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Abstract

The US Global Positioning System (GPS) provides an accurate positioning service anywhere
in the world at any time, but its features are far from being sufficient for it to constitute the
Global Navigation Satellite System (GNSS) expected by the civil aviation community. The

horizontal accuracy is below 100 m 95% of the time, which is adequate for oceanic, enroute and non
precision approaches phases of flight, although additional autonomous integrity monitoring is required
to improve safety. The position estimate is computed by measuring the distance to all the visible
satellites of the constellation, from the observations of pseudo random noise code modulations. When
corrected using a ground reference station, the GPS code pseudorange measurements should provide
an accuracy of a few meters. This is sufficient for low accuracy precision approaches (Category I),
but guidance during the high accuracy precision approaches (Category II and III) requires the use of
a sub-meter positioning system with a high integrity.

Since the beginning of the years 1980s, the GPS carrier phase measurements have been used in
geodetic applications to pinpoint the location of the survey sites with a centimeter accuracy, after res-
olution of the intrinsic ambiguities of these measurements. Such techniques are attractive to the civil
aviation community as they appear to have the accuracy required for its most demanding applications.
However, as the ambiguity resolution process appears to be fragile especially in real-time kinematic
applications, several questions remain unanswered about the reliability of these specific techniques,
called AROF (Ambiguity Resolution On-the-Fly) procedures.

The aim of this study is to contribute to the analysis of the feasibility of using GPS carrier phase
measurements ambiguity resolution procedures during precision aircraft landings. The starting point
of this analysis is the presentation of the requirements for a GNSS based precision landing system, and
the determination of a model for the carrier phase measurements. Then, the data pre-processing oper-
ations are reviewed, and the resulting quality of the data is assessed. Then, a classification of AROF
procedures is proposed, and theoretical principles of several techniques, including the new MAPAS
procedure developed during this study, are described. Next, the characteristics of AROF procedures
are identified, enabling the determination of the requirements of AROF procedures. Afterwards, the
difficulty of the determination of theoretical performance is discussed, and mathematical expressions
of the performance parameters of MAPAS are presented. Next, the performance of AROF procedures
is evaluated on a practical basis using simulated measurements, using measurements collected from
a Nortel GPS signal generator, and using field measurements. Finally the characteristics are checked
against the constraints, and a conclusion is drawn from this study.
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R�esum�e

Le système américain GPS (Global Positioning System) fournit à tout utilisateur dans le monde
entier un service de positionnement précis, mais ses caractéristiques sont trop éloignées de
celles d’un GNSS (Global Navigation Satellite System) pour l’aviation civile. La précision

atteinte est inférieure à 100 m 95 % du temps, et est suffisante pour les phases de vol océanique, en
route, et pour les approches de non précision, mais une surveillance autonome complémentaire de
l’intégrité est nécessaire pour améliorer la sécurité. L’estimation de position est effectuée en utilisant
les mesures de distance entre l’utilisateur et les satellites visibles de la constellation GPS, obtenues
grâce à l’observation des modulations de code pseudo-aléatoires du signal émis par les satellites.
Après correction grâce aux données d’une station de référence, ces mesures de pseudo-distance de
code devraient permettre un positionnement d’une précision de quelques mètres. Ceci est suffisant
pour les approches de faible précision (Catégorie I), mais le guidage des avions pendant les approches
de haute précision (Catégorie II et III) requiert l’utilisation d’un système de positionnement sub-
métrique ayant une très grande intégrité.

Depuis le début des années 80, les mesures de phase de la porteuse du signal GPS sont utilisées
lors des applications géodésiques pour déterminer précisément la position des points de mesure, avec
une précision centimétrique après la résolution des ambiguïtés intrinsèques aux mesures de phase. De
telles techniques sont attirantes pour l’aviation civile, puisqu’elles semblent avoir la précision néces-
saire pour ses applications les plus exigeantes. Cependant, le processus de résolution des ambiguïtés
s’avère fragile, surtout dans les applications dynamiques en temps réel, et des questions subsistent
concernant la fiabilité des ces techniques spécifiques, appelées méthodes AROF (Ambiguity Resolu-
tion On-the-Fly).

Le but de cette étude est d’apporter une contribution à l’analyse de l’applicabilité des méthodes
de lever d’ambiguïté de la mesure de phase GPS au guidage des avions en phase d’atterrissage de
précision. Le point de départ de cette analyse est constitué par les exigences opérationnelles des
systèmes d’atterrissage de précision basés sur un système GNSS, et par un modèle mathématique des
mesures de phase GPS. Puis, les opérations de pré-traitement des mesures sont présentées, et la qualité
des données obtenues est évaluée. Ensuite, on propose une classification des méthodes AROF, et on
décrit les principes théoriques de plusieurs techniques, y compris de la méthode MAPAS, développée
au cours de cette thèse. Puis, les caractéristiques des procédures AROF sont identifiées, permet-
tant l’établissement des exigences. Puis, la difficulté de l’établissement des performances théoriques
de ces méthodes est analysée, et des expressions mathématiques des performances de MAPAS sont
présentées. Enfin, les performances de MAPAS sont évaluées sur un plan pratique, en utilisant des
mesures simulées, des mesures collectées sur un générateur de signaux GPS Nortel, et des mesures
réelles en situation aéroportuaire. Finalement, les caractéristiques de ces procédures sont comparées
aux contraintes, et une conclusion est tirée de cette analyse.
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Chapter 1

INTRODUCTION

In the beginning of the years 1980s, theInternational Civil Aviation Organization (ICAO) realized
the increasing limitations of the current air navigation systems, and recognized the need for im-
provement. In 1983, the ICAO formed a new committee called theFuture Air Navigation Systems

(FANS), and asked this group to study, identify and assess new concepts and techniques, and make
recommendations for the coordinated development of air navigation in the next 25 years. The FANS
committee analyzed the characteristics, potentials and difficulties of operation of the currentCommu-
nication, Navigation andSurveillance (CNS) systems and understood their insufficiencies. In 1988,
after four meetings, this committee proposed the development of new CNS means, and the elabora-
tion of a new method forAir Traffic Management (ATM). This proposition was called the CNS/ATM
concept [FAN88].

Among the new solutions proposed by the FANS committee, the navigation concept is based on a
worldwide position and time determination system : theGlobal Navigation Satellite System (GNSS).
This system is composed of one or several satellite constellations, of receivers installed in aircraft, of
an integrity monitoring system, and it is augmented if necessary to satisfy the specific requirements of
each phase of flight. The existing satellite navigation systems,GPS (Global Positioning System) and
GLONASS (GLObal NAvigation Satellite System), along with their augmentations, already provide an
unchallenged positioning and timing service. Although the GPS positioning service is less accurate,
it is far more used than GLONASS that still has to demonstrate its reliability, because GPS receivers
are much more widely spread than GLONASS receivers. An increasing number of aircraft worldwide
use this GPS information as an additional aid to find their way through the sky.

In both systems, the position of the user is determined through the measurement of distances be-
tween the receiver and several satellites of known positions. These distances are simply derived from
measurements of the time of propagation of the signal from the satellite to the user. The propagation
delays can be accurately estimated through the use ofpseudo random noise codes modulating the
signal carrier that provide obvious time marks to the receiver. The obtained horizontal accuracy is
about 50 m 95% of the time with GLONASS, and around 100 m 95% of the time for users of the GPS
Standard Positioning Service (SPS). Only authorized users of the GPS precise positioning service
(PPS) can benefit from a 20 m horizontal accuracy 95 % of the time.

However, due to technical and institutional limitations, this service remains insufficient for the
most demanding civil aviation applications. Apart from its lack of reliability, the nominal 100 m
accuracy of the GPS standard positioning service is insufficient for guidance during landings. Dra-
matic improvement of this accuracy to a few meters can be obtained by the use of areference station
providingdifferential corrections to all the users in the service area. Although this accuracy can be

11
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sufficient for many applications, precision landings call for the use of advanced solutions to reach the
sub-meter accuracy required during the final part of the procedure.

In addition to thecode range measurements presented earlier,carrier phase measurements can
be made on the GPS signals. The carrier phase shift also contains range information, as its rotation
is representative of the distance traveled since the transmission. However, this information isam-
biguous, and proper exploitation of the geometrical information contained within the measurements
requires the resolution of theambiguities. Once achieved, this resolution helps refining the differen-
tial position and provides centimeter level positioning, thanks to the millimeter accuracy of the GPS
carrier phase measurements. Until the end of the years 1980s, resolution of the ambiguities could be
achieved only in static applications. Since then, new techniques have been developed, and ambiguities
can be solved very quickly in real time even in mobile applications. A large diversity of experiments
were conducted to examine the potential use of such techniques, including precision approaches.

It appears from experience that resolution of the ambiguities is a complex and fragile process,
mostly because of its high sensitivity to the perturbations affecting the propagation, such asatmo-
spheric disturbances and multipath. Thus, questions still remain about the true capacity of these
methods in providing reliable accurate positioning information to landing aircraft, and many studies
are being carried out to assess their performance [BHW94, WDR95].

The aim of the study presented in this report is the evaluation of the performance of GPS carrier
phaseAmbiguity Resolution On-the-Fly (AROF) techniques to help determine the feasibility of using
these methods to guide aircraft during precision approaches. This study was performed by theLabora-
toire de Traitement du Signal et des Télécommunications (LTST) of theEcole Nationale de l’Aviation
Civile (ENAC), with the support of theService Technique de la Navigation Aérienne (STNA) and of
SEXTANT AVIONIQUE. The first part of the study consisted in the analysis of the theoretical prin-
ciples of the most representative and promising methods. The analysis is essentially focused on a
new technique, jointly developed by the LTST, the STNA and SEXTANT AVIONIQUE, called the
Maximum A Posteriori Ambiguity Search (MAPAS) method. Then, characteristics of these techniques
were identified and a theoretical analysis of performance was initiated, with a view to check the com-
pliance of these methods with stringent civil aviation requirements. Afterwards, data collected from
GPS receivers connected to aNortel GPS signal simulator were analyzed, and finally evaluation from
field measurements were performed.

This report is a synthesis of the work performed during this study. After this introduction, the
requirements of a GNSS based precision landing system are presented in chapter two, with an ex-
planation of the different parameters used to express the requirements. In chapter three, a model of
carrier phase measurements is derived from the expression of the received signal. Then, in chapter
four, the main pre-processing operations to be applied on the acquired data are presented, and their
effect on the performance of the AROF procedure is emphasized. Next, in chapter five, a classifi-
cation of AROF procedures is proposed, and theoretical principles of several techniques, including
MAPAS are described. In the next chapter, the requirements of AROF procedures are determined by
applying the constraints derived from the operational requirements on the identified characteristics of
the AROF procedures. Afterwards, in chapter seven, the difficulty of the determination of theoretical
performance is discussed, and expressions of the performance parameters of MAPAS are presented.
In the next chapter, the performance of AROF procedures is evaluated on a practical basis using sim-
ulated measurements, then using measurements collected from a Nortel GPS simulator and finally
from field measurements. At the end, the characteristics are checked against the constraints, and a
conclusion is drawn from this study.

1. Introduction 12



Chapter 2

OPERATIONAL REQUIREMENTS

This chapter introduces the parameters used to express the requirements for landing aids such
as theInstrument Landing System (ILS) and theMicrowave Landing System (MLS). Then, the
analysis is focused on the latest requirements issued for precision landing aids based on satel-

lite navigation systems.

The civil aviation requirements for landing aids are issued by international organizations such as
the International Civil Aviation Organization (ICAO) and its sub-committies. These requirements
reflect the quality of the guidance service to be provided to the aircraft. The most demanding instru-
ment approaches are those that require azimuth and glide path information and are calledprecision
approaches. These approaches are divided into three main operational categories namedCategory I,
II andIII (CAT I, II and III), defined according to different parameters, and in particular the level of
confidence that can be placed by the pilot in the landing aid (see appendix A). Current precision land-
ing aids include the Instrument Landing System (ILS) and the Microwave Landing System (MLS).
Requirements for these systems are specified in [ICA96] and are recalled in appendix B.

The requirements for a GNSS based precision landing system have yet to be defined by ICAO.
However, several propositions have been made, the latest of which was issued during the Work-
ing Groups meeting of the ICAOGlobal Navigation Satellite System Panel (GNSSP), as reported in
[ICA97]. The requirements stated are based on constraints imposed on theRequired Navigation Per-
formance (RNP) of the aircraft (see appendix C). The RNPs are expressed in terms of operational
parameters such asaccuracy, integrity, availability and continuity of service of the whole landing
system (see appendix C). This defines volumes of expected position of the aircraft, also calledtun-
nels, as presented in [ICA94a] and recalled in appendix D. The size of these volumes is defined by
the maximum specifiedTotal System Error (TSE). The TSE represents the deviation between the true
aircraft position and its desired flight path. This deviation is the composition of theNavigation Sensor
Error (NSE) with theFlight Technical Error (FTE), the latter representing the accuracy with which
the aircraft is controlled using the information provided by the navigation sensor (see appendix D).
The latest proposition of the ICAO GNSSP is presented in table 2.1.

It must be noted that the figures presented in table 2.1 specify the operational requirements of the
landing system at the decision height associated with the landing category. The possibility to allow
looser performance further away from the decision threshold is currently being discussed at an inter-
national level.

As we can see from table 2.1, the vertical accuracy requirements are very stringent. It is anticipated
that code pseudorange differential corrections will provide the required CAT I accuracy, although the

13
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Category CAT I CAT II CAT III

RNP Type TSE 95

(Lat./Vert.)

0.02 Nm/40 ft

(37 m/ 12 m)

0.01 Nm/15 ft

(18.5 m/ 5.0 m)

0.003 Nm

(5.6 m)

NSE 95%

(Lat./Vert.)
18.2 m/4.4 m 6.5 m/1.7 m 3.9 m/0.8 m

Time-To-Alert 6 sec 1 sec 1 sec

Continuity

risk

1�10�5
in any 15 sec

8�10�6
in any 15 sec

6�10�6
in any 30 sec

Integrity

risk

3.5�10�7
per approach

2.5�10�9
per approach

2�10�9
per approach

Availability of

Signal-In-Space
0.9975 0.9985 0.9990

Table 2.1: Operational requirements on total CAT I/II/III landing equipment at corresponding

decision height, as proposed in [ICA97].

best integrity monitoring techniques are still to be developed. To fulfill CAT II and CAT III vertical
accuracy requirements, it is necessary to use complementary techniques. As GPS carrier phase AROF
procedures can provide centimeter level accuracy, they are good candidates to form the basis of such
a system. However, it is necessary to evaluate their characteristics, and to compare them with the
requirements presented in table 2.1.

Hence, carrier phase measurements are presented in chapter 3, then the principles of AROF pro-
cedures are described in chapter 5, characteristics are identified in chapter 6, and constraints on pa-
rameters are derived from table 2.1 in chapter 6.2.

2. Operational Requirements 14



Chapter 3

OBSERVATION MODELS

This chapter contains a determination of the mathematical models of thecode andphase pseudo-
range measurements based on the structure of the GPS signals and on the procedures of the
measuring devices. It is assumed that fundamentals of GPS are known. In the other case, the

reader can refer to publications such as [PSAE96], [LEI95] or [HWLC93] for example.

Estimation of the position of the user is achieved using the range measurements made by the
receiver. These distance measurements are computed from the characteristics of the RF satellite
signals collected by the antenna of the receiver. The user signals transmitted by the GPS satellites
are twospread spectrum modulated carriers in the L-band. The range measurements are derived
from the estimate of the time of propagation of these signals from the satellite to the antenna of the
receiver. These propagation delays are measured using the code and phase tracking loops driven
by the internal clock of the receiver, which are not synchronized with the satellite’s clock. These
clock offsets alter the range estimates, which are called pseudo-range measurements. In addition
to these clock biases, several errors affect the code and phase pseudo-range measurements, such
asatmospheric perturbations, multipath propagation and intentional degradation of accuracy, also
calledSelective Availability (SA). In order to remove most of the errors affecting these observations,
measurements from another receiver located in the same area are used.

3.1 Structure of GPS signal

The GPS satellites transmit two L-band carriers calledL1 and L2 modulated bybinary data and
pseudo random noise codes. A model of the L1 and L2 signal radiated by the antenna of satellitei is
presented in [SPI96a] and is recalled in equations (3.1) and (3.2).

Si
L1(t) =

p
2PDi(t)Ci(t)cos(2�f1t+ �) +

p
PDi(t)P i(t)sin(2�f1t+ �) (3.1)

Si
L2(t) =

r
P

2
Di(t)P i(t)cos(2�f2t+ �0) (3.2)

where

� P is the mean radiated power.

� Di is the P/NRZ/L pulse coding of the 50 bps navigation message.

� Ci is the P/NRZ/L pulse coding of the C/A code. This code has a chip ratefc = 1
Tc

=1.023
MHz.
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� P i is the P/NRZ/L pulse coding of the 10.23 Mbps P code. This public code is usually encrypted
into the secret military Y code, and is called the P(Y) code.

� f1=1575.42 MHz is the L1 carrier frequency andf2=1227.6 MHz is the L2 carrier frequency.
The associated wavelengths are�1 � 19 cm and�2 � 24.4 cm.

� t is the time in seconds, expressed in the satellite generated time scale. We can write

t = tGPS ��tiS (3.3)

wheretGPS is the time expressed in GPS time scale, and�tiS is the satellite’s clock offset.

� � and�0 are respectively the angle equivalent calibration errors of the L1 and L2 channels. These
terms are small phase noise and oscillator drift components.

Civilian GPS receivers usually track only one component of the L1 signal received from a par-
ticular satellite, composed of the carrier modulated by the data sequence and the C/A code, as other
components are modulated by the unknown P(Y) code. However, special techniques can be used by
so calledcodeless receivers to make measurements on these other components without knowledge of
the P(Y) code, as presented in [LEI95]. These PRN code modulations allowCode Division Multiple
Access (CDMA) to the signal of each satellite. The power spectral density of this signal is the result
of thespreading of the 50 Hz data spectrum by the 1 kHz periodic C/A code clocked at 1.023 MHz.
The power spectral density of the C/A component of the L1 signal is shown in figures 3.1(a), 3.1(b)
and 3.1(c).
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Figure 3.1: Power Spectral Density of C/A component of L1 signal.

Using basic propagation theory as presented in [LEI95], a symbolic model of the C/A component
of the received signal can be derived from (3.1) in order to introduce the group and phase propagation
delays:

SR(t) =
p
2PD(t� �g)C(t� �g)cos (2�f (t� �') + �) + ne(t) (3.4)

where

� P is the power of the received C/A component. The minimum strengthC specified at the output
of a 0 dBgain antenna isC=-160 dBW [DoD95].

3. Observation Models 16
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� t is the time in seconds expressed in the receiver time scale. We can write

t = tGPS ��tU (3.5)

wheretGPS is the time expressed in GPS time scale, and�tU is the receiver clock offset.

� �g is theapparent time dependentgroup delay due to propagation along the actual distance�:

�g =
�

vg
+�tiS ��tU (3.6)

wherevg is thegroup velocity and �

vg
is the true group delay. This group delay is biased by the

difference between the satellite and the receiver clock offset.

� �' is theapparent time dependentphase delay due to propagation along the actual distance�:

�' =
�

v'
+�tiS ��tU (3.7)

wherev' is thephase velocity and �

v'
is the true phase delay. The apparent carrier phase shift is

denoted'(t) = �2�f�' + �.

� ne is the noise affecting the signal collected by the antenna.

This shows that the propagation delay can be observed either on code phase shift�g or on carrier
phase shift�'. However, these two delays are not identical, as the group velocity differs from the
phase velocity due to non linear variation of the propagation velocity as a function of frequency.

The overall frequency of the received carrier is

f(t) =
1

2�

d(2�ft+ '(t))

dt
= f � f

d�'

dt
(3.8)

Thus, variation of the phase delay over time changes the apparent frequency of the received carrier
by an amountfd(t) = �f d�'

dt
, known as theDoppler frequency offset.

These code and carrier phase offsets�g and�' are usually estimated usingcode andphase track-
ing loops, providing measurements for further determination of position. Nevertheless, it has been
suggested by [SAL97] that straight optimal estimates of position and velocity could be directly ob-
tained as components of the complete state vector through non linear filtering of the received signal
with noise. Such an approach avoids the usual separation of the tracking loops and position estima-
tion, merging them into a single estimation problem. To our knowledge, this technique has not been
implemented in any receiver yet. A summary of this non linear filtering technique can be found in
[CMMS97].

3.2 Structure of GPS receiver

A basic GPS receiver is designed to deliver in real time an estimate of the position, velocity and time
of the user in a given space and timereference frame. The current GPS space reference frame was
established in 1984 and is called theWorld Geodetic System 1984 (WGS-84). The WGS-84 reference
frame is defined in [DMA87]. It is used to express the ephemeris data of the GPS satellites broadcast
in the navigation message. The GPS time scale is a generation of theUniversal Coordinated Time

3. Observation Models 17
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(UTC) achieved by a set of atomic clocks at the United States Naval Observatory (USNO). This prac-
tical time scale is calledUTC(USNO).

The organization of tasks in a GPS receiver is as illustrated in figure 3.2. The signal is collected,
filtered and amplified by the antenna, then transmitted to the receiver through the RF cable. Af-
terwards, the signal is down-converted to intermediate frequency and sampled by the RF front end,
processed by each tracking channel to extract raw code and carrier measurements as well as naviga-
tion data bits, which are finally processed to deliver position, velocity and time estimates.

Apart of the active antenna, itsLow Noise Amplifier (LNA), and the RF cable, a receiver is com-
posed of three main parts :

� the RF section down-converts the amplified signal to a digital sequence.

� the specialized GPS chipset is anApplication Specific Integrated Circuit (ASIC) that contains
the specific code and phase tracking loops hardware for each channel.

� the microprocessor controls the tracking loops and processes the data to compute the position
estimates.

PROCESSING

RF

PROCESSING

SIGNAL

PROCESSING

DATADigital

Samples

Figure 3.2: Typical organization of tasks in a GPS receiver.

As presented in section 3.1, the GPS signals are composed ofspread spectrum modulated carriers.
Thus, proper exploitation of these signals is performed through the use of a suppressed carrierPhase
Lock Loop (PLL) like a Costas loop, and of aDelay Lock Loop (DLL).

A PLL is a tracking device that continuously estimates the phase of a carrier. The main structure
of an analog Costas loop is presented in figure 3.3.

V   (t)
eI

V   (t)
eI

FILTER

VCO

FILTER V   (t)
eQ

90°

V   (t)
oI

V   (t)
oQ

V (t)
i

V (t)
c

LOW-PASS

LOW-PASS

LOOP

FILTER

F(s)

Figure 3.3: Structure of an analog Costas loop.
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The incoming GPS signal, denotedVi(t) is modeled as :

Vi(t) =
p
2PC(t� �g)D(t� �g)sin (2�f(t� �') + �) + ni(t) (3.9)

also noted
Vi(t) =

p
2PC(t� �g)D(t� �g)sin (2�ft+ '(t)) + ni(t) (3.10)

where

� t is the time in seconds expressed in the receiver time scale including the phase noise of the
local oscillator.

� � is the only phase bias modeled here, as it is assumed that other propagation delays experienced
by the signal from the antenna to the PLL input line have no significant effect on the positioning
accuracy. Indeed, most of these delays, including delays in the RF cable, are common to each
satellite measurement and only affect the receiver clock offset estimate. Other delays within the
receiver can be calibrated and compensated for in the settings of the tracking loops oscillators.

� '(t)is the apparent phase shift due to propagation:'(t) = �2�f�' + �.

This signal is mixed with anIn-phase (I) andQuadrature (Q) replica of the output of theVoltage
Controlled Oscillator (VCO) on each arm of the loop. The VCO delivers a sine wave with a center
frequency set to the nominal carrier frequency, whose phase is the integrated value of the control
signalVc(t) :

VoI (t) = 2sin

�
2�ft+

Z t

t0

Vc(u)du+
�

2
+ 'L

�
(3.11)

or equivalently

VoI (t) = 2sin
�
2�ft+ '̂(t) +

�

2

�
(3.12)

where

� t is the time in seconds, expressed in the GPS time scale.

� '̂(t) is the carrier phase estimate delivered by the VCO, with'̂(t) =
R t
t0
Vc(u)du+ 'L.

� 'L is the phase offset of the local oscillator combined with the initial value'̂(t0) : 'L = '̂(t0).

As shown for example in [HOL81], this loop has the ability to drive the local VCO so that it gen-
erates a signal with an equivalent unbiased phase estimate'̂ that matches the phase of the incoming
signal with a resulting accuracy represented by the approximate phase uncertainty:

�2'e =
N0BL

C
(3.13)

where

� 'e = '̂� ' is the phase estimation error.

� C = P is the carrier signal power.

� N0 is the value of the single-sided power spectral density of noiseni

� BL = 1
2

R +1

�1
jHLP (f)j

2
df is the equivalent bandwidth of the loop whereHLP is the equivalent

low-pass filter with Laplace transform:HLP (s) =
F (s)

1+
F (s)

s

assuming all gains are set to 1.F (s)

is the central loop filter shown in figure 3.3
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A typical value ofN0 is -205 dBW/Hz [SPI96a]. Therefore, for a minimum power signalC=-160
dBW, the phase tracking error with a 10 Hz loop bandwidth is�'e= 0.5 mm.

Using (3.11) and the definitions of'(t), '̂(t) and the phase tracking error'e(t), we derive:

'̂(t) =

Z t

t0

Vc(u)du+ 'L = �2�f�' + � + 'e (3.14)

Thus, the phase estimate is proportional to the phase propagation delay�'. In consequence, the carrier
phase tracking loop is the basic device for the elaboration of thecarrier phase observations used in
precise positioning, provided that the tracking error is kept within low values. As a result, the mea-
surement accuracy is of the order of the phase tracking error'e.

Actual techniques to perform measurements integrate samples of the digital signalVc(t), that
represents the Doppler shift of the received signal, as presented in figure 3.4.

Arctan
Q

I

K1

K2

K
3

K4

sin

cos
NCO

Integrated
Doppler

Q

I

Hardware

(ASIC)

Software

Figure 3.4: Example of structure of a carrier phase tracking loop (courtesy SEXTANT AVION-

IQUE).

The phase measurement is initialized with the value'̂(t0)which is obtained aŝ'(t0) = tan�1
�

Vo
I
(t0)

Vo
Q
(t0)

�
.

Of course, determination of̂'(t0) is ambiguous because of the periodicity of trigonometric functions.
Therefore'̂(t0) is biased by an unknown but fixedinteger number of cycles N . This measurement
bias is called theambiguity of the phase measurement. The ambiguity is fixed at the initialization of
the phase measuring device, and is constant over time as long as the PLL does not lose lock on the
carrier.

