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Abstract

This thesis aims to formulate innovative Uncertainty Quantification (UQ) methods in
both Robust Optimization (RO) and Reliability-Based Design Optimization (RBDO)
problems. The targeted application is the optimization of supersonic turbines used in
Organic Rankine Cycle (ORC) power systems.

Typical energy sources for ORC power systems feature variable heat load and tur-
bine inlet/outlet thermodynamic conditions. The use of organic compounds with a
heavy molecular weight typically leads to supersonic turbine configurations featur-
ing supersonic flows and shocks, which grow in relevance in the aforementioned off-
design conditions; these features also depend strongly on the local blade shape, which
can be influenced by the geometric tolerances of the blade manufacturing. A consen-
sus exists about the necessity to include these uncertainties in the design process, so
requiring fast UQ methods and a comprehensive tool for performing shape optimiza-
tion efficiently.

This work is decomposed in two main parts. The first one addresses the prob-
lem of rare events estimation, proposing two original methods for failure probabil-
ity (metaAL-OIS and eAK-MCS) and one for quantile computation (QeAK-MCS). The
three methods rely on surrogate-based (Kriging) adaptive strategies, aiming at refining
the so-called Limit-State Surface (LSS) directly, unlike Subset Simulation (SS) derived
methods. Indeed, the latter consider intermediate threshold associated with interme-
diate LSSs to be refined. This direct refinement property is of crucial importance since
it enables the adaptability of the developed methods for RBDO algorithms. Note that
the proposed algorithms are not subject to restrictive assumptions on the LSS (un-
like the well-known FORM/SORM), such as the number of failure modes, however
need to be formulated in the Standard Space. The eAK-MCS and QeAK-MCS methods
are derived from the AK-MCS method and inherit a parallel adaptive sampling based
on the weighted K-Means algorithm. MetaAL-OIS features a more elaborate sequen-
tial refinement strategy based on MCMC samples drawn from a quasi-optimal ISD.
It additionally proposes the construction of a Gaussian mixture ISD, permitting the
accurate estimation of small failure probabilities when a large number of evaluations
(several millions) is tractable, as an alternative to SS. The three methods are shown
to perform very well for 2D to 8D analytical examples popular in structural reliabil-
ity literature, some featuring several failure modes, all subject to very small failure
probability/quantile level (O(10−5 − 10−9)). Accurate estimations are performed in
the cases considered using a reasonable number of calls to the performance function
( 15-150).



ii Abstract

The second part of this work tackles original Robust Optimization (RO) methods
applied to the Shape Design of a supersonic ORC Turbine cascade. A comprehensive
Uncertainty Quantification (UQ) analysis accounting for operational, fluid parameters
and geometric (aleatoric) uncertainties is illustrated, permitting to provide a general
overview over the impact of multiple effects and constitutes a preliminary study nec-
essary for RO. Then, several mono-objective RO formulations under a probabilistic
constraint are considered in this work, including the minimization of the mean or a
high quantile of the Objective Function. A critical assessment of the (Robust) Optimal
designs is finally investigated.

Keywords Gaussian Processes • Failure Probability • Extreme Quantile • Robust Op-
timization • ORC Turbine • Geometric Manufacturing Variability
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–1 Contexte

Dans le secteur de l’énergie, la production d’énergie décentralisée suscite un regain
d’intérêt. Étant donné que les sources renouvelables abondantes telles que la géother-
mie/solaire sont souvent caractérisées par de petites exploitations. Par conséquent, les
centrales électriques de petite taille et de taille moyenne (O(101−104) kW) pourraient
jouer un rôle clé pour ces sources d’énergie. Parmi les technologies disponibles pour la
conversion à haute efficacité de la puissance thermique en électricité dans cette plage
de capacité, les ORC ont montré des avantages significatifs [Verneau, 1978, Angelino
et al., 1984] en termes de fiabilité et de rentabilité. Les ORCs ont donc suscité un
intérêt considérable de la part des milieux industriels et universitaires, en particulier
en raison de sa capacité à récupérer de l’énergie mécanique à partir de sources de
chaleur de qualité inférieure.

Le cycle de puissance Rankine est un cycle thermodynamique fermé présent dans
toutes les centrales à vapeur classiques. Dans les ORC, similaires aux cycles à vapeur
Rankine, le fluide de travail (eau) est remplacé par un fluide organique caractérisé par
un poids moléculaire élevé. Dans sa forme de base, un ORC est constitué de quatre
composants (Figure 2): évaporateur, turbine, condenseur, pompe.

Le fluide organique est pompé dans l’évaporateur, qui exploite une source de chaleur
de faible teneur: le liquide sous pression est converti en vapeur surchauffée à pression
constante. La nature rétrograde des fluides organiques typiques utilisés pour les ORC
atténue le processus de surchauffe, qui n’a pas une importance cruciale dans les cycles
à vapeur de Rankine classiques. Une turbine permet de détendre la vapeur chaude en
convertissant la chute d’enthalpie en énergie mécanique (de rotation), puis en élec-
tricité en utilisant un générateur couplé à la turbine. La vapeur entre alors dans un
condenseur qui, par transfert thermique avec la source froide (air ambiant, lac, etc...),
le convertit en un état liquide. Le liquide basse pression est finalement dirigé vers
la pompe d’alimentation, augmentant sa pression et en fermant le cycle thermody-
namique. Dans la plupart des cas, un régénérateur est utilisé pour récupérer l’énergie
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Figure 1 Illustration d’un ORC [Sauret and T Gu, 2014].

thermique de la vapeur sortant de la turbine. Les composés organiques permettent de
convertir efficacement la chaleur à basse et moyenne température (à partir d’environ
90 ◦C) dans la plage de puissance faible à moyenne: leur chaleur de vaporisation,
beaucoup plus faible que celui de l’eau offre un meilleur équilibre entre la trajec-
toire de chauffage du fluide de travail (organique) et celle de la source de chaleur qui
refroidit (généralement de l’eau surchauffée ou huile), augmentant l’efficacité de la
conversion [Karellas and Schuster, 2008, Larjola, 1995, Harinck, 2010].

Le bon choix du fluide organique par rapport à la température de la source de
chaleur et à l’apport de chaleur entraînent une augmentation de la puissance de sor-
tie ou des performances du cycle. Il est généralement choisi comme siloxane aro-
matique, fluorocarbure, fluorocarbone, hydrofluorocarbure ou chaîne droite [Curran,
1981, Angelino et al., 1984, Colonna, 1996, Angelino and Di Paliano, 1998]. La variété
garantie par le large éventail de fluides organiques disponibles répond aux diverses
exigences des dispositifs de conversion d’énergie thermique largement répandus [Mac-
chi, 2017, Colonna et al., 2015]; ORC offre un grand potentiel d’utilisation de sources
de chaleur externes durables, telles que l’énergie solaire, la géothermie, la biomasse
ou même l’exploitation de chaleur perdue (WHR) (par exemple, centrales électriques
en acier, camions). De telles sources présentent généralement des charges variables et,
par conséquent, les conditions thermodynamiques à la sortie de la chaudière/entrée de
la turbine subissent des variations importantes ; cette variation se combine également
avec le changement saisonnier naturel de la température ambiante, qui pourrait mod-
ifier les conditions thermodynamiques du condenseur/sortie de turbine. Ces sources
d’incertitude entraînent des différences considérables dans le fonctionnement de la
turbine et, en particulier, une charge aérodynamique variable sur les cascades de la
machine, réduisant potentiellement les performances de la turbine.

Une autre particularité du fluide organique a une incidence sur la conception
de la turbine. D’une part, le processus d’expansion implique une faible diminution
d’enthalpie spécifique, cette dernière étant inversement proportionnelle à la masse
moléculaire élevée du fluide organique. Il permet l’adoption de turbines compactes et
rentables composées d’un ou deux étages, sans tenir compte des problèmes liés à la
vitesse de rotation élevée et aux pénalités d’efficacité qui en résultent [Angelino et al.,
1984]. D’autre part, la combinaison de la faible vitesse du son et du taux d’expansion
élevé par étage qui en résulte conduit généralement à des turbines transoniques ou su-
personiques ORC, généralement soumises à de fortes ondes de choc et à des conditions
d’écoulement bloquées. De plus, une partie du processus d’expansion peut se produire
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à proximité immédiate de la courbe de vapeur saturée ou, dans certaines applications,
à proximité du point critique. Dans ces conditions, la thermodynamique complexe car-
actérisant ce fluide de travail organique peut conduire à un comportement dynamique
inhabituel du fluide, noté gaz réel [Wheeler and Ong, 2013], s’écartant de manière sig-
nificative de celui d’un gaz parfait représenté par la loi de gaz parfait polytropique : la
dépendance non idéale de la vitesse à la densité du fluide peut être observée lorsque
le flux est soumis à des perturbations isentropiques [Cramer, 1991, Cramer and Best,
1991, Kluwick, 2004]. Cela est particulièrement vrai pour une classe de fluides con-
nue sous le nom de Bether-Zel’dovich-Thompson (BZT) fluids [Bethe, 1998, Zeldovich,
1946, Thompson, 1971].

Par conséquent, des lois d’état (EOS) appropriées sont nécessaires pour décrire
le comportement thermique et calorique d’un fluide, telles que l’EOS cubique suiv-
ant : Soave-Redlich-Kwong (SRK) [Soave, 1972] ou Peng-Robinson-Stryjek-Vera (PRSV)
[Stryjek and Vera, 1986].

Les simulations fiable d’écoulement de gaz denses dans les solveurs de type Computational-
Fluid-Dynamics (CFD) nécessitent des méthodes numériques pour la propagation d’incertitudes.
Ils pourraient provenir soit de la forme mathématique de l’EOS choisie, soit des coef-
ficients associés à l’EOS généralement étalonnés à partir des données expérimentales
disponibles. Pour les fluides complexes, les données expérimentales précises sont dif-
ficiles à obtenir, ce qui complique en particulier l’estimation des propriétés des points
critiques et des facteurs acentriques, couramment utilisés comme paramètres d’entrée
pour l’EOS cubique. Certains travaux de quantification d’incertitude liés à l’EOS con-
cernent des analyses de sensibilité de flux de gaz denses par rapport aux paramètres
EOS incertains [Cinnella et al., 2011b], le calibrage bayésien lié à ces paramètres
[Merle and Cinnella, 2015]. Des travaux récents ont étudié les incertitudes associés
aux coefficients de l’EOS et de la forme du modèle (épistémique) au moyen d’une
méthode d’inférence statistique [Merle and Cinnella, 2019].

Les cascades de turbines construites présentent inévitablement des écarts par rap-
port à la forme et à la taille prévues. Les variabilités géométriques indésirables résul-
tent, par exemple, du processus de fabrication ou des opérations de finition. Comme
souligné dans [Montomoli et al., 2015], les variations géométriques peuvent affecter
les performances de la machine réelle. Des incertitudes géométriques sont présentes
sur l’ensemble de la chaîne de conception et de fabrication, à commencer par la
paramétrisation géométrique, qui s’étend aux étapes d’usinage individuelles, aux ac-
tivités d’assemblage final de la turbomachine et même au fonctionnement de la ma-
chine. En effet, la production d’aubes de turbine ORC nécessite généralement la con-
version d’un modèle géométrique paramétré (courbes de Bézier, Splines, par exemple)
en données de type conception assistée par ordinateur (CAD) et ensuite en données
CAM, entraînant des modifications de la représentation géométrique. L’étape de fab-
rication suivante nécessite généralement une série de processus différents tels que le
fraisage, le moulage, le forgeage, le soudage, le pliage, induisant tous des déforma-
tions géométriques impactant la géométrie finale. Finalement, le fonctionnement de
la turbine a également un effet néfaste sur les aubes car il entraîne une augmenta-
tion de la rugosité de la surface ainsi que des écoulements de fuite dans les joints
à labyrinthe. En effet, la corrosion, l’impact des particules et l’encrassement sont à
l’origine de la dégradation de surface. En dépit de l’idée généralement admise que
la variabilité géométrique n’est pas souhaitable dans les turbomachines ORC, il existe
peu d’informations détaillées sur son effet néfaste sur les performances des cascades.



4 Introduction en Français

Enfin, une des particularités des centrales ORC décentralisées de petite à moyenne
envergure est la nécessité de fonctionner avec la disponibilité moyenne la plus élevée.
Il représente le temps d’exploitation annuel et peut atteindre, pour les unités fiables,
plus de 98%, avec seulement une semaine de maintenance prédictive par an. L’industrie
tente généralement d’atteindre cet objectif en prenant des décisions critiques à partir
de la conception mécanique afin de simplifier les problèmes d’ingénierie et d’obtenir
une plus grande fiabilité du composant. Un exemple typique est le couplage direct
entre le détendeur et le générateur évitant l’utilisation d’un réducteur, mais limitant
généralement la vitesse de rotation du détendeur : il en résulte une réduction des
fuites de fluide organique dans l’environnement, une réduction des pièces rotatives
et un entretien réduit. En outre, une instrumentation appropriée du Balance of Plant
(BOP), à savoir tous les composants nécessaires à l’installation de la centrale, y com-
pris la tuyauterie, les vannes et connexion de contournement, jouent un rôle important
dans la prévision de la maintenance. En effet, une analyse adéquate des mesures de
pression et de température aux sections d’entrée et de sortie de chaque composant
pourrait permettre de détecter des défaillances nécessitant une intervention humaine
: température anormale d’un joint d’étanchéité défectueux, vibrations accrues ou pro-
priétés détériorées du fluide organique indiquant un encrassement ou une contami-
nation. De tels incidents peuvent avoir un effet néfaste sur l’efficacité à long terme de
la machine. Dans ce contexte, la prédiction d’événement rare est alors un élément
essentiel à intégrer au processus de conception.

Dans la conception actuelle des turbomachines, les méthodes de type Fluid Shape
Optimization (FSO) sont couramment appliquées et ont récemment fait l’objet d’une
amélioration significative, offrant la possibilité de traiter des problèmes complexes à
un coût de calcul réduit [Pironneau, 1974]. Ces méthodologies jouent un rôle encore
plus important dans le cas de technologies impliquant la Dynamique des fluides com-
pressibles non idéale (NICFD), telles que les turbines ORC, pour lesquelles l’expérience
de conception et les informations expérimentales sont limitées à de très rares cas.
(voir [Spinelli et al., 2018] pour les toutes premières expériences sur NICFD dans des
tuyères supersoniques). Au cours des cinq dernières années, des efforts de recherche
concertés ont récemment été consacrés au développement de techniques FSO pour les
applications NICFD, telles que celles pour les tuyères et les aubes de turbomachines,
en utilisant des méthodes utisant le gradient ([Pini et al., 2015] [Vitale et al., 2017])
ou non ([Pasquale et al., 2013] [Rodriguez-Fernandez and Persico, 2015] [Persico,
2017]) ; une comparaison plus systématique entre ces deux classes d’optimisation,
appliquée aux turbines ORC, est rapportée dans [Persico and Pini, 2017]. Dans ces
études, des formulations déterministes du problème d’optimisation ont été la plupart
du temps prises en compte, malgré la variabilité mentionnée ci-dessus dans les con-
ditions de fonctionnement, la géométrie et les incertitudes liées aux paramètres de
fluide.
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–2 Optimisation Robuste de forme pour Turbomachines
ORC : Challenges

L’importante augmentation de la puissance de calcul au cours des dernières décennies
permet d’effectuer des simulations numériques complexes d’écoulements internes al-
lant d’une cascade unique à toute la turbine, en utilisant une complexité de modéli-
sation différente: solveurs Euler 2D, Calculs Navier–Stokes (RANS) 3D, simulations
dynamiques telles que RANS instationaire, ou Large Eddy Simulations (LES).

À la suite d’études antérieures [Montomoli et al., 2015], certaines des principales
limitations de la CFD des turbomachines peuvent être résumées comme suit:

• Les conditions de fonctionnement sont souvent inconnues à priori et compor-
tent des conditions non uniformes et difficiles à déterminer. Des hypothèses
raisonnables deviennent nécessaires et les étages de turbine conçus (cascades)
doivent généralement répondre aux exigences aérodynamiques pour une large
gamme de points de fonctionnement dans différentes conditions d’entrée / sor-
tie.

• La différence entre la géométrie réelle et simulée peut être pertinente en raison
d’erreurs de fabrication et de la dégradation en service. Cette différence doit
être modélisée et prise en compte lors du processus de conception.

• La convergence de grille est un textit curse bien connu en CFD, et les turboma-
chines ne sont pas exemptées. Les études récentes cite alauzet2019numerical
portent sur le calcul de l’erreur numérique résultant de la résolution de la grille
à l’aide de méthodes sophistiquées d’adaptation du maillage.

• Le choix d’effectuer une simulation stable ou instable, par exemple dans le cas
d’une interaction rotor / stator, peut avoir un impact important sur la précision
de la simulation. Plus généralement, l’influence des effets instables doit être
soigneusement évaluée si le processus de conception est uniquement fondé sur
des simulations continues.

• Models Les incertitudes dans FSO sont principalement dues aux paramètres et à
la forme du modèle. Des incertitudes sur les paramètres sont dues à l’étalonnage
des coefficients de fermeture (EOS, turbulence) à l’aide de données expérimen-
tales ou à des simulations de résolution d’échelle, tandis que les simulations sous
forme de modèle résultent d’une insuffisance du modèle considéré (par exemple,
modèle EOS, RANS). Par exemple, dans cite schmelzer2019estimation, un max-
imum d’estimations a posteriori des distributions postérieures des coefficients de
fermeture RANS est étudié.

Par conséquent, la performance réelle d’une turbine (cascade) n’est pas détermin-
iste par nature et devrait être décrite de manière idéale par des distributions de proba-
bilité reflétant la dispersion en incertitudes géométriques, opérationnelles et de mod-
élisation. Cette thèse est orientée vers le développement de méthodes numériques

pour résoudre le problème d’Optimisation sous incertitudes, avec l’optimisation de la
forme de la turbine ORC comme application cible. Cette rubrique est parfois appelée
Robust Engineering bien que ce terme désigne une catégorie plus générale. Plus pré-
cisément, le présent travail de recherche vise à traiter des stratégies de conception
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adaptées aux cascades de turbines ORC, en tenant compte des conditions de fonction-
nement, des paramètres de fluide impliqués dans l’EOS décrivant le comportement du
gaz dense et de la variabilité géométrique due à la fabrication. Dans la littérature, deux
méthodes sont utilisées pour intégrer l’incertitude dans le cadre de l’optimisation, à
savoir Optimisation Robuste (RO) et Optimisation de la conception basée sur la fiabil-
ité (RBDO). Cette recherche porte sur deux aspects différents, i.e. Le calcul d’un événe-
ment rare pour l’optimisation de la conception basée sur la fiabilité et l’optimisation
de la conception robuste. Dans ce qui suit, quelques défis pour ces deux problèmes
sont illustrés.

Evènements rares et RBDO

L’objectif de RBDO est de concevoir sous contrainte de fiabilité (événements rares).
Dans RBDO, la fiabilité est généralement mesurée par une probabilité de défaillance,
qui doit rester inférieure à un seuil donné, généralement très faible. Une contrainte
basée sur un quantile pourrait remplacer cette contrainte de probabilité de défaillance,
tandis que le problème d’optimisation pourrait être soumis à plusieurs contraintes de
fiabilité. Des formulations à objectifs multiples pourraient également être envisagées.

La principale difficulté de RBDO réside dans le fait qu’il faut estimer, à chaque
itération de la formulation de RBDO, une faible probabilité d’échec ou un quantile.
Ces estimations étant déjà difficiles, l’effort informatique est considérablement accru.
Actuellement, les méthodes RBDO peuvent être classées en deux groupes, à savoir
les algorithmes à deux niveaux (imbriqués) [Youn et al., 2003] et les algorithmes à
boucle unique [Picheny et al., 2010c]. Comme son nom l’indique, les méthodes à deux
niveaux comportent deux étapes: l’une correspondant à l’estimation d’événements
rares, l’autre axée sur l’optimisation de la conception. Une méthode populaire ap-
partenant à cette catégorie est la méthode Reliability-Index Approach RIA [Shi and
Lin, 2016]; à chaque étape d’optimisation, l’estimation de la probabilité de défail-
lance est fondamentalement résolue en termes d’indices de fiabilité au moyen de la
méthode bien connue First Order Reliability Method (FORM)1 [Bourinet, 2018]. Ces
méthodes souffrent généralement d’un faible taux de convergence, d’où un coût de
calcul élevé. De plus, les résultats peuvent ne pas être optimaux, en particulier dans
ls problèmes impliquant des contraintes probabilistes hautement non linéaires ou des
modes de défaillance multiples. Pour faire face au nombre élevé d’évaluations du
résolveur numérique, les méthodes à boucle unique sont devenues très populaires
parmi les chercheurs, tentant de convertir la procédure à double boucle en une seule
procédure. Une option consiste à convertir la contrainte probabiliste en une con-
trainte déterministe, puis à la remplacer par les conditions d’optimalité [Liang et al.,
2008, Liang et al., 2008]. Bien qu’efficaces numériquement, ces méthodes donnent
souvent des résultats erronés et peuvent conduire à des instabilités numériques. Une
autre option fait appel au concept d’espace augmenté [Dubourg, 2011, Moustapha
et al., 2016], basé sur l’utilisation de métamodèles, permettant l’approximation de
la frontière (LSS) délimitant les designs défaillants des autres. Ils s’appuient sur des
stratégies d’échantillonnage adaptatif conçues à l’origine pour l’estimation des prob-
abilités de défaillance et des quantiles. La principale limitation de ces méthodes est

1ou Second Order Reliability Method (SORM), une fois que le point de défaillance le plus probable
(MPFP) a été trouvé.
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qu’elles ne conviennent pas aux événements extrêmes, ie associés à des seuils de prob-
abilité d’échec (ou niveau de quantile) compris entre 0(10−5 − 10−9). Des méthodes
efficaces appropriées pour le calcul des probabilités de défaillance faibles et des quan-
tiles extrêmes, c’est-à-dire dont la stratégie adaptative est compatible avec les algo-
rithmes RBDO sont donc considérées.

Optimisation Robuste

L’Optimisation Robuste (RO) consiste à minimiser l’influence des conditions environ-
nementales incertaines sur les performances d’un système, i.e. cherchent à déterminer
une conception insensible aux variations considérées. Une approche mono-objectif
classique consiste, par exemple, à minimiser la moyenne (ou plus généralement une
statistique sélectionnée) de la performance (fonction objectif scalaire). Les techniques
d’optimisation robustes comportant une quantification explicite de l’incertitude posent
des problèmes de dimensionnalité, en raison du grand nombre de calculs CFD néces-
saires, qui déterminent finalement la faisabilité technique de la méthode. Les tech-
niques de substitution sont principalement utilisées pour limiter le coût de calcul
global ; voir par exemple [Keshavarzzadeh et al., 2017, Zhang et al., 2017] où la
stratégie d’Optimisation approximative séquentielle (SAO) est illustrée. Une discus-
sion sur l’intérêt d’utiliser des modèles de substitution pour une optimisation basée
sur l’incertitude est présentée dans [Jin et al., 2003], où le Krigeage et plus générale-
ment les techniques de Processus Gaussiens (GP) s’avèrent très prometteurs. Dans ce
contexte, [LEE and PARK, 2006] propose une formulation basée sur la performance et
la minimisation de la variance d’une quantité d’intérêt (QoI) ; la fonction de perfor-
mance est approchée avec un modèle de krigeage dans l’espace couplé, et la méthode
de Monte-Carlo est appliquée considérant le modèle à faible coût, permet de construire
un deuxième métamodèle de krigeage sur les moments statistiques. Dans [Janusevskis
and Le Riche, 2013], un modèle de stratégie de groupe est utilisé pour optimiser les
performances moyennes, et cette optimisation est obtenue à l’aide de méthodes dites
d’Optimization Bayesiennes. En ce qui concerne l’algorithme de minimisation, des
techniques basées sur les GP, telles que Efficient Global Optimization (EGO) ont été
utilisées massivement dans l’optimisation [Huang et al., 2006, Picheny et al., 2010a].

Même s’il est à présent établi et pleinement démontré, le RO visant à minimiser la
moyenne d’une QoI pourrait souffrir d’un manque de contrôle de sa variabilité. Des
formulations alternatives sont possibles pour améliorer le contrôle de la variabilité, en
tenant compte de l’écart type de la QoI, par exemple en formulant la fonction objectif
sous la forme µ ± kσ ou Min σ s.t. µ < µ0 par exemple, où µ,σ désignent respec-
tivement la moyenne et l’écart type de la QoI. Cependant, ces méthodes souffrent du
fait que les paramètres définis par l’utilisateur k, µ0 ont un impact significatif sur la
conception finale. De plus, l’inclusion explicite de l’écart type dans la fonction ob-
jectif induit une augmentation de la charge de calcul dans l’espace stochastique par
rapport à la moyenne. Pour les problèmes liés aux ORC, une optimisation robuste
multi-objectifs a été proposée à la fois sur la moyenne et sur l’écart type [Congedo
et al., 2013a, Bufi et al., 2017, Bufi and Cinnella, 2017], et une approche multipoint
a été proposée dans [Pini et al., 2014a].
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–3 Contributions du Travail de Recherche

Ce manuscrit illustre les principales contributions accomplies pour relever certains des
défis présentés dans la section précédente. La première partie est consacrée à la for-
mulation et à l’évaluation de certains algorithmes d’estimation de faible probabilité de
défaillance et de quantile extrême2, proposant des stratégies d’échantillonnage adap-
tatif compatibles avec des méthodes RBDO existantes. Une application préliminaire
de la méthode avec une turbine ORC de la méthode pour une faible probabilité de
défaillance est également proposée.

La deuxième partie du manuscrit est consacrée à l’optimisation de la conception
robuste et de la forme des turbines ORC. Premièrement, une analyse de sensibilité
tenant compte de l’effet combiné des conditions de fonctionnement, des incertitudes
géométriques et des incertitudes du modèle EOS sur une application de turbine ORC
est présentée. Ensuite, un algorithme d’optimisation basée sur les quantiles est for-
mulé et appliqué à la conception robuste d’un stator de turbine ORC.

Les principales contributions de cette thèse sont résumées ci-dessous.

Évènements Rares Deux méthodes d’estimation de probabilité de défaillance et une
permettant d’estimer un petit quantile sont proposées, basées sur la modélisation de
substitution de Kriging et des stratégies d’échantillonnage adaptatif, formulées dans
l’espace standard. Cette classe de méthodes appartenant aux analyses de fiabilité et de
risque concerne l’évaluation de la sécurité de systèmes d’ingénierie complexes. En fait,
le domaine d’applications impliquant principalement des systèmes très dangereux est
vaste, y compris les centrales chimiques et nucléaires, les dépôts de déchets radioactifs,
la sécurité des structures ou l’évaluation de la conception de l’aérospatiale.

• Estimation non-biasiée de très faible probabilité de défaillance
Ce premier algorithme combine trois contributions principales. Une nouvelle
stratégie de raffinement séquentiel du métamodèle permet d’approcher avec pré-
cision la fonction de performance d’origine sans hypothèse restrictive sur le LSS,
telle que la linéarité ou le nombre de modes de défaillance. En particulier, la
stratégie de raffinement vise à affiner directement le substitut au voisinage du
LSS (contrairement aux méthodes basées sur la simulation de sous-ensemble,
par exemple). Un nouveau mélange gaussien Importance Sampling Density
(ISD) permet d’estimer avec précision un très faible risque de défaillance dans le
cas d’une fonction de performance d’analyse ou de métamodèle dans un nombre
raisonnable d’évaluations, en alternative à la simulation de sous-ensembles. En-
fin, un nouvel estimateur non biaisé basé sur l’échantillonnage d’importance et
le contrôle varié inspiré de [Dubourg et al., 2013] permet, avec des simulations
supplémentaires, de fournir une estimation non biaisée des petites probabilités
de défaillance.

2Une attention particulière est accordée à leur adaptation aux probabilités de défaillance et au quan-
tile de niveau O(10−5 − 10−9).
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• Estimation de faibles probabilités de défaillance
Ce second algorithme est une extension de celui présenté dans [Echard et al.,
2011] pour l’estimation de très faibles probabilités de défaillance, avec une
stratégie de raffinement adaptative parallèle visant à estimer le LSS avec di-
rectement.

• Estimation de quantile extrême
Cet algorithme permet l’estimation de quantiles extrêmes (niveau∼ 10−5−10−9)
sans hypothèses restrictives sur le LSS, telles que la linéarité ou le nombre de
modes de défaillance. Inspirée de [Echard et al., 2011], la stratégie de raffine-
ment des substituts parallèles s’enrichit d’un niveau supplémentaire de paral-
lélisation, également compatible avec l’algorithme de quantile séminal [Schöbi
et al., 2016]. À la connaissance de l’auteur, aucune méthode de la littérature
ouverte ne convient à un problème aussi complexe.

Optimisation Robuste appliquée à un stator de turbine ORC

• Quantification d’Incertitude appliquée à un stator de turbine ORC
Parmi les premières études dans la littérature ouverte sur les systèmes ORC,
l’application de techniques avancées de quantification d’incertitudes à l’analyse
d’une cascade de turbine supersonique typique, comprenant une caractérisa-
tion détaillée des incertitudes géométriques, est considérée. Plusieurs sources
d’incertitude sont prises en compte, liées aux tolérances géométriques de l’aube,
aux conditions de fonctionnement et à certains paramètres du modèle thermody-
namique. En outre, la méthode de calcul de la probabilité de défaillance faible,
illustrée dans la partie précédente du manuscrit, est utilisée pour explorer un
scénario de défaillance pour une turbine ORC.

• Optimisation robuste à base de quantiles d’une cascade de turbine ORC
Une optimisation robuste de forme basée sur les quantiles sous contrainte prob-
abiliste est développée en considérant une approche imbriquée et appliquée à
la conception d’une cascade de turbine supersonique ORC. Les performances de
l’algorithme proposé sont systématiquement comparées aux résultats d’un RO
basée sur la moyenne.

–4 Aperçu du Manuscrit

Cette thèse est divisée en deux parties. La première partie porte sur les méthodes
d’événements rares en tant que contributions à l’extension des méthodes RBDO adap-
tées aux événements extrêmes. La deuxième partie traite de la formulation des méth-
odes RO appliquées à la cascade ORC Turbine. Le premier chapitre est destiné à fournir
des rappels mathématiques.

Chapitre 1 présente un ensemble d’outils mathématiques nécessaires à la compréhen-
sion de la thèse. Les principes généraux de la quantification de l’incertitude et de la
théorie de la probabilité sont introduits de manière concise. Des détails sur la modéli-
sation de substitution de Kriging sont ensuite présentés. Enfin, la propagation par
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incertitude directe basée sur le krigeage, y compris l’estimation de statistiques ou
d’indices de sensibilité, est illustrée. Ce chapitre ne présente aucune contribution
originale.

Part A: Événements rares

Cette partie décrit les méthodes numériques appliquées à deux problèmes spécifiques
liés à l’estimation des événements rares: la probabilité de défaillance faible et l’estimation
du quantile extrême. Les méthodes développées sont spécialement conçues pour con-
venir dans le cas de régions de défaillance multiples, et restent applicables pour les
probabilités de défaillance admissibles (ou niveau de quantile) comprises entre 10−2

et 10−9, et caractérisé par une stratégie d’échantillonnage adaptatif directe du LSS. La
fonction de performance est supposée être la sortie d’un code de simulation coûteux à
évaluer. Par conséquent, seul un nombre raisonnable d’évaluations est possible (moins
de quelques centaines).

Chapter II a pour but de présenter le cadre général des méthodes d’événements
rares présentées dans la première partie du manuscrit, y compris des tests élémentaires
académiques et des concepts généraux tels que Importance Sampling.

Chapter III vise à décrire une méthode pour le calcul non-biasé de petites proba-
bilités d’échec. Un nouvel algorithme adapté à la probabilité de faible échec et des
régions à défaillances multiples est proposé, ce qui permet à la fois de créer un méta-
modèle précis et de fournir une erreur cohérente sur le plan statistique. Une technique
d’échantillonnage d’importance basée sur un mélange gaussien est proposée, permet-
tant de réduire considérablement le coût de calcul lors de l’estimation d’une valeur de
référence directement à partir du métamodèle.

Chapter IV présente une méthode facile à mettre en œuvre pour l’estimation efficace
d’une très faible probabilité de défaillance, sur la base d’une stratégie de raffinement
parallèle qui directement (contrairement à la simulation bayésienne de sous-ensembles
[Bect et al., 2017]) vise à affiner le LSS.

Chapitre V est consacré à un cadre d’estimation de quantiles, des méthodes de
krigeage. De la même manière que la stratégie présentée dans [Schöbi et al., 2016],
la substitution est affinée de manière adaptative à l’aide du raffinement de remplis-
sage parallèle fourni par la méthode d’estimation de la probabilité de défaillance
développée au chapitre IV). Enfin, une approche de sélection multi-quantile permet-
tant d’exploiter des architectures informatiques hautes performances d’un niveau sup-
plémentaire est élaborée.

Part B: Méthodes d’optimisation robustes pour un stator de turbine ORC

La deuxième partie est centrée sur l’application d’une méthode originale de RO à la
conception de forme d’une cascade de turbine supersonique ORC. En particulier, une
analyse UQ tenant compte des paramètres opérationnels, des paramètres de fluide et
des incertitudes géométriques (aléatoires) permet de donner un aperçu général de
l’impact de multiples effets et constitue une étude préliminaire nécessaire pour le RO.
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Chapitre VI introduit la configuration de turbine axiale, qui est un stator superson-
ique bien connu fonctionnant avec le siloxane MDM. Le cadre numérique comprenant
notamment le solveur CFD, la paramétrisation, les outils de maillage et la modélisation
de la variabilité géométrique est décrit.

Chapitre VII a pour objectif de présenter les résultats des méthodes efficaces de
propagation d’incertitude basées sur des substituts appliquées à la cascade axiale de
turbines supersoniques présentée dans le chapitre VI. L’impact des paramètres de fonc-
tionnement, des fluides et des incertitudes géométriques sur différentes valeurs de
QoI, telles que la pression totale ou le débit massique, est analysé et fournit une
vue d’ensemble sur l’influence de multiples effets. Un scénario d’échec est égale-
ment étudié en appliquant l’une des méthodes illustrées dans la première partie du
manuscrit.

Chapter VIII est consacré à une formulation d’RO mono-objectif basée sur les quan-
tiles appliquée à la conception du profil 2D du stator décrit, sous une contrainte proba-
biliste: la moyenne du débit massique est contraint. La comparaison avec l’optimisation
déterministe contrainte et une approche RO classique, i.e. minimisant la moyenne de
la fonction de performance soumise à la même contrainte, est illustrée. !Une compréhension approfondie du chapitre I n’est pas nécessaire, même s’il est es-

sentiel de rappeler quelques résultats fondamentaux sur les prédicteurs de Kriging,
leur application à la propagation d’incertitude directe et certains concepts proba-
bilistes tels que Vecteurs aléatoires et Processus aléatoires. Bien que les parties A et B
soient presque indépendantes, elles sont toutes deux destinées à être lues dans l’ordre
chronologique, certaines sections présentant des concepts fondamentaux mentionnés
dans les suivantes.
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–5 Context

In the energy industry, a renewed interest has arisen in decentralized power gener-
ation. Since abundant renewable sources such as geothermal/solar are often char-
acterized by small exploitable power capacity for a single location, small-medium
scale power plants (O(101 − 104) kW) could consequently play a key role for such
energy sources. Among available technologies for high-efficiency conversion of ther-
mal power into electricity in this range of capacity, Organic Rankine Cycles (ORC) have
shown significant advantages compared to steam Rankine Cycles [Verneau, 1978, An-
gelino et al., 1984] in terms of reliability and cost-effectiveness. ORC has therefore
received considerable interest in both the industrial and academic community, in par-
ticular, due to its ability to recover mechanical energy from low-grade heat sources.

The Rankine power cycle is a closed thermodynamic cycle present in all conven-
tional steam power plants. In ORCs, similar to steam Rankine Cycles, the working
fluid (water) is replaced by an organic fluid characterized by high molecular weight.
In its basic form, an ORC is constituted by four components (Figure 2): evaporator,
turbine, condenser, pump.

Figure 2 ORC illustration. Extracted from [Sauret and T Gu, 2014].
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The organic fluid is pumped in the evaporator which exploits a low-grade heat
source: the pressurized liquid is converted to superheated vapor at constant pressure.
Note that the retrograde nature of typical organic fluids used for ORC alleviates the
superheating process, which is instead of crucial importance in conventional Rankine
steam cycles. A turbine (or expander) permits to expand the hot vapor, converting
the enthalpy drop into mechanical (rotating) energy, further converted into electric-
ity using a generator coupled to the turbine. The vapor then enters in a condenser,
which, by thermal transfer with the cold source (e.g. ambient air, lake) converts it into
a liquid state. The low-pressure liquid is finally directed to the feed pump, increas-
ing its pressure and closing the thermodynamic cycle. In most cases, a regenerator is
used to recover heat energy from the vapor leaving the turbine. Organic compounds
permit to efficiently convert low-to-medium temperature heat (starting from approx-
imately 90 ◦C) in the small to medium power range: their vaporization heat, much
lower than the one from water offers a better balance between the heating trajectory
of the working (organic) fluid and the cooling one of the heat source (typically su-
perheated water or oil), increasing the conversion efficiency [Karellas and Schuster,
2008, Larjola, 1995, Harinck, 2010].

The proper selection of the organic fluid w.r.t. the heat source temperature and
heat input results in increased power output or cycle performances. It is usually
chosen as an aromatic siloxane, fluorocarbon, fluorocarbon, hydrofluorocarbon or a
straight chain [Curran, 1981, Angelino et al., 1984, Colonna, 1996, Angelino and
Di Paliano, 1998]. The variety guaranteed by the broad spectrum of available organic
fluids matches with the diverse requirements of widely distributed thermal energy
conversion devices [Macchi, 2017, Colonna et al., 2015]; ORC offers great potential
to utilize external sustainable heat sources such as solar (thermal collectors), geother-
mal, biomass, or even exploitation of Waste Heat Recovery (WHR) (e.g. steel power
plants, trucks). Such sources typically feature variable loads and, hence, the thermo-
dynamic condition at the exit of the boiler/inlet of the turbine undergoes significant
variations; such variation also combines with the natural seasonal change in ambient
temperature, which might alter the thermodynamic conditions of the condenser/outlet
of the turbine. These sources of uncertainty result in considerable differences in the
turbine operation and, in particular, in a variable aerodynamic load on the cascades
of the machine, potentially reducing the turbine performance.

Another peculiarity of the organic fluid impacts the turbine design. On the one
hand, the expansion process entails a small specific enthalpy drop, the latter being
inversely proportional to the high molecular weight of the organic fluid. It allows the
adoption of cost-effective and compact turbines composed of one or two stages, with-
out considering problems associated with high rotational speed and resulting penal-
ties on efficiency [Angelino et al., 1984]. On the other hand, the combination of the
low speed of sound and the resulting high expansion ratio per stage typically lead to
transonic or supersonic ORC turbines, commonly subject to strong shock waves and
chocked flow conditions. Additionally, part of the expansion process might occur in
the close vicinity of the saturated vapor curve, or, in some applications, close to the
critical point. In those conditions, the complex thermodynamics characterizing such
organic working fluid may lead to unusual fluid dynamic behavior denoted as real gas3

3a.k.a. dense gas or non-ideal gas.
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effects in the literature [Wheeler and Ong, 2013], deviating significantly from that of
a perfect gas represented by the polytropic perfect gas law: non-ideal dependence of
the speed of sound on the fluid density might be observed when the flow is submitted
to isentropic perturbations [Cramer, 1991, Cramer and Best, 1991, Kluwick, 2004].
This is particularly true for a class of fluids known as the Bether-Zel’dovich-Thompson
(BZT) fluids [Bethe, 1998, Zeldovich, 1946, Thompson, 1971]. Consequently, suit-
able so-called Equations of State (EOS) are necessary to describe the fluid thermal and
caloric behavior, such as the following cubic EOS, Soave-Redlich-Kwong (SRK) [Soave,
1972] or Peng-Robinson-Stryjek-Vera (PRSV) [Stryjek and Vera, 1986]. Reliable sim-
ulations of dense gas flows in Computational-Fluid-Dynamics (CFD) solvers requires
numerical methods for the propagation of thermodynamic modeling uncertainties.
They might stem either from the mathematical form of the EOS chosen or from the
closure coefficients associated to the EOS usually calibrated from available experi-
mental data. For molecularly complex fluids, accurate experimental data are hardly
available, complicating, in particular, the estimation of critical-point properties and
acentric factors, commonly used as input parameters for cubic EOS. Some uncertainty
quantification works related to EOS concern sensitivity analyses of dense gas flows
w.r.t. uncertain EOS parameters [Cinnella et al., 2011b], Bayesian calibration related
to those parameters [Merle and Cinnella, 2015]. Recent works investigated both EOS
closure coefficient (parametric) and model-form (epistemic) uncertainties by means
of a statistical inference methodology [Merle and Cinnella, 2019].

Finished/designed turbine cascade inevitably exhibit deviations from their intended
shape and size. The associated undesirable geometric variability stems, for instance,
from the manufacturing process or hand-finishing operations. As stressed out in [Mon-
tomoli et al., 2015], the geometrical variations can affect the performance of the real
machine. Geometrical uncertainties are present for the entire design and manufactur-
ing chain beginning with geometrical parametrization reaching over to the individual
machining steps, to final assembly activities of the turbomachine and even to machine
operation. Indeed, production of ORC turbine blades usually requires conversion from
a parametrized geometrical model (e.g. Bézier curves, Splines) possibly to a Computer-
Aided Design (CAD) data and further to a Computer-Aided Manufacturing (CAM) data,
resulting in changes in the geometric representation. The following manufacturing
step typically requires a sequence of different processes such as milling, casting, forg-
ing, welding, bending, all inducing relevant geometric deformations for the final ge-
ometry. Eventually, turbine operation has also a detrimental effect on the blades as it
leads to an increase of surface roughness as well as leakage flows in labyrinth seals.
Indeed, corrosion, particle impact and fouling are at the origin of surface degrada-
tion. Despite the generally accepted notion that geometric variability is undesirable
in ORC turbomachinery, scarce detailed information is available about its detrimental
effect on the cascades’ performances.

Finally, one peculiarity of decentralized small-medium range ORC power plants is
the necessity to operate with the highest average availability. It represents the annual
time under operation per year and can reach, for reliable units, more than 98%, with
only one week of predictive maintenance annually. The industry commonly attempts
to attain this goal by making critical decisions from the mechanical design to simplify
engineering challenges and obtain higher reliability in the component. One typical ex-
ample is the direct coupling between the expander and the generator avoiding the use
of a gearbox, but usually limiting the rotational speed of the expander: it results to re-
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duced leakage of organic fluid into the external environments, less rotating parts and
reduced maintenance. Additionally, proper instrumentation of the so-called Balance
of Plant (BOP)4, namely all the components required to complete the power plant in-
stallation including piping, valves and bypass connection, play a significant role in the
prediction of maintenance. Indeed, an adequate analysis of pressure and temperature
measurements at the inlet and outlet section of each component could permit to de-
tect failure events requiring human intervention: abnormal temperature of a defective
sealing, increased vibrations, or deteriorated properties of the organic fluid indicating
fouling or oil contamination. Such failure events may have a detrimental effect on
long-time efficiency of the machine. In this context, the prediction of rare-event is
then an essential ingredient to integrate within the design process.

In present-day turbomachinery design, Fluid-dynamic Shape Optimization (FSO)
methods are routinely applied and have recently undergone a significant improve-
ment, offering the possibility to deal with complex problems at a reduced computa-
tional cost [Pironneau, 1974]. Those methodologies play an even more important
role in the case of technologies entailing the Non-Ideal Compressible Fluid Dynamics
(NICFD), such as ORC turbines, for which design experience and experimental infor-
mation are limited to very few cases (see [Spinelli et al., 2018] for the very first ex-
periments on NICFD in supersonic nozzles). In the last five years, concerted research
efforts have been recently devoted to develop FSO techniques for NICFD applications,
such as for nozzles and turbomachinery blades, using either gradient-based ([Pini
et al., 2015] [Vitale et al., 2017] [Rubino et al., 2018]) or gradient-free algorithms
([Pasquale et al., 2013] [Rodriguez-Fernandez and Persico, 2015] [Persico, 2017]); a
more systematic comparison between these two classes of optimization, when applied
to ORC turbines, is reported in [Persico and Pini, 2017]. In such studies, deterministic
formulations of the optimization problem have, most of the time, been considered,
despite the variability mentioned above in operating conditions, geometry and uncer-
tainties related to fluid parameters.

–6 Robust shape optimization for ORC Turbomachin-
ery CFD: challenges

The tremendous increase in computational power over the last decades allows for
complex numerical simulations of internal flows ranging from a single cascade up
the entire turbine, using different modeling complexity: 2D Euler solvers, Reynolds-
averaged Navier–Stokes (RANS) 3D simulations, dynamic simulations such as unsteady
RANS, Detached Eddy Simulation (DES) or Large Eddy Simulation (LES). Besides, the
computational power in combination with automated execution of simulations (e.g.
scripting) allows for automated design optimization.

Following previous studies [Montomoli et al., 2015], some main limitations in tur-
bomachinery CFD can be resumed as follows:

4The instrumentation is part of the BOP
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• Operational conditions are often unknown a priori, and feature non-uniform
conditions which are difficult to determine. Reasonable assumptions become
necessary, and designed turbine stages (cascades) must typically fulfill aero-
dynamic requirements for a wide range of operating points with different in-
let/outlet conditions.

• The difference between the real geometry and the simulated one can be relevant
due to manufacturing errors and in-service degradation. This difference should
be modeled and taken into account during the design process.

• Grid-convergence is a well-known curse in CFD, and turbomachinery is not ex-
empted. Recent studies [Alauzet et al., 2019] focus on the computation of the
numerical error stemming from the grid resolution by means of sophisticated
mesh adaptation methods.

• The choice to perform steady or unsteady simulation, for example in the case of
rotor/stator interaction can impact deeply the accuracy of the simulation. More
generally, the influence of unsteady effects should be carefully assessed if the
design process is uniquely based on steady simulations.

• Models Uncertainties in FSO are mainly due to parameters and model-form. Pa-
rameters uncertainties arises due to closure coefficients (EOS, turbulence) cal-
ibration using experimental data or scale-resolving simulations, while model-
form ones result from inadequacy of the model of interest (e.g. EOS, RANS
model). For instance, in [Schmelzer et al., 2019], a maximum a posteriori esti-
mates of the posterior distributions of RANS closure coefficients is investigated.

Concerning the ORC turbine simulation particularly, some problematic aspects
have required and require particular attention:

• The presence of a few experimental data has caused a greater difficulty in the
validation of the physical models used to simulate the non-ideal fluids used for
ORC turbines. A great effort has been made recently to generate a set of exper-
imental data that can be used to validate thermodynamic models in conditions
similar to those used in ORC turbines [Zocca et al., 2018, Spinelli et al., 2017].

• The experimental validation of the thermodynamic models is still to achieve for
non-ideal flows, though some recent studies show that other sources of uncer-
tainties could be in principle more important [Congedo et al., 2013b].

• The formulation of RANS turbulence models adapted to non-ideal flows is an
important objective to achieve to improve the prediction of the non-ideal solvers
[Sciacovelli et al., 2018]. This problem requires experimental data especially
conceived for measuring turbulent flows. From a modeling point of view, a
strong effort is underway to perform Direct Numerical Simulation of non-ideal
flows [Sciacovelli et al., 2017].

As a matter of fact, the real performance of a turbine (cascade) is non-deterministic
by nature and should be ideally described by probability distributions reflecting the
scattering in geometry, operational and modeling uncertainties.
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This thesis is oriented towards the development of numerical methods to tackle Op-
timization under uncertainties problem, with the shape optimization of ORC turbine
as the target application. This topic is sometimes referred to as Robust Engineering
although this term indicates a specific category of the former more general problem.
More specifically, the present research work is intended to addressing design strategies
suitable for ORC turbine cascades, accounting for operating conditions, fluid param-
eters involved in EOS describing dense gas behavior, and geometric variability due
to manufacturing. In literature, two methodologies are used in order to incorporate
uncertainty into the framework of optimization, namely Robust Design Optimization,
a.k.a. Robust Optimization (RO) and Reliability-Based Design Optimization (RBDO).
This research focuses on two different aspects, i.e. the computation of a rare event
for reliability-based design optimization and the robust design optimization. In the
following, some challenges for these two problems are illustrated.

Rare events and Reliability-Based Design Optimization

RBDO aim is to design for safety w.r.t. extreme (rare) events. In RBDO, the reliability
is generally measured by a failure probability, which is constrained to be lower than
a given threshold typically very small. A quantile-based one might replace the fail-
ure probability constraint while the optimization problem might be subject to several
reliability constraints. Multi-objective formulations could also be considered.

The primary bottleneck of RBDO resides in the fact that one has to estimate, at
each iteration of the RBDO formulation, a small failure probability or quantile. Those
estimations being already challenging, the computational effort is significantly in-
creased. Currently, RBDO methods can be classified in two groups, namely bi-level
(a.k.a. nested) algorithms [Youn et al., 2003] and single-loop ones [Picheny et al.,
2010c]. As suggested by the name, bi-level methods involve two stages: one corre-
sponding to the rare event estimation, while the other focuses on the design optimiza-
tion. One popular method belonging to this category is the Reliability-Index Approach
(RIA) [Shi and Lin, 2016]; at each optimization step, the failure probability estimation
is basically solved in terms of reliability indices by means of the well known First-Order
Reliability Method (FORM)5 [Bourinet, 2018]. Those methods usually suffer from low
rate of convergence, hence a large computational cost. Additionally, results might
not be optimal, specifically in problems involving highly non-linear probabilistic con-
straints or multiple failure modes. To tackle the high number of evaluations of the
numerical solver, single-loop methods have become quite popular among researchers,
attempting to convert the double loop procedure into a single one. One option con-
sists in converting the probabilistic constraint into a deterministic one, and then re-
place it by optimality conditions [Liang et al., 2008, Liang et al., 2008]. Even though
computationally efficient, such methods often yields erroneous results and can lead
to numerical instabilities. Another option resorts to the concept of augmented space
[Dubourg, 2011, Moustapha et al., 2016], where surrogate6-based methods avoid-
ing restrictive assumptions such as the linearity of the so-called Limit-State Surface
(LSF)7, or the number of the failure domains are considered. They rely on adaptive

5or using Second-Order Reliability Method (SORM), once the so-called Most Probable Failure Point
(MPFP) has been found.

6a.k.a. emulators of the physical model or metamodel
7The Limit-State Surface is loosely defined as the frontier between the safe and failure designs.
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sampling strategies originally designed for the estimation of failure probabilities and
quantiles. The main limitation of their methods is that they are not suitable for extreme
events, i.e. associated to failure probability thresholds (or quantile level) in the range
O(10−5 − 10−9). Suitable efficient methods for the computation of small failure prob-
ability and extreme quantile, i.e. whose adaptive strategy is compatible with RBDO
algorithms [Dubourg, 2011, Moustapha et al., 2016], might benefit to adapt the latter
when involving extreme quantiles and small failure probabilities in the constraints,
without considering restrictive assumptions on the LSS.

Robust Design Optimization

Robust Design Optimization or Robust Optimization (RO) seeks to minimize both the
influence of the uncertain environmental conditions on the performance of a system
and the performance itself, i.e. aims at finding a design insensitive to deviations from
the nominal inputs. A classic mono-objective approach consists, e.g., in minimizing
the mean (or more generally a selected statistics) of the fitness function. Robust op-
timization techniques featuring an explicit uncertainty quantification suffer from di-
mensionality issues, due to a large number of fluid-dynamic calculations required,
which eventually determine the technical feasibility of the method. Surrogate-based
techniques are primarily used to limit the overall computational cost; see for example
[Keshavarzzadeh et al., 2017] or [Zhang et al., 2017], where a kriging-based Sequen-
tial Approximate Optimization (SAO) strategy is illustrated. A discussion over the inter-
est in using surrogate models for uncertainty-based optimization is presented in [Jin
et al., 2003], where Kriging and more generally Gaussian Processes (GP) techniques
are shown to be very promising. In this context, [LEE and PARK, 2006] proposes
formulation based on a target performance and variance minimization of a specific
Quantity of Interest (QoI); the performance function is approximated with a kriging
model in coupled space, and low-cost Monte-Carlo Sampling (MCS) on the model al-
lows to build a second kriging metamodel on the statistical moments. In [Janusevskis
and Le Riche, 2013], a GP model is used to perform mean performance optimiza-
tion, and optimization is achieved through Bayesian Optimization (BO). Regarding
the minimization algorithm, GP-based techniques such as the Efficient Global Opti-
mization (EGO) have been massively used in optimization (see for example [Huang
et al., 2006] or [Picheny et al., 2010a]).

