbers C. However, our argument is considerably more involved as
in general the topologies on ⇡ét

1
(X) and GLn(A) are of different natures. More precisely, the former admits a

profinite topology whereas the latter group admits a ind-pro-topology, where the pro-structure comes from the
choice of a formal model A0 for A and the ind-structure by the existence of an isomorphism

A0 ⌦k� k ⇠= A
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of topological algebras. Moreover, thanks to the formula (5.1.1.1) it is clear that LocSysframed

`,n (X) admits a
canonical action of the k-analytic general linear group GLan

n , given by conjugation. The rest of §2 is devoted to
present the theory of k-analytic stacks and to show that LocSys`,n(X) can be identified with the k-analytic stack
obtained by ”quotientening” LocSys

framed

`,n (X) by GLan

n . We observe that k-analytic stacks are the k-analytic
analogues of Artin stacks in algebraic geometry.

We show moreover that our definition of LocSys`,n(X) is correct. More precisely we show:

Proposition 5.1.1.2. Let A 2 Afd
op

k . Then the groupoid

LocSys`,n(X)(A) 2 S

can be identified with the groupoid of rank n pro-étale A-local systems on X .

We then proceed to study the deformation theory of LocSys`,n(X). We prove more precisely that LocSys`,n(X)

admits a canonical derived enhancement. By derived enhancement we mean that there exists a derived k-analytic
stack, following Porta and Yu Yue approach to derived k-analytic geometry [PY17a], whose 0-truncation is natu-
rally equivalent to LocSys`,n(X).

In order to construct such derived structure on LocSys`,n(X) we need to first extend its definition to derived
coefficients, i.e. we need to extend LocSys`,n(X) to a functor defined on the 1-category of derived k-analytic
spaces dAfdk, such that when restricted to the full subcategory of discrete objects

Afdk ,! dAfdk

we recover the k-analytic stack LocSys`,n(X). In order to provide a correct definition of a derived enhancement of
LocSys`,n(X) we employ the language of enriched1-categories. Namely, given Z 2 dAfdk a derived k-affinoid
a continuous representation

⇢ : Sh
ét
(X)! BGLn

�
�(Z)

�
,

where Sh
ét
(X) denotes the étale homotopy type of X and � : dAfd

op

k ! CAlgk the derived global sections
functor, corresponds to an object in the1-category of functors

FunCat1(Ind(Pro(S)))

�
Sh

ét
(X),Perf(�(Z))

�
, (5.1.1.2)

where we interpret the1-category of perfect complexes Perf(�(Z)) as enriched over Ind(Pro(S)) in a suitable
sense. We will explore these constructions in both §4 and §5. More precisely, in §4 we treat the case of con-
tinuous representations ⇢ : Shét

(X) ! Perf(A) where A is a derived k
�-adic algebra. Studying derived k

�-adic
continuous representations of Shét

(X) will prove useful in order to show that the1-category

FunCat1(Ind(Pro(S)))

�
Sh

ét
(X),Perf(�(Z))

�
2 Cat1

satisfies many pleasant conditions. We deal with this in §5, where we prove new results concerning the lifting of
continuous representations

⇢ : Sh
ét
(X)! BEnd(�(Z))

to a continuous representation
⇢ : Sh

ét
(X)! BEnd(A)

where A is a derived k
�-adic algebra such that Spf(A) is a formal model for Z 2 dAfdk. This is possible thanks

to results concerning the existence of formal models for derived k-analytic spaces, proved in [Ant18b].
We will then show that when we restrict ourselves to the full subcategories of (5.1.1.2) spanned by rank n free

modules we get the desired derived enhancement of LocSys`,n(X). With this knowledge at our disposal we are
able to show the following important result:

Theorem 5.1.1.3. The k-analytic stack

LocSys`,n(X) : Afd
op

k ! S

admits a derived enhancement, which we denote RLocSys`,n(X). Moreover, the derived moduli stack RLocSys`,n(X)

admits a global analytic cotangent complex. Given a Z 2 dAfdk-point of RLocSys`,n(X)

⇢ : Z ! RLocSys`,n(X)
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the analytic cotangent complex of RLocSys`,n(X) is canonically equivalent to

Lan

RLocSys`,n(X),⇢ ' C
⇤
ét
�
X,Ad(⇢)

�_
[�1] 2 Mod�(Z),

where C
⇤
ét
�
X,Ad(⇢)

�_ denotes the complex of étale cochains on the étale site of X with values in the derived
local system

Ad(⇢) := ⇢⌦ ⇢_.

Using the main theorem [PY17a, Theorem 7.1] we are thus able to show the following second main result:

Theorem 5.1.1.4. The functor
RLocSys`,n(X) : dAfd

op

k ! S

is representable by a derived k-analytic stack whose 0-truncation agrees canonically with LocSys`,n(X).

5.1.2 Notations and Conventions
We shall denote k a non-archimedean field equipped with a non-trivial valuation, k� its ring of integers and
sometimes we will use the letter t 2 k

� to denote a uniformizer for k. We denote Ank the category of strict
k-analytic spaces and Afdk the full subcategory spanned by strict k-affinoid spaces and we adopt the convention
that whenever we mention k-affinoid or k-analytic space we mean strict k-affinoid and strict k-analytic space,
respectively. We denote fSchk� the category of quasi-separated formal schemes over the formal spectrum Spf(k

�
),

where we consider k� equipped with its canonical topology induced by the valuation on k. In order to make clear
that we consider formal schemes over Spf(k�), we shall often employ the terminology k

�-adic scheme to refer to
formal scheme over Spf k�.

Let n � 1, we shall make use of the following notations:

An
k := Spec k[T1, . . . , Tm], An

k� := Spf(k
�hT1, . . . , Tmi)

and
An

k :=
�
An

k

�an
, Bn

k := Sp(khT1, . . . Tmi),
where (�)an denotes the usual analytification functor (�)an : Schk ! Ank, see [Ber93a]. We denote by GLan

n

the analytification of the usual general linear group scheme over k, which associates to every k-affinoid algebra
A 2 Afdk the general linear group GLn(A) with A-coefficients.

In this thesis we extensively use the language of 1-categories. Most of the times, we reason model inde-
pendently, however whenever needed we prove1-categorical results using the theory of quasi-categories and we
follows closely the notations in [Lur09b]. We use caligraphic letters C, D to denote 1-categories. We denote
Cat1 the1-category of (small)1-categories. We will denote by S the1-category of spaces, Sfc the1-category
of finite constructible space, see [Lur09a, §3.1]. Let C be an1-category, we denote by Ind(C) and Pro(C) the
corresponding 1-categories of ind-objects and pro-objects on C, respectively. When C = Sfc, the 1-category
Pro(Sfc) is referred as the1-category of profinite spaces.

Let R be a derived commutative ring. We will denote by CAlgR the1-category of derived k-algebras. The
latter can be realized as the associated1-category to the usual model category of simplicial R-algebras.

We shall denote by CAlg
ad the1-category of derived adic algebras, introduced in [Lur16, §8.1]. Whenever

R admits a non-trivial adic topology, we denote CAlg
ad

R :=
�
CAlg

ad
�
R/

the 1-category of derived adic R-
algebras, i.e. derived R-algebras equipped with an adic topology compatible with the adic topology on R together
with continuous morphisms between these.

Let R be a field. We shall denote by CAlg
sm

R the1-category of small augmented derived R-algebras. When
R = k we denote by AnRing

sm

k the 1-category of small augmented derived k-analytic rings over k, which is
naturally equivalent to CAlg

sm

k , see [Por15a, §8.2].
Let R be a discrete ring. We denote by CAlg~R the 1-category of ordinary commutative rings over R. When

R admits an adic topology we shall denote CAlg
ad,~
R ✓ CAlg

ad

R the full subcategory spanned by discrete derived
adic R-algebras. Let R denote a derived ring. We denote ModR the derived 1-category of R-modules and
Coh

+
(X) ✓ ModR the full subcategory spanned by those almost perfect R-modules.

We need sometimes to enlarge the starting Grothendieck universe, and we often do not make explicit such it
procedure. Fortunately, this is innocuous for us. Given Z 2 dAfdk a derived k-affinoid space and M 2 Coh

+
(Z)

127



an almost perfect sheaf on Z its mapping space of endomorphisms End(M) 2 S admits a natural enrichment
over the 1-category Ind(Pro(S)). We shall denote such enrichement by End(M). We will employ the same
notation whenever M 2 Coh

+
(A) where A 2 CAlg

ad

k� . Namely, for such M 2 Coh
+
(A) we denote End(M) the

E1-monoid like object on the1-category Pro(S).
We will denote by

�
dA↵k, ⌧ét,Psm

�
the algebraic geometric context and we denote by dSt

�
dA↵k, ⌧ét,Psm

�

the 1-category of derived geometric stacks with respect to
�
dA↵k, ⌧ét,Psm

�
. Similary, whenever k denotes

either the field C of complex numbers or a non-archimedean field we will denote by
�
dA↵k, ⌧ét,Psm

�
the analytic

geometric context and correspondingly dSt
�
dAnk, ⌧ét,Psm

�
the 1-category of derived geometric stacks with

respect to the analytic geometric context.

5.1.3 Acknowledgments
I would like to express my deep gratitude to my advisor B. Toen for all his advice and by sharing many ideas and
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non- archimedean geometry. I am thankful to Mauro Porta also for so many useful mathematical suggestions along
these last years. I would also like to thank to M. Robalo, A. Vezzani, B. Hennion, D. Gapner, M. d’Addezio, V.
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5.2 Representability of the space of morphisms
Let G be a profinite group topologically of finite generation. One can consider the functor

LocSys
framed

`,n (G) : Afd
op

k ! Set

given on objects by the formula

A 2 Afdk 7! Homcont

�
G,GLn(A)

�
2 Set,

where Homcont

�
G,GLn(A)

�
denotes the set of continuous group homomorphisms

G! GLn(A),

where we consider GLn(A) as a topological group via the induced topology on A 2 Afdk. We will prove that
LocSys

framed

`,n (G) is representable by a k-analytic space, i.e.

LocSys
framed

`,n (X) 2 Ank.

The proof of representability is established first when G is a free profinite group. This is the main result of the
section. The case where G is a more general topologically finitely generated profinite group follows directly from
the case of topologially free profinite groups.

Our main motivation to study LocSys
framed

`,n (G) follows from the fact that it forms a smooth atlas of the
moduli of continuous representations of G, which we shall designate the latter by LocSys`,n(G). One can show
that LocSys`,n(G) is equivalent to the ”stack-quotient” of LocSysframed

`,n (G) by its natural action of the k-analytic
general linear group GLan

n under conjugation.
Furthermore, the representability of LocSysframed

`,n (G) entails the representability of LocSys`,n(G) as a geo-
metric stack with respect to the k-analytic context. We shall prove this latter assertion in §2.3 and review the main
basic notions concerning k-analytic stacks.

5.2.1 Preliminaries
This § reviews the basic notions of k-analytic geometry that we will use more often.
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Definition 5.2.1.1. Let n � 1 be an integer. The Tate k-algebra on n generators with radius (r1, . . . , rn) is
defined as

khr�1

1
T1, . . . , r

�1

n Tni := {
X

i1,...,in

ai1,...,inT
i1
1

. . . T
in
n 2 k[[T1, . . . Tn]]| ai1,...,inr

i1
1
. . . r

in
n ! 0},

whose multiplicative structure is induced by the multiplicative structure on the formal power series ring k[[T1, . . . Tn]].

Definition 5.2.1.2. A k-affinoid algebra is a quotient of a Tate algebra khr�1

1
T1, . . . , r

�1

n Tni by a finitely gener-
ated ideal I .

Definition 5.2.1.3. Let A be a k-affinoid algebra we say that A is strict k-affinoid if we can choose such a
presentation for A with the ri = 1, for each i. We denote by Afd

op

k the category of strict k-affinoid algebras
together with continuous k-algebra homomorphisms between them.

Remark 5.2.1.4. The k-algebra khr�1

1
T1, . . . , r

�1

n Tni admits a canonical k-Banach structure induced by the usual
Gauss norm. Moreover, any finitely generated ideal I ⇢ khr�1

1
T1, . . . , r

�1

n Tni is closed which implies that any
k-affinoid algebra A admits a k-Banach structure, depending on the choice of a presentation of A. Nonetheless it
is possible to show that any two such k-Banach structures on A are equivalent and therefore the latter inherits a
canonical topology, induced from the one on khr�1

1
T1, . . . , r

�1

n Tni given by the Gauss norm.

Strict k-affinoid algebras correspond to the affine objects in (rigid) k-analytic geometry. Therefore, we define
the category of k-affinoid spaces as

Afdk := (Afd
op

k )
op
.

Remark 5.2.1.5. Let A 2 Afd
op

k denote a k-affinoid algebra. The given of a presentation of A of the form

A ⇠= khT1, . . . , Tmi/I

determines a formal model for A, i.e a p-complete k
�-adic algebra of topological finite presentation A0 such that

A ' A0 ⌦k� k.

in the category of k-algebras. One can simply take A0 to be

A0 := k
�hT1, . . . Tmi/I \ k

�hT1, . . . Tmi.

Definition 5.2.1.6. Given a k-affinoid alge bra A we denote by M(A) the set of semi-multiplicative seminorms
on A. Given x 2 M(A) we can associate it a (closed) prime ideal of A. Namely, it corresponds to the kernel of
x : A! R, ker(x) ✓ A. The fact that it defines a prime ideal of A follows from multiplicativity of x 2 M(A).

Notation 5.2.1.7. We denote by H(x) the completion of the residue field Frac(A/p), where p := ker(x). The
field H(x) possesses a canonical valuation, denoted | • |x, induced by the one on A and given a 2 A we denote by
|a|x 2 R the evaluation of | • |x on the image of a in H(x).

In Berkovich’s non-archimedean geometry it is possible to define the notion of relative interior, which is very
useful in practice. Let

� : A! A
0

denote a bounded morphism of k-affinoid algebras. The relative interior of �, denote Int(M(A
0
)/M(A)) is by

definition the set of points,

Int
�
M(A

0
)/M(A)

�
:= {x0 2 M(A

0
)|A0 ! H(x

0
) is inner with respect to A},

where inner with respect to A means that there exist a continuous surjective map

Ahr�1

1
T1, . . . , r

�1

n Tni ! A
0

of k-affinoid algebras which induces a norm on A
0 equivalent to its original one and such that, for each i, we have

|Ti|x0 < ri.

Definition 5.2.1.8. One can glue k-affinoid spaces, as in algebraic geometry. A k-analytic space is defined as a
locally ringed space which locally is equivalent to a k-affinoid space. We denote by Ank the category of k-analytic
spaces and morphisms between these.

One then is able to globalize most of the previous notions, in particular it is possible to give a global definition
of the relative interior of a morphism between k-analytic spaces. We refer the reader to [Ber93a], [Con08a]
and [Bos05] for a more detailed exposition on rigid geometry, from different points of view.
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5.2.2 Hom spaces
Let G denote a profinite group of topological finite type which we fix throughout this §. Consider the functor

LocSys
framed

`,n : Afd
op

k ! Set

given informally on objects by the formula

A 7! Homcont

�
G,GLn(A)

�
,

where Homcont denotes the set of morphisms in the category of continuous groups, and we consider GLn(A) with
the topology induced by the topology of A viewed as a k-affinoid algebra.

Our goal in this section is to show that

LocSys
framed

`,n (G) 2 Fun
�
Afd

op

k , Set
�

is representable by a k-analytic space. Let A 2 Afd
op

k be a (strictly) k-affinoid algebra.

Notation 5.2.2.1. We will typically denote by A0 a formal model for A, i.e., a (p-adic complete) k�-algebra of
topological finite presentation such that we have an isomorphism

A0 ⌦k� k ' A.

Remark 5.2.2.2. By choice of A0, we conclude that A0 can be identified with an open subring of A. For this
reason, the topology of A can be thought as an ind-pro topology, in which the pro-structure comes from the fact
that formal models are p-adic complete and the ind-structure arises after localizing at p.

Remark 5.2.2.3. Fix a formal model A0 for A, as above. The topology on A0 admits the family {⇡n
A0}n�1 as

a fundamental family of open neighborhoods around 0 2 A0. Consequently, for k � 0, we have a fundamental
family of normal open subgroups

Id + p
k+1 ·Mn(A0)EGLn(A0).

These form a basis of normal open subgroups for the topology on GLn(A0) induced by A0. We have moreover
canonical isomorphisms

GLn(A0)/
�
Id + p

k
Mn(A0)

�
' GLn(A0/p

k
A0).

We have thus a canonical isomorphism

GLn(A0)
⇠= lim

k�1

�
GLn(A0)/

�
Id + p

k
Mn(A0)

��
.

Thus it is p-adically complete. The same reasoning holds for the topological group Id + p
k · Mn(A0), for each

k � 1. More concretely, we have isomorphisms

Id + p
k ·Mn(A0)

⇠= lim
m�1

�
Id + p

k ·Mn(A0)/(Id + p
k+m ·Mn(A0)

�
.

Notation 5.2.2.4. We denote by bFr a fixed free profinite group of rank r. It can be explicitly realized as the
profinite completion of a free group on r generators, Fr. The latter can be realized as a dense full subgroup of
bFr. We will thus fix throughout the text a continuous dense group inclusion homomorphism Fr ! bFr and a set
of generators e1, . . . , er 2 Fr which become topological generators of the profinite group bFr.

Remark 5.2.2.5. Let FinGrp denote the category of finite groups. The category of profinite group corresponds to
its pro-completion, Pro(FinGrp). For each r � 1, the groups bFr 2 Pro(FinGrp) satisfy the universal property
given by the formula

HomPro(FinGrp)(
bFr, G) ⇠= G

r
, for any G 2 Pro(FinGrp).

Notation 5.2.2.6. Let us fix Jr a final family of normal open subgroups of finite index in bFr, i.e., such that we
have a continuous group isomorphism,

limU2Jr
bFr/U ' bFr.
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Remark 5.2.2.7. Given U 2 Jr, the quotient group

bFr/U ' �

is finite and therefore of finite presentation. It follows that U admits a finite family of generators �1, . . . ,�l.
Moreover, thanks to the Nielsen-Schreier theorem the group U is topologically finitely generated free profinite.
Consider furthermore the dense group inclusion homomorphism

Fr ! bFr,

then U \ Fr ! U is a discrete subgroup of U which is again dense in U . Therefore, we can assume without loss
of generality that �1, . . . ,�l 2 U \ Fr.

Notation 5.2.2.8. Let � =
Q

i e
nji
i 2 bFr be a general element of the profinite group bFr. Suppose furthermore we

are given a group morphism
⇢ : bFr ! GLn(A)

such that M1 := ⇢(e1), . . . ,Mr := ⇢(er). We denote by

�
�
M1, . . .Mr

�
:=

Y

i

M
nji
i 2 GLn(A),

whenever the right hand side is well defined, (which is always the case when the product on the left hand side is
indexed by a finite set).

Definition 5.2.2.9. Let U 2 Jr and fix �1, . . . ,�l 2 U \ bFr a finite number of topological generators for U . We
define the functor

LocSys
framed

`,n (U,�1, . . . ,�l) : Afdk ! Set,

given on objects by the formula,

A 7! LocSys
framed

`,n (U,�1, . . . ,�l)(A)

:= {(M1, . . . ,Mr) 2 GLn(A)
r
: for each i 2 [1, l], |�i(M1, . . . ,Mr)� Id|  |p|}.

When A0 is a formal model for A, we denote by LocSys
framed

`,n (U,�1, . . . ,�l)(A0) the set of those (M1, . . . ,Mr) 2
GLn(A0)

r such that the mod p reduction

�(M1, . . . ,Mr) = Id, mod p

Remark 5.2.2.10. Let U 2 Jr, A 2 Afd
op

k and A0 be a formal model for A. Then the set

LocSys
framed

`,n (U,�1, . . . ,�l)(A0) 2 Set

does not depend on the choice of the topological generators for U . More precisely, if ⌧1, . . . ⌧s 2 U \Fr denote a
different choice of topological generators for U , we have a natural bijection of sets

LocSys
framed

`,n (U,�1, . . . ,�l)(A0) = LocSys
framed

`,n (U, ⌧1, . . . , ⌧s)(A0).

In order to see this, it suffices to note that, for each n � 1, the mod p
n reduction of

(M1, . . . ,Mr) 2 LocSys
framed

`,n (U,�1, . . . ,�l)(A0/⇡
n
A0)

corresponds to a group homomorphism

� := bFr/U ! GLn(A0/⇡A0).

As group homomorphisms are independent of the choice of presentation for � the set

LocSys
framed

`,n (U,�1, . . . ,�l)(A0/⇡
n
) 2 Set

does not depend on such choices, either. As A0 is ⇡-adic complete„ passing to inverse limits we deduce that

LocSys
framed

`,n (U,�1, . . . ,�l)(A0)

is independent of the choice of topological generators for U , as desired.
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Notation 5.2.2.11. Following Theorem 5.2.2.10 we will denote the set LocSysframed

`,n (U,�1, . . . ,�l) simply by

LocSys
framed

`,n (U)(A0) 2 Set.

Lemma 5.2.2.12. Let A 2 Afd
op

k be an k-affinoid algebra and A0 an k
�-formal model for A. Then there is a

bijection
Homcont

�bFr,GLn(A0)
� ⇠= colim

U2Jr

LocSys
framed

`,n

�
U
�
(A0),

of sets, for each r � 1.

Proof. Since
Homcont

�bFr,GLn(A0))
�

denotes the set of continuous group homomorphisms in the category of pro-discrete groups we have a bijection

Homcont

�bFr,GLn(A0)
� ⇠= lim

k
colim
�2Jr

HomGrp

�
�,GLn(A0/p

k+1
A0)

�
.

of sets. It therefore suffices to show that we have a bijection,

lim
k

colim
U2Jr

HomGrp

�
�U ,GLn(A0/p

k+1
A0)

� ⇠= colim
U2Jr

LocSys
framed

`,n

�
U
�
(A0),

where �U denotes the finite group bFr/U . We assert that there exists a canonical morphism,

� : lim
k

colim
U2Jr

HomGrp

�
�U ,GLn(A0/p

k+1
A0)

�
! colim

U2Jr

LocSys
framed

`,n

�
U
�
(A0).

In order to prove this assertion we observe that a group morphism

⇢k : �Uk ! GLn(A0/p
k+1

A0),

with Uk 2 Jr, is determined by the image of the r generators of �Uk which correspond to r matrices in
GLn(A0/p

k+1
A0). Therefore given such a system of compatible group homomorphisms {⇢k}k one can asso-

ciate an r-vector (M1, . . . ,Mr) 2 GLn(A0)
r such that its mod p reduction satisfies

�i(M1, . . . ,Mr) = Id,

where �1, . . . ,�l 2 U \ Fr denotes a choice of a finite set of topological generators for U1. Thus

(M1, . . . ,Mr) 2XU1(A0).

This shows the existence of the desired map. We now construct maps

 U : LocSys
framed

`,n

�
U
�
(A0)! lim

k
colim
U 02Jr

HomGrp

�
�,GLn(A0/p

k+1
A0)

�
,

for each U 2 Jr, such that when we assemble these together we obtain the desired inverse for �. In order to
construct  U , we start by fixing topological generators

�1, . . . ,�l 2 U \ Fr

for U . Let (M1, . . . ,Mr) 2 LocSys
framed

`,n

�
U
�
(A0). As we have seen these matrices define a continuous group

homomorphism
bFr ! GLn(A0/pA0).

Thanks to Theorem 5.2.2.13 below the matrices

�1(M1, . . . ,Mr), . . . ,�l(M1, . . . ,Mr) 2 Id + pMn(A0)

determine a continuous group homomorphism

⇢1 : U ! Id + pMn(A0).

132



Then the inverse image
U

0
2
:= ⇢

�1

1

�
Id + p

2
Mn(A0)

�

is an open normal subgroup of U of finite index. As U itself is an open subgroup of bFr of finite index we conclude
that U 0

2
is also a finite index subgroup of bFr. As open normal subgroup of finite index in bFr define a final family

for bFr we conclude that there exists U2 2 Jr such that ⇢1(U2) is a subgroup of Id + p
2
Mn(A0). Consequently,

the matrices (M1, . . . ,Mr) 2XU (A0) define a group homomorphism

⇢2 :
bFr/U2 ! GLn(A0/p

2
A0).

By iterating the process we obtain a sequence of continuous group homomorphisms

{⇢i : bFr/Ui ! GLn(A0/p
i
A0)}i 2 lim

i
colim
U2Jr

Homgrp(�U ,GLn(A0/p
i
A0)).

Assembling these together we obtain a continuous group homomorphism ⇢ 2 Homcont(
bFr,GLn(A0). It follows

easily by our construction that,

colim
U2Jr

( U ) : colim
U2Jr

LocSys
framed

`,n

�
U
�
(A0)! Homcont

�bFr,GLn(A0)
�
,

is the inverse map of �, as desired.

Lemma 5.2.2.13 (Burnside problem for topologically nilpotent p-groups). Let A 2 Afd
op

k and A0 be a formal
model for A. For each k � 1, we have a natural bijection

Homcont

�bFr, Id + p
k+1

Mn(A0)
�
= Id + p

k+1
Mn(A0).

Proof. Noticing that the quotient groups,
�
Id + p

k
Mn(A0)/(Id + p

k+m+1
Mn(A0)

�
,

are torsion, i.e., every element has finite order and we conclude that

Homcont

�bZ, Id + p
k+1

Mn(A0)
�
= Id + p

k+1
Mn(A0),

where bZ denotes the profinite completion of Z. This finishes the proof when r = 1. The same holds for general
bFr, i.e., we have a canonical equivalence,

Homcont

�bFr, Id + p
k+1

Mn(A0)
�
=

�
Id + p

k+1
Mn(A0)

�r
.

In order to prove this last assertion it suffices to show that any finitely generated subgroup of the quotient
�
Id + p

k
Mn(A0)/(Id + p

k+m+1
Mn(A0)

�
,

for some positive integer m � 1, is finite (i.e. the Burnside problem admits an affirmative answer in this particular
case). In order to justify the given assertion we fix G a finitely generated subgroup of

�
Id + p

k
Mn(A0)/(Id + p

k+l+1
Mn(A0)

�
.

By assumption it is generated by matrices of the form Id+ p
k+1

N1, . . . , Id+ p
k+1

Ns, for some s � 1. Therefore
a general element of G can be written as,

Id + p
k+1

(n1,1N1 + · · ·+ n1,sNs) + · · ·+ p
k+l�1

(na�1,1Na�1,1 + · · ·+ na�1,sl�1Na�1,sl�1),

where the Ni,j , for i, j 2 [1, a�1]⇥ [1, s
a�1

], denote products of the Ni having a�1 multiplicative terms, where
a denotes the least integer such that k ⇥ (a+ 1) � l. By the Pigeonhole principle there are only finite number of
such choices for the integers ni,j for (i, j) 2 [1, l � 1]⇥ [1, s

l�1
] and the result follows.
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Proposition 5.2.2.14. Let A 2 Afd
op

k be an k-affinoid algebra then we have a natural bijection,

Homcont

�bFr,GLn(A)
�
' colim

U2Jr,�1,...,�l generators
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
(A).

Proof. Let ⇢ : bFr ! GLn(A) be a continuous homomorphism of topological groups and let e1, . . . , er be the
fixed topological generators of bFr. Let

Mi := ⇢(ei) 2 GLn(A)

for each 1  i  r. The group Id + p · Mn(A0) is open in GLn(A0) and the latter open in GLn(A). We thus
deduce that the inverse image

U := ⇢
�1

�
Id + pMn(A0)

�

is an open subgroup of bFr and it has thus finite index in bFr, moreover as Jr is a final family for bFr one can
suppose without loss of generality, up to shrinking U , that U 2 Jr and thus normal in bFr. Choosing a finite set
of topological generators for ⇢�1

�
Id + ⇡ ·Mn(A0)

�
we deduce that the (M1, . . . ,Mr) satisfy the inequalities, in

GLn(A), associated to such generators, therefore

(M1, . . . ,Mr) 2 colim
U2Jr,generators �1,...,�l

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
(A)

which proves the direct inclusion. We conclude that the association

⇢ 2 Homcont(
bFr,GLn(A)) 7! (⇢(e1), . . . , ⇢(er)) 2 colim

U2Jr,�1,...,�l generators
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
(A),

defines a well defined map of sets. Let us prove that we have a well defined inverse map. We consider

(M1, . . . ,Mr) 2 GLn(A)
r

such that �i(M1, . . . ,Mr) 2 Id + ⇡ · Mn(A0) for a finite family {�i}i2[1,l], all lying in the dense subgroup
Fr ⇢ bFr, of topological generators of a finite index normal open subgroup of bFr, which we shall denote by U .

We remark that U is a free profinite by the version of Nielsen-Schreier theorem for open subgroups of free
profinite groups, see [RS08, Theorem 3.3.1]. By Theorem 5.2.2.13 we conclude that

(�1(M1, . . . ,Mr), . . . ,�l(M1, . . . ,Mr)) 2 GLn(A)
r

defines a continuous group homomorphism

⇢̄ : U ' F̂
pf

l ! Id + pMn(A0).

Therefore, we have the following diagram in the category of topological groups,

Fr
bFr U

GLn(A) GLn(A) Id + pMn(A0).

(M1,...,Mr)

=

We want to show that we can fill the above diagram with a continuous morphisms bFr ! GLn(A) making the
whole diagram commutative. Since U is of finite index in bFr we can choose elements

g1, . . . gm 2 Fr ⇢ bFr

such that these form a (faithful) system of representatives for the finite group bFr/U . For i 2 [1,m] write

gi :=

Y

ji

e
nji
ji

,
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where this product is finite and unique by the assumption that the gi 2 Fr. Every element of h 2 bFr can be written
as h = gi�, for some gi as above and � 2 U . Let us then define

⇢(h) :=
�Y

ji

M
nji
ji

�
⇢̄(�) 2 GLn(A).

We are left to verify that the association

h 2 bFr 7! ⇢̄(h) 2 GLn(A)

gives a well defined continuous group homomorphism. Let

g :=

Y

s

e
ns
s 2 Fr ⇢ bFr

and �0 2 U such that g�0
= h = gi�. We first prove that

⇢̄(h) =
�Y

s

M
ns
s

�
⇢̄(�

0
).

Suppose that �,�0 2 U \ Fr, then it follows that h 2 Fr. The result then follows in this case, since we have fixed
a group homomorphism

(M1, . . . ,Mr) : Fr ! GLn(A),

which is necessarily continuous. Suppose then that it is not the case that

�,�
0 2 U \ Fr.

Let (�n)n and (�n0)n0 be sequences of elements in U \ Fr converging to � and �0, respectively. We observe
that this is possible since Fr is dense in bFr and U \ Fr is a free (discrete) group whose profinite completion is
canonically equivalent to U , thus dense in U . For this reason, we obtain that

g
�1

gi� = �
0

and we get moreover that g�1
gi�n converges to �0. Thus the elements

(

Y

s

M
�ns�1

s�1 )(

Y

ji

M
nji
ji

)⇢(�m) 2 GLn(A) ,

where our notations are clear from the context, converge to ⇢(�0
) by continuity of ⇢. They also converge to the

element
(

Y

s

M
�ns�1

s�1 )(

Y

ji

M
nji
ji

) 2 GLn(A)

by continuity of the group multiplication on GLn(A). Since the topology on A comes from a norm on A, making
the latter a Banach k-algebra we conclude that A is Hausdorff and so it is GLn(A). This implies that converging
sequences in GLn(A) admit a unique limit. We conclude therefore that,

⇢(�
0
) = (

Y

s

M
�ns�1

s�1 )(

Y

ji

M
nji
ji

)⇢(�),

thus giving the desired equality,
(

Y

s

M
ns
s )⇢(�

0
) = (

Y

ji

M
nji
ji

)⇢(�),

proving that ⇢ : bFr ! GLn(A) is a well defined map. We wish to show that it is a continuous group homomor-
phism. Our definitions make clear that to check multiplicativity of ⇢ it suffices to show that for every g 2 Fr and
sigma 2 U we have,

⇢(g�g
�1

) = ⇢(g)⇢(�)⇢(g
�1

).
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Pick again a converging sequence (�n)n, in Fr \ U , such that �n converges to �. Then for each n we have,

⇢(g�ng
�1

) = ⇢(g)⇢(�n)⇢̄(g
�1

),

and by passing to the limit, we obtain the desired equality. We are reduced to show that ⇢ is continuous. Let V be
an open subset of GLn(A). The intersection V \ (Id + pMn(A0) is open in GLn(A). Thus,

⇢
�1

(V \ (Id + pMn(A0) = ⇢
�1

(V \ (Id + pMn(A0))

is open in U . Therefore, the quotient U/(V \ (Id + pMn(A0)) is discrete, since U is of finite index in bFr. We
conclude that,

U/⇢
�1

(V \ (Id + pMn(A0))! bFr/⇢
�1

(V )

exhibits the quotient
U/⇢

�1
(V \ (Id + pMn(A0))

as a subgroup of finite index in bFr/⇢
�1

(V ). Thus the latter is necessarily discrete. The result now follows, since
we have that ⇢�1

(V ) is an open subset in bFr.

Notation 5.2.2.15. We will denote

LocSys
framed

`,n (bFr)(A) := colim
U2Jr,�1,...,�l

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
(A)

⇠= Homcont

�bFr,GLn(A)
�
.

Remark 5.2.2.16. Let GLan

n denote the analytification of the general linear group scheme GLn over Speck.
Proposition 5.2.2.14 allows us to write LocSysframed

`,n (bFr) as a union of subfunctors, LocSysframed

`,n (U,�1, . . . ,�l).
Where, for each U 2 Jr and �1, . . . ,�l, LocSysframed

`,n (U,�1, . . . ,�l) is given on the objects of Afdk by the
formula,

A 7! LocSys
framed

`,n

�
U,�1, . . . ,�l

�
(A)

:= {(M1, . . . ,Mr) 2 GLn(A)
r
: such that for each i 2 [1, l], |�i(M1, . . . ,Mr)� Id|  |⇡|}.

Lemma 5.2.2.17. The functor LocSys
framed

`,n (U,�1, . . . ,�l) as above, is representable by a (strict) k-analytic
space.

Proof. Let GL
0

n = Sp
B

�
khTiji[ 1

det
]
�

denote the closed unit disk of GLan

n and

LocSys
framed

`,n

�
U,�1, . . . ,�l

�0 2 Ank

denote the pullback of LocSysframed

`,n

�
U,�1, . . . ,�l

�
along the inclusion morphism GL

0

n ,! GLan

n computed in
the category Ank. Consider the following cartesian diagram

LocSys
framed

`,n

�
U,�1, . . . ,�l, B

�0
Sp

B
B

LocSys
framed

`,n

�
U,�1, . . . ,�l

�0
(GL

0

n)
r

where B 2 Afd
op

k is a k-affinoid algebra and

(M1, . . . ,Mr) 2 GL
0

n(B)
r
= GLn(B

0
)
r

corresponds to a given morphism of k-analytic spaces Sp
B
B ! (GL

0

n)
r. It follows that

LocSys
framed

`,n

�
U,�1, . . . ,�l, B

�0 2 Fun
�
Afd

op

k , Set
�
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corresponds to the subfunctor of Sp
B
B whose value on k-affinoid algebra A consists of the set

X 0

U,�1,...,�l,B(A) := {f : B ! A : for each i, |�i(M1, . . . ,Mr)� Id|  |p|, in A}.

Therefore, at the level of the points, the functor

LocSys
framed

`,n

�
U,�1, . . . ,�l, B

�0

parametrizes those points x 2 SpBB such that, for each i,

|�(M1, . . . ,Mr)� Id|(x)  |p|(x)

It is clear from our description, that this latter functor is representable by a Weierstrass subdomain of Sp
B
B.

As (GL
0

n)
r is a (strict) k-affinoid space, it follows that LocSysframed

`,n

�
U,�1, . . . ,�l

�
is representable in the cat-

egory Afdk, (consider in the above diagram with SpBB = GL
0

n and (M1, . . . ,Mr) the r-vector whose matrix
components correspond to identity morphism of GL

0

n).
Let ci 2 |k⇥| be a decreasing sequence of real numbers converging to 0, there is a natural isomorphism

(GL
0

n)
r ' colim

i
(GL

0

n)
r
ci ,

where (GL
0

n)
r
ci denotes a copy of (GL

0

n)
r indexed by ci, and the inclusion morphisms in the corresponding

diagram sends (GL
0

n)
r
ci to the closed disk of radius c

�1

i inside of (GL
0

n)
r
ci+1

. Henceforth we have canonical
isomorphisms

LocSys
framed

`,n

�
U,�1, . . . ,�l

� ⇠= colim
i

�
LocSys

framed

`,n

�
U,�1, . . . ,�l

�0�
ci
,

which is a union of k-affinoid subdomains where the image of an element in the filtered diagram lies in the
interior, in Berkovich’s sense, of the successive one. We thus conclude that LocSysframed

`,n

�
U,�1, . . . ,�l

�
is itself

representable by an k-analytic space.

Theorem 5.2.2.18. For each r � 1, the functor

LocSys
framed

`,n (bFr) : Afd
op

k ! Set,

given on objects by the formula,

A 2 Afdk 7! {(M1, . . . ,Mr) 2 GLn(A) : there exists i, |�i(M1, . . .Mr)� Id|  |p|} 2 Set,

is representable by a (strict) k-analytic space.

Proof. We start by remarking that if U 0 ⇢ U is an inclusion of subgroups lying in the family Jr then they induce
an inclusion

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
,! LocSys

framed

`,n

�
U

0
, ⌧1, . . . , ⌧s

�
.

We employ the notation
�i(M1, . . . ,Mr) 2 Id + pMn(A0)

where the �i denote a choice of generators for U , lying in the dense subgroup U \ Fr. It follows that we have
necessarily

⌧
0
j(M1, . . . ,Mr) 2 Id + pMn(A0)

for a choice of generators for U 0, lying in U
0\Fr, denoted ⌧1, . . . ⌧s. By the proof of our previous result it follows

that the functor
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
: Afd

op

k ! Set

is representable by a k-analytic subdomain of LocSysframed

`,n

�
U

0
, ⌧1, . . . , ⌧s

�
. Since we are interested in the repre-

sentability of the space

LocSys
framed

`,n

�bFr

� ⇠= colim
U2Jr,generators�1,...�l

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
,
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we need to check that the inclusions

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
,! LocSys

framed

`,n

�
U

0
, ⌧1, . . . , ⌧s

�

are nice enough whenever U denotes a sufficiently large (finite) index subgroup of bFr. Fix U 2 Jr and let
�1, . . . ,�l be a finite set of generators for U . Given a k-affinoid algebra A and

(M1, . . . ,Mr) 2 LocSys
framed

`,n

�
U,�1, . . . ,�l

�
(A)

we can write
�i(M1, . . . ,Mr) = Id + p ·Ni,

for suitable matrices Ni 2 Mn(A0), for each i. Moreover the r-tuple (M1, . . . ,Mr) define a continuous group
homomorphism

⇢ : bFr ! GLn(A).

By Theorem 5.2.2.13, quotients of the pro-p-group Id + pMn(A0) are of p-torsion. Let U 0 2 Jr such that

U
0 ⇢ ⇢�1

(Id + p
2
Mn(A0)).

Given ⌧1, . . . , ⌧s generators for U 0 as above we have

|⌧i(M1, . . . ,Mr)� Id|  |p2| < |p|,

for each i 2 [1, s]. This implies that

(M1, . . . ,Mr) 2 Int
�
LocSys

framed

`,n

�
U

0
, ⌧1, . . . , ⌧s

�
/(GLan

n )
r
�
,

For each U 2 Jr, LocSysframed

`,n

�
U,�1, . . . ,�l

�
is a k-analytic subdomain of (GLan

n )
r, and therefore

Int
�
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
/(GLan

n )
r
�
,! (GLan

n )
r

is an open subset of (GLan

n )
r, [Con08a, Exercise 4.5.3]. Moreover, the functor

LocSys
framed

`,n (bFr) ,! : Afd
op

k ! Set

is a subfunctor of (GLan

n )
r, which follows readily from the definitions. We can therefore (canonically) associate

to LocSys
framed

`,n (bFr) a topological subspace

X :=

[

�2Jr

LocSys
framed

`,n

�
U,�1, . . . ,�l

�

⇠=
[

�2Jr

Int
�
LocSys

framed

`,n (U,�1, . . . ,�l)/(GLan

n )
r
�
,

Therefore, the topological space X corresponds to an open subspace of the underlying topological space of
(GLan

n )
r. Consequently, the former is necessarily an Hausdorff space. We will construct a canonical k-analytic

structure on it and show that such k-analytic space represents the functor LocSysframed

`,n (bFr). As each

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
2 Ank

is a k-analytic space we can take the maximal atlas and quasi-net on it consisting of k-affinoid subdomains of
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
, which we denote by TU,�1,...,�l . As X can be realized as a filtered union of the

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
we conclude that the union of the quasi-nets TU,�1,...,�l induces a quasi-net T on

LocSys
framed

`,n (bFr). In order to prove this we shall show that given a point x 2 X we need to be able to find a
finite collection V1, . . . , Vn of compact Hausdorff subsets of X such that x 2

T
i Vi and moreover V1 [ · · · [ Vn

is an open neighborhood of x inside X . In order to show such condition on T, we notice first that that we can
choose U 2 Jr of sufficiently large finite index in bFr such that

x 2 LocSys
framed

`,n

�
U,�1, . . . ,�l

�
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lies in its relative interior Int
�
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
/(GLan

n )
r
�
. By the k-analytic structure on

LocSys
framed

`,n

�
U,�1, . . . ,�l

�
2 Ank

we conclude that we can take V1, . . . , Vn k- affinoid subdomains of LocSysframed

`,n

�
U,�1, . . . ,�l

�
satisfying the

above condition.
We are reduced to show that the union V1 [ · · · [ Vn is open in LocSys

framed

`,n (bFr). By shrinking the Vi

of larger index in bFr, if necessary, we can assume that the union V1 [ · · · [ Vn lies inside the relative interior
Int

�
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
/(GLan

n )
r
�

and is open in LocSys
framed

`,n

�
U,�1, . . . ,�l

�
. As a consequence, the

latter is open in
Int(LocSys

framed

`,n

�
U,�1, . . . ,�l

�
/(GLan

n )
r
�
.

The latter is also open in (GLan

n )
r, consequently also the union V1 [ · · · [ Vn is open in (GLn)

r. We conclude
that there exists an open subset W of (GLan

n )
r such that

V1 [ · · · [ Vn = LocSys
framed

`,n

�
U,�1, . . . ,�l

�
\ U = Int

�
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
/(GLan

n )
r
�
\W

and therefore V1 [ · · · [ Vn is itself open in (GLan

n )
r. We conclude thus that V1 [ · · · [ Vn is also open in

LocSys
framed

`,n (bFr), as desired. Clearly, T induces quasi-nets on the intersections

W \W
0

for any W, W
0 2 T as we can always choose a sufficiently large finite quotient � of bFr such that W, W

0 ⇢
LocSys

framed

`,n

�
U,�1, . . . ,�l

�
. The fact that the union of the maximal atlas on each LocSys

framed

`,n

�
U,�1, . . . ,�l

�

gives an atlas on X , with respect to T, is also clear from the definitions. We conclude that the topological space
X is endowed with a natural structure of k-analytic space (in fact, a k-analytic subdomain of (GLan

n )
r). We shall

show that the k-analytic space X represents the functor

LocSys
framed

`,n (bFr) : Afd
op

k ! Set.

As k-affinoid spaces are compact we conclude that any map

Sp
B
A!X

factor through some LocSys
framed

`,n

�
U,�1, . . . ,�l

�
as their union equals the union of the respective relative interi-

ors. As SpBA is quasi-compact, it follows from Theorem 5.2.2.14, that the functor of points, thanks to associated
to X is canonically equivalent to LocSys

framed

`,n (bFr) and the result follows.

Corollary 5.2.2.19. Let G be a profinite group topologically of finite type then the functor

LocSys
framed

`,n (G) : Afd
op

k ! Set,

given on objects by the formula

A 2 Afd
op

k ! Homcont

�
G,GLn(A)

�
2 Set,

is representable by a k-analytic space.

Proof. Let us fix a continuous surjection of profinite groups

q : bFr ! G,

for some integer r  1. Let H denote the kernel of q. Thanks to Theorem 5.2.2.18 we know that LocSysframed

`,n (bFr)

is representable by a k-analytic stack. We have an inclusion at the level of functor of points

q⇤ : LocSys
framed

`,n (G)! LocSys
framed

`,n (bFr)

induced by precomposing continuous homomorphisms ⇢ : G ! GLn(A) with q. We show that the morphism
q⇤ is representable and a closed immersion. Let Sp

B
A be a k-affinoid space and suppose given a morphism of

k-analytic spaces,
⇢ : Sp

B
A! LocSys

framed

`,n (bFr),
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which corresponds to a continuous representation ⇢ : G! GLn(A). We want to compute the fiber product

Sp
B
A⇥

LocSys
framed
`,n (bFr)

LocSys
framed

`,n (G).

Since Sp
B
A is quasi-compact and we have an isomorphism at the underlying topological spaces,

LocSys
framed

`,n (bFr)
⇠= colim

U2Jr,generators �1,...,�l

Int
�
XU,�1,...,�l/(GLn)

r
�
,

we conclude that
⇢ : SpA! LocSys

framed

`,n (bFr)

factors through a k-analytic subspace of the form LocSys
framed

`,n

�
U,�1, . . . ,�l

�
, for suitable such U 2 Jr and

�1, . . . ,�l. By applying again the same reasoning we can assume further that

⇢ : Sp
B
A! LocSys

framed

`,n (bFr)

factors through some LocSys
framed

`,n

�
U,�1, . . . ,�l

�0 as in the proof of Theorem 5.2.2.17. The latter is k-affinoid,
say

X 0

U,�1,...,�l
⇠= Sp

B
B

in the category Afdk, for some k-affinoid algebra B. Let X 0

G,U,�1,...,�l
denote the fiber product,

LocSys
framed

`,n

�
G,U,�1, . . . ,�l

�0
LocSys

framed

`,n (G)

LocSys
framed

`,n

�
U,�1, . . . ,�l

�0
LocSys

framed

`,n (bFr)

.

By construction, the set
X 0

G,U,�1,...,�l
(A) 2 Set

corresponds to those (M1, . . . ,Mr) 2 LocSys
framed

`,n

�
U,�1, . . . ,�l

�0
(A) such that

h(M1, . . . ,Mr) = Id,

for every h 2 H \ Fr ⇢ H . Then we have an equivalence of fiber products,

Z := SpA⇥
LocSys

framed
`,n (bFr)

LocSys
framed

`,n (G)

⇠= SpA⇥
LocSys

framed
`,n

�
U,�1,...,�l

�0 LocSys
framed

`,n

�
G,U,�1, . . . ,�l

�0

As every k-affinoid algebra is Noetherian, [Con08a, Theorem 1.1.5], we conclude that Z parametrizes points
which determined by finitely many equations with coefficients in A 2 Afd

op

k , induced from the relations defining
H inside bFr, (after choosing topological generators for bFr). We conclude that Z is a closed subspace of SpA and
thus representable. The result now follows.

Remark 5.2.2.20. Given G a profinite group as above there is a canonical action of the k-analytic group GLn

on LocSys
framed

`,n (G) via conjugation. Furthermore, continuous representations of a group correspond precisely to
the conjugacy classes of elements in LocSys

framed

`,n (G) under the action of GLan

n .

5.2.3 Geometric contexts and geometric stacks
Our next goal is to give an overview of the general framework that allow us to define the notion of a geometric
stack. Our motivation comes from the need to define the moduli stack of continuous representations of a profinite
group G (of topological finite presentation) as a non-archimedean geometric stack. This latter object should be
obtained by taking the quotient of LocSysframed

`,n (G) by the conjugation action of GLan

n on LocSys
framed

`,n (G). We
will review these notions and show that such we are able to construct such a quotient via a formal procedure.
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Definition 5.2.3.1. A geometric context (C, ⌧,P) consists of an 1-site (C, ⌧), see [Lur09b, Definition 6.2.2.1],
and a class P of morphisms in C verifying:

(i) Every representable sheaf is a hypercomplete sheaf on (C, ⌧).

(ii) The class P is closed under equivalences, compositions and pullbacks.

(iii) Every ⌧ -covering consists of moprhisms in P.

(iv) For any morphism f : X ! Y in C, if there exists a ⌧ -covering {Ui ! X} such that each composition
Ui ! Y belongs to P then f belongs to P.

Notation 5.2.3.2. Let (C, ⌧) denote an1-site. We denote by Shv(C, ⌧) the1-category of sheaves on (C, ⌧). It
can be realized as a presentable left localization of the1-category of presheaves on C, PSh(C) := Fun

�
Cop

, S
�
.

Given a geometric context (C, ⌧,P) it is possible to form an 1-category of geometric stacks Geom(C, ⌧,P)
via an inductive definition as follows:

Definition 5.2.3.3. A morphism in F ! G in Shv(C, ⌧) is (�1)-representable if for every map X ! G, where
X is a representable object of Shv(C, ⌧), the base change F ⇥G X is also representable. Let n � 0, we say that
F 2 Shv(C, ⌧) is n-geometric if it satisfies the following two conditions:

(i) It admits an n-atlas, i.e. a morphism p : U ! F from a representable object U such that p is (n � 1)-
representable and it lies in P.

(ii) The diagonal map F ! F ⇥ F is (n� 1)-representable.

Definition 5.2.3.4. We say that F 2 Shv(C, ⌧) is locally geometric if F can be written as an union of n-geometric
stacks F =

S
i Gi, for possible varying n, such that each Gi is open in F , i.e., after base change by representable

objects the corresponding inclusion morphisms are open immersions.

An important feature that one desires to be satisfied in a geometric context (C, ⌧,P) is the notion of closedness
under ⌧ -descent.

Definition 5.2.3.5. Let (C, ⌧) be an 1-site. The 1-category C is closed under ⌧ -descent if for any morphism
F ! Y , where F, Y 2 Shv(C, ⌧) and Y is required to be representable and for any ⌧ -covering {Yi ! Y } the
pullback F ⇥Y Yi is representable then so is F .

Remark 5.2.3.6. When the geometric context is closed under ⌧ -descent the definition of a geometric stack be-
comes simpler since it turns out to be ambiguous to require the representability of the diagonal map.

Example 5.2.3.7. Many examples of geometric contexts can be given but our main object of study will be the
geometric context (Afdk, ⌧ét,Psm), where ⌧ét denotes the quasi-étale topology on Afdk, and Psm denotes the col-
lection of quasi-smooth morphisms, see [Ber94a] chapter 3 for the definitions of quasi-étale and quasi-smooth
morphisms of k-analytic spaces. Such geometric context is closed under ⌧ét-descent and we will call the corre-
sponding geometric stacks as k-analytic stacks.

Let G be a smooth group object in the1-category Shv(C, ⌧). Suppose that G acts on a representable object
X . We can form its quotient stack via the (homotopy) colimit of the diagram,

. . . G
2 ⇥X G⇥X X

We denote such (homotopy) colimit by [X/G] and refer it as the stacky quotient of X by G.

Lemma 5.2.3.8. Let (C, ⌧,P) be a geometric context satisfying ⌧ -descent. Let G be a smooth group object in the
1-category Shv(C, ⌧) acting on a representable object X . Then the stacky quotient [X/G] is a geometric stack.

Proof. It suffices to verify condition (1) of Definition 2.12. By definitoin of [X/G] we have a canonical morphism
X ! [X/G] which is easily seen to be (-1)-representable and smooth. Therefore, [X/G] is a 0-geometric stack.
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Definition 5.2.3.9. Let G be a profinite group of topological finite presentation. We define the k-analytic stack of
continuous representations of G

LocSys`,n(G) := [LocSys
framed

`,n (G)/GLan

n ] 2 St
�
Afdk, ⌧ét,Psm

�
.

Thanks to Theorem 5.2.2.19 we obtain the following important result:

Theorem 5.2.3.10. Let G be a profinite group of topological finite presentation. Then the groupoid-valued functor

LocSys`,n(G) : Afdk ! S

is representable by a geometric stack.

Proof. The result is a direct consequence of Theorem 5.2.3.8 together with Theorem 5.2.2.19.

Corollary 5.2.3.11. Let X be a smooth and proper scheme over an algebraically closed field. Then the k-analytic
stack parametrizing continuous representations of ⇡ét

1
(X) is representable by a geometric stack.

Proof. It follows immediately by Theorem 5.2.3.10 together with the fact that under such assumptions on X its
étale fundamental group ⇡ét

1
(X) is topologically of finite generation.

Remark 5.2.3.12. As LocSysframed

`,n (G) is a representable object in the1-category Shv(Afd
op

k , ⌧ét), GLan

n is a
smooth group object in Shv(Afd

op

k , ⌧ét) and the corresponding geometric context satisfies descent we conclude by
Theorem 5.2.3.8 that the quotient [LocSysframed

`,n (G)/GLan

n ] is representable by a geometric stack.

