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Résumé en français

Motivations

Les systèmes cyber-physiques (CPS) et l’internet des objets marquent le début

de la quatrième révolution industrielle, après la première révolution “mécanisation”

résultant de l’invention de la machine à vapeur, la deuxième “production de

masse” à l’aide de l’électricité et la troisième “numérisation” par utilisation de

l’électronique et des technologies de l’information (Jazdi, 2014; Khaitan and Mc-

Calley, 2014). Le domaine des systèmes cyber-physiques devrait jouer un rôle ma-

jeur dans la conception et le développement des systèmes du futur. Les systèmes

cyber-physiques reposent sur une interaction étroite entre des éléments cyber,

c’est-à-dire des logiciels et des réseaux de communication, et des éléments physiques.

Aujourd’hui, ces systèmes se retrouvent dans nombreuses technologies inno-

vantes telles que les systèmes énergétiques, les systèmes de soins et de santé,

la robotique industrielle, les bâtiments intelligents et le transport. Les réseaux

électriques modernes constituent un bon exemple de systèmes cyber-physiques.

Dans de tels systèmes, les parcs éoliens et les fermes solaires constituent les com-

posants physiques, alors que les calculateurs utilisés pour la décision constituent

les composants cyber.

Du point de vue de l’Automatique, la classe de systèmes cyber-physiques décrite

dans l’exemple ci-dessus est connue aussi sous le nom de systèmes contrôlés en

réseau. L’intérêt croissant pour ces systèmes est motivé par le fait qu’ils disposent

d’une grande flexibilité, de coûts réduits, d’un entretien et d’une installation plus

facile, ainsi que d’un poids et d’un volume plus faibles par rapport aux systèmes

de contrôle classiques (Postoyan and Nešić, 2012). Toutefois, ces flexibilités ne

conduisent pas directement à une efficacité améliorée et ne peuvent pas être ex-

ploitées simplement. En général, l’insertion d’un réseau de communication dans

la boucle de retour induit des contraintes et de nouvelles sources de variabilité.

Par exemple, on observe des délais de transmission irréguliers, des retards dans

la transmission, et la nécessité de planifier l’accès au réseau. Ces problématiques

sont susceptibles d’affecter sérieusement le comportement et les performances du

système contrôlé en réseau.



Dans cette thèse, nous nous intéressons à l’estimation d’état des systèmes dy-

namiques continus (composants physiques) en utilisant des systèmes informatiques

reliés à travers un réseau de communication (composants cyber) dans le contexte

“erreur bornée”. Dans ce contexte, on suppose que les données transmises et le

système sont soumis à des perturbations et bruits inconnus bornés avec bornes con-

nues a priori. Afin d’atteindre cet objectif, nous proposons d’utiliser des approches

d’observation par intervalles qui sont bien adaptées à l’absence d’information sur

les distributions de probabilité des perturbations et des bruits. Les observateurs

par intervalles sont des estimateurs d’état garantis, dans le sens où l’existence d’une

solution peut être vérifiée et qu’aucune solution ne peut être perdue. Fondamen-

talement, les observateurs par intervalles calculent des tubes de trajectoires qui

contiennent de manière garantie l’ensemble des trajectoires admissibles de l’état

du système, tout en tenant compte de toutes les incertitudes et perturbations

agissant sur le système et les mesures.

Dans la première partie de cette thèse, nous abordons les objectifs suivants dans

le contexte “erreur bornée”:

• La synthèse d’observateurs d’état qui prennent en compte le ryhtme irrégulier

de transmission de données (mesures). Ceci va permettre d’améliorer la

robustesse des systèmes cyberphysiques par rapport aux erreurs induites par

le réseau de communication.

• La synthèse simultanée de l’observateur et du mécanisme d’échantillonnage

de donnée qui ne transmet les données qu’en cas de besoin. Ce mécanisme

va permettre également de réduire la charge sur le réseau de communication

utilisé dans les systèmes cyberphysiques.

Nombreuses applications des systèmes cyberphysiques occupent des fonctions

essentielles dans les infrastructures critiques, telles que la distribution d’énergie

électrique, la distribution de gaz naturel, le traitement de l’eau, les systèmes de

transport, les dispositifs de soins de santé et les systèmes d’armes. La pertur-

bation de ces systèmes de contrôle pourrait avoir un impact significatif sur la

santé et la sécurité publiques qui pourraient entrâıner, par conséquence, des pertes

économiques importantes. Les systèmes de contrôle ont été des cas confirmés de

cyber-attaques et ils sont plus vulnérables aujourd’hui qu’avant aux attaques in-

formatiques pour de nombreuses raisons (Cárdenas et al., 2008), (Humayed et al.,

2017), par exemple:



Hypothèse d’isolement - Dans les systèmes de contrôle industriel (ICS) et les

réseaux électriques, à titre d’exemple, l’accent a été mis sur la conception de

systèmes fiables et sûrs, alors que la sécurité n’a pas été d’une grande impor-

tance. En effet, ces systèmes étaient censés être isolés du monde extérieur

et les opérations de surveillance et de contrôle étaient effectuées localement,

et donc considérées comme sécurisées (Ericsson, 2010).

Connectivité accrue - Les CPS sont plus connectés que jamais. Ces systèmes

ont été améliorés en ajoutant des services qui reposent sur des réseaux ou-

verts et des technologies sans fil. En générale, les ICS et les réseaux intel-

ligents sont connectés à des centres de contrôle connectés à Internet. La

dépendance croissante des ICS aux protocoles à normes ouvertes, tels que

TCP/IP, les rend vulnérables (Humayed et al., 2017). En effet, ces proto-

coles ont toujours des problèmes de sécurité car ils n’étaient pas censés être

sécurisés par conception (Harris and Hunt, 1999).

En raison de ces faits, la sécurité des CPS contre les cyber-attaques devient

désormais une étape primordiale et importante dans la conception des CPS. La

sécurité de ces systèmes peut être vue de deux côtés: perspective informatique et

perspective automatique. Dans cette thèse, nous nous intéressons au point de vue

automatique. Ainsi, dans la suite de cette thèse, en utilisant les observateurs par

intervalles conçus, nous visons à :

• Développer un estimateur sécurisé pour les CPS vis-à-vis les cyber-attaques.

Chapitre 1: Positivité et stabilité

Dans cette thèse nous développons des observateurs par intervalles pour des systèmes

contrôlés via un réseau de communication. Ces observateurs sont des estimateurs

ensemblistes qui estiment un ensemble admissible de l’état du système en calcu-

lant une borne supérieure et une borne inferieure de l’ensemble qui est sous forme

d’un intervalle (bôıte). Ce type d’observateur doit satisfaire deux propriétés; (i)

la positivité des erreurs d’estimation et (ii) la stabilité de ces erreurs. La présence

du réseau de communication dans la boucle d’estimation du système continu peut

faire apparaitre des comportements discrets. C’est ainsi que nous fournissons dans

ce chapitre les outils théoriques pour l’analyse de la positivité et la stabilité des

systèmes qui présentent à la fois un comportement continu et un comportement

discret, et donc un comportement “hybride”.



Chapitre 2: Observateur par intervalles pour les systèmes

linéaires avec mesures apériodiques

Aujourd’hui, l’étude des systèmes à données échantillonnées apériodiquement con-

stitue un sujet de recherche très populaire en contrôle. Ceci est une conséquence

de l’énorme développement des systèmes de contrôle embarqués et en réseau, où les

données des capteurs et de contrôle sont transmises sur des canaux de communica-

tion numériques. Pour réduire la charge de communication sur ces canaux à bande

passante limitée, il est tentant d’échanger des données de manière apériodique. En

outre, la présence de gigue d’échantillonnage, de perte de paquets et de fluctuations

dans l’accessibilité du réseau souligne encore plus l’intérêt pour l’échantillonnage

variant dans le temps et apériodique (Postoyan and Nešić, 2012), (Hespanha et al.,

2007). Dans le contexte de l’estimation de l’état, les estimateurs pour les systèmes

à temps continu avec des sorties échantillonnées apériodiquement ont été étudiés

sous plusieurs cadres ; par exemple, (i) sous le cadre du système hybride (Goebel

et al., 2012) où la dynamique de l’erreur d’observation est représentée comme un

système impulsif (Ferrante et al., 2016), ou (ii) sous le cadre du système à retard

comme un système échantillonné (Efimov et al., 2016) où la sortie du système est

maintenue constante entre les mesures.

Ce chapitre traite de la modélisation et la conception d’un observateur d’état

par intervalles pour des systèmes linéaires invariants dans le temps en présence

de mesures disponibles de manière sporadique. De plus, nous supposons que ces

systèmes sont corrompus par des perturbations et du bruit inconnus mais bornés.

Fondamentalement, la conception des observateurs par intervalles doit garantir

la positivité de l’erreur d’estimation ainsi que sa stabilité. En outre, l’avantage de

ces observateurs par rapport à d’autres estimateurs garantis, tels que les approches

de correction des prédictions ensemblistes (Alamo et al., 2005), (Meslem et al.,

2010) par exemple, est que le gain de l’observateur peut être calculé hors ligne et

la convergence de l’erreur d’estimation est prouvée a priori.

Pour pouvoir reconstruire un encadrement d’état garanti de l’état réel pour des

systèmes linéaires à temps continu en présence de mesures sporadiques en temps

discret, nous proposons un observateur impulsif par intervalles. Le comportement

impulsif est le résultat de la nature discrète des mesures. Entre deux instants de

mesure, l’observateur se comporte comme un prédicteur en temps continu basé

uniquement sur le modèle d’évolution. Ensuite, à l’instant de mesure, une cor-

rection impulsive ajuste l’état estimé de l’encadrement. Ici, nous considérons



que le temps entre deux mesures consécutives est inconnu mais appartient à un

intervalle de temps, contrairement à Mazenc and Dinh (2014) où il est choisi

constant. La limite inférieure de l’intervalle de temps est choisie de manière à

éviter le phénomène de Zénon (nombre infini d’échantillons en temps fini). Les

limites inférieure et supérieure du temps entre deux mesures consécutives sont

choisies a priori par l’utilisateur, puis la procédure de synthèse qu’on propose

calcule le gain d’observation pour assurer à la fois la positivité et la stabilité de

l’erreur d’estimation. L’analyse de stabilité de l’estimation des bornes s’inspire des

travaux de Ferrante et al. (2016) alors que la positivité de l’erreur d’estimation

est assurée en se basant sur la représentation interne positive des systèmes dy-

namiques comme dans Meslem and Ramdani (2011) et dans Cacace et al. (2015).

Dans la littérature, l’étude de l’observateur par intervalles continu avec des mesures

discrètes a été abordée dans Goffaux et al. (2009), dans Mazenc and Dinh (2014),

et dans Efimov et al. (2016). Dans Goffaux et al. (2009), un observateur con-

tinu et discret à intervalle a été appliqué à un bio-processus spécifique à base de

micro algues. Dans Mazenc and Dinh (2014), une analyse d’un observateur par

intervalles pour des systèmes à temps continu avec des mesures discrètes a été

proposée, où la période de mesure est supposée constante. À la connaissance des

auteurs, il n’existe aucun travail traitant de la synthèse du gain d’observation dans

le contexte de l’observation par intervalles de systèmes continus avec sortie discrète

sporadique.

La nouveauté de ce chapitre réside dans une nouvelle méthodologie pour la

synthèse du gain de l’observateur en présence de mesures apériodiques, qui garantit

à la fois la positivité et la stabilité de l’erreur d’estimation par intervalles. De plus,

le système étudié contient à la fois des perturbations du système et du bruit de

mesure, alors que dans Ferrante et al. (2016), seul le bruit de sortie a été pris

en compte. Le problème de synthèse est formulé comme un ensemble d’inégalités

matricielles bilinéaires (ou problème BMI). La stabilité exponentielle et la stabilité

entrée-état des erreurs d’estimation sont également prouvées.

Chapitre 3: Observateurs par intervalles à échantillonnage

événementiel : approche basée stabilité gain L1 fini

Des efforts énormes ont été déployés pour améliorer les performances des systèmes

de contrôle en réseau tout en garantissant une utilisation minimale du réseau

(partagé). Pour atteindre cet objectif, des approches alternatives à la méthode tra-

ditionnelle d’échantillonnage périodique des données ont été proposées. On peut



citer; le schéma d’échantillonnage apériodique des données où l’échantillonnage

est autorisé dans un intervalle de temps prédéterminé (Hetel et al., 2017), et la

stratégie d’échantillonnage événementiel (Tabuada, 2007) (Heemels et al., 2012)

(Girard, 2015) où l’instant de l’échantillonnage dépend du comportement du système.

Dans ce travail, nous proposons la modélisation et la synthèse des observa-

teurs par intervalles basées sur un mécanisme d’échantillonnage événementiel per-

mettant de n’utiliser la mesure qu’en cas de besoin. L’estimation basée sur

l’échantillonnage événementiel peut relaxer l’hypothèse de régularité de la disponi-

bilité des mesures couramment utilisées par les méthodes traditionnelles d’estimation

d’état. Grâce à ce mécanisme, la quantité de données transmises sur le réseau peut

être considérablement réduite.

Dans le contexte d’échantillonnage événementiel, des approches d’estimation

asymptotique ont été proposées pour les systèmes à temps discret (Muehlebach

and Trimpe, 2017; Huang et al., 2019) et les systèmes à temps continu (Huang

et al., 2017; Etienne and Di Gennaro, 2016), pour n’en citer que quelques-uns.

L’estimation ensembliste a également été étudiée dans (Shi et al., 2014; Silvestre

et al., 2018). Shi et al. (2014) ont proposé une approche d’estimation basée sur les

événements, en utilisant le filtre de Kalman ensembliste pour les systèmes à sorties

multiples, où les intervalles des mesures, l’état initial et les incertitudes sont sup-

posés être gaussiens. Silvestre et al. (2018) ont proposé des stratégies basées sur les

événements en utilisant des observateurs ensemblistes (Set valued observer). Les

deux travaux cités ci-dessus sont consacrés aux systèmes à temps discret. Cepen-

dant, le problème de l’estimation ensembliste pour les systèmes à temps continu

dans ce cadre n’a pas été entièrement étudié dans la littérature. Certains travaux

préliminaires ont considéré l’échantillonnage événementiel (Rabehi et al., 2017)

ou par auto-déclenchement (Meslem and Prieur, 2014) des mesures en utilisant

les approches de prédiction-correction. Il est à noter que, dans ces deux travaux,

seules les propriétés structurelles intrinsèques des systèmes sont exploitées afin de

concevoir des estimateurs d’état ensemblistes convergents. Dans ce travail, nous

proposons une nouvelle structure d’observateurs par intervalles, où la correction

est effectuée à des instants à temps discret. De plus, ici, les ensembles possibles

de l’état initial du système et des perturbations sont pris comme des vecteurs

d’intervalles (bôıtes) au lieu d’ellipsöıdes (Shi et al., 2014) ou de polytopes (Sil-

vestre et al., 2018).



Le principal avantage de l’approche d’observation proposée réside dans la phase

de correction qui repose sur un gain d’observation pré-calculé. Ce gain garantit la

stabilité de l’erreur d’estimation ainsi que certaines spécifications de performance.

Ces dernières sont obtenues grâce à l’analyse de la stabilité entrées-sorties, en

particulier le concept de stabilité à gain Lp fini (Khalil, 2002).

Le concept de gain Lp fini est une approche intéressante pour analyser la sta-

bilité ainsi que les performances des systèmes dynamiques. Ce concept a déjà

été appliqué pour évaluer la performance des observateurs par intervalles (Cheb-

otarev et al., 2015); (Briat and Khammash, 2016). Par exemple, des observateurs

par intervalles ont été proposés pour les systèmes linéaires à paramètre variants

(LPV) avec une analyse des performances L1/L2 par Chebotarev et al. (2015).

Des observateurs par intervalles fournissant des encadrements étroits de l’état ont

été conçus en utilisant l’approche du gain crête à crête L∞ − L∞ par Briat and

Khammash (2016) pour les systèmes à temps discret et à temps continu.

Dans ce chapitre, nous combinons l’approche du gain L1 pour les systèmes

positifs (Briat, 2013 ; Ebihara et al., 2011) et l’approche du gain Lp pour les

systèmes hybrides (Nešić et al., 2013) pour étudier la stabilité et la performance

des observateurs proposés. Ces observateurs par intervalles sont à échantillonnage

événementiel et la dynamique des erreurs d’estimation est modélisée comme un

systèmes impulsif. La positivité de l’erreur d’estimation est garantie par l’utilisation

de la positivité interne du système. De plus, les mesures ne sont pas disponibles

en permanence et un mécanisme d’échantillonnage événementiel est conçu pour

demander une mesure uniquement lorsque cela est nécessaire pour améliorer les

estimations, c’est-à-dire les mesures sont demandées chaque fois qu’une condi-

tion, impliquant la largeur du domaine réalisable des incertitudes du système et la

largeur des intervalles estimées, est satisfaite. Ainsi, la nouveauté de ce chapitre

est la synthèse simultanée du mécanisme d’échantillonnage événementiel et du gain

d’observateur qui assurent la stabilité et la positivité de la largeur des intervalles

estimées.

Chapitre 4: Observateur sécurisé par intervalles pour les

systèmes LTI avec mesures discrètes sous attaques

En raison du couplage cyber-physique et des conséquences perturbatrices des

défaillances, la sécurité est ici l’une des principales préoccupations (Lun et al.,

2019). Le problème de la sécurité n’est pas nouveau dans le domaine des systèmes



de contrôle, notamment dans le domaine de la détection et isolation des défauts

(Massoumnia et al., 1989). Des travaux récents sur la cyber-sécurité des systèmes

de contrôle se sont concentrés, en partie, sur l’effet de certains types de cyber-

attaques sur la stabilité et/ou l’estimation du système, telles que les fausses at-

taques par injection de données (Liu et al., 2011), (Degue et al., 2018), les attaques

par déni de service (DoS) (Amin et al., 2009) et les attaques d’intégrité (Mo et al.,

2014), ou à une catégorie plus générale de cyber-attaques (Fawzi et al., 2014),

(Chong et al., 2015) et (Shoukry et al., 2018), ce qui est le cas de notre approche.

Ce chapitre propose une méthodologie de synthèse d’observateurs d’état par

intervalles pour des systèmes linéaires invariants dans le temps en présence de

mesures discrètes périodiques affectées par un bruit inconnu mais borné avec des

bornes connues et soumis à des cyber-attaques (probablement non bornés).

Pour reconstruire une estimation par intervalles de l’état réel des systèmes

linéaires en temps continu en présence de mesures en temps discret, nous pro-

posons d’utiliser une structure d’observateur impulsif par intervalles. A cette

fin, nous exploiterons, dans ce chapitre, l’observateur impulsif par intervalles

développé dans le chapitre 2 dans le cas où les mesures discrètes sont périodiques

(l’hypothèse sur la périodicité sur l’échantillonnage des mesures est retenue pour

simplifier la présentation, mais l’approche reste valide pour le cas d’échantillonnage

apériodique).

Dans ce chapitre, nous considérons les systèmes LTI continus avec s sorties,

chacunne d’elles est mesurée par un capteur qui est potentiellement sous cyber-

attaque. Dans ce cadre, nous supposons que seul un sous-ensemble S de sa capteurs

peut être attaqué au même instant, avec s > 2sa. Cette condition est issue de

la M -observabilité (Chong et al., 2015) et de l’observabilité s-sparse (Shoukry et

Tabuada, 2016). Sur la base de cette hypothèse, aux instants de correction, nous

fournissons autant d’intervalles estimés que de capteurs, puis nous sélectionnons

l’estimation sans attaque. Cette sélection se fait par une stratégie basée sur

l’analyse par intervalles et la positivité de l’erreur d’estimation qui rejete les es-

timés corrompues par les attaques. La stratégie proposée est un algorithme en

ligne tandis que la procédure de synthèse qui calcule le gain d’observation pour

assurer à la fois la positivité et la stabilité de l’erreur d’estimation se fait hors ligne.

L’analyse de stabilité et la positivité de l’erreur d’estimation est assurée sans tenir

compte de l’influence de l’attaque. Ensuite, l’effet des attaques est traité par une

stratégie en ligne basée sur l’analyse par intervalles.



La contribution de ce chapitre a deux volets: premièrement, une nouvelle méthodologie

de synthèse basée sur des inégalités matricielles linéaires (LMI) du gain de l’observateur

en présence de mesures en temps discret est proposée, qui garantit à la fois la pos-

itivité et la stabilité de l’erreur d’estimation par intervalles. Cette méthodologie

est différente de celle proposée au chapitre 2 basée sur des inégalités matricielles

bilinéaires (BMI). Deuxièmement, une nouvelle stratégie résistante aux attaques

des capteurs qui sélectionne en ligne, aux moments des mesures, la bonne estima-

tion parmi un ensemble d’estimations.

Conclusions

Dans cette thèse, nous nous sommes concentrés sur la synthèse des observateurs

d’état par intervalles pour les systèmes en temps continu qui communiquent via

un réseau. Ces systèmes sont soumis à des perturbations, et leurs mesures sont

également soumises à des bruits et/ou des cyber-attaques. Ce problème est con-

sidéré sous deux angles. Premièrement, lorsque le réseau présente certaines con-

traintes de communication. Par conséquent, les données transmises sur ce réseau

ne sont pas forcement périodiques. Deuxièmement, lorsque le réseau de communi-

cation est vulnérable aux cyber-attaques.

D’adord, dans le chapitre 2, nous avons introduit une nouvelle approche pour

la synthèse des observateurs impulsifs par intervalles pour les systèmes linéaires

à mesures discrètes apériodiques. En exploitant la représentation de la positivité

interne du système, une nouvelle méthode a été proposée pour la synthèse du gain

d’observation à l’aide de la résolution des inégalités matricielles bilinéaires.

Ensuite, dans le chapitre 3, nous avons proposé une méthode de synthèse simultané

pour le mécanisme d’échantillonnage de mesures et le gain d’observateur par inter-

valles pour les systèmes linéaires à temps continu. Le mécanisme d’échantillonnage

de mesures proposé est basé sur la propriété de positivité des erreurs d’observation

par intervalles. Ces observateurs garantissent également un gain L1 fini entre la

largeur des bornes de perturbation et la largeur des intervalles d’état estimés.

Finalement, dans le chapitre 4, nous avons exploité l’observateur impulsif par

intervalles développé dans le chapitre 2 afin de concevoir un estimateur sécurisé

vis-à-vis des cyber-attaques. En utilisant la positivité des erreurs d’estimation par

intervalles, une nouvelle stratégie de sélection d’un sous-ensemble des capteurs

non attaqués a été proposée sous l’hypothèse de synchronisation des mesures. La

synthèse des gains d’observations est formulée sous forme d’inégalitées matricielles

linéaires.
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Introduction

Motivations

Cyber-Physical Systems (CPSs) and the Internet of Things mark the dawn of the

fourth Industrial Revolution following the first one ”Mechanization” as a result of

the invention of the steam engine, the second ”Mass production” with the help of

electricity, and the third ”Digitization” by the use of Electronics and Information

Technology (Jazdi, 2014) (Khaitan and McCalley, 2014). The concept of CPSs is

expected to play a major role in the design and development of future systems.

CPSs are systems that link the physical world through sensors or actuators with

the virtual world of information processing. They are composed from diverse

constituent parts that collaborate together to create some global behaviour. These

components will include software systems, communications network technology,

and sensors/actuators that interact with the real world.

Nowadays, the applications of CPSs are found in several innovated technologies

such that energy systems, health care systems, industrial robotics, smart building,

and transportation. An example of CPSs is seen in modern power grid. In such a

system, wind farm and solar farm constitute the physical components. In the other

hand, computers and communication networks represent the cyber components.

