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Résumé

Il est vraiment remarquable le fait que parmi les exemples connus de champs
de vecteurs quadratiques semicomplets, il est toujours possible de trouver des
coordonnées linéaires où le champ de vecteurs correspondant a tous—ou "presque
tous"— ses coefficients dans l’ensemble des nombres réels. En effet, les coefficients
sont très souvent entiers.

L’espace des champs quadratiques en C3, à équivalence linéaire près, est une
famille de dimension complexe 9. Le résultat principal de cette thèse établi que
les degrés de liberté pour déterminer les coefficients d’un champ de vecteurs se-
micomplet (sous des hypothèses génériques très faibles) est au plus 3. Autrement
dit, il y a 3 paramètres à partir desquels tous les autres coefficients peuvent être
obtenus dans un sens naturel. En particulier, si ces 3 coefficients sont réels, alors
tous les coefficients sont réels.

Nous commençons par considérer un champ quadratique générique Z en Cn,
homogène et qui n’est pas un multiple du champ de vecteurs radial. Le premier
pas dans notre travail sera de construire une forme canonique pour le champ de
vecteurs X induit sur CP (n−1) ; Cette forme canonique est invariante sous l’action
d’un groupe particulier de symétries.

Lorsque n = 3, nous pouvons améliorer notre approche en étudiant les singula-
rités non pas sur le diviseur exceptionnel mais sur l’hyperplan à l’infini ∆ ∼= CP (2).
Dans ce contexte la dynamique du feuilletage devient assez simple alors que les sin-
gularités ont tendance à devenir dégénérées. L’avantage est que l’on peut travailler
avec des singularités dégénérées avec la technique des éclatements successifs. Ceci
aboutit a des expressions simples pour les valeurs propres directement en terme
des coefficients de X.
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Abstract

It is a remarkable fact that among the known examples of quadratic semicom-
plete vector fields on C3, it is always possible to find linear coordinates where the
corresponding vector field has all—or “almost all”—coefficients in the real num-
bers. Indeed, the coefficients are very often integral.

The space of quadratic vector fields on C3, up to linear equivalence, is a complex
9-dimensional family. The main result of this thesis establishes that the degree of
freedom in determining the coefficients of a semicomplete vector field (under very
mild generic assumptions) is at most 3. In other words, there are 3 parameters from
which all remaining parameters are determined. Moreover if these 3 parameters
are real, then so is the vector field.

We start by considering a generic quadratic vector field Z on Cn that is homoge-
neous and is not a multiple of the radial vector field. The first step in our work will
be to construct a canonical form for the induced vector field X on CP (n−1). This
canonical form will be invariant under the action of a specific group of symmetries.

When n = 3, we then push further our approach by studying the singularities
not lying on the exceptional divisor but at the hyperplane at infinity ∆ ∼= CP (2).
In this setting the dynamics of the foliation turn out to be quite simple while
the singularities tend to be degenerated. The advantage is that we can deal with
degenerated singularities with the technique of successive blow-ups. This leads to
simple expressions for the eigenvalues directly in terms of the coefficients of X.
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Introduction

A homogeneous, polynomial vector field of degree 2 on Cn is called a quadratic
vector field. This thesis is devoted to the study of quadratic vector fields on
Cn, albeit with emphasis on C3, having complex solutions that admit a maximal
domain of definition in C. In this sense, the material is clearly related to problems
first studied by Painlevé, Chazy and their followers about solutions of differential
equations.

A vector field that admits a maximal domain of definition is said to be semi-
complete. We refer the reader to Section 1.2 for the accurate definition of what
is meant by a maximal domain of definition. This means in particular that ev-
ery solution of the vector field in question is single-valued as a complex function
defined on some open set of C. For example the solution of the differential equa-
tion dy/dt = 1/t is given by the logarithm which is a multivalued function and
therefore fails to have a maximal domain of definition in our sense. One of the
most important properties of semicomplete vector fields is that if U ′ ⊂ U and X

is semicomplete on U , then the restriction of X to U ′ is semicomplete on U ′. In
particular, we can talk about semicomplete germs of vector fields (see [23]).

Let Vn be the space of quadratic homogeneous vector fields on Cn. A vector
field X ∈ Vn has generically 2n−1 radial orbits, i.e., lines on Cn passing through the
origin that are invariant by X. The foliation induced by the blow-up of X at the
origin of Cn has 2n −1 singular points (one for each radial orbit) on the exceptional
divisor (∼= CP(n − 1)) which is left invariant by the foliation. Every one of these
singular points have n eigenvalues: one transverse to the divisor (say λ) given by
the radial orbit and other n − 1 tangent to the divisor (say λi, i ∈ {1, ..., n − 1}).
We define the eigenvalues of the vector field associated to one radial orbit ρ as λi/λ

, i ∈ {1, ..., n − 1}. A very interesting property—valid for generic quadratic vector
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fields with isolated singularity—is that these eigenvalues happen to be integral as
soon as the vector field X is semicomplete (see for example Guillot [8]).

Nowadays there are many rather non-trivial examples of quadratic semicom-
plete vector fields on C3 (see for example Guillot [8] and Guillot [11]). It is a
remarkable fact that, among all these examples, it is always possible to find lin-
ear coordinates where the corresponding vector field has all—or “almost all”—
coefficients in the real numbers. Indeed, the coefficients are very often integral.

A first attempt at explaining this phenomenon would be to consider the fact
that the eigenvalues of the singular points are integral, as pointed out above.
However, it is very hard to connect the coefficients of a quadratic vector field with
the spectrum of the singular points so as to be able to conclude things from the
real/integral character of the spectrum.

In more technical terms, the Baum-Bott map associates to a quadratic vector
field a type of information directly connected with its spectrum. The naive point
of view in the above question would be to try to make sense of an “inverse map”
for the Baum-Bott map.

Naturally this question is very hard, and technically impossible, since, for ex-
ample, for quadratic vector fields on C3 the Baum-Bott map is known to have
degree at most 240 see [16]. Yet, the bulk of this work is essentially devoted to
try to make sense of this inverse in the sense that we try to conclude—as far as
possible—that a quadratic semicomplete vector field has real/integral coefficients.

Recall first that the space of quadratic vector fields on C3, up to linear equiv-
alence, is a complex 9-dimensional family. Our main result establishes that the
degree of freedom in determining the coefficients of a semicomplete vector field
(under very mild generic assumptions) is at most 3. In other words, there are
3 parameters from which all remaining parameters are determined. Moreover if
these 3 parameters are real, then so is the vector field.

More precisely, consider a generic quadratic vector field Z on C3 that is homo-
geneous and is not a multiple of the radial vector field u∂/∂u + v∂/∂v + w∂/∂w.
Let C̃3 be the blow-up at the origin of C3. We denote by X the pull-back of Z by
the blow-up map. In affine coordinates (x, y, z) of C̃3 the vector field X has the
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form X = zY with Y = P (x, y)∂/∂x + Q(x, y)∂/∂y + zH(x, y)∂/∂z and

P (x, y) = ax + by + cx2 + dxy + ey2 + x(Ax2 + Bxy + Cy2)

Q(x, y) = a′x + b′y + c′x2 + d′xy + e′y2 + y(Ax2 + Bxy + Cy2) ,

H(x, y) = D + Ex + Fy − (Ax2 + Bxy + Cy2) .

Our main result can be stated as follows:

Theorem 2.2.8. Assume that X is semicomplete and that Conditions I
through IV are satisfied. Then, in suitable affine coordinates for the blow-up of C3,
the vector field X takes on the form X = zY with Y = P (x, y)∂/∂x+Q(x, y)∂/∂y+
zH(x, y)∂/∂z where

P (x, y) = γ1 + ax + d2r1y + cx2 + dxy + x2y

Q(x, y) = γ2 + c2r2x + b′y + cxy + dy2 + xy2 ,

H(x, y) = D + cr3x + dr4y − xy ,

where ri is a rational number (i = 1, . . . , 4) and where c, d 6= 0. Furthermore γ1

and γ2 are (explicit) linear combinations over Q of the coefficients a, b′, c, and d.
Similarly, unless b′ is already determined (linearly over Q from the coefficients
a, c, d) then D must also be an explicit linear combinations over Q of the coefficients
a, b′, c, and d.

Actually, as a by-product of the proof of Theorem 2.2.8 we actually obtain an
extra—nonlinear—relation between the coefficients a, b′, c, d.

r̂ = a + b′ + 3c + 3d + 4
(a + 2c + d + 2)(b′ + c + 2d + 2) − (c2r2 + c + 1)(d2r1 + d + 1)

∈ Q .

Up to assuming that the rational number r̂ on the left side is different from (b′ +
c+2d+2)−1, we can “solve” this relation for a. In other words, unless b′ +c+2d+2
is a rational number—which of course provides directly a new relation between b′,
c, and d—we obtain in particular the following corollary:

Corollary. If the 3 coefficients b′, c and d are real, then all the coefficients of
P , Q and H , as given above, are real as well.
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We have also found some interesting results by adding the assumption that
the restriction to the exceptional divisor of the foliation associated with X leaves
a line invariant. This means that the initial quadratic vector field Z leaves some
plane through the origin invariant. Naturally we also assume that the remaining
conditions of Theorem 2.2.8 are satisfied.

To be more accurate, we consider the blow-up X of Z in suitable affine coor-
dinates under the normal form (2.13). Recalling that X = zY , we assume the
following holds:

(1) We have a′ = 0 so that the axis {y = 0} is invariant by Y . Also we require
b 6= 0 so that the axis {x = 0} is not invariant by Y .

(2) The restriction to the exceptional divisor of the foliation associated with X

has at least 5 singular points.

(3) B 6= 0.

These conditions basically mean that we are willing to consider the least favorable
case that can be encountered once the existence of an invariant line is ensured.
They serve to keep the discussion focused on the main difficulties of the problem.
Our aim is to investigate how close to a vector field having only real coefficients
the condition of an invariant line leads us.

Our work in this direction can be summarized by the following theorem:

Theorem 2.2.16. Under the generic assumptions derived from the above,
the coefficients of the vector field Y in (1) satisfy the following conditions:

1. The coefficient c is an algebraic number.

2. The coefficient d lies in a finite extension of Q(c) of degree at most 3.

3. The coefficient b is the rational function over Q of c and d indicated in
Lemma 2.2.11.

4. The coefficient a is the rational function over Q of c and d indicated in
Remark 2.2.13.
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5. All the remaining coefficients are rational functions over Q of c and d as
also indicated in Remark 2.2.13.

Recall that a semicomplete vector field on C3 has seven pairs of integral eigen-
values. We denote these seven pairs by (λi, µi) and make ξi = λiµi, we have the
following relation given by Guillot [7]

7∑
i=1

1
ξi

= 1 (1)

These particular kind of Diophantine equations are known as "Egyptian fractions".
Equation 1 has a quite big number of solutions (in the order of millions) so the
initial impulse of solving it is maybe not the best approach. Furthermore, even
with a solution at hand it would be difficult to give an explicit expression of the
actual family of vector fields having ξi = λiµi as eigenvalues, or even verify if it is
in fact semicomplete.

This problem is relevant in our context because if the coefficients of the vector
field in question are real/integral we could restrict ourselves to the real projec-
tive plane RP (2) and apply the real Poincaré-Hopf for real line fields so as to
substantially simplify equation 1.

Let Z be a generic quadratic vector field on Cn which is homogeneous and is
not a multiple of the radial vector field

E = x1∂/∂x1 + · · · + xn∂/∂xn .

Consider the blow-up π : C̃n → Cn of Cn at the origin along with the corresponding
lift X = π∗Zof the vector field Z (i.e. X is the blow-up of Z).

The first step in our work will be to construct a canonical form for the induced
vector field X on CP(n−1). This canonical form will be invariant under the action
of a specific group of symmetries.

When n = 3, our approach consists of studying the singularities not lying on the
exceptional divisor but at the hyperplane at infinity ∆ ∈ CP(2). In this setting the
dynamics of the foliation turn out to be quite simple while the singularities tend to
be degenerated. The advantage is that we can deal with degenerated singularities
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with the technique of successive blow-ups. This leads to simple expressions for the
eigenvalues directly in terms of the coefficients of X. In other words, there is a
duality regarding the singular foliation induced by X on the exceptional divisor and
the one induced on ∆: on the exceptional divisor the dynamics of the foliation tend
to be more complicated but with simple singularities while the foliation induced
on ∆ has a simple dynamic but the singularities tend to be degenerated.

In the first chapter of this thesis we give some basic definitions and results
on singular holomorphic foliations and polynomial vector fields in Cn. We also
present the fundamentals of the theory of semicomplete vector fields. Further
details concerning semicomplete vector fields can be found in [23], [5], and [12].
The simplest of these properties states that the restriction of a complete vector field
on M to every open set U ⊂ M is semicomplete on U . More generally if U ′ ⊂ U

and X is semicomplete on U , then the restriction of X to U ′ is semicomplete on
U ′. In particular, we can talk about semicomplete germs of vector fields (see [23]).

Another simple observation involving homogeneous polynomial vector fields
asserts that these vector fields are semicomplete on some neighborhood of the
origin in Cn if and only if they are semicomplete on the whole Cn.

The first section of Chapter 2 will be devoted to the construction of a normal
form of the vector field X which is given in Lemma 2.1.1. In the particular case
n = 3, Lemma 2.1.1 implies that in affine coordinates (x, y, z), the vector field X

is given by X = zY with Y = P (x, y)∂/∂x + Q(x, y)∂/∂y + zH(x, y)∂/∂z and

P (x, y) = ax + by + cx2 + dxy + Bx2y

Q(x, y) = a′x + b′y + d′xy + e′y2 + Bxy2 ,

H(x, y) = D + Ex + Fy − Bxy .

In the second section of Chapter 2 we focus on the particular case of semi-
complete vector fields on C3. We will study the eigenvalues of the singular points
of X that lie on the plane at infinity. From these eigenvalues we retrieve some
simple relations between the coefficients of X. We prove the main result of this
thesis given by Theorem 2.2.8 stated above. We also explore the case where the
quadratic vector field Z leaves some plane through the origin invariant. In other
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words the foliation associated to the blow-up X of Z leaves a line invariant. This is
also the setting of Guillot [11], albeit the methods and the aims differ slightly. Our
main results in this direction—for a generic case—partially explains the integral
“or almost integral” coefficients that he obtains in his impressive list of normal
forms.