The measurement value delivered at the observation epochk is defined as:

'(k) =

Z t0+kTe

t0

Vc(u)du+ '̂(t0)� 2�N (3.15)
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whereTe is the measurement sampling period.
Expanding (3.15) using the definition of'L and (3.14) , we get :

'(k) = �2�f
�

v'
� 2�f(�tSi ��tU)� 2�N + � + 'e (3.16)

This equation shows the relationship between the carrier phase measurement'(k) and the slant range
�. Moreover, it emphasizes the fact that this measurement is biased by the relative offset of the satel-
lite and user clocks, and by the integer ambiguityN . � is usually neglected, as its value is very small
and can be compensated using the parameters broadcast in the navigation message. When continuous
tracking is achieved,'e appears as a phase measurement noise, with standard deviation�'e , as pre-
sented in (3.13).

Code phase tracking is achieved with a similar device, called aDelay Lock Loop (DLL). Two types
of DLLs can be implemented to track code phase, depending on whether the incoming signal has been
converted to baseband or not. The first type of DLL is called acoherent DLL. Operation of a coherent
DLL requires an estimate of the carrier phase for proper elimination before processing with the DLL.
The other type of DLL is called anon coherent DLL.

The principle of a coherent DLL is illustrated in figure 3.5.
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V1(�g � �̂)

V2(�g � �̂)

V3(�g � �̂)

Figure 3.5: Principle of a coherent DLL: �c is the Early-Late time di�erence, also called

Early-Late chip spacing. Classical receivers are designed with �c = Tc, but enhanced multipath

rejection can be obtained when �c < Tc.

The incoming code and data signals are correlated with early and late replicas of the code, driven
by the control signalV3. Lock is achieved when this control signal is zero, which is obtained for
�̂ = �g, asV3 is linear around 0.

Code tracking can also be performed without demodulation of carrier signal. A typical non-
coherent DLL is presented in figure 3.6.
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Figure 3.6: Typical structure of a non coherent Delay Lock Loop (DLL).

When the Early-Late chip spacing is�c = Tc the performance of the coherent DLL is character-
ized by the variance [HOL81]: �

��e

Tc

�2

=
N0BN

2C
(3.17)

where

� �e = �̂ � �g is the DLL tracking error.

� BN is the equivalent closed loop noise bandwidth.

For example, in the previous case whereC

N0
=45 dB Hz, if the noise bandwidth isBN=3 Hz, the

tracking error has a standard deviation��e � 2m.

Similarly, when�c = Tc, the performance of the non coherent DLL is characterized by [HOL81]:

�
��e

Tc

�2

=
N0BL

2C

�
1 +

2N0BIF

C

�
(3.18)

whereBIF is the bandwidth of the intermediate frequency filter located on each arm of the DLL shown
in figure 3.6. Using the same example, with an intermediate frequency filter bandwidthBIF=10 kHz,
the tracking error is��e � 2.6 m.

In figures 3.5 and 3.6,̂� is the code propagation delay estimate, that can be expressed as :

�̂ = �g + �e (3.19)

This model can be expanded using the expression of the group delay presented in (3.6):

�̂ =
�

vg
+ (�tSi ��tU ) + �e (3.20)

An example of integration of code and phase tracking loops in a receiver is presented in figure 3.7.
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Figure 3.7: Typical architecture of a modern GPS receiver.

In the architecture presented in figure 3.7, only two copies of the code are generated : the Early
minus Late (E-L) replica and the punctual (P) sequence.

3.3 Model of range measurements

Range measurements are elaborated using the estimate of the time of propagation that the code and
phase tracking loops of the receiver are delivering.

As we saw in section 3.2 with equations (3.16) and (3.20), when lock is maintained, the tracking
loops deliver estimates of the propagation delays, all biased by the difference between the local oscil-
lator time offset and the satellite time offset. Thus, the code and carrier distance measurements made
on satellitei at epochk can be modeled as :

P i(k) = c� ig(k) + c(�tu(k)��tiS(k)) + ni(k) (3.21)

'i(k) = �c� i'(k)� c(�tu(k)��tiS(k)) + ei(k) (3.22)

The noise termsni andei represent the tracking errors of the DLL and of the PLL respectively.
These errors are due to the noise affecting the signals fed to these synchronization modules. There-
fore, they are modeled as random variables. It is usually assumed that these random variables have a
Gaussian distribution. In addition, the code noiseni is assumed independent from the phase noiseei,
as the synchronization process of the DLL is very different from that of the PLL. Furthermore,ni and
ei are assumed to be white noise processes, uncorrelated over time.

The propagation velocities are dependent on the nature of the environment encountered by the
wave during propagation. The main differences between group and phase velocities are due to the
slight ionization of theionosphere, as this medium contains ionized particles that have different effects
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depending on the frequency of the signal. The different effects of the perturbations of the propagation
experienced by the signal are usually modeled as delays, assuming that the propagation velocity, both
for the modulation and for the carrier, is the vacuum speed of light.

Neglecting the second order effects as presented in[REM84], a first order model of the pseudo-
range measurements can be expanded from (3.21) and (3.22) as :

P i(k) = �i(k) + c(�tu(k)��tiS(k)) + c(I i(k) + � i(k)) + SAi(k) +Di
mult(k) + ni(k) (3.23)

'i(k) = ��i(k)+c(�tiS(k)��tu(k))+c(I
i(k)�� i(k))�SAi(k)+'i

mult(k)��N
i+�bi(k) (3.24)

where

� I i is theionospheric delay in seconds. As seen in appendix G, the ionosphere delays the code
and advances the phase.

� � i is thetropospheric delay in seconds. The influence of the troposphere can be considered as
identical for code and phase measurements (see appendix H).

� SAi is the intentional range measurement error due to theSelective Availability. It is identical
on code and phase measurements.

� Di
mult is the code pseudo-range measurement error induced bymultipath propagation.

� 'i
mult is the phase measurement error due to multipath propagation.

� � is the L1 carrier wavelength.

� N i is the carrier phase measurementambiguity, constant over time as long as the PLL does not
lose lock on the signal.

In order to take profit from the integer nature of the ambiguities, carrier phase measurements are
usually expressed in units of cycles, dividing the previous quantities by the wavelength�:

'i(k) = �
�i(k)

�
+f(�tiS(k)��tu(k))+f(I i(k)�� i(k))�"iSA(k)+"imult(k)�N i+bi(k) (3.25)

For one additive scattered ray, the measurement errorDmult induced by the multipath propagation
of the signal can range from 0 m to 150 m in the worst case. Several techniques have been proposed to
mitigate the effect of this perturbation as presented in [DB96] and [DOR97] and recalled in appendix
E.

In the case of one specular ray, the measurement error"mult(k) can be expressed as in (3.26), as
presented in [BRA96] :

"imult(k) =
1

2�
arctan

�
�i(k)R (� i(k)��� i(k)) sin (�i(k))

R (� i(k)) + �i(k)R (� i(k)��� i(k)) cos (�i(k))

�
(3.26)

where

� �i(k) and�i(k) are the relative amplitude and phase terms with respect to the direct ray

� �� i(k) is the relative delay of the reflected signal

� � i(k) is the time equivalent pseudo-range measurement error

� R is the autocorrelation function of the C/A code
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In the simple case of one specular ray, if we model the Earth’s surface as a flat plate, the difference
in path length between the direct and the reflected ray is�s

�s = 2h sin � in meters (3.27)

whereh is the height of the antenna above the ground and� is the elevation angle of the satellite.

h

θ θ

Receiver

Reflecting surface

Satellite

Figure 3.8: Reection of satellite signal on the Earth's surface

Therefore, the lines of constant phase in space may be distorted as shown in figure 3.9.
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Figure 3.9: Example of the deformation of the lines of constant phase in space in the case of one

specular reected signal from the Earth's surface. We chose here � = 0.45, for a satellite with

an elevation angle of 45o. The curved continuous lines are the lines of constant phase resulting

of the presence of the reected signal, and are to be compared with the dashed lines in the ideal

case. The straight line is the line of sight of the satellite.

Using 3.26, it can be shown that, in the case of one specular reflected ray, the error"imult(k) is
bounded E:

�0:25 < "imult(k) < 0:25

Thus, this error will not cause a change in ambiguity, if left unmodeled. However, when several
delayed signals interact, the error may be large enough to cause a full-cycle error and lead the ambi-
guity resolution procedure to raise wrong ambiguities.
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Most of the ambiguity resolution procedures assume"imult(k)=0. We will examine the effects of
this assumption on the performances of these methods in chapters 8 and 9.

As we saw in this chapter, access to the geometrical information using the code and phase measure-
ments is difficult due to all the errors affecting these observations. Two approaches can be adopted to
reduce the effect of these errors on the position estimate : the errors can beestimated or compensated.

Estimation of the errors can be made using models of the perturbations. Satellite clock errors and
ionospheric delays can be estimated using the parameters broadcast in the navigation message. Tro-
pospheric delays can be estimated using various models, such as published in [NAT93] or [SPI96b]
(see appendix H). The receiver clock error can be estimated as an additional unknown. However,
these estimates are not accurate enough as compared with the level of the carrier phase measurement
noise. Thus, in practice, for precise positioning applications, these errors are canceled using measure-
ments performed by another receiver located in the same area. Elimination of common errors is the
fundamental principle ofdifferential GPS (DGPS), based on the fact that most measurement errors
exhibit a largecorrelation in the position domain at the same time. For carrier phase processing, these
techniques are extended to the definition ofsingle differencing anddouble differencing.
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Chapter 4

DATA PRE-PROCESSING

METHODS

Once the carrier phase measurements are delivered to the navigation software, a few preliminary
operations must be carried out on these observations to ensure that their format and their quality is
sufficient for the AROF procedure to raise the correct ambiguities in a minimal number of epochs,
and for the positioning module to estimate a precise position.

These preliminary operations are the synchronization of the reference and user data, single differ-
encing, double differencing and detection and correction of cycle slips.

The data pre-processing operations are critical operations, and their quality is a driving factor for
the performance of the AROF procedure.

4.1 Time-matching of user and reference data

The acquisition of measurements is triggered by signals that are proper to each receiver. Therefore,
the data sent by the reference station characterize the errors at a time that differs from the time of
the user measurements. In consequence, it is required to extrapolate the reference measurements to
obtain a prediction of their value at the same time as the user measurements, as shown in figure 4.1.

Reference
Receiver

Measurements

Measurements
Receiver

User

Time of

Time of

Extrapolation

Figure 4.1: Extrapolation of reference measurements .

Several extrapolation techniques were tested, and the most efficient one was found to be a second
order polynomial fitting for a data rate of 1 Hz.

4.2 Single di�erencing

In order to cancel most of the observation errors common to all the receivers performing measure-
ments on the same satellites at the same time, a first set of quantities is computed called thesingle
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differenced measurements. In our case, the user receiver uses measurements from areference station,
usually located on the ground on a surveyed point. These raw measurements are transmitted by the
reference station to the mobile receiver through an RF data link. An illustration of the principle of
computation of these single differences is presented in figure 4.2.

ELIMINATION OF ERRORS
COMMON TO BOTH RECEIVERS

SINGLE DIFFERENCES OF PHASE

REFERENCE STATION

MOBILE

SATELLITE

Figure 4.2: Principle of single di�erencing.

A model of these single differences is :

�P i(k) = P i
R(k)� P i

U(k)

= ��i(k) + c(�tRU (k)��tiSRU (k)) + c(�I i(k) + �� i(k))

+�SAi(k) + �Di
mult(k) + �ni(k) (4.1)

�'i(k) = 'i
R(k)� 'i

U(k)

= �
��i(k)

�
+ f(�tiSRU (k)��tRU (k)) + f(�I i(k)��� i(k))

��"iSA(k) + �"imult(k)��N i +�bi(k) (4.2)

where

� upperscripti denotes the satellite number

� subscriptsR andU are used to denote respectively the Reference measurements and the User
measurements,

� the� operator is used to symbolize the differentiation operation performed between the ground
and the user quantities.

Cancellation or reduction of errors can only be achieved if differenced quantities are related to the
same GPS time, and if these errors are highly correlated for both receivers.

As presented in section 4.1, time matching of measurements requires that a special re-synchronization
procedure be operated between the reference and the user measurements, as measurement events are
not identical for both receivers. Usually, this procedure performs an extrapolation of ground mea-
surements at the time tags of the user measurements. Proper re-synchronization of measurements
at reception times, through second order polynomial fitting for example, ensures that satellite clock
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offset andSA-dither component are identical for both receivers if their relative distance is lower than
20 km (see appendix F).

Ionospheric propagation delays are usually highly correlated for separations lower than 10 km,
depending on the solar activity (see appendix G). The correlation between both the tropospheric
propagation delays decreases rapidly with the difference in height between the receivers (see appendix
H). In order to reduce the amount of atmospheric residuals in the single differenced measurements,
tropospheric and ionospheric errors are usually estimated from atmospheric models, and withdrawn
from the user and reference measurements before single differencing.

Errors in the computation of the position of each satellite get projected on the user line of sight,
and add up in the worst case, but induce small range errors if specific precautions are taken (see ap-
pendix I).

Thus, provided that proper compensation is achieved, satellite clock offsets and SA get canceled.
The only remaining errors are the atmospheric residuals, the receiver clock offset and the multipath
errors. However, as we can note in equations (4.1) and (4.2), the variance of the noise�ni and�bi is
doubled. Thus, the model can be written as :

�P i(k) = P i
R(k)� P i

U(k)

= ��i(k) + c�tRU (k) + c(�I i(k) + �� i(k))

+�Di
mult(k) + �ni(k) (4.3)

�'i(k) = 'i
R(k)� 'i

U(k)

= �
��i(k)

�
� f�tRU (k) + f(�I i(k)��� i(k))

+�"imult(k)��N i +�bi(k) (4.4)

4.3 Double di�erencing

In order to remove the user receiver clock offset, differences of single differences can be computed.
The resulting quantities are called thedouble differences. The most usual method is to subtract sin-
gle differences of all satellites from single differences of one particular satellite called thereference
satellite. The principle of computation of these double differences is illustrated in figure 4.3.

The reference satellite is usually chosen as the satellite with the highest elevation angle, as the
probability of a distortion of the signal (atmospheric perturbation, multipath, ...) increases as the
elevation decreases.
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DOUBLE DIFFERENCES OF PHASE
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Figure 4.3: Principle of computation of double di�erences.

Assuming the reference satellite is satellite 1, a model of these quantities is as follows :

r�P i(k) = �P 1(k)��P i(k)

= r��i(k) + c(r�I i(k) +r�� i(k)) +r�Di
mult(k) +r�n

i(k) (4.5)

r�'i(k) = �'1(k)��'i(k)

= �
r��i(k)

�
+ f(r�I i(k)�r�� i(k)) +r��imult(k)�r�N

i +r�bi(k) (4.6)

The double differenced measurements are the observations used by the precise positioning algo-
rithms to determine an accurate position of the user receiver. As we can see, these measurements are
affected by atmospheric residualsr�Ii andr�� i, and by the double differenced multipath errors
r�Di

mult andr��imult, that add up with the tracking noiseni andbi to distort the data.
Therefore, the resulting noise has a very complex distribution, which is in general very different

from the distribution ofr�bi. However, most of the carrier phase processing algorithms assume that
this resulting noise is a gaussian white noise stochastic process.

4.4 Detection and correction of cycle slips

As presented in section 3.2, the GPS carrier phase measurements are taken from the carrier phase
lock loop. Therefore, the quality of these measurements is conditioned on the capability of the loop
to track closely the evolutions of the phase of the carrier. Usually, the loop is able to follow rapidly
these evolutions, and measurement errors are small. But in some cases, the loop may suddenly lose
lock on the signal for a brief instant and re-acquire the signal very quickly after this. This problem,
called acycle slip, occurs when the signal is blocked by an obstacle, or when the dynamics of the
mobile are too high for the tracking loop to follow. Such a phenomenon produces an abrupt jump in
the carrier phase measurements, and can be modeled as a sudden change in the ambiguity from one
measurement to the other. This change can have a very disastrous effect at two stages of the carrier
phase processing. If the ambiguities are not solved yet, then an abrupt change of the ambiguity of
a tracked satellite makes all the phase data on this satellite appear inconsistent, and the procedure
will have a very hard time to achieve the resolution. If the ambiguities were already solved, then the
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positioning module will suddenly use a false ambiguity value to determine the position of the mobile.

Therefore, it is mandatory to check the measurements fed to the carrier phase processing module
for cycle slips. Detection of cycle slips on measurements made by a mobile receiver is difficult, be-
cause it may be hard to decide whether a change in the carrier phase measurement is due to a cycle
slip or is due to a change in the distance between the satellite and the antenna. This detection is easier
if the ambiguities are already solved because the redundancy check is more accurate. If cycle slips
are detected, then it is important to estimate the value of the change in order to correct the phase
measurements to be processed.

The analysis of the phase measurements cycle slips detection and correction techniques is not the
main objective of the study presented in this report. However, several new techniques were analyzed
and implemented, and are still undergoing development. We first tried to analyze the capability to
detect and estimate cycle slips after the ambiguities are solved, and we are now developing software
to detect and estimate cycle slips before the ambiguities are determined. Therefore, the main objective
of this section is to present the principles of the detection and estimation of cycle slips. The details of
the techniques developed during this study will be presented in future publications.

4.4.1 Cycle slips detection and estimation technique

The objective of the cycle slips detection and estimation techniques is similar to the objective of the
integrity monitoring techniques such as those used inReceiver Autonomous Integrity Monitoring

(RAIM) algorithms for example. The main goal is to detect the presence of cycle slips, then to isolate
the channel affected by the problem, and finally to reconfigure the receiver for proper future exploita-
tion.

Several methods for detection and estimation of cycle slips can be found in the literature. Some
of them are only usable in static applications, like for example the efficient method presented in
[BLE90]. In the dynamic case, the method presented in [LL92] performs a global approach, based
on hypothesis testing of biases in Kalman filter innovations. However, the testing presented used
this method is only based on the residuals observed at the current epoch. Therefore, we developed
a technique based on the same basic principle, using a more optimal bias testing procedure, inspired
on the technique presented in [VK96]. The testing procedures we have used are two sequential tests
based on the computation of the likelihood ratio between the initial and the final distribution called
theCUmulative SUM (CUSUM) test, and one of its adapted versions called the�2 � CUSUM test.
These tests are not detailed here, as they can be found in numerous publications such as [PAG54] for
the definition of the CUSUM test, and [NVK93, BN93] for modern developments. It was shown that
both the CUSUM and the�2 � CUSUM test are asymptotically optimal in the sense that they min-
imize the worst case mean detection delay when the mean time before false alarms is infinite [NIK94].

The first developments made aimed at detecting and correcting cycle slips occuring after the am-
biguities are solved. We are currently working on the development of a technique for detection and
correction of cycle slips before the resolution of the ambiguities.

Each procedure is designed to work in the differential mode (DGPS), therefore the measurements
processed are double differenced in order to remove most of the errors, as presented in section 4.3.

A model of these double differenced measurements is presented in (4.5) and (4.6). The cycle slip
detection and correction procedure presented here assumes that the double differenced measurements
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are only affected by tracking noise. In consequence the mathematical model is as follows:

r�P i(k) = r��i(k) +r�ni(k) (4.7)

r�'i(k) = �
r��i(k)

�
�r�N i +r�bi(k) (4.8)

The cycle slips are modeled as sudden changes in the value of the ambiguities. Therefore, the
ambiguities vary with time, and we can model the double differenced carrier phase measurements as:

r�'i(k) = �
r��i(k)

�
�r�N i +r� ~N i(k) +r�bi(k) (4.9)

where �
r� ~N i(k) = 0 if k < ki

r� ~N i(k) = �N i if k � ki, where�N i 2 Z
(4.10)

andki is the epoch of arrival of the cycle slip for satellitei, and�Ni is the associated jump.

The bias�N i is an integer value, that can have a value as low as 1 cycle or several millions of
cycles [LEI95].

When a cycle slip occurs on the carrier phase measurements of a particular satellite, only the mea-
surements related to that particular tracking channel are affected. Therefore, this change only affects
the double difference of that particular satellite, except if this satellite is the reference satellite. In that
latter case, all the double differences are affected by the same cycle slip.

4.4.2 Detection and estimation of cycles slips occuring after resolu-

tion of the ambiguities

In this chapter, we try to detect and estimate the cycle slips that occur after the resolution of the
ambiguities. The procedure designed detects a bias on the innovations delivered by a Kalman filter.
The observations used by the Kalman filter are the unambiguous double differenced carrier phase
measurements. The state of the system is composed of the position and velocity of the mobile. The
state transition equation corresponds to the integrated random walk model presented in section L.

Xk+1 = FkXk +Wk (4.11)

Yk = h(Xk) + Vk (4.12)

where

� Xk = [xk; _xk; yk; _yk; zk; _zk]

� Yk = �(k) +N where�(k) = [r�'2(k) : : :r�'nk(k)]
T andN = [N2 : : : Nnk ]T , assuming

satellite 1 is the reference satellite used to compute the double differences.

� h(Xk) = �r��i(k)

�
, as presented in appendix L

� Fk is the integrated random walk transition matrix presented in appendix L

� Wk is the state noise, with covariance matrixQk, as presented in appendix L

� Vk is the observation noise, with covariance matrixRk, as presented in appendix L
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At each epoch, the Kalman filter delivers the vector of the innovationsIk (see appendix L) to the
cycle slip detection procedure:

Ik = Yk � h
�
X̂k+1jk

�
(4.13)

When no cycle slip is present, the innovation vector is centered. Note that this is only true as a
first order approximation, as the extended Kalman filter is based on first order Taylor series expansion
(see appendix L) although the system may not very closely follow that assumption. If a cycle slip
occurs, the component of the innovation vector corresponding to the affected satellite is affected by
a bias constant over time. The other components are affected by a small bias corresponding to the
phase prediction error generated by the position error made by the filter, as one of the measurements is
corrupted. If the cycle slip occurs on the measurements of the satellite used as a reference to compute
the double differences, then all the components of the innovation vector are affected by the bias. In
that case, detection fo the cycle slip may be very difficult.

Let’s assume the tracking channel affected by the cycle slip does not correspond to the reference
satellite. An example of the evolution of the innovation of that satellite is presented in figure 4.4.
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Figure 4.4: Innovation of the double di�erenced carrier phase measurements of a satellite af-

fected by a cycle slip of 2 cycles.

A �2-CUSUM test is conducted on these innovations. The�2-CUSUM test is designed to test
abrupt changes on a sequence of input data with the following assumptions:

� the data has an independent gaussian distribution with a known variance.

� the expected value of the data before the cycle slip occurs is well-known.

� the expected value of the data changes to an unknown value after the jump.

� the Kullback-Leibler distance between the initial and the final distribution is well-known (see
appendix J).

In our case, the Kullback-Leibler distance between the two distributions is not known. Therefore,
as our objective is to detect cycle slips of a minimal amplitude of 1 cycle, we designed the test for a
Kullback-Leibler distance corresponding to that worst case. To perform the isolation function, as any
channel can be affected by a cycle slip, we run(N � 1) tests in parallel, each one trying to detect
a cycle slip on a particular double difference. The likelihood ratios obtained for each hypothesis are
compared, and the channel associated with the maximum ratio larger than a predefined threshold is
isolated as the affected channel.

Two different forms of this test were implemented:
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� a�2-CUSUM test is run globally on the innovation vector to detect a possible bias in any of the
components.

� a scalar�2-CUSUM test is run separately on each component of the innovation vector.

In both cases, the decision threshold is set so that the algorithm tries to detect at least a bias of one
cycle on one innovation component.

Unfortunately, the results obtained using both of these�2-CUSUM test implementations were
not satisfactory because the test had to be tuned to the specific value of the cycle slip affecting the
measurements in order to have a sufficient efficiency.

4.4.3 Detection and estimation of cycles slips occuring before reso-

lution of the ambiguities

Presentation of the method

The procedure presented here uses all the available measurements to try and detect any cycle slip
occuring on the carrier phase measurements. Like the procedure described in section 4.4.2, this tech-
nique detects a bias on the innovations delivered by a Kalman filter. However, the observations used
are the double differenced code and phase measurements, and the ambiguities are incorporated into
the state of the system, in addition to the position and velocity components. As in section 4.4.2, the
state transition equation used corresponds to the integrated random walk model presented in appendix
L.

As the ambiguities are incorporated in the state of the system, they are continuously estimated.
Therefore, when the change occurs, the filter is taken by surprise and will generate a biased innovation,
which progressively returns to zero as the filter compensates the bias, as shown in figure 4.5(a).
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Figure 4.5: Evolution of two components of the innovation vector when a cycle slip occurs. The

a�ected innovation exhibits a sudden change with an amplitude equal to the amplitude of the

cycle slip. Then, the Kalman �lter compensated the change. The innovations related to the

other satellites are also a�ected, but to a smaller extent, depending on the geometry.
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We can see that the innovations do not present the general constant offset required as an assump-
tion of the bias detection algorithms. Nevertheless, this bias has a significant amplitude for a long
period, and detection by an algorithm such as the CUSUM test could be achieved. Tuning of the
algorithm was possible, and the initial results are reported in the next section.

Preliminary results

A preliminary evaluation of the performance of the method proposed is carried out using simulations
of the approach of an aircraft over the Toulouse-Blagnac airport. Measurements are generated using
the computed positions of the satellites, and the simulated trajectory of the aircraft. The approach
generated is a straight approach with a constant velocity of 70 m.s�1 initiated 20 Nm before the
runway, and a cycle slip is inserted in one of the phase measurements 50 seconds after the beginning
of the approach. The ability of the procedure to detect and estimate the bias is assessed by running
these landing scenarios with an 8 second interval during 24 h for a total of 30 times. Therefore, this
scenario was run for a total of 10801*30=324030 times.

Performance Value

Probability of non detection 0

Detection delay

Min: 0 s

Mean: 0.001 s

Max: 5 s

Probability of False Isolation 3.10�7

Probability of Isolation of

Faulty Satellite at least

with at least 3 satellites remaining

0.996

Probability of Proper Isolation 0.872

Probability of Correct

Estimation of Cycle Slip
0.995

Table 4.1: Preliminary simulation results for the capacity of detection and correction of cycle

slips.

These results can be compared to the operational requirements stated for the integrity and the con-
tinuity, presented in table 2.1. As the availability requirements for the carrier phase landing systems
are not clearly defined, they are not taken into account in the present analysis.

The integrity risk was evaluated in the worst case where it is certain that a cycle slip occurs on 1
satellite signal during the approach. The integrity risk is defined as

Integrity Risk= 1� P [Isolation of affected channel at least] (4.14)

The continuity risk is the sum of the probability of occurence of a false alarm and the probability
that fewer than 4 satellites remain after isolation of faulty signals. Therefore we can write:

Continuity risk= P [Number of remaining satellites < 4 after isolation] + P [False Alarm] (4.15)

Required Performance Observed value

Category CAT I CAT II CAT III

Max Detection delay 6 s 1 s 1 s 5 s

Integrity Risk 3.5�10�7 2.5�10�9 2�10�9 3�10�3

Continuity Risk 1�10�5 8�10�6 6�10�6 7.19�10�2

Table 4.2: Comparison of initial results with required performance.
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As we can see from table 4.4.3, the observed performance is good, although it remains far away
from the operational requirements. However, several limits to this conclusion must be drawn. First of
all, the jump simulated in all the landing scenarios has an amplitude of 1 cycle, which is the smallest
possible value. Morevover, the integrity and continuity risks were calculated in a worst case scenario
where a cycle slip always occurs during the approach. On the other hand, these results are based
on simulations that are incomplete, as the approach path is straight with a constant velocity, and no
perturbation such as multipath or atmospheric decorrelation were added.
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Chapter 5

PRINCIPLES OF AROF

PROCEDURES

Ambiguity Resolution On-the-Fly (AROF) procedures determine the ambiguities of the double
differenced phase measurements made by a moving receiver. The solved ambiguities pro-
vide the basis for centimeter level positioning of the receiver. Since the design of the first

resolution procedures, the mathematical approaches adopted to achieve this determination have gone
from integer searching to integer estimation using specific optimization techniques. Based on this
evolution, this chapter presents a proposed classification of AROF procedures. Then, four procedures
are described, namely the Least Squares Ambiguity Search Technique (LSAST) [HAT91], the Maxi-
mum A Posteriori Ambiguity Search (MAPAS) [MAC95], the Fast Ambiguity Search Filter (FASF)
[CHE95] and the Direct Integer Ambiguity Search (DIAS) [WS95].