Even though nowadays established and fully demonstrated, RO aimed at minimiz-
ing the mean of a QoI might suffer from a lack of control of its variability. Alternative
formulations are possible to enhance the control of the variability, taking into account
the QoI’s standard deviation, for example by formulating the objective function as
µ ± kσ, or Min σ s.t. µ < µ0 for instance, where µ,σ denote the QoI’s mean and
standard deviation respectively. However, such methods suffer from the fact that the
user-defined parameters k, µ0 have a substantial impact on the final design. More-
over, including explicitly the standard deviation in the objective function induces an
increase in the computation burden in the stochastic space with respect to the mean.
For ORC-driven problems, essentially multi-objective robust optimization have been
proposed on both the mean and the standard deviation [Congedo et al., 2013a, Bufi
et al., 2017, Bufi and Cinnella, 2017], and a multi-point approach was proposed in
[Pini et al., 2014a].



20 Introduction

–7 Contributions of the Research Work

This manuscript illustrates the main contributions accomplished to tackle some of the
challenges introduced in the previous section. The first part is devoted to the formula-
tion and assessment of some algorithms for the estimation of small failure probability,
and extreme quantile8, the latter featuring adaptive sampling strategies compatible
with existing RBDO methods. A preliminary ORC turbine application of the method
for small failure probability is also illustrated.

The second part of the manuscript is devoted to robust design optimization and the
shape optimization of ORC turbines. First, a sensitivity analysis taking into account the
combined effect of operating conditions, geometric and model uncertainties on a ORC
turbine application is presented. Then, an algorithm for quantile-based optimization
is formulated and applied to the Robust design of an ORC Turbine nozzle.

The main contributions of this thesis are summarized in the following.

Rare Events Two methods for failure probability estimation and one permitting to
estimate a small quantile are proposed, based on Kriging surrogate-modeling and
adaptive sampling strategies, formulated in the standard space. This class of methods
belonging to reliability and risk analyses are for the safety assessment of complex en-
gineering systems. As a matter of fact, the field of applications mostly involving highly
hazardous systems is broad, including chemical and nuclear power plants, radioactive
waste repositories, structural safety or aerospace design assessment.

• Unbiased estimation of small failure probability estimation
This first algorithm combines three main contributions. A new metamodel se-
quential refinement strategy permits to accurately approximate the original per-
formance function without restrictive assumptions on the LSS such as linearity
or number of failure modes. In particular, the refinement strategy aims at directly
refine the surrogate in the vicinity of the so-called LSS (unlike Subset-Simulation
based methods, e.g.). A new Gaussian mixture ISD permits the accurate esti-
mation of very small failure probability in the case of analytical or metamodel
performance function in a reasonable number of evaluations, as an alternative
to Subset Simulation. Finally, a new unbiased estimator based on Importance
Sampling and Control Variate inspired by [Dubourg et al., 2013] permits with
additional simulations to provide an unbiased estimation of small failure prob-
abilities.

• Small failure probability estimation
This second algorithm is an extension of the one presented in [Echard et al.,
2011] for the estimation of small failure probability analysis, featuring a parallel
adaptive refinement strategy aiming at directly refine the LSS, and a Kriging
based in-line bounds estimation.

• Extreme quantile estimation
This algorithm permits the estimation of small quantiles (of level∼ 10−5−10−9)
without restrictive assumptions on the LSS, such as linearity or number of failure

8Particular attention is dedicated to making them suitable for failure probabilities and quantile of
level in the range O(10−5 − 10−9).
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modes. Inspired from [Echard et al., 2011], the parallel surrogate refinement
strategy is enriched with an additional level of parallelization, which is also
compatible with the seminal quantile algorithm [Schöbi et al., 2016]. To the
knowledge of the author, no method in the open literature is suitable for such
challenging problem.

Robust design optimization methods applied to ORC Turbine Cascade

• Uncertainty Quantification Analysis applied to ORC Turbine Cascade
Among the first studies in the open Literature on ORC power systems, the ap-
plication of advanced Uncertainty Quantification techniques to the analysis of
a typical supersonic turbine cascade, including a detailed characterization of
the geometric uncertainties is investigated. Multiple sources of uncertainty are
taken into account, related to the geometric tolerances of the blade, the op-
erating conditions, and some parameters of the thermodynamic model. Fur-
thermore, the method for computing small failure probability, illustrated in the
previous part of the manuscript, is used to explore a failure scenario for an ORC
turbine.

• Quantile-based Robust Optimization of an ORC Turbine cascade
A quantile-based Robust shape optimization under probabilistic constraint is de-
veloped considering a nested approach and applied to the design of a supersonic
ORC turbine cascade. The performances of the proposed algorithm are system-
atically compared to the results of a mean-based RO.

–8 Outline of the Manuscript

This thesis is divided into two parts. The first part focuses on Rare Events methods as
contributions for the extension of RBDO methods suitable for extreme (rare) events.
The second part deals with the formulation of RO methods applied to ORC Turbine
cascade. The first Chapter is intended as providing a mathematical background.

Chapter 1 presents a set of mathematical tools necessary for the understanding of
the thesis. General principles of Uncertainty Quantification and the theory of prob-
ability are concisely introduced. Details about Kriging surrogate-modeling are then
presented. Finally, kriging-based forward uncertainty propagation, including the esti-
mation of statistics or sensitivity indices, is illustrated. This chapter does not feature
any original contribution.

Part A: Rare Events

This part aims at describing numerical methods applied in two specific problems re-
lated to rare event estimation: small failure probability and extreme quantile estima-
tion. The methods developed are specifically designed to be suitable in the case of so-
called multiple failure regions, to remain applicable for admissible failure probabilities
(or quantile level) ranging from 10−2 to 10−9, and characterized by a direct adaptive
sampling strategy (i.e. aiming at directly refine the so-called Limit-State-Surface). The
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performance function is assumed to be the output of an expensive to evaluate simula-
tion code. Hence only a reasonable number of evaluations is possible (less than a few
hundred).

Chapter II is intended to introduce the general framework of the rare events meth-
ods presented in the first part of the manuscript, including academic test-cases and
general concepts such as Importance Sampling.

Chapter III aims at describing a method for the unbiased computation of small fail-
ure probabilities. A novel algorithm suitable for low-failure probability and multiple-
failure regions is proposed, which permits to both build an accurate metamodel and
provide a statistically consistent error. A Gaussian mixture-based importance sam-
pling technique is proposed, permitting to drastically reduce the computational cost
when estimating some reference values, or the failure probability directly from the
metamodel.

Chapter IV presents an easy to implement method permitting to perform efficient
estimation of very small failure probability, based on a parallel refinement strategy
which directly (unlike Bayesian Subset Simulation [Bect et al., 2017]) aims at refining
the LSS.

Chapter V is devoted to a Quantile Estimation framework, Kriging surrogate mod-
eling based. Similarly to the strategy presented in [Schöbi et al., 2016], the surrogate
is adaptively refined using the parallel infill refinement provided by the failure proba-
bility estimation method developed in Chapter IV). Finally, a multi-quantile selection
approach allowing to exploit high-performance computing architectures one level fur-
ther is elaborated.

Part B: Robust Optimization Methods for ORC Turbine Cascade

The second part is focused on the application of an original RO method to the Shape
Design of a supersonic ORC Turbine cascade. In particular, a comprehensive Uncer-
tainty Quantification (UQ) analysis accounting for operational, fluid parameters and
geometric (aleatoric) uncertainties permits to provide a general overview over the
impact of multiple effects and constitutes a preliminary study necessary for RO.

Chapter VI introduces the turbine configuration of interest, which is a well known
axial-flow supersonic nozzle cascade operating with the siloxane MDM. The numerical
framework including, in particular, the CFD solver, the parametrization, the mesh tools
and the geometric variability modeling is described.

Chapter VII aims at presenting the outcomes of efficient surrogate-based uncertainty
propagation methods performed on the axial supersonic turbine cascade introduced
in Chapter VI. The impact of operational, fluid parameters and geometric uncertain-
ties on different QoI such as the total pressure or the mass-flow rate is analyzed and
provides a general overview over the influence of multiple effects. A failure scenario
is also investigated, by applying one of the methods illustrated in the first part of the
manuscript.
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Chapter VIII is devoted to a quantile-based mono-objective RO formulation applied
to the design of the 2D profile of a supersonic turbine cascade, under a probabilistic
constraint: the mean mass-flow rate is constrained to be with a prescribed range.
Comparison with constrained DO and a classical RO approach, i.e. minimizing the
mean of the performance function subject to the same constraint, are illustrated. !A deep understanding of Chapter I is not necessary, even if it is essential to recall

some fundamental results about Kriging predictors, their application to forward un-
certainty propagation and some probabilistic concepts such as Random Vectors and
Random Processes. Despite Part A and B are almost independent, both are intended
to be read in chronological order as some sections feature fundamental concepts that
are always being referred to in the subsequent ones.
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!
Overview A set of mathematical tools used throughout this manuscript is pre-
sented in this chapter as well as general principles of Uncertainty Quantification.
An introduction to the theory of probability concisely introduces classic concepts such
as probability space, random vectors and random processes. Details about Kriging
surrogate-modeling are then presented. Finally, forward uncertainty propagation
techniques permitting in particular the estimation of statistics or sensitivity indices,
considering an input random vector affected by aleatoric uncertainty are described.

Contribution This chapter does not provide any original contribution. It aims
solely at proposing a mathematical background for the reading of the manuscript.
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Introduction

As the speed and power of computer systems continue to grow, computational engi-
neering importance in our society grow in parallel. In particular, Computational Fluid
Dynamics (CFD), a branch of computational physics aiming at predicting the behavior
of fluids in a broad sense play a tremendous role. It is now routinely employed as a
design tool in industry as it is in general a more cost-effective and less time-consuming
approach than experiments that may be prohibitive. The question of reliability of CFD
predictions to practical applications is however crucial and has led to focus on the
accuracy of the predicted simulations by comparing it to experimental measurements
[Oberkampf and Barone, 2006], in order to reduce and control modeling and numer-
ical errors (e.g. thermodynamic model, discretization error).

Verification and Validation

This question has led to the subject of Verification and Validation (VV) [Mehta, 1991,
Roache, 1997, Oberkampf and Trucano, 2002, Hanson, 1999]. The validation pro-
cess addresses the quality and relevance of the physical model1, while the verification
process aims at determining if the computation model2 represents the physical model
with sufficient accuracy. The verification process, carried out prior to the validation
[Babuska and Oden, 2004] involves the code verification (software) and the solution
verification (i.e. an a posteriori error estimation) [Roy, 2005]. The validation process
corroborates the accuracy of the verified computational model by direct comparison of
specific Quantity of Interest (QoI) obtained by experimental data and predicted simu-
lations [Babuska and Oden, 2004].

Uncertainty Quantification

Previous approaches [Glimm and Sharp, 1999, Stern et al., 2001, Iaccarino et al.,
2011] reoriented the question of CFD reliability towards the following one: "How
should confidence in CFD simulations be quantitatively assessed?". The perspective to
CFD uncertainty in broader sense requires to question about a description of uncer-
tainties, that are generally categorized in two categories.

Aleatory Uncertainty arises because of inherent natural, unpredictable variation
in the performance of the system. Aleatory uncertainty is also known as statistical,
irreducible, stochastic or variability uncertainty. The knowledge of experts cannot be
expected to reduce aleatoric uncertainty although their knowledge may be useful in
quantifying the uncertainty. Its randomness is generally modeled as a random vector
fully parametrized by its Probability Density Function (PDF) in the continuous case, or
its discrete counterpart for discrete variables.

1The physical model denotes the mathematical/PDE formulation consistent with a scientific theory
representing the physical event of interest.

2The computational model is composed of both the numerical method (e.g. Finite Vol-
umes/Elements) being the discretized version of the physical model, and the computer code imple-
menting the latter.
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Epistemic Uncertainty stems from a lack of knowledge about the behavior of the
system that is conceptually resolvable. Epistemic uncertainty is also known as re-
ducible or ignorance uncertainty. Therefore, it may, in principle, be eliminated or
reduced with sufficient data, expert judgments, improved numerical approximations,
or by refining models. Its randomness is generally represented as an interval or a PDF
representing a degree of belief of the expert.

All stages of CFD predictions might be corrupted by such uncertainties. Uncertain-
ties in the physical model result from mathematical formulations, abstractions, hence
are by nature epistemic [Ferson et al., 2008]. Sources of uncertainty in the computa-
tional model affect the numerical approximation3 or the inputs of the model4.

Within a probabilistic framework modeling these uncertainties (e.g. evidence the-
ory [Diaconis and Shafer, 1978], probability [Feller, 1958] or fuzzy set [Lootsma, 1997]),
the initial fluid flow problem is governed by Stochastic Partial Differential Equations
(SPDE) whose solution is a Random Process. From a practical point of view, it requires
the following three successive steps:

• Characterization (i.e. modeling) of all sources of uncertainty

• Propagation of this uncertainty through the computational model

• Quantification of the uncertainty on meaningful quantities of interest

These three components constitute the so-called Uncertainty Quantification (UQ). An
additional step consists in ranking sources of uncertainty by their influence on the
solution variability, named Sensitivity Analysis (SA).

Three main classes of methods suitable to UQ in CFD is reported here, with an
emphasis on the propagation and quantification steps:

• The sampling methods [Lootsma, 1996, Rubinstein and Kroese, 1996] include
Monte-Carlo (MC) based methods which, despite their high robustness even for
nonlinear problems, suffer from low convergence rate involving a prohibitive
computational cost in most cases.

• The perturbation5 methods [Kleiber and Hien, 1994, Jameson et al., 1998, Cacuci,
2003] take advantage of the computation of partial derivatives of the field vari-
ables w.r.t. the uncertain parameters, in order for instance to reduce the problem
dimensionality or perform gradient-based sensitivity analysis.

• Surrogate models are approximate models of the expensive-to-evaluate model
of interest, while being computationally cheap to evaluate. Once the surro-
gate model of the physical quantity of interest is considered accurate enough,
it may be exploited at almost no cost by sampling methods for instance. Sev-
eral methods exist such as linear least square [Trevor Hastie, 2009], polyno-
mial approximations [Freeny, 1988, Draper, 1997] including Polynomial Chaos
[Knio and Le Maitre, 2006], Multivariate Adaptive Regression Splines [Victoria

3Those sources include discretization errors, round-off errors due to finite precision arithmetic, it-
erative convergence errors, possibly coding errors.

4Modeling parameters, computational domain (geometry), boundary/initial conditions are model
inputs that might affect the model.

5a.k.a. sensitivity or adjoint methods.
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C. P. Chen and Shoemaker, 1999], Radial Basis Functions (RBF), Artificial Neural
Networks (ANN) [by: Nicholas Lange, 1997], Support Vector Regression (SVR)
[Bourinet, 2016] and Kriging (a.k.a. Gaussian Process Regression) [C. E. Ras-
mussen, 2006].

For a detailed review on Uncertainty Quantification methods, see [Ghanem et al.,
2017]. In the sequel, and in particular in this section, emphasis will be placed on
UQ methods based on Surrogate Models, more precisely Kriging. Its main advantage
above aforementioned methods consists in its ability to provide a measure of the epis-
temic error associated with the prediction at unknown locations.

Section I–1 introduces general probabilistic concepts, Section I–2 describes Kriging
surrogate-modeling. Finally, forward uncertainty propagation techniques permitting
in particular the estimation of statistics or sensitivity indices, considering an input
random vector affected by aleatoric uncertainty are described in Section I–3.

I–1 Probabilistic Concepts !
Overview The purpose of this section is to summarize some general concepts in
probability theory used in the sequel.

Probability Space Let (Ω,F ,P) denote a Probability Space associated with a random
experiment, where:

• Ω is the outcome space, a.k.a. event space whose element ω is an outcome of the
experiment.

• the σ-algebra F is a collection of events whose elements are subsets of Ω.

• P is a probability measure defined on elements of F .

I–1.1 Random Variables

A real-valued random variable

Y : Ω 7→ Y ⊆ R
ω→ Y (ω) (I.1)

is a measurable function mapping the probability space (Ω,F ,P) in the measurable
output space Y. y = Y (ω) is denoted as a realization of the random variable Y asso-
ciated to some event ω ∈ Ω.

The random variable Y induces a probability space (Y,B(Y),PY ). The induced
probability measure PY is defined as:

PY (S) = P({ω ∈ Ω|Y (ω) ∈ S}), ∀S ∈ B(Y). (I.2)

B(Y) denotes the so-called Borel Algebra (a.k.a. Borel Field) of Y. Y is completely
defined by its Cumulative Density Function (CDF):

FY (y) = PY (Y ≤ y), (I.3)
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or equivalently, by its Probability Density Function (PDF)6 fY defined as the derivative
of the CDF, satisfying:

PY (Y ∈ [a, b]) =

∫

[a,b]

fY (y)d y, ∀[a, b] ⊆ Y (I.4)

fY (y) =
dFY (y)

d y
. (I.5)

Denoting by E the expectation operator induced by the probability measure PY , the
mean value of the random variable Y is defined as:

µY = E[Y ] =
∫

Y
y fY (y)d y, (I.6)

while the moments (resp. central moments) of order k > 1 are defined as:

E[Y k] =

∫

Y
yk fY (y)d y (I.7)

E[(Y −µY )
k] =

∫

Y
(y −µY )

k fY (y)d y (I.8)

provided they exist. In particular, the central second-order moment σ2
Y = V[Y ] is

denoted as the variance and its square root the standard deviation. The so-called Co-

efficient of Variation (CoV) is defined as δY ≡
σY

|µY |
, provided µY 6= 0.

The covariance between two random variables X and Y is defined as:

Cov(X , Y ) = E[(X −EX [X ])(Y −EY [Y ])], (I.9)

under existence. In Eq. I.9, EX and EY refers to the expectation operator linked to
the probability measure induced respectively by X and Y , while E is associated to the
joint distribution of (X , Y ). In particular:

Cov(Y, Y ) = V[Y ]. (I.10)

Example: Univariate Gaussian A Gaussian random variable Y is denoted as

Y ∼N (µY ,σ2
Y ) (I.11)

with σY > 0. The standard Gaussian random variable is
Y −µY

σY
∼ N (0, 1), whose

PDF φ and CDF Φ are defined as:

φ(t) =
1
p

2π
exp

�

−
t2

2

�

(I.12)

Φ(t) =

∫ t

−∞

1
p

2π
exp

�

−
ξ2

2

�

dξ, ∀t ∈ R. (I.13)

6In the manuscript, only continuous random variables admitting a PDF will be considered.
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I–1.2 Random Vectors

A random vector

Y : Ω 7→ Y ⊆ Rd

ω→ Y (ω) (I.14)

is a measurable function mapping the probability space (Ω,F ,P) in the measurable
d-dimensional output space Y. The d components of Y = (Y1, ..., Yd) are random
variables as defined in Subsection I–1.1. Continuous random vectors are fully defined
either by their so-called joint PDF fY (y) or joint CDF FY (y).

The random vector Y induces a probability space (Y,B(Y),PY ). The induced prob-
ability measure PY is defined as:

PY (S) = P({ω ∈ Ω|Y (ω) ∈ S}), ∀S ∈ B(Y). (I.15)

The mean value µY of the random vector Y is defined as

µY = E[Y] =
∫

Y
y fY (y)d y , (I.16)

where E refers to the expectation operator induced by the probability measure PY .
The symmetric positive-definite covariance matrix of Y is defined as:

Σ= E[(Y −µY )(Y −µY )
T ] (I.17)

= E[YY T ]−E[Y]E[Y]T . (I.18)

In particular:
Σ(i j) = Cov(Yi, Yj). (I.19)

Example: Multivariate Gaussian A d-dimensional Gaussian random vector Y is
denoted as

Y ∼Nd(µY ,ΣY ), (I.20)

with ΣY ∈ Rd×d and µY ∈ Rd denoting respectively the symmetric positive definite
covariance matrix and the mean of Y . Its PDF fY is defined as:

fY (y) =
1

p

|ΣY |(2π)n
exp

�

−
1
2
(y T −µY )Σ

−1
Y (y

T −µY )
�

, (I.21)

|ΣY | referring to the determinant of the invertible matrix ΣY . More details about
Gaussian Vectors can be found [Dubourg, 2011], Appendix A.

I–1.3 Random Processes a.k.a. Random Fields

Given a probability space (Ω,F ,P), a continuous random process Y is defined as a
collection of random variables7 indexed by elements in a topological space X ⊆ Rd:

Y = {Y (x ) : Ω 7→ R, x ∈ X}, (I.22)

7Only real-valued random field Y (x ,ω) ∈ Y ⊆ R are considered in the sequel.
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where, for x ∈ X, Y (x ) is a random variable (See Subsection I–1.1). Note that a
random field is another term for stochastic process in modern mathematics, with some
restriction on its index set: the underlying parameter is no longer a real or integer
valued time.
Equivalently, it can be seen as an application mapping X× (Ω,F ,P) to the domain Y:

Y : X×Ω 7→ Y ⊆ R
(x ,ω)→ Y (x ,ω) (I.23)

Forω0 ∈ Ω, y(x )≡ Y (x ,ω0) denotes a realization or sample path of the underlying
random field, which is a function of x ∈ X.

Example: Gaussian Process A random field Y is said to be Gaussian if, for any
(x1, ..., xm) ∈ Xm, the random vector (Y (x1), ..., Y (xm)) is a m-dimensional Gaus-
sian vector. A so-called Gaussian process (or field) is a second-order random process
completely defined by its mean function µ : X 7→ Y and its autocovariance function
C : X×X 7→ Y, defined by:

µ(x )≡ E[Y (x )] (I.24)

C(x , x
′
)≡ E[(Y (x )−µ(x ))(Y (x

′
)−µ(x

′
))], ∀x , x

′
∈ X. (I.25)

Note that admissible autocovariance function C must be symmetric and semi-
positive, namely:

C(x , x
′
) = C(x

′
, x ), ∀x , x

′
∈ X (I.26)

k
∑

i, j=1

αiα jC(x i, x j)≥ 0,∀(x1, ..., xk) ∈ Xk, (α1, ...,αk) ∈ Rk. (I.27)

!In the sequel, only events which are outcomes in the Borel probability space
(Y,B(Y),PY ), with Y ⊆ Rd , induced by some random vector/variable Y will be
considered. For a sake of readability, except when explicitly highlighted, the expec-
tation E and variance V operators refer to the induced probability measure PY . In
that framework, there will be no need to work within the so-called base space or
underlying probability space (Ω,F ,P).

I–2 Kriging !
Overview In this section, general details about Simple/Universal Kriging in the
noiseless cases are provided. In particular, predictors derivations, hyperparameter
selection and implementation details are given.

For comprehensive details about Kriging, the reader may refer to well-known refer-
ences [Cressie, 1992] [Stein, 2012] [Santner et al., 2013] [Rasmussen and Williams,
2006]. More concise descriptions can be found in [Dubourg, 2011] [Bourinet, 2018]
[Roustant et al., 2012].
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The objective is to construct an approximation ỹ of a true (expensive to evaluate)
unknown function y : X ⊆ Rd → Y ⊆ R, based on a training set of size n ∈ N∗ (a.k.a.
Design of Experiment (DoE)) T = {x i, yi}i∈¹1,nº, where yi = y(x i). In the framework of
the probabilistic space (Ω,F ,P), the output of the deterministic computer experiment
y is assumed to be a realization of a real-valued Gaussian process Y indexed over
X. The set of the observed outputs {yi}i then appear as respective realizations of the
random process {Y (x i)}i. For x ∈ X, we assume Y (x ) of the form:

Y (x ) = µ(x ) + Z(x ), (I.28)

with µ(x) being the mean of Y (x ) and Z(·) being a zero mean stationary random
process, fully characterized by its symmetric positive definite autocovariance function
(a.k.a. covariance kernel) satisfying:

k(x , x
′
) = Cov[Z(x ), Z(x

′
)] = E[Z(x )Z(x

′
)], ∀x , x

′
. (I.29)

The specific case of a known mean function µ is equivalent to consider the Kriging
formulation Equation I.30, applying the affine map y ← y−µ, known as Simple Kriging
(SK):

Y (x ) = Z(x ). (I.30)

Assuming the mean µ as a linear combination of so-called basis functions leads to
the so-called Universal Kriging (UK) formulation:

Y (x ) = f (x )Tβ + Z(x ), (I.31)

where f : X→ Rp, f (x ) = ( f1(x ), ..., fp(x )) is a map of p ∈ N∗ user-defined basis
functions and β ∈ Rp is an unknown vector of weights to be determined. Note that
the particular case of UK where f boils down to x 7→ 1 is known as Ordinary Kriging
(OK), leading to:

Y (x ) = β0 + Z(x ), (I.32)

with β0 ∈ R being the unknown constant trend.

I–2.1 Kriging Predictors

Considering a given x ∈ X (untried location), the objective of Kriging, belonging to the
more general Bayesian prediction methodology, is to derive a random predictor Ŷ (x )
of the unknown random process Y at x . In particular, it is assumed that the vector
gathering the observations y = (y1, ..., yn) and the unobserved y(x ) is a realization
of a random vector according to a joint parametric distribution F ∈ F . This class of
distributions is restricted in this manuscript to multivariate Gaussian distribution due
to its convenience, and the intrisic properties satisfied by the predictor are detailed in
the following.

The so-called Best Linear Unbiased Predictor (BLUP) Ŷ (x ) is considered, satisfying
the following properties:

• Linear: a vector λ ≡ λ(x ) ∈ Rn permits to write

Ŷ (x ) =
n
∑

i=1

λiY (x i) = λ
T Y , (I.33)
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where Y = (Y (x1), ..., Y (xn)) is the vector of the unknown random process at
the observation points x i, and λ ∈ Rn. Predictors may have any functional
form w.r.t. observations Y , although most practical applications reduce to linear
predictors.

• Unbiasedness:
E[Ŷ (x )− Y (x )] = 0. (I.34)

• Best (in the mean square sense): Ŷ (x ) minimizes the quadratic risk among all
linear and unbiased predictors

Ŷ (x ) = Argmin
s.t. Ŷ ∗(x ) Linear and Unbiased

E[(Ŷ ∗(x )− Y (x ))2]. (I.35)

The Kriging mean predictor is defined as:

µŶ (x ) = E[Ŷ (x )]. (I.36)

The estimation of the Mean Square Error (MSE) a.k.a. the Kriging variance predic-
tor yields:

σ2
Ŷ
(x ) = E[(Ŷ (x )− Y (x ))2]. (I.37)

while the surrogate ỹ(x ) for y(x ) is simply taken as:

ỹ(x ) = µ(x ). (I.38)

In the following, details permitting to derive the expression of the BLUP Ŷ (x ) are
provided, distinguishing between the SK and UK cases. The corresponding mean and
variance predictors are consequently given.

I–2.1.1 Simple Kriging Predictor

In the case of Simple Kriging (Eq I.30), the unbiasedness property is implicitly satisfied.
Indeed,

E[Ŷ (x )− Y (x )] =
n
∑

i=1

λiE[Y (x i)]−E[Y (x )] = 0, (I.39)

by virtue of E[Y (x )] = E[Z(x )] = 0 for SK, and the linearity of the expectation oper-
ator.

The problem of finding Ŷ (x ) is equivalent to finding a vector λ ∈ Rn solution of
the following unconstrained optimization problem:

λ= Argmin
λ∗∈Rn

J(λ∗)

J(λ∗) = E





�

n
∑

i=1

λ∗i Y (x i)− Y (x )

�2


 , (I.40)

J being the cost function to minimize.
Using the relation E[Y (x )Y (x

′
)] = E[Z(x )Z(x

′
)] = k(x , x

′
), J is re-written in matri-

cial form:
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J(λ∗) =
n
∑

i, j=1

λ∗iλ
∗
j k(x i, x j)− 2

n
∑

i=1

λ∗i k(x i, x ) + k(x , x )

= λ∗
T
Kλ∗ − 2λ∗

T
k(x ) + k(x , x ), (I.41)

where K = (k(x i, x j))i, j ∈ Rn×n is the symmetric positive (definite under conditions
on (x i)i and k) covariance matrix of the random variables {Y (x i)}i representing the
correlation between the observed points. The covariance vector between the untried
x and the observed points is denoted as k(x ) = (k(x i, x ))i ∈ Rn. The first-order
optimality condition reads

∇J(λ) = 0

⇔ 2Kλ− 2k(x ) = 0. (I.42)

Assuming that all observed points are different, and using a positive definite kernel
k, the matrix K is full rank, therefore invertible. The optimal weights read:

λ= K−1k(x ). (I.43)

The BLUP Ŷ (x ) finally reads:

Ŷ (x ) = k(x )T K−1Y . (I.44)

By virtue of Eq. I.36, the SK mean predictor is written as:

µSK(x ) = k(x )T K−1y . (I.45)

The SK variance predictor (Eq. I.37) reads:

σ2
SK(x ) = J(λ)

= k(x , x )− k(x )T K−1k(x ). (I.46)

It’s worth noting that the variance predictor σ2
SK(x ) does not depend on the vector

of observations y .

I–2.1.2 Universal Kriging (Kriging with a trend)

Within that framework, the random process Y (x ) at un unknown location x ∈ X is
assumed to be the sum of two terms, respectively denoted as the drift (or trend) and
residual Z(x ):

Y (x ) = f (x )Tβ + Z(x ), (I.47)

where f (x )Tβ is the unknown mean, and Z(x ) the null mean random process defined
by its covariance kernel k Eq. I.29.

The following equalities consequently hold:

E[Y (x )] = f (x )Tβ (I.48)

E[(Y (x )− f (x )Tβ)2] = E[Z(x )2] = k(x , x ). (I.49)
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Based on the derivation

Ŷ (x )− Y (x ) = λT Y − Y (x )
= λT (Fβ + Z)− ( f (x )Tβ + Z(x ))
= λT Z − Z(x ) + (λT F − f (x )T )β , (I.50)

with F = [ f (x1)T , ..., f (xn)T ] ∈ Rn×p and Z = (Z(x1), ..., Z(xn)), the unbiasedness
constraint of the BLUP Ŷ (x ) is obtained as

E[Ŷ (x )− Y (x )] =0

⇔λTE[Z]− E[Z(x )] + (λT F − f (x )T )β =0

⇔F Tλ− f (x ) =0. (I.51)

The quadratic risk expression, under the unbiasedness constraint, reads the same
expression as in the SK case Eq. I.41:

E[(Ŷ (x )− Y (x ))2] = E[(λT Z − Z(x ) +β T (F Tλ− f (x )))2]

= E[(λT Z − Z(x ))2]. (I.52)

The optimization problem consisting in finding the set of optimal weights λ ∈ R
then reads:

λ= Argmin
λ∗∈Rn s.t. F Tλ∗− f (x )=0

J(λ∗). (I.53)

The Lagrange multiplier µ ∈ Rp is introduced to enforce the equality constraint.
The optimization problem re-written in Lagrangian form reads:

µ,λ= Argmin
(µ∗,λ∗)∈Rp×Rn

L(µ∗,λ∗)

L(µ∗,λ∗) = J(λ∗) +µ∗
T
(F Tλ∗ − f (x )). (I.54)

The first-order optimality conditions of this unconstrained optimization problem
read:

∇λ∗ L(λ,µ) =2Kλ− 2k(x ) + Fµ = 0

∇µ∗ L(λ,µ) =F Tλ− f (x ) = 0, (I.55)

leading to the vector of optimal weights λ:

λ= K−1k(x )− K−1F(F T K−1F)−1(F T K−1k(x )− f (x )). (I.56)

Defining

β̂ = (F T K−1F)−1F T K−1y , (I.57)

the UK predictive mean µUK(x ) = E[λT Y] reduces to:

µUK(x ) = kT (x )K−1(y − F β̂) + f (x )T β̂ . (I.58)

The UK predictive variance σ2
UK(x ) = E[(Ŷ (x )− Y (x ))2] is written as:

σ2
UK(x ) = k(x , x )− kT (x )K−1k(x ) + uT (x )(F T K−1F)−1u(x ), (I.59)

with u(x ) = F T K−1k(x )− f (x ).
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I–2.2 Kriging Properties

We recall few properties verified in this framework where no additional noise is con-
sidered on the observations.

Exact Interpolator We first observe that

k(x i)
T K−1Y = Y (x i)

k(x i)
T K−1F = f (x i)

T . (I.60)

It is then easy to show that for SK/UK:

Ŷ (x i) = Y (x i), (I.61)

yielding to the Kriging interpolation property:

µŶ (x i) = yi. (I.62)

Null Variance at observed points, is a natural consequence of Eq I.61:

σ2
Ŷ
(x i) = E[(Ŷ (x i)− Y (x i))

2] = 0. (I.63)

Gaussian Process Assumption As mentioned earlier, the Kriging prediction method-
ology does not require the Gaussian assumption for the underlying random process
Y : only assumptions of square integrability8 are required in the BLUP derivations.
The Gaussian assumption is hence transmitted to the BLUP predictor Ŷ (x ) as a linear
combination of Y (x i). It leads to the following property of practical importance:

Ŷ (x ) =N (µŶ (x ),σ
2
Ŷ
(x )). (I.64)

This enables straightforward analytic calculations such as confidence intervals,
with probability 1−α, α ∈ [0, 1]:

Ŷ (x ) ∈ [µŶ (x )−Φ−1
�

1−
α

2

�

σŶ (x );µŶ (x )+Φ
−1
�

1−
α

2

�

σŶ (x )], with probability 1−α,

(I.65)
or

P(Ŷ (x ) ∈ [a, b]) = Φ
�

a−µŶ (x )
σŶ (x )

��

1−Φ
�

b−µŶ (x )
σŶ (x )

��

, (I.66)

with a, b ∈ R, α ∈ [0, 1] and P referring to the probability measure associated to the
Gaussian random variable Ŷ (x ).

Noisy Data In cases where the true model y is characterized by a stochastic nature,
the interpolation property is no longer required. The training set is then assumed to
be composed of noisy observations modeled as:

yi = y(x i) + εi, (I.67)

8or equivalently second-order statistics existence
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y(x ) being the true output, where the noises εi are assumed to be independent
zero-mean Gaussian random variables with a variance τ2

i . In Kriging equations, the
covariance matrix K is replaced by K+Ω,Ω= diag(τ2

1, ...,τ2
n). The main consequences

of such an assumption are the loss of the interpolation property, and the predictive
variance does not vanish at the observation points. In the particular case where τ2 =
τ2

1 = ... = τ2
n, the covariance matrix K is replaced by K + τ2I , corresponding to the

assumption of a homogeneous level of noise.

I–2.3 Covariance Kernel

The choice of a covariance kernel k for a random process is of paramount importance
for the accuracy of the predicted output. A usual approach consists in choosing a
stationary (a.k.a. translation/shift-invariant) covariance kernel, defined in terms of
the so-called autocorrelation function R:

k(x , x
′
) = σ2R(x − x

′
), ∀x , x

′
∈ X, (I.68)

where σ2 = k(x , x ) is the variance of the process.
The expressions of the Kriging mean and variance predictors re-written in terms

of the autocorrelation function R and the variance of the process σ2 are provided in
the following.

Simple Kriging The SK mean and variance predictions rewrite as:

µSK(x ) = r (x )T R−1y

σ2
SK(x ) = σ

2(1− r (x )T R−1r (x )), (I.69)

with r (x ) = (R(x−x1), ..., R(x−xn)) ∈ Rn, and R is the symmetric positive definite
matrix defined by R = R(x i− x j)i, j ∈ Rn×n, since k is a covariance kernel satisfying the
symmetric positive definite function property.

Universal Kriging The UK mean and variance read:

µUK(x ) = r (x )T R−1(y − F β̂) + f (x )T β̂ (I.70)

σ2
UK(x ) = σ

2(1− rT (x )R−1r (x ) + uT (x )(F T R−1F)−1u(x )), (I.71)

with

β̂ = (F T R−1F)−1F T R−1 y (I.72)

u(x ) = F T R−1r (x )− f (x ). (I.73)

Two classes of stationary autocorrelation functions are commonly used in litera-
ture:

1. Isotropic (or radial), which only depends on the norm of x − x
′

and not its
direction:

R(x − x
′
) = R(‖ x − x

′
‖2), (I.74)

where ‖ · ‖2 denotes the usual L2-norm in Rd .
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2. Anisotropic (or separable): a tensor product of stationary univariate kernels is
assumed.

R(x − x
′
) =

d
∏

i=1

Ri(x i − x
′

j), (I.75)

given x , x
′ ∈ X. In the present manuscript, only anisotropic kernels are considered.

A list of popular autocorrelation functions is given below, depending on θ ∈ Rd
∗,+

denoting the vector of lengthscales (a.k.a. scales parameters) to be determined.

The exponential autocorrelation function The anisotropic exponential autocorre-
lation function is defined as:

R(x − x
′
,θ ) =

d
∏

i=1

exp

�

−
|x i − x

′

i |
θi

�

. (I.76)

Random processes sample paths (function of x ∈ X) associated to this autocorrelation
function are C0: continuous and nowhere differentiable.

The squared exponential autocorrelation function (a.k.a. Gaussian RBF) The
anisotropic squared exponential autocorrelation function (a.k.a. Gaussian Radial Basis
Function) is defined as:

R(x − x
′
,θ ) =

d
∏

i=1

exp

�

−
|x i − x

′

i |
2

2θ 2
i

�

. (I.77)

Random processes sample paths (function of x ∈ X) associated to the Gaussian RBF
autocorrelation function are infinitely differentiable.

Matérn ν= 3
2 autocorrelation function The anisotropic Matérn ν= 3

2 autocorrela-
tion function, belonging to the general family of Matérn functions (not detailed here)
is defined as:

R(x − x
′
,θ ) =

d
∏

i=1

exp

�

−
p

3|x i − x
′

i |
θi

��

1+

p
3|x i − x

′

i |
θi

�

. (I.78)

Random processes sample paths (function of x ∈ X) associated to the Matérn ν = 3
2

autocorrelation function are once differentiable.

Matérn ν= 5
2 autocorrelation function The anisotropic Matérn ν= 5

2 autocorrela-
tion function is defined as:

R(x − x
′
,θ ) =

d
∏

i=1

exp

�

−
p

5|x i − x
′

i |
θi

��

1+

p
5|x i − x

′

i |
θi

+
5|x i − x

′

i |
2

3θ 2
i

�

. (I.79)

Random processes sample paths (function of x ∈ X) associated to the Matérn ν = 5
2

autocorrelation function are twice differentiable.
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I–2.4 Hyperparameters Selection

The Kriging predictors SK/UK Equations I.69 I.71 are given considering the following
quantities known, denoted in the literature as the hyperparameters:

• σ2, the process variance;

• θ , through the correlation matrix R;

• β ∈ Rp, the weights associated to the basis functions for UK.

We discuss here a procedure to fit them. In the following, the dependency between R
and θ is explicitly highlighted by expressing the correlation matrix as R(θ ).

Two classic approaches are used in literature:

• Maximum Likelihood Estimation (MLE);

• Cross-Validation (CV).

I–2.4.1 Maximum Likelihood Estimation

Given a set of data assumed to be distributed according to some mathematical model,
MLE consists in maximizing the PDF associated to the random process. The presen-
tation is restricted to noise-free Kriging (see [Roustant et al., 2012], Appendix A for
noisy Kriging).

Simple Kriging Observations are assumed to be distributed satisfying
Y ∼N (0,σ2R(θ )). The so-called likelihood of the observations writes:

L(y |σ2,θ ) =
1

p

|R(θ )|(2πσ2)n
exp

�

−
1

2σ2
y T R(θ )−1y

�

, (I.80)

where |R(θ )| denotes the determinant of R(θ ). The optimal bσ2 and θ̂ are then
obtained by maximizing the likelihood, or equivalently, its natural logarithm (a.k.a.
log-likelihood):

bσ2, θ̂ = Argmax
σ2,θ

Log L(y |σ2,θ ). (I.81)

Log L(y |σ2,θ ) = −
1
2

ln|R(θ )| −
n
2

ln(σ2)−
n
2

ln(2π)−
1

2σ2
y T R(θ )−1y . (I.82)

The first-order optimality conditions imply:

∂ Log L(y |bσ2,θ )
∂ σ2

= 0. (I.83)

It further leads to the optimal variance process, depending on θ :

bσ2(θ ) =
1
n

y T R(θ )−1y . (I.84)

Plugging Eq. I.84 into Eq. I.82 leads to a new expression depending on θ only:
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Log L(y |bσ2(θ ),θ ) = −
n
2

lnΨ(θ )−
n
2
(ln(2π) + 1), (I.85)

where the so-called reduced likelihood Ψ(θ ) is defined as

Ψ(θ ) = bσ2(θ )|R(θ )|
1
n . (I.86)

The maximum likelihood estimate θ̂ is consequently the following global opti-
mizer:

θ̂ = Argmin
θ

Ψ(θ ). (I.87)

Universal Kriging Observations are assumed to be distributed satisfying
Y ∼ Nn( f (x )β T ,σ2R(θ )), so the the likelihood L(y |σ2,θ ,β) of the observations
writes:

L(y |σ2,θ ,β) =
1

p

|R(θ )|(2πσ2)n
exp(−

1
2σ2
(y − Fβ)T R(θ )−1(y − Fβ)). (I.88)

The first-order optimality conditions applied to the log-likelihood imply

∂ Log L(y |bσ2,θ , β̂)
∂ σ2

= 0 (I.89)

∇βLog L(y |bσ2,θ , β̂) = 0. (I.90)

It yields the maximum likelihood estimate β̂ and bσ2 known as general least square
estimates depending both on θ :

β̂(θ ) = (F T R(θ )−1F)−1F T R(θ )−1y (I.91)

bσ2(θ ) =
1
n
(y − F β̂(θ ))T R(θ )−1(y − F β̂(θ )). (I.92)

Note that the expression Eq. I.91 corresponds to the one used to calculate the UK
predictive mean (Eq. I.57).

The maximum likelihood estimate θ is then obtained solving Eq. I.87, similarly to
the SK case.

Solving efficiently Eq. I.87 is a central issue in Kriging: the correlation matrix R(θ )
is known to suffer from ill-conditioning for several values of θ , while the reduced like-
lihood Ψ is highly multimodal [Marrel et al., 2008, Lophaven et al., 2002]. Several
methods usually combining gradient-free and/or gradient-based (e.g. BFGS) opti-
mization methods have been implemented and discussed in literature. [Han et al.,
2010] uses a modified DIRECT algorithm, [GPy, 2012] resorts to a gradient-based
method (BFGS) while [Marelli and Sudret, 2014] combines stochastic optimization
(genetic algorithms) to identify promising regions and BFGS.

In [Marrel et al., 2008], the authors emphasize that the problem is particularly
ill-posed when both the Gaussian RBF and a dense dataset T in X are used: the un-
avoidable noise in observations y combined with the infinite differentiability assumed
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by this autocorrelation choice raises numerical inconsistencies. [Vazquez, 2005] rec-
ommends the use of Matérn autocorrelation function allowing to control the finite
regularity of the experiment through the choice of ν. In the sequel, the Matérn ν= 5

2
autocovariance function is used, except when explicitly mentioned.

I–2.4.2 Cross-Validation

Alternatively, cross-validation can be used, using the so-called Leave-One-Out (LOO)
exact prediction (see [Dubrule, 1983]). For given σ2, θ , the following matrix B is
considered:

Simple Kriging
B =

�

σ2R(θ )
�−1

. (I.93)

Universal Kriging

B =
�

σ2R(θ ) F
F T 0

�−1

. (I.94)

If a nugget effect is considered, σ2R(θ ) is replaced by σ2R(θ )+τ2I . The so-called
LOO predictions at the observation point x i are:

µ−i = −
∑

j 6=i

Bi j

Bii
y j

σ−i =
1
Bii

. (I.95)

More precisely, µ−i and σ−i are respectively the Kriging predictive mean and vari-
ance at the observed location x i considering the hyperparameters σ2 and θ , built from
the reduced dataset T−i = T \{x i, yi}

It permits to estimate a meaningful coefficient of determination valid even for an
interpolating model such as the Kriging predictor:

Q2 = 1−
1
n

n
∑

i=1

�

µ−i − yi

σ−i

�2

. (I.96)

The higher is Q2, the better is the predictor, with Q2 ≤ 1. !Maximum likelihood estimates are used in the sequel. CV however enables a posteri-
ori tools to analyze the quality of the Kriging surrogate at negligible cost.

I–2.5 Implementation Details

We provide here implementation details, following some recommendations in [Han
et al., 2010, Lophaven et al., 2002]. The training set is normalized so x i ∈ [−1,1]d

and yi ∈ [−1, 1].
The robustness of the Cholesky decomposition of the correlation matrix R = LLT ,

with L lower-triangular matrix, depends on its condition number (see [Lophaven et al.,
2002] for details), and might fail for ill-conditioned correlation matrix (numerically
non positive definite matrix). To resort to this issue, a small noise is added to the
diagonal:
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LLT = R+ γI , (I.97)

with γ = (103 + n)εM , εM = 2.22 × 10−16 working in double precision. It is strictly

equivalent to consider a homogeneous noise of variance τ2 =
γ

σ2
. It implies that the

interpolation and the vanishing variance properties at observed points are lost. For
ease of implementation, a gradient free method (CMA, [Nikolaus Hansen, 2018]) is
used to fit the lengthscale θ , minimizing the reduced likelihood Eq. I.87. As men-
tioned in [Lophaven et al., 2002], there is no need to tune exactly the hyperparame-
ters.
The lengthscale θ is sought in [2dmin, 20dmax]d , with dmin, dmax defined by:

dmin = Min
i, j∈¹1,nº

‖ x i − x j ‖2

dmax = Max
i, j∈¹1,nº

‖ x i − x j ‖2 . (I.98)

I–3 Surrogate-based Uncertainty Quantification !
Overview Forward uncertainty propagation methods permitting in particular the
estimation of statistics or sensitivity indices, considering an input random vector af-
fected by aleatoric uncertainty are described: they combine Monte-Carlo sampling
and Kriging in the case of a real-valued output. Principal Component Analysis (PCA)
is additionally used for high dimensional output.

Note In the manuscript, only Forward Uncertainty Propagation of models depending
on input whose source is characterized by Aleatoric uncertainties and modeled as a
random vector fully parametrized by its PDF will be considered.
The probability measure P is dedicated to the epistemic uncertainty associated to the
Kriging predictor (Eq. I.64), while the probability measure P is considered w.r.t. to
the input random vector (defined by its PDF) characterized by aleatoric uncertainties.

In the following, the output of the computer model is referred to as the Quantity of
Interest (QoI). The aleatoric uncertainty source is modeled as a random vector X com-
pletely defined by its PDF fX . Its induced probability space is denoted as (X,B(X),P),
with X ⊆ Rd .

I–3.1 Forward Uncertainty Propagation for a scalar QoI

A basic description about the methods for the evaluation of some statistics of Y =
G(X), and its so-called Sobol Indices (SI) based on the well-known ANalysis Of VAriance
(ANOVA) technique [Tang et al., 2015] is provided.

Note that in practice, the generic model G is replaced by a Kriging-based surrogate
model (see Section I–2 for details) G̃, built based on Latin Hypercube Sampling (LHS)
evaluations [Helton and Davis, 2003].
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I–3.1.1 UQ Surrogated-based: Scalar Statistics Evaluation

In this Subsection, the generic real-valued random variable Y = G(X) is considered,
where G is a scalar (deterministic) response function representing the QoI associated
to a physical model depending on a vector in X:

G : X ⊆ Rd 7→ Y ⊆ R
x → G(x ). (I.99)

The following statistics of Y are considered: mean µY = EY [Y ] = E[G(X)], standard

deviation σY = V
1
2
Y (Y ) = V

1
2 (G(X)) and α-quantile = qY

α
, with EY and VY denoting

respectively the expectation and variance operators induced by the random variable
Y . We recall below their definition. The expectation µY of Y is defined as:

EY [Y ] = E[G(X)] =
∫

X
G(x ) fX(x )dx . (I.100)

The so-called variance VY [Y ] of Y is defined as:

VY [Y ] = EY [Y
2]−EY [Y ]

2. (I.101)

For α ∈ [0,1], the α-quantile, is defined by:

qY
α
= inf{q ∈ R s.t. PY (Y < q)¶ α}, (I.102)

with PY referring to the probability measure induced by Y . Note the following equality
PY (Y < q) = P(G(X)< q).

The Coefficient of Variation defined by δY =
VY [Y ]

1
2

|EY [Y ]|
is also used to quantify the

normalized variability of Y , provided EY [Y ] 6= 0.
Corresponding empirical estimators, based on Monte-Carlo sampling and Kriging

surrogate-modeling of G, are computed with the following algorithm:

• Build a DoE (LHS) and run the expensive model G to evaluate each sample,
yielding: {x j, G(x j)} j∈¹1,NLHSº

, with NLHS moderate.

• Build a surrogate (Kriging) from the DoE: Ỹ ≡ G̃ : X 7→ Y

• Sample a large MC set: {xk}k∈¹1,NMCº
, with NMC ∼ O(106−8).

• Compute the MC empirical statistics µ̂Ỹ , σ̂2
Ỹ

and q̂Ỹ
α

based on the surrogate G̃
using Equations I.103, considering the set {Ỹ (xk)}k sorted:

µ̂Ỹ =
1

NMC

NMC
∑

k=1

Ỹ (xk)

σ̂2
Ỹ
=

1
NMC

NMC
∑

k=1

(Ỹ (xk)− µ̂Ỹ )
2

q̂Ỹ
α
=Ỹ (xdαNMC e), (I.103)

d·e denoting the ceiling function.



44 Chapter I. Surrogate Modeling and Uncertainty Quantification

I–3.1.2 ANOVA: Sobol Indices

Variance-based sensitivity indices are common tools in the analysis of complex physical
phenomena. More precisely, we are interested in the total SI [Saltelli et al., 2004,
Sobol, 2001].

The variance decomposition of the response can be written as follows:

V(Y ) =
∑

u⊆U

σ2
u(Xu), (I.104)

where U = (1,2, ..., d) is the set of random variables indexes, u ⊆ U a partition of
U and σ2

u is the variance introduced by interactions of random variables Xu ⊆ XU . The
associated sensitivity measure of Xu is written as the correlation ratio:

Su =
V(E[Y |Xu])
V(Y )

=

∑

v¶uσ
2
v

V(Y )
. (I.105)

For a single variable X i, the first order SI Si is given by:

Si =
V(E[Y |X i])
V(Y )

. (I.106)

It quantifies the contribution to the global variance V(Y ) of the main effect of X i

varying alone, but averaged over variations in other input parameters.
The total order SI STi

is defined by:

ST
i =
E[V(Y |X(i))]
V(Y )

= 1−
V(E[Y |X(i)])
V(Y )

, (I.107)

where the X(i) notation indicates the set of all variables except X i. It measures the
contribution to V(Y ) of X i caused by its interactions with all other input variables.

The first and total SI satisfy the following properties:

d
∑

i

Si = 1 (I.108)

d
∑

i

ST
i ¾ 1. (I.109)

The SI are estimated using a Monte-Carlo algorithm [Sobol, 2001], using the surrogate
Ỹ as built above.