Finally, the last section of this thesis is independent of most of the preceding
material. In this section we give a rather direct interpretation of the vector field
considered by Ohyama in [20], [21].

w′ + x′ + y′ = wx + xy + yw,

w′ + y′ + z′ = wy + yz + zw,

w′ + x′ + z′ = wx + xz + zw,

x′ + y′ + z′ = xy + yz + xz

in terms of the original Darboux-Halphen vector field associated to the system of
differential equations

x′ + y′ = 2xy,

y′ + z′ = 2yz,

x′ + z′ = 2xz

In particular, it will be shown how solutions for Ohyama vector field are explicitly
given in terms of solutions of Darboux-Halphen vector field. High dimensional
generalizations of Ohyama vector fields are also possible from the perspective of
this section.
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Preliminaries

1.1 Basics of foliations and vector fields

Definitions and the general facts about singular holomorphic foliations on complex
projective spaces provided in this paragraph are well known as the reader can check
from a variety of sources including [1], [18], [8], [15], [3], [25]. The formulations
given here are intended only to summarize this standard material and help the
reader to follow the discussion conducted in this paper.

Bar explicit mention in contrary, all holomorphic foliations considered in this
work are singular and of dimension 1. The phrase foliation by Riemann surfaces
is also used to mean a (singular) foliation of dimension 1. A general definition
adapted to our purposes is as follows.

Definition 1.1.1. Let M be a complex manifold of dimension n. A singular
holomorphic foliation F on M consists of a covering {(Ui, φi)} of M by coordinate
charts together with a collection of holomorphic vector fields Zi satisfying the
following conditions:

• For every i, Zi is a holomorphic vector field defined on φi(Ui) ⊂ Cn with
singular set of codimension at least 2.

• Whenever Ui ∩ Uj 6= ∅, we have φ∗
i Zi = gijφ

∗
jZj for some nowhere vanishing

holomorphic function gij defined on Ui ∩ Uj.

There immediately follows that the singular set of any holomorphic foliation has
codimension at least two. Thus singular points of holomorphic foliations on com-
plex surfaces are necessarily isolated. It is also well known that in the case of
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algebraic manifolds, every holomorphic foliation is naturally associated with a
global meromorphic vector field.

Now consider a homogeneous polynomial vector field Z on Cn+1, i.e. Z is given
by

P1(x1, . . . , xn+1)∂/∂x1 + · · · + Pn+1(x1, . . . , xn+1)∂/∂xn+1

where P1, . . . , Pn+1 are homogeneous polynomials of degree d. Unless otherwise
mentioned, we always assume that Z is not a multiple of the radial vector field

E = x1∂/∂x1 + · · · + xn+1∂/∂xn+1 .

Recall also that CP (n) is the space of radial lines through the origin in Cn+1.
Equivalently, it is the orbit space of the C∗-action on Cn+1 \{(0, . . . , 0)} defined by
(λ, (x1, . . . , xn+1)) 7→ (λx1, . . . , λxn+1). A point in CP (n) can then be represented
in homogeneous coordinates by [x1, . . . , xn+1] with at least one of the entries xi

different from zero (i = 1, . . . , n + 1).

Since Z is homogeneous, its direction is well defined over lines passing through
the origin. In fact, for every λ ∈ C∗ we have

Λ∗Z = λd−1Z (1.1)

where Λ(x1, . . . , xn+1) = (λx1, . . . , λxn+1). In other words, for (x1, . . . , xn+1) ∈
Cn+1 \ {(0, . . . , 0)} and λ ∈ C∗, the vectors Z(x1, . . . , xn+1) and Z(λx1, . . . , λxn+1)
are parallel. Now given a point (x1, . . . , xn+1) ∈ Cn+1 \ {(0, . . . , 0)}, the vec-
tor Z(x1, . . . , xn+1) can be projected in the tangent space of CP (n) at the point
[x1, . . . , xn+1] and the image of this projection is different from zero unless Z is
parallel to the radial vector field E at the point (x1, . . . , xn+1). Furthermore, the
direction associated with the projected vector is well defined thanks to Equa-
tion 1.1. Owing to condition (1) above, there follows that Z defines a line field
on CP (n) away from a proper analytic set A ⊂ CP (n). In turn, this line field
provides us with a singular holomorphic foliation D on CP (n) in the sense of
Definition 1.1.1: indeed the above mentioned line field extends to a regular line
field at “generic” points of possible codimension 1 components of A cf. [3]: this
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phenomenon is often referred to as the saturation of the initial line field.

The converse to the above statement also holds: every holomorphic foliation
on CP (n) in the sense of Definition 1.1.1 can be obtained out of a homogeneous
polynomial vector field on Cn+1. Furthermore, the vector field in question is unique
up to a multiplicative function and up to the addition of a multiple of the vector
field E. This allows one to define the degree of a foliation D on CP (n) as the
minimum of the degrees of the homogeneous vector fields on Cn+1 inducing D on
CP (n).

The foliation induced by a homogeneous vector field on CP (n) and the foliation
associated with this same vector field on Cn+1 can essentially be merged together
into a single foliation as follows. Consider the (one-point) blow-up π : C̃n+1 →
Cn+1 of Cn+1 at the origin and note that the exceptional divisor E = π−1(0) is natu-
rally isomorphic to CP (n). In fact, C̃n+1 is a line bundle over E = π−1(0) ' CP (n)
and natural coordinates for C̃n+1 will be described in the next section. For the
time being, note that the pull-back Z̃ of Z by π turns out to be a holomorphic vec-
tor field defined on all of C̃n+1. In addition, the vector field Z̃ vanishes identically
over the exceptional divisor E provided that d ≥ 2. Denote by F the foliation
associated to Z̃ on C̃n+1. Clearly the exceptional divisor is not contained in the
singular set of F since the latter has codimension at least 2. The exceptional di-
visor E = π−1(0), however, is left invariant by F since Z is not a multiple of the
radial vector field. Thus, we can consider the restriction FE of F to E = π−1(0).
It is easy to check that foliation FE on E = π−1(0) ' CP (n) coincides with the
foliation D induced by Z on CP (n) up to the following minor issue: the singular
set of F - viewed as foliation on C̃n+1 - may possess components of codimension 2
contained in E = π−1(0). Considered as subsets of E = π−1(0) these components
are of codimension 1 so that the restriction FE of F to E can be extended as a
regular foliation at “generic” points of the sets in question: it is again the satura-
tion phenomenon already mentioned above. The resulting extension leads to the
foliation that we referred to as being induced by Z which naturally satisfies the
conditions in Definition 1.1.1. In the sequel, in terms of notation, the foliation
induced by Z may alternatively be referred to as the foliation induced by Z̃ or by
F on E = π−1(0).
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There is also an alternate construction of foliations on CP (n) that is directly
based on polynomial vector fields defined on Cn. In this case, it is convenient
to think of CP (n) as a compactification of Cn. Using the standard affine atlas
for CP (n), the initial polynomial vector field becomes rational in the other co-
ordinates: it can, however, be made into a polynomial (holomorphic) vector field
by multiplying this rational vector field by the least common multiple of all de-
nominators. Thus, in the end, we obtain a polynomial vector field for each of the
standard affine coordinates of CP (n) and, whereas in general these vector fields do
not glue together to define a vector field on CP (n), they do satisfy the condition in
Definition 1.1.1 and hence yield a foliation F on CP (n). Here, again, the converse
of this construction holds: every foliation on CP (n) can be obtained by means of
some polynomial vector field on Cn. Note, however, that the degree of F does not
necessarily coincides with the degree of the polynomial vector fields in question;
cf. below.

Let us close this paragraph with some additional comments about the degree
of foliations on CP (n). First the preceding discussion implies that the space of
degree d holomorphic foliation on CP (n) is modeled by a quasi-projective variety
of dimension

(d + n + 1)(d + n − 1)!
d!(n − 1)!

− 1.

There is therefore a natural sense in speaking about a generic foliation of degree d

on CP (n). In this direction, it is well known that a generic foliation of degree d

has only isolated singular points, with non-zero eigenvalues, cf. for example the
discussion in [8] (the definition of eigenvalues of a foliation at a singular point can
be found in [8], [15] for example). A simple application of Bézout theorem then
implies that the number of these isolated singular points is

dn+1 − 1
d − 1

.

In particular, a generic foliation F of degree 2 on CP (2) has exactly 7 singular
points. Note also that a generic foliation has the maximum number of singular
points among all foliations with the same degree. More precisely, since the dimen-
sion of CP (2) is 2, every foliation on CP (2) has only isolated singularities and the
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number of these singular points is always bounded by (d3 − 1)/(d − 1).

A useful geometric interpretation of the degree of a foliation on CP (n) can be
obtained as follows. Fix a foliation F on CP (n) and consider a hyperplane H in
CP (n). Assume that H is generic in the sense that it is not invariant by F. Let
S ⊂ H be the tangency set between F and H, namely S is the set defined by

S = {p ∈ H ; TpF ⊆ H} ,

where TpF is the tangent space of F at p. In other words, if p is a regular point
of F then TpF is nothing but the tangent line to L at p, where L is the leaf of
F through p. In turn, TpF is reduced to the origin is p is a singular point of F.
It is immediate to check that S is a codimension 1 algebraic set of H. Since H

can naturally be identified with CP (n − 1), the tangency set S can be viewed as
a codimension 1 projective variety in CP (n − 1). The degree of F as previously
defined then agrees with the degree of S as a a codimension 1 projective variety
in CP (n − 1).
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1.2 Semicomplete vector fields

Unlike foliations, vector fields may have codimension 1 zero-sets. Also, meromor-
phic vector fields arise naturally in contexts where all underlying foliations are
holomorphic. For example, we have seen that the (singular) foliation associated
with a polynomial vector field X on Cn can holomorphically be extended to a (sin-
gular) foliation on all of CP (n). The same does not apply, however, to the vector
field X whose extension to CP (n) is, in general, meromorphic with poles on the
hyperplane at infinity.

From a local point of view, every meromorphic vector field X can be written
as X = fY where f and Y satisfy the following conditions:

• Y is a holomorphic vector field whose singular set has codimension at least 2.

• f is a meromorphic function.

Note that the function f (locally) determines both the divisors of zeros and of poles
of the vector field X. The singular foliation F defined by the local orbits of Y is
then called the foliation associated with X. Since the decomposition X = fY is
unique up to a multiplicative invertible function, all these notions are well defined.

Consider a (meromorphic) vector field X as above and let F denote its associ-
ated foliation. If L is a regular leaf of F that is not contained in the zero set of
X (neither in the pole divisor of X as well), then L is naturally equipped with an
Abelian form, denoted by dT , which is induced by the restriction of X to L. More
precisely, dT is a foliated 1-form defined by the condition that dT evaluated at
the vector field X must be constant equal to 1. This (foliated) 1-form dT will be
called the time-form induced by X (on F or on L). The information encoded in
the vector field X is actually equivalent to the data encoded in the pair constituted
by F and by the time-form dT .

Recall that a holomorphic vector field on a manifold M is called complete if
it gives rise to a C-action on M . The notion of completeness can be extended
to meromorphic vector fields by saying that a meromorphic vector field is com-
plete if its restriction to the complement of its pole divisor provides a complete
(holomorphic) vector field.
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Next, let X be a meromorphic vector field defined on some complex manifold
M . We begin by recalling the definition of semicompleteness borrowed from [23]
and from [12].

Definition 1.2.1. A holomorphic vector field X defined on a complex manifold
M is said to be semicomplete on M if for every p ∈ M there exists a connected
domain Up ⊂ C with 0 ∈ Up and a map ϕp : Up → M such that:

• ϕp(0) = p and dϕp(t)/dt|t=t0 = X(ϕp(t0)).

• For every sequence {ti} ⊂ Up such that limi→∞ ti ∈ ∂Up the sequence {ϕp(ti)}
escapes from every compact subset of M .

A meromorphic vector field X on a complex manifold M is said to be semicomplete
on M if its restriction to the open set where X is holomorphic is semicomplete in
the above mentioned sense.

Several basic properties of semicomplete vector fields can be found in [23],
[5], and [12]. The simplest of these properties states that the restriction of a
complete vector field on M to every open set U ⊂ M is semicomplete on U . More
generally if U ′ ⊂ U and X is semicomplete on U , then the restriction of X to U ′

is semicomplete on U ′. In particular, we can talk about semicomplete germs of
vector fields (see [23]).

Another simple observation involving homogeneous polynomial vector fields
asserts that these vector fields are semicomplete on some neighborhood of the
origin in Cn if and only if they are semicomplete on the whole Cn.

Let us now proceed to explain a couple of less immediate results that will be
used in the course of this paper. First, let X be a meromorphic vector field with
associated foliation F. Fix a leaf L of F, regular for X, and denote by dT the time-
form induced by X on L. Consider also an open path c : [0, 1] → L - avoiding
possible poles of dT - so that the integral

∫
c
dT

is well defined. According to [23], a simple useful necessary condition for the
vector field X to be semicomplete is that none of the above defined integrals
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can be equal to zero (and we emphasize the assumption that c is an open path).
Another property that is particularly important for us is the fact that the set of
semicomplete vector fields on a fixed domain U is closed for the compact-open
topology, see [5]. The main use of this property made in this paper is summarized
by Lemma 1.2.2 below which essentially already appears in [5].

Let Z be a vector field defined on a neighborhood of the origin in Cn and having
the form

Z = xk1
1 . . . xkn

n Y (1.2)

where Y is a holomorphic vector field and where ki ∈ Z for every i = 1, . . . , n.
Being holomorphic, the vector field Y can be expanded in Taylor series to yield
Y = ∑∞

j=d Yj, where each Yj is a homogeneous polynomial vector field of degree j,
and where d is the smallest (non-negative) integer j for which Yj is not identically
zero. The homogeneous vector field Yd will be referred to as the first non-zero
homogeneous component of the Taylor series of Y . The integer d is called the
order of Y at the origin. With this terminology, we can state:

Lemma 1.2.2. Assume that Z as in Formula (1.2) is a meromorphic semicomplete
vector field on some neighborhood of the origin. Then the (rational) vector field
xk1

1 . . . xkn
n Yd is semicomplete on all of Cn.

