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Abstract: The lattice Boltzmann (LB) method
has emerged as an efficient alternative to classical
methods for fluid flow simulation. It can also po-
tentially be used for such complex flows as those
involved in low Mach number combustion involving
large numbers of field variables, temperature vari-
ations, variable properties and spanning multiple
scales. Given the variations in diffusion parameters
and existing stability issues in the LB, the choice of
the collision operator is of the utmost importance.
Furthermore, dilatation effects must be introduced
as the original LB scheme was developed for isother-
mal flows. The flow solver has to be supplemented
with components modeling balance equations for the
energy and species mass fields. In the present work,
first the LB solver (with plethora of collision op-
erators) is analyzed using approaches like the von
Neumann method. A variety of collision models in-
cluding multiple relaxation, regularized, and equi-
librium distribution functions, like different orders of
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the Hermite expansion, and the entropic equilibrium
are considered. Then, two different approaches for
introducing dilatation into the flow solver are pro-
posed and validated. These approaches include one
relying on a decomposition of pressure into a uni-
form thermodynamic and fluctuating hydrodynamic
components, and a fully compressible formulation
relying on a thermal Hermite expansion of the equi-
librium. Appropriate collision operators, resulting
on the widest stability domain for the latter are also
proposed. In addition, minimalist LB solvers appro-
priate for the targeted flows are derived to model
energy and species mass transport. Contrary to the
classical passive scalar lattice Boltzmann models,
the proposed formulations are not limited to con-
stant specific heat capacity and/or density and in-
clude higher-order effects such as viscous dissipation
heating. A variety of cases, covering premixed and
diffusion flames, 1-, 2- and 3-D flows are then con-
sidered for validation of the overall solvers.

Titre:

réactifs

Mots clés:

bustion, Ecoulements réactifs

Abstract: La méthode des réseaux de Boltz-
mann est une alternative efficace aux approches clas-
siques de simulation des écoulements. Cette méth-
ode peut potentiellement étre étendue a des écoule-
ments complexes, comme la combustion & nombre de
Mach faible avec un grand nombre de variables, vari-
ation de température, propriétés variables et cou-
vrant différentes échelles. Etant donné les varia-
tions importantes des paramétres de diffusion et les
problémes de stabilité de la méthode des réseaux de
Boltzmann, le choix de l'opérateur de collision est
de la plus haute importance. De plus, la méthode
des réseaux de Boltzmann dans sa forme originelle
étant formulée pour des écoulements isothermes, les
effets de dilatation doivent étre introduits dans le
solveur. Des composantes additionnelles pour mod-
éliser le transport de variables telles que I’énergie et
les espéces doivent étre ajoutées au solveur fluide.
Dans un premier temps, les propriétés numériques
du solveur (en prenant en compte une multitude de
modeéles de collision) sont étudiées via des méthodes
telles que I'analyse de von Neumann. L’étude cou-
vre des modeéles de collision comme 'opérateur de
collision avec plusieurs temps de relaxation (MRT),

Développement d’une méthode basée sur les réseaux de Boltzmann pour la simulation d’écoulements

Méthode des réseaux de Boltzmann, Ecoulements multi-espéces, Chimie détaillée, Com-

le modéle régularisé, et 'effet du choix de la fonc-
tion d’équilibre notamment les différents ordres du
développement d’Hermite ou ’équilibre entropique.
Ensuite, deux différentes approches sont proposées
pour I'introduction de la dilatation dans le solveur
fluide : Une basée sur une décomposition d’échelle de
la pression en pression thermo- et hydrodynamique
et une basée sur un développement non-isotherme
d’Hermite de la fonction d’équilibre. Un opérateur
de collision approprié est aussi proposé pour cette
derniére, afin de maximiser le domaine de stabilité
linéaire. De plus, des modéles minimalistes adap-
tés aux équations de transport d’énergie et d’espéces
basés sur la formulation des réseaux de Boltzmann
sont proposés et validés. Contrairement aux solveurs
dits de scalaires passifs, ces derniers ne sont pas lim-
ités a des densités et/ou capacités calorifiques con-
stantes et prennent en compte des termes de cou-
plage telles que la production de chaleur par dissi-
pation visqueuse. Enfin, afin de valider le solveur
dans son intégralité une multitude de cas, couvrant
les flammes pré-mélangées et de diffusion, et des con-
figurations en 1-, 2- et 3-D sont étudiés.
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Résumé substentiel

Apparu au début des années 90, la méthode des réseaux de Boltzmann est rapidement
devenue une alternative efficace et populaire aux approches classiques de simulation des
écoulements incompressibles. La localité des effets hors-équilibres avec des termes non-
linéaires et la linéarité de la convection non-locale des fonctions de distribution de probabilité
font de cette approche une méthode simple a implémenter et adaptée aux nouvelles archi-
tectures de processeurs paralleles. Bien qu’étendu a d’autre domaines d’application tels que
les écoulements multiphasiques (solide-liquide et/ou gaz-liquide) ou les écoulements en mi-
lieux poreux, les études sur le développement de schémas numériques pour des écoulements
complexes comme la combustion a nombre de Mach faible, avec un grand nombre de vari-
ables, variation de température, propriétés variables et couvrant differentes échelles, restent
limitées. Etant donné les variations importantes des parametres de diffusion dans ce type
d’écoulement, liées aux variations de température, composition et densité, et les problemes de
stabilité de la méthode des réseaux de Boltzmann dans la limite de nombre de Fourrier (coeff-
cient de diffusion adimensionnée par les valeurs caractéristiques de la discrétisation en temps
et en espace) faible, le choix de l'opérateur de collision est de la plus haute importance. De
plus, la méthode des réseaux de Boltzmann dans sa forme originelle étant formulée pour des
écoulements isothermes, les effets de dilatation doivent étre introduits dans le solveur. Etant
donné le nombre limité de dégrées de liberté dans la quadrature d’ordre trois utilisée pour
la discrétisation de I’équation de Boltzmann en espace-phase, celle-ci ne peut pas résoudre
I’équation de Fourrier pour le transfert d’énergie. De ce fait, des composantes addition-
nelles pour modéliser le transport de variables telles que I'énergie et les espéces doivent
étre ajoutés au solveur fuide. Dans un premier temps, les propriétés numériques du solveur
isotherme (en prenant en compte une multitude de modeles de collision) sont étudiées via
des méthodes telles que 'analyse de von Neumann. L’étude couvre des modeles de colli-
sion comme l'opérateur de collision avec plusieurs temps de relaxation (MRT), le modele
régularisé, et I'effet du choix de la fonction d’équilibre notamment les differents ordres du
développement d’Hermite ou 1’équilibre entropique. Celle-ci permet d’établir des domaines
de stabilité linéaire et l'effet des opérateurs de collision avancé sur les propriétés spectrales
du schéma numérique. Il est observé que 'opérateur de collision régularisé par récursion a
le domaine de stabilité le plus large aux cotés de I'opérateur a temps de relaxation multiple
dans I'espace des moments centrés. Cela étant, ce dernier est plus efficace en termes de cout
de calcules et simplicité et a plus de dégrées de liberté permettant de controler la dissipa-
tion numérique et étendre, encore plus, le domaine de stabilité. Ensuite, deux differentes
approches sont proposées pour l'introduction de la dilatation dans le solveur fuide : Une
basée sur une décomposition d’echelle de la pression en pression thermo- et hydrodynamique
et une basée sur un développement non-isotherme d’Hermite de la fonction d’équilibre. La
premiere suit la philosophie générale des solveurs Navier-Stokes a nombre de Mach faible en
faisant abstraction des effets acoustiques. La deuxieme approche, moyennant des termes de
correction pour les moments dordre trois, permet de résoudre les équations de Navier-Stokes
compressibles. Un opérateur de collision approprié est aussi proposé pour cette derniere, afin
de maximiser le domaine de stabilité linéaire. De plus, des modeles minimalistes adaptés
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aux équations de transport d’énergie et despeces basés sur la formulation des réseaux de
Boltzmann sont proposés et validés. Contrairement aux solveurs dit de scalaires passifs, ces
derniers ne sont pas limités a des densités et/ou capacités calorifiques constantes et prennent
en compte des termes de couplage tels que la production de chaleur par dissipation visqueuse.
Des solveurs en differences finies pour les équations de transport d’énergie et des especes sont
aussi couplés au solveur fuide comme alternative aux schémas numériques Boltzmann sur
réseaux développé a cet effet. Enfin, afin de valider le solveur dans son intégralité une mul-
titude de cas, couvrant les flammes pré-mélangées et de diffusion, et des configurations en
1-, 2- et 3-D sont étudiés.
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1.1. Context, motivations and objectives

1.1 Context, motivations and objectives

The LBM in its current form made its first appearance in the literature in 1988 [14, 15]
as an alternative to the lattice Gas Automata [16, 17, 18, 19]. As put forward by the au-
thors, this formulation (the use of Boltzmann’s equation and a probability function instead
of discrete particles on the lattice) allowed to eliminate the statistical noise that plagued the
LGA [14]. Since this first article, and its first numerical realization in [20], it has become
a numerical method of choice for fluid dynamics simulations and a serious competitor for
classical solvers (different discretization approaches for the Navier-Stokes equations are what
we refer to as classical methods). According to S. Succi this success and popularity relies
on four magic ingredients 21, 22, 23], namely : (a) Exact free streaming, (b) local lattice
equilibria, (c) tunable relaxation matrix and (d) flexible external source. These ingredients
also form the basis for the definition of the Lattice Boltzmann Method: Within the context
of the present manuscript only solvers for the phase-space discretized Boltzmann equation
relying on Lagrangian discretization of space and time are considered to fall in this category.
The strict locality of the collision operator (involving non-linear terms) and strict linearity
and exactness of the streaming operator allow for enhanced numerical properties and inex-
pensive operators. Furthermore, the locality of the operators and their explicit nature are
well-adapted to parallel processing as they come with limited communication overhead. The
subsequent growth of this numerical method and its extension to plethora of flows are clearly
supporting the previously enumerated points.

While rather well-developed in many areas such as multi-phase flows (using either pseudo-
potentials [24], free energy [25, 26, 27| or phase-field [28, 29] formulations) as pointed out
by the number of citation of X. Shan and H. Chen’s seminal article (around 3000 at the
time of the writing of this manuscript) [24] or flow in porous media [30, 31] efforts at devel-
oping an efficient LB-based numerical solver for multi-species (especially reacting thermal
multi-species) flows were stagnating till the end of 2016 when this project started. Al-
though a number of models had been published in the literature, such as [32, 33, 34, 35, 36|,
simulation were (and still are) limited to very basic configurations. At that time only a
handful of articles were published on combustion simulation (partly or entirely) with LBM,
i.e. [7, 37,38, 39, 40, 41, 42, 43, 44]. Of these articles and models most were limited to the
cold flow assumption [7, 39, 40, 41, 42]. Three of these articles, while incorporating density
change in the flow solver relied on improper solvers (the classical advection-diffusion LB
solver) for the species and energy balance equations as they are only valid for constant den-
sity and specific heat capacities [37, 38, 44]. Finally, all of these articles presented simulations
with simple correlations for transport properties (constant-valued), constant thermodynamic
parameters (specific heat capacity and enthalpy), simple one-step global chemistry, simple
species diffusion based on the Fick generalized approximation and were limited at best to
2-D simulations.

Given the previously mentioned advantages of the LBM, the aim of this project was to ex-
tend it to Direct Numerical Simulation of low Mach number combustion: An application
involving large numbers of species and highly coupled PDEs and spanning multiple scales,
making the simulations both process and memory hungry. While it was clear that the LBM
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could help reduce processing load in such simulations it was unclear how it would affect the
simulations memory-wise, as performances of LBM-based codes are memory-bound. This
is of course to be expected as the LBM involves more variables per grid-points (discrete
populations). The previous property of LBM-based solvers (larger number of variables per
conserved macroscopic moment), along with the large number of species usually encoun-
tered in DNS with detailed chemistry and the desire to develop a numerically efficient model
prompted us not to consider fully kinetic models, i.e. real multi-component kinetic models
and higher-order stencils for fully compressible flows, from the early stage of this work. The
approach was instead to develop a solver with only first-neighbor stencils, with, wherever
necessary, top-down closures for the model. As such for the energy and species balance
equations only advection-diffusion LB solvers and classical finite differences have been con-
sidered. Given the state of the literature when this work started the following challenges had
to be dealt with: (a) Development of a solver incorporating thermo-compressibility effects
able to deal with large deviations from the stencil reference state, (b) extension of existing
advection-diffusion LB solvers to solve the energy balance equation with variable density
and specific heat capacity, (c) integration of more complex species diffusion models into the
advection-diffusion solver and (d) coupling of LB (or FD) species and energy balance solvers
to flow solver.

1.2 Thesis outline

This thesis presents solutions for the previously-defined challenges to develop a LBM-based
DNS solver for combustion. All models and simulations presented in the manuscript have
been implemented and performed using the in-house solver ALBORZ. These features are de-
tailed in section 1.3. The thesis is organised in eight chapters covering all major challenges
associated to the simulation of multi-species reacting flows with the LBM:

Chapter 2 (Discrete kinetic theory of gases for the hydrodynamic regime): This chapter
provides the basic principles of the kinetic theory of gases, different approaches to reduce
the kinetic description for the hydrodynamic regime, a detailed derivation of the LBM along
with different collision models.

Chapter 3 (The isothermal lattice Boltzmann method: detailed study of properties):
This chapter illustrates the limitations of the isothermal LBM with different EDF's (Hermite-
based and entropic) and collision operators. The restrictions are illustrated and studied via
the Chapman-Enskog analysis and evaluation of higher-order moments error at the contin-
uum level and then using the linearized von Neumann analysis for the spectral properties
and stability domains.

Chapter 4 (Species and energy balance equations): This chapter introduces advection-
diffusion LB models developed for flows with variable densities and specific heat capacities,
and more advanced diffusion models for the species (i.e. Fick and Hirschfelder-Curtiss with
mass corrector). The abilities of the former are illustrated through multiple cases such as
conjugate heat transfer.

Chapter 5 (Thermo-compressibility on standard stencils): Two different approaches to
extend the isothermal LB flow solver to thermo-compressible flows are presented: (a) A low
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Mach number-type thermo-compressible solver based on decoupling thermodynamic and hy-
drodynamic pressure and (b) one based on a thermal Hermite expansion of the distribution
function. To illustrate the ability of the latter to take into account deviations from the
reference temperature, and the effects of these deviations on numerical properties, an ap-
proach similar to the one used in the previous chapter is taken, i.e. VN analysis of spectral
properties.

Chapter 6 (Numerical application: Combustion simulation): All models developed and
presented in previous chapters are used to perform fully coupled combustion simulations.
These simulations include both diffusion and pre-mixed flames and 1-, 2- and 3-D simula-
tions. Both numerical performances and efficiency of the models are analyzed in this chapter
through these test-cases.

Chapter 7 (Shifted stencils: A promising approach to extend the stability domain of
the lattice Boltzmann method): This chapter includes detailed perspectives on local state-
adaptive LB stencils (based on the shifted stencils concept) to extend the stability domain
of the LBM.

Chapter 8 (Conclusions and perspectives): The present manuscript ends with conclud-
ing remarks and detailed perspectives for the presented work.

A list of publications based on results and studies reported in the present manuscript is given
in appendix A. Furthermore, at the beginning of each chapter corresponding publications
from the author are listed.

1.3 Miscellaneous activities

Apart from results presented here, a number of side projects were also conducted during
the course of this Ph.D., including multi-phase flow simulations, e.g. gas-liquid flows and
solid-liquid systems for crystallization simulations. These projects are best illustrated by
looking at the features of the code developed during this Ph.D. The code ALBORZ, initially
developed in [45] as a single-file C++ code for particulate flow simulations, including the
classical isothermal LBM with a second-order EDF using single and/or multiple relaxation
time collision operators was completely re-written and re-organized as a collection of libraries
taking advantage of object-oriented programming features in C++-. All libraries and features
(except the Immersed Boundaries module developed in [45]) available in ALBORZ as of 2020
were developed and implemented by the author and within the context of the present doctoral
work. These modules and corresponding features are listed in Table 1.1.
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Module content
Flow solver.cpp - Isothermal solver based on Hermite expansion (up to sixth-order
expansion).

