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Introduction

L'étude de l'existence et de la régularité des solutions d'équations aux dérivées partielles, qu'elles soient d'évolution ou stationnaires, linéaires ou non linéaires, est une question centrale qui représente un large pan actif de la recherche mathématique.

Le sujet principal de cette thèse a trait à l'étude microlocale fine des effets régularisants des équations d'évolution associées à deux classes d'opérateurs non-autoadjoints. La première classe est celle des opérateurs non-locaux d'Ornstein-Uhlenbeck fractionnaires qui apparaissent comme la somme d'une diffusion fractionnaire possiblement dégénérée et d'un opérateur de transport linéaire. La seconde est constituée des opérateurs différentiels quadratiques accrétifs, définis par la quantification de Weyl de formes quadratiques définies sur l'espace des phases, à valeurs complexes et de parties réelles positives. Du fait d'une possible non-commutation entre les parties autoadjointe et anti-autoadjointe de ces deux classes d'opérateurs, des phénomènes d'hypoellipticité partiels peuvent se produire permettant aux semi-groupes associés de jouir de propriétés de régularisation et de décroissance dans certaines directions spécifiques de l'espace des phases. Ces directions sont précisément décrites en utilisant notamment des techniques issues de l'analyse microlocale. La première application de cette étude se situe dans le domaine des opérateurs sous-elliptiques. Grâce à des résultats provenant de la théorie de l'interpolation, on déduit les propriétés souselliptiques dont jouissent les opérateurs d'Ornstein-Uhlenbeck fractionnaires et les opérateurs différentiels quadratiques accrétifs sur tout l'espace. La seconde application se situe quant à elle en théorie du contrôle. En utilisant une version récemment revisitée de la méthode de Lebeau-Robbiano, on obtient des résultats positifs de contrôlabilité à zéro pour les équations paraboliques associées aux opérateurs d'Ornstein-Uhlenbeck fractionnaires et aux opérateurs différentiels quadratiques accrétifs et posées sur tout l'espace euclidien, en établissant des estimations d'observabilité précises pour les semi-groupes engendrés par ces deux classes d'opérateurs.

Le présent manuscrit, divisé en deux grandes parties, est organisé de la façon suivante. La première partie, rédigée en langue française, est constituée de trois chapitres. Le premier est consacré à rappeler quelques notions et enjeux de théorie de la contrôlabilité à zéro. Les deux chapitres suivants sont chacun destinés à présenter en détails les deux classes d'opérateurs considérées ainsi que les résultats obtenus durant cette thèse, sans démonstration (ou presque) mais avec mise en contexte bibliographique. La deuxième partie de ce manuscrit, composée de trois chapitres et rédigée quant à elle en langue anglaise, est plus technique et contient les démonstrations des résultats énoncés dans la première partie. Elle est suivie d'une annexe visant d'une part à présenter la démonstration d'un résultat d'observabilité, à introduire les espaces de type Gevrey et de Gelfand-Shilov et à donner des résultats concernant l'ordre d'un symbole quadratique en un point de l'espace des phases. Un certain nombre de notations sont utilisées tout au long du manuscrit. Celles-ci sont introduites au fur et à mesure de leur apparition, et sont également rassemblées dans le dernier chapitre de cette annexe. 

Première partie

Problèmes étudiés et résultats obtenus

(∂ t + A)f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
où A est un opérateur non borné qui engendre un semi-groupe fortement continu sur L 2 (R n ), tout comme son adjoint, et ω ⊂ R n est un borélien de mesure de Lebesgue strictement positive, avec 1 ω sa fonction caractéristique. Rappelons que la notion de contrôlabilité à zéro est définie comme suit :

Définition 1.1 (Contrôlabilité à zéro). Soit T > 0. L'équation (1.1.1) est dite contrôlable à zéro depuis l'ensemble ω en temps T si, pour n'importe quelle donnée initiale f 0 ∈ L 2 (R n ), il existe un contrôle h ∈ L 2 ((0, T ) × R n ), supporté dans (0, T ) × ω, telle que la solution semi-groupe de l'équation (1.1.1) satisfait f (T, •) = 0. D'après la méthode de dualité hilbertienne (Hilbert Uniqueness Method), introduite par J. L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] et dont on peut aussi trouver une présentation dans le livre [START_REF] Coron | Control and nonlinearity[END_REF] (Théorème 2.44) de J. M. Coron, la contrôlabilité à zéro de l'équation (1.1.1) est équivalente à l'observabilité du système adjoint (1.1.2) (∂ t + A * )g(t, x) = 0, (t, x) ∈ (0, +∞) × R n , g(0, •) = g 0 ∈ L 2 (R n ).

On rappelle la définition de la notion d'observabilité :

Définition 1.2 (Observabilité). Soit T > 0. On dit que l'équation (1.1.2) est observable depuis l'ensemble ω en temps T s'il existe une constante C T > 0 telle que, pour toute donnée initiale g 0 ∈ L 2 (R n ), la solution semi-groupe de (1.1.2) satisfait

(1.1.3) g(T, •) 2 L 2 (R n ) ≤ C T T 0 g(t, •) 2 L 2 (ω) dt.
La constante C T > 0 est appelée coût de contrôle en temps T > 0.

Comme l'expliquent K. Beauchard et K. Pravda-Starov dans l'introduction de leur article [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF], l'étude de la contrôlabilité à zéro des équations paraboliques dégénérées posées sur l'espace euclidien, de la forme (1.1.1), a été encore assez peu explorée. Ce n'est pas le cas en ce qui concerne ces mêmes équations posées sur des domaines bornés Ω de R n , pour lesquels plusieurs comportements ont été mis en lumière : contrôlabilité en tout temps T > 0 depuis des ensembles de contrôles ouverts quelconques ω ⊂ Ω, contrôlabilité à zéro à partir d'un temps minimal T > T 0 > 0 ou bien nécessité d'imposer une condition géométrique sur l'ensemble de contrôle ω ⊂ Ω pour obtenir de la contrôlabilité. On renvoie de nouveau à l'introduction de [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] pour un état de l'art détaillé sur ce sujet.

La seule équation du type (1.1.1) pour laquelle la contrôlabilité à zéro est bien comprise est celle de l'équation de la chaleur, correspondant au cas où A = -∆ x . On dispose en effet depuis les travaux récents [START_REF] Egidi | Sharp geometric condition for null-controllability of the heat equation on R d and consistent estimates on the control cost[END_REF][START_REF] Wang | Observable set, observability, interpolation inequality and spectral inequality for the heat equation in R n[END_REF] d'une condition géométrique nécessaire et suffisante sur 1. CONTROLABILITE A ZERO D'EQUATIONS PARABOLIQUES le sous-ensemble de contrôle ω ⊂ R n qui assure la contrôlabilité à zéro de cette équation en tout temps T > 0. Cette condition est la notion d'ensemble épais introduite dans la section suivante. Dans cette thèse, on montre que cette notion d'épaisseur est une condition suffisante sur l'ensemble de contrôle ω ⊂ R n assurant la contrôlabilité à zéro en tout temps T > 0 de plusieurs classes d'équations paraboliques posées sur l'espace euclidien. Précisément, on établira ce résultat pour les équations associées à certaines classes d'opérateurs d'Ornstein-Uhlenbeck fractionnaires et d'opérateurs quadratiques accrétifs.

Une méthode classique en théorie du contrôle est la méthode dite de Lebeau-Robbiano. Elle fut introduite par G. Lebeau et L. Robbiano dans l'article [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] pour étudier la contrôlabilité à zéro de l'équation de la chaleur posée sur des domaines bornés avec condition de Dirichlet, et permet d'obtenir des résultats d'observabilité pour certaines classes d'équations paraboliques linéaires. De manière générale, cette méthode requiert deux ingrédients de natures différentes : une inégalité spectrale pour le support de contrôle et une estimation de dissipation pour la solution semi-groupe de l'équation. Dans ce travail, nous allons utiliser une version récemment revisitée de cette méthode, due à K. Beauchard et K. Pravda-Starov [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Théorème 2.1), et qui s'énonce comme suit : Théorème 1.3 (Beauchard, Pravda-Starov). Soient Ω une partie ouverte de R n , ω un sous-ensemble borélien de Ω de mesure de Lebesgue positive, (π k ) k≥1 une famille de projections orthogonales définies sur L 2 (Ω) et (e -tA ) t≥0 un semi-groupe de contraction fortement continu sur L 2 (Ω). On suppose qu'il existe des constantes c 1 , c 1 , c 2 , c 2 , a, b, t 0 , m > 0 avec a < b, telles que l'on ait l'inégalité spectrale (1.1.4) ∀g ∈ L 2 (Ω), ∀k ≥ 1,

π k g L 2 (Ω) ≤ c 1 e c 1 k a π k g L 2 (ω) ,
ainsi que l'estimation de dissipation

(1.1.5) ∀g ∈ L 2 (Ω), ∀k ≥ 1, ∀t ∈ (0, t 0 ), ( 1 
-π k )(e -tA g) L 2 (Ω) ≤ c 2 e -c 2 t m k b g L 2 (Ω) .
Alors il existe une constante C > 1 telle que l'on ait l'inégalité d'observabilité suivante ∀T > 0, ∀g ∈ L 2 (Ω), e -T A g Une démonstration de ce théorème est présentée dans l'Annexe A. On remarque que l'inégalité spectrale (1.1.4) est une propriété propre au support de contrôle ω ⊂ R n , tandis que l'estimation de dissipation (1.1.5) est une propriété intrinsèque du semi-groupe engendré par l'opérateur A. Dans les deux sections suivantes, on discute ces deux types d'estimations.

Inégalités spectrales et ensembles épais

Comme on vient de le voir, établir des résultats positifs de contrôlabilité à zéro pour des équations du type (1.1.1) grâce à une stratégie à la Lebeau-Robbiano requiert notamment d'établir (ou d'utiliser) des inégalités spectrales de la forme (1.1.4). Dans cette section, on se propose de discuter de ces inégalités pour des familles (π k ) k≥1 de projections orthogonales coupe-fréquences. L'obtention de telles inégalités spectrales est liée à l'étude de principes d'incertitudes et à la notion de paires fortement annulantes. Etant donnés deux boréliens S, Σ ⊂ R n , la paire (S, Σ) est dite fortement annulante s'il existe une constante C = C(S, Σ) > 0 telle que pour tout g ∈ L 2 (R n ),

g L 2 (R n ) ≤ C g L 2 (R n \S) + g L 2 (R n \Σ) ,
avec g la transformée de Fourier de la fonction g. On remarque qu'une paire (S, Σ) de boréliens de R n est fortement annulante si et seulement s'il existe une constante D = D(S, Σ) > 0 telle que pour toute fonction g ∈ L 2 (R n ) telle que g1 R n \Σ = 0, (1.2.1)

g L 2 (R n ) ≤ D g L 2 (R n \S) .
Une telle inégalité est en quelque sorte une version non quantitative de l'inégalité spectrale (1.1.4) qui nous intéresse, avec ω = R n \S. On renvoie le lecteur à l'introduction de l'article [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] pour une discussion détaillée des notions de paire fortement et faiblement annulante, dont cette section s'inspire. La description exhaustive de telles paires semble hors de portée à l'heure actuelle. Néanmoins, il existe une description complète des ensembles mesurables S ⊂ R n qui forment une paire annulante avec un ensemble mesurable borné Σ ⊂ R n . Elle est donnée par le théorème suivant, dû à V. N. Logvinenko et J. F. Sereda [START_REF] Logvinenko | Equivalent norms in spaces of entire functions of exponential type[END_REF].

Théorème 1.4 (Logvinenko, Sereda). Soient S, Σ ⊂ R n des ensembles boréliens, avec Σ borné. Les assertions suivantes sont équivalentes : 1. La paire (S, Σ) est fortement annulante. 2. L'ensemble R n \ S est épais.

La notion d'épaisseur est définie comme suit : Définition 1.5 (Epaisseur). Soient γ ∈ (0, 1] et a = (a 1 , . . . , a n ) ∈ (R * + ) n . On considère le parallélogramme C = [0, a 1 ] × . . . × [0, a n ] ⊂ R n . Un ensemble ω ⊂ R n est dit (γ, a)-épais s'il est mesurable et satisfait

∀x ∈ R n , Leb(ω ∩ (x + C)) ≥ γ n j=1 a j ,
où Leb désigne la mesure de Lebesgue sur R n . Un ensemble ω ⊂ R n est dit épais s'il existe γ ∈ (0, 1] et a ∈ (R * + ) n tels que ω est (γ, a)-épais. Enfin, un ensemble ω ⊂ R n est dit γ-épais à l'échelle L > 0, avec γ ∈ (0, 1], lorsque ω est (γ, a)-épais avec a = (L, . . . , L) ∈ (R * + ) n . Comme mentionné dans la section précédente, cette notion d'ensemble épais s'est révélée fondamentale en théorie du contrôle, depuis un résultat récent établissant que cette condition appliquée au support de contrôle ω ⊂ R n est nécessaire et suffisante pour assurer la contrôlabilité à zéro en tout temps T > 0 de l'équation de la chaleur posée sur l'espace euclidien, cf Section 3.6 du Chapitre 2.

Pour pouvoir exploiter l'inégalité spectrale (1.2.1) lors de l'utilisation du résultat d'observabilité Théorème 1.3, on a besoin de connaître la dépendance de la constante D(S, Σ) par rapport aux ensembles S et Σ. Dans le cas particulier où Σ est un parallélépipède, on dispose du résultat quantitatif suivant, démontré par O. Kovrijkine dans l'article [START_REF] Kovrijkine | Some results related to the Logvinenko-Sereda theorem[END_REF] (Théorème 3) : Théorème 1.6 (Kovrijkine). Il existe une constante universelle K ne dépendant que de la dimension n, que l'on peut supposer être plus grande que e, telle que pour tout parallélépipède J dont les axes sont parallèles aux axes de coordonnées et de longueurs b 1 , . . . , b n > 0, et tout ensemble (γ, a)-épais ω ⊂ R n , on a

∀g ∈ L 2 (R n ), Supp g ⊂ J, g L 2 (R n ) ≤ K n γ K( a,b +n) g L 2 (ω) , avec a, b = a 1 b 1 + . . . + a n b n .
Le Théorème 1.6 fournit une inégalité spectrale dont on se servira systématiquement dans la suite. Elle est présentée dans le résultat suivant : Corollaire 1.7. Considérons (π k ) k≥1 la famille des projections orthogonales coupefréquences données par

π k : L 2 (R n ) → g ∈ L 2 (R n ) : Supp g ⊂ {ξ ∈ R n : |ξ| ≤ k} ,
avec | • | la norme euclidienne canonique de R n . Pour tout ensemble épais ω ⊂ R n , il existe des constantes c > 0 et c > 0 telles que

∀g ∈ L 2 (R n ), ∀k ≥ 1, π k g L 2 (R n ) ≤ c e ck π k g L 2 (ω) .
Démonstration. Soit ω ⊂ R n un ensemble (γ, a)-épais, avec γ ∈ (0, 1] et a ∈ (R * + ) n . Pour tout g ∈ L 2 (R n ), par définition des projections π k , la fonction π k g est supportée dans la boule euclidienne fermée de R n centrée en 0 et de rayon k, et donc dans l'hypercube [-k, k] n , pour tout k ≥ 1. On déduit alors du Théorème 1.6 l'estimation

∀g ∈ L 2 (R n ), ∀k ≥ 1, π k g L 2 (R n ) ≤ c e ck π k g L 2 (ω) ,
où les deux constantes c > 0 et c > 0 sont données par c = 2K(a 1 + . . . + a n ) ln

K n γ > 0 et c = K n γ nK > 0.
Cela termine la démonstration du Corollaire 1.7.

Mentionnons que des inégalités spectrales similaires à celle donnée par le Corollaire 1.7 ont également été établies pour des projections orthogonales sur les premiers modes de la base de Hermite de L 2 (R n ). Citons notamment le résultat [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] (Théorème 2.1) de K. Beauchard, P. Jaming et K. Pravda-Starov : Théorème 1.8 (Beauchard, Jaming, Pravda-Starov). Considérons (π k ) k≥0 la famille de projections orthogonales sur les premiers modes de la base de Hermite

π k : L 2 (R n ) → Vect C {Φ α } α∈N n , |α|≤k ,
avec (Φ α ) α∈N n la base de Hermite de L 2 (R n ). Soit ω ⊂ R n un ensemble γ-épais à l'échelle L > 0, avec γ ∈ (0, 1]. Il existe une constante C = C(L, γ, n) > 0 dépendant des paramètres γ, L > 0 et de la dimension n ainsi qu'une constante universelle κ = κ(n) > 0 ne dépendant que de la dimension n, telles que

∀g ∈ L 2 (R n ), ∀k ≥ 0, π k g L 2 (R n ) ≤ C κ γ κL √ k π k g L 2 (ω) .

A propos des estimations de dissipation

Le deuxième ingrédient requis dans l'utilisation du Théorème 1.3 est l'estimation de dissipation (1.1.5), dont on discute à présent. Dans toute cette section, on considère (π λ ) λ≥0 la famille de projections orthogonales coupe-fréquences

π λ : L 2 (R n ) → g ∈ L 2 (R n ) : Supp g ⊂ {ξ ∈ R n : |ξ| ≤ λ} .
Obtenir une estimation de dissipation du type (1.1.5) pour cette famille de projections orthogonales requiert de manipuler un semi-groupe jouissant de propriétés régularisantes spécifiques. Plus précisément, il est nécessaire et suffisant que ce semi-groupe régularise dans un espace de type Gevrey G s (R n ), avec s > 0, dont on renvoie à l'Annexe B pour la définition. En effet, comme le montrent les Lemmes B.1 et B.4 de cette même annexe, si g ∈ L 2 (R n ) est une fonction dont les hautes fréquences décroissent exponentiellement de la façon suivante

(1.3.1) ∃c 1 , c 2 > 0, ∀λ ≥ 0, ( 1 
-π λ )g L 2 (R n ) ≤ c 1 e -c 2 λ s ,
alors g est de régularité Gevrey G 1/s (R n ) et réciproquement, toute fonction de cet espace vérifie une estimation haute-fréquence du type précédent. A la vue de l'inégalité spectrale donnée par le Corollaire 1.7, et d'après la discussion précédente, obtenir des résultats positifs de contrôlabilité à zéro pour l'équation (1.1.1) depuis des ensembles de contrôle ω ⊂ R n épais grâce au Théorème 1.3, avec la famille de projections orthogonales coupe-fréquence (π λ ) λ≥0 , nécessite que le semi-groupe engendré par l'opérateur A * régularise dans un espace de type Gevrey G s (R n ) d'indice 0 < s < 1, i.e. dans un espace de fonctions ultra-analytiques. C'est dans cette situation que l'on se placera systématiquement par la suite pour établir des résultats positifs de contrôlabilité à zéro pour les équations paraboliques qui nous intéressent. Ces équations sont celles associées à certaines classes d'opérateurs d'Ornstein-Uhlenbeck fractionnaires et d'opérateurs quadratiques accrétifs. De plus, pour obtenir des estimations de dissipation du type (1.1.5), on s'appuiera sur une étude fine générale des effets régularisants des semi-groupes associés à ces opérateurs, effectuée systématiquement au préalable, ainsi que sur les Lemmes B. Dans la définition précédente, l'opérateur Tr p (-Q∇ 2 x ) représente le multiplicateur de Fourier de symbole Qξ, ξ p , et Bx, ∇ x désigne l'opérateur différentiel donné par

Bx, ∇ x = n i=1 n j=1 B i,j x j ∂ x i , B = (B i,j ) 1≤i,j≤n .
Dans toute la suite, on s'intéresse à la réalisation maximale de l'opérateur P sur L 2 (R n ), c'est à dire qu'on le munit du domaine (2.1.2)

D(P ) = u ∈ L 2 (R n ) : P u ∈ L 2 (R n ) .
Notre objectif est dans un premier temps d'étudier les propriétés de base de ces opérateurs, et de montrer qu'ils engendrent des semi-groupes fortement continus sur L 2 (R n ). Dans un second temps, on établira les propriétés régularisantes de ces semi-groupes. En application de cette étude, on établira les estimations sous-elliptiques vérifiées par les opérateurs d'Ornstein-Uhlenbeck fractionnaires et on s'intéressera à la contrôlabilité à zéro des équations paraboliques associées, posées sur tout l'espace. Une partie des résultats présentés dans ce chapitre est issue de l'article [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF], écrit en collaboration avec J. Bernier et soumis pour publication.

Un cas particulier d'opérateur d'Ornstein-Uhlenbeck fractionnaire que l'on rencontrera dans toute la suite est l'opérateur de Kolmogorov fractionnaire donné par

(2.1.3) K = (-∆ v ) p + v • ∇ x , (x, v) ∈ R 2n .
Il s'agit de l'opérateur défini en (2.1.1) dans le cas particulier où les matrices B et Q sont données respectivement par (2.1.4)

B = 0 n I n 0 n 0 n et Q = 2 1 p 0 n 0 n 0 n I n .
L'opérateur K joue un rôle important en théorie cinétique puisque l'équation de Kolmogorov fractionnaire

(∂ t + K)u(t, x, v) = 0, (t, x, v) ∈ (0, +∞) × R n × R n , u(0, •, •) = u 0 ∈ L 2 (R n ),
avec 0 < p < 1, est un modèle simplifié de l'équation de Boltzmann spatialement inhomogène sans cut-off. On renvoie le lecteur aux références [START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF][START_REF] Gressman | Global classical solutions of the Boltzmann equation without angular cut-off[END_REF][START_REF] Lerner | Gelfand-Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] pour plus de détails à ce sujet.

Dans tout ce chapitre, on considère l'opérateur d'Ornstein-Uhlenbeck L associé aux matrices B et Q, donné par (2.1.5)

L = - 1 2 Tr(Q∇ 2 x ) + Bx, ∇ x , x ∈ R n .
Il s'agit de l'opérateur défini en (2.1.1) dans le cas particulier où p = 1. Ces opérateurs agissant sur des espaces de Lebesgue à poids ont été grandement étudiés au cours des deux dernières décennies. La structure de ces opérateurs a été analysée dans [START_REF] Lanconelli | On a class of hypoelliptic evolution operators[END_REF], tandis que leurs propriétés spectrales sont étudiées dans [START_REF] Metafune | Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures[END_REF][START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF]. Les effets régularisants des semi-groupes associés ont été étudiés dans [START_REF] Farkas | On a class of hypoelliptic operators with unbounded coefficients in R N , Commun[END_REF][START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF][START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF][START_REF] Lunardi | On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures[END_REF][START_REF] Metafune | Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures[END_REF][START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF] et des estimations sous-elliptiques globales ont été établies dans [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF][START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF][START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF][START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF]. On réfère également le lecteur aux travaux [START_REF] Da Prato | On the Ornstein-Uhlenbeck operator in spaces of continuous functions[END_REF][START_REF] Lunardi | Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n[END_REF] où l'action de l'opérateur L sur des espaces de fonctions continues a été étudiée. Rappelons que l'hypoellipticité de l'opérateur d'Ornstein-Uhlenbeck L est caractérisée par les assertions équivalentes suivantes : (2.1.7)

Rank B Q = n, où la matrice de taille n × n 2 B Q = Q, B Q, . . . , B n-1 Q ,
est obtenue en écrivant consécutivement les colonnes des matrices B j √ Q, avec 0 ≤ j ≤ n -1.

La condition de Hörmander est vérifiée :

∀x ∈ R n , Rank L(X 1 , X 2 , . . . , X n , Y 0 )(x) = n, les champs de vecteurs Y 0 et X 1 , . . . , X n étant définis par

Y 0 = Bx, ∇ x , X i = n j=1
Q i,j ∂ x j , i = 1, . . . , n, avec L(X 1 , X 2 , . . . , X n , Y 0 )(x) l'algèbre de Lie qu'ils engendrent au point x ∈ R n . La condition de Kalman (2.1.7) apparaitra de manière naturelle par la suite.

Propriétés de base des opérateurs

Dans une première partie, nous nous intéressons aux propriétés de base des opérateurs d'Ornstein-Uhlenbeck fractionnaires, l'objectif à court terme étant de démontrer que ces opérateurs engendrent des semi-groupes fortement continus sur L 2 (R n ). On étudie notamment leurs graphes, leur caractère accrétif et nous donnons l'expression de leurs opérateurs adjoints. La connaissance de certaines de ces propriétés seront indispensables pour étudier la contrôlabilité à zéro des équations d'Ornstein-Uhlenbeck fractionnaires posées sur tout l'espace (connaissance des adjoints) ainsi que pour établir les propriétés sous-elliptiques dont bénéficient les opérateurs d'Ornstein-Uhlenbeck fractionnaires (caractère accrétif). Les principales propriétés que nous obtenons pour ces opérateurs sont résumées dans le résultat suivant Théorème 2.1. Soit P l'opérateur d'Ornstein-Uhlenbeck fractionnaire défini en (2.1.1) et équipé du domaine (2.1.2). Les propriétés suivantes sont vérifiées : 1. L'opérateur P est fermé, 2. L'opérateur P + 1 2 Tr(B) est maximal accrétif, c'est à dire ∀u ∈ D(P ), Re P u, u

L 2 (R n ) + 1 2 Tr(B) u 2 L 2 (R n ) ≥ 0.
3. L'adjoint de l'opérateur P est donné par

P * = 1 2
Tr p (-Q∇ 2 x ) -Bx, ∇ x -Tr(B), avec domaine

D(P * ) = u ∈ L 2 (R n ) : P * u ∈ L 2 (R n ) .
Grâce au théorème précédent, on peut démontrer que l'opérateur P engendre un semigroupe fortement continu (e -tP ) t≥0 sur L 2 (R n ). En plus, nous allons être capable de donner une formule explicite pour les opérateurs d'évolution e -tP . Une telle formule a déjà été établie par A. Kolmogorov dans l'article [START_REF] Kolmogoroff | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF] pour les opérateurs d'Ornstein-Uhlenbeck (2.1.5) hypoelliptiques. Pour tout t > 0 et u ∈ L 2 (R n ), cette formule s'écrit (2.2.1) e -tL u = 1 (2π)

n 2 √ det Q t R n e -1 2 Q -1
t y,y u(e -tB • -y) dy, où la matrice symétrique positive Q t est celle définie en (2.1.6). L'inversibilité des matrices Q t est une des caractérisations de l'hypoellipticité des opérateurs d'Ornstein-Uhlenbeck comme on l'a rappelé en section précédente. Grâce à des calculs de transformée de Fourier, on peut montrer que cette formule se réécrit sous la forme suivante pour tout

t ≥ 0 et u ∈ L 2 (R n ) e -tL u = exp - t 2 1 0
Qe αtB T D x 2 dα u(e -tB •).

La démonstration de ce fait est présentée en Sous-Section 4.1.2 du Chapitre 4. Par ailleurs, l'existence d'une mesure invariante µ pour le semi-groupe de Markov (e -tL ) t≥0 , i.e. d'une mesure de probabilité sur R n vérifiant

∀t ≥ 0, ∀u ∈ C b (R n ), R n (e -tL u)(x) dµ(x) = R n u(x) dµ(x),
où C b (R n ) désigne l'espace des fonctions continues et bornées sur R n , est connue [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF] (Section 11.2.3) pour être équivalente à la localisation suivante du spectre de la matrice B, σ(-B) ⊂ z ∈ C : Re z < 0 .

Lorsque cette condition est vérifiée, la mesure invariante est unique et est donnée par (2.2.2)

dµ(x) = e -1 2 Q -1 ∞ x,x (2π) 
n 2 √ det Q ∞ dx avec Q ∞ = +∞ 0
e -sB Qe -sB T ds.

La notation L 2 µ (R n ) sera utilisée par la suite pour désigner l'espace L 2 (R n , µ). Dans ce travail, on démontre que l'opérateur P engendre un semi-groupe fortement continu sur L 2 (R n ) et on donne une formule explicite pour les opérateurs d'évolution associés, généralisant la formule (2.2.1) de A. Kolmogorov : Théorème 2.2. L'opérateur d'Ornstein-Uhlenbeck fractionnaire P défini en (2.1.1) et équipé du domaine (2.1.2) engendre un semi-groupe fortement continu (e -tP ) t≥0 sur

L 2 (R n ) qui satisfait pour tout t ≥ 0 et u ∈ L 2 (R n ), e -tP u L 2 (R n ) ≤ e 1 2 Tr(B)t u L 2 (R n ) .
De plus, chaque opérateur d'évolution e -tP est explicitement donné par la formule suivante ∀t ≥ 0, e -tP = exp -t 2 1 0 Qe αtB T D x 2p dα e -t Bx,∇x .

C'est grâce aux formules explicites données par le théorème précédent que nous allons pouvoir étudier les effets régularisants des opérateurs d'évolution e -tP engendrés par l'opérateur P .

Effets régularisants des semi-groupes

Une fois acquise l'existence des semi-groupes engendrés par les opérateurs d'Ornstein-Uhlenbeck fractionnaires, il est naturel de s'intéresser à leurs propriétés régularisantes. Commençons tout d'abord avec un exemple simple.

Exemple 2.3. Grâce au théorème de Plancherel et à une étude de fonction immédiate, on constate que le semi-groupe engendré par le laplacien fractionnaire satisfait l'estimation suivante : pour tout m ≥ 1, ξ 1 , . . . , ξ m ∈ R n , t > 0 et u ∈ L2 (R n ),

ξ 1 , ∇ x . . . ξ m , ∇ x e -t(-∆x) p u L 2 (R n ) ≤ 2 -m 2p t m 2p m j=1 |ξ j | (m!) 1 2p u L 2 (R n ) .
Ainsi, le semi-groupe de la chaleur fractionnaire régularise dans l'espace de type Gevrey G 1/(2p) (R n ) en tout temps t > 0.

Notre objectif est de généraliser ce que l'on vient d'observer pour le laplacien fractionnaire. Précisément, on cherche à décrire les sous-espaces vectoriels Σ ⊂ R n tels que des estimations de la forme

ξ 1 , ∇ x . . . ξ m , ∇ x e -tP u L 2 (R n ) ≤ C t,m,ξ 1 ,...,ξm u L 2 (R n ) ,
soient vérifiées pour tout m ≥ 1, ξ 1 , . . . , ξ m ∈ Σ et t > 0, où C t,m,ξ 1 ,...,ξm > 0 est une constante strictement positive. La notation •, • représente la forme bilinéaire symétrique sur C n définie en (E.0.1). Un autre objectif sera de décrire aussi finement que possible la constante C t,m,ξ 1 ,...,ξm > 0 par rapport à l'entier m ≥ 1 et aux vecteurs ξ 1 , . . . , ξ m ∈ Σ, au moins pour des temps courts 0 < t 1. Lorsque l'espace vectoriel Σ coïncidera avec l'espace entier R n (comme dans l'exemple précédent), on parlera d'effets régularisants globaux tandis que lorsque Σ sera un sous-espace vectoriel strict de R n (ce qui sera le cas de manière générale), on parlera d'effets régularisants partiels.

Pour pouvoir mener à bien cette étude, on a besoin de considérer l'espace vectoriel S ⊂ R n défini par l'intersection de noyaux suivante La structure de cet espace vectoriel, intrinsèquement lié aux matrices B et Q, va jouer un grand rôle dans l'étude des opérateurs d'Ornstein-Uhlenbeck fractionnaires et des semigroupes qu'ils engendrent. On va notamment montrer que c'est l'orthogonal euclidien canonique de cet espace S qui contient les directions régularisantes des opérateurs d'évolution e -tP , i.e. Σ = S ⊥ est l'unique espace vectoriel maximal qui répond au problème précédent. Par définition, on peut considérer 0 ≤ r ≤ n-1 le plus petit entier tel que l'espace vectoriel S s'écrit

(2.3.2) S = r j=0 Ker Q(B T ) j .
Cet entier r jouera un grand rôle dans les sections à venir. Il apparaitra notamment dans les estimations sous-elliptiques globales de la Section 2.4 ainsi que dans les inégalités d'observabilité de la Section 2.5. L'introduction de cet espace vectoriel est en grande partie motivée par la notion d'espace singulier d'une forme quadratique définie sur l'espace des phases, présentée dans la Section 3.2 du Chapitre 3. On renvoie à l'Exemple 3.11 de ce même chapitre où le lien entre l'espace singulier des opérateurs d'Ornstein-Uhlenbeck généralisés et l'espace vectoriel S est décrit. Afin de décrire précisément la dépendance des constantes C t,m,ξ 1 ,...,ξm > 0 par rapport aux vecteurs ξ 1 , . . . , ξ m pour des temps courts dans la suite, nous avons besoin d'introduire la notion d'indice d'un vecteur ξ 0 ∈ S ⊥ . Considérons pour cela les espaces vectoriels V 0 , . . . , V r ⊂ R n définis pour tout k ∈ {0, . . . , r} par (2.3.3)

V k = k j=0 Ker Q(B T ) j .
Les orthogonaux euclidiens canoniques de ces espaces forment une stratification de l'espace vectoriel S ⊥ d'après (2.3.2), i.e.

(2.3.4)

V ⊥ 0 . . . V ⊥ r = S ⊥ . A partir de là, on peut définir l'indice 0 ≤ k ξ 0 ≤ r de tout vecteur ξ 0 ∈ S ⊥ par (2.3.5) k ξ 0 = min 0 ≤ k ≤ r : ξ 0 ∈ V ⊥ k .
Dans ce travail, en utilisant les formules explicites données par le Théorème 2.2, on généralise le résultat observé dans l'Exemple 2.3 en montrant que les semi-groupes d'Ornstein-Uhlenbeck fractionnaires régularisent partiellement en tout temps t > 0 dans des espaces de type Gevrey : Théorème 2.4. Soit P l'opérateur d'Ornstein-Uhlenbeck fractionnaire défini en (2.1.1) et équipé du domaine (2.1.2). On considère 0 ≤ r ≤ n -1 le plus petit entier qui satisfait

(2.3.2). Alors il existe des constantes c > 1 et T > 0 telles que pour tout m ≥ 1, ξ 1 , . . . , ξ m ∈ S ⊥ , 0 < t < T et u ∈ L 2 (R n ), ξ 1 , ∇ x . . . ξ m , ∇ x e -tP u L 2 (R n ) ≤ c m e 1 2 Tr(B)t t k ξ 1 +...+k ξm + m 2p m j=1 |ξ j | (m!) 1 2p u L 2 (R n ) ,
où 0 ≤ k ξ j ≤ r désigne l'indice du vecteur ξ j ∈ S ⊥ , l'orthogonalité étant prise par rapport à la structure euclidienne canonique de R n .

Ainsi, le semi-groupe d'Ornstein-Uhlenbeck fractionnaire (e -tP ) t≥0 possède des effets régularisants G 1/(2p) partiels. De plus, l'asymptotique en temps court de m différentiations de ce semi-groupe dans les directions données par les vecteurs ξ 1 , . . . , ξ m ∈ S ⊥ est donnée par O(t

-k ξ 1 -...-k ξm -m 2p
) et dépend donc des indices k ξ 1 , . . . , k ξm de ces différents vecteurs.

Exemple 2.5. Considérons K l'opérateur de Kolmogorov fractionnaire défini en (2.1.3). Un calcul immédiat montre que l'espace S associé aux matrices

B et Q données par (2.1.4) vaut (2.3.6) S = Ker Q ∩ Ker QB T = {0}. L'entier 0 ≤ r ≤ 2n -1 associé défini en (2.3.2) est donc égal à 1. On déduit du Théorème 2.4 qu'il existe des constantes c > 1 et T > 0 telles que pour tout (α, β) ∈ N 2n , 0 < t < T et u ∈ L 2 (R 2n ), ∂ α x ∂ β v (e -tK u) L 2 (R 2n ) ≤ c |α|+|β| t (1+ 1 2p )|α|+ |β| 2p (α!) 1 2p (β!) 1 2p u L 2 (R 2n ) ,
la matrice B étant de trace nulle. Les opérateurs d'évolution e -tK régularisent donc dans l'espace de type Gevrey G 1/(2p) (R n ) en tout temps t > 0. Notons que ce fait avait déjà été observé par Y. Morimoto et C.J. Xu dans l'article [START_REF] Morimoto | Ultra-analytic effect of Cauchy problem for a class of kinetic equations[END_REF] (sans estimation qualitative toutefois).

Un cas particulier important est celui où l'espace S est réduit à zéro (comme dans l'exemple précédent). Cette condition est équivalente au fait que la condition de Kalman (2.1.7) soit vérifiée (voir le Lemme 4.17 pour une démonstration de ce fait). Dans ce cas, le Théorème 2.4 et une récurrence immédiate impliquent qu'il existe des constantes c > 1

et T > 0 telles que pour tout α ∈ N n , 0 < t < T et u ∈ L 2 (R n ), (2.3.7) ∂ α x (e -tP u) L 2 (R n ) ≤ c |α| e 1 2 Tr(B)t t (r+ 1 2p )|α| (α!) 1 2p u L 2 (R n ) ,
puisque l'indice de n'importe quel vecteur ξ 0 ∈ S ⊥ satisfait 0 ≤ k ξ 0 ≤ r par définition. Dans ce cas, le semi-groupe (e -tP ) t≥0 régularise dans l'espace de type Gevrey G 1/(2p) (R n ) en tout temps t > 0. On peut cependant obtenir des estimations plus générales que celles (2.3.7) comme l'illustre le théorème suivant. C'est ce résultat dont on se servira pour obtenir de la contrôlabilité à zéro pour les équations d'Ornstein-Uhlenbeck fractionnaires posées sur l'espace euclidien.

Théorème 2.6. Soit P l'opérateur fractionnaire d'Ornstein-Uhlenbeck défini en (2.1.1) et équipé du domaine (2.1.2). On suppose que la condition de Kalman (2.1.7) est satisfaite. Alors il existe des constantes c > 1 et T > 0 telles que pour tout q > 0, 0

< t < T et u ∈ L 2 (R n ), |D x | q e -tP u L 2 (R n ) ≤ c 1+q e 1 2 Tr(B)t t ( 1 2p +r)q q q 2p u L 2 (R n ) , où 0 ≤ r ≤ n -1 est le plus petit entier qui satisfait (2.3.2).
Les estimations données par le Théorème 2.6 généralisent bien les estimations (2.3.7). En effet, si q = N ≥ 1 est un entier non nul, on dispose de l'inégalité N N ≤ e N N !, cf (E.0.4), et on retrouve bien l'estimation (2.3.7) à partir du Théorème 2.6.

A la vue du Théorème 2.4, on peut se demander si les directions de S ⊥ sont les seules en lesquelles on peut différentier les opérateurs d'évolution e -tP . Le résultat suivant donne une réponse positive à cette question, et montre que le résultat du Théorème 2.4 est optimal.

Théorème 2.7. Soit P l'opérateur fractionnaire d'Ornstein-Uhlenbeck défini en (2.1.1) et équipé du domaine (2.1.2). On considère S l'espace vectoriel associé aux matrices B et Q défini par (2.3.1). S'il existe t > 0 et ξ 0 ∈ R n tels que l'opérateur ξ 0 , ∇ x e -tP soit borné L 2 (R n ), alors ξ 0 ∈ S ⊥ , l'orthogonalité étant prise par rapport à la structure euclidienne canonique de R n .

Pour terminer cette section, signalons que l'étude des effets régularisants des semigroupes engendrés par les opérateurs d'Ornstein-Uhlenbeck hypoelliptiques (2.1.5) admettant la mesure invariante µ donnée par (2.2.2) et agissant sur l'espace de Lebesgue associé L 2 µ (R n ), a été menée dans une série de travaux par A. Lunardi [START_REF] Lunardi | On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures[END_REF], B. Farkas et A. Lunardi [START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF], M. Ottobre, G. Pavliotis et K. Pravda-Starov [START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF], et M. Hitrik, K. Pravda-Starov et J. Viola [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF]. Dans ce dernier travail, les trois auteurs montrent [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] (Corollaire 3.2, Corollaire 3.3) que la solution de type semi-groupe du problème de Cauchy

(∂ t + L)u(t, x) = 0, (t, x) ∈ (0, +∞) × R n , u(0, •) = u 0 ∈ L 2 µ (R n ), satisfait pour tout t > 0, m ≥ 1 et (x 1 , ξ 1 ) . . . (x m , ξ m ) ∈ R 2n , ( x 1 , x + ξ 1 , D x ) . . . ( x m , x + ξ m , D x )e -tL u 0 ∈ L 2 µ (R n
), et donnent une estimation de la norme de ces opérateurs en fonction de paramètres intrinsèquement liés aux directions (x 1 , ξ 1 ) . . . (x m , ξ m ) ∈ R 2n .

Estimations sous-elliptiques

Dans cette partie, on s'intéresse aux propriétés sous-elliptiques L 2 des opérateurs d'Ornstein-Uhlenbeck fractionnaires. Dans l'article [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF], M. Bramanti, G. Cupini, E. Lanconelli and E. Priola ont obtenu des estimations globales L p , avec 1 < p < +∞, pour l'opérateur d'Ornstein-Uhlenbeck hypoelliptique L défini en (2.1.5). Afin de présenter leur résultat, rappelons que l'opérateur L est hypoelliptique si et seulement si la condition de Kalman (2.1.7) est vérifiée et que dans ce cas, l'espace vectoriel S défini en (2.3.1) est réduit à zéro, comme on l'a déjà remarqué. En conséquence, l'espace R n se stratifie de la manière suivante 

(2.4.1) V ⊥ 0 . . . V ⊥ r = R n , d'
L devient L = - 1 2 Tr( Q∇ 2 x ) + Bx, ∇ x , x ∈ R n , où les matrices B et Q sont définies comme suit. Soit p 0 = dim V ⊥ 0 et p j = dim V ⊥ j - dim V ⊥ j-1 pour tout 1 ≤ j ≤ r. La suite d'entiers ainsi construite satisfait p 0 ≥ p 1 ≥ p 2 ≥ . . . ≥ p r ≥ 1.
D'une part la matrice symétrique positive Q est la matrice par blocs donnée par

Q = Q 0 0 0 0 ∈ M n (R),
avec Q 0 une matrice symétrique définie positive de taille p 0 . D'autre part, la matrice B admet la structure par blocs suivante

B =         * * . . . * * B1 * . . . * * 0 B2 . . . * * . . . . . . . . . * * 0 . . . 0 Br *         ∈ M n (R),
la matrice Bj étant de taille p j ×p j-1 et de rang p j pour tout 1 ≤ j ≤ r. En exploitant cette forme de l'opérateur d'Ornstein-Uhlenbeck hypoelliptique L, M. Bramanti, G. Cupini, E.

Lanconelli and E. Priola montrent dans [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] (Théorème 1) que pour tout 1 < p < +∞, il existe une constante

C p > 0 telle que pour tout u ∈ C ∞ 0 (R n ), p 0 i,j=1 ∂ 2 x i ,x j u L p (R n ) ≤ C p Lu L p (R n ) + u L p (R n ) .
En revenant dans les anciennes coordonnées (2.1.5), ces estimations s'écrivent de la façon suivante : pour tout 1 < p < +∞, il existe une constante c p > 0 telle que pour tout

u ∈ C ∞ 0 (R n ), |P 0 D x 2 u L p (R n ) ≤ c p Lu L p (R n ) + u L p (R n ) ,
où P 0 désigne la projection orthogonale sur l'espace vectoriel V ⊥ 0 . Dans le cas p = 2, le théorème de Plancherel permet de réécrire l'inégalité précédente sous la forme

(2.4.2) | QD x 2 u L 2 (R n ) ≤ c 2 Q Lu L 2 (R n ) + u L 2 (R n ) .
Ce résultat donne des estimations L p dans les directions elliptiques mais ne fournit aucun contrôle dans les directions plus dégénérées R 2n \ V ⊥ 0 . La propriété d'hypoellipticité de l'opérateur L doit cependant permettre d'obtenir des contrôles dans les directions nonelliptiques.

Dans ce travail, on s'intéresse uniquement au cas L 2 et on établit les estimations souselliptiques vérifiées par l'opérateur P en toute généralité.

Théorème 2.8. Soit P l'opérateur d'Ornstein-Uhlenbeck fractionnaire défini en (2.1.1) et équipé du domaine (2.1.2). Il existe une constante c > 0 telle que pour tout u ∈ D(P ),

r k=0 Q(B T ) k D x 2p 1+2kp u L 2 (R n ) ≤ c P u L 2 (R n ) + u L 2 (R n ) , où 0 ≤ r ≤ n -1 est le plus petit entier qui satisfait (2.3.2).
Lorsque la condition de Kalman (2.1.7) est satisfaite, le théorème précédent permet d'établir une estimation sous-elliptique globale L 2 pour les opérateurs d'Ornstein-Uhlenbeck fractionnaires.

Corollaire 2.9. Soit P l'opérateur d'Ornstein-Uhlenbeck fractionnaire défini en (2.1.1) et équipé du domaine (2.1.2). On suppose que la condition de Kalman (2.1.7) est satisfaite. Alors il existe une constante c > 0 telle que pour tout u ∈ D(P ), 

r-1 k=0 Q(B T ) k D x 2p 1+2kp u L 2 (R n ) + D x 2p 1+2rp u L 2 (R n ) ≤ c P u L 2 (R n ) + u L 2 (R n ) , où 0 ≤ r ≤ n -
D x 2p(1-δ) u L 2 (R n ) P u L 2 (R n ) + u L 2 (R n ) ,
avec une perte de dérivées 0 ≤ δ < 1 par rapport au cas elliptique donnée par

δ = 2rp 1 + 2rp .
Exemple 2.10. Soit K l'opérateur de Kolmogorov fractionnaire défini en (2.1.3). Le Théorème 2.8 fournit l'existence d'une constante c > 0 telle que pour tout u ∈ D(K),

D x 2p 1+2p u L 2 (R 2n ) + D v 2p u L 2 (R 2n ) ≤ c Ku L 2 (R 2n ) + u L 2 (R 2n ) .
Mentionnons que dans leur travail [START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF], B. Farkas et A. Lunardi ont étudié les propriétés sous-elliptiques vérifiées par les opérateurs d'Ornstein-Uhlenbeck hypoelliptiques (2.1.5) admettant la mesure invariante µ définie en (2.2.2) et agissant sur l'espace de Lebesgue L 2 µ (R n ) associé à cette mesure. Plus précisément, ils ont obtenu [START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF] (Théorème 8) une injection du domaine de ces opérateurs dans l'espace de Sobolev anisotropique

D(L) ⊂ H 2,2/3,2/5,...,2/(1+2r) (R n , µ) ⊂ H 2/(1+2r) (R n , µ),
dont on renvoie à la Sous-section 3.2 de [START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF] pour la définition, avec 0 ≤ r ≤ n -1 le plus petit entier qui satisfait (2.3.2). L'inclusion D(L) ⊂ H 2/(1+2r) (R n , µ) a été retrouvée ensuite par M. Ottobre, G. Pavliotis et K. Pravda-Starov dans l'article [START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF] (Proposition 2.3).

Problèmes de contrôlabilité à zéro

Dans la dernière partie de ce chapitre, on étudie la contrôlabilité à zéro des équations d'Ornstein-Uhlenbeck fractionnaires posées sur tout l'espace, i.e. des équations d'évolution (2.5.1)

(∂ t + P )f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
avec P l'opérateur d'Ornstein-Uhlenbeck fractionnaire défini en (2.1.1) et ω ⊂ R n un borélien de mesure strictement positive. Dans toute cette section, on se place dans un cadre hypoelliptique en supposant que la condition de Kalman (2.1.7) est satisfaite. On a vu dans le Corollaire 2.9 de la section précédente que dans ce cas, l'opérateur P vérifie une estimation sous-elliptique globale L 2 . La mention de cette propriété de sous-ellipticité est purement informative, celle-ci n'intervenant dans aucune des démonstrations des résultats présentés dans cette section. Si cette équation n'a pas été étudiée de manière générale pour tout réel p > 0, elle l'a été dans le cas particulier où p = 1. K. Beauchard et K. Pravda-Starov ont notamment montré dans l'article [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Théorème 1.3) que dans ce cas, l'équation (2.5.1) est contrôlable à zéro en n'importe quel temps strictement positif, dès lors que l'ensemble de contrôle ω ⊂ R n est ouvert et satisfait la condition

(2.5.2) ∃δ, r > 0, ∀y ∈ R n , ∃y ∈ ω, B(y , r) ⊂ ω et |y -y | < δ.
Cette condition géométrique était jusqu'alors connue comme une condition suffisante assurant la contrôlabilité à zéro en tout temps T > 0 de l'équation de la chaleur ainsi que de l'équation de Kolmogorov posées sur tout l'espace, qui sont les équations (2.5.6) et (2.5.5) avec p = 1, respectivement dans les travaux [START_REF] Miller | Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds[END_REF] et [START_REF] Zhang | Unique continuation estimates for the Kolmogorov equation in the whole space[END_REF]. Leur stratégie a été d'utiliser le Théorème 1.3 avec des inégalités spectrales du type (1.1.4) pour des projections coupe-fréquences, obtenues par J. Le Rousseau et I. Moyano dans [START_REF] Rousseau | Null-controllability of the Kolmogorov equation in the whole phase space[END_REF] (Théorème 3.1). K. Beauchard et K. Pravda-Starov ont également étudié dans l'article [START_REF] Beauchard | Null-controllability of non-autonomous Ornstein-Uhlenbeck equations[END_REF] la contrôlabilité à zéro des équations d'Ornstein-Uhlenbeck non-autonomes avec supports de contrôle fixes posées sur tout l'espace (2.5.3)

(∂ t -L(t))f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
où L(t) désigne l'opérateur d'Ornstein-Uhlenbeck non-autonome donné par 

L(t) = 1 2 Tr(A(t)A(t) T ∇ 2 x ) + B(t), ∇ x , x ∈ R n , avec A, B ∈ C ∞ (I, M n (R)) et I un intervalle de R contenant 0.
(∂ t -L(t))f (t, x) = h(t, x)1 ω(t) (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
qui permet d'étendre le résultat [START_REF] Beauchard | Null-controllability of non-autonomous Ornstein-Uhlenbeck equations[END_REF] (Théorème 1.3). Appliqué au cas autonome, i.e. lorsque ni les matrices A(t) et B(t), ni les ensembles de contrôle ω(t) ne dépendent du temps, ce résultat stipule plus précisément d'une part que si l'ensemble de contrôle ω ⊂ R n est épais, alors l'équation d'Ornstein-Uhlenbeck hypoelliptique (2.5.1) (cas p = 1) est contrôlable à zéro depuis ω en tout temps T > 0. D'autre part, si cette même équation est contrôlable à zéro depuis l'ensemble de contrôle ω ⊂ R n en temps T > 0, alors il existe des constantes δ, r > 0 telles que

(2.5.4) ∀x ∈ R n , T 0 Leb((e tB ω) ∩ B(x, r)) dt ≥ δ.
avec Leb la mesure de Lebesgue sur R n et B(x, r) la boule euclidienne de centre x ∈ R n et de rayon r > 0. On discutera de cette condition géométrique plus loin dans cette section. Ce théorème généralise ainsi [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Théorème 1.3) à des ensembles de contrôle épais. Le cas particulier de l'équation de la chaleur fractionnaire (2.5.5)

(∂ t + (-∆) p )f (t, x) = h(t, x)1 ω (x), t > 0, x ∈ R n , f (0, •) = f 0 ∈ L 2 (R n ),
est quant à lui grandement étudié dans la littérature. Dans le cas où 0 < p < 1/2, A. Koenig a démontré dans [START_REF] Koenig | Non-null-controllability of the fractional heat equation and of the Kolmogorov equation[END_REF] (Theorem 3) que cette équation n'est pas contrôlable à zéro en aucun temps strictement positif depuis un ensemble de contrôle ω ⊂ R n ouvert et distinct de R n . De plus, aucun résultat positif de contrôlabilité n'est connu pour des ensembles de contrôle non triviaux pour de telles valeurs de p. Ce n'est pas le cas lorsque p > 1/2, puisque dans ce cas, L. Miller a obtenu dans le papier [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional Laplacian[END_REF] la contrôlabilité à zéro en n'importe quel temps strictement positif de cette équation depuis des ensembles de contrôles ω ⊂ R n qui sont des complémentaires de parties compactes de R n , voir la Sous-section 3.2 et plus spécifiquement le Théorème 3.1 de l'article [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional Laplacian[END_REF]. On renvoie également au Théorème 4.1 de [START_REF] Miller | A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups[END_REF] dans lequel le même auteur améliore le coût de contrôle apparaissant dans [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional Laplacian[END_REF] (Théorème 3.1). A. Le Théorème 2.11 est plus général que le Théorème 1.5 de [START_REF] Beauchard | Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports[END_REF] (appliqué aux équations d'Ornstein-Uhlenbeck hypoelliptiques), puisqu'il permet de considérer des diffusions fractionnaires. D'autre part, il étend le résultat de L. Miller mentionné ci-dessus puisqu'il implique que l'équation de la chaleur fractionnaire (2.5.5) est contrôlable à zéro en n'importe quel temps T > 0 dès lors que p > 1/2 et que l'ensemble de contrôle ω est épais.

Exemple 2.12. Considérons K l'opérateur de Kolmogorov fractionnaire défini en (2.1.3) avec p > 1/2. Si ω ⊂ R n est un ensemble épais, alors l'équation de Kolmogorov fractionnaire posée sur tout l'espace (2.5.6)

(∂ t + K)f (t, x, v) = h(t, x, v)1 ω (x, v), (t, x, v) ∈ (0, +∞) × R n × R n , f (0, •, •) = f 0 ∈ L 2 (R 2n ),
est contrôlable à zéro en tout temps T > 0, puisque les matrices définies en (2.1.4) satisfont la condition de Kalman (2.1.7) d'après (2.3.6).

La preuve du Théorème 2.11 se base sur la méthode de dualité hilbertienne présentée dans le Chapitre 1 et plus précisément, sur l'utilisation du Théorème 1.3. Remarquons grâce au changement de variable g = e -1 2 Tr(B)t f et k = e -1 2 Tr(B)t h, que la contrôlabilité à zéro de l'équation (2.5.1) est équivalente à la contrôlabilité à zéro de l'équation (2.5.7) 

(∂ t + P co )g(t, x) = k(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , g(0, •) = f 0 ∈ L 2 (R n ),
T > 0 et g ∈ L 2 (R n ), e -T Pco g 2 L 2 (R n ) ≤ C exp C T 1+2rp 2p-1 T 0 e -tPco g 2 L 2 (ω) dt, où 0 ≤ r ≤ n -1 est le plus petit entier qui satisfait (2.3.2).
Démonstration. Considérons (π k ) k≥1 la famille des projections orthogonales coupefréquences données pour tout entier k ≥ 1 par

π k : L 2 (R n ) → g ∈ L 2 (R n ) : Supp g ⊂ {ξ ∈ R n : |ξ| ≤ k} . D'après le Corollaire 1.7 du Chapitre 1, il existe des constantes c 1 , c 1 > 0 telles que l'on ait l'inégalité spectrale ∀g ∈ L 2 (R n ), ∀k ≥ 1, π k g L 2 (R n ) ≤ c 1 e c 1 k π k g L 2 (ω) .
D'autre part, comme la condition de Kalman (2.1.7) est satisfaite, on déduit du Théorème 2.6 qu'il existe des constantes c > 1 et T > 0 telles que pour tout q > 0, 0

< t < T et g ∈ L 2 (R n ), |D x | q e -tPco g L 2 (R n ) ≤ c 1+q t ( 1 2p +r)q q q 2p g L 2 (R n ) .
Le Lemme B.2 de l'Annexe B entraîne alors qu'il existe des constantes c 2 , c 2 > 0 telles que l'estimation de dissipation suivante soit satisfaite pour tout

g ∈ L 2 (R n ), k ≥ 1 et 0 < t < T , (1 -π k )(e -tPco g) L 2 (R n ) ≤ c 2 e -c 2 t 1+2rp k 2p g L 2 (R n ) .
Comme le semi-groupe (e -tPco ) t≥0 est de contraction sur L 2 (R n ) et que 2p > 1 par hypothèse, le résultat du Théorème 2.13 est une conséquence du Théorème 1.3 (Chapitre 1).

Le résultat du Théorème 2.11 fournit une condition suffisante sur l'ensemble de contrôle ω ⊂ R n qui assure la contrôlabilité à zéro en tout temps de l'équation d'Ornstein-Uhlenbeck fractionnaire (2.5.1) sous la condition de Kalman. On peut également obtenir une condition géométrique nécessaire sur ces mêmes ensembles de contrôle comme le montre le théorème suivant. On remarque qu'elle est identique à la condition (2.5.4) déjà connue pour les équations d'Ornstein-Uhlenbeck (cas p = 1). Théorème 2.14. Soient T > 0 et ω ⊂ R n un borélien de mesure de Lebesgue strictement positive. Si l'équation d'Ornstein-Uhlenbeck fractionnaire (2.5.1) est contrôlable à zéro depuis l'ensemble ω en temps T , alors il existe des constantes δ > 0 et r > 0 telles que

∀x ∈ R n , T 0 Leb (e tB ω) ∩ B(x, r) dt ≥ δ,
où Leb désigne la mesure de Lebesgue sur R n .

La condition géométrique (2.5.4) est plus faible que la notion d'épaisseur comme on le vérifie dans la Section 4.4 du Chapitre 4. On vérifie également dans cette même section que dans le cas où la matrice B est égale à zéro, tout support de contrôle ω ⊂ R n qui vérifie la condition (2.5.4) est épais. Ainsi, grâce aux Théorèmes 2.11 et 2.14, on peut étendre le résultat [START_REF] Egidi | Sharp geometric condition for null-controllability of the heat equation on R d and consistent estimates on the control cost[END_REF] (Théorème 3) de M. Egidi et I. Veselić à certaines équations de la chaleur fractionnaires :

Corollaire 2.15. Soient p > 1/2, T > 0 et ω ⊂ R n un borélien de mesure de Lebesgue strictement positive. L'équation de la chaleur fractionnaire (2.5.5) est contrôlable à zéro depuis l'ensemble ω en temps T si et seulement si ω est épais.

Excepté pour l'équation de la chaleur fractionnaire (2.5.5) lorsque p > 1/2, la question de savoir si la condition géométrique donnée par le Théorème 2.14 est en fait une condition nécessaire et suffisante pour assurer la contrôlabilité à zéro de l'équation d'Ornstein-Uhlenbeck fractionnaire hypoelliptique (2.5.1) est encore ouverte. De plus, aucun de nos résultats ne traite de l'équation (2.5.1) lorsque 0 < p ≤ 1/2, qui est donc un cas encore ouvert de manière générale.

Pour terminer ce chapitre, signalons que la contrôlabilité à zéro des équations paraboliques

(∂ t + L)f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 µ (R n ), où L est l'opérateur d'Ornstein-Uhlenbeck hypoelliptique (2.1.5) admettant la mesure in- variante µ définie en (2.2.
2), a été établie en tout temps T > 0 depuis des ensembles de contrôle ω ⊂ R n satisfaisant la condition géométrique (2.5.2). Il s'agit du résultat [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Corollaire 1.6) de K. Beauchard et K. Pravda-Starov.

