
HAL Id: tel-02896451
https://theses.hal.science/tel-02896451

Submitted on 10 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-efficient resource provisioning for cloud
databases

Chaopeng Guo

To cite this version:
Chaopeng Guo. Energy-efficient resource provisioning for cloud databases. Networking and Internet
Architecture [cs.NI]. Université Paul Sabatier - Toulouse III, 2019. English. �NNT : 2019TOU30065�.
�tel-02896451�

https://theses.hal.science/tel-02896451
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

CHAOPENG GUO

Le 14 juin 2019

Allocation de ressources e(cace en énergie pour les Bases de

Données dans le Cloud

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et

Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :

Thèse dirigée par

Jean-Marc PIERSON

Jury

M. Djamal BENSLIMANE, Rapporteur
M. Sébastien MONNET, Rapporteur

M. Shadi IBRAHIM, Examinateur
M. Abdelkader HAMEURLAIN, Examinateur

M. Laurent LEFÈVRE, Examinateur
Mme Joanna MOULIERAC, Examinatrice

M. Jean-Marc PIERSON, Directeur de thèse

Abstract

Today a lot of cloud computing and cloud database techniques are adopted
both in industry and academia to face the arrival of the big data era. Mean-
while, energy efficiency and energy saving become a major concern in data
centers, which are in charge of large distributed systems and cloud databases.

However, energy efficiency and service-level agreement of cloud databases
are suffering from resource provisioning, resource over-provisioning and re-
source under-provisioning, namely that there is a gap between resource pro-
vided and resource required. Since the usage of cloud database is dynamical,
resource of the system should be provided according to its workload.

In this thesis, we present our work on energy-efficient resource provision-
ing for cloud databases that utilizes dynamic voltage and frequency scaling
(DVFS) technique to cope with resource provisioning issues. Additionally, a
migration approach is introduced to improve the energy efficiency of cloud
database systems further. Our contribution can be summarized as follows:

• At first, the behavior of energy efficiency of the cloud database system
under DVFS technique is analyzed. Based on the benchmark result, two
frequency selection approaches are proposed.

• Then, a frequency selection approach with bounded problem is intro-
duced, in which the power consumption and migration cost are treated
separately. A linear programming algorithm and a multi-phases algo-
rithm are proposed. Because of the huge solution space, both algorithms
are compared within a small case, while the multi-phases algorithm is
evaluated with larger cases.

• Further, a frequency selection approach with optimization problem is
introduced, in which the energy consumption for executing the workload
and migration cost are handled together. Two algorithms, a genetic based
algorithm and a monte carlo tree search based algorithm are proposed.
Both algorithms have their pros and cons.

i

• At last, a migration approach is introduced to migrate data according to
the given frequencies and current data layout. A migration plan can be
obtained within polynomial time by the proposed Constrained MHTM
algorithm.

ii

Résumé

Aujourd’hui, beaucoup de techniques de cloud computing et de bases de données
dans le cloud sont adoptées dans l’industrie et le monde universitaire pour faire
face à l’arrivée de l’ère du big data. Parallèlement, l’efficacité énergétique et
les économies d’énergie deviennent une préoccupation majeure pour les centres
de données, qui sont en charge de grands systèmes distribués et de bases de
données dans le cloud.

Toutefois, l’efficacité énergétique et l’accord de niveau de service des bases
de données dans le cloud souffrent d’un problème d’allocation en ressources,
de sur-allocation et de sous-allocation, c’est-à-dire qu’il y a un écart entre les
ressources fournies et les ressources requises. Comme l’utilisation des bases de
données dans le cloud est dynamique, les ressources du système devraient être
fournies en fonction de sa charge de travail.

Dans cette thèse, nous présentons nos recherches sur l’allocation de ressources
efficace en énergie pour les bases de données dans le cloud, utilisant des tech-
niques d’ajustement dynamique de la tension et de la fréquence (dynamic
voltage and frequency scaling, DVFS for short) pour résoudre les problèmes
d’allocation en ressources. De plus, une approche de migration est intro-
duite pour améliorer davantage l’efficacité énergétique des systèmes de bases
de données dans le cloud. Notre contribution peut se résumer comme suit:

• Dans un premier temps, le comportement de l’efficacité énergétique du
système de base de données dans le cloud utilisant des techniques DVFS
est analysé. En fonction des résultats du benchmark, deux approches de
sélection des fréquences sont proposées.

• Ensuite, une approche de type problème borné est introduite pour la
sélection de la fréquence. Avec cette approche, la consommation d’énergie
et le coût de migration sont traités séparément. Un programme linéaire
et un algorithme multi-phases sont proposés. Puisque l’espace de solu-
tion est très grand, les deux algorithmes sont comparés avec un petit cas,
tandis que l’algorithme multi-phases est évalué avec des cas plus grands.

iii

• En outre, une approche de type problème d’optimisation est introduite
pour la sélection de la fréquence. Avec cette approche, la consomma-
tion d’énergie et le coût de migration sont traités comme un tout. Un
algorithme génétique ainsi qu’un algorithme fondé sur la recherche ar-
borescente Monte-Carlo sont proposés. Chacun des deux algorithmes
présente des avantages et des inconvénients.

• Enfin, une approche de migration est introduite pour migrer les données
en fonction des fréquences données et de leur disposition actuelle. Un
plan de migration peut être obtenu en temps polynomial grâce à l’algorithme
Constrictif MTHM proposé.

iv

Acknowledgments

In the past three years, I have been working as a PhD candidate in SEPIA
group, IRIT Lab at Université Toulouse 3 Paul Sabatier. In the last days
of this period, my feeling is quite complicated and beyond description. I’m
grateful for having met so many awesome people during this three years’ time.
Without their help and support, I wouldn’t have been able to complete my
work so fluently. I really appreciate everyone, and I even start to miss my
staying here. Every time when I think my study and life here will end soon, I
would fell rather fragile and emotional. Meanwhile, I am also looking forward
to the next stage of my life. My feels are really complicated recently. I would
like to quote a Chinese poem here to express my feelings for writing this
acknowledgment. “岁月蹉跎， 白驹过隙， 三年行来， 感悟良多。 念及离
别， 辗转反侧， 子 时提笔，心有所思，信手拈来，忆似水年华，感时光
不复。” (Time is just flashing. Three years is like a short moment and has
passed quickly. It has indeed inspired me deep in my heart. Considering the
coming farewell, I really cannot take easily. With a pen at hand, here I write
goodbye to the past three years and all the memories shall stay in my heart
eternally.)

First of all, I would like to express my deepest gratitude to my advisor,
Prof. Dr. Jean-Marc Pierson for his offer to work with him and his constant
support, while still giving me the freedom to research on my own. 6 years
ago, we first met each other at Northeastern University in Shenyang, and he
deeply impressed me with his talent and passionate. He not only taught me
the research principles, but also gave me a lot of support with my publications
and this thesis. All the lectures he gave will be the valuable fortune of my life.
Besides, I would like to express my appreciation for all the jury members for
their suggestions on my thesis.

Secondly, I would like to express my appreciations for China Scholarship
Council (CSC) who funded this research, and also my master mentor Prof. Dr.
Jie Song who recommended me for this project. Without them, I could not
have this opportunity working in the group.

Furthermore, I would like to thank all my colleagues and friends in IRIT.

v

Malik Irain, Gustavo Rostirolla, Léo Grange, and Tanissia Djemai, it’s my
pleasure to meet and work with you guys and thank you for making my life
so colorful here. Also, I would like to express my appreciations for Tristan
Salord, Dr. Ophélie Fraisier, Dr. Minh-Thuyen Thi, Dr. Zongyi Liu and Dr.
Jingyi Wang, which I have benefited a lot from your encouragements.

Last but not least, I want to thank my families for their love and support. I
was kind of village boy from a small town in China. My parents, Yuzhang Guo
and Xianyun Hao, always supported me from my first step with computers until
my PhD. Without their support, I would never have been able to become who
I am now. When I was in difficulties, they always acted as patient listeners
and helped me to realize the goodness of the life and the meaning of love.
Also, I would like to express my deepest gratitude to my wonderful partner
Dejun Pan, who constantly encourages me to pursue my silly dreams and loves
me unconditionally. Three years’ long-distance relationship can be extremely
challenging for all the couples. We succeeded. I used to think Love was an
abstract class until you implemented it and initialized it in my heart. I used
to be afraid of the lonely nights, but thanks to you I do not fear it anymore.
Thank you for tolerating my unreasonable drama and comforting me from
these nightmares.

In the end, I hope this thesis is not the end of academic thinking of mine.
I hope that the former sentence is not just a hope.

Chaopeng Guo
Toulouse, April 2019

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Research Goals . 8
1.4 Overview . 9

2 Related Works 11
2.1 Cloud Database Systems . 11
2.2 Energy Efficiency . 14

2.2.1 Energy Efficiency Measurement 15
2.2.2 Power Modeling . 15
2.2.3 Energy Efficiency Analysis and Improvement 17

3 Modeling 23
3.1 Energy Efficiency in Cloud Databases 23

3.1.1 Methodology . 23
3.1.2 Platform Setup . 24
3.1.3 Experimental Cases . 26
3.1.4 Result Analysis . 27
3.1.5 Lessons Learned . 30

3.2 Frequency Selection Model . 30
3.2.1 Generic Model . 30
3.2.2 Specialized Model for Cloud Databases 32

3.3 Model Simplification Approach 33
3.3.1 Power Consumption Upper Bound 34
3.3.2 Migration Cost Upper Bound 37
3.3.3 Complexity Analysis of Model Simplification 39

3.4 Parameters’ Benchmark . 40
3.5 Model Extension . 40
3.6 Summary . 41

vii

4 Frequency Selection with Bounded Problem 43
4.1 Objective . 43

4.1.1 Basic Objectives . 43
4.1.2 Bounded problems . 44

4.2 Nonlinear Programming Algorithm 44
4.2.1 Nonlinear Programming Model 45
4.2.2 Constraints . 47
4.2.3 Nonlinear Programming Objective Function 48

4.3 Multi-Phases Algorithm . 49
4.3.1 Frequency Locating Phase 51
4.3.2 Frequency Traversal Phase 57
4.3.3 Frequency Assignment Phase 62
4.3.4 Frequency Filter Phase 65
4.3.5 Frequency Search Phase 66
4.3.6 Frequency Evaluation Phase 66
4.3.7 Summary and Complexity Analysis 67

4.4 Experiment . 69
4.4.1 Setup . 69
4.4.2 Comparison Experiment 71
4.4.3 Scalability Experiment 73

4.5 Summary . 74

5 Frequency Selection with Optimization Problem 75
5.1 Objective . 75
5.2 Genetic Algorithm . 76
5.3 Monte Carlo Tree Search Algorithm 77
5.4 Experiment . 80

5.4.1 Parameters’ Influence . 80
5.4.2 Scalability Analysis . 83
5.4.3 Optimization Bound Analysis 84
5.4.4 Comparison with Half Hot and Half Cold Approach . . . 85

5.5 Algorithm Robustness Analysis 86
5.6 Summary . 92

6 Migration Approach 93
6.1 Objective . 93
6.2 Block Selection . 96
6.3 Block Migration Plan . 98
6.4 Experiment . 107

6.4.1 Migrated Block Comparison 108
6.4.2 Migration Plan Generation Comparison 110

viii

6.4.3 Estimation Approach Evaluation 111
6.5 Summary . 113

7 Conclusion and Perspectives 115
7.1 Conclusion . 115
7.2 Perspectives . 117

ix

x

List of Figures

1.1 Without Resource Provision Technique 5
1.2 With Resource Provision Technique 5

2.1 Architecture of Cassandra . 13
2.2 Virtual Nodes . 14

3.1 Relationship between Request Amount and Throughput 27
3.2 Relationship between Throughput and Energy Efficiency 28
3.3 Energy Consumption for each Workload 29
3.4 Example of Achieving Power Consumption Upper Bound 35
3.5 Example of pmax Proof: Scenario 1 36
3.6 Example of pmax Proof: Scenario 2 36
3.7 Example of Achieving Migration Cost Upper Bound 37

4.1 Frequency Solution Space . 51
4.2 Example of Frequency Locating and Traverse 53
4.3 Frequency Combination Traverse Examples 61
4.4 Example of the Workload . 69
4.5 Execution Time Comparison . 71
4.6 Objective Value Comparison . 72
4.7 Result of Frequency Selection Comparison 73
4.8 Result of Scalability Experiment 74

5.1 One iteration of the general MCTS approach 77
5.2 Frequency Selection Tree Example 78
5.3 The Influence of Generation Size on Accuracy 81
5.4 The Influence of Population Size on Accuracy 82
5.5 The Influence of Amount of Candidates on Accuracy 82
5.6 Scalability of the Frequency Selection Algorithm 83
5.7 Optimization Bound of the Frequency Selection Algorithm . . . 84
5.8 Comparison with Half Hot and Half Cold Approach 85
5.9 Relationship between φ and Root-Mean-Square Deviation 86

xi

5.10 Example of Prediction Error Influence 87
5.11 The Influence of Prediction Errors 89
5.12 The Influence of Capacity Tolerance Factor 91

6.1 Migration Timeline . 94
6.2 Result of Migrated Block Comparison 108
6.3 Migration Plan Generation Comparison 109
6.4 Evaluation Result of Migration Cost Estimation Approach . . . 111

xii

List of Tables

3.1 Core Properties of Cassandra 25
3.2 Core Properties of YCBS Workload 25
3.3 Available Frequency Options . 26
3.4 Workload Size Per Node . 26
3.5 Node’s Capacity under Each Frequency Option 28
3.6 Migration Cost for Unit Block 40

4.1 Specifications of the symbols . 47
4.2 Example of Frequency Combination Locating 56
4.3 Complexity of Operations . 68
4.4 Properties of the Test Cases for Nonlinear Programming Algo-

rithm . 71

6.1 1-0 Knapsack Details in Block Selection Phase 96
6.2 Multiple Knapsacks Details in Block Migration Phase 99
6.3 Specifications of the symbols . 100
6.4 The Amount of Valid Solutions of 1000 Solutions 108

xiii

xiv

Chapter 1

Introduction

Nowadays, more and more cloud database systems have been implemented and
deployed to meet users’ rapidly growing data querying need. With the rapid
growth of the data volume and construction of data centers, the problems
of energy efficiency and energy waste attract more attention. Energy saving
and energy efficiency of cloud database systems get more and more attentions.
However, the typical cloud database system suffers from inefficient resource
provisioning that causes energy waste. In this thesis, we show our researches
on energy-efficient resource provisioning for cloud database system to improve
its energy efficiency. In this chapter, we give a comprehensive introduction
about our work including motivation, problem statement, research goals and
overview of this thesis.

1.1 Motivation
Over the last decades, concerns have been raised about increases in the electric-
ity used by information technologies, and other consumer electronic devices,
data centers, and to a much lesser degree, Internet distribution networks [1–3].
According to United States Data Center Energy Usage Report [3], in 2014,
data centers in the U.S. consumed an estimated 70 billion kWh, representing
about 1.8% of total U.S. electricity consumption. The consumption increased
about 4% from 2010-2014 and it is expected to continue slightly increasing in
the near future, increasing 4% from 2014-2020. It is estimated that powering
digital devices and the supporting infrastructures consumed about 5% of global
electricity use in 2012 [4–6]. Janine Morley et al. [1] reviewed evidences that
network and data centre energy consumption are significant growing. With
their consideration about the trends in data demand that underpin the expan-
sion of these infrastructures and energy use, they concluded that the growth in

1

data traffic continue to outweigh efficiency gains, and increased data flows over
mobile and Internet networks represent an increase in energy consumption. In
term of the expenditure of energy used by data centers, it is estimated in [7]
that the cost of powering and cooling accounts for 53% of the total opera-
tional expenditure of data centers, and the energy bills for major cloud service
providers are typically the second largest item in their budgets [8]. Under
these circumstances, a lot of researches have been made to reduce the energy
consumption of data centers and corresponding cloud systems.

Cloud database system is one of the typical cloud systems. To cope with the
huge data storage and query needs, massive cloud databases are established,
such as, HBase [9], Hive [10], Cassandra [11] and MongoDB [12]. In a common
case, a cloud database system contains hundred of nodes within the cluster.
For example, the technical group from Instagram claimed that their biggest
cluster contains 100 nodes in Cassandra summit 2016 [13]. In this thesis, the
optimization goal is to improve energy efficiency of cloud database systems
and reduce its energy waste. To improve energy efficiency of cloud database
systems, a lot of researches have been done. For example, to achieve green
computing, the measurement model and approach of the energy efficiency of
cloud database systems were defined by Jie Song et al. [14], and the energy
efficiency characteristics of cloud database were investigated. Similarly, Willis
Lang et al. [15] studied the tradeoff between performance and energy efficiency
for parallel database management systems to give principles of designing an
energy-efficient database system. Typical cloud database systems are wasting
energy. Since users’ activities are dynamic, the workload of the system varies
with time: users’ activities are more intense in daytime, whereas they do little
at night. In this case, part of the energy is wasted if the system’s configuration
at night remains the same as the one during daytime. In another case, in the
query process, some hotspot areas exist, in which the workload is more intense
than on other nodes. If all the nodes keep the same configuration, there might
be Service-level agreement (SLA) violation or energy waste, even both. The
energy waste and SLA violation come from resource provisioning.

Some self adjusting systems emerged to deal with resource provisioning
in cloud systems, i.e. Ursa [16] and WattDB [17]. WattDB is a self adjust-
ing distributed database management system, which switch nodes on and off
according to current workload. Ursa, a self adjusting cloud storage system,
migrates data from the hotspot nodes to underutilized nodes with minimizing
latency and bandwidth manner, and turns off the underutilized nodes to save
energy if possible. However, these strategies might not be suitable for cloud
database systems since switching nodes on and off would cause an unaccept-
able migration cost and damage system availability. In WattDB, Daniel Schall

2

et al. took advantages of solid-state drive to reduce input and output cost dur-
ing the migration process. In Ursa, Gae-Won You et al. tried to turn off the
underutilized nodes which do not contain primary replicas. However in cloud
database systems, write operations reach all the replicas eventually, while read
operations reach one or more replicas according to the strategy of the sys-
tem [18]. Therefore, Ursa’s strategy cannot be applied within cloud database
system, since some replicas might be unreachable when the underutilized nodes
are shutdown.

Houssem-Eddine Chihoub et al. [19] introduced another idea to improve
the energy efficiency of cloud database systems, in which they analyzed the
tradeoff between energy and consistency of the system using Dynamic Voltage
and Frequency Scaling (DVFS). DVFS [20] is an efficient technology to control
power consumption of processors. Using DVFS, power control policies can be
made. In modern Linux operating systems, five different power schemes (gov-
ernors) are available to dynamically scale CPU frequency according to CPU
utilization. The dynamic tuning strategies use CPU’s running information
to adjust its frequency, which does not reflect the state of cloud databases’
workload lifecycle including memory and disk transfers. The current power
schemes do not exactly match their design goal and may even become ineffec-
tive in improving energy efficiency [21]. Shadi Ibrahim et al. [21] compared
energy consumption for three applications, Pi, Grep and Sort, in Hadoop
System under different frequency governs. They found out that, for all the ap-
plications, PowerSave governor did not achieve lowest energy consumption,
while Performance governor did not achieve highest performance as well.
For example, Userspace governor with 2.53Ghz (the highest CPU frequency
in their environment) achieves the best results both in terms of performance
and energy efficiency. In Pi application, it achieve 104% better performance by
employing the highest CPU frequency rather than the lowest frequency, 1.20
GHz, whereas the average power consumption increases by 48%. Therefore,
it makes sense to control frequency in a fine-grained way. In [19], Houssem-
Eddine Chihoub et al. proposed a property approach, in which they assigned
highest frequency to half of the nodes and the lowest frequency to another half,
and they achieved 23% of energy saving. However, this approach is a static
method for assigning frequencies, and the usage scenario is limited.

The other previous researches [16, 17] show that the energy efficiency of
cloud system can be improved by switching underutilized nodes. However, this
strategy might unsuitable for cloud database systems because not only the mi-
gration process would introduce a huge migration cost, but also the availability
of the system might suffer [22]. For example, Sudipto Das et al. [22] compared
Stop and Copy migration strategy with their proposed Iterative Copy migra-

3

tion strategy. Iterative Copy has great performance in term of unavailability
time, up to 3-5 times less than Stop and Copy. Meanwhile, in terms of failed
operations,Iterative Copy is less than Stop and Copy up to 10 times.

In conclusion, it is necessary to propose a novel approach to improve en-
ergy efficiency of cloud database systems by providing energy-efficient resource
provisioning approach. We identified the following properties:

• Availability: Considering the different constructions of cloud database
systems, i.e. file system, consistency requirement and so on, the approach
should be based on an abstraction of the cloud database system so that
the approach can be applied to different architectures.

• Flexibility: Considering the dynamic workload nature of cloud database
systems, the approach should adjust the resources of the system accord-
ing to its workload.

• Scalability: Considering the scale of the cloud database system, the ap-
proach should be scalable to be applied to larger problems.

• Efficiency: By means of the approach, the energy wasted by resource
provisioning issue of the system should be reduced, which leads to the
improvement of energy efficiency.

1.2 Problem Statement
Workload of a cloud database system vary with time, because users’ activi-
ties are dynamic. For example users’ activities are more intense at day time,
whereas they do little at night. In this situation, energy is wasted if the
configuration of the system at night remains the same as the one during day-
time. Sometimes workload is unbalanced, in which part of system is occupied,
whereas the other part remains idle. In this circumstance, energy is wasted
because the workload is not scheduled accordingly.

The energy waste mentioned above comes from resource provisioning, i.e.
there is a gap between required resource and provided resource. On one hand,
over-provisioning increases energy waste and costs. On the other hand, under-
provisioning causes Service Level Agreements (SLA) violation and Quality
of Service (QoS) dropping [23]. At the cluster level, the situations of over-
provisioning and under-provisioning might exist at same time. Figure 1.1 shows
an example of resource provisioning for a small cluster, consisting of 10 nodes,
where the bars present the required resource of each nodes and the lines present
the provided resource. In Figure 1.1, the provided resources by node 1, 2 and

4

1 2 3 4 5 6 7 8 9 10
Node Id

0

1000

2000

3000

4000

5000

6000

7000
Re

qu
rie

d
Re

so
ur

ce
Provided Resource

Figure 1.1: Without Resource Provision Technique

1 2 3 4 5 6 7 8 9 10
Node Id

0

1000

2000

3000

4000

5000

6000

7000

Re
qu

rie
d

Re
so

ur
ce

Provided Resource

Figure 1.2: With Resource Provision Technique

5

3 are less than the required resources by the workload. In contrast, in node
4 to node 10, the provided resources are sufficient, but part of resources are
wasted. Because of the resource under-provisioning, node 1 to nodes 3 suffer
from SLA violation, in which parts of workload cannot be executed. Node 4
to node 10 suffer from energy waste since the resources are over-provisioned.
Figure 1.2 shows an ideal case of resource provisioning in which the provided
resource and required resource are compatible, and meanwhile SLA violation
is eliminated and wasted resource is minimized.

Based on DVFS [20], the system resource can be provided in a fine-grained
way. In this work, we propose frequency selection approach, in which the
frequency of each node within the system is assigned according to its dynamic
workload. By means of frequency selection approach, we make the provided
resource and the required resource compatible, which leads to the reduction
of SLA violating caused by resource under-provisioning and the reduction of
energy waste caused by resource over-provisioning.

The foundation of the frequency selection approach is the relationship be-
tween energy efficiency and frequency options. Afterwards, the frequencies can
be assigned to the system according to the workload prediction. Therefore the
first problem in this thesis is the analysis of the energy efficiency behavior of
the system under different frequency options. The next problem is how to
assign frequencies to the system according to the workload prediction.

However, compared with the former one, the assignment method is more
complex. To improve the energy efficiency of the whole system, we need not
only frequency selection but also corresponding migration approach. There
are two reasons to support this idea:

1. With the frequency selection approach, two situations which decrease the
system’s energy efficiency are unavoidable. 1) When a node is assigned
with the highest frequency but the workload still needs more resource
to be executed, part of the workloads should be migrated to another
node to avoid SLA violation. 2) When a node is assigned with the
lowest frequency but the workload is still too low, part of the workload
from other nodes should be migrated to avoid energy waste. Even if the
underutilized nodes are turned off, the migration strategy is still needed,
since the data would be accessed by users. If the node is turned off
directly, SLA might be violated.

2. With the migration strategy, energy efficiency of the system can be fur-
ther improved. Intuitively, a node with higher frequency will consume
more energy but it can take more workload as well. Meanwhile, apply-
ing migration costs energy. Consider the following case: a node has a

6

resource under-provisioning situation, namely that it requires more re-
sources. With the case, there are 2 choices for this node: 1) assign a
higher frequency, which increases energy consumption of the CPU; 2
migrate the workload to another node, which causes certain amount of
energy denoted as migration cost. If the migration cost is lower than
the energy consumption increment of the node with the assignment of a
higher frequency, the energy efficiency of the system is improved.

With migration, there are mainly 3 problems. 1) Migration Selection:
Which part of the workload should be migrated. 2) Migration Plan Genera-
tion: How to decide the destinations for the migrated workload. 3) Migration
Execution: How to complete the migration. This work focuses on the first two
parts which are defined as migration process.

To be noticed, the frequency selection approach and the migration approach
are not independent. The frequency selection can be treated as searching pro-
cess. In the solution space, we want to find a frequency configuration that
minimize the energy consumption of the system. Within the searching pro-
cess, the migration approach is applied for each solution candidate to evaluate
the given frequency configuration. In terms of practice and implementation of
the corresponding algorithms, the main challenge for both approaches is their
scalability. At first, the scalability problem of frequency selection approach
is caused by its huge solution space. In a small case with 30 nodes and 8
available frequency options, there are 830 frequency combinations in total. In
our environment, the optimal solution of above case can be found by the en-
tire searching within 5 hours. However, a common case has hundred nodes
within a cluster. For example, the technical group from instagram claimed
that their biggest Cassandra system contains 1000+ nodes and biggest cluster
contains 100+ nodes in Cassandra summit 2016 [13]. Secondly, the problem
of migration strategy is NP-hard since it can be reduced to a knapsack prob-
lem [24]. Therefore, combined with the huge solution space of the frequency
combinations, the total searching time would be unacceptable which leads to
the scalability problem for both approaches.

In frequency selection approach, energy consumption of a cloud database
system comes from two parts — the energy used to execute the workload, and
the energy used to apply the migration. The former part is related to the work-
load and execution time, therefore we evaluate it by the power consumption
of the system. The latter part is related to the file system and the network
module, i.e. router, switch and so on, therefore we define it as migration cost.
In practice, user’s requirements vary with their cases, environment and budget.
In some cases, energy consumption is the only concern of the administrator,
then we have to minimize the sum of energy. However, in some cases, users

7

not only concern the energy, but also have the other constraints. For example,
in some green energy system, the power consumption is limited according to
the power supply under certain circumstances [25], and in some production
environment, huge migration cost is unacceptable since it might lead to high
migration overhead or service interruption [22]. Therefore we treat frequency
selection approach as two kinds of problem: Bounded Problem and Opti-
mization Problem. In Bounded Problem, the power consumption and the
migration cost are treated separately, in which one is treated as the objective
and the other one is considered as constraint. With the Bounded Problem,
we have Power Bound Problem and Migration Cost Bound Problem.
In Optimization Problem, we only focus on the energy consumption itself.
Both energy consumption are taken into consideration in frequency selection
approach.

In conclusion, 3 approaches will be discussed this thesis: 1 Frequency
Selection with Bounded Problem, 2 Frequency Selection with Opti-
mization Problem and 3 Migration Approach.

1.3 Research Goals

The initial goal of this research is to improve the energy efficiency of cloud
database systems by providing energy-efficient resource provisioning approach,
in which the SLA violation and the energy waste are minimized. To reach this
goal, we have a few subgoals. At first, the behavior of energy efficiency of the
cloud database systems under DVFS technique needs to be analyzed, which is
the fundamental conception of the frequency selection approach. The second
subgoal is to propose a frequency selection model based on the energy effi-
ciency analysis and abstraction of the cloud database systems to overcome the
different characteristics of different cloud database systems. At the end, the
third subgoal is to propose simple, efficient and scalable algorithms to cope
with Frequency Selection with Bounded Problem, Frequency Selec-
tion with Optimization Problem and Migration Approach. However,
as discussed above, searching the optimal solution is unrealistic for all the
problems because of the high complexity of the problem and the huge solu-
tion space. Therefore, we focus on approximation algorithms that give feasible
solutions.

8

1.4 Overview
In this thesis, we present the techniques to provide energy-efficient resource
provisioning method within cloud database systems to improve its energy effi-
ciency. After this introduction chapter, the remaining portion of the thesis is
organized as follows.