- Entropic isothermal EDF [46].

- Compressible solver with Hermite expansions (up to sixth-order).
- Low Mach number thermo-compressible solver [47, 48].

- Forcing schemes: Shan-Chen [24], Guo [49] and Kupershtokh [50].
- Collision models: SRT, TRT [51], LKS [52, 53, 54], MRT [55], CM-
MRT [56], projection regularized [57], recursive regularized [58] and
entropic [46].

- Boundary conditions: Bounce-back (velocity and pressure) [59],
equilibrium, non-equilibrium extrapolation (velocity and pressure)
[60].

- Stencils: D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27.

Thermal solver.cpp

- LB-based enthalpy balance solver for compressible flow with vari-
able specific heat capacity [61].

- Finite-difference solver, time-stepping: Euler, RK2. Convection
term: central second- and fourth-order, upwind first- and third-
order, WENO-3 and WENO-5. Diffusion term: second-order and
fourth-order based on [62].

- Collision models: SRT, TRT, LKS and MRT.

- Stencils: D1Q3, D2Q4, D2Q5, D2Q9, D3Q7, D3Q15, D3Q19 and
D3Q27.

Species solver.cpp

- LB-based species balance solver for compressible flow with Fick,
Hirschfelder-Curtiss approximation and mass corrector [63].

- Finite Differences solver, time-stepping: Euler, RK2. Convection
term: central second- and fourth-order, upwind first- and third-
order, WENO-3 and WENO-5. Diffusion term: second-order and
fourth-order based on [62].

- Collision models: SRT, TRT, LKS and MRT.

- Stencils: D1Q3, D2Q4, D2Q5, D2Q9, D3Q7, D3Q15, D3Q19 and
D3Q27.

Phase Field.cpp

- LB-based phase-field solver for Allen-Cahn dynamics [63].

Pseudopotential.cpp

- Pseudo-potential model with single- and dual-range potentials.
- EoS: Shan-Chen, Carnahan-Starling, Redlich-Kwong, Peng-
Robinson and Van der Waals.

Geometry.cpp

- Parallel (MPI) STL reader based on ray-tracing method, with
ability to read multiple STL files.

Parallel.cpp

- Parallel (MPI-based) processing with 3-D domain decomposition.

Table 1.1: List of features implemented in ALBORZ.
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2.1. Introduction to the kinetic theory of gases and the Boltzmann equation

2.1 Introduction to the kinetic theory of gases and the
Boltzmann equation

The aim of this section is to introduce the most essential components of the kinetic theory
of gases, starting from the single-particle distribution function and the Boltzmann equa-
tion. More general statistical formulation such as Liouville’s equation [64] and the BBGKY
(Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy [65, 66, 67, 68], falling outside the scope
of the present manuscript, will not be reviewed. A class of approximations to the collision
operator (referred to as linear models) will also be introduced, as they are one of the main
ingredients of the LBM. The section will then go on to introduce some approaches to ob-
tain reduced models from the Boltzmann equation and derive the classical LBM along with
different collision models developed to enhance the numerical properties of the solver.

2.1.1 The Boltzmann equation

Let us consider a control volume, of volume V filled with A/ molecules of mass m. Ignoring
the additional rovibrational degrees of freedom, the state of each component in the control
volume can be fully determined via space coordinates i € {x,y,z} and the phase-space
vector & € {&,;,&,, €.} giving respectively its position in space and velocity. As such each
molecule represents a point in physical space » € R3, and in phase-space & € R?. The
state of a gas made up of these single points can then be characterized using a probability
distribution function f (r,&,t) such that f (7, &, 1) Hw:x’yyz dé;dr represents the number of
molecules moving with velocities within the range (&, &,, &) and (&, + d&,, &, + d&,, & + d&.)
and within a box of size dx x dy x dz located at (x,y, z) at time t. Going back to the control
volume considered at the beginning of this section one can compute the total number of
molecules as:

N:/v RSf(r,E,t) IT drac. (2.1)

1, =X,Y,2

Following this same approach one can easily compute other thermo-hydrodynamic properties.
For example the fluid velocity is computed as the first moment of the distribution function:

Jo Jus &if (r &1L,y . drdé;
U; = )
Jo Jes £ (r &0,y drdé;

while for the internal energy (assuming only translational motion degrees of freedom) one

has:
pe = //R ( —uz)) (r&.t) [ drds. (2.3)

1,r=x,Y,2

(2.2)

Other variables can also be computed using the same approach. Details are given in subsec-
tion 2.1.2.
To derive a balance equation, similar to those used in classical fluid dynamics for the macro-

scopic hydrodynamic variables, let us consider the infinitesimal control volume [, _, S
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in physical and phase-space and the number of components in this volume:

AN (t) = f(r,&.t) [] drds. (2.4)

1,T=T,Y,2

To get the number of particles at time ¢+, one must determine the processes affecting their
balance:

1. Molecular flux in physical space due to convection with velocity &,
2. Molecular flux in phase-space via convection caused by external body forces,
3. Molecular collision.

First considering components moving at speed &, the net flux of molecules into the control

volume [[,_, , . dr can be written as:

f(r£t)§ es,dS, [[ dsi=-¢ Vi &) [[ drds, (2.5)

1=T,Y,% 1,r=x,Y,2

where S, is the surface surrounding the control volume in physical space, eg, is the unit
vector perpendicular to the aforesaid surface. The RHS is derived using Gauss’s theorem.
Using the same approach the net flux in phase-space can be computed as:

f(r §t)F-esdSe [[ dr=-F-Vef(r&t) [ drds. (2.6)

r=,Y,2 1,T=T,Y,2

where as for the previous equation St is the surface surrounding the control volume in phase-
space and eg, is the unit vector perpendicular to the aforesaid surface.

To compute the flux due to molecular collision let us consider a molecule moving at speed
&, colliding with another class of molecules moving at velocity &; resulting in post-collision
velocities £* and &7. To facilitate the process we will study the collision on a frame moving
at velocity &;. In this frame the first class of molecules are moving at velocity & = & — &;
while the second class are stagnant. The volume swept by a molecule of the first class is
£'bdbdo, where b is the impact parameter and do the differential cross-section, while the
number of molecules of the second class per unit volume is f (7, &, t) Hi:%y’z d& ;. As such
the number of collisions is:

f(r &, t) € bdbde [ déus.
1=T,Y,2

Given that the number of molecules of class & in the infinitesimal physical and phase-space
control volume is f (r,&,¢)[];,_,, . drd& the total collision rate taking molecules outside
the considered control volume is:

O TT drate= [ [ s nsirenganir [] ragase @7

7 =Y,z 7 s T=2,Y,2
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Following the same procedure in the reverse direction, i.e. collision of particles outside the
considered control volume resulting in flux of components into the volume one gets:

0 ] s~ [ [ g nsee ng o ] dagas, @9

i’r:gj’y7z i,r:x,y,z

which in turn, using the summational invariants of the elastic collision process can be re-
written as:

Qi ] drdé; = /b ) 5lf(r,s;‘,zs) fr & t)€bdbdo [[ drd&dé,. — (2.9)

Z'/r:z/y,,g i,T=$,y72

Using the equations obtained for both the in- and out-flux one gets the following expression
for the collision term:

Q:/b / (f (r. &) f(r, &%) — f(r &0,t) f (r .1) € bdbdo [ dé. (2.10)

Using the expressions derived for all mechanisms the Boltzmann equation can be introduced
as:

Of (r,&.t)+&-Vf(r,&t)+F -Vef(r g t)=Q (2.11)

Before going into further details about the Boltzmann equation it is important to notice that
a number of assumptions have been made in the here-presented derivation:

e The Boltzmann equation is only valid under the assumption that f (7, &,t) is a smooth
(in space, phase-space and time) square-integrable function.

e Only two-body interactions have been taken into account in the collision operator.
This only holds for a rarefied gas where the probability of multi-body interactions is
much smaller than two-body ones.

e During collision the effect of external forces is negligible (in comparison with inter-
molecular effects).

e The pre- and post-collision velocities of interacting molecules are uncorrelated. In
practice, this means that the collision probability can be expressed as the product of
uncorrelated single component probability functions. This is known as the molecular
chaos assumption, also referred to as Stosszahlansatz by Boltzmann. To lift this re-
striction one must consider more complex models such as the Liouville equations [64]
or the BBGKY hierarchy [65, 66, 67, 68].

2.1.2 Macroscopic variables and equilibrium balance equations

As briefly discussed in the previous section, all macroscopic variables appearing in classical
thermo-hydrodynamics equations can be computed as moments of the single-particle distri-
bution function. The first three moments of the distribution function are invariants of the

10
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collision operator (as dictated by the summational invariants of elastic microscopic collision):

o= [r0d I] & (212a)

1=x,Y,2

U Z/Eéjf(é)d IT & (2.12b)

! 2 |
pe = /E 2(@2’%2(@ uj)>f(€)di:1;[’yﬁz£z- (2.12c)

Other non-conserved variables can also be computed as moments of the distribution function
as:

o= [[(6 - - wor@d T & (2130)

1=x,Y,2

G = /5 - ( 3 (@—uﬁ) & —w)f©d I & (2.13b)

j:$7y7z ZZx?sz

where 7}, and g, are respectively the different components of the total stress tensor (including
pressure) and energy flux vector.

Going back to the Boltzmann equation, the balance equations for the conserved macroscopic
variables can be obtained by taking the corresponding moments. Here we will assume that
the fluid is at thermodynamic equilibrium. In practice this means that the collision operator’s
net effect is null. At order zero one obtains the continuity equation:

/f H§+V/£f H§Z+F/ng H&—/QdH&,

1=x,Y,2 1=,Y,% 1=,Y,% 1=T,Y,%

-~

pu 0 0
(2.14)
where for the last term on LHS we have used the divergence theorem along with the fact
that the distribution function vanishes at & — +o00. Following the same procedure at order

/ﬁf Hmv /U®Uf H&W/ﬁ w e € —u)fed [ &

1=T,Y,2 I=T,Y,2 I=T,Y,2 B
pu‘éu V
- [veer©ad [T &- /sadﬂg, (2.15)
R 3 1=T,Y,% 1=T,Y,%
oF 0

11
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which is Euler’s equation for momentum balance (at thermodynamic equilibrium T~ = pI).
Finally taking the second-order moment, one gets the energy balance equation (without
non-equilibrium fluxes):

/52 Haw/—f Haw/&u ng

1=x,Y,2 1=,Y,2 1=,Y,2
(e+u2/2) pu(e+u2/2 v
2
—F. V5/£ H& /£QQdH§1. (2.16)
i=z,y,z i=x,y,z
—qu 0

2.1.3 Thermodynamic equilibrium: the Maxwell-Boltzmann dis-
tribution

Going back to the Boltzmann equilibrium, it can be seen that the collision term on the

RHS of the equation represents the net flux of components in/out of the considered control

volume in phase-space. At equilibrium, this flux amounts to zero. As such at thermodynamic
equilibrium:

| [umenreen-reensmengmn [T di-o e

’529672172

This equality only holds if:

fr &,t) f(r &t) = f(r,&1,8) f(r,£,1). (2.18)
Taking the logarithm of this expression [69]:
Inf(r,&,t)+Inf(r,&t)=Inf(r &, t)+Inf(r &, t), (2.19)

it can be clearly seen that In f is a summational invariant and as such can be written as a
linear combination of the conserved moments:

Inf=A+B-£+C&% (2.20)

Using this expression and the constraints on the conserved moments to determine the con-
stants [69], one gets to the Maxwell-Boltzmann distribution:

3/2 2
€ =) o |-

as the equilibrium state and extremizer of the entropy functional. More generally, the expo-
nent can be replaced with the Hamiltonian of the considered system.

: (2.21)

12
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2.1.4 Approximations to the collision term

Given the complexity of the collision operator, even using simplified cross-section models,
a wide number of approximations have been proposed. These simpler expressions for the
collision operator are usually referred to as kinetic models. A number of linear kinetic models
will be introduced in this section.

2.1.4.1 Linear approximation: Bhatnagar-Gross-Krook

One of the oldest, simplest and most efficient approximations to the collision term in the
Boltzmann equation was proposed by Bhatnagar, Gross and Krook in [70]. In this ap-
proximation, the collision term is modeled through a linear relaxation operator towards the
equilibrium state:

Q(BGK) _ % (f(eq) —f), (2.22)

where 7 is the relaxation time. A simple perturbation analysis shows that in order to correctly
recover the Navier-Stokes equations, the relaxation coefficient must be set to:

r=2 (2.23)

p

where p is the fluid dynamic viscosity. This collision operator satisfies all the fundamental
properties of the collision operator, namely invariance constraints:

s L= TT ds=o (2.24a)

i:fﬁ,yw’«’

Ll ren o
- /€ & (10— f) T[ de =o, (2.241)

1=T,Y,2

% g ( > 5?) (fe2—f) I d&=o. (2.24c)

1=2,Y,2 1=2,Y,2

and the H-theorem. However, it is only valid in near-equilibrium regimes and leads to a
restriction on the Prandtl number. The latter comes from the fact that all moments of the
distribution function relax at the same rate, leading to a fixed Prandtl number. To overcome
this restriction a number of solution have been proposed [71], namely ellipsoidal BGK (ES-
BGK) operators, BGK collision models with velocity-dependent relaxation coefficients or the
Shakhov model. Some of these approaches will be briefly reviewed in the next section.

2.1.4.2 Extension to variable Prandtl numbers

One of the first modifications to the classical BGK collision operator, developed to overcome
the fixed Prandtl number issue was the ES-BGK model. While retaining the linear relaxation

13
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form of the original BGK, it relies on a slightly modified equilibrium function defined as:

pleaBs—BGK) (g) = P oy [— Emole T (2.25)
21 det(T7) 2
where T is the corrected stress tensor defined as [72]:
T = % (pI(1—a)+aT), (2.26)

and a is the free parameter allowing the model to impose a viscosity-independent thermal
diffusion coefficient (Pr = 1Tla) It is also worth nothing that in this model the relaxation
coefficient is defined as:

r=(1-al (2.27)

p
To ensure that the matrix f_l is positive definite one must have —% <a<l.
Another approach to allow for variable Prandtl numbers in the context of a linear BGK-type
collision operator was proposed by Shakhov [73, 74]. Similar to the ES-BGK he proposed a
modified (Maxwellian) equilibrium distribution function defined as:

fleas—BoK) (¢) _ e |1 4 1-Prq-(§—u) ((E —u)’ i ?)] ‘ (2.28)

The relationship between the relaxation coefficient and fluid viscosity is similar to that of the
BGK model. As obvious from the above definition, in this approach a correction is applied
to the fourth-order moment of the EDF (controlling non-equilibrium effects in the energy
balance equation at the NS level) via the corresponding Hermite polynomial and coefficients.
The Hermite polynomials and their properties will be further detailed in subsection 2.3.2.

2.2 Brief overview of reduced kinetic models

To be able to model fluid flows in the rarefied regime or for large Knudsen numbers beyond
the NS and Euler descriptions, from the kinetic theory of gases, a number of approaches have
been proposed to systematically reduce the complexity of the Boltzmann equation. Two of
the most popular approaches are reviewed here.

2.2.1 Grad’s moments method

Grad’s approach to reduce the Boltzmann equation relies on the assumption that the state
of the gas can be described by a set of moments of the distribution function:

n-[wer ] (229)

1=x,Y,2

14
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where W is a vector of polynomial functions of the phase-space variable & and II the
corresponding moments. For example in the case of Grad’s 13-moments theory one has:
U = {1,§,£%,6¢,,8%,}. In general, the number and choice of moments depends on the
studied configuration described by non-dimensional numbers such as the Knudsen number.
The system of PDE’s for Grad’s approach are then obtained by taking the corresponding
moments of Boltzmann’s equation [75]:

(/q: fHd§Z>+V (/5111 fHng> /@ VF-Vef T dé

1=x,Y,2 1=,Y,2 1=x,Y,2

\(/ 11 d@), (2.30)

1y o(II)
Z x?y’

S(Im)

where ¢ are the fluxes of moments IT and S are the effects of molecular collision (interac-
tion). It can readily be observed that this system is not closed as it involves higher-order
moments (in the convective term) of the distribution function and moments of the collision
term.