Chapitre 3

Opérateurs quadratiques accrétifs

Introduction

La seconde classe d'opérateurs à laquelle on s'intéresse est celle des opérateurs quadratiques accrétifs. Etant donnée q : R 2n → C une forme quadratique à valeurs complexes, on considère la réalisation maximale sur L 2 (R n ) de l'opérateur quadratique q w (x, D x ) défini comme le quantifié de Weyl de la forme quadratique q, i.e. l'opérateur pseudo-différentiel

q w (x, D x )u(x) = 1 (2π) n R 2n e i x-y,ξ q x + y 2 , ξ u(y) dydξ, équipé du domaine D(q w ) = u ∈ L 2 (R n ) : q w (x, D x )u ∈ L 2 (R n ) .
Les opérateurs quadratiques sont des opérateurs différentiels, non-autoadjoints en général, puisque le quantifié de Weyl du symbole x α ξ β , avec (α, β) ∈ N 2n tel que |α + β| = 2, est donné par

(x α ξ β ) w = Op w (x α ξ β ) = 1 2 x α D β x + D β x x α , avec D x = i -1 ∇ x .
Lorsque la partie réelle de la forme quadratique q est positive, l'opérateur quadratique q w (x, D x ) ainsi défini est maximal accrétif et engendre un semi-groupe de contraction fortement continu (e -tq w ) t≥0 sur L 2 (R n ) d'après [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (pp. 425-426). Dans ce travail, on cherche à étudier les effets régularisants de ces semi-groupes pour pouvoir établir les propriétés sous-elliptiques des opérateurs quadratiques accrétifs et étudier la contrôlabilité à zéro des équations paraboliques associées. Les résultats présentés dans ce chapitre sont issus des articles [START_REF] Alphonse | Quadratic differential equations: partial Gelfand-Shilov smoothing effect and nullcontrollability[END_REF] (publié dans le Journal of the Institute of Mathematics of Jussieu) et [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] (écrit en collaboration avec J. Bernier et soumis pour publication).

Espace singulier d'une forme quadratique

Considérons q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive. La notion d'espace singulier associé à la forme quadratique q, introduite par M. Hitrik et K. Pravda-Starov dans l'article [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF], est centrale dans l'étude de l'opérateur quadratique accrétif q w (x, D x ) et du semi-groupe qu'il engendre. Cette section est consacrée à introduire et discuter cette notion. L'espace singulier de la forme quadratique q est le sous-espace vectoriel S de l'espace des phases donné par l'intersection de noyaux suivante

S = 2n-1 j=0 Ker(Re F (Im F ) j ) ⊂ R 2n ,
avec F ∈ M 2n (C) la matrice fondamentale de la forme quadratique q. La matrice F est définie comme l'unique matrice de M 2n (C) qui satisfait l'identité

∀X, Y ∈ R 2n , q(X, Y ) = σ(X, F Y ),
cf [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Definition 21.5.1), où q(•, •) représente la forme polaire associée à la forme quadratique q et σ désigne la forme symplectique standard Ker(Re F (Im F ) j ).

σ((x, ξ), (y, η)) = ξ, y -x, η , (x, y), (ξ, η) ∈ C 2n ,
Cet entier va jouer un rôle fondamental dans tout ce chapitre. Puisque la partie réelle de la forme quadratique q est positive, son espace singulier S peut également être défini comme le sous-espace vectoriel de l'espace des phases où tous les crochets de Poisson H k Im q Re q s'annulent S = X ∈ R 2n : ∀k ≥ 0, (H k Im q Re q)(X) = 0 , où H Im q désigne le champ de vecteur hamiltonien associé à la partie imaginaire de q, (3.2.2)

H Im q = ∇ ξ Im q • ∇ x -∇ x Im q • ∇ ξ .
Cette définition dynamique montre que l'espace singulier S correspond exactement à l'ensemble des points X ∈ R 2n où la partie réelle du symbole Re q sous le flot du champ de vecteur hamiltonien H Im q associé à sa partie imaginaire, soit t → (Re q)(e tH Im q X), s'annule à tout ordre en t = 0. Ceci est équivalent au fait que cette fonction est identiquement nulle sur R. Cette caractérisation de l'espace singulier montre en particulier que la forme quadratique Re q moyennée le long du flot du champ de vecteur hamiltonien H Im q est définie positive sur tout supplémentaire de l'espace singulier S dans l'espace des phases

∀X ∈ R 2n , ∀T > 0, Re q T (X) = 1 2T T -T (Re q)(e tH Im q X) dt = 0 ⇔ X ∈ S.
L'espace singulier S se trouve en fait être l'ensemble des points de l'espace des phases en lesquels le symbole q est d'ordre infini. Rappelons que l'ordre de q au point X ∈ R 2n est donné par (3.2.3) k(X) = max k ≥ 2 : ∀j ∈ {2, . . . , k}, ∀I ∈ {1, 2} j , q I (X) = 0 , avec q I la notation introduite par L. Hörmander dans [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Chapitre 27) pour désigner le crochet de Poisson itéré (3.2.4) q I = H q i 1 . . . H q i j-1 q i j , I = (i 1 , . . . , i j ) ∈ {1, 2} j , où q 1 = Re q et q 2 = Im q, la notation H Re q représentant le champ de vecteur hamiltonien associé à la partie réelle de q,

H Re q = ∇ ξ Re q • ∇ x -∇ x Re q • ∇ ξ .
Cette notion d'indice d'un symbole en un point de l'espace des phases s'est révélée être centrale dans l'étude des opérateurs sous-elliptiques et de leurs caractérisations, depuis des travaux de Y. Egorov [START_REF] Egorov | Subelliptic pseudodifferential operators[END_REF][START_REF] Egorov | Subelliptic operators, Uspehi Mat. Nauk[END_REF], L. Nirenberg -F. Trèves [START_REF] Nirenberg | On local solvability of linear partial differential equations. I. Necessary conditions[END_REF] et L. Hörmander [START_REF] Hörmander | Subelliptic operators[END_REF][START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], comme expliqué dans les articles [START_REF] Lerner | Semi-classical estimates for non-selfadjoint operators[END_REF][START_REF] Pravda-Starov | Estimations de résolvante et localisation du spectre pour certaines classes d'opérateurs pseudo-différentiels semi-classiques non autoadjoints[END_REF]. On vérifie dans le Lemme D.1 de l'Annexe D que l'ordre de la forme quadratique q est infini en tout point de l'espace singulier, soit

∀X ∈ S, k(X) = +∞.
D'autre part, le symbole q est d'ordre fini en tout point de R 2n \ S. Cet ordre peut être déterminé explicitement. Pour ce faire, on considère les sous-espaces vectoriels

V k ⊂ R 2n définis pour tout 0 ≤ k ≤ k 0 (avec 0 ≤ k 0 ≤ 2n -1 le plus petit entier satisfaisant (3.2.1)) par V k = k j=0 Ker(Re F (Im F ) j ).
A partir là, on pose

W 0 = R 2n \ V 0 et W k = V k-1 \ V k pour tout 1 ≤ k ≤ k 0 .
Par définition (3.2.1) de l'espace singulier S, la famille ainsi construite forme une partition du complémentaire de S dans l'espace des phases

R 2n \ S = W 0 . . . W k 0 .
On peut alors déterminer finement l'ordre de q en tout point de R 2n \ S,

(3.2.5) ∀k ∈ {0, . . . , k 0 }, ∀X ∈ W k , k(X) = 2k,
en convenant que l'ordre du symbole q en tout point de W 0 vaut 0, cf Lemme D.2 de l'Annexe D. Comme l'illustre l'article [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF], la notion d'espace singulier permet de décrire le spectre d'une large classe d'opérateurs quadratiques accrétifs associés à des formes quadratiques possiblement non-elliptiques. Plus précisément le résultat [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF] (Théorème 1.2.2) de M. Hitrik et K. Pravda-Starov stipule que si la forme quadratique q est elliptique sur son espace singulier S, i.e.

(x, ξ) ∈ S, q(x, ξ) = 0 ⇒ (x, ξ) = 0, alors le spectre de l'opérateur quadratique accrétif q w (x, D x ) est composé de valeurs propres de multiplicité algébrique finie, données par

(3.2.6) σ q w (x, D x ) = λ (r λ + 2k λ )(-iλ) : k λ ∈ N , la somme étant prise sur l'ensemble λ ∈ σ(F ) : -iλ ∈ C + ∪ Σ(q| S ) \ {0} ,
avec F la matrice fondamentale de q, r λ la dimension du sous-espace caractéristique de la matrice F dans C 2n associé à la valeur propre λ ∈ σ(F ),

Σ(q| S ) = q(S) et C + = z ∈ C : Re z > 0 .
Ce lien entre espace singulier et propriétés spectrales des opérateurs quadratiques accrétifs est également mis en évidence ou utilisé dans les articles [START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF][START_REF] Viola | Spectral projections and resolvent bounds for partially elliptic quadratic differential operators[END_REF]. On renvoie également aux articles [START_REF] Hitrik | Semiclassical hypoelliptic estimates for non-selfadjoint operators with double characteristics[END_REF][START_REF] Hitrik | Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics[END_REF] où la notion d'espace singulier joue également un rôle important dans la compréhension des propriétés spectrales et pseudo-spectrales de certaines classes d'opérateurs pseudo-différentiels dégénérés admettant un point de caractéristique double.

Cette notion est aussi impliquée dans l'étude des propriétés sous-elliptiques des opérateurs quadratiques accrétifs [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF][START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF][START_REF] Pravda-Starov | Subelliptic estimates for quadratic differential operators[END_REF], ainsi que dans l'étude des semi-groupes qu'ils engendrent [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF][START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF][START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF][START_REF] Pravda-Starov | Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians[END_REF] et celle de la contrôlabilité à zéro des équations paraboliques associées [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF][START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF]. Un état de l'art détaillé concernant ces trois domaines sera présenté au fur et à mesure de l'avancée de ce chapitre.

Effets régularisants des semi-groupes : approche par le calcul symbolique

Considérons q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive. L'objectif principal de ce chapitre est de donner une description des effets régularisants des opérateurs d'évolution e -tq w engendrés par l'opérateur quadratique accrétif q w (x, D x ) en fonction de la structure de l'espace singulier S de la forme quadratique q. Dans cette section, on va se restreindre à considérer des formes quadratiques dont l'espace singulier est engendré par des éléments de la base canonique de R 2n . Le cas général sera traité dans la Section 3.4 de ce même chapitre.

3.3.1.

Espace singulier réduit à zéro. Comme l'ont déjà remarqué les auteurs des travaux [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF][START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF][START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF][START_REF] Pravda-Starov | Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians[END_REF], la compréhension des effets régularisants des opérateurs d'évolution e -tq w passe par la compréhension de la structure de l'espace singulier S. Cette notion d'espace singulier permet notamment d'étudier la propagation des singularités de Gabor des solutions de l'équation d'évolution

(∂ t + q w (x, D x ))u = 0, (t, x) ∈ (0, +∞) × R n , u(0) = u 0 ∈ L 2 (R n ).
Rappelons que le front d'onde de Gabor W F (u) d'une distribution tempérée u ∈ S (R n ) caractérise les directions de l'espace des phases dans lesquelles cette distribution ne se comporte pas comme une fonction Schwartz, cf [START_REF] Pravda-Starov | Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities[END_REF] (Section 5). En particulier, pour toute distribution tempérée u ∈ S (R n ), le front d'onde de Gabor W F (u) de u est vide si et seulement si u ∈ S(R n ). L'inclusion microlocale suivante a été démontrée dans l'article [START_REF] Pravda-Starov | Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians[END_REF] (Théorème 6.2) par K. Pravda-Starov, L. Rodino et P. Wahlberg,

(3.3.1) ∀u ∈ L 2 (R n ), ∀t > 0, W F (e -tq w u) ⊂ e tH Im q (W F (u) ∩ S) ⊂ S,
où (e tH Im q ) t∈R désigne le flot engendré par le champ de vecteur hamiltonien (3.2.2) associé à la partie imaginaire de la forme quadratique q. Ce résultat montre que les éventuelles singularités Gabor de la solution e -tq w u ne peuvent venir que des singularités Gabor de la donnée initiale u localisées dans l'espace singulier S et sont propagées le long des courbes données par le champ de vecteurs hamiltonien H Im q associée à la partie imaginaire de q.

Des inclusions microlocales du type (3.3.1) ont également été établies pour d'autres types de front d'onde, notamment des fronts d'onde Gelfand-Shilov [START_REF] Carypis | Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians[END_REF] ou des fronts d'onde polynomiaux [START_REF] Wahlberg | Propagation of polynomial phase space singularities for Schrödinger equations with quadratic Hamiltonians[END_REF]. Lorsque l'espace singulier S de la forme quadratique q est réduit à zéro, l'inclusion microlocale (3.3.1) montre que le semi-groupe (e -tq w ) t≥0 régularise en tout temps t > 0 dans l'espace de Schwartz S(R n ),

(3.3.2) ∀t > 0, ∀u ∈ L 2 (R n ), e -tq w u ∈ S(R n ).
Ce résultat était déjà démontré dans l'article [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF] (Théorème 1.2.1). Cependant il ne fournit aucun comportement en temps des semi-normes de l'espace de Schwartz des fonctions e -tq w u et ne montre en particulier pas comment ces semi-normes explosent en temps petit. La réponse à cette question à été apportée par M. Hitrik, K. Pravda-Starov et J. Viola dans l'article [START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF], où ces trois auteurs ont amélioré la propriété (3.3.2) en montrant, grâce à des techniques basées sur la transformation de FBI, que les opérateurs d'évolution e -tq w régularisent en tout temps t > 0 dans l'espace Gelfand-Shilov S µ µ (R n ) avec µ = 1/2. De plus, ils ont fourni une asymptotique des semi-normes associées à cet effet régularisant pour des temps courts. On renvoie le lecteur à l'Appendice C pour la définition et les propriétés de base des espaces Gelfand-Shilov. Plus précisément, le résultat [START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF] (Proposition 4.1) stipule que lorsque l'espace singulier S de la forme quadratique q est réduit à zéro, il existe des constantes t 0 > 0 et c 0 > 0 telles que pour tout 0 < t < t 0 et u ∈ L 2 (R n ), 4|α|+2n) , où 0 ≤ k 0 ≤ 2n -1 désigne le plus petit entier qui vérifie (3.2.1) et (Ψ α ) α∈N n représente la base de Hermite de L 2 (R n ). Cette estimation implique en particulier qu'il existe une autre constante c > 1 telle que pour tout 0 < t < t 0 , (α, β)

(3.3.3) e t 2k 0 +1 c 0 (D 2 x +x 2 ) e -tq w u L 2 (R n ) ≤ c 0 u L 2 (R n ) , avec e t 2k 0 +1 c 0 (D 2 x +x 2 ) e -tq w u 2 L 2 (R n ) = α∈N n e -tq w u, Ψ α L 2 (R n ) 2 e t 2k 0 +1 c 0 ( 
∈ N 2n et u ∈ L 2 (R n ), (3.3.4) x α ∂ β x (e -tq w u) L 2 (R n ) ≤ c 1+|α|+|β| t 2k 0 +1 2 (|α|+|β|+2n) √ α! β! u L 2 (R n ) ,
comme le montre [START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF] (Inégalité (4.19)). Grâce aux injections de Sobolev, on en déduit aussi le contrôle suivant des semi-normes de l'espace de Schwartz des fonctions e -tq w u : il existe une constante c > 1 telle que pour tout 0 < t ≤ t 0 , (α, β)

∈ N 2n et u ∈ L 2 (R n ), (3.3.5) x α ∂ β x (e -tq w u) L ∞ (R n ) ≤ c 1+|α|+|β| t 2k 0 +1 2 (|α|+|β|+2n+s) √ α! β! u L 2 (R n ) ,
où s > n/2 est un entier fixé, cf [START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF] (Théorème 1.2). Le cas plus général où l'espace singulier S n'est pas nécessairement réduit à zéro mais possède une structure symplectique, au sens où la restriction de la forme symplectique canonique σ à l'espace S est non dégénérée, se traite à partir de l'étude des opérateurs quadratiques accrétifs à espaces singuliers nuls. En effet, lorsque l'espace singulier S possède une structure symplectique, il a été démontré dans [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] (Sous-section 2.5) que la forme quadratique q se décompose sous la forme q = q 1 + q 2 avec q 1 une forme quadratique imaginaire pure définie sur S et q 2 une forme quadratique à valeurs complexes de partie réelle positive définie sur l'orthogonal symplectique canonique S σ⊥ de l'espace S. Le fait que S et S σ⊥ possèdent tous deux une structure symplectique implique que les opérateurs q w 1 (x, D x ) et q w 2 (x, D x ) commutent, et il en va de même des semi-groupes associés ∀t > 0, e -tq w = e -tq w 1 e -tq w 2 = e -tq w 2 e -tq w 1 .

Comme la forme quadratique q 1 est de partie réelle nulle, elle engendre en fait un groupe unitaire (e -tq w 1 ) t∈R sur L 2 (R n ). Ainsi, les effets régularisants du semi-groupe (e -tq w ) t≥0 s'obtiennent par un changement de variable symplectique, sachant que le résultat de régularisation connu pour les semi-groupes engendrés par les opérateurs quadratiques accrétifs à espaces singuliers nuls s'applique au semi-groupe (e -tq w 2 ) t≥0 . On renvoie le lecteur à la Sous-section 2.5 de l'article [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] pour plus de détails quant à la réduction par tensorisation du cas des espaces singuliers avec structure symplectique au cas des espaces singuliers réduits à zéro.

Exemple 3.1. Considérons a ∈ R un nombre réel et K a l'opérateur de Kramers-Fokker-Planck avec potentiel externe quadratique défini par

K a = -∆ v + 1 4 |v| 2 + v, ∇ x -∇ x V a (x), ∇ v , (x, v) ∈ R 2n , où le potentiel V a est donné par V a (x) = 1 2 a|x| 2 , x ∈ R 2n .
On étudie l'action de cet opérateur sur L 2 (R 2n ) et on l'équipe du domaine suivant :

D(K a ) = u ∈ L 2 (R 2n ) : K a u ∈ L 2 (R 2n ) .
L'opérateur K a est un opérateur quadratique et sa forme quadratique associée q a est donnée pour tout (x, v, ξ, η) ∈ R 4n par

q a (x, v, ξ, η) = |η| 2 + 1 4 |v| 2 + i ( v, ξ -a x, η ) .
Un simple calcul montre que la matrice fondamentale de q a est donnée par

F a = 1 2     0 n iI n 0 n 0 n -aiI n 0 n 0 n 2I n 0 n 0 n 0 n aiI n 0 n -1 2 I n -iI n 0 n     .
Ainsi, l'expression de l'espace singulier de la forme quadratique q a dépend de la valeur du paramètre réel a. Lorsque a ∈ R * est non nul, cet espace est donné par

(3.3.6) S a = Ker(Re F ) ∩ Ker(Re F (Im F )) = {0}, alors que (3.3.7) S 0 = Ker(Re F ) ∩ Ker (Re F (Im F )) = R n x × {0 R n v } × {0 R n ξ } × {0 R n η }.
Dans les deux cas, l'entier 0 ≤ k 0 ≤ 4n -1 défini en (3.2.1) vaut 1. Ainsi, dans le cas où a ∈ R * , on déduit de (3.3.4) qu'il existe des constantes positives t a > 0 et c a > 1 telles que pour tout 0 < t ≤ t a , (α, β, γ, δ)

∈ N 4n et u ∈ L 2 (R 2n ), (3.3.8) x α v β ∂ γ x ∂ δ v (e -tKa u) L 2 (R 2n ) ≤ c 1+|α|+|β|+|γ|+|δ| a t 3 2 (|α|+|β|+|γ|+|δ|+4n) √ α! β! γ! √ δ! u L 2 (R 2n ) .
Ces semi-groupes profitent donc de propriétés régularisantes Gelfand-Shilov dans les deux variables d'espace et de vitesse. Cependant, lorsque a = 0, l'espace singulier S 0 de la forme quadratique q 0 n'admet pas de structure symplectique, puisque son supplémentaire symplectique est donné par (3.3.9)

S σ⊥ 0 = R n x × R n v × {0 R n ξ } × R n η ,
et aucune théorie générale ne s'applique concernant l'étude des propriétés régularisantes éventuelles du semi-groupe de Kramers-Fokker-Planck sans potentiel (e -tK 0 ) t≥0 .

3.3.2.

Espace singulier engendré par des éléments de la base canonique. Dans ce travail, on cherche à généraliser les effets régularisants (3.3.4) aux formes quadratiques dont l'espace singulier est engendré par des éléments de la base canonique de R 2n et ne possède possiblement pas de structure symplectique, comme c'est le cas pour l'opérateur de Kramers-Fokker-Planck sans potentiel K 0 rencontré dans l'exemple précédent. Dans ces cas plus dégénérés, on ne s'attend pas à ce que le semi-groupe engendré par la forme quadratique q possède des effets régularisants dans des espaces de Gelfand-Shilov dans toutes les variables comme en (3.3.4), mais plutôt des effets régularisants dans des espaces de Gelfand-Shilov partiels. L'objectif est de caractériser les directions de l'espace des phases dans lesquelles ce semi-groupe possède des propriétés régularisantes. Dans la suite, on aura besoin de la notation suivante : Définition 3.2. Soient n ≥ 1 un entier, J un sous-ensemble de {1, . . . , n} et E un sous-ensemble de C. On définit E n J comme le sous-ensemble de E n dont les éléments x ∈ E n J satisfont ∀j / ∈ J, x j = 0. Par convention, on pose E n J = {0} lorsque J est vide. Grâce à une stratégie basée sur le calcul symbolique, dont les grandes lignes sont présentées juste après, on obtient le résultat suivant concernant les effets régularisants des semi-groupes engendrés par les opérateurs quadratiques accrétifs à espaces singuliers engendrés par des éléments de la base canonique de R 2n . Théorème 3.3. Soit q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive. On suppose qu'il existe des ensembles I, J ⊂ {1, . . . , n} tels que l'espace singulier S de q satisfait S ⊥ = R n I × R n J . On suppose également que l'inclusion S ⊂ Ker(Im F ) est satisfaite, avec F la matrice fondamentale de q. Alors, il existe des constantes c > 1 et 0 < t 0 < 1 telles que pour tout (α, β)

∈ N n I × N n J , 0 < t ≤ t 0 et u ∈ L 2 (R n ), x α ∂ β x (e -tq w u) L 2 (R n ) ≤ c 1+|α|+|β| t (2k 0 +1)(|α|+|β|+s) √ α! β! u L 2 (R n ) ,
où 0 ≤ k 0 ≤ 2n -1 est le plus petit entier qui satisfait (3.2.1) et s = 9n/4 + 2 n/2 + 3.

Ce résultat montre que lorsque l'espace singulier S de la forme quadratique q est engendré par des éléments de la base canonique de R 2n et que l'inclusion algébrique S ⊂ Ker(Im F ) est satisfaite, avec F la matrice fondamentale de q, alors le semi-groupe engendré par l'opérateur quadratique accrétif q w (x, D x ) possède des propriétés régularisantes dans un espace de Gelfand-Shilov partiel. De plus, les semi-normes associées à ces effets régularisants sont contrôlés par O(t -(2k 0 +1)(|α|+|β|+s) ) en temps petit, avec s = 9n/4 + 2 n/2 + 3. En particulier, le Théorème 3.3 généralise les estimations (3.3.4) connues dans le cas où l'espace singulier est réduit à zéro, exception faite de la puissance en temps (2k 0 + 1)(|α| + |β| + s), qui n'est pas optimale.

Pour comprendre la présence de l'hypothèse algébrique S ⊂ Ker(Im F ), qui n'apparaitra plus dans les résultats à venir de ce chapitre, il nous faut expliquer les grandes lignes de la démonstration du Théorème 3.3. Cette démonstration est basée sur l'utilisation du calcul symbolique. Pour ce faire, on exploite le résultat suivant, démontré par L. Hörmander dans l'article [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Théorème 4.2) : pour tout t ≥ 0, l'opérateur d'évolution e -tq w engendré par l'opérateur quadratique accrétif q w (x, D x ) (sans hypothèse sur son espace singulier) est un opérateur pseudo-différentiel dont le symbole de Weyl est une distribution tempérée p t ∈ S (R n ). Plus spécifiquement, c'est une fonction de L ∞ (R 2n ) explicitement donnée par la formule de Mehler (3.3.10) p t (X) = e -σ(X,tan(tF )X) Notons que le Théorème 3.3 s'applique à des formes quadratiques dont l'espace singulier ne possède pas de structure symplectique, comme l'illustre l'exemple suivant.

det(cos(tF )) ∈ L ∞ (R 2n ), X ∈ R 2n ,
Exemple 3.4. Considérons de nouveau la réalisation maximale sur L 2 (R 2n ) de l'opérateur de Kramers-Fokker-Planck sans potentiel externe K 0 introduit dans l'Exemple 3.1,

K 0 = -∆ v + 1 4 |v| 2 + v, ∇ x , (x, v) ∈ R 2n .
On rappelle que le symbole de Weyl de K 0 est la forme quadratique q 0 définie par (3.3.12)

q 0 (x, v, ξ, η) = |η| 2 + 1 4 |v| 2 + i v, ξ , (x, v, ξ, η) ∈ R 4n .
La matrice fondamentale F 0 et l'espace singulier S 0 de q 0 sont respectivement donnés par

F 0 = 1 2     0 n iI n 0 n 0 n 0 n 0 n 0 n 2I n 0 n 0 n 0 n 0 n 0 n -1 2 I n -iI n 0 n     , et S 0 = Ker(Re F ) ∩ Ker(Re F (Im F )) = R n x × {0 R n v } × {0 R n ξ } × {0 R n η }.
L'espace S 0 ne possède pas de structure symplectique comme on l'a déjà vu en (3.3.9). Comme l'orthogonal euclidien canonique de l'espace S 0 est donné par

S ⊥ 0 = R 2n I × R 2n J , avec I = {n + 1, . . . , 2n} et J = {1, . . . , 2n}, et que l'inclusion S 0 ⊂ Ker(Im F 0 ) est vérifiée, le Théorème 3.3 implique qu'il existe des constantes c 0 > 1 et 0 < t 0 < 1 telles que pour tout (α, β, γ) ∈ N 3n , 0 < t ≤ t 0 , et u ∈ L 2 (R 2n ), (3.3.13) v α ∂ β x ∂ γ v (e -tK 0 u) L 2 (R 2n ) ≤ c 1+|α|+|β|+|γ| 0 t 3(|α|+|β|+|γ|+(13n)/2+3) √ α! β! γ! u L 2 (R 2n ) .
On renvoie le lecteur à l'Exemple 3.12 où des estimations plus précises seront obtenues pour ce semi-groupe. Ainsi, le semi-groupe engendré par l'opérateur K 0 possède des propriétés régularisantes dans l'espace de Gelfand-Shilov S µ µ (R n v ) avec µ = 1/2 dans la variable de vitesse et « simplement » des propriétés régularisantes dans l'espace de fonctions ultraanalytiques G 1/2 (R n x ) dans la variable d'espace. Comme on l'avait vu dans l'Exemple 3.1, les semi-groupes engendrés par les opérateurs de Kramers-Fokker-Planck avec potentiel externe quadratique non nul (dont les espaces singuliers sont réduits à zéro) profitent quant à eux d'effets régularisants dans l'espace de Gelfand-Shilov

S µ µ (R 2n x,v ), où µ = 1/2, dans les deux variables x ∈ R n et v ∈ R n .
Le Théorème 3.3 ne fournit qu'un comportement en temps court (non optimal) des semi-normes associées aux effets régularisants dans des espaces de Gelfand-Shilov partiels dont profitent les semi-groupes associés aux opérateurs quadratiques accrétifs à espaces singuliers engendrés par des éléments de la base canoniques de R 2n . La stratégie adoptée pour démontrer le Théorème 3.3 ne permet pas en général d'obtenir des comportements en temps grands pour ces semi-normes. En effet, la formule de Mehler (3.3.10), valide lorsque 0 ≤ t 1, peut ne plus l'être lorsque t 1. Par exemple, l'opérateur de Schrödinger P = i(-∆ x +|x| 2 ) engendre un groupe (e -tP ) t∈R d'opérateurs unitaires sur L 2 (R n ). Chaque élément e -tP de ce groupe est un opérateur pseudo-différentiel dont le symbole de Weyl est donné par

(x, ξ) → 1 cos t e -i(|ξ| 2 +|x| 2 ) tan t ∈ L ∞ (R 2n ),
lorsque cos t = 0, tandis que lorsque t = π/2 + kπ, avec k ∈ Z, ce symbole est donné par la masse de Dirac (x, ξ) → i(-1) k+1 π δ 0 (x, ξ) ∈ S (R 2n ). Cet exemple, issu de l'article [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (p. 427), montre que la condition det(tF ) = 0, nécessaire pour pouvoir appliquer la formule de Mehler (3.3.10), n'est pas vérifiée pour tout temps t ≥ 0 en général.

Effets régularisants des semi-groupes : approche par la décomposition polaire

Soit q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive. Dans cette section, on cherche à généraliser et améliorer le résultat du Théorème 3.3 en donnant une description précise des effets régularisants dont bénéficie le semi-groupe engendré par l'opérateur quadratique q w (x, D x ) sur L 2 (R n ). Le principal problème rencontré en section précédente, lors de l'étude de ces mêmes effets régularisants, fut le caractère non-autoadjoint des opérateurs d'évolution e -tq w . Plus précisément, on a été confronté au caractère non réel de leurs symboles de Weyl, donnés par la formule de Mehler (3.3.10). Pour pallier à ce problème, on va montrer que l'étude de ces opérateurs peut se ramener à l'étude d'une famille d'opérateurs autoadjoints par un calcul de décomposition polaire.

3.4.1. Décomposition polaire. On commence donc par donner une description précise de la décomposition polaire des opérateurs d'évolution e -tq w . Plus précisément, on cherche à montrer que pour tout t ≥ 0, l'opérateur e -tq w se décompose comme le produit d'un opérateur autoadjoint et d'un opérateur unitaire sur L 2 (R n ), et même plus précisément, sous la forme suivante (3.4 s=t . On remarque que si les opérateurs (Re q) w et (Im q) w commutent, alors la relation (3.4.1) est satisfaite avec a t = Re q et b t = Im q. De plus, l'égalité (3.4.1) donne bien la décomposition polaire de l'opérateur e -tq w comme défini dans la Sous-section 6.6.1 du Chapitre 6. Dans toute la suite, on entend par décomposition polaire d'un opérateur borné sur L 2 (R n ) sa décomposition en produit d'un opérateur borné autoadjoint positif et injectif sur L 2 (R n ) et d'un opérateur unitaire sur L 2 (R n ). En fait, l'égalité (3.4.1) ne pourra être montrée que pour des petits temps 0 ≤ t 1. Dans le cas où t 1, une formule similaire à (3.4.1) sera obtenue mais avec l'opérateur e -itb w t remplacé par un opérateur unitaire U t qui a priori ne prend pas la forme de l'opérateur défini en (3.4.2). En exploitant la structure d'opérateur intégral de Fourier des opérateurs d'évolution e -tq w , donnée par un résultat de L. Hörmander [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Théorème 5.12) rappelé dans la Section 6.1 du Chapitre 6, on obtient le résultat suivant : Théorème 3.5. Soit q : R 2n → C une forme quadratique complexe de partie réelle positive. Il existe une famille (a t ) t∈R de formes quadratiques positives a t : R 2n → R + qui dépendent de manière analytique de la variable de temps t ∈ R, et une famille (U t ) t∈R d'opérateurs métaplectiques, telles que les opérateurs d'évolution e -tq w se décomposent sous la forme ∀t ≥ 0, e -tq w = e -ta w t U t . De plus, il existe une constante T > 0 et une famille (b t ) -T <t<T de formes quadratiques réelles b t : R 2n → R qui dépendent également de manière analytique de la variable de temps -T < t < T , telle que ∀t ∈ [0, T ), e -tq w = e -ta w t e -itb w t .

On réfère le lecteur à la Section 6.5 du Chapitre 6, où la notion d'opérateur métaplectique (et plus généralement, celle d'opérateur intégral de Fourier associé à des transformations symplectiques linéaires complexes) est définie.

Grâce à la décomposition donnée par le théorème précédent, l'étude des propriétés régularisantes des opérateurs non-autoadjoints e -tq w se ramène à celle des opérateurs autoadjoints e -ta w t . Cependant, la connaissance d'une telle décomposition n'est utile qu'avec une connaissance précise de ces opérateurs autoadjoints e -ta w t , et plus précisément des formes quadratiques a t . C'est l'objet du résultat suivant qui fournit une minoration fine pour ces formes quadratiques en temps petit : Théorème 3.6. Soit q : R 2n → C une forme quadratique complexe de partie réelle positive. On considère F la matrice fondamentale de q et S son espace singulier. Soit (a t ) t∈R la famille de formes quadratiques donnée par le Théorème 3.5. Il existe des constantes 0 < T < 1 et c > 0 telles que pour tout 0

≤ t ≤ T et X ∈ R 2n , a t (X) ≥ c k 0 j=0 t 2j Re q (Im F ) j X , où 0 ≤ k 0 ≤ 2n -1 est le plus petit entier qui satisfait (3.2.

1).

Le calcul des formes quadratiques a t et b t est très difficile de manière générale. Le cas de l'opérateur de Kramers-Fokker-Planck sans potentiel externe fait exception comme l'illustre l'exemple suivant : Exemple 3.7. Soit K 0 la réalisation maximale sur L 2 (R 2n ) de l'opérateur de Kramers-Fokker-Planck sans potentiel externe défini dans l'Exemple 3.1 (cas a = 0) par

K 0 = -∆ v + 1 4 |v| 2 + v, ∇ x , (x, v) ∈ R 2n .
Pour tout t ≥ 0, l'opérateur d'évolution e -tK 0 se décompose sous la forme (3.4.3) e -tK 0 = e -ta w t e -(sinh t) v,∇x , où l'opérateur quadratique a w t est défini pour tout t ≥ 0 par

a w t = -∆ v + 1 4 |v| 2 - 2 sinh t cosh t + 1 ∇ x , ∇ v - 2(t cosh t -sinh t) t(cosh t + 1) ∆ x .
En effet, comme on va le voir dans la démonstration du Théorème 3. 

A t =      0 n 0 n 0 n 0 n 0 n 1 4 I n 0 n 0 n 0 n 0 n 2(t cosh t-sinh t) t(cosh t+1) I n sinh t cosh t+1 I n 0 n 0 n sinh t cosh t+1 I n I n      , et B t =     0 n 0 n 0 n 0 n 0 n 0 n -sinh t 2t I n 0 n 0 n -sinh t 2t I n 0 n 0 n 0 n 0 n 0 n 0 n     .
De plus, l'égalité (3.4.4) 

H = -∆ x + |x| 2 , x ∈ R n .
On démontre dans la Proposition 6.25 du Chapitre 6 (en dimension 1, mais la preuve fonctionne en toute dimension par un argument de tensorisation), avec les même arguments que ceux utilisés pour démontrer le Théorème 3.5, que pour tout t ≥ 0, l'opérateur d'évolution e -tH engendré par H sur L 2 (R n ) se décompose sous la forme e -tH = e -1 2 (tanh t)|x| 2 e 1 2 sinh(2t)∆x e -1 2 (tanh t)|x| 2 . Ce type de décomposition est utilisée pour traiter des problèmes d'analyse numérique, comme dans l'article [START_REF] Bernier | Splitting methods for rotations : application to vlasov equations[END_REF] par exemple. Plus généralement, cette méthode peut être employée avec n'importe quel semi-groupe engendré par un opérateur quadratique accrétif.

3.4.2. Description des effets régularisants. Grâce à la formule de décomposition donnée par le Théorème 3.5 et l'estimation fournie par le Théorème 3.6, on va pouvoir décrire précisément les propriétés régularisantes des opérateurs d'évolution e -tq w en toute généralité.

La problématique est sensiblement la même que pour les semi-groupes d'Ornstein-Uhlenbeck fractionnaires présentée dans la Section 2.3 du Chapitre 2 : on cherche à décrire les sous-espaces vectoriels Σ ⊂ R 2n de l'espace des phases tels que des estimations de la forme

X 1 , X w . . . X m , X w e -tq w u L 2 (R n ) ≤ C t,m,X 1 ,...,Xm u L 2 (R n ) ,
soient vérifiées pour tout m ≥ 1, X 1 , . . . , X m ∈ Σ et t > 0, où C t,m,X 1 ,...,Xm > 0 est une constante strictement positive. Pour tout X 0 = (x 0 , ξ 0 ) ∈ R 2n , on définit l'opérateur différentiel X 0 , X w par (3.4.5) X 0 , X w = x 0 , x + ξ 0 , D x , avec •, • la forme bilinéaire symétrique sur C n définie en (E.0.1).

Par abus de terminologie, les éléments de Σ seront appelés directions régularisantes dans la suite. Un autre objectif est de décrire le plus finement possible la constante C t,m,X 1 ,...,Xm > 0 par rapport à l'entier m ≥ 1 et aux vecteurs X 1 , . . . , X m ∈ Σ, au moins pour des temps courts 0 < t 1. En fait, on va démontrer que S ⊥ contient toutes directions régularisantes pour le semi-groupe engendré par l'opérateur q w (x, D x ), i.e. il existe un unique espace vectoriel maximal Σ ⊂ R n qui répond à la problématique précédente et il s'agit de Σ = S ⊥ , l'orthogonalité étant prise par rapport à la structure euclidienne canonique de R 2n .

Afin de décrire au mieux les constantes C t,m,X 1 ,...,Xm , introduites dans le paragraphe précédent, par rapport aux vecteurs X 1 , . . . , X m , on a besoin d'introduire la notion d'indice de tout vecteur de S ⊥ . S'inspirant du travail [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] de M. Hitrik, K. Pravda-Starov et J. Viola, on considère de nouveau les espaces vectoriels V 0 , . . . , V k 0 ⊂ R 2n définis pour tout 

0 ≤ k ≤ k 0 par (3.4.6) V k = k j=0 Ker(Re F (Im F ) j ), où 0 ≤ k 0 ≤ 2n -
V ⊥ 0 . . . V ⊥ k 0 = S ⊥ .
Cette stratification permet de définir l'indice de tout vecteur

X 0 ∈ S ⊥ par (3.4.8) k X 0 = min 0 ≤ k ≤ k 0 : X 0 ∈ V ⊥ k ,
l'orthogonalité étant prise par rapport à la structure euclidienne canonique de R 2n . Cette notion d'indice d'un vecteur de S ⊥ est reliée à la notion d'ordre du symbole q en un point de l'espace des phases, définie en (3.2.3). En effet, d'après (3.2.5), la forme quadratique q est d'ordre fini en tout point X 0 de S ⊥ \ {0} ⊂ R 2n \ S, et on vérifie dans le Lemme D.3 de l'Annexe D que cet ordre et l'indice de X 0 satisfont l'inégalité suivante :

(3.4.9) k(X 0 ) ≤ 2k X 0 .

Cette majoration est optimale puisqu'on montre dans ce même lemme que ∀k ∈ {0, . . . , k 0 }, ∃X 0 ∈ V ⊥ k , k(X 0 ) = 2k. L'inégalité (3.4.9) est donc atteinte.

Supposons dans ce paragraphe que l'espace singulier S de la forme quadratique q est réduit à zéro. Comme on a déjà vu dans la Section 3.3, le semi-groupe (e -tq w ) t≥0 régularise alors dans l'espace de Gelfand-Shilov S µ µ (R n ), avec µ = 1/2, et on dispose des contrôles (3.3.4) et (3.3.5) pour les semi-normes associées à cet effet régularisant en temps court. La notion d'indice (3.4.8) a permis à M. Hitrik, K. Pravda-Starov et J. Viola d'améliorer l'estimation (3.3.4) dans l'article [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF], dans le cas d'une différentiation dans n'importe quelle direction X 0 ∈ R 2n . Précisément, le résultat [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] (Théorème 1.1) stipule qu'il existe une constante c > 0 telle que pour tout

X 0 ∈ R 2n , 0 < t ≤ 1 et u ∈ L 2 (R n ), (3.4.10) X 0 , X w e -tq w u L 2 (R n ) ≤ c t k X 0 + 1 2 |X 0 | u L 2 (R n ) , avec 0 ≤ k X 0 ≤ k 0 l'indice du vecteur X 0 ∈ R 2n .
Ce résultat montre que la structure de l'espace des phases donnée par la stratification

V ⊥ 0 . . . V ⊥ k 0 = R 2n
, permet de décrire précisément l'asymptotique en temps petit de l'effet régularisant des opérateurs d'évolution e -tq w . En corollaire, ces trois mêmes auteurs établissent [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] 

(Co- rollaire 1.2) qu'il existe une constante c > 1 telle que pour tout m ≥ 1, X 1 , . . . , X m ∈ R 2n , 0 < t ≤ 1 et u ∈ L 2 (R n ), (3.4.11) X 1 , X w . . . X m , X w e -tq w u L 2 (R n ) ≤ c m t (k 0 + 1 2 )m m j=1 |X j | (m!) k 0 + 1 2 u L 2 (R n ) .
Cette estimation montre en particulier que le semi-groupe (e -tq w ) t≥0 régularise en tout temps t > 0 dans l'espace Gelfand-Shilov S µ µ (R n ) avec µ = 1/2 + k 0 . C'est un résultat de régularisation moins précis que celui donné par (3.3.4).

Dans cette section, on généralise les estimations (3.4.10) et (3.4.11) ainsi que le Théorème 3.3, en montrant que de manière générale, l'orthogonal euclidien canonique S ⊥ de l'espace singulier contient les directions régularisantes du semi-groupe engendré par l'opérateur quadratique accrétif q w (x, D x ). De plus, on donne un comportement précis du comportement des semi-normes associées dans l'asymptotique temps petit. Théorème 3.8. Soit q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive. On considère S l'espace singulier de q et 0 ≤ k 0 ≤ 2n -1 le plus petit entier qui satisfait (3.2.1). Il existe des constantes c >

1 et t 0 > 0 telles que pour tout m ≥ 1, X 1 , . . . , X m ∈ S ⊥ , 0 < t < t 0 et u ∈ L 2 (R n ), X 1 , X w . . . X m , X w e -tq w u L 2 (R n ) ≤ c m t k X 1 +...+k Xm + m 2 m j=1 |X j | √ m! u L 2 (R n ) , où 0 ≤ k X j ≤ k 0 désigne l'indice du vecteur X j ∈ S ⊥ , l'orthogonalité étant prise par rapport à la structure euclidienne canonique de R 2n .
Comme dans le travail [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF], la notion d'indice (3.4.8) joue ici un rôle important dans la compréhension de l'explosion en t = 0 des semi-normes associées aux effets régularisants du semi-groupe (e -tq w ) t≥0 . Dans le cas où m = 1 et l'espace singulier S est réduit à zéro, le Théorème 3.8 permet de retrouver l'estimation (3.4.10). De manière générale, l'asymptotique en temps court des normes associées à m ≥ 1 différentiations dans les directions données par les vecteurs X 1 , . . . , X m ∈ S ⊥ est donnée par O(t -k X 1 -...k Xm -m 2 ), ce qui améliore la puissance en temps dans l'estimation (3.4.11). De plus, la puissance sur le terme m! est améliorée en 1/2. Exemple 3.9. Supposons que l'espace singulier S de la forme quadratique q soit réduit à zéro. Le Théorème 3.8 montre alors en particulier qu'il existe des constantes c > 1 et

t 0 > 0 telles que pour tout (α, β) ∈ N 2n , 0 < t < t 0 et u ∈ L 2 (R n ), (3.4.12) x α ∂ β x (e -tq w u) L 2 (R n ) ≤ c |α+β| t (k 0 + 1 2 )|α+β| √ α! β! u L 2 (R n ) , puisque l'indice (3.4.8) de tout vecteur X 0 de S ⊥ (qui vaut R 2n dans ce cas) satisfait 0 ≤ k X 0 ≤ k 0 par définition. On retrouve ainsi l'effet régularisant Gelfand-Shilov S µ µ (R 2n
), avec µ = 1/2, donné par (3.3.4). La puissance en temps dans l'estimation (3.4.12) est cependant plus précise que dans l'estimation (3.3.4).

Exemple 3.10. Lorsque l'espace singulier S de la forme quadratique q prend la forme

S = Σ × {0}, avec Σ ⊂ R n
x un espace vectoriel, le Théorème 3.8 donne l'existence de constantes c >

1 et t 0 > 0 telles que pour tout α ∈ N n , 0 < t < t 0 et u ∈ L 2 (R n ), ∂ α x (e -tq w u) L 2 (R n ) ≤ c |α| t (k 0 + 1 2 )|α| √ α! u L 2 (R n ) .
Le semi-groupe (e -tq w ) t≥0 régularise donc en tout temps t > 0 dans l'espace de fonctions ultra-analytiques G 1/2 (R n ). On rencontrera de nouveau de telles formes quadratiques dans la Section 3.6 et on les qualifiera de formes quadratiques diffusives, cf Définition 3.18.

Exemple 3.11. Soient B, Q et R trois matrices réelles de taille n × n, avec Q et R symétriques positives. On considère l'opérateur d'Ornstein-Uhlenbeck généralisé (3.4.13)

P = - 1 2 Tr(Q∇ 2 x ) + 1 2 Rx, x + Bx, ∇ x , x ∈ R n , équipé du domaine (3.4.14) D(P ) = u ∈ L 2 (R n ) : P u ∈ R n .
L'opérateur P est un opérateur pseudo-différentiel dont le symbole de Weyl est donné par

∀(x, ξ) ∈ R 2n , p(x, ξ) = 1 2 Qξ, ξ + 1 2 Rx, x + i Bx, ξ - 1 2 Tr(B).
Par conséquent, l'opérateur P = P + 1 2 Tr(B) est un opérateur quadratique. Un petit calcul montre que sa matrice fondamentale F et son espace singulier S sont respectivement donnés par

(3.4.15) F = 1 2 iB Q -R -iB T et S = n-1 j=0 Ker(RB j ) × Ker(Q(B T ) j ) .
On peut considérer 0 ≤ k 0 ≤ n -1 le plus entier tel que

(3.4.16) S = k 0 j=0 Ker(RB j ) × Ker(Q(B T ) j ) .
On remarque que l'espace singulier de l'opérateur P a une structure découplée dans l'espace des phases, dans le sens où S s'écrit comme un produit cartésien S = S x × S ξ , avec les deux sous-espaces vectoriels Exemple 3.12. Considérons de nouveau la réalisation maximale sur L 2 (R 2n ) de l'opérateur de Kramers-Fokker-Planck avec potentiel externe K a introduit dans l'Exemple 3.1,

S x ⊂ R n x et S ξ ⊂ R n ξ définis par S x = k 0 j=0 Ker(RB j ) ⊂ R n x et S ξ = k 0 j=0 Ker(Q(B T ) j ) ⊂ R n ξ . Pour tout x ∈ S ⊥ x et ξ ∈ S ⊥ ξ , on peut définir les indices 0 ≤ k x ≤ k 0 et 0 ≤ k ξ ≤ k 0 des vecteurs x et ξ respectivement par k x = min 0 ≤ k ≤ k 0 : x ∈ k j=0 Ker(RB j ) ⊥ , et k ξ = min 0 ≤ k ≤ k 0 : ξ ∈ k j=0 Ker(Q(B T ) j ) ⊥ , l'orthogonalité étant prise par rapport à la structure euclidienne canonique de R n . On remarque que l'entier k x (resp. k ξ ) coïncide avec l'indice du vecteur (x, 0) ∈ S ⊥ x ×{0} ⊂ S ⊥ (resp. du vecteur (0, ξ) ∈ {0} × S ⊥ ξ ⊂ S ⊥ ) défini en (3.4.8). Le Théorème 3.8 implique donc en particulier qu'il existe des constantes c > 1 et t 0 > 0 telles que pour tout m, p ≥ 0, x 1 , . . . , x m ∈ S ⊥ x , ξ 1 , . . . , ξ p ∈ S ⊥ ξ , 0 < t < t 0 et u ∈ L 2 (R n ), (3.4.17) x 1 , x . . . x m , x ξ 1 , ∇ x . . . ξ p , ∇ x e -tP u L 2 (R n ) ≤ c m+p e 1 2 Tr(B)t t kx 1 +...+kx m +k ξ 1 +...+k ξp + m 2 + p 2 m j=1 |x j | p j=1 |ξ j | √ m! p! u L 2 (R n ) , où les entiers 0 ≤ k x j ≤ k 0 et 0 ≤ k ξ j ≤ k 0 représentent
K a = -∆ v + 1 4 |v| 2 + v, ∇ x -a x, ∇ v , (x, v) ∈ R 2n ,
où a ∈ R est un paramètre réel. On remarque que l'opérateur K a est un cas particulier d'opérateur d'Ornstein-Uhlenbeck généralisé (3.4.13) associé aux matrices

B = 0 n -aI n I n 0 n , Q = 2 0 n 0 n 0 n I n et R = 1 2 0 n 0 n 0 n I n .
Lorsque a ∈ R * est non nul, le Théorème 3.8 montre qu'il existe des constantes

t a > 0 et c a > 1 telles que pour tout 0 < t < t a , (α, β, γ, µ) ∈ N 4n et u ∈ L 2 (R 2n ), (3.4.18) x α v β ∂ γ x ∂ µ v (e -tKa u) L 2 (R 2n ) ≤ c |α|+|β|+|γ|+|µ| a t 3|α| 2 + |β| 2 + 3|γ| 2 + |µ| 2 √ α! β! γ! µ! u L 2 (R 2n ) .
Lorsque a = 0, ce même résultat entraîne qu'il existe des constantes

t 0 > 0 et c 0 > 1 telles que pour tout 0 < t < t 0 , (β, γ, µ) ∈ N 3n et u ∈ L 2 (R 2n ), (3.4.19) v β ∂ γ x ∂ µ v (e -tK 0 u) L 2 (R 2n ) ≤ c |β|+|γ|+|µ| 0 t |β| 2 + 3|γ| 2 + |µ| 2 β! γ! µ! u L 2 (R 2n ) .
On remarque que les estimations de régularisation (3. Par ailleurs, il serait intéressant de connaitre le comportement de la constante c a > 1 dans le régime |a| 1, pour illustrer la perte de propriété localisante en la variable x lorsque a = 0. Une telle étude n'a pas pu être menée pour l'instant. Le Théorème 3.8 implique en particulier que pour tout X 0 ∈ S ⊥ et t > 0, l'opérateur linéaire X 0 , X w e -tq w est borné sur L 2 (R n ). Il se trouve que la réciproque est également vraie comme le montre le résultat suivant : Théorème 3.13. Soit q : R 2n → C une forme quadratique complexe de partie réelle positive Re q ≥ 0. On considère S l'espace singulier de q. S'il existe t > 0 et X 0 ∈ R 2n tels que l'opérateur linéaire X 0 , X w e -tq w est borné sur L 2 (R n ), alors X 0 ∈ S ⊥ , l'orthogonalité étant prise par rapport à la structure euclidienne canonique de R 2n .

On remarque que si t > 0 et X 0 ∈ R n sont tels que l'opérateur linéaire X 0 , X w e -tq w est borné sur L 2 (R n ), alors X 0 ∈ S ⊥ d'après le Théorème 3.13 et le Théorème 3.8 implique que pour tout m ≥ 1, l'opérateur linéaire ( X 0 , X w ) m e -tq w est lui aussi borné sur L 2 (R n ).

Comme dans la Section 3.3, le résultat principal de cette sous-section, i.e. le Théorème 3.8, ne donne pas de comportement en temps grand pour les semi-normes associées aux effets régularisants des semi-groupes engendrés par les opérateurs quadratiques accrétifs. Un tel comportement a néanmoins été étudié par M. Hitrik, K. Pravda-Starov et J. Viola dans l'article [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] lorsque l'espace singulier S de la forme quadratique q est réduit à zéro. Leur résultat principal à ce sujet [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] 

(Corollaire 1.2) stipule que dans ce cas, il existe une constante c > 1 telle que pour tout m ≥ 1, X 1 , . . . , X m ∈ R 2n , t ≥ 1 et u ∈ L 2 (R n ), (3.4.20) X 1 , X w . . . X m , X w e -tq w u L 2 (R n ) ≤ c m m j=1 |X j | e -ω 0 t (m!) k 0 + 1 2 u L 2 (R n ) ,
avec 0 ≤ k 0 ≤ 2n -1 le plus petit entier qui satisfait (3.2.1) et où ω 0 > 0 désigne l'abscisse spectrale de l'opérateur q w (x, D x ), donné par (3.4.21)

ω 0 = λ∈σ(F ), Re(-iλ)>0 r λ Re(-iλ) > 0, cf (3.2.6
). Pour établir cette estimation, cf page 641 de l'article [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF], ces trois auteurs ont exploité l'inégalité (3.4.11) et un résultat de retour exponentiel à l'équilibre obtenu par M. Ottobre, G. Pavliotis et K. Pravda-Starov dans l'article [START_REF] Ottobre | Exponential return to equilibrium for hypoelliptic quadratic systems[END_REF] (Théorème 2.2), qui implique en particulier que lorsque l'espace singulier S de la forme quadratique q est réduit à zéro, la norme d'opérateur des opérateurs d'évolution e -tq w satisfait (3.4.22) ∃c > 0, ∀t ≥ 0, e -tq w L(L 2 ) ≤ ce -ω 0 t , où ω 0 > 0 désigne toujours l'abscisse spectrale de l'opérateur q w (x, D x ) donné par (3.4.21). On renvoie aux articles [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF][START_REF] Ottobre | Exponential return to equilibrium for hypoelliptic quadratic systems[END_REF][START_REF] Pravda-Starov | Contraction semigroups of elliptic quadratic differential operators[END_REF][START_REF] Viola | The elliptic evolution of non-selfadjoint degree-2 Hamiltonians[END_REF] où une étude de la norme des opérateurs d'évolution e -tq w est menée. En exploitant le résultat donné par le Théorème 3.8, l'estimation (3.4.22) et la propriété de semi-groupe de la famille d'opérateurs bornés (e -tq w ) t≥0 , on obtient immédiatement l'amélioration suivante de l'inégalité (3.4.20) :

Corollaire 3.14. Soit q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive. On suppose que son espace singulier S est réduit à zéro. Alors, il existe des constantes c >

1 et t 0 > 0 telles que pour tout m ≥ 1, X 1 , . . . , X m ∈ R 2n , t > t 0 et u ∈ L 2 (R n ), X 1 , X w . . . X m , X w e -tq w u L 2 (R n ) ≤ c m m j=1 |X j | e -ω 0 t √ m! u L 2 (R n ) ,
avec ω 0 > 0 l'abscisse spectrale de l'opérateur q w (x, D x ), donné par (3.4.21).

Obtenir une classification générale du comportement en temps long des semi-normes associées aux effets régularisants des semi-groupes engendrés par les opérateurs quadratiques accrétifs est un problème encore irrésolu. Dans le cas des formes quadratiques à espaces singuliers nuls, il serait intéressant de voir si la décroissance exponentielle donnée par le Corollaire 3.14 pourrait également dépendre des différentes directions régularisantes mises en jeu.

Propriétés sous-elliptiques

Cette section est consacrée à l'étude des propriétés sous-elliptiques vérifiées par les opérateurs quadratiques accrétifs. Considérons q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive. Lorsque l'espace singulier S de la forme quadratique q est réduit à zéro, K. Pravda-Starov a démontré dans l'article [START_REF] Pravda-Starov | Subelliptic estimates for quadratic differential operators[END_REF] que l'opérateur quadratique accrétif q w (x, D x ) vérifie une estimation sous-elliptique globale avec une perte de dérivées par rapport au cas elliptique qui dépend de l'entier 0 ≤ k 0 ≤ 2n -1 défini en (3.2.1), grâce à une méthode par multiplicateur. Plus précisément, le résultat [START_REF] Pravda-Starov | Subelliptic estimates for quadratic differential operators[END_REF] (Théorème 1.2.1) stipule que dans ce cas, il existe une constante c > 0 telle que pour tout u ∈ D(q w ),

(3.5.1) (x, D x ) 2(1-δ) u L 2 (R n ) ≤ c q w (x, D x )u L 2 (R n ) + u L 2 (R n ) , où la constante 0 ≤ δ < 1 est donnée par δ = 2k 0 2k 0 + 1 , l'opérateur (x, D x ) 2(1-δ) = 1 + |x| 2 + |D x | 2 1-δ ,
étant défini par le calcul fonctionnel de l'oscillateur harmonique. On renvoit le lecteur à la page 46 de l'article [START_REF] Pravda-Starov | Subelliptic estimates for quadratic differential operators[END_REF] pour une discussion informelle sur la valeur de la perte de dérivées 0 ≤ δ < 1 par rapport au cas elliptique. L'estimation sous-elliptique globale (3.5.1) a ensuite été redémontrée par M. Hitrik, K. Pravda-Starov et J. Viola dans les articles [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] (Corollaire 1.3) et [START_REF] Hitrik | From semigroups to subelliptic estimates for quadratic operators[END_REF] (Théorème 1.1) en utilisant respectivement des techniques basées sur la transformation FBI et grâce à des résultats de la théorie de l'interpolation. Rappelons que lorsque l'espace singulier S est réduit à zéro, l'espace des phases se stratifie de la façon suivante d'après (3.4.7), (3.4.6). Dans l'article [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF], les trois auteurs précédents ont amélioré l'estimation (3.5.1) dans les directions de l'espace des phases moins dégénérées, i.e. avec des indices plus petits par rapport à l'espace singulier. Dans le but de présenter leur résultat, on a besoin d'introduire les formes quadratiques suivantes, avec

V ⊥ 0 . . . V ⊥ k 0 = R 2n , les espaces vectoriels V 0 , . . . , V k 0 ⊂ R 2n étant définis en
0 ≤ k ≤ k 0 , (3.5.2) p k (X) = k j=0
Re q (Im F ) j X .

On considère également les opérateurs quadratiques

Λ 2 k définis pour tout 0 ≤ k ≤ k 0 par (3.5.3) Λ 2 k = 1 + p w k (x, D x ), équipés des domaines (3.5.4) D(Λ 2 k ) = u ∈ L 2 (R n ) : Λ 2 k u ∈ L 2 (R n ) .
Puisque Re q est une forme quadratique positive, on peut démontrer, grâce au Lemme 6.14 du Chapitre 6 par exemple, que les opérateurs Λ 2 k sont positifs. Par conséquent, on peut considérer les puissances fractionnaires de ces opérateurs, cf [START_REF] Lunardi | Interpolation theory[END_REF] (Chapitre 4). Lorsque l'espace singulier S est réduit à zéro, le Théorème 1.4 de l'article [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] stipule qu'il existe une constante c > 0 telle que pour tout u ∈ D(q w ),

(3.5.5) Λ 0 u L 2 (R n ) + k 0 k=1 Λ 2 2k+1 k u L 2 (R n ) ≤ c q w (x, D x )u L 2 (R n ) + u L 2 (R n ) .
Les auteurs de [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] conjecturent que les puissances 2/(2k + 1) sont optimales mais que la puissance de Λ 0 doit être égale à 2 et non pas à 1.

