
HAL Id: tel-02895792
https://theses.hal.science/tel-02895792v2

Submitted on 15 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Space adaptive methods with error control based on
adaptive multiresolution for the simulation of low-Mach

reactive flows
Marc-Arthur N’Guessan

To cite this version:
Marc-Arthur N’Guessan. Space adaptive methods with error control based on adaptive multiresolution
for the simulation of low-Mach reactive flows. Optimization and Control [math.OC]. Université Paris-
Saclay, 2020. English. �NNT : 2020UPASC017�. �tel-02895792v2�

https://theses.hal.science/tel-02895792v2
https://hal.archives-ouvertes.fr


 
 
 

Space adaptive methods with error 
control based on adaptive 

multiresolution for the simulation of 
low-Mach reactive flows 

 
Thèse de doctorat de l'université Paris-Saclay 

 
 

École doctorale n°574, mathématiques Hadamard (EDMH) 
Spécialité de doctorat: Mathématiques appliquées 

Unité de recherche : École Polytechnique, Centre de Mathématiques Appliquées, 91128, 
Palaiseau, France 

Référent : CentraleSupélec  
 
 

Thèse présentée et soutenue à Palaiseau, le 11-03-2020, par 
 

 Marc-Arthur N’GUESSAN 
 

Composition du Jury   

Jean-Luc GUERMOND 
Professeur, Texas A&M University  Président & Rapporteur & Examinateur 

 
Gilles VILMART 
Maître d’enseignement et de recherche, 
Université de Genève 

 
Rapporteur & Examinateur 
 
 

Ludovic GOUDENÈGE 
Chargé de recherche CNRS, 
CentraleSupélec 

 
Examinateur 
 
 

Clinton GROTH 
Professeur, University of Toronto  Examinateur 

 
Raphaèle HERBIN 
Professeure, Université d’Aix-Marseille  Examinatrice 

 
Marie POSTEL 
Maître de Conférences, Université Pierre et 
Marie Curie 

 
Examinatrice 
 
 

   
   
Marc MASSOT 
Professeur, École Polytechnique  Directeur de thèse 

 
Christian TENAUD 
Directeur de recherche CNRS, Université 
d’Orsay 

 
Co-Directeur de thèse 
 
 

Vincent GIOVANGIGLI 
Directeur de recherche CNRS, École 
Polytechnique 

 
Invité 
 
 

Guilhem LACAZE 
Principal numerical physicist, SpaceX  Invité 

 T
hè

se
 d

e 
do

ct
or

at
 

N
N

T 
: 2

02
0U

PA
SC

01
7 



Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 

 

ECOLE DOCTORALE N°574  
Mathématiques Hadamard (EDMH) 

Titre : Méthodes adaptatives en espace avec contrôle de précision basées sur la multirésolution adaptative pour la 
simulation d’écoulements réactifs à faible nombre de Mach 

Mots clés : Problèmes multi-échelles ; Équations de Navier-Stokes incompressibles ; Multirésolution adaptative ; 
Contrôle d'erreur ; Schémas de volumes finis collocalisés; Équations Différentielles Algébriques ; Méthodes de Runge-
Kutta additives d'ordre élevé ; transport de scalaire passif 

Résumé : Ce travail vise au développement de nouvelles 
méthodes numériques adaptatives pour la simulation 
numérique de phénomènes physiques multi-échelles en 
temps et en espace. Nous nous concentrons sur les 
écoulements réactifs à faible nombre de Mach, 
caractéristiques d'un grand nombre de configurations 
industrielles telles que la convection naturelle, la 
dynamique de fronts de flamme ou encore les décharges 
plasmas. La raideur associée à ce type de problèmes, que 
ce soit via le terme source chimique qui présente un large 
spectre d'échelles de temps caractéristiques ou encore via 
la présence de forts gradients très localisés associés aux 
fronts de réaction, génère des difficultés numériques 
considérables. Il est donc nécessaire de concevoir des 
méthodes sur mesure pour traiter la raideur de telles 
applications, afin d'obtenir des résultats d'une grande 
précision avec un coût calcul raisonnable.  
Dans ce cadre général, nous introduisons de nouvelles 
méthodes numériques pour la résolution des équations de 
Navier-Stokes incompressibles, une étape importante 
dans la réalisation d'un solveur hydrodynamique pour les 
écoulements à faible nombre de Mach. Nous construisons 
un solveur volumes finis avec adaptation de maillage par 
l'analyse de multirésolution, qui permet un contrôle a 
priori des erreurs générées par l'adaptation de maillage. 
 

Pour ce faire, nous développons un nouveau schéma de 
volumes finis collocalisé, avec un traitement original 
des modes de pression et de vitesse parasites qui 
n'affecte pas la précision de la discrétisation spatiale. 
Cette dernière est couplée à un nouveau schéma de 
Runge-Kutta additif d'ordre 3 pour les écoulements 
incompressibles, qui présente des propriétés de stabilité 
adaptées à la raideur des équations différentielles 
algébriques semi-explicites d'index 2. L'ensemble de 
cette stratégie est implémentée dans le code de calcul 
scientifique mrpy. Ce dernier est écrit en Python, et 
repose sur la librairie PETSc, écrite en C, pour le 
traitement des opérations d'algèbre linéaire. Nous 
évaluons l'efficacité algorithmique de cette stratégie 
par la simulation numérique d'un transport de scalaire 
passif dans un écoulement incompressible sur maillage 
adaptatif. Ce travail présente donc un nouveau solveur 
hydrodynamique d'ordre élevé pour les écoulements 
incompressibles, avec adaptation de maillage par 
multirésolution et contrôle d'erreur, qui peut être 
étendu aux écoulements à faible nombre de Mach. 
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Abstract : We address the development of new 
numerical methods for the efficient resolution of stiff 
Partial Differential Equations modelling multi-scale 
time/space physical phenomena. We are more 
specifically interested in low Mach reacting flow 
processes, that cover various real-world applications such 
as flame dynamics at low gas velocity, buoyant jet flows 
or plasma/flow interactions. It is well-known that the 
numerical simulation of these problems is a highly 
difficult task, due to the large spectrum of spatial and 
time scales caused by the presence of nonlinear 

The adaptive spatial discretization is coupled to a new 
3rd-order additive Runge-Kutta method for the 
incompressible Navier-Stokes equations, combining a 
3rd-order, A-stable, stiffly accurate, 4-stage ESDIRK 
method for the algebraic linear part of these equations, 
and a 4th-order explicit Runge-Kutta scheme for the 
nonlinear convective part. This numerical strategy is 
implemented from scratch in the in-house numerical 
code mrpy. This software is written in Python, and 
relies on the PETSc library, written in C, for linear 
algebra operations. We assess the capabilities of this 
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mechanisms taking place into dynamic fronts. In this 
general context, this work introduces dedicated numerical 
tools for the resolution of the incompressible Navier-
Stokes equations, an important first step when designing 
an hydrodynamic solver for low Mach flows. We build a 
space adaptive numerical scheme to solve incompressible 
flows in a finite-volume context, that relies on 
multiresolution analysis with error control. To this end, 
we introduce a new collocated finite-volume method on 
adaptive rectangular grids, with an original treatment of 
the spurious pressure and velocity modes that does not 
alter the precision of the discretization technique. 

new hydrodynamic solver in terms of speed and 
efficiency, in the context of scalar transport on adaptive 
grids. Hence, this study presents a new high-order 
hydrodynamics solver for incompressible flows, with 
grid adaptation by multiresolution, that can be 
extended to the more general low-Mach flow 
configuration. 
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Résumé

Ce travail vise au développement de nouvelles méthodes numériques adaptatives
pour la simulation numérique de phénomènes physiques multi-échelles en temps
et en espace. Nous nous concentrons sur les écoulements réactifs à faible nombre
de Mach, caractéristiques d’un grand nombre de configurations industrielles
telles que la convection naturelle, la dynamique de fronts de flamme ou encore
les décharges plasmas. La raideur associée à ce type de problèmes, que ce
soit via le terme source chimique qui présente un large spectre d’échelles de
temps caractéristiques ou encore via la présence de fort gradients très localisés
associés aux fronts de réaction, génère des difficultés numériques considérables.
Si l’on considère par exemple le cas de la combustion, l’on veut en général
réaliser des simulations numériques s’étalant sur quelques secondes, alors que les
échelles les plus rapides dûs aux réactions chimiques peuvent descendre jusqu’à
l’ordre de la nanoseconde. Si l’on veut simuler une flamme de laboratoire, avec
une description précise de la géométrie du front de flamme, ce dernier est de
l’ordre du dixième de millimètre, tandis que la zone de combustion a une taille
caractéristique de l’ordre de la dizaine de centimètres. Un calcul DNS en 3D
d’un tel phénomène sur un maillage uniforme suffisamment fin pour décrire les
plus petites échelles spatiales nécessite donc la prise en compte de plusieurs
milliards de points de calcul. Il est aujourd’hui possible de réaliser des calculs
aussi coûteux, mais ils demandent l’utilisation d’architectures informatiques
massivement parallèles, avec des dizaines voire des centaines de milliers de
processeurs en parallèle. De telles ressources sont hors de portée des principaux
acteurs, aussi bien scientifiques qu’industriels, en matière de CFD. Il est donc
nécessaire de concevoir des méthodes sur mesure pour traiter la raideur de telles
applications, afin d’obtenir des résultats d’une grande précision avec un coût
calcul raisonnable.
Une première méthode efficace pour réduire la raideur de ce type de problèmes
consiste à considérer des modèles asymptotiques qui permettent de supprimer
certaines des échelles les plus rapides, sans impact majeur sur la précision de-
scriptive du modèle. Par exemple dans le cas des écoulements réactifs, de nom-
breux cas d’applications réels sont très bien décrits par les équations de Navier-
Stokes à faible nombre de Mach, dans lesquelles sont supprimées les ondes
acoustiques, qui jouent un très faible rôle dans le transport d’énergie lorsque la
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vitesse d’écoulement du fluide est très faible par rapport à la vitesse du son. Ces
équations se décomposent en deux principales parties : d’une part les équations
décrivant l’hydrodynamique du système et qui traduisent la conservation de la
masse et de la quantité de mouvement, et d’autre part les équations de transport
qui traduisent la conservation des espèces et de l’énergie. Il est alors possible
de concevoir deux solveurs différents pour s’attaquer à ce problème, un solveur
hydrodynamique que l’on couple à un solveur d’équations de type convection-
réaction-diffusion. De nombreux progrès ont été réalisés récemment pour la
construction de solveurs efficaces pour les problèmes de transport, et l’on peut
citer comme exemple les méthodes de séparation d’opérateurs avec pas de temps
adaptatif et contrôle d’erreur, qui sont des méthodes sur-mesure pour s’attaquer
au caractère multi-échelle en temps. Les techniques d’adaptation dynamique de
maillages quant à elles font partie des principales familles d’algorithmes conçus
pour s’attaquer à l’aspect multi-échelle en espace. La première génération de
méthodes d’adaptation dynamique de maillages fortement plébiscitées dans la
communauté du calcul scientifique est née au début des années 80, des travaux
de M. Merger. Ce sont les techniques d’"Adaptive Mesh Refinement (AMR)",
dont certaines des implémentations les plus récentes sont réalisées sur archi-
tectures massivement parallèles, notamment au Lawrence Berkeley National
Laboratory, suivant les travaux pionniers de J. Bell et M. Day. La seconde
génération de méthodes d’adaptation dynamique de maillages apparaît quant à
elle au milieu des années 90, et repose sur la décomposition en ondelettes. Elle
permet de faire de l’adaptation dynamique de maillage avec contrôle d’erreur
par rapport à une solution obtenue sur maillage uniforme. C’est cette méthode
qui a été retenue par les équipes CFD de l’entreprise SpaceX.
Dans ce cadre général, nous introduisons de nouvelles méthodes numériques
pour la résolution des équations de Navier-Stokes incompressibles, une étape
importante dans la réalisation d’un solveur hydrodynamique pour les écoule-
ments à faible nombre de Mach. Nous construisons un solveur volumes finis avec
adaptation de maillage par l’analyse de multirésolution, qui permet un contrôle
a priori des erreurs générées par l’adaptation de maillage. Pour ce faire, nous
développons un nouveau schéma de volumes finis collocalisé, avec un traite-
ment original des modes de pression et de vitesse parasites qui n’affecte pas la
précision de la discrétisation spatiale. Cette dernière est couplée à un nouveau
schéma de Runge-Kutta additif d’ordre 3 pour les écoulements incompressibles,
qui présente des propriétés de stabilité adaptées à la raideur des équations dif-
férentielles algébriques semi-explicites d’index 2. L’ensemble de cette stratégie
est implémentée dans le code de calcul scientifique mrpy. Ce dernier est écrit
en Python, et repose sur la librairie PETSc, écrite en C, pour le traitement
des opérations d’algèbre linéaire. Nous évaluons l’efficacité algorithmique de
cette stratégie par la simulation numérique d’un transport de scalaire passif
dans un écoulement incompressible sur maillage adaptatif. Ce travail présente



Résumé ix

donc un nouveau solveur hydrodynamique d’ordre élevé pour les écoulements
incompressibles, avec adaptation de maillage par multirésolution et contrôle
d’erreur, qui peut être étendu aux écoulements à faible nombre de Mach.
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General Introduction

Numerous physical phenomena result from the interaction of several strongly
coupled sub-processes that involve a wide spectrum of spatial and time scales
spanning over several order of magnitudes, due to the presence of highly non-
linear mechanisms taking place into dynamic fronts. Let us start with ex-
amples originating from our specific field of study, multicomponent reacting
flows. The first one is related to combustion flow processes. Classical configu-
rations of interest for scientific investigations are the propagation of premixed
methane-air flame [NWK98a], [NWK99], [Gio99], or axisymmetric methane-air
diffusion flame [MTS+98], [NG09], [DB00b]. Methane and air are typically in-
jected into a combustion chamber whose characteristic size is of the order of
ten centimeters. The injection area is few millimeters wide, and the (laminar)
flame thickness is around a tenth of millimeters. These phenomena involve var-
ious species submitted to nonlinear chemical reaction processes, diffusive and
convective processes, and with heat release that affects the thermodynamical
state of the flow. In [NW97], Najm and Wyckoff studied the interaction of a
premixed stoichiometric methane-air flame, with a counter-rotating vortex pair
in 2D, under atmospheric pressure conditions. The initial flame thickness is
0.06 cm, and the initial laminar burning speed is around 20 cm/s. The vortex
pair center-to-center distance is 0.25 cm, and the maximum flow velocity is 20
m/s. This means that the flame time scale is around 3 ms, and the convective
time scale is around 0.13 ms. They used a subset of the detailed methane-air
chemistry mechanism, where the shortest reactive time scales are of the order
of nanoseconds.
The second example that we will consider comes from plasma / flow interac-
tions. Plasma sources at atmospheric pressure have been recently developed for
different engineering applications. One way to produce them is to use nanosec-
ond repetitively pulsed discharges in an insulating fluid (for example air, or
another gas mixture) [DBMB15], [DBM+12], [TB14]. The region of interest
in these experiments is situated between an anode and a cathode (two parallel
plates for example). A constant high electric field is repetitively applied over
this region, during a few nanoseconds, with a period of a few microseconds.
This electric field accelerates the electrons, that in turn ionize the ambient gas
and cause an electron avalanche [VPB94] . The electron avalanche entails fast
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variations of the net charge density that create an induced electric field. This
causes nonlinear ionizing waves that drive the formation of thin plasma fila-
ments, also known as streamers discharges. Here, the effective ionization and
the dielectric relaxation times scales are of the order of the picosecond, and the
discharge propagation over few centimeters takes place during few nanoseconds.
The streamer discharges act upon the gas flow momentum, the time scale of
which is around few milliseconds. As for the spatial scales, the Debye length at
atmospheric pressure (involved in the electron avalanche) can be of micrometric
scale, whereas the space between the elecrodes is about a few centimeters.
A good understanding of such complex phenomena is a highly challenging task
that is nonetheless essential for a great number of scientific and engineering ap-
plications. Fortunately, a large amount of time and energy has been deployed
over the past decades in order to build a hierarchy of comprehensive mathemat-
ical models to describe such reactive strongly multiscale flows. They resulted in
various systems of Partial Differential Equations (PDEs) in the space and time
dimensions, encompassing all the physically relevant scales. It is thus possible,
theoretically, to gain insights regarding these physical processes by solving the
PDEs modelling them with a sufficiently accurate resolution. This is the goal of
the technique of Direct Numerical Simulations (DNS). However, the numerical
resolution of reactive flows is extremely demanding in terms of computational
resources, due to their multi-scale properties. Let us exemplify this fact with
the combustion process mentioned earlier. In a typical numerical simulation,
one discretizes the physical domain, in this case the combustion chamber. If we
consider a uniform discretization, an accurate description of the flame requires
at least ten computational points spanning the flame thickness. This means
that the typical mesh size is 10−5 meter, and the computational domain will
consist of 1012 mesh points (in a three-dimensional space). Such tremendous
requirements rendered DNS combustion out of reach for years. Nevertheless,
by harnessing the capabilities of massively parallel computing architectures,
researchers have been able to perform computations at this scale. For example,
a DNS solver, s3d, has been developed at the Lawrence Berkeley National Lab-
oratory [CCdS+09], in order to produce high-fidelity simulations of turbulent
flames. It was lately used to perform a petascale DNS of premixed hydrogen
combustion [HCK+12], with nearly 7 × 109 grid points, on 120, 000 process
cores.
The Hybrid code, developed by Larsson et al. at the University of Maryland1,
gives us another example of petascale computations on massively parallel ar-
chitectures. In [BMBL+13], Bermejo-Moreno et al. used this code for the di-
rect numerical simulation of isotropic turbulence and its interaction with shock
waves. They solved the compressible Navier-Stokes equations on a parallel sys-
tem with approximately 2 million cores, for a maximum number of 4.12× 1012

1http://terpconnect.umd.edu/~jola/supercomputing.html

http://terpconnect.umd.edu/~jola/supercomputing.html
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simulated grid points and a memory usage around 1.6 PB. Thus, we are now
able to perform the DNS of reactive flows with the most refind model of the
hierarchy, that is by solving the compressible Navier-Stokes equations coupled
to complex chemistry and detailed transport. This represents a significant sci-
entific and engineering accomplishment, but since these simulations entail very
high computational costs, either in terms of CPU time to solution, memory
trace or data handling, they rely on massively parallel computational resources
that are not available to most industrial players or laboratories at the moment.
Making large scales simulations accessible on regular computational architec-
tures necessitates a change in paradigm, through the use of asymptotic limits
of models for specific applications, and tailored algorithms especially designed
to tackle multiscale phenomena, with lower memory trace and shorter time-to-
solution.

Flows occuring at a low Mach number, where the flow velocity is relatively
small compared to the local speed of sound, are a typical case where it is
possible to use an asymptotic limit of the fully compressible Navier-Stokes
equations. These flows cover a large number of real-world applications and en-
gineering configurations, such as natural convection [Get98, MGDV02], flame
dynamics at low gas velocity [NWK98a, NWK99, RPB14], or buoyant jet flows
[BT69, HK05]. In those cases, we can assume that the density relative vari-
ations due to the pressure can be neglected, and that the soundwaves have a
little impact on the dynamics of the overall system. Although the fully com-
pressible Navier-Stokes equations still give the most accurate description of the
flow dynamics, it becomes increasingly difficult to solve reacting flows with this
model as the Mach number decreases [GV99, DJOR16]. This is due to the fact
that the compressible solver has to take into account the time scales related to
the acoustic waves, thus imposing severe restrictions on the time step to ensure
the stability of the computation. It is thus more natural to describe such flows
with a different mathematical model, and Madja & Sethian [MS85] were the
first to propose a model for low-Mach number flows. They effectively suppress
the acoustic waves for the physics at hand, by performing an asymptotic de-
velopment of the fully compressible equations in the Mach number parameter.
For a mixture gas model for example, the final equations can be decomposed
into (i) a set of advection-diffusion-reaction equations for the conservation of
the species and the energy conservation, (ii) momentum balance equations for
the flow velocity, and (iii) a mass conservation equation that translates into an
algebraic constraint on the divergence of the velocity field. It is thus possible
to decouple the spatial and time scales related to the transport phenomena of
the species and the temperature or enthalpy on one hand, and those related to
the flow dynamics on the other hand.
The low-Mach number approximation thus filters the acoustic waves from the
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Navier-Stokes equations, but they also result in a change of the mathematical
structure of reactive flows. While the fully compressible Navier-Stokes equa-
tions are hyperbolic-parabolic equations, the low-Mach number formulation is
a set of parabolic-hyperbolic-elliptic equations. As a consequence, the fully
compressible equations and the low-Mach number equations are two struc-
turally different mathematical models, and this dichotomy results in strong
differences in the numerical methods deployed to solve them. For the lat-
ter case, a sound algorithmic strategy, that takes advantage of the natural
decomposition of low-Mach number equations detailed above in a clever man-
ner, consists in splitting the resolution of the complex chemistry and detailed
transport on one hand, and the resolution of the flow dynamics on the other
hand. The former part is a set of advection-diffusion-reaction equations, three
processes that are very different physical mechanisms, occuring over a large
range of time and spatial scales. Therefore this set of equations can also be
resolved with an operator-splitting strategy. These two splitting procedures
have been the basis of a large number of numerical schemes to solve reac-
tive and non-reactive flows described by the low-Mach number formulation
[DB00a, SRN10, NWK98a, NWK99, NK05, Nic00, Sha12]. Time operator-
splitting constitutes a very good example of algorithms tailored to efficiently
solve multiscale low-Mach number flows. But they necessarily entail splitting
errors, with regard to fully coupled solvers, and these errors have been seldomly
treated in the literature. We believe that splitting error control is an important
point of improvement for operator-splitting strategies to solve reactive flows,
because these errors can alter the numerical accuracy of the calculated solutions.

Another great strategy to reduce the time to solution and memory trace of
problems with a wide range of spatial scales, consists in resorting to dynam-
ically adaptive grid techiques, that confine the use of fine mesh cells to com-
putational regions where the smallest scale processes are taking place, while
employing coarser mesh cells elsewhere. This entails important memory space
savings, so that rather large computational domains can be solved with com-
mon computational resources. Adaptive grid techniques are particularly effi-
cient when simulating physical phenomena with localized wave fronts moving
across the domain. The computational domain is then characterized by a highly
inhomogeneous spatial scales distribution, and it is possible to confine the use
of extremely refined mesh points to a very small part of the domain. The
first widely adopted adaptive grid techniques belong to the family of Adaptive
Mesh Refinement (AMR), pioneered in the eighties with the work of Berger
[BO84]. The goal was initially to solve multidimensional, time dependent
shock hydrodynamic problems [BC89]. Since then, several numerical simu-
lation applications have been performed with variants of the original procedure
[DB00a, SRN10, FPG15, PHB+98, ABC+98, NG09, BS99, GTG15, Pop03],
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and they have even been performed on parallel architectures. We can cite a
work of Bell et al. [BDS+05], where they performed the DNS of a laboratory-
scale turbulent V-flame of premixed methane-air with detailed chemical ki-
netics, using AMR to resolve the flame and turbulent structures, on a parallel
computer with 128 processors. For a state-of-the-art parallel implementation of
AMR techniques for multidimensional reactive flow simulations, one can refer to
the AMReX2 code developed at Lawrence Berkely National Lab [ZAB+19].
This code was successfully used for the DNS of various combustion configu-
rations [DTB+15, ADB15], and for astrophysical hydrodynamics simulations
[ABB+10, ZHA+11, ZHA+12]. One can also refer to the canoP3 code, an
open-source project led by the « Maison de la simulation » research laboratory,
that leverages the parallel AMR features of the p4est library [BWG11]. It was
used for example for the simulation of multiphase flows (see [Dru17] and refer-
ences therein). We will give more details on key aspects of AMR techniques in
this work, but for now we mention that AMR algorithms are generally plagued
with two drawbacks that have a negative impact on the reliability of their re-
sults: (i) the refinement process by which the code decides to employ finer or
coarser meshes usually relies on heuristic ad-hoc criteria, and (ii) it is often not
possible to control the ineluctable error between the adapted grid computation
and a computation performed on a uniform fine grid4

Multiresolution-based adaptive grid algorithms, the second generation of adap-
tive grid techniques born in the nineties, overcome these two downsides. Relying
on the mathematical properties of wavelets basis [DeV98], they allow to build
local regularity indicators of a function. Then, by using these indicators, it
is possible to build a hybrid discretization of this function, while controlling
the error between the adaptive representation and a uniformely refined repre-
sentation [Har94a], [Har95], [CKMP03]. The first numerical simulations with

2https://ccse.lbl.gov/AMReX/index.html
3https://gitlab.maisondelasimulation.fr/canoPdev/canoP
4In [NFG17], Narechania, Fréret and Groth use adjoint-based error estimation to direct

the output-based Adaptive Mesh Refinement procedure for the numerical simulation of invis-
cid and viscous compressible flows. The adjoint-based a posteriori error estimates are defined
by solution-dependent engineering functionals. One can also consult the web page of the
Cart3D code with the joint work of M. Aftosmis at NASA (collaboration with M. Berger)
for steady and unsteady compressible flows: https://www.nas.nasa.gov/publications/
software/docs/cart3d/pages/.
However, the approach entails the resolution of a large sparse linear system, and this pro-
cedure has to be done several times before reaching a precise enough adaptive grid, thus
requiring a rather heavy overhead compared to traditional AMR techniques, especially in
the unsteady cases. The user must have in mind a dedicated quantity, the error on which
he or she wants control, and the estimate does not provide an access to the error on the
primal variable flow fields but really focuses on such an output-based mesh refinement. To
the extent of our knowledge, such techniques, even if quite interesting for the compressible
problems mentioned above, are not well adapted for our combustion/plasma based strongly
unsteady applications.

https://ccse.lbl.gov/AMReX/index.html
https://gitlab.maisondelasimulation.fr/canoPdev/canoP
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/
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adaptive multiresolution appeared in the nineties with the seminal papers of
Harten [Har94a], [Har95], and since then they have been employed in numer-
ous cases to compute reacting flows. In [Ten10], Tenaud conducted numerical
simulations on viscous compressible flows with high frequency oscillations in su-
personic regimes, using a fully adaptive multiresolution finite-volume technique.
It demonstrates the capability of such schemes to perform dynamic grid adap-
tation within user-defined tolerance. Multiresolution adaptive techniques were
also used in [For16] for the numerical simulation of shock-bubble interaction.
And we finally mention that these techniques are the basis for the numerical
solver developed at the company SpaceX for their rocket engine design [JL15].

In this context, Duarte, in his thesis [Dua11], introduced a new generation of
time-space adaptive numerical schemes with error control to tackle low-Mach
reacting flows. This work focused on the computationally effective treament
of the advection-diffusion-reaction transport equations5. Their efficient resolu-
tion was then carried out with a second-order Strang splitting scheme [Str68],
with dynamic splitting time steps. The novelty of this approach compared to
previous splitting methods was that the subproblems were solved with dedi-
cated high-order one-step methods, in order to ensure that the temporal error
of the scheme was only related to the splitting scheme: the 4th order stabilized
explicit ROCK4 solver for the diffusion part [Abd02], the 5th order implicit
RADAU5 solver for the reactive part [HW96] and the 3rd order OSMP3 for
the advective part [DT09]. A shifted embedded Strang splitting scheme was
then used to determine adaptive time steps, while controlling the errors due
to the operator splitting technique. A particular case of interest in his work
was the simulation of reaction fronts, that is low-Mach reactive flows with the
presence of reactive waves. In such configurations, a very high chemical activ-
ity occurs in highly localized fronts that move throughout the computational
domain; these conditions are typical of plasma discharges [EMB+06] or hu-
man ischemic strokes [DDD+13]. Therefore, in order to capture the chemical
waves in these applications, the adaptive operator splitting strategy was cou-
pled to an adaptive multiresolution finite-volume scheme, resulting in a highly
efficient time-space adaptive numerical scheme for advection-diffusion-reaction
processes (see , e.g., [DDT+13] for the performance evaluations of this numeri-
cal scheme for the propagation of premixed flames, and the ignition of diffusion
flames).

The present work was originally motivated by the desire to further complement
this strategy toward a low-Mach solver with adaptation in time and space and

5It represented a first step toward a sound mathematical framework to combine (i) the
optimality in cost reduction for low Mach reacting flows obtained by tailored numerical
methods such as adaptive grid techniques and operator-splitting, and (ii) accuracy control in
the space and time discretization.
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error control. Several building blocks were still missing; first the hydrodynamics
and velocity fields were given analytically and not resolved in [Dua11, DDT+13].
Providing a hydrodynamics solver for the Navier-Stokes equations in the low-
Mach variable density limit, within the proposed framework, is a major step
forward since several key issues were to be resolved in order to complete such
a program: (i) the proposed solver has to fit within a finite volume framework
for the multiresolution with collocated variables, (ii) since the strategy relies
on sub-step solver of high order in time with error control, the time-integration
has to be high-order, that is at least third order, thus eliminating the tradition-
ally used time splitting methods, (iii) since implicit methods are envisioned,
a specific and efficient linear algebra solver has to be designed. The second
building block is related to data structure for both sequential and parallel im-
plementation, optimization and efficiency. The original implementation was
conducted in Fortran [TD11b] and relied on tree of pointer recursive naviga-
tion. It was more dedicated to a proof of concept than to an efficient and
optimal implementation. A piece of work lead by T. Dumont, in collaboration
with M. Duarte and INTEL (T. Guillet), allowed the use of space filling curve
(z-curve or « courbe de Lebesgue » in French) and Morton index in order to
reach an implementation on shared-memory architecture (Xeon-Phi) with close
to ideal scaling [DDD+15]. Even if such a strategy is also used by the close
approach of cell-based AMR [Dru17, BWG11], it became however clear that
room for improvement existed in order to obtain better data locality and ef-
ficient treatment of prediction operator and its intrinsic recursive nature, all
the more on distributed memory architecture for massively parallel computing.
Since the question of the data structure has been only partially tackled during
the thesis, we will come back to this piece of work in the General Conclusion
and Prospects section and we directly focus on the hydrodynamic solver.

Generally, the first step in designing a numerical scheme to solve the low-
Mach Navier-Stokes equations consists in the numerical resolution of the in-
compressible Navier-Stokes equations in the velocity u = (ui(x, y, z, t))i=1,·,3
and pressure p(x, y, z, t) unknowns. Indeed, the incompressible Navier-Stokes
equations share most of the features of the mathematical structure of the low-
Mach Navier-Stokes equations, so that when one has been able to circumvent
the difficulties related to the resolution of the former, one can extend his method
to the resolution of the latter in a rather straightforward fashion. We restate
them here: 

∂u

∂t
+∇ · (ut ⊗ u) +∇p− ν∆u = f in Ω × R

∇ · u = 0 in Ω × R
(1)

with a homogeneous Dirichlet boundary condition for u and the initial condi-
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tion:
u(·, 0) = uini in Ω

where ν is the cinematic viscosity of the fluid and f is a source term. We make
the following assumptions:

1. ν ∈ ]0,+∞[,

2. Ω is an open bounded domain of R3,

3. uini ∈ L2(Ω)3,

4. ∇ · uini = 0 in Ω,

5. f ∈ L2(Ω× R)3.

These equations are among the most famous sets of PDEs, and their study and
better comprehension have been a major research topic in various branches of
mathematics, physics and engineering over the past century, and with good
reason. Since their discovery in the nineteenth century, researchers have not
yet been able to prove that they always possess smooth solutions. The Navier-
Stokes existence and smoothness problem was even made one of the seven Mil-
lenium Prize problems by theClay Mathematics Institute in May 20006.
To be more precise, we know that satisfying solutions exist in two dimensions
[Lad69], but we have not yet been able to prove that given any initial divergence-
free velocity field uini, there exist (or do not exist, for that matter) smooth func-
tions u and p that satisfy equations (1) in three dimensions (the relevant case
for real-world applications and flows) for an infinite time interval, with bounded
energy. Still, this situation did not prevent CFD practitioners from attempting
to build efficient and accurate approximate solvers for these equations. In fact,
quite the contrary actually happened, to the point that an overwhelming quan-
tity of articles, scientific papers and books have been devoted to that specific
topic. A full review of the matter is far beyond the scope of this thesis, and
we will limit our discussion in this introduction to two well-known issues that
appear when trying to solve (1) with a spatial discretization handled via the
finite-volume technique. The first one is the apparition of the pressure and / or
velocity spurious modes. This problem is mainly related to the Stokes part of
the equation, and it appears even on their steady version (we get this system of
PDEs by removing the time derivative of the velocity, and the convective term
in the momentum equations). Upon spatial discretization of the steady Stokes
equations, we end up with a linear system on the (discrete) velocity and pressure
variables. The linear system is a saddle-point problem [Saa03], [BGL05], and
depending on the particular choice of the finite-volume discretization scheme,
its matrix may have more kernel modes than the continuous problem. These

6https://www.claymath.org/millennium-problems/navier-stokes-equation

https://www.claymath.org/millennium-problems/navier-stokes-equation
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spurious / parasite kernel modes will appear when trying to solve the linear
system to obtain the velocity and the pressure, and pollute them. The original
solution for finite-volume schemes applied to the incompressible Navier-Stokes
equations is to stagger the velocity and the pressure [HW65]. Although this
solution completely solves the difficulty in case of uniform Cartesian grids,
its extension to more complex grids and geometries is a delicate task [RP13],
[GTG15], [CEH09]. Hence, we can expect difficulties when trying to apply
such a remedy to the spatial discretization of equations (1) combined to a mul-
tiresolution adaptive scheme. The second issue is encountered after the spatial
discretization. The semi-continuous problem in the time variable obtained is
not a simple set of Ordinary Differential Equations (ODEs), but a Differential
Algebraic Equation (DAE). We know since the seminal article of Petzold that
“DAEs are not ODEs”, and they are incredibly more difficult to efficiently solve
than ODEs [HW96]. In particular, a large range of numerical schemes, which
give high-order solutions when applied to ODEs, can only yield low-order so-
lutions when applied to the semi-discretized Navier-Stokes equations. Thus, a
straightforward implementation of classical numerical methods (among them
the famous prediction-projection schemes [Cho68], [Tem69]) is ill-advised if the
goal is to build efficient numerical solvers based on the operator-splitting strat-
egy mentioned earlier, where each subproblem has to be solved with high-order
methods. For instance, there has not been any successfull attempt to obtain
prediction-projection schemes with an higher-than-second-order precision for
the incompressible Navier-Stokes equations [GMS06]. We will give a more de-
tailed account of these issues, and other difficulties encountered when solving
the incompressible Navier-Stokes equations, throughout this thesis.

We are now able to express the purpose of the present work. It falls within
the general framework of the development of a new generation of dedicated
numerical tools for the simulation of multi-scale reacting flows; in particu-
lar, the numerical resolution of low-Mach regime reacting flows with adap-
tive time-operator splitting and adaptive multiresolution finite-volume schemes,
with error control. To this end, the following study introduces mathemat-
ical and numerical concepts used to build high-order numerical solutions to
the incompressible Navier-Stokes equations with adaptive multiresolution in a
finite-volume context. We design a new collocated finite-volume scheme based
on the variational formulation of equations (1), that allows us to implement
a fully adaptive multiresolution finite-volume scheme for incompressible flows.
To the best of our knowledge, such a scheme did not exist in the literature
when we started this thesis. We also investigate a set of already existing high-
order Runge-Kutta schemes for the numerical integration of the semi-discretized
Navier-Stokes equations. We review their mathematical properties, in order to
determine the best suited methods to obtain 3rd order (or higher) numerical
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solutions to these equations. We also introduce a new class of 3rd order Additive
Runge-Kutta (ARK) methods that take advantage of the structure of the semi-
discretized incompressible Navier-Stokes equations, and show that they possess
better properties than existing schemes. At the beginning of this study, we did
not have at our disposal flexible enough computational tools to be able to build
and test various spatial and temporal schemes to solve incompressible flows
coupled to an adaptive multiresolution strategy. That is why a large amount
of time during this thesis was dedicated to build from scratch a software to im-
plement and test our new techniques. This resulted into an academic in-house
code called mrpy, written in Python.

This thesis is divided into seven chapters. Chapter 1 is devoted to space adap-
tive multiresolution techniques for dynamic adapted grids. We give a short
introduction to the notion of nonlinear approximation, and expose the AMR
technique in this mathematical framework. Then we give the mathematical
background behind the wavelets theory upon which are constructed multireso-
lution schemes, and end up with our specific adaptive multiresolution strategy.
Chapter 2 deals with our spatial discretization scheme for the incompressible
Navier-Stokes equations on grids obtained by adaptive multiresolution. We
start with a short review of different solutions proposed over the years for the
discretization of these equations on non-uniform grids, with a special focus on
the schemes combined to an AMR strategy for grid adaptation. We then build
our specific collocated scheme.
In Chapter 3 we give some insights regarding the mathematical structure of
the semi-discretized incompressible Navier-Stokes equations. We chose to first
present some characteristics of stiff Ordinary Differential Equations, because
for our cases of interest, DAEs can be viewed as ODEs with infinite stiffness.
We also give a brief account of projection methods, with an emphasis on their
limitations.
Chapter 4 considers the time integration of Hessenberg index 2 DAEs by one-
step Runge-Kutta methods. We present the requirements of such methods to
yield high-order solutions to the Navier-Stokes equations, and exhibit some 3rd

order schemes. We expose our construction process for a new class of additive
Runge-Kutta methods well suited for these equations. We assess the order of
these schemes with various test cases of well-known incompressible flows.
Chapter 5 is about the algorithmic implementation of the adaptive multires-
olution strategy in the mrpy code. We present here our new fully adaptive
multiresolution scheme to solve the incompressible Navier-Stokes equations,
and discuss some practical issues regarding the data structure and code imple-
mentation.
In Chapter 6 we put together the results of Chapters 2, 4 and 5 to present
a new high-order numerical scheme to solve the incompressible Navier-Stokes
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coupled to a finite volume adaptive multiresolution strategy. Special care is
given to the treatment of the velocity spurious modes.
Finally Chapter 7 considers the application of our new space adaptive hydro-
dynamic solver to the transport of a passive scalar. We assess the performance
of multihierarchy multiresolution scheme compared to a simulation performed
on a uniform grid. This study has been recently published in the Journal of
Computational and Applied Mathematics [NMST19].

Publications

1. "M.-A. N’Guessan, M. Massot, L. Séries and C. Tenaud", "High order
time integration and mesh adaptation with error control for incompress-
ible Navier-Stokes and scalar transport resolution on dual grids", Journal
of Computational and Applied Mathematics, 2019

Book chapters

1. M.-A. N’Guessan, L. Séries, C. Tenaud and M. Massot, "A high-order
Runge-Kutta method coupled to a multiresolution strategy to solve the
incompressible Navier-Stokes equations", NASA Technical Memorandum,
Proceedings of the Heliophysics Modeling and Simulation summer 2018
Summer Program, NASA Ames Research Center, 2018

2. H.Leclerc, M.-A. N’Guessan, L. Séries, L. Gouarin and M. Massot,
"Parallel dedicated data structures and adaptive multiresolution imple-
mentations: application to the resolution of multi-scale PDEs", NASA
Technical Memorandum, Proceedings of the Heliophysics Modeling and
Simulation summer 2018 Summer Program, NASA Ames Research Cen-
ter, 2018

2018 Nasa summer program

During the summer 2018, I had the chance to be invited to the Heliophysics
Modeling and Simulation summer program at NASA Ames Research Center.
It was a great opportunity to exchange with the scientists of the NASA ad-
vanced Supercomputing division. I specifically worked on high-order Runge-
Kutta schemes for Hessenberg index 2 Differential Algebraic Equations, and
a new data structure for the parallel implementation of adaptive multiresolu-
tion algorithms in collaboration with Hugo Leclerc, Loïc Gouarin and Laurent
Séries, during this period. The results of this work were published in two pro-
ceedings to the NASA technical Memorandum.
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Chapter 1

Space Adaptive Multiresolution
for Multi-Scale Evolutionary
PDEs

This chapter describes the core concepts underlying the adaptive grid technique
that we will implement in this work. Within the framework of the efficient
resolution of multiscale PDEs, the key aspects to consider for the choice of
a specific space adaptive strategy are (i) its ability to detect and track local
space scales, (ii) the ability to control the errors between the solution obtained
on the adaptive grid and the solution obtained on a uniform refined grid and
(iii) the computational overhead generated by its implementation. We begin
this chapter by a small introduction to approximation theory, and its link to
adaptive grid techniques. We then give a general description of adaptive mesh
refinement (AMR) schemes, before introducing the mathematical theory be-
hind the multiresolution analysis. We conclude this chapter with a practical
implementation of adaptive multiresolution, that will be the basis for the fully
adaptive multiresolution scheme for the numerical simulation of incompressible
flows.