To provide closure for the higher-order terms appearing in the balance equations, the distri-
bution function is reconstructed using a truncated (of order N corresponding to the highest-
order moments considered in the model) Hermite expansion as [76]:

FN) = flen (Z“n n) (2.31)

where H.,, and a,, are the Hermite polynomials and coefficients tensors. Details of the theory
of Hermite polynomials and expansion will be given in the next section to derive the lattice
Boltzmann equations. The distribution function is then used to compute the higher-order

moments as [75, 76]:
~ [ew© ™ [ as (2.32)

1=x,Y,2
Another approach for the construction of the distribution function relies on the concept of
entropy. In this approach the distribution function is found as the maximizer of the entropy
density subject to constraints stemming from the considered system of moments [69]. In
variational calculus this function can be found using Lagrange multipliers. This results in
finding the extremum value of the following non-constrained functional:

£:—k/(flnf)d£—2)\a/\1!afd£ (2.33)
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where )\, are the Lagrange multipliers associated to each moment. The resulting distribu-
tion function is then introduced back into Eq. 2.29 to compute the values of the Lagrange
multipliers.

2.2.2 Chapman-Enskog approach

As previously discussed, in the balance equations for the conserved moments of the distribu-
tion function there are additional terms such as the stress tensor and energy flux vector that
need closure. One way to have a closed system of equation is through the so-called moments
methods, of which Grad’s approach is a popular example. Another approach, within the
context of the kinetic theory was proposed by Enskog [77, 78] and Chapman [79, 80, 78].
Different from Grad’s method, in this approach only balance equations for conserved mo-
ments are considered, i.e. II. = {p, u, €} and closures for higher-order moments appearing in
the balance equations are provided as functions of these conserved variables and their space
derivatives. In practice this is achieved by approximating the distribution function as:

Fem) _ (Hc, oI, 011,

57 8i—8j7 . ) vi,7 € {x,y, z}. (2.34)

The basic idea is to expand the distribution function as a power series of a smallness param-
eter g, tied to the Knudsen number:

FOE) — pO0) o p () | 25(2) | 35G) (2.35)

For the collision term in the Boltzmann equation to remain finite in the limit of vanishing
Knudsen numbers one must have f(© = £(¢9  As such, and considering that the first five
moments are invariants of the collision operator, the expansion is subject to the following
so-called compatibility conditions:

[ 9@ =o.vi 2o (2.360)

¢ j

/sf“) &) [ d¢ =o0.vi #o0, (2.36h)
¢ j

/g £2f0 (¢) H dé; = 0,Yi # 0. (2.36¢)

The CE approach consists of introducing the expansion of Eq. 2.35 along with expansions of
the space and time derivatives into Boltzmann’s equation to obtain the normal solutions for
different orders of f( [81]. Given that this approach is thoroughly treated in subsection 3.1.1
to analyze the asymptotic behavior of the LBM, it will not be further detailed here.
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2.3. Phase-space discretization and construction of discrete thermodynamic attractors

2.3 Phase-space discretization and construction of dis-
crete thermodynamic attractors

Looking at the continuous form of the Boltzmann equation supplemented with the linear
BGK collision operator, it is observed that it comes with a 7-D phase-space (assuming that
translational motion in 3-D space is the only degree of freedom in the Hamiltonian). As
such, prior to discretization in space and time, additional phase-space variables (i.e. particle
velocities space) need to be discretised. Given that the LBM is intended as a DNS solver for
the NS system of equations, phase-space discretization is subject to a number of constraints,
namely correct recovery of the moments appearing at the Euler and NS levels. A number
of strategies have been devised to that effect during the past couple of years. Some of these
strategies are reviewed in the next subsections.

2.3.1 Direct moment-matching methods

As clearly stated by its name, in this approach one tries to construct a discrete equilibrium
by matching the moments appearing in the targeted macroscopic balance equations. Solvers
based on this approach are also sometimes referred to as Discrete Velocity Method solvers
[82].

To identify the constraints, one first uses the CE analysis. For example, a simple CE analysis
at order £ shows that to correctly recover the NS and continuity equations, one needs to
exactly match moments up to order three [83]. For example let us consider a 1-D system
with only translational degrees of freedom. The following moments need to be correctly
recovered:

I, = /5 p %ZLBT P _m(%k—;;;f dé. = p, (2.37a)
I, = /{ z Eap QWZBT exp _—m%k—;;bﬁ_ déx = puig, (2.37Db)
IT,2 = /E z &p QWZLBT exp —M%k—;z)? dé, = p (U?; + %) : (2.37c)
M, — /E 3) QW’:BT exp —m(gk—;jﬂ“)? e, = pu, <u2 n 3%) . (2.37d)

In the second step of the discrete equilibrium state construction, one chooses a symmetrical
stencil (set of discrete velocities) with a number of degrees of freedom equal to or greater
than the number of constraints [84, 85, 86]. For example, in the case of the isothermal NS
solver, one can either use a four-velocity model or a five-velocity model with an additional
constraint to have a unique solution. The discrete equilibrium is then found by solving the
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2.3. Phase-space discretization and construction of discrete thermodynamic attractors

following system of equations:

(eq)

1 1 1 1 () p
eq
Co C1 C2 C3 PlUg
= 2.38
@ d a dl (o] 7| (it | 2
a3 a a (6(1) PUy (ux%—S%)

where cy_3 are the discrete velocities in the stencil and féeq3 are the unknown discrete equi-

libria to be found by solving this system. The linear system formed using symmetrical
stencils might not always be invertible. As such, for some models one might need to add
non-symmetrical components to the system [87].

2.3.2 Quadrature-based methods: projection onto Hermite poly-
nomials basis

One approach to discretise phase-space and derive the corresponding discrete EDF consists
in expanding it in terms of Hermite polynomials and operating a truncation by using Gauss-
Hermite quadratures [88, 89, 90].
Before starting the derivation, let us review the basic concepts of multi-variate Hermite
polynomials. More details on the Hermite polynomials can be found in Appendix B. They
are defined as [89):

(="

Ha (€)= gy Vew(E). (239)
where w (€) is the normalized weight function defined as:
52

w(e) = (2n) e (-5 ). (2.40)

with D the dimension of £&. A function f can then be expanded in terms of Hermite poly-
nomials as:

f=w®)Y an: Ha ), (2.41)

«@,”

where is the Frobenius inner product and the coefficients a,, are computed as:

_ / H., (€) fde. (2.42)

The first step in the expansion is the choice of the non-dimensionalization strategy. While not
necessary in the expansion, this choice is one of the most important steps in the construction
of a discrete kinetic scheme as it will play a key role in the final numerical scheme’s behavior
(especially higher-order moments errors). The recent development of LB models relying
on non-symmetrical stencils and adaptive non-dimensionalization is a clear proof of the
previous assertion. Some of these more advanced non-dimensionalization strategies leading
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2.3. Phase-space discretization and construction of discrete thermodynamic attractors

to shifted stencils or off-lattice propagation will be treated in details in the next chapters
91, 92, 93, 94, 95, 9]. For the sake of simplicity, in this section the continuous Maxwell-
Boltzmann EDF is written in the following non-dimensional form as:

2
10 (€. pu. 0) = p(2m0) ™" exp [—£§‘§§EQ-]’ (2.43)
where for the remainder of this subsection u, and & are non-dimensionalized with a reference
speed of sound ¢y, 0 = kBT/ = and ¢, = kBTO , and Ty and mg are respectively defined as the
reference temperature and molecular mass ThlS results in the following first few Hermite
polynomials:

Ho =1, (2.44a)

= &ir, (2.44b)

Hivio = &ir&iz — Oivias (2.44c¢)
Hivizis = &in&indis — S 5i223]cyc, (2.44d)
Hivigigia = &ir&in&isia + [0i1i20i5ia)eye — [GisiaOirin)eye » (2.44e)

where [|oyc designates cyclic permutations over the involved indexes, and corresponding
isothermal (§ = 1) Hermite coefficients:

(eq)

=P (2.45a)

aﬁfq) = iy, (2.45b)
agfi) = PUi; Uiy, (2.45¢)
ad. = pui, i, (2.45d)
ATy = Py i i, (2.45¢)

In the context of the classical LBM, the flow is assumed isothermal. The continuous EDF is
then expanded as:

[e.9]

0 (& pyu) Ej. u) : H (€). (2.46)

=0

As seen here, the expanded EDF still goes over the entire phase-space. Given the form of
the EDF and the corresponding moments:

mwﬁz/gﬁkiwwﬁmuma (2.47)

and using the Hermite expansion, it can be written as:
yiyion = /P“ (&, p,u)w (§) dE, (2.48)
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2.3. Phase-space discretization and construction of discrete thermodynamic attractors

where: o
&EE D (€, p,u)
w (§) ’

and P> (&, p,u) as defined here is a polynomial function of the variable & with order oo as
the Hermite expansion has not yet been truncated. Given that the aim of the LB method
is to solve the Boltzmann equation in the hydrodynamic regime one only needs to correctly
recover the moments of the EDF involved in the hydrodynamic equations. Furthermore,
Hermite polynomials are orthogonal functions and as such higher-order polynomials have no
effect on lower-order terms. Given the previously cited arguments, one can limit the Hermite
expansion of the EDF:

P> (& p,u) =

(2.49)

N

€ 1 €

FEN) (6 pu) = w (€) D] —ale? () s Ha (€). (2.50)
n=0

where N corresponds to the highest-order moment involved in the targeted dynamics. For

example, to correctly recover the NS equations for an isothermal flow one needs to correctly

recover the third-order moment of the EDF. Now the polynomial P> can be replaced with

a finite-order polynomial:

&6 E [N (€., €)
w (§) ’

where M = 2N. The integral of Eq. 2.48 can be evaluated using a discrete sum through a
Gauss-Hermite quadrature as:

(& pou)= (2.51)

/PM (& p,u)w () dE = Zwa (Cas py 1) (2.52)

where ¢, are discrete non-dimensional abscissae used for the quadrature and w, are the
corresponding weights. According to the fundamental theorem of Gaussian quadratures,
choosing the abscissae to be the roots of the orthogonal polynomial of the corresponding
degree results in the maximum algebraic degree of precision, namely 2¢) — 1. To correctly
recover the targeted moments one must have M < 2Q) — 1. The third-order quadrature (des-
ignated by E} ; in 1-D) results in the following abscissae: c,; € {—v/3,0, v/3} corresponding
to the following values {—+/3kpTy/mo, 0, \/3kpTn/me} in physical units. It is already clear
that the third-order quadrature can not correctly recover all the moments appearing at the
NS level. The corresponding weights are computed as:

n!
Vo = (2.53)

In the multi-variate case, the weights can be computed as the products of the weights in
each dimension.
In the classical second-order EDF LB formulation (where only mass and momentum are
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2.3. Phase-space discretization and construction of discrete thermodynamic attractors

conserved), this discretization procedure results in the following discrete EDF:

2 2

2
£ (Car py ) = wap (1 e ut CaW u—) : (2.54)

Computing the diagonal component of the second-order central moment of the EDF one gets
the following pressure (in physical units):

p=3" ) (co,Ty) = p~2=2, (2.55)

and therefore, the following isothermal speed of sound:

8p> kT
. = — = W/ . 2.56
‘ (89 T mo .

2.3.3 Entropic discrete equilibrium distribution functions

In the context of the entropic lattice Boltzmann method as described in [96], the discrete
equilibrium state is found as the minimizer of a convex discrete entropy functional under
mass and momentum conservation constraints. The derivation starts with the roots of the
third-order Hermite polynomials as the discrete abscissae and considering the following con-

servation constraints:
> e =p, (2.57)

> eafl = pu, (2.58)

where notations follow those adopted in the previous subsection. The EDF is derived as the
function extremizing the discrete entropy function:

Hypoo = Y foln (i—z) : (2.59)

under the previously set constraints. Given the Galilean invariance of the weights the ex-
pression for the entropy function is also Galilean invariant [94]. The EDF can be expressed

as:
D

Fle?) =, exp (o) H exp (CaiNi) , (2.60)

i=1
where )y and )\; are the Lagrange multipliers associated with constraints on the zeroth and
first-order moments. Introducing the following changes of variables, X = exp (—A¢) and
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Z; = exp (\;) the EDF is re-written as:
D
F0 = w X [] 25 (2.61)
i=1

Writing down the conservation equations using the new variables for the D2Q9 stencil, the
following algebraic system of equations is obtained:

pX => w, [] 2, (2.62a)

1=x,y
pu X = Zwacavz H Z/Cot (2.62b)
« 1=,y
pu, X = Zwaca,y H ZCet, (2.62¢)
« 1=,y

Solving this system of equation for Z,, Z, and X and keeping positive roots one gets:

. 2ui+\/ui2+1

1—ui

x=pT] (2 . \/UTH) , (2.64)

1=,y

Z;

(2.63)

and therefore can express the entropic discrete equilibrium as:

2u; + Vu2 + 1\ ™"
£ = wep T (2— \/uﬂ—l—l) ( Ui VT ) . (2.65)

]_—Ui

1=x,y

2.4 Space and time-discretization

2.4.1 FEulerian approaches

Considering any one of the phase-space discretized Boltzmann equations, i.e. Hermite poly-
nomials, entropic and moment-matching, it can be observed that the system to be solved
consists of a number of coupled hyperbolic PDEs. As such, to retain an acceptable CFL
condition and prevent dispersion errors at large wave numbers (also referred to as Gibbs
oscillations), one is limited to first-order upwind space discretization. Going to higher-order
space accuracy would require non-linear operators, i.e. flux and slope limiters etc, to be
added on top of the discretization. For example Beam and Warming’s second-order scheme
[97] has been extensively used with moment-matching-type discrete equilibrium construc-
tion techniques [82, 83, 84]. The ENO (Essentially Non-Oscillatory) class of solvers are
also well suited for such hyperbolic systems of PDEs [98, 99, 100] and can, theoretically,
reach relatively high orders of accuracy in space (in smooth regions). For example, with
the WENO-5 scheme one can achieve fifth-order accuracy in smooth regions and third-order
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2.4. Space and time-discretization

accuracy near discontinuities [101]. However, it should be noted that the phase-space dis-
cretized Boltzmann PDEs discretized with classical Eulerian methods do not seem to present
any advantage compared to macroscopic solvers. In fact, given that they rely on a larger
number of variables they could be more costly than classical compressible solvers. The added
value of this kind of approach might be more pronounced for simulations dealing with larger
Knudsen numbers or considering non-equilibrium effects. As such they can be perceived as
alternatives to higher-order PDEs such as Grad’s moments method.

2.4.2 Lagrangian method with on-lattice propagation

Starting from the phase-space discretized form of the Boltzmann equation (a set of () PDEs):
Oifa+Ca Ve =Q, (2.66)

the idea of the Lagrangian approach consists of integrating them along their respective
characteristic lines, which contrary to Lagrangian solvers for the NS equations (given that
fluid particle path-lines are space- and time-dependent), results in an exact solution for the
advection term. As such integrating the equations from a time ¢ to t + J; along the stencil
directions one obtains:

Fu (@ + ol t +8,) — fo(@,t) = /Mt N (m(t’), t’) dt’. (2.67)

Obviously within the context of the Lagrangian approach ¢,/d; is tied to the abscissae
obtained from the Gauss-Hermite quadrature. In the case of the third-order quadrature:

[3kgTy O,
i = — 2.
Ca, mo Oy (2.68)

Coming back to Eq. 2.67, to get a second-order accurate scheme one can use the trapezoidal
rule to evaluate the integral on the RHS:

t+6t i ! I 5t 5t 3
/ QO (2), 1) df = 200 (@,0) + D0 @+ cadt +0) 1O (), (2.69)
t

which in turn results in an implicit scheme. To take out the implicitness of the resulting
equation, the following change of variables is introduced:

]an = foz - éQom (270)
2
fle = e, (2.71)
_ 1 rleq) _
Q, = T (fS fa) - (2.72)
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Using this change of variable and Eqs. 2.67 and 2.69 one gets:

_ _ J 0
fo (@ + cady, t +0) = fo (@, 1) + 500 (@ + Cadyyt +0)) = 5 Q0 (1) =

b b
éQa (& + Caby, t + 6;) + EtQa (z,1), (2.73)

which in turn using Eqs. 2.70-2.72 results in :

fo (T4 caly,t +6) — folx,t) = i (fleaN) (z,t) — fo (z,1)), (2.74)
where T is defined as:
F=1+0,/2. (2.75)

It is also interesting to note that the new distribution functions have the following properties:

Zf_a:Zfa__ZQ (276>
anfa = chxfa - %anﬂa = pu, (277)

and more generally for higher-order moments:

0 J J
ZH Ca) Z’H Ca) tZ’H Ca) <1+2t) n—iaﬁf‘]’m. (2.78)

While to derive the previous scheme, particle streaming was restricted to be on-grid, it is
not a necessary condition for working LB scheme. For the so-called semi-Lagrangian methods
the restriction of Eq. 2.68 is relaxed, resulting in off-lattice propagation. As such, in this
formulation the time-evolution operator of Eq. 2.74 is supplemented with an interpolation
step to reconstruct the populations at the discrete grid-points:

0t

7

(faeq M (x5 — €adp,t) — fo (X5 — €adt, t))

(2.79)
where A (x,x;) are the coefficients involved in the interpolation process and x; are the
interpolation stencil points. In practice, this approach has two main advantages: (a) it
allows one to use quadratures of order four or five (since those result in non-space-filling
stencils, they are unusable with the on-lattice solvers), (b) freedom over the choice of the
time-step as the streaming does not need to fall on-grid [102, 103]. It also allows for the
implementation of conforming meshes in the context of the LBM [104]. A more detailed
analysis and discussion of such an approach is left to chapter 7.