The computations are carried out with the objective of taking a suitable decision

based on which the physical components are further controlled and monitored,

and the communication channels are involved to transmit data that are used to

control and monitor the physical components.

From control theory perspective, the class of CPS described in the example

above is also known as Networked control systems (NCSs). The particularity of

NCSs is that they focus on the effect of the communication on the global behavior

1



2 Introduction

(performance and stability) of the system. The growing interest for these systems

is motivated by the fact that they show greater flexibility, lower costs, easier main-

tenance and installation, as well as lower weight and volume in comparison to the

classical control systems (Postoyan and Nešić, 2012). However, the new flexibility

does not directly lead to improved efficiency and cannot simply be exploited. The

insertion of a network in the feedback loop induces communication constraints

e.g., irregular transmission intervals, delays, and scheduling, which may seriously

affect the whole system characteristics.

In this thesis, we are interested in the state estimation for continuous dynamical

systems (physical components) using computers over network (cyber components)

in the context of unknown-but-bounded errors (UBBE) where the transmitted

data and the system are affected by unknown disturbances with a priori known

bounds. In order to achieve this objective, we propose to use inteval observer

approaches which address well the lack of knowledge on disturbances and noises.

Interval observers are guaranteed state estimators in the sense that the existence of

a solution can be verified and no solution can be lost. Basically, interval observers

compute trajectory tubes that are proven to contain the plant state trajectory

while taking into account all uncertainties and disturbances acting on the plant

and the measurements.

In the first part of this thesis, we address the following objectives in the context

of UBBE:

• The design of state observers that take into account the irregular transmis-

sion rate of data. This allows also to enhance the robustness of CPSs against

the non-regularity sampling of the available data.

• The co-design of observers and event-triggered mechanisms that transmit

data (measurements) only when needed. This allows reducing the load on

the communication channel used in CPSs.

Several CPS applications perform vital functions in critical infrastructures, such

as electric power distribution, natural gas distribution, water treatment, trans-

portation systems, health-care devices, and weapon systems. The disruption of

these control systems could have a significant impact on public health and safety,
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and may lead to large economic losses. Control systems have been confirmed cases

of cyber-attacks and they are more vulnerable now than before to computer vul-

nerabilities for many reasons (Cárdenas et al., 2008), (Humayed et al., 2017), for

instance:

Isolation assumption – In industrial control systems (ICS) and power grids, as

examples, the focus has been on designing reliable and safe systems, whereas

the security has not been of a great importance. This is because the systems were

supposed to be isolated from the outside world and the monitoring and control op-

erations were performed locally, and therefore, considered secure (Ericsson, 2010).

Increased connectivity – CPSs are more connected than ever before. Manufactur-

ers have improved CPS by adding services that rely on open networks and wireless

technologies. For example, ICS and smart grids are connected to control centers

which are connected to the Internet or some business-related networks. The in-

creasing reliance of ICS on open standards protocols, such as TCP/IP, makes

them vulnerable (Humayed et al., 2017). This is because these protocols still has

security issues as it was not intended to be secure by design (Harris and Hunt,

1999).

Due to these facts, the security of CPSs against cyber-attacks now becomes a

fundamental and important step in designing CPSs. The security of CPSs can be

seen from two sides: Computer science perspective and control perspective. In

this thesis we are interested in the control theory one. Thus in the second part of

this thesis, using the designed interval observers, we aim to:

• Develop a secure estimator for CPS against cyber-attacks.

Main contributions

Apart from Chapter 1 where we give some control theory background on positivity

and stability for interval observers, the contributions of this thesis are organized

in three chapters. In Chapter 2, we propose a solution on the design of interval

observer for LTI continuous-time systems with discrete aperiodic measurements,

in which we take into account system and measurement disturbances. In Chapter

3, we propose a co-design of interval observers and event-triggered measurements

mechanisms for the LTI continuous-time systems. In Chapter 4, we propose an
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algorithm for secure state estimation for multiple-output LTI continuous-time sys-

tems subject to cyber-attacks using interval observers.

The main results of this thesis are summarized below.

Chapter 2 – addresses the modeling and the design of interval state observers

for linear time-invariant systems in presence of sporadically available measure-

ments corrupted by unknown-but-bounded errors and noise. The proposed inter-

val observer is modelled as an impulsive system where an impulsive correction is

made whenever a measurement is available. The nonnegativity of the observation

error between two successive measurements is preserved by applying the inter-

nal positivity based on Müller’s existence theorem, while at measurement times

a linear programming constraint is added. A new methodology for designing the

discrete-time observer gain is proposed that guarantees both nonnegativity and

stability of the estimation error. The synthesis is performed by solving a set of

Bilinear Matrix Inequalities (BMIs).

Chapter 3 – introduces a new approach based on an event-triggered mechanism

to design finite-gain L1 interval observers for linear continuous-time systems in the

presence of unknown-but-bounded uncertainties with a priori known bounds on

state disturbances and measurement noises. In this setting, measurements are

event-based sampled in order to reduce online communication between the sensors

and the estimation algorithm. The proposed event-triggered mechanism relies on a

dynamic condition that depends on the width of the feasible domain of the system’s

uncertainties and the width of the estimated state enclosures. Moreover, Further

conditions are provided to guarantee the existence of a positive lower bound on

the inter-event times, which avoids the Zeno phenomenon. Although the sensors

data are provided in an irregular sampling way, the L1-stability performance of

the estimation error is satisfied.

Chapter 4 – addresses the design of a secure interval state estimator for linear

continuous-time multi-output systems in the bounded error context with discrete-

time measurements subject to cyber-attacks. The attacker capabilities are as-

sumed limited in the sense that only a subset of all the sensors can be attacked

although this subset is unknown. For a given upper bound on the number of



Introduction 5

attacked sensors, we propose a new selection strategy, which is able to achieve

resiliency to cyber-attacks, using the width of estimated intervals. The interval

observer is modelled as an impulsive system, where impulsive corrections are made

periodically using measurement.

To illustrate the effectiveness of the proposed approaches, the presented theoretical

results in Chapters 2, 3 and 4 are supported by numerical simulations.

Publications

The work presented in this thesis led to several papers either submitted or

accepted.

Journal papers

• D. Rabehi, N. Meslem and N. Ramdani. Finite-gain L1 Event-triggered

Interval Observers design for Continuous-time Linear Systems. (submitted to

International Journal of Robust and Nonlinear Control– 2nd round of review

(Rabehi et al., 2019a))

• D. Rabehi, N. Meslem, A. El Amraoui and N. Ramdani. Interval Impul-

sive Observer for Linear Systems with Aperiodic Discrete Measurements.

(submitted to IEEE Transaction on Automatic Control– 3rd round of review

(Rabehi et al., 2018))

International conference

• D. Rabehi, N. Meslem, N. Ramdani. Secure interval observer for linear

continuous-time systems with discrete measurements subject to attacks. The

4th International Conference on Control and Fault-Tolerant Systems (Sys-

Tol’19), September 18− 20th, 2019. (published (Rabehi et al., 2019c))

The following papers either published or submitted are also developed through-

out the thesis working period, but they are not included.

• D. Rabehi, N. Meslem, A. El Amraoui and N. Ramdani. Event-Based

Prediction-Correction State Estimator. In Proceedings of the 20th IFAC

World Congress (IFAC’17), 4027–4032, 2019.(published (Rabehi et al., 2017))
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• D. Rabehi, N. Meslem, N. Ramdani. An LMI approach to design interval

observers for discrete-time linear switched systems. (submitted to Nonlinear

Analysis: Hybrid Systems (Rabehi et al., 2019b))

In this thesis, we have included only the works based on interval impulsive obser-

vation approaches. Another work has been pursued during the thesis time as a

continuation of the master’s research project and published in the following paper.

• H. Ethabet, D. Rabehi, D. Efimov, T. Räıssi. Interval estimation for

continuous-time switched linear systems. Automatica, 90 : 230–238. (Etha-

bet et al., 2018)



Chapter 1

Preliminaries

1.1 Interval observers

Interval observers are guaranteed state estimators in the sense that the exis-

tence of a solution can be verified and no solution can be lost. Basically, interval

observers compute trajectory tubes that are proven to contain the plant state

trajectory while taking into account all uncertainties and disturbances acting on

the plant and the measurements. The design of interval observers must ensure by

construction the positivity of the estimation error and its stability as well. These

observers have been introduced in Gouzé et al. (2000) for continuous-time systems

and extended to several classes of systems under the bounded-error framework

(see the survey (Efimov and Räıssi, 2016)).

In the following section, we present the basics of positive systems and the design

of interval observers.

1.1.1 Positivity

In general, the motivation behind studying positive systems lies in the behavioral

nature of those systems. For instance, if the fluid levels in networks of reservoirs

or the molecular concentrations in chemical reactors are chosen as state variables,

then we will deal with positive state behaviour. On the other side, this thesis

focuses on the positive dynamics of the estimation error regardless to the system’s

nature.

In this section, the definitions of monotonicity, internal positivity and external

7
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positivity of systems will be given. Some of these definitions rely on the positive

notion of functions, vectors and matrices.

We will say that a matrix A is greater than or equal to a matrix B (having the

same number of rows and columns) and denote this by A ≥ B, if and only if all

the elements Ai,j of A are greater than or equal to the corresponding elements Bi,j

of B. A matrix A is nonnegative, denoted by A ≥ 0, if Ai,j ≥ 0 for all (i, j).

1.1.1.1 Monotonicity

Monotonicity is an important property in analyzing positivity of dynamical

systems. Monotone systems are differential equations whose solutions preserve

some order relations with respect to initial conditions. In the next definition, the

main property of monotone systems is introduced.

Consider an autonomous system described by

ẋ = f(x) (1.1)

where x ∈ Rn and f is continuously differentiable on an open subset D ⊂ Rn.

Definition 1.1 (Smith (2008)). Let φ(x(t0), t) denote the solution of (1.1) that

starts at point x(t0). The system (1.1) is said to be

• monotone if only if

∀x1, x2 ∈ D : x1(t0) ≤ x2(t0) =⇒ φ(x1(t0), t) ≤ φ(x2(t0), t), ∀t ≥ t0,

• strictly monotone if only if

∀x1, x2 ∈ D : x1(t0) < x2(t0) =⇒ φ(x1(t0), t) < φ(x2(t0), t), ∀t ≥ t0.

The theory of interval observers for continuous-time systems is based on a subclass

of monotone systems, called cooperative systems.

Let us re-write the system (1.1) in the following form

ẋi = fi(x1, · · · , xn), i ∈ {1, . . . , n} (1.2)
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Definition 1.2 (Cooperativity). The system (1.2) is said to be cooperative if the

partial derivatives ∂fi(x)
∂xj

have constant signs and satisfy

∀x ∂fi(x)

∂xj
≥ 0, ∀i 6= j, i, j ∈ {1, · · · , n}.

1.1.1.2 External positivity

Consider a continuous-time linear system modeled by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1.3)

Definition 1.3. The linear system (1.3) is said to be externally positive if and

only if its forced output (i.e., the output corresponding to a zero initial state) is

nonnegative for every nonnegative input function.

Theorem 1.4 (Farina and Rinaldi (2000)). A linear system is called externally

positive if and only if its impulse response is nonnegative.

Proof. Consider a continuous-time linear system with zero initial state. The out-

put is the convolution integral of the input and the impulse response, namely,

y(t) =

∫ t

0

h(t− τ)u(τ)dτ

with

h(t) = CeAtB, t ≥ 0

Therefore, if the impulse response h(t) is nonnegative, the output y(t) is nonnega-

tive for every nonnegative input u(t), so that the system is externally positive.

The step response of an externally positive system (starting from a zero state) is

non-decreasing since it is the integral of the impulse response that is nonnegative.

Therefore, when a constant input is applied to the system, its output tends toward

an equilibrium without overshooting it. This is true also when there are oscillations

in the impulse response of the system.
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1.1.1.3 Internal positivity

Here, we mean by internal the internal state variables of the system. This term

is used only to distinguish it from the external positivity. The internal positivity

is also named, in the literature, as the positivity.

Definition 1.5. The continuous-time linear system (1.3) is said to be positive if

and only if for every nonnegative initial state and for every nonnegative input its

state and output are nonnegative.

This definition says that all trajectories starting from any point in the positive

orthant Rn
≥0 (boundary included) of the state space Rn obtained by applying a

nonnegative input to system (1.3) remain in the positive orthant and yield a non-

negative output. We show, in the next theorem, how it is formally possible to

determine if a given linear system is positive.

Theorem 1.6 (Condition of positivity (Mitkowski, 2008)). The continuous-time

linear system (1.3) is positive if and only if : (i) the matrix A is a Metzler matrix,

that is, its non-diagonal elements are nonnegative ai,j ≥ 0,∀(i, j), i 6= j, (ii) the

matrices B and C are nonnegative, and (iii) has nonnegative input signal u(t).

Proof. The state solution is given as follows

x(t) = eAtx(0) +

∫ t

0

h(t− τ)u(τ)dτ

where h(t) is the impulsive response. It is intuitive that a sufficient condition on

the positivity of the state x(t) is that all of the initial condition x(0), the input

signal u(t), the impulsive response, and the matrix eAt are positive. For positive

matrices B and C, the impulsive response h(t) is positive if the matrix eAt is.

By letting the matrix A be Metzler, there exists a real positive constant λ ≥ 0

such that A+ λIn ≥ 0.

We have :

eAt = e(A+λIn−λIn)t

= e(A+λIn)te−λInt
(1.4)
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From equation (1.4), we can deduce that eAt ≥ 0, for all t ≥ 0, since e(A+λIn)t ≥ 0

and e−λInt ≥ 0, for all t ≥ 0.

We have presented the positivity condition of continuous-time linear systems which

are governed by differential equations. These condition are not correct for discrete-

time linear systems which have difference equation forms. Next we will show the

equivalent positivity condition for discrete-time linear systems.

Consider the discrete-time linear system modeled by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(1.5)

Definition 1.7. The discrete-time linear system (1.5) is positive if and only if:

(i) the state matrix A is nonnegative, that is, all elements are nonnegative ai,j ≥

0,∀(i, j), (ii) the matrices B and C are nonnegative, and (iii) has nonnegative

input signal u(t).

At this stage, it is straightforward to know whether the system is positive or not.

In the following sections, we will show how to use positivity property to design

interval observers for LTI systems.

1.1.2 Interval observers for cooperative LTI systems

Historically, the concept of interval observers has been introduced by Rapaport

and Gouzé (1999) and Gouzé et al. (2000) to deal with the guaranteed estimation

problem of the non-measurable state variables of a class of uncertain biological

systems, in the sense that all admissible values of the state are estimated in a

set-membership manner. To illustrate the basics of interval observers, we recall

some existing results in the literature.

Consider the linear system with output injection given as follows

ẋ = Ax+ φ(y)

y = Cx
(1.6)

where x ∈ Rn and y ∈ Rp are the state variable and system output, respectively.

with the function φ is defined as φ : Rp → Rn.
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The study of interval observers is based on the following assumptions:

Assumption 1.1. The pair (A,C) is detectable.

Assumption 1.2. There exists a matrix L ∈ Rn×p such that the matrix (A−LC)

is Metzler.

Assumption 1.3. There exist two functions φ : Rp → Rn and φ : Rp → Rn such

that

φ(y) ≤ φ(y) ≤ φ(y), ∀y ∈ Rp. (1.7)

The structure of interval observer The estimation of the upper bound x ∈
Rn and the lower bound x ∈ Rn of the state x of system (1.6) is realized by

using an interval observer formed by a couple of dynamical systems, similar to the

structure of Luenberger observer, as the following
ẋ(t) = Ax(t) + φ(y(t)) + L(y(t)− Cx(t)),

ẋ(t) = Ax(t) + φ(y(t)) + L(y(t)− Cx(t)),

x(t0) ≤ x(t0) ≤ x(t0).

(1.8)

Enclosure1 (existence condition)

Defining the upper estimation error and the lower estimation error by e(t) =

x(t) − x(t) and e(t) = x(t) − x(t), respectively. Thus, the bounds x(t) and x(t)

frame in a guaranteed way the actual state trajectory x(t) of system (1.6), i.e.,

x(t) ∈ [x(t), x(t)], if for all t ≥ t0 : e(t) ≥ 0 and e(t) ≥ 0.

To show the positivity properties of the estimation errors, let us consider the

following dynamicsė(t) = (A− LC)e(t) + φ(y(t))− φ(y(t)),

ė(t) = (A− LC)e(t) + φ(y(t))− φ(y(t)),

By applying Theorem 1.6 on these equations, under Assumptions 1.2-1.3 and the

initial conditions x(t0) ≤ x(t0) ≤ x(t0), the properties e(t) ≥ 0 and e(t) ≥ 0

are ensured. Hence, these conditions guarantee that the estimates x(t) and x(t)

enclose the actuel state x(t) of the system.

1It is also called Framer in the literature
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Remark 1.8. To guarantee that system (1.8) is an interval observer we need to

additionally satisfy the stability condition of the estimation error along with its

positivity condition.

In the literature, several stability conditions are provided e.g., Hurwitz condition

and the Lyapunov stability (Efimov and Räıssi, 2016). Moreover, other methods

provide some performance level along with stability e.g., L2 in Chebotarev et al.

(2015) and L1/L∞ in Briat and Khammash (2016). The stability conditions that

fit within the context of the study, in this thesis, will be provided later.

In this approach, we highlight the fact that it is necessary to determine the gain

L such that the matrix A− LC is simultaneously stable and Metzler. In general,

this condition is not always satisfied, which limits the application of this design

approach and might introduce some conservatism. Let us pick as an example the

following case:

A =

1 −0.5

0 −2

 , C =
[
1 0

]
, L =

l1
l2

 ,
we thus have

A− LC =

1 + l1 −0.5

l2 −2

 .
It is clear that there does not exist a gain L that guarantees the Metzler property

of the matrix A−LC. In the following subsection we will show how this problem

has been managed for a class of systems in the literature.

1.1.3 Interval observers for non-cooperative LTI systems

The existence of a gain L that guarantees both stability and Metzler property

of the matrix A − LC is a strong condition in the design of interval observers.

However, some works in the literature have relaxed this condition by using:

(a) Time-invariant change of coordinates (Räıssi et al., 2012),

(b) Time-varying change of coordinates (Mazenc and Bernard, 2011),

(c) Decomposition of the system into two coupled positive systems (Meslem and

Ramdani, 2011), (Cacace et al., 2015).



14 Preliminaries

Now, we will explicitly show the development of the first approach (a). Next, we

will only discuss the two remainder approaches (b) and (c). Our designed interval

observers will be mainly based on the last approach (c).

For the approach (a), we consider the following system

ẋ(t) = Ax(t) + w(t)

y(t) = Cx(t)
(1.9)

where x(t) ∈ Rn and y(t) ∈ Rp are the state variable and the output of the system,

respectively. w(t) ∈ Rn represents the system disturbance such that there exist

two known vectors w(t) and w(t) that satisfy w(t) ∈ [w(t), w(t)]. The state and

output matrices are defined by A ∈ Rn×n and C ∈ Rp×n, respectively.

1.1.3.1 Time-invariant change of coordinates

This approach is based on a non singular change of coordinates T ∈ Rn×n such

that z(t) = Tx(t). Thus, the system (1.9) can be written as follows

ż(t) = TAT−1z(t) +W (t)

y(t) = CT−1z(t)
(1.10)

where W (t) = Tw(t). So, the procedure consists in estimating an upper bound

z(t) and a lower bound z(t) of the state z(t) in the new basis. To do so, the

following structure for interval observers is proposed:
ż(t) = TAT−1z(t) + TL[y(t)− CT−1z(t)] +W (t),

ż(t) = TAT−1z(t) + TL[y(t)− CT−1z(t)] +W (t),

z(t0) ≤ z(t0) ≤ z(t0),

where W (t) = T+w(t)− T−w(t) and W (t) = T+w(t)− T−w(t).

The estimation error dynamics are thus given as followsėz(t) = T (A− LC)T−1ez(t) +W (t)−W (t),

ėz(t) = T (A− LC)T−1ez(t) +W (t)−W (t),
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By definition, we have

W (t) = Tw(t) = T+w(t)− T−w(t)

≤ T+w(t)− T−w(t) = W (t).

By the same argument, the inclusion W (t) ≤ W (t) ≤ W (t) is always satisfied (for

more details about this property the reader can see (Efimov et al., 2012, Lemma

2)).

Under the condition that the matrix T (A − LC)T−1 is stable and Metzler, and

the initial condition satisfies z(t0) ≤ z(t0) ≤ z(t0), and according to Theorem 1.6,

the estimation errors verify ez(t) ≥ 0 and ez(t) ≥ 0 for all t ≥ t0. Therefore, the

state z(t) belongs to the interval [z(t), z(t)] for all t ≥ t0. Finally, the application

of the property in (Efimov et al., 2012, Lemma 2)) allows to deduce the interval

that encloses the state in the origin basis x(t) as follows

x(t) ≤ x(t) ≤ x(t)

where x(t) = M+z(t)−M−z(t) and x(t) = M+z(t)−M−z(t) with M = T−1.

Contrary to the case of cooperative systems, the procedure relies on the appropri-

ate choice of the change of coordinates T and the observer gain L such that the

estimation errors are stable and cooperative.

Solution by pole assignment and diagonalization

In this paragraph, we present a simple method using pole placement technique

which allows to determine the matrices L and T .

Assuming that the pair (A,C) is observable. There exists a gain L such that the

matrix A− LC is diagonalizable and Hurwitz with real poles, thus there exists a

change of coordinates matrix T that diagonalizes the matrix A − LC in the new

basis. By definition, a diagonal matrix satisfies the Metzler property which allows

to claim that T (A− LC)T−1 is Hurwitz and Metzler.

The assumption of the observability of the pair (A,C) could be relaxed by consid-

ering only its detectability if the matrix A−LC conserves the property of having

real poles. Even though this approach is very simple, it is still conservative be-

cause the case of conjugate complex poles is not considered. It has been proved

that no time-invariant changes of coordinates can transform the system (1.9) into
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a Jordan one when the matrix A − LC has complex eigenvalues (Mazenc and

Bernard, 2010). Nevertheless, in the following approach, an alternative formula-

tion proposed by Räıssi et al. (2012) that makes possible a time-invariant change

of coordinates even for the case of complex eigenvalues.

Solution by solving a Sylvester equation

The work presented in Räıssi et al. (2012) proposes a less conservative solution

comparing to the pole assignment and diagonalization presented early. Here, we

will recall the primary steps of this approach.

The matrix T being non singular, the equation R = T (A− LC)T−1 is equivalent

to the form

TA−RT = QC, Q = TL. (1.11)

Choosing the matrix R Hurwitz and Metzler, the equation (1.11) is a Sylvester

equation where the unknown variable is the matrix T . If the matrices A and R

do not share any eigenvalues, then the solution to (1.11) is unique for any Q. The

solution of Sylvester equation (1.11) can be obtained by using, e.g., the work of

Golub et al. (1979).

The following lemma provides a simple procedure to compute the matrices L and

T

Lemma 1.9. (Räıssi et al., 2012, Lemma 1) Consider that the matrix A − LC

and the Metzler matrix R have the same eigenvalues for some gain L. If there

exist two row vectors v1 and v2 such that the pairs (A− LC, v1) and (R, v2) are

observable, then:

T = O−1
2 O1 and Q = TL

satisfy the Sylvester equation (1.11) with

O1 =


v1

...

v1(A− LC)n−1

 , O2 =


v2

...

v2R
n−1

 . (1.12)

Proof. Given that the pairs (A − LC, v1) and (R, v2) are observable, thus, the

matrices O1 and O2 are non singular. In addition, the transformations O1 and

O2 transform the matrices A − LC and R into their observable canonical forms.
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Therefore, one gets

O1(A− LC)O−1
1 = O2RO

−1
2

By replacing the matrix R by its expression T (A−LC)T−1, and by identification,

one can obtain the equation T = O−1
2 O1.