Une estimation sous-elliptique globale de la forme (3.5.1) a également été obtenue par K. Pravda-Starov dans l'article [START_REF] Pravda-Starov | Subelliptic estimates for quadratic differential operators[END_REF] (Théorème 1.2.2) pour des opérateurs quadratiques dont l'espace singulier admet une structure symplectique. Cependant, aucune théorie générale n'a été développée lorsque l'espace singulier S de la forme quadratique q n'est pas réduit à zéro, ou plus généralement n'admet pas de structure symplectique. Mentionnons cependant que des estimations sous-elliptiques ont été obtenues pour l'opérateur de Kramers-Fokker-Planck sans potentiel

K 0 = -∆ v + 1 4 |v| 2 + v, ∇ x ,
dont l'espace singulier n'admet pas de structure symplectique comme on l'a déjà remarqué en (3.3.9), par F. Hérau et K. Pravda-Starov dans l'article [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF] (Proposition 2.1), avec une méthode par multiplicateur. Leur résultat montre qu'il existe une constante c > 0 telle que pour tout u ∈ S(R n ),

D x 2/3 u L 2 (R 2n ) + v 2 u L 2 (R 2n ) + D v 2 u L 2 (R 2n ) ≤ c K 0 u L 2 (R 2n ) + u L 2 (R 2n ) .
Dans ce travail, on cherche à généraliser (et améliorer) les inégalités sous-elliptiques (3.5.5) à toute forme quadratique q : R 2n → C prenant des valeurs complexes et de partie réelle positive, sans aucune hypothèse sur son espace singulier S. Théorème 3.15. Soit q : R 2n → C une forme quadratique complexe de partie réelle positive. On considère S l'espace singulier de q et 0 ≤ k 0 ≤ 2n -1 le plus petit entier qui satisfait (3.2.1). Alors, il existe une constante c > 0 telle que pour tout u ∈ D(q w ),

k 0 k=0 Λ 2 2k+1 k u L 2 (R n ) ≤ c q w (x, D x )u L 2 (R n ) + u L 2 (R n ) .
Comme dans le cas où l'espace S est réduit à zéro, ce résultat montre que l'opérateur quadratique q w (x, D x ) vérifie des estimations sous-elliptiques anisotropiques, cette anisotropie étant directement reliée à la structure de l'espace singulier S. De plus, le Théorème 3.15 confirme que la puissance de l'opérateur Λ 0 associé à la partie réelle de la forme quadratique q est bien égale à 2.

Exemple 3.16. Soit P l'opérateur d'Ornstein-Uhlenbeck généralisé défini en (3.4.13) et équipé du domaine (3.4.14). Un calcul direct montre que pour tout 0 ≤ k ≤ k 0 , l'opérateur Λ 2 k associé à l'opérateur P est donné par

Λ 2 k = 1 + k j=0 1 2 j+1 √ RB j x 2 + k j=0 1 2 j+1 Q(B T ) j D x 2 ,
où 0 ≤ k 0 ≤ n -1 est le plus petit entier qui satisfait (3.4.16).

Exemple 3.17. Supposons que l'espace singulier de la forme quadratique q prenne la forme S = Σ × {0}, avec Σ un sous-espace vectoriel de R n

x . En utilisant les estimations présentées dans l'Exemple 3.10 et la même stratégie de démonstration que celle utilisée pour démontrer le Théorème 2.8 du Chapitre 2 concernant les propriétés sous-elliptiques vérifiées par les opérateurs d'Ornstein-Uhlenbeck fractionnaires, on obtient l'existence d'une constante c > 0 telle que pour tout u ∈ D(q w ),

D x 2 2k 0 +1 u L 2 (R n ) ≤ c q w (x, D x )u L 2 (R n ) + u L 2 (R n ) .
Cette estimation, qui montre que l'opérateur quadratique accrétif q w (x, D x ) jouit de propriétés sous-elliptiques partielles en fréquences sur tout l'espace, est moins précise que le résultat donné par le Théorème 3.15 pour ces opérateurs mais est plus explicite. Cette classe de formes quadratiques sera de nouveau rencontrée dans la section qui suit.

Problèmes de contrôlabilité à zéro

Dans cette dernière partie, on étudie la contrôlabilité à zéro des équations aux dérivées partielles quadratiques posées sur tout l'espace. Etant donnée q : R 2n → C une forme quadratique complexe de partie réelle positive, on s'intéresse à l'équation (3.6.1)

(∂ t + q w (x, D x ))f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
où ω ⊂ R n est un borélien de mesure de Lebesgue strictement positive et q w (x, D x ) désigne l'opérateur quadratique accrétif associé à la forme quadratique q. Dans cette section, comme c'était le cas dans la Section 2.5 du Chapitre 2, toute mention d'une propriété de sous-ellipticité est purement informative, puisqu'aucune propriété de cette nature n'intervient dans la démonstration dwes résultats qui suivent. L'étude de la contrôlabilité à zéro de ces équations a déjà été menée dans un cadre globalement hypoelliptique lorsque l'espace singulier S de la forme quadratique q est réduit à zéro. Rappelons que dans ce cas, l'opérateur quadratique accrétif q w (x, D x ) vérifie l'estimation sous-elliptique globale (3.5.1). Tout d'abord, K. Beauchard et K. Pravda-Starov ont établi dans l'article [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Théorème 1.5) que l'équation parabolique (3.6.1) est contrôlable à zéro en tout temps T > 0 depuis des ensembles de contrôle ouverts ω ⊂ R n satisfaisant la condition géométrique

(3.6.2) ∃δ, r > 0, ∀y ∈ R n , ∃y ∈ ω, B(y , r) ⊂ ω et |y -y | < δ.
Cette condition a déjà été rencontrée dans la Section 2.5 du Chapitre 2 lors de l'étude de la contrôlabilité à zéro des équations d'Ornstein-Uhlenbeck fractionnaires. Pour ce faire, ils ont utilisé le Théorème 1.3 (Chapitre 1) avec une famille de projections orthogonales sur les premiers modes de la base de Hermite de L 2 (R n ), exploitant l'effet régularisant Gelfand-Shilov (3.3.3) du semi-groupe engendré par l'opérateur q w (x, D x ) et établissant une nouvelle inégalité spectrale pour des ouverts ω ⊂ R n satisfaisant la condition (3.6.2), cf [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Proposition 4.2). Dans un travail plus récent [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] écrit en collaboration avec P. Jaming, ces mêmes auteurs ont amélioré leur résultat en montrant [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] (Théorème 2.2) que l'équation (3.6.1) est contrôlable à zéro en tout temps T > 0 depuis des ensembles de contrôle ω ⊂ R n épais, toujours sous la condition S réduit à zéro. On remarque que la condition d'épaisseur, définie dans la Définition 1.5, est plus faible que la condition (3.6.2). La stratégie qu'ils adoptent est la même que celle de [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] présentée juste avant. Le résultat principal de leur article [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] (Théorème 2.1) contient des inégalités spectrales pour différents type de sous-ensembles ω ⊂ R n , et notamment l'inégalité spectrale pour les ensembles épais présentée dans le Théorème 1.8 du Chapitre 1. Dans ce travail, on cherche des conditions suffisantes sur l'espace singulier S qui assurent la contrôlabilité à zéro de l'équation (3.6.1) depuis des ensembles de contrôle ω ⊂ R n épais, dans le but de généraliser le résultat [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] (Théorème 2.2). La bonne classe de formes quadratiques à considérer pour nous est celle des formes quadratiques diffusives : Définition 3.18 (Forme quadratique diffusive). Soit q : R 2n → C une forme quadratique complexe de partie réelle positive. On dit que q est diffusive lorsque son espace singulier S prend la forme S = Σ × {0}, où Σ ⊂ R n

x est un espace vectoriel. Par extension, on dit que l'opérateur q w (x, D x ) est diffusif si la forme quadratique q associée l'est. Ker Q(B T ) j = {0}.

Par conséquent, l'espace singulier de l'opérateur P est donné par Comme on l'a déjà remarqué dans l'Exemple 3.17, tout opérateur quadratique accrétif diffusif jouit de propriétés sous-elliptiques partielles en fréquences sur tout l'espace. D'autre part, si q est une forme quadratique diffusive, on a vu dans l'Exemple 3.10 qu'il existe des constantes c >

S = n-1 j=0 Ker(RB j ) × Ker(Q(B T ) j ) = n-1 j=0 Ker(RB j ) × {0 R n ξ },
1 et t 0 > 0 telles que pour tout 0 < t ≤ t 0 , α ∈ N n et u ∈ L 2 (R n ), (3.6.4) ∂ α x (e -tq w u) L 2 (R n ) ≤ c |α| t (k 0 + 1 2 )|α| √ α! u L 2 (R n ) ,
où 0 ≤ k 0 ≤ 2n -1 est le plus petit entier qui satisfait (3.2.1). Par conséquent, le semigroupe engendré par l'opérateur quadratique q w (x, D x ) régularise en tout temps t > 0 dans l'espace de fonctions ultra-analytiques G 1/2 (R n ). C'est grâce à cet effet régularisant que l'on obtient le théorème suivant, qui fournit un résultat positif de contrôlabilité à zéro pour les équations paraboliques (3.6.1) associées à des formes quadratiques diffusives.

Théorème 3.21. Soit q : R 2n → C une forme quadratique à valeurs complexes et de partie réelle positive dont on suppose qu'elle est diffusive. Si l'ensemble ω ⊂ R n est épais, alors l'équation parabolique

(∂ t + q w (x, D x ))f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
est contrôlable à zéro depuis l'ensemble ω en tout temps T > 0.

Le Théorème 3.21 permet de considérer des cas plus dégénérés que ceux traités dans les articles [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] et [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF], où les auteurs considèrent des formes quadratiques à espaces singuliers nuls. En effet, lorsque l'espace singulier de la forme quadratique q est réduit à zéro, le semigroupe engendré par l'opérateur q w (x, D x ) régularise en tout temps t > 0 dans l'espace Gelfand-Shilov S µ µ (R n ), avec µ = 1/2. Lorsque q est diffusive, ce semi-groupe régularise a priori « seulement » dans l'espace de fonctions ultra-analytiques G 1/2 (R n ). En particulier, le Théorème 3.21 étend [START_REF] Beauchard | Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] (Théorème 2.2).

Exemple 3.22. Considérons l'opérateur d'Ornstein-Uhlenbeck généralisé P défini en (3.4.13). On suppose la condition de Kalman (3.6.3) vérifiée entre les matrices B et Q. D'après l'Exemple 3.20, cela implique que l'opérateur P est diffusif. Si l'ensemble ω ⊂ R n est épais, alors le Théorème 3.21 entraîne que l'équation parabolique

(∂ t + P )f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
est contrôlable à zéro depuis l'ensemble ω en tout temps T > 0. En particulier, si l'ensemble ω ⊂ R n est épais, alors l'équation de Kramers-Fokker-Planck avec potentiel externe quadratique

(∂ t + K a )f (t, x) = h(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
est contrôlable à zéro depuis l'ensemble ω en tout temps T > 0 pour tout a ∈ R, où l'opérateur K a est défini dans l'Exemple 3.1.

Par la méthode de dualité hilbertienne, présentée dans le Section 1.1 du Chapitre 1, la contrôlabilité à zéro de l'équation (3.6.1) est équivalente à l'observabilité du système adjoint (3.6.5)

(∂ t + (q w (x, D x )) * )g(t, x) = 0, (t, x) ∈ (0, +∞) × R n , g(0) = g 0 ∈ L 2 (R n ).
Or, l'adjoint de l'opérateur quadratique q w (x, D x ) muni du domaine D(q w ) est donné par l'opérateur quadratique q w (x, D x ) avec domaine D(q w ), dont le symbole de Weyl est le conjugué du symbole q. De plus, la matrice fondamentale de q est F , où F représente la matrice fondamentale de q. Cela implique que q et q ont mêmes espaces singuliers. En conséquence, la forme quadratique q est diffusive si et seulement si la forme quadratique q l'est. On déduit alors que le résultat de contrôlabilité à zéro donné par le Théorème 3.21 est équivalent au résultat d'observabilité suivant :

Théorème 3.23. Soit q : R 2n → C une forme quadratique complexe de partie réelle positive dont on suppose qu'elle est diffusive. Si l'ensemble ω ⊂ R n est épais, alors il existe une constante C > 1 telle que pour tout

T > 0 et g ∈ L 2 (R n ), (3.6.6) e -T q w g 2 L 2 (R n ) ≤ C exp C T 2k 0 +1 T 0 e -tq w g 2 L 2 (ω) dt, où 0 ≤ k 0 ≤ 2n -1 est le plus petit entier qui satisfait (3.2.

1).

Démonstration. Considérons (π k ) k≥1 la famille des projections orthogonales coupefréquence données pour tout entier k ≥ 1 par

π k : L 2 (R n ) → g ∈ L 2 (R n ) : Supp g ⊂ {ξ ∈ R n : |ξ| ≤ k} . D'après le Corollaire 1.7 du Chapitre 1, il existe des constantes c 1 , c 1 > 0 telles que l'on ait l'inégalité spectrale ∀g ∈ L 2 (R n ), ∀k ≥ 1, π k g L 2 (R n ) ≤ c 1 e c 1 k π k g L 2 (ω) .
D'autre part, comme la forme quadratique q est diffusive, on déduit de l'Exemple 3.10 qu'il existe des constantes c > 

1 et t 0 > 0 telles que pour tout 0 < t ≤ t 0 , α ∈ N n et g ∈ L 2 (R n ), ∂ α x (e -tq w g) L 2 (R n ) ≤ c |α| t (k 0 + 1 2 )|α| √ α! g L 2 (R n ) , où 0 ≤ k 0 ≤ 2n -
∈ L 2 (R n ), k ≥ 1 et 0 < t < t 0 , (1 -π k )(e -tq w g) L 2 (R n ) ≤ c 2 e -c 2 t 2k 0 +1 k 2 g L 2 (R n ) .
Comme le semi-groupe (e -tq w ) t≥0 est de contraction sur L 2 (R n ) et que 2 > 1, le résultat du Théorème 3.23 est une conséquence du Théorème 1.3 (Chapitre 1).

Contrairement au cas des équations d'Ornstein-Uhlenbeck fractionnaires posées sur l'espace euclidien dans la Section 2.5 du Chapitre 2, nous n'obtenons ici qu'une condition suffisante sur les supports de contrôle ω ⊂ R n (la notion d'épaisseur) qui assure de manière générale la contrôlabilité à zéro en tout temps T > 0 des équations aux dérivées partielles (3.6.1) associées à des formes quadratiques diffusives. Cette condition est aussi nécessaire pour assurer la contrôlabilité à zéro de l'équation de la chaleur posée sur tout l'espace, qui est un cas particulier d'une telle équation (3.6.1), comme on l'a vu dans cette même section. Cependant, on ne peut pas s'attendre à ce que l'épaisseur des ensembles de contrôle ω ⊂ R n soit une condition nécessaire de contrôlabilité à zéro de ces équations de manière générale. En effet, pour établir l'inégalité d'observabilité (3.6.6), nous avons exploité l'effet régularisant ultra-analytique du semi-groupe engendré par l'opérateur quadratique diffusif q w (x, D x ), mais à aucun moment ses éventuelles propriétés localisantes. De telles propriétés sont présentes lorsque l'espace singulier de la forme quadratique q prend la forme S = Σ × {0}, avec Σ ⊂ R n

x un sous-espace vectoriel distinct de R n x , d'après le Théorème 3.8. Il s'agirait à présent d'étendre la notion d'ensemble épais en une notion qui permettrait d'obtenir des inégalités d'observabilité (3.6.6) grâce à des propriétés de régularisation de type Gevrey et à des propriétés de localisation. Une telle généralisation est déjà abordée dans le travail en cours [START_REF] Martin | Spectral inequalities for combinations of Hermite functions and nullcontrollability for evolution equations enjoying Gelfand-Shilov smoothing effect[END_REF] de J. Martin et K. Pravda-Starov dans lequel les deux auteurs établissent des propriétés spectrales du type (1.1.4), avec des projections orthogonales sur les premiers modes de la base de Hermite de L 2 (R n ), pour des ensembles épais selon une certaine densité lipschitzienne. Ces inégalités leur permettent d'obtenir des résultats de contrôlabilité à zéro pour des équations d'évolution qui régularisent dans des espaces Gelfand-Shilov symétriques

S µ µ (R n ), avec 1/2 ≤ µ < 1.
Leur résultat s'applique notamment à l'équation (3.6.1) lorsque l'espace singulier de la forme quadratique q est réduit à zéro, et généralise le Théorème 3.21 dans ce cas.

Mentionnons pour terminer ce chapitre que la contrôlabilité à zéro des équations d'évolution associées aux opérateurs quadratiques accrétifs posées sur tout l'espace depuis des supports de contrôle dépendant du temps a été récemment étudié par K. Beauchard, M. Egidi et K. Pravda-Starov dans l'article [START_REF] Beauchard | Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports[END_REF]. Plus précisément, l'équation à laquelle ils s'intéressent est la suivante (3.6.7)

(∂ t + q w (x, D x ))f (t, x) = h(t, x)1 ω(t) (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
où q w (x, D x ) est un opérateur quadratique accrétif et (ω(t)) 0≤t≤T un support de contrôle mouvant, avec T > 0, cf [START_REF] Beauchard | Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports[END_REF] (Definition 1.1). Leur résultat principal à ce sujet, à savoir [START_REF] Beauchard | Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports[END_REF] (Théorème 1.6), stipule que si l'espace singulier de la forme quadratique q est réduit à zéro et si les ensembles ω(t) sont (γ, a)-épais pour tout t ∈ E, avec γ ∈ (0, 1], a ∈ (R * + ) n et E un borélien de [0, T ] de mesure de Lebesgue strictement positive, alors l'équation (3.6.7) est contrôlable à zéro sur [0, T ]. En utilisant la même stratégie que ces trois auteurs et en exploitant l'effet régularisant présenté dans l'Exemple 3.10, il ne serait pas difficile d'étendre le résultat [START_REF] Beauchard | Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports[END_REF] (Théorème 1.6) à des formes quadratiques diffusives.

Deuxième partie

Démonstrations des résultats obtenus

Chapitre 4

Smoothing properties of fractional Ornstein-Uhlenbeck semigroups

In this chapter, we give the proofs of the results presented in Chapter 2. A part of this work is taken from the article [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] written in collaboration with J. Bernier and submitted for publication.

Outline of the chapter. Section 4.1 is devoted to the study of fractional Ornstein-Uhlenbeck operators. In Section 4.2, we establish the partial Gevrey-type smoothing properties enjoyed by the semigroups they generate. Thanks to these regularizing effects, we investigate the L 2 subelliptic estimates enjoyed by fractional Ornstein-Uhlenbeck operators in Section 4.3. In Section 4.4, we study the null-controllability of fractional Ornstein-Uhlenbeck equations posed on the whole space. Section 4.5 is an appendix containing the proofs of some technical results.

Properties of fractional Ornstein-Uhlenbeck operators

In this section, we establish basic properties of fractional Ornstein-Uhlenbeck operators. We consider the fractional Ornstein-Uhlenbeck operator P defined in (2.1.1) and equipped with the domain (2.1.2).

Graph approximation.

We begin by studying the graphs of fractional Ornstein-Uhlenbeck operators. We prove that the Schwartz space S(R n ) is dense in their domains equipped with the graph norm by using symbolic calculus and convolution estimates. Then, we compute the adjoints of these operators and study their positivity. 

P u k = P u in L 2 (R n ).
Proof. For all k ≥ 1, we consider the pseudodifferential operator

ψ k (x, D x ) = ψ |x| 2 k 2 ψ D 2 x k 2α , (4.1.1) where ψ ∈ C ∞ 0 (R) is such that 0 ≤ ψ ≤ 1, ψ = 1 on [-1, 1] and Supp ψ ⊂ [-2, 2], and α > 0 is a positive constant satisfying (2p -1)α < 1. Since ψ is compactly supported, we get that ∀k ≥ 1, ψ k (x, D x ) : L 2 (R n ) → C ∞ 0 (R n ) ⊂ S(R n ). (4.1.2) Let us first check that (4.1.3) ∀k ≥ 1, ∀u ∈ L 2 (R n ), lim k→+∞ ψ k (x, D x )u = u in L 2 (R n ). Let u ∈ L 2 (R n ).
We have that for all k ≥ 1,

ψ k (x, D x )u -u L 2 (R n ) ≤ ψ |x| 2 k 2 ψ D 2 x k 2α u -ψ |x| 2 k 2 u L 2 (R n ) + ψ |x| 2 k 2 u -u L 2 (R n ) ≤ ψ D 2 x k 2α u -u L 2 (R n ) + ψ |x| 2 k 2 u -u L 2 (R n ) -→ k→+∞ 0,
from the dominated convergence theorem and the Plancherel theorem. Thus, (4.1.3) is proved. Now, we consider u ∈ D(P ) and u k = ψ k (x, D x )u for all k ≥ 1. As a consequence of (4.1.2) and (4.1.3), (u k ) k is a sequence of Schwartz functions that converges to u in L 2 (R n ). Since P u ∈ L 2 (R n ) by definition of D(P ), we can apply once again (4.1.3) to get that

lim k→+∞ ψ k (x, D x )P u = P u in L 2 (R n ).
If the operators ψ k (x, D x ) and P were commutative, the proposition would be proven. It is not the case but to conclude, it is sufficient to check that (4.1.4)

lim k→+∞ P, ψ k (x, D x ) u = 0 in L 2 (R n ).
We write

P, ψ k (x, D x ) = Bx, ∇ x , ψ k (x, D x ) + 1 2 Tr p (-Q∇ 2 x ), ψ k (x, D x ) ,
and consider the two commutators separately.

1. By definition of the commutator, (4.1.5)

Bx, ∇ x , ψ k (x, D x ) u = Bx, ∇ x (ψ k (x, D x )u) -ψ k (x, D x ) Bx, ∇ x u .
First, we notice that

Bx, ∇ x (ψ k (x, D x )u) = Bx, ∇ x ψ |x| 2 k 2 ψ D 2 x k 2α u (4.1.6) = Bx, ∇ x ψ |x| 2 k 2 ψ D 2 x k 2α u + ψ |x| 2 k 2 Bx, ψ D 2 x k 2α ∇ x u = 2 k 2 Bx, x ψ |x| 2 k 2 ψ D 2 x k 2α u + ψ |x| 2 k 2 Bx, ψ D 2 x k 2α ∇ x u .
The last term of the previous equality also writes as

(4.1.7) ψ |x| 2 k 2 Bx, ψ D 2 x k 2α ∇ x u = -ψ |x| 2 k 2 F -1 2 k 2α B T ξ, ξ ψ |ξ| 2 k 2α u + ψ k (x, D x ) Bx, ∇ x u .
Indeed, it follows from a direct computation that

F Bx, ψ D 2 x k 2α ∇ x u = iB∇ ξ , ψ |ξ| 2 k 2α iξ u = -∇ ξ , ψ |ξ| 2 k 2α B T ξ u = -B T ξ, ∇ ξ ψ |ξ| 2 k 2α u -ψ |ξ| 2 k 2α ∇ ξ , B T ξ u = -B T ξ, ∇ ξ ψ |ξ| 2 k 2α u -ψ |ξ| 2 k 2α B T ξ, ∇ ξ u + Tr(B) u = - 2 k 2α B T ξ, ξ ψ |ξ| 2 k 2α u -ψ |ξ| 2 k 2α B T ξ, ∇ ξ u + Tr(B) u , that is Bx, ψ D 2 x k 2α ∇ x u = -F -1 2 k 2α B T ξ, ξ ψ |ξ| 2 k 2α u + ψ D 2 x k 2α Bx, ∇ x u ,
since we also have that

F ( Bx, ∇ x u ) = iB∇ ξ , iξ u = -∇ ξ , B T ξ u = -B T ξ, ∇ ξ u -∇ ξ , B T ξ u = -B T ξ, ∇ ξ u -Tr(B) u.
It follows from (4.1.1), (4.1.5), (4.1.6) and (4.1.7) that for all k ≥ 1,

(4.1.8) Bx, ∇ x , ψ k (x, D x ) u = 2 k 2 Bx, x ψ |x| 2 k 2 ψ D 2 x k 2α u -ψ |x| 2 k 2 F -1 2 k 2α B T ξ, ξ ψ |ξ| 2 k 2α u . Now, let us prove the following convergence (4.1.9) lim k→+∞ 2 k 2 Bx, x ψ |x| 2 k 2 ψ D 2 x k 2α u L 2 (R n ) = 0.
On the one hand, since ψ is bounded and ψ (0) = 0, we get by homogeneity that (4.1.10)

sup k≥1 2 k 2 Bx, x ψ |x| 2 k 2 L ∞ (R n ) < +∞, and (4.1.11) ∀x ∈ R n , 2 k 2 Bx, x ψ |x| 2 k 2 -→ k→+∞ 0.
On the other hand, the following convergence

lim k→+∞ ψ D 2 x k 2α u = u in L 2 (R n ),
and the classical corollary of the Riesz-Fischer theorem, see e.g. Theorem IV.9 in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], prove that up to an extraction, Then, (4.1.9) is a consequence of (4.1.10), (4.1.11), (4.1.12), (4.1.13) and the dominated convergence theorem. By arguing in the very same way, we derive that

lim k→+∞ 2 k 2α B T ξ, ξ ψ |ξ| 2 k 2α u L 2 (R n ) = 0,
and as a consequence of the Plancherel theorem, since ψ is bounded,

(4.1.14) lim k→+∞ ψ |x| 2 k 2 F -1 2 k 2α B T ξ, ξ ψ |ξ| 2 k 2α u L 2 (R n ) = 0.
Finally, we derive from (4.1.8), (4.1.9) and (4.1.14) that

lim k→+∞ Bx, ∇ x , ψ k (x, D x ) u = 0 in L 2 (R n ). (4.1.15)
2. Now, we prove that (4. 1.16)

lim k→+∞ Tr p (-Q∇ 2 x ), ψ k (x, D x ) u = 0 in L 2 (R n ).
Since Fourier multipliers are commutative, we have

Tr p (-Q∇ 2 x ), ψ k (x, D x ) u = Tr p (-Q∇ 2 x ), ψ |x| 2 k 2 v k ,
where

v k = ψ D 2 x k 2α u,
and it follows from the Plancherel theorem that (4.1.17)

Tr p (-Q∇ 2 x ), ψ k (x, D x ) u L 2 (R n ) = 1 (2π) n 2 Qξ 2p k n ϕ(kξ) * v k -k n ϕ(kξ) * Qξ 2p v k L 2 (R n ) , where ϕ(x) = ψ(|x| 2 ), x ∈ R n .
Moreover, we have that for all ξ ∈ R n , (4.1.18)

Qξ 2p k n ϕ(kξ) * v k -k n ϕ(kξ) * Qξ 2p v k = R n k n Qξ 2p - Qη 2p ϕ(k(ξ -η)) v k (η) dη.
When 2p > 1, we use Lemma 4.20, which yields that there exists a positive constant c > 0 such that

∀ξ, η ∈ R n , Qξ 2p - Qη 2p ≤ c |ξ -η| 2p + |η| 2p-1 |ξ -η| ,
to derive from (4.1.17) and (4.1.18) that

(4.1.19) Tr p (-Q∇ 2 x ), ψ k (x, D x ) u L 2 (R n ) ≤ c k n |ξ| 2p | ϕ(kξ)| * | v k | L 2 (R n ) + c k n |ξ|| ϕ(kξ)| * |ξ| 2p-1 | v k | L 2 (R n ) .
Yet, as a consequence of the Young inequality and a change of variable, we first get that

k n |ξ| 2p | ϕ(kξ)| * | v k | L 2 (R n ) ≤ k n |ξ| 2p ϕ(kξ) L 1 (R n ) v k L 2 (R n ) (4.1.20) ≤ k -2p |ξ| 2p ϕ(ξ) L 1 (R n ) u L 2 (R n ) -→ k→+∞ 0.
It follows from the very same arguments that 

k n |ξ|| ϕ(kξ)| * |ξ| 2p-1 | v k | L 2 (R n ) (4.1.21) ≤ k n |ξ| ϕ(kξ) L 1 (R n ) |ξ| 2p-1 ϕ k -α ξ u L 2 (R n ) ≤ k -1+(2p-1)α |ξ| ϕ(ξ) L 1 (R n ) |ξ| 2p-1 ϕ(ξ) L ∞ (R n ) u L 2 (R n ) -→ k→+∞ 0, since (2p -1)α < 1. Then, (
Tr p (-Q∇ 2 x ), ψ k (x, D x ) u L 2 (R n ) ≤ c k n |ξ| 2p | ϕ(kξ)| * | v k | L 2 (R n ) -→ k→+∞ 0,
P * = 1 2 Tr p (-Q∇ 2 x ) -Bx, ∇ x -Tr(B), with domain D(P * ) = u ∈ L 2 (R n ) : P * u ∈ L 2 (R n ) .
Proof. Let Q be the pseudodifferential operator defined by

Q = 1 2 Tr p (-Q∇ 2 x ) -Bx, ∇ x -Tr(B),
and equipped with the domain

D(Q) = u ∈ L 2 (R n ) : Qu ∈ L 2 (R n ) .
Let u ∈ D(P ) and v ∈ D(Q). From Proposition 4.1 applied respectively to the operators 1 2 Tr p (-Q∇ 2 x ) + Bx, ∇ x and

1 2 Tr p (-Q∇ 2 x ) -Bx, ∇ x ,
there exist some sequences

(u k ) k and (v k ) k of S(R n ) such that lim k→+∞ u k = u, lim k→+∞ P u k = P u in L 2 (R n ),
and

lim k→+∞ v k = v, lim k→+∞ Qv k = Qv in L 2 (R n ).
Yet, it follows from an integration by parts that

∀k ≥ 0, P u k , v k L 2 (R n ) = u k , Qv k L 2 (R n ) ,
and passing to the limit, we deduce that

P u, v L 2 (R n ) = u, Qv L 2 (R n ) .
This equality shows that D(Q) ⊂ D(P * ) and

P * v = Qv for all v ∈ D(Q). Conversely, if v ∈ D(P * ), we get that for all u ∈ S(R n ), Qv, u S ,S = v, P u L 2 (R n ) = v, P u L 2 (R n ) = P * v, u L 2 (R n ) = P * v, u S ,S ,
where •, • S ,S stands for the duality bracket of S (R n ) and S(R n ), which proves that

Qv = P * v ∈ L 2 (R) and D(P * ) ⊂ D(Q).
Another consequence of Proposition 4.1 is the positivity property of fractional Ornstein-Uhlenbeck operators up to a constant: Corollary 4.3. The following estimate holds for all u ∈ D(P ),

Re P u, u L 2 (R n ) + 1 2 Tr(B) u 2 L 2 (R n ) ≥ 0.
Proof. Let u ∈ D(P ). From Proposition 4.1, there exists a sequence

(u k ) k of S(R n ) such that lim k→+∞ u k = u, lim k→+∞ P u k = P u in L 2 (R n ).
It follows from Corollary 4.2 that for all k ≥ 0,

P u k , u k L 2 (R n ) = 1 2 Tr p 2 (-Q∇ 2 x )u k 2 L 2 (R n ) -u k , Bx, ∇ x u k L 2 (R n ) -Tr(B) u k 2 L 2 (R n ) = Tr p 2 (-Q∇ 2 x )u k 2 L 2 (R n ) -u k , P u k L 2 (R n ) -Tr(B) u k 2 L 2 (R n )
. Therefore, we have that for all k ≥ 0,

Re P u k , u k L 2 (R n ) + 1 2 Tr(B) u k 2 L 2 (R n )
≥ 0, and Corollary 4.3 follows passing to the limit. 4.1.2. Generated semigroup. By using some basics of the semigroup theory, we now prove that fractional Ornstein-Uhlenbeck operators generate strongly continuous semigroups. First, we need to check that the operators are densely defined and closed: Lemma 4.4. The fractional Ornstein-Uhlenbeck operator P is densely defined and closed.

Proof. The operator P is densely defined since D(P ) contains the Schwartz space S(R n ). Now, we consider u, v ∈ L 2 (R n ) and (u k ) a sequence of D(P ) such that

lim k→+∞ u k = u and lim k→+∞ P u k = v in L 2 (R n ).
We have that for all ϕ ∈ S(R n ),

P u k , ϕ S ,S = u k , P * ϕ L 2 (R n ) -→ k→+∞ u, P * ϕ L 2 (R n ) = P u, ϕ S ,S .
On the other hand, the following convergence holds for all ϕ ∈ S(R n ),

lim k→+∞ P u k , ϕ S ,S = v, ϕ S ,S ,
and it implies that v = P u. This shows that P is a closed operator.

Proposition 4.5. The fractional Ornstein-Uhlenbeck operator P generates a strongly continuous semigroup (e -tP ) t≥0 on L 2 (R n ) which satisfies that for all t ≥ 0 and u ∈

L 2 (R n ), (4.1.23) e -tP u L 2 (R n ) ≤ e 1 2 Tr(B)t u L 2 (R n ) .
Proof. We consider the operator

P co = P + 1 2 Tr(B) = 1 2 Tr p (-Q∇ 2 x ) + Bx, ∇ x + 1 2 Tr(B)
equipped with the domain D(P ). It follows from Corollary 4.2 that the adjoint of P co is given by

(P co ) * = 1 2 Tr p (-Q∇ 2 x ) -Bx, ∇ x - 1 2 Tr(B),
and Corollary 4.3 shows that both P co and (P co ) * are accretive operators. Therefore, the existence of the strongly continuous contraction semigroup (e -tPco ) t≥0 follows from the Lumer-Phillips theorem, see e.g. Chapter 1, Corollary 4.4 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], since P co is a densely defined closed operator from Lemma 4.4. As a consequence, P generates a strongly continuous semigroup (e -tP ) t≥0 which satisfies (4.1.23).

In the following of this subsection, we compute the semigroups generated by fractional Ornstein-Uhlenbeck operators. We begin with some non-rigorous calculus to derive a formal expression of the associated evolution operators. Let u = e -tP u 0 be the mild solution of the equation

∂ t u(t, x) + 1 2 Tr p (-Q∇ 2 x )u(t, x) + Bx, ∇ x u(t, x) = 0, u(0, •) = u 0 ∈ L 2 (R n ).
By passing to the Fourier side, u is the solution of the Cauchy problem

∂ t u(t, ξ) + 1 2 √ Qξ 2p u(t, ξ) -B T ξ, ∇ ξ u(t, ξ) -Tr(B) u(t, ξ) = 0, u(0, •) = u 0 .
We consider the function v implicitly defined by u(t, ξ) = v(t, e tB T ξ)e Tr(B)t . An immediate computation shows that v satisfies the equation

∂ t v(t, η) + 1 2 √ Qe -tB T η 2p v(t, η) = 0, v(0, •) = u 0 ,
and therefore,

v(t, η) = exp - 1 2 t 0 Qe -sB T η 2p ds u 0 (η).
We deduce that the Fourier transform of the function u is given by

(4.1.24) u(t, ξ) = exp - 1 2 t 0
Qe sB T ξ 2p ds e Tr(B)t u 0 (e tB T ξ).

Applying the inverse Fourier transform and changing of variable in the integral, we therefore obtain that

(4.1.25) u(t, •) = exp - t 2 1 0 Qe αtB T D x 2p dα e -t Bx,∇x u 0 .
Indeed, e -t Bx,∇x w = w(e -tB •) for all w ∈ L 2 (R n ) and a straightforward calculus of inverse Fourier transform shows that Let us check that in the case when p = 1 and the Kalman rank condition (2.1.7) holds, we recover A. Kolmogorov's formula (2.2.1)

(4.1.27) u(t, x) = 1 (2π) n 2 √ det Q t R n e -1 2 Q -1 t y,y u 0 (e -tB x -y) dy,
where the symmetric positive definite matrix Q t is defined in (2.1.6) by

Q t = t 0 e -sB Qe -sB T ds.
First, we observe that for all ξ ∈ R n ,

t 0 Qe sB T ξ 2 ds = t 0 Qe (t-s)B T ξ 2 ds = t 0
e -sB Qe -sB T e tB T ξ, e tB T ξ ds = Q t e tB T ξ, e tB T ξ .

It follows from (4.1.24) that when p = 1, the function u is given by

u(t, ξ) = exp - 1 2
Q t e tB T ξ, e tB T ξ e Tr(B)t u 0 (e tB T ξ).

Then, by using (4.1.26) and that the inverse Fourier transform of a product is the convolution of the inverse Fourier transforms, we deduce that (4.1.28)

u(t, x) = F -1 e -1 2 Qt•,• * u 0 (e -tB x).
Since Q t is a symmetric positive definite matrix, it follows from [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Theorem 7.6.1) that the above Gaussian inverse Fourier transform is given by (4.1.29)

F -1 e -1 2 Qt•,• = 1 (2π) n 2 √ det Q t e -1 2 Q -1 t •,• .
As a consequence of (4.1.28) and (4.1.29), formula (4.1.27) actually holds. We now justify these informal calculus in the following lemma and proposition:

Lemma 4.6. For all t ≥ 0, we consider the bounded operator T (t) :

L 2 (R n ) → L 2 (R n ) defined through its Fourier transform by (4.1.30) T (t)u = exp - 1 2 t 0 Qe sB T • 2p ds e Tr(B)t u(e tB T •), u ∈ L 2 (R n ).
Then (T (t)) t≥0 defines a strongly continuous semigroup on

L 2 (R n ) satisfying (4.1.31) ∀t ≥ 0, ∀u ∈ L 2 (R n ), T (t)u L 2 (R n ) ≤ e 1 2 Tr(B)t u L 2 (R n ) .
Proof. The fact that (T (t)) t≥0 satisfies the semigroup property, that is

∀t, s ≥ 0, T (t + s) = T (t)T (s),
follows from a direct computation. We check that it is strongly continuous, i.e.

(4.1.32) ∀u ∈ L 2 (R n ), lim t→0 + T (t)u -u L 2 (R n ) = 0.
Let u ∈ S(R n ). First, we have the following convergence:

(4.1.33) lim t→0 + T (t)u L 2 (R n ) = u L 2 (R n ) .
Indeed, as a consequence of (4.1.30) and a change of variable, we get that (4.1.34)

T (t)u L 2 (R n ) = e 1 2 Tr(B)t exp - 1 2 t 0 Qe -sB T • 2p ds u L 2 (R n )
.

Moreover, the following convergence stands almost everywhere on R n ,

e 1 2 Tr(B)t exp - 1 2 t 0 Qe -sB T • 2p ds u -→ t→0 u,
and the following domination holds

∃c > 0, ∀t ∈ [0, 1], e 1 2 Tr(B)t exp - 1 2 t 0 Qe -sB T • 2p ds u ≤ c| u|.
Therefore, (4.1.33) is a consequence of the dominated convergence theorem. Moreover, since u is a continuous function, we have that for almost all ξ ∈ R n , (

lim t→0 + T (t)u(ξ) = u(ξ). 4.1.35) 
Thus, by applying a classical lemma of measure theory (see Lemma 4.18 in appendix) and the Plancherel theorem, we get (4.1.36)

lim t→0 + T (t)u -u L 2 (R n ) = 0. When u ∈ L 2 (R n ), we consider (u k ) k a sequence of S(R n ) converging to u in L 2 (R n ).
It follows from (4.1.34) and the Plancherel theorem that for all t ≥ 0,

T (t)u -u L 2 (R n ) ≤ T (t)u -T (t)u k L 2 (R n ) + T (t)u k -u k L 2 (R n ) + u k -u L 2 (R n ) ≤ e 1 2 Tr(B)t u k -u L 2 (R n ) + T (t)u k -u k L 2 (R n ) + u k -u L 2 (R n ) .
Thus, it follows from (4.1.36) that lim sup

t→0 + T (t)u -u L 2 (R n ) ≤ 2 u k -u L 2 (R n ) -→ k→+∞ 0,
and (4.1.32) is proved. Finally, (4.1.31) is straightforward consequence of (4.1.34) and the Plancherel theorem. This ends the proof of Lemma 4.6.

Proposition 4.7. For all t ≥ 0, the evolution operator e -tP is given by

e -tP = exp - t 2 1 0 Qe αtB T D x 2p dα e -t Bx,∇x .
Proof. As we have noticed above, passing to the Fourier side and making a change of variable in the integral, the formula we want to obtain writes for all t ≥ 0 as We consider (T (t)) t≥0 the strongly continuous semigroup defined on L 2 (R n ) by (4.1.30) and (A, D(A)) its infinitesimal generator. It is sufficient to prove that A = -P to end the proof of Proposition 4.7 since it implies that e -tP u = T (t)u for all t ≥ 0 and u ∈ L 2 (R n ).

1. We first check that S(R n ) ⊂ D(A) and

(4.1.38) ∀u ∈ S(R n ), Au = -P u.
Let u ∈ S(R n ). It follows from the mean value theorem that

(4.1.39) ∀ξ ∈ R n , ∀t ∈ [0, 1], T (t)u(ξ) -u(ξ) ≤ sup s∈[0,1] ∂ t T (t)u(ξ) |t=s |t|.
We obtain from (4.1.30) that for all s ∈ [0, 1] and ξ ∈ R n , (4.1.40)

∂ t T (t)u(ξ) |t=s = exp - 1 2 s 0 Qe τ B T ξ 2p dτ e Tr(B)s - 1 2 Qe sB T ξ 2p u(e sB T ξ) + B T e sB T ξ, ∇ ξ u(e sB T ξ) + Tr(B) u(e sB T ξ) .
Moreover, we notice that for all ξ ∈ R n ,

P u(ξ) = 1 2 Qξ 2p u(ξ) -B T ξ, ∇ ξ u(ξ) -Tr(B) u(ξ).
This shows that for all s ∈ [0, 1] and ξ ∈ R n , (4.1.41)

∂ t T (t)u(ξ) |t=s = -T (s)P u(ξ). Since u ∈ S(R n ), it follows from (4.1.40) that ∃c u > 0, ∀ξ ∈ R n , ∀s ∈ [0, 1], ∂ t T (t)u(ξ) |t=s ≤ c u 1 + |ξ| n .
Combining this estimation with (4.1.39), we get that

(4.1.42) ∀ξ ∈ R n , ∀t ∈ (0, 1], 1 t T (t)u(ξ) -u(ξ) ≤ c u 1 + |ξ| n .
Moreover, we deduce from (4.1.41) that

∀ξ ∈ R n , ∂ t T (t)u(ξ) | t=0 = -P u(ξ),
and this equality can be written as

(4.1.43) ∀ξ ∈ R n , lim t→0 + 1 t T (t)u(ξ) -u(ξ) = -P u(ξ).
As a consequence of (4.1.42), (4.1.43) and the dominated convergence theorem, it follows that (4.1.44) lim

t→0 + 1 t T (t)u -u L 2 (R n ) = P u L 2 (R n ) .
We deduce from (4.1.43), (4.1.44), Lemma 4.18 and the Plancherel theorem that

lim t→0 + 1 t T (t)u -u = -P u in L 2 (R n ).
Therefore, u ∈ D(A) and Au = -P u. This proves that (4.1.38) holds. 

lim k→+∞ u k = u, lim k→+∞ P u k = P u in L 2 (R n ).
We deduce from (4.1.38) that Au k = -P u k for all k ≥ 0 since u k ∈ S(R n ) and (4.1.45) implies the following convergence

lim k→+∞ (u k , Au k ) = (u, -P u) in L 2 (R n ) × L 2 (R n ).
It follows from the classical corollary of the Hille-Yosida theorem that A is a closed operator, see e.g. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] (Chapter 1, Corollary 3.8). Therefore, u ∈ D(A) and Au = -P u ∈ L 2 (R n ). We proved that (-P ) ⊂ A.

3. Finally, we check that A ⊂ (-P ). Since both operators -P and A are infinitesimal generators of strongly continuous semigroups satisfying from Proposition 4.5 and Lemma 4.6 that for all t ≥ 0 and u

∈ L 2 (R n ), e -tP u L 2 (R n ) ≤ e 1 2 Tr(B)t u L 2 (R n ) and e tA u L 2 (R n ) ≤ e 1 2 Tr(B)t u L 2 (R n ) ,
it follows from [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] (Chapter 1, Corollary 3.8) that there exists a real number µ > 1 2 Tr(B) such that the linear operators -P -µ :

D(P ) → L 2 (R n ) and A -µ : D(A) → L 2 (R n ) are bijective. Let u ∈ D(A) and v = (A-µ)u ∈ L 2 (R n ).
Since the operator -P -µ is bijective, there exists a unique w ∈ D(P ) such that v = (-P -µ)w. By using that (-P ) ⊂ A, we deduce that v = (A -µ)w. Since A -µ is injective and v = (A -µ)u = (A -µ)w, we get that u = w ∈ D(P ). This implies that A ⊂ (-P ) and then A = -P .

Partial Gevrey-type regularizing effects

Let P be the fractional Ornstein-Uhlenbeck operator defined in (2.1.1) and equipped with the domain (2.1.2). This section is devoted to give the proofs of the results contained in Section 2.3 concerning the regularizing effects of the semigroup generated by P . 4.2.1. Regularizing effect. First, we focus in proving Theorems 2.4 and 2.6. To that end, we will use the explicit formula of the evolution operators e -tP given by Proposition 4.7 in order to reduce the study of these non-selfadjoint operators to the study of selfadjoint Fourier multipliers. We recall that Proposition 4.7 states that for all t ≥ 0, the operator e -tP is given by (4.2.1)

e -tP = exp - t 2 1 0 Qe αtB T D x 2p dα e -t Bx,∇x .
Since the operator e -t Bx,∇x is a similitude of ratio e 1 2 Tr(B)t on L 2 (R n ) for all t ≥ 0, we notice from (4.2.1) that it is sufficient to obtain the regularizing effect of the operators e -ta w t to derive the ones of the operators e -tP , where e -ta w t denotes the time-dependent Fourier multiplier associated to the time-dependent real-valued symbol e -tat , with a t defined for all t ≥ 0 and ξ ∈ R n by (4.2.2)

a t (ξ) = 1 2 1 0 Qe αtB T ξ 2p dα.
Let m ≥ 1 be a positive integer and ξ 1 , . . . , ξ m ∈ S ⊥ , the orthogonality being taken with respect to the canonical Euclidean structure of R n . We are interested in studying the operators ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t , t > 0. Since the operators ξ j , ∇ x and e -ta w t are Fourier multipliers, they commute, and the following factorization holds for all t > 0,

ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t = ξ 1 , ∇ x . . . ξ m , ∇ x e -t m a w t . . . e -t m a w t m factors (4.2.3) = ξ 1 , ∇ x e -t m a w t . . . ξ m , ∇ x e -t m a w t ,
where we used the semigroup property of the family of contraction operators (e -sa w t ) s≥0 . The initial problem is therefore reduced to the analysis of the operators ξ j , ∇ x e -t m a w t , j ∈ {1, . . . , m}, t > 0.

In the following proposition, we prove a first regularizing effect for the semigroups (e -sa w t ) s≥0 , with t > 0.

Proposition 4.8. There exist some positive constants c > 1 and T > 0 such that for all k ∈ {0, . . . , r}, q > 0, 0 < t < T , s > 0 and u ∈ L 2 (R n ),

Q(B T ) k D x q e -sa w t u L 2 (R n ) ≤ c t k s 1 2p q q q 2p u L 2 (R n ) .
Proof. Let us begin by noticing that to prove Proposition 4.8, it is sufficient to obtain the existence of some positive constants c 1 > 0 and t 1 > 0 such that for all q > 0, 0 < t < t 1 , s > 0 and ξ ∈ R n , (4.2.4)

1 0 Qe αtB T ξ 2 dα q 2 exp - s 2 1 0 Qe αtB T ξ 2p dα ≤ c 1 s 1 2p q q ep q 2p
. Indeed, we check in Proposition 4.10 in the end of this subsection, by using finitedimensional and compactness arguments, that there exist some positive constants c 0 > 0 and t 0 > 0 such that for all 0 < t < t 0 and ξ ∈ R n , (4.2.5)

1 0 Qe αtB T ξ 2 dα ≥ c 0 r k=0 t 2k Q(B T ) k ξ 2 .
Once the estimates (4.2.4) and (4.2.5) are established, we deduce from the definition (4.2.2) of the symbols a t and the Plancherel theorem that for all k ∈ {0, . . . , r}, q > 0, 0 < t < min(t 0 , t 1 ), s > 0 and u ∈ L 2 (R n ),

Q(B T ) k D x q e -sa w t u L 2 (R n ) ≤ 1 √ c 0 t k q 1 0 Qe αtB T D x 2 dα q 2 e -sa w t u L 2 (R n ) ≤ 1 √ c 0 t k q c 1 s 1 2p q q ep q 2p u L 2 (R n ) ,
which is the desired estimate. We therefore focus on establishing the estimate (4.2.4). In order to simplify the notations, let us consider the real-valued symbol Γ q,t,s defined for all q > 0, t > 0, s > 0 and ξ ∈ R n by (4.2.6)

Γ q,t,s (ξ) = 1 0 Qe αtB T ξ 2 dα q 2 exp - s 2 1 0 Qe αtB T ξ 2p dα .
First of all, observe that for all q > 0, t > 0 and s > 0, the symbol Γ q,t,s satisfies (4.2.7) ∀ξ ∈ R n , Γ q,t,s (ξ) = Γ q,t,s (ξ S ⊥ ),

where ξ S ⊥ ∈ R n denotes the coordinate of the vector ξ ∈ R n with respect to the decomposition R n = S ⊕ S ⊥ , the orthogonality being taken with respect to the canonical Euclidean structure of R n . Indeed, the Cayley-Hamilton theorem applied to the matrix B T shows that ∀k ∈ N, ∀ξ ∈ R n , (B T ) k ξ ∈ Span(ξ, B T ξ, . . . , (B T ) n-1 ξ), where Span(ξ, B T ξ, . . . , (B T ) n-1 ξ) is the vector space spanned by the vectors ξ, B T ξ, . . . , (B T ) n-1 ξ. It proves that the space S is also given by the following infinite intersection of kernels

(4.2.8) S = +∞ j=0 Ker Q(B T ) j .
As a consequence of this fact, we get that

∀t > 0, ∀α ∈ [0, 1], ∀ξ ∈ S, Qe αtB T ξ = +∞ k=0 (αt) k k! Q(B T ) k ξ = 0,
which implies that for all t > 0, 0 ≤ α ≤ 1 and ξ = ξ S + ξ S ⊥ , with ξ S ∈ S and ξ S ⊥ ∈ S ⊥ , (4.2.9)

Qe αtB T ξ = Qe αtB T ξ S ⊥ .
It follows from (4.2.6) and (4.2.9) that the equality (4.2.7) actually holds. Thus, we only need to establish the estimate (4.2.4) when ξ ∈ S ⊥ . To that end, we will take advantage of the homogeneity property with respect to the ξ-variable of the two integrals

1 0
Qe αtB T ξ 2 dα and

1 0 Qe αtB T ξ 2p dα.
Let ξ ∈ S ⊥ \ {0} and (ρ, σ) be the polar coordinates of ξ, i.e. ξ = ρσ with ρ > 0 and σ ∈ S n-1 . It follows from (4.2.6) and the estimate ∀q > 0, ∀x ≥ 0, x q e -x 2p ≤ q 2ep q 2p

, that for all q > 0, t > 0 and s > 0,

Γ q,t,s (ξ) = 1 0 Qe αtB T σ 2 dα q 2 ρ q exp - s 2 1 0 Qe αtB T σ 2p dα ρ 2p (4.2.10) ≤ 1 0 Qe αtB T σ 2 dα q 2 s 2 1 0 Qe αtB T σ 2p dα -q 2p q 2ep q 2p ≤ M t s 1 2p q q ep q 2p
, where we set (4.2.11)

M t = sup η∈S n-1 ∩S ⊥ 1 0 Qe αtB T η 2 dα 1 2 1 0 Qe αtB T η 2p dα -1 2p
.

The study of the quantity M t is performed in Subsection 4.2.2, where Proposition 4.16 states that there exist some positive constants c 1 > 0 and t 1 > 0 such that for all 0 < t < t 1 , (4.2.12)

M t ≤ c 1 .
We therefore deduce from (4.2.6), (4.2.10) and (4.2.12) that for all q > 0, 0 < t < t 1 , s > 0 and ξ ∈ S ⊥ ,

1 0 Qe αtB T ξ 2 dα q 2 exp - s 2 1 0 Qe αtB T ξ 2p dα ≤ c 1 s 1 2p q q ep q 2p
. This ends the proof of the estimate (4.2.4) and hence, the one of Proposition 4.8.

The above result also provides estimates for the operators e -tP . Indeed, we deduce from (4.2.1), Proposition 4.8 and the Plancherel theorem that for all k ∈ {0, . . . , r}, q > 0, 0 < t < T and u ∈ L 2 (R n ),

Q(B T ) k D x q e -tP u L 2 (R n ) ≤ c t k+ 1 2p q q q 2p e -t Bx,∇x u L 2 (R n ) (4.2.13) = c t k+ 1 2p q e 1 2 Tr(B)t q q 2p u L 2 (R n ) ,
since the operator e -t Bx,∇x is a similitude of ratio e 1 2 Tr(B)t on L 2 (R n ) for all t ≥ 0. These estimates will be useful in Section 4.3 to establish global subelliptic estimates enjoyed by fractional Ornstein-Uhlenbeck operators. Corollary 4.9. There exist some positive constants c > 0 and 0 < T < 1 such that for all

ξ 0 ∈ S ⊥ , 0 < t < T , s > 0 and u ∈ L 2 (R n ), ξ 0 , ∇ x e -sa w t u L 2 (R n ) ≤ c|ξ 0 | t -k ξ 0 s -1 2p u L 2 (R n ) ,
where 0 ≤ k ξ 0 ≤ r denotes the index of the vector ξ 0 ∈ S ⊥ defined in (2.3.5).

Proof. First, let us check that there exists a positive constant c 0 > 0 such that for all ξ 0 ∈ S ⊥ and ξ ∈ R n , (4.2.14)

ξ 0 , ξ 2 ≤ c 2 0 |ξ 0 | 2 k ξ 0 j=0 Q(B T ) j ξ 2 .
For all non-negative integer k ∈ {0, . . . , r}, we consider P k the orthogonal projection onto the vector subspace V ⊥ k ⊂ R n , the orthogonality being taken with respect to the canonical Euclidean structure of R n , where the vector subspace V k is defined in (2.3.3) by

V k = k j=0 Ker Q(B T ) j .
Notice from the definition of the vector spaces V k that for all k ∈ {0, . . . , r}, there exists a positive constant c k > 0 such that for all ξ ∈ R n ,

k j=0 Q(B T ) j ξ 2 = k j=0 Q(B T ) j P k ξ 2 ≥ c k |P k ξ| 2 . Let ξ 0 ∈ S ⊥ . The definition (2.3.5) of index implies that ξ 0 ∈ V ⊥ k ξ 0
. It follows from the above estimate and the Cauchy-Schwarz inequality that for all ξ ∈ R n ,

ξ 0 , ξ 2 = ξ 0 , P k ξ 0 ξ 2 ≤ |ξ 0 | 2 |P k ξ 0 ξ| 2 ≤ |ξ 0 | 2 c k ξ 0 k ξ 0 k=0 Q(B T ) k ξ 2 .
This proves that the estimate (4.2.14) holds, with c 2 0 = 1/ min k∈{0,...,r} c k > 0. We therefore deduce from (4.2.14) and the Plancherel theorem that for all ξ 0 ∈ S ⊥ , t ≥ 0, s ≥ 0 and

u ∈ L 2 (R n ), (4.2.15) ξ 0 , ∇ x e -sa w t u L 2 (R n ) ≤ c 0 |ξ 0 | k ξ 0 k=0 Q(B T ) k D x e -sa w t u L 2 (R n ) .
On the other hand, Proposition 4.8 provides the existence of some positive constants c 1 > 1 and t 1 > 0 such that for all k ∈ {0, . . . , r}, 0

< t < t 1 , s > 0 and u ∈ L 2 (R n ), (4.2.16) Q(B T ) k D x e -sa w t u L 2 (R n ) ≤ C t k s 1 2p u L 2 (R n ) .
It follows from (4.2.15) and (4.2.16) that for all ξ 0 ∈ S ⊥ , 0 < t < min(t 1 , 1), s > 0 and

u ∈ L 2 (R n ), ξ 0 , ∇ x e -sa w t u L 2 (R n ) ≤ c 0 |ξ 0 | k ξ 0 k=0 C t k s 1 2p u L 2 (R n ) ≤ c 0 C(r+1)|ξ 0 | t -k ξ 0 s -1 2p u L 2 (R n ) , since 0 ≤ k ξ 0 ≤ r.
This ends the proof of Corollary 4.9.

We can now tackle the proof of Theorem 2.4. To that end, we implement the strategy presented in the beginning of this subsection. Let m ≥ 1 and ξ 1 , . . . , ξ m ∈ S ⊥ . We denote by 0 ≤ k ξ j ≤ r the index of the vector ξ j ∈ S ⊥ , defined in (2.3.5). It follows from (4.2.3) that for all t ≥ 0, (4.2.17)

ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t = ξ 1 , ∇ x e -t m a w t . . . ξ m , ∇ x e -t m a w t .
According to Corollary 4.9, there exist some positive constants c > 0 and 0 < T < 1 such that for all ξ 0 ∈ S ⊥ , 0 < t < T and u

∈ L 2 (R n ), (4.2.18) ξ 0 , ∇ x e -t m a w t u L 2 (R n ) ≤ c t k ξ 0 + 1 2p |ξ 0 | m 1 2p u L 2 (R n ) ,
where 0 ≤ k ξ 0 ≤ r denotes the index of the vector ξ 0 ∈ S ⊥ , defined in (2.3.5). We deduce from (4.2.17) and (4.2.18) that for all 0 < t < T and u ∈ L 2 (R n ),

ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t u L 2 (R n ) ≤ c m t k ξ 1 +...+k ξm + m 2p m j=1 |ξ j | m m 2p u L 2 (R n ) ≤ e m 2p c m t k ξ 1 +...+k ξm + m 2p m j=1 |ξ j | (m!) 1 2p u L 2 (R n ) ,
where we used the factorial estimate m m ≤ e m m!. It follows from (4.2.1), (4.2.2) and the Plancherel theorem that for all 0 < t < T and u ∈ L 2 (R n ),

ξ 1 , ∇ x . . . ξ m , ∇ x e -tP u L 2 (R n ) ≤ e m 2p c m t k ξ 1 +...+k ξm + m 2p m j=1 |ξ j | (m!) 1 2p e -t Bx,∇x u L 2 (R n ) = e m 2p c m e 1 2 Tr(B)t t k ξ 1 +...+k ξm + m 2p m j=1 |ξ j | (m!) 1 2p u L 2 (R n ) , since e -t Bx,∇x u L 2 (R n ) = u(e -tB T •) L 2 (R n ) = e 1 2 Tr(B)t u L 2 (R n ) .
This ends the proof of Theorem 2.4. Theorem 2.6, for its part, is quite a straightforward consequence of the estimates (4.2.13). Indeed, it follows from Lemma 4.17 in the appendix of this chapter that when the Kalman rank condition (2.1.7) holds, the vector space S is reduced to {0}. Therefore, there exists a positive constant c 1 > 0 such that

∀ξ ∈ R n , |ξ| 2 ≤ c 2 1 r k=0 Q(B T ) k ξ| 2 .
This estimate combined to the inequality (4.5.1) from Lemma 4.19 implies that for all q > 0 and ξ ∈ R n , (4.2.19)

|ξ| q ≤ c q 1 (r + 1) ( q 2 -1) + r k=0 Q(B T ) k ξ| q .
Finally, we deduce from (4.2.13), (4.2.19) and the Plancherel theorem that there exist some positive constants c 2 > 1 and T > 0 such that for all q > 0, 0 < t < min(1, T ) and

u ∈ L 2 (R n ), |D x | q e -tP u L 2 (R n ) ≤ c q 1 (r + 1) ( q 2 -1) + r k=0 Q(B T ) k D x q e -tP u L 2 (R n ) ≤ (c 1 c 2 ) q (r + 1) ( q 2 -1) + r k=0 1 t ( 1 2p +k)q e 1 2 Tr(B)t q q 2p u L 2 (R n ) ≤ (c 1 c 2 ) q (r + 1) ( q 2 -1) + +1 e 1 2 Tr(B)t t ( 1 2p +r)q q q 2p u L 2 (R n ) .
This ends the proof of Theorem 2.6.