I–3.2 UQ methods for High Dimensional QoI

Let us consider the generic random variable Y = G(X) where

G : X ⊆ Rd 7→ Y ⊆ Rn

x → G(x ) (I.110)

is a multidimensional function defined on X, and X is a random vector charac-
terized by its PDF fX . We are interested in the evaluation of the statistics of Y . The
scalar method described in Subsection I–3.1 is not tractable in practice, since it would
require to build n Kriging surrogates, with n possibly large (n ∼ O(103−6)). In the
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following, we describe a stochastic method combining a PCA (Principal Component
Analysis) decomposition to reduce the dimension space n, surrogate modeling and MC
sampling. The idea merely consists, first, in building a Kriging-PCA surrogate for the
high-dimensional output function G, G̃ : X → Y. A forward uncertainty analysis is
then performed on the surrogate, similarly to Subsection I–3.1. Since a MC+Kriging
analysis has to be performed independently on the n components of G, the process
might be computationally expensive and possibly prohibitive, even if the component-
wise surrogates x → G̃(x )(i) are already built. However, it is, within this framework,
the only way to estimate quantiles or sensitivity indices. Taking advantage of the lin-
earity of the expectation operator, it is possible, though, to estimate in an efficient
manner both the mean E[Y] and the variances V[Yi], where Yi denotes the i-th com-
ponent of the random vector Y . The method is summarized below:

1. Build a Kriging-PCA surrogate of G, G̃ : X→ Y

(a) Set an initial DOE: Data generation using LHS.

(b) PCA: compute the eigenmodes, and select the most energetic ones.

(c) Build a surrogate of each scalar coefficient in the reduced basis.

2. Perform the UQ analysis on Ỹ ≡ G̃(X)

(a) Basic Method: independent scalar UQ propagation on Ỹi

(b) Efficient Method: E[Ỹ] and variances V[Ỹi]

I–3.2.1 Kriging-PCA Surrogate

Initial DOE NLHS samples using LHS are generated, then stored in the mean sub-
tracted data matrix Y = [G(x i)( j) − µ

( j)
G ]i j ∈ RNLHS×n. G(x i) = (G(x i)1, ...,G(x i)n) ∈

Rn denotes the i-th sample. µG ∈ Rn denotes the data empirical mean, defined as

µ
( j)
G =

1
NLHS

∑NLHS

k=1 G(x i)( j). Mean subtraction is an integral part of the solution to-

wards finding a principal component basis minimizing the data approximation mean
square error [Miranda et al., 2008].

2) PCA and modes selection The semi-definite positive empirical covariance matrix
is built:

C =
Y TY

NLHS − 1
. (I.111)

C ∈ Rn×n is then decomposed into an orthogonal basis of eigenvectors:

C = VΛV T , (I.112)

where V = (v1, ..., vn) is an orthogonal matrix, its columns satisfying:

v T
i v j = δi j, (I.113)

andΛ= diag(λ1, ...,λn) is a diagonal matrix where the positive eigenvalues are sorted
in decreasing order. The decay of the eigenvalues (or modes) permits to truncate the
expansion. The normalized cumulative energy from the first p modes is defined as

E(p) =

∑p
i=1λi

∑n
i=1λi

. (I.114)
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It is used to select the l most energetic modes, up to a threshold value ε (e.g. ε= 99%)
driving the expansion accuracy:

l =Min{k ∈ N∗ s.t. E(k)< ε}. (I.115)

Note that in the cases of interest, NLHS < n, so the covariance matrix C has a rank
NLHS at maximum hence l ≤ NLHS. The l eigenvectors {vk}k∈¹1,lº with vk ∈ Rn are set
as basis vectors: the vector solution G(x ) at an unknown location x is sought in the
form

G(x )−µG =
l
∑

i=1

hi(x )vi, (I.116)

where hi(x ) denote the scalar coefficients in the reduced basis, which need to be
approximated by a surrogate. In particular, hi satisfies:

hi(x ) = v T
i (G(x )−µG), ∀i ∈ ¹1, lº, ∀x ∈ X, (I.117)

by virtue of Eq. I.113.

Build a surrogate For each i ∈ ¹1, lº, the DoE {xk, v T
i (G(xk)−µG)}k∈¹1,NLHSº

is used
to build a surrogate h̃i : X 7→ R for hi. A surrogate for G consequently reads

G̃(x ) = µG +
l
∑

i=1

h̃i(x )vi. (I.118)

The UQ analysis is then performed on the surrogate random vector Ỹ ≡ G̃(X).

I–3.2.2 UQ on the surrogate random vector Ỹ

Basic Method: independent scalar UQ propagation on Ỹi Based on MC samples,
the scalar approach derived in Subsection I–3.1 is applied independently to each com-
ponent Yi ≡ G(X)(i). Although based on surrogates already built, this approach might
be computationally expensive when n is very large.

Efficient Method: E[Ỹ] and variances V[Ỹi] To address the issue raised in the pre-
vious paragraph when only the first and second-order statistics are of interest, another
MC-based approach is used. From the linearity of the operator E, we obtain:

µỸ = E[G̃(X)] = µG +
l
∑

i=1

µh̃i
vi, (I.119)

where µh̃i
= E[h̃i(X)] denotes the mean of the real-valued random variable h̃i(X).

The marginal variances (or diagonal of the covariance matrix) of Ỹ = G(X) is
derived by component j ∈ ¹1, nº:

V[G̃(X)( j)] = V

�

l
∑

i=1

h̃i(X)v
( j)
i

�

=
l
∑

i=1

v ( j)i v ( j)i σ
2
h̃i
+ 2

n
∑

i=1

n
∑

k=i+1

v ( j)i v ( j)k ρ̃ik, (I.120)
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where σ2
h̃i
= V[h̃i(X)] and ρ̃ik = E[h̃i(X)h̃k(X)]−µh̃i

µh̃k
denote respectively the vari-

ance of h̃i and the covariance between h̃i and h̃k. This derivation (Equation I.120)
takes into account that the coefficients h̃i can be correlated.
µh̃i

, σ2
h̃i

, ρ̃ik are evaluated numerically by means of MC on the metamodels h̃i so
the mean (resp. marginal variances) of G(X) are easily reconstructed using Equation
I.119 (resp. Equation I.120).

Computational aspects Note that in practice, the eigendecomposition (Λ, V) is not
obtained by evaluating the covariance matrix C and then perform the diagonalization
as suggested by Equation I.112. Indeed, C ∈ Rn×n can be very large and ill-conditioned
since cond(C) = cond(Y)2.
A Singular Value Decomposition (SVD) on the mean subtracted data matrix Y is pre-
ferred, yielding

Y = UΣV T . (I.121)

U ∈ RNLHS×NLHS is an orthonormal matrix with the property U T U = INLHS
. Σ ∈ RNLHS×n

is a diagonal matrix of eigenvalues {σk}k. Equation I.121 is justified by

C =
(UΣV T )T UΣV T

NLHS − 1

= V
ΣTΣ

NLHS − 1
V T . (I.122)

Equation I.122 also shows the underlying relation between eigenvalues of matrices
C and Y:

λi =
σ2

i

NLHS − 1
. (I.123)
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!
Overview This part aims at describing numerical methods applied in two specific
problems related to rare event estimation:
• Failure Probability (a.k.a. Risk Analysis):

P(G(X)< u) = • (I.124)

• Quantile Estimation:
P(G(X)< •) = α (I.125)

where G : X ⊆ Rd 7→ Y ⊆ R denotes an expensive to evaluate deterministic function
characterized by a limited budget. The methods developed are specifically designed to
be suitable in the case of so-called multiple failure regions and extreme (rare) events
(α∼ O(10−6 − 10−10)).

Contribution Two methods for failure probability estimation (MetaAL-OIS, eAK-
MCS) and one permitting to estimate a small quantile (QeAK-MCS) are proposed.
They constitute the basis of three journal articles (1 published, 2 submitted):

1. N. Razaaly, P.M. Congedo, Novel Algorithm using Active Metamodel Learning
and Importance Sampling: application to multiple failure regions of low prob-
ability, Journal of Computational Physics, Volume 368, Pages 92-114, 2018.

2. N. Razaaly, P.M. Congedo, Extension of AK-MCS for the efficient computation
of very small failure probabilities, Reliability Engineering and System Safety,
Submitted January 2019.

3. N. Razaaly, P.M. Congedo, A Efficient Kriging-Based Extreme Quantile Esti-
mation suitable for expensive performance function., International Journal of
Numerical Methods in Engineering, Submitted March 2019.

Outline

The outline of the first part of the manuscript is the following. Chapter II presents a
review of reliability analysis methods and a general framework containing different
concepts at the basis of the three proposed methods. In Chapter III, the first method,
named Metamodel-based combining Active Learning and quasi-Optimal Importance Sam-
pling (MetaAL-OIS), for the unbiased estimation of failure probabilities is presented. In
Chapter IV, the second method, named extreme Active Kriging-Monte Carlo Sampling
(eAK-MCS), for the estimation of failure probabilities is described, equipped with a
parallel refinement strategy inherited from [Schöbi et al., 2016]. In Chapter V, the
method Quantile extreme Active Kriging-Monte Carlo Sampling (QeAK-MCS) permits
the estimation of extreme quantiles (α < 10−5), adapting eAK-MCS for quantile esti-
mation similarly to [Schöbi et al., 2016]. The original parallel surrogate refinement
strategy is enriched with an additional level of parallelization, which is also suitable
with the seminal quantile algorithm [Schöbi et al., 2016].
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!
Overview This chapter is intended to introduce the general framework of the rare
events methods presented in the first part of the manuscript.

Outline

This chapter is organized as follows. Section II–1 introduces the scope and field of ap-
plication of the original methods described in the sequel. Section II–2 reviews state-of-
the-art methodologies in reliability analysis emphasizing direct (i.e. using directly the
performance function) and surrogate-based methods. The general framework used in
the first part of the manuscript is finally reported.
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II–1 Introduction

II–1.1 Problem Definition

The scope of the methods proposed in this part is restricted to time-invariant a.k.a.
static simulation problems characterized by a deterministic scalar performance func-
tion, in which time is not an explicit variable, and repeated model calls to the same
input provide the very same output response. Let us define

J : DJ ⊆ Rd 7→ R
y → J(y), (II.1)

the performance function a.k.a. Limit-State Function (LSF) defined in the so-called
physical space DJ , representing the scalar output of a computationally expensive nu-
merical model, hence associated to a limited number of evaluations Nbudget (Nbudget =
O(102−3)). Let

Y : Ω 7→ Y ⊆DJ ⊆ Rd (II.2)

be a random variable representing the uncertain scalar parameters input, defined
by its joint continuous PDF fY . The reliability analysis problem consists in the estima-
tion of the failure probability p f defined by:

p f = PY (J(Y )< u), (II.3)

where PY refers to the probability measure induced by Y . In the sequel, it is considered
that a so-called isoprobabilistic transformation T : Y 7→ Rd satisfies:

X = T (Y )⇔ Y = T−1(X) (II.4)

where X ∼Nd(0, Id) is the d-dimensional standard Gaussian vector (also referred
to as the standard normal space). Its joint PDF fX is defined by

fX(x ) =
1

(2π)
d
2

exp
�

−
x T x

2

�

. (II.5)

The normalized LSF G

G : Rd 7→ R
x → G(x ) = (J ◦ T−1)(x ) (II.6)

consequently permits to reformulate the reliability problem (Eq. II.3) in the standard
space as:

p f = P(G(X)< u) = E[1G<u(X)] =

∫

Rd

1G<u(x ) fX(x )dx , (II.7)

where P and E denote resp. the probability measure and expectation operators in-
duced by X , and 1 the indicator function.

The second problem of interest consisting in the estimation of the quantile q ∈ R
associated to a level of probability α ∈]0, 1[ reads:

P(G(X)< q) = α, (II.8)
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which can be seen as an inverse problem w.r.t. Eq. II.7. Note that it is assumed with-
out loss of generality that α∼ 0. Indeed, if α∼ 1, Problem II.8 is simply re-written as
P(−G(X)< q∗) = α∗, with α∗ = 1−α, and the quantile sought is obtained as q = −q∗.

This reformulation in the standard space, although presenting clear advantages
such as the normalized uncorrelated input variability, depends strongly on the as-
sumption of the complete knowledge of the joint PDF fY and the existence of the
isoprobabilistic transform T .

Limit-State Surface Let us now introduce the following definitions:

• The set {x ∈ Rd s.t. G(x )< u} is defined as the failure region or failure domain.

• The set {x ∈ Rd s.t. G(x )> u} is defined as the safe region or safe domain.

• The set {x ∈ Rd s.t. G(x ) = u} is defined as the performance function failure
branch or its Limit State Surface (LSS).

In case these sets are not connected, they are referred to as regions, modes or branches,
respectively. The indication function 1 transforming the integration problem (Eq. II.7)
into a classification problem consists in identifying accurately the failure and safe do-
mains: it is hence sufficient to approximate the LSS to accurately estimate the associ-
ated failure probability.

Remark The algorithms proposed to solve those problems rely primarily on the con-
struction of Kriging surrogate model to approximate the LSF G and adaptive refine-
ment strategies permitting to increase the accuracy of the latter surrogate in the region
of interest. Particular attention has been devoted for those proposed algorithms to be
suitable to cases characterized by extreme events (α, p f ∼ O(10−2 − 10−9)) and mul-
tiple failure regions. Additionally, those refinement algorithms are said direct as they
provide samples aiming at directly refine the LSS1.

II–1.2 Field of Application

The problem of tail probability estimation (Eq. II.7) arises naturally in several domains
such as risk analysis. For those applications, the final goal is to obtain an estimation
of the failure probability in order to assess the reliability of a design. The proposed al-
gorithms, likewise some other surrogate-based methods in the literature (e.g. [Schöbi
et al., 2016, Lelièvre et al., 2018]), embeds a direct1 adaptive refinement strategy:
at each iteration, candidate sample points are selected aiming at refining the LSS,
based of the current knowledge brought by the Kriging surrogate of the LSF G. The
remarkable feature makes this class of algorithms of particular interest for reliability-
derived problems where a rare event estimation is part of a more extended framework.
Reliability-Based Design Optimization (RBDO) as presented in [Moustapha et al., 2016]
belong to this set: a reliability analysis [Echard et al., 2011] based refinement strategy
is used as a tool in the global framework. The three algorithms proposed in this part

1The refinement algorithm BSS [Bect et al., 2017] does not satisfy this property, since intermediate
LSS are iteratively refined.
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are developed so their refinement strategy could be afterwards isolated and used as a
tool for RBDO or Robust Optimization (RO) methods.

The three algorithms developed being suitable to deal with multiple failure regions
and extreme rare events make their direct refinement strategy tool very promising for
such RBDO or RDO methods.

The following example, taken from [Fenrich and Alonso, 2017], can be used to il-
lustrate the need for such RBDO methods. It merely consists in solving an optimization
problem in the form:

Minimize E[ f (x ,ξ)]
s.t. P[Gk(x ,ξ)< 0] = 10−7, ∀k ∈ ¹1, ncº

x ∈ Ω, (II.9)

where the mean of the objective function f has to be minimized s.t. nc failure proba-
bilities associated to the LSF Gk have to be lower than 10−7, the design vector x ∈ Ω
belonging to the design space Ω, and P, E denoting resp. the probability measure and
expectation operator induced by the random vector ξ. Due to the complexity of the
problem, the authors chose to relax the initial probabilistic constraints so the failure
probabilities only have to be lower than 10−2[Fenrich and Alonso, 2017]. Those re-
marks motivate the development of suitable methods allowing to adapt RBDO schemes
to tackle such issues.

In the context of reliability analysis, the assumption of the perfect knowledge of
the input distribution in the physical space Y , or the possibility to exactly recast it in
the standard space, is very unlikely. In [Chabridon et al., 2017], the impact of aleatoric
uncertainty in the input distribution is studied, performing a reliability analysis in a
context of uncertainties affecting probability distribution parameters. This approach
seems to be of interest, and it is shown that such uncertainties inherent to some param-
eters of the input distribution might have a non-negligible impact on the estimated fail-
ure probability, which is then considered a random variable. It is worth noting that the
CPU efficiency and field of applicability of the underlying surrogate-based approach
selected (e.g. eAK-MCS, AK-MCS) is at the core of their effectiveness. Those facts
further motivate the need for such independent direct refinement strategies. The al-
gorithm Quantile extreme Active Kriging-Monte Carlo Sampling (QeAK-MCS) alleviates
the problem of the quantile estimation within the hypotheses detailed in Subsection
II–1.1, amonsgt which:

1. The induced failure probability problem might be subject to multiple failure re-
gions, namely, the LSS defined as {x ∈ Rd s.t. G(x ) = q}, where q ∈ R is the
unknown quantile, might be composed of several failure branches.

2. The level of quantile α might be extreme, say α ∈ [10−5, 10−9]. For such low
levels, the only method able to alleviate the point 1 ([Schöbi et al., 2016]) would
fail.

To the best of the knowledge of the author, only [Schöbi et al., 2016] can deal with
assumption 1, while no methods can deal with both assumptions.
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II–2 Review of Existing Methods

Risk analysis methods can roughly be decomposed in two classes. A first family of
method denoted as Direct Methods or Sampling Methods make only use of the perfor-
mance function G. Classic considerations raised by the crude Monte-Carlo Sampling
(MCS) are presented in Subsubsection II–2.1.1. Importance Sampling (IS) techniques
[Rubinstein, 1981], [Fishman, 1996] aim at reducing the so-called variance estima-
tor2 in order to reduce the number of evaluations of the performance function, for a
given target error. The success of the method relies on a prudent choice of the impor-
tance sampling density. IS is described within the general framework of the proposed
methods in Subsubsection II–2.1.4. First-Order Reliability Method (FORM) and Second-
Order Reliability Method (SORM) are based on the concept of so-called Most Probable
Failure Point (MPFP), and provide a generally biased estimation of the failure proba-
bility under restrictive assumptions on the LSS. They are introduced in Subsubsection
II–2.1.2. Cross-Entropy (CE) and Subset Simulation (SS) methods are presented in
Subsubsection II–2.1.3

Surrogate-based methods are part of the latter. In substance, the original per-
formance function G is replaced by a surrogate model orders of magnitude cheaper
to evaluate, on which generally methods of the former family are used. They are
presented in Subsection II–2.2. A comprehensive introduction to reliability analysis
methods can be found in [Bourinet, 2018].

II–2.1 Direct Methods

II–2.1.1 Monte-Carlo Sampling

Monte-Carlo Sampling (MCS) method permits to estimate the failure probability (Eq.
II.7) using the following estimator:

p̂ f = E[1G<0(X)] =
1

NMC

NMC
∑

i=1

1G<0(x
(i)), (II.10)

where {x (1), ..., x (NMC )} is a set of NMC independent samples drawn from the random
vector X . This estimator is asymptotically unbiased and convergent. Its varianceV[p̂ f ]
reads:

σ2
f =

p f − p2
f

NMC
, (II.11)

leading to its variance estimator

σ̂2
f =

p̂ f − p̂2
f

NMC
. (II.12)

The accuracy of the estimate is measured using its CoV

δ̂ f =
σ̂ f

p̂ f
=

√

√

√

1− p̂ f

p̂ f NMC
, (II.13)

2The variance estimator quantifies the accuracy of the failure probability estimation



58 Chapter II. General Framework of Reliability Analysis Methods

provided p̂ f 6= 0. It illustrates its low convergence rate ∝ N−
1
2

MC . If a target error of
δ̂ f < 10−∆ is aimed, a failure probability as low as p f = 10−γ would require a number
of samples of NMC ≈ 102∆+γ. This is illustrated in Table II.1. If a surrogate for the
LSF G (orders of magnitude cheaper to evaluate than G) is considered, an accurate
reliability analysis (target CoV δ < 0.1%) would require ∼ 1015 surrogate evaluations
for an underlying failure probability p f = 10−9. Generally computationally expensive
in practice, such calculation might also lead to RAM issues according to the imple-
mentation.

δ p f NMC

1% 10−5 109

10−9 1013

0.1% 10−5 1011

10−9 1015

Table II.1 MCS computational cost: number of MCS evaluations (NMC) as a function
of the target CoV δ and the true failure probability p f .

II–2.1.2 MPFP based methods: FORM/SORM

MPFP The so-called Most Probable Failure Point (MPFP) or design point x ∗ ∈ Rd

associated to the LSS {x ∈ Rd s.t. G(x ) = u} is defined as the point in the failure
domain with the largest PDF value, in the standard space. Equivalently, it can be
defined as the closest point to the origin, belonging to the LSS. It is the supposedly
unique solution of the following quadratic optimization under non-linear constraint:

x ∗ = Argmin
x∈Rd s.t. G(x )=u

‖ x ‖2 . (II.14)

The so-called Hasofer-Lind reliability index is defined as:

β =‖ x ∗ ‖2 . (II.15)

The constrained optimization Eq. II.14 is generally solved by means of a gradient-
based optimization method, such as Sequential Quadratic Programming (SQP), or Hasofer-
Lind-Rackwitz-Fiessler (HLRF) algorithm [Hasofer and Lind, 1974]. They require the
evaluation of the gradient of the LSF G w.r.t. the input vector at each iteration step,
by means of finite differences in most cases.

FORM FORM consists in approximating the LSF G by it linear approximation around
the MPFP x ∗ in the integral Eq. II.7:

GFORM(x )− u=∇G(x ∗)T (x − x ∗), (II.16)

since G(x ∗) = u.
The approximate failure probability consequently reads:

pFORM
f = E[1GFORM<u(X)], (II.17)
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with X ∼Nd(0, Id). This integral can be written in closed-form

pFORM
f = Φ(−β), (II.18)

Φ denoting the standard univariate Gaussian CDF. This approximation of the failure
probability is under the assumption of an unique MPFP x ∗ and a linear LSS: it may
indeed be corrupted with a large bias w.r.t. the true p f .

SORM SORM assumes twice differentiability of the LSF G in the neighborhood of the
MPFP x ∗ found. The LSF is then approximated by its second order Taylor expansion
around x ∗:

GSORM(x )− u=∇G(x ∗)T (x − x ∗) +
1
2
(x − x ∗)T∇2G(x ∗)(x − x ∗), (II.19)

since G(x ∗) = u, ∇2G(x ∗) denotes the Rd×d Hessian matrix of G at the MPFP x ∗. The
SORM-approximate failure probability reads:

pSORM
f = E[1GSORM<u(X)]. (II.20)

Several expressions permit to approximate accurately and at a negligible computa-
tional cost ([Breitung, 1984] [Tvedt, 1989]) this integral. The CPU overhead w.r.t.
FORM, after the MPFP has been found is due to the evaluation of the hessian matrix,

requiring
d(d + 1)

2
LSF evaluations, by means of finite differences.

The case of multiple MPFPs (several failure regions) is partially addressed in [Der Ki-
ureghian and Dakessian, 1998]: the MPFP search is repeated with a modified LSF,
which permits the search outside the zone where previous MPFPs have been found.
Corresponding modification in FORM/SORM expressions of the approximated failure
probability are then prescribed.

II–2.1.3 Subset Simulation

The main idea of Subset Simulation (SS) [Au and Beck, 2001] is to consider a small
probability of a rare event E as a product of larger probabilities of nested intermediate
events Ei, i ∈ ¹1, mº: E = Em ⊂ ... ⊂ E1. The sought failure probability consequently
reads:

p f = P(Em)
= P(Em|Em−1)P(Em−1)
= P(Em|Em−1) . . .P(E2|E1)P(E1)

=
m
∏

i=1

pi, (II.21)

with p1 = P(E1), and pi = P(Ei|Ei−1) for i > 1. p f results as the product of m larger
probability (easier to evaluate with classic sampling methods). The wisely-chosen in-
termediate levels ui, with um = u and um < · · ·< u1, permit to define the intermediate
events as

Ei = {ω ∈ Ω s.t. G(X(ω))< ui}, (II.22)
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Ω referring to the outcome space of the underlying probability space. The intermediate
probabilities pi are defined as:

p1 = P(G(X)< u1) =E[1G<u1
(X)] (II.23)

pi = P(G(X)< ui|G(X)< ui−1) =EEi−1
[1G<ui

(X)], (II.24)

for i > 1. EEi−1
denotes the expectation operator induced by the random vector fully

defined by the conditional PDF

fX(x |Ei−1) =
fX(x )1G<ui−1

(x )

E[1G<ui−1
(X)]

. (II.25)

The estimation of pi, i > 1 requires a numerical method to sample according to the
conditional PDF fX(•|Ei−1) such as acceptance-rejection, Markov Chain Monte Carlo
(MCMC) [Metropolis et al., 1953] or Sequential Monte Carlo (SMC) [Bect et al., 2017]
[Del Moral et al., 2006]. The intermediate levels ui are selected so the estimates p̂i,
for i ∈ ¹1, m− 1º equal a prescribed probability level p0, chosen in the optimal range
[0.1,0.3] [Zuev et al., 2012].

II–2.1.4 Importance Sampling

The IS method is one of the most well-known variance reduction techniques used for
assessing small failure probabilities. The idea consists in drawing samples following
another distribution than the original in order to populate more frequently the failure
domain: the failure probability estimate is then obtained as a weighted average of
these draws. The general theory of IS is first presented, while examples of IS densities
are then discussed, introducing as well Cross-Entropy methods in the context of failure
probability estimation.

General Theory The following generic computation is considered:

pg = E[g(X)], (II.26)

where X ∼ Nd(0, Id), g : DX = Rd 7→ R refers for instance to x → 1G<u(x ) or
x → 1µĜ+kσĜ<u(x ), with Ĝ(x ) = N (µĜ(x ),σ

2
Ĝ
(x )) denoting the underlying Gaussian

predictor of the Kriging surrogate G̃ of G at the location x .
Let h be a proposal PDF3, assumed to dominate g fX in the absolutely continuous

sense:

∀x ∈DX , h(x ) = 0 =⇒ g(x ) fX(x ) = 0. (II.27)

Then, pg may be rewritten as follows:

pg =

∫

Rd

g(x )
fX(x )
h(x )

h(x )dx = Eh

�

g(X)
fX(X)
h(X)

�

, (II.28)

Eh referring to the expectation operator induced by the ISD h.
It easily leads to the importance sampling estimator:

3a.k.a. biasing/instrumental PDF or Importance Sampling Density (ISD)
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p̂g =
1
N

N
∑

i=1

g(x (i))
fX(x (i))
h(x (i))

, (II.29)

where x (1), ..., x (N)
iid∼ h. This estimator is unbiased and its accuracy is measured

by means of its variance estimator:

σ̂2
g =

1
N − 1

�

1
N

N
∑

i=1

g(x (i))2
fX(x (i))2

h(x (i))2
− p̂2

g

�

. (II.30)

The corresponding CoV reads:

δ̂g =
σ̂g

p̂g
. (II.31)

provided p̂g 6= 0. The (k−σ)-IS confidence interval bounds p̂g,min and p̂g,max are given
by:

p̂g,min = p̂g − kσ̂g

p̂g,max = p̂g + kσ̂g . (II.32)

The accuracy of the approximation given by IS critically depends on the choice of the
ISD h.

It can be shown that the estimator’s variance is zero (optimality of the IS estimator)
when the instrumental PDF is chosen as the theoretically optimal importance PDF
defined by:

h∗g(x) =
|g(x)| fX(x)
E[|g(X)|]

. (II.33)

However, this PDF involves the unknown E[|g(X)|] in its denominator, so it is not
implementable in practice. A good ISD h should have the following properties:

• h dominates g fX.

• h(x) should be close to be proportional to g(x) fX(x).

• It should be easy to sample from h.

In the specific case of g = 1G<u, the optimal ISD reads:

h∗G(x) =
1G<u(x) fX(x)

p f
. (II.34)

Examples of ISD A classic choice of the ISD in the FORM/SORM context (in the
standard space) consists simply in considering the original distribution centered in
the supposedly unique MPFP x ∗ already found:

h(x ) = fX(x − x ∗). (II.35)

If several MPFPs x ∗i are identified, mixtures of multivariate standard Gaussian PDF
can also be considered:

h(x ) =
1
m

m
∑

i=1

fX(x − x ∗i ). (II.36)

In other works, adaptive Importance Sampling methods consist in adjusting the ISD
iteratively [Bucher, 1988] [Au and Beck, 1999] [Morio, 2012].
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Cross-Entropy In the context of the estimation of failure probability, CE methods
consider that the ISD h belongs to some parametrized family:

h ∈ {h(•,q),q ∈Q ⊂ Rm}. (II.37)

The objective is finding a vector q∗ such that h(•,q∗) is as close as possible to the
optimal ISD h∗G, w.r.t. a given measure. The so-called Kullback-Leibler (KL) divergence
(or distance) [Kullback and Leibler, 1951] is considered; for f , g two PDF, the KL
distance between f and g reads

DK L( f , g) =

∫

Rd

f (x )Log
�

f (x )
g(x )

�

dx , (II.38)

under the assumption that g(x ) = 0 =⇒ f (x ) = 0 (absolute continuity). Therefore,
the optimal parameter q∗ leading to the minimal KL distance between h(•,q∗) and h∗G
is the solution of the minimization problem:

q∗ = Argmin
q∈Q

∫

Rd

h∗G(x )Log

�

h∗G(x )

h(x ,q)

�

dx , (II.39)

or equivalently:

q∗ = Argmax
q∈Q

∫

Rd

h∗G(x )Log (h(x ,q)) dx . (II.40)

For the case of the estimation of the failure probability estimation (g = 1G<u), q∗

reads:

q∗ = Argmax
q∈Q

∫

Rd

1G<u(x )Log (h(x ,q)) fX(x )dx

= Argmax
q∈Q
E[1G<u(X)Log (h(X ,q))]. (II.41)

II–2.2 Surrogate-based methods

Surrogate4-based methods rely on the approximation of the original costly-to-evaluate
LSF G by a metamodel, which is orders of magnitude faster to evaluate. The approxi-
mate model can be used in conjunction with sampling methods, to improve the latter
or to correct the potential bias due to the surrogate model.

Polynomial response surfaces used as surrogate for the LSF first appear in the liter-
ature in [Faravelli, 1989], inspiring different works in the nineties [Bucher and Bour-
gund, 1990, Enevoldsen and Sørensen, 1993, Rajashekhar and Ellingwood, 1993]: a
quadratic polynomial is built in the neighborhood of an supposedly unique MPFP. To
alleviate the possible severely biased estimation due to the latter assumption, least-
squares polynomial regression are adopted in [Most and Bucher, 2008] [Proppe, 2008]
[Kang et al., 2010]. Other approaches based on Artificial Neural Network (ANN) [Pa-
padrakakis and Lagaros, 2002] [Hurtado and Alvarez, 2000] [Elhewy et al., 2006]
[Cardoso et al., 2008] [Papadopoulos et al., 2012], in most cases combine the training
of the Multilayer Perceptron (with one or several layers) and MCS or SS. Since the fail-
ure probability estimation can be seen as a binary classification problem where the two

4a.k.a. response surface, metamodel or approximate model



II–3. General Framework 63

classes correspond to the safe or failure domain, Support Vector Machines (SVM) are
investigated in [Deheeger and Lemaire, 2006] [Most, 2007] [Basudhar et al., 2008].
The LSF might also be considered from a regression viewpoint (not only the binary
but the real value returned by the LSF is accounted for) [Pai and Hong, 2006, Dai
et al., 2012, Bourinet, 2016], using support vector regression. Kriging-based meth-
ods including [Bichon et al., 2005, Kaymaz, 2005, Ranjan et al., 2008, Bichon et al.,
2008, Picheny et al., 2010b, Bect et al., 2012] retain in particular our interest. Note
that in such metamodel-based approaches, MCS (AK-MCS [Echard et al., 2011]) or
IS techniques (AK-IS [Echard et al., 2013], MetaAK-IS2 [Cadini et al., 2014], KAIS
[Zhao et al., 2015]) or even SS (AK-SS [Huang et al., 2016]) are used directly on the
surrogate.

In particular, the so-called Active learning reliability method combining Kriging and
Monte Carlo Simulation (AK-MCS) is presented in [Echard et al., 2011]. The Krig-
ing surrogate replacing the LSF J in the physical space is iteratively refined using the
popular U-function to select samples among MC samples.

Assessing a relatively low probability (p f < 10−5) with this method remains an
issue though, due to the very large number of MC samples involved. One important
limitation of metamodel-based approaches lies in the complexity to keep the approx-
imation error under control.

In order to cure this issue, [Dubourg et al., 2013] proposed to resort to a kriging-
based surrogate model to approximate the optimal importance density. The so-called
meta-IS [Dubourg et al., 2013] algorithm allows to obtain a new estimator of the
failure probability as the product of a term given by a standard MC estimation based
on the Kriging approximation, and a correction factor computed by means of a IS
technique applied to the original performance function. Nevertheless, in [Cadini et al.,
2015], they identified an apparent unbalanced effort between the estimation of the
correction factor and the refinement of the metamodel itself.

To evaluate small failure probabilities (p f < 10−5) that would need more memory
than available RAM with standard AK-MCS, the so-called AK-MCSi [Lelièvre et al.,
2018] proposes to split the large MC population into several populations of smaller
sizes and thus to perform sequential MC simulations. The authors also introduce a
multi-point enrichment strategy similar to AK-MCS [Schöbi et al., 2016] and an origi-
nal stopping criterion suitable when the probability of failure is MCS-based. However,
in cases of very small failure probability, the method still requires a considerable num-
ber of metamodel evaluations (as in AK-MCS).

Among metamodel-based methods suitable for very small failure probability, the
BSS [Bect et al., 2017] adaptively improves the surrogate accuracy corresponding
to intermediate thresholds to avoid failure domains, combining SS and a sequential
Bayesian approach [Bect et al., 2012].

II–3 General Framework

This section aims at describing the general concepts at the basis of the three proposed
algorithms presented in this Part.
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II–3.1 Isoprobabilistic Transformation

A central idea in the present Part consists in rewriting the failure probability and quan-
tile definitions in the standard space. A diffeomorphism5 referred to as an isoproba-
bilistic transform

T : Y 7→ Rd

y → x = T (y) (II.42)

is constructed. Consequently, the following equalities hold:

X = T−1(Y )⇔ Y = T (X). (II.43)

According to the available knowledge of the physical random vector Y , several ap-
proaches are considered.

Independent Random Inputs The specific case of statistical independence between
all the components is presented hereafter. It is assumed that the marginal distributions
of Y are known through their CDFs FYi

. To build T , each component Yi is first mapped
into a uniform random variable Vi ∼ U[0,1] using its CDF FYi

. The latter is then
mapped into a standard normal variable X i using the inverse CDF Φ−1 of the univariate
standard normal distribution.

T :Y 7→ Rd

y = (y1, . . . , yd)→ x =
�

Φ−1(FY1
(y1)), . . . ,Φ−1(FYd

(yd))
�

(II.44)

Nataf Transform It is again assumed that the marginal distributions of Y are known
through their CDFs FYi

, without the independence assumption though. Measures of
dependence such as copulas [Nelson, 1999] might be used to represent the comple-
mentary information needed to define the joint CDF of Y , in addition to the informa-
tion provided by its marginals. The Nataf transformation [Nataf, 1962] [Lebrun and
Dutfoy, 2009] can be considered, in particular, in the framework of copulas, or when
the correlation matrix is known.

Rosenblatt Tranform The random vector Y is assumed to be known throught its full
joint CDF FY . The Rosenblatt is used to define T :

T :Y 7→ Rd

y = (y1, . . . , yd)→ x = (x1, . . . , xd) (II.45)

where x can be defined as6

x1 = Φ
−1
�

FY1
(y1)

�

x2 = Φ
−1
�

FY2|Y1
(y2|y1)

�

. . .

xd = Φ
−1
�

FYd |Y1,...,Yd−1
(yd |y1, . . . , yd−1)

�

(II.46)

Note that this expression requires the knowledge of the conditional CDFs.

5 T is a bijection with T and T−1 continuously-differentiable.
6d! choices can be made due to the variable ordering in the conditional expressions.
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II–3.2 Initial DoE

An initial design of size n0 = 5d [Bect et al., 2017, Dubourg, 2011, Dubourg et al.,
2013] is generated as described in [Bect et al., 2017], for the initialization of the
surrogate of the LSF G̃.

A compact subset X0 =
∏d

i=1[q
i
ε
, qi

1−ε] is constructed, where qi
ε

and qi
1−ε are re-

spectively the quantiles of order ε and 1− ε of the ith input variable. Working in the
standard space, X0 reads [Φ(ε),Φ(−ε)]d . A LHS design on [0,1]d of size n0 (criterion
maximin here) is then scaled to X0 using an affine map. Such a sampling in the stan-
dard space is built in order to explore regions characterized by low density, from the
initialization step.

II–3.3 Kriging Surrogate Model

In the context of failure probability or quantile estimation, a Kriging metamodel for G
(Eq. I.124-II.8) is used.

It requires the generation of a DoE, denoted here by X = {x1, ..., xm}, belonging
to the support Dx = Rd of X (see Subsection II–3.2 for the initial DoE generation).

A Kriging surrogate G̃ is built (Section I–2 for details), its BLUP predictor Ĝ(x ) at
an unknown location x satisfying:

Ĝ(x ) =N (µĜ(x ),σ
2
Ĝ
(x )) (II.47)

G is assumed to be a sample path of the Gaussian Process Ĝ. The metamodel of the
original performance function is denoted by:

G̃(x ) = µĜ(x ).

In cases where an isoprobabilistic transform T is used to recast the physical problem
into the standard one, it might be recommended to build a surrogate in the physical
space first, namely for J : y → J(y). It yields:

G̃(x ) = µĜ(x ) = µĴ(y) (II.48)

σĜ(x ) = σĴ(y), (II.49)

where y = T−1(x ).

II–3.4 Gaussian ISD Tuning: N (0,γ2Id)

In the following, ISD belonging to the family of centered isotropic multivariate Gaus-
sian N (0,γ2Id) are considered, parametrized by a scalar γ ≥ 1. γ is tuned using the
strategy described hereafter, based on CoV reduction considerations. The following
failure probabilities are considered, based on the knowledge of the Kriging surrogate
of G:

p f̃ = E[1µĜ<u(X)] (II.50)

p(k)+
f̃
= E[1µĜ+kσĜ<u(X)]. (II.51)

A suitable choice for γ is expected to minimize the CoV when estimating the pre-
dicted failure probability p f̃ with IS using the ISD fN (0,γ2 Id ). Based on this assumption,
the following heuristic strategy is proposed to tune γ. For a fixed number of samples
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Nγ, the functions CoV(γ) and CoV+(γ) are defined on the range [γmin,γmax] as the
CoV obtained evaluating p f̃ , respectively p(k)+

f̃
, using the IS method (Section III–2.2)

with fN (0,γId ) as the ISD. Note that for a given metamodel and γ, those quantities may
not be defined since p f̃ or p(k)+

f̃
might be null. The chosen value γ∗, is selected as the

argument minimizing CoV(γ), if exists, otherwise as the one minimizing CoV+(γ). If
the latter does not exist, it is set to a default value γ0.

Since only a gross estimation of γ is necessary, the following Monte-Carlo based
algorithm for its selection is proposed:

1. Generate nγ samples {γi}i uniformly in [γmin,γmax].

2. For each i, evaluate: CoV(γi) and CoV+(γi) (under existence)

3. Under existence, set γ∗ = arg min
i

CoV(γi).

4. Otherwise, under existence, set γ∗ = arg min
i

CoV+(γi).

5. Otherwise, set γ∗ = γ0 (Default Value)

This operation requires Nγnγ metamodel evaluations, and is performed anytime the
metamodel is updated.

II–3.5 Test-Cases used for the assessment

Below is provided with a list of test-cases, used as benchmarks for the methods pre-
sented in Part A, for either failure probabilities (MetaAL-OIS, eAK-MCS) or extreme
quantile estimation (QeAK-MCS). Test-cases described in Subsubsections II–3.5.1 II–
3.5.3 II–3.5.5 II–3.5.6 are used in the scope of extreme quantile estimation, the latter
seen as an inverse problem w.r.t. to the reliability analysis one. Indeed, the reference
failure probability is viewed as the input quantile level, while the threshold value is
considered as the sought quantile. This approach is adopted since designing accurately
an extreme quantile test-case is a complex task, not solved in the sequel.

II–3.5.1 Single Failure Region 2D

A first 2D example is taken from [Echard et al., 2013] [Cadini et al., 2014]. This
example is characterized by a low failure probability (p f ∼ 3× 10−5), a very smooth
(non-linear) limit state and a single failure region. The performance function in the
standard space reads:

G(x1, x2) =
1
2
(x1 − 2)2 −

3
2
(x2 − 5)3 − 3, (II.52)

where X1, X2 ∼ N (0,1). The probability of failure reads p f = P(G(X) < 0). The
reference value is estimated as 2.874 × 10−5 with a CoV of 0.03% using IS with a
Gaussian mixture ISD [Razaaly and Congedo, 2018] based on 107 samples, reported
in Table II.2.

Figure II.1 reports 2D contours and the LSS associated to the threshold u= 0.
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Table II.2 Reference values for Single Failure Region 2D.

p f = P(G(X)< 0)a CoV N MetaAL-OIS (Chapter III) eAK-MCS (Chapter IV) QeAK-MCS (Chapter V)
2.874× 10−5 0.04% 107 Subsection III–4.1 Section III–4 Subsection V–4.1

a Reference: IS with a Gaussian mixture as ISD [Razaaly and Congedo, 2018], 50 independent
runs.

Figure II.1 Single Failure Region 2D performance function (Eq. II.52): Contours and
LSS (u= 0).

II–3.5.2 Two failure regions 2D

This example deals with a case of two non-connected failure regions, featuring failure
probabilities lying from around 3×10−3 to 9×10−7, according to the selected param-
eter c in Equation II.53. The performance function [Cadini et al., 2014, Au and Beck,
1999, Dubourg et al., 2013] in the standard space reads:

G(x1, x2) =min

¨

c − 1− x2 + e
−x2

1
10 + ( x1

5 )
4

c2

2 − x1 · x2

«

, (II.53)

where x1, x2 are the realizations of two independent standard Gaussian random
variables. The three MPFPs are located at u∗1 = (0, c), u∗2 = (

cp
2
, cp

2
) and u∗3 =

(− cp
2
,− cp

2
), with the first two MPFPs belonging to the same failure region.

Au and Beck [Au and Beck, 1999] focused on the two first design points and ap-
parently omitted the third one without much consequence on the results they present
though [Dubourg et al., 2013].

We consider here three cases, with c = 3,4, 5, respectively, the associated reference
failure probabilities reported in Table II.3.

Table II.3 Reference values for Two Failure Regions 2D.

c p f = P(G(X)< 0)a CoV N MetaAL-OIS (Chapter III) eAK-MCS (Chapter IV) QeAK-MCS (Chapter V)
3 3.47× 10−3 0.10% 1.3× 106 Subsection III–4.2 - -
4 8.99× 10−5 0.10% 1.6× 106 Subsection III–4.2 - -
5 8.97× 10−7 0.10% 1.8× 106 Subsection III–4.2 - -

a Reference: IS with a Gaussian mixture as ISD [Razaaly and Congedo, 2018].

Figure II.2 reports 2D contours and the LSSs associated to the threshold u= 0 and
the parameter c successively equal to 3, 4, 5.
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(a) c = 3 (b) c = 4

(c) c = 5

Figure II.2 Two Failure Regions 2D performance function (Eq. II.53): (a) c = 3, (b)
c = 4, (c) c = 5.

II–3.5.3 Four-branch series system 2D

This example is a classical structural reliability test case [Cadini et al., 2014, Dubourg
et al., 2013, Bect et al., 2017]. The performance function is defined as:

G(x1, x2) =min



















3+ (x1−x2)2

10 − x1+x2p
2

3+ (x1−x2)2

10 + x1+x2p
2

x1 − x2 +
7p
2

−(x1 − x2) +
7p
2



















, (II.54)

and X1, X2 ∼N (0, 1).

In [Bect et al., 2017], the threshold is modified to make p f smaller. The objective
is to estimate p f = P(G(X) ≤ u). For u = −4, the value of p f is p f ∼ 5.596× 10−9,
with a CoV of about 0.04% [Bect et al., 2017], based on 100 runs of Subset Simulation
with sample size 107. Reference failure probabilities are reported in Table II.4.

Figure II.3 reports 2D contours and the LSS associated to the threshold u= 0 and
u= −4.
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Table II.4 Reference values the Four-branch series system 2D.

u p f = P(G(X)< u) CoV N MetaAL-OIS (Chapter III) eAK-MCS (Chapter IV) QeAK-MCS (Chapter V)
0 2.22× 10−3 0.10% 2.0× 106,a Subsection III–4.3 - -
-4 5.596× 10−9 0.04% 107,b - Section III–4 Subsection V–4.2

a Reference: IS with a Gaussian mixture as ISD [Razaaly and Congedo, 2018], based on 50
independent runs.
b Reference: SS [Bect et al., 2017], 100 independent runs.

Figure II.3 Four-branch series system 2D performance function (Eq. II.54): Contours
and LSSs.

II–3.5.4 Analytic "tricky" example with multiple failure regions: modified Rast-
rigin function

This test-case deals with a highly non-linear function involving non-convex and non-
connected domains of failure (i.e. "scattered gaps of failure").

This case study is chosen because, in many works of literature, it represents a
challenging test for the algorithms, due to the very complex failure domain made up
of several disconnected regions, and despite the relatively large failure probability and
close failure domains. The performance function [Cadini et al., 2014] [Dubourg et al.,
2013] in the standard space reads:

G(x1, x2) = 10−
2
∑

i=1

(x2
i − 5cos(2πx i)) (II.55)

where x1, x2 are the realizations of two independent standard Gaussian random
variables. Reference failure probability is reported in Table II.5.

Table II.5 Reference values for the modified Rastrigin 2D case.

p f = P(G(X)< u)a CoV N MetaAL-OIS (Chapter III) eAK-MCS (Chapter IV) QeAK-MCS (Chapter V)
7.29× 10−2 0.10% 1.3× 106,a Subsection III–4.4 - -

a Reference: IS with a Gaussian mixture as ISD [Razaaly and Congedo, 2018].

Figure II.4 reports 2D contours and the LSS associated to the threshold u= 0.
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Figure II.4 Modified Rastrigin case 2D performance function (Eq. II.55): Contour and
LSS.

II–3.5.5 Deviation of a Cantilever Beam 2D

This example is taken from [Bect et al., 2017]. A cantilever beam, with a rectangular
cross-section is subjected to an uniform load. The deflection of the tip of the beam
reads:

f (x1, x2) =
3L4 x1

2Ex3
2

, (II.56)

with L = 6, E = 2.6 × 104, X1 and X2 are assumed independent, with X i ∼
N (µi,σ

2
i ), µ1 = 10−3, σ1 = 0.2µ1, µ2 = 0.3 and σ2 = 0.1µ2. The failure proba-

bility reads p f = P(− f (X)< −
L

325
). The reference value is p f ∼ 3.937×10−6, with a

CoV of about 0.03% [Bect et al., 2017], based on 100 runs of Subset Simulation with
sample size 107, as reported in Table II.6.

Table II.6 Reference values: Deflection of a Cantilever Beam 2D

p f = P(− f (X)< −
L

325
)a CoV N MetaAL-OIS (Chapter III) eAK-MCS (Chapter IV) QeAK-MCS (Chapter V)

3.937× 10−6 0.04% 107,a - Section III–4 Subsection V–4.3

a Reference: SS [Bect et al., 2017], 100 independent runs.

Figure II.5 reports 2D contours and the LSS associated to the level {x ∈ R2 s.t. f (x ) =
L

325
}.

II–3.5.6 Response of a Nonlinear Oscillator 6D

This example deals with a non-linear undamped single degree of freedom system as
reported in Figure II.6. This problem is selected because it presents a moderate num-
ber of random variables and is a classic benchmark in the literature [Echard et al.,
2011, Echard et al., 2013, Bect et al., 2017].

The performance function is given as follows:

G(C1, C2, m, r, t1, F1) = 3r −
�

�

�

�

2F1

mω2
0

sin
�ω0 t1

2

�

�

�

�

�

, (II.57)
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Figure II.5 Deviation of a Cantilever Beam 2D performance function: Contours and

LSS associated to the level {x ∈ R2 s.t. { f (x ) =
L

325
}.

Figure II.6 Non-linear undamped single degree of freedom oscillator (Extracted from
[Echard et al., 2013]).

withω0 =
s

C1 + C2

m
7. The six random variables (assumed independent) are listed

in Table II.8.
The difficulty here comes from the relatively high dimension of the problem. The

random variable F1 ∼ N(1, 0.22) is defined in the original formulation in [Echard et al.,
2011] with a failure probability p f ∼ 3× 10−2. In [Bect et al., 2017], the variability
of F1 is modified w.r.t. [Echard et al., 2011] in order to make the failure probability
p f = P(G(X)< 0) smaller ( p f ∼ 1.514× 10−8), as reported in Table ??.

F1 p f = P(G(X)< u) CoV N MetaAL-OIS (Chapter III) eAK-MCS (Chapter IV) QeAK-MCS (Chapter V)
F1 ∼ N(1, 0.22) [Echard et al., 2011] 2.856× 10−2 0.10% 2.9× 106,a Subsection III–4.5 - -

F1 ∼ N(0.45, 0.0752) [Bect et al., 2017] 1.514× 10−8 0.04% 107,b - Section III–4 Subsection V–4.4

Table II.7 Reference values: Non-Linear Oscillator 6D.

a Reference: IS with a Gaussian mixture as ISD [Razaaly and Congedo, 2018].
b Reference: SS [Bect et al., 2017], 100 independent runs.

7C1 + C2 could be treated as an univariate Gaussian random variable. For sake of comparison, the
problem formulation [Bect et al., 2017] remains unchanged.
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Variablea P.D.F. Mean Standard Deviation
m Normal 1 0.05
C1 Normal 1 0.1
C2 Normal 0.1 0.01
r Normal 0.5 0.05
F1 [Echard et al., 2011] Normal 1 0.2
F1 [Bect et al., 2017] Normal 0.45 0.075
t1 Normal 1 0.2

Table II.8 Random Variables of the Non-Linear Oscillator 6D. Variability for F1 is indi-
cated twice, according to the version used (original [Echard et al., 2011] or modified
[Bect et al., 2017].

a Variables are independent
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!
Overview A novel algorithm suitable for low-failure probability and multiple-
failure regions, permitting to both building an accurate metamodel and to provide
a statistically consistent error is proposed. Two unbiased estimators (including the
one proposed in [Dubourg et al., 2013]) permit, by exploiting an ISD approximating
the optimal one considering the Kriging surrogate knowledge, to provide an unbi-
ased estimator at a low computational cost. Additionally, a Gaussian mixture-based
importance sampling technique is proposed, permitting to drastically reduce the com-
putational cost when estimating some reference values, or the failure probability di-
rectly from the metamodel. Several numerical examples are carried out, showing the
very good performances of the proposed method with respect to the state-of-the-art
in terms of accuracy and computational cost.
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III–1 Introduction

The problem of interest consists in providing an unbiased estimation of the following
probability of failure re-written in the standard space:

p f = P(G(X)< 0) = E[1G<0(X)] =

∫

Rn

1G<0(x) fX(x)dx. (III.1)

where X ∼ N (0, In), and G is the LSF in the standard space. For a sake of simplicity
of the notation, the critical value is nullified without loss of generality (w.r.t. to Eq.
II.7): u= 0.

The novel approach named Metamodel-based combining Active Learning and quasi-
Optimal Importance Sampling (MetaAL-OIS), permits to explore all the failure regions
simultaneously at a very low computational cost. It is based on the learning function
used in AK-MCS [Echard et al., 2011], the K-Means clustering algorithm [MacQueen,
1967], and a MCMC sampling method. The metamodel proposed here focuses the
refinement efforts on the limit state performance function. It is designed to fit with
multiple failure regions, and very low probability. The method is characterized by
the main following features: i) a parameter is used to avoid points clustering and
also permits to implicitly control the refinement cost; ii) For multiple failure regions,
which could be also non-connected, the failure branches are refined back and forth
during the process; iii) An importance sampling procedure can be carried out in order
to obtain an unbiased estimator of the failure probability; iv) The metamodel can be
used in order to obtain an estimation of the failure probability; v) Refinement efforts
are concentrated on the limit-state function.

The second contribution of the proposed method is the use of a quasi-optimal Im-
portance Sampling Density (ISD) ([Dubourg et al., 2013]) built from the metamodel,
in order to obtain an unbiased estimation of p f (see Section III–3.2). The notation
quasi-optimal is used since a perfect knowledge of the failure region (and then of the
optimal density) is not possible in practice [Dubourg et al., 2013]. Two different es-
timators are considered in this case. One [Dubourg et al., 2013] involves the product
of two terms: namely one obtained by sampling the surrogate performance function,
and the other one being a corrector factor computed from the original performance
function. The second one combines a Control Variate technique with Importance Sam-
pling, permitting to obtain another unbiased estimator, using the same performance
function evaluations. Then, it is possible to select the best estimator a posteriori with-
out any further computations.