1.1 Approximation theory and adaptive grids strate-
gies

A lot of physical phenomena are subject to a highly inhomogeneous spatial
distribution due to the large range of spatial scales of the quantities involved.
Examples of such situations are brain strokes [DDD+13], plasma discharges at
atmospheric pressure [DBM+12, TB14] or reactive flows phenomena such as
combustion [DDT+13, BDS+05, DB00b, SRN10, NWK98a, NWK99, Che11,
CCdS+09, HCK+12]. The numerical simulation of these phenomena is an ex-
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tremely difficult task, among other reasons because of the huge number of
degrees of freedom necessary to acurately describe them by uniform grid com-
putations. Indeed, in the presence of localized fronts of steep spatial gradients
into a smooth domain, the sharp regions require a mesh size that can be order
of magnitudes smaller than what is necessary in the smooth regions. Thus an
excessive computational effort is spent in smooth regions if they are discretized
with highly refined grids. What is more, it often happens that the localized
fronts move throughout the domain, so that it is not possible in advance to
know where refinement is necessary. This situation motivated over the years
the development of adaptive mesh techniques, that computational strategies
that dynamically adapt the grid in order to track singularities and use fine
meshes only in these parts of the domain.
We believe that the appropriate mathematical setting to discuss and evaluate
the preformance of adaptive grids strategies is that of approximation theory.
Generally speaking, it is the branch of functional analysis that deals with the
problem of approaching a rather complex target function by simpler functions
called approximants. Improving the quality of the approximation is usually
done by increasing the complexity of the approximants, and approximation
theory deals with the trade-off between accuracy and complexity. In numerical
simulation, in the finite-volume scheme context, we consider physical quantities
as functions of space and time variables, and we try to approach them by piece-
wise constant functions that lie in finite-dimensional spaces. Finding the best
numerical approximation (i.e. the one involving the least possible degrees of
freedom without sacrificing precision) is a part of the more general goal of ap-
proximation theory. We will thus give some elements of approximation theory,
before diving into adaptive grids techniques.

1.1.1 Nonlinear approximation

Let u be a real function over an open domain Ω ⊂ Rd, where d is an integer.
We are interested in the approximation of u by piecewise constants functions
on Ω. We will use the following case for illustration purpose: Let Ω = ]0, 1[,
and u be the following function:

u(x) = tanh(50 · |x− 1
2 |) ∀x ∈ Ω (1.1)

This function is represented in figure (1.1).
Next for n ∈ N∗ an integer, we define a partition of the segment Ω into n disjoint
intervals. We can consider for example partitions consisting of dyadic intervals:
for l ∈ N∗, we define the grid Ωl as the union of cells K l

i = ]2−li, 2−l(i+ 1)[ for
i ∈ {0, 1, 2, . . . , 2l − 1} (see figure (1.2)).
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Let ϕli be the characteristic functions on each of these cells:

ϕli(x) =

{
1 if x ∈ K l

i

0 otherwise

Let Vl be the space of piecewise constant functions for this partition. Then the
ϕli form an orthogonal basis of Vl, and for each F ∈ Vl there exists a unique set
of real coefficients cli for i ∈ {0, 1, 2, . . . , 2l − 1} so that:

F =
2l−1∑
i=0

cliϕ
l
i

For 0 < p ≤ +∞, we can look for the best approximation of u by elements F
of the approximation space Vl in the Lp-norm. We define the error in approxi-
mating a function u ∈ Lp(Ω) by functions in Vl by:

e(u, Vl)p = inf
F∈Vl
‖u− F‖Lp (1.2)

In the case p = 2, since L2(Ω) is an Hilbert space, the best approximation F is
obtained by the projection of u onto the subspace Vl of L2:

F =

i=2l−1∑
i=0

〈u, ϕli〉ϕli

where 〈· , ·〉 is the canonical scalar product on L2. We speak in this case of a
linear approximation, because the approximation space is a linear space. For
our function defined in (1.1), we show in figures (1.3-1.6) the best approximation
in the L2-norm for different values of the grid level l.
We considered a uniform partition of Ω, but this discussion is still valid if the
partition Π consists of n disjoint intervals Ik for k ∈ {0, 1, . . . , n−1} of different
size. In any case, we can define the mesh length of a partition by:

δΠ = max
0≤k<n

diam(Ik)

one of the topics of interest in approximation theory is to determine the prop-
erties of functions that are well approximated by functions in a specific approx-
imation space. In our case, it could be for example to search for the functions u
for which e(u, Vl)+∞ = O(δαΩl) where 0 ≤ α is a real number. It turns out that
when 0 ≤ α ≤ 1, we know exactly which functions are characterised by this
quality of approximation: it is the Lipschitz space Lipα [DeV98]. We recall
here the definition of this space: for 0 ≤ α ≤ 1 and M > 0 a real number, we
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define LipM α the set of all functions u on Ω such that:

|u(x)− u(y)| ≤M |x− y|α

We define Lipα as the union of the sets LipM α for all M ∈ R∗+.
After these considerations on linear approximation we introduce nonlinear ap-
proximation. Let us consider a partition Π of ω by intervals belonging to the
grids Ωl but without the requirement that all intervals are elements of the same
grid. We then denote by V (Π) the set of functions that are piecewise constants
on each intervals from Π. We then define the space Σn to be the union of sets
V (Π) with # Π = n for n a positive integer, where # Π is the cardinality of Π.
Each function in Σn is piecewise constant with at most n different pieces. For
u ∈ Lp(Ω), 0 < p ≤ +∞, we can look for the best approximant of u by func-
tions in Σn, and as with the linear approximation, we define the approximation
of u in the approximation space Σn by:

εn(u)p = inf
F∈Σn

‖u− F‖Lp (1.3)

This is a nonlinear approximation, because the space Σn is nonlinear : it is
not stable under linear combination operations. But what we lose in simplicity
over linear approximation space, is compensated by the flexibility of nonlinear
approximants. Indeed, in the case p = +∞, it turns out that εn(u)+∞ =
O(n−1) if and only if u is of bounded variation [DeV98]. If we take for example
the function u(x) = x

1
2 , it is in Lip 1

2 and in no higher-order Lipschitz space.
If we want to approximate it by functions from the Vl spaces to a precision of
O(10−3), then we need a mesh length for Ωl of order O(10−6) or less, and we
have to divide Ω in at least O(106) pieces. Whereas an approximation from
Σn will require O(103) pieces, because this function is of course of bounded
variation. In the case of nonlinear approximation of this type, we speak of
n-term approximation, because we want to find a good approximation of u by
functions characterised by at most n different real coefficients. This difference
in approximation quality is due to the fact that in nonlinear approximation,
we can design a partition that depends on the target function, which is not
the case in linear approximation. Coming back to our function u defined by
(1.1), we see with figures (1.3-1.6) that the linear approximation from V3 is
sufficient to represent the target function near the boundaries of the domain,
where the function is almost constant, whereas we need an approximation from
V9 to properly represent the function at the center of the domain, where u
presents a particularly sharp singularity. Clearly, we can get a better nonlinear
approximation by taking elements from V9 at the center of the domain, and
combining them with elements from V3 near the boundaries.
From this point, the intuitive idea behind the use of nonlinear approximation for
adaptive mesh refinement techniques is quite straigthforward: we use piecewise



20 Chap. 1 - Space Adaptive Multiresolution for Evolutionary PDEs

Figure 1.7: Hierarchy of embedded grids in 2D

constant functions on coarse intervals where the function is smooth enough, and
we use piecewise constant functions on finer intervals in the region where the
target function is not smooth. We then have to tackle the following questions:

• how can we automatically measure the smoothness of the target function?

• how do we find the most suitable nonlinear approximation depending on
the target function?

• how do we measure (and ultimately control) the approximation error?

In the numerical simulation community, the first strategy proposed was that
of Adaptive Mesh Refinement (AMR) [BO84]. In the following section, we will
give a brief account of this technique.

1.1.2 Adaptive Mesh Refinement Techniques

The first AMR techniques were developed in the eighties, and aimed at im-
proving Computational Fluid Dynamics (CFD) numerical simulations. A lot
of reactive flows real-world applications are characterised by the presence of
highly localized small-scale processes in a smooth larger domain. The goal
was then to place finer meshes into the regions with steep spatial gradients, or
discontinuities, over a coarse grid covering the remaining of the domain. The
general framework for AMR methods was set by Berger & Colella [BC89], by
the use of a hierarchy of embedded grids (see figure (1.7) for an example in two
dimensions.).
Bell et al. [BDS+05] for example showed the high efficiency of this method on
structured meshes, for the resolution of viscous incompressible flows. Let us
sketch here the main components of this adaptive grid technique, in relation
with our initial approximation problem.
We consider a function u over an open bounded domain Ω ∈ Rd with d = 1, 2
or 3. We want to build a nonlinear approximation of u by piecewise constant
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Figure 1.8: Example of cell refinement process illustrating cell-based AMR

functions. We start by dividing Ω into a coarse uniform grid, with logically
rectangular meshes (intervals in 1D, rectangles in 2D and parallelepipeds in
3D). We approach u into each cell by a constant, so as to minimize an error
expressed into a given norm (it could be the mean value of u on each mesh
for example). Then, we use a local error estimation procedure, that we will
detail later, into each cell to determine the quality of the approximation. If we
are not satisfied with the given value, we proceed to a refinement of the ap-
proximation: we divide the cell into equal sized meshes (for example into two
identical intervals in 1D, four identical rectangles in 2D and eight identical par-
allelepipeds in 3D), and we recompute an approximation of u into these newly
created meshes. This cell refinement procedure can be recursively applied to
the finer meshes created, by subdividing them into smaller identical cells with
a fixed ratio, until we reach, hopefully only into a small proportion of Ω, a
maximum user-prescribed level of refinement. The same local error estimation
procedure can be used in the opposite direction to determine whether the level
of spatial resolution can be loosened, in an operation called coarsening : if some
neigboring nodes over-resolve u, we can combine them into a coarser mesh (for
example combine two neighboring intervals in 1d into two times bigger inter-
val), and we approximate u into this new mesh by the average of the combined
meshes approximations. In two dimensions for example, we can end up with
grid shapes as in figure (1.8).

Thus, with the refining and coarsening operations, it is possible to build an
adaptive grid. As we said earlier, AMR techniques are generally used to solve
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PDEs, and they are coupled with spatial discretization schemes to evaluate
spatial derivatives. In a finite volume context for example, these spatial deriva-
tives are approximated by fluxes neighboring cells. Their computation is greatly
simplified if neighboring cells do not differ too much in size: that is why most
AMR implementations follow a 2 : 1 balance criterion [Pop03, BWG11], impos-
ing that the levels of refinement of two neighboring cells differ at most by one
unit.
We now come back to the local error estimation procedure. Generally they
consist of heuristics to determine the local smoothness of the function. One
possibility is to compute a scaled discretized gradient in each cell, and to com-
pare them to a user-prescribed tolerance (see [Dei05]): we refine the mesh if
the scaled gradient is above the tolerance. Another error estimation procedure
can be based upon a Richardson extrapolation performed using the fine and
corresponding coarser local approximation (see , e.g., [Ber82, BO84, BC89]). In
both cases, we see that the local error estimation procedure is quite straight-
forward.
Many AMR softwares have been developed over the past 30 years in order
to perform multi-dimensional simulations of physical phenomena. In gen-
eral, adaptive grids techniques require the use of sophisticated data struc-
tures, and elaborate algortihms to deal with mesh connectivity, in order to
perform efficient calculations. We will only mention here the quadtrees/oc-
trees data structures, that have been recently implemented for this purpose
[Pop03, BWG11, GTG15]. More AMR software libraries can be found in
[Dua11] and references therein. The term octree refers to a recursive tree struc-
ture where each node is either a leaf or has 8 children. This corresponds to three
dimension domains, and the analogous in two dimensions is named a quadtree,
where nodes have four children. They can be associated with 3D and 2D par-
allelepipedic domains. The root node corresponds to a parallelepipedic domain
that is recursively subdivided according to the tree structure. This tree data
structure is well suited to the recursive refinement procedure described above.
The HPC, parallel distributed processing software library p4est [BWG11] is one
of the most efficient implementations of octree data structure for numerical sim-
ulations coupled to AMR capabilities. It was recently used in [Dru17, War19]
to compute low-mach two phase flows, or magnetic reconnection for partially
ionized plasma.

We see clearly now how AMR techniques answer the questions asked at the end
of section (1.1). The smoothness of the target function we want to approxi-
mate is measured by heuristic computations of the local gradient for example,
that we compare to a prescribed tolerance; and the nonlinear approximation
is found by the subsequent use of the refining and coarsening operations, that
allocate finer or coarser meshes whithin the domain depending on the local
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error approximation procedure. But this strategy lacks rigorous foundations:
the local regularity indicators for the target functions are ultimately a simple
heuristic parameters, and we cannot evaluate the performance of the nonlinear
approximation. Also, we cannot determine the quality of the approximation
error, namely between the AMR approximation and a uniform approximation
of the function based on the most refined grid. This is precisely the theoretical
gap that we wish to fill by using adaptive multiresolution strategies, based on
the pioneering work of Harten [Har94a, Har95].
In what follows, the theoretical framework of multiresolution techniques will
be detailed. We will then describe the space adaptive multiresolution scheme
conceived as an adaptive mesh refinement method for time dependent PDEs,
in particular, the family of fully adaptive multiresolution scheme introduced
by Cohen et al. in [CKMP03]. Some reviews on such topics can be found in
[Har94b, CDD04, Pos05].

1.2 Wavelet theory and multiresolution analysis

Wavelet coefficients offer a simple, and effective approach to decompose a tar-
get function into a series of piecewise constant functions. They provide us with
local regularity indicators of the function, that translate into the size and scale
of the coefficients of the decomposition. The n-term approximation problem is
settled then in a rather straigthforward operation: we just have to retain the
n terms in the wavelet series that are largest relative to the error measuring
norm of the approximation. Before introducing the wavelets used in our adap-
tive multiresolution strategy, we think it best to start with an exposition of the
simplest wavelet decomposition, the Haar system.

1.2.1 The Haar system and nonlinear approximation

We come back to the problem introduced at the beginning of this chapter in
section (1.1.1). We look for a good approximation of a real function u over the
open domain Ω = ]0, 1[. We consider again the partition of Ω by the dyadic
grids Ωl. Let ϕ be the characteristic funtion of Ω. Since the dyadic grid are
nested, the linear spaces Vl form a ladder: Vl ⊂ Vl+1 ⊂ Vl+2 ⊂ · · · . Hence
we can define the orthogonal complement Wl of Vl in Vl+1. W0 for example is
spanned by the following function:

H(x) = χ]0, 1
2

[ − χ] 1
2
,1[ =

{
1 if 0 < x < 1

2

−1 if 1
2 < x < 1

(1.4)

H is the Haar function. More generally, the space Wl is spanned by the follow-
ing (normalized) shifted dilates of H:
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ψli(x) = 2l/2H(2lx− i), i = 0, . . . , 2l − 1, (1.5)

The function ψli is a scaled version of H, with the scale 2−l on the interval K l
i .

By definition, Vl+1 = Vl ⊕⊥Wl, so that we can write:

Vl = Wl−1 ⊕⊥ Vl−1 = Wl−1 ⊕⊥Wl−2 ⊕⊥ Vl−2 = · · · , (1.6)

and we see that ϕ ∪
(
ψki
)
k=0,...,l−1,i=0,...,2k−1

is an orthonormal basis of Vl. We
can compare this basis with the more classical orthonormal basis of Vl obtained
by normalizing the functions ϕli:

φji (x) = 2j/2ϕ(2lx− i), i = 0, . . . , 2l − 1, (1.7)

We will consider the special case where u ∈ L2(Ω). If we denote by Pl the
projector in L2 onto the subspace Vl, then we know that Pl u is the best ap-
proximation of u by functions from Vl. We can write:

Plu :=

2l−1∑
i=0

〈f, φli〉φli (1.8)

or alternatively:

Plu = 〈u, ϕ〉ϕ+

l−1∑
k=0

2k−1∑
i=0

〈f, ψki 〉ψki (1.9)

Clearly, ∪Vj = L2(Ω) (for the canonical norm on L2), so that Plu is convergent
in L2(Ω), i.e.

lim
l→+∞

‖u− Plu‖L2 = 0, (1.10)

and we can take the limit in (1.9) to obtain:

u = 〈u, ϕ〉ϕ+
∑
k≥0

2k−1∑
i=0

〈u, ψki 〉ψki (1.11)

Hence ϕ∪
(
ψki
)
k≥0,i=0,...,2k−1

is an orthonormal basis of L2(Ω), called the Haar
basis.
Now let denote by dki := 〈u, ψki 〉 the coefficients of u in the Haar basis. Contrary
to the classical basis, in the Haar basis the information we add by going from
the resolution in Vl to the resolution in Vl+1 is orthogonal, i.e. independent
of the information we have in Vl. And going from Plu to Pl+1u is easier: we
just have to add the detail corresponding to the space Wl, (dli)i=0,...,2l−1. dli
is the wavelet coefficient of u at scale 2−l and position 2−li, Wl is known as a
wavelet space, spanned by the wavelets

(
ψli
)
i=0,...,2k−1

. The details can also be
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interpreted as local regularity indicators for the function u. First, we can apply
the Parseval’s identity to (1.11) to obtain:

‖u‖2L2(Ω) = |〈u, ϕ〉|2 +
∑
k≥0

2k−1∑
i=0

|〈u, ψki 〉|2 (1.12)

which means that the series of terms (dki ) converges absolutely; hence the
wavelet coefficients tend to zero as l tends to infinity. We can estimate the
size of the details with the following heuristic reasoning. Let us assume that u
is C1, then we have:

|dli| = inf
c∈R
|〈f − c, ψli〉| ≤ inf

c∈R
‖f − c‖L2(Kl

i)
≤ 2−l‖u′‖L2(Kl

i)
, (1.13)

by using a formal Taylor series expansion, and noticing that ‖ψli‖L2(Kl
i)

= 1,
and that the Haar wavelets ψli are orthogonal to any constant c ∈ R, i.e.they
have first order vanishing moments:

〈c, ψli〉 = 0. (1.14)

The decay of the wavelet coefficients is directly influenced by the local smooth-
ness of u. Consequently, the coefficients dli get small at fine scales when u|Kl

i

is sufficiently smooth, whereas high gradients involve more significant values.

We can use all this characteristics of the wavelet decomposition to build an
efficient n-term approximation of u. Indeed, we just have to take the n biggest
wavelet coefficients; we see from (1.11) that this approximation offers the best
n-term approximation of u in L2(Ω) by piecewise constants functions. In ad-
dition, because the details are local regularity indicators, we are assured that
coefficients corresponding to the regions where u is less smooth will be auto-
matically captured by this approximation. Finally, we can easily estimate the
error of this approximation by (1.12): it is simply the norm of (the sum of) the
details we discard.

The last advantage of the Haar basis that we want to present here is the fact
that it is easy to compute the wavelet coefficients. There is indeed the following
two-scales relations between the canonical basis and the Haar basis:

φli =
1√
2

(φl+1
2i + φl+1

2i+1), ψli =
1√
2

(φl+1
2i − φ

l+1
2i+1),

φl+1
2i =

1√
2

(φli + ψli), φl+1
2i+1 =

1√
2

(φli − ψli),

 (1.15)
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which leads to a change of basis:

2l+1−1∑
i=0

〈u, φl+1
i 〉φ

l+1
i =

2l−1∑
i=0

〈u, φli〉φli +
2l−1∑
i=0

〈u, ψli〉ψli, (1.16)

or equivalently,
2l+1−1∑
i=0

cl+1
i φl+1

i =
2l−1∑
i=0

cliφ
l
i +

2l−1∑
i=0

dliψ
l
i, (1.17)

where
cli =

1√
2

(cl+1
2i + cl+1

2i+1), dli =
1√
2

(cl+1
2i − c

l+1
2i+1),

cl+1
2i =

1√
2

(cli + dli), cl+1
2i+1 =

1√
2

(cli − dli).

 (1.18)

The representation in term of the fine scales can be retrieved from the coarse
scale averages by adding the detail, lost through the coarse projection. A
recursive change of basis based on these two-scale coefficients (1.18) yields a
telescopic transform known as the fast wavelet transform W.
As a consequence, for a given L > l0, a function uL ∈ VL can be written either
on the standard canonical basis:

uL =

2L−1∑
i=0

cLi φ
L
i , (1.19)

or on a wavelet or multi-scale basis:

uL =

2l0−1∑
i=0

cl0i φ
l0
i +

L−1∑
j=l0

2j−1∑
i=0

djiψ
j
i , (1.20)

The change of representation from (1.19) to (1.20) is performed by the wavelet
decomposition, whereW transforms a linear combination of fine scale box func-
tions with an array of coefficients cL, into a linear combination of coarse scale
box functions with coefficient array c0 and Haar wavelets with array of detail
coefficients dl for each dyadic level j < J :

W : cL → dL := (c0,d0,d1, . . . ,dL−1) . (1.21)

In the same way and based on the same relations (1.18), the inverse transform
W−1 : dL → cL, turns the wavelets coefficients into the single scale L. Due to
the telescopic structure of these computations and because the relations (1.18)
involve only finite coefficients (±1/

√
2) called usually masks, the number of

operations required by both transforms is O(2L).
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With this introduction to the Haar system, we are ready to tackle the modern
version of piecewise constant approximations by multiresolution analysis, that
rely on the smoother biorthogonal wavelets introduced by Daubechies [Dau88,
Dau92], and Cohen et al. [CDF92],

1.2.2 Biorthogonal Wavelets

We will introduce the concepts of biorthogonal wavelets in one dimension, for
the Hilbert space L2(R). We begin our discussion by constructing a multires-
olution analysis of this space. Multiresolution is related to spaces invariant
under shift dilation operations. If f is a function defined on R and j ∈ Z is an
integer, then f(· − j) is the shift of f by j. And for a > 0 a real number, f(a·)
is the dilate of f by a. Let ϕ be a compactly supported function in L2(R). We
define V0 as the closure in L2(R) of the set of all finite linear combinations of
the shifts of ϕ. We say that V0 is the principal shift invariant (PSI) space gen-
erated by ϕ. Now for k ≥ 0 an integer, we define the space Vk := Vk(ϕ) as the
dilate of V0 by 2k. A function g is in Vk if and only if g = f(2k·) with f ∈ V0.
Then the space Vk is invariant under the shifts j2−k, j ∈ Z. In other words, the
spaces Vk are scaled versions of V0. We require that the spaces Vk satisfy the
ladder property, that is for k ≥ 0 an integer, we have: Vk ⊂ Vk+1 ⊂ Vk+2 ⊂ · · · .
This is equivalent to requiring that V0 ⊂ V1, i.e.ϕ ∈ V1. We also assume that
the shifts ϕ(·− j), j ∈ Z are a Riesz basis for V0, that is the shifts ϕ(·− j) span
V0 (that is the case by definition of V0) and for all (ck)k∈Z ∈ `2(Z), there exist
positive constants, 0 < c < C <∞, such that

c‖ck‖2`2 ≤

∥∥∥∥∥∑
k∈Z

ckϕ(· − k)

∥∥∥∥∥
2

L2

≤ C‖ck‖2`2 , (1.22)

and hence there is a unique representation of fj ∈ Vj in this basis: fj =∑
k∈Z xkφ(· − k). Finally, we ask that the union of the Vk spaces is dense

in L2(R), ∪Vk = L2(R). Then (Vk)k∈N is a multiresolution analysis of L2

[Dau88, Dau92, Mal89]. The Haar system introduced in section (1.2.1) gives
us an example of a multiresolution analysis built with this specific design. The
function ϕ is called the scaling function in multiresolution theory.

Now we introduce the dual scaling function of ϕ, ϕ̃, and we assume that we are
also able to build a multiresolution analysis of L2 with this function, as in the
preceding paragraph. Duality means here that we have:

〈ϕ(· − j), ϕ̃(· − k)〉 = δjk, (j, k) ∈ Z2. (1.23)

with δjk the Kronecker symbol. ϕ̃ is also assumed to be a compactly supported
function in L2(R). Because we assume that spaces Vk and Ṽk possess the ladder
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property, ϕ and ϕ̃ are refinable, and we can write them in the following way:

ϕ(x) =
∑
k∈Z

akϕ(2x− k), ϕ̃(x) =
∑
k∈Z

ãkϕ̃(2x− k), (1.24)

with finitely supported masks (ak)k∈Z, (ãk)k∈Z, because the scaling functions
are compactly supported in L2. With this dual pair of scaling functions, we
can define a non-orthogonal projection

Pf :=
∑
k∈Z
〈f, ϕ̃(· − k)〉ϕ(· − k) (1.25)

onto V0. By using dilate operations, we obtain the corresponding projectors Pk
that map L2 onto Vk, k ∈ N. If we denote by Q := P1 − P0 the projector onto
a subspace W of V1, then W is called a wavelet space. As seen above with the
Haar system, the functions in W represent the details we have to add to the
resolution in V0 to obtain the finer resolution in V1. A fundamental result of
wavelet theory is that W is also a PSI space generated by the function:

ψ(x) =
∑
k∈Z

bkϕ̃(2x− k) (1.26)

with bk = (−1)kã1−k. The shifts ψ(· − j), j ∈ Z, are also a Riesz basis for W ,
and their dual wavelets take the form ψ̃(· − j), where ψ̃ is obtained from ϕ via
the formula:

ψ̃(x) =
∑
k∈Z

b̃kϕ(2x− k) (1.27)

with b̃k = (−1)ka1−k. We then have:

Qf :=
∑
k∈Z
〈f, ψ̃(· − k)〉ψ(· − k) (1.28)

By dilation, we obtain the spaces Wj , the projectors Qj and the representation

Qjf :=
∑
k∈Z

2j〈f, ψ̃(· − k)〉ψ(· − k) (1.29)

Since ∪Vk = L2(R), Pkf → f as k → +∞, we have:

f =
∑
k≥0

(
Pk+1f − Pkf

)
=
∑
k≥0

∑
j∈Z

2k〈f, ψ̃(2k · −j)〉ψ(2k · −j) (1.30)

(1.30) is called the biorthogonal wavelet decomposition of the function f ∈ L2(R)
[Dau92, DeV98]. The pairs (ϕ,ψ) and (ϕ̃, ψ̃) are usually called the primal scal-
ing function and wavelet, and the dual scaling function and wavelet, respec-
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tively.

One of the main advantages of biorhorgonal wavelets is that they have better
approximation properties than the Haar wavelet (1.4). To show this, we will
first normalize our biorthogonal wavelet bases, by defining:

ϕjk = 2j/2ϕ(2j · −k), k ∈ Z, (1.31)

ϕ̃jk = 2j/2ϕ̃(2j · −k), k ∈ Z, (1.32)

ψjk = 2j/2ψ(2j · −k), k ∈ Z, (1.33)

ψ̃jk = 2j/2ψ̃(2j · −k), k ∈ Z, (1.34)

Then we can re-write the decomposition (1.30) as:

f =
∑
k∈Z
〈f, ϕ̃0

k〉ϕ0
k +

∑
j∈N

∑
k∈Z
〈f, ψ̃jk〉ψ

j
k, (1.35)

akin to the Haar decomposition (1.11). The wavelets can be designed to have
specific regularity properties; they can be spline functions for example, with an
explicit analytical expression given by piecewise polynomials [Dua11], so that
they have bounded derivatives over their support domain. In addition, they can
be chosen to have vanishing moments properties (as in (1.14)). We say that
the wavelet ψjk has N vanishing polynomials moments if, for any polynomial
P ∈ PN−1 we have:

〈P,ψjk〉Σj,k = 0, (1.36)

where Σj,k := suppψjk. And consequently we obtain approximations of order
N [CDD04],

|〈f, ψjk〉| = inf
P∈PN−1

|〈f − P,ψjk〉|

≤ inf
P∈PN−1

‖f − P‖L2(Σj,k)‖ψ
j
k‖L2(Σj,k)

≤ C2−jN |f |WN
2 (Σj,k), (1.37)

using Cauchy-Schwarz’s inequality, the fact that

‖ψjk‖L2(Σj,k) = 1 (1.38)
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and based on a standard estimate on local polynomial approximation (see, e.g., [DS84]):

inf
P∈Pn

‖f − P‖L2(Ω) ≤ C(diam Ω)n|f |Wn
2 (Ω). (1.39)

The semi-norm associated with the Sobolev space Wn
2 (Ω):

Wn
2 (Ω) :=

{
f ∂αf ∈ L2(Ω), |α| ≤ n

}
, (1.40)

is given by |f |Wn
2 (Ω) :=

(∑
|α|=n‖∂αf‖2L2(Ω)

)1/2
. We also assume that the

measure of Σj,k is O(2−j). Hence the details decrease as j → +∞, and their
size is an indicator of the local regularity of the function f . If the supports
Σ̃j,k of the dual wavelets do not overlap too much [CKMP03], then we can
apply the nonlinear approximation strategy developed for the orthogonal Haar
system to the decomposition (1.35): the different wavelet components of f give
independent information of f , and they decay exponentially, and in faster way
in regions where f is smoother. Taking the n largest coefficients in (1.35) gives
us a best n-term approximation of f . What is more, by the Riesz property of
the wavelets, it can be shown that:

c
∞∑

j=−1

∑
k∈Z
‖〈f, ψ̃jk〉‖

2 ≤ ‖f‖2L2 ≤ C
∞∑

j=−1

∑
k∈Z
‖〈f, ψ̃jk〉‖

2 (1.41)

where ψ−1
k := ϕ0

k and ψ̃−1
k := ϕ̃0

k. We still have a tight relation between the
norm of f and the size of the wavelet coefficients, so that we are still able to
control the approximation error.
Let us now introduce the adaptive multiresolution strategy.

1.3 Adaptive Multiresolution Strategy

We come back to the approximation of u by piecewise constant functions on
Ω. For j = 0, 1, . . . , J , from the coarsest to the finest grid, we build regular
disjoint partitions (cells) (Ωγ)γ∈Sj of an open subset Ω ⊂ Rd, such that each
Ωγ , γ ∈ Sj , is the union of a finite number of cells Ωµ, µ ∈ Sj+1, and thus Sj
and Sj+1 are consecutive embedded grids. The index j refers thus to the scale
level and we denote

|γ| := j if γ ∈ Sj , (1.42)

with the abbreviated notation Ωγ := Ωj,k, where k ∈ Zd. For instance, we can
consider the univariate dyadic intervals in 1D, d = 1:

Ωγ = Ωj,k := [2−jk, 2−j(k + 1)], γ ∈ Sj := { (j, k) | j ∈ N0, k ∈ Z }. (1.43)

The same follows for higher dimensions.
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1.3.1 Multiresolution Analysis

We denote Uj := (uγ)γ∈Sj as the spatial representation of u on the grid Sj ,
where uγ represents the cell-average of u : Rd → R in Ωγ :

uγ := |Ωγ |−1

∫
Ωγ

u(x) dx, x ∈ Rd. (1.44)

Data at different levels of discretization are related by two inter-level transfor-
mations which are defined as follows:

1. The projection operator P jj−1, which maps Uj to Uj−1. It is obtained
through exact averages computed at the finer level by

uγ = |Ωγ |−1
∑

|µ|=|γ|+1
Ωµ⊂Ωγ

|Ωµ|uµ. (1.45)

since the grids are nested, this projection operator is exact and unique
[Pos05].

2. The prediction operator P j−1
j , which maps Uj−1 to an approximation Ûj

of Uj . We want it to satisfy at least two basic constraints [CKMP03]:

(a) The prediction is local, i.e.ûµ depends on the values uγ on a finite
stencil Rµ surrounding Ωµ, where |µ| = |γ|+ 1.

(b) The prediction is consistent with the projection in the sense that

P jj−1 ◦ P
j−1
j = Id. (1.46)

i.e., one can retrieve the coarse cell averages from the predicted
values:

uγ = |Ωγ |−1
∑

|µ|=|γ|+1
Ωµ⊂Ωγ

|Ωµ|ûµ; (1.47)

In particular, this property implies that the stencil Rµ must contain
the unique index γ such that |µ| = |γ|+ 1 and Ωµ ⊂ Ωγ .

With these operators, we define for each cell Ωµ the prediction error or detail
as the difference between the exact and predicted values:

dµ := uµ − ûµ, (1.48)

or in terms of inter-level operations:

dµ = uµ − P |µ|−1
|µ| ◦ P |µ||µ|−1uµ. (1.49)
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The consistency assumption (1.47) and the definitions of the projection operator
(1.45) and of the detail (1.48), imply∑

|µ|=|γ|+1
Ωµ⊂Ωγ

|Ωµ|dµ = 0. (1.50)

We can then construct as shown in [CKMP03], a detail vector defined as Dj =
(dµ)µ∈∇j , where the set ∇j ⊂ Sj is obtained by removing for each γ ∈ Sj−1,
one µ ∈ Sj such that Ωµ ⊂ Ωγ , in order to avoid redundancy from expressions
(1.48) and (1.47), and to get a one-to-one correspondence:

Uj ←→ (Uj−1,Dj), (1.51)

issued by operators P jj−1 and P j−1
j . For instance, in the univariate dyadic case

(1.43) the detail vector is given by Dj = (dj,k)k∈Z with dj,k = uj,k − ûj,k. By
iteration of this decomposition, we finally obtain a multi-scale representation
of UJ in terms of MJ = (U0,D1,D2, . . . ,DJ):

M : UJ 7−→MJ , (1.52)

and similarly, its inverseM−1.

1.3.2 Wavelet Representation

We will restrict to the case where P j−1
j is linear, because we then have

ûµ :=
∑
γ

cµ,γuγ , (1.53)

which means thatM andM−1 are changes of basis. Based on the theoretical
studies exposed in section 1.2, we can then identify a wavelet representation
[CKMP03] by defining for Uj the dual scaling wavelet ϕ̃γ in (5.1):

uγ := 〈u, ϕ̃γ〉, (1.54)

such that
ϕ̃γ := |Ωγ |−1χΩγ , (1.55)

and where according to (1.53)

dµ := uµ − ûµ = 〈u, ϕ̃µ〉 −
∑
γ

cµ,γ〈u, ϕ̃γ〉 = 〈u, ψ̃µ〉, (1.56)
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defines the dual wavelet ψ̃µ:

ψ̃µ := ϕ̃µ −
∑
γ

cµ,γϕ̃γ . (1.57)

The multiresolution representation MJ can be then written as

MJ = (dλ)λ∈∇J = (〈u, ψ̃λ〉)λ∈∇J , (1.58)

which corresponds exactly to dJ in the definition of the wavelet transform
(1.21), where we have defined ∇J :=

⋃J
j=0∇j with ∇0 := S0, and where

dλ = uλ and ψ̃λ = ϕ̃λ if λ ∈ ∇0. With this representation, the multiresolution
representation will be of order N if for all u ∈ PN−1 and for all λ ∈ ∇J , we
have

〈u, ψ̃λ〉 = dλ = 0, (1.59)

that is, if the wavelet ψ̃λ has N vanishing moments.
Next we build a prediction operator such that the associated dual wavelet is of
order N . A standard procedure defines P j−1

j based on polynomial interpola-
tions of order N . For instance, for the univariate dyadic case (1.43), considering
a centered stencil (uj,k−M , . . . , uj,k+M ) and the unique polynomial of degree 2M
such that

2j
∫

Ωj,l

pj,k(x) dx = uj,l, l = k −M, . . . , k +M, (1.60)

we can define the prediction approximation taking into account the consistency
property (1.47) [CKMP03]:

ûj+1,2k = 2j+1

∫
Ωj+1,2k

pj,k(x) dx, ûj+1,2k+1 = 2j+1

∫
Ωj+1,2k+1

pj,k(x) dx.

(1.61)
This procedure is exact for polynomials of degree 2M , i.e. it has accuracy order
N = 2M + 1.
For a 1D configuration, we can define an interpolation stencil Rj,k1 (1.62):

Rj,k = { (j − 1, bk/2c+ l) |l| ≤M } , (1.62)

to approximate the values at grid level j + 1: ûj+1,2k and ûj+1,2k+1, contains
the parent-cell uj,k and its nearest M neighbors. The centered polynomial
interpolations of accuracy order N = 2M + 1 might be written for the 1D case

1Symbol b c denotes the floor function, which maps a real number to the largest integer
smaller than or equal to the given real number.
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as 
ûj+1,2k1 = uj,k1 +

M∑
d1=1

ξd1 (uj,k1+d1 − uj,k1−d1) ,

ûj+1,2k1+1 = uj,k1 −
M∑
d1=1

ξd1 (uj,k1+d1 − uj,k1−d1) ,

(1.63)

where k = k1 ∈ Z, and the coefficients ξd1 are given in Table 1.1 up to M = 4.
The case N = 3 is given by (1.64):

ûj+1,2k = uj,k +
1

8
(uj,k−1 − uj,k+1), ûj+1,2k+1 = uj,k +

1

8
(uj,k+1 − uj,k−1).

(1.64)

N M ξ1 ξ2 ξ3 ξ4

1 0 0 0 0 0
3 1 −1/8 0 0 0
5 2 −22/128 3/128 0 0
7 3 −201/1024 11/256 −5/1024 0
9 4 −3461/16384 949/16384 −185/16384 35/32768

Table 1.1: Prediction operator. Coefficients for polynomial interpolations of order
N = 2M + 1 [Har94a].

The case N = 1, M = 0 corresponds to the Haar wavelets introduced in section
1.2.1.
Extensions to multi-dimensional interpolations is straightforward based on the
1D configuration (1.63). Defining the expression QM as

QM (k1, uj,k) =

M∑
d1=1

ξd1 (uj,k1+d1 − uj,k1−d1) , (1.65)

the 2D polynomial interpolation, proposed by Bihari & Harten [BH96], reads

ûj+1,(2k1+p,2k2+q) = uj,(k1,k2) + (−1)pQM (k1, uj,(·,k2)) + (−1)qQM (k2, uj,(k1,·))

− (−1)(p+q)QM2 (k1, k2, uj,(k1,k2)), (1.66)

The integers p and q are equal to either 0 or 1 depending on the child-cell
considered, and QM (1.65) is used in both dimensions. The operator QM2 ,
derived from a tensor product is given by
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QM2 (k1, k2, uj,(k1,k2)) =
M∑
d1=1

ξd1

M∑
d2=1

ξd2(uj,k1+d1,k2+d2 − uj,k1−d1,k2+d2

− uj,k1+d1,k2−d2 + uj,k1−d1,k2−d2). (1.67)

In the same way, 3D interpolations are defined by introducing the operator QM3 :

QM3 (k1, k2, k3, uj,(k1,k2,k3)) =
M∑
d1=1

ξd1

M∑
d2=1

ξd2

M∑
d3=1

ξd3(uj,k1+d1,k2+d2,k3+d3

− uj,k1−d1,k2+d2,k3+d3 − uj,k1+d1,k2−d2,k3+d3

− uj,k1+d1,k2+d2,k3−d3 + uj,k1−d1,k2−d2,k3+d3

+ uj,k1−d1,k2+d2,k3−d3 + uj,k1+d1,k2−d2,k3−d3

− uj,k1−d1,k2−d2,k3−d3). (1.68)

Hence,

ûj+1,(2k1+p,2k2+q,2k3+r) = uj,(k1,k2,k3) + (−1)pQM (k1, uj,(·,k2,k3)) + (−1)qQM (k2, uj,(k1,·,k3))

+ (−1)rQM (k3, uj,(k1,k2,·))

− (−1)(p+q)QM2 (k1, k2, uj,(·,·,k3))

− (−1)(p+r)QM2 (k1, k3, uj,(·,k2,·))

− (−1)(q+r)QM2 (k2, k3, uj,(k1,·,·))

+ (−1)(p+q+r)QM3 (k1, k2, k3, uj,(k1,k2,k3)), (1.69)

As before, p, q, and r are equal to either 0 or 1.

1.3.3 Data Compression and Tree-Structured Data

One of the main interests of carrying out such a multi-scale decomposition is
that this new representation (1.58), defines a whole set of regularity estimates
all over the spatial domain, and thus a data compression might be achieved.
Given a set of index Λ ⊂ ∇J , we define a truncation operator TΛ, that leaves
unchanged the component dλ if λ ∈ Λ, and replaces it by 0, otherwise. In
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practice, we are interested in sets Λ obtained by thresholding:

λ ∈ Λ if |dλ| ≥ ε|λ|, (1.70)

with the level-dependent threshold values (ε0, ε1, . . . , εJ). Data compression is
then achieved by discarding the cells whose details are not into Λ according to
(1.70). Applying TΛ on the multi-scale decomposition MJ of UJ amounts to
building an approximation AΛUJ , where the operator AΛ is given by

AΛ :=M−1TΛM. (1.71)

Taking into account that

u =
∑
j∈N0

∑
|λ|=j

〈u, ψ̃λ〉ψλ, (1.72)

it can be seen that for a given J , the array ΨJ,λ with |λ| ≤ J , corresponds to
the cell averages of the primal wavelet ψλ at level J , i.e.ΨJ,λ = (〈ψλ, φ̃γ〉)γ∈SJ .
We can thus define the normalized norm `1 by

‖UJ‖ := 2−dJ
∑
λ∈SJ

|uλ|, (1.73)

which corresponds to the L1-norm of a piecewise constant function. For ΨJ,λ,
this yields

‖ΨJ,λ‖ ≤ C‖ψλ‖L1 ≤ C2−d|λ|. (1.74)

And for the thresholded representation of UJ after applying AΛ [CKMP03]:

‖UJ −AΛUJ‖ =

∥∥∥∥∥∥
∑
λ 6=Λ

dλΨJ,λ

∥∥∥∥∥∥ ≤ C
∑
λ 6=Λ

|dλ|2−d|λ| = C
∑

|dλ|≤ε|λ|

|dλ|2−d|λ|,

(1.75)
where we see that the approximation error is bounded by the sum of the dis-
carded details. Taking into account that |dλ|2−d|λ| ≤ ε|λ|2−d|λ|, and considering
a level-wise threshold parameter:

εj := 2djη, (1.76)

the next bound follows2

‖UJ −AΛUJ‖ ≤ C #(∇J)η = C #(SJ)η ≤ C2dJη, (1.77)

with the cautious assumption that all the dλ such that λ /∈ Λ, are equal to
2#( ) denotes the cardinality of a set.
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ε|λ|, although many of them might be much smaller. The latter estimate (1.77)
justifies the choice η = 2−dJε in order to have

‖UJ −AΛUJ‖ ≤ Cε, (1.78)

with the level-dependent threshold values proposed by Harten [Har94a, Har95]:

εj = 2d(j−J)ε, j ∈ [0, J ], (1.79)

where ε becomes the threshold value for the finest level J .
However, we do not delete all useless details at this point because we want to
preserve the ability to perform the computations of the prediction operator.
The set Λ must conserve a graded tree structure in order to guarantee the
availability of cell values within the local prediction stencil (1.62, 1.63). In
order to define such a structure, we first introduce the following terminology:

• If Ωµ ⊂ Ωλ with |µ| = |λ|+ 1, we say that Ωµ is a child of Ωγ , and that
Ωγ is the parent of Ωµ.