To end this subsection, we give the proof of the estimate (4.2.5).

Proposition 4.10. There exist some positive constants c > 0 and T > 0 such that for all 0 ≤ t < T and ξ ∈ R n , (4.2.20)

1 0 Qe αtB T ξ 2 dα ≥ c r k=0 t 2k Q(B T ) k ξ 2 .
Proof. In order the simplify the notations, we set for all t ≥ 0 and ξ ∈ R n , (4.2.21)

q t (ξ) = 1 0 Qe αtB T ξ 2 dα = Qe αtB T ξ 2 L 2 (0,1) .
The Minkowski inequality implies that for all t ≥ 0 and ξ ∈ R n , (4.2.22)

q t (ξ) ≥ r k=0 (αt) k k! Q(B T ) k ξ L 2 (0,1) - k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1)
.

We concentrate in controlling the two terms appearing in the right-hand side of the above estimate. First, notice that on the finite-dimensional vector space (R r [X]) n , the Hardy's norm

• H 1 defined by r k=0 y k X k H 1 = r k=0 k!|y k |, y 1 , . . . , y r ∈ R n ,
is equivalent to the standard Lebesgue's norm • L 2 (0,1) given by r k=0

y k X k 2 L 2 (0,1) = 1 0 r k=0 y k α k 2 dα, y 1 , . . . , y r ∈ R n .
This implies that there exists a positive constant c 1 > 0 such that for all t ≥ 0 and ξ ∈ R n , (

r k=0 (αt) k k! Q(B T ) k ξ L 2 (0,1) ≥ c 1 r k=0 t k Q(B T ) k ξ , since ∀t ≥ 0, ∀ξ ∈ R n , r k=0 (αt) k k! Q(B T ) k ξ ∈ (R r [α]) n . 4.2.23) 
In view of (4.2.20) and (4.2.22), it remains to check that the remainder term

k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1)
, can be controlled by r k=0 t k √ Q(B T ) k ξ . Precisely, we will prove that there exist some positive constants c 2 > 0 and t 1 > 0 such that for all 0 ≤ t < t 1 and ξ ∈ S ⊥ , (4.2.24)

k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1) ≤ c 2 t r k=0 t k Q(B T ) k ξ .
Once the estimate (4.2.24) is established, we deduce from (4.2.22) and (4.2.23) that for all 0 ≤ t < t 1 and ξ ∈ S ⊥ ,

q t (ξ) ≥ (c 1 -c 2 t) r k=0 t k Q(B T ) k ξ .
This estimate combined to the triangular inequality implies that there exist other positive constants c > 0 and T > 0 such that for all 0 ≤ t < T and ξ ∈ S ⊥ , (4.2.25)

q t (ξ) ≥ c r k=0 t 2k Q(B T ) k ξ 2 .
Moreover, for all 0 ≤ t < T , both quadratic forms q t and r k=0 t 2k | √ Q(B T ) k • | 2 vanish on the vector space S from (2.3.2), which proves that the estimate (4.2.25) can be extended to all 0 ≤ t < T and ξ ∈ R n since R n = S ⊕ S ⊥ , according to the following elementary lemma whose proof is straightforward Lemma 4.11. Let E be a real finite-dimensional vector space and q 1 , q 2 be two nonnegative quadratic forms on E. If E = F ⊕ G is a direct sum of two vector subspaces such that q 1 ≤ q 2 on F and q 1 , q 2 both vanish on G, then q 1 ≤ q 2 on E.

We therefore need to check that the estimate (4.2.24) actually holds to end the proof of Proposition 4.10. First, notice that there exists a positive constant c 3 > 0 such that for all 0 < t ≤ 1 and ξ ∈ R n , (4.2.26)

k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1) = t r+1 k≥r+1 t k-r-1 α k k! Q(B T ) k ξ L 2 (0,1)
≤ c 3 t r+1 |ξ|.

On the other hand, it follows from the definition (2.3.2) of the integer 0 ≤ r ≤ n -1 that there exists a positive constant c 4 > 0 such that for all 0 < t ≤ 1 and ξ ∈ S ⊥ , (4.2.27) 

r k=0 t k Q(B T ) k ξ ≥ t r r k=0 Q(B T ) k ξ ≥ c 4 t
k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1) ≤ c 3 t c 4 r k=0 t k Q(B T ) k ξ .
This ends the proof of the estimate (4.2.24).

4.2.2. Study of the term M t . This section is devoted to the study of the term

M t = sup ξ∈S n-1 ∩S ⊥ 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2p dα -1 2p
, introduced in (4.2.11) while proving Proposition 4.8.

Lemma 4.12. For all t > 0, the term M t is well-defined and satisfies 0 < M t < +∞.

Proof. Let s ∈ {2, 2p}. We first check that (4.2.29)

∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ , 1 0 Qe αtB T ξ s dα > 0.
Proceeding by contradiction, we assume that

1 0 Qe αtB T ξ s dα = 0,
where t > 0 and ξ ∈ S n-1 . Since the function

α ∈ [0, 1] → Qe αtB T ξ s ,
is continuous and non-negative, it follows that

(4.2.30) ∀α ∈ [0, 1], Qe αtB T ξ = 0.
By differentiating the identity (4.2.30) with respect to the α-variable and evaluating at α = 0, we deduce that ∀k ∈ {0, . . . , r}, Q(B T ) k ξ = 0.

We obtain from (2.3.2) that ξ ∈ S. This proves (4.2.29) contradicting that ξ ∈ S n-1 ∩ S ⊥ . By using the compactness of S n-1 ∩ S ⊥ and the continuity property with respect to the ξvariable, it follows that the term M t is actually well-defined and satisfies 0 < M t < +∞.

We aim at studying the asymptotics of the term M t as t tends to 0 + . First, we set for all ξ ∈ S n-1 ∩ S ⊥ ,

M t (ξ) = 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2p dα -1 2p
.

As an insight, we begin by studying the term M t (ξ) for small times t > 0. On the one hand, we observe that

1 0 Qe αtB T ξ 2 dα ∼ t→0 Q(B T ) l ξ ξ 2 1 0 (αt) 2l ξ (l ξ !) 2 dα = Q(B T ) l ξ ξ 2 t 2l ξ (1 + 2l ξ )(l ξ !) 2 ,
where 0 ≤ l ξ ≤ r denotes the order of the vector ξ ∈ S ⊥ ∩ S n-1 , defined by

l ξ = min 0 ≤ l ≤ r : Q(B T ) l ξ = 0 .
Similarly, we have

1 0 Qe αtB T ξ 2p dα ∼ t→0 Q(B T ) l ξ ξ 2p t 2pl ξ (1 + 2pl ξ )(l ξ !) 2p ,
and as a consequence, it follows that

M t (ξ) ∼ t→0 (1 + 2pl ξ ) 1 2p (1 + 2l ξ ) 1 2
.

Unfortunately, some numerics suggest that the previous convergence does not stand uniformly on ξ ∈ S n-1 ∩ S ⊥ , and therefore, the study of the term M t when t → 0 + requires a more careful analysis. The Jensen inequality provides a first global estimate: Lemma 4.13. For all t > 0, we have M t ≤ 1 when p ≥ 1, and M t ≥ 1 when 0 < p ≤ 1.

Proof. When p ≥ 1, we deduce from the Jensen inequality that for all t > 0 and

ξ ∈ S n-1 ∩ S ⊥ , 1 0 Qe αtB T ξ 2 dα 1 2 ≤ 1 0 Qe αtB T ξ 2p dα 1 2p
, and therefore M t ≤ 1. Similarly, M t ≥ 1 when 0 < p ≤ 1.

To deal with the case when 0 < p < 1, we shall use the following instrumental lemma:

Lemma 4.14. Let E be a real finite-dimensional vector space and L 1 , L 2 : E → R + be two continuous functions satisfying for all j ∈ {1, 2}, ∀λ ≥ 0, ∀P ∈ E, L j (λP ) = λL j (P ),

and

∀P ∈ E \ {0}, L j (P ) > 0. Then, there exists a positive constant c > 0 such that ∀P ∈ E, L 1 (P ) ≤ cL 2 (P ).

Proof. Let • be a norm on E and S be the associated unit sphere. Since E is finite-dimensional, S is compact. Moreover, L 1 and L 2 are continuous and positive on S, and as a consequence, by homogeneity, ∃c 1 , c 2 > 0, ∀P ∈ E, L 1 (P ) ≤ c 1 P and P ≤ c 2 L 2 (P ).

We deduce that

∀P ∈ E, L 1 (P ) ≤ c 1 c 2 L 2 (P ).

The next lemma is a direct application of Lemma 4.14. It only deals with the case where the matrix B is nilpotent but its proof contains the main ideas that will be used to tackle the general case: Lemma 4.15. When B is nilpotent, there exists a positive constant c > 0 such that ∀t > 0, M t ≤ c.

Proof. For all t > 0 and ξ ∈ S n-1 ∩ S ⊥ , we consider the term

M t (ξ) = 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2p dα -1 2p
, and the function

f t,ξ (α) = Qe αtB T ξ, α ∈ [0, 1]. Let k be the index of B. Since B T is also nilpotent with index k, we have that ∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ , f t,ξ ∈ (R k [X]) n .
It follows from Lemma 4.14 applied with the space E = (R k [X]) n and the functions

L 1 (f ) = 1 0 |f (α)| 2 dα 1 2 and L 2 (f ) = 1 0 |f (α)| 2p dα 1 2p
, that there exists a positive constant c > 0 such that for all t > 0 and ξ ∈ S n-1 ∩ S ⊥ ,

M t (ξ) = 1 0 |f t,ξ (α)| 2 dα 1 2 1 0 |f t,ξ (α)| 2s dα -1 2p ≤ c.
This ends the proof of Lemma 4.15.

The next lemma is an adaptation of the previous one that allows to drop the assumption on the nilpotency of the matrix B but only in the asymptotics when t tends to 0 + . Proposition 4.16. There exist some positive constants c > 0 and 0 < t 0 < 1 such that ∀t ∈ (0, t 0 ), M t ≤ c.

Proof. For all t > 0 and ξ ∈ S n-1 ∩ S ⊥ , we consider anew

M t (ξ) = 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2p dα -1 2p
.

Let P t,ξ and R t,ξ be the functions defined for all α ∈ [0, 1] by (4.2.31)

P t,ξ (α) = r k=0 α k t k k! Q(B T ) k ξ and R t,ξ (α) = Qe tαB T ξ -P t,ξ (α).
It is fundamental in the following to notice that for all t > 0 and ξ ∈ S n-1 ∩ S ⊥ , the coordinates of the function P t,ξ are polynomials of degree less than r, that is

(4.2.32) ∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ , P t,ξ ∈ (R r [X]) n .
By using (4.2.32) and Lemma 4.14 with the real finite-dimensional vector space E = (R r [X]) n and the homogeneous continuous functions

L 1 (P ) = 1 0 P (α) 2 dα 1 2
and L 2 (P ) =

1 0 P (α) 2p dα 1 2p
, we obtain the existence of a constant c > 0 such that for all t > 0 and ξ ∈ S n-1 ∩ S ⊥ ,

1 0 P t,ξ (α) 2 dα 1 2 ≤ c 1 0 P t,ξ (α) 2p dα 1 2p
.

This estimate implies that for all t > 0 and ξ ∈ S n-1 ∩ S ⊥ ,

M t (ξ) = 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2p ds -1 2p (4.2.33) ≤ c     1 0 Qe αtB T ξ 2 dα 1 0 P t,ξ (α) 2 dα     1 2     1 0 P t,ξ (α) 2p dα 1 0 Qe αtB T ξ 2p dα     1 2p
.

We aim at establishing uniform upper bounds with respect to t > 0 and ξ ∈ S n-1 ∩ S ⊥ for these two factors. To that end, we equip the vector space (R r [X]) n of the Hardy's norm

• H ∞ defined by ∀P ∈ (R r [X]) n , P H ∞ = max k∈{0,...,r} |P (k) (0)| k! .
We deduce anew from (4.2.32) and Lemma 4.14 applied with the real finite-dimensional vector space E = (R r [X]) n and the homogeneous continuous functions • H ∞ and L s (P ) =

1 0 P (α) s dα 1 s , s ∈ {2, 2p}, that ∀s ∈ {2, 2p}, ∃c s > 0, ∀P ∈ (R r [X]) n , P H ∞ ≤ c s 1 0 |P (α)| s dα 1 s . (4.2.34)
According to the definition (2.3.2) of the vector space S, we notice that

∀ξ ∈ S n-1 ∩ S ⊥ , max k∈{0,...,r} √ Q(B T ) k ξ k! > 0.
Since the function

ξ ∈ S n-1 ∩ S ⊥ → max k∈{0,...,r} √ Q(B T ) k ξ k! ,
is continuous on the compact set S n-1 ∩S ⊥ , we deduce that there exists a positive constant ε > 0 such that .

∀ξ ∈ S n-1 ∩ S ⊥ , P 1,ξ H ∞ = max k∈{0,...,r} √ Q(B T ) k ξ k! ≥ ε. It follows that ∀t ∈ (0, 1], ∀ξ ∈ S n-1 ∩ S ⊥ , P t,ξ H ∞ = max k∈{0,...,r} t k √ Q(B T ) k ξ k! ≥ εt r ,
On the other hand, it follows from the Taylor formula with remainder term that

∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ , ∀α ∈ [0, 1], R t,ξ (α) = (tα) r+1 r! 1 0 (1 -θ) r Q(B T ) r+1 e tαθB T ξ dθ.
Therefore, there exists a positive constant M > 0 such that

(4.2.36) ∀t ∈ (0, 1], ∀ξ ∈ S n-1 ∩ S ⊥ , R t,ξ L ∞ [0,1] ≤ M t r+1 .
With these estimates, we can obtain upper bounds on the two factors of the right-hand side of the estimate (4.2.33).

1. Using (4.2.31) and applying the triangle inequality for the L 2 norm, we first obtain

∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ ,     1 0 Qe αtB T ξ 2 dα 1 0 P t,ξ (α) 2 dα     1 2 ≤ 1 +     1 0 R t,ξ (α) 2 dα 1 0 P t,ξ (α) 2 dα     1 2
.

According to (4.2.35) and (4.2.36), we therefore get that for all 0 < t ≤ 1 and ξ ∈ S n-1 ∩S ⊥ , (4.2.37)

    1 0 Qe αtB T ξ 2 dα 1 0 P t,ξ (α) 2 dα     1 2 ≤ 1 + c 2 M t r+1 εt r = 1 + c 2 M ε t ≤ 1 + c 2 M ε .
2. Notice that the classical estimate

∀ξ, η ∈ R n , |ξ + η| 2p ≤ 2 (2p-1) + (|ξ| 2p + |η| 2p ),
with (2p -1) + = max(2p -1, 0), which is a corollary of Lemma 4.19, implies the following one

∀ξ, η ∈ R n , 2 -(2p-1) + |ξ| 2p -|η| 2p ≤ |ξ -η| 2p .
We deduce from (4.2.31) that for all 0 < t ≤ 1 and ξ ∈ S n-1 ∩ S ⊥ ,

1 0 Qe tαB T ξ 2p dα 1 0 P t,ξ (α) 2p dα ≥ 2 -(2p-1) + - 1 0 R t,ξ (α) 2p dα 1 0 P t,ξ (α) 2p dα
.

Moreover, it follows from (4.2.35) and (4.2.36) that for all 0 < t ≤ 1 and ξ ∈ S n-1 ∩ S ⊥ ,

1 0 R t,ξ (α) 2p dα 1 0 P t,ξ (α) 2p dα ≤ c 2p M t r+1 εt r 2p = c 2p M ε t 2p
, from which we deduce that

1 0 Qe tαB T ξ 2p dα 1 0 P t,ξ (α) 2p dα ≥ 2 -(2p-1) + - c 2p M ε t 2p .
It follows that there exist some positive constants c 0 > 0 and 0 < t 0 < 1 such that for all 0 < t < t 0 and ξ ∈ S n-1 ∩ S ⊥ , (4.2.38)

    1 0 Qe tαB T ξ 2p dα 1 0 P t,ξ (α) 2p dα     1 2p ≥ c 0 .
As a consequence of (4.2.33), (4.2.37) and (4.2.38), there exists a positive constant

c 1 > 0 such that ∀t ∈ (0, t 0 ), ∀ξ ∈ S n-1 ∩ S ⊥ , M t (ξ) ≤ c 1 .
This ends the proof of Proposition 4.16.

Regularizing directions.

In the second part of this section, we prove Theorem 2.7. Let t > 0 and ξ 0 ∈ R n . We assume that the linear operator ξ 0 , ∇ x e -tP is bounded on L 2 (R n ). We aim at proving that ξ 0 ∈ S ⊥ . Keeping the notations of the previous subsection, we recall from (4.2.1) and (4.2.2) that the evolution operator e -tP is given by the explicit formula (4.2.39)

e -tP = e -ta w t e -t Bx,∇x , where the real-valued symbol a t is given for all ξ ∈ R n by (4.2.40)

a t (ξ) = 1 2 1 0 Qe αtB T ξ 2p dα.
We first notice from the splitting formula (4.2.39) that the boundedness on L 2 (R n ) of the operator ξ 0 , ∇ x e -tP is equivalent to the boundedness of the Fourier multiplier ξ 0 , ∇ x e -ta w t , since the operator e -t Bx,∇x is invertible on L 2 (R n ). As a consequence, there exists a positive constant c t,ξ 0 > 0 depending on t > 0 and ξ 0 ∈ R n such that (4.2.41)

∀u ∈ L 2 (R n ), ξ 0 , ∇ x e -ta w t u L 2 (R n ) ≤ c t,ξ 0 u L 2 (R n ) .
According to the orthogonal decomposition R n = S ⊕ S ⊥ , we write ξ 0 = ξ 0,S + ξ 0,S ⊥ , with ξ 0,S ∈ S and ξ 0,S ⊥ ∈ S ⊥ , the orthogonality being taken with respect to the canonical Euclidean structure of R n . For all λ ≥ 0, we consider the Gaussian function u λ ∈ S(R n ) defined for all x ∈ R n by (4.2.42) u λ (x) = e iλ ξ 0,S ,x e -|x| 2 .

The strategy will be to obtain upper and lower bounds for the norm

(4.2.43) ξ 0 , ∇ x e -ta w t u λ L 2 (R n ) ,
and to consider the asymptotics when λ goes to +∞ in order to conclude that ξ 0,S ∈ S has to be equal to zero. An upper bound can be directly obtained since it follows from (4.2.41), (4.2.42) and the Cauchy-Schwarz inequality that for all λ ≥ 0,

(4.2.44) ξ 0 , ∇ x e -ta w t u λ L 2 (R n ) ≤ c t,ξ 0 u λ L 2 (R n ) = c t,ξ 0 u 0 L 2 (R n ) .
Notice that the right-hand side of the above estimate does not depend on the parameter λ ≥ 0. On the other hand, by using that for all λ ≥ 0, the Fourier transform of the function u λ is given for all ξ ∈ R n by (4.2.45)

u λ (ξ) = R n e -i x,ξ e iλ ξ 0,S ,x e -|x| 2 dx = R n e -i x,ξ-λξ 0,S e -|x| 2 dx = u 0 (ξ -λξ 0,S ),
we deduce from the Plancherel theorem that for all λ ≥ 0,

(4.2.46) ξ 0 , ∇ x e -ta w t u λ L 2 (R n ) = 1 (2π) n 2 ξ 0 , ξ e -tat(ξ) u 0 (ξ -λξ 0,S ) L 2 (R n ) .
Moreover, it follows from (4.2.8) and (4.2.40) that for all ξ ∈ R n and η ∈ S,

a t (ξ + η) = 1 2 1 0 Qe αtB T (ξ + η) 2p dα = 1 2 1 0 Qe αtB T ξ 2p dα = a t (ξ).
We therefore deduce from (4.2.41), (4.2.45), (4.2.46), a change of variable in the norm and the triangle inequality that for all λ ≥ 0,

ξ 0 , ∇ x e -ta w t u λ L 2 (R n ) = 1 (2π) n 2 ξ 0 , ξ + λξ 0,S e -tat(ξ+λξ 0,S ) u 0 L 2 (R n ) , (4.2.47) = 1 (2π) n 2 ξ 0 , ξ + λξ 0,S e -tat(ξ) u 0 L 2 (R n ) ≥ ξ 0 , λξ 0,S e -ta w t u 0 L 2 (R n ) -ξ 0 , ∇ x e -ta w t u 0 L 2 (R n ) ≥ λ|ξ 0,S | 2 e -ta w t u 0 L 2 (R n ) -c t,ξ 0 u 0 L 2 (R n ) ,
since λξ 0,S ∈ S. It follows from (4.2.44) and (4.2.47) that for all λ ≥ 0,

λ|ξ 0,S | 2 e -ta w t u 0 L 2 (R n ) ≤ 2c t,ξ 0 u 0 L 2 (R n ) .
Since the function e -ta w t u 0 is not equal to zero (u 0 is a Gaussian function and the symbol of the bounded Fourier multiplier e -ta w t is not equal to zero) and the right-hand side of the above estimate does not depend on the parameter λ ≥ 0, we conclude that ξ 0,S = 0, that is ξ 0 ∈ S ⊥ . This ends the proof of Theorem 2.7.

Subelliptic estimates for fractional Ornstein-Uhlenbeck operators

In this section, we establish the subelliptic estimates enjoyed by fractional Ornstein-Uhlenbeck operators, that is, we prove Theorem 2.8 and Corollary 2.9. Let P be the fractional Ornstein-Uhlenbeck operator defined in (2.1.1) and equipped with the domain (2.1.2). We consider 0 ≤ r ≤ n -1 the smallest integer such that (2.3.2) holds.

4.3.1. General case. First, we focus on Theorem 2.8, which states that there exists a positive constant c > 0 such that for all u ∈ D(P ),

r k=0 Q(B T ) k D x 2p 1+2kp u L 2 (R n ) ≤ c P u L 2 (R n ) + u L 2 (R n ) .
Fixing k ∈ {0, . . . , r}, we consider the Hilbert space H k defined by

H k = u ∈ L 2 (R n ) : Λ m k u ∈ L 2 (R n ) with Λ k = Q(B T ) k D x ,
and equipped with the scalar product

u, v H k = Λ m k u, Λ m k v L 2 (R n )
, where we set m = 1+ 2p . It follows from (4.2.13) that there exist some positive constants c 1 > 1 and 0 < T < 1 such that for all 0 < t < T and u ∈ L 2 (R n ),

(4.3.1) Q(B T ) k D x m e -tP u L 2 (R n ) ≤ c 1 t 1/θ e 1 2 Tr(B)t u L 2 (R n ) ,
where the real number θ is defined by

(4.3.2) θ = m 1 2p + k -1
∈ (0, 1).

Let 0 < T 0 < T . It follows from (4.3.1) and the semigroup property of the family of bounded linear operators (e -tP ) t≥0 that for all t ≥ T and u ∈ L 2 (R n ),

Q(B T ) k D x m e -tP u L 2 (R n ) = Q(B T ) k D x m e -T 0 P e -(t-T 0 )P u L 2 (R n ) (4.3.3) ≤ c 1 (T 0 ) 1/θ e 1 2 Tr(B)T 0 e -(t-T 0 )P u L 2 (R n ) ≤ c 1 (T 0 ) 1/θ e 1 2 Tr(B)T 0 e 1 2 Tr(B)(t-T 0 ) u L 2 (R n ) , = c 1 (T 0 ) 1/θ e 1 2 Tr(B)t u L 2 (R n ) ,
We deduce from (4.3.1) and (4.3.3) that there exist some positive constants c 2 > 0 and µ > 0 such that for all t > 0 and u ∈ L 2 (R n ),

(4.3.4) Q(B T ) k D x m e -tP u L 2 (R n ) ≤ c 2 e µt t 1/θ e 1 2 Tr(B)t u L 2 (R n ) .
We can assume without lost of generality that the constants c 2 > 0 and µ > 0 are chosen so that (4.3.5) ∀t > 0, c 2 e µt t 1/θ ≥ 1. We therefore deduce from (4.3.4), (4.3.5), the Plancherel theorem and the following inequality (which is a consequence of Lemma 4. [START_REF] Carypis | Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians[END_REF])

∀ξ ∈ R n , Q(B T ) k ξ m ≤ 2 ( m 2 -1) + 1 + Q(B T ) k ξ m ,
that for all t > 0 and u ∈ L 2 (R n ),

(4.3.6) Q(B T ) k D x m e -tP u L 2 (R n ) ≤ 2 1+( m 2 -1) + c 2 e µt t 1/θ e 1 2 Tr(B)t u L 2 (R n ) .
Setting c 3 = 2 

∀t > 0, ∀u ∈ L 2 (R n ), e -t P u H k ≤ c 3 t 1/θ u L 2 (R n ) .
It follows from (4.3.8) and the strong continuity of the semigroup (e -t P ) t≥0 on L 2 (R n ) that for all u ∈ L 2 (R n ), t 0 > 0 and 0 < t < t 0 , we have

e -(t+t 0 ) P u -e -t 0 P u H k = e -t 0 P e -t P u -u H k ≤ c 3 t 1/θ 0 e -t P u -u L 2 (R n ) → t→0 0,
and similarly,

e -(t 0 -t) P u -e -t 0 P u H k ≤ c 3 (t 0 -t) 1/θ u -e -t P u L 2 (R n ) → t→0 0.
This proves that for all u ∈ L 2 (R n ), the function t ∈ (0, +∞) → e -t P u ∈ H k is continuous, and therefore measurable. Moreover, it follows from Corollary 4.3 that for all u ∈ D(P ),

Re P u, u L 2 (R n ) + 1 2 Tr(B) u 2 L 2 (R n ) ≥ 0.
This implies that the operator P equipped with the domain D(P ) is maximal accretive.

According to (4.3.2) and (4.3.8), Corollary 5.13 in [START_REF] Lunardi | Interpolation theory[END_REF] shows that the following continuous inclusion holds (4.3.9)

D(P ) ⊂ (L 2 (R n ), H k ) θ,2 ,
the domain D(P ) being equipped with the graph norm • G defined by

∀u ∈ D(P ), u G = P u L 2 (R n ) + u L 2 (R n ) ,
and where (L 2 (R n ), H k ) θ,2 denotes the space obtained by real interpolation between the spaces L 2 (R n ) and H k . With H k as the domain of the Fourier multiplier Λ m k , the operator Λ m k is positive selfadjoint and satisfies

∀u ∈ H k , Λ m k u, u L 2 (R n ) ≥ u 2 L 2 (R n ) .
Thus, we deduce from Theorem 4.36 in [START_REF] Lunardi | Interpolation theory[END_REF] that

(4.3.10) (L 2 (R n ), H k ) θ,2 = (D((Λ m k ) 0 ), D(Λ m k ) 1 )) θ,2 = D(Λ mθ k ) = D(Λ 2p 1+2kp k ).
We therefore obtain from (4.3.9) and (4.3.10) that the following continuous inclusion holds

D(P ) ⊂ D(Λ 2p 1+2kp k ).
This implies that there exists a positive constant c 4 > 0 such that for all u ∈ D(P ),

Λ 2p 1+2kp k u L 2 (R n ) ≤ c 4 P u L 2 (R n ) + u L 2 (R n ) .
We therefore deduce from (4.3.7) and the definition of the operator Λ k that there exists another positive constant c 5 > 0 such that for all u ∈ D(P ),

Q(B T ) k D x 2p 1+2kp u L 2 (R n ) ≤ c 5 P u L 2 (R n ) + u L 2 (R n ) .
This ends the proof of Theorem 2.8.

When the Kalman rank condition holds.

In this section, we check that when the Kalman rank condition (2.1.7) holds, there exists a positive constant c > 0 such that for all u ∈ D(P ),

(4.3.11) D x 2p 1+2rp u L 2 (R n ) ≤ c P u L 2 (R n ) + u L 2 (R n ) ,
that is, we prove Corollary 2.9. We first deduce from Lemma 4.19 that for all ξ ∈ R n ,

ξ 2p 1+2rp ≤ 2 ( p 1+2rp -1) + 1 + |ξ| 2p 1+2rp .
This estimate combined with (4.2.19) shows that there exists a positive constant c > 0 such that for all ξ ∈ R n ,

ξ 2p 1+2rp ≤ 2 ( p 1+2rp -1) + 1 + c 2p 1+2rp (r + 1) ( p 1+2rp -1) + r k=0 Q(B T ) k ξ| 2p 1+2rp ≤ 2 ( p 1+2rp -1) + 1 + c 2p 1+2rp (r + 1) ( p 1+2rp -1) + r k=0 Q(B T ) k ξ 2p 1+2kp
.

The global subelliptic estimate (4.3.11) is then a straightforward consequence of this inequality, the Plancherel theorem and Theorem 2.8.

Necessary condition for null-controllability

The aim of this section is to obtain and discuss a necessary condition on control supports that ensures the null-controllability of fractional Ornstein-Uhlenbeck equations.

4.4.1. Geometric condition. We begin by giving the proof of Theorem 2.14 concerning the null-controllability of the fractional Ornstein-Uhlenbeck equation posed on the whole space (4.4.1)

(∂ t + P )f (t, x) = u(t, x)1 ω (x), (t, x) ∈ (0, +∞) × R n , f (0, •) = f 0 ∈ L 2 (R n ),
where P is the fractional Ornstein-Uhlenbeck operator defined in (2.1.1) and equipped with the domain (2.1.2), and ω ⊂ R n is a Borel subset with a positive Lebesgue measure. Given a fixed T > 0, we assume that the equation (4.4.1) is null-controllable from ω in time T . The objective is to prove that there exists some positive constants δ > 0 and r > 0 such that

(4.4.2) ∀x ∈ R n , T 0 Leb (e tB ω) ∩ B(x, r) dt ≥ δ,
where Leb denotes the Lebesgue measure on R n and B(x, r) is the canonical Euclidean ball of R n centered in x ∈ R n with radius r > 0. The following proof is inspired by [START_REF] Beauchard | Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports[END_REF] (Subsection 4.2). By the Hilbert Uniqueness Method, cf Section 1.1 in Chapter 1, the null-controllability of the equation (4.4.1) in time T > 0 is equivalent to the observability of the adjoint system (4.4.3)

(∂ t + P * )g(t, x) = 0, (t, x) ∈ (0, +∞) × R n , g(0, •) = g 0 ∈ L 2 (R n ),
in time T > 0, where P * denotes the adjoint of the operator P , given from Corollary 4.2 by

P * = 1 2 Tr p (-Q∇ 2 
x ) -Bx, ∇ x -Tr(B). Thus, there exists a positive constant C T > 0 such that for all

g 0 ∈ L 2 (R n ), (4.4.4) g(T, •) 2 L 2 (R n ) ≤ C T T 0 g(t, •) 2 L 2 (ω) dt,
where g denotes the mild solution of the equation (4.4.3) with initial data g 0 . We recall from Proposition 4.7, and more precisely formula (4.1.37), that the Fourier transform of this solution is given for all t ≥ 0 and ξ ∈ R n by (4.4.5) g(t, ξ) = K(t, e -tB T ξ) g 0 (e -tB T ξ),

where we set

K(t, ξ) = exp - 1 2 t 0 Qe sB T ξ 2p ds .
Let z ∈ R n be a fixed point of R n . We consider the Gaussian function f (ξ) = e -|ξ| 2 and the initial condition

g 0 (x) = F -1 (f )(x -z), x ∈ R n .
With this choice, formula (4.4.5) writes for all t ≥ 0 and ξ ∈ R n as g(t, ξ) = e -i z,e -tB T ξ K(t, e -tB T ξ) f (e -tB T ξ).

Applying the inverse Fourier transform, we obtain that the solution g of the equation (4.4.3) is given for all t ≥ 0 and x ∈ R n by g(t, x) = e Tr(B)t F -1 ξ (K(t, •)f )(e tB x -z), where F -1 ξ denotes the inverse partial Fourier transform in the ξ variable. On the one hand, it follows from the above formula and the substitution rule that the left-hand side of the inequality (4.4.4) is a positive constant independent of the point z, denoted δ 0 > 0 in the following and given by

δ 0 = g(T, •) 2 L 2 (R n ) = e 2 Tr(B)T R n F -1 ξ (K(T, •)f )(e T B x -z) 2 dx (4.4.6) = e Tr(B)T R n F -1 ξ (K(T, •)f )(x) 2 dx > 0.
On the other hand, the right-hand side of this inequality writes as

T 0 g(t, •) 2 L 2 (ω) dt = T 0 e 2 Tr(B)t ω F -1 ξ (K(t, •)f )(e tB x -z) 2 dxdt = T 0 e Tr(B)t e tB ω-z F -1 ξ (K(t, •)f )(x) 2 dxdt.
Given r > 0 a positive radius whose value will be chosen later, we split the previous integral in two parts to obtain the following estimate (4.4.7)

T 0 g(t, •) 2 L 2 (ω) dt ≤ T 0 e Tr(B)t (e tB ω-z)∩B(0,r) F -1 ξ (K(t, •)f )(x) 2 dxdt + T 0 e Tr(B)t |x|>r F -1 ξ (K(t, •)f )(x) 2 dxdt.
Now, we study one by one the two integrals appearing in the right-hand side of (4.4.7). First, it follows from the invariance by translation of the Lebesgue measure that (4.4.8)

T 0 e Tr(B)t (e tB ω-z)∩B(0,r)

F -1 ξ (K(t, •)f )(x) 2 dxdt ≤ M T 0 Leb (e tB ω -z) ∩ B(0, r) dt = M T 0 Leb (e tB ω) ∩ B(z, r) dt, with M = sup t∈[0,T ] e Tr(B)t F -1 ξ (K(t, •)f ) L ∞ (R n ) > 0.
Notice that the positive constant M is finite, since for all 0 ≤ t ≤ T ,

F -1 ξ (K(t, •)f ) L ∞ (R n ) ≤ 1 (2π) n K(t, •)f L 1 (R n ) ≤ 1 (2π) n f L 1 (R n ) .
In order to control the second integral, we make use of the dominated convergence theorem which justifies the following convergence

T 0 e Tr(B)t |x|>r F -1 ξ (K(t, •)f )(x) 2 dxdt → r→+∞ 0, since e 1 2 Tr(B)t F -1 ξ (K(t, •)f ) ∈ L 2 ([0, T ] × R n
). Thus, we can choose the radius r 1 large enough so that (4.4.9)

C T T 0 e Tr(B)t |x|>r F -1 ξ (K(t, •)f )(x) 2 dxdt ≤ δ 0 2 .
Gathering (4.4.4), (4.4.6), (4.4.7), (4.4.8) and (4.4.9), we obtain the following estimate

∀z ∈ R n , δ 0 2 ≤ C T M T 0
Leb (e tB ω) ∩ B(z, r) dt.

This ends the proof of Theorem 2.14.

About the geometric condition.

To end this section, we discuss the geometric condition (4.4.2). First, we prove that when the matrix B is equal to zero, the control support ω is thick. We recall that the notion of thickness is defined in Definition 1.5 in Chapter 1. Proceeding by contraction, we assume that ω is not thick. By definition, this set therefore satisfies

(4.4.10) ∀γ > 0, ∀a ∈ (R * + ) n , ∃ξ ∈ R n , Leb ω ∩ (ξ + [0, a 1 ] × . . . × [0, a n ]) < γ n j=1 a j .
By choosing γ = 1/k and a 1 , . . . , a n = 2r, with r > 0 the positive constant appearing in (4.4.2), we deduce that

∀k ≥ 1, ∃ξ k ∈ R n , Leb ω ∩ (ξ k + [0, 2r] n ) < (2r) n k .
For all k ≥ 1, we set

x k = ξ k + (r, . . . , r). Since the inclusion B(x k , r) ⊂ ξ k + [0, 2r] n holds, it follows that (4.4.11) ∀k ≥ 1, Leb ω ∩ B(x k , r) < (2r) n k .
On the other hand, since B = 0, the condition (4.4.2) writes as

∀x ∈ R n , T Leb ω ∩ B(x, r) ≥ δ.
This estimates implies in particular that (4.4.12)

∀k ≥ 1, Leb ω ∩ B(x k , r) ≥ δ T > 0.
Notice that the estimates (4.4.11) and (4.4.12) are inconsistent. As a consequence, the property (4.4.10) does not hold, that is, ω is a thick set.

To finish, let us check that if the control support ω is thick, then it satisfies the geometric condition (4.4.2). Since ω is thick, we obtain by definition that there exists some positive constants r 0 > 0 and δ 0 > 0 such that Lemma 4.17. Let B and Q be real n × n matrices, with Q symmetric positive semidefinite. The following assertions are equivalent:

1. The Kalman rank condition (2.1.7) holds.

2.

The vector space S is reduced to {0}, that is

n-1 j=0 Ker Q(B T ) j = {0}.
Proof. Using the notations of (2.1.7), we have the following equivalences:

Rank B | Q = n ⇔ Ran B | Q = R n , ⇔ Ker B | Q T = Ran B | Q ⊥ = {0}, ⇔ n-1 j=0 Ker Q(B T ) j = {0},
where ⊥ denotes the orthogonality with respect to the canonical Euclidean structure. This ends the proof of Lemma 4.17.

4.5.2. Convergence in Lebesgue spaces. In a second part, we recall the following classical measure theory result concerning the convergence in L p (R n ). Its proof is given here for the convenience of the reader and for the sake of completeness of this work.

Lemma 4.18. Let p ∈ [1, +∞). We consider (f k ) k a sequence of L p (R n ) and f ∈ L p (R n ) such that (f k ) k converges to f almost everywhere in R n .
Then, the following equivalence holds:

lim k→+∞ f k -f L p (R n ) = 0 ⇔ lim k→+∞ f k L p (R n ) = f L p (R n ) .
Proof. We just need to prove the reciprocal implication. To that end, we consider the sequence (g k ) k of non-negative functions defined for all k ≥ 0 by

g k = 2 p-1 (|f k | p + |f | p ) -|f k -f | p ≥ 0.
Notice that the functions g k are non-negative since the following convexity inequality holds for all x, y ∈ R n , (x + y) p ≤ 2 p-1 (x p + y p ). Since we have

R n lim inf k→∞ g k (x) dx = 2 p R n |f (x)| p dx, and lim inf k→+∞ R n g k (x) dx = 2 p R n |f (x)| p dx -lim sup k→+∞ R n |f k (x) -f (x)| p dx,
it follows from the Fatou lemma that

lim sup k→+∞ R n |f k (x) -f (x)| p dx = 0.
This ends the proof of Lemma 4.18.

4.5.3. Some instrumental estimates. To end this appendix, we give the proof of some estimates used in this chapter.

Lemma 4.19. For all r ≥ 1, q ∈ (0, +∞) and a 1 , . . . , a r ∈ [0, +∞), we have (a 1 + . . . + a r ) q ≤ r (q-1) + (a q 1 + . . . + a q r ), where (q -1) + = max(q -1, 0).

Proof. If a j = 0 for all j ∈ {1, . . . , r}, the result is immediate. Therefore, we can assume that at least one of the a j is positive.

1. Case 0 < q ≤ 1: Since ∀j ∈ {1, . . . , r}, a j ≤ a 1 + . . . + a r , we get that ∀j ∈ {1, . . . , r}, a j a 1 + . . . + a r ≤ a j a 1 + . . . + a r q .

Then, (4.5.1) follows by summing up the previous inequalities for all 1 ≤ j ≤ r.

Case q > 1:

In this case, the convexity property of the function t → t q on [0, +∞) implies that 1 r q (a 1 + . . . + a r ) q ≤ 1 r (a q 1 + . . . + a q r ). This ends the proof of Lemma 4.19.

Lemma 4.20. For all q > 0 and ξ, η ∈ R n , ||ξ| q -|η| q | ≤ q2 (q-2) + |ξ -η| q + min(|ξ| q-1 , |η| q-1 )|ξ -η| when q > 1,

|ξ -η| q when 0 < q ≤ 1.

Proof. Let q > 0 and ξ, η ∈ R n . We first assume that 0 < q ≤ 1. It follows from Lemma 4.19 that |ξ + η| q ≤ |ξ| q + |η| q and then, by a natural change of coordinate, this implies ||ξ| q -|η| q | ≤ |ξ -η| q . When q > 1, we deduce from the differentiability of the function | • | q the following equality

|ξ| q -|η| q = 1 0 d dt |η + t(ξ -η)| q dt = q 1 0 |η + t(ξ -η)| q-2 (η + t(ξ -η)) • (ξ -η) dt.
Then, the Cauchy-Schwarz inequality and Lemma 4.19 imply that

||ξ| q -|η| q | ≤ q|ξ -η| 1 0 |η + t(ξ -η)| q-1 dt ≤ q2 (q-2) + |ξ -η| 1 0
|η| q-1 + t q-1 |ξ -η| q-1 dt = q2 (q-2) + |ξ -η| q + |η| q-1 |ξ -η| .

Since ξ et η play symmetric roles, the proof of Lemma 4.20 is ended.

Chapitre 5

Quadratic differential equations: partial Gelfand-Shilov smoothing effects

The aim of this chapter is to give the proof of Theorem 3.3, taken from the article [START_REF] Alphonse | Quadratic differential equations: partial Gelfand-Shilov smoothing effect and nullcontrollability[END_REF] published in the Journal of the Institute of Mathematics of Jussieu, but presented in a slightly different way in the present work. Precisely, the result of Proposition 5.2 in Section 5.2 is not explicitly stated in [START_REF] Alphonse | Quadratic differential equations: partial Gelfand-Shilov smoothing effect and nullcontrollability[END_REF].

Outline of the chapter. Section 5.1 is devoted to recall the definitions and basic properties of Hamilton maps and singular spaces of quadratic forms that will be used all along this chapter and also in Chapter 6. In Section 5.2, we study a family of timedependent pseudodifferential operators whose symbols are models of the Mehler symbols given by formula (3.3.10). Thanks to the Mehler formula, the properties of these operators allow to prove Theorem 3.3 in Section 5.3.

Hamilton map and singular space

Let q : R 2n → C be a complex-valued quadratic form defined on the phase space. Associated to q is F ∈ M 2n (C) called its Hamilton map (or fundamental matrix), defined as the unique matrix satisfying the identity

(5.1.1) ∀X, Y ∈ R 2n , q(X, Y ) = σ(X, F Y ),
with q(•, •) the polarized form associated to the quadratic form q, and σ the canonical symplectic form given by (5.1.2) σ((x, ξ), (y, η)) = ξ, y -x, η , (x, y), (ξ, η) ∈ C 2n , with •, • the bilinear symmetric form on C n defined by (5.1.3)

x, y = n j=0

x j y j , x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ C n .

By definition, the matrix F is given by (5.1.4)

F = JQ,
where Q ∈ S 2n (C) is the symmetric matrix associated to the bilinear form q(•, •),

(5.1.5) ∀X, Y ∈ R 2n , q(X, Y ) = X, QY ,
and J ∈ Sp 2n (R) stands for the symplectic matrix given by (5.1.6)

J = 0 n I n -I n 0 n ∈ Sp 2n (R).
We notice that a Hamilton map is always skew-symmetric with respect to the symplectic form σ, since

(5.1.7) ∀X, Y ∈ R 2n , σ(X, F Y ) = q(X, Y ) = q(Y, X) = σ(Y, F X) = -σ(F X, Y ),
by symmetry of the polarized form and skew-symmetry of σ.

The singular space of the quadratic form q is the vector subspace of the phase space defined as the following finite intersection of kernels (5.1.8)

S = 2n-1 j=0 Ker(Re F (Im F ) j ) ⊂ R 2n .
By definition, we may consider 0 ≤ k 0 ≤ 2n -1 the smallest integer satisfying (5.1.9)

S = k 0 j=0 Ker(Re F (Im F ) j ).
The singular space S satisfies the properties (5.1.10)

(Re F )S = {0} and (Im F )S ⊂ S.
The first property is a straightforward consequence of the definition of S. In order to derive the second one, we check that S is also given by the infinite intersection of kernels Indeed, the Cayley-Hamilton theorem applied to the matrix Im F shows that

∀k ∈ N, ∀X ∈ R 2n , (Im F ) k X ∈ Span(X, (Im F )X, . . . , (Im F ) 2n-1 X),
where Span(X, (Im F )X, . . . , (Im F ) 2n-1 X) is the vector space spanned by the vectors X, (Im F )X, . . . , (Im F ) 2n-1 X, which proves that the equality (5.1.11) actually holds.

Regularizing effects of time-dependent pseudodifferential operators

Let T > 0 and q t : R 2n → C be a time-dependent complex-valued quadratic form whose coefficients depend continuously on the time variable 0 ≤ t ≤ T . We assume that there exist some positive constants 0 < T * < T and c > 0, a positive integer k ≥ 1, and I, J ⊂ {1, . . . , n} such that

(5.2.1) ∀t ∈ [0, T * ], ∀X ∈ R n I × R n J , (Re q t )(X) ≥ ct k |X| 2 ,

and

(5.2.2) ∀t ∈ [0, T * ], ∀X ∈ R 2n , q t (X) = q t (X I,J ), where X I,J stands for the component in

R n I × R n J of the vector X ∈ R 2n according to the decomposition R 2n = (R n I ×R n J )⊕ ⊥ (R n I ×R n J ) ⊥
, the orthogonality being taken with respect to the canonical Euclidean structure of R 2n , and where the notation R n I × R n J is defined in Definition 3.2 in Chapter 3. This section is devoted to the study of the regularizing effects of the pseudodifferential operators (e -qt ) w acting on L 2 (R n ) defined by the Weyl quantization of the symbols e -qt . The main result of this section is the following: Theorem 5.1. Let T > 0 and q t : R 2n → C be a time-dependent complex-valued quadratic form satisfying (5.2.1) and (5.2.2), and whose coefficients depend continuously on the time variable 0 ≤ t ≤ T . Then, there exist some positive constants C > 1 and 0 < t 0 < min(1, T * ) such that for all (α, β) ∈ N n I × N n J , 0 < t ≤ t 0 and u ∈ L 2 (R n ),

x α ∂ β x (e -qt ) w u L 2 (R n ) ≤ C 1+|α|+|β| t k(|α|+|β|+s) √ α! β! u L 2 (R n ) ,
where 0 < T * < T , k ≥ 1, I, J ⊂ {1, . . . , n} are defined in (5.2.1) and (5.2.2), and s = 9n/4 + 2 n/2 + 3, with • the floor function.

5.2.1.

A Calderón-Vaillancourt type result for partial Gelfand-Shilov symbols. The proof of Theorem 5.1 is based on symbolic calculus. More precisely, we will use the following proposition which states that a pseudodifferential operator whose Weyl symbol enjoys partial Gelfand-Shilov regularity has partial Gelfand-Shilov smoothing properties.

Proposition 5.2. For all µ ∈ [1/2, 1], there exists a positive constant C µ > 1 such that for all symbol p ∈ C ∞ (R 2n ) satisfying that there exist some positive constants C 1 , C 2 , C 3 > 1 and some subsets I, J ⊂ {1, . . . , n} such that

(5.2.3) ∀α ∈ N n I × N n J , ∀β ∈ N 2n , X α (∂ β X p)(X) L ∞ (R 2n ) ≤ C 1 C |α| 2 C |β| 3 (α!) µ (β!) µ ,
we have that for all (α, β)

∈ N n I × N n J and u ∈ L 2 (R n ), x α ∂ β x (p w (x, D x )u) L 2 (R n ) ≤ C 1+|α|+|β| µ C 1 (max(C 2 , C 3 )) |α|+|β|+2 n/2 +2 × (α!) µ (β!) µ u L 2 (R n ) ,
where • denotes the floor function.

Proof. Let p ∈ C ∞ (R 2n ) be a symbol such that (5.2.3) holds for some subsets I, J ⊂ {1, . . . , n}. To prove that the linear operator x α ∂ β x p w (x, D x ) is bounded on L 2 (R n ), the strategy is to use the Calderón-Vaillancourt theorem. Therefore, we shall derive estimates for the derivatives of the symbol of the operator x α ∂ β x p w (x, D x ), that is the symbol , see e.g. (18.5.6) in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]. For all positive integer N ≥ 1, we consider

S N = S X N , |dX| 2 , the symbol class of smooth functions f ∈ C ∞ (R 2n ) satisfying ∀a ∈ N 2n , ∃C > 0, ∀X ∈ R 2n , (∂ a X f )(X) ≤ C X N .
The Euclidean metric |dX| 2 is admissible, that is, slowly varying, satisfying the uncertainty principle and temperate. The function X N is a |dX| 2 -slowly varying weight, see [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] (Lemma 2.2.18). Therefore, the symbol classes S N enjoy nice symbolic calculus. Let (α, β) ∈ N n I × N n J . Since the polynomials x α and ξ β belong to the symbol class S |α|+|β| , it follows from [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Theorem 18.5.4) that

x α ξ β = | min(α,β)| l=0 i 2 l |δ|+|γ|=l (-1) |γ| δ! γ! ∂ γ x ∂ δ ξ x α ∂ δ x ∂ γ ξ ξ β (5.2.5) = | min(α,β)| l=0 i 2 l |γ|=l (-1) |γ| γ! α! x α-γ (α -γ)! β! ξ β-γ (β -γ)! 1 γ≤min(α,β) ,
where min(α, β) ∈ N n is defined for all j ∈ {1, . . . , n} by min(α, β) j = min(α j , β j ) and

1 γ≤min(α,β) = 1 if γ ≤ min(α, β), 0 otherwise.
As a consequence of (5.2.5), x α ξ β is a polynomial of total degree |α| + |β|. Moreover,

p ∈ C ∞ b (R 2n ) from (5.2.
3) and as a consequence p ∈ S |α|+|β| . We therefore deduce from [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Theorem 18.5.4) an explicit formula for the symbol x α ξ β p(x, ξ):

(5.2.6)

x α ξ β p(x, ξ) = |α|+|β| k=0 i 2 k |η|+|ρ|=k (-1) |ρ| η!ρ! ∂ ρ x ∂ η ξ x α ξ β ∂ η x ∂ ρ ξ p (x, ξ).
It follows from (5.2.6) that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (x, ξ) ∈ R 2n , ∂ a x ∂ b ξ x α ξ β p(x, ξ) = |α|+|β| k=0 i 2 k |η|+|ρ|=k (-1) |ρ| η!ρ! ∂ a x ∂ b ξ ∂ ρ x ∂ η ξ x α ξ β ∂ η x ∂ ρ ξ p (x, ξ) .
As a consequence of the Leibniz formula, this equality also writes as

(5.2.7) ∂ a x ∂ b ξ x α ξ β p(x, ξ) = |α|+|β| k=0 i 2 k |η|+|ρ|=k (-1) |ρ| η!ρ! a ≤a b ≤b a a b b ∂ a +ρ x ∂ b +η ξ x α ξ β ∂ a-a +η x ∂ b-b +ρ ξ p (x, ξ).
Moreover, we notice from (5.2.5) that the derivatives of the symbol x α ξ β are given by

∂ a +ρ x ∂ b +η ξ (x α ξ β ) (5.2.8) = | min(α,β)| l=0 i 2 l |γ|=l (-1) |γ| γ! α! (α -γ)! β! (β -γ)! ∂ a +ρ x x α-γ ∂ b +η ξ ξ β-γ 1 γ≤min(α,β) = | min(α,β)| l=0 i 2 l |γ|=l (-1) |γ| γ! α! x α-γ-a -ρ (α -γ -a -ρ)! β! ξ β-γ-b -η (β -γ -b -η)! 1 γ+a +ρ≤α 1 γ+b +η≤β , with 1 γ+a +ρ≤α = 1 if γ + a + ρ ≤ α, 0 otherwise,
and

1 γ+b +η≤β = 1 if γ + b + η ≤ β, 0 otherwise.
For all (a, b) ∈ N 2n and (α, β) ∈ N n I × N n J , we consider the finite subset E a,b,α,β ⊂ N 5n whose elements (η, ρ, γ, a , b ) ∈ E a,b,α,β satisfy:

(5.2.9)

0 ≤ a ≤ a, 0 ≤ b ≤ b, γ + a + ρ ≤ α, γ + b + η ≤ β.
Moreover, for all (a, b) ∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , we set (5.2.10)

Γ η,ρ,γ,a ,b = i 2 |η|+|ρ|+|γ| a a b b α! (α -γ -a -ρ)! β! (β -γ -b -η)! (-1) |ρ|+|γ| η! ρ! γ! .
It follows from (5.2.7) and (5.2.8) that the derivatives of the symbol x α ξ β p(x, ξ) satisfy the following estimates for all (a, b) ∈ N 2n and (α,

β) ∈ N n I × N n J , (5.2.11) ∂ a x ∂ b ξ x α ξ β p(x, ξ) L ∞ (R 2n ) ≤ (η,ρ,γ,a ,b )∈E a,b,α,β |Γ η,ρ,γ,a ,b | x α-γ-a -ρ ξ β-γ-b -η ∂ a-a +η x ∂ b-b +ρ ξ p (x, ξ) L ∞ (R 2n ) .
Moreover, it follows from the partial Gelfand-Shilov regularity (5.2.3) of the symbol p that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , x α-γ-a -ρ ξ β-γ-b -η ∂ a-a +η x ∂ b-b +ρ ξ p (x, ξ) L ∞ (R 2n ) ≤ C 1 C |α-γ-a -ρ|+|β-γ-b -η| 2 × C |a-a +η|+|b-b +ρ| 3 (α -γ -a -ρ)! (β -γ -b -η)! (a -a + η)! (b -b + ρ)! µ .
Notice that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , |α -γ -a -ρ| + |β -γ -b -η| + |a -a + η| + |b -b + ρ| = |α -γ -a | + |β -γ -b | + |a -a | + |b -b | ≤ |α| + |β| + |a| + |b|.
By using that C 2 , C 3 > 1 and the above estimate, we deduce that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , x α-γ-a -ρ ξ β-γ-b -η ∂ a-a +η x ∂ b-b +ρ ξ p (x, ξ) L ∞ (R 2n ) ≤ C 1 (max(C 2 , C 3 )) |α|+|β|+|a|+|b| × (α -γ -a -ρ)! (β -γ -b -η)! (a -a + η)! (b -b + ρ)! µ .
As a consequence of (5.2.9) and (E.0.3), we also notice that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , (a -a + η)! ≤ (a + η)! ≤ 2 |a|+|η| a! η! ≤ 2 |a|+|β| a! η!, and 
(b -b + ρ)! ≤ (b + ρ)! ≤ 2 |b|+|ρ| b! ρ! ≤ 2 |b|+|α| b! ρ!. We therefore deduce that for all (a, b) ∈ N 2n , (α, β) ∈ N n I ×N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , (5.2.12) x α-γ-a -ρ ξ β-γ-b -η ∂ a-a +η x ∂ b-b +ρ ξ p (x, ξ) L ∞ (R 2n ) ≤ C 1 (max(C 2 , C 3 )) |α|+|β|+|a|+|b| × 2 µ(|a|+|b|+|α|+|β|) (α -γ -a -ρ)! (β -γ -b -η)! η! ρ! a! b! µ .
Combining (5.2.11) and (5.2.12), we obtain the following estimates of the L ∞ -norms of the derivatives of the symbols (5.2.4) for all (a, b) ∈ N 2n and (α,

β) ∈ N n I × N n J , (5.2.13) ∂ a x ∂ b ξ x α ξ β p(x, ξ) L ∞ (R 2n ) ≤ C 1 (max(C 2 , C 3 )) |α|+|β|+|a|+|b| 2 µ(|a|+|b|+|α|+|β|) × (η,ρ,γ,a ,b )∈E a,b,α,β |Γ η,ρ,γ,a ,b | (α -γ -a -ρ)! (β -γ -b -η)! η! ρ! a! b! µ .
Notice from (5.2.10) and (E.0.5) that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , (5.2.14) |Γ η,ρ,γ,a ,b | ≤ 2 |a|+|b| α! (α -γ -a -ρ)! β! (β -γ -b -η)! 1 η! ρ! γ! .
We derive from (5.2.13) and (5.2.14) that for all (a, b) ∈ N 2n and (α,

β) ∈ N n I × N n J , (5.2.15) ∂ a x ∂ b ξ x α ξ β p(x, ξ) L ∞ (R 2n ) ≤ C 1 (max(C 2 , C 3 )) |α|+|β|+|a|+|b| 2 (1+µ)|a+b|+µ|α+β| × (a!) µ (b!) µ (η,ρ,γ,a ,b )∈E a,b,α,β ∆ η,ρ,γ,a ,b ,
where we set (5.2.16)

∆ η,ρ,γ,a ,b = α! ((α -γ -a -ρ)!) 1-µ β! ((β -γ -b -η)!) 1-µ 1 (η!) 1-µ (ρ!) 1-µ γ! .
The next step of the proof consists in estimating the quantities (5.2.16). First, it follows from (5.2.9) and (E.0.3) that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , (α -γ -ρ)! = (α -γ -ρ -a + a )! ≤ 2 |α-γ-ρ| (α -γ -ρ -a )! (a )! ≤ 2 |α| (α -γ -ρ -a )! a!,
and similarly,

(β -γ -η)! = (β -γ -η -b + b )! ≤ 2 |β-γ-η| (β -γ -η -b )! (b )! ≤ 2 |β| (β -γ -η -b )! b!.
We therefore deduce that for all (a, b)

∈ N 2n , (α, β) ∈ N n I ×N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , (5.2.17) ∆ η,ρ,γ,a ,b ≤ α! ((α -γ -ρ)!) 1-µ β! ((β -γ -η)!) 1-µ 2 (1-µ)|α+β| (a!) 1-µ (b!) 1-µ (η!) 1-µ (ρ!) 1-µ γ! , since µ ≤ 1.
Moreover, it follows from the definition of Binomial coefficients that for all

(a, b) ∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , α! ((α -γ -ρ)!) 1-µ β! ((β -γ -η)!) 1-µ 1 (η!) 1-µ (ρ!) 1-µ γ! (5.2.18) = α! (α -γ -ρ)! (γ + ρ)! (γ + ρ)! ρ! γ! β! (β -γ -η)! (γ + η)! (γ + η)! η! γ! 1-µ (α!) µ (β!) µ (γ!) 2µ-1 ≤ α γ + ρ γ + ρ γ β γ + η γ + η η 1-µ (α!) µ (β!) µ , since 2µ ≥ 1.
As a consequence of (5.2.17) and (5.2.18), the following estimates hold for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , ∆ η,ρ,γ,a ,b ≤ 2 |α|+|γ|+|ρ|+|β|+|γ|+|η| 1-µ 2 (1-µ)|α+β| (a!) 1-µ (b!) 1-µ (α!) µ (β!) µ .
We recall from (5.2.9) that for all (a, b)

∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , |α| + |γ| + |ρ| + |β| + |γ| + |η| ≤ 2|α| + 2|β|. This implies that for all (a, b) ∈ N 2n , (α, β) ∈ N n I × N n J and (η, ρ, γ, a , b ) ∈ E a,b,α,β , (5.2.19) ∆ η,ρ,γ,a ,b ≤ 8 (1-µ)|α+β| (a!) 1-µ (b!) 1-µ (α!) µ (β!) µ .
This estimate combined to (5.2.15) implies that for all (a, b) ∈ N 2n and (α, As a consequence of (5.2.20) and (5.2.21), we notice that for all (a, b) ∈ N 2n and (α,

β) ∈ N n I × N n J , (5.2.20) ∂ a x ∂ b ξ x α ξ β p(x, ξ) L ∞ (R 2n ) ≤ C 1 (max(C 2 , C 3 )) |α|+|β|+|a|+|b| × 2 (1+µ)|a+b|+(3-2µ)|α+β| (#E a,b,α,β ) a! b! (α!) µ (β!) µ ,
β) ∈ N n I × N n J , (5.2.22) ∂ a x ∂ b ξ x α ξ β p(x, ξ) L ∞ (R 2n ) ≤ C 1 (max(C 2 , C 3 )) |α|+|β|+|a|+|b| × 2 (1+µ)|a+b|+(3-2µ)|α+β| 2 |α|+|β|+min(|α|,|β|)+|a|+|b|+5n a! b! (α!) µ (β!) µ .
It follows from (5.2.22) and the Calderón-Vaillancourt theorem, see [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF] (Theorem 1.2) which provides sharp estimates, that the operator

x α D β x p w (x, D x ) : L 2 (R n ) → L 2 (R n ) is bounded on L 2 (R n ),
and that its operator norm is controlled in the following way (5.2.23)

x α D β x p w (x, D x ) L(L 2 ) ≤ C sup |a|,|b|≤ n/2 +1 ∂ a x ∂ b ξ x α ξ β p(x, ξ) L ∞ (R 2n ) ,
where C > 0 is a positive constant not depending on the symbol p and L(L 2 ) stands for the set of bounded operators on L 2 (R n ). Proposition 5.2 is then a consequence of (5.2.22) and (5.2.23).