1.1.3.2 Time-varying change of coordinates

This approach is similar to the previous one in using the change of coordinates.

The difference is that when the observer closed loop dynamics A−LC has complex

eigenvalues. Mazenc and Bernard (2010) proposed to use time-varying change of

coordinates which is based on rotation matrix blocks. This change of coordinates

is able to compensate the negativity caused by the complex conjugate eigenvalues.

We have presented a review on the use of similarity transformations for continuous-

time systems. For the case of discrete-time systems the reader can see (Efimov

et al., 2013) and (Mazenc et al., 2014).

1.1.3.3 Decomposition of the system into coupled positive systems

This approach is totally different from the approaches (a) and (b). It does not use

any change of coordinates even if the dynamics in the origin basis is not cooper-

ative. The idea of this approach is the decompose the dynamics into two coupled

positive and negative systems. Thus, by mild condition one can get a positive

dynamics for observation error. For continuous-time nonlinear systems, a struc-

ture of interval observer is proposed by Meslem and Ramdani (2011), which is

mainly based on the Müller’s existence theorem (Müller, 1927) for the decomposi-

tion of the non-cooperative system. Similar idea has been proposed by Coogan and

Arcak (2015) to compute a reachable set for discrete-time systems using mixed-

monotonicity (Smith, 2006). Basically, the dynamics which are not monotone may

nonetheless be decomposable into increasing and decreasing components. Such

systems are called mixed monotone. Let us illustrate these ideas on linear sys-

tems.

For the continuous-time system ẋ = Ax such that the matrix A is not Metzler

(non-cooperative system), it is possible to decompose it into a Metzler matrix AM

and a nonnegative matrix AN such that A = AM −AN . The matrices AM and AN
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are any realization of A satisfying the previous conditions. However, the Müller’s

existence theorem based method proposed to decompose A as AM = dA+(A−dA)+

and AN = AM−A with dA is a diagonal matrix contains only the diagonal elements

of A.

For the discrete-time system x+ = Ax such that the matrix A is not nonnegative,

it is possible to decompose it into two nonnegative matrices A1 and A2 such that

A = A1 −A2. The matrices A1 and A2 are any realization satisfying the previous

conditions on A. In a particular case, the matrix A can be decomposed into

its positive elements A+ and negative elements −A− such that A = A+ − A−.

This method is also known, for the case of linear systems, as Internally positive

representation (Cacace et al., 2015).

In the design methodologies of interval observers that we propose in the future

chapters, we will use the decomposition approach in the context of hybrid systems.

In the following section, we will present some theoretical background on stability

and on the hybrid system framework that will be used throughout this thesis.

1.2 Hybrid systems stability

In this section, we will recall the classical stability properties for continuous-time

and discrete-time systems, then, we will give the stability conditions for hybrid

systems.

1.2.1 Classical stability

Intuitively, stability is the property of a system to return to its equilibrium position

when it is removed promptly.

Consider the general case of a nonlinear time-invariant system

ẋ(t) = f(x(t), u(t)) (1.13)

with the assumption that the origin (x∗ = 0 ∈ Ω ⊂ Rn, u∗ = 0 ∈ U ⊂ Rm) is an

equilibrium point.
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1.2.1.1 Input-to-State Stability

Before introducing some stability conditions, let us present some useful definitions

about characterization comparison functions.

Definition 1.10 (Class K function). A scalar continuous function α(x), defined

for x ∈ [0, a) belongs to class K if it is strictly increasing and α(0) = 0.

Definition 1.11 (Class K∞ function). A scalar continuous function α(x) is said

to belong to class K∞ if it belongs to class K and defined for all x ≥ 0 and

limx→∞ α(x)→∞.

Definition 1.12 (Class KL function). A function β(s, t), defined for s ∈ [0, a) and

t ∈ [0,∞), is said to belong to class KL if, (i) for each fixed t ≥ 0, the mapping

β(s, t) belongs to class K with respect to s, (ii) for each fixed s, the mapping

β(s, t) is decreasing with respect to t and limt→∞ β(s, t)→ 0.

The objective of the characterization by comparison function is to express the fact

that states remain bounded for bounded controls, with an ultimate bound which

is a function of the input’s magnitude, and in particular that states decay when

inputs do.

Theorem 1.13 (Input-to-state stability (ISS), (Sontag, 2008) ). The system (1.13)

is said to be ISS if there exist β ∈ KL and γ ∈ K∞ such that, for all x0 ∈ Rn and

all u ∈ Rm,

|x(t;x0, u)| ≤ β(|x0| , t) + γ(|u|),∀t ≤ 0.

This concept of stability is closely linked to the Lyapunov stability theory. This

theory is based on the fact that the systems whose state trajectories are attracted

to a stable asymptotically equilibrium point lose gradually and monotonically the

energy. Lyapunov generalized the notion of energy by using any positive definite

function, with some assumption to be given later, which is independent of the

state trajectories of the system.

1.2.1.2 Lyapunov stability

Theorem 1.14 (Continuous case). Consider system (1.13) without input (u(t) =

0). If there exist a function V : Rn → R that admits continuous partial derivatives
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and two functions α1 and α2 of class K such that

α1(||x||) ≤ V (x) ≤ α2(||x||),∀x ∈ Ω ⊂ Rn,

then, the origin of the system is

• Stable if
dV (x)

dt
≤ 0,∀x ∈ Ω, x 6= 0,

• Asymptotically stable if there exist a function φ of class K such that

dV (x)

dt
≤ −φ(||x||),∀x ∈ Ω, x 6= 0,

• Exponentially stable if there exist positive constants α1, α2, γ, p such that

α1(||x||) = α1||x||p, α2(||x||) = α2||x||p, φ(||x||) = γ ||x|| , ∀x ∈ Ω, x 6= 0.

Remark 1.15. All the properties of the previous theorem are valid in the vicinity of

the equilibrium point (local properties). It becomes global (Ω = R) if the functions

are chosen of class K∞.

We consider now the case of discrete-time autonomous nonlinear systems

x(k + 1) = f(x(k)) (1.14)

Theorem 1.16 (Discrete case). Consider system (1.14). If there exist a function

V : Rn → R and two functions α1 and α2 of class K such that

α1(||x||) ≤ V (x) ≤ α2(||x||),∀x ∈ Ω ⊂ Rn,

then, the origin of the system is

• Stable if

∆V (x(k)) ≤ 0,∀x ∈ Ω, x 6= 0,
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where

∆V (x(k)) = V (x(k + 1))− V (x(k))

= V (f(x(k)))− V (x(k))
(1.15)

• Asymptotically stable if there exist a function φ of class K

∆V (x) ≤ −φ(||x||),∀x ∈ Ω, x 6= 0,

• Exponentially stable if there exist positive constants α1, α2, γ, p such that

α1(||x||) = α1||x||p, α2(||x||) = α2||x||p, φ(||x||) = γ ||x|| ,∀x ∈ Ω, x 6= 0.

1.2.2 Hybrid systems framework

A dynamical system is usually classified as either a continuous-time dynamical

system or a discrete-time dynamical system. For example, classical mechanical

systems evolving in time according to physical laws can be viewed naturally as

continuous-time dynamical system. Financial accounts can be viewed naturally as

discrete-time dynamical system. Numerous dynamical systems escape such a clear-

cut classification. In fact, there are dynamical systems that exhibit characteristics

of both continuous-time and discrete-time systems. An example of such systems

are the so-called Cyber-Physical System (CPS). Examples are provided by power

electronic circuits that combine analog and digital components and by mechanical

systems controlled by digital computers. Such systems are called, in control theory,

hybrid dynamical systems.

Hybrid systems are modeled first by Hybrid Automata (Alur et al., 1992) in the

computer science domain in the context of formal verification which helps proving

the correctness of systems. Recently, a very elegant and concise framework that

models hybrid systems was proposed in Goebel et al. (2012). This framework is

general enough to study the class of systems considered in this work. We adopt

this formalism in the sequel of this thesis.
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In this section, we will present how complex systems with both continuous-time

and discrete-time dynamics can be modeled by using the hybrid system formalism

of Goebel et al. (2012) which allows us to use the well-defined notion of solu-

tions and the tools provided within. Basic concepts and analysis of this class of

dynamical systems are given below.

We consider the hybrid systems of the following form

ẋ = F(x) x ∈ C, x+ = G(x) x ∈ D, (1.16)

where x ∈ Rn is the state, C,D ∈ Rn and F ,G are single-valued functions. This

model shows that the state x of the hybrid system evolves according to the dif-

ferential equation ẋ = F(x) as long as x ∈ C, and it experiences an instantaneous

change according to the difference equation x+ = G(x) when x ∈ D. When

x ∈ C ∩ D, the system behaves according to the differential equation ẋ = F(x)

only if this evolution keeps x ∈ C, otherwise the system experiences a discrete

transition. To simplify the notation, the continuous behaviour and the discrete

behaviour will be referred as flow and jump, respectively. Consequently, the ele-

ments of hybrid system (1.16) will now be named as follows: F , C, G and D are

the flow map, the flow set, the jump map and the jump set, respectively. The

solutions to system (1.16) are defined on so-called hybrid time domains.

Remark 1.17. The framework proposed in Goebel et al. (2012) is more general than

what we have presented in (1.16) and considers hybrid inclusions of the following

form

ẋ ∈ F(x) x ∈ C, x+ ∈ G(x) x ∈ D,

But, in this work, only the simplified form (1.16) is needed.

Definition 1.18 (Goebel et al. (2012)). (Hybrid time domains) – A subset E ∈

R≥0 × N is a compact hybrid time domain if

E =
J−1⋃
j=0

([tj, tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . It is a hybrid time domain

if for all (T, J) ∈ E , E ∩ ([0, T ]× {0, 1, . . . , J}) is a compact hybrid domain.
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Definition 1.19. (Hybrid arc) – A function φ : E → Rn is a hybrid arc if E is

a hybrid time domain and if for each j ∈ N, the function t 7→ φ(t, j) is locally

absolutely continuous on the interval Ij = {t : (t, j) ∈ E}.

In the sequel, the hybrid time domain E of the hybrid arc φ will be noted by domφ.

A hybrid arc φ is a solution to the hybrid system (C,F ,D,G) if:

(i) φ(0, 0) ∈ C ∪ D;

(ii) for all j ∈ N, φ(t, j) ∈ C and φ̇(t, j) = F(φ(t, j)) for almost all t ∈ Ij;

(iii) for all (t, j) ∈ domφ, such that (t, j+1) ∈ domφ, φ(t, j) ∈ D and φ(t, j+1) =

G(φ(t, j)).

A solution φ to system (1.16) is

• maximal if it cannot be extended,

• complete if its domain, domφ, is unbounded,

• Zeno if it is complete and supt domφ <∞.

1.2.3 Lyapunov conditions for hybrid systems

As for continuous-time and discrete-time systems, Lyapunov functions are also

useful in analyzing stability for hybrid systems. For now, it is not necessarily to

require that a Lyapunov function be defined on all of Rn nor that it is continuously

differentiable on all of Rn due to the constraints that are given in a hybrid system

that limit where jumping and flowing is possible. The definition below gives the

conditions required for a function V to be considered as a Lyapunov function

candidate for hybrid systems.

Definition 1.20 (Lyapunov function candidate). A function V : domV → R is

said to be a Lyapunov function candidate for the hybrid system H = (C,F ,D,G)

if the following conditions hold:

1. C ∪ D ∪ G(D) ⊂ domV ;

2. V is continuously differentiable on an open set containing C;
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where C denotes the closure2 of C.

Definition 1.21 (Positive definite functions). A function ρ : R≥0 → R≥0 is

positive definite, also written ρ ∈ PD, if ρ(s) > 0 for all s > 0 and ρ(0) = 0.

The following theorem provides conditions on a Lyapunov function candidate that

guarantee uniform global pre-asymptotic stability.

Remark 1.22. Pre-asymptotic stability is more general than asymptotic stability.

In pre-asymptotic stability, the completeness of the maximal solution is not re-

quired. That is, it is not required that the solution tends to an equilibrium point

as time goes to infinity, as in asymptotic stability, but to a closed set.

Theorem 1.23 (Sufficient Lyapunov conditions (Goebel et al., 2012)). Let H =

(C,F ,D,G) be a hybrid system and let A ⊂ Rn be closed. If V is a Lyapunov

function candidate for H and there exist α1, α2 ∈ K∞, and a continuous ρ ∈ PD

such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪ D ∪ G(D) , (1.17a)

〈∇V (x),F(x)〉 ≤ −ρ(|x|A) ∀x ∈ C , (1.17b)

V (G(x))− V (x) ≤ −ρ(|x|A) ∀x ∈ D . (1.17c)

then A is uniformly globally pre-asymptotically stable for H.

There is no loss of generality in using the same function ρ(·) in both inequality

(1.17b) and (1.17c) in the Lyapunov conditions of Theorem 1.23. If the two func-

tions are different, they can each be replaced by the point-wise minimum of the

two functions, which will be another function belonging to the class-PD.

In the context of cyber-physical system, where the continuous-time part is gov-

erned by the discrete-time one e.g., sampled data control, event-triggered estima-

tion, the Lyapunov condition (1.17b) of Theorem 1.23, that imposes the conver-

gence of the continuous-time part, is not always satisfied. In the following section,

we will recall all possible relaxed conditions of Lyapunov conditions (1.17) as given

in Goebel et al. (2012).

2A closure of a set of points consists of all points in this set together with all its limit points
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1.2.3.1 Relaxed Lyapunov conditions

In this section, we will give several sufficient conditions for uniform global pre-

asymptotic stability, in which the strict decrease assumptions of Theorem 1.23 are

weakened. The assumptions of strict decrease of the Lyapunov function during

both flows and jumps can be weakened in several ways. For example, this can be

the case if the Lyapunov function is non-increasing during flows, strictly decreasing

during jumps, and the jumps occur frequently enough, as stated in the proposition

below.

Proposition 1.24 (Sufficient Lyapunov conditions: persistent jumping (Goebel

et al., 2012)). Let H = (C,F ,D,G) be a hybrid system and let A ⊂ Rn be closed.

Suppose that V is a Lyapunov function candidate for H and there exist α1, α2 ∈

K∞, and a continuous ρ ∈ PD such that (1.17a), (1.17c) hold and

〈∇V (x),F(x)〉 ≤ 0 ∀x ∈ C. (1.18)

If, for each r > 0, there exists γr ∈ K∞, Nr ≥ 0 such that for every solution φ to

H, |φ(0, 0)|A ∈ (0, r], (t, j) ∈ domφ, t + j ≥ T imply j ≥ γr(T ) − Nr, then A is

uniformly globally pre-asymptotically stable.

Proposition 1.25 (Sufficient Lyapunov conditions: increase balanced by decrease

(Goebel et al., 2012)). Let H = (C,F ,D,G) be a hybrid system and let A ⊂ Rn

be closed. Suppose that V is a Lyapunov function candidate for H and there exist

α1, α2 ∈ K∞, such that (1.17a) holds, and

〈∇V (x),F(x)〉 ≤ λcV (x) ∀x ∈ C,

V (G(x)) ≤ eλdV (x) ∀x ∈ D.
(1.19)

If there exist γ > 0 and M > 0 such that for each solution φ to H, (t, j) ∈ domφ

implies λct + λdj ≤ M − γ(t + j) then A is uniformly globally pre-asymptotically

stable.

The result in Proposition 1.25 allows for the Lyapunov function to increase. The

increases can be persistent but are compensated by strong decrease.
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This relaxed result will be used in Chapter 2 in which an impulsive interval observer

estimates the continuous-time state of the system based on aperiodic discrete

measurements.



Chapter 2

Interval observer for linear

systems with aperiodic

measurements

2.1 Motivations and related works

Nowadays, the study of aperiodic sampled-data systems constitutes a very pop-

ular research topic in control. This is a consequence of the huge development of

embedded and Networked Control Systems (NCS), where sensor and control data

are transmitted over digital communication channels. To reduce the communica-

tion load on these limited bandwidth channels, it is tempting to exchange data in

an aperiodic manner. Besides, the presence of sampling jitters, packet dropouts

and fluctuations in network accessibility further emphasize the interest in time-

varying and aperiodic sampling (Postoyan and Nešić, 2012), (Hespanha et al.,

2007). In the context of state estimation, estimators for continuous-time systems

with aperiodically sampled outputs have been studied under several frameworks;

for instance, under the hybrid system framework (Goebel et al., 2012) where the

whole system is represented as an impulsive system (Ferrante et al., 2016), or

under the time-delay system framework as a sampled-data system (Efimov et al.,

2016) where the system’s output is held in between measurements.

This chapter addresses the modeling and the design of an interval state observer

for a linear time-invariant plant in presence of sporadically available measurements

27
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corrupted by unknown-but-bounded errors and noise.

Basically, the design of interval observers must ensure the nonnegativity and of

the estimation error and its stability as well. Besides, the advantage of these

observers compared to other guaranteed estimators, such as prediction-correction

approaches (Alamo et al., 2005), (Meslem et al., 2010) for instance, is that the

observer gain can be computed offline and the convergence of the estimation error

can be proved a priori.

To be able to reconstruct a guaranteed state enclosure of the actual state for

continuous-time linear systems in presence of sporadic discrete-time measurement,

we propose an interval impulsive observer. The impulsive behavior is the result of

the discrete nature of the measurements. In between two measurement time in-

stants, the observer behaves as a continuous-time predictor based only on the evo-

lution model. Then, at the measurement time instant, an impulsive correction ad-

justs the estimated state enclosure. Here, we consider that the inter-measurement

time is unknown but belongs to an interval of times, contrariwise to Mazenc and

Dinh (2014) where it is chosen constant. The lower bound of the time interval is

chosen in a way to avoid Zeno phenomenon (infinite number of samples in finite

time). Both lower and upper bounds of the inter-measurement time are chosen

a priori by the user, then our synthesis procedure tunes the observation gain to

ensure both positivity and stability of the estimation error. The stability analysis

of the bounds estimate is inspired by the work of Ferrante et al. (2016) while the

positivity of the estimation error is ensured based on the internal positivity for

dynamical systems as in Meslem and Ramdani (2011) and in Cacace et al. (2015).

In the literature, the study of continuous interval observer with discrete measure-

ments has been addressed in Goffaux et al. (2009), in Mazenc and Dinh (2014),

and in Efimov et al. (2016). In Goffaux et al. (2009), a continuous-discrete interval

observer has been applied to a specific microalgae-based bioprocess. In Mazenc

and Dinh (2014), an analysis of an interval observer for continuous-time systems

with discrete measurements has been proposed, where the measurement period is

assumed constant. To the best of the authors’ knowledge, there is no work deal-

ing with the observation gain design in the context of continuous-discrete interval

observation with sporadic discrete output.

The novelty of this chapter resides in a new methodology for the design of the
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observer gain in presence of aperiodic measurements, that guarantees both posi-

tivity and stability of the interval estimation error. Moreover, the studied system

includes both system perturbation and measurement noise while in Ferrante et al.

(2016) only output noise has been considered. The synthesis problem is formu-

lated as a set of BMI and Linear Programming (LP) constraints. An exponential

stability and an input-to-state stability of the estimation error bounds are proved.

The chapter is organized as follows. The stability verification of the interval ob-

server for linear systems with aperiodic discrete measurements is performed in

Section 2.2. The proposed method for observer gain synthesis is detailed in Sec-

tion 2.3. Simulation results of numerical examples are presented in Section 2.4.

2.2 Interval impulsive observer analysis

Consider linear time-invariant systems of the form ẋ(t) = Ax(t) +Bu(t) + d(t),

y(tk) = Cx(tk) + v(tk),
∀k ∈ N (2.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp is the state variables, the input, the discrete-

time output of the system, respectively. d ∈ Rn and v ∈ Rp represent the system

disturbance and the output model uncertainty, respectively.

2.2.1 Assumptions

It is assumed that the discrete-time measurements are not necessarily periodic and

there exist a minimal and a maximal time between two consecutive measurement

instants as follows.

Assumption 2.1. Let τmax ≥ τmin be two given real scalars satisfy: tk+1 − tk ∈

[τmin, τmax] ∀k ∈ N.

Based on aperiodic discrete-time measurements, the goal here is to estimate an

upper and a lower bound of the system state while ensuring the convergence of the

estimation error. To do so, let first introduce an assumption on the boundedness

of both measurement noise and system disturbances.
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Assumption 2.2.

(a) Let a constant vector v ∈ Rp
≥0 be given such that

|v(t)| ≤ v ∀t ∈ R≥0,

where vi = supt≥0 |vi(t)| ∀i ∈ {1, . . . , p}.

(b) Let two constant vectors d, d ∈ Rn be given such that

d ≤ d(t) ≤ d

is satisfied ∀t ∈ R≥0.

2.2.2 Observer structure

Before presenting the structure of the developed observer, we recall the following

lemma which will help in the analysis of the observer dynamics.

Lemma 2.1 (Comparison Lemma (Khalil, 2002, Lemma 3.4)). Consider the scalar

differential equation

ẋu(t) = f(t, xu), xu(t0) = xu0

where f(t, xu) is continuous in t and locally Lipschitz in xu, for all t ≥ 0 and all

xu ∈ U ⊂ R. Let [t0, Tt)
1 be the maximal interval of existence of the solution

xu(t), and suppose xu(t) ∈ U for all t ∈ [t0, Tt). Let xv(t) be a continuous function

whose upper right-hand derivative Dt+xv(t) satisfies the differential inequality

Dt+xv(t) ≤ f(t, xv(t)), xv(t0) ≤ xu0

with xv(t) ∈ U ∀t ∈ [t0, Tt). Then, xv(t) ≤ xu(t) ∀t ∈ [t0, Tt).

Remark 2.2. A generalized version of the comparison theorem for n−dimensional

system is introduced in Scott and Barton (2013) based on the Müller’s existence

theorem (Müller, 1927).

1The time interval [t0, Tt) could be [tj , tj+1] ∀j ∈ J ; the continuous part of the hybrid time
domain where f(t, xu) is continuous in t
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The interval observer that we propose for system (2.1) has two steps;

First step: the interval observer in-between two successive measure instants be-

haves like an open-loop estimator as followsẋ(t) = AMx(t)− ANx(t) +Bu(t) + d,

ẋ(t) = AMx(t)− ANx(t) +Bu(t) + d
∀t ∈ [tk, tk+1], k ∈ N (2.2)

where AM = dA + (A − dA)+ and AN = AM − A with dA is a diagonal matrix

contains only the diagonal elements of A. In addition, the interval observer initial

state at k = 0, i.e. at t0, satisfies the inclusion

x(t0) ≤ x(t0) ≤ x(t0) (2.3)

The estimation error dynamics over the inter-measurement time for both bounds

e(t) = x(t)− x(t) and e(t) = x(t)− x(t) can be obtained from equations (2.1) and

(2.2) by

ė(t)
ė(t)

 = A

e(t)
e(t)

+

d(t)− d
d− d(t)

 ,∀t ∈ [tk, tk+1] k ∈ N (2.4)

with A =

AM AN

AN AM

 .
Let us denote by Ξ(t) =

d(t)− d
d− d(t)

 and Ξ =

d− d
d− d

 the second term of (2.4)

(due to the system disturbance) and its upper constant bound, respectively.