• By the definition of ∇j , if Ωλ has N(Ωλ) children, N(Ωλ)−1 of them are
in ∇ :=

⋃
j≥0∇j . We call these cells the detail children of Ωλ.

• Moreover, we define the leaves L(Λ) of a tree Λ as the set of Ωλ with
λ ∈ L(Λ) such that Ωλ has no children in Λ.

• Finally, we define Ωλ as a root when it belongs to the coarsest grid, that
is, λ ∈ S0 or |λ| = 0, in which case, we denote λ as λ0.

A set of indices Λ ∈ ∇ is a tree if the following holds [CKMP03]:

• The fundamental level ∇0 = S0 is contained in Λ.

• If Ωµ and Ωυ are detail children of the same Ωλ, then µ ∈ Λ if υ ∈ Λ.

• If Ωλ is such that its detail children are in Λ, then the parent of Ωλ has
the same property.

For the 1D dyadic configuration (1.43), Λ is a tree if ∇0 ∈ Λ and

(j, k) ∈ Λ⇒ (j − 1, bk/2c) ∈ Λ. (1.80)

The set R(Λ) contains the tree Λ plus the missing cells Ωλ in the construction
of ∇j . A tree Λ is thus graded if for all µ ∈ R(Λ), the prediction stencil Rµ is
contained in R(Λ). Coming back to the dyadic example, Λ is a graded tree if

(j, k) ∈ R(Λ)⇒ (j − 1, bk/2 + lc) ∈ R(Λ), |l| ≤M. (1.81)
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Figure 1.9: Best piecewise constant approximation in the L2-norm of u(x) =
tanh

(
50 ·

∣∣x− 1
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∣∣) in V10. Blue line: exact function; red line: approximate function

Defining Λε as the smallest graded tree containing Λ given by (1.70), we intro-
duce the corresponding tree approximation operator Aε := AΛε =M−1TΛεM,
following (1.71). Since Λ ⊂ Λε, it follows directly that

‖UJ −AεUJ‖ ≤ Cε. (1.82)

1.3.4 Numerical example

We end this chapter with a numerical example of the adaptive multiresolution
strategy applied to the function u (1.1) introduced at the beginning of section
(1.1.1). We will detail in Chapter 5 the algorithms and the main issues con-
cerning the practical implementation of the multiresolution schemes we just
described. Here, we will just give the parameters we used for the nonlinear
approximation of function (1.1) by multiresolution.
We chose as the maximum grid level the value J = 10, meaning that we have
1024 meshes on the finest grid. The (best) linear approximation in V10 can be
seen in figure (1.9).
We use the predictor with N = 3 vanishing moments (1.64), and the thresh-
olding parameter is set at ε = 10−5. We can see in figure (1.10) the results of
this procedure.
We obtain exactly what we expected; an approximation of u on a grid adapted
to its smoothness, with the finest meshes at the center of the domain, and
much coarser meshes near the boundaries. And qualitatively, we see that this
approximation is a very good representation of the function. The reduction in
the number of meshes used can be measured with the compression rate τ . We
define it as:
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Figure 1.10: Piecewise constant approximation in the L2-norm of u(x) =
tanh

(
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∣∣) obtained by adaptive multiresolution, with J = 10 and ε = 10−5.
Blue line: exact function; red line: approximate function

τ = 1− #(L(Λ))

2J
(1.83)

In this case we obtain the impressive value: τ = 80.27%, showcasing the high
efficiency of the multiresolution strategy to effectively build adaptive grids.





Chapter 2

A new collocated finite-volume
scheme for the incompressible
Navier Stokes equations on
adaptive multriesolution grids

In the previous chapter we have considered the specific implementation of the
adaptive multiresolution technique that we wish to apply to incompressible
flows. We are now concerned with the spatial discretization of the incom-
pressible Navier-Stokes equations on the particular set of non-uniform meshes
generated by the use of this adaptive strategy. The elliptic nature of this set of
equations makes it more difficult to provide accurate finite volume methods for
their resolution, and we will start this chapter with a small overview of some
finite volume schemes devised in recent years to solve incompressible flows on
general non-matching grids, with a focus on methods coupled to AMR. In the
second part of this chapter, we describe our new collocated scheme.

2.1 Overview of finite volume schemes

The incompressible fluid flow considered is fully described by two variables, the
velocity vector u = (ui(x, y, z, t))i=1,...,d and the pressure field p(x, y, z, t). The
time variable t varies between 0 and T . The flow momentum and mass balance
equations read:

∂u

∂t
+∇ · (ut ⊗ u) +∇p− ν∆u = f in Ω× ]0, T [

∇ · u = 0 in Ω× ]0, T [
(2.1)

with a homogeneous Dirichlet boundary condition for u and the initial condi-
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tion:
u( · , 0) = uini in Ω

where ν is the cinematic viscosity of the fluid and f is a source term. We make
the following assumptions:

1. T is the finite duration of the flow,

2. ν ∈ ]0,+∞[,

3. uini ∈ L2(Ω)d

4. f ∈ L2(Ω× ]0, T [)d.

It follows from the implicit nature of the pressure variable p in (2.1) and the
algebraic constraint stating that the velocity must be divergence-free that the
velocity lies in the kernel of the continuous divergence, and that the pressure
lies in the orthogonal of the gradient operator which happens to be the image
of the divergence operator [GS00]. Their discrete counterparts should follow
these properties and lie in the kernel of the discrete divergence operator for
the velocity, and the orthogonal of the kernel of the discrete gradient for the
pressure. But it can occur that, depending on the spatial discretization, the
discrete gradient operator has more kernel modes than present in the continu-
ous case, thus producing spurious pressure modes that pollute the approximate
solution one wishes to obtain [GS00, RC83, SLI10].
The classical approach to avoid this problem is to discretize the equation on
staggered grids [HW65]. This strategy has become the standard finite volume
scheme for incompressible flows, and has served as the basis of many engineer-
ing applications thanks to its simplicity and efficiency [Pat80, KM85]. What
is more, the strong mathematical properties of this scheme allowed conver-
gence proofs for the Stokes [Nic92, CEGH14, CK98] and Navier-Stokes [NW96,
CEGH14, GHLM16] equations, on rectangular Cartesian grids. Nonetheless,
the extension of this scheme to complex geometries is not obvious at all [ZSK94].
Various solutions have been proposed to apply this MAC scheme in the context
of grid adaptation with AMR techniques [ABC+98, PHB+98, Pop03, GTG15,
HB97, MC00, MG06]. In [ABC+98] Almgren et al. devised a method to solve
the time-dependent, variable density incompressible Navier-Stokes equations
on a hierarchy of grids. Their spatial discretization was based on a single-
grid (meaning a uniform Cartesian grid) scheme (first designed by Almgren,
Bell and Szymczak [ABS96]), where the velocity variables were cell-centered;
at each timestep, they first extrapolate face-centered velocities from the cell-
centered ones, that they make divergence-free with an exact projection method
using MAC-like spatial derivatives. They use these face-centered velocities to
compute advective terms, and then compute the new cell-centered velocities
with an approximate projection method, where the discrete Laplacian opera-
tors for the pressure Poisson equation is an approximate one, easier to invert
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than the real discrete divergence-gradient operator. Since the computational
domain is composed of patches of grids with different refinement levels, they
can apply the uniform-grid scheme on each one of these grids, and then use a
special treament to deal with the coarse-fine boundaries. Martin [MC00] later
used a similar strategy to solve incompressible flows with a hierarchical struc-
tured grid AMR approach [BO84].
Later, Popinet [Pop03] developed an incompressible Euler equations solver cou-
pled with a quad/octree implementation of AMR. The main difference with
the aforementioned AMR schemes being that instead of using a single-grid ap-
proach, he made spatial derivatives suited to deal locally with coarse-fine inter-
faces. These two approaches both suffer from at least the two following issues:
(i) the discrete velocity field is not divergence-free (even though in their schemes
the face-centered discrete velocity fields used for advection are divergence-free)
and this is a cause of kinetic energy conservation error [MLVM98], and (ii) the
treatment of coarse-fine interfaces is rather complex. Finally, in [GTG15] Gui-
ttet et al. also solved the incompressible Navier-Stokes equations on adaptive
non-graded quad/octrees, with a MAC layout of the velocity and pressure field.
Here, special interpolations are needed after every refining/coarsening opera-
tions, to preserve the MAC layout of the data, introducing additional spatial
errors.

In our case, the multiresolution algorithms require inter-level operations be-
tween hierarchically embedded grids and result in non-uniform adaptive grids,
as seen in Chapter 1, and we wish to avoid the computational overhead neces-
sary to maintain different staggered grids throughout the whole computation.
Thus we discretize (2.1) on collocated grids and we need to deal with the spu-
rious modes.
The main strategies derived over the years to suppress spurious pressure modes
on collocated grids have resorted to the addition of a dissipative term to the
original set of equations ([RC83]). The method designed by Rhie and Chow
[RC83] for example modifies the discrete Laplacian of the pressure Poisson
equation obtained in a typical prediction-projection scheme to solve (2.1). In
[FL06], Felten and Lund showed that with this correction, the cell-center dis-
crete velocities are not strictly solenoidal, and hence cause a kinetic energy
conservation error in the inviscid limit. We wish to avoid this uncontrollable
accuracy loss.
In light of these observations, Shashank et al.[SLI10] came up with a subtle
solution: they discretize (2.1) in a uniform Cartesian grid with the standard
second-order accurate central difference finite volume approximation, and then
build the discrete Laplacian operator of the pressure Poisson equation. They
identify the spurious pressure modes, and filter the polluted pressure field. This
solution conserves the discrete mass, momentum and kinetic energy in the in-
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viscid limit [SLI10]. We will follow these guidelines when dealing with the
spurious modes in our collocated scheme.

All the finite volume schemes presented above share the same design principle
based on the classical interpretation of (2.1): (i) they first divide the compu-
tational domain Ω in finite number of control volumes; then (ii) they integrate
the momentum and balance equations of (2.1) over each control volume, and
turn these volume integrals into surface integrals over the boundary of the
control volume thanks to the divergence theorem; finally (iii) the continuous
variables u and p are approximated by constants in the control volume, the
fluxes integrals are approximated by interpolations of the constant values in
each control volume, or by a finite difference approach through the use of Tay-
lor expansions. This viewpoint presents several advantages, one of the most
important being the fact that it is fairly easy to understand and implement for
CFD practitioners. But it comes in our opinion with two major drawbacks:

1. Since it is based on the classical interpretation of the PDE at hands,
it implicitly make assumptions on the initial data, or the regularity of
the solutions; for example the presence of the Laplace operator in (2.1)
implies that the velocity possesses second-order spatial derivatives, when
we know [Tem77] that a broad range of velocity solutions of (2.1) do not
possess such smoothness

2. The use of finite difference restricts its application to simple geometries
or mesh shapes

This situation led some researchers to develop new guideline principles for the
design of finite volume schemes [CET06, CEH09, EGH10, EGH00, CEGH14].
These new methods rely on the variational formulation of (2.1).
Various aspects of this philosophy were presented in [EGH00], where the authors
successfully applied it to discretize elliptic, hyperbolic and parabolic problems
in one, two or three dimensions, proving convergence of the approximate solu-
tions to the continuous PDE when the characteristic size of the mesh tends to
zero. In [CET06, CEH09], colocated finite volume schemes were designed to
solve the incompressible Navier-Stokes equations on general 2D or 3D conform-
ing polygonal meshes, meaning that the computational domain Ω is discretized
into general polygonal convex control volumes, with the only requirement that
the straight line joining the centers of two adjacent control volumes is perpen-
dicular to their common edge. Then in [CEH09], the preceding scheme was
expanded to deal with general non-conforming grids, which is a feature shared
by the adaptive grids produced by the multiresolution strategy introduced in
Chapter 1.
We followed the design principles of [CEH09] to build a colocated finite volume
scheme adapted to our grids, where we made sure that the spurious pressure
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modes do not affect the computation of the velocity field; if needed, we filter
the non-physical kernel modes in the pressure, but only once, at the end of the
computation [GS00, SLI10]. The following section is devoted to the presenta-
tion of this finite volume method.

2.2 A new spatial discretization

We consider a rectangular (resp. rectangular parallelepiped) domain Ω =
]0, bx[× ]0, by[ in 2D (resp. Ω = ]0, bx[× ]0, by[× ]0, bz[ in 3D, with (bx, by, bz) ∈
R∗+). We denote ∂Ω = Ω\Ω its boundary. We will treat the case where the
meshes K l

γ of the multiresolution strategy also have a rectangular shape. Hence
we define, for l ∈ N∗, the uniform discretization of Ω as follows:

Ωl = { ]2−lbxi, 2
−lbx(i+ 1)[× ]2−lbyj, 2

−lby(j + 1)[ | i, j ∈ {0, 1, . . . , 2l − 1} }
K l
i,j = ]2−li, 2−l(i+ 1)[× ]2−lj, 2−l(j + 1)[

in 2D, and:

Ωl = { ]2−lbxi, 2
−lbx(i+ 1)[× ]2−lbyj, 2

−lby(j + 1)[× ]2−lbzk, 2
−lbz(k + 1)[

| i, j, k ∈ {0, 1, . . . , 2l − 1}}
K l
i,j,k = ]2−li, 2−l(i+ 1)[× ]2−lj, 2−l(j + 1)[× ]2−lbzk, 2

−lbz(k + 1)[

in 3D, where the K l
γ are identical meshes of Ωl, the uniform discretization of

Ω at level l. We then define a space discretization of Ω:

Definition 2.2.1 (Space discretization). A discretization D of Ω is defined as
the triplet D = (M, E ,P), where:

1. M is a finite family of nonempty connected open disjoint subsets of Ω such
that Ω =

⊔
K∈M

K. There exists L ∈ N∗ such that every mesh K ∈ M

belongs to a uniform discretization Ωl, with l ≤ L. Thus every mesh
K ∈M has the form K l

γ defined above, and we denote by lK its level. For
any K ∈ M, we denote by ∂K its boundary, m(K) its measure and hK
its diameter. We define the size hD of D as: hD = max{hK | K ∈M}

2. E is a finite family of disjoint subsets of Ω such that, for all σ ∈ E, σ
is a nonempty open subset of a hyperplane of Rd. We assume that for
all K ∈ M, there exists a subset EK of E such that ∂K =

⋃
σ∈EK

σ. For

any σ ∈ E, we denote by Mσ = {K ∈ M, σ ∈ EK}. We assume that
for all σ ∈ E, either Mσ has exactly one element and then σ ⊂ ∂Ω (the
set of these interfaces, called boundary interfaces, is denoted by Eext) or
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Mσ has exactly two elements (the set of these interfaces, called interior
interfaces, is denoted by Eint). In this latter case, if K and L are the
meshes in Mσ, σ is further specified as σK|L. For all σ ∈ E, we denote
by m(σ) its (Lebesgue) measure. For all K ∈ M and σ ∈ EK , we denote
by nK,σ the unit vector normal to σ outward to K

3. P is the set of xK points, where for all K ∈ M, xK is the center of K.
We denote by dK,σ the Euclidian distance between xK and σ, for σ ∈ EK ,
and DK,σ the cone with vertex xK and basis σ

4. For all K ∈ M, we denote by NK its set of neighbours, i.e. the cells
L ∈ M such that the intersection of EK and EL contains exactly one
edge. For all K ∈ M, the following must hold: for any mesh L ∈ NK ,
L’s and K’s levels differ by at most one unit (lL ∈ lK − 1, lK in the
general case, or lL ∈ lK − 1, lK , lK + 1 if lK 6= L)

Remark 1. The adaptive grids that we can obtain with the multiresolution
strategy described in Chapter 1 are included into the set of discretizations D
described above.

Given a discretization D = (M, E ,P), let us denote by #(D) the cardinal of
M, so that we can introduce:

XD = R#(D) = { v = (vK)K∈M | vK ∈ R } (2.2)

We start by designing a discrete gradient on XD. Let ei for i ∈ {1, . . . , d} be
the basis vectors of Rd. Let v ∈ XD, K ∈ M and σ so that K ∈ Mσ. We
define ∇K,σv as follows:

1. If σ ∈ Eext and nK,σ = ei:

∇K,σv =
1

2
m(σ)vKnK,σ

2. If σ ∈ Eext and nK,σ = −ei:

∇K,σv = −1

2
m(σ)vKnK,σ

3. If σ ∈ Eint, we denote by L the neigbour of K inMσ.

∇K,σv =
1

2
m(σ)(vL − vK)nK,σ

Next, for i ∈ {1, . . . , d}, we define ∇(i)
K v, as follows:
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∇(i)
K v =

1

m(K)

∑
σ∈EK

∇K,σv · ei (2.3)

We only presented here the discrete gradient with Dirichlet boundary conditions
on the velocity, but we also devised a similar operator for Neumann boundary
conditions on the velocity.

2.3 Approximation of the Navier-Stokes problem

We come back to the initial problem described in section 2.1, that is, finding
approximate solutions to (2.1) on multiresolution adapted grids.
Let D be a discretization of Ω in the sense of definition 2.2.1. Let U(t) and
P (t) be vector fields on Xd

D and XD respectively, for each t ∈ ]0, T [. We will
say that

[
U(t) = (uK,i(t))i=1,...,d,K∈M, P (t) = (pK(t))K∈M

]
is a semi-discrete

approximate solution to (2.1) if we have:

m(K)
∂uK,i
∂t
− ν

∑
σ∈Eint

Mσ=(K,L)

m(σ)

dσ
(uL,i − uK,i) +

∑
σ∈Eext
Mσ=K

m(σ)

dσ
uK,i

+

d∑
j=1

∇(j)
K (uK,iuK,j) +

∑
σ∈Eint

nK,σ=±ei
Mσ=(K,L)

1

2
m(σ)(pK + pL)nK,σ · ei

−
∑
σ∈Eext

nK,σ=±ei
Mσ=(K)

1

2
m(σ)pK

=

∫
K
fi for each i = 1, . . . , d

and

d∑
j=1

∇(j)
K uK,j = 0

(2.4)

for all K ∈M.
The different equations (2.4) amount to a nonlinear system that can be written
in matrix form (for example the different divergence constraints by mesh can
be written in a more compact form D ·U = 0 where D is a divergence matrix).
Our discretization of the pressure gradient amounts to formally defining the
gradient matrix as −Dt, i.e. the discrete gradient is the negative of the adjoint
of the discrete divergence [CET06, CEH09, GTG15]. This way, we make sure
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that our discretization mimics this property of the continuous PDE. In addition,
we do not then have to specify boundary conditions for the pressure, which can
be a tricky operation [GS87].
We re-write (2.4) in the following way which is more easily recognizable as a
finite-volume scheme:

m(K)
duK,i

dt
+ ν

∑
σ∈EK

FK,σ(ui)︸ ︷︷ ︸
Diffusion

+ m(K)∂
(i)
K P︸ ︷︷ ︸

Pressure gradient

+ C
(i)
K (U)︸ ︷︷ ︸

Convection

=

∫
K
fi(x)dx = m(K)FK,i∑

L∈NK

ΦK|L(U) = 0

(2.5)

where ν
∑

σ∈EK FK,σ(Ui) are approximations of the diffusive fluxes of the quan-
tity ui through the set of boundaries EK of K.

∑
L∈NK ΦK|L(U) are an ap-

proximation of the mass fluxes through the boundaries of K, with NK its set
of neighbors. We only need to distinguish between 3 cases for the fluxes com-
putation: the case where the meshes K and L are at the same level (lK = lL),
the case where L has level lL = lK + 1, and finally the case where L has level
lL = lK − 1. The three cases are explicited in (figure 2.1).

We now bring the attention of the reader to two weaknesses of our scheme:

• the first one is related to the computation of the diffusion fluxes between
cells of different sizes. The computation of the fluxes cannot be consis-
tent at these non-conforming edges, and this should affect the precision of
the numerical approximation of the solutions to the Navier-Stokes equa-
tions on our non-uniform grids. This problem was already adressed in
[EGH00], where they observed that "the error which results from this
lack of consistency can be controlled if the number of atypical edges is
not too large". Indeed, we did not observe such a lack of precision in
most of our simulations (results Chapter 6); we believe that this is due to
the fact that in general, with the adaptation by multiresolution, we have
few non-conforming edges between meshes of different sizes compared to
the edges between same-size grids

• The second one comes from the fact that our discrete divergence (and
hence our discrete pressure gradient) cannot prevent the apparition of
spurious pressure modes. We designed a strategy (see Chapter 6) to pre-
clude the apparition of spurious velocity modes; but the spurious pressure
modes can nonetheless affect the accuracy of the approximate velocity
variables. A proven technique to suppress these pressure modes relies on
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Case lL = lK

×
xK ×

xL

K L

dK,σK|L

σK|L

Fk,σK|L(Ui) = m(σK|L)
uK,i − uL,i

dK,σK|L+dL,σK|L
;

ΦK|L(U) = m(σK|L)
uK,1 + uL,1

2

Case lL = lK + 1

×
xK

×
xL

K

L

σK|L

Fk,σK|L(Ui) = m(σK|L)
uK,i − uL,i

dK,σK|L
2

+dL,σK|L

;

ΦK|L(U) = m(σK|L)
uK,1 + uL,1

2

Case lL = lK − 1

×
xK

×
xLK

L

σK|L

Fk,σK|L(Ui) = m(σK|L)
uK,i − uL,i

dK,σK|L+
dL,σK|L

2

;

ΦK|L(U) = m(σK|L)
uK,1 + uL,1

2

Figure 2.1: Computation of the fluxes depending on the interface case
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a nonconsistent stabilization technique à la Brezzi-Pitkäranta [BP84]. A
next step on our work would be to design and implement such a technique
for adaptive multiresolution applied to the resolution of the incompress-
ible Navier-Stokes equations.



Chapter 3

Numerical schemes to solve the
semi-discretized incompressible
Navier-Stokes equations:
considerations on the projection
methods

In this chapter we consider the numerical integration of the semi-discretized
equations obtained after the spatial discretization scheme described in Chapter
2. These are Differential Algebraic Equations, mainly due to the presence of
the divergence-free constraint in the Navier-Stokes equations, and they are no-
toriously harder to solve than classical ODEs. We begin this chapter with an
introduction to the mathematical theory behind DAEs, where we will focus on
their stiffness, and the phenomenon of order reduction. We will then give an
overview of the recent advances in projection methods, emphasizing their short-
comings to produce high-order numerical solutions for incompressible flows.

3.1 Differential algebraic equations

After the spatial discretization, we now have to solve the following differential
equations in the time parameter for the velocity and the pressure variables:

Γ
dUi
dt

= νLiUi +Dt
iP −

 ∑
j=1,...,d

DjUiUj

+ ΓSi(t)∑
i=1,...,d

DiUi = Sdiv(t)

(3.1)
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Here Γ, Li and Di are square matrices of size #(M)×#(M). Γ is the diagonal
mass matrix, so that Γi(K),i(K) = m(K) for the meshK ∈M. The Li operators
are the Laplacian matrices for the diffuse terms (these matrices are symmetric
by construction), and the Di are the divergence matrices described above. The
vectors Si(t) include the discretized source terms Fi and the possible boundary
conditions, and the vector Sdiv(t) includes the boundary conditions for the di-
vergence constraint.
The (Ui)i=1,...,d and P variables are vectors that now only depend on the time
parameter, and the appropriate mathematical theory to study the numerical
(and analytical) solutions of the set of equations (3.1) is that of differential
algebraic equations. DAEs are ordinary differential equations constrained by al-
gebraic equations. In our case, the discretized momentum equations are ODEs,
and the (Ui)i=1,...,d and P variables are subjected to the discretized divergence-
free velocity constraint. Understanding that there are key differences between
ODEs and DAEs is crucial to be able to properly solve the latter. Even though
the pursuit of theortical and numerical solutions to ODEs started almost 400
years ago (with the work of Newton, namely), the research of techniques and
methods to effectively solve DAEs really gained traction in the last 40 years or
so. DAEs generally entail much more numerical difficulties to be solved than
ODEs, and some of the properties of numerical schemes, when applied to the
latter, are lost when applied to the former. In fact, one of the first and most
important papers on this subject is entitled: “Differential Algebraic Equations
are not ODEs” [Pet82], and describes, among other things, classes of DAEs
problems that cannot even be solved by numerical strategies designed for stiff
ODEs. We shall thus start with an introduction to the DAE theory, with a spe-
cial focus on the relationship between (stiff) ODEs and (semi-explicit) DAEs,
which proved to be very useful in our search for effective high-order integration
schemes for the (discretized) incompressible Navier-Stokes equations.
The most general form for DAEs that we will be considering in this section is
the following [Pet82, HW96]:

F (u′, u, x) = 0 (3.2)

Where u : R → Rn is a vector field in the x parameter, F : Rn → Rn is a
(sufficiently differentiable) function with same dimension as u, and of course
u′ is the derivative of u. We also require that the jacobian matrix ∂F/∂u′ be
nonsingular for all argument values in some appropriate domain. (3.2) can be
viewed as an implicit ODE, and in principle we should be able to formally
express u′ in terms of x and u, to obtain an explicit ODE of the form:

u′ = f(x, u) (3.3)

In practice however, this transformation is not easy to obtain, and even when
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it is, it can be completely useless for the numerical resolution of (3.2). This
transformation generally is conducted via (subsequent) differentiations of F
with regard to x, and it gives us insights regarding the mathematical structure
of a DAE, by its differentiation index [GP82, LP86a, LP86b]:

Definition 3.1.1 (Differentiation index of a differential algebraic equation).
Equation (3.2) has differentiation index m if m is the minimal number of an-
alytical differentiations

F (u′, u, x) = 0

dF (u′, u, x)

dx
= 0

d2F (u′, u, x)

dx2
= 0

...
dmF (u′, u, x)

dxm
= 0

required to solve u′ uniquely in terms of u and x, that is, to extract by algebraic
manipulations an explicit ODE system of the form (3.3) from (3.2).

Before giving some useful remarks regarding the index of a DAE, we give some
concrete examples of index 1 and index 2 systems, on the important special
case of semi-explicit, Hessenberg DAEs, which are explicit ODEs systems with
constraints: here (3.2) can be expressed as a system of ODEs of the form
(3.3) for a part of the components of u′, coupled with a system of algebraic
constraints involving part or all of the components of u only. These cases are
easier to consider than the more general case (3.2), for the following reasons,
among others:

1. For a large class of problems described by ODEs of the form (3.3), pro-
vided with initial values, there exist theorems guaranteeing the existence
and uniqueness of solutions. This is not the case for general DAEs of
the form (3.2), but for some of the semi-explicit DAEs, we can have such
theorems

2. In the case of semi-explicit DAEs, we can explicitly separate the compo-
nents of u between differential variables and algebraic variables [AP98].
The differential variables ui are the ones for which the original equation
(3.2) contain explicit expressions for u′i of the form u′i = f(u, x), and
the algebraic variables are the remaining ones. Generally, differential and
algebraic variables have different mathematical natures, hence they re-
quire different numerical treatments. Having them explicitly identified in
a DAE system simplifies its numerical integration
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3. For semi-explicit DAEs, obtaining the explicit ODEs for the algebraic
variables is easily done by differentiating the algebraic constraints

Hessenberg systems of index 1
These are systems of the form:

u′ = f(u, v) (3.4a)

0 = g(u, v) (3.4b)

Where u : R → Rn and v : R → Rm are vector fields in the x parameter. We
assume that gv is nonsingular for all values of x. By using the implicit function
theorem, we can solve for v in (3.4b), and by substituting v in (3.4a), we obtain
an ODE in u; we can then apply classical results on ODEs for the existence of
solutions to (3.4). Furthermore, by differentiating (3.4b), we obtain the implicit
ODE of v′:

v′ = −g−1
v (u, v)gu(u, v)f(u, v) (3.4c)

where we make use of the assumption that gv is invertible. This problem is
thus of differentiation index 1. We remark that if this system is provided with
initial conditions, it cannot have solutions unless these initial conditions are
consistent, i.e. they satisfy the algebraic constraint (3.4b):

g(u0, v0) = 0

Hessenberg systems of index 2
These are systems of the form:

u′ = f(u, v) (3.5a)

0 = g(u) (3.5b)

Where u : R → Rn and v : R → Rm are vector fields in the x parameter.
Differentiating (3.5b), we obtain the following hidden constraint on u and v:

0 = gu(u)f(u, v) (3.5c)

Here, we will assume that gu(u)fv(u, v) is nonsingular for all x. In that case, we
see that the system (3.5a), (3.5c) is an index 1 Hessenberg DAE. Differentiating
again (3.5c) gives us the missing differential equation for v, namely:

v′ = −(gufv)
−1
(
guuf

2 + gufuf
)

(3.5d)

This problem has thus a differentiation index of 2. We remark that if this sys-
tem is provided with initial conditions, it cannot have solutions unless these ini-
tial conditions are consistent, i.e. they satisfy the algebraic constraints (3.5b):
g(u0) = 0, and (3.5c): gu(u0)f(u0, v0) = 0. In this case, and only in this case,
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the system (3.5a, 3.5b) has a locally unique solution. Hence, contrary to the
index 1 systems, index 2 systems have hidden constraints that must be satis-
fied by the solution vector fields for all x. We also note that by differentiating
the explicit algebraic constraint, we transformed the index 2 problem into an
index 1 system of equations. This technique is referred to as index reduction
[HW96], and since index 1 problems are generally easier to solve than index
2 DAEs, it could be interesting, in some cases, to solve the implicit index 1
problem instead of the original one, hoping for this set of solutions to be the
good solutions to the initial problem.
We now proceed with some general remarks reagarding DAEs, before turning
to the interpretation of equations (3.1) as semi-explicit DAEs:

Remark 2. 1. The index of a DAE is a measure of its singularity [LP86a,
LP86b]. The higher the index, the more difficult the corresponding DAE
is to solve

2. DAEs with an index greater than 1 are called higher-index DAEs [AP98].
They include some hidden constraints, which are derivatives of the explic-
itly stated constraints

3. The algebraic variables are less smooth than the differential variables by
one derivative [AP98]. In the case of the incompressible Navier-Stokes
equations for example, the pressure is the algebraic variable (see below),
and it behaves like the derivative of the velocity. This is one of the reasons
why, as we will see later, if a numerical scheme applied to these equations
is k-th order for the velocity, it will be k − 1-th order for the pressure

4. Specified initial conditions for a DAE must be consistent with its algebraic
constraints, otherwise this initial value problem has no solution. This
situation is even more restrictive for higher-index systems, because their
hidden constraints must also be satisfied by the initial conditions. The
same holds for boundary conditions

5. Due to the preceding remark, it often happens that finding the consistent
initial and/or boundary values for a specific DAE in applications is one
of the most laborious parts of the numerical resolution [GS00]

6. As stated before, for higher-index systems, it is often possible to apply the
index reduction strategy, and solve the lowered-index system instead of the
initial one. But this strategy comes at a cost:

(a) The solutions to the lowered-index system are not submitted to the
same constraints as the higher-index ones; this entails that solutions
to the lowered-index system might not be solutions to the higher-index
DAE
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(b) Resorting to lowered-index systems can require more regularity for
the variables than what is needed by the higher-index system

7. “The most desired solution is that satisfying the original DAE system, that
of highest index. This is because the implication is ‘one-way’: solutions
of the highest index system will always satisfy all (derived) lower index
systems.” [GS00]

Coming back to the discretized Navier-Stokes equations, we can derive the
divergence-free constraint with regard to the time parameter to obtain (with
periodic boundary conditions): ∑

i=1,...,d

DiU
′
i = 0 (3.6)

Our mass matrix Γ is diagonal, so that we can easily invert it to obtain, for all
i ∈ {1, . . . , d}

U ′i = Γ−1

(
νLiUi +Dt

iP − (
∑

j=1,...,d

DjUiUj) + ΓSi(t)

)

We insert this equation into (3.6) to obtain the pressure Poisson equation
(PPE):

( ∑
i=1,...,d

DiΓ
−1Dt

i

)
P = −

∑
i=1,...,d

DiΓ
−1

(
νLiUi − (

∑
j=1,...,d

DjUiUj) + ΓSi(t)

)
(3.7)

Deriving again (3.7) gives us the missing differential equation for P , so that
equations (3.1) are an index-2 Hessenberg system of DAEs. Let’s denote by K
the matrix

(∑
i=1,...,dDiΓ

−1Dt
i

)
. K is the gu(u)fv(u, v) that appeared above

when we introduced index-2 Hessenberg systems, and it is always (at least with
our spatial discretization) symmetric positive. The best situation is when it is
also definite, which corresponds to the condition “gu(u)fv(u, v) nonsingular”.
But in a lot of applications, and depending generally on the boundary condi-
tions, K will be singular, and this will generate a lot of numerical difficulties.
We will come back to this later, but for the purpose of this section, we will
assume that K is an invertible matrix.
The PPE coupled to the momentum equations form an index-1 Hessenberg sys-
tem, that is generally referred to in the literature as the PPE formulation of the
incompressible Navier-Stokes equations. We start our analysis of this formula-
tion by noting that if (Ui)i=1,...,d and P are solutions to the PPE formulation,
then only the acceleration is necessarily divergence-free: we only have (3.6) sat-
isfied. Therefore solutions to the PPE formulation may not have a velocity that
is divergence-free, so that they are not solutions to (3.1). We can be even more
precise if we consider the case of non-consistent initial values (Ui,0)i=1,...,d. If
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∑
i=1,...,dDiUi,0 6= 0, then (3.1) is ill-posed and has no solution. But this is not

the case for the PPE formulation, which can be solved. By integrating (3.6),
we see that for all t > 0, will have:∑

i=1,...,d

DiUi =
∑

i=1,...,d

DiUi,0

“The initial divergence error will linger forever” [GS00]. This is bad for our
multiresolution adaptive strategy. If we start with an initial divergence-free ve-
locity field on a given grid, the application of the adaptive strategy will generally
results in a new velocity field that is not divergence-free to machine accuracy
(but rather, to the accuracy of our adaptive strategy; we will come back to this
claim later). If we then solve, on the new adapted grid, the PPE formulation,
we see that we will never be able to directly obtain a divergence-free velocity to
machine accuracy. Given this, and the preceding remarks on DAEs, we believe
that it is not a good strategy to try and solve the PPE formulation when inte-
grating the Navier-Stokes equations coupled to the multiresolution strategy.
We conclude these introductory considerations on DAEs with a useful relation-
ship between DAEs and stiff ODEs. Semi-explicit Hessenberg DAEs can be
viewed as limits of stiff ODEs in the case of infinite stiffness [HW96, AP98,
GS00, HLR89, HW99], and a rich source of DAEs is provided by limit systems
of singular value perturbation ODEs [AP98]. We can illustrate this in the case
of Hessenber index-1 systems of the form (3.4) with the following ODE:

u′ = f(u, v) (3.8a)

εv′ = g(u, v) (3.8b)

If ε in (3.8b) is very small, this parameter will introduce stiffness in the ODE
(3.8). In this case (3.8) is referred to as a singular perturbation problem. We
also note that letting ε → 0, we recover (3.4), which is referred to as the
reduced equation for (3.8). We infer from this that a sound understanding of
stiff ODEs is necessary in order to construct good numerical algorithms for
DAEs. Thus we will make a short digression, and give some useful insights
regarding stiff ODEs, before concluding this section with an example of a very
simple Hessenberg index-2 DAE, showing the kind of difficulties that can occur
when attempting to solve numerically these kind of problems.

3.1.1 Stiff Ordinary Differential Equations

A pragmatic characterisation of stiff problems can be found in one of the seminal
works on this subject [CH52]: stiff problems are problems which are exceedingly
difficult to solve with explicit (numerical integration) methods. We will not dig
any further in the definition of stiff ODEs (there is a vast literature treating
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stiffness, and we refer the interested reader to the chapter IV of the excellent
book by Hairer and Wanner on this subject [HW96], but go directly to some
examples. The first one is taken from [Dua11].
Let us consider for t > 0, the scalar following initial value problem:

dtu = −100u,

u(0) = u0,

}
(3.9)

with some u0 ∈ R and u : R→ R, and exact solution u(t) = e−100 t u0 for t > 0.
We aim at obtaining a numerical approximation un of the exact solution u(tn)
of (3.9) for a time discretization given by t0 = 0 < t1 < · · · < tn < · · · , and
n = 0, 1, . . .. We first approximate the solution of (3.9) at some t1 = t0 + δt

u(δt) = u0 +

∫ t0+δt

t0

−100udt, (3.10)

by
u1 = u0 − 100 δtu0. (3.11)

which implies an explicit time discretization solution of (3.10) and it is known
as the explicit Euler method, where δt is defined as the integration time step.
If we set, for instance, an initial condition u0 = 1, and a relatively small time
step of δt = 0.5 compared with 100, the exact and numerical solutions give,
respectively, u(0.5) = e−50 ≈ 1.9 × 10−22 and u1 = −49. And integrating
over another time step δt: u(1) = e−100 ≈ 3.7 × 10−44 and u2 = 2401. It
follows then that the explicit time discretization given by (3.11) is not capable
of reproducing the right dynamics given by the exact solution. However, since
this solution models a rapid transition from u0 towards a final equilibrium
value, we can easily identify the associated time scale τ = 1/100 = 0.01 of the
transient phase and therefore, we can expect that integration time steps δt of
the order or smaller than τ will be capable to track the right dynamics. For
instance, for δt = 0.001, we have u(0.001) = e−0.1 ≈ 0.904837418 and u1 = 0.9,
and u(0.002) = e−0.2 ≈ 0.818730753 and u2 = 0.81. These rapid variations
or transients associated with fast scales are typical of stiff equations, but they
are neither sufficient nor necessary to qualify them as stiff. Actually, an initial
condition u0 close enough to the equilibrium manifold of the solution will not
develop such fast transients, and thus stiff features may not be observed.
As a first conclusion, we can deduce that an explicit time discretization scheme
to solve (3.9) will generally fail to approach the right dynamics, unless we
consider integration time steps smaller than the time scales disclosed by the
equations. This may seem natural. Nevertheless, if we consider the counter-
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part of (3.11), i.e.an implicit Euler method:

u1 = u0 − 100 δtu1, (3.12)

and the previous δt = 0.5, we obtain the numerical approximations u1 =
0.019607843 and u2 = 0.000384468. Therefore, although solutions are not
quite accurate, they show convergence towards the right solution with a time
step several times the associated time scale, whereas for a time step larger than
a given value, the explicit method will not deliver any valid result.
Before turning to the second example, we consider the Dahlquist test equation
[Dah63], which a classical tool used to characterise the stability of numerical
integration methods. We will use it here to give a first explanation on the
huge difference between the implicit and explicit Euler schemes witnessed in
the previous example. Let us consider the following problem:

dtu = λu,

u(0) = u0 = 1,

}
(3.13)

with λ ∈ C (a particular case was given by (3.9)). If we compute u1 with the
implicit or explicit Euler scheme for problem (3.13), we obtain:

u1 = R(z)u0, z = δtλ, (3.14)

where R(z) is a rational function. For the explicit Euler method (3.11) we have:

R(z) = 1 + z, (3.15)

Whereas for the implicit Euler method (3.12) yields

R(z) =
1

1− z
, (3.16)

A classical analysis based on the Dahlquist test equation (3.13) allows us to
define R : C → C given in general by (3.14), as the stability function of a
given method. That is, R(z) is the numerical solution of (3.13) given by the
method itself after one time step δt. After successive applications of either
Euler scheme, the numerical solution at time tn can be written as

un = (R(z))n u0 (3.17)

which allows us to define the stability domain of the method given by the set
of z for which un remains bounded for n→∞, i.e.