An additional contribution is also the formulation of a method permitting to sig-
nificantly reduce the computational time (compared to MCS) in order to compute a
failure probability directly from the metamodel, especially when the failure probabil-
ity is expected to be very low. AK-IS [Echard et al., 2013], KAIS [Zhao et al., 2015]
and AK-SS [Huang et al., 2016] have proposed similar approaches. The idea here is to
mimic the quasi-optimal ISD (Importance Sampling Density) behavior with a Gaussian
mixture law. This Gaussian mixture density thus serves as the ISD in the IS method,
in order to reduce dramatically the number of metamodel calls, when computing the
failure probability from the metamodel. The same method can be applied to the origi-
nal performance function, for example in analytic cases, in order to compute accurate
reference values.
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This presentation is organized as follows. First, some general definitions concern-
ing Gaussian Processes (GP) and IS theory are recalled in Section III–2. The new algo-
rithm proposed in this study is illustrated in Section III–3. In particular, the metamodel
adaptive refinement and the quasi-optimal IS strategy are described in Subsubsection
III–3.1 and III–3.3, respectively. Section III–4 illustrates several numerical examples
in order to assess the accuracy and efficiency of the MetaAL-OIS method.

III–2 General concepts

In this section, some general concepts useful in order to illustrate the MetaAL-OIS are
introduced. Indeed, the first step of the proposed algorithm, is to build a metamodel
G̃ of the original performance function: i) The metamodel is initialized with Latin
Hypercube Sampling (LHS) points, and a Gaussian Process (GP) is used to define the
surrogate G̃; ii) a refinement strategy based on Markov Chain Monte Carlo (MCMC)
sampling is performed.

Then, once the metamodel is accurately refined on the surrogate limit-state re-
gion {G̃(x) = 0}, an IS method is extensively used for the computation of different
quantities using different Importance Sampling Densities (ISD). Finally, the unbiased
estimation computation is carried out by using a multimodal MCMC technique aimed
at sampling points drawn from the quasi-optimal ISD.

III–2.1 Probabilistic classification using Gaussian Processes

A Kriging surrogate (see Section I–2) is built from a DoE X = {(xi, G(xi)}i∈1,m. Its
BLUE Ĝ(x ) at an unknown location x satisfies:

Ĝ(x)∼N (µĜ(x),σ
2
Ĝ(x)
),

while the surrogate G̃ for the LSF G reads G̃(x) = µĜ(x).
The probabilistic classification function [Dubourg et al., 2013] is introduced:

π(x) = P[Ĝ(x)≤ 0], (III.2)

where the probability measure P[·] refers to the Gaussian nature of the GP predictor
Ĝ(x). The function π(x) rewrites as follows:

π(x) = φ

�

0−µĜ(x)

σĜ(x)

�

, if x /∈ X , (III.3)

where φ denotes the cumulative density function (CDF) of the one-dimensional stan-
dard normal law. Concerning the points of the experimental design for which the
prediction variance is equal to zero, the above function reads

π(x) =

¨

1 if x ∈ X , G(x)≤ 0

0 if x ∈ X , G(x)> 0.
(III.4)

It may be interpreted as the probability that the predictor Ĝ(x) is negative with
respect to the epistemic uncertainty. Note that π can be used as a surrogate for 1G<0.
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III–2.2 Surrogate-based Importance sampling

The expression of the optimal ISD for the computation of the failure probability (Eq.
V.1) is recalled:

h∗G(x) =
1G<0(x) fX(x)

p f
. (III.5)

In this case, π(x) is used as a surrogate for 1G<0(x). In order to ensure that the
resulting quasi-optimal ISD h∗

π
is a PDF, a constant pπ =

∫

Rn π(x) fX(x)dx = E[π(X)]
has to be computed, so h∗

π
reads:

h∗
π
(x) =

π(x) fX(x)
pπ

. (III.6)

Note that using 1G̃<0(x) as a surrogate for 1G<0(x) is tempting, leading to the fol-
lowing ISD h∗

G̃
:

h∗
G̃
(x) =

1G̃<0(x) fX(x)
p f̃

. (III.7)

where p f̃ = E[1G̃<0(X)]. However, the condition 1G̃<0(x) fX(x) = 0 =⇒ 1G<0(x) fX(x) =
0 can not be ensured, so a bias may occur. In this sense, h∗

π
(x) is a robust quasi-optimal

ISD and does not induce a bias in the final estimation. The pπ estimation is illustrated
in Subsection III–3.2.

III–2.3 MCMC Metropolis-Hastings sampling

In order to sample points according to a given target PDF p(x ), it is resorted to a
MCMC Metropolis-Hastings algorithm (see algorithm III.1).

Algorithm III.1 Metropolis-Hastings sampler

Input: Seed x (0) s.t. p(x (0))> 0, Proposal PDF q, N ∈ N
Output: {x (i)}i∈[[1,N]] ∼ p

1 i = 0 while i < N do
2 Propose a new candidate x ∗ ∼ q(·|x (i))

r(i+1) =min(1;
p(x ∗)q(x (i)|x ∗)
p(x (i))q(x ∗|x (i))

)

Sample u∼ U[0,1]
if u< r(i+1) then

3 Accept x ∗. x (i+1)← x ∗

4 else
5 Reject x ∗. x (i+1)← x (i)

6 i← i + 1

Note that it is only required to compute p(x ) within a multiplicative constant.
When dealing with an unimodal pdf p, it is resorted to the modified Metropolis-Hasting
sampler proposed in [Au and Beck, 2001]. It requires a new parameter, referred in the
following as αMC MC . The new candidate computation step is replaced by x ∗ ∼ U[x (i)−
αMC MC , x (i) + αMC MC]. This proposal PDF q being symmetrical, the new acceptance

probability reads r(i+1) = min(1;
p(x ∗)
p(x (i))

). It is suggested in [Au and Beck, 2001] to
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take αMC MC = 1.
When dealing with a multimodal proposal PDF p, a multimodal Proposal PDF q is
used as a mixture of Gaussian law, depending of the current position of the chain. The
mixture of Gaussian law’s parameters’ computations are detailed in the Subsection III–
3.2 and it is considered that p contains at maximum M modes. Finally, the algorithm
III.2 is used, which is inspired from [Au and Beck, 2001]. Note that c ∼ D(α) refers
D(α1, ...,αM) defined by P(c = j) = α j, for j ∈ ¹1, Mº. For k ∈ [[1, M]], ek is the
square matrix defined by ek = [δk j]i, j∈[[1,M]], δ denoting the Kronecker function, so it
is null except on the kth column where it is 1.
Also, for z = (c,µ) and z̃ = (c̃, µ̃), the following equality holds:

q(z|z̃) = αc fN (µ̃c ,Σc)(µc), (III.8)

where fN (µ,Σ) refers to the multivariate Gaussian PDF with mean µ and covariance Σ.

Algorithm III.2 Multimodal Metropolis-Hastings sampler
Input: (Σ1, ...,ΣM) a set of (d × d) covariance matrices
α= (α1, ...,αM) ∈ [0,1]M a set of weights such

∑M
k=1αk = 1

µ(0) = (µ(0)1 , ...,µ(0)M ) ∈ R
d×M s.t. ∀k ∈ [[1, M]], p(µ(0)k )> 0

c(0) ∼D(α)
z(0) = (c(0),µ(0))
x (0) = µ(0)

c(0)

N ∈ N
Output: {x (i)}i∈[[1,N]] ∼ p

7 i = 0 while i < N do
8 Propose a new candidate z∗ = (c∗,µ∗)∼ q(·|z(i)):

c∗ ∼D(α)
µ∗c∗ ∼N (µ(i)c∗ ,Σc∗)
µ∗ = µ(i) + ec∗(µ∗c∗ −µ

(i)
c∗ )

z∗ = (c∗,µ∗)
x ∗ = µ∗c∗

9 r(i+1) =min(1;
p(x ∗)q(z(i)|z∗)
p(x (i))q(z∗|z(i))

)

Sample u∼ U[0,1]
if u< r(i+1) then

10 Accept z∗: z(i+1)← z∗

x (i+1)← x ∗
11 else
12 Reject z∗. z(i+1)← z(i)

x (i+1)← x (i)

13 i← i + 1

III–3 The MetaAL-OIS algorithm

In this Section, the method proposed, i.e. the MetaAL-OIS algorithm is described. A
general sketch of the algorithm is given in Figure III.2. The first step consists in build-
ing a metamodel refined on the limit-state region, which is described in Subsection
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III–3.1 and Figure III.1. This step is divided in two main parts: i) Building the meta-
model from an initial sampling (LHS); ii) Refining iteratively the metamodel in the
failure region.

Secondly, a Gaussian mixture ISD is used to compute a primary estimation of the
probability of failure, based only on the metamodel:

p̂ f̃ =E[1G̃<0(X)] (III.9)

p̂π =E[π(X)]. (III.10)

This method is particularly fit for very low failure probabilities, where MCS method
would involve a very large number of metamodel evaluations. A sharp estimation
based on the metamodel is then available with a reasonable number of metamodel
evaluations. This is illustrated in Subsection III–3.2. Third, in order to provide an
unbiased estimation of p f at a low computational cost, two estimators, described in
Subsection III–3.3, are computed: the first one is directly taken from MetaIS [Cadini
et al., 2014] algorithm, and the second uses both Control Variate method and IS. They
both use the same points drawn from the multimodal MCMC sampler (see algorithm
III.2) with the ISD h∗

π
(x ). The original performance function G is evaluated at those

points, and the two estimators are computed. So, an a posteriori analysis of their re-
spective variance estimator leads the user to select the best estimation. If the target
coefficient of variation δtar get is not reached, new points are sampled, and the esti-
mators are updated. Otherwise, the algorithm stops, and the estimator associated to
the lowest coefficient of variation is returned. Finally, Subsection V–3.4 is devoted to
a description about the parameters tuning of the proposed algorithm.

III–3.1 Metamodel Refinement Strategy

A new metamodel refinement strategy is here proposed. In order to show the main
features of this algorithm, let us introduce first the definition of the learning function
U [Cadini et al., 2015] associated to G̃. For a given x , U(x ) is defined as

U(x ) =
|µĜ(x )|
σĜ(x )

. (III.11)

In this definition, Φ(U(x )) is the probability that x is correctly classified by the
predictor, where Φ refers to the CDF of the standard Gaussian random variable. For a
given set of points X , x0, defined as follows

x0 = argmin
x∈X

U(x ), (III.12)

indicates the point where the classification is the most uncertain among X . In
AK-MCS [Echard et al., 2011], the DoE is iteratively enriched at the point x0 by mini-
mizing the learning function U (see Eq. III.12) searching in a Monte Carlo population.
The stopping criterion is U(x0)¾ 2, meaning that the sample, whose group is the most
uncertain, displays a probability being correctly classified of at least Φ(2) = 97.7%.
Though, this method has several drawbacks. When the limit state G(x ) = 0 has differ-
ent branches, the learning function U usually focuses on one of them first. Once the
metamodel is accurate enough in this region, the learning criterion goes to another
branch and carries on. If the refinement procedure is stopped, for instance because the
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Figure III.1 MetaAL-OIS: Metamodel Refinement.

Figure III.2 MetaAL-OIS: Algorithm.

DOE is too large, the metamodel can be accurately refined in some failure branches
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and too coarse on some others. Moreover, it can lead to clusters of points so numerical
instabilities can arise during the metamodel building.

For these reasons, it is resorted to a new learning function,
LU(X , dmin, rmax , Umax ,XDOE):
It returns either a set containing a new point {x0} ∈ X , or ∅. The algorithm has the
following steps :

1. Compute the subset Y ⊆ X such that ∀y ∈ Y:

• min
z∈XDOE

‖y − z‖> dmin,

• ‖y‖¶ rmax

2. In Y , select the point (if Y is not empty) minimizing the learning function U:
x0 = arg min

y∈Y
U(y).

3. If Y is empty, or U(x0)> Umax , return ∅. Otherwise return {x0}.

Note that XDOE represents the current set of DoE, Y contains points which satisfy
geometrical conditions prescribing a minimal distance between the DoE candidates
and the current ones. Moreover, candidates which are too far from the center 0Rd are
discarded.
Minimizing the learning function U on Y permits to find the point among Y having the
highest probability of being misclassified by the GP predictor. Returning only points
x0 such that U(x0) ≤ Umax ensures that points too accurately predicted are not con-
sidered as D.o.E candidates.

The parameter dmin represents the minimal distance between two elements of the
DoE in the standard space. A proper choice of this parameter could permit to avoid a
clustering of points of the DoE and to increase numerical stability when building the
metamodel. In the following, dmin = 0.5 is fixed.
As in [Echard et al., 2011], it is suggested to take Umax = 2. In this way, accepted
DoE candidates are correctly classified by the predictor with a probability higher than
97.7%. Considering a higher value of this parameter could increase both the global
number of samples constituting the DoE and the metamodel accuracy.
The refinement algorithm for the metamodel construction relies then on the following
steps:

1. Initial DOE and metamodel definition: A number m0 of samples generated by
means of a Latin Hypercube Sampling (LHS) in [amin, amax]n. Build the meta-
model G̃. If p f is expected to be very low, so the failure regions should be more
distant from the standard space center, the size of the hypercube box should be
increased. This is further discussed in Subsubsection V–3.4. Set i = 1.

2. "AK-MCS" Step: Sample a quite large population Nγ = {x (1)γ , ..., x
(Nγ)
γ } constituted

by independent samples drawn from N (0,γId). Update the D.o.E with x0 ∈Nγ,
obtained by minimizing the learning function U. Note that x0 = LU(Nγ, dmin, rmax , Umax ,XDOE).
Update G̃. If #{D.o.E.}¾ N MAX

DOE , stop the metamodel refinement algorithm. This
step is aimed to capture all failure regions, with a relatively low number of sam-
ples, mimicking the AK-MCS algorithm. Go to step 3.
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3. Classification:

Compute X − = {x ∈Nγ : µĜ(x ) ≤ 0}. If #{X −}< K , go step 2, step 4 otherwise.

4. Seed Selection: Use k-Means [MacQueen, 1967] clustering algorithm on the set
X −. Its K clusters centroids are considered: (x−1 , ..., x−K ). Set k = 1.

5. Unimodal MCMC Sampling: Sample a set of NMC MC points SMC MC
k drawn from

the PDF h∗
G̃

using the MCMC Metropolis-Hastings sampler (Algorithm III.1), with
the seed initialized at x−k .

6. Enrich DoE at step k: Update the metamodel at
x̃−k = LU(SMC MC

k , dmin, rmax , Umax ,XDOE); if #{D.o.E.} ¾ N MAX
DOE , stop the meta-

model refinement algorithm.

7. Stopping criterion: If k 6= K , set k = k+ 1 and loop back to step 5.

If k = K and
K
⋃

k=1
{ x̃−k }=∅, stop the metamodel refinement algorithm.

If i = N MAX
loop , stop the metamodel refinement algorithm.

Otherwise, set i = i + 1 and loop back to step 2.

Globally, the metamodel refinement strategy can be resumed under the Algorithm
III.3.

Algorithm III.3 Metamodel Refinement Algorithm
Input: m0, N MAX

loop , K
Output: Metamodel G̃

14 Sample m0 LHS points in [amin, amax]d . Build G̃.
for iloop = 1, N MAX

loop do
15 Set X − =∅

while #{D.o.E.}< N MAX
DOE and #{X −}< K do

16 Sample Nγ, select x0 ∈Nγ, update G̃ and X −.

17 Run k-Means algorithm on X − and find (x−1 , ..., x−K ).
for k = 1, K do

18 Sample SMC MC
k using MCMC: the target PDF is h∗

G̃
, the seed is x−k .

Select (if exists) x0 ∈ SMC MC
k ; Update G̃.

19 if No points added among
K
⋃

k=1
SMC MC

k then

20 Return G̃.

21 Return G̃.

Concerning the possibility to exploit parallelism to accelerate the algorithm, note
that the first step of the metamodel building (LHS) can be fully parallelized. By con-
trast, the metamodel refinement strategy presented in this study is sequential. The
unbiased estimation step can be almost fully parallelized: in practice, this estimation
is either driven by a maximal budget evaluation, in which case the step is fully paral-
lelizable; or driven by a CoV target. In the latter case, the unbiased estimation should
be updated "iteratively", after parallelized evaluations of sampling sets of a given size
(depending on power availability).
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III–3.2 Importance Sampling on the metamodel: Gaussian mix-
ture ISD

In this Subsubsection, the method used to compute pπ and p f̃ , starting with a refined
metamodel G̃ is described. The pπ and p f̃ values are computed using Importance
Sampling, the instrumental PDF hN being chosen as a mixture of Gaussians as follows:

hN (x ) =
K IS
∑

k=1

αIS
k fN (µIS

k ,ΣIS
k )
(x ), (III.13)

where αIS
k ∈ [0,1] are weights such that

∑K IS

k=1α
IS
k = 1, fN (µIS

k ,ΣIS
k )

denotes the PDF
of the Gaussian vector centered in µIS

k ∈ R
n with a covariance matrix ΣIS

k ∈ R
n×n.

Note that a suitable estimation of {αIS
k , µIS

k ,Σk}k is the key of the efficiency of this
method, resumed in Algorithm III.4. In a nutshell, failure points X − are sampled using
step 5 of Algorithm III.3 and classified in K ini t groups. Centroids of these groups are
iteratively used as the seed of the unimodal MCMC sampler, in order to sample points
following the quasi-optimal ISD h∗

π
, in all failure regions.

These samples are again classified in K IS groups, from which the empirical weight,
mean and covariance are estimated and used as the Gaussian mixture parameters.

Algorithm III.4 Empirical estimation of {αIS
k , µIS

k ,Σk}k
Input: K ini t , K IS, G̃
Output: {αIS

k , µIS
k ,Σk}k∈[[1,K IS]]

22 Sample failure points X − according to G̃.
Run k-Means algorithm on X − and find the centroids (x−1 , ..., x−K ini t ).

23 for k = 1, K ini t do
24 Sample SMC MC

k using MCMC: the target PDF is h∗
π
, the seed is x−k .

25 Run k-Means algorithm on
K
⋃

k=1
SMC MC

k so it is classified in K IS sets (S IS
1 , ...,S IS

K IS).

∀k ∈ [[1, K IS]], µIS
k and Σk are defined respectively as the empirical mean and the

empirical covariance of S IS
k . αIS

k is defined as the empirical weight
#S IS

k

#
K IS
⋃

k=1
S IS

k

.

Using this IS method is not necessary when the estimated failure probability is rel-
atively high. Though, even in the case of very low failure probabilities, it is possible
to have sharp estimations of those quantities with a reasonable number of metamodel
evaluations. The idea behind this IS technique, is to mimic the quasi-optimal mul-
timodal ISD in order to decrease the required number of samples, with a Gaussian
mixture density which does not require any unknown parameters.

The resulting computations provide the estimations of p̂π and p̂ f̃ , the correspond-
ing variance estimations σ̂2

pπ
and σ̂2

p f̃
and the coefficients of variation δ̂pπ and δ̂p f̃

.

The p̂ f̃ value can be used as a good estimation of p f , but an error bound cannot be
provided. However, it is in practice a very good estimation.
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This IS procedure, aimed to provide the estimation of p̂ f̃ based on a sampling tech-
nique applied to the metamodel, shares the same objective of the following metamodel-
based methods, once the metamodel is refined: AK-IS, KAIS, MetaAK-IS2, AK-SS. It
aims to decrease the number of metamodel evaluations when the expected failure
probability is very low.

III–3.3 Importance Sampling on the performance function: quasi-
optimal ISD

In order to have a statistically consistent error for p̂ f , the instrumental PDF h∗
π
(x ) =

π(x) fX(x )
pπ

is used, and two estimators based on this quasi-optimal ISD are considered.

III–3.3.1 Importance Sampling Estimator

This estimator is the one used in the second step of the metaIS [Dubourg et al., 2013].
The failure probability is re-written as:

p f =

∫

Rn

1G<0(x )
fX(x )
h∗
π
(x )

h∗
π
(x )dx

= pπ

∫

Rn

1G<0(x )
π(x )

h∗
π
(x )dx

p f = pπαπ, (III.14)

where απ = Eh∗π

�

1G<0(X)
π(X)

�

is a correction factor. Its estimator α̂π is evaluated using
the importance sampling method described in Subsection III–2.2, with the instrumen-
tal PDF h∗

π
, regardless of the constant pπ. The points are sampled using the multimodal

MCMC Metropolis Hastings sampler, initializing the seed and the covariances by using
the empirical quantities {αIS

k , µIS
k ,Σk}k. The variance estimator σ̂2

απ
and the coefficient

of variation δ̂απ are also estimated (Eq. II.30).
A first unbiased estimator of p f , as referred in the following to p̂ f , provided by IS,
reads

p̂ f = p̂πα̂π. (III.15)

Its variance estimator reads

σ̂2
f = E[p̂

2
π
α̂2
π
]− p̂2

f

= E[p̂2
π
]E[α̂2

π
]− p̂2

π
α̂2
π

= (σ̂2
pπ
+ p̂2

π
)(σ̂2

απ
+ α̂2

π
)− p̂2

π
α̂2
π

σ̂2
f = σ̂

2
pπ
σ̂2
απ
+ σ̂2

pπ
α̂2
π
+ p̂2

π
σ̂2
απ

, (III.16)

III–3.3.2 Control Variate/Importance Sampling estimator

A novel estimator based on a combination between Control Variate and IS methods is
presented. The failure probability is re-written as:
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p f = E[1G̃<0(X)] +

∫

Rn

{1G<0(x )− 1G̃<0(x )}
fX(x )
h∗
π
(x )

h∗
π
(x )dx

= p f̃ + pπηπ, (III.17)

where ηπ = Eh∗π

�

1G<0(x )−1G̃<0(x )
π(x )

�

.
Its estimator η̂π is evaluated using the importance sampling method described in Sub-
section III–2.2, with the instrumental PDF h∗

π
, similarly to the estimation of α̂π. The

variance estimator σ̂2
ηπ

and the coefficient of variation δ̂ηπ are also given in a similar
pattern. Let set επ = pπηπ. The idea is to compute accurate estimations of p f̃ and pπ
using only metamodel evaluations. A correction constant επ is then computed using
performance evaluations in order to obtain a unbiased estimation of p f . An unbiased
estimator of επ is given by

ε̂π = p̂πη̂π. (III.18)

Its variance estimator is given by

σ̂2
επ
= σ̂2

pπ
σ̂2
ηπ
+ σ̂2

pπ
η̂2
π
+ p̂2

π
σ̂2
ηπ

. (III.19)

An unbiased estimator of p f , referred in the following as p̂ f and provided by
CV+IS, reads

p̂ f = p̂G̃ + ε̂π, (III.20)

where its variance estimator is

σ̂2
f = σ̂

2
p f̃
+ σ̂2

επ
, (III.21)

and its coefficient of variation is defined by:

δ̂2
f =

σ̂2
f

p̂2
f

. (III.22)

Since the points required for the estimation of ηπ and απ are the same, it is possible
during this step to compute with the same points two unbiased estimators (IS and
CV+IS) for p f , and then select the one that returns the lowest coefficient of variation.

III–3.4 Parameters tuning

In this Subsection, general recommendations are provided for the choice of parame-
ters used in Subsections III–3.1 III–3.2 III–3.3, which are resumed in Table V.1.

Concerning the MCMC parameters (N min
MC MC , tMC MC), multimodal MCMC Algorithm

III.2 is used in Subsection III–3.3 to sample from the quasi-optimal ISD in order to
compute the unbiased estimation. To avoid correlations between samples [Dubourg
et al., 2013], the so-called burn-in and thinning procedures are used. The first N min

MC MC
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samples are eliminated. One sample every tMC MC states of the chain is retained (say
N min

MC MC = 104 [Cadini et al., 2015] and tMC MC = 10 [Dubourg et al., 2013]).

Besides, for the metamodel refinement strategy (Algorithm III.3) and the estima-
tion of Gaussian mixture ISD parameters (Algorithm III.4), the MCMC sampling Al-
gorithm III.1 is used, where correlations between samples have a low impact. The
value of the parameters N min

MC MC , tMC MC can be decreased to reduce the computational
burden. Running MCMC is moderately costly, since it only involves metamodel evalu-
ations (although the cost can be relevant when increasing N min

MC MC and tMC MC).

For the number of clusters (K ini t , K IS, K), it is suggested to select K ini t = K IS = K ,
where K is the maximum number of expected failure regions, based on the experience
of the user with respect to the problem of interest.

The parameters related to the DOE size (N MAX
DOE , N MAX

loop ) should be selected based on
a maximal computational budget available.

The choice of the initial sampling size m0 can be selected by using m0 = 5n, n
being the stochastic space dimension.
The parameters amin, amax , rmax represent how far from the standard space’s center, the
performance function G should be evaluated. The following settings are suggested:

β =− amin = amax = rmax ,

pM IN
f =Φ(−β), (III.23)

where β represents the Hasofer-Lind’s reliability index used in FORM estimation
[Ditlevsen, 1979], associated to pM IN

f , a lower bound for the expected failure proba-
bility p f .

In the metamodel refinement strategy (Algorithm III.3) and the computation of the
Gaussian mixture ISD parameters (Algorithm III.4), Nγ samples drawn from N (0,γId)
are required. Higher values of γ should permit to have samples more distant from the
standard space center, with a reasonable value for Nγ, say 106.

A heuristic method to select γ is based on the computation of p f̃ using IS with a
PDF equal to fN (0,γId ), where the objective is to minimize the associated CoV estimator,
denoted as δ̂G̃,γ. Based on this heuristic, the optimal choice γ∗ reads

γ∗ = arg min
γ

δ̂G̃,γ. (III.24)

Since only a gross estimation of γ is necessary, the following Monte-Carlo based
algorithm is proposed1:

1. Generate {γi}i uniformly in [1,9].

2. Compute p f̃ and the associated CoV estimator δ̂G̃,γi
using IS with Nγ samples

drawn from a PDF equal to fN (0,γi Id ). It involves Nγ metamodel evaluations for
each δ̂G̃,γi

estimation.

3. Select γ∗ = arg min
γi

δ̂G̃,γi

1Classic unconstrained derivative-free optimization methods could also be used.
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N min
MC MC tMC MC K m0 amin rmax amax Nγ γ

104 10 5 5n −β β β (Eq III.23) 106 γ∗ (Eq III.24)

Table III.1 Tuning Parameters

III–4 Numerical results

In this Section, several numerical examples introduced in Subsection II–3.5 are treated
in order to illustrate the efficiency of the proposed method. The recommended tuning
parameters described in Table V.1 are systematically used, except if explicitly men-
tioned. The proposed method is compared to those ones providing an unbiased estima-
tion and to others including metamodel-based construction, where only an estimation
of the failure probability based on the metamodel is provided. Comparisons in terms
of accuracy and computational costs are illustrated on resuming tables. In particular,
the first part of the tables shows the p f estimation and associated errors based only
on the metamodel, including the number of calls done on the performance function
in order to construct the metamodel. For computing p f̃ , the current practice consists
in using Monte Carlo Sampling (MCS) directly on the metamodel. In this study, it is
shown how to use IS (see Subsection III–3.2) with the Gaussian mixture density as the
ISD in order to obtain a sharp estimation of p f̃ in a reasonable number of metamodel
calls. The second part of the tables shows the results based on the unbiased methods,
including the total number of calls done on the performance function. Moreover, in
order to assess the method, results are compared to a reference value, provided by
MCS. Its variance estimation provides a 3 − σ prediction interval in which the true
failure probability p f should lie. When p f is very low, since a very large number of
MCS points are necessary, this 3 −σ interval should still be quite large. In order to
reduce it, and to obtain a more precise 3−σ prediction interval, the IS method men-
tioned in Subsection III–3.2 using a Gaussian mixture density as the ISD to compute
the reference value very accurately is again handled, until the associated coefficient
of variation is below 0.10%. This method is labeled with Perf + IS in the tables.
In the papers where comparisons are provided, as for instance in [Cadini et al., 2014]
[Echard et al., 2011] [Echard et al., 2013], methods returning an unbiased failure
probability estimation aim generally a CoV target of 5%. In the following cases, this
accuracy is most of the time attained (once the metamodel is built), by computing the
unbiased estimators with only the first two hundred (200) performance calls. As a
consequence, results for a CoV target of 1% are shown.

III–4.1 Single failure region 2D

The 2D analytic example taken from [Echard et al., 2013] [Cadini et al., 2014] char-
acterized by a low failure probability (p f ∼ 3× 10−5), a very smooth limit state and a
single failure region, and introduced in Subsubsection II–3.5.1 is first considered.

Figure III.3 illustrates how well the limit-state branch is approximated by the meta-
model. Nine points are adaptively added, in order to fit the limit-state branch. The
quasi-optimal ISD h∗

π
seems to accurately approximate the optimal ISD h∗f , and π(x ),

to be an accurate surrogate for 1G̃<0(x ). In Table III.2, we compare the results with
those ones reported in [Cadini et al., 2014], based on the following methods: Crude
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MC, FORM, FORM+IS, AK-IS, MetaAK-IS2. MetaAL-OIS method, based only on G̃, re-
turns a very good result, with a number of calls similar to the other metamodel-based
methods, though with a much lower CoV, i.e. δ̂p f̃

. Indeed, applying the IS method de-
scribed in Subsection III–3.2 using a Gaussian mixture density as the ISD, it is possible
to have a very accurate estimation of p f̃ in less than 107 metamodel calls. This remark
applies systematically to each test-case presented in this Section III–4. Concerning the
unbiased estimation, a reference solution is computed again using a Gaussian mixture
density as the ISD (labeled as Perf+IS in the table). In this case, a coefficient of vari-
ation of 0.10% is attained on the computation of a low probability p f = 2.87× 10−5

in only 1.05×106 evaluations. To reach the same accuracy, Crude MC method would
require around 3× 1010 evaluations. As a consequence, the 3-σ interval for Perf+IS
is narrower than the one for Crude MC method, with a lower number of evaluations.
Then, it should be more accurate. Again, this behavior is observed for each test-case
presented in this Section. With the method proposed in this study, i.e. MetaAL-OIS,
only two hundred additional points are necessary in order to obtain an unbiased p f

estimation. Indeed, in this case, the metamodel is so well refined that the CV+IS es-
timator gives exactly the estimator p̂ f . It means that the estimation of the correction
constant ε̂ is zero: among the two hundred samples drawn, no one lies between the
two limit-state {G̃(x ) = 0} and {G(x ) = 0}. We outline that the attained accuracy is
very high: δ̂ f = 0.10%. We can note that the IS estimator, for the same two hundred
additional points, returns an unbiased estimation with δ̂ f = 1.31% which is already
very low, but anyway greater than the one obtained with the CV+IS estimator. Note
that the computation of the 3 − σ interval is obviously coherent with the result of
δ̂ f . Note also that the results obtained with MetaAL-OIS are coherent with the refer-
ence solution (Perf+IS), presented earlier. In FORM method, the Most Probable failure
Point (MPP) is evaluated, assuming the case of a single failure region, so an estimation
of p f is returned assuming that G is locally linear. As it can be observed, the solution
is wrong. In FORM+IS method, the standard Gaussian distribution is shifted to this
MPP and used as the ISD of an Importance Sampling method, so it is possible to obtain
an unbiased estimation of p f , but usually at a high computational cost. Finally, in this
case involving a one failure region characterized by a low probability, MetaAL-OIS is
fully satisfactory, providing an accurate metamodel at a low cost, and a highly accurate
unbiased failure probability estimation with only two hundred additional points.

Metamodel-based Estimation Unbiased Estimation
Method Ñcal ls p̂G̃ δ̂p f̃

3− σ̂p f̃
Interval Ncal ls p̂ f δ̂ f 3− σ̂ f Interval

Crude MC 5× 107 2.85× 10−5 2.64% [2.62, 3.08]× 10−5

Perf + IS 1.05× 106 2.87× 10−5 0.10% [2.86, 2.89]× 10−5

FORM 19 4.21× 10−7

FORM + IS 19+ 104 2.86× 10−5 2.39% [2.66, 2.95]× 10−5

AK-IS 26 2.86× 10−5 2.39% [2.65,3.07]× 10−5

MetaAK-IS2 28 2.87× 10−5 2.39% [2.66,3.08]× 10−5

MetaAL-OIS 19 2.87× 10−5 0.10% [2.86,2.88]× 10−5 19+ 200 2.87× 10−5 0.10% [2.86,2.88]× 10−5

MetaAL-OIS(IS) 19+ 200 2.81× 10−5 1.31% [2.70, 2.93]× 10−5

MetaAL-OIS(CV+IS) 19+ 200 2.87× 10−5 0.10% [2.86, 2.88]× 10−5

Table III.2 Comparison of the performances of the MetaAL-OIS with several algorithms
of literature[Cadini et al., 2014]: Single Failure Region 2D.
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(a) (b)

(c) (d)

Figure III.3 Single Failure Region 2D: Metamodel limit-state {G̃(x ) = 0} (dashed black
line), Exact limit-state {G(x ) = 0} (red line). (a) Contour of quasi-optimal density h∗

π
,

LHS points (blue crosses), DOE adaptively added (green square). (b) Optimal Density
function h∗G contour. (c) Gaussian Mixture Density contour hN . (d)π function contour.

III–4.2 Two Failure Regions 2D

This example deals with a case of two non-connected failure regions, featuring fail-
ure probabilities lying from around 3 × 10−3 to 9 × 10−7, according to the selected
parameter c in Equation II.53.

We consider here three cases, with c = 3,4, 5, as introduced in Subsubsection
II–3.5.2. Note that for c = 5, the case is challenging because it involves two non-
connected failure regions and a very low failure probability. Concerning the param-
eters tuning, it is unchanged for c = 3. We set rmax = 7, amin = −6 and amax = 6
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for c = 4. For the c = 5 case, we set rmax = 8, amin = −7 and amax = 7. The re-
sults in Table III.3, are compared to those one reported in [Cadini et al., 2014] based
on Crude MC, FORM, Subset, Au and Beck, Meta-IS and MetaAK-IS2 methods. As
it can be observed, MetaAL-OIS behaves systematically much better than the other
metamodel-based method available for this example (Meta-IS2) for each c. In fact,
the parameter δ̂p f̃

is much lower with much less points for building the metamodel.
Indeed, the result is always very close to the reference value, computed with Perf+IS
(considered as the reference in this study). Concerning the computation of the un-
biased estimation, it can be noted that the CV+IS and IS unbiased estimators return
similar CoV. For c = 3, 4,5, the CV+IS unbiased estimator is the one providing the low-
est CoV, at 1% for 524, 722 and 580 total performance calls, respectively. Note that
these results are systematically better than the ones given by Meta-IS, which provides
a 5% CoV with 644 total performance calls for c = 3,4, and with 2940 calls for c = 5.
With c = 3 (c = 4), consider also that CV+IS estimator returns a p̂ f = 3.37 × 10−3

(p̂ f = 8.87× 10−5) with a CoV of 2.4% (4.2%) for only 244 (268) total performance
calls. Note also that the result provided by MetaAL-OIS, is always very close to the
reference value, computed with Perf+IS (considered as the reference in this study),
and involving much less points for building the metamodel. We note that the bias in
the result given by the IS estimator is quite high for c = 5, so the 3−σ interval pre-
diction do not contain the reference value p f . In general, the CV+IS estimator is more
robust, even if sometimes the estimated error p̂ f is higher than the one provided by IS.
This example suggests that the user should always check the 3−σ interval prediction
returned by both estimator, and select the one provided by CV+IS if those intervals
are very different. With the IS method mentioned in III–3.2 using a Gaussian mixture
density as the ISD, a coefficient of variation of 0.10% is reached on the computation
of the low probability (for c = 5) p f̃ = 9.03 × 10−7 in only 9.45 × 106 metamodel
evaluations. To reach the same accuracy, MCS method would require around 1012

metamodel evaluations. Figures III.4 (resp. III.5) illustrates the limit-state branch
and the approximation with the metamodel for c = 3 (resp. c = 5). The metamodel
captures very well the failure branches. The optimal ISD h∗f seems to be very well ap-
proximated by the quasi-optimal ISD h∗

π
. The Gaussian mixture ISD mimics well the

behaviour of the quasi-optimal ISD, involving a non-zero density mostly in the failure
region, and covering the true limit-state region. Then, π(x ) is a good surrogate of
1G<0(x ) except in too distant regions, which are not interesting since characterized
by a too low density. Finally, it is worth noting that in this test-case the MetaAL-OIS
features better performances than any of the other methods considered here.

III–4.3 Four-branch series system 2D

Let us consider now a test-case with four failure regions [Cadini et al., 2014, Dubourg
et al., 2013], characterized by two MPFPs and four failure domains as introduced in
Subsubsection II–3.5.3 (u = 0). The results in Table V.3, are compared to those ones
reported in [Echard et al., 2011][Cadini et al., 2014] based on the following methods:
crude MC, FORM, DS, Subset, SMART, MetaAK-IS2 and AK-MCS+U. Compared with
the other metamodel-based methods available for this example (MetaAK-IS2 and AK-
MCS+U), it seems that MetaAL-OIS features the best performances, in terms of CoV
and global number of calls. Moreover, the result is always very close to the reference
value, involving less training points for building the metamodel. In this case, the
IS unbiased estimator returns the lowest CoV: 1% for 575 total performance calls.
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Metamodel-based Estimation Unbiased Estimation
Method Ncal ls p̂G̃ δ̂p f̃

3− σ̂p f̃
Interval Ncal ls p̂ f δ̂ f 3− σ̂ f Interval

c = 3
Crude MC 120, 000 3.35× 10−3 < 5% ⊆ [2.85,3.85]× 10−3

Perf + IS 1.3× 106 3.47× 10−3 0.10% [3.47,3.49]× 10−3

FORM 7 1.35× 10−3

Subset 300, 000 3.48× 10−3 < 3% ⊆ [3.17,3.80]× 10−3

Au and Beck 600 2.47× 10−3 8% [1.88,3.06]× 10−3

Meta-IS 44+ 600 3.54× 10−3 < 5% ⊆ [3.00,4.07]× 10−3

MetaAK-IS2 117 3.47× 10−3 < 5% ⊆ [2.94,3.99]× 10−3

MetaAL-OIS 44 3.53× 10−3 0.10% [3.52,3.54]× 10−3 44+ 480 3.46× 10−5 1.00% [3.35,3.56]× 10−5

MetaAL-OIS (IS) 44+ 480 3.52× 10−3 1.02% [3.41,3.63]× 10−3

MetaAL-OIS (CV+IS) 44+ 480 3.46× 10−3 1.00% [3.35,3.56]× 10−3

c = 4
Crude MC 4, 620,000 8.68× 10−5 < 5% ⊆ [7.38,9.98]× 10−5

Perf + IS 1.6× 106 8.99× 10−5 0.10% [8.97,9.02]× 10−5

FORM 7 3.17× 10−5

Subset 500, 000 8.34× 10−5 < 4% ⊆ [7.34,9.34]× 10−5

Au and Beck 600 6.51× 10−5 10% [4.56,8.46]× 10−5

Meta-IS 64+ 600 8.60× 10−5 < 5% ⊆ [7.31,9.89]× 10−5

MetaAK-IS2 118 8.49× 10−5 < 5% ⊆ [7.22,9.76]× 10−5

MetaAL-OIS 68 8.86× 10−5 0.10% [8.83,8.89]× 10−5 68+ 722 8.92× 10−5 1.00% [8.65,9.19]× 10−5

MetaAL-OIS (IS) 68+ 722 8.92× 10−5 1.00% [8.65,9.19]× 10−5

MetaAL-OIS (CV+IS) 68+ 722 8.88× 10−5 1.17% [8.57,9.19]× 10−5

c = 5
Crude MC 422, 110,000 9.48× 10−7 < 5% ⊆ [8.06,11.9]× 10−7

Perf + IS 1.8× 106 8.97× 10−7 0.10% [8.95,9.00]× 10−7

FORM 7 2.87× 10−7

Subset 700, 000 6.55× 10−7 < 5% ⊆ [5.57,7.53]× 10−7

Au and Beck 600 6.54× 10−7 12% [4.19,8.90]× 10−7

Meta-IS < 5% 40+ 2900 9.17× 10−7 < 5% ⊆ [7.80,10.5]× 10−7

MetaAK-IS2 236 8.16× 10−7 < 5% ⊆ [6.94,9.38]× 10−7

MetaAL-OIS 84 9.03× 10−7 0.10% [9.00,9.05]× 10−7 84+ 496 8.91× 10−7 1.00% [8.64,9.18]× 10−7

MetaAL-OIS (IS) 84+ 496 9.61× 10−7 1.28% [9.24,9.98]× 10−7

MetaAL-OIS (CV+IS) 84+ 496 8.91× 10−7 1.00% [8.64,9.18]× 10−7

Table III.3 Comparison of the performances of the MetaAL-OIS with several algorithms
of literature[Cadini et al., 2014]: Two Failure Regions 2D.

Consider that with 269 total performance calls, it gives a p̂ f = 2.17×10−3 with a CoV
of only 3.1%. Finally, note that MetaAL-OIS provides the best unbiased estimation
with respect to the other methods considered here. The capability of the metamodel to
capture the limit-state region is illustrated in Figure III.6. The parameters K , K IS, K ini t

are fixed at 5, which is higher than the true number of failure regions. We note that
the Gaussian mixture ISD has five centers, of which two are located in one branch.
Again, the surrogate π is well approximated except for distant regions characterized
by negligible densities. The DOE used for the metamodel is well focused on the failure
branches. The optimal ISD h∗f seems to be very well approximated by the quasi-optimal
ISD h∗

π
.

Metamodel-based Estimation Unbiased Estimation
Method Ncal ls p̂G̃ δ̂p f̃

3− σ̂p f̃
Interval Ncal ls p̂ f δ̂ f 3− σ̂ f Interval

Crude MC 781, 016 2.24× 10−3 2.23% [2.09, 2.39]× 10−3

Perf + IS 2× 106 2.22× 10−3 0.10% [2.21, 2.23]× 10−3

FORM 7 1.35× 10−3

DS 1800 2.22× 10−3

Subset 600, 000 2.22× 10−3 1.5% [2.12, 2.32]× 10−3

SMART 1035 2.21× 10−3

MetaAK-IS2 138 2.22× 10−3 1.7% [2.11, 2.33]× 10−3

AK-MCS+U 96 2.23× 10−3

MetaAL-OIS 69 2.21× 10−3 0.10% [2.20,2.22]× 10−3 69+ 506 2.21× 10−3 1.00% [2.15,2.23]× 10−3

MetaAL-OIS (IS) 69+ 506 2.21× 10−3 1.00% [2.15, 2.23]× 10−3

MetaAL-OIS (CV+IS) 69+ 506 2.21× 10−3 1.22% [2.13, 2.29]× 10−3

Table III.4 Comparison of the performances of the MetaAL-OIS with several algorithms
of literature[Cadini et al., 2014]: Four-Branch seried 2D (u= 0).
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(a) (b)

(c) (d)

Figure III.4 Two Failure Regions 2D - c = 3: Metamodel limit-state {G̃(x ) = 0} (dashed
black line), Exact limit-state {G(x ) = 0} (red line). (a) Contour of quasi-optimal
density h∗

π
, LHS points (blue crosses), DOE adaptively added (green square). (b)

Optimal Density function h∗G contour. (c) Gaussian Mixture Density contour hN . (d)
π function contour.

III–4.4 2D analytic "tricky" example with multiple failure regions:
modified Rastrigin function

This test-case deals with a highly non-linear function involving non-convex and non-
connected domains of failure (i.e. "scattered gaps of failure"), introduced in section
III–4.4. This example is tricky because of the numerous number of failure regions.
However, they are close to each other, and the failure probability is relatively high.
In this test-case, the tuning parameters K , K IS and K ini t are fixed at 50. Table III.5
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(a) (b)

(c) (d)

Figure III.5 Two Failure Regions 2D - c = 5: Metamodel limit-state {G̃(x ) = 0} (dashed
black line), Exact limit-state {G(x ) = 0} (red line). (a) Contour of quasi-optimal
density h∗

π
, LHS points (blue crosses), DOE adaptively added (green square). (b)

Optimal Density function h∗G contour. (c) Gaussian Mixture Density contour hN . (d)
π function contour.

illustrates the comparison between MetaAL-OIS and the methods reported in [Cadini
et al., 2014]: crude MC, FORM, AK-MCS and MetaAK-IS2. It can be observed that
MetaAL-OIS behaves better than the other metamodel-based methods available for
this example (MetaAK-IS2 and AK-MCS). In fact, a lower CoV is associated to a lower
number of functional evaluation as well. Moreover, the result is very close to the
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(a) (b)

(c) (d)

Figure III.6 Four-Branch seried 2D (u= 0): Metamodel limit-state {G̃(x ) = 0} (dashed
black line), Exact limit-state {G(x ) = 0} (red line). (a) Contour of quasi-optimal
density h∗

π
, LHS points (blue crosses), DOE adaptively added (green square). (b)

Optimal Density function h∗G contour. (c) Gaussian Mixture Density contour hN . (d)
π function contour.

reference value. In this case, the CV+IS unbiased estimator returns the lowest CoV,
i.e. 0.10% for 351 total performance calls, while the IS estimator features a worse
performance (i.e. 2.15% for the same 351 calls).

As done in the other test-cases, we then compare the limit-state region and the
metamodel behavior (see Figure III.7). Also in this challenging case, very good per-
formances are observed. In particular, the metamodel is able to capture and represent
several domains of failure.
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Metamodel-based Estimation Unbiased Estimation
Method Ncal ls p̂G̃ δ̂p f̃

3− σ̂p f̃
Interval Ncal ls p̂ f δ̂ f 3− σ̂ f Interval

Crude MC [Cadini et al., 2014] 25, 000 7.43× 10−2 2.23% [6.93,7.93]× 10−2

Perf + IS 1.3× 106 7.29× 10−2 0.10% [7.27,7.32]× 10−2

FORM 20 6.83× 10−6

AK-MCS 391 7.43× 10−2 2.23% [6.93, 7.93]× 10−2

MetaAK-IS2 480 7.35× 10−2 2.5% [6.80, 7.90]× 10−2

MetaAL-OIS 151 7.31× 10−2 0.10% [7.28,7.33]× 10−2 151+ 200 7.31× 10−2 0.10% [7.28,7.33]× 10−2

MetaAL-OIS (IS) 151+ 200 7.11× 10−2 2.15% [6.65,7.57]× 10−2

MetaAL-OIS (CV+IS) 151+ 200 7.31× 10−2 0.10% [7.28,7.33]× 10−2

Table III.5 Comparison of the performances of the MetaAL-OIS with several algorithms
of literature[Cadini et al., 2014]: Modified Rastrigin function.

III–4.5 Response of a non-linear Oscillator 6D

This test-case is a problem with six random variables in the physical space. The per-
formance function is smooth with respect to the considered inputs. It consists of a
non-linear undamped single degree of freedom system [Echard et al., 2011], as intro-
duced in section II–3.5.6. The difficulty here comes from the relatively high dimension
of the problem, adding to the fact that the input variable belong to the physical space.
The proposed approach MetaAL-OIS is compared to MCS and other metamodels based
methods [Echard et al., 2011]; only the ones that returned a fairly good estimation
of p f are mentioned. Note that C.O.V are not available in [Echard et al., 2011] for
the computation associated to p f̃ , estimated with metamodel-based methods, so not
quoted in Table III.6. MetaAL-OIS metamodel requires 70 performance evaluations,
which is slightly more than for the AK-MCS+EFF (only 45), with a very good accu-
racy. In fact, the CoV is 0.10% for MetaAL-OIS metamodel, which is very low. Finally,
performances of the MetaAL-OIS method seem very good also in this case, even if a
proper comparison can not be done since only partial data about the performances of
the other methods are available. Concerning the unbiased estimation, note that only
228 additional evaluations lead to a sharp unbiased estimation with δ̂ f = 1%. Again,
MetaAL-OIS gives very satisfactory results with respect to other methods, for a low
computational effort.

Metamodel-based Estimation Unbiased Estimation
Method Ncal ls p̂G̃ Ncal ls p̂ f δ̂ f 3− σ̂ f Interval
MCS 70, 000 2.834× 10−2 2.2% [2.647,3.021]× 10−2

Perf + IS 2.9× 106 2.856× 10−2 0.10% [2.846,2.865]× 10−2

AK-MCS+U 58 2.834× 10−2

AK-MCS+EFF 45 2.851× 10−2

DS + Neural Network 86 2.8× 10−2

Importance Sampling (IS) 6144 2.7× 10−2

IS + Response Surface 109 2.5× 10−2

IS + Spline 67 2.7× 10−2

IS + Neural Network 68 3.1× 10−2

MetaAL-OIS 70 2.847× 10−2 70+ 228 2.848× 10−2 1.00% [2.763,2.934]× 10−2

MetaAL-OIS (IS) 70+ 228 2.848× 10−2 1.00% [2.763,2.934]× 10−2

MetaAL-OIS (CV+IS) 70+ 228 2.880× 10−2 1.16% [2.781,2.981]× 10−2

Table III.6 Comparison of the performances of the MetaAL-OIS with several algorithms
of literature[Echard et al., 2011]: Non-Linear Oscillator 6D.
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(a) (b)

(c) (d)

Figure III.7 Modified Rastrigin function: Metamodel limit-state {G̃(x ) = 0} (dashed
black line), Exact limit-state {G(x ) = 0} (red line). (a) Contour of quasi-optimal
density h∗

π
, LHS points (blue crosses), DOE adaptively added (green square). (b)

Optimal Density function h∗G contour. (c) Gaussian Mixture Density contour hN . (d)
π function contour.

III–5 Conclusion

In this Chapter, we have proposed a metamodel-based method for the computation
of tail probabilities, suitable for very low probability and/or multiple failure regions,
also able to return an accurate unbiased estimation of the failure probability with few
additional performance function calls. In particular, we have proposed a significant
improvement of the Meta-IS algorithm developed by Dubourg [Dubourg et al., 2013].



96
Chapter III. Novel algorithm using Active Metamodel Learning and Importance

Sampling: Application to multiple failure regions of low probability

The main improvement is obtained by modifying the metamodel construction, suitable
for multiple failure regions and very low failure probability. Moreover, we have also
described and assessed a method allowing to reduce significantly the number of meta-
model calls, when estimating the failure probability from the metamodel (which can
be very large if p f is very low), with respect to MCS. Indeed, the metamodel construc-
tion and the Gaussian mixture IS method can be an accurate and a general alternative
to AK-MCS, MetaAK-IS2, KAIS and AK-SS. In fact, it provides a surrogate-based anal-
ysis, using the metamodel instead of the original limit-state function, dealing with
multiple failure regions and low probability.

Additionally, to obtain an unbiased failure estimation, we have used directly the
second part of the Meta-IS [Dubourg et al., 2013], involving MCMC sampling, and
proposed another unbiased estimator. It is slightly different and does not induce ad-
ditional computations. In some cases, it can further significantly reduce the number
of performance function calls. Among methods returning an unbiased estimation, we
have shown MetaAL-OIS permits a lower computational cost for a better accuracy.

The proposed method has been tested until 6 uncertainties. We expect that this
could be efficient for even higher (moderate) dimensions, but in this case maybe a
more efficient MCMC algorithm should be considered.

We have shown the ability of the method to deal with very low probability and mul-
tiple failure regions by performing several test-cases. The construction of the meta-
model requires in general significantly less computational calls than other metamodel-
based methods, and preserves the global accuracy.
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Overview This Chapter presents an extreme version of AK-MCS [Schöbi et al.,
2016] for the computation of very small failure probabilities (say ∼ 10−5 − 10−9),
named extreme Active Kriging-Monte Carlo Sampling (eAK-MCS). It consists
mainly of reformulating the MCS-based samples generation and failure probability
estimation. Indeed a centered uncorrelated Gaussian distribution, whose standard
deviation is iteratively tuned, is used to generate the samples and its distribution is
selected as the so-called biasing distribution of the IS method to estimate the failure
probability on the surrogate. It indeed reduces the number of samples that would be
not tractable with a MCS-based method in the case of very small failure probability.
Note however that unlike AK-MCS [Schöbi et al., 2016], the proposed method
requires to work in the standard space, resorting if necessary to an isoprobabilistic
transformation.