Proof. Set K = d−1+∑n
i=1 ki and consider λ ∈ C∗. Let Λ denote the map defined

by Λ(x1, . . . , xn) = (λx1, . . . , λxn). If U is a neighborhood of the origin where the
vector field Z is semicomplete, there follows that the pull-back Λ∗Z is defined and
semicomplete on Λ−1(U), and then on U provided that |λ| is small enough. Since
a constant multiple of a semicomplete vector field is still semicomplete, it follows
that the vector fields Zλ = λ−K Λ∗Z are semicomplete on U for every λ ∈ C∗ small.
A direct computation however shows that the vector fields Zλ have the form

Zλ = xk1
1 . . . xkn

n

Yd +
∞∑

j=d+1
λj−dYj

 .

Thus, as λ → 0, the semicomplete vector fields Zλ converge to xk1
1 . . . xkn

n Yd on
compact parts of U . From the closedness of the set of semicomplete vector fields,
we conclude that xk1

1 . . . xkn
n Yd is semicomplete on U , see [5]. Since, in addition,
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xk1
1 . . . xkn

n Yd is a homogeneous vector field, it follows that xk1
1 . . . xkn

n Yd is actually
semicomplete on all of Cn.

Lemma 1.2.2 points out at the interest of knowing when a linear vector field
multiplied by a monomial of the form xk1

1 . . . xkn
n is semicomplete. Lemma 1.2.3

below provides an accurate answer to this question.

Let then Z be a vector field having the form

Z = xk1
1 xk2

2 . . . xkn
n (x1∂/∂x1 + λ2x2∂/∂x2 + · · · + λnxn∂/∂xn) (1.3)

where k1, . . . , kn are integers and where λ2, . . . , λn are complex numbers.

Lemma 1.2.3. Assume that λ2 . . . λn 6= 0. Then a vector field Z as in (1.3) is
semicomplete if and only if one of the conditions below is fulfilled:

1. k1 + k2λ2 + · · · + knλn = 0;

2. k1 +k2λ2 + · · ·+knλn 6= 0 but λ2, . . . , λn are all rational numbers of the form
λi = ai/bi, with ai, bi ∈ Z. Moreover, the integers ai, bi, i = 2, . . . , n, must
also satisfy the equation

k1lcm (b2, . . . , bn) + k2a2
lcm (b2, . . . , bn)

b2
+ · · · + k3an

lcm (b2, . . . , bn))
bn

= ±1 ,

where lcm (b2, . . . , bn) stands for the least common multiple of b2, . . . , bn.

To prove Lemma (1.2.3), let F denote the foliation on Cn associated with the
vector field Z. Fixed a point (x0

1, . . . , x0
n) ∈ Cn, we let L0 denote the leaf of F

containing (x0
1, . . . , x0

n). We also consider the map Ψ : C → L0 defined by

Ψ(T ) = ((x0
1)eT , (x0

2)eλ2T , . . . , (x0
n)eλnT ) .

Clearly Ψ is a covering map from C to L0 so that we fix a fundamental domain
Ξ ⊆ C for this covering. The restriction of Z to L0 can be pulled-back to C
with coordinate T to yield an one-dimensional holomorphic vector field Ψ∗Z|L0

satisfying

Ψ∗Z|L0 = (x0
1)k1 . . . (x0

n)kn exp[(k1 + k2λ2 + · · · + knλn)T ]∂/∂T .
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In particular the restriction of Z to L0 is semicomplete on L0 if and only if the
above vector field Ψ∗Z|L0 is semicomplete on Ξ. Since multiplication by a constant
does not change the semicomplete character of a vector field, there follows that Z

is semicomplete if and only if for every point (x0
1, . . . , x0

n) the vector field

Y = e(k1+k2λ2+···+knλn)T ∂/∂T (1.4)

is semicomplete on Ξ.

Proof of Lemma 1.2.3. We assume in the sequel that Z is semicomplete and con-
sider the vector field Y in (1.4). Note that Y is semicomplete on all of C provided
that k1 + k2λ2 + · · · + knλn = 0 which accounts for the first case in our statement.
Hence, we assume in what follows that k1 + k2λ2 + · · · + knλn 6= 0. Note that there
are two cases to be considered according to whether or not all of λ2, . . . , λn are
rational numbers.

Consider first the case where at least one λi, say λ2, is not rational. Then the
covering map Ψ : C → L0 is actually a diffeomorphism, i.e. L0 is simply connected.
Hence Ξ = C so that the vector field Y in (1.4) is semicomplete on all of C. The
desired contradiction then follows from the claim below.

Claim. The vector field Y in (1.4), with k1 + k2λ2 + · · · + knλn 6= 0, is never
semicomplete on all of C.

Proof of the claim. Just note that the time-form dT induced on C by Y is nothing
but e−(k1+k2λ2+···+knλn)T dT and its integral over the path c : [0, 1] → C given by

c(t) = 2πit

k1 + k2λ2 + · · · + knλn

(1.5)

equals zero. The path c being clearly open (embedded) in C, the claim follows at
once.

In view of what precedes, it only remains to consider the case in which all
of λ2, . . . , λn are rational numbers. We then set λi = ai/bi for relatively prime
integers ai, bi, i = 2, . . . , n. The least common multiple of all the denominators bi

will be denoted by M = lcm (b2, . . . , bn).

With the preceding notation, it is clear that the map Ψ : C → L0 is periodic
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with period 2πıM. In other words, the fundamental domain Ξ is characterized by

Ξ = {T ∈ C ; 0 ≤ =(T ) < 2πM} ,

where =(T ) stands for the imaginary part of T ∈ C.

Next consider again the path c : [0, 1] → C defined in (1.5). The integral of
the time-form dT over c is still zero since we still have k1 + k2λ2 + · · · + knλn 6= 0.
Therefore the path c cannot be contained in Ξ. However c(t) can alternatively be
written as

c(t) = 2πiMt

k1M + k2a2M/b2 + · · · + knanM/bn

,

with the advantage that the denominator in the above fraction is clearly an integer
relatively prime with M. The condition for c not to be contained in Ξ is therefore
to have |k1M + k2a2M/b2 + · · · + knanM/bn| ≤ 1. Since this denominator does not
vanish by assumption, there follows that it has to be either 1 or −1 provided that
Y (or equivalently Z) is semicomplete. This accounts for the second possibility
mentioned in the statement.

Conversely, when |k1M+k2a2M/b2 + · · ·+knanM/bn| ≤ 1 the path c is mapped
by Ψ into a loop in the leaf L0 and the restriction of Y to Ξ becomes semicomplete.
The proof of the lemma is finished.
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Normal Forms

2.1 Parameterizing quadratic foliations on Cn

In this section we will discuss quadratic vector fields on Cn and some simple cor-
responding normal forms for their blow-ups. Let us begin by making accurate the
conditions that are assumed to hold throughout this section. Consider a quadratic
vector field Z on Cn which is not a multiple of the radial vector field

E = x1∂/∂x1 + · · · + xn∂/∂xn .

The singular holomorphic foliation on Cn associated with Z will be denoted by FZ.
Since Z is homogeneous, it also induces a foliation D on CP(n − 1). Throughout
this work, D is assumed to satisfy the following condition:

Condition I: the foliation D of CP(n − 1) has degree exactly 2.

An immediate consequence of Condition I is that the (polynomial) components
of Z have only constant common factors. To further clarify our setting, consider
the blow-up C̃n of Cn centered at the origin and let π : C̃n → Cn stand for the cor-
responding projection. Recall that C̃n is naturally identified with the tautological
line bundle over CP (n − 1). A standard set of coordinates defining a projective
atlas for C̃n consists of n coordinate open sets U (j), j = 1, . . . , n, each of them
isomorphic to Cn with coordinates (u(j)

1 , . . . , u
(j)
n−j, û

(j)
n−j+1, u

(j)
n−j+2, . . . , u(j)

n ). The
exceptional divisor - given by the pre-image of the origin by π and denoted by
π−1(0) - intersects the open set U (j) in the hyperplane {û

(j)
n−j+1 = 0}. Furthermore
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the restriction of π to U (j) becomes

π(u(j)
1 , . . . , û

(j)
n−j+1, . . . , u(j)

n ) = û
(j)
n−j+1(u

(j)
1 , . . . , u

(j)
n−j, 1, u

(j)
n−j+2, . . . , u(j)

n ) . (2.1)

From Formula (2.1), it is easy to work out all the identifications among the coor-
dinate sets U (j). For example, we have

û
(j)
n−j+1 = u

(1)
j−n+1û

(1)
n

u(j)
n = 1/u

(1)
n−j+1 (2.2)

u
(j)
i = u

(1)
i /u

(1)
j−n+1

for i 6= n − j + 1 and i 6= n.

Going back to the quadratic vector field Z, let (x1, . . . , xn) denote the coordi-
nates of Cn. Next set

Z = P1∂/∂x1 + · · · + Pn∂/∂xn (2.3)

where P1, . . . , Pn are homogeneous polynomials of degree 2 in (x1, . . . , xn). Con-
sider the blow-up π : C̃n → Cn of Cn at the origin along with the corresponding lift
X = π∗Z of the vector field Z (i.e. X is the blow-up of Z). We also let F = π∗FZ,
where FZ stands for the foliation on Cn associated with Z. Clearly F coincides
with the foliation associated to X.

To avoid the use of subscripts/superscripts and abridge notation, in the sequel
we set (u(1)

1 , . . . , u
(1)
n−1, û(1)

n ) = (u1, . . . , un−1, w). In the coordinates (u1, . . . , un−1, w),
the vector field X takes on the form

X = w

[
(P1 − u1Pn) ∂

∂u1
+ · · · + (Pn−1 − un−1Pn) ∂

∂un−1
+ wPn

∂

∂w

]
(2.4)

where all the polynomials P1, . . . , Pn are evaluated at the point (u1, . . . , un−1, 1).

Setting Yui
= Pi − uiPn for i = 1, . . . , n − 1 and Yw = wPn, the foliation F

associated with X is also given by the local orbits of the vector field Y = (1/w)X.
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Clearly we have

Y = Yu1

∂

∂u1
+ · · · + Yun−1

∂

∂un−1
+ Yw

∂

∂w
. (2.5)

In particular the exceptional divisor E = π−1(0) is left invariant by F since, by
assumption, the initial vector field Z is not a multiple of the Radial vector field
E. In fact, the restriction F|E of F to E = π−1(0) ' CP(n − 1) is identified
with the foliation induced on CP(n − 1) by the homogeneous vector field Z. Since
E ' π−1(0) is locally given by {w = 0}, F|E is determined by the vector field

Y |{w=0} = Yu1

∂

∂u1
+ · · · + Yun−1

∂

∂un−1
. (2.6)

At this point, the condition that F|E = D must be a degree 2 foliation of CP(n−1)
can explicitly be reformulated as the following pair of conditions:

1. At least one among the polynomials Yu1 , . . . , Yun−1 has degree 2 or 3;

2. In the ring of polynomials, the greatest common divisor of Yu1 , . . . , Yun−1 is
a constant.

Note that item 2. above ensures that the singular set of F|E in the domain of the
affine coordinates (u1, . . . , un−1) has codimension at least 2 inside E ' π−1(0).
Hence the foliation F|E is automatically saturated. In other words, FE actually
coincides with D and in the sequel we will refer to this foliation by FE, thus
dropping the notation D. An immediate by-product of the previous observation is
that the singular points of FE are in one-to-one correspondence with radial lines
in Cn that are invariant under Z.

Recall that in the coordinates (u1, . . . , un−1, w), the exceptional divisor coin-
cides with the hyperplane {w = 0}. Furthermore we can assume without loss of
generality that the xn-axis of Cn is invariant by Z since there always exists at
least one singular point for FE. In other words, we can assume that origin of the
coordinates (u1, . . . , un−1) is a singular point of FE. With this assumption, the
vector field Y of Formula (2.5) is characterized by the following explicit form:
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• For i ∈ {1, . . . , n − 1}, the component Yui
= Yui

(u1, . . . , un−1) has the form

Yui
= Ri(u1, . . . , un−1) + uiQ(u1, . . . , un−1)

where:

(a) Ri is a degree 2 polynomial on the variables u1, . . . , un−1 with constant
term equal to zero;

(b) Q is a homogeneous polynomial of degree 2 which does not depend on
the index i.

• The component Yw of the vector field Y is given by

Yw = w[D + E1u1 + · · · + En−1un−1 − Q(u1, . . . , un−1)] ,

where all the coefficients D, E1, . . . , En−1 belong to C.

The remainder of this section is devoted to obtaining a simple normal form for
the vector field Y which holds under a very mild assumption.

In order to abridge notation, let (e1, . . . , en−1) stand for the canonical basis of
Cn−1. The polynomials Ri and Q can then be written as follows.

Ri = ai
e1u1 + · · · + ai

en−1un−1 + ai
e1+e1u1u1 + ai

e1+e2u1u2 + · · · + ai
en−1+en−1un−1un−1

=
n−1∑
j=1

ai
ej

uj +
n−1∑
j=1

n−1∑
k≥j

ai
ej+ek

ujuk , (2.7)

for i = 1, . . . , n − 1. Moreover we have

Q = βe1+e1u1u1+βe1+e2u1u2+· · ·+βen−1+en−1un−1un−1 =
n−1∑
j=1

n−1∑
k≥j

βej+ek
ujuk . (2.8)

Finally, if we let D = β0 and Ei = βei
(for i = 1, . . . , n − 1), the different compo-
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nents of Y become

Yui
=

n−1∑
j=1

ai
ej

uj +
n−1∑
j=1

n−1∑
k≥j

ai
ej+ek

ujuk

+ ui

n−1∑
j=1

n−1∑
k≥j

βej+ek
ujuk

 .

Yw = w

β0 +
n−1∑
j=1

βei
ui −

n−1∑
j=1

n−1∑
k≥j

βej+ek
ujuk

 . (2.9)

From now on the following condition is assumed to hold:

Condition II: the foliation FE possesses (at least) n singular points not sitting
in a same projective hyperplane of CP (n − 1).

The main result of this section is then the following simple lemma.