S := { z ∈ C |R(z)| ≤ 1 } . (3.18)
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For instance, considering the explicit Euler method (3.11) according to (3.15),
its stability domain S is given by all z ∈ C such that

|1 + z| = |z − (−1)| ≤ 1, (3.19)

which is the circle of radius 1 and center −1 in the complex plane. Coming
back to the previous example (3.9) with λ = −100, we can see that an explicit
Euler method will remain stable as long as z = δtλ ∈ S, i.e.0 ≤ δt ≤ 2/100,
which explains the previous bad results for δt = 0.5. But the stability domain
given by all z ∈ C of the implicit Euler method is:∣∣∣∣ 1

1− z

∣∣∣∣ ≤ 1 ⇒ |z − 1| ≥ 1, (3.20)

that is, the exterior of the circle with radius 1 and center +1 in the complex
plane. For problem (3.9), we can then see that R(z) will remain bounded for
any time step δt > 0, as it is shown by (R(z = −100 δt))n = (1 + 100 δt)−n into
(3.17). This better performance of an implicit discretization for large negative
λ into (3.13), characterises of stiff ODEs.
The next example of stiff configuration that we consider comes from the nu-
merical resolution of the heat equation in one dimension by the method of
lines:

∂tu− ∂2
xu = 0, (3.21)

where u : R × [0, 1] → R, x ∈ [0, 1] and we impose homogeneous Neumann
conditions at the boundaries. Discretizing in space on a grid of Nx = m points
with second order centered finite differences, we obtain the following ODE:

dtU = AU, (3.22)

with U : R→ Rm, A ∈M:

A =
1

∆x2



−1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1


(3.23)

and ∆x = 1/(Nx + 1). Matrix A is diagonalizable, and its spectrum is given
by:

λj = − 4

∆x2
sin2

(
πj∆x

2

)
, j = 1, . . . , Nx, (3.24)
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or alternatively,

λj = −4(Nx + 1)2 sin2

(
πj

2(Nx + 1)

)
, j = 1, . . . , Nx, (3.25)

for which we can identify potentially large eigenvalues increasing quadratically
with the number of discretization points Nx with a maximum dispersion be-
tween −4(Nx + 1)2 and 0. If we operate a change of basis, we thus see that
solving (3.22) amounts to solving numerous Dahlquist test-like equations (3.13),
one for each eigenvalue in (3.25)). Thus if we apply the explicit Euler scheme
to this problem, we need the timestep to at least scale like the square of the
meshsize in order for the computation to be stable. This is a really strin-
gent constraint on the timestep, especially when we consider that in practical
applications, the characteristic spatial scales might be much smaller than the
characteristic temporal scales. And once again, the implicit Euler scheme does
not suffer from this problem.
We conclude this section on stiff ODEs by noting that it is not even possible
to solve the incompressible Navier-Stokes equations with fully explicit time in-
tegrators! We show it here with the explicit Euler method applied to (3.1).
Given initial (consistent) values U0 = (U0

i )i=1,...,d and P 0, after one iteration
of the explicit Euler method applied to the momentum equations (we cannot
apply it to the continuity equation since it does not contain explicit differential
expressions) we obtain, for i ∈ {1, . . . , d}:

ΓU1
i = ΓU0

i + δt

(
νLiU

0
i +Dt

iP
0 − (

∑
j=1,...,d

DjU
0
i U

0
j ) + ΓSi(0)

)

There is no reason for U1 to be divergence-free, satisfying the index-2 algebraic
constraint, and we cannot obtain P 1.

3.1.2 Order reduction

Another issue that can occur when applying classical integration schemes to
DAES is the phenomenon of order reduction: if a given numerical scheme is
proved to be of order p ∈ N∗ when applied to approximate the solution of
an ODE of type (3.3), the same numerical might be of an order q < p when
applied to a DAE. This makes constructing high-order integration schemes to
solve DAEs more arduous than for ODEs. We illustrate this with the following
example of an Hessenberg index-2 DAE, taken from [Pet82]:

v′ = u (3.26a)

v = g(x) (3.26b)
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Where u : R → R, v : R → R and g : R → R is a given source term function
which is C∞. Differentiating (3.26b) gives:

u = g′ (3.26c)

And a another differentiation of (3.26c) gives:

u′ = g′′ (3.26d)

Thus (3.26) is a (very simple) semi-explicit Hessenberg index-2 system. We
first remark that the solution to the ODE (3.26a, 3.26d) is:

u = u(0) + g′(x)− g′(0)

v = v(0) + g(x)− g(0) + x
(
u(0)− g′(0)

)
and the solution to the derived index-1 DAE system (3.26a, 3.26c) is:

u = g′(x)

v = v(0) + g(x)− g(0)

while the solution to the initial index-2 DAE (3.26a, 3.26b) is:

u = g′(x)

v = g(x)

The index-1 solution is only correct if we add the particular initial value condi-
tion v(0) = g(0), not needed for the index-2 system. Lowering the index of the
initial system implies new constraints for the solution of the lowered-index to
be that of the higher-order system. And clearly the lowered-index system can
have more solutions that the higher-index one.
Let us now apply the implicit Euler scheme to (3.26a, 3.26b). If we denote again
by δt the timestep, it is well known that this method as a local truncation error
of order 2 when applied to classical ODE (see for example [HNW87]). Let’s
compute the local truncation error for our index-2 DAE above. Given initial
values at some time t0, u0, v0, we approximate the solutions at some t1 = t0 +δt
by:

u1 =
v1 − v0

δt
=
g(t1)− g(t0)

δt
v1 = g(t1)
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The exact solutions are:

u(t1) = g′(t1)

v(t1) = g(t1)

The error is zero for v, the differential variable. But for the algebraic variable
we have:

u1 − u(t1) =
g(t1)− g(t0)

δt
− g′(t1)

=
δtg′(t1)− δt2

2 g
′′(η)

δt
− g′(t1)

= −δt
2
g′′(η)

where t0 ≤ η ≤ t1. The local truncation error for the algebraic variable is
only 1, and the precision order of the implicit Euler scheme has been lost when
applied to this very simple index-2 system. The situation is not as bad as it
seems, because it can be proven that the approximate solution for u is first-
order both locally and globally [HW96]. Nevertheless, this situation will be
encountered later when we apply more sophisticated integration schemes to the
Navier-Stokes equations, and we will have to deal with order reduction.

3.2 The projection methods for incompressible flows

Due to their structure of index-2 DAEs, the semi-discretized Navier-Stokes
equations are very difficult to solve. The first computationally efficient way to
solve problem (3.1) in the primitive variables, i.e. in the original index-2 DAE
form, was independently elaborated by Chorin [Cho68], and Temam [Tem69]. It
was originally known as the fractional-step method (for reasons that will come
to light later on when we describe this numerical strategy). Its proficiency
and popularity can be measured by the tremendous amount of books, articles,
engineering softwares etc, that relied on this method, or improved it, in order
to compute incompressible flows: we can refer to [Pat80, KM85, Tur98, ABS96,
HB97, BDS+05, ABC+98, PHB+98, NWK98b, NWK98a, BDG02, ZSK94, FP99],
and the references therein, just to name a few. Another measure of its popular-
ity among Computational Fluid Dynamics practitioners and researchers is the
various names this method (or methods derived from it) has been referred to
since its creation: splitting, prediction-projection, predictor-corrector, pressure-
correction, velocity-correction etc rest upon the pioneering principles developed
in [Cho68] and [Tem69]. However, we decided to retain a completely different
numerical integration strategy, and we feel like we have to justify this choice.
This is the main goal of this section. The study of the numerical properties
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of projection schemes (mainly stability and convergence) turned out to be a
prolific source of research topics; we want by no means here to produce a com-
prehensive summary of these discoveries, but rather to expose what, in our
opinion, are the main advantages and limitations of these schemes.
We start by recasting (3.1) in a slightly different way, for aesthetic reasons. We
thus want to solve: 

du

dt
+∇ · (ut ⊗ u) +∇p− ν∆u = s

∇ · u = 0
(3.27)

where u = (ui)i=1,...,d is the (spatially) discretized velocity, p is the discretized
pressure, s are the discretized source terms for the momentum equations, and
the operators ∇ · (·),∇ · (· ⊗ ·),∇(·),∆(·) are linear operators resulting from
a spatial discretization (finite element, finite volume etc) of the Navier-Stokes
equations on a given grid. It is always possible to write (3.1) in this way. We
apologize if this new notations are a little bit confusing, but they allow to
give a more elegant presentation of projection schemes than (3.1). We comple-
ment (3.27) with consistent initial conditions (u0, p0), and we consider Dirichlet
boundary conditions:

u = w on ∂Ω

We continue with a digression on BDF (Backward Differentiation Formula)
methods to solve Hessenberg index-2 systems, as we believe this a good way to
introduce fractional-step methods, even though this probably not the historical
path that led to these schemes. Let us come back to the general ODE system
(3.3) stated in section 3.1:

u′ = f(x, u)

We want to solve this equation for x ∈ [0, T ] where T ∈ R and T > 0. To this
purpose, we divide the interval [0, T ] into N intervals of length δt, we introduce
the notation xi = iδt ∀i ∈ [1, . . . , N ]. We wish to determine approximation
values ui to the exact solutions u(xi). We also introduce the notation fi =
f(xi, ui), that we can compute when we have the approximation ui. For j ∈ N,
we define the backward differences ∇j as:

∇0fn = fn, ∇j+1fn = ∇jfn −∇jfn−1

Now suppose that we know the numerical approximations un, un−1, . . . , un−k+1

for n ∈ N, k ∈ N∗ with n > k, and we wish to determine an approximation
un+1 of u(xn+1) with these previous values. A general multistep method to
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determine this approximation can be written as:

k∑
i=0

αiun−i+1 = δt
k∑
i=0

βifn−i+1 (3.28)

where the αi and βi are real parameters, and we suppose that α0 6= 0, in order
for the impicit equation (3.28) to have a solution for un+1 for δt small enough
[HNW87]. The BDF-methods are a particular case of multistep formulas, where
the coefficients βi are such that β1 = β2 = · · · = βk = 0 and β0 = 1, and the
coefficients αi are such that (3.28) is equivalent to [HNW87]:

k∑
i=1

1

j
∇jun+1 = δtfn+1 (3.29)

For example the three first formulas are:

• k = 1: un+1 − un = δtfn+1,

• k = 2: 3
2un+1 − 2un + 1

2un−1 = δtfn+1,

• k = 3: 11
6 un+1 − 3un + 3

2un−1 − 1
3un−2 = δtfn+1,

One definition of the local error of a multistep method (3.28) is the following
[HNW87]:

Definition 3.2.1. The local error of the multistep method (3.28) is defined by

u(xk)− uk

where u(x) is the exact solution of (3.3), and uk is the numerical solution
obtained from (3.28) by using the exact starting values ui = u(xi) for i =
0, 1, . . . , k − 1.

We can now introduce a concept of order for multisteps methods.

Definition 3.2.2. The multistep method (3.28) is said to be of order p, where
p ∈ N, if for sufficiently regular differential equations (3.3), the local error of
(3.28) is O(δtp+1).

The order of a multistep method is a measure of the rate of convergence of its
(approximate) solution to the exact solution as δt→ 0. A classical of numerical
analysis is that for k ∈ N∗, the k-BDF method is of order k, when applied to a
sufficiently regular ODE (3.3).
We turn next to semi-explicit Hessenberg index-2 DAEs of the form (3.5):

u′ = f(u, v)
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0 = g(u)

We will use existing theory [HW96] for the application of BDF-methods to this
kind of problems. We assume that f and g are sufficiently differentiable, and
that gu(u)fv(u, v) is nonsingular for all x. We can then apply a general BDF
method to (3.5a, 3.5b) in the following way:

k∑
i=0

αiun−i+1 = δtf(un+1, vn+1) (3.31a)

0 = g(un+1) (3.31b)

where the αi are the coefficients of the BDF method of order k. The existence
and uniqueness of solutions to (3.31) are guaranteed provided δt is smaller than
some threshold value δt0 [HW96]. The following two results give us information
on the convergence of BDF methods when applied to index-2 DAEs.

Lemma 3.2.1. Let (3.5a, 3.5b) be a DAE so that gu(u)fv(u, v) is nonsingular
for all x. If the BDF method (3.31) has order p, then its local error satisfies:

u(xk)− uk = O(δtp+1), v(xk)− vk = O(δtp) (3.32)

We see here the order reduction, charateristic of DAEs, that affects the algebraic
variable. Fortunately, in the case of BDF methods, we do not lose an order for
the variable v when going from the local error to the global error, as stated by
the following theorem:

Theorem 3.2.1. Let (3.5a, 3.5b) be a DAE so that gu(u)fv(u, v) is nonsingular
for all x. Then the k-step BDF method (3.31) is convergent of order p = k, if
k ≤ 6:

u(xn)− un = O(δtp), v(xn)− vn = O(δtp) for xn = nδt ≤ Const, (3.33)

whenever the initial values satisfy

u(xj)− uj = O(δtp+1), for j = 0, . . . , k − 1

Proofs of these two results can be found in [HW96]. BDF methods are thus a
good way to obtain high-order numerical approximations to solutions of Hes-
senberg index-2 DAEs. But their application to problems of type (3.5a, 3.5b)
is more computationally intensive than their application to problems of type
(3.3), because the implicit nature of these methods couples the resolution of
(3.5a) and (3.5b), and in a lot practical situations, solving such a big (nonlin-
ear) system is deemed too demanding.
We now come back to the Navier-Stokes equations. We denote by Dqun+1

the linear combinations of the un+1,un, · · ·un−q+1 terms to produce the q-step
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BDF method. Applying (3.31) to (3.27) gives:

1

δt
Dqun+1 +∇ · (utn+1 ⊗ un+1) +∇pn+1 − ν∆un+1 = sn+1 (3.34a)

∇ · un+1 = 0 (3.34b)

With the following boundary condition:

un+1 = wn+1 on ∂Ω

The fractional-step methods aim at simplifying the problem (3.34) by decou-
pling the computation of un+1 and pn+1. This is done by first computing an
intermediate velocity ũn+1 by solving the momentum equations (3.34a) with
a guess, an approximate value of the pressure pn+1 based upon its previous
values. We name this guess G(pn+1), and we solve:

1

δt
Dqũn+1 +∇ · (ũtn+1 ⊗ ũn+1) +∇G(pn+1)− ν∆ũn+1 = sn+1

This first part is generally called the prediction phase, because we compute an
intermediate velocity that is not divergence-free; its a prediction of the real
velocity field at time xn+1. We correct this by projecting this intermediate
result to a (discrete) divergence-free subspace. We call this projection vn+1,
we compute it by looking for a scalar field φ so that:

ũn+1 − vn+1 = ∇φ with ∇ · vn+1 = 0 (3.35)

This part is of course called the projection phase (hence the name prediction-
projection scheme), and it is motivated by the Helmholtz-Hodge theorem, that
states that any sufficiently smooth vector field in three dimensions can be re-
solved into the sum of an irrotational (curl-free) vector field and a solenoidal
(divergence-free) vector field. The irrotational vector field can be expressed as
the gradient of a scalar field. We assume that these results are still true for our
discrete spatial differentiation operators, hence the above decomposition. This
problem is a (discretized) mixed Poisson equation, that we rewrite, by applying
the divergence operator to (3.35):

∇2φ = ∇ · ũn+1

The ∇2 operator appearing here should be read: ∇·(∇), i.e. the multiplication
of the gradient operator by the divergence operator, it is not equal to the
Laplacian ∆ in (3.27). We solve this elliptic equation, and then compute:

vn+1 = ũn+1 −∇φ
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We update the pressure, with a formula pn+1 = p(φ, δt,vn+1) that we will pre-
cise later. This completes the numerical integration of (3.27) between xn and
xn+1, and we use the solution (vn+1, pn+1) to complete subsequent integration
steps.
You probably noticed that something is missing in this procedure, and it is actu-
ally one of the key ingredients of fractional-step methods: what are the bound-
ary conditions for the intermediate (non-physical at all) variables (ũn+1, φ)?
The first candidate for ũn+1 is of course wn+1, but it turns out that this is not
the optimal proposition. For now, we will write:

ũn+1 = wn+1 +H(·) on ∂Ω

where H(·) is a vector field that will be precised later, and will help us to
improve the precision of the prediction-projection scheme. The boundary con-
ditions for φ are derived from ∇ · vn+1 = 0 on ∂Ω and the right way to express
them is [GC90]:

∂φ

∂n
= n · (ũn+1 − vn+1) = n ·H(·) on ∂Ω

We can now express a complete cycle of the procedure:

1. Step 1: prediction phase Solve

1

δt
Dqũn+1 +∇ · (ũtn+1 ⊗ ũn+1) +∇G(pn+1)− ν∆ũn+1 = sn+1 (3.36a)

with the boundary conditions:

ũn+1 = wn+1 +H(·) on ∂Ω (3.36b)

2. Step 2: projection phase - Mixed Poisson equation Solve

∇2φ = ∇ · ũn+1 (3.36c)

with the boundary conditions:

∂φ

∂n
= n · (ũn+1 − vn+1) = n ·H(·) on ∂Ω (3.36d)

3. Step 3: projection phase - velocity and pressure updates Com-
pute

vn+1 = ũn+1 −∇φ (3.36e)

pn+1 = p(φ, δt,vn+1) (3.36f)
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One huge advantage of this algorithm is the sequential computation of the
velocity, then the pressure; the name “fractional-step” comes from this; we break
the simultaneous computation of the velocity and the pressure in (3.34) into
two steps. In addition to this, the convective part in (3.36a) is generally treated
explicitly, and (3.36a) is d independent equations on the components of ũn+1.
(3) implies then the resolution of d #(M)×#(M) advection-diffusion equations
for the velocity components, plus 1 #(M) × #(M) Poisson equation for the
projection. If we compare this to the fully implicit (d+1) #(M)×(d+1) #(M)
(nonlinear) problem (3.34), we achieve a tremendous numerical computation
simplification. But this simplification comes at a cost, and it is the precision
of the solution obtained. Or put differently, how good of an approximation
is vn+1, when compared to the true solution of (3.27)? This question was
investigated by some researchers [GMS06, Gre90, GC90, GS87, GS00, GS03,
Ran06, GQ98a, GQ98b, Gue97, GS01, She92, She96]. Before presenting the
main convergence results, we begin with a heuristic study, that helps to have a
quick understanding of what is happening here.
We will only consider the Stokes problem, i.e. we do not take into account
the convective terms in the momentum equations. We begin with the simplest
guess for G(pn+1), which is 0 (original choice of Chorin [Cho68] and Temam
[Tem69]). We suppose that q > 1, and we compare equations (3.34) and (3.36a)
and we get:

ũn+1 − un+1 = (I − δtν∆)−1δt∇pn+1

where I is the identity matrix. The matrix (I−δtν∆) is bounded and invertible
for δt small enough, and we see that ũn+1 is at best an order 1 approximation
of un+1! Thus the pression guess plays a great role in prediction-projection
schemes. We continue our investigation by applying the divergence operator to
the previous equation, and we assume that δt is small enough to consider that
(I − δtν∆) ' I. We obtain:

∇2φ = ∇2δtpn+1

It could be tempting to conclude that φ = δtpn+1, but if H(·) = 0 in (3.36d)
then on ∂Ω we have:

∂φ

∂n
6= ∂δtpn+1

∂n

and this error on the boundary can propagate throughout the whole computa-
tional domain, leading to a projected velocity vn+1 that can still be an order 1
approximation of un+1. The boundary conditions for the intermediate velocity
can deteriorate the quality of the prediction-projection scheme.
With these observations in mind, we know present one of the best pressure-
correction schemes to date (we remark here that φ acts as an approximation of
the pressure, hence the name “pressure-correction”):
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1. Step 1: prediction phase Solve

1

2δt
(3ũn+1 − 4vn + vn−1) +∇pn − ν∆ũn+1 = sn+1 (3.37a)

with the boundary conditions:

ũn+1 = wn+1 on ∂Ω (3.37b)

2. Step 2: projection phase - Mixed Poisson equation Solve

∇2φ = ∇ · ũn+1 (3.37c)

with the boundary conditions:

∂φ

∂n
= 0 (3.37d)

3. Step 3: projection phase - velocity and pressure updates Com-
pute

vn+1 = ũn+1 −∇φ (3.37e)

pn+1 = pn +
φ− ν∇ · ũn+1

2δt
(3.37f)

This scheme was first proposed in a less precise form by Van Kan [VK86],
and improved by Timmermans, Minev et Van de Vosse [TMVdV96]. It was
proven by Guermond and Shen [GS03] to be of order 2 for the velocity,
and order 3/2 for the pressure. So vn is a rather good approximation of
the real solution of (3.27).
However, as Gresho and Sani stated, “there is no such thing as a free lunch
when solving the incompressible Navier-Stokes equations”, and the fractional-
step methods share some weaknesses, namely:

Remark 3. • There has been no successful attempt to build good enough
fractional-step methods with an order higher than 2 for the velocity, let
alone the pressure [GM19, GMS06]. Some authors have claimed that re-
sorting to (3.36a-3.36f) with a third-order BDF scheme for the velocity,
and a second-order approximation/guess for the pressure G(pn+1) gave a
third-order accuracy for the velocity, but under specific conditions on the
timestep, that might render the whole algorithm unconditionally unstable
when solving the nonlinear problem (3.27) [GMS06]. None of the other
schemes devised for higher order precision for the velocity are uncondi-
tionally stable, and none of them has been proved to achieve higher-than-
order-two precision for the velocity [GM19, GMS06]
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• The projected velocity vn+1 in (3) is an approximation of un+1 in (3.34),
and it can never be as precised as the solution obtained by a more classical
integration method, for example:

– It is not possible to fix vn+1 = wn+1 on ∂Ω in the mixed Pois-
son equation (3.36c, 3.36d), because that is overspecified problem
[OID86, GS87]. The preferred setup is to fix the normal component
of the projected velocity, with the consequence that generally, vn+1

has the wrong tangential component on the boundary. This causes
the existence of a erroneous boundary layer, that can affect the flow
computation elsewhere in the domain

– The boundary conditions for φ in (3.37d) imply that the normal com-
ponent of the pressure gradient on the boundary does not change over
time [GC90]. This increases the error of the projected velocity at the
boundary

• The pressure in (3.37f) is computed from its previous values. It implies
that the pressure in (3.1) is a continuous function of time, which is not
necessarily true. Another consequence of this fact is that the error in the
pressure accumulates over time

In light of these remarks, let us now restate the goal of our work. As we said in
the Introduction, we wish to develop new dedicated algorithms for the numeri-
cal simulation of low Mach reacting flows involving a wide spectrum of spatial
and temporal scales. Such phenomena can be modelled by a set of advection-
diffusion-reaction equations for the conservation of the species and the energy
conservation, momentum balance equations for the flow velocity and a mass
conservation equation. One of the best strategies to tackle such problems, on
common computational ressources, is via the use of time-space adaptive nu-
merical tools. We deal with the wide range of spatial scales with adaptive grid
techniques, abel to dynamically track reacting fronts phenomena. And we deal
with the large range of time scales via operator-splitting techniques, in order
to decouple processes characterized by different physical mechanisms, solving
each process with a specific numerical integration method. But a key ingredient
to ensure the precision of such techniques is the ability to control the errors
caused by the adaptive techniques. That is why a new generation of time-space
adaptive numerical tools was recently developed by Duarte et al. [Dua11] for
the resolution of multi-scale advection-diffusion-reaction transport equations.
The spatial adaptation with error control is performed by adaptive multires-
olution, and they developed an adaptive dynamic splitting operator method,
that rest upon the ability to control the numerical integration errors. To do so,
they make sure that these errors are only due to the splitting scheme, which is
possible if the subproblems are treated with high-order integration schemes.
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We want to complement this particular strategy to solve low-Mach reacting
flows by providing numerical tools for the hydrodynamic part. In Chapter 2 we
introduced a new spatial discretization scheme for incompressible flows coupled
to adaptive multiresolution in a finite-volume context. What we need now is
a high-order time integration scheme for the semi-discretized incompressible
Navier-Stokes equations, that can be coupled to the general time-space adap-
tive strategy with error control described above. We decided that prediction-
projection schemes were not the ideal candidates, given their weaknesses that
we highlighted in this section. We do not know of the existence of prediction-
projection schemes with an order higher than 2 for the velocity. These schemes
produce solutions that are an approximation of the solutions of the BDF meth-
ods, and we do not see how we can control the error between the prediction-
projection solutions and the BDF solutions. And finally, even if we were to
find stable third-order prediction-projection schemes, we have another problem
related to the adaptive grid technique. Indeed, these are multistep methods:
when computing a new iteration from timestep n to timestep n + 1, we reach
high-order by introducing in the computations the iterations at timesteps n−k,
where k is a positive integer. With a dynamically adapting grid, we would need
to "project" the solutions of the previous iterations n− k onto the grid of the
solution n, introducing additional errors. That is why we preferred resorting to
one-step methods, and specifically Runge-Kutta methods, and we are going to
present in the next chapter high-order implicit Runge-Kutta methods to solve
incompressible flows.



Chapter 4

High-order implicit
Runge-Kutta methods for the
semi-discretized incompressible
Navier-Stokes equations

This chapter presents high-order Runge-Kutta schemes for the resolution of
the Hessenberg index 2 DAEs described in the previous chapter. Our goal
is to obtain higher-than-second-order schemes for the numerical simulation of
incompressible flows, and we start with the construction and implementation of
implicit Runge-Kutta methods, with a focus on the stability requirements they
have to meet in order to produce high-order and accurate solutions to index
2 DAEs. We will then present the RadauIIA method, that is 3rd-order in the
velocity variables, and give some details regarding its practical implementation
in this work. Next, we introduce a new class of high-order Additive Runge-
Kutta methods, tailored for the resolution of incompressible flows. We finish
with the description of half-explicit Runge-Kutta methods applied to index 2
DAEs. We assess the numerical properties of these three schemes with the
classical two-dimensional lid-driven cavity case.

4.1 Introduction to implicit Runge-Kutta methods

We will start by recalling the general formulation of Runge-Kutta (RK) meth-
ods to numerically integrate problems of type (3.3), with an initial value:
u(x0) = u0. Given this initial value, and a timestep δt, we want to com-
pute an approximate value of u(x0 + δt). Let s be a positive integer (s > 0),
that is generally called the number of stages, aij , bi and ci be real numbers
with i, j = 1, . . . , s, a general s-stage Runge-Kutta method to determine an
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approximation u1 of u(x0 + δt), can be written as:

ki = u0 + δt

s∑
j=1

aijf
(
x0 + cjδt, kj

)
i = 1, . . . , s (4.1)

u1 = u0 + δt

s∑
i=1

bif
(
x0 + ciδt, ki

)
(4.2)

It is generally required that the ci coefficients satisfy:

ci =
s∑
j=1

aij i = 1, . . . , s

so that all evaluation points of f are first order approximations to the solution
[HNW87]. We then only need the aij and bi coefficients to identify a specific RK
method. Unlike multi-steps methods, RK methods compute u1 from only u0 (or
un+1 form only un) in one step, and they are part of one-step methods. They
are particularly suited to integrate semi-discrete PDEs with changing spatial
grids (as we are doing with adaptive multiresolution). If aij = 0 for i ≤ j, we
are dealing with an explicit (ERK) method. In this case we can always com-
pute the ki and u1. But as we stated earlier (3.1.1), explicit methods cannot
be used to solve index-2 algebraic differential equations, so we will not consider
them any further. If at least one aij 6= 0 with i ≤ j, we are dealing with an
implicit RK method. In this case, we have to ask ourselves whether equations
(4.2) possess a solution. The most general result is obtained when f satisfies a
Lipschitz condition with respect to u [HNW87], and the answer is yes, provided
that δt is smaller than a threshold value depending on the Lipschitz constant
and the aij coefficients.
If aij = 0 for i < j and at least one aii 6= 0, we have a diagonal im-
plicit Runge-Kutta method (DIRK). If all the diagonal elements of the ma-
trix A = (aij)1≤i,j≤s of a DIRK method are equal, we have a singly diagonal
implicit Runge-Kutta method (SDIRK). In the remainding cases we have an
implicit Runge-Kutta method (IRK). We can further classify these techniques
by their degree of difficulty in implementation. Let us assume that f is simply
a linear function depending only on the differential variable u, and that u is a
vector field in the x parameter from R to Rn. In the case of a full IRK method,
solving (4.2) amounts to solving a linear system of size n × s; in the case of
a DIRK method, we have to solve s linear systems of size n; and finally if we
have an SDIRK, the matrix that we need to inverse at each one of the s stages
is the same. Hence the IRK methods are the hardest to solve, the SDIRK the
easiest and the DIRK are in between. And of course the more stages we have,
the harder it is to implement an IRK, ceteris paribus.
It is common practice to represent a Runge-Kutta method by its Butcher
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c1 a11 a12 . . . a1,s−1 a1,s

c2 a21 a22 a1,s−1 a2,s

...
...

...
. . .

cs as1 as2 . . . as,s−1 as,s

b1 b2 . . . bs−1 bs

Table 4.1: Butcher array

tableau (4.1). In what follows, we will first give some insights regarding the
convergence order of IRK, and then say some words about their stability.

4.1.1 Building high-order implicit Runge-Kutta methods

A lot of work in the past 60 years has been devoted to the construction of
high-order implicit Runge-Kutta methods. As stated in the previous section,
more stages for an IRK means more implementation complexity; hence if two
different IRK methods have the same order, we would prefer the one with less
stages. We give here a definition of order for RK methods:

Definition 4.1.1. A Runge-Kutta method (4.2) has order p if for sufficiently
smooth (non-stiff) problems (3.3) we have:

‖u(x0 + δt)− u1‖ = O(δtp+1)

It is not straightforward to derive implicit Runge-Kutta method with high-
order. A classical result gives us an upper bound for the order p of an IRK,
given its number of stages s: p ≤ 2s. To obtain a given order, the coefficients
of an IRK must satisfy order conditions. We will not state them here, but we
refer to [HW96] for an exhaustive discussion on this subject. Building high-
order IRK relies on the simplifying assumptions:

B(p) :
s∑
i=1

bic
q−1
i =

1

q
, q = 1, . . . , p;

C(η) :
s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s, q = 1, . . . , η;

D(ζ) :

s∑
i=1

bic
q−1
i aij =

bj
q

(1− cqj), j = 1, . . . , s, q = 1, . . . , ζ.


(4.3)

The first condition B(p) states that the quadrature formula (bi, ci)
s
i=1 is of

order p. An important interpretation of the assumption C(η) is given by the
following lemma [HNW87]:
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1
2

1
2

1

Table 4.2: Butcher array of the 2-order Gauss method

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

Table 4.3: Butcher array of the 4-order Gauss method

Lemma 4.1.1. The assumption C(η) implies that the internal stages

ki = u0 + δt

s∑
j=1

aijf
(
x0 + cjδt, kj

)
i = 1, . . . , s

satisfy:
‖u(x0 + ciδt)− ki‖ = O(δtη+1)

in other words, the internal stages are of order η, and it is common practice
to name η the stage order of the IRK. This quantity will play an important
role when constructing high-order RK methods for index-2 Hesssenberg DAEs.
The simplifying assumptions helped Butcher to establish the following powerful
theorem [But64]:

Theorem 4.1.1. If B(p), C(η) and D(ζ) are satisfied with p ≤ 2η + 2 and
p ≤ ζ + η + 1, then the method is of order p.

Armed with this result, Butcher was among the first to discover that for any
stage s, there exist IRK methods of order 2s , i.e.we can always build optimal
implicit Runge-Kutta methods. These are the Gauss methods, and we give the
coefficients for the 1-stage and 2-stage Gauss processes in tables (4.2) and (4.3).

Sligthly less optimal processes were built by Ehle [Ehl69]: The (2s − 1)-order
Radau IA and Radau IIA methods. Tables (4.4) and (4.5) give the coefficients
of the 3rd order processes.
When it comes to DIRK, Nørsett & Wolfbrandt [NW77] demonstrated a useful
result: if p is the order of an s-stage DIRK method, then p ≤ s + 1. For
the sake of completeness, we present in tables (4.6) and (4.7) respectively the
general form of 2-stage 3-order SIDRK methods, and of 3-stage, 4-order SDIRK
methods.
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0 1
4 −1

4

1 1
4

5
12

1
4

3
4

Table 4.4: Butcher array of the 3-order Radau IA scheme

1
3

5
12 −

1
12

1 3
4

1
4

3
4

1
4

Table 4.5: Butcher array of the 3-order Radau IIA scheme

γ γ

1− γ 1− 2γ γ

1
2

1
2

Table 4.6: Butcher array of the 2-stage, 3-order SDIRK methods. γ = 3+
√
3

6

γ γ

1
2 (1

2 − γ) γ

(1− γ) 2γ (1− 4γ) γ

b1 (1− 2b1) b1

Table 4.7: Butcher array of the 3-stage, 4-order SDIRK methods.
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4.1.2 Stability analysis of implicit Runge-Kutta methods

The stability properties of a numerical scheme are detrimental for its computa-
tional implementation and efficiency. As we saw in section (3.1.1), the stability
restrictions of the Explicit Euler method impose the use of a timestep much
smaller than required by the inner dynamics of the equation at hand, when
dealing with stiff problems. IRK methods present in general better stabil-
ity properties than their Explicit counterparts, but because we want to tackle
DAEs, we will need an in-depth understanding of the stability properties of
IRK schemes.
We come back to the Dahlquist test mentioned in section (3.1.1), u′ = λu.
We want to define a stability domain as for ERK methods. We start with the
definition of the stability function for IRK schemes:

Proposition 4.1.1. The s-stage Runge-Kutta method (4.2) applied to u′ = λu
yields u1 = R(δtλ)u0 with:

R(z) = 1 + zbt(I − zA)−1e (4.4)

where bt = (b1, . . . , bs), I is the identity s × s matrix, A = (aij)1≤i,j≤s and
e = (1, . . . , 1︸ ︷︷ ︸

s times

)t.

A proof of this result can be found in [HW96]. This function is also a rational
fraction, because it can be written in the following form [HW96]:

R(z) =
det(I − zA+ zebt)

det(I − zA)
(4.5)

and we see that the numerator and denominator have a degree smaller than s.
We can now define the stability domain for general RK methods in exactly the
same manner as we did for the Euler methods in section (3.1.1).
Next we recall the definition of A-stability [Dah63]. Since the solution to the
equation (3.13) remains bounded exactly for λ ∈ C−, it is suitable for a numer-
ical strategy to produce stable numerical solutions for λ ∈ C− too, hence the
following definition:

Definition 4.1.2 (A-stability). A (Runge-Kutta) method if said to be A-stable
if its stability domain S satisfies

C− = { z | Re(z) ≤ 0 } ⊂ S.

The Implicit-Euler method, whose stability function is R(z) = 1
1−Z , is clearly

A-stable, which is not the case for the Explicit-Euler method. What is more, ex-
plicit Runge-Kutta methods cannot be A-stable, a result known as a Dahlquist
barrier [Dah63].
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Let us continue our investigation of stability properties. Prothero & Robin-
son [PR74] discovered that A-stability was not enough to prevent numerical
instability when solving stiff nonlinear differential equations, and that the ac-
curacy of the solution obtained was at times not even related to the order of
the method used. They proposed to study the following equation:

u′ = g′(x) + λ(u− g(x)) (4.6)

with λ ∈ C with negative real part, and g : R → Rn a smooth function. The
general solution to this problem takes the form:

u = c0e
λx + g(x) (4.7)

with c0 ∈ Rn a given parameter. Let us apply a general s-stage Runge-Kutta
method (4.2) to (4.6). if we denote un the solution obtained at time xn, we
compute un+1 at time xn+1 = xn + δt by solving the following system:{

(I − δtλA)k = une + δtA(g′n − λgn)

un+1 = un + δtλbtk + δtbt(g′n − λgn)
(4.8)

where k = (k1, . . . , ks) and the ki verify:

ki = un + δt
s∑
j=1

aij
[
g′(xn + cjδt) + λ(kj − g(xn + cjδt)

]
i = 1, . . . , s

and gn = (g1, . . . , gs) and the gi verify:

gi = g(xn + ciδt) i = 1, . . . , s

If we denote εn = un − g(xn), we can see by using (4.8) that we have the
following relation:

εn+1 = R(δtλ)εn + β(δt, λ, gn, g
′
n, A, b) (4.9)

where R(z) is the stability function of the IRK method considered. If λ has a
very large negative real part (accute stiffness), then the true solution u(x) will
be quickly converging to g(x) as x grows. But the numerical error εn behavior
depends strongly on R(z), and more specifically its limit as Re(z)→ −∞. We
at least need limRe(z)→−∞R(z) = 0 if we want to have limn→∞ εn = 0 for λ
with a very large negative real part. For example, if the stability domain of a
method is exactly C−, then by the maximum principle applied to this closed
half-plane, |R(∞)| = 1, and the numerical error εn will slowly converge to 0.
This behavior of one-step methods on this kind of stiff equations motivated the
definition of the following stability property [Ehl69]:
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Method Stability function A-stable L-stable stiffly accurate

4-order Gauss 1+ 1
2
z+ 1

12
z2

1− 1
2
z+ 1

12
z2

Yes No No

3-order Radau IA 1+ 1
3
z

1− 2
3
z+ 1

12
z2

Yes Yes No

3-order Radau IIA 1+ 1
3
z

1− 2
3
z+ 1

12
z2

Yes Yes yes

Table 4.8: Stability function, A-stability, L-stability, stiff accuracy properties of some
implicit Runge-Kutta methods

Definition 4.1.3 (L-stability). A (Runge-Kutta) method if said to be L-stable
if it is A-stable, and if in addition its stability function satisfies

R(∞) = 0

For example it is easy to see that if an RK method has invertible matrix A,
and satisfies:

asi = bi i = 1, . . . , s (4.10)

then it is L-stable. This is the case for the RadauIIA (4.5) method for example.
Methods satisfying (4.10) are called stiffly accurate [PR74], and they play an
important role when solving DAEs. Finally, we summarised in table (4.8) the
stability properties of some IRK methods. Proofs of these results can be found
in [HW96].

4.2 Navier-Stokes equations and implicit Runge-Kutta
methods

The goal of this section is to obtain a high-order IRK scheme to solve the semi-
discretized Navier-Stokes equations (3.1). We want a scheme that is at least 3rd-
order for the velocity, because this variable will be used for the species transport
in a low-Mach context. As we saw in section (3.1), the NS equations are semi-
explicit Hessenberg index 2 DAEs, and the divergence-free constraint makes
the equations infinitely stiff. This sets severe requirements on the numerical
scheme we wish to use to solve them, let alone obtain a high-order precision
solution. We will start by presenting a general way to apply implicit Runge-
Kutta methods to index 2 DAEs (3.5a, 3.5b), and explain why we decided
to use the 2-stage radau IIA; then we will give some details about the
implementation of this method to solve (3.1); and we will close this section by
some numerical examples.



Sect. 4.2 - Navier-Stokes equations and implicit Runge-Kutta methods 81

4.2.1 Runge-Kutta methods for Hessenberg index 2 DAEs

The application of Runge-Kutta methods to DAEs is not straightforward [San13].
We will employ the ε-embedding method of [HW96] applied to index 2 Hessen-
berg DAEs. Let us consider the following ODE:

u′ = f(u, v) (4.11a)

εv′ = g(u) (4.11b)

For very small values of ε, (4.11) can be viewed as an approximation of the
index 2 DAE (3.5). We will apply a general IRK scheme (4.2) to (4.11), and
replace ε by 0 in the nonlinear system. (4.2) applied to (4.11) gives:

Uni = un + δt
s∑
j=1

aijf(Unj , Vnj) (4.12a)

εVni = εvn + δt
s∑
j=1

aijg(Unj) (4.12b)

un+1 = un + δt

s∑
i=1

bif(Uni, Vni) (4.12c)

εvn+1 = εvn + δt

s∑
i=1

big(Uni) (4.12d)

We suppose that the matrix A = (aij) is invertible; we denote its inverse
W = (ωij)1≤i,j≤s, and obtain from (4.12b)

δtg(Uni) = ε
s∑
j=1

ωij(Vnj − vn) (4.13)

We insert (4.13) into (4.12d), so that vn+1 is defined without reference to ε.
We can now set ε = 0, to obtain:

Uni = un + δt

s∑
j=1

aijf(Unj , Vnj) (4.14a)

0 = g(Uni) (4.14b)

un+1 = un + δt

s∑
i=1

bif(Uni, Vni) (4.14c)
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vn+1 =
(
1−

s∑
i,j=1

biωij
)
vn +

s∑
i,j=1

biωijVnj (4.14d)

And we note that we have

1−
s∑

i,j=1

biωij = R(∞) (4.14e)

where R(z) is the stability function of the method.

The study of the convergence and stability properties of RK methods when
applied to DAEs was conducted in the 1980s, and the specific order conditions
for Hessenberg index 2 DAEs were first derived by Hairer, Lubich and Roche
[HLR89]. This is the classical paper on the subject. It turns out that most
RK methods suffer from order reduction when applied to this type of problems,
and the magnitude of the order reduction depends on the stage-order (4.1.1),
the stability function (4.1.2), and whether the method is stiffly accurate (4.1.2).
We will recall here the main lemmas or theorems of [HLR89], leading us to the
choice of our numerical integrator.
We start with the existence and uniqueness of a solution to (4.14). It is sufficient
to prove these properties for the Uni and Vni in the system (4.14a, 4.14b),
because un+1 and Vn+1 are then computed explcitly from these values. We
denote by η = u(x) and ζ = v(x) some initial values on the exact solution and
apply one step of the Runge-Kutta method (4.14), where we drop the index n
in the Uni and Vni. We define the local error here by the difference between the
numerical solution (u1, z1) and the exact solution at x+ δt:

δu = u1 − u(x+ δt), δv = v1 − v(x+ δt)

Theorem 4.2.1 (Existence and uniqueness of the solution). Suppose that (η, ζ)
satisfy

g(η) = O(δt2), gu(η)f(η, ζ) = O(δt)

and that gu(u)fv(u, v) is nonsingular in a neighborhood of (η, ζ) If the Runge-
Kutta matrix A = (aij) is invertible, then the system (4.14a, 4.14b) possesses
for δt ≤ δt0 a locally unique solution which satisfies:

Ui − η = O(δt), Vi − ζ = O(δt)

The conditions on (η, ζ) express their distance to a consistent initial solution,
and they do not come as a surprise considering that the real problem (3.5) can-
not have a solution if the initial values do not satisfy two algebraic constraints,
one of them being hidden (3.1).
We continue with a first lemma about the local error precision, for RK methods
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satisfying the conditions B(p) and C(q) of the Butcher simplifying assumptions
(4.3).