The overbars on the re-defined discrete populations and relaxation time will be omitted
during the rest of the manuscript for the sake of simplicity. Some of the discrete stencils

folm t+0) = ZA:IZ:Bz [fa( T; — Caly,t) +
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2.5. Enhanced collision operators for the LBM

resulting from the space-time discretization process are listed in appendix C.

2.5 Enhanced collision operators for the LBM

It has been widely observed that in the limit of vanishing non-dimensional viscosities, the
classical SRT collision operator with a second-order polynomial EDF leads to an almost
unconditionally unstable scheme. To overcome this issue and facilitate under-resolved sim-
ulations with the LBM a number of more advanced models have been developed over the
past decades. A number of the most widely used collision operators will be reviewed in this
section.

2.5.1 Collision operator in momentum space

All modified BGK collision models in this category rely on the following main paradigm:
Application of the equilibration operator in alternative spaces [105] as a way to de-alias the
physical and ghost modes. It is interesting to note that such modal decompositions were also
used in Shakhov’s collision operator to allow for a variable Prandtl number. These alternative
spaces are usually moments of the distribution function, chosen and tailored to suit specific
properties. The following section will review some of the most well known collision models
of this category.

2.5.1.1 Raw moments-based decomposition

The first category, developed and published in the early 2000s’ is the so-called Multiple
Relaxation Time (MRT) collision model [105, 55, 106, 107]. The idea behind this approach
is to apply the collision step in momentum space, contrary to the classical SRT formulation
where collision is carried out directly in phase-space. This allows for independent control over
the relaxation rates of linearly independent moments, opening the door for a more flexible
equilibration path [107, 106]. The added degrees of freedom can be useful both physically
and numerically [108]. In this approach, the BGK collision operator is written as:

QMED) = M~'SM (£ — fa), (2.80)
where M is the transformation matrix such that:

Mo =Y Magfs, (2.81)
B

where II, are the moments chosen for the application of the collision operation. For the
remainder of this work, raw moments of the distribution function will be designated as
Hxiyjzk, with:

Myigioe = 3 chochych fa. (2.82)
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2.5. Enhanced collision operators for the LBM

As seen in Eq. 2.80, using the transformation matrix M the discrete populations are taken
to momentum space. Then the relaxation matrix S is applied and relaxed moments are
converted back to discrete populations through M. For a typical DdQq stencil, ¢ linearly
independent moments are needed to span the phase-space. For example, given the properties
of the Hermite polynomials, the first ¢ linearly independent Hermite coefficients are an
obvious choice. For the D2Q9 stencil, the following moments —Hermite coefficients— can be
used:

az aq
3 2 2 211 T el 4
II = {HO, 11, Hy, ny, IL2 —c;, Hy2 — Cg, H$2y - CSHy, H$y2 —c: 11, H$2y2 —C; (HI2 + Hy2) + CS}.
N—— ~ ~~ -~
al as

(2.83)
For this specific example, the corresponding equilibrium moments, assuming terms up to
order two have been kept in the Hermite expansion, are:

T1ed) — {p, puuz, puy, pusu,, pui, puz, 0,0,0}. (2.84)

It is interesting to note that keeping Hermite polynomials up to order four, the discrete
equilibrium moments match those of the continuous EDF. Another parameter appearing in
Eq. 2.80 is the relaxation coefficients matrix, S, mostly defined as a diagonal matrix with
components 1/, controlling the relaxation rate of their corresponding raw moment. Of the
available nine relaxation coefficients in the D2Q9 stencil, three are tied to fluid viscosity
(one to shear and two to bulk viscosities) as the corresponding moments appear in the
viscous stress tensor and three are conserved moments; The rest can be tuned, for stability
[55], optimal dispersion [109], fixing the boundary position for the half-way bounce-back
boundary condition [30] etc.

As noted in [110, 111], using the full set of moments leads to a number of free parameters
(the ghost moments relaxation coefficients), for which no formal physical closures exist. As
previously mentioned, apart from the entropic argument, only a posteriori closures based
on numerical arguments can be devised for these free parameters. Another way around this
issue is to adopt targeted (on specific moments of the distribution function) minimalist MRT
formulations. The TRT (Two Relaxation Time) collision operator developed and proposed
by I. Ginzburg is an example of these minimalist models [112, 113, 51]. In this collision
model the distribution function is decomposed into symmetrical, f;, and non-symmetrical
parts, f, defined as [51]:

ff = Jo ; f@, (2.85a)
fo= fo ; f@, (2.85b)

resulting in two relaxation coefficients, 71 and 7—, with the first one tied to the fluid viscosity.
The BGK collision operator is then expressed as [113]:

1
T+(

QYD FE B = 1), (2.86)
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As demonstrated in [114], judicious choices of the free parameter (the so-called “magic
values”) can lead to, among other effects, the wall being placed exactly half-way when used
with the half-way bounce-back boundary condition. Defining :

= (5 (E-D)

it can be shown that setting A = 3/16 places the wall half-way [115], while A = 1/6 and
A = 1/12 cancel out, respectively, the third- and fourth-order spatial error terms [116, 117]
and A = 1/4 results in optimal stability [118].

Another example of a minimalist MRT scheme, studied later on in details, is that of the LKS
[52, 119]. This collision model is a TRT scheme in the space of Hermite moments, where
second-order moments are relaxed using the fluid viscosity while higher-order moments(three
and four) are relaxed using a free parameter [54]. For the LKS the collision operator is written
as [53, 52]:

QLKS) _ _% (fo — fleati®) (2.88)

The second relaxation coefficient A is related to the SRT relaxation coefficient as [119]:
A—A=r, (2.89)

where A is a constant fixed by the choice of the free parameter. The EDF is then defined as
[54]:
fleaiis) _ pleg) _ AWa
T 2
The original regularized lattice Boltzmann method (RLBM) is an LKS solver where the
free relaxation coefficient is set to 1 [54]. This collision operator has been applied to a
variety of configurations ranging from multi-phase [120] to non-Newtonian flows [121] and
advection-diffusion equations with variable diffusion coefficients [122, 123].

al™ My, (2.90)

2.5.1.2 Central moments-based decomposition

In the Central Moments Multiple Relaxation Time (from here on referred to as CM-MRT)
model, while the paradigm is quite similar to the MRT, a different set of moments are used:
the central moments, designated by II:,;.» and defined as [124, 125]:

ﬁxiyjzk = Z (Caw — tg) (Cay — ty) (Care — )" fa. (2.91)

Taking again the example of the D2Q9 stencil with the Hermite coefficients as the projection
space and a fourth-order expansion of the EDF results in the following central equilibrium
moments [126]:

19 = {p,0,0,0,0,0,0,0,0}. (2.92)
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Lower-order EDFs will result in a different set of equilibria with higher-order moments
different from their continuous counter-parts [127]. As for the MRT, the collision operator
is expressed as:

Qu=M"TN"'SNM (f — f,) (2.93)

where the additional matrix appearing in the equation, IN, converts raw moments to central
moments: B
IT = NII. (2.94)

The different components of this matrix can be obtained using the binomial theorem. To
illustrate the derivation of these matrices, a limited number of them are explicitly given in
appendix D.

2.5.2 Pre-collision population reconstruction via regularization

Roughly speaking, the rational behind regularized collision operators is to filter out higher-
order components of the distribution functions (in the sense of the Chapman-Enskog ex-
pansion). It can be shown that first-order terms appear at the NS level, while higher-order
terms intervene at the Burnett, super Burnett etc. scales (not of interest in the context of
the LBM). In the context of the regularized collision approach the non-equilibrium part of
the distribution function is reconstructed using only first-order contributions, fé"eq) ~ fo(él).
The discrete time-evolution equation can be re-expressed as [57, 128]:

oot cadit 4 8) = 19 (@) + (1= 2) 100 ). (2.95)

Following the Hermite expansion used for the EDF, we can express the first-order component
of the distribution function as:

1
f =wa Y =al): H,. (2.96)
n.
n=2

In the original regularized model [57] only the second-order Hermite polynomial was consid-
ered for the reconstruction process:

(1) .
fO = w22 5 Ha (2.97)
The only unknown in this equation is a(zl). In [57], this coefficient is computed as:
ay"" ~ay =3 "My (fu— f19). (2.98)

In the context of the classical LB formulation with a second-order polynomial EDF, and given
the orthogonality of the independent moments, this collision operator aimed at eliminating
non-equilibrium effects of higher-order (kinetic) moments. It is interesting to note that this

28



2.5. Enhanced collision operators for the LBM

formulation has a number of shortcomings: (a) Errors in all components of the third-order
moments tensor of the EDF (given the absence of higher-order terms in the EDF), and (b)
presence of higher-order effects (tied to fai with ¢ > 2) coming from the approximation used
for ag) The latter can be, to some extent, cured using a CE-based closure for a2 . Using

this approach it can be shown that [58]:

al'CE) = _pe? 5t (Vu +vu'). (2.99)
This expression can be computed using classical FD approximations [129]. Additionally,
recently published results seem to show that a weighted combination of both these closures
can be effective in extending the stability domain of the scheme [129, 130]:

al) = cal"™ + (1 - o) al?, (2.100)

where o is the weight.
The first problem with the RLBM of [57], namely errors in the off-diagonal components of
the third-order moments tensor can accounted for by using third- (or fourth-)order terms in
the EDF and using the recursive properties of the off-equilibrium Hermite coefficients [58],
ie.:

ale,zj...klm = a7(1121,ij...klum + |:a’l(’r]7-2u7'u.7uk:| eve (2.101)

For the D2Q9 stencil, assuming a fourth-order isothermal polynomial EDF the different
non-equilibrium Hermite coefficients are computed as:

oy = uzaly + 2u,al}), (2.102a)
a\y = uyaf ( )+ 2u,a), (2.102D)
o, = uyal () 2 + uguyal). (2.102¢)

These coefficients are explicitly given here, as this model is considered in the extensive linear
stability analysis of the next chapter.

2.5.3 Entropic lattice Boltzmann method

The original entropic LBM ensures stability of the solver by imposing a monotonous decrease
of a discrete entropy function. While a number of different discrete entropy functionals have
been proposed in the context of the ELBM [131, 132], the following form has gained the
most attention [133, 134, 46, 135, 136]:

H = ; faln (i-i) . (2.103)
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In practice, the monotonicity of the discrete entropy is enforced using a two-step linear
reconstruction achieved through the following modified time-evolution equation [133, 134]:

fa (fB + ca(st>t+ 5t) - fa (CB, t) = 57 (fo(éeq,ELBM) (CC, t) - fa (w7t)) )

where [ is tied to the fluid viscosity as:

Oy

B = 2 +4,
with 7 = v/c?, while v is obtained by solving the following system [137]:

H(f)=H(f),

with:
f; = fat+7 (fo(lquLBM) - fa) .

(2.104)

(2.105)

(2.106)

(2.107)

This two-step reconstruction procedure is illustrated in Fig. 2.1. In the first step, the equal
entropy mirror state (relative to the equilibrium), f*, is found by solving the non-linear
equation shown in Eq. 2.106. As observed there v is the maximum path length not resulting
in an increase in entropy [138]. It is interesting to note that at thermodynamic equilibrium
Eq. 2.106 has the non-trivial root v = 2 which corresponds to the SRT collision operator
[138]. In the second step, dissipation is introduced via the parameter 3. The solution to

Figure 2.1: Schematic representation of the relaxation process in the ELBM. Dashed lines

represent entropy levels while the triangle illustrates the positivity polytope.

Eq. 2.106 can be obtained using a Newton-Raphson iterative solver as:

Gn
ntl _ n
r-)/ r)/ 8,yGn’

with:
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and:

agyn _ Z {1 ln (f*n>] (fée%ELBM) . fa) 7 (2_110)

Wa
«

where 4" and 4" *! are solutions obtained in the previous and current iterations. The iterative

root-finding algorithm being rather expensive (especially when the populations get away from
equilibrium) alternative approaches have been developed in recent years[133, 138]. These
approximate solutions are also useful in the vicinity of equilibrium as the Newton-Raphson
solver might diverge there.

The ELBM as described here relying on changing the effective viscosity to stabilize the
simulation, and coming with non-negligible computational overhead, a modified version of
it has been proposed relying on moments decomposition [111]. This approach is commonly
referred to as the KBC model (short for Karlin-Bosch-Chikatamarla). This approach differs
from the ELBM in the way the mirror state is constructed:

Fio=2F57 — fot (v —2) (BS? — ha) , (2.111)

where h,, is the part of the distribution function containing ghost moments. As observed here
the entropy-enforcing parameter v now only affects ghost moments, theoretically allowing
for the correct fluid viscosity to be enforced. This approach has been observed to be very
effective in allowing for under-resolved simulations [139, 140, 141].

2.6 Summary

The aim of the present chapter was to introduce the theoretical background of the LBM. It
is worth noting that all of the collision models presented in this chapter have been imple-
mented in ALBORZ and will be used later in different sections of the present manuscript.
The information to retain from this chapter is the discrete time-evolution equation for the
LBM given in Egs. 2.74 and 2.75. Furthermore, the discrete isothermal equilibrium attrac-
tors obtained through projection onto Hermite polynomial space and entropy extremization
are given in Egs. 2.54 and 2.65.

Apart from the discrete equilibrium state, it was shown that in order to achieve better nu-
merical properties the equilibration path controlled by the collision operator can also be
improved. Enhanced versions of the SRT collision operator derived in the LBM community
intend to control higher-order ghost moments effect and prevent modal interaction by re-
moving aliasing effects introduced by the collision operator. This argument prompted the
development of models relying on relaxation in alternate spaces (e.g. raw moments, central
moments, cumulants [142, 143] etc) instead of phase-space. While focusing on de-aliasing via
modal decomposition, these models come with a large number of free parameters that can
only be parametrized with a posteriori arguments such as linear stability analyses (as shown
in the next chapter). Other classes of collision models such as the Regularized class aim
at filtering out higher-order contribution by reconstructing the non-equilibrium part of the
distribution function using CE analysis. The entropic model does not filter out higher-order
contributions; It aims at keeping the scheme (and therefore higher-order contributions) dis-
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2.6. Summary

sipative and hence guarantee non-linear stability by enforcing the H-theorem at the discrete
level.

The next chapter will provide a more in-depth analysis of the physical and numerical prop-
erties of the isothermal LBM, along with the different enhanced collision models and their
effects on the stability of the scheme.
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3.1. Bulk flow solver analysis : Asymptotic behavior

3.1 Bulk flow solver analysis : Asymptotic behavior

In this first section, we are only interested in a continuum-level analysis of the classical
isothermal LBM. The behavior and characteristics of different EDFs at this level are studied
using first the Chapman-Enskog expansion and then by looking at the error in higher-order
moments, especially those appearing at the NS level, in order to establish usability domains
in terms of the Mach number.