Note that, based on the construction of the matrices AM and AN as Metzler

and nonnegative matrices, respectively, the matrix A is Metzler. In addition, the

vector Ξ(t) is nonnegative. Then, the solution to (2.4) is nonnegative which means

that the lower and the upper bounds are nonnegative in the time interval [tk, tk+1]

provided that their initial conditions are nonnegative, that is, the inclusion x(tk) ≤
x(tk) ≤ x(tk) is satisfied.
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Second step: using the output model in (2.1), the system state at the measurement

time instants can be presented as

x(t+k ) = x(tk) + L[Cx(tk) + v(tk)− y(tk)] k ∈ N

or equivalently

x(t+k ) = (I + LC)x(tk) + Lv(tk)− Ly(tk) k ∈ N (2.5)

Equation (2.5) helps establishing the discrete-time dynamics of the estimation er-

ror which is used only for the synthesis phase. When the measurement is available,

an impulsive correction of the estimated state enclosures will be done using the

following correction equations

k ∈ N,



x(t+k ) = (In + LC)+x(tk)− (In + LC)−x(tk)

− |L|v − Ly(tk)

x(t+k ) = (In + LC)+x(tk)− (In + LC)−x(tk)

+ |L|v − Ly(tk)

(2.6)

where L ∈ Rn×p is an observer gain to be designed.

From (2.6) and (2.5), the estimation error dynamics at measurement instants can

be described by the following dynamical systeme(t+k )

e(t+k )

 = Γ(L)

e(tk)
e(tk)

+ Υ(tk) (2.7)

where

Γ(L) =

(In + LC)+ (In + LC)−

(In + LC)− (In + LC)+

 ; Υ(tk) =

|L|v + Lv(tk)

|L|v − Lv(tk)

 . (2.8)

The matrix Γ(L) is an Internally Positive Realization of the state reset matrix

(In+LC). The positivity property of the reset matrix allows to preserve the order

relation x(t) ≤ x(t) ≤ x(t) after experiencing the reset (for more details about

IPR for linear systems, see (Cacace et al., 2015)).
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Let us now consider the augmented error vector of the interval estimation as

ξ = [e>, e>]>. Re-writing the system (2.4) and upper bounding its right-hand

term using the upper bound of Ξ(t) one gets ∀t ∈ [tk, tk+1]

ξ̇(t) = Aξ(t) + Ξ(t) (2.9a)

≤ Aξ(t) + Ξ (2.9b)

Now, using the results of the general comparison theorem (see Lemma 2.1 for scalar

differential equation), the solution ξ(t) of the system (2.9a) is upper bounded by

the solution of the system

ξ̇u(t) = Aξu(t) + Ξ (2.10)

provided that ξ(t0) ≤ ξu(t0), where ξu(t) ∈ R2n is an auxiliary variable that

represents an upper bound of ξ(t). To characterize the steady state of the system

(2.10), we assume that the matrix A is invertible. Thus, the steady state of the

system (2.10) is as follows

ξueq = −A−1
Ξ.

By introducing the shifted error ξ0 = ξu − ξueq, the ξ0−system dynamics is given

as follows

ξ̇0(t) = A(ξ0(t) + ξueq) + Ξ = Aξ0(t) (2.11)

Remark 2.3. To simplify the stability analysis of the estimation error defined in

(2.4) and (2.7), we will use the dynamics of the ξ0−system. We justify our choice

by the following reasons:

• The solution of the ξu−system in (2.10) is an upper bound of the solution

of the ξ−system in (2.9a). Shifting the ξu−system by the value of its steady

state ξueq using the ξ0−system, the convergence of ξ0 to 0 means that ξu

converges to ξueq.

• The reset equation (2.7) is independent of the model disturbance d(t). Con-

sequently, the same reset equation (2.7) can be used for the reset of the

ξu−system.
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• In the case of system (2.1) without state disturbance (d(t) = 0), the trajecto-

ries ξ(t), ξu(t) and ξ0(t) are the same and have the same stability properties.

Otherwise, when the state is under disturbance, then the trajectory ξ(t) is

upper bounded by the trajectory ξu(t).

The stability analysis is studied under the hybrid system framework (Goebel et al.,

2012).

From equations (2.4) and (2.7) and by using the shifted upper bound of the esti-

mation error (2.11), after adding the time variable τ , the hybrid system modeling

the dynamics of the upper bound of the estimation error is given by


f(z0) =

Aξ0

−1

 ∀z0 ∈ C

g(z0) =

Γ(L)ξ0 + Υ2(tk)

µ

 ∀z0 ∈ D

(2.12)

with

Υ2(tk) = Υ(tk) + (Γ(L)− I)ξueq,

where z0 = [ξ>0 , τ ]> is the state variable of the hybrid system, µ ∈ [τmin, τmax] is

the set of admissible values of the timer based on Assumption 2.1.

The flow and jump sets are defined as

C =
{

(ξ0, τ) ∈ R2n × R≥0 | τ ∈ [0, τmax]
}

D =
{

(ξ0, τ) ∈ R2n × R≥0 | τ = 0
}
.

(2.13)

It is worth noting that these sets do not force the system to jump until the timer

reaches zero, then after the jump, the timer τ is reset to a value µ ∈ [τmin, τmax].

Let us define the closed set A that contains all admissible values for the timer

when the ξ0−system state is at the origin

A =
{
z0 = (ξ0, τ) ∈ R2n × R≥0 | ξ0 = 0, τ ∈ [0, τmax]

}
. (2.14)

Remark 2.4. As discussed in Remark 2.3, the stability of the ξ0−system is sufficient

for the stability of the ξ−system. Thus, if the ξ0−system is stable relatively to A,
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this implies that the ξ−system is practically stable relatively to A

Remark 2.5. The hybrid system (2.12) can be considered for the perfect case

(without noise and perturbation) by omitting the term Υ2(tk). That is, if the

system has d(t) = 0, ∀t ≥ 0 and v(tk) = 0, ∀k ∈ N, then we can pick d = d = 0

and v = 0 which imply that Ξ = 0 and Υ(tk) = 0 ∀k ∈ N. Thus we have

Υ2(tk) = 0.

We characterize the solutions’ domain of (2.12) when Υ2(tk) = 0. Indeed, the

variable τ , acting as a timer, guarantees that for every initial condition φ(0, 0) ∈
C ∪ D the domain of every maximal solution φ to (2.12) when Υ2(tk) = 0 can be

written as follows:

domφ =
⋃
j∈N

([tj, tj+1], j)

with τmin ≤ tj+1 − tj ≤ τmax, ∀j ∈ N \ {0}. Furthermore, assuming t0 = 0, the

structure of the above hybrid time domain implies that for each (t, j) ∈ domφ we

have

t ≤ τmax(j + 1).

The latter relation will play a key role in establishing GES of the set A for hybrid

system (2.12) when Υ2(tk) = 0.

In the sequel, we consider the following definitions of the global exponential stabil-

ity (GES) and the input-to-state stability (ISS) of closed sets for a general hybrid

system.

Definition 2.6. (Teel et al., 2013) Let A ⊂ Rnφ be closed. The set A is said to

be GES for the hybrid system (2.12) when Υ2(tk) = 0 if there exist λ, κ ∈ R> such

that every solution φ to (2.12) when Υ2(tk) = 0 satisfies

|φ(t, j)|A ≤ κe−λ(t+j)|φ(0, 0)|A ∀(t, j) ∈ domφ. (2.15)

Definition 2.7. (Cai and Teel, 2009) Let A ⊂ Rnφ be closed. The set A is said

to be ISS for (2.12) with respect to Υ2 if there exist β ∈ KL and α ∈ K such that

every solution φ to (2.12) satisfies

|φ(t, j)|A ≤ max
{
β(|φ(0, 0)|A, t+ j), α(||Υ2||(t,j))

}
∀(t, j) ∈ domφ. (2.16)
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Before setting our first result in the next theorem, let introduce the following

lemma.

Lemma 2.8 ((Ferrante et al., 2016)). Let ρ be a strictly negative real number.

Choose γ ∈
(

0, |ρ|
1+τmax

]
and ω ∈

[
τmax|ρ|
1+τmax

,∞
)
. Let φ be any solution to the hybrid

system (2.12). Then for every (t, j) ∈ domφ, one has ρj ≤ ω − γ(t+ j).

The idea behind using Lemma 2.8 is to allow for the Lyapunov function to in-

crease locally. This increase is compensated by instantaneous decrease at jumps

which renders the overall hybrid dynamics stable. This stability property is the

main result of (Goebel et al., 2012, Proposition 3.29) which we have recalled in

Proposition 1.25.

Theorem 2.9. Let Assumption 2.1 and 2.2 hold. For a given gain matrix L ∈

Rn×p, if there exist a symmetric positive definite matrix P ∈ R2n×2n such that

Γ(L)>eA
>
µPeAµΓ(L)− P ≺ 0 ∀µ ∈ [τmin, τmax] (2.17)

is satisfied, then the hybrid system (2.12)-(2.13) is Input-to-State-Stable (ISS) with

respect to the set A defined in (2.14). Thus, the system (2.2), (2.6) is an interval

observer for the system (2.1) with ISS estimation error relatively to A provided

that x(t0) ≤ x(t0) ≤ x(t0). Moreover, if v(tk) = 0 ∀k ∈ N and d(t) = 0 ∀t ≥ 0

in (2.1), then the interval observer (2.2), (2.6) for the system (2.1) has a globally

exponentially stable (GES) estimation error relatively to A.

The stability proof of Theorem 2.9 follows the main lines of the proof of (Ferrante

et al., 2016, Theorem 1) with appropriate modifications due to the fact that we

study the stability of an over-approximation bound of the interval estimation error.

These modifications have a double role. First, they have to guarantee the order

preserving property of the estimation error. Then, they manage the effect of the

state disturbance.

Proof of Theorem 2.9. The proof is split into two parts; studying the non-

negativity of the estimation error, then the stability of the upper bound of the

estimation error.
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The cooperativity of the estimate error: Based on Assumption 2.2(b) and due to

the Metzler property of the matrix A in (2.4), the continuous dynamics (2.4) is

nonnegative. On the other hand, the observer updates the estimates at measure-

ment times by means of (2.6), where its estimation error is represented by the

discrete dynamics (2.7). The matrix Γ(L) is structurally nonnegative while As-

sumption 2.2(a) ensures the nonnegativity of the vector Υ(tk). Consequently, the

estimation error preserves the order relation x(tk) ≤ x(tk) ≤ x(tk) after experi-

encing the reset. Finally, with the initial condition given as x(t0) ≤ x(t0) ≤ x(t0),

the errors e(t) and e(t) of (2.12) are nonnegative for all t ≥ t0.

The stability of the estimation error: Instead of studying the stability of z(t), we

use its upper bound trajectory zu(t) induced by the system disturbance d(t) as

mentioned in Remark 2.5. The stability of the trajectory zu(t) can be analysed

by studying the shifted solution z0(t). Let us consider the Lyapunov function

candidate for the hybrid system (2.12)-(2.13) defined ∀z0 ∈ R2n × R≥0

V (z0) = ξ>0 e
A
>
τPeAτξ0. (2.18)

Note that there exist two positive scalars l1, l2 such that

l1|z0|2A ≤ V (z0) ≤ l2|z0|2A ∀z0 ∈ C ∪ D. (2.19)

Due to the positive definiteness of P and the non-singularity of the matrix eAτ for

every τ , by continuity arguments, one can set

l1 = min
τ∈[0,τmax]

λmin
(
eA
>
τPeAτ

)
, l2 = max

τ∈[0,τmax]
λmax

(
eA
>
τPeAτ

)
(2.20)

where λmin(·) and λmax(·) denote the smallest and the largest eigenvalue of their

matrix argument, respectively. From (2.18) we can find

∇V (z0) =
(

2eA
>
τPeAτξ0, ξ

>
0 A
>
eA
>
τPeAτξ0 + ξ>0 e

A
>
τPAeAτξ0

)
(2.21)

For simplicity, throughout this proof, we write Γ and Υ2 instead of Γ(L) and

Υ2(tk), respectively.
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From system (2.12)-(2.13), and under the fact that eAµ and A commute, the varia-

tion of the Lyapunov function over the inter-sampling time is then 〈∇V (z0), f(z0)〉 =

0 ∀z0 ∈ C.

Thus, the stability of the upper-bound of the error dynamics can be verified by

considering the evolution of the Lyapunov function for every z0 ∈ D. In addition,

whenever z0 ∈ D, we have τ = 0, which implies

V (g(z0))− V (z0) = (Γξ0 + Υ2)>eA
>
µPeAµ(Γξ0 + Υ2)− ξ>0 Pξ0

= ξ>0 (ΓeA
>
µPeAµΓ− P )ξ0

+ 2Υ>2 e
A
>
µPeAµΓξ0 + Υ>2 e

A
>
µPeAµΥ2

(2.22)

GES stability

First, we discuss the case of system without noise and perturbation, i.e., when

v(tk) = 0 and d(t) = 0, which implies Υ2 = 0.

Based on inequality (2.17) there exists a constant η ∈ R> small enough such that

(2.22) becomes

V (g(z0))− V (z0) ≤ −ηξ>0 ξ0 ∀z0 ∈ D (2.23)

Without loss of generality, let us assume that l2 in (2.20) and η in (2.23) satisfy

1− η
l2
> 0. Define θ1 = ln

(
1− η

l2

)
and observe that θ1 < 0. Hence

V (g(z0)) ≤ eθ1V (z0) ∀z0 ∈ D. (2.24)

Consider that φ is a maximal solution to (2.12)-(2.13).

As proven in (Goebel et al., 2012, Proposition 3.29 ), and similarly to (Ferrante

et al., 2016, Theorem 1), using Lemma 2.8 one can find that the solution φ satisfies

inequality (2.15) in Definition 2.6. Thus, the set A defined in (2.14) is GES for

the hybrid system (2.12)-(2.13). Based on Remark 2.4, one can conclude that the

interval observer (2.2), (2.6) with the system (2.1) have a GES estimation error

relatively to A defined in (2.14).

ISS stability

Returning to the general case where Υ2 6= 0. We apply Young’s inequality 2a>b ≤
η
2
a>a + 2

η
b>b where a = ξ0 and b> = Υ>2 e

A
>
µPeAµΓ on the right-hand side of
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equation (2.22). Then, we get

V (g(z0))− V (z0) ≤− η

2
ξ>0 ξ0

+ Υ>2

[
eA
>
µ
(2

η
PeAµΓΓ>eA

>
µ + I

)
PeAµ

]
Υ2

≤− η

2l2
V (z0) + Υ>2 Υ2

∣∣∣∣∣∣2
η
PeAµΓΓ>eA

>
µ + I

∣∣∣∣∣∣
× ||P || max

µ∈[τmin,τmax]

(
||eAµ||2

)
(2.25)

From (2.17), we have

∣∣∣∣2
η
PeAµΓΓ>eA

>
µ + I

∣∣∣∣ · ||P || ≤ (2

η
||P ||+ 1

)
||P ||. (2.26)

In system (2.12), we have Υ2 = Υ + (Γ− I)ξueq. Using the triangle inequality, one

obtain

Υ>2 Υ2 ≤ 2Υ>Υ + 2ξ>ueq(Γ
> − I)(Γ− I)ξueq

≤ 2Υ>Υ + 2||ξueq||2||(Γ− I)||2
(2.27)

The vector function Υ defined in (2.7) satisfies Υ>Υ = 2
∣∣∣∣|L|v∣∣∣∣2 + 2||Lv||2 ≤

4
∣∣∣∣|L|v∣∣∣∣2, and based on Assumption 2.2.(a) we thus have

Υ>Υ ≤ 4
∣∣∣∣|L|∣∣∣∣2 sup

t
||v(t)||2 (2.28)

Consequently, by replacing inequalities (2.26)-(2.28) in (2.25), the Lyapunov func-

tion at jump is obtained as

V (g(z0)) ≤ eθ2V (z0) + ζ1 sup
t
||v||2 + ζ2 ∀z0 ∈ D, v ∈ Rp (2.29)

where θ2 = ln
(
1 − η

2l2

)
is a negative scalar while ζ1 and ζ2 are positive scalars

defined as follows

ζ1 = 8
∣∣∣∣|L|∣∣∣∣2(2

η
||P ||+ 1

)
||P || max

µ∈[τmin,τmax]

(
||eAµ||2

)
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ζ2 = 2
∣∣∣∣|Γ− L|∣∣∣∣2(2

η
||P ||+ 1

)
||P || max

µ∈[τmin,τmax]

(
||eAµ||2

)
||ξueq||2.

Now, similarly to (Goebel et al., 2012, Proposition 3.29 ), and using Lemma 2.8

the solution φ verifies the inequality (2.16). Thus, the hybrid system (2.12)-(2.13)

is ISS with respect to v(t) relatively to the set A. Finally, the interval observer

(2.2), (2.3), (2.6) for the system (2.1) has ISS estimation error w.r.t v(t) relatively

to the set A, and this concludes the proof.

Remark 2.10. Note that assuming (2.17) to hold implies that the eigenvalues of

eAµΓ(L) are strictly contained in the unit circle for every µ belonging to [τmin, τmax].

Contrariwise to (Ferrante et al., 2016, Remark 3), it is not straightforward to con-

nect this condition with a detectability property mainly because of the decom-

position of I + LC into matrix Γ(L). However, one may conjecture that at least

the following two necessary conditions are required for the feasibility of inequality

(2.17):

(i) The detectability of the equivalent discrete-time system (DTS) of (2.1) given

as: χk+1 = eAτχk, yk = Cχk ∀τ ∈ [τmin, τmax], where χ is the state and yχ is

the output. Similar to the criteria given in (Raff and Allgower, 2007, Remark

7), (Ferrante et al., 2016), (Mazenc and Dinh, 2014), the criterion should be

the detectability of the pair (eAτ , C) for every τ ∈ [τmin, τmax].

(ii) The second condition is due to our use of the IPR. In general, the stability of

the above equivalent DTS does not imply the stability of its IPR. However,

we can use the result of Cacace et al. (2015) on the relation between the

eigenvalues of a system and the stability of its IPR. In Cacace et al. (2015),

the authors have showed that the IPR of a system is stable if its eigenvalues

remain in a restricted region of the complex plane defined by P = {z ∈ C :

Re(z) + |Im(z)| < 1}. This second condition should also be satisfied by the

equivalent DTS which restricts further the feasibility domain of the observer

gain.

The combination of these two conditions deserves further analysis that goes beyond

the scope of the chapter. This issue will be investigated in future work.
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So far, a verification method has been given. The synthesis of the observation gain

L cannot be achieved using convex solvers (CS) due to the decomposition of (In +

LC). However, using the positive realization of this matrix, the synthesis is still

possible using CS. In the following section, we propose a synthesis methodology.

2.3 Synthesis methodology

In this section, we propose a new design methodology as second contribution of

this chapter. We will show how to design the observer gain based on positive

system theory.

2.3.1 Positive realization approach

Let us now re-consider the generic reset equation of the system state at measure-

ment instant in (2.5). By introducing G = [I + LC], the resetting matrix can be

written as

x(t+k ) = Gx(tk) + L[v(tk)− y(tk)]

= (G+ −G−)x(tk) + L[v(tk)− y(tk)] k ∈ N
(2.30)

where G+ and −G− are the positive and the negative part of the matrix G, re-

spectively.

Let us note that for any two positive matrices G1, G2 ∈ Rn×n
≥0 that satisfy G =

G1 −G2 there exists ∆ ∈ Rn×n
≥0 such that

G = (G+ + ∆)− (G− + ∆) (2.31)

That is, matrices G1 and G2 are any positive realization of the matrices G+ and

G−, respectively. Under the positive realization of the reset matrix G, the reset

equation of the estimation error (2.7) can be generalized by the following difference

equation e(t+k )

e(t+k )

 = Γ(G1, G2)

e(tk)
e(tk)

+ Υ(tk) (2.32)
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where

Γ(G1, G2) =

G1 G2

G2 G1

 (2.33)

Therefore, the idea for the synthesis is to calculate numerically the two positive

matrices G1 and G2 that satisfy the stability conditions. Then, one can compute

directly the matrices G+ and G− from the relation G = G1 −G2.

Using (2.33) instead of Γ(L) in inequality (2.17), and introducing

Φ(P,G1, G2) = Γ(G1, G2)>eA
>
µPeAµΓ(G1, G2)− P, (2.34)

the gain synthesis can now be performed by finding the solution set {P,G1, G2, L}
to the following feasibility problem

Φ(P,G1, G2) ≺ 0, ∀µ ∈ [τmin, τmax] , (2.35a)

In + LC = G1 −G2 , (2.35b)

G1 ≥ 0 , (2.35c)

G2 ≥ 0 , (2.35d)

P � 0 (2.35e)

From equation (2.31) and based on the definition of the positive matrices G+ and

G− and their positive realization G1 and G2, respectively, the reset equation (2.32)

can be seen as a positive discrete time system whose state matrix is perturbed by

a nonnegative matrix as follows

Γ(G1, G2) = Γ(L) + 12×2 ⊗∆. (2.36)

Remark 2.11. Since the matrix ∆ is nonnegative which implies that 12×2 ⊗ ∆ is

also nonnegative, it is always possible to enhance the interval observer dynamics at

jumps in (2.32) by reducing the matrix Γ(G1, G2) in (2.36) to its optimal realization

Γ(L). As a result, the observer gain matrix L in equations (2.6) of the interval

observer can be synthesized using the intermediate auxiliary matrices G1 and G2,

then the implementation is finally done using matrix Γ(L) instead of Γ(G1, G2).
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2.3.2 Design procedure

The semi-definite programming (SDP) (2.35) is subjected to a Nonlinear Matrix

inequality, which is hard to solve. The constraint Φ ≺ 0 can be relaxed to a

Bilinear Matrix Inequality (BMI) using the following simplifications.

The constraints to be simplified are as follows

Φ(P,G1, G2) ≺ 0

−P ≺ 0
(2.37)

these two constraints can be combined in using projection lemma.

Lemma 2.12. (Projection Lemma (Pipeleers et al., 2009)) Given Z = Z> ∈

Rm×m and two matrices U and V of column dimension m; there exists an un-

structured matrix F that satisfies

U>FV + V >F>U + Z ≺ 0, (2.38)

if and only if the following projection inequalities with respect to F are satisfied

N>U ZNU ≺ 0,

N>V ZNV ≺ 0,
(2.39)

where NU and NV are arbitrary matrices whose columns form a basis of the

nullspaces of U and V , respectively.

Setting

Z =

eA>µPeAµ 0

0 −P

 (2.40)

Thus, the equivalence between (2.39) and (2.37) is obtained withN>U = [Γ(G1, G2)> I2n]

and N>V = [0 I2n]. Picking U = [−I2n Γ(G1, G2)] and V = [I2n 0] based on their

nullspaces basis NU and NV , respectively, the resulting inequality from (2.37) of

the form (2.38) is given as follows

eA>µPeAµ − F − F> FΓ(G1, G2)

? −P

 ≺ 0, ∀µ ∈ [τmin, τmax] (2.41)
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Using Schur complement for the inequality (2.41) we have


−F − F> FΓ(G1, G2) eA

>
µ

? −P 0

? ? −P−1

 ≺ 0, ∀µ ∈ [τmin, τmax] (2.42)

Pre-and-post multiplying (2.42) by the matrix diag{I2n, I2n, P} on gets


−F − F> FΓ(G1, G2) eA

>
µP

? −P 0

? ? −P

 ≺ 0, ∀µ ∈ [τmin, τmax] (2.43)

In the inequality (2.43) the time variable µ is in a compact interval defined as

µ ∈ [τmin, τmax]. So the term eAµ can be represented by its polytopic over-

approximation. This over-approximation consists in determining a finite num-

ber of constant matrices {M1,M2, . . . ,Mv} ∈ R2n×2n such that eA[τmin,τmax] ∈
conv{M1,M2, . . . ,Mv}. Several methods exist in the literature that can be used

to calculate the closed convex hull conv{Mi}i∈{1,...,v} (Heemels et al., 2010). Here,

the method developed in Hetel et al. (2007) based on Taylor’s series is adopted.