IV–1 Introduction

The problem of estimating a probability of failure p f is considered, defined as the
volume of the excursion set of a complex (e.g. output of an expensive-to-run finite
element model) scalar performance function J below a given threshold, under a prob-
ability measure that can be recast as a multivariate standard Gaussian law using an
isoprobabilistic transformation. We propose a method able to deal with cases char-
acterized by multiple failure regions, possibly very small failure probability p f (say
∼ 10−5 − 10−9), and when the number of evaluations of J is limited. The present
work is an extension of the popular Kriging-based active learning algorithm known as
AK-MCS, as presented by Schobi and Sudret (2016), permitting to deal with very low
failure probabilities. The key idea merely consists in replacing the Monte-Carlo sam-
pling, used in the original formulation to propose candidates and evaluate the failure
probability, by a centered isotropic Gaussian sampling in the standard space, whose
standard deviation is iteratively tuned. This extreme AK-MCS (eAK-MCS) inherits its
former multi-point enrichment algorithm allowing to add several points in parallel in
each iteration and, due to the Gaussian nature of the surrogate, to estimate a failure
probability range at each iteration step.

To evaluate failure probabilities that would need more memory than available RAM
with standard AK-MCS, the so-called AK-MCSi [Lelièvre et al., 2018] proposes to split
the large MC population into several populations of smaller sizes and thus to perform
sequential MC simulation. It also introduces a multipoint enrichment strategy similar
to AK-MCS [Schöbi et al., 2016] and an original stopping criterion suitable when the
probability of failure is MCS-based. However, in cases of very small failure probability,
the method still requires a considerable number of metamodel evaluations (as in AK-
MCS), with a rather significant coefficient of variation, which is partially cured by the
method proposed in this study, i.e. eAK-MCS. Note that both AK-MCSi and eAK-MCS
aims at refining directly the so-called Limit State Surface, while, among metamodel-
based methods suitable for very small failure probability, the BSS [Bect et al., 2017]
adaptively improves the surrogate accuracy corresponding to intermediate thresholds
to avoid failure domains. Numerical experiments conducted with unfavorable initial
Design of Experiment suggests the ability of the proposed method, to detect failure
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domains. One compelling advantage of eAK-MCS over BSS lies in the fact that AK-MCS
(more specifically, its refinement strategy) has been adapted to other fields [Lelièvre
et al., 2018] such as quantile estimation [Schöbi et al., 2016] and (quantile-based)
optimization under uncertainty [Moustapha et al., 2016]. As a consequence, eAK-
MCS could enable the adaptation of those methodologies associated to very small
probabilities.

The failure probability problem consists in estimating p f defined as:

p f = P(G(X)≤ u) = E[1G<u(X)] =

∫

Rd

1G<u(x ) fX(x )dx , (IV.1)

where X ∼N (0, Id) is the standard normal random vector of Rd , described by its PDF
fN (0,Id ). 1G<u being the indicator function such that 1G<u = 1 for G < u and 1G<u = 0
otherwise.

The presentation is structured as follows. In Section IV–2, the proposed algorithm,
i.e. extended AK-MCS (eAK-MCS), is described. Numerical experiments illustrating
the method are presented in Section IV–3 to illustrate its efficiency. Conclusions are
finally drawn in Section IV–4.

IV–2 The eAK-MCS Algorithm

The eAK-MCS algorithm aims at building a Kriging-based surrogate, refining it itera-
tively in the LSS {G(x ) = u}, and estimating the predicted failure probability p̂ f̃ as an
approximation of p f .

The main steps can be summarized as follows (similarly to AK-MCS [Schöbi et al.,
2016]):

1. Initial DoE: An experimental design X is generated by Latin-Hypercube Sam-
pling (LHS) (See Subsubsection II–3.2).

2. Metamodel Update: The exact response Y of the exact performance function G is
carried out on X . The metamodel is calibrated based on {X ,Y} (See Subsection
II–3.3), using Kriging (Section I–2). The key parameter γ is then automatically
tuned (See Subsection II–3.4).

3. Candidates: A set of NC candidate points S is generated (See Subsection IV–2.2).

4. Selection Step: The selection step determines the sample(s) x ∗ to be added to the
experimental design: X ← {X , x ∗} (See Subsection IV–2.3).

5. Stopping Criterion: If a stopping criterion is satisfied (See Subsection V–3.3),
the enrichment stops. The failure probability is estimated using IS on the meta-
model. Otherwise the algorithm goes back to step 3.

W.r.t. the AK-MCS algorithm as presented in [Schöbi et al., 2016], the fundamental
difference lies in the generation of candidate points (Step 3) and is the main contri-
bution of the method. The candidate selection procedure and the stopping criterion,
described respectively in Step 4 and 7 are inspired mainly from [Schöbi et al., 2016]
but slightly modified and suggested here to improve the efficiency of the proposed al-
gorithm. Finally, in Subsection IV–2.5, some typical values for the tuning parameters
are indicated.
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IV–2.1 Model Accuracy

A Kriging surrogate of G is built (see Section I–2 and Subsection II–3.2). Taking into
account for the prediction uncertainty in the Kriging model, we define [Schöbi et al.,
2016, Dubourg, 2011] the lower {x ∈ Rd : µĜ(x )− kσĜ(x ) = u} and upper {x ∈ Rd :
µĜ(x ) + kσĜ(x ) = u} boundaries of the predicted LSS {x ∈ Rd : µĜ(x ) = u}, where
k sets the confidence level, (typically 1.96 = Φ(97.5%)). Analogously, the lower and
upper bounds, and predicted failure domains are defined as:

D(k)−f = {x ∈ Rd : µĜ(x ) + kσĜ(x )< u}

D(k)+f = {x ∈ Rd : µĜ(x )− kσĜ(x )< u}

D0
f = {x ∈ R

d : µĜ(x )< u}, (IV.2)

with D(k)−f ⊂ D0
f ⊂ D(k)+f . The predicted failure probability p f̃ and its lower and

upper bounds, resp. p(k)−
f̃

and p(k)+
f̃

are defined as:

p(k)−
f̃
= P(µĜ(X) + kσĜ(X)< u) =E[1µĜ+kσĜ<u(X)]

p(k)+
f̃
= P(µĜ(X)− kσĜ(X)< u) =E[1µĜ−kσĜ<u(X)]

p f̃ = P(µĜ(X)< u) =E[1µĜ<u(X)]. (IV.3)

The so-called Limit State Margin (LSM) M(k)f = D(k)+f \D(k)−f [Schöbi et al., 2016,
Dubourg, 2011] is a natural region where to focus the design enrichment. In the
following, for a given set of samples S = {x1, ..., xN}, S(k) = S ∩M(k)f denotes samples

in S belonging to the LSMM(k)f , containing points of interest for enrichment among S,
since they should lie close to the true limit state surface. Note that S(k) can be empty
for a given set S.

IV–2.2 Candidates Generation

Using MC samples as candidates points as in the original AK-MCS algorithm [Echard
et al., 2011, Schöbi et al., 2016] is not suitable when p f is very small: possibly only
a few of them would lie in the LSM M(k)f . To tackle this issue, samples are generated
from the centered uncorrelated multivariate Gaussian N (0,γ2Id) , where the choice
of γ ¾ 1 is discussed in Subsection II–3.4. Too distant samples from the center are
discarded. This step is summarized below (Algorithm IV.1).

Algorithm IV.1 Candidates Generation
Input: NC , rmax , p, γ
Output: Set S of NC samples

26 Generation of pNC samples {x1, ..., xpNC
} iid∼N (0,γ2Id).

Discard Distant samples: I = {i ∈ [1, pNC] s.t. ‖x i‖2 < rmax} = {i1, ..., i|I |} with
ik < ik+1 and |I |¾ NC . (If not, increase p).
Candidate: S = {x i1 , ..., x iNC

}.
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IV–2.3 DoE Selection

Considering a set S of candidate points as described in Algorithm IV.1, we follow a
strategy very similar to [Schöbi et al., 2016] to select the point(s) to be added to the
DoE.

IV–2.3.1 Single Sample Selection: Single eAK-MCS

Due to the underlying Gaussian nature of the metamodel, to each sample x ∈ Rd

corresponds the so-called probability of misclassification Pm(x ) defined as the non-
zero probability that the Gaussian predictor Ĝ(x ) > u (safe) while the prediction
mean µĜ(x )< u (failure) or viceversa. It can be written as [Bect et al., 2012]:

Pm(x ) = Φ
�

−
|µĜ(x )− u|
σĜ(x )

�

. (IV.4)

The so-called U-function U is then defined as the reliability index linked to the
probability of misclassification Pm [Cadini et al., 2015, Echard et al., 2011, Schöbi
et al., 2016]:

U(x ) =
|µĜ(x )− u|
σĜ(x )

. (IV.5)

Similarly to AK-MCS, the sample used to enrich the DoE among the candidates S
is the one minimizing the U-function, thus maximizing its probability of being mis-
classified:

x ∗ = arg min
x∈S

U(x ) = arg max
x∈S

Pm(x ). (IV.6)

IV–2.3.2 Multiple Sample Selection

If parallel computing is available, and (K + 1) samples can be added simultaneously
to the DoE, the following strategy is proposed, largely inspired from [Schöbi et al.,
2016]:

1. One sample x ∗0 is selected among S following the single eAK-MCS selection (Eq.
IV.6).

2. K samples (x ∗1 , ..., x ∗K) are simultaneously selected among the margin set S(k)

belonging to the LSM M(k)f , using a clustering technique [Schöbi et al., 2016]
detailed hereafter for a sake of clarity. If this method returns only K1 < K sam-
ples (K1 = 0 possibly), then the very same method is applied to the extended set
S to provide the remaining K − K1 samples.

3. To avoid samples too close to each other (for preventing metamodel training is-
sues), a filtering procedure is performed on the selected samplesX ∗ = (x ∗0 , ..., x ∗K),
removing too close points: if ‖x ∗i − x ∗j ‖2 < TOL, x ∗j is discarded from X ∗, TOL
being an user-defined parameter.
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Weighted K-means Algorithm Let A = (x1, ..., xP) denote a sample set, that can
be either S or S(k). In step 2, a weighted K-means clustering algorithm is used [Zaki
et al., 2014] for accounting for the importance of the samples in A. The weights are
set to the probability of misclassification (Eq. V.27) of each sample x ∈ A, bounded
on [0, 0.5] by definition. The K samples are then selected as the clusters’ centroids.
More specifically, this clustering technique aims at minimizing the total cluster vari-
ance defined as:

VA =
K
∑

j=1

∑

l\il= j

‖x ∗j − x l‖2, (IV.7)

where il = argmin
j∈¹1,Kº

‖x ∗j − x l‖2, indicates the index of the closest centroid x ∗il to a

sample x l . {x ∗j } j denote the K weigthed centroids defined as

x ∗j =
1

∑

l\il= j
ωl

∑

l\il= j

ωl x l , (IV.8)

where ωl = Pm(x l) [Schöbi et al., 2016] is the weight associated to the sample x l .

Note that in AKMCSi [Lelièvre et al., 2018], the chosen weights are ωl =
1

U2(x l)
,

with x →
1

U2(x )
and x → Pm(x ) having the same monoticity.

Setting ωl = 1 for all samples leads to the definition of the regular centroids, and
by extension, to the regular K-means algorithm. The weighted K-means algorithm is
summarized in Algorithm IV.2.

Remark The set of candidate points S(k) belonging to the LSM M(k) can contain less
than K samples, possibly being empty. This fact explains why a point in S maximizing
the U-function is also selected.

Algorithm IV.2 Weighted K-means Algorithm [Schöbi et al., 2016].
Input: samples A= (x1, ..., xP), TOL, N MAX , Pm, K
Output: K centroids (x ∗1 , ..., x ∗K)

27 If P < K , return A.
Centroids Initialization C(0) = (x (0)1 , ..., x (0)K ): Regular K-means (or Random).
n=0 ; err=1 ;
while n< N MAX and er r > TOL do

28 n← n+ 1
Assign a cluster il to each sample x l: ∀l ∈ [1, P], il = argmin

j∈¹1,Kº
‖x ∗j − x l‖2

Update Weigthed centroids C(n): Equation IV.8.

Update Error: er r =
K
∑

j=1
‖x (n)j − x (n−1)

j ‖2

29 Return C(n)
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Illustrative example To showcase the process of selecting multiple additional sam-
ples, we consider the four-branch series example introduced in Subsubsection II–
3.5.3, i.e. a 2D test-case characterized by two MPFPs and four failure regions, with
a p f ∼ 5.596 × 10−9 and initialized with a DoE of size 10. The process of selecting
K + 1= 8 samples (resp. K + 1= 64) is illustrated in Figure IV.1 (resp. Figure IV.2).

In Figures IV.1 (a) and IV.2 (a), the small black dots indicate the candidate points S
among which a single point minimizing the U-function is selected (purple diamond).
The candidates points of S(k) belonging to the LSM M(k) and extracted from S are
indicated in small black dots in Figures IV.1 (b) and IV.2 (b), where selected samples
(weighted centroids from the clustering technique Algorithm IV.2) are indicated in red
squares. The set S(k) contains less points focused on the LSM (exploitation), while the
point selected among the set S has an exploratory role.

(a) Single Selection (S) (b) Parallel Selection (S(k)) (c) Selected DoE

(d) Metamodel Updated (e) Selected DoE(Pm) (f) Metamodel Updated(Pm)

Figure IV.1 Illustration of the parallel refinement strategy: Selection of K + 1 = 8
samples. Four-branch series system 2D (Subsubsection II–3.5.3).
LSS: The true LSS {G(x ) = u} is indicated by a black line, the predicted LSS {µĜ(x ) =
u} by a dashed blue line, the lower LSS {µĜ(x )− kσĜ(x ) = u} by a red dashed line
and the upper LSS {µĜ(x ) + kσĜ(x ) = u} by a green dashed line.
DoE: The initial DoE is indicated by grey crosses, the current DoE by black triangles,
the point selected with single eAK-MCS by a purple diamond and selected points with
weighted K-means by red squares.
Contours of the probability of misclassification Pm are indicated in white when lower
than 10−4. Blue and red correspond respectively to 10−4 and 1.

IV–2.4 Stopping Criterion

The stopping criterion adopted in this study is the same as the one proposed in [Schöbi
et al., 2016], focusing on the accuracy of the quantity of interest, consequently on the
upper and lower bounds of the failure probability:
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(a) Single Selection (S) (b) Parallel Selection (S(k)) (c) Selected DoE

(d) Metamodel Updated (e) Selected DoE(Pm) (f) Metamodel Updated(Pm)

Figure IV.2 Illustration of the parallel refinement strategy: Selection of K + 1 = 64
samples. Four-branch series system 2D (Subsubsection II–3.5.3). Legend settings in
Figure IV.1.

Basic:
p̂(k̃)+

f̃
− p̂(k̃)−

f̃

p̂ f̃
< εp f̃

, (IV.9)

for two consecutive iteration steps, where p f̃ , p(k̃)+
f̃

and p(k̃)−
f̃

are estimated using IS

based on the ISD fN (0,γ∗2 Id )
with N IS

γ
samples. Those estimations can be performed with

another ISD, such as the Gaussian mixture as introduced in Section III–3.2. However, it
seems that in high dimension and for very small failure probabilities, the IS efficiency is
reduced involving estimates subject to larger CoVs, otherwise speaking, larger (α−σ)-
IS confidence intervals.

Modified versions of the basic stopping criterion (Eq. V.29) reads:

Conservative:
p̂(k̃)+

f̃ ,max
− p̂(k̃)−

f̃ ,min

p f̃
< εp f̃

. (IV.10)

Fast:
p̂(k̃)+

f̃ ,min
− p̂(k̃)−

f̃ ,max

p f̃
< εp f̃

. (IV.11)

Note also that the value of k depends on the level of accuracy required and might be
different from the one used in the process of generating candidate points selection
(via LSMM(k)f ) or when tuning γ, for which we would recommend a large value (say

k = 3). A lower value denoted as k̃ is used when evaluating the stopping criterion.
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IV–2.5 eAK-MCS numerical settings

The tuning parameters mentioned in the method section are summarized in Table V.1
with their suggested value, used in the numerical experiments (except when explicitly
mentioned). The stopping criterion selected is systematically Fast (Eq. IV.11).

k̃ k n0 ε rmax NC γ0 γmin γmax Nγ nγ N IS
γ

1 3 5d 10−5 |Φ(10−20)| ≈ 9.2 106 2.5 1 5 105 15 107

p dmin K + 1 TOL N MAX α εp f̃

5 10−4 8 10−4 100 2 5%

Table IV.1 Tuning Parameters

IV–3 Numerical experiments

In this Section, the capabilities of the algorithm is showcased through its application
to several test-cases. Only cases involving p f ∼ 10−5 − 10−9 are considered here,
to showcase the suitability of the proposed algorithm to deal with very small failure
probabilities (unlike AK-MCS). Comparison of eAK-MCS with examples suitable for
AK-MCS are not presented for the sake of brevity, since similar performances would
be obtained considering AK-MCS [Schöbi et al., 2016] with ordinary Kriging. Refer-
ence values are estimated either with Subset Simulation (from [Bect et al., 2017]) or
using IS with a Gaussian mixture ISD Section III–3.2. Three 2D and one 6D exam-
ples are studied. They are introduced in Subsection II–3.5. A first study consists of
the assessment of the eAK-MCS algorithm with the parallel refinement strategy, with
K + 1 = 8 samples being iteratively added to the DoE. Results are compared against
literature when available, in particular BSS [Bect et al., 2017] and AK-MCSi [Lelièvre
et al., 2018], in Subsection IV–3.1.

In Subsection IV–3.2, a second study is performed using the single refinement strat-
egy, with an unfavorable DoE focused in the center of the standard space, to investigate
the capability of eAK-MCS to detect failure regions, even when the initial surrogate
does not.

IV–3.1 Basic Study: K + 1= 8

In this section, we have studied the four test cases listed in Subsection II–3.5 con-
sidering K + 1 = 8 samples added at each iteration of the refinement procedure. To
assess the statistical significance of the proposed method (due to its stochastic na-
ture), each test case is studied based on 50 independent runs. The number of calls
Ncal ls to the performance function, the number of iterations Ni ter , the estimation of
the failure probability p̂ f , and the final relative εrel

p f
error, a.k.a. relative absolute bias

εrel
p f
=
|p̂ f̃ − pre f

f |

pre f
f

are consequently random variable illustrated by their empirical av-

erage. The initial DoE is supposed to be evaluated in one iteration. Note that in the
context of multiple independent runs, the CoV of p̂ f̃ estimated from realizations of
p̂ f̃ (which is different from the IS-based CoV estimation (Equation II.31) for a single
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run), is an indicator of the robustness of the method. The lowest is the CoV, the more
likely the method will return an estimation p̂ f̃ close to its asymptotic average. It is
then dependent of the metamodel accuracy at the end of the refinement algorithm (or
equivalently the DoE), and the IS-based CoV estimation (Equation II.31).

The tuning parameters are the ones provided in Table V.1. For each case, figures
showing the average relative absolute bias εrel

p f
, and the average estimate p̂ f̃ as a func-

tion of the number of performance function calls are provided, where additional sam-
ples are added even after the stopping criterion is met, for a sake of illustration. The
parallel strategy refinement might propose strictly less than K + 1 = 8 samples, de-
pending on the current metamodel accuracy. For two-dimensional examples, we have
also provided an illustration of the final DoE and the refined metamodel, when the
convergence criterion is satisfied, based on a single run. Whenever it is possible, re-
sults also are compared against other methods in the literature. The Four-Branch series
2D, the Cantilever Beam 2D and the non-linear Oscillator 6D are compared against
BSS as reported in [Bect et al., 2017], based on 100 independent runs, for different
accuracy settings (see [Bect et al., 2017] for details) and a single enrichment strategy.
It explains the vast range of CoV and εrel

p f
for those cases estimated with BSS.

IV–3.1.1 Single Failure Region 2D (Subsubsection II–3.5.1)

This single failure region example is introduced in Subsubsection II–3.5.1. In Table
V.2, we compare the results with the ones reported in [Cadini et al., 2014], against the
following methods: Crude MC, FORM, FORM+IS, AK-IS, MetaAK-IS2, based on single
runs. The proposed algorithm performs well w.r.t. other metamodel based methods
(AK-IS, MetaAK-IS2) with reasonable accuracy, concerning the number of performance
function calls, while it outperforms them regarding the number of iterations, as ex-
pected. An illustration is provided in Figure V.5(a), showing the refined metamodel
for a single run. The DoE selected at the last iteration are well clustered around the
True LSS. The True LSS is correctly estimated by the predicted LSS, the latter matching
the upper/lower LSS. This is further illustrated in the failure probability history Figure
V.5 (c) where the 2−σ confidence interval of p̂ f̃ rapidly merges and converges to the
reference value. After 4 iterations, the average absolute relative bias εrel

p f
is below 1%.

The low CoV ∼ 1% quantifies the high robustness of the method for this test-case.
The original function being a third order polynomial easily captured by the meta-

model, this example is rather simple since also characterized by a single failure region.
The low value of εrel

p f
can be explained by both the excellent quality of the surrogate,

and the high IS efficiency for this case.

IV–3.1.2 Four-branch series system 2D (Subsubsection II–3.5.3, u= −4)

This benchmark example characterized by two MPFPs, four failure domains and a
very small failure probability (∼ 5.6× 10−9) is introduced in Subsubsection II–3.5.3
(u = −4). The results are presented in Table V.3 and Figure V.6. eAK-MCS stops after
∼ 62 calls (∼ 8 iterations) on average, while BSS uses between 50 and 80 calls. The
CoV is small, 1.57%, and the accuracy satisfactory, with an average relative error of
1.20%. As seen in Figure V.6 (a), the True LSS is well estimated by the predicted LSS
in the region characterized by high density of input distribution, where the ability of
the surrogate to classify samples into the safe/unsafe domain is the most sensitive.
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Table IV.2 Results of the Single Failure Region 2D with the parallel strategy (K+1= 8).

Method Ncal ls Ni ter p̂ f CoV εrel
p f

Referencea 107 - 2.874× 10−5 0.03% 0
FORMb 19 10 4.21× 10−7 - 98.5%
FORM + ISb 19+ 104 10+ 104 2.86× 10−5 2.39% 0.48%
AK-ISb 26 17 2.86× 10−5 2.39% 0.48%
MetaAK-IS2 b 28 19 2.87× 10−5 2.39% 0.14%
eAK-MCSc 26.5 3.1 2.851× 10−5 1.02% 1.01%

a IS with a Gaussian mixture as ISD (Section III–3.2).
b Reproduced from [Cadini et al., 2014], single run, single refinement strategy.
c Initial DoE size: 10. K+1=8 samples iteratively added. Based on 50 independent runs.
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Figure IV.3 Results of the Single Failure Region 2D with the parallel strategy (K + 1=
8).
(a) Legend Settings in Figure IV.1.
(b) Green and red thick dashed lines indicate respectively 5% and 1% relative error.
The y-axis is logarithmic. The average relative absolute bias and the associated 2−σ
confidence intervall are represented respectively in black thick line and black thin
dashed lines.
(c) The average predicted failure probability p̂ f̃ and the associated 2 −σ confidence
intervall are represented respectively in black thick line and black thin dashed lines.

Note also that in that zone, the upper/lower predicted LSS match the predicted LSS,
indicating high predictability and the presence of DoE clustered in that zone. Figures
V.6 (b) (c) illustrate the average relative absolute bias and the failure probability his-
tory respectively as a function of the number of performance calls. One can note that
after, 26 function calls (3 iterations), the average predicted failure probability p̂ f̃ is
already of the same order of magnitude of the reference value, and the convergence
is then rather fast, with an average absolute relative bias lower that 1% after ∼ 70
function calls (∼8 iterations).

IV–3.1.3 Deviation of a Cantilever Beam 2D (Subsubsection II–3.5.5)

This two-dimensional example is characterized by a single failure region, with p f ∼ 4×
10−6 and introduced in Subsubsection II–3.5.5. The results are presented in Table V.4
and Figure V.7. The eAK-MCS algorithm stops after ∼ 41 calls in average, significantly
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Table IV.3 Results of the Four-branch series system 2D with the parallel strategy (K +
1= 8).

Method Ncal ls Ni ter p̂ f CoV εrel
p f

Referencea 107 - 5.596× 10−9 0.04% 0
BSS [Bect et al., 2017] ∼ 50− 80 ∼ 41− 71 - ∼ 0.5− 0.01 ∼ 0.01− 5%
eAK-MCSb 61.9 7.5 5.579× 10−9 1.57% 1.20%

a Based on 100 independent runs, for different accuracy settings and a single refinement strat-
egy. [Bect et al., 2017].
b Initial DoE size: 10. K+1=8 samples iteratively added. Based on 50 independent runs.
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Figure IV.4 Results of the Four-branch series system 2D with the parallel strategy (K +
1= 8). Legend settings in Figure V.5.

larger than for BSS (∼ 25), but still with fewer iterations (∼ 5 against ∼ 15). Figure
V.7 (b) shows that the average relative absolute bias is below 1% after around 48 calls.
For the sake of illustration, we have truncated the history to 50 calls. Indeed, for few
runs characterized by very accurate metamodels, the enrichment algorithm proposes
candidates that are too close to the existing DoE to be accepted, and the algorithm
stops.

The CoV is small, 2% and the accuracy is satisfactory, with an average relative error
lower of 1.21%. It can be noticed that the surrogate detects spurious predicted LSS
during the refinement step, which explains the additional computational burden. For
the single run illustrated Figure V.7 (a), a second artificial failure region is finally so far
from the origin (center of the standard space distribution) that it has no impact on the
estimated failure probability. This behavior results from the choice of the surrogate
itself. Using a suitable trend (here null) or choosing another covariance kernel should
address this behavior.

IV–3.1.4 Response of a Nonlinear Oscillator 6D (Subsubsection II–3.5.6)

The results for this six-dimensional example (introduced Subsubsection II–3.5.6) char-
acterized by p f ∼ 1.5× 10−8 are presented in Table V.5 and Figure V.8. They are com-
pared against BSS [Bect et al., 2017] and AK-MCSi [Lelièvre et al., 2018] (single run
and sequential enrichment strategy). eAK-MCS requires on average ∼ 45 calls, sig-
nificantly less than AK-MCSi, similarly to BSS for the less costly settings, but with a
meager number of iterations (∼ 3). Note however that for the most expensive ones,
BSS would require in average 180 calls. The robustness and accuracy for this higher
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Table IV.4 Results of the Deviation of a Cantilever Beam 2D with the parallel strategy
(K + 1= 8).

Method Ncal ls Ni ter p̂ f CoV εrel
p f

Referencea 107 - 3.937× 10−6 0.03% 0
BSS [Bect et al., 2017] ∼ 22− 25 ∼ 13− 16 - ∼ 0.5− 0.01 ∼ 0.1− 5%
eAK-MCSb 41.2 4.9 3.949× 10−6 2.07% 1.21%

a Based on 100 independent runs, for different accuracy settings and a single refinement strat-
egy. [Bect et al., 2017].
b Initial DoE size: 10. K+1=8 samples iteratively added. Based on 50 independent runs.
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Figure IV.5 Results of the Deviation of a Cantilever Beam 2D with the parallel strategy
(K + 1= 8). Legend settings in Figure V.5.

dimensional test case are rather low (CoV ∼ 8.3%, average relative error ∼ 8.9%)
compared to previous two-dimensional test-cases but still satisfactory considering the
low computational cost.

This inaccuracy stems mainly from the average efficiency of the IS (with the ISD
N (0,γ2Id)) to reduce the variance in this higher dimensional case. Indeed, the CoV
of the IS estimation of p̂ f̃ is in average ∼ 2.25 % (while below 0.5% for the two-
dimensional cases), and is entirely independent of the quality of the surrogate (or the
DoE). The second reason is the choice of the stopping criterion (Fast, Eq. IV.11) which
is likely to stop prematurely, especially here with significant IS confidence intervals.
Figure V.8 (a) show that the average relative error reaches around 2% after ∼ 75 calls
and then oscillates to stay between ∼ 1.5% and 2.5%, confirming respectively that
the algorithm stopped prematurely, and that the IS estimation is not accurate enough
to provide an average relative error lower than 1%. The quality of the refinement
algorithm itself (or equivalently, of the surrogate) is further confirmed in Figure V.8
(b) indicating that the reference value is however contained in the noise associated
to the IS CoV. Resorting this issue and obtaining a more accurate estimation of the
failure probability associated to the refined surrogate could require another sampling
technique, which could be directly used on the surrogate as a post-processing, such as
Subset Sampling or IS with a Gaussian Mixture ISD (Section III–3.2).



110
Chapter IV. Extension of AK-MCS for the efficient computation of very small failure

probabilities

Table IV.5 Results of Response of a Nonlinear Oscillator 6D with the parallel strategy
(K + 1= 8).

Method Ncal ls Ni ter p̂ f CoV εrel
p f

Referencea 107 - 1.514× 10−8 0.04% 0
BSS [Bect et al., 2017] ∼ 45− 180 ∼ 36− 171 - ∼ 0.5− 0.01% ∼ 0.01− 10%
AK-MCSib [Lelièvre et al., 2018] 77 68 1.44× 10−8 < 5% 3.4%
eAK-MCSc 44.7 2.8 1.633× 10−8 8.35% 8.91%

a Based on 100 independent runs, for different accuracy settings and a single refinement strat-
egy. [Bect et al., 2017].
b Single Refinement Strategy [Lelièvre et al., 2018]
c Initial DoE size: 10. K+1=8 samples iteratively added. Based on 50 independent runs.

0 25 50 75 100 125 150
N

100

101

102

Re
la
ti
ve

 A
bs

ol
ut
e 
Bi
as

 [
%
]

(a) Relative Absolute Bias History

0 25 50 75 100 125 150
N

10−8

10−7

(b) p̂ f History

Figure IV.6 Results of Response of a Nonlinear Oscillator 6D with the parallel strategy
(K + 1= 8). Legend settings in Figure V.5.

IV–3.2 Single sample eAK-MCS Study: K + 1= 1

In this Subsection, we showcase the capability of the present method to detect all
failure regions, even starting with a unfavorable initial DoE, namely too focused on
the center of the standard space, corresponding to an ε rather big (ε = 10−2, against
ε = 10−5 in default numerical settings). The single eAKMCS is used with no paral-
lel refinement. The simple Single Failure 2D example is not considered for the sake
of brevity. For each case, figures showing the relative absolute bias εrel

p f
, and the esti-

mates p̂(k̃)+
f̃

, p̂(k̃)−
f̃

and p̂ f̃ as a function of the number of performance function calls are
provided. For two-dimensional examples, an illustration of the metamodel refinement
detecting failure domains is also given.

IV–3.2.1 Four-branch series system 2D (Subsubsection II–3.5.3, u= −4)

Figures IV.7 (a), (b), (c) and (d) show that all the four failure domains are detected
after respectively 11, 28, 56 and 100 calls of the original model. It illustrates a be-
havior discussed in the original AK-MCS version [Echard et al., 2011], namely that
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the single refinement strategy tends to focus on each failure branch individually then
explore other branches when sufficiently refined. Even though the initial DoE is very
unfavorable, all failure domains are successfully detected.

(a) First Failure Zone: N = 11. (b) Second Failure Zone: N = 28. (c) Third Failure Zone: N = 56.

(d) Fourth Failure Zone: N =
100.

(e) Final: N = 112.

(f) Relative Absolute Bias History. (g) p̂ f History

Figure IV.7 Results of the Four-branch series system 2D with the single refinement
strategy. Legend settings in Figure V.5 (a-f).
(g) The predicted failure probability p̂ f̃ , its lower and upper bounds p̂(k̃)−

f̃
, p̂(k̃)+

f̃
are

indicated respectively in black, red and green thick lines. Their associated (α−σ)-IS
confidence interval are indicated in thin dashed lines (not visible for small CoV).

IV–3.2.2 Deviation of a Cantilever Beam 2D (Subsubsection II–3.5.5)

Figure IV.8 (a) shows that the failure domain is detected after 14 performance function
evaluations. The final metamodel is obtained iteratively with a total of 23 function
calls, the same order of magnitude of function required for BSS (with iterative re-
finement). Note the strange convergence of the failure probability history, for which
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we can notice that the reference value is globally not contained within the estimated
failure probability range: it indicates again a lack of predictability of the surrogate
whose trend/covariance kernel might be more carefully chosen and some hints about
the robustness of the method.

eAK-MCS performance is satisfactory with this simple example, even though the
failure probability is very low.

(a) First Failure Zone: N = 14. (b) Final: N = 23.

(c) Relative Absolute Bias History. (d) p̂ f History

Figure IV.8 Results of the Deviation of a Cantilever Beam 2D with the single refinement
strategy. Legend settings in Figure IV.7.

IV–3.2.3 Response of a Nonlinear Oscillator 6D (Subsubsection II–3.5.6)

The Absolute Relative Bias history represented in Figure IV.9 (a) shows that the relative
error is below 5% after around 35-50 performance calls, corresponding to around
5-20 refinement steps. Note the oscillatory behavior of the relative absolute bias.
Those oscillations stem from the large CoV associated with the IS failure probability
estimation, similarly to the study of the very same case with the parallel strategy and
standard initial DoE. Again, Figure IV.9 (b) shows that the reference value lies between
the confidence interval of p̂ f̃ . It illustrates the capability of eAK-MCS, in this example,
to detect failure regions even when under unfavorable initial DoE.
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(a) Relative Absolute Bias History. (b) p̂ f History

Figure IV.9 Results of Response of a Nonlinear Oscillator 6D with the single refinement
strategy. Legend settings in Figure IV.7.

IV–4 Conclusion

An extension of AK-MCS as presented in [Schöbi et al., 2016] to make it suitable
for very low failure probabilities is proposed. It uses a centered uncorrelated Gaus-
sian distribution to sample candidate points and use the IS method to estimate p f . A
procedure is proposed to tune its standard deviation adaptively, based on variance re-
duction. Moreover, the original multipoint refinement strategy inherited from [Schöbi
et al., 2016] is slightly modified, enabling the use of available high-performance com-
puting resources. The performance of the proposed algorithm is assessed and illus-
trated through some benchmark analytical functions, showcasing very satisfactory per-
formances, in less than 100 evaluations of the original model. Unlike AK-MCS, eAK-
MCS requires to recast the problem in standard space. eAK-MCS, like most surrogate-
based procedures, is a victim of the curse of dimensionality, and its efficiency is closely
linked to the surrogate’s ability to fit the original model. eAK-MCS is globally robust
to the choice of the tuning parameters (Table V.1), which provide excellent results for
a broad range of cases, including the ones presented in this work. However, the most
sensitive parameters would be the ones related to the stopping criterion. In the con-
text of reliability assessment, it has finally not an enormous impact since the user can
stop at anytime the refinement, modify some parameters and re-run the procedure
without losing any information.

The efficiency of eAK-MCS, concerning both the number of performance function
calls and accuracy, seems to be of the same order of magnitude of BSS, which is to the
best of the author’ knowledge, one of the most efficient methods for assessing very
small failure probabilities. While BSS seems to provide a more robust estimation than
eAK-MCS, it requires, apparently, meticulous tuning of the parameters, and the user
should wait for the refinement to reach the last threshold to have an estimate of the
failure probability. Otherwise, in eAK-MCS, this estimation is available at any iteration
of the algorithm. Additionally, eAK-MCS is more straightforward to implement w.r.t.
BSS, with a clear parallelization strategy.
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Studies with unfavorable initial DoE shows the ability of eAK-MCS to detect multi-
ple failure domains, even if, unlike BSS, it aims at refining directly the Limit-State
Surface {G(X) = u}. This latter feature could be exploited in AK-MCS based de-
rived methods such as quantile estimation [Schöbi et al., 2016] or in RBDO algo-
rithms [Moustapha et al., 2016] where the refinement algorithm for a LSS of the form
{G(x ) = u} is part of more extensive procedure. It makes eAK-MCS particularly at-
tractive, so the adaptation of the mentioned algorithms for LSS associated with small
failure probability could be facilitated. The adaptation of the algorithm [Schöbi et al.,
2016] for very small quantile estimation using eAK-MCS is presented in Chapter V.
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!
Overview This Chapter presents a method permitting the estimation of extreme
quantilesa, named Quantile extreme Active Kriging-Monte Carlo Sampling (QeAK-
MCS) and inspired from [Schöbi et al., 2016]. This Kriging-based approach adapts
the refined strategy provided by the reliability analysis algorithm named eAK-MCS
(Chapter IV), enabling accurate quantile estimations in a reasonable number of calls
to the performance functionb. Direct use of Monte-Carlo simulation even on the sur-
rogate model being too expensive, the key idea consists in using an Importance Sam-
pling method based on an isotropic centered Gaussian with large Standard deviation
permitting a cheap estimation of the quantiles on the surrogate. The original paral-
lel surrogate refinement strategy is renriched with an additional level of paralleliza-
tion, the latter being also compatible with the seminal quantile estimation algorithm
[Schöbi et al., 2016].

aAssociated to levels in the range O(10−9).
bAssumed to be the output of an expensive to evaluate simulation tool.
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V–1 Introduction

Quantile estimation is of fundamental importance in statistics as well as in design
applications [Law et al., 1991], the main challenge being the large required number
of evaluations of the expensive performance function. Variance reduction techniques
such as Importance Sampling [Glynn, 1996], correlation-induction [Avramidis and
Wilson, 1998] and control variate [Hsu and Nelson, 1990] [Hesterberg and Nelson,
1998] have been proposed and implemented. The number of observations required is
however large, especially when dealing with small quantiles.

The problem of interest consists in the estimation of the quantile q ∈ R associated
to a level of probability α ∈]0, 1[, with α∼ 0:

α= P(G(X)< q) = E[1G<q(X)] =

∫

Rd

1G<q(x ) fX(x )dx . (V.1)

with X ∼N (0, Id) denoting the standard d-dimensional Gaussian vector, described
by its PDF fN (0,Id ) and G the LSF.

The problem of the quantile estimation is closely linked to the one of estimating a
failure probability α, where the model response G is associated to the critical value q.
A typical approach for estimating the latter (Eq. V.1) consists in resorting to a direct
MC scheme. Its estimator reads

α̂= EX[1G<q(X)] =
1
N

N
∑

i=1

1G<q(x i), (V.2)

where (x1, ..., xN )
iid∼ X . This estimator is asymptotically unbiased and convergent. Its

variance estimator reads:

σ̂2
α̂
=
α̂− α̂2

N
. (V.3)

The accuracy of the estimate can then be measured directly with the theoretical coef-
ficient of variation (CoV):

δ̂α̂ =
σ̂α̂
α̂
=

√

√1− α̂
α̂N

. (V.4)

A MC-based estimator of the quantile reads:

q̂ = G(xbαNc) (V.5)

after having re-ordered the set {G(x1), ..., G(xN )} in ascending order. Its accuracy is
strongly linked to the number of MC samples N and the quantile levelα. It is quantified
by the CoV of the estimation of the associated failure probability P(G(X)< q̂), whose

value is approximated by δ =
s

1−α
αN

. Consequently, if a target error of δ < 1% is

aimed, a quantile of level 10−9 would require a number of simulation N ∼
1
αδ2

∼ 1013

yielding a prohibitive computational cost for industrial cases, and likely very expensive
even considering a surrogate model for G.

We propose here a methodology to estimate a small quantile where the LSF G is
assumed to be an expensive to evaluate function and written in the standard space.
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[Schöbi et al., 2016] proposed to formulate the problem of the estimation of fail-
ure probability and quantile in an unified way, based on the popular AK-MCS [Echard
et al., 2011] algorithm, originally developed for the estimation of failure probabil-
ity. A Gaussian-Process [Rasmussen and Williams, 2006] based surrogate (Polyno-
mial Chaos Kriging in [Schöbi et al., 2016]) of the LSF G is adaptively refined un-
til a convergence criterion depending on the surrogate accuracy is met. More pre-
cisely, the refinement algorithm based on AK-MCS permits to select a batch of samples
added to the DoE, where the threshold value is the quantile estimated from a Monte-
Carlo population and the surrogate. When dealing with quantile of small level, such
surrogate-based approach becomes untractable due to the prohibitive large size of the
Monte-Carlo population that needs to be evaluated with the surrogate itself, required
to obtain a satisfactory evaluation of the quantile. The same comment applies for the
computation of small failure probability, where AK-MCS [Schöbi et al., 2016] [Echard
et al., 2011] becomes unaffordably tractable. eAK-MCS (Chapter IV) extends AK-MCS
for very small failure probability, inheriting for similar refinement strategy and general
properties. It requires though to map the input random vector to the standard space.
An Importance Sampling (IS) whose Density (ISD) is an isotropic centered Gaussian
with large standard deviation permits to satisfactorily estimate a small quantile with
a tractable number of surrogate evaluations. Similarly to AK-MCS based quantile es-
timation [Schöbi et al., 2016], the adaptive refinement algorithm eAK-MCS is used to
adaptively refine the surrogate for a threshold equal to the estimated quantile. Finally,
a multi-quantile selection approach allowing to exploit high-performance computing
architectures one level further is presented. We illustrate the performances of the pro-
posed method on several two and six-dimensional cases. Accurate results are obtained
in less than 100 runs of J .

This Chapter is organized as follows. Section V–2 presents an IS-based quantile
estimation scheme. Section V–3 describes the QeAK-MCS algorithm. Numerical ex-
periments illustrating the QeAK-MCS method are reported in Section V–4. Conclusions
are drawn in Section V–5.

V–2 Importance Sampling based Quantile estimation

The QeAK-MCS algorithm is based on two main ingredients, described hereafter: Im-
portance Sampling using the ISD N (0,γ2Id), and an IS-based quantile estimator.

Importance Sampling

The accuracy of the approximation given by IS critically depends on the choice of
the ISD h. In this work, the ISD is chosen as N (0,γ2Id) where γ ¾ 1 is a parameter
which is defined using a rule of thumb as discussed in Subsection V–3.4. Note that a
Gaussian mixture ISD with suitable empirical parameters might be used (Section III–
3.2), but those empirical parameters would depend on the critical threshold u, which
is unknown in the context of quantile estimation.



118
Chapter V. Efficient Estimation of Extreme Quantiles using Adaptive Kriging and

Importance Sampling

Quantile Estimation

At each step of QeAK-MCS, several estimations of quantiles based on the surrogate
model G̃ are required. When α is very small (α < 10−5), an accurate estimation
using the MC approach becomes expensive, possible unfeasible, even using surrogate
evaluations. To alleviate this issue, the IS procedure using h = fN (0,γ2 Id ) as the ISD
is preferred. We consider the generic problem of estimating the quantile q of level
α ∈]0,1[ associated to a scalar function g (e.g. g(x ) = µĜ(x )):

α= P(g(X)< q). (V.6)

A set of N samples (x1, ..., xN )
iid∼ fN (0,γ2 Id ) is generated.

The IS estimator (Eq. II.29) permits to implicitly formulate an estimation of q̂:

q̂ = Argmin
¦

q ∈ R s.t.
1
N

N
∑

i=1

1g<q(x i)
fX(x i)
h(x i)

> α
©

. (V.7)

The sample set is re-ordered so (g(x1), ..., g(xN )) is sorted in ascending order. Note
that the ISD h = fN (0,γ2 Id ) does not depend of q̂. The implicit estimation of q̂ is re-
written as:

α=
N
∑

i=1

1g<q̂(x i)yi, (V.8)

where yi =
fX (x i)
Nh(x i)

. ci is defined as: ∀i ∈ ¹1, Nº,

ci =
i
∑

j=1

yi. (V.9)

It’s then easy to show that ∃!l ∈ ¹1, N − 1º s.t.
cl ≤ α < cl+1, if c1 ≤ α < cN . A simple estimator of q̂ would then simply read:

q̂ = g(x1), if α < c1 (V.10)

= g(xN ), if α≥ cN (V.11)

= g(x l), if cl−1 ≤ α < cl , l ∈ ¹2, Nº. (V.12)

In order to slightly improve the accuracy of this quantile estimator, a linear inter-
polation1 is performed:

q̂ = g(xk) + (α− ck)
g(xk+1)− g(xk)

ck+1 − ck
, (V.13)

with

k = 1, if α < c1 (V.14)

= N − 1, if α≥ cN (V.15)

= l, if c1 ≤ α < cN . (V.16)

1This step can be replaced by a higher order (e.g. quadratic) interpolation. Numerical experiments
do not suggest its relevance.
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Due to numerical robustness considerations, the linear estimator (Eq. V.13) is re-
placed by the simple estimator (Eq. V.12) if |ck+1− ck|< 10−14. This IS based quantile
estimation is the key of the extension of eAK-MCS for extreme quantile estimation,
since it allows one to significantly decrease the CPU cost associated to the estimation
of an extreme quantile, even based on a surrogate model.

V–3 The QeAK-MCS Algorithm

In this Section, we describe the QeAK-MCS algorithm, aiming at building a GP-based
surrogate of G, refining it iteratively considering the estimated quantile as the critical
value of the associated failure probability estimation.

The main steps can be summarized as follows (similarly to the AK-MCS based
quantile estimation [Schöbi et al., 2016]):

1. Initial DoE: An experimental design X is generated by Latin-Hypercube Sam-
pling (LHS) (See Subsection II–3.2).

2. IS Population: A set of N sample points S = (x1, ..., xN )
iid∼ fN (0,γ2 Id ) is generated.

3. Metamodel Update: The exact response Y of the exact performance function G
is carried out on X . The metamodel is calibrated based on {X ,Y}.

4. Critical Values/Quantiles Selection: A set of Kq quantiles (q̂1, ..., q̂Kq
) is selected

based on the surrogate information (See Subsection V–3.1).

5. eAK-MCS based Samples Selection: for each q̂l , l ∈ ¹1, Kqº, Kp samples (x l
1, ..., x l

Kp
)

are selected following the refinement step of the algorithm eAK-MCS, for the
failure probability P(G(X)< q̂l).

6. Filtering Procedure and Surrogate Update: An a posteriori filtering procedure is
performed on the selected samples X ∗ = {x l

j} j∈¹1,Kqº, l∈º1,Kpº
, removing too close

points: for a, b distinct samples of X ∗, if ‖a − b‖2 < TOL, a is discarded from
X ∗. It permits to avoid samples too close to each other (preventing metamodel
training issues). The selected samples X ∗ is added to the experimental design
X , and Step 3 is applied.

7. Stopping Criterion: If a stopping criterion is satisfied (See Subsection V–3.3), the
enrichment stops. Otherwise the algorithm goes back to step 4.

V–3.1 Critical Values/Quantiles Selection

At each step of the refinement algorithm, Kq quantiles are proposed, to serve after-
wards as critical values for the eAK-MCS refinement algorithm.

First, the surrogate based quantile q̂ is estimated using IS (Eq. V.13):

α= P(µĜ(X)< q̂). (V.17)

Note that if Kq = 1, the selecting quantile is simply q̂. Bounds q̂−, q̂+ of the quantile
estimate q̂ are derived using the surrogate Gaussian nature, in particular the predictive
standard deviation estimator:



120
Chapter V. Efficient Estimation of Extreme Quantiles using Adaptive Kriging and

Importance Sampling

α= P(µĜ(X) + kσĜ(X)< q̂+) (V.18)

α= P(µĜ(X)− kσĜ(X)< q̂−), (V.19)

where k sets the confidence level.

Linear Selection The approach followed in this study consists in choosing linearly
Kq quantiles in [q̂−, q̂+]. ∀l ∈ ¹1, Kqº:

q̂l = q̂− + (l − 1)
q̂+ − q̂−

Kq − 1
. (V.20)

Two other approaches can be considered. Based on the experience of the author,
there is no clear advantage of one selection criterion than another.

Linear−α Selection Similar linear selection is conducted, considering the surrogate-
based bounds α−,α+ associated to the failure probability with q̂ as critical value, cal-
culated using the IS estimator for failure probability (Eq. II.29):

α− = P(µĜ(X) + kσĜ(X)< q̂) (V.21)

α+ = P(µĜ(X)− kσĜ(X)< q̂). (V.22)

Correspondingly, Kq quantiles defined based on level linearly selected in [α−,α+]
are chosen. ∀l ∈ ¹1, Kqº:

αl = α
− + (l − 1)

α+ −α−

Kq − 1
(V.23)

αl = P(µĜ(X)< q̂l). (V.24)

Linear−k Selection Here, a linear discretization of the range [−k, k] defined by the
parameter k setting the confidence interval is chosen. It yields:

kl = −k+ (l − 1)
2k

Kq − 1
(V.25)

αl = P(µĜ(X) + klσĜ(X)< q̂)αl = P(µĜ(X)< q̂l), ,∀l ∈ ¹1, Kqº. (V.26)

In order to always include q̂ in the selection, the following replacement is per-
formed once (q̂1, ..., q̂Kq

) is selected.
If Kq is odd, q̂ Kq+1

2
= q̂.

If Kq is even, q̂ Kq
2

or (random selection) q̂ Kq
2 +1

is set to q̂.
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V–3.2 eAK-MCS Selection

A summary of the basics of the refinement selection of eAK-MCS (see Chapter IV)
is provided, given a critical value u, selecting Kp samples for the refinement of the
performance function G. For each sample x ∈ Rd , the so-called probability of misclas-
sification Pm(x ) is defined as [Bect et al., 2012]:

Pu
m(x ) = Φ

�

−
|µĜ(x )− u|
σĜ(x )

�

. (V.27)

The popular U-function associated to the level u [Cadini et al., 2015, Echard et al.,
2011, Schöbi et al., 2016] is defined as:

Uu(x ) =
|µĜ(x )− u|
σĜ(x )

. (V.28)

1. 1 sample x ∗0 is selected among S following the single eAK-MCS selection: x ∗ =
argmin

x∈S
Uu(x ).

2. Kq−1 samples (x ∗1 , ..., x ∗Kq−1) are simultaneously selected among the setMk̄(u) =

{x ∈ Q : µĜ(x ) + k̄σĜ(x ) < u and µĜ(x )− k̄σĜ(x ) < u}, using a weighted K-
means clustering technique, where the weights are chosen as Pu

m(x ) for each
sample x ∈ Mk̄(u). If this method returns only K1 < Kq − 1 samples (K1 = 0
possibly), then the very same method is applied to the full IS population S to
provide the remaining Kq − 1− K1 samples.

V–3.3 Stopping Criterion

The stopping criterion adopted is the same as the one proposed in [Schöbi et al., 2016],
focusing on the accuracy of the quantity of interest, consequently on the upper and
lower bounds of the quantile:

q̂+ − q̂−

qre f
< ε, (V.29)

for two consecutive iteration steps, where the quantiles bounds are estimated by:

α= P(µĜ(X) + k̃σĜ(X)< q̂+) (V.30)

α= P(µĜ(X)− k̃σĜ(X)< q̂−), (V.31)

the parameter k̃ setting the confidence interval for the stopping criterion. Note
that k̃ is in practice different from k used in the selection of quantiles, and k̄ used
for the selection of samples in Subsection V–3.2. qre f is a positive scalar value per-
mitting to normalize the quantile. In industrial cases, experts are likely to be able to
provide such normalization constant. In the analytical benchmark functions studied
here, such constant is replaced by the standard deviation of the performance function
σG, evaluated beforehand with MCS. It is suggested in [Schöbi et al., 2016] to replace
qre f by the surrogate-based estimation of the standard deviation of the performance
function σµĜ

. According to the author experience, this approach can be misleading
since at a given iteration step, the standard deviation might be highly inaccurate and
severely overestimated, leading the refinement algorithm to stop prematurely.
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V–3.4 Quantile eAK-MCS numerical settings

The tuning parameters mentioned in the method subsection are summarized in Ta-
ble V.1 with their suggested value, used in the numerical experiments (except when
explicitly mentioned).