Lemma 4.2.1. Suppose that the Runge-Kutta method satisfies with p ≤ q + 1
and q ≤ 1 the conditions B(p) and C(q) of the Butcher simplifying assumptions
(4.3). Then the local error is of magnitude:

δu = O(δtq+1), P (x)δu = O(δtq+2)

δv = O(δtq)

P (x) is a projection given by:

P (x) = I −Q(x), Q(x) = (fv(gufv)
−1gu)

(
u(x), v(x)

)
. (4.15)

If in addition the Runge-Kutta method is stiffly accurate ( i.e. satisfies asi = bi
for all i), then

δu = O(δtmin(p+1,q+2))

We see here the importance of the stage order; methods with a small order
perform particularly badly for index 2 DAEs, and they suffer from the most
important order reduction, as stated by the following theorem:

Theorem 4.2.2 (Convergence for the u-component). Suppose that gu(u)fv(u, v)
is nonsingular in a neighborhood of the solution (u(x), v(x)) of (3.5a, 3.5b), and
that the initial values are consistent. If the Runge-Kutta matrix A = (aij) is
invertible, |R(∞)| < 1 and the local error satisfy:

δu = O(δtr), P (x)δu = O(δtr+1)

with P (x) given by (4.15), then the method (4.14) is convergent of order r, i.e.:

un − u(xn) = O(δtr), for xn = nδt ≤ Const.

If in addition we have δu = O(δtr+1), then we have g(un) = O(δtr+1).

We first note that the numerical solution un does not satisfy the constraint
(3.5b) exactly. This will further increase the numerical error in low-Mach re-
acting flows, because this error of the flow will propagate in the transported
scalars. But if the method is stiffly accurate, then we have the nice result that:
g(un) = g(Uns) = 0.
We are able to study here the convergence of the u-component alone beacause
the Uni in (4.14) do not depend on vn. This can be a good feature for a numer-
ical scheme to integrate the incompressible Navier-Stokes equations, because it
can be difficult to maintain a proper / non polluted pressure variable through-
out the whole computation (more on this later when we treat the spurious
modes).
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Together with lemma 4.2.1, this theorem shows that the precision order of an
RK method, when applied to an index 2 DAE, is reduced to q + 1 whatever
the precision order p is for more regular ODEs. For examples SDIRK methods,
which have a stage-order q = 1, can only be of order 2 when applied to systems
(3.5a, 3.5b). Some class of methods, however, do not suffer order reduction for
the u-component, and there are the subject of the following theorem:

Theorem 4.2.3. Suppose that the Runge-Kutta matrix A = (aij) is invertible
and that asi = bi for i = 1, . . . , s. Then the conditions B(p), C(q), D(ξ) with
with p ≤ 2q and p ≤ ξ + q + 1 imply that the local error satisfies:

δu = O(δtp+1)

for the index 2 system (3.5a, 3.5b).

Together with theorem 4.2.2, this theorem implies that Radau IIA methods,
for example, do not suffer order reduction in the u-component when applied
to index 2 systems. But most methods suffer from order reduction for the
v-component:

Theorem 4.2.4 (Convergence for the v-component). Suppose that gu(u)fv(u, v)
is nonsingular in a neighborhood of the solution (u(x), v(x)) of (3.5a, 3.5b), and
that the initial values are consistent. If the Runge-Kutta matrix A = (aij) is
invertible, |R(∞)| < 1 and the global error of the u-component, and the local
error for the v-component satisfy:

un − u(xn) = O(δtr), for xn = nδt ≤ Const.
g(un) = O(δtr+1) δv = O(δtr)

then the global error for the v-component is:

vn − v(xn) = O(δtr), for xn = nδt ≤ Const.

The convergence of the v-component relies heavily on the precision of the u-
comonent, which is not a surprise, given the fact that this variable is instantly
linked to the differential variable via the hidden constraint (3.5c). The local and
global errors for the algebraic constraint are the same, another consequence of
the fact that we are dealing with a DAE. But the precision order will be limited
to the stage order of the method.
Finally, we present a convergence theorem for methods with |R(∞)| = ±1,
which is the case for Gauss methods:

Theorem 4.2.5. Suppose that gu(u)fv(u, v) is nonsingular in a neighborhood
of the solution (u(x), v(x)) of (3.5a, 3.5b), and that the initial values are con-
sistent. Suppose that the Runge-Kutta matrix A = (aij) is invertible, and let
conditions B(p) and C(q) be satisfied.
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Method Stages local error global error
u v u v

Gauss s odd δts+1 δts δts+1 δts−1

s even δts+1 δts δts−2 δts+1

Radau IA s δts δts−1 δts δts−1

Radau IIA s δt2s δts δt2s−1 δts

SDIRK 3 δt2 δt1 δt2 δt1

Table 4.9: Error estimates for the index 2 problem (3.5a, 3.5b)

1. if R(∞) = +1, q ≤ 2 and p ≤ q, then

un − u(xn) = O(δtq), vn − v(xn) = O(δtq−2)

2. if R(∞) = −1, q ≤ 2 and p ≤ q, then

un − u(xn) = O(δtq+1), vn − v(xn) = O(δtq−1)

All these different convergence results can be summarized in table (4.9), that
we took from [HW96].
We wish to attain 3rd-order precision for the velocity, with the least compu-
tational effort. Clearly, The Radau IIA method is our best choice, as it is
the only one able to satisfy our requirements in only 2 stages. In addition, for
stiffly accurate method like this one, Uns = un+1 in (4.14a-4.14c), so that we
save the last step of the method. And this method being L-stable, R(∞) = 0
in (4.14d), and the computation of the algebraic variable is not correlated to
the previous timesteps.

4.2.2 Implementation of the Radau IIA method to solve the
semi-discretized incompressible Navier-Stokes equations

We want to apply the Radau IIA method (see table 4.5) to the semi-discretized
incompressible Navier-Stokes equations. We derive the ε-method (4.14) de-
scribed in section 4.2.1 in the following way. Given consistent velocities and
pressure fields (U0, P 0) at time t0, we want to obtain an approximate solution
of (3.1) (U1, P 1), at time t0 +δt with an implicit 2-stage Runge-Kutta method.
The ε-embedding method recasts equation 3.1 in the following form:
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(4.16a)

∑
i=1,...,d

Dig
1
i = Sdiv(t0 + δtc1)

∑
i=1,...,d

Dig
2
i = Sdiv(t0 + δtc2)

(4.16b)
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1
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) (4.16c)

P 1 =
(

1− δt
2∑

i,j=1

biωij
)
P 0 +

2∑
i,j=1

biωijk
j (4.16d)

where δt is the timestep, gji , k
j are intermediate variables, andW = (ωij)1≤i,j≤2

is the inverse of the matrix A corresponding to the Radau IIA method (see ta-
ble 4.5). Since this method is stiffly accurate, we actually have U1

i = g2
i ; and

since it is L-stable, we actually have (1 − δt
∑2

i,j=1 biωij) = 0 [HW96], which
simplify the computations.
We see that (4.16a, 4.16b) is a nonlinear system. The first idea that we tried
to solve it was an approximate Newton-Raphson iteration method. We will de-
velop it here for d = 2, the (computational) space dimension. We also consider
that we are dealing with periodic boundary conditions in both space directions,
so that Sdiv(t) = 0, and that the source terms for the momentum equations are
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null, so that S1(t) = S2(t) = 0. Let:

f1(x, y, z) = νL1x+Dt
1 z − (D1x

2 +D2xy)

f2(x, y, z) = νL2x+Dt
2 z − (D1xy +D2y

2)

f3(x, y) = D1x+D2y

We denote: Z = (g11, g21, g31, g12, g22, g32)t, and we recast (4.16a, 4.16b) in this
case as F (Z) = 0, where:

F1(Z) = Γg11 − ΓU0
1 − a11δtf1(g11, g21, g31)− a12δtf1(g12, g22, g32)

F2(Z) = Γg12 − ΓU0
1 − a21δtf1(g11, g21, g31)− a22δtf1(g12, g22, g32)

F3(Z) = Γg21 − ΓU0
2 − a11δtf2(g11, g21, g31)− a12δtf2(g12, g22, g32)

F4(Z) = Γg22 − ΓU0
2 − a21δtf2(g11, g21, g31)− a22δtf2(g12, g22, g32)

F5(Z) = f3(g11, g21, g31)

F6(Z) = f3(g12, g22, g32)

We now apply Newton iteration to F (Z) = 0. If we start with a known value
Zk of Z at iteration k, we compute Zk+1 with:

JZ(Zk)∆Zk = −F (Zk)

Zk+1 = Zk + ∆Zk

where JF is the jacobian matrix of F . We make the following assumption
to ease the computations: JF (Zk) ∼ JF (Z0) during all the iteration, and of
course: Z0 = (U0

1 , U
0
2 , P

0, U0
1 , U

0
2 , P

0)t. We also note:

∂D1x
2

∂x
= 2D1(x)

∂D2xy

∂x
= 2D2(y)

∂D1xy

∂y
= 2D1(x)

∂D2y
2

∂y
= 2D2(y)

where Di(x), Di(y) are matrices whose coefficients depend respectively on the
vectors x and y. We can now write 1

δtJF (Z0):
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We first tried the Newton method, because of its quadratic convergence prop-
erty. We were able to solve the nonlinear problem (4.16a, 4.16b) with this
method, but it was very inefficient; among other reasons for this inefficiency,
we can mention:

Remark 4. Newton method drawbacks

• The convergence radius of the Newton method is known to be very small;
this means that we need a “good” initial value at the beginning of the
Newton iterations. This practically means, in our case, that we need a
very small timestep, in order for the different values to be close enough.
This goes against the good stability properties of the Radau IIA method,
one of the reasons we chose it in the first place: we have a stringent
constraint on the timestep, that is not related to the physical properties of
the problem at hand

• We have to rebuild the matrix (4.17) at each iteration, even if the compu-
tational grid was not modified. This adds some computational overhead,
even more so in the context of adaptive multiresolution, because the con-
nectivity between the cells is harder to obtain than when dealing with a
uniform grid

• The matrix (4.17) is not symmetric at all; and even though the matrices Li
are symmetric, we cannot take advantage of this fact when (numerically)
inverting it. This matrix is of saddle point type [BGL05] , i.e., it has the
form: (

B G
D 0

)
(4.18)

and thus represents a significant challenge for solver softwares

That is why we decided to resort to fixed-point iteration techniques. Even
though they do not possess theoretical quadratic convergence properties, in
nonsteady processes, they can require as few iteration steps as Newton methods
to convergence [Tur98]. We went for a fixed-point Picard iteration method,
where we write the convection terms explicitly at each iteration step. This
time, we apply a function G to Z until we obtain G(Z) = Z. The function G
is of the form:

G(Z) = A−1ς(Z)

where ς(Z) is the vector defined by:
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ς1(Z) = ΓU0
1 − a11

( 2∑
j=1

Djg11gj1

)

ς2(Z) = ΓU0
1 − a21

( 2∑
j=1

Djg12gj2

)

ς3(Z) = ΓU0
2 − a11

( 2∑
j=1

Djg21gj1

)

ς4(Z) = ΓU0
2 − a21

( 2∑
j=1

Djg22gj2

)
ς5(Z) = 0

ς6(Z) = 0

and the matrix A is defined by:
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The Lipschitz constant of the function G decreases linearly with δt, so that we
can always transform it into a contraction mapping, ensuring the existence of
a fixed-point. When we reach this fixed-point Z, we have F (Z) = 0, and we
have solved the nonlinear problem (4.16a, 4.16b). This method was much more
efficient than the Newton iterations, and we believe that this is due in part to
the following facts:

Remark 5. Fixed-point Picard iteration vs Newton iteration

• The convergence radius of the Picard method turned out to be much bigger
than Newton method’s one. The iterations converged with large timesteps
in a large range of test cases

• Matrix (4.19) only depends on the grid connectivity, so that we do not
have to recompute it at every timestep if the grid does not change

• Matrix (4.19) is sparser than matrix (4.17), making it easier to invert

• What is more, both matrices are of the saddle-point type (4.18), but for
matrix (4.19), the block B is a block diagonal matrix, easier to invert than
the block B of matrix (4.17)

• Matrix (4.19), is more akin to a symmetric matrix than (4.17)

Once we have found a method to solve the nonlinear system, we end up with a
linear system (of saddle-point type) that we have to solve at each timestep, in
an efficient manner. We postpone to Chapter 6 the resolution of linear systems.
And now we will present some numerical results to showcase the performance
of the Radau IIA method.

4.2.3 Numerical simulations

We will check the order of our various Runge-Kutta schemes with the classical
case of the lid-driven cavity [BP98, GGS82]. We discretize equations (2.1) on
a uniform grid with the spatial scheme (2.5), in an open bounded domain Ω
in 2D, where Ω =] − 0.5, 0.5[×] − 0.5, 0.5[. The fluid is initially at rest within
Ω (uini(x, 0) = 0 for x ∈ Ω), and we impose Dirichlet boundary conditions
on the four edges of ∂Ω: the velocity is set to zero on all but one of these
boundaries, in our case the top one at y = 0.5, where the tangential velocity is
set to u1(x, 0.5, t) = −1. The Reynolds number is Re = 1000.
We then solve the semi-discretized equations (3.1) with the RadauIIA method
until a steady-state is attained1. Figures (4.1) and (4.2) show the evolution
of the horizontal and vertical components of the velocity, respectively. Fig-
ures (4.3) show the evolution of the norm of the velocity and the streamlines.

1We consider that we have reached convergence when the relative variation in the velocity
field between timestep tn and tn+1 is smaller than a user-defined threshold.



Sect. 4.2 - Navier-Stokes equations and implicit Runge-Kutta methods 93

-9.7e-01 3.6e-01-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

u

(a) t = 4

-9.7e-01 3.4e-01-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

u

(b) t = 8

-9.7e-01 3.5e-01-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

u

(c) t = 12

-9.7e-01 3.6e-01-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

u

(d) t = 16

Figure 4.1: Lid-driven cavity. Evolution of the horizontal velocity component
for Re = 1000.

Finally, figure (4.4) shows the contour of the vorticity at steady-state, and
there is a perfect match with the simulations obtained by Botella & Peyret in
[BP98]. These computations were made on a uniform grid, with a grid level of
8 (256× 256).

Since there are no exact solutions to the Navier-Stokes equations for the lid-
driven cavity test case, we chose to check the temporal accuracy of the method
in the following way. We solve the equations with the RadauIIA method until
t = 5.0, with a very small timestep, and we compare this solution with solutions
obtained at the same final time, but with larger timesteps. The computations
were made on a uniform grid, with a grid level of 6 (64 × 64). Figures (4.5),
(4.6) and (4.7) represent the order of accuracy of the RadauIIA method for
the horizontal component of the velocity, the vertical one and the pressure,
respectively. We observe that we effectively reach 3rd-order accuracy for the
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Figure 4.1: Lid-driven cavity. Evolution of the horizontal velocity component
for Re = 1000.
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(a) t = 4 (b) t = 8

(c) t = 12 (d) t = 16

Figure 4.2: Lid-driven cavity. Evolution of the vertical velocity component
for Re = 1000.
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(e) t = 24 (f) t = 32

(g) t = 36 (h) t = 40

Figure 4.2: Lid-driven cavity. Evolution of the vertical velocity component
for Re = 1000.
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(a) t = 4 (b) t = 8

(c) t = 12 (d) t = 16

Figure 4.3: Lid-driven cavity. Evolution of the norm of the velocity and the
streamlines for Re = 1000.



98 Chap. 4 - High-order Runge-Kutta methods for incompressible flows

(e) t = 24 (f) t = 32

(g) t = 36 (h) t = 40

Figure 4.3: Lid-driven cavity. Evolution of the norm of the velocity and the
streamlines for Re = 1000.
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Figure 4.4: Lid-driven cavity. Norm of the velocity and Vorticity contours at
steady-state for Re = 1000.
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Figure 4.5: Lid-driven cavity. Temporal order of accuracy for the RadauIIA method;
horizontal component of the velocity

two components of the velocity.

4.3 A new high-order additive Runge-Kutta method

In section (4.2.2) we developed an implementation of the 2-stage Radau IIA
method to solve the incompressible Navier-Stokes equations. We explained why
this scheme was perfectly suited to solve Hessenberg index 2 DAEs, and showed
that it offered 3rd order for the velocity. But at each timestep, we have to solve
the nonlinear system (4.16a, 4.16b), and the implementation difficulties of this
operation make the Radau IIA method less attractive. In addition, if we come
back to the general formulation of index 2 DAEs (3.5a, 3.5b), the presence of
the algebraic variable in equation (3.5a) causes the system to be a DAE. Thus,
in the case of the incompressible Navier-Stokes equations (3.1), the nonlinear
convection terms in the momentum equations are not the cause of the infinite
stiffness resulting from the algebraic constraint. This means that we do not
have to treat these terms with an implicit Runge-Kutta method with enhanced
stability properties capable of dealing with DAEs. A natural idea that comes to
mind is then to use two different schemes to integrate (3.1): one for the DAE
and stiff parts of the equations, that are completely linear, and one that is
easy to apply to the nonlinear convective terms. This strategy is an illustration
of a broader paradigm called splitting methods: these methods aim at taking
advantage of the inherent structure of the governing equations, by applying
integration methods to specific parts of the equations, then rolling them into
a composite solver. This is opposed to using a single method to solve the
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Figure 4.6: Lid-driven cavity. Temporal order of accuracy for the RadauIIA method;
vertical component of the velocity
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Figure 4.7: Lid-driven cavity. Temporal order of accuracy for the RadauIIA method;
pressure
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equations at hand: the heuristic thinking being that by applying specific solvers
to separate parts of the equations, it is possible to end up with a resolution
strategy with better computational efficiency than a single method applied to
all parts. Time-operator splitting methods have been significantly prolific in
numerical simulations of complex multi-physics real-world phenomena, and the
litterature on these schemes is huge. It is not the purpose of this work to
review them all, but we want to bring attention to a particular subset of these
methods. It is often the case in applications that the function f in (3.3) can
be naturally decomposed into η additive terms:

u′ =

η∑
i=1

f [i](x, u) (4.20)

This is the case for example in the direct numerical simulation of multi-scale
combustion fronts with detailed kinetics, problem to which the splitting meth-
ods have been applied in a large variety of contexts [GPMD88, YP98, SLGS03,
RP08, KNW99, AV13, NWK98b, NK05, SPN06, DB00c, BDG02, BDA+06,
BDG+07]. The governing equations of the energy and species concentrations
balances in gas phase combustion can be divided into advection, diffusion and
reaction processes. These different processes come with a broad spectrum of
time and space scales. The reactive timescales impose stringent stiffness con-
straints to the system, but there are highly localized in space. In general the
diffusion terms introduce sitffness due to fine spatial discretization (cf. section
3.1.1), but with timescales order of magnitude bigger than the reactive phenom-
ena. And the advective terms contribute eigenvalues that are predominantly
imaginary. The idea is then to split this problem into smaller subproblems,
reactive, advective and diffusive subproblems, and to use dedicated solvers for
each one of them. More formally, let us consider a general species balance
equation on a concentration Y yielding the following form:

Y ′ = fα(x, Y ) + fρ(x, Y ) + fκ(x, Y ) (4.21)

where fα(x, Y ) are the advective term, fρ(x, Y ) the reactive term, and fκ(x, Y )
the diffusive term. If we denote by Y0 the initial value of the ODE (4.21), we
can choose a specific numerical solver Si for each one of the subproblem:

Y ′ = f i(x, Y ) (4.22)

where i = α, κ, ρ. For a given timestep ∆t, we can then compute Y1, the
numerical integration of (4.21) after ∆t time by the solver Ssplit defined as:

Y1 = SsplitY0 = S∆t
α S∆t

κ S∆t
ρ Y0 (4.23)
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This scheme was used for example in [GPMD88]. An advantage of using such
splitting schemes is the ability to use specific sub-timesteps for each supbroblem,
as long as these timesteps are smaller than ∆t of course. This way, we decouple
the physical phenomena, and integrate each sub-part with timesteps related to
its timescales. Unfortunately, the scheme (4.23) is only of order 1 in time.
An improvement over this result was designed based on the seminal papers of
Strang [Str63, Str68], the so-called Strang splitting scheme. An implementation
of this scheme on problem (4.21) can be formulated as follows:

Y1 = SsplitY0 = S∆t/2
ρ S∆t/2

κ S∆t
α S∆t/2

κ S∆t/2
ρ Y0 (4.24)

This scheme is second-order in time, and was used for example in [KNW99,
NWK98b, NK05]. But these methods come with splitting errors: the errors
of the dedicated solvers are intertwined in the computation of Y1. This can
result for example in the fact that the order of the scheme (4.24) is reduced
to 1. However, in [Dua11], it was showed that the global error in (4.24) can
be decoupled from the errors of the subproblems, if we solve these latter with
high-order dedicated methods. We refer to [Dua11] for a much more complete
review of splitting schemes used in the context of reactive flows. The fractional-
step methods described in section 3.2 to solve the incompressible Navier-Stokes
equations can be interpreted as this type of splitting schemes. A general dif-
ficulty that we encounter here again is finding high order splitting methods of
this flavor.

In the recent years, another paradigm has been designed to construct splitting
methods with Runge-Kutta schemes, the so-called additive Runge-Kutta (ARK)
schemes. They consist in tackling problems of the form (4.20), with partitioned
methods composed of an arbitrary number of Runge-Kutta schemes. We saw at
the beginning of section 4.1 that a general s-stage RK method can be completely
identified by its set of real coefficients aij , bi and ci, with i, j = 1, . . . , s. Let us
now consider η s-stage RK methods, each with its own set of coefficients a[ι]

ij ,

b
[ι]
i and c[ι]

i , with i, j = 1, . . . , s and ι = 1, . . . , η. If problem (4.20) has an initial
value u(x0) = u0, a general s-stage additive Runge-Kutta method to determine
an approximation u1 of u(x0 + δt), can be written as [KC03, AMSS97]:

ki = u0 + δt

η∑
ι=1

s∑
j=1

a
[ι]
ij f

[ι]
(
x0 + c

[ι]
j δt, kj

)
i = 1, . . . , s (4.25)

u1 = u0 + δt

η∑
ι=1

s∑
i=1

b
[ι]
i f

[ι]
(
x0 + c

[ι]
i δt, ki

)
(4.26)

The sound theoretical basis of Runge-Kutta methods is particularly appealing
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Order Number of coupling conditions
p = 3 η(η − 1)(3η + 4)/2!
p = 4 η(η − 1)(16η2 + 22η + 24)/3!
p = 5 η(η − 1)(125η3 + 243η2 + 334η + 384)/4!

Table 4.10: Number of coupling conditions as a function of the number of RK schemes
η and the order p, for a general ARK scheme

when trying to design splitting methods, among other reasons because (i) they
allow straigthforward ways to build high-order schemes, (ii) they permit an
easy control of splitting errors and (iii) they offer tools for the stability analy-
sis of additive Runge-Kutta schemes. However, the price paid is an increased
complexity for the construction of efficient additive schemes. We will only illus-
trate this fact here, on the topic of the order conditions. Kennedy & Carpenter
derived in [KC03] the order conditions for a general ARK method (4.26). It
turns out that besides to the classical order conditions that each RK scheme
in (4.26) must satisfy on order to be of order p, their are additional coupling
order conditions that must be fulfilled by the coefficients a[ι]

ij , b
[ι]
i and c[ι]

i , with
i, j = 1, . . . , s and ι = 1, . . . , η, for the ARK method to be of order p. The
number of these coupling conditions grows dramatically with η and p. Table
(4.10) gives the number of coupling conditions as a function of the number
of RK schemes η and the order p, for a general ARK scheme [KC03]. These
conditions must be met with η × s(s+ 1) Butcher coefficients. For the sake of
completeness, we give here all the order conditions for an additive RK scheme
with η = 2 internal RK schemes, for p = 1, . . . , 3 [PR01].
First order: ∑

i

b
[1]
i = 1,

∑
i

b
[2]
i = 1

Second order: ∑
i

b
[1]
i c

[1]
i = 1/2,

∑
i

b
[2]
i c

[2]
i = 1/2,∑

i

b
[1]
i c

[2]
i = 1/2,

∑
i

b
[1]
i c

[2]
i = 1/2

third order: ∑
ij

b
[1]
i a

[1]
ij c

[1]
i = 1/6,

∑
i

b
[1]
i

(
c

[1]
i

)2
= 1/3,

∑
ij

b
[2]
i a

[2]
ij c

[2]
i = 1/6,

∑
i

b
[2]
i

(
c

[2]
i

)2
= 1/3,
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ij

b
[1]
i a

[1]
ij c

[2]
i = 1/6,

∑
ij

b
[2]
i a

[1]
ij c

[2]
i = 1/6,

∑
ij

b
[1]
i a

[2]
ij c

[2]
i = 1/6,

∑
ij

b
[2]
i a

[1]
ij c

[2]
i = 1/6,

∑
ij

b
[2]
i a

[2]
ij c

[1]
i = 1/6,

∑
ij

b
[2]
i a

[1]
ij c

[1]
i = 1/6,

∑
i

b
[1]
i

(
c

[2]
i

)2
= 1/3,

∑
i

b
[1]
i c

[1]
i c

[2]
i = 1/3,∑

i

b
[2]
i

(
c

[1]
i

)2
= 1/3,

∑
i

b
[1]
i c

[2]
i c

[1]
i = 1/3

We see here that up to order 3, and for ARKη method with η = 2, if we
have b[1]

i = b
[2]
i and c

[1]
i = c

[2]
i for i = 1, . . . , s, then there are no coupling

conditions. This observation is actually more general and for an ARKη, if the
different internal RK schemes share the same b[ι]i and c

[ι]
i , with i = 1, . . . , s

and ι = 1, . . . , η, then up to and including order 3, there are no additional
coupling conditions [KC03]. This property greatly simplify the construction of
third-order ARK schemes. In what follows, we will restrict ourselves to the case
η = 2, given the fact that we are concerned with the incompressible Navier-
Stokes equations, and we saw earlier that these equations can be naturally split
into two parts: a stiff linear part, and a nonstiff nonlinear part.

4.3.1 Implicit-explicit Runge-Kutta methods for Hessenberg
index 2 DAEs

We are now concerned with the resolution of equation (4.20), with η = 2 parts:
f [1] is a linear function with some degree of stiffness, and f [2] is a nonlinear
function, that does not need special treatment due to stiffness. We want to use
an ARK to solve this problem, and we consider the commbination of 2 s-stage
RK methods. The method that will be used to solve the stiff part has to fullfill
the different requirements established in section (4.2.1), because our goal is the
resolution of the NS equations. At the very least, this method has then to be
implicit. The method that will be used to solve the nonlinear part must have
an easy implementation: in particular, we do not want to use a Newton solver,
and this is only possible if we use an explicit method. We will resort to an
implicit-explicit Runge-Kutta (IMEX-RK) scheme. Combining an implicit RK
method and an explicit is really advantageous if we use a DIRK scheme for the
IRK, because we decouple the computation of the different stages, and we do
not have to use a nonlinear solver.
Ascher et al.[ARW95] were the first to propose IMEX RK methods of this type.
They were trying to solve efficiently convection-diffusion equations, where the
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0 0 0 . . . 0 0

c2 a21 γ 0 . . . 0

c3 a31 a32 γ 0 0

...
...

...
. . . . . .

...
cs as1 as2 . . . as,s−1 γ

b1 b2 . . . bs−1 bs

Table 4.11: Butcher array of a general ESDIRK method

stiffness came from the linear diffusion processes. They designed a 4-stage, 3-
order, L-stable and stiffly accurate ARK method, where the implicit part was a
3-stage SDIRK method, that was cast into a 4-stage DIRK by padding it with
zeroes. Later Pareschi & Russo [PR01], while studying IMEX RK methods of
this type, with special care for their accuracy and stability properties, showed
that the 3-order ARK scheme of Ascher et al.could exhibit order reduction
depending on the stiffness of the problem at hand. This is not surprising, given
the fact that SDIRK methods have a stage order of 1, and we showed in section
(4.2.1) that this parameter was crucial to obtain high-order schemes in the limit
cases of Hessenberg index 2 DAEs.
We already know that we cannot obtain a 3-order scheme to solve this type
of DAEs with a method exhibiting a stage order of 1, so we cannot use IMEX
RK schemes which implicit part is an SDIRK. Hence the first task consists in
finding DIRK methods with greater than one stage order.

4.3.2 Third-order ESDIRK schemes

The classical way to improve the stage order of SDIRK methods is to add a first
explicit stage [KC16, WBCK02]. These methods were designated bythe name
ESDIRK, which stands for Explicit Singly Diagonally Runge-Kutta. Their
Butcher array thus takes the general form of table (4.11).
We want to use such a method to obtain a 3-order solution in the differential
variable of a Hessenberg index 2 DAE. We already know that for an s-stage
DIRK method, its order is at most s + 1, so we directly look for a 4-stage
ESDIRK scheme, and we want it to be stiffly accurate, so that the method we
are looking for takes the specific form of table (4.12).
Williams et al. derived in [WBCK02] the general solutions for such a method
to be 3-order in the differential variable for both index 1 and index 2 DAEs,
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0 0

c2 a21 γ

c3 a31 a32 γ

1 b1 b2 b3 γ

b1 b2 b3 γ

Table 4.12: Butcher array of a 4-stage, stiffly accurate ESDIRK method

and 2-order accurate for the algebraic variable. If we denote:

c = (0, c2, c3, 1)t, ĉ = (c2, c3, 1)t

b = (b1, b2, b3, γ)t, b̂ = (b2, b3, γ)t

A = (aij)i,j=1,...,4, Â = (aij)i,j=2,...,4

then the order conditions our coefficients have to satisfy are [WBCK02]:

Ack−1 =
ck

k
k = 1, 2 (4.27a)

btck−1 =
1

k
k = 1, 2, 3 (4.27b)

b̂
t
Â
−1

ĉk−1 = 1 k = 1, 2, 3 (4.27c)

b̂
t
Â
−2

ĉk−1 = k k = 1, 2, 3 (4.27d)

and the general solutions are given by (4.28).

a21 = γ, c2 = 2γ (4.28a)

c3 =
2γ(γ − 1

4)(γ − 1)

(γ − 1
2)2 − 1

12

(4.28b)

a31 = c3 − a32 − γ, a32 =
c3(c3 − 2γ)

4γ
(4.28c)

b1 = 1− b2 − b3 − γ (4.28d)
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0 0

c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

Table 4.13: Butcher array of a 4-stage, ERK method

b2 =
1
3 − γ + 1

2c3 + γc3

2γ(2γ − c3)
, b3 =

1
3 − 2γ(1− γ)

c3(c3 − 2γ)
(4.28e)

where we assume that c3 6= 0, c3 6= 2γ and of course γ 6= 0.
The stability function of such a method is:

R(z) =
(−γ3 + 3γ2 − 3

2γ + 1
6)z3 + (3γ2 − 3γ + 1

2)z2 + (−3γ + 1)z + 1

(1− zγ)3
(4.29)

And we deduce from this that the method is A-stable if and only if γ ∈ [1
3 , θ],

where θ ' 1.06857902 is the largest zero of the Laguerre polynomial 1
24 −

1
2x+

3
2y

2 − y3 [WBCK02]. L-stability occurs at γ ' 0.4358665215. So we have
some flexibility in the choice of the diagonal term, and we can play with this
to construct high-order ARK methods for solving the incompressible Navier-
Stokes equations.

4.3.3 Derivation of the explicit Runge-Kutta scheme for the
convection

Our last task is to find the corresponding ERK scheme for the convective part
in the NS equations. The general Butcher array of a 4-stage ERK scheme is
given by table (4.13).
Hairer et al.derived in [HNW87] the equations that such coefficients have to be
solutions to in order for the resulting ERK scheme to be of order 4. We report
them here (4.30).

b1 + b2 + b3 + b4 = 1 (4.30a)

b2c2 + b3c3 + b4c4 = 1/2 (4.30b)

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1/3 (4.30c)
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b2c
3
2 + b3c

3
3 + b4c

3
4 = 1/4 (4.30d)

b3c3a32c2 + b4c4(a42c2 + a43c3) = 1/8 (4.30e)

b3a32 + b4(a42 = b2(1− c2) (4.30f)

b4a43 = b3(1− c3) (4.30g)

0 = b4(1− c4) (4.30h)

ci =
i−1∑
j=1

aij i = 1, . . . , 4 (4.30i)

We would like to use the same ci and bi coefficients corresponding to the ES-
DIRK method, in order to have zero coupling conditions for the corresponding
ARK method to attain a third order scheme for ODEs. This is made possible
by the following proposition:

Proposition 4.3.1. Let (bi)i=1,...,4, (ci)i=2,...,4, and a21, a31, a32, a41, a42 and
a43, be the real coefficients of a general 4-stage ERK method with:

1. b4 = γ 6= 0, c4 = 1, c2 and c3 are the functions of γ given respectively by
(4.28a, 4.28b), and we assume that c3 6= 0, c3 6= 1 and c3 6= γ.

2. b1, b2 and b3 are the functions of γ given by (4.28d, 4.28e)

3. a43 = b3(1−c3)
γ

4. a32 = 1
b3γc2(1−c3)

((
c2b2(1− c2)− 1

8

)
γ + a43c3γ

2

)

5. a42 = 1
b3γc2(1−c3)

(
− b3c3c2b2(1− c2)− a43c3b3γ + 1

8b3

)
6. a21 = c2

7. a31 = c3 − a32

8. a41 = 1− a43 − a42

Then this ERK method is 4th-order.
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Proof. The first two items mean that the bi and ci coefficients satisfy the order
conditions (4.27). In particular, they satisfy the conditions (4.27b), which are
exactly the conditions (4.30a–4.30d).
c4 = 1, so that condition (4.30h) is also satisfied. The expression of a43 in item
3 above shows that condition (4.30g) is satisfied.
Once coefficient a43 is determined, the conditions (4.30e, 4.30f) are a linear
system for the unknowns a32 and a42; the determinant of this system is given
by b3γc2(1 − c3) which is different from zero by item 1. This system then has
a unique solution, which is given by items 4 and 5. Finally, by items 6, 7 and
8, conditions (4.30i) are also met, which concludes the proof.

Thus we can build a third order in the velocity implicit-explicit Runge Kutta
scheme with a 4-stage ARKmethod. If we apply such a method to the equations
(3.1), we end up with the resolution of 3 linear systems, whose matrix is the
same (in the case d = 2 as in section (4.2.2)): 1

δtΓ− γνL1 0 −γDt
1

0 1
δtΓ− γνL2 −γDt

2

D1 D2 0

 (4.31)

Again, a saddle-point matrix.

4.3.4 Numerical simulations

After different trials and errors, we found that the ESDIRK scheme proposed by
Williams et al. in [WBCK02], when combined to an ERK method built with the
features explicited in (4.3.1), produces an ARK method that reaches 3rd-order
accuracy for the velocity. We denote this ESDIRK scheme ESDIRK3(2I)4SA,
following the nomenclature of [KC16]: it is a 3rd-order method in the differential
variables, and at least 2nd-order in the algebraic variable when applied to a
index 2 Hessenberg DAE, which is stiffly accurate and A-stable, with a stage-
order of 2. Its diagonal term is γ = 1

2 . Table (4.14) gives the coefficients of this
method, and Table (4.15) gives the coefficients of the associated ERK method.
We denote our new ARK method ARK − ESDIRK3(2I)4SA.
We check the order of this ARK scheme with the lid-driven cavity case described
in section (4.2.3). We compute a quasi-exact solution at time t = 5.0 with a very
small timestep (with the ARK method), we compare this solution with solutions
obtained at the same final time, but with larger timesteps. All the computations
are made on a uniform grid, with a grid level of 7 (128×128). Figures (4.8), (4.9)
and (4.10) represent the order of accuracy of the ARK − ESDIRK3(2I)4SA
method for the horizontal component of the velocity, the vertical one and the
pressure, respectively. We reach 3rd-order accuracy for both the velocity and
the pressure in this case.
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0 0

1 1
2

1
2

3
2

5
8

3
8

1
2

1 7
18

1
3 −

2
9

1
2

7
18

1
3 −

2
9

1
2

Table 4.14: Butcher array for the ESDIRK3(2I)4SA method

0 0

1 1
3
2

9
8

3
8

1 11
18

3
18

2
9

7
18

1
3 −2

9
1
2

Table 4.15: Butcher array for the ERK − ESDIRK3(2I)4SA method
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Figure 4.8: Lid-driven cavity. Temporal order of accuracy for the ARK −
ESDIRK3(2I)4SA method; horizontal component of the velocity
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Figure 4.9: Lid-driven cavity. Temporal order of accuracy for the ARK −
ESDIRK3(2I)4SA method; vertical component of the velocity
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Figure 4.10: Lid-driven cavity. Temporal order of accuracy for the ARK −
ESDIRK3(2I)4SA method; pressure
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4.4 Half-explicit Runge-Kutta methods

4.4.1 HERK schemes for Hessenberg index 2 DAEs

The last numerical method to integrate the semi-discretized Navier-Stokes equa-
tions that we experimented takes even further the idea of treating explicitly the
terms in the equations that are not directly responsible for their DAE structure.
Hessenberg index 2 DAE systems (3.5a, 3.5b) have a semi-explicit structure that
allows to treat the differential variable in an explicit manner, and the algebraic
variable in an implicit manner. In our case, it means that we treat the con-
vection and the diffusion in the momentum equations in an explicit form, and
only treat the pressure in an implicit form. These type of RK methods are
called half-explicit Runge-Kutta methods [HLR89], because they rely on ERK,
but with a slight modification to treat the algebraic variable implicitly. Hairer,
Lubich and Roche proposed in [HLR89] the following implementation of the
method to the problem (3.5a, 3.5b), to obtain u1 and v1 from initial consistent
values u0 and v0:

Ui = u0 + δt

i−1∑
j=1

aijf(Uj , Vj), i = 1, . . . , s (4.32a)

0 = g(Ui) (4.32b)

u1 = u0 + δt

s∑
i=1

bif(Ui, Vi) (4.32c)

0 = g(u1) (4.32d)

The value v1 can be obtained from the hidden constraint (3.5c)
U1 is u0, and satisfies (4.32b) because we assumed that the initial values were
consistent. From then we insert U2 in (4.32b), which gives us a nonlinear
equation for V1, that has a unique solution if a21 6= 0, and the assumption that
gu(u)fv(u, v) is nonsingular for all x is satisfied. We obtain V1 and u2, and we
use the same procedure to compute the next stages. Existence and uniqueness
of the solution are ensured more generally if ai,i−1 6= 0 for i = 2, . . . , s, bs 6= 0
and the usual assumption about gu(u)fv(u, v) is satisfied [HW96].
In this way, we can apply any ERK methods to solve the NS equations, but of
course we have additional order conditions to obtain high-order methods. The
main result of convergence was established for example in [HLR89], and it says
the following:

Theorem 4.4.1 (Convergence for the u-component). Suppose that gu(u)fv(u, v)
is nonsingular in a neighborhood of the solution (u(x), v(x)) of (3.5a, 3.5b), and
that the initial values are consistent. If the Runge-Kutta coefficients are such
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0 0
1
3

1
3

2
3 0 2

3

1
4 0 3

4

Table 4.16: Butcher array for the Heun method

that ai,i−1 6= 0 for i = 2, . . . , s and bs 6= 0, and the local error satisfy:

δu = O(δtr), P (x)δu = O(δtr+1)

with P (x) given by (4.15), then the method (4.32) is convergent of order r,
, i.e.:

un − u(xn) = O(δtr), for xn = nδt ≤ Const.

The only delicate part in the application of such methods to the NS equations
is that we have to solve s linear systems for the pressure, with the same matrix
D1Γ−1Dt

1 + D2Γ−1Dt
2 (in the case d = 2). This linear system is a variant of

the classical Poisson equation, and in our case it is much easier to invert this
matrix than to invert the matrices of the two preceding methods. But since we
treat explicitly the diffusion, we have more stringent stability constraints than
for the Radau IIA and the IMEX RK schemes, and we will have to determine
for each particular case study which one of these 3 methods is the more efficient
in terms of global computational effort.

4.4.2 Numerical simulations

We test here the convergence properties of the 3-stage, 3rd-order ERK method
designed by Heun, and which coefficients are given by Table (4.16).
We check the order of the Heun method with the lid-driven cavity case de-
scribed in section (4.2.3). We compute a quasi-exact solution at time t = 5.0
with a very small timestep (with the ARK method), we compare this solution
with solutions obtained at the same final time, but with larger timesteps. All
the computations are made on a uniform grid, with a grid level of 7 (128×128).
Figures (4.11), (4.12) and (4.13) represent the order of accuracy of the Heun
method for the horizontal component of the velocity, the vertical one and the
pressure, respectively. We reach 3rd-order accuracy for both the velocity and
the pressure in this case.

Thus we end up with three numerical integration schemes that are 3rd-order in
the velocity variables when applied to the incompressible Navier-Stokes equa-
tions. They have very different implementation specificities, and depending
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Figure 4.11: Lid-driven cavity. Temporal order of accuracy for the herk method;
horizontal component of the velocity
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Figure 4.12: Lid-driven cavity. Temporal order of accuracy for the herk method;
vertical component of the velocity
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Figure 4.13: Lid-driven cavity. Temporal order of accuracy for the herk method;
pressure

on the application, one could prefer a specific scheme to the others. We will
give some elements regarding the comparison of these three schemes in Chapter
6.



