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Chapter 1

Introduction (version française)

1.1 Des films de savon au problème de Plateau

Le problème de Plateau consiste à minimiser l’aire d’une surface s’appuyant
sur un bord. Ce paragraphe est destiné à expliquer cet énoncé et ses origines.
Joseph Plateau était un physicien et mathématicien belge du dix-neuvième
siècle. Il est renommé pour ses travaux précurseurs sur la persistence rétini-
enne et son appareil d’animation, le phénakistiscope. Il a aussi étudié la ten-
sion superficielle et les films de savon. En plongeant un contour rigide dans
une solution savonneuse, on forme un film de savon bordé par le contour. Le
contour joue le rôle de bord (ou frontière) de la surface, tandis que la surface
s’appuie sur le contour. Dans le cas le plus simple, le bord est un cercle et
le film de savon est le disque correspondant. Si le bord est le squelette d’un
polyhèdre, la surface est un suprenant système de faces que Plateau appelait
système laminaire. Plateau a observé que ces systèmes étaient réguliers et

Figure 1.1: Film de savon s’appuyant sur le squelette d’un tétrahèdre
(gauche) et le squelette d’un cube (droite).

symétriques et il a entrepris de comprendre leur disposition géométrique.
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Comment s’expliquent les formes singulières des films de savon? Les
molécules de savon forment une interface entre l’air et l’eau, donnant de
l’élasticité et de la stabilité à la surface. Celle-ci est alors portée à minimiser
son aire autant que possible pour atteindre une position d’équilibre (cette
propriété s’appelle la tension superficielle). Dans notre situation «autant
que possible» signifie «tout en s’appuyant sur le bord». Les mathématiciens
ont isolé cette propriété. Ils définissent un problème de Plateau comme
la donnée des «surfaces s’appuyant sur un bord donné» et de leur «aire».
Une solution est une surface s’appuyant sur le bord avec une aire minimale
pour ces définitions. Les problèmes de Plateau simplifient la réalité physique
des films de savon mais ils l’a généralisent aussi car ils peuvent se formuler
dans des espaces plus généraux que notre espace euclidien à 3 dimensions.
Toutefois, ces concepts se sont révélés difficiles à formaliser.

Figure 1.2: Dans son livre Statique expérimentale et théorique des liquides
soumis aux seules forces moléculaires [Pl], Plateau présente ses expériences
et développe des lois décrivant les systèmes laminaires.

1.2 Approches du problème de Plateau

Qu’attendons-nous d’une formulation optimale du problème de Plateau?

1. Elle devrait inclure une définition des «surfaces s’appuyant sur un bord
donné» (aussi appelées compétiteurs) et de leur «aire».
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2. Elle devrait se prêter à la méthode directe du calcul des variations
(trouver une solution comme limite d’une suite minimisante). Il est en
général difficile d’avoir à la fois un principe de compacité sur la classe
des compétiteurs et un principe de semicontinuité inférieure sur l’aire.

3. Elle devrait rester proche des motivations de Plateau: décrire les films
de savon. Cela veut dire que l’on veut travailler avec le genre de fron-
tière que l’on peut construire avec un fil de fer et obtenir les films de
savon correspondant comme solutions.

On présente quelques grandes approches de problème (le lecteur peut aussi
être intéressé par [D5]). La frontière sera notée Γ.

L’approche classique minimise des paramétrisations dont le domaine est
un disque. C’est la formulation de Radò et Douglas dans les années 30 (voir
[Rado] et [Doug]). Regardons d’un peu plus près. Soit D2 et S1, le disque
unité et le cercle unité du plan euclidien respectivement. On fixe une courbe
de Jordan rectifiable Γ dans Rn (une image homéomorphe de S1 dont la
longueur est finie). Une surface s’appuyant sur Γ est défine comme une
application continue f : D2 → Rn telle que f envoie S1 homéomorphique-
ment sur Γ. L’aire correspondante est définie comme la variation totale de
f (Radò et Douglas l’appellent area-integral ou area functional). Si f est
une application C1, la variation totale peut être calculée directement par la
formule ∫

D
Jf dx

où Jf est le Jacobien f ,

Jf =

∣∣∣∣
|∂1f |2 ∂1f · ∂2f

∂1f · ∂2f |∂2f |2
∣∣∣∣
1
2

.

La variation totale diffère de l’aire de l’image à cause des éventuelles mul-
tiplicités mais elle a l’avantage d’être semicontinue inférieurement. Radò
et Douglas cherchent une immersion lisse f qui minimise la variation to-
tale. Ainsi, f paramétrerait localement une surface minimale au sens clas-
sique. Il reste difficile de faire converger une suite minimisante vers une
immersion lisse. Le problème doit particulièrement sa complexité à la di-
versité des paramétrisations d’une surface donnée. Même une suite d’entre
elles pourrait ne pas converger du tout. Comme les courbes qui ont les
paramétrisations par la longueur d’arc, les surfaces de dimension 2 ont des
paramétrisations privilégiées: les paramétrisations conformes1. De plus, une
paramétrisation conforme f décrit une surface minimale si et seulement si
f est harmonique. Cela amène Radò et Douglas à spécifier le problème
comme la recherche d’une application harmonique et conforme qui minimise

1Une paramétrisation f est conforme si |∂1f | = |∂2f | et ∂1f · ∂f = 0.
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la variation totale. Radò travaille avec une suite de compétiteurs "approx-
imativement conformes" minimisant la variation totale. Douglas minimise
une fonctionnelle plus simple pour laquelle la variation première ne peut
s’annuler qu’aux applications conformes. Le principale défaut de cette ap-
proche est qu’elle ne se généralise pas à trois variables ou plus car elle dépend
trop de la théorie des applications conformes. De plus, on préfererait des so-
lutions qui décrivent les singularités observées par Plateau. Une solution de
Radò et Douglas paramétre localement une surface minimale mais son image
complète n’est pas d’aire minimale. Prenons par exemple un noeud Γ dont
la solution a des auto-intersections. Les morceaux qui se traversent sont in-
dépendemment minimaux mais la façon dont ils s’intersectent n’est pas prise
en compte par la variation totale. Ceci explique que des plans transversent
se trouvent dans les solutions de Radò et Douglas alors qu’ils n’existent pas
dans les films de savon. On pointe enfin que cette approche ne compare que
des paramétrisations définis sur le disque, fixant ainsi le type topologique
des compétiteurs.