• Chapter 2 summarizes the related works of nearby fields of the research,
covered by this thesis. The related fields include cloud database system,
energy efficiency of the system and related improvement approaches.

• Chapter 3 analyzes energy efficiency of cloud database systems by an
empirical methodology first using benchmark on real infrastructure. And
then the frequency selection model is proposed. In the modeling, at first
a generic frequency selection model is proposed for cloud systems, and
then the model is specialized for cloud database systems. Secondly, a
model simplification approach is introduced to reduce the complexity for
computing the estimations of power consumption and migration cost.
Thirdly, a benchmark experiment on real infrastructure is introduced to
get the static parameter in the modeling.

• Chapter 4 solves the frequency selection with bounded problem. At
first, the problem type, and corresponding constraints and objective
are illustrated, in which the frequency selection problem is regarded as
bounded problem. Then, two algorithms, Nonlinear Programming Algo-
rithm and Multi-Phases Algorithm, are proposed, and experiments are
introduced to evaluate the proposed algorithms.

• Chapter 5 solves the frequency selection with optimization problem. At
first, the chapter illustrates the constraints and objective used. Then,
two algorithms are proposed, Genetic Algorithm and Monte Carlo Tree
Search Algorithm, to find approximated solutions to the problem. Both
algorithms have their advantages and disadvantages which are discussed
in the experiment section.

• Chapter 6 shows details of the migration approach. In the chapter,
the objective of the migration approach is discussed. Then, 2 algorithms
are proposed to cope with different phases within migration process, and
corresponding experiments are proposed to evaluate the algorithms.

• Chapter 7 presents the conclusion of this thesis and proposes perspec-
tive.

9

10

Chapter 2

Related Works

Achieving better energy efficiency has been drawn great attention lately, since
the explosive energy consumption and increasing energy bills caused by the
growth of the data volume and construction of data centers. Under this
circumstance, more and more researches emerge to improve the energy effi-
ciency on cloud systems. As a part of the cloud systems, however, the effort
for improving energy efficiency for cloud database has not been done a lot.
In the following, we give an overview over related workloads in the fields of
cloud database systems, energy efficiency and related improvement approaches
within cloud system and cloud database system field.

2.1 Cloud Database Systems
A cloud database is a database that typically runs on a cloud computing
platform, and access to the database is provided as-a-service [26]. Generally,
the cloud database systems can be categorized into 3 types according to their
data model.

• SQL Database: SQL Database mainly refers to the Relational Database
Management System (RDBMS). SQL Database can run in the cloud
environment using virtual machine technique or as a service. There are
a lot of SQL Database systems in the cloud environment, for example
MySQL Cluster [27], Amazon Aurora [28], Oracle Real Application Clus-
ters [29] and so on. As traditional RDBMS, SQL Database in cloud en-
vironment still gives fully support of Atomicity, Consistency, Isolation,
Durability properties (ACID for short). While it can be scaled vertically
easily, it is still challenging to scale SQL Database horizontally.

• NoSQL Database: The term NoSQL — “Not Only SQL” — refers

11

to a group of non-relational database management systems [30]. Ac-
cording to http://nosql-database.org [31], there are at least 225 NoSQL
databases in current stage, with various features to meet different user
cases and requirements. In term of data model, NoSQL databases can be
categorized as Key-Value stores, Column-family stores, Document stores
and Graph based stores to overcome the diversity of user requirements.
In aspect querying method, NoSQL Database provides a ton of APIs
depending on the database itself, and some NoSQL databases provide
SQL-like querying languages, for example CQL [32] provided by Cas-
sandra, HiveQL [33] provided by Hive. More information about NoSQL
database can be referred from the following surveys [11,30,34].

• NewSQL Database: NewSQLs are a class of modern relational DBMSs
that seek to provide the same scalable performance of NoSQL for OLTP
read-write workloads while still maintaining ACID guarantees for trans-
actions [34, 35], for example VoltDB [36] Spanner [37] RubatoDB [38].
According to the definition of NewSQL database, NewSQL database can
be categorized as following 3 types: 1 novel systems that are built from
the ground-up using a new architecture, 2 middleware that re-implement
the same sharding infrastructure that was developed in the 2000s by
Google and others, and 3 database-as-aservice offerings from cloud com-
puting providers that are also based on new architectures [35].

In this thesis, we use Apache Cassandra [39, 40], a wildly used NoSQL
database, as our example within the demonstration. Cassandra has been
chosen by following reasons: 1, Cassandra is a popular open-source NoSQL
database, 1st within the wide-column store based NoSQL database and 10th
within overall cloud databases according to db-engines.com, which can be easy
obtained; 2, Cassandra do not rely on the third party distributed file system,
like HDFS [41], which leads to easy installation and deployment; 3, Houssem-
Eddine Chihoub et al. [19] have done some research about performance of
Cassandra with DVFS, which gives us a base line of optimization. Since the
database system itself is not our main research objective, we only introduce the
Cassandra briefly in aspect of its architecture and replication strategy, which
are related to our modeling. More details can be found in [39].

Cassandra is a decentralized structured storage system [42]. The funda-
mental component behind this architecture is gossip protocol [43], a peer-to-
peer protocol, which is used to cope with inner communication. The nodes
exchange their inner states about themselves and the nodes they know by a
heartbeat mechanism using gossip protocol. By switching the state informa-
tion, Cassandra implements a failure detection mechanism to evaluate whether
a node of the system is faulty or dead.

12

In Cassandra, the primary key (or row key) space is presented as a ring
structure, and keys in the ring are defined as tokens. Figure 2.1 shows the
logical view of Cassandra architecture, a key ring. A ring is considered as a
circle that presents the range of token values. The nodes are placed in the
ring, and each node within the cluster is given a token value. By means of
the tokens of nodes, a ring is split to several token ranges. When a token
belongs to a range between two continuous nodes, the corresponding data is
placed on the the latter node. For example, in Figure 2.1, a token whose value
is 15 is assigned to the node whose token is 20. In Cassandra, a parameter
Replication Factor is used to decide the data replications number. In the
example, Replication Factor is set to 3 indicating that there are 3 copies of
the data. The first copy is assigned by the range of tokens, and the other 2
copies are assigned to the following two nodes in the ring. A token is generated
according to a partition function which is denoted as partitioner. Partitioner
is a key design of Cassandra, whose nature is a map from row key space to
token space and it is used to determine how data is distributed across the
nodes in the cluster. Currently, there are 3 partitioners: Murmur3Partitioner
(default), RandomPartitioner and ByteOrderedPartitioner [44]. Partitioners
take advantage of consistent hash method [45] to make sure all the keys are
distributed within the ring consistently. However, the tokens for nodes still
need to be assigned manually under this strategy.

Figure 2.1: Architecture of Cassandra

Load balance is an important issue within cloud computing [46]. However,
based on token ring architecture, the tokens of nodes are quite essential for
load balance. Virtual Nodes (VNodes for short) [47] are introduced to avoid
data skew. Figure 2.2 presents the basic conception of VNodes. The token ring

13

Figure 2.2: Virtual Nodes

with VNodes technique is split into small partitions, and each physical node is
allowed to possess more partitions. Therefore the relationship between token
ranges and nodes is changed from one-for-one to several-for-one. Speaking of
the replications, all replications are assigned randomly across the nodes. Under
the VNodes policy, the dataset is placed according to its hashed key (token
produced by partitioner) and VNodes placement.

In conclusion, Cassandra is a decentralized NoSQL cloud database system,
in which data is organized by tables and identified by a primary key. The key
space is presented as a key ring in the system to determine its location. To
prevent data skew, Cassandra introduce VNodes for data balance. Each node
can contain several VNodes.

2.2 Energy Efficiency

Energy efficiency is a hot topic within cloud-related systems. Xindong You et
al. made a survey and taxonomy of energy efficiency relevant surveys in cloud-
related environments to summarize energy efficiency related works in [48]. In
this thesis, we mainly focus on the energy efficiency within cloud database
systems in aspect of energy-efficient resource provisioning method. In this
section, we summarize the energy efficiency related work within database and
cloud database fields.

14

2.2.1 Energy Efficiency Measurement

In computer science, energy efficiency mainly refers to a ratio between sys-
tem’s useful work and its total energy used for completing the work, shown as
Equation 2.1.

energy efficiency = work done

energy consumption
(2.1)

In database and cloud database area, the workload is presented as trans-
actions or operations within the system. Therefore, the energy efficiency of
database or cloud database is presented as a ratio between amount of transac-
tions (work done) and energy consumption [49–51], because of the workload of
databases, shown as Equation 2.2. Furthermore, a ratio between throughput
(or performance) and power consumption (or watts) is used as well [49,50,52]
in database and cloud database area, shown as Equation 2.3. Equation 2.2
considers energy efficiency of the system within a period of time. In contrast,
Equation 2.3 tries to reveal transient energy efficiency of the system.

energy efficiency = amount of transactions

energy consumption
(2.2)

energy efficiency = throughput

power consumption
(2.3)

2.2.2 Power Modeling

In order to evaluate the energy efficiency of a system, energy consumption
is required. Generally, energy consumption of computing resources can be
obtained by energy sensors, wattmeters and power distribution units [53], or
can be estimated by power models [54].

According to different devices and environments, there are different energy
consumption estimation methods existing. For example, Miyuru Dayarathna
et al summarized energy consumption models within data center field in [55],
and Raja Wasim Ahmad et al. summarized energy consumption models for
smartphone applications in [56].

In this thesis, we try to improve the energy efficiency of cloud database
systems by taking advantage of DVFS. Therefore, we only focus on CPU re-
lated power models. In this section, we introduce widely used power modeling
methods.

15

Digital Circuit Level Energy Consumption Modeling

Complementary Metal-Oxide-Semiconductor (CMOS for short) is a technol-
ogy for constructing integrated circuits. CMOS technology is used in micro-
processors, microcontrollers, static RAM, and other digital logic circuits [57].
This power model can be used to accurately model the energy consumption at
the micro architecture level of the digital circuits [55].

The power consumption of a CMOS-based microprocessor is defined to be
the summation of capacitive, short-circuit and leakage power. The capacitive
power (dynamic power dissipation) is the most significant factor of the power
consumption [58]. The capacitive power pcapacitive can be defined as Equation
2.4, in which where A is the number of switches per clock cycle, Cef is the total
capacitance load, Vdd is the supply voltage, and f is the frequency [58,59].

pcapacitive = ACefV
2
ddf (2.4)

In practice, f can be presented as Equation 2.5, in which Vt denotes thresh-
old voltage and κ denotes hardware-design-specific constant factor [60,61]. To
be noticed, Vdd ≥ Vt ≥ 0 and κ > 0.

f = κ
(Vdd − Vt)2

Vdd
(2.5)

E.N. Elnozahy et al. [62] simplified Equation 2.4 as Equation 2.6, in which
c0 presents the power consumption of all components except the CPU and c1
is a constant. They expressed voltage as a linear function.

p = c0 + c1f
3 (2.6)

Jun Liu et al. assumed the leakage power is a constant, β. They obtained
the total power consumption by the summation of the leakage power and the
capacitive power, namely by pcapacitive + β. Then, they normalized the power
consumption as Equation 2.7, in which f 3 presents the capacitive power and
β presents leakage power.

p = f 3 + β (2.7)

System Utilization Based Server Power Models

Fan Xiaobo et al. [63] had shown that the linear power model can track the
dynamic power usage with a greater accuracy at the PDU level. They pre-
sented their power model as Equation 2.8, in which pidle and pmax present the
power consumptions of when CPU is idle and fully utilized respectively, and
ω presents the CPU usage.

16

p = pidle + ω × (pmax − pidle) (2.8)

Combining Equation 2.6 and Equation 2.8, Song Jie et al. [51] presented
another power model by solving Equation 2.9, in which X1, X2, Y1, Y2 are
constants. They showed their result by Equation 2.10, in which A, B, C, D
are system-related coefficients.

∂p(f 3, ω)
∂ω

= X1 + Y1f
3

∂p(f 3, ω)
∂f 3 = X2 + Y2ω

(2.9)

p(f 3, ω) = Af 3 +Bωf 3 + Cω +D (2.10)

2.2.3 Energy Efficiency Analysis and Improvement
A variety of the past researches have been done to study and analyze the
energy efficiency in cloud systems and cloud database systems. In this section,
the related works about analyzing and improving energy efficiency of cloud
database systems are summarized.

Related Surveys

Xindong You et al. [48] made a survey about energy efficiency relevant sur-
veys in cloud-related environments. This survey summarized and classified
energy efficiency related surveys from 2011 to 2017 that gives the comprehen-
sive knowledge about energy efficiency within cloud-related field.

The following surveys are more related to this thesis. Toni Mastelic et
al. [64] summarized energy efficiency related works within cloud computing
infrastructure domain with regard to network, server, cloud management sys-
tem and applications. Anne-Cecile Orgerie et al. [54] summarized techniques
and solutions that aim to improve the energy efficiency of computing and net-
work resources. In their survey, the computing resources not only contain the
individual nodes (or servers), but also refer to the entire infrastructure, which
take advantage of virtualization. For computing resources, they summarized
energy efficiency related techniques such as energy consumption estimation
method, node-level optimization approach, grid and data centre power man-
agement, and virtualization approach. For network resources, they summa-
rized hardware level techniques, shutdown strategy, slowdown strategy, and
coordination approach. Davide Careglio et al. [65] gave a lot of possible tech-
niques of reducing energy consumption in large scale distributed systems in

17

hardware level, such as process, memory, disk/flash, and environment. Qaisar
Shaheen et al. [66] summarized energy saving techniques within computational
clouds from hardware level to software level, in which they introduced some
researches take advantage of DVFS to achieve better energy efficiency.

Energy Efficiency Analysis

Some related works analyzed the energy efficiency of the relational database
management system, parallel databases. In this thesis, we focus on the energy-
efficient resource provisioning for cloud database systems using DVFS tech-
nique, therefore the energy efficiency of cloud database system with DVFS
technique is a fundamental component. The following results inspired our
work.

Tsirogiannis Dimitris et al. [49] analyzed the relationship between energy
efficiency and performance in two RDBMS systems, PostgreSQL [67] and
System-X, a commercial DBMS. To be noticed, the performance in their re-
search refers to 1

execution time
. In their research, they made a detailed study of

the power-performance profiles of core database operations, HashJoin, Scan
and Sort on modern scale-out hardware. Then, they concluded an investiga-
tion on the effects of both hardware and software knobs on the energy efficiency
of complex queries in the DBMSs. They found out that with different oper-
ations, CPU power used can vary widely, and CPU power is not linear with
number of cores used. Then, they found that the best performing configuration
was also the most energy-efficient one in most of their experiments. However,
in the few cases where this did not hold, energy efficiency did not increase by
more than 10%. They believed that this relationship is a result of large up-front
power costs in modern server components, i.e. CPU, memory and disk (ssd or
hdd). In the end, they gave two directions to improve the energy efficiency of
the system: 1) make resource consolidation across underutilized nodes to save
power without sacrificing performance, or 2) use alternative energy-efficient
hardware to lower fixed-power costs.

Willis Lang et al. [15] gave guiding principles for building up the energy-
efficient cloud DBMS with query properties and scalability taken into account.
At first, they investigated the trade-off in performance versus energy efficiency
when performing speedup experiments on TPC-H [68] queries. In their bench-
mark, they used Vertica [69] and HadoopDB [70] as target parallel databases.
They concluded that improving performance of parallel DBMS does not always
result in better energy efficiency, and the query bottleneck have to be taken into
account to improve the energy efficiency of the system. Secondly, they ana-
lyzed the trade-off in performance versus energy efficiency under different type
of bottlenecks, i.e. hardware bottleneck (network and disk), algorithm bot-

18

tleneck (broadcast) and data skew. Under the hardware bottleneck, it causes
lower energy efficiency because of underutilized CPU cores. With the algorith-
mic bottleneck, it reduce energy efficiency since scaling out to more nodes does
not speed up broadcast phase of a join. Data skew harms balance of utiliza-
tion of the cluster nodes. Meanwhile, they implemented a dynamic cluster–the
number of nodes can be configured–by P-store [71], a custom-built parallel
engine to have more details about the influence of partition-incompatible op-
erations. In the end, they summarized their experimental results to propose
cluster design principles: 1) for a highly scalable parallel workload, use all
available resources; 2) if the query is not scalable due to the bottlenecks, re-
duce the performance to meet any required targets (i.e. SLAs), it will achieve
higher energy efficiency; 3) within heterogeneous cluster, non-scalable queries
may achieve a better energy efficiency.

In this thesis, we analyzed the energy efficiency of cloud database sys-
tems under DVFS techniques, Section 3.1. We try to analyze the energy ef-
ficiency of the system under different frequency options. Compared with the
above research, we mainly focus on NoSQL database rather RDBMS or paral-
lel RDBMS. Meanwhile, our research direction is the same as the mentioned
ones. We try to save wasted power caused by under-utilized nodes and re-
duce SLA violation caused by over-utilized nodes by energy-efficient resource
provisioning method.

Switching Nodes and Consolidation Method

To improve the energy efficiency of cloud systems and cloud database systems,
a straightforward idea is to switch underutilized nodes off and switch them on
when necessary. Besides that, another idea is to use a consolidation method
and try to turn off the idle machines. Based on these ideas, there are researches
that have been done in cloud systems.

Daniel Schall et al. [17, 50, 72] designed and implemented WattDB, which
is a distributed DBMS that dynamically adjusts itself switching nodes on and
off according to the present workload, and reconfigures itself to satisfy the
performance demands. Gae-Won You et al. [16] proposed system Ursa which
scales to a large number of storage nodes and objects and aims to minimize
latency and bandwidth costs during system reconfiguration. At first, Ursa
tries to detect the hot spots in the system and re-balance these data with
minimized transformation cost. Based on the data migration approach, Ursa
implement power management approach in which they use a threshold strategy
to maintain the amount of nodes to save energy.

Similarly machine virtualization-based technology that consolidating VMs
dynamically and turning off idle servers has been proved effective also. Guangjie

19

Han et al. [73] proposed a remaining utilization-aware (RUA) algorithm for vir-
tual machine placement, and a power-aware algorithm to find proper hosts
to shut down for energy saving. Emmanuel Cecchet et al. [74] proposed
virtualization-driven database provisioning system, Dolly. Dolly took advan-
tage of a new database replica spawning technique that leverages virtual ma-
chine cloning in which Dolly makes more replicas when the system is over-
loaded, and reduces the amount of replicas otherwise. Huangke Chen et al. [75]
proposed scheduling approach for real time tasks within virtualization envi-
ronment based on interval number theory, in which they also proposed scale
functions to switch nodes on and off according to the workload.

Above works achieved energy efficiency in their domains. However, such
approaches naturally require to migrate a large number of data from one node
to another in order to switch off underutilized nodes or switch on more nodes.
In WattDB [17], Daniel Schall et al. took advantage of SDD to reduce the mi-
gration cost. In Usra [16], Gae-Won You et al. took advantage of replica strat-
egy to shutdown nodes which do not contains any primary replicas. However,
in cloud database systems, this technique might be unsuitable since different
implementation of the system, they have different consistency strategy. For
example, Cassandra provides 5 consistency levels, and HBase provides strong
consistency only. In Guangjie Han et al.’s work [73], their virtual machine con-
solidation policy aims to improve resource utilization and reduce the number
of active physical servers, therefore they did not consider the migration cost.
In Dolly [74], Emmanuel Cecchet et al. only considered the down time of the
database but not the migration cost. Meanwhile, they only applied the tech-
nique for a web application’s database layer in which 12 GB amount of data
was used in the extreme case of the experiments. Huangke Chen et al. [75]
scheduled real-time tasks to the virtual machines. When there are overloaded
nodes, they scale up the computing resource, namely turn up more virtual
machines, and otherwise they reduce the amount of virtual machines. In their
work, virtual machines are computing resources to execute the tasks, therefore
there is no migration cost at all.

Compared with above related works, we do not chose to switch the nodes
on and off, but assign a frequency according to the workload amount. Mean-
while, when SLA violation occurs and no higher frequency can be assigned, a
migration is used.

Energy Proportionality Method and DVFS based Method

Balaji Subramaniam et al. [76] measured the power consumption and the per-
formance of a Cassandra cluster, and used power and resource provisioning
techniques to analyze the energy proportionality of the cloud database sys-

20

tem.
Houssem-Eddine Chihoub et al. [19] explored the tradeoff between consis-

tency and energy efficiency on the energy consumption in Cassandra. Mean-
while a prototype model, Hot-N-Cold, is introduced to reduce energy consump-
tion in Cassandra by means of setting the frequencies manually. In our work,
we extend this idea. The frequencies are set by means of frequency selection.

In this work, we use DVFS technique to improve the energy efficiency of
cloud systems, especially cloud database systems. There are some researches
that have been done using Dynamic Voltage and Frequency Scaling (DVFS)
or Dynamic Voltage Scaling (DVS) technique. Yu Lei et al. [77] studied the
power efficiency scheduling problem of real-time tasks in an identical multi-core
system, and presented Node Scaling model to achieve power-aware scheduling.
Liu Jun et al. [61] studied energy-efficient scheduling of periodic real-time tasks
on multi-core processors with voltage islands, in which cores are partitioned
into multiple blocks and each block has its own power source to supply volt-
age. Above works proposed heuristic algorithms to cope with voltage scaling
problem in power saving manner. Compared to our work, we assign the fre-
quency to each node of cloud database systems according to the workload. In
term of the use case, in our approach, we do not switch nodes on and off to
avoid the unacceptable migration cost and unavailability of the system, and for
each time window the workloads cannot be totally reassigned but be migrated
according to the assigned frequencies and previous workloads.

21

22

Chapter 3

Modeling

In this chapter, we mainly focus on the model abstraction. At first, we an-
alyze the energy efficiency of cloud database system under DVFS technique.
Then, the frequency selection model is proposed. The model consists of a
generic model, and a specialized model. The generic model is proposed to deal
with the frequency selection and migration within distributed system, and the
specialized model is derived from the generic model to cope with resource pro-
visioning problem within cloud database systems. As mentioned in Section
1.2, the scalability is one of the obstacle of this research. Therefore, in Section
3.3, a model simplification approach is proposed to boost the performance of
corresponding approaches. In the end, a parameter benchmark is given to
obtained the static parameters within the model, and a discussion about the
extension of the model is introduced.

3.1 Energy Efficiency in Cloud Databases
In order to improve energy efficiency of cloud database system by DVFS tech-
nique, the first step is to analyze the energy efficiency of the system under
different frequency settings. In this section, we take a Cassandra Cluster as
an example to analyze its energy efficiency with DVFS technique.

3.1.1 Methodology

In this thesis, we borrowed the energy efficiency definition from Dimitris Tsirogian-
nis et al. [49] which is shown as Equation 3.1, where ∆t indicate a time window,
p(∆t) is the average power consumption (watts), and l(∆t) is the throughput
(operations per second) during the time window.

23

ee(∆t) = l(∆t)/p(∆t) (3.1)

Intuitively, energy efficiency of the system refers to a ratio between the
workload done by the system and its energy consumption [51]. However, it is
not suitable to describe the energy efficiency in cloud database systems for the
following reasons.

1. Cloud database systems such as Cassandra and HBase behave like a
long-term servicing system, which is different from the typical cloud
computing system such as Hadoop and Spark [78] where batch tasks are
submitted and have a finite duration. Therefore, Equation 3.1 considers
the energy efficiency of the system for a certain time window ∆t.

2. Operation types in cloud database mainly are querying, inserting, updat-
ing and scanning, whereas in cloud computing system the tasks mainly
refer to typical batch tasks, i.e file scanning, aggregation and so on.

In order to evaluate the relationship between energy efficiency and different
frequency settings, a benchmark experiment is designed. For a given frequency
settings, the variation of energy efficiency can be obtained by increasing the
amount of workload and collecting the corresponding power consumption.

3.1.2 Platform Setup
In this section, the details of the benchmark implementation are introduced.

Environment. This benchmark is executed on Grid5000 [79] testbed.
Grid5000 is designed to provide a scientific tool for computer scientists similar
to the large-scale instruments used by physicists, astronomers and biologists.
In the benchmark, a database system Cassandra [11] with 10 nodes belonging
to the Nancy site graphene cluster is deployed and the key parameters of
the database settings are shown as Table 3.1. To be noticed that, the cache
related parameters are set to 0 to avoid the influence of cache mechanism to
the experiment results. num tokens gives the number of virtual nodes for
each node. 256 is the maximal num tokens in current Cassandra Version (3.0)
and higher num tokens is good for data balance. The nodes from graphene
cluster are equipped with a 4 cores Intel Xeon X3440 and 16 GB of RAM. The
energy consumption values are collected by Power Distribution Units (PDU)
and Kwapi API [80]. In this benchmark, the maximum throughputs under each
available frequency option are obtained. The reasons for choosing the Nancy
site and graphene cluster are: 1) The processors in graphene support manual
tuning. In the other site, like Lyon, the processors may need to decrease their

24

Table 3.1: Core Properties of Cassandra

Property Value
num tokens 256
max hints file size in mb 128
key cache size in mb 0
row cache size in mb 0
concurrent reads 32
concurrent writes 32

Table 3.2: Core Properties of YCBS Workload

Property Value
recordcount 30000000
fieldlength 1000
readproportion 0.95
updateproportion 0.05
requestdistribution uniform
threadcount 500

driver to provide this function. 2) In graphene cluster, it was more easier to
create a resource limitation scenario. In contrast, for Lyon site orion cluster,
it was impossible to simulate a resource limitation scenario since the cluster is
quite powerful equipped with 2 cpu (16 cores for each) and 32 RAM.

Dataset and benchmark framework. To simulate the real workload
and test cases, the Yahoo! Cloud Serving Benchmark (YCSB) framework [81]
is selected as benchmark executor. Apache Cassandra [11] is chosen as target
cloud database. YCSB is an open-source specification and program suite for
evaluating retrieval and maintenance capacities of computer programs. It is
aimed to develop a framework and common set of workloads for evaluating
the performance of different ”key-value” and ”cloud” serving stores. A com-
mon YCSB experiment consists of two parts — a YCSB client, an extensible
workload generator, and a few core workloads, a set of workload scenarios
to be executed by the generator. A workload profile is used to describe the
properties of the use case including the amount of records, reading proportion,
update proportion, request distribution and so on. By the client, YCSB can
generate the simulation data and execute the queries automatically. The core
properties used in YCSB workload profile in our experiment are shown in Ta-
ble 3.2. To be noticed, Table 3.2 is used to simulate one of data query usages
within the system. In practice, the benchmark needs to be executed multiple
times for different workload. Table 3.2 shows a heavy read workload, in which

25

readproportion and updateproportion indicate that the workload includes 0.95
reading operations and 0.05 updating operations. recordcount shows the total
number of records within the system and fieldlenth shows the size (bytes)
of each record. Combining recordcount and fieldlenth, we have 30GB data
within the system. requestdistribution shows the query method, in which
uniform is used, namely that in the queries the row key is picked uniformly.
threadcount shows that the client will use 5000 thread to conduct the queries.

3.1.3 Experimental Cases

Table 3.3: Available Frequency Options

f1 f2 f3 f4
Freq(GHz) 2.53 2.40 2.13 2.00

f5 f6 f7 f8
Freq(GHz) 1.73 1.60 1.33 1.20

Table 3.4: Workload Size Per Node

Q1 Q2 Q3 Q4
Items 4k 8k 16k 32k

Q5 Q6 Q7 Q8
Items 64k 128k 256k 512k

Q9 Q10 Q11 Q12
Items 1024k 2048k 4096k 8192k

Within graphene cluster, there are 8 available frequency options, which are
shown in Table 3.3. In this benchmark, for a given frequency option, we load
more and more queries into the system. We use 12 query tasks, denoted as Q1
to Q12 shown in Table 3.4. For example the items queried per node in Q1 is 4k,
which indicates 4000 × 10 random rows queried in Q1. When a query task is
finished, the corresponding execution time, energy consumption are recorded.
And, the energy efficiency is obtained by Equation 3.1.

To be noticed, from Q1 to Q12 more and more queries are loaded into
the system. However, we do not try to control the throughput directly. In
terms of throughput, there are two concepts — the system throughput and
the required throughput. The required throughput is users’ activity speed,
namely the amount of queries that users submit per second. In contrast, the
system throughput is the system’s capacity of handling users’ queries, which is
impacted by the nodes’ hardware configuration and software configuration. In

26

Equation 3.1, the workload refers to the throughput of the operations in the
time window, namely that it refers to the system throughput. In practice, the
system throughput has an upper limit due to different nodes’ configurations. If
the required throughput is below the nodes’ maximum throughput, the nodes
can handle the requests steadily. In contrast, if the required throughput tries
to exceed the nodes’ maximum throughput, the latency will be much longer
due to resource usage competition. In this condition, the expected required
throughput is unreachable. In YCSB profile, a property key throughput exists.
This key only controls the maximum user query throughput, but it cannot
ensure the system throughput we set.