Finally, to solve the matrix inequalities (2.37), it is sufficient to solve the set of

BMIs given as follows


−F − F> FΓ(G1, G2) M>

i P

? −P 0

? ? −P

 ≺ 0 ∀i ∈ {1, . . . , v} (2.44)

It is worth pointing that the matrices {P,G1, G2, L} are the decision variables for

this set of BMIs (2.44) with the constraints (2.35b)-(2.35d).

To sum up, the second contribution of this chapter about the design of the observer

gain, is stated in the following proposition.

Proposition 2.13. Let Assumption 2.1 and 2.2 hold. If there exist two nonneg-

ative matrices G1, G2 ∈ Rn×n, and a matrix L ∈ Rn×p such that the set of BMIs

(2.44) and the constraints (2.35b)-(2.35d) are feasible, then the interval observer

of the form (2.2), (2.3) and (2.6) for the system (2.1) has; (i) a GES estimation
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error relatively to the set A in the ideal case (system without noise and perturba-

tion), (ii) an ISS estimation error relatively to the set A in the case of noisy and

perturbed system.

Proof of Proposition 2.13. The proof is given in the previous lines by apply-

ing both positive realization method and projection lemma.

2.4 Illustrative examples

In order to illustrate the performance of the proposed observer, we consider the

following examples

2.4.1 Spring-mass-damper system

Consider the LTI system of the Spring-mass-damper system. Let p, κv, and f be

the position, the velocity, and the force applied to the object, respectively. We

have

ṗ(t) = κv(t) + d1(t)

msκ̇v(t) = −ksp(t)− csκv(t) + f(t) + d2(t)

where ms, ks and cs stand for the mass of the object, the stiffness constant of

the spring, and the damping ratio, respectively. d(t) = [d1(t) d2(t)]> is the state

disturbance. Defining x1 = p, x2 = κv, and u = f , with the practical parameters

of the system which are given as ms = 1kg, ks = 1N/m and cs = 1Ns/m, one can

introduce its LTI model as

ẋ =

 0 1

−1 −1

x+

0

1

u+ d(t)

where d(t) is unknown-but-bounded as −d ≤ d(t) ≤ d such that d = [1 1]>, and

the output is given by y(tk) = 2x1(tk)+v(tk) where v(tk) = 0.4 cos(2tk). Note that

this system is not cooperative. So the solution that we have proposed is to use its

IPR. Then, the dynamics of the interval estimation error between two consecutive
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measurements in (2.4) is defined by the following matrices

AM =

0 1

0 −1

 , AN =

0 0

1 0

 .
Note that although the plant model is stable, the observer dynamics in between

measurements is unstable. To illustrate the performance of the observer, we choose

the time interval [τmin, τmax] = [0.04, 0.3], then we solve the feasibility problem

given in Proposition 2.13. The set of BMIs (2.44) is solved using the YALMIP

toolbox (Lofberg, 2004) based on the Penlab (v1.04) solver. The observation gain

matrix is obtained as L> = [−0.5004 −0.0494]. The implementation is made with

matrix

(I2 + LC) = G1 −G2 =

−0.0008 0

−0.0987 1

 .
The measurement times are generated randomly in the time interval [τmin, τmax].

The system input is taken as u(t) = 10[2 sin(10t) + sin(16t) + sin(24t)]. The

simulation results are given in Figure 2.1 and 2.2. In Figure 2.1, it is noticeable

that the jump part of the interval impulsive observer prevents the estimate bounds

from diverging, even though the open-loop dynamics of the interval estimator error

is unstable.

The case of system without perturbation and noise In order to show the

ideal case when the dynamics of the system and the available measurement are

considered perfect (e.i., d(t) = [0 0]> and v(tk) = 0), we choose for the observer the

bounds of perturbation and noise as d = [0 0]> and v = 0, respectively. In Figure

2.2, the estimates converge exponentially to the actual state of the system, and

the Lyapunov function of the state estimation error shows a faster convergence at

jumps while stays almost constant when flowing.

Table 2.1: The relation between τmax and the damping ratio.

cs 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
τmax 1.1 1 0.9 0.8 0.5 0.3 0.05 –
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Figure 2.1: Simulation results for the spring-mass-damper system: the esti-
mate bounds for the position (top), and velocity (bottom).
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Figure 2.2: System without perturbations and noises : from top to bottom;
state x1, x2, Lyapunov function of the error, and the inter-measurement times.
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In order to show the maximum allowable inter-measurement time on the problem

feasibility, we vary the damping ratio cs which in turn varies the eigenvalues of the

flow part. The maximum inter-measurement time τmax that renders the design

problem feasible, for different values of cs, is given in Table 2.1. One can notice

that the feasibility depends on the maximum inter-measurement time τmax. The

correction jumps are made to prevents the prediction from diverging, so the larger

the divergence rate of the prediction error, the smaller feasible τmax. For damping

ratio cs ≤ 0.3, it was not possible to find a gain L that renders the eigenvalues

of the equivalent discrete system (see Remark 2.10) in the restricted region of the

complex plane given in Cacace et al. (2015).

2.4.2 Academic example: an unstable system

Consider the LTI system governed by equation (2.1) with

A =

0.5 0.6

−1 −2

 , B =

0

1

 , C =
[
2 0

]
,

the input signal is the same as Example 1 and the measurement noise is v(tk) =

0.4 cos(2tk) ≤ v = 0.4 for each k ∈ N. The system dynamics is clearly non-

cooperative and unstable. The matrices AM and AN in (2.2) are obtained as

follows

AM =

0.5 0.6

0 −2

 , AN =

0 0

1 0

 .
One can see that the prediction part of the impulsive observer, which is based

on the matrices AM and AN , has not the same stability properties of the original

system. The observer gain matrix L is calculated by solving the set of BMIs (2.44).

A feasible solution is obtained as G1 − G2 = I + LC =

−0.0016 0

0.0468 1.0000

 with

LT = [−0.6678 0.0312].

The simulation result is presented in Figure 2.3 and Figure 2.4. The upper and

lower estimate of the actual state are presented in Figure 2.3. Figure 2.4-(top)

shows the Lyapunov function of the estimation error. Figure 2.4-(bottom) presents

the measurement times, where the signal magnitude represents the time elapsed
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Figure 2.3: Simulation results: the estimate of the state; upper (blue) and
lower (red) bounds.

after the last measurement. These inter-measurements intervals are chosen ran-

domly in the interval [τmin, τmax] = [0.04, 0.4]. The Lyapunov function shows a

behavior similar to what described in Theorem 2.9; its value decreases faster at

measurement times (at jump) compared to the prediction period (during flow).

This simulation result shows that although the system is unstable, the proposed

observer can estimate its state.
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Figure 2.4: Simulation results: the Lyapunov function of the estimation error
(top), the inter-measurement times (bottom).
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2.5 Conclusion

In this chapter, the problem of interval observers synthesis for linear continuous-

time systems with aperiodic discrete measurement has been investigated. The

systems and the measurements have been assumed perturbed by unknown-but-

bounded disturbances and noises, respectively. To deal with this problem, a new

interval impulsive observer has been introduced. Exploring the internal positivity

of the system, a new method has been proposed to design the observer gain. The

synthesis of the observation gain is performed using BMIs. Simulation examples

show the efficiency of the proposed interval impulsive observer for a class of linear

perturbed systems.
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Finite-gain L1 Event-triggered

Interval Observers for LTI

Continuous-time Systems

3.1 Motivations and related works

Immense effort has been made to enhance the performance of networked control

systems (NCS) while ensuring the minimal use of the (shared) network. To reach

that objective, alternative approaches to the traditional periodic data-sampling

method were proposed, such as, the aperiodic data-sampling scheme where sam-

pling is allowed within a predetermined time interval (Hetel et al., 2017), and

the event/self-triggered sampling strategy (Tabuada, 2007; Heemels et al., 2012;

Girard, 2015) where the sampling time instant depends on the behaviour of the

system.

In this work, we propose the design of interval observers based on an event-

triggering mechanism allowing to use measurement only when necessary. The

event-based estimation can relax the regularity assumption on the availability of

the measurements commonly used by the traditional state estimation methods.

Thanks to this mechanism, the amount of data transmitted over the network can

be reduced considerably.

In the event-based context, point-valued estimation approaches have been pro-

posed for discrete-time systems (Muehlebach and Trimpe, 2017; Huang et al.,

51
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2019) and continuous-time systems (Etienne and Gennaro, 2016; Huang et al.,

2017), to cite a few. The set-valued (set-membership) estimation has also been

investigated (Shi et al., 2014; Silvestre et al., 2018). Shi et al. (2014) have pro-

posed an event-based estimation approach based on the set-valued Kalman filter

for systems with multiple outputs, where the set-valued measurements, the initial

state and the uncertainties are assumed Gaussian. Silvestre et al. (2018) have

proposed event and self-triggered strategies based on Set-Valued Observers. Both

aforementioned works are dedicated to discrete-time systems. However, the set-

membership state estimation problem for continuous-time systems has not been

fully investigated in the literature. Some preliminary works have considered the

self-triggered (Meslem and Prieur, 2014) and the event-based (Rabehi et al., 2017)

sampling of measurements using the prediction-correction approaches. Note that,

in both cited works, only the intrinsic structure properties of the systems are ex-

ploited in order to design converging set-membership state estimators. In this

work, we propose a new structure of interval observers, where the correction is

carried out at discrete-time instants. Furthermore, here, the feasible sets of the

system initial state and the disturbances are taken as interval vectors (boxes)

instead of ellipsoids (Shi et al., 2014) and polytopes (Silvestre et al., 2018).

The main advantage of the proposed observation approach is in the correction

stage which is based on a pre-calculated observation gain that ensures the stability

of the estimation error along with some performance specifications. The latter is

achieved using Input-Output Stability (IOS) analysis, in particular the Lp stability

concept (Khalil, 2002).

The Lp-gain concept is an interesting approach for analyzing the stability along

with the performance of dynamical systems. This concept has been already ap-

plied to evaluate the performance of interval observers (Chebotarev et al., 2015;

Briat and Khammash, 2016). For instance, interval observers have been proposed

for LPV systems with L1/L2 performance analysis by Chebotarev et al. (2015).

Interval observers providing tight state enclosures have been designed using peak-

to-peak approach L∞−L∞ in (Briat and Khammash, 2016) for discrete-time and

continuous-time systems.

In this chapter, we combine the L1-gain approach for positive systems (Briat, 2013;

Ebihara et al., 2011) and the Lp-gain approach for hybrid systems (Nešić et al.,

2013) to study the stability and the performance of the proposed event-triggered
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interval observers viewed as impulsive systems. The positivity of the estimation

error is guaranteed by using the internal positivity of the system. Furthermore,

the measurements are not continuously available and a triggering mechanism is

designed to request measurement only when needed to enhance the accuracy of

the estimates, that is, the measurements are requested whenever a performance

criterion, involving the width of the feasible domain of the system’s uncertainties

and the width of the estimated state enclosures, is violated. Thus, the novelty of

this chapter is the co-design of the event-triggered mechanism for measurement

sampling and the observer gains that ensure the convergence of the width of the

estimated state enclosures.

The remainder of this chapter is organized as follows. Some preliminaries are

given in Section 3.2. The structure of the interval observers for continuous-time

linear systems and the design of the event-triggered mechanism with a guaran-

teed finite-gain L1 performance are proposed in Section 3.3. The co-design of

the event-triggered mechanism and the interval observer gain for continuous-time

linear systems is given in Section 3.4 which differs from Section 3.3 where we as-

sume that the interval observer gains are given a priori. An illustrative numerical

example shows the efficiency of the proposed approach in Section 3.5.

3.2 Preliminaries

3.2.1 Definitions

Definition 3.1. (Simple version of the S-procedure) (Boyd et al., 1994, Section

2.6.3) Let F0, F1 be functions (quadratic or linear) of the variable z ∈ Rn. Consider

the following condition on F0, F1 :

F0(z) ≥ 0 for all z such that F1(z) ≥ 0

The above condition holds if there exists ζ ≥ 0 such that

∀ z, F0(z)− ζF1(z) ≥ 0.
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Definition 3.2. (Moisan et al., 2009) Consider the system ẋ(t) = f(x(t)). If there

exist two functions f, f : Rn × Rn → Rn, then the following coupled dynamical

systems

ẋ(t) = f(x(t), x(t))

ẋ(t) = f(x(t), x(t))
(3.1)

is a framer of this system, that is, the state trajectories satisfy x(t) ≤ x(t) ≤ x(t)

for all t ≥ 0, provided that x(0) ≤ x(0) ≤ x(0).

Remark 3.3. In the case of linear cooperative systems, a framer can be designed

using copies of the system (i.e., f(x, x) = Ax and f(x, x) = Ax for the lower and

the upper bounding system, respectively). In the case of linear non-cooperative

systems, the two functions f, f in (3.1) could be calculated using methods intro-

duced in (Ramdani et al., 2009; Cacace et al., 2015) based on the Müller’s existence

theorem (Müller, 1927).

It is important to point out the fact that a framer is conceived to give an upper

and a lower bounds for the unknown state. Stability can be considered as an

additional feature for a framer to guarantee the convergence of the bounds to the

system state and thus obtaining an interval observer.

In this chapter, we combine the notion of framer for continuous-time and discrete-

time systems to obtain a framer for the so-called impulsive (or hybrid) system.

Consider the following hybrid system:


ẋ = f(x, d), ∀(x, d) ∈ C

xt+k
= g(x, d), ∀(x, d) ∈ D

y = h(x, d),

(3.2)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny are the state vector, the exogenous input

and the output vector, respectively, and d ∈ Rnd represents the exogenous input

assumed to be unknown-but-bounded. xt+k
= limt→t+k

x(t) refers to the state vari-

able after jumps. The following definition generalizes the definition of framer of

discrete-time and continuous-time systems.
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Definition 3.4. If there exist functions f, f , g, g : Rn×Rn×Rnd×Rnd×Rny → Rn

and d, d ∈ Rnd such that the inclusions

d(t) ≤ d(t) ≤ d(t), ∀t ≥ 0 , (3.3a)

f(x, x, d, d, y) ≤ f(x, d) ≤ f(x, x, d, d, y), ∀(x, d) ∈ C , (3.3b)

g(x, x, d, d, y) ≤ g(x, d) ≤ g(x, x, d, d, y), ∀(x, d) ∈ D . (3.3c)

are satisfied, then the solution of the system

ẋ = f(x, x, d, d, y), ∀(x, d) ∈ C

ẋ = f(x, x, d, d),

xt+k
= g(x, x, d, d, y), ∀(x, d) ∈ D

xt+k
= g(x, x, d, d, y),

x(0) ≤ x(0) ≤ x(0)

(3.4)

is a framer for the system (3.2), which means x(t) ≤ x(t) ≤ x(t) ∀t ≥ 0.

Remark 3.5. In the linear case of a non-cooperative system (3.2) where

f(x, df ) = Ax+ df ,

g(x, dg) = Jx+ dg,

based on the assumption that there exist df , df , dg, dg satisfying df ≤ df ≤ df

and dg ≤ dg ≤ dg, and using the method based on Müller’s theorem, the bounding

system (3.4) could be defined as follows

∀x ∈ C :

ẋ = A1x− A2x+ df ,

ẋ = A1x− A2x+ df ,

∀x ∈ D :

xt+k = J1x− J2x+ dg,

xt+k
= J1x− J2x+ dg,

where A1 is any Metzler matrix and the matrices A2, J1 and J2 are any nonnegative

matrices satisfying A = A1−A2 and J = J1− J2. These conditions guarantee the
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nonnegativity of the estimation errors e = x− x and e = x− x.

Definition 3.6. The impulsive system (3.4) is an interval observer for the system

(3.2) if it is a framer for system (3.2) and the dynamics of the estimation errors

e = x− x, e = x− x are stable.

The stability of impulsive systems can be studied using, for example, Lyapunov

techniques, or dissipativity approaches (Haddad et al., 2014). In this work, we

adopt the Lp stability approach developed for hybrid systems (Nešić et al., 2013).

3.2.2 Lp stability: Input-Output sense

An Input-Output model relates the output of the system directly to its input, with

no knowledge of the internal structure that can be represented by the state-space

model. The Lp stability is a concept of stability in the input-output sense (for

details see (Khalil, 2002, Chapter 5)). To exploit this stability analysis for hybrid

systems, we denote by ||z||p, the Lp-norm for the hybrid signal (arc) z as is defined

by Nešić et al. (2013).

Definition 3.7 (Lp-norm). For a hybrid signal z, with domain dom(z) ⊂ R≥0×N,

and a scalar T ∈ R ≥ 0, the T -truncated Lp-norm of z is given by

||z[T ]||p :=

(
j(T )∑
i=1

|z(ti, i− 1)|p +

j(T )∑
i=0

∫ σi

ti

|z(s, i)|pds

) 1
p

(3.5)

where t0 = 0, j(T ) = max{k : (t, k) ∈ dom(z), t + k ≤ T}, and, ∀i ∈ {0, . . . , j},

σi = min(ti+1, T − i). Based on (3.5), the Lp-norm of z is defined as

||z||p = lim
T→T ∗

||z[T ]||p, (3.6)

where T ∗ = sup{t+ j : (t, j) ∈ dom(z)}. Moreover, we have that z ∈ Lp whenever

the above limit exists and is finite.

Remark 3.8. In (3.5), the value of the hybrid arc just before the jump z(ti, i− 1)

is considered. An alternative definition can be given in terms of the values of the

hybrid arc after the jump, that is, z(ti, i).
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The Lp-norm for hybrid signals in Definition 3.7 is a generalized definition of the

Lp-norm for continuous-time signals (Khalil, 2002) and the lp-norm for discrete-

time signals (Vidyasagar, 2002). This norm can be simplified for particular cases;

if the signal z(t, j) is a continuous-time signal then the first part of the right-hand

side of expression (3.5) equals zero, if z(t, j) is discrete-time signal then the second

part of the right hand side of (3.5) equals zero.

Remark 3.9. For multidimensional signals z ∈ Rnz , we write z ∈ Lnzp , where L1-

space is defined as the set of absolute-value integrable signals, the L2-space is

defined as the set of square integrable signals, and the L∞-space is defined as the

set of signals which are bounded in amplitude. Note that the Lnzp -norm of vector

signals, ||z||p as defined in (3.6) differs from the p−norm of vectors which is a

norm at time t defined as |z(t)|p =
(∑nz

i=1 |zi(t)|p
) 1
p . For instance the 1−norm of

the vector z(t) is denoted by |z(t)|1 which will be often used in the sequel.

The general definition of the input-output stability of hybrid systems that com-

bines the Lp stability (Khalil, 2002) and the lp stability (Vidyasagar, 2002), re-

spectively for continuous-time and discrete-time systems is given in the following.

Definition 3.10. Given p ∈ [1,+∞). System (3.2) is finite-gain Lp stable from d

to y with gain (upper bounded by) γp ≥ 0, if there exists a scalar β ≥ 0 such that

any solution to (3.2) satisfies

||y||p ≤ β|x(0, 0)|p + γp||d||p (3.7)

for all d ∈ Lndp .

The Lp stability characterizes the input-to-output stability of dynamical systems.

This characterization can be obtained using Lyapunov methods. The Lyapunov

function in this context is called storage function which is defined next for hybrid

systems.

Definition 3.11. (Nešić et al., 2013) Given p ∈ [1,+∞), a positive semi-definite

continuously differentiable function V : RnV → R≥0 is a finite-gain Lp storage

function for the system (3.2) if there exist positive constants c2, γyf and γyg, and
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nonnegative constants γdg, γdf , such that

0 ≤ V (x) ≤ c2|x|p, ∀(x, d) ∈ C ∪ D , (3.8a)

〈∇V (x), f(x, d)〉 ≤ −γyf |h(x, d)|p + γdf |d|p, ∀(x, d) ∈ C , (3.8b)

V (g(x, d))− V (x) ≤ −γyg|h(x, d)|p + γdg|d|p, ∀(x, d) ∈ D . (3.8c)

Based on Definition 3.11, the Lp stability of the hybrid system (3.2) is set in the

following proposition.

Proposition 3.12. (Nešić et al., 2013) Consider system (3.2), and suppose that

there exists a function V that satisfies (3.8). Then the system is finite gain Lp
stable, and the gain of the operator d → y is upper bounded by γp = p

√
γd/γy,

where γd = max{γdf , γdg} and γy = min{γyf , γyg}.

In Definition 3.10 and 3.11, we have presented the existing results about the Lp
stability of hybrid systems (Nešić et al., 2013). Next, we will use the finite-gain

L1 stability for hybrid systems, which is a special case of Lp stability when p = 1.

In the following section, we will exploit these results to analyze and design event-

triggered interval observers with L1-gain performance for continuous-time linear

systems.

3.3 Event-triggered interval observer for linear

systems

Consider the linear time invariant system of the formẋ(t) = Ax(t) +Bu(t) + Ed(t),

y(tk) = Cx(tk) + Fd(tk), k ∈ N
(3.9)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny is the state variables, the input, the output of

the system, respectively, and d ∈ Rnd represents the exogenous input assumed to

be unknown-but-bounded with a priori know bounds. The boundedness assump-

tion on the state and output disturbances is a standard assumption in interval

estimation context.
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Assumption 3.1. Let two vectors d(t), d(t) ∈ Rnd be given such that

d(t) ≤ d(t) ≤ d(t) (3.10)

is verified ∀t ≥ 0.

Remark 3.13. The exogenous input d(t) in the system (3.9) gathers the measure-

ments noises and the system disturbances with adapted matrices E and F .

In this section, the goal is to estimate an upper x, and a lower bound x for the ac-

tual state of the system (3.9). More precisely, the aim is to compute a guaranteed

enclosure of the set of admissible values for the actual state vector of the disturbed

system. The measurements are supposed neither continuous nor periodic but are

taken according to desired performance specifications on the estimation that will

be introduced later. The advantage of this technique is two-fold: first, in net-

worked systems, it may reduce the communication rate between the computers

and the sensors, second, it can provide an estimate of the system state with only

few sensor data.

The proposed interval observer includes two dynamic behaviors; the first part con-

cerns the estimation without feedback information from the system, i.e., without

measurement, and the second part improves the accuracy of the estimated state

enclosure when a measurement is available.

The first part of the interval observer is proposed as follows:



ẋ(t) =AMx(t)− ANx(t) +Bu(t)

+ E+d(t)− E−d(t)

ẋ(t) =AMx(t)− ANx(t) +Bu(t)

+ E+d(t)− E−d(t)

∀t ∈ [tk, tk+1], ∀k ∈ N (3.11)

where AM = dA + (A − dA)+ and AN = AM − A with dA is a diagonal matrix

contains only the diagonal elements of A, with the initial values

x(0) ∈ [x(0), x(0)] (3.12)
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The correction part at the time t = tk is introduced by the following discrete-time

system:



x(t+k ) =(In + LC)+x(tk)− (In + LC)−x(tk)

+ (LF )+d(tk)− (LF )−d(tk)− Ly(tk)

x(t+k ) =(In + LC)+x(tk)− (In + LC)−x(tk)

+ (LF )+d(tk)− (LF )−d(tk)− Ly(tk)

∀k ∈ N (3.13)

Using the output model in (3.9), the system state can be re-written as

x(t+k ) = x(tk) + L[Cx(tk) + Fd(tk)− y(tk)]

= (I + LC)x(tk) + LFd(tk)− Ly(tk)

=
[
(I + LC)+ − (I + LC)−

]
x(tk) +

[
(LF )+ − (LF )−

]
d(tk)− Ly(tk)

(3.14)

It worth noting that in (3.14), we have x(t+k ) = x(tk) because Cx(tk) + Fd(tk) −
y(tk) = 0. Equation (3.14) is only a generic equation to find the estimation error

at measurement time instants.