3.1.1 Asymptotic analysis : the Chapman—Enskog development

The Chapman—FEnskog analysis within the context of the LBM relies on concepts from per-
turbation analysis and the Taylor-McLaurin expansion to recover the macroscopic equations
solved by the LBM at different time-scales. The first step is the introduction of a Taylor—
McLaurin expansion to get space and time-continuous approximations to the discrete equa-
tion:

oo a4 5) = 30 0t o 9 o (0.1, 3.)
n=0 ’

which results in the following system of PDEs:

N

Z % O + €q - V)" fa (:C, t) = 6,8, (337 t) . (3.2)
n=1

The next step is what one might perceive as a modal decomposition, by introducing different
time-scales and expanding different parameters as power series of these scales:

—a = Zg v, (3.3a)

fo= Z e'f, (3.3b)
=0
0 o)
TV =V, (3.3¢)

This is achieved by non-dimensionalizing the equations using a characteristic time T, scale
L and velocity C' = L/T. This expansion results in a series of PDEs at these different
time-scales (tracked through the parameter ¢):

1
1 en 40 4
T (fa fa )7 (3 a)
1
ol <at(1) ey - V(1)> féo) _ ——fél), (3.4b)
T
2. (2) 4(0) (1) WY g1 4 150 o) 0 _ L
OO + (0 4 ea VO) S+ 2 (Y 4 e VO) SO = ——fB. (340)
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3.1. Bulk flow solver analysis : Asymptotic behavior

Using these PDEs and solvability conditions (based on conservation properties of the collision
operator):

Vi>0:) =0, (3.5a)
Vi>0:) cafl) =0, (3.5Db)

one can readily recover the corresponding macroscopic balance equations. For example at
the Euler level (order ') one gets the following mass and momentum balance equations:

o, e : 0 p+ VW - pu =0, (3.6a)
I, e 8t(1)pu + VY. pu@u+ VY. p=0, (3.6b)

with p = pI = pro1yI, which correspond to a compressible isothermal flow.
At the NS level (order £2) while the mass balance is straightforward, getting the momen-

tum conservation equations is a bit more tedious. After some algebra one gets the following
PDE at this scale:

1
e2: 9P fO 4 (a§1> +Co- v<1>) (1 - %) FO = ) (3.7)
T

which in turn, taking the first-order moments results in:

1
6% : 0 pu+ v (5 - r) (at(”nge” +vD. ngq)) = 0. (3.8)

One interesting issue to note is that, due to the limitations brought about by the quadrature,
using a third-order stencil (first neighbor) introduces an aliasing between moments of order

one and three:
Z Cg’if(geq) = Z CafV. (3.9)

This symmetry defect is the main reason behind Galilean invariance issues encountered at
the NS level for moderate and large Mach number flows. While for the continuous Boltzmann
equation one would get the following third-order moments tensor:

H(eq)‘ — puiluiguig + P [ui16i27i3]cyc ) (310)

111213

first-neighbor stencils in combination with a third-order Hermite expansion for the EDF
result in the following:

eq,N=3
TLCEN ™ = POty Ui O )y + £ (L= Giyigiy) {0 Wigthsy + [, 0115y }- (3.11)

The next subsection will focus on the effect of local velocity (or Mach number) on such errors
for different EDF's.
Using the CE formalism it can be shown that the addition of a correction term for the
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3.1. Bulk flow solver analysis : Asymptotic behavior

third-order moments tensor can resolve this issue [9, 144, 145, 146]:

_ O | Wa ) (eq)
v, = <1 Z) -5 (V@ H,o): 611", (3.12)

where 8TI{? = TI{” — TI{*™) reduces to its diagonal components for N > 2. A more
thorough derivation and analysis of the correction for the third-order moments tensor will
be provided in chapter 5.

3.1.2 Asymptotic error analysis

The previous CE analysis shows that LB formulations based on standard first-neighbor sten-
cils do not exactly recover the NS level dynamics, i.e. the stress tensor. This comes from
the fact that, due to lack of symmetry (tied to the order of the Gauss-Hermite quadrature),
the third-order moments tensor does not correspond to its phase-space continuous counter-
part. While including higher-order (third-order) components of the Hermite expansion in
the EDF can help correct the deviatoric components, consistency of the diagonal compo-
nents can only be re-established through additional correction terms. As such, to have a
better measure of the applicability domain of the LB scheme, we will look at the deviations
of these moments (for the isothermal case) from their continuous counterparts for varying
Mach numbers. Although readily extendable to other stencils, the D2Q9 stencil will be con-
sidered here. Moments such as IL,2, IL2, 1,2, IL,,2, 11,3 and II,s, among others, will be
studied through the normalized deviation defined as:

i i pleq,N)
Za Ca,mca,y «

5= 11— & ’ (3.13)
Hxiyj
where H;f-q)j is the continuous moment and »°_ ¢, ¢/ {feN) i the moment of the discrete

EDEF. The diagonal component of the second-order moment tensor for discrete and contin-
uous EDFs are shown in Fig. 3.1. It is observed that including the second-order terms in
the Hermite expansion leads to the correct second-order moments (diagonal components)
regardless of the Mach number. While the continuous EDF recovers the following moment:

L2 =p(u2+c2), (3.14)
for the first-order Hermite expansion and entropic EDF we respectively get:
I,> = pc?, (3.15)

. p(12u3 — 1602 + 8uy — 4) + p (5u2 — 10uy + 1) Vu2 /2 + 1 + (u2/c2 + 1)*? (3.16)
v 6(ty — 1)(2uy + /u2/2 + 1) T

It is also interesting to note that, while the entropic EDF does not exactly recover the

correct diagonal components of the second-order moments tensor, the deviations from the
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Figure 3.1: (left) Hg(;f) moment and (right) relative deviations 6 for (in red) first- and (in blue)
second-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The third-order error line in the left plot is not

visible as it is equal to zero.

continuous moment are much less pronounced than the first-order Hermite expansion, and
even negligible for Mach numbers up to 0.4. As such the non-conservation of isothermal
energy in the entropic EDF is not a restriction on the validity domain per se. Furthermore, all
EDFs (even the first-order Hermite expansion) correctly recover the off-diagonal components
of the second-order moments tensor.

As shown in the CE analysis, for the NS level dynamics to be correctly recovered, the
components of the third-order moments tensor must also match those of the continuous
EDF. However, as observed in Fig. 3.2, none of the EDFs are able to recover the correct
diagonal components for this tensor. This shortcoming is not related to the equilibrium state
but, as shown in the Hermite expansion section, to the limited order of the Gauss-Hermite
quadrature used for first-neighbor stencils. In Fig. 3.2, it is observed that all three EDF's
considered there (second- and third-order Hermite expansion and entropic) have the same
moments. For the off-diagonal components of the third-order moments tensor however, as
shown in Fig. 3.3, different EDF's result in different behaviors. While Hermite expansions
of order higher than three exactly recover the correct moments, the second-order Hermite
expansion and entropic EDFs show some deviations. Although not exactly recovering the
correct moment the entropic EDF still closely follows its continuous counterpart even for
large Mach numbers. This could, in part, explain why the entropic model exhibits less
pronounced Galilean invariance problems as compared to the classical LBM with second-
order EDF at moderate Mach numbers. As such, in agreement with the CE development, it
is observed that in order to correctly recover the off-diagonal components of the third-order
moments tensor in 2-D, the third-order terms of the Hermite expansion must be included.
For the Fourier equation on the other hand, the components of the fourth-order moments
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Figure 3.2: (left) H;Zq) moment and (right) relative deviations ¢ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The red and blue lines are not visible as the green
lines fall exactly on top of them.
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Figure 3.3: (left) che%) moment and (right) relative deviations ¢ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The blue lines in the left plot fall exactly on the
black plain lines. They are also not visible in the right plot as they are equal to zero.
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tensor must also be correctly recovered. The diagonal components, i.e. H;iq) are shown in
Fig. 3.4. None of the EDFs considered here are able to follow the continuous curve for all
Mach numbers. As for the diagonal components of the third-order moments tensor this is
related to the limited degrees of freedom in the stencil. For the off-diagonal components of

10°
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4 |
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X

Figure 3.4: (left) Hiiq) moment and (right) relative deviations ¢ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The red lines are not visible as they coincide with

the blue ones.

the form HSZ)J with both ¢ < 3 and j < 3, only the fourth-order Hermite expansion is able to
correctly recover the continuous moments. For the other components, the limited symmetry
of the stencil results in discrepancies at moderate and high Mach numbers. Results are
displayed in Figs. 3.5 and 3.6.

The simple study of the behavior of different higher-order moments of the EDF's appearing
at different orders of the CE expansion clearly establishes the validity domain of the LB
scheme based on standard first-neighbor stencils. This validity domain and aliasing effects
between different moments caused by the quadrature are illustrated in Fig. 3.7. As shown
there, for a solver intended for Euler-level dynamics (without conservation of energy) the
second-order Hermite expansion is sufficient, while the entropic EDF needs corrections for
the diagonal components of the second-order moments tensor. To correctly recover NS level
dynamics (or Euler level with energy conservation) none of the considered EDF's can exactly
match the stress tensor. The third-order Hermite expansion (the EDF that matches the
larger number of components) still needs corrections for the diagonal components of the
third-order moments tensor. Finally, for Burnett level dynamics (or NS level with energy
conservation), as mentioned previously, even using the fourth-order Hermite expansion one
would need to include corrections for all components involving directional moments of order
higher than two.
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Figure 3.5: (left) Hg;‘gz moment and (right) relative deviations ¢ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line.

Figure 3.6: (left) Hfgg moment and (right) relative deviations ¢ for (in red) second- and (in
blue) third-order-Hermite polynomial expansion and (in green) entropic EDF. The continu-
ous moment is shown with black plain line. The red and blue lines are not visible as they
coincide with the green lines.
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Figure 3.7: Hierarchy of moments on the D2Q9 stencil. Moments correctly recovered with
(Green boxes) entropic, (Green+Red boxes) second, (Green+Red+Blue boxes) third and
(Green+Red+Blue+Yellow boxes) fourth-order EDFs. Boxes in gray are moments that can-
not be recovered on this stencil. Aliasing effects between moments induced by the quadrature
are shown with red arrows.

3.2 Bulk flow solver analysis: non-vanishing wave-numbers

The von Neumann (VN) stability analysis aims at studying the time evolution of a per-
turbation f; that is injected into the linearized discrete time evolution equations. The
perturbation is expanded as a combination of standing waves, whose propagation speed and
attenuation rate will be obtained as a result of the VN analysis. A positive attenuation rate
will result in a growth of the error at the corresponding wave-length and linear instability of
the solver for the set of parameters considered (7, Ma, etc). On the contrary, the scheme is
linearly stable if it remains negative for all wave-numbers.

Furthermore, the spectral behavior and accuracy can be readily analyzed by comparing the
spectral dispersions and dissipations to the theoretical modes obtained from the linearized
NS equations. The NS theoretical modes for an isothermal flow can be expressed as [109]:

W — -k — ivk?, (3.17a)

Dl; L+ g) k2, (3.17b)

wacoustic — (’U, + Cs) ke —i (

where D is the physical dimension of the system and k the wave-number vector. As a
consequence, the VN stability analysis can be used to evaluate the spectral behavior and
linear stability domain of a LBM for a given set of parameters. As such it can be perceived
as a tool to objectively evaluate the stabilization properties of different collision models, on
the basis of necessary conditions. The latter comes from the fact that the analysis relies
on a linearization step and as such gets the sufficient condition for stability only under the
linear regime assumption (small amplitude perturbations). It has been widely used in the
past to evaluate the stability properties of the lattice Boltzmann method. Interested readers
are referred to [147, 148, 149, 150, 54, 151, 109], among other sources.

42



3.2. Bulk flow solver analysis: non-vanishing wave-numbers

3.2.1 Methodology : The von Neumann formalism

Starting with a given set of coupled continuous/discretized PDEs, bound by periodic bound-
ary conditions, defined as:
L (fo,z,t) =0, (3.18)

where L is the time evolution operator, the equations have to be linearized in order to use
the VN method. To achieve this for the LB system of equations one can expand (first-order
Taylor-McLaurin expansion) the distribution function around a reference state f,, (p, u):

fo & fat for (3.19)

Qa(fa) = 6:Q0ul 7, + Japfs (3.20)

where Einstein’s notation (summation) over 3 is used, and for the sake of clarity, f, =
fo (p,@). Obviously, relying on a first-order expansion around the distribution function this
expansion is only valid in the linear regime (i.e. small perturbations around the reference
state). In addition, J,s is the Jacobian of the collision operator evaluated about fg, ie, Jog =
Of, 0:24| Tar Placing back these expressions into the discrete LB time-evolution equation:

Fo (@ + €abi,t +00) = fo (@,1) = Jagfo (,8) — (fo (@ + Cabi t +6) = fu (2,1) = 68%l7,),

~~
=0

(3.21)
and taking out the last terms on the RHS one gets:

fo (@ + €alit +0,) = (Sap + Jup) f5 (2, 1) , (3.22)

where 0,4 is the Kronecker delta function. Using the SRT collision operator for instance, we
can then re-write the linearized time-evolution equation as:

fo (@ + eabp, t +0,) = [(1 — %) Ous 5f J<€q } f3 (1), (3.23)

with J(eq 35f,§eq)|fﬁ and fz = f eq’N)( u). To compute the Jacobian matrix of the EDF,
knowmg that 0y, f, = dg, the following expressions can be used:

9;,a5” = 95, (p) Z s, =1, (3.24)

ﬁfﬁal = 0y, (pu) Z Cy 08, = (3.25)

Once re-written as a function of the conserved Hermite coefficients, computing the Jacobians
of higher-order components of the Hermite expansion is straightforward. Let us consider the
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second-order Hermite coefficient for example:

T
A el o g af @es+ (aﬁe‘” ® c5>

afﬁaéeq) = afﬁ ) = — o o (326)
a(() ) (a(() q))z a(() )
Eventually, for the second-order EDF the Jacobian reads:
9, a'lc?
T = w, (%O,a FHoo: 05,0 + Hoy fﬁ; : (3.27)

Detailed expression for the Jacobians of the different EDFs and collision operators are found
in appendix E. The last step of the VN analysis is to assume that perturbations f! are
monochromatic plane waves :

fi=Fyexpli(k -z —wut)],

where F,, is the wave amplitude, ¢ is the imaginary unit, ||k|| = k is the wave-number, and
w is the complex time frequency of the wave. k is related to the wave-length of f/, whereas
o~

J(w) and R(w) are related to its attenuation and propagation speed. By injecting these
perturbations into Eq. (3.22) one obtains the following eigenvalue problem of size @) (the
number of discrete velocities) :

MF = exp (—iw,)F, (3.28)

where F' is the eigenvector composed of all amplitudes. It is related to the eigenvalue
exp (—jw). M is the matrix associated to Eq. (3.22). In the present work, this matrix can
be expressed as :

M=FE[d+J], (3.29)

with
Eocﬂ = exp[_i(ca : k)]&xﬁ' (330)

It is important to notice that the matrix M and the eigenvalue problem (3.28) depend on
the mean flow (p,w), the wave-number (k, and k, in 2D) and the relaxation coefficient T,
or equivalently the kinematic viscosity v. This means that for each set of these parameters
the eigenvalue problem needs to be solved to obtain the corresponding values of R(w) and
3(w). Doing so, the spectral properties (dispersion and dissipation) can be obtained for any

given collision model.

3.2.2 Stability domain: Effect of equilibrium state

As mentioned previously, the equilibrium state is one of the most important components of a
kinetic scheme and controls, for the most part, the leading-order dynamics of the system (i.e.
the macroscopic PDEs of interest), but also the behavior of higher-order (errors, ghost modes)
terms. The effects of the EDF on leading-order terms were studied in previous sections. In
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this subsection, using the VN formalism we look at the effect of the EDF on the linear
stability domain. To do so the eigenvalue problem of the VN equations is solved for different
values of non-dimensional viscosities, over the entire wave-number space, i.e. k, and k, with
a resolution of 100 points in each direction. The highest Mach number resulting in negative
dissipation rates over all wave-numbers is retained as the linear stability limit. These limits
are shown in Fig. 3.8. Looking at those results a number of points are worth noting: For

s , d
0.6 y , / — 4
< / / /
2 0.4 ] " p 1 /
[
0.2 o’/ g ¢ 1 /f
. z/O/ f/ ,02{
)t ee -0~ r°
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Figure 3.8: Linear stability domains of SRT collision operator with EDFs of orders (from
left to right) two, three and four

all of these EDFs, regardless of the value of the non-dimensional viscosity (Fourier number),
the maximum stable Mach number never goes beyond Ma = /3 — 1 ~ 0.732. Furthermore
while the addition of third-order components appears not to have a large effect on the
stability domain, the fourth-order component (which does not affect the terms appearing
at the NS level) extends it. It is also worth noting that the entropic EDF, not illustrated
here but detailed in [152], was found to be linearly stable for all values of the Mach number
supported by the stencil, i.e. Ma = v/3, even for vanishing viscosities. An illustration of the
corresponding linear stability domain can be found in Fig. 7.5 in chapter 7. This in turn
confirms the effectiveness of the discrete EDF construction approach in guaranteeing linear
stability (by enforcing a discrete H-theorem).