Test Cases. Combining available frequency options fi(Table 3.3) and
query tasks Qj (Table 3.4), there are 96 cases executed in this benchmark
experiment.

3.1.4 Result Analysis

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Query (Logarithmic Scale)

1000

2000

3000

4000

5000

Av
er

ag
e T

hr
ou

gh
pu

t(O
ps

/S
ec

)

2.53GHz
2.00GHz

1.60GHz
1.33GHz

Figure 3.1: Relationship between Request Amount and Throughput

For workload Qi i ∈ [1, 12], the total amount of operations is 4000× 2i−1.
Figure 3.1 shows the trends of system throughput along with the increasing
operations for the system under frequency 2.53GHz, 2.00GHz, 1.60GHz and
1.33GHz. The trends have a same pattern. Along with the increasing opera-
tions, the system throughputs are increasing at first and then decline. During

27

Table 3.5: Node’s Capacity under Each Frequency Option

Frequency Capacity Frequency Capacity
2.53GHz 5690 1.73GHz 4768
2.40GHz 5518 1.60GHz 4440
2.13GHz 5357 1.33GHz 3822
2.00GHz 5211 1.20GHz 3520

the fluctuation, the system throughputs under different frequencies reach the
highest point. We define this highest point as the capacity of the node under
its frequency settings. The capacity can be treated as the system throughput
upper limit. At beginning, the request throughput is lower than the node’s ca-
pacity. Therefore, the system throughput increases as well. However, after the
highest point, the request throughput tries to exceed the node’s capacity, but
some requests cannot finish because of the resource competition. The result is
that the system throughput declines. For all the frequencies, the capacities are
different. When the frequency is higher, the capacity is larger. The capacities
for all frequency options are listed in Table 3.5. Note that, the capacity is
related to the hardware and software configuration of the system. When the
configuration changes, the capacity needs to be reevaluated.

1000 2000 3000 4000 5000
Average Throughput(Ops/Sec)

1

2

3

4

5

En
er

gy
 E

ffi
cie

nc
y(

Op
s/J

ou
le)

2.53GHz
2.00GHz
1.60GHz
1.33GHz

Figure 3.2: Relationship between Throughput and Energy Efficiency

Figure 3.2 shows the relationship between energy efficiency and the system

28

throughput under different frequencies. Along with the increase of the system
throughput, the energy efficiency increases as well under each frequency. To
be noticed that each line has a few coincident parts because when the request
throughput tries to exceeds the capacity, the system throughput declines. Each
frequency has its maximum energy efficiency value and the energy efficiency
value reaches its maximum value at its maximum system throughput.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Query (Logarithmic Scale)

0

500000

1000000

1500000

2000000

En
er

gy
 C

on
su

m
pt

io
n(

Jo
ul

e)

2.53GHz
2.00GHz
1.60GHz
1.20GHz

Figure 3.3: Energy Consumption for each Workload

Figure 3.3 shows the energy consumption for each workload. Along with
the increase of the operations, the energy consumption increases as well for
each frequency configuration. However with the same request amount, the
energy consumptions under different frequency option do not have big dif-
ferences. Since the maximum throughput of the system is tested, a lot of
operations are loaded into the system. With different frequency configuration,
the throughput of the system is different. For example with 2.53GHz, the av-
erage throughput is 5590 Ops/Sec and with 1.33 GHz, the average throughput
is 3822 Ops/Sec. Therefore with the same request amount, the execution time
under two frequency option is quite different. For example, with Q12, with
frequency 2.53 GHz execution is 1778 seconds, while it is 2837 with frequency
1.33GHz. Same query amount, with higher frequency, the system has higher
power consumption while it has lower execution time. As a consequence, the
energy consumptions do not have big difference in the end.

29

3.1.5 Lessons Learned
In this benchmark, the energy efficiency of a Cassandra Database was analyzed.
By analyzing the result, we draw the following conclusions:

1. For a certain frequency setting, the system throughput of each node
within the system has a maximum value. The maximum throughput
value is defined as the node capacity under its frequency setting. With
lower frequency, the capacity of the node is lower as well.

2. With a given frequency setting, the request throughput cannot exceed
its capacity.

3. The energy efficiency of a node has correlation with its throughput.
When the node reaches higher throughput, it achieves also higher en-
ergy efficiency.

According to the conclusions, the goal in frequency selection and migration
approach is to select frequency settings and a migration plan which lead each
node within the cluster to reach its capacity.

3.2 Frequency Selection Model
In this section, the frequency selection model is proposed based on the energy
efficiency conclusions we obtained in the benchmark experiment. At first, a
generic model is proposed to cope with resource provisioning within cloud sys-
tems. Then the model is specialized for cloud database systems by redefining
the key functions.

3.2.1 Generic Model
A cluster C consists of n nodes. To simplify the description, the nodes are
considered homogeneous. The extension of the model to heterogeneous nodes
is discussed in Section 3.5.

The total running time of a system is made up of time windows. The
length of a time window ∆t is denoted as |∆t|. In practice, the size of the
time window should fit the users’ request activities. The principles of dividing
running time are:

• Within a time window, the users’ activities should be stable and the
frequency of accessing the cloud database should be uniform.

30

• Between time windows, the frequency of the users’ activities could be
different.

The frequency selection approach and migration approach are applied for
each time window. Therefore, in the following discussion we focus on a time
window ∆t. In ∆t, the state of the system, s∆t(F∆t,W∆t), is the state where
the nodes are assigned to a frequency vector F∆t and a workload vector W∆t.
To simplify the description, the notation ∆t is omitted. A frequency fi, (fi ∈
F), is assigned to a node ci. Similarly, a workload wi, (wi ∈W), is assigned to
ci. The size of workload wi is denoted as |wi|. It should be noticed that W is a
predicted value. The maximum amount of workload that can be handled by a
node under a frequency is defined as its capacity. Let the capacity measurement
function be z(ci, fi). When the current workload exceeds the node’s capacity,
the workload cannot be completed, which causes SLA violation. Meanwhile,
we consider that SLA violation is not allowed, namely that all requests of a
workload must be completed during the time window.

In order to avoid SLA violation, a migration process is introduced. Let
the workload migration function be m. The migration process is considered
as a state transformation process, namely s(F,W) m−→ s∗(F,W∗). The state
transformation process is denoted as s̃. The workload for ci after the migration
is denoted as w∗i . Energy used by the migration process is defined as migration
cost. The migration cost estimation function is denoted mc(s̃) and the system
power consumption estimation function is p(s). The energy consumption e of
the system in ∆t is:

e = p(s∗)× |∆t|+mc(s̃) (3.2)

Energy efficiency of a system is defined by Equation 3.3 in which the energy
efficiency in ∆t is a ratio between the amount of workload processed and the
energy consumption in ∆t. Since the amount of workload is constant during
a time window, the objective is to minimize e to improve the energy efficiency
of the system.

ee =
∑n
i |wi|
e

(3.3)

For a given frequency vector, the power consumption and the migration
cost can be estimated by p(s) and mc(s̃) respectively. Finding the most energy
efficient configuration is then to find the best frequency for each node: It is a
search problem within the frequency combinations space.

The conditions for applying the model are:

31

1. The system’s running time can be divided into time windows. In a time
window, the workload should be stable hence the power consumption can
be estimated.

2. The node’s capacity can be measured and part of the workload can be
migrated when the current workload exceeds its capacity.

3. The workload of the next time window can be predicted according to
previous running information.

4. The power consumption and the migration cost can be estimated accord-
ing to the frequencies and the workloads.

3.2.2 Specialized Model for Cloud Databases
In this section, the generic model is specialized for cloud database systems.
The workload wi, the capacity measurement function z(ci, fi), the migration
function m, the power consumption estimation function p(s) and the migration
cost estimation function mc(s̃) must therefore be identified.

In a cloud database system, the dataset D consists of h data blocks, in
which the size of block bg is denoted as |bg|, and the blocks are distributed
within the cluster. In order to meet data integrity and fault-tolerance re-
quirements, cloud databases use a replication factor to control the number
of replicas of the data blocks. The dataset with a replication factor r is de-
noted as Dr = {b1,1, b1,2..., b1,r...bh,1, bh,2...bh,r}, in which bg,k ∈ Dr, k ≤ r is
the kth replica of bg. The workload wi of a cloud database system is de-
fined as data query throughput. The probability of bg,k being accessed is
denoted as ϕg,k. The total throughput of the system is denoted as l and∑h
g

∑r
k ϕg,k = 1. ϕg,k and l are predicted values, which can be given by

data mining techniques and machine learning techniques, such as time se-
ries data mining and linear regression. For the corresponding techniques,
we refer readers to the literature [23]. Let the block set assigned to ci be
Dr
i = {bg,k | bg,k ∈ Drand bg,k is assigned to ci}. The workload wi is defined

by Equation 3.4. According to the workload definition, we define the through-
put of a block bgk as block throughput, which equals to l × ϕgk.

wi =
∑

bg,k∈Dr
i

l × ϕg,k (3.4)

The capacity measurement function z(ci, fi) is a discrete function. Using
benchmarks, the maximum throughput of a cloud database under each fre-
quency can be obtained, Section 3.1.4.

32

The frequency option set is denoted as η. A frequency f is one of the
available frequency options. Let the idle power consumption and the maximum
power consumption of a node under a frequency f be cidlef and cmaxf respectively.
∀fp, fq ∈ η and fp > fq, cidlefp

> cidlefq
and cmaxfp

> cmaxfq
. With a higher frequency,

the system provides more resources to support workloads, but consumes more
energy. If a fraction ψ of CPU is used under the frequency f , the power
consumption estimation function is defined by Equation 3.5 [82]. In cloud
database systems, ψi is defined by Equation 3.6, in which w∗i is the workload
after the migration, hence ψi 6 1.

p(s∗) =
n∑
i

(
cidlefi

+ ψi ×
(
cmaxfi

− cidlefi

))
(3.5)

ψi = w∗i
z(ci, fi)

(3.6)

In terms of migration process, there are mainly 3 types of migrations in the
cloud environment according to network topology, namely migration within a
rack, migration between racks and migration between data centers. We only
focuses on the first two types. Let MIn and MOut denote the sets of blocks mi-
grated within a rack and the set of blocks migrated between racks, respectively.
Let eIn and eOut denote the energy costs per mega byte of migration within
a rack and between racks respectively. Then the migration cost is defined by
Equation 3.7. In Equation 3.7, ∑bg,k∈MIn |bg,k| and ∑

bg,k∈MOut |bg,k| shows the
total size of data migrated within a rack and between racks, respectively.

mc(s̃) = eIn ×
∑

bg,k∈MIn

|bg,k|+ eOut ×
∑

bg,k∈MOut

|bg,k| (3.7)

By redefining the key concepts and key functions of the generic model,
the model is specialized for cloud database systems to cope with the resource
provisioning problem.

3.3 Model Simplification Approach
The power consumption and the migration cost can be estimated by Equation
3.5 and Equation 3.7. However, both values are obtained after the migra-
tion process. In Equation 3.5, the workload after the migration w∗i is required,
while in Equation 3.7, the migrated block set MIn and MOut are required. The
problem is that migration strategy is NP-hard, because it can be considered
as multiple knapsacks problem [24] (more details are discussed in Chapter 6).
By means of approximation algorithms, (Section 6.2 and Section 6.3), a migra-
tion plan can be obtained within polynomial time. However, when the total

33

amount of possible frequency vectors increases, the evaluation time becomes
unacceptable, namely that the algorithm cannot give a valid solution within a
time window ∆t. To overcome this performance issue, a model simplification
approach is proposed in this section to obtain the upper bounds of the power
consumption and the migration cost, which will be used later to evaluate the
frequency vectors. The initial idea of the model simplification is to reduce costs
for computing the power consumption and the migration cost values using a
relaxation approach.

3.3.1 Power Consumption Upper Bound
According to Equation 3.5, power consumption is related to node’s frequency
and CPU usage. Considering a block bg,k is assigned to ci, the power consump-
tion of ci increases because of it, i.e. it increases with the throughput of the
block l × ϕg,k. The increment is l×ϕg,k

z(ci,fi) ×
(
cmaxfi

− cidlefi

)
in which the constant

factor

(
cmax

fi
−cidle

fi

)
z(ci,fi) is defined as the power consumption contribution factor of

ci (PCCF for short). In order to achieve the maximum power consumption,
the blocks are assigned to the nodes with the highest PCCF value as much as
possible.

To simplify the assignment, a relaxation is introduced, in which the blocks
are continuous : one block can be split and put to multiple nodes. Let the total

ordered node set be C̃ = (C,≤), in which if ∀i, j

(
cmax

fi
−cidle

fi

)
z(ci,fi) >

(
cmax

fj
−cidle

fj

)
z(cj ,fj) ,

then ci 6 cj. pmax is obtained by Equation 3.8.

pmax =
 n∑
i=1

wi −
ĩ∑
i=1

z (ci, fi)
× cmaxf

ĩ+1
− cidlef

ĩ+1

z
(
c̃
i+1, f̃i+1

)
+ cidlef

ĩ+1
+

ĩ∑
i=1

cmaxfi
+

n∑
i=̃i+2

cidlefi

(3.8)

In Equation 3.8, index ĩ of C̃ satisfies ∑ĩ
i=1 z(ci, fi) 6 l 6

∑ĩ+1
j=1 z(cj, fj),

namely that index ĩ is a pivot node: the blocks are assigned to the nodes ci with
i 6 ĩ+1. The nodes ci with i 6 ĩ reach their maximal power consumption, and
the nodes ci with i > ĩ + 2 reach their idle power consumption because there
is no block assigned to them. The power consumption of c̃

i+1 is computed by
Equation 3.5. Figure 3.4 gives an example of achieving power consumption
upper bound. In the figure, c1 to ci reach their maximal power consumption
because their capacities are fully utilized by the assigned blocks. To be noticed,

34

Figure 3.4: Example of Achieving Power Consumption Upper Bound

between c1 and c2, there is a fragmentary block that is split and put into both
nodes. ci+2 reach its idle power consumption because there is no block assigned.
ci+1 is the pivot node in the example, in which assigned blocks occupied part
of its capacity. Therefore, the power consumption of ci+1 can be computed by
Equation 3.5.

Proposition 1. For a given frequency vector F, the power consumption achieved
by Equation (3.8) is the maximal power consumption.

Proof. For a given frequency vector F, pmax is obtained by Equation 3.8. As-
sume that p∗ exists, and p∗ > pmax. Since p∗ 6= pmax, we say that they have
different block assignment plan. Without loss of generality, we assume that
nodes are sorted by descending their PCCF values. In order to achieve higher
power consumption than pmax, namely to achieve p∗, the key is to move the
workload within ci+1 to the previous nodes. To do so, consider the following
scenarios.

Scenario 1 bg,k is assigned to c̃
i+1 in pmax. In order to achieve higher power

consumption in p∗, bg,k is assigned to ci i ∈ [1, ĩ], while other
blocks keep the same assignment. Figure 3.5 shows an example
of this scenario.

Scenario 2 bg,k is assigned to c̃
i+1 in pmax. In order to achieve higher power

consumption in p∗, bg,k is switched with a block that is assigned to
ci, i ∈ [1, ĩ], while other blocks keep the same assignment. Figure
3.6 shows an example of this scenario, in which bg,k within ci+1 is
switched with a block within c2.

35

Figure 3.5: Example of pmax Proof: Scenario 1

Figure 3.6: Example of pmax Proof: Scenario 2

36

For Scenario 1, in Figure 3.5, there is no more place for bg,k within nodes
c1 to ci, because all the capacities of these nodes are occupied by the other
blocks. Therefore p∗ does not exist.

For Scenario 2, no matter the switch method, the total workload l is con-
stant. Therefore, the workload remains on ci+1 is l−∑i

i=1 z(ci, fi). Therefore,
pmax = p∗.

By means of above discussion, we can conclude that pmax is the maximal
power consumption under the given frequency vector.

3.3.2 Migration Cost Upper Bound
In order to achieve the upper bound of migration cost, we try to migrate the
migrated blocks in a worse case that produces highest migration cost within
all the migration plan. It means maximizing the total size of migrated block
between racks first, then in a rack. To simplify the migration process two
relaxation conditions are introduced: 1. the nodes with free capacity in the
same rack are combined to form a big knapsack with larger free capacity; 2.
the migrated blocks are continuous: one block can be split and put to multiple
nodes.

Figure 3.7: Example of Achieving Migration Cost Upper Bound

An example is shown in Figure 3.7 to give our intuitive idea. To be noticed,
the remained capacity for a rack is constant value. For a rack γu, the remained
capacity equals to∑ci∈Cin

u
(z(ci, fi)− wi) for Cin

u = {ci|ci ∈ γu and wi < z(ci, fi)}.
To have the worse migration plan, we try to keep the migrated blocks with
higher throughput but smaller size as much as possible in the rack to maximize
the total migrated block size between racks. In the figure, we assume there are
10 migrated blocks, and furthermore, we consider that all the blocks have the
same block size and sorted by a descending ratio between their throughputs and
sizes. Therefore, the shape size of blocks in the figure refer to their through-
puts. By picking up blocks from the beginning of the sorted migrated block

37

list until no capacity remains, then the maximal migration cost is achieved,
because we can have the smallest number of kept migrated block in the exam-
ple.

To compute the maximal migration cost, consider the following conditions:

1. The number of racks is denoted as U , and a rack is denoted as γu. For
γu, the migrated block set is denoted as Mu. The total ordered set of Mu

is denoted as M̃u = (Mu,6) = {b1, b2, ...} in which the blocks are sorted
by descending the ratio between their throughputs and sizes, namely
∀bi, bj ∈ M̃u, if l×ϕi

|bi| > l×ϕj

|bj | , then bi 6 bj.

2. The blocks with higher ratio values are kept within racks and the other
blocks are migrated to other racks. M̃In

u and M̃Out
u are partitions of M̃u.

M̃In
u contains blocks that migrated within rack γu. While M̃Out

u contains
blocks migrated out of the rack. M̃In

u and M̃Out
u satisfy the following

conditions:

• bq is a pivot block, which is split into 2 parts b1
q and b2

q and put into
M̃In

u and M̃Out
u respectively.

• M̃In
u = {b1, ..., b

1
q}, M̃Out

u = {b2
q, bq+1, bq+2, ...}.

• Let the set of partial nodes in γu that have extra capacity be Cin
u =

{ci|ci ∈ γu and wi < z(ci, fi)}. Then, the index q of M̃u satisfies∑q−1
j=1 l × ϕj 6

∑
ci∈Cin

u
(z(ci, fi)− wi) <

∑q
j=1 l × ϕj, and ∑q−1

j=1 l ×
ϕj + |b1

q |
|b2

q |
× l×ϕq

|bq | = ∑
ci∈Cin

u
(z(ci, fi)− wi)

With above conditions, the maximum migration cost can be obtained by
Equation 3.9

mcmax = eIn ×
∑

bIn∈
U⋃

p=1
M̃In

u

|bIn|+ eOut ×
∑

bOut∈
U⋃

p=1
M̃Out

u

|bOut| (3.9)

where U is the amount of racks. Since the blocks with lower throughputs
but larger sizes are migrated to other racks, the migration cost is the highest
among all migration plans.

Proposition 2. For a given migrated block set M, the migration cost achieved
by Equation 3.9 is the maximal migration cost.

Proof. In this section, two relaxations are introduced. For a rack γu, the
migration approach becomes a fractional knapsack problem under the relax-
ations. The size of knapsack is ∑ci∈Cin

u
(z(ci, fi)− wi). The items are migrated

38

blocks. The weight of the item is its throughput, and the value of the item
is its block size. The objective is to minimize the total value of picked items.
In Equation 3.9, the kept blocks are picked according to descending ratio be-
tween their throughput and their size, name by the ratio weight

value
. Therefore, by

means of a greedy algorithm, the optimal solution, minimal total size of kept
migrated block size can be achieved. Therefore, the migration cost for the rack
is maximal, and mcmax can be obtained as well.

In the model simplification, the migration plan is the worst case under
the given migrated blocks, i.e., data blocks with higher block size per unit
of throughput are migrated out of their own rack first. Therefore the upper
bound of migration cost is achieved for the given migrated blocks.

3.3.3 Complexity Analysis of Model Simplification

In this section, a model simplification approach was introduced to reduce the
complexity for computing the power consumption and the migration cost.
Without the model simplification, the power consumption and the migration
cost are obtained by means of Equation 3.5 and Equation 3.7. However, both
processes require the migration. To compute the upper bound of power con-
sumption using Equation 3.8, the required operation is to sort the nodes by
their power consumption contribution factor. Therefore, the complexity for ob-
taining the upper bound of power consumption is O(nlogn) (n is the amount
of nodes). To compute the upper bound of migration cost using Equation 3.9,
the required operation is to obtain the migrated blocks and sort the migrated
blocks by their ratio between throughputs and block sizes. In migration pro-
cess, the complexity for generating migration block set is O(∑n

i=1 |Dr
i | log |Dr

i |),
which can be further improved to O(∑n

i=1 |Dr
i |)=O(m). For computing the up-

per bound of migration cost, we need to sort the migrated blocks for each rack.
We assume each rack has same number of nodes. Let γ be the number of nodes
within each rack, and there are Γ racks. Then complexity for computing upper
bound of migration cost would be O(∑Γ

p=1
∑γ
i=1 Mi log γ) = O(∑n

i=1 Mi log γ),
in which M presents the migration block set of node ci . Therefore, in
the end the obtain the upper bound of migration cost, the complexity is
O(max{m,∑n

i=1 Mi log γ)}). An experiment is made in Section 6.4.3 to eval-
uate the model simplification.

39

3.4 Parameters’ Benchmark
In Equation 3.7, the migration cost is obtained using two static parameters,
the energy costs per mega byte of migration within a rack and between racks,
namely eIn and eOut. To obtain these values, a benchmark is executed.

This benchmark is executed in Grid5000 [79] at Nancy site graphene cluster.
A Cassandra [11] system is deployed on 2 nodes. After the loading process, the
system is waiting for a few minutes (5 minutes in the experiment) to obtain
the power consumption in the idle status which is denoted as pIdle. Then, a
decommission process is executed on one of the nodes, which causes all the
blocks in the node to be migrated to another one. The energy consumption
within the decommission process is denoted as eMigration. By means of choosing
different node combinations, eIn and eOut can be obtained. eIn and eOut are
calculated by Equation 3.10, in which tMigration indicates the execution time of
the decommission process. The values of the parameters are shown in Table
3.6. In the Migration Execution phase, ”Iterative Copy” [22] is adopted: the
system still provides services while the migration is executed. Therefore, the
static energy consumption is calculated within the power consumption, namely
in Equation 3.5. Therefore, in Equation 3.10, the static energy consumption,
pIdle × tMigration, is omitted.

eIn|Out = eMigration − pIdle × tMigration∑
bg,k∈MIn|Out

|bg,k|
(3.10)

Table 3.6: Migration Cost for Unit Block

Parameter Value
eIn 0.8 Joule/MB
eOut 1.0 Joule/MB

3.5 Model Extension
In Section 3.2.1, the nodes are considered homogeneous. With the following
extensions, the model can be applied to a heterogeneous cluster.

1. The nodes in a heterogeneous cluster can be categorized according to
their architectures. Otherwise, the efforts for obtaining static parameters
are unacceptable. Considering the types of the workload, the amount of
architectures, and the number of available frequency options, the efforts
to conduct the benchmark, Section 3.1 would be to high.

40

2. The capacity measurement function z(ci, f) should be specialized for
different categories of nodes since the frequency options may not be the
same.

3. The power consumption estimation function should be specialized for
different categories of nodes.

4. When computing the migration cost, eIn and eOut should consider the
difference of node’s architecture.

In general, the model’s static parameters which are related to the node’s
architecture should be obtained according to the different architectures.

3.6 Summary
In this chapter, we first investigate the energy efficiency behavior of the system
under different frequency settings. We found out that, for a certain frequency
setting, the node within the cluster has a maximum throughput limitation.
We define this value as the capacity of the node under the frequency setting.
Based on this conclusion, we propose a generic model for frequency selection
approach, in which we define the system state transformation process. Then, a
specialized model is derived from the generic model to cope with resource pro-
vision within cloud database, in which the core concepts of the generic model,
including the estimation of power consumption, the estimation of migration
cost, and the migration process, are redefined. In the model simplification
approach, the upper bound values of power consumption and migration cost
are obtained without the entire migration process.

41

42

Chapter 4

Frequency Selection with
Bounded Problem

In this chapter, we treat frequency selection problem as a bounded problem.
According to different objectives, we have 2 kinds of bounded problem in
this chapter. At first, the constraints and objectives are introduced. Then
we present two algorithms, namely Nonlinear Programming Algorithm and
Multi-Phases Algorithm to solve the bounded problems. At last, a series of
experiments are given to evaluate the algorithms in terms of accuracy and
performance.

4.1 Objective
In this section, we first introduce two basic objectives about power consump-
tion and migration cost respectively. Then, the basic objectives are combined
into two kinds of bounded problems, power consumption bounded problem
and migration cost bounded problem.

4.1.1 Basic Objectives
Energy efficiency of cloud database systems is a ratio between the workload
and the energy consumption according to Equation 3.3. When the workload
is constant, the energy consumption should be minimized in order to improve
the energy efficiency of the system. In the modeling, energy consumption of
the system within a time window ∆t is estimated by Equation 3.2. The energy
consumption comes from two parts, energy for executing the workloads and
energy for the migration process. Therefore, there are two objectives naturally,
namely a power consumption related objective and a migration cost related

43

objective.
The power consumption of the cloud database system is estimated by Equa-

tion 3.5. The power consumption related objective is shown by Equation 4.1,
in which P is the maximum power consumption needed to satisfy the system’s
need. The objective is to minimize P.

p(s) ≤ P (4.1)

The migration cost is defined by Equation 3.7. Intuitively, Equation 4.2 is
treated as the migration cost objective, in which MC represents the maximum
energy needed to complete the migration process. The objective is to minimize
MC.

mc(s̃) ≤MC (4.2)

4.1.2 Bounded problems
Bounded problems appear when the user sets constraints to the objectives.
In general, there are 2 types of bounded problems within frequency selection
problem. One is the bounded power consumption problem, the other one is
the bounded migration cost problem.

The Bounded Power Consumption Problem. The power consump-
tion constraint Pb refers to the maximum power consumption can be provided
to the system. With this constraint, the objective is simplified into minimizing
the migration cost which is denoted as PbMCmin. In other words, PbMCmin

represents the scenario that minimizes migration cost within a maximum power
consumption.

The Bounded Migration Cost Problem. The migration cost con-
straint MCb refers to the maximum migration cost. With this constraint, the
objective is simplified into minimizing the power consumption which is denoted
as MCbPmin. In other words, MCbPmin represents the lowest achievable power
consumption within the migration cost requirement.

In this chapter, our objective is to present corresponding algorithms to
solve above bounded problems.

4.2 Nonlinear Programming Algorithm
Intuitively, the bounded problems can be treated as a nonlinear programming
problem [83]. By means of the linear programming solver, Gurobi [84], the
optimal solution can be obtained. In this section, a nonlinear programming

44

model, based on specialized model (Section 3.2.2) is introduced. Then the
corresponding constraints and objectives are presented.

4.2.1 Nonlinear Programming Model
To apply the nonlinear programming solver, the following parameters are
introduced. There are U racks within the cluster, and there are γ nodes
within each rack. The node set C is a consecutive set, denoted as C =
c1, c2..., cγ, cγ+1, cγ+2, ..., c2γ..... In here, we assume that every cluster has the
same amount of nodes. Some virtual nodes can be introduced otherwise. The
available frequency options set is denoted as η, and |η| = m. Equation 4.3 de-
fines a binary parameter xip which equals to 1 when and only when frequency
fp ∈ η is assigned to the node ci. Therefore, the capacity of ci is denoted as
zi, which can be presented as Equation 4.4.

xip =
{

1 If ci is assigned with fp
0 If ci is not assigned with fp

(4.3)

z(ci, fi) =
m∑
p=1

z(ci, fp)× xip (4.4)

Equation 4.5 defines a binary parameter aig,k, which indicates the block
assignment. aig,k equals to one when and only when block bg,k is located on node
ci. Correspondingly, the workload wi of ci can be presented as Equation 4.6.
Combining Equation 4.4 and Equation 4.6, the power consumption estimation
function Equation 4.7 can be presented as Equation 4.7.

aig,k =
{

1 If bg,k is assigned to ci
0 If bg,k is not assigned to ci

(4.5)

wi =
h∑
g=1

r∑
k=1

(
aig,k × l × ϕg,k

)
(4.6)

p(s∗) =
n∑
i=1


m∑
p=1

(
xip × cidlefp

)
+

h∑
g=1

r∑
k=1

(
aig,k × l × ϕg,k

)
m∑
p=1

z(ci, fp)× xip
×

m∑
p=1

(
xip ×

(
cmaxfp

− cidlefp

))
(4.7)

According to Equation 3.7, the migration sets MIn and MOut are required
to estimate the migration cost. However, the concept of migration sets is

45

between two time windows. To show the block assignment of the last time
window (time window ∆t−1), a superscript −1 is applied. For example aig,k

−1

indicates whether block bg,k was placed in node ci in the time window ∆t− 1.
To describe the migration sets in nonlinear programming solver, the following
parameters are introduced.