Similarly, without loss of generality, we can split the state matrix A of the system

(3.9) into a Metzler AM and a nonnegative AN part, and split the perturbation

matrix E into positive E+ and negative −E− parts as follows

ẋ(t) = Ax(t) +Bu(t) + Ed(t)

= (AM − AN)x(t) +Bu(t) + (E+ − E−)d(t)

The dynamics of the estimation error bounds e(t) = x(t)− x(t) and e(t) = x(t)−
x(t) can be described as follows:

From (3.9) and (3.11), one has

ė(t)
ė(t)

 =M(A)

e(t)
e(t)

+ Ẽψ(t) (3.15)
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where

M(A) =

AM AN

AN AM

 , Ẽ =

E+ E−

E− E+

 , ψ(t) =

d(t)− d(t)

d(t)− d(t)

 (3.16)

And from (3.13) and (3.14) one obtains

e(t+k )

e(t+k )

 = Γ(L)

e(tk)
e(tk)

+ F̃ (L)ψ(tk) (3.17)

where

Γ(L) =

(In + LC)+ (In + LC)−

(In + LC)− (In + LC)+

 , F̃ (L) =

(LF )+ (LF )−

(LF )− (LF )+

 .
Remark 3.14. The choice of matrices AM and AN in (3.11) is based on the Müller’s

existence theorem. In general, one can pick any Metzler matrix AM and nonnega-

tive matrix AN that satisfy the constraint A = AM −AN . This choice guarantees

the Metzler property of the matrix M(A) in (3.15).

Remark 3.15. The matrices Ẽ, F̃ (L) and Γ(L) are structurally nonnegative. The

matrix M(A) is Metzler. Thus, if Assumption 3.1 is satisfied then the dynamics

(3.15) and (3.17) are nonnegative.

3.3.1 Event-triggered interval Observer formulation

In this subsection, we study the interval observer under the event-triggered mech-

anism (ETM) that we propose next.

Consider the augmented vector of the estimation errors given by

ξ = [e>, e>]>. (3.18)

The dynamics (3.15)-(3.17) can be viewed as a hybrid system defined by ξ̇(t) =M(A)ξ(t) + Ẽψ(t) ∀ξ ∈ C

ξ(t+k ) = Γ(L)ξ(tk) + F̃ (L)ψ(tk) ∀ξ ∈ D
(3.19)
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Before providing the sets C and D that represent the triggering mechanism, we

define the width of the estimated state enclosure and the width of the feasible

domain of uncertainties, respectively, as follows:

ω(t) = x(t)− x(t) = e(t) + e(t)

δ(t) = d(t)− d(t)
(3.20)

Let us now define the flow and jump sets for the system (3.19) as

C = {(ω, δ) ∈ Rn × Rnd : |ω|1 ≤ β|δ|1}

D = {(ω, δ) ∈ Rn × Rnd : |ω|1 ≥ β|δ|1}
(3.21)

where β is a positive scalar to be tuned.

Remark 3.16. Note that the variable δ(t) is assumed to be known a priori and the

estimate width ω(t) for all t ∈ [tk, tk+1] can be estimated from the last measurement

y(tk). Consequently, we can consider that the proposed triggering mechanism

(3.21) as an implicit self-triggering mechanism. It is implicit because the triggering

time tk+1 is not given explicitly.

In order to analyze the stability of the estimation errors, we use the L1 stability

(a particular case of the Lp stability introduced in Definition 3.10 with p = 1).

To this aim, we consider the L1-gain of the operator δ → ω, in other words, the

L1-gain from the width of the known interval of the exogenous input d(t) to the

width of the estimated enclosure of x(t). Note that the L1-gain of the operator

δ → ω is the same L1-gain of the operator ψ → ξ. This property is true if and only

if the variables δ in (3.20), ω in (3.20), ψ in (3.16) and ξ in (3.18) are nonnegative,

which is structurally satisfied in the interval estimation context. From (3.20) one

can simply get

ω(t) =
[
In In

]
ξ(t); δ(t) =

[
Ind Ind

]
ψ(t). (3.22)

Finding an expression of an upper bound γL1 of the L1-gain of the operator δ →
ω allows to compute this upper bound in a way to minimize the effect of the

uncertainty width δ onto the state estimate width ω. Hence, we can obtain an

interval estimate as tight as possible.
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To simplify the computation procedure in the sequel, we use the L1-gain of the

operator ψ → ξ instead of using the L1-gain of the operator δ → ω. An equivalence

of these two operators is based on the following equalities |δ(t)|1 = |ψ(t)|1 and

|ω(t)|1 = |ξ(t)|1, which is detailed in Appendix A.1.

The triggering condition in (3.21), defined as |ω(t)|1 ≥ β|δ(t)|1, is equivalent to

ξ(t)
ψ(t)

>  12n

−β12nd

 ≥ 0.

Thus, the flow and jump sets (3.21) can be written as follows

C =

(ξ, ψ) :

ξ
ψ

>  12n

−β12nd

 ≤ 0


D =

(ξ, ψ) :

ξ
ψ

>  12n

−β12nd

 ≥ 0


(3.23)

Remark 3.17. In the evaluation of the triggering conditions we use (3.21) instead

of (3.23) because we cannot evaluate the estimation error ξ(t) which depends on

the actual state x(t). But we have always the width of estimation error ω(t) which

depends only on the upper and the lower estimates x(t) and x(t), respectively.

The same argument for the input side (i.e., d(t)).

Let us now state the next contribution of this chapter. The following theorem

provides a design methodology of the ETM (3.23).

Theorem 3.18. Let Assumption 3.1 hold. For a given matrix L ∈ Rn×ny , if there

exist a nonnegative vector λ ∈ R2n
≥0, and nonnegative scalars ζC, ζD, γδf , γδg, γωf ,

γωg and β, satisfying the following inequalities

M>(A)λ+ (γωf − ζC)12n ≤ 0 (3.24a)

Ẽ>λ− (γδf − ζCβ)12nd ≤ 0 (3.24b)

Γ>(L)λ− λ+ (γωg + ζD)12n ≤ 0 (3.24c)

F̃>(L)λ− (γδg + ζDβ)12nd ≤ 0 (3.24d)
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then, the system (3.11)-(3.13) with the event-triggering mechanism (3.21) is a

finite L1-gain interval observer for the system (3.9). Furthermore, the L1-gain

from δ to ω is upper bounded by γL1 = γδ/γω where γδ = max{γδf , γδg} and

γω = min{γωf , γωg}.

Remark 3.19. It is worth noting that the design procedure in Theorem 3.18 is

based on the S-procedure given in Definition 3.1, which includes the triggering

conditions (3.23) as inequalities into the stability conditions in Definition 3.11.

This allows to design the triggering parameter independently of the variables ξ(t)

and ψ(t). The technical details are given in the following proof.

Proof. This proof is split into two main parts; the first part shows the nonnega-

tivity of the observation error, and the second one is dedicated to the L1 stability

and the performance of the interval observation error.

Nonnegativity of the observation error This is based on Definition 3.4. For

given initial conditions x(0) and x(0) that satisfy x(0) ≤ x(0) ≤ x(0), the initial

values of the estimation error e(0) = x(0) − x(0) and e(0) = x(0) − x(0) are

non-negative. The matrix M(A) and Ẽ are Metzler and non-negative matrices,

respectively. In addition, based on Assumption 3.1, the vector ψ(t) is non-negative.

Thus, the continuous dynamics (3.15) of the impulsive observer is non-negative

between two successive measurement time instants (i.e. ∀t ∈ [t+k , tk+1] ). To ensure

the non-negativity of the estimation error for all t ∈ R≥0 we add a condition

that guarantees that the inclusion x(t+k ) ≤ x(tk) ≤ x(t+k ) is satisfied provided

that x(tk) ≤ x(tk) ≤ x(tk) is true. That is, at measurement time instants the

observer updates the values of the interval bounds by means of a correction jump

represented by the discrete dynamics (3.17), which has to stay non-negative after

the jump. The matrices F̃ (L) and Γ(L) are non-negative and based on Assumption

3.1, the vector F̃ (L)ψ(tk) is non-negative. This allows to preserve the ordering

relation for the estimation error after experiencing the reset. Consequently, the

errors e(t), e(t) of the system (3.19) are non-negative ∀t ≥ 0 provided that e(0) ≥

0, e(0) ≥ 0.
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L1 stability of the observation error This is based on the non-negativity

nature of the used variables, which allows us to rely on some properties of positive

systems. In the sequel, we will use linear co-positive Lyapunov functions of the

form V (ξ) = ξ>λ where λ ∈ R2n
≥0 which can reduce the complexity of the design

problem. First of all, we pick p = 1 as a special case of the results obtained by

Nešić et al. (2013) and recalled in Definition 3.11. Based on the first part of the

proof, we have ξ(t, j) ≥ 0, ∀(t, j) ∈ domξ, thus, the function V (ξ) is non-negative.

By choosing c2 = max{λi}, the inclusion (3.8a) is satisfied.

Now, we first analyze the behavior of the interval observer between two succes-

sive measurements (the continuous dynamics of (3.19)). For simplicity of presen-

tation, we drop the time index for all variables (e.g. |ω(t)|1 = |ω|1). The variation

of the proposed Lyapunov function is given by

〈∇V (ξ),M(A)ξ + Ẽψ〉 = ξ>M>(A)λ+ ψ>Ẽ>λ (3.25)

Using the fact that |ω|1 = |ξ|1 = ξ>12n and |δ|1 = |ψ|1 = ψ>12nd and by designing

an upper bound of the L1-gain of the operator δ → ω as defined by (3.8b), one

can write

〈∇V (ξ),M(A)ξ + Ẽψ〉 ≤ −γωf |ξ|1 + γδf |ψ|1

Now using (3.25), we obtain

ξ>M>(A)λ+ ψ>Ẽ>λ ≤ −γωfξ>12n + γδfψ
>12nd (3.26)

and (3.26) can be represented under a vector form as follows

ξ
ψ

> M>(A)λ+ γωf12n

Ẽ>λ− γδf12nd

 ≤ 0 (3.27)

The inequality (3.27) should be satisfied when the observer is flowing (i.e., ∀(ξ, ψ) ∈

C in (3.23)). Using the S-procedure (see Definition 3.1), with a similar reasoning
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as in (Nešić et al., 2013, Corollary 1), this is equivalent to

ξ
ψ

> M>(A)λ+ γωf12n

Ẽ>λ− γδf12nd

− ζC
ξ
ψ

>  12n

−β12nd

 ≤ 0 (3.28)

Similarly, the stability condition for the discrete dynamics (3.8c), using the pro-

posed Lyapunov function, is given as

[Γ(L)ξ + F̃ (L)ψ]>λ− ξ>λ ≤ −γωgξ>12n + γδgψ
>12nd , ∀(ξ, ψ) ∈ D (3.29)

which is equivalent to

ξ
ψ

> Γ>(L)(A)λ− λ+ γωg12n

F̃>(L)λ− γδg12nd

− ζD
ξ
ψ

> −12n

β12nd

 ≤ 0 (3.30)

Finally, inequalities (3.28) and (3.30) can be written in the following form



ξ
ψ

> M>(A)λ+ (γωf − ζC)12n

Ẽ>λ− (γδf − ζCβ)12nd

 ≤ 0

ξ
ψ

> Γ>(L)λ− λ+ (γωg + ζD)12n

F̃>(L)λ− (γδg + ζDβ)12nd

 ≤ 0

(3.31)

Based on the fact that

ξ
ψ

 ≥ 0 then inequalities (3.31) hold if inequalities (3.24)

are satisfied. And this concludes the proof.

Discussion on Theorem 3.18

The conditions in (3.24) are sufficient conditions to satisfy inequalities (3.31). For

a given observer gain matrix L, if the inequalities (3.24) are satisfied, then there

exist a co-positive storage (Lyapunov) function of the form V (ξ) = ξ>λ, and an

upper bound γ of the L1-gain between the known width of perturbation and the

width of interval state estimate. Besides, solving (3.24) tunes the positive scalar

β characterizing the event-triggered mechanism.

Inequalities (3.24) ensure also that the stability margin of the observer’s impulsive

part can compensate, in L1-gain sense, any instability related to the observer’s
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continuous part, which is based on the internal positive representation M(A) of

the matrix A. This can be explained as follows: By definition, a Metzler matrix

M is stable if there exists a nonnegative vector ν satisfying Mν ≤ 0 (Efimov and

Räıssi, 2016). Based on inequality (3.24a), the Hurwitz stability of the Metzler

matrix M(A) depends of the parameters γωf and ζC. Thus, even if the matrix

M(A) is unstable, the inequality (3.24a) can be satisfied for some parameters γωf

and ζC. On the other hand, the matrix Γ>(L) in inequality (3.24c) is always stable

because we have Γ>(L)λ−λ ≤ −(γωg+ζD)12n ≤ 0. Inequalities (3.24b) and (3.24d)

make an indirect relation between inequalities (3.24a) and (3.24c) to establish sta-

bility in the L1-gain sense. More precisely, inequalities (3.24a)-(3.24b) represent

a sufficient condition of the L1-gain stability (for continuous-time systems) of the

continuous part when (ξ, ψ) ∈ C, and inequalities (3.24c)-(3.24d) gives a sufficient

condition of the l1-gain stability (for discrete-time systems) of the impulsive part

when (ξ, ψ) ∈ D. Consequently, inequalities (3.24) combine these definitions by

taking the maximum gain for all (ξ, ψ).

In Theorem 3.18, the stability and the non-negativity of the interval observer

errors are proved.

In the following, we propose another event-triggered mechanism that can reduce

the amount of transmitted measurements

3.3.2 Dynamic event-triggered interval observer

The flow and jump dynamics of the hybrid system (3.19) are linear. Using the fact

that linear systems are globally Lipschitz (Khalil, 2002) we can bound the flow of

(3.19) as follows1

| ˙ξ(t)|1 ≤ Kξ(|ξ(t)|1 + |ψ(t)|1) (3.32)

where Kξ = max{|M(A)|∞, |Ẽ|∞}, and by the definition of the 1-norm2 of ξ and

ψ we can write

|ω̇(t)|1 ≤ Kξ(|ω(t)|1 + |δ(t)|1) (3.33)

1The Lipschitz property is correct with any norm (Khalil, 2002).
2This norm is for a vector at time t. It defers from the signal L1-norm.
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The new dynamic event-triggering mechanism that we propose is as follows

Cη =
{

(ω, δ, η) ∈ Rn × Rnd × R : |ω|1 ≤ β|δ|1 +
η

θ

}
Dη =

{
(ω, δ, η) ∈ Rn × Rnd × R : |ω|1 ≥ β|δ|1 +

η

θ

} (3.34)

where η is the state of an auxiliary scalar dynamical system given as follows

η̇(t) = −αη(t) + β|δ(t)|1 − |ω(t)|1

η(0) ≥ |ω(0)|1 − β|δ(0)|1
(3.35)

where the initial condition of the auxiliary system is chosen in a way to initialize

the observer in the flow set Cη.

Remark 3.20. The solution of the auxiliary dynamics (3.35) with the event-triggering

condition (3.34) is nonnegative. Its nonnegativity is proved similarly to (Girard,

2015, Lemma 1). The proof is as follows: When the hybrid system is flowing

(i.e. (ω, δ, η) ∈ Cη) the auxiliary variable dynamics (3.35) satisfies the inequality

η̇ ≥ −αη − 1
θ
η. And using the comparison theorem, the solution of the obtained

dynamics is lower bounded by the solution of η̇ = −αη − 1
θ
η which has a nonneg-

ative dynamics provided that (ω, δ, η) ∈ Cη and the initial condition η(0) satisfies

(3.35). The initial condition of η(t) is the main difference between the estimation

problem in this study and the control one in Girard (2015) (e.g., in general the

initialization of estimate which width is ω(0) cannot always satisfy (ω, δ, η) ∈ Cη
if η(0) = 0).

In the hybrid framework, in general, we have the choice to flow or jump when

the variables are in Cη ∩ Dη, thus in our study we force the ETM to jump when

(ω, δ, η) ∈ Cη ∩ Dη. In the following, we will show how the use of this dynamic

event-triggering mechanism can ensure stability of the estimation error.

Assumption 3.2. Let Kδ < ∞ be a bounded positive scalar. The perturbation

width δ(t) defined in (3.20) satisfies

|δ̇(t)|1 ≤ Kδ|δ(t)|1. (3.36)
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Corollary 3.21. Let Assumption 3.1 and 3.2 hold. For a given matrix L ∈ Rn×ny

and a given positive scalar θ, if there exist a nonnegative vector λ ∈ R2n
≥0, and

nonnegative scalars ζC, ζD, γδf , γδg, γωf , γωg, α and β, satisfying the following

inequalities

M>(A)λ+ (−1 + γωf − ζC)12n ≤ 0

Ẽ>λ+ (β − γδf + ζCβ)12nd ≤ 0

−α + ζC
1
θ

≤ 0

 (3.37a)

Γ>(L)λ− λ+ (γωg + ζD)12n ≤ 0

F̃>(L)λ− (γδg + ζDβ)12nd ≤ 0

 (3.37b)

γδg − βγωg ≤ 0 (3.37c)

then, the hybrid system (3.19), (3.34)–(3.35) is finite L1-gain stable. Thus, the

system (3.11)-(3.13) with the triggering mechanism (3.34)-(3.35) is a finite L1-

gain interval observer for the system (3.9)Furthermore, the L1-gain from δ to ω

is upper bounded by γL1 = γδ/γω where γδ = max{γδf , γδg}, γω = min{γωf , γωg}.

Proof. The nonnegativity property of η(t) is provided in Remark 3.20. The esti-

mation error ξ(t) is nonnegative as shown in Theorem 3.18. Based on the non-

negativity property of η and ξ, we can analyse the stability of the hybrid system

(3.19) under the jump mechanism (3.34)–(3.35) by using a new Lyapunov function

of the form W (ξ, η) = V (ξ) + ση = ξ>λ+ ση, with η ∈ R≥0, where σ is a positive

constant. Without loss of generality, we pick σ = 1.

The function V (ξ) is no longer a Lyapunov function for the event-triggered mech-

anism (3.34) because the decrease of the auxiliary variable η allows the function

V (ξ) to increase while W (ξ, η) decreases.
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Similarly to the proof of Theorem 3.18, the stability condition on the continuous

dynamics is given as follows

〈∇W (ξ),

ξ̇
η̇

〉 =ξ>M>(A)λ+ ψ>Ẽ>λ+ (−αη + βψ>12nd − ξ>12n)

≤− γωfξ>12n + γδfψ
>12nd

∀(ξ, ψ, η) ∈ Cη

(3.38)

which is equivalent to


ξ

ψ

η


> 
M>(A)λ− 12n + γωf12n

Ẽ>λ+ β12nd − γδf12nd

−α

− ζC

ξ

ψ

η


> 

12n

−β12nd

−1
θ

 ≤ 0 (3.39)

Finally, if the inequality (3.37a) is satisfied then the inequality (3.39) holds.

It is worth noting that jumps do not impact the auxiliary variable η (i.e., η(tk, k) =

η(tk, k − 1)). Similarly, the stability condition on the discrete dynamics can thus

be written as

W (ξ+, η+)−W (ξ, η) = V (ξ+)− V (ξ) ≤ −γωg|ω|1 + γδg|δ|1, ∀(ω, δ, η) ∈ Dη
(3.40)

which is satisfied if the inequality (3.37b) holds.

So far, the existence of positive inter-event times has not been discussed. In the

following section, we will provided some conditions that ensure the existence of

MIET.

3.3.3 Further conditions to guarantee the existence of min-

imum inter-event times (MIET)

Corollary 3.22. The conditions in Corollary 3.21 with the storage function W (ξ, η) =

ξ>λ+η that satisfies λ = %12n where % is a positive scalar, guarantee the existence

of minimum inter-event times.



Chapter 3 71

Proof. In order to investigate the existence of MIET, we study the variation of

the following ratio:

κ(t, j) =
|ω(t, j)|1

β|δ(t, j)|1 + η(t,j)
θ

(3.41)

It is the ratio between the 1−norm of the estimation error width and the threshold

β|δ(t, j)|1 + η(t,j)
θ

. Based on the ETM (3.34), this ratio is larger than or equal to

1 when (ω, δ, η) ∈ Dη, and it is lower than 1 when (ω, δ, η) ∈ Cη. To simplify the

analysis, we consider that at times of jump, this ratio satisfies κ(tk, k − 1) = 1

which fits the triggering condition in (3.34). After the jump, it will be reset to

κ(tk, k) ∈ [0, 1) based on the fact that the width of estimate is contracted using

measurement, as it will be shown in the sequel.

This behavior is shown in two steps as following: In the first step, we show that

the width of the estimation error is contracting at jump times. Then, in the

second step, by analyzing the dynamics of the ratio κ(t, j) we will show how this

contraction can guarantee the existence of a lower bound of the inter-event times.

Step 1: Contraction of the estimated state enclosure after jump.

As mentioned above the stability condition at jump instants satisfies (3.40). Re-

placing the event-triggered condition |ω|1 ≥ β|δ|1 + η
θ

in the right hand side of the

inequality (3.40), one gets

ξ+>λ− ξ>λ ≤ −(γωg −
γδg
β

)|ω|1 −
γδg
βθ
η (3.42)

Thus, satisfying the inequality (3.37c) implies that ξ+>λ− ξ>λ < 0.

Based on the definition of the vector λ = %12n where % > 0 and the nonnegativity

of the estimation error ξ, one can obtain that (|ξ+|1−|ξ|1)% < 0. Consequently, one

can deduce that the norm−1 of ξ decreases at measurement times which implies

the contraction of |ω|1.

Step 2: The existence of a positive time interval that lets the state estimate width

to increase before entering into the jump set Dη.



72 L1-gain Event-triggered Interval Observers for LTI Systems

Now, we return to study the dynamics of the ratio κ(t, j) in between two successive

measurement times.

d

dt
κ(t) =

d

dt

|ω(t)|1
β|δ(t)|1 + η(t)

θ

=
d

dt

|ξ(t)|1
β|δ(t)|1 + η(t)

θ

=
ξ̇(t)>12n(β|δ(t)|1 + η(t)

θ
)− |ξ|1(βδ̇(t)>1nd + η̇(t)

θ
)

(β|δ(t)|1 + η(t)
θ

)2

Using the property (3.32), the dynamics (3.35), and Assumption 3.2, one gets

d

dt
κ(t) ≤Kξ(|ω(t)|1 + |δ(t)|1)

(β|δ(t)|1 + η(t)
θ

)
+
|ω(t)|1βKδ|δ(t)|1
(β|δ(t)|1 + η(t)

θ
)2
− |ω(t)|1(−αη(t) + β|δ(t)|1 − |ω(t)|1)

θ(β|δ(t)|1 + η(t)
θ

)2

≤Kξ
|ω(t)|1

(β|δ(t)|1 + η(t)
θ

)
+
Kξ
β

+
|ω(t)|1βKδ|δ(t)|1
(β|δ(t)|1 + η(t)

θ
)2

+
|ω(t)|1αη(t)

θ(β|δ(t)|1 + η(t)
θ

)2

− |ω(t)|1(β|δ(t)|1)

θ(β|δ(t)|1 + η(t)
θ

)2
+

|ω(t)|21
θ(β|δ(t)|1 + η(t)

θ
)2

≤Kξ
β

+

[
Kξ +

αη(t)

θ(β|δ(t)|1 + η(t)
θ

)
+

βKδ|δ(t)|1
(β|δ(t)|1 + η(t)

θ
)
− (β|δ(t)|1)

θ(β|δ(t)|1 + η(t)
θ

)

]

× |ω(t)|1
(β|δ(t)|1 + η(t)

θ
)

+
|ω(t)|21

θ(β|δ(t)|1 + η(t)
θ

)2

≤ Kξ
β

+

[
Kξ + α +Kδ −

1

θ

]
|ω(t)|1

(β|δ(t)|1 + η(t)
θ

)
+

|ω(t)|21
θ(β|δ(t)|1 + η(t)

θ
)2

≤ Kξ
β

+
[
Kξ + α +Kδ

]
κ(t) +

1

θ
κ2(t)

Based on the fact that 0 ≤ κ(t) < 1, one can simplify the above inequality as

following
d

dt
κ(t) ≤ Kξ

β
+
[
Kξ + α +Kδ +

1

θ

]
κ(t) (3.43)

Thus, an upper bound trajectory for the ratio κ(t),∀t ∈ [tk, tk+1] is given by

κ̇ = a+ bκ (3.44)

where a =
Kξ
β

and b = Kξ + α+Kδ + 1
θ

with κ(tk, k) = κ(tk) < 1 and κ(tk+1, k) =

κ(tk+1, k) = 1. By using the fact that κ(t, j) is a monotone increasing solution

function as shown by lemma A.1 in Appendix A.2, one can deduce that the ratio

κ(t, j) solution to (3.44) guarantees the existence of τmin such that 0 < τmin ≤
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tk+1 − tk for all k ∈ N when initial and final conditions are given as κ(tk, k) =

κ(tk) ∈ [0, 1), κ(tk+1, k) = 1. Consequently, as the solution κ(t, j) is an over-

approximation of the ratio κ(t, j), the time τmin is the MIET for the ETM (3.34).