Lemma 2.1.1. Assume that Condition II is satisfied. Then the initial coordinates
(x1, . . . , xn) of Cn can be chosen so that the components Ri, i = 1, . . . , n − 1, and
Q of the resulting vector field Y (determined by Formulas (2.7), (2.8), and (2.9)
satisfy the following relations:

a) ai
2ej

= 0 whenever j 6= i;

b) β2ej
= 0 for all j = 1, . . . , n − 1.

Proof. We assume that Condition II is satisfied and consider n singular points of
FE not lying in a hyperplane of CP (n − 1). To each of these points, we naturally
associate a radial line in Cn passing through the origin. The (initial) coordinates
(x1, . . . , xn) can be chosen so that these lines coincide with the coordinate axes,
which means that the quadratic vector field Z leave each one of the coordinate axes
invariant. Since the xn-axis is invariant, it is clear that Y has the form indicated in
Formula (2.9). It remains to show that in these coordinates, we also have ai

2ej
= 0

whenever j 6= i and β2ej
= 0 for all j = 1, . . . , n − 1.

For this, recall first that Z = P1∂/∂x1 + · · · + Pn∂/∂xn. Since the x1 axis is
invariant by the foliation induced by Z, there follows that Pi(x1, 0, . . . , 0) = 0 for
all i = 2, . . . , n − 1. In turn, the vanishing of Pi(x1, 0, . . . , 0) amounts to saying
that the coefficient of x2

1 in the expression of Pi equals zero (for every i = 2, . . . , n).
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More precisely, if we set

Pi(x1, . . . , xn) =
n∑

j=1

n∑
k≥j

pi
bj+bk

xjxk ,

where (b1, . . . , bn) stands for the canonical basis of Cn, we conclude that pi
2b1 = 0 for

all i = 2, . . . , n. Now, recalling that Yui
(u1, . . . , un−1) is given by Pi(u1, . . . , un−1, 1)−

uiPn(u1, . . . , un−1, 1) and that Yw = wPn(u1, . . . , un−1, 1), it is immediate to check
that pi

2b1 is the coefficient of u2
1 at Yui

, for i = 1, . . . , n − 1, while pn
2e1 is the

coefficient of u2
1 at Q. Therefore

β2e1 = 0 and ai
2e1 = 0, ∀ i = 2, . . . , n − 1 .

The lemma now follows from repeating the above argument for the remaining
xj-axes, j = 2, . . . , n − 1.

Remark 2.1.2. Note that the choice of coordinates (x1, . . . , xn) for Cn leading
to the normal form indicated above is not unique: in fact, recalling that a generic
quadratic foliation in Cn has 2n−1 − 1 singular points on CP (n − 1), the men-
tioned normal form has a finite group of symmetries arising from the choice of the
n − 1 “non-aligned” singular points. Furthermore, once coordinates (x1, . . . , xn)
satisfying the desired conditions are fixed, every change of coordinates preserving
the axes, i.e. having the form (x1, . . . , xn) 7→ (λ1x1, . . . , λnxn), will also satisfy the
required conditions.

A simple way to rephrase Lemma 2.1.1 consists of saying that the vector field
Y of Formulas (2.5) and (2.9) is such that the term u2

i appears only at Yui
, for

i = 1, . . . , n−1 and that the polynomial Q in Equation (2.8) only contains products
of variables with different indices.

Remark 2.1.3. For reference, in the particular case n = 3, Lemma 2.1.1 implies
that the vector field Y of Formulas (2.5) and (2.9) is given by

Yu1 = a1
(1,0)u1 + a1

(0,1)u2 + a1
(2,0)u

2
1 + a1

(1,1)u1u2 + β(1,1)u
2
1u2 ;

Yu2 = a2
(1,0)u1 + a2

(0,1)u2 + a2
(1,1)u1u2 + a(0,2)u

2
2 + β(1,1)u1u

2
2 ; (2.10)

Yw = w(β(0,0) + β(1,0)u1 + β(0,1)u2 − β(1,1)u1u2) .
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provided that FE admits three non-aligned singular points in CP(2).

For reference, we also explicitly state the case n = 4 where the previous normal
form is reduced to

Yu1 = a1
(1,0,0)u1 + a1

(0,1,0)u2 + a1
(0,0,1)u3 + a1

(2,0,0)u
2
1 + a1

(1,1,0)u1u2 + a1
(1,0,1)u1u3 +

+a1
(0,1,1)u2u3 + u1(β(1,1,0)u1u2 + β(1,0,1)u1u3 + β(0,1,1)u2u3) ;

Yu2 = a2
(1,0,0)u1 + a2

(0,1,0)u2 + a2
(0,0,1)u3 + a2

(0,2,0)u
2
2 + a2

(1,1,0)u1u2 + a2
(1,0,1)u1u3 +

+a2
(0,1,1)u2u3 + u2(β(1,1,0)u1u2 + β(1,0,1)u1u3 + β(0,1,1)u2u3) ; (2.11)

Yu3 = a3
(1,0,0)u1 + a3

(0,1,0)u2 + a3
(0,0,1)u3 + a3

(0,0,2)u
2
3 + a3

(1,1,0)u1u2 + a3
(1,0,1)u1u3 +

+a3
(0,1,1)u2u3 + u3(β(1,1,0)u1u2 + β(1,0,1)u1u3 + β(0,1,1)u2u3) ;

Yw = w[β(0,0,0) + β(1,0,0)u1 + β(0,1,0)u2 + β(0,0,1)u2 − β(1,1,0)u1u2 − β(1,0,1)u1u3 +

+β(0,1,1)u2u3] .

Let us close this section with some additional simple remarks on the normal
form provided by Lemma 2.1.1. The observations in question are related to the
existence non-uniqueness of linear coordinates leading to the mentioned normal
form, an issue already pointed out in Remark 2.1.2.

First, it is convenient to make clear how a linear change of coordinates T in the
variables (x1, . . . , xn) of Cn impacts the form of the vector field/foliation in the
(affine) variables (u1, . . . , un−1, w). For this, let T stand for the linear isomorphism
of Cn represented by the matrix {αi

j}, where αi
j ∈ C, for i, j = 1, . . . , n. More

precisely, in the the initial coordinates (x1, . . . , xn), we have

T (x1, . . . , xn) = (α1
1x1 + · · · + α1

nxn, α2
1x1 + · · · + α2

nxn, . . . , αn
1 x1 + · · · + αn

nxn) .

Naturally T can be lifted to an automorphism T̃ of C̃n. It is immediate to check
that in the above mentioned coordinates (u1, . . . , un−1, w), the lifted automorphism
T̃ becomes

T̃ =
(∑n−1

i=1 α1
i ui + α1

n∑n−1
i=1 αn

i ui + αn
n

, . . . ,

∑n−1
i=1 αn−1

i ui + αn−1
n∑n−1

i=1 αn
i ui + αn

n

,

(
n−1∑
i=1

αn
i ui + αn

n

)
w

)
. (2.12)

The preceding formulas will be useful in the discussion below. Going back to the
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normal form provided by Lemma 2.1.1, its invariance properties are summarized
by Lemma 2.1.4 below:

Lemma 2.1.4. Assume that the vector field Y has the form indicated in Lemma 2.1.1
with respect to the affine coordinates (u1, . . . , un−1, w). Then the following holds:

(1) up to dropping the condition that 0 ∈ Cn−1 is a singular point of FE, the
normal form is invariant by translations in the (u1, . . . , un−1)-coordinates,
i.e. by transformations T̃ taking on the form T̃ (u1, . . . , un−1, w) = (u1 +
c1, . . . , un−1 + cn−1, w), with c1, . . . , cn−1 in C;

(2) the normal form is also invariant under re-scalings of the coordinates (u1, . . . , un−1),
i.e. it is invariant under transformations T̃ taking on the form T̃ (u1, . . . , un−1, w) =
(λ1u1, . . . , λn−1un−1, w), with λ1, . . . , λn−1 in C∗;

(3) the normal form is well defined with respect to the standard atlas of C̃n in
the sense that Y has the normal form presented in Lemma 2.1.1 with respect
to the (u1, . . . , un−1, w)-coordinates if and only if it has the same form with
respect to all the other affine coordinates in the standard atlas of C̃n.

Proof. The verification of all assertions is rather straightforward. Condition (3)
can be traced back to Lemma 2.1.1 since this lemma shows that the normal form in
question is equivalent to the invariance of all the coordinate axes under Z. Clearly
the same argument applies also to the other standard affine coordinates of C̃n.

Condition (2) can also be reduced to Lemma 2.1.1 since the linear change of co-
ordinates T in the initial coordinates (x1, . . . , xn) giving rise to T̃ (u1, . . . , un−1, w) =
(λ1u1, . . . , λn−1un−1, w) has diagonal form (cf. Remark 2.1.2 and Formula (2.12)).
Finally, Condition (1) can also be checked by direct inspection or, alternatively,
we may realize that the corresponding linear map T = {αi

j} equals the identity
matrix plus a matrix whose non-zero entries must be in the positions (i, n) for
i = 1, . . . , n−1 (i.e. the elements of the last column up to the element in the diag-
onal position): the matrix T leaves thus invariant the axes x1, . . . , xn−1, albeit not
the xn-axis. The proof of Lemma 2.1.1 then allows us to conclude the statement
of Condition (1).

The proof of Lemma 2.1.4 also yields the following corollary:
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Corollary 2.1.5. With the notation of Lemma 2.1.4, assume that Y takes on
the normal form provided by Lemma 2.1.1 in the (u1, . . . , un−1, w)-coordinates.
Assume also that (u0

1, . . . , u0
n−1, 0) is a singular point of FE in the mentioned affine

coordinates. Then the normal form in question is invariant under the translation
(u1, . . . , un−1, w) = (u1 + u0

1, . . . , un−1 + u0
n−1, w).

We finish this section with a statement that will also be useful later on.

Lemma 2.1.6. Consider again the vector field Y in the normal form given by
Lemma 2.1.1. Then β0 = 0 if and only if the xn-axis is entirely constituted by
singular points of the vector field Z in Cn. Similarly, ai

2ei
= −βei

if and only if the
xi-axis is entirely constituted by singular points of Z, for i = 1, . . . , n − 1.

Proof. The restriction of the vector field X = wY to the w-axis can naturally be
identified to the restriction of Z to the xn-axis. It is then clear that β0 = 0 if and
only if Z is singular all along the xn-axis.

To show that ai
2ei

= −βei
if and only if Z is singular all along the xi-axis, we

should consider the polynomials Pi appearing as components of Z, i = 1, . . . , n.
Fix then i ∈ {1, . . . , n − 1}. Note that the restriction of Pj to the xi-axis vanishes
identically for every j 6= i since the axis xi is invariant by Z. More generally,
the restriction of Z to the xi-axis is given by pi

(2ei,0)x
2
i ∂/∂xi. Hence the xi-axis is

contained in the singular set of Z if and only if pi
(2ei,0) = 0.

To conclude the proof of the lemma, first note that the coefficient βei
is nothing

but the coefficient of the monomial xixn in Pn, for i = 1, . . . , n − 1. Similarly, the
coefficient ai

2ei
is obtained as the difference between the monomial x2

i of Pi and the
monomial xixn in Pn. In other words, we have

ai
2ei

= pi
2bi

− pn
bi

= pi
2bi

− βei
.

Thus pi
(2ei,0) = 0 if and only if ai

2ei
= −βei

and this establishes the lemma.
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2.2 Blow-ups and normal forms in dimension 3

In this section we consider the case n = 3. Our purpose is to refine the parametriza-
tion of quadratic vector fields discussed in the previous section while, also, inves-
tigating the possible existence of local obstruction to semicompleteness sitting in
the divisor of poles. As far as the former is concerned, we will obtain an essentially
canonical normal form that is well adapted to our purposes. Unfortunately, our
discussion will also show that no additional local obstruction to the semicomplete-
ness of our vector fields can be obtained at infinity.

Set then n = 3 and recall that X stands for vector field on C̃3 which is obtained
as the blow-up of the quadratic vector field Z on C3 which, in turn, is not a multiple
of the radial vector field E.

Finally we still want to keep Condition I and Condition II of Section 2.1.
Condition II, however, will be made slightly stronger. First recall that the blow-
up C̃3 of C3 at the origin can naturally be viewed a a line bundle over CP (2). Now
we state:

Condition III: the foliation FE possesses (at least) 3 singular points not sitting
in a same projective line of CP (2). Furthermore, none of the fibers of the line
bundle C̃3 → CP (2) sitting over one of these singular points is fully constituted
by singular points of X.

Unless we explicitly say otherwise, Conditions I, II, and III are assumed to hold
throughout the section.

The starting point of the discussion is the representation of X in standard
affine coordinates for C̃3. Since n = 3, we may abridge the notation used in the
previous section and eliminate most superscripts. With this in mind, standard
affine coordinates for C̃3 will be denoted by (u1, v1, w1) where the exceptional
divisor is locally given by {w1 = 0}. The remaining two standard coordinates will
be denoted by (u2, v2, w3) and (u3, v3, w3), see below.

The starting point of this section is the representation of the vector field X

in standard affine coordinates for C̃3. More precisely X is given in (u1, v1, w1)-
coordinates by X = w1Y where Y is the holomorphic vector field corresponding to
Formula (2.5) and whose components Y(u), Y(v), and Y(w) are given by Formula (2.9)
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(recall that n = 3). In particular the set of zeros of Y has codimension at least 2
and hence the local orbits of Y define the foliation F associated with X (and with
Y ).

We consider then the vector field X as a vector field on C3 equipped with coor-
dinates (u1, v1, w1). Since the semicomplete character of vector fields is invariant
by blow-ups, the initial quadratic vector field Z is semicomplete if and only if X

is semicomplete on C3. In fact, most of the discussion of this section will be con-
ducted on C3 thus, to further simplify notation, the coordinates (u1, v1, w1) will
be denoted by the more familiar letters (x, y, z). Similarly the components of the
resulting vector field Y will be denoted by P , Q, and H.