Ag,k =
n∑
i=1

(
i× aig,k

)
(4.8)

Equation 4.8 defines parameter Ag,k which gives the index of the node
where the block bg,k is placed. Correspondingly, the location index of bg,k in
the last time window is denoted as Ag,k−1.

mg,k =
{

0 if Ag,k−1 = Ag,k
1 if Ag,k−1 6= Ag,k

mOut
g,k =


0 if

⌊
Ag,k

−1

γ

⌋
=
⌊
Ag,k

γ

⌋
1 if

⌊
Ag,k

−1

γ

⌋
6=
⌊
Ag,k

γ

⌋ (4.9)

In Equation 4.9, binary parameter mg,k and mOut
g,k are introduced. mg,k

equals to one when and only when Ag,k−1 does not equal to Ag,k. Since Ag,k−1

and Ag,k reveal the placements of bg,k in time window ∆t − 1 and ∆t respec-
tively, mg,k indicate whether block bg,k has been migrated in ∆t. γ shows the
number of nodes in each cluster. mOut

g,k ,
⌊
Ag,k

γ

⌋
gives the rack index which con-

tains bg,k in ∆t. By means of comparing two rack indexes of bg,k in ∆t− 1 and
∆t, mOut

g,k , a binary parameter, reveals whether bg,k is migrated between two
racks. Therefore, the migrated block sets can be obtained based on following
facts:

• If a block is migrated (mg,k = 1), but it is not migrated between racks
(mOut

g,k 6= 1), then the block belongs to MIn;

• If a block is migrated (mg,k = 1), and it is migrated between racks
(mOut

g,k = 1), then the block belongs to MOut.

By means of mg,k and mOut
g,k , the migration cost estimation function 3.7 can

be rewritten as Equation 4.10. In Equation 4.10, the migration cost weight for
every block is computed by mg,k×

(
mOut
g,k × eIn +

(
1−mOut

g,k

)
× eOut

)
. Clearly,

when bg,k is not migrated, the migration cost weight is 0, since mg,k = 0.
Correspondingly, the migration cost weight is eIn if the block is migrated within
the rack while the weight is eOut if the block is migrated between racks.

46

mc(s̃) =
h∑
g=1

r∑
k=1

mg,k ×
(
mOut
g,k × eIn +

(
1−mOut

g,k

)
× eOut

)
× |bg,k| (4.10)

The specialized model is redefined in nonlinear programming model manner
by introducing extra parameters. The symbols used in nonlinear programming
model are concluded by Table 4.1.

Table 4.1: Specifications of the symbols

Symbol Type Comment
l Float The predicted system throughput in ∆t

ϕg,k Float The predicted accessed probability of block
bg,k

z(ci, f) Float The capacity (maximum throughput) of ci
under frequency f

xip Binary A binary indicator, which equals 1 only when
ci is assigned with frequency fp

aig,k Binary A binary indicator which equals 1 only when
bg,k is assigned to node ci

Aig,k Integer The index of a node which contains bg,k
mg,k Binary A binary indicator which equals 1 only when

bg,k is migrated in ∆t
mOut
g,k Binary A binary indicator which equals 1 only when

bg,k is migrated to another rack in ∆t

To be noticed, in Table 4.1, only xip and aig,k are the parameters that need to
be computed by the nonlinear programming solver. l, ϕg,k, z(ci, f) are known
parameters, and Aig,k, mg,k m

Out
g,k are computed according to aig,k. Therefore,

The bounded problems can be treated as mixed integer nonlinear programming
problems since only binary parameters are involved. The amount of parameters
is shown as Equation 4.11, where |η| is number of frequency options, n is
number of nodes, and h, r are number of blocks and number of replicas for
each block respectively.

|η| × n+ h× r × n (4.11)

4.2.2 Constraints
According to the descriptions in previous section, some constrains are shown
as below:

47

∀i ∈ [1, n],∀p ∈ [1,m] xip ∈ {0, 1} (4.12)

∀i ∈ [1, n]
m∑
p=1

xip = 1 (4.13)

∀g ∈ [1, h],∀k ∈ [1, r],∀i ∈ [1, n] aig,k ∈ {0, 1} (4.14)

∀g ∈ [1, h],∀k ∈ [1, r]
n∑
i=1

aig,k = 1 (4.15)

∀i ∈ [1, n],∀g ∈ [1, h]
r∑

k=1
aig,k ≤ 1 (4.16)

∀g ∈ [1, h],∀k ∈ [1, r] ϕg,k ∈ [0, 1],
h∑
g=1

r∑
k=1

ϕg,k = 1 (4.17)

∀i ∈ [1, n],
m∑
p=1

z(ci, fp)× xip ≥
h∑
g=1

r∑
k=1

(
aig,k × l × ϕg,k

)
(4.18)

Constraints 4.12 and 4.13 show the rules of frequency selection for each
node. Constraint 4.12 indicates that every node should be configured or not
configured to a given frequency. Constraint 4.13 shows that every node should
be under only one frequency.

Constraints 4.14, 4.15 and 4.16 show the rules of block assignment. Con-
straints 4.14 and 4.15 indicate that each data block should be assigned to only
one node. Constraint 4.16 means that if two data blocks are replicas of the
same block, they cannot be assigned to the same node.

Constraint 4.17 shows that the sum of the probabilities of all blocks being
accessed should equal to 1 (at least one block is accessed during ∆t).

Constraint 4.18 shows that the amount of workload allocated to one node
cannot exceed the capacity of the node.

4.2.3 Nonlinear Programming Objective Function
As described in Section 4.1, there are 2 bounded problems, PbMCmin and
MCbPmin. For the Nonlinear Programming Algorithm, there are 2 types of
objective function (Pmin, MCmin) and 2 different types of constraint functions,
Pb, MCb. Due to Gurobi’s properties, the power consumption estimation func-
tion need to be changed mathematically to meet the solver’s requirements.

Equation 4.7 can be used to estimate the power consumption in nonlinear
programming model. However, it cannot be applied in practice. In Equation
4.7, the main parameters are aig,k and xip. However, Gurobi cannot manipulate
parameters which are denominators. Therefore, we rewrite Equation 4.7 as

48

Equation 4.19. In Equation 4.19, the binary parameter xip is moved at the
outermost of the equation. From a mathematic point of view, xip is to determine
a frequency fp for ci. Therefore ∑m

p=1 x
i
p× z(ci, fp) is determined and constant

when a certain frequency fp is configured to ci. When xip equals to 0, then
the total energy consumption of the node is 0 under frequency fp since the
corresponding frequency is not assigned to the node.

p(s∗) =
n∑
i=1

m∑
p=1

xip ×

cidlefp
+

h∑
g=1

r∑
k=1

(
aig,k × l × ϕg,k

)
z(ci, fp)

×
(
cmaxfp

− cidlefp

) (4.19)

Combining Equation 4.19 and Equation 4.10, we have 2 nonlinear pro-
gramming objective functions shown as Equation 4.20 and Equation 4.21 that
represent PbMCmin and MCbPmin respectively.

minimize mc(s̃)
subject to p(s∗) ≤ Pb

(4.20)

minimize p(s∗)
subject to mc(s̃) ≤MCb

(4.21)

Using a nonlinear programming solver Gurobi, the optimal solution can be
found. However, because of the complexity of the problem and the amount
of parameters, the usage of nonlinear programming model is limited. The
corresponding experiments are given in Section 4.4

4.3 Multi-Phases Algorithm
The Nonlinear Programming Algorithm has an outstanding advantage to ob-
tain the optimal solution for the bounded problems. Due to the complexity
of the algorithm, the bottleneck is its performance for large scale problems.
In order to overcome this bottleneck, we introduce a Multi-Phases Algorithm
which gives suboptimal solutions.

The frequency selection problem can be treated as a search problem within
the frequency combination space. Assume there are 3 available frequency
options and 2 nodes, then the amount of frequency combinations is 32 = 9.
We can evaluate the 9 solutions and compute the estimated power consumption

49

and estimated migration cost according to Equation 4.7 and Equation 3.7 after
the migration process. However, in a larger case, there are 8 frequency options
and 30 nodes, and the amount of frequency combinations is 830. The time
of entire search is unacceptable. In our environment, the optimal solution of
above case can be found by the entire searching within 5 hours.

In order to solve the bounded problem faster, a search algorithm, Multi-
Phases Algorithm, is proposed in this section. The initial idea of Multi-Phases
Algorithm is to reduce the solution space of the frequency selection problem.
A certain frequency combination is defined as one of the solutions. For a given
solution, the maximum supported workload can be obtained as ∑n

i=1 z(ci, fi).
According to the total capacity of the cluster and the predicted throughput l,
we have the following constraints for the solutions:

1. For a given solution, when ∑n
i=1 z(ci, fi) < l, then the solution is aban-

doned since it cannot provide enough resources to execute the workload
in next time window.

2. For a given solution, when ∑n
i=1 z(ci, fi) > l+ ε, in which ε is a threshold

parameter, then the solution is abandoned also, since it provides too
much resources for the next time window.

The above constraints are given based on the intuition about resource pro-
visioning problem. If under provisioning occurs, i.e. ∑n

i=1 z(ci, fi) < l, then
the system cannot get enough resources, which leads to SLA violation. If over
provisioning occurs, i.e. ∑n

i=1 z(ci, fi) > l + ε, then it increases energy waste
and costs [23]. Therefore in Multi-Phases Algorithm, we barely consider the
solutions which provide capacities between l and l + ε. Then all the solutions
are evaluated according to problem type and corresponding constraints.

Multi-Phases Algorithm includes 6 phases:

1. Frequency Locating Phase. In this phase, the boundary frequency
combinations are located. The boundary frequency combinations include
the frequency combinations providing larger but closest capacity with l
and the frequency combinations providing lower but closest capacity with
l + ε.

2. Frequency Traversal Phase. The frequency combinations between
boundary frequency combinations are traversed. The founded combina-
tions are treated as candidate solutions, denoted as s combs.

3. Frequency Assignment Phase. The frequencies in each s comb are
assigned to the cluster.

50

4. Frequency Filter Phase. In this phase s combs are filtered according
to the upper bound value on the considered constraints.

5. Frequency Search Phase. According to the objective of the problem
and the upper bound value, a few candidate solutions are searched.

6. Frequency Evaluation Phase. The candidate solutions are evaluated
by the migration process (Chapter 6) and the best is chosen as the final
solution according to problem type (PbMCmin or MCbPmin).

This section includes 7 subsections. In first 6 subsections, each phase of
Multi-Phases Algorithm is introduced. In Section 4.3.7, the behavior and the
complexity of the algorithm is analyzed.

4.3.1 Frequency Locating Phase

000 100 200 300
Frequency Combination

10000

11000

12000

13000

14000

15000

To
tal

 C
ap

ac
ity

Figure 4.1: Frequency Solution Space

In frequency combination space, we have mn combinations, since there
are n nodes and each node can be assigned with m frequency options. An
example with a small case, 3 nodes and 4 available frequency options, is shown
as Figure 4.1. In Figure 4.1, frequency configuration for the cluster is denoted
as frequency combinations. For example 000 is a frequency combination, in
which f0 is assigned to all the nodes. In the figure, we can observer that, some

51

combinations provide the same total capacity, for example both 311 and 131
assign f3 to one node and f1 to the other two nodes. However, in this case,
the frequency combinations provide assignment information. For example,
311 assigns f3 to c1, f1 to c2 and c1 to c3. However, in the other hand, this
assignment information creates lots of redundancy. In order to reduce the
solution space, we introduce the frequency combination encoding method. In
the encoding process, we have following constraints:

1. Frequency combinations are coded as m base digital numbers. For ex-
ample if there are 11 available frequencies and 3 nodes, the minimal
combination is 000, representing that f0 is assigned to all the nodes.
While the maximal combination is aaa, in which f10 is assigned to all
the nodes.

2. For each encoded frequency combination, a digit should not be smaller
than its following digits.

Constraint (1) defines an encoding method for frequency combinations.
Constraint (2) is used to eliminate redundancies within the frequency combi-
nations. For example, with constraint (2), solution 001 and 010 are invalid.
We would prefer 100 in this case.

Using the constraints above, the solution space is reduced from mn to
Cn
m+n−1. With the encoding method, the frequency combination turn into a

k-multi-combination problem in which k in our case represents the number of
nodes, namely n. The proof of the combination number can be given by stars
and bars theory [85]. Figure 4.2 shows an example of frequency locating and
traverse in which the frequency combination are encoded. It can be observed
that the solution space is reduced greatly.

The introduction of the encoding method has its pros and cons. The most
important advantage is that it can reduce the solution space tremendously.
For example, with 30 nodes and 8 available frequency options, the solution
reduced from 830 ≈ 1.238e27 to C30

8+30−1 ≈ 1.03e7. The disadvantage is that the
encoding method losses frequency assignment information. For example, with
3 nodes and 2 available frequency options, frequency combination 110 and 101
are treated as the same since 101 is invalid according to the constraints. Both
of them will assign 2 nodes with f1 and 1 node with f0. However, if we consider
the assignments, we have C3

3 different assignment methods, for example 110,
101, 011. How Multi-Phases Algorithm deals with the assignment problem is
discussed in Section 4.3.6.

In Multi-Phases Algorithm, we only consider the frequency combinations
which provides total capacity between l and l + ε. ε is a user predefined

52

000 100 200 300
Frequency Combination

10000

11000

12000

13000

14000

15000

To
tal

 C
ap

ac
ity

l +

l

333

332

331
330

322

321

320
311
310

300

222

221
220

211

210

200

111

110

100000

s_comb
l_comb
r_comb

Figure 4.2: Example of Frequency Locating and Traverse

parameter. In this phase, we mainly focus on the boundary combinations.
There are two kinds of boundary combinations: 1. the frequency combinations
providing larger but closest capacity with l which is denoted as l comb (left
combination), and 2. the frequency combinations providing lower but closest
capacity with l + ε which is denoted as r comb (right combination).

Figure 4.2 shows an example of frequency combination locating and tra-
verse. In the figure, we shows two boundary lines: l and l + ε, and three type
of frequency combination sets: l comb, r comb and s comb. scomb indicates
the combinations whose total capacities are between l and l + ε, which are
traversed in next phase, Section 4.3.2.

In this phase, the combinations l comb and r comb are located. For a
given frequency combination, the total capacity is

n∑
i=1

z(ci, fi). However, it is
not easy to have the frequency combinations when the total capacity is given.
There are 2 reasons for this bottleneck. Firstly, given a particular capacity
value, the corresponding combination might not exist. Secondly, even if the
boundary combinations (upper bounded or lower bounded) are required, there
might exist several combinations. In the general point of view, the relationship
between combinations and their total capacity is not linear, for example in
Figure 4.2, the capacity of 300 is lower than 222. However, in a certain range,
the maximal total capacity of the range and the minimal total capacity can be
located. For example, within range 300 to 333, the combination that achieves

53

maximal total capacity of the range is 333, and the combination that achieve
minimal total capacity of the range is 300. Recursively, the same fact occurs
within its sub range also, for example range 300 to 310, and 320 to 322. Based
on the above fact, the frequency combination locating algorithm, Algorithm
1, is propose.

Algorithm 1 shows the core function LocateFrequency in this phase, which
locates the boundary combinations which meet the requirement. The basic idea
of frequency locating algorithm is to find the junction points between traverse
line and boundary lines. When the minimal ranges of the points are found,
then the bound points are located. For example, the first minimal range of
junction point is 210 to 211. Since the junction point is between traverse line
and the lower boundary line, then 211 is returned as one of l comb.

Parameters of the function are l, ε, digitNum, digitMax, lower. l indi-
cates the total predicted workload and the value should be l or l+ε. digitNum
indicates the number of digits in the combination and digitMax gives the
maximum value for each digit. Namely, digitNum and digitMax refer to the
number of nodes and the number of available frequency options respectively.
lower is a binary parameter, which is used to indicate which bound is re-
quired. If lower is True then the upper bound is searched, otherwise the lower
bound is searched. At the end, LocateFrequency returns the boundary com-
binations according to the parameters. The main idea for LocateFrequency
is to narrow the search space to find the boundaries for l. LocateFrequency
takes advantage of the fact that for the combinations that share the same
prefix, the combinations providing maximum/minimum total capacity can be
located. Therefore, a check between ranges and their sub-ranges is applied. l
is tested for each range of the frequency traversing order, and by narrowing
down the range, the boundary combinations can be obtained.

In Algorithm 1, line 4 to line 12 check the basic ranges (only the first
digital number is checked). To be noticed, the checking starts from 1 because
the combination 000 − 000 is not a range. In range checking, if l is between
the provided throughputs by the minimal combination of the range and the
maximal combination of the range (line 9), then the range is stored (line 10)
and awaits for future narrow down. Meanwhile, in each loop, the combination
from the last previous range is computed (line 5) and compared with the first
combination in the current range (line 8) by a function ChooseComb. If the l
is between prev and left then the eligible one is put to result set.

From line 13 to line 26, the ranges are narrowed down by each digit, and
the possible ranges are selected. However, in each process of the range nar-
rowing down, the combination from previous sub-range is computed(line 18)
and compared within first combination in the current sub-range (line 21). To

54

Algorithm 1 Frequency Combination Locating Algorithm
1: function LocateCombination(l, ε, digitNum, digitMax, lower)
2: result← []
3: prefixs← []
4: for j ∈ [1, digitMax] do
5: prev ← [j − 1]× digitNum
6: left← [j] + [0]× (digitNum− 1)
7: right← [j]× digitNum
8: result← result ∪ ChooseComb(prev, left, l, ε, lower)
9: if left <= l <= right then

10: prefixs← prefixs ∪ [[j]]
11: end if
12: end for
13: for i ∈ [(digitNum− 1), ..., 2] do
14: tempPrefix← []
15: for prefix ∈ prefixs do
16: lastMax = prefix[−1]
17: for j ∈ [1, lastMax] do
18: prev ← prefix+ [j − 1]× i
19: left← prefix+ [j] + [0]× (i− 1)
20: right← prefix+ [j]× i
21: result← result ∪ ChooseComb(previous, left, l, ε, lower)
22: if left <= l <= right then
23: tempPrefix← tempPrefix ∪ (prefix+ [j])
24: end if
25: end for
26: end for
27: prefixs← tempPrefix
28: end for
29: for prefix ∈ prefixs do
30: lastMax = item[−1]
31: for j ∈ [1, lastMax] do
32: left← prefix+ [j − 1]
33: right← prefix+ [j]
34: result← result ∪ ChooseComb(previous, left, l, ε, lower)
35: end for
36: end for
37: return result
38: end function

55

l = 12000, ε = 1500, digitNum = 3, digitMax = 3, lower = False
for loop result prefixs/tempPrefixs combs(prev/left− right)
1 1 [] [] 000/100-111
1 2 [] [[2]] 111/200-222
1 3 [] [[2],[3]] 222/300-333
2 1 [] [] 200/210-211
2 2 [] [[21]] 300/310-311
2 3 [310] [[21]] 311/320-322
2 4 [310] [[21]] 322/330-333
3 1 [310] [[21]] None/210-211
3 2 [310,211] - -

RETURN [310,211]

Table 4.2: Example of Frequency Combination Locating

be noticed, the last digit in a combination is not checked (line 13), because
with the last digit, the provided throughputs are monotonic. For example, the
throughputs provided by 330, 331, 332, 333 are monotonic increasing. Line 29
to line 36, the boundaries combinations are selected. The boundary combina-
tions are returned in the end(line 37).

Algorithm 2 Choose Combination Algorithm
1: function ChooseComb(l comb, r comb, l, ε, lower)
2: if l comb ≤ l ≤ r comb and not lower then
3: return r comb
4: end if
5: if l comb ≤ l + ε ≤ r comb and lower then
6: return l comb
7: end if
8: return NULL
9: end function

Algorithm 2 shows the function ChooseComb. The function takes two com-
binations, l comb and r comb, two boundary line, l and l+ ε, and bound type
lower as input parameters. When the resources provided by two combinations
have a junction with the boundary lines, the proper bound point is returned.

Table 4.2 shows the executing process of Algorithm 1 for locating the
l comb, [211, 310], in Figure 4.2. The input parameters are l = 12000, ε =
1500, digitNum = 3, digitMax = 3, lower = False. Table 4.2 shows the
changes of variables within the algorithm. 5 columns exist in the table: for

56

represents the “For Blocks” within the algorithm, line 4 to line 12, line 13 to
line 28, and line 29 to line 36; loop shows the current executing loop within
each “For Block”; result represents the variable of result that is returned
when the algorithm is terminated; prefixs/tempPrefixs represents variable
of prefixs within the first and last “For Block”, and variable of tempPrefixs
within the second ‘For Block‘; combs represents the temporary variable within
the algorithm, prev, left and right. Since digitMax is set to 3, the first “For
Block”, for = 1, has 3 loops, and 3 ranges are examined. In Figure 4.2, the
lower boundary line has two intersection points with the total capacity line,
and the points go through range 200-222 and 300-333. Therefore, in the end
of first “For Block”, prefixs equals to [[2],[3]]. In the second “For Block”, the
algorithm explorers the reminded digitals, and the last digital is checked in the
third “For Block”. To be noticed, the second “For Block” consist of 2 nested
“For Block”, however in the example, it is shown as 1 “For Block” because
there is only 1 digital is checked. In the second “For Block” and second loop,
the range 300/310-311 is checked. However, when the range 300-311 is checked
by ChooseComb in line 21, 311 is matched result condition and is put into the
result set. In the third “For Block”, 210 is found out as one of the boundary
point and is put into the result set. In the end, the result [310, 211] is returned.

4.3.2 Frequency Traversal Phase
In this phase, the candidate frequency combinations that provided the capaci-
ties between l and l+ε are generated. In the previous phase, the boundary com-
binations are located, which are denoted l comb and r comb for lower boundary
combinations and upper boundary combinations respectively. The candidate
frequency combinations are denoted as s comb (Selected Combinations). An
example of boundary combinations and selected combinations are shown in
Figure 4.2, in which the selected combinations between all the boundary com-
binations are found.

Frequency traversal approach is based on a basic fact that:

1. The frequency combinations after a l comb might be a selected combi-
nation, but the frequency combinations before the l comb are not.

2. The frequency combinations before a r comb might be a selected combi-
nation, but the frequency combinations after the r comb are not.

Based on the above facts, the Frequency Generation Algorithm, Algorithm
3, is proposed. The input of the algorithm is boundaries which is a sorted list
of all the boundary combinations generated in the frequency locating phrase,
and the output of the algorithm is s comb list including l comb and r comb.

57

Algorithm 3 Frequency Generation Algorithm
1: function GenerateCombinations(boundaries, l, ε)
2: result← []
3: amount← len(boundaries)
4: last← NULL
5: for i ∈ [0, amount) do
6: start← boundaries[i]; end← NULL
7: if start = l comb and i < amount− 1 then
8: end← boundaries[i+ 1]
9: end if

10: if start = r comb and i > 0 then
11: end← boundaries[i− 1]
12: end if
13: if curt = l comb then
14: result← result ∪ ForwardTraversal(start, end)
15: last← result[−1]
16: else
17: result← result ∪BackwardTraversal(start, end, last)
18: end if
19: end for
20: return result
21: end function

In the algorithm, line 5 to line 19 traverse the frequency combinations from
each boundary combination. For l comb, it uses Frequency Forward Traversal
Algorithm, Algorithm 4, to get all the selected frequency combinations. Com-
parably, it applies Frequency Backward Traversal Algorithm, Algorithm 5, for
r comb.

Algorithm 4 shows the key function of Frequency Generation Algorithm,
ForwardTraversal, in which the selected combinations after the given bound-
ary combination are traversed. The inputs of the algorithm are begin combi-
nation (l comb), end combination (l comb, r comb or NULL), workload l and
ε. Line 2 to line 4 initialize some parameters, in which result is the s comb
list, next is an intermediate variable that indicates the next frequency combi-
nation within the traverse process, and i indicates the position that is used to
increase the combination. Line 4 to line 30 is the traversing process. The stop
criteria condition of the traverse process is to meet the end combination or
to meet one combination that falls outside of the boundary lines. Within the
loop, line 6 to line 23, the next combination is constructed and the value of i
is updated for next loop. Line 24 to line 29, the provided capacity of the next

58

Algorithm 4 Frequency Forward Traversal Algorithm
1: function ForwardTraversal(begin, end, l, ε)
2: result← [begin]
3: next← begin
4: i← argmin(begin)
5: while next 6= end do
6: next[i]← next[i] + 1
7: if i 6= len(next)− 1 then
8: for j ← [i+ 1, len(next)] do
9: next[i]← 0

10: end for
11: end if
12: if i = len(begin) then
13: j ← len(begin)− 1
14: k ← j − 1
15: while next[i] = next[j] and k > 0 do
16: j ← j − 1 and k ← k − 1
17: end while
18: if k = 0 and begin[j] = begin[k] then
19: i← k
20: else
21: i← j
22: end if
23: end if
24: capacity ← Capacity(next)
25: if l ≤ capacity ≤ l + ε then
26: result← result ∪ next
27: else
28: break
29: end if
30: end while
31: return result
32: end function

59

Algorithm 5 Frequency Backward Traversal Algorithm
1: function BackwardTraversal(begin, end, last, l, ε)
2: result← [begin]
3: next← begin
4: check list← [len(begin)− 1, ..., 0]
5: while next 6= end and next 6= last do
6: pos← −1
7: for i ∈ check list do
8: if next[i] 6= 0 then
9: pos← i

10: break
11: end if
12: end for
13: next[pos]← next[pos]− 1
14: if pos 6= len(next)− 1 then
15: for j ∈ [pos+ 1, len(next)) do
16: next[j]← next[pos]
17: end for
18: end if
19: capacity ← Capacity(next)
20: if l ≤ capacity ≤ l + ε then
21: result← result ∪ next
22: else
23: break
24: end if
25: end while
26: return result
27: end function

combination is examined. If the total capacity value is between the boundary
lines, then the combination is put into the result list. Otherwise, the traverse
process is terminated in line 28.

Algorithm 5 shows the function, TraverseReversely, in which the selected
combinations before the given boundary combination are traversed. The inputs
of the algorithm are begin combination (l comb), end combination (r comb or
NULL), last combination (s comb or NULL), workload l and ε. last shows
the last combination within the current traverse process. To be noticed, in
Algorithm 3, last is only updated after ForwardTransversal to avoid the
repetitive traverse by the following BackwardTraversal. Line 2 to line 4
initialize some parameters, in which check list is used to produce the next

60

combination within the traverse process. Line 5 to line 25 show the traverse
process within the algorithm. The stop criteria condition is to meet the end or
last combination, or to meet one combination that falls outside of the boundary
lines. Within the loop, line 6 to line 18, the next combination is constructed.
Line 19 to line 24, the provided capacity of the next combination is examined.
If the total capacity value is between the boundary lines, then the combination
is put into the result list. Otherwise, the traverse process is terminated in line
23.

000 100 200 300 400
Frequency Combination

11000

12000

13000

14000

15000

To
tal

 C
ap

ac
ity l +

l 211

222

l_comb

(a) case 1

000 100 200 300 400
Frequency Combination

11000

12000

13000

14000

15000

To
tal

 C
ap

ac
ity l +

l

222

310

l_comb

(b) case 2

000 100 200 300 400
Frequency Combination

11000

12000

13000

14000

15000

To
tal

 C
ap

ac
ity

310

321

l +

l

l_comb
r_comb

(c) case 3

000 100 200 300 400
Frequency Combination

11000

12000

13000

14000

15000

To
tal

 C
ap

ac
ity

400

421
l +

l

r_comb

(d) case 4

Figure 4.3: Frequency Combination Traverse Examples

In Figure 4.3 4 examples are made to show different cases for the traverse
process.

Figure 4.3a shows two adjacent l combs, 211 and 222, in which 222 is
treated as l comb for the reason that the capacity range 222 − 300 is crossed

61

with the lower boundary line, and 222 is within the range [l, l+ ε]. To get the
s comb starts from 211, function ForwardTraversal, Algorithm 4, is applied.
The algorithm is terminated since the end combination 222 is met.

Figure 4.3b shows two adjacent l combs, 222 and 310. Same with Figure
4.3a, function, ForwardTraversal, Algorithm 4 is applied, and the parameters
of begin and end are 222 and 310 respectively. However, the result of the
algorithm is [222] since an undesirable combination, 300, whose capacity is
outside of [l, l + ε] is met.