5.1 Classi�cation of AROF procedures

The ambiguities affecting the carrier phase measurements performed by a GPS receiver prevent the
access to the geometrical information contained within these measurements. Elimination of these
ambiguities can be achieved through time differentiation of the measurements. The resulting obser-
vations are called thetriple differences, and do not include the ambiguities. However, in the dynamic
case, processing the triple differences to determine the position is complex because they depend on
the time derivatives of the user position. Another technique to determine the position of a mobile
consists in solving the equation model for the ambiguities. This approach lead to the elaboration of
numerous ambiguity resolution procedures since the beginning of years 1980.

The problem of the resolution of the ambiguities is a general problem ofstatistical inference
where we need to process some observation to extract information from it. Upon examination of all
the techniques proposed for resolution of the ambiguities, it appears that two distinct approaches were
adopted. These two approaches correspond to the two major areas of statistical inference, which are
decision theory andestimation theory. In the first case, a decision is taken among some finite number
of possible situations, while in the second case an estimate of a quantity that is not observed directly
is computed [TRE68, POO94].

This distinction can provide the basis for a classification of AROF procedures. These procedures
process the double differenced carrier phase measurements presented in section 4.3 with the simplified
model 4.6 recalled here:

r�'i(k) = �
r��i(k)

�
+r��imult(k) + f(r�I i(k)�r�� i(k))�r�N i +r�bi(k) (5.1)
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The procedures that adopt the decision approach, like the Ambiguity Function Method (AFM)
[REM91, MAD92], the Least Squares Ambiguity Search Technique (LSAST) [HAT91, LCL92], the
Maximum A Posteriori Ambiguity Search (MAPAS) method [MAC95] and the Ambiguity Resolution
using Constraint Equation (ARCE) [PKLJ97] aremultiple hypotheses tests that check thousands of
integer combinations to find the most consistent one.

On the other hand, estimating procedures, like the Fast Ambiguity Search Filter (FASF) [CHE95],
the Direct Integer Ambiguity Search technique (DIAS) [WS95] and the Fast Ambiguity Resolution
Approach (FARA) [FB90] use the measurement model 5.1 presented in section 4.3 to estimate in two
stages the best integer vector. The vector is first estimated as a floating point quantity, then fixed using
specific procedures based on integer optimization theory, such as the Lambda method [TEU94] or the
technique based on the optimized Cholesky decomposition method presented in [LE92] for example.
A specific class of ambiguity estimating procedures are the methods that only make the first estima-
tion step, providing a good floating point estimate of the ambiguities that enables the receiver to reach
decimeter-level positioning after a few seconds. The first class of estimating procedures is referred
herein asinteger estimating procedures, and the second one is calledfloat estimating procedures. In
this report, float ambiguity estimation procedures have not been studied.

The proposed classification of AROF procedures is summarized in table 5.1.

Decision Integer Estimation

AFM FARA

LSAST DIAS

MAPAS FASF

ARCE

Table 5.1: Proposed classi�cation of AROF procedures.

However, integer estimating procedures can be viewed as decision-making techniques, considering
that any integer estimating procedure comes with a finalvalidation stage that has the structure of a
multiple hypothesis sequential test, as the best candidates are sorted and tested for consistency for
several epochs before the election of the best one.

The principle of AROF procedures is to extract the ambiguity information from the double differ-
enced observations that are corrupted by the measurement errors and noises. In the next sections, the
LSAST and MAPAS methods are presented as examples of decision techniques, and the DIAS and
FASF methods are presented as examples of integer estimation techniques.

5.2 LSAST andMAPAS: two decision making techniques

The concept of the Least Squares Ambiguity Search Technique (LSAST) was first presented in
[HAT91] and reformulated in [LCL92]. The Maximum A Posteriori Ambiguity Search (MAPAS)
method, jointly developed by SEXTANT AVIONIQUE, the French Service Technique de la Naviga-
tion Aérienne (STNA) and the LTST is a method for ambiguity resolution on-the-fly inspired from
the technique presented in [BH84], which is based on the same principles as the LSAST.

These two procedures perform an active search of the value of the double differenced ambiguities
of four particular satellites called theprimary satellites. They both are multiple hypotheses sequential
tests that process as many carrier phase measurements as necessary to isolate the best candidate in
a predetermined set ofthree-integer combinations. However, the LSAST and MAPAS methods use
different decision criteria to check the hypotheses: the LSAST is based on theweighted sum of the
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squared prediction errors obtained for the tested combination, while the MAPAS method uses the
a posteriori probability of this candidate, conditionally on the prediction errors obtained for that
candidate.

Thus these two algorithms have the same overall structure and only differ by the steps perform-
ing the calculation of the decision criterion. This results in different implementation constraints and
running capabilities. Both of them can raise ambiguities in seconds when the data conforms to the
mathematical model employed. However, they show different performances when applied to data
affected by unmodeled noise such as multipath.

The measurements used by LSAST and MAPAS are the double differenced phase observations
made by the user receiver formed using the observations obtained by a reference receiver as depicted
in figure 5.1.

Satellite i

X

Satellite 1

(reference station)
Receiver 1 North

(receiver 2

Vertical

East

Receiver 2
(true position) X

position estimate)X
R

Figure 5.1: Illustration of the situation of the receivers in a local coordinate system.

These observations were presented in section 4.3, in equation 5.1. However, both of these proce-
dures assume that the measurements are not affected by multipath and that atmospheric residuals are
properly compensated, thus thatr��imult(k) = 0 andr�I i(k) = 0, r�� i(k) = 0. Of course, these
assumptions do not correspond to reality in general, as multipath and atmospheric residuals distort
the distribution of the noise. Therefore, in most of the cases, the measurement model is not adapted
to reality. The influence of the inadequacy of these assumptions will be evaluated in chapters 8 and 9.

r�'i(k) = �
r��i(k)

�
�r�N i +r�bi(k) (5.2)

In reality, multipath errors and atmospheric residuals will be accounted for in the error term
r�bi(k), although the assumed distribution does not correspond to the complex distribution.

These double differenced measurements are linearized around a position estimateX̂(k), generally
obtained by the use of DGPS (see appendix K).

A vector model of these quantities is

�(k) = �C(k)�X(k)�N +B(k) (5.3)

where

� nk is the number of visible satellites at epochk

� �(k) is the vector of the(nk � 1) double differenced carrier phase measurements.
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� �X(k) is the3� 1 vector of the position estimation error:�X(k) = X̂(k)�X(k).

� N is the(nk � 1)� 1 vector of the double differenced ambiguities.

� C(k) is the(nk � 1)� 3 vector of thedirection cosines.

� B(k) is the(nk � 1)� 1 vector of the phase measurement noise.

The linear model given in (5.3) is the mathematical model used by both the LSAST and MAPAS
methods.

Once the measurements are linearized, the problem of the resolution of the double differenced
ambiguities can be illustrated as in figure 5.2. We need to search the best position around the inital
position estimate such that the surfaces of constant double differenced carrier phase measurements
intersect as closely as possible. At each epoch, several candidates can be isolated, where the surfaces
intersect almost perfectly. But after several epochs, only one candidate has been gathering the surfaces
around itself. This point is the true solution.

X

Satellite 3

Lines of constant single differenced

Lines of constant double differenced phase

Lines of constant phase

phase measurements

X

Satellite 2

Reference satellite
(satellite 1)

Satellite 4

=

Candidates

measurements (hyperboles)

measurements (circles)

Figure 5.2: Illustration of the problem of ambiguity resolution in a two dimensional case.

As the observations are affected by measurement errors, the emergence of the solution may not be
clear. If these errors are distributed as white noise with known variance, then by searching the candi-
date yielding the most improbable prediction errors, we can isolate the true solution after collecting
several measurements. However, if the noise samples are time-correlated, then the same error may
appear several times, and a false solution may accidently emerge.
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5.2.1 Common principles of LSAST and MAPAS

The determination of the position is conditioned on the resolution of the double differenced ambiguity
vectorN . This resolution is done by testing thousands of possible values ofN . These values are
determined as the integer vectors associated with a position contained within a predefined search
volume. This search volume is centered around the position estimateX̂(k), and its size depends on
the uncertainty of that estimate.

The size of the trial set can be reduced if we note that only three of these ambiguities are indepen-
dent in the noise-free model derived from (5.3). Thus the procedure looks for the best three-integer
combination to be affected to the double differenced ambiguities of four particular satellites.

These satellites, called the primary satellites, are chosen according to their degree of visibility and
their Position Dilution Of Precision (PDOP) factor. They must stay visible as long as the resolution
is not done, and their PDOP must not be too low nor too large, to guarantee a small computation
time and a sufficient integrity. Indeed, in a given search volume the number of candidates increases
when the PDOP decreases, as depicted in figure 5.3. Therefore, if we choose the primary satellites

Large number of candidates

Low PDOP

Small number of candidates

High PDOP

Figure 5.3: Inuence of the geometry of the primary satellites on the number of solutions in

the inital search set.

with the objective to minimize the PDOP, we are left with a very large number of candidates, and the
computational burden is highly increased. However, there is a limit in selecting the primary satellites
with a high PDOP, as the integrity will decrease. This compromise is also reported in [ABI91].

For example, the primary satellites can be chosen among the satellites of elevation greater than
7:5o as the satellites yielding the closest PDOP to the arbitrary but reasonable value of 7.5.

Once the primary satellites are identified, the model (5.3) can be split into 2 systems of equations:

�P (k) = �CP (k)�X(k)�NP +BP (k) (5.4)

�S(k) = �CS(k)�X(k)�NS +BS(k) (5.5)

where the first system 5.4 is the system of the primary satellites, and the system 5.5 is the system of
the non primary satellites, called thesecondary satellites.

The initial search set, denotedN0, can be built as the set of the three-integer combinationsNPabc =

[a b c]> associated with a position contained within the search volume using (5.4) as:

�X̂Pabc(k) = �SP (k)�P (k)� SP (k)NPabc

whereSP (k) is the pseudo-inverse of the primary system (5.4).
Thus, at each measurement epochk, for each candidateNPabc = [a b c]> in the setNk at epochk,

the value of the associated secondary ambiguitiesNSabc has to be determined.
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This can be done using only the phase measurements at epochk, although a more robust estimate
can be elaborated using all of the previous measurements.

The first method is based on the assumption that, for the true solutionNPabc = NP , the vector

~NSabc(k) = ��S(k)� CS(k)�X̂Pabc(k) (5.6)

should be very close toNS under normal low noise conditions. Thus we can choose to set

N̂Sabc(k) = Round
h
~NSabc(k)

i
But if the data is affected by multipath,̂NSabc(k) may be different fromNS.
A more robust estimate can be obtained if all theN̂Sabc(k) are averaged over time. We will then

have, for each secondary satellitei:

N̂Sabci
(k) = Round

"
1

k � ki

k�1X
j=ki

~NSabci
(j)

#
(5.7)

whereki is the first epoch of lock on the signal transmitted by satellitei.

5.2.2 LSAST speci�c steps

The estimatêNSabc(k) is used by the LSAST to determine the phase measurements predictions for all
the visible satellites, while the MAPAS method uses them to compute the phase measurements for the
secondary satellites only.

Using the candidate ambiguity and its associated secondary ambiguity prediction, the LSAST
computes the corresponding phase prediction errorzabc and its associated squared norm, then checks
its validity against�2 values.

The complete ambiguity candidate is

N̂abc(k) =

�
NPabc

N̂Sabc(k)

�
This candidate is inserted in the complete model (5.3) to determine a prediction of the complete

double differenced observations. We have

�̂abc(k) = �C(k)�X̂abc(k)� N̂abc(k)

with �X̂abc(k) = �S(k)�(k)�S(k)N̂abc(k), whereS(k) is the pseudo-inverse of the complete model.
Therefore, the prediction errorzabc is:

zabc = �X̂abc(k)� �Xabc(k) (5.8)

As presented in [LEI95] for example, ifNPabc = NP , then

RLabc(k) = z>abc(k)�
�1
c (k)zabc(k) � �2

nk�4

where�c(k) is the covariance matrix of the complete vector of observations�(k).
ThereforeRLabc(k) can be checked against a likelihood threshold�1��L;(nk�4). But this test, called

thelocal test, uses only the current prediction errors and may not be very reliable.
This problem can be overcome if we note that

RGabc
(k) =

kX
j=1

RLabc(j) � �2
NT (k)

5. Principles of AROF procedures 42



C. Macabiau September 1997

whereNT (k) =
Pk

j=1(nj � 4). Thus we can build a more reliable test, based on all the previous
residuals. This test is called theglobal test.

Improper solutions are progressively rejected from the search set, and the best solution is rapidly
identified as the candidate associated with the lowest global residual. Confidence in the fact that this
candidate is the correct one can be gained by performing the following approximate verification, as
presented in [FRE91]:

R�

G(k)

RGabc
(k)

� F�F ;NT (k);NT (k) (5.9)

whereR�

G(k) is the second lowest global residual at epochk.

5.2.3 MAPAS speci�c steps

The MAPAS method uses the predicted value of the secondary ambiguities to compute the associated
secondary phase observations

�̂Sabc(k) = �CS(k)�X̂Pabc(k)� N̂Sabc(k)

and the corresponding phase prediction errorszSabc(k):

zSabc(k) = �̂Sabc(k)� �Sabc(k) (5.10)

Then, the value of the apriori probability density function is computed as

f (zSabc(k) j NPabc = NP ) =
1

2�
n
k
�4

2

p
det (�(k))

�exp
�
�
1

2
z>Sabc(k)�

�1zSabc(k)

�
(5.11)

where

�(k) = CS(k)SP (k)�PP (k)SP (k)
>CS(k)

>

+�SS(k)� CS(k)SP (k)�PS(k)

��PS(k)
>SP (k)

>CS(k)
>

�PP (k) and�SS(k) are the covariance matrices of the primary and the secondary observations.
The a posteriori probability is computed using Bayes’ rule:

P [NPabc = NP j (zSabc(k)] =
f (zSabc(k) j NPabc = NP )X

abc2Nk

f (zSabc(k) j NPabc = NP )
(5.12)

Thus, if thea posteriori probability of a candidate is lower than apredefined threshold denoted
Pmin, then it is rejected from the set and will not be tested for at the next epoch. If this probability
is larger than a preset decision threshold denotedP0, then this candidate is elected as the correct
solution.

Figures 5.4(a) and 5.4(b) illustrate the behavior of the algorithm.
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Figure 5.4: Evolution of internal parameters of MAPAS.

A subtile tradeoff must be achieved when specifying the rejection thresholdPmin and the decision
thresholdP0. Both of them must be adjusted so that false solutions are quickly rejected from the set,
while the correct combination is kept. Assigning a high value toPmin will make the algorithm reject
quickly the false solutions. However, it will increase the chances for the true combination to be acci-
dentally eliminated as well, and the error probability will be larger. If that value is set too low, then
the time of convergence, also called the time to first fix the ambiguities, will be slightly higher, and
a prohibitive number of operations will have to be performed by the processor. Similarly, settingP0
with too low a value may enable a false solution to be elected, and the error probability will increase.
On the other hand, setting it with a high value will increase the time of convergence.

It appears that for reasonable values ofP0 andPmin, P0 has a strong influence on the time to first
fix the ambiguities whilePmin directly affects the error probability.

As the abnormal transient values of posterior probability are mostly observed during the first ten
epochs, when all the candidates share the unit probability, it happens very often that the a posteriori
probability of the true solution reaches a low value. But it is very rare to see a false solution pass the
upper acceptance thresholdP0 when the true solution is still in the set.

Thus, if a low error probability is to be reached, it is important that the rejection thresholdPmin

be set to a very low value. However, as the quantity of operations depends strongly on the number of
candidates handled by the procedure, specifying too low a value forPmin may prevent the use of the
algorithm for real time applications. Indeed, ifPmin is set to a very low value, then a high number of
candidates will be kept in the search set for a long time because low probability candidates will not
be rejected. Therefore, ifPmin is decreased, the computational burden is increased, and it may exist a
point at which the computation time is larger than the time of convergence.
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5.2.4 Implementation of LSAST and MAPAS

The algorithms of LSAST and MAPAS only differ by the steps dedicated to the evaluation of the
criterion. These algorithms are presented in figures 5.5 and 5.6.

selection of primary satellites

read data

construction of N
while best P (k) < P0

read data

compute �(k)

for each NP = [a b c] 2 N (k)

if f(k � 1) is available then

compute P (k � 1)

reject NP if P (k � 1) < Pmin

end if

if NP 2 N (k) then

update best P (k � 1)

compute N̂(k)

compute zabc(k)

compute f(k)

update s(k) = �f(k)

end if

end for

end while

Figure 5.5: Main steps of the MAPAS

algorithm.

selection of primary satellites

read data

construction of N

while
best RG(k)

R�
G
(k)<F

read data

compute �(k)

for each NP = [a b c] 2 N (k)

if RL(k � 1) is available then

eliminate NP if RL(k � 1) > �2
L

or RG(k � 1) > �2
G

end if

if NP 2 N (k) then

update value of best RG(k � 1)

compute N̂(k)

compute zabc(k)

compute RL(k)

update RG(k) = �RL(k)

end if

end for

end while

Figure 5.6: Main steps of the LSAST algorithm.

The algorithms of LSAST and MAPAS can be adapted to improve the efficiency of their selection.
The main improvement is obtained by setting a rejection threshold that is tolerant at the beginning,
and becomes more and more selective as time goes. Such an adaptation is described here:

LSAST. The rejection of the candidates is made through the local and the global test. The threshold
of the local test was set as a constant, in such a way that the error probability is satisfying. The
threshold of the global test is lowered over time, so that the procedure is sped up. The evolution
of this threshold is plotted in figure 5.7.

MAPAS. The rejection of the candidates is based on a test on the posterior probabilities of the
combinations. The minimum probability used to obtain this rejection is increased over time, as
indicated in figure 5.7.

5.3 DIAS and FASF: two integer estimation techniques

Considering that the ambiguity resolution presented in section 5.2 is a complex process, it may sound
natural to simply try to estimate the ambiguities. A vector model of the carrier phase measurements
is as recalled in 5.3:

�(k) = �C(k)�X(k)�N +B(k) (5.13)
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Figure 5.7: Evolution of the rejection threshold of LSAST and MAPAS

In this equation, we can think of�X(k) andN as two components of a more global vector that would
gather position and ambiguity unknowns. In this approach, we can use an identification procedure to
estimate these two components. However, to date, there is no analytical solution to the identification
of real and integer variables in an equation such as 5.13. Therefore, the most common strategy is to
achieve this estimation in two stages. The mixed floating point and integer estimation problem repre-
sented in 5.13 is split in two successive identification problems: first, a classical analytical procedure
is used to estimate the position and ambiguities as floating point quantities, then a specific algorithm
is run to fix the ambiguities as integers. Several algorithms were developed to achieve this resolution,
among which is the Lambda method, presented in [TEU94]. A comparison of specific algorithms can
be found in [HW95a].

The Fast Ambiguity Search Filter (FASF) is a technique for resolution of GPS carrier phase am-
biguities On-the-Fly that uses aKalman filter combining position and ambiguities in its state vector
to fix recursively the float ambiguities included in thestate vector [CHE95].

The Direct Integer Ambiguity Search (DIAS) estimates in two stages the ambiguity vector. It uses
a classical identification technique (Least Squares or Kalman) to estimate position and ambiguity val-
ues, then uses the integer constraint to solve the ambiguities with an integer least squares optimization
procedure [WS95]. The ambiguity vector can only be released by the procedure after it was shown
consistent with the measurements made on several epochs.

This section does not present the details of the principles of these techniques, as they can be found
in the related publications [CHE95, CL94, WS95].

Both of these techniques comprise three main steps:

� a classical floating point estimation stage (Least Squares or Kalman)

� a specific integer selection stage

� a validation stage before releasing the value of the selected integer combination

These three steps are described in the following three sections.
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5.3.1 Position and oating point ambiguity estimate

The first step of both procedures consists in processing the carrier phase measurements to determine
at each epoch an estimate of the position and ambiguities as floating point quantities.

The estimation of�X(k) andN can be made using any of the available identification techniques.
The most common technique is the Kalman filter (see appendix L).

The identification procedure provides an optimal estimate[�X̂(k)T N̂T ]T of the state of the system
on the basis of the observation model recalled in 5.13. Some particular techniques, like Kalman
filtering, require the additional assumption of an observation model. The procedure also provides the
covariance matrix of the state estimate:

�k =

�
��X̂k

��X̂k ;N̂k

�N̂k ;�X̂k
�N̂k

�
(5.14)

where

� ��X̂k
is the covariance matrix of the position estimate.

� �N̂k
is the covariance matrix of the ambiguity estimate.

� ��X̂k ;N̂k
and�N̂k;�X̂k

are the cross-covariance matrices of the position and ambiguity estimates.

This covariance matrix is used in conjunction witĥN in the next step.

5.3.2 Integer �xing

The second step of the resolution consists in fixing the floating point ambiguities as integer numbers
at each measurement epoch.

FASF speci�c steps

The principle of the FASF algorithm is to fix recursively several components of the ambiguity vector
and to determine the confidence interval of the remaining ambiguity components. This process is
called the Recursive Computation of the Search Range (RCSR) for the ambiguities. The RCSR is
comprised of the following recursive steps at each epoch.

Step 1 of the algorithm consists in determining the integer search range of the first component of
the ambiguity vector. This is done by choosing a set of integer values centered on the floating point
integer, with an amplitude proportional to the standard deviation of this estimate, as provided by�N̂k

.
Then the first integer in the set is selected, and is assigned to the first ambiguity component. At this
point, this first ambiguity is considered as known, and removed from the unknowns. The state of the
system now comprises the position and thenk � 2 ambiguities. The Kalman filter is re-run, and a
new covariance matrix is provided for this reduced state vector. Therefore, the same process can be
applied on the first component of the new ambiguity vector, and will be applied recursively on each
first component. The exploration stops at a particular vector component when the confidence interval
of the estimate does not contain any integer, or if all the possible integers of the interval have been
searched. In this case, the algorithm backs up one node and tries the next integer of the confidence
interval of the upper level component.
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After the recursion is complete, all the possible ambiguity vectors are formed by collecting the
combinations that successfully reached the last exploration level. If this number is zero, or if it is
larger than a preset threshold (four, ten, ...), unability to fix the ambiguities is declared, because two
many candidates are still competing. If this number is one, the obtained combination is elected as
the true combination. In the other case, a validation procedure is carried out, as explained in section
5.3.3.

DIAS speci�c steps

DIAS uses a numerical least squares optimization procedure to find the integer vector^̂
N such that�

^̂
N � N̂

�
��N̂k

�
^̂
N � N̂

�
is minimum (5.15)

A large number of procedures are available to accomplish this task. The most popular procedures
are based on the branch and bound algorithm.

When this resolution is achieved, a candidate ambiguity vector is fed to the validation stage. Note
that this vector may not be the same at each epoch.

5.3.3 Validation stage

The final step of the ambiguity estimation procedures is a validation stage that uses statistical proper-
ties to sort all the candidates delivered by the previous stage.

In the case of FASF, when several candidates are available at the end of the RCSR, the ambiguity
solutions that emerged correspond to all the combinations that could be formed after the tree explo-
ration. The technique used to sort between all of them is to compute the ratio of the second minimum
weighted squared sum of the prediction residuals over the minimum weighted squared sum of the pre-
diction residuals. This ratio is compared with a preset confidence threshold, as in expression 5.9 for
example. The combination elected is the one with the minimum weighted squared sum, that passes
the test.

In the case of DIAS, the ambiguity candidates to be validated are the different vectors that came out
of the integer optimization procedures at different epochs. The election of a combination is declared
when it successfully came out of a 3 step validation process. First, the solution must be detected. This
detection period ends when the optimal solution coming out of the integer estimaiton procedure is the
same for several epochs, and when the ratio test described in the previous paragraph is passed. Then,
this solution is confirmed: the candidate must pass the ratio test for a period lasting 30 s to 60 s. After
this, the candidate is elected as the true solution.

We can see that the validation procedure is based on hypothesis testing, that requires knowledge
of the statistical distributions of the observations. As these distributions cannot be identified with a
good confidence level because of the complexity of the porcesses driving the evolution of the noises
affecting the double differenced observations, the validation procedures are usually based on wrong
assumptions. Therefore, as the ambiguity candidates are validated using unrealistic assumptions, the
problem of the validation stage still remains unsolved [HW95b, TEU94].
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Chapter 6

REQUIREMENTS OF AROF

PROCEDURES

The adequacy of the AROF procedures for the precision approaches must be assessed by com-
paring their performance with the required performance presented in table 2.1. To perform
this comparison, it is necessary to establish a link between the characteristics of the AROF

procedures and the operational parameters that are used to express the requirements.
In the first part of this chapter, the characteristics of the AROF procedures are identified and

gathered into four main groups of parameters. Then, in the second part, the requirements presented in
table 2.1 are used to determine constraints on the identified characteristics.

6.1 Characteristics of AROF procedures

This section presents an identification of the characteristics of the AROF procedures. The aim of this
identification is to evaluate their suitability for a particular application and to compare them. Four
groups of parameters are identified.

An AROF procedure is mainly characterized by itsperformance andworking assumptions. Perfor-
mance parameters are theaccuracy, time of convergence anderror probability. Working assumptions
are thenature and themathematical model of the measurements used. However, as the determina-
tion of the performance parameters is usually very difficult, it is important to have knowledge of the
internal characteristics of the procedure in order to predict its potentials or limitations. Thus, the
processing method, which induces thenature and thequantity of information extracted from the ob-
servations, as well as thecomputational burden, is an important feature of the procedure. Finally,
as presented in [HE94], it is desirable that the procedure provides ameans of control of the solution
proposed under the form of a relationship between the decision thresholds of the algorithm and the
obtained performance, and of a quantified criterion. Thus, the performance, working assumptions,
processing method and means of control constitute four sets of parameters that we can use to charac-
terize each AROF procedure and evaluate its adequacy to the desired application.