The previous result shows the event-triggered mechanism design for a pre-calculated

observer gain. In the following section we will show how to co-design the ETM

and the observer gain.

3.4 Co-design of event-triggered mechanisms and

interval Observer gains

In this section, we will co-design the ETM and the observation gain using an

over-approximate of the reset matrix Γ(L) of the estimation error dynamics (3.19).

This reset matrix is not easy to synthesized due to the non-smooth operator in

(3.17) that uses the gain L. To tackle this problem we propose to use a nonnegative

realization of the matrix [In + LC] to over-approximate the reset matrix.

Proposition 3.23. Consider the following nonnegative discrete-time system

χD(k + 1) = ADχD(k) (3.45)

where χD ∈ Rn is the state variables, with AD ∈ Rn×n
≥0 . Let assume that the

matrix AD is Schur stable3. If there exist two nonnegative matrices Ad, Ed ∈ Rn×n
≥0

such that AD = Ad + Ed, then χD(k) solution to (3.45) and χd(k) solution to

the system χd(k + 1) = Adχd(k) satisfy χD(k) ≥ χd(k) ∀k ∈ N provided that

χD(0) ≥ χd(0) ≥ 0.

Proof. Starting from the solution sequence χD(k), we have

χD(k + 1) = (Ad + Ed)χD(k) = AdχD(k) + EdχD(k), (3.46)

3All its eigenvalues are contained in the open unit disk in the complex plane.



74 L1-gain Event-triggered Interval Observers for LTI Systems

Based on the nonnegativity of the matrices Ed and Ad and the initial conditions

χd(0) ≥ χ(0) ≥ 0, one have that the system χD(k + 1) = ADχD(k) has a non-

negative dynamics and the term EdχD(k) is nonnegative. Thus, from (3.46) one

gets

χD(k + 1) ≥ AdχD(k) ≥ Adχd(k) = χd(k + 1),

this concludes the proof.

Proposition 3.24. Let H ∈ Rn×n, for any two nonnegative matrices Hp, Hn ∈

Rn×n
≥0 satisfy H = Hp −Hn, there exits a nonnegative matrix ∆ ∈ Rn×n

≥0 such that

Hp = (H+ + ∆) and Hn = (H− + ∆).

Proof. For any element Hij of the matrix H, if Hij ≤ 0 then H−ij = |Hij| and

H+
ij = 0, and we have Hij = Hpij −Hnij = (∆ij)− (H−ij + ∆ij). Consequently, the

condition Hpij ≥ 0 implies ∆ij ≥ 0. Similarly, in the case where Hij ≥ 0, we have

H−ij = 0 and H+
ij = Hij, and we have Hij = Hpij − Hnij = (H+

ij + ∆ij) − (∆ij).

Thus, the condition Hnij ≥ 0 implies that ∆ij ≥ 0. So, one can conclude that the

matrix ∆ is always nonnegative.

In the following theorem, we will provide a co-design methodology of the observer

gain and some parameters of the event-triggered mechanism. Compared to Corol-

lary 3.21 where the interval observer gain is given a priori, here we co-design it

along with the ETM.

Theorem 3.25. Let Assumption 3.1 hold, if there exist a matrix L ∈ Rn×ny , and

nonnegative matrices Gp, Gn ∈ Rn×n
≥0 and Rp, Rn ∈ Rn×nd

≥0 , a nonnegative vector

λ ∈ R2n
≥0, and nonnegative scalars ζC, ζD, γδf , γδg, γωf , γωg and β, satisfying

inequalities (3.37a) and (3.37c) and the following inequality

Γ>(Gp, Gn)λ− λ+ (γωg + ζD)12n ≤ 0

F̃>(Rp, Rn)λ− (γδg + ζDβ)12nd ≤ 0

 , (3.47a)

Gp −Gn = In + LC , (3.47b)

Rp −Rn = LF , (3.47c)
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where

Γ(Gp, Gn) =

Gp Gn

Gn Gp

 , F̃ (Rp, Rn) =

Rp Rn

Rn Rp


Then, the system (3.11)-(3.13) with the event-triggered mechanism (3.34) is a

finite L1-gain interval observer for the system (3.9), where the ETM (3.34), (3.35)

guarantees the existence of a positive lower bound on the inter-measurement times.

Furthermore, the L1-gain from δ to ω is upper bounded by γL1 given in Theorem

3.18.

Proof. The difference between Corollary 3.21 and Theorem 3.25 is the design of

the observer gain L. Thus we need to prove that the constraints (3.47) imply

(3.37b). Pick G = [In + LC] and R = LF , based on equations 3.47b and (3.47c),

an upper bound of the estimation error of the correction part (3.13) can be written

as follows:x(t+k ) =Gpx(tk)−Gnx(tk) +Rpd(tk)−Rnd(tk)− Ly(tk)

x(t+k ) =Gpx(tk)−Gnx(tk) +Rpd(tk)−Rnd(tk)− Ly(tk)
∀k ∈ N (3.48)

Satisfying inequality (3.47a), the correction part (3.48) with the obtained param-

eters Gp, Gn, Rp and Rn can ensure the stability and the positivity of the interval

observer error as given in Corollary 3.21.

Using the result of Proposition 3.24, the existence of nonnegative matrices Gp, Gn,

Rp and Rn satisfying (3.47b) implies the existence of nonnegative matrices ∆G and

∆R such that Gp = (In +LC)+ + ∆G, Gn = (In +LC)−+ ∆G, Rn = (LF )−+ ∆R

and Rn = (LF )− + ∆R . Consequently, the estimation error at jump (3.17) can

be seen as

Γ(Gp, Gn) =

(In + LC)+ (In + LC)−

(In + LC)− (In + LC)+

+

∆G ∆G

∆G ∆G

 = Γ(L) +

∆G ∆G

∆G ∆G



F̃ (Rp, Rn) = F̃ (L) +

∆R ∆R

∆R ∆R


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Now, based on the property of uncertain discrete time system given in Proposition

3.23, the estimation error corresponding to the correction part (3.13) is upper

bounded by the one corresponding to the correction part (3.48). Finally, the

constraints (3.47) imply the inequalities (3.37b) which allows to implement the

correction part given by (3.13). This ends the proof.

Remark 3.26. It is worth noting that the matrices Gp, Gn, Rp and Rn are only

intermediate variables allowing the synthesis of the interval observer gains L.

Remark 3.27. To minimize the impact of the uncertainty width δ onto the esti-

mates width ω, the synthesis is performed, in practice, by minimizing the upper

bound γL1 on the L1−gain. From Theorem 3.18, this can be achieved by the

following optimization problem

min γδf + γδg − γωf − γωg

s.t. constraints (3.37a), (3.37c), (3.47).

(3.49)

3.5 Illustrative example

In order to illustrate the performance of the proposed observer, we consider the

following example.

3.5.1 Double spring-mass-damper system

Consider a mechanical system consisting of two masses m1 and m2 that are sliding

over an horizontal surface. Suppose that the masses are attached to one another,

and to two immovable walls, by means of three horizontal springs of stiffness

constants ”k1, k2 and k3” and dampers of damping ratio ”c1, c2 and c3”.

Let x> = [xm1 ẋm1 xm2 ẋm2 ] be the state variables representing the position and

the velocity of each mass and u> = [fm1 fm2 ] be the force applied to the object,

respectively. We introduce an LTI model (3.9) for the double spring-mass-damper
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system as

A =


0 1 0 0

− (k1+k2)
m1

− (c1+c2)
m1

k2
m1

c2
m1

0 0 0 1

k1
m2

c2
m2

− (k2+k3)
m2

− (c2+c3)
m2

 , B =


0 0

1
m1

0

0 0

0 1
m2

 , E =


0.1 −0.2

−0.7 0.6

0.2 −0.2

−0.5 0.6



C =

2 0 0 0

0 0 2 0

 , F =

 0.6 −0.8

−0.4 0.5


with d(t) = [d1(t) d2(t)]> is the disturbance which is assumed unknown-but-

bounded −d ≤ d(t) ≤ d with d = [0.5 0.5]>. For simulation, we pick the values of

disturbances as d1(t) = 0.5 cos(10t) and d2(t) = 0.5 sin(6t).

The practical parameters of the system are given as m1 = 0.6kg,m2 = 1kg, k1 =

k2 = k3 = 1N/m and c1 = 2Ns/m, c2 = 1.4Ns/m, c3 = 1.2Ns/m.

The dynamics of the interval estimation error in between two consecutive mea-

surements defined in (3.15) has the following matrices

AM =


0 1 0 0

0 − (c1+c2)
m1

k2
m1

c2
m1

0 0 0 1

k1
m2

c2
m2

0 − (c2+c3)
m2

 , AN =


0 0 0 0

(k1+k2)
m1

0 0 0

0 0 0 0

0 0 (k2+k3)
m2

0

 .

Note that although the plant model is stable, the state estimation given by the

predictor in between measurements is unstable.

The synthesis problem of the observer gain in Theorem 3.25 is solved using the

YALMIP toolbox Lofberg (2004) based on the FMINCON solver. For θ = 2, the

solution of the co-design of the event-triggered mechanism and the observer gain

is as follows: the obtained coefficients of the ETM (3.35) are α = 1.3081 and

β = 3.9244, and the computed observation gain matrix is

L =


−0.4535 −0.0558

0 0

−0.0528 −0.5166

0 0


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The upper bound of the L1-gain from δ to ω is found as γL1 = 190.

For generating the pseudo-actual data, the system inputs are taken as fm1(t) =

14[1+2 sin(10t)+cos(40t)], fm2(t) = 10[2 sin(15t)+sin(30t)], and the initial values

of the system state taken as x(0) = [10 4 15 4]>.

The observer uses the following lower and upper bounds: x(0) = [6 −1 11 −1]>

and x(0) = [14 9 19 9]>, respectively. The simulation results are given in

Figure 3.1 and 3.2. In Figure 3.1, it is noticeable that the correction part of
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Figure 3.1: Simulation results for the double spring-mass-damper system:
the upper and the lower estimate bounds for the masses position (x1, x3), and

masses velocity (x2, x4).

the interval observer contracts the estimate bounds, even though the open-loop

dynamics of the interval estimator error is unstable. This behaviour corresponds

to the condition given in Corollary 3.21.

In Figure 3.2, we can see that the observer triggers the measurements whenever

the norm of the width violates the dynamic threshold as described by (3.34).
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Figure 3.2: The evolution of the triggering mechanism : (blue) the width of
the state estimate, (black) the threshold for the width.

Figure 3.3: The Inter-event times of the triggering mechanism.

3.6 Conclusion

In this chapter, co-design of event-triggered mechanisms and interval observers for

linear continuous-time systems have been proposed. These interval observers have

impulsive structures in which the estimation is performed in two steps. First, in

between two consecutive events, open-loop interval estimates are calculated based

only on the system’s model. Then, at event instants, the interval estimates are

corrected in impulsive way. The proposed event-triggered mechanism is based on

the positivity property of the interval observation errors. Moreover, they guarantee

a finite L1-gain between the width of the perturbation bounds and the width of the

estimated state intervals. Further conditions have also been given on the existence

of positive inter-event times for a particular Storage function. The generalization

of these conditions will be investigated in future works.
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Secure interval observer for LTI

systems with discrete

measurements under attacks

4.1 Motivations and related works

Cyber-physical systems (CPS) are smart integrations of computation and net-

working resources, and physical processes (Lee and Seshia, 2016). Due to the

cyber-physical coupling and to the disrupting consequences of failures, security

here is one of the primary concerns (Lun et al., 2019). The problem of security is

not new to the control systems field, particularly in the area of fault detection and

isolation (FDI) (Massoumnia et al., 1989). Recent works on the cyber security

of control systems have been focused, in part, on the effect of specific types of

attacks on stability and/or estimation, such that false data injection attacks (Liu

et al., 2011), (Degue et al., 2018), denial-of-service attacks (Amin et al., 2009) and

integrity attacks (Mo et al., 2014), or to more general class of adversarial attacks

(Fawzi et al., 2014), (Chong et al., 2015) and (Shoukry et al., 2018), which is the

case of our work.

This chapter addresses the design of an interval state observer for a linear time-

invariant plant in presence of periodic discrete measurements affected by unknown-

but-bounded noise with known bounds and subject to cyber-attacks (probably

unbounded).

81
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To be able to reconstruct a guaranteed state enclosure of the actual state for

continuous-time linear systems in presence of discrete-time measurement, we pro-

pose an interval impulsive observer. To this aim, we will exploit, in this chapter,

the impulsive interval observer developed in Chapter 2 in the case where the dis-

crete measurements are periodic.

In this chapter, we consider continuous LTI systems with s outputs, each of them is

measured by a sensor which is potentially under cyber-attack. In this framework,

we assume that only a subset S of sa sensors can be attacked in the same instant,

with s > 2sa. This condition is issued from the M-observability (Chong et al.,

2015) and the s-sparse observability (Shoukry and Tabuada, 2016). Based on this

assumption, at correction times, we provide as many interval estimate as sensors,

then we select the attack-free estimate by a proposed attack-resilient strategy

using interval analysis and the positivity of the interval estimation error. The

proposed strategy is an online algorithm while the synthesis procedure that tunes

the observation gain to ensure both positivity and stability of the estimation error

is offline. The stability analysis of estimation error is inspired by the work of

Ferrante et al. (2016) while the positivity of the estimation error is ensured based

on the internal positivity for dynamical systems as in Meslem and Ramdani (2011),

Cacace et al. (2015) with taking into account the attack influence. Then the effect

of the attacks is treated by an online set-membership strategy.

The novelty of this chapter is twofold: First, a new LMI-design methodology

of the observer gain in presence of discrete-time measurements is proposed, that

guarantees both positivity and stability of the interval estimation error. This

methodology is different from the one proposed in chapter 2, which is based on

BMIs. Second, a new sensor attack-resilient strategy that selects online, at mea-

surements times, the correct estimate among a set of estimates.

The rest of this chapter is organized as follows. The structure of the proposed

interval impulsive observer is introduced in Section 4.2. The observer synthesis

method is presented in Section 4.3. The attack-resilient strategy is detailed in

Section 4.4. Numerical illustrative examples are presented in Section 4.5.
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4.2 Interval impulsive observer analysis

4.2.1 Problem statement

Consider the multi-output linear time invariant system of the form ẋ(t) = Ax(t) +Bu(t)

yσ(tk) = Cσx(tk) + vσ(tk) + aσ(tk), ∀k ∈ N, σ ∈ I
(4.1)

where I = {1, . . . , s} such that s is the number of sensors. x ∈ Rn, u ∈ Rm and

yσ ∈ R is the state variables, the input, the discrete output of the system, respec-

tively. vσ ∈ R and aσ ∈ R represent the output sensor noise and sensor attack,

respectively. In this chapter, we assume that the system dynamics is perfectly

known, that is, without perturbation, and we focus on the output imperfections

(noise and cyber-attack). The goal is to provide a secure estimate of the system

state from noisy discrete measurements and under sensors attack. To reach this

objective, we propose the following strategy

4.2.2 Secure observation strategy

In order to obtain a secure interval estimate for the multi-output LTI system (4.1),

we propose a two-stage policy:

First – We design an interval impulsive observer for each output yσ separately

with σ ∈ I in the absence of attacks. To simplify notation we drop the subscript

σ in this section and the next one. So the system (4.1) without attack will be in

the following form  ẋ(t) = Ax(t) +Bu(t)

y(tk) = Cx(tk) + v(tk),
∀k ∈ N, (4.2)

In this step, we design as many observers as outputs. In this step, we assume that

the system is detectable from each output.

Second – After designing observers for every output without attack, we propose a

strategy based on interval analysis to recover the state estimate against the sensors

attacks presented in (4.1). This result is based on the following assumption.
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Assumption 4.1. The number of attacked sensors denoted by sa is strictly lower

than the half of the total number of sensors s without knowing which sensors are

attacked (i.e., sa < s/2).

This assumption is the main condition for the M-observability for continuous-

time systems (Chong et al., 2015) and the s-sparse observability for discrete-time

systems (Shoukry and Tabuada, 2016).

4.2.3 Observer analysis

The observer is constructed to estimate the continuous state of the system from

discrete measurements. To this aim, it is assumed that there exists a regular

period of time between two consecutive measurement instants as follows.

Assumption 4.2. Let τm be real positive scalars satisfy:

tk+1 − tk = τm ∀k ∈ N.

The goal of interval observers is to estimate an upper and a lower bound of the

system state from noisy measurements. In this chapter, we adopt the structure of

the interval impulsive observer developed in chapter 2, with τ = τm, and attribute

different observer gain matrices for the lower and the upper estimates. For ease of

reading we recall the interval impulsive observer in the new condition.

Let introduce an assumption on the boundedness of the measurement noise.

Assumption 4.3. Let v ∈ R be a given positive constant such that

|v(t)| ≤ v ∀t ∈ R≥0.

The interval observer that we propose for system (4.2) works with two steps.

First step: the interval observer in-between two successive measurement instants

behaves like an open-loop estimator as followsẋ(t) = AMx(t)− ANx(t) +Bu(t),

ẋ(t) = AMx(t)− ANx(t) +Bu(t)
∀t ∈ [tk, tk+1], k ∈ N (4.3)
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where AM = dA + (A − dA)+ and AN = AM − A with dA is a diagonal matrix

contains only the diagonal elements of A. In addition, the interval observer initial

state at k = 0, i.e. at t0, satisfies the inclusion

x(t0) ≤ x(t0) ≤ x(t0). (4.4)

The dynamics of the estimation error over the inter-measurement time for both

bounds e(t) = x(t) − x(t) and e(t) = x(t) − x(t) can be obtained from equations

(4.2) and (4.3) by

ė(t)
ė(t)

 = A

e(t)
e(t)

 ,∀t ∈ [tk, tk+1] k ∈ N (4.5)

with A =

AM AN

AN AM

 .
Note that, based on the construction of the matrices AM and AN as Metzler and

nonnegative matrices, respectively, the matrix A is Metzler. Then, the solution

to (4.5) is nonnegative which means that the lower and the upper bounds do not

cross each other in the time interval [tk, tk+1] provided that their initial conditions

satisfy the inclusion x(tk) ≤ x(tk) ≤ x(tk).

Second step: using the output model in (4.2), the system state at the measurement

time instants can be presented as

x(t+k ) = x(tk) + L•[Cx(tk) + v(tk)− y(tk)] k ∈ N (4.6)

with L• ∈ {L,L}, where L,L ∈ Rn×1 are observer gains to be designed for the

lower, upper bound estimate, respectively.

Equation (4.6) helps establishing the discrete-time dynamics of the estimation

error which is used only for synthesis phase. When the measurement is available,

an impulsive correction of the estimated state enclosures will be done using the
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following correction equations

k ∈ N,



x(t+k ) =(In + LC)+x(tk)− (In + LC)−x(tk)

− |L|v − Ly(tk)

x(t+k ) =(In + LC)+x(tk)− (In + LC)−x(tk)

+ |L|v − Ly(tk)

(4.7)

From (4.7) and (4.6), the estimation error dynamics at measurement instants can

be described by the following dynamical systeme(t+k )

e(t+k )

 = Γ(L,L)

e(tk)
e(tk)

+ Υ(tk) (4.8)

where

Γ(L,L) =

(In + LC)+ (In + LC)−

(In + LC)− (In + LC)+

 ; Υ(tk) =

|L|v + Lv(tk)

|L|v − Lv(tk)

 . (4.9)

The positivity property of the reset matrix allows to preserve the order relation

x(t) ≤ x(t) ≤ x(t) after experiencing the reset (for more details about IPR for

linear systems, see (Cacace et al., 2015)).

Let us now define the augmented vector of the interval estimation error as ξ =

[e>, e>]>.

From equations (4.5) and (4.8), and after adding the time variable τ , the hybrid

system modeling the dynamics of the estimation error is given by

H :


f(z) =

Aξ
−1

 ∀z ∈ C

g(z) =

Γ(L,L)ξ + Υ(tk)

τm

 ∀z ∈ D

(4.10)

where z = [ξ>, τ ]> is the state variable of the hybrid system, and τm is the reset

value of the timer based on Assumption 4.2.
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The flow and jump sets are defined as

C =
{

(ξ, τ) ∈ R2n × R≥0 | τ ∈ [0, τm]
}

D =
{

(ξ, τ) ∈ R2n × R≥0 | τ = 0
}
.

(4.11)

It is worth noting that these sets do not force the system to jump until the timer

reaches the zero, then after the jump, the timer τ is reset to τm.

The stability analysis of the variable z is based on the notion of distance to a

set. Thus, with mild conditions, the stability analysis is straightforward under the

hybrid system framework Goebel et al. (2012).

Let us define the closed set A that contains all admissible values for the timer

when the ξ−system state is at the origin

A =
{
z = (ξ, τ) ∈ R2n × R≥0 | ξ = 0, τ ∈ [0, τm]

}
. (4.12)

Remark 4.1. The hybrid system (4.10) can be considered for the case of perfect

measurement by omitting the term Υ(tk).

We characterize the domain of solutions of (4.10) when Υ(tk) = 0. Indeed, the

variable τ , acting as a timer, guarantees that for every initial condition φ(0, 0) ∈
C ∪ D the domain of every maximal solution φ to (4.10) when Υ(tk) = 0 can be

written as follows:

domφ =
⋃
j∈N

([tj, tj+1], j)

with tj+1 − tj = τm, ∀j ∈ N \ {0}. Furthermore, assuming t0 = 0, the structure

of the above hybrid time domain implies that for each (t, j) ∈ domφ we have

t ≤ τm(j + 1).

The latter relation will play a key role in establishing GES of the set A for hybrid

system (4.10) when Υ(tk) = 0.

The idea of the stability proof in the following theorem is from (Goebel et al., 2012,

Proposition 3.29) which is given in Proposition 1.25. It allows for the Lyapunov

function to increase locally, then, this increase is compensated by instantaneous

decrease at jumps which renders the overall hybrid dynamics stable.
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Theorem 4.2. Let Assumption 4.2 and 4.3 hold. For given gain matrices L,L ∈

Rn×1, if there exists a symmetric positive definite matrix P ∈ R2n×2n such that

Γ(L,L)>eA
>
τmPeAτmΓ(L,L)− P ≺ 0 (4.13)

is satisfied, then the hybrid system (4.10)-(4.11) is Input-to-State-Stable (ISS) with

respect to the set A defined in (4.12). Thus, the system (4.3), (4.7) is an interval

observer for the system (4.2) with ISS estimation error relatively to A provided that

x(t0) ≤ x(t0) ≤ x(t0). Moreover, if v(tk) = 0 ∀k ∈ N in (4.2), then the interval

observer (4.3), (4.7) for the system (4.2) has a globally exponentially stable (GES)

estimation error relatively to A.