Figure 4.3c shows two adjacent l comb and r comb, 310 and 321. At begin-
ning, the traverse process starts with 310, and, function ForwardTraversal,
Algorithm 4 is applied. When the algorithm meets 321, the function re-
turns [310, 311, 320]. Meanwhile, the last combination is set to 320 in Al-
gorithm 3. Afterwards, the traverse process starts with 321 and function
BackwardTraversal, Algorithm 5, is used since 321 is a r comb. The pa-
rameter of Algorithm 5 is start = 321, end = 310 and last = 320. The
algorithm is returned with list [321] since the last combination is met. The
last variable within the traverse process is to avoid the repetitive traverse.

Figure 4.3d shows two adjacent r combs, 400 and 421. With same reason
that 222 is treated as l comb, 400 is treated as r comb. When the traverse
algorithm meets 400, it applies function BackwardTraversal, Algorithm 5,
to get s combe by passing the parameter start = 400, end = 331 and last =
331. The function only returns the result list [400] because the undesirable
combination 333 is met. Afterward, when the traverse algorithm meets 421, it
applies function BackwardTraversal, Algorithm 5, to get s combe by passing
the parameter start = 421, end = 400 and last = 331. The function returns
[421, 420, 411, 410] when the end is met.

4.3.3 Frequency Assignment Phase
In Section 4.3.1, frequency combinations are encoding to reduce the solution
space. However, the encode method losses frequency assignment information.
In Frequency Assignment Phase, the frequencies in each frequency combi-
nation are assigned to the nodes, namely the relationship between frequencies
and nodes are decided. The objective of Frequency Assignment Phase is
to generate a frequency assignment which minimizes the total migrated work-
load and maximizes the workload migrated within racks. The reasons for this
objective are: 1) the migration cost cannot be obtained before the whole mi-
gration process is done; 2) when a frequency combination is assigned to the
nodes, the migrated workload is determined which is related to the migration
process and affects the migration cost.

The steps of Frequency Assignment Phase is shown as following:

62

1. Sort the nodes by descending order of their predicted workload, namely
by ∀i ∈ [1, n] wi.

2. Assign the frequencies in the combination to the sorted nodes. In the
frequency combination, frequencies are sorted by descending frequency
value.

3. For two nodes which are in different racks, swap the frequency assign-
ments if they satisfy the conditions below.

• For both nodes, their capacities are either lager or lower than their
workloads.

• The total migrated workload within racks increases because of the
swap.

4. At the end of assignment process, the upper bound of power consumption
and the upper bound of migration are obtained according to the model
simplification method (Section 3.3).

Using step 1 and step 2, a frequency combination is assigned to the nodes sorted
by descending order of the predicted workload under current block layout, by
which the total migrated workload is minimized (Proposition 3). Using step
3, the migrated workload within a rack can be maximized (Corollary 1).

Proposition 3. When a frequency combination is assigned to the nodes that
are sorted by descending order of their predicted workload under current block
layout, the total size of migrated workload is minimum.

Proof. Without loss of generality, we say the node set C is sorted by descending
order of the predicted workload under current block layout, namely by wi. The
frequency assigned to ci is denoted as fi. According to the assignment method,
if i < j, then fi ≥ fj and wi ≥ wj. Furthermore, z(ci, fi) ≥ z(cj, fj). The
total migrated workload is denoted as wMigrated. wMigrated can by obtained by
Equation 4.22 in which I is an index set indicating the nodes whose predicted
workload exceed their capacities.

I = {i | wi > z(ci, fi) i ∈ [1, n]}
wMigrated =

∑
i∈I

wi − z(ci, fi) (4.22)

In order to achieve an assignment which gives less total migrated workload,
the frequencies are swapped between ci and cj. Without loss of generality, we
assume i < j. Basically there are 4 scenarios.

63

Scenario 1 z(ci, fi) > wi and z(cj, fj) > wj

Scenario 2 z(ci, fi) < wi and z(cj, fj) < wj

Scenario 3 z(ci, fi) > wi and z(cj, fj) < wj

Scenario 4 z(ci, fi) < wi and z(cj, fj) > wj

Scenario 1 When fi and fj are swapped, z(cj, fi) > wj can be ob-
tained because fi > fj, z(c, f) is a monotonic increasing function with f ,
and z(cj, fj) > wj. Since the relationship between z(ci, fj) and wi is unknown,
there are 2 sub-scenarios.

Scenario 1.1 z(ci, fj) > wi
According to Equation 4.22, the increment of wMigrated under
this sub-scenario is 0.

Scenario 1.2 z(ci, fj) < wi
According to Equation 4.22, the increment of wMigrated is wi −
z(ci, fj) > 0.

According to the above analysis, when the swap happens under Scenario
1, there is no chance for reducing the total migrated workload.

Scenario 2 When fi and fj are swapped, z(ci, fj) < wi is obtained because
fi > fj and z(ci, fi) < wi. Since the relationship between z(cj, fi) and wj is
unknown, there are 2 sub scenarios.

Scenario 2.1 z(cj, fi) > wj
According to Equation 4.22, the increment of wMigrated under
this sub scenarios is (wi − z(ci, fj))−(wi − z(ci, fi) + wj − z(cj, fj)) =
z(cj, fi)− wj > 0. The scenario is valid because ci and cj have
the same capacity under the same frequency, namely ci and cj
are homogenous.

Scenario 2.2 z(cj, fi) < wj
According to Equation 4.22, the increment of wMigrated under
this sub scenarios is 0.

According to the above analysis, when the swap happens under Scenario
2, there is no chance for reducing the total migrated workload.

Scenario 3 When fi and fj are swapped, z(cj, fi) > wi ≥ wj > z(ci, fj) is
obtained. The increment of the total migrated workload is (wi − z(ci, fj)) −

64

(wj − z(cj, fj)) = wi − wj ≥ 0. when the swap happens under Scenario 3,
there is no chance for reducing the total migrated workload.

Scenario 4 When fi and fj are swapped, wi > z(cj, fi) > z(ci, fj) > wj can
be obtained. The increment of the total migrated workload is (wi − z(ci, fj))−
(wi − z(ci, fi)) = z(ci, fi) − z(ci, fj) > 0. when the swap happens under Sce-
nario 4, there is no chance for reducing the total migrated workload.

According to the discussion above, when a frequency combination is as-
signed to the nodes sorted by descending order of the predicted workload, the
total migrated workload cannot be minimized by means of swapping 2 assign-
ments. Therefore, the total amount of migrated workload is minimum under
this assignment.

Corollary 1. The swap cannot reduce the total migrated workload, but it can
increase the migrated workload within a rack in some cases.

Proof. In the proof of Proposition 3, two swapping scenarios, Scenario 1.1
and Scenario 2.2, do not increase the migrated workload. However, in some
situations, they increase the migrated workload within racks.

We assume ci and cj are from different racks. Considering Scenario 2.2,
the migrated workloads from the nodes before the swapping are wi − z(ci, fi)
and wj−z(cj, fj) respectively. After the swapping the migrated workloads from
the nodes are wi − z(ci, fj) and wj − z(cj, fi) respectively. According to the
conditions of the scenario, the relationships, wi ≥ wj > z(ci, fi) = z(cj, fi) >
z(cj, fj) = z(ci, fj) can be obtained. Using the swapping, more workload is
migrated from ci and correspondingly, less workloads are migrated from cj.
If the rack of ci needs some workload to migrate inside and the rack of cj
needs some workload migrated outside, then the amount of migrated workload
within the rack of ci increases, and correspondingly, the amount of migrated
workload between racks of rack cj decreases. For Scenario 1.1, the same case
can be constructed as well. Therefore, Corollary 1 is justified.

4.3.4 Frequency Filter Phase
In this phase, s combs are filtered according to the problem’s bound constraint.
By means of Frequency Filter Phase, all the frequency candidates are valid
in terms of the bound constraint.

PbMCmin defines the problem that minimizes the migration cost fulfill-
ing the basic requirement of the power consumption bound. In Frequency
Filter Phase, s combs are filtered according to Pb. For each frequency combi-
nation, if pmax ≤ Pb, then the combination is kept otherwise the combination

65

is discarded. Due to the filter process, all the kept combinations satisfy Pb
constraint.

MCbPmin defines the problem that minimizes the achievable power con-
sumption within the migration cost bound. In order to solve the problem,
s combs are filtered by means of MCb in Frequency Filter sub-process. For
each solution, if mcmax ≤MCb, then the solution is kept otherwise the solution
is discarded. Due to the filter process, all the kept solutions can satisfy MCb

constraint.

4.3.5 Frequency Search Phase

After the Frequency Filter Phase, a Frequency Search mechanism is
introduced. In Frequency Filter, all s combs are ensured to satisfy the
bounded requirement. However, the amount of solutions might be still too
large. Therefore, the solution space is narrowed down further by Frequency
Search Phase. The purpose of Frequency Search Phase is to find a few
promising solution candidates. In Frequency Search Phase, a top-k algo-
rithm [86] is used to obtained κ solutions according to problem’s objective. In
PbMCmin problem, the top κ combinations with minimized migration cost up-
per bound value are searched. Correspondingly, the top κ combinations with
minimized power consumption upper bound value are obtained for MCbPmin.

4.3.6 Frequency Evaluation Phase

In this phase, the κ frequency candidates generated in Frequency Search
Phase are evaluated, and the solution that meets all the constraints and min-
imizes the objective is obtained. In Frequency Search Phase, the solution
space is reduced to κ solution candidates. Therefore, in Frequency Evalu-
ation Phase, the migration process (Chapter 6) is applied to these κ solu-
tion candidates. In the process, a migration plan is generated according to
each given frequency assignment and workload prediction. Meanwhile, the
estimated power consumption and the estimated migration cost are obtained
according to the migration result by Equation 4.7 and Equation 3.7. The final
solution is obtained according to the objective target. For PbMCmin, the solu-
tion with the minimal migration cost is chosen, and for MCbPmin, the solution
with the minimal power consumption is chosen. By means of evaluation phase,
the best feasible solution is obtained according to problem’s constraints and
objective.

66

4.3.7 Summary and Complexity Analysis
In previous sections, the details of the Multi-Phases Algorithm are intro-
duced. In this section, the Multi-Phases Algorithm is introduced in the view
of bounded problems, and the complexity of the algorithm is analyzed.

The feasible solution can be found by Multi-Phases Algorithm, which con-
sists of 6 phases: Frequency Locating Phase, Frequency Traversal Phase,
Frequency Assignment Phase, Frequency Filter Phase, Frequency
Search Phase, and Frequency Evaluation Phase. The key of Multi-
Phases Algorithm is to reduce the solution space and to optimize the solution
according to the problem type with different aspects in each phase.

In Frequency Locating, the frequency combinations are encoded by the
encoding constraints which reduce the solution space significantly. Then, the
solution space is reduced again in Frequency Traversal by boundary lines,
which indicate the maximal total provided capacity and the minimal total pro-
vided capacity. The frequency combinations whose total capacities are between
the boundary lines are taken into consideration in the following process. In
Frequency Filter, the solution space is narrowed down further by omitting
the solution candidates that are not valid in terms of bound constraint (Pb or
MCb). At the end, only κ solution candidates are kept by Frequency Search
Phase according to the objective of the problem.

In terms of the optimization, Multi-Phases Algorithm takes the combina-
tions whose total capacities are between l and l+ ε into consideration to avoid
under provisioning and over provisioning in Frequency Locating Phase and
Frequency Traversal Phase. In Frequency Assignment Phase,the as-
signment mechanism is in favor of reducing migrated workloads, which leads
to lower migration cost. In Frequency Filter Phase, the combinations are
filtered according to the bound constraint of the bounded problem, which
makes sure all the solution candidates are valid in point view of the bound
constraint. Afterwards, only κ candidate solutions are obtained within Fre-
quency Search Phase. Frequency Search Phase utilizes top-k algorithm
to get the solution candidates with lower upper bound value of its objective,
which is in favor of obtaining a lower objective value of the final solution. At
the end, the solution is obtained based on the migration process.

The complexities of each phase are listed in Table 4.3. In the table, U is
the number of racks, n represents the number of nodes, and m represents the
number of frequency options. δ represents the number of frequency combina-
tions which are generated in frequency selection phase. The number of blocks
for each node is denoted as |Dr

i | in which Dr
i = {bg,k | bg,k is assigned to ci}.

• Phase 1: In Frequency Locating Phase the operation of locating
combination checks the frequency option for each node. Afterward, the

67

Table 4.3: Complexity of Operations

Phase Operation Complexity
1 Frequency Locating O(nm2)
2 Frequency Traversal O(nδ)
3 Frequency Assignment O(n2δ)
4 Frequency Filter O(δ nmax

i=1
(|Dr

i | log |Dr
i |))

5 Frequency Search O(κ ln δ̃)
6 Frequency Evaluation O(|∑n

i=1 Dr
i |

3)

ranges are narrowed down from each digital (encoded positions within
frequency combination), therefore the complexity is O(nm2).

• Phase 2: In Frequency Traversal Phase, each selected frequency com-
bination is checked to make sure it fits to the boundary. However, when
generating next frequency combination, each digit within the combina-
tion is rechecked to make sure that the combination is valid according
to the encoded method. Therefore the complexity for traversing com-
binations is O(nδ), in which δ is the number of generated frequency
combinations.

• Phase 3: In Frequency Assignment Phase, frequencies in each com-
bination are exchanged between nodes to generate the assignment which
is in favor of minimizing migrated workload. The complexity of assigning
frequency is O(n2).

• Phase 4: In Frequency Filter Phase, frequency combinations are fil-
tered according to the upper bound values and the problem constraint
(Pb or MCb). However, in order to obtain the upper bound migra-
tion cost, the migrated block sets are required (Section 3.3). The de-
tail of the block selection is discussed in Section 6.2. The complex-
ity of block selection operation for a given frequency combination is
O
(

nmax
i=1

(|Dr
i |log|Dr

i |)
)

, therefore The complexity of the Frequency Fil-

ter Phase is O
(
δ

nmax
i=1

(|Dr
i |log|Dr

i |)
)

.

• Phase 5: In Frequency Search Phase, κ candidate solutions are searched
from filtered combinations by top-k algorithm. The number of filtered
combinations is denoted as δ̃, therefore the complexity of the phases is
O(κ log δ̃)

68

1 2 3 4 5 6 7 8 9 10
Node Id

0

1000

2000

3000

4000

5000

6000

7000

W
or

kl
oa

d

Figure 4.4: Example of the Workload

• Phase 6: In Frequency Evaluation Phase, the migration plan is ob-
tained to compute the estimated power consumption and estimated mi-
gration cost. At the end, the solution candidate with the minimal ob-
jective value is taken as the final solution. In block migration operation,
the algorithm CMTHM is adopted (Section 6.3). The complexity of
CMTHM depends on the amount of items because of exchange process.
Therefore, the complexity of CMTHM algorithm is O(|∑n

i=1 Dr
i |

3)

4.4 Experiment
In this section, proposed algorithms— Nonlinear Programming Algorithm and
Multi-Phases Algorithm — are evaluated using simulation experiment. Nonlin-
ear Programming Algorithm can find the optimal solution for both frequency
selection and migration process, however it cannot be applied to large scale
problems. In contrast, Multi-Phases Algorithm can find the sub-optimal so-
lutions and has good scalability. In this section, a comparison experiment
is made between Nonlinear Programming Algorithm, Multi-Phases Algorithm
and HHHC approach from Houssem-Eddine Chihoub et al. [19]. Then, a scal-
ability experiment is implemented for Multi-Phases Algorithm.

4.4.1 Setup
To conduct the simulation experiments, some simulation test cases are gener-
ated. The method for generating test cases are shown as below.

• System. A system is denoted as d{NodeAmount}. Meanwhile, it is
assumed that there are 2 racks in total. For example d20 represents a

69

database system with 20 nodes, and there are 2 racks in which each rack
contains 10 nodes.

• Block and Block layout. The number of blocks is set to 64 per node
in the experiments and the replica factor is set to 3. Therefore in d10,
there are 1920 blocks in total. The size of blocks is uniformly generated
within 10Mb to 30Mb. For the replicas, they have same block size. To
be noticed this method is used to give the number of blocks. The blocks
are distributed by following rules: 1) the first replica is placed on one
of the nodes by means of round-robin strategy; 2) the second replica is
placed on another rack; 3) the third replica is placed on the same rack
of the second, but on a different node chosen at random.

• Block accessed probability. The block accessed probability in Fre-
quency Selection model refers to the parameter ϕg,k. In practice, these
are predicted values. In the experiment, probability is generated by Zipf
distribution [87] and the distribution factor is set to 2.5 in our experi-
ment.

• Workload. The workload in this paper refers to the parameter l which
is the predicted throughput. The value of l is given by the throughput
per node. For example, if we say the workload of one test case is set to
3500 Ops/Sec to d10, then for the whole system, the throughput is set
to 35000 Ops/Sec. However, this method is a way to set the throughput
value for the whole system, the throughput for each node depends on
the assigned blocks and their accessed probabilities. An example of a
case with 10 nodes can be find in Figure 4.4, in which the bars show the
workload in Ops/Sec of each node.

• Bound. There are two problem types in this chapter, PbMCmin and
MCbPmin. For both problems, the boundary value of Pb and MCb should
be provided. In the experiments, if not specified, then the boundary value
is obtained as follow. To obtain the boundary value Pb, the corresponding
test case is solved by MCbPmin in which MCb is set to infinite denoted as
MCInf . When the value of Pmin is obtained, the boundary value is set
to 1.1× Pmin. The boundary value MCb is obtained by the same way.

A test case is a combination with a system(d), a workload (l) and a prob-
lem type (PbMCmin or MCbPmin). For example (d10, 3500,PbMCmin) presents
a test case in which there are 10 nodes (5 for each rack), the workload through-
put is set to 3500 × 10 = 35000 Ops/Sec. In (d10, 3500,PbMCmin), a power
consumption boundary value is provided and the objective is to minimize mi-
gration cost.

70

Table 4.4: Properties of the Test Cases for Nonlinear Programming Algorithm

Property Description
System The system includes 6 nodes denoted as d6.
Replica 2

Block Amount 3 per node(36 blocks in total)

4.4.2 Comparison Experiment
Nonlinear Programming Algorithms vs Multi-Phases Algorithm

Since the Nonlinear Programming Algorithm cannot be applied to a large
scale problem, two special test cases, denoted as (d6, 4000,PbMCmin) and
(d6, 4000,MCbPmin), are introduced. The detail about the properties of these
test cases are listed in Table 4.4. Compared with the test case (d20, 4000,PbMCmin),
(d6, 4000,PbMCmin) and (d6, 4000,MCbPmin) are smaller in terms of the num-
ber of nodes and the number of blocks. However, in our experiment, these
are the biggest cases for the Nonlinear Programming Algorithm, otherwise the
algorithm cannot produce a solution within a few minutes. The comparison
result between the Nonlinear Programming Algorithm and the Multi-Phases
Algorithm is shown in Figure 4.5 and Figure 4.6.

Nonlinear Programming Multi-Phases Algorithm
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
Ti

m
e (

S)

0.309

0.043

1.210

0.011

b min b min

Figure 4.5: Execution Time Comparison

In Figure 4.5, the execution time of Multi-Phases Algorithm is lower than
the corresponding execution time of Nonlinear Programming Algorithm for
both test cases. In term of execution time, Multi-Phases Algorithm is faster
than Nonlinear Programming Algorithm up to 7 to 10 times under our test
cases. Figure 4.6 shows the objective value given by both algorithm for the

71

Nonlinear Programming Multi-Phases Algorithm
0

100

200

300

400

500

600

700

800

Ob
jec

tiv
e V

alu
e

22.00 27.20

480.25 492.20

Migration Cost
Power Consumption

Figure 4.6: Objective Value Comparison

test cases. Generally, the objective values given by Nonlinear Programming
Algorithm is lower than the corresponding objective values given by Multi-
Phases Algorithm. For PbMCmin migration cost produced by Multi-Phases
Algorithm is 1.23 times larger than the value obtained by Nonlinear Program-
ming Algorithm. While for MCbPmin, the power consumption value achieved
by Multi-Phases Algorithm is 1.03 times larger than the value obtained by
Nonlinear Programming Algorithm. The reason of this situation is that Multi-
Phases Algorithm takes advantages of approximation algorithms in each phase
to obtain a feasible solution of the problem. In contrast, Nonlinear Program-
ming Algorithm uses nonlinear optimization method to solve the problem and
obtain the global optimal solution.

Multi-Phases Algorithm vs Half Hot and Half Cold Approach

In next comparison experiment, the Multi-Phases Algorithm is compared with
a method from Houssem-Eddine Chihoub et al. [19]. The method is defined
as HHHC(Half Hot and Half Cold) in our experiment. In HHHC, half of the
nodes are set to the highest frequency(2.53GHz) and another half of the nodes
are set to the lowest frequency (1.20GHz). In Multi-Phases Algorithm, the
frequencies are selected according to the predicted workload.

In this experiment, 4 test cases are involved, which are denoted as (d20, l,TInfPmin)
l ∈ [5000, 4500, 4000, 3500]. Since there is no boundary for migration cost, min-
imize power consumption is the objective for both algorithms. All the cases
are solved by Multi-Phases Algorithm and HHHC and the result is shown by
Figure 4.7.

In Figure 4.7, The power consumption given by multi-phases algorithm are

72

5000 4500 4000 3500
Throughput per Node (Ops/Sec)

1400

1500

1600

1700

1800

1900

2000

Po
we

r C
on

su
m

pt
io

n
(W

att
)

1797

1673

1598

1528

0

1866
1833

1801

Multi-Phases HHHC

Figure 4.7: Result of Frequency Selection Comparison

lower than the corresponding result given by HHHC. The average improvement
of Multi-Phases Algorithm compared with HHHC is 12.89%. When l is set to
5000 Ops/Sec, HHHC cannot produce a valid solution. Theoretically, when
HHHC is applied, the system with 20 nodes can support any workloads with
throughput under 10× 5690 + 10× 3520 = 92080 Ops/Sec, however with the
setting 5000 Ops/Sec for each node, the system does not have enough resources
to support it. Therefore the corresponding power consumption is recorded as
0. The main drawback of HHHC is its flexibility. HHHC sets the frequencies
statically, while the Multi-Phases Algorithm chooses frequencies according to
the workload predictions.

4.4.3 Scalability Experiment
A series of tests is made to evaluate the scalability of the Multi-Phases Al-
gorithm. In this experiment, test cases (d{NodeAmount}, 4000,PbMCmin)
and (d{NodeAmount}, 4000,PbMCmin) are used, in which NodeAmount ∈
[10, 20, 30, 40, 50, 60, 70]. The execution time for each case is shown by Figure
(4.8) in logarithmic scale.

In Figure (4.8), the execution time of the Multi-Phases Algorithm increases
with the increase of the number of nodes for both problem type. When the
number of nodes increases, the total frequency combinations increases as well.
Therefore, the number of frequency combinations which are evaluated in the
Multi-Phases Algorithm increases. The amount of migrated blocks increases
as well since the workload increases along with the node amount. Then, the
execution time for both frequency selection and workload migration increases.
As a consequence, the execution time of the Multi-Phases Algorithm increases.

73

d10 d20 d30 d40 d50 d60 d70
Dataset

10 1

100

101

102

Ex
ec

ut
io

n
Ti

m
e (

S)

0.06

0.44

2.62

11.43

41.24

127.45

336.86

0.06

0.49

2.74

11.82

44.34

135.86

361.32
PbTmin TbPmin

Figure 4.8: Result of Scalability Experiment

With the same node amount, the execution time for PbMCmin is shorter
than the execution time for MCbPmin especially for larger problems (i.e d60
and d70). For problem PbMCmin, the Multi-Phases Algorithm filters frequency
combinations after the frequency assignment phase by pmax, and sort frequency
combinations after the block selection phase by mcmax. However, for problem
MCbPmin, the Multi-Phases Algorithm sorts frequency combinations after the
frequency assignment phase by pmax, and filters frequency combinations after
the block selection phase by mcmax. When the same number of frequency
combinations generated in the frequency selection phase, the execution time
for PbMCmin is shorter because less frequency combinations are evaluated in
block selection phase. When a frequency combination is filtered, then the
combination is discarded. In PbMCmin, the filter operation happens before the
block selection phase which causes less execution time.

4.5 Summary
In this chapter, the frequency selection problem is considered as two bounded
problems: PbMCmin and MCbPmin. Nonlinear Programming Algorithm and
Multi-Phases Algorithm are proposed to solve them. Nonlinear Programming
Algorithm can obtain a global optimal solution but has a poor scalability to
large scale problems. In contrast, Multi-Phases Algorithm has a good scala-
bility for large scale problems by means of approximation method. According
to the experiment results up to 21.5% power can be saved.

74

Chapter 5

Frequency Selection with
Optimization Problem

In previous chapter, we consider power consumption and migration cost are
independent variables and solve the frequency selection problem under two
bounded problems. In this chapter, both of them are considered as a whole in
the optimization problem. We propose two approximation algorithms, genetic
based algorithm and monte carlo tree based algorithm, to obtain the feasible
solution for the optimization problem. We introduce the objective of the prob-
lem first, and then two algorithms are proposed. In experiment section, we
evaluate the algorithms in aspect of performance, accuracy and scalability. In
the end, the pros and cons for both algorithms are discussed.

5.1 Objective

Energy consumption of the system is obtained by Equation 3.2, in which en-
ergy consumption consist of two parts energy consumption used for executing
workload, p(s∗)×|∆t|, and energy consumption used for conducting migration,
mc(s̃). In optimization problem, we consider both parts as a whole. Equation
5.1 shows the maximal energy consumption required by the system to execute
the workload and conduct migration for ∆t. The objective of the optimization
problem is to minimize E.

p(s∗)× |∆t|+mc(s̃) ≤ E (5.1)

75

5.2 Genetic Algorithm
Genetic Algorithm (GA for short) is a type of algorithms for randomly search-
ing suboptimal solutions, which is guided by evaluation and natural genet-
ics [88]. Generally, GA includes several phases in each iteration : 1, encoding;
2, generation of initial population; 3, evaluation; 4 selection; 5 crossover; 6
mutation and 7 stopping criteria. In this section, the essential parts of GA—
encoding and evaluation—are introduced. The influence of parameters of GA
is discussed in Section 5.4.1

The objective of frequency selection is to generate the frequency vector F
for the cloud system, which minimizes energy consumption within each time
window. An encoded frequency vector F is regarded as a chromosome. In
the encoding process, frequency fi ∈ F is replaced by its index within the
frequency option set. Let the frequency option set be η and function Iη(fi)
gives the corresponding index of the frequency option fi. The chromosome is
represented by < Iη(f1), Iη(f2), ..., Iη(fn) >.

In the evaluation phase, a fitness function is required to qualify chromo-
somes. The power consumption and the migration cost are estimated accord-
ing to chromosomes. However, as discussed above, the fitness function may
become a bottleneck and the model simplification approach is applied. The
pseudocode of the fitness function is shown in Algorithm 6.

Algorithm 6 Fitness Function of Genetic Algorithm
Require: chromosome encoded frequencies
Ensure: score fitness value

1: function evaluate(chromosome)
2: F← Decode(chromosome)
3: pmax ← MaxPowerConsumption(F)
4: mcmax ← 0
5: for u← [1, ..., U] do
6: MIn

p ,MOut
p ← SelectMigrationBlocks(γu)

7: mcmax ← mcmax+ MigrationCost(MIn
u ,MOut

u)
8: end for
9: return pmax × |∆t|+mcmax

10: end function

The function gives a score for each chromosome. Firstly, the chromosome
is decoded (line 2). Secondly, the maximum power consumption is obtained
by Equation 3.8 (line 3). Thirdly, the maximum migration cost is calculated
within the loop (line 4 to line 8). There are U racks, and the migration blocks
are selected for each rack γu (line 6), and the migration cost for each rack

76

is obtained by Equation 3.9. Finally, the maximum energy consumption is
returned as the score.

Since the power consumption and the migration cost are replaced by their
upper bound values, the solution of GA may not be optimal. In order to
improve the accuracy of the algorithm, GA is applied multiple times to gen-
erate several candidates. Afterwards, the migration process is applied to all
candidates and the solution with the minimum energy consumption is chosen.

5.3 Monte Carlo Tree Search Algorithm

Root

f11

1 1

1 1 1 1

2

2 2

2 2 2 2

<1,2,2>

f2

f3

<2,1,1> Terminal<2,1,2>

Figure 5.1: One iteration of the general MCTS approach

Monte Carlo Tree Search Algorithm (MCTS) is a method for finding the
suboptimal decision in a given domain by taking random samples in the deci-
sion space and building a search tree according to the results. Over the last few
years, MCTS has achieved great success with many games, complex real-world
planning, optimization and control problems [89].

MCTS is based on Monte-Carlo process model. The model consists of a
set of states, a set of actions, a transition model, and a reward function. The
decision is presented as a pair of a state and an action, and the next state is
chosen by a probability distribution built up by the current state and available
actions. The link between state and actions is defined as policy and the aim
is to find the special policy∗ generating highest reward.