6.1.1 Performance

Ambiguity resolution procedures use the precise carrier phase measurements to improve the position
accuracy. The position accuracy is evaluated as the deviation between the true position and the po-
sition computed using the information delivered by the AROF procedure. Both decision and integer
estimation techniques presented in section 5.1 provide the same accuracy, as their final output is the
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selected integer ambiguity vector. For float ambiguity resolution procedures, the accuracy is not of
the same level, as the ambiguities are estimated as floating point quantities, not exploiting the integer
nature of the ambiguities. In the first case, the accurate position can only be computed after the ambi-
guities are raised, while in the second case, the position accuracy is continuously improved.

As we know, the position accuracy obtained using any of the integer AROF procedures is of the
order of a few centimeters at the most when the correct ambiguities are raised. However, if the proce-
dures raise wrong ambiguities, the impact of this error on the resulting position is different depending
on the structure of the procedures. Some of the procedures are always wrong by a lot of ambiguities
on several tracking channels, while others can be wrong only on one tracking channel. Thus the ob-
tained accuracy is an important parameter for selection of integer resolution procedures.

According to the analysis performed in section 5.1, the integer AROF procedures appear asmulti-
ple hypotheses tests. The final ambiguity selection is made at the epochn after processing the phase
measurements�n

1 = [�(0) : : :�(n)] when a preset decision condition is satisfied. Thus the size of the
sample�n

1 is not known before the test is performed, and a compromise must be made between the
delay in making the decision and the accuracy of that decision by specifying thedecision condition.
This kind of test is called asequential test. This section identifies the parameters useful to characterize
the performance of such tests.

The set of the potential integer vectors constitutes the set of the unknown parameters of the prob-
ability density function of the observations. Let us call this setN . Thus, the procedure is built to
decide between the hypotheses :

Ha1:::ank = f[a1 : : : ank ] :
�
N1 : : : Nnk

�
= [a1 : : : ank ]g (6.1)

for each integer vector[a1 : : : ank ] 2 N .
The decision is taken using the raw data

�n
1 = [�(1) : : :�(n)] (6.2)

The test is amapping g that associates to the observation data�n
1 a particular hypothesisHN :

g (�n
1 ) = Ha1:::ank (6.3)

The important sets of parameters used to assess the quality of a sequential test are the set of the
error probabilities, that characterize the reliability of the test, and the set of theAverage Sample
Numbers (ASNs), that characterize its rapidity.

The set of the error probabilities is the set of the conditional probabilities:

�a1:::ank = P [g (�n
0 ) 6= Ha1:::ank j Ha1:::ank true] (6.4)

We can build the weighted error probability as

�(g) =
X

a1:::ank2N

P [Ha1:::ank true]�a1:::ank (6.5)

The set of the ASNs is the set of the conditional expectations :

ASNa1:::ank = E [n j Ha1:::ank true] (6.6)

whereE is the expectation operator.
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A sequential test is usually built by specifying values for the error probabilities. These values are
inserted into the theoretical expressions of the decision thresholds to design the test. The ASNs are
also determined using their own theoretical expressions.

In the case of the ambiguity searching algorithms, like in the case of most multiple hypotheses
sequential tests, these theoretical expressions are hard to derive, and the design is made with empirical
threshold values. These values are set so that the measured error probabilities and ASNs are as low
as required. The error probabilities and the ASNs thus become estimated criteria used to assess the
performance of the test.

6.1.2 Working assumptions

The working assumptions of the AROF procedure are the nature and the mathematical models of the
observations used by the algorithm.

The signals used by the procedure can be the L1 only signal or the L1 and L2 signals or maybe
even an additional signal from a pseudolite or two. The measurements made on these signals can be
phase only observations or code and phase observations.

The mathematical model can include a discrete white gaussian noise model for the observation
noise, or maybe a more complex noise model adapted to the unavoidable time correlation of noise
terms.

Usually, the noise is modeled as a discrete white gaussian noise. In this case, an important param-
eter is the a priori variance of the noise affecting the carrier phase measurements.

6.1.3 Processing method

The processing method is described by its mathematical principles. It is characterized by the na-
ture and the quantity of information extracted from the observations, and the computational burden
generated by the algorithm. In the case where the procedure relies on the knowledge of a position
estimate fed to the procedure, another important parameter is the mathematical relationship between
the uncertainty of the estimate and the size of the search volume.

6.1.4 Means of control

The means of control of the procedure are two-fold.
The first category of means of control contains the features of the procedure that provide a way

to drive the final performance of the procedure. The most important parameter in this category is the
theoretical link between the performance of the procedure and the internal decision thresholds of the
algorithm. Note that this theoretical relationship may not be known.

The second set of means of control contains all the output parameters that enable the user to
monitor the performance of the procedure. This set comprises the parameters that enable to quantify
the confidence that can be placed in the solution provided, and to identify the cause for failure if this
happens.

6.1.5 Summary

A summary of the characteristics of AROF procedures is presented in table 6.1.
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Characteristics of

AROF procedures
Description

Performance parameter Accuracy, Time of convergence, Error Probability

Working assumptions Nature and model of processed measurements

Processing method

Functional principle, nature and quantity of information

extracted from observations, computational burden

size of search volume

Means of control
Relationship between performance and decision thresholds,

Quanti�cation of error, Error indicators

Table 6.1: Summary of identi�ed characteristics of AROF procedures.

6.2 Constraints on characteristics

The aim of the study reported here is to contribute to the evaluation of the potentials of AROF pro-
cedures for application to aircraft precision landing. Therefore, it is important to understand what are
the implications of the operational requirements presented in chapter 2 on the characteristics of AROF
procedures presented in chapter 6. The requirements are expressed using four parameters: accuracy,
integrity, continuity of service and availability. In this chapter, each of these parameters is analysed,
and constraints are derived from the requirements expressed on these parameters. It must be noted
that the distinction between the availability and the continuity of service of such techniques has not
yet been fully agreed upon.

The analysis performed in this chapter consists in the application of the requirements presented
in chapter 2 on the AROF procedures. These requirements are expressed for thewhole landing sys-
tem. The complete system is composed of thespace andcontrol segment of the GPS satellites, of the
ground equipment, of thedata-link, and of theairborne landing equipment. As the AROF procedure
is one component of the airborne landing equipment, only part of the requirements presented in table
2.1 should apply to the procedure itself.

6.2.1 Accuracy

The positionaccuracy obtained after correct resolution of the carrier phase ambiguities by an integer
AROF procedure is of the order of a few centimeters, which is highly satisfactory for CAT II/III
landings. Nevertheless, the resolution of the ambiguities down to a few L1 integer cycles might also
be acceptable, if we consider the accuracy requirement stated in table 2.1. We will see in this section
that the consideration of all the requirements stated in table 2.1 implies that ambiguities have to be
solved down to the last L1 cycle.

The required accuracy of the ambiguity solution proposed is dependent upon the influence of an
error in the ouput ambiguity on the accuracy of the position computed using this ambiguity. This in-
fluence depends on the processing method of the procedure. For example, for procedures like LSAST
or MAPAS, that search the ambiguities of a set of four satellites called the primary satellites, the
impact of a one cycle error on the primary ambiguities is large on the output secondary ambiguities.
Thus, a one cycle error on the primary ambiguities induces a large positioning error. In chapter 8,
we show that the vertical position error induced by a minimal ambiguity error ambiguity on the pri-
mary satellites is of the order of one meter. Therefore, it is desirable that such procedures solve the
ambiguities down to the last cycle to fulfill the CAT II and CAT III vertical accuracy requirements.
However, this is not true for procedures like DIAS and FASF that directly solve the ambiguities of
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all the satellites as a whole, and the position error induced by a one cycle error on one or several
satellites is most of the time less than 30 cm (see chapter 8). In this case, CAT II vertical requirements
can be fulfilled if the ambiguities are solved down to� 5 L1 cycles 95 % of the time, and CAT III
vertical requirements can be fulfilled if ambiguities are solved down to� 2 L1 cycles 95 % of the time.

However, in order to fulfill the safety and reliability requirements, it is mandatory to reduce the
maximum tolerable ambiguity error. A complete analysis of the connection between the integrity and
the continuity risks, presented in table 2.1, and the accuracy requirement is still to be carried out. But
it is foreseen that all these two requirements force the landing system to have at least a decimeter
accuracy, as shown in [HE95]. Therefore, in this study, the ambiguities are required be solved down
to the last L1 cycle.

6.2.2 Integrity

The integrity risk of the procedure is directly related to its error probability, which is the probability
that the procedure raises out of bounds ambiguities. Thus, the error probability of the AROF proce-
dure has to be at least lower than the integrity specified for the CAT II/III landing system as whole.

Thetime-to-alarm constraint applies on the precise positioning module once the ambiguities have
been delivered by the procedure. It requires the implementation of a quality control procedure that
checks continuously the consistency of the ambiguity solved, and monitors the measurements for
detection of cycle slips and abnormal observations as presented for example in [LL92]. This module
has to be extremely efficient, and provide alarms in less than 1 second after occurence of a dangerous
event.

As the time of convergence of the AROF procedure is usually of several tens of seconds, the
verification of the ambiguity delivered cannot be made only by a second AROF procedure that would
be launched after the convergence of the first one. Instead, the quality control module should use all
of the output means of control of the procedure to check the consistency of the solution.

6.2.3 Continuity of service

The precise positioning service can only be provided once the ambiguities have been raised by the
AROF procedure. As there is no means to check the capacity of the AROF procedure to raise the
ambiguities in due time, the aircraft starts the precision approach if all the other necessary means are
declared as available. However, at one point on the approach path, the aircaft will need a precise
position information to proceed safely to the runway as specified by the operational constraints. This
point, which we call theHigh Accuracy Decision Threshold (HADT), is the lowest point on the ap-
proach path at which the ambiguities have to be declared as raised by the AROF procedure. It must
be located before the decision threshold of the approach phase, in order to ensure proper stabilization
of the aircraft when crossing the CAT II or CAT III decision threshold. In the evaluations performed
during this study, this point has been taken as the CAT I decision threshold, although it is probable that
this point would have to be moved further away from the runway threshold to ensure safe stabilization
of the aircraft when switching from the code DGPS to the phase DGPS.

While descending towards the runway, a failure of the AROF procedure to raise the ambiguities
before the High Accuracy Decision Threshold (HADT), or an incapacity to correct a detected cycle
slip is considered as adiscontinuity of the service.
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Thus the AROF procedure must deliver its ambiguities in the time interval defined as the period
starting with the entrance of the aircraft within the coverage area of the phase DGPS and ending
with the time of crossing of the HADT. Here, the coverage area is not defined by the quality of RF
transmission of the data, but by the validity of application of the carrier phase corrections or measure-
ments, driven by the spatial decorrelation of errors. Thus the continuity of service requirement can be
translated as a bound on the time of convergence of the procedure, based on the size of the coverage
area, as presented in figure 6.1.

Coverage
Area

HADT

Interval
Resolution

Figure 6.1: Illustration of the resolution interval allowed to the procedure: the resolution starts

at the entrance in the coverage area and must be achieved before the planes reaches the High

Accuracy Decision Threshold (HADT).

6.2.4 Availability

The availability requirement presented in table 2.1 concerns the availability of the signal in space
used for the intended landing category at the initiation of the approach. As the accuracy requirements
at the beginning of the approach are much looser than the final ones, the accurate ambiguity solution
does not have to be available from the very first beginning of the approach. Nevertheless, the user
has to make sure that the procedure would be able to perform the ambiguity resolution for the whole
duration of the operation. This means that any predicted outage will be interpreted as a lack of avail-
ability. Thus, for example, a predicted degradation of geometry, or a scheduled maintenance of the
ground or space segment has to be accounted for in the availability computation.

It must be emphasized that the availability expressed here is the availability of the signal in space
used by thelanding system as a whole, which differs from theavailability of the precise position
conditioned by the availability of the ambiguities.

6.2.5 Summary

A summary of the constraints imposed on the characteristics of the AROF procedures is presented in
table 6.2.
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Characteristic Constraint

Accuracy Resolution down to last L1 cycle

Time of convergence

(Time To First Fix the ambiguities )

Lower than interval de�ned by

coverage area and HADT

Error Probability Lower than integrity risk

Nature and model

of processed measurements
As many measurements as possible

Functional principle Robust and Optimal

Nature and quantity of information

extracted from observations

Use all information collected

from initialization

Computational burden
Computation time lower than

Time of convergence

Relationship between performance

and decision thresholds
Theoretical link recommended

Quanti�cation of error Required

Error indicators Required

Table 6.2: Summary of constraints on characteristics of AROF procedures derived from opera-

tional requirements.
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Chapter 7

THEORETICAL PERFORMANCE

All of the AROF procedures can solve ambiguities in seconds in optimum operating conditions.
However, these procedures are likely to fail raising the ambiguities in due time, or may even
provide the user with incorrect ambiguities. Thus, in order to determine the suitability of

a particular procedure for a specific application, it is desirable to know itstime of convergence and
failure rate, which are directly related to the requiredavailability andintegrity of the solution. These
performance parameters can be evaluated from theoretical considerations, or using simulated data,
or from extensive experiments in the field. This chapter focuses on the evaluation of theoretical
performance of AROF procedures. Because of the sequential structure of these procedures, it is very
difficult to perform such an analysis on AROF procedures, and very little material has been published
on this subject. To our knowledge, the only publications available on this topic were made by the
LTST on the MAPAS procedure.

7.1 Determination of theoretical performance

As we saw in section 5.1, AROF procedures all behave like multiple hypotheses sequential tests. The
ambiguities are delivered after a variable number of observations are processed, depending on the
value of thedecision threshold cast in the algorithm. The performance of these procedures is charac-
terized by their error probability and time of convergence, also called time to first fix the ambiguities.
Many factors influence the values of these parameters, such as the number of tracked satellites, the
satellite constellation geometry and the adequacy of the noise model used by the procedure. There-
fore, the theoretical evaluation of the impact of these factors on the performance of the procedure is
very difficult and is hardly ever done. To our knowledge, the only publications available on this topic
were made by the LTST on the MAPAS procedure in [MB96]. This evaluation is presented in the next
section.

7.2 Analysis of theoretical performance of MAPAS

This section presents a theoretical analysis of the performance parameters of the Maximum A Posteri-
ori Ambiguity Search (MAPAS) procedure using results derived for a multiple hypotheses sequential
test called theM-ary Sequential Probability Ratio Test (MSPRT). In particular, expressions ofbounds
andasymptotic values of the expected stopping time and error probability of MAPAS are determined
as functions of the decision threshold, thus providing a means to control the performance. This study
shows the influence of the number of satellites as well as the importance of the mode of selection of
the primary satellites. The figures obtained are checked against observed values, showing the validity
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of the determined bounds and the consistency of the asymptotic values, although they lack accuracy
when the number of satellites is low.

7.2.1 The MAPAS method as an MSPRT

The MAPAS method is a multiple hypotheses test that sorts between thousands hypotheses repre-
sented by their associated three-integer vector:

Habc = f[a b c]T : Np = [a b c]Tg (7.1)

The selection is done using the posterior probability of the secondary prediction errors, as presented
in section 5.2.3.

The MSPRT (M-ary Sequential Probability Ratio Test) is a more general multiple hypotheses se-
quential test designed by Baum and Veeravalli [BV94] that they formulated in the following way.

LetX1; X2; : : : ; Xn be an infinite sequence of random variables, independent and identically dis-
tributed (i.i.d.) with densityf , and letHj be the hypothesis thatf = fj for j = 0; 1; : : : ;M � 1.
Assume that the prior probabilities of the hypotheses are known, and let�j denote the prior probability
of hypothesisHj for eachj.

The stopping time of the MSPRT is

Na = first n � 1 such thatpkn >
1

1 + Ak

(7.2)

for at least onek, and the final decision is� such that

� = Hm , wherem = arg max
j

p
j

Na

where

� pkn = P [H = Hk j X1; X2; : : : ; Xn] is the posterior probability ofHk.

� 1
1+Ak

is the decision threshold.Ak is a component of this threshold.

The MSPRT is a generalization of theSequential Probability Ratio Test (SPRT). Although the
SPRT isoptimal in the sense that it provides aminimal stopping time for a given error probabilities
set, the MSPRT is an approximation of theBayesian optimal solution. However, Baum and Veer-
avalli showed in [BV95] that the MSPRT isasymptotically efficient as, for a given error probabilities
set, it becomes thefastest decision making test when the threshold componentsAk decrease towards 0.

Several theoretical results concerning this test are presented by Baum and Veeravalli [BV94]. In
particular, expressions are given for bounds and asymptotic values of the ASN and error probability.

The MAPAS method can be viewed as a particular application of the MSPRT to the observation
sequence formed by the secondary phase prediction errors. However, comparing 5.12 with 7.2 shows
that the observation sequenceszSabc(k) used by MAPAS depends on the tested hypothesis[a b c]T ,
which is not true for the MSPRT. This problem can be solved by noting that the a posteriori probability
of a candidate is independent of the three-integer vector used to compute the prediction error. To show
this, we can write

zSabc(k)=�CS(k)SP (k)[NPabc(k)�NP+BP (k)] +NS � N̂Sabc(k)� BS(k) (7.3)
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thus

E
�
zSabc(k) j Np = [�� ]T

�
= �CS(k)SP (k)

�
NPabc(k)�NP��(k)

�
+NS��(k)� N̂Sabc(k) (7.4)

and the argument of the exponential in the gaussian probability density function is

zSabc(k)�E
�
zSabc(k) j Np = [� � ]T

�
= �CS(k)SP (k)

�
NP��(k)�NP

�
+NS�NS�� (k) (7.5)

which is independent on[a b c]>. Thus, we can write

f (zSabc(k) j NPabc) = f
�
zS��(k) j NPabc

�
allowing us to reformulate MAPAS using the decision criterion

P
�
NP = NPabc j zS��

k

1

�
=

f
�
zS��

k

1
j NP = NPabc

�
X

abc2Nk

f
�
zS��

k

1
j NP = NPabc

� (7.6)

which is identical to the decision criterion (7.2) used by the MSPRT, considering that the prior prob-
abilities of each hypothesis are equal. Here,[� � ]T can be any fixed three-integer vector.

Several hypotheses have to be made for the MAPAS method to be called an MSPRT:

1. We must assume that thedirection cosines of the satellites from the moving receiver’s point of
view areconstant during the whole resolution process. This is necessary if we want to consider
that the residualszS��(k) are identically distributed over time. This hypothesis is apessimistic
assumption, as the evolution of the satellite geometry, although slow for vehicles of classical
dynamics, enhances the selectivity of the procedure.

2. We must suppose that the phase measurement noiseBi(k) is anindependent sequence over time.
This is a quite strong assumption, as usually the double differenced noise has slowly varying
components which are mainly due to the carrier phase tracking error induced by multipath.
This hypothesislimits the range of the theoretical developments presented in this work to the
applications using measurements unaffected by low-frequency noise.

3. We need to consider that therejection process of the MAPAS method, performed through the
comparison of the posterior probabilities with the thresholdPmin, hasno influence on the struc-
ture of the test. That is, we must consider that the influence of the rejected combinations would
have been negligible in the selection process if they had been kept in. Thus, we assume that all
theM0 hypotheses are considered at each measurement epoch. This hypothesis isoptimistic for
theerror probability andpessimistic for theexpected stopping time.

In the MAPAS case, all theAk values are identical since all prior probabilities are assumed to be
equal, as we assume that all the primary ambiguities in the search set have the chances to be the true
ones. Therefore, there is no need to distinguish between them. Also, this threshold component will
be simply denotedA. Furthermore, we can note that

P0 =
1

1 + A
andA =

1� P0

P0

which means thatP0 � 1� A whenA is small.
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7.2.2 Bounds on the stopping time and error probability

Baum and Veeravalli have determined bounds on the expected stopping time and error probability of
the MSPRT. They can be applied to the MAPAS method as shown in this section.

LetNa denote the stopping time, and� the decision taken at timeNa. It can be proven that the ASN
of the MAPAS method is finite by showing first that it is exponentially bounded, as the probability
thatt exceeds anyNa decreases exponentially withn. The demonstration, given for a general case in
[BV94], results for the MAPAS method in

P [Na > n j Habc true] �
(M0 � 1)

3
2

p
A

max
[ijk] 6=[abc]

(�ijk)
n

where

� �ijk = Efabc

�r
f(zS

��
jNP=NP

ijk
)

f(zS
��

jNP=NP
abc
)

�
. E is the expectation operator.

� M0 refers to the valueM presented in equation 7.2: it is the number of hypotheses in the search
set at epoch 0.

By the Cauchy-Schwartz inequality, it can be shown that

�ijk < 1 for [ijk] 6= [abc]

Consequently, for an assumed correct ambiguity value the corresponding stopping time is exponen-
tially bounded. Then,Na is necessarily finite.

Let P
�
NP = [a b c]T j [i j k]T

�
be the probability that the candidate[a b c]T is accepted assuming

[i j k]T is the correct ambiguity. Then,P
�
NP =[a b c]T j [a b c]T

�
is the probability to retain the correct

ambiguity. If� denotes the total error probability introduced in (6.5), then we have

�=1�
X

[ijk]2N

P
�
NP =[i j k]T

�
P
�
NP =[i j k]T j [i j k]T

�

and

P
�
NP = [a b c]T j [a b c]T

�
=

NaX
n=0

P
�
NP = [a b c]T j [a b c]T ; Na = n

�
(7.7)

Due to the MSPRT formulation, this probability is shown to be bounded in [BV94], as follows:

P
�
NP = [a b c]T j [a b c]T

�
�

1

1 + A

X
[ijk]

P
�
NP = [a b c]T j [i j k]T

�
(7.8)

A summation over the vectors[a; b; c]T leads to

1� � �
1

1 + A

that is

� �
A

1 + A
(7.9)

The deduced upper bound of� depends only on the decision parameterA. Furthermore, it can be
shown that

� � A (7.10)
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which is equivalent to (7.9) for small values ofA.

Thus, it can already be determined that, if the desired error probability is approximately10�10, like
for aircraft landing for example, then by settingA = 10�10, which isP0 = 1 � 10�10, this objective
can theoretically be fulfilled.

7.2.3 Expression of the asymptotic values of the expected stopping

time and error probability

When the decision criterionP0 is close to 1, that is whenA is small, an expression of the value of the
ASN and of the error probability is given in [BV94] using non linear renewal theory.

These asymptotic expressions all depend on the quality of the discrimination that can be made
between the different hypotheses by observing the data. The level of separation is quantified by a pa-
rameter called theKullback-Leibler information that represents the distance between two hypotheses
among the erratic values of the random variable, characterized by its covariance matrix (see appendix
J).

Denoting the Kullback-Leibler information between probability density functionsfabc andfijk as

D(fabc; fijk) = Efabc

�
ln
fabc(ZS��)

fijk(ZS��)

�
(7.11)

it can be shown that

Efabc [Na]!
� ln(A)

min
[ijk] 6=[abc]

D(fabc; fijk)
asA! 0 (7.12)

Thus, as the separation between the hypotheses decreases, the number of measurements needed to
identify clearly a combination increases. The vector[i j k]T minimizingD(fabc; fijk) is the integer
combination for which the secondary phase residuals are the most similar to those of the true hypoth-
esis[a b c]T .

This result can be applied to the MAPAS procedure by calculatingmin
[ijk]6=[abc]

D(fabc; fijk).

The Kullback-Leibler information between the two multivariate normal distributions of the resid-
ualszS�� representing hypotheses[a b c]T and[i j k]T is

D(fabc;fijk)=
1

2

�
Efabc[zS�� ]�Efijk [zS�� ]

�T
��1

�
Efabc[zS�� ]�Efijk [zS�� ]

�
(7.13)

We can reformulate (7.3) using the following approximate expression ofN̂S��(k) under low noise
conditions:

N̂S��(k)=Round
h
��S(k)�CS(k)�X̂P��(k)

i
(7.14)

Developing (5.6) using (7.3), (5.4) and (5.5) leads to

N̂S��(k) = NS +Round
�
�CSSP

�
NP���NP

�
�CSSPBP �BS

�
(7.15)

Thus, (7.3) can be rewritten as follows

zS�� = �CSSP
�
NP�� �NP +BP

�
� BS (7.16)

�Round
�
�CSSP

�
NP���NP +BP

�
�BS

�
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and we have

Efabc

�
zS��

�
= �CSSP

�
NP�� �NP

�
� Round

�
�CSSP

�
NP�� �NP

��
(7.17)

under the same low noise assumptions as previously.
Developing (7.13) for the multivariate normal distribution of the residualszS�� leads to

D(fabc; fijk)=
1

2
(CSSP �N�Round [CSSP �N ])

T
��1 (CSSP �N�Round [CSSP �N ]) (7.18)

where�N = [a b c]T � [i j k]T .
The optimum�N value represents the ambiguity combination[i j k]T for which the lines of con-

stant phase intersect the most similarly as in[a b c]T , as explained in figure 5.2.

Simulations have been run to compute the minimum value ofD(fabc; fijk) for �N 2 Z3�f0g
such that[i j k]T 2 N . It is useful to note that this minimum value is apparently independent of
[a b c]T , except for the fact that we must have[i j k]T 2 N . Thus, a rigorous determination of this
optimum value requires the search of the combination[i j k]T yielding the minimum value of (7.18)
for each combination[a b c]T . This is a very heavy calculation requiring a high computation power
that we could not perform in all the cases. To simplify this problem, the optimization was done using
an extensive search algorithm making no distinction between the different[a b c]T in the set, assuming
that the resulting combination[i j k]T is in N . This hypothesis has the tendancy to lower the mini-
mum Kullback-Leibler distance, and represents a worst case assumption for the performance of the
procedure.

Similarly, an expression of the asymptotic value of the error probability can be derived from
[BV94], as they showed that

�! A whenA! 0 (7.19)

where is a coefficient such as0 <  < 1 depending on the minimum Kullback-Leibler information
computed previously. This result can be found in [BV94]. It is obtained through the application of
nonlinear renewal theory. Practical techniques for computing can be found in [WOO82].

This asymptotic value provides a closer approximation to the error probability than equation (7.9).

7.2.4 Comparison between theoretical and observed values

The theoretical expressions (7.12) and (7.19) were used to compute the predicted values of the ex-
pected stopping time and error probability for a point located at the beginning of the landing path over
Toulouse-Blagnac airport. The values were calculated each second over 24h, representing the pre-
dicted performance of the MAPAS procedure that would be initiated at the corresponding time. These
values were computed with various configurations of the MAPAS procedure. Then, we compared
these figures against the observed values obtained for simulations of the whole landing procedure
at the same date and time. All the computations and simulations were performed assuming a phase
measurement noise with standard deviation�=0.05 cycle =1 cm. This value is quite high as compared
to the phase measurement accuracy of 1mm, but it is selected 10 times larger to account for the other
errors.

The calculation of the asymptotic values of the performance parameters of the MAPAS procedure
is based on the determination of the minimum Kullback-Leibler distance between hypotheses, as well
as on the computation of. This requires the selection of the primary satellites used by MAPAS. The
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primary satellites are selected according to their elevation angle and PDOP factor. The values of the
Kullback-Leibler distance and of were computed for primary satellites with a minimum elevation
angle of10o and for a minimum ideal PDOP, as well as for an objective PDOP of 7.5, as explained in
5.2.