To summarize the preceding, it suffices to keep in mind that for most of this
section the vector field X is considered as a holomorphic vector field defined on
C3 with coordinates (x, y, z). Furthermore, X has the form X = zY with Y =
P (x, y)∂/∂x + Q(x, y)∂/∂y + zH(x, y)∂/∂z and

P (x, y) = ax + by + cx2 + dxy + Bx2y

Q(x, y) = a′x + b′y + d′xy + e′y2 + Bxy2 ,

H(x, y) = D + Ex + Fy − Bxy . (2.13)

Consider now X defined on C3 as in (2.13). The plane {z = 0} is invariant by
both X and Y which is of course reminiscent from the invariance of the exceptional
divisor in C̃3. Restricting Y to {z = 0} we re-obtain the restriction to the foliation
F associated with X on C̃3 to the exceptional divisor. A non-trivial observation,
however, consists of noting that the higher degree homogeneous component of the
polynomial vector field Y is the vector field Y (3) given by

Y (3) = Bxy

[
x

∂

∂x
+ y

∂

∂y
− z

∂

∂z

]
.

Since Y (3) is not a multiple of the radial vector field, the foliation F extends to a
holomorphic foliation on CP (3) = C3 ∪ ∆ which must leave the plane at infinity
∆ invariant. Moreover, the restriction of F to ∆ is naturally identified with the
foliation induced on CP (2) by the homogeneous vector field Y (3). This foliation
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is therefore of degree 1 with projective lines as leaves and its global dynamics is
basically evident. On the other hand, the singular points of F lying in ∆ tend to
be more degenerate. The idea of resolving these singularities in the hope of finding
further obstructions to the semicomplete character of X is therefore a natural one.

Consider then X and Y as in (2.13). As a polynomial vector field on C3, X

(resp. Y ) admits a meromorphic extension to CP (3) viewed as a compactification
of C3. Moreover, as already pointed out, the foliation F associated with X (and
with Y ) can be viewed as a (singular) holomorphic foliation on all of CP (3).
Finally the plane at infinity ∆ = CP(3) \ C3 is left invariant by F.

Recall that the standard atlas for CP (3) consists of 4 copies of C3 whose co-
ordinates will be denoted by (xi, yi, zi), i = 0, 1, 2, 3 along with suitable iden-
tifications. Again to abridge notation, we set (x0, y0, z0) = (x, y, z), i.e. the
first copy of C3 is identified with the previously discussed C3. In the sequel,
we will mostly consider the copy of C3 which is equipped with (x1, y1, z1) such
that (1/x1, y1/x1, z1/x1) = (x, y, z). In (x1, y1, z1)-coordinates the vector field X

takes on the form X = X1 = x−3
1 z1Y1 where the vector field Y1 is given by

Y1 = P1(x1, y1)∂/∂x1 + Q1(x1, y1)∂/∂y1 + z1H1(x1, y1)∂/∂z1

with

P1(x1, y1) = −x1[bx2
1y1 + ax2

1 + dx1y1 + cx1 + By1] ,

Q1(x1, y1) = x1[−bx1y
2
1 + (b′ − a)x1y1 + (e′ − d)y2

1 + a′x1 + (d′ − c)y1] ,

H1(x1, y1) = −bx2
1y1 + (D − a)x2

1 + (F − d)x1y1 + (E − c)x1 − 2By1 .

Note that the hyperplane at infinity ∆ is given in coordinates (x1, y1, z1) by
∆ = {x1 = 0}. Furthermore, the singular points of Y1 contained in ∆ are given
by 2Bz1y1 = 0. This means that the y1-axis and the z1-axis both consist entirely
of singular points of Y1 or, equivalently, of the foliation F associated with X in
coordinates (x1, y1, z1). Furthermore, a (generic) point in the y1-axis having the
form (x1, y1, z1) = (0, α, 0), is a simple singularity of F in the sense that F possesses
at least one eigenvalue different from zero at this point. In addition, for all α 6= 0,
the eigenvalues of F at (x1, y1, z1) = (0, α, 0) are respectively 1, 0, and 2 (recall
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that these eigenvalues are defined only up to a multiplicative constant).

Remark 2.2.1. Consider again a singular point p of the form p = (0, α, 0) where
F has eigenvalues 1, 0, and 2. It is easy to check that F possesses a (smooth)
separatrix Sα at p which is tangent to the axis x1 and contained in the plane
{z1 = 0}. Whereas the vector field X = X1 = x−3

1 z1Y1 vanishes identically on the
plane {z1 = 0}, and hence on Sα, the affine structure induced by X on Sα, in the
sense of [12], can be considered. A simple calculation shows that the order of the
affine structure at p ∈ Sα is zero so that the affine structure is actually regular
at p. Owing to a central result on the holonomy-monodromy map considered in [12]
(Fundamental Lemma in Section 3 of [12]), there follows that the local holonomy
map associated with Sα must coincide with the identity. At this point it might
be natural to wonder if the condition of having this holonomy map equal to the
identity does not provide constraints on the coefficients of the vector field Y1 and,
hence Y as given by Formula (2.13). Unfortunately this does not happen: the
reader will check that for every vector field Y as in (2.13) and every separatrix Sα

as above, the resulting (local) holonomy map can effectively be computed and it
turns out to coincide with the identity.

Contrasting with the case of the y1-axis, all singularities of F lying in the z1-
axis are degenerate in the sense that all eigenvalues of F are equal to zero at these
points. To better understand the structure of these degenerate singular points,
we shall apply the technique of blowing-ups designed to simplify the singularities.
This said, let us consider the cylindrical blow-up along the z1-axis (also referred
to as the blow-up centered at z1-axis). The space associated with this blow-up
consists of two copies of C3 with respective coordinates (x1, τ1, z1) and (θ1, y1, z1)
with the identification (x1, τ1, z1) ' (θ1, y1, z1) if and only if τ1 = 1/θ1 and y1 =
τ1x1. In coordinates (x1, τ1, z1), the blow-up map πτ becomes πτ : (x1, τ1, z1) 7→
(x1, τ1x1, z1). The blow-up (transform) of the vector field X = X1 has the form
X̃1 = x−3

1 z1Ỹ
∗

1 with

Ỹ ∗
1 = P̃ ∗

1 (x1, τ1)∂/∂x1 + Q̃∗
1(x1, τ1)∂/∂τ1 − z1H̃

∗
1 (x1, τ1)∂/∂z1 (2.14)
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where

P̃ ∗
1 (x1, τ1) = −x1(bx3

1τ1 + dx2
1τ1 + ax2

1 + Bx1τ1 + cx1) ,

Q̃∗
1(x1, τ1) = e′x2

1τ
2
1 + b′x2

1τ1 + Bx1τ
2
1 + d′x1τ1 + a′x1 ,

H̃∗
1 (x1, τ1) = −(bx3

1τ1 + (d − F )x2
1τ1 + (a − D)x2

1 + 2Bx1τ1 + (c − E)x1) .

The above formulas show that, in the present case, the vector field Ỹ ∗
1 is again

divisible by x1. Thus the vector field X̃1 becomes X̃1 = x−2
1 z1Ỹ1 with

Ỹ1 = P̃1(x1, τ1)∂/∂x1 + Q̃1(x1, τ1)∂/∂τ1 − z1H̃1(x1, τ1)∂/∂z1 (2.15)

where:

P̃1 = −x1(bx2
1τ1 + dx1τ1 + ax1 + Bτ1 + c) ,

Q̃1 = e′x1τ
2
1 + b′x1τ1 + Bτ 2

1 + d′τ1 + a′ ,

H̃1 = −(bx2
1τ1 + (d − F )x1τ1 + (a − D)x1 + 2Bτ1 + (c − E)) .

In particular, the singular points of F̃ (or equivalently of Ỹ1) on {x1 = z1 = 0}
are determined by the equation

Bτ 2
1 + d′τ1 + a′ . (2.16)

As a complement, we may also check on the structure of the vector field X̃1 in the
coordinates (θ1, y1, z1) for the blow-up centered at the axis z1 where the blow-up
map πθ is given by πθ(θ1, y1, z1) = (θ1y1, y1, z1). The vector field X̃1 then becomes
X̃1 = z1θ

−3
1 y−2

1 Ỹ1 with

Ỹ1 = P̃1(θ1, y1)∂/∂θ1 + Q̃1(θ1, y1)∂/∂y1 − z1H̃1(θ1, y1)∂/∂z1 (2.17)
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where:

P̃1(θ1, y1) = −θ1(b′θ2
1 + a′θ2

1 + e′y1θ1 + d′θ1 + Cy1 + B) ,

Q̃1(θ1, y1) = θ1y1(by2
1θ1 + (a − b′)y1θ1 + ey2

1 − a′θ1 + (d − e′)y1 + (c − d′)) ,

H̃1(θ1, y1) = −(by2
1θ2

1 + (a − D)y1θ
2
1 + ey2

1θ1 + (d − F )y1θ1

+(c − E)θ1 + 2B) . (2.18)

Again we note that the origin (0, 0, 0) of the coordinates (θ1, y1, z1) is a singular
point of Ỹ1 with eigenvalues respectively given by 1, 0, and 2. This is naturally
reminiscent from the discussion in Remark 2.2.1 and does not yield additional
information on the coefficients of X.

We are now in position to establish the main results of this section.

Proposition 2.2.2. Let X and Y be as in (2.13) (Conditions I, II, and III being
verified). and X̃1 = x−2

1 z1Ỹ1 with Ỹ1 as in (2.15). Then the singular points of X̃1

on the τ1-axis are the solutions of the equation Bτ 2
1 + d′τ1 + a′ = 0. Furthermore,

we have:

• If the discriminant d′2 − 4a′B = 0 then there is only one singular point and
the expression 2(−d′ + c − E)/(−d′ + 2c) is an integer.

• If the discriminant d′2 −4a′B 6= 0 then there are two different singular points
and the numbers

ı)
2(c − E − d′ + (−1)j

√
d′2 − 4a′B)

2c − d′ + (−1)j

√
d′2 − 4a′B

and

ıı)
−2
√

d′2 − 4a′B

2c − d′ + (−1)j

√
d′2 − 4a′B

are rationals with the respective forms mj/qj, nj/pj (j = 1, 2).

Finally, the integers nj, mj, pj, qj must also satisfy the equation

− 2 lcm(pj, qj) + mj
lcm (pi, qj)

qj

= ±1, (2.19)
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for j = 1, 2 and where lcm(p, q) stands for the least common multiple of p, q.

Proof. Consider the vector field X̃1 = x−2
1 z1Ỹ1, with Ỹ1 as in (2.15), and recall

that the singular points of Ỹ1 sitting in the axis {x1 = z1 = 0} are given by the
solutions of Bτ 2 + d′τ + a′ = 0, see Equation (2.16).

Let α be such that Bα2 +d′α+a′ = 0. We want to consider the linear part of Ỹ1

at (0, α, 0) or, equivalently, the linear part of the origin of the vector field obtained
as pull-back of Ỹ1 by the (linear) change of coordinates (x1, τ1, z1) 7→ (x1, t+α, z1).
In any case, the linear vector field in question is given by

W = −x1(Bα+c) ∂

∂x1
+[x1(e′α2+b′α+Cα3)+t(d′+2Bα)] ∂

∂t
−z1(2Bα+c−E) ∂

∂z1
.

(2.20)
On the other hand, the function x−2

1 z1 (of X̃1 = x−2
1 z1Ỹ1) remains unchanged

by the indicated change of coordinates. Since, moreover, X̃1 is semicomplete,
Lemma 1.2.2 ensures that the vector field x−2

1 z1W is semicomplete as well.

Now there follows immediately that the eigenvalues of W are λ1 = 1, λ2 =
−(d′ + 2Bα)/(Bα + c), and λ3 = (2Bα + c − E)/(Bα + c). Furthermore, even
though the linear vector field in (2.20) is not in diagonal form, we can still apply
Lemma 1.2.3 since the multiplicative function has no factor of the form τn2

1 (i.e.
n2 = 0).

In view of Lemma 1.2.3, there are two different cases to be considered according
to whether or not n1 + n2λ2 + n3λ3 = 0. Here, however, note that the condition
n1 + n2λ2 + n3λ3 = 0 is equivalent to c + E = 0. In turn, c + E is exactly the
coefficient of x2 in P1(x, y, z) of the quadratic vector field Z of (2.3), where n = 3,
cf. Lemma 2.1.6. This shows that this case cannot occur in view of Condition III.
In other words, we necessarily have n1 + n2λ2 + n3λ3 6= 0.

Next assume first that the equation Bα2 +d′α+a′ = 0 has a double root. Then
d′2 − 4a′B = 0 and d′ + 2Bα = 0 so that λ2 = 0. Indeed, substituting −d′/2B for
α, we conclude that λ3 = 2(−d′ + c − E)/(−d′ + 2c) which, in addition, must be
an integer thanks to Lemma 1.2.3 along with the condition n1 + n2λ2 + n3λ3 6= 0.

Assume now that the equation Bα2 + d′α + a′ = 0 has two distinct roots given
by (−d+

√
∆)/2B and by (−d−

√
∆)/2B, where ∆ = d′2 −4a′B = 0. Substituting
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(−d′ +
√

∆)/2B for α, the eigenvalues of W become λ1 = 1,

λ2 = − 2
√

∆
−d′ + 2c +

√
∆

and λ3 = 2(−d′ + c − E +
√

∆)
−d′ + 2c +

√
∆

.

Owing to Lemma 1.2.3, both λ2 and λ3 are rational. Furthermore, setting λ2 = n/p

and λ3 = m/q, Lemma 1.2.3 yields equation (2.19) since n1 + n2λ2 + n3λ3 6= 0.
This proves the second part of the statement for j = 2. To derive the claims
corresponding to the case j = 1, just repeat the same arguments with the root
α = (−d −

√
∆)/2B. The proof of the proposition is complete.