Gelfand-Shilov type estimates.

In this subsection, we study the Gelfand-Shilov regularity of the time-dependent symbol e -qt , where q t : R N → C is a timedependent complex-valued quadratic form whose coefficients are continuous functions of the time variable 0 ≤ t ≤ T * , with T * > 0, satisfying that there exist a positive constant c > 0 and a positive integer k ≥ 1 such that (5.2. [START_REF] Egidi | Sharp geometric condition for null-controllability of the heat equation on R d and consistent estimates on the control cost[END_REF] ∀t ∈ [0, T * ], ∀X ∈ R N , (Re q t )(X) ≥ ct k |X| 2 .

Lemma 5.3. Let T > 0 and q t : R N → C be a time-dependent complex-valued quadratic form satisfying (5.2.24), and whose coefficients depend continuously on the time variable 0 ≤ t ≤ T . Then, there exist some positive constants 0 < t 0 < min(1, T * ) and c 1 , c 2 > 0 such that the Fourier transform of the symbol e -qt satisfies the estimates

∀t ∈ (0, t 0 ), ∀Ξ ∈ R N , e -qt (Ξ) ≤ c 1 t kN 2 e -c 2 t 2k |Ξ| 2 ,
where 0 < T * < T and k ≥ 1 are defined in (5.2.24).

Proof. Let 0 < t ≤ T * . Since Re q t satisfies (5.2.24), the spectral theorem allows to diagonalize Im q t with respect to Re q t . More precisely, there exist (e 1,t , . . . , e N,t ) a basis of R N and λ 1,t , . . . , λ N,t ∈ R some real numbers satisfying that for all 1 ≤ j, k ≤ N , (5.2.25) (Re q t )(e j,t , e k,t ) = δ j,k and (Im q t )(e j,t , e k,t ) = λ j,t δ j,k , with Re q t (•, •) and Im q t (•, •) the polarized forms associated to the quadratic forms Re q t and Im q t respectively, and where δ j,k denotes the Kronecker delta. Let P t ∈ GL N (R) be the matrix associated to the change of basis mapping the canonical basis of R N to (e 

∀X ∈ R N , (Re q t )(P t X) = |X| 2 , (Im q t )(P t X) = D t X, X ,
and therefore, q t • P t is given by (5.2.29) ∀X ∈ R N , q t (P t X) = S t X, X .

Then, we compute thanks to the substitution rule and (5.2.29) that for all Ξ ∈ R N ,

e -qt (Ξ) = R N e -i X,Ξ e -qt(X) dX = | det P t | R N
e -i PtX,Ξ e -StX,X dX.

We observe that S t is a symmetric non-singular matrix satisfying that Re S t ≥ 0. It follows from [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] 

≥ (P T t ) -1 -1 ∆ -1 2 t -1 |Ξ| 2 = P -1 t -1 ∆ -1 2 t -1 |Ξ| 2 .
We deduce from (5.2.30), (5.2.32) and (5.2.33) that for all Ξ ∈ R N , (5.2.34)

e -qt (Ξ) ≤ | det P t | π N 2 | det S t | e -1 4 P -1 t -1 ∆ -1 2 t -1 2 |Ξ| 2 .
The following of the proof consists in bounding the time-dependent terms appearing in the right hand-side of ( 

∀t ∈ (0, T * ], | det S t | = N j=1 |1 + iλ j,t | ≥ 1.
2. We notice from (5.2.24) and (5.2.28) that there exists a positive constant c > 0 such that for all 0 < t ≤ T * and X ∈ R N ,

|X| 2 = (Re q t )(P t X) ≥ ct k |P t X| 2 .
Consequently, we obtain the following estimates of the norms of the matrices P t :

∀t ∈ (0, T * ],

P t ≤ 1 √ ct k .
It follows that there exists a positive constant c 0 > 0 such that (5.2.36) ∀t ∈ (0, T * ], ∀j, k ∈ {1, . . . , N },

(P t ) j,k ≤ c 0 t k 2
, with (P t ) j,k the coefficients of the matrix P t . We therefore deduce from (5.2.36) that for all t ∈ (0, T * ],

| det P t | ≤ τ ∈S N |ε(τ )| N j=1 (P t ) j,τ (j) ≤ τ ∈S N N j=1 c 0 t k 2 = N ! c 0 t k 2 N ,
where S N denotes the symmetric group and ε(τ ) is the signature of the permutation τ ∈ S N . Setting c 1 = N ! c N 0 , we proved that for all t ∈ (0, T * ],

(5.2.37)

| det P t | ≤ c 1 t kN 2
.

The continuous dependence of the coefficients of the time-dependent quadratic form

Re q t with respect to the time variable 0 ≤ t ≤ T implies that there exists a positive constant c 2 > 0 such that

(5.2.38) ∀t ∈ [0, T * ], ∀X ∈ R N , (Re q t )(X) ≤ c 2 |X| 2 .
It follows from (5.2.28) and (5.2.38) that

∀t ∈ (0, T * ], ∀X ∈ R N , |X| 2 = (Re q t )(P t X) ≤ c 2 |P t X| 2 .
As a consequence, we have (5.2.39) ∀t ∈ (0, T * ],

P -1 t ≤ √ c 2 .
4. We deduce from (5.2.24) and (5.2.25) that for all 0 < t ≤ T * and 1 ≤ j ≤ N , (5.2.40)

|λ j,t | = |(Im q t )(e j,t )| ≤ Im q t |e j,t | 2 ≤ Im q t ct k (Re q t )(e j,t ) =
Im q t ct k . Since the coefficients of the time-dependent quadratic form q t are continuous with respect to the time variable 0 ≤ t ≤ T , there exists a positive constant c 3 > 0 such that (5.2.41) ∀t ∈ [0, T * ], Im q t ≤ c 3 .

As a consequence of (5.2.40) and (5.2.41), the following estimates hold:

( 

∈ R N , e -qt (Ξ) ≤ π N 2 c 1 t kN 2 e -t 2k |Ξ| 2 /(2c 2 c 2 5 ) .
This ends the proof of Lemma 5.3.

Lemma 5.4. Let T > 0 and q t : R N → C be a time-dependent complex-valued quadratic form satisfying (5.2.24), and whose coefficients depend continuously on the time variable 0 ≤ t ≤ T . Then, there exist some positive constants 0 < t 0 < min(1, T * ) and C > 1 such that

∀α, β ∈ N N , ∀t ∈ (0, t 0 ), X α ∂ β X (e -qt(X) ) L ∞ (R N ) ≤ C 1+|α|+|β| t k 2 (|α|+2|β|+s) √ α! β!,
where 0 < T * < T and k ≥ 1 are defined in (5.2.24), and s = 5N/4 + 2 N/2 + 2.

Proof. First, we deduce from (5.2.24) that (5.2.44)

∀t ∈ [0, T * ], ∀X ∈ R N , e -qt(X) ≤ e -ct k |X| 2 .
Moreover, it follows from Lemma 5.3 that there exist some positive constants 0 < t 0 < min(1, T * ) and c 1 , c 2 > 0 such that

∀t ∈ (0, t 0 ), ∀Ξ ∈ R n , e -qt (Ξ) ≤ c 1 t kN 2 e -c 2 t 2k |Ξ| 2 . (5.2.45)
We can assume without lost of generality that ct k 0 < 1 and c 2 t k 0 < 1 so that ct k ∈ (0, 1) and c 2 t k ∈ (0, 1) for all 0 < t < t 0 . It follows from (5.2.44), (5.2.45) and Proposition C.2 that there exists a positive constant C > 1 such that for all α, β ∈ N N and 0 < t < t 0 ,

X α ∂ β X (e -qt(X) ) L ∞ (R N ) ≤ C 1+|α|+|β| 1 (ct k ) |α|+ N 4 c 1 t kN 2 1 (c 2 t 2k ) |β|+ N 4 + N 2 +1 α! β! 1 2 ≤ √ c 1 C 1+|α|+|β| c 1 2 (|α|+ N 4 ) c 1 2 (|β|+ N 4 + N 2 +1) 2 1 t k 2 (|α|+2|β|+ 5N 4 +2 N 2 +2) √ α! β!.
This ends the proof of Lemma 5.4.

5.2.3.

Proof of Theorem 5.1. This subsection is devoted to the proof of Theorem 5.1. Let T > 0 and q t : R 2n → C be a time-dependent complex-valued quadratic form satisfying (5.2.1) and (5.2.2), and whose coefficients depend continuously on the time variable 0 ≤ t ≤ T . It follows from the condition (5.2.2) that for all 0 ≤ t ≤ T , the quadratic form q t can be considered as a quadratic form on R n I × R n J , that is ∀t ∈ [0, T ], q t : R n I × R n J → C. We recall from (5.2.1) that there exist some positive constants 0 < T * < T and c > 0 and a positive integer k ≥ 1 such that ∀t ∈ [0, T * ], ∀X ∈ R n I × R n J , (Re q t )(X) ≥ ct k |X| 2 . It therefore follows from Lemma 5.4 that there exist some positive constants 0 < t 0 < min(1, T * ) and C 1 > 1 such that for all α ∈ N n I × N n J , β ∈ N n I × N n J and 0 < t < t 0 , (5.2.46)

X α ∂ β X (e -qt(X) ) L ∞ (R n I ×R n J ) ≤ C 1 t ks 2 C 1 t k 2 |α| C 1 t k |β| √ α! β!, with s = 5(#I + #J)/4 + 2 (#I + #J)/2 + 2 ≤ 5(2n)/4 + 2 (2n)/2 + 2 = 9n/2 + 2.
Since the quadratic forms q t do not depend on variables in (R n I × R n J ) ⊥ anew from the condition (5.2.2), with 0 < t < t 0 , the orthogonality being taken with respect to canonical Euclidean structure of R 2n , the estimate (5.2.46) can be extended in the following way: for all α ∈ N n I × N n J , β ∈ N 2n and 0 < t < t 0 , (5.2.47)

X α ∂ β X (e -qt(X) ) L ∞ (R 2n ) ≤ C 1 t k(9n/4+1) C 1 t k 2 |α| C 1 t k |β| √ α! β!.
We have used that for all X ∈ R 2n and α ∈ N n I × N n J , X α = (X I,J ) α , with X I,J the coordinate of the point X ∈ R 2n with respect to the decomposition

R 2n = (R n I × R n J ) ⊕ ⊥ (R n I × R n J ) ⊥ .
Then, (5.2.47) and Proposition 5.2 imply that there exists a positive constant C 2 > 1 such that for all 0 < t < t 0 , (α, β) ∈ N n I × N n J and u ∈ L 2 (R n ),

x α ∂ β x (e -qt ) w u L 2 (R n ) ≤ C 1+|α|+|β| 2 C 1 t k(9n/4+1) C 1 t k |α|+|β|+2 n/2 +2 √ α! β! u L 2 (R n ) , since ∀t ∈ (0, t 0 ), max C 1 t k 2 , C 1 t k = C 1 t k .
Thus, there exists an other positive constant C 3 > 1 such that for all 0 < t < t 0 , (α, β) ∈

N n I × N n J and u ∈ L 2 (R n ), x α ∂ β x (e -qt ) w u L 2 (R n ) ≤ C 1+|α|+|β| 3 t k(|α|+|β|+9n/4+2 n/2 +3) √ α! β! u L 2 (R n ) .
This ends the proof of Theorem 5.1.

Smoothing properties of semigroups generated by accretive quadratic operators

This section is devoted to the proof of Theorem 3.3. Let q : R 2n → C be a complexvalued quadratic form with a non-negative real part. We consider F and S the Hamilton map and the singular space of the quadratic form q. Let 0 ≤ k 0 ≤ 2n -1 be the smallest integer such that (5.1.9) holds. We consider, for all 0 ≤ t 1 small enough, the timedependent quadratic form q t defined by (5.3.1)

q t : X ∈ R 2n → σ(X, tan(tF )X) ∈ C,
where tan denotes the matrix tangent function. In the following, we aim at studying the time-dependent quadratic form q t in a general setting in order to check that when the singular space S of q satisfies S ⊥ = R n I × R n J , with I, J ⊂ {1, . . . , n}, the orthogonality being taken with respect to the canonical Euclidean structure of R 2n , and that the inclusion S ⊂ Ker(Im F ) holds, q t satisfies the conditions (5.2.1) and (5.2.2) for the pair (I, J). More precisely, we aim at deriving some coercive estimates for the real time-dependent quadratic form Re q t in subspaces of the phase space, and then to investigate the variables on which q t depends. We shall then see that Theorem 3.3 can be deduced from Theorem 5.1 and the Mehler formula.

Coercive estimates.

First, we establish that the quadratic form Re q t is coercive on some subspaces of the phase space. To that end, we introduce the following auxiliary time-dependent quadratic form (5.3.2)

Q t : X ∈ C 2n → -iσ (e 2itF + I 2n )X, (e 2itF -I 2n )X ∈ C, t ≥ 0.
The following lemma is an adaptation of [START_REF] Pravda-Starov | Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities[END_REF] (Lemmas 3.1 and 3.2):

Lemma 5.5. For all t ≥ 0 and X ∈ C 2n , we have Re [Q t (X)] = 4 t 0 (Re q)(Re(e 2isF X)) ds + 4 t 0 (Re q)(Im(e 2isF X)) ds ≥ 0.

Proof. For X ∈ C 2n , we consider the function ϕ

X : t ≥ 0 → Re [Q t (X)].
We first notice from the skew-symmetry of the symplectic form that for all t ≥ 0, ϕ X (t) = Re -iσ((e 2itF + I 2n )X, (e 2itF -I 2n )X) = Re -i σ(e 2itF X, e 2itF X) -σ(X, X) + Re -i σ(X, e 2itF X) -σ(e 2itF X, X) = -i σ(e 2itF X, e 2itF X) -σ(X, X) + Re -i σ(X, e 2itF X) + σ(X, e 2itF X)

= -i σ(e 2itF X, e 2itF X) -σ(X, X) , as for all Y ∈ C 2n , -iσ(Y , Y ) = 1 2i (σ(Y , Y ) + σ(Y , Y )) = 1 2i (σ(Y , Y ) -σ(Y, Y )) = 1 2i (σ(Y , Y ) -σ(Y , Y )) = Im[σ(Y , Y )] ∈ R.
Proof. We prove (5.3.7) by induction on the non-negative integer 0 ≤ k ≤ K. The induction hypothesis k = 0 is straightforward from (5.3.6). Let 0 ≤ k ≤ K -1 such that (5.3.8) ∀l ∈ {0, . . . , k}, (Re F )(Im F ) l X = 0.

It follows from a direct computation that (Re F )(F k+1 X) writes as (5.3.9)

(Re F )(F k+1 X) = i j (Re F )(Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js X,
where the sum is finite with 0 ≤ j, s ≤ k + 1, the j l are non-negative integers, where 1 ≤ l ≤ s, and each product is composed of k + 2 matrices including j terms Im F . When the product

(Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js ,
contains at least one matrix Re F , we can extract from

i j (Re F )(Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js X
a subproduct of the form Re F (Im F ) l X, with 0 ≤ l ≤ k. It follows from the induction hypothesis (5.3.8) that Re F (Im F ) l X = 0, and therefore, we have

i j (Re F )(Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js X = 0. (5.3.10)
On the other hand, the only term such that the product

(Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js ,
does not contain any matrix Re F , writes as

(5.3.11) i j (Re F )(Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js X = i k+1 (Re F )(Im F ) k+1 X.
It follows from (5.3.6), (5.3.9), (5.3.10) and (5.3.11) that i k+1 (Re F )(Im F ) k+1 X = (Re F )(F k+1 X) = 0, which ends the induction and the proof of Lemma 5.7.

The corollary of the next lemma will be key to derive some positivity for the timedependent quadratic form Re Q t .

Lemma 5.8. Let K ≥ 0 be a non-negative integer. For all X ∈ C 2n satisfying (5.3.12) ∀k ∈ {0, . . . , K}, ∂

2k+1 t Re [Q t (X)] t=0 = 0,
we have

(5.3.13) ∀k ∈ {0, . . . , K}, (Re F )(Im F ) k X = 0.
Proof. Let X ∈ C 2n satisfying (5.3.12). We first prove by induction that

(5.3.14) ∀k ∈ {0, . . . , K}, (Re F )(F k X) = 0.
Let ϕ X be the function defined by

(5.3.15) ϕ X (t) = Re [Q t (X)] , t ≥ 0.
We recall from (5.3.5) that the function ϕ X is smooth and its derivative is given for all t ≥ 0 by (5.3.16) (ϕ X ) (t) = 4(Re q)(Re(e 2itF X)) + 4(Re q)(Im(e 2itF X)).

Since the quadratic form Re q is non-negative, it follows from (5.3.12), (5.3.15) and (5.3.16) applied with t = 0 that (5.3.17) (Re q)(Re X) = (Re q)(Im X) = 0.

We deduce from (5.3.17) and Lemma 5.6 that

(Re F )(Re X) = (Re F )(Im X) = 0,
since F = JQ, and therefore, (Re F )X = 0. It proves the induction hypothesis in the basic case. Now, we consider 0 ≤ k ≤ K such that (5.3.18) ∀l ∈ {0, . . . , k -1}, (Re F )(F l X) = 0.

Since Re F is a real matrix, we also have

(5.3.19) ∀l ∈ {0, . . . , k -1}, (Re F )(F l X) = 0.
We recall from (5.3.3) that the derivative of ϕ X also writes as (5.3.20) ∀t ≥ 0, (ϕ X ) (t) = 4σ(e 2itF X, (Re F )e 2itF X).

It therefore follows from the Leibniz formula applied to (5.3.20) that for all t ≥ 0,

(ϕ X ) (2k+1) (t) = 4 2k p=0 2k p σ((2iF ) p e 2itF X, (Re F )(2iF ) 2k-p e 2itF X) = (-1) k 4 k+1 2k p=0 (-1) p 2k p σ(F p e 2itF X, (Re F )F 2k-p e 2itF X).
This implies that 

(5.3.21) (ϕ X ) (2k+1) (0) = (-1) k 4 k+1 2k p=0 (-1) p 2k p σ(F p X, (Re F )(F 2k-p X)). Let 0 ≤ p ≤ 2k. When 0 ≤ p ≤ k -1,
σ(F p X, (Re F )(F 2k-p X)) = -σ((Re F )(F p X), F 2k-p X) = 0.
On the other hand, when k + 1 ≤ p ≤ 2k, we have 0 ≤ 2k -p ≤ k -1 and it follows from (5.3.18) that (5.3.23) σ(F p X, (Re F )(F 2k-p X)) = 0.

As a consequence of (5.3.12), (5.3.15), (5.3.21), (5.3.22) and (5.3.23), we obtain

(5.3.24) (ϕ X ) (2k+1) (0) = 4 k+1 2k k σ(F k X, (Re F )(F k X)) = 0.
Then, it follows from the definition of F , (5.3.4) and (5.3.24) that

σ(F k X, (Re F )(F k X)) = σ(Re(F k X), (Re F ) Re(F k X)) + σ(Im(F k X), (Re F ) Im(F k X)) = (Re q)(Re(F k X)) + (Re q)(Im(F k X)) = 0.
Since Re q is non-negative, this implies that (5.3.25)

(Re q)(Re(F k X)) = (Re q)(Im(F k X)) = 0.
As above, we deduce from (5.3.25) and Lemma 5.6 that

(Re F )(Re(F k X)) = (Re F )(Im(F k X)) = 0,
since F = JQ, and therefore (Re F )(F k X) = 0. This ends the induction and proves that (5.3.14) holds. Then, (5.3.13) is a consequence of (5.3.14) and Lemma 5.7.

Corollary 5.9. Assume that S = R 2n . Then, for all X ∈ C 2n \ (S + iS), there exists a non-negative integer 0 ≤ k X ≤ k 0 such that

∂ 2k X +1 t Re [Q t (X)] t=0 = 0.
Proof. Let X ∈ C 2n \ (S + iS). As a consequence of (5.1.9), there exists 0 ≤ kX ≤ k 0 such that (Re F )(Im F ) kX X = 0. Then, we deduce from Lemma 5.8 the existence of 0 ≤ k X ≤ k 0 such that

∂ 2k X +1 t Re [Q t (X)] t=0 = 0.
This ends the proof of Corollary 5.9.

The proof of the following result is an adaptation of [START_REF] Sjöstrand | Resolvent estimates for non-selfadjoint operators via semigroups, Around the research of Vladimir Maz'ya. III[END_REF] (Proposition 3.2): Proposition 5.10. Assume that S = R 2n . Then, for all compact set K of S 4n-1 satisfying (S + iS) ∩ K = ∅, there exist some positive constants c > 0 and 0 < T ≤ 1 such that for all 0 ≤ t ≤ T and X ∈ K,

Re [Q t (X)] ≥ ct 2k 0 +1 ,
where S 4n-1 stands for the Euclidean unit sphere of C 2n identified to R 4n .

Proof. Let K be a compact set of S 4n-1 satisfying (S + iS) ∩ K = ∅. Let X ∈ K and 0 ≤ k X ≤ k 0 be a positive integer given by Corollary 5.9 satisfying

(5.3.26) ∂ 2k X +1 t Re [Q t (X)] t=0 = 0.
We first prove that there exist some positive constants c X > 0, 0 < t X < 1 and an open neighborhood

V X of X in S 4n-1 ∩ (S + iS) c such that for all 0 < t ≤ t X and Y ∈ V X , (5.3.27) Re [Q t (Y )] ≥ c X t 2k X +1 .
We proceed by contradiction and assume that (5.3.27) does not hold. Then there exist some sequences (t N ) N ≥0 of positive real numbers and (Y N ) N ≥0 of unit vectors of S 4n-1 satisfying (5.3.28) lim

N →+∞ t N = 0, lim N →+∞ Y N = X, lim N →+∞ 1 t 2k X +1 N Re [Q t N (Y N )] = 0.
We deduce from (5.3.28) and Lemma 5.5 that (5.3.29) lim

N →+∞ sup 0≤t≤t N 1 t 2k X +1 N Re [Q t (Y N )] = 0, since the mapping t ∈ R + → Re [Q t (Y N )]
is non-decreasing. The equality (5.3.29) can be reformulate as

(5.3.30) lim N →+∞ sup 0≤x≤1 |u N (x)| = 0, with (5.3.31) ∀x ∈ [0, 1], u N (x) = 1 t 2k X +1 N Re [Q xt N (Y N )] ≥ 0.
It follows from the Taylor formula that

Re [Q t (Y N )] = 2k X +1 k=0 a k,N t k + t 2k X +2 (2k X + 1)! 1 0 (1 -θ) 2k X +1 ∂ 2k X +2 s Re [Q s (Y N )] s=tθ dθ, where ∀k ∈ {0, . . . , 2k X + 1}, a k,N = 1 k! ∂ k t Re [Q t (Y N )] t=0 . Since ∂ 2k X +2 s Re [Q s ]
is a quadratic form whose coefficients depend smoothly on the variable 0 ≤ s ≤ 1 and the Y N are elements of the unit sphere S 4n-1 , we notice that

∃C > 0, ∀t ∈ [0, 1], ∀N ≥ 0, 1 0 (1 -θ) 2k X +1 ∂ 2k X +2 s Re [Q s (Y N )] s=tθ dθ ≤ C. Therefore, Re [Q t (Y N )] = t→0 2k X +1 k=0 a k,N t k + O(t 2k X +2 ),
where the term O(t 2k X +2 ) can be assumed to be independent on the integer N . As a consequence, the following Taylor expansion (5.3.32) u

N (x) = 2k X +1 k=0 a k,N t 2k X +1-k N x k + O(t N x 2k X +2 ),
holds. It follows from (5.3.28), (5.3.30) and (5.3.32) that (5.3.33) lim

N →+∞ sup 0≤x≤1 |p N (x)| = 0,
where the p N are the polynomials defined by

(5.3.34) ∀x ∈ [0, 1], p N (x) = 2k X +1 k=0 a k,N t 2k X +1-k N x k .
It follows from the equivalence of norms in finite-dimensional vector spaces that (5.3.35) ∀k ∈ {0, . . . , 2k X + 1}, lim

N →+∞ a k,N t 2k X +1-k N = 0.
In particular, we obtain that lim

N →+∞ a 2k X +1,N = 0.
However, this is in contraction with the fact that lim We can now derive from Proposition 5.10 that the time-dependent quadratic form Re q t defined in (5.3.1) satisfies coercive estimates on subspaces of the phase space.

N →+∞ a 2k X +1,N = lim N →+∞ 1 (2k X + 1)! ∂ 2k X +1 t Re [Q t (Y N )] t=0 = 1 (2k X + 1)! ∂ 2k X +1 t Re [Q t (X)]
Corollary 5.11. For all linear subspace Σ of R 2n satisfying S ∩ Σ = {0}, there exist some positive constants c > 0 and 0 < T ≤ 1 such that for all 0 ≤ t ≤ T and X ∈ Σ,

(5.3.36) (Re q t )(X) ≥ ct 2k 0 +1 |X| 2 .
Proof. We first assume that S = R 2n and consider Σ a linear subspace of R 2n satisfying S ∩ Σ = {0}. Let t 0 > 0 small enough such that (5.3.37) ∀t ∈ [0, t 0 ], e 2itF + I n ∈ GL n (C).

For all 0 ≤ t ≤ t 0 , we define K t = 0≤s≤t Γ s ⊂ C 2n , where the vector subspaces Γ s are given by Γ s = (e 2isF + I 2n ) -1 (Σ + iΣ) ⊂ C 2n , 0 ≤ s ≤ t. We first check that for all 0 ≤ t ≤ t 0 , K t is a closed subset of C 2n . Let (Y p ) p be a sequence of K t converging to Y ∈ C 2n . For all p ≥ 0, there exists 0 ≤ s p ≤ t and X p ∈ Σ + iΣ such that Y p = (e 2ispF + I 2n ) -1 X p . Since [0, t] is compact, there exists a subsequence (p ) such that (s p ) p converges to s ∞ ∈ [0, t]. It follows from the continuity of the exponential function that lim p →+∞ e 2is p F = e 2is∞F , and therefore, lim p →+∞ X p = X, where X = (e 2is∞F + I 2n )Y .

Moreover, X p ∈ Σ + iΣ for all p and Σ + iΣ is closed, so X ∈ Σ + iΣ. Finally, Y = (e 2is∞F + I 2n ) -1 X ∈ K t , and K t is closed. Now, we prove that there exists t 1 > 0 such that (5.3.38)

(S + iS) ∩ K t 1 = {0}.
To that end, we consider ψ s defined for all 0 ≤ s ≤ t 0 by ψ s = dim(Γ s + (S + iS)). We observe that ψ s satisfies the estimate

(5.3.39) ∀s ∈ [0, t 0 ], ψ s ≤ dim Γ s + dim(S + iS) ≤ dim(Σ + iΣ) + dim(S + iS).
Moreover, it follows from the Grassman formula that (5.3.40)

ψ 0 = dim((Σ + iΣ) + (S + iS)) = dim(Σ + iΣ) + dim(S + iS), since (Σ + iΣ) ∩ (S + iS) = {0}. Since ψ s = Rank M s , where M s ∈ M n,ψ 0 (C) is defined through its column vectors by M s = (e 2isF + I 2n ) -1 B 1 B 2 ,
with B 1 a basis of Σ + iΣ and B 2 a basis of S + iS, we deduce from (5.3.40) and the lower semi-continuity of Rank that there exists t 1 > 0 such that

(5.3.41) ∀s ∈ [0, t 1 ], ψ s ≥ dim(Σ + iΣ) + dim(S + iS).
We deduce from (5.3.39) and (5.3.41) that for all 0 ≤ s ≤ t 1 , ψ s = dim Γ s + dim(S + iS), and the Grassman formula implies that ∀s ∈ [0, t 1 ], (S + iS) ∩ Γ s = {0}.

Therefore, (5.3.38) holds. Since K t 1 ∩ S 4n-1 is a compact set of S 4n-1 disjointed from S + iS, it follows from Proposition 5.10 that there exist some positive constants c 0 > 0 and 0 < t 2 ≤ 1 such that for all 0 ≤ t ≤ t 2 and X ∈ K t 1 ∩ S 4n-1 , Re -iσ((e 2itF + I 2n )X, (e 2itF -I 2n )X) ≥ c 0 t 2k 0 +1 .

As a consequence, we have that for all 0 ≤ t ≤ min(t 1 , t 2 ) and X ∈ (Σ + iΣ) \ {0},

Re -iσ (e 2itF + I 2n )(e 2itF + I 2n ) -1 X |(e 2itF + I 2n ) -1 X| , (e 2itF -I 2n )(e 2itF + I 2n ) -1 X |(e 2itF + I 2n ) -1 X| ≥ c 0 t 2k 0 +1 , that is, (5.3.42) Re -iσ(X, (e 2itF -I 2n )(e 2itF + I 2n ) -1 X) ≥ c 0 t 2k 0 +1 |(e 2itF + I 2n ) -1 X| 2 .
Furthermore, it follows from (5.3.37) that there exists a positive constant c 1 > 0 such that for all 0 ≤ t ≤ min(t 1 , t 2 ) and X ∈ Σ + iΣ,

(5.3.43) (e 2itF + I 2n ) -1 X 2 ≥ c 1 |X| 2 ,
since 0 < t 1 < t 0 . We deduce from (5.3.1), (5.3.42) and (5.3.43) that there exist some positive constants c > 0 and 0 < T ≤ 1 such that

∀t ∈ [0, T ], ∀X ∈ Σ, (Re q t )(X) ≥ ct 2k 0 +1 |X| 2 , since -i(e 2itF -I 2n )(e 2itF + I 2n ) -1 = tan(tF ), 0 ≤ t 1.
This ends the proof of Corollary 5.11 when S = R 2n . If S = R 2n , then the only linear subspace Σ ⊂ R 2n satisfying S ∩ Σ = {0} is Σ = {0} and (5.3.36) is trivial.

Variables of the Mehler symbol.

In this subsection, we investigate the variables on which the time-dependent quadratic form q t depends, in order to check that q t satisfies the condition (5.2.2) for the pair (I, J), with I, J ⊂ {1, . . . , n}, when the singular space S satisfies S ⊥ = R n I ×R n J , the orthogonality being taken with respect to the canonical Euclidean structure of R 2n . Lemma 5.12. We have (5.3.44) ∀k ≥ 0, ∀X ∈ S, Re(F 2k+1 )X = 0.

Proof. We recall from (5.1.10) that the singular space S satisfies (5.3.45) (Re F )S = {0} and (Im F )S ⊂ S.

We derive (5.3.44) from this properties. Let k ≥ 0. A direct computation shows that

(5.3.46) Re(F 2k+1 ) = (-1) j (Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js ,
where the sum is finite with 0 ≤ j ≤ k, the j l are non-negative integers, where 1 ≤ l ≤ s, and each product is composed of 2k + 1 matrices including 2j terms Im F . In particular, each product appearing in (5.3.46) contains at least one matrix Re F . It follows from (5.3.45) that for all X ∈ S,

Re(F 2k+1 )X = (-1) j (Im F ) j 1 (Re F ) j 2 . . . (Re F ) j s-1 (Im F ) js X = 0.
This ends the proof of Lemma 5.12.

Lemma 5.13. Let Σ be a linear subspace of R 2n satisfying S + Σ = R 2n . Then, there exists t 0 > 0 such that for all 0 ≤ t < t 0 and all decomposition X = X S + X Σ ∈ R 2n with X S ∈ S and X Σ ∈ Σ (not unique), (Re q t )(X) = (Re q t )(X Σ ).

Proof. Let Y ∈ S and Z ∈ R 2n . We recall that the tangent function tan is analytic and that its Taylor expansion writes for all matrices M ∈ M n (C) such that M < π/2 as

(5.3.47) tan M = +∞ k=0 a k M 2k+1 ,
where all the coefficients a k are positive real numbers. The continuity of the symplectic form and (5.3.47) imply that

∀t ∈ (-t 0 , t 0 ), Re σ(Z, tan(tF )Y ) = +∞ k=0 a k σ(Z, Re(F 2k+1 )Y )t 2k+1 ,
where t 0 = π/(2 F ). Since Y ∈ S, we deduce from Lemma 5.12 that Re(F 2k+1 )Y = 0 for all k ≥ 0, and therefore, we have

(5.3.48) ∀t ∈ (-t 0 , t 0 ), Re σ(Z, tan(tF )Y ) = 0.
By using the skew-symmetry of the Hamilton map with respect to the symplectic form, see (5.1.7), and the skew-symmetry of the symplectic form, we obtain that for all t ∈ (-t 0 , t 0 ),

(5.3.49) σ(Y, tan(tF )Z) = +∞ k=0 a k σ(Y, F 2k+1 Z)t 2k+1 = - +∞ k=0 a k σ(F 2k+1 Y, Z)t 2k+1 = -σ(tan(tF )Y, Z) = σ(Z, tan(tF )Y ).
It follows from (5.3.48) that

∀t ∈ (-t 0 , t 0 ), Re σ(Y, tan(tF )Z) = 0.
As a consequence, we have that for all 0 ≤ t ≤ t 0 and X = X S + X Σ with X S ∈ S and

X Σ ∈ Σ, (Re q t )(X) = Re σ(X, tan(tF )X) = Re σ(X Σ , tan(tF )X Σ ) = (Re q t )(X Σ ),
by bilinearity of the symplectic form. This ends the proof of Lemma 5.13.

Let q : R 2n → C be a complex-valued quadratic form with a non-negative real part Re q ≥ 0. We assume that there exist some subsets I, J ⊂ {1, . . . , n} such that S ⊥ = R n I × R n J , the orthogonality being taken with respect to the canonical Euclidean structure of R 2n . We deduce from Lemma 5.13, that there exists t 0 > 0 such that for all 0 ≤ t < t 0 and X ∈ R 2n , (Re q t )(X) = (Re q t )(X I,J ), where q t is the time-dependent quadratic form associated to q defined in (5.3.1), and where X I,J stands for the component in

R n I × R n J of the vector X ∈ R 2n according to the orthogonal decomposition S ⊕ ⊥ (R n I × R n J ) = R 2n . The condition (5.2.
2) is therefore always satisfied for real-part the time-dependent quadratic form q t . However, as pointed out by the following example, we observe that the condition (5.2.2) is not satisfied in general for the time-dependent quadratic form q t , and therefore, Theorem 5.1 cannot be directly applied.

Example 5.14. We consider the Kolmogorov operator

P = -∂ 2 v + v∂ x , (x, v) ∈ R 2 .
The Weyl symbol of P is given by the quadratic form

q(x, v, ξ, η) = η 2 + ivξ, (x, v, ξ, η) ∈ R 4 ,
and a direct computation shows that the Hamilton map and the singular space of q are respectively given by

F = 1 2     0 i 0 0 0 0 0 2 0 0 0 0 0 0 -i 0     and S = R x × R v × {0 R ξ } × {0 Rη }.
Moreover, its Mehler symbol (5.3.1) is given for all t ≥ 0 and (x, v, ξ, η) ∈ R 4 by

q t (x, v, ξ, η) = t 3 12 ξ 2 + tη 2 + itvξ. Notice that S ⊕ ⊥ (R 2 ∅ × R 2 {1,2} ) = R 4
, the orthogonality being taken with respect to the canonical Euclidean structure of R 4 . However, we have that for all t > 0, it = q t (0, 1, 1, 0) = q t (0, 0, 1, 0) = 0,

and (0, 0, 1, 0) is the component in R 2 ∅ × R 2 {1,2} of the vector (0, 1, 1, 0) ∈ R 2 × R 2
with respect to the above orthogonal decomposition of the phase space R 4 .

The issue pointed out by Example 5.14 is that the imaginary part Im q t may depend on variables in the singular space S, whereas the real part Re q t cannot according to Lemma 5.13. In order to ensure that condition (5.2.2) actually holds, we add an extra assumption on the quadratic form q so that this case does not occur. Before introducing this condition, we provide another example:

Example 5.15. We consider the Kramers-Fokker-Planck operator without external potential

K 0 = -∂ 2 v + 1 4 v 2 + v∂ x , (x, v) ∈ R 2 .
The Weyl symbol of the operator K 0 is the following quadratic form

q 0 (x, v, ξ, η) = η 2 + 1 4 v 2 + ivξ, (x, v, ξ, η) ∈ R 4 .
We recall from Example 3.4 in Chapter 3 that the Hamilton map and the singular space of q 0 are respectively given by

F 0 = 1 2     0 i 0 0 0 0 0 2 0 0 0 0 0 -1 2 -i 0     and S 0 = R x × {0 Rv } × {0 R ξ } × {0 Rη }.
We observe that F 0 and S 0 satisfy S 0 ⊂ Ker(Im F 0 ), whereas this inclusion does not hold in Example 5.14. Moreover, an algebraic computation shows that the Mehler symbol (5.3.1) of q 0 is given for all t ≥ 0 and (x, v, ξ, η) ∈ R 4 by

q 0,t (x, v, ξ, η) = 1 2 tanh t 2 v 2 + t -2 tanh t 2 ξ 2 + 2 tanh t 2 η 2 + 2i tanh t 2 vξ.
We notice in this case that the variables appearing in the imaginary part Im q 0,t do appear also in the real part Re q 0,t .

In the following lemma, we prove that the condition S ⊂ Ker(Im F ) pointed out in Example 5.15 is actually sufficient to ensure that the condition (5.2.2) holds.

Lemma 5.16. Assume that the algebraic inclusion S ⊂ Ker(Im F ) holds. Let Σ be a linear subspace of R 2n satisfying S + Σ = R 2n . Then, there exists t 0 > 0 such that for all 0 ≤ t < t 0 and all decomposition X = X S + X Σ ∈ R 2n , with X S ∈ S and X Σ ∈ Σ, q t (X) = q t (X Σ ).

Proof. Since (Re F )S = {0} according to the definition of the singular space (5.1.8), the assumption S ⊂ Ker(Im F ) implies that S ⊂ Ker F . It then follows from (5.3.47) that (5.3.50) ∀t ∈ (-t 0 , t 0 ), ∀Y ∈ S, tan(tF )Y = Finally, we deduce from (5.3.51) and the bilinearity of the symplectic form σ that for all 0 ≤ t < t 0 and X = X S + X Σ with X S ∈ S and X Σ ∈ Σ,

q t (X) = σ(X, tan(tF )X) = σ(X Σ , tan(tF )X Σ ) = q t (X Σ ).
This ends the proof of Lemma 5.16.

5.3.3.

Proof of Theorem 3.3. The aim of this subsection is to prove Theorem 3.3. Let q : R 2n → C be a complex-valued quadratic form with a non-negative real part. We assume that there exist some subsets I, J ⊂ {1, . . . , n} such that S ⊥ = R n I × R n J , the orthogonality being taken with respect to the canonical Euclidean structure of R 2n . We also assume that the inclusion S ⊂ Ker(Im F ) holds, where F denotes the Hamilton map of q. Notice that the coefficients of the time-dependent quadratic form q t : X ∈ R 2n → σ(X, tan(tF )X) ∈ C, defined for 0 ≤ t ≤ t 0 , with 0 < t 0 1 small enough, depend continuously on the time variable t. Since S ⊕ ⊥ (R n I × R n J ) = R 2n and S ⊂ Ker(Im F ), it follows from Corollary 5.11 and Lemma 5.16 that there exist some positive constants c > 0 and 0

< t 0 < 1 such that ∀t ∈ [0, t 0 ], ∀X ∈ R n I × R n J , (Re q t )(X) ≥ ct 2k 0 +1 |X| 2 , and
∀t ∈ [0, t 0 ], ∀X ∈ R 2n , q t (X) = q t (X I,J ), where 0 ≤ k 0 ≤ 2n -1 is the smallest integer such that (5.1.9) holds and X I,J stands for the component in R n I × R n J of the vector X ∈ R 2n with respect to the decomposition

S ⊕ ⊥ (R n I × R n J ) = R 2n .
As a consequence, we deduce from Theorem 5.1 that there exist some positive constants C > 1 and 0 < t 1 < t 0 such that for all (α, β)

∈ N n I ×N n J , 0 < t ≤ t 1 and u ∈ L 2 (R n ), (5.3.52) x α ∂ β x (e -qt ) w u L 2 (R n ) ≤ C 1+|α|+|β| t (2k 0 +1)(|α|+|β|+s) √ α! β! u L 2 (R n ) ,
where s = 9n/4 + 2 n/2 + 3. Moreover, t 0 > 0 is chosen such that det(cos(tF )) = 0 for all 0 ≤ t ≤ t 0 , and the Mehler formula [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] 

∈ N n I × N n J , 0 < t ≤ t 1 and u ∈ L 2 (R n ), x α ∂ β x (e -tq w u) L 2 (R n ) ≤ M C 1+|α|+|β| t (2k 0 +1)(|α|+|β|+s) √ α! β! u L 2 (R n ) ,
where

M = max 0≤t≤t 0 1 det(cos(tF )) .
This ends the proof of Theorem 3.3.

Chapitre 6

Polar decomposition of semigroups generated by accretive quadratic operators and regularizing effects

In this chapter, we give the proofs of the results presented in Sections 3.4 and 3.5 of Chapter 3, taken from the submitted article [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] written in collaboration with J. Bernier.

Outline of the chapter. In Section 6.1, we describe the polar decomposition of semigroups generated by accretive quadratic operators in any positive time, the study of the selfadjoint part being performed for small times in Section 6.2. As a byproduct of this decomposition, we study the regularizing effects of semigroups generated by nonselfadjoint quadratic differential operators in Section 6.3 from which we derive subelliptic estimates enjoyed by accretive quadratic operators in Section 6.4. In Section 6.5, we recall the basics about Fourier integral operators associated to non-negative complex symplectic linear transformations. Section 6.6 is an appendix containing the proofs of some technical results.

Splitting of semigroups generated by accretive quadratic operators

This section is devoted to the proof of Theorem 3.5. Let q : R 2n → C be a complexvalued quadratic form with a non-negative real part. We consider Q ∈ S 2n (C) the matrix of q in the canonical basis of R 2n . We also consider J the symplectic matrix defined in (5.1.6). Our goal is first to construct a family (a t ) t∈R of non-negative quadratic forms a t : R 2n → R + depending analytically on the time-variable t ∈ R and a family (U t ) t∈R of metaplectic operators such that for all t ≥ 0, (6.1.1) e -tq w = e -ta w t U t , and then to prove that there exist a positive constant T > 0 and a family (b t ) -T <t<T of real-valued quadratic forms b t : R 2n → R also depending analytically on the time-variable -T < t < T , such that for all 0 ≤ t < T , (6.1.2) e -tq w = e -ta w t e -itb w t .

To that end, we begin by establishing that proving (6.1.1) and (6.1.2) is actually equivalent to solving a finite-dimensional problem involving matrices. First of all, in order to give an intuition of this equivalence, let us formally prove that given some t > 0, the equality of bounded operators (6.1.3) e -tq w = e -ta denotes the commutator between the operators P 1 and P 2 . However, if q 1 , q 2 : R 2n → C are two quadratic forms, elements of Weyl calculus, see e.g. [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Theorem 18.5.6), show that the commutator [q w 1 , q w 2 ] is also a differential operator given by (6. 1.6) [q w 1 , q w 2 ] = -i{q 1 , q 2 } w , where

{q 1 , q 2 } = ∇ ξ q 1 • ∇ x q 2 -∇ x q 1 • ∇ ξ q 2 ,
is the Poisson bracket between the quadratic forms q 1 and q 2 . We therefore deduce that (6.1.5) is equivalent to the equality between quadratic forms (6.1.7)

-tq = +∞ m=0 p∈{-iat,bt} m (ad tp 1 ) . . . (ad tpm )(α p ta t + β p tib t ),
where we set ad p 1 p 2 := {p 1 , p 2 }. Moreover, we observe that if q 1 , q 2 : R 2n → C are two quadratic forms, the Hamilton map of the Poisson bracket

{q 1 , q 2 } is -2[F 1 , F 2 ], with [F 1 , F 2 ]
the commutator of F 1 and F 2 the Hamilton maps of q 1 and q 2 , see e.g. [START_REF] Pravda-Starov | Contraction semigroups of elliptic quadratic differential operators[END_REF] (Lemma 3.2). As a consequence, we deduce while using (5.1.4) and multiplying by 2i that (6.1.7) is equivalent to the matrix relation

(6.1.8) -2itJQ = +∞ m=0 P ∈{2iAt,-2Bt} m (ad tJP 1 ) . . . (ad tJPm )(α p 2itJA t -β p 2tJB t ).
Thus, by applying once again the Baker-Campbell-Hausdorff formula, the relation (6.1.3) is equivalent to (6.1.4). Obtaining the quadratic forms a t and b t is then far easier henceforth the equivalence between (6.1.3) and (6.1.4) is established. Indeed, let us check that the relation (6.1.4) is equivalent to the following triangular system (6.1.9) e -4itJAt = e -2itJQ e -2itJQ , e 2tJBt = e 2itJAt e -2itJQ .

Obviously, if (6.1.9) holds, then (6.1.4) is satisfied. On the other hand, when (6.1.4) holds, we observe that e -2itJQ e -2itJQ = e -2itJAt e 2tJBt e -2tJBt e -2itJAt = e -4itJAt .

Moreover, the equality e 2tJBt = e 2itJAt e -2itJQ is only a rewriting of (6.1.4) and hence, (6.1.9) holds. The first equation of (6.1.9) will be solved for any time t ∈ R by using the holomorphic functional calculus. The second one will only be solved for short times |t| 1. In order to justify rigorously this reduction to a finite-dimensional problem, we shall use the Fourier integral operator representation of the evolution operators e -tq w proven in [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Theorem 5.12) and recalled in the following proposition: Proposition 6.1. Let q : R 2n → C be a complex-valued quadratic form with a nonnegative real part Re q ≥ 0. Then, for all t ≥ 0, the evolution operator e -tq w = K e -2itJ Q generated by the quadratic operator qw (x, D x ) is a Fourier integral operator whose kernel is a Gaussian distribution associated to the non-negative complex symplectic linear bijection e -2itJ Q ∈ Sp 2n (C), with Q ∈ S 2n (C) the matrix of q with respect to the canonical basis of R 2n .

We refer the reader to Subsection 6.5 for the definition of the Fourier integral operators K T and their basic properties, where T is a non-negative complex symplectic linear bijection in C 2n . The key property satisfied by the operators K T that we will need here is that if T 1 and T 2 are two non-negative complex symplectic linear bijections in C 2n , then T 1 T 2 is also a non-negative complex symplectic linear bijection and (6.1.10)

K T 1 T 2 = ±K T 1 K T 2 ,
see Proposition 6.19. The sign uncertainty in (6.1.10) will not be an issue in the following. As a consequence of (6.1.10) and Proposition 6.1, we shall on the one hand, to prove (6.1.1), obtain the existence of two families (A t ) t∈R and (H t ) t∈R of real symmetric positive semidefinite matrices A t ∈ S + 2n (R) and real symplectic matrices H t ∈ Sp 2n (R) respectively, whose coefficients depend analytically on the time variable t ∈ R, such that for all t ∈ R, (6.1.11) e -2itJQ = e -2itJAt H t .

On the other hand, to establish (6.1.2), we shall prove that there exist a positive constant T > 0 and a family (B t ) -T <t<T of real symmetric matrices, whose coefficients also depend analytically on the time-variable -T < t < T , such that for all -T < t < T , the real symplectic matrix H t is given by (6.1.12)

H t = e 2tJBt .
Indeed, let us first assume that (6.1.11) holds and let us prove (6.1.1). It follows from (6.1.10) that for all t ≥ 0, up to sign,

e -tq w = K e -2itJQ = K e -2itJA t Ht = ±K e -2itJA t K Ht = e -ta w t U t ,
where U t = ε t K Ht is a metaplectic operator on L 2 (R n ), see Definition 6.20, with ε t ∈ {-1, 1}, and a t : R 2n → R + is the non-negative time-dependent quadratic form associated to the matrix A t in the canonical basis of R 2n . This proves that (6.1.1) holds. On the other hand, to derive (6.1.2) from (6.1.12), we consider the time-dependent quadratic form b t : R 2n → R, with 0 ≤ t < T , associated to the time-dependent matrix B t in the canonical basis of R 2n . Indeed, when (6.1.12) holds, it follows from the definition of the operators U t and Proposition 6.1 that for all 0 ≤ t < T , (6.1.13)

U t = ε t K Ht = ε t K e 2tJB t = ε t e -itb w t .
We then deduce from (6.1.1) and (6.1.13) that for all 0 ≤ t < T , (6.1.14) e -tq w = ε t e -ta w t e -itb w t ,

It only remains to check that ε t = 1 for all 0 ≤ t < T . To that end, we consider u ∈ S(R n ) a non-zero Schwartz function. We deduce from (6.1.14) that for all 0 ≤ t < T ,

e -tq w u, e -itb w t u L 2 (R n ) = ε t e -ta w t e -itb w t u, e -itb w t u L 2 (R n ) .
Since the quadratic form a t is non-negative for all t ≥ 0, the operator e -ta w t is selfadjoint on L 2 (R n ) and we therefore deduce by using the semigroup property of the family of operators (e -sa w t ) s≥0 that for all t ≥ 0,

e -tq w u, e -itb w t u L 2 (R n ) = ε t e -t 2 a w t e -itb w t u 2 L 2 (R n ) .
The operator e -t 2 a w t is injective from Corollary 6.26 and the operator e -itb w t is unitary for all t ≥ 0, since the quadratic form b t is real-valued. Thus, the Schwartz functions e -t 2 a w t e -itb w t u are non-zero and we have that for all t ≥ 0, (6.1.15)

ε t = e -tq w u, e -itb w t u L 2 (R n ) e -t 2 a w t e -itb w t u -2 L 2 (R n ) .
Moreover, it follows from [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Theorem 4.2) that the applications t → e -tq w u, t → e -itb w t u and t → e -ta w t e -itb w t u are continuous from [0, +∞) to S(R n ). It follows from (6.1.15) that the map t → ε t is also continuous from [0, T ) to {-1, 1} and since ε 0 = 1, we have ε t = 1 for all 0 ≤ t < T . This ends the proof of (6.1.2).

The present subsection is therefore devoted to the proof of (6.1.11) and (6.1.12). We first focus on the identity (6.1.11). As above, we can prove that this relation is equivalent to the following triangular system, (6.1.16) e -4itJAt = e -2itJQ e -2itJQ , H t = e 2itJAt e -2itJQ .

We begin by solving the first equation of (6.1.16):

Theorem 6.2. There exists a family (A t ) t∈R of real symmetric positive semidefinite matrices A t ∈ S + 2n (R) whose coefficients depend analytically on the time-variable t ∈ R such that for all t ∈ R, e -4itJAt = e -2itJQ e -2itJQ .

To prove Theorem 6.2, we need some technical lemmas. The first of them investigates the spectrum of the symplectic matrices e -2itJQ e -2itJQ appearing in Theorem 6.2: Lemma 6.3. For all t ∈ R, the eigenvalues of the matrix e -2itJQ e -2itJQ are positive real numbers, σ e -2itJQ e -2itJQ ⊂ R * + .

Proof. For all t ∈ R, we define (6.1.17)

K t = e -2itJQ e -2itJQ .
We first check that the following integral representation holds for all t ∈ R, (6.1.18)

K t = I 2n -4iJΓ t ,
where the matrix Γ t is given by (6.1. [START_REF] Carypis | Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians[END_REF])

Γ t = t 0 (e -2isJQ ) * (Re Q)(e -2isJQ ) ds.
It follows from a direct computation for all t ∈ R,

∂ t e -2itJQ e -2itJQ = -2ie -2itJQ J(Q + Q)e -2itJQ = -4ie -2itJQ J(Re Q)e -2itJQ .
Since Q is a symmetric matrix, it follows from Lemma 6.24 that for all t ∈ R, e -2itJQ ∈ Sp 2n (C) is a symplectic matrix and as a consequence of the above identity,

∂ t e -2itJQ e -2itJQ = -4iJ(e 2itJQ ) T (Re Q)e -2itJQ = -4iJ(e -2itJQ ) * (Re Q)e -2itJQ .
This proves that (6.1.18) holds. Since the matrices Γ t ∈ H 2n (C) are Hermitian positive semidefinite when t ≥ 0 and Hermitian negative semidefinite when t ≤ 0, we deduce from Lemma 6.27 that for all t ∈ R, the spectra of the matrices JΓ t satisfy σ(JΓ t ) ⊂ iR. This combined with (6.1.18) and ( 6. 1.19) shows that for all t ∈ R, σ K t ⊂ R. The matrices K t ∈ GL 2n (C) are non singular and therefore, these inclusions can be refined to σ K t ⊂ R * . Moreover, σ(K 0 ) = {1} and the eigenvalues of K t are continuous with respect to the time-variable t ∈ R since the coefficients of the matrix K t are themselves continuous with respect to the time-variable t ∈ R, see [START_REF] Kato | Perturbation theory for linear operators[END_REF] (Theorem II.5.1). Since R is connected, this proves that σ(K t ) ⊂ R * + and ends the proof of Lemma 6.3. In the following, we shall need to define some matrices through the holomorphic functional calculus. We refer the reader to [START_REF] Dunford | Linear operators. Part I[END_REF] (VII -3.) where this theory is presented. As a first application of this theory, we consider the matrix square root function √ • defined on the set of matrices whose spectrum is contained in C \ R -, which is possible since the function z → √ z = e 1 2 Log z is well-defined and holomorphic in C \ R -, with Log the principal determination of the logarithm in C \ R -. For all t ∈ R, since the spectrum of the matrix K t is only composed of positive real numbers, we can consider the matrix G t defined by (6.1.20) G t = e -2itJQ e -2itJQ .

We shall check that the matrices G t are symplectic: Lemma 6.4. For all t ∈ R, G t ∈ Sp 2n (C) is a complex symplectic matrix.

Proof. Let t ∈ R. We consider K t the matrix defined in (6.1.17). We first observe that since both matrices Q and Q are symmetric, Lemma 6.24 shows that the matrices e -2itJQ and e -2itJQ are symplectic and as a consequence, the matrices K t ∈ Sp 2n (C) are also symplectic. To prove that the matrix G t is also symplectic, we need to go back to the definition of the matrix square root given by the functional holomorphic calculus. Therefore, we consider Σ t ⊂ C the following domain of the complex plane

Σ t = re iθ : c 1,t < r < c 2,t , θ ∈ - π 2 , π 2 
,
where the positive constants c 1,t , c 2,t > 0 are chosen so that σ(K t ) ⊂ (c 1,t , c 2,t ) and

σ(K -1 t ) ⊂ (c 1,t , c 2,t ).
Notice that the existence of the constants c 1,t , c 2,t > 0 is given by Lemma 6.3. We assume that the boundary ∂Σ t of the domain Σ t is oriented counterclockwise. Then, it follows from (6.1.20) and the holomorphic functional calculus that the matrix G t is defined by (6.1.21)

G t = 1 2iπ ∂Σt √ z (K t -zI 2n ) -1 dz, with √ z = e 1 2
Log z , where Log denotes the principal determination of the logarithm in C \ R -. Moreover, since the matrix K t is symplectic, we deduce that

JG t = 1 2iπ ∂Σt √ z J(K t -zI 2n ) -1 dz = -1 2iπ ∂Σt √ z (K t J -zJ) -1 dz (6.1.22) = -1 2iπ ∂Σt √ z (J(K T t ) -1 -zJ) -1 dz = 1 2iπ ∂Σt √ z ((K T t ) -1 -zI 2n ) -1 J dz = 1 2iπ ∂Σt √ z (K -1 t -zI 2n ) -1 dz T J = K -1 t T J.
Finally, since the function z → ( √ z) -1 = √ z -1 is holomorphic on C \ R -and that the eigenvalues of the matrices K t are positive real numbers, it follows from the holomorphic functional calculus, see e.g. [START_REF] Dunford | Linear operators. Part I[END_REF] (VII.3.12, Theorem 12), that (6.1.23)

K -1 t = K t -1 = G -1 t .
This, combined with (6.1.22), proves that JG t = (G T t ) -1 J, that is G t ∈ Sp 2n (C) is a symplectic matrix. This ends the proof of Lemma 6.4.