Apart from extending the linear stability domain, the addition of the fourth-order component
results in more isotropic behavior especially for small values of the non-dimensional viscosity.
The directional stability domains obtained with different orders of the EDF are shown in
Fig. 3.9. Finally, one can readily confirm the assertion made in the previous subsections
concerning the effect of third-order Hermite terms on the deviatoric components of the
third-order moments tensor by looking at the spectral dissipation of physical modes. The
spectral dissipation of the shear modes of the third and second-order EDF for three different
Mach numbers are shown in Fig. 3.10. It is clearly observed that for the third-order EDF,
in the limit of vanishing wave-numbers, the obtained dissipations converge to the correct
value regardless of the Mach number. However for the second-order EDF signs of Galilean
invariance problems are clearly observed as the continuum limit of shear mode dissipation
changes with the Mach number.
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Figure 3.9: Illustration of anisotropy of linear stability domains for EDFs of orders (from left
to right) two, three and four, and for seven different non-dimensional kinematic viscosities,
ie. (—)5x107% ()1 x1073, (—)5 x 1073, (—)0.01, (—)0.05, (—)0.1, (—)0.5.
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Figure 3.10: Shear mode dissipation rate (normalized by its physical counterpart) for (left)
third- and (right) second-order EDF for three different Mach numbers, i.e. (in red) 0.1, (in
blue) 0.2 and (in green) 0.3. The continuum reference is shown with a plain black line.

The results obtained in this subsection also point to the fact that the SRT collision operator
becomes practically unusable below non-dimensional viscosities of 1072 — 10~*. Different
strategies, detailed in the first chapter, have been developed to allow simulations at lower

non-dimensional viscosities. We will analyze the spectral properties of some of these models
in the next subsections.
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3.2.3 Equilibration strategy I: Filtering out higher-order contri-
butions with regularization

As discussed in the second chapter, the regularization of the distribution function is an
approach developed to extend the stability domain of the SRT collision operator and enhance
the overall accuracy of the scheme. In order to evaluate the effect of the regularization step on
stability, both projection (second-order) and recursive regularization (third and fourth-order)
have been studied using the VN method. The linear stability domains are shown in Fig. 3.11
and compared to the SRT. The second-order projection regularized collision model does not
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Figure 3.11: Linear stability domains of (from left to right) second-order projection, third
and fourth-order recursive regularized collision operators. Stability domains of corresponding
SRT operators are shown with grey dashed lines.

seem to extend the stability domain of the scheme. On the contrary, in the limit of vanishing
non-dimensional viscosities it results in a reduced stability domain (as compared to its SRT
counterpart). However, the recursive regularized operators (both third and fourth-order)
significantly increase the maximum stable velocities for mid-range non-dimensional viscosities
(ie. 1075 < v§;/62 < 5 x 1072). At smaller viscosities the stability domains converge back
to those of their SRT counterparts. Alongside its effect on the linear stability domain, the
regularization step can also be observed to have a positive impact on the isotropy of the
collision operator. This effect can be observed in Fig. 3.12. The recursive regularization is
observed to counter-balance the presence of deviatoric (and absence of diagonal) components
of the third-order moments tensor and the resulting pronounced anisotropy along the x- and
y-axes.

To have a better understanding of how stabilization is achieved and which modes are
affected one can look at the spectral dissipation rates. While it is clear that ghost modes
are over-relaxed (by setting them directly to their equilibrium), it is unclear how physical
modes are affected by regularization. The spectral dissipation of second-order projection
and third-order recursive regularized collision models are shown in Fig. 3.13. While for the
second-order projection regularized collision operator the shear mode dissipation rate changes
sign past a threshold Mach number and becomes unstable, for the regularized operator the
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Figure 3.12: Orientation-dependence of stability domains for (from left to right) second-order
projection, third and fourth-order recursive regularized collision operators. Considered non-
dimensional viscosities are: (—)5 x 107*, ()1 x 1073, (—)5 x 1073, (—)0.01, (—)0.05,
(—)0.1, (—)0.5.
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Figure 3.13: Spectral dissipation of physical modes for (left) second-order project and (right)
third-order recursive regularized models with vd,/§2 = 107° for three Mach numbers: (in
red) 0.05, (in blue) 0.1 and (in green) 0.2.

filtering is observed to clearly work. As the velocity increases, the filtering decreases to lower
wave-numbers. This way wave-numbers at which modal interactions occur are filtered-out
and eigen-mode collisions are prevented [151]. This process however comes with very large
over-dissipation of moderately resolved features. For example at a Mach number of 0.05, as
shown in Fig. 3.13 flow structures resolved with 16 points or less experience at least a 50
percent increase in dissipation rate (as compared to the intended physical dissipation).
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3.2.4 Equilibration strategy II: Independent relaxation of ghost
moments, the minimalist example of the LKS

As a minimalist illustration of the concept of Generalized BGK collision operators we consider
the effect of the previously introduced LKS on stability. In this collision model, while the
second-order Hermite coefficients relax at a rate 7 tied to the fluid viscosity, other moments
are relaxed at a separate rate A tied, for the purposes of this section, to a separate viscosity
7 as: 5
n ¢
A= = + 3 (3.31)
In order to clarify the effect of this parameter on linear stability, a systematic VN study with
a wide range of parameters have been performed. The results are shown in Fig. 3.14. These
plots also provide comparison with the SRT and projection regularized collision operators.
As observed there, setting A = 1, or %%t = % (equivalent to regularization of the second-order
moments via projection), systematicglly lowers the stability limits, even compared to the
SRT.
It can be observed that the added degree of freedom in the model can help improve the

5
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Figure 3.14: Linear stability domain iso-contours of the LKS with EDF's of orders (from left
to right) two, three and four. The color bar shows the maximum achievable Mach number.

stability domain to some extent. It is also interesting to note that with an optimized value of
this parameter the LKS outperforms the second-order projection regularized model (equiv-
alent to A = 1).

It is also worth mentioning that the LKS (while resulting in marginal improvement of the
stability domain) does not affect the acoustic modes dissipation. As noted by P. Dellar, a
number of MRT models improve stability by over-damping acoustic modes, and therefore
modifying a physical parameter, namely the bulk viscosity coefficient [108]. The modus
operandi of the LKS is illustrated in Fig. 3.15 through the spectral dissipation of different
modes. The choice of higher second relaxation coefficient values mainly affects the ghost
modes (that are over-dissipated). This is in agreement with the basic principle of the regu-
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Figure 3.15: Effects of the second relaxation coefficient for 14,/ = 5x 10~* and Ma=0.1 on
(from left to right) dissipation of acoustic and shear modes, and dissipation of hydrodynamic
and kinetic modes. The dissipation curves of shear and acoustic modes for all values of 7d; /2
can not be clearly distinguished as they exactly fall onto each other.

larized collision operator. Furthermore, it can be seen that the second relaxation coefficient
does not affect the dissipation rate of acoustic modes.

This last assertion can be further shown by simulating dissipating acoustic waves in
the linear regime. Using a domain of size 64 x 2, and setting py = lkg/m?® and dp =
10~%kg/m? the dissipation rate of the acoustic modes were measured for different values of
the second relaxation coefficient and values of Kn=Ma/Re. The obtained results are depicted
in Fig. 3.16. As expected, and in agreement with spectral dissipation results the choice of the

T L1t
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Figure 3.16: Dissipation rate of acoustic modes using the LKS with different values of the
second relaxation coefficient versus SRT', obtained using the decaying acoustic wave test-case.
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3.2. Bulk flow solver analysis: non-vanishing wave-numbers

second relaxation coefficient does not affect the behavior of acoustic modes, as they exactly
follow their SRT counterparts.

3.2.5 Equilibration strategy III: Choice of basis moments, LKS vs
TRT

In the second chapter, it was mentioned that the choice of the basis moments in the context of
MRT collision operators can affect the behavior of the solver and its numerical properties. To
illustrate this effect, following the analysis of the LKS in the previous subsection, we present
corresponding results for the TRT. The linear stability domains for various orders of the EDF
and second relaxation coefficients are given in Fig. 3.17. For the sake of uniformity of the
analysis presented in this chapter, the notations used for the LKS are also adopted for the
TRT; The relaxation coefficient of odd moments is tied to a secondary viscosity coefficient n
as in Eq. 3.31. It is interesting to note that in the LKS, moments tied to Hermite polynomials

0.8
0.6
A=1/4 IR
02
0
10° 107 107'10° 10° 107 10'10° 02 10'10°
V(st/(st V&t/5$2 1/515/51;2

Figure 3.17: Linear stability domain of the TRT collision operator for EDF of orders (from
left to right) two, three and four. The color bar shows the maximum achievable Mach
number.

My € {Ho, Ha, Hy, Hazy, Hay2, Hazye b relax with viscosity n while for H,, € {H,2, Hy2, Hay ),
they are tied to v. For the TRT on the other hand, H,, € {Ho, H.2, Hy2, Hay, Haz,2 } are tied
to the physical viscosity while H,, € {H,, H,, Hao2y, Hoy2 } relax Wlth the second relaxation
coefficient. As such, similar to the LKS one expects the TRT not to affect acoustic modes
dissipation (This is readily confirmed by looking at Fig. 3.18 where acoustic modes of both
collision operators coincide). However, one expects to see differences in the ghost moments
II,2,2, II, and II,. This is confirmed by the spectral dissipation rates shown in Fig. 3.18.
The control of all products of the form A = ¢ (7% — 1/2) (r(evn) — 1/2), where 7(**) and
7(even) are the relaxation coefficients of any odd and even-order moment through the specific
decomposition operated in the TRT allows it to control the position of the wall when used
with the bounce-back rule. In the case of the LKS, the decomposition in Hermite space
does not allow for this using only two relaxation coefficients. For any modal decomposition
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Figure 3.18: Effects of the second relaxation coefficient for vd;/§2 = 5 x 10~* and Ma=0.1
on different modes using the (in blue) TRT and (in red) LKS models. The second relaxation
coefficient is set to 5 x 107 for both models.
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other than the one operated in the TRT, one would have to use the full set of independent
moments in order to control the wall position in the bounce-back rule. A detailed analysis
of this point can be found in [53].

3.2.6 Equilibration strategy IV: central moments

Central moments decomposition of phase-space (instead of raw moments) for the collision
operator, as detailed in the previous chapter, has been shown to allow for wider stability
domains [56, 153]. While reducing the Galilean invariance tied to higher orders, it is more
effective in de-aliasing relaxation of the different moments. Just as for the MRT collision
operator, a number of authors have argued that apart from the relaxation coefficient of
non-physical modes the choice of the moments space is a determining factor in the stability
and accuracy of the scheme [154]. Given that the effect of the moments basis has been
treated in previous sections, it will not be studied here anymore. With the emergence of
the central moments-based MRT operator another parameter (or free component) of the
collision operator gained attention: The order of the EDF. A number of authors argued
that instead of computing the corresponding equilibrium moments of the chosen basis (from
the discrete second-order EDF') one can use moments of the continuous Maxwell-Boltzmann
distribution in the collision operator to improve stability. This in turn was later shown to be
equivalent to using a higher-order Hermite expansion in the discrete EDF [127]. To clarify
some of these points, the linear stability domains of collision operators based on raw and
central moments were computed. Hermite polynomials were chosen as the moments basis
and all non-relevant (ghost) modes were relaxed at the same rate (independent from the
viscosity). In effect this is equivalent to the LKS collision operator applied in the local fluid
velocity frame (instead of a frame at rest). As such the free parameter controlling ghost
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moments relaxation is designated using the same variables. The obtained results are shown
Vot

in Fig. 3.19. It can be observed that by setting %%t = %3 one recovers the stability domain of
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Figure 3.19: Stability domain of a two relaxation time collision operator (similar to the LKS)
based on central moments instead of raw moments.

the SRT collision operator with fourth-order EDF. Furthermore, the optimal linear stability
domain is achieved when setting the relaxation coefficient of ghost moments to one, which
would be equivalent to regularization in the fluid frame. However, it is important to note that
the previous assertion only holds for the reduced search-space considered here, i.e. relaxing
all ghost moments at the same rate. To better understand the effect of applying the collision
operator in the fluid frame the stability domains of the (projection) regularized scheme in
the static (at rest) and fluid frame are compared in Fig. 3.20. One can clearly observe that
the transition to central moments has a rather pronounced effect on the stability domain
at small non-dimensional viscosities. Another observation is that the use of the full set of
Hermite polynomials in the EDF (fourth-order in the case of the D2Q9 stencil) does further
extend the stability domain.

Coreixas et al. [154] noted that a central moments collision operator in Hermite polynomial
space where all ghost modes are set to equilibrium is equivalent to the recursive regularized
scheme of the same order. This fact can also be observed in Fig. 3.20. The stability domain
of the central moments collision operator with fourth-order EDF corresponds to the one
found earlier for the recursive regularized model in Fig. 3.11.

3.3 Numerical applications
To better analyze and understand the operation mode of different collision operators studied

in this chapter two classical test-cases are considered in this section: (a) the 2-D periodic
shear layer and (b) the 3-D Taylor-Green vortex. Through these test-cases it will be shown
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Figure 3.20: Stability limits of (left) raw and (right) central multiple relaxation time collision
operator (Hermite coefficients are the chosen moments basis) for different orders of the EDF
(N). All relaxation coefficients except those tied to the shear and bulk viscosity are set to
one.

that aiming solely for the scheme maximizing the stability domain does not guarantee reliable
under-resolved simulations.

3.3.1 2-D periodic shear layer: Stability for under-resolved simu-
lations

The periodic shear layer test-case is an interesting 2-D configuration to assess the stability
and dispersion errors of a numerical scheme [155, 156]. As such, the ability of different
collision models to cope with under-resolved features will be studied through this test-case
here. This 2-D case is made up of two longitudinal shear layers, located at y = L/4 and
y = 3L/4, that evolve in a fully-periodic simulation domain of size L x L. Periodicity
allows to study the stability properties of the bulk solver without any effects from boundary
conditions [157]. As a result of a small perturbation introduced in the velocity field, the
shear layers roll-up —due to a Kelvin-Helmholtz instability— and eventually generate two
counter-rotating vortices. For many numerical schemes, the under-resolved simulations of
this test-case results in additional spurious vortices, ultimately leading to divergence (in
some cases the additional vortices are effectively dissipated and do not lead to blow-up).
Given that the formation of the additional vortices have been identified as non-linear effects,
cases leading to numerical blow-ups through these numerical artifacts are interesting to study
(especially when instabilities are not predicted by the linear analysis). The velocity field is
initialized through the following functions:

u; = uptanh [a (0.25 — [£ —0.5])], Vy (3.32a)
u, = updsin 27 (£40.25)], V= (3.32Db)
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where ug is the mean flow speed, a controls the thickness of the shear layer and ¢ determines
the amplitude of the perturbation. All simulations are performed at Re=30,000, at three
different resolutions, namely 32 x 32, 64 x 64 and 128 x 128. For all simulations the initial
velocity is set to ug = 0.04, while the perturbation amplitude and shear layer thickness are
respectively set to 6 = 0.05 and o = 80. Four different models are considered here: (a)
second-order projection regularized , (b) third-order recursive regularized, (c) fourth-order
LKS with free parameter optimized for widest stability domain and, (d) MRT based on
central Hermite moments (with all relaxation coefficients set to one except those affecting
viscosity). The vorticity fields obtained at t = t. = L/ug are shown in Fig. 3.21, where L
is the size of the box here equal to the number of grid-points in each dimension. Contrary

..