The level α being fixed, the choice of the tuning the parameter γ has a much lower
impact on the efficiency than in the eAK-MCS. A less elaborate tuning method only
based on α is sufficient to obtain satisfactory results. If α > 10−3, a MC-based method
is enough to obtain an accurate quantile (CoV of 1%) with a reasonable number of
samples (107), so γ = 1 is fine. A linear law in log10(α) is chosen, assuming that if
α= 10−9, γ= 2.5 permits satisfactory results. The rule of thumb for tuning γ is then:

γ=max(1,
1
4
(1− log10α)) (V.32)

k̃ k k̄ n0 ε dmin Kq Kp TOL ε γ N
1 3 2 5d 10−5 |Φ(10−20)| ≈ 9.2 3 3 10−4 5% Eq. V.32 107

Table V.1 Tuning Parameters

V–3.5 Illustrative Example

To showcase the process of selecting multiple additional samples, we consider the four-
branch series example introduced in Subsubsection II–3.5.3 (with P(G(X ) < −4) ∼
5 × 10−9), i.e. a 2D test-case characterized by two MPFPs and four failure regions,
initialized with a DoE of size 10. The process of selecting K = KqKp = 18 samples
is illustrated. At each step, Kq = 3 quantiles (q̂1, q̂2, q̂3) are estimated. Note that
(q̂1 = q̂−, q̂2 = q̂, q̂3 = q̂+), for Kq = 3. Kp = 6 samples are then selected using the
eAK-MCS refinement considering q̂i as the critical value, as shown in Figures V.1, V.2
and V.3 corresponding to i = 1, i = 2 and i = 3, respectively. For a sake of illustration,
the second refinement step is shown, starting from a DoE composed of the initial DoE,
and the samples added to the experimental design after the first refinement step. The
size of the IS population is set here to N = 105.

Figures V.4 (a) (b) illustrate the DoE refinement step respectively before and after
the metamodel update. Figure V.4 (c) represents the surrogate levels associated q̂1, q̂2

and q̂3.

V–4 Numerical experiments

In this Section, the capabilities of the algorithm is illustrated through its application
to several test-cases. Only cases involving α ∼ 10−5 − 10−9 are considered here, to
showcase the suitability of the proposed algorithm to deal with extreme quantiles.
Comparison of QeAK-MCS with examples suitable for AK-MCS are not presented for a
sake of brevity since, performing similarly as would do AK-MCS [Schöbi et al., 2016]
with ordinary Kriging. Very accurate estimation of a quantile on an analytical function
is still a complex task, to the best of the knowledge of the author. To alleviate this issue,
test-cases available in the literature in the context of very small failure probability
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(a) Selection among S (b) Selection amongMk̄(q̂1) (c) P q̂1
m Contours

Figure V.1 Refinement Illustration for q̂1 = q̂− = −4.84. Black crosses and triangles
represent respectively the initial DoE, and the selected DoE at the first refinement
step. The dashed black line represents the level G = q based on the true performance
function G and the exact quantile q = −4, the red line represents the level µĜ = q̂1

based on the surrogate. The diamond (a)(c) represent the selected point among the
IS population S in grey dots (a). The squares (b)(c) represent the points selected
among Mk̄(q̂1) in grey dots (b), with k̄ = 2. In (c), the contours of the probability of
misclassification w.r.t. the critical level q̂1, where blue ∼ 0 and red ∼ 1. For a sake of
clarity, zones where Pm < 10−4 are indicated in white. Four-branch series introduced
in Subsubsection II–3.5.3, with P(G(X )< −4)∼ 5× 10−9.

(a) Selection among S (b) Selection amongMk̄(q̂2) (c) P q̂2
m Contours

Figure V.2 Refinement Illustration for q̂ = q̂2 = q̂ = −3.99. The blue line represents
the level µĜ = q̂2. See Figure V.1 for legend settings. Four-branch series introduced in
Subsubsection II–3.5.3, with P(G(X )< −4)∼ 5× 10−9.

(a) Selection among S (b) Selection amongMk̄(u) (c) P q̂3
m Contours

Figure V.3 Refinement Illustration for q̂ = q̂3 = q̂+ = −3.66. The green line represents
the level µĜ = q̂3. See Figure V.1 for legend settings. Four-branch series introduced in
Subsubsection II–3.5.3, with P(G(X )< −4)∼ 5× 10−9.
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(a) Batch Selection (b) Updated Surrogate (c) Levels

Figure V.4 Illustrative Example: DoE and Surrogate. Settings in Figure V.1, with red,
blue and green corresponding respectively to q̂1, q̂2, q̂3. Figure (c) represent the
contours for µĜ = q, µĜ+2σĜ = q and µĜ−2σĜ = q represented respectively in blue,
green and red dashed lines. Four-branch series introduced in Subsubsection II–3.5.3,
with P(G(X )< −4)∼ 5× 10−9.

are considered: the reference quantile is hence the critical value of the problem of
interest, while the level α is fixed to the failure probability very accurately estimated
(CoV < 0.05%), using either SS [Bect et al., 2017] or IS with a Gaussian mixture
(Section III–3.2).

A classic 2D single failure region example and the three examples (2D and 6D)
studied by Bect in [Bect et al., 2017], specifically designed for assessing very small
failure probabilities (∼ 10−8 − 10−9) using BSS are considered (Subsubsections II–
3.5.1 II–3.5.3 II–3.5.5 II–3.5.6). To the best of the knowledge of the author, no other
method is suitable for those challenging problems, hence QeAK-MCS is not compared
against literature.

An analysis with KqKp = 9 (Kq = Kp = 3) samples selected at each refinement step
is performed.

To assess the statistical significance of the proposed method (due to its stochastic
nature), each test case is studied based on 50 independent runs. The number of calls
Ncal ls to the performance function, the number of iterations Ni ter , the estimation of the

quantile q̂, and the final relative error εq =
|q̂− q|
qre f

are consequently random variable

illustrated by their empirical average. Note that for some analytical examples studied
here, the true quantile q is null, so the classic relative error is not a suitable option. qre f

is chosen here as the standard deviation of the performance function σG, estimated
on the analytical function using MCS with 107 samples. The initial DoE is supposed
to be evaluated in 1 iteration. In the context of multiple independent runs, the CoV of
q̂, estimated from its realizations, is an indicator of the robustness of the method. The
lowest is the CoV, the more likely is the algorithm to return an estimation of q̂ which
is closed to its asymptotic average. The tuning parameters are the ones provided in
Table V.1. The average CoV of the estimation of the failure probability E[CoV [α̂]]
based on IS (Eq. II.31) is also given in order the quantify the quality the IS procedure
based on the ISD fN (0,γ2 Id ), hence the accuracy of the estimated quantile q̂ based on
the sampling procedure. It is worthy to point out that the latter is independent of the
surrogate accuracy.
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For each case, figures showing the average relative error εq, and the average esti-
mate q̂ as a function of the number of performance function calls are provided, where
additional samples are added even after the stopping criterion is met, for a sake of
illustration. The 2−σ confidence interval is represented with black dashed lines.

Since the parallel strategy refinement might propose strictly less than K + 1 = 8
samples due to the a posteriori filtering procedure, a post-processing involving a linear
interpolation procedure on εq and q̂ is required at the end of the 50 runs. For two-
dimensional examples, an illustration of the final DoE and refined metamodel is also
provided, when the convergence criterion is satisfied, based on a single run.

V–4.1 Single Failure Region 2D

This single failure region example is introduced in Subsubsection II–3.5.1. In Table
V.2, we compare the reference with the results of QeAK-MCS, based on 50 independent
runs. For all runs, the algorithm QeAK-MCS stops after 1 refinement step (9 samples
added to the initial DoE), yielding a very accurate estimate of the quantile, the average
relative error being below 0.05%.

An illustration is provided in Figure V.5(a), showing the refined metamodel for a
single run. The DoE selected is well clustered around the True LSS G = q, showing
that both the quantile q̂ and the surrogate are well estimated. This is further illustrated
in the quantile history Figure V.5 (c) where the 2−σ confidence interval of p̂ f̃ rapidly
merge and converge toward the reference value. The relative error history Figure V.5
(b) demonstrates the convergence behaviour of the method in that case, where the
mean error is below 0.01% after 60 calls. This convergence behavior is confirmed by
the very low mean CoV of the failure probability estimate based on IS E[CoV [α̂]],
which assesses the efficiency of the ISD is that low dimensional case. The method in
that case is also very robust, with CoV[q̂]<0.05%, which is further demonstrated with
the 2−σ confidence interval rapidly merging to the reference value Figure V.5 (b).

The original function being a second order polynomial easily captured by the meta-
model, this example is rather simple since also characterized by a single failure region
and a low dimensionality. The low value of εrel

p f
can be explained by both the good

quality of the surrogate, and the accuracy of the quantile based on the IS sampling
method, illustrated by the low E[CoV [α̂]].

Table V.2 Results of the Single Failure Region 2D.

Method E[Ncal ls] E[Ni ter] E[q̂] CoV[q̂] εq E[CoV [α̂]]
Referencea 107 - 0 - 0 < 0.04%
QeAK-MCSb 19.0 2.0 −1.023× 10−3 0.03% 0.02% 0.44%

Solving P(G(X)< q̂) = 2.874× 10−5, with qre f = σG = 121.334.
a Reference: IS with a Gaussian mixture as ISD (Section III–3.2), 50 independent runs. CoV
< 0.04%
b Initial DoE size: 10. 9 samples iteratively added. Based on 50 independent runs.
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(a) Metamodel
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(b) Relative Error History
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Figure V.5 Results of the Single Failure Region 2D.
(a) Legend Settings in Figure V.4.
(b) Green and red thick dashed lines indicate respectively 5% and 1% relative error.
The y-axis is logarithmic. The average relative error bias and the associated 2 − σ
confidence intervall are represented respectively in black thick line and black thin
dashed lines.
(c) The normalized predicted quantile q̂ and the associated 2−σ confidence intervall
are represented respectively in black thick line and black thin dashed lines.

V–4.2 Four-branch series system 2D

This benchmark example characterized by two MPFPs, four failure domains and a very
small failure probability (∼ 5.6× 10−9) is introduced in Subsubsection II–3.5.3 (u =
−4). It indeed represents a very challenging case, albeit low dimensional. The results
are presented in Table V.3 and Figure V.6. QeAK-MCS stops after ∼ 99 calls (∼ 11
iterations) in average, resulting in an very accurate and robust result, with respectively
a mean relative error of 0.57% and a CoV of q̂ of 0.82%. As seen in Figure V.6 (a), the
True LSS is well estimated by the predicted LSS in the region characterized by high
density of input distribution, where the ability of the surrogate to classify samples
into the safe/unsafe domain is the most sensitive. Note also that in that zone, the
upper/lower predicted LSS match the predicted LSS, indicating high predictability and
the presence of DoE clustered in that zone. Figures V.6 (b) (c) illustrate respectively
the average relative error and the quantile estimate history as a function of the number
of performance calls, with corresponding 2−σ confidence intervall. One can note that
after, in average 10 function calls (4-5 iterations), the average predicted quantile q̂ is
already of the same order of magnitude of the reference value, and the convergence
is then rather fast, with a mean relative error lower that 1% after ∼ 90 function calls
(∼8 iterations). The average CoV associated to the IS estimate of the corresponding
failure probability P(µĜ < q̂) is still low for this two-dimensional case, about 0.95 %.
It illustrates the efficiency of the IS method with the Gaussian ISD N (0,γ2Id) in this
case, which translates in an accurate estimate of the quantile, for a given surrogate
accuracy, which is confirmed by the convergence trend of the relative error which
decreases as the surrogate is refined.

V–4.3 Deviation of a Cantilever Beam 2D

This two-dimensional example is characterized by a single failure region, with p f ∼
4×10−6 and introduced in Subsubsection II–3.5.5. The results are presented in Table
V.4 and Figure V.7. The eAK-MCS algorithm stops after ∼ 29 calls in average (3 iter-
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Table V.3 Results of the Four-branch series system 2D.

Method E[Ncal ls] E[Ni ter] E[q̂] CoV[q̂] εq E[CoV [α̂]]
Referencea 107 - -4 - 0 < 0.05%
QeAK-MCSb 98.4 10.9 −3.999 0.82% 0.57% 0.95%

Solving P(G(X)< q̂) = 5.596× 10−9, with qre f = σG = 0.6265.
a Reference: SS [Bect et al., 2017], 100 independent runs. CoV < 0.05%.
b Initial DoE size: 10. 9 samples iteratively added. Based on 50 independent runs.
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Figure V.6 Results of the Four-branch series system 2D. Legend Settings in Figure V.5.

ations), yielding a mean relative error lower than 1.2% at the end of the refinement
algorithm, whose robustness is quantified by the final low CoV of q̂<1.5%. Figure V.7
(b) shows that the average relative error is below 10% after one refinement step (∼ 19
calls), which explains the sharp decrease to 0 of the mean normalized q̂ in Figure V.7
(c). For a sake of illustration, the history is truncated to 35 calls. Indeed, for few
runs characterized by very accurate metamodels, the enrichment algorithm proposes
candidates that are too close to the existing DoE to be accepted, and the algorithm
stops. The IS based quantile estimation shows a good efficiency, the average CoV of
the failure probability estimated with IS being low E[CoV [α̂]]∼ 0.51%.

The final metamodel is represented V.7 (a).

Table V.4 Results of the Deviation of a Cantilever Beam 2D.

Method E[Ncal ls] E[Ni ter] E[q̂] CoV[q̂] εq E[CoV [α̂]]
Referencea 107 - ∼ −1.84615× 10−2 - 0 < 0.04%
QeAK-MCSb 28.8 3.1 −1.84631× 10−2 1.44% 1.17% 0.51%

Solving P(G(X)< −
6

325
) = 5.596× 10−9, with qre f = σG = 1.1501× 10−3.

a Reference: SS [Bect et al., 2017], 100 independent runs. CoV < 0.04%.
b Initial DoE size: 10. 9 samples iteratively added. Based on 50 independent runs.

V–4.4 Response of a Nonlinear Oscillator 6D

The results for this six-dimensional example (introduced Subsubsection II–3.5.6) char-
acterized by α ∼ 1.5× 10−8 are presented in Table V.5 and Figure V.8. This example,
due to the higher dimensionality and the very low level of the quantile sought, is rather
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Figure V.7 Results of the Deviation of a Cantilever Beam 2D. Legend Settings in Figure
V.5.

challenging. Interestingly, QeAK-MCS performs very well here, the algorithm stopping
in average after ∼ 41 calls (∼ 2.2 iterations), which corresponds to 1 or 2 refinement
steps only. The estimated quantile returned is subjected to a mean relative error of
∼ 1%, in a robust way with a CoV on q̂ of ∼ 1.4%, which is remarkable. A look on
the history of the mean relative error and q̂ in Figures V.8 (a) and (b) respectively
shows that the estimated quantile rapidly converge to the solution. The mean relative
error reaches a plateau as the surrogate is refined, contrary to the other 2D examples
for which it kept decreasing. This behavior can be explained by a deteriorated effi-
ciency of the Gaussian ISD for the IS quantile estimation of the surrogate, for which
the mean CoV of the failure probability estimator E[CoV [α̂]] is rather large, 2.52%,
limiting the accuracy of the quantile based on the surrogate, independently of the lat-
ter’s accuracy. This tendency would confirm the quality of the refinement algorithm
proposed and the one of the final surrogate, even if this IS procedure cannot permit
in this higher dimensional case to extract very accurately the quantile. This behavior
also confirms a tendency observed in the related eAK-MCS example (Chapter IV), for
which the surrogate itself seems accurate, but the Gaussian ISD could not permit to
extract a highly accurate failure probability, despite an apparently accurate surrogate.

Table V.5 Results of Response of a Nonlinear Oscillator 6D.

Method E[Ncal ls] E[Ni ter] E[q̂] CoV[q̂] εq E[CoV [α̂]]
Referencea - - 0 - 0 < 0.05%
QeAK-MCSb 41.2 2.2 −2.46× 10−4 1.39% 1.01% 2.52%??

Solving P(G(X)< q̂) = 1.514× 10−8, with qre f = σG = 0.18267.
a Reference: SS [Bect et al., 2017], 100 independent runs. CoV < 0.05%.
b Initial DoE size: 30. 9 samples iteratively added. Based on 50 independent runs.

V–5 Conclusion

This study proposes an extension of AK-MCS as presented in [Schöbi et al., 2016] to
make it suitable for the estimation of extreme quantiles. It uses a centered uncor-
related Gaussian distribution to sample candidate points and uses the IS method to
estimate the quantile. The refinement algorithm of eAK-MCS permits to select candi-
date points to the DoE, based of the quantiles estimates. A parallel quantile selection
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Figure V.8 Results of Response of a Nonlinear Oscillator 6D. Legend Settings in Figure
V.5.

(also suitable for quantile estimation in the scope of [Schöbi et al., 2016]) is also pro-
posed. The performance of the proposed algorithm is assessed and illustrated through
some benchmark analytical functions, showcasing very satisfactory accuracy (relative
error below ∼ 1%) and robustness (CoV[q̂] < 1.5%), in less than 100 evaluations of
the original model, in average.

To the knowledge of the author, there is no algorithm in the literature able to
estimate accurately such low quantiles, especially in problems with LSS characterized
by multiple failure modes.

The first classic limitation of the method is inherent to the GP-surrogate itself: low
dimensionality and moderate size of the DoE. It also depends on its ability to fit the
performance function G. The second limitation is in the physical input distribution,
that needs to be accurately mapped onto the standard space. The last concerns the
accuracy of the IS-based quantile estimation: it strongly depends on the ability of the
Gaussian ISD fN (0,γ2 Id ) to reduce the variance when estimating the failure probability
α̂ based on the estimated quantile. The same problem occurs even when evaluating
a reference value with an analytical function based on a given small quantile level α.
This IS quantile estimation is expected to deteriorate as the input dimension rises, as
identified in the 6D-oscillator example: the relative error reaches a stagnation value
as the number of samples increases. Indeed, the IS CoV of α is significantly larger
(∼ 2.52%) than in the two-dimensional cases considered. This represents the main
axis of improvement for the present method.

This work also illustrates the main advantage of the eAK-MCS method, as an exten-
sion of AK-MCS for the estimation of very small failure probabilities for which several
algorithms are based and could be adapted in this context: quantile-based optimiza-
tion [Moustapha et al., 2016] or quantile estimation [Schöbi et al., 2016] presented
here. The key of this adaptation basically consisted on an IS based quantile estimation
from the surrogate at a reasonable number of evaluations. A last contribution of this
study is the proposition of parallel quantile selection that could also be applied for
quantile estimation (α > 10−4) using the classic AK-MCS [Schöbi et al., 2016].
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!
Overview This part aims at applying original Robust Design Optimization (RO)
methods to the Shape Design of a supersonic ORC Turbine cascade. In particular,
a comprehensive UQ analysis accounting for operational, fluid parameters and geo-
metric (aleatory) uncertainties permits to provide a general overview over the impact
of multiple effects and constitutes a preliminary study necessary for RO. Moreover,
a failure scenario is analyzed by applying one of the methods illustrated in the first
part of the manuscript. Several mono-objective RO formulations are considered in
this work, including minimizing the mean or minimizing a high quantile of the Ob-
jective Function. (Robust) Optimal profiles are compared with each other, in terms
of PDFs to account for the underlying variability of the input appropriately. Deter-
ministic Optimization (DO) is also performed to showcase the advantages of RO over
DO. The impact of the RO formulation is also investigated.

Contribution This work constitutes the basis of two journal articles (1 published,
1 submitted):

1. N. Razaaly, G. Gori, G. Persico, P.M. Congedo, Quantile-based robust optimiza-
tion of a supersonic nozzle for Organic Rankine Cycle turbine, Submitted, April
2019.

2. N. Razaaly, G. Persico, P.M. Congedo, Impact of geometric, operational, and
model uncertainties on the non-ideal flow through a supersonic ORC turbine
cascade, Energy, Volume 169, Pages 213-227, 2019.

Outline

This second Part is organized as follows. Chapter VI describes the models used for the
simulation of the ORC turbine, including the governing equations, the blade parametriza-
tion, the numerical solver, the mesh deformation tool and the modeling of geometric
uncertainties. In Chapter VII, several UQ analyses are carried out, studying the im-
pact of different physical models and operational, model parameters and geometric
uncertainties. It includes a reliability analysis applying the method for unbiased failure
probability estimation MetaAL-OIS presented in Chapter III. In Chapter VIII, a mono-
objective quantile-based RO approach is investigated illustrating its interest w.r.t. DO,
and is compared to the classical formulation consisting of minimizing the mean of the
objective function.
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!
Overview This chapter introduces the turbine configuration of interest which is a
well known axial-flow supersonic nozzle cascade operating with siloxane MDM, first
presented in [Colonna et al., 2008]. The numerical framework including, the CFD
solver, the parametrization and mesh tools, is described.

Contribution This chapter does not feature any original contribution w.r.t. the
literature.

Introduction

In the manuscript, the targeted ORC nozzle is the geometry of an existing ORC nozzle
designed for a 300 kWe Combined-Heat-and-Power (CHP) axial turbogenerator em-
ploying siloxane MDM as working fluid and the combustion of biomass as a primary
energy source. This supersonic axial-flow turbine stator characterized by converging-
diverging blades features significant fluid-dynamic penalties due to a strong shock-
wave forming on the rear suction side of the blade. This exemplary profile, originally
presented in [Colonna et al., 2008] has been chosen because it is representative of
typical difficulties encountered for cascade design in ORC turbines. It has been in-
deed extensively studied in the open literature of ORC, in particular, subject to several
optimization trials in recent years [Pini et al., 2015, Rodriguez-Fernandez and Persico,
2015, Vitale et al., 2017]. The profile above is studied from an UQ and optimization
under uncertainties perspective.

This Chapter describing the numerical framework associated to the ORC Turbine
nozzle application [Colonna et al., 2008] is organized as follows. The governing equa-
tions and the numerical open-source solver SU2 permitting to compute the QoIs are
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described in Section VI–1. A concise description of the thermodynamic model is pro-
vided in Section VI–2. The geometry parametrization based on B-splines is presented
in Section VI–3. The baseline configuration is studied in Section VI–4, the mesh tools
are finally exposed in Section VI–5.

VI–1 Governing equations and Flow Solver

The Non-Ideal Computational Fluid Dynamics (NICFD) solver included in the open-
souce SU2 [Palacios et al., 2013, Economon et al., 2016, Pini et al., 2016, Palacios and
al, 2014, Vitale and al, 2015] suite is employed to carry out the numerical analysis
presented in this work. The reliability of solver predictions against experiments per-
formed in a supersonic nozzle for organic vapours [Spinelli et al., 2018] was assessed
in [Gori et al., 2017]. The SU2 NI-CFD solver relies on an embedded thermodynamic
library which includes several Equations Of State (EOS) such as the Van der Waals
(VdW) and the Peng-Robinson-Stryjek-Vera (PRSV) ones.

In the following, a brief overview of the main features of a NICFD solver are high-
lighted.

The three-dimensional Navier-Stokes equations for compressible flows read

∂ u
∂ t
+∇ · f(u) =∇ · d(u). (VI.1)

The vector of the conserved variables u = (ρ,m, E t)T includes the mass density ρ ∈
R+, the three components of momentum density m ∈ R3, and the total specific energy
E t ∈ R+:

E t = ρ
�

e+
1
2
||v||2

�

, (VI.2)

where e is the specific internal energy while v=m/ρ is the velocity vector.
The function representing the advection and pressure fluxes reads

f(u) = [m, (m⊗m)/ρ + PI,m(E t + P)/ρ]T , (VI.3)

while the viscous and thermal fluxes are represented by the function

d(u) = [0,Π,vT ·Π− q)]T , (VI.4)

with d(u) ∈ R5×3. In these latter functions, P = P(u) is the pressure, I is the identity
matrix of dimension 3, Π= Π(v) is the viscous stress tensor and q is the thermal flux.

The system of equations is supplemented by constitutive relations that bound the
state of the fluid to the thermodynamic and to the transport quantities. For a single-
component fluid in single-phase conditions, two EoS are needed and provide the func-
tional dependency of a state variable from any given pair of independent variables, for
instance in the form of P = P(T, v) and e = e(T, v). These relations are invertible and
therefore the functional forms T = T (P, v) or v = v(T, e) also exist. The structure of
the numerical solver is strictly related to these functional relations. From a numerical
perspective, when the Ideal Gas EoS is employed a set of simplifications are possible.
When more complex EoS are considered, a generalized approach is needed.

The extension of the SU2 solver to make it suitable for NICFD is described in [Vitale
et al., 2015].
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Besides the structural changes required to accommodate the more complex EoS,
NICFD solver must comply with the fulfillment of an additional consistency equation
[Guardone and Vigevano, 2002a]:

χ̃i j(ρi −ρ j) + κ̃i j(ρiei −ρ je j) = (Pi − Pj), (VI.5)

where the pressure derivatives χ̃i j and κ̃i j, are defined as:

χ =
�

∂ P
∂ ρ

�

ρe
=
�

∂ P
∂ ρ

�

e
−

e
ρ

�

∂ P
∂ e

�

ρ

and κ=
�

∂ P
∂ ρe

�

ρ

=
1
ρ

�

∂ P
∂ e

�

ρ

. (VI.6)

According to Boussinesq, in the Reynolds-Averaged Navier-Stokes (RANS) equations
the contribution of the so-called turbulence or eddy viscosity and of the turbulent ther-
mal conductivity must be taken into account. Therefore, the transport coefficients µ,
λ and κ, upon which the viscous stress tensor and the thermal fluxes depends on, must
include also a turbulent contribution.

The SU2 framework relies on a standard edge-based structure. Starting from the
original mesh, a dual grid is constructed using a median-dual vertex-based scheme.
The semi-discretized integral form of PDE Equation VI.1 over the dual domain reads:

∫

Ωi

∂ U
∂ t

dΩ+
∑

j∈N (i)

(F̃ci j
+ F̃vi j

)∆Si j −Q|Ωi|=
∫

Ωi

∂ U
∂ t

dΩ+ Ri(U) = 0. (VI.7)

In Eq. VI.7, Ri(U) is the residual term while F̃ci j
and F̃vi j

represent the projected nu-
merical approximations of the convective and viscous fluxes, respectively. ∆Si j is the
area of the face associated with the edge i j while Ωi is the volume of the element. The
N (i) index is related to the nodes surrounding node i. Following a standard practice,
the convective and viscous fluxes are computed at the midpoint of each edge.

To increase the first-order accuracy of the numerical scheme, and to obtain a
second-order accuracy in smooth flow regions, the SU2 solver relies on a limited
construction of the flow variable, according to the MUSCL approach. Different flux
limiters are available in SU2, to avoid the occurrence of spurious oscillations due to
shocks and discontinuities typically occurring when second order-accurate schemes
are employed.

In the analysis presented hereinafter, the inviscid fluxes are discretized using a
second order approximate Riemann solver (ARS) of Roe upwind type [Roe, 1981,
Vinokur and Montagné, 1990, Guardone and Vigevano, 2002b] along with the slope
limiter proposed by van Albada; central differences are used for the viscous terms. The
combination of such schemes guarantees high resolution in the numerical solution of
the system of equations.

To retrieve the effects of turbulence in RANS simulations, the Menter’s k-ω Shear
Stress Transport (SST) [Menter, 1993]model is used, for its capability of resolving the
near-wall region of the boundary layer as well as the free-stream region, making it
widespread in turbomachinery applications.

As no wall functions are used, the near-wall region of the boundary layer is solved
entirely by the simulation. To ensure a proper resolution in the near-wall region,
the height of the first cell of the boundary layer grid was set to be equal to ≈ 2 · 10−7,
corresponding to a y+ value lower than 1. The y+ value was evaluated considering the
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dynamic viscosity value assumed for the whole domain, and given in Table VI.1; the
considered values of stream velocity and density are instead the ones resulting from
simulations at the exit of the cascade, the reference length being the blade chord.

The SU2 suite is also equipped with Non-Reflecting Boundary Conditions (NRBC)
[Giles, 1990] which are exploited throughout this work. NRBC are designed to avoid
spurious pressure oscillations due to the reflection of pressure waves at the domain
boundaries, and it is of particular relevance for the present study due to the strong
shocks that establish downstream of the supersonic cascade.

VI–2 Working fluid and Thermodynamic model

The operating fluid is the siloxane (silicon oil) named octamethyltrisiloxane (MDM),
whose properties are reported in Table VI.1 (γ, µ and k denote respectively the heat ca-
pacity ratio, the dynamic viscosity and the thermal diffusivity). Note that this working
fluid is currently investigated during an on-going experimental campaign in Politec-
nico di Milano.

Concerning the thermodynamic model, a polytropic assumption is made, assuming

constant heat capacity ratio: γ =
cp

cv
, cp and cv denoting the specific heat capacity at

constant pressure and volume, respectively. The PRSV [Vitale and al, 2015] EOS is
used to describe the thermodynamic behavior. The EOS constituted by two relations
depending on the temperature T and the specific volume v is given hereafter:

ρ(T, v) =
rT

v − b
−

aα2(T )
v2 + 2bv − b2

e(T, v) = cv T −
aα(T )(k+ 1)

b
p

2
tanh−1

�

b
p

2
v + b

�

, (VI.8)

where

a = 0.45724
(rTc)2

Pc

b = 0.0778
rTc

Pc

α(T ) = 1+ k

�

1−
√

√ T
Tc

�

k = 0.37464+ 1.54226ω− 0.26992ω2, if ω≤ 0.49

= 0.379642+ 1.48503ω− 0.164423ω2 + 0.016666ω3, if ω> 0.49. (VI.9)

Tc, Pc denote respectively the critical temperature and pressure, and ω the acentric
factor.

Uniform thermo-physical quantities are assigned, estimated as representative val-
ues for the entire transformation by resorting to the RefProp library. The inlet tur-
bulent parameters are assigned considering a typical turbomachinery environment,
namely a turbulence intensity of 3% and a turbulent-to-molecular viscosity ratio of
100.
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Critical pressure 14.152 bar
Critical temperature 564.1 K

Critical density 256.82 kg.m−3

γ 1.0165
Acentric factor ω 0.529

Gas constant 35.152 J/kg/K
µ 1.1517× 10−5 Pa.s
k 0.03799 W/(m.K)

Table VI.1 Gas properties of the siloxane MDM

VI–3 Geometry Parametrization

In order to reconstruct the 2D blade profile employing a minimum number of vari-
ables, a unique B-spline curve is used to parametrize both pressure and suction sides
of the cascade. An exhaustive description of B-splines curves/surfaces can be found
in [Hoschek et al., 1993] [Farin, 2002]. The approach follows the one successfully
applied in [Rodriguez-Fernandez and Persico, 2015]. The trailing edge is considered
separated from the B-spline, which therefore has to be constrained to pass by the two
control points that define the trailing edge, and is assumed to be a circular arc.

Notations Note that some variables introduced in this section, i.e. n, k, P, p, N , x ,
are indicated with a specific notation, not used elsewhere in the manuscript.

A B-spline curve p(t) of degree n can be written as

p(t) =
n
∑

i=0

Ni,k(t)ai, (VI.10)

where ai denotes the i-th control point (CP) with i ∈ ¹0, nº. Ni,k(t) is the correspond-
ing k− 1 degree polynomial B-Spline basis function, defined recursively by:

Ni,1(t) = 1[t i ,t i+1](t)

Ni,k(t) =
t − t i

t i+k−1 − t i
Ni,k−1(t) +

t i+k − t
t i+k − t i+1

Ni+1,k−1(t), (VI.11)

where {t j} j∈¹0,n+kº denotes the increasing so-called knot sequence, and t ∈ [tk−1, tn+1]
is a scalar parameterizing the B-Spline curve.

Properties Some properties on B-splines are recalled:

• Polynomial Degree: p(t) is a k degree polynomial curve on ]t i, t i+1[.

• Regularity at junction points: p(t) is Ck−2 at junction points p(t i).

• Influence Range: CP ai affects p[t i ,t i+k].

• Local Control Property: p[t i ,t i+1] is influenced by the k CP (ai−k+1, ...,ai).
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Baseline Approximation The first step is to approximate by a B-Spline curve the
baseline geometry represented by P + 1 data points pl .
The polynomial degree k, the number of CP and the knot sequence {t j} j∈¹0,n+kº are
user defined.
The CP ai can then be estimated minimizing the approximation error defined by:

f (x) =
P
∑

l=0

‖pl − x(ωl)‖
2 , (VI.12)

where x is the B-Spline curve obtained for a given set of control points {ai}. The
sequence {ωl} is computed as the curvilinear abscissae of the points {pl}l∈¹0,Pº. ‖.‖ is
the Euclidian distance. Rewriting equation VI.12 using VI.10 results in a least squares
minimization problem whose resolution leads to a linear symmetric system, composed
by the following n+ 1 relations:

n
∑

i=0

ai

P
∑

l=0

Ni,k(ωl)N j,k(ωl) =
P
∑

l=0

N j,k(ωl)pl , j ∈ ¹0, n+ 1º. (VI.13)

Each dimensional component of ai can be solved independently, by means of Cholesky
Decomposition for example. The B-Spline curve is constrained to pass through the first
and last data points to create a closed curve along with the circular-shape trailing edge.
Ck−2 regularity is ensured by imposing the first (resp. last) data point to match the
first CP a0 (resp. last CP an) by selecting a knot sequence with a so-called multiplicity
k at end points, namely t0 = ...= tk−1 (resp. tn+1 = ...= tn+k).

Choice of knot sequence and impact on parametrization The knot sequence spac-
ing, namely {t j+1− t j} j∈¹0,n+k−1º, regulates the spacing between the control points, and
is chosen following several guidelines:

1. to limit the geometrical error in the reconstruction;

2. to exploit the non-uniform distribution of CPs, reducing the distance between
the CPs in regions of higher curvature;

3. to limit the CP number in interesting areas for the optimization, thus reducing
the design dimension.

In this work, n + 1 = 30 CP points are chosen and k = 3, resulting in C1 regularity
at junction points and p(t) is polynomial curve of degree 3 on [t i, t i+1]. 9 CPs are al-
lowed to move in the direction normal to the blade (Figure VI.1), within a predefined
range aimed at preventing unfeasible designs and mesh-deformation issues, while en-
suring high design flexibility. Note that the displacements of the 4 CPs closest to the
trailing edge are linked each other, so that only one CP is movable and the other ones
move rigidly with the former; this allows reducing the design dimension while keep-
ing constant geometrical parameters like the thickness and the wedge angle that are
important for the structural integrity of the blade.
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Fit the parametrization ω̄l Once the optimal CP positions ai are evaluated solving
Equation VI.13 based on an initial set (possibly large) of data points pl representing
the baseline, the sequence ω̄l has to be recovered to match the new set of points
{p̄l}l∈¹0,P̄º defining the blade geometry in the mesh used for optimization purpose. A
1D optimization problem has to be solved for each new point p̄l

ω̄l = argmin
ω











p̄l −
n
∑

i=0

Ni,k(ω)ai











2

, l ∈ ¹0, P̄º. (VI.14)

Parametrization Vector x In the following, x will denote the vector of normal dis-
placements of the moving CP.

(a) Blade Parametrization (b) Zoom at the Trailing Edge.

Figure VI.1 Baseline profile approximated by B-splines: 30 CP, 9 Free CP (red), 21
Fixed CP (black).

VI–4 Baseline Configuration

Since this work aims at the aerodynamic optimization of the blade profile, the flow
model focuses on the two-dimensional flow around the blade profiles at the midspan
section of the cascade. Total Pressure P t

in, total Temperature T t
in, and axial flow di-

rection are assigned at the inlet, while static pressure P s
out is given at the outlet. The

cascade operates with a design expansion ratio of about 7.5, expanding the organic
fluid from 8 bar and 545 K as reported in Table VI.2.

P t
in T t

in P s
out

Nominal 8 bars 545.15 K 1.072 bars

Table VI.2 Nominal Operating Conditions.

To analyze the flow features at nominal conditions, the distribution of the Mach
number is reported in Figure VI.2. It shows that high supersonic flows (with peak
Mach number values of 2) are established in the rear sides of the cascade and the
cascade-exit flow. As a result of the high Mach number of the free-streams (i.e., out
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from the boundary layer) on both the suction and pressure sides of the blade, tra-
ditional fish-tail shock systems are generated at the blade trailing edge. The shock
generated on the pressure side of the trailing edge impinges on the suction side of the
adjacent blade, and it is reflected; this shock wave grows in strength when propagat-
ing downstream, as it merges with the compression occurring on the rear suction side
of the blade, and due to the local concave shape of the blade. This phenomenon leads
to the onset of a strong shock wave in the cascade-exit flow field. The QoIs related

to that configuration, and used in the sequel are the total pressure loss Y =
P t

in − P t
out

P t
in − P s

out
(where P t

out denotes the mass-averaged total pressure at the outlet), and the mass
flow rate per unit span ṁ. Another QoI used as a performance function to minimize is
∆P based on the pressure variability downstream of the cascade, and defined as the
standard deviation of the azimuthal distribution of static pressure half an axial chord
downstream the blade TE:

∆P =

√

√

√ 1
np

np
∑

i=1

(Pi − P̄) (VI.15)

with

P̄ =
1
np

np
∑

i=1

Pi. (VI.16)

np is the number of points Mi = (x0, yi) chosen along the azimuthal direction on the
downstream traverse, while Pi = P(x0, yi) denotes the pressure interpolated linearly.
Minimizing ∆P within the optimization is convenient for such highly supersonic cas-
cade since it allows achieving a severe reduction of the shock strength, and hence
of the shock loss, thus improving the cascade performance and, at the same time, re-
ducing the perturbations entering the downstream rotor. However, also Y is evaluated
because proper analysis of the cascades demands the quantification of an aerodynamic
performance parameter.

VI–5 Mesh

During the optimization process, several blade profiles are progressively generated.
Instead of re-generating it automatically, it is chosen in this work to modify the initial
mesh at each design step. The dedicated mesh generation and deformation tools are
described in the following. Additionally, a grid analysis is conducted for both Euler
and RANS models, permitting to choose two grids respectively suitable for

• optimization purpose: coarse mesh resulting in a trade-off between accuracy
and computational cost;

• stochastic assessment: fine mesh permitting to perform an accurate stochas-
tic/deterministic analysis.

VI–5.1 Mesh Generation

The numerical grids are generated using an in-house tool developed at Politecnico
di Milano, based on an advancing-front/Delaunay algorithm. Quadrilateral elements
are first added over the solid walls, to build a boundary layer mesh, and to create hy-
brid grids suitable for viscous simulations. Afterwards, the advancing front algorithm
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Figure VI.2 Mach contours at Nominal Conditions (Table VI.2) for the baseline profile.

triangulates the remaining portion of the computational domain. Due to the super-
sonic nature of the flow in the cascade of interest, relatively strong shocks arise in the
rear suction side of the blade and at the Trailing Edge (TE), where the typical fish-tail
shock pattern occurs [Colonna et al., 2008]. The grids were refined adequately in the
regions where shock waves are expected to develop.

In the sequel, both inviscid models and high-fidelity RANS simulations are consid-
ered, with subsequent implications on the related meshes. Grids addressed to inviscid
simulations require indeed a special treatment of the blade trailing edge section. The
inherent artificial viscosity of numerical fluxes employed in inviscid simulations some-
how allows simulating the separation that does occur at the trailing edge of a blade.
However, as the artificial viscosity depends on the local cell size, the separation point
also depends on the mesh resolution; with the typical refinement levels employed
for transonic/transonic flows in turbine cascades, the separation point might be ill-
predicted, leading to local non-physical states and even creating convergence issues.
The truncation of the geometry at the trailing edge provides a significant advantage
to mitigate these problems, as it introduces two sharp corners that enforce the separa-
tion of the flow, generally yielding to an improved convergence rate. For this reason,
a truncated trailing edge was employed for all the inviscid simulations. Conversely,
the original round trailing edge was retained for RANS simulations.

Rigorously, the lack of viscosity would forbid the flow to separate from any solid
surface, independently from the curvature radius. A typical example is a low Mach
number stream around a cylinder: the inviscid fluid model fails in predicting the devel-
opment of the recirculation zone. In practical applications, the discretized formulation
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of a partial differential equation, including the Euler equations, is generally affected
by numerical dissipation. This numerical drawback somehow reproduces the role of
viscosity and allows the flow to detach, at least in the proximity of very sharp edges.

The numerical diffusivity is strictly related to the numerical scheme employed and
to the quality of the grid. In particular, the ill-prediction of separated flows is gen-
erally worse as one increases the resolution of the mesh, as the numerical viscosity
decreases with it. This phenomenon typically occurs in the proximity of sharp geo-
metrical curvatures, like for instance in inviscid turbo-machinery simulations, when a
round trailing edge is present. As one refines the grid at the blade trailing, the separa-
tion is more and more prevented. This phenomenon usually causes local non-physical
states to appear or makes simulations struggling to converge.

The truncation of the geometry at the trailing edge may help to overcome the issue.
Indeed, it introduces two sharp corners that enforce the separation of the flow, and
generally, it yields to an improved convergence rate. Clearly, for viscous simulations,
the actual semi-circular representation of the round trailing edge is preserved.

In Navier-Stokes simulations, the height of the first cell of the boundary layer grid
was set to 2 · 10−7m, to ensure y+ below unity. The y+ value was evaluated starting
from flat plate correlations considering the fluid viscosity provided in Table VI.1, the
stream velocity and the density resulting from Euler simulations at the cascade-exit,
and blade chord as reference length.

A representative NS mesh of the baseline profile, composed of 180 k cells, is re-
ported in Figure VI.3, alongside two enlargements corresponding to the diverging
channel and the trailing edge.

(a) Mesh (b) Diverging (c) TE

Figure VI.3 Example of a NS Mesh generated: 180 kcells.

VI–5.2 Mesh Deformation

A grid deformation tool is developed in order to accurately deform the grid for an
assigned boundary displacement. The present approach follows the work of [De Boer
et al., 2007], successfully applied in [Pini et al., 2015], to achieve a highly flexible
and robust deformation tool for unstructured meshes, based on the interpolation of
boundary nodes displacements to the whole mesh with Radial Basis Functions (RBF).
A linear system of equations only involving boundary nodes has to be solved, and no
grid connectivity information is needed. The following notations will be adopted in
this Subsection only. d denotes the dimension space (here d = 2), x ∈ Rd a node in
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the mesh, xnew ∈ Rd its new location, nb the number of boundary nodes, {xb j
} j∈¹1,nbº

the set of nodes at the boundary, p : Rd 7→ R a polynomial.

The interpolation function s : Rd → Rd , describing the displacement in the whole
domain, can be written as a sum of basis functions:

s(x ) =
nb
∑

j=1

α jΦ
�




x − xb j







�

+ p(x ), (VI.17)

where Φ is a given RBF. Coefficients of the linear polynomial p and α j are deter-
mined by the interpolation conditions:

s(xb j
) = db j

(VI.18)
nb
∑

j=1

α jq(xb j
) = 0, (VI.19)

where db j
is the imposed displacement of the boundary node xb j

. Equation VI.19 has
to be satisfied for all polynomials q with a degree less or equal than that of polynomial
p. In our case, the displacement db j

is nullified for all boundary nodes, except the ones
belonging to the blade. Independently for each spatial direction, the coefficients of the
polynomial p and α j are recovered solving a (nb + 4) × (nb + 4) symmetric positive
definite linear system, using a Cholesky decomposition for instance.
The new position xnew of a node in the interior domain initially located in x is then
directly derived:

xnew = x + s(x ). (VI.20)

Each point is moved individually involving that no mesh-connectivity information is
needed. The RBF retained in this work is the so-called Volume function, with global
support, defined by Φ(r) = r. This grid deformation tool is particularly easy to imple-
ment, robust, and computationally cheap, so perfectly suitable for the present work.

The baseline and two deformed Euler meshes composed by 36k cells are reported
in Figure VI.4, alongside two enlargements corresponding to the diverging channel
and to the trailing edge.
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(a) Baseline (b) Profile 1 (c) Profile 2

(d) Baseline (e) Profile 1 (f) Profile 2

(g) Baseline (h) Profile 1 (i) Profile 2

Figure VI.4 Examples of Euler Meshes deformed: 36 kcells. Diverging chanel (d-f),
Trailing Edge (g-i).
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Overview This chapter aims at presenting the outcomes of efficient surrogate-based
uncertainty propagation methods applied to an ORC turbine, namely the axial su-
personic turbine cascade introduced in Chapter VI. The impact of operational, fluid
parameters and geometric uncertainties on different QoI such as the total pressure
Y , ∆P or the mass-flow rate ṁ is analyzed and provides a general overview over
the influence of multiple effects and constitutes a preliminary study to RO. A failure
scenario for ORC turbine is also analyzed by using one of the methods illustrated in
the first part of this manuscript.

Introduction

The present work, among the first studies in the Literature on ORC power systems,
investigates the application of some advanced stochastic techniques to the analysis
of a typical supersonic turbine cascade for ORC applications by considering a RANS
turbulent solver and including a detailed characterization of the geometric uncertain-
ties. Some recent works dealt with ANOVA-based analysis applied to the simulation of
non-ideal gas flows, without an accurate characterization of geometric uncertainties:
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i) using Euler solvers and considering uncertainties on operating conditions and ther-
modynamics models [Cinnella and Hercus, 2010, Geraci et al., 2016, Congedo et al.,
2013a], ii) using turbulent solvers [Bufi and Cinnella, 2015].

Multiple sources of uncertainty are taken into account, related to the geometric
tolerances of the blade and the operating conditions, and also considering those of
some parameters of the thermodynamic model.

This Chapter is organized as follows. Section VII–1 provides in particular details
on operating conditions considered and stochastic convergence studies for the calibra-
tion of the number of samples used in the stochastic space. Section VII–2 discusses
uncertainties modeling, including a description of the geometric variability modelling.
Results of the UQ study are analyzed in Section VII–3. A failure scenario is then illus-
trated in Section VII–4 . Finally, conclusions are discussed in Section VII–5.

VII–1 Operating Conditions and Numerical Settings

The configuration of interest is an axial-flow supersonic nozzle cascade operating with
siloxane MDM, described in Chapter VI. In this work, blade-to-blade effects are inves-
tigated, considering a two-dimensional flow around the blade profiles at the midspan
section of the cascade. Total Pressure P t

in, total Temperature T t
in, and axial flow direc-

tion are assigned at the inlet, while static pressure P s
out is given at the outlet. Following

[Colonna et al., 2008], we consider first a nominal (or full-load) operating condition
for this nozzle cascade, characterized by an inlet thermodynamic state close to the
saturation curve, and a high expansion ratio equal to ≈ 6. As well known, ORC power
systems are requested to operate at part-load for long periods during their technical
life, due to changes in the thermal power made available by the heat source and in the
condenser temperature; this variation implies a large change in the turbine pressure
ratio, resulting in a variation of aerodynamic loading on each cascade. In [Colonna
et al., 2008], the implication of part-load operation for this cascades was estimated so
to reduce the pressure ratio to ≈ 4, by an increase of cascade outlet pressure. Both
full-load and part-load operating conditions are considered in this study, both of them
reported in Table ??.

Condition P t
in T t

in P s
out

Full-load 8.0 bars 543.65 K 1.33 bars
Part-Load 8.0 bars 543.65 K 2.0 bars

Table VII.1 Operating Conditions

Cascade Flow Field at Full- and Part-Load Conditions The RANS simulations were
performed on a cluster equipped with Intel(R) Xeon(R) CPU X5650 at 2.67GHz. An
adaptive CFL is selected to between 10 and 100. Simulations are assumed to be con-
verged when residuals on the density are decreased by six orders of magnitude, or
after 15000 iterations. Ill-converged simulations are re-run automatically with a min-
imal CFL of 1. Simulations run with 6 cores take about 8 hours for meshes composed
by 180k cells.
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A dedicated grid dependence analysis was performed at the full-load condition.
Two quantities were used as metric for evaluating the mesh convergence, namely the
total pressure loss Y and the mass flow rate per unit span ṁ. Figure VII.1 reports
the relative percentage error on the performance estimators. In this study, grid in-
dependence was considered achieved with the mesh composed by 590k cells; on the
basis of the quantitative results, the 180k cells mesh was considered as the optimal
compromise between accuracy and computational cost (error of 2%) and, hence, it
was employed to compute the blade performance in the UQ framework. We perform
a posteriori assessment that the variability induced by the uncertainty quantification
study is mainly predominant with respect to the mesh error.
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Figure VII.1 Grid Analysis on the baseline configuration (RANS), for the two QoI ṁ
and Y .

Calculations of the flow in the cascade for the full- and part-load conditions are
now reported to properly show the most relevant flow features, in view of the UQ
analysis which is the core of this study. Figure VII.2 reports the distribution of Mach
number for the two conditions, and show that high supersonic flows (with peak Mach
number values of 2) are established in the rear sides of the cascade and in the cascade-
exit flow. As a result of the high Mach number of the free-streams (i.e., out from the
boundary layer) on both the suction and pressure sides of the blade, classical fish-tail
shock systems are generated at the blade trailing edge. The shock generated on the
pressure side of the trailing edge impinges on the suction side of the adjacent blade,
and it is reflected; this shock wave grows in strength when propagating downstream,
as it merges with the compression occurring on the rear suction side of the blade,
and due to the local concave shape of the blade. This leads to the onset of a strong
shock wave in the cascade-exit flow field. A similar shock pattern can be observed for
the two conditions, even though the main shock is stronger and slightly less inclined
(with respect to the axial direction) in the part-load condition. The flow angle is
also clearly different in the two conditions, as marked by the higher inclination of
the wakes at part-load operation. This feature can be interpreted by considering that,
in this latter condition, the converging-diverging nozzle becomes significantly over-
expanded with respect to the outlet pressure; as a result, a post-compression takes
place that, in cascade configuration, induces a flow turning in tangential direction
(so to reduce the ’virtual’ cross-section normal to the flow at the exit). The post-
compression also explains the higher shock strength at part-load operation. The blade
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wakes and, especially, the shocks contribute to the loss generation, which is quantified
in this study in terms of the aforementioned total pressure loss Y . Y and the mass flow
rate per unit span ṁ are the QoIs considered in that work.

(a) Full Load (b) Part Load

Figure VII.2 Mach contours: Nominal Conditions

VII–2 Uncertainty Modeling

In this work, three classes of uncertainties are taken into account. At first, the ge-
ometric variability along the blade due to manufacturing tolerances was considered,
discussed in Subsection VII–2.1 and modeled through the realization of a random vec-
tor of practical dimension (Nσ = 7 here), stemming from a infinite dimension Gaussian
process. Moreover, uncertainties in operating conditions as well as in two parameters
of the thermodynamic model were also considered and their quantification is discussed
in Section VII–2.2.

VII–2.1 Modeling Geometric Variability

Various approaches have been introduced to model the geometric variations due to
blade turbine manufacturing. Based on measurement data, Principal Component Anal-
ysis (PCA) can be used to build a probabilistic model of variability from the empirical
mean and covariance of surface deviations at different locations on the blade [Gar-
zon, 2003, Häcker, 2000, Lange et al., 2012]. Following [Dow and Wang, 2015, Dow
and Wang, 2014], it is assumed that the geometric variability in manufactured tur-
bine blades can be accurately described as a non-stationary Gaussian Random Field
e(s,ω), ω being a coordinate in the sample space Ω, and (Ω,F ,P) a complete proba-
bility space. The arclength s ∈ [0, 1] parametrizes the location on the blade surface,
starting at the trailing edge (s = 0), going around the leading edge (s = 1

2), and
continuing back to the trailing edge on the opposite side of the blade (s = 1). This ap-
proach is somehow similar to the PCA [Garzon, 2003], except that in the present work,
mean and covariance are provided in closed form rather than estimated from data. In-
deed, random fields provide a convenient method for modeling spatially distributed
uncertainty. Random fields have previously been used to model spatially distributed
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uncertainty in a wide variety of systems, including natural variations in ground per-
meability [Christakos, 2012], random deviations in material properties for structural
optimization problems [Chen et al., 2010], and geometric variability in airfoils [Borzì
et al., 2010, Schillings et al., 2011].

Random Field

The Random field e(s,ω) represents the error between the manufactured surface and
the nominal (perfect) one in the normal direction at the point parametrized by s. It
is fully defined by its mean ē(s) (null here) and autocovariance function C(s, t): it
captures the correlation between manufacturing errors at locations s and t along the
blade surface, and describes the smoothness and correlation length of the random
field. It is written as [Dow and Wang, 2014]:

C(s, t) = σ(s) σ(t) ρ(s, t) (VII.1)

where σ(s) is the standard deviation of the random field at location s, considered
constant here: σ(s) = σ0.
σ0 quantifies le level of manufacturing variability. The non-stationary autocorrelation
function ρ is defined by [Dow and Wang, 2014]:

ρ(s, t) = exp
�

−
|s− t|2

L2(s, t)

�

, (VII.2)

where the square correlation length L2(s, t) is defined by:

L2(s, t) =L(s)L(t)

L(s) =L0 + (LLE − L0)exp

�

−
|s− 1

2 |
2

ω2

�

. (VII.3)

The values L0 = 0.1, ω = 0.1 [Dow and Wang, 2014] and LLE = 1.0 × 10−2, all
normalized by the blade half-arclength were used.