We first determined the value of this minimum Kullback-Leibler distance over 24 hours for a
fixed point in the approach path over Toulouse-Blagnac airport. The calculation was done using the
simplification described in the previous section. The evolution of this distance is shown in figure
7.1(a).

Similarly, the evolution of over 24h is plotted in figure 7.1(b).
The influence of the number of visible satellites is obvious from the comparison of figure 7.1(c)

with figures 7.1(a) and 7.1(b). This comes from the fact that the separation between the hypotheses
is easier when more observed data per epoch is used to check their consistency. Thus, the Kullback-
Leibler distance increases with the number of satellites.

These computed values correspond to the expected stopping times plotted in figure 7.1(e), for
A = 10�10. The corresponding asymptotic value of the error probability is plotted in figure 7.1(f).
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Figure 7.1: Theoretical performance for primary satellites with minimal PDOP.
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The influence of the PDOP of the primary satellites, plotted in figure 7.1(d) for this first case, can
be emphasized by the comparison of the figures 7.1(a), 7.1(e) and 7.1(f) with figures 7.2(b), 7.2(c)
and 7.2(d), when the PDOP is now as in figure 7.2(a).
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Figure 7.2: Theoretical performance for primary satellites with PDOP close to 7.5.

To determine the accuracy of the asymptotic values, we ran the calculation of the minimum
Kullback-Leibler distance at four distinct GPS times and compared the obtained results against ob-
served ones. This was done for both primary satellites selection modes, as shown in tables 7.1 and
7.2. In order to obtain observable values of error probabilities, the threshold componentA has been
set to the relatively high value of10�2.
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GPS time 194800 202800 172800 175750

PDOP of

primaries
3.3 2.3 2.4 3.0

# sat. 6 7 8 11

Asymptotic

E[Na]
1690 74.4 9.3 2.5

Asymptotic

�
9:6�10�3 8:1�10�3 5:6�10�3 3:4�10�3

Observed

E[Na]
172.4 104.2 51.9 11.1

Observed

�
7:7�10�5 1:2�10�4 2:3�10�4 2:1�10�4

# trials 13000 13000 13000 13000

Table 7.1: Comparison between computed asymptotic and observed values when the primary

satellites are the ones with the lowest PDOP.

GPS time 194800 202800 172800 175750

PDOP of

primaries
8.1 7.5 7.6 7.5

# sat. 6 7 8 11

Asymptotic

E[Na]
6514 303 35.6 3.1

Asymptotic

�
9:8�10�3 9:0�10�3 7:4�10�3 3:7�10�3

Observed

E[Na]
171.2 103.0 51.9 14.0

Observed

�
5:5�10�4 4:1�10�3 6:2�10�4 2:9�10�4

# trials 23000 23000 23000 23000

Table 7.2: Comparison between computed asymptotic and observed values when the primary

satellites have the closest PDOP to 7.5.

As we can see from tables 7.1 and 7.2, the observed error probability appears to be lower than
the asymptotic one, and in every case the lower bound (7.9) is satisfied. This major result enables to
determine the value of the design thresholdP0, using the desired error probability.

Furthermore, the accuracy of the computed asymptotic values is improved when the number of
visible satellites increases, as the computed distance seems to be more stable.

7.2.5 Conclusion

The MAPAS procedure has been modeled as an M-ary Sequential Probability Ratio Test (MSPRT), so
that general MSPRT results are applicable. Thus, the time of convergence of the MAPAS procedure,
also called the time to first fix the ambiguities, has been shown to be finite, and an upper bound of
the error probability has been given as a function of the decision threshold. Furthermore, asymptotic
values of these two performance parameters have been given.
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Comparison of the theoretical and observed values shows that the upper bound of the error proba-
bility seems to be satisfied in every case.

The relative evolution of the asymptotic values of the error probabilities and expected stopping
time shows the influence of the number of visible satellites and of the PDOP of the primary satellites.
Although these theoretical values are not very accurate when there are few visible satellites, a good
prediction of the performance of the procedure can be obtained when the number of satellites is larger
than 7.
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Chapter 8

EVALUATION OF PERFORMANCE

OF AROF PROCEDURES ON

SIMULATED DATA

The performance of LSAST and MAPAS were estimated from the average performance ob-
served during 12h to 24h, using simulated data in several configurations. The procedures are
first run on data generated according to the assumed measurement model, with several noise

levels. Then they are run on data augmented with one or two pseudolite signals. Finally they are run
on data corrupted by multipath signals reflected off the Earth’s surface.

As a courtesy of SEXTANT AVIONIQUE, the same evaluation for the DIAS and FASF proce-
dures is presented at the end of this section.

The software used for LSAST, DIAS and FASF evaluation were implemented from theoretical
principles found in published papers: [HAT91, LCL92], [WS95] and [CHE95, CL94]. Although
the software used were not written by their original developers, the names of these methods have
nevertheless been unchanged, even if only the theoretical principles have been conserved. Algorithms
have been modified and adapted to CAT II/III applications and to simulations which were made.

8.1 Performance of LSAST and MAPAS on simulated

data

8.1.1 Description of the simulations

The LSAST and MAPAS procedures were implemented in ADA and run on HP workstations and IBM
PC compatible computers. The GPS phase observations are generated using the visible constellation
from the receivers point of view. Thermal noise with preset standard deviation can be added to the
measurements, as well as distortions induced by multipath generated from reflection off the Earth’s
surface. Moreover, observations from one or two pseudolites can be added to the measurement vector
in order to assess potential benefits from their operation.

The measurements are computed at each epoch from the knowledge of the positions of the satel-
lites and the simulated trajectory of the moving receiver, which corresponds to a certain scenario.
In our case, the scenario is the landing phase of an aircraft at the Toulouse-Blagnac airport on a 3o

glideslope, beginning between 10 km and 20 km from the runway. The plane flies at a speed of 62
m.s�1. The scenarios are run one after the other for 24h.
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The performance parameters are expressed in terms of time of convergence, integrity and avail-
ability of the precise position. The High Accuracy Decision Threshold (HADT) introduced in section
6.2.3 is set at the CAT I decision threshold (200 ft). It takes 3 minutes and 25 seconds (205 s) to the
aircraft to go from the 20 km starting point to the HADT.

The parameters estimated from these simulations are:

� number of trialsN : it is the total number of trials performed for this configuration.

� number of solved trialsNs: it is the total number of trials for which the algorithm found an
ambiguity solution.

� percentage of solved trials: it is the ratioNs

N
. This is not the integrity of the procedure as a

solved trial may not have given the true solution.

� number of solved and successful trialsNss: it the total number of trials for which the algorithm
gave the good solution.

� success rate: it is the ratioNss

N
. This is not the integrity either, as all the trials are counted, even

the ones that did not converge.

� integrity: it is the ratio of the number of correct ambiguity resolutions to the total number of
trials where the ambiguity was declared as solved by the procedure.

� computation time: it is the recorded number of seconds for which the CPU of the computer has
executed the algorithm during the interval defined by the time of convergence.

� time of convergence: it is the acquisition time required by the procedure before delivering the
ambiguities.

� number of trials longer than 205 s: this is the total number of trials that converged after the
plane crossed the HADT.

� number of trials longer than 20 s: when using a pseudolite, this is the total number of trials that
were not over before the plane exited the bubble.

� number of trials longer than 40 s: when using a pseudolite, this is the total number of trials
that did not acquire enough measurement data, from the entrance in the bubble to the HADT, to
converge.

� unavailability: it is the percentage of trials that are declared as unsolved by the procedure when
the simulated aircraft crosses the High Accuracy Decision Threshold (HADT), with respect to
the total number of trials performed. In our case, as explained in chapter 6.2, if the ambiguities
have not been delivered by the procedure at the CAT I decision threshold, the accurate position
is said to be unavailable to the pilot. The availability of the accurate position is also part of the
continuity of service of the total landing system, as explained in sections 6.2.3 and 6.2.4.

� ambiguity error standard deviation: it is the standard deviation of all the ambiguity errors ob-
served on all measurements for all the unsucessful trials.

� vertical position error (successful trials): it is the vertical position error observed at the first
epoch after the ambiguities are properly solved.
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� vertical position error (unsuccessful trials): it is the vertical position error observed at the first
epoch after the ambiguities are solved, but are not the true ones.

The confidence interval of these estimates is very difficult to determine, as the theoretical distribu-
tion of each of the random variables estimated is unknown. However, as the number of trials ranges
from 2300 to more than 20000 in some cases, it is believed that confidence up to the second digit is
gained.

8.1.2 Nominal carrier phase L1 simulated data

The observations processed are fictiveL1 carrier phase measurements affected by a white Gaussian
noise. The standard deviation of this noise is set to� = 0:02 cycle, which is approximately 4 mm.
This 4mm noise level is chosen in order to evaluate the impact of nominal phase tracking errors on
the performance of the AROF procedure.

These results are presented in table 8.1. The value of the a priori standard deviation of the noise is
set to 0.02 cycle.

The ambiguity resolution is initiated 20 km away from the runway threshold.

LSAST MAPAS

# of trials N 8948 10659

# of solved Ns 8934 10656

Resolution rate Ns

N
99.84% 99,97%

# of solved and successful Nss 8924 10647

Success rate Nss

N
99.73% 99.89%

Integrity Nss

NS

99.89 % 99.92 %

Computation time (s)

mean: 11.21

std: 4.11

max: 26.8

mean: 13.32

std: 4.74

max: 35.75

Time of convergence (s)

mean: 19.29

std: 17.64

max: 236

mean: 16.17

std: 14.13

max: 162

# of trials NL with duration >

205 s = 3 min and 25 s
2 (0.0224%) 0 (0%)

Unavailability of precise

position
NL+(N�Ns)

N

0.179% 0.028%

Ambiguity errors std ? 5.80

Vertical position error std in m (successful trials) 0.0164 ?

Vertical axis position error std in m (unsuccessful trials) 0.9603 ?

Table 8.1: LSAST/MAPAS simulation results: nominal L1 measurements. Note that the un-

availability of the precise position may be related to continuity risk (see discussion in section

6.2.3).
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Figure 8.1: Performance of MAPAS on simulated L1 measurements
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As we can see in row 2-6 and 8 of table 8.1, and in figures 8.1(a), 8.1(b), 8.1(c) and 8.1(d), the
average performance of LSAST and MAPAS are quite identical when only white noise is affecting the
measurements. However, we can note that MAPAS seems to make less decision errors and to isolate
the correct ambiguity more quickly. Moreover, we can see in figures 8.1(c) and 8.1(d) that there is a
large improvement in the time of convergence when the number of satellite measurements increases
from 6 to 11.

The average computation times required to perform the search are shown in row 7 and in figures
8.1(e) and 8.1(f). These durations represent the whole execution time of the entire resolution. The
times presented here are to be used as rough indications only, as no particular effort was made to
speed up the execution of the procedures. However, the trend of the evolution of these figures with
the number of satellites can be analysed. As we can see in figures 8.1(e) and 8.1(f), the benefit of
a larger number of observations per epoch offered by additional satellites is important only when10

satellites are used. Before that, the gain in the ASN is not big enough to compensate the heavy volume
of data processed by the computer. from our evaluation, we can also note than our MAPAS algorithm
requires more computer power than LSAST.

As we can see in table 8.1, the unavailability of the precise position is quite low, although the
MAPAS solution seems to have a better availability than LSAST.

We can also see in table 8.1 that the standard deviation of the position error is around 1 cm when
the true solution is isolated, while it is around 1 m when wrong ambiguities are raised. This problem is
due to the fact that MAPAS searches for the ambiguities of the 4 primary satellites, and then deduces
the ambiguities of the secondary satellites. Therefore, a failure to raise the true primary ambiguities
by one cycle on one satellite induces a large ambiguity error for the secondary satellites. The evolu-
tion of the position error induced by a 1 cycle error on one of the primary ambiguities is shown in
figure 8.2(a). On the opposite, if the error made on each satellite is limited to 1 cycle, the position
error is as shown in figures 8.2(b) and 8.2(c).
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(a) Position error induced by a 1 cycle

error on one of the primary satellites.

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time in hours

E
rr

or
 in

 m
et

er
s

Position error induced by a 1 cycle error on 1 double differenced ambiguity

(b) Position error induced by a 1

cycle error on one ambiguity.
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8.1.3 L1 carrier phase measurements and �xed amplitude Earth

multipath

The observations processed are fictive L1 carrier phase measurements affected by a white Gaus-
sian noise and by a fixed amplitude ground multipath. The standard deviation of the noise is set to
� = 0; 02 cycle, which is approximately 4 mm. The multipath error is due to a reflected ray off the
Earth’s surface with a fixed relative amplitude�=0.1, which represents a nominal ground multipath.
The value of the a priori standard deviation is set to 0.02 cycle, as for the previous simulation. This
simulation is run in order to evaluate the impact of the multipath errors on the performance of the
AROF procedure when the multipath errors are not taken into account in the assumed noise level.

These results are presented in table 8.2.

The distortions generated by the reflected ray are computed using equation 3.26. The total phase
shift between both rays is assumed to be equal to the difference in path length between the reflected
and the direct ray, computed using equation 3.27. The relative amplitude of the reflected signal is set
to �= 0.1.

It is assumed that all the tracking channels can be affected by multipath if the delay caused by
the reflection is not larger than1:5�c, or 450 m as we assume an Early-Late delay�c of 1 chip (see
section 3.2). Therefore, according to (3.27) when the aircraft reaches an altitude lower than 225 m, or
a distance lower than 4.3 km (=2.3 Nm) from the runway threshold, all the satellites without restriction
on the elevation angle are affected by multipath. Depending on the elevation angle�, this implies a
total reflection area above the aircraft with minimal radiush

tan �
. Assuming a mask angle of5o, the

largest value of the radius of this area is 2.5 km.

LSAST MAPAS

# trials N 9917 10533

# solved Ns 9862 10520

Percentage of solved Ns

N
99.45% 99.88%

# solved and successful Nss 9810 10510

Success rate Nss

N
98.92% 99.78%

Integrity Nss

Ns

99.47 % 99.90 %

Computation time (s)

mean: 10.48

std: 4.18

max: 37.08

mean: 13.28

std: 4.76

max: 31.56

Time of convergence (s)

mean: 17.36

std: 14.62

max: 190

mean: 16.32

std: 14.12

max: 172

# trials NL with duration >

205 s = 3 min and 25 s
0 (0%) 0 (0%)

Unavailability of precise

position
NL+(N�Ns)

N

0.555% 0.123%

Ambiguity errors std ? 5.80

Vertical position error std in m (successful trials) 0.0198 m ?

Vertical position error std in m (unsuccessful trials) 0.7351 m ?

Table 8.2: LSAST/MAPAS simulation results: L1 measurements and �xed amplitude Earth

multipath. Note that the unavailability of the precise position may be related to continuity risk

(see discussion in section 6.2.3).
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We can see in table 8.2 that there are more unsolved trials for LSAST and MAPAS than reported
in table 8.1. As unsolved trials occur when the procedure ends with zero candidate left in the search
set, both procedures found more inconsistent cases than in the previous configuration. However, we
see that LSAST encountered more unsolved cases that MAPAS, although the integrity of MAPAS
decreased less that the integrity of LSAST. As a consequence, the availability of the precise position
using LSAST decreased much more than the availability of MAPAS.

We can also see in table 8.2 and in figures 8.2(f) that the time of convergence of LSAST decreased
too, which means that LSAST has the tendency to decide earlier, but with more mistakes. This is a
pervert effect of multipath on LSAST and MAPAS when the value of the a priori standard deviation
is not adjusted: the procedures have the tendency to decide quickly, but with more mistakes.

Finally, we can see the influence of multipath on the observed position error: when the true ambi-
guities are solved, the vertical position error is slightly larger than in the previous case.

As we can see in table 8.2 and in figures 8.2(h) and 8.2(i), there is a very small influence of such
multipath on the computation times.

Figures 8.3(c) to 8.3(f) show an example of evolution of the double differenced carrier phase
prediction residuals during the simulations presented in this section. The elevation angles of satellites
6 and 28 are presented in figure 8.3(a). The characteristics of these residuals are presented in table
8.3(b).
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Figure 8.2: Performance of LSAST and MAPAS on simulated L1 measurements corrupted by

�xed amplitude Earth multipath
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(c) Prediction residuals for satellite 6.
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28.
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Figure 8.3: Characteristics of double di�erenced prediction residuals with �xed amplitude Earth

multipath.

As we can see in table 8.3(b), the double differenced prediction residuals have a quite large ampli-
tude as compared to the inserted undifferenced phase measurement error of 0.02 cycle. Nevertheless,
as we can see from figures 8.3(e) and 8.3(f), we can still assume that these residuals have a white
noise distribution, which is very important to the procedure.
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8.1.4 L1 phase measurements and variable amplitude Earth multi-

path

The observations processed are fictive L1 carrier phase measurements affected by a white Gaussian
noise with standard deviation� = 0:02 cycle, which is approximately 4 mm, and distorted by an error
due to a reflected ray off the Earth’s surface with a relative amplitude determined by the soil reflection
coefficient, antenna gain and the rejection by the code correlator. These results are presented in table
8.3. The value of the a priori standard deviation is set to 0.02 cycle.

The distortions introduced by the reflected ray are computed using equation E.6:

� The total path delay�s between the reflected ray and the direct ray is computed using (3.27).
The total phase rotation�'1 = '1 � '0 between both rays is computed by adding�s to the
phase rotation introduced by the Earth’s surface. This phase rotation is obtained through the
computation of� using classical reflection coefficient expressions.

� The relative amplitude of the carrier of the reflected ray�1 is the product of

{ j R j, the module of the soil reflection factor. We havej R j=
p
R2
r +R2

i , with Rr =
R?r�Rkr�sin�

2
andRi =

R?i�Rki
�sin�

2
. The reflecting soil is characterized by its dielectric

properties. We chose here to model a wet soil, with"r=12 and�r=0.4.

{ the inverse value of the gain of the mobile antenna in the direction of the direct ray, as
indicated in figure 8.4. When the algorithm detects that the reflected ray has a Left-Hand
Circular polarization, the module of� is lowered by an additional 10 dB, as real GPS
antennas usually present an attenuated LHCP radiation pattern.

{ the ratio of the direct and composite signals correlation factors, as indicated in formula
(E.2). This ratio is estimated assuming that the error of estimation of the propagation time
�0 is the weighted relative delay of the refelcted ray by its relative amplitude: it is assumed
that �̂ � �0 = a�� with �� = �1 � �0. Therefore, the ratio of both correlation coefficients
can be approximated asR(�̂��1)

R(�̂��0)
=

R((�
2
�1)���)

R(�
2
��)

.

As for section 8.1.3, all the satellites are assumed to be affected by multipath if the relative delay
of the reflected ray is lower than1:5��c, or 450m considering an Early-Late delay�c of 1 chip.

Such a simulation is not a realistic simulation of real multipath, as the reflection coefficient are
pessimistic and the visibility of the antenna is reduced. Indeed, in reality the surface of the soil is
not smooth, which generates an equivalent diminution of the reflection coefficient. Moreover, the
real antenna is mounted on the top of the aircraft, and can it can only be reached by creeping rays.
Therefore, the simulations that were run are globally pessimistic, but more realistic simulations are
very difficult to implement.
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Figure 8.4: Pattern of simulated mobile antenna.

LSAST MAPAS

# trials N 19730 10533

# solved trials Nr 7202 8997

Percentage of solved trials Ns

N
36.50% 85.32%

# solved and successful trials Nss 4138 7322

Success rate Nss

N
20.97% 69.51%

Integrity Nss

Ns

57.46 % 81.47 %

Computation time (s)

mean: 3.56

std: 5.2

max: 28.84

mean: 11.32

std: 6.46

max: 35.81

Time of convergence (s)

mean: 9.18

std: 5.56

max: 135

mean: 14.45

std: 10.70

max: 188

# trials NL with duration >

205 s = 3 min and 25 s
0 (0%) 0 (0%)

Unavailability of precise

position
NL+(N�Ns)

N

63.50% 14.68%

Ambiguity errors std ? 5.80

Vertical position error std in m (successful trials) 0.0437 m ?

Vertical position error std in m (unsuccessful trials) 0.5306 m ?

Table 8.3: LSAST/MAPAS simulation results: L1 measurements and variable ground multipath.

Note that the unavailability of the precise position may be related to continuity risk (see

discussion in section 6.2.3).
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Figure 8.5: Performance of LSAST and MAPAS on simulated L1 measurements corrupted by

variable amplitude Earth multipath.
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Comparing table 8.2 with table 8.3, we see that the number of unsolved trials increased. About
half of the LSAST trials are unsolved, while 85 % of MAPAS trials remain solved. Similarly, the
integrity of LSAST is around 57 %, while the integrity of MAPAS is around 82 %. This leads to a
very high unavailability for LSAST, and a lower, but still unacceptable availability for MAPAS. Fur-
thermore, we see that both procedures have a tendency to decide very quickly, though making many
mistakes. If we look at figure 8.5(a) and 8.5(b), the procedures are highly affected when the number
of satellites is lower than 9 because of the low redundancy in the measurements, and when it is higher
than 9 because in that case many satellite signals are affected by multipath.

We also note that the vertical position error hase increased, and is now around 4 cm when the
true ambiguities are raised. We must also note that LSAST does not make big mistakes when raising
wrong ambiguities, as the vertical position error is around 50 cm in that case.

Figures 8.6(b) to 8.6(e) show an example of the evolution of these residuals during the simulations
presented in this section. The elevation angles of satellites 6 and 28 are presented in figure 8.3(a). The
characteristics of these residuals are presented in table 8.6(a).

Characteristic

(in cycles)
ID=6 ID=28

Mean -0.0098 -0.0076

Std 0.1162 0.1319

Max 0.2743 0.3195

(a) Characteristics of residuals
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(b) Prediction residuals for

satellite 6.
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(c) Prediction residuals for

satellite 28.
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(d) Autocorrelation of predic-

tion residuals for satellite 6.
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Figure 8.6: Characteristics of prediction residuals of measurements corrupted by Earth multi-

path.
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When comparing the standard deviation obtained in table 8.6(a) with the standard deviation ob-
tained in table 8.3(b), we see that the residuals are of the same order, although they seem to be sta-
tistically lower in the second, more realistic case than in the first one. We also note that the residuals
can still be considered as having a white noise distribution.

8.1.5 L1 measurements and variable amplitude Earth multipath (with

adaptation of prior variance)

The observations processed are fictive L1 carrier phase measurements affected by a white Gaussian
noise with standard deviation� = 0:02 cycle, which is approximately 4 mm, and distorted by an error
due to a reflected ray off the Earth’s surface with a relative amplitude determined by the soil reflection
coefficient, antenna gain and the rejection by the code correlator. These results are presented in table
8.4). The value of the a priori standard deviation is set to 0.04 cycle, or approximately 8 mm.

These simulations were run in order to assess the improvement in the performance of the AROF
procedure when taking multipath into account in the noise level. This adaptation of the noise level
to include all the distortions is a common practice, although it is known that the assumed gaussian
distribution is not correct. In our case, the adaptation was done by assuming a noise level of 0.04
cycle when the tracking noise level is 0.02 cycle. Nevertheless, the assumed noise level is still too
weak, as the total noise level is around 0.12 cycle as shown in table 8.6(a).

LSAST MAPAS

# trials N 2363 5173

# solved trials Ns 2229 5041

Percentage of solved trials Ns

N
94.33% 99.46%

# solved and successful trials Nss 2090 5041

Success rate Nss

N
88.45% 97.45%

Integrity Nss

Ns

93.76 % 97.98 %

Computation time (s)

mean: 14.26

std: 7.17

max: 52.56

mean: 15.94

std: 5.38

max: 40.50

Time of convergence (s)

mean: 37.27

std: 32.80

max: 361

mean: 33.24

std: 29.00

max: 292

# trials NL with duration >

205 s = 3 min and 25 s
5 (0.212%) 6 (0.116%)

Unavailability of precise

position
NL+(N�Ns)

N

5.883% 0.657%

Ambiguity error std ? 5.80

Vertical position error std in m (successful trials) 0.0437 m ?

Vertical position error std in m (unsuccessful trials) 0.5306 m ?

Table 8.4: LSAST/MAPAS simulation results: L1 measurements and variable amplitude Earth

multipath (with adapted prior variance). Note that the unavailability of the precise position may

be related to continuity risk (see discussion in section 6.2.3).
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Figure 8.7: Performance of LSAST and MAPAS on simulated L1 measurements corrupted with

variable amplitude Earth multipath, with adapted prior variance.
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When comparing the results presented in table 8.3 with the results presented in table 8.4, we see
the number of unsolved trials decreased significantly, and that the observed integrity has improved,
although the integrity of LSAST is still only around 88 %. The availability of both procedures im-
proved, but LSAST still has an unavailability of around 6 %.

The consequence of the adaptation of the prior variance to account for multipath is the increase
of the time of convergence, as MAPAS and LSAST now converge in about 30 s, as compared to the
average 15 s reported in table 8.1.

The vertical position errors are identical to the position errors observed in table 8.3.

As we can see in figures 8.7(c) and 8.7(d), the resolution takes a very long time when the number
of satellites is 6 or 7, because of the adaptation of the prior variance of the noise. But we can note that
the trend observed on the figures 8.7(e) and 8.7(f) is different from the trends observed previously,
as the computation time decreases with the number of tracked satellites. This is mainly due to the
increase in the time of convergence for a low number of satellites, which cancels the benefit of having
few observations per epoch.

8.1.6 L1 measurements and 1 pseudolite

The observations processed are fictive L1 carrier phase measurements affected by a white Gaussian
noise with standard deviation� = 0:02 cycle, which is approximately 4 mm. The GPS satellite con-
stellation is augmented by a pseudolite located 3 km away from the runway threshold, offset by 100 m
from the centerline. This pseudolite has a coverage radius of 700 m. A plane flying 120 kts (62 m.s�1)
crosses the bubble in 20 s. It takes the aircraft 40 s before reaching the CAT I decision threshold (200
ft) since the time he entered the bubble, as presented in figure 8.8. The ambiguity resolution trials
start when the plane enters the bubble. These results are presented in table 8.5. The value of the a
priori standard deviation is set to 0.02 cycle, or approximately 4 mm.

HADT

Pseudolite
Bubble

20 s in the bubble

in bubble to HADT
40 s from entrance

Figure 8.8: Coverage of bubble pseudolite.
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LSAST MAPAS

# trials N 16034 16930

# solved trials Ns 16014 16929

Percentage of solved trials Ns

N
99.88% 99.99%

# solved and successful trials Nss 15984 16915

Success rate Nss

N
99.69% 99.91%

Integrity Nss

Ns

99.81 % 99.92 %

Computation time (s)

mean: 12.92

std: 5.90

max: 48.89

mean: 14.81

std: 6.20

max: 43.11

Time of convergence (s)

mean: 10.77

std: 8.65

max: 215

mean: 10.19

std: 6.54

max: 152

# trials with duration > 20 s 1209 (7.54%) 678 (4.00%)

# trials with duration > 40 s NL 343 (2.14%) 160 (0.945%)

Unavailability of precise

position
NL+(N�Ns)

N

2.26% 0.951%

Ambiguity error std 3.87 ?