Remark 5.2.3.13. The geometric stack LocSys`,n(G) is not, in general, a mapping stack. However the reader
should think of it as a continuous version of the latter. It would thus be desirable to say that LocSys`,n(G) is
equivalent to

Map
Ind(Pro(S))

�
BG,BGLan

n

�
,

where the latter consists of the stack of morphisms between BG and BGLan

n , considered as ind-pro-stacks. This
is not really the case, but it a reasonable conceptual approximation. We will explore this idea in detail using the
language of Ind(Pro(S))-enriched1-categories.

5.3 Moduli of k-lisse sheaves on the étale site of a proper normal scheme
Let X be a proper normal scheme over an algebraically closed field K. Let

x̄ : SpecK ! X

be a fixed geometric point of X . Thanks to [GR, Theorem 2.9, exposé 10] the étale fundamental group ⇡ét
1
(X)

is topologically of finite presentation. As a consequence, the results proved in the previous §hold true for the
profinite group G = ⇡

ét
1
(X). In particular,

LocSys`,n(X) := LocSys`,n(⇡
ét
1
(X))

is representable by a k-analytic stack. In this §, we will show that the moduli LocSys`,n(X) parametrizes pro-
étale local systems of rank n on X . This is a consequence of the fact that the étale fundamental group of X
parametrizes étale local systems on X with finite coefficients. As we are interested in the local systems valued in
k-affinoid algebras, the pro-étale topology is thus more suited for us. This is dealt with in §3.2.

In §3.1 we prove some results concerning perfecteness of étale cohomology chains with derived coefficients.
These results are known to experts but hard to locate in the literature so we prefer to give a full account of these
as they will be important for us in order to show the existence of the cotangent complex of LocSys`,n(X).
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5.3.1 Étale cohomology of perfect local systems
Let

⇡ : X ! SpecK

denote the structural morphism. For each integer n � 1, we have a canonical equivalence of1-categories

Shv(SpecK,Z/`nZ) ' ModZ/`nZ.

We have a pullback functor

p
⇤
: Shvét(SpecK,Z/`nZ)! Shvét(X,Z/`nZ),

which associates to each Z/`nZ-module M the étale constant sheaf on X with values in M .

Proposition 5.3.1.1. Let X be a proper normal scheme over an algebraically closed field K. Then R�(Xét,Z/`nZ)
is a perfect complex of Z/`nZ-modules.

Proof. This is a direct consequence of the more general result [GL14, Proposition 4.2.15].

Definition 5.3.1.2. Let A be a derived ring. We say that A is Noetherian if it satisfies the following conditions:

(i) ⇡0(A) is a Noetherian ring;

(ii) For each i � 0, ⇡i(A) is an ⇡0(A)-module of finite type.

Definition 5.3.1.3. Let A be a derived ring and M 2 ModA and A-module. We say that M has tor-amplitude
 n if, for every discrete A-module N , (which can be automatically seen as a ⇡0(A)), the homotopy groups

⇡i(M ⌦A N) 2 ModA

vanish for every integer i > n.

Lemma 5.3.1.4. Let A be a Noetherian simplicial ring and M 2 ModA be an A-module such that ⇡i(M) ' 0

for sufficiently small i  0. Then M is a perfect A-module if and only if the following two conditions are satisfied:

(i) For each i, ⇡i(M) is of finite type over ⇡0(A);

(ii) M is of finite Tor-dimension.

Proof. It is part of [Lur12c, Proposition 7.2.4.23].

Remark 5.3.1.5. Let A be a derived Z/`nZ-algebra and let N 2 Shv(Xét, A) be a local system of perfect A-
modules on Xét. Thanks to [GL14, Proposition 4.2.2] it follows that N can be written as a (finite sequence) of
retracts of

(fV )!(A) 2 Shv(Xét, A),

where
(fV )! : Shv(Vét,Z/`nZ)! Shv(Xét,Z/`nZ),

denotes the exceptional direct image functor associated to an étale map fV : V ! X .

Lemma 5.3.1.6 (Projection Formula). Let X be a scheme over an algebraically closed field K. Let A be a
simplicial ring and let F 2 Shvét(X,A). Then, for any M 2 ModA we have a natural equivalence,

⇡⇤(F ⌦A ⇡
⇤
(M)) ' ⇡⇤(F)⌦A M,

in the derived1-category ModA, where ⇡ denotes the structural morphism ⇡ : X ! SpecK.

Proof. Let C ⇢ ModA be the full subcategory spanned by those A-modules M such that there exists a canonical
equivalence R�(Xét,M) ' R�(Xét, A)⌦AM . It is clear that A 2 C and C is closed under small colimits as both
tensor product and the direct image functor ⇡⇤ commute with small colimits. Consequently, by the fact that the
1-category ModZ/`nZ is compactly generated (under small colimits) by the object A, the result follows.
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Proposition 5.3.1.7. Let A 2 CAlgZ/`nZ be a Noetherian simplicial Z/`nZ-algebra. Let N be a local system of
A-modules on Xét with values in the1-category of perfect A-modules, Perf(A). Then the étale cohomology of
the local system N , denoted R�(Xét, N), is a perfect A-module.

Remark 5.3.1.8. Note that the statement of Theorem 5.3.1.7 concerns the chain level and not the étale cohomol-
ogy of the complex R�(Xét, N), thus it is a stronger statement than just requiring finiteness of the corresponding
étale cohomology groups.

Proof of Theorem 5.3.1.7. Let N be a local system on Xét of perfect A-modules, i.e., there exists an étale covering
U ! X , such that N|U ' f

⇤
(P ), where

f : U ! SpecK

denotes the structural map and P 2 Perf(A) is a perfect A-module. Our goal is to show that

R�(Xét, N) 2 Perf(A).

By Theorem 5.3.1.4 it suffices to show that for each i 2 Z, the cohomology groups

H
�i
(Xét, N) := ⇡i(R�(Xét, N))

is of finite type over ⇡0(A) and moreover

R�(Xét, N) 2 ModA

is of finite Tor-dimension over A. Without loss of generality we can assume that N is a connective perfect A-
module on the étale site Xét, i.e., the discrete ⇡0(A)-étale sheaves on X , ⇡i(N) vanish for i < 0.

Thanks to [GL14, Proposition 4.2.10] and its proof we deduce that ⇡i(N) is an étale local system of finitely
presented (discrete) ⇡0(A)-modules on Xét, for each i � 0. For a fixed integer i � 0 the homotopy sheaf ⇡i(N)

is a local system of finitely presented (discrete) ⇡0(A)-modules. It thus follows that there exists an étale covering

V ! X

such that
⇡i(N)|V ' g

⇤
E,

where g : V ! SpecK denotes the structural map and E denotes a suitable ⇡0(A)-module of finite presentation.
As X is a normal scheme we can assume without loss of generality that the étale map V ! X is a Galois covering
(in particular it is finite étale). It follows by Galois descent that

R�(Xét,⇡i(N)) ' R�(G,R�(Xét, g
⇤
E)),

where G is the finite group of automorphisms of the Galois covering V ! X . Assume first that R�(Xét, g
⇤
E) is

an A- module whose homotopy groups are finitely generated over ⇡0(A). Since the group G is finite, the group
cohomology of G with Z-coefficients is finitely generated and of torsion, we thus conclude by the corresponding
Grothendieck spectral sequence that the homotopy groups of the complex

R�(G,R�(Xét, g
⇤
E)) 2 Mod⇡0(A)

are finitely generated over ⇡0(A). We are thus reduced to the case where ⇡i(N) is itself a constant ⇡0(A)-
module on Xét. By the projection formula we can reduce to the case where ⇡i(N) is ⇡0(A) itself. Again by the
projection formula we can reduce to the case where ⇡0(A) ' Z/`nZ in which case the result follows readily by
Theorem 5.3.1.1.

By induction on the Postnikov tower associated to N we conclude that given n � 0 we have a fiber sequence
of étale A-modules,

⌧n+1N ! ⌧nN ! ⇡n+1(N)[n+ 2],

such that, by our inductive hypothesis both complexes

R�(Xét, ⌧nN) and R�(Xét,⇡n+1(N))[n+ 2] 2 ModA
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have homotopy groups which are finitely generated ⇡0(A)-modules. Therefore, as R�(Xét,�) is an exact functor
the assertion also follows for ⌧n+1N . We are thus dealt with condition (i) in Theorem 5.3.1.4 We have another
fiber sequence of the form,

⌧>nN ! N ! ⌧nN.

As X is of finite cohomological dimension it follows by [GL14, Lemma 2.2.4.1] that for any given integer i there
is a sufficiently large integer n such that

⇡i(R�(Xét, ⌧>nN)) 2 Mod⇡0(A)

vanishes. By exactness of the global sections functor R� it implies that ⇡i(R�(Xét, N)) and ⇡i(R�(Xét, ⌧nN))

agree for sufficiently large n.
As X is of finite cohomological dimension we conclude that given M a discrete ⇡0(A)-module, the A-module

⇡⇤⇡
⇤
(M) has non-zero homotopy groups lying in a finite set of indices. Using the projection formula we conclude

once more that
R�(Xét, N)⌦A M ' R�(Xét, N ⌦A M)

can be obtained by a finite sequence of retracts of the A-module ⇡⇤⇡⇤
(M). Consequently, under our hypothesis

on M , it follows that
⇡i(R�(Xét, N)⌦⇡0(A) M) ' 0

for large enough i. Thus we conclude that R�(Xét, N) is of finite Tor-dimension as an A-module and thus a
perfect A-module.

5.3.2 Pro-etale lisse sheaves on Xét

It follows by our hypothesis on X and [BS13, Lemma 7.4.10] that the pro-étale and étale fundamental groups of
X agree henceforth it suffices to consider representations of the étale fundamental group of X , ⇡ét

1
(X).

Definition 5.3.2.1 (Noohi group). Let G be a topological group and consider the category of G-sets, denoted
G-Set. Consider the forgetful functor

FG : G-Set! Set.

We say that G is a Noohi group if there is a canonical equivalence G ' Aut(FG), where Aut(FG) is topologized
with the compact-open topology on Aut(S) for each S 2 Set.

Lemma 5.3.2.2. Let G be a topological group which admits an open Noohi subgroup U , then G is itself a Noohi
group.

Proof. This is [BS13, Lemma 7.1.8].

Lemma 5.3.2.3. Let A be an k-affinoid algebra, then GLn(A) is a Noohi group.

Proof. Let A0 be a formal model for A, it is a p-adically complete ring and we have the equivalence,

GLn(A0) ' lim
k
GLn(A0/p

k
A0) ' lim

k
GLn(A0)/

�
Id + p

k
Mn(A0)

�
,

which induces its structure of topological group, in particular it is a pro-discrete group as in [Noo04, Definition
2.1]. Moreover, the system {GLn(A0)}[{Id+p

k
Mn(A0)} is a basis of open normal subgroups for the topology

on GLn(A0) and thus by [Noo04, Proposition 2.14] we conclude that GLn(A0) is a Noohi group. As A0 is an
open subgroup of A the same holds for GLn(A0) ⇢ GLn(A) and by [BS13, Lemma 7.1.8] we conclude that
GLn(A) is a Noohi group.

The following Proposition is a generalization of [BS13, Lemma 7.4.7] and its proof is just an adaption of that
one. We give it here for the sake of completeness.

Proposition 5.3.2.4. Let A be a k-affinoid algebra. Then there is an equivalence of groupoids,

LocSys`,n(X) ' LocX,n(A),

and LocX,n(A) the groupoid of (pro-)étale local systems of rank n A-free modules on X .
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Proof. Let A0 be a formal model for A. Note that A0 is an open subring of A which is p-adically complete and
therefore is a pro-discrete ring implying that the group GLn(A0) is a pro-discrete group as in [Noo04, Definition
2.1], thanks to [BS13, Lemma 7.4.6] the result follows if we replace A by A0 in the statement of the Lemma. Let,

⇢ : ⇡
ét
1
(X)! GLn(A),

be a continuous representation and
U = ⇢

�1
(GLn(A0)),

note that U is an open subgroup of ⇡ét
1
(X), therefore it defines a pointed covering XU ! X with ⇡ét

1
(XU ) = U .

The induced representation,
⇡

ét
1
(XU )! GLn(A0),

defines thus an element M 2 LocXU (A0) and hence, by inverting p,it produces a local system M
0 2 LocXU (A).

Such element M 0 comes equipped with descent data for XU ! X and therefore comes from a unique N(⇢) in
LocX(A). Conversely, fix some N 2 LocX(A) which, for suitable n, we can see it as a FGLn(A)-torsor, which
is a sheaf for the pro-étale topology on X via [BS13, Lemma 4.2.12], here FGLn(A) denotes the sheaf on Xproét
defined informally via,

T 2 Xproét 7! Map
cont

(T,GLn(A)).

Let S 2 GLn(A)-Set then we have an induced representation,

⇢S : FGLn(A) ! FAut(S),

of pro-étale local sheaves. The pushout of N along ⇢S defines an element NS 2 LocX with stalk S, which is
functorial in S and therefore it defines a functor GLn(A)-Set ! LocX,n(A) compatible with the fiber functor.
By Theorem 5.3.2.3, GLn(A) is Noohi and therefore it is possible to associated it a continuous homomorphism
⇢N : ⇡

ét
1
(X) ! GLn(A), which gives an inverse for the previous construction. This establishes the equivalence

of the statement, as desired.

Corollary 5.3.2.5. The non-archimedean stack LocSys`,n(X) represents the functor Afd
op

k ! S given on objects
by the formula,

A 7! LocX,n(A),

where LocX,n(A) denotes the groupoid of local systems of projective A-modules locally of rank n on the pro-étale
topology of X .

Proof. It follows by the construction of quotient stack and Theorem 5.3.2.4.

5.4 Moduli of continuous k�-adic representations
In this section we prove several results concerning the1-category of derived continuous k�-adic representations
and the associated derived moduli stack. Even though such results are somewhat secondary to our main goal they
will prove useful in proving the representability of derived moduli stack of rank n continuous k-adic representa-
tions.

5.4.1 Preliminaries
Let X 2 Pro(Sfc) be a profinite space which we suppose fixed throughout this §. Assume further that X is
connected, i.e.

⇡0Mat(X) ' ⇤

where Mat(X) := Map
Pro(Sfc)

�
⇤, X

�
2 S.

146



Definition 5.4.1.1. Let A 2 CAlg
ad

k� and n � 1 an integer. We define An 2 CAlgk�
n

as the derived k
�
n-algebra

defined as the pushout of the diagram

A[u] A

A An

u 7!pn

u 7!0

computed in CAlgk�
n

, where A[t] denotes the derived A-algebra obtained from A by freely adding a variable t in
degree 0.

Remark 5.4.1.2. Suppose A 2 CAlg
ad

k� is p-complete. Thanks to [Lur16, Remark 8.1.2.4] we have an equivalence
of derived k

�-algebras
A ' lim

n�1

An.

Moreover, perfect A-modules are necessarily p-complete and we have an equivalence

M ' lim
n�1

(M ⌦A An)

in the 1-category Perf(A). Thanks to [Lur16, Proposition 8.1.2.3] it follows that one has an equivalence of
1-categories

Perf(A)! lim
n�1

Perf(An).

Therefore, we can (functorially) associate to Perf(A) a pro-object {Perf(An)}n 2 Pro(Cat1).

Construction 5.4.1.3. Let C 2 Cat1 be an1-category. The1-category of pro-objects on C, denoted Pro(C),
is defined by means of the following universal property: the1-category Pro(C) admits small cofiltered colimits
and there exists a fully faithful Yoneda embedding

j : C ,! Pro(C)

such that for any1-category D admitting small cofiltered colimits we have that pre-composition with j induces
an equivalence of1-categories

Fun
0�
Pro(C),D

�
! Fun

�
C,D

�

where the left hand side denotes the full subcategory of Fun
�
Pro(C),D

�
spanned by those functors which preserve

small cofiltered limits. Moreover, if C is an accessible1-category which admits finite limits one can give a more
explicit of Pro(C) as the full subcategory of Fun(C, S)op spanned by those left exact accessible functors

f : C! S.

The existence of Pro(C is general (e.g. when C is not necessarily accessible) is guaranteed by [Lur09b, Proposition
5.3.6.2]. We observe that, up to enlarge Grothendieck universes, one can consider the1-category Pro(\Cat1) of
pro-objects in the1-category of (not necessarily small)1-categories, denoted \Cat1.

Remark 5.4.1.4. Since the1-category S is presentable, we can identify X 2 Pro(S) with a functor

f : S! S.

Such functor induces a unique, up to contractible indeterminacy, left fibration

F : C! S

obtained as a pullback of the diagram
S/f S/⇤

C S
f
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in the1-category Cat1. Thanks to [Lur09b, Propositino 5.3.2.5], the1-category S/f is cofiltered. Therefore,
the association

X 7! S/f

allow us to interpret X as a pro-system {Ti}i, where Ti 2 S. Moreover, given X 2 S, we have an equivalence

f(X) ' MapTi2S/f

�
uTi, X

�
,

where u : S/f ! S is the forgetful functor.

Remark 5.4.1.5. The1-categories S and Cat1 are presentable. It follows by [Lur09a, Remark 3.1.7] that one
has a fully faithful embedding

Pro(S)! Pro(Cat1).

The analogous statement the larger versions bS and \Cat1 holds by the same reasoning.

Definition 5.4.1.6. Let A 2 CAlg
ad

k� , we define Perf
ad
(X)(A) as the functor category

FunPro(Cat1)

�
X,Perf(A)

�
2 Cat1,

where we consider Perf(A) 2
pro(Cat1). We define also the1-categories

Mod
ad
(X)(A) := Ind

�
Perf

ad
(X)(A)

�
2 Cat1,

Coh
+
(X)

ad
(A) := FunPro(Cat1)

�
X,Coh

+
(A)

�
2 Cat1

Vect(X)
ad
(A) := FunPro(Cat1)

�
X,Vect(A)

�
2 Cat1,

where Vect(A) ✓ Perf(A) denotes the full subcategory spanned by free A-modules.

Remark 5.4.1.7. The1-category Perf
ad
(X)(A) can be identified with

Perf
ad
(X)(A) ' FunPro(Cat1)

�
X,Perf(A)

�

' lim
n�1

FunPro(Cat1)

�
X,Perf(An)

�

' lim
n�1

colim
Xi2S/f

�
Xi,Perf(An)

�

in the1-category Cat1.

Remark 5.4.1.8. By construction, the1-category Mod
ad
(X)(A) is compactly generated and the compact objects

span the full subcategory Perf
ad
(X)(A) ✓ Mod

ad
(X)(A).

Definition 5.4.1.9. Let C be an additive symmetric monoidal 1-category. Let R 2 CAlg be a commutative
derived ring and consider its derived1-category of modules ModR 2 Cat⌦1. We say that C is equipped with an
A-linear action if there exists a finite direct sum preserving symmetric monoidal functor

F : Mod
↵

R ! C

see [Lur16, Definition D.1.1.1] for a definition. If C is presentable, then the datum of a linear R-action is equivalent
to the existence of a colimit preserving symmetric monoidal functor

F : Mod
cn

R ! C

see [Lur16, Remark D.1.1.5]. If moreover, C is presentable and stable, then the datum of a linear R-action on C is
equivalent to give a colimit preserving monoidal functor

F : ModR ! C.

Proposition 5.4.1.10. Let A 2 CAlg
ad

k� . The 1-category Mod
ad
(X)(A) is a symmetric monoidal presentable

A-linear stable1-category. The1-categories Coh+(X)
ad
(A) and Perf

ad
(X)(A) are both symmetric monoidal

A-linear idempotent complete stable1-categories and the former admits a canonical t-structure. The1-category
Vect

ad
(X)(A) is symmetric monoidal, admits an A-linear action and it is moreover additive.
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Proof. Let Xi 2 S/f and n � 1 an integer. Each transition functor

Fun
�
Xi,Perf(An)

�
! Fun

�
Xj ,Perf(An)

�

is an exact functor between stable1-categories, see [Lur12c, Proposition 1.1.4.6]. Thanks to [Lur12c, Theorem
5.5.3.18] the colimit

colim
Ti2S/f

Fun
�
Xi, ,Perf(An)

�
(5.4.1.1)

is again a stable1-category, as the transition maps are exact. Furthermore, each1-category

Fun
�
Xi,Perf(An)

�

admits a symmetric monoidal structure which is induced by the one on Perf(An) objectwise. Since the transition
maps above are symmetric monoidal functors, one concludes that the1-category in ?? is naturally endowed with
a symmetric monoidal structure and by construction it is An-linear. Each of the transition functors

colim
Xi2S/f

Fun
�
Xi,Perf(An)

�
! colim

Xi2S/f

Fun
�
Xi,Perf(Am)

�

are colimit preserving and exact. The fact that Perfad(X)(A) is idempotent complete follows by stability of
idempotent completion under filtered colimits [Lur09b, Propositin 4.4.5.21] and limits of 1-categories. There-
fore, thanks to [Lur12c, Proposition 1.1.4.4] one deduces that the limit

limn colim
Xi2S/f

Fun
�
Xi,Perf(An)

�
(5.4.1.2)

is stable, as desired. The fact the 1-category displayed in (5.4.1.2) is symmetric monoidal follows from our
previous considerations together with [Lur09b, Proposition 3.3.3.2]. By taking ind-completion one deduces that
Mod

ad
(X)(A) is presentable. The statements for Coh+(X)

ad
(A) and Vect(X)

ad
(A) are similar but easier.

Remark 5.4.1.11. The 1-category Perf
ad
(X)(A) is rigid, i.e. every object in Perf

ad
(X)(A) is dualizable, as

the tensor product is computed objectwise. We conclude that the conditions in [Lur16, Definition D.7.4.1] are
verified, thus Mod

ad
(X)(A) is a locally rigid1-category.

Construction 5.4.1.12. We have a functor

CAlgadk� ⇥ Nop ! Cat1

given on objects by the formula
(A, n) 7! Perf(An) 2 Cat1.

Thanks to [GHN15a, Lemma 6.2 and Example 6.3] the association

(C,D) 2 Catop1 ⇥ Cat1 7! Fun
�
C,D

�
2 Cat1

is functorial. Thus we can consider the composite

F : Sop ⇥ CAlg
ad

k� ⇥ Nop ! Cat1

given on objects by the formula

(X,A, n) 7! Fun
�
X,Perf(An)

�
2 Cat1.

Via straightening we obtain a coCartesian fibration

D! S⇥ CAlg
ad

k� ⇥ Nop
.

Given a cofiltered diagram h : I ! S we can consider the pullback diagram

DI D

I
op ⇥ CAlg

ad

k� ! Nop Sop ⇥ CAlg
ad

k� ⇥ Nop
.
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Thus we obtain a coCartesian fibration

DI ! I
op ⇥ CAlg

ad

k� ⇥ Nop

whose fiber at (i, A, n) 2 I
op ⇥ CAlg

ad

k� ⇥ Nop can be identified with the1-category

Fun
�
h(i),Perf(An)

�
2 Cat1.

Furthermore, the composition
DI ! CAlg

ad

k� ! Nop
,

under the natural projection I
op ⇥ CAlg

ad

k� ! Nop ! CAlg
ad

k� ! Nop, is a coCartesian fibration whose fiber at
(A, n) is naturally equivalent to

colim
i2Iop

Fun
�
h(i),Perf(An)

�
.

Unstraightening produces a functor
F : CAlg

ad

k� ⇥ Nop ! Cat1

given on objects by the formula

(A, n) 7! colim
i2Iop

Fun
�
h(i),Perf(An)

�
2 Cat1.

Composing it with the projection functor CAlg
ad

k� ⇥ Nop ! Nop produces a coCartesian fibration

DI ! Nop
.

Consider the1-category of coCartesian sections

Map
[
�
Nop

,DI

�
2 Cat1.

We have a canonical functor

g : Map
[
�
Nop

,DI

�
! Map

[
�
Nop

,CAlg
ad

k� ⇥ Nop
�

' CAlg
ad

k� .

The coCartesian fibration g produces a well defined functor, up to contractible indeterminacy,

Perf
ad
(X) : CAlg

ad

k� ! Cat1

given on objects by the formula

A 2 CAlg
ad

k� 7! Perf
ad
(X)(A) 2 Cat1.

Similarly, we can define functors

Mod
ad
(X), Coh

+
(X)

ad
, Vect

ad
(X) : CAlg

ad

k� ! Cat1

given on objects by the formulas

A 2 CAlg
ad

k� 7! Mod
ad
(X)(A) 2 Cat1,

A 2 CAlg
ad

k� 7! Coh
+
(X)

ad
(A) 2 Cat1,

A 2 CAlg
ad

k� 7! Vect
ad
(X)(A) 2 Cat1,

respectively.
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5.4.2 Geometric properties of Perfad(X)

In this §we prove that Perfad(X) has a rich geometrical information, namely it satisfies hyper-descent, it is
nilcomplete and cohesive and it admits a global k�-adic cotangent complex.

Definition 5.4.2.1. We equip the 1-category CAlg
ad

k� with the étale topology. Denote by (CAlg
ad

k� , ⌧ét) the cor-
responding étale 1-site. Let Psm denote the class of smooth morphisms in the 1-category CAlg

ad

k� . The triple
(CAlgadk� , ⌧ét,Psm) forms a geometric context, which we refer to as the k�-adic geometric context. The1-category
of geometric stacks on (CAlg

ad

k� , ⌧ét,Psm) is denoted as dSt(CAlg
ad

k� , ⌧ét,Psm).

Lemma 5.4.2.2. The pre-sheaf Perfad(X) : CAlg
ad

k� ! Cat1 satisfies étale hyper-descent.

Proof. Let A•
: �op ! CAlg

ad

k� denote an hyper-covering of a given derived k
�-adic algebra A 2 CAlg

ad

k� . We
have thus an equivalence

A ' lim
[n]2�op

A
[n]

in the1-category CAlg
ad

k� . Let m � 1 be an integer. Modding out by p
m produces an étale hyper-covering

A
•
m : �op ! CAlgk�

m

in the1-site (CAlgk�
n
, ⌧ét). Therefore, we have an equivalence

Am ' lim
[n]2�op

A
[n]
m

in the1-category CAlgk�
m

. Therefore, we have a chain of equivalences of the form

Perf
ad
(X)( lim

[n]2�op
A

[n]
) ' lim

[n]2�op
lim
k�1

FunPro(Cat1)

�
X,Perf(A

[n]
k

�

' lim
m�1

lim
[n]2�op

FunPro(Cat1)

�
X,Perf(A

[n]
k

�

' lim
[n]2�op

Perf
ad
(X)(A)

where we used in a crucial way the fact that Perf : CAlg
ad

k� ! Cat1 satisfies étale hyper-descent.

Proposition 5.4.2.3. The stack Perf
ad
(X) : CAlg

ad

k� ! Cat1 is cohesive and nilcomplete.

Before proving Theorem 5.4.2.3 we prove first some preliminary results:

Lemma 5.4.2.4. Let A 2 CAlg
ad

k� be p-complete and M 2 Coh
+
(A), then we have a canonical equivalence

⌦
1
ad
(M) ' lim

n�1

⌦
1
ad
(M ⌦A An)

where ⌦1
ad

: Coh
+
(A)! (CAlg

ad

k�)A/ is the projection functor introduced in [Ant18b, §3.3].

Proof. By definition ⌦1
ad
(M) ' A�M . As M is eventually connective it follows that we have an equivalence

M ' lim
n�1

M ⌦A An.

The functor ⌦1
ad

being a right adjoint commutes with limits. As a consequence, we have a chain of equivalences
of the form

A�M ' ⌦1
ad
(M)

' ⌦1
ad
(lim
n�1

M ⌦A An)

' lim
n�1

⌦
1
ad
(M ⌦A An)

in the1-category Coh
+
(A). Moreover, the morphism A! An induces a canonical equivalence of functors

(�⌦A An) � ⌦1
ad
' ⌦1

ad
� (�⌦A An).

The result now follows by the fact that A�M is p-complete together with a standard cofinality argument.
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Proof of Theorem 5.4.2.3. We first treat cohesiveness of Perfad(X). The pre-sheaf of perfect complexes

Perf : CAlg
ad

k� ! Cat1,

is cohesive thanks to [Lur12a, Proposition 3.4.10] together with Theorem 5.4.2.4. As both filtered colimits and
limits commute with fiber products, we deduce that the same is true for Perfad(X).

We now prove that Perfad(X) is nilcomplete. Fix an integer n � 1, the pre-sheaf of perfect modules

Perf : CAlgk�
n
! Cat1

is nilcomplete, thanks to [Lur12a, Proposition 3.4.10]. This implies that given An 2 CAlgk�
n

we have natural
equivalences

Perf(An) ' lim
m�0

Perf(⌧mAn).

Thanks to the Cat1-enriched version of [Lur09b, Proposition 5.3.5.3] the inclusion

Pro(Cat1) ,! P(Catop1)
op

preserves cofiltered limits, where the latter denotes the1-category of pre-sheaves on Catop1 . Therefore, cofiltered
limits in Pro(Cat1) can be computed objectwise. Thus given A 2 CAlg

ad

k� it follows that we have natural
equivalences

Perf
ad
(X)(A) ' FunPro(Cat1)

�
X,Perf(A)

�

FunPro(Cat1)

�
X, lim

n�0

Perf(⌧nA)
�

lim
limn�0

FunPro(Cat1)

�
X,Perf(⌧mA)

�

lim
limn�0

Perf
ad
(X)(⌧m),

as the functor ⌧m : CAlgk� ! CAlgk� is a left adjoint and therefore commutes with pushouts, thus

⌧mAn ' (⌧mA)n.

Remark 5.4.2.5. The above result holds true with an analogous proof for the functors Vectad(X) and Coh
+
(X)

ad.
However, the result does not hold for Mod

ad
(X) as it is not true already in the discrete case.

We now devote ourselves to the computation of a cotangent complex for Perfad(X). We will need a few
preliminary results first.

Proposition 5.4.2.6. Let A 2 CAlg
ad

k� and M 2 Coh
+
(A) which we assume furthermore to be p-torsion free. Let

⇢ 2 Perf
ad
(X)(A). Given ⇢0 2 Perf

ad
(X)(A�M) together with a morphism

✓ : ⇢
0 ! ⇢⌦A (A�M)

in the1-category Coh+(X)
ad
(A), which we assume to be an equivalence after base change along the canonical

morphism
A! A�M,

in the1-category Coh
+
(X)

ad
(A). Then ✓ is an equivalence in the1-category Coh

+
(X)

ad
(A�M).

Proof. It suffices to prove the result in the case where

↵ : ⇢
0 ! ⇢⌦A (A�M)

in the1-category Perf
ad
(X)(A�M) coincides with the identify morphism

Id : ⇢! ⇢
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in the 1-category Coh
+
(X)

ad
(A). Consider the cofiber cofib(↵) 2 Coh

+
(X)

ad
(A � M), it is a dualizable

object in the1-category Coh
+
(X)

ad
(A�M) and its image in Coh

+
(X)

ad
(A) is equivalent to the zero object.

We wish to prove that the coevaluation morphism

coev : A�M ! cofib(↵)⌦ cofib(↵)
_
,

is the zero map in the1-category Coh
+
(X)

ad
(A). Consider the inclusion morphism

A! A�M

in Mod(A). By naturality of taking tensor products we obtain that tensoring the above morphism with the coeval-
uation morphism induces a commutative diagram of the form

A (cofib(↵)⌦ cofib(↵)
_
)⌦A

A�M cofib(↵)⌦ cofib(↵)
_
.

coev⌦A

coev

Since coev ⌦A corresponds to the coevaluation morphism of the dualizable object

cofib(↵)⌦A�M A 2 Coh
+
(X)

ad
(A)

it coincides with the identity morphism

cofib(↵)⌦A! cofib(↵)⌦A,

which is the zero morphism, by our assumption on ↵. It follows that the A-linear morphism

A! cofib(↵)⌦ cofib(↵)
_

is the zero morphism, and thus by adjunction (with respect to the extension and restriction of scalars along A !
A�M ), the coevaluation map

coev : A�M ! cofib(↵)⌦ cofib(↵)
_

is the zero morphism, as desired. Thus cofib(↵) ' 0 in the1-category Coh
+
(X)

ad
(A�M), as desired.

Proposition 5.4.2.7. Let A 2 CAlg
ad

k� and M 2 Coh
+
(A) a p-torsion free almost perfect A-module. Given

⇢ 2 Perf
ad
(X)(A) the fiber at ⇢ of the natural functor

(pA,⇢)
'
: Perf

ad
(X)(A�M)

' ! Perf
ad
(X)(A)

'

can be identified canonically with

fib⇢(pA,⇢) ' Map
Coh

+
(X)ad(A)

�
⇢⌦ ⇢_,M [1]

�
.

Proof. The canonical functor pA,M exhibits Perfad(X)(A�M) as an object in the1-category S/Perfad(X)(A)ad .
This is a right fibration of spaces and thus it induces a functor

pM : Perf
ad
(X)(A)

' ! S.

Given ⇢ 2 Perf
ad
(X)(A) we have an equivalence of spaces

pM (⇢) ' fib⇢(pA,M ).

Thanks to Theorem 5.4.2.6 and its proof the loop space based at the identify of the object

⇢⌦A (A�M) 2 Coh
+
(X)

ad
(A�M),
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which we denote simply by ⌦(pm(⇢)), can be identified with

⌦(pM (⇢)) '
' fibId⇢

�
Map

Coh
+
(X)ad(A�M)

�
⇢⌦ (A�M), ⇢⌦ (A�M)

�
! Map

Coh
+
(X)ad(A)

�
⇢, ⇢

��
.

We denote the latter object simply by Map/⇢

�
⇢ ⌦A (A �M), ⇢ ⌦A (A �M)

�
. Since the underlying A-module

of ⇢⌦A (A�M) can be identified with ⇢� ⇢⌦A M , we have a chain of natural equivalences of mapping spaces
of the form

Map/⇢

�
⇢⌦A (A�M), ⇢⌦A (A�M)

�
'
' Map

Coh
+
(X)(A)/⇢

�
⇢⌦A (A�M), ⇢⌦A (A�M)

�

' Map
Coh

+
(X)(A)/⇢

�
⇢, ⇢⌦A (A�M)

�

where the latter mapping space is pointed at the zero morphism. Since ⇢ 2 Perf
ad
(X)(A) is a dualizable object

we have an identification of mapping spaces

Map
Coh

+
(X)ad(A)

�
⇢, ⇢⌦A M

�
' Map

Coh
+
(X)ad(A)

�
⇢⌦ ⇢_,M

�
.

Consider teh pullback diagram of derived k
�-adic extensions

A�M A

A A�M [1]

in the 1-category CAlg
ad

k� . As Perf
ad
(X) is cohesive and the right adjoint (�)' : Cat1 ! S commutes with

limits we obtain a pullback diagram of the form

Perf
ad
(X)(A�M) Perf

ad
(X)(A)

Perf
ad
(X)(A) Perf(A�M [1])

in the1-category S. By taking fibers at ⇢ 2 Perf
ad
(X)(A) we have a pullback diagram of spaces

pM (⇢) ⇤

⇤ pM [1](⇢)

in the 1-category S. By our previous computations, replacing M with the shift M [1] produces the chain of
equivalences

pM (⇢) '
' ⌦(pM [1](⇢))

' Map
Coh

+
(X)ad(A)

�
⇢⌦ ⇢_,M [1]

�
,

as desired.

Definition 5.4.2.8. Let X 2 Pro(Sfc) be a connected profinite space. Let A 2 CAlg
ad

k� and ⇢ 2 Perf
ad
(X)(A).

We say that X is locally p-cohomologically perfect at ⇢ if the object

Map
Perf

ad
(X)(A)

�
1, ⇢

�
2 Sp

where 1 2 Perf
ad
(X)(A) denotes the unit for the symmetric monoidal strucutre, equipped with its canonical

A-linear action is equivalent to a perfect A-module. We say that X is cohomologically perfect if it is locally
cohomologically perfect for every ⇢ 2 Perf

ad
(X)(A) for every admissible derived k

�-adic algebra A 2 CAlg
ad

k� .
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Proposition 5.4.2.9. Let X 2 Pro(Sfc) be a p-cohomologically perfect profinite space. Then for every A 2
CAlgadk� and every ⇢ 2 Perf

ad
(X)(A) the functor

F : Coh
+
(A)! S

given informally via the association

M 2 Coh
+
(A) 7! fib⇢

�
Perf

ad
(X)(A�M)! Perf

ad
(X)(A)

�
2 S

is corepresentable by the A-module

Map
Perf

ad
(X)(A)

�
1, ⇢⌦ ⇢_[1]

�_ 2 ModA

Proof. We first prove the following assertion: let C be an A-linear stable presentable 1-category, and C 2 C
denote a compact object of C. Then for every object M 2 ModA we have an equivalence

Map
C

�
C,M

�
' Map

C

�
C, 1C

�
⌦A M,

in the 1-category ModA, where 1C denotes the unit for symmetric monoidal structure on C. Let D ✓ ModA

denote the full subcategory spanned by those A-modules M such that the assertion holds true. Clearly A 2 D.
Since A 2 ModA generates the1-category ModA under small colimits, it suffices to show that D is closed under
small colimits. Suppose that

M ' colim
i2I

Mi,

such that Mi 2 D and I is a filtered1-category. Then by our compactness assumption it follows that we have a
chain of equivalences

Map
C
(C,M) ' Map

C

�
C, colim

i
Mi

�

' colim
i

Map
C

�
C,Mi

�

' colim
i

Map
C

�
C, 1

�
⌦A Mi

' Map
C

�
C, 1

�
⌦A (colim

i
Mi)

' Map
C

�
C, 1C

�
⌦A M.

Thus D is closed under filtered colimits. It suffices to show to show then that D is closed under finite colimits.
Since ModA is a stable1-category it suffices to show that D is closed under finite coproducts and cofibers. Let

f : C ! D

be a morphism in D, we wish to show that cofib(f)D. Thanks to [Lur12c, Theorem 1.1.2.14] we have an equiva-
lence

cofib(f) ' fib(f)[1].

As a consequence, we can write

Map
C

�
C, cofib(f)

�
' Map

C

�
C, fib(f)[1]

�

' fib
�
Map

C

�
C, f

��
[1]

' cofib
�
Map

C

�
C, f

��

' Map
C

�
C, 1

�
⌦A cofib(f).

The case of coproducts follows along the same lines and it is easier. From this we conclude that

D ' ModA,

as desired. In our case, let C := Mod
ad
(X)(A) and observe that the assertion implies that for every M 2 ModA

we have a chain of equivalences

Map
Mod

ad
(X)(A)

�
⇢⌦ ⇢_,M [1]

�
' Map

Mod
ad

(X)(A)

�
⌦(⇢⌦ ⇢_), 1

�
⌦A M

Map
Mod

ad
(X)(A)

�
1, ⇢⌦ ⇢_[1]

�
⌦A M.
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Furthermore, it follows by our hypothesis on X that

C := Map
Mod

ad
(X)(A)

�
1, ⇢⌦ ⇢_[1]

�
2 ModA

is a perfect A-module. Thus we have a chain of equivalences

Map
ModA

�
C

_
,M

�
' Map

ModA

�
A,C ⌦A M

�

Map
Perf

ad
(X)(A)

�
1, (⇢⌦ ⇢)_ ⌦A M

�

Map
Perf

ad
(X)(A)

�
⇢⌦ ⇢_,M [1]

�

and the result now follows by Theorem 5.4.2.9.

5.5 Enriched1-categories
In this §we will state and prove the results in the theory of enriched1-categories that will prove to be more useful
for us in the body of the present text. We will follow mainly the expositions presented in [GH15] and [Lur12c,
§4.2].

5.5.1 Preliminaries on Pro(S) and Ind(Pro(S))-enriched1-categories
We will moreover be more interested in the case where the enrichments are over the 1-categories Pro(S) and
Ind(Pro(S)) of pro-objects and ind-pro-objects in S, respectively. The following remark states that both defini-
tions [Lur12c, Definition 4.2.25] and [GH15, Definition 5.4.3] are equivalent in the Cartesian symmetric monoidal
case:

Remark 5.5.1.1. Recall that in [Lur12c, Definition 4.2.5.25] the notion of a enrichment is defined as a pseud-
enrichment p : C⌦ ! LM⌦ together with the requirement that for any two objects M, N 2 Cm we have a functo-
rial morphism space object Mor

�
M,N

�
2 Ca. Following a private communication with David Gepner, whenever

Ca is a Cartesian symmetric monoidal 1-category, both definitions [GH15, Definition 5.4.3] and [GH15, Defi-
nition 7.2.14] are equivalent. Thanks to this fact, we can consider the1-category of Ca-enriched1-categories,
Cat1

�
Pro(S)

�
as the full subcategory of Alg

cat
(Ca) spanned by those complete objects, in the sense of [GH15,

Definition 4.3.1].

We start with a general Lemma which will be helpful for us:

Lemma 5.5.1.2. Let V⌦ be a presentably symmetric monoidal1-category. Suppose we are given a small diagram
F : I ! Cat1(V⌦

). Then the limit C := lim
I
F exists in the1-category Cat1(V⌦

). Furthermore, given any two
objects x, y 2 C we have an equivalence of mapping objects

C(x, y) ' lim
i2I

Ci(xi, yi) 2 V⌦

where Ci := F (i), for each i 2 I and xi, yi denote the images of both x and y under the projection functor
C! Ci, respectively.

Proof. We use the notations of [GH15]. In this case, we have a chain of equivalences in V⌦

C(x, y) '
' Map⇤

`
⇤/Cat1(V⌦)

�
E

1
,C)

' lim
i2I

Map⇤
`

⇤/Cat1(V⌦)

�
E

1
,Ci

�

' lim
i2I

Ci(xi, yi)

where Map denotes the internal mapping object in V⌦. This finishes the proof of the statement.
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Construction 5.5.1.3. Let Mat: Pro(S)! S denote the materialization functor given on objects by the formula

X 2 Pro(S) 7! Map
Pro(S)

�
⇤, X

�

The functor Mat preserves limits and it thus lifts to a symmetric monoidal functor

Mat
⇥
: Pro(S)⇥ ! S⇥,

where we consider the corresponding Cartesian symmetric monoidal structures on both 1-categories. Further-
more, thanks to [GH15, Corollary 5.7.6] we have a realization functor

Matcat : Cat1
�
Pro(S)

�
! Cat1(S).

We have an equivalence of 1-categories Cat1(S) ' Cat1, thanks to [GH15, Theorem 5.7.6]. Therefore, we
obtain an induced functor

Matcat : Cat1
�
Pro(S)

�
! Cat1.

Similarly, we have a materialization functor Mat: Ind(Pro(S))! S given on objects by the formula

X 2 Ind
�
Pro

�
S
��
! Map

Ind(Pro(S))

�
⇤, X

�
2 S.

By construction, this functor commutes with finite limits. Therefore, we are given a well defined functor

ECat1 ! Cat1.

Construction 5.5.1.4. Let A 2 CAlg
ad

k� be a derived k
�-adic algebra. Denote by An 2 CAlgk�

n
the pushout of the

diagram
A[u] A

A An

u 7!0

u 7!tn

computed in the1-category CAlgk� . For this reason, base change along the morphism of derived algebras

A! An, for each n

induces a natural morphism
Perf(A)! limn�1Perf(An),

which is an equivalence, thanks to [Lur16, Lemma 8.1.2.1]. For this reason, we can consider the stable 1-
category Perf(A) enriched over Pro(S), i.e. Perf(A) 2 Cat1

�
Pro(S)

�
. Given M 2 Perf(A) we can enhance

End(M) 2 MonE1(S) with a pro-structure via the equivalence

End(M) ' limn�1End(M ⌦A An).

Therefore, we can consider End(M) naturally as an object in the1-category MonE1

�
Pro(S)

�
.

Remark 5.5.1.5. We have a canonical functor

Pro
�
S
�
! Cat1

�
Pro(S)

�

induced by the universal property of the pro-construction together with the canonical inclusion functor S ,! Cat1.
For this reason, given X 2 Pro(S) we can consider the1-category of continuous k�-adic representations of X
defined as the functor1-category

FunCat1(Pro(S))

�
X,Perf(A)

�
2 Cat1.

Suppose X 2 Pro(S) is connected, i.e.

⇡0Mat(X) ' ⇡0Map
Pro(S)

(⇤, X) ' ⇤.

Then there exists a canonical functor ⇡A : FunCat1(Pro(S))

�
X,Perf(A)

�
! Perf(A) which sends a continuous

A-adic representation
⇢ : X ! Perf(A)

to the underlying perfect A-module M := ⇢(⇤) 2 Perf(A).
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Lemma 5.5.1.6. Let X 2 Pro(Sfc) be a connected profinite space. Given A 2 CAlg
ad

k� and M 2 Perf(A) the
fiber of

⇡A : : FunCat1(Pro(S))

�
X,Perf(A)

�
! Perf(A)

over M 2 Perf(A) is canonical equivalent to the space

Map
MonE1 (Pro(S))

�
⌦X,End(M)

�
2 S.

Proof. Let M 2 Perf(A). The fiber of ⇡A over A is equivalent to

Map
Pro(S)

�
X,BEnd(M)

�
2 S

and applying May’s Theorem together with the limit colimit formula for mapping spaces in Pro(S) we obtain the
canonical equivalence

Map
Pro(S)

�
X,BEnd(M)

�
' Map

MonE1 (Pro(S))

�
⌦X,End(M)

�

of mapping spaces. The result now follows.

Construction 5.5.1.7. The fully faithful embedding

S ,! Pro(S)

induces a fully faithful functor
Cat1 ! Cat1

�
Pro(S)

�

which can be extended, via the universal property of pro-completion, by cofiltered limits to a functor

F : Pro(Cat1)! Cat1
�
Pro(S)

�
.

Moreover, given A 2 CAlg
ad

k� the essential image of Perf(A) 2 Pro(Cat1) by F can be identified with Perf(A) 2
Cat1(Pro(S)) as in Theorem 5.5.1.4 as the latter can be identified with

Perf(A) ' lim
n�1

Perf(An) 2 Cat1(Pro(S))

and by construction F preserves cofiltered limits. Similarly, we have a commutative diagram of the form

Pro(S) Pro(Cat1)

Cat1
�
Pro(S)

� F

and for this reason X 2 Pro(S) ✓ Pro(Cat1) is sent via F to X 2 Cat1(Pro(S)). As a consequence the functor
F : Pro(Cat1)! Cat1(Pro(S)) induces a well defined functor

�A : FunPro(Cat1)

�
X,Perf(A)

�
! FunCat1(Pro(S))

�
X,Perf(A)

�
.

Moreover, �A is functorial in A and thus produces a well defined morphism

� : Perf
ad
(X)! FunCat1(Pro(S))

�
X,Perf(�)

�

in the1-category Fun
�
CAlg

ad

k� ,Cat1
�
.

We have now two potential definitions for the moduli stack Perf
ad
(X), namely the one provided in the pre-

vious §and the second one by defining it via the Pro(S)-enriched 1-categories approach. The following result
implies that there is no ambiguity involved in chosen one of these:
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Proposition 5.5.1.8. Let X 2 Pro(Sfc) be a connected profinite space. Then the functor

� : Perf
ad
(X)! FunCat1(Pro(S))

�
X,Perf(�)

�

is an equivalence in the1-category Fun(CAlg
ad

k� ,Cat1).

Before giving a proof of Theorem 5.5.1.8 we need a preliminary lemma:

Lemma 5.5.1.9. Let X 2 Pro(S) be a connected pro-space. Then X 2 Pro(S1
), where the latter denotes the

1-category of pro-objects in the1-category of connected spaces, S1.

Proof. Let X 2 Pro(cS) be indexed by a cofiltered1-category I . More explicitly, we can identify X with

X ' lim
i2I

Xi

for suitable Xi 2 S. By construction, for each i 2 I , we have an induced morphism

�i : X ! Xi.

By our hypothesis on X„ we conclude that each �i should factor through a connected component X�
i ✓ Xi. We

can thus form the pro-system {X�
i }i2I 2 Pro(S), which lies in the essential image of the inclusion functor

Pro(S1
) ,! Pro(S).

Our goal is to show that the induced maps X ! Xi induce an equivalence

X ' {X�
i }i2I

in the1-category Pro(S). It suffices to show that we have an equivalence of mapping spaces

✓ : lim
i2I

Map
S

�
Y,X

�
i

�
' lim

i2I
Map

S

�
Y,Xi

�

for every connected space Y 2 S1. Notice that ✓ is the cofiltered limit of monomorphisms in the1-category S.
Thus it is itself a monomorphism. It suffices to show that it is also an effective epimorphism in S.

Let ⇤ ! Y be the unique, up to contractible indeterminacy, morphism in the1-category S. For each i 2 I ,
consider also the canonical map

lim
i2I

Map
S

�
Y,Xi

�
! Xi

induced by �i. Such morphism must necessarily factor through X
�
i ✓ Xi, by our choice of X�

i . It now follows
that ⇡0(✓) is surjective. Consequently, the morphism ✓ is an effective epimorphism. The result now follows.

Proof of Theorem 5.5.1.8. Let A 2 CAlg
ad

k� . Both the1-categories

Perf
ad
(X)(A), FunCat1(Pro(S))

�
X,Perf(A)

�
2 Cat1

are fibered over Perf(A) and we have a commutative diagram of the form

Perf
ad
(X)(A) FunCat1(Pro(S))

�
X,Perf(A)

�

Perf(A)

�A

(5.5.1.1)

of coCartesian fibrations over Perf(A). Therefore, it suffices to show that for each M 2 Perf(A) the fiber products
over M of both vertical functors displayed in (5.5.1.1) are equivalent via �A. Thanks to Theorem 5.5.1.9 together
with limit-colimit formula for mapping spaces on1-categories of pro-objects it follows that we can identify the
fiber of the left hand side with

Map
Pro(S)

�
X,BEnd(M)

�
.

The result now follows due to Theorem 5.5.1.6.
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5.5.2 Enriched1-categories and p-adic continuous representations of homotopy types
Definition 5.5.2.1. Let S denote the sphere spectrum. It has a natural E1-ring structure, being the unit object of
the stable1-category of spectra, Sp. For each n � 1, denote by S/p

n the pushout of the diagram

S[u] S

S S/p
n

u 7!pn

u 7!0

computed in the1-category CAlg(Sp). We can also define the p-completion

S
^
p ' limn�1S/p

n 2 Sp .

The derived 1-category ModS^
p

admits an induced symmetric monoidal structure from Sp such that S^
p is the

unit object. Moreover, we can consider the full subcategory
�
ModS^

p

�
nil
✓ ModS^

p

spanned by p-nilpotent modules, see [Lur16, §7.1]. Moreover, the full subcategory
�
ModS^

p

�
nil

is naturally
symmetric monoidal. We denote by Sp

pro
(p) the1-category Pro

�
(ModS^

p
)nil

�
.

Notation 5.5.2.2. We shall denote the symmetric monoidal1-category associated to Sp
pro

(p) by Sp
pro

(p)
⌦.

Remark 5.5.2.3. For each n � 1, the1-category ModS/pn admits a symmetric monoidal structure induced from
the smash product of spectra. Moreover, we have a natural lax symmetric monoidal functor

Mod
⌦
S/pn !

�
ModS^

p

�
nil

which factors the usual restriction functor

Mod
⌦
S/pn ! Mod

⌦
S^
p

along the canonical morphism S
^
p ! S/p

n in the1-category Sp. This implies that we have a canonical symmet-
ric monoidal functor

Mod
⌦
S/pn ! Sp

pro
(p)

⌦ (5.5.2.1)

which commutes with cofiltered limits, see [Lur12c, Proposition 6.3.1.13] and its proof. Moreover, given M :=

lim↵M↵ and M
0 := lim�M� objects in Sp

pro
(p) we have an equivalence

M ⌦M
0 ' lim↵, �

�
M↵ ⌦M�)

in the1-category Sp
pro

(p).

Remark 5.5.2.4. Let A 2 CAlg
ad

k� be a derived k
�-adic algebra. For each n � 1, the derived k

�
n-algebra An

admits a natural action of S/pn. Therefore, the stable 1-category Perf(An) is not only enriched over spectra
but actually enriched over the derived 1-category ModS/pn . The existence of the symmetric monoidal functor
displayed in (5.5.2.1) implies the existence of an induced action of the1-category Sp

pro
(p) on Perf(An). Passing

to the limit, we deduce that the 1-category Perf(A) can be upgraded naturally to an object in the 1-category
Cat1

�
Sp

pro
(p)

�
.

Thanks to Theorem 5.5.2.4 we have two natural enriched structures on Perf(A), for A 2 CAlg
ad

k� . Namely, a
Pro(S)-enriched structure on Perf(A) and an Sp

pro
(p)-enriched structure. We will show that these are compatible

in a sense which we will precise hereafter.