In that study, the TE is modeled as a circular arc, thus, the impact of manufacturing
variability at the trailing edge is not addressed.

Discretization and Simulation

The Karhunen-Loeve (KL) expansion is used to represent the random field: it is based
on a spectral decomposition of the autocovariance functions. The random field can be
represented exactly by [Betz et al., 2014, Karhunen, 1947, Loeve, 1948]:

e(s,ω) = ē(s) +
∞
∑

i=1

Æ

λiΦi(s)Zi(ω), (VII.4)

where the λi are arranged in descending order. Zi are standard uncorrelated nor-
mal random variables; λi ∈ R+ and Φi : [0, 1] → R are respectively the eigenvalues
and orthonormal eigenfunctions of the autocovariance function C , also referred to as
the kernel function in this context, obtained by solving the homogeneous Fredholm
integral equation of the second kind:
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∫

[0,1]

C(s, t)Φi(t)dt= λiΦi(s), ∀s ∈ [0,1]. (VII.5)

This integral equation is solved numerically on the discretized blade surface using
the Nyström method [Betz et al., 2014, Nyström, 1930], with Ng Gauss quadrature
points (Ng = 500 here) to approximate the integral. Discretized Eigenmodes are con-
sequently evaluated solving a discrete eigenproblem, using for instance a Singular
Value Decomposition (SVD). It results in a finite expansion further truncated to give
a stochastic dimension of NK L, determined by the decay of the eigenvalues. The nor-
malized cumulative energy from the first p modes is defined by

E(p) =

∑p
i=1λi

∑Ng

i=1λi

. (VII.6)

It is used to select the number of modes retained in the KL expansion:

NK L = argmin{k ∈N ∗ s.t. E(k)< ε}, (VII.7)

where ε is a user defined parameter driving the accuracy of the expansion. ε =
99% is chosen here.

Figures VII.4 and VII.3 illustrate the eigenmodes decay and selection. By analyz-
ing the effects of the modes, it is evident that the odd modes alter, with different
’wavenumber’, the blade thickness: mode 1 appears as a simple omothetic scaling of
the blade, mode 3 increases the thickness in the trailing edge region and makes the
blade more slender in the leading edge, mode 5 makes the blade more slender in the
central part of the blade and increases the thickness both at leading edge and trailing
edge, and so on for mode 7. Conversely, the even modes act mainly as blade rotation:
mode 2 appears indeed as a rigid blade rotation centered close to the leading edge,
mode 4 and mode 6 are more complex deformations in which the leading edge, the
trailing edge and the central part of the blade ’deflect’ (by a different amount) with
respect to the original blade.

Figure VII.5 shows samples of geometric perturbation with the proposed method.
Three levels of geometric variability are considered to study its impact on the QOI:

• No geometric variability: σ0 = 0.

• Moderate geometric variability: σ0 = 3× 10−5m.

• Large geometric variability: σ0 = 6× 10−5m.

In the following, the unity of σ0 will be skipped for a sake of brevity.

VII–2.2 Operating Conditions and Thermodynamic Model Uncer-
tainties

Uncertainties associated to the operating conditions are considered in this work, namely
on P t

in, T t
in and P s

out , for both full-load and part-load turbine operation. The values of
the uncertainties are reported in Tables VII.2 and VII.3. The uncertainties were esti-
mated considering typical measurement errors in the monitoring devices of power sys-
tems; in particular, ±5kPa of uncertainty in the pressure measurements and ±0.35K
of uncertainty in temperature measurements are assumed.
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Figure VII.3 Eigenmodes of the 1D random field.

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

(g) Mode 7

Figure VII.4 Eigenmodes: illustration on the 2D Cascade (scale=50, σ0 = 6×10−5m).

Two coefficients associated to the thermodynamic model of the fluid are also con-
sidered uncertain, namely the acentric factor ω and the heat capacity ratio γ of the
fluid (which is considered polytropic in this study). A specific quantification of the
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(a) Random Field (b) scale=10, σ0 = 6× 10−5.

Figure VII.5 Geometric Variability Modeling: Samples.

variability of these parameters not being available, a uniform uncertainty of 5% is as-
sumed for ω and a uniform range ±0.004 ensuring thermodynamic consistency for γ.
This is consistent with respect to other studies performed in literature over the coeffi-
cients of the thermodynamic models (see for example [Cinnella et al., 2011a, Cinnella
et al., 2010, Congedo et al., 2013a]).

Tables VII.2 and VII.3 summarizes the scenarios corresponding respectively to full-
and part-load, each considering three different geometric uncertainty levels.

Globally, the random vector is then denoted as = (P t
in, T t

in, P s
out ,γ,ω,ξ1, ...,ξNσ), or

= (P t
in, T t

in, P s
out ,γ,ω) if geometric variations are not taken into account.

Geometric Variations No Moderate Large
σ0 = 0 σ0 = 3× 10−5 σ0 = 6× 10−5

P s
out [bars] U[1.28, 1.38] U[1.28, 1.38] U[1.28, 1.38]

P t
in [bars] U[7.95, 8.05] U[7.95, 8.05] U[7.95, 8.05]

T t
in [K] U[543.3,544.0] U[543.3, 544.0] U[543.3, 544.0]
γ [-] U[1.012,1.020] U[1.012, 1.020] U[1.012, 1.020]
ω [-] U[0.518,0.540] U[0.518, 0.540] U[0.518, 0.540]
ξ - N7(0, I7) N7(0, I7)
Dimension 5 12 12

Table VII.2 Full Load: Uncertain Input, for different geometric variability levels

VII–2.3 Stochastic Convergence

An analysis of the convergence of statistics is performed considering full load and
σ0 = 6× 10−5 in order to justify the number of samples necessary to conduct the UQ
analysis based on the tools presented above. Three sets of LHS DOE of respective size
100, 200 and 400 are considered. Those sizes are chosen on a basis of similar studies
conducted with a inviscid model, not presented here for a sake of brevity.
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Geometric Variations No Moderate Large
σ0 = 0 σ0 = 3× 10−5 σ0 = 6× 10−5

P s
out [bars] U[1.95, 2.05] U[1.95, 2.05] U[1.95,2.05]

P t
in [bars] U[7.95, 8.05] U[7.95, 8.05] U[7.95,8.05]

T t
in [K] U[543.3,544.0] U[543.3, 544.0] U[543.3, 544.0]
γ [-] U[1.012,1.020] U[1.012, 1.020] U[1.012, 1.020]
ω [-] U[0.518,0.540] U[0.518, 0.540] U[0.518, 0.540]
ξ - N7(0, I7) N7(0, I7)
Dimension 5 12 12

Table VII.3 Part Load: Uncertain Input, for different geometric variability levels

Based on the three LHS sets, Figure VII.6 plots the PDFs of ṁ and Y , while Figure
VII.7 summarizes their total Sobol SI of input parameters. PDF’s and total Sobol SI are
in very good agreement for the different LHS sets; however, a slight error in the PDF
of Y is observed when using 100 samples, hence all the UQ studies were conducted
based on a LHS set of size NLHS = 200.

16 18 20 22 24 26
Y [%]

LHS 100
LHS 200
LHS 400

(a) Y PDFs

14 15 16 17
ṁ̇[kg/s/m]

LHṠ100
LHṠ200
LHṠ400

(b) ṁ PDFs

Figure VII.6 PDF Convergence analysis, based on LHS sets of size 100, 200 and 400.
Stars indicate 5% and 95% quantiles, ’plus’ indicate µ±σ and diamonds indicate µ.
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Figure VII.7 Total Sobol SI Convergence analysis, based on LHS sets of size 100, 200
and 400.
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VII–3 Results

This Section presents a comprehensive uncertainty quantification study based on the
stochastic framework formulated above. Based on a LHS set of size NLHS = 200 for
each case, a comprehensive UQ analysis is performed. A sensitivity analysis (ANOVA)
is carried out in Section VII–3.1. Marginal and joint PDF’s of the QoI are then studied
(Section VII–3.2), along with their statistics (Section VII–3.3). Finally, the impact of
the uncertain input on the flow field is studied (Section VII–3.4).

VII–3.1 Sensitivity Analysis

A Sensitivity analysis was performed for the QOI Y and ṁ, and is presented in Figures
VII.8 and VII.9 respectively, for both full- and part-load. First considering the influence
of thermodynamic conditions in absence of geometric variability, the uncertainty in
the outlet static pressure has the highest impact on the loss coefficient, especially
in full-load condition; this is because the uncertainty in the outlet static pressure is
relatively much higher than that on the inlet total pressure, and hence it dominates
on the variability of pressure ratio; the variability of pressure ratio, in turns, induces
a variation of shock strength and, hence, aerodynamic losses. In part-load condition,
the inlet total pressure grows in relevance on Y ; as a matter of fact, for this off-design
condition the difference between the inlet and the outlet pressures reduces, while the
uncertainty remains the same, so both the uncertainties contribute in a measurable
way to the variability of pressure ratio. The outlet static pressure does not have any
impact on the flow rate, as expected since the cascade is chocked in both full- and
part-load conditions. Conversely, the uncertainty in inlet total pressure dominates the
variability of flow rate in both the conditions, as the inlet total pressure determines
the value of fluid density; this latter, in turn, is only marginally influenced by the inlet
total temperature in the conditions of interest.

The uncertainties in the two parameters of the thermodynamic model have a min-
imal impact on the variability of Y . Conversely, the ratio of specific heat capacities
has a relevant impact on the flow rate, as it influences the relationship between the
mass flow rate and the expansion ratio in chocked-flow conditions. The acentric fac-
tor does not have a measurable effects on both the QoIs. The relevance of operational
and model uncertainties is drastically reduced when manufacturing tolerances are
plugged into the flow model, even though the mutual hierarchy of the former remains
the same, and the considerations reported above still apply. If geometric variability
is large, manufacturing tolerances dominate the variability of the QoIs. In particular,
it is observed that mode 1 and mode 4 are responsible for most of the variability of
flow rate, and also have the highest impact on the variability of loss coefficient. An
analysis of the geometric modes reveals that Mode 1 induces a net variation of ge-
ometric throat and also mode 4 has a large impact on the throat, as it is associated
to a rotation which alters significantly both the leading edge and the rear side of the
blade, which define the geometric throat of the cascade. These considerations justify
the relevance of mode 1 and 4 on the flow rate; however, in a supersonic configuration
a variation of the geometric throat without a corresponding change in expansion ratio
makes the nozzle to operate in off-design conditions, leading to the onset of stronger
shocks and, hence, modifying the cascade performance. This may explain why mode
1 and mode 4 also dominate the variability of Y . This latter, however, is influenced by
all the modes; as a matter of fact, the development of boundary layer and the onset
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of the leading shock depend on the detailed shape of the blade, both in the diverging
part of the bladed duct and in the region of un-guided turning, and all the modes alter
the blade in the rear part. As a further consideration, it is well known in cascade aero-
dynamics that trailing edge thickness has a relevant impact on the wake width and,
hence, on the viscous loss; this contributes to explain the relative relevance of all the
odd modes on Y , as all of them alter the trailing edge thickness; this is particularly
visible in full-load condition, for that viscous effects contribute more than shocks to
the aerodynamic loss, as at full-load the shocks have lower strength.

(a) Full Load: σ0 = 0 (b) Full Load: σ0 = 3× 10−5 (c) Full Load: σ0 = 6× 10−5

(d) Part Load: σ0 = 0 (e) Part Load: σ0 = 3× 10−5 (f) Part Load: σ0 = 6× 10−5

Figure VII.8 Sensitivity Analysis Y : Total Sobol SI

VII–3.2 PDF Comparisons

The PDFs of Y and ṁ are provided in Figure VII.10 for the three different geometric
variations, in both full-load and part-load cases. In an alternative two-dimensional
representation, the joint PDFs are also provided in Figure VII.11.

In absence of geometric variability, the PDFs of Y have a complex non-Gaussian
shape with different mean values and support; in particular, the support is narrow
enough to make the full-load conditions always outperforming the part-load one. Con-
versely, the PFDs of ṁ are of Gaussian type with very narrow support; this result had
been already observed and discussed in detail in [Romei et al., 2018], and is motivated
by the combination of inlet pressure and temperature uncertainties. As the cascade
is chocked in the two conditions, and the uncertainties in the inlet conditions are the
same, the PDFs appear identical.

The influence of geometric tolerances is, again, very significant from both the qual-
itative and quantitative point of view. At first, the introduction of geometric variability
makes the PDFs of Y to become of Gaussian type. This is probably because the ge-
ometric variability itself is modeled as Gaussian process; however, this indicate the
dominant effect of manufacturing tolerances, when they are plugged into the un-
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(a) Full Load: σ0 = 0 (b) Full Load: σ0 = 3× 10−5 (c) Full Load: σ0 = 6× 10−5

(d) Part Load: σ0 = 0 (e) Part Load: σ0 = 3× 10−5 (f) Part Load: σ0 = 6× 10−5

Figure VII.9 Sensitivity Analysis ṁ: Total Sobol SI.
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(a) Full Load: Y
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(b) Full Load: ṁ
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(d) Part Load: ṁ

Figure VII.10 PDF of Y and ṁ at full and partial load: comparison between
no/moderate/high geometric variations.
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certainty framework. On the quantitative ground, the geometric variability clearly
enlarges the support of the PDFs in all the conditions and for both the QoIs. In partic-
ular, the variability in loss coefficient increases from about 2% in absence of tolerances
to about 4-6% for the largest tolerance. Despite this, the mean of the PDFs undergoes
a slight change (only visible for part-load condition) which does not alter the ranking
between full-load and part-load conditions in terms of mean performances; however,
when considering the actual realizations of the flow process in presence of the largest
geometric variability, a significant overlapping between the PDFs in the two conditions
exists (between 21.5% and 24.5%) making the two operating conditions equivalent
from the performance perspective for a relatively large percentage of realizations.

The impact of manufacturing tolerances on the flow rate is identical for the two
conditions and simply enlarges by a factor ≈ 5 the support of the PDF.

(a) Full Load: σ0 = 0 (b) Full Load: σ0 = 3× 10−5 (c) Full Load: σ0 = 6× 10−5

(d) Part Load: σ0 = 0 (e) Part Load: σ0 = 3× 10−5 (f) Part Load: σ0 = 6× 10−5

Figure VII.11 Joint PDF (ṁ,Y )

VII–3.3 Statistics

On the basis of the PDFs reported in the previous Subsection, the most relevant statis-
tics (mean, variance, 5-quantile, and 95-quantile) were computed and are reported
in Table VII.4. They show, in more quantitative terms, the features already observed
when commenting the PDFs in terms of mean, variance, and support (which is roughly
given by the difference between the two quantiles). The interference between the
PDFs of Y at large geometric variability is confirmed by the 5-quantiles and 95-quantiles,
thus confirming that it is not just a matter of tail probabilities. The analysis also con-
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firms that the quantitative equivalence between the flow rate in the full- and part-load
conditions does not hold only for the mean properties but it is valid for the whole
stochastic framework. This result, which is physically consistent, might be consid-
ered as a further proof of the validity of the proposed statistic methodology based on
surrogates.

σ0 = 0 σ0 = 3× 10−5 σ0 = 6× 10−5

Full Load (µ,σ,q5,q95) Y [%] (20.91, 0.45, 20.15, 21.54) (20.91, 0.69, 19.75, 22.01) (20.94, 1.14, 19.09, 22.83)
ṁ[kg/s/m] (15.33, 0.07, 15.22, 15.44) (15.33, 0.17, 15.04, 15.61) (15.33, 0.32, 14.80, 15.86)

Part Load (µ,σ,q5,q95) Y [%] (30.77, 0.60, 29.87, 31.75) (30.79, 1.02, 29.16, 32.53) (30.84, 1.74, 28.10, 33.83)
ṁ[kg/s/m] (15.38, 0.07, 15.26, 15.49) (15.38, 0.17, 15.10, 15.66) (15.38, 0.32, 14.86, 15.90)

Table VII.4 Scalar Statistics (mean, standard deviation, 5% and 95% quantiles) of the
QoI Y and ṁ, for the three geometric noise levels.

VII–3.4 Physical Analysis

In this Subsection, QoI of high dimension variability is conducted using the UQ tools
described in Subsection I–3.2 to perform a physical analysis of the flow. The dis-
tributions of Mach number over the entire flow domain and its variability are now
discussed, by resorting to the mean and the Coefficient of Variance.

The QoI here shown refer to Mach number at node location of the initial mesh,
the latter allowed to be deformed conserving the initial nodes connectivity. Pre-
scribing the QoI to assigned spatial location would require a cumbersome interpo-
lation/extrapolation, adding numerical inaccuracies of the QoI, in the vicinity of the
blade wall, due geometric blade perturbations.

The distributions of mean and CoV of the Mach number on the computational do-
main is shown Figures VII.12 and VII.13, corresponding respectively to the full- and
part-load conditions. The mean Mach number distributions are actually very similar
each other and to the deterministic ones. This is probably because the uncertainties
are relatively small and are symmetric with respect to the deterministic values; more-
over, the manufacturing tolerances are also assumed to be Gaussian processes whose
mean correspond to the original blade shape. However, the same uncertainties pro-
duce significant perturbations, that grow significantly when activating the geometric
variability. CoV values slightly exceeding 2% are found, with the highest values con-
centrated in the wakes and in the shock fronts.

In case of no geometric variability, almost null CoV is found in the bladed channel
up to the shock on rear suction side of the blade; after that, high CoV is observed in the
whole rear suction side up to the trailing edge, where local peaks of CoV occur in the
wake and in the fishtail shock system. Moving downstream, the wake width increases
due to turbulent and viscous diffusion, resulting in a cascade of wide regions of mod-
erate CoV; in correspondence to the main shock front, the CoV remains locally high
and increases moving downstream, as the leading shock grows in strength. As already
commented, the main shock grows in magnitude moving downstream as the compres-
sion waves generated in the rear suction side, and induced by the local concave shape
of the blade, coalesce in a shock front at a certain distance from the blade, enforc-
ing the weak reflected shock coming from the trailing edge of the adjacent blade. The
variability in operating conditions (in outlet pressure, in particular) and in the specific
heat capacity ratio influence the shock strength justifies the local high values of CoV.



VII–3. Results 161

When geometric variability is plugged into the uncertainty framework, the char-
acter of the CoV distribution does not change but some evident quantitative effects
appear; similar features take place for the two operating conditions. At first, progres-
sively higher CoV values are found upstream of the blade when the manufacturing
tolerance increases; the CoV reduces in the accelerating region of the bladed nozzle,
and especially in the supersonic divergent, where the mean Mach number grows signif-
icantly. This suggests that manufacturing tolerances induce a nearly uniform variance
in this region, so that the CoV distribution is dominated by that of the mean. On the
rear suction side of the blade and in the cascade-exit flow field high CoV values are
observed in the wakes and in the shock regions, as already observed in absence of geo-
metric variability; however, wider areas of high CoV appear, and, at a certain distance
from the blade, moderate-to-high CoV cover the entire flow field. The larger extension
of high CoV regions downstream of the cascade can be explained by considering that
the modes alter significantly the blade shape in the rear part. In particular, the com-
pression wave generated on the concave part of the rear suction side is perturbed by
the local variability in the blade shape, altering both the shock strength and the shock
inclination; this contributes to explain the wider high CoV region observed across the
shock in presence of manufacturing tolerances. Beside that, the wake appears even
more sensitive than the shock to geometric uncertainty; this is probably motivated
by the fact that the geometric variability, and in particular the odd modes, alter the
trailing edge thickness, which has a direct impact on the wake width.

(a) Mean: σ0 = 0 (b) Mean: σ0 = 3× 10−5 (c) Mean: σ0 = 6× 10−5

(d) CoV: σ0 = 0 (e) CoV: σ0 = 3× 10−5 (f) CoV: σ0 = 6× 10−5

Figure VII.12 Mean and CoV[%] Mach contours for full load.
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(a) Mean: σ0 = 0 (b) Mean: σ0 = 3× 10−5 (c) Mean: σ0 = 6× 10−5

(d) CoV: σ0 = 0 (e) CoV: σ0 = 3× 10−5 (f) CoV: σ0 = 6× 10−5

Figure VII.13 Mean and CoV[%] Mach contours for part load.

VII–4 Computation of a failure scenario

In this section, we illustrate a study about a failure scenario, where we consider a
failure probability in the form p f = P(∆P(Y )>∆Pcri t), that is written as:

p f = P(J(Y )< 0), (VII.8)

where J denotes the performance function in the physical space. It is defined as:

J(Y ) =∆Pcri t −∆P(Y ), (VII.9)

where, as mentioned before, ∆P is the standard deviation of the azimuthal pres-
sure distribution evaluated half an axial chord downstream the blade trailing edge
[Rodriguez-Fernandez and Persico, 2015]. Then, we investigate a failure scenario,
defined here as the QOI exceeding a given critical value of ∆Pcri t .

The source of uncertainty depends on nine independent uniform random variables
denoted as Y , listed in Table VII.5, with their corresponding nominal conditions. A first
source of uncertainty is associated to the operating conditions, namely the inlet total
pressure P t

in and temperature T t
in, the static outlet pressure P s

out , following [Pini, 2013,
Pini et al., 2014b]. As a second source of uncertainty, we consider the coefficients
associated to the thermodynamic model, depending on the fluid: the acentric factor
ω, the heat capacity ratio γ, the gas constant R, the critical pressure Pcri t , temperature
Tcri t and density ρcri t . A uniform uncertainty of 2% is assumed except for γ: a range
ensuring thermodynamic consistency for this parameter is selected.
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The failure analysis is performed by using a mesh of 7000 cells for the CFD compu-
tation [Razaaly et al., 2017], where the estimated performance function CPU cost is
of 30 seconds (with a i7-6820HQ CPU, architecture x86-64). The choice of this coarse
mesh is dictated by the will to compare the performances of the MetaAL-OIS method
to a Monte Carlo Sampling, so requiring a vast number of computations.

Two scenarios are considered with two different critical values∆Pcri t1
and∆Pcri t2

:

• ∆Pcri t1
is chosen such that p f ∼ 10−3 (i.e. ∆Pcri t1

= 19594 kPa). The result is
assessed by comparing with MCS.

• ∆Pcri t2
is chosen such that p f < 10−5 (i.e. ∆Pcri t2

= 20138 kPa). In practice,
∆Pcri t2

is selected as the maximal ∆P value sampled by means of MCS when
considering P(∆P(Y )>∆Pcri t1

).

A Monte Carlo Sampling is performed with a sampling size equal to NMCS = 105,
thus obtaining a CoV of δMCS = 10% when evaluating P([∆P(Y )>∆Pcri t1

]). The pro-
posed approach MetaAL-OIS is compared to MCS in Table VII.6 and VII.7 considering
the critical values ∆Pcri t1

and ∆Pcri t2
, respectively.

Variable P t
in T t

in P s
out ω γ R Pcri t Tcri t ρcri t

PDF Uniform Uniform Uniform Uniform Uniform Uniform Uniform Uniform Uniform
Minimum 7.6 bar 541.15 K 1 bar 0.518 1.01 34.45 J/kg/K 13.87 bar 552.82 K 251.7 kg/m3

Maximum 8.4 bar 549.15 K 2 bar 0.540 1.02 35.86 J/kg/K 14.44 bar 575.38 K 261.9 kg/m3

Nominal 8 bar 545.15 K 1.072 bar 0.529 1.016 35.15 J/kg/K 14.15 bar 564.1 K 256.8 kg/m3

Table VII.5 Random Variables.

Metamodel-based Estimation Unbiased Estimation
Method Ncal ls p̂G̃ Ncal ls p̂ f δ̂ f 3− σ̂ f Interval
MCS 100,000 1.000× 10−3 10.0% [0.700, 1.299]× 10−3

MetaAL-OIS 109 1.198× 10−3 109+ 200 1.198× 10−3 < 0.097% [1.194,1.201]× 10−3

MetaAL-OIS (IS) 109+ 200 1.197× 10−3 <0.10% [1.193, 1.200]× 10−3

MetaAL-OIS (CV+IS) 109+ 200 1.198× 10−3 < 0.097% [1.194, 1.201]× 10−3

Table VII.6 Comparison of the performances of the MetaAL-OIS with MCS: ∆Pcri t1

Metamodel-based Estimation Unbiased Estimation
Method Ncal ls p̂G̃ Ncal ls p̂ f δ̂ f 3− σ̂ f Interval
MCS 100,000 1.000× 10−5 100.0% [0.000,3.000]× 10−5

MetaAL-OIS 131 4.002× 10−6 131+ 200 4.002× 10−6 0.13% [3.986,4.017]× 10−6

MetaAL-OIS (IS) 131+ 200 3.982× 10−6 <0.14% [3.965,3.998]× 10−3

MetaAL-OIS (CV+IS) 131+ 200 4.002× 10−6 0.13% [3.986,4.017]× 10−6

Table VII.7 Comparison of the performances of the MetaAL-OIS with MCS: ∆Pcri t2

Considering the first critical value ∆Pcri t1
, 109 CFD evaluations (i.e. evaluations

of the performance function) are necessary to build the metamodel. The unbiased
estimation provided with only 200 additional evaluations and a CoV lower of 0.10%
is the same as the metamodel based estimation. It indicates that the metamodel is
very accurate in the failure region. The unbiased estimation lies in the 3 − σ range
obtained using MCS evaluation. A similar accuracy with MCS would require about
109 CFD evaluations.
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Moreover, based on the CPU costs of the CFD evaluations and of the proposed
algorithm, the degree of parallelism required to obtain an estimation for p f using MCS
with a CoV of 5% with the same amount of time than MetaAL-OIS can be computed.
A number of processors Nproc = 1.3× 105 is obtained in this case.

When using the critical value ∆Pcri t2
, the metamodel building requires 131 CFD

evaluations. Also, in this case, a sharp accuracy in the failure region is observed,
since only 200 additional evaluations are necessary to provide an unbiased estimation
associated with a CoV of 0.13%. A similar accuracy with MCS would require about
1.5× 1011 CFD evaluations.

In this case, about Nproc = 3 × 107 processors would be required to obtain an
estimation for p f using MCS with a CoV of 5% with the same amount of time than
MetaAL-OIS.

Even if a single failure region characterizes this test-case, it gives some hints about
the potential interest in using the MetaAL-OIS method for the analysis of ORC turbines.

VII–5 Conclusion

This study has proposed an uncertainty quantification analysis applied to the simu-
lation of a turbulent non-ideal flow within a supersonic turbine cascade for Organic
Rankine Cycle applications. In particular, a Kriging-based method has been coupled
with a Computational Fluid Dynamic solver permitting to consider multiple sources
of uncertainties associated with operating conditions, fluid parameters and an accu-
rate representation of geometric tolerances. Two main scenarios are considered, i.e. a
full-load (a high expansion ratio equal to ≈ 6) and a part-load (pressure ratio to ≈ 4)
operating conditions.

The primary outcome of the study is an accurate statistical study of two quantities
of interest, namely the total pressure loss and the mass flow rate. In particular, the total
Sobol SIs, the probability density functions, and the statistical moments are computed.

Concerning the sensitivity analysis, results confirm the findings of previous work;
the uncertainty in the outlet static pressure has the highest impact on the loss coef-
ficient and is predominant with respect to the thermodynamic model uncertainties;
the inlet total conditions, instead, dominate on the mass flow rate. With respect to
the present state-of-the art, a novel result has been observed, i.e. the impact of opera-
tional and model uncertainties is drastically reduced when manufacturing tolerances
are considered. The modal representation of manufacturing uncertainties and the re-
lated statistical analysis allow to highlight the most relevant modes, suggesting that
specific areas of the blade have the highest impact on the overall uncertainty. The
support of the probability density functions of the quantities of interest enlarges sig-
nificantly when the manufacturing tolerances are plugged into the uncertainty analy-
sis, and the functions take a regular Gaussian shape (differently from what observed
if only operative and model uncertainties are considered). On a distributed basis, the
flow released by the cascade exhibits relevant sensitivity to all sources of uncertainty,
but again its statistical moments grow significantly in presence of manufacturing toler-
ances; as the dominating modes alter the blade shape in the rear suction side and the
trailing edge thickness, the strength and inclination of the main rear shock undergoes
significant variability, so as the width and defect of the blade wake.
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A final study shown here concerns the analysis of a failure scenario for ORC tur-
bines. The efficiency of the MetaAL-OIS method is assessed by comparison with a
MCS sampling. The parsimonious behavior of MetaAL-OIS makes it particularly suit-
able for costly calculations. This preliminary study can be extended in the future to
more realistic scenarios in the analysis of ORC turbine behavior.
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VIII
Robust Optimization: a nested quantile approach

!
Overview A quantile-based mono-objective RO formulation is applied to the design
of the 2D profile of a supersonic turbine cascade, under a probabilistic constraint:
the mean mass-flow rate is constrained to be with a prescribed range. Comparison
with constrained DO and a classical RO approach, i.e. minimizing the mean of the
performance function subject to the same constraint, exhibits advantages of such a
method.

VIII–1 Introduction

Small-medium scale ORC power plants (O(101 − 104) kW) have received great inter-
est in both the technical and academic community, in particular due to its ability to
recover mechanical energy from low-grade heat sources such as, solar, geothermal
energy, biomass or waste heat. As well known, the performance of the ORC power
system is strongly linked to the efficiency of the turbine. The turbine aerodynamics
is complicated by the use of organic fluids, which combine low enthalpy drops, high-
expansion ratio per stage and low speed of sound, leading to transonic or supersonic
ORC turbines, which demand the use of converging-diverging cascades and are com-
monly prone to strong shock waves and chocked flow conditions.

Recent advances of fluid dynamic simulation tools accounting for so-called dense
gas effects, induced by the use of organic fluid described by complex Equation of State
(EOS), has permitted the development of Fluid-dynamic Shape Optimization (FSO)
approaches for automated design of ORC blade cascades. Nevertheless, in ORC appli-
cations, the operational variability of the hot and cold sources often results in signifi-
cant variations of inflow and outflow conditions at the turbine, having a detrimental
influence of the machine performance. The fluid-dynamic design of ORC turbines
could benefit for automated design methodologies, possibly integrating uncertainties.

This work presents the results of the application of a robust shape optimization
method to the design of a typical converging-diverging turbine nozzle for ORC appli-
cations (Chapter VI), aiming at minimizing a QoI quantifying the performance of the
cascade, the QoI itself being a random variable.

Even though nowadays established and fully demonstrated, RO aimed at minimiz-
ing the mean of a QoI might suffer from a lack of control of this latter variability.
Alternative formulations are possible to enhance the control of the variability, taking
into account the QoI’s standard deviation, for example by formulating the objective
function as µ±kσ, or Minσ s.t. µ < µ0 for instance, where µ,σ denote the QoI’s mean
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and standard deviation respectively. However, such methods suffer from the fact that
the user-defined parameters k, µ0 have a substantial impact on the final design. More-
over, including explicitly the standard deviation in the objective function induces an
increase in the computation burden in the stochastic space with respect to the mean.
[Pisaroni et al., 2018] considers single- and multi-objective evolutionary algorithms
involving in particular quantiles, a.k.a. value at risk, and conditional value at risk of
objective or constraint functions, using a continuation multilevel Monte Carlo method-
ology. For ORC-driven problems, essentially multi-objective optimization have been
proposed on both the mean and the standard deviation [Congedo et al., 2013a, Bufi
et al., 2017, Bufi and Cinnella, 2017], a multi-point approach was proposed [Pini
et al., 2014a].

In this study, we propose to minimize a high quantile of the performance func-
tion in the context of the ORC turbine blade optimization. It has the advantage of
being highly interpretable: the QoI’s 95% quantile is the threshold below which 95%
of the QoI’s realizations lie, involving that designer may choose a specific quantile
level according to some technical constraints. The quantile can be easily evaluated as
a function of the standard deviation σ, once the probability density functions (PDF)
is assigned (for example, 2σ represents q95 for a Gaussian QoI). However, in robust
optimization problems applied to aerodynamic design, which feature significant un-
certainties and severe non-linear effects, the PDF of the QoI is not known a priori. As
a second consideration, evaluating the quantile with classical Monte-Carlo methods
is not cost-effective with respect to σ evaluation; however, state-of-the-art surrogate-
based techniques permits the leverage this issue, by using a learning technique which
exploits the local nature of the quantile, whose assessment can be seen as an inverse
problem for tail probability computation. As shown in this study, the cost to evaluate
the quantile can be even lower, or in any case of the same order of magnitude as the
cost of assessing the average for example. The use of quantile can, however, be partic-
ularly beneficial in controlling the PDF of the optimal design, compared to optimizing
an integral quantity such as the mean or the standard deviation.

The proposed method relies on a double-loop algorithm coupling the efficient
quantile estimation (Chapter V), and a Bayesian optimization technique [E. Brochu
and de Freitas, 2010]. The proposed approach is applied here to the constrained
robust optimization of a well-known supersonic turbine nozzle for ORC applications
[Colonna et al., 2008], that was considered for deterministic optimization with both
inviscid [Pini et al., 2015] and Reynolds-Averaged Navier-Stokes (RANS) [Rodriguez-
Fernandez and Persico, 2015, Vitale et al., 2017] models. It requires an automatized
sequence of operations consisting of the parametrization of the blade, mesh gener-
ation and finally the CFD evaluation to compute the quantity of interest. A mesh-
convergence study is presented to assess the CFD solution and the influence of the
numerical error within the optimization process. We systematically use an inviscid
flow solver for the robust optimization; alongside the inviscid robust optimization,
also a deterministic optimization is performed using a RANS turbulent solver, for com-
parison with available high-fidelity optimization. All the optimal configurations are
subsequently analyzed and compared by computing their QoI statistics with the RANS
solver. In this study, we show therefore that for the ORC application, the use of a
robust optimization method with a low-fidelity solver produces more efficient designs
than those that could be obtained using a classical deterministic optimization with
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a higher-fidelity solver. This study, therefore, proposes a concrete alternative to the
optimization of ORC turbines with a systematic consideration of the uncertainties of
the system.

The study is organized as follows. The problem of interest and a sketch of the
numerical framework is illustrated in Section VIII–2. Section VIII–2.2 is devoted to
the description of the CFD simulations, design parameterization and numerical veri-
fication. In Section VIII–3, the stochastic and optimization algorithms are described
in details. In Section VIII–4, the optimization results are discussed, and the evidence
about the interest of the proposed framework is provided. Conclusions and some per-
spectives are then provided in Section VIII–5.

VIII–2 Problem Formulation and numerical framework

VIII–2.1 RO Formulation

A classical single-objective optimization problem with constraints can be formulated
as follows

Minimize f (x )
s.t. g(x ) ∈ [gmin, gmax]

x ∈ Ω, (VIII.1)

where f is a scalar QoI depending on a design vector x belonging to the design space
Ω, and g is a constraint, which can assume values in the interval [gmin, gmax].

If the problem is affected by some sources of uncertainties, then functions f and
g are dependent also on a random vector, denoted as ξ. In this case, a very common
way of extending the problem mentioned in VIII.1, is to consider some meaningful
statistics of the function f and g. For example, the mean-based optimization problem
consists in:

Minimize Eξ[ f (x ,ξ)]

s.t. Eξ[g(x ,ξ)] ∈ [gmin, gmax]

x ∈ Ω, (VIII.2)

where Eξ[·] represents the expectation operator conditioned w.r.t. the random vector
ξ.

The idea of optimizing a combination of statistics stems from the need of limiting
the variability of the QoI; alternatively from the aforementioned approach based on
the mean objective function, we propose to solve the following quantile-based opti-
mization problem:

Minimize qξ95[ f (x ,ξ)]
s.t. Eξ[g(x ,ξ)] ∈ [gmin, gmax]

x ∈ Ω, (VIII.3)

where qξ95[ f (x ,ξ)] represents 95% quantile of f under the probability measure of
the random vector ξ, satisfying a probabilistic constraint on g.
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In this study, we illustrate the interest of such formulation of robust optimization
comparing mean-based and quantile-based optimization in terms of computational
cost and robustness of optimal individuals.

We denote here with f and g the outcomes of the CFD-based simulation, which is
constituted by several steps, described in Subsection VIII–2.2, including a verification
analysis about the mesh convergence.

All the optimization and UQ analyses reported in this study are based on Gaus-
sian Process (GP) surrogates. Surrogates are systematically built over the space of
design parameters x , making use of different functions according to the metrics used
for the optimization problem: deterministic optimization ( f ), quantile-based robust
optimization (q95), and also a mean-based robust optimization (µ) implemented and
performed in order to have a benchmark for the novel quantile-based optimization
here proposed.

Note also that a GP surrogate of the constraint function g over the space of design
parameters x is built. An Expected Improvement (EI)-based strategy is then applied
for solving the optimization problem, which is presented in Subsection VIII–3.

VIII–2.2 CFD-based simulation

The evaluation of the QoIs, i.e. f and g, is the outcome of a CFD evaluation for
given vectors of design parameter x and uncertainties ξ. This evaluation requires the
fulfillment of several steps, which are depicted in Figure VIII.1. Note that f refers
either to Y or ∆P, and g to the mass-flow rate ṁ.

Figure VIII.1 CFD-based evaluation: f (x ,ξ)

The numerical simulations are performed using the NICFD solver described in Sec-
tion VI–1 using the PRSV EOS to describe the non-ideal behavior of the organic fluid
MDM.

Mesh Convergence Analysis

The spatial resolution of the computational mesh was selected as a result of a dedicated
grid dependence study, based on the two performance parameters ∆P and Y .

In the following, the robust optimizations are performed using the inviscid model,
while the deterministic optimizations and the a-posteriori assessment of all the optimal
individuals are performed using both the inviscid and the RANS model. Therefore, two
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different grid dependence analyses were carried out, and different alternative mesh
resolutions were ultimately adopted for the two models. They are discussed separately
in the following.

Euler Analysis The grid sensitivity analysis for the inviscid simulations was carried
out considering ∆P only as QoI. This choice is motivated by the fact that the value
of Y is of limited quantitative relevance in inviscid models (in such simulations the
viscous contribution only depends on the artificial viscosity) Figure VIII.2(a) reports
the percentage errors of 5 different meshes, the most refined one (250k cells) is taken
as reference. The trend shows that the grid dependence of the solutions obtained us-
ing meshes composed by 36k cells or more is relatively low (below 1% difference with
respect to the reference), with the mesh composed by 112k cells very close to the refer-
ence one (0.3% difference with respect to the reference). In light of these results, the
36k cell mesh was considered to provide the best trade-off between computational cost
and accuracy; the reliability of the 36k cell mesh is further demonstrated by the pres-
sure distribution along the blade sides, which reproduces with reasonable accuracy
the one obtained with the reference mesh as reported in Figure VIII.2(b). Therefore,
the 36k mesh was employed to carry out the deterministic and robust optimization
procedures.
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Figure VIII.2 Euler Grid Analysis at Nominal Conditions on the baseline configuration.

RANS Analysis Simulations based on the RANS model are used to perform a bench-
mark deterministic optimization and are employed to assess the performances of all
the optimized profiles. A grid analysis was again performed, to correctly set the mesh
spatial discretization, for meshes ranging from 52k cells to 590k cells, with this lat-
ter taken as reference. Figure VIII.3(a) reports the percentage error computed on the
performance estimators ∆P and Y . The 180k cells mesh show the best compromise
between computational cost and accuracy, namely less than 1.5% and 0.3% of devi-
ations for the objective functions Y and ∆P respectively, with respect to the finest
mesh. This mesh is consequently used in the UQ framework to assess the different
blade profiles resulting, CFD simulations being run in parallel. On the other hand, the
deterministic optimization (Eq. VIII.1) algorithm (except in the initialization step) is
substantially sequential. It is chosen to resort to the 52k cells mesh to perform the
optimization in a reasonable amount of time, providing less accurate results (slightly
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less than 5.5% and 2% deviations for the objective functions Y and ∆P respectively)
for an acceptable computational cost. Figure VIII.3(b) plots the pressure distribution
over the blade as resulting from using the 180k and the 590k elements mesh.
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Figure VIII.3 RANS Grid Analysis on the baseline configuration.

Inviscid computations are performed using the 36k cells mesh. Convergence is
assumed when either the density residuals are decreased by 10 orders of magnitude,
while a maximal number of 5000 iterations is considered. Turbulent simulations used
for DO are achieved using the 52k cells mesh, the CFD convergence being assumed
when density residuals are decreased by 5 orders of magnitude or the maximal number
of iterations of 7000 is reached. Final UQ assessments are conducted with the 180k
cells mesh, with a maximal number of 15000 iterations. All simulations are performed
using an adaptive CFL between 2.5 and 100.

Operating Conditions

As already recalled in the Introduction, ORC power systems operate in a context of
continuous variability that alter the thermodynamic conditions both at the inlet and
at the outlet of the turbine. Such variability propagates within the turbine and re-
sults in a change of boundary conditions for each cascade. Following [Pini et al.,
2014a], in this study we model the operational variability as independent and uni-
form uncertainties on all the thermodynamic conditions, resulting in the random vec-
tor ξ= [P t

in, T t
in, P s

out]. The range of these uncertainties is also reported in Table VIII.1.
Note that the selection of the test-cases and the prescribed ranges of variability are
based on previous experiences of the authors and on the very few information on the
topic available from literature. However, the aim of the study is not to optimize a spe-
cific technical case but to investigate a challenging optimization problem for which
robust design has an evident technical relevance.

P t
in T t

in P s
out

Nominal 8 bars 545.15 K 1.072 bars
Random U[7.6, 8.4] bars U[541.15,549.15] K U[1,2] bars

Table VIII.1 Operating Conditions: Nominal and Random (Uniform and independent).
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Note that we neglect the uncertainties on the parameters of the thermodynamic
model since previous studies (Chapter VII) provided evidence about their limited im-
pact with respect to the uncertainties on operating conditions for turbine cascades.

VIII–3 Algorithms Description

We perform four different optimizations in this study. The first two are under a deter-
ministic constraint: one based on the inviscid flow model and aimed at minimizing∆P
and the other based on the RANS flow model and using Y as QoI. For both cases, the
mass flow rate is the constraint function. Note that in the RANS-based optimization,
the fitness function to optimize is Y and not∆P, since this is a more traditional choice
for RANS optimization. This case is introduced as a benchmark for illustrating the use-
fulness of using an inviscid model for driving the optimization, which could yield op-
timal design with efficient performances also for RANS simulations. The RANS-based
optimization is made feasible by the relatively low cost of the deterministic formula-
tion. The algorithmic details for deterministic optimization are given in Subsection
VIII–3.1.

The two latter are robust optimizations, using the inviscid flow model, with the
following formulations: the first one is based on a classical formulation, and it is
focused on the minimization of the mean of∆P (Subsection VIII–3.2); the second one
is based on the novel approach proposed in this study, and aims at minimizing the
95% quantile of ∆P (Subsection VIII–3.3). Both robust optimizations are formulated
under a mean-based probabilistic constraint on the mass flow rate.

VIII–3.1 Constrained Deterministic Optimization

For an n-dimensional problem, we are concerned with solving the following single-
objective optimization problem:

Minimize f (x )
s.t. g(x ) ∈ [gmin, gmax]

x ∈ Ω, (VIII.4)

where f and g denote respectively the objective and constraint functions, and x is
the vector of design variables corresponding to a blade parametrization, Ω being the
design space, tensor product of intervals defined by upper and lower limits of each
component of x .

We employ a classic Bayesian framework for Surrogate-Based Optimization (SBO):

1. Set an initial DoE and build initial surrogates for the objective and the constraint
functions.

2. Generate a new design solving a sub-optimization problem based on the surro-
gates. It aims at either further explore the design space or exploit a promising
region. The new design is evaluated by means of the original objective function
f (CFD). Surrogate models are updated.

3. Repeat Step 2 until a stopping criterion is satisfied or a maximal evaluation bud-
get is reached.
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A general sketch of the proposed framework for tackling robust optimization prob-
lems is provided in Figure VIII.4.

Figure VIII.4 General Sketch of the Expected Improvement [E. Brochu and de Freitas,
2010]-based algorithm used for Deterministic Optimization (Eq. VIII.2).

Initial DoE An initial DoE of size N x
LHS is generated using LHS over the design space

[xmin, xmax], for which the objective and constraint functions are evaluated (CFD):
{x i, f (x i), g(x i)}i∈¹1,N x

LHSº
. Surrogates of f and g are then built (Section I–2).

Sample Infill Criterion and Sub-optimization We focus on one of the most popular
criterion in Efficient Global Optimization (EGO) [E. Brochu and de Freitas, 2010]: the
Expected Improvement (EI).

For a given untried sample x , the Improvement is defined as

I(x ) =max(0, fmin − f̂ (x )), (VIII.5)

fmin denoting the minimum objective function value observed so far. f̂ (x ) is the Gaus-
sian predictor of the GP based surrogate of f at the sample x . Note that I(x ) is a
random scalar value which is positive when the prediction is lower than the best value
known thus far, set to 0 otherwise. The new query point is found by maximizing the
expected improvement:

x ∗ = arg max EI(x ). (VIII.6)

EI(x ) = E f̂ (x )[I(x )] denotes the so-called Expected Improvement at x , whose analytical
expression is given by [E. Brochu and de Freitas, 2010]:

EI(x ) =(µ f̂ (x ) − fmin)Φ(Z) +σ f̂ (x )φ(Z) if σ f̂ (x ) > 0

=0 if σ f̂ (x ) = 0, (VIII.7)

Z =
µ ŷ(x ) − ymin

σ ŷ(x )
, Φ (resp. φ) is the univariate Gaussian standard cumulative (resp.

probability) density function.
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The original EI infill criterion [E. Brochu and de Freitas, 2010] in Equation VIII.6
is slightly modified in order to take into account for the constraint. The new query
point thus reads:

x ∗ =argmax EI(x )
s.t. g̃(x ) ∈ [gmin − 2σ ĝ(x ), gmax + 2σ ĝ(x )]
x ∈ Ω. (VIII.8)

The sub-optimization problem Equation VIII.8 can be solved by means of any gradient-
free1 optimizer, e.g. using Covariance Matrix Adaptation (CMA) [Nikolaus Hansen,
2018] in Python. x ∗ is then evaluated with CFD, and surrogate models are updated.

The Bayesian optimization framework is summarized in Algorithm VIII.1 for a sake
of clarity.

Algorithm VIII.1 Bayesian Optimization
Input: N x

LHS, N x

30 N x
LHS samples: {x i, f (x i), g(x i)}i
Build GP and EI (Eq. VIII.7): f̃ (x ), g̃(x ), EI(x )
i = N x

LHS
while i < N x , do

31 Selection: x i+1 = argmax EI(x ) s.t. g̃(x ) ∈ [gmin−2σ ĝ(x ), gmax +2σ ĝ(x )], x ∈ Ω
Evaluation: f (x i+1), g(x i+1)
Update GP, EI
i← i + 1

32 Return x i

VIII–3.2 Robust Optimization: Mean Minimization

We describe the approach used to perform the following classical mean robust opti-
mization:

Minimize Eξ[ f (x ,ξ)]

s.t. Eξ[g(x ,ξ)] ∈ [gmin, gmax]

x ∈ Ω, (VIII.9)

where f and g are scalar random functions, f representing the objective to minimize
and g the constraint. ξ is the random vector, and x is the vector of design variables. A
very similar approach w.r.t. the robust optimization consisting in minimizing a quan-
tile is considered, the only difference consisting in computing the estimation e f (x ) of
the mean Eξ[ f (x ,ξ)], for each design sample x using the surrogate-based method

described in Subsection I–3.1 based on NξLHS = 24 LHS samples. The LHS sample size
is selected based on stochatic convergence study not shown here for a sake of brevity.

1A gradient-based optimizer could be used, but would require derivatives of EI(x ).
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The method is summarized in Algorithm VIII.2, based on the mean estimation
(Subsection I–3.1).

Algorithm VIII.2 Robust Optimization: Mean Formulation

Input: N x
LHS, N x , NξLHS, NMC

33 Sample N x
LHS LHS profiles: {x i}i

Evaluate Means e f (x i), eg(x i): Subsection I–3.1
Build GP and EI (Eq. VIII.7): q̃ f (x ), ẽg(x )
i = N x

LHS
while i < N x do

34 Selection: x i+1 = arg max EI(x ) s.t. ẽg(x ) ∈ [gmin − 2σêg (x ), gmax + 2σêg (x )]
Evaluate Means e f (x i+1), eg(x i+1): Subsection I–3.1
Update GP and EI
i← i + 1

The parameters related to the constrained deterministic/robust optimization used
here are summarized in Table VIII.2.

n N x
LHS NξLHS ṁmin [%] ṁmax [%] N N x

9 5n 24 98 102 106 300

Table VIII.2 Parameters for the Deterministic and Robust Optimizations (Subsubsec-
tion VIII–3.1 and VIII–3.3).

VIII–3.3 Robust Optimization: Quantile Minimization

Here we are concerned with solving the following single-objective optimization prob-
lem:

Minimize qξ95[ f (x ,ξ)]
s.t. Eξ[g(x ,ξ)] ∈ [gmin, gmax]

x ∈ Ω, (VIII.10)

where f and g are scalar random functions, f representing the objective to minimize
and g the constraint. ξ is the random vector, and x is the vector of design variables.

To solve this optimization problem, we propose a nested approach combining the
SBO framework described in Subsection VIII–3.1, scalar UQ tools described Subsection
I–3.1 and the efficient quantile estimation algorithm QeAK-MCS (Chapter V).

• For each design sample x0, the estimation q f (x0) of the 95-quantile qξ95[ f (x0,ξ)]
is carried out running CFD evaluations in the stochastic space (Chapter V), the
latters being used to evaluate the estimation eg(x0) of the mean Eξ[g(x0,ξ)]
(Subsection I–3.1).

• The functions q f (x ) and eg(x ) are directly plugged-in the SBO framework de-
scribed in Subsection VIII–3.1.
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The present method is summarized in Algorithm VIII.3.

Algorithm VIII.3 Robust Optimization: Quantile Formulation

Input: N x
LHS, NξLHS, N x , ε, qre f

35 Sample N x
LHS profiles: {x i}i

Evaluate Quantile q f (x i): Chapter V
Evaluate Mean eg(x i): Subsection I–3.1
Build GP and EI (Eq. VIII.7): q̃ f (x ), ẽg(x )
i = N x

LHS
while i < N x do

36 Selection: x i+1 = arg max EI(x ) s.t. ẽg(x ) ∈ [gmin − 2σêg (x ), gmax + 2σêg (x )]
Evaluate Quantile q f (x i+1): Chapter V
Evaluate Mean eg(x i+1): Subsection I–3.1
Update GP and EI
i← i + 1

VIII–4 Results

The capabilities of the methods described in Section VIII–3 are demonstrated by re-
designing the supersonic cascade first investigated in [Colonna et al., 2008] and op-
timized under deterministic assumptions in [Pini et al., 2015], [Rodriguez-Fernandez
and Persico, 2015], and [Vitale et al., 2017]. Four formulations are compared:

• Euler-Based Deterministic Optimization: the blade is optimized considering fixed
operating conditions (nominal design point, as defined in Table VIII.1) under
the constraint of preserving the baseline mass-flow within a 2% range. This
case is performed following the deterministic optimization algorithm described
in Subsection VIII–3.1, based on inviscid simulations where the QoI is ∆P. The
resulting profile is referred to as the O-E profile.

• RANS-Based Deterministic Optimization: this case is similar to the former, but
based on RANS simulations where the QOI is Y . The resulting profile is referred
to as the O-NS profile.

• Robust Optimization - Mean Formulation: This case accounts for the environmen-
tal variability modeled by a random vector ξ (as defined in Table VIII.1), using a
classic robust optimization formulation, namely minimizing the QoI mean using
the method described in Subsection VIII–3.2, under the constraint of preserving
the mean mass-flow rate within 2% of the baseline value. This profile is referred
to as the RO-E-µ profile and is based on inviscid simulations.