Next note that the above discussion involving the vector field X = X1 =
x−3

1 z1Y1 defined on coordinates (x1, y1, z1) satisfying (1/x1, y1/x1, z1/x1) = (x, y, z)
can be reproduced in coordinates (x2, y2, z2) where (x2/y2, 1/y2, z2/y2) = (x, y, z).
The vector field X then takes on the form X = X2 = y−3

2 z2Y2 with the vector field
Y2 being given by

Y2 = P2(x2, y2)∂/∂x2 + Q2(x2, y2)∂/∂y2 + z2H2(x2, y2)∂/∂z2

where:

P2(x2, y2) = −y2[a′x2
2y2 + (d′ − c)x2

2 + (b′ − a)x2y2 − by2
2

+(e′ − d)x2 + By2] ,

Q2(x2, y2) = −y2[a′x2y
2
2 + d′x2y2 + b′y2

2 + Bx2 + e′y2] ,

H2(x2, y2) = −a′x2y
2
2 + (E − d′)x2y2 + (D − b′)y2

2 − 2Bx2 − 2By2 (2.21)

In particular the vector field Y2 has the normal form indicated in (2.13). Thus
Proposition 2.2.2 can be applied to X2, Y2 so that we obtain the following:

Corollary 2.2.3. Consider vector fields X2 and Y2 with X2 = y−3
2 z2Y2 and where

Y2 is as in (2.21). Then we have:

• If the discriminant d2 − 4bB = 0 then there is only one singular point and
the expression (d − 2e′)/(e′ + F ) is an integer.

• If the discriminant d2 − 4bB 6= 0 then there are two different singular points
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and the numbers

ı)
2(e′ − d − F +

√
d2 − 4bB)

2e′ − d +
√

d2 − 4bB
and

ıı)
−2

√
d2 − 4bB

2e′ − d +
√

d2 − 4bB

are rationals with respective forms m′
j/q′

j, n′
j/p′

j (j = 1, 2). Furthermore the inte-
gers n′

j, m′
j, p′

j, q′
j also satisfy the equation

− 2 lcm(p′
j, q′

j) + m′
j

lcm (p′
j, q′

j)
q′

j

= ±1, (2.22)

where lcm(p′, q′) stands for the least common multiple of p′, q′.

Example 2.2.4. Consider the family of Halphen vector fields on C3 parameterized
by

H(α1, α2, α3) = [α1x
2
0 + (1 − α1)(x0y0 + x0z0 − y0z0)]

∂

∂x0
+

+ [α2y
2
0 + (1 − α2)(x0y0 − x0z0 + y0z0)]

∂

∂y0
+

+ [α3z
2
0 + (1 − α3)(−x0y0 + x0z0 + y0z0)]

∂

∂z0

where the parameters αi, i = 1, 2, 3 are complex numbers. The univaluedness
character of the solutions of the above vector fields was first considered by G.
Halphen. The topic was recently thoroughly explained by A. Guillot in [9].

Consider the blow-up of C3 at the origin and coordinates (x, y, z) where the
blow-up map becomes (x, y, z) 7→ (xz, yz, z) = (x0, y0, z0). The blow up H̃ of the
vector field H is given by H̃ = H1(x, y)∂/∂x+H2(x, y)∂/∂y+zH3(x, y)∂/∂z where

H1 = −x2y(α3 − 1) + x2(α1 + α3 − 1) + xy(α3 − α1) − x(α1 + α3 − 1) + y(α1 − 1) ;

H2 = −xy2(α3 − 1) + xy(α3 − α2) + y2(α2 + α3 − 1) + x(α2 − 1) − y(α2 + α3 − 1) ;

H3 = xyz(α3 − 1) − xz(α3 − 1) − yz(α3 − 1) + zα3 .
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Note that H̃ appears in the normal form presented in (2.13). In particular, we
have d′ = α3 − α2, a′ = α2 − 1, and B = −(α3 − 1) so that the discriminant
(d′)2 − 4a′B equals (α3 + α2 − 2)2. If we assume that the initial vector field H is
semicomplete, then Proposition 2.2.2 implies that the numbers

α1 + 2α2 + 2α3 − 4
α1 + α2 + α3 − 2

and α2 + α3 − 2
α1 + α2 + α3 − 2

(j = 2) are rationals of the form m/q and n/p, where m, n, p, q are integers. In
particular, we have 2 − m/q = α1/(α1 + α2 + α3 − 2). In turn, formula (2.19) from
Proposition 2.2.2 yields

lcm(p, q)
[
−2 + m

q

]
= ±1 .

Note that this equation is possible only if lcm(p, q) = q, i.e. if p divides q. Also
we must have −2q + m = ±1. Thus

2 − α1

α1 + α2 + α3 − 2
= 2 ± 1

q

and so (α1 + α2 + α3 − 2)/α1 = ±q ∈ Z. Next consider relation ii)

n

p
= α2 + α3 − 2

α1 + α2 + α3 − 2

= 1 − α1

α1 + α2 + α3 − 2
= 1 − 1

q

Since p divides q and q = nq/p + 1, it follows that m1 = (α1 + α2 + α3 − 2)/α1 is
an integer strictly greater than 1. Using the other two standard affine coordinates
for the blow-up of C3 at the origin, we similarly conclude that m2 = (α1 + α2 +
α3 − 2)/α2 and m3 = (α1 + α2 + α3 − 2)/α3 must be integers greater than 1 as
well.

Remark 2.2.5. There follows from the preceding that the condition of having m1,
m2, m3 integers greater than 1 is a necessary condition for the Halphen vector field
to be semicomplete. The fact that these conditions are also sufficient is harder to
prove, see [9].
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Recall that we are interested in knowing the extent to which the coefficients of
the vector field Y in formula (2.13) are reals/rationals. For this purpose, we might
ignore formulas (2.19) and (2.22) and summarize the content of Proposition 2.2.2
and of Corollary 2.2.3 as follows:

Lemma 2.2.6. The fact that the numbers indicated in items i) and ii) appearing
in Proposition 2.2.2 and in Corollary 2.2.3 must be rationals, is equivalent to say
the the four numbers below are rationals:
a) d′ − 2c

c + E
b) d′ − 2c√

d′2 − 4a′B
c) d − 2e′

e′ + F
d) d − 2e′

√
d2 − 4bB

Proof. Condition b) is immediately obtained from condition ii) in Proposition 2.2.2.
Now use condition b) and condition i) (Proposition 2.2.2) to conclude that (c +
E)/

√
d′2 − 4a′B is rational so that condition a) follows as the the quotient of the

rational numbers. The procedure to derive conditions c) and d) from conditions i)
and ii) in Corollary 2.2.3 is analogous.

Recall that the vector field X, as the blow-up of the quadratic vector field Z

on C3, is globally defined on C̃3 (the blow up of C3 at the origin). The above
conditions on the coefficients of the vector field X (or Y ) were obtained by using
the normal form (2.13) of X in affine coordinates (u1, v1, w1). Since this normal
form is preserved by the standard affine atlas of C̃3 (cf. Lemma 2.1.4), Propo-
sition 2.2.2 can also be applied to the expression of the vector field X in the
remaining coordinates (u2, v2, w2) and (u3, v3, w3).

In view of the transition maps described in Section 3, let X = v2Y be the
representation of the vector field X in affine coordinates (u2, v2, w2) with Y =
Y(u)∂/∂u2 + Y(w)∂/∂w2 + Y(v)∂/∂v2 as follows:

Y(u) = (d − e′)u2 + bw2 + (c − d′)u2
2 + (a − b′)u2w2 − a′u2

2w2 ;

Y(w) = −Bu2 − e′w2 − d′u2w2 − b′w2
2 − a′u2w

2
2 ;

Y(v) = v2[(e′ + F ) + (d′ + E)u2 + (b′ + D)w2 + a′u2w2] . (2.23)

Note that this is, in fact, the normal form of the vector field X as presented
in (2.13). Then we can apply Proposition 2.2.2 to X = v2Y and proceed as in

55



Lemma 2.2.6 to conclude that the following numbers are rational:

a’) d′ − 2c

c + E
b’) d′ − 2c√

d′2 − 4a′B
e) a + b′

D
f ) a + b′√

(a − b′)2 + 4a′b
Of course the first two numbers above were already known to be rational.

Finally, the representation X = u3Y of X in affine coordinates (u3, v3, w3)
where Y = Y(w)∂/∂w3 + Y(v)∂/∂v3 + Y(u)∂/∂u3 is as follows:

Y(w) = −cw3 − Bv3 − aw2
3 − dv3w3 − bv3w

2
3 ;

Y(v) = a′w3 + (d′ − c)v3 + (b′ − a)v3w3 + (e′ − d)v2
3 − bv2

3w3 ;

Y(u) = u3[(c + E) + (d + F )v3 + (a + D)w3 + bv3w3] . (2.24)

At this point, the use of Proposition 2.2.2 in these coordinates will only provide
us with redundant information.

The previous discussion is summarized in the following theorem.

Theorem 2.2.7. Consider the vector field X obtained as the blow up at the origin
of the semicomplete quadratic vector field Z on C3. Assume that the vector field
X = w1Y is in the normal form (2.13) Then the following expressions represent
rational numbers:

a) d′ − 2c

c + E
b) d′ − 2c√

d′2 − 4a′B
c) d − 2e′

e′ + F

e) d − 2e′
√

d2 − 4bB
f) a + b′

D
g) a + b′√

(a − b′)2 + 4a′b

The above formulas can further be simplified. Let us go back to the normal
form (2.13) along with the corresponding affine (x, y, z)-coordinates. In particular,
we have X = zY . Now recall that transformations of the form

(x, y, z) 7→ (λ1x, λ2y, z)

does preserve the normal form. Moreover, all the expressions in the coefficients of
X, Y given by Theorem 2.2.7 remain invariant by these change of coordinates. The
setting, however, changes slightly if consider translations of the form (x, y, z) 7→
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(x+k1, y+k2, z). As pointed out in Section 3, this type of transformation preserves
the normal form (2.13) except by the fact that the origin of these coordinates no
longer needs to be a singular point of Y . This said, all the six numbers d′ − 2c,
c+E, d′2 −4a′B, d−2e′, e′ −F , and d2 −4bB remain unchanged under this change
of coordinates. In particular, do does the four first numbers in Theorem 2.2.7.

On the other hand, the coefficients c, d, d′, and e′ change as follows

c 7→ c + Bk2 , d 7→ d + 2Bk1 , d′ 7→ d′ + 2Bk2 , and e′ 7→ e′ + Bk1 .

Thus we have:
c

d′ = c + Bk2

d′ + 2Bk2
and e′

d
= e′ + Bk1

d + 2Bk1

up to assuming that d′ 6= 0 and d 6= 0.

To make things accurate, let us add one more condition to normal form (2.13)

Condition IV: In normal form (2.13), we have B 6= 0.

This assumption hardly impact the generality of the discussion, since B = 0
would imply that the “line at infinity” is invariant. Moreover, up to permuting
the order of the invariant axes x, y, and z for the initial quadratic vector field, if
we never obtain B 6= 0, it would mean that b = a′ = 0 in normal form (2.13), in
addition to B = 0. The ensuing discussion would then be formally included in the
discussion below (for more details, see the next section).

Since B 6= 0, we can find k1 and k2 such that c = d′ and d = e′ while, at the
same time, making sure that cd 6= 0. Moreover the remaining coefficients are such
that the six numbers d′ −2c, c+E, d′2 −4a′B, d−2e′, e′ −F , and d2 −4bB remain
unchanged. Hence in these new coordinates (still denoted by x, y, and z), we have
X = zY with Y = P (x, y)∂/∂x + Q(x, y)∂/∂y + zH(x, y)∂/∂z and

P (x, y) = γ1 + ax + by + cx2 + dxy + Bx2y

Q(x, y) = γ2 + a′x + b′y + d′xy + e′y2 + Bxy2 ,

H(x, y) = D + Ex + Fy − Bxy . (2.25)

with c = d′, d = e′, and c d 6= 0. Furthermore, in view of Theorem 2.2.7 and of
the fact that the numbers d′ − 2c, c + E, d′2 − 4a′B, d − 2e′, e′ − F , and d2 − 4bB

57



have not changed, we also conclude that the numbers

d′ − 2c

c + E
,

d′ − 2c√
d′2 − 4a′B

,
d − 2e′

e′ + F
, and d − 2e′

√
d2 − 4bB

(2.26)

are all rational.

Finally all the four numbers in (2.26) as well as the quotients c/d′ and e′/d are
invariant by transformations of the form (x, y, z) 7→ (λ1x, λ2y, z). Thus we can
use these maps to ensure that the point (1, 1, 0) is a singular point of Y . Taking
everything in account we have proved the main result of this section, namely:

Theorem 2.2.8. Assume that X is semicomplete and that Conditions I through IV
are satisfied. Then, in suitable affine coordinates for the blow-up of C3, the vec-
tor field X takes on the form X = zY with Y = P (x, y)∂/∂x + Q(x, y)∂/∂y +
zH(x, y)∂/∂z where

P (x, y) = γ1 + ax + d2r1y + cx2 + dxy + x2y

Q(x, y) = γ2 + c2r2x + b′y + cxy + dy2 + xy2 ,

H(x, y) = D + cr3x + dr4y − xy , (2.27)

where ri is a rational number (i = 1, . . . , 4) and where c, d 6= 0. Furthermore γ1

and γ2 are (explicit) linear combinations over Q of the coefficients a, b′, c, and d.
Similarly, unless b′ is already determined (linearly over Q from the coefficients
a, c, d) then D must also be an explicit linear combinations over Q of the coefficients
a, b′, c, and d.

Proof. Consider X = zY with Y as in (2.25). Next, up to performing a suitable
translation in the variables (x, y) of (2.25), we can assume without loss of generality
that c = d′, d = e′, and c d 6= 0. Furthermore, up to further changing coordinates
by a map of the form (x, y, z) 7→ (λ1x, λ2y, z), with λ1, λ2 ∈ C∗, we can also assume
that (1, 1, 0) is a singular point of Y . Here the reader will note that this second
change of coordinates does not disrupt the previously established condition c = d′,
d = e′, and c d 6= 0.

Since (d′ − 2c)/(c + E) has to be a rational number, the fact that c = d′
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implies that E is a rational multiple of c, i.e. E = cr3 for some r3 ∈ Q. Similarly,
(d−2e′)/(e′ +F ) is rational and d = e′ so that we must have F = dr4 for a certain
rational number r4.

Next consider the rational numbers

d′ − 2c√
d′2 − 4a′B

and d − 2e′
√

d2 − 4bB
.