Remark 5.5.2.5. Consider the usual connective cover functor

⌦
1
: Sp! S.
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It can be upgraded to a lax symmetric monoidal functor ⌦1,⌦
: Sp

⌦ ! S⇥, where S is considered with its
Cartesian symmetric monoidal structure. Therefore, ⌦1 induces a lax symmetric monoidal functor

⌦
1
pro

(p) : Sp
pro

(p)
⌦ ! Pro(S)⇥.

For this reason, there exists a natural functor ⌦1
pro

(p) : Cat1
�
Sp

pro
(p)

�
! Cat1

�
Pro(S)

�
. Moreover, the

image of Perf(A) 2 Cat1
�
Sp

pro
(p)

�
under ⌦1

pro
(p) is naturally equivalent to Perf(A) 2 Cat1

�
Pro(S)

�
whose

Pro(S)-structure is the one introduced in Theorem 5.5.1.4.

Construction 5.5.2.6. Consider now the1-category Ind
�
Sp

pro
(p)

�
of ind-objects on the presentable stable1-

category Sp
pro

(p). For each M 2 Sp
pro

(p), the multiplication map

p : M !M

induces a functor
(�)[p�1

] : Ind
�
Sp

pro
(p)

�
! Ind

�
Sp

pro
(p)

�

given informally on objects by the formula

M 7!M ⌦k� k := colim
p : M!M

M.

Notation 5.5.2.7. Denote by Sp
pro

(p)p�1 the essential image of the full subcategory Sp
pro

(p) ✓ Ind
�
Sp

pro
(p)

�

under the functor
(�)[p�1

] : Ind
�
Sp

pro
(p)

�
! Ind

�
Sp

pro
(p)

�
.

Moreover, we will denote by
Lp : Sp

pro
(p)! Sp

pro
(p)p�1

the induced functor from (�)[p�1
] restricted to Sp

pro
(p).

Lemma 5.5.2.8. The1-category Sp
pro

(p)p�1 admits a natural symmetric monoidal structure induced from the
one on Ind

�
Sp

pro
(p)

�
. Moreover, the functor

Lp : Sp
pro

(p)! Sp
pro

(p)p�1

admits an essentially unique natural extension to a symmetric monoidal functor L⌦
p : Sp

pro
(p)! Sp

pro
(p)p�1 .

Proof. The symmetric monoidal structure on Ind
�
Sp

pro
(p)

�
is induced by the symmetric monoidal structure

on Sp
pro

(p), by extending via filtered colimits. For this reason, given M, M
0 2 Sp

pro
(p) we have natural

equivalences
M ⌦k� k ⌦M

0
[p

�1
] '

�
M ⌦M

0�
[p

�1
] 2 Sp

pro
(p),

and the result follows.

Lemma 5.5.2.9. Let M, M
0 2 Sp

pro
(p). Then we have an equivalence of mapping spaces

Map
Sppro(p)

�
M,M

0�
[p

�1
]! Map

Sppro(p)

�
M ⌦k� k,M

0 ⌦k� k
�

where
Map

Sppro(p)

�
M,M

0�
[p

�1
] := colim

mult by p
Map

Sppro(p)

�
M,M

0�
.

Proof. It is a direct consequence of the characterization of mapping spaces in1-categories of ind-objects.

Proposition 5.5.2.10. Let A 2 CAlg
ad

k� be a derived k
�-adic algebra. Denote by Coh

+
(A ⌦k� k) denote the

1-category of almost connectibe coherent A⌦k� k-modules. Then the1-category Coh
+
(A⌦k� k) is naturally

enriched over the1-category Sp
pro

(p)p�1 .
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Proof. We will actually prove a stronger statement, namely we will show that Lp(Coh
+
(A)) is a canonical up-

grade of the1-category Coh
+
(A⌦k� k) as an Sp

pro
(p)p�1 -enriched1-category. There exists a materialization

functor Mat: Sp
pro

(p)! S, given on objects by the formula

M 2 Sp
pro

(p) 7! Map
Sppro(p)

�
⇤,M

�
2 S.

Moreover, the functor Matcat is lax symmetric monoidal. Thus it induces a well defined functor at the level of
enriched1-categories

Matcat : Cat1
�
Sp

pro
(p)p�1

�
! Cat1.

Thanks to [GH15, Corollary 5.7.6] the functor L⌦
p : Sp

pro
(p)

⌦ ! Sp
pro

(p)
⌦ induces a well defined functor

Lp : Cat1
�
Sp

pro
(p)

�
! Cat1

�
Sp

pro
(p)p�1

�
.

Therefore, given A 2 CAlg
ad

k� the 1-category Lp

�
Coh

+
(A)

�
is naturally enriched over Sp

pro
(p)p�1 . Further-

more, given M, N 2 Coh
+
(A) we have an equivalence of mapping objects

Map
Lp

�
Coh

+
(A)

��M,N
�
' Map

Coh
+
(A)

�
M,N

�
[p

�1
] 2 Sp

pro
(p)p�1 ,

whose essential image under Matcat coincides with the mapping space

colim
mult by p

Map
Coh

+
(A)

�
M,N

�
' Map

Coh
+
(A⌦k�k)

�
M ⌦k� k,N ⌦k� k

�
.

[Ant18b, Proposition A.1.5] imlies that every object in the1-category Coh
+
(A ⌦k� k) admits a formal model

living in the 1-category Coh
+
(A). Thus, the underlying space of the enriched 1-category Lp

�
Coh

+
(A)

�
is

equivalent to Coh
+
(A⌦k� k)

'. It then follows that we have a natural equivalence

Matcat

�
Lp(Coh

+
(A)) ' Coh

+
(A⌦k� k)

in the1-category Cat1.

Definition 5.5.2.11. Let A 2 CAlg
ad

k� be a derived k
�-algebra. Denote by Perf(A⌦k�k) the Sp

pro
(p)p�1 -enriched

subcategory of Lp

�
Coh

+
(A)

�
spanned by those perfect A⌦k� k.

Remark 5.5.2.12. We can express Theorem 5.5.2.11 more concretely as follows: the1-category Lp

�
Coh

+
(A)

�

is equivalent to the given of a functor

CA⌦k�k : Lgen�
op

Coh
+
(A)'

! Sp
pro

(p)
⌦
p�1 ,

which is an Lgen�
op

Coh
+
(A)'

-algebra object in Sp
pro

(p)
⌦
p�1 . Let X ✓ Coh

+
(A)

' denote the subspace spanned
by those A-modules whose extension of scalars along the morphism k

� ! k is a perfect A ⌦k� k-module. We
can consider the restriction of the functor CA⌦k�k to Lgen�

op

X and thus obtain an �op

X -algebra on Sp
pro

(p)
⌦
p�1 ,

which is complete in the sense of [GH15].

Remark 5.5.2.13. By construction, one has an equivalence Matcat

�
Perf(A⌦k� k)

�
' Perf(A⌦k� k) as stable

1-categories.

Warning 5.5.2.14. The enriched mapping objects in Perf(A ⌦k� k) depend of the given choice of a lifting, i.e.
of an A-formal model. However, whenever A is n-truncated such choice is canonical up to a contractible space of
choices

Remark 5.5.2.15. The association A 2 CAlg
ad

k� 7! Perf(A) 2 Cat1
�
Sp

Pro
(p)p�1

�
is functorial. Therefore, the

usual functor
Perf : CAlg

ad

k� ! Catst1

can be upgraded naturally to a functor Perf : CAlg
ad

k� ! Cat1(Sp
pro

(p)p�1).

Proposition 5.5.2.16. The functor Perf : CAlg
ad

k� ! Cat1 is infinitesimally cartesian.
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Proof. Let A 2 CAlg
ad

k� . Thanks to [GH15, Proposition 5.5.3 and Corollary 5.5.4] it suffices to show that given
an k

�-adic derivation
d : Lad

A !M

in the1-category Coh
+
(A), the induced functor

FA,d : Perf
�
Ad[M ]

�
! Perf(A)⇥Perf(A�M) Perf(A) (5.5.2.2)

is both essentially surjective and fully faithful. By construction and [GH15, Definition 5.3.3] essential surjective-
ness can be checked after applying the materialization functor

Matcat : Cat1
�
Sp

Pro
(p)p�1

�
! Cat1.

Furthermore, after applying Matcat the functor displayed in (5.5.2.2) is equivalent to the canonical functor

FA,d : Perf(A⌦k� k)! Perf(A⌦k� k)⇥Perf(Ad[M ]⌦k�k Perf(A⌦k� k)

which is essential surjective thanks to [Lur12a, Proposition 3.4.10]. Thus, we are reduced to show that the functor
FA,d is fully faithful on mapping objects. This is a consequence of Theorem 5.5.1.2 together with the fact that
the analogous statement holds for the Pro(S)-enriched version of Coh+(Ad[M ]), objects in Perf(Ad[M ]) admit
formal models in Coh

+
(Ad[M ]) and when computing mapping objects in Perf(Ad[M ]) we are taking the fil-

tered colimit under multiplication by p of the corresponding mapping objects in Coh
+
(Ad[M ]) and such colimits

commute with finite limits.

The functor Perf : CAlg
ad

k� ! Cat1
�
Sp

pro
(p)p�1

�
does not depend on the choice of formal model as the

following result illustrates:

Proposition 5.5.2.17. Let A, A
0 2

�
CAlg

ad

k�
�<1 be truncated derived k

�-adic algebras. Suppose that there exists
an equivalence

A⌦k� k ' A
0 ⌦k� k

in the1-category CAlgk. Then we have an equivalence

Perf(A) ' Perf(A
0
)

in the1-category Cat1
�
Sp

Pro
(p)p�1

�
.

Proof. Let A, A0 2 CAlg
ad

k� as in the statement of the proposition. Thanks to [Ant18b, Theorem 4.4.10] we can
suppose that there exists a morphism f : A! A

0 in the1-category (CAlg
ad

k�)
<1 such that the rigidification of

Spf(f) : Spf(A)! Spf(A
0
)

is an equivalence in the1-category dAfdk. The induced functor

Perf(A)! Perf(A
0
) (5.5.2.3)

is essentially surjective, as this condition can be checked after applying the materialization functor Matcat. Thanks
to [GH15, Proposition 5.5.3 and Corollary 5.5.4] it suffices to show that the functor displayed in (5.5.2.3) is fully
faithful on mapping objects.

Notice that, fully faithfulness can be checked already at the level of Cat1
�
Sp

Pro
(p)p�1

�
. Let M, N 2

Coh
+
(A) such that their images in Coh

+
(A ⌦k� k) are perfect. We need to show that the functor displayed in

(5.5.2.3) induces an equivalence

✓ : lim
n�1

Map
Perf(An)

�
M ⌦A An, N ⌦A An

�
[p

�1
]! lim

n�1

Map
Perf(A0

n)

�
M ⌦A An, N ⌦A An

�
[p

�1
] (5.5.2.4)

in the1-category Sp
pro

(p)p�1 , where

M
0
:= M ⌦A A

0
, N

0
:= N ⌦A A

0 2 ModA0 .
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The functor ✓ can be realized as the ind-localization at p of the map

✓
0
: lim
n�1

Map
Perf(An)

�
M ⌦A An, N ⌦A An

�
! limn�1Map

Perf(An)

�
M

0 ⌦A0 A
0
n, N

0 ⌦A0 A
0
n

�

in the 1-category Sp
pro

(p). It thus suffices to show that ✓0 is an equivalence in the 1-category Sp
pro

(p) after
multiplying by a sufficiently large power of p. The1-category Sp

pro
(p) is a stable1-category, since it consists

of pro-objects in the 1-category
�
ModS^

p

�
nil

. We are thus reduced to prove that cofib(✓0) is equivalent to the
zero morphism in Sp

pro
(p) after multiplication by a sufficiently large power of p.

Furthermore, we have an equivalence cofib(✓
0
) ' lim

n�1

cofib(✓
0
n) where

✓
0
: Map

Perf(An)

�
M ⌦A An, N ⌦A An

�
! Map

Perf(A0
n)

�
M

0 ⌦A0 A
0
n, N

0 ⌦A0 A
0
n

�
(5.5.2.5)

is the canonical morphism at the level of mapping spaces. The previous statement is a consequence of the dual
statement concerning the commutation of filtered colimits with finite limits, see the proof of [Lur12c, Proposition
1.1.3.6].

By assumption, both A and A
0 are m-truncated for a sufficiently large integer m > 0. It follows then that

both M, N 2 ModA and M
0
, N

0 2 ModA0 have non-zero homotopy groups concentrated in a finite number of
degrees. We thus conclude that each mapping spectrum displayed in ?? has non-trivial homotopy groups living
in a finite number of degrees, which do not depend on the integer n � 0, and only at the special fiber at n = 1.
Therefore, there exists a sufficiently large k > 0 such that each cofiber cofib(✓0n) is killed by p

k, and k does not
depend on the chosen n. Denote Xn := cofib(✓

0
n) the cofiber of ✓0n. Let Z := Zi

i
2 Sp

pro
(p). We have a chain of

equivalences

Map
Sppro(p)

�
limiZi, cofib(✓

0
)
�
' Map

Sppro(p)

�
limiZi, limnXn

�

limnMap
Sppro(p)

�
limiZi, Xn

�
' limn colim

i
Map

(ModSp̂
)nil

�
Zi, Xn

�
2
�
ModS^

p

�
nil
.

Each Xn is killed by a certain power of p, we deduce that the same holds for Map
(ModSp̂

)nil

�
Zi, Xn

�
2 S. Such

property is closed under filtered colimits, thus we conclude that colim
i

Map
(ModSp̂

)nil

�
Zi, Xn

�
is of p-torsion.

Therefore, since we have assumed A and A
0 to be truncated derived k

�-adic algebras, also the projective limit

limn colim
i

Map
(ModSp̂

)nil

�
Zi, Xn

�

is of p-torsion. We conclude thus that for any compact object Z 2 Ind
�
Sp

pro
(p)

�
the mapping space

Map
Ind(Sppro(p))

�
Z, limnXn[p

�1
]
�
' Map

Sppro(p)

�
Z, limnXn

�
[p

�1
]

is trivial. As a consequence we obtain that

cofib(✓
0
)[p

�1
] '

�
limnXn

�
[p

�1
] ' 0

in the1-category Ind
�
Sp

pro
(p)

�
. This implies that ✓ is an equivalence, thus the functor displayed in (5.5.2.3) is

fully faithful and thus an equivalence of1-categories.

Corollary 5.5.2.18. Let A 2
�
CAlg

ad

k�
�<1. Suppose we are given M, N 2 Coh

+
(A) such that

M ⌦k� k 2 Perf(A⌦k� k), N ⌦k� k 2 Perf(A⌦k� k).

Then the mapping object
Map

Perf(A)

�
M ⌦k� k,N ⌦k� k

�
2 Sp

pro
(p)p�1

does not depend on the choice of M and N 2 Coh
+
(A).

Proof. This is a direct consequence of Theorem 5.5.2.17.
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Construction 5.5.2.19. There exists a lax symmetric monoidal functor

⌦
1
pro

(p)p�1 : Sp
pro

(p)p�1 ! Ind
�
Pro(S)

�

induced by ⌦1
pro

(p) : Sp
pro

(p) ! Pro(S). Therefore, we have a canonical, up to contractible indeterminacy,
functor

⌦
1
pro

(p)p�1 : Cat1
�
Sp

pro
(p)p�1

�
! ECat1.

Thus, given A 2 CAlg
ad

k� we can consider the1-category Perf(A⌦k� k) as naturally enriched over the symmetric
monoidal1-category Ind(Pro(S)).

Notation 5.5.2.20. Let A 2 CAlg
ad

k� . By abuse of notation we will denote by Perf(A) either the Ind(Pro(S))-
enriched or the Sp

pro
(p)p�1 -enriched versions of the stable1-category Perf(A⌦k� k).

Corollary 5.5.2.21. The functor Perf : CAlg
ad

k� ! ECat1 is infinitesimally cartesian. Moreover, its restriction to
the full subcategory (CAlg

ad

k�)
<1 ✓ CAlg

ad

k� is invariant under generically equivalences.

Proof. The statement of the corollary is a direct consequence of Theorem 5.5.2.17 and Theorem 5.5.2.16.

Remark 5.5.2.22. Suppose, A 2 CAlg
ad

k� is truncated derived k
�-algebra. Let M 2 Perf(A ⌦k� k) be such that

there exists a perfect A-module M
0 2 Perf(A) such that

M
0 ⌦k� k 'M.

Then we can regard End(M
0
) 2 MonE1(S) with an enhanced pro-structure seen as the pro-object

End(M 0
) := {End(M 0 ⌦A An)}n 2 Pro(S). (5.5.2.6)

Moreover, the transition maps appearing in the diagram displayed in (5.5.2.6) preserve the monoid structures.
Thus, we can consider End(M 0

) naturally as an object in the 1-category MonE1(Pro(S)). Similary, we can
consider End(M) 2 MonE1(S) with an enhanced ind-pro-structure via the diagram

End(M) := colim
mult by p

End(M 0
) 2 Ind(Pro(S)).

Thanks to Theorem 5.5.2.18 it follows that the above definition does not depend on the choice of the perfect formal
model M 0 2 Perf(A). Moreover, as filtered colimits commute with finite limits, when taking ind-completions,
it follows that the monoid structure on End(M 0

) 2 MonE1(Pro(S
fc
)) induces a monoid structure on End(M) 2

Ind(Pro(S)). Thus we can consider End(M) naturally as an object in the1-category MonE1(Ind(Pro(S))).

Remark 5.5.2.23. Let A 2 CAlg
ad

k� and M 2 Perf(A). Then we can also consider End(M) 2 MonE1(Sppro(p)).
We can also naturally consider End(M ⌦k� k) 2 MonE1(Sppro(p)p�1). These considerations will prove to be
useful for us as they allow us to use methods from stable homotopy theory the study of continuous representations
of profinite spaces.

Notation 5.5.2.24. Consider the 1-category dAfdk of derived k-affinoid spaces. We denote dAfd
<1
k the full

subcategory spanned by those truncated derived k-affinoid spaces.

Remark 5.5.2.25. The rigidification functor (�)rig : CAlg
ad

k� ! dAfd
op

k introduced in [Ant18b, §4] induces, by
restriction, a well defined functor

(�)rig :
�
CAlg

ad

k�
�<1 !

�
dAfd

<1
k

�op
.

Moreover, the derived Raynaud localization theorem [Ant18b, Theorem 4.4.10] and its proof imply that dAfd
<1
k

is a localization of the1-category (CAlg
ad

k�)
<1 at the saturated class of generically strong morphisms.

The functor Perf : CAlg
ad

k� ! ECat1 actually descends to a well defined functor Perf : dAfd
op

k ! ECat1,
which is the content of the following proposition:
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Proposition 5.5.2.26. Let S<1 denote the saturated class of generically strong morphisms in (CAlg
ad

k�)
<1. Then

the functor
Perf : CAlg

ad

k� ! ECat1

sends morphisms in S
<1 to equivalences of1-categories in ECat1. In particular, one has a canonical induced

functor
Perf :

�
dAfd

<1
k

�op ! ECat1

which associates to every Z 2 dAfd
<1
k the Ind(Pro(S))-enriched 1-category Perf(�(Z)

0
) 2 ECat1, where

�(Z)
0 2 CAlgadk� is a given formal model for �(Z) 2 CAlgk.

Proof. The first part of the statement follows from Theorem 5.5.2.18. The second part of the statement follows
from the derived Raynaud localization theorem, [Ant18b, Theorem 4.4.10].

5.6 Moduli of derived continuous p-adic representations

5.6.1 Construction of the functor
We start with the following important construction:

Construction 5.6.1.1. The1-category Cat1
�
Ind(Pro(S))

�
can be naturally upgraded to an Ind(Pro(S))-(1, 2)-

1-category, thanks to [GH15, Remark 7.4.11]. Therefore, given C,D 2 Cat1
�
Ind(Pro(S))

�
we have a natural

functor1-category
Fun

�
C,D

�
2 Cat1

�
Ind(Pro(S))

�
.

Applying the materialization functor Matcat : Cat1
�
Ind(Pro(S))

�
! Cat1 we produce an1-category

ContFun
�
C,D

�
2 Cat1

which we designate by the1-category of continuous functors between C and D.

We have a canonical inclusion functor Ind(Pro(S)) ,! Cat1
�
Ind(Pro(S))

�
. Given X 2 Pro(Sfc) we can

consider it as an ind-pro-space via the composite

Pro(Sfc) ,! Pro(S) ,! Ind(Pro(S)).

Given A 2 CAlgadk� , we can thus consider the1-category of continuous functors

Perf`(X)(A) := ContFun
�
X,Perf(A)

�
2 Cat1.

Definition 5.6.1.2. Let X 2 Pro(Sfc) and A 2 CAlg
ad

k� . We designate the 1-category Perf`(X)(A) as the
1-category of A⌦k� k-adic continuous representations of X .

Lemma 5.6.1.3. Let X 2 Pro(Sfc) be a profinite space. Suppose further that X ' ⇤, then we have a canonical
equivalence Perf`(X)(A) ' Perf(A⌦k� k) 2 Cat1.

Proof. Whenever X ' ⇤ in Pro(Sfc) the1-category Perf`(X)(A) coincides with the materialization of Perf(A) '
Perf(A⌦k� k) 2 Cat1, as desired.

Let X 2 Pro(Xfc
) be connected profinite space. We have thus an unique, up to contractible indeterminacy,

morphism
f : ⇤ ! X

in the1-category Pro(Sfc). Precomposition along f : ⇤ ! X induces a canonical map

ev(⇤) := Perf`(X)(A)! Perf(A⌦k� k)

in the1-category Cat1.
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Proposition 5.6.1.4. Let X 2 Pro(Sfc) be a connected profinite space. Let A 2
�
CAlg

ad

k�
�<1. Consider a perfect

module M 2 Perf(A⌦k� k) admitting a formal model M0 2 Coh
+
(A). The fiber of the functor

ev(⇤) := Perf`(X)(A)! Perf(A⌦k� k)

at M 2 Perf(A⌦k� k) is naturally equivalent to the mapping space

Map
MonE1 (Ind(Pro(S)))

�
⌦X,End(M)

�
2 S,

where End(M) 2 MonE1

�
Ind(Pro(S))

�
denotes the enriched mapping object of M equipped with is multiplica-

tive monoid structure.

Proof. By hypothesis X 2 Pro(Sfc) is connected. Therefore, the fiber of ev(⇤) at M is naturally equivalent to the
mapping space

Map
Pro(S⇤)

�
X,BEnd(M)

�
' Map

Pro(S⇤)

�
X,BEnd(M0)

�
[p

�1
]. (5.6.1.1)

Consider the usual loop functor ⌦ : S⇤ ! MonE1(S). It induces a canonical functor

⌦ : Pro(S⇤)! MonE1(Pro(S)).

Notice that every transition morphism in the pro-system End(M0) 22 Pro(S) is actually a morphism of monoid
objects, i.e. it admits a natural lifting in the 1-category MonE1(S). Using the limit-colimit formula for map-
ping spaces in 1-categories of pro-objects together with the Bar-Cobar equivalence (B,⌦) we obtain a natural
equivalence

Map
Pro(S⇤)

�
X,BEnd(M0)

�
[p

�1
] ' Map

MonE1 (Pro(S))

�
⌦X,End(M0)

�
[p

�1
].

The universal property of localization at p induces a canonical map

✓ : Map
MonE1 (Pro(S))

�
⌦X,End(M0)

�
[p

�1
]! Map

MonE1 (Ind(Pro(S)))

�
⌦X,End(M)

�
,

in the1-category of spaces S. The result follows if we are able to prove that ✓ is an equivalence. We notice that
we cannot apply May delooping theorem component-wise as multiplication by p : End(M0)! End(M0) is not a
morphism of monoid-objects. However, the map ✓ is induced by a morphism of the form

✓
0
: Map

MonE1 (Pro(S))

�
⌦X,End(M0)

�
! Map

MonE1 (Ind(Pro(S)))

�
⌦X,End(M)

�
.

Furthermore, the fiber of the morphism End(M0) ! End(M) in the 1-category MonE1(Ind(Sppro(p)p�1)

coincides with the colimit
colim

n
End(M0)/p

n
[�1], (5.6.1.2)

which is of p-torsion. Therefore, passing to the filtered colimit along multiplication by p the term in (5.6.1.2)
becomes the zero object in the stable1-category Sp

pro
(p)p�1 . As a consequence, it follows that ✓ ' ✓0[p�1

] has
contractible fiber and therefore it is an equivalence.

Remark 5.6.1.5. Theorem 5.6.1.4 implies that the functor Perfp(X)(A) ! Perf(A ⌦k� k is a coCartesian
fibration which corresponds to a functor

F : Perf(A)! Cat1

given on objects by the formula

M 2 Perf(A⌦k� k) 7! Map
MonE1 (Ind(Pro(S)))

�
⌦X,End(M)

�
2 S.

Therefore, we can regard the 1-category Perfp(X)(A) as the 1-category of continuous representations of X
with values in perfect A⌦k� k-modules.

Definition 5.6.1.6. We define the Cat1-valued functor of p-adic perfect modules on X as the functor

Perfp(X) :
�
CAlg

ad

k�
�<1 ! Cat1,

given on objects by the formula

A 2
�
CAlg

ad

k�
�<1 7! Perfp(X)(A) 2 Cat1.
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An important consequence of Theorem 5.5.2.26 is the following result:

Proposition 5.6.1.7. The functor Perfp(X) :
�
CAlg

ad

k�
�<1 ! Cat1 descends to a well defined functor

Perfp(X) :
�
dAfd

<1
k

�op ! Cat1

which is given on objecs by the formula

Z 2 dAfd
<1
k 7! FunECat1

�
X,Perf(Z)

�
2 Cat1.

Proof. The result is a direct consequence of the equivalent statement for Perf which is the content of Theo-
rem 5.5.2.26.

5.6.2 Lifting results for continuous p-adic representations of profinite spaces
The following definition is crucial for our purposes:

Definition 5.6.2.1. Let X 2 Pro(Sfc) be a connected profinite space. We say that X is p-cohomologically
compact if for any p-torsion Z^

p -module N 2 ModZ^
p

with

N ' colim
↵

N↵,

where N↵ 2 Mod
~
Z for each ↵, we have an equivalence of mapping spaces

Map
MonE1 (Pro(S))

�
⌦X,N

�
' colim

↵
Map

MonE1 (Pro(S))

�
⌦X,N↵

�
,

i.e. taking continuous cohomology of X iwth torsion coefficients commutes with filtered colimits.

Remark 5.6.2.2. The above definition makes sense when we consider X 2 S. In this case, it is equivalent to
ask for a cellular decomposition of X with finitely man cells in each dimension. However X itself might have
infinitely many non-zero (finite) homotopy groups.

Example 5.6.2.3. (i) Suppose Y ! X is a finite morphism in Pro(Sfc), i.e. its fiber is a finite constructible
space Z 2 Pro(Sfc). If we assume further that X is p-cohomologically compact, then so it is Y . More
generically, the notion of cohomologically compactness is stable under fiber sequences.

(ii) Suppose X 2 Pro(Sfc) is the étale homotopy type of a smooth variety over an algebraically closed field.
Then X is cohomologically almost of finite type, see

Theorem 5.6.2.4. Let X 2 Pro(Sfc) be a connected profinite space which we assume further to be p-cohomologically
compact. Let A 2 (CAlg

ad

k�)
<1 and suppose we are given ⇢ 2 Perfp(X)(A) such that M := ev(⇤)(⇢) 2

Perf(A ⌦k� k) admits a perfect formal model M 0 2 Perf(A). Then there exists Y 2 MonE1(Pro(S
fc
)) together

with a morphism
f : Y ! ⌦X

in the1-category MonE1(Pro(S
fc
)) such that fib(f) is finite constructible and such that we have a factorization

of the form

Y End(M 0
)

⌦X End(M)

⇢0

⇢

in the1-category MonE1(Ind(Pro(S))).

Proof. As X 2 Pro(Sfc) is assumed to be connected, an object ⇢ 2 Perfp(X)(A) corresponds to a morphism

⇢ : ⌦X ! End(M)
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in the 1-category MonE1(Ind(Pro(S))), where M denotes ev(⇤)(⇢) 2 Perf(A ⌦k� k). We first remark as-
sumption on the existence of a perfect formal model for M , M 0 2 Perf(A) can be dropped, since by [TT90]
the trivial square zero extension M ⌦M [�1] 2 Perf(A ⌦k� k) admits a formal model and M is a retract of the
latter. Therefore, we can replace M with M �M [�1] and assume from the start that M admits a formal model
M

0 2 Perf(A).
Let n � 0 be an integer and consider the truncation functor

⌧n : Ind(Pro(S))! Ind(Pro(S))

induced by the usual truncation functor ⌧n : S ! S by means of the universal property of both ind and pro
completions. More explicitly,

⌧n(colim
i

lim
j
Xi,j) ' colim

i
lim
j
⌧n(Xi,j) 2 Ind(Pro(S)).

As A 2 CAlgadk� is assumed to be truncated and M
0 2 Perf(A) is perfect over A it follows that also M

0 is a
truncated A-module. The same conclusion holds for the couple (A⌦k�k,M). Therefore, there exists a sufficiently
large m > 0 such that

⌧mEnd(M) ' End(M). (5.6.2.1)

We now proceed to construct such a profinite Y 2 MonE1(Pro(S
fc
)) satisfying the conditions of the statement.

Our construction is by means of an inductive reasoning via the relative Postnikov tower of the canonical morphism

g : End(M 0
)! End(M)

in the1-category MonE1(Ind(Pro(S))). We start by observing that the cofiber of g is equivalent to the filtered
colimit

cofib(g) ' colim
k

End(M 0
)/p

k 2 Ind(Pro(S)).

For this reason, we can identify the fiber of the morphism g with

fib(g) ' colim
k

End(M 0
)/p

k
[�1].

Suppose then n = 0. Consider the pullback diagram

End(M 0
)0 ⇡0(End(M

0
))

End(M) ⇡0(End(M))

q0

in the1-category MonE1(Ind(Pro(S))). By construction, we can identify the fiber of the morphism q : End(M 0
)0 !

End(M) with
fib(q) ' colim

k
⇡0(End(M

0
)/p

k
)[�1]).

By the universal of the 0-truncation functor in (5.6.2.1) the composite

⌦X
⇢�! End(M)! ⇡0(End(M))

in the1-category MonE1(Ind(Pro(S))) factors through a continuous group homomorphism

⇢0 : ⇡1(X)! ⇡0(End(M)),

where the topology on the left hand side group is the profinite one induced from X and the topology on the right
hand side group is the topology induced by the ind-pro structure on End(M). Since ⇡0(End(M 0

)) is an open
subgroup of ⇡0(End(M)) and ⇡1(X) is profinite, it follows that the inverse image

⇢
�1

0
(⇡0(End(M

0
)))  ⇡1(X)
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is of finite index in ⇡1(X). Let U CX be an open normal subgroup such that

⇢0(U) ✓ ⇡0(End(M 0
)) ✓ ⇡0(End(M))

and such that ⇡1(X)/U ⇠= G, where G is a finite group. Consider the pullback diagram

Y0 U

⌦X ⇡1(X)

h0

in the 1-category MonE1(Pro(S
fc
)). By construction, the morphism Y0 ! ⌦X admits a finite constructible

fiber, namely G. Furthermore, we have an equivalence

X ' BY0/G

in the1-category MonE1(Ind(Pro(S))). The base step of our inductive reasoning is thus finished. Suppose now
that for a given integer n � 0 we have constructed a commutative diagram

Yn End(M 0
)n

⌦X End(M)

hn

⇢

in the1-category MonE1(Ind(Pro(S))), where hn : Yn ! ⌦X admits a finite constructible fiber. Let

gn+1 : End(M
0
)n+1 ! End(M)

denote the relative (n + 1)-st truncation of the canonical morphism g : End(M 0
) ! End(M). We have thus a

commutative diagram of the form

End(M 0
)n+1 End(M 0

)n . . . End(M 0
)0

End(M)

jn jn�1 j0

g0

in the1-category MonE1(Ind(Pro(S))) such that

fib(jn) ' colim
k

⇡n+1(End(M
0
)/p

k
)[n+ 2].

Consider the following pullback diagram

eYn+1 End(M 0
)n+1

Yn End(M 0
)n

⇡n

in the1-category MonE1(Ind(Pro(S))). The fiber of the morphism ⇡n :
eYn+1 ! Yn is equivalent

fib(⇡n) ' colim
k

⇡n+2(End(M
0
)/p

k
)[n+ 2].

The fiber sequence
fib(⇡n)! eYn+1 ! Yn

is classified by a morphism
'n : Yn ! colim

k
⇡n+2(End(M

0
)/p

k
)[n+ 3]
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in the1-category MonE1(Ind(Pro(S))). Notice that, ⇡n + 2(End(M 0
)/p

k
) is a discrete group and the monoid

structure on ⇡n+2(End(M
0
)/p

k
)[n+3] is abelian, as n+3 � 2. Therefore, the transition maps in the ind-filtered

colimit
colim

k
⇡n+2(End(M

0
)/p

k
)[n+ 3]

do preserve the monoid structure on each term. Thus we find that 'n is actually a morphism in the1-category
MonE1(Ind(Pro(S))). As Yn 2 Pro(Sfc) ,! Pro(S) it follows that 'n factors through End(M 0

)/p
k for suffi-

ciently large k � 1. This induces a fiber sequence of the form

⇡n+2(End(M
0
)/p

k
)[n+ 2]! Y n+1 ! Yn,

such that we have an induced map
Y n+1 ! End(M 0

)n+1

in the1-category MonE1(Ind(Pro(S))) which coincides with the composite

Y n+1 ! eYn+1 ! End(M 0
)n+1.

As X is p-cohomologically compact and the morphism BYn ! X admits a finite constructible fiber, by assump-
tion, it follows that BYn is also p-cohomologically compact. As ⇡n+2(End(M

0
)/p

k
)[n + 2] is p-torsion over

Z^
p it follows, by Lazard’s theorem, that we have an equivalence

⇡n+2(End(M
0
)/p

k
)[n+ 2] colim

↵
N↵[n+ 2],

in the derived 1-category ModZpk
, where each N↵ is a finite discrete Z/pkZ-module. We obtain thus, by p-

cohomological compactness, an equivalence of mapping spaces

Map
MonE1 (Pro(Sfc))

�
Yn,⇡n+2(End(M

0
)/p

k
�
[n+ 3] '

' colim
↵

Map
MonE1 (Pro(Sfc))

�
Yn, N↵[n+ 3]

�
.

Therefore, the map 'n above factors through a morphism

'�,n : Yn ! N� [n+ 3]

in the1-category MonE1(S
fc
) and such factorization produces an extension

N� [n+ 2]! Yn+1

jn+1���! Yn,

in the1-category MonE1(Pro(S
fc
)). Moreover, by construction, it follows that the composite

Yn+1 ! Yn ! · · ·! ⌦X ! End(M)

factors through the canonical morphism End(M 0
)n+1 ! End(M). The inductive step is thus completed.

In order to finish the proof of the statement it suffices now to observe that there exists a sufficiently large
integer n � 1 such that both

End(M 0
), End(M)

are n-truncated objects in the1-category Ind(Pro(S)). Thus for such n � 1 we have an equivalence

End(M 0
)n+1 ' End(M 0

).

We have thus produced a finite morphism Y ! ⌦ with Y := Yn+1 and a commutative diagram

Y End(M 0
)

⌦X End(M)

in the1-category MonE1(Ind(Pro(S))) and the claim is proved.
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Remark 5.6.2.5. In the above proof there exists no need to assume M 2 Perf(A⌦k� k) admits a perfect module
M

0 2 Perf(A). Actually, it suffices to assume that there exists a formal model M 0 2 Coh
+
(A) for M which

is truncated. This assumption is always verified. Indeed, there exists a formal model M 0 2 Coh
+
(A) for M 2

Perf(A⌦k� k) thanks to [Ant18b, Proposition A.2.1]. Even if M 0 is not truncated, its rigidification M ⌦k� k is,
as A and thus A ⌦k� k are assumed from the start to be truncated. If we pick m > 0 sufficiently large such that
M is m-truncated then ⌧mM

0 2 Coh
+
(A) is still a formal model for M 2 Perf(A⌦k� k).

Construction 5.6.2.6. Let A 2 CAlg
ad

k� be a truncated derived k
�-adic algebra. The functor Lp : Sp

pro
(p) !

Sp
pro

(p)p�1 induces a base change functor f⇤
A : Perf

ad
(X)(A)! Perfp(X)(A) of stable1-categories.

Definition 5.6.2.7. We say that ⇢ 2 Perf`(X)(A) is liftable if ⇢ lies in the essential image of the base change
functor f⇤

A as above.

As a consequence of Theorem 5.6.2.4 we have the following Corollary:

Corollary 5.6.2.8. Let X 2 Pro(Sfc) be a connected and p-cohomologically compact profinite space. Consider
a truncated derived k

�-adic algebra A 2 CAlg
ad

k� . Then every object ⇢ 2 Perfp(X)(A) is a retract of a liftable
⇢
0 2 Perfp(X)(A). Moreover, Perfp(X)(A) is canonically equivalent to the idempotent completion of the base

change
Perf

ad
(X)(A)⌦k� k

in the1-category of stable and idempotent complete small1-categories, Catst,idem1 .

Proof. Let ⇢ 2 Perfp(X)(A), M := ev(⇤)(⇢) 2 Perf(A ⌦k� k) and let ⇡ : Y ! X be a finite morphism in
Pro(Sfc) with Y connected such that the composite representation

⌦Y ! ⌦X ! End(M)

factors through a morphism End(M 0
) ! End(M) where we can suppose that M 0 2 Perf(A). The proof of

Theorem 5.6.2.4 implies that we have a commutative diagram of the form

Y ' Yn+1 Yn . . . Y0

X

gn gn�1 j0

g0

in the1-category Pro(Sfc). Furthermore, we have by construction a canonical equivalence X ' Y0/�, where
� is a suitable finite group (not necessarily abelian). In particular, we have an equivalence of1-categories

Perfp(X)(A) ' Perfp(Y0)(A)
�

of A ⌦k� k-linear stable 1-categories. Moreover, the proof of Theorem 5.6.2.4 implies that for each integer
0  i  n� 1 we can choose the morphism

gi : Yi+1 ! Yi

such that it is a Mi[n+2]-torsor for a given finite abelian group Mi. As A⌦k� k lives over a field of characteristic
zero, namely k it follows that we have an equivalence of1-categories

Perfp(Y0)(A) ' Perfp(Yi)(A)

for each integer 0  i  n. As a consequence, we deduce that one has an equivalence of1-categories

Perfp(X)(A) ' Perfp(Y )(A)
�
.

Thus we have an adjunction of the form

⇡
⇤
: Perfp(X)(A) Perfp(Y )(A) : ⇡⇤
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where ⇡⇤ denotes the restriction functor along ⇡ : Y ! X . Given ⇢ 2 Perfp(Y )(A) we have an equivalence

⇡
⇤
⇢ ' ⇢⌦k� k[�],

where k[�] denotes the free k-algebra on the finite group �. The representation ⇢ is a retract of ⇡⇤⇡⇤
⇢, given by

the trivial morphism of groups
{1}! �.

Observe further that the representation ⇡⇤⇡⇤
⇢ is liftable by the choice of Y , as ⇡⇤

⇢ is so. We are thus reduced
to prove the second part of the statementn, namely that Perfp(X)(A) is equivalent to the idempotent completion
of the A ⌦k� k-linear stable1-category Perf

ad
(X)(A) ⌦k� k. It suffices, in fact, to prove that Perfp(X)(A) is

idempotent complete. Thanks to Theorem 5.6.2.4 we can assume from the start that ⇢ is liftable from the start. In
this case, it suffices to show that for every idempotent

f : ⇢! ⇢,

in the1-category Perfp(X)(A) admits a fiber and cofiber in the1-category Perfp(X)(A). Let M := ev(⇤)(⇢) 2
Perf(A⌦k� k). Under the evaluation functor ev(⇤) f corresponds to an idempotent morphism

ef : M !M.

We might not be able to lift ef but thanks to [Ant18b, Corollary A.2.3] and [Lur09b, Proposition 4.4.5.20] there
exists a formal model M 0 2 Coh

+
(A) for M for which we can lift ef : M !M and higher homotopy coherences

associated to the diagram ef : Idem! Perf(A⌦k� k) to a diagram f : Idem! Perf(A) such that its rigidification
coincides with ef .

As in Theorem 5.6.2.5 we can suppose that M 0 has non-trivial homotopy groups concentrated in a finite
number of degrees. by Theorem 5.6.2.5 the proof of Theorem 5.6.2.4 applies in this case. In this case, it suffices
to show that f admits fiber and cofiber sequences in the1-category Coh

+
(X)

ad
(A), which follows as the latter

1-category is idempotent complete.

Corollary 5.6.2.9. Let A 2 CAlg
ad

k� be a truncated derived k
�-adic algebra. Then the1-category Perfp(X)(A)

is stable and admits a natural symmetric monoidal structure.

Proof. Thanks to Theorem 5.6.2.8 and the formula for mapping spaces it follows that Perfp(X)(A) is an A⌦k� k-
linear1-category which is equivalent to the tensor product

Perf
ad
(X)(A)⌦k� k

in the1-category Catst,idem1 . This implies that Perfp(X)(A) is stable and the symmetric monoidal structure on
Perfp(X)(A) is induced from the one on Perf

ad
(X)(A).

Definition 5.6.2.10. Let X 2 Pro(Sfc) and A 2 (CAlg
ad

k�)
<1. We define

Modp(X)(A) := Ind(Perfp(X)(A)).

Corollary 5.6.2.11. The1-category Modp(X)(A) is a presentable stable1-category which is moreover locally
rigid and we have an equivalence of presentable1-categories

Mod
ad
(X)(A)⌦k� k ' Modp(X)(A) 2 Prst

L
.

Proof. Presentability of Modp(X)(A) follows from Theorem 5.6.2.8. Moreover, we have a chain of equivalences

Modp(X)(A) '
' Mod

ad
(X)(A)⌦k� k

' ModA⌦k�k

�
Mod

ad
(X)(A)

�

where the latter equivalence follows from [Lur12c, Proposition 6.3.4.6]. As Mod
ad
(X)(A) is locally rigid it

follows also that Modp(X)(A) is locally rigid, thanks to [Lur16, Lemma D.7.7.2]. The result now follows.
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5.6.3 Moduli of derived continuous p-adic representations
In this §we define the moduli of derived continuous p-adic representations of a profinite space X and we show
that it admits a derived structure under certain mild assumptions on the profinite space X 2 Pro(Sfc).

Definition 5.6.3.1. Let X 2 Pro(Sfc). The moduli of derived continuous p-adic representations of X is defined
as the right Kan extension along the canonical inclusion functor

j : dAfd
<1
k ! dAfdk

of the moduli functor
PerfSys`(X) := (�)' � Perfp(X) :

�
dAfd

<1
k

�op ! S

which is given on objects by the formula

Z 2 dAfd
<1
k 7! Perfp(X)(�(Z))

' 2 S.

The following result is a reality check:

Lemma 5.6.3.2. Let Z 2 dAfdk. Then we have a natural equivalence

PerfSys`(X)(Z) ' limnPerfSys`(X)(tnZ)

in the1-category S. In particular, the functor PerfSys`(X) is nilcomplete.

Proof. This statement was stated without proof in [GR14, p. 10]. Let TX := (dAfd
<1
k )

op
Z/ and denote T0

Z the full
subcategory of TZ spanned by those objects of the form tn ! Z, for each n � 0. By the end formula for right
Kan extensions it suffices to show that the inclusion functor

T0
Z ! TZ

is a final functor. Thanks to the dual statement of [Lur09b, Theorem 4.1.3.1] it suffices to show that for every
(Y ! Z)

op in TZ , the1-category
(T0

Z)/Y

has weakly contractible enveloping groupoid. We can identify the 1-category (T0
Z)/Y with the 1-category of

factorizations of the morphism (Y ! Z)
op. Thanks to the universal property of n-th truncations and the fact

that Y is a truncated derived k-affinoid space it follows that there exists a sufficiently large integer m such that
(Y ! X)

op factors uniquely (up to contractible indeterminacy) as

(Y ! tmX ! X)
op
.

Therefore the1-category (T0
X)/Y is cofiltered and thus weakly contractible, as desired.

Proposition 5.6.3.3. The functor PerfSys`(X) : dAfd
op

k ! S satisfies étale hyper-descent.

Proof.

Proposition 5.6.3.4. The functor PerfSys`(X) : dAfd
op

k ! S is cohesive.

Proof. The right adjoint (�)' : Cat1 ! S commutes with small limits and in particular with finite limits. More-
over, PerfSys`(X) is nilcomplete, thus we can restrict ourselves to prove the assertion when restricted to truncated
objects. As a consequence, it suffices to show that the functor

Perfp(X) : dAfd
<1
k ! Cat1

is infinitesimally cartesian. Let Z 2 dAfd
<1
k and let d : Lan

Z ! M be a k-analytic derivation of Z, with
M 2 Coh

+
(A). Thanks to [Ant18b, Theorem A.2.1] we can lift d to a formal derivation

d
0
: Lad

A !M
0

in the1-category Coh
+
(A) where A 2 CAlg

ad

k� is a formal model for Z 2 dAfdk which we can assume to be
truncated. In this case, the canonical functor

Perfp(X)(Ad0 [M
0
])! Perfp(X)(A)⇥Perfp(X)(A⌦M 0) Perfp(X)(A)

is an equivalence, which follows immediately from Theorem 5.5.2.16.
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In order to show the existence of a cotangent complex for PerfSys`(X) we will need the following technical
result:

Proposition 5.6.3.5. Let F 2 St(CAlg
ad

k� , ⌧ét,Psm) and denote by F
rig 2 St(dAfdk, , ⌧ét,Psm) its rigidification.

Then if F admits an adic cotangent complex at a point

x : Spf(A)! F,

denoted Lad

F,x, then F
rig admits a cotangent complex at the rigidification

x
rig

: Spf(A)
rig ! F

rig

which we denote by Lan

F rig,xrig . Moreover, we have a canonical equivalence

(Lad

F,x)
rig ' Lan

F rig,xrig ,

in the1-category Coh
+
(Z), where Z := Spf(A)

rig.

Proof. The existence of Lad

F,x implies that for every M 2 Coh
+
(A) we have functorial equivalences

Map
Coh

+
(A)

�
Lad

F,x,M
�
' fibx

�
F (A�M)! F (A)

�
.

Thanks to [Ant18b, Proposition A.1.4] the1-category Coh
+
(X) is a Verdier quotient of Coh+(A) with respect

to the full subcategory of torsion objects in the 1-category Coh
+
(A). Furthermore, it follows from [Ant18b,

Proposition A.2.1] and its proof that the we have an adjunction

(�)rig : Ind
�
Coh

+
(A)

�
Ind

�
Coh

+
(X)

�
: (�)+

between presentable 1-categories where (�)rig is an accessible localization functor and (�)+ is consequently
fully faithful. We have an equivalence of mapping spaces

Map
Coh

+
(X)

�
Lrig

F,x,M
�
' Map

Ind(Coh
+
(A))

�
LF,x, (M

rig
)
+
�
.

Since (M
rig
)
+ 2 Ind(Coh

+
(A)) we can write it as a filtered colimit

(M
rig
)
+ ' colim

i
Mi

' colim
M2Coh

+
(A)/Mrig

M,

where the last equivalence follows by the adjunction. Therefore, we can write

Map
Ind(Coh

+
(A))

�
LF,x, (M

rig
)
+
�
' colim

i
Map

Coh
+
(A)

�
LF,x,Mi

�

since LF,x is a compact object in the1-category Ind(Coh
+
(A)). Let N 2 Coh

+
(X), where X := Spf(A)

rig.
We have a chain of equivalences

colim
A02(CAlg

ad
k� )/X

colim
Mi2Coh

+
(A0)/N

fibx0
�
F (A

0 �Mi)! F (A
0
)
�
'

' colim
A02(CAlg

ad
k� )/X

colim
Mi2Coh

+
(A0)/N

Map
Coh

+
(A0)

�
LF,x,Mi

�

' colim
A02(CAlg

ad
k� )/X

Map
Ind(Coh

+
(A0))

�
LF,x, N

+
�

' colim
A02(CAlg

ad
k� )/X

Map
Coh

+
(X)

�
Lrig

F,x, N
�

' Map
Coh

+
(X)

(Lrig

F,x, N
�
.
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where both colimit indexing1-categories are filtered and x
0 denotes the composite

x : Spf A
0 ! Spf A! F.

This is justified as in the above colimit diagrams it suffices to consider only colimits indexed by the full subcate-
gories of formal models for X and lying under A. Furthermore, we have an equivalence

colim
A02(CAlg

ad
k� )/X

colim
Mi2Coh

+
(A0)/N

fibx0
�
F (A

0 �Mi)! F (A
0
)
�
' colim

C

fibx0
�
F (A

0 �M
0
)! F (A

0
)
�
,

where C denotes the 1-category of admissible formal models for X[N ]. This last assertion follows from the
observation that a formal model for X[N ] consists of the given of an admissible formal model for X together with
a formal model for N . Observe that filtered colimits commute with finite limits in the1-category of spaces. Thus

colim
C

fibx0
�
F (A

0 �M
0
)! F (A

0
)
�
'

' fibxrig colim
C

�
F (A

0 �M
0
)! F (A

0
)
�

' fibxrig

�
F

rig
(X[N ])! F

rig
(X)

�
.

We have thus an equivalence of the form

fibxrig

�
F

rig
(X[N ])! F

rig
(X)

�
' Map

Coh
+
(X)

�
LF rig,xrig , N

�
(5.6.3.1)

as desired. The result now follows from the observation that the right hand side of (5.6.3.1) is an invariant under
hyper-descent.

Theorem 5.6.3.6. Let Z 2 dAfdk and M 2 Coh
+
(Z). Suppose we are given furthermore a morphism

⇢ : Z ! PerfSys`(X)

then we have a canonical identification

fib⇢

�
PerfSys`(X)(Z[M ])! Perf(X)(Z)

�
' Map

Modp(X)(Z)

�
⇢⌦ ⇢_,M [1]

�

in the1-category Coh
+
(Z), where Modp(X)(Z) := Ind

�
Perfp(X)(Z).

Proof. We first observe that the derived Tate acyclicity theorem implies that we have a canonical equivalence of
1-categories

Coh
+
(Z) ' Coh

+
(�(Z)).

As in the proof of Theorem 5.4.2.7 we consider the right fibration of spaces

�M : PerfSys`(X)(Z[M ])! PerfSys`(X)(Z)

which classifies a functor
�M : PerfSys`(X)(Z)! S,

whose value at ⇢ 2 PerfSys`(X)(Z) coincides with the fiber

fib⇢

�
�M

�
2 S.

As the rigidification functor (�)rig : CAlg
ad

k� ! dAnk preserves small extensions it follows that the statement of
Theorem 5.4.2.6 still holds in this case. Therefore, reasoning as in the proof of Theorem 5.4.2.7 we obtain a chain
of equivalences of �(Z)-modules

⌦(�M (⇢)) '
' Map/⇢

�
p
⇤
M (⇢), p

⇤
M (⇢)

�

' Map/⇢

�
⇢, ⇢� (⇢⌦M)

�

' Map
Ind(Perfp(X)(Z))

�
⇢, ⇢⌦M

�

' Map
Ind(Perfp(X)(Z))

�
⇢⌦ ⇢_,M

�
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where p⇤M : Perfp(X)(Z)! Perfp(X)(Z[M ]) denotes the usual base change functor along the canonical functor

pM : Z[M ]! Z, in dAfdk.

As PerfSys`(X) is cohesive, it follows that we have a pullback diagram of the form

�M (⇢) ⇤

⇤ �M [1](⇢).

The conclusion now follows as in Theorem 5.4.2.7.

Corollary 5.6.3.7. Let X 2 Pro(Sfc) be a connected p-cohomologically compact and p-cohomologically perfect
profinite space. Then for every p-complete Z 2 dAfdk and every ⇢ 2 PerfSys`(X)(Z) the functor

F : Coh
+
(�(Z))! S

given on objects by the formula

M 2 Coh
+
(�(Z)) 7! fib⇢

�
PerfSys`(X)(Z[M ])! PerfSys`(Z)

�
2 S

is corepresentable by the �(Z)-module

Map
Perfp(X)(Z)

�
1, ⇢⌦ ⇢_[1]

�_ 2 Coh
+
(�(Z)).

Proof. The result is a direct consequence of Theorem 5.4.2.9 together with Theorem 5.6.3.5 whenever

⇢ 2 PerfSys`(X)(Z)

is liftable. For a general ⇢ 2 PerfSys`(X)(Z) the result follows thanks to Theorem 5.6.2.8 as it implies that ⇢ is
a retract of a liftable object.