Chapter 5

Description of the space
adaptive multiresolution
implementation in the mrpy
code

We will describe in this chapter the practical implementation of the adaptive
multiresolution strategy presented in Chapter 1. We will only mention three
of the general issues we need to overcome for a proper implementation of the
multiresolution analysis. First, since we eventually end up with non-uniform
adaptive grids, it is more challenging to obtain the mesh connectivity, that
is, to determine the neighboring cells of each cell in each direction. Then,
the multiresolution analysis requires inter-level operations between meshes at
different grid levels, so that our data storage solution should be able to give us
access to the tree-structured data of nested grids described in section (1.3.3).
Finally, we need an easy way to add and delete cells as the grid moves to
adapt to the numerical solution of the PDE at hand. We chose to solve these
problems by encoding the nested grids into a space-filling curve, and we store
the cells data with hashtables. We implement this strategy with the dict

data-structure object of Python. We will give more details regarding the code
structure at the end of the chapter, but we start with the desciption of the
multiresolution operations, assuming that the data structure gives us full access
to the information needed to perform them. The algorithms described here are
largely based on a tutorial that have been elaborated for a Summer School of
CNRS GDR Groupe Calcul, on Multiresolution and Adaptive Mesh Refinement
Methods, Fréjus, France (2010) [TD11a].
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5.1 Multiresolution Operations

We assume that we want to perform the adaptive multiresolution strategy on a
function u(t,x) : R×Ω→ R, that depends on the time variable t, and is defined
for x ∈ Ω, an open bounded domain of Rd, where the space dimension d can take
the values 1, 2 or 3. For simplicity, we will only consider embedded Cartesian
grids, and we assume that Ω is either an interval in 1D, has rectangular shape
in 2D or parallelepipedic shape in 3D. We define L to be the finest grid level
necessary to properly approximate u by piecewise constant functions on Ω, and
for grid levels l = 0, 1, . . . , L, we define the partition Ωl of Ω by 2dl meshes
K l
γ of equal size, as in section (1.1.1). The meshes K l

γ are the control volumes
in the Finite-Volume terminology. The partition is designed so that the set of
grids possesses the ladder property: for l 6= L, for each cell K l

γ ∈ Ωl there exists
a unique set of 2d cells K l+1

µ ∈ Ωl+1 so that:

K l
γ =

⊔
K l+1
µ

We can associate to each grid Ωl a subspace Vl of L2(Ω) consisting of the
piecewise constant functions on this partition. Then we denote by Ul := (ulγ)
the best approximation of u in Vl for the canonical norm of L2(Ω):

ulγ := |K l
γ |−1

∫
Kl
γ

u(t,x) dx, x ∈ Rd. (5.1)

where:
|K l

γ | =
∫
Kl
γ

dx, x ∈ Rd

is the Lebesgue measure of K l
γ . We saw in section (1.3.3) that we can associate

to the multiresolution transform of u a (graded) tree Λ whose nodes are the
cells K l

γ necessary to obtain the multiresolution analysis of u. The root of this
tree is the node at level l = 0, and for each node K l

γ with l 6= L, its children
are the nodes 2d cells K l+1

µ ∈ Ωl+1 that form a partition of K l
γ . We denote

by Clγ the index set of the children-cells of K l
γ , and we denote by Il the index

set of the nodes in Λ that belong to the level l. The leaves L(Λ) of the tree
are, at any time in the computation process, a hybrid partition of Ω that is the
adaptive grid generated by the adaptive multiresolution strategy that best fits
u. We denote by UL(Λ) the piecewise approximation of u on L(Λ).

5.1.1 Projection and prediction operators

The first operations to perform the multiresolution transform are the projection
and the prediction. We consider that we initially have the approximation of u
on the leaves of the tree, which is the most precise approximation on our grid.
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We first compute the cell-averages of u on the successive coarser grids, until we
reach the root cell Ω0. For K l

γ a cell that is not a leaf, if we know the values
ul+1
µ on the cells K l+1

µ for µ ∈ Clγ , we can compute ulγ by the following formula:

P jj−1 : ulγ =
1

|K l
γ |
∑
µ∈Clγ

|K l+1
µ |ul+1

µ (5.2)

Then, for each cell K l
γ that is not a leaf, we compute the predicted values ûl+1

µ

for µ ∈ Clγ with the centered polynomial interpolations defined in Chapter 1,
depending on their accuracy order N = 2M +1 that can be chosen by the user.
We will recall briefly here the different formulas. The index γ of the cell K l

γ

on the grid Ωl is an integer k if d = 1, a pair (j, k) of integers if d = 2, and a
triplet (i, j, k) of integers if d = 3. The predited values are then:

ûl+1
2k = ulk1 +

M∑
d1=1

ξd1

(
ulk+d1 − u

l
k−d1

)
,

ûl+1
2k+1 = uj,k1 −

M∑
d1=1

ξd1

(
ulk+d1 − u

l
k−d1

)
,


(5.3)

in 1D, by:

ûl+1
2j+p,2k+q = ulj,k + (−1)pQM (j, ul·,k) + (−1)qQM (k, ulj,·)

− (−1)(p+q)QM2 (j, k, ulj,k), (5.4)

in 2D, and by:

ûl+1
2i+p,2j+q,2k+r) = uli,j,k + (−1)pQM (i, ul·,j,k) + (−1)qQM (j, uli,·,k)

+ (−1)rQM (k, uli,j,·))

− (−1)(p+q)QM2 (i, j, ul·,·,k)

− (−1)(p+r)QM2 (i, k, ul·,j,·)

− (−1)(q+r)QM2 (j, k, uli,·,·)

+ (−1)(p+q+r)QM3 (i, j, k, uli,j,k), (5.5)

in 3D, where the coefficients ξ are taken from the table (1.1), and the expres-
sions QM , QM2 and QM3 are given respectively by the equations (1.65), (1.67)
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and (1.68).
With the projection and prediction inter-level operators, we can encode the
multiresolution transform M defined by (1.52), to the finest representation u
on the leaves of Λ. It is a change of basis, that gives us the details vectors.
Algorithm 5.1 describes how we do this transformation.

Algorithm 5.1 Encoding by multiresolution transformM

1: Input: UL(Λ) given by cell-averaged values ulγ such that the cells K l
γ are

in L(Λ).
2: for l = L− 1→ 0 do
3: for γ ∈ Il s.t. K l

γ is not a leaf do
4: Compute the cell-average ulγ at grid level l, from the values ul+1

µ for
µ ∈ Clγ by using the projection operator P jj−1 (5.2).

5: Compute the predicted values ûl+1
µ for µ ∈ Clγ by the polynomial inter-

polations (5.3), (5.4), or (5.5), and the corresponding details defined
by (1.48): dl+1

µ = ul+1
µ − ûl+1

µ .
6: Save details in the array Dl

γ

7: Encode the solution by replacing (ul+1
µ )µ∈Clγ by (ulγ ,D

l
γ).

8: end for
9: end for

10: Output: ML(Λ) = (u0,D0
γ ,D

1
γ , . . . ,D

L−1
γ )

With this new data representation on the wavelet space, the details in Dl
γ

account for the local spatial smoothness in the solution. A decoding procedure
is necessary to retrieve the representation on the physical space of the variables.
The latter is done by means of the inverse multiresolution transform M−1,
following the Algorithm 5.2.
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Algorithm 5.2 Decoding by inverse multiresolutionM−1

1: Input: ML(Λ) = (u0,D0
γ , . . . ,D

L−1
γ ) of size #(L(Λ)), given by the repre-

sentation on the coarsest grid: u0, and the set of detail arrays: (D0
γ , . . . ,D

L−1
γ ).

2: for l = 0→ L− 1 do
3: for γ ∈ Il s.t. K l

γ is not a leaf do
4: Compute for each ulγ , 2d predicted ûl+1

µ such that µ ∈ Clγ , by the
polynomial interpolations (5.3), (5.4), or (5.5), and the corresponding
ul+1
µ by (1.48): ul+1

µ = ûl+1
µ + dl+1

µ .
5: Save ul+1

µ in the array Ul+1.
6: Decode the solution by replacing (ulγ ,D

l
γ) by (ul+1

µ )µ∈Clγ .
7: end for
8: end for
9: Output: UL(Λ) of size #(L(Λ)), given by cell-averaged values ulγ s.t. the

cells K l
γ are in L(Λ)

5.1.2 Thresholding and predictive refinement

Once we have encoded all the details by the multiresolution transform of u,
we perform the thresholding operation defined in section (1.3.3). We first set
a thresholding parameter ε, (this parameter is completely user-defined), and
the goal of this operation is to build a set Λε ⊂ Λ, obtained by deleting nodes
in Λ according to a thresholding process as (1.70). If we denote by TΛε the
truncation operator that corresponds to this thresholding process, we then build
the approximation AΛε UL(Λ) of UL(Λ), where

AΛε :=M−1TΛεM.

so that:

‖UL(Λ) −AΛεUL(Λ)‖L2 ≤ Cε, (5.6)

For K l
γ ∈ Λ which is not a leaf, we define the detail vector dlγ := (dl+1

µ )µ∈Clγ ,
and we introduce the following discrete `2-norm:

‖dlγ‖`2(Kl
γ) = 2−d/2

∑
µ∈Clµ

(dl+1
µ )2

1/2

(5.7)

Next, we define the level-dependent threshold values εl, for 0 ≤ l ≤ L− 1, by:
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εl = 2
d
2

(l−L)ε, l ∈ [1, L], (5.8)

and we define the truncation operator TΛε , for a node K l
γ ∈ Λ, by:

for µ ∈ Clγ , K l+1
µ ∈ Λε if ‖dlγ‖`2(Kl

γ) ≥ εl (5.9)

It can be shown that with such a truncation operator, the approximation
AΛε UL(Λ) of UL(Λ) verifies (5.6) (see for example [Dua11]). Now if we draw
an analogy with the AMR methods presented in section (1.1.2), we can see
that we have built a coarsen operation. What about the refine operation?
We will consider that u(t,x) is solution to a general Partial Differential Equa-
tion, that can be written in the following form:

∂u

∂t
= F (u) (5.10)

We discretise the timeline into time steps (for example with tn = n δt, where
δt is a fixed stepsize), and we denote by (Eδt) the discrete evolution opera-
tor relating the solution at two consecutive time steps: un+1 = Eδt u

n. Let
Λn+1
ε be the set of nodes obtained by applying the truncation operator (5.9)

to the linear approximation Un+1
ΩL

of un+1 on the finest grid. If the solution
slowly evolves from one time step to another, then we can assume that Λn+1

ε

is close to Λnε . More specifically, we make the hypothesis that un+1 might re-
quire finer meshes that un in some part of the domain, but only by one level.
This means that we might need to refine some of the leaves in Λ, but only by
one level. We will perform this operation by using one of Harten’s heuristics
[Har94b, Har94a, Har95]. Let K l

γ be a leaf of Λ, so that l 6= L. We could
decide whether this node needs refinement by comparing ‖dlγ‖`2(Kl

γ), computed
with the mean values of un+1, to εl. But we do not have this information, by
definition. So we are going to approximate ‖dlγ‖`2(Kl

γ) by 2−p‖dl−1
ν ‖`2(Kl−1

ν ),
where K l−1

ν is the parent-cell of K l
γ , and p is a user-defined parameter, that

is generally set to p = 2M + 2, where M is the prediction stencil used in the
polynomial interpolations (5.3), (5.4), or (5.5) [TD11a, Dua11, CKMP03]. We
then enlarge Λε with the following criterion. For a node K l

γ ∈ Λ, so that K l
γ is

a leaf and l 6= L:

for µ ∈ Clγ , K l+1
µ ∈ Λε if ‖dl−1

ν ‖`2(Kl−1
ν ) ≥ 22pεl (5.11)

where K l−1
ν is the parent-cell of K l

γ . If needed, we re-create the cells K l+1
µ , and

we compute their values from the polynomial interpolations (5.3), (5.4), or (5.5),
applied to the mean values of un. Algorithm (5.3) illustrates the two operations
described above. We do not suppress the cells that should be discarded by (5.9)
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at this point. Instead, for each cell K l
γ ∈ Λ, we introduce a binary flag tlγ which

indicates whether the cell K l
γ is kept throughout the adaptive multiresolution

process. Initially, tlγ = .false., except for l = 0 , i.e.t0γ = .true..
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Algorithm 5.3 Thresholding and predictive refinement.

1: Input: ML(Λ) = (u0,D0
γ , . . . ,D

L−1
γ ) of size #(L(Λ)), given by the repre-

sentation on the coarsest grid: u0, and the set of detail arrays: (D0
γ , . . . ,D

L−1
γ ).

2: We choose a value of the threshold parameter ε;
3: We initiate a binary flag, tlγ , that marks if the node K l

γ belongs or not to
the set Λε:

• the root belongs to Λε, t0 = .true.;

• all the other cells are set to .false.: tlγ = .false., ∀l ∈ [1, L] and
∀γ ∈ Il

4: for l = L− 1 down to 0 do
5: Evaluation of the level-dependent threshold value εl = 2

d
2

(l−L)ε
6: for γ ∈ Il s.t. K l

γ is not a leaf do
7: if ‖dlγ‖`2(Kl

γ) ≥ εl then
8: for µ ∈ Clγ do
9: tl+1

µ = .true.⇒ K l+1
µ ∈ Λε.

10: end for
11: end if
12: if ‖dlγ‖`2(Kl

γ) ≥ 2(2p)εl then
13: for µ ∈ Clγ do
14: tl+1

µ = .true.⇒ K l+1
µ ∈ Λε.

15: for υ ∈ Cl+1
µ do

16: tl+2
υ = .true.⇒ K l+2

υ ∈ Λε.
17: end for
18: end for
19: end if
20: end for
21: end for

5.1.3 Graduation and pruning

The two last operations are the graduation of Λε and its subsequent pruning.
We want to build a tree Λ̃ε, containing Λε, so that for each cell K l

γ ∈ Λ̃ε,
the cells in its prediction stencil RKl

γ
are also in Λ̃ε. We recall for l 6= 0, the

prediction stencil is composed of all the cells needed to perform the polynomial
interpolation in the cell K l

γ , by formulas (5.3), (5.4), or (5.5). The algorithmic
implementation is straightforward, and is given by algorithm 5.4.
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Algorithm 5.4 Graduation of the tree structure

1: Input: ML(Λ) = (u0,D0
γ , . . . ,D

L−1
γ ) of size #(L(Λ)), given by the repre-

sentation on the coarsest grid: u0, and the set of detail arrays: (D0
γ , . . . ,D

L−1
γ ).

We assume that the binary flags tlγ have alerady been initialized and mod-
ified (by the thresholding and refinement processes for example).

2: for l = L− 1 down to 0 do
3: for γ ∈ Il do
4: if tl+1

µ = .true. for any µ ∈ Clγ then
5: for K l

ν ∈ RKl+1
µ

do

6: tlν = .true.⇒ K l
ν ∈ Λ̃ε

7: end for
8: end if
9: end for

10: end for

We add that if new cells are created by the graduation, we approximate their
real value by the polynomial interpolation, as we do for the predictive refine-
ment. Eventually, the final step summarized in Algorithm 5.5 deletes com-
pletely all cells that are not included in the thresholded, refined and graded
tree Λ̃ε.

Algorithm 5.5 Pruning of superfluous cells.

1: Input: ML(Λ) = (u0,D0
γ , . . . ,D

L−1
γ ) of size #(L(Λ)), given by the repre-

sentation on the coarsest grid: u0, and the set of detail arrays: (D0
γ , . . . ,D

L−1
γ ).

We assume that the binary flags tlγ have alerady been initialized and mod-
ified (by the thresholding, refinement and processes for example).

2: for l = L down to 1 do
3: for K l

γ ∈ λ̃ε do
4: if tlγ = .false. then
5: Delete K l

γ .
6: end if
7: end for
8: end for
9: Output: ML(Λ) = (u0,D0

γ ,D
1
γ , . . . ,D

L−1
γ ) of size #(L(Λ̃ε
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5.2 A new multiresolution scheme for incompressible
flows

The goal of this part is to present the global strategy we designed in order to
couple the fully adaptive finite volume scheme [CKMP03] to a resolution of
the incompressible Navier-Stokes equations. We already built the spatial dis-
cretization scheme required to this task on hybrid grids as the ones produced
by the adpative multiresolution in chapter 1. We also built high-order Runge-
Kutta methods able to efficiently tackle the DAE resulting from the spatial
discretization of the incompressible flow equations in chapter 4. Before pre-
senting the full solver, we mention some of the difficulties that appear when we
apply the multiresolution strategy in this context, and how we overcame them
in the mrpy code.

5.2.1 Data Initialization

We start by recalling the general problem setup. We consider an incompressible
flow described by the velocity vector u(x, t) = (ui(x, t))i=1,...,d and the pressure
field p(x, t). The time variable t varies between 0 and T . The space variable
x belongs to an open-bounded domain Ω ∈ Rd. We consider that Ω has a
rectangular (resp. rectangular parallelepiped) domain, Ω = ]0, bx[ × ]0, by[ in
2D (resp. Ω = ]0, bx[× ]0, by[× ]0, bz[ in 3D, with (bx, by, bz) ∈ R∗+). We denote
∂Ω = Ω\Ω its boundary. We define, for l ∈ N∗, the uniform discretization of Ω
as follows:

Ωl = { ]2−lbxi, 2
−lbx(i+ 1)[× ]2−lbyj, 2

−lby(j + 1)[

| i, j ∈ {0, 1, . . . , 2l − 1}}
K l
i,j = ]2−lbxi, 2

−lbx(i+ 1)[× ]2−lbyj, 2
−lby(j + 1)[

(5.12)

in 2D, and:

Ωl = { ]2−lbxi, 2
−lbx(i+ 1)[× ]2−lbyj, 2

−lby(j + 1)[× ]2−lbzk, 2
−lbz(k + 1)[

| i, j, k ∈ {0, 1, . . . , 2l − 1} }
K l
i,j,k = ]2−lbxi, 2

−lbx(i+ 1)[× ]2−lbyj, 2
−lby(j + 1)[× ]2−lbzk, 2

−lbz(k + 1)[
(5.13)

in 3D, where the K l
γ are identical meshes of Ωl, the uniform discretization of

Ω at level l.
The flow momentum and mass balance equations read:

∂u

∂t
+∇ · (ut ⊗ u) +∇p− ν∆u = f in Ω × ]0, T [

∇ · u = 0 in Ω × ]0, T [
(5.14)
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with a homogeneous Dirichlet boundary condition for u and the initial condi-
tion:

u(·, 0) = uini in Ω

where ν is the cinematic viscosity of the fluid and f is the vector of the source
term. We make the following assumptions:

1. T is the finite duration of the flow,

2. ν ∈ ]0,+∞[,

3. uini ∈ L2(Ω)d

4. f ∈ L2(Ω× ]0, T [)d.

We divide the time interval into N equally spaced timesteps, t0 = 0, t1 =
h, t2 = 2h, . . . , tn = nh, · · · tN−1 = T , where h is the temporal stepsize. The
subsequent grids Ωl are embedded, so that we can still associate a tree Λ to the
union of grids. At each timestep tn, we make sure that the information relative
to the velocity and pressure variables are encoded into a graded tree. We
define mean values (ul,ni,γ)i=1,...,d and p

l,n
γ , that correspond to the approximations

of the velocity and pressure variables respectively, at timestep tn, into the
mesh K l

γ . (Uni,L(Λ))i=1,...,d and PnL(Λ) are the approximations of the velocity and
the pressure respectively, at timestep n, on the leaves L(Λ), which represent
the adaptive grid where we solve numerically (5.14). At the beginning of the
computation, we assume that we can set a value L for most refined grid level, so
that the meshes on ΩL can capture all the spatial scales of u(x, t) for t ∈ [t0, T ].
We discretize uini on ΩL. However, it can occur that this initial value does
not present the full range of spatial scales of the flow, and this is why we
perform few iterations of the numerical solver on the grid ΩL, before applying
the multiresolution transform. In most of our cases, 5 inital solver iterations
are enough.

5.2.2 Adaptive Multiresolution Algorithm

Based on the previous algorithms, the complete adaptive multiresolution scheme
is implemented following the Algorithm 5.6. We only perform the multiresolu-
tion adaptation with regard to the velocity variables (we established in chapter
3 that they were the relevant variables regarding the spatial topology of the
flow, while the pressure variable is essentially required to satisfy the divergence-
free constraint). We perform thresholding and predictive refinement operations
on the d components of the velocity, and we keep any of the nodes that are set
to .true. by any of these components.
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Algorithm 5.6 Fully adaptive multiresolution scheme.

1: INITIALIZATION:
2: Define: set of grid levels [0, L], threshold value ε, dimension of the problem
d, interpolation stencil M , computational domain Ω ⊂ Rd, time domain of
integration t ∈ [t0, T ], the time until which the solution is computed only
on the uniform grid t1.

3: for l = 0→ L do {Create initial set of grids}
4: Create successive dyadic embedded partitions Ωl of Ω
5: end for
6: Compute (ULi,γ)i=1,...,d at uniform grid level L, following (5.1), from the

initial continuous value uini
7: Advance the solution from t = t0 to t = t1 on the uniform grid.
8: t = t0 and n = n0.
9: Input: (Un0

i,L(Λ))i=1,...,d of size d × #(L(Λ)) = d × 2dL, and Pn0

L(Λ) of size
#(L(Λ)) = 2dL, given by cell values on the finest grid ΩL, after n0 iterations
of the numerical Navier-Stokes solver

10: LOOP IN TIME:
11: while t ≤ T do
12: Encode values from the leaves to the root of the tree, and compute the

details, by multiresolution transformM with Algorithm 5.1.
13: Apply the thresholding and predictive refinement algorithm 5.3 to the d

components of the velocity; set to .true. the binary flag of a cell if at
least one of components of the velocity keeps it in its set Λε

14: Build a graded tree Λ̃ε thanks to Algorithm 5.4
15: Delete superfluous cells in Λ̃n+1

ε with Algorithm 5.5
16: Compute the missing values in newly created cells if needed, especially

for the pressure variable
17: Decode values by inverse multiresolution transformM−1 with Algorithm

5.2, to obtain (Un
i,L(Λ̃n+1

ε )
)i=1,...,d and Pn

L(Λ̃n+1
ε )

, on the leaves of the new
adaptive tree

18: Time integration of the solution on the leaves of the tree: (Un
i,L(Λ̃n+1

ε )
)i=1,...,d →

(Un+1

i,L(Λ̃n+1
ε )

)i=1,...,d P
n
L(Λ̃n+1

ε )
→ Pn+1

L(Λ̃n+1
ε )

, n→ n+ 1, and t→ t+ h.
19: end while
20: t = T and n = N − 1.
21: Output:

(
UN−1

i,L(Λ̃N−1
ε )

)
i=1,...,d

and PN−1

L(Λ̃N−1
ε )
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5.3 Basic Code Implementation

We wrote the mrpy code to implement the adaptive multiresolution strategy in
the Python programming language. As stated at the beginning of this chapter,
we essentially used two ingredients for this implementation: hashtables and
space-filling curves. If we consider a set of embedded dyadic grids as the one
described by (5.12, 5.13), then each node of the tree associated to this represen-
tation can be uniquely identified by its level l and its index tuple γ in the grid
Ωl. In 3D for example, the node K l

i,j,k can be identified by the tuple (l, i, j, k).
We decided to take advantage of this fact by associating to the node K l

i,j,k the
unique key given by the following z-curve-index function:
1 cpdef int z_curve_index(int dimension , int level ,
2 int index_x=0, int index_y=0, int index_z =0):
3
4 return int ((((2** dimension )**( level) - 1) /
5 (2** dimension - 1) +
6 index_x +
7 index_y * 2** level +
8 index_z * 2** level * 2** level))

In this way, we can identify each node with a unique integer, with minimal
memory cost. Then it is easy to establish the connectivity of the node K l

i,j,k.
Its neighbors are the nodes K l

i±1,j,k, K
l
i,j±1,k and K l

i,j,k±1. We can associate a
list of children pointers to this node, which consists of the z-curve-index of
its children:
1 def create_children_pointers(cell , dimension , level ,
2 index_x=0, index_y=0, index_z =0):
3
4 if dimension == 1:
5 foo = []
6 for m in range (2):
7 foo.append(z_curve_index(dimension , level + 1,
8 2* index_x + m))
9

10 cell.children = foo
11
12 elif dimension == 2:
13 foo = []
14 for n in range (2):
15 for m in range (2):
16 foo.append(z_curve_index(dimension , level + 1,
17 2* index_x + m, 2* index_y + n))
18
19 cell.children = foo
20
21 elif dimension == 3:
22 foo = []
23 for o in range (2):
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24 for n in range (2):
25 for m in range (2):
26 foo.append(z_curve_index(dimension ,
27 level + 1,
28 2* index_x + m, 2* index_y + n,
29 2* index_z + o))
30
31 cell.children = foo

And its parent node can be obtained from:
1 def create_parent_pointer(cell , dimension , level ,
2 index_x=0, index_y=0, index_z =0):
3
4 if level != 0:
5 index_x_parent = int(math.floor(index_x /2))
6 index_y_parent = int(math.floor(index_y /2))
7 index_z_parent = int(math.floor(index_z /2))
8
9 cell.parent = z_curve_index(dimension ,

10 level -1, index_x_parent ,
11 index_y_parent , index_z_parent)

The node representation is formally a Python Object with various attributes:

Class cell

• self.level (int): the level of the node

• self.isleaf (bool): a flag which is .true. if the node is a leaf of the
tree, and .false. otherwise

• self.index-x (int): the node index in the x-direction in the grid Ωl

• self.index-y (int): the node index in the y-direction in the grid Ωl

• self.index-z (int): the node index in the z-direction in the grid Ωl

• self.dx (float): the node size in the x-direction

• self.dy (float): the node size in the y-direction

• self.dz (float): the node size in the z-direction

• self.coord-x (float): the x-component of the node conter coordinate

• self.coord-y (float): the y-component of the node conter coordinate

• self.coord-z (float): the z-component of the node conter coordinate

• self.parent (int): the z-curve-index of the node’s parent

• self.children (list of int): a list with the z-curve-index of the nodes’s
children
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• self.value (float): the value stored in the node, uli,j,k

The second object needed is the tree representation, which is formally a Python
Object with a dict storing all the nodes of the tree indexed by their z-curve-
index:

Class tree

• self.tree-nodes (dict of nodes): a hashtable sotring the nodes of
the tree indexed by their z-curve-index

• self.tree-leaves (list of int): a list storing the keys of all the
leaves of the tree

• self.dimension (int): the space dimension

• self.stencil-prediction (int): the stencil used for the prediction
operations

• self.min-level (int): the minimum level of the nodes in the tree (can
be different from 0)

• self.max-level (int): the maximum level of the nodes in the tree

We can easily check whether a given node is in the tree: we compute its z-
curve-index, and check if this key belongs to the hashtable tree.tree-nodes.
With this structure we can perform all the algorithms introduced in section
(5.1). For example, the projection from the leaves of the tree to the coarsest
grid in Algorithm (5.1) can be done with the two following functions:
1 def compute_projection_value(tree , index):
2
3 temp = 0
4 for index_child in tree[index ]. children:
5 temp = temp + tree[index_child ].value
6
7 tree[index]. value = temp / len(tree[index ]. children)

1 def run_projection (* trees ):
2
3 max_tree_nodes_index = max(trees [0]. tree_nodes.keys ())
4
5 for index in range(int(max_tree_nodes_index), -1, -1):
6 if index in trees [0]. tree_nodes:
7 for tree in trees:
8 if not tree[index]. isleaf:
9 compute_projection_value(tree , index)

And the computation of the details is given by:
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1 def encode_details (* trees):
2
3 def single_tree_function(tree):
4 tree_indexes = tree.tree_nodes.keys()
5
6 for index_parent in tree_indexes:
7 if not tree[index_parent ]. isleaf:
8
9 tree[index_parent ]. norm_details = 0

10 foo = []
11 for index_child in tree[index_parent ]. children:
12 temp = tree[index_child ].value -
13 compute_prediction_value(tree ,
14 index_parent , index_child)
15 foo.append(temp)
16 # Norm L2 of the details
17 tree[index_parent ]. norm_details += temp **2
18
19 tree[index_parent ]. details = foo
20 tree[index_parent ]. norm_details =
21 math.sqrt(tree[index_parent ]. norm_details /
22 len(tree[index_parent ]. children ))
23
24 tree.max_norm_details =
25 max(tree.max_norm_details ,
26 tree[index_parent ]. norm_details)
27
28 for tree in trees:
29 single_tree_function(tree)

mrpy is conceived as a library that provides third-party programs with the
modules necessary to manipulate the mesh associated with the adaptive mul-
tiresolution strategy.

It can be accessed at the following address: https://github.com/marc-nguessan/mrpy



Chapter 6

Description of our new
high-order Runge-Kutta method
coupled to a multiresolution
strategy to solve the
incompressible Navier-Stokes
equations

This chapter aims at merging the theoretical and practical aspects presented
in Chapters 2, 4 and 5 into a novel high-order space adaptive scheme for the
numerical resolution of the incompressible Navier-Stokes equations. We begin
with the description of the linear solvers that we implemented in this work for
the sparse linear systems appearing in Chapter 4. We then give some details re-
garding the treatment of the spurious modes arising from the collocated spatial
discretization designed in Chapter 2. In Chapter 4, we identified three Runge-
Kutta schemes which are 3rd-order in the velocity variables when applied to
incompressible flows. They have very different characteristics, and we provide
some insights for their comparison. Finally, we assess the ability of the new
scheme to produce adaptive solutions with error control with two test cases,
the lid-driven cavity and two-dimensional counter-rotating gaussian vortices.

6.1 Numerical resolution of sparse linear systems

We saw in Chapter 4 that we have to solve sparse linear systems in the im-
plementation of the various high-order RK methods devised specifically for the
incompressible Navier-Stokes equations. These systems can be very large, as



134 Chap. 6 - A new adaptive scheme for incompressible flows

their size is directly related to the number of meshes of the adapted grid used
for the numerical simulation. For the Radau IIA method (matrices of the type
(4.19) if we consider the fixed-point iteration method to solve the nonlinear
system (4.16)) and the additive Runge-Kutta methods (matrices of the form
(4.31)), we have to deal with a saddle-point problem (4.18), and for the half-
explicit RK methods (4.32), the matrix is a variant of the Poisson problem.
Solving large linear systems is one of the most difficult tasks in scientific com-
putation, it represents a research topic by itself. Saddle-point problems are
especially difficult to solve, due to their indefiniteness and the poor properties
of their set of eigenvalues. We will give a brief introduction to these arduous
subjects, but only insofar as it serves the purpose of exposing the algorithms
and technical solutions implemented in the mrpy code to solve the linear sys-
tems mentioned above. This is by no means supposed to be a state-of-the-art
review of the matter, that would largely exceed the scope of this monograph.
The interested reader is referred to the excellent book of Y. Saad on iterative
solvers [Saa03] and the review of numerical solutions of saddle-point problems
of Benzi, Golub and Liesen [BGL05], and the references therein.

Let us consider the problem of solving the following linear system in the vari-
able x:

Ax = b (6.1)

where A is a real square matrix of size n × n (with n a positive integer), and
b ∈ Rn a known vector forming the right-hand side of the equation. Basi-
cally, there are two types of numerical solvers for this problem, direct solvers
and iterative solvers. Direct solvers rely generally on the LU decomposition of
matrix A, or its Cholesky decomposition LDLt if A is symmetric. The term
“direct” refers to the fact that once the decomposition has been computed, x
is obtained by an application of forward and backward triangular sweeps to
b. On the other hand, iterative solvers generally start with an approximate
solution x0, and pass from one iterate xk to xk+1 by modifying one or a few
compenents of xk at a time. Each iteration involves a few matrix-vector mul-
tiplications, and/or vector-vector additions or multiplications. The iterations
go on until convergence is reached, where convergence is generally measured
relatively to the norm of the residual vector. In our case, we use a relative
tolerance argument, and we stop the iterations when we arrive at a value x∗ so
that:

‖Ax∗ − b‖
‖b‖

≤ ε

Where ε is a user-defined parameter, and the norm is the L2-norm. Direct
solvers will typically perform O(n3) operations to build the appropriate de-
composition of matrix A, whereas iterative solvers perform O(n2) operations
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at each iteration. Hence, if we have a small number of iterations, iterative
solvers can be much more competitive than their direct counterparts. Whereas
for a given nonsingular matrix, we are guaranteed that direct solvers can find
the solution, the convergence of iterative solvers is rarely guaranteed for all ma-
trices, and is a very problem-dependent issue. But the efficiency and robustness
of iterative methods can be largely improved by the use of preconditioners. Pre-
conditioning means transforming the original linear system (6.1) into another
one with the same solution, hoping that the new system will be much more eas-
ier to solve with an iterative solver. Generally speaking, an iterative method
is ill-advised unless we know of a very good preconditioning matrix M for our
specific problem. Even though some techniques have been developed over the
years to find generic good preconditioners, this task remains more of an art
than an exact science, and a lot of time should be spent trying to determine
a good preconditioning matrix. We quote here Y. Saad [Saa03] regarding the
task of finding a good preconditioning matrix M :

The first step in preconditioning is to find a preconditioning
matrix M . The matrix M can be defined in many different ways
but it must satisfy a few minimal requirements. From a practical
point of view, the most requirement for M is that it is inexpensive
to solve linear systems Mx = b. This is because the preconditioned
algorithms will all require a linear system solution with the matrix
M at each step. Also M should be close to A in some sense and it
should clearly be nonsingular.

In any case, the actual performance of a numerical method to solve linear sys-
tems depends heavily upon the code implementation of the algorithm, and the
specific data structures used to store the matrices and vectors. We chose to use
the library PETSc (on the recommendation of L. Gouarin) developed at the
Mathematics and Computer Science Division of the Argonne National Labo-
ratory [BAA+19b, BAA+19a, BGMS97]. The Portable Extensible Toolkit for
Scientific Computation is a sophisticated set of software tools designed for the
scalable (parallel) solution of (large-scale) scientific applications modeled by
Partial Differential Equations. In particular, it contains dedicated data struc-
tures and routines for the storage of matrices (in various formats, among them
dense storage and compressed sparse row storage, both sequential and parallel
versions), and the resolution of (very large and sparse) linear systems. Iterative
solvers based on Krylov subspaces [Saa03] are the heart of PETSc, and their
most basic solver is an implementation of the famous GMRES method [Saa03]
combined with a preconditioner. Although the library was originally written
in C, a Python wrapper, petsc4py, has been developed by Lisandro Dalcin,
and this is the software that we use in mrpy. PETSc also contains a basic
implementation of the direct solver technique based on the LU decomposition
(that runs only in sequential; for a parallel implementation of direct solvers, it
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is possible to interface PETSc with MUMPS [ADKL01, AGLP06].

We developed dedicated preconditioned iterative algorithms to solve our saddle-
point problems, relying on a mix of iterative and direct building blocks solvers
provided by the PETSc library. We precise here that our goal was simply to
find an algorithm to solve our linear systems in a reasonable amount of time,
and not to develop state-of-the-art solvers for these problems. We do not pre-
tend that our solvers have optimal convergence rates for example, or that they
converge for all the types of matrices that can arise from our resolution of the in-
compressible Navier-Stokes equations coupled to adaptive multiresolution. But
for all of our application test cases, we converged over tens of iterations, which
is a quite good performance in this context. Given the fact that the resolution
of linear systems are (by far) the most time-consuming task when simulating
incompressible flows, we believe that there is still big room for improvement of
the techniques exposed below.
We used preconditioned versions of the Uzawa algorithm [UAH58]. We encoun-
tered two types of “sub”-matrices to be inverted:

• matrices of the type D+Υ where D is (obviously) a diagonal matrix, and
Υ is a small perturbation matrix (in a topological sense) relatively to D.
For this case we used the LU decomposition of PETSc, the heuristic rea-
soning behind this choice being that such matrices are almost diagonal,
so direct solvers should work quickly on them (we compared the execu-
tion time of the LU decomposition with that of various preconditioned
GMRES techniques, and the former was most of the time faster)

• Poisson-like matrices. For this case we used the basic restarted GMRES
method of PETSc, with an ILU(0) preconditioner. It should probably be
better to use a multigrid preconditioner, but the ILU(0) preconditioner
gave satisifying results for all our test cases

The Poisson-like matrices coming from the half-explicit Runge-Kutta meth-
ods were also dealt with the restarted GMRES preconditioned by an ILU(0)
method. We refer to the PETSc documentation for details regarding the im-
plementation of these various techniques.
In what follows, we will first give a brief presentation of the original Uzawa
method, and recall some of its convergence properties. Then we will present
our precondtioned versions.

6.1.1 The Uzawa algorithm for saddle-point problems

Let us consider the following saddle-point problem:(
A B
Bt 0

)(
x
y

)
=

(
b
c

)
(6.2)
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where A is a symmetric definite-positive matrix, and B is a full rank, which
represents the most basic case of saddle-point problems [BGL05]. In this case
the system (6.2) does have a solution. Algorithm 6.1 is the basic implementation
of the Uzawa iterative solver.

Algorithm 6.1 The Uzawa algorithm

1: Input: Initial approximate values x0 and y0.
2: for k = 0→ convergence: do
3: xk+1 = A−1(b−Byk)
4: yk+1 = yk + ω(Btxk+1 − c)
5: end for
6: Output: The (approximate) solutions x∗ and y∗.

ω is a relaxation parameter that is user-defined. It turns out that a simple
condition on the value ensures the convergence of Algorithm 6.1 to the true
solutions of (6.2):

Theorem 6.1.1. Let A be a Symmetric Positive Definite matrix and B a matrix
of full rank. Then S = BtA−1B is also Symmetric Positive Definite, and
Uzawa’s Algorithm 6.1 converges, if and only if:

0 < ω <
2

λmax(S)
(6.3)

In addition, the optimal convergence parameter ω is given by:

ωopt =
2

λmin(S) + λmax(S)

λmin(S) and λmax(S) denote respectively the minimum and maximum real
eigenvalues of matrix S. A proof of this result can be found in [Saa03]. Ma-
trix S is called the Schur complement of the saddle-point matrix (6.2); it plays
an important role in the study of the mathematical properties of saddle-point
matrices [BGL05]. In the Uzawa’s algorithm’s for instance, if we substitute
xk+1 from line 3 into line 4, it can be shown that we are in fact applying the
Richardson iterative solver to the following system [Saa03]:

BtA−1By = BtA−1b− c (6.4)

In most cases, we do not have access to the matrix A−1, but Algorithm 6.1
needs not computing it explicitly to solve S. It also shows us than we can
speed up this algorithm by choosing a preconditioner for S, as long as we can
compute easily an approximate of A−1, and this exactly what we are going to
do for our saddle-point problems.



138 Chap. 6 - A new adaptive scheme for incompressible flows

6.1.2 A new preconditioned Uzawa algorithm for the saddle-
point problem arising from ARK methods for the incom-
pressible Navier-Stokes equations

If we apply the implicit-explicit Runge-Kutta methods designed in section
(4.3.1) to solve the semi-discretized incompressible Navier-Stokes equations ob-
tained from the spatial discretization of the Chapter 2, we have to solve for

each implicit stage i a linear system whose matrix has the form E =

(
B M
N 0

)
,

where:

• B is block-diagonal matrix consisting of d (the space dimension) diagonal
blocks Bj , with Bj = 1

δtΓ− γνLj

• M =

M1
...
Md

, with Mj = −γDt
j

• N =
(
N1 · · · Nd

)
, with Nj = Dj

The matrices Γ, Dj and Lj come from the finite volume scheme developed in
Chapter 2, and we refer the reader to the beginning of Chapter 3 for their
definition. We denote by (gij)j=1,...,d the intermediate velocity components that
we have to compute at implicit stage i, and by qi the intermediate pressure. We
also denote by (bij)j=1,...,d the right-hand side of this system for the momentum
equations (that depends on the source-terms Si in (3.1) and the convective
terms of the stage i of the ERK method), and by ci the right-hand side for the
divergence equation.
We solve for matrix E with a preconditioned version of Algorithm 6.1. We
choose as initial approximate solutions the values from the preceding stage
(gi−1
j )j=1,...,d and qi−1. The first step of each iteration consists in computing

B−1. Since this is a block diagonal matrix, this task reduces to computing
the independent sub-matrices B−1

j (with the LU decomposition). It is actually
faster to solve for the d independent linear systems Bj than to solve for the
bigger matrix B. We remark that since Γ is a diagonal matrix (the mass
matrix), and that the timestep δt is user-defined, we can always choose it so
as to make sure that the matrices Bj are symmetric positive definite matrices
(thanks to the Gershgorin theorem). The second step of the iteration k of our
Uzawa algorithm consists of updating qik+1. To this end, we first compute δq
by solving the following system:

NB̃−1Mδq =
d∑
j=1

Njg
i
j,k+1 − ci



Sect. 6.1 - Numerical resolution of sparse linear systems 139

where gij,k+1 are the updated components of the velocity computed from the first
step of the iteration. NB̃−1M is our preconditioning matrix. We approximate
B−1 by the bock-diagonal matrix B̃−1 consisting of d diagonal blocks B̃j , with
B̃j = δtΓ−1. this matrix is easy to assemble, because Γ−1 is the inverse of the
mass matrix, which is a diagonal matrix. The heuristic reasoning behind this
choice is the following: for δt small enough, the Bj matrices are of the type
D + Υ, with D a diagonal matrix, and Υ a small perturbation in comparison.
Hence the B−1

j matrices get closer and closer to the matrices B̃j as δt tends
to zero. NB̃−1M is a Poisson-like matrix, and we invert it with the GMRES
method of PETSc. Then we update qik+1:

qik+1 = qik + ωδq

where ω is the relaxation parameter. All this procedure results in Algorithm
6.2.

Algorithm 6.2 The Uzawa algorithm for the stage i of the ARK method

1: Input: Initial approximate values (gij,0 = gi−1
j )j=1,...,d and qi0 = qi−1.

2: for k = 0→ convergence: do
3: for j = 1→ d: do
4: gij,k+1 = B−1

j (bi −Miq
i
k)

5: end for
6: δq = (NB̃−1M)−1(

∑d
j=1Njg

i
j,k+1 − ci)

7: qik+1 = qik + ωδq
8: end for
9: Output: The (approximate) solutions (gij)j=1,...,d and qi.