We can now construct the matrices A t . Since the function z → atanh((z -1)(z + 1) -1 ) is holomorphic on a neighborhood of R * + , where atanh denotes the hyperbolic atan function (whose definition and properties can be found in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] (Section 4.6)), and that σ(G t ) ⊂ R * + for all t ∈ R from (6.1.20) and Lemma 6.3, the functional holomorphic calculus also allows to consider the family of matrices (A t ) t∈R defined for all t ∈ R by (6.1.24)

A t = -(itJ) -1 atanh G t -I 2n G t + I 2n -1 .
By construction, the function

t ∈ R → atanh((G t -I 2n )(G t + I 2n ) -1
) is real analytic and vanishes in t = 0, since G 0 = I 2n from (6.1.20) and atanh(0 2n ) = 0 2n . The matrix A t is therefore well-defined for all t ∈ R and the function t ∈ R → A t is as well analytic according to (E.0.11). This family (A t ) t∈R satisfies the algebraic part of Theorem 6.2, as proved in the Lemma 6.5. For all t ∈ R, the matrix A t satisfies e -4itJAt = e -2itJQ e -2itJQ .

Proof. We first observe that (6.1.25) ∀x > 0, exp 4 atanh

x -1 x + 1 = x 2 .
Indeed, if x > 0 a positive real number and y ∈ R is a real number such that x = e 2y , we have exp 4 atanh x -1

x + 1 = exp 4 atanh e 2y -1 e 2y + 1 = exp 4 atanh tanh y = e 4y = x 2 .

Moreover, both functions z → exp(4 atanh((z -1)(z + 1) -1 )) and z → z 2 are holomorphic on a connected open neighborhood of R * + and σ(G t ) ⊂ R * + from (6.1.20) and Lemma 6.3. We therefore deduce from (6.1.24), (6.1.25) and the holomorphic functional calculus that for all t ∈ R,

e -4itJAt = exp 4 atanh G t -I 2n G t + I 2n -1 = G 2 t = e -2itJQ e -2itJQ
. This ends the proof of Lemma 6.5.

Notice that the matrices A t can therefore be expressed by taking the logarithm of the matrices e -2itJQ e -2itJQ . Indeed, since the spectra of these matrices is contained in R * + from Lemma 6.3 and that the function Log (which still denotes the principal determination of the logarithm in C \ R -) is holomorphic in a neighborhood of R * + , Lemma 6.5 and the holomorphic functional calculus imply that for all t ∈ R,

tA t = -(4iJ) -1 Log e -2itJQ e -2itJQ .
Moreover, the function t ∈ R → Log(e -2itJQ e -2itJQ ) is analytic by construction and vanishes in t = 0. It therefore follows from (E.0.11) that the matrix A t is given for all t ∈ R by (6.1.26)

A t = -(4itJ) -1 Log e -2itJQ e -2itJQ .
This formula will be useful in Section 6.3. Now, it only remains to prove that the matrices A t are real and symmetric positive semidefinite. To that end, we introduce the family of matrices (M t ) t∈R where M t is defined for all t ∈ R by (6.1.27)

M t = -(itJ) -1 G t -I 2n G t + I 2n -1 .
Notice that the matrices M t are well-defined according to (E.0.11) since one the one hand, (6.1.20) and Lemma 6.3 imply that -1 is not an eigenvalue of any matrix G t and on the other hand, the function t ∈ R → (G t -I 2n )(G t + I 2n ) -1 is real analytic by construction and vanishes in t = 0. Moreover, the function t ∈ R → M t is analytic. We will prove in Lemma 6.7 that the matrices A t can be expressed in terms of the matrices M t which will turn out to be real and symmetric. Moreover, the next lemma will imply that the matrices M t are positive semidefinite. The properties required for the matrices A t will then arise from the ones of the matrices M t .

Lemma 6.6. For all t ∈ R, the matrix M t admits the following integral representation

M t = 1 0 (e -2iαtJQ Φ t ) * (Re Q)(e -2iαtJQ Φ t ) dα,
where the matrix Φ t is given by (6.1.28)

Φ t = e -2itJQ e -2itJQ + I 2n 2 -1
.

In particular, the matrices M t are Hermitian positive semidefinite. Proof. Let t ∈ R. We begin by checking that the matrix M t satisfies the relation (6.1.29)

(G t + I 2n ) * tM t (G t + I 2n ) = iJ(I 2n -G 2 t
). We recall that the matrix J satisfies J -1 = J T = -J. On the one hand, the left-hand side of this equality can be computed with the definition (6.1.27) of M t : (6.1.30)

(G t + I 2n ) * tM t (G t + I 2n ) = -i(G t + I 2n ) * J(G t -I 2n ).
On the other hand, since the matrix square root given by the holomorphic functional calculus commutes with the complex conjugate (which can be readily checked by using (6.1.21)) and with the invert function defined for all non-singular matrix whose spectrum is composed of positive real numbers, it follows from (6.1.20) that the matrix G t satisfies (6.1.31)

G t = e 2itJQ e 2itJQ = (e -2itJQ e -2itJQ ) -1 = G -1 t . Moreover, G t ∈ Sp 2n (C
) is a symplectic matrix from Lemma 6.4 and we deduce that (6.1.32) 

(G t + I 2n ) * J = (G t + I 2n ) T J = (G -1 t + I 2n ) T J = -(JG -1 t + J) T = -(G T t J + J) T = J(G T t + I 2n ) T = J(G t + I 2n
). Hence, substituting this equality in (6.1.30), we get that (6.1.33)

(G t + I 2n ) * tM t (G t + I 2n ) = -iJ(G t + I 2n )(G t -I 2n ) = -iJ(G 2 t -I 2n
). This proves that (6.1.29) holds. Then, we deduce from (6.1.18), (6.1. [START_REF] Carypis | Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians[END_REF]) and (6.1.20) that the right-hand side of (6.1.29) writes as

iJ(I 2n -G 2 t ) = iJ(I 2n -e -2itJQ e -2itJQ ) = 4 t 0 (e -2isJQ ) * (Re Q)(e -2isJQ ) ds.
Therefore, we derive the following expression for the matrix tM t : (6.1.34)

tM t = 4 t 0 (e -2isJQ (G t + I 2n ) -1 ) * (Re Q)(e -2isJQ (G t + I 2n ) -1 ) ds.
Since the matrix Φ t defined in (6.1.28) also writes as

Φ t = G t + I 2n 2 -1
, we deduce from (6.1.34) that the matrix tM t is given by

tM t = t 0 (e -2isJQ Φ t ) * (Re Q)(e -2isJQ Φ t ) ds.
A change of variable in the integral ends the proof of Lemma 6.6.

We can now derive the end of the proof of Theorem 6.2 from Lemma 6.6. This is done in the following Lemma which will also be key to prove Theorem 3.6 in Section 6.2. Lemma 6.7. For all t ∈ R, the matrix A t is real and symmetric positive semidefinite. Moreover, the matrices A t and M t satisfy the following estimate:

∀t ∈ R, A t ≥ M t ≥ 0.
Proof. To simplify the notations in the following, we consider the following matrices for all t ∈ R, (6.1.35)

Ψ t = G t -I 2n G t + I 2n -1 .
We recall that the matrix atanh function admits the following Taylor expansion for all matrices R whose norm satisfies R < 1,

(6.1.36) atanh R = +∞ k=0 R 2k+1 2k + 1 .
We also recall from (6.1.24) that the matrices A t are defined for all t ∈ R with the convention (E.0.11) by (6.1.37)

A t = -(itJ) -1 atanh Ψ t .
It follows from the inequality

∀x > 0, √ x -1 √ x + 1 < 1,
the definitions (6.1.20) and (6.1.35) of the matrices G t and Ψ t , and Lemma 6.3 that the spectrum of the matrix Ψ t satisfies σ(Ψ t ) ⊂ (-1, 1) for all t ∈ R. It therefore follows from [START_REF] Horn | Matrix analysis[END_REF] (Lemma 5.6.10) that for all t ∈ R, there exists a norm • t on M n (C) such that

Ψ t t < 1.
This proves that the series

Ψ 2k+1 t 2k+1 converge in M n (C
) for all t ∈ R and we deduce from (6.1.36) and (6.1.37) that for all t ∈ R, (6.1.38)

A t = -(itJ) -1 +∞ k=0 Ψ 2k+1 t 2k + 1 .
To prove that the matrices A t are real and symmetric, we need to derive a new expression for them. To that end, we compute the product JΨ t by using the relation (6.1.32) (which also holds when the matrix I 2n is replaced by -I 2n ):

(6.1.39) JΨ t = J G t -I 2n G t + I 2n -1 = G t -I 2n * J G t + I 2n -1 = G t -I 2n * G t + I 2n -1 * J = Ψ * t J.
We deduce from (6.1.27), (6.1.35), (6.1.38) and (6.1.39) that for all t ∈ R, (6.1.40)

A t = +∞ k=0 1 2k + 1 (Ψ k t ) * (-itJ) -1 Ψ t (Ψ k t ) = +∞ k=0 1 2k + 1 (Ψ k t ) * M t (Ψ k t ).
We observe from (6.1.31) and (6.1.35) that for all t ∈ R, (6.1.41)

Ψ t = G t -I 2n G t + I 2n -1 = G -1 t -I 2n G -1 t + I 2n -1 = I 2n -G t I 2n + G t -1 = -Ψ t .
Consequently, from (6.1.27), (6.1.35), (6.1.39) and (6.1.41), the matrices M t satisfy the two relations (6.1.42)

M t = (itJ) -1 Ψ t = M t . and (6.1.43) M * t = (it) -1 Ψ * t J = (it) -1 JΨ t = (-itJ) -1 Ψ t = M t .
It follows from (6.1.41), (6.1.42) and (6.1.43) that for all t ∈ R and k ≥ 0, the matrix

(Ψ k t ) * M t (Ψ k t
) is real and symmetric. As sums of such matrices, the matrices A t are also real and symmetric. Finally, we deduce from (6.1.40) and Lemma 6.6 that for all t ∈ R, A t ≥ M t ≥ 0. This ends the proof of Lemma 6.7.

As a Corollary of Lemma 6.7, we can compute the Weyl symbol of the operator e -ta w t for all t ≥ 0, with a t : R 2n → R + the non-negative quadratic form whose matrix in the canonical basis of R 2n is A t , in terms of m t : R 2n → R + the non-negative quadratic form whose matrix in the canonical basis of R 2n is M t . By the way, this is a justification a posteriori of the introduction of the matrices M t . Corollary 6.8. For all t ≥ 0, the operator e -ta w t is a pseudodifferential operator whose Weyl symbol is given by

X ∈ R 2n → 1 det cos(tJA t ) e -tmt(X) ∈ L ∞ (R 2n ).
Proof. Let t ≥ 0. It follows from Lemma 6.7 that the matrix A t is real symmetric positive semidefinite and this combined with Lemma 6.27 show that the spectrum of the matrix tJA t is purely imaginary. As a consequence, the matrix cos(tJA t ) is non-singular and it follows from the definition (3.4.2) of the operator e -ta w t and the Mehler formula (3.3.10) that the operator e -ta w t is a pseudodifferential operator whose Weyl symbol is a L ∞ (R 2n )-function given for all X ∈ R 2n by 1 det cos(tJA t ) exp(-σ(X, tan(tJA t )X)).

Moreover, we deduce from (6.1.20), (6.1.27) and Lemma 6.5 that

(tJ) -1 tan(tJA t ) = -(itJ) -1 e -2itJAt -I 2n e -2itJAt + I 2n -1 = -(itJ) -1 G t -I 2n G t + I 2n -1 = M t .
We deduce from the definition (5.1.1) of F and the above equality that for all

X ∈ R 2n , σ(X, tan(tJA t )X)) = σ(X, tJM t X) = t X, M t X = tm t (X).
This ends the proof of Corollary 6.8.

The study of the family (A t ) t∈R is now ended. Still in order to prove (6.1.11) via (6.1.16), we consider the time-dependent matrices H t defined for all t ∈ R by (6.1.44)

H t = e 2itJAt e -2itJQ .
Notice that the analyticity of the function t ∈ R → H t is induced by the ones of the functions t ∈ R → A t and t ∈ R → e -2itJM for all M ∈ M 2n (C). We only need to check that each matrix H t is real and symplectic. Lemma 6.9. For all t ∈ R, H t is a real symplectic matrix.

Proof. Let t ∈ R. Since both matrices A t and Q are symmetric (from Lemma 6.7 concerning A t ), Lemma 6.24 shows that the matrices e 2itJAt and e -2itJQ are symplectic. As a consequence, the matrix H t is also symplectic. Moreover, it follows from Lemma 6.5 that (6.1.45) H t = e -2itJAt e 2itJQ = e 2itJAt e -4itJAt e 2itJQ = e 2itJAt e -2itJQ e -2itJQ e 2itJQ = e 2itJAt e -2itJQ = H t , which proves that H t is a real matrix. This ends the proof of Lemma 6.9. This ends the proof of (6.1.11) and the splitting of the symplectic matrices e -2itJQ in any time t ∈ R.

The rest of this section is then devoted to prove (6.1.12) which sharpens the decomposition (6.1.11) for small times |t| 1 . The strategy will be different than the one used until now, since the holomorphic functional calculus will not be used anymore to define the different matrices at play. The identity (6.1.12) is proved in the following lemma: Lemma 6.10. There exist a positive constant T > 0 and a family (B t ) -T <t<T of real symmetric matrices B t ∈ S 2n (R) whose coefficients depend analytically on the time-variable -T < t < T such that for all -T < t < T , the symplectic matrix H t writes as H t = e 2tJBt .

Proof. First, we recall that for all matrix M ∈ M 2n (C) satisfying M -I 2n < 1, the matrix Log M is given by the following sum (6.1.46)

Log M = +∞ k=1 (-1) k-1 k (M -I 2n ) k .
Since the following limit holds lim t→0 H t -I 2n = 0, there exists a positive constant T > 0 such that for all -T < t < T , (6.1.47)

H t -I 2n < 1.
Since H -1 t = e 2itJQ e -2itJAt , we can even assume that the constant T > 0 is chosen sufficiently small so that for all -T < t < T , (6.1.48)

H -1 t -I 2n < 1. The estimate (6.1.47) allows to consider the matrix B t defined for all -T < t < T by (6.1.49)

B t = (2tJ) -1 Log H t .
Notice that the function t ∈ (-T, T ) → Log H t is analytic by construction and vanishes in t = 0 since H 0 = I 2n . The matrix B t is therefore well-defined for all -T < t < T according to (E.0.11). We deduce from (6.1.44), (6.1.47) and (6.1.49), that for all -T < t < T ,

e 2tJBt = exp Log H t = H t .
It remains to check that the matrices B t are real and symmetric. First we observe from (6.1.45) and (6.1.49) that for all -T < t < T ,

B t = (2tJ) -1 Log H t = (2tJ) -1 Log H t = B t .
This proves that the matrices B t are real. Moreover, we deduce from (6.1.48), (6.1.49), Lemma 6.9 and the binomial formula that for all -T < t < T ,

B T t = (2t) -1 (Log H t ) T J = (2t) -1 +∞ k=1 (-1) k-1 k (H t -I 2n ) k T J = (2t) -1 +∞ k=1 (-1) k-1 k k =0 k l (-1) k-l (H t ) T J = (2t) -1 +∞ k=1 (-1) k-1 k k =0 k l (-1) k-l J(H -1 t ) = (2t) -1 +∞ k=1 (-1) k-1 k J(H -1 t -I 2n ) k = -(2tJ) -1 Log(H -1 t ) = (2tJ) -1 Log H t = B t .
The matrices B t are therefore symmetric. Moreover, the function t ∈ (-T, T ) → B t is analytic by construction. This ends the proof of Lemma 6.10.

Study of the real part for short times

In this section, we prove Theorem 3.6. Let q : R 2n → C be a complex-valued quadratic form with a non-negative real part. We consider F the Hamilton map associated to q, S its singular space and 0 ≤ k 0 ≤ 2n -1 the smallest integer such that (5.1.9) holds. Let (a t ) t∈R be the family of non-negative quadratic forms a t : R 2n → R + given by Theorem 3.5 and (m t ) t∈R be the family of non-negative quadratic forms m t : R 2n → R + whose matrices in the canonical basis of R 2n are the matrices M t defined in (6.1.27). We shall prove that the quadratic forms m t (and therefore the quadratic forms a t ) satisfy a sharp lower bound implying some degenerate anisotropic coercivity properties on the phase space. More precisely, we shall prove that there exist some positive constants c > 0 and T > 0 such that for all 0 ≤ t ≤ T and X ∈ R 2n , (6.2.1)

a t (X) ≥ m t (X) ≥ c k 0 k=0 t 2k Re q (Im F ) k X .
Notice that the left inequality in (6.2.1) is a consequence of Lemma 6.7. We are therefore interested in proving the right one. To that end, we consider the time-dependent quadratic form κ t : C 2n → R defined in accordance with the convention (E.0.10) for all t ≥ 0 and X ∈ C 2n by (6.2.2)

κ t (X) = k 0 k=0 t 2k Re q (Im F ) k X = k 0 k=0 t 2k Re Q(Im F ) k X 2 .
We recall from Lemma 6.6 that for all t ≥ 0, the matrix M t admits the following integral representation

M t = 1 0 (e -2iαtF Φ t ) * (Re Q)(e -2iαtF Φ t ) dα,
where the matrices Φ t are given by (6.2.3)

Φ t = e -2itF e -2itF + I 2n 2 -1
, since F = JQ from (5.1.4). We therefore deduce that for all t ≥ 0 and X ∈ R 2n , (6.2.4)

m t (X) = X T M t X = 1 0 (e -2iαtF Φ t X) * (Re Q)(e -2iαtF Φ t X) dα,
and this equality can be written as

m t (X) = 1 0 Re Qe -2iαtF Φ t X 2 dα = Re Qe -2iαtF Φ t X 2 L 2 (0,1)
.

By applying the Minkowski inequality, we therefore obtain that for all t ≥ 0 and X ∈ R 2n , (

m t (X) ≥ k 0 k=0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1) - k>k 0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1) 6.2.5) 
.

We then study separately the two terms of the right-hand side of the above estimate.

1. First, we focus on controlling the first term, namely

k 0 k=0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1)
.

On the finite-dimensional vector space (C k 0 [X]) 2n , the Hardy's norm

• H 1 defined by k 0 k=0 y k X k H 1 = k 0 k=0 k!2 -k |y k |, y 0 , . . . , y k 0 ∈ C 2n , is equivalent to the standard Lebesgue's norm • L 2 (0,1) given by k 0 k=0 y k X k 2 L 2 (0,1) = 1 0 k 0 k=0 y k α k 2 dα, y 0 , . . . , y k 0 ∈ C 2n .
Thus, there exists a positive constant c 1 > 0 such that for all t ≥ 0 and X ∈ R 2n , (

k 0 k=0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1) ≥ c 1 k 0 k=0 t k Re Q(iF ) k Φ t X . 6.2.6) 
We develop the matrices (iF ) k in the following way:

(6.2.7) (iF ) k = (Im F ) k + B k ,
where the matrices B k can be written as (6.2.8)

B k = 2 k -1 j=1 ε j,k M j,k (Re F )(Im F ) m j,k , with 0 ≤ m j,k ≤ k -1, ε j,k ∈ {-1, 1, -i, i}
and the matrices M j,k are finite products of Re F and Im F . Then, by putting (6.2.7) in (6.2.6) and using the triangle inequality, we obtain the following estimate for all t ≥ 0 and X ∈ R 2n , (6.2.9)

k 0 k=0 t k Re Q(iF ) k Φ t X ≥ k 0 k=0 t k Re Q(Im F ) k Φ t X - k 0 k=0 t k Re QB k Φ t X .
We consider the two positive quantities

c 2 = max 0≤k≤k 0 max 1≤j≤2 k -1 Re QM j,k J Re Q > 0,
and

c 2 = max 0≤k≤k 0 max 0≤m≤k-1 # 1 ≤ j ≤ 2 k -1 : m j,k = m > 0,
where # denotes the cardinality. Since F = JQ from (5.1.4), it follows from (6.2.8) that for all t ≥ 0 and X ∈ R 2n ,

k 0 k=0 t k Re QB k Φ t X ≤ k 0 k=0 t k 2 k -1 j=1 Re QM j,k (Re F )(Im F ) m j,k Φ t X = k 0 k=0 t k 2 k -1 j=1 Re QM j,k J Re Q Re Q(Im F ) m j,k Φ t X ≤ c 2 k 0 k=0 t k 2 k -1 j=1 Re Q(Im F ) m j,k Φ t X .
Then, we gather the integers 0 ≤ m j,k ≤ k -1 taking the same value, which shows that for all t ≥ 0 and X ∈ R 2n ,

k 0 k=0 t k Re QB k Φ t X ≤ c 2 k 0 k=0 t k k-1 m=0 1≤j≤2 k -1 m j,k =m Re Q(Im F ) m Φ t X ≤ c 2 c 2 k 0 k=0 k-1 m=0 t k Re Q(Im F ) m Φ t X .
Since k -m ≥ 1, we have that for all 0 ≤ t ≤ 1,

t k = t k-m t m ≤ t 1+m .
The following inequality therefore holds for all 0 ≤ t ≤ 1 and X ∈ R 2n ,

k 0 k=0 t k Re QB k Φ t X ≤ c 2 c 2 t k 0 k=0 k-1 m=0 t m Re Q(Im F ) m Φ t X .
As a consequence, there exists a positive constant c 3 > 0 such that for all 0 ≤ t ≤ 1 and X ∈ R 2n , (6.2.10)

k 0 k=0 t k Re QB k Φ t X ≤ c 3 t k 0 k=0 t k Re Q(Im F ) k Φ t X .
It follows from (6.2.6), (6.2.9) and (6.2.10) that for all 0 ≤ t ≤ 1 and X ∈ R 2n , (6.2.11)

k 0 k=0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1) ≥ c 1 (1 -c 3 t) k 0 k=0 t k Re Q(Im F ) k Φ t X .
We recall from the third inequality of (6.6.23) (no assumption of smallness is required for t ≥ 0 to apply this estimate) that for all 0 ≤ t ≤ 1 and X ∈ R 2n , (6.2.12)

√ κ t (Φ t X) ≤ k 0 k=0 t k Re Q(Im F ) k Φ t X .
As a consequence of (6.2.11) and (6.2.12), there exist some positive constants 0 < t 1 < 1 and c 4 > 0 such that for all 0 ≤ t ≤ t 1 and X ∈ R 2n , (6.2.13)

k 0 k=0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1) ≥ c 4 √ κ t (Φ t X).
In order to estimate from below the term √ κ t (Φ t X), we would like to apply Lemma 6.29

to the function

(6.2.14) G(M, N ) = √ e -2i(M +iN ) e -2i(M -iN ) + I 2n 2 -1
, in view of the definition (6.2.3) of the matrices Φ t . We prove in Lemma 6.32 in the Appendix that the function G actually satisfies the assumptions of Lemma 6.29 and as a consequence, there exist some positive constants c 5 > 0 and 0 < t 2 < t 1 such that for all 0 ≤ t ≤ t 2 and X ∈ R 2n ,

k 0 k=0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1) ≥ c 5 √ κ t (X).
This inequality, combined with (6.2.5), leads to the following estimate for all 0 ≤ t ≤ t 2 and X ∈ R 2n , (6.2.15)

√ m t (X) ≥ c 5 √ κ t (X) - k>k 0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1)
.

2. The end of the proof consists in controlling the remainder term

k>k 0 (-2tα) k k! Re Q(iF ) k Φ t X L 2 (0,1)
.

The technics employed will be similar to the ones used in the end of the proof of Lemma 6.29. We begin by observing that for all 0 ≤ t ≤ t 2 and X ∈ R 2n ,

k>k 0 (-2tα) k k! Re Q(iF ) k Φ t X 2 L 2 (0,1) = t 2k 0 +2 k>k 0 t k-k 0 -1 (-2α) k k! Re Q(iF ) k Φ t X 2 L 2 (0,1)
.

The coefficients of the time-dependent quadratic form

k>k 0 t k-k 0 -1 (-2α) k k! Re Q(iF ) k Φ t X 2 L 2 (0,1)
, are continuous with respect to the time-variable 0 ≤ t ≤ t 2 . As a consequence, there exists a positive constant c 6 > 0 such that for all 0 ≤ t ≤ t 2 and X ∈ R 2n , (6.2.16)

k>k 0 (-2tα) k k! Re Q(iF ) k Φ t X 2 L 2 (0,1) ≤ c 6 t 2k 0 +2 |X| 2 .
On the other hand, it follows from Lemma 6.30 that there exists a positive constant c 7 > 0 such that for all 0 ≤ t ≤ 1 and X ∈ S ⊥ , (6.2.17)

κ t (X) ≥ c 7 t 2k 0 |X| 2 .
As a consequence of (6.2.16) and (6.2.17), we have that for all 0 ≤ t ≤ t 2 and X ∈ S ⊥ , (6.2.18)

k>k 0 (-2tα) k k! Re Q(iF ) k Φ t X 2 L 2 (0,1) ≤ c 6 c 7 t 2 κ t (X).
We deduce from (6.2.15) and (6.2.18) that there exist some positive constants c 8 > 0 and 0 < t 3 < t 2 such that for all 0 ≤ t ≤ t 3 and X ∈ S ⊥ , (

.19) m t (X) ≥ c 4 - c 6 c 7 t 2 κ t (X) ≥ c 8 κ t (X). 6.2 
It remains to check that the estimate (6.2.19) holds for all X ∈ R 2n . To that end, we will use the result of the following elementary lemma of linear algebra, whose proof is straightforward:

Lemma 6.11. Let E be a real finite-dimensional vector space and q 1 , q 2 be two nonnegative quadratic forms on E. If E = F ⊕ G is a direct sum of two vector subspaces such that q 1 ≤ q 2 on F and q 1 , q 2 both vanish on G, then q 1 ≤ q 2 on E.

Let 0 ≤ t ≤ t 3 . Since R 2n = S ⊕ S ⊥ and that (6.2. [START_REF] Carypis | Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians[END_REF]) is valid on S ⊥ , it is sufficient to prove that both non-negative quadratic forms κ t and m t vanish on the singular space S, according to Lemma 6.11. We first notice from the definition (5.1.1) of F , (5.1.9) and (6.2.2) that κ t is zero on the singular space S. We now prove that this property holds true as well for the quadratic form m t , that is (6.2.20)

∀X ∈ S, m t (X) = 0.

To that end, we use anew the integral representation of m t given by (6.2.4), (6.2.21)

∀X ∈ R 2n , m t (X) = 1 0 (e -2iαtF Φ t X) * (Re Q)(e -2iαtF Φ t X) dα.
According to (6.2.21), it is sufficient to prove that

(6.2.22) ∀α ∈ [0, 1], (e -2iαtF Φ t )S ⊂ S + iS, since (Re Q)S = J -1 (Re F )S = {0} from (5.1.4
) and (5.1.10). As a consequence of (6.6.56), the inclusion Φ t S ⊂ S + iS holds, up to decrease the positive constant t 3 > 0. Moreover, notice from (5.1.10) that the space S + iS is stable by the matrix F (since (Re F )S = {0} and (Im F )S ⊂ S), and therefore by the matrices e -2iαtF for all 0 ≤ α ≤ 1. This proves that the inclusion (6.2.22) actually holds. The estimate (6.2.19) can therefore be extended to all 0 ≤ t ≤ t 3 (up to decrease t 3 > 0) and X ∈ R 2n . This ends the proof of the estimate (6.2.1).

Regularizing effects

The aim of this section is to prove Theorem 3.8 and Theorem 3.13 about the regularizing properties of semigroups generated by non-selfadjoint quadratic differential operators. Let q : R 2n → C be a complex-valued quadratic form with a non-negative real part. We consider Q ∈ S 2n (C) the matrix of q in the canonical basis of R 2n , F ∈ M 2n (C) its Hamilton map and S its singular space. 6.3.1. Regularizing effects. We begin by proving Theorem 3.8. Let T > 0 and (a t ) t∈R , (b t ) -T <t<T be the families of quadratic forms given by Theorem 3.5. We recall that the quadratic forms a t are non-negative, the quadratic forms b t are real-valued and a t , b t depend analytically on the time-variable t ∈ R and -T < t < T respectively. Moreover, the evolution operators e -tq w can be factorized as (6.3.1) ∀t ∈ [0, T ), e -tq w = e -ta w t e -itb w t .

We can assume that the positive constant 0 < T < 1 is the one given by Theorem 3.6, which implies that there exists a positive constant c > 0 such that for all 0 ≤ t ≤ T and

X ∈ R 2n , (6.3.2) a t (X) ≥ c k 0 j=0 t 2j Re q (Im F ) j X ,
where 0 ≤ k 0 ≤ 2n -1 is the smallest integer such that (5.1.9) holds. As in Section 6.1, we denote by A t and B t the respective matrices of a t and b t in the canonical basis of R 2n . Moreover, we consider anew the time-dependent quadratic form κ t defined in accordance with the convention (E.0.10) for all t ≥ 0 and X ∈ C 2n by (6.3.3)

κ t (X) = k 0 j=0 t 2j Re q (Im F ) j X = k 0 j=0 t 2j Re Q(Im F ) j X 2 .
The estimate (6.3.2) reads as: for all 0 ≤ t ≤ T and X ∈ C 2n , (

a t (X) ≥ cκ t (X). 6.3.4) 
The aim of this section is to understand the smoothing properties of the evolution operators e -tq w . Since the operators e -itb w t are unitary on L 2 (R n ), we first notice from (6.3.1) that it is sufficient to study the regularizing properties of the operators e -ta w t to derive the ones of the operators e -tq w . Therefore, for some m ≥ 1 and X 1 , . . . , X m ∈ S ⊥ , we are interested in the following linear operators

X 1 , X w . . . X m , X w e -ta w t ,
where the operators X j , X w are defined by

X j , X w = x j , x + ξ j , D x , X j = (x j , ξ j ) ∈ S ⊥ ⊂ R 2n .
To deal with them, we will use the Fourier integral operator representation of the operators e -ta w t and the Egorov formula (6.5.4). More precisely, it follows from (3.4.2) and Proposition 6.1 that the operator e -ta w t is a Fourier integral operator associated to the non-negative complex symplectic transformation e -2itJAt , and the Egorov formula (6.5.4) implies that for all 0 ≤ t ≤ T and X 0 ∈ R n , (6.3.5) X 0 , X w e -ta w t = e -ta w t J -1 e 2itJAt JX 0 , X w = e -ta w t e 2itAtJ X 0 , X w .

By using (6.3.5), we obtain the following factorization

X 1 , X w . . . X m , X w e -ta w t = X 1 , X w . . . X m , X w e -t m a w t . . . e -t m a w t m factors (6.3.6) = Y 1,t , X w e -t m a w t . . . Y m,t , X w e -t m a w t ,
where the time-dependent points Y j,t ∈ C 2n are given by

Y j,t = e 2i(j-1)t m AtJ X j , 1 ≤ j ≤ m,
and where we used the semigroup property of the family of linear operators (e -sa w t ) s≥0 . The initial problem is therefore reduced to the analysis of the operators Y j,t , X w e -t m a w t .

The main instrumental result of this section is Lemma 6.15 which requires some technical results to be proven. The first of them investigates the anisotropic coercivity properties of the time-dependent quadratic form κ t on S ⊥ the canonical Euclidean orthogonal complement of the singular space S. This is a refinement of Lemma 6.30. Lemma 6.12. There exists a positive constant c > 0 such that for all 0 ≤ t ≤ 1,

X 0 ∈ S ⊥ \ {0} and X ∈ C 2n , κ t (X) ≥ c |X 0 | 2 t 2k X 0 X 0 , X 2 ,
where 0 ≤ k X 0 ≤ k 0 denotes the index of the vector X 0 ∈ S ⊥ defined in (3.4.8).

Proof. For all 0 ≤ k ≤ k 0 , let r k be the non-negative quadratic form defined on the phase space by (6.3.7)

r k (X) = k j=0 Re q (Im F ) j X = k j=0 Re Q(Im F ) j X 2 ≥ 0, X ∈ R 2n .
Moreover, we consider V k the vector subspace defined in (3.4.6) by (6.3.8)

V k = k j=0 Ker(Re F (Im F ) j ).
We begin by proving that there exists a positive constant c k > 0 such that (6.3.9)

∀X ∈ V ⊥ k , r k (X) ≥ c k |X| 2 . If a point X ∈ V ⊥ k satisfies r k (X) = 0, we deduce from (6.3.7) that ∀j ∈ {0, . . . , k}, Re Q(Im F ) j X = 0,
and since F = JQ from (5.1.4), this implies that (Re F )(Im F ) j X = 0 for all 0 ≤ j ≤ k, that is X ∈ V k . It then follows that X = 0. The non-negative quadratic form r k is therefore positive on the vector subspace V ⊥ k . The estimate (6.3.9) is then proved. Now, we consider X 0 ∈ S ⊥ \ {0} and 0 ≤ k X 0 ≤ k 0 the index of the vector X 0 defined in (3.4.8). For all X ∈ R 2n , we decompose

X = X + X with X ∈ V ⊥ k X 0 and X ∈ V k X 0 . Since X 0 ∈ V ⊥ k X 0
and that r k X 0 is a non-negative quadratic form which vanishes on the vector subspace V k X 0 from (5.1.4), (6.3.8) and (6.3.7), we deduce from (6.3.9) that (6.3.10)

X 0 , X 2 = X 0 , X 2 ≤ |X 0 | 2 |X | 2 ≤ |X 0 | 2 c k X 0 r k X 0 (X ) = |X 0 | 2 c k X 0 r k X 0 (X).
Setting c 0 = min 0≤k≤k 0 c k > 0, we deduce from (6.3.3), (6.3.7) and (6.3.10) that for all

0 ≤ t ≤ 1, X 0 ∈ S ⊥ \ {0} and X ∈ R 2n , κ t (X) ≥ t 2k X 0 r k X 0 (X) ≥ c 0 |X 0 | 2 t 2k X 0 X, X 0 2 , since 0 ≤ k X 0 ≤ k 0 . It follows that for all 0 ≤ t ≤ 1, X 0 ∈ S ⊥ \ {0} and X ∈ C 2n , κ t (X) = κ t (Re X) + κ t (Im X) ≥ c 0 |X 0 | 2 t 2k X 0 Re X, X 0 2 + c 0 |X 0 | 2 t 2k X 0 Im X, X 0 2 = c 0 |X 0 | 2 t 2k X 0 X, X 0 2 .
This ends the proof of Lemma 6.12.

The next result will be instrumental to prove Lemma 6.15. Its proof is based on the study of a time-dependent functional. Lemma 6.13. For all s > 0, t ≥ 0 and u ∈ S(R n ), the following estimate holds

a w t e -sa w t u, e -sa w t u L 2 (R n ) ≤ 1 2s u 2 L 2 (R n ) .
since the symbol M α,t X 0 , X is a linear form, where denotes the Moyal product defined for all p 1 and p 2 in proper symbol classes by

(p 1 p 2 )(x, ξ) = e i 2 σ(Dx,D ξ ;Dy,Dη) p 1 (x, ξ)p 2 (y, η) (x,ξ)=(y,η)
, with σ the symplectic form defined in (5.1.2). This implies that for all 0 ≤ α ≤ 1 and 0 < t ≤ t 0 , (6.3.18) M α,t X 0 , X 2 w = M α,t X 0 , X w M α,t X 0 , X w .

We deduce from (6.3.16) and (6.3.18) that for all 0 ≤ α ≤ 1, 0 < t ≤ t 0 , s > 0, X 0 ∈ S ⊥ and u ∈ S(R n ),

M α,t X 0 , X w e -sa w t u 2 L 2 (R n ) ≤ c 0 |X 0 | 2 t -2k X 0 a w t e -sa w t u, e -sa w t u L 2 (R n ) ,
and Lemma 6.13 then shows that

(6.3.19) M α,t X 0 , X w e -sa w t u 2 L 2 (R n ) ≤ c 0 2 |X 0 | 2 t -2k X 0 s -1 u 2 L 2 (R n ) .
Notice that the estimate (6.3.19) can be extended to all

u ∈ L 2 (R n ) since the Schwartz space S(R n ) is dense in L 2 (R n ).
Similarly, if we denote N α,t = Im(e 2iαtAtJ ), we have that for all 0 ≤ α ≤ 1, 0 < t ≤ t 0 , s > 0, X 0 ∈ S ⊥ and u ∈ L 2 (R n ),

(6.3.20) N α,t X 0 , X w e -sa w t u 2 L 2 (R n ) ≤ c 0 2 |X 0 | 2 t -2k X 0 s -1 u 2 L 2 (R n )
. Finally, we deduce from the triangle inequality that for all 0 ≤ α ≤ 1, 0 < t ≤ t 0 , s > 0,

X 0 ∈ S ⊥ and u ∈ L 2 (R n ), e 2iαtAtJ X 0 , X w e -sa w t u L 2 (R n ) ≤ M α,t X 0 , X w e -sa w t u L 2 (R n ) + N α,t X 0 , X w e -sa w t u L 2 (R n ) ,
and the estimates (6.3. [START_REF] Carypis | Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians[END_REF]) and (6.3.20) imply that e 2iαtAtJ X 0 , X w e -sa w t u L

2 (R n ) ≤ √ 2c 0 |X 0 | t -k X 0 s -1 2 u L 2 (R n ) .
It therefore remains to prove that the estimate (6.3.14) actually holds. We shall actually prove that there exist some positive constants c 1 > 0 and 0 < t 1 < T such that for all

0 ≤ α ≤ 1, 0 < t ≤ t 1 , X 0 ∈ S ⊥ and X ∈ R 2n , (6.3.21) e 2iαtAtJ X 0 , X 2 ≤ c 1 |X 0 | 2 t -2k X 0 κ t (X).
The estimate (6.3.14) is then a straightforward consequence of (6.3.4) and (6.3.21). It follows from Lemma 6.12 that there exists a positive constant c 2 > 0 such that for all

0 ≤ t ≤ 1, X 0 ∈ S ⊥ and X ∈ C 2n , (6.3.22) t 2k X 0 X 0 , X 2 ≤ c 2 |X 0 | 2 κ t (X).
On the other hand, we recall from (6.1.26) that for all 0 ≤ α ≤ 1 and 0 ≤ t ≤ T ,

e 2iαtJAt = exp - α 2 Log e -2itF e -2itF .
We would like to deduce from Lemma 6.29 applied with the functions

(6.3.23) G α (M, N ) = exp - α 2 Log e -2i(M +iN ) e -2i(M -iN ) , α ∈ [0, 1],
that there exist some positive constants 0 < t 1 < T and c 3 > 0 such that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ t 1 and X ∈ C 2n , (6.3.24) κ t (X) ≤ c 3 κ t e 2iαtJAt X .

This application of Lemma 6.29 is made rigorous in Lemma 6.33 in the appendix of this chapter, which implies that the estimate (6.3.24) actually holds. Combining (6.3.22) and (6.3.24), we obtain that for all 0 ≤ α ≤ 1, 0

≤ t ≤ t 1 , X 0 ∈ S ⊥ and X ∈ C 2n , t 2k X 0 X 0 , X 2 ≤ c 2 c 3 |X 0 | 2 κ t e 2iαtJAt X ,
and a straightforward change of variable shows that for all 0

≤ α ≤ 1, 0 ≤ t ≤ t 1 , X 0 ∈ S ⊥ and X ∈ R 2n , t 2k X 0 e 2iαtAtJ X 0 , X 2 ≤ c 2 c 3 |X 0 | 2 κ t (X).
This proves that (6.3.21) holds and ends the proof of Lemma 6.15.

We can now derive the proof of Theorem 3.8. To that end, we implement the strategy presented in the beginning of this subsection. Let m ≥ 1 and X 1 , . . . , X m ∈ S ⊥ . We denote by 0 ≤ k X j ≤ k 0 the index of the vector X j ∈ S ⊥ . It follows from (6.3.6) that for all 0 ≤ t ≤ T , (6.3.25)

X 1 , X w . . . X m , X w e -ta w t = Y AtJ X j .

According to Lemma 6.15, there exist some positive constants 0 < t 1 < T and c > 0 such that for all 0 ≤ α ≤ 1, 0

< t ≤ t 1 , s > 0, X 0 ∈ S ⊥ and u ∈ L 2 (R n ), (6.3.27) e 2iαtAtJ X 0 , X w e -sa w t u L 2 (R n ) ≤ c|X 0 | t -k X 0 s -1 2 u L 2 (R n ) ,
where 0 ≤ k X 0 ≤ k 0 denotes the index of the vector X 0 ∈ S ⊥ . We deduce from (6.3.26) and (6.3.27) that for all 1 ≤ j ≤ m, 0 < t ≤ t 1 and u ∈ L 2 (R n ),

(6.3.28) Y j,t , X w e -t m a w t u L 2 (R n ) ≤ c|X j | t -k X j -1 2 m 1 2 u L 2 (R n ) .
Notice that the constant c > 0 is independent on the integer m ≥ 1 and the points X j ∈ S ⊥ . It now follows from (6.3.25), (6.3.28) and a straightforward induction that for all 0 < t ≤ t 1 and u ∈ L 2 (R n ),

X 1 , X w . . . X m , X w e -ta w t u L 2 (R n ) ≤ c m t k X 1 +...+k Xm + m 2 m j=1 |X j | m m 2 u L 2 (R n ) ≤ e m 2 c m t k X 1 +...+k Xm + m 2 m j=1 |X j | √ m! u L 2 (R n ) ,
where we used that m m ≤ e m m!. We then deduce from (6.3.1) that for all 0 < t ≤ t 1 and

u ∈ L 2 (R n ), X 1 , X w . . . X m , X w e -tq w u L 2 (R n ) ≤ e m 2 c m t k X 1 +...+k Xm + m 2 m j=1 |X j | √ m! e -itb w t u L 2 (R n ) = e m 2 c m t k X 1 +...+k Xm + m 2 m j=1 |X j | √ m! u L 2 (R n ) ,
since the operators e -itbt are unitary on L 2 (R n ). This ends the proof of Theorem 3.8.

Directions of regularity.

We now perform the proof of Theorem 3.13. The family (a t ) t∈R still stands for the family given by Theorem 3.5 composed of non-negative quadratic forms a t : R 2n → R + with coefficients depending analytically on the timevariable t ∈ R. As in the previous subsection, the matrix of the quadratic forms a t in the canonical basis of R 2n is denoted A t . Moreover, we consider (U t ) t∈R the family of metaplectic operators also given by Theorem 3.5. We recall that the evolution operators e -tq w split as (6.3.29) ∀t ≥ 0, e -tq w = e -ta w t U t .

Let t > 0, X 0 ∈ R 2n . We assume that the linear operator X 0 , X w e -tq w is bounded on L 2 (R n ). We aim at proving that X 0 ∈ S ⊥ . We first notice that since the metaplectic operator U t is unitary on L 2 (R n ), it follows from (6.3.29) that the linear operator X 0 , X w e -ta w t is also bounded on L 2 (R n ). As a consequence, there exists a positive constant c t,X 0 > 0 depending on t and X 0 such that (6.3.30)

∀u ∈ L 2 (R n ), X 0 , X w e -ta w t u L 2 (R n ) ≤ c t,X 0 u L 2 (R n ) .
According to the decomposition R 2n = S ⊕ S ⊥ of the phase space, the orthogonality being taken with respect to the euclidean structure of R 2n , we write X 0 = X 0,S + X 0,S ⊥ , with X 0,S ∈ S and X 0,S ⊥ ∈ S ⊥ . For all λ ≥ 0, we consider X λ ∈ S the point of the singular space defined by (6.3.31)

X λ = λX 0,S = (x λ , ξ λ ) ∈ S ⊂ R 2n .
Moreover, we consider for all λ ≥ 0 the Gaussian function u λ ∈ S(R n ) given for all x ∈ R n by (6.3.32)

u λ (x) = e i ξ λ ,x e -|x-x λ | 2 .
The strategy will be to find upper and lower bounds for the term

(6.3.33) X 0 , X w e -ta w t u λ , u λ L 2 (R n ) ,
and to consider the asymptotics when λ tends to +∞ in order to conclude that the point X 0,S has to be equal to zero. An upper bound can be established readily since it follows from (6.3.30), (6.3.32) and the Cauchy-Schwarz inequality that for all λ ≥ 0,

(6.3.34) X 0 , X w e -ta w t u λ , u λ L 2 (R n ) ≤ c t,X 0 u λ 2 L 2 (R n ) = c t,X 0 u 0 2 L 2 (R n ) .
Notice that the right-hand side of the above estimate does not depend on the parameter λ ≥ 0. Now, we investigate a lower bound for the term (6.3.33) by a direct calculus. It follows from the Mehler formula (Corollary 6.8) that the operator e -ta w t is a pseudodifferential operator whose symbol is given by (6.3.35) c t e -tmt(X) ∈ L ∞ (R 2n ), where c t = 1 det cos(tJA t ) > 0, and where m t : R 2n → R + is the non-negative quadratic form whose matrix in the canonical basis of R 2n is the matrix M t defined in (6.1.27). We therefore deduce from (6.3.32) and (6.3.35) that the term (6.3.33) is given for all λ ≥ 0 by (6.3.36)

X 0 , X w e -ta w t u λ , u λ L 2 (R n ) = c t X 0 , X w (e -tmt ) w T λ u 0 , T λ u 0 L 2 (R n ) ,
where the operator

T λ : L 2 (R n ) → L 2 (R n ) is defined for all u ∈ L 2 (R n ) by (6.3.37) T λ u = e i ξ λ ,• u(• -x λ ).
We need compute the commutators between the operators T λ and the operators X 0 , X w and (e -tmt ) w respectively. This is done in the following lemma: Lemma 6.16. Let a ∈ S (R 2n ). We have that for all λ ≥ 0 and u ∈ S(R n ),

a w T λ u = T λ (L λ a) w u in S (R n ),
where L λ a ∈ S (R n ) is given by L λ a = a(• + X λ ).

Proof. Let λ ≥ 0 and u ∈ S(R n ) be a Schwartz function. For all v ∈ S(R n ), we consider the Wigner function H λ (u, v) associated to the functions T λ u and T λ v defined for all (x, ξ) ∈ R 2n by (6.3.38)

H λ (u, v)(x, ξ) = R n e -i y,ξ (T λ u) x + y 2 (T λ v) x - y 2 dy.
It follows from (6.3.37) and (6.3.38) that for all λ ≥ 0, v ∈ S(R n ) and (x, ξ) ∈ R 2n ,

H λ (u, v)(x, ξ) = R n e -i y,ξ e i ξ λ ,x+ y 2 u x + y 2 -x λ e -i ξ λ ,x-y 2 v x - y 2 -x λ dy (6.3.39) = R n e -i y,ξ-ξ λ u x -x λ + y 2 v x -x λ - y 2 dy = H 0 (u, v)(x -x λ , ξ -ξ λ ) = (L -1 λ H(u, v))(x, ξ
), since T 0 is the identity operator. It then follows from (6.3.39) and the definition of the Weyl calculus that for all v ∈ S(R n ),

T * λ a w T λ u, v S (R n ),S(R n ) = a w T λ u, T λ v S (R n ),S(R n ) = a, H λ (u, v) S (R 2n ),S(R 2n ) = a, L -1 λ H 0 (u, v) S (R 2n ),S(R 2n ) = L λ a, H 0 (u, v) S (R 2n ),S(R 2n ) = (L λ a) w u, v S (R n ),S(R n ) .
Since the above estimate holds for all Schwartz functions v ∈ S(R n ), we proved that T * λ a w T λ u = (L λ a) w u in S (R n ). As T λ T * λ is the identity operator, we obtain that a w T λ u = T λ (L λ a) w u in S (R n ). This ends the proof of Lemma 6.16.

The quadratic form m t vanishes on the singular space S. Indeed, if X ∈ S, we recall from (6.2.20) that m s (X) = 0 when 0 ≤ s 1 and since the function s ∈ R → m s (X) is analytic, see (6.1.27) where the matrices M s are constructed, we deduce that m s (X) = 0 for all s ≥ 0. Since the quadratic forms m t are positive semidefinite from Lemma 6.7 and the points X λ are elements of S, we deduce that ∀λ ≥ 0, ∀X ∈ R 2n , (L λ m t )(X) = m t (X + X λ ) = m t (X).

We therefore deduce from (6.3.35) and Lemma 6.16 that for all λ ≥ 0 and u ∈ S(R n ), (6.3.40) (e -tmt ) w T λ u = T λ (L λ e -tmt ) w u = T λ (e -tmt ) w u = 1 c t T λ e -ta w t u, in S (R n ).

Moreover, [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Theorem 4.2) states that for all s ≥ 0, the evolution operator e -sq w generated by an accretive quadratic operator qw (x, D x ), with q : R 2n → C a complexvalued quadratic form with a non-negative real-part Re q ≥ 0, maps S(R n ) into S(R n ):

∀u ∈ S(R n ), e -sq w u ∈ S(R n ).
This implies that T λ e -ta w t u ∈ S(R n ) for all λ ≥ 0 and u ∈ S(R n ) and that the equality (6.3.40) holds in S(R n ). On the other hand, it follows from Lemma 6.16 anew that for all λ ≥ 0 and u ∈ S(R n ),

(6.3.41) X 0 , X w T λ u = T λ X 0 , X + X λ w u, in S (R n ).
Since the right-hand side of the above formula belongs to the Schwartz space S(R n ) for all λ ≥ 0 and u ∈ S(R n ), the equality (6.3.41) holds in S(R n ). As a consequence of (6.3.36), (6.3.40) and (6.3.41), we have that for all λ ≥ 0,

X 0 , X w e -ta w t u λ , u λ L 2 (R n ) = X 0 , X w T λ e -ta w t u 0 , T λ u 0 L 2 (R n ) = T λ X 0 , X + X λ w e -ta w t u 0 , T λ u 0 L 2 (R n ) = X 0 , X + X λ w e -ta w t u 0 , u 0 L 2 (R n ) ,
since the operators T λ are unitary on L 2 (R n ). Moreover, it follows from (6.3.31) that for all λ ≥ 0 and X ∈ R 2n , X 0 , X + X λ w e -ta w t = X 0 , X w e -ta w t + λ|X 0,S | 2 e -ta w t .

This proves that for all λ ≥ 0,

X 0 , X w e -ta w t u λ , u λ L 2 (R n ) = X 0 , X w e -ta w t u 0 , u 0 L 2 (R n ) +λ|X 0,S | 2 e -ta w t u 0 , u 0 L 2 (R n ) .
Combining the above estimate with (6.3.34), we obtain that for all λ ≥ 0,

λ|X 0,S | 2 e -ta w t u 0 , u 0 L 2 (R n ) ≤ X 0 , X w e -ta w t u 0 , u 0 L 2 (R n ) + c t,X 0 u 0 2 L 2 (R n ) .
We now only need to check that the term e -ta w t u 0 , u 0 L 2 (R n ) is not equal to zero to conclude that X 0,S = 0, since the right-hand side of the above estimate does not depend on the parameter λ ≥ 0. Since a t is a non-negative quadratic form, it follows from Corollary 6.26 that the operator e -t 2 a w t is injective. As the Gaussian function u 0 ∈ S(R n ) is non-zero, we deduce that (6.3.42) e -ta w t u 0 , u

0 L 2 (R n ) = e -t 2 a w t u 0 2 L 2 (R n ) =
0, while using the semigroup property of the family of linear selfadjoint operators (e -sa w t ) s≥0 . It therefore follows that X 0,S = 0 and X 0 ∈ S ⊥ . This ends the proof of Theorem 3.13.

Subelliptic estimates enjoyed by accretive quadratic operators

This section is devoted to the proof of Theorem 3.15. Let q : R 2n → C be a complexvalued quadratic form with a non-negative real part. We consider S the singular space of q and 0 ≤ k 0 ≤ 2n -1 the smallest integer such that (5.1.9) holds. Let p k : R 2n → R be the non-negative quadratic form given by (3.5.2) and Λ 2 k be the operator defined in (3.5.3) and equipped with the domain (3.5.4), with 0 ≤ k ≤ k 0 . To prove Theorem 3.15, we will use the interpolation theory as in [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] (Subsection 2.4) which will allow to derive subelliptic estimates for the quadratic operator q w (x, D x ) from estimates for the evolution operators e -tq w . In the following, several estimates will involve the operators Λ 4 k and we recall from the theory of positive operators, see e.g. [START_REF] Lunardi | Interpolation theory[END_REF] (Section 4), that they are positive operators whose domains are given by

D(Λ 4 k ) = u ∈ L 2 (R n ) : Λ 4 k u ∈ L 2 (R n ) .
First of all, we need to prove some additional estimates for the semigroup (e -tq w ) t≥0 . Lemma 6.17. There exist some positive constants c > 0 and µ > 0 such that for all

0 ≤ k ≤ k 0 , t > 0 and u ∈ L 2 (R n ), Λ 4 k e -tq w u L 2 (R n ) ≤ ce µt t 4k+2 u L 2 (R n ) .
Proof. Let 0 ≤ k ≤ k 0 . It follows from the Gauss decomposition of non-negative quadratic forms that there exist a positive integer N k ≥ 1 and some points X k 1 , . . . , X k N k ∈ R 2n such that for all X ∈ R 2n , (6.4.1)

p k (X) = N k j=1 X k j , X 2 .
We deduce from the definition (3.4.6) of the space V k and the definition (3.5.2) of the quadratic form p k that for all X ∈ V k ,

p k (X) = N k j=1 X k j , X 2 = 0.
This proves that for all 1 ≤ j ≤ N k , X k j , X = 0 for all X ∈ V k . The vectors X k j ∈ R 2n are therefore elements of V ⊥ k ⊂ S ⊥ and their associated indexes 0 ≤ k X k j ≤ k 0 satisfy from (3.4.8) that for all 1 ≤ j ≤ N k , (6.4.2)

0 ≤ k X k j ≤ k.
As we have already noticed, the Weyl calculus shows that for all 1 ≤ j ≤ N k , Op w X k j , X 2 = X k j , X w X k j , X w , and we deduce from (3.5.3), (6.4.1) that (6.4.3)

Λ 4 k = 1 + N k j=1 X k j , X w X k j , X w 2 = 1 + 2 N k j=1 X k j , X w X k j , X w + N k j=1 N k =1 X k j , X w X k j , X w X k , X w X k , X w .
It follows from (6.4.2) and Theorem 3.8 that there exist some positive constants c > 0 and 0 < t 0 < 1 such that for all 1 ≤ j, ≤ N k , 0 < t ≤ t 0 and u ∈ L 2 (R n ), (6.4.4)

X k j , X w X k j , X w e -tq w u L 2 (R n ) ≤ √ 2c 2 t 2k+1 |X k j | 2 u L 2 (R n ) ,
and (6.4.5)

X k j , X w X k j , X w X k , X w X k , X w e -tq w u L 2 (R n ) ≤ 2 √ 6c 4 t 4k+2 |X k j | 2 |X k | 2 u L 2 (R n ) ,
since X k j , X k l ∈ S ⊥ . We deduce from (6.4.3), (6.4.4) and (6.4.5) that there exists a positive constant c k > 0 such that for all 0 < t ≤ t 0 and u ∈ L 2 (R n ), (6.4.6)

Λ 4 k e -tq w u L 2 (R n ) ≤ c k t 4k+2 u L 2 (R n ) .
Furthermore, it follows from (6.4.6) and the contraction semigroup property of the family (e -tq w ) t≥0 that for all t > t 0 and u ∈ L 2 (R n ), (6.4.7)

Λ 4 k e -tq w u L 2 (R n ) = Λ 4 k e -t 0 q w e -(t-t 0 )q w u L 2 (R n ) ≤ c k t 4k+2 0 e -(t-t 0 )q w u L 2 (R n ) ≤ c k t 4k+2 0 u L 2 (R n ) .
According to (6.4.6) and (6.4.7), there exists a positive constant µ k > 0 such that for all t > 0 and u ∈ L 2 (R n ),

Λ 4 k e -tq w u L 2 (R n ) ≤ c k e µ k t t 4k+2 u L 2 (R n ) .
This ends the proof of Lemma 6.17.

By using some results of interpolation theory, we can now derive Theorem 3.15 from Lemma 6.17. Let 0 ≤ k ≤ k 0 . We consider H k the Hilbert space defined by

H k = D(Λ 4 k ) = u ∈ L 2 (R n ) : Λ 4 k u ∈ L 2 (R n ) , equipped with the scalar product u, v H k = Λ 4 k u, Λ 4 k v L 2 (R n ) .
We deduce from Lemma 6.17 that there exist some positive constants c > 0 and µ > 0 such that for all t > 0 and u ∈ L 2 (R n ), (6.4.8)

Λ 4 k e -tq w u L 2 (R n ) ≤ ce µt t 4k+2 u L 2 (R n ) .
Considering the operator (6.4.9) p w (x, D x ) = q w (x, D x ) + µ, the estimate (6.4.8) can be written as (6.4.10)

∀t > 0, ∀u ∈ L 2 (R n ), e -tp w u H k ≤ c t 4k+2 u L 2 (R n ) .
It follows from (6.4.10) and the strong continuity of the semigroup (e -tp w ) t≥0 that for all u ∈ L 2 (R n ), t 0 > 0 and 0 < t < t 0 , we have e -(t+t 0 )p w u -e -t 0 p w u H k = e -t 0 p w e -tp w u -u

H k ≤ c t 4k+2 0 e -tp w u -u L 2 (R n ) → t→0 0,
and similarly,

e -(t 0 -t)p w u -e -t 0 p w u H k ≤ c 3 (t 0 -t) 4k+2 u -e -tp w u L 2 (R n ) → t→0 0.
This proves that for all u ∈ L 2 (R n ), the function t ∈ (0, +∞) → e -tp w u ∈ H k is continuous, and therefore measurable. Moreover, we deduce from [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (pp. 425-426) that the operator p w (x, D x ) equipped with the domain D(q w ) is maximal accretive. Corollary 5.13 in [START_REF] Lunardi | Interpolation theory[END_REF] therefore shows that the following continuous inclusion holds between the domain of the quadratic operator q w (x, D x ) and (L 2 (R n ), H k ) 1/(4k+2),2 the space obtained by real interpolation between L 2 (R n ) and H k : (6.4.11)

D(q w ) ⊂ L 2 (R n ), H k 1/(4k+2),2 ,
the domain D(q w ) being equipped with the graph norm • G defined by

∀u ∈ D(q w ), u G = p w (x, D x )u L 2 (R n ) + u L 2 (R n ) .
Since H k is the domain of the operator Λ 4 k and that Λ 2 k is a positive selfadjoint operator, we deduce from Theorem 4.36 in [START_REF] Lunardi | Interpolation theory[END_REF] that (6.4.12)

L 2 (R n ), H k 1/(4k+2),2 = D((Λ 2 k ) 0 ), D((Λ 2 k ) 2 ) 1/(4k+2),2 = D (Λ 2 k ) 2 4k+2 = D Λ 2 2k+1 k .
We therefore obtain from (6.4.11) and (6.4.12) that the following continuous inclusion holds

D(q w ) ⊂ D Λ 2 2k+1 k .
This implies that there exists a positive constant c k > 0 such that ∀u ∈ D(q w ), Λ

2 2k+1 k u L 2 (R n ) ≤ c k p w (x, D x )u L 2 (R n ) + u L 2 (R n ) ,
and we deduce from (6.4.9) that ∀u ∈ D(q w ), Λ

2 2k+1 k u L 2 (R n ) ≤ c k (1 + µ) q w (x, D x )u L 2 (R n ) + u L 2 (R n ) .
This ends the proof of Theorem 3.15.