5.7 Main results
5.7.1 Representability theorem
As we shall see, the moduli stack LocSys`,n(X) : Afd

op

k ! S admits a natural derived extension which it is
representable with respect to the derived k-analytic context. Nonetheless, the moduli LocSys`,n(X) cannot be
realized as a usual k-analytic space, instead it corresponds to a k-analytic stack. Therefore, one must show that
the derived enhancement of LocSys`,n(X) is representable not by a derived k-analytic space but instead by a
derived k-analytic stack. It would be thus desirable to have a representability type statement in the context of
derived k-analytic geometry. Fortunately, such a result has been proved by M. Porta and T. Yu Yue in [PY17a].
As it will be of fundamental importance we shall motivate such result.

Definition 5.7.1.1. Denote by (dAfdk, ⌧ét,Psm) the derived k-analytic geometric context where ⌧ét denotes the
étale topology on dAfdk and Psm denotes the class of smooth morphisms on dAfdk.

Definition 5.7.1.2. Let F 2 dSt
�
dAfdk, ⌧ét

�
be a stack. We say that F is a derived k-analytic stack if it is

representable by a geometric stack with respect to (dAfdk, ⌧ét,Psm).

Theorem 5.7.1.3. [PY17a, Theorem 7.1] Let F 2 dSt(dAfdk, ⌧ét). The following assertions are equivalent:

(i) F is a geometric stack;

(ii) The truncation t0(F ) 2 St(Afdk, ⌧ét) is geometric, F admits furthermore a cotangent complex and it is
cohesive and nilcomplete.
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We shall review the main definitions:

Definition 5.7.1.4. Let F 2 dSt
�
dAfdk, ⌧ét

�
. We say that F admits a global analytic cotangent complex if the

following two conditions are verified:

(i) Given Z 2 dAfdk and z : Z ! F a morphism, the functor

Der
an

F (Z,�) : Coh+(Z)! S

given on objects by the formula
M 7! fibz

�
F (Z[M ])! F (Z)

�
,

is corepresented by an eventually connective object Lan

F,z 2 Coh
+
(Z).

(ii) For any morphism f : Z ! Z
0 in the1-category dAfdk and any morphism z

0
: Z ! F we have a canonical

equivalence,
f
⇤Lan

F,z0 ' Lan

F,z

where z := z
0 � f .

Definition 5.7.1.5. Let F 2 dSt(dAfdk, ⌧ét). We say that F is cohesive if for every Z 2 dAfdk and every
coherent sheaf F 2 Coh

�1
(Z) together with a derivation

d : Lan

X ! F

the natural map
F
�
Zd[F[�1]]

�
! F (Z)⇥F (Z[F]) F (Z)

is an equivalence in the1-category S.

Definition 5.7.1.6. We say that F 2 dSt
�
dAfdk, ⌧ét

�
. We say that F is convergent if for every derived k-affinoid

space Z the canonical morphism,
F (Z)! lim

n�0

F (tnZ),

is an equivalence in the1-category S.

5.7.2 Main results
Let X be a proper and smooth scheme over an algebraically closed field. To such X we can associate it a profinite
space, namely its étale homotopy type

Sh
ét
(X) 2 Pro(Sfc).

see [Lur09a, §3.6]. By construction, Shét
(X) 2 Pro(Sfc) classifies étale local systems on X . Moreover, we have

a canonical identification
⇡1

�
Sh

ét
(X)

�
' ⇡ét

1
(X)

as profinite groups. Therefore, it is natural to consider the moduli stack

PerfSys`

�
Sh

ét
(X)

�
2 dSt

�
dAfdk, ⌧ét

�

as a derived extension of the moduli LocSys`,n(X) 2 St
�
Afdk, ⌧ét,Psm

�
.

Definition 5.7.2.1. Let RLocSys`,n(X) ✓ PerfSys`

�
Sh

ét
(X)

�
denote the substack spanned by continuous p-adic

representations of Shét
(X) 2 Pro(Sfc) with values in rank n free modules.

Proposition 5.7.2.2. We have a canonical equivalence of stacks

t0(RLocSys`,n(X)) ' LocSys`,n(X)

in the1-category St(Afdk, ⌧ét).
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Proof. Let A 2 Afdk, then RLocSys`,n(X)(Sp(A)) can be identified with the space

RLocSys`,n(X)(Sp(A)) ' Map
Ind(Pro(S))

�
Sh

ét
(X),BEnd(A)

�
,

of non-pointed continuous morphisms
Sh

ét
(X)! BEnd(A).

As the A 2 Afdk is discrete, it follows that BGLn(A) is a K(GLn(A), 1)-space. Therefore, by the universal
property of 1-truncation we have a chain of equivalences

Map
Ind(Pro(S))

�
Sh

ét
(X),BEnd(A)

�
'

' Map
Ind(Pro(S))

�
⌧1(Sh

ét
(X)),BEnd(A)

�

' Map
Ind(Pro(S))

�
B⇡

ét
1
(X),BEnd(A)

�

' Map
Ind(Pro(S))

�
B⇡

ét
1
(X),BGLn(A)

�

where the last equivalence follows from the fact that ⇡ét
1
(X) is a group, therefore every morphism ⇡

ét
1
(X) !

End(A) should factor through the group of units of End(A) which coincides with GLn(A) with its k-analytic
induced topology. The result now follows, by the fact that we can realize

Map
Ind(Pro(S))

�
B⇡

ét
1
(X),BGLn(A)

�

with the geometric realization of the diagram

. . . Map
MonE1(Ind(Pro(S)))

�
⇡

ét
1
(X),GLn(A)

�⇥2

Map
MonE1(Ind(Pro(S)))

�
⇡

ét
1
(X),GLn(A)

�
⇤

and the fact that
Map

MonE1(Ind(Pro(S)))

�
⇡

ét
1
(X),GLn(A)

�
2 S

can be identified with the set Homcont

�
⇡

ét
1
(X),GLn(A)

�
.

Notation 5.7.2.3. As t0RLocSys`,n(X) ' LocSys`,n(X) we will denote RLocSys`,n(X) simply by LocSys`,n(X)

from now on.

Theorem 5.7.2.4. The moduli stack LocSys`,n(X) 2 St(dAfdk, ⌧ét) admits a cotangent complex. Given ⇢ 2
LocSys`,n(X)(Z) where Z 2 dAfdk is a derived k-affinoid space, we have an equivalence

Lan

LocSys`,n(X),⇢ ' C
⇤
ét(X,Ad(⇢),

�_
[�1]

where C
⇤
ét
�
X,Ad(⇢)

�
denotes the étale cohomology of X with coefficients in

Ad(⇢) := ⇢⌦ ⇢_.

Proof. Since X is smooth and proper it follows that Shét
(X) is p-cohomologically compact and p-cohomologically

perfect. Therefore, PerfSys`(X) admits a cotangent complex and by restriction so does LocSys`,n(X). Moreover,
the tangent complex of LocSys`,n(X) at the morphism

⇢ : Z ! LocSys`,n(X)

can be identified with the mapping space

Tan

LocSys`,n(X),⇢ ' Map
Perfp(X)(Z)

�
1, ⇢⌦ ⇢

�
[1].

We are thus reduced to prove that

Map
Perfp(X)(Z)

�
1, ⇢⌦ ⇢

�
[1] ' C

⇤
ét(X,Ad(⇢)

�
[1].

But this follows by the universal property of Shét
(X) together with the fact that global sections of local systems

with torsion coefficients on Sh
ét
(X) classify étale cohomology on X with torsion coefficients. The result follows

now for liftable such ⇢ and for general ⇢ by Theorem 5.6.2.4.
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Proposition 5.7.2.5. The moduli stack LocSys`,n(X) is cohesive and nilcomplete.

Proof. This is a direct consequence of the analogous statement for PerfSys`(X).

As a consequence we obtain our main result:

Theorem 5.7.2.6. The moduli stack LocSys`,n(X) 2 dSt
�
dAfdk, ⌧ét

�
is representable by a derived k-analytic

stack.

Proof. The proof follows by the Representability theorem together with Theorem 5.7.2.2, Theorem 5.2.2.19,
Theorem 5.7.2.4 and Theorem 5.7.2.5.

Jorge António, JORGE ANTÓNIO, IMT TOULOUSE, 118 RUE DE NARBONNE 31400 TOULOUSE
E-mail address, jorge_tiago.ferrera_antonio@math.univ-toulouse.fr
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6.1 Introduction

6.1.1 The goal of this paper
Let X be a smooth scheme over an algebraically closed field k of positive characteristic p > 0. Without the
properness assumption the étale homotopy group ⇡ét

1
(X) fits in a short exact sequence of profinite groups

1! ⇡
w
1
(X)! ⇡

ét
1
(X)! ⇡

tame

1
(X)! 1, (6.1.1.1)

where ⇡w
1
(X) and ⇡tame

1
(X) denote the wild and tame fundamental groups of X , respectively. One can prove that

the profinite group ⇡tame

1
(X) is topologically of profinite type. However, the profinite group ⇡ét

1
(X) is, in general,

a profinite pro-p group satisfying no finiteness condition or whatsoever. Needless to say, the étale fundamental
group ⇡ét

1
(X) will in general not admit a finite number of topological generators. Consider X = A1

k, the affine
line. Its étale and wild fundamental groups agree, but they are not topologically of finite type.

For this reason, the main results of Theorem 6.2.3.4 do not apply for a general smooth scheme X . In particular,
one cannot expect that the moduli of `-adic continuous representations of X , LocSys`,n(X), is representable by a
Q`-analytic stack. The purpose of the current text, is to study certain moduli substacks of LocSys`,n parametrizing
continuous representations

⇢ : ⇡
ét
1
(X)! GLn(A), A 2 AfdQ`

such that the restriction ⇢|⇡w
1 (X) factors through a finite quotient p� : ⇡w

1
(X)! �. Denote LocSys`,n,�(X) such

stack. Our main result is the following:

Theorem 6.1.1.1. The moduli stack LocSys`,n,�(X) : AfdQ` ! S can be promoted naturally to a derived moduli
stack

RLocSys`,n,�(X) : dAfdQ` ! S

which is representable by a derived Q`-analytic stack. Given ⇢ 2 RLocSys`,n,�(X), the analytic cotangent
complex LRLocSys`,n,�,⇢ 2 ModQ` is naturally equivalent to

Lan

RLocSys`,n,�(X),⇢ ' C
⇤
ét
�
X,Ad(⇢)

�_
[�1]

in the derived1-category ModQ` .

In particular, Theorem 6.1.1.1 implies that the inclusion morphism of stacks

j� : RLocSys`,n,�(X) ,! RLocSys`,n(X)

induces an equivalence on contangent complexes, in particular it is an étale morphism. We can thus regard
RLocSys`,n,�(X) as an admissible substack of RLocSys`,n, in the sense of Q`-analytic geometry.

The knowledge of the analytic cotangent complex allow us to have a better understanding of the local geometry
of RLocSys`,n. In particular, given a continuous representation

⇢ : ⇡
ét
1
(X)! GLn(F`)
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one might ask how ⇢ can be deformed into a continuous representation ⇢ : ⇡ét
1
(X)! GLn(Q`). This amounts to

understand the formal moduli problem Def⇢ : CAlg
sm

F`
! S given on objects by the formula

A 2 CAlg
sm 7! Map

cont
(Shét(X),BGLn(A))⇥Mapcont(Shét(X),BGLn(F`))

{⇢} 2 S,

where Shét(X) 2 Pro
�
Sfc

�
denotes the étale homotopy type of X . Given ⇢ as above, the functor Def⇢ was

first considered by Mazur in [24], for Galois representations, in the discrete case. More recently, Galatius and
Venkatesh studied its derived structure in detail, see [10] for more details.

One can prove, using similar methods to those in [1] that the tangent complex of Def⇢ is naturally equivalent
to

TDef⇢ ' C
⇤
ét
�
X,Ad(⇢)

�
[1],

in the derived 1-category ModF`
. We can consider Def⇢ as a derived W (F`)-adic scheme which is locally

admissible, in the sense of [2]. Therefore, one can consider its rigidification

Def
rig

⇢ 2 dAnQ` .

By construction, we have a canonical inclusion functor

j⇢ : Def
rig

⇢ ! LocSys`,n(X).

By comparing both analytic cotangent complexes, one arrives at the following result:

Proposition 6.1.1.2. The morphism of derived stacks

j⇢ : Def
rig

⇢ ! LocSys`,n(X)

exhibits Def
rig

⇢ as an admissible open substack of LocSys`,n(X).

Theorem 6.1.1.2 implies, in particular, that LocSys`,n(X) admits as an admissible analytic substack the dis-
joing union

`
⇢Def

rig

⇢ , indexed by the set of contininuous representations ⇢ : ⇡ét
1
(X) ! GLn(Q`). Nonetheless,

the moduli LocSys`,n(X) admits more (analytic) points in general than those contained in the disjoint union`
⇢Def

rig

⇢ . This situation renders difficult the study of trace formulas on LocSys`,n(X) which was the first moti-
vation for the study of such moduli. Ideally, one would like to ”glue” the connected components of LocSys`,n(X)

in order to have a better behaved global geometry. More specifically, one would like to exhibit a moduli algebras
or analytic stack M`,n(X) of finite type over Q` such that the space closed points M`,n(X)(Q`) 2 S would cor-
respond to continuous `-adic representations of ⇡ét

1
(X). Moreover, one should expect such moduli stack to have a

natural derived structure which would provided an understanding of deformations of `-continuous representations
⇢.

Such principle has been largely successful for instance in the context of continuous p-adic representations of
a Galois group of a local field of mixed characteristic (0, p). Via p-adic Hodge structure and a scheme-image
construction provided in [16], the authors consider the moduli of Kisin modules which they prove to be an ind-
algebraic stack admitting strata given by algebraic stacks of Kisin modules of a fixed height. Unfortunately, the
methods used in [16], namely the scheme-image construction, do not directly generalize to the derived setting.
Recent unpublished work of M. Porta and V. Melani regarding formal loop stacks might provide an effective
answer to this problem, which we pretend to explore in the near future. However, to the best of the author’s
knowledge, there is no other successful attempts outside the scope of p-adic Hodge theory.

We will also study the existence of a 2 � 2d-shifted symplectic form on LocSys`,n(X), where d = dimX .
Even though LocSys`,n(X) is not an instance of an analytic mapping stack it behaves as such. We need to
introduce the moduli stack PerfSys`(X) which corresponds to the moduli of objects associated to the Catst,!,⌦1 -
valued moduli stack given on objects by the formula

Z 2 dAfdQ` 7! FunECat1

�
|X|ét,Perf

�
�(Z)

��

where ECat1 denotes the1-category of (small) Ind(Pro(S))-enriched1-categories. We are then able to prove:
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Theorem 6.1.1.3. The derived moduli stack PerfSys`(X) admits a natural shifted symplectic form !. Explicitly,
given ⇢ 2 PerfSys`(X) ! induces a non-degenerated pairing

C
⇤
ét
�
X,Ad(⇢)

�
[1]⌦ C

⇤
ét
�
X,Ad(⇢)

�
[1]! Q`[2� 2d],

which agrees with Poincaré duality.

By transport of strucure, the substack LocSys`,n(X) ,! PerfSys`(X) can be equipped with a natural shifted
sympletic structure. By restricting further, we equip the LocSys`,n,�(X) with a shifted symplectic form !�.

6.1.2 Summary
Let us give a brief review of the contents of each section of the text. Both §2.1 and §2.2 are devoted to review the
main aspects of ramification theory for local fields and smooth varities in positive characteristic. Our exposition
is classical and we do not pretend to prove anything new in this context. In §2.3 we construct the (ordinary)
moduli stack of continuous `-adic representations. Our construction follows directly the methods applied in [1].
Given q : ⇡

w
1
(X) ! � a continuous group homomorphism whose target is finite we construct the moduli stack

LocSys`,n,�(X) parametrizing `-adic continuous representations of ⇡ét
1
(X) such that ⇢|⇡w

1 (X) factors through �.
We then show that LocSys`,n,� is representable by a Q`-analytic stack (the analogue of an Artin stack in the
context of Q` analytic geometry).

In §3, we show that both the Q`-analytic stacks LocSys`,n(X) and LocSys`,n,�(X) can be given natural
derived structures and we compute their corresponding cotangent complexes. It follows then by [29, Theorem
7.1] that LocSys`,n,�(X) is representable by a derived Q`-analytic stack.

§4 is devoted to state and prove certain comparison results. We prove Theorem 6.1.1.2 and relate this result to
the moduli of pseudo-representations introduced in [6].

Lastly, in §5 we study the existence of a shifted symplectic form on LocSys`,n(X). We state and prove
Theorem 6.1.1.3 and analysize some of its applications.

6.1.3 Convention and Notations
Throught the text we will employ the following notations:

(i) AfdQ` and dAfdQ` denote the1-categories of ordinary Q`-affinoid spaces and derived Q`-affinoid spaces,
respectively.;

(ii) AnQ` and dAnQ` denote the 1-categories of analytic Q`-spaces and derived Q`-analytic spaces, respec-
tively;

(iii) We shall denote S the1-category of spaces and Ind(Pro(S)) := Ind
�
Pro

�
S
��

the1-category of ind-pro-
objects on S.

(iv) Cat1 denotes the1-category of small1-categories and ECat1 the1-category of Ind(Pro(S))-enriched
1-categories.

(v) Given a continuous representation ⇢, we shall denote Ad(⇢) := ⇢⌦ ⇢_ the corresponding adjoint represen-
tation;

(vi) Given Z 2 AfdQ` we sometimes denote �(Z) := �(Z) the derived Q`-algebra of global sections of Z.

6.1.4 Acknowledgements
I am grateful to Jean-Baptiste Tessier and Bertrand Toën for many useful discussions and suggestions on the con-
tents of the present text. I would also like to acknowledge le Séminaire Groupes Réductifs et formes automorphes
for the invitation to expose many of my ideas about the subject.
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6.2 Setting the stage

6.2.1 Recall on the monodromy of (local) inertia
In this subsection we recall some well known facts on the monodromy of the local inertia, our exposition follows
closely [9, §1.3].

Let K be a local field, OK its ring of integers and k the residue field which we assume to be of characteristic
p > 0 different from `. Fix K an algebraic closure of K and denote by GK := Gal

�
K/K

�
its absolute Galois

group.

Definition 6.2.1.1. Given a finite Galois extension L/K with Galois group Gal (L/K) we define its inertia
group, denoted IL/K , as the subgroup of Gal (L/K) spanned by those elements of Gal (L/K) which act trivially
on l := OL/mL, where L denotes the ring of integers of L and mL the corresponding maximal ideal.

Remark 6.2.1.2. We can identify the inertia subgroup IL/K of Gal(L/K) with the kernel of the surjective contin-
uous group homomorphism q : Gal(L/K) ! Gal(l/k). We have thus a short exact sequence of profinite groups

1! IL/K ! Gal(L/K)! Gal(l/k)! 1. (6.2.1.1)

In particular, we deduce that the inertia subgroup IL/K can be identified with a normal subgroup of Gal(L/K).

Remark 6.2.1.3. Letting the field extension L/K vary, we can assemble together the short exact sequences
displayed in (6.2.1.1) thus obtaining a short exact sequence of profinite groups

1! IK ! GK ! Gk ! 1, (6.2.1.2)

where Gk := Gal(k/k) where k denotes the algebraic closure of k determined by K.

Definition 6.2.1.4 (Absolute inertia). Define the (absolute) inertia group of K as the inverse limit

IK := limL/K finiteIL/K ,

which we canonically identify with a subgroup of GK .

Definition 6.2.1.5 (Wild inertia). Let L/K be a field extension as above. We let PL/K denote the subgroup of
IL/K which consists of those elements of IL/K acting trivially on OL/m2

L. We refer to PL/K as the wild inertia
group associated to L/K.

Definition 6.2.1.6 (Absolute wild inertia). We define the absolute wild inertia group of K as:

PK := limL finitePL/K .

Remark 6.2.1.7. We can identify the absolute wild inertia group PK with a normal subgroup of IK .

Consider the exact sequence
1! PK ! IK ! IK/PK ! 1. (6.2.1.3)

Thanks to [35, Lemma 53.13.6] it follows that the wild inertia group PK is a pro-p group. When K = Qp a
theorem of Iwasawa implies that PK is not topologically of finite generation, even though GK is so. Nonetheless,
the quotient IK/PK is much more amenable:

Proposition 6.2.1.8. [4, Corollary 13] Let p := char(k) denote the residual characteristic of K. The quotient
IK/PK is canonically isomorphic to bZ0

(1), where the latter denotes the profinite group
Q

q 6=p Zq(1). In particular,
the quotient profinite group IK/PK is topologically of finite generation.

Define PK,` to be the inverse image of
Q

q 6=`,p Zq in IK . We have then a short exact sequence of profinite
groups

1! PK ! PK,` !
Y

q 6=`,p
Zq ! 1.
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Define similarly GK,` := GK/PK,` the quotient of GK by PK,`. We have a short exact sequence of profinite
groups

1! PK,` ! GK ! GK,` ! 1. (6.2.1.4)

Assembling together (6.2.1.3) and Theorem 6.2.1.8 we obtain a short exact sequence

1! Z`(1)! GK,` ! Gk ! 1. (6.2.1.5)

Remark 6.2.1.9. As a consequence of both (6.2.1.4) and (6.2.1.5) the quotient GK,` is topologically of finite type.

Suppose we are now given a continuous representation

⇢ : GK ! GLn(E`),

where E` denotes a finite field extension of Q`. Up to conjugation, we might assume that ⇢ preserves a lattice of
E`. More explicitly, up to conjugation we have a commutative diagram of the form

GK GLn(Z`)

GLn(Q`)

e⇢

⇢
.

Therefore e⇢ (GK) is a closed subgroup of GLn(Z`). Consider the short exact sequence

1! N1 ! GLn(Z`)! GLn(F`)! 1,

where N1 denotes the group of GLn(Zp) formed by congruent to Id mod `matrices. In particular, N1 is a profinite
pro-` group. By construction, every finite quotient of PK,` is of order prime to `. One then has necessarily

⇢ (PK,`) \N1 = {1}.

As a consequence, the group ⇢(PK,`) injects into the finite group GLn(F`) under ⇢. Which in turn implies that
the (absolute) wild inertia group PK itself acts on GLn(Q`) via a finite quotient.

6.2.2 Geometric étale fundamental groups
Let X be a geometrically connected smooth scheme over an algebraically closed field k of positive characteristic.
Fix once and for all a geometric point ◆x : x ! X and consider the corresponding étale fundamental group
⇡

ét
1
(X) := ⇡

ét
1
(X,x), a profinite group. If we assume that X is moreover proper one has the following classical

result:

Theorem 6.2.2.1. [12, Exposé 10, Thm 2.9] Let X be a smooth and proper scheme over an algebraically closed
field. Then its étale fundamental group ⇡ét

1

�
X
�

is topologically of finite type.

Unfortunately, the statement of Theorem 6.2.2.1 does not hold in the non-proper case as the following propo-
sition illustrates:

Proposition 6.2.2.2. Let k be an algebraically closed field of positive characteristic. Then the étale fundamental
group of the affine line ⇡ét

1
(A1

k) is not topologically finitely generated.

Proof. For each integer n � 1, one can exhibit Galois covers of A1

k whose corresponding automorphism group is
isomorphic to (Z/pZ)n. This statement readily implies that ⇡ét

1
(A1

k) does not admit a finite number of topological
generators. In order to construct such coverings, we consider the following endomorphism of the affine line

�n : A1

k ! A1

k,

defined via the formula
�n : x 7! x

pn

� x.

The endormophism �n respects the additive group structure on A1

k. Moreover, the differential of �n equals �1.
For this reason, �n induces an isomorphism on cotangent spaces and, in particular, it is an étale morphism. As k is
algebraically closed, �n is surjective and it is finite, thus a finite étale covering. The automorphism group of �n is
naturally identified with its kernel, which is isomorphic to Fpn . The statement of the proposition now follows.
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Definition 6.2.2.3. Let G be a profinite group and p a prime numbger, we say that G is quasi-p if G equals the
subgroup generated by all p-Sylow subgroups of G.

Examples of quasi-2 finite groups include the symmetric groups Sn, for n � 2. Moreover, for each prime p,
the group SLn(Fp) is quasi-p. Let X = A1

k be the affine line over an algebraically closed field k of characteristic
p > 0. We have the following result proved by Raynaud which was originally a conjecture of Abhyankar:

Theorem 6.2.2.4. [7, Conjecture 10] Every finite quasi-p group can be realized as a quotient of ⇡ét
1
(X).

Remark 6.2.2.5. In the example of the affine line the infinite nature of ⇡1(A1

k) arises as a phenomenon of the
existence of étale coverings whose ramification at infinity can be as large as we desire. This phenomenon is
special to the positive characteristic setting. Neverthless, we can prove that ⇡ét

1
(X) admits a topologically finitely

generated quotient which corresponds to the group of automorphisms of tamely ramified coverings. On the other
hand, in the proper case every finite étale covering of X is everywhere unramified.

Definition 6.2.2.6. Let X ,! X be a normal compactification of X , whose existence is guaranteed by [26]. Let
f : Y ! X be a finite étale cover with connected source. We say that f is tamely ramified along the divisor
D := X\X if every codimension-1 point x 2 D is tamely ramified in the corresponding extension field extension
k(Y )/k(X).

Proposition 6.2.2.7. Tamely ramified extensions along D := X\X of X are classified by a quotient ⇡ét
1
(X) !

⇡
t

1
(X,D), referred to as the tame fundamental group of X along D.

Remark 6.2.2.8. Let X denote a smooth compactification of X and D := X\X. We denote by ⇡w
1
(X,D), the

wild fundamental group of X along D, the kernel of the continuous morphism ⇡
ét
1
(X)! ⇡

t

1
(X).

Definition 6.2.2.9. Assume X is a normal connected scheme over k.

(i) Let f : Y ! X be an étale covering. We say that f is divisor-tame if for every normal compactification
X ,! X , f is tamely ramified along D = X\X .

(ii) Let f : Y ! X be an étale covering. We shall refer to f as curve-tame if for every smooth curve C over k
and morphism g : C ! X , the base change Y ⇥X C ! C is a tame covering of the curve C.

Remark 6.2.2.10. In Theorem 6.2.2.9 X is assumed to be a normal connected scheme over a field of positive
characteristic. Currently, we lack a resolution of singularities theorem in this setting. Therefore, a priori, one
cannot expect that both divisor-tame and curve-tame notions agree in general. Indeed, one can expect many
regular normal crossing compactifications of X to exist, or none.

Neverthless, one has the following result:

Proposition 6.2.2.11. [17, Theorem 1.1] Let X be a smooth scheme over k and let f : Y ! X be an étale
covering. Then f is divisor-tame if and only if it is curve-tame.

Definition 6.2.2.12. The tame fundamental group ⇡
t

1
(X) is defined as the quotient of ⇡ét

1
(X) by the normal

closure of opens subgroup of ⇡ét
1
(X) generated by the wild fundamental groups ⇡w

1
(X,D) along D, for each

normal compactification X ,! X .

Remark 6.2.2.13. The notion of tameness is stable under arbitrary base changes between smooth schemes. In
particular, given a morphism f : Y ! X between smooth schemes over k, one has a functorial well defined
morphism ⇡

t

1
(Y )! ⇡

t

1
(X) fitting in a commutative diagram of profinite groups

⇡
ét
1
(Y ) ⇡

ét
1
(X)

⇡
t

1
(Y ) ⇡

t

1
(X).

Moreover, the profinite group ⇡t

1
(X) classifies tamely ramified étale coverings of X .

Remark 6.2.2.14. The tame fundamental group ⇡t

1
(X) classifies finite étale coverings f : X ! Y which are

tamely ramified along any divisor at infinity.
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Definition 6.2.2.15. We define the wild fundamental group of X , denoted ⇡w
1
(X), as the kernel of the surjection

⇡
ét
1
(X)! ⇡

t

1
(X). It is an open normal subgroup of ⇡ét

1
(X).

Proposition 6.2.2.16. [7] Let C be a geometrically connected smooth curve over k. Then the wild fundamental
group ⇡w

1
(C) is a pro-p-group.

Theorem 6.2.2.17. [5, Appendix 1, Theorem 1] Let X be a smooth and geometrically connected scheme over k.
There exists a smooth, geometrically connected curve C/k together with a morphism f : C ! X of varieties such
that the corresponding morphism at the level of fundamental groups ⇡ét

1
(C)! ⇡

ét
1
(X)! ⇡

t

1
(X) is surjective and

it factors by a well defined morphism ⇡
t

1
(C)! ⇡

t

1
(X). In particular, ⇡t

1
(X) is topologically finitely generated.

Remark 6.2.2.18. Theorem 6.2.2.17 implies that ⇡t

1
(A1

k) admits a finite number of topological generators. In
fact, the group ⇡t

1
(A1

k) is trivial.

6.2.3 Moduli of continuous `-adic representations
In this §, X denotes a smooth scheme over an algebraically closed field of positive characteristic p > 0. Never-
theless, our arguments apply when X is the spectrum of a local field of mixed characteristic.

Remark 6.2.3.1. Let A 2 Afd be Q`-affinoid algebra A 2 Afd. It admits a natural topology induced from a
choice of a norm on A, compatible with the usual `-adic valuation on Q`. Given G an analytic Q`-group space
we can consider the corresponding group of A-points on G, G(A). The group G(A) admits a natural topology
induced from the non-archimedean topology on A. In the current text we will be interested in studying the moduli
functor parametrizing continuous representations

⇢ : ⇡
ét
1
(X)! GLan

n (A).

Nevertheless, our arguments can be directly applied when we instead consider the moduli of continuous represen-
tations

⇡
ét
1
(X)! Gan

(A),

where G denotes a reductive group scheme.

Definition 6.2.3.2. Let G be a profinite group. Denote by

LocSys
framed

`,n (G) : AfdQ` ! Set,

the functor of rank n continuous `-adic group homomorphisms of G. It is given on objects by the formula

A 2 Afd
op 7! Homcont (G,GLn(A)) 2 Set, (6.2.3.1)

where the right hand side of (6.2.3.1) denotes the set of continuous group homomorphisms GK ! GLn(A).

Notation 6.2.3.3. Whenever G = ⇡
ét
1
(X) we denote LocSys`,n(X) := LocSys`,n(⇡

ét
1
(X)).

Proposition 6.2.3.4. [1, Corollary 2.2.16] Suppose G is a topologically finitely generated profinite group. Then
the functor LocSysframed

`,n (G) is representable by a Q`-analytic space.

By the results of the previous §, the étale fundamental group ⇡ét
1
(X) is almost never topologically finitely

generated in the non-proper case. For this reason, we cannot expect the functor LocSysframed

`,n (GX) to be rep-
resentable by an object in the category AnQ` of Q`-analytic spaces. Nevertheless, we can prove an analogue of
Theorem 6.2.3.4 if we consider instead certain subfunctors of LocSys

framed

`,n . More specifically, given a finite
quotient q : ⇡w

1
(X) ! � we can consider the moduli parametrizing continuous `-adic representations of ⇡ét

1
(X)

whose restriction to ⇡w
1
(X) factors through �:

Construction 6.2.3.5. Let q : ⇡w

1
(X)! � denote a surjective continuous group homomorphism, whose target is

a finite group (equipped with the discrete topology). We define the functor of continuous group homomorphisms
⇡

ét
1
(X) to GLn(�) with �-bounded ramification at infinity, as the fiber product

LocSys
framed

`,n,� (⇡
ét
1
(X)) := LocSys

framed

`,n (⇡
ét
1
(X))⇥

LocSys
framed
`,n (⇡w

1 (X))
LocSys

frame

`,n (�), (6.2.3.2)

computed in the category Fun (Afd
op
, Set).
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Remark 6.2.3.6. The moduli functor LocSysframed

`,n,� (X) introduced in Theorem 6.2.3.5 depends on the choice of
the continuous surjective homomorphism q : PX ! �. However, for notational convenience we drop the subscript
q.

We have the following result:

Theorem 6.2.3.7. The functor LocSysframed

`,n,� (X) is representable by a Q`-analytic stack.

Proof. Let r be a positive integer and denote F
[r] a free profinite group on r topological generators. The finite

group � and the quotient GX/PX are topologically of finite generation. Therefore, it is possible to choose a
continuous group homomorphism

p : F
[r] ! ⇡

ét
1
(X),

such that the images p(ei), for i = 1, . . . , r, form a set of generators for �, seen as a quotient of ⇡w
1
(X), and for

⇡
t

1
(X) ⇠= ⇡

ét
1
(X)/⇡

w
1
(X). Restriction under ' induces a closed immersion of functors

LocSys
framed

`,n,� (GX) ,! LocSys
framed

`,n (F
[r]
).

Thanks to [1, Theorem 2.2.15.], the latter is representable by a rigid Q`-analytic space, denoted X
[r]. It follows

that LocSysframed

`,n,� (GX) is representable by a closed subspace of X [r], which proves the statement.

Definition 6.2.3.8. Let PShv (AfdQ`) := Fun
�
Afd

op

Q`
, S
�

denote the 1-category of S-valued preasheaves on
AfdQ` . Consider the étale site (Afd, ⌧ét). We define the1-category of higher stacks on (Afd, ⌧ét), St (Afd, ⌧ét) ,

as the full subcategory of PShv (Afd) spanned by those pre-sheaves which satisfying étale hyper-descent, [19, §7].

Remark 6.2.3.9. The inclusion functor St (AfdQ` , ⌧ét) ✓ PShv (Afd) admits a left adjoint, which is a left lo-
calization functor. For this reason, the1-category St (AfdQ` , ⌧ét) is a presentable1-category. One can actually
prove that St

�
AfdQ` , ⌧ét

�
is the hypercompletion of the1-topos of étale sheaves on AfdQ` , Shvét

�
Afd

�
.

Definition 6.2.3.10. Consider the geometric context (dAfd, ⌧ét,Psm), [1, Definition 2.3.1]. Let St (AfdQ` , ⌧ét,Psm)

denote the full subcategory of St(Afd, ⌧ét) spanned by geometric stacks, [1, Definition 2.3.2]. We will refer to an
object F 2 St (AfdQ` , ⌧ét,Psm) as the a Q`-analytic stack and we refer to St

�
AfdQ` , ⌧ét

�
as the 1-category of

Q`-analytic stacks.

Example 6.2.3.11. Let G be a group object in the1-category St (Afd, ⌧ét,Psm). Given a G-equivariant object
F 2 St (Afd, ⌧ét, Psm)

G we denote [F/G] the geometric realization of the simplicial object

· · · G2 ⇥ F G⇥ F F

computed in the1-category St
�
AfdQ` , ⌧ét

�
. We refer to [F/G] as the quotient stack object of F by G.

Lemma 6.2.3.12. [1, §2.3]. Suppose G 2 St (Afd, ⌧ét, Psm) is a smooth group object and F is representable by
a Q`-analytic space. Then the quotient stack object [F/G] is representable by a geometric stack.

Remark 6.2.3.13. The smooth group GLan

n 2 AnQ` acts by conjugation on the moduli functor LocSysframed

`,n .

Definition 6.2.3.14. Let LocSys`,n(X) := [LocSys
framed

`,n (X)/GLn
an
] denote the moduli stack of rank n `-adic

pro-étale local systems on X . Given a continuous surjective group homomorphism q : ⇡
w

1
(X) ! � whose target

is a finite group we define the substack of LocSys`,n(X) spanned by rank n `-adic pro-étale local systems on X

ramified at infinity by level � as the fiber product

LocSys`,n,� := LocSys`,n(X)⇥LocSys`,n(⇡
w
1 (X) LocSys`,n(�)

Theorem 6.2.3.15. The moduli stack LocSys`,n,�(X) is representable by a Q`-analytic stack.

Proof. We have a canonical map LocSys
framed

`,n,� (GX)! LocSys`,n,�(X), which exhibits the former as a smooth
atlas of the latter. The result now follows formally, as explained in [1, §2.3].
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One can prove that there is an equivalence between the space of continuous representations

⇢ : ⇡
ét
1
(X)! GLan

n (A), A 2 AfdQ`

and the space of rank n pro-étale A-local systems on X . We thus have the following statement:

Proposition 6.2.3.16. [1, Corollary 3.2.5] The functor LocSys`,n(X) parametrizes pro-étale local systems of
rank n on X .

Proof. The same proof of [1, Corollary 3.2.5] applies.

6.3 Derived structure
Let X be a smooth scheme over an algebraically closed field k and fix a finite quotient q : ⇡w

1
(X) ! �. In

this §we will study at full the deformation theory of both the Q`-analytic moduli stacks LocSys`,n(X) and
LocSys`,n,�(X). Our goal is to show that LocSys`,n(X) and LocSys`,n,�(X) can be naturally promoted to
derived Q`-stacks, denoted RLocSys`,n(X) and RLocSys`,n,�(X), respectively. Therefore the corresponding 0-
truncations t0RLocSys`,n(X) and t0RLocSys`,n,�(X) are equivalent to LocSys`,n(X) and LocSys`,n,�(X),
respectively. We will prove moreover that both RLocSys`,n,�(X) and LocSys`,n(X) admit tangent complexes
and give a precise formula for these. Moreover, we show that the substack RLocSys`,n,�(X) is geometric with
respect to the geometric context

�
dAfdQ` , ⌧ét,Psm

�
. In particular, RLocSys`,n,�(X) admits a cotangent complex

which we can understand at full.
We compute the corresponding cotangent complexes and analyze some consequences of the existence of de-

rived structures on theses objects. We will use extensively the language of derived Q`-analytic geometry as
developed in [28, 29].

6.3.1 Derived enhancement of LocSys`,n(X)

Recall the 1-category of derived Q`-affinoid spaces dAfdQ` introduced in [28]. Given a derived Q`-affinoid
space Z := (Z,OZ) 2 dAfdQ` , we denote

�(Z) := �

⇣
Oalg

Z

⌘
2 CAlgQ`

the corresponding derived ring of global sections on Z, see [27, Theorem 3.1] for more details. [2, Theorem
4.4.10] implies that �(Z) always admits a formal model, i.e., a `-complete derived Z`-algebra A0 2 CAlgZ`

such
that (Spf A0)

rig ' X . Here (�)rig denotes the rigidification functor from derived formal Z`-schemes to derived
Q`-analytic spaces, introduced in [2, §4]. This allow us to prove:

Proposition 6.3.1.1. [1, Proposition 4.3.6] The1-category of perfect complexes on A, Perf(A), admits a natural
structure of Ind

�
Pro

�
S
��

-enriched1-category, i.e., it can be naturally upgraded to an object in the1-category
ECat1.

Definition 6.3.1.2. Let Y 2 Ind
�
Pro

�
S
��

. We define its materialization by the formula

Mat (X) := Map
Ind(Pro(S))

(⇤,X) 2 S,

where ⇤ 2 Ind(Pro(S)) denotes the terminal object. This formula is functorial. For this reason, we have a well
defined, up to contractible indeterminacy functor, materialization functor Mat: Ind(Pro(S))! S.

As a consequence of Theorem 6.3.1.1, there exists an object BEnd(Z) 2 Ind
�
Pro

�
S
��

, functorial in Z 2
dAfdQ` , such that its materalization is equivalent to

Mat (End(Z)) ' BEnd(�(Z)
n
) 2 S. (6.3.1.1)

The right hand side of (6.3.1.1) denotes the usual Bar-construction applied to E1-monoid object End(�(Z)) 2 S.
Moreover, given Y 2 Ind

�
Pro(S)

�
every continuous morphism

Y ! BEnd(Z), in Ind
�
Pro

�
S
��
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is such that its materialization factors as

Mat (Y )! BGLn(�(Z)) ,! BEnd(�(Z))

in the1-category S. See [1, §4.3 and §4.4] for more details.

Definition 6.3.1.3. [22, Notation 3.6.1] We shall denote Shét
(X) the étale shape of X defined as the fundamental

groupoid associated to the1-topos Shvét (X)
^, of hyper-complete étale sheaves on X .

Definition 6.3.1.4. Let X be as above. We define the derived moduli stack of `-adic pro-étale local systems of
rank n on X as the functor

RLocSys`,n(X) : dAfd
op

Q`
! S,

given informally on objects by the formula

Z 2 dAfd
op

Q`
7! limn�0Map

MonE1 (C)

⇣
Sh

ét
(X),BEnd (tn(Z))

⌘
,

where tn(Z) denotes the n-th truncation functor on derived Q`-affinoid spaces.

Notation 6.3.1.5. Given Z 2 dAfdQ` we sometimes prefer to employ the notation

RLocSys`,n(X)(�(Z)) := RLocSys`,n(X)(Z).

Let ⇢ 2 RLocSys`,n(X)(�(Z)), we refer to it as a continuous representation of Sh
ét
(X) with coefficients in

�(Z).

Definition 6.3.1.6. Let Y := limmYm 2 Pro (S). Given an integer n � 0, we define the n-truncation of Y as

⌧n (Y ) := limm⌧n(Ym) 2 Pro(Sn),

i.e. we apply pointwise the truncation functor ⌧n : S! S to the diagram defining Y = limmYm 2 Pro(S).

Ind(Pro(S))

Notation 6.3.1.7. Let ◆ : Afd! dAfdQ` denote the canonical inclusion functor. Denote by

t0

�
RLocSys`,n(X)

�
:= RLocSys`,n(X) � ◆,

the restriction of RLocSys`,n(X) to AfdQ` .
Given Z 2 Afd

op, the object BEnd(Z) 2 Ind
�
Pro

�
S
��

is 1-truncated. As a consequence, we have an
equivalence of mapping spaces:

Map
Ind(Pro(S))

�
Sh

ét
(X),BEnd(Z)

�
' Map

Ind(Pro(S))

⇣
⌧1Sh

ét
(X),BEnd(Z)

⌘
.

We have moreover an equivalence of profinite spaces ⌧1Sh
ét
(X) ' B⇡

ét
1
(X). Given a continuous group ho-

momorphism ⇢ : ⇡
ét
1
(X) ! GLn(A) we can associate, via the cobar construction performed in the 1-category

Top
na

, a well defined morphism
B⇢ : B⇡

ét
1
(X)! BEnd(A),

in the1-category Ind(Pro(S)). This construction provide us with a well defined, up to contractible indeterminacy,

pA : LocSys
framed

`,n (X)(A)! Map
Ind(Pro(S))

�
B⇡

ét
1
(X),BEnd(Z)

�
.

On the other hand, the morphisms pA assemble to provide a morphism of stacks

p : LocSys
framed

`,n (X)! t0RLocSys`,n(X).

Proposition 6.3.1.8. The canonical morphism

p : LocSys
framed

`,n (X)! t0RLocSys`,n(X),

in the1-category St
�
AfdQ` , ⌧ét

�
which induces an equivalence of stacks

LocSys`,n(X) ' t0RLocSys`,n(X).
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Proof. The proof of [1, Theorem 4.5.8] applies.

Notation 6.3.1.9. Let Z := (Z,OZ) 2 dAn denote a derived Q`-analytic space and M 2 ModOZ . In [29,
§5] it was introduced the analytic square zero extension of Z by M as the derived Q`-analytic space Z[M ] :=

(Z,OZ �M) 2 dAn, where OZ �M := ⌦
1
an
2 AnRingk(Z)/OZ

denotes the trivial square zero extension of OZ

by M . In this case, we have a natural composite

OZ ! OZ �M ! OZ (6.3.1.2)

in the1-category AnRingk(Z)/OZ
which is naturally equivalent to the identity on OZ . We denote pZ,M : OZ �

M ! OZ the natural projection displayed in (6.3.1.2)

Definition 6.3.1.10. Let Z 2 dAfd
op

Q`
be a derived Q`-affinoid space. Let ⇢ 2 RLocSys`,n(X)(OZ) be a contin-

uous representation with values in OZ . The tangent complex of RLocSys`,n(X) at ⇢ is defined as the fiber

TRLocSys`,n(X),⇢ := fib⇢ (pOZ )

where
pOZ : RLocSys`,n(X)(OZ �an OZ)! RLocSys`,n(OZ),

is the morphism of stacks induced from the canonical projection map pOZ ,OZ : OZ � OZ ! OZ .

The derived stack RLocSys`,n is not, in general, representable as derived Q`-analytic stack, as this would
entail the representability of its 0-truncation. Nevertheless we can compute its tangent complex explicitly:

Lemma 6.3.1.11. [1, Proposition 4.4.9.] Let ⇢ 2 RLocSys`,n(X)(OZ). We have a natural morphism

TRLocSys`,n(X),⇢ ! C
⇤
ét (X,Ad (⇢)) [1],

which is an equivalence in the derived1-category Mod�(Z).

Proof. The proof of [1, Proposition 4.4.9] applies.

6.3.2 The bounded ramification case
In this §we are going to define a natural derived enhancement of LocSys`,n,�(X) and prove its representability by a
derived Q`-analytic stack. Let X be a smooth scheme over an algebraically closed field k of positive characteristic
p 6= `.

Definition 6.3.2.1. Consider the sub-site X
tame

ét of the small étale site Xét spanned by those étale coverings
Y ! X satisfying condition (2) in Theorem 6.2.2.9. We can form the1-topos Shvtame

(X) := Shv (X
tame

ét ) of
tamely ramified étale sheaves on the Grothendieck site X

tame

ét .

Consider the inclusion of sites ◆ : Xtame

ét ,! Xét, it induces a geometric morphism of1-topoi

g⇤ : Shvét(X)! Shv
tame

ét (X) (6.3.2.1)

which is a right adjoint functor to the functor induced by precomposition with ◆.

Lemma 6.3.2.2. The geometric morphism of 1-topoi g⇤ : Shvtame

ét (X) ! Shvét(X) introduced in (6.3.2.1) is
fully faithful.

Proof. As the Grothendieck topology on X
tame

ét is induced by the inclusion functor ◆ : Xtame

ét ! Xét, it suffices
to prove the corresponding statement for the1-categories of presheaves. More specifically, the statement of the
lemma is a consequence of the assertion that the left adjoint

◆
⇤
: PShv (Xét)! PShv

�
X

tame

ét
�
,

given by precomposition along ◆, admits a fully faithful right adjoint. The existence of a right adjoint for ◆⇤,
denoted ◆⇤, follows by the Adjoint functor theorem. The required right adjoint is moreover computed by means
of a right Kan extension along ◆. Let Y 2 X

tame

ét , we can consider Y 2 Xét by means of the inclusion functor
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◆ : X
ét
tame

! Xét. The comma 1-category
�
X

tame

ét
�
Y/

admits an initial object, namely Y itself. Let CY :=
�
X

tame

ét
�
Y/

. Given F 2 PShv
�
X

tame

ét
�

one can compute

◆
⇤
◆⇤F(Y ) '

' ◆⇤F(Y )

' ◆⇤limV 2CY F(V )

' F(Y )

In particular, the counit of the adjunction ✓ : ◆⇤ � ◆⇤ ! Id is an equivalence. Reasoning formally we deduce that
◆⇤ is fully faithful and therefore so it is g⇤.

Definition 6.3.2.3. Let Shtame
(X) 2 Pro (S) denote the fundamental 1-groupoid associated to the 1-topos

Shv(X
tame

ét ), which we refer to as the tame étale homotopy type of X .

Remark 6.3.2.4. The fact that the geometric morphism g⇤ : Shv(X
tame

ét ) ! Shv(Xét) is fully faithful implies
that the canonical morphism

Sh
tame

(X)! Sh
ét
(X)

induces an equivalence of profinite abelian groups ⇡i
�
Sh

tame
(X)

�
' ⇡i

⇣
Sh

ét
(X)

⌘
for each i > 1. As a conse-

quence one has a fiber sequence
B⇡

w
1
(X)! Sh

ét
(X)! Sh

tame
(X),

in the1-category Pro(Sfc) of profinite spaces.

Definition 6.3.2.5. The derived moduli stack of wild (pro)-étale rank n `-local systems on X is defined as the
functor RLocSysw`,n(X) : dAfd

op ! S given informally by the association

Z 2 dAfd
op

Q`
7! limn�0Map

Ind(Pro(S))

�
B⇡

w
1
(X),BGLn

�
⌧n

�
�(Z)

���
2 S.

Remark 6.3.2.6. The functor RLocSysw`,n(X) satisfies descent with respect to the étale site (dAfd, ⌧ét), thus we
can naturally consider RLocSysw`,n(X) as an object of the1-category of derived stacks dSt (dAfd, ⌧ét, ).

Suppose now we have a surjective continuous group homomorphism q : ⇡
w
1
(X) ! �, where � is a finite

group. Such morphism induces a well defined morphism (up to contractible indeterminacy)

Bq : B⇡
w
1
(X)! B�.

Precomposition along Bq induces a morphism of derived moduli stacks Bq⇤ : RLocSys`,n(�)! RLocSys
w
`,n(X).

Where RLocSys`,n(�) : dAfdQ` ! S is the functor informally defined by the association

Z 2 dAfdQ` 7! Map
Ind(Pro(S))

(B�,BEnd(Z)) .

Remark 6.3.2.7. As B� 2 Sfc ✓ Pro
�
Sfc

�
it follows that, for each Z 2 dAfdQ` , one has a natural equivalence

of mapping spaces
Map

Ind(Pro(S))
(B�,BEnd(Z)) ' Map

S
(B�,BGLn(OZ)) .

Therefore the moduli stack RLocSys`,n (B�) is always representable by a derived Q`-analytic stack which is
moreover equivalent to the analytification of the usual (algebraic) mapping stack Map (B�,BGLn(�)). The
latter is representable by an Artin stack, see [23, Proposition 19.2.3.3.].

We can now give a reasonable definition of the moduli of local systems with bounded ramification at infinity:

Definition 6.3.2.8. The derived moduli stack of derived étale local systems on X wtih �-bounded ramification at
infinity is defined as the fiber product

RLocSys`,n,�(X) := RLocSys`,n(X)⇥RLocSys
w
`,n(X) RLocSys`,n(B�)
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Proposition 6.3.2.9. Let q : ⇡w
1
(X) ! � be a surjective continuous group homomorphism whose target is finite.

Then the 0-truncation of RLocSys`,n,�(X) is naturally equivalent to LocSys`,n,�(X). In particular, the former
is representable by a Q`-analytic stack.

Proof. It suffices to prove the statement for the corresponding moduli associated to Sh
ét
(X), B⇡w

1
(X) and B�.

Each of these three cases can be dealt as in Theorem 6.3.1.8.

Similarly to the derived moduli stack RLocSys`,n(X) we can compute the tangent complex of RLocSys`,n,�(X)

explicitly. In order to do so, we will first need some preparations:

Construction 6.3.2.10. Let Y 2 Pro
�
Sfc�1

�
be a 1-connective profinite space. Fix moreover a morphism

c : ⇤ ! X,

in the 1-category Pro
�
Sfc

�
. Notice that such choice is canonical up to contractible indeterminacy due to con-

nectedness of X .
Let Perf (Q`) the1-category of perfect Q`-modules. One can canonically enhance Perf(Q`) to an object in

the1-category ECat1 of Ind(Pro(S))-enriched1-categories. Consider the full subcategory

Perf` (Y ) := Funcont (Y,Perf(Q`))

of Fun (Mat (Y ) ,Perf(Q`)) spanned by those functors F : Y ! Perf(Q`) with M := F (⇤) such that the induced
morphism

⌦Mat (X)! End (M) (6.3.2.2)

is equivalent to the materialization of a continuous morphism

⌦X! End (M)

in the 1-category Ind(Pro(S)). Thanks to [1, Corollary 4.3.23] the 1-category Perf`(X) is an idempotent
complete stable Q`-linear1-category which admits a symmetric monoidal structure given by point-wise tensor
product.

Consider the ind-completion ModQ`(X) := Ind (Perf`(X)), which is a presentable stable symmetric monoidal
Q`-linear 1-category, [1, Corollary 4.3.25]. We have a canonical functor p`(X) : ModQ`(X) ! ModQ` given
informally by the formula

colim
i

F2ModQ` (Y ) 7! colim
i

(Fi(⇤)) 2 ModQ` .

Given Z := (Z,OZ) 2 dAfdQ` a derived Q`-affinoid space, we denote �(Z) := � (Z) the corresponding derived
ring of global sections. Consider the extension of scalars1-category

Mod�(Z) (Y ) := ModQ` (Y )⌦Q` �(Z),

which is a presentable stable symmetric monoidal �(Z)-linear 1-category, [1, Corollary 4.3.25]. We can base
change p`(Y ) to a well defined (up to contractible indeterminacy) functor p�(Z) (Y ) : Mod�(Z) (Y )! Mod�(Z)

given informally by the association
⇣
colim

i
Fi

⌘
⌦Q` �(Z) 2 Mod�(Z) (X) 7! colim

i
(Fi(⇤)⌦Q` �(Z)) 2 Mod�(Z).