77

Figure 5.2: Frequency Selection Tree Example

Under the frequency selection approach, the set of states are the frequency
options. The action refers to choosing a frequency option for the next node.
Figure 5.1 shows a structure of the frequency selection tree under a small case
with 3 nodes and 2 available frequency options. In each layer, the frequency
for the node is chosen. At beginning, f1 has two options. When f1 is set to
frequency 1, there are 2 actions: set frequency 1 to f2 and set frequency 2 to
f2. Therefore there are 4 states in second layer. Since the frequency option for
the next node is not related to the current state, the frequency selection tree
is a complete |η|-ary tree. When the searching process arrives at leaf nodes,
the terminal condition is reached. A path of the tree is denoted as a frequency
vector. For example, in Figure 5.1, < 1, 2, 2 > is one of the frequency vectors.
The task of MCTS is to find the frequency vector which produces the minimum
energy consumption.

Figure 5.2 from the survey [89] explains the general process in MCTS in-
cluding 4 phases in each iteration: selection, expansion, simulation, and back
propagation.

1. Selection: Starting at the root node, a child selection policy is recursively
applied to descend through the tree until the most urgent expandable
node is reached. When a node is not fully expanded, then the most urgent
expandable child is built according to the untiled actions. Otherwise, a
best child is selected (tree policy). A node is expandable if it represents
a non-terminal state and has unvisited (i.e. unexpanded) children.

2. Expansion: One (or more) child nodes are added to expand the tree,
according to the available actions.

78

3. Simulation: A simulation (default policy) is run from the new node(s)
according to the default policy to produce an outcome.

4. Back-propagation: The simulation result is backed up through the se-
lected nodes to update their statistics.

Basically, the process is controlled by two functions, a tree policy and a
default policy. A node on the search tree is denoted as v and a child node
of v is denoted as v′. Let function N show how many times the node has
been visited. Let function Q give the score of v. The tree policy chooses
the best child with the maximum Upper Confidence Bounds value (UCT for
short). The UCT function is shown by Equation 5.2, in which C is a constant
factor. In UCT function, the exploitation (visiting the expanded nodes) and
the exploration (visiting the unexpended nodes) are balanced. If a node is not
visited before, the tree policy chooses a node randomly. In the default policy,
one of the paths is evaluated by a reward function R. Based on all nodes on
the path, an evaluation score is required and the score is back propagated to
all nodes on the path to update its scores, Q.

UCT = Q(v′)
N(v′) + C

√√√√2lnN(v)
N(v′) (5.2)

The base idea of the default policy in this work is the same with the fitness
function of GA that evaluates a current solution and gives a score. Therefore,
Algorithm 6 is used as the reward function of the default policy. However, the
input parameter chromosome is replaced by the paths of the tree. In the tree
policy, a dedicated UCT function, shown in Equation 5.3, is adopted. The
difference between Equation 5.2 and 5.3 is the method for calculating scores.
In MCTS, the value of the node’s score is between 0 and 1, and the node with
highest UCT value is selected. In the default policy of this work, the energy
consumption is returned as score of a node. By means of 1 − (Q(v′)/emax),
the value is converted within 0 and 1. The highest value of 1 − (Q(v′)/emax)
indicates the path with the minimum energy consumption.

UCT = 1− (Q(v′)/emax)
N(v′) + C

√√√√2lnN(v)
N(v′) (5.3)

In Equation 5.3, the value of emax is required. Equation 3.2 shows that
the energy consumption consists of two parts, namely the energy consumption
of the running system and the energy consumption of workload migration.
In most of the cases, the energy consumption of the running system is the
dominant part. In this case, the maximum energy consumption scenario is

79

that each node is assigned with its highest frequency. Using Equation 3.5 and
Equation 3.7, the maximum energy consumption emax can be obtained. In
contrast, when migration cost is the dominant part, the frequency vector for
achieving emax cannot be constructed directly. In this case, GA is applied
to find emax, which makes it meaningless to apply MCTS since the frequency
vector for achieving emin can be found by GA also. Therefore, MCTS may be
inapplicable for the cases in which the energy consumption of the workload
migration is the dominant part. Like the GA approach, it should be noticed
that the final solution of MCTS may not be optimal. MCTS is applied multiple
times to obtain several solutions, and the solution with the minimum energy
consumption is chosen.

5.4 Experiment
In this section the experiment consists of 4 parts: parameter influence, scal-
ability analysis, optimization bound analysis, and comparison experiment to
evaluate GA and MCTS in aspects of performance and accuracy. In the exper-
iment, we follow the same test case definitions from Chapter 4 (Section 4.4.1).
A test case is a combination of a system(d), a workload(l) and an algorithm(a).
For example (d10, 5000, GA) indicates a test case, in which GA is applied to
system d10 and the workload is set to 5000 Ops/Sec for each node. The value of
throughput per node is a standard to simulate the total workload for the cases,
and the throughput for each node is decided by the block accessed probability
ϕgk. The value of throughput per node is set to 5000 Ops/Sec by default if not
otherwise specified, for example case (d10, 5000, GA) is denoted as (d10, GA)

5.4.1 Parameters’ Influence
In this section, the influence of parameters on the algorithms is examined. As
the number of blocks on each node does not impact the performance of the
frequency selection algorithm, the number of blocks is set to 64 for each node,
and the access probabilities are generated by Zipf’s law (distribution factor is
set to 2.5).

In order to evaluate the accuracy of the algorithms, the solutions for
the cases (d10, Optimal), (d20, Optimal) and (d30, Optimal) are obtained, in
which Optimal indicates the complete search where all possible frequency vec-
tors are evaluated. The energy consumption for a case is denoted as E(case)
and the corresponding execution time is denoted as T (case). The accuracy of
a case A(case) is defined by Equation (5.4) in which d ∈ [d10, d20, d30] and
a ∈ [GA,MCTS].

80

A(d, a) = 1− (E(d, a)− E(d,Optimal))
E(d,Optimal) (5.4)

The influence of generation size on GA

0 100 200 300 400 500
Generation Size

0

20

40

60

80

100

120

Ex
ec

ut
io

n
Ti

m
e(

S)

d10
d20
d30

0 100 200 300 400 500
Generation Size

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Ac
cu

ra
nc

y
d10
d20
d30

Figure 5.3: The Influence of Generation Size on Accuracy

The result is shown in Figure 5.3. In each case, the population size is
set to 100 and the amount of candidates is set to 10. In Figure 5.3, ∀i ∈
[10, 20, 30], T (di,GA) increases with the increment of generation size for the
reason that more generations lead to more iterations. With the same popula-
tion size, ∀i > j T (di,GA) > T (dj,GA). More nodes lead to longer chromo-
some in GA, because the length of a chromosome is the number of nodes. In
terms of accuracy, the range of A(d,GA) is [0.994, 0.999]. As shown in Figure
5.3, A(di,GA) increases at beginning with the increment of generation size.
However, when generation size exceeds some points (100 for d10, d20 and 150
for d30), A(di,GA) does not increase significantly and sometimes A(di,GA)
even decreases a little. More generations lead to more iterations of GA. At
beginning, it leads to more evolutions, which improves A(di,GA). However
afterwards the search process is close enough to an optimal point and the
iterations keep the solutions around the optimal point.

The influence of population size on GA

The result is shown in Figure 5.4. In each case, generation size is set to 150
and the amount of candidates is set to 10. In Figure 5.4, with the same
population size, ∀i > j, T (di,GA) > T (dj,GA), because more chromosomes
are evaluated in one iteration. Increasing population size improves A(d,GA)
at the beginning. However, at some points (80 for d10, 160 for d20 and 320

81

0 100 200 300 400 500 600
Population Size

25

50

75

100

125

150

175
Ex

ec
ut

io
n

Ti
m

e(
S)

d10
d20
d30

0 100 200 300 400 500 600
Population Size

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Ac
cu

ra
nc

y

d10
d20
d30

Figure 5.4: The Influence of Population Size on Accuracy

for d30), the increment of population size does not improve the accuracy any
more.

The influence of number of candidates

0 10 20 30 40 50 60
Number of Candidate

0

50

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e(

S)

(d10, GA)
(d20, GA)
(d30, GA)

(d10, MCTS)
(d20, MCTS)
(d30, MCTS)

0 10 20 30 40 50 60
Number of Candidate

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Ac
cu

ra
nc

y

(d10, GA)
(d20, GA)
(d30, GA)

(d10, MCTS)
(d20, MCTS)
(d30, MCTS)

Figure 5.5: The Influence of Amount of Candidates on Accuracy

GA and MCTS cannot find the optimal solution because of the model sim-
plification approach. Therefore, both algorithms are executed multiple times
to find several candidates, and the solution with the minimum energy con-
sumption is chosen. For GA, generation size is set to 150 and population size
is set to 100. The result is shown in Figure 5.5. In Figure 5.5, T (d,GA)
and T (d,MCTS) increase with the amount of candidates. With the same
amount of candidates, T (d,GA) > T (d,MCTS). The reason is that GA
is based on the evolutions while MCTS is based on the tree searching tech-
nique. The computation cost is higher for GA (see Section 5.4.2). In term
of accuracy, the increment of the amount of candidates improves A(d10, GA)

82

and A(d10,MCTS) significantly at beginning. A(d10, GA) goes up and down
when more candidates are involved because in some cases, a close to optimal
solution is found occasionally. In other cases, the accuracy of both algorithms
increases slightly in general when more candidates are involved. Generally,
A(d,GA) > A(d,MCTS). In MCTS, the search space is organized by a tree
structure. The leaf nodes are not ordered and there is no tendency among
all the solutions. Considering Figure 5.1 and the maximum power consump-
tion of terminal nodes, we have pmax(< 1, 2, 2 >) > pmax(< 2, 1, 1 >) and
pmax(< 1, 2, 2 >) = pmax(< 2, 1, 2 >). Therefore, the random sampling method
doesn’t perform well in this situation, which impacts negatively the overall ac-
curacy. The maximum accuracy of MCTS is 99.6%.

5.4.2 Scalability Analysis

10 20 30 40 50 60 70 80 90 100 110 120 130
Number of Nodes

0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e(

S)

GA
MCTS

Figure 5.6: Scalability of the Frequency Selection Algorithm

In this section, there are 12 systems (d10 to d130) involved. Only one
candidate is required in each case. For GA, generation size is set to 150 and
population size is set to 100. The result is shown in Figure 5.6. Generally,
T (d,GA) > T (d,MCTS). When the system is smaller, the difference is more
dramatic. For example, T (d10, GA) is nearly 19 times T (d10,MCTS). How-
ever, the growth rate of the execution time of GA is lower than MCTS. For
example, T (d130, GA) is 9 times T (d10, GA) while T (d130,MCTS) is 327
times T (d10,MCTS). In GA, the increasing amount of nodes leads to the
longer length of chromosome. When generation size and population size are
constant, the length of chromosome only influences the performance in each
evaluation. It leads to linear increment. However, in MCTS, when the amount

83

of node is increased by 1, the height of the tree is increased by 1 which leads to
exponential growth of the leaf nodes. The search of solutions is an exponential
function, which makes the execution time grows exponentially.

5.4.3 Optimization Bound Analysis

3500 4000 4500 5000
Throughput per Node (Ops/Sec)

0.16

0.18

0.20

0.22

0.24

0.26

Op
tim

iza
tio

n
Ra

tio

Figure 5.7: Optimization Bound of the Frequency Selection Algorithm

In this section, optimization ratio is introduced to evaluate how much en-
ergy can be saved using the frequency selection approach. The optimization
ratio is defined by Equation 5.5 in which fmax refers to the highest frequency,
2.53Ghz in our environment. The optimization ratio indicates the ratio be-
tween the saved energy by frequency selection approach and the energy con-
sumption under highest frequency. The higher the ratio is, the more energy is
saved. In this section, each case is solved by GA. In GA, generation size is set
to 150, population size is set to 100, and the amount of candidates is set to 10.
There are 12 systems involves (d10 to d120), and the cases are divided into
4 categories based on their throughputs per each node. The throughputs for
each node are 3500 Ops/Sec, 4000 Ops/Sec, 4500 Ops/Sec and 5000 Ops/Sec.

O(d, l, a) = E(d, l, fmax)− E(d, l, a)
E(d, l, fmax) (5.5)

The result is shown in Figure (5.7). The optimization ratio depends on the
value of throughput per node. For ∀l1, l2 ∈ {3500, 4000, 45000, 5000} l1 > l2,
O(d, l1) < O(d, l2). With the same value of throughput per node, the opti-
mization ratios are concentrated. With the increment of value of throughput
per node, the optimization ratio decrease. The maximum of optimization ratio

84

is 26.2% for the case (d10, 3500, GA), and the minimum of optimization ratio
is 16% for the case (d110, 5000, GA).

If the power consumption is the only concern of the system’s administra-
tion, the maximum optimization ratio can be constructed as follows. The
node’s throughput is set to 3520 Ops/Sec and the node is set to the perfor-
mance mode. According to equation (5.5), the maximum optimization ratio is
calculated as equation (5.6). 26.43% is the optimization bound of the model
theoretically. The higher optimization ratio bound could be obtained by means
of decreasing workload. However when the workload is too low, the value is
meaningless, because the cluster is fully under-utilized. In the real cases, the
optimization ratio might be lower than 26.43% because of the migration cost.

O(d1, 3520) = P (< 2.53Ghz, 3520 >)− P (< 1.20Ghz, 3520 >)
P (< 2.53Ghz, 3520 >)

=
cidle2.53Ghz + 3520

5690 × (cmax2.53Ghz − cidle2.53Ghz)− cmax1.20Ghz

cidle2.53Ghz + 3520
5690 × (cmax2.53Ghz − cidle2.53Ghz)

= 26.43%.

(5.6)

5.4.4 Comparison with Half Hot and Half Cold Ap-
proach

3500 4000 4500 5000
Throughput per Node (Ops/Sec)

0.0

2 × 105

4 × 105

6 × 105

8 × 105

10 × 105

12 × 105

14 × 105

En
er

eg
y

Co
ns

um
pt

io
n

(Jo
ul

e)

921965 959753 1002028
1078550

948811 969423 1005472
10864031080414 1100404 1120587

0

GA MCTS HHHC

Figure 5.8: Comparison with Half Hot and Half Cold Approach

In this section, a comparison between Half Hot and Half Cold Approach
(HHHC) [19], GA and MCTS is made. The system used in this section is d20.
For the cases, the throughput per node is set to 3500 Ops/Sec, 4000 Ops/Sec,
4500 Ops/Sec and 5000 Ops/Sec respectively.

The results are shown as Figure (5.8). The results given by GA and MCTS
are better than the corresponding results given by HHHC. The average im-
provement of GA compared with HHHC is 12.65%, and the average improve-

85

ment of MCTS is 11.44%. When the value of the throughput on each node is
set to 5000 Ops/Sec, HHHC approach cannot produce a valid result. Theoret-
ically, when HHHC approach is applied, the system with 20 nodes can support
any workloads with throughput under 92100 Ops/Sec, however with the set-
ting 5000 Ops/Sec for each node, the system does not have enough resources
to support it. Therefore the corresponding energy consumption is recorded as
0. The main drawback of HHHC is its flexibility. GA and MCTS choose the
frequency vector according to the workload predictions, while HHHC sets the
frequencies statically.

5.5 Algorithm Robustness Analysis
In previous sections, the frequency selection approach and corresponding al-
gorithms are based on the predictions of the workload. Because the prediction
errors are inevitable, the robustness of the algorithms are analyzed in this
section.

To analyze the robustness of algorithms, systems d10, d20 and d30 are used
in this section. In the specialized model, the block access possibility ϕgk is the
key to define the workload for cloud database systems.

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Ro
ot

-M
ea

n-
Sq

ua
re

 D
ev

iat
io

n

d10
d20
d30

Figure 5.9: Relationship between φ and Root-Mean-Square Deviation

At first the prediction errors extracted from the normalized distribution
N(µ, σ2). In each case, µ is set to 0 to make sure half of errors are neg-

86

ative and other half of errors are positive. The range of values extracted
from the normalize distribution is within [µ − 3σ, µ + 3σ]. To make sure the
ranges of errors are the same with corresponding case, and the σ is set to
ϕφ in which φ is the value from [0, 0.2, 0.4, 0.6, 0.8, 1] and ϕ is average value
of ϕgk. φ controls the total errors. Specially, φ = 0 indicates that there
is no error introduced. Secondly, the errors are added to the corresponding
ϕgk to simulate the cases with prediction errors, and the cases are denoted
as (d{NodeAmount}, φ). The root-mean-square deviation (RMSD) values of
errors are calculated for each case, and the result is shown by Figure (5.9).
RMSD represents the amount of errors introduced. A higher RMSD value
refers to more errors are introduced. With the same node amount, the incre-
ment of φ leads to the increment of RMSD, because larger φ value increases
the possibility of generating larger error values. With the same φ value, when
i > j RMSD(di, φ) < RMSD(dj, φ). This scenario is caused by correspond-
ing ϕ, since σ = ϕ × φ. For each case, every node is assigned with 64 blocks
and ϕ = 1

64×NodeAmount . When ϕ increases, the RMSB increases. Therefore,
when the case with more nodes, RMSD value is lower.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Node

0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
(O

ps
/S

ec
)

(a) Original Result of Frequency Selection Approach

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Node

0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
(O

ps
/S

ec
)

(b) Corrected Result of Frequency Selection Approach

Figure 5.10: Example of Prediction Error Influence

When GA and MCTS are applied to cases with prediction errors, corre-

87

sponding selected frequencies and migration plans are collected. Because of
the prediction errors, two scenarios arise:

1. The workload of a node exceeds its capacity;

2. Some of the resources of a node are wasted since the assigned workloads
are too low.

To describe these scenarios, the execution result of GA for case (d30, 1) is
shown as Figure 5.10a and Figure 5.10b. In the figures, the bars present the
workloads for each node, and the lines represent the node’s capacities which are
selected by GA. Figure 5.10a shows the original result of frequency selection
result, in which w∗i < z(ci, fi). However because of existence of prediction error,
the workload of each node is not correct. Figure 5.10b shows the corrected
result, in which the workload of each node is recomputed according to the real
ϕg,k. In Figure 5.10b, some nodes exceed their capcities, i.e. node 1, node 2
and so on. Some nodes waste their resources, i.e. node 0, node 6 and so on.

According to the experiment 3.1.4, when request throughput (workload)
tries to exceed the node’s capacity, the system throughput declines due to the
resource limitation and the operation failure. To make sure the node can reach
its capacity, if the workload exceeds the node capacity, part of the requests are
refused. The ratio between refused requests and succeeded requests is defined
as error ratio for the node. To describe the error ratio for the whole system,
maximum error ratio (MER) is introduced which is defined by Equation 5.7.
MER is used to describe scenario 1.

MER = max


∑

bgk∈Dr
i

l × ϕgk − z(ci, fi)

z(ci, fi)
, i ∈ [1, n]

. (5.7)

The ratio between wasted resource with the node’s capacity is defined as
waste ratio. Same with the MER, MWR, defined by equation 5.8, indicates
the maximum percentage of resources wasted amongst all nodes, which is used
to describe scenario 2.

MWR = max


z(ci, fi)−

∑
bgk∈Dr

i

l × ϕgk

z(ci, fi)
, i ∈ [1, n]

. (5.8)

The results of the influence of prediction errors are shown in Figure 5.11.
By means of GA and MCTS, the frequencies are selected, and the indicators,

88

0.0 0.2 0.4 0.6 0.8 1.0

0.04

0.06

0.08

0.10

0.12

0.14

M
ax

 W
as

te
Ra

tio

d10
d20
d30

0.0 0.2 0.4 0.6 0.8 1.0

0.04

0.06

0.08

0.10

0.12

0.14

d10
d20
d30

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ax

 E
rro

r R
ati

o

Genetic Algorithm
d10
d20
d30

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Monte Carlo Algorithm

d10
d20
d30

Figure 5.11: The Influence of Prediction Errors

89

MER and MWR, are calculated by Equation 5.7 and Equation 5.8. With
the same node amount d, if φ1 > φ2, then MER(d, φ1) > MER(d, φ2) and
MWR(d, φ1) > MWR(d, φ2). For cases with same node amount, the in-
crement of φ leads to increment of RMDS which indicates more errors are
introduced, and more errors lead to higher MER and MWR. Specifically,
when there is no error (φ = 0) for ∀d ∈ [d10, d20, d30], MER(d, 0) = 0 and
MWR(d, 0) > 0. In perspective of frequency selection model, SLA cannot be
violated, therefore no request is refused when no prediction errors are intro-
duced. However, since the blocks are not continuous, some energy is wasted
when the migration process generates migration plan. But the algorithms try
to minimize the energy consumption. When φ = 0, MWR is around 0.04.

According to Figure 5.11, when prediction error exists, it results in higher
MER and MWR. In order to decrease them, the capacity tolerance factor
is introduced, which is denoted as G. With the capacity tolerance factor, the
new capacity z∗(ci, fi) of node ci with frequency fi is shown by Equation (5.9).
When G < 0, the capacity of the nodes is regarded lower than its original
capacity. When the amount of workloads is constant, the higher frequencies
will be selected to make sure enough resources to execute the workload. In
contrast when G > 0, the capacity of the nodes is regarded higher than its
original capacity and the lower frequencies are likely to be selected to avoid
energy waste.

z∗(ci, fi) = z(ci, fi)× (1 +G). (5.9)

The values of G ∈ [−0.1,−0.05, 0, 0.05, 0.1] are adopted to evaluate the in-
fluence of the capacity tolerance factor. Since the conclusions are quite similar,
part of the results, cases with φ 0.2 and 1, are shown in Figure 5.12. Generally,
for each case, MER increases with the increment of G, while MWR is decreas-
ing. The reason for this scenario is that when G < 0, the higher frequencies
are selected, which leads to lower MER. Correspondingly, more resources are
wasted which leads to higher MWR. When G > 0, the lower frequencies
are selected, which avoid resource waste. However, it causes higher MER.
According to the experiment result, there is a trade off between MER and
MWR by means of tuning the capacity tolerance factor. With the increment
of capacity tolerance factor (from negative to positive), MER increases which
indicates the increment of SLA violation, and meanwhile MWR decreases,
which indicates the decrease of energy waste. By means of comparison of
results from GA and MCTS, with the same φ and G, there are no big differ-
ence between them in terms of MER and MWR. For example, in Figure 5.12
φ(0.2)−Genetic, the range of MER is from 0% to 14% which is the same with
φ(0.2)−MCTS. In term of MWR, there is the same result. The influence of

90

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 E
rro

r R
ati

o

(0.2)-Genetic

d10
d20
d30

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 W
as

te
Ra

tio

(0.2)-Genetic

d10
d20
d30

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 E
rro

r R
ati

o

(0.2)-MCTS

d10
d20
d30

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 W
as

te
Ra

tio

(0.2)-MCTS

d10
d20
d30

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 E
rro

r R
ati

o

(1)-Genetic

d10
d20
d30

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 W
as

te
Ra

tio

(1)-Genetic

d10
d20
d30

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 E
rro

r R
ati

o

(1)-MCTS

d10
d20
d30

0.10 0.05 0.00 0.05 0.10
Capacity Tolerance Factor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

 W
as

te
Ra

tio

(1)-MCTS

d10
d20
d30

Figure 5.12: The Influence of Capacity Tolerance Factor

91

capacity factor decreases with more prediction errors, because more prediction
errors lead to higher MER and MWR. For example, with C = −0.01 and
GA, MER(d30, 0.2) < MER(d30, 1).

In this section, the robustness of corresponding algorithms was analyzed.
Prediction errors cause SLA violations and energy waste. In order to elim-
inate the influence of the prediction errors, the capacity tolerance factor is
introduced. By tuning the capacity tolerance factor, the trade off between
MER and MWR can be found. However, when the case has higher MER,
it leads to more requests failure. Therefore, in practice, the MER should be
kept low.

5.6 Summary
In this Chapter, we mainly introduced frequency selection approach with opti-
mization problem, in which algorithms are proposed to minimize energy con-
sumption in ∆t. The proposed algorithms include a genetic based algorithm
and a monte carlo tree search based algorithm. Both algorithms have its ad-
vantages and disadvantages. The results of the experiment show that both
algorithms have great scalability with reasonable accuracy (up to 99.9% and
99.6% for two algorithms respectively). Since the prediction errors are in-
evitable, the robustness of the algorithms is analyzed. The prediction errors
might cause SLA violations and energy waste. By means of tuning the capac-
ity tolerance factor, the trade off between SLA violation and energy wasting
can be found. In practice, the error ratio should be kept in a lower range.

92

Chapter 6

Migration Approach

To cope with resource provisioning within cloud database system, migration
process is an indispensable part. In pervious chapters, we mainly introduced
frequency selection approach with different objectives. In this chapter, the de-
tails of migration approach are given with respect to block selection and block
migration. In the end, a series of experiments are implemented to evaluate
block selection algorithm and block migration algorithm. Besides, an experi-
ment is carried out to compare the estimation approach (Section 3.3) with the
migration approach.

6.1 Objective
Migration Approach can be considered as a data layout transformation method,
in which the workload changes accordingly. In cloud database system, the basic
migration unit is data blocks bg,k. Generally, the migration approach consists
of following 3 phases:

1. Block Selection: Under a given frequency vector F, a migrated block
set is generated for each node, which contains the blocks to be migrated
out of the node. The migrated block set for node ci is denoted as Mi

2. Migration Plan Generation: A valid migration destination for each
migrated block is determined in this phase. The collection of migrated
blocks and their corresponding destinations is defined as migration plan.
In cloud database system, a replication factor is applied to control the
number of replicas, a valid destination refers to that the destination node
is not the original node that contains the migrated block, and the node
does not contain the same replica of the given migrated block as well.

93

3. Migration Plan Execution: Migration is executed according to the
migration plan.

Time

ΔtΔt-1Δt-2

Migration Plan Execution

Phase

Frequency Selection
Block Selection

Migration Plan Generation

1 a. Begin Migration
Snapshot state at csrc
Initialize bmigr at cdst

1 c. Atomic Handover Phase
Stop serving bmigr at csrc
Synchronize reamaing state

2 Post Migration Phase
Configure frequency
Start serving bmigr at cdst
Resume normal operation

1 b. Synchronize and

Catch-up

Figure 6.1: Migration Timeline

In this thesis, we focus on the former two phases for the following reasons.
1) The primary objective of migration approach is to conduct the migration
process with minimal migration cost, and the former two phases play a decisive
role. According to migration cost estimation function, Equation 3.7, migration
cost is determined by the size of migrated blocks and the migration directions
(within a rack or between racks). Therefore, the migration cost is obtained
after phase 2. 2) For Migration Plan Execution, a live database migration
technique from Sudipto Das et al. [22] is adopted.

A migration execution technique considers service downtime and migra-
tion overhead [22]. In service downtime, the database or part of database is
unavailable. The migration overhead indicates the additional work done and
the corresponding impact on operations to facilitate migration, for example
response delay, cache rebuild. Intuitively, a migration process can be done
within parallel database systems or could database systems by Stop and Copy
technique, in which the operations involving migrated data are aborted until
the migration process is done. This technique introduces considerable service
downtime, in which the services are unavailable. One of the improvements for
Stop and Copy technique is On Demand Migration [90]. On Demand Migration
takes advantage of cache technique. When the migration happens, the desti-
nation node fetches the needed data from the original node and caches them in
the local storage. This technique reduces service interruption but introduces
high post delay time because of the expensive cache misses. To overcome the
service interruption and migration overhead, Sudipto Das et al. [22] proposed
live migration technique.

Figure 6.1 shows the timeline of a live migration process for time window
∆t. In time window ∆t−2, the frequency selection and migration approach are

94

applied to obtain the frequency vector and migration plan for ∆t according to
the predicted workload value. The migration plan execution phase is conduct
in time window ∆t− 1. The execution phase includes 3 sub-phases which are
summarized briefly as following:

1. Phase 0 Pre-Migration: Use frequency selection approach and migra-
tion approach to obtain the frequency vector and migration plan for ∆t.

2. Phase 1 Migration: The migration process is executed according to
migration plan. An example is made for block bmigr which is migrated
from node csrc to node cdst. This phase can be divided into 3 steps
further.

(a) Begin Migration: A snapshot is taken in csrc, which is trans-
formed to cdst, and bmigr is initialized in cdst. During this step, all
the operations involve with bmigr are process within csrc.

(b) Iterative Copy: After the snapshot copy, csrc still works on the
operations involving bmigr, therefore bmigr on csrc and cdst are not
synchronized. In this step, the updates of bmigr since the snapshot
are copied from csrc to cdst iteratively.

(c) Atomic Handover: In this step, the ownership of bmigr is trans-
ferred from csrc to cdst. This step is an atomic operation to deal
with the failures. The operations during this step are aborted in
csrc and restarted in cdst.