Figure 3.21: Vorticity fields for the periodic shear layer case at t = ¢. using (from left to right)
second-order projection regularized, third-order recursive regularized, LKS with fourth-order
EDF and MRT with central Hermite polynomials at three different resolutions (from top to
bottom): 32 x 32, 64 x 64 and 128 x 128

to the SRT collision operator (unstable for all considered resolutions), all models used in
this section were stable for all resolutions. The LKS (in resting frame), however, led to two
additional spurious vortices. The appearance of these spurious vortices is tied to dispersion
errors at large wave-numbers. While these dispersion errors, as shown previously, exist for
all collision models, they are filtered out due to the large hyper-viscosity introduced at those
wave-lengths for the other models. This effect will be studied in more details in the next
subsection. The formation of these additional vortices can also be observed in the time
evolution curves of the kinetic energy, Ej, as shown in Fig. 3.22. At approximately ¢t = 0.5¢.
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Figure 3.22: Normalized (left axes and plain lines) kinetic energy and (right axes and dashed
lines) kinetic energy dissipation rates at three different resolutions: (from left to right)
32 x 32, 64 x 64 and 128 x 128 using four different collision models: (in black) second-order
projection regularized, (in red) third-order recursive regularized, (in blue) fourth-order LKS
and (in green) central Hermite MRT.

a jump in the kinetic energy associated to the formation of these vortices can be observed
(for the LKS). This effect is less visible in the simulation at 128 as the simulation domain
is bigger and the overall kinetic energy is a global parameter. It can also be observed that
the central MRT and recursive regularized collision operators reproduce almost exactly the
same behavior.

It seems surprising that the second-order projection regularized operator is stable for all
these configurations, as referring to the VN analyses one would expect linear instabilities.
The absence of linear instabilities for this operator can be explained by a number of facts: (a)
small amplification factors, even though unstable, would require a very large number of time-
steps to lead to a blow up; (b) the fluid velocity not being above the stability threshold at all
domain points, low-velocity areas act as energy sinks by dissipating modes that are unstable
in larger velocity areas; (c) the reduced number of grid points itself operates as a filter,
limiting the maximum number of modes by the number of grid points. As such, unstable
modes not resolved by the simulation do not appear and result in a stable simulation. This
last assertion can readily be confirmed by performing VN analyses with different resolutions
as shown in Fig. 3.23.

3.3.2 3-D Taylor-Green vortex: Effect of ghost modes relaxation
on under and moderately resolved features

In order to study the effect of ghost modes relaxation rates on dissipation and dispersion
errors at moderate and large wave-numbers (structures resolved with four points or less)
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Figure 3.23: Effect of resolution on stability: maximum amplification max [¥ (w) 62/d;] in
the k, — k, space obtained using SRT collision operator with second-order EDF for three
different resolutions, (from left to right) 16 x 16, 64 x 64 and 128 x 128 points. Unstable wave-
numbers are shown with red contour lines, only visible as a very small dot in the right-most
figure.

the 3-D Taylor-Green vortex is studied here. This problem consist of an all-around periodic
cubic simulation domain, initialized using the following equations:

Uy = ug sin 7 cos ¥ cos 7, (3.33a)
Uy = —uq cos 7 sin ¥ cos 7, (3.33b)
u, = 0, (3.33¢)

p= Do+ pif (cos 22 +2) (cos 2 + cos %’) , (3.33d)

where L is the size of the box. For the purposes of the present study, the Reynolds number is
set to Re=1600 and ug to 0.1. The simulations are performed at three different resolutions,
i.e. 323, 64% and 128%. The LKS with a fourth-order EDF is used and different values of
the second relaxation coefficient are considered. The obtained results are then compared
to a well-resolved simulations (i.e. 5123) performed using the SRT collision models with a
fourth-order EDF. The energy spectra obtained from these simulations are summarized in
Fig. 3.24. Zoomed-in curves are shown in Fig. 3.25. These energy spectra clearly illustrate
the effect of the relaxation of higher-order moments on dissipation errors. For A = 1 (i.e.
second-order projection regularization) under-resolved flow features are consistently over-
damped regardless of the considered resolutions. This over-dissipation is observed to affect
even moderately resolved flow features. While lower values of the second relaxation coeffi-
cient result in higher energy concentration at higher wave-numbers, they do not necessarily
guarantee correct dispersion. The dispersion error can be observed by looking at the vortic-
ity iso-surfaces displayed in Fig. 3.26. Indeed, for smaller values of the free parameter, the
flow field is polluted by large wave-number features caused by dispersion error of small-scale
under-resolved features. To better distinguish structures caused by dispersion errors from
physical ones, the same field is shown in Fig. 3.27 for the reference simulation. Given that
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Figure 3.24: Energy spectra at t = 10¢. as obtained with different resolutions. The reference
result at 5123 using the SRT collision operator is shown with a black plain line.
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Figure 3.25: Energy spectra at ¢ = 10t. as obtained with (from left to right) 323, 64 and
1283 using the LKS collision model. The reference result at 5123 using the SRT collision
operator is shown with a black plain line.

for all three considered resolutions the grid-size is larger than the smallest scale, large wave-
number features (under-resolved with k£ > 7/2) are created and — if not dissipated — will
pollute numerically the flow field. This assertion is corroborated by the spectral dispersion
of the solver at viscosities and Mach numbers corresponding to those of the simulations, as
illustrated in Fig. 3.28. Above 7/2, corresponding to features resolved with four points or
less, there is a five percent error in the shear mode velocity experienced by the signal.
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Figure 3.26: Iso-surfaces of the z-component of vorticity w, = 0 (bottom view in the z-
direction, only the upper left quadrant —of the full domain as shown in Fig. 3.27— is shown)
at t = 10t obtained using the LKS at three different resolutions (from top to bottom): 323
643, 128 with five different values for the free parameter (from left to right): A =0.515, 0.53,
0.59, 0.65, 1.

3.4 Summary and closing remarks

When using a lattice Boltzmann solver on a stencil based on third-order quadratures there
are a number of key parameters to carefully consider:

e The choice of the order of the discrete EDF,
e The Galilean invariance for the dissipation rate of the acoustic modes,
e The choice of the collision operator.

e The choice of the free parameters in the different collision models (i.e. relaxation rates
and moments basis).

The choice of the order of the discrete EDF can be important with respect to different aspects.
The use of the classical second-order EDF leads to Galilean invariance in the dissipation rate
of the shear mode. This error becomes more and more important at intermediate and high
Mach numbers. As shown by the CE and higher-order moments error analysis, this problem
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Figure 3.27: Iso-surfaces of the z-component of vorticity w, = 0 (bottom view in the z-
direction) at t = 10t obtained using the SRT at resolutions 512% as the reference solution.
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Figure 3.28: Spectral dispersion of the shear mode using the SRT with fourth-order EDF,
for Ma = 0.172 and viscosities corresponding to TGV simulation with (in red) 32% and (in
blue) 1283 grid points. Reference is shown with black plain line.

is tied to the fact that the deviatoric components of the third-order moments tensor are not
correctly recovered. The addition of the fourth-order component of the EDF does not have
any effect on the stress tensor at the NS level. However, as shown by the spectral dissipation
and stability curves, it can have a non-negligible effect on the linear stability domain of the
solver regardless of the collision model.

The limited order of the quadratures does not allow first neighbor stencils to correctly recover
diagonal components of the third-order moments tensor. These components are tied to
the dissipation rate of normal (acoustic) modes. As such, regardless of the order of the
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EDF or the collision model, there is a Galilean invariance issue with the dissipation rate of
these modes. This error can only be removed (at the NS level) through the addition of a
correction term. Therefore, the presence of third-order components of the EDF along with
this correction term are necessary for acoustic studies.

Among the different collision operators studied in this chapter, the central moments MRT
and fourth-order recursive regularized schemes has the widest linear stability domains. This
is not surprising as by setting the moments basis to central Hermite polynomials and filtering
out ghost modes (by setting the corresponding relaxation coefficient to one) one recovers the
recursive regularized model. The central moments formulation, however, has the additional
advantage of allowing for variable relaxation of the ghost moments. As observed in the
parametric study of the LKS, fine tuning the free relaxation coefficients can extend the
stability domain and/or reduce the hyper-viscosity by the model. Reducing the hyper-
viscosity and allowing structures with larger wave-numbers to persist can also lead to the
presence of spurious oscillations coming from spectral dispersion inconsistency at these wave-
numbers. Furthermore, as opposed to the recursive regularized one, the central moments
formulation can also allows to eliminate the viscosity-dependence of the position of the
wall in the half-way bounce-back boundary condition, by correctly setting the values of the
corresponding relaxation coefficients.

Now that the properties of the basic isothermal LB formulation, and all more advanced
collision operators have been clarified, the next chapter will focus on presenting LB-based
solvers for the species and energy balance equations.
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Chapter 4

Species and Energy balance
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4.1. Introduction to macroscopic equations

4.1 Introduction to macroscopic equations

Before going into the details of the LB solvers for the energy and species mass balance
equations, let us introduce the macroscopic descriptions for multi-species reactive flows and
corresponding target equations.

4.1.1 Species mass balance equations

At the macroscopic level, similar to total mass and momentum, one can write balance equa-
tions for each species in the following form:

f%pY%4—‘7'p}%(1L%-v%)::Afk@k, (41)

where Y, = pp/p is the k' species mass fraction, M; the k* species molar mass, wy the
production rate (through chemical reactions) per unit volume and Vj, the diffusion velocity,
associated to non-equilibrium effects.

4.1.1.1 Production rate

The species production rate is a key component needing closure in the balance equation.
Let us consider a reactive gaseous flow consisting of Ny, species x,, k = 1,... Ny,. Chemical
reactions can be represented by a detailed chemical scheme involving [ elementary reactions
represented in the form:

Nsp Nsp
Z Vs X = Z VisXe, fori=1...1, (4.2)
k=1 k=1

/ 1 . . . . . . . .
where v, and v, are the i" reaction stoichiometric coefficients. These coefficients verify the
mass conservation through the following equation:

Nsp Nsp

> vy = v M;. (4.3)
k=1 k=1

The production rate of the k™ species W, can be computed from the reactions progress
rates g; as:

1
Gk =Y Vkitli (4.4)
i1

with:

{2 7°

(4.5)

The mass conservation can easily be shown by summing the species production rates and
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using Eq. 4.3:
Nep I Ny
> Mo = My (v — vj)a; = 0. (4.6)
k=1 i=1 k=1
The progress rate of the i reaction, ¢;, reads:
NSP / NSP "
gi = ki | ] Deel™ = ki [T Da)™, (4.7)
k=1 k=1

and involves the molar concentration of k' species, [xx] = pYi/My. The forward and reverse
reaction rate constants, ks and k,;, are expressed by an Arrhenius-type function. The
forward rate is:

__E%

where A; is the pre-exponential factor, §; the temperature exponent, F; the activation energy
of the i*" reaction and R the universal gas constant. The reverse reaction rate k,; is computed
using the equilibrium constant k{? as:

_ kg

kri = e (4.9)
The equilibrium constant is defined as [158]:
N,
Do\ kot Vhi ASY  AH?
k= == - —L 4.10
i (RT> P ( R~ RT )’ (4.10)

where py is the reference pressure, AH? and AS? are the enthalpy and entropy changes for

the it reaction:
Nep

AH = v Myhi(T), (4.11)
k=1

Nsyp

AS! =Y v Msi(T), (4.12)
k=1

where s and hy, are respectively the entropy and total enthalpy (taking into account sensible
and chemical contributions) of the k' species.

4.1.1.2 Diffusion velocity

First, it is useful to notice that by summing up Eq. 4.1 over all involved species:

Nsp Nsp Nsp Nsp
= =1

k=1 k=1

v~

~
Otp V- pu =0
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and comparing to total mass balance equation, one can easily show that the total diffusion

mass flux must vanishe:
Nep

> YiVi=0. (4.14)

Based on the Maxwell-Stefan kinetic theory, the diffusion velocities Vj should satisfy the
following system of equations [159, 160]:

Nsp Nsp T
XXy XXy D,{ Dk/ vT
(Ve = Vi) =dip + E — (———)— (4.15)
Yo Dy " Y1 PDyyr \ Yy Yo/ T

where D, is the binary diffusion coefficient, and X}, is the k' species mole fraction, related
to mass fraction Yy by:

Xp = —Y,. (4.16)

. 1
M:ZMka:— (4.17)

In Eq. 4.15, d; corresponds to the species diffusion driven forces:
dp = VX, + (X5, — V) —+”ZY,c F, —F)), (4.18)

with F), the external force exerted on the k" species. The last term on RHS of Eq. 4.15
corresponds to the Soert effect with D] the Ludwig-Soret diffusion coefficient of the k'™
species. Finally, the system of Eqs. 4.15 (rank of Ny, — 1) combined with Eq. 4.14 can
be inverted to obtain the diffusion velocities Vj. It should however be underlined that, in
reactive flow simulations, the inversion should be done at each point of space and time,
which will be very CPU time consuming when the gas flow consists of several tens of species.
Simplified diffusion are therefore employed for complex reactive flow systems such as:

o Hirschfelder-Curtiss approzimation: This model is generally used in the combustion
community [161]:

M,
Y, Vi = —DkﬁkVXk, (4.19)

where Dy, is the mixture-averaged diffusion coefficient, which can be modeled as:

1-Y,
Zk’;ék Xk' /Dkk' ‘

Dy = (4.20)
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The approximation introduces a number of shortcomings including, among others, non
conservation of overall mass. Indeed, when the species diffusion coefficients and/or mo-
lar mass are very different, this approximation does not conserve overall mass through
Eq. 4.14. A correction velocity V¢ is therefore employed to overcome this difficulty
[162] :

M,
Y,V = —DkﬁkVXk + Y, Ve, (4.21)
with
Nsp
c Mkl
Ve=> Dy VX (4.22)
K'=1

Fick approzimation: One of the simplest models is the so-called generalized Fick ap-
proximation [162]:
YiVii = =Dy VY, (4.23)

where Dy, is an effective species diffusion coefficient. Here again mass conservation is ob-
tained only if all species have the same diffusion coefficient, Dy = D. The overall mass
conservation issue is usually dealt with using one of the two following approaches|[162]:
(a) solving the species mass balance equation for Ny, — 1 species and computing the
mass fraction of the last species, with index Ny, at each point as:

Ngp—1

Yv,=1- > Yi (4.24)
k=1

or (b) introducing a so-called correction velocity V¢ [162] to explicitly enforce mass
conservation:

YiVi = =Dy VY, + Y,V (4.25)
with
Nsp
Ve=> " DyVY,. (4.26)
k=1

4.1.2 Energy balance equation

Let us now introduce the macroscopic energy equations, i.e. its different forms, in this
subsection. Following [162], starting with the total energy, ¢, = € +u?/2, with € the internal
energy, one gets:

Opet +V -peiu+V - q+ V- -pu—VRu:T =0, (4.27)

In this equation, T is the stress tensor, and q is the heat flux:

Nep

q=- VT +> phuiVi, (4.28)

k=1
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with A the thermal conductivity. The last term in Eq. 4.28 expresses energy transport due to
diffusion of species with different enthalpies h,. Making use of the relation between energy
and enthalpy, h; = ¢ + p/p, with hy = h + u?/2, one can write:

ophy +V -phyu —0p+V - q—V@u:T =0. (4.29)

Subtracting the kinetic energy u?/2 from Eqs. 4.27 and 4.29, one can get the balance equa-
tions for respectively the internal energy and enthalpy:

Ope+V -peu+V -q+pV -u—T : VRu=0, (4.30)

Oph+V -phu —0p—u-Vp+V -q—T : VRu=0. (4.31)

Finally, for flows involving multiple species and chemical reactions, more suitable forms of
the balance equations are found by relying on the concepts of sensible energy and enthalpy,
defined as:

Nsp Nsp
€s :e—ZAngk and hg :h—ZAthk,
k=1 k=1
and using
T T
€5 = / c,dI' — 71y and hg, = / cpdT.
To To

In these equations T is a reference temperature and Ae® and Ah{ are respectively the energy
and enthalpy of formation at this temperature and 7 = R/M. Heat capacities, enthalpy and
internal energy are calculated as:

Nap Nap
Cy = E Yicor and ¢, = E Yicpk,
k=1 k=1
Nsp Nsp

€= ZYM and h = ZYkhk.
k=1 k=1

The resulting balance equations are obtained as [162]:

Nsp

Opes + V- pesu +pV -u — V- AVT + V- (Zpkh&k‘/}f) —T:Vu=uwr, (432
k=1

and
Nep
Oiphs+V -phu—0p—u-Vp—V - AVT 4+ V. (Zpkh&k‘/}g) —T :VRu=uwp, (4.33)
k=1
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with
Nep

b = — Y AW M.
k=1

In addition to these two equations, balance equations for sensible total energy (also referred
to as total non-chemical energy) and enthalpy can also be written as:

Nsp

Opers +V-peu+V-pu—-V - AVI+V. <Z pkhs,k‘/k> —VRu:T=wp, (4.34)
k=1

and:
Nsp
Oiphys + V - phy st — p —V - AVT 4+ V - (Z pkhs,kvk> —~Vou:T=dwr (4.35)
k=1

Given that the interest of the present thesis lies in multi-species flows, the last four forms
of the energy balance equation, as expressed in Eqs. 4.32-4.35 will be used in the remainder
of the manuscript, and considered to be the target macroscopic equations for the developed
LB models.