Proposition 6.3.2.11. Let Z 2 dAfd be a derived Q`-affinoid space and ⇢ 2 RLocSys`,n,�(X)(OZ). The
inclusion morphism of stacks

RLocSys`,n,�(X) ,! RLocSys`,n(X)

induces a natural morphism at the corresponding tangent complexes at ⇢

TRLocSys`,n,�,⇢ ! TRLocSys`,n,⇢

is an equivalence in the1-category Mod�(Z). In particular, we have an equivalence of �(Z)-modules

TRLocSys`,n,�, ⇢ ' C
⇤
ét (X,Ad (⇢)) [1] 2 Mod�(Z).
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Proof. Let ⇧ := Bq : B⇡
w
1
(X) ! B� denote the morphism of profinite homotopy types induced from a con-

tinuous surjective group homomorphism q : ⇡
w
1
(X) ! � whose target is finite. We can form a fiber sequence

Y! B⇡
w
1
(X)! B� (6.3.2.3)

in the 1-category Pro
�
Sfc�1

�
⇤/ of pointed 1-connective profinite spaces. Let A := �(Z) and consider the 1-

categories ModA (Sh
w
(X)) and ModA (B�) introduced in Theorem 6.3.2.10. Let CA,n (B⇡

w
1
(X)) and CA,n (B�)

denote the full subcategories of ModA (B⇡
w
1
(X)) and ModA (B�), respectively, spanned by modules rank n free

A-modules. It is a direct consequence of the definitions that one has an equivalence of spaces

RLocSys`,n (B⇡
w
1
(X)) ' CA,n (B⇡

w
1
(X))

' and RLocSys`,n (B�) ' CA,n (B�)
'

where (�)' denotes the underlying 1-groupoid functor. The fiber sequence displayed in (6.3.2.3) induces an
equivalence of1-categories

ModA (B�) ' ModA (B⇡
w
1
(X))

Y (6.3.2.4)

where the right hand side of (6.3.2.4) denotes the 1-category of Y-equivariant continuous representations of
B⇡

w
1
(X) with A-coefficients. Thanks to [1, Proposition 4.4.9.] we have an equivalence of A-modules

T
RLocSys`,n(B⇡

w
1 (X)), ⇢|B⇡w

1 (X)

' Map
Mod�(Z)(B⇡

w
1 (X))

⇣
1, ⇢|B⇡w

1 (X)
⌦ ⇢_|B⇡w

1 (X)

⌘
[1] (6.3.2.5)

and similarly,
TRLocSys`,n(B�), ⇢� ' Map

Mod�(Z)(B�)
(1, ⇢� ⌦ ⇢_�) [1] (6.3.2.6)

By definition of ⇢, we have an equivalence ⇢Y ' ⇢, where (�)Y denotes (homotopy) fixed points with respect to
the morphism Y! B⇡

w
1
(X). Thus we obtain a natural equivalence of A-modules:

Map
Mod�(Z)(B⇡

w
1 (X))

(1, ⇢⌦ ⇢_) [1] ' Map
Mod�(Z)(B⇡

w
1 (X))

�
1, (⇢� ⌦ ⇢_�)Y

�
[1]. (6.3.2.7)

Homotopy Y-fixed points are computed by Y-indexed limits. As the Y-indexed limit computing the right hand
side of (6.3.2.7) has identity transition morphisms we conclude that the right hand side of (6.3.2.7) is naturally
equivalent to the mapping space

Map
ModA(B⇡w

1 (X))

�
1, (⇢⌦ ⇢_)Y

�
[1] ' Map

ModA(B�)
(1,⇧⇤(⇢⌦ ⇢_)) [1] (6.3.2.8)

where⇧⇤ : ModA (B⇡
w
1
(X))! ModA (B�) denotes a right adjoint to the forgetful⇧⇤

: ModA (B�)! ModA (B⇡
w
1
(X)).

As a consequence we have an equivalence

Map
ModA(B⇡w

1 (X))
(1, ⇢⌦ ⇢_) [1] ' Map

ModA(B�)
(1,⇧⇤(⇢⌦ ⇢_)) [1] (6.3.2.9)

in the1-category S. Notice that, by construction

⇢� ⌦ ⇢_� ' (⇢⌦ ⇢_)
�

(6.3.2.10)

in the1-category ModA (B�). One has moreover equivalences

⇧⇤ (⇢⌦ ⇢_) ' (⇢⌦ ⇢_)
�
, (6.3.2.11)

as the restriction of ⇢ ⌦ ⇢_ to Y is trivial. Thanks to (6.3.2.5) through (6.3.2.11) we conclude that the canonical
morphism LocSys`,n (B�)! LocSys`,n (B⇡

w
1
(X)) induces an equivalence on tangent spaces, as desired.

Construction 6.3.2.12. Fix a continuous surjective group homomorphism q : ⇡
w
1
(X)! �, whose target is finite.

Denote by H the kernel of q. The profinite group H is an open subgroup of ⇡w
1
(X). For this reason, there exists

an open subgroup U  ⇡
ét
1
(X) such that U \ ⇡w

1
(X) = H . In particular, the subgroup U has finite index in

⇡
ét
1
(X). As finite étale coverings of X are completely determined by finite continuous representations of ⇡ét

1
(X),

there exists a finite étale covering
fU : YU ! X
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such that ⇡ét
1
(X) acts on it canonically. Moreover, one has an isomorphism of profinite groups

⇡
ét
1
(Y ) ⇠= U

As a consequence, it follows that ⇡w
1
(YU )

⇠= H . Given Z 2 AfdQ` and ⇢ 2 RLocSys`,n,�(X)(OZ) it follows by
the construction of fU : YU ! X that the restriction

⇢|Shét
(Y )

factors through Sh
tame

(Y ). The morphism fU : YU ! X induces a morphism of profinite spaces

Sh
ét
(Y )! Sh

ét
(X),

which on the other hand induces a morphism of stacks RLocSys`,n(X) ! RLocSys`,n(YU ). Moreover, by the
above considerations the composite

RLocSys`,n,�(X)! RLocSys`,n(X)! RLocSys`,n(Y ),

factors through the substack of tamely ramified local systems RLocSys`,n
�
Sh

tame
(YU )

�
,! RLocSys`,n(YU ).

Lemma 6.3.2.13. The canonical restriction morphism of Theorem 6.3.2.12

RLocSys`,n,�(X)! RLocSys`,n(YU )

induces an equivalence
RLocSys`,n,�(X) ' RLocSys`,n

�
Sh

ét
(YU )

�B�0

of stacks.

Proof. By Galois descent, the restriction morphism along fU : YU ! X induces an equivalence of stacks

RLocSys`,n(X) ' RLocSys`,n(YU )
B�

0
.

Moreover, the considerations of Theorem 6.3.2.12 imply that we have a pullback square

RLocSys`,n,�(X) RLocSys`,n(X)

RLocSys`,n

�
Sh

tame
(YU )

�
RLocSys`,n(YU )

(6.3.2.12)

in the1-category dSt
�
dAfdQ` , ⌧ét

�
. The result now follows since we can identify (6.3.2.12) with

RLocSys`,n

�
Sh

tame
(YU )

�B�0

RLocSys`,n(YU )
B�

0

RLocSys`,n

�
Sh

tame
(YU )

�
RLocSys`,n(YU )

in the1-category dSt
�
dAfdQ` , ⌧ét

�
.

Theorem 6.3.2.14. The (derived) moduli stack RLocSys`,n,�(X) is representable by a derived Q`-analytic stack.

Proof. Thanks to [29, Theorem 7.1] we need to check that the functor RLocSys`,n,�(X) has representable
0-truncation, it admits a (global) cotangent complex and it is compatible with Postnikov towers. The repre-
sentability of t0(RLocSys`,n,�(X)) ' LocSys`,n,�(X) follows from Theorem 6.2.3.15. Theorem 6.3.2.11 im-
plies that RLocSys`,n,�(X) admits a global tangent complex. Moreover, by finiteness of `-adic cohomology
for smooth varieties in characteristic p 6= `, [25, Theorem 19.1] together with [1, Proposition 3.1.7] for each
⇢ 2 RLocSys`,n,�(X)(Z), the tangent complex at ⇢

TRLocSys`,n,�(X),⇢ ' C
⇤
ét
�
X,Ad(⇢)

�
[1] 2 Mod�(Z)
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is a dualizable object of the derived 1-category Mod�(Z). Thanks to Theorem 6.3.2.13 we deduce that the
existence of a cotangent complex is equivalent to the existence of a global cotangent complex for the derived
moduli stack

RLocSys`,n

�
Sh

tame
(YU )

�
2 dSt

�
AfdQ` , ⌧ét

�
.

We are thus reduced to show that Shtame
(Y ) 2 Pro(Sfc) is cohomologically perfect and cohomologically com-

pact, see [1, Definition 4.2.7] and [1, Definition 4.3.17] for the definitions of these notions. As YU is a smooth
scheme over a field of characteristic p 6= `, cohomologically perfectness of Shtame

(YU ) follows by finiteness
of étale cohomology with `-adic coefficients, [25, Theorem 19.1] together with [1, Proposition 3.1.7]. To show
that Shtame

(Y ) is cohomologically compact we pick a torsion Z`-module N which can be written as a filtered
colimit N ' colim↵N↵ of perfect Z`-modules. As the tame fundamental group is topologically of finite type
and for each i > 0, the stable homotopy groups ⇡i

�
Sh

tame
(YU )

�st are finitely presented the result follows. For
these reasons, the derived moduli stack RLocSys`,n

�
Sh

tame
(YU )

�
admits a glocal cotangent complex. Theo-

rem 6.3.2.13 implies now that the same is true for RLocSys`,n,�(X). Compatibility with Postnikov towers of
RLocSys`,n,�(X) follows from the fact that the latter moduli is defined as a pullback of stacks compatible with
Postnikov towers.

6.4 Comparison statements

6.4.1 Comparison with Mazur’s deformation functor
Let L be a finite extension of Q`, OL its ring of integers and l := L/mL its residue field. We denote CAlg

sm

/l the
1-category of derived small k-algebras augmented over l.

Let G be a profinite group and ⇢ : G ! GLn(L) a continuous `-adic representation of G. Up to conjugation,
⇢ factors through GLn(L) ✓ GLn(L) and we can consider its corresponding residual continuous l-representation

⇢ : G! GLn(l).

The representation ⇢ can the be obtained as the inverse limit of {⇢n : G ! GLn(OL/m
n+1

L )}n, where each
⇢n ' ⇢ mod mn+1. For each n � 0, ⇢n is a deformation of the residual representation ⇢ to the ring OL/m

n+1

L .
Therefore, in order to understand continuous representations ⇢ : G ! GLn(L) one might hope to understand
residual representations ⇢ : G ! GLn(l) together with their corresponding deformation theory. For this rea-
son, it is reasonable to consider the corresponding derived formal moduli problem, see [23, Definition 12.1.3.1],
associated to ⇢:

Def⇢ : CAlg
sm

/l ! S,

given informally via the formula

A 2 CAlg
sm

/l 7! Map
Ind(Pro(S))

(BG,BEnd(A))⇥MapInd(Pro(S))(BG,BEnd(A)) {⇢} 2 S. (6.4.1.1)

Construction 6.4.1.1. [1, Proposition 4.2.6] and its proof imply that one has an equivalence between the tangent
complex of Def⇢ and the complex of continuous cochains of Ad(⇢)

TDef⇢ ' C
⇤
cont

(G,Ad(⇢)) [1] (6.4.1.2)

in the1-category Modl. Replacing BG in (6.4.1.1) by étale homotopy type of X , Shét
(X), and C

⇤
cont

by C
⇤
ét in

(6.4.1.2) it follows by [25, Theorem 19.1] together with [21, Theorem 6.2.5] that Def⇢ is pro-representable by
a local Noetherian derived ring A⇢ 2 CAlg/l whose residue field is equivalent to l. Moreover, A⇢ is complete
with respect to the augmentation ideal mA⇢ (defined as the kernel of the homomorphism ⇡0 (A⇢)! k of ordinary
rings). It follows that A⇢ admits a natural structure of a derived W (l)-algebra, where W (l) denotes the ring of
Witt vector of l. As ⇢ admits deformations to OL, for e.g. ⇢ itself, we have that ` 6= 0 in ⇡0(A⇢).

Notation 6.4.1.2. Denote by L
unr := Frac (W (l)) the field of fractions of W (l). It corresponds to the maximal

unramified extension of Q` contained in L.
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Proposition 6.4.1.3. Let t0 (Def⇢) denote the 0-truncation of the derived formal moduli problem Def⇢, i.e. the
restriction of Def⇢ to the full subcategory of ordinary Artinian rings augmented over l, CAlg

sm,~
/l ✓ CAlg

sm

/l .
Then t0 (Def⇢) is equivalent to Mazur’s deformation functor introduced in [24, Section 1.2] and ⇡0(A⇢) is
equivalent to Mazur’s universal deformation ring.

Proof. Given R 2 CAlg
sm,~
/l ✓ CAlg

sm

/l an ordinary (Artinian) local l-algebra, the object BEnd(R) 2 Ind(Pro(S))
is 1-truncated. Therefore one has a natural equivalence of spaces

t0 (Def⇢) (R) ' Map
Ind(Pro(S))

�
B⇡

ét
1
(X),BEnd(A)

�
⇥Def⇢(k) {⇢}. (6.4.1.3)

By construction, the ordinary W (l)-algebra ⇡0(A⇢) pro-represents the functor t0 (Def⇢) : CAlg
sm,~
/l ! S. As a

consequence, the mapping space on the right hand side of (6.4.1.3) is 0-truncated and the set of R-points corre-
sponds to deformations of ⇢ valued in R. This is precisely Mazur’s deformation functor, as introduced in [24, Sec-
tion 1.2], concluding the proof.

6.4.2 Comparison with S. Galatius, A. Venkatesh derived deformation ring
In the case where X corresponds to the spectrum of a maximal unramified extension, outside a finite set S of
primes, of a number field L and ⇢ : GX ! GLn(K) is a continuous representation, the corresponding derived
W (k)-algebra was first introduced and extensively studied in [10].

6.4.3 Comparison with G. Chenevier moduli of pseudo-representations
In this section we will compare our derived moduli stack RLocSys`,n(X) with the construction of the moduli of
pseudo-representations introduced in [6]. We prove that RLocSys`,n(X) admits an admissible analytic substack
which is a disjoint union of the various Def⇢. Such disjoint union of deformation functors admits a canonical
map to the moduli of pseudo-representations of introduced in [6]. Such morphism of derived stacks is obtained
as the composite of the 0-truncation functor followed by the morphism which associates to a continuous rep-
resentation ⇢ its corresponding pseudo-representation, see [6, Definition 1.5]. Nevertheless, the derived moduli
stack RLocSys`,n(X) has more points in general, and we will provide a typical example in order to illustrate this
phenomena.

Proposition 6.4.3.1. Let ⇢ : ⇡ét
1
(X) ! GLn(F`) be a continuous residual `-adic representation. To ⇢ we can

attach a derived Q`-analytic space Def
rig

⇢ 2 dAnQ` for which every closed point ⇢ : SpL! Def
rig

⇢ is equivalent
to a continuous deformation of ⇢ over L.

Proof. Denote by dfSchW (l) the 1-category of derived formal schemes over W (l), introduced in [23, section
2.8]. The local Noetherian derived W (l)-algebra A⇢ is complete with respect to its maximal ideal mA⇢ . For this
reason, we can consider its associated derived formal scheme Spf A⇢ 2 dfSchW (l).

Let A 2 CAlgW (l) denote an admissible derived W (l)-algebra, see [2, Definition 3.1.1]. We have an equiva-
lence of mapping spaces

Map
dfSchW (l)

(Spf A, Spf A⇢) ' Map
CAlg

ad
W (l)

(A⇢, A) .

Notice that as A is a `-complete topological almost of finite type over W (k), the image of each t 2 mA⇢ is
necessarily a topological nilpotent element of the ordinary commutative ring ⇡0(A). Let m ✓ ⇡0(A) denote a
maximal ideal of ⇡0(A) and let (A)

^
m denote the m-completion of A. There exists a faithfully flat morphism of

derived adic W (k)-algebra
A! A

0
:=

Y

m✓⇡0(A)

(A)
^
m

where the product is labeled by the set of maximal ideals of ⇡0(A). By fppf descent we have an equivalence of
mapping spaces

Map
CAlg

ad
W (k)

(A⇢, A) ' lim[n]2�opMap
CAlg

ad
W (k)

⇣
A⇢, A

0
[n]

⌘
(6.4.3.1)
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where A0
[n] := A

0b⌦A . . . b⌦AA
0 denotes the n+1-tensor fold of A0 with itself over A computed in the1-category

of derived adic W (k)-algebras CAlg
ad

W (k). For a fixed [n] 2�op we an equivalence of spaces

Map
CAlg

ad
W (k)

⇣
A⇢, A

0
[n]

⌘
' Def⇢

⇣
A

0
[n]

⌘
.

For each [n] 2�op we obtain thus a natural inclusion morphism ✓[n] : Map
CAlg

ad
W (k)

⇣
A⇢, A

0
[n]

⌘
! RLocSys`,n(X)(A

0
[n]).

The ✓[n] assemble together and by fppf descent induce a morphism ✓ : Map
CAlg

ad
W (k)

(A⇢, A)! RLocSys`,n(X)(A).
By construction, ✓ induces a natural map of mapping spaces

Map
CAlg

ad
W (k)

(A⇢, A)!
Y

m✓⇡0(A)

✓
RLocSys`,n(X)(A)⇥Def⇢(A^

m) RLocSys`,n(X)(A
^
m)

◆

which is equivalence of spaces. In order words Spf A⇢ represents the moduli functor which assigns to each affine
derived formal scheme Spf A, over W (l), the space of continuous representations ⇢ : Shét

(X)! BGLn(A) such
that for each maximal ideal m ✓ ⇡0(A) the induced representation

(⇢)
^
m : Sh

ét
(X)! BGLn ((A

^
m))

is a deformation of ⇢ : Shét
(X)! BGLn(k). The formal spectrum Spf A⇢ is locally admissible, see [2, Definition

3.1.1]. We can thus consider its rigidificiation introduced in [2, Proposition 3.1.2] which we denote by Def
rig

⇢ :=

(Spf A⇢)
rig 2 dAnQ` . Notice that Def

rig

⇢ is not necessarily derived affinoid.
Let Z 2 dAfdQ` , [2, Corollary 4.4.13] implies that any given morphism f : Z ! (Spf A⇢)

rig in dAnQ` admits
necessarily a formal model, i.e., it is equivalent to the rigidification of a morphism

f : Spf A! Spf A⇢,

where A 2 CAlgadW (k) is a suitable admissible derived W (l)-algebra. The proof now follows from our previous
discussion.

The proof of Theorem 6.4.3.1 provides us with a canonical morphism of derived moduli stacks Def
rig

⇢ !
LocSys`,n(X). Therefore, passing to the colimit over all continuous representations

⇢ : ⇡
ét
1
(X)! GLn(F`)

provides us with a morphism
✓ :

a

⇢

Def
rig

⇢ ! RLocSys`,n(X) (6.4.3.2)

in the1-category dSt(dAfdQ` , ⌧ét).

Proposition 6.4.3.2. The morphism of derived Q`-analytic stacks

✓ :

a

⇢ : ⇡ét
1 (X)!GLn(Q̄`)

Def
rig

⇢ ! LocSys`,n(G)

displayed in (6.4.3.2) exhibits the left hand side as an analytic subdomain of the right hand side.

Proof. Let ⇢ : ⇡ét
1
(X)! GLn(F`) be a continuous representation. The induced morphism

✓⇢ : Def
rig

⇢ ! RLocSys`,n(X)

is an étale morphism of derived stacks, which follows by noticing that ✓⇢ induces an equivalence at the level of
tangent complexes. Moreover, Theorem 6.4.3.1 implies that ✓⇢ : Def

rig

⇢ ! RLocSys`,n(X) exhibits the former
as a substack of the latter. It then follows that the morphism is locally an admissible subdomain inclusion. The
result now follows.
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Theorem 6.4.3.2 implies that RLocSys`,n(X) admits as an analytic subdomain the disjoint union of those de-
rived Q`-analytic spaces Def

rig

⇢ . One could then ask if ✓ is itself an epimorphism of stacks and thus an equivalence
of such. However, this is not the case in general as the following example illustrates:

Example 6.4.3.3. Let G = Z` with its additive structure and let A = Q`hT i be the (classical) Tate Q`-algebra on
one generator. Consider the following continuous representation

⇢ : G! GL2(Q`hT i),

given by

1 7!

1 T

0 1

�
.

It follows that ⇢ is a Q`hT i-point of LocSys`,n(Z`) but it does not belongs to the image of the disjoint union
Def

rig

⇢ as ⇢ cannot be factored as a point belonging to the interior of the closed unit disk Sp (Q`hT i).

Remark 6.4.3.4. As Theorem 6.4.3.3 suggests, when n = 2 the derived moduli stack RLocSys`,n(X) does admit
more points than those that come from deformations of its closed points. However, we do not know if RLocSys`,n
can be written as a disjoint union of the closures of Def

rig

⇢ in LocSys`,n(X). However, when n = 1 the analytic
subdomain morphism ✓ is an equivalence in the1-category dSt

�
dAfdQ` , ⌧ét

�
.

6.5 Shifted symplectic structure on RLocSys`,n(X)

Let X be a smooth and proper scheme over an algebraically closed field of positive characteristic p > 0. Poincaré
duality provide us with a canonical map

' : C
⇤
ét (X,Q`)⌦Q` C

⇤
ét (X,Q`)! Q`[�2d]

in the derived1-category ModQ` is non-degenerate, i.e., it induces an equivalence of derived Q`-modules

C
⇤
ét (X,Q`)! C

⇤
ét (X,Q`)_ [�2d], (6.5.0.1)

in ModQ` . As we have seen in the previous section, we can identify the left hand side of (6.5) with a (shit)
of the tangent space of RLocSys`,n(X) at the trivial representation. Moreover, the equivalence holds if we
consider étale (co)chains with more general coefficients. The case that interest us is taking étale cohomology
with Ad(⇢)-coefficients for a continuous representation ⇢ : ⇡

ét
1
(X) ! GLn(A), with A 2 AfdQ` . Let ⇢ 2

RLocSys`,n(X)(Z), we can regard ⇢ as a dualizable object of the symmetric monoidal1-category Perf
ad

` (X) :=

FunECat1

�
Sh

ét
(X),Perf(A)

�
. Let ⇢_ denote a dual for ⇢. By definition of dualizable objects, we have a canoni-

cal trace map
tr⇢ : ⇢⌦ ⇢_ ! 1

Perf
ad
` (X)

in the1-category Perf
ad

` (X) and 1
Perf

ad
` (X)

denotes the unit object of the latter1-category. Therefore, passing
to mapping spaces, we obtain a natural composite

Map
Perf

ad
` (X)

(1,Ad(⇢))⌦Map
Perf

ad
` (X)

(1,Ad(⇢))
mult���! Map

Perf
ad
` (X)

(1,Ad(⇢)) (6.5.0.2)
tr⇢��! Map

Perf
ad
` (X)

(1, 1) (6.5.0.3)

in the 1-category Mod�(Z). By identifying the above with étale cohomology coefficients with coefficients we
obtain a non-degenerate bilinear form

C
⇤
ét
�
X,Ad(⇢)

�
[1]⌦ C

⇤
ét(X,Ad(⇢)

�
[1]! C

⇤
ét
�
X,Ad(⇢)

�
[2]

tr⇢��! C
⇤
ét
�
X,�(Z)

�
[2� 2d] (6.5.0.4)

in the1-category Mod�(Z). Moreover, this non-degenerate bilinear form can be interpreted as a Poincaré duality
statement with Ad(⇢)-coefficients.

Our goal in this §is to construct a shifted symplectic form ! on RLocSys`,n(X) in such a way that its underly-
ing bilinear form coincides precisely with the composite (6.5.0.4). We will also analyze some of its consequences.
Before continuing our treatment we will state a Q`-analytic version of the derived HKR theorem, first proved in
the context of derived algebraica geometry in [31].
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Theorem 6.5.0.1 (Analytic HKR Theorem). Let k denote either the field of complex numbers or a non-archimedean
field of characteristic 0 with a non-trivial valuation. Let X 2 dAnk be a derived k-analytic space. Then there is
an equivalence of derived analytic spaces

X ⇥X⇥X X ' TX[�1],

compatible with the projection to X .

The proof of Theorem 6.5.0.1 is a work in progress together with F. Petit and M. Porta, which the author hopes
to include in his PhD thesis.

6.5.1 Shifted symplectic structures
In this §we fix X a smooth scheme over an algebraically closed field k of positive characteristic p.

In [32] the author proved the existence of shifted symplectic structures on certain derived algebraic stacks
which cannot be presented as certain mapping stacks. As RLocSys`,n(X) cannot be presented as usual analytic
mapping stack, we will need to apply the results of [32] to construct the desired shifted sympletic structure on
RLocSys`,n(X).

Definition 6.5.1.1. Consider the canonical inclusion functor ◆ : dSt (dAfdQ` , ⌧ét, Psm) ✓ Fun (dAfdQ` , S). The
functor ◆ admits a left adjoint which we refer to as the stackification functor (�)st : Fun (dAfdQ` , S)! dSt (dAfdQ` , ⌧ét, Psm).

Definition 6.5.1.2. Consider the functor PerfSysf` : dAfdQ` ! S which is defined via the assignment

Z 2 dAfd
op

Q`
7! Map

ECat1

⇣
Sh

ét
(X),Perf

�
�(Z)

�⌘
2 S

where we designate Perf
�
�(Z)

�
to be the Ind(Pro(S))-enriched1-category of perfect �(Z)-modules, which is

equivalent to the subcategory of dualizable objects in the 1-category of Tate modules on �(Z), Mod
Tate

�(Z)
, [?].

We define the moduli stack PerfSys` 2 dSt (dAfdQ` , ⌧ét, ) as the stackyfication of PerfSysf` .

Remark 6.5.1.3. This is an example of a moduli stack which cannot be presented as a usual mapping stack,
instead one should think of it as an example of a continuous mapping stack.

Notation 6.5.1.4. We will denote Cat⌦1 the1-category of (small) symmetric monoidal1-categories.

Definition 6.5.1.5. Let C 2 Cat⌦1 be a symmetric monoidal 1-category. We say that C is a rigid symmetric
monoidal1-category if every object C 2 C is dualizable.

Notation 6.5.1.6. We denote by Catst,!,⌦1 the1-category of small rigid symmetric monoidal1-categories.

Consider the usual inclusion of1-categories S ,! Cat1, it admits a right adjoint, denoted

(�)' : Cat1 ! S

which we refer as the underlying 1-groupoid functor. Given C 2 Cat1 its underlying 1-groupoid C' 2 S
consists of the maximal subgroupoid of C, i.e., the subcategory spanned by equivalences in C.

Lemma 6.5.1.7. There exists a valued Catst,!,⌦1 -valued pre-sheaf

Perf
ad

` (X) : dAfdQ` ! Cat1

given on objects by the formula

Z 2 dAfdQ` 7! FunECat1

�
X,Perf

�
�(Z)

��
.

Moreover, the underlying derived stack (�)' � Perfad` (X) 2 dSt
�
AfdQ` , ⌧ét

�
is naturally equivalent to derived

stack PerfSys` 2 dSt (dAfdQ` , ⌧ét).

Proof. The construction of Perfad` (X) is already provided in [1, Definition 4.3.11]. Moreover, it follows directly
from the definitions that

�
Perf

ad

` (X)
�' ' PerfSys`(X).
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Theorem 6.5.1.7 is useful because it place us in the situation of [32, §3]. Therefore, we can run the main
argument presented in [32, §3]. Before doing so, we will need to introduce some more ingredients:

Definition 6.5.1.8. Let H
⇣
Perf

ad

` (X)

⌘
: dAfd

op

Q`
! S denotes the sheaf defined on objects via the formula

Z 2 dAfd
op

Q`
7! Map

Perf
ad
` (X)

�
�(Z)

� (1, 1) 2 S,

where 1 2 Perf
ad

` (X)(�(Z)) denotes the unit of the corresponding symmetric monoidal structure on Perf
ad

` (�(Z)).

Definition 6.5.1.9. Let O : dAfd
op

Q`
! CAlgQ`

denote the sheaf on (AfdQ` , ⌧ét) given on objects by the formula

Z 2 dAfd
op

Q`
7! � (Z) 2 CAlgQ`

.

Construction 6.5.1.10. One is able to define a pre-orientation, in the sense of [32, Definition 3.3], on the
Catst,!,⌦1 -value stack Perf

ad

` (X)

✓ : H

⇣
Perf

ad

` (X)

⌘
! O[�2d],

as follows: let Z 2 dAfdQ` be a derived Q`-affinoid space. We have a canonical equivalence in the1-category
Mod�(Z)

��(Z) : Map
Perf

ad
` (X)(�(Z))

(1, 1) ' C
⇤
ét (X,�(Z)) , (6.5.1.1)

by the very construction of Perfad`
�
�(Z)

�
. Moreover, the projection formula for étale cohomology produces a

canonical equivalence
C

⇤
et (X,�(Z)) ' C

⇤
et (X,Q`)⌦Q` �(Z)

in the1-category ModQ` . As X is a connected smooth scheme of dimension d over an algebraically closed field
we have a canonical map on cohomology groups

↵ : Q` ' H
0
(Xét,Q`)⌦H

2d
(Xét,Q`)! Q`

which is induced by Poincaré duality. Consequently, the morphism ↵ induces, up to contractible indeterminacy, a
canonical morphism

C
⇤
ét(X,Q`)! Q`[�2d]. (6.5.1.2)

in the 1-category ModQ` . (6.5.1.1) together with base change of (6.5.1.2) along the morphism Q` ! �(Z)

provides us with a natural morphism

Map
Perf

ad
` (X)(�(Z))

(1, 1)! �(Z)[�2d].

By naturality of the previous constructions, we obtain a morphism pre-orientation

✓ : H

⇣
Perf

ad

` (X)

⌘
! O[�2d],

which corresponds to the desired orientation.
Given Z 2 dAfdQ` , the 1-category Perf

ad

`

�
�(Z)

�
is rigid. Thus for a given object ⇢ 2 Perf

ad

`

�
�(Z)

�
we

have a canonical trace map
tr⇢ : Ad (⇢)! 1.

which together with the symmetric monoidal structure provide us with a composite of the form

Map
Perf

ad
` (X)(�(Z))

(1,Ad(⇢))⌦Map
Perf

ad
` (X)(�(Z))

(1,Ad(⇢))!Map
Perf

ad
` (X)(�(Z))

(1,Ad(⇢)⌦Ad(⇢))

(6.5.1.3)

! Map
Perf

ad
` (X)(�(Z))

(1,Ad(⇢))!Map
Perf

ad
` (X)(�(Z)

(1, 1)! �(Z)[�2d]
(6.5.1.4)

which we can right equivalently as a morphism

C
⇤
ét (X,Ad(⇢))⌦ C

⇤
ét (X,Ad(⇢))! �(Z)[2� 2d],

which by our construction coincides with the base change along Q` ! �(Z) of the usual pairing given by
Poincaré Duality.
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Lemma 6.5.1.11. Let Z 2 dAfdQ` be a derived Q`-affinoid space. The pairing of Theorem 6.5.1.10

Map
Perf

ad
` (X)(�(Z)

(1,Ad(⇢))⌦Map
Perf

ad
` (X)(�(Z))

(1,Ad(⇢))! �(Z)[�2d]

is non-degenerate. In particular, the pre-orientation ✓ : H
⇣
Perf

ad

` (X)

⌘
! O[�2d] is an orientation, see [32,

Definition 3.4] for the latter notion.

Proof. Let ⇢ 2 PerfSys`(X)(OZ) be an arbitrary continuous representation with OZ-coefficients. We wish to
prove that the natural mapping

Map
Perf

ad
` (X)(�(Z)

(1,Ad(⇢))⌦Map
Perf

ad
` (X)(�(Z))

(1,Ad(⇢))! �(Z)[�2d]

is non-degenerate. As Z lives over Q` and p 6= ` it follows that ⇢ 2 PerfSys`,�(X) for a sufficiently large finite
quotient q : ⇡w

1
(X) ! �. It then follows by [1, Proposition 4.3.19] together with Theorem 6.3.2.13 that ⇢ can

be realized as the B�-fixed points of a given e⇢ : Shtame
(Y ) ! BGLn(A0), where Y ! X is a suitable étale

covering and A0 2 CAlg
ad

k� is an admissible derived Z`-algebra such that
�
Spf A0

�rig ' Z,

in the 1-category dAfdQ` . We notice that it suffices then to show the statement for the residual representation
⇢0 : Sh

tame
(Y )! BGLn(A0/`), where A0/` denotes the pushout

A0[t] A0

A0 A0/`

t 7!`

t 7!0

computed in the1-category CAlg
ad

k� . We can write A0/` as a filtered colimit of free F`-algebras F`[T0, . . . , Tm],
where the Ti sit in homological degree 0. As Sh

tame
(Y ) is cohomological compact we reduce ourselves to

prove the statement by replacing ⇢0 with a continuous representation with values in some polynomial algebra
F`[T0, . . . , Tm]. The latter is a flat module over F`. Therefore, thanks to Lazard’s theorem [18, Theorem 8.2.2.15]
we can further reduce ourselves to the case where ⇢0 is valued in a finite F`-module. The result now follows by
the Theorem 6.5.1.10 together with the projection formula for étale cohomology and Poincaré duality for étale
cohomology.

As a corollary of [32, Theorem 3.7] one obtains the following important result:

Theorem 6.5.1.12. The derived moduli stack PerfSys`(X) 2 dSt (dAfdQ` , ⌧ét) admits a canonical shifted sym-
plectic structure ! 2 HC

�
PerfSys`(X)

�
, where the latter denotes cyclic homology of the derived moduli stack

PerfSys`(X). Moreover, given Z 2 dAfdQ` and ⇢ 2 PerfSys`

�
�(Z)

�
, the shifted symplectic structure ! on

PerfSys`(X) is induced by étale Poincaré duality

C
⇤
ét (X,Ad(⇢)) [1]⌦ C

⇤
ét (X,Ad(⇢)) [1]! �(Z)[2� 2d].

Proof. This is a direct consequence of our previous discussion together with the argument used in [32, Theorem
3.7].

6.5.2 Applications
Consider the canonical inclusion ◆ : RLocSys`,n(X) ,! PerfSys`(X). Pullback along the morphism ◆ on cyclic
homology induces a well defined, up to contractible indeterminacy, morphism

◆
⇤
: HC

�
PerfSys`(X)

�
! HC

�
RLocSys`,n(X)

�
.

We then obtain a canonical closed form ◆
⇤
(!) 2 HC

�
RLocSys`,n(X)

�
. Moreover, as ◆ induces an equivalence

on tangent complexes, the closed form ◆
⇤
(!) 2 HC

�
RLocSys`,n(X)

�
is non-degenerate, thus a 2 � 2d-shifted

symplectic form. Similarly, given a finite quotient q : ⇡w
1
(X)! �, we obtain a 2�2d-shifted symplectic form on

the derived Q`-analytic stack RLocSys`,n,�(X). The existence of the sifted symplectic form entails the following
interesting result:

204



Definition 6.5.2.1. Let LRLocSys`,n(X) denote the cotangent complex of the derived moduli stack RLocSys`,n(X).
We will denote by

C
⇤
dR

�
RLocSys`,n(X)

�
:= Sym

⇤�LRLocSys`,n(X)

�
2 Coh

+
�
RLocSys`,n(X)

�

Remark 6.5.2.2. Notice that C⇤
dR

�
RLocSys`,n(X)

�
admits, by construction, a natural mixed algebra structure.

However, we will be mainly interested in the corresponding ”plain module” and E1-algebra structures underlying
the given mixed algebra structure on C

⇤
dR

�
RLocSys`,n(X)

�
.

Proposition 6.5.2.3. Let X be a proper and smooth scheme over an algebraically closed field of positive charac-
teristic p > 0. We then have a well defined canonical morphism

C
⇤
dR

�
BGLan

n

�
⌦ C

⇤
ét
�
X,Q`

�_ ! C
⇤
dR

�
RLocSys`,n(X)

�

Proof. Let ⇢ 2 PerfSys`(X) be a continuous representation. We have a canonical morphism

BEnd(⇢)! BEnd
�
⇢(⇤)

�

in the1-category S, where ⇢(⇤) denotes the module underlying ⇢. This association induces a well defined, up to
contractible indeterminacy, morphism

PerfSys`(X)! Perf
an
,

where Perf
an 2 dSt

�
dAfdQ` , ⌧ét

�
denotes the analytification of the algebraic stack of perfect complexes, Perf .

Therefore, we obtain a canonical morphism

f
⇤
: HC

�
Perf

an
�
⌦H

�
Perf

an
�
! HC

�
PerfSys`(X)

�
⌦H

�
PerfSys`(X)

�
(6.5.2.1)

in the1-category ModQ` , where H
�
Perf

an
�
:= Map

Perf(Q`)

�
Q`,Q`

�
' Q` and H

�
PerfSys`(X)

�
' C

⇤
ét(X,Q`).

Thus we can rewrite (6.5.2.1) simply as

f
⇤
: HC

�
Perf

an
�
! HC

�
PerfSys`(X)

�
⌦ C

⇤
ét(X,Q`). (6.5.2.2)

As étale cohomology C
⇤
ét(X,Q`) 2 ModQ` is a perfect module we can dualize (6.5.2.2) to obtain a canonical

morphism
f
⇤
: HC

�
Perf

an
�
⌦ C

⇤
ét(X,Q`)! HC

�
PerfSys`(X)

�
.

in the1-category ModQ` . Consider now the commutative diagram

RLocSys`,n(X) BGLan

n

PerfSys`(X) Perf
an

j

in the1-category dSt
�
dAfdQ` , ⌧ét

�
. Then we have a commutative diagram at the level of loop stacks

Map
�
S
1
,RLocSys`,n(X)

�
Map

�
S
1
,BGLan

n

�

Map
�
S
1
,PerfSys`(X)

�
Map

�
S
1
,Perf

an
�
.

i

j

By taking global sections in the above diagram we conclude that the composite

f
⇤ � i!HH

�
OBGLan

n

�
' f

⇤ � i!OMap(S1,BGLan
n )

has support in Map
�
S
1
,RLocSys`,n(X)

�
,! Map

�
S
1
,PerfSys`(X)

�
. Therefore, we can factor the composite

HH
�
BGLan

n

�
⌦ C

⇤
ét(X,Q`)_ ! HH

�
Perf

an
�
⌦ C

⇤
ét(X,Q`)_ ! HH

�
PerfSys`(X)

�
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as a morphism
HH

�
BGLan

n

�
⌦ C

⇤
ét(X,Q`)_ ! HH

�
RLocSys`,n(X)

�

in the1-category ModQ` . The analytic HKR theorem then provide us with the desired morphism

C
⇤
dR

�
BGLan

n

�
⌦ C

⇤
ét
�
X,Q`

�_ ! C
⇤
dR

�
RLocSys`,n(X)

�

in the1-category ModQ` .

Remark 6.5.2.4. A type GAGA theorem for reductive groups together with a theorem of B. Totaro, see [33,
Theorem 10.2], that the de Rham cohomology of the classifying stack GLan

n coincides with `-adic cohomology

C
⇤
dR

�
BGLan

n

�
' C

⇤
dR

�
BGL

top

n

�

in the1-category ModQ` , where BGL
top

n denotes the topological classifying stack associated to the general linear
group GLn. In particular, we obtain a morphism

C
⇤
ét
�
BGLn,Q`

�
⌦ C

⇤
ét
�
X,Q`

�
! C

⇤
dR

�
RLocSys`,n(X)

�
.

in the 1-category ModQ` . As C
⇤
dR

�
RLocSys`,n(X)

�
admits a natural E1-algebra structure we obtain, by the

universal property of the Sym construction, a well defined morphism

Sym
�
C

⇤
ét
�
BGLn,Q`

�
⌦ C

⇤
ét
�
X,Q`

��
! C

⇤
dR

�
RLocSys`,n(X)

�
. (6.5.2.3)

in the 1-category CAlgQ`
. Assuming further that X is a proper and smooth curve over an algebraically closed

field, an `-adic version of Atiyah-Bott theorem proved in [15] implies that we can identify the left hand side of
(6.5.2.3) with a morphism

C
⇤
ét (BunGLn(X),Q`)! C

⇤
dR

�
RLocSys`,n(X)

�

in the1-category CAlgQ`
.

As a corollary we obtain:

Corollary 6.5.2.5. Let X be a smooth scheme over an algebraically closed field of positive characteristic p > 0.
We have a canonical morphism

' : C
⇤
ét
�
BGLn,Q`

�
⌦ C

⇤
ét
�
X,Q`

�_ ! C
⇤
dR

�
RLocSys`,n(X)

�

in the 1-category CAlgQ`
. Moreover, assuming further that X is also a proper curve we obtain a canonical

morphism
C

⇤
ét
�
BunGLn

�
X
�
,Q`

�
! C

⇤
dR

�
RLocSys`,n(X)

�

in the1-category CAlgQ`
.

Remark 6.5.2.6. By forgetting the mixed k-algebra structure on C
⇤
dR

�
RLocSys`,n(X)

�
one can prove that the

moprhism ' sends the product of the canonical classes on C
⇤
ét
�
BGLn,Q`

�
⌦ C

⇤
ét(X,Q`)_ to the underlying

cohomology class of the shifted symplectic form ! on RLocSys`,n(X).
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7.1 Introduction
Main results
The goal of this paper is to prove a highly structured version of the Hochschild-Kostant-Rosenberg theorem in
the setting of analytic geometry. We do not wish to make any smoothness assumption, and this leads us to work
with derived analytic geometry, as developed by J. Lurie, T. Y. Yu and the last author. In first approximation, the
theorem we wish to prove is the following:

Theorem 7.1.0.1. Let k denote either the field C of complex numbers or a non-archimedean field of characteristic
0 with a non-trivial valuation. Let X be a k-analytic analytic space. Then there is an equivalence of derived
analytic spaces

X ⇥X⇥X X ' TX[�1],

compatible with the projection to X .

Suppose that X is Stein (when k = C) or affinoid. Let A := �(X;OX). Then the above theorem implies that
there is the following equivalence of simplicial algebras:

Ab⌦Ab⌦kA
A ' Sym

an

A (
L
anA[1]),

where Syman

A denotes the analytification relative to A of the algebraic SymA. From this point of view, we see that
on the right hand side one has an extra structure that we ignored so far, namely the de Rham differential. Taking
this extra structure into account leads to the following more precise version of the HKR theorem:

Theorem 7.1.0.2. There are1-categories "-AnRingk of mixed analytic rings and S
1-AnRingk of S1-equivariant

mixed analytic rings. These categories are equivalent compatibly with their forgetful functors to AnRingk.

Strategy of the proof
One novelty of this paper is the strategy itself that we use. Our method is new even in the algebraic case and
provides an alternative proof of the main result of [TV11]. In order to explain our main ideas, we provide an
axiomatic treatment of the HKR theorem.

Warning 7.1.0.3. In this axiomatic presentation, we formulate stronger hypotheses than what is actually needed.
This is done in order to obtain a neater exposition. These extra assumptions will be satisfied in the algebraic and
C-analytic setting, but not in the k-analytic one.

We start with an1-category A, that plays the role of either CAlgk or AnRingk.

Assumption 7.1.0.4. The1-category A is presentable.

In particular, A has pushouts. We denote the pushout of the diagram A
0  A! B by A

0 ⌦A

A B.
Given an object A 2 A we let

A-Mod := Sp(A/A).

Given M 2 A-Mod, we let
A�M := ⌦

1
(M).
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The functor
DerA(A;�) : A-Mod �! S

given by sending M to Map
A/A

(A,A �M) commutes with limits and -filtered colimits for  a big enough
regular cardinal. Therefore, it is representable by an object in A-Mod that we denote LA.

Assumption 7.1.0.5. For every A 2 A there is a conservative functor

UA : AA/ �! A-Mod.

Furthermore, this functor admits a left adjoint, denoted Sym
A

A(�).

Step 1: Construction of the categories of mixed and S
1-equivariant objects. It is easy to construct the1-

category of S1-equivariant objects in A. Indeed, we set

S
1-A := Fun(B(S

1
),A).

This category is equipped with a forgetful functor

US1 : S
1-A �! A,

which is conservative and admits both a left and a right adjoint. In particular, it is monadic. We denote by TS1 the
associated monad. Notice that we can identify the endofunctor of A underlying the monad with the functor

S
1 ⌦� : A �! A

sending A to A⌦A⌦A A.
It is less trivial to construct the1-category of mixed objects in A. In this general setting, we need an assump-

tion:

Assumption 7.1.0.6. There is an1-category "-A equipped with a functor

U" : "-A �! A

satisfying the following properties:

(i) the functor U" is conservative, commutes with sifted colimits and it admits a left adjoint

DR: A �! "-A.

(ii) For every A 2 A, there is a canonical equivalence

U"(DR(A)) ' Sym
A

A(LA[1]).

In particular, U" exhibits "-A as monadic over A. We let T" denote the associated monad.

At this point, we can distinguish two versions of the HKR theorem:

(i) The plain HKR: this is the statement that the underlying endofunctors of TS1 and T" are equivalent. It
implies the familiar algebraic formulation of the HKR theorem, i.e. the existence of an equivalence

Sym
A

A(LA[1]) ' A⌦A⌦A A

for every A 2 A.

(ii) The structured HKR: this is the statement that TS1 and T" are equivalent as monads. It implies the existence
of an equivalence of1-categories

"-A ' S
1-A

compatible with the forgetful functors US1 and U" to A.

Notice that the structured HKR implies the plain HKR, but the vice-versa is obviously not true.
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Step 2: Passage to nonconnective objects We can describe the most basic idea behind our strategy as follows:
instead of proving directly the equivalence between the monads TS1 and T", we look at the comonads. Indeed, the
functor US1 : S

1-A! A also admits a right adjoint, given by sending A 2 A to

A
S1

:= A⇥A⇥A A.

In the cases of our interest, it turns out that the forgetful functor U" : "-A ! A also admits a right adjoint, given
by sending A 2 A to the split square-zero extension A � ⌧�0(A[�1]). This implies that both S

1-A and "-A are
comonadic over A. Let CS1 and C" denote the respective comonads. It is then enough to prove that CS1 and C"

are equivalent comonads, but unfortunately this comparison is as difficult as the original problemma.

In order to decrease the complexity of the problemma, we would like to prove that our comonads to be induced
by coalgebra objects in A, via the correspondence provided by the following lemmama:

Lemma 7.1.0.7 (cf. ??). Let C⌦ be a symmetric monoidal1-category. The functor

C �! End(C)

informally given by X 7! X ⌦� induces a well defined functor

CoAlg(C⌦
) �! CoMonads(C).

We refer to the comonads in the essential image of this functor as representable comonads.

Indeed, if could construct two coalgebras AS1 and A" in A whose associated comonads are CS1 and C", it
would then be enough to prove that AS1 and A" are equivalent in the1-category CoAlg(A). Unfortunately, this
does not happen in our case. Nevertheless, we can make it true after suitably enlarging the1-category A.

Example 7.1.0.8. In order to get a feeling for what is the obstruction to exhibit CS1 as the comonad associated
to a coalgebra AS1 , it is useful to look at the algebraic situation. In this case, the1-category A coincides with
the 1-category of simplicial commutative algebras CAlgk. The comonad CS1 sends an object A 2 CAlgk to
A ⇥A⇥A A. On the other hand, if R 2 CoAlg(CAlgk), then its associated comonad sends A to A ⌦ R. If we
assume that CS1(A) can be written as A⌦R for every choice of A, then we would obtain

R ' k ⌦R ' CS1(k) ' k ⇥k⇥k k.

But in CAlgk one has k ⇥k⇥k k ' k, and the comonad associated to k is simply the identity. On the other hand,
when A is not discrete, then the underlying module of A ⇥A⇥A A is not equivalent to A itself, but rather to
A� ⌧�0(A[�1]).

This is suggesting that working with connective commutative algebras is too much restrictive for this prob-
lemma. Using the Dold-Kan equivalence we can identify CAlgk with the underlying 1-category cdga�0

k of
connective cdgas (we use homological convention). The inclusion

cdga�0

k ,! cdgak

does not commute with limits, and in cdgak one has k⇥k⇥kk ' k�k[�1]. Notice that all the functors introduced
so far (US1 , S

1 ⌦�, DR, . . . ) extend to the unbounded setting. Furthermore, in the unbounded setting we always
have CS1(A) ' A⌦ (k ⇥k⇥k k).

In the light of the above example, our actual strategy can be summarized as follows:

(i) Construct a “nonconnective enlargement” Anc of the1-category A.

(ii) Prove that the comonads CS1 and C" extend to comonads Cnc

S1 and C
nc

" in Anc.

(iii) Prove that the extended comonads Cnc

S1 and C
nc

" are representable by objects AS1 and A" in CoAlg(Anc
).

(iv) Finally prove that AS1 and A" are equivalent in CoAlg(Anc
).
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The construction of the nonconnective enlargement Anc in the analytic setting constitutes the technical heart of
this paper. The ideas introduced are a natural extension of the ones that appear in [Lur11d], and they allow to
construct nonconnective enlargements in many situations. We believe that the 1-categories of nonconnective
structures that we construct here as an auxiliary tool to prove the HKR theorem are interesting on their own and
will prove useful in a variety of different situations.

Let us now give more details about the important features that a “nonconnective enlargement” Anc should
satisfy in order to be useful to our problemma.

Assumption 7.1.0.9. There exists a presentable1-category Anc equipped with a connective cover functor

⌧�0 : A
nc �! A.

Furthermore, this functor admits a fully faithful left adjoint

i : A ,�! Anc
.

This assumption together with the chain rule for Goodwillie’s derivative implies that for every A 2 A there is
a fully faithful functor

@(i) : A-Mod �! Sp(Anc

/i(A)
).

In turn, this allows to prove that for A 2 A the cotangent complex LA coincides with the cotangent complex Li(A)

of i(A) 2 Anc. It also allows to define nonconnective split square-zero extensions: if A 2 Anc and M 2 Sp(Anc

/A),
we set

A�nc
M := ⌦

1
(M),

where ⌦1 is the natural functor ⌦1
: Sp(Anc

/A)! Anc

/A.

Assumption 7.1.0.10. There exist coalgebras A", AS1 2 CoAlg(Anc
) such that for every A 2 A one has a

canonical equivalences
i(A)⌦A" ' i(A)�nc

@(i)(A[�1])

and
i(A)⌦AS1 ' i(A)⇥i(A)⇥i(A) i(A).

This assumption is easily verified when Anc
= cdgak. In the analytic setting however its verification is one of

the most delicate points of the paper. It requires a relative version of the Van Est theorem, which we will discuss
in the next step. However, once proven it implies that "-A and S

1-A can be identified with the full subcategories
of CoModA"(A

nc
) and CoModAS1 (A

nc
) spanned by connective objects. In other words, we have the following

pullback diagrams

"-A CoModA"(A
nc
)

A Anc

U"

i

,

S
1-A CoModAS1 (A

nc
)

A Anc
.

US1

i

In this way, we are reduced to prove that there is an equivalence in CoAlg(Anc
) between AS1 and A". In order to

do this, we need one final structural property of the1-category Anc:

Assumption 7.1.0.11. There exists a conservative functor

U : Anc �! Modk,

where Modk denotes the1-category of (unbounded) k-modules. Furthermore, this functor admits a left adjoint,
denoted Sym

nc

k .
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Step 3: Use of a theorem of type Van Est Using the conservativity of the functor U : Anc ! Modk, we see that
it would be enough to construct a morphism AS1 ! A" in CoAlg(Anc

) that becomes an equivalence in Modk.
Unfortunately, it is unreasonable to be able to construct such a morphism directly. This can be seen by attempting
to work over the sphere spectrum k = S instead of over a field of characteristic 0.

Example 7.1.0.12. Let k = S be the sphere spectrum. Then Böckstedt’s computation shows that

⇡⇤THH(HFp) = Fp[�],

with |�| = 2. On the other hand, ⇡2(LHFp/S) = Fp, which implies that ⇡3(SymHFp
(LHFp/S[1])) = Fp. Therefore

THH(HFp) = HFp ⌦HFp⌦SHFp HFp cannot be equivalent to Sym
HFp

(LHFp/S[1]), and so even the plain HKR
theorem fails over the sphere spectrum. On the other hand, AS1 is S ⇥S⇥S S and A" is the split square-zero
extension S � S[�1]. In particular, the underlying spectra of AS1 and A" are equivalent. This means that the
equivalence of the underlying modules cannot even be lifted to an equivalence at the E1 level, let alone at the
bialgebra level.

This example suggests that it is more reasonable to look for a correspondence between AS1 and A". When
working over a field of characteristic zero, both morphisms in this correspondence will be equivalences, but in
general they will not. Notice that U(AS1) is forced to be k ⇥k⇥k k ' k � k[�1].

Assumption 7.1.0.13. One has U(A") = k � k[�1].

This assumption is easy to verify in all cases of interests. When Anc
= cdga it is a consequence of [Lur12c,

7.3.4.15]. In the analytic case, it is easy to reduce oneself to the algebraic situation.

This provides us with the following canonical correspondence in Anc:

Sym
nc

k (k[�1])

AS1 A".

p q

Assumption 7.1.0.14. Both U(p) and U(q) are equivalences in Modk.