Proof of Theorem 4.2. The proof of this theorem is similar to the one of The-

orem 2.9 in Chapter 2. The difference is that the time between two consecutive

measurements τm is constant. In addition, we use here different observer gain

matrices L and L for the lower and the upper estimates, respectively.

Remark 4.3. A necessary condition on the existence of observers for the system

(4.2) is the detectability of the pair (eAτm , CeAτm). More details about this condi-

tion are given in Raff and Allgower (2007).

So far, a verification method has been given. The synthesis of the observation

gains L,L cannot be achieved using convex solvers (CS) due to the decomposition

of (In + L•C). However, using the positive realization of these matrices, the

synthesis is still possible using CS. In the following section, we propose a synthesis

methodology.

4.3 Synthesis method

In this section, we propose a new design methodology as second contribution of

this chapter. We will show how to design the observer gain based on positive

system theory.
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4.3.1 Positive realization based approach

Let us now re-consider the generic reset equation of the system state at measure-

ment instant in (4.6). By introducing G = [I+LC] and G = [I+LC], the resetting

matrix can be written as

x(t+k ) = G•x(tk) + L•[v(tk)− y(tk)]

= (G•+ −G•−)x(tk) + L•[v(tk)− y(tk)] k ∈ N
(4.14)

where G•+ and −G•− are the positive and the negative part of the matrix G• ∈
{G,G}, respectively.

Let us note that for any positive matrices Gp, Gn, Gp, Gn ∈ Rn×n
≥0 satisfying

G = Gp −Gn and G = Gp −Gn there exist ∆,∆ ∈ Rn×n
≥0 such that

G• = (G•+ + ∆•)− (G•− + ∆•) (4.15)

that is, the matrices G•p and G•n are any positive realization of the matrices G•+

and G•−, respectively. Under the positive realization of the reset matrix G, the

reset equation of the estimation error (4.8) can be generalized by the following

difference equation e(t+k )

e(t+k )

 = Γ(G•p, G
•
n)

e(tk)
e(tk)

+ Υ(tk) (4.16)

where

Γ(G•p, G
•
n) =

Gp Gn

Gn Gp

 (4.17)

Therefore, the idea for the synthesis is to calculate numerically the positive ma-

trices G•p and G•n that satisfy the stability conditions. Then, one can compute

directly the matrices G•+ and G•− from the relation G• = G•p −G•n.

Using (4.17) instead of Γ(L,L) in inequality (4.13), and introducing

Φ(P,G•p, G
•
n) = Γ(G•p, G

•
n)>eA

>
τmPeAτmΓ(G•p, G

•
n)− P, (4.18)
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the gain synthesis can now be performed by finding a solution {P,Gp, Gn, Gp, Gn, L, L, }
to the following feasibility problem

Φ(P,G•p, G
•
n) ≺ 0 , (4.19a)

In + LC = Gp −Gn , (4.19b)

In + LC = Gp −Gn , (4.19c)

Gp ≥ 0, Gn ≥ 0 , (4.19d)

Gp ≥ 0, Gn ≥ 0 , (4.19e)

P � 0 (4.19f)

From equation (4.15) and based on the definition of the positive matrices G•+ and

G•− and their positive realizationG•p andG•n, respectively, the reset equation (4.16)

can be seen as a positive discrete time system whose state matrix is perturbed by

a nonnegative matrix as follows

Γ(G•p, G
•
n) = Γ(L,L) +

∆ ∆

∆ ∆

 (4.20)

Remark 4.4. Since the matrices ∆• are nonnegative which implies that

∆ ∆

∆ ∆


is also nonnegative, it is always possible to enhance the interval observer dynam-

ics at jumps in (4.16) by reducing the matrix Γ(G•p, G
•
n) in (4.20) to its optimal

realization Γ(L,L).

4.3.2 Design procedure

The semi-definite programming (SDP) (4.19) is subjected to a Nonlinear Matrix

inequality, which is hard to solve. The constraint Φ ≺ 0 can be relaxed to a

Linear Matrix Inequality (LMI) in the following Corollary. This relaxed constraints

rely also on M-matrices which have by construction nonnegative inverse matrices

(Berman and Plemmons, 1994, Chapter 6).

Corollary 4.5. Let Assumption 4.2 and 4.3 hold. If there exist nonnegative

matrices Up, Un, Up, Un ∈ Rn×n, M-matrices F1, F2 ∈ R2n×2n and two matrices
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X,X ∈ Rn×1 such that the constraintseA>τmPeAτm − F − F> U

? −P

 ≺ 0 , (4.21a)

F1 +XC = Up − Un , (4.21b)

F2 +XC = Up − Un , (4.21c)

with U =

Up Un

Un Up

, and F =

F1 0

0 F2

 are feasible, then the interval observer

of the form (4.3), (4.4) and (4.7) with gains L = F−1
1 X,L = F−1

2 X for the system

(respectively, noise-free system) (4.2) has: (i) a GES estimation error with respect

to the set A in the ideal case (noise-free system), (ii) an ISS estimation error with

respect to the set A in the presence of measurement noise.

Proof of Corollary 4.5. The semi-definite constraints to be simplified are the

following

Φ(P,G•p, G
•
n) ≺ 0

−P ≺ 0
(4.22)

These constraints can be combined in one inequality using the projection lemma

Pipeleers et al. (2009). The resulting inequality from (4.22) is given as follows

eA>τmPeAτm − F − F> FΓ(G•p, G
•
n)

? −P

 ≺ 0 (4.23)

It is worth noting that the matrix F is an unstructured matrix issued from the

projection lemma procedure, but in our corollary we make it M-matrix which

has positive inverse matrix. Pick FΓ(G•p, G
•
n) = U this implies that the matrix

Γ(G•p, G
•
n) = F−1U is nonnegative because F is M-matrix. Pre-multiplying (4.21b)

and (4.21c) by F−1
1 and F−1

2 , respectively, one gets (4.19b) and (4.19c). This

completes the proof
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4.4 Online observer selection strategy

So far, we have designed an interval observer for each sensor under the assumption

of attack-free sensors. Now, we return to the initial problem where an unknown

subset of sensors in (4.1) are under attack. This subset is defined as S ⊂ I with

card(S) = sa. The complement set of S relatively to I is Sc = I \ S such that

aσ(tk) = 0 if σ ∈ Sc. Based on this assumption, there exist at least s− sa attack-

free sensors that can provide the true estimate. The idea of the proposed selection

strategy is from s sensors select a combination of s− sa sensors and check there

intersection using interval analysis. Thus, the number of combination of sensors

sets in which only one set contains attack-free sensors is Nb =
( s

s− sa

)
= s

(s−sa)!sa!
.

Definition 4.6. A sensor attack ai is called distinguishable if the attacked esti-

mates (x+
i (ai), x

+
i (ai)) and the free-attack estimates (x+

σ (aσ,0), x+
σ (aσ,0)) satisfy

int(x+
i (ai), x

+
i (ai)) ∩ int(x+

σ (aσ,0), x+
σ (aσ,0)) = ∅ ∀σ ∈ I = {1, . . . , s}

where ai 6= 0 and aσ,0 = 0.

Remark 4.7. By nonnegativity argument of interval estimation errors, the esti-

mate enclosures from attack-free sensors always intersect each others. Based on

Assumption 4.1, if there exist sa attacked sensors with distinguishable attacks s.t.

s
2
− 1 ≤ sa <

s
2

, then there exists only one set of s− sa free sensors for which the

intersection of the interval estimates in not empty. This makes the main idea of

the proposed attack-resilient strategy in Algorithm 1. In general situations where

the sa sensors are not fully attacked, then there exist at least one set of s− sa free

sensors which provides interval estimates with non-empty intersection.

Discussion on Algorithm 1 In this algorithm, it is assumed that all attacks

are distinguishable. The algorithm receives corrections (x+
σ , x

+
σ ) from s sensors.

The combination of estimated intervals to be tested is calculated offline based on

the knowledge of the number of attacked sensors sa. We define Σ as the family of

sets Sc ⊂ I such that card(Sc) = s− sa.

For instance, if we have a system with s = 5 sensors among which sa = 2 sensors

are under cyber-attack, then we have I = {1, 2, 3, 4, 5} and Nb = 10 combination
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Algorithm 1: Selection strategy for attack-free estimate

Input : (x+
σ , x

+
σ ) = Jump(xσ, xσ) σ ∈ I, card{I} = s,

Number of sensor combination: Nb = s
(s−sa)!sa!

,
Set Σ contains all possible sets.

Output: Selection of the attack-resilient correction: (x+
σ∗ , x

+
σ∗)

1 for i = 1 to Nb do
2 Sc ∈ Σ ;
3 πSc := {x+

σ | σ ∈ Sc};
4 πSc := {x+

σ | σ ∈ Sc};
5 WSc := max

{
0,min(πSc)−max(πSc)

}
;

6 end
7 Define the sets of intersected estimates

Σ∩ := {Sc ∈ Σ : ||WSc ||0 = n}

8 Select the set Σ∗∩ which provides an intersection of minimum size
9 Find the best estimate from attack-free sensors

σ∗ := argmin
σ∈Sc,Sc∈Σ∗∩

||WSc − (x+
σ − x+

σ )||2

of sets

Sc ∈ Σ ={{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},

{2, 4, 5}, {2, 3, 5}, {3, 4, 5}}.

There exist thus at least one set with attack-free sensors.

• In line 1 - line 6, we compute the intersection of interval estimates (x+
σ , x

+
σ ) ∀σ ∈

Sc. This procedure is repeated for each combination set Sc ⊂ I with

card(Sc) = s− sa for a total of Nb possible combinations which is calcu-

lated a priori.

• In line 7, we select only sets whose estimates intersect by checking the

zero−norm of the vector WSc . If the intervals [x+
σ , x

+
σ ], σ ∈ Sc have empty

intersection, then min(πSc) 6> max(πSc), thus WSc has at least one zero ele-

ment. If any vector WSc has a zero element, then its zero−norm is less than

n. Thus, its corresponding set Sc is excluded from Σ∩.

• In line 8, we select the set Sc which provides the intersection of estimate

of minimum size. This step is only executed in the case when the actual
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number of attacked sensors is less than sa which is only an upper bound

on the number of attacked sensors. By recalling the above example, if the

number of actual attacked sensors is exactly sa = 2, and assuming that the

set of attacked sensors is S = {1, 2}, then the sets with attack-free sensors

are only Sc = {3, 4, 5}. Hence, we have Σ∗∩ = Σ∩ = Sc. Contrariwise, if the

set of attacked sensors is S = {1}, then the sets with attack-free sensors are

Sc ∈ {{2, 3, 4}, {2, 4, 5}, {2, 3, 5}, {3, 4, 5}}. In this case, we need to find the

best set. To this end, we select the one which provides an interval estimate

with the smallest size.

• In line 9, we select the tightest estimate in the selected set.

4.5 Illustrative examples

In order to illustrate the performance of the proposed observer against cyber-

attacks, we consider the following examples

4.5.1 Example 1: Unmanned Ground Vehicle (UGV) sys-

tem

This example is borrowed from (Xie and Yang, 2018) and (Shoukry and Tabuada,

2016) ẋ1

ẋ2

 =

0 1

0 − b
m


︸ ︷︷ ︸

A

x1

x2

+

 0

1
m


︸ ︷︷ ︸

B

F

where x1(t) and x2(t) are the UGV position and the linear velocity, respectively.

m and b are the mechanical mass and the translational friction coefficient, respec-

tively. The input to the UGV is the force F . The UGV is equipped with 3 GPS

sensors, which measure its position in discrete times. The considered outputs are

as follows

yσ(tk) = Cσx(tk) + vσ(tk) + aσ(tk), σ ∈ I = {1, 2, 3}

with C1 = C2 = C3 = [1 0], where aσ(tk) are attack signals. vσ(tk) are measure-

ment noises. In our experiments, the parameters are specified as m = 0.8 and
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b = 1, the measurement period tk+1 − tk = τm = 0.5. We have the number of

sensors s = card{I} = 3, thus the maximum attacked sensors is sa = 1 < s
2
.

The detectability of the pairs (eAτm , CeAτm) ∀σ ∈ I are satisfied. To synthesis our

set of interval observers, we solve the design problem in Corollary 4.5 only once

due to the fact that C = C1 = C2 = C3. The constraints (4.21) are solved using

the YALMIP toolbox (Lofberg, 2004) based on the SDPT3 solver. The obtained

observer gains are as follows L1 = L2 = L3 = [−1 0.0006]> and L1 = L2 = L3 =

[−1 0.0002]>.

The number of combination is Nb = 3 with the sets of possible attacked sensors are

S ∈ {{1}, {2}, {3}}, their complement are Sc ∈ {{1, 2}, {2, 3}, {1, 3}}. In sets Sc

there exists only one set with attack-free sensors. Our proposed selection strategy

in Algorithm 1 selects the set Sc whose sensors provide non-empty intersected

interval estimates, then in the selected set, the best estimate is selected based on

the criterion of line 9 in Algorithm 1.

For simulation, the output noise is vσ(tk) = cos(2tk) ≤ vσ = 1 ∀σ, and F =

10(sin(10t) + cos(40t)). The attack is simulated as [a1(tk) a2(tk) a3(tk)]
> =

[0 0 0]>∀tk < 1.5s and [a1(tk) a2(tk) a3(tk)]
> = [0 0 − 20]>∀tk ≥ 1.5s

The simulation results are given in Figure 4.1 and 4.2. In Figure 4.1, the attack-free

estimate bounds are selected by Algorithm 1, which guarantees the nonnegativ-

ity of the estimation errors. It is noticeable that the jump part of the interval

impulsive observer contracts significantly the estimation errors comparing to the

open-loop estimation. In Figure 4.2, it is shown how the attacked estimate position

behaves compared to the attack-resilient one.

The UGV system in Example 1 is a cooperative system. In order to show the

efficiency of the proposed method, we apply it on a non-cooperative system in the

following example.

4.5.2 Example 2: Academic system (Non-cooperative sys-

tem)

Let us consider the following systemẋ1

ẋ2

 =

 0 1

−1 −1

x1

x2

+

1

1

u
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Figure 4.1: Simulation results for the UGV system: the attack-resilient esti-
mate bounds for the position (top), and velocity (bottom).
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Figure 4.2: Position estimate bounds (·)∗ selected by Algorithm 1 and the
attacked position.
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Figure 4.3: Simulation result for the academic system: the estimate bounds
for the states x1 (top) and x2 (bottom), both attack-resilient estimate (dashed

line) and attacked one (dotted line).

the outputs have the same form of (4.1) with C1 = [2 0], C2 = [1 0] and

C3 = [3 0] which satisfy the detectability condition in Remark 4.3. We solve the

design problem in Corollary 4.5 for each output matrix (∀σ ∈ I) separately by

picking C = Cσ. The designed observation gains are obtained as

L1 =

 −0.5

0.0004

 , L2 =

 −1

0.0007

 , L3 =

−0.3333

0.0001



L1 =

 −0.5

0.0002

 , L2 =

 −1

0.0001

 , L3 =

−0.3333

0.0002

 .
For brevity of presentation, we use the same simulation conditions as of Example

1 with u = F . The simulation results are given in Figure 4.3. In Figure 4.3, it is

clear that the observer whose sensor is under attack provides erroneous estimate
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bounds. On the other hand, our proposed algorithm is able to provide a secure

estimate bounds among the set of available ones under cyber-attacks.

4.6 Conclusion

In this chapter, the attack-resilient state estimation problem for linear systems

with adversarial cyber-attacks has been studied. The interval impulsive observers

for linear continuous-time systems with discrete measurement developed in Chap-

ter 2 has been exploited to provide a secure estimator. Using the positivity of the

interval estimation errors, a new strategy for sensor attack-resilient state estima-

tion has been proposed. Although, the strategy is independent to the periodicity

of measurements, to simplify the problem presentation, we have considered that

measurements are periodic. The synthesis of the observation gains is performed

using LMIs. The proposed approach have relaxed the continuity of measurement

in Chong et al. (2015) while ensuring a continuous estimate. Simulation examples

show the efficiency of the proposed secure estimation approach for a class of linear

systems.



Conclusion and perspectives

Conclusions

In this thesis, we have focused on the design of interval state observers for

continuous-time systems connected over network. The systems are subject to dis-

turbances, and their measurements are also subject to noises and/or adversary

cyber-attacks. This problem is considered from two angles. First, when the net-

work presents some communication constraints; such as the data transmitted over

this network need not be obtained periodically. Second, when the communication

network is vulnerable to cyber-attacks.

Here, we outline the key contributions of the thesis as follows.

In Chapter 2, we have introduced a new approach for designing interval impul-

sive observers for linear systems with aperiodic discrete measurement. Exploiting

the internal positivity representation of the system, a new method has been pro-

posed for the design of the interval impulsive observer gain. The synthesis of the

observation gain is performed using BMIs method.

In Chapter 3, we have proposed a co-design method for both the event-triggered

mechanism and the interval observer for linear continuous-time systems. The pro-

posed event-triggered mechanism is based on the positivity property of the interval

observation errors. Moreover, Further conditions are provided to guarantee the ex-

istence of a positive lower bound on the inter-event times. The proposed observers

also ensure a finite L1-gain between the width of perturbation bounds and the

width of the estimated state intervals.

99
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In Chapter 4, based on the interval impulsive observers for linear continuous-

time systems with discrete measurement developed in Chapter 2, the case of peri-

odic discrete measurement has been exploited to provide a secure estimator. Using

the positivity of the interval estimation errors, a new strategy for sensor attack-

resilient state estimation has been proposed. The synthesis of the observation

gains is performed using LMIs method. The proposed approach has relaxed the

continuity assumption on the measurement required in Chong et al. (2015), while

ensuring a continuous estimate.

Perspectives

The work presented in this thesis opens some directions for future developments.

We describe below those that we think are promising ones.

Optimal interval predictor In the framework of the proposed interval impul-

sive observer, the design of the open-loop predictor in between two consecutive

measurements is based on the Müller’s existence theorem which is not necessarily

the optimal way to get the tightest state enclosure. Thus, it is of interest to de-

velop an optimization algorithm that helps finding the optimal realization which

generates the tightest state enclosure.

It is also of great interest, to extend this approaches to nonlinear system, e.g.,

systems that can be over-approximated by linear system as in Etienne et al. (2017).

Robust control The developed approaches have considered the connection over

network only on the measurements while the control input is assumed continuously

available. A future direction of this thesis is to consider the case where both

control inputs and measurements are connected over network. Then, the design

of an event-triggered output feedback stabilizing law can also be intended.

Secure estimation In the case of multiple output systems, the M-observability

(Chong et al., 2015) of the system can be also considered as perspective in the

interval observation approaches. This property can relax the assumption on the

observability of the system from each output.



Appendix A

Tools for chapter 3

A.1 Relation between errors ψ(t), ξ(t) and widths

δ(t), ω(t) norms

Suppose that Assumption 3.1 is satisfied, then we have ψ(t) =

[
d(t)− d(t)

d(t)− d(t)

]
≥ 0.

By definition |δ(t)|1 =
∑nd

i=1 |δi(t)| = 1>ndδ(t) and using (3.22) we obtain

|δ(t)|1 =
∣∣∣[Ind Ind ]ψ(t)

∣∣∣
1

=

∣∣∣∣∣[Ind Ind ]
[
d(t)− d(t)

d(t)− d(t)

]∣∣∣∣∣
1

=
∣∣∣(d(t)− d(t)) + (d(t)− d(t))

∣∣∣
1

=
∣∣∣d(t)− d(t)

∣∣∣
1

and

|ψ(t)|1 =

∣∣∣∣∣
[
d(t)− d(t)

d(t)− d(t)

]∣∣∣∣∣
1

=
∣∣∣d(t)− d(t)

∣∣∣
1

+
∣∣∣d(t)− d(t)

∣∣∣
1

= 1>nd [d(t)− d(t)] + 1>nd [d(t)− d(t)]

= 1>nd

[
(d(t)− d(t)) + (d(t)− d(t))

]
=
∣∣∣d(t)− d(t)

∣∣∣
1
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Thus, it is explicit that |δ(t)|1 = |ψ(t)|1. By the same steps, based on the inclusions

x ≤ x ≤ x, we deduce that |ω(t)|1 = |ξ(t)|1.

A.2 Integral of rational functions

Lemma A.1. Given the differential equation κ̇ = a+ bκ with κ(t0) = κ0, ∀t0 ≥ 0.

If a and b are positive, then the differential equation has a monotone increasing

solution κ(t, κ0), ∀t ≥ t0.

Proof. The system can be rewritten as

dκ

dt
= a+ bκ

By integration from κ0 to κ(t, κ0), one gets

t− t0 =

[
ln(|a+ bκ|)

]κ(t)

κ(t0)

The function f1(κ) = ln(|a+bκ|) is an increasing function, thus, for any t1, t2 ∈ R≥0

the relation κ(t1) < κ(t2) implies t1 < t2.
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Estimation par intervalles des systèmes cyber-physiques 

 
Résumé : 

    Les systèmes cyber-physiques sont des intégrations intelligentes de calculateurs, de réseaux de 
communications, et de processus physiques. Dans cette thèse, nous travaillons dans le contexte 
erreur inconnue mais bornée de borne connue, et nous nous intéressons à l'estimation d'état des 
systèmes dynamiques sous contraintes de communication. Nous proposons des méthodes de 
synthèse d'observateurs par intervalles pour des systèmes linéaires à temps continu, et dont les 
mesures à temps discret sont transmises à travers un réseau de communication.  

Les contributions de cette thèse sont les suivantes: (i) nous concevons un observateur impulsif par 
intervalles pour des systèmes linéaires à temps continu avec des mesures sporadiques; (ii) nous 
proposons un observateur impulsif par intervalles avec gain L1 fini et échantillonnage contrôlé, puis, 
nous développons une méthode de synthèse pour concevoir simultanément le gain d’observation et 
la condition de contrôle de l'échantillonnage des mesures; (iii) en utilisant l'observateur impulsif par 
intervalles proposé dans (i), nous développons une stratégie d'estimation sécurisée pour des 
systèmes soumis à des cyber-attaques. 

Mots clés : Estimation par intervalles ; Estimation à échantillonnage contrôlées ; Systèmes 
contrôlés en réseau ; Estimation sécurisé ; Systèmes dynamiques hybrides ; Systèmes linéaire à 
temps continu. 

 
 Interval estimation for cyber-physical systems 

 

Abstract: 

   Cyber-Physical Systems are smart integrations of computation, networking, and physical 
processes. In this thesis, we deal with interval observers for cyber-physical systems in which the 
continuous-time physical systems are estimated and monitored using discrete-time data transmitted 
over network.  

   The contributions of the presented material are threefold: (i) we design an interval impulsive 
observer for continuous-time linear systems with sporadic discrete outputs; (ii) we propose a finite 

1L -gain event-triggered interval observer for continuous-time linear systems, in which we develop a 

co-design  procedure to simultaneously design the observer gain and the event-triggering condition; 
(iii) using the interval impulsive observer, we develop a secure estimation strategy for multi-output 
system under cyber-attacks 

Keywords: Interval estimation; Event-triggered estimation; Networked controlled systems;   
Secure estimation; Hybrid dynamical systems; Linear continuous-time systems. 
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