Fourier integral operators associated to non-negative complex symplectic linear transformations

Fourier integral operators associated with non-negative complex linear transformations play a key role in this paper to manipulate the evolution operators e -tq w generated by quadratic forms q : R 2n → C with non-negative real parts. In this section, we recall their definition and their basic properties following [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Section 5) and [START_REF] Pravda-Starov | Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities[END_REF] (Section 2). Let T ∈ Sp 2n (C) be a non-negative complex symplectic linear transformation, that is, a complex symplectic transformation satisfying ∀X ∈ C 2n , i σ(T X, T X) -σ(X, X) ≥ 0, with σ the canonical symplectic form on C 2n defined in (5.1.2). Associated to this nonnegative symplectic linear transformation is its twisted graph

λ T = (T X, X ) : X ∈ C 2n ⊂ C 2n × C 2n ,
where X = (x, -ξ) ∈ C 2n if X = (x, ξ) ∈ C 2n , which defines a non-negative Lagrangian plane of C 2n × C 2n equipped with the symplectic form

σ 1 ((z 1 , z 2 ), (ζ 1 , ζ 2 )) = σ(z 1 , ζ 1 ) + σ(z 2 , ζ 2 ), (z 1 , z 2 ), (ζ 1 , ζ 2 ) ∈ C 2n × C 2n . The set λ T = (z 1 , z 2 , ζ 1 , ζ 2 ) : (z 1 , ζ 1 , z 2 , ζ 2 ) ∈ λ T ⊂ C 4n ,
is then a non-negative Lagrangian plane of C 4n equipped with the canonical symplectic form on C 4n (see (5.1.2)). According to [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Proposition 5.1 and Proposition 5.5), there exists a complex-valued quadratic form (6.5.1) p(x, y, θ) = (x, y, θ), P (x, y, θ) , (x, y) ∈ R 2n , θ ∈ R N , where (6.5. By using some integrations par parts as in [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (p. 442), this quadratic form p allows to define the tempered distribution (6.5.3)

K T = 1 (2π) n+N 2 det -ip θ,θ p θ,y p x,θ ip x,y R N e ip(x,y,θ) dθ ∈ S (R 2n ),
as an oscillatory integral. Notice here that we do not prescribe the sign of the square root so the tempered distribution K T is defined up to its sign. Appart form this sign uncertainty, it is checked in [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (p. 444) that this definition only depends on the non-negative complex symplectic transformation T , and not on the choice of the parametrization of the nonnegative Lagrangian λ T by the quadratic form p. Associated to the non-negative complex symplectic linear transformation T is therefore the Fourier integral operator

K T : S(R n ) → S (R n ), defined by the kernel K T ∈ S (R 2n ) as ∀u, v ∈ S(R n ), K T u, v S (R n ),S(R n ) = K T , u ⊗ v S (R 2n ),S(R 2n ) .
The first properties of this class of Fourier integral operators is summarized in the following proposition which is taken from [START_REF] Pravda-Starov | Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities[END_REF] (Proposition 2.1): Proposition 6.18. Associated to any non-negative complex symplectic linear transformation T is a Fourier integral operator K T : S(R n ) → S (R n ) whose kernel (determined up to its sign) is the tempered distribution K T ∈ S (R 2n ) defined in (6.5.3) and whose adjoint

K * T = K T -1 : S(R n ) → S (R n )
is the Fourier integral operator associated to the non-negative complex symplectic linear transformation T -1 . The Fourier integral operator K T defines a continuous mapping on the Schwartz space

K T : S(R n ) → S(R n ),
which extends by duality as a continuous map on the space of tempered distributions

K T : S (R n ) → S (R n ),
satisfying the Egorov formula (6.5.4)

∀X 0 ∈ C 2n , ∀u ∈ S (R n ), X 0 , X w K T u = K T J -1 T -1 JX 0 , X w u,
where J is the symplectic matrix defined in (5. 1.6) and where for all

Y 0 = (y 0 , η 0 ) ∈ C 2n , Y 0 , X w = y 0 , x + η 0 , D x .
Furthermore, the Fourier integral operator

K T : L 2 (R n ) → L 2 (R n ), is a bounded operator on L 2 (R n ) whose operator norm satisfies K T L(L 2 (R n )) ≤ 1.
The Egorov formula is presented in the following way in [START_REF] Pravda-Starov | Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities[END_REF] (Proposition 2.1):

(6.5.5)

∀(y 0 , η 0 ) ∈ C 2n , ∀u ∈ S (R n ), ( x 0 , D x -ξ 0 , x )K T u = K T ( y 0 , D x -η 0 , x )u,
with (x 0 , ξ 0 ) = T (y 0 , η 0 ). However, the formulas (6.5.4) and (6.5.5) are equivalent since

x 0 , D x -ξ 0 , x = J -1 X 0 , X w = J -1 T Y 0 , X w , and 
y 0 , D x -η 0 , x = J -1 Y 0 , X w .
The next proposition, coming from [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Proposition 5.9), shows that the composition of two Fourier integral operators associated to non-negative complex symplectic linear transformations remains a Fourier integral operator associated with a non-negative complex symplectic linear transformation. It has a key role in this paper in Section 6.1. The sign uncertainty that appears is anew due to the fact that the Schwartz distributions K T defined in (6.5.3) are determined up to their sign. Although, this sign uncertainty is not an issue in this work. Proposition 6.19. If T 1 and T 2 are two non-negative complex symplectic linear transformations in C 2n , then T 1 T 2 is also a non-negative complex symplectic linear transformation and

K T 1 T 2 = ±K T 1 K T 2 .
Finally, we are interested in the real case: Definition 6.20. A Fourier integral operator K T associated to a real symplectic linear transformation T is called metaplectic.

The metaplectic operators stand out among the other Fourier integral operators K T as illustrated in the following proposition which comes from [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Theorem 5.12): Proposition 6.21. Let K T be a Fourier integral operator associated a non-negative complex symplectic transformation T . The operator

K T : L 2 (R n ) → L 2 (R n ) is invertible if and only if K T is
a metaplectic operator, that is, if and only if T is a real symplectic transformation. In this case, the operator

K T : L 2 (R n ) → L 2 (R n ) defines a bijective isometry on L 2 (R n ).
To finish, let us recall the metaplectic invariance of the Weyl calculus: Theorem 6.22. Let T be a real symplectic transformation and K T the associated metaplectic operator. Then, the following identity holds for all tempered distributions a ∈ S (R n ),

K -1 T a w (x, D x )K T = (a • T ) w (x, D x ).
The general result of metaplectic invariance of the Weyl calculus can be found e.g. in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Theorem 18.5.9). Notice that the Egorov formula (6.5.4) is a particular case of this Theorem for linear forms since (6.5.4) can be also written in the following way

∀X 0 ∈ C 2n , K -1 T X 0 , X w K T = X 0 , T X w ,
by using that (J -1 T -1 J) T = T , which is a straightforward property of real symplectic matrices.

6.6. Appendix of Chapter 6 6.6.1. About the polar decomposition. To begin this appendix, we recall the basics about the polar decomposition of a bounded operator on a Hilbert space. As a prerequisite, we recall that if H is an Hilbert space and T ∈ L(H) is a non-negative selfadjoint bounded linear operator, there exists a unique non-negative selfadjoint bounded operator √ T ∈ L(H) such that ( √ T ) 2 = T , see e.g. [START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF] (Theorem 4.4.2). From there, we define the absolute value of any bounded operator T ∈ L(H) as the selfadjoint operator defined by |T | = √ T * T . The operator |T | satisfies Ker |T | = Ker T . Moreover, we recall that a bounded operator U ∈ L(H) is a partial isometry if U x H = x H for all x ∈ (Ker U ) ⊥ . We can now state the standard polar decomposition theorem whose proof can be found e.g. in [START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF] (Theorem 4.4.3): Theorem 6.23. Let H be an Hilbert space and T ∈ L(H) be a bounded linear operator. Then, there exist a unique non-negative selfadjoint bounded linear operator S ∈ L(H) and a partial isometry U ∈ L(H) such that T = U S and Ker U = Ker T . Moreover, the operator S is given by S = |T |.

However, the decomposition given by Theorem 6.23 is not useful for us. We are more interested here with decompositions of the type T = |T |U . Let us assume that T ∈ L(H) writes as (6.6.1) T = SU, with S ∈ L(H) a non-negative selfadjoint injective bounded linear operator and U ∈ L(H) be a unitary operator. By passing to the adjoint, we deduce that T * = U * S. Since the operator U * ∈ L(H) remains unitary on H and that Ker U * = Ker T * = {0}, the operator T * being injective as a composition of two injective operators, we deduce from Theorem 6.23 that such a couple (U, S) is uniquely defined and S = |T * |. With an abuse of terminology, we call the decomposition (6.6.1), when it exists (it will always be the case in this work), with the bounded linear operators S and U respectively non-negative selfadjoint injective and unitary, the polar decomposition of the operator T .

To end this subsection, let us check that formula (6.1.1), namely e -tq w = e -ta w t e -itb w t , with t ≥ 0 fixed, the operators e -ta w t and e -itb w t being defined in (3.4.2), is the polar decomposition of the evolution operator e -tq w generated by the accretive quadratic operator q w (x, D x ), as defined just before. The operator e -ta w t is injective from Corollary 6.26 since the quadratic form a t is non-negative. In order to check that this operator is also non-negative and selfadjoint on L 2 (R n ), we recall that the adjoint of any evolution operator e -sq w generated by an accretive operator qw (x, D x ) is given by (e -sq w ) * = e -s(q) w , see e.g. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] (Chapter 1, Corollary 10.6) and [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (p. 426). This formula implies that (e -ta w t ) * = e -ta w t , since the quadratic form a t is real-valued. The operator e -ta w t is therefore selfadjoint on L 2 (R n ). By using this selfadjointness together with the semigroup property of the family of contractive operators (e -sa w t ) s≥0 , we deduce that

∀u ∈ L 2 (R n ), e -ta w t u, u L 2 (R n ) = e -t 2 a w t u 2 L 2 (R n ) ≥ 0,
which proves that the operator e -ta w t is also non-negative. Finally, the operator e -itb w t is unitary on L 2 (R n ) since the quadratic form b t is real-valued. 6.6.2. A symplectic lemma. We now prove that any matrix of the form e JQ , with J the real symplectic matrix defined in (5.1.6) and Q a complex symmetric matrix, is symplectic. Before that, let us recall that when K = R or C, the symplectic group Sp 2n (K) is the subgroup of GL 2n (K) composed of all matrices M ∈ GL 2n (K) such that M T JM = J, or equivalently JM = (M T ) -1 J, where J is again the matrix defined in (5.1.6). Lemma 6.24. For all Q ∈ S 2n (C), we have e JQ ∈ Sp 2n (C).

Proof. Since the matrix J satisfies J 2 = -I 2n and J T = -J, and the matrix Q is symmetric, we first notice that for all t ≥ 0, ∂ t (e tJQ ) T Je tJQ = (JQe tJQ ) T Je tJQ + (e tJQ ) T JJQe tJQ = (e tJQ ) T Qe tJQ -(e tJQ ) T Qe tJQ = 0.

Moreover, (e 0JQ ) T Je 0JQ = J, which proves that for all t ≥ 0, (e tJQ ) T Je tJQ = J. In particular, the matrix e JQ is symplectic. This ends the proof of Lemma 6.24.

6.6.3. Splitting of the harmonic oscillator semigroup. In this subsection, we give a decomposition of the harmonic oscillator semigroup. To obtain this splitting, we will make use once again of the theory of Fourier integral operators in the very same way as in Section 6.1. Let us mention as an anecdote that the identity (6.6.3) involved in the proof of the following proposition has played a major role and has been widely used in image processing in order to make rotations, see e.g. [START_REF] Paeth | A Fast Algorithm for General Raster Rotation[END_REF]. This identity is also key here for our purpose. As a byproduct of this splitting, we obtain the injectivity property of the evolution operators generated by accretive quadratic operators associated to non-negative quadratic forms. Proposition 6.25. Let H = -∂ 2

x + x 2 , with x ∈ R, be the harmonic oscillator. Then, the semigroup (e -tH ) t≥0 generated by the operator H admits the following decomposition:

(6.6.2) ∀t ≥ 0, e -tH = e -1 2 (tanh t)x 2 e 1 2 sinh(2t)∂ 2 x e -1 2 (tanh t)x 2 .
This implies in particular that the evolution operators e -tH are injective.

Proof. We begin by observing that for all t ∈ (-π, π), (6.6.3)

1 0 tan t 2 1 1 -sin t 0 1 1 0 tan t 2 1
= cos t -sin t sin t cos t .

Since the functions cos, sin and tan are analytic on {z ∈ C : | Im z| < π 2 }, the formula (6.6.3) can be extended to all t ∈ iR. As a consequence, we have that for all t ∈ R, (6.6.4)

1 0 i tanh t 2 1 1 -i sinh t 0 1 1 0 i tanh t 2 1
= cosh t -i sinh t i sinh t cosh t .

On the other hand, it follows from a readily computation that for all t ∈ R, (6.6.5)

1 0 i tanh t 2 1 = exp -i tanh t 2 0 1 -1 0 1 0 0 0 , (6.6.6) 1 -i sinh t 0 1 = exp -(i sinh t) 0 1 -1 0 0 0 0 1 , and (6.6.7) cosh t -i sinh t i sinh t cosh t = exp -it 0 1 -1 0 .
It follows from (5.1.4), (5.1.6), (6.1.10), (6.6.4), (6.6.5), (6.6.6) and Proposition 6.1 that for all t ≥ 0, (6.6.8)

ε t e -1 2 (tanh t)x 2 e 1 2 sinh(2t)∂ 2 x e -1 2 (tanh t)x 2 = e -t(x 2 -∂ 2 x ) ,
with ε t ∈ {-1, 1} for all t ≥ 0. It only remains to prove that ε t = 1 for all t ≥ 0 to establish (6.6.2). To that end, we consider u 0 ∈ S(R) the Gaussian function defined for all x ∈ R by u 0 (x) = e -x 2 . We first notice that for all t ≥ 0, (6.6.9) e -1 2 (tanh t)x 2 e 1 2 sinh(2t)∂ 2

x e -1 2 (tanh t)x 2 u 0 > 0.

Indeed, this estimate is trivial when t = 0 by definition of u 0 . When t > 0, we observe that for all u ∈ S(R) such that u > 0, the function e -1 2 (tanh t)x 2 u > 0 is also positive, and on the other hand, we notice by using the explicit formula for the Fourier transform of Gaussian functions that

e 1 2 sinh(2t)∂ 2 x u = 2π sinh(2t) exp - x 2 2 sinh(2t) * u > 0,
where * denotes the convolution product. This proves that (6.6.9) holds. Now, let us consider the function ϕ defined for all t ≥ 0 by (6.6.10)

ϕ(t) = ε t e -1 2 (tanh t)x 2 e 1 2 sinh(2t)∂ 2 x e -1 2 (tanh t)x 2 u 0 ∈ S(R n ).
The rest of the proof consists in checking that ϕ(t) > 0 for all t ≥ 0. This property combined with (6.6.9) will prove that ε t > 0 for all t ≥ 0. Since ε t ∈ {-1, 1}, it will then follows that ε t = 1 for all t ≥ 0. We first deduce from [START_REF] Hörmander | Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (Theorem 4.2) that the function t ≥ 0 → e -t(x 2 -∂ 2 x ) u 0 ∈ S(R n ) is continuous which implies from (6.6.8) and (6.6.10) the continuity of the function ϕ from [0, +∞) to S(R). As a consequence of (6.6.9) and (6.6.10), the Schwartz function ϕ(t) is not the zero function for all t ≥ 0. Let x ∈ R. The previous discussion implies that the function t ≥ 0 → ϕ(t)(x) ∈ R * is continuous and does not vanish. Moreover, it follows from (6.6.8) and (6.6.10) that ϕ(0)(x) = u 0 (x) > 0. We deduce that ϕ(t)(x) > 0 for all t ≥ 0. As a consequence, ϕ(t) > 0 for all t ≥ 0. This proves that (6.6.2) holds. The injectivity of the operators e -tH is then a straightforward consequence of (6.6.2) since the operators e -1 2 (tanh t)x 2 and e 1 2 sinh(2t)∂ 2

x are themselves injective. This ends the proof of Proposition 6.25.

Notice that the injectivity property of the evolution operators e -tH can also be readily proved by using the Hermite basis of L 2 (R n ) and a direct calculus. Corollary 6.26. Let q : R 2n → R + be a non-negative quadratic form. Then, for all t ≥ 0, the evolution operator e -tq w generated by the accretive quadratic operator q w (x, D x ) is injective.

Proof. We deduce from [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Theorem 21.5.3) that there exists a real linear symplectic transformation χ : R 2n → R 2n such that for all (x, ξ) ∈ R 2n , (6.6.11)

(q • χ)(x, ξ) = k j=1 λ j (ξ 2 j + x 2 j ) + k+l j=k+1 x 2 j ,
with k, l ≥ 0 and λ j > 0 for all 1 ≤ j ≤ k. By the symplectic invariance of the Weyl quantization, [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (Theorem 28.5.9), we can find a metaplectic operator T satisfying (6.6.12)

q w (x, D x ) = T -1 k j=1 λ j (D 2 x j + x 2 j ) + k+l j=k+1
x 2 j T .

Let t ≥ 0. It follows from (6.6.12) that the evolution operator e -tq w writes as (6.6.13)

e -tq w = T -1 k j=1 e -tλ j (D 2 x j +x 2 j )
k+l j=k+1 e -tx 2 j T .

We deduce from (6.6.13) and Proposition 6.25 that the operator e -tq w is the composition of injective operators, so is itself injective. This ends the proof of Corollary 6.26.

Spectrum localization.

The following result provides a localization for the spectrum of matrices of the form JA, with J the symplectic matrix defined in (5.1.6) and A a Hermitian positive semidefinite matrix. Lemma 6.27. Let A ∈ H n (C) be a Hermitian positive semidefinite matrix and J ∈ Sp 2n (R) be the symplectic matrix given by (5.1.6). Then, the spectrum of the matrix JA is purely imaginary, that is σ(JA) ⊂ iR.

Proof. We first assume that the matrix A is Hermitian positive definite. Under this assumption, we observe that

√ A(JA)( √ A) -1 = √ AJ √ A.
The matrix JA is therefore conjugated to a skew-Hermitian matrix and its spectrum is then purely imaginary. When A is only Hermitian positive semidefinite, we can consider (A p ) p a sequence of Hermitian positive definite matrices that converges to A. Since the eigenvalues of a complex matrix are continuous with respect to this matrix according to [START_REF] Kato | Perturbation theory for linear operators[END_REF] (Theorem II.5.1), and that σ(JA p ) ⊂ iR from the beginning of the proof, we deduce that the eigenvalues of the matrix JA are purely imaginary. This ends the proof of Lemma 6.27. 6.6.5. Taylor expansion in a non-commutative setting. In the next lemma, we prove a composition result of Taylor expansions for functions taking values in noncommutative rings. It will be useful in the end of Subsection 6.6.6. Notice that we consider holomorphic functions in a neighborhood of 0, but the proof works the same near any point of C. Let us recall that C X, Y denotes the ring of non-commutative polynomials in X and Y , and that for all non-negative integer k ≥ 0, we consider C k,0 X, Y the finitedimensional subspace of C X, Y of non-commutative polynomials of degree smaller than or equal to k vanishing in (0, 0). In the following, given ρ > 0, the notation D(0, ρ) denotes the open disk in C centered in 0 of radius ρ, and B((0, 0), ρ) stands for the open ball in M 2n (R) × M 2n (R) centered in (0, 0) of radius ρ with respect to the norm • ∞ defined in the notations in p.11. Lemma 6.28. Let f : D(0, ρ) → C be an analytic function, with ρ > 0. We consider P ∈ C k,0 X, Y , with k ≥ 0 a non-negative integer, and R : B((0, 0), ρ) → M 2n (C) a function satisfying that there exists a positive constant C > 0 such that for all (M, N ) ∈ B((0, 0), ρ) we have

(6.6.14) R(M, N ) ≤ C (M, N ) k+1 ∞ .
Then, there exists ρ ∈ (0, ρ), depending continuously on P and C, such that the function

f • (P + R) : (M, N ) → +∞ j=0 f j (0) j! (P (M, N ) + R(M, N )) j ,
is well defined on B((0, 0), ρ ). Furthermore, there exists a continuous map Ψ :

C k,0 X, Y → C k,0 X, Y and a function R : B((0, 0), ρ ) → M 2n (C) such that for all (M, N ) ∈ B((0, 0), ρ ), f (P (M, N ) + R(M, N )) = f (0)I 2n + Ψ(P )(M, N ) + R (M, N ), with R (M, N ) ≤ Γ C,P (M, N ) k+1
∞ , Γ C,P > 0 denoting a positive constant which depends continuously on C and P .

Proof. Since the functions P and R tend to (0, 0) as (M, N ) goes to (0, 0), if ρ ∈ (0, ρ) is chosen sufficiently small, then for (M, N ) ∈ B((0, 0), ρ ), we have P (M, N ) < ρ/4 and R(M, N ) < ρ/4. Consequently, the function f • (P + R) is well defined on B((0, 0), ρ ). Let (M, N ) ∈ B((0, 0), ρ ). Realizing a Taylor expansion of the function f (considered as a map on M 2n (C)) in P (M, N ), we get that

f • (P + R)(M, N ) = f • P (M, N ) + 1 0 df (P (M, N ) + αR(M, N ))(R(M, N )) dα,
where df denotes the differential of the function f . The second term in the right-hand side of the above equality is a remainder term. Indeed, since P (M, N ) + αR(M, N ) < ρ/2 for all 0 ≤ α ≤ 1 with our choice of ρ ∈ (0, ρ), we deduce from (6.6.14) that this term satisfies

1 0 df (P (M, N ) + αR(M, N ))(R(M, N )) dα ≤ C sup L <ρ/2 df (L) L(M 2n (C)) (M, N ) k+1 ∞ ,
with L(M 2n (C)) the space of bounded operators on M 2n (C). Consequently, we focus on the term f •P (M, N ). Since the function f is analytic on D(0, ρ), we can consider (a j ) j≥0 ∈ C N the coefficients of the Taylor expansion of f and write

∀z ∈ D(0, ρ), f (z) = +∞ j=0 a j z j .
Naturally, f • P (M, N ) can be decomposed as

f • P (M, N ) = f (0)I 2n + Q(P (M, N )) + P (M, N ) k+1 +∞ j=0 a j+k+1 P (M, N ) j , where Q ∈ C k [X]
is a polynomial of degree smaller than or equal to k vanishing in 0 and depending only on f , given by Q(X) = k j=1 a j X j . The third term in the right-hand side of the above equality is also a remainder term. Indeed, since the polynomial P vanishes in (0, 0), there exists a positive constant M P > 0 depending continuously (and only) on P such that

P (M, N ) ≤ M P (M, N ) ∞ .
With the previous choice of ρ ∈ (0, ρ), P (M, N ) < ρ/4, and we obtain that

P (M, N ) k+1 +∞ j=0 a j+k+1 P (M, N ) j ≤ M k+1 P (M, N ) k+1 ∞ +∞ j=0 |a j+k+1 | ρ 4 j .
Notice that the sum in the right-hand side is finite since the function f is analytic on D(0, ρ). Finally, we just have to observe that Q • P ∈ C k 2 ,0 X, Y is a non-commutative polynomial vanishing in (0, 0) and depending continuously on P . The sum of its terms of degree smaller than or equal to k defines Ψ(P ) and its higher order terms are remainder terms bounded by (M, N ) k+1 ∞ , up to a constant also depending continuously on P . This ends the proof of Lemma 6.28. 6.6.6. A perturbation result. To end this Appendix, we give the proof of a quite technical lemma which is instrumental in Section 6.1 and Section 6.2. Let q : R 2n → C be a complex-valued quadratic form with a non-negative real-part. We consider Q ∈ S 2n (C) the matrix of q in the canonical basis of R 2n , F the Hamilton map of q and S its singular space. Let 0 ≤ k 0 ≤ 2n -1 be the smallest integer such that (5.1.9) holds. Moreover, we consider the time-dependent quadratic form κ t : C 2n → R defined in accordance with the convention (E.0.10) for all t ≥ 0 and X ∈ C 2n by (6.6.15)

κ t (X) = k 0 k=0 t 2k Re q (Im F ) k X = k 0 k=0 t 2k Re Q(Im F ) k X 2 .
The following lemma investigates the perturbations of the quadratic form κ t : Lemma 6.29. Let (G α ) 0≤α≤1 be a family of functions G α : B((0, 0), ρ) → M 2n (C), with ρ > 0, satisfying on the one hand that there exist a family (P α ) 0≤α≤1 of non-commutative polynomials P α ∈ C k 0 ,0 X, Y depending continuously on the parameter 0 ≤ α ≤ 1, a family (R α ) 0≤α≤1 of functions R α : B((0, 0), ρ) → M 2n (C) and a positive constant C > 0 such that for all 0 ≤ α ≤ 1 and (M, N ) ∈ B((0, 0), ρ), (6.6.16)

G α (M, N ) = I 2n + P α (M, N ) + R α (M, N ), with (6.6.17) R α (M, N ) ≤ C (M, N ) k 0 +1
∞ , and on the other hand that for all 0 ≤ α ≤ 1 and t ≥ 0 such that (t Re F, t Im F ) ∈ B((0, 0), ρ), (6.6.18) G α (t Re F, t Im F )(S + iS) ⊂ S + iS.

Then, there exist some positive constants c > 0 and 0 < T ≤ 1 such that for all 0 ≤ t ≤ T ,

0 ≤ α ≤ 1 and X ∈ C 2n , κ t G α t Re F, t Im F X ≥ cκ t (X).
Proof. By definition (6.6.15) of the time-dependent quadratic form κ t , the estimate we want to prove writes for all 0 ≤ α ≤ 1, 0 ≤ t 1 small enough and X ∈ C 2n as (6.6.19)

k 0 k=0 t 2k Re Q(Im F ) k G α (t Re F, t Im F )X 2 ≥ c k 0 k=0 t 2k Re Q(Im F ) k X 2 .
By using the two classical inequalities that hold for all m ≥ 1 and a 1 , . . . , a m ≥ 0, ( 

+ . . . + a m ) 2 ≤ 2 m-1 (a 2 1 + . . . + a 2 m
), we notice that in order to prove the estimate (6.6.19), it is in fact sufficient to establish that for all 0 ≤ α ≤ 1, 0 ≤ t 1 small enough and X ∈ C 2n , (6.6.22)

k 0 k=0 t k Re Q(Im F ) k G α (t Re F, t Im F )X ≥ c k 0 k=0 t k Re Q(Im F ) k X .
Indeed, we deduce from (6.6.20) and (6.6.21) that when (6.6.22) holds, we have that for all 0 ≤ α ≤ 1, 0 ≤ t 1 small enough and X ∈ C 2n ,

k 0 k=0 t 2k Re Q(Im F ) k G α (t Re F, t Im F )X 2 (6.6.23) ≥ 1 2 k 0 k 0 k=0 t k Re Q(Im F ) k G α (t Re F, t Im F )X 2 ≥ c 2 2 k 0 k 0 k=0 t k Re Q(Im F ) k X 2 = c 2 2 k 0 k 0 k=0 t 2k Re Q(Im F ) k X 2 2 ≥ c 2 2 k 0 k 0 k=0 t 2k Re Q(Im F ) k X 2 ,
which is the required estimate. We therefore focus on proving the estimate (6.6.22). First of all, let us write the functions G α under a more manageable form. Since the noncommutative polynomials P α ∈ C k 0 X, Y have a degree smaller than or equal to k 0 , vanish on (0, 0) and depend continuously on the parameter 0 ≤ α ≤ 1, there exist some continuous functions σ j,m : [0, 1] → C, with 1 ≤ j ≤ k 0 and m ∈ {0, 1} j , such that for all 0 ≤ α ≤ 1, (6.6.24)

P α (X, Y ) = k 0 j=1 m∈{0,1} j σ j,m (α)X m 1 Y 1-m 1 . . . X m j Y 1-m j .
With an abuse of notation, we denote the above non-commutative product by

X 1-m 1 Y 1-m 1 . . . X m j Y 1-m j = j =1 X m Y 1-m .
We deduce from (6.6.16) and (6.6.24) that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k 0 and (M, N ) ∈ B((0, 0), ρ), (6.6.25)

G α (M, N ) = I 2n + k j=1 m∈{0,1} j σ j,m (α) j =1 M m N 1-m + R α,k (M, N ),
where the remainder terms R α,k (M, N ) are given by (6.6.26)

R α,k (M, N ) = k 0 j=k+1 m∈{0,1} j σ j,m (α) j =1 M m N 1-m + R α (M, N ).
Since the functions σ j,m are continuous on [0, 1], we deduce from (6.6.17) and (6.6.26) that there exists a positive constant C 0 > 0 such that for all 0

≤ α ≤ 1, 0 ≤ k ≤ k 0 and (M, N ) ∈ B((0, 0), ρ), (6.6.27) R α,k (M, N ) ≤ C 0 (M, N ) k+1 .
We can now tackle the proof of the estimate (6.6.22). We begin by studying the matrices t k (Im F ) k G α (t Re F, t Im F ). Let T 0 > 0 be such that (t Re F, t Im F ) ∈ B((0, 0), ρ) for all 0 ≤ t ≤ T 0 . It follows from (6.6.25) that for all 0

≤ α ≤ 1, 0 ≤ k ≤ k 0 and 0 ≤ t ≤ T 0 , G α t Re F, t Im F = I 2n + k 0 -k j=1 m∈{0,1} j σ j,m (α)t j j =1 (Re F ) m (Im F ) 1-m + R α,k 0 -k (t Re F, t Im F ).
We deduce that for all 0

≤ α ≤ 1, 0 ≤ k ≤ k 0 and 0 ≤ t ≤ T 0 , t k (Im F ) k G α t Re F, t Im F = t k (Im F ) k (6.6.28) + k 0 -k j=1 m∈{0,1} j σ j,m (α)t k+j (Im F ) k j =1 (Re F ) m (Im F ) 1-m + t k (Im F ) k R α,k 0 -k (t Re F, t Im F ). Let 0 ≤ α ≤ 1, 0 ≤ k ≤ k 0 and 1 ≤ j ≤ k 0 -k.
Isolating the term associated to the tuple 0 ∈ {0, 1} j whose coordinates are all equal to 0, we split the following sum in two (6.6.29)

m∈{0,1} j σ j,m (α)t k+j (Im F ) k j =1 (Re F ) m (Im F ) 1-m = σ j,0 (α)t k+j (Im F ) k+j + m∈{0,1} j \{0} σ j,m (α)t k+j (Im F ) k j =1 (Re F ) m (Im F ) 1-m .
For all m ∈ {0, 1} j \ {0}, we can write (6.6.30)

j =1 (Re F ) m (Im F ) 1-m = A m (Re F )(Im F ) nm ,
where n m is a non-negative integer satisfying 0 ≤ n m ≤ j -1 and A m ∈ M 2n (R) is a real matrix product of j -1 -n m matrices belonging to {Re F, Im F }. It follows from (6.6.29) and (6.6.30) that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k 0 and 0 ≤ t ≤ T 0 , (6.6.31)

k 0 -k j=1 m∈{0,1} j σ j,m (α)t k+j (Im F ) k j =1 (Re F ) m (Im F ) 1-m = k 0 -k j=1 σ j,0 (α)t k+j (Im F ) k+j + k 0 -k j=1 m∈{0,1} j \{0} σ j,m (α)t k+j (Im F ) k A m (Re F )(Im F ) nm .
Moreover, the second term in the right-hand side of the above equality can be written as

k 0 -k j=1 m∈{0,1} j \{0} σ j,m (α)t k+j (Im F ) k A m (Re F )(Im F ) nm (6.6.32) = k 0 -k j=1 j-1 p=0 m∈{0,1} j \{0} nm=p σ j,m (α)t k+j (Im F ) k A m (Re F )(Im F ) p = k 0 -k-1 p=0 t p+1 k 0 -k j=p+1 m∈{0,1} j \{0} nm=p σ j,m (α)t k+j-p-1 (Im F ) k A m (Re F )(Im F ) p = k 0 -k-1 p=0 t p+1 B α,p,k (t)(Re F )(Im F ) p ,
where we set (6.6.33)

B α,p,k (t) = k 0 -k j=p+1 m∈{0,1} j \{0} nm=p σ j,m (α)t k+j-p-1 (Im F ) k A m ∈ M 2n (C).
We deduce from (6.6.28), (6.6.31) and (6.6.32) that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k 0 and 0 ≤ t ≤ T 0 , (6.6.34)

t k (Im F ) k G α t Re F, t Im F = t k (Im F ) k + k 0 -k j=1 σ j,0 (α)t k+j (Im F ) k+j + k 0 -k-1 p=0 t p+1 B α,p,k (t)(Re F )(Im F ) p + t k (Im F ) k R α,k 0 -k (t Re F, t Im F ).
The triangle inequality therefore implies that for all 0

≤ α ≤ 1, 0 ≤ k ≤ k 0 , 0 ≤ t ≤ T 0 and X ∈ C 2n , (6.6.35) t k Re Q(Im F ) k G α t Re F, t Im F X ≥ t k Re Q(Im F ) k X + k 0 -k j=1 t k+j σ j,0 (α) Re Q(Im F ) k+j X - k 0 -k-1 p=0 t p+1 Re QB α,p,k (t)(Re F )(Im F ) p X -t k Re Q(Im F ) k R α,k 0 -k (t Re F, t Im F )X .
Our aim is now to control the two first terms appearing in the right-hand side of the above estimate. To that end, we begin by noticing that since (σ j,m ) 1≤j≤k 0 ,m∈{0,1} j is a finite family of continuous functions defined on [0, 1], and by definition (6.6.33) of the terms B α,p,k (t), there exists a positive constant c 0 > 0 such that for all 0

≤ α ≤ 1, 0 ≤ k ≤ k 0 , 1 ≤ j ≤ k -k 0 and m ∈ {0, 1} j , (6.6.36) σ j,m (α) + Re QB α,p,k (t)J Re Q ≤ c 0 .
Then, the first term can be controlled in the following way: from (6.6.36) and Lemma 6.31, we have that for all 0 ≤ k ≤ k 0 -1 and η k ∈ (R * + ) k 0 -k , there exists a positive constant γ η k > 0, such that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T 0 and X ∈ C 2n , (6.6.37)

t k Re Q(Im F ) k X + k 0 -k j=1 t k+j σ j,0 (α) Re Q(Im F ) k+j X ≥ γ η k t k Re Q(Im F ) k X -c 0 k 0 -k j=1 (η k ) j t k+j Re Q(Im F ) k+j X .
Notice that when k = k 0 , the sum appearing in the left-hand side of the estimate (6.6.37) is reduced to zero, which motivates to set γ η k 0 = 1. By using that F = JQ and (6.6.36), we derive the following estimate for the second term for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k 0 , 0 ≤ t ≤ T 0 and X ∈ C 2n , (6.6.38)

k 0 -k-1 p=0 t p+1 Re QB α,p,k (t)(Re F )(Im F ) p X ≤ k 0 -k-1 p=0 t p+1 Re QB α,p,k (t)J Re Q Re Q(Im F ) p X ≤ c 0 k 0 p=0 t p+1 Re Q(Im F ) p X .
We deduce from (6.6.35), (6.6.37) and (6.6.38) that for all 0

≤ α ≤ 1, 0 ≤ t ≤ T 0 and X ∈ C 2n , p α,t (X) ≥ k 0 k=0 γ η k t k Re Q(Im F ) k X -c 0 k 0 -1 k=0 k 0 -k j=1 (η k ) j t k+j Re Q(Im F ) k+j X -c 0 (k 0 +1) k 0 p=0 t p+1 Re Q(Im F ) p X - k 0 k=0 t k Re Q(Im F ) k R α,k 0 -k (t Re F, t Im F )X ,
where the functions p α,t are the ones appearing in the left-hand side of the estimate (6.6.22), defined for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T 0 and X ∈ C 2n by (6.6.39) p α,t (X) =

k 0 k=0 t k Re Q(Im F ) k G α (t Re F, t Im F )X .
We make the change of indexes j = k and k = k + j in the following sum

k 0 -1 k=0 k 0 -k j=1 (η k ) j t k+j Re Q(Im F ) k+j X = k 0 k=1 k-1 j=0 (η j ) k-j t k Re Q(Im F ) k X .
Considering the quantity (6.6.40)

ε η,k,t = γ η k -c 0 k-1 j=0 (η j ) k-j -c 0 (k 0 + 1)t,
and the remainder term (6.6.41)

Σ α,t (X) = k 0 k=0 t k Re Q(Im F ) k R α,k 0 -k (t Re F, t Im F )X ,
we deduce that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T 0 and X ∈ C 2n , p α,t (X) satisfies the estimate (6.6.42) p α,t (X)

≥ (γ η 0 -c 0 (k 0 +1)t) Re QX + k 0 k=1 ε η,k,t t k Re Q(Im F ) k X -Σ α,t (X).
Now, we determine the η k ∈ (R * + ) k 0 -k . We would like to have c 0 (η j ) k-j = γη k k+1 . Therefore, we define for all 0 ≤ k ≤ k 0 -1 and 1 ≤ j ≤ k 0 -k, (6.6.43) (η k ) j = γ η k+j c 0 (k + j + 1) .

This construction seems implicit but, in fact, it is not. Indeed, to define η k , we just need to know γ η for the indexes k + 1 ≤ ≤ k 0 and since γ η k 0 = 1, we can proceed by induction. With this construction (6.6.43) of η k , we have that for all 1 ≤ k ≤ k 0 and 0 ≤ t ≤ T 0 ,

ε η,k,t = γ η k k + 1 -c 0 (k 0 + 1)t.
We deduce from this construction and (6.6.42) that for all 0

≤ α ≤ 1, 0 ≤ t ≤ T 0 and X ∈ C 2n , p α,t (X) ≥ k 0 k=0 γ η k k + 1 -c 0 (k 0 + 1)t t k Re Q(Im F ) k X -Σ α,t (X).
Therefore, there exist some positive constants c 1 > 0 and 0 < T 1 < T 0 such that for all

0 ≤ α ≤ 1, 0 ≤ t ≤ T 1 and X ∈ C 2n , (6.6.44) p α,t (X) ≥ c 1 k 0 k=0 t k Re Q(Im F ) k X -Σ α,t (X).
Now, we prove that the reminder term Σ α,t can be controlled by

k 0 k=0 t k | √ Re Q(Im F ) k X|.
To that end, we begin by observing from (6.6.27) and (6.6.41) that 0

≤ α ≤ 1, 0 ≤ t ≤ T 1 and X ∈ C 2n , Σ α,t (X) ≤ C 0 k 0 k=0 t k Re Q(Im F ) k (t Re F, t Im F ) k 0 -k+1 ∞ |X| (6.6.45) = t k 0 +1 C 0 k 0 k=0 Re Q(Im F ) k (Re F, Im F ) k 0 -k+1 ∞ |X|.
Then, the inequality (6.6.20), the estimate (6.6.45) and Lemma 6.30 imply that there exists a positive constant c 2 > 0 such that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ min(1, T 1 ) and

X ∈ (S + iS) ⊥ , Σ α,t (X) ≤ c 2 t k 0 k=0 t k Re Q(Im F ) k X ,
where the orthogonality is taken with respect to the Hermitian structure of C 2n . This estimate combined with (6.6.44) shows the existence of positive constants c 3 > 0 and 0 < T 2 < T 1 such that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T 2 and X ∈ (S + iS) ⊥ , (6.6.46)

p α,t (X) ≥ (c 1 -c 2 t) k 0 k=0 t k Re Q(Im F ) k X ≥ c 3 k 0 k=0 t k Re Q(Im F ) k X .
Now, it only remains to check that the estimate (6.6.46) can be extended to all X ∈ C 2n .

To that end, we notice that for all 0 ≤ k ≤ k 0 , X ∈ S + iS and Y ∈ C 2n , (6.6.47)

Re Q(Im F ) k (X + Y ) = Re Q(Im F ) k Y, since √ Re Q(Im F ) k (S + iS) = {0} 
by definition (5.1.9) of the singular space S. This implies that for all 0 ≤ t ≤ T 2 and X ∈ C 2n written X = X S+iS + X (S+iS) ⊥ , with X S+iS ∈ S+iS and X (S+iS) ⊥ ∈ (S+iS) ⊥ according to the decomposition C 2n = (S+iS)⊕(S+iS) ⊥ , the orthogonality being taken with respect to the Hermitian structure of C 2n , we have (6.6.48)

k 0 k=0 t k Re Q(Im F ) k X = k 0 k=0 t k Re Q(Im F ) k X (S+iS) ⊥ .
Moreover, it follows from the assumption (6.6.18) that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T 2 and X ∈ S + iS, (6.6.49) G α (t Re F, t Im F )X ∈ S + iS.

We deduce from (6.6.39), (6.6.47) and (6.6.49) that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T 2 and X ∈ C 2n , (6.6.50) p α,t (X) = p α,t (X (S+iS) ⊥ ).

As a consequence of (6.6.48) and (6.6.50), the estimate (6.6.46) can be extended to all 0 ≤ α ≤ 1, 0 ≤ t ≤ T 2 and X ∈ C 2n . This ends the proof of Lemma 6.29.

The two following lemmas are used to prove Lemma 6.29.

Lemma 6.30. There exists a positive constant c > 0 such that for all 0 ≤ t ≤ 1 and X ∈ (S + iS) ⊥ , κ t (X) ≥ ct 2k 0 |X| 2 , where the orthogonality is taken with respect to the Hermitian structure of C 2n .

Proof. We begin by observing that for all 0 ≤ t ≤ 1 and X ∈ C 2n , (6.6.51)

κ t (X) ≥ t 2k 0 k 0 k=0 Re Q(Im F ) k X 2 .
Since S = V ⊥ k 0 by definition of the integer k 0 , it follows from (6.3.7) and (6.3.9) that there exists a positive constant c > 0 such that for all X ∈ S ⊥ ,

κ t (X) ≥ t 2k 0 k 0 k=0 Re Q(Im F ) k X 2 ≥ ct 2k 0 |X| 2 , since V ⊥ k 0 = S ⊥ .
Moreover, if X ∈ (S + iS) ⊥ , then Re X, Im X ∈ S ⊥ and since κ t is a non-negative quadratic form, we deduce that

ct 2k 0 |X| 2 = ct 2k 0 | Re X| 2 + ct 2k 0 | Im X| 2 ≤ κ t (Re X) + κ t (Im X) = κ t (X).
This ends the proof of Lemma 6.30. This ends the proof of Lemma 6.31.

To end this subsection, let us detail why Lemma 6.29 can be applied to the functions G and G α respectively defined in (6.2.14) and (6.3.23). Lemma 6.32. The function G defined in (6.2.14) satisfies the assumptions of Lemma 6.29.

Proof. Let us recall that the function G is given by (6.6.52)

G(M, N ) = √ e -2i(M +iN ) e -2i(M -iN ) + I 2n 2 -1
.

The matrix exponential being defined as the sum of an absolutely convergent series, the product of the two exponentials is given by the following Cauchy product for all (M, N ) ∈ M 2n (R) × M 2n (R), (6.6.53)

e -2i(M +iN ) e -2i(M -iN ) = +∞ j=0 (-2i) j j! j =0 j (M + iN ) (M -iN ) j-.
Let us consider the non-commutative polynomial P defined by

P (X, Y ) = k 0 j=1 (-2i) j j! j =0 j (X + iY ) (X -iY ) j-∈ C k 0 ,0 X, Y .
We also consider the function R

: (M, N ) ∈ M 2n (R) × M 2n (R) → M 2n (C) defined for all (M, N ) ∈ M 2n (R) × M 2n (R) by R(M, N ) = +∞ j=k 0 +1 (-2i) j j! j =0 j (M + iN ) (M -iN ) j-.
With these notations, the product of exponentials takes the following form for all

(M, N ) ∈ M 2n (R) × M 2n (R), (6.6 
.54) e -2i(M +iN ) e -2i(M -iN ) = I 2n + P (M, N ) + R(M, N ).
Notice that the term R(M, N ) is a remainder since for all ρ > 0 there exists a positive constant c > 0 such that for all (M, N ) ∈ B((0, 0), ρ), R(M, N ) ≤ c (M, N ) k 0 +1 ∞ . Now applying Lemma 6.28 with ρ = 1 (it could be chosen arbitrarily) and the analytic function (6.6.55)

f : z ∈ D(1, 1) → (( √ z + 1)/2) -1 ,
we deduce that there exists ρ ∈ (0, 1) such that the function G is well defined on B((0, 0), ρ ) and satisfies the assumptions (6.6.16) and (6.6.17) of Lemma 6.29 on B((0, 0), ρ ) (with no dependence with respect to the parameter 0 ≤ α ≤ 1 here). Always in order to apply Lemma 6.29 to the function G, it remains to check that for all t ≥ 0 such that (t Re F, t Im F ) ∈ B((0, 0), ρ ),

G(t Re F, t Im F )(S + iS) ⊂ S + iS.
Notice that G(t Re F, t Im F ) = Φ t from the definitions (6.2.3) and (6.6.52) of the matrices Φ t and of the function G respectively. The inclusion we aim at proving is therefore equivalent to the following one for all t ≥ 0 such that (t Re F, t Im F ) ∈ B((0, 0), ρ ), (6.6.56) Φ t (S + iS) ⊂ S + iS.

Since the matrix function (( √ • + I 2n )/2) -1 is analytic on B(I 2n , 1) (from the analyticity of the function (6.6.55) on D(1, 1)), there exists a sequence of complex numbers (σ j ) j≥1 such that ∀A ∈ B(I 2n , 1),

√ A + I 2n 2 -1 = I 2n + +∞ j=1 σ j (A -I 2n ) j .
It follows that the matrix Φ t is the sum of the following series for all t ≥ 0 such that (t Re F, t Im F ) ∈ B((0, 0), ρ ), (6.6.57)

Φ t = I 2n + +∞ j=1 σ j (e -2itF e -2itF -I 2n ) j .
Since (Re F )S = {0} and (Im F )S ⊂ S from (5.1.10), the two inclusions F (S +iS) ⊂ S +iS and F (S + iS) ⊂ S + iS hold. They imply in particular that e -2itF (S + iS) ⊂ S + iS and e -2itF (S + iS) ⊂ S + iS for all t ≥ 0. The inclusion (6.6.56) is then a consequence of this observation and (6.6.57).

Lemma 6.33. The family of functions (G α ) 0≤α≤1 defined in (6.3.23) satisfies the assumptions of Lemma 6.29.

Proof. We recall that the matrix functions G α are defined for all 0 ≤ α ≤ 1 by (6.6.58)

G α (M, N ) = exp - α 2 Log e -2i(M +iN ) e -2i(M -iN ) .
Similarly to the previous study of the function G in the proof of Lemma 6.32, we deduce that there exists ρ > 0 and C > 0 such that the function

(M, N ) → Log e -2i(M +iN ) e -2i(M -iN ) ,
is well defined on B((0, 0), ρ) and can be written as

∀(M, N ) ∈ B((0, 0), ρ), Log e -2i(M +iN ) e -2i(M -iN ) = P (M, N ) + R(M, N ),
where P ∈ C k 0 ,0 X, Y and R is a remainder term

∀(M, N ) ∈ B((0, 0), ρ), R(M, N ) ≤ C (M, N ) k 0 +1
∞ . Now, observing that the set {-(α/2)P : 0 ≤ α ≤ 1} is bounded, we deduce from Lemma 6.28 applied with f = exp that there exists ρ ∈ (0, ρ) and C > 0 (independent of α) such that for all 0 ≤ α ≤ 1, the function G α is well defined on B((0, 0), ρ ) and there exists

R α : B((0, 0), ρ ) → M 2n (C) satisfying ∀(M, N ) ∈ B((0, 0), ρ ), R α (M, N ) ≤ C (M, N ) k 0 +1 ∞ , such that ∀(M, N ) ∈ B((0, 0), ρ ), G α (M, N ) = I 2n + Ψ(- α 2 P )(M, N ) + R α (M, N ).
Since Ψ is a continuous map, the family of functions (G α ) 0≤α≤1 satisfies the assumptions (6.6.16) and (6.6.17) of Lemma 6.29 on B((0, 0), ρ ).

It remains to check that for all 0 ≤ α ≤ 1 and t ≥ 0 such that (t Re F, t Im F ) ∈ B((0, 0), ρ ), (6.6.59) G α (t Re F, t Im F )(S + iS) ⊂ S + iS.

Let 0 ≤ α ≤ 1 and t ≥ 0 such that (t Re F, t Im F ) ∈ B((0, 0), ρ) fixed. Since the complex function exp(-(α/2) Log •) is analytic on the disk D(1, 1), the matrix function exp(-(α/2) Log •) is analytic on B(I 2n , 1). Thus, there exists a sequence (σ α,j ) j≥0 of complex numbers such that

∀A ∈ B(I 2n , 1), exp - α 2 Log A = +∞ j=0 σ α,j (A -I 2n ) j .
We deduce from this series expansion that (6.6.60) G α (t Re F, t Im F ) = +∞ j=0 σ α,j (e -2itF e -2itF -I 2n ) j .

However, we have already noticed that the vector space S + iS is stable by the matrices e -2itF and e -2itF . The inclusion (6.6.59) is therefore a consequence of this observation and (6.6.60).

Annexes

Annexe A

An observability result

To begin this appendix, we give the proof of the observability result [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Theorem 2.1) by K. Beauchard and K. Pravda-Starov, whose statement is recalled just after. The following proof is taken from [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (Subsection 8.3).

Theorem A.1. We consider Ω ⊂ R n an open subset, ω ⊂ Ω a Borel subset with positive Lebesgue measure, (π k ) k≥1 a family of orthogonal projections defined on L 2 (Ω) and (e -tA ) t≥0 a strongly continuous contraction semigroup on L 2 (Ω). Let c 1 , c 1 , c 2 , c 2 , a, b, t 0 , m > 0 be positive constants, with a < b. We assume that the spectral inequality

(A.0.1) ∀g ∈ L 2 (Ω), ∀k ≥ 1, π k g L 2 (Ω) ≤ c 1 e c 1 k a π k g L 2 (ω) ,
and the dissipation estimate

(A.0.2) ∀g ∈ L 2 (Ω), ∀k ≥ 1, ∀t ∈ (0, t 0 ), (1 -π k )(e -tA g) L 2 (Ω) ≤ c 2 e -c 2 t m k b g L 2 (Ω) ,
hold. Then, there exists a positive constant C > 1 such that the following observability estimate holds

∀T > 0, ∀g ∈ L 2 (Ω), e -T A g 2 L 2 (Ω) ≤ C exp C T am b-a T 0 e -tA g 2 L 2 (ω) dt.
Proof.

Step 1. We begin by establishing that there exist some positive constants 0 < τ 0 < t 0 and M > 0 such that for all 0 < τ < τ 0 and g ∈ L 2 (Ω)

(A.0.3) f (τ ) e -τ A g 2 L 2 (Ω) -f (τ /2) g 2 L 2 (Ω) ≤ c 2 1 τ τ 2 e -tA g 2 L 2 (ω) dt, where (A.0.4) f (s) = exp - M s am b-a
, s > 0.

To that end, we consider

γ = 3c 1 2 am b-a 2 a+m c 2 1 b-a . We observe that (A.0.5) c 2 γ b 2 -m = 3c 1 (2γ) a 2 am b-a .
Notice that we can find 0 < τ 0 < t 0 such that for all 0 < τ < τ 0 ,

(A.0.6) γ τ m b-a > 1, τ 4 ≥ exp - c 1 (2γ) a τ am b-a , τ 2 c 2 2 (1 + c 2 1 ) ≤ exp c 2 γ b 2 m τ am b-a . Let 0 < τ < τ 0 . There exists a positive integer k(τ ) ≥ 1 verifying (A.0.7) 1 < γ τ m b-a ≤ k(τ ) ≤ 2γ τ m b-a
, since, according to (A.0.6), the interval (γτ -m b-a , 2γτ -m b-a ) is of length > 1 and is contained in (1, +∞). We deduce from the Pythagorean identity, the triangular inequality and (A.0.1)

am b-a ≤ exp - c 2 γ b 2 m τ am b-a = exp - 3c 1 2 am b-a (2γ) a τ am b-a = exp - M 2 am b-a τ am b-a = f (τ /2).
Then, the estimate (A.0.3) readily follows from the estimates (A.0.8), (A.0.9) and (A.0.10).

Step 2. We can now derive the observability estimate (A.0.2) from a telescopic argument.

To that end, we set (A.0.11)

C 1 = M 2 am b-a > 0, T0 = 2τ 0 > 0.
For 0 < T < T0 , we define for all k ≥ 0, (A.0.12)

τ k = T 2 k+1 , T 0 = T, T k+1 = T k -τ k .
By applying the estimate (A.0.3) to the function e -T k+1 A g with the parameter τ k , we obtain that for all k ≥ 0 and g ∈ L 2 (Ω), This ends the proof of Theorem A.1.

f (τ k ) e -T k A g 2 L 2 (Ω) -f (τ k+1 ) e -T k+1 A g 2 L 2 (Ω) ≤ c 2 1 T k T k+1 e -tA

Annexe B

Gevrey-type regularity and frequency cut-offs

The aim of this second section is to define and characterize Gevrey-type regularity. Given s > 0 a positive real number, we define the Gevrey-type space G s (R n ) as the space of smooth functions u ∈ C ∞ (R n ) satisfying

∃C > 1, ∀α ∈ N n , ∂ α x u L 2 (R n ) ≤ C 1+|α| (α!) s .
From the Sobolev embeddings, the L 2 norm can be replaced by the L ∞ norm in the previous definition. By construction, the Gevrey-type spaces G s (R n ) form an increasing family with respect to the parameter s > 0. Notice that G 1 (R n ) is the space of analytic functions on R n . When 0 < s < 1, the functions of G s (R n ) are said to enjoy ultra-analytic regularity. The case when s > 1 corresponds to standard Gevrey regularity. We refer the reader to [START_REF] Rodino | Linear partial differential operators in Gevrey spaces[END_REF] for the basics about standard Gevrey spaces.

In the following, we are interested in studying the high-frequency behavior of functions enjoying Gevrey-type regularity. More precisely, we will establish that a smooth function belongs to a Gevrey-type space if and only if its high frequencies are exponentially decaying. To that end, for all non-negative real number λ ≥ 0, we consider the orthogonal cut-off projection .

π λ : L 2 (R n ) → g ∈ L 2 (R n ) :
Proof. Let u ∈ L 2 (R n ) be a function satisfying (B.0.1). First, it follows from (B.0.1), (E.0.5), (E.0.6), (E.0.9) and the Plancherel theorem that for all N ∈ N,

|ξ| N u L 2 (R n ) ≤ n N |α|=N ξ α u L 2 (R n ) ≤ n N (2π) n 2 |α|=N ∂ α x u L 2 (R n ) (B.0.3) ≤ n N (2π) n 2 |α|=N Λ 1 Λ |α| 2 (α!) s ≤ n N (2π) n 2 N + n -1 N Λ 1 Λ N 2 (N !) s ≤ n N (2π) n 2 2 n+N -1 Λ 1 Λ N 2 (N !) s ≤ 2 n-1 (2π) n 2 Λ 1 (2nΛ 2 ) N N sN ,
since α! ≤ N ! for all α ∈ N n such that |α| = N , with the convention 0 0 = 1. By differentiating the low-frequencies and the high-frequencies regimes, we deduce from (B.0.3) that for all q > 0,

|ξ| q u L 2 (R n ) (B.0.4) ≤ |ξ| q 1 |ξ|≤1 u L 2 (R n ) + |ξ| q 1 |ξ|>1 u L 2 (R n ) ≤ |ξ| q 1 |ξ|≤1 u L 2 (R n ) + |ξ| q +1 1 |ξ|>1 u L 2 (R n )
≤ 2 n-1 (2π) n 2 Λ 1 (2nΛ 2 ) q q s q + 2 n-1 (2π) n 2 Λ 1 (2nΛ 2 ) q +1 ( q + 1) s( q +1) .

Let q > 0 fixed for a while. We need to control the terms appearing in the above estimate. First, since Λ 2 > 1, we get that (B.0.5) (2nΛ 2 ) q ≤ (2nΛ 2 ) q ≤ (2nΛ 2 ) q+1 and (2nΛ 2 ) q +1 ≤ (2nΛ 2 ) q+1 .

We are now interested in controlling q q . When q = 0, we use the inequality ∀x ≥ 0, x x ≥ 1 e , still with the convention 0 0 = 1, to obtain that q q = 1 ≤ eq q .

In the other case where q ≥ 1, we use consecutively the increasing property of the functions x ≥ 0 → q x and x ≥ 0 → x q to deduce that q q ≤ q q ≤ q q .

In the two cases, we proved that (B.0.6) q q ≤ eq q .

Then, we use the following estimate ∀x ≥ 0, (x + 1) x+1 ≤ 2 x+1 x x , coming from the logarithmic convexity of the function x ≥ 0 → x x , and the inequality (B.0.6), to obtain that (B.0.7) ( q + 1) q +1 ≤ 2 q +1 q q ≤ e2 q+1 q q . It follows from (B.0.4), (B.0.5), (B.0.6) and (B.0.7) that for all q > 0,

|ξ| q u L 2 (R n ) ≤ 2 n-1 (2π) n 2 Λ 1 ( 2nΛ 
2 ) q+1 e s q sq + 2 n-1 (2π) 

1 s u L 2 (R n ) ≤ 2 1+n+s e s nΛ 1 Λ 2 +∞ N =0 1 2 N = C s,Λ 1 ,Λ 2 ,
where the positive constant C s,Λ 1 ,Λ 2 > 0 is defined in (B.0.2). We therefore deduce from (B.0.10) and the Plancherel theorem that for all λ > 0, ∀q > 0,

(1 -π λ )u L 2 (R n ) = 1 (2π) n 2 1 |ξ|>λ u L 2 (R n ) = 1 (2π)
|D x | q u L 2 (R n ) ≤ Λ 1 Λ q 2 q q s ,
the following estimate holds The end of the proof of Lemma B.3 is then similar to the one of Lemma B.1.

∀λ > 0, (1 -π λ )u L 2 (R n ) ≤ 2Λ 1 e -C
To end this section, we check that any L 2 function whose high frequencies are exponentially decreasing enjoys Gevrey-type regularity.