We warn the reader that the above assumption is really strong and it is not always satisfied. For instance, when
k has characteristic p > 0 one has

⇡�1(U(Sym
nc

k (k[�1]))) =
M

N
k.

In practice, in order to verify this assumption we need to really unravel the construction of Anc and of the functor
Sym

nc

k . The reason we are able to go through this computation is that Anc is constructed in a fairly geometric
way, and U(Sym

nc

k (k[�1])) can be identified with the cohomology complex of the classifying stack B(BGa),
where BGa denotes the analytic 1-dimensional additive group. To actually compute this cohomology, we resort
to a theorem due to Van Est, that identifies the group cohomology of BGa with the Lie algebra cohomology of its
Lie algebra.

Warning 7.1.0.15. The above discussion is simplistic. It is only accurate when k = C or it is a non-archimedean
field of equicharacteristic 0. In the mixed characteristic case one needs to replace the middle comparison term
with the nonconnective analytic algebra of global sections of the classifying stack B(D1

k(r)), where D1

k(r) denotes
the non-archimedean closed disk of radius r, and r is supposed to be less or equal the converging radius of the
exponential. In this case, the theorem of Van Est is replaced by its non-archimedean analogue, which is due to
Lazard.
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Step 4: Contractibility of the space of coalgebra structures The final step required for the completion of the
proof is to prove that the morphisms p : Sym

nc

k (k[�1]) ! AS1 and q : Sym
nc

k (k[�1]) ! A" can be promoted
to morphisms in CoAlg(Anc

). Even in the algebraic setting, this verification has never been done explicitly. The
main theorem of [TV11] implies that AS1 and A" are equivalent as bialgebras. However, in loc. cit. the authors do
not give a direct argument, and therefore they are taking quite a long detour. One possible way of expressing the
difficulty is the lack of a rectification theorem for bialgebras. With our approach it is possible to show directly that
the morphism p respects the coalgebra structure. However, to verify that q also respects the coalgebra structure is
a nontrivial task. Our method consists in verifying the following stronger statement:

Assumption 7.1.0.16. The space of coalgebra structures on Sym
nc

k (k[�1]), formally defined as the pullback

CoAlg(Sym
nc

k (k[�1])) CoAlg(Anc
)

{⇤} Anc
,

Sym
nc
k (k[�1])

is contractible.

Pairing this assumption with Theorem 7.1.0.14 finally completes the proof of our main theorem. Let us be
more specific about the way of checking this last assumption in practice. Once again, we need to unravel the
actual construction of Anc and relate Sym

nc

k (k[�1]) with the cohomology of a classifying stack like B(BGa).
This allows to canonically identify the space of coalgebra structures on Sym

nc

k (k[�1]) with the space of group
structures on B(BGa). In the cases of interest, we see B(BGa) as an object in the1-topos of derived (analytic)
stacks. In particular, we are entitled to use the1-categorical version of May’s delooping theorem. This reduces
the computation of the group structures on B(BGa) to the computation of the space of E1-structures on BGa

that are compatible with its additive structure. At this point, the Eckmann-Hilton argument implies that this latter
space is contractible. See Theorem 7.2.3.2.

Structure of the paper
In Section 7.2 we briefly revisit the main theorems of [TV11] providing shortened proofs following our general
strategy. We notice that in this case we have a natural candidate for the category Anc, namely the category of
unbounded cdgas. Furthermore, Van Est theorem can easily be bypassed by means of a direct computation of
Symk(k[�1]). On the other hand the contractibility of the space of coalgebra structures on Symk(k[�1]) (cf.
Theorem 7.2.3.2) is a new result that was missing from both [BZN12] and [TV11].

In ?? we provide a general framework to produce the category Anc. In the algebraic setting, the category
we obtain is bigger than the category of unbounded cdgas. It is nevertheless possible to canonically recover the
category of unbounded cdgas out of our Anc. From the point of view of the HKR theorem, the distinction between
the two categories is not relevant because Axioms (1) through (4) are satisfied in both cases.

In ?? we apply the machinery previously introduced to construct the1-categories "-AnRingk, S1-AnRingk

and the nonconnective variations. We conclude by proving the main theorem.

7.2 Revisiting the algebraic case
We start the paper by reviewing the algebraic setting for the HKR theorem. In this case, the machinery of non-
connective structures is not needed, as we have a natural candidate, namely the1-category of unbounded cdgas.
Nevertheless, we take the opportunity to collect a few basic facts about mixed algebras and S

1-objects that are
needed in what follows. In Section 7.2.1 we recast the theory of mixed algebras as developed in [TV11, ?, ?] in
purely1-categorical terms. We give two different description of this1-category. The first one is equivalent in
a more or less tautological way to the classical one introduced in the aforementioned papers, and it is “monadic”
in nature. The second one is “comonadic” in nature and it has two main advantages: first of all, it makes the
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underyling derivation associated to the mixed algebra appear naturally. Secondly, it generalizes to the analytic
setting.

In Section 7.2.2 we turn our attention to S
1-algebras. As before, we provide two equivalent description of

this 1-category, one that is naturally monadic and one that is comonadic. The equivalence between these two
description builds on the presentation as Segal objects of modules for a monoid in a Cartesian1-category. This
comparison allows us to prove the equivalence between mixed algebras and S

1-algebras by checking that the
comonads are equivalent.

Finally, in Section 7.2.3 we realize the general strategy described in the introduction by proving the HKR
statement in the algebraic setting. As main auxiliary step, we prove the contractibility of the space of coalgebra
structures on Symk(k[�1]).

7.2.1 Mixed algebras
Let C⌦ be a symmetric monoidal1-category. We set

CAlg(C) := AlgE1(C⌦
).

Given A 2 CAlg(C), we can consider the1-category of A-modules

A-Mod(C) := LModA(C),

formally defined as the fiber product {A}⇥CAlg(C) LMod(C).
Similarly, we define the1-category of coalgebras in C as

CoAlg(C) := CAlg(Cop)op.

Given A 2 CoAlg(C) we set
A-CoMod(C) := (A-Modop)op.

A monadic presentation for mixed algebras

Fix a field k of characteristic 0. We let Modk denote the stable1-category of (unbounded) k-modules and Perfk

be the full stable subcategory spanned by perfect complexes. We endow Modk with its canonical symmetric
monoidal structure. We set

CAlg
nc

k := CAlg(Modk).

It can be identified with the1-category of unbounded cdgas. Given A 2 CAlg
nc

k we have a canonical equivalence

A-Mod ' Sp(CAlg
nc

k/A).

For M 2 A-Mod we set
A�M := ⌦

1
(M).

In particular, we pose
k["] := k � k[1].

As an algebra, it coincides with the split square-zero extension of k by k[1]. Since k["] and all its finite tensor
powers are formal, we can define a coalgebra structure on k["] simply by setting

�(") := 1⌦ "+ "⌦ 1,

where � : k["] ! k["] ⌦k k["] denotes the comultiplication. It is easily checked that k["] inherits in this way the
structure of a bialgebra.

Lemma 7.2.1.1. Let C⌦ be a symmetric monoidal1-category. Let A be a bialgebra in C. Then the1-category
A-Mod admits a symmetric monoidal structure such that the forgetful functor

A-Mod(C) �! C

is strong monoidal.
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Proof. We observe that the1-functor
CAlg(C)op �! Cat1

sending A to A-Mod(C) is lax monoidal. In particular, it brings an object A 2 CoAlg(CAlg(C)) to a symmetric
monoidal 1-category A-Mod(C). Unraveling the definition, we see that the induced forgetful functor is strong
monoidal.

Consider the 1-category "-Modk of k["]-modules. We denote by ⌦k the monoidal structure on "-Modk

provided by the previous lemmama.

Definition 7.2.1.2. The1-category of (nonconnective) mixed algebras is

"-CAlg
nc

k := CAlg("-Mod
⌦k
k ).

By definition, "-CAlg
nc

k comes equipped with a forgetful functor

U" : "-CAlg
nc

k �! "-Modk,

which is monadic. On the other hand the forgetful functor

u" : "-Modk �! Modk

is strong monoidal. In particular, it induces a functor

v" : "-CAlg
nc

k �! CAlg
nc

k .

Proposition 7.2.1.3. The commutative diagram

"-CAlg
nc

k CAlg
nc

k

"-Modk Modk

v"

U" U

u"

is vertically left adjointable. Furthermore, the functor v" commutes with all limits and colimits, and in particular
it is both monadic and comonadic.

Proof. We first observe that since U , U" and u" are conservative, the same goes for v". As both the1-categories
"-CAlgnck and CAlg

nc

k are presentable, the fact that v" is monadic and comonadic follows at once if we prove that
it commutes with both limits and colimits.

Observe that the functors U , U" and u" commute with limits and sifted colimits. As U is conservative, it
follows that v" commutes with limits and sifted colimits as well. In order to prove that v" commutes with arbitrary
colimits, it is therefore enough to prove that it commutes with arbitrary coproducts of free objects. This is a direct
consequence of the vertical left adjointability of the diagram.

We are thus left to prove that the diagram is vertically left adjointable. The functors U" and U admit left
adjoints L" and L. We have to prove that the Beck-Chevalley transformation

↵ : L � u" �! v" � L"

is an equivalence. As U is conservative, it is enough to prove that

U(↵) : U � L � u" �! U � v" � L"

is an equivalence. Since U � v" ' u" � U", we are reduced to check that the natural transformation

U � L � u" �! u" � U" � L"

is an equivalence. We now recall from [Lur12c, 3.1.3.13] that there are canonical equivalences

U(L((M)) '
M

n�0

M
⌦kn/⌃n , U"(L"(N)) '

M

n�0

N
⌦kn/⌃n.

The conclusion now follows from the fact that u" is strong monoidal and commutes with arbitrary colimits.
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A comonadic presentation for mixed algebras

We now provide a second construction for the 1-category of mixed algebras. We start by observing that the
complex underlying k["] is perfect. As Perfk is a rigid symmetric monoidal 1-category, we deduce that the
k-linear dual

k[⌘] := Hom(k["], k)

also acquires the structure of a bialgebra. In particular, k[⌘] is a coalgebra in Modk. We let

⌘-Modk := k[⌘]-CoMod(Modk)

denote the1-category of k[⌘]-comodules. Write

u⌘ : ⌘-Modk �! Modk

for the canonical forgetful functor.
Since k[⌘] is a bialgebra, we can also consider the1-category

⌘-CAlg
nc

k := k[⌘]-CoMod(CAlg
nc

k ).

We let
v⌘ : ⌘-CAlg

nc

k �! CAlg
nc

k

denote the natural forgetful functor. By construction, we obtain a commutative diagram

⌘-CAlg
nc

k CAlg
nc

k

⌘-Modk Modk.

v⌘

U⌘ U

u⌘

Moreover, the functors u⌘ and v⌘ are comonadic. Using ?? we can identify the respective comonads with the ones
induced by the coalgebra structure on k[⌘] (considered as an elemmaent in Modk, resp. in CAlg

nc

k ).
In the next section we will prove that there is a canonical equivalence "-CAlgk ' ⌘-CAlgk. Before arguing

about this, however, let us explore some of the basic features of the1-category ⌘-CAlg
nc

k . We start by observing
that if A 2 ⌘-CAlg

nc

k in particular we have a commutative triangle

A A⌦k k[⌘]

A,

�

1A⌦c

where � is the coaction of k[⌘] on A and c : k[⌘]! k is the counit of k. We now remark that the algebra structure
on k[⌘] is the one induced by the coalgebra structure of k["]. Unraveling the definitions, we see that ⌘2 = 0 and
therefore we can identify k[⌘] with ⌦1

(k[�1]), the (nonconnective) split square-zero extension of k by k[�1].
We claim that A⌦k k[⌘] can be canonically identified with the split square-zero extension A�A[�1].

Notation 7.2.1.4. Let f : A ! B be a morphism in CAlg
nc

k . The operations of pullback and pushout along f

induce an adjunction
f
⇤
: CAlg

nc

A//A ⌧ CAlg
nc

B//B : f⇤.

From an informal point of view, f⇤ sends an augmented A-algebra A ! R ! A to B ! B ⌦A R ! B.
Similarly, f⇤ sends an augmented B-algebra B ! R! B to A! A⇥B R! A.

Lemma 7.2.1.5. Let f : A! B be a morphism in CAlg
nc

k . The diagram

B-Mod A-Mod

CAlg
nc

B//B CAlg
nc

A//A

⌦
1

f⇤

⌦
1

f⇤

is commutative and horizontally left adjointable.
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Proof. The functor f⇤ : CAlg
nc

A//A ! CAlg
nc

B//B commutes with all limits. Taking its first Goodwillie derivative
we obtain the above commutative diagram. In particular, for every M 2 A-Mod we have a Beck-Chevalley
transformation

↵ : ⌦
1
(M)⌦A B �! ⌦

1
(M ⌦A B),

and we have to prove that it is an equivalence. We now observe that the underlying module of ⌦1
(M ⌦A B) is

B � f
⇤
(M). On the other hand, the underlying module of ⌦1

(M) is A �M . Since the pushout in CAlg
nc

k is
computed by the ordinary tensor product, we see that

⌦
1
(M)⌦A B ' B � f

⇤
(M).

As the forgetful functor B-Mod! Modk is conservative, we conclude that ↵ is an equivalence.

In particular, the coaction � : A ! A ⌦k k[⌘] can be canonically identified with a derivation d� of A with
values in A[�1]. We refer to d� as the derivation underlying the ⌘-algebra A. At this point, we can prove the
following important result:

Proposition 7.2.1.6. The functor
�⌦k k[⌘] : CAlg

nc

k �! CAlg
nc

k

admits a left adjoint DR, that informally sends A to

DR(A) := SymA(LA[1]).

Proof. For any A,B 2 CAlg
nc

k composition with the canonical map A! DR(A) induces a morphism

Map
CAlg

nc
k
(DR(A), B) �! Map

CAlg
nc
k
(A,B).

Fix a morphism f : A! B. Then we have a fiber sequence

Map
CAlg

nc
A
(DR(A), B) Map

CAlg
nc
k
(DR(A), B)

{f} Map
CAlg

nc
k
(A,B).

Recall that
DR(A) ' SymA(LA/k[1]).

Using the universal property of the free algebra, we therefore obtain

Map
CAlg

nc
A
(DR(A), B) ' Map

ModA
(LA/k[1], f⇤(B)).

On the other hand, composing with the canonical projection

1B ⌦ c : B ⌦k k[⌘] �! B,

we obtain a natural map
Map

CAlg
nc
k
(A,B ⌦k k[⌘]) �! Map

CAlgk
(A,B).

Using Theorem 7.2.1.5 we can canonically identify the fiber at f : A! B with

Derk(A, f⇤(B)) := Map
CAlg

nc
k /B(A,B �B[�1]) ' Map

ModA
(LA/k[1], f⇤(B)).

Finally, we observe that there is a canonical map

A! DR(A)⌦k k[⌘] (7.2.1.1)
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which is determined by the condition that the underlying map A ! DR(A) coincides with the canonical inclu-
sion, and the derivation LA/k[1] ! DR(A) corresponds to the inclusion of LA/k[1] in Symk(LA/k[1]). This
transformation induces a morphism of fiber sequences

Map
CAlg

nc
A
(DR(A), B) Map

CAlg
nc
k
(DR(A), B) Map

CAlg
nc
k
(A,B)

Derk(A, f⇤(B)) Map
CAlg

nc
k
(A,B ⌦k k[⌘]) Map

CAlg
nc
k
(A,B).

As the outer vertical morphisms are equivalences and this holds for every choice of f : A! B, we conclude that
the morphism (7.2.1.1) induces a functorial equivalence

Map
CAlg

nc
k
(DR(A), B) ' Map

CAlg
nc
k
(A,B ⌦k k[⌘]),

thus completing the proof of the claim.

Equivalence of the1-categories of mixed algebras

In the previous sections we introduced two 1-categories, "-CAlgk and ⌘-CAlgk. We now prove that they are
equivalent:

Theorem 7.2.1.7. There is an equivalence � : "-CAlgk ' ⌘-CAlgk making the diagram

"-CAlg
nc

k ⌘-CAlg
nc

k

CAlg
nc

k

v"

�
⇠

v⌘

commutative.

Proof. We observe that v⌘ is comonadic by construction. ?? implies that the comonad associated to v⌘ coincides
with �(k[⌘]), which is the comonad associated to the coalgebra k[⌘] 2 CoAlg(CAlgk). On the other hand,
Theorem 7.2.1.3 implies that the functor

v" : "-CAlg
nc

k �! CAlg
nc

k

is both monadic and comonadic. It is therefore enough to prove that the comonad associated to v" can be identified
with �(k[⌘]). Let us temporarily denote by C" the comonad associated to v". Recall from ?? that we have a fully
faithful functor

�
0
: CoAlg(CAlg

nc

k ) �! CoMonads
lax

(CAlg
nc

k ).

This functor has a right adjoint  0, that is informally given by evaluation on k. Notice that C" can be naturally
promoted to an elemmaent in CoMonads

lax
(CAlg

nc

k ). In particular, it is enough to construct an equivalence

↵ : �
0
(k[⌘]) �! C"

in CoMonads
lax

(CAlg
nc

k ). As the functor CoMonads
lax

(CAlg
nc

k ) ! End(CAlg
nc

k ) is conservative, it is enough
to construct the morphism ↵ and to check afterwards that it induces an equivalence on the underlying endofunctors.

Since  0 is right adjoint to �0, to produce a morphism �
0
(k[⌘]) ! C" is equivalent to produce a morphism

k[⌘]!  
0
(C") in CoAlg(CAlgk). We are therefore lead to identify  0

(C"). Consider the commutative diagram

"-CAlg
nc

k CAlg
nc

k

"-Modk Modk.

v"

U" U

u"

(7.2.1.2)
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Theorem 7.2.1.3 guarantees that this diagram is vertically left adjointable. Denoting by L (resp. L") the left adjoint
to U (resp. U"), we obtain in particular the commutativity of the diagram

"-CAlg
nc

k CAlg
nc

k

"-Modk Modk.

v"

L"

u"

L

Passing to right adjoints, we obtain the commutativity of the diagram

"-CAlg
nc

k CAlg
nc

k

"-Modk Modk,

U"

�"

U

⇢"

where we denoted by ⇢" and �" the right adjoints to u" and v", respectively. In other words, the diagram (7.2.1.2)
is horizontally right adjointable. This provides us with the following alternative description for �": as u" is strong
monoidal, the functor ⇢" is lax monoidal. In particular, it induces a well defined functor CAlg

nc

k ! "-CAlg
nc

k ,
which coincides with �". Observe on the other hand that the coalgebra structure on k[⌘] corresponds to the algebra
structure on k["]. Coupling this with the fact that k[⌘] is dualizable as k-module, we obtain a natural equivalence

"-Modk ' ⌘-Modk,

compatible with the forgetful functors to Modk. This implies that the endofunctor u" �⇢" is canonically identified
with�⌦k k[⌘]. As a consequence, we see that can identify 0

(C") with C"(k) ' k[⌘] with its canonical bialgebra
structure. In other words, k[⌘] '  0

(C").
This provides us with the natural transformation ↵ : �0

(k[⌘]) ! C" we were looking for. To complete the
proof, it is enough to observe that the previous discussion also showed that the endofunctor underlying C" coni-
cides with �⌦k k[⌘]. Therefore ↵ is an equivalence, and the proof is complete.

The equivalence provided by the previous theorem has the following two non-trivial consequences:

Corollary 7.2.1.8. The forgetful functor v⌘ : ⌘-CAlg
nc

k ! CAlg
nc

k is monadic.

Proof. The functor v" : "-CAlg
nc

k ! CAlg
nc

k is obviously monadic, hence the conclusion follows from Theo-
rem 7.2.1.7.

Corollary 7.2.1.9. The endofunctor underlying the monadic functor u" : "-CAlg
nc

k ! CAlg
nc

k coincides with the
functor

DR: CAlg
nc

k �! CAlg
nc

k

informally sending A to SymA(LA[1]).

Proof. We start with a simple consideration. Let

U : C �! D

be a functor between1-categories. Suppose that U is both monadic and comonadic and let L (resp. R) denote its
left (resp. right) adjoint. Then U � L is left adjoint to U �R.

Applying this remark to the forgetful functor u" : CAlg
nc

k ! CAlg
nc

k , we can characterize the endofunctor
underlying the associated monad with the left adjoint to the endofunctor underlying the associated comonad.
Using the equivalence provided by Theorem 7.2.1.7, we identify the latter with � ⌦k k[⌘]. At this point, the
conclusion follows from Theorem 7.2.1.6.
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7.2.2 S1-algebras
We now introduce the second major character of the HKR equivalence, namely the 1-category of S1-algebras.
As for mixed algebras, we have at our disposal two different description for this1-category, one that is naturally
monadic and another one which is naturally comonadic. Again, as for mixed algebras, the one we are truly in-
terested in is the monadic one, because it encodes Hochschild homology. However, the comonadic one is easier
to study and manipulate. For this reason, we devote this section to the study of the equivalence between the two
presentations.

We start with some general considerations. We consider Z as a discrete, grouplike E1-monoid in S. The
1-categorical version of May’s theorem (see [Lur12c, 5.2.6.15]) provides an equivalence

Bar
(1)

: S�1

⇤ ⌧ Mon
gp

E1
(S⇤) : ⌦,

where S⇤ is the 1-category of pointed spaces and S�1

⇤ denotes the full subcategory spanned by the spaces that
are 1-connective. Using the additivity theorem of Dunn-Lurie of En-operads (see [Lur12c, 5.1.2.2]) and the
equivalence

Mon
gp

E1
(S⇤) ' lim �

n

Mon
gp

En
(S⇤)

(provided by [Lur12c, 5.1.1.5]), we obtain an1-functor

Bar
(1)

: Mon
gp

E1
(S⇤)! Mon

gp

E1
(S⇤).

We denote by U : Mon
gp

E1
(S⇤)! S the forgetful functor and we set

B := U � Bar(1).

We therefore define
S
1
:= B(Z) 2 Mon

gp

E1
(S⇤).

Notice that the underlying homotopy type of S1 coincides with the one coming from its standard model, i.e. we
have an equivalence

S
1 ' ⇤ q⇤q⇤ ⇤

in S. Defining S
1 := B(Z) has merely the advantage of explicitly fixing the E1-structure on S

1. Observe now
that since S

1 is again a group-like E1-monoid, we are entitled to consider B(S1
), which inherits the same kind

of structure. When needed, we will therefore consider B(S1
) as a group-like E1-monoid.

Definition 7.2.2.1. Let C be an 1-category. The 1-category of S1-representations with values in C is the 1-
category

S
1-C := Fun(B(S

1
),C).

Notice that there is a canonical map
u : ⇤ ! B(S

1
),

corresponding to the unit in B(S
1
). Precomposition with u provides us with a forgetful functor

uS1 : S
1-C �! C.

Lemma 7.2.2.2. Suppose that C is complete and cocomplete. Then the functor uS1 : S
1-C ! C is conservative

and admits both a left and a right adjoint. In particular, uS1 is both monadic and comonadic.

Proof. The left (resp. right) adjoint to uS1 is given by left (resp. right) Kan extension along u : ⇤ ! B(S
1
). We are

therefore left to check that uS1 is conservative. This follows at once because u is an effective epimorphism.

Our next goal is to identify the monad and the comonad associated to uS1 : S
1-C ! C. Observe that the

situation is dual: switching from C to Cop interchanges the monad and the comonad. It is therefore enough to
focus on the description of the monad.

223



A rectification result for S
1-object in spaces

We start our investigation in the simplest case possible, namely when C coincides with the1-category of spaces S.
In this situation, S1 is an internal group object in C. We are therefore allowed to form the1-category LModS1(S).
This category is equipped with a forgetful functor

vS1 : LModS1(S) �! S,

which is obviously monadic. Both the categories S1-S and LModS1(S) encode the idea of spaces with the action
of S1. It is therefore reasonable to expect them to be equivalent.

Remark 7.2.2.3. Let us denote by TS1 (resp. RS1 ) the monad associated to uS1 (resp. vS1 ). It is easy to verify
that these two monads have the same underlying endofunctor. To see this, start by observing that B(S1

)/⇤ '
⇤ ⇥B(S1) ⇤ ' S

1. Therefore, the formula for the left Kan extension yields for every X 2 S:

TS1(X) ' colim
B(S1)/⇤

X ' colim
S1

X ' X qXqX X.

On the other hand, ?? implies that
RS1(X) ' S

1 ⇥X.

As S is an1-topos, we have a canonical equivalence

S
1 ⇥X ' X qXqX X.

This implies that the two endofunctor are equivalent.

In virtue of the above remark, all we have to do is to verify that the equivalence between the endofunctors can
be lifted to an equivalence between the monads. This is however less obvious than one might expect. Our proof
passes through the simplicial description of the1-category LModS1(S) given in [Lur12c, 4.2.2.11].

Proposition 7.2.2.4. There exists a canonical1-functor f : S1-S! LModS1(S) making the diagram

S
1-S LModS1(S)

S

f

uS1 vS1

(7.2.2.1)

commutative. Moreover, f is an equivalence.

Proof. Applying [Lur12c, 4.2.2.11] to the (E1 and hence) E1 monoid S
1, we obtain a functor

G : �op! S,

which can be informally described by G([n]) ' (S
1
)
⇥n. Using again [Lur12c, 4.2.2.11], we can identify

LModS1(S) with the full subcategory

�
LModS1(S) ⇢ {G}⇥Fun(�op,S) Fun(�op⇥�1

, S)

spanned by the functors F : �op ⇥ �1 ! S for which the arrows F ([n], 0) ! F ([n], 1) and F ([n], 0) !
F ({n}, 0) ' F ([0], 0) induces an equivalence

F ([n], 0) ' F ([n], 1)⇥F ([0],1) F ([0], 0).

Consider now the trivial Cartesian fibration

p : Fun(�
1
, S)⇥�op!�op.

The functor G determines a map
g : �op! S⇥�op
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compatible with the projection over �op. We let E be the1-category fitting in the following pullback diagram:

E Fun(�
1
, S)⇥�op

�op S⇥�op.

q ev1⇥id�op

g

(7.2.2.2)

We claim that q : E!�op is a Cartesian fibration. Indeed, [Lur09c, 2.4.7.12] shows that ev1 : Fun(�1
, S)! S

is a Cartesian fibration. Therefore, the stability of Cartesian fibrations under base change (see [Lur09c, 2.4.2.3])
implies first that ev1 ⇥ id�op is a Cartesian fibration, and then that the same goes for q.

Inspection reveals that the fiber of q at [n] 2 �op is equivalent to the1-category S/(S1)⇥n . Unraveling the
definitions, we see that a morphism

X Y

(S
1
)
⇥n

(S
1
)
⇥m

in E is q-Cartesian if and only if it is a pullback square and the morphism (S
1
)
⇥n ! (S

1
)
⇥m is equivalent to

G(s) for some s : [n]! [m] in �op. In turn, this implies that the associated unstraightened functor

Un(q) : �! Cat1

can be informally described as the functor
[n] 7! S/(S1)⇥n .

Applying the functor Fun/�op(�op,�) to (7.2.2.2), we obtain the following pullback diagram:

Fun/�op(�op,E) Fun/�op(�op,Fun(�
1
, S)⇥�op)

{⇤} Fun/�op(�op, S⇥�op).

ev1

G

Under the natural identifications

Fun/�op(�op,Fun(�
1
, S)⇥�op) ' Fun(�op⇥�1

, S), Fun/�op(�op, S⇥�op) ' Fun(�op, S),

we obtain an equivalence

Fun/�op(�op,E) ' {G}⇥Fun(�op,S) Fun(�op⇥�1
, S).

It follows from the description we gave above of the q-Cartesian edges that we can identify �LModS1(S) with
the full subcategory of the left hand side spanned by Cartesian sections. Therefore, [Lur09c, 3.3.3.2] provides us
with the following chain of equivalences:

�
LModS1(S) ' Fun/�op(�op,E) ' lim�Un(q).

On the other hand, we observe that the inclusion S ✓ Cat1 has both a left and a right adjoint. In particular, it
commutes with colimits. As a consequence,

Fun(B(S
1
), S) ' lim�Fun(G, S).

Using [Lur09c, 2.2.1.2], we see that for every [n] 2�, we have a natural identification

Fun(G([n]), S) ' Fun((S
1
)
⇥n

, S) ' S/(S1)⇥n .

In other words, we can identify Fun(G, S) : �op ! Cat1 with the functor Un(q) introduced above. This
completes the proof.
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Building on Theorem 7.2.2.4 it is easy to bootstrap and extend to the case of presheaves. Let us introduce the
necessary terminology. Let C be an1-category. Precomposition with the canonical functor

⇡ : C! ⇤

gives rise to a functor
⇡
p
: S! PSh(C)

that sends a space K to the constant presheaf K on C associated to K. As ⇡p commutes with limits, it can be
promoted to a symmetric monoidal functor

⇡
p
: S⇥ �! PSh(C)⇥.

The E1-structure on S
1 induces therefore a canonical E1-structure on S

1, which is easily checked to be group-
like. This allows us to consider once again the 1-category LModS1(PSh(C)). Having fixed these notations,
Theorem 7.2.2.4 has the following immediate corollary:

Corollary 7.2.2.5. There exists a canonical1-functor f : S1-PSh(C)! LModS1(PSh(C)) making the diagram

S
1-PSh(C) LModS1(PSh(C))

PSh(C)

f

forget forget

(7.2.2.3)

commutative. Moreover, f is an equivalence.

Proof. We have canonical equivalences

LModS1(PSh(C)) ' Fun(Cop,LModS1(S))

and
S
1-PSh(C) ' Fun(Cop, S1-S).

The result is therefore a direct consequence of Theorem 7.2.2.4.

A rectification result in the general case

Theorem 7.2.2.5 works for any 1-category C. Notice however that when applied to C = S it does not recover
the statement of Theorem 7.2.2.4. Our goal is to formulate an analogue of Theorem 7.2.2.4 for a more general
1-category C.1 For this, we will need to make certain assumptions on C itself.

To set the stage, suppose that C is a presentable1-category. In this case C is canonically enriched with tensor
and cotensor over Sfin. In particular, we have a functor

⌦ : Sfin ⇥ C �! C.

For any X 2 C we obtain an adjunction

�⌦X : S ⌧ C : Map
C
(X,�).

The right adjoint commutes with products and therefore it can be promoted to a symmetric monoidal functor (with
respect to the cartesian monoidal structures on both sides). In particular, it can be canonically lifted to a functor

MX : Mon
gp

E1
(C⇥

) �! Mon
gp

E1
(S⇥)

1In the applications, C will be the opposite of the 1-category of nonconnective structures.
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fitting in the commutative diagram

Mon
gp

E1
(S⇥) Mon

gp

E1
(C⇥

)

S C,

MX

Map
C
(X,�)

(7.2.2.4)

where the vertical arrows are the forgetful functors. Since they are conservative and commute with limits and
sifted colimits, we deduce that MX admits a left adjoint, that we denote LX . When X = 1C, we write L instead
of L1C

. We let
S
1

C
:= L(S

1
) 2 Mon

gp

E1
(C⇥

).

As in general the functor �⌦ 1C is only oplax monoidal, the diagram (7.2.2.4) is not horizontally left adjointable
in general.

Definition 7.2.2.6. Let C be a presentable 1-category. We say that C satisfies the condition (M) if the oplax
monoidal functor

�⌦ 1C : S
fin �! C

is strong monoidal.

When C satisfies the condition (M) we have the following improved situation:

Lemma 7.2.2.7. Suppose that C satisfies the condition (M). Then the diagram

Mon
gp

E1
(Sfin,⇥) Mon

gp

E1
(C⇥

)

Sfin C

L

�⌦1C

is commutative. In particular, there is an equivalence S
1

C
' S

1 ⌦ 1C as objects of C.

Proof. As the functor �⌦ 1C : S
fin ! C is strong monoidal, it induces a commutative diagram

Mon
gp

E1
(Sfin,⇥) Mon

gp

E1
(C⇥

)

Sfin C,

L0

�⌦1C

and therefore we have to produce a natural isomorphism between L and L
0. In order to do this, it is enough to

prove that for every X 2 Mon
gp

E1
(Sfin,⇥) there is a morphism

⌘ : X �!M1C
(L

0
(X))

in Mon
gp

E1
(Sfin,⇥) inducing an equivalence

Map
Mon

gp
E1 (S

fin,⇥)
(X,M1C

(Y )) ' Map
Mon

gp
E1 (C

⇥)
(L

0
(X), Y ). (7.2.2.5)

Represent X as a Segal object
FX : �op �! Sfin.

Since C satisfies the condition (M), we see that the functor

Map
C
(1C, FX(�)⌦ 1C) : �op �! Sfin

still satisfies the Segal condition, and it corresponds precisely to M1C
(L

0
(X)). The unit of the adjunction � ⌦

1C : S � C : Map
C
(1C,�) induces therefore a natural transformation from FX to M1C

(L
0
(X)), which is easily

checked to induce an equivalence (7.2.2.5).
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Since the Yoneda embedding y : C ! PSh(C) commutes with products, we see that y(S1

C
) inherits the struc-

ture of a grouplike E1-monoid in PSh(C). Recall that the canonical functor ⇡ : C! ⇤ induces an adjunction

⇡
p
: S ⌧ PSh(C) : p⇡,

and that furthermore ⇡p commutes with all limits. In particular, this adjunction lifts to another adjunction

⇡
p
: Mon

gp

E1
(S) ⌧ Mon

gp

E1
(PSh(C)) : p⇡.

Observe that
p⇡(y(S

1

C
)) ' Map(1C, S

1

C
).

In particular, the unit of the adjunction L aM1C
induces a morphism in Mon

gp

E1
(S)

S
1 �! p⇡(y(S

1

C
)).

In turn, this corresponds to a morphism in Mon
gp

E1
(PSh(C))

⇢ : S
1
= ⇡

p
(S

1
) �! y(S

1

C
),

which induces a forgetful functor

⇢⇤ : LMody(S1
C
)(PSh(C)) �! LModS1(PSh(C)).

We would like to say that ⇢⇤ is an equivalence of1-categories, but this will not be true in general. Therefore, we
need to formulate some stronger assumption on C:

Definition 7.2.2.8. Let C be a presentable1-category. Let i : C0 ✓ C be a full subcategory closed under products.
We say that C0 satisfies the condition (UM) (relative to C) if for every X 2 C0 and every K 2 Sfin the natural
morphism

K ⌦X �! (K ⌦ 1C)⇥X

is an equivalence.

Remark 7.2.2.9. Notice that since C0 is closed under products in C, the final object 1C belongs to C0. In particular,
if C0 satisfies the condition (UM) and for any H 2 Sfin the object H ⌦ 1C still belongs to C0, then the natural
morphism

K ⌦ (H ⌦ 1C) �! (K ⌦ 1C)⇥ (H ⌦ 1C)

is an equivalence. On the other hand, K ⌦ (H ⌦ 1C) ' (K ⇥H)⌦ 1C.

Map(K ⌦ (H ⌦ 1C), Y ) ' Map(K,Map(H ⌦ 1C, Y ))

' Map(K,Map(H,Map(1C, Y )))

' Map(K ⇥H,Map(1C, Y ))

and therefore the Yoneda lemmama implies that K ⌦ (H ⌦ 1C) ' (K ⇥H) ⌦ 1C. Therefore, we conclude that
in this case C satisfies the condition (M). In particular, if C0 = C satisfies (UM) then C satisfies (M) as well.

However, in our applications C will be the opposite of the1-category of nonconnective structures, and C0 will
be the full subcategory spanned by the connective ones. In this case, C satisfies the condition (M) and C0 satisfies
the condition (UM), but C0 is not closed in C under tensor with finite spaces.

At this point, we are ready to state the main result of this section:

Theorem 7.2.2.10. Let C be a presentable1-category and let C0 be a full subcategory of C closed under products.
Suppose that C0 satisfies the condition (UM). Then the functor ⇢⇤ : LMody(S1

C
)(PSh(C)) ! LModS1(PSh(C))

restricts to an equivalence of1-categories

LMody(S1
C
)(PSh(C))⇥PSh(C) C0 ' LModS1(PSh(C))⇥PSh(C) C0.
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Proof. To simplify the notations, write

LMody(S1
C
)(C0) := LMody(S1

C
)(PSh(C))⇥PSh(C) C0

and similarly
ModS1(C0) := LModS1(PSh(C))⇥PSh(C) C0.

We start by observing that if X,Y 2 C0 then the natural morphism

Map
C
((S

1

C
)
⇥n ⇥X,Y ) �! Map

PSh(C)
((S

1
)
⇥n ⇥ y(X), y(Y )) (7.2.2.6)

is an equivalence. Indeed, we can identify the right hand side with Map
S
((S

1
)
⇥n

,Map
C
(X,Y )). On the other

hand, since C0 satisfies the condition (UM) we see that

(S
1

C
)
⇥n ⇥X ' (S

1
)
⇥n ⌦X

and therefore
Map

C
((S

1

C
)
⇥n ⇥X,Y ) ' Map

S
((S

1
)
⇥n

,Map
C
(X,Y )).

Let now X,Y 2 LMody(S1
C
)(C0). Using [Lur12c, 4.2.2.11] we can represent X and Y as functors

FX , FY : �op⇥�1 �! C

satisfying the conditions already described at the beginning of the proof of Theorem 7.2.2.4. Furthermore we can
describe ⇢⇤(X) and ⇢⇤(Y ) as the functors

eFX , eFY : �op⇥�1 �! C

whose restriction to �op⇥ {1} coincides with the simplicial presentation of S1 and such that the diagrams

eFX([n], 0) FX([n], 0)

(S
1
)
⇥n

y(S
1

C
)
⇥n

,

eFY ([n], 0) FY ([n], 0)

(S
1
)
⇥n

y(S
1

C
)
⇥n

are pullback squares. As already remarked in the proof of Theorem 7.2.2.4, we can describe morphisms in
LModS1(C0) as fiber products

MapS1(X,Y ) ' Map
Fun(�op⇥�1,C)(FX , FY )⇥MapFun(�op,C)(FX |�op⇥{1},FY |�op⇥{1}) {idS1}

Using the end formula to compute natural transformations, we can describe Map
Fun(�op⇥�1,C)(FX , FY ) as

Z

([n],i)2�op⇥�1

Map
C
(FX([n], i), FY ([n], i)) '

Z

i2�1

Z

[n]2�op

Map
C
(FX([n], i), FY ([n], i)).

Bringing the fiber product inside the end, we can rewrite

MapS1(X,Y ) '
Z

i2�1

Z

[n]2�op

Map
C
(FX([n], i), FY ([n], i))⇥Map

C
(FX([n],i),FY ([n],1)) {pn}

where pn is the identity when i = 1 and the natural projection

pn : FX([n], 0)! FX([n], 1) ' FY ([n], 1)

when i = 0. A similar description holds for Mapy(S1
C
)
(⇢⇤(X), ⇢⇤(Y )). We now observe that the fiber product

Map
C
(FX([n], i), FY ([n], i))⇥Map

C
(FX([n],i),FY ([n],1)) {pn}
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is contractible when i = 1 and coincides with

Map
C
((S

1
)
⇥n ⇥X,Y )

when i = 0. Similarly, the fiber product

Map
C
( eFX([n], i), eFY ([n, i])⇥Map

C
( eFX([n],i), eFY ([n],1) {epn}

is contractible when i = 1 and coincides with

Map
C
(y(S

1

C
)
⇥n ⇥X,Y )

when i = 0. Since we saw that the morphism (7.2.2.6) is an equivalence, we finally conclude that ⇢⇤ is fully
faithful.

As for essential surjectivity, we observe that giving an object in LModS1(C0) is equivalent to provide a mor-
phism of E1-monoids in PSh(C)

S
1 �!Map

PSh(C)
(y(X), y(X)),

where X 2 C0. Using the monoidal adjunction ⇡p a p⇡, this is equivalent to give a morphism of E1-monoids

S
1 �! Map

C
(X,X)

in S. Finally, the condition (UM) again implies that such a datum is equivalent to the datum of an action of S1

C
on

X . We therefore obtain an object in LModS1
C

(C0) that induces the S
1-object in C0 we started with. Therefore the

functor
LModS1(C0) �! LMody(S1)(C0)

is essentially surjective. Thus, the proof is complete.

7.2.3 Algebraic HKR theorem
We now put in fruition the technology developed so far to obtain a proof of the HKR theorem in the algebraic
setting. We put in motion the general strategy outlined in the introduction.

We denote by CAlgk the 1-category of connective cdgas over k and we let CAlg
nc

k denote the 1-category
of nonconnective ones. In Section 7.2.1 we introduced and studied at length the 1-categories "-CAlgk and
"-CAlgnck . In particular, in Theorem 7.2.1.7 we provided a comonadic description of this category over CAlg

nc

k ,
and in Theorem 7.2.1.6 we identified the left adjoint to the forgetful functor with the de Rham algebra functor.
The comonad of "-CAlg

nc

k over CAlg
nc

k is given by tensor product with the bialgebra k[⌘]. Recall that the algebra
structure on k[⌘] is, by definition, the one coming from the split square-zero extension. Let us denote this bialgebra
by A".

On the other hand, in Section 7.2.2 we studied S
1-CAlgk and S

1-CAlg
nc

k . Set C := (CAlg
nc

k )op. Since the
tensor product of nonconnective cdgas commutes with finite limits, we see that the condition (M) (and in fact the
stronger condition (UM)) is satisfied. In particular, Theorem 7.2.2.7 guarantees that

S
1

C
' k ⇥k⇥k k.

Let us denote this bialgebra by AS1 .
Instead of comparing "-CAlg

nc

k and S
1-CAlg

nc

k directly we will compare the two1-categories

A"-CoMod(CAlgnck ) and AS1 -CoMod(CAlg
nc

k ).

This is enough for our purposes: in fact, Theorem 7.2.1.7 provides us with an equivalence

"-CAlg
nc

k ' LModA"(CAlg
nc

k ).

On the other hand, since C = (CAlg
nc

k )op satisfies the condition (UM), we see that Theorem 7.2.2.10 provides an
equivalence

S
1-CAlg

nc

k ' LModAS1 (CAlg
nc

k ).
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Warning 7.2.3.1. In the analytic setting the latter equivalence will not be satisfied. However the weaker equiva-
lence

S
1-CAlg

nc

k ⇥CAlg
nc
k

CAlgk ' LModAS1 (CAlg
nc

k )⇥CAlg
nc
k

CAlgk

will still hold.

As outlined in the introduction, we are then reduced to compare the bialgebras A" and AS1 . For this, we
introduce a middle comparison term. From a purely algebraic point of view, we simply take Symk(k[�1]). The
universal property of the symmetric algebra provides us with a canonical zig-zag in CAlg

nc

k

Symk(k[�1])

A" AS1 .

(7.2.3.1)

Since we are in characteristic 0, we see that the chain complex underlying Symk(k[�1]) coincides with k�k[�1].2
Therefore the two morphisms in the above zig-zag are equivalences. We are left to check that these two morphisms
can be promoted to morphisms of bialgebras. This is not entirely tautological, and to prove it we need to resort to
a more geometrical description of Symk(k[�1]). Indeed, let dStk denote the1-category of derived stacks over
k. This1-category comes equipped with a global section functor

� : dStk �! CAlg
nc

k ,

that can be obtained as left Kan extension of the global section functor on affine derived schemes. Then we have
a canonical equivalence

Symk(k[�1]) ' �(B(Ga)).

The functor � admits a left adjoint, denoted Spec, which can be described as a restricted Yoneda embedding.
This functor is not fully faithful, but it becomes so when restricted to the full subcategory of CAlg

nc

k spanned
by coconnective algebras [Toë06a]. In particular, this allows to identify the space of coalgebra structures on
Symk(k[�1]) (compatible with the given algebra structure) with the space of E1-group structures on B(Ga). We
have:

Proposition 7.2.3.2. The space of E1-group structures on B(Ga) is contractible.

Proof. The space X of E1-group structures on B(Ga) is defined as the pullback

X Mon
gp

E1
(dStk)

{⇤} dStk.

forget

B(Ga)

(7.2.3.2)

Notice that ⇡0(B(Ga)) ' Spec(k), which is the final object in the1-topos dStk. In other words, B(Ga) 2 dSt
�1

k .
Notice furthermore that the inclusion dSt

�1

k ,! dStk commutes with products. It follows that we can split the
square (7.2.3.2) into the following ladder of pullbacks:

X Mon
gp

E1
(dSt

�1

k ) Mon
gp

E1
(dStk)

{⇤} dSt
�1

k dStk.
B(Ga)

It is therefore enough to compute the fiber product on the left. Consider the commutative rectangle

X Mon
gp

E1
(dSt

�1

k ) Mon
gp

E1
(Mon

gp

E1
(dStk))

{⇤} dSt
�1

k Mon
gp

E1
(dStk)

⌦

B(Ga) ⌦

2The assumption on the characteristic is truly necessary. When k = Fp, one can show that H1
(Symk(k[�1])) is a countable direct sum

of copies of Fp.
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May’s delooping theorem implies that the horizontal morphism in the square on the right are equivalences. In
particular, the square in question is a pullback. As a consequence, it is enough to compute the outer pullback.

Observe now that ⌦(B(Ga)) ' Ga and that this is a discrete object in dStk. Furthermore, the induced E1-
group structure on Ga coincides with the additive one. We now observe that, since Ga is discrete and since the
E1-structure is fixed, being E1 is now a property rather than a structure. In other words, we see that X is either
empty or contractible. As the additive group structure on Ga is commutative, we see that it is indeed the latter
case.

This proposition implies therefore that the space of bialgebra structure on Symk(k[�1]) extending the given
algebra structure is contractible. In particular, both morphisms Symk(k[�1]) ! A" and Symk(k[�1]) ! AS1

can be promoted to equivalences of bialgebras. Thus, we obtain an equivalence A" ' AS1 as bialgebras. This
implies immediately the structure HKR:

Theorem 7.2.3.3. Let k be a field of characteristic zero. There is a natural equivalence � : S1-CAlgk ' "-CAlgk

making the diagram

S
1-CAlgk "-CAlgk

CAlgk

⇠

vS1

v"

commutative.

Proof. Since k has characteristic zero, both maps in the zig-zag (7.2.3.1) are equivalences. It follows from The-
orem 7.2.3.2 that both maps Symk(k[�1]) ! AS1 and Symk(k[�1]) ! A" can be promoted to equivalences of
bialgebras. This provides us with an equivalence AS1 ' A" of nonconnective bialgebras. Therefore, we obtain an
equivalence

AS1 -CoMod(CAlg
nc

k ) ' A"-CoMod(CAlg
nc

k )

compatible with the forgetful functors to CAlg
nc

k . Notice that A"-CoMod(CAlg
nc

k ) coincides by definition with
the1-category we previously denoted ⌘-CAlg

nc

k . We can therefore invoke Theorem 7.2.1.7 to deduce that

"-CAlgk ' A"-CoMod(CAlg
nc

k ).

Furthermore, this equivalence is compatible with the forgetful functors to CAlg
nc

k . On the other hand, Theo-
rem 7.2.2.10 provides us with an equivalence

AS1 -CoMod(CAlg
nc

k ) ' S
1-CAlg

nc

k ,

also compatible with the forgetful functors to CAlg
nc

k . Putting all the information together, we obtain the following
commutative diagram:

"-CAlgnck A"-CoMod(CAlg
nc

k ) AS1 -CoMod(CAlg
nc

k ) S
1-CAlg

nc

k

CAlg
nc

k .

⇠

v"

⇠ ⇠

vS1

We now remark that there are canonical equivalences

"-CAlgk ' "-CAlg
nc

k ⇥CAlg
nc
k

CAlgk

and
S
1-CAlgk ' S

1-CAlg
nc

k ⇥CAlg
nc
k

CAlgk.

The conclusion follows.
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7.3 Nonconnective contexts and structures
As we saw in the algebraic case, non-connective algebras play a fundamental role in the proof of the HKR theorem.
However, one limitation of derived analytic geometry (as introduced in [Lur11b, PY16b]) is that it only allows to
work within the connective framework. Indeed, if X = (X,OX) is a derived analytic space, then the underlying
algebra Oalg

X is always a simplicial commutative ring. The goal of this section is to explain how this problemma
can be solved, by introducing a suitable notion of non-connective analytic ring.

7.3.1 Definitions
We work in the general context of pregeometries. This will allow us to obtain several versions of HKR theorems.
We refer the reader to [Lur11d, Definition 3.1.1] for the notion of pregeometry.

Definition 7.3.1.1. Let (T, adm, ⌧) be a pregeometry. A T-geometric context is the data of:

(i) a full subcategory C ⇢ TopR
(T) containing at least all the objects of the form Spec

T
(X) for X 2 T;

(ii) a choice of mophisms P in C.

Furthermore, we impose the following conditions:

(i) the ⌧ -topology on TopR
(T) restricts to a Grothendieck topology on C, which we still denote ⌧ ;

(ii) for every X 2 T the morphism X ! ⇤ is in P;

(iii) C has finite limits;

(iv) the inclusion T ⇢ C commutes with products;

(v) the triple (C, ⌧,P) forms a geometric context in the sense of [PY16d, §2.2].

The following are the fundamental examples considered in this paper:

Example 7.3.1.2. Let k be a classical commutative ring (of any characteristic). Let T = Tét(k) be the étale prege-
ometry (see [Lur11d, Definition 4.3.1]). Then we take C := dA↵k, the1-category of derived affine k-schemes.
The topology ⌧ coincides with the étale topology, and we take P to be the collection of smooth morphisms in
dA↵k. Notice that in this example already the inclusion C ⇢ TopR

(T) does not commute with finite limits.

Example 7.3.1.3. Let Tan(C) be the complex analytic pregeometry (see [Lur11b, Definition 11.1]). Then we take
C := dStnC, the 1-category of derived Stein spaces. This is the full subcategory of dAnC spanned by those
derived complex analytic spaces X whose truncation t0(X) is Stein (cf. [Por15b, Definition 3.2]). The topology
⌧ coincides with the analytic topology, and we take P to be the collection of smooth morphisms in dStnC.

Example 7.3.1.4. Let k be a non-archimedean field equipped with a non-trivial valuation. Let T = Tan(k) be the
k-analytic pregeometry (see [PY16b, Construction 2.2]). Then we take C := dAnk, the 1-category of derived
k-affinoid spaces. As in the previous example, this is the full subcategory of dAnk spanned by those derived
k-analytic spaces X whose truncation t0(X) is k-affinoid (cf. [PY16b, Definition 7.3]).

Remark 7.3.1.5. In the case of a generic pregeometry (T, adm, ⌧) there is always a canonical choice for the
category C. Indeed, if G denotes a geometric envelope for T in the sense of [Lur11d, Definition 3.4.1], then one
can take C to be the 1-category of G-schemes. However, at this level of generality there is no good choice of
the collection of morphisms P. One could take the collection of étale morphisms, but this choice would lead to a
rather degenerate situation in what follows.

For the following definition, we recall that whenever (C, ⌧,P) is a geometric context, one can define an associ-
ated1-category of geometric stacks. We denote this1-category by Geom(C, ⌧,P) and we refer to [PY16d, §2.2]
for the definition. We also recall that if E is an1-category with finite limits then

Sp(E) ' Sp(E⇤).

In particular, any spectrum object E 2 Sp(E) receives a canonical map ⇤ ! ⌦
1�n

(E), where ⇤ denotes the final
object of E.
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Definition 7.3.1.6. Let (T, adm, ⌧) be a pregeometry. A pre-T-nonconnective context is the given of:

(i) a T-geometric context (C, ⌧,P);

(ii) a spectrum object E 2 Sp(Geom(C, ⌧,P)).

Furthermore, we impose the following two conditions on E:

(i) the canonical map ⌦1
(E)! ⇤ is in P;

(ii) for every n > 0, the canonical morphisms ⇤ ! ⌦
1�n

(E) is a P-atlas;

We say that a pre-T-nonconnective context is a T-nonconnective context if the following additional condition is
satisfied:

(3) for every X 2 C and every n �, one has ⇡0Map
Geom(C,⌧,P)(X,⌦

1�n
(E)) ' ⇤.

Notation 7.3.1.7. Let (T, adm, ⌧) be a pregeometry and let (C,P, E) be a T-nonconnective context. We set

E
n
:= ⌦

1�n
(E) 2 Geom(C, ⌧,P).

In particular, we have the relation E
n ' ⌦(En+1

).

Example 7.3.1.8. The reader should keep in mind the following fundamental examples:

(i) when T = Tét(k), we take Ealg := {Bn
(Ga)}, the spectrum associated via May’s delooping theorem to the

commutative k-group scheme Ga. As the relations

B
n
(Ga,k) ' Spec(k)⇥Bn+1(Ga,k)

Spec(k)

are satisfied, we see that {Bn
(Ga,k)}n�0 form indeed a spectrum object. Furthermore, the morphisms

Spec(k)! B
n
(Ga,k) are smooth atlases.