• Robust Optimization - Quantile Formulation: This optimization also accounts for
environmental variability modeled by a random vector ξ (as defined in Table
VIII.1), solving the quantile-based optimization problem described in Subsection
VIII–3.3, referring to the 95% quantile, under the constraint of preserving the
mean mass-flow rate within 2% of the baseline value. This profile is referred to
as the RO-E-q95 profil and is based on inviscid simulations.
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∆P is the best candidate as QoI for the euler-based optimization of this cascade,
for several reasons. Previous studies [Colonna et al., 2008, Pini et al., 2015] indicate
that the baseline cascade features a strong shock released downstream, whose mix-
ing contributes significantly to the loss generation. Minimizing ∆P means primarily
to minimize the shock losses, and hence indirectly to minimize the impact of shock-
boundary layer interaction. Moreover, differently from Y , ∆P is properly quantified
by both the inviscid and the RANS models, and hence it is more suitable for the present
study as most of the optimizations performed are based on inviscid simulations. Fi-
nally, minimizing ∆P is also beneficial for the subsequent rotor aerodynamics, as a
more uniform pressure field at the rotor inlet implies a lower stator-rotor interaction
and, hence, a weaker rotor aerodynamic forcing, that in transonic/supersonic turbine
might produce relevant performance degradation [Denos et al., 2001, Miller et al.,
2003].

The optimal profiles that we obtained from the various optimizations are system-
atically compared with each other using the RANS solver.

This Section is organized as follows. A preliminary study about mesh and statis-
tics convergence is presented in Subsection VIII–4.1. In Subsections VIII–4.2-VIII–
4.3-VIII–4.4, the results of the optimization are documented: convergence, geometry
profiles, mesh deformation, UQ assessment, the comparison between RANS and in-
viscid based results are discussed. In Subsection VIII–4.5, a physical analysis of the
optimized cascades is performed.

VIII–4.1 Mesh and statistics convergence

The spatial resolution of the computational mesh is selected as a result of a dedicated
grid dependence study, based on the two performance parameters previously intro-
duced, i.e. ∆P and Y .

In the following analysis, the robust optimizations are performed using the inviscid
model, while the deterministic optimizations and the a-posteriori assessment of all
the optimal individuals are performed using both the inviscid and the RANS model.
Therefore, two different grid dependence analyses are carried out, and two alternative
mesh resolutions are ultimately adopted for the two models.

Euler Analysis The 36 kcell mesh is considered to provide the best trade-off between
computational cost and accuracy. Therefore, the 36k mesh is employed to carry out
the deterministic and robust optimization procedures. For the a-posteriori UQ analysis
performed with inviscid flow assumption, lower restrictions in computational cost hold
and the 112 kcell grid is employed. Still regarding the inviscid UQ analysis, different
LHS sets (dimension 50, 100, 150) are considered to compute the performances of
the blade. Results show that the convergence on the statistical quantities is reached
with a LHS of dimension 100.

RANS Analysis Simulations based on the RANS model are used to perform a bench-
mark deterministic optimization and are employed to assess the performances of all
the optimized profiles. Given the good compromise between accuracy and computa-
tional cost, the 180k cells mesh is retained to compute the blade performances in the
UQ framework, while the 52k cells mesh is retained in the optimization procedure for
solving Eq. VIII.1.
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The performance statistics of the baseline profile are evaluated by performing an
UQ analysis using LHS (off-design experiments) of dimension 50, 100 and 150. The
PDF of Y (Total pressure loss) is plot (Figure VIII.5): the stochastic convergence is sat-
isfactory reached with a LHS size of 100. The results of this post-processing procedure
is detailed in Subsections I–3.1 and I–3.2.
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Figure VIII.5 RANS Grid Analysis on the baseline configuration: Y PDF obtained on
the 180k cells mesh, for different LHS size.

VIII–4.2 Optimization Process

All the optimization problems are started with DoE consisting in 5d = 45 profiles, the
design space dimension being d = 9. The influence of the number of initial sample de-
signs (in the context of bayesian deterministic optimization) has been studied by Han
et al. [Han et al., 2015], along with the effect of randomness of the initial sampling
(considering five LHS samples of the same size generated with different seeds). For
40 design variables, as a rule of thumb, they suggested to use between 0.5d and 2d as
the size of the initial DoE, and found very similar convergence histories for the differ-
ent LHS seeds. In the present study, we decided to exceed significantly with the DoE
size (5d) with respect to the recommendations reported in [Han et al., 2015], with
the aim of enhancing the reliability of the surrogate optimization. After the DoE, the
EI optimization algorithm stops after a maximal number of runs (300) or if the same
designs (or very close) are proposed by the optimizer. A review of the optimization
processes is reported in this Subsection.

Euler-based deterministic optimization During the optimization, the best profile is
obtained after 279 CFD evaluations, with ∆P = 1.70kPa (285 designs are considered
in total). Simulations are run in parallel using 8 processors, except when evaluating
the initial DoE where each processor is devoted to one CFD simulation, in parallel
though. The convergence curve shown in Figure VIII.6 (a) indicates a sharp reduction
of QoI at the end of the DoE, thus suggesting that the initialization provides a very
good approximation of response surface. Then, most of the minimization takes place
in the first 50 CFD runs after the DoE. The mass flow rate constraint for the optimal
profile (O-E) is satisfied at nominal conditions (See Table VIII.3).
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Figure VIII.6 Convergence curves during the optimization. Best QoI as a function of the
number of CFD evaluations. The red vertical line indicates the optimization process
start and corresponds to the number of CFD evaluations required for the LHS initial
configurations.

RANS-based deterministic optimization During the optimization, the best profile
is obtained after 198 CFD evaluations, with Y = 9.9 % (285 designs are considered in
total). Also for the RANS optimization, the convergence curve shown in Figure VIII.6
(b) suggests a proper initialization and a quick convergence, as most of the minimiza-
tion is achieved in less then 100 CFD runs. The mass flow rate constraint for the
optimal profile (O-NS) is not satisfied at nominal conditions (ṁ = 103.9%ṁb), when
using the RANS model (Table VIII.3). This might be due to the ’weak’ formulation
of the constraint, which makes use of the predictive standard deviation based on the
Kriging surrogate VIII.1.

Robust Optimization with Mean-based Formulation An initial DoE of 45 designs
is considered (which require 1080 CFD evaluations, since a stochastic evaluation has
to be performed for each profile). The best profile is obtained after 157 designs (re-
quiring 3068 CFD evaluations), with µξ(∆P) = 7.9 kPa (201 blade configurations are
considered in total, whose stochastic evaluations require 4824 CFD simulations). The
convergence curve Figure VIII.6 (d) shows that a few high-performance designs are
found already in the DoE phase, and the identification of the optimum in the following
convergence process is relatively fast.
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Robust Optimization with Quantile-based Formulation The Robust Optimization
is initialized with a DoE of 45 designs (which in the stochastic framework requires
1416 CFD evaluations). The best profile is obtained after 83 designs (2640 CFD eval-
uations), with qξ95(∆P) = 12.6 kPa. 103 designs are considered (3120 CFD evalua-
tions). The convergence curve in Figure VIII.6 (c) shows again that the DoE is effective
in finding few individuals with relatively low q95, followed by a fast process. It is to be
noted that the minimization based on the quantile is less demanding than that based
on the mean, as almost the half of the blade configurations are required to find the
optimum.

(a) Deterministic

(b) Robust

Figure VIII.7 Blade profiles comparison; top: baseline compared to deterministic op-
timal blades; bottom: baseline compared to robust optimal blades.

VIII–4.3 Optimal blade profiles

The optimal blade profiles obtained with the four optimization processes discussed
above are shown in Figure VIII.7 in comparison to the baseline configuration, with
frame VIII.7(a) reporting the two deterministic designs and VIII.7(b) the two robust
designs.

The two deterministic optimal blades are very similar each other and much dif-
ferent with respect to the baseline layout, especially on the suction side of the blade
downstream of the (sonic) throat. The present optimal blades resemble the ones doc-
umented in previous design exercises performed on this cascade (e.g., [Pini et al.,
2015],[Rodriguez-Fernandez and Persico, 2015],[Vitale et al., 2017]). The determin-
istic optimization drives the design towards blades featuring an accentuated curvature
in the diverging section of the bladed channel, i.e. between the sonic throat and the
cascade opening, and an almost straight profile in the region of unguided turning. As
it will be discussed in the later Subsection on aerodynamic analysis, such shape allows
eliminating the strong shock originated in the baseline cascade flow, with beneficial
effects on both the uniformity of the pressure field downstream of the cascade and the
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cascade loss. This also explains why the two optimizations lead to very similar opti-
mal blades; as a further consideration, the similarity between results obtained with
Euler and RANS optimizations indicates that, in the present case, the inviscid model
is able to capture the main flow features and hence it is a suitable choice for the more
advanced, and more computationally-intensive, robust optimizations.

The two robust designs differ significantly from both the baseline and the deter-
ministic ones. The general action of the optimization is similar to the one commented
above, with both the robust-optimal blades featuring a larger curvature on the suction
side downstream of the throat and a straight rear suction side. Nonetheless, the area
ratio between the cross-sections at the throat and at the opening is lower than that
of the deterministic-optimal blades. This can be explained considering that almost all
the realizations in the uncertain scenario feature a lower pressure ratio with respect
to the nominal one. Since the cross-section at the (sonic) throat is nearly fixed by the
constraint on the mass flow rate, the reduction of area-ratio implies a lower area of
the cross-section at the blade opening for both the robust-optimal blades with respect
to the deterministic-optimal ones. The two blades also feature minor but visible differ-
ences, mostly concentrated in the shape of the divergent part of the bladed channel,
which also lead to a slight difference in the area-ratio across the divergent, which is
higher for the quantile-based optimal blade than for the mean-based one. Instead, the
two blade profiles nearly overlap in the rear suction side downstream of the cascade
opening and in the trailing edge region, where indeed the flow effects most affecting
the QoI (∆P) take place.

VIII–4.4 Analysis of the statistics

A UQ analysis is conducted on the four optimal profiles obtained to assess their per-
formances with the RANS high fidelity model with a 180k cells mesh. As mentioned
in Subsection VIII–4.1, NLHS = 100 samples are used. A similar analysis is conducted
with the inviscid model with 36k cells mesh, used in the optimization process.
The UQ analysis statistics results are summarized in Table VIII.3, obtained using the
scalar UQ analysis tools presented in Subsection I–3.1 and commented below.

Profiles
Performances Baseline O-E O-NS RO-E-µ RO-E-q95

Nominal
(Euler)

∆P [kPa] 17.1 1.7 - 12.7 12.2
Y [%] 16.0 5.4 - 12.1 12.1
ṁ [%] 100.8 100.5 - 101.7 98.3

Nominal
(RANS)

∆P [kPa] 17.5 2.3 2.3 13.6 13.1
Y [%] 19.0 9.4 9.1 15.5 15.5
ṁ [%] 100.4 100.6 103.9 101.6 98.2

µ, σ, q95

(Euler)

∆P [kPa] 25.7, 6.7, 35.2 16.5, 10.1, 30.4 - 7.9, 3.9, 13.4 8.2, 3.0, 12.7
Y [%] 20.7, 4.4, 27.8 13.9, 7.1, 26.7 - 8.6, 2.0, 12.8 10.3, 2.2, 14.6
ṁ [%] 100.9, 3.2, 105.9 100.3, 3.2, 105.2 - 101.2, 3.2, 106.3 98.0, 3.1, 102.8

µ, σ, q95

(RANS)

∆P [kPa] 25.4, 6.4, 34.4 16.6, 10.0, 29.5 16.7, 9.9, 29.7 8.2, 3.9, 14.1 8.4, 3.1, 13.2
Y [%] 23.5, 4.2, 30.0 17.7, 6.8, 29.5 17.6, 7.0, 29.8 12.4, 1.8, 16.1 13.8, 2.1, 18.0
ṁ [%] 100.5, 3.2, 105.4 100.5, 3.2, 105.5 103.9, 3.2, 109.0 101.3, 3.2, 106.3 98.0, 3.1, 102.8

Table VIII.3 Scalar Statistics Analysis for the optimized and baseline profiles. Euler
(resp. RANS) quantities are based on CFD evaluations on 36k (resp. 180k) cells
meshes. Random scalars are evaluated using NLHS = 100 CFD evaluations. ṁ is
expressed in percentage of ṁb = 15.23 kg/s/m.
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Nominal Conditions At nominal conditions, the profiles O-NS and O-E clearly out-
perform the other ones with the lowest total pressure loss Y and ∆P. This values
of minimal loss and pressure variation are consistent with those obtained in previ-
ous deterministic optimization performed on the very same profile [Pini et al., 2015],
[Rodriguez-Fernandez and Persico, 2015], and [Vitale et al., 2017]. Moreover, the two
deterministic-optimal blades feature very similar losses and identical pressure variabil-
ity downstream of the cascade, as a further proof of the reliability of inviscid model
for the present configuration. Note that also the robust profiles, RO-E-µ and RO-E-q95,
perform similarly at nominal conditions and slightly better than the baseline one with
a total pressure loss Y of 15.5%. Even though a probabilistic mass flow constraint is
prescribed in the Robust Optimization problems, both robust profiles satisfy the deter-
ministic mass flow constraint.

Uncertain Conditions Mean, standard deviation and 95% quantile of the QoIs ∆P,
Y , and the mass flow rate ṁ are evaluated for each blade profile using consecutively
inviscid and RANS models (Table VIII.3). For each profile, the random mass flow rate
shows a rather similar behavior, with a mean value very close to the nominal one and
a standard deviation close to 3% of ṁb. It is interesting to note that the performance
of the baseline and of the deterministic-optimal profiles deteriorate significantly at
off-design conditions. In particular, the O-E exhibits E[∆P] = 16.5% with a large
variability associated, quantified by a standard deviation of 10.1% (even larger than
that of the baseline one), against an optimal ∆P = 2.3kPa in nominal conditions;
similarly, for the O-NS the UQ analysis reveals that E[Y ] = 17.6% with standard de-
viation 9.9%, to be compared to Y = 9.1% at nominal conditions. It is, however, to
be noted that the deterministic profiles have been designed for a nominal point which
is far from the mean of uncertain conditions (Table VIII.1). This represent a typical
scenario of ORC power systems, in which the design (nominal) condition does not
correspond to the average of the expected variability; hence, for this technology a ro-
bust design approach is particularly beneficial for reducing the sensitivity of the design
from the expected variability.

The potential advantages of robust design can be fully appreciated by considering
the statistics of the RO-E-µ and RO-E-q95 profiles. Considering the inviscid UQ anal-
ysis and focusing on ∆P as QoI (for consistency with the model used throughout the
optimization), the RO-E-µ profile has the lowest mean value 7.9 kPa and a standard
deviation of 3.9%, comparably lower w.r.t. both the deterministic designs. The low
variability of the ’conventional’ robust optimization is further improved by the here-
proposed novel quantile-based design, as the RO-E-q95 profile feature both the lowest
95-quantile and the lowest standard deviation of 3.0%, with only a slight increase of
mean value (8.2 kPa) w.r.t. the mean-based design. The lowest variability of the RO-
E-q95 blade is confirmed by the RANS analysis, which provides nearly identical results
of the inviscid one in terms of ∆P; this, once again, indicates that the inviscid model
is able to provide a reliable design when combined with a proper selection of QoI.

Focusing now on the blade performance in terms of loss coefficient, and consider-
ing the RANS UQ analysis, the two robust-optimal blades behave almost equivalently,
the RO-E-µ blade slightly outperforming the RO-E-q95 one both in terms of both mean
value and variability. This is not in contradiction with the optimization, which used
another QoI as fitness function. The results of the present robust optimization indi-
cates that a quantile-based approach has the potential to minimize the variability of
loss coefficient, if set with Y as QoI and using the RANS model, at the expense of a
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significant increase of computational cost Note that the 36k Euler simulation takes
500s; the 52k RANS simulation takes 1200s, on 8 procs. Roughly, the CPU time is
then multiplied by 16. In light of the present results, the similar performance of the
two robust-optimal blades might not justify such increased effort.
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(a) ∆P: Euler 36kcell mesh
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Figure VIII.8 PDF comparison between the optimized and baseline profiles. “Plus”
dots indicate µ ± σ, square dots indicate µ, star dots indicate respectively 5% and
95% quantiles. NLHS = 100 samples considered.

The complete picture of the stochastic properties of the baseline and optimal blades
is provided by the plots of the PDF for∆P, Y and ṁ, reported in Figures VIII.8, VIII.9,
and VIII.10 respectively. In these figures, the PDFs computed with Euler and RANS
models are reported in separate frames, the former considering only the baseline and
the optimal blades obtained with inviscid optimization process (i.e., O-E, RO-E-µ, and
RO-E-q95) and the latter featuring also the O-NS one. First considering ∆P as QoI,
it is evident that the baseline blade has a relatively large variability (which, in such
PDF plots, can be visualized as the PDF ’support’ which is, in turn, quantified as the
difference between the 5% and the 95% quantiles). This illustration of the difference
between 5% and 95% quantiles provides a good representation of the PDF support.
The deterministic-optimal blades, which feature a very similar PDF when evaluated
with a RANS model, perform generally better than the baseline one but exhibit a very
large variability, so that their support overlaps the one of the baseline in a large region
(16kPa ≤∆P ≤ 32kPa); this means that in a very significant fraction of the possible
realizations of the process, the baseline can actually outperform the deterministic-
optimal blades. From this perspective, the robust-optimal blades provide a crucial
improvement with respect to deterministic-optimal ones; not only the mean value of
QoI is much lower than that of the other blades, but the entire support of their PDFs
is significantly reduced and, especially, it is almost completely decoupled from that of
the baseline blade; this ensures that the robust-optimal blades outperform the baseline
configuration in almost all the possible realizations of the process within the variabil-
ity range. When comparing the PDFs of the robust-optimal blades, some differences
emerge in a context of global similarity; in particular, the quantile-based approach
guarantees not only to minimize the 95% quantile, but in general to slightly reduce
the support of the PDF, and so the variability as already seen in terms of the standard
deviation. From this perspective, the novel quantile-based approach is competitive
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w.r.t. the more standard mean-based approach both in terms of computational cost
(as already commented) and in terms of the stochastic performance of the optimiza-
tion outcome.
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Figure VIII.9 PDF comparison between the optimized and baseline profiles. “Plus”
dots indicate µ ± σ, square dots indicate µ, star dots indicate respectively 5% and
95% quantiles. NLHS = 100 samples considered.

The considerations reported above also hold for the PDFs of Y . The two deterministic-
optimal blades are still equivalent and with a large support which overlaps largely with
the one of the baseline; again, the robust-optimal blades provide a much smaller sup-
port w.r.t. the baseline one, with an almost complete decoupling. As already noted
when commenting the statistics, the two robust-optimal blades feature similar stochas-
tic properties, with the RO-E-µ blade providing a slightly smaller mean value and 95%
quantile; however, the two supports are almost entirely overlapped, demonstrating
that the two robust-optimal blades are practically equivalent in terms of loss coeffi-
cient.
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Figure VIII.10 PDF comparison between the optimized and baseline profiles. “Plus”
dots indicate µ±σ, square dots indicate µ, star dots indicate respectively 5% and 95%
quantiles. NLHS = 100 samples considered.

Finally considering the flow rate, all the PDFs are qualitatively similar and exhibit a
nearly identical support. As for the entire range of variability considered the cascades
is always in choked-flow conditions, the shape and the support of the PDFs directly
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depend of the variability in the inlet total conditions and the PDF takes a trapezoidal
shape, as discussed in detail in [Romei et al., 2019]. Some of the PDFs are slightly
shifted, with the RO-E-q95 blade featuring a slightly smaller mean and quantiles and
the O-NS blade exhibiting a slightly higher mean and quantiles, but most of the re-
alizations of all the optimal blades are within the acceptability range of probabilistic
constraint. Note that for all blades, all the realizations are not within the acceptability
range of the probabilistic constraint, since, finally, only the mean is constrained to be
within that range.

VIII–4.5 Physical Analysis

This Subsection discusses the aerodynamics of the baseline and optimal blades under
uncertain flow conditions, considering RANS simulations, with the aim of explaining
the properties of the optimal blades on the basis of physical considerations. Three
classes of quantities are considered. The Mach number contour fields at nominal con-
ditions are first shown in Figure VIII.11. Then, the UQ framework for vector statistics
presented in Subsection I–3.2 and the CFD evaluations performed in Subsection VIII–
4.4 are used to evaluate statistics of flow fields; in particular, the contours of mean
and CoV of the Mach number are considered and are reported in Figures VIII.12 and
VIII.13 respectively. 73 modes out of 100 PCA modes are retained in the analysis,
corresponding to a cumulative energy conservation beyond 99.99%.

The figures of this Subsection show the contours for the baseline and for all the
optimal blades, and are supplemented by corresponding isentropic Mach number dis-
tributions over the blade surface. The isentropic Mach number is evaluated assuming
an isentropic expansion from total upstream condition to the local static pressure on
the blades, and is commonly used in turbomachinery application to highlight relevant
cascade features such as shocks, over-speeds, and adverse pressure gradients.

Nominal Mach contours At nominal conditions, the baseline blade exhibits the on-
set of a strong shock resulting from the coalescence of a train of compression waves
generated on the curved rear suction side. The strong shock is responsible for both the
high loss and the large pressure gradients affecting the cascade-exit flow field. When
the blade is optimized for the nominal condition only, the optimization removes the
main shock by identifying optimal blades with straight shape in the rear part; since the
trailing edge of the blade is geometrically constrained, the optimization cannot elimi-
nate the fish-tail shock system generated at the trailing edge. Considering the Mis pro-
files, the comparison between the deterministic-optimal blades and the baseline one
clearly shows that the latter features a higher over-speed, followed by a shock (which
is the reflection on the blade surface of one trailing edge shock generated on the ad-
jacent blade) and by a diffusion which ultimately leads to the generation of the main
shock; while the reflected shock is present also in the optimal blades, and depends on
the constraint in the trailing edge thickness, the subsequent diffusion is absent from
the pressure distribution of the deterministic-optimal blades. The two deterministic-
optimal blades are shown, once again, to perform equivalently even though obtained
with different flow models.

The flow uniformity provided by the deterministic optimization is not achieved
with the robust-optimal blades, which instead exhibit the onset of a strong shock in
the cascade-exit flow field. However, the origin of this shock is completely different
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(a) Baseline (b) O-E (c) O-NS

(d) RO-E-µ (e) RO-E-q95 (f) Mis profile

Figure VIII.11 Mach contours at Nominal conditions. [RANS, 180k cells mesh]

from that of the baseline shock. As a matter fact, the shock is generated on the suc-
tion side of the trailing edge and not as a result of a diffusion on the blade. This is
further confirmed by the Mis profiles, which show no diffusion on the suction side
downstream of the reflected shock for both the robust-optimal profiles. The shock is
simply originated by the fact that the robust-optimal blade are designed for having
good performance in a range of conditions which feature, in average, lower expan-
sion ratio than in the nominal condition. As already commented when discussing the
blade shape, the robust-optimal blades have a lower area-ratio across the divergent
w.r.t. the deterministic-optimal ones. As a result, when operated in nominal condition,
the robust-optimal blades are in fact in post-expansion, which as well known leads to
the onset of a shock at the trailing edge.

Mean Mach contours In light of the flow features emerging in nominal conditions,
it is interesting to analyze the mean aerodynamics of the optimal blades. It is worth
noticing, at first, that commenting a mean contour is not straightforward, as each point
in the mesh is result of a statistical procedure and, hence, the field is not reproducing
the flow in a specific condition; therefore, only the general trends can be commented
while the analysis of detailed features might be misleading. The distribution computed
for the baseline blade shows a similar character of that commented for the nominal
condition, even though with smeared gradients. This indicates that the baseline blade
suffers from the effects of the rear-shock in whole variability range; this is reasonable
since the flow in the rear suction side of the blade remains supersonic for all considered
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(a) Baseline (b) O-E (c) O-NS

(d) RO-E-µ (e) RO-E-q95 (f) Mis profile

Figure VIII.12 Mach contours mean considering uncertain operating conditions, eval-
uated by means of PCA UQ (Subsection I–3.2) [RANS, 180k cells mesh, NLHS = 100]

conditions, so the curved shape always leads to the onset of the rear shock. As a
further confirmation of what above, the mean profile of Mis shows a large diffusion
region downstream of the mean over-speed.

The deterministic-optimal blades improve the behavior of the baseline one, but
the uniformity observed in nominal condition is not visible anymore; conversely, clear
variations in mean Mach number appear in the cascade-exit flow field, which seem to
be correlated to the shock-pattern generated at the trailing edge. This is motivated
by the area-ratio of both the deterministic-optimal blades, which is too large for most
of the realizations occurring within the prescribed variability; as a result, the cascade
often operates in post-compression condition, which leads to the onset of relatively
strong shocks at the trailing edge.

The robust optimization is able to greatly reduce the effects discussed above; in
particular, RO-E-µ blade features an almost uniform mean Mach number distribution
at the cascade exit, proving that the mean-based optimization is able to select the
most suitable blade configuration over the range of variability. Interestingly, the RO-
E-q95 blade provides a similar flow uniformity at the cascade exit, even though the
quantile-based optimization does not consider explicitly the mean values in the opti-
mization algorithm. Differences between the two robust-optimal cascade exist and are
concentrated in the divergent, with the RO-E-q95 blade featuring a higher over-speed;
however, in the rear suction side downstream of the reflected shock the Mis profiles
of the two blades become nearly identical, thus leading to a very similar cascade-exit
mean flow field.
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(a) Baseline (b) O-E (c) O-NS

(d) RO-E-µ (e) RO-E-q95 (f) Mis profile

Figure VIII.13 Mach contours CoV [%] considering uncertain operating conditions,
evaluated by means of PCA UQ (Subsection I–3.2) [RANS, 180k cells mesh, NLHS =
100]

CoV Mach contours In order to highlight the local distribution of variability over
the flow field, the CoV coefficient (defined as the ratio between the standard devia-
tion and the mean) is now analyzed. First considering the baseline blade, very high
CoV is established in the region interested by the compression wave / shock, sug-
gesting that the main shock featuring this blade undergoes a significant evolution
across the considered range of variability. A somehow similar patter is found for the
deterministic-optimal blades with a generally high CoV in the region comprised be-
tween the reflected shock and the trailing edge shock. A net reduction of CoV is found
when analyzing the robust-optimal blades, which anyway exhibit a CoV distribution
similar to that of the other blades. This result suggests that, when a proper QoI is
selected, the application of the robust design allows reducing the variability in the
entire flow field.

VIII–4.6 Computational Cost

In the present Subsection, details about the CPU cost during the optimization process
are discussed. All computations are done on a standard laptop with an i7-6820HQ
CPU at 2.70GHz equipped with 8 processors. Detailed information is available in
Table VIII.4. In the four optimization cases, N x

LHS = 45 profiles are considered for
the initial DoE, that can be considered independently. Then, the EI loop sequentially
provides a new profile to be analysed.
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Deterministic Optimization: Euler The initial DoE is evaluated in parallel. Ni ter =
246 iterations are totally required. The best profile is obtained after 279 CFD simula-
tions.

Deterministic Optimization: NS Ni ter = 285 iterations are totally required. During
the optimization loop, each RANS simulation is run with 8 processors. The best profile
is optained after 198 simulations.

Quantile-Based Optimization The initial DoE step requires 1808 CFD calls. For a
given profile, ∼ 32 CFD calls corresponding to∼ 4 iterations are necessary to evaluate
the so-called 95% quantile. In total, Npro f iles = 103 profiles are considered requiring
3120 CFD calls, in Ni ter = 390 iterations. The 83th profile is the best, requiring 2640
CFD calls.

Mean-Based Optimization The quantile-based optimization initial DoE is used in
order to compare the two robust strategies from the same initial designs. For any
given profile, 24 CFD calls corresponding to 3 iterations are necessary to evaluate the
mean, leading to a total number of Ni ter = 603 iterations. The 157th profile is the best,
requiring 3768 CFD calls.

Note that this cost is about∼ 50% more than for the quantile-based optimization).
For the present case, 16 CFD runs in the stochastic space for evaluating the mean is
very conservative, but necessary for the proposed algorithm. As a general comment,
a relevant point to raise is the interest in optimizing a quantile since a higher control
of the PDF variability is possible with a comparable cost of computing a quantile with
respect to the mean.

O-E O-NS RO-E-q95 RO-E-µ

Initial DoE 45(45) 45(45) 45(1416) 45(1080)
Npro f iles(NC F D) 285(285) 285(285) 103(3120) 201(4824)
Ni ter (8 PROC) 246 285 390 603
Time/iteration 500s 1200s (8 procs) 500s 500s

Table VIII.4 CPU cost required during the optimization process for the three profiles
in terms of time and number of CFD calls. Npro f iles is the number of profiles consid-
ered during optimization, NC F D the number of CFD evaluations required to assess the
corresponding profiles and Ni ter the number of iterations necessary assuming parallel
computations with 8 processors.

VIII–5 Conclusion

A Robust optimization method based on a quantile formulation is fully documented
and applied to the design of supersonic ORC cascade operating in the non-ideal regime.
We provide evidence about the advantages of a quantile-based formulation with re-
spect to a conventional mean-based robust optimization. By applying the novel quantile-
based procedure, we obtain a RO-E-q95 profile, which has the lowest 95-quantile and
the smallest standard deviation of 3.0%, with only a slight increase of mean value (8.2
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kPa) w.r.t. the mean-based design. In the case of interest here, a significant control
about the variability of the PDF through the quantile formulation is obtained with a
lower computational cost with respect to the mean. More generally, it seems that even
in a case when the computational cost could be of the same order of magnitude, the
choice of a quantile formulation should be preferred.

Concerning the optimal blades, the flow uniformity provided by the deterministic
optimization is not achieved with the robust-optimal blades, which exhibit the onset
of a sharp shock in the cascade-exit flow field. This shock comes from the fact that the
robust-optimal blades are designed for having good performance in a range of condi-
tions which have a lower expansion ratio than in the nominal state. When operated
in nominal condition, the robust-optimal blades are in fact in post-expansion, which
as well known leads to the onset of a shock at the trailing edge. The two robust de-
signs differ significantly, the area ratio between the cross-sections at the throat and the
opening is lower than that of the deterministic-optimal blades. This behavior can be
explained considering that almost all the realizations in the uncertain scenario feature
a lower pressure ratio with respect to the nominal one. The two blades also feature
minor but visible differences mostly concentrated in the shape of the divergent part of
the bladed channel, which also leads to a slight difference in the area-ratio across the
divergent.

Another relevant point observed is that the robust optimization with low-fidelity
solver can yield a design with better performances (on both Euler and RANS evalu-
ations) than the one coming from a purely deterministic optimization using a high-
fidelity RANS solver. This behavior has a great interest in ORC turbine optimization
since it could provide a concrete alternative approach with respect to the current pro-
cedures to guarantee better the robustness of the design at a moderate computational
cost.

Globally, in this study, high-fidelity RANS analysis provides nearly identical results
of the inviscid one in terms of ∆P. This behavior shows that the inviscid model can
provide a reliable design when combined with a proper selection of QoI.
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IX
Conclusion and Perspectives

This thesis is divided into two parts. The first is dedicated to the calculation of rare
events, while the second is focused on the modeling, simulation and optimization of
ORC turbines. In the following, the conclusions are drawn on the studies carried out,
also providing some prospects for future work.

IX–1 Part 1: Rare Events

The first part of this manuscript is devoted to some contributions related to the com-
putation of Rare Events. Three surrogate1-based algorithms are developed for the
problems of small failure probabilities and extreme quantiles. Those contributions
are primarily motivated with the aim to extend existing RBDO methods for extreme
(rare) events. It is emphasized that the three methods proposed rely on a surrogate-
based adaptive sampling strategy. They are in particular depending on the Gaussian
assumption satisfied by the underlying Gaussian Process at the basis of the Kriging
metamodel, to use the local U-criterion introduced by [Echard et al., 2011] which
exploits the mentioned gaussianity to estimate the so-called probability of misclas-
sification. Consequently, any surrogate method could in theory be used, provided
it includes a Gaussian prediction error measure, similarly to the Kriging predicitive
variance. The local U-criterion could be also in theory, replaced by a more elaborate
(and computationally expensive) criterion such as the so-called Stepwise Uncertainty
Reduction (SUR) (see [Bect et al., 2017]), as the proposed algorithms focus mainly
on providing suitable (already good) candidate samples based on which the ranking
performed by means of a local/global criterion is less influential for their efficiency.

In Chapter III, the surrogate-based method for the computation of tail probabilities
features a sequential efficient refinement strategy and is characterized by an innova-
tive ISD based on Gaussian Mixtures permitting the accurate estimation of very small
failure probabilities in a reasonable number of calls (several million in practice). More-
over, a new estimator inspired by [Dubourg et al., 2013] combining Control Variate
and Importance Sampling permits the unbiased computation of probabilities of fail-
ure. The proposed method has been tested until six uncertainties, providing accurate
metamodels exploited by Gaussian Mixture ISDs in less than approximately 150 eval-
uations. In all test-cases considered, MetaAL-OIS performed better than compared
methods, or at worst, with a computational cost of the same order of magnitude of

1Kriging also referred to as Gaussian Processes, described in Section I–2.
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the best method for the test-case of interest. An unbiased estimation is then obtained
using only hundred additional evaluations (from an already accurate surrogate, easing
the latter part).

In Chapter IV, an extension of the popular AK-MCS [Echard et al., 2011, Schöbi
et al., 2016] is presented for the estimation of small probabilities. The proposed al-
gorithm is compared to the more sophisticated BSS [Bect et al., 2017] method, which
combines bayesian SUR strategies and Subset Simulation. Its efficiency is illustrated
on challenging test-cases from [Bect et al., 2017] specifically dedicated for small fail-
ure probabilities (in the range 10−5 − 10−9). The efficiency of eAK-MCS, concerning
both the number of performance function calls and accuracy, seems to be of the same
order of magnitude of BSS, which is to the best of the author’ knowledge, one of the
most efficient methods for assessing very small failure probabilities. There are two
clear advantages of eAK-MCS over BSS. The adaptive refinement of eAK-MCS aims at
directly refine the LSS, a natural consequence being that an estimate of the failure
probability accounting for the epistemic uncertainty handled by Kriging is available at
each step of the algorithm (making it in particular, in theory, suitable for RBDO algo-
rithms [Moustapha et al., 2016]). On the contrary in BSS, the user should wait for the
refinement to reach the last threshold to have an estimate of the failure probability.
Moreover, for reliability, eAK-MCS is more comfortable to implement w.r.t. BSS, with
a clear parallelization strategy.

Additionally, numerical studies conducted with particularly unfavorable initial DoE
(no LSS detected at the initialization) and with sequential strategy, show the ability
of eAK-MCS to identify multiple failure regions, providing some hints about its ro-
bustness. The main advantage of eAK-MCS is its substantial similarity to the popular
AK-MCS: AK-MCS derived methods could be with limited efforts adapted to extreme
events. This distinctive feature is in particular illustrated in this thesis (Chapter V),
since the AK-MCS based [Schöbi et al., 2016] quantile estimation algorithm has been
extended for extreme quantile (level in the range 10−5−10−9) successfully, at the price
of minor additional developments. A tuned isotropic Gaussian ISD is used to estimate
the quantile-based on the current Kriging surrogate, while the parallel refinement al-
gorithm of eAK-MCS provides several samples to enrich the DoE. Its performance is
assessed and illustrated through the benchmark analytical functions (up to six un-
certainties) used for eAK-MCS, showcasing very satisfactory accuracy (relative error
below ∼ 1%) and robustness, in less than 100 evaluations of the original model, in
average. Moreover, a multi-quantile selection permits an additional level of paral-
lelization.

The limitations of the developed methods consist first in the assumption that the
input model can be exactly recast in the standard space. Secondly, only a limited num-
ber of uncertainties can be considered (up to ten approximately) due to the Kriging
surrogate construction and to reduced efficiency of both MCMC and Gaussian Mix-
ture ISD in higher dimensions. Finally, the proposed methods depend strongly on the
ability to fit the performance function by the surrogate.

Future Work The main direction of improvement for the reliability analysis tools
presented in the sequel resides in the combinaison of the adaptive sampling scheme,
from MetaAL-OIS and eAK-MCS, featuring respectively an elaborate but sequential
strategy and a parallel and straightforward to implement one. This potential approach
would permit to significantly reduce the number of evaluations of the performance
function. The Gaussian Mixture ISD would exploit the surrogate for accurate small
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failure probability estimates, in a more efficient way than the tuned isotropic Gaussian
used in eAK-MCS. The adaptive refinement of the quantile estimation as presented in
QeAK-MCS would obviously benefit from this improved sampling strategy for failure
probability. However, for extreme quantiles, another direction of improvement would
lie in a very accurate estimation of the quantile associated to the current surrogate
model. On-going work is performed in that direction. Consequently, it is expected to
improve both eAK-MCS and QeAK-MCS in terms of efficiency2 and accuracy3. Such
improvements would then attain their limits in the framework described in the sequel,
and would not address the following limitations:

• Need to recast the rare event formulation in the standard space;

• Fitting Kriging hyperparameters limits the input dimensionality and the number
of the performance function evaluations;

• The methods depends strongly of the ability for the surrogate to fit the perfor-
mance function.

Besides the guidelines aforementioned, it is worthy to point out that eAK-MCS and
QeAK-MCS are robust and efficient methods that can be used for small failure proba-
bility and extreme quantile estimation with an outstanding trade-off between ease of
implementation and accuracy/efficiency. Both methods are expected to significantly
help the extension of RBDO approaches for extreme (rare) events.

IX–2 Part 2: Robust Optimization Methods for ORC Tur-
bine Cascade

The second part of this manuscript focused on shape optimization methods for ORC
turbomachinery applications. An analysis of the combined effects of different uncer-
tainties on a typical supersonic turbine nozzle is proposed. Then, a numerical frame-
work for Robust Optimization under a probabilistic constraint is illustrated and applied
to design under uncertainties of the latter cascade.

Chapter VII investigates the application of advanced stochastic techniques to the
analysis of a typical supersonic turbine cascade. The uncertainties considered include
operating conditions (total inlet pressure and temperature), fluid closure parameters
describing the PRSV EOS in SU2, and geometric variability modeling deviations from
manufacturing operations, based on RANS simulations. Such preliminary analyses
are of crucial importance for Robust Optimization as this permit to rank and quantify
uncertainties. The following comments are valid on the basis on the different input
variability (or scenarios) investigated. The primary outcome of the study concerning
the sensitivity analysis, results confirm the findings of previous work; the uncertainty
in the outlet static pressure has the highest impact on the loss coefficient and is pre-
dominant with respect to the thermodynamic model uncertainties; the total conditions
at the inlet, instead, dominate on the mass flow rate. Modeling of manufacturing tol-
erances is performed combining random field (non-stationary Gaussian Process with

2Number of calls of the performance function.
3More efficient IS strategy for suitable exploitation of surrogate when dealing with extreme events.
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null mean) modeling and its low dimensional parametrization using a Karhunen-Loeve
(KL) expansion [Dow and Wang, 2014]. The modal representation of manufacturing
uncertainties and the related statistical analysis allow for highlighting the most rel-
evant modes, suggesting that specific areas of the blade have the highest impact on
the overall uncertainty. The support of the probability density functions of the quanti-
ties of interest enlarges significantly when the manufacturing tolerances are plugged
into the uncertainty analysis, and the functions take a regular Gaussian shape (differ-
ently from what observed if only operative and model uncertainties are considered).
A high dimensional output UQ propagation method is reported, permitting the inves-
tigation of the impact of uncertainties on the physical flow. The flow released by the
cascade exhibits relevant sensitivity to all sources of uncertainty, but again its statis-
tical moments grow significantly in the presence of manufacturing tolerances. As the
dominating modes alter the blade shape in the rear suction side and the trailing edge
thickness, the strength and inclination of the main rear shock undergoes significant
variability, so as the width and defect of the blade wake.

Moreover, the performance of the advanced reliability analysis method for the com-
putation of unbiased failure probabilities MetaAL-OIS has been assessed on an origi-
nal configuration, considering nine random variables combining operating and fluid
parameters uncertainties. A surrogate-based estimation of the failure probability is
obtained accurately in less than 150 CFD evaluations, while an additional 200 CFD
simulations result in an unbiased estimate. It provides hints of the applicability of
such a method in a real industrial context.

Because of the lack of data available in this delicate topic (e.g. measurements of
existing cascades are confidential), the approach intended to consider several realistic4

uncertainty models in order to showcase the possible outcomes of such a surrogate-
based UQ (cost-effective) framework. Indeed, the outcomes of the UQ analysis is
strongly linked to the input variability. For instance, increasing the range of variability
of the inlet total temperature is expected to increase its sensitivity indices w.r.t. some
performance output measure as well. As stated in Chapter I, characterizing uncertain-
ties related to operating conditions, model parameters and geometric imperfection5

is both of paramount importance, and not straighforward to achieve. Industry might
benefit from systematic methods aiming to reach such objectives, and obviously sig-
nificant efforts should be addressed towards that direction. In Chapter VIII, a Robust
optimization method based on a quantile formulation is fully documented and applied
to the design of supersonic ORC cascade operating in the non-ideal regime. In partic-
ular, the mean mass-flow rate is constrained to be within a prescribed range, which
slightly complicates the RO process. Advantages of a quantile-based formulation with
respect to a conventional mean-based robust optimization are showcased. By applying
the novel quantile-based procedure, we obtain a RO-quantile optimal profile, which
has the lowest 95-quantile and the smallest standard deviation, with only a slight in-
crease of mean value w.r.t. the mean-based design. In the case of interest here, a
significant control about the variability of the PDF through the quantile formulation is
obtained with a lower computational cost with respect to the mean. More generally,

4To some extent.
5Out of scope of the present manuscript
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it seems that even in a case when the computational cost could be of the same order
of magnitude, the choice of a quantile formulation should be preferred due to this
variability control.

Future Work In the context of RO, several improvements are desirable. As illus-
trated, the RO formulation has a significant impact on the final robust profiles. Multi-
objective RO formulations partially address this issue, usually with a detrimental effect
in term of computational cost, since it would provide not only one robust optimal de-
sign but a set of non-dominated solutions denoted as Pareto optimal solutions. The
expert judgment could potentially help in selecting the most promising designs, based
on suitable UQ analyses or engineering considerations. To avoid such studies involv-
ing extra human time and computational cost, some investigation in the mathematical
formulation of the RO itself could be of interest.

The RO optimization methods presented in the manuscript could benefit from sev-
eral improvements in term of computational cost. Indeed, in the bi-level approach
considered, for each design a full UQ analysis (evaluation of mean/quantile) is too
accurately performed: restricting the accuracy of the UQ analysis only for promising
designs could dramatically save computational cost. Coupling very promising Bound-
ing Boxes-based approaches [Rivier and Congedo, 2018a, Rivier and Congedo, 2018b]
to the present framework could significantly reduce the computational effort. More-
over, using suitable surrogates (e.g. co-Kriging) able to deal with CFD simulations of
different levels of fidelity (and computational cost) is of critical interest when deal-
ing with the cost-effectiveness of RO or even DO methods. Low CFD models such as
inviscid alongside coarse meshes, fast to evaluate, could permit, at low CPU cost, to
explore the design space while capturing, even loosely, the flow physics. Subsequently,
a reduced number of high CFD models evaluations (e.g. RANS) would be necessary
to consider promising design regions. Essential features of surrogate-based RO or DO
methodology lie indubitably in the accuracy of the surrogate model and its ability to
capture the underlying physical model. GP-based methods such as Kriging usually suf-
fer from the input dimensionality, thus limiting the design space. Gradients of QoIs
(e.g. using the adjoint) could be integrated into Kriging and significantly improve its
accuracy [Han et al., 2010]; however, reducing efficiently the dimensionality is still
a crucial question. Recent works consisting in either perform a deterministic shape
optimization in a design space of reduced dimensionality [Lukaczyk et al., 2014] or
perform a GP-based surrogate suitable with high dimensional input [Lataniotis et al.,
2018] paves a promising way to this end.

IX–3 Long-term perspectives

One critical aspect of RO and rare event methods which is not addressed here is the
question of the uncertainties modeling. Indeed, it has been assumed that the random
vector modeling UQ is parametric (aleatory) and perfectly known. In [Garzon, 2003],
the geometric variability due to manufacturing processes is parametrized by a ran-
dom vector of moderate size (10-20) from 150 accurate measurements of compressor
blades using PCA. Such an approach might be corrupted with uncertainties, possibly
influencing the RO or the UQ assessment process. This question is particularly es-
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sential when a reliability analysis needs to be performed6 since the resulting failure
probability might be vitiated by uncertainties related to the random vector modeling.
In [Chabridon et al., 2017], the impact of uncertain random input vector on the fail-
ure probability is partially investigated, the failure probability is then considered as a
random variable.

Shape design methods, for turbomachinery, accounting for uncertainties are be-
coming increasingly popular; industry, in particular, should benefit from systematic
and reliable methods for the modeling of uncertainties. The results presented in this
manuscript highlight the advantages of a robust formulation for the design of an ORC
turbine. Much remains to be done. Following the works presented here, two tracks
look promising. Primarily, some of the techniques presented here can potentially be
used for UQ studies in more complex ORC configurations, such for example using more
complex geometries (3D cascades, full stage or multiple stages), or investigating tran-
sient effects. A second possibility is to extend the optimization techniques presented
here to include an estimate of the errors of the thermodynamic and turbulence mod-
els. This action could be particularly relevant for ORCs given the lack of experimental
data with which to calibrate the models.

6or more generally when a UQ assessment of a design needs to be evaluated, e.g. PDF reconstruction
of a given QoI.
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Titre : Méthodes d’estimation d’événements rares et d’optimisation robuste avec application aux turbines ORC

Mots Clefs : Processus gaussiens • Evénements rares • Probabilité de défaillance • Quantile extrême • Optimisation Robuste •
Turbine ORC • Variabilité géométrique

Résumé :
Cette thèse vise à formuler des méthodes innovantes de quantification d’incertitude (UQ) à la fois pour l’optimisation robuste
(RO) et l’optimisation robuste et fiable (RBDO). L’application visée est l’optimisation des turbines supersoniques pour les Cy-
cles Organiques de Rankine (ORC). Les sources d’énergie typiques des systèmes d’alimentation ORC sont caractérisées par une
source de chaleur et des conditions thermodynamiques entrée/sortie de turbine variables. L’utilisation de composés organiques,
généralement de masse moléculaire élevée, conduit à des configurations de turbines sujettes à des écoulements supersoniques et
des chocs, dont l’intensité augmente dans les conditions off-design; ces caractéristiques dépendent également de la forme locale de
la pâle, qui peut être influencée par la variabilité géométrique induite par les procédures de fabrication. Il existe un consensus sur
la nécessité d’inclure ces incertitudes dans la conception, nécessitant ainsi des méthodes UQ et un outil permettant l’optimisation
de form adapté. Ce travail est décomposé en deux parties principales. La première partie aborde le problème de l’estimation
des événements rares en proposant deux méthodes originales pour l’estimation de probabilité de défaillance (metaAL-OIS et
eAK-MCS) et un pour le calcul quantile (QeAK-MCS). Les trois méthodes reposent sur des stratégies d’adaptation basées sur des
métamodèles (Kriging), visant à affiner directement la région dite Limit-State-Surface (LSS), contrairement aux methodes de type
Subset Simulation (SS). En effet, ces dernières considèrent différents seuils intermédiaires associés à des LSSs devant être raffinés.
Cette propriété de raffinement direct est cruciale, car elle permet la compatibilité de couplage à des méthodes RBDO existantes.
En particulier, les algorithmes proposés ne sont pas soumis à des hypothèses restrictives sur le LSS (contrairement aux méthodes
de type FORM/SORM), tel que le nombre de modes de défaillance, cependant doivent être formulés dans l’espace standard. Les
méthodes eAK-MCS et QeAK-MCS sont dérivées de la méthode AK-MCS, et d’un échantillonnage adaptatif et parallèle basé sur
des algorithmes de type K-Means pondéré. MetaAL-OIS présente une stratégie de raffinement séquentiel plus élaborée basée sur
des échantillons MCMC tirés à partir d’une densité d’échantillonage d’importance (ISD) quasi optimale. Par ailleurs, il propose
la construction d’une ISD de type mélange de gaussiennes, permettant l’estimation précise de petites probabilités de défaillance
lorsqu’un grand nombre d’échantillons (plusieurs millions) est disponible, comme alternative au SS. Les trois méthodes sont très
performantes pour des exemples analytiques 2D à 8D classiques, tirés de la littérature sur la fiabilité des structures, certaines
présentant plusieurs modes de défaillance, et tous caractérisés par une très faible probabilité de défaillance/niveau de quan-
tile (O(10−5 − 10−9)). Des estimations précises sont obtenues pour les cas considérés en un nombre raisonnable d’appels à la
fonction de performance (∼ 15− 150). La deuxième partie de ce travail aborde les méthodes originales d’optimisation robuste
(RO) appliquées à la conception de forme d’une pâle de turbine supersonique ORC. Une analyse UQ prenant en compte des
incertitudes géométriques (aléatoires), liées aux conditions de fonctionnement et aux paramètres du fluide est conduite et per-
met de donner de quantifier l’impact de différentes variables d’entrée variables et constitue une étude préliminaire nécessaire à
la conception robuste. Ensuite, plusieurs formulations RO mono-objectif sous contrainte probabiliste sont considérées dans ce
travail, notamment en considérant la moyenne ou un quantile élevé de la fonction objectif.

Title: Rare Event Estimation and Robust Optimization Methods with Application to ORC Turbine Cascade

Keywords: Gaussian Processes • Failure Probability • Extreme Quantile • Robust Optimization • ORC Turbine • Geometric
Manufacturing Variability

Abstract:
This thesis aims to formulate innovative Uncertainty Quantification (UQ) methods in both Robust Optimization (RO) and
Reliability-Based Design Optimization (RBDO) problems. The targeted application is the optimization of supersonic turbines
used in Organic Rankine Cycle (ORC) power systems. Typical energy sources for ORC power systems feature variable heat load
and turbine inlet/outlet thermodynamic conditions. The use of organic compounds with a heavy molecular weight typically
leads to supersonic turbine configurations featuring supersonic flows and shocks, which grow in relevance in the aforementioned
off-design conditions; these features also depend strongly on the local blade shape, which can be influenced by the geometric
tolerances of the blade manufacturing. A consensus exists about the necessity to include these uncertainties in the design process,
so requiring fast UQ methods and a comprehensive tool for performing shape optimization efficiently. This work is decomposed
in two main parts. The first one addresses the problem of rare events estimation, proposing two original methods for failure prob-
ability (metaAL-OIS and eAK-MCS) and one for quantile computation (QeAK-MCS). The three methods rely on surrogate-based
(Kriging) adaptive strategies, aiming at refining the so-called Limit-State Surface (LSS) directly, unlike Subset Simulation (SS)
derived methods. Indeed, the latter consider intermediate threshold associated with intermediate LSSs to be refined. This direct
refinement property is of crucial importance since it enables the adaptability of the developed methods for RBDO algorithms.
Note that the proposed algorithms are not subject to restrictive assumptions on the LSS (unlike the well-known FORM/SORM),
such as the number of failure modes, however need to be formulated in the Standard Space. The eAK-MCS and QeAK-MCS meth-
ods are derived from the AK-MCS method and inherit a parallel adaptive sampling based on the weighted K-Means algorithm.
MetaAL-OIS features a more elaborate sequential refinement strategy based on MCMC samples drawn from a quasi-optimal ISD.
It additionally proposes the construction of a Gaussian mixture ISD, permitting the accurate estimation of small failure proba-
bilities when a large number of evaluations (several millions) is tractable, as an alternative to SS. The three methods are shown
to perform very well for 2D to 8D analytical examples popular in structural reliability literature, some featuring several failure
modes, all subject to very small failure probability/quantile level (O(10−5 − 10−9)). Accurate estimations are performed in the
cases considered using a reasonable number of calls to the performance function ( 15-150). The second part of this work tackles
original Robust Optimization (RO) methods applied to the Shape Design of a supersonic ORC Turbine cascade. A comprehensive
Uncertainty Quantification (UQ) analysis accounting for operational, fluid parameters and geometric (aleatoric) uncertainties
is illustrated, permitting to provide a general overview over the impact of multiple effects and constitutes a preliminary study
necessary for RO. Then, several mono-objective RO formulations under a probabilistic constraint are considered in this work, in-
cluding the minimization of the mean or a high quantile of the Objective Function. A critical assessment of the (Robust) Optimal
designs is finally investigated.
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