Plugging in the first number the conditions B = 1 and c = d′ leads to the con-
clusion that a′B/c2 must be a rational number. Likewise, the rational nature of
(d − 2e′)/

√
d2 − 4bB yields bB/d2 ∈ Q. Now, since the coefficients of X, Y are

considered only up to a multiplicative constant, we can set once and for all B = 1
(since B 6= 0). Thus we must have b = d2r1 and a′ = c2r2 for suitable rational
numbers r1, r2.

Now since (1, 1, 0) is a singular point of Y , we obtain

γ1 = −a − d2r1 − c − d − 1 and γ2 = −c2r2 − b′ − c − d − 1 .

Finally to conclude that D is also as indicated in the statement, we proceed as
follows. First we can suppose that D+cr3 +dr4 −1 6= 0, otherwise there is nothing
to be proved. Next consider the linear part of Y at the point (1, 1, 0) which is given
by the vector field

[
(a + 2c + d + 2)x + (d2r1 + d + 1)y

] ∂

∂x
+

+
[
(c2r2 + c + 1)x + (b′ + c + 2d + 2)y

] ∂

∂y
+

+z(D + cr3 + dr4 − 1) ∂

∂z
. (2.28)

Since X = zY is a semicomplete vector field, there follows that z times the above
(linear) vector field must be semicomplete as well. In turn, this means that the
eigenvalues of the (linear) vector field in question are integral multiples of the
eigenvalue associated with the ∂/∂z-direction, cf. Section 2 or [8]. The sum of the
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eigenvalues being the trace of the matrix, there follows that the quotient

a + b′ + 3c + 3d + 4
D + cr3 + dr4 − 1

represents an integer unless D+cr3+dr4−1 = 0. Thus either a+b′+3c+3d+4 = 0
or D is given as a linear combination over Q of a, b′, c, and d. The theorem follows
at once.
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2.2.1 When there are invariant planes

In this short section, we shall add the assumption that the initial quadratic vector
field Z leaves some plane through the origin invariant. As equivalent formulation,
the restriction to the exceptional divisor of the foliation associated with the blow-
up of Z leaves a line invariant. Naturally we also assume that the remaining
conditions of Theorem 2.2.8 are satisfied.

To be more accurate, we consider the blow-up X of Z in suitable affine coor-
dinates under the normal form (2.13). Recalling that X = zY , we assume the
following holds:

(1) We have a′ = 0 so that the axis {y = 0} is invariant by Y . Also we require
b 6= 0 so that the axis {x = 0} is not invariant by Y .

(2) The restriction to the exceptional divisor of the foliation associated with X

has at least 5 singular points.

(3) B 6= 0.

These conditions basically mean that we are willing to consider the least favorable
case that can be encountered once the existence of an invariant line is ensured.
They serve to keep the discussion focused on the main difficulties of the problem.

Since B 6= 0, the line at infinity ∆ is not invariant by the restriction to the
exceptional divisor of the foliation associated with X. Note that this foliation
is naturally induced by Y in the affine coordinates used in normal form (2.13).
Since ∆ contains already two singular points of the mentioned foliation, namely
the intersection points of ∆ with the axes {y = 0} and {x = 0}, it follows that ∆
cannot contain a third singular point. Indeed, since the degree of the foliation in
question is 2, every line containing three singular points of it must be invariant,
see Section 2. We also remind the reader that, similarly, an invariant line cannot
contain more than 3 singular points (cf. Section 2).

In view of condition (2), there follows that Y has at least 3 singular points in
the domain of the affine (x, y)-coordinates (with z = 0). In particular Y has at
least one singular point which does not lie in the invariant line.



Now, using maps of the form (x, y, z) 7→ (λ1x + k1, λ2y + k2, z) as in the
previous section, the vector fields X and Y can be brought to the normal form of
Theorem 2.2.8, namely we have X = zY , with Y = P (x, y)∂/∂x + Q(x, y)∂/∂y +
zH(x, y)∂/∂z, where

P (x, y) = γ1 + ax + d2r1y + cx2 + dxy + x2y ,

Q(x, y) = γ2 + c2r2x + b′y + cxy + dy2 + xy2 ,

H(x, y) = D + cr3x + dr4y − xy . (2.29)

Furthermore the vector field Y leaves some horizontal line {y = A} invariant.
Since there is a singular point of Y restricted to {z = 0} which does not lie in the
mentioned invariant line, by repeating the procedure in the proof of Theorem 2.2.8,
we can assume this point to be (1, 1) unless it lies in the axis {x = 0}. Again to
focus on the main issue of the problem, we add two additional assumptions to the
previous ones:

(4) The point (1, 1) ' (1, 1, 0) is singular for Y . Also c 6= 0.

(5) We have a + b′ + 3c + 3d + 4 6= 0 so that D is given as a linear combination
over Q of a, b′, c, and d.

The above conditions (1) – (5) will be referred to in this section as generic
invariant line conditions. The aim of this section is to investigate how close to a
vector field having only real coefficients the condition of an invariant line leads us.
We start with a simple lemma:

Lemma 2.2.9. The rational number r2 is such that
√

1 − 4r2 is again rational.

Proof. Recall from the proof of Theorem 2.2.8 that d′ = c and B = 1. Also the
number

d′ − 2c√
d′2 − 4a′B

is known to be rational. Naturally a′ is nothing but c2r2 so that plugging in d′ = c

and B = 1, we conclude that
1√

1 − 4r2
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is rational and the lemma follows.

Another simple by-product of the proof of Theorem 2.2.8 is as follows. Consider
again the linear vector field in (2.28). As mentioned, the eigenvalues of this vector
field must be related by integral quotients. In particular the eigenvalues of the
matrix M below

M =

a + 2c + d + 2 d2r1 + d + 1
c2r2 + c + 1 b′ + c + 2d + 2


have rational ratio. Therefore the quotient between the trace of M and its deter-
minant is rational itself. In other words, we have

r̂ = a + b′ + 3c + 3d + 4
(a + 2c + d + 2)(b′ + c + 2d + 2) − (c2r2 + c + 1)(d2r1 + d + 1)

∈ Q . (2.30)

Thus we actually obtain an extra—nonlinear—relation between the coefficients
a, b′, c, d. Up to assuming that the rational number r̂ on the left side of (2.30) is
different from (b′ +c+2d+2)−1, we can “solve” this relation for a. In other words,
unless b′ + c + 2d is a rational number—which of course provides directly a new
relation between b′, c, and d—we can state the following:

Lemma 2.2.10. Assuming the rational number r̂ is different from (b′+c+2d+2)−1,
the coefficient a can be expressed under the form

a = Pol4(c, d, b)
Pol1(c, d, b)

where Pol4 (resp. Pol1) is a polynomial of degree 4 (resp. 1) on b′, c, d with rational
coefficients.

To begin to exploit the fact that the line {y = A} is invariant by Y , we
note that this condition is equivalent to saying that Q(x, A) is identically zero
(independently of x). Alternatively, we must have

Q(x, y) = (y − A)((xy − dy + αx + β)

where A, α, and β are coefficients in C. This yields the following over-determined
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system of equations:

α − A = c ; −Aα = c2r2 , β − Ad = b′ , and − Aβ = γ2 .

The first two equations yield A2 +AC +c2r2 = 0. Owing to Lemma 2.2.9, it follows
that A is a rational multiple of c. We set A = cs1 with s1 ∈ Q.

We assume through the remainder of the section that s1 6= 0 since, otherwise,
the corresponding discussion would be greatly simplified. Since A = cs1, there
follows that αc(1+s1) and β = b′ +cds1. However, we know that −γ2 = c2r2 +b′ +
c + d + 1 since Y has a singular point at (1, 1) ' (1, 1, 0). Thus the last equation
provides:

cs1(b′ + cds1) = c2r2 + b′ + c + d + 1 .

Once again we can eliminate one parameter. For example either cs1 = 1 which
means c is rational, or we obtain:

Lemma 2.2.11. With the preceding notation, we have

b′ = c2r2 + c2ds2
1 + c + d + 1

cs1 − 1
. (2.31)

In either event, we now have only two parameters that forces the entire vector
field to have rational/real coefficients once they are rational/real themselves. To
continue the discussion, let us assume that cs1 6= 1 so that Lemma 2.2.11 holds.

At this point, it is convenient to summarize the previous results as follows:

Proposition 2.2.12. Assume that all the “generic” conditions considered above
hold. Then every coefficient of the vector field Y in (2.29) can be expressed as a
rational function over Q of the coefficients c and d.

Remark 2.2.13. The statement of Proposition 2.2.12 can be made slightly more
precise. Indeed, b′ is explicitly given by Formula (2.31) while a was obtained from
Equation (2.30) under the assumption that r̂ is different from (b′ + c + 2d + 2)−1.
Substituting in Equation (2.30) Formula (2.31) for b′, we conclude that a has the
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form
a = Pol5(c, d)

Pol3(c, d)

where Pol5 (resp. Pol3) is a polynomial over Q of degree 5 (resp. 3) on c, d. Since
all the remaining coefficients of the vector field Y are either constants or given by
linear combination with rational coefficients of a, b′, c, and d, we conclude that
every such coefficient is given as a quotient of the form

Pol6(c, d)
(cs1 − 1)Pol3(c, d)

(2.32)

where now Pol6 is a polynomial over Q of degree 6 on the variables c, d.

Still more accurate information is provided by carefully looking at our formulas.
Considering Formula (2.31), we see that the denominator does not depend on d

while the degree of the numerator with respect to d equals 1. Similarly, we conclude
in the preceding formula for a that:

• The degree with respect to d of Pol5 is at most 2.

• The degree with respect to d of Pol3 is at most 1.

Thus, for a general coefficient of Y , Formula (2.32) is such that

(a) The degree with respect to d of Pol6 is at most 2.

(b) The degree with respect to d of Pol3 is at most 1 and so is the degree with
respect to d of (cs1 − 1)Pol3.

(c) The denominator (cs1 − 1)Pol3 of the preceding expression is common to all
the coefficients of Y .

To close this section and the discussion, let us try to sharpen Proposition 2.2.12
by looking at the singular points of Y sitting in the invariant line {y = cs1}. Denote
by τ1, τ2 the position of these singular points, i.e. in (x, y, z) coordinates they are
given by (τ1, cs1, 0) and (τ2, cs1, 0). Then τ1, τ2 are solution of the equation

(cs1 + c)x2 + (dcs1 + a)x + γ1 + d2r1cs1 = 0 . (2.33)
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Furthermore the eigenvalues of Y at the point (τi, cs1, 0) coincide with the eigen-
values of the matrix Mi given by

Mi =


D + dr4cs1 + cr3τi 0 0

0 a + 2cτi + dcs1τi + 2cs1τi d2r1 + dτi + τ 2
i

0 0 b′ + cτi + 2dcs1 + 2cs1τi


which is upper triangular. Therefore we once again obtain:

a + 2cτi + dcs1τi + 2cs1τi

D + dr4cs1 + cr3τi

= mi and b′ + cτi + 2dcs1 + 2cs1τi

D + dr4cs1 + cr3τi

= ni (2.34)

for suitable integers mi, ni, i = 1, 2.

Remark 2.2.14. The possible values of the integers mi are determined by the
classification of quadratic semicomplete vector fields in dimension 2, cf. [5]. In-
deed, the restriction of the quadratic vector field Z to the invariant plane fixed
in the beginning of the section must provide a vector field in the corresponding
classification.

In particular we note that m1 can be assumed to be different from m2 as a
consequence of the classification in [5] unless the restriction of Z to the invariant
plane in question is conjugate to the vector field x(x − 2y)∂/∂x + y(y − 2x)∂/∂y

in which case, we always have mi = −3.

Similarly the sum of ni (including the corresponding value at infinity) equals 1
as a consequence from the index theorem in [2]. Again it is not hard to work out
the cases in which ni does not vary and hence are all equal to 3.

Whereas this type of information will not really be needed in the sequel, it
allows us to justify the “generic conditions” assumed to hold throughout this sec-
tion. Most importantly, it explains why the polynomials in two variables R1(x, y)
and R2(x, y) introduced before the proof of Theorem 2.2.16 below are “generically”
distinct.

Now we have:

Lemma 2.2.15. The coefficient d lies in a cubic extension of Q(c).
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Proof. Consider Equation (2.34) for i = 1, 2. If for some i, we have

2c + dcs1 + 2cs1 − micr3 = 0

then d lies in Q(c) since we have assumed cs1 6= 0. Thus we can assume that
2c + dcs1 + 2cs1 − micr3 6= 0, i = 1, 2. We can then express τi as

τi = miD + midcr4s1 − a

2c + dcs1 + 2cs1 − micr3
.

Analogous formulas can be obtained with ni instead of mi but, at this level, it
does not lead to any additional information. Since τ1 + τ2 = (dcs1 + a)/(cs1 + c),
we conclude that

dcs1 + a

cs1 + c
=

2∑
i=1

miD + midcr4s1 − a

2c + dcs1 + 2cs1 − micr3
. (2.35)

Now note that miD + midcr4s1 − a still has the form Pol6/[(cs1 − 1)Pol3] where
the degree with respect to d of Pol6 (resp. Pol3) is at most 2 (resp. 1), cf.
Remark 2.2.13 items (a), (b), and (c). Now equation (2.35) shows that d is solution
of a polynomial equation with degree at most 3 and coefficients in Q[c]. The proof
of the lemma is completed.

To close this section, we will prove that c itself lies in a number field (finite ex-
tension of Q), under a very minor generic assumption (whose failure to be satisfied
would again lead to further simpler equations involving c and d).

First note that in the proof of Lemma 2.2.15 we have constructed a polynomial
in two variables R1(x, y) with coefficients in Q such that R1(c, d) = 0 (besides
the degree of R1 with respect to y is at most 3). Next note that the construction
carried out in proof in question can be repeated by using the equalities involving
ni in (2.34). This leads us to another polynomial R2(x, y) satisfying R2(c, d) = 0.
Let us then assume that R1 is different from R2, the fact that this assumption is
“generic” is justified by the discussion in Remark 2.2.14.