(ii) When T = Tan(C) or T = Tan(k), we take E := {Bn
(Ga)}n�0. Here Ga denotes the analytic affine line

A1

k ' (A1

k)
an, seen as an analytic commutative group. As in the algebraic setting, this is indeed a spectrum

object, and each B
n
(Ga) is a geometric stack with smooth atlas given by Spec(k)! B

n
(Ga).

(iii) When T = Tan(k) for a nonarchimedean field k equipped with a non-trivial valuation we have many natural
choices for E. Indeed, for any r 2 R>0, we can consider the disk D1

k(0, r). Since the k is nonarchimedean,
we see that D1

k(0, r) is an abelian group object in Tan(k) and therefore we can consider its delooping stacks
B

n
(D1

k(0, r)). We denote the spectrum {Bn
(D1

k(0, r))}n�0 by E(r), with the understanding that when
r = 1 we get back the spectrum of the previous example. We will see later that the extra freedom in
choosing the spectrum E is one of the keys to the nonarchimedean HKR in many interesting situations
(such as when k = Qp).

Whenever a T-nonconnective context is fixed, we can define T-nonconnective structures.

Notation 7.3.1.9. Let (T, adm, ⌧) be a pregeometry and let (C,P, E) be a pre-T-nonconnective context. We let
Tnc be the smallest full subcategory of Geom(C, ⌧,P) closed under finite products and containing the objects of
the form Spec

T
(X) and the geometric stacks En for n � 0.

Definition 7.3.1.10. A nonconnective pregeometry is the given of a pregeometry (T, adm, ⌧) and of a T-nonconnective
context (C,P, E). Committing an abuse of notation, we usually denote a nonconnective pregeometry simply by
the symbol Tnc.

Definition 7.3.1.11. Let (T, adm, ⌧) be a pregeometry and let (C,P, E) be a pre-T-nonconnective context. Let X
be an1-topos. A nonconnective T-structure on X (or a Tnc-structure on X) is a product preserving functor

O : Tnc ! X

such that
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(i) the restriction O|T is a T-structure;

(ii) O preserves the pullbacks of the form

⌦
1�n

(E) ⇤

⇤ ⌦
1�n�1

(E).

(7.3.1.1)

If O, O0 are Tnc-structures on X, a natural transformation O! O0 is said to be local if its restriction O|T ! O0|T
is a local transformation of T-structures.

We denote the1-category of Tnc-structures on X and local transformations between them by Str
loc

Tnc(X).

Remark 7.3.1.12. In what follows we will mainly restrict our attention to nonconnective structures for a non-
connective pregeometry Tnc. In other words, we almost always work with T-nonconnective contexts rather than
pre-T-nonconnective contexts. There is only one exception: in Section 7.3.8 it is important to allow pre-T-
nonconnective contexts. This is the reason we formulated the above definition in this more general setting.

The above definition is justified by Theorem 7.3.4.1, that proves in particular that if k is a field of characteristic
zero, then the1-category of Tnc

ét
(k)-structures on X coincides with the1-category of sheaves with values in the

1-category of cdgas.
However, before stating and proving this result, we need to study some general features of the1-category of

nonconnective structures.

7.3.2 Underlying spectrum object
Let (T, adm, ⌧) be a pregeometry and let (C,P, E) be a T-nonconnective context. Using [Lur09c, 5.3.6.2] we find
an1-category Gnc equipped with an1-functor j : Tnc ! Gnc enjoying the following properties:

(i) the1-category Gnc is idempotent complete and admits finite limits;

(ii) the functor j commutes with products, admissible pullbacks in T and take diagrams of the form (7.3.1.1) to
pullbacks;

(iii) for every other idempotent complete1-category with finite limits E, composition with j induces an equiv-
alence

Fun
lex

(G,E) �! Fun
0
(Tnc

,E),

where Fun0(Tnc
,E) denotes the full subcategory of Fun(Tnc

,E) spanned by those functors commuting with
products, admissible pullbacks in T and taking diagrams of the form (7.3.1.1) to pullbacks;

(iv) j is fully faithful.

Since the inclusion T ✓ Geom(C, ⌧,P) commutes with products, admissible pullbacks and takes the diagrams
(7.3.1.1) to pullbacks, we obtain a canonical left exact functor

i : Gnc �! Geom(C, ⌧,P).

Let p : G! Nop be the Cartesian fibration associated to the diagram

· · · Gnc Gnc Gnc
,

⌦ ⌦ ⌦

and let q : C! Nop be the Cartesian fibration associated to

· · · Geom(C, ⌧,P) Geom(C, ⌧,P) Geom(C, ⌧,P).⌦ ⌦ ⌦

Since i : Gnc ! Geom(C, ⌧,P) is left exact, it induces a morphism of Cartesian fibrations f : G ! C. Let us
represent an object in G (resp. in C) by a pair (X,n) where n 2 N and X 2 Gnc (resp. X 2 Geom(T, ⌧,P)). We
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let GE be the full subcategory of G spanned by the family of objects {(En
, n)}n2N. Since ⌦(En

) ' E
n�1, we

see that the inclusion GE ⇢ G preserves Cartesian edges. Furthermore, the composition

fE : GE G C
f

is fully faithful.

Using [Lur09c, 3.3.3.2] we can identify Sp(Geom(C, ⌧,P)) with1-category of Cartesian sections of q : C!
Nop. Let sE : Nop ! C be the section determined by E. Notice that sE(n) ' E

n. In particular, sE factors
through the essential image of fE . Since fE is fully faithful, we can therefore a Cartesian section s

0
E : Nop! GE

such that fE � s0E ' sE . Composing with the inclusion GE ⇢ G, we can review s
0
E as a Cartesian section of G.

In other words, we can associate to E a spectrum object in Gnc. In what follows, we denote this spectrum object
again by E. This abuse of notation is justified by the full faithfulness of fE .

Let us now fix an1-topos X. The universal property of Gnc produces an equivalence of1-categories

StrTnc(X) ' Fun
lex

(Gnc
,X).

Since Gnc has finite limits, we can identify Sp(Gnc
) with the 1-category Exc⇤(S

fin

⇤ ,Gnc
) spanned by strongly

excisive functors. In particular, we obtain an evaluation map

Exc⇤(S
fin

⇤ ,Gnc
)⇥ Fun

lex
(Gnc

,X) �! Exc⇤(S
fin

⇤ ,X).

Evaluation at E 2 Sp(Gnc
) provides us with a functor

U : StrTnc(X) �! Sp(X).

Definition 7.3.2.1. Let O be a Tnc-structure on an1-topos X. Then we refer to U(O) as the underlying spectrum
object of O.

Remark 7.3.2.2. Loosely speaking, we can identify U(O) with the collection of objects {O(En
)}n�0. Notice

that the assumption on O guarantees that

O(En
) ' ⌦(O(En+1

)).

We are therefore authorized to think to the sequence {O(En
)}n�0 as an⌦-spectrum in X. The above construction,

is a formalization of this rough idea.

Example 7.3.2.3. Consider the case T = Tét(k) and let O be a nonconnective T-structure on S.
The reader should however observe that the spaces ⌦1�n

(U(O)) do not have a ring structure. In particular,
one cannot interpret U(O) as a spectrum object in the category of simplicial commutative rings. This is due to the
fact that there is no multiplication map

B(Ga)⇥ B(Ga) �! B(Ga),

although there are of course multiplication maps

B
n
(Ga)⇥ B

m
(Ga) �! B

n+m
(Ga),

corresponding to the cup product in cohomology.

Remark 7.3.2.4. In the general case, we can roughly think of a nonconnective T-structure in S as the given of:

(i) a spectrum A 2 Sp;

(ii) a T-structure on ⌦1
(A);

(iii) an additional structure on A exhibiting A as an algebra over the ring of cohomology operations associated
to E.
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However, as the previous example shows, there is no natural T-structure on the spaces ⌦1�n
(A). Furthermore,

the additional structure coming from E might consist of significantly less operations than the ones provided by T.
For example, we will see later in the paper that a Tan(k)-structure essentially consists of an unbounded cdga A

equipped with an analytic structure on ⌧�0(A).

Proposition 7.3.2.5. The forgetful functor U : StrTnc(X) ! Sp(X) commutes with limits and filtered colimits.
Furthermore, suppose that StrT(X) is closed under sifted colimits in Fun(T,X). Then U commutes with sifted
colimits.

Proof. Let us first observe that since limits and filtered colimits commute with finite limits, the inclusion StrTnc(X) ,!
Fun(Tnc

,X) preserves limits and filtered colimits. Since limits and colimits in a category of functors are computed
objectwise and U is given by evaluation, the statement follows immediately.

Suppose now that StrT(X) is closed under sifted colimits in Fun(T,X). It is enough to prove that if

O•
: � �! StrTnc(X)

is a simplicial diagram, then its geometric realization O := |O•| computed in Fun(Tnc
,X) is again a Tnc-structure.

Observe that O commutes with finite products because sifted colimits commute with finite products. Furthermore,
the assumption implies that the restriction of O to T is a T-structure. We are therefore left to check that

O(En
) ' ⌦(O(En+1

)).

Notice that using the1-categorical version of May’s delooping theorem we can factor evaluation at En through
Mon

gp

En(X). In this way, the looping functor ⌦ gets identified with the forgetful functor

Mon
gp

En(X) �! Mon
gp

En�1(X).

As this forgetful functor commutes with sifted colimits, the conclusion follows.

7.3.3 Connective covers
Let (T, adm, ⌧) be a pregeometry and let (C,P, E) be a T-nonconnective context. Let X be an1-topos. Precom-
position with the natural inclusion j : T ,! Tnc induces a well defined functor

⌧�0 : StrTnc(X) �! StrT(X).

We refer to this functor as the connective cover functor.
Since both StrT(X) and StrTnc(X) are presentable and ⌧�0 commutes with limits and filtered colimits, the

adjoint functor theorem implies the existence of a left adjoint i to ⌧�0. The goal of this section is to study the
properties of the functor i. In particular, we will prove that in many cases i is fully faithful, and we will provide a
characterization of its essential image.

We start by providing a sufficient criterion to check that a functor O : Tnc ! X is a Tnc-structure. Let us
begin by fixing some notation. Let D be a Cartesian symmetric monoidal1-category. Using [Lur12c, 4.1.2.11]
we can identify the1-category MonE1(D) of E1-monoid objects in D with the full subcategory of Fun(�op,D)

spanned by those simplicial objects satisfying the Segal condition (cf. [Lur12c, 4.1.2.5]). We denote by �B the
corresponding functor:

�
B: MonE1(D) �! Fun(�op,D).

When D admits geometric realization of simplicial objects, then we have a natural transformation of functors
MonE1(D⇤)! D⇤ ���B(�)

�� �! Bar
(1)

(�)

that is in fact an equivalence.
Suppose now given a product-preserving functor O : Tnc ! X. As E is a spectrum object in Geom(C, ⌧,P),

we see that each E
n acquires the structure of a grouplike (E1 and hence) E1-monoid in Tnc. Since O respects the

Cartesian structures, we see that the canonical morphism in Fun(�op,X⇤)

O
�
�
B(E

n
)
�
�! �

B(O(En
))
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is an equivalence. On the other hand, we can identify �B(En
) with the Čech nerve of the P-atlas ⇤ ! E

n+1. We
therefore obtain a canonical morphism

�
n
O
:
��O

�
�
B(O(En

))
��� �! O(En+1

).

With these notations, we can now prove the following result:

Lemma 7.3.3.1. Let O 2 Fun(Tnc
,X) be a functor. Suppose that:

(i) the restriction O|T is a (local) T-structure;

(ii) the functor O commutes with products;

(iii) for every n � 1, the canonical morphism �
n
O
: |O

�
�
B(O(En

))
�
|! O(En+1

) is an equivalence X;

Then O is a (local) Tnc-structure.

Proof. We only need to check that the canonical morphism

O(En
) �! ⌦O(En+1

) (7.3.3.1)

is an equivalence for every n � 0. Since O commutes with products, the canonical morphism

O
�
�
B(E

n
)
�
�! �

B(O(En
))

is an equivalence. Coupling this observation with the hypothesis on �n
O

, we deduce that the canonical morphism

Bar
(1)

(O(En
)) �! O(En+1

)

is an equivalence in X�1

⇤ . In virtue of May’s delooping theorem [Lur12c, 5.2.6.15], we see that the canonical
morphism

O(En
) �! Cobar

(1)
(O(En+1

))

is an equivalence in Mon
gp

E1
(X⇤). Applying the forgetful functor to X⇤ and [Lur12c, 5.2.6.12], we finally obtain

that the morphism (7.3.3.1) is an equivalence, thus completing the proof.

Later in this section we will characterize T-structures exactly as those Tnc-structures satisfying condition (3)
in the above lemmama. The following example illustrates why it is reasonable to expect a similar characterization:

Example 7.3.3.2. Let X 2 T be any object. Then the functor Anc

X : Tnc ! S given by AX(Y ) := Map
Tnc(X,Y )

is a Tnc-structure. Furthermore, assumption (3) in Theorem 7.3.1.6 implies that for every n � 1 one has:

⇡0(A
nc

X (E
n
)) ' ⇡0Map

Tnc(X,E
n
) ' {⇤}.

In other words, the morphism A
nc

X (⇤)! A
nc

X (E
n
) is an effective epimorphism. Observe now that Anc

X commutes
with all limits. In particular, it commutes with the Čech nerve Č(p) of the P-atlas p : ⇤ ! E

n. This implies that
we can identify the simplicial object

�
B(O(En

)) ' O
�
�
B(E

n
)
�
' O

�
Č(p)

�

with the Čech nerve of Anc

X (p) : A
nc

X (⇤)! A
nc

X (E
n
). As we already argued that this is an effective epimorphism,

we finally conclude that �nAnc
X

is an equivalence.

Combining Theorem 7.3.3.1 and the above example we can produce many Tnc-structures out of T-structures.
Before stating the result, let us introduce some notations. We let

◆X : StrT(X) ,! Fun(T,X) , ◆
nc

X
: StrTnc(X) ,! Fun(Tnc

,X)

denote the canonical inclusions and we denote by LX and L
nc

X
their left adjoints, respectively. When X = S is the

1-topos of spaces, we omit the X in the subscript.
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Lemma 7.3.3.3. Assume that the pregeometry T is discrete. Let I be a sifted category and let F : I ! StrT(X)
a diagram. Suppose that for every ↵ 2 I , the T-structure O↵ := F (↵) is of the form AX↵

:= Map
T
(X↵,�) for

some X↵ 2 T. Let O be a colimit for F . Then Lanj(◆ � O) 2 Fun(Tnc
, S) is a Tnc-structure.

Proof. To simplify the notations, we simply write Lanj(O) instead of Lanj(◆ � O). Notice that the functor
◆ : StrT(X) ! Fun(T,X) commutes with sifted colimits. As Lanj : Fun(T, S) ! Fun(Tnc

, S) is a left adjoint,
we conclude that

Lanj(O) ' colim
↵2I

Lanj(O↵).

As O↵ ' AX↵ , we have
Lanj(O↵) ' Map

Tnc(X↵,�) = A
nc

X↵
.

In particular, each Lanj(O↵) is a Tnc-structure. As I is sifted, we easily conclude that Lanj(O) commutes with
finite products. Furthermore, for each ↵ 2 I , Theorem 7.3.3.2 implies that the natural morphism

�
n
Anc

X↵
:
���B(Anc

X↵
(E

n
)
�� �! A

nc

X↵
(E

n+1
)

is an equivalence for every n � 1. Since I is sifted, we see that

colim
↵2I

�
B(A

nc

X↵
(E

n
)) ' �

B(Lanj(O)(E
n
)).

Since colimits commute with colimits, we conclude that �n
Lanj(O)

is an equivalence as well. Therefore, Theo-
rem 7.3.3.1 implies that Lanj(O) is a Tnc-structure.

Theorem 7.3.3.4. Suppose that the pregeometry T is discrete. Then the functor

i : StrT(S) �! StrTnc(S)

is fully faithful and its essential image consists of those Tnc-structures O satisfying condition (3) in Theorem 7.3.3.1.

Proof. If T is discrete then StrT(S) ' Fun
⇥
(T, S), i.e. StrT(S) coincides with the sifted completion P⌃(T) of T.

In this case every T-structure can be written as sifted colimit of T-structures of the form AX for X 2 T. In this
case, Theorem 7.3.3.3 implies that the composition

StrT(S) Fun(T, S) Fun(Tnc
, S)◆ Lanj

factors through StrTnc(S). As both Lanj and ◆nc are fully faithful, this immediately implies the full faithfulness
of i.

This argument implies furthermore that for every O 2 StrT(S), the Tnc-structure i(O) satisfies condition (3)
of Theorem 7.3.3.1. Suppose vice-versa that O 2 StrTnc(S) is such that the morphism

�
n
O
:
���B(O(En

))
�� ' O(En+1

)

is an equivalence for every n � 1. As in an 1-topos every groupoid object is effective, we conclude that
�
B(O(En

)) can be identified with the Čech nerve of the map O(pn+1) : O(⇤) ! O(En+1
). In other words, we

have
Č(O(pn+1)) ' �

B(O(En
)) ' O

�
�
B(O(En

))
�
' O(Č(pn+1)).

Observe now that the adjunction (i, ⌧�0) provides a counit map "O : i(⌧�0O) ! O. As i is fully faithful, we see
that this map induces an equivalence on the connective covers. As both functors commute with products, we see
that it is enough to check that "O is an equivalence when evaluated on E

n for every n � 1. This is easily checked
by induction on n, starting with n = 0 and using the fact that both O and i(⌧�0O) commute with the geometric
realization of the Čech nerves of the maps pn+1 : ⇤ ! E

n+1.

Corollary 7.3.3.5. Suppose that the pregeometry T is discrete. Then for every1-topos X the functor i : StrT(X)!
StrTnc(X) is fully faithful.
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Proof. It is enough to prove that the composition

StrT(X) Fun(T,X) Fun(Tnc
,X)

◆X Lanj

factors through StrTnc(X).
Suppose first that X = PSh(D) is the 1-topos of presheaves on an 1-category D. For every d 2 D let

evd : PSh(D)! S be the evaluation functor. Since the family {evd}d2D is conservative and each evd commutes
with (finite) limits, we see that a functor O 2 Fun(Tnc

,PSh(D)) is a Tnc-structure if and only if the composition
evd � O is a Tnc-structure in S for every d 2 D. Observe now that for every d 2 D the diagram

StrT(PSh(D)) Fun(T,PSh(D)) Fun(Tnc
,PSh(D))

StrT(S) Fun(T, S) Fun(Tnc
, S)

◆PSh(D)

evd evd

Lanj

evd

◆ Lanj

commutes. Indeed, this is because the functors evd commute with arbitrary colimits (in particular, the ones
computing the left Kan extension along j). As we saw in the proof of Theorem 7.3.3.4, the bottom row factors
through StrTnc(S).

We now deal with the general case. Choose a presentation of X as left exact accessible localization of an
1-category of presheaves, y : X � PSh(D) : �. Let us write Lan

X

j and Lan
D

j to denote the following left Kan
extension functors

Lan
X

j : Fun(T,X) �! Fun(Tnc
,X) , Lan

D

j : Fun(T,PSh(D)) �! Fun(Tnc
,PSh(D)).

Similarly, let us write �⇤ and �nc⇤ to denote the following functors, given by composition with �:

�⇤ : Fun(T,PSh(D)) �! Fun(T,X) , �
nc

⇤ : Fun(Tnc
,PSh(D)) �! Fun(Tnc

,X).

With these notations, the diagram

Fun(T,PSh(D)) Fun(Tnc
,PSh(D))

Fun(T,X) Fun(Tnc
,X)

Lan
D

j

�⇤ �nc
⇤

Lan
X

j

commutes. Let y⇤ : Fun(T,X) ! Fun(T,PSh(D)) denote the functor given by composition with y. Then the
commutativity of the previous diagram and the full faithfulness of y⇤ imply that

Lan
X

j ' �nc⇤ � Lanj � y⇤.

As the functor �nc⇤ commute with finite limits, it preserves Tnc-structures. It is therefore sufficient to prove that
the composition

StrT(X) Fun(T,X) Fun(T,PSh(D)) Fun(Tnc
,PSh(D))

◆X y⇤ Lan
D

j

factors through StrTnc(PSh(D)). As the diagram

StrT(X) Fun(T,X)

StrTnc(PSh(D)) Fun(Tnc
,PSh(D))

◆X

y⇤ y⇤

◆PSh(D)

commutes, we are reduced to the case where X = PSh(D), that has already been dealt with previously.
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In both Theorem 7.3.3.4 and Theorem 7.3.3.5 we used in an essential way the fact that the pregeometry T
is discrete. Although this case is sufficient to deal with the algebraic setting and the C-analytic setting, it is
unfortunately too restrictive to deal with the rigid analytic setting, at least at the current state of development
of derived rigid analytic geometry. The following theorem is a variation of Theorem 7.3.3.5 that removes the
discreteness assumption on T at the cost of working only with local T-structures. The proof is conceptually
similar to the one of Theorem 7.3.3.4, but we replace the equivalence StrT(X) ' P⌃(T) with the existence of
sifted resolution by elemmaentary structures, see [Lur11b, Proposition 2.11].

Corollary 7.3.3.6. Let X be an1-topos with enough points. The connective cover functor

⌧�0 : Str
loc

Tnc(X) �! Str
loc

T
(X)

admits a fully faithful left adjoint.

Proof. Consider the functor

Str
loc

T
(X) Fun(T,X) Fun(Tnc

,X).
Lanj

It is enough to prove that this functor factors through Str
loc

Tnc(X). This will provide a functor i : Strloc
T

(X) !
Str

loc

Tnc(X) and prove that it is fully faithful. Let therefore O 2 Str
loc

T
(X). Since Lanj is fully faithful, we already

know that Lanj(O)|T is a local T-structure. It is therefore enough to prove that Lanj(O) commutes with finite
products and that for every n � 1 the canonical morphism

Lanj(O)(E
n
)! ⌦Lanj(O(E

n+1
))

is an equivalence. Using Theorem 7.3.3.1, we rather prove that for every n � 1 the morphism

Lanj(O)(⇤)! Lanj(O)(E
n
)

is an effective epimorphism.
Using [Lur11b, Proposition 2.11] we choose a Cartesian fibration q : D ! X and a diagram Q : D. !

Str
loc

T
(X) such that:

(i) the fibers of q are essentially small sifted1-categories;

(ii) Q is a colimit diagram relative to X;

(iii) for each C 2 D the object Q(C) is an elemmaentary T-structure (see [Lur11b, Definition 2.6]);

(iv) the image of the cone point via Q is equivalent to O.

Recall from [Lur11d, Proposition 3.3.1] that the inclusion Str
loc

T
(X)! Fun(T,X) commutes with sifted colimits.

Therefore, reasoning as in Theorem 7.3.3.3, we see that it is enough to prove that if O is an elemmaentary T-
structure, then �n

Lanj(O)
is an equivalence for every n � 1.

Let therefore Y 2 T and let f : (X,OX)! Spec
T
(Y ) be a fixed morphism. We have to prove that

���B
�
Lanj(f

�1
(OY ))(E

n
)
��� �! Lanj(f

�1
(OY ))(E

n+1
)

is an equivalence. This can be checked on stalks. After passing at the stalk at a geometric point p⇤ : S � X : p
�1,

we are reduced to the situation where X = S. In this case, f�1OY can be written as a sifted colimit of T-structures
of the form AY↵ . As the functor Lanj commutes with colimits, the conclusion follows from Theorem 7.3.3.2.

Corollary 7.3.3.7. For any1-topos X with enough points, the commutative diagram

StrTnc(X) StrT(X)

Str
loc

Tnc(X) Str
loc

T
(X)

⌧�0

⌧�0

is left adjointable horizontally.
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Proof. The functor ⌧�0 : StrTnc(X) ! StrT(X) commutes with limits and filtered colimits, and both categories
are presentable. It follows that ⌧�0 admits a left adjoint, that we denote i. Recall that [Lur11d, Proposition 3.3.1]
proves that Strloc

T
(X) is closed under sifted colimits in Fun(T,X), and hence in StrT(X). Therefore, the same

argument of Theorem 7.3.3.6 implies that the composition

Str
loc

T
(X) StrT(X) StrTnc(X)i

is fully faithful. In particular, it factors through Str
loc

Tnc(X) and the resulting functor coincides with the left adjoint
to ⌧�0 : Str

loc

Tnc(X)! Str
loc

T
(X) we constructed in Theorem 7.3.3.6. The conclusion follows.

Proposition 7.3.3.8. For any1-topos X, the forgetful functor

(⌧�0, U) : Str
loc

Tnc(X)! Str
loc

T
(X)⇥ Sp(X)

is conservative. Furthermore, if T is discrete then the forgetful functor

(⌧�0, U) : StrTnc(X)! StrT(X)⇥ Sp(X)

is conservative as well.

Proof. Let ' : O! O0 be a morphism of nonconnective T-structures. If U(') is an equivalence, then unraveling
the definition of the underlying spectrum we deduce that

'En : O(En
) �! O0

(E
n
)

is an equivalence. On the other hand, whenever X 2 T, Corollaries 7.3.3.5 and 7.3.3.6 imply that

O(X) ' (⌧�0O)(X) and O0
(X) ' (⌧�0O

0
)(X).

Therefore 'X : O(X)! O0
(X) is an equivalence as well. The conclusion now follows from the fact that both O

and O0 commute with finite products.

7.3.4 Nonconnective structures in the algebraic case
In this section we focus on the special case where T = Tdisc(k) and the nonconnective context is the one of
Theorem 7.3.1.8(1). We can summarize the main results as follow:

(i) when k is a ring containing Q, we provide a canonical equivalence between the1-category of nonconnec-
tive Tdisc(k)-structures and the1-category of cdga’s;

(ii) when k is a field of positive characteristic, we provide a fully faithful embedding of cohomologically con-
nected cosimplicial algebras in the1-category of nonconnective Tét(k)-structures.

Let us start by assuming that k contains Q. In this case there is a canonical model structure on cdgak. We
denote the underlying1-category by cdgak. We know that

cdga�0

k ' StrTdisc(k)(S) ' P⌃(Tdisc(k)),

and this equivalence is realized by sending a Tdisc(k)-structure to its evaluation on A1

k 2 Tdisc(k). In particular,
we see that the inclusion

StrTdisc(k)(S) ,! Fun(Tdisc(k), S)

commutes with sifted colimits. As a consequence, we can invoke Theorem 7.3.2.5 to deduce that the underlying
spectrum

U : StrTdisc(k)nc(S)! Sp

commutes with sifted colimits. Furthermore, since the equivalence above is realized by evaluation on A1

k ' E
0,

we deduce from Theorem 7.3.3.8 that the underlying spectrum functor U is also conservative. It follows that U is
monadic.
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We will now prove that cdgak and StrTdisc(k)nc(S) are equivalent using the Barr-Beck-Lurie criterion for
equivalences [Lur12c, 4.7.3.16]. We start by constructing a functor between these two categories. Given an
unbounded cdga A 2 cdgak, we define a functor

�(A) : Tdisc(k)
nc ! S

by setting
�(A)(B

n
(Ga)) := Map(Symk(k[�n]), A).

Notice that �(A)(B
n
(Ga)) is equivalent, as chain complex, to ⌧�0(A[n]). This implies that we can identify

U(�(A)) with the underlying spectrum of A. In other words, the diagram

cdgak StrTdisc(k)nc(S)

Modk

�

V U
(7.3.4.1)

commutes. Here V denotes the forgetful functor.

Theorem 7.3.4.1. The functor � is an equivalence.

Proof. Recall from Theorem 7.3.2.5 that U commutes with limits and filtered colimits. As both StrTdisc(k)nc(S)
and Modk are presentable, it follows that U admits a left adjoint, that we denote F .

In virtue of [Lur12c, 4.7.3.16] it is enough to prove that for every M 2Modk the canonical map

�(Symk(M)) �! F (M)

is an equivalence. Notice that the commutativity of (7.3.4.1) coupled with the fact that both U and V are con-
servative and commute with sifted colimits implies that � commutes with sifted colimits as well. In particular, it
is enough to prove the statement when M = k[�n] for n � 0. In this case, we observe that Symk(k[�n]) can
be identified with the global sections of Bn

(Ga), while the Yoneda lemmama allows to identify F (k[�n]) with
Map

Tnc(B
n
(Ga),�). Now, the adjunction O a Spec introduced in [Toë06a] implies that

�(Symk(k[�n])) ' Map
Tnc(B

n
(Ga),�),

thus completing the proof.

7.3.5 Nonconnective cotangent complex
In this section we prove that the adjunction (i, ⌧�0) of Section 7.3.3 induces an equivalence after stabilization. In
particular, this allows to introduce nonconnective split square-zero extensions.

Fix a pregeometry (T, adm, ⌧) and a T-nonconnective context (C,P, E). Fix also an1-topos X with enough
points. Then the connective cover functor

⌧�0 : StrTnc(X) �! StrT(X)

commutes with limits and filtered colimits, and therefore it has a left adjoint, denoted i. Notice that Corollaries
7.3.3.6 and 7.3.3.7 imply that the functor i is fully faithful when restricted to Str

loc

T
(X). Fix a local T-structure

A 2 Str
loc

T
(X). Then ⌧�0(i(A)) ' A and we therefore obtain a well defined1-functor

⌧�0 : StrTnc(X)/i(A) �! StrT(X)/A.

This functor still commutes with limits and filtered colimits, and therefore it admits a left adjoint, that we still
denote i. Now, recall from [Por15b, Corollary 9.4] that Strloc

T
(X)/A is a presentable 1-category and that the

functor
Str

loc

T
(X)/A �! StrT(X)/A

is fully faithful and admits a left adjoint. Furthermore, after passing to the stabilization we obtain an equivalence

Sp(Str
loc

T
(X)/A) ' Sp(StrT(X)/A). (7.3.5.1)
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Notice that Corollaries 7.3.3.6 and 7.3.3.7 imply that the composition

Str
loc

T
(X)/A �! StrT(X)/A �! StrTnc(X)/i(A)

is fully faithful. Therefore, the chain rule for Goodwillie derivatives implies that the induced functor

Sp(Str
loc

T
(X)/A) �! Sp(StrTnc(X)/i(A))

is fully faithful. Pairing this with the equivalence (7.3.5.1), we deduce that the functor

@(i) : Sp(StrT(X)/A) �! Sp(StrTnc(X)/i(A))

is fully faithful. We summarize this in the following:

Proposition 7.3.5.1. Let X be an 1-topos with enough points and let A 2 Str
loc

T
(X) be a connective local

T-structure. Then the functor

@(i) : Sp(Sp(StrT(X)/A)) �! Sp(StrTnc(X)/i(A))

is fully faithful. Furthermore, it has a right adjoint given by @(⌧�0).

Proof. The fact that (@(i), @(⌧�0) can be promoted to an adjoint pair is a standard consequence of Goodwillie’s
calculus. The full faithfulness of @(i) follows from the above discussion.

Remark 7.3.5.2. It seems likely that the above adjunction is actually an equivalence. However, for our purposes,
full faithfulness is largely sufficient.

We now use Theorem 7.3.5.1 to develop the theory of nonconnective cotangent complex.

Definition 7.3.5.3. Let X be an1-topos and let A 2 StrTnc(X). We refer to the functor

⌦
1
: Sp(StrTnc(X)/A) �! StrTnc(X)/A

as the T-theoretic nonconnective split square-zero extension functor (or simply as the nonconnective split square-
zero extension functor when T is clear from the context). Given M 2 Sp(StrTnc(X)/A) we set

A�Tnc M := ⌦
1
(M).

When Tnc is clear from the context, we simply write A�M to denote this nonconnective T-structure.

Definition 7.3.5.4. Let X be an1-topos and let A 2 StrTnc(X). The functor of nonconnective T-derivations is
by definition the functor

DerTnc(A;�) : Sp(StrTnc(X)/A) �! S

defined by
M 7! Map/A(A,A�M),

the mapping space being computed in StrTnc(X)/A.

Notice that the the functor DerTnc(A;�) commutes with limits and with -filtered colimits for  a sufficiently
big regular cardinal. The adjoint functor theorem implies therefore that it is corepresentable.

Definition 7.3.5.5. Let X be an1-topos and let A 2 StrTnc(X). We denote the corepresentative of the functor
DerTnc(A;�) by LT

nc

A and we refer to it as the Tnc-theoretic cotangent complex (or as the nonconnective T-
theoretic cotangent complex).

When A is a T-structure we therefore have at our disposal two cotangent complexes, LT

A (cf. [PY17b, Defini-
tion 5.4]) and LT

nc

A . Our next goal is to prove that these two objects are canonically equivalent.
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Lemma 7.3.5.6. Let X be an1-topos and let A be a Tnc-structure on X. The connective cover functor ⌧�0 : StrTnc(X)!
StrT(X) induces a commutative diagram

Sp(StrTnc(X)/A) Sp(StrT(X)/⌧�0A)

StrTnc(X)/A StrT(X)/⌧�0A.

@(⌧�0)

⌦
1

⌦
1

⌧�0

In other words,
⌧�0 (A�Tnc M) ' ⌧�0(A)�T @⌧�0(M).

Proof. This simply follows from the fact that ⌧�0, being a right adjoint, commutes with limits.

Proposition 7.3.5.7. Let X be an 1-topos with enough points. Let A 2 Str
loc

T
(X). Then there is a canonical

equivalence
@(i)(LT

A) ' LT
nc

i(A)

in the1-category Sp(StrTnc(X)/i(A)). In particular, LT
nc

i(A)
belongs to the full subcategory Sp(StrT(X)/A).

Proof. Let M 2 Sp(StrTnc(X)/i(A)). Then, using Theorem 7.3.5.6, we obtain

Map
Sp(StrTnc (X)/i(A))

(@(i)(LT

A),M) ' Map
Sp(StrT(X)/A)

(LT

A, @(⌧�0)(M))

' Map
Str

loc
T

(X)/A
(A,A�T

@(⌧�0)(M))

' Map
Str

loc
T

(X)/⌧�0(i(A))
(A, ⌧�0(i(A)�T

nc

M))

' Map
StrTnc (X)/A

(i(A), i(A)�T
nc

M)

' Map
Sp(StrTnc (X)/i(A))

(LT
nc

A ,M).

We can therefore deduce from the Yoneda lemmama that @(i)(LT

A) ' LT
nc

A . The second statement follows from
the full faithfulness of @(i).

Remark 7.3.5.8. When T = Tdisc(k) and k contains Q, then we can identify Sp(StrTnc(S)/A) with the category
of unbounded A-modules. If M 2 A-Mod, then the underlying module of A�Tdisc(k)nc M really coincides with
A�M . On the other hand, Theorem 7.3.5.6 implies that the underlying module of A�Tdisc(k) M coincides with
A� ⌧�0(M).

7.3.6 Change of spectrum
The leitmotiv of this paper is to provide an axiomatic context where to formulate and prove the HKR theorem. In
later sections we will provide four different contexts where our formalism applies. Given the abundance of such
HKR theorems, a very natural question is to compare them whenever the question makes sense. In order to carry
out such a task, we need to introduce a suitable notion of transformation of nonconnective contexts. Furthermore,
the ideas introduced in this context will prove fundamental to prove certain cases of the analytic HKR (namely,
when the residue field has positive characteristic).

We start by analyzing a simple situation, where we keep the pregeometry T and the T-geometric context C
fixed, but we change the spectrum E. Consider therefore two spectra E0, E1 2 Sp(Geom(C, ⌧,P)) satisfying the
assumptions of Theorem 7.3.1.6. We denote by Tnc

i the nonconnective pregeometry generated by Ei for i = 0, 1.
Define Tnc

01
to be the smallest full subcategory of Geom(C, ⌧,P) closed under products and containing E

n
i for

i = 0, 1 and n � 0. Notice that we have fully faithful embeddings ji : T
nc

i ! Tnc

01
for i = 0, 1. We define a

Tnc

01
-structure in an1-topos X to be a functor

O : Tnc

01
! X

which commutes with products and whose restrictions to Tnc

i are Tnc

i -structures in the sense of Theorem 7.3.1.11.
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By definition, we obtain forgetful functors

⇢i : StrTnc
01
(X) �! StrTnc

i
(X),

for i = 0, 1. These functors commute with limits and filtered colimits and therefore the adjoint functor theorem
guarantees the existence of left adjoints

�i : StrTnc
i
(X) �! StrTnc

01
(X).

As a consequence, we obtain two functors

�01 := ⇢1 � �0 : StrTnc
0
(X) �! StrTnc

1
(X), �10 := ⇢0 � �1 : StrTnc

1
(X) �! StrTnc

0
(X),

that allow to change spectrum.

Definition 7.3.6.1. Let (T, adm, ⌧) be a pregeometry and let (C, ⌧,P) be a T-geometric context. Let E0, E1 2
Sp(Geom(C, ⌧,P)) be such that (C,P, Ei) is a T-nonconnective context, for i = 0, 1. The change of spectrum
functors are the pair of functors �01 and �10 introduced above.

As in the case of a single spectrum, the restriction to T inside Tnc

01
allows to associate to each Tnc

01
-structure a

T-structure. We denote this functor once again by

⌧�0 : StrTnc
01
(X) �! StrTnc(X).

This functor admits a left adjoint, given by left Kan extension along T ,! Tnc

01
. This follows from the same

argument given in ??.

Proposition 7.3.6.2. For i = 0, 1 the diagram

StrTnc
01
(X) StrTnc

i
(X)

StrT(X)

⇢i

⌧�0 ⌧�0

commutes and it is left adjointable.

Proof. The commutativity of the diagram follows just from unraveling the definitions. For the left adjointability,
we remark that for X 2 Tnc

i one has an equivalence of comma categories

TB ⇥T
nc
01

{X} ' TB ⇥T
nc
i

{X}

induced by full faithfulness of both functors in the composition T ,! Tnc

i ,! Tnc

01
. The conclusion now follows

because the adjoint to ⌧�0 is computed in both cases by a plain left Kan extension.

It is a more subtle question to understand whether the same properties hold for the functors �i.

Proposition 7.3.6.3. For i = 0, 1 the diagram

StrTnc
i
(X) StrTnc

01
(X)

StrT(X)

�i

ii

commutes. Suppose furthermore that the left Kan extension functor along Tnc

i ,! Tnc

01
takes Tnc

i -structures to
Tnc

01
-structures. Then the above diagram is right adjointable.

Remark 7.3.6.4. The condition on Tnc

i ,! Tnc

01
is typically asymmetric. This means that it will often be satisfied

for only one of the two inclusions Tnc

0
,! Tnc

01
, Tnc

1
,! Tnc

01
.
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Proof. The first statement follows immediately from Theorem 7.3.6.2 by passing to left adjoints. The second
statement follows from the fact that under the assumption on Tnc

i ,! Tnc

01
we have a commutative diagram

StrTnc
i
(X) StrTnc

01
(X)

Fun(Tnc

i ,X) Fun(Tnc

01
,X).

�i

Lan

In other words, we can identify the functor �i with the left Kan extension. As a consequence, we have

⌧�0 � �i ' ⌧�0 � ⇢i � �i ' ⌧�0,

because the left Kan extension is fully faithful.

Corollary 7.3.6.5. Suppose that left Kan extension along Tnc

0
,! Tnc

01
takes Tnc

0
-structures to Tnc

01
-structures. Then

the diagram
StrTnc

0
(X) StrTnc

1

StrT(X)

�01

⌧�0 ⌧�0

is commutative.

Proof. As �01 = ⇢1 � �0, this is a direct consequence of Propositions 7.3.6.2 and 7.3.6.3.

In virtue of the above results, it is useful to have a more geometrical condition only involving the spectra E0

and E1 implying that left Kan extension along Tnc

i ,! Tnc

01
takes Tnc

i -structures to Tnc

01
-structures.

Definition 7.3.6.6. Let (T, adm, ⌧) be a pregeometry and let (C, ⌧,P) be a T-geometric context. We say that
(C, ⌧,P) is ordinary if the topology ⌧ is quasi-compact and there exists a full subcategory C0 ✓ C satisfying the
following conditions:

(i) C0 is a 1-category with finite limits;

(ii) the topology ⌧ and the class of morphisms P restrict to C0 and make (C0, ⌧,P) into a geometric context;

(iii) T is contained in C0.

We say that a nonconnective pregeometry Tnc is ordinary if the underlying T-geometric context is ordinary.

Example 7.3.6.7. All the contexts introduced so far are ordinary. The choice of C0 is in each case canonical and it
corresponds to the full subcategory spanned by discrete objects. For instance, when T = Tét(k), C0 is the category
of classical affine schemes. When T = Tan(k), C0 is the category of classical k-analytic spaces.

In virtue of the above example, whenever (C, ⌧,P) is an ordinary T-geometric context, we refer to objects in
C0 as the discrete objects. Furthermore, we refer to the stacks in Geom(C0, ⌧,P) as the geometric stacks.

When the T-nonconnective context is ordinary we have an extra amount of control on the spectrum E, as the
following couple of result shows.

Lemma 7.3.6.8. Let (T, adm, ⌧) be a pregeometry and let (C, ⌧,P) be an ordinary T-geometric context. Then the
restriction E

n|C0 is n-truncated.

Proof. The same proof of [TV08b, lemmama 2.1.1.2] applies.

Lemma 7.3.6.9. Let (T, adm, ⌧) be a pregeometry and let (C, ⌧,P) be an ordinary T-geometric context. Let
F : I ! Geom(C0, ⌧,P) be a filtered diagram of discrete geometric stacks. Let

F1 := colim
I

F 2 PSh(C0)

be the colimit of F computed in PSh(C0). Suppose that there exists an n � 0 such that for each ↵ 2 I , the
geometric stack F↵ := F (↵) is n-truncated. Then F1 satisfies ⌧ -hyperdescent.
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Proof. First we remark that, since colimits in PSh(C0) are computed objectwise and since n-truncated objects are
stable under filtered colimits, the presheaf F1 is n-truncated.

Let now X 2 C0 be an object and let U• be a ⌧ -hypercover of X . Since the topology ⌧ is quasi-compact, we
can suppose that for every [m] 2 �, Um is disjoint union of finitely many objects in C0. We have to prove that
the canonical map

F1(X) �! lim �
�

F1(U
•
)

is an equivalence. Since F (X) and F1(U
m
) are n-truncated for every [m] 2 � and since Sm is closed under

limits in S, we see that we can compute the above limit in Sn. Since Sn is an n-category and �n+2 ,! � is
n-cofinal, we see that there is a canonical equivalence

lim �
�

F1(U
•
) ' lim �

�n+2

F1(U
•
).

It is therefore enough to prove that the canonical map from F (X) to the right hand side is an equivalence. Notice
that, since each U

m is a finite disjoint union of objects in C0, the limit on the right is a finite. Since filtered colimits
commute with finite limits, we have a canonical equivalence

lim �
�n+2

F1(U
•
) ' colim

↵2I
lim �

�n+2

F↵(U
•
).

Since each F↵ is n-truncated, we can use once more the n-cofinality of the inclusion �n+2 ,!� to deduce that
the canonical map

F↵(X) �! lim �
�n+2

F↵(U
•
)

is an equivalence. The conclusion follows.

This is provided by our next result:

Proposition 7.3.6.10. Let (T, adm, ⌧) be a pregeometry and let (C, ⌧,P) be an ordinary T-geometric context. Let
E0, E1 2 Sp(Geom(C, ⌧,P)) be such that (C,P, Ei) is a T-nonconnective context for i = 0, 1.

Suppose furthermore that there is an endomorphism

a : E
0

0
�! E

0

0

in Mon
gp

E1
(Geom(C, ⌧,P)) and an equivalence

E
0

1
' colim

N

⇣
E

0

0

a�! E
0

0

a�! E
0

0

a�! · · ·
⌘

in Mon
gp

E1
(Geom(C, ⌧,P)). Then the left Kan extension along Tnc

0
,! Tnc

01
takes Tnc

0
-structures to Tnc

01
-structures.

Proof. Let us simply write Lan for the functor

Fun(Tnc

0
,X) �! Fun(Tnc

01
,X)

given by left Kan extension along Tnc

0
,! Tnc

01
.

Consider the following claim:

Claim. For every n � 0 the canonical map

Lan(O)(En
1
) �! colim

N

✓
O(En

0
)

O(a)���! O(En
0
)

O(a)���! O(En
0
)

O(a)���! · · ·
◆

is an equivalence in X.

Assume this claim. Then, as filtered colimits commute with finite limits, we deduce immediately that

Lan(O)(En
1
) ' ⌦Lan(O)(En+1

1
).
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We are therefore left to check that Lan(O) commutes with finite products. This follows from an analysis case by
case as in the proof of ??.

It is therefore enough to prove the claim. We first observe that since a is a morphism of E1-groups, the
1-categorical version of May’s theorem implies that it induces an endomorphism

an : E
n
0
�! E

n
0

for every n � 0 (when n = 0, a0 = a). Moreover, since the delooping functor

B
n
: Mon

gp

E1
(Geom(C, ⌧,P)) �! Mon

gp

E1
(Geom(C, ⌧,P)�n

)

is a left adjoint, it commutes with filtered colimits. As a consequence, we obtain canonical equivalences in
Mon

gp

E1
(Geom(C, ⌧,P))

E
n
1
' colim

N

⇣
E

n
0

an��! E
n
0

an��! E
n
0

an��! · · ·
⌘

for every n � 0. Let now X 2 Tnc

0
be any object. We claim that the canonical map

Map
Geom(C,⌧,P)(X,E

n
1
) �! colim

N
Map

Geom(C,⌧,P)(X,E
n
0
)

is an equivalence. When X belongs to T, this is a direct consequence of Theorem 7.3.6.9. In the general case, we
can find an hypercover U• of X such that each U

• is a disjoint union of finitely many objects in T. In particular,
we have equivalences

Map
Geom(C,⌧,P)(X,E

n
i ) ' lim�Map

Geom(C,⌧,P)(U
•
, E

n
i ),

for i = 0, 1. Since En
i is n-truncated in virtue of Theorem 7.3.6.8, we see that the above is a limit in Sn. As Sn

is an n-category and �n+2 ,!� is n-cofinal, we conclude that we also have an equivalence

Map
Geom(C,⌧,P)(X,E

n
i ) ' lim�n+2

Map
Geom(C,⌧,P)(U

•
, E

n
i ).

The conclusion now follows from the fact that each U
m is a finite disjoint union of finitely many objects in T,

from Theorem 7.3.6.9 and from the fact that filtered colimits commute with finite limits.
We now consider the comma category (Tnc

0
)/En

1
. The above argument implies that the diagram

N �! (Tnc

0
)/En

1

corresponding to the iteration of the morphism an : E
n
0
! E

n
0

is cofinal. Therefore, the claim follows from the
explicit formula for left Kan extensions.

Corollary 7.3.6.11. Under the same assumptions of Theorem 7.3.6.10 and for any Tnc

0
-structure A, the diagram

Sp(StrTnc
01
(X)/�i(A)) Sp(StrTnc

i
(X)/A)

StrTnc
01
(X)/�i(A) StrTnc

i
(X)/A

@(⇢i)

⌦
1

⌦
1

⇢i

commutes and it is left adjointable. In particular, the functor �01 : StrTnc
0
(X) ! StrTnc

1
(X) commutes with the

formation of split square-zero extensions.

Proof. The commutativity of the diagram simply follows from the fact that the functor ⇢i commutes with limits.
For the left adjointability, we observe that the proof of Theorem 7.3.6.3 implies that the functor Lan commutes
with finite limits, because it can be computed by filtered colimits. The conclusion follows.
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7.3.7 Change of context
We now turn to the general case, where we do not keep underlying pregeometry fixed.

Definition 7.3.7.1. Let Tnc

0
and Tnc

1
be two nonconnective pregeometries. A transformation of nonconnective

pregeometries from Tnc

0
to Tnc

1
is the given of a morphism of geometric contexts ' : (C0, ⌧0,P0) ! (C1, ⌧1,P1)

satisfying the following two conditions:

(i) the morphism of geometric contexts ' restricts to a transformation of pregeometries T0 ! T1;

(ii) let T2 be the T1-nonconnective context determined by (C1, ⌧1,P1) and the spectrum object 's(E0). Then
the left Kan extension along Tnc

2
,! Tnc

12
takes Tnc

2
-structures to Tnc

12
-structures.

We denote a transformation of pregeometries by ' : (C0,P0, E0)! (C1,P1, E1).

Definition 7.3.7.2. A transformation of nonconnective pregeometries ' : (C0,P0, E0) ! (C1,P1, E1) is said to
be a change of spectrum if the underlying transformation of geometric contexts is an equivalence.

Definition 7.3.7.3. A transformation of nonconnective pregeometries ' : (C0,P0, E0) ! (C1,P1, E1) is said to
be strong if there is an equivalence

's(E0) ' E1

of spectra in Geom(C1, ⌧1,P1).
Notice that if ' is a strong transformation of nonconnective pregeometries it induces a well defined functor

' : Tnc

0
! Tnc

1
. In this paper we abusively identify the strong transformation with the functor ' : Tnc

0
! Tnc

1
.

It follows from the definitions that we can always factor a transformation of nonconnective pregeometries as a
strong transformation followed by a change of spectrum. We already performed an in-depth analysis of the change
of spectrum situation in the previous section. Therefore, we focus now on strong transformations.

Let ' : Tnc

0
! Tnc

1
be a strong transformation of pregeometries. For any1-topos X, precomposition with '

induces a well defined functor
'⇤ : StrTnc

1
(X) �! StrTnc

0
(X).

This functor commutes with limits and filtered colimits. In particular, it admits a left adjoint that we denote '⇤.

Proposition 7.3.7.4. Let ' : Tnc

0
! Tnc

1
be a strong transformation of pregeometries. For any 1-topos X and

any Tnc

1
-structure A 2 StrTnc

1
(X) the diagram

Sp(StrTnc
1
(X)/A) Sp(StrTnc

0
(X)/'⇤(A))

StrTnc
1
(X)/A StrTnc

0
(X)/'⇤(A)

@('⇤)

⌦
1
1 ⌦

1
0

'⇤

commutes.

Proof. This is an immediate consequence of the fact that '⇤ commutes with (not necessarily) finite limits.

Corollary 7.3.7.5. Let ' : Tnc

0
! Tnc

1
be a strong transformation of pregeometries. For any1-topos X, any Tnc

1
-

structure A 2 StrTnc
1
(X) and any M 2 Sp(StrTnc

0
(X)/'⇤(A)) there is a canonical morphism of Tnc

1
-structures on

X

'
⇤
(⌦

1
0
(M)) �! ⌦

1
1
(@('

⇤
)(M)).

Here @('⇤
) denotes the Goodwillie derivative of '⇤.

Proof. This follows immediately from the fact that @('⇤
) is left adjoint to @('⇤) and from the commutativity

of the diagram asserted in the previous proposition. Indeed, the canonical map is simply the Beck-Chevalley
transformation.
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7.3.8 Morita equivalences
Fix a pregeometry (T, adm, ⌧) and an1-topos X. We are often more interested in manipulating the1-category
Str

loc

T
(X) than the 1-category StrT(X). The reason T-structures are only a tool needed to set up the theory of

T-structured spaces and, ultimately of T-schemes.
Unfortunately, the 1-category Str

loc

T
(X) is typically not presentable. This can be fixed as follows: for any

A 2 Str
loc

T
(X), the 1-category Str

loc

T
(X)/A becomes presentable (see [Por15b, Corollary 9.4]). This fact has

been used in an extensive way to obtain several of the main results of [PY17b].
On the other hand, Strloc

T
(X) is much more flexible of StrT(X). Indeed there are typically several different

pregeometries giving rise to the same1-categories of local structures. This has been studied in [Lur11d, §3.2].
The same picture applies when dealing with nonconnective pregeometries. In the nonconnective setting the

Morita equivalence plays an even greater role. To understand the reason consider the following example:

Example 7.3.8.1. Let k be a nonarchimedean field equipped with a non-trivial valuation. Let Tan(k) be the
pregeometry introduced in [PY16b]. We recall that the objects of Tan(k) are smooth k-analytic spaces. Choose
C := dAnk, the1-category of derived k-analytic spaces. The results of [PY17b, §5.6] imply that (C, ⌧ét,Psm)

is a Tan(k)-geometric context. The sequence {Bn
(BGa)}n�0 defines a spectrum object E in Geom(C, ⌧ét,Psm),

and (C,Psm, E) becomes a pre-Tan(k)-nonconnective context. Nevertheless, this is not a Tan(k)-nonconnective
context, because it is not true that for every X 2 Tan(k) one has H1

(OX) = 0 (take for example X = P1

k). In this
situation, ?? is no longer valid.3

In order to fix this result one can change the starting pregeometry Tan(k) as follows: we define Tan(k)
0 to

be the category of smooth k-affinoid spaces. The same choices of admissible morphisms and of the topology
for Tan(k) endow Tan(k)

0 with a the structure of a pregeometry. Furthermore, the inclusion Tan(k)
0 ! Tan(k)

is a Morita equivalence, and (dAnk, ⌧ét,Psm) is a Tan(k)
0-geometric context. Therefore, (dAnk,Psm, E) is a

pre-Tan(k)
0-nonconnective context. The difference with before is that now Tate’s acyclicity theorem implies that

(dAnk,Psm, E) is actually a Tan(k)
0-nonconnective context.