3. Phase 2 Post-Migration: In this phases, the frequencies of the cluster
are reset according to the frequency vector obtained in ∆t−2. Operations
involving bmigr are sent to cdst directly.

By means of live migration, the migration plan execution phase can be
concluded with minimized service disruption manner. According to Sudipto
Das et al. [22] results, their approach reduces 3 to 10 times database unavailable
time compared with Stop and Copy technique.

In this thesis, we focus on Pre-Migration phase that includes Block Se-
lection and Migration Plan Generation. The primary goal of migration
process is divided into 2 targets which related to each phase. The migration
cost is determined by the total size of migrated blocks and their migration
directions. The objective of Block Selection is to generate migrated block
sets with minimizing the total size of migrated blocks. The objective of Mi-
gration Plan Generation is to maximize the total size of migrated blocks
within racks.

95

6.2 Block Selection
In this phase, a set of blocks for the migration are selected in a manner of
minimizing the total size of migrated blocks.

When a frequency vector F is assigned to the system, the nodes, in which
the blocks are migrated, are determined. The migration node set is denoted
as COut = {ci|z(ci, fi) < wi i ∈ [1, n]} i.e. it consists of nodes for which the
workload exceeds their capacity. For ∀ci ∈ COut, the migrated workload size is
wi−z(ci, fi). To minimize the migration cost, the migration selection problem
can be interpreted in another way: which blocks should stay in place to achieve
the node’s capacity while the total size of the kept blocks is maximized? This
problem can be treated as a 0/1 knapsack problem. The item is block, and
the weight and the profit of the item are the throughput of the block and the
block size, respectively. The volume of the knapsacks is the capacity of the
node. The detail of the knapsack problem is shown by Table 6.1.

Table 6.1: 1-0 Knapsack Details in Block Selection Phase

Term Description
Item Block whose accessed probability is greater than 0.
Knapsack ci ∈ COut; Knapsack size = z(ci, fi).
Weight Throughput of the blocks, namely l × ϕg,k.
Profit Block size |bg,k|.
Objective Maximize the sum of the kept block sizes.

Using dynamic programming algorithm [91], the optimal kept blocks can
be found. The complexity of the algorithm is considered as O(nC) in which
n is the number of items and C is the size of knapsack. However within 0-1
knapsack problem, the complexity is pseudo-polynomial [92]. Considering the
number of item, 64 in our experiment and 256 in practice, and the size of
knapsack, from minimal capacity to maximal capacity, dynamic programming
algorithm cannot solve the block selection problem with an acceptable time.
In our experiment, it takes minutes to solve one single case. What is worse, the
block selection process is required to obtain the upper bound of migration cost
in Section 3.3 , namely the algorithm is used as many as frequency vectors.
Eventually, the block selection part would be a bottleneck within frequency
selection approach.

In order to overcome the performance issue of dynamic programming algo-
rithm, a greedy algorithm, GreedyBlockSelection, is used to solve the block
selection, in which the items are sorted and selected by their profit/weight
ratio, namely by |bg,k|/l×ϕg,k. GreedyBlockSelection is shown as Algorithm 7.

96

Algorithm 7 Greedy Block Selection
Require: Dr Block sets, Cap Capacities of the nodes
Ensure: DMigr Migrated Block set

1: function GreedyBlockSelection(Dr, Cap)
2: B← �, n← |Cap|
3: Diff ← {SumThroughput(Dr

i)−Capi | i ∈ [1, ..., n]}
4: Cmax ← −min(Diff)
5: for i← [1, ..., n] do
6:

∼
B← �

7: if Diff i > 0 then
8: SDr

i ← SortBlocksByDescending(Dr
i)

9: for b← Dr
i do

10: if Diff i > 0 and b.tp ≤ Cmax then
11:

∼
B←

∼
B ∪ b

12: Diff i ← Diff i − b.tp
13: else
14: break
15: end if
16: end for
17: end if
18: B← B ∪

∼
B

19: end for
20: return DMigr
21: end function

97

The input parameters of Algorithm 7 are Dr, the set of assigned block set
including block set assigned to each node, Cap, the capacity set of the nodes
obtained according to the given frequency vector. The assigned block set for
node ci is denoted Dr

i ∈ Dr. The blocks belonging to Dr
i are denoted as b ∈ Dr

i ,
in which each block has two properties. b.tp represents the throughput of the
block, namely l × ϕg,k, and b.w represents the size of the block, namely |bg,k|.
The output of the algorithm is a set of migrated block set, B. In Algorithm
7, line 2 and line 3 initializes the result set and the number of nodes. Line
3 computes a set Diff in which the differences between current workload of
the nodes and corresponding capacity. Function SumThroughput gives the
workload of the node, namely ∑bg,k∈Dr

i
l×ϕg,k. Line 4 obtained the maximum

remaining capacity of the nodes. Line 5 to line 19 obtain the migrated block set
for each node. For node ci, line 8 sorts the blocks by |bg,k|/l×ϕg,k in descending
order. Line 9 to line 16 evaluate each block. When the workload exceeds the
capacity, namely Diff i > 0, and the throughput of block b.tp smaller than the
maximum remaining capacity of the nodes, the block is marked as a migrated
block. In the end, line 20 returns the set of migrated block set.

The complexity of Algorithm 7 is O(∑n
i=1 |Dr

i | log |Dr
i |) because of the sort

operation in line 8. In practice, the performance of the algorithm can be further
improved by removing the sort operation outside of the algorithm since the
block assignment is unchanged during the frequency selection process. There-
fore, the complexity of Algorithm 7 can be reduced to O(∑n

i=1 |Dr
i |) because

of block selection process from line 9 to line 15. Compared with dynamic
programming algorithm, the greedy algorithm has polynomial complexity.

6.3 Block Migration Plan
The goal of this phase is to generate a migration plan which gives the desti-
nation for the migrated blocks. The objective is to reduce the total migration
cost. According to Equation 3.7, the migration cost is related to the migrated
block sizes and their destinations (i.e. within a rack or between racks). The
migrated blocks are determined by Migration Selection phase, which means
the block sizes are determined as well. Therefore, the objective of this phase
is to generate a migration plan which keeps the migrated blocks in their racks
as much as possible. The main process of this phase is shown as follow.

1. Migrated blocks are placed within their own racks first.

2. If some blocks cannot be placed within their own rack, then they are
redistributed within the whole cluster.

98

The migration plan generation can be interpreted in another way: Which
blocks should be kept within their own rack in order to minimize the migration
cost? Actually, the migration problem can be treated as a constrained multiple
knapsack problem. The multiple knapsacks are the interspaces of the nodes
whose predicted workloads do not exceed their capacity. The item’s weight and
profit are block workload and block size respectively. The problem objective
is to maximize the block sizes which are kept within the rack. The detail of
the multiple knapsack problem is shown by Table 6.2.

Term Description
Item Migrated Blocks which are selected in Block Selection Phase.
Knapsacks The nodes with extra capacity. {ci|(z(ci, fi) − wi) > 0 i ∈

[1, n]}. Knapsack size= z(ci, fi)− wi.
Weight Throughput of the block l × ϕg,k.
Profit Block size |bg,k|.
Objective Maximize the sum of block sizes which are migrated within

their own racks.

Table 6.2: Multiple Knapsacks Details in Block Migration Phase

In order to solve the multiple knapsack problem, a constrained exchange
algorithm, Constrained MTHM (CMTHM for short), is introduced. This
algorithm is inspired by MTHM algorithm [93]. In MTHM algorithm, there
are 4 steps basically:

1. Choose the item using a greedy algorithm for each knapsacks (items
are sorted by descending profit/weight and knapsacks are sorted by
descending volumes).

2. Rearrange the selected items to make sure not all items of similar profile
per unit weight are stored in the same knapsack.

3. Interchange assigned items and try to insert an unassigned item.

4. Exchange assigned items with unassigned items if the exchange can im-
prove the total profile.

99

Table 6.3: Specifications of the symbols

Symbol Type Comment
n Int The number of nodes (knapsacks)
m Int The number of migrated blocks (items)
i Int Index of nodes
j Int Index of migrated blocks
p, q Int Temporary Indexes of a node
g, k, t Int Temporary Indexes of a migrated block

B Collection Migrated block collection consists of all the
migrated blocks of a certain rack. A migrated
block is denoted as Bj. A block contains two
properties. Bj.tp represents the throughput
of the block, namely l × ϕg,k, and Bj.w rep-
resents the size of the block, namely |bg,k|.
Without loss of generality we assume that B
is sorted by ratio of Bj .w/Bj .tp in descending
order.

d Float Throughput difference between two blocks,
namely Bp.tp−Bq.tp

RCap Collection A collection of remaining capacities. For
a rank γ, RCap = {z(ci, fi) − wi | ci ∈
γ, and z(ci, fi) − wi > 0}. Without loss of
generality we assume that RCap is sorted by
value of z(ci, fi)−wi in descending order. To
be noticed, we do not distinguish the differ-
ence between the index of node and the index
of RCap and we assume n = |RCap|

∼
RCap Collection A copy of RCap

Y Array A migrated block assignment. When a mi-
grated block Bj is not assigned, Yj = 0.
If Bj is assigned to node ci, Yj = i and
Capi = Capi −Bj.tp

s Float The total size of assigned migrated blocks
NoReplica(i, j) Function A function shows whether block Bj in node ci

has a replica. When there is a replica of Bj,
the function return True.

100

In CMTHM, the replicas of a block are regarded as conflict with each other
when items are moving, i.e. two replicas of the same block cannot be put into
the same node. If a conflict occurs, the exchange continues until the next
exchange opportunity is found. In order to minimize the migration cost, the
migration process is applied to each rack first. If there are some remaining
blocks, the process is applied to the whole cluster. The latter one is denoted
as global migration. Compared with the migration within racks, the knapsacks
in the global migration are the nodes of the cluster which do not reach their
capacities. By applying CMTHM U + 1 times (U is the amount of racks), a
migration plan for the given frequency vector can be obtained.

To illustrate CMTHM, we introduce an example first, which will be used
in the following discussion. Example 1 shows the parameters. The example
consists of 3 nodes, n = 3, and 15 blocks, m = 15. Without loss of generality,
we say the start of each set is 1. The set of pairs of block throughput and
block size is shown as B. In this example, B is sorted descending by the
ratio of block size over block throughput. To be noticed, we assume all the
blocks have the same size 1. The capacities of nodes are shown as RCAP, in
which we assume all the nodes have the same capacity, 100 in our example, to
simplify the description. CF shows the conflict within the migration process
that represents replica conflict. For example, CF1 = [7, 10] means block B7
and B10 cannot be placed in node 1. Y shows the block assignment. If block
B1 is assigned to node 2, then Y1 is set to 2. However, if a block is not
assigned, then the corresponding value in Y is assigned to 0. According to
CF, Y7 and Y10 cannot be set to 1. s is the total profile. Since block sizes
are set to 1, s can be considered as the number of assigned blocks.

n =3,m = 15
B =[(10, 1), (12, 1), (13, 1), (14, 1), (14, 1),

(18, 1), (19, 1), (20, 1), (22, 1), (22, 1),
(22, 1), (25, 1), (27, 1), (28, 1), (30, 1)]

RCAP =[100, 100, 100]
CF =[[7, 10], [4, 5], [12]]

Y =[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
s =0

Example 1: Parameters

CMTHM is shown as Algorithm 8 to Algorithm 12, in which Algorithm 8
shows a greedy migration function, and Algorithm 9 to Algorithm 12 show each

101

Algorithm 8 Greedy Migration
Require: i a given node index, B Sorted Migrated Blocks, s Total Assigned

Block Size, Y Block Assignment, RCap Remaining Node Capacities
Ensure: s Total Assigned Block Size, Y Block Assignment, RCap Remaind-

ing Node Capacities
1: function GreedyMigration(i, B, z, Y, RCap)
2: m← |B|
3: for j ← [1, ...,m] do
4: if Yj = 0 and RCapi ≥ Bj.tp and NoReplica(i, j) then
5: Yj ← i
6: RCapi ← RCapi −Bj.tp
7: s← s+ Bj.w
8: end if
9: end for

10: return s,Y,RCap
11: end function

phase of CMTHM. To simplify the descriptions, we list some specifications of
the symbols in the algorithms in Table 6.3.

Algorithm 8 gives a greedy migration algorithm for node ci. In Algorithm 8,
B is sorted by the ratio between block size and block throughput in descending
order. Line 3 to line 9, the unassigned migrated blocks are put into node ci as
much as possible. Line 4 gives the assignment conditions: 1) Yj = 0 refers that
the block Bj is not assigned to any node; 2) RCapi ≥ Bj.tp indicates that the
throughput of Bj is less than the remaining capacity of ci; 3) NoReplica(i, j)
is used to ensure there is no replica of Bj in ci.

Algorithm 9 Constrained MTHM Phase 1
Require: B Sorted Migrated Blocks, RCap Remaining Node Capacities
Ensure: Y Block Assignment

1: function InitialSolution(B, RCap)
2: s← 0, Y← {0},

∼
RCap← RCap, n← |RCap|

3: for i← [1, ..., n] do
4: s, Y,

∼
RCap ← GreedyMigration(i, B, s, Y,

∼
RCap)

5: end for
6: return Y
7: end function

Algorithm 9 shows the first phase of CMTHM in which a migration solution
is obtained by Greedy Migration method. Line 2 initializes same parameters,

102

and line 2 to line 4 obtain the migrated block assignment for all the nodes. To
be noticed, the solution Y is a temporary solution, since only the assignment
Y is returned in line 6, which will be passed into next phase as a base solution
for rearrangement. The complexity of this phase is O(nm) because of the
greedy assignment process.

RCAP =[19, 17, 23]
Y =[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 0, 3, 3, 0]
s =13

Example 2: Result of Phase 1

Example 2 shows the result of phase 1. Clearly, in phase 1, we only apply
Greedy Migration. However, because of the conflict, B12 is not placed on node
3. The remaining capacities are shown as RCAP.

Algorithm 10 shows the second phase of CMTHM, Rearrangement. In
CMTHM, the main concept is to take advantage of exchanging and inserting
method to improve the objective value, namely the total size of the assigned
migrated blocks. However, the exchange method is more effective when the
items in the knapsack are dissimilar [93]. Therefore in this phase, a rearrang-
ment solution is obtained based on the greedy solution. The input parameters
of algorithm are B, sorted migrated block set, Y, the migrated block assign-
ment generated by Algorithm 9, and RCap, Remaining node capacities. In
Algorithm 10, line 1 initializes the parameters. To be noticed, the total as-
signed block size s is reset to 0, since a migration solution will be obtained.
Line 3 to line 18 go through all the assigned migrated blocks within the greedy
migration solution. line 6 to line 10 try to find a node index in which Bj can be
assigned with. The sequence of node searching is [i, ..., n]∪ [1, ..., i− 1], which
indicates the blocks are assigned in a round robin style. If the index is found,
then the block is assigned to the node and corresponding parameter is updated
(line 13 to line 16), otherwise the block is marked unassigned (line 12). In the
end of algorithm (line 19 to line 21), the greedy migration is called again to
make sure the blocks are assigned as much as possible. To be noticed, com-
pared with phase 1, the results of greedy migration s, Y and Cap are recorded,
which are used to improve the solution in phase 3 and phase 4. The complexity
of this phase is O(nm) because of the node searching for each assigned blocks
and the greedy migration process. To be noticed, NoReplicaCheck function
can be implement by a hashmap technique, which gives a searching time O(1).

103

Algorithm 10 Constrained MTHM Phase 2
Require: B Sorted Migrated Blocks, Y Block Assignment, RCap Remaining

Node Capacities
Ensure: s Total Assigned Block Size, Y Assigned Indexes, RCap Remaining

Node Capacities
1: function Rearrangement(B, Y, RCap)
2: i← 1, s← 0, m← |B| , n← |Cap|
3: for j ← [m, ..., 1] do
4: if Yj > 0 then
5: p← 0
6: for q ← [i, ..., n] ∪ [1, ..., i− 1] do
7: if Bj.tp ≤ RCapq and NoReplicaCheck(q, j) then
8: p← q
9: end if

10: end for
11: if p = 0 then
12: Yj ← 0
13: else
14: Yj ← p, RCapp ← RCapp −Bj.tp, s← s+ Bj.w
15: if p < n then i← p+ 1 else i← 1 endif
16: end if
17: end if
18: end for
19: for i← [1, ..., n] do
20: s, Y, RCap← GreedyMigration(i, B, s, Y, RCap)
21: end for
22: return s, Y, RCap
23: end function

RCAP =[0, 20, 14]
Y =[3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 3, 1, 2, 1, 0]
s =14
Example 3: Result of Phase 2

Example 3 shows the result of phase 2. In phase 2, assigned blocks are
rearranged first in robin style, and the greedy algorithm is called again to make
sure we assign blocks as much as possible. To be noticed, from our result Y,
the assigned blocks are not rearranged in a totally robin style because of the
conflict CF. By phase 2, we have 14 assigned blocks in total.

104

Algorithm 11 Constrained MTHM Phase 3
Require: B Sorted Migrated Blocks, s Total Assigned Block Size, Y Block

Assignment, RCap Remaining Node Capacities
Ensure: s Total Assigned Block Size, Y Block Assignment, RCap Remaining

Node Capacities
1: function FirstImprovement(B, s, Y, RCap)
2: n← |Cap| , m← |B|
3: for j ← [1, ...,m] do
4: if Yj > 0 then
5: for o← [j + 1, ...,m] do
6: if Yo > 0 and Yo 6= Yj and NoReplicaCheck(Yo, j) and

NoReplicaCheck(Yj, o) then
7: p← argmax(Bj.tp,Bo.tp)
8: q ← argmin(Bj.tp,Bo.tp)
9: d← Bp.tp−Bq.tp

10: if d ≤ CapYq
then

11: V← {v|v ∈ [1, ...,m], Yv = 0, Bv.tp ≤ CapYp
+ d,

NoReplicaCheck(Yp, v)}
12: if V 6= � then
13: t← argmax({Bv.w|v ∈ V})
14: CapYp

← CapYp
+ d−Bt.tp

15: CapYq
← CapYq

− d
16: Yt ← Yp, Yp ← Yq, Yq ← Yt

17: s← s+ Bt.w
18: end if
19: end if
20: end if
21: end for
22: end if
23: end for
24: return s, Y,Cap
25: end function

105

Algorithm 11 shows the third phase of CMTHM, FirstImprovement. In
this phase, an attempt is done to exchange two assigned items and insert
an unassigned item. Line 3 to line 23 of the algorithm shows the exchange
process. For an assigned block Bj j ∈ [1,m], the exchange is tried with each
block Bo o ∈ [j + 1,m]. Line 6 evaluates the exchange process first: 1) two
blocks are not assigned to same node Yo 6= Yj; 2) Bj does not have same
replicas in node Yo; 3) Bo does not have same replicas in node Yj; In line
7 to line 9, a difference of throughput between two blocks is obtained, and
index p is used to indicate the block with larger throughput while q refers to
the other one. Line 9 shows another condition that Bp can be placed into Yq

by d ≤ CapYq
. Line 11 obtains a insertable block list, V, in which all the

unassigned blocks are evaluated. When V is not empty, the most valuable
item, Bt, is picked and inserted into Yp, line 12 to line 17. The complexity
of this phase is O(m3) because of the evaluation process between two assigned
blocks and the insertable blocks searching process.

RCAP =[0, 2, 2]
Y =[2, 2, 1, 3, 1, 3, 2, 1, 3, 3, 3, 1, 2, 1, 2]
s =15
Example 4: Result of Phase 3

Example 4 shows the result of phase 3. Phase 3 exchanges the assigned
blocks if an unassigned block can be inserted. In our example, B1 assigned
to node 3 in Phase 2, and B10 assigned to node 2 in Phase 2, are exchanged.
Afterward, B15 is inserted to node 2. All blocks are assigned in this phase,
s = 15.

Algorithm 12 shows the last phase of CMTHM, SecondImprovement. In
this phase, an exchange process is done within assigned blocks and unassigned
blocks. Line 3 to line 18 implement the exchange process. Each assigned block
Bj is evaluated. If Bj was removed, a new capacity value, c, of Yj is obtained
in line 5. Line 7 to line 12 evaluate all unassigned blocks, if the block Bo can
be assigned to Yj, then it is put into collection V. If the total value (total
size) of blocks in V is larger than Bj, then Bj is marked unassigned and blocks
in V is assigned to Yj, line 14 to line 17. In the end, the final solution Y and
the total size of assigned block s is returned. The complexity of this phase
is O(m2) since the assigned block evaluation process and unassigned block
searching process. In this phase, the assignment of our example is remained
same since all blocks are assigned in phase 3.

The phases of CMTHM are executed sequently. Therefore the complexity
of CMTHM algorithm is O(m3), namely O(|∑n

i=1 Dr
i |

3).

106

Algorithm 12 Constrained MTHM Phase 4
Require: B Sorted Migrated Blocks, s Total Assigned Block Size, Y Block

Assignment, Cap Remaining Node Capacities
Ensure: s Total Assigned Block Size, Y Block Assignment

1: function SecondImprovement(B, s, Y, Cap)
2: n← |Cap| , m← |B|
3: for j ← [1, ...,m] do
4: if Yj 6= 0 then
5: c← CapYj

+ Bj.tp
6: V← �
7: for o← [1, ...,m] do
8: if Yo = 0 and Bo.tp ≤ c and NoReplicaCheck(Yj, o)

then
9: V← V ∪ {o}

10: c← c−Bo.tp
11: end if
12: end for
13: if ∑v∈V Bv.w > Bj.w then
14: for v ← V do
15: Yv ← Yj, s← s+ Bv.w, CapYj

← CapYj
−Bv.tp

16: end for
17: Yj ← 0, s← s−Bj.w, CapYj

← CapYj
+ Bj.tp

18: end if
19: end if
20: end for
21: return s, Y
22: end function

6.4 Experiment

In this section, 2 experiments are conducted to evaluate block selection algo-
rithm, Greedy Selection, and migration algorithm, CMTHM. In the end, an
experiment is implemented to compare the estimation approach, Section 3.3,
with the migration approach. The test cases used in this experiment are same
with Section 4.4. To be noticed, in order to evaluate the migration approach, a
few frequency vectors are generated within each experiment accordingly using
frequency selection approach with optimization problem for following reasons:
1) migration cost only relies on the migration approach; 2) compared with
frequency selection approach with bounded problem, frequency selection ap-
proach with optimization problem is practical in the experiment since there is

107

1 2 3 4 5
Frequency Vector Id

500

1000

1500

2000

M
ig

ra
tio

n
Co

st
(Jo

ul
e)

Greedy Algorithm

Figure 6.2: Result of Migrated Block Comparison

Algorithm Valid Solution Amount
First Fit 877
CMTHM 913

Table 6.4: The Amount of Valid Solutions of 1000 Solutions

no requirement for the bound value.

6.4.1 Migrated Block Comparison
In migration selection, migrated blocks are selected by the Greedy algorithm,
Algorithm 7, to reduce migration cost. In this section, the greedy selection is
compared with random selection.

The test case (d20, GA) is used in this experiment. 5 frequency vectors are
given by Genetic Algorithm, Section 5.2. For each frequency vector, the ran-
dom selection approach is applied 1000 times and the corresponding migration
cost values are obtained using Equation(3.7). To be noticed, the frequency
vectors are given to minimize the energy consumption in the time window.
Therefore, each frequency vector is the suboptimal solution. All of them try
to provide a frequency setting which fits to the workload predictions. Since the
frequency vector determines the total migrated workloads for each node, the
migration cost is only determined by the migrated blocks and the migration
plan. In this experiment, the migrated blocks are obtained by two algorithms,
Random Selection and Greedy Selection. The migration plan is generated by
CMTHM. The comparison results is shown by Figure 6.2.

108

CMTHM First Fit

50

100

150

200

250

300

350

400

M
ig

ra
tio

n
Co

st
(Jo

ul
e)

Figure 6.3: Migration Plan Generation Comparison

In Figure 6.2, the migration cost values obtained by the random selected
migrated blocks are shown in the form of box charts. According to the exper-
iment result, the migration costs obtained by the greedy algorithm are much
lower than the random selected migrated blocks for each frequency vector.
Before the block selection phase, the total amount of migrated workloads are
determined. Therefore, the objective in block migration phase is to generate
a migrated block set which satisfies the migrated workload constraint, and
produces minimum migrated block sizes. In Greedy Algorithm, the blocks
are sorted and selected by the ratio between their throughput and block size.
Therefore, the blocks with higher throughputs but smaller block sizes are se-
lected as migrated blocks, which maximizes the sum of kept block sizes and
minimizes the migration cost in the end.

Another phenomenon of this experiment is that the migration cost does
not depend on the frequency vectors, since the migration costs are close for
different frequency vector. The reason for this situation is that the frequency
vectors are given by Frequency Selection Approach in which the frequency
vector is produced to minimize the energy consumption of the time window.
For each frequency vector, the provided capacities of the nodes are close to
their workloads, thus the migrated workloads are similar which leads to the
migration costs being similar as well.

109

6.4.2 Migration Plan Generation Comparison

In migration plan generation phase, the migrated blocks are redistributed
within the cluster. CMTHM is used to choose the destination for each migrated
block. In this experiment, CMTHM is compared with First Fit algorithm. In
First Fit, the nodes with extra capacities are sorted by the descending available
capacity and the migrated blocks are sorted by descending the ratio between
their block size and their throughput. Meanwhile, the blocks are migrated
within their own rack first. If there is no space for the blocks, the remaining
blocks are redistributed to other racks.

The test case used in this experiment is (d20, GA). 1000 frequency vec-
tors are used in this experiment which are obtained by Frequency Selection
Approach. For each frequency vector, the migrated blocks are given by the
Greedy Algorithm. Then, the blocks are migrated by both CMTHM and First
Fit. In the end of migration, the migration costs are collected. The results are
shown in Figure 6.3 and Table 6.4.

According to Figure 6.3, the range of the migration cost given by CMTHM
is slightly lower than the results given by First Fit. The migration cost for
migrating a block between racks is slightly larger than the migration cost for
migrating a block within its rack according to Table 3.6 . Both algorithms
try to place the migrated blocks in their own racks first. However, because
of the exchange mechanism, CMTHM can place more migrated block within
their own racks, which leads to lower migration cost. Among all the results,
83.8% of results given by CMTHM are lower than the results given by First
Fit. In CMTHM, in order to improve the profit, the items are rearranged and
swapped after the First Fit (first step of CMTHM). In most of the cases, these
operations improve the profit of kept items, however occasionally they do not.
In general, CMTHM is better than First Fit. However, the differences between
the migration costs given by both algorithm are not high. The reason for that
is their frequency vectors are given by Frequency Selection Approach. The
frequency vectors are suboptimal to the current time window for minimizing
the energy consumption. Therefore, the capacities of the nodes are limited,
which gives less optimization space for minimizing the migration cost.

A given frequency vector can provide enough resources to execute the work-
load, however, it may not produce a valid migration plan because blocks are
not continuous, i.e. a block cannot be split and put to multiple nodes and
some blocks may not be placed. In our experiment, 1000 frequency vector are
used, the amount of valid solutions produced by both algorithms are shown in
Table 6.4. Compared with First Fit, CMTHM can produce more valid solu-
tions because of the exchange mechanism which uses the size of each knapsack
more efficiently.

110

d10 d20 d30
Test Case

0

20

40

60

80

100

120
Ex

ec
ut

io
n

Ti
m

e (
S)

23.40

52.71

87.49

0.53 1.31 1.68

Migration Estimation

(a)

895 900 905 910 915
Power Consumption (Watt)

895

900

905

910

915

Es
tim

ate
d

Po
we

r C
on

su
m

pt
io

n
(W

att
)

(b)

0 100 200 300 400 500
Migration Cost

0

100

200

300

400

500

Es
tim

ate
d

M
ig

ra
tio

n
Co

st

(c)
Power Consumption Migration Cost

0.00

0.02

0.04

0.06

0.08

0.10

Er
ro

r R
ati

o
of

 P
ow

er
 C

on
su

m
pt

io
n(

%
)

0

5

10

15

20

25

30

35

40

Er
ro

r R
ati

o
of

 M
ig

ra
tio

n
Co

st(
%

)

(d)

Figure 6.4: Evaluation Result of Migration Cost Estimation Approach

6.4.3 Estimation Approach Evaluation

In order to reduce the complexity for computing the migration cost and the
power consumption in the frequency selection process, an estimation approach
is proposed in this work. In this section, the approach is evaluated in 4 aspects.