Lemma B.4. Let s > 0 be a positive real number and u ∈ L 2 (R n ). We assume that there exist some positive constants c 1 , c 2 > 0 such that (B.0.18) ∀λ ≥ 0, (1

-π λ )u L 2 (R n ) ≤ c 1 e -c 2 λ s .
Then, u ∈ G Indeed, it follows from (B.0.20), the Plancherel theorem and the inequality ∀q > 0, ∀x ≥ 0, x q e -x s ≤ q es q s

, that for all q > 0,

|D x | q u L 2 (R n ) = |D x | q e -c 2 |Dx| s e c 2 |Dx| s u L 2 (R n ) ≤ √ 2c 1 q ec 2 s q s .
In the particular case where q = N ≥ 0 is a non-negative integer, we deduce while using the factorial estimate (E.0.4) that

|D x | N u L 2 (R n ) ≤ √ 2c 1 (c 2 s) N s (N !) 1 s .
Finally, it follows from this estimate, the other factorial estimate (E.0.2) and the Plancherel theorem that (B.0.19) holds, since we have that for all α ∈ N n , Moreover, it follows from (B.0.18) applied with λ = 0 that

∂ α x u L 2 (R n ) ≤ |D x | |α| u L 2 (R n ) ≤ √ 2c 
ω(0)F (0) = u 2 L 2 (R n ) ≤ c 2 1 .
As a consequence of the above estimates, we obtain that e c 2 |Dx| s u 2 L 2 (R n ) ≤ 2c 2 1 . This ends the proof of the estimate (B.0.20), and therefore, the one of Lemma B.4.

Annexe C

About the Gelfand-Shilov regularity

This third section is devoted to define and recall basics about Gelfand-Shilov regularity. Given µ, ν > 0 such that µ + ν ≥ 1, we define the Gelfand-Shilov space S µ ν (R n ), following [START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF] (Definition 6.1.1), as the space of Schwartz functions f ∈ S(R n ) satisfying that there exist some positive constants ε > 0 and C > 0 such that

∀x ∈ R n , |f (x)| ≤ Ce -ε|x| 1 ν , ∀ξ ∈ R n , | f (ξ)| ≤ Ce -ε|ξ| 1 µ .
We recall from [START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF] (Theorem 6.1.6) the basic different characterizations of the Gelfand-Shilov space S µ ν (R n ): for all Schwartz function f ∈ S(R n ), the following conditions are equivalent:

(i) f ∈ S µ ν (R n ), (ii) There exists a positive constant C > 1 such that

∀x ∈ R n , ∀α ∈ N n , x α f (x) L ∞ (R n ) ≤ C 1+|α| (α!) ν , ∀ξ ∈ R n , ∀β ∈ N n , ξ β f (ξ) L ∞ (R n ) ≤ C 1+|β| (β!) µ .
(iii) There exists a positive constant C > 1 such that

∀x ∈ R n , ∀α ∈ N n , x α f (x) L 2 (R n ) ≤ C 1+|α| (α!) ν , ∀x ∈ R n , ∀β ∈ N n , ∂ β x f (x) L 2 (R n ) ≤ C 1+|β| (β!) µ .
(iv) There exists a positive constant C > 1 such that

∀(α, β) ∈ N 2n , x α ∂ β x f (x) L 2 (R n ) ≤ C 1+|α|+|β| (α!) ν (β!) µ , (v 
) There exists a positive constant C > 1 such that

∀(α, β) ∈ N 2n , x α ∂ β x f (x) L ∞ (R n ) ≤ C 1+|α|+|β| (α!) ν (β!) µ .
In the case where the ratio µ/ν ∈ Q is a rational number, the Gelfand-Shilov space S µ ν (R n ) can also be nicely characterized through the decomposition into the basis of eigenfunctions of a class of anisotropic Shubin operators, whose basic model is the operator

H = (-∆ x ) m + |x| 2k , x ∈ R n ,
with m, k ≥ 1 two positive integers. Let (ϕ j ) j≥1 be an orthonormal basis of L 2 (R n ) composed of eigenfunctions of the above operator H. Given t ≥ 1 a positive real number, we can characterize the Gelfand-Shilov space S µ ν (R n ), with where λ j > 0 is the eigenvalue associated to the eigenfunction ϕ j ∈ L 2 (R n ) for all j ≥ 1.

We refer to the works [START_REF] Gramchev | Gelfand-Shilov type spaces through Hermite expansions[END_REF][START_REF] Gramchev | Eigenfunction expansions in R n[END_REF][START_REF] Toft | Decompositions of Gelfand-Shilov kernels into kernels of similar class[END_REF] where characterizations of symmetric Gelfand-Shilov spaces S µ µ (R n ), with 2µ ≥ 1, in terms of exponential decrease in the Hermite basis of L 2 (R n ) are presented, corresponding to the particular case where m = k = 1. Such a characterization in the case where µ/ν / ∈ Q has not been found yet. In the following, we need to go through the proofs of the above implications (i) ⇒ (iv) ⇒ (v) given in [START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF] (Proposition 6.1.5 and Theorem 6.1.6) in order to make explicit the dependence of the different constants. For our purpose, we only consider the case where µ = ν = 1/2.

Lemma C.1. We have that for all non-negative integer p ≥ 0 and c > 0,

x p e -cx 2 L 2 (R) ≤ π Proof. For all non-negative integer p ≥ 0, we consider the integral

I p = R |x| 2p e -x 2 dx.
It follows from an integration by parts that for all p ≥ 0, Similarly, we deduce from (C.0.5), Lemma C.1, the Plancherel theorem and the Fubini theorem that for all β ∈ N n , (C.0.7) Let α, β ∈ N n . With an integration par parts, we notice that

I
∂ β x f (x) L 2 (R n ) = 1 (2π) n 2 ξ β f (ξ) L 2 (R n ) ≤ π n 4 (2π) 
x α ∂ β x f (x) 2 L 2 (R n ) = ∂ β x f (x), x 2α ∂ β x f (x) L 2 (R n ) = (-1) |β| f (x), ∂ β x (x 2α ∂ β x f (x)) L 2 (R n ) ,
while it follows from the Leibniz formula that for all x ∈ R n , We therefore deduce from the Cauchy-Schwarz inequality and (E.0.5) that

∂ β x (x 2α ∂ β x f (x)) = γ≤β β γ ∂ γ x (x 2α ) ∂ β-γ x (∂ β x f (x)) = γ≤β, γ≤2α β γ (2α)! (2α -γ)! x 2α-γ ∂ 2β-γ x f (x) 
x α ∂ β x f (x) 2 L 2 (R n ) ≤ γ≤β, γ≤2α β γ 2α γ γ! x 2α-γ f (x), ∂ 2β-γ x f (x) L 2 (R n ) (C.0.8) ≤ 2 2|α|+|β| γ≤β, γ≤2α γ! x 2α-γ f (x) L 2 (R n ) ∂ 2β-γ x f (x) L 2 (R n ) .
It follows from (C.0.6) and (C.0.7) that (C.0.9) γ! x 2α-γ f (x We therefore obtain from (C.0.8), (C.0.9) and (C.0.10) that Then, the Sobolev embeddings give the existence of a positive constant C > 0 only depending on the dimension n such that for all α, β ∈ N n ,

) L 2 (R n ) ∂ 2β-γ x f (x) L 2 (R n ) ≤ π n 2 (2π) 
x α ∂ β x f (x) 2 L 2 (R n ) ≤ 1 2 n 2 γ≤β, γ≤2α 1 
x α ∂ β x f (x) L ∞ (R n ) ≤ C |γ|≤s ∂ γ x (x α ∂ β x f (x)) L 2 (R n ) ,
where s = n/2 + 1. By using anew the Leibniz formula, we obtain that (C.0.13)

x α ∂ β x f (x) L ∞ (R n ) ≤ C |γ|≤s δ≤γ, δ≤α γ δ α δ δ! x α-δ ∂ β+γ-δ x f (x) L 2 (R n ) .
Let α, β ∈ N n and γ, δ ∈ N n such that |γ| ≤ s, δ ≤ γ and δ ≤ α. On the one hand, we deduce from (E.0.3) and (E.0.5) the following estimate : ) that for all α, β ∈ N n ,

x α ∂ β x f (x) L ∞ (R n ) ≤ C 2 2s+n 2 s s! 2 |α| 2 3|α|+3|β|+3s-n 2 C 1 c |α|+ n 4 1 C 2 c |β|+s+ n 4 2 2 |β|+s s! α! β! 1 2
, that is .

x α ∂ β x f (x) L ∞ (R n ) ≤ C (s!)
This ends the proof of Proposition C.2.

Annexe D

Order of a quadratic symbol at a point of the phase space Let q : R 2n → C be a complex-valued quadratic form with a non-negative real part. The purpose of the penultimate section of this appendix is to compute the order of the symbol q at every point X of the phase space R 2n . Let us recall that this order is defined by k(X) = max k ≥ 2 : ∀j ∈ {2, . . . , k}, ∀I ∈ {1, 2} j , q I (X) = 0 , the notation q I denoting the iterated Poisson bracket q I = H q i 1 . . . H q i j-1 q i j , I = (i 1 , . . . , i j ) ∈ {1, 2} j , with q 1 = Re q, q 2 = Im q and H q i l the Hamilton vector field associated to q i l , that is

H q i l = ∇ ξ q i l • ∇ x -∇ x q i l • ∇ ξ .
Let S be the singular space of the quadratic form q, defined in (5.1.8). First, we check that the order of the symbol q is infinite at every point of S. To that end, we will use the fact that when q 1 , q 2 : R 2n → C are two quadratic forms, the Hamilton map F {q 1 ,q 2 } of the quadratic form {q 1 , q 2 } given by the Poisson bracket between q 1 and q 2 is (D.0.1)

F {q 1 ,q 2 } = -2[F 1 , F 2 ],
where F j stands for the Hamilton map of the quadratic form q j , see [START_REF] Pravda-Starov | Contraction semigroups of elliptic quadratic differential operators[END_REF] (Lemma 3.2).

Lemma D.1. The order of the quadratic form q is infinite at every point of its singular space S, that is ∀X ∈ S, k(X) = +∞.

Proof. Let X be a fixed point of the singular space S. We consider k ≥ 2, 2 ≤ j ≤ k and I = (i 1 , . . . , i j ) ∈ {1, 2} j . Let F I be the Hamilton map associated to the quadratic form q I . It follows from (D.0.1) that the matrix F I is given by

F I = (-2) j [F i 1 , [F i 2 , [. . . [F i j-1 , F i j ] . . .]]],
with F i l the Hamilton map of the quadratic form q i l . We deduce from a direct computation that the matrix F I is a finite combinaison of terms of the form (D.0.2) (Im F ) m 1 (Re F ) n 1 . . . (Im F ) m j (Re F ) n j , with m l , n l ≥ 0 some non-negative integers satisfying m 1 + n 1 + . . . + m j + n j = j. Let us temporarily assume that I is different from the j-tuple (2, . . . , 2). Then, each term (D.0.2) contains at least one matrix Re F and can therefore can be factorized on the right by a term of the form (Re F )(Im F ) m , where m ≥ 0 is a non-negative integer. This implies that F I X = 0, since X ∈ S and that the singular space S is also given by the infinite intersection of kernels

S = +∞ j=0
Ker(Re F (Im F ) j ), as we check in (5.1.11). We therefore deduce from the definition (5.1.1) of Hamilton map that q I (X) = σ(X, F I X) = 0. Notice that the above equality also holds when I = (2, . . . , 2) because the commutator q I is equal to zero. In a nutshell, we proved that ∀X ∈ S, ∀k ≥ 2, ∀j ∈ {2, . . . , k}, ∀I ∈ {1, 2} j , q I (X) = 0, On the other hand, M. Hitrik and K. Pravda-Starov proved in [START_REF] Hitrik | Spectra and semigroup smoothing for non-elliptic quadratic operators[END_REF] (Formula (2.0.23)) that the quadratic form H 2k Im q Re q takes the form ∀X ∈ R 2n , H 2k Im q Re q (X) = 2k j=0 (-1) j c j σ(X, (Im F ) j (Re F )(Im F ) 2k-j X), with c j > 0 some positive real numbers. Let us check that (D.0.7) ∀X ∈ W k , H 2k Im q Re q (X) > 0. This will imply that k(X) ≤ 2k for all X ∈ W k and, combined with (D.0.5), will prove (D.0.3). First, in the case where 0 ≤ j ≤ k -1, we notice that for all X ∈ W k , σ(X, (Im F ) j (Re F )(Im F ) 2k-j X) = (-1) j+1 σ((Re F )(Im F ) j X, (Im F ) 2k-j X) = 0, since W k ⊂ V k-1 by definition, where we used anew the skew-symmetry of the Hamilton map F with respect to the symplectic form σ. On the other hand, when k + 1 ≤ j ≤ 2k, we have 0 ≤ 2k -j ≤ k -1 and we deduce similarly that for all X ∈ W k , σ(X, (Im F ) j (Re F )(Im F ) 2k-j X) = 0.

It follows that for all

X ∈ W k = V k-1 \ V k ,

H 2k

Im q Re q (X) = (-1) k c k σ(X, (Im

F ) k (Re F )(Im F ) k X) = c k σ((Im F ) k X, (Re F )(Im F ) k X)
= c k Re q (Im F ) k X > 0, using anew (5.1.1) and (5.1.7). This proves that the property (D.0.7) actually holds. Finally, we observe that ∀X ∈ W 0 , Re q(X) > 0.

The points of W 0 are therefore elliptic, which encourage to set equal to 0 the order of the quadratic form q at these points.

To end this section, we establish the link that exists between the notion of index of any non-zero point of S ⊥ and the notion of order of the quadratic form q at these points. Let us recall that the family of vector spaces V ⊥ 0 , . . . , V ⊥ k 0 is increasing and satisfies V ⊥ 0 . . . V ⊥ k 0 = S ⊥ . This stratification allows to define the index of any point X 0 ∈ S ⊥ by k X 0 = min 0 ≤ k ≤ k 0 : X 0 ∈ V ⊥ k , the orthogonality being taken with respect to the canonical Euclidean structure of R 2n .

Lemma D.3. The notions of order and index are linked through the following inequality (D.0.8)

∀X 0 ∈ S ⊥ \ {0}, k(X 0 ) ≤ 2k X 0 .
Moreover, this inequality is sharp, since (D.0.9) ∀k ∈ {0, . . . , k 0 }, ∃X 0 ∈ V ⊥ k , k(X 0 ) = 2k.

Proof. Let X 0 ∈ S ⊥ \{0} ⊂ R 2n \S. If X 0 ∈ W k with k > k X 0 , then X 0 ∈ V k-1 ⊂ V k X 0 by definition of W k . By definition of index, we also have X 0 ∈ V ⊥ k X 0 . This implies that X 0 = 0, which is absurd. We proved that the inequality (D.0.8) holds, using Lemma D.2. Now, let us consider 0 ≤ k ≤ k 0 and X ∈ W k (which is not empty by definition of the integer k 0 ). According to the orthogonal decomposition R 2n = V k ⊕ V ⊥ k , we write X = X 1 + X 2 , with X 1 ∈ V k and X 2 ∈ V ⊥ k . Let us check that X 2 ∈ W k . On the one hand, X 2 / ∈ V k , otherwise X 2 = 0 which is not possible since X is not an element of V k by definition of W k . On the other hand, X 2 = X -X 1 with X ∈ V k-1 and X 1 ∈ V k ⊂ V k-1 , which implies that X 2 ∈ V k-1 . We actually proved that X 2 ∈ W k . Lemma D.2 then implies that k(X 2 ) = 2k. This ends the proof of (D.0.9) and consequently, the one of Lemma D.3.

Annexe E

Notations

Linear algebra: 1. When K = R or C and n ≥ 1 is a positive integer, M n (K) denotes the vector space of n × n matrices with coefficients in K. The associated linear group is GL n (K). The vector subspace of symmetric matrices is denoted S n (K). Finally, Sp 2n (K) stands for the symplectic group.

2. M T is the transpose matrix of the matrix M ∈ M n (C) and M * = M T denotes its adjoint. 3. The matrix J ∈ Sp 2n (R) is the symplectic matrix given by J = 0 n I n -I n 0 n ∈ Sp 2n (R).

4. We denote by C X, Y the ring of the non-commutative polynomials in X and Y , as defined e.g. in [START_REF] Brešar | Introduction to noncommutative algebra[END_REF] (Chapter 6). For all non-negative integer k ≥ 0, we set C k,0 X, Y the subspace of C X, Y of non-commutative polynomials of degree smaller than or equal to k vanishing in (0, 0). 5. We denote by •, • the bilinear symmetric form on C n defined by (E.0.1)

x, y = n j=0

x j y j , x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ C n .

6. σ stands for the canonical symplectic form given by σ((x, ξ), (y, η)) = ξ, y -x, η , (x, y), (ξ, η) ∈ C 2n .

7. For all vector subspace V ⊂ K n , with K = R or C, the notation V ⊥ is devoted for the orthogonal complement of V with respect to the canonical Euclidean (when K = R) or Hermitian (when K = C) structure of K n . 3. The Hermitian inner product of L 2 (R n ) is defined by

Norms

∀u, v ∈ L 2 (R n ), u, v L 2 (R n ) = R n u(x)v(x) dx,
while • L 2 (R n ) stands for its associated norm.

Fourier transform:

1. For all function u ∈ L 2 (R n ), the Fourier transform of u is denoted by u or F(u) while F -1 (u) stands for its inverse Fourier transform. When u ∈ S(R n ) is a Schwartz function, we define its Fourier transform and its inverse Fourier transform by u(ξ) = F(u)(ξ) =

R n e -i x,ξ u(x) dx, and

F -1 (u)(x) = 1 (2π) n
R n e i x,ξ u(ξ) dξ.

With this convention, the Plancherel theorem states that

∀u ∈ L 2 (R n ), u 2 L 2 (R n ) = (2π) n u 2 L 2 (R n ) .
2. For all continuous function f : R n → R, we denote by f (D x ) the Fourier multiplier of symbol f (ξ), that is

∀u ∈ L 2 (R n ), ∀ξ ∈ R n , f (D x )u(ξ) = f (ξ) u(ξ).
Partial derivatives: Let f : [0, +∞) × R n → R be a smooth function. We denote: 1. ∂ t f the partial derivative of the function f with respect to the time variable t.

2. ∂ x j f the partial derivative of the function f with respect to the space variable x j .

3. ∇ x f the gradient of the function f with respect to the space variable x.

∇ 2

x f the Hessian matrix of the function f with respect to the space variable x. where # denotes the cardinality.

Conventions:

1. Any complex-valued quadratic form q : R 2n → C will be implicitly extended to the complex phase space C 2n in the following way:

(E.0.10) ∀X ∈ C 2n , q(X) = X T QX = q(Re X) + q(Im X),

where Q ∈ S 2n (C) denotes the matrix of the quadratic form q in the canonical basis of the phase space R 2n . 2. If f : (-α, α) → M n (C) is an analytic function such that f (0) = 0, with α ∈ (0, +∞],

there exists an other analytic function g : (-α, α) → M n (C) such that for all t ∈ (-α, α), f (t) = tg(t). With an abuse of notation, we will denote (E.0.11) ∀t ∈ (-α, α), g(t) = f (t)/t.

Chapitre 1

 1 Contrôlabilité à zéro d'équations paraboliques posées sur l'espace euclidien 1.1. Observabilité Un des objectifs de cette thèse est d'étudier la contrôlabilité à zéro de certaines classes d'équations paraboliques dégénérées posées sur l'espace euclidien, de la forme (1.1.1)

2 L 2 (e -tA g 2 L 2

 2222 (ω) dt.

2

 2 2 et B.3 de cette même Annexe B. Chapitre Opérateurs d'Ornstein-Uhlenbeck fractionnaires 2.1. Introduction La première classe d'opérateurs à laquelle on s'intéresse est celle des opérateurs d'Ornstein-Uhlenbeck fractionnaires. Il s'agit d'opérateurs non locaux et non-autoadjoints en général, somme d'une diffusion fractionnaire et d'un opérateur de transport linéaire. Plus précisément, l'opérateur d'Ornstein-Uhlenbeck fractionnaire associé aux matrices réelles B et Q de taille n × n, avec Q symétrique positive (non nécessairement inversible), et au réel p > 0 est l'opérateur donné par (2.1.1) P = 1 2 Tr p (-Q∇ 2 x ) + Bx, ∇ x , x ∈ R n .

  T ) j .

  avec •, • la forme bilinéaire symétrique sur C n définie en (E.0.1). Par définition, on peut considérer 0 ≤ k 0 ≤ 2n -1 le plus petit entier tel que (

  4.18) et (3.4.19) sont plus précises que les estimations (3.3.8) et (3.3.13) respectivement, déjà rencontrées pour ces semi-groupes.

Exemple 3 . 19 .

 319 Tout forme quadratique q : R 2n → C à valeurs complexes et de partie réelle positive dont l'espace singulier est réduit à zéro est diffusive. Exemple 3.20. Soit P l'opérateur d'Ornstein-Uhlenbeck généralisé défini en (3.4.13). On suppose la condition de Kalman vérifiée entre les matrices B et Q, c'est à dire (3.6.3) Rank B Q = n, avec la notation (2.1.7) du Chapitre 2. Rappelons que le Lemme 4.17 du Chapitre 4 montre que l'on a alors n-1 j=0

  d'après(3.4.15), ce qui montre que l'opérateur P est diffusif. En particulier, les opérateurs de Kramers-Fokker-Planck avec potentiel externe quadratiques K a , définis dans l'Exemple 3.1, sont diffusifs pour tout a ∈ R. Ce fait découle aussi plus directement des expressions (3.3.6) et (3.3.7) de leurs espaces singuliers.

Proposition 4 . 1 .

 41 For all u ∈ D(P ), there exists a sequence (u k ) k of S(R n ) such that lim k→+∞ u k = u and lim k→+∞

2 xk 2 xk

 22 2α u -→ k→+∞ u a.e. on R n , and give the existence of v ∈ L 2 (R n ) such that for all k, (4.1.13) ψ D 2α u ≤ |v|.

( 4 .

 4 1.26) w(e -tB •) = F -1 e Tr(B)t w(e tB T •) .

2 t0

 2 (4.1.37) e -tP u = exp -1Qe sB T • 2p ds e Tr(B)t u(e tB T •).

2 .

 2 The second step consists in proving that (-P ) ⊂ A. Let u ∈ D(P ). It follows from Proposition 4.1 that there exists (u k ) k a sequence of Schwartz functions satisfying(4.1.45) 

( 4 .0 0 e 0 e 0 T 0 e 4 . 5 . 4 4. 5 . 1 .

 4000045451 4.13) ∀x ∈ R n , Leb ω ∩ B(x, r 0 ) ≥ δ 0 . Setting r 1 = r 0 sup t∈[0,T ] e tB > 0, we deduce from (4.4.13) that T Leb (e tB ω) ∩ B(x, r 1 ) dt = T Tr(B)t Leb ω ∩ (e -tB B(x, r 1 )) dt ≥ T Tr(B)t Leb ω ∩ (B(e -tB x, r 0 )) dt ≥ δ Tr(B)t dt > 0.This proves that the set ω actually satisfies the geometric condition (4.4.2). Appendix of Chapter About the Kalman rank condition. To begin this appendix, we prove the characterization of the Kalman rank condition in term of the space S.

  F (Im F ) j ).

( 5 . 2 . 4 )

 524 x α (iξ) β p(x, ξ), where denotes the Moyal product defined for all b 1 and b 2 in proper symbol classes by (b 1 b 2 )(x, ξ) = e i 2 σ(Dx,D ξ ;Dy,Dη) b 1 (x, ξ) b 2 (y, η) (x,ξ)=(y,η)

t=0 = 0 ,

 0 according to(5.3.26). Covering the compact set K by finitely many open neighborhoods of the form V X 1 , . . . , V X R , and letting c = min 1≤j≤R c X j and T = min1≤j≤R t X j , we conclude that ∀t ∈ [0, T ], ∀Y ∈ K, Re [Q t (Y )] ≥ ct 2k 0 +1. It ends the proof of Proposition 5.10.

+∞ k=0 a

 k=0 k (tF ) 2k+1 Y = 0, where t 0 = π/(2 F ) and all the coefficients a k are positive real numbers. As a consequence of (5.3.49) and (5.3.50), we notice that for all t ∈ (-t 0 , t 0 ), Y ∈ S and Z ∈ R 2n ,(5.3.51) σ(Z, tan(tF )Y ) = σ(Y, tan(tF )Z) = 0.

6. 1 .

 1 SPLITTING OF SEMIGROUPS GENERATED BY ACCRETIVE QUADRATIC OPERATORS 103

Lemma 6 . 31 .η 1 . 2 .η

 63112 Let m ∈ N * and η ∈ (R * + ) m . Then, we have that for all x, y 1 , . . . , y m ∈ C m , j |y j |, with η min = min 1≤j≤m η j . Proof. Let x, y 1 , . . . , y m ∈ C m . We consider α = 1 1+η min and distinguish two cases: On the one hand, if α|x| ≥ m j=1 |y j |, we have that On the other hand, when α|x| ≤ m j=1 |y j |, it follows that j |y j | ≥ αη min |x| = |x| 1 + η -1 min .

g 2 L 2 2 L 2 ( 2 L 2 e -tA g 2 L 2 (ω) dt = c 2 1 T 0 e -tA g 2 L 2 2 L 2 2 L 2 (, 2 L 2 (A g 2 L 2 (Ω) ≤ C 2 T0 2 0e -tA g 2 L 2 (e -tA g 2 L 2 2 L 2 (e -tA g 2 L 2

 222222221022222222222222222222 (ω) dt.Summing up the previous estimates for all k ≥ 0 provides that(A.0.13) f (τ 0 ) e -T A g Ω) = f (τ 0 ) e -T 0 A g (ω) dt, since T k → k→+∞ 0,and by the contractivity property of the semigroup (e -tA ) t≥0 ,f (τ k ) e -T k A g (Ω) ≤ exp -We deduce from (A.0.11), (A.0.12) and (A.0.13) that (A.0.14)∀T ∈ (0, T0 ), ∀g ∈ L 2 (Ω), e -T A g and by using anew the contractivity property of the semigroup, it follows from (A.0.14) that for all T ≥ T0 and g ∈ L 2 (Ω), (A.0.15) e -T A g Ω) ≤ e -T0 2 (ω) dt.With C = max(c 2 1 , C 1 , C 2 ), we deduce from (A.0.14) and (A.0.15) that ∀T > 0, ∀g ∈ L 2 (Ω), e -T A g (ω) dt.

  Supp g ⊂ {ξ ∈ R n : |ξ| ≤ λ} , with | • | the canonical Euclidean norm of R n . First, we prove that the high frequencies of any regular function that enjoys Gevrey-type regularity are exponentially decaying.Lemma B.1. Let Λ 1 > 0, Λ 2 > 1 be some positive constants and s > 0 be a positive real number. For all function u ∈ L 2 (R n ) satisfying(B.0.1) ∀α ∈ N n , ∂ α x u L 2 (R n ) ≤ Λ 1 Λ |α| 2 (α!) s , the following estimate holds ∀λ > 0, (1 -π λ )u L 2 (R n ) ≤ C s,Λ 1 ,Λ 2 e -C s,Λ 2 λ 1 s ,where the positive constants C s,Λ 1 ,Λ 2 > 0 and C s,Λ 2 > 0 are given by (B.0.2) C s,Λ 1 ,Λ 2 = 2 2+n+s e s nΛ 1 Λ 2 and C s,Λ 2 = s 2e(n2 1+s Λ 2 ) 1 s

n 2 Λ 1 (2nΛ 2 ) 1 s u L 2 (

 21212 q+1 (e2 q+1 ) s q sq (B.0.8)≤ 2 n (2π) n 2 e s Λ 1 (n2 1+s Λ 2 ) q+1 q sq . Considering the constant C s,Λ 2 > 0 defined in (B.0.2), we deduce from (B.0.8) that e C s,Λ 2 |ξ| e N N ! . Moreover, by using the factorial estimate (E.0.4), (B.0.9) and the Plancherel theorem, we obtain that (B.0.10) e C s,Λ 2 |Dx|

n 2 1 1 s

 21 |ξ|>λ e -C s,Λ 2 |ξ| 1 s e C s,Λ 2 |ξ| 1 s u L 2 (R n ) ≤ e -C s,Λ 2 λ e C s,Λ 2 |Dx| 1 s u L 2 (R n ) ≤ C s,Λ 1 ,Λ 2 e -C s,Λ 2 λ 1 s .This ends the proof of Lemma B.3.Under stronger assumptions, one can sharpen the constants C s,Λ 1 ,Λ 2 and C s,Λ 2 in Lemma B.1. Two of these improvements are presented in the next two lemmas, whose proofs are straightforward adaptations of the one of Lemma B.1. These two results are the ones used in the proofs of Theorems 2.13 and 3.23 in Chapters 2 and 3 respectively. Lemma B.2. Let Λ 1 > 0, Λ 2 > 1 be some positive constants and s > 0 be a positive real number. For all function u ∈ L 2 (R n ) satisfying (B.0.11)

2esΛ s 2 .2 Λ 1 . 2 (α!) 1 m 2 Λ 1 (

 212121 s,Λ 2 λ s , where the positive constant C s,Λ 2 > 0 is given by (B.0.12) C s,Λ 2 = 1 Proof. Let u ∈ L 2 (R n ) satisfying (B.0.11). Considering the positive constant C s,Λ 2 > 0 defined in (B.0.12), we deduce from (B.0.11) thate C s,Λs |Dx| s u L 2 (R n ) ≤ N N ! |D x | sN u L 2 (R n ) (B.0.13) N (es) N N ! .Moreover, we have N N ≤ e N N ! for all N ≥ 0 from (E.0.4) and (B.0.13) implies thate C s,Λ 2 |Dx| s u L 2 (R n ) ≤ 2(2π) nThe end of the proof of Lemma B.2 is then similar to the one of Lemma B.1.Lemma B.3. Let Λ 1 > 0, Λ 2 > 1 be some positive constants and m ≥ 1 be a positive integer. For all function u ∈ L 2 (R n ) satisfying (B.0.14) ∀α ∈ N n , ∂ α x u L 2 (R n ) ≤ Λ 1 Λ |α| ,the following estimate holds∀λ > 0, (1 -π λ )u L 2 (R n ) ≤ 2 n Λ 1 e -C m,Λ 2 λ m ,where the positive constant C m,Λ 2 > 0 is given by(B.0.15) C m,Λ 2 = 1 2em(2nΛ 2 ) m . Proof. Let u ∈ L 2 (R n ) satisfying (B.0.14).As in the beginning of the proof of Lemma B.1 we deduce from (B.0.14) and the Plancherel theorem that for all N ∈ N,(B.0.16) |ξ| N u L 2 (R n ) ≤ 2 n-1 (2π) n 2nΛ 2 ) N N N m .Considering the positive constant C m,Λ 2 > 0 defined in (B.0.15), we deduce from (B.0.16) thate C m,Λ 2 |ξ| m u L 2 (R n ) ≤ N N ! |ξ| mN u L 2 (R n ) N (em) N N ! .Moreover, we have N N ≤ e N N ! for all N ≥ 0 from (E.0.4) and (B.0.17) implies thate C m,Λ 2 |ξ| m u L 2 (R n ) ≤ 2 n (2π) n 2 Λ 1 .

1 (c 2 |Dx| s u 2 L 2 (e c 2 1 | 2 L 2 ( 1 | 2 L 2 (ωF 2 L 2 (ω

 122212212222 We now focus on proving (B.0.20). By using the Plancherel theorem and passing to polar coordinates, we first notice thate |ξ| s | u(ξ)| 2 dξ (B.0.21) u(λσ)| 2 dσ λ n-1 dλ.For all λ ≥ 0, let us consider ω(λ) = e c 2 λ s andF (λ) = (1 -π λ )u u(rσ)| 2 dσ r n-1 dr.Notice that since the functionλ ∈ [0, +∞) → -1 (2π) n S n-1 | u(λσ)| 2 dσ λ n-1 ,belongs to the space L 1 (R * + ), the function F is absolutely continuous and a.e. differentiable on [0, +∞), its derivative being given by (B.0.23)F (λ) = -1 (2π) n S n-1 | u(λσ)| 2 dσ λ n-1 ,see e.g.[START_REF] Rudin | Real and complex analysis[END_REF] (Theorem 8.17). Thus, the equality (B.0.21) writes ase c 2 |Dx| s u R n ) = -+∞ 0 ω(λ)F (λ) dλ.Moreover, the absolute continuity of the functions ω and F and the Fubini theorem imply that for all Λ ≥ 0, (r) dr + ω(0) F (λ) dλ= ω(0)F (Λ) -ω(0)F (0) + (λ) dλ ω (r) dr = ω(0)F (Λ) -ω(0)F (0) + Λ 0 (F (Λ) -F (r))ω (r) dr = ω(Λ)F (Λ) -ω(0)F (0) -Λ 0 ω (r)F (r) dr.It therefore follows thate c 2 |Dx| s u R n ) = lim Λ→+∞ -ω(Λ)F (Λ) + ω(0)F (0) + Λ 0 ω (λ)F (λ) dλ .We deduce from (B.0.18) and the definition (B.0.22) of the function F that for all Λ ≥ 0, 0 ≤ ω(Λ)F (Λ) ≤ c 2 1 e -c 2 Λ s → (λ)F (λ) dλ = c 2 s Λ 0 λ s-1 e c 2 λ s F (λ) dλ ≤ c 2 1 c 2 s +∞ 0 λ s-1 e -c 2 λ s dλ = c 2 1 .

  µ = kt k + m and ν = mt k + m , in the following way, according to the result [18] (Theorem 1.4) by M. Cappiello, T. Gramchev, S. Pilipović and L. Rodino,f ∈ S kt k+m mt k+m (R n ) ⇔ ∃ε > 0, +∞ j=1 f, ϕ j L 2 2 e ελ k+m 2kmt j < +∞,

2 +∞ 0 x+ 2 L 2 (R) = R |x| 2p e -2cx 2 dx = 1 (2c) p+ 1 2 R |x| 2p e -x 2 p+ 1 2 .Proposition C. 2 . 2 . 1 n j=1 x α j j e -c 1 x 2 jL 2

 2022122222122 p+1 = R |x| 2p+2 e -x 2 dx = 2p+2 e -x 2 dx = -x 2p+1 e -x 2 +∞ 0 1)I p .Moreover, we haveI 0 = R e -x 2 dx =√ π and it follows from a straightforward induction that for all non-negative integer p ≥ 0, We deduce from (E.0.3) that for all p ≥ 0, p!, and as a consequence of (C.0.1) and (C.0.2), we notice that(C.0.3) ∀p ≥ 0, I p ≤ √ πp!.Let p ≥ 0 be a non-negative integer and c > 0. It follows from (E.0.3), (C.0.3) and the substitution rule thatx p e -cx 2This ends the proof of Lemma C.1. There exists a positive constant C > 1 only depending on the dimension n such that for all positive constants 0 < c1 < 1, 0 < c 2 < 1, C 1 > 0, C 2 > 0 and Schwartz functions f ∈ S(R n ) satisfying (C.0.4) ∀x ∈ R n , |f (x)| ≤ C 1 e -c 1 |x| 2 ,and(C.0.5) ∀ξ ∈ R n , | f (ξ)| ≤ C 2 e -c 2 |ξ| 2 ,we have∀α, β ∈ N n , x α ∂ β x f (x) L ∞ (R n ) ≤ C 1+|α|+|β|Proof. Let f ∈ S(R n ) be a Schwartz function satisfying (C.0.4) and (C.0.5). We first deduce from (C.0.4), Lemma C.1 and the Fubini theorem that for all α ∈ N n , (C.0.6)x α f (x) L 2 (R n ) ≤ C 1 x α e -c 1 |x| 2 L 2 (R n ) = C

=

  

  2α -γ)! (2β -γ)!.Moreover, the estimate (E.0.3) implies that(C.0.10) γ! (2α -γ)! (2β -γ)! = γ! (2α -γ)! γ! (2β -γ)! ≤ (2α)! (2β)! ≤ 4 |α|+|β| (α!) 2 (β!) 2 = 2 |α|+|β| α! β!.

2 3|α|+2|β| C 1 c |α|+ n 4 1 C 2 c |β|+ n 4 2α! β!, since 0 < c 1 , c 2 < 1 . 2 L 2 (

 12412122 It follows from (E.0.5) that the sum satisfies the following estimate (C.0.11) , and as a consequence, we deduce that for all α, β ∈ N n , (C.0.12)x α ∂ β x f (x) R n ) ≤ 2 3|α|+3|β|-

( 2 C 1 c|α-δ|+ n 4 1 C 2 c|β+γ-δ|+ n 4 2 ( 2 , 2

 2112222 2 |γ|+|α| γ! ≤ 2 s s! 2 |α| .On the other hand, it follows from (E.0.3) and (C.0.12) that (C.0.15)x α-δ ∂ β+γ-δ x f (x) L 2 (R n ) ≤ 2 3|α-δ|+3|β+γ-δ|-n α -δ)! (β + γ -δ)! 1 with (α -δ)! ≤ α! and (β + γ -δ)! ≤ (β + γ)! ≤ 2 |β|+|γ| β! γ! ≤ 2 |β|+s s! β!.Moreover, we deduce from (E.0.5) and (E.0.8) that (C.0.16) |γ| ≤ 2 s s + n s ≤ 2 2s+n . Finally, we deduce from (C.0.13), (C.0.14), (C.0.15) and (C.0.16

: 1 . 1 + |x| 2 . 2 .

 1122 The canonical Euclidean norm on R n is denoted by |•|. The associated Japanese bracket • is defined for all x ∈ R n by x = The notation • stands for the matrix norm on M n (C) induced by the norm • 2 on C n . From there, we introduce the norm • ∞ on M n (C) × M n (C) defined by (M, N ) ∞ = max( M , N ).

5 .|x j | 2 N 2 ≤

 522 ∆ x f = ∂ 2 x 1 f + . . . + ∂ 2xn f the Laplacian operator applied to the function f . Multi-indexes: For all multi-index α ∈ N n , we use the notations|α| = n j=1 α j and α! = n j=1 α j !.Let us recall some estimates involving multi-indexes. The following factorial estimates are instrumental in this work, see for instance (0.3.3), (0.3.7) and (0.3.12) in[START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF]:(E.0.2) ∀α ∈ N n , |α|! ≤ n |α| α!, (E.0.3) ∀α, β ∈ N n , (α + β)! ≤ 2 |α+β| α! β! ≤ 2 |α+β| (α + β)!. (E.0.4) ∀α ∈ N n , |α| |α| ≤ e |α| |α|!.The inequality (E.0.2) as well as the left estimate in (E.0.3) are consequences of the multinomial formula, while the right one is straightforward. Another consequence of the multinomial formula is the following estimate, see (0.3.8) in[START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF],(E.0.5) ∀α ∈ N n , β≤α α β = 2 |α| .On the other hand, we notice that for all N ∈ N and x ∈ R n , (E.0.6)|x| N ≤ n N |α|=N |x α |.Indeed, it follows from the multinomial theorem that for all N ∈ N and x ∈ R n , (E.0.7)|x| N = n j=1 derive from (E.0.2) that for all α ∈ N n , |α| = N , N ! = |α|! ≤ n |α| α! = n N α!,which, combined to (E.0.7), leads to the desired estimate:∀N ∈ N, ∀x ∈ R n , |x| N ≤ |α|=N n N α! α! |x α | = n N |α|=N |x α |.Finally, we get from (0.3.15) and (0.3.16) in[START_REF] Nicola | Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators[END_REF] that for all m ≥ 1, (E.0.8) # α ∈ N n : |α| ≤ m = m + n m , and (E.0.9) # α ∈ N n : |α| = m = m + n -1 m ,
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  après(2.3.4), avec 0 ≤ r ≤ n -1 le plus petit entier qui satisfait (2.3.2), les espaces V 0 . . . , V r ⊂ R n étant définis en (2.3.3). Dans l'article[START_REF] Lanconelli | On a class of hypoelliptic evolution operators[END_REF], E. Lanconelli et S. Polidoro montrent que l'on peut trouver une base orthonormale de R n adaptée à cette stratification telle que dans ces nouvelles coordonnées, l'opérateur d'Ornstein-Uhlenbeck hypoelliptique

  1 est le plus petit entier qui satisfait (2.3.2). Ce résultat généralise l'estimation (2.4.2) de M. Bramanti, G. Cupini, E. Lanconelli et E. Priola, et fournit des estimations sous-elliptiques pour l'opérateur d'Ornstein-Uhlenbeck hypoelliptique L dans les directions dégénérées de l'espace R n . Plus généralement, il montre que lorsque la condition de Kalman (2.1.7) est vérifiée et que p ≥ 1 est un entier strictement positif, l'opérateur P possède des propriétés sous-elliptiques globales L 2

  Koenig a aussi étudié cette équation lorsque p = 1/2 dans[START_REF] Koenig | Non-null-controllability of the Grushin operator in 2D[END_REF], mais seulement sur le tore T de dimension 1 et a démontré que lorsque ω = T\[a, b], avec [a, b] un segment non trivial de T, l'équation (2.5.5) n'est contrôlable à zéro en aucun temps T > 0. Le cas p = 1 correspondant à l'équation de la chaleur est maintenant bien compris depuis les résultats récents obtenus indépendamment d'une part par M. Egidi et I. Veselić dans[START_REF] Egidi | Sharp geometric condition for null-controllability of the heat equation on R d and consistent estimates on the control cost[END_REF] et d'autre part par G. Wang, M. Wang, C. Zhang et Y. Zhang dans[START_REF] Wang | Observable set, observability, interpolation inequality and spectral inequality for the heat equation in R n[END_REF], établissant que l'équation de la chaleur posée sur tout l'espace est contrôlable à zéro en n'importe quel temps strictement positif si et seulement si l'ensemble de contrôle ω ⊂ R n est épais. On remarque que la notion d'épaisseur est plus faible que la condition (2.5.2) considérée dans[START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF].Dans ce travail, on montre que l'épaisseur de l'ensemble de contrôle ω ⊂ R n est une condition qui assure la contrôlabilité en tout temps de l'équation d'Ornstein-Uhlenbeck fractionnaire hypoelliptique (2.5.1) posée sur tout l'espace. Théorème 2.11. Soit P l'opérateur d'Ornstein-Uhlenbeck fractionnaire défini en (2.1.1) et équipé du domaine (2.1.2). On suppose que p > 1/2 et que la condition de Kalman (2.1.7) est satisfaite. Si ω ⊂ R n est un ensemble épais, alors l'équation d'Ornstein-Uhlenbeck fractionnaire (2.5.1) est contrôlable à zéro depuis ω en tout temps T > 0.

  . De plus, les matrices -B et √ Q satisfont également la condition de Kalman (2.1.7). Ainsi, d'après la méthode de dualité hilbertienne, le résultat de contrôlabilité à zéro donné par le Théorème 2.11 est équivalent au résultat d'observabilité suivant : Théorème 2.13. Soit P co l'opérateur défini en (2.5.8) et équipé du domaine (2.1.2). On suppose que p > 1/2 et que la condition de Kalman (2.1.7) est satisfaite. Alors si ω ⊂ R n est un ensemble épais, il existe une constante C > 1 telle que pour tout

	où l'opérateur P co est défini par		
	(2.5.8)	P co =	1 2	Tr p (-Q∇ 2 x ) + Bx, ∇ x +	1 2	Tr(B).

L'avantage de l'opérateur P co par rapport à l'opérateur P est qu'il engendre un semigroupe de contraction d'après le Théorème 2.2, qui est une condition requise pour pouvoir appliquer le Théorème 1.3. De plus, d'après le Théorème 2.1, l'adjoint de l'opérateur P co équipé du même domaine que l'opérateur P est donné par

(P co ) * = 1 2 Tr p (-Q∇ 2 x ) + -Bx, ∇ x + 1 2

Tr(-B), avec le même domaine que P *

  dès lors que la matrice cos(tF ) est non singulière, avec F la matrice fondamentale de la forme quadratique q. Cette formule est valable en particulier pour des temps courts 0 ≤ t 1. Pour montrer que l'opérateur x α ∂ β x e -tq w est borné sur L 2 (R n ) en temps petit,

	avec (α, β) ∈ N n I ×N n J , et obtenir les estimations présentées dans le Théorème 3.3, on étudie
	son symbole de Weyl	
	(3.3.11)	x α (iξ) β p t ,
	où désigne le produit de Moyal défini par
	a b = e	i 2 σ(Dx,Dy;Dη,D ξ ) a(x, η)b(y, ξ) (y,η)=(x,ξ) ,
	dans le but d'appliquer une version qualitative du théorème de Calderón-Vaillancourt.
	De manière générale, les parties réelle et imaginaire du symbole p t peuvent dépendre de
	variables différentes, ce qui empêche le symbole (3.3.11) d'être de classe C ∞ b (R 2n ) et donc
	l'utilisation du théorème de Calderón-Vaillancourt. L'hypothèse algébrique S ⊂ Ker(Im F )
	est faite pour prévenir cette situation. On renvoie le lecteur à la Sous-section 5.3.2 du
	Chapitre 5 pour des explications plus détaillées concernant la présence de cette hypothèse.

  se montre par un calcul direct.

	Dans le Chapitre 2, nous avions déjà obtenu un résultat de type décomposition polaire
	pour les semi-groupes d'Ornstein-Uhlenbeck fractionnaires. En effet, considérons de nou-
	veau l'opérateur d'Ornstein-Uhlenbeck fractionnaire P défini en (2.1.1) dans le Chapitre
	2 et muni du domaine (2.1.2). Le Théorème 2.2 de ce même chapitre donne une formule
	explicite pour les opérateurs d'évolution e -tP engendrés par l'opérateur P . Elle est donnée
	pour tout t ≥ 0 par					
	e -tP = exp -	t 2	0	1	Qe αtB T D x	2p dα e -t Bx,∇x .
	Il s'agit bien d'une formule de type décomposition polaire pour les opérateurs d'évolution
	e -tP , l'opérateur e -t Bx,∇x étant une similitude sur L 2 (R n ) qui n'est pas unitaire en
	général.					
	La méthode utilisée pour décrire la décomposition polaire des semi-groupes engendrés
	par les opérateurs quadratiques accrétifs peut également être utilisée pour obtenir d'autres
	formules de décomposition. Par exemple, considérons l'oscillateur harmonique

  1 est le plus petit entier qui satisfait (3.2.1). Le Lemme B.3 de l'Annexe B entraîne alors qu'il existe des constantes c 2 , c 2 > 0 telles que l'estimation de dissipation suivante soit satisfaite pour tout g

  4.1.16) follows from (4.1.19), (4.1.20) and (4.1.21).

	When 0 < 2p ≤ 1, Lemma 4.20 yields that there exists a positive constant c > 0 such that
	(4.1.22)	∀ξ, η ∈ R n ,	Qξ	2p -	Qη	2p ≤ c|ξ -η| 2p .
	Thus, it follows from (4.1.17), (4.1.18), (4.1.20) and (4.1.22) that

  Corollary 4.2. The adjoint of the fractional Ornstein-Uhlenbeck operator P is given by

and (4.

1.16

) is proved in this case. Therefore, we derive (4.1.4) from (4.1.15) and (4.1.16), which ends the proof of Proposition 4.1.

Thanks to Proposition 4.1, we can compute explicitly the adjoints of fractional Ornstein-Uhlenbeck operators:

  r |ξ|, the orthogonality being taken with respect to the Euclidean structure of R n . Combining (4.2.26) and (4.2.27), we obtain that for all 0 < t ≤ 1 and ξ ∈ S ⊥ ,

	(4.2.28)

  1+( m 2 -1) + c 2 and considering P the operator defined by

	(4.3.7)	P = P +	1 2	Tr(B) + µ,
	the inequality (4.3.6) can be written as		
	(4.3.8)			

  By using (E.0.5) and (E.0.8), we therefore deduce that for all (a, b) ∈ N 2n and (α, β) ∈ N n I × N n J , the cardinality of the set E a,b,α,β satisfies the following estimate:

	(5.2.21) #E a,b,α,β ≤	n + |α| |α|	n + |β| |β|	n + min(|α|, |β|) min(|α|, |β|)	n + |a| |a|	n + |b| |b|
				≤ 2 |α|+|β|+min(|α|,|β|)+|a|+|b|+5n .

where # denotes the cardinality. It only remains to estimate #E a,b,α,β . To that end, we recall anew from (5.2.9) that any element (η, ρ, γ, a , b ) ∈ E a,b,α,β , with (a, b) ∈ N 2n and (α, β) ∈ N n I × N n J , satisfies |η| ≤ |β|, |ρ| ≤ |α|, |γ| ≤ min(|α|, |β|), |a | ≤ |a|, |b | ≤ |b|.

  Since P t is a real matrix, we have that for all Ξ ∈ R N ,

		(Theorem 7.6.1) that for all Ξ ∈ R N ,
	(5.2.30)	e -qt (Ξ) = | det P t |	√	N 2 det S t π	e -1 4 S -1 t P T t Ξ,P T t Ξ ,
	where					
					N
			det S t =		e	1 2 Log(1+iλ j,t ) ,
					j=1
	(5.2.31)	∆ t = Re(S -1 t ) = Diag	1 1 + λ 2 1,t	, . . . ,	1 1 + λ 2 N,t	.
	(5.2.32)	e -1 4 S -1 t P T t Ξ,P T		
	(5.2.33) ∆ t P T t Ξ, P T t Ξ =	∆ t P T t Ξ	2		

with Log the principal determination of the complex logarithm in C \ R -. We consider ∆ t ∈ M N (R) the real diagonal matrix defined by

t Ξ = e -1 4 ∆tP T t Ξ,P T t Ξ .

Moreover, both P t and ∆ t are non-degenerate, and it follows that for all Ξ ∈ R N ,

  Log denotes the principal determination of the complex logarithm on C \ R -. It follows from (5.3.52) and(5.3.53) that for all (α, β)

			(Theorem 4.2) provides that
	(5.3.53)	∀t ∈ [0, t 0 ], e -tq w =	(e -qt ) w det(cos(tF ))	,
	with	det(cos(tF )) = exp	1 2	Log det(cos(tF )) ,
	where			

  where A t (resp. B t ) is the matrix of the quadratic form a t (resp. b t ) in the canonical basis of R where α p , β p ∈ Q are explicit rational coefficients and ad P 1 P 2 := [P 1 , P 2 ] = P 1 P 2 -P 2 P 1 ,

		w t e -itb w t ,
	is equivalent to the finite dimensional matrix relation
	(6.1.4)	e -2itJQ = e -2itJAt e 2tJBt ,

2n 

. The equivalence between (6.1.3) and (6.1.4) will be justified rigorously shortly later with the theory of Fourier integral operators. By applying the Baker-Campbell-Hausdorff formula introduced in

[START_REF] Baker | Alternants and Continuous Groups[END_REF] 

and

[START_REF] Hausdorff | Die symbolische Exponentialformel in der Gruppentheorie[END_REF]

, the relation (

6

.1.3) is formally equivalent to (6.1.5) -tq w = +∞ m=0 p∈{at,ibt} m (ad tp w 1 ) . . . (ad tp w m )(α p ta w t + β p itb w t ),

  1,t , X w e -t

			m a w t . . . Y m,t , X w e -t m a w t ,
	where the time-dependent points Y j,t ∈ C 2n are given for all 1 ≤ j ≤ m by
	(6.3.26)	Y j,t = e	2i(j-1)t m

  1/s (R n ), and we have the following estimates for its seminorms Notice that to obtain (B.0.19), it is sufficient to prove the following estimate (B.0.20) e c 2 |Dx| s u L 2 (R n ) ≤ √ 2c 1 .

	(B.0.19)	∀α ∈ N n ,	∂ α x u L 2 (R n ) ≤	√	2c 1	n c 2 s	|α| s	(α!)	1 s .
	Proof.								
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Remerciements

Moreover, the function ϕ X is smooth and its derivative is given for all t ≥ 0 by (ϕ X ) (t) = -iσ(2iF e 2itF X, e 2itF X) -iσ(e 2itF X, 2iF e 2itF X) (5.3.3) = -2σ(F e 2itF X, e 2itF X) + 2σ(e 2itF X, F e 2itF X) = 2σ(e 2itF X, F e 2itF X) + 2σ(e 2itF X, F e 2itF X) = 2σ(e 2itF X, (F + F )e 2itF X) = 4σ(e 2itF X, (Re F )e 2itF X), since F is skew-symmetric with respect to σ, see (5.1.7). By using anew (5.1.7) 

It follows from the definition (5.1.1) of F , (5.3.3) and (5.3.4) that for all t ≥ 0, (ϕ X ) (t) = 4σ(Re(e 2itF X), (Re F ) Re(e 2itF X)) + 4σ(Im(e 2itF X), (Re F ) Im(e 2itF X))

(

= 4(Re q)(Re(e 2itF X)) + 4(Re q)(Im(e 2itF X)) ≥ 0, since Re q ≥ 0. This ends the proof of Lemma 5.5 since ϕ X (0) = 0.

The two following algebraic lemmas are instrumental in the following:

Lemma 5.6. Let A be a real n × n symmetric positive semidefinite matrix. Then, we have ∀X ∈ R n , X, AX = 0 ⇔ AX = 0.

Proof. Thanks to the spectral theorem for real symmetric matrices, we can consider (e 1 , . . . , e n ) an orthonormal basis of R n equipped with its Euclidean structure, where the e j are eigenvectors of A. For all j = 1, . . . , n, let λ j ≥ 0 be the eigenvalue associated to e j . The λ j are non-negative real numbers since A is positive semidefinite. Let X ∈ R n satisfying X, AX = 0. Decomposing X in the basis (e 1 , . . . , e n ), X = X 1 e 1 + . . . + X n e n , with X 1 , . . . , X n ∈ R, we notice that

since (e 1 , . . . , e n ) is orthonormal. Moreover, the λ j are non-negative real numbers, and it follows that λ j X 2 j = 0 for all 1 ≤ j ≤ n. Therefore, λ j X j = 0 for all 1 ≤ j ≤ n, and this implies that

Conversely, if AX = 0, then X, AX = 0. Lemma 5.7. Let K ≥ 0 be a non-negative integer. Then, for all X ∈ C n satisfying (5. 3.6) ∀k ∈ {0, . . . , K}, (Re F )(F k X) = 0, we have

Proof. For fixed t ≥ 0 and u ∈ S(R n ), we consider the following time-dependent functional defined for all s ≥ 0 by (6.3.11)

The function G is differentiable on (0, +∞) and its derivative is given for all s > 0 by

Since a w t is a selfadjoint operator (as its Weyl symbol is real-valued), we obtain that for all s > 0, (6.3.12)

We therefore deduce that for all s ≥ 0, t ≥ 0 and u ∈ S(R n ),

This ends the proof of Lemma 6.13.

We need the following lemma whose proof can be found e.g. in [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF] (Lemma 2.6):

Lemma 6.14. Let q : R 2n → R + be a non-negative quadratic form. Then, the quadratic operator qw (x, D x ) is accretive, that is

The anisotropic estimates given by Lemma 6.12, combined with Lemma 6.13, provide a first regularizing effect for the evolution operators e -sa w t .

Lemma 6.15. There exist some positive constants 0 < t 1 < T and c > 0 such that for all 0 ≤ α ≤ 1, 0

where 0 ≤ k X 0 ≤ k 0 denotes the index of the vector X 0 ∈ S ⊥ defined in (3.4.8).

Proof. We shall first prove that there exist some positive constants c 0 > 0 and 0 < t 0 < T such that for all 0

where 0 ≤ k X 0 ≤ k 0 denotes the index of the vector X 0 ∈ S ⊥ defined in (3.4.8). If the estimate (6.3.14) holds, the proof of Lemma 6.15 is done. Indeed, by denoting M α,t = Re(e 2iαtAtJ ), we deduce from (6.3.14) that for all 0 ≤ α ≤ 1, 0 < t ≤ t 0 , X 0 ∈ S ⊥ and

It then follows from (6.3.15) and Lemma 6.14 that for all 0 ≤ α ≤ 1, 0 < t ≤ t 0 , s ≥ 0, X 0 ∈ S ⊥ and u ∈ S(R n ), (6.3.16) M α,t X 0 , X 2 w e -sa w t u, e -sa

Moreover, the Weyl calculus, see e.g. the composition formula (18.5.4) in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], provides that for all 0 ≤ α ≤ 1 and 0 < t ≤ t 0 , (6.3.17)

which implies that the quadratic form q has an infinite order at any point of its singular space S. This ends the proof of Lemma D.1.

The objective is now to prove that the quadratic form q has a finite order at any point of R 2n \ S. More precisely, we aim at describing exactly the order of the symbol q at any point of this set. To that end, we consider 0 ≤ k 0 ≤ 2n -1 the smallest integer such that (5.1.9) holds and the vector subspaces V k ⊂ R 2n defined for all 0 ≤ k ≤ k 0 by

From there, we set

It follows from (5.1.9) that this family of sets constitutes a partition of the complementary of the singular space S in the phase space

The following result states that for all 0 ≤ k ≤ k 0 , the order of the quadratic form q is the same at any point of W k : Lemma D.2. The quadratic form q has a finite order at every point of R 2n \ S. More precisely,

with the convention that the order of the symbol q is equal to 0 at every point of W 0 .

Proof. Let 1 ≤ k ≤ k 0 , 2 ≤ j ≤ 2k and I = (i 1 , . . . , i j ) ∈ {1, 2} j . We first want to prove that (D.0.4)

By definition of order of a symbol at a point of the phase space, this will imply that (D.0.5)

As in the proof of Lemma D.1, we notice that the Hamilton map F I associated to the quadratic form q I is a finite combinaison of terms of the form (D.0.6)

with m l , n l ≥ 0 some non-negative integers satisfying m 1 + n 1 + . . . + m j + n j = j. Let us assume temporarily that I is different from the j-tuple (2, . . . , 2). As a consequence, each of the above matrix products contains a least one Re F and can be factorized on the left by a term of the form (Im F ) l 1 (Re F ), and factorized on the right by a term of the form (Re F )(Im F ) l 2 , with l 1 , l 2 ≥ 0 some non-negative integers. Let us consider 0 ≤ l ≤ k -1 an integer and M ∈ M 2n (C). We notice that for all

where we used in addition the skew-symmetry of the Hamilton map F with respect to the symplectic form σ, see (5.1.7). As a consequence, if a matrix A taking the form (D.0.6) satisfies σ(X, AX) = 0 for all X ∈ W k , it can be factorized as (Im F ) l 1 (Re F )M and N (Re F )(Im F ) l 2 , with M, N ∈ M 2n (C) and l 1 , l 2 ≥ k some positive integers. The matrix M is therefore the product of at least l 2 terms taken in the set {Re F, Im F } and the matrix A is the product of at least l 1 + l 2 + 1 such terms. Since m 1 + n 1 + . . . + m j + n j = j, this implies that j ≥ l 1 + l 2 + 1 ≥ 2k + 1, which is absurd since j ≤ 2k. We proved that σ(X, AX) = 0 for all X ∈ W k and all matrix A taking the form (D.0.6). We then deduce from the definition of Hamilton map (5.1.1) that (D.0.4) actually holds when I = (2, . . . , 2).

Notice that this equality is also valid when I = (2, . . . , 2) since q I = 0 in this case.