The conclusion is that although the results we developed in the previous sections might not apply to Tan(k)-
structures, they will apply for Tan(k)

0-structures, and thanks to Morita equivalence, they will also apply to Tan(k)-
local structures.4

Motivated by the previous example, we introduce the notion of Morita equivalence.

Definition 7.3.8.2. Let (T0, adm0, ⌧0) and (T1, adm1, ⌧1) be two pregeometries. For i = 0, 1, let (Ci,Pi, Ei)

be a pre-Ti-nonconnective context. A Morita equivalence of pre-nonconnective contexts from (C0,P0, E0) to
(C1,P1, E1) is the given of a Morita equivalence of geometric contexts

' : (C0, ⌧0,P0)! (C1, ⌧1,P1)

with the following properties:

(i) it restricts to a Morita equivalence of pregeometries ' : T0 ! T1;

(ii) under the equivalence Geom(C0, ⌧0,P0) ' Geom(C1, ⌧1,P1) the spectrum E0 is equivalent to E1.

Let ' : (C0,P0, E0) ! (C1,P1, E1) be a transformation of pre-nonconnective contexts. Then ' induces a
functor

' : Tnc

0
�! Tnc

1
.

Precomposition with this functor provides, for every1-topos X, restriction morphisms

'⇤ : StrTnc
1
(X) �! StrTnc

0
(X)

and
'⇤ : Str

loc

T
nc
1
(X) �! Str

loc

T
nc
0
(X).

The following is the analogue of [Lur11d, Proposition 3.28] in the nonconnective setting:
3Notice that the adjoint functor theorem implies the existence of a left adjoint to ⌧�0. What is no longer clear, however, is that this left

adjoint is fully faithful.
4The reader might wonder why bother working with Tan(k)-structures rather than with Tan(k)0-structures, since the results for the latter

are nicer. The reason is that the analytification functor only defines a transformation of pregeometries Tét(k) ! Tan(k), and this transforma-
tion of pregeometries is crucial in derived k-analytic geometry.
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Theorem 7.3.8.3. Let (T0, adm0, ⌧0) and (T1, adm1, ⌧1) be two pregeometries. For i = 0, 1, let (Ci,Pi, Ei) be a
pre-Ti-nonconnective context. Let ' : (C0,P0, E0)! (C1,P1, E1) be a Morita equivalence. Suppose furthermore
that the restriction ' : T0 ! T1 satisfies the following properties:

(i) ' : T0 ! T1 is fully faithful;

(ii) a morphism f : U ! X in T0 is admissible if and only if '(f) : '(U)! '(X) is admissible;

(iii) a collection of admissible morphisms {f↵ : U↵ ! X} generates a covering sieve on X in T0 if and only if
the collection {'(f↵) : '(U↵)! '(X)} generates a covering sieve on '(X) in T1;

(iv) for every X 2 T1 there exists a collection of objects {U↵} in T0 and a collection of morphisms {f↵ : '(U↵)!
X} generating a covering sieve.

If in addition (C0,P0, E0) is a T0-nonconnective context, then for any1-topos X the restriction functor

'⇤ : Str
loc

T
nc
1
(X) �! Str

loc

T
nc
0
(X)

is an equivalence of1-categories.

Proof. The transformation ' induces a fully faithful functor Tnc

0
! Tnc

1
that we still denote by '. Consider the

left Kan extension functor
Lan' : Str

loc

T
nc
0
(X)! Fun(Tnc

1
,X).

Notice, since (C0,P0, E0) is a T0-nonconnective context, for every X 2 Tnc

1
the functor

(Tnc

1
)X/ ⇥T

nc
0

T0 �! (Tnc

1
)X/ ⇥T

nc
0

Tnc

0

is cofinal. It follows that the diagram

Str
loc

T
nc
0
(X) Fun(Tnc

1
,X)

Str
loc

T0
(X) Fun(T1,X)

Lan'

⌧�0 ⌧�0

Lan'

commutes. Thus [Lur11d, Proposition 3.28] implies that

Lan' : Str
loc

T0
(X)! Fun(T1,X)

factors through the (non full) subcategory Str
loc

T1
(X) and that such factorization is an equivalence. It is now

enough to remark that since ' : (C0, ⌧0,P0) ! (C1, ⌧1,P1) is a Morita equivalence and 's(E0) ' E1, for every
O 2 Str

loc

T
nc
0
(X) we have

Lan'(O)(E
n
1
) ' O(En

0
).

This proves at the same time that
Lan' : Str

loc

T
nc
0
(X) �! Fun(Tnc

1
,X)

factors through the (non full) subcategory Str
loc

T
nc
1
(X) and that such factorization is an equivalence.

Remark 7.3.8.4. It is possible to push the theory of nonconnective pregeometries much farther than what we did
so far. For example, it would be possible to develop a theory of nonconnective schemes, which would provide
an analogue of the theory of spectral affine schemes introduced in [Lur11f]. Having a notion of nonconnective
scheme for a suitably general pregeometry might be useful: for example, the paper [AHR10] suggests the existence
of a complex analytic version of tmf. In order to make rigorous the considerations done in loc. cit. it is necessary
to consider nonconnective derived analytic spaces. This can easily be achieved by the formalism of nonconnective
pregeometries. Another possible application of nonconnective structures would be to develop analogues of the
results in [Toë06a] in the complex analytic and in the non-archimedean analytic setting.
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7.4 The analytic case
From this point on we specialize to the analytic setting. Our first task is to introduce the categories of mixed and
S
1-equivariant analytic algebras.

In this section we let k denote either the field of complex numbers or a non-archimedean field equipped with
a non-trivial valuation and of characteristic zero. In the latter case, we let | � | denote the associated absolute
value. Following the use of [PY16d, PY17b], we write C-analytic to mean complex analytic and k-analytic to
mean non-archimedean analytic over the non-archimedean field k. When statements apply to both settings, we
simply write analytic.

7.4.1 The analytic nonconnective contexts
Let Tan(k) denote the analytic pregeometry. See Theorem 7.3.1.3 for the C-analytic case and Theorem 7.3.1.4 for
the k-analytic case. Let dAnk denote the1-category of derived analytic spaces, as defined in [Lur11b, Definition
12.3] and in [PY16b, Definition 2.5]. We endow dAnk with the étale topology ⌧ét. This is indeed the restriction
of the ⌧ét-topology on TopR

(Tét(k)): see [Por15b, Lemma 3.4] for the C-analytic case and [PY16b, Theorem
5.4] for the k-analytic case. The notion of smooth morphism between derived analytic spaces has been introduced
and studied in [PY17b, §5.6]. Let us denote it by Psm. Then (dAnk, ⌧ét,Psm) is a geometric context in the sense
of [PY16d, §2]. The1-category dAnk has finite limits in virtue of [Lur11b, Proposition 12.12] in the C-analytic
case and of [PY16b, Proposition 6.2] in the k-analytic case. Finally, the inclusion Tan(k) ! dAnk preserves
products, as it is shown in [Lur11b, Lemma 12.14(5)] and in [PY16b, Proposition 6.2(v)]. We can summarize
these considerations in the following result:

Proposition 7.4.1.1. The choice of the étale topology and the collection of smooth morphisms make (dAnk, ⌧ét,Psm)

into a Tan(k)-geometric context.

We can also define a variant Tafd

an
(k) of Tan(k) as follows: the object of Tafd

an
(k) are smooth Stein spaces

(resp. smooth k-affinoid spaces), while the notion of admissible morphism and the Grothendieck topology are
left unchanged. It follows from [Lur11d, Proposition 3.2.8] that the inclusion Tafd

an
(k) ,! Tan(k) is a Morita

equivalence of pregeometries.
Following the convention introduced in [PY17b], we let Afdk denote the full subcatgory of An

k spanned by
Stein spaces (in the C-analytic case) or by k-affinoid spaces (in the k-analytic case). Furthermore, we let dAfdk

denote the full subcategory of dAnk spanned by those derived analytic spaces whose truncation belongs to Afdk.

Corollary 7.4.1.2. The étale topology and the collection of smooth morphisms make (dAfdk, ⌧ét,Psm) into a
Tafd

an
(k)-geometric context.

Proof. It is enough to prove that dAfdk is closed under fiber products in dAnk. As the truncation functor
commutes with fiber products, it is enough to prove that Afdk is closed under fiber products in An

k . In the C-
analytic case, this follows from [GR84, §1.4.4]. In the k-analytic case, this is a consequence of [Con08b, Exercise
2.2.3(1)].

Notice that the inclusion (dAfdk, ⌧ét,Psm) ,! (dAnk, ⌧ét,Psm) induces an equivalence of the1-categories
of geometric stacks thanks to [PY16d, Corollary 2.26].

Let now BGa denote the analytic affine line equipped with its additive group structure. Since BGa is commu-
tative, May’s delooping theorem for1-topoi [Lur12c, 5.2.6.15] provides us with a spectrum object

E 2 Sp(Geom(dAnk, ⌧ét,Psm))

such that
E

n ' B
n
(BGa).

In this way, (dAnk, ⌧ét,Psm, E) becomes a pre-Tan(k)-nonconnective context, while (dAfdk, ⌧ét,Psm, E) be-
comes a Tafd

an
(k)-nonconnective context. The latter assertion is a consequence of the derived version of Tate’s

acyclicity theorem (see [PY18a, Theorem 3.4]). In particular, (dAfdk, ⌧ét,Psm, E) defines a nonconnective pre-
geometry, that accordingly to our convention we should denote Tafd

an
(k)

nc. However, when no confusion is possible
we simplify the notation and denote it instead by Tnc

an
(k).
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In the rigid analytic situation, there are other variations that are important for us. For every r 2 |k⇥| let D1

k(r)

denote the closed disk of radius r centered at the origin. Since the valuation is non-archimedean, D1

k(r) acquires
the structure of a commutative group object in dAnk. Applying once again May’s delooping theorem for1-topoi,
we obtain a spectrum object

E(r) 2 Sp(Geom(dAnk, ⌧ét,Psm))

such that
E(r)

n ' B
n
(D1

k(r)).

Similarly to the case discussed above, (dAnk, ⌧ét,Psm, E(r)) is then a pre-Tan(k)-nonconnective context and
also similary (dAfdk, ⌧ét,Psm, E(r)) is a pre-Tan(k)-nonconnective context, moreover we have the following:

Lemma 7.4.1.3. The pre-Tan(k)-nonconenctive context (dAfdk, ⌧ét,Psm, E(r)) is a Tafd

an
(k)-nonconnective con-

text.

Proof. We are left to check condition (3) in Theorem 7.3.1.6. Let X 2 dAfdk be a derived k-affinoid space, we
want to show that the mapping space

Map
Geom(dAfdk,⌧ét,Psm)

�
X,B

n
(D1

k(r))
�

is connected, whenever n � 1 and r 2]0,1] is a given radius.
Let us treat first the case where r = 1, in this case E

n
(r) ' B

n
(BGa). By the universal property of the

k-analytic group BGa together with the universal property of the delooping functor we obtain an equivalence
between spaces

Map
Geom(dAfdk,⌧ét,Psm)

(X,B
n
(BGa)) ' � (X,OX) [�n].

By definition of derived k-affinoid space we know that, for each j � 0, ⇡j (OX) is a coherent sheaf over the
0-truncated k-affinoid space t0X = (X, ⌧0OX). Moreover, thanks to (the dual of) [Lur12c, 1.2.2.14] we have
a spectral sequence of the form

E
i,j
2

:= ⇡i (� (t0X,⇡j (OX)))) ⇡i+j (� (t0X,⇡0 (OX)))

and by Tate’s acyclicity theorem it follows that we have an equivalence of spaces

⇡0

⇣
Map

Geom(dAfdk,⌧ét,Psm)
(X,B

n
(BGa))

⌘
' ⇡0 (� (X,⇡0 (OX)) [�n]) ' H

n
(t0X,⇡0OX) ' ⇤,

whenever n > 0. Suppose now that r < 1, by May’s delooping theorem we reduce ourselves to show that the
mapping space

Map
Geom(dAfdk,⌧ét,Psm)

�
X,D1

k(r)
�

(7.4.1.1)

is a discrete space, i.e., the only non-trivial homotopy groups live in degree 0. We have a monomorphism D1

k(r)!
BGa in the 1-category dAfdk and therefore for each n � 1 we have monomorphisms B

n
(D1

k(r)) ! B
n
BGa

and therefore we have a monomorphism of mapping spaces

Map
Geom(dAfdk,⌧ét,Psm)

�
X,D1

k(r)
�
! Map

Geom(dAfdk,⌧ét,Psm)
(X,BGa) ' � (t0X,⇡0 (OX)) . (7.4.1.2)

and we can identify the left hand side of (7.4.1.2) with global sections of the subsheaf ⇡0 (OX) (r) of ⇡0 (OX)

on t0X spanned by those sections which (locally) are uniformly bounded in norm by r > 0.Therefore, covering
t0X by a finite number of open affinoid spaces X =

S
i Xi, with (classical) intersections Xi,j = Xi \Xj we

have a commutative diagram of the form

⇧i,jAi,j(r) ⇧iAi(r) A(r)

⇧i,jAi,j ⇧iAi A

(7.4.1.3)

where the vertical maps are monomorphisms and Ai,j(r) := ⇡0 (OX) (r)(Xi, j), Ai,j := ⇡0 (OX) (Xi, j),
Ai(r) := ⇡0 (OX) (r)(Xi), Ai := ⇡0 (OX) (r)(Xi), A(r) := ⇡0 (OX) (r)(X) and A := ⇡0 (OX) (X). Comput-
ing cohomology of the associated complex to the vertical sequence in (7.4.1.3) we conclude that cycles in such a
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complex are (co)homologous if and only if the boundary element corresponds to a section uniformly bounded in
norm by r on the intersections and thus on all X . This implies that we have a monomorphism of graded modules

⇡⇤ (� (t0X,⇡0OX(r)))! ⇡⇤ (� (t0X,⇡0OX))

and therefore, we conclude that the mapping space in (7.4.1.1) is discrete, as desired.

Therefore, the latter defines a pregeometry, that we denote by Tnc

an
(k; r).

7.4.2 Nonconnective analytification
In [Por15b, PY17b] the authors studied and exploited the derived analytification functor. This is a functor that
associates to every derived scheme locally almost of finite presentation over k a derived analytic space, which is
characterized by a certain universal property. At the level of algebras, the analytification functor can simply be
understood as the left adjoint to the underlying algebra functor. In our approach to the analytic HKR theorem, the
analytification functor plays a major role, for instance in the definition of mixed analytic algebras.

The classical analytification functor induces a transformation of pregeometries

(�)an : Tét(k) �! Tan(k).

The analysis carried over in [Por15b, §4] and in [PY17b, §3] shows that this functor extends to a transformation
of geometric contexts

(�)an : (dA↵afp

k , ⌧ét,Psm) �! (dAnk, ⌧ét,Psm).

In particular, [PY16d, Proposition 2.25] provides us with a well defined functor

(�)an : Geom(dA↵
afp

k , ⌧ét,Psm) �! Geom(dAnk, ⌧ét,Psm).

Notice that this functor commutes with colimits by construction, and therefore that it brings Bn
(Ga) to B

n
(BGa).

As a consequence, we obtain a strong transformation of nonconnective pre-contexts

(�)an : Tnc

ét
(k) �! Tan(k)

nc
.

Remark 7.4.2.1. In the C-analytic setting, Tan(k)
nc is a nonconnective context. On the other hand, in the rigid

analytic setting, Tan(k)
nc is only a nonconnective pre-context. However, the inclusion Tafd

an
(k)

nc
,! Tan(k)

nc

satisfies the assumptions of ??, therefore providing for every1-topos X an equivalence

Str
loc

Tafd
an (k)nc(X) ' Str

loc

Tan(k)nc(X).

We denote this1-category simply by Str
loc

Tnc
an(k)

(X).

The analytification functor (�)an : Tnc

ét
(k)! Tan(k)

nc fits into the following commutative square

Tét(k) Tan(k)

Tnc

ét
(k) Tan(k)

nc
.

(�)
an

(�)
an

Therefore, for every1-topos X, we obtain a commutative diagram

Str
loc

T
nc
ét (k)

(X) Str
loc

Tnc
an(k)

(X)

Str
loc

Tét(k)(X) Str
loc

Tan(k)(X).

⌧�0 ⌧�0

(�)
alg

(�)
alg
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Consider the left adjoints

i : Str
loc

Tét(k)(X) �! Str
loc

T
nc
ét (k)

(X) , i : Str
loc

Tan(k)(X) �! Str
loc

Tnc
an(k)

(X)

to the connective cover functors ⌧�0. The commutativity of the above diagram induces a Beck-Chevalley trans-
formation

� : i � (�)alg �! (�)alg � i.

Proposition 7.4.2.2. Let X be an1-topos with enough points. For every A 2 Str
loc

Tan(k)(X) the natural transfor-
mation �A : i(A

alg
)! i(A)

alg is an equivalence.

Proof. Notice that [Lur11d, Proposition 3.3.1] implies that the functor (�)alg : Strloc
Tan(k)(X) ! Str

loc

Tét(k)(X)

commutes with sifted colimits. On the other hand, Theorem 7.3.3.6 shows that if F : I ! Str
loc

Tan(k)(X) is a sifted
diagram, then the colimit of i � F can be computed objectwise. It follows that the composition

(�)alg � i : Strloc
Tan(k)(X) �! Str

loc

Tét(k)(X)

commutes with sifted colimits. Using [Lur11b, Proposition 2.11], we reduce ourselves to the case where A is an
elementary Tan(k)-structure. In this case, the formula follows from direct inspection.

Let us fix A 2 Str
loc

Tan(k)(X). Since ⌧�0(i(A)) ' A and ⌧�0(i(A
alg

)) ' A
alg, we obtain the following

commutative square:

Str
loc

T
nc
ét (k)

(X)/i(Aalg) Str
loc

Tnc
an(k)

(X)/i(A)

Str
loc

Tét(k)(X)/Aalg Str
loc

Tan(k)(X)/A.

⌧�0 ⌧�0

(�)
alg

(�)
alg

Using [Por15b, Corollary 9.4] we see that all the categories appearing in this diagram are presentable. As the
functors (�)alg commute with limits and filtered colimits, we deduce that they admit left adjoints, that we still
denote by

(�)an : Strloc
Tét(k)(X)/Aalg ! Str

loc

Tan(k)(X)/A , (�)an : Strloc
T

nc
ét (k)

(X)/i(Aalg) ! Str
loc

Tnc
an(k)

(X)/i(A).

We refer to the functor on the right as the nonconnective (derived) analytification functor.
These functors induce the following commutative diagram:

Str
loc

T
nc
ét (k)

(X)/i(Aalg) Str
loc

Tnc
an(k)

(X)/i(A)

Str
loc

Tét(k)(X)/Aalg Str
loc

Tan(k)(X)/A.

(�)
an

(�)
an

i i

In particular, we see that the nonconnective analytification functor respects connective structures.

Remark 7.4.2.3. The functor (�)an : Strloc
Tét(k)(X)/Aalg ! Str

loc

Tan(k)(X)/A does not depend on the choice of A
in the following sense. If f : A! B is any morphism in Str

loc

Tan(k)(X), then the diagram

Str
loc

Tét(k)(X)/Aalg Str
loc

Tan(k)(X)/A

Str
loc

Tét(k)(X)/Balg Str
loc

Tan(k)(X)/B

falg
⇤

A(�)
an

f⇤

B(�)
an

commutes. Here we denoted by A(�)an and B(�)an the analytification functors constructed using A (resp. B) as
auxiliary choice, and f⇤ and f

alg

⇤ denote the functors induced by composition with f (resp. falg

⇤ ). For this reason
we suppress the dependence on A in the notation for the analytification functor.
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A key feature of the underlying algebra functor on local structures is the fact that it is conservative. Let us
record this property explicitly for later use:

Proposition 7.4.2.4. Let X be an1-topos and let A 2 Str
loc

Tan(k)(X). The underlying algebra functors

(�)alg : Strloc
Tan(k)(X)/A �! Str

loc

Tét(k)(X)/Aalg

(�)alg : Strloc
Tnc

an(k)
(X)/i(A) �! Str

loc

Tnc
an(k)

(X)/i(Aalg)

are conservative.

Proof. In the connective case, this has already been proven in [Lur11b, Proposition 11.9] (in the C-analytic setting)
and in [PY16b, Lemma 3.13] (in the rigid analytic setting). In the nonconnective situation, the statement follows
at once from the connective one and from Theorem 7.3.3.8.

For the rest of this section, we restrict ourselves to the1-topos of spaces S. In this case, the Yoneda lemma
allows to produce several important examples of nonconnective analytic structures. Indeed, for every derived
analytic stack X 2 dAnStk, we can define a functor

�
an

k (X) : Tnc

an
(k) �! S

by
�
an

k (X)(U) := Map
dAnStk

(X,U).

This is a Tnc

an
(k)-structure, but in general it is not local. The following proposition isolates a special class of

derived analytic stack X for which �ank (X) is local.

Proposition 7.4.2.5. Suppose that X is underived and ⇡0(X) ' Sp(k). Then �ank (X) is a local Tnc

an
(k)-structure.

Proof. We only need to check that ⌧�0(�
an

k (X))) is a local Tan(k)-structure. Let U 2 Tan(k). Since X is
underived, we have

Map
dAnStk

(X,U) ' Map
AnStk

(X,U).

Since U is discrete, we have

Map
AnStk

(X,U) ' Map
AnStk

(⇡0(X), U) ' Map
AnStk

(Sp(k), U).

This functor clearly sends ⌧ét-coverings to effective epimorphism.

In particular, the objects

�
an

k (E
n
),�

an

k (E(r)
n
) 2 StrTnc

an(k)
(S) (r 2 |k|⇥)

are local structures. We denote them by S
an
(n) and S

an

k (n, r) respectively and we refer to them as the free
nonconnective analytic algebra of rank 1, degree n (and radius r).

Notation 7.4.2.6. We denote by AnRing
nc

k the1-category Str
loc

Tnc
an(k)

(S)/k. We refer to it as the1-category of
local nonconnective analytic rings. Notice that it is a presentable 1-category. In particular, it admits pushouts.
Given maps A! A

0 and A! A
00 we denote their pushout by A

0 b⌦A A
00.

Notice that in the algebraic case, the identification of StrTnc
disc(k)

(S) with cdgak the local nonconnective alge-
braic structure

�(E
n
alg

) = �(B
n
(Ga)) 2 StrTnc

disc(k)
(S)

corresponds to Symk(k[�n]). We denote it by Sk(n).

Lemma 7.4.2.7. There is a natural equivalence

Sk(n)
an ' S

an

k (n).

Proof. This simply follows from the fact that (Bn
(Ga))

an ' B
n
(BGa).
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It is less trivial to identify (S
an

k (n, r))
alg. We start by observing that for every r 2 |k⇥| there is a natural

morphism
B

n
(D1

(r)) ,! B
n
(BGa),

that induces a (local) morphism of nonconnective analytic rings

S
an

k (n) �! S
an

k (n, r).

On the other hand, the unit of the adjunction (�)an a (�)alg provides us with a map

⌘n,r : Sk(n) �! (S
an

k (n))
alg �! (S

an

k (n, r))
alg

The following result is the key to the analytic HKR:

Theorem 7.4.2.8 (Van Est, Lazard). Let ⇢ 2 |k⇥|[{1} denote the converging radius of the exponential function.
Then if r  ⇢ the morphism ⌘n,r is an equivalence. Moreover, if r, r0 2 |k⇥|[{1} satisfy r < r

0  ⇢ the natural
morphism

S
an

k (n, r
0
) �! S

an

k (n, r)

is an equivalence in AnRing
nc

k .

Proof. Since the underlying algebra functor (�)alg : AnRing
nc

k ! cdgak is conservative, the second statement
follows at once from the first one.

Since the forgetful functor
cdgak �!Modk

is conservative, it is enough to check that the image of ⌘n,r in Modk is an equivalence. It follows from the defi-
nitions that this is the same morphism obtained by applying the underlying spectrum functor to ⌘n,r. Unraveling
the definitions, we see that the object U(S

an

k (n, r)) 2 Modk is computed as the totalization of the following
cosimplicial object:

k khr�1
T i khr�1

T1, r
�1

T2i · · · ,

which in degree n has khr�1
T1, . . . , r

�1
Tni, and the ith morphism

khr�1
T1, . . . , r

�1
Tni �! khr�1

T1, . . . , r
�1

Tn+1i

is determined by the rule

Tj 7!

8
><

>:

Tj+1 if j < i

Tj + Tj+1 if j = i

Tj if j > i.

When r =1, we denote by khr�1
T1, . . . , r

�1
Tni the algebra of analytic functions on An

k .
Let us first deal with the complex analytic case. In this case r = ⇢ =1. After applying the cosimplicial Dold-

Kan, we can identify the above cosimplicial object with the cochain complex computing holomorphic cohomology
of BGa with coefficients in its trivial representation of rank 1. The Van Est theorem (originally formulated for
continuous cochains and extended to holomorphic cochains by Hochschild and Mostow) implies that we can
identify the above complex with the complex computing the cohomology of the Lie algebra ga of BGa with
coefficients in its trivial representation of rank 1. Inspection reveals that the latter is quasi-isomorphic to k�k[�1].
The conclusion now follows from ??.

In the non-archimedean analytic case the same thing happens, with the difference that the cochain complex is
no longer acyclic in degrees  �2 unless r  ⇢. This has originally been proven by Lazard. See [?] for a modern
treatment.

We also need a relative version of Van Est theorem. Let A 2 AnRing
nc

k and set

SA(n) := A
alg ⌦k Sk(n), S

an

A (n) := Ab⌦kS
an

k (n), S
an

A (n, r) := Ab⌦kS
an

k (n, r).

The map ⌘n,r induces a well defined map SA(n)! (S
an

A (n, r))
alg, that we still denote ⌘n,r.
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Corollary 7.4.2.9. Let ⇢ 2 |k|⇥ [ {1} denote the converging radius of the exponential. Then if r  ⇢ and
A 2 AnRingk, the map ⌘n,r : SA(n)! (S

an

A (n, r))
alg is an equivalence.

Proof. We start by observing that the formation of the map ⌘n,r : SA(n)! (S
an

A (n, r))
alg commutes with filtered

colimits in A. Using ??, we reduce ourselves to the case where A ' x
�1OX , for X = (X,OX) 2 dAnk and

x⇤ : S ⌧ X : x
�1 a geometric point.

Notice that x�1OX b⌦kS
an

k (n, r) ' x
�1

(OX b⌦San

X
(n, r)).

we can reduce ourselves to the case where A is the germ of analytic functions at a point in the interior of the
disk Dm

k . As the formation of the map ⌘n,r commutes with filtered colimits, we see that it is enough to prove that
it is an equivalence replacing A with the analytic ring of overconvergent analytic functions on Dm

k . In this case the
Yoneda lemma allows to identify the completed tensor product Ab⌦kS

an

A (n, r) with the analytic ring associated to
the stack (Dm

k )
† ⇥ B

n
(D1

k(r)), and hence with the inverse limit

lim �

✓
A Ab⌦kS

an

k (n� 1, r) Ab⌦k(S
an

k (n� 1, r))
b⌦ 2 · · ·

◆
.

As the underlying algebra functor commutes with inverse limits, we can reason by induction on n, and we are
immediately reduced to the case n = 1. In this case

(S
an

k (1, r))
b⌦ l ' khr�1

T1, . . . , r
�1

Tli,

and the Yoneda lemma allows to identify the categorical completed tensor product Ab⌦k(S
an

k (1, r))
b⌦ l with the

usual completed tensor product Ab⌦kkhr�1
T1, . . . , r

�1
Tli of functional analysis. At this point, the conclusion

follows because A is Fréchet nuclear: see [Dem, Example 5.12] in the C-analytic case and [BBB15] in the k-
analytic case. In particular, the completed tensor product with A is acyclic. Thus, the conclusion follows directly
from Theorem 7.4.2.8.

7.4.3 A nonconnective base change
Before starting to discuss S1 and mixed analytic algebras, we need a couple of preliminaries on the general features
of nonconnective analytic structures. We start with a discussion of a very particular base change property.

Notice that we have a functor
StrTnc

an(k)
(�) : TopR �! PrR

defined informally by sending an1-topos X to the presentable1-category StrTnc
an(k)

(X), and a geometric mor-
phism f⇤ : X ⌧ Y : f�1 to the functor

f⇤ : StrTnc
an(k)

(X) �! StrTnc
an(k)

(X)

obtained by composing with f⇤. The resulting functor

dAnk TopR PrR
StrTnc

an(k)(�)

takes hypercoverings to limit diagrams. This is indeed a consequence of the descent theory for1-topoi [Lur09c,
6.1.3.9] and [Por15b, Lemma 3.4] (in the C-analytic case) or [PY16b, Theorem 5.4] (in the k-analytic case). In
particular, it extends to a functor

StrTnc
an(k)

(�) : dAnStk �! PrR.

When X = (X,OX) is a derived k-analytic space, we therefore abusively write StrTnc
an(k)

(X) instead of StrTnc
an(k)

(X).

Proposition 7.4.3.1. Let X 2 dAnStk and fix r 2 |k⇥| [ {1}. Consider the pullback square

X ⇥ B(Dm
k (r)) B(Dm

k (r))

X Sp(k).

q0

p0 p

q
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If r  ⇢, where ⇢ is the converging radius of the exponential, then the Beck-Chevalley transformation

� : q
⇤
p⇤(OB(Dm

k (r))) �! q
0
⇤p

0⇤
(OB(Dm

k (r)))

is an equivalence in StrTnc
an(k)

(X).

Proof. By definition, we have
p⇤(OB(Dm

k (r))) ' S
an

k (m, r),

and therefore
q
⇤
p⇤(OB(Dm

k (r))) = OX b⌦kq
�1

(S
an

k (m, r)).

Since q
0⇤
(OB(Dm

k (r))) ' OX⇥B(Dm
k (r)), we see that we have to prove that the canonical morphism

OX b⌦kq
�1

(S
an

k (m, r)) �! p
0
⇤OX⇥B(Dm

k (r))

is an equivalence in StrTnc
an(k)

(X) In order to check this, we can reason locally on X . In particular, we can
assume X to be a derived analytic space. Let us write X = (X,OX), so that StrTnc

an(k)
(X) ' StrTnc

an(k)
(X).

As OX 2 Str
loc

Tan(k)(X), we can use [Lur11b, Proposition 2.11] to further reduce ourselves to the case where
X 2 Tan(k). At this point, the conclusion follows from the Yoneda lemma and the fact that Tnc

an
(k)-structures

commute with products by assumption.

Let X = (X,OX) be a derived analytic space. Let

q⇤ : X ⌧ S : q�1

be the canonical geometric morphism. We set

S
an

X
(m, r) := q

�1
(S

an

k (m, r)).

As observed in the previous proof, we have a canonical identification q
⇤
p⇤(OB(Dm

k (r))) ' OX b⌦kS
an

X
(m, r). We

first address the question of whether this is a local structure or not.

Proposition 7.4.3.2. Let X 2 dAnk be a derived analytic space. Then the nonconnective Tan(k)-structure
OX b⌦kS

an

X
(m, r) is local, and the natural transformation OX b⌦kS

an

X
(m, r)! OX is local as well.

Proof. As OX is a connective local structure, it is enough to prove the second statement. Using Theorem 7.4.3.1,
we can rewrite

OX b⌦kS
an

X
(m, r) ' q

0
⇤(OX⇥B(Dm

k (r))).

We observe now that we can explicitly represent ⌧�0(q
0
⇤(OX⇥B(Dm

k (r)))) as the functor Tan(k) ! X sending
Y 2 Tan(k) to the sheaf on X defined by sending an étale morphism U ! X from a derived Stein (resp. k-
affinoid) U to

U 7! Map
dAnStk

(U ⇥ B(Dm
k (r)), Y ).

Let V ! Y be an étale map. Then we have to check that the square

Map
dAnStk

(U ⇥ B(Dm
k (r)), V ) Map

dAnStk
(U ⇥ B(Dm

k (r)), Y )

Map
dAnStk

(U, V ) Map
dAnStk

(U, Y )

is a pullback diagram.
We start by proving an auxiliary statement. The canonical morphism t0(U) ,! U induces a commutative

square
Map

dAnStk
(U ⇥ B(Dm

k (r)), V ) Map
dAnStk

(U ⇥ B(Dm
k (r)), Y )

Map
dAnStk

(t0(U)⇥ B(Dm
k (r)), V ) Map

dAnStk
(t0(U)⇥ B(Dm

k (r)), Y ).
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We claim that this square is a pullback. Observe that

Map
dAnStk

(U ⇥ B(Dm
k (r)), V ) ' lim �

[n]2�

(U ⇥ (Dm
k (r))

⇥n
, V ),

and we can give similar description of the other mapping spaces appearing in the above square. As limits commute
with limits, in order to prove that we have a pullback, it is enough to show that for every n � 0 the diagram

Map
dAnStk

(U ⇥ (Dm
k (r))

⇥n
, V ) Map

dAnStk
(U ⇥ (Dm

k (r))
⇥n

, Y )

Map
dAnStk

(t0(U)⇥ (Dm
k (r))

⇥n
, V ) Map

dAnStk
(t0(U)⇥ (Dm

k (r))
⇥n

, Y ).

This follows at once from the fact that the étale topoi of U ⇥ (Dm
k (r))

⇥n and t0(U) ⇥ (Dm
k (r))

⇥n coincide and
from the universal property of étale morphisms proved in [Lur11d, Remark 2.3.4].

At this point, consider the commutative cube

Map(U ⇥ B(Dm
k (r))) Map(U ⇥ B(Dm

k (r)), Y )

Map(U, V ) Map(U, Y )

Map(t0(U)⇥ B(Dm
k (r)), V ) Map(t0(U)⇥ B(Dm

k (r)), Y )

Map(t0(U), V ) Map(t0(U), Y ).

We just argued that the back square is a pullback. A similar (but easier) use of [Lur11d, Remark 2.3.4] shows that
the front square is also a pullback. Therefore, in order to prove that the top square is a pullback, it is enough to
prove that the bottom square is a pullback. We now observe that both Y and t0(U) ⇥ B(Dm

k (r)) are underived.
Furthermore, the functor of points of Y takes values in sets. It follows that

Map(t0(U)⇥ B(Dm
k (r)), Y ) ' Map(⇡0(t0(U)⇥ B(Dm

k (r)), Y ) ' Map(t0(U), Y ).

This proves that the vertical morphisms in the diagram

Map(t0(U)⇥ B(Dm
k (r)), V ) Map(t0(U)⇥ B(Dm

k (r)), Y )

Map(t0(U), V ) Map(t0(U), Y )

are equivalences, and hence that this diagram is a pullback. This completes the proof.

We now use the results of ?? to extend the above result to a more general situation.

Proposition 7.4.3.3. Let X be an 1-topos with enough points. Let O 2 Str
loc

Tan(k)(X) be a connective and
local Tan(k)-structure. Then the nonconnective structure Ob⌦kS

an

X
(m, r) is local, and the natural transformation

Ob⌦kS
an

X
(m, r)! O is local as well.

Proof. Observe that since X has enough points, in order to check that ⌧�0(Ob⌦kS
an

X
(m, r)) is local, it is enough

to check that for every geometric morphism x⇤ : S ⌧ X : x
�1, the stalk x

�1
(⌧�0(Ob⌦kS

an

X
(m, r))) is local. Now,

x
�1

(⌧�0(Ob⌦kS
an

X
(m, r))) ' ⌧�0(x

�1Ob⌦kx
�1

(S
an

X
(m, r))) ' ⌧�0(x

�1Ob⌦kS
an

k (m, r)).

Using ??, we can write
x
�1O ' colim

O02E

O0
,
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where E ⇢ Str
loc

T
(S)/x�1O is the full subcategory spanned by germs of Tan(k)-structures (see ??). As a conse-

quence, we obtain
x
�1Ob⌦kS

an

k (m, r) ' colim
O02E

(O0b⌦kS
an

k (m, r)).

As O0 is a germ of a T-structure, we can apply Theorem 7.4.3.2 to deduce that ⌧�0(O
0b⌦kS

an

k (m, r)) is a local
structure. Using ?? again, we see that the1-category E is filtered. As ⌧�0 commutes with filtered colimits, we
finally conclude that

⌧�0(x
�1Ob⌦kS

an

k (m, r)) ' colim
O02E

⌧�0(O
0b⌦kS

an

k (m, r)).

As local structures are closed under filtered colimits, the conclusion follows.

7.4.4 Relative Van Est
Let X be an 1-topos with enough points and let O 2 Str

loc

Tan(k)(X) be a local Tan(k)-structure. Let p⇤ : X �
S : p�1 be the canonical geometric morphism. We set

S
an

X
(n, r) := p

�1
S
an

k (n, r).

Recall that (San

k (n, r))
alg ' Sk(n). There is a canonical morphism

⌘O,n,r : O
alg ⌦k Sk(n) �! (Ob⌦kSk(n, r))

alg
.

The main result of this section is the following:

Theorem 7.4.4.1. For every O 2 Str
loc

Tan(k)(X), the canonical morphism ⌘O,n,r is an equivalence.

We prove this theorem by several reduction steps. Consider the full subcategory CX of Strloc
Tan(k)(X) spanned

by those O 2 Str
loc

Tan(k)(X) such that ⌘O,n,r is an equivalence. Notice that O 2 CX if and only if for every
geometric point x⇤ : S � X : x

�1, one has x 2 O 2 CS. We can therefore suppose that X = S. Recall now that
both the functor �b⌦kSk(n, r) and (�)alg commute with filtered colimits. Using ??, we are therefore reduced to
prove the theorem in the case where O ' x

�1OX for X 2 dAnk and x⇤ : S � X : x
�1 a given geometric point.

For this, it is enough to prove that

⌘OX ,n,r : O
alg

X ⌦k Sk(n) �! (Ob⌦kSk(n, r))
alg

is an equivalence in Str
loc

Tnc
an(k)

(XX). We proceed by induction on the Postnikov tower of X . When X is underived,
the result follows from Theorem 7.4.2.9. Suppose therefore that the statement has been proven for Xn := tn(X).
We have a pullback diagram in Str

loc

Tan(k)(X)

⌧n+1OX ⌧nOX

⌧nOX ⌧nOX �M,

d

d0

where M := ⇡n+1(OX)[n + 2] and where d0 corresponds to the zero derivation. As both functors (�)alg and
�⌦k Sk(n) commute with limits, we conclude that the diagram

⌧n+1O
alg

X ⌦k Sk(n) ⌧nO
alg

X ⌦k Sk(n)

⌧nO
alg

X ⌦k Sk(n) (⌧nO
alg

X �M)⌦k Sk(n)

is again a pullback.
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We now claim that the diagram

⌧n+1OX b⌦kS
an

k (n, r) ⌧nOX b⌦kS
an

k (n, r)

⌧nOX b⌦kS
an

k (n, r) (⌧nOX �M)b⌦kS
an

k (n, r)

(7.4.4.1)

is a pullback square in Str
loc

Tnc
an(k)

(XX). For this, we observe that Theorem 7.4.3.1 allows to rewrite ⌧nOX b⌦kS
an

k (n, r)

as the pushforward on StrTnc
an(k)

(XX) of the structure sheaf of tn(X)⇥B(Dn
k (r)), and similarly for ⌧n+1OX b⌦kS

an

k (n, r)

and (⌧nOX �M)b⌦kS
an

k (n, r). We now observe that in the1-category of derived analytic geometric stack we
have a pushout

tnX[M ]⇥ B(Dn
k (r)) tnX ⇥ B(Dn

k (r))

tnX ⇥ B(Dn
k (r)) tn+1X ⇥ B(Dn

k (r)),

which implies that (7.4.4.1) is a pullback. Using again the fact that (�)alg commutes with limits and invoking the
induction hypothesis, we see that we are reduced to prove that the canonical map

(⌧nO
alg

X �M)⌦ Sk(n) �! ((⌧nOX �M)b⌦kS
an

k (n, r))
alg

is an equivalence. Let q : tnX ⇥ B(Dn
k (r))! tnX be the natural projection. Then

tnX[M ]⇥ B(Dn
k (r)) ' (tnX ⇥ B(Dn

k (r)))[q
⇤
M ].

Therefore

((⌧nOX �M)b⌦kS
an

k (n, r))
alg ' lim �

m2�

�
⌧nOX b⌦kS

an

k (mn, r)�M ⌦k S
an

k (mn, r)
�alg

' lim �
m2�

(⌧nOX b⌦kS
an

k (mn, r))
alg � lim �

m2�

M ⌦k Sk(mn),

whence the conclusion.

7.4.5 Analytic S1-algebras
Recall that we denote by S

1 the (derived) algebraic stack

S
1
: (dA↵

afp

k )op �! S

obtained as sheafification of the constant presheaf associated to the space S
1. We denote by (S

1
)
an the (derived)

analytic stack
(S

1
)
an

: dAfdkop �! S

obtained as the analytification of S1. Equivalently, (S1
)
an is the derived analytic stack obtained as sheafification

of the constant presheaf associated to the space S
1. Notice that (S1

)
an is in fact underived and that

⇡0((S
1
)
an
) ' Sp(k).

In particular, Theorem 7.4.2.5 implies that �ank ((S
1
)
an
) is a local nonconnective analytic ring.

Notation 7.4.5.1. We denote the local k-analytic ring �ank ((S
1
)
an
) simply by �ank (S

1
). Let X be any1-topos.

Let p⇤ : X ⌧ S : p�1 be the canonical geometric morphism. We set

�
an

X
(S

1
) := p

�1
�
an

k (S
1
) 2 Str

loc

Tnc
an(k)

(X).
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There is a third alternative way to describe the derived analytic stack (S
1
)
an. We can in fact identify it with the

delooping of the constant stack (Z)an associated to Z, seen as a discrete topological space. As Z is initial among
discrete groups, we see that there is a canonical morphism of group stacks

(Z)an �! D1
(r).

In particular, applying the delooping functor provides us with a morphism

(S
1
)
an �! B(D1

(r)).

Passing to global sections, we obtain a morphism of local nonconnective analytic rings

⇡r : S
an

k (n, r) �! �
an

k (S
1
).

Proposition 7.4.5.2. Let ⇢ 2 |k⇥| [ {1} be the converging radius of the exponential function. If r  ⇢, then ⇡r
is an equivalence.

Proof. We know from Theorem 7.4.2.4 that the underlying algebra functor (�)alg is conservative. It is therefore
enough to prove that ⇡alg

r is an equivalence. Thanks to Theorem 7.4.2.8 and ??, we see that it suffices to prove
that the canonical morphism

�k(S
1
) �! �

an

k (S
1
)
alg

is an equivalence. In order to see this, we only need to prove that for every n � 0, one has

Map
dAnStk

((S
1
)
an
,B

n
(BGa)) ' Map

dStk
(S

1
,B

n
(Ga)).

As S1 ' ⇤ q⇤q⇤ ⇤, we are reduced to check that

Map
dAnStk

(Spec(k)
an
,B

n
(BGa)) ' Map

dStk
(Spec(k),B

n
(Ga)),

which is tautological.

Fix an1-topos X. We are interested in studying the1-category of S1-objects

S
1-Strloc

Tnc
an(k)

(X) := Fun

⇣
B(S

1
), Str

loc

Tnc
an(k)

(X)
⌘
.

As in ??, we are looking for a reformulation in terms of analytic comodules. In order to do this, we need first to
discuss the structure of coalgebra of �ank (S

1
).

Proposition 7.4.5.3. Let X 2 dAnStk be a derived analytic stack. Consider the cartesian diagram

X ⇥ (S
1
)
an

(S
1
)
an

X Sp(k)

q0

p0 p

q

in dAnStk. Then the induced Beck-Chevalley transformation

q
⇤
p⇤O(S1)an �! p

0
⇤q

0⇤O(S1)an

in an equivalence in StrTnc
an(k)

(X).

Proof. Recall that S1 ' ⇤ q⇤q⇤ ⇤. Hence

(S
1
)
an ' Sp(k)qSp(k)qSp(k) Sp(k),

and therefore
p⇤OS1 ' k ⇥k⇥k k,
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the product being taken in StrTnc
an(k)

(S). Similarly, since colimits in dAnStk are universal, we have X⇥ (S
1
)
an '

X qXqX X and therefore
p
0
⇤q

0⇤OS1 ' p
0
⇤OX⇥(S1)an ' OX ⇥OX⇥OX OX ,

the product being taken in StrTnc
an(k)

(X).
We are therefore reduced to prove that the canonical morphism

OX b⌦kq
�1

(k ⇥k⇥k k) �! OX ⇥OX⇥OX OX

is an equivalence. We now invoke Theorem 7.4.5.2 to obtain an equivalence of Tnc

an
(k)-structures

k ⇥k⇥k k ' S
an

k (1, r),

where r is less than the converging radius of the exponential. Using Theorem 7.4.3.1 we now identify OX b⌦kq
�1

(k⇥k⇥k

k) with the pushforward along X⇥B(D1

k(r))! X of the structure sheaf of X⇥B(D1

k(r)), i.e. San

OX
(1, r). Using

Theorem 7.4.2.9, we can further identify the underlying algebra of San

OX
(1, r) with Sym

O
alg
X
(Oalg

X [�1]). As the
underlying algebra functor commutes with limits, we are therefore reduced to check that the canonical morphism

Sym
O

alg
X
(Oalg

X [�1]) �! Oalg

X ⇥O
alg
X ⇥O

alg
X

Oalg

X

is an equivalence. Using [Lur11b, Proposition 2.11], we can further reduce to the case where X 2 Tan(k). In this
case we can identify the underlying module of both sides with Oalg

X � Oalg

X [�1], whence the conclusion.

Remark 7.4.5.4. Observe that p0⇤q0⇤OS1 (and hence q
⇤
p⇤OS1 ) belongs to Str

loc

Tnc
an(k)

(X).

Corollary 7.4.5.5. Let D be the smallest full subcategory of dAnStk closed under products and containing Tan(k)

and (S
1
)
an. Then the restriction

�
an

k : Dop �! StrTnc
an(k)

(S)

is strongly monoidal.

Proof. We first observe that the functor �ank is lax monoidal. Indeed, it is right adjoint to the functor

AnSpec: StrTnc
an(k)

(S) �! dAnStkop

that sends A 2 StrTnc
an(k)

(S) to the derived analytic stack sending U 2 dAfdk to

AnSpec(A)(U) := Map
StrTnc

an(k)
(A,�

an

k (U)).

The Yoneda lemma implies immediately that AnSpec is strong monoidal. It follows that its right adjoint is lax
monoidal.

Let now X,Y 2 D. Suppose at first that X,Y 2 Tan(k). Then for any A 2 StrTnc
an(k)

(S), we have

A(X ⇥ Y ) ' A(X)⇥A(Y ).

Applying the Yoneda lemma, we therefore obtain

Map
StrTnc

an(k)
(�

an

k (X ⇥ Y ), A) ' Map
StrTnc

an(k)
(�

an

k (X), A)⇥Map
StrTnc

an(k)
(�

an

k (Y ), A),

and hence
�
an

k (X)b⌦k�
an

k (Y ) ' �ank (X ⇥ Y ).

In general, we can write X ' X
0⇥ ((S

1
)
an
)
⇥n and Y ' Y

0⇥ ((S
1
)
an
)
⇥m, where X 0

, Y
0 2 Tan(k). In this case,

the conclusion follows by induction on n and m, using Theorem 7.4.5.3 to deal with the induction step.

As a consequence of this corollary, we can promote �ank (S
1
) to an object in ComonE1(StrTnc

an(k)
(S)). Ob-

serve furthermore that �ank ((S
1
)
⇥n

) belongs to Str
loc

Tnc
an(k)

(S). We can therefore review �
an

k (S
1
) as an object in

ComonE1(AnRing
nc

k ). If X is an 1-topos and p⇤ : X ⌧ S : p�1 is the canonical geometric morphism, the
functor

p
�1

: AnRing
nc

k ' Str
loc

Tnc
an(k)

(S) �! Str
loc

Tnc
an(k)

(X)

is a left adjoint. This allows to identify �an
X
(S

1
) with an object in ComonE1(Str

loc

Tnc
an(k)

(X)).

Proposition 7.4.5.6. Let X be an1-topos. There is a canonical equivalence

S
1-Strloc

Tnc
an(k)

(X) ' Comod�an
X

(S1)(Str
loc

Tnc
an(k)

(X)).

Proof. This is just a consequence of the comonadic version of Barr-Beck-Lurie’s theorem.
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7.4.6 Nonconnective analytic square-zero extensions
We now turn our attention to the second main character in the HKR theorem: the analytic split square-zero
extension.

Using ?? we obtain an equivalence
Modk ' Sp(AnRing

nc

k ).

We simply denote the forgetful functor

⌦
1
: Sp(AnRing

nc

k )! AnRing
nc

k

by
M 7! k �an

M,

and we refer to it as the analytic split square-zero extension. Notice that Modk has an exotic monoidal structure
given by

(M,N) 7!M �N �M ⌦k N.

With respect to this monoidal structure, the functor ⌦1 is lax monoidal.
Using Theorem 7.3.7.5, we obtain a canonical map

(k � k[�1])an �! k �an
k[�1],

which in general is not an equivalence.
On the other hand, using the formal nonconnective context, the generic fiber transformation and Theorem 7.3.6.10,

we obtain a canonical map
S
an

k (1, r) �! k �an
k[�1].

Proposition 7.4.6.1. If r  ⇢, the map S
an

k (1, r)! k �an
k[�1] is an equivalence.

Proof. It is enough to apply (�)alg and use Theorem 7.4.2.8.

Using ??, we can reprove (with exactly the same proof) the contractibility of the space of Hopf structures on
S
an

k (1, r):

Proposition 7.4.6.2. For every r 2 |k⇥| [ {1}, the space of Hopf structures on S
an

k (1, r) is contractible.

Corollary 7.4.6.3. The canonical map S
an

k (1, r) ! k �an
k[�1] can be promoted to an equivalence of analytic

Hopf algebras.

(i) The ⌦1
an

is oplax monoidal;

(ii) construction of the Beck-Chevalley transformation;

(iii) promotion of Beck-Chevalley to a transformation of Hopf algebras;

(iv) comparison between B(Ga) and the split square-extension.

7.4.7 Mixed analytic rings
Definition 7.4.7.1. We define the1-category of mixed nonconnective analytic rings as

"-AnRing
nc

k := Comodk�ank[�1](AnRing
nc

k ).

Proposition 7.4.7.2. The forgetful functor

"-AnRing
nc

k �! AnRing
nc

k

is monadic. The endofunctor underlying the monad is canonically equivalent to

A 7! AnDR(A) := Sym
an

A (
L
anA[1]).
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We now provide an alternative construction for the category "-AnRing
nc

k .

Lemma 7.4.7.3. The canonical morphism

A
alg ⌦ (k � k[�1]) �! (A b⌦(k �an

k[�1]))alg

is an equivalence.

Proof. Need relative Van Est.

7.4.8 Analytic HKR
Prove S

1-equivariant HKR (define mixed analytic rings as comodules over the analytic split square-zero exten-
sion).

Our goal is to prove the following theorem:

Theorem 7.4.8.1. The forgetful functor v
an

⌘ : k[⌘]
an-Comod(AnRingk) ! AnRingk admits a left adjoint L.

Furthermore, the composition L � van⌘ can be canonically identified with the assignment

A 7! Sym
an

A (
L
anA[1]).

Proof. The existence of L is a consequence of the adjoint functor theorem and the fact that the comonad k[⌘]
anb⌦k�

acts on A
alg by

A 7! A�A[�1].

We now remark that for every f : A! B in AnRingk, we have a fiber sequence

MapAalgMod
(
L
anA[�1], f⇤Balg

) Map
AnRingk

(Sym
an

A (
L
anA[1]), B)

{f} Map
AnRingk

(A,B).

Similarly, we have a fiber sequence

MapAalgMod
(
L
anA[�1], f⇤Balg

) Map
AnRing

nc
k
(A, k[⌘]

anb⌦kB)

{f} Map
AnRingk

(A,B).

Finally, we observe that there is a canonical map

A! k[⌘]
anb⌦kSym

an

A (
L
anA[1])

induced by A! Sym
an

A (
L
anA[1]). This map induces a morphism

Map
AnRingk

(Sym
an

A (
L
anA[1]), B) �! Map

AnRing
nc
k
(A, k[⌘]

anb⌦kB).

The above fiber sequences imply that this morphism is an equivalence.
Hence the functor A 7! Sym

an

A (
L
anA[1]) is left adjoint to A 7! k[⌘]

anb⌦kA. This completes the proof.
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