At first, the performance of the estimation approach is evaluated. In this
experiment, test cases (d10, GA), (d20, GA), (d30, GA) are used. For all the
test cases, the power consumption and the migration cost are collected by
both the estimation approach and the migration process. The processes are
executed 1000 times for both approaches and the total execution time is col-
lected and shown by Figure 6.4a. The execution time for the cases solved
by the migration process is denoted as T (TestCase,M), and correspondingly
the execution time for the cases solved by the estimation approach is denoted
as T (TestCase, E). With the increase of block amount, the execution time
increases as well for both approaches. The optimization ratio of estimation
approach for each case is denoted by Equation 6.1. O(d10, GA) = 97.7%,

111

O(d20, GA) = 97.5%, O(d30, GA) = 98.0%. Therefore by means of the esti-
mation, the average improvement is 97.7%. The reason for the improvement
is that in the estimation approach, only the Migration Selection is required.
In contrast, there are Migration Selection and Migration Plan Generation in
the migration process.

O(TestCase) = 1− T (TestCase, E)
T (TestCase,M) (6.1)

With the introduction of estimation approach, the performance of the fre-
quency vector evaluation is improved. In this experiment, the relationship
between the power consumption (the migration cost) and the estimated power
consumption (the estimated migration cost) is evaluated. Test case (d20, GA)
is used. 1000 cases are generated with the configuration of (d20, GA). For each
case, a frequency vector is selected by the frequency selection approach and
the corresponding values are collected. The results are shown by 6.4b and 6.4c.
Figure 6.4b shows the relationship between the power consumption and the
estimated power consumption. Figure 6.4c shows the relationship between the
migration cost and the estimated migration cost. Generally, both values are
positive relative. With the increment of power consumption (migration cost),
the estimated power consumption (the estimated migration cost) increases.

Error Ratio of Power Consumption = pmax − p(s∗)
p(s∗)

Error Ratio of Migration Cost = mcmax −mc(s̃)
mc(s̃)

(6.2)

Figure 6.4d shows the error ratios for the estimated power consumption
and the estimated migration cost, which are calculated by Equation 6.2. The
median error ratios are 0.04% for estimated power consumption and 20.10% for
estimated migration cost respectively. According to Equation 3.5, the power
consumption is obtained by frequency vector and the workload. In Frequency
Selection Approach, the frequency vector is given by the workload. In the
estimation approach, the estimated power consumption is given by the worst
workload assignment under the frequency vector. Thus, the estimated power
consumption is more stable. However, in contrast, the migration cost depends
on the migrated block selection and the migration plan generation. In this
work, the estimation migration cost is obtained by migrated blocks and the
relaxation approach. Therefore the error occurs for the reason that there is
difference migrating a block between racks and migrating a block within its
own rack. The upper bound of migration cost is obtained using a worst case
of migration plan.

112

In order to avoid the influence of the errors, within the frequency selection
process, the frequency selection approach is applied multiple times to generate
several candidates. Afterwards, migration process is applied to candidates and
the solution with the minimum energy consumption can be chosen.

6.5 Summary
In this chapter, the details of migration approach is introduced. The objec-
tive of migration approach in our proposal is to generate a migration plan in
minimal migration cost manner. In migration execution phase, a live migra-
tion technique from Sudipto Das et al. [22] is adopted. The objective of block
selection phase is to generate the migration block set for each node that min-
imizes the total size of migrated blocks. Consider the performance obstacle
of the algorithm, a greedy selection algorithm is applied. In migration plan
generation phase, the objective is to obtain a migration plan which reduces the
total migration cost under given migrated block set. A CMTHM algorithm is
used in this phase. By means of the migration process, a migration plan can be
obtained in polynomial time. Meanwhile a migration cost estimation approach
is provided to evaluate the given frequency configuration quickly. The exper-
imental results show that by means of the migration approach a migration
plan which minimizes migration cost under a given frequency configuration
can be obtained. Using estimation approach, the performance of evaluating a
frequency configuration is improved up to 97.7%.

113

114

Chapter 7

Conclusion and Perspectives

This thesis was dedicated to propose energy-efficient resource provisioning
method for cloud database system. In our approach, we mainly took advantage
of DVFS technique to allocate resources by workload prediction. Besides, a
migration approach is proposed to further improve the energy efficiency within
cloud database systems. Here, we summarize our findings and point out our
contributions. In the end, the perspectives of this research is presented.

7.1 Conclusion
Because of the increment of energy usage within all IT area and the large
energy bills, energy efficiency has been an emerging concern within all data
centers and cloud service vendors. Cloud database as a big component within
data centers, the energy efficiency of the system has drawn a lot of attention.
However, the energy waste is still a big issue within cloud database systems
because of resource provisioning. In this thesis, we presented our research on
energy-efficient resource provisioning for cloud database system. The general
idea is to use DVFS technique to allocate resources for the system according to
its workload prediction, namely a frequency selection approach is introduced
to improve the energy efficiency of the system. Also, a migration approach is
proposed to further improve the energy efficiency. We conclude this thesis as
follows.

First of all, we took Cassandra as our example, and the energy efficiency
of cloud database systems under different frequency settings is analyzed by
a benchmark experiment. The system under a given frequency setting has a
maximum throughput value. Meanwhile, the energy efficiency of the system
has correlation with its throughput. Therefore, to achieve higher frequency,
we need to keep the system reach its maximum throughput. Based on the

115

above conclusions, a generic frequency selection model is proposed for cloud
systems to cope with energy-efficient resource provisioning problem, in which
we give the definition of time window based energy efficiency of a cloud system,
and the method to estimate the energy usage under a given frequency setting.
Then, the generic model is specialized for cloud database systems by redefining
the key concepts.

Secondly, a frequency selection approach for bounded problem is proposed,
in which the frequency selection problem is treated as power consumption
bounded problem, PbMCmin, and migration cost bounded problem, MCbPmin.
To solve them, a nonlinear programming algorithm and a multi-phases algo-
rithm are proposed. Nonlinear programming algorithm can obtain the global
optimal solution but has a poor scalability to large scale problems. In con-
trast, multi-phases algorithm has a good scalability for large scale problems
by means of approximation method. The experimental results show that the
multi-phases algorithm has great scalability which can be applied to a cloud
database system deployed on 70 nodes. Meanwhile by means of the approach,
it can save up to 21.5% of the energy consumption of the running time.

Thirdly, a frequency selection approach for optimization problem is pro-
posed, in which we try to minimize the total energy consumption from the
running time and from the migration process. The proposed algorithms in-
clude a genetic based algorithm and a monte carlo tree search based algorithm.
Both algorithms have their advantages and disadvantages. The results of the
experiment show that both algorithms have great scalability with reasonable
accuracy (up to 99.9% and 99.6% for two algorithms respectively). Since the
prediction errors are inevitable, the robustness of the algorithms is analyzed.
The prediction errors might cause SLA violation and energy wasting. By means
of tuning the capability tolerance factor, the trade off between SLA violation
and energy wasting can be found. In practice, the error ratio should be kept
in a lower range.

In the end, a migration approach based on the frequency selection circum-
stances is presented in this thesis to further improve the energy efficiency for
cloud database systems. We separated the migration process into 3 phases:
block selection, block migration and migration execution. We treated block
selection problem as a single 0-1 knapsack problem, and a greedy algorithm
is used to solve it. While, we treated block migration problem as a multi-
knapsacks problem, and CMTHM algorithm is presented. For migration ex-
ecution, a live migration approach from [22] is adopted.

116

7.2 Perspectives
The work presented in this thesis is a primary step to improve the energy
efficiency of cloud database system by providing energy-efficient resource pro-
visioning method. As a perspectives, there are certainly remaining directions
to improve our approach in the further. In this section, we give a few promising
directions as follows.

• Multiple Resources. In this thesis, we only consider the influence of
CPU resource. In term of power consumption estimation method, only
CPU power is taken into consideration. In practice, more resource types
can be considered in the approach, for example I/O resource, memory
resource, network resource and so on. When considering the multiple
resources, the resource provisioning will be more complex. In this direc-
tion, the influence of each resource need to be investigated first.

• Multi-System Environment. We assume there is only one cloud
system is in execution. However, in the production environment, the
environment is more complex. There are different cloud systems running
in the cluster at same time. For example, cloud database system, remote
filesystem, monitoring system and so on. Therefore, in multi-system
environment, the resource provisioning has more challenges. At first, the
resource isolating method should be investigated. Then, according to
the character of each system, the particular resource assignment method
can be made. In the end, a consolidation approach for all the systems
should be proposed to reduce the resource over-provisioning and resource
under-provisioning.

• Migration Attention Mechanism. In migration approach, we searched
for a migration plan to minimize migration cost for certain ∆t. However,
considering the time sequences, there are more factors. For example, if a
block is hotpot within two continues time windows, then the best strategy
is that we do not change the location of the block in case any operation
failures. If we consider multiple time windows, a better migration plan
can be made.

117

118

Publications

1. Chaopeng Guo, Jean-Marc Pierson, Hui Liu, Jie Song. Frequency
Selection Approach for Energy Aware Cloud Database. IEEE ACCESS,
IEEE, 2018, DOI: 10.1109/ACCESS.2018.2885765.

2. Chaopeng Guo, Jean-Marc Pierson, Jie Song, Christina Herzog. Hot-
N-Cold model for energy aware cloud databases. Journal of Parallel and
Distributed Computing, Elsevier, Vol. 09, 10, 2018.

3. Chaopeng Guo, Jean-Marc Pierson. Frequency Selection Approach
for Energy Aware Cloud Database (regular paper). International Sympo-
sium on Computer Architecture and High-Performance Computing (SBAC-
PAD 2018), Lyon, 24/09/18-27/09/18, IEEE Computer Society, p. 1-8,
09 2018.

4. Jie Song, Chaopeng Guo, Zhi Wang, Yichan Zhang, Ge Yu, Jean-Marc
Pierson. HaoLap: A Hadoop based OLAP System for Big Data. Journal
of Systems and Software, Elsevier, Vol. 4, 09, 2014.

119

120

Bibliography

[1] J. Morley, K. Widdicks, and M. Hazas, “Digitalisation, energy and data
demand: The impact of Internet traffic on overall and peak electricity
consumption,” Energy Research & Social Science, vol. 38, pp. 128–137,
Apr. 2018.

[2] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in Data Centre En-
ergy Consumption under the European Code of Conduct for Data Centre
Energy Efficiency,” Energies, vol. 10, p. 1470, Sept. 2017.

[3] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United States Data
Center Energy Usage Report,” Tech. Rep. LBNL–1005775, 1372902, June
2016.

[4] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and
P. Demeester, “Trends in worldwide ICT electricity consumption from
2007 to 2012,” Computer Communications, vol. 50, pp. 64–76, Sept. 2014.

[5] A. Andrae and T. Edler, “On Global Electricity Usage of Communication
Technology: Trends to 2030,” Challenges, vol. 6, pp. 117–157, Apr. 2015.

[6] J. Malmodin, Å. Moberg, D. Lundén, G. Finnveden, and N. Lövehagen,
“Greenhouse Gas Emissions and Operational Electricity Use in the ICT
and Entertainment & Media Sectors,” Journal of Industrial Ecology,
vol. 14, pp. 770–790, Oct. 2010.

[7] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, pp. 7–18, May 2010.

[8] M. Zakarya and L. Gillam, “Energy efficient computing, clusters, grids
and clouds: A taxonomy and survey,” Sustainable Computing: Informat-
ics and Systems, vol. 14, pp. 13–33, June 2017.

121

[9] Mehul Nalin Vora, “Hadoop-HBase for large-scale data,” in Proceedings of
2011 International Conference on Computer Science and Network Tech-
nology, (Harbin, China), pp. 601–605, IEEE, Dec. 2011.

[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,
H. Liu, and R. Murthy, “Hive - a petabyte scale data warehouse using
Hadoop,” in 2010 IEEE 26th International Conference on Data Engineer-
ing (ICDE 2010), (Long Beach, CA, USA), pp. 996–1005, IEEE, 2010.

[11] J. Han, H. E, G. Le, and J. Du, “Survey on NoSQL database,” in 2011
6th International Conference on Pervasive Computing and Applications,
(Port Elizabeth, South Africa), pp. 363–366, IEEE, Oct. 2011.

[12] V. Anand and C. M. Rao, “MongoDB and Oracle NoSQL: A technical cri-
tique for design decisions,” in 2016 International Conference on Emerging
Trends in Engineering, Technology and Science (ICETETS), (Pudukkot-
tai, India), pp. 1–4, IEEE, Feb. 2016.

[13] D. Gu, “Cassandra at Instagram 2016,” 2016.

[14] J. Song, T. Li, X. Liu, and Z. Zhu, “Comparing and Analyzing the En-
ergy Efficiency of Cloud Database and Parallel Database,” in Advances in
Computer Science, Engineering & Applications: Proceedings of the Sec-
ond International Conference on Computer Science, Engineering & Ap-
plications (ICCSEA 2012), May 25-27, 2012, New Delhi, India. Volume
2 (D. C. Wyld, J. Zizka, and D. Nagamalai, eds.), pp. 989–997, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012.

[15] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah, and D. Tsirogian-
nis, “Towards energy-efficient database cluster design,” Proceedings of the
VLDB Endowment, vol. 5, pp. 1684–1695, July 2012.

[16] G.-W. You, S.-W. Hwang, and N. Jain, “Ursa: Scalable Load and Power
Management in Cloud Storage Systems,” ACM Transactions on Storage,
vol. 9, pp. 1–29, Mar. 2013.

[17] D. Schall and T. Härder, “WattDB - A Journey towards Energy Effi-
ciency,” Datenbank-Spektrum, vol. 14, pp. 183–198, Nov. 2014.

[18] W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52,
p. 40, Jan. 2009.

[19] H.-E. Chihoub, S. Ibrahim, Y. Li, G. Antoniu, M. S. Perez, and L. Bouge,
“Exploring Energy-Consistency Trade-Offs in Cassandra Cloud Storage

122

System,” in 2015 27th International Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD), (Florianopolis,
Brazil), pp. 146–153, IEEE, Oct. 2015.

[20] A. P. Florence, V. Shanthi, and C. B. S. Simon, “Energy Conservation
Using Dynamic Voltage Frequency Scaling for Computational Cloud,” The
Scientific World Journal, vol. 2016, pp. 1–13, 2016.

[21] S. Ibrahim, T.-D. Phan, A. Carpen-Amarie, H.-E. Chihoub, D. Moise, and
G. Antoniu, “Governing energy consumption in Hadoop through CPU
frequency scaling: An analysis,” Future Generation Computer Systems,
vol. 54, pp. 219–232, Jan. 2016.

[22] S. Das, S. Nishimura, D. Agrawal, and A. E. Abbadi, “Live Database
Migration for Elasticity in a Multitenant Database for Cloud Platforms,”
Tech. Rep. 2010-09, University of California, Santa Barbara, USA, June
2010.

[23] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of
applications for resources provisioning in cloud,” Journal of Network and
Computer Applications, vol. 82, pp. 93–113, Mar. 2017.

[24] K. Li, H. Zheng, and J. Wu, “Migration-Based Virtual Machine Placement
in Cloud Systems,” in 2013 IEEE 2nd International Conference on Cloud
Networking (CloudNet), pp. 83–90, Nov. 2013.

[25] A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. Culler, and R. Katz,
“Integrating Renewable Energy Using Data Analytics Systems: Chal-
lenges and Opportunities,” Bulletin of the IEEE Computer Society Tech-
nical Committee, vol. 34, pp. 3–11, Mar. 2011.

[26] Wikipedia, “Cloud Database.” https://bit.ly/2NhMaqZ, 2019.

[27] M. Ronstrõm and L. Thalmann, “MySQL Cluster Architecture
Overview,” tech. rep., Apr. 2004.

[28] A. Verbitski, X. Bao, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, and T. Kharatishvili, “Amazon
Aurora: Design Considerations for High Throughput Cloud-Native Rela-
tional Databases,” in Proceedings of the 2017 ACM International Confer-
ence on Management of Data - SIGMOD ’17, (Chicago, Illinois, USA),
pp. 1041–1052, ACM Press, 2017.

[29] M. Vallath, Oracle Real Application Clusters. Elsevier Digital Press, 2014.

123

[30] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL Database: New Era
of Databases for Big data Analytics - Classification, Characteristics and
Comparison,” International Journal of Database Theory and Application,
vol. 6, no. 4, p. 14, 2013.

[31] Edlich, “NoSQL Database.” http://nosql-database.org, 2019.

[32] DATASTAX, “CQL reference — CQL for Cassandra 3.0.”
https://bit.ly/2O2SzXC, 2019.

[33] R. Kumar, N. Gupta, Shilpi Charu, Somya Bansal, and K. Yadav, “Com-
parison of SQL with HiveQL,” International Journal for Research in Tech-
nological Studies, vol. 1, pp. 28–30, Aug. 2014.

[34] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz, “Data
management in cloud environments: NoSQL and NewSQL data stores,”
Journal of Cloud Computing: Advances, Systems and Applications, vol. 2,
no. 1, p. 22, 2013.

[35] A. Pavlo and M. Aslett, “What’s Really New with NewSQL?,” ACM
SIGMOD Record, vol. 45, pp. 45–55, Sept. 2016.

[36] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory DBMS,”
IEEE Technical Committee on Data Engineering, vol. 36, pp. 21–27, 2013.

[37] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford, “Spanner: Google’s Globally Distributed Database,” ACM
Transactions on Computer Systems, vol. 31, p. 22, Aug. 2013.

[38] L.-Y. Yuan, L. Wu, J.-H. You, and Y. Chi, “A Demonstration of Rubato
DB: A Highly Scalable NewSQL Database System for OLTP and Big
Data Applications,” in Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data - SIGMOD ’15, (Melbourne,
Victoria, Australia), pp. 907–912, ACM Press, 2015.

[39] Apache Software Foundation, “Apache Cassandra.”
http://cassandra.apache.org/, 2019.

[40] S. Anand, P. Singh, and B. M. Sagar, “Working with Cassandra
Database,” in Information and Decision Sciences:, Advances in Intelli-
gent Systems and Computing, pp. 531–538, 2018.

124

[41] W. Jing, D. Tong, G. Chen, C. Zhao, and L. Zhu, “An optimized method
of HDFS for massive small files storage,” Computer Science and Informa-
tion Systems, vol. 15, no. 3, pp. 533–548, 2018.

[42] A. Lakshman and P. Malik, “Cassandra: A decentralized structured stor-
age system,” ACM SIGOPS Operating Systems Review, vol. 44, p. 35,
Apr. 2010.

[43] C. Esposito, A. Castiglione, F. Palmieri, and M. Ficco, “Improving the
gossiping effectiveness with distributed strategic learning (Invited pa-
per),” Future Generation Computer Systems, vol. 71, pp. 221–233, June
2017.

[44] R. Aniceto, R. Xavier, V. Guimarães, F. Hondo, M. Holanda, M. E.
Walter, and S. Lifschitz, “Evaluating the Cassandra NoSQL Database
Approach for Genomic Data Persistency,” International Journal of Ge-
nomics, vol. 2015, pp. 1–7, 2015.

[45] Z. Chen, S. Yang, S. Tan, G. Zhang, and H. Yang, “Hybrid Range Con-
sistent Hash Partitioning Strategy – A New Data Partition Strategy for
NoSQL Database,” in 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, (Melbourne,
Australia), pp. 1161–1169, IEEE, July 2013.

[46] V. N. Volkova, L. V. Chemenkaya, E. N. Desyatirikova, M. Hajali, A. Kho-
dar, and A. Osama, “Load balancing in cloud computing,” in 2018 IEEE
Conference of Russian Young Researchers in Electrical and Electronic En-
gineering (EIConRus), (Moscow), pp. 387–390, IEEE, Jan. 2018.

[47] E. Casalicchio, L. Lundberg, and S. Shirinbad, “An Energy-Aware Adap-
tation Model for Big Data Platforms,” in 2016 IEEE International
Conference on Autonomic Computing (ICAC), (Wuerzburg, Germany),
pp. 349–350, IEEE, July 2016.

[48] X. You, Y. Li, M. Zheng, C. Zhu, and L. Yu, “A Survey and Taxonomy
of Energy Efficiency Relevant Surveys in Cloud-Related Environments,”
IEEE Access, vol. 5, pp. 14066–14078, 2017.

[49] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the energy
efficiency of a database server,” in Proceedings of the 2010 International
Conference on Management of Data - SIGMOD ’10, (Indianapolis, Indi-
ana, USA), p. 231, ACM Press, 2010.

[50] D. Schall, Energy Efficiency in Database Systems. PhD thesis, Feb. 2015.

125

[51] J. Song, T. Li, Z. Wang, and Z. Zhu, “Study on energy-consumption
regularities of cloud computing systems by a novel evaluation model,”
Computing, vol. 95, pp. 269–287, Apr. 2013.

[52] TPC, “TPC-Energy.” http://www.tpc.org/tpc energy/, 2019.

[53] Wikipedia, “Power distribution unit.” https://bit.ly/2GdutWt, Sept.
2018.

[54] A.-C. Orgerie, M. D. de Assuncao, and L. Lefevre, “A survey on techniques
for improving the energy efficiency of large-scale distributed systems,”
ACM Computing Surveys, vol. 46, pp. 1–31, Mar. 2014.

[55] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption
Modeling: A Survey,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 732–794, Firstquarter 2016.

[56] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shojafar, A. I. A. Ahmed,
S. A. Madani, K. Saleem, and J. J. Rodrigues, “A survey on energy esti-
mation and power modeling schemes for smartphone applications: Energy
Estimation and Power Modeling Schemes for Smartphone Apps,” Inter-
national Journal of Communication Systems, vol. 30, p. e3234, July 2017.

[57] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson Education India, 2015.

[58] Y. C. Lee and A. Y. Zomaya, “Energy Conscious Scheduling for Dis-
tributed Computing Systems under Different Operating Conditions,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 1374–
1381, Aug. 2011.

[59] T. Mudge, “Power: A first-class architectural design constraint,” Com-
puter, vol. 34, pp. 52–58, Apr. 2001.

[60] X. Qi and D.-K. Zhu, “Energy Efficient Block-Partitioned Multicore Pro-
cessors for Parallel Applications,” Journal of Computer Science and Tech-
nology, vol. 26, pp. 418–433, May 2011.

[61] J. Liu and J. Guo, “Energy efficient scheduling of real-time tasks on multi-
core processors with voltage islands,” Future Generation Computer Sys-
tems, vol. 56, pp. 202–210, Mar. 2016.

[62] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient Server Clus-
ters,” in Power-Aware Computer Systems (B. Falsafi and T. N. Vijayku-
mar, eds.), pp. 179–197, Springer Berlin Heidelberg, 2003.

126

[63] X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a
Warehouse-sized Computer,” in In Proceedings of the ACM International
Symposium on Computer Architecture, (San Diego, CA, USA), pp. 13–23,
June 2007.

[64] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud Computing: Survey on Energy Efficiency,” ACM
Computing Surveys, vol. 47, pp. 1–36, Dec. 2014.

[65] D. Careglio, G. Da Costa, and S. Ricciardi, “Hardware Leverages for
Energy Reduction in Large-Scale Distributed Systems,” in Large-Scale
Distributed Systems and Energy Efficiency (J.-M. Pierson, ed.), pp. 17–
40, Hoboken, NJ, USA: John Wiley & Sons, Inc, Apr. 2015.

[66] Q. Shaheen, M. Shiraz, S. Khan, R. Majeed, M. Guizani, N. Khan, and
A. M. Aseere, “Towards Energy Saving in Computational Clouds: Tax-
onomy, Review, and Open Challenges,” IEEE Access, vol. 6, pp. 29407–
29418, 2018.

[67] M.-G. Jung, S.-A. Youn, J. Bae, and Y.-L. Choi, “A Study on Data In-
put and Output Performance Comparison of MongoDB and PostgreSQL
in the Big Data Environment,” in 2015 8th International Conference on
Database Theory and Application (DTA), (Jeju Island, South Korea),
pp. 14–17, IEEE, Nov. 2015.

[68] P. Boncz, T. Neumann, and O. Erling, “TPC-H Analyzed: Hidden Mes-
sages and Lessons Learned from an Influential Benchmark,” in Perfor-
mance Characterization and Benchmarking (D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Ty-
gar, M. Y. Vardi, G. Weikum, R. Nambiar, and M. Poess, eds.), vol. 8391,
pp. 61–76, Cham: Springer International Publishing, 2014.

[69] C. Bear, A. Lamb, and N. Tran, “The vertica database: SQL RDBMS for
managing big data,” in Proceedings of the 2012 Workshop on Management
of Big Data Systems - MBDS ’12, (San Jose, California, USA), p. 37, ACM
Press, 2012.

[70] K. S. Sangeetha and P. Prakash, “Big Data and Cloud: A Survey,” in
Artificial Intelligence and Evolutionary Algorithms in Engineering Sys-
tems (L. P. Suresh, S. S. Dash, and B. K. Panigrahi, eds.), pp. 773–778,
Springer India, 2015.

127

[71] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden, “Performance
Tradeoffs in Read-optimized Databases,” in Proceedings of the 32Nd Inter-
national Conference on Very Large Data Bases, VLDB ’06, pp. 487–498,
VLDB Endowment, 2006.

[72] D. Schall and T. Härder, “Approximating an Energy-Proportional DBMS
by a Dynamic Cluster of Nodes,” in Database Systems for Advanced Ap-
plications (S. S. Bhowmick, C. E. Dyreson, C. S. Jensen, M. L. Lee,
A. Muliantara, and B. Thalheim, eds.), pp. 297–311, Springer Interna-
tional Publishing, 2014.

[73] G. Han, W. Que, G. Jia, and L. Shu, “An Efficient Virtual Machine Con-
solidation Scheme for Multimedia Cloud Computing,” Sensors, vol. 16,
p. 246, Feb. 2016.

[74] S. Savinov and K. Daudjee, “Dynamic database replica provisioning
through virtualization,” in Proceedings of the Second International Work-
shop on Cloud Data Management - CloudDB ’10, (Toronto, ON, Canada),
p. 41, ACM Press, 2010.

[75] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu, “Towards energy-
efficient scheduling for real-time tasks under uncertain cloud computing
environment,” Journal of Systems and Software, vol. 99, pp. 20–35, Jan.
2015.

[76] B. Subramaniam and W.-c. Feng, “On the Energy Proportionality of Dis-
tributed NoSQL Data Stores,” in High Performance Computing Systems.
Performance Modeling, Benchmarking, and Simulation (S. A. Jarvis, S. A.
Wright, and S. D. Hammond, eds.), pp. 264–274, Springer International
Publishing, 2015.

[77] L. Yu, F. Teng, and F. Magoules, “Node Scaling Analysis for Power-Aware
Real-Time Tasks Scheduling,” IEEE Transactions on Computers, vol. 65,
pp. 2510–2521, Aug. 2016.

[78] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster Computing with Working Sets,” in Proceeding Hot-
Cloud’10 Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, (Boston, MA, USA), p. 7, USENIX, June 2010.

[79] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet,
E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
B. Quetier, and O. Richard, “Grid’5000: A large scale and highly reconfig-
urable grid experimental testbed,” in The 6th IEEE/ACM International

128

Workshop on Grid Computing, 2005., (Seattle, WA, USA), p. 8 pp., IEEE,
2005.

[80] Grid5000, “Power Monitoring Devices.” https://bit.ly/2E2WHSR, 2019.

[81] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the
1st ACM Symposium on Cloud Computing - SoCC ’10, (Indianapolis,
Indiana, USA), pp. 143–154, ACM Press, 2010.

[82] D. Borgetto, H. Casanova, G. Da Costa, and J.-M. Pierson, “Energy-
aware service allocation,” Future Generation Computer Systems, vol. 28,
pp. 769–779, May 2012.

[83] Wikipedia, “Nonlinear Programming.” https://bit.ly/2SP6A0y, Dec.
2018.

[84] B. Meindl and M. Templ, “Analysis of commercial and free and open
source solvers for linear optimization problems,” Tech. Rep. CS-2012-1,
Vienna, Austria, Mar. 2012.

[85] Wikipedia, “Stars and bars (combinatorics).” https://bit.ly/1h49E13,
Dec. 2018.

[86] G. Das, “Top-k Algorithms and Applications,” in Database Systems for
Advanced Applications (X. Zhou, H. Yokota, K. Deng, and Q. Liu, eds.),
pp. 789–792, Springer Berlin Heidelberg, 2009.

[87] Wikipedia, “Zipf’s law.” https://bit.ly/2l6RJgY, 2017.

[88] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1st ed., 1989.

[89] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, pp. 1–43, Mar. 2012.

[90] C. Curino, E. Jones, Y. Zhang, S. Madden, and E. Wu, “Relational Cloud:
The Case for a Database Service,” Tech. Rep. MIT-CSAIL-TR-2014-014,
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,
USA, Mar. 2010.

129

[91] S. Martello, D. Pisinger, and P. Toth, “Dynamic Programming and Strong
Bounds for the 0-1 Knapsack Problem,” Management Science, vol. 45,
pp. 414–424, Mar. 1999.

[92] Wikipedia, “Pseudo-polynomial time.” https://bit.ly/2HFia7G, Mar.
2019. Page Version ID: 832590030.

[93] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

130