Vertical position error std in m (successful trials) 0.0067 m ?

Vertical position error std in m (unsuccessful trials) 0.9069 m ?

Table 8.5: LSAST/MAPAS simulation results: L1 measurements and 1 pseudolite. Note that

the unavailability of the precise position may be related to continuity risk (see discussion in

section 6.2.3).

If we compare table 8.1 with table 8.5, we see that the percentage of solved trials has slightly in-
creased, although the resulting integrity is about the same. The main improvement is seen on the time
of convergence, which is almost divided by 2, going down to around 7 s. However, we see that in the
configuration simulated here, where the ambiguity resolution is initiated at the entrance in the bubble,
the availability of the precise position is lower than in the first case, where no pseudolite is transmit-
ting, and the resolution starts 20 km away from the runway. This is due to the severe restriction of the
allowed time of convergence, going from 205 s to 40 s. We also note that the standard deviation of
the ambiguity errors is smaller, and that the vertical position error in the successful case is lower than
1 cm, but it is around 90 cm if the wrong ambiguities are raised The other change to be noted is the
increase of the computation time required to handle the extra measurement provided by the pseudolite.

Comparing figures 8.1(a)-8.1(f) with figures 8.9(a)-8.9(f), we see that the distribution of the pa-
rameters over the number of satellites has the same trend.
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Figure 8.9: Performance of LSAST and MAPAS on simulated L1 measurements augmented

with 1 pseudolite.

8. Performance on Simulated Data 85



C. Macabiau September 1997

8.1.7 L1 measurements and 2 pseudolites

The observations processed are fictive L1 carrier phase measurements affected by a white Gaussian
noise with standard deviation� = 0:02 cycle, which is approximately 4 mm. The GPS satellite con-
stellation is augmented by 2 pseudolites located 3 km away from the runway threshold, offset by 100
m on each side of the centerline. These pseudolites have a coverage radius of 700 m. A plane flying
120 kts (62 m.s�1) crosses their bubble in 20 s. It takes the aircraft 40 s before reaching the CAT I
decision threshold (200 ft) since the time he entered the bubble. The ambiguity resolution trials start
when the plane enters the bubble. These results are presented in table 8.6. The value of the a priori
standard deviation is set to 0.02 cycle, or approximately 4 mm.

LSAST MAPAS

# trials N 20603 19751

# solved trials Ns 20545 19751

Percentage of successful trials Ns

N
99.72% 100%

# solved and successful trials Nss 20508 19734

Success rate Nss

N
99.54% 99.91%

Integrity Nss

Ns

99.82 % 99.91 %

Computation time (s)

mean: 14.67

std: 6.68

max: 72.68

mean: 17.15

std: 6.16

max: 53.79

Time of convergence (s)

mean: 8.39

std: 5.77

max: 98

mean: 8.61

std: 4.42

max: 103

# trials with duration > 20 s 650 (3.15%) 327 (1.66%)

# trials with duration > 40 s NL 159 (0.77%) 70 (0.3544%)

Unavailability of precise

position
NL+(N�Ns)

N

1.0532% 0.3544%

Ambiguity error std 3.3805 6.06

Vertical position error std in m (successful trials) ? m ?

Vertical position error std in m (unsuccessful trials) 0.8648 m

Table 8.6: LSAST/MAPAS simulation results: L1 measurements and 2 pseudolites. Note that

the unavailability of the precise position may be related to continuity risk (see discussion in

section 6.2.3).

Comparing table 8.5 with table 8.6, we see that there is no significant improvement in the per-
centage of solved trials and in the integrity of the procedures. However, we note that the time of
convergence is improved, and is now around 5 s. This also improves the availability of the precise
position, with a similar computation time. We also note that the vertical position error is slightly im-
proved when the wrong ambiguities are raised. The general trends observed in figures 8.10(a)-8.10(f)
is similar to the trend of the previous figures.
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Figure 8.10: Performance of LSAST and MAPAS on simulated L1 measurements augmented

with 2 pseudolites.
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#

Applied

noise

level

Distance of aircraft Pseudolites Multipath

1 1 mm 10 km N/A N/A

2 1 mm 10 km 1 N/A

3 2 mm 10 km N/A yes

4 2 mm 10 km 1 yes

5 2 mm 10 km N/A yes

6 2 mm 20 km 1 yes

7 4 mm 20 km N/A N/A

9 2 mm 10 km N/A N/A

Table 8.7: . Con�guration of scenarios run by SEXTANT AVIONIQUE for DIAS and FASF.

#
DIAS

Integrity

DIAS

Availability of

precise position

FASF

Integrity

FASF

Availability of

precise position

1 96.48 90.01 99.53 93.93

2 98.7 96.4 N/A N/A

3 91.2 31.8 97.9 46.8

4 97.14 44.3 97.8 60.8

5 93.33 80.3 96.5 89.9

6 94.2 86.7 98.5 93.7

7 97.1 88.2 100 85.5

8 90.06 83.4 99.3 78.3

9 99.22 90.1 N/A N/A

Table 8.8: Simulation results obtained by SEXTANT AVIONIQUE on DIAS and FASF.

8.2 Performance of DIAS and FASF on simulated data

The performance of the DIAS and FASF algorithms was evaluated by SEXTANT AVIONIQUE using
a methodology similar to the approach chosen by the LTST. The scenarios run are defined in table 8.7.

The results obtained are gathered in table 8.8.

8.3 Summary and discussion on simulation results

The results presented in sections 8.1 and 8.2 can only be interpreted as comparisons between methods
in the same category, following the classification presented in section 5.1. As LSAST and MAPAS
were implemented and compared by the LTST, and DIAS and FASF were implemented and com-
pared by SEXTANT AVIONIQUE, differences in software design and simulation parameters prevent
a systematic comparison of performance of decision and estimation methods. The differences in soft-
ware design concern thresholds settings, that were adjusted by two different teams, both performing
trade-offs between the error probability and the time of convergence. The differences between the
simulation parameters are presented in table 8.9. It must also be noted that the computation times
were given as indications only, as no particular effort was made to optimize the computations.
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Methods LSAST, MAPAS DIAS, FASF

Noise level 4 mm
1 mm, 2 mm

or 4 mm as indicated

Starting point

of ight path
20 km

10 km or 20 km

as indicated

Multipath All visible satellites Highest visible satellite

Pseudolites
700 m radius bubbles

@ 3 km from runway threshold

Coverage extended to

all the approach path

Table 8.9: Di�erences between the LTST and SEXTANT AVIONIQUE simulation parameters.

The estimated performance of LSAST and MAPAS is summarized in figure 8.11 and 8.12.

Figure 8.11: Summary of LSAST simulation

results

Figure 8.12: Summary of MAPAS simulation

results

We can deduce from the observation of these graphs that the estimated performance of these two
methods is quite identical when no additional perturbation is added to the measurements (see bar plot
WGN4mm on figures 8.11 and 8.12). But the influence of multipath is dramatic (MULT), as the
reliability of both methods drops significantly, although it can be improved by setting a higher a priori
noise level than the inserted one (MULT+ADAPT). However, we can see that MAPAS seems to show
a better resistance to multipath than LSAST, probably because of its rejection mechanism which is
direclty performed on probability criteria and not on�2 thresholds. This difference is presented in
detail in [MAC96]. The benefit of the addition of bubble pseudolite signals is visible as well, mainly
on the estimated time of convergence (1PSEUDO, 2 PSEUDOS). However, we can see that the impact
of this addition on the integrity and availability of the procedures is not significant in this case where
the pseudolite signal noise level is similar to the satellite signal noise level, not even when adding one
extra pseudolite. Note that we can expect a higher benefit when using pseudolites radiating signals
having a larger coverage than a 700 m radius bubble, as it was done for DIAS and FASF testing by
SEXTANT AVIONIQUE.

The estimated performance of DIAS and FASF is presented in figures 8.13 and 8.14.
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Figure 8.13: Summary of FASF simulation re-

sults

Figure 8.14: Summary of DIAS simulation re-

sults

Stricly speaking, the error probability reported here cannot be directly interpreted as the integrity
risk because DIAS and FASF offer the possibility to deliver floating point ambiguities that can be used
to compute a precise position. However, as noted in section 8.2, a failure to raise the true ambiguities
is almost always associated with an approximate position error of 1 m. Therefore, the error probability
reported in figures 8.13 and 8.14 can be interpreted as the integrity risk.

As we can see from the first results presented in these figures, FASF seems to have a better
error probability and availability than DIAS when only white noise is affecting the measurements
(WGN1mm, WGN2mm, WGN4mm). As reported earlier about LSAST and MAPAS, multipath in-
duced errors seriously affect the performance of the procedures, with an advantage to FASF, that
seems to have a better resistance to that type of unmodeled errors (MULT). Similarly, the influence
of the addition of a pseudolite measurement is not very high, improving only the availability of the
methods (1PSEUDO), even when multipath is added (1PSEUDO+MULT).

This first set of results enables to draw several conclusions about the performance of these meth-
ods. First of all, we see that the influence of multipath induced errors is dramatic. This is a direct
consequence of the measurement model used by all these procedures, that does not include multi-
path. Then, we can deduce from these first simulations that compliance to integrity requirements is
far from being satisfied. Furthermore, the benefit of adding one or two pseudolite measurements is
not significant when the noise level on the pseudolite signal is identical to the noise level on the GPS
signals. When the satellite signal is affected by multipath, as in simulation number 6 for example,
there is a slight improvement in integrity and availability of the precise position. Finally, according to
the simulations performed, MAPAS and FASF seem to have better performance than the other tested
procedures, which certainly has to do with the smoothness of their selection process.

Further comparison of MAPAS and FASF was done by SEXTANT AVIONIQUE by incorporating
typical multipath errors and tropospheric residuals in carrier phase measurements. It results from
these additional evaluations that the availability of the precise position using FASF is highly affected
by multipath and biased residuals, while MAPAS sees its integrity decreased in the same conditions.
However, it is anticipated that improvement of the robustness of MAPAS can be achieved. From all
the analysis performed at this point, presented in [MBJ+97] and gathered in table 8.3, MAPAS is
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selected as the best candidate for further exploitation.

Method LSAST* MAPAS DIAS* FASF*

Accuracy Centimeter level

Time of Convergence +

Error Probability + +

Nature and Model

of Processed Measurements
Identical

Functional Principle

Decision

Primary Satellites

required

Estimation

No discrimination

between satellites

Nature and Quantity of Information

extracted from observations
Optimal

Computational Burden -

Relationship between performance

and decision thresholds
N/A

Theoretical

Link

Exists

N/A N/A

Quanti�cation of error Residuals

Error Indicators

History

of search

set

History

of tree

exploration

Table 8.10: Summary of analysis of AROF procedures. The symbol * denotes the methods that

were simply implemented by the LTST and SEXTANT AVIONIQUE from available publications.

The symbol + means that the mentioned characteristic is an advantage of the method.
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Chapter 9

PERFORMANCE OF MAPAS ON

DATA COLLECTED BY REAL

RECEIVERS

The performance of AROF procedures was evaluated on real data in several configurations. A first set
of measurements was collected using a Nortel GPS signal generator connected to the receivers, and a
second set contains measurements in the field. All the data collected was not processed in real time,
but post-processed.

On each set of data, the differences with the simulated measurements are analyzed, then the time
of convergence and the error rate are assessed on the samples collected.

All the results are compared, and a conclusion is drawn from this analysis. These results are also
available in [MB97].

9.1 Presentation of receivers used

The receivers used to perform the measurements are of two types:

� NOVATEL GPSCard. This is a 10-channel L1 GPS receiver that is connected to the computer
via the ISA bus. The receiver is controlled from a software running under Microsoft Windows.
Measurements can be delivered at a rate of 0.1 Hz to 20 Hz.

� SEXTANT AVIONIQUE TOPSTAR 200: 10-channel L1 GPS-receiver that is connected to the
computer via an ARINC card. Measurements are delivered at a rate of 1 Hz.

In each case, the receivers were set up in a differential mode, either connected in real time via a
serial line, or run in parallel with no physical data link at the time of recording the data.

9.2 Adaptation of software for application on real data

Several adaptations were made to the implementation of MAPAS for it to be able to raise properly the
ambiguities. These adaptations were made progressively, as they were mostly driven by the difficul-
ties encountered to process the data. The most important modifications concerned the synchronization
of the reference and user data, the computation of the positions of the satellites for the user and for
the reference separately and the introduction of a troposphere model.

92



C. Macabiau September 1997

9.2.1 Synchronization of user and reference data

The measurements made by the user and the reference receiver are triggered by a specific event within
the receiver controlled by the CPU. This event occurs repeatedly with a period equal to the measure-
ment frequency (< 20 Hz). The occurence of this event may be driven by any specific task, or may
coincide with a particular clock event identical on all receivers of the same type. In the first case,
measurements are taken by two receivers of the same type at two completely different times, in such
a way that the difference between the times of measurements maybe as large as 0.5 s. In the other
case, measurements of two receivers of the same type are taken almost simultaneously, the difference
in time being identical to the offset between the two receiver clocks, which can amount to several�s.

In any case, the measurements are not made at the same time, and they need to be re-synchronized
with each other for the single differences to be computed, as indicated in section 4.1.

We chose to extrapolate the measurements of the reference receiver at the times of the user receiver
measurements. This is done for two reasons. First, it is best that there is the smallest time lag possible
between the time the user receiver makes the measurements and the time a position is delivered. Thus,
the measurements used for positioning should be the measurements computed at the time given by the
user receiver. Second, the range observations made by the reference station have a slower and more
stable evolution as this receiver is fixed on the ground.

9.2.2 Computation of the satellites position

In order to introduce as little distortion as possible, the positions of the satellites were specifically
computed for the reference station and the user receiver. This computation is done using an iterative
procedure that recursively estimates the duration of the propagation and the receiver clock offset,
as the input of the satellite position computation algorithm is the ephemeris data and the time of
transmission in the GPS time scale.

9.2.3 Compensation of tropospheric refraction

Before being fed to the MAPAS algorithm, the real measurements are compensated for tropospheric
refraction. If this compensation is not done, the procedure fails to raise the ambiguities when the
receivers are separated by more than 100 m. Several models were tested, and the most efficient one
was found to be the NATO model, presented in appendix H.

9.3 Performance on data collected using Nortel simula-

tor

The Nortel GPS signal simulator is an electronic device that generates GPS-like RF signals from
computer models of the satellite constellation, of the signal models and of the receiver’s dynamics.
The Nortel simulator STR 2760 is owned by the STNA and was made available for the study reported
here. This simulator is a differential test bench: it can simultaneously generate signals for a reference
receiver and for a user receiver, as shown in figure 9.1.
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PRIMSEC

RFRF

NORTEL STR 2760

REF.USER
DATA

Figure 9.1: Set-up of the Nortel connexions. The primary channel sends signals for the reference

station. The secondary channels sends signals to the user receiver.

9.3.1 Presentation of scenarios run

Several scenarios were run to evaluate the performance of MAPAS in several configurations. A first
batch of scenarios simulates a static user at various points of the 3o elevation approach path over
Toulouse-Blagnac airport. These scenarios were designed to quantify the effect of the distanceD and
heighth of the user receiver with respect to the reference station.

A summary of these scenarios is presented in table 9.1.

Type # Position Multipath

Static 1
D = 1 m

h = 0.5 m
No

Static 1 b
D = 500 m

h = 25 m
No

Static 2
D = 5 km

h = 260 m
No

Table 9.1: Con�guration of scenarios run on Nortel simulator.

9.3.2 Quality of data

The data processed in this phase of the study is collected using the Nortel GPS signal generator.
Therefore, all the distortions affecting the measurements are intentional. As a consequence, the noise
superimposed to the signal can be controlled and the tracking accuracy is generally better than in real
conditions. For example, no cycle slips were found in the data collected.

The carrier phase measurement noise was analyzed using the data collected in scenario 1 because
there is negligible influence of spatial decorrelation of SA and atmospheric errors. The double differ-
enced carrier phase measurement noise is computed as the difference between the observed double
differenced measurements and the predicted double differenced carrier phase measurements. The
double differenced carrier phase measurements can be predicted as the position of both receivers is
accurately known, and the ambiguities can be easily determined using MAPAS for example.
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(b) Phase noise of satellite 9
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(c) Phase noise of satellite 21
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(d) Phase noise of satellite 26
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(e) Phase noise of satellite 6

Figure 9.2: Double di�erenced phase noise observed on scenario 1 data.

We can see in figures 9.2(b)-9.2(e) that all the phase noises exhibit a small bias. For satellite 6,
which is a very low satellite, the offset value observed decreases as the elevation angle increases. This
bias is due to the difference in atmospheric delays between the two receivers and to the low signal-to-
noise ratio of the received signal.
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Figures 9.3(a)-9.3(d) and 9.4(a)-9.4(d) show that the phase noise can be considered as white noise,
with a Gaussian distribution.
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ferenced phase noise of satellite 26
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(d) Zoom of autocovariance of double dif-

ferenced phase noise of satellite 6

Figure 9.3: Autocovariance of double di�erenced code pseudorange noise observed on scenario

1 data.
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Figure 9.4: Histograms of double di�erenced code pseudorange noise observed on scenario 1

data.

As a comparison, figures 9.5(a)-9.5(d) show the carrier phase smoothed double differenced code
pseudorange noise for the same scenario. We see that the variance and the bias of this noise is larger
than for the carrier phase. However, dividing the observed standard deviation of the double differenced
code pseudorange noise by 2 to take into account the fact that these quantities are double differenced,
we see that the noise on the undifferenced code pseudorange measurements is of the order of 7 cm,
which is a very low value due as actual typical value of code pseudorange measurement noise is of the
order of 1 m. This may be due to the extremely noiseless environment created by the Nortel simulator,
and to the acrrier smoothing applied by the NOVATEL receiver.
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(a) Code pseudorange noise of satellite 9

(mean = -0.16 m, std=0.13 m)
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(b) Code pseudorange noise of satellite 21

(mean = -0.02 m, std=0.14 m)
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(c) Code pseudorange noise of satellite 26

(mean = -0.02 m, std=0.13 m)
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(d) Code pseudorange noise of satellite 6

(mean = -0.21 m, std=0.13 m)

Figure 9.5: Double di�erenced code pseudorange noise observed on scenario 1 data.

9.3.3 Results

This section presents the results of the execution of MAPAS on the different scenarios presented in
section 9.3.1.

Results on static scenarios

The ambiguity resolution trials are launched one after the other every 15 s on each file. This is done in
order to get significant statistics from the recorded file with the constraint that two consecutive trials
should use as different data as possible.
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MAPAS 5 Hz

(�=0.02)

MAPAS 1 Hz

(�=0.02)

MAPAS 5 Hz

(�=0.01)

# trials N 44 14 109

# solved trials Ns 44 13 109

Percentage of successful trials Ns

N
100% 92.86% 100%

# solved and successful trials Nss 44 13 109

Success rate Nss

N
100% 92.86% 100%

Integrity Nss

Ns

100% 100% 100%

Computation time (s)

mean: 4.17

std: 0.59

max: 7.81

mean: 3.78

std: 1.09

max: 4.30

mean: 3.76

std: 0.46

max: 8.05

Time of convergence (s)

mean: 26.26

std: 47.58

max: 323.40

mean: 59.55

std: 33.16

max: 125

mean: 10.53

std: 29.74

max: 308.2

# trials with duration > 205 s NL 1(2.27%) 0(0%) 1(0.92%)

Unavailability of precise

position
NL+(N�Ns)

N

2.27% 7.14% 0.92%

Vertical position error std in m

(successful trials)
0.002 m 0.002 m 0.002 m

Vertical position error std in m

(unsuccessful trials)
N/A N/A N/A

Table 9.2: Results of the application of MAPAS to data of scenario 1 (GPS time 176500s

to 177670s, week 767). Note that the unavailability of the precise position may be related to

continuity risk (see discussion in section 6.2.3).

Results on scenario 1 We can see in table 9.2 the influence of the data rate and of the prior
variance.

The time of convergence is divided by 2 when going from 1 Hz samples to 5 Hz samples. The
gain is not a 5:1 ratio, mainly because of failures of the communication link between the receiver and
the computer that induces data lags, and also because the phase noise samples are slightly correlated
due to atmospheric residuals.

The average time of convergence presented in this table does not reflect the observed values of
this time: all the trials converge in a few tens of seconds, but one single trials in the middle of the file
takes a very long time. Its time of convergence corresponds to the maximum time displayed in the
table. This occurs because the number of visible satellites is 6 in the beginning of the trial. Otherwise,
for all the other trials, the number of visible satellites is 7.

All the trials performed converged towards the good solution: the integrity is 100% in every case.
The computation time is well under the time of convergence.

The position error is lower than 1 cm, which is as good as expected using carrier phase measure-
ments.
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MAPAS 5 Hz

(�=0.02)

MAPAS 1 Hz

(�=0.02)

MAPAS 5 Hz

(�=0.01)

# trials N 78 78 78

# solved trials Ns 76 72 77

Percentage of successful trials Ns

N
97.44% 92.31% 98.72%

# solved and successful trials Nss 76 72 77

Success rate Nss

N
97.44% 92.31% 98.72 %

Integrity Nss

Ns

100% 100% 100%

Computation time (s)

mean: 16.70

std: 9.19

max: 29.1

mean: 16.02

std: 9.88

max: 29.02

mean: 16.06

std: 9.45

max: 29.14

Time of convergence (s)

mean: 10.57

std: 14.74

max: 50.6

mean: 26.76

std: 28.24

max: 107

mean: 6.14

std: 9.25

max: 40.80

# trials with duration > 205 s NL 0(0%) 0(0%) 0(0%)

Unavailability of precise

position
NL+(N�Ns)

N

2.56% 7.69% 1.28%

Vertical position error std in m

(successful trials)
0.002 m 0.002 m 0.002 m

Vertical position error std in m

(unsuccessful trials)
N/A N/A N/A

Table 9.3: Results of the application of MAPAS to data of scenario 1 b (GPS time 174870s

to 176040s, week 767). Note that the unavailability of the precise position may be related to

continuity risk (see discussion in section 6.2.3).

Results on scenario 1 b Once again, we can see in table 9.3 the high influence of the data rate
and of the prior variance.

The time of convergence is divided by 2.5 when going from 1 Hz samples to 5 Hz samples, which
still is not a 5:1 ratio.

The unsolved trials are due to unexplained incorrect code measurements made by the receiver dur-
ing 1.2 second at a particular point in the middle of the scenario, between 175106.4s and 175107.6
s included. These outliers cause the program to be unable to determine its differential position using
code measurements. As these measurements are not deleted from the file, the longer the trials last, the
more trials are affected. Therefore, we see that when the prior variance is set to a low value (�=0.01
cycle) at a high data rate (5 Hz), the number of unsolved trials in the set is reduced to 1 as opposed to
6 in the worst case presented.
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Zone of outliers
Periodic launch of trials

Duration of trial

Figure 9.6: Impact of the presence of outliers on the estimation of the performance of the

procedure. The longer the trials last, the more trials get resetted.

As a consequence, the unavailability of the precise position is highly influenced by the presence
of this corrupted sequence in the file, going from 7.7 % in the worst case to 1.28 % in the best case.

The vertical positioning error obtained is lower than 1 cm in successful cases.

The number of satellites for this set ranges from 6 in the beginning to 9 at the end.

MAPAS 5 Hz

(�=0.04)

MAPAS 5 Hz

(�=0.02)

MAPAS 5 Hz

(�=0.01)

# trials N 66 66 66

# solved trials Ns 57 57 57

Percentage of successful trials Ns

N
86.36% 86.36% 86.36%

# solved and successful trials Nss 52 39 36

Success rate Nss

N
78.79% 59.09% 54.55%

Integrity Nss

Ns

91.23% 68.42% 63.16%

Computation time (s)

mean: 20.01

std: 12.11

max: 34.79

mean: 16.50

std: 10.36

max: 30.00

mean: 8.43

std: 5.39

max: 16.54

Time of convergence (s)

mean: 27.31

std: 18.24

max: 61.6

mean: 12.65

std: 10.73

max: 42.00

mean: 4.89

std: 4.35

max: 20.40

# trials with duration > 205 s NL 0(0%) 0(0%) 0(0%)

Unavailability of precise

position
NL+(N�Ns)

N

13.64% 13.64% 13.64%

Vertical position error std in m

(successful trials)
0.002 m 0.002 m 0.002 m

Vertical position error std in m

(unsuccessful trials)
0.653 m 1.0678 m 1.051 m

Table 9.4: Results of the application of MAPAS to data of scenario 2 (GPS time 174746 s

to 175748 s, week 767). Note that the unavailability of the precise position may be related to

continuity risk (see discussion in section 6.2.3).
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Results on scenario 2 The time of convergence is divided by 2.5 when going from a prior
variance�=0.04 to�=0.01 with 5 Hz samples. However, in the same time, the integrity drops from
90 % to 60 %. We see here that a trade-off must be done using the best value of�.

The unsolved trials are due to unexplained incorrect code measurements made by the receiver
during a total 1.2 second at a particular point in the beginning of the scenario, between 174876.6 s
and 174877.8 s included. These outliers cause the program to be unable to determine its differential
position using code measurements. As the trials are very slow in the beginning of the file because
there are only 5 satellites visible, all of them get resetted whenever they reach that point, as illustrated
in figure 9.7.

Zone of outliersPeriodic launch of trials

Duration of trial Trials are aborted here

Figure 9.7: Impact of the presence of outliers on the estiation of the performance of the proce-

dure. If the trials are very long in any case, a large number of unsolved cases are observed.

All the 9 first trials are aborted due to this problem. As a consequence, the unavailability of the
precise position is highly influenced by the presence of this corrupted sequence in the file, leading to
an unavailability of 13.6 %.

If this corrupted segment had been removed, the availability would have been significantly in-
creased. This problem is attributed to a problem in the processing software that should be corrected
in the next future.

The vertical positioning error obtained is lower than 1 cm in successful cases. However, when the
procedures makes errors, the vertical position error reaches 1 m in the worst case observed.

The number of satellites for this set ranges from 5 to 8.

9.4 Performance on �eld measurements

Field measurements used for this analysis were conducted in August and September 1996 at the
Toulouse-Blagnac airport, and in February 1997, at the Paris Charles De Gaulle airport using Novatel
GPSCard receivers. The processed data are 4 static sets and 1 dynamic set. 2 of the 4 static sets
were done using 3 receivers, providing 3 baselines each. Therefore, the total number of different
possible static sets is 8. The dynamic measurements were collected using a car driven around the
Toulouse-Blagnac airport. The reference position for the dynamic set is the position determined using
the GeoTracer software, developed by GEOTRONICS.

A description of the data sets is presented in table 9.5.
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Type Name Trajectory

Static CDG1 Static, 29 m

Static CDG2 Static, 29 m

Static TLS3-1 Static, 898 m

Static TLS3-2 Static, 132 m

Static TLS4-1 Static, 898 m

Dynamic TLS5-3 Dynamic with car

Table 9.5: Description of real data sets.