6.1.3 A new preconditioned Uzawa algorithm for the saddle-
point problem arising from the Radau IIA method for
the incompressible Navier-Stokes equations

We use the fixed-point Picard iteration exposed in section 4.2.2 to solve the
nonlinear system (4.16) that comes from the application of the Radau IIA
method (4.5) to the semi-discretized Navier-Stokes equations. To perform the
iteration i of this nonlinear solver, we have to solve a linear system whose

matrix has the form E =

(
B M
N 0

)
, where:

• B is block-diagonal matrix consisting of d (the space dimension) diagonal

bloks Bi, with Bi =

(
1
δtΓ− a11νLi −a12νLi
−a21νLi

1
δtΓ− a22νLi

)
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• M =

M1
...
Md

, with Mi =

(
−a11D

t
i −a12D

t
i

−a21D
t
i −a22D

t
i

)

• N =
(
N1 · · · Nd

)
, with Ni =

(
Di 0
0 Di

)
The matrices Γ, Dj and Lj come from the finite volume scheme developed in
Chapter 2, and we refer the reader to the beginning of Chapter 3 for their
definition. We denote by (gij = (g1,i

j , g2,i
j ))j=1,...,d the intermediate velocity

components that we have to compute at iteration i, that comprises the variables
for the two stages of the Radau method, and by qi = (q1,i, q2,i) the intermediate
pressure, that comprises the variables for the two stages of the Radau method.
We also denote by (bij = (b1,ij , b

2,i
j ))j=1,...,d the right-hand side of this system for

the momentum equations (that depends on the source-terms Si in (3.1) and the
convective terms of the iteration i of the Picard method), and by ci = (c1,i, c2,i)
the right-hand side for the divergence equation.
We solve for matrix E with a preconditioned version of Algorithm 6.1. We
choose as initial approximate solutions the values from the preceding Picard
iteration (gi−1

j )j=1,...,d and qi−1. The first step of each iteration consists in
computing B−1. Since this is a block diagonal matrix, this task reduces to
computing the independent sub-matrices B−1

j (with the LU decomposition).
It is actually faster to solve for the d independent linear systems Bj than to
solve for the bigger matrix B. The second step of the iteration k of our Uzawa
algorithm consists of updating qik+1. To this end, we first compute (δq1, δq2)
by solving the following system:

δta11(
d∑
j=1

DjΓ
−1(−Dt

j))δq
1 =

d∑
j=1

Djg
1,i
j,k+1 − c

1,i

δta22(

d∑
j=1

DjΓ
−1(−Dt

j))δq
2 =

d∑
j=1

Djg
2,i
j,k+1 − c

2,i

where gij,k+1 are the updated components of the velocity computed from the
first step of the (Uzawa) iteration. Then we update qik+1:

q1,i
k+1 = q1,i

k + ωδq1

q2,i
k+1 = q2,i

k + ωδq2

where ω is the relaxation parameter. All this procedure results in Algorithm
6.3.1: Input: Initial approximate values (gij,0 = gi−1

j )j=1,...,d and qi0 = qi−1.
2: for k = 0→ convergence: do
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Algorithm 6.3 The Uzawa algorithm for the iteration i of the fixed-point
Picard iteration for the Radau IIA method

3: for j = 1→ d: do
4: gij,k+1 = B−1

j (bi −Miq
i
k)

5: end for
6: δq1 = [δta11(

∑d
j=1DjΓ

−1(−Dt
j))]
−1(
∑d

j=1Djg
1,i
j,k+1 − c

1,i)

7: δq2 = [δta22(
∑d

j=1DjΓ
−1(−Dt

j))]
−1(
∑d

j=1Djg
2,i
j,k+1 − c

2,i)

8: q1,i
k+1 = q1,i

k + ωδq1

9: q2,i
k+1 = q2,i

k + ωδq2

10: end for
11: Output: The (approximate) solutions (gij)j=1,...,d and qi.

6.2 Treatment of the spurious pressure and velocity
modes

As we explained at the beginning of Chapter 2, the spurious pressure and ve-
locity modes are artificial kernel modes of the discrete divergence and gradient
operators. Given the fact that our spatial discretization scheme is not stag-
gered, we are not ensured that such modes cannot appear in our numerical
simulations. We thus have to design a special treatment for these parasite val-
ues, and we found a solution for the Radau IIA method and the ARK methods,
that we present below.
The spurious modes are due to the linear part of equation (2.1) [GS00], so that
we only have to consider the Stokes equation for their treatment. If we do not
take into account the convective terms in equations (3.1), the implementation
of the Radau IIA method or the ARK methods amounts to the resolution of
the linear systems that we explicited in section 6.1. These matrices can have
artificial kernel modes that can pollute the approximate velocity and pressure
fields computed at each time step. Our treatment for both methods is the
same: we will show that depending on the timestep δt, the particular choice
of the discrete operators precludes the apparition of spurious modes for the
velocity. We simply do not care about the spurious pressure modes, as long as
they cannot affect the accuracy of the approximate velocities. Indeed, it is the
flow velocity that is detrimental for the species transport in reacting flows.
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6.2.1 Treatment of the spurious modes for the ARK methods

If we apply the ESDIRK methods designed in section (4.3.2) to solve the semi-
discretized incompressible Stokes equations obtained from the spatial discretiza-
tion of the Chapter 2, we have to solve for each implicit stage i a linear system

whose matrix has the form E =

(
B M
N 0

)
, where:

• B is block-diagonal matrix consisting of d (the space dimension) diagonal
blocks Bj , with Bj = 1

δtΓ− γνLj

• M =

M1
...
Md

, with Mj = −γDt
j

• N =
(
N1 · · · Nd

)
, with Nj = Dj

The matrices Γ, Dj and Lj come from the finite volume scheme developed in
Chapter 2, and we refer the reader to the beginning of Chapter 3 for their
definition. We denote by (gij)j=1,...,d the intermediate velocity components that
we have to compute at implicit stage i, and by qi the intermediate pressure.
The spurious modes that will affect the solution of our problem are the vectors of

the form
(
v
q

)
which are in the null-space of E: E

(
v
q

)
=

(
B M
N 0

)(
v
q

)
= 0.

If v 6= 0, it will pollute the quantities (gij)j=1,...,d causing the apparition of
spurious modes in the computed solution; and of course the same is true with
q regarding qi. The matrix B depends on δt the timestep. We will characterise
the null-space of matrix E for some values of δt, and we start with the following
lemma:

Lemma 6.2.1. If a matrix B is as defined below, then there exists h0 > 0 so
that for each 0 < δt ≤ h0 and for any real vector z the two following propositions
are equivalent:

1. ztBz = 0

2. z = 0

Proof. (2) =⇒ (1) is obvious for any δt ∈ R∗+. We then turn to (1) =⇒ (2).
ztBz =

∑d
i=1 z

itBiz
i, each Li is a symmetric real matrix and Γ is the mass

matrix, so that it is diagonal and invertible, and all its diagonal terms are
non-negative. The set of invertible matrices being open, for δt small enough,
each matrix Bi is symmetric, definite and positive. This implies that for each
i = 1, . . . , d, zitBiz

i ≥ 0, with zitBiz
i = 0 =⇒ zi = 0, which concludes the
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proof.

We then have the following result:

Theorem 6.2.1. There exists h0 > 0 so that for each 0 < δt ≤ h0, if
(
v
q

)
is

a null vector of the matrix E, then v = 0.

Proof. We have that Bv + Mq = 0. If we multiply this vector by vt, we have

vtBv + vtMq = 0. Or vtMq = qt(M tv), and if we write v =

v1

...
vd

, we have

that M tv = −γ(
∑d

i=1Div
i) because Nv = 0. Hence vtBv = 0.

We see that if we choose a real h0 that satisfies the conditions of the lemma,
then necessarily, v = 0, which concludes the proof of the theorem.

We see that we can always choose δt small enough to preclude the apparition of
spurious modes for the velocity field, the one that is detrimental for the species
transport in a combustion simulation.

6.2.2 Treatment of the spurious modes for the Radau method

If we use the Radau IIA method (4.5) to the semi-discretized Stokes equations,
at each timestep we have to solve a linear system whose matrix has the form

E =

(
B M
N 0

)
, where:

• B is block-diagonal matrix consisting of d (the space dimension) diagonal

bloks Bi, with Bi =

(
1
δtΓ− a11νLi −a12νLi
−a21νLi

1
δtΓ− a22νLi

)

• M =

M1
...
Md

, with Mi =

(
−a11D

t
i −a12D

t
i

−a21D
t
i −a22D

t
i

)

• N =
(
N1 · · · Nd

)
, with Ni =

(
Di 0
0 Di

)
The matrices Γ, Dj and Lj come from the finite volume scheme developed in
Chapter 2, and we refer the reader to the beginning of Chapter 3 for their defini-
tion. We denote by (gj = (g1

j , g
2
j ))j=1,...,d the intermediate velocity components

that we have to compute, that comprises the variables for the two stages of the
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Radau method, and by k = (k1, k2) the intermediate pressure, that comprises
the variables for the two stages of the Radau method.
The spurious modes that will affect the solution of our problem are the vectors of

the form
(
v
q

)
which are in the null-space of E: E

(
v
q

)
=

(
B M
N 0

)(
v
q

)
= 0.

If v 6= 0, it will pollute the quantities g1
j , g

2
j , causing the apparition of spu-

rious modes in the computed solution; and of course the same is true with q
regarding k1, k2. But as we wrote earlier, we only need the velocity for the
species transport equations, not the pressure, so we are just going to ensure
that there is no spurious mode for the velocity. There might be spurious mode
in the pressure, but if we make sure that they do not affect the velocity, we are
ensured of the precision of our velocity computation.
We remark here that by construction, −νLi is a symmetric and diagonally
dominant matrix, so that it is diagonalizable (in R) and all its eigenvalues are
positive. The matrix B depends on δt the timestep, and we use the following
result:

Theorem 6.2.2. There exists h0 > 0 so that for each 0 < δt ≤ h0, if
(
v
q

)
is

a null vector of the matrix E, then v = 0.

We will use the following lemma:

Lemma 6.2.2. If a matrix B is as defined above, then there exists h0 > 0 so
that for each 0 < δt ≤ h0 and for any real vector z the two following propositions
are equivalent:

1. ztBz = 0

2. z = 0

Proof. (2) =⇒ (1) is obvious for any h ∈ R∗+. We then turn to (1) =⇒ (2).
For δt → 0, B converges to a diagonal matrix where each block is the mass
matrix multiplied by the inverse of the time step. Hence, in the limit, all its
eigenvalues are positive. By the continuous dependency of the eigenvalues on
the matrix coefficients, there is some h0 > 0 such that all eigenvalues of B, for
δt ≤ h0, are positive too. In that case ztBz = 0 implies that z = 0, which
concludes the proof of the lemma.

Proof. We have that Bv + Mq = 0. If we multiply this vector by vt, we have

vtBv + vtMq = 0. Or vtMq = qt(M tv), and if we writev =

v1

...
vd

, we have
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that M tv =

(
−a11(

∑d
i=1Div

i)− a21(
∑d

i=1Div
i)

−a12(
∑d

i=1Div
i)− a22(

∑d
i=1Div

i)

)
= 0, because Nv = 0.

Hence vtBv = 0.
We see that if we choose a real h0 that satisfies the conditions of the lemma,
then necessarily, v = 0, which concludes the proof of the theorem.

We see that we can always choose δt small enough to preclude the apparition
of spurious modes for the velocity field, the one that is detrimental for the
transport of scalars.

6.3 Comparison of the 3rd-order Runge-Kutta schemes

In chapter 4 we identified three 3rd-order Runge-Kutta methods to solve the in-
compressible Navier-Stokes equations: the RadauIIA method in section (4.1.1),
the half-explicit implementation of the explicit 3-stage Heun method in sec-
tion (4.4.2), and the new additive Runge-Kutta method that we designed,
ARK −ESDIRK3(2I)4SA in section (4.3.4). We showcased the performance
of these three methods on the classical two-dimensional lid-driven cavity. But
these three schemes have very different properties, and it could be difficult from
a theoretical point of view to decide which one is the best. In our opinion, the
best suited scheme will be application-dependent, resulting from an arbitrage
between precision and time-to-solution. In this section, we want to give some
insights for the comparison of these schemes. For the sake of simplicity, we will
denote the Radau IIA method radau, the half-explicit 3-stage Heun method
herk, and the additive Runge-Kutta method ark.

We consider the two dimensional lid-driven cavity. We consider the problem
set described at the beginning of section (4.2.3). We perform computations on
a uniform grid at lmax = 6, from t = 0 until t = 5, with different timesteps
values, and at two different Reynolds numbers, Re = 1000 and Re = 100.
For each one of the three RK schemes, we compute the error between the
solution obtained with various large timesteps, and the solution obtained with
the half-explicit Heun method with a very small timestep of δt = 10−4. We
also save the computational time-to-solution for each timestep.
Since the results of the schemes are compared to the same quasi-exact solution,
a first element of comparison is to consider which scheme, given a specific
timestep, reaches the smallest error. Figures (6.1) and (6.2) give us a first
insight. They represent the error in the first component of the velocity, for
Re = 1000 and Re = 100, respectively. For Re = 1000, we tested the three
schemes with the same set of timestep values, δt = 6.25×10−2, 5×10−2, 4.16×
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Figure 6.1: Lid-driven cavity, Re = 1000. Temporal order of accuracy comparisons of
radau, herk and ark ; horizontal component of the velocity

10−2, 3.33×10−2, 2.94×10−2, 2.5×10−2, 2×10−2, 1.67×10−2. For Re = 1000,
it is clear that the best scheme, at a given timestep, is radau. It is also the most
stable, the methods ark and herk were instable for the two largest timesteps,
δt = 6.25 × 10−2 and δt = 5 × 10−2. herk gives a more precise solution than
ark at a given timestep. But ark is more stable than herk with regard to
the diffusive terms in the momentum equations. Indeed, when we reduce the
Reynolds number, the diffusive terms have more influence than the convective
terms, and since the former are stiffer than the latter, schemes better suited
to tackle sitffness in the incompressible flow equations will tend to perform
better. At Re = 100 in this example, radau remains stable over the same
timestep range of the Re = 1000 test case; ark is instable for the three largest
timesteps δt = 6.25 × 10−2, δt = 5 × 10−2 and 4.16 × 10−2, but converges for
the remaining values; but herk was completely instable for the whole range of
initial timesteps. The first value for a stable computation of herk at Re = 100
was δt = 7.14× 10−3, which is almost an order of magnitude smaller than the
timesteps at which the other two methods are stable.
Another element of comparison is the time-to-solution to reach a given error
threshold with respect to the quasi-exact solution. In figures (6.3) and (6.4), we
draw a scatter plot of the time-to-solution versus the error for ark and radau,
at Re = 1000 and Re = 100, respectively. We see that even though radau is
more stable and more precise than ark, the time-to-solution of ark is almost
two order of magnitude smaller than the time-to-solution of radau.
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Figure 6.2: Lid-driven cavity, Re = 100. Temporal order of accuracy comparisons of
radau, herk and ark ; horizontal component of the velocity
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Figure 6.3: Lid-driven cavity, Re = 1000. computational time vs error scatter plot of
radau and ark ; horizontal component of the velocity
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Figure 6.4: Lid-driven cavity, Re = 100. computational time vs error scatter plot of
radau and ark ; horizontal component of the velocity

6.4 Numerical assessment of the new adaptive strat-
egy

The goal of this section is to check the performance of the new fully adaptive
multiresolution scheme exposed in section 5.2, Algorithm (5.6). We will show
(i) that the scheme allows effectively to obtain a dynamic grid adaptation as
the flow evolves in time, and (ii) that we are able to control the adaptive error
with regard to a computation on a uniform grid. All the computations in this
section rely on the additive Runge-Kutta scheme ARK − ESDIRK3(2I)4SA
presented in section 4.3.4. We present two test cases, the lid-driven cavity, and
the simulation of two-dimensional counter-rotating vortices.

6.4.1 Two-dimensional lid-driven cavity

The first test case is again the lid-driven cavity case, already presented in
section 4.2.3, that we recall here for the sake of completeness. We discretize
equations (2.1) on a uniform or adaptive grid with the spatial scheme (2.5), in
an open bounded domain Ω in 2D, where Ω =] − 0.5, 0.5[×] − 0.5, 0.5[. The
fluid is initially at rest within Ω (uini(x, 0) = 0 for x ∈ Ω), and we impose
Dirichlet boundary conditions on the four edges of ∂Ω: the velocity is set to
zero on all but one of these boundaries, in our case the top one at y = 0.5,
where the tangential velocity is set to u1(x, 0.5, t) = −1. The Reynolds number
is Re = 1000.
We fix the thresholding parameter at ε = 5× 10−3, the level max lmax = 8 for
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ε 7.10−2 3.10−2 1.10−2 7.10−3 3.10−3 1.10−3 7.10−4 3.10−4

τ 94.27% 92.11% 87.39% 84.47% 77.68% 63.30% 50.43% 35.40%

Speedup ×11.95 ×8.96 ×6.27 ×5.49 ×3.72 ×1.99 ×1.52 ×0.97

Table 6.1: Lid-driven cavity. Comparison between the uniform grid and multireso-
lution adaptive grid computing times for different thresholding parameters. Uniform
grid with lmax = 8. For a given value ε of the thresholding parameter, the uniform
grid computation is speedup times longer than the computation with adaptive mul-
tiresolution. τ is the compression rate.

the finest grid, the timestep h = 6.7×10−3 and compute from t = 0 until t = 16.

Figures (6.5), (6.6), (6.7) show the comparison between the uniform computa-
tion and the adapted computation, for the horizontal and vertical components
of the velocity, and the velocity norm, respectively. There is a very good match
between both computations, and the adaptive scheme produces good qualita-
tive results. Figures (6.8) show the evolution of the adaptive grid, and we can
verify that the level of refinement is directly related to the variation in the
velocity norm, as expected.
Next, we check the ability of the code to control the multiresolution error. We
fix the maximum grid level lmax = 8 for the finest grid, the timestep h = 5×10−3

and compute from t = 0 until t = 5 for different values of the thresholding pa-
rameter. At the end of the computation, we compute the L2 norm of the error
between the adapted grid solution, and the solution computed with the same
features but on a uniform grid. Figures (6.9) and (6.10) show the evolution
of the error versus the thresholding parameter for the horizontal and vertical
components of the velocity, respectively. We see that we effectively control the
adaptive multiresolution error, that scales as a multiple of the thresholding pa-
rameter.

Finally, we assess the computational gain of the adaptive scheme.
The reduction in the number of mesh cells can be measured with the compres-
sion rate τ (1.83) introduced in section (1.3) and that we recall here:

τ = 1− #(L(Λ))

22×lmax

Since lmax = 8, we have 65536 mesh cells on the uniform finest grid.
Table (6.1) shows some impressive results in the acceleration of the multireso-
lution computations. For ε = 3 × 10−2, the error with regard to the uniform
computation is around 10−5, and the adaptive scheme is almost 9 times faster
than the uniform grid computation. We precise that the code used here is a
research/development software, which primary purpose was not to obtain high-
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(a) t = 2 (b) t = 2

(c) t = 4 (d) t = 4

Figure 6.5: Lid-driven cavity. Evolution of the horizontal velocity component
for Re = 1000. Comparisons between the uniform grid computation (left)
and the adapted grid computation (right). lmax = 8, ε = 5× 10−3
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(e) t = 6 (f) t = 6

(g) t = 8 (h) t = 8

Figure 6.5: Lid-driven cavity. Evolution of the horizontal velocity component
for Re = 1000. Comparisons between the uniform grid computation (left)
and the adapted grid computation (right). lmax = 8, ε = 5× 10−3
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(i) t = 10 (j) t = 10

(k) t = 12 (l) t = 12

Figure 6.5: lid-driven cavity. evolution of the horizontal velocity component
for re = 1000. comparisons between the uniform grid computation (left) and
the adapted grid computation (right). lmax = 8, ε = 5× 10−3
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(m) t = 14 (n) t = 14

(o) t = 16 (p) t = 16

Figure 6.5: lid-driven cavity. evolution of the horizontal velocity component
for re = 1000. comparisons between the uniform grid computation (left) and
the adapted grid computation (right). lmax = 8, ε = 5× 10−3



154 Chap. 6 - A new adaptive scheme for incompressible flows

(a) t = 2 (b) t = 2

(c) t = 4 (d) t = 4

Figure 6.6: Lid-driven cavity. Evolution of the vertical velocity component
for Re = 1000. Comparisons between the uniform grid computation (left)
and the adapted grid computation (right). lmax = 8, ε = 5× 10−3
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(e) t = 6 (f) t = 6

(g) t = 8 (h) t = 8

Figure 6.6: Lid-driven cavity. Evolution of the vertical velocity component
for Re = 1000. Comparisons between the uniform grid computation (left)
and the adapted grid computation (right). lmax = 8, ε = 5× 10−3
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(i) t = 10 (j) t = 10

(k) t = 12 (l) t = 12

Figure 6.6: lid-driven cavity. evolution of the vertical velocity component for
re = 1000. comparisons between the uniform grid computation (left) and the
adapted grid computation (right). lmax = 8, ε = 5× 10−3
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(m) t = 14 (n) t = 14

(o) t = 16 (p) t = 16

Figure 6.6: lid-driven cavity. evolution of the vertical velocity component for
re = 1000. comparisons between the uniform grid computation (left) and the
adapted grid computation (right). lmax = 8, ε = 5× 10−3
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(a) t = 2 (b) t = 2

(c) t = 4 (d) t = 4

Figure 6.7: Lid-driven cavity. Evolution of the velocity norm for Re = 1000.
Comparisons between the uniform grid computation (left) and the adapted
grid computation (right). lmax = 8, ε = 5× 10−3
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(e) t = 6 (f) t = 6

(g) t = 8 (h) t = 8

Figure 6.7: Lid-driven cavity. Evolution of the velocity norm for Re = 1000.
Comparisons between the uniform grid computation (left) and the adapted
grid computation (right). lmax = 8, ε = 5× 10−3
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(i) t = 10 (j) t = 10

(k) t = 12 (l) t = 12

Figure 6.7: lid-driven cavity. evolution of the velocity norm for re = 1000.
comparisons between the uniform grid computation (left) and the adapted
grid computation (right). lmax = 8, ε = 5× 10−3
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(m) t = 14 (n) t = 14

(o) t = 16 (p) t = 16

Figure 6.7: lid-driven cavity. evolution of the velocity norm for re = 1000.
comparisons between the uniform grid computation (left) and the adapted
grid computation (right). lmax = 8, ε = 5× 10−3
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(a) t = 2 (b) t = 4

(c) t = 6 (d) t = 8

Figure 6.8: Lid-driven cavity. Evolution of the velocity norm for Re = 1000.
Adapted grid. lmax = 8, ε = 5× 10−3
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(e) t = 10 (f) t = 12

(g) t = 14 (h) t = 16

Figure 6.8: Lid-driven cavity. Evolution of the velocity norm for Re = 1000.
Adapted grid. lmax = 8, ε = 5× 10−3
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Figure 6.9: Lid-driven cavity. L2 norm of the multiresolution error versus the threshold
parameter ε for the horizontal component of the velocity
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Figure 6.10: Lid-driven cavity. L2 norm of the multiresolution error versus the thresh-
old parameter ε for the vertical component of the velocity
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performance computing, but rather to showcase the ability of the adaptive
multiresolution method to obtain correct and precise simulation results. Both
computational settings, the uniform grid and the adaptive multiresolution all
share the same routines for the linear space operations (matrix–vector multi-
plication, vector–vector addition, vector–vector inner product, linear solver):
we use the optimized PETSc libraries [BAA+19b, BAA+19a, BGMS97] which
are written in C. But the data structures and routines needed for the adaptive
multiresolution implementation in the multiresolution simulations are written
in Python, for sequential computations only. What is more, we built a spe-
cific code for the uniform grid computation, that does not suffer at all from
the overhead of the multiresolution. What is more, this code runs entirely on
PETSc, and is fairly optimized compared to the adaptive multiresolution code
that relies heavily on Python. This can be observed with the last thresholding
value, where even though we obtain a 35% compression rate, the adapted com-
putation takes more time than the uniform one. We can expect an even greater
speedup with a high performance computing implementation of the multireso-
lution strategy.

6.4.2 Two-dimensional counter-rotating gaussian vortices

The second test case is the numerical simulation of two-dimensional counter-
rotating gausian vortices. We discretize equations (2.1) on a uniform or adap-
tive grid with the spatial scheme (2.5), in an open bounded domain Ω in 2D,
where Ω =]−5, 5[×]−5, 10[. The initial configuration of the flow consists of two
vortices (ω1, ω2) distributed on the horizontal axis with their centers located
respectively at (−0.5, 0) and at (0.5, 0). They have the following shapes:

ω1 =
ϕ

πr2
0

exp

(
−(x− x1)2 + y2

r2
0

)
ω2 =

ϕ

πr2
0

exp

(
−(x− x2)2 + y2

r2
0

)
where the circulation ϕ is set at ϕ = 10 and r0 = 0.35. We use free-flow bound-
ary conditions, and set ν = 10−2.
We fix the thresholding parameter at ε = 1 × 10−3, the level max lmax = 8
for the finest grid, the timestep h = 5×10−3 and compute from t = 0 until t = 5.

Figures (6.11), (6.12), (6.13) show the comparison between the uniform compu-
tation and the adapted computation, for the horizontal and vertical components
of the velocity, and the velocity norm, respectively. There is a very good match
between both computations, and the adaptive scheme produces good qualita-
tive results. Figures (6.14) show the evolution of the adaptive grid, and we
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ε 3.10−2 1.10−2 7.10−3 3.10−3 1.10−3 7.10−4 3.10−4 1.10−4

τ 94.71% 90.60% 89.0% 83.09% 73.74% 69.89% 60.37% 44.05%

Speedup ×11.94 ×7.41 ×6.51 ×4.44 ×2.80 ×2.40 ×1.71 ×1.22

Table 6.2: Counter-rotating gaussian vortices. Comparison between the uniform grid
and multiresolution adaptive grid computing times for different thresholding parame-
ters. Uniform grid with lmax = 8. For a given value ε of the thresholding parameter,
the uniform grid computation is speedup times longer than the computation with
adaptive multiresolution. τ is the compression rate.

can verify that the level of refinement is directly related to the variation in the
velocity norm, as expected.
Next, we check the ability of the code to control the multiresolution error. We
fix the maximum grid level lmax = 8 for the finest grid, the timestep h = 2×10−3

and compute from t = 0 until t = 2 for different value of the thresholding pa-
rameter. At the end of the computation, we compute the L2 norm of the error
between the adapted grid solution, and the solution computed with the same
features but on a uniform grid. Figures (6.15) and (6.16) show the evolution
of the error versus the thresholding parameter for the horizontal and vertical
components of the velocity, respectively. We see that we effectively control the
adaptive multiresolution error, that scales as a multiple of the thresholding pa-
rameter.

Finally, we assess the computational gain of the adaptive scheme.
Since lmax = 8, we have 65536 mesh cells on the uniform finest grid.
Table (6.2) shows some impressive results in the acceleration of the multireso-
lution computations, similar to the results obtained with the lid-driven cavity
test.
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(a) t = 1 (b) t = 1

(c) t = 1.5 (d) t = 1.5

Figure 6.11: Counter-rotating gaussian vortices. Evolution of the horizontal
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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Figure 6.11: Counter-rotating gaussian vortices. Evolution of the horizontal
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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(i) t = 3 (j) t = 3

(k) t = 3.5 (l) t = 3.5

Figure 6.11: Counter-rotating gaussian vortices. Evolution of the horizontal
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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(o) t = 5 (p) t = 5

Figure 6.11: Counter-rotating gaussian vortices. Evolution of the vertical
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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Figure 6.12: Counter-rotating gaussian vortices. Evolution of the vertical
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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Figure 6.12: Counter-rotating gaussian vortices. Evolution of the vertical
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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Figure 6.12: Counter-rotating gaussian vortices. Evolution of the vertical
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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Figure 6.12: Counter-rotating gaussian vortices. Evolution of the vertical
velocity component for ν = 10−2. Comparisons between the uniform grid
computation (left) and the adapted grid computation (right). lmax = 8,
ε = 1× 10−3
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Figure 6.13: Counter-rotating gaussian vortices. Evolution of the velocity
norm for ν = 10−2. Comparisons between the uniform grid computation
(left) and the adapted grid computation (right). lmax = 8, ε = 1× 10−3
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Figure 6.13: Counter-rotating gaussian vortices. Evolution of the velocity
norm for ν = 10−2. Comparisons between the uniform grid computation
(left) and the adapted grid computation (right). lmax = 8, ε = 1× 10−3
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Figure 6.13: Counter-rotating gaussian vortices. Evolution of the velocity
norm for ν = 10−2. Comparisons between the uniform grid computation
(left) and the adapted grid computation (right). lmax = 8, ε = 1× 10−3
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Figure 6.13: Counter-rotating gaussian vortices. Evolution of the velocity
norm for ν = 10−2. Comparisons between the uniform grid computation
(left) and the adapted grid computation (right). lmax = 8, ε = 1× 10−3
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(a) t = 1 (b) t = 1.5

(c) t = 2 (d) t = 2.5

Figure 6.14: Counter-rotating gaussian vortices. Evolution of the velocity
norm for ν = 10−2. Adapted grid. lmax = 8, ε = 1× 10−3
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Figure 6.14: Counter-rotating gaussian vortices. Evolution of the velocity
norm for ν = 10−2. Adapted grid. lmax = 8, ε = 1× 10−3
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Figure 6.15: Counter-rotating gaussian vortices. L2 norm of the multiresolution error
versus the threshold parameter ε for the horizontal component of the velocity
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Figure 6.16: Counter-rotating gaussian vortices. L2 norm of the multiresolution error
versus the threshold parameter ε for the vertical component of the velocity





Chapter 7

Scalar transport application:
transport of a passive scalar on
dual grids

This chapter focuses on an application of the strategy developed throuhgout
this work to the transport of a passive scalar by an incompressible flow. It is a
phenomenon that constantly occurs in reactive flows, although generally cou-
pled to many other physical processes. But we believe that this simplification
is a good starting point, when trying to develop a new strategy to efficiently
solve reactive flows, for two reasons mainly: (i) in many fluid flow simulations,
the phenomena of interest are the transport and diffusion of scalar properties,
for example the species concentration, that play a little role in the flow con-
ditions, and (ii) passive scalar transport is the first step when considering the
interaction of a flow field with various other components. In the context of
multi-scale reaction fronts, both the flow and the scalars can be characterized
by an inhomogeneous spatial distribution, but at different scales. More specif-
ically, depending on the Schmidt number, the characteristic spatial scales of
the flow can be much larger than the scales of the transported species, and the
latter require then a finer resolution grid to be accurately described compared
to the former. Clearly, we should use an adpative grid technique to simu-
late such phenomena, but given the fact that resolving an incompressible flow
is more time consuming than solving the advection-diffusion equations of the
scalar transport, we add a useless computational overhead if we simulate both
processes on the finest grid related to the species. Also, we wish to be able to
control the spatial error related to the grid adaptation. The multiresolution
strategy offers us an efficient way to do just that, and since we are now able
to use this technique for the incompressible Navier-Stokes equations and the
advection-diffusion ones, we can apply it to solve these two set of equations
on different grids. We called this technique multihierarchy multiresolution
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adaptive strategy (MMR), and the study of its efficiency has motivated an
article recently published in Journal of Computational and Applied Mathemat-
ics [NMST19]. We will reproduce this article in what follows in its integral
version. It is a good application framework for most of the discoveries made
during this investigation.
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7.1 Introduction

Numerical simulations of chemically reacting flows place a considerable strain
on computational resources, because of the large spectrum of characteristic
spatial and temporal scales involved in these phenomena. Furthermore, the
Direct Numerical Simulation (DNS) of low-Mach combustion requires impor-
tant computational resources, partly due to the highly refined meshes necessary
to accurately describe the reactive fronts, but also due to the various numeri-
cal schemes, which involve costly linear algebra for Poisson solvers or implicit
schemes [BS99]. One way to reduce the computational effort that has been
investigated over the years is the use of Adaptive Mesh Refinement (AMR)
[BO84] to spatially adapt the grid in the reactive fronts, thus reducing the
number of unknowns [DB00a, ABC+98, PHB+98, SRN10].
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Whereas such techniques have led to very interesting developments, one of the
difficulties of AMR is the heuristics used in order to refine the mesh, which
lead to a high compression level but hardly provide any error estimate. Our
contribution also focuses on spatial mesh adaptation in order to reduce the
memory of such simulation, but rather involves multiresolution (MR) analysis
in order to obtain high compression [Pos01, CKMP03], with error control in
space and time when coupled to an adaptive splitting technique [DDD+11].
In [CKMP03], Cohen et al. developed the algorithms to efficiently perform
adaptive MR for systems of conservative laws in a finite volume context. They
were implemented for example in [DDT+13] for the numerical simulations of
premixed and diffusion flames, where the advection-diffusion-reaction problem
was spatially discretized on a Cartesian grid with MR adaptation, whereas the
flow field was provided analytically at each time step; a similar strategy was
investigated in [RS05] for another application. Using the proposed splitting
strategy implies that the missing building block was a solver for the hydrody-
namics. We started with the incompressible Navier-Stokes equations and the
use of multiresolution and finite volume on adapted grids and tree-data struc-
tures made the classical approach on staggered grids [HW65] or the resolution of
the resulting differential algebraic equation (DAE) by a fractional-step method
[Cho68, Tem69, KM85] rather impossible or low order. In [NSTM18] we de-
veloped a high-order time integration based on the Radau IIA Runge-Kutta
method, and a finite-volume method coupled to adaptive multiresolution to
solve incompressible flows on collocated grids.
One of the particularities of low-Mach combustion is the fact that the flow
and the transported species involve different spatial and temporal scales. The
ones describing the flow require more computational effort because they involve
the numerical resolution of linear systems [HW65, GS00, RC83, Tem69, KM85,
RP13]. But the characteristic spatial scales of the flow are often larger than
the scales of the species, and one may exploit this fact by resolving these two
sets of equations on different grids. This idea was used in [SRN10], where a
full low-Mach combustion solver was designed, with the flow being solved on
a uniform coarse grid, while the advection-reaction-diffusion of scalars were
solved on a finer grid using AMR. See also [Sch03, Sch04] for an application
of this technique for phase-field simulations. Our aim is to design a numerical
strategy along the same lines, which adapts the mesh at different levels for the
hydrodynamics variables and for the species equations with finer discretization,
while sticking to error control based on MR on this dual grid.
Low-Mach number combustion is our goal, but in order to introduce the funda-
mentals of the approach, we rather focus on a simpler problem representative of
the difficulties we will encounter and tackle the problem of a scalar transport at
various Schmidt numbers by a flow field, which is a solution of the incompress-
ible Navier-Stokes equation, where we introduce a numerical strategy relying
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on a dual grid for both fields with error control based on MR. To this end, we
design a 2D configuration inspired by the canonical interaction of vortex pair
with the mixing layer of a passive reactant [ABC+98]. The strategy is assessed
in this academic configuration in terms of accuracy and efficiency and we show
that the proposed strategy allows to obtain large gains in terms of computa-
tional cost and memory trace, without tempering on the accuracy of the global
solution even at relatively large Schmidt numbers.
The outline of the paper is the following. In section 7.2 the governing equations
for an incompressible flow and the advection-diffusion of a passive scalar are
presented, as well as the details of the mixing layer and vortex interaction.
Then, in section 7.3 we expose our numerical strategy, namely the adaptive
multiresolution algorithm, our spatial discretization strategy for both the flow
and the scalar and finally the temporal discretization retained here. We assess
the efficiency of this strategy to properly tackle the transported scalar problem
at hand in section 7.4, and finally conclusions are drawn in section 7.5.

7.2 Governing equations

We consider the transport of a passive scalar s(x, y, t) in a rectangular domain
denoted Ω, of characteristic length L0, by an incompressible fluid flow which is
fully described by two variables, the velocity vector u = (ui(x, y, z, t))i=1,2 and
the pressure field p(x, y, z, t). The time variable t varies between 0 and T . The
flow momentum and mass balance equations read:

∂u

∂t
+∇ · (ut ⊗ u) +∇p− ν∆u = f

∇ · u = 0
(7.1)

and are coupled to a transport equation for the scalar s given by:

∂s

∂t
+∇ · (su)− κ∆s = f (7.2)

where ν is the kinematic viscosity of the fluid, κ is the diffusivity of the scalar,
and f and f are source terms. Initial and boundary conditions are added to
the system of equations and will be presented in the numerical results section.
In order to mimic the situation in combustion applications where the charac-
teristic length related to the flame inner layer is lower than the scales that have
to be resolved in order to properly capture the velocity field [DB00a, SRN10],
we will consider several Péclet number in our study. The Péclet number is the
product of the Reynolds number and of the Schmidt number. Given a vortical
structure of size L, with a vorticity amplitude of ϕ, the Péclet number reads
ϕL2/κ and represents the ratio between the convection and diffusion processes;
it can be interpreted as a ratio of eddy turn over time compared to the diffu-
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sion time over the size of the vortex. In order to resolve cases, where the Péclet
number is relatively large, adapting the grid for both hydrodynamic field and
scalar field at the same time will lead to much too fine a mesh for the hydrody-
namic solver in terms of memory trace and then computational cost for a given
accuracy. The idea is then to use a dual grid and couple MR on this dual grid
in order to save memory and time, while preserving error control.

7.3 Numerical strategy

We want to tackle problems where the flow and transported scalars have an
inhomogeneous spatial distributions, with localized scalar fronts moving across
the domain. We exploit this specificity by dynamically adapting the computa-
tional grid thanks to the multiresolution analysis [CKMP03, Pos01], in order
to refine the mesh in regions where steep gradients occur and coarsen it else-
where. By studying the physical characteristics of the problem at hand, we
start with a uniform mesh refined enough to capture the smallest length scales.
We then apply MR algorithms, at each timestep, to restrain the use of the
finest meshes only where the variables present steep gradients, while employing
coarser meshes elsewhere. Two attributes of the multiresolution analysis make
it perfectly suited for adaptive grid refinement in numerical resolution of PDEs
[Pos01]:

1. the adaptation process is based on local regularity indicators of the vari-
able we are approximating. It is thus inherently more accurate than
ad-hoc criteria used in AMR

2. we have the ability to monitor the error of the multiresolution process.
This adaptation strategy comes with error-tracking capabilities allowing
us to control the information loss that data compression necessarily entails

We do not need the same mesh resolution for the flow and the scalar transport;
it suggests the use of a multihierarchy spatial discretization strategy [SRN10,
Sch03, Sch04]. We will use one grid for the velocity and pressure fields, another
one for the transported scalars, and will perform adaptive MR separately but
in a consistent manner on both grids. This means that at any timestep we have
a hybrid grid for the flow, that is hopefully coarser than the scalars’ hybrid
grid. Here we only consider the transport of a passive scalar, so we only need
to project the velocity field on the scalars’ grid when needed: this is done with
the inter-level operations of the MR procedure (the prediction and projection
operators, which are described in the next section). This will introduce some
errors compared to a computation of both the flow and the scalar performed in
a single grid, especially regarding the divergence-free constraint on the velocity,
nevertheless this error is controlled thanks to the MR algorithm. We will denote
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by (MMR) this new multihierarchy multiresolution adaptive strategy.
We discretize our PDEs in space via a finite volume method. The classical
approach for finite volume schemes to approximate incompressible flows, is to
use staggered grids for the velocity and pressure, to avoid spurious velocity and
pressure modes [HW65]. However, the inter-level operations between embedded
grids necessary for the MR algorithms on the one-hand, and the non-uniform
character of the adaptive computational grid on the other hand, hinder the
use of the staggered-grid layout in our case. We resort then to a collocated
arrangement [CET06], and we have to deal with the spurious modes. Moreover,
our adaptive grid is non-conforming ([CET06, CEH09, EGH10], see figure 7.1).
This problem was also taken into account in the finite volume scheme that
we designed to couple multiresolution to an incompressible flow solver. This
scheme is easily usable to discretize the scalar transport, too.
The spatial discretization yields a Differential Algebraic Equation (DAE) for the
velocity and pressure variables, and an Ordinary Differential Equation (ODE)
for the scalar, since we only consider here the advection-diffusion of the scalar
by the flow. Since the grid can change at each timestep, we prefer to integrate
these equations in time by one-step methods. The integration of the DAE
needs special care due to its stiffness [HW96, San13, AP98]; in addition the
satisfaction of the divergence-free constraint cannot be achieved with an explicit
method. We chose the fully implicit two stages Radau IIA method [HW96].
It is stiffly accurate [PR74], and does not suffer from order reduction when
applied to DAEs [HW96]. It is 3rd order for the velocity, and 2nd order for
the pressure. To integrate the scalar we use the classical explicit four stages
Runge-Kutta method (RK4). We use the velocity at time n to advance the
scalar at time n+ 1, and then advance the velocity.
In what follows, we will first give a short presentation of the adaptive multires-
olution algorithms used in a finite volume context; more details can be found in
[CKMP03, Pos01, TD11b]. We then describe briefly our spatial and temporal
schemes.