Owing to Lemma 2.2.15, the transcendence degree of Q(c, d) over Q is at most 1.
In fact, c, d are related by the polynomial equation R1(c, d) = 0. Assume aiming
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at a contradiction that the transcendence degree of Q(c, d) is actually 1. By
virtue of Lúroth classical theorem, Q(c, d) is an algebraic extension of a pure
transcendent field Q(T ). In other words, c and d are algebraic expressions in
the indeterminate T . Substituting these expressions for c and d in the equation
R2, however, yields a non-trivial algebraic equation satisfied by T : indeed, R2 is
by assumption independent of R1 (or in geometric terms, the Riemann surfaces
defined by the equations R1(x, y) = 0 and R2(x, y) = 0 have no common irreducible
component). Therefore T must itself be algebraic and a contradiction immediately
arises. In this way, we have then proved that Q(c, d) is an algebraic extension of
Q. In particular, Q(c) = Q[c].

The material in this section is then summarized by the following theorem:

Theorem 2.2.16. Under the previous generic assumptions, the coefficients of the
vector field Y in (2.29) satisfy the following conditions:

1. The coefficient c is an algebraic number.

2. The coefficient d lies in a finite extension of Q(c) of degree at most 3.

3. The coefficient b is the rational function over Q of c and d indicated in
Lemma 2.2.11.

4. The coefficient a is the rational function over Q of c and d indicated in
Remark 2.2.13.

5. All the remaining coefficients are rational functions over Q of c and d as
also indicated in Remark 2.2.13.
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2.3 Ohyama and Darboux-Halphen systems

Throughout this section, the words “vector field” and “system of differential equa-
tions” are used as synonymous. Whereas we might simply stick with the termi-
nology of vector fields, the phrase “system of differential equations” occurs more
often in the classical literature making up the background of this section. For this
reason, we decided to use both forms according to our convenience.

Among quadratic vector fields on C3 there is a particularly interesting 3-
parameters family H(α1, α2, α3) which is presented in [9] as

H(α1, α2, α3) = [α1x
2
0 + (1 − α1)(x0y0 + x0z0 − y0z0)]

∂

∂x0

+[α2y
2
0 + (1 − α2)(x0y0 − x0z0 + y0z0)]

∂

∂y0

+[α3z
2
0 + (1 − α3)(−x0y0 + x0z0 + y0z0)]

∂

∂z0
(2.36)

where the parameters αi belong to C. These vector fields were studied by Halphen
who provided explicit solutions for them in terms of logarithmic derivatives of
Jacobi Theta-functions, see [13], [14]. A much more recent geometric/dynamics
study of these equations can be found in [9]. In fact, Halphen has first considered
the vector field H(0, 0, 0) in the above family, which in turn, had already been
considered by Darboux. The same system was independently solved by Brioschi
so that, in modern literature, this vector field is referred to as Halphen equation,
Darboux-Halphen System or yet Darboux-Brioschi-Halphen System. It reads ex-
plicitly as

x′ + y′ = 2xy,

y′ + z′ = 2yz,

x′ + z′ = 2xz (2.37)

Solutions for the general vector field H(α1, α2, α3) were then derived by Halphen
in his second note [14] (see also for [9] for a general discussion). Darboux-Halphen
vector field appears often in Physics but also in number theory: the system is very



closely related to Ramanujan’s system whose solutions are his famous “P , Q, and
R (quasi-modular) functions.

Naturally, it is an interesting question to look for analogues of Darboux-
Halphen system in higher dimensions. This problem was considered by Ohyama in
[20], [21]. There the author applied Jacobi’s method to find a non-linear dynamical
system from a linear differential equation via modular forms, as a result Ohyama
obtained the following vector field

w′ + x′ + y′ = wx + xy + yw,

w′ + y′ + z′ = wy + yz + zw,

w′ + x′ + z′ = wx + xz + zw,

x′ + y′ + z′ = xy + yz + xz (2.38)

Note that an alternative construction of the vector field (2.38) was given by
Guillot in [10]. The purpose of this section is to give a rather direct interpre-
tation of the vector field (2.38) in terms of the original Darboux-Halphen vector
field (2.37). In particular, it will be shown how solutions for Ohyama vector field
are explicitly given in terms of solutions of Darboux-Halphen vector field. High
dimensional generalizations of Ohyama vector fields are also possible from the
perspective of this section.

To begin with, note that the system (2.38) is equivalent to the vector field
D(x, y, z, w) = 1/3(P (x, y, z, w)∂/∂x + Q(x, y, z, w)∂/∂y + R(x, y, z, w)∂/∂z +
S(x, y, z, w)∂/∂w) where

P (x, y, z, w) = (2wx − wy + 2xy − wz + 2xz − yz),

Q(x, y, z, w) = (−wx + 2wy + 2xy − wz − xz + 2yz),

R(x, y, z, w) = (−wx − wy − xy + 2wz + 2xz + 2yz),

S(x, y, z, w) = (2wx + 2wy − xy + 2wz − xz − yz) (2.39)

The starting point of our discussion is the Lie-theoretic interpretation of Halphen
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vector fields provided in [9]. Let Z denote the vector field

Z = ∂

∂x
+ ∂

∂y
+ ∂

∂z
+ ∂

∂w
.

The radial vector field E of C4 is accordingly denoted by

E = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ w

∂

∂w
.

Then Ohyama’s vector field in (2.39) satisfies the functional equation [Z, D] = 2E.
As it happens in the general case of vector fields in Halphen family (2.36), the
triple of vector fields consisting of D, Z, and E generates a Lie algebra of vector
fields isomorphic to the Lie algebra of PSL (2,C). Following [24], we will exploit
this Lie algebra to construct a codimension 2 reduction of the Halphen vector
fields. It will turn out that, in the case of Ohyama vector field D, the resulting
codimension 2 system is completely integrable. The remainder of the section is
devoted to this construction and its consequences.

As previously done, we first consider the blow up C̃4 of C4 at the origin. The
blow-up map π is given by (x, t, u, v) 7→ (x, xt, xu, xv) = (x, y, z, w) so that the
exceptional divisor coincides with the plane {x = 0} in the affine coordinates
(x, t, u, v). Furthermore the pull-back of the vector field D by π takes on the form
π∗D(x, t, u, v) = −x/3(P1∂/∂x + Q1∂/∂t + R1∂/∂u + S1∂/∂v) with

P1 = x(−2u − 2v − 2t + uv + tu + tv),

Q1 = (1 − t)(u + v − 2t + uv + tu + tv),

R1 = (1 − u)(t − 2u + v + uv + tu + tv),

S1 = (1 − v)(t + u − 2v + uv + tu + tv) (2.40)

Since D is quadratic, its blow-up π∗D induces a foliation on the exceptional
divisor E ∼= CP(3). Formula (2.40) shows that, in the affine coordinates (x, t, u, v),
the foliation in question is associated with the vector field

D1(t, u, v) = Q1(t, u, v)∂/∂t + R1(t, u, v)∂/∂u + S1(t, u, v)∂/∂v .
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It is straightforward to note that the point (x, t, u, v) = (0, 1, 1, 1) is a radial
singularity for the foliation associated with the vector field π∗D on C̃4. In other
words, at (0, 1, 1, 1) all the eigenvalues of this foliation coincide (and since these
are defined only up to a multiplicative constant, they can be set equal to 1). At the
same time, the point (0, 1, 1, 1) ∼= (1, 1, 1) is the basis of the pencil P of projective
lines in E ∼= CP(3) induced by the vector field Z. Since [Z, D] is parallel to E,
the general observation in [24] hints that the foliation associated with D should
project to a well defined foliation on the space of lines of P, itself isomorphic to
CP(2). To check that this is, indeed, the case and also to identify the corresponding
(projected) foliation, it essentially suffices to blow-up the above mentioned radial
singular point.

For notational convenience, we first perform the translation (x, T, U, V ) 7→
(x, T +1, U +1, V +1) = (t, u, v) so as to bring to the origin the point to be blown-
up. Then we perform a new blow-up at the origin of C4 in the new coordinates
(x, T, U, V ). The lift of the vector field (2.40) by the blow-up map (x, T, Z, W ) 7→
(Tx, T, TZ, TW ) = (x, T, U, V ) has the form XT 2[P2∂/∂X +Q2∂/∂T +R2∂/∂Z +
S2∂/∂W )] with

P2 = −X(−W − Z − 2
3

TW − 2
3

TZ − 2
3

TWZ),

Q2 = 1 + TW + TZ + 1
3

T 2W + 1
3

T 2Z + 1
3

T 2WZ,

R2 = Z − Z2,

S2 = W − W 2 (2.41)

Note that the coordinates (Z, W ) ∼= (0, 0, Z, W ) define natural affine coordinates
for CP(2) viewed as the space of lines in P. Formula (2.41) then shows that,
indeed, foliation associated with D projects to a well defined foliation on CP(2)
identified with the space of lines in P. Furthermore, in natural affine coordinates
(Z, W ) for CP(2), the projected foliation is given by the vector field

D2(Z, W ) = (Z − Z2)∂/∂Z + (W − W 2)∂/∂W .

The vector field D2 admits I(Z, W ) = (WZ − W )/(ZW − Z) as a global mero-
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morphic first integral on CP(2). This means that the solutions (leaves) of D2 are
given by the algebraic equation

(WZ − W )/(ZW − Z) = k (2.42)

where k stands for a constant in C∪{∞}. For a fixed value of k, the corresponding
solution of D2 can be parameterized by Z 7→ (Z, kZ/(kZ − Z + 1)) = (Z, W ).
Except for k = 1, the image of the map Z 7→ (Z, kZ/(kZ − Z + 1)) is contained
in a degree 2 rational curve in CP(2). When k = 1, the image is contained in the
projective line induced by {Z = W}. In any event, to each fixed k ∈ C ∪ {∞},
there corresponds a vector field in C3 obtained by restricting the blow-up of D to
the “cylinder” over the rational curve arising from Equation (2.42).

More precisely, let σ be defined by σ(x, T, Z) = (x, T, Z, W (Z)), where W (Z) =
kZ/(kZ −Z +1). The image of Σ is a (embedded) open manifold of dimension 3 in
C4 equipped with coordinates (x, T, Z, W ) which is left invariant by the vector field
XT 2[P2∂/∂X + Q2∂/∂T + R2∂/∂Z + S2∂/∂W )] of (2.41). Thus the restriction
of this vector field (the above indicated transform of D) to the image of σ can
be pulled-back by σ itself to yield a vector field on C3 endowed with coordinates
(x, T, Z). To compute this pull-back, note that the left-inverse Jl(σ)−1 of the
Jacobian matrix of σ has the following expression where a14, a24, a34 are arbitrary
complex numbers.

Jl(σ)−1 =


1 0 − a14k

(1−Z+kZ)2 a14

0 1 − a24k
(1−Z+kZ)2 a24

0 0 1 − a34k
(1−Z+kZ)2 a34


Therefore, the pull-back of the vector field (2.41) by σ has the form Dσ(X, T, Z) =
XT 2/(3 − 3Z + 3kZ)[Pσ∂/∂X + Qσ∂/∂T + Rσ∂/∂Z) with

Pσ = −XZ(3 + 3k + (3k − 3)Z + (2k + 2)T + (4k − 2)TZ),

Qσ = 3 + (3k − 3)Z + (3k + 3)TZ + (3k − 3)TZ2 + (k + 1)T 2Z + (2k − 1)T 2Z2,

Rσ = Z(3 + (3k − 6)Z − (3k − 3)Z2) . (2.43)
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The reader will also note that Rσ is equal to (3 − 3Z + 3kZ)(Z − Z2)

The above formula for the vector field Dσ will be used below to provide a direct
connection between solutions of D and solutions of the original Darboux-Halphen
system. For the time being, however, it is convenient to first take a closer look at
the original Darboux-Halphen system.

Recall that the vector field associated with the Darboux-Halphen system (2.37)
on C3 is given by

H = (xy + xz − yz)∂/∂x + (xy − xz + yz)∂/∂y + (−xy + xz + yz)∂/∂z .

Again we blow-up C3 at the origin. In coordinates (x, t, u) where the blow-up map
is given by (x, t, u) 7→ (x, xt, xu) = (x, y, z), the blow-up of the vector field H

becomes

H1 = x[x(−tu + t + u)∂/∂x + (t − 1)(u − t + tu)∂/∂t + (u − 1)(t − u + tu)∂/∂u] .

The preceding discussion can then be repeated in the present context. In particu-
lar, the regular vector field ∂/∂x + ∂/∂y + ∂/∂z still induces a pencil of projective
lines on the exceptional divisor - isomorphic to CP(2) - whose basis locus is the
point (0, 1, 1) ∼= (0, 0). Incidentally, this point is a radial singularity for the foli-
ation associated with H1. We then proceed as before. Namely, we translate the
radial singularity to the origin and then blow-it up. In other words, we consider
the translation t = T + 1 and u = U + 1 and the subsequently blow-up map
π : (x, T, Z) 7→ (Tx, T, TZ) = (x, t, u). The transform H2 = π∗H1 then becomes

H2 = T 2X(−XZ(2+2T )∂/∂X+(1+2TZ+T 2Z)∂/∂T +(2Z−2Z2)∂/∂Z) (2.44)

Comparing the foliations associated to D2 and to H2, we see that they coincide
in the direction ∂/∂Z. Indeed, the actual vector fields D2 and H2 coincide, up
to the constant factor 2, in the direction ∂/∂Z. Moreover, the coordinate Z can
explicitly be given as a uniform function of the complex time. The central point of
the discussion is therefore to show find the solution for the variable T , in terms of
the solution for Z. Indeed, once this has been done, the solution for the variable X
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can immediately be derived: in the direction of ∂/∂X the vector fields in question
provide (homogeneous) linear equations for X in terms of the (already known)
functions T and Z.

Summarizing the preceding paragraph, we are led to compare the Riccati equa-
tions given respectively by the vector fields

R1 = (1 + 2TZ + T 2Z)∂/∂T + (2Z − 2Z2)∂/∂Z (2.45)

and

R2 = 3 + (3k − 3)Z + (3k + 3)TZ + (3k − 3)TZ2 + (k + 1)T 2Z + (2k − 1)T 2Z2

(3 + 3(k − 1)Z)
∂/∂T

+(Z − Z2)∂/∂Z . (2.46)

The remainder of this section is devoted to proving that the above equations are
bimeromorphically equivalent so as to establish an explicit correspondence between
their solutions.

The proof of the last assertion is, however, a straightforward application of the
birational theory of Riccati equations.
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