9.4.1 Quality of data

The data used in this phase of the study was collected in the field in real situations. Therefore, many
distortions were observed on the recorded measurements. For example, a very large number of cycle
slips is found in many of the files, and it was sometimes difficult to isolate an interval with no cycle
slip. However, as we do not have an automatic program for cycle slip correction, these defaults were
not removed from the recorded files.

9.4.2 Results on static measurements

Data set CDG1

MAPAS 1 Hz

(�=0.1)

MAPAS 1 Hz

(�=0.07)

MAPAS 1 Hz

(�=0.05)

# trials N 330 332 334

# solved trials Ns 243 263 286

Percentage of successful trials Ns

N
73.64% 79.22% 85.63%

# solved and successful trials Nss 195 201 223

Success rate Nss

N
59.01% 60.54% 66.77%

Integrity Nss

Ns

80.25% 76.43% 77.97%

Computation time (s)

mean: 29.48

std: 17.99

max: 48.72

mean: 21.85

std: 11.54

max: 35.47

mean: 18.15

std: 7.80

max: 28.46

Time of convergence (s)

mean: 160.70

std: 93.12

max: 497

mean: 121.04

std: 69.59

max: 327

mean: 91.02

std: 53.73

max: 227

# trials with duration > 205 s NL 43(13.03%) 26(7.83%) 7(2.10%)

Unavailability of precise

position
NL+(N�Ns)

N

33.39% 28.61% 16.47%

Vertical position error std in m

(successful trials)
0.005 m 0.007 m 0.005 m

Vertical position error std in m

(unsuccessful trials)
2.216 m 1.951 m 2.258 m

Table 9.6: Results of the application of MAPAS to data set CDG1 (GPS time 391010 s to

396070 s, week 893). Note that the unavailability of the precise position may be related to

continuity risk (see discussion in section 6.2.3).

9. Performance of MAPAS on Data Collected by Real Receivers 103



C. Macabiau September 1997

As we can see in table 9.6, the integrity has dropped with respect to the results presented in section
9.3.3. The integrity remains around 80 %, and a large increase of the availability of the precise posi-
tion is observed when decreasing the prior variance of the noise.

The position error in the successful cases is larger than with the Nortel data, but still remains under
1 cm. Similarly, the position error induced by wrong ambiguities is around 2 m, which is twice as
much as observed on Nortel data.

The number of visible satellites in this set ranges from 7 to 9, with a large majority to 8.

Data set CDG2

MAPAS 1 Hz

(�=0.1)

MAPAS 1 Hz

(�=0.07)

MAPAS 1 Hz

(�=0.05)

# trials N 220 220 220

# solved trials Ns 110 131 154

Percentage of successful trials Ns

N
50% 59.55% 70%

# solved and successful trials Nss 55 69 92

Success rate Nss

N
25.00% 31.36% 41.82%

Integrity Nss

Ns

50.00% 52.67% 59.74%

Computation time (s)

mean: 16.47

std: 17.36

max: 52.92

mean: 13.94

std: 12.33

max: 37.79

mean: 12.37

std: 8.92

max: 27.36

Time of convergence (s)

mean: 141.39

std: 81.89

max: 278

mean: 109.73

std: 65.86

max: 240

mean: 84.71

std: 52.52

max: 212

# trials with duration > 205 s NL 18(8.18%) 6(2.73%) 2(0.91%)

Unavailability of precise

position
NL+(N�Ns)

N

58.18% 43.18% 30.91%

Vertical position error std in m

(successful trials)
0.011 m 0.013 m 0.012 m

Vertical position error std in m

(unsuccessful trials)
0.822 m 1.160 m 1.598 m

Table 9.7: Results of the application of MAPAS to data set CDG2 (GPS time 460060 s to

463452 s, week 893). Note that the unavailability of the precise position may be related to

continuity risk (see discussion in section 6.2.3).

The integrity observed after the execution of these trials is lower than the integrity estimated on data
set CDG1. Similarly, the availability of the precise position is lower, which is certainly due to the
lower number of visible satellites, ranging from 6 to 8, with a majority of 7.
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Data set TLS3-1

MAPAS 1 Hz

(�=0.1)

MAPAS 1 Hz

(�=0.07)

MAPAS 5 Hz

(�=0.01)

# trials N 240 249 251

# solved trials Ns 240 249 251

Percentage of successful trials Ns

N
100% 100% 100%

# solved and successful trials Nss 23 23 22

Success rate Nss

N
9.58% 9.24% 8.76%

Integrity Nss

Ns

9.58% 9.24% 8.76%

Computation time (s)

mean: 19.85

std: 2.61

max: 25.08

mean: 25.21

std: 2.81

max: 32.01

mean: 18.17

std: 2.03

max: 23.19

Time of convergence (s)

mean: 291.75

std: 63.48

max: 499

mean: 244.41

std: 60.50

max: 496

mean: 193.50

std: 66.33

max: 415

# trials with duration > 205 s NL 227(94.58%) 185(74.30%) 100(39.84%)

Unavailability of precise

position
NL+(N�Ns)

N

94.58% 74.30% 39.84%

Vertical position error std in m

(successful trials)
0.011 m 0.013 m 0.012 m

Vertical position error std in m

(unsuccessful trials)
1.781 m 1.666 m 1.515 m

Table 9.8: Results of the application of MAPAS to data set TLS3-1 (GPS time 305330 s to

309290 s, week 868).

The integrity observed on the trials run on this data set is extremely low (lower than 10 %), and the
availability of the precise position is rigorously unacceptable. This may be due to the low number of
satellites visible during this experiment, ranging from 5 to 7.
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Data set TLS3-2

MAPAS 1 Hz

(�=0.1)

MAPAS 1 Hz

(�=0.07)

MAPAS 1 Hz

(�=0.01)

# trials N 297 297 303

# solved trials Ns 283 287 295

Percentage of successful trials Ns

N
95.29% 96.63% 97.36%

# solved and successful trials Nss 108 89 67

Success rate Nss

N
36.36% 29.97% 22.11%

Integrity Nss

Ns

38.16% 31.01% 22.71%

Computation time (s)

mean: 21.70

std: 5.75

max: 30.07

mean: 27.90

std: 6.49

max: 38.63

mean: 20.43

std: 4.49

max: 28.74

Time of convergence (s)

mean: 281.01

std: 77.73

max: 537

mean: 232.74

std: 63.34

max: 392

mean: 188.76

std: 61.15

max: 343

# trials with duration > 205 s NL 277(93.27%) 199(67%) 119(39.27%)

Unavailability of precise

position
NL+(N�Ns)

N

97.98% 70.37% 41.91%

Vertical position error std in m

(successful trials)
0.008 m 0.007 m 0.007 m

Vertical position error std in m

(unsuccessful trials)
1.724 m 1.654 m 1.634 m

Table 9.9: Results of the application of MAPAS to data set TLS3-2 (GPS time 305066 s to

309880 s, week 893). Note that the unavailability of the precise position may be related to

continuity risk (see discussion in section 6.2.3).

The integrity of the solution is larger than on data set TLS3-1, but it remains very low. The availability
of the precise position is still unacceptable. The number of satellites in this set ranges from 6 to 7.
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Data set TLS4-1

MAPAS 1 Hz

(�=0.1)

MAPAS 1 Hz

(�=0.07)

MAPAS 1 Hz

(�=0.01)

MAPAS 1 Hz

(�=0.1)

w/o tropo

correction

# trials N 239 239 240 239

# solved trials Ns 232 231 237 229

Percentage of

successful

trials Ns

N

97.07% 96.65% 98.75% 95.82%

# solved and

successful trials Nss

29 30 27 0

Success rate Nss

N
12.13% 12.55% 11.25% 0%

Integrity Nss

Ns

12.50% 12.99% 11.39% 0%

Computation

time (s)

mean: 50.22

std: 9.72

max: 62.85

mean: 34.06

std: 7.07

max: 43.98

mean: 25.06

std: 3.88

max: 31.70

mean: 27.70

std: 6.21

max: 33.83

Time of

convergence (s)

mean: 280.39

std: 72.61

max: 449

mean: 229.29

std: 68.81

max: 425

mean: 181.88

std: 59.18

max: 307

mean: 280.03

std: 83

max: 551

# trials with

duration > 205 s NL

209(87.45%) 155(64.85%) 82(34.17%) 210(87.87%)

Unavailability

of precise

position
NL+(N�Ns)

N

90.38% 68.20% 35.42% 92.05 %

Vertical position

error std in m

(successful trials)

0.008 m 0.007 m 0.007 m N/A

Vertical position

error std in m

(unsuccessful trials)

0.577 m 0.670 m 0.701 m 0.561

Table 9.10: Results of the application of MAPAS to data set TLS4-1 (GPS time 298620 s to

302339 s, week 869). Note that the unavailability of the precise position may be related to

continuity risk (see discussion in section 6.2.3).

As we can see in this table, the integrity is very low (around 10 %). This may due to the same
problem encountered with data set TLS3-1, as the distance between is the two receivers is identical.
The number of satellites for this set is 6 in the beginning and 7 during the remaining two thirds of the
file.

9.4.3 Results in dynamic application

Data set TLS5-3

A car carrying a GPS receiver is driven around the runway of the Toulouse-Blagnac airport, as shown
in figure 9.8(a). MAPAS is run on the data set, and a position is issued by the procedure after resolu-
tion of the ambiguities. The prior standard devition is set to 0.5 cycle, as this value seemed to provide

9. Performance of MAPAS on Data Collected by Real Receivers 107



C. Macabiau September 1997

good results on the static data sets presented in section 9.4.2. The reference position is computed from
the GPSCard measurements using the GEOTRACER 2.24 software, developed by GEOTRONICS. A
number of verification of known baselines have been carried out before using this software as a refer-
ence.

The ambiguities are properly raised at the very beginning in 158 s, and the procedure is able to
keep track of the movement of the vehicle during the whole file. The standard deviation of the 3D
position error is 4mm. The figures 9.8(b), 9.8(c) and 9.8(d) show the error of the position error over
time. As we can see, all of them exhibit a peak rising up to a few centimeters during a small interval.
During this interval, the car is stopped on a service road, and the position estimate is affected by small
unexplained variations, that may be attributed to multipath.
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(d) Altitude error of MAPAS (with respect

to GEOTRACER solution).

Figure 9.8: Results of the application of MAPAS to real measurements collected in a dynamic

situation.
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9.5 Conclusion

A preliminary conclusion can be drawn about the initial results of the exploitation of MAPAS pre-
sented in this chapter.

First, we see that several modifications to the pre-processing module, such as data synchronization,
distinction between user and receiver satellite computation, and tropospheric compensation, had to be
made in order to be able to raise properly the ambiguities on these first data.

Then, we can see that the data collected on the NORTEL simulator are very clean, and may not
fully represent reality. However, several problems were identified in this phase of the study, and some
of them are still to be solved to process successfully measurements for a distant receiver (> 5 km).
The prior variance appears as a factor driving the time of convergence and the estimated integrity
and unavailability of the precise position. A very significant improvement of the performance of the
procedure is observed when measurements are delivered at 5 Hz in comparison with the 1 Hz case. So
far, the integrity values obtained are between 60 % and 100%, the time of convergence ranges between
6 s and 30 s, and the unavailability of the precise position is between 3% and 13 %. However, due
to our lack of experience in processing real measurements, these figures can only be interpreted as
initial estimates. Moreover, because the number of measurements exploited is very low, and the size
of the confidence interval is unknown, a small confidence is attributed to the estimates. As a rule of
thumb, we can assume that estimates of performance parameters is only valid at the first digit at the
most, because the number of trials never reaches 1000.

Finally, the data collected in the field show the extreme difficulty to process properly carrier phase
measurements. Numerous cycle slips and outliers are encountered in the files, calling for a very
efficient quality control module, which is not ready yet. The prior variance of the phase noise had
to be raised by a factor of 5 from 0.01 cycle on NORTEL scenarios to 0.05 cycle in order to obtain
as many successful resolutions as possible. The estimated integrity is low (< 81 %) when the two
receivers are close (29 m), and is extremely low (< 39 %) when the receivers are seperated by 900
m. The time of convergence is larger than 3 min in average, which is very close to the limit chosen
in this study. Finally, the unavailability of the precise position is very high as it reaches 98 %, due to
the large number of unsolved trials. However, a further investigation of this problem should lead to
an improvement of this number.
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Chapter 10

CONCLUSION

During this work, a number of research activities have been carried out to draw a preliminary
conclusion on the operational adequacy of AROF procedures for precision landings.

The impact of the raw data processing techniques, such as single differencing and data synchro-
nization on the data fed to the procedure has been systematically assessed.

A classification of AROF procedures has been established, based on the approach chosen for
resolution of the ambiguities, leading to a distinction between decision and estimation techniques.
LSAST and MAPAS were studied as examples of the first category, whereas DIAS and FASF were
analyzed to illustrate the second one.

A new AROF procedure based on a maximum a posteriori sequential test has been developed and
implemented. It is characterized by a smooth rejection mechanism and delivers at each step of the
resolution a criterion quantifying the confidence to be placed in each solution.

The theoretical performance parameters of MAPAS have been established using the MSPRT for-
mulation. This analysis enabled us to determine theoretical expressions of bounds and asymptotic
values of error probability and time of convergence. These expressions allow a control over the per-
formance of MAPAS, and have been checked against the observed performance parameters.

An optimal set of evaluation criteria has been identified for the comparison of the AROF proce-
dures and the assessment of their adequacy to fulfill the operational requirements. The first two sets
are the performance parameters and the working assumptions, indicating the error probability, the
time of convergence and the mathematical model of the measurements processed. The other two sets
are the processing method and the means of control, that indicate the method used, its computational
burden, and the means provided to control and monitor the procedure. Constraints on each of the
identified characteristics have been derived from the civil aviation required navigation performance.

At the end of this work, the characteristics of four AROF procedures, namely LSAST, MAPAS,
DIAS and FASF were compared with each other. The evaluation was done on simulated data in
various configurations, on data collected from a GPS signal generator and on field measurements in
various environment conditions.

According to the simulations run, it appears that the performance of the AROF procedures is
severely reduced in presence of multipath and that pseudolites do not contribute sufficiently to the
improvement of their capacity when their ranging noise is equivalent to the satellite ranging noise.
However, MAPAS appears as the most robust procedure in presence of distortions. We must note that
the computation burden of our development software is fairly high, but more work is currently being
carried out by SEXTANT AVIONIQUE to improve its real-time capabilities.

MAPAS emerged as the most promising method. Nonetheless, it must be stressed that the algo-
rithms of LSAST, DIAS and FASF were not implemented by their initial developers. Therefore, the
obtained performance may not be the optimal performance. Moreover, the floating point ambiguity es-

110



C. Macabiau September 1997

timation procedures have not been fully analyzed, and a final conclusion is pending for further results.

From an operational point of view, the characteristics of MAPAS are far from satisfactory. Al-
though the accuracy performance is outstanding when the ambiguities are correctly raised, the po-
sitioning error is well out of performance when the algorithm elects a wrong set of ambiguities.
Unfortunately, this situation occurs too often with regards to the requirements and the procedure does
not provide a means to detect it. The integrity is thus insufficient for CAT II/III precision landings.
Similarly, the continuity risk is much too high. Indeed, the time of convergence can be longer than the
alloted slot in some particular satellite configurations, and the sensitivity to cycle slips is detrimental
to this key performance. As the availability requirement of AROF procedures has not been clearly
defined yet, this parameter has not been further analyzed.

Nevertheless, several limitations restrict the range of these conclusions. Although the models used
for simulations have been selected as close to reality as possible, complex phenomena appearing in
real situations cannot be properly reproduced. The amount of real measurements is limited due to
the difficulty of organization and the time-consuming nature of data collection campaigns on airport
grounds. This also led to a limited number of receiver and environmental configurations that restricts
the range of this evaluation. Finally, the algorithms were not tested in real-time in a real landing
situation.

To refine the assessment, broader scale experiments should be carried out encompassing a large
number of satellite configurations, signal distortions like multipath, interference, atmospheric per-
turbations, user/reference station geometry and aircraft dynamics. Such a test campaign has been
scheduled by SEXTANT AVIONIQUE in the next phase of the study.

To remedy the current limitations of MAPAS, a number of improvements have been foreseen.
The noise model could be refined to account for time-correlated errors. An integrity module could
be developed using either internal measurement redundancy or external aids to monitor the accuracy
of the proposed solution. In addition, a module monitoring the quality of the measurements must be
developed, checking for cycle slips and outliers. Finally, the algorithm of MAPAS must be optimized
to improve its real-time performance.

These improvements should lead to a better understanding of the capabilities and limitations
of these procedures. These methods are currently assessed at international level in ICAO working
groups. Once completed, this analysis will provide theoretical and practical results usable by these
groups for the choice of a CAT II/III landing system. Should AROF procedures be selected, the results
of this study could further be used to develop the appropriate standards.

Looking still further ahead, the evaluation methodology developed during this study could easily
be extended to encompass the assessment of new systems. It is also expected that MAPAS could be
adapted to accomodate new types of measurements provided by a GNSS2 system. In this context, we
can hope that the level of performance will be highly improved since carrier phase processing would
have been a design driver to fulfill CAT II/III operational requirements.
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Appendix A

ICAO's de�nition of categories of

approaches

Categories of aircraft approaches are defined by ICAO in [ICA96] according in particular to the level
of confidence that can be placed by the pilot into the system he is using to help him land the plane
safely. The precision approach is divided in two main segments : the aircraft first follows the indica-
tion provided by the landing system, then the pilot takes over in the final part and controls the aircraft
using visual outside information if the aircraft is in a position to land. As the reliability of the aircraft,
of the crew and of the landing system increases, the height of the aircraft over the ground at the end
of the interval of use of the information provided by the system can be decreased.

Therefore, a critical point in the approach path, called theDecision Height (DH) is specified, which
is the minimum height above the runway threshold at which a missed approach procedure must be
executed if the minimal visual reference is not established. Otherwise, the aircraft is flown manually
by the pilot using visual external reference or automatically by the autopilot under pilot monitoring.
The visual requirements are expressed in terms ofdistance of visibility andRunway Visual Range
(RVR). The visibility is the greatest distance, determined by atmospheric conditions and expressed in
units of length, at which it is possible with the unaided eye to see and identify, in daylight, a prominent
dark object, and at night a remarkable light source [ICA85]. The RVR is the maximum distance in
the landing direction at which the pilot on the centerline can see the runway surface markings or the
runway lights, as measured at different points along the runway and in particular in the touchdown
area [ICA92]).

Values of DH, visibility and RVR for CAT I, II and III approaches are presented in table A.1 and
illustrated in figure A.1.

Category Decision Height (DH) Visual Requirements

CAT I DH � 60 m (200 ft)
Visibility � 800 m

or RVR � 550 m

CAT II (100 ft) 30 m � DH < 60 m RVR � 350 m

A 0 m � DH < 30 m RVR � 200 m

CAT III B 0 m � DH < 15 m (50 ft) 50 m � RVR < 200 m

C DH=0 m RVR = 0 m

Table A.1: ICAO's De�nition of categories of approaches as stated in (ICAO,1996) Attachment

C, page 98.
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CAT I

CAT II

200 ft100 ft
50 ft

CAT IIIc CAT IIIa

CAT IIIb

Figure A.1: De�nition of categories of approaches.
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Appendix B

ILS and MLS requirements

TheInstrument Landing System (ILS) is the most widely used electronic guidance system for precision
approaches. It is based on old principles, as early design of the ILS was conducted in 1919 [ESM+95].
Beginning in 1967 until 1994, theMicrowave Landing System (MLS) was the leading contender for
replacement of ILS. However, in 1994, the Federal Aviation Administration (FAA) stopped the MLS
development in favor of satellite based landing schemes, and the ICAO decided in 1995 that ILS
should be kept as the basic landing system, and that MLS could be installed when proved necessary.

An ILS ground system is composed of three radiating subsystems:

� The localizer (LOC) provides lateral guidance information with respect to the centerline. The
information is provided by Amplitude Modulation (AM) of the RF carrier at 90 Hz and 150
Hz. The modulation depth of the two tones is equal on the extended centerline. To the left
of centerline, from the viewpoint of an approaching aircraft, the 90 Hz predominates. The
difference in the depth of modulation (DDM) vary linearly with the deviation angle in a�3o to
�4o region about the centerline. Forty operating channels are provided, spaced 50 kHz apart
from 108.10 MHz to 111.95 MHz.

� The glideslope (GLIDE) provides vertical guidance information with respect to the nominal
glide path. The signal radiated is identical to the LOC signal, except that the 150 Hz predom-
inates below the glide path, and the 90 Hz predominates above. Forty channels are available,
spaced 150 kHz apart from 329.15 MHz to 335.0 MHz.

� Two or threemarker beacons provide spot checks of position at 4.5 Nm (outer marker), at the
200 ft CAT I decision height (middle marker), and at the 100 ft CAT II decision height (inner
marker). The markers operate at the VHF frequency of 75 MHz. These markers tend to be re-
placed by Distance Measuring Equipments (DME), that provide continuous range information.

An ILS system is presented in figure B.1.
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Figure B.1: Illustration of GLIDE and LOC guiding planes.

An MLS ground system is also composed of three separate sub-systems:

� The azimuth (AZ) ground station provides lateral information with respect to boresight of the
antenna. This information is provided by a narrow verticalscanning beam radiated by the
antenna that sweeps horizontally on each side of boresight with a constant angular rate. The
interval between the reception of two pulses is proportional to the angle offset with respect to
boresight. Coverage of the AZ station extends to�40o on each side of boresight.

� The elevation (EL) ground station provides vertical information with respect to the nominal
glide path. The principle is the same as for the AZ station. Coverage of the EL station is
provided from 0.9o to 15o.

� TheDistance Measuring Equipment (DME) provides continuous range information.

The complete MLS equipment enables the determination of the position of the aircraft.

AZ

EL

VERTICAL SCANNING
BEAM (EL)

HORIZONTAL SCANNING BEAM (AZ)

Figure B.2: Illustration of AZ and EL scanning beams.

Requirements for an ILS and an MLS ground station depends on the category of operation of the
runway. These requirements are presented in [ICA96] and are recalled in table B.1.
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Category

Integrity

during

any landing

Continuity of service

Mean Time

Between Outages

(MTBO)

CAT I 1-10�7 1-4�10�6 in any 15 s period 1000 hr

CAT II 1-0.5�10�9 1-2�10�6 in any 15 s period 2000 hr

CAT III 1-0.5�10�9 1-2�10�6 in any 30 s period (LOC)

1-2�10�6 in any 15 s period (GLIDE)

4000hr LOC

2000hr GLIDE

Table B.1: ICAO's ILS and MLS reliability requirements found in (ICAO, 1996), attachment

C to part 1.

The accuracy requirements for an ILS ground station are presented in [ICA96] and recalled in
table B.2 and table B.3 for the Localizer (LOC), and in table B.4 and table B.5 for the glideslope
(GLIDE).

Category

LOC bias error

limit at runway

threshold [ICA96]

CAT I 10.5 m

CAT II 4.5 m

CAT III 3 m

Table B.2: Maximum speci�ed LOC alignment error at runway threshold from [ICA96], section

3.1.3.6.1.

Category and validity area

(point B = point located at 1050 m from runway threshold)

LOC beam bend

error limit

in Di�erence in

Depth of Modulation

(DDM) (2�)

CAT I between point B and 100ft point 0.015

CAT II between point B and reference point 0.005

CAT III between point B and reference point 0.005

Table B.3: Maximum LOC beam bending from [ICA96], section 3.1.3.4.1.

Category
GLIDE angle error limit

(� is the nominal glide path angle)

CAT I 0.075�

CAT II 0.075�

CAT III 0.04�

Table B.4: Maximum GLIDE angle error from [ICA96], section 3.1.5.1.2.2.
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Category
GLIDE beam bend

error limit in DDM

CAT I 0.035

CAT II 0.023

CAT III 0.023

Table B.5: GLIDE beam bend error limit in DDM from [ICA96], section 3.1.5.4. Note that the

speci�ed angular displacement sensitivity is 0.0875 DDM for 0.12�.

The accuracy of an MLS ground station is presented in [ICA96] and is recalled in table B.6.

Station
Path Following

Error (PFE) (2�)

Path Following

Noise (PFN) (2�)

Control Motion

Noise (CMN) (2�)

AZ 6 m 3.5 m 3.2 m

EL 0.6 m 0.4 m 0.3 m

Table B.6: MLS accuracy requirements.
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Appendix C

De�nition of operational parameters

The requirements used to assess the ability of a navigation system to support precision approach and
landing operations are theRequired Navigation Performances (RNP). These RNPs are adapted from
the enroute RNP concept presented in [ICA94a], and are still under development in the AWOP. RNP
type is a designator that specifies the 95 % accuracy value associated with the RNP space in the
horizontal plane, thus defining a containment region [ICA94a]. For CAT I, II and III operations, the
associated RNP types are those presented in the first line of table 2.1. In that case, RNP types include
specification of lateral as well as vertical performance standards. The RNPs are expressed in terms
of the accuracy, the integrity, the continuity of service and the availability. The definition of these
parameters is recalled in [ICA94b], and collected in table C.1.

Parameter De�nition

Accuracy

Ability of the total system to maintain the aircraft position within

a total system error (TSE) limit with a 95% probability at each

point along the speci�ed procedure and to keep it within an outer

performance boundary with a probability of no less than 1-10�7.

Integrity

Quality which relates to the trust that can be placed in the cor-

rectness of the information supplied by the total system. Integrity

includes the ability of a system to provide timely and valid warn-

ings to the user when the system must not be used for the intended

operation.

The integrity risk is the probability of an undetected failure which

will result in the loss of the speci�ed accuracy.

Availability

Ability of the total system to perform its function at the initiation

of the intended operation.

The availability risk is the probability that the required guidance

will not be present at the initiation of the intended operation.

Continuity of

service

Ability of the total system to perform its function without inter-

ruption during the intended operation.

The continuity risk is the probability that the system will be in-

terrupted and not provide guidance information for the intended

operation.

Table C.1: ICAO's de�nition of operational parameters.
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De�nition of tunnel concept

The precision approach requirements are expressed in terms of Required Navigation Performance
(RNP) parameters such asaccuracy, integrity, continuity of service andavailability. These parameters
generate volumes around the nominal approach path within which ones the aircraft must fly with a
specified probability. In practice, these volumes are delimited by surfaces definingtunnels.

For each category, two tunnels are defined according to the associated probability of presence:

� theinner tunnel is the volume in which the aircraft must be contained 95% of the time.

� the outer tunnel is the volume in which the aircraft must be contained with a probability of
1-10�7.

Figure D.1 illustrates the tunnel concept.

INNER TUNNEL

TUNNEL

OUTER

RUNWAY

Figure D.1: Illustration of tunnel concept.

The position error driving the deviation of the aircraft around the assigned approach path is the
Total System Error (TSE). This error is a measure of the true aircraft position relative to the desired
position. Part of this position error is due to theNavigation Sensor Error (NSE), and another part
is due to the inability of the aircraft’s pilot or autopilot to fly precisely the desired trajectory. This
second part is referred to as theFlight Technical Error (FTE).
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Figure D.2: Ilustration of TSE=FTE+NSE. The reference used by the Course Deviation Indi-

cator when coupled to the GNSS receiver is the theoretical Required Flight Path. When coupled

to an ILS equipment, the CDI is centered on the sensed null DDM position.