7.3.1 Adaptive multiresolution strategy

We consider a variable u defined on a computational domain Ω = ]0, bx[×]0, by[,
with (bx, by) ∈ R∗+. We choose the maximum grid level lmax ∈ N∗ so that the
computational mesh of size 2−l

max
bx×2−l

max
by is fine enough to properly capture

all the spatial scales of u in Ω. Let Ωl be a set of nested dyadic Cartesian grids,
indexed by their refinement level l = 0, 1, 2, . . . , lmax so that for each l we have:

Ωl = { ]2−lbxi, 2
−lbx(i+ 1)[× ]2−lbyj, 2

−lby(j + 1)[ | i, j ∈ {0, 1, . . . , 2l − 1} }
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We define:

K l
i,j = ]2−lbxi, 2

−lbx(i+ 1)[× ]2−lbyj, 2
−lby(j + 1)[

Sl = {0, 1, . . . , 2l − 1} × {0, 1, . . . , 2l − 1}

The following then holds:

• Ωl is the disjoint union of cells K l
i,j , with (i, j) ∈ Sl where Sl is the index

set of the meshes of Ωl

• Ωl =
⊔

(i,j)∈Sl
K l

(i,j) = Ω

• if l < lmax, for any cell K l
i,j ∈ Ωl, there exists a unique set of 4 cells K l+1

µ

with µ ∈ Sl+1 so that K l
i,j is the union of the cells K l+1

µ : the cells K l+1
2i,2j ,

K l+1
2i+1,2j , K

l+1
2i,2j+1 and K l+1

2i+1,2j+1. We denote this set Cli,j

There is a natural tree structure associated with such a set of embedded dyadic
grids [CKMP03]. The root of the tree is the coarsest cell K0, and for any cell
K l
γ with l < lmax, we say that the cells K l+1

µ ∈ Clγ are the children of K l
γ ,

and (reciprocally) that K l
γ is the parent of the cells in Clγ . Leaves of the tree

are cells with no child. By definition, the initial set of leaves is formed by the
cells at the most refined grid level lmax. Here we have quadtrees in 2D. Given
ε ∈ R∗+, we build a multiresolution representation of u with the following steps:

1. Initialization
We start by computing a discrete representation Ulmax = (uγ)γ∈Slmax of u on
Ωlmax , where each uγ is the average of u over the mesh K lmax

γ .

2. Projection
For l ∈ {lmax − 1, lmax − 2, . . . , 1, 0}, we derive the approximation Ul on the
grid Ωl by a projection [TD11b] of the finer approximation on Ωl+1. For each
γ ∈ Sl, we have: uγ = 1

4

∑
µ∈Clγ uµ, i.e. uγ is the average of the 4 values of the

children meshes of K l
γ .

3. Details computation
For each K l

i,j , with l ∈ {0, 1, . . . , lmax − 1} and (i, j) ∈ Sl, we derive a local
regularity indicator of the variable u. For any vector of values V = (vk), where
the k belongs to a finite set of indexes, let Qs be a polynomial interpolation
defined as:

Qs(k, V ) =
s∑
q=1

ξq(vk+q − vk−q)
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with s ∈ N, and the ξq are the coefficients of centered linear polynomial in-
terpolations of order 2s + 1 [BH96]. For each child K l+1

2i+p,2j+q (with (p, q) ∈
{0, 1}×{0, 1} depending on the child), we compute an approximate value (a.k.a.
a prediction) ûl+1

2i+p,2j+q of ul+1
2i+p,2j+q by polynomial interpolation of the values

on the grid Ωl [TD11b]:

ûl+1
2i+p,2j+q = uli,j + (−1)pQs(i, ul.,j) + (−1)qQs(i, uli,.) + (−1)(p+q)Qs2(i, j;U l)

(7.3)
where Qs2 reads:

Qs2(i, j;U l) =

s∑
a=1

ξa

s∑
b=1

ξb(u
l
i+a,j+b − uli−a,j+b − uli+a,j−b + uli−a,j−b)

The local regularity indicator (a.k.a. the detail) is then defined as: dli,j =√∑
µ∈Cli,j

(ul+1
µ − ûl+1

µ )2

4. Thresholding
For each l from lmax−1 down to 0, we associate a flag keep-children to every

mesh K l
i,j , that is initially set to false. Then if

dli,j
max(dli,j)

≥ 2l−l
max

ε we set the
flag to true, otherwise we keep it to false. The maximum is taken over the
set of all details of meshes belonging to the tree.

5. Grading
For each K l

i,j , with l ∈ {0, 1, . . . , lmax−1} and (i, j) ∈ Sl, we denote by Rli,j the
indexes of the nodes needed for the computation 7.3. Then for l from lmax − 1
down to 0, if the flag keep-children of K l

i,j is set to true, for each cell K l
γ

with γ ∈ Rli,j , we set the keep-children of its parent to true.

6. Pruning
For eachK l

i,j , with l ∈ {0, 1, . . . , lmax−1} and (i, j) ∈ Sl, if its flag keep-children
is set to false, then we discard its children from the tree structure. Let Λ be
the set of indexes (l, γ), so that the cell K l

γ belongs to the tree structure, let
M be its set of leaves and L(Λ) the indexes corresponding to these leaves .
Λ and M evolve after the preceding pruning procedure, in such a way that
the cells belonging to M are still a disjoint partition of Ω. If we denote:
MΛU = (ulγ)(l,γ)∈L(Λ), then MΛU is a multiresolution approximation of u, a
new discrete and hybrid (because the leaves inM may not have the same size
anymore) representation of this variable on the computational domain Ω.

The multiresolution analysis [Pos01] ensures that there exist a constant C in-
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dependent of ε so that: ‖Ulmax −MΛU‖ ≤ Cε, and so we have a control of the
precision of our hybrid approximation with regard to the most refined uniform
representation (see for example [Dua11]). We proceed with some remarks about
this adaptation strategy:

1. If the interpolation stencil s in step 3 is so that s ≥ 1, then the Grading
step ensures that the level of two adjacent cells in M can differ by at
most one unit (if K l

γ and K l′
µ are adjacent cells, then l′ ∈ {l− 1, l, l+ 1}).

In this study, except stated otherwise, s will be set to 1 (figure 7.1 gives
an example of a graded mesh discretization in this case)

2. We can combine steps 2 to 6 with a PDE numerical solver S to perform
dynamic grid adaptation in the following way. Suppose that we start
with an initial condition on u discretized over the most refined uniform
grid. We apply the preceding adaptation strategy and obtain new sets
Λ0 and M0, and a multiresolution approximation MΛU

0, that we will
simply denote U0. We then apply S to U0 to obtain Ũ1 on M0, that
we use to compute new projection values (step 2) and new details (step
3) for the nodes in Λ0 that are not leaves. We modify step 4, and add
another procedure: suppose that mesh K l

γ is a leaf in Λ0, that l < lmax,
and that dl−1

µ is the detail of its parent cell (computed from Ũ1). If
dl−1
µ

max(dl−1
µ )
≥ 24s+42l−1−lmax

ε, then we reconstruct the children of K l
γ , we

compute new values in these cells from K l
γ and its neighbors, using the

interpolation of step 3, and we set the keep-children flag of K l
γ to true.

From then we apply steps 5 and 6 to obtain new sets Λ1 andM1, and a
new vector U1. We re-apply S and steps 2 to 6 to obtain U2, and so on

3. We can adapt multiple variables u1, u2, · · ·um on the same grid: we per-
form steps 1 to 4 for each variable separately, and we set the flag of a
cell to true if it is set to true for at least one of the variables. We then
perform steps 5 and 6, and the grid obtained will be accurate enough
for all the variables. We can also discretize two variables u1 and u2 on
two completely separate grids, but on the same domain Ω. If we need
values from u2 to perform a computation on the grid of u1 for example,
we can always use the projection and prediction operators (steps 2 and
3) to perform these values transfers between grids

7.3.2 Spatial discretization

M is the adaptive mesh that partitions the computational domain. For ev-
ery rectangular mesh K ∈ M, we denote by xK the center of K, m(K) its
(Lebesgue) measure, NK its set of neighbors, EK= {σK|L | σK|L the edge
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Figure 7.1: Example of a graded quadtree discretization

separating meshes K and L for L ∈ NK} its set of edge boundaries, dK,σ
the Euclidian distance between xK and σ, and m(σ) the measure of σ, for
σ ∈ EK . A discretized variable V on M is represented by its vector compo-
nents V = (vK)K∈M. We also denote lK the level to which the mesh K belongs
to in the grid hierarchy (cf. section 7.3.1).
The quantities that we are trying to approximate are the velocity u = (ui(x, t))i=1,2,
the pressure p(x, t) and the transported scalar v(x, t). We start with the finite
volume scheme to solve the PDE (7.1) that results in a Differential Algebraic
Equation (D) for the quantities:

U = (ui,K(t))i=1,2,K∈M

P = (pK(t))K∈M

The DAE (D) is found by approximating the differential spatial operators that
appear in (7.1).
We follow [CEH09] in designing our finite volume scheme, and discretize (7.1)
for every mesh K and component i = 1, 2 in the following way:


m(K)

dui,K
dt

+ ν
∑
σ∈EK

FK,σ(ui)︸ ︷︷ ︸
Diffusion

+ m(K)∂
(i)
K P︸ ︷︷ ︸

Pressure gradient

+ C
(i)
K (U)︸ ︷︷ ︸

Convection

=

∫
K

fi(x)dx = m(K)Fi,K

m(K) divK U =
∑
L∈NK

ΦK|L(U) = 0

(7.4)

ν
∑

σ∈EK FK,σ(ui) are approximations of the diffusive fluxes of the quantity ui
through the set of boundaries EK of K.

∑
L∈NK ΦK|L(U) are an approximation

of the mass fluxes through the boundaries of K, with NK its set of neighbors.
Given the type of mesh we have to deal with (cf. section 7.3.1), we need to
distinguish between 3 cases for the fluxes computation: the case where the
meshes K and L are at the same level (lK = lL), the case where L has level
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lL = lK + 1, and finally the case where L has level lL = lK − 1. The three cases
are explicited in (figure 7.2).
The different equations (7.4) amount to a nonlinear system that can be written
in matrix form (for example

∫
K ∇·u ≈ D ·U where D is a divergence matrix).

We formally define the gradient matrix as −Dt, that is, the discrete gradient
is the dual operator of the discrete divergence [CET06, CEH09, GTG15]. This
way, we make sure that our discretization mimics this property of the continu-
ous PDE. In addition, we do not then have to specify boundary conditions for
the pressure, which can be a tricky operation [GS87]. Finally, we define the
convective term: C(i)

K (U) = m(K) divK(U ⊗U)(i).
The scheme written here is complete for periodic boundary conditions. For
Neumann or Dirichlet boundary conditions however, we need a special treat-
ment for the discretization of the diffusion and mass fluxes of the velocity near
the boundary of the domain. We will not get into the details of this imple-
mentation here, because the main goal of this article is not to describe the
collocated spatial discretization. It is quite classical for collocated meshes in
the literature, and will be presented in a subsequent paper in preparation.
We discretize (7.2) for every mesh K using the approximation fluxes of (7.4):

m(K)
dSK
dt

+ κ
∑
σ∈EK

FK,σ(s)︸ ︷︷ ︸
Diffusion

+m(K) divK(US)︸ ︷︷ ︸
advection

=

∫
K

f(x)dx = m(K)FK

(7.5)

7.3.3 Temporal discretization
We now have to solve the following Hessenberg index 2 DAE in the time pa-
rameter for the velocity and the pressure variables:

Γ
dUi
dt

= νLiUi +Dt
iP − (

∑
j=1,2

DjUiUj) + ΓSi(t)∑
i=1,2

DiUi = Sdiv(t)
(7.6)

and the following ODE in the time parameter for the transported scalar:

ΓscdS

dt
= κLscS − (

∑
j=1,2

DjSUj) + ΓscSsc(t) (7.7)

Here Γ, Li and Di are square matrices of size #(M) ×#(M). Γ is the mass
matrix, the diagonal matrix so that Γi(K),i(K) = m(K) for the mesh K ∈ M.
The Li operators are the Laplacian matrices for the diffusive terms, and the
Di are the divergence matrices described above. The vectors Si(t) include
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Case lL = lK

×
xK ×

xL

K L

dK,σK|L

σK|L

Fk,σK|L(ui) = m(σK|L)
ui,K − ui,L

dK,σK|L+dL,σK|L
;

ΦK|L(U) = m(σK|L)
u1,K + u1,L

2

Case lL = lK + 1

×
xK

×
xL

K

L

σK|L

Fk,σK|L(ui) = m(σK|L)
ui,K − ui,L

dK,σK|L
2

+dL,σK|L

;

ΦK|L(U) = m(σK|L)
u1,K + u1,L

2

Case lL = lK − 1

×
xK

×
xLK

L

σK|L

Fk,σK|L(ui) = m(σK|L)
ui,K − ui,L

dK,σK|L+
dL,σK|L

2

;

ΦK|L(U) = m(σK|L)
u1,K + u1,L

2

Figure 7.2: Computation of the fluxes depending on the interface case
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the discretized source terms Fi and the eventual boundary conditions, and the
vector Sdiv(t) include the boundary conditions for the divergence constraint.
Since the flow and the scalar may not be solved on the same grid, we denoteMsc

the grid for the scalar. Γsc, Lsc and Dsc
i are square matrices of size #(Msc)×

#(Msc). Γsc is the mass matrix, the diagonal matrix so that Γsc
i(K),i(K) = m(K)

for the mesh K ∈ Msc. The Lsc operator is the Laplacian matrix for the
diffusive terms, and the Dsc

i are the divergence matrices described above. The
vectors Ssc(t) include the discretized source term F and the eventual boundary
conditions.
We start with the resolution of (7.6) and we solve it with the Runge-Kutta two-
stage Radau IIA method, which is 3rd order for the velocity and 2nd order for
the pressure [HW96, San13]. We derive it here with the ε-embedding method
[HW96] in the following way. Given velocities and pressure fields (U0, P 0) at
time t0, we want to obtain an approximate solution of (7.6) (U1, P 1), at time
t0 + h = t1 with an implicit 2-stage Runge-Kutta method. The ε-embedding
method recasts equation (7.6) in the following form:

Γg1i = ΓU0
i + ha11

(
νLig

1
i +Dt

i k
1 − (

∑
j=1,2

Djg
1
i g

1
j ) + ΓSi(t0 + c1 h)

)
+ha12

(
νLig

2
i +Dt

i k
2 − (

∑
j=1,2

Djg
2
i g

2
j ) + ΓSi(t0 + c2 h)

)
Γg2i = ΓU0

i + ha21
(
νLig

1
i +Dt

i k
1 − (

∑
j=1,2

Djg
1
i g

1
j ) + ΓSi(t0 + c1 h)

)
+ha22

(
νLig

2
i +Dt

i k
2 − (

∑
j=1,2

Djg
2
i g

2
j ) + ΓSi(t0 + c2 h)

)
∑
i=1,2

Dig
1
i = Sdiv(t0 + c1h)

∑
i=1,2

Dig
2
i = Sdiv(t0 + c2h)

ΓU1
i = ΓU0

i + hb1
(
νLig

1
i +Dt

i k
1 − (

∑
j=1,2

Djg
1
i g

1
j ) + ΓSi(t0 + c1 h)

)
+hb2

(
νLig

2
i +Dt

i k
2 − (

∑
j=1,2

Djg
2
i g

2
j ) + ΓSi(t0 + c2 h)

)

P 1 =
(
1− h

2∑
i,j=1

biωij)P
0 +

2∑
i,j =1

biωijk
j (7.8)

h is the timestep, gji , k
j are intermediate variables, and W = (ωij)1≤i,j≤2 is the

inverse of the matrix A = (aij)1≤i,j≤2 corresponding to the Radau IIA method
(see table 7.1). Since this method is stiffly accurate, we actually have U1

i = g2
i ;

and since it is L-stable, we actually have (1−h
∑2

i,j=1 biωij) = 0 [HW96], which
simplify the computations. The presence of the convective terms in (7.1) im-
plies that (7.8) is a nonlinear system in the variables (gji , k

j), that has been
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solved here with simple fixed-point Picard iterations [Tur98].

We now treat the spurious pressure and velocity modes. The spurious modes are
due to the linear part of equation (7.1) [GS00], so that we only have to consider
the Stokes equation for their treatment. If we do not take into account the
convective terms in (7.8), the velocity and pressure at time tn+1 are obtained

by inverting the matrix E =

(
B M
N 0

)
, where:

• B is block-diagonal matrix consisting of d (the space dimension) diagonal

blocks Bi, with Bi =

(
Γ− a11hνLi −a12hνLi
−a21hνLi Γ− a22hνLi

)

• M =

(
M1

M2

)
, with Mi =

(
−a11hD

t
i −a12hD

t
i

−a21hD
t
i −a22hD

t
i

)

• N =
(
N1 N2

)
, with Ni =

(
Di 0
0 Di

)
The spurious modes that will affect the solution of our problem are the vectors of

the form
(
v
q

)
which are in the null-space of E: E

(
v
q

)
=

(
B M
N 0

)(
v
q

)
= 0.

If v 6= 0, it will pollute the quantities g1
i , g

2
i in (7.8), causing the apparition of

spurious modes in the computed solution; and of course the same is true with
q regarding k1, k2. But as we wrote earlier, we only need the velocity for the
scalar, not the pressure, so we are just going to ensure that there is no spurious
mode for the velocity. There might be spurious mode in the pressure, but if we
make sure that they do not affect the velocity, we are ensured of the precision
of our velocity computation.
We remark here that by construction, −νLi is a symmetric and diagonally
dominant matrix, so that it is diagonalizable (in R) and all its eigenvalues are
positive. The matrix B depends on h the timestep, and we use the following
result:

Theorem 7.3.1. There exists h0 > 0 so that for each 0 < h ≤ h0, if
(
v
q

)
is a

null vector of the matrix E, then v = 0.

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

Table 7.1: Butcher array of the Radau IIA scheme
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We will use the following lemma:

Lemma 7.3.1. If a matrix B is as defined above, then there exists h0 > 0 so
that for each 0 < h ≤ h0 and for any real vector z the two following propositions
are equivalent:

1. ztBz = 0

2. z = 0

Proof. (2) =⇒ (1) is obvious for any h ∈ R∗+. We then turn to (1) =⇒ (2).
For h → 0, B converges to a diagonal matrix where each block is the mass
matrix. Hence, in the limit, all its eigenvalues are positive. By the contin-
uous dependency of the eigenvalues on the matrix coefficients, there is some
h0 > 0 such that all eigenvalues of B, for h ≤ h0, are positive too. In that case
ztBz = 0 implies that z = 0, which concludes the proof of the lemma.

Proof. We have that Bv + Mq = 0. If we multiply this vector by vt, we have

vtBv + vtMq = 0. Or vtMq = qt(M tv), and if we write v =

(
v1

v2

)
, we have

that M tv =

(
−a11h(

∑2
i=1Div

i)− a21h(
∑2

i=1Div
i)

−a12h(
∑2

i=1Div
i)− a22h(

∑2
i=1Div

i)

)
= 0, because Nv = 0.

Hence vtBv = 0.
We see that if we choose a real h0 that satisfies the conditions of the lemma,
then necessarily, v = 0, which concludes the proof of the theorem.

We see that we can always choose h small enough to preclude the apparition
of spurious modes for the velocity field, the one that is detrimental for the
transport of scalars.
The resolution of the ODE (7.7) is done with the RK4 method, which is 4th

order for the scalar. We discretize the time interval [0, T ] with fixed timesteps
of size h, the timestep used to solve the flow. RK4 being an explicit method, we
have to take into account stability restrictions when solving the scalar equation,
that do not apply to the Radau IIA method. In practice we thus integrate (7.7)
with a timestep hsc smaller than h. We use the velocity at time nh to integrate
the scalar from nh to (n+ 1)h with

⌊
h
hsc

⌋
iterations of RK4, and then use one

iteration of (7.8) to advance the flow variables from nh to (n+ 1)h.
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Figure 7.3: Initial values of the numerical experiment. Left: vorticity field;
right: passive scalar

7.4 Numerical experiments

7.4.1 Initial configuration

The initial configuration of the flow consists of three vortices (ω1, ω2, ω3) dis-
tributed on the horizontal axis with their centers located respectively at the
center of the domain (0, 0), and at (−x0, 0) and (x0, 0). They have the follow-
ing shapes:

ω1 = −1

2
ϕ

(
1 + tanh

(
1

δ0
(r0 −

√
x2 + y2)

))
ω2 = +

1

2

ϕ

2

(
1 + tanh

(
1

δ0
(r0 −

√
(x− x0)2 + y2)

))
ω3 = +

1

2

ϕ

2

(
1 + tanh

(
1

δ0
(r0 −

√
(x+ x0)2 + y2)

))
The initial condition for the scalar is given by

s = tanh

(
1

δ1
y

)
It aims at mimicking an initial configuration where the scalar is a constant
value in the upper half of the domain, and another one in the lower half of the
domain (we can think for example of a gas mixture with fresh fuel in the upper
half, and hot air in the lower half). The source terms of (7.1) and (7.2) are set
to 0. Figure (7.3) shows the initial vorticity and scalar field.
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The computational domain Ω is the square [−1
2 ,

1
2 ] × [−1

2 ,
1
2 ], the boundary

conditions for the velocity are free-flow boundary conditions, and we impose
homogeneous Neumann boundary conditions for the transported scalar. We set
ν = 5.10−4, ϕ = 100, δ0 = 0.01, r0 = 0.03, x0 = 0.09, and δ1 = 0.01.
We turn to an analysis of the relevant spatial scales of this configuration. The
characteristic scales of the flow are the core size of each vortex 2r0 and the
distance between the vortices center x0. The characteristic scale for the scalar
is the thickness of the mixing layer δ1. It can happen that δ1 is an order of
magnitude smaller than x0 and 2r0, which means that the scalar needs a finer
mesh than the flow to be accurately solved numerically. The dimensionless pa-

rameter of interest here is the Peclet number, Pe =
4ϕr2

0

κ
, which represents the

ratio between advective and diffusive processes in the scalar transport [GS00].
If Pe is small then the diffusive forces are prevalent, and they tend to quickly
thicken δ1. In this case a grid resolving the velocity may be good enough to
solve the scalar transport. But if Pe is large, then the advective forces are
prevalent, and the initial small mixing layer is advected in a spiral way by the
flow, almost without thickening due to diffusion. In that case the grid must
capture the small initial structures of the scalar.
We rewrite the Peclet number Pe = ReSc, where Re =

4ϕr20
ν is the Reynolds

number of the flow, and Sc = ν
κ is the Schmidt number. We fix Sc = 0.1

to investigate the error control capability of our method, and we will later
consider larger Schmidt numbers. With such parameters, a uniform grid with
lmax = 7 is fine enough to properly describe the flow, but in some situation
this might be too coarse for the scalar. In each of the following computations,
we fix h = 2.5 × 10−3 for the timestep for the flow, and hsc = 1.25 × 10−4

for the scalar. We verified that, for each of the following computations, these
timesteps were small enough to ensure convergence in time; also, the use of
high order temporal integrators ensures the fact that the temporal errors are
negligible compared to the spatial errors. We will denote by (MR) a classical
multiresolution adaptive strategy where the flow and the scalar are computed
on the same grid. Thus the initial uniform grid has to be refined enough to
capture the spatial scales of both the scalar and the flow, and the adaptive
process produces a grid adapted for both of them. We recall that we denote
by (MMR) the new multihierarchy multiresolution adapative strategy that we
developed here, with separate grids for the flow and the scalar. For the (MMR)
strategy, we denote lmax

v the maximum level for the flow grid, and lmax
sc the

maximum level for the scalar.
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7.4.2 Numerical results

First we compare the result of our numerical strategy with a computation run
on a uniform grid. For the (MMR) computation, we set lmax

v = 7, lmax
sc = 8

for the scalar, we choose ε = 10−3 for thresholding parameter, and run the
computation from 0 to 0.5. The uniform grid is set at lmax = 8 for both the
flow and the scalar. The results for three times, t = 0.0075, t = 0.025 and
t = 0.5, are shown in figure (7.4), where for each time we have the adapted grid
for the scalar on the left, the scalar value for the adapted grid on the center,
and the scalar value for the uniform grid computation on the right. We see
here a good agreement suggesting that our adaptive strategy is able to produce
the same results as on a uniform fine grid. We also show the evolution of the
vorticity field in (7.5).
Next we check the ability to control the multiresolution error with our new
adaptive strategy. We recall that we adapt both the flow and the scalar, but on
different grids. Here, we set lmax

v = 7, and lmax
sc = 7 or lmax

sc = 8. In each case,
we run the simulation until t = 0.5, and at this time we compute the L2-norm
of the error between the adapted scalar value, and the value obtained with the
same two-grids algorithm, but with both the flow and the scalar computed on
their respective uniform most refined grid. We do this for different values of ε.
Figure (7.6) shows that we still preserve the ability to control the adaptation
error with ε, the error decreasing linearly with the threshold parameter.
Our last numerical test deals with variable Péclet numbers. As we stated earlier,
the flow and the scalar might need different resolutions to be adequately solved,
and in our case this is mainly related to the relative importance of the advection
versus the scalar diffusion. We set ε = 10−3, and we run the computation until
t = 0.5, with different Schmidt numbers. We study the values for Sc = 0.1,
Sc = 1 and Sc = 10. For each Schmidt number, we run three computations:
one with a uniform grid at lmax = 7 for the flow and lmax = 10 for the scalar (our
reference for comparisons), one with (MR) where lmax = 7, and one (MMR)
with lmax

v = 7 and lmax
sc = 9. The results are shown in figure (7.7), where we

zoom in closer to the mixing layer. We see that at Sc = 0.1 and Sc = 1, the
(MR) and (MMR) are in good agreement with the reference simulation. But for
Sc = 10, the (MR) solution is not accurate, and we actually have to resort to
a grid with lmax

sc = 9 for the scalar to properly describe the phenomenon. The
computation would take much longer if we had to resort to a unique grid, even
if we use the adaptive multiresolution for the flow and the scalar: in our case
the velocity grid has around 7000 cells, while the scalar grid as around 63000
cells, so this would mean solving a linear system for the flow almost ten times
higher, even though the physics of the flow does not require such accuracy. This
case clearly advocates the usefulness of our method.
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(a) t = 0.0075

(b) t = 0.25

(c) t = 0.5

Figure 7.4: Interaction of a passive scalar and a vortex field. Comparison
between a computation on a uniform grid at lmax = 8, and a computation
done with (MMR), where lmax

v = 7 and lmax
sc = 8. Left: adapted grid for the

scalar; center: scalar value on the adapted grid; right: scalar value on the
uniform grid



Sect. 7.4 - Numerical experiments 203

(a) t = 0.0075

(b) t = 0.25

(c) t = 0.5

Figure 7.5: Evolution of the vorticity field with grid adaptation by multires-
olution, where lmax

v = 7. Left: adapted grid; right: vorticity field
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Figure 7.6: L2 norm of the multiresolution error versus the threshold parameter ε for
the scalar. Left: lmax

sc = 7; right: lmax
sc = 8

ε 3.10−2 3.10−3 3.10−4

Speedup ×8.3 ×8.04 ×8.13

Table 7.2: Interaction of a passive scalar and a vortex field. Comparison between the
(MR) and (MMR) computing times for different thresholding parameters. (MR) with
lmax = 8; (MMR) with lmax

v = 7 and lmax
sc = 8. For a given value ε of the thresholding

parameter, the adapted grid computation with (MR) is speedup times longer than the
computation with (MMR)

ε 3.10−2 3.10−3 3.10−4

Speedup ×71.32 ×38.40 ×16.5

Table 7.3: Interaction of a passive scalar and a vortex field. Comparison between
the uniform grid and (MMR) computing times for different thresholding parameters.
Uniform grid with lmax = 8; (MMR) with lmax

v = 7 and lmax
sc = 8. For a given value ε

of the thresholding parameter, the uniform grid computation is speedup times longer
than the computation with (MMR)
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(a) Sc = 0.1

(b) Sc = 1

(c) Sc = 10

Figure 7.7: Interaction of a passive scalar and a vortex field. Comparison
between uniform, (MR) and (MMR) solutions at t = 0.5 for different Schmidt
numbers. From left to right: (MR) with lmax = 7; (MMR) with lmax

v = 7 and
lmax
sc = 9; uniform with lmax

v = 7 and lmax
sc = 10, reference
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7.4.3 Cost comparison

Finally, we want to discuss the computational advantages of the (MMR) method.
Before doing so, we mention that the computing costs are determined in huge
part by the software implementation. The code used here is a research/devel-
opment software, which primary purpose was not to obtain high-performance
computing, but rather to showcase the ability of the (MMR) method to obtain
correct and precise simulation results. The three computational settings, the
uniform grid, the (MR) and the (MMR) all share the same routines for the
linear space operations (matrix–vector multiplication, vector–vector addition,
vector–vector inner product, linear solver): we use the optimized PETSc li-
braries [BAA+19b, BAA+19a, BGMS97] which are written in C. But the data
structures and routines needed for the adaptive multiresolution implementa-
tion in the (MR) and (MMR) simulations are written in Python, for sequential
computations only.
We will proceed to two different comparisons. The first one will help us to de-
termine the computational gain between the (MR) and the (MMR) methods.
While both methods use grid adaptation by multiresolution, the single grid
algorithm has to be set at the refinement requirement of the scalar transport,
which is not the case for the two grids algorithm. Clearly, the (MMR) method
will generate much less meshes than the (MR) one for the flow, and we want
to quantify the resulting speedup.
We set Sc = 0.1, for both the (MR) and (MMR) methods we set lmax

sc = 8, and
for the (MMR) method we also fix lmax

v = 7. We run the computation from 0 to
0.5, for various values of the thresholding parameters. We save the computing
time for the (MR) and (MMR) computations, and we report the ratio between
the (MR) computing time and the (MMR) computing time in table (7.2). The
(MMR) method is 8 times faster than the (MR) method here, which is a very
good speedup given the precision that we are still able to obtain.
The second comparison concerns the (MMR) method and the uniform grid
computation. These kinds of comparisons are tricky, because we are dealing
with two different softwares. A common mistake is to use the code for the
adapted grid to do a computation on a uniform grid; that is not the case here,
because we built a specific code for the uniform grid computation, that does not
suffer at all from the overhead of the multiresolution. What is more, this code
runs entirely on PETSc, so that is fairly optimized compared to the (MMR)
code that relies heavily on Python. Nevertheless, we can take full advantage of
working on a coarser grid for the flow, and we quantify the resulting speedup.
We set Sc = 0.1, and for the (MMR) method we set lmax

sc = 8, and lmax
v = 7.

For the uniform grid computation we set lmax = 8, and we run the computation
from 0 to 0.5, for various values of the thresholding parameters. We save the
computing time for the uniform grid algorithm once, the different computing
times for the (MMR) computations, and we report the ratio between the uni-
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form grid computing time and the (MMR) computing time in table (7.3). The
speedup obtained with the (MMR) method, even with a threshold parameter
as small as 3.10−4, is already impressive, and we expect it to be even greater
with an optimized implementation of the adaptive multiresolution.
We finish this section by recalling that these results were obtained with an
in-house code, on relatively small test cases. But we expect them to be even
better for the (MMR) on a more optimized code for two reasons: (i) the mul-
tiresolution algorithms are linear in time, while the matrix inversion necessary
in incompressible flow computations are polynomial in time, with a degree
greater than 2 generally, thus the overhead of the multiresolution algorithms is
negligible when compared to the grid size reduction, and (ii) with the (MMR)
we can be at an even higher level of refinement for the scalar.

7.5 Conclusion

We introduce a new spatial adaptive strategy to efficiently solve the transport
of a passive scalar by an incompressible flow. The flow and the scalar are
discretized in a finite-volume context on different grids, and multiresolution
adaptive refinement techniques are applied to both variables. Regarding the
incompressible Navier-Stokes equations, the velocity and pressure unknowns
are discretized on a collocated setting, and the DAE resulting from the spatial
discretization is solved with an implicit high-order Runge-Kutta method, al-
lowing third-order accuracy in time for the velocity. The ODE resulting from
the spatial discretization of the scalar is solved with an explicit fourth order
Runge-Kutta method. This new strategy is particularly suited for configura-
tions where the characteristic scales of the scalar are much smaller than the
characteristic scales of the flow, as is often the case in chemically reacting
flows. We can achieve an accurate description for the scalar, without paying
the price of solving the flow on a grid with a much larger number of unknowns
that would be necessary for the description of the latter. We review this on a
manufactured case of 3 vortices interacting with a passive scalar mixing layer.
The next step will consist in combining these techniques with high-order oper-
ator splitting techniques for an efficient and accurate resolution of chemically
reacting flows.
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General Conclusion and
Prospects

This work takes place in the context of the development of new numerical strate-
gies to efficiently solve stiff PDEs originating from the modelling of multiscale
reactive flows. We build a new numerical scheme to solve the incompress-
ible Navier-Stokes equations in the primitive variables, with grid adaptation
based upon a fully adaptive finite-volume multiresolution scheme, and high-
order temporal integration methods. The spatial discretization is performed
on collocated grids, in order to implement the multiresolution algorithms. We
demonstrate that we are able to control the errors due to the mesh adaptation
technique, an important issue that is often disregarded or underestimated in
similar numerical strategies. Regarding the temporal integration method, spe-
cial care is given to the theoretical properties of the proposed scheme, namely
the stability of the method, and its ability to deal properly with the stiffness
coming from the algebraic constraints in the semi-discretized incompressible
Navier-Stokes equations. This numerical strategy is implemented from scratch
in an in-house numerical code, with modularity features enabling the compar-
isons of various integration techniques. We assess the capabilities of this new
hydrodynamic solver in terms of speed and efficiency, in the context of scalar
transport on adaptive grids. The numerical simulation of incompressible flows
is a very difficult task, and the achievements presented in this thesis rest upon
complex and advanced notions in functional analysis, numerical analysis, linear
algebra, algorithms and data structures. We believe that the numerical tech-
niques developed in this study pave the way to a new generation of time/space
adaptive numerical methods for the simulations of multicomponent reactive
flows exhibiting severe stiffness. In the Introduction, we mentioned that the
present work aims at complementing the strategy introduced by M. Duarte in
[Dua11], to obain a low-Mach solver with adaptation in time and space with
error control. We believe that we have completed the first part of this task,
with the design of a high-order hydrodynamics solver for the incompressible
Navier-Stokes equations with grid adaptation by multiresolution.
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In what follows we summarise the main contributions of this work, that have
extensively been showcased throughout this dissertation:

• In terms of mathematical analysis:

– we developed a new general framework to build high order Implicit-
Explicit Additive Runge-Kutta methods to solve the incompressible
Navier-Stokes equations. The main advantage of this new generation
of additive schemes is that the stiff and linear part of the equations
are treated with a dedicated implicit scheme, whereas the nonlinear
convective part of the equations is treated with an explicit scheme,
enabling important computational time savings.

• In terms of numerical schemes:

– a new finite-volume scheme for the incompressible Navier-Stokes
equations on adaptive rectangular grids, in a collocated layout. This
scheme showcases an original treatment of the spurious pressure and
velocity modes, that does not alter the precision of the discretization
technique. Although this scheme was designed here in the context
of adaptive multiresolution, it can be applied to a more general con-
text, as long as the computational grids share the features described
in Chapter 2;

– an original strategy to perform adaptive multiresolution coupled to
the resolution of the incompressible Navier-Stokes equations in a
finite-volume context. To our knowledge, this constitutes the first
derivation of fully adaptive finite-volume multiresolution schemes for
incompressible flows;

– a new 3rd-order additive Runge-Kutta method for the incompress-
ible Navier-Stokes equations, combining a 3rd-order, A-stable, stiffly
accurate, 4-stage ESDIRK method for the algebraic linear part of
these equations, and a 4th-order explicit Runge-Kutta scheme for the
nonlinear convective part. This scheme enforces the mass conserva-
tion to round-off errors, i.e. the velocity vector is divergence-free to
machine accuracy at each timestep.

• In terms of scientific computing:

– a new software implementation of the algorithmic procedures of
adaptive multiresolution. It is a generic code to perform multireso-
lution analysis in 1D/2D/3D, in a finite-volume context. The code
considers the hashtable data-structures for the multiresolution rep-
resentation, and it comes with a new set of algorithms to perform
the multiresolution algorithms without recursive tree navigation;
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– the software implementation of relatively efficient preconditioned
Uzawa algorithms, to solve the Stokes matrices that appear in the
application of high-order implicit Runge-Kutta methods to solve the
incompressible Navier-Stokes equations. This is a tailored imple-
mentation, using both direct and iterative inner solvers for specific
submatrices;

– A new academic, generic code developed for the numerical solution of
the incompressible Navier-Stokes equations with space adaptive, and
high-order temporal integration schemes. It is written in Python,
for modularity purposes, and relies heavily on the PETSc library for
most of the computationally intensive operations.

We conclude by mentioning some further developments:

• In terms of mathematical analysis:

– The construction of discrete spatial operators with better properties
for the adaptive non-uniform grids. In particular, we need to intro-
duce a stabilizing technique à la Brezzi-Pitkäranta [BP84] in order
to preclude the apparition of spurious pressure modes. This should
allow to obtain convergence properties of the spatial discretization
scheme on non-conforming grids, a piece that is missing in our work;

– an analysis of the convergence speed of the spatial discretization
scheme is also missing. We suspect that in practice the order of
convergence is between 1 and 2 when the mesh size tends to zero.
We believe that the ideas that we exposed in this work can be a
good starting point to build collocated finite-volume schemes with a
higher convergence order, and good convergence properties;

– more work is needed to exhibit the order conditions of additive
Runge-Kutta methods applied to Hessenberg index 2 DAEs in gen-
eral, and to the incompressible Navier-Stokes equations in particular.
This would help to build a more precise framework for the develop-
ment of high-order IMEX Runge-Kutta methods for the simulation
of incompressible flows.

• In terms of numerical schemes:

– It would be interesting to build a more specific preconditioner for the
Uzawa algorithm that we implement to solve the Stokes problem that
appears in our additive Runge-Kutta scheme. It is well known that
in the simulation of incompressible flows, the most time consuming
task is the resolution of the linear systems. A first improvement
regarding our methodology would be to use multigrid techniques to
solve the Poisson equation for the pressure;
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– the new high-order adaptive solver for the incompressible Navier-
Stokes equations that we introduce here can be extended in a straight-
forward manner to implement a low-Mach solver. The mass conser-
vation constraint needs to be adapted, as well as the computation
of the diffusive terms in the momentum equations. We are currently
working on such an extension by developing a space adaptive low-
Mach solver for the simulation of laminar buoyant jets;

Finally, we come back to the second building block that was missing in the
work of M. Duarte [Dua11]: an efficient computational implementation of the
adaptive multiresolution algorithms. Indeed, the data structure that we use to
perform the multiresolution analysis is not the best suited to take full advantage
of modern processors architectures. The construction of a tree in the form of
a quadtree (2D) or octree (3D) is probably the simplest way to represent the
multiresolution mesh. Nevertheless, if we look a little closer at the operators
used (prediction, projection, ...), we can observe that we very often need to know
the neighbors of a given cell. However, the search of nodes has a significant cost
if we use a naive tree data structure based on pointers as originally done in M.
Duarte’s work [TD11a]. Such a data structure was essential in order to obtain a
proof of concept but is not adapted to an optimized and efficient implementation
of the multiresolution approach. Most of the software using multiresolution
methods or cell-based AMR methods, which are very close to multiresolution
methods, use a tree data structure. But, to improve the locality and thus speed-
up the search for neighbors, a space filling curve (Morton curve) [BWG11] is
used in this work. This technique improves memory access compared to tree
data structure based on pointers and is well suited for parallel use [BWG11].
Nevertheless, the data structure based on space filling curve is not efficient for
finding the neighbors during the multiresolution process. Indeed, to search a
neighbor cell, tests are necessary to know if the cell exists at the same level l.
If not, one can search neighbor cell at the coarsen level l − 1 or at the finer
level l + 1. Thus, even if the data structure based on Morton curve improves
the locality, a lot of tests have to be performed to find the existing neighbor
cell and the recursive nature the prediction step is a stumbling block in the
search of locality. A first attempt to overcome these difficulties was proposed
in [DDD+15] in collaboration with INTEL relying on the TBB library on Xeon
Phi, that is on shared-memory architecture. It still relied on a space-filling
curve and Morton index ordering.
During this work, the need for a new paradigm for the data structure has
emerged through a collaboration with Loïc Gouarin, Laurent Séries and Hugo
Leclerc 1 [LNS+18]. A new data structure, better suited to multiresolution
methods and not based on a tree approach nor space-filling curves, has been

1L.G. at CMAP, L.S. at CMAP and H. Leclerc 4 months at CMAP before moving to
LMO.
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created. Instead of storing the coordinates of each cell independently (e.g. as
in Morton ordering based codes), the idea is then to store contiguous ranges
along a given direction (x by default). These ranges are then sorted first by
refinement level (allowing traversals one refinement level at a time) and then
to coordinates, ending with the “main” one (which is x by default). This data
structure allows keeping contiguous access in the x direction, which is a good
point for most of the operators used to solve PDE based on stencil operators. It
is also interesting for the prediction and projection operators described in this
work. Since ranges are used for each space direction, finding the neighbors of a
cell using the algebra of sets (intersection, union, difference, etc.) becomes much
easier. For example, to make the projection from level l+1 to l, the intersection
between cells of level l + 1 and l is performed. If the set is not empty, then
we can apply the projection operator. The algorithms of the algebra of sets
construct new sets of ranges. There is no need to test if a cell at a given level
exists which improves considerably the execution time [LNS+18]. Our primary
tests show a speed-up of 5 compared to data structures based on Morton index
and z-curve. This speed-up is mainly related to mesh handling and not to
PDE resolution. Several developments are in progress in order to identify the
precise impact on global time-to-solution on a series of representative test cases
ranging from hyperbolic PDEs to parabolic reaction fronts of reaction-diffusion
type. It seems that the new approach leads to better performance and nice
parallelization features. This software, called MuRe, should be available by
the end of 2020 with an open source license and we aim at implementing the
proposed approach for the incompressible Navier-Stokes equations in it, as well
as, eventually, the final low-Mach solver.
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