4.1.3 Parameter evaluation

For detailed mixture-averaged simulations pure substance thermodynamic parameters such
as specific heat capacities and enthalpies are extracted from NASA’s Chemical Equilibrium
with Application (CEA) database, expressed as polynomials of the temperature [163]:

Mycpr (n—1)

T = ;Clka s (436&)
ﬂ = % + 25: MT("*I) (4.36b)
RT T & n ’

which can then be used to compute the mixture-average specific heat capacity as:

Np

&= iV (4.37)
k=1

The specific heat capacity at constant volume can readily be computed from the constant
pressure one, for an ideal gas, as:

R
Cok = Cpk — M (4.38)
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leading to the following expression for the mixture-averaged capacity:

R
Cp = Cp — —. 4.39
¢ Cp M ( )
The mixture-average fluid viscosity is computed using Wilke’s semi-empirical formula [164]

later modified by Bird [165]:

Nsp

_ X fik
ILL fr— Z Nsp y (440)
k=1 Zkle X @

2
1 Mo\ /2 V2 s N\ VA
v =75 (1 3t (”(5—5) (5¢) ) A

The mixture-averaged thermal conductivity is computed using averaging formulae proposed
by Burgoyne and Weinberg [166, 167, 168, 160]:

with:

Nsp NSP
- 1 1

4.2 Modified advection-diffusion LB solver for energy
balance equation

4.2.1 Theoretical background

After a thorough analysis of the properties and limitations of the isothermal LB flow solver,
this section will focus on developing the necessary tools in the context of the LB formulation
to solve the energy balance equations. The aim is to develop the simplest numerical scheme
appropriate for the targeted applications.

4.2.1.1 Brief overview of different LB formulations for energy balance

As explained in details in Chapter 2, the standard first-neighbor stencils based on third-
order quadrature are unable to correctly recover the moments involved in the energy balance
equation at the Euler and NS levels. To overcome these issues, there are two possible
approaches: (a) coupled and (b) decoupled; The first approach, called coupled here, is a
straight-forward extension of the discrete kinetic solver construction methods detailed in
Chapter 2. It consists in taking into account the additional constraints on higher-order
moments stemming from the energy balance equations at the Euler and NS levels and using
larger stencils to satisfy them. Given that the derivation of such formulations does not
involve new concepts (compared to the isothermal construction of Chapter 2) and that they
are not pursued in the present work, they will not be further detailed here. Interested readers
are referred to [169, 170, 171], among other sources.
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4.2. Modified advection-diffusion LB solver for energy balance equation

The decoupled formulation consists in using the LB flow solver for mass and momentum
balances and introducing an additional set of distribution functions for the energy balance
equation [172, 173, 174, 175, 176, 177, 178], reason why it also referred to as the double-
distribution formulation. This can be achieved through a mesoscopically-consistent approach
where the new distribution function is defined as (if one chooses to model internal energy):

(6w’
9="5" f (4.43)
Using Boltzmann’s equation and the new distribution function one can then derive a time-

evolution equation:

2
—u
D+ €Yot fu-@ 16 Vyu="""0g (4.44)
which can in turn, be discretized in phase-space and then in physical space and time to yield
a collision-streaming equation similar to that of the flow field. In its simplest form, this
approach reduces to a formulation usually referred to as the advection-diffusion or passive
scalar approach [175]. In this approach, similar to the classical LBM, the following discrete
time-evolution equation is used:
Oy Ot (eq) wr
Ga (®+ o, t+6;) = (1 — — ) ga (x,t) + —g7 (2, 1) + Opwo—, (4.45)
T T pCp

where both the discrete equilibrium state g&eq) and collision time 77 can be readily determined
through the CE expansion, as shown in the next subsection. In the limit of incompressible
flows the EDF is usually defined as:

2

2
0D (T, ) = wa T (1 [ Cu (Cru) u ) , (4.46)

2 4 9.2
cs 2ct 2c?

while the relaxation time is computed as:

i (4.47)

TT

While widely used in the literature for many different applications, especially under the
incompressible flow assumption [179, 180, 181], it is not well-suited for flows targeted in
the present work, i.e. flows involving variable density and thermodynamic properties. The
shortcomings of this model will be reviewed in the next subsection through a brief CE
analysis.
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4.2.1.2 CE analysis: shortcomings of the advection-diffusion LB model

Using the same formalism as that used in subsection 3.1.1, at order ! one gets:

e 0T + v uT = 0. (4.48)
At order €2, for a linear EDF:
(2) 1 (1) wf
e2:9,°T+vW. (5 - TT) {(0,uT + vV 2T} = ~L (4.49)
PCp

while a quadratic EDF would result in:

- (2)
1
2. 007 + v, (_ - TT> (YUl + VORT + VO . T(u @)} = L

. (4.50)

PCp

Summing up the equations at order ¢! and €2 one gets the following PDE, recovered by the
advection-diffusion scheme:
A A ‘
OT+V -ulT -V . VT -V. "~ guT+0 () = L. (4.51)

PCp c5pCp PCp

Comparing this equation with any one of the different forms of the energy balance equations
a number of shortcomings are observed:

e Variable density: Assuming constant specific heat capacity, and that one intends to
recover the energy balance equation in its non-conservative form, the advection term
recovered by the LB scheme is different from what it should be, i.e. w - VT. An
additional error is found in the diffusion term as it should be %V . %VT. Given that
¢, 1s assumed to be constant it is taken inside the first space-derivative to mimic the
expression in Eq. 4.51.

e Variable specific heat capacity: Lifting the assumption of a constant specific heat
capacity, the diffusion term should be ﬁV -AVT.

e The solver is only second-order accurate under diffusive scaling. Under acoustic scaling,

there is an error term, i.e. last term on the LHS, of the form V - ﬁ@tuT.
s P

Taking all those issues into account, to correctly recover the energy balance equation for
variable density and heat capacity, the time-evolution equation must include a correction
term ®,, defined as:

1
q)a = wa{TV -u+ A\VT - VpT} (452)
P
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Introducing this correction term in the CE expansion via:

1
D, = cw, VY - u+2 w, \VT - V—, (4.53)
h/_/ pcp
o ~- -
o

the PDE recovered at the Euler and NS levels changes to (under diffusive scaling):

, .
OT +u-VT — —V - AVT+0 () = =L (4.54)

PCp Py’

While leading to the correct macroscopic equation, this approach is not computationally
attractive as it involves non-local operators and complicated additional terms. Furthermore,
while correctly recovering the compressible form of the energy balance equation, the internal
energy formulation as proposed in [176, 177, 178] would need a number of complicated
non-conservative correction terms coming from the mixture-averaged nature of the targeted
balance equations. As such, in the next part, a LB model adapted to the mixture-averaged
formulation will be presented.

4.2.1.3 Advection-diffusion model for the mixture-averaged energy balance equa-
tion

For applications targeted in the present work, the balance of total sensible energy seems to
be the best choice, as all involved terms are in the conservative form, and easily recovered
with the LB scheme by correctly defining the discrete equilibrium state.

Before going into the details of the model, we must introduce non-dimensionalization
factors for the involved variables. As for the LB flow solver, the non-dimensionalization
strategy is essential to a stable scheme and controlled higher-order errors. As shown in [150]
in the limit of vanishing diffusion coefficient, the linear stability domain of the advection-
diffusion models tends towards the positivity area of the EDF. Given that the intent of the
present section is to recover the correct PDE by modifying the second-order moment of the
EDF, via EDF's of the general form:

1. 1
g((fq) = Wq a(()eq) + gag 0. 7'tl,cy + @ Z ag;q)HiQ,a ) (455)
s S i=x,y,2

it is clear that for the resting population to remain positive one must have:

(eq)
1 Qo
D2 e (4.56)
Qg

where D is the physical dimension of the flow. For moving populations, the following condi-
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tion guarantees positivity of all EDF's:

1+

(4.57)

1-D2ai” | _ |la™|

2E G| T gld
As such we introduce a reference energy per unit volume E™ with units J/m?, and a reference
temperature 77, not to be confused with the reference temperature Ty tied to the lattice
spacing and time-step. Therefore, the energy, temperature and pressure as employed in this
section are tied to their dimensional counterparts as:

rr p€t75

p Et,S - Eref? (4-58&)
/ p
P = E_ref’ (458b)
/ T
T'= =5 (4.58¢)

For the remainder of this subsection all energies and temperatures, unless stated otherwise,
are in non-dimensional form. The prime symbol is dropped for the sake of readability.
To correctly recover the target PDE, the transported variable, also zeroth-order moment of

the EDF, is:
'U,2 T
Zga = pEt,s =p (7 +/ EvdT> y (459)

To

while the first-order moment should be:

> cago = ples+1/p). (4.60)

«

and the second-order moment:

> iga =T (4.61)

«

Based on these three conditions and the orthogonality of Hermite polynomials one can readily
define a second-order discrete equilibrium state as:

. Hio 1
gD = wy | pers + (pers +p) - ; + (T = pers) 55 E Hiza | - (4.62)
~ SN— C( N———— 203 i—zy
(eq) (eq) (eq) =EY.z
ag a; aig

Going back to the reference energy and temperature, the following restriction would have to
be met to guarantee positivity of resting populations:

ref
D+1> T F

5 2 e T (4.63)
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Given the temperature-dependence of the sensible energy /enthalpy, a root-finding algorithm
must be employed to compute the temperature. The root of the following equation:

u2 T
s — — — / &,(T)dT = 0, (4.64)

To

is computed using the Newton-Raphson method where the n 4+ 1*! iteration is given as:
2 ™ _
€rs — 5 — fTo Co(T™)dT

Tn+1 — Tn
* co(T™)

(4.65)

In practice, starting with the temperature at the previous time-step as the first guess, it
takes on average only two iterations to get a converged value for the new temperature.
Using the CE analysis introduced in the previous section, at order ! one recovers the fol-
lowing balance equation for the proposed EDF:

el 8§1)p6t73 +vm. (pers +p)u =0, (4.66)

while at order 2 the following PDE is found:

1
e2: 0% ey, + V. (5 — o {VORT + Y (e +p)u} = 2. (4.67)

The last term, as shown in [182] can be accounted for via a correction defined as:

Wey, )
O, = — ( _— ) Co Oy (pers +p)u. (4.68)
cs 27r N
(eq)
a;

Furthermore, the relaxation coefficient is found to be:

B )\Tref N @
~o2pret 27

(4.69)

T
To account for viscous dissipation heating, we introduce a source term, =, such that:
Eo = eEV 4+ 220 1 0 (%) (4.70)

This expansion is justified by the fact that viscous dissipation is a non-equilibrium effect.
Being a non-equilibrium effect, it should not affect the energy balance equation at the Euler

level. Therefore:
> sl =0 (4.71)

Taking this new term into account and using the previously-listed restrictions on it, Eq. 4.67
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changes into:

1
g2 afg)pem +vm. (5 — ) {VOEAT + @(1) (pers +p)u} + VIO . (TT Z c2V | = w§?).

(4.72)
This in turn results in a new restriction on =, i.e.:
- 1
>_mreaZ)) = u (5 - ) I (£) + VO 11 (£}, (4.73)

where Hgo)( fa) and H:(J,O)( fa) are the moments of the flow field distribution function and 7
is the fluid solver relaxation coefficient. To satisfy all restrictions on this term, it can be

defined as: L 1/9
=, = 112 Co (fo = F9), (4.74)

T

which can also be written in a more efficient way as:

1—-27

2TT

Ea(w7t> = u(w,t) " Cq [fa(w+ca5tat+5t> —fa(il’:,t)]. (475)

To sum up, the time-evolution equation for the proposed model can be expressed as:

0.
ga(m + Ca5t, t+ (5,5) — ga(a:,t) = T_t (géeq)(m,t) — ga(m7t)) + Ea + @a + 5twawT, (476)
T

where the expressions for the EDF, source terms &, and =, are respectively given by
Eqgs. 4.62, 4.68 and 4.75.

It is also worth mentioning that in some cases, to have better control over higher-order errors
and wider stability domains the MRT collision operator is used. The independent Hermite
coefficients are used as the moments basis. For example, on the D2Q5 stencil, the following
moments are used as basis:

II = {Ily, I, IT,,, 11,2, TL 2 }, (4.77)
resulting in the following equilibrium moments:
H(eq) = {,061‘,,57 p(et,s + p/p)uxa p(ﬁt,s + p/p)ui’ﬁ C§<T - petvs)’ CE(T B pet’s)}' (478>

The transformation matrices on different stencils are detailed in appendix D. The proposed
model along with the different source terms will be assessed in the next subsection through
a variety of numerical applications.
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4.2.2 Numerical application and validation

4.2.2.1 Heat diffusion with variable thermal conductivity

As first validation cases, two pseudo 1-D configurations involving variable thermal conduc-
tivities are studied: (a) solid two-layer medium and (b) single layer slab with temperature-
dependent conductivity. In the first configuration, the simulation domain is composed of
two regions, of lengths Ly = L/2 and L, = L/2, with the same heat capacities and densities
but different thermal diffusion coefficients, i.e. A = 0.1 and Ay = 0.2 W/m.K. In the second
configuration the thermal conductivity is defined as a linear function of the temperature as:

M) = AT, (4.79)

where 7% = 300 K and A(7*) = 0.1 W/m.K. In both cases the domain size is set to L = 100
m, fixed temperatures are enforced at the top and bottom boundaries, i.e. T; = 1000 and
T, = 300 K respectively, while periodic boundary conditions are applied in the x-direction.
The governing equations are:

O,T — O,\(T,y)d,T = 0,
T(y=0)=T., (4.80)
Tly=L)="T,.

The analytical steady-state solution for the two-block configuration can be found to be:

Ty-T.
/\l<%h+—l,;1,l)y + T, y<Iy

T(y) = T T, Y4 T, — (=Tl L <y<L (4.81)
ey sy vt

while for the second configuration one gets:

T@y:¢(%m+f£%@ﬂ0. (4.82)

For both cases the grid and time-step sizes are set to unity. The steady-state solutions
obtained using the proposed solver are compared to their analytical counterparts in Fig. 4.1.
As expected the solver is in excellent agreement with analytical solutions.

4.2.2.2 Transient diffusion with variable specific heat capacity

Previous test-cases have shown that the proposed scheme is able to model heat diffusion with
variable thermal conductivity. This next configuration is used to prove that it is also able to
deal with diffusion with variable specific heat capacities and densities. It consists of a domain
of height L = 3m, with three regions of lengths L, Ly and L, all set to L/3 in the present
study. At the upper and lower boundaries constant temperatures, respectively T, = 300K
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4.2. Modified advection-diffusion LB solver for energy balance equation

900 |

0 25 50 75 100 0 25 50 75 100
y[m] y[m]
Figure 4.1: Steady-state (red plain line) analytical and (black symbols) numerical solu-

tions, obtained using the proposed model, for the (left) two-block and (right) temperature-
dependent thermal conductivity test-cases.

and T}, = 1000K, are enforced. The specific heat capacities and thermal conductivities of
each region are shown in Table 4.1. The simulation is performed setting d, = 3 x 107?m and

I | AIW/m.K] | ¢[J/kg.K] | L[m] |
Zone 1 