Assuming these error components are random and independent, the standard deviation of the Total
System Error can be expressed as:

�2TSE = �2FTE + �2NSE (D.1)
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Carrier phase multipath errors

The carrier phase tracking error"multi induced by multipath can be computed using the structure of
the receiver.

For example, when the disturbing signal is one specular reflected ray, the signal fed to the PLL
can be modeled as:

Vi(t) = R(�̂ � �0) sin (2�f(t� �0) + �0) + aR(�̂ � �1) sin (2�f(t� �1) + �1) (E.1)

where

� R is the autocorrelation function of the tracked C/A code

� �̂ is the code phase delay estimated by the DLL and used to unspread the signal

� �0 is the true phase delay of the direct signal

� �0 is the original phase shift of the direct signal

� a is the relative amplitude of the reflected ray (0 � a � 1)

� �1 is the total code phase delay of the reflected ray

� �1 is the phase shift of the reflected signal

This signal has the same phase as the signal

V�(t) = sin (2�f(t� �0) + �0) + a
R(�̂ � �1)

R(�̂ � �0)
sin (2�f(t� �1) + �1) (E.2)

or
V�(t) = sin (2�f(t� �0) + �0) + � sin (2�f(t� �1) + �1) (E.3)

or equivalently
V�(t) = sin (2�ft+ �0) + � sin (2�ft+ �1) (E.4)

where

� � = a
R(�̂��1)

R(�̂��0)

� '0 = �2�f�0 + �0

� '1 = �2�f�1 + �1
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Therefore, we have
V�(t) = A sin(2�ft+ '0 + �') (E.5)

where

�' = arctan

�
� sin �'1

1 + � cos �'1

�
(E.6)

denoting�'1 = '1 � '0 the total path length difference between the direct signal and the reflected
ray.

The measurement error�' is illustrated in figure E.1.

mult

A

ε

(k)

ϕ

a

(k)

(k)

δϕ
Aα

Figure E.1: Composition of the direct and reected ray (�' and � are the relative phase and

amplitude of the reected signal).

We can see in this figure that the largest measurement error is obtained when the composite signal
is perpendicular to the direct ray, which corresponds to a phase error of��

2
, or 1

4
of a wavelength. Of

course, this value is a bound, as in that case, the amplitude of the resulting signal is 0. This result can
also be shown using E.6 when�=1 and�'1 ! �.

Therefore, we have [LEI95]
�
�

2
< �' <

�

2
(E.7)
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Appendix F

Spatial correlation of satellite clock

errors

Satellite clock errors affecting measurements performed by two receivers are identical if the signal
used for measurements is transmitted at the same time. However, the length of the electrical path
from one satellite to two distinct receivers is different because of the distance separating these two
receivers. Thus, as illustrated in figure F.1, the time of transmission of the signal reaching two distinct
receivers at the exact same time is different.

RECEIVER 2RECEIVER 1

DELAY
PROPAGATION

DIFFERENCE IN

SATELLITE

Figure F.1: Illustration of the di�erence in time of transmission of a signal reaching two distinct

receivers at the same time.

This implies that the satellite clock offset, including SA dither are different for two measurements
performed at the same time by two receivers. The maximum value of this time difference is observed
when both receivers and the satellite are aligned. This is obtained when the satellite is at its lowest
point on the horizon for two receivers on the ground. Thus, the difference in path length can be con-
sidered as identical to the distance separating the two receivers. Therefore, for two receivers located
20 km apart, the maximal difference in time of transmission is around 70�s.

However, the GPS satellite clocks have a short term stability lower than10�11 s.s�1, and the evolu-
tion of SA has been specified to be lower than 2 m.s�1 [NN95], the equivalent of 7.10�9 s.s�1. Thus,
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the evolution of the satellite clock offset, including SA-dither, is highly negligible during this interval.

In practice, measurements from two distinct receivers can not be made at the exact same time be-
cause of their difference in clock offset. However, re-synchronization of one set of the measurements
with respect to the other set can be made through proper extrapolation, with a timing accuracy equiva-
lent to the uncertainty of determination of both clock offsets. In practice, the receiver clock offset can
be estimated with an approximate 95 % accuracy of 300 ns , as specified in [NAT93]. Therefore, the
extrapolated measurements are computed with a total 600 ns timing accuracy, which must be added to
the 70�s offset determined previously. However, the resulting evolution of the satellite clock offset
and SA-dither during this interval is negligible.
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Appendix G

Ionospheric errors

The ionosphere is a weakly ionized region extending from 50 km above the ground up to about 1000
km, although effects of higher layers up to the height of the satellites are sometimes not negligible
[KLO96]. The ionosphere is a dispersive medium, causing an equal phase advance and code delay
of opposite signs. The effect of the ionosphere on the propagation of GPS signals depends on the
solar ionization flow, magnetic activity, solar spot cycle, season, time, position and line of sight. This
effect is difficult to model, and complex algorithms can only compensate a maximum of 75% of the
ionospheric delay, due to presently unmodelable variability of the ionosphere. Thus, simple models
are often used, compensating only for 50% of the total ionospheric delay.

A very simple thin shell model of the ionosphere is illustrated in figure G.1.

satellite

θ

50 km

350 km

1000 km

EARTH

Figure G.1: Illustration of the thin shell model of the ionosphere : all the free electrons of

the ionosphere are supposed to be located at the height of maximum ionization, estimated to be

around 350 km.

Based on this model, a mathematical expression of the ionospheric delay is presented in [XIA92]
and is recalled here:

Ii =
40:3

cf 2
� TEC =

40:3

cf 2
�

TEC0r
1�

�
cos�

1+ 6378
350

�2 (G.1)

where

� TEC is the Total Electron Content, which denotes the total number of electrons encountered
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by the oblique electromagnetic ray in a 1m2 cross-section column of the ionosphere.TEC is
expressed in electrons.m�2. Extreme values ofTEC are 1016 el.m�2 and 1019 el.m�2.

� TEC0 is the zenith Total Electron Content, related to the originalTEC through theobliquity
function.

� � denotes theelevation angle of the satellite above the horizon from the receiver’s point of view.

Computation of the ionospheric delay is performed for various elevation angles in figure G.2.
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Figure G.2: Ionospheric propagation delay as a function of elevation angle when TEC0=2.10
17.

As we can see in figure G.2, variation of ionospheric delay increases as the elevation angle de-
creases. Therefore, in normal conditions, differences in ionospheric propagation delays for two re-
ceivers are observed at low elevation angles.

The evolution of these ionospheric residuals for two receivers located as illustrated in figure G.3,
tracking a satellite signal with an elevation angle around 5o, is plotted in figure G.4.
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Figure G.3: Situation of two receivers tracking the same satellite.
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Figure G.4: Evolution of the di�erence in ionospheric delays as a function of distance between

the two receivers, located at the same height above sea level. The �rst receiver tracks the satellite

with a �xed 10o elevation angle.
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Appendix H

Tropospheric propagation delay

Tropospheric effects are generated by the non-ionized portion of the atmosphere extending from the
surface of the Earth up to an approximate altitude of 40 km [SPI96b]. Thetroposphere behaves as
a neutral medium at the L-band frequencies. It causes a refraction of the RF signals because of the
larger refractive index than that of vacuum. This index is constant with frequency,non dispersive
for frequencies lower than 30 GHz. Thus the group and phase velocities are identical [ROC88]. In
nominal propagation conditions, the actual path of the RF ray through the troposphere is longer than
the straight geometrical line, bent in such a way that the curved path is closer to the zenith than the
straight line, as shown in figure H.1. However, in reality, the actual path could be even more disturbed.

Satellite

User

Through Troposphere
Actual Path

Figure H.1: Actual path of the RF ray is longer than straight geometrical path.

The tropospheric delay depends on the temperature, humidity, pressure, and height of receiver.
This delay results of the action of two types of constituents :dry gases andwater vapor. Thewet
component of this delay is much more difficult to predict than thedry component, although it con-
tributes to only 10 % of the total delay. This uncertainty, combined with the unknown local meteoro-
logical conditions, limits the prediction accuracy using global models to the 10-20 cm level [JLN89].
Several models of this delay are proposed. Most of them model the total delay as the product of the
zenith delay by a mapping function depending on the elevation angle. These models were extensively
compared in [JLN89] and [JLN91]. The impact of different tropospheric models on the reliability
and accuracy of the precise airborne positioning solutions is analyzed in [MCL95] and [CL96]. Two
models are given here. The first one is an easy to use model, only depending on the height of the
receiver and the elevation angle of the satellite. This model is presented in [NAT93]. The second
one was presented in [SAA73] and is considered as the best available [JLN89, JLN91]. It is more
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complex as it includes atmospheric and partial water vapor pressure, and temperature. Application of
this model can be performed through the use of a standard atmosphere profile.

H.1 NATO tropospheric model

The model presented in [NAT93] uses an average reference value for surface refractivity which is
input into a three stage equation decomposing the troposphere in three layers.

� = �R(h)f(�) (H.1)

where

� f(�) is theobliquity factor (or mapping function) as a function of the elevation angle�. We
havef(�) = 1

sin�+ 0:00143
tan�+0:0455

. This function is actually the Chao dry delay mapping function, as

presented in [CHA72].

� �R(h) is thezenith propagation delay, depending on altitude above mean sea level. Different
expressions of this delay can be given depending on the altitude of the receiver.

The total delay is decomposed as�R(h) = �R1(h) + �R2(h) + �R3(h) where

� �R1(h) is the error for an altitude0 < h < 1 km :

�R1(h) =
�
Ns(1� h) + 0:5�N(1� h2)

�
� 10�3 m (H.2)

Ns is the surface refraction index at the mean sea level, distributed with a mean of 324.8N and a
standard deviation of 25.98N . The unitN is such thatN = (n�1)�106. �N=-7.32e0:005577�Ns .
�R1(h)=0 if h < 1 km.

� �R2(h) is the error for an altitude 1 km< h <9 km :

�R2(h) =
�8N1

ln
�
N1

105

� �e�ln(N1
105) � e0:125(1�h)ln(

N1
105)
�
� 10�3 m (H.3)

whereN1 = NS +�N . �R2(h) = 0 if h �9 km, and�R2(h) = 0:1430 m if h � 9 km .

� �R3(h) is the error for an altitude 9 km< h < 20186.8 km :

�R3(h) =
�105
142:4

�
e�2873:3187 � e0:1424(h�9)

�
� 10�3 m (H.4)

�R3(h)=0.732 m ifh < 9 km.

Computation of the tropospheric delay is performed for various elevation angles in figure H.2.

H.2 Saastamoinen's tropospheric model

The model presented in [SAA73] relates the tropospheric delay to the meteorological parameters in
the following manner :

� =
0:00227

cos�

�
P +

�
1255

T
+ 0:05

�
e� tan2�

�
in meters (H.5)

where

Appendix H 130



C. Macabiau September 1997

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70
TROPOSPHERIC DELAY (NATO MODEL)

D
E

LA
Y

 IN
 M

E
T

E
R

S

ELEVATON ANGLE IN DEGREES

h=0 km

h=1 km

Figure H.2: Evolution of tropospheric delay as a function of altitude and elevation angle. This

model was reported to be suitable for precision airborne navigation in [CL96].

� � is the satelliteelevation angle.

� P is theatmospheric pressure in mbar.

� T is thetemperature in Kelvin.

� e is thepartial water vapor pressure in mbar.

Computation of this estimated tropospheric delay requires knowledge of meteorological parame-
ters. These parameters can be measured at the site or predicted from a standard atmosphere model. As
reported in [BT94], the use of measured meteorological parameters does not yield to more accurate
results than the use of standard parameters. An example of standard atmosphere mapping is presented
below :

P = P0[1� 2:26 � 10�5(h� h0)]
5:225 in mbar (H.6)

T = T0 � 6:5 � 10�3(h� h0) in K (H.7)

e =
RH0

100
e(�6:396�10

�4(h�h0)�37:2465+0:2113166T�2:56908�10�4T 2) in mbar (H.8)

whereh is the height of the receiver above the ground in meters, andRH0 is the relative humidity
in percent (0� RH0 �100).

Estimation of di�erences in tropospheric delays between two receivers

As we can see in figure H.2, the variation of the tropospheric delay is very rapid when the elevation
angle is close to 0o. Therefore, when two receivers track the same satellite as illustrated in figure G.3,
the tropospheric delay will be quite different if this satellite is low on the horizon, as the elevation
angle will differ from one receiver to the other. This difference is plotted in figures H.3 and H.4.
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Figure H.3: Illustration of di�erences in tropospheric delay for two receivers located at the same

height tracking the same satellite. The �rst receiver tracks the satellite with a �xed 10o elevation

angle.
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Figure H.4: Illustration of di�erences in tropospheric delay for two receivers at the same latitude

and longitude tracking the same satellite. The �rst receiver tracks the satellite with a �xed 10o

elevation angle.
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Appendix I

Impact of error of computation of

satellite position

The positions of the satellites are necessary in order to process theslant range measurements per-
formed by the receiver. The distance measured is the distance between the receiver at the time of
reception and the satellite at the time of transmission. Computation of the position of the satellites is
performed using theephemeris data broadcast by the satellites and an estimate of the time of trans-
mission. Inaccuracies in the ephemeris data and in the time estimate can induce errors in the estimated
positions of satellites. The user position error induced by a satellite position error is projected on the
line of sight of the satellite, as illustrated in figure I.1.

ASSUMED RANGE

TRUE RANGE

ESTIMATED POSITION

TRUE POSITION

SATELLITE
POSITION

ERROR

USER

ρ

ρ

l

ERROR
MEASUREMENT

EQUIVALENT

Figure I.1: Impact of a satellite position error on the user position estimate.

Thus, in the worst case, this error can be reported entirely on the user position when the assumed
position of the satellite is aligned with its true position and the user position. However, when using
measurements from another receiver in the same area, these errors can be reduced if they are corre-
lated, as the lines of sights of the satellite from the receivers are almost identical. If both receivers
compute the position of the satellite with the same error, the residual error appearing in the single
differences is the difference between the two projections, as presented in figure I.2.
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Figure I.2: Di�erence in range measurement error for two receivers. As the altitude of the

satellites is very large (� 20000 km) as compared with the position error d, we can assume that

the measurement errors l1 and l2 are the result of orthogonal projection on the line of sight of

the satellite.

As shown in [BP82], the equivalent range error on single differences is

�l = dsin�� dsin(�� ") (I.1)

As " is small, we can approximate I.1 as

�l = d"cos� (I.2)

As " � r
�
, the largest value of this error is

j�lj �
dr

�
(I.3)

The evolution of this equivalent range measurement error is plotted in figure I.3 for various values
of d andr.
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Figure I.3: Di�erential range measurement error induced by errors in the computed satellite

position.

Errors in the ephemeris data are due to the limitations of the control segment to estimate the
kinematic parameters of the satellites, and to the possible intentional degradation calledSA-epsilon.
These errors induce common satellite position errors for both receivers. The standard deviation of
these errors is around 5 m [ZB96], which induces an error lower than 1 cm on the single differenced
measurements when both receivers are located less than 20 km apart, as shown in figure I.3.

The time of reception is provided by the local oscillator, biased by its own clock offset, while
the time of transmission is computed using an iterative algorithm. As the receiver clock bias can be
estimated with an error lower than 300 ns [NAT93], we can assume that the time of transmission can
be determined with an error lower than 1�s. Thus, as the maximum speed of a GPS satellite in the
WGS-84 reference frame is lower than 4 km.s�1 [AS96], we can deduce that this time error induces
an error lower than 1 cm on each range measurement.
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Appendix J

Kullback-Leibler information

The Kullback-Leibler information between two probability density functionsf�0 andf�1 of a random
variableY is [BN93]:

D (f�0 ; f�1) = E�0

�
ln
f�0(Y )

f�1(Y )

�
(J.1)

The Kullback-Leibler information is equal to 0 if and only if both distributionsf�0 andf�1 are
identical. This information is not a distance stricly speaking because it is not symmetrical in general.
However, it is often called the Kullback-Leibler distance.

In the case whereY has a gaussian distribution with variance�2, andf�0 andf�1 only differ by
the expected value�0 and�1, we have

D (f�0 ; f�1) =
1

2

(�0 � �1)
2

�2
(J.2)

As we can see from (J.2), the Kullback-Leibler information can be interpreted as asignal-to-noise
ratio representing the degree of distinction between the two probability density functions, as illus-
trated in figure J.1.
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Figure J.1: Representation of the Kullback-Leibler information between two hypotheses in the

scalar case.

Moreover, it can be shown that the Kullback-Leibler distance between two multivariate normal
distributionsf�0 andf�1 is [BN93]:
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D(f�0;f�1)=
1

2

�
Ef�0

[zS�� ]�Ef�1
[zS�� ]

�T
��1

�
Ef�0

[zS�� ]�Ef�1
[zS�� ]

�
(J.3)

where� is the covariance matrix of the distribution.
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Appendix K

Linearization of GPS observations

The GPS pseudo-range measurements delivered by a receiver do not depend on the position of the
receiver in alinear fashion. Therefore, classical linear identification techniques can not be used to
process these measurements. However, when a good position estimate of the receiver is available, the
model of these measurements can be linearized for further processing.

K.1 Linearization of undi�erenced measurements

A simple model of the GPS measurements can be formed from equations 3.23 and 3.25:

Pi(k) = �i(k) + ni(k) (K.1)

'i(k) = �
�i(k)

�
�Ni + bi(k) (K.2)

where

� ni andbi denote all the measurement errors affecting the code and carrier phase measurements.

� �i(k) is the geometrical distance between the satellitei and the receiver:

� =

q
(x� xi)

2
+ (y � yi)

2
+ (z � zi)

2
(K.3)

where

{ X = [x; y; z]T is the position of the receiver

{ Xi = [xi; yi; zi]
T is the position of the satellite

As we can see from these equations, the measurements do not linearly depend on the unknown
positionX = [x; y; z]T .

Assume now that a position estimatêX is available. We can expand the models K.1 and K.2
around this estimate to create a linear dependency with respect to the positionX.

Denoting�X as the estimation error�X = X̂ �X, we can expand the equation K.3 as:

�(X) = �(X̂ � �X) � �(X̂)�
@�

@X
�X (K.4)

The resulting linearized quantities�� = �(X)� �(X̂) depend on the unknown position as:

�� = �
@�

@X
�X (K.5)
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where
@�

@X
=
h

@�

@x

@�

@y

@�

@z

i
(K.6)

These partial derivatives are in fact thedirection cosines of the satellites from a receiver located
in X̂:

@�

@x
=

x̂� xiq
(x̂� xi)

2
+ (ŷ � yi)

2
+ (ẑ � zi)

2
(K.7)

also denoted[Cx; Cy; Cz] =
h

@�

@x

@�

@y

@�

@z

i
Therefore, the measurements presented in K.1 and K.2 are linearized as:

�Pi(k) = Pi(k)� �i(X̂) = �Cxi(k)�x(k)� Cyi(k)�y(k)� Czi(k)�z(k) + ni(k) (K.8)

��i(k) = �i(k) +
�i(X̂)

�
=
Cxi(k)

�
�x(k) +

Cyi(k)

�
�y(k) +

Czi(k)

�
�z(k)�Ni + bi(k) (K.9)

K.2 Linearization of single di�erenced measurements

When measurements from a second receiver are available, single differenced measurements can be
formed in order to remove many of the measurement errors except errors related to the receiver itself,
as presented in section 4.2. Single differences are computed by subtracting measurements from one
receiver to the measurements of the other one, after proper resynchronization.

A model of these observations is presented in section 4.2 and is recalled here:

�Pi(k) = ��i(k) + �ni(k) (K.10)

�'i(k) = �
��i(k)

�
��Ni +�bi(k) (K.11)

where

� �ni(k) = nRi
(k)�nUi(k) and�bi(k) = bRi

(k)� bUi(k) denotes all the residual measurement
errors (subscriptsR andU denote the Reference measurements and the User measurements).

� ��i(k) = �Ri
(k) � �Ui(k) is the difference between the satellite-reference range and the

satellite-user range:�Ri
= �(XR) and�Ui = �(X), denotingXR as the reference coordinates

andX as the user coordinates.

As the position of the reference receiverXR is accurately known, linearization of these observa-
tions around a user position estimateX̂ results in:

��Pi(k) = �Pi(k)� (�i(XR)� �i(X̂))

= Cxi(k)�x(k) + Cyi(k)�y(k) + Czi(k)�z(k) + �ni(k) (K.12)

��i(k) = �i(k)�

 
�i(XR)

�
�
�i(X̂)

�

!

= �
Cxi(k)

�
�x(k)�

Cyi(k)

�
�y(k)�

Czi(k)

�
�z(k)�Ni +�bi(k) (K.13)
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K.3 Linearization of double di�erenced measurements

In order to remove the last part of the measurements errors related to the receiver itself from the single
differenced measurements, the elaboration of between satellite differences is computed, as presented
in section 4.3.

A model of these observations is presented in section 4.3 and is recalled here:

r�Pi(k) = r��i(k) +r�ni(k) (K.14)

r�'i(k) = �
r��i(k)

�
�r�Ni +r�bi(k) (K.15)

where

� the reference satellite is assumed to be satellite 1.

� r��i denotes the double differenced range measurements:

r��i = ��1 ���i = (�R1
� �U1

)� (�Ri
� �Ui) (K.16)

Linearization of this model produces the following observations:

�r�Pi(k) = r�Pi(k)�
�
��1

�
X̂(k)

�
���i

�
X̂(k)

��
=

�
�P1(k)���1(X̂(k))

�
�
�
�Pi(k)���i(X̂(k))

�
= (Cx1(k)� Cxi(k)) �x+ (Cy1(k)� Cyi(k)) �y + (Cz1(k)� Czi(k)) �z

+r�ni(k) (K.17)

�r�'i(k) = r�'i(k)�

 
�
r��1(X̂(k))

�
+
r��i(X̂(k))

�

!

= �
Cx1(k)� Cxi(k)

�
�
Cy1(k)� Cyi(k)

�
�
Cz1(k)� Czi(k)

�
�r�Ni +r�bi(k) (K.18)

Collecting all thenk observations made by the receivers, we can form the vector model:

P (k) = �C(k)�X(k) +BP (k) (K.19)

�(k) = �C(k)�N +B�(k) (K.20)

where

� P (k) = [�r�P1(k) : : : �r�Pnk(k)]
T and�(k) = [�r�'1(k) : : : �r�'nk(k)]

T

� BP andB� are the code and phase noise vectors

� N = [r�N1 : : :r�Nnk ]
T is the double differenced ambiguity vector

� C(k) is the linear system matrix

C(k) =
1

�

2
64

Cx1(k)� Cx2(k) Cx1(k)� Cx2(k) Cx1(k)� Cx2(k)
...

...
...

Cx1(k)� Cxn
k
(k) Cx1(k)� Cxn

k
(k) Cx1(k)� Cxn

k
(k)

3
75 (K.21)
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Appendix L

Kalman �ltering of GPS measurements

in dynamic applications

A Kalman filter provides the Minimum Mean Square Estimate (MMSE) of the state of a system on
the basis of a state transition and an observation model.

The measurements used by a Kalman filter in GPS stand-alone applications are code and/or phase
measurements, in an undifferenced, single differenced or double differenced mode. The Kalman filter
is used to estimate the kinematic parameters of the mobile (position, velocity, acceleration, ...), the
user clock parameters (offset, drift, ...) and the ambiguities of the carrier phase measurements. As the
measurement do not linearly depend on the state vector, the actual procedure is usually an extended
Kalma filter.

The generic Kalman filter presented here is an extended Kalman filter applied on double differ-
enced code and phase measurements and provides position, velocity and ambiguity estimates. It is
based on the integrated random walk state transition model, and on a classical model for the double
differenced measurements, as shown in equations L.1 and L.2.

Xk+1 = FkXk +Wk (L.1)

Yk = h(Xk) + Vk (L.2)

where

� Xk is the state vector at epochk, whereXk = [xk; _xk; yk; _yk; zk; _zk; N1; : : : Nnk ]
T

� Fk is the state transition matrix, usually chosen as

Fk =

2
664
F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 Ink

3
775 (L.3)

where

{ F =

�
1 Te
0 1

�
is the position transition matrix (integrated random walk).

{ Ink is the ambiguity transition matrix. It is identical to the identity matrix of ranknk.
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� Wk is the state noise, assumed to be Gaussian, and independent fromXk and from measurement
Yk. Its autocorrelation matrix is:

Qk =

2
664
�2qxW 0 0 0

0 �2qyW 0 0

0 0 �2qzW 0

0 0 0 �2NInk

3
775 (L.4)

where

{ W =

"
T 3
e

3

T 2
e

2
T 2
e

2
Te

#
is the autocorrelation of the position state noise.

{ �2q is the variance of the acceleration of the mobile, assumed to be a white Gaussian noise.

{ �2N is the variance of the ambiguity noise model.

� Yk contains the double differenced code pseudoranges stacked on top of the double differenced
carrier phase measurements.

� h is the non linear function mapping the state components on the observations.h(Xk) is actually
the functionr��i(k) for thenk � 1 double differenced code measurements, and the function
�r��i(k)

�
for thenk � 1 double differenced phase measurements, as preseneted in section K.3.

� Vk is the measurement noise, assumed to be Gaussian, independent fromXk. Its autocorrelation
matrix is:

Rk =

�
�2P�r� 0

0 �2b�r�

�
(L.5)

where

{ �2n is the code pseudorange measurement noise

{ �2b is the carrier phase measurement noise

{ �r� is the double differenced correlation matrix:

�r� =

2
666664

4 2 2

2 4 2
...

...
...

2 4 2

2 2 4

3
777775 (L.6)

The update of the state estimate is computed using the following equations:

X̂k+1jk = FkX̂k (L.7)

�k+1jk = Fk�kjkF
T
k +Qk (L.8)

Kk+1 = �k+1jkH
T
k+1

�
Hk+1�k+1jkH

T
k+1 +Rk+1

�
�1

(L.9)

X̂k+1jk+1 = X̂k+1jk +Kk+1

�
Yk+1 � h

�
X̂k+1jk

��
(L.10)

�k+1jk+1 = �k+1jk �Kk+1Hk+1�k+1jk (L.11)

whereHk =
@h(Xk+1)

@Xk+1

���
Xk+1=X̂k+1jk

.
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Note that the extended Kalman filter equations L.7-L.11 do not provide an optimal estimate of the
state of the system, as they are derived using a first order Taylor expansion of the non linear function
h around successive state estimates:

h(Xk) � h(X̂kjk�1) +Hk(Xk � X̂kjk�1) (L.12)

The quantityIk = Yk+1� h
�
X̂k+1jk

�
appearing in equation L.9 is called theinnovation vector of

the process. In the case where the state transition equation is linear, it can be shown that if L.12 holds,
the innovation vector is zero-mean at the first order, and its covariance matrix is equal to

�Ik = Hk�kjk�1H
T
k +Rk (L.13)
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