Dans les années soixante sont apparues deux approches qui incluent
toutes les dimensions et codimensions et dont les compétiteurs ont un type
topologique variable: Federer-Fleming et Reifenberg. Federer et Fleming
travaillent avec les courants intégraux et minimisent leur masse (une aire
calculée avec multiplicité). Ils ont développée la convergence plate pour
laquelle les courants intégraux disposent d’un principe de compacité et la
masse est semicontinue inférieurement. Ils déduisent l’existence de courants
rectifiables minimiseurs de masse dont la frontière est donnée. Cependant,
leurs solutions sont trop régulières loin de la frontière pour décrire les films de
savon. Au lieu de minimiser la masse, on pourrait minimiser la taille (l’aire
du support). Un tel point de vue est très proche de celui de Reifenberg.
Reifenberg travaille avec des ensembles de l’espace euclidien qui s’appuient
sur la frontière au sens de la topologique algébrique et minimise leur mesure
de Hausdorff (sphérique). Un ensemble E de dimension d s’appuie sur une
frontière Γ si E contient Γ et annule les (d−1)-cycles de Γ (ou un sous-groupe
d’entre eux).

Definition (Compétiteurs de Reifenberg). Fixons Γ un compact de Rn et L
un sous-groupe du groupe d’homologie Hd−1(Γ). Un compétiteur de Reifen-
berg est un compact E ⊂ Rn tel que E contient Γ et le morphisme induit
par inclusion,

Hd−1(Γ) Hd−1(E),

est nul sur L.

On rappelle la définiton de la mesure de Hausdorff sphérique d-dimensionnelle.
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Definition (Mesure de Hausdorff sphérique).

Sd(E) := lim
δ→0+

inf

{∑

k

diam(Bk)
d

∣∣∣∣∣ E = ∪k∈NBk,diam(Bk) ≤ δ
}
.

où (Bk) est une suite de boules.

Figure 1.3: Calcul de la mesure S1 d’une spirale.

L’exemple le plus classique est le cas où Γ est composé de deux cercles
C1∪C2 de même rayon et centrés sur un même axe de symétrie. Les films de
savon s’appuyant sur Γ sont les disques parallèles, la caténoide et la caténoide
avec un disque (deux morceaux de caténoides qui rejoignent un disque inter-
médiaire avec un angle de 120 degrés). Ces deux derniers n’existent que si
la distance entre les cercles est suffisamment petite comparée à leurs rayons.
On peut relier ce phénomère au fait que l’aire de ces films est alors plus
petite que l’aire des deux disques. On aborde le problème du point de vue
de Reifenberg en supposant que les cercles sont proches pour ignorer les dis-
ques parallèles. On va voir que le choix de L discrimine la caténoide et la
caténoide avec un disque. Si L est tout le groupe H1(Γ), alors la caténoide
n’est pas un compétiteur et le minimiseur est la caténoide avec un disque. Si
L est le sous-groupe engendré par γ2− γ1, où γi est le cycle correspondant à
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Ci, alors le minimiseur de Reifenberg est la caténoide. On conclut que pour
interpréter un film de savon donné comme un minimiseur de Reifenberg, on
doit spécifier le groupe à annuler.

Reifenberg a prouvé l’existence de solutions à son problème en 1960 pour
la théorie homologique de Čech et des groupes de coefficient abéliens com-
pacts ([Rei]). La propriété de continuité de la théorie de Čech implique
qu’une limite de Hausdorff de compétiteurs est un compétiteur. Ainsi, une
solution peut être cherchée comme une limite de Hausdoff d’une suite min-
imisante.

Theorem (Continuité de l’homologie de Čech). Soit (Ek) une suite décrois-
sante de compacts. Alors pour tous d ∈ N,

Hd(E∞) = lim
k
Hd(Ek),

où E∞ =
⋂
k Ek, limkHd(Ek) est la limite inverse par rapport aux mor-

phismes induits par les inclusions Ek+1 ⊂ Ek et le signe = est le morphisme
induit pur les inclusions E∞ ⊂ Ek.

En revanche, l’aire n’est pas semicontinue inférieurement par rapport aux
limites de Hausdorff. Par exemple, on peut imaginer une suite minimisante
qui présente des tentacules de plus en plus denses si bien que le limite est trop
grosse. Reifenberg a travaillé avec des groupe de coefficient compacts pour
disposer de l’axiome d’excision et ainsi couper les tentacules et reboucher les
trous. Sa construction aboutit à suite minimisante alternative pour laquelle
l’aire est semicontinue inférieurement. Nakauchi ([Na]) a énoncé et résolu
une variante à frontière libre en 1984 (pour des groupes de coefficient com-
pacts également). On signifie par là que l’intersection E ∩ Γ varie parmi les
compétiteurs E.

E

Γ

E

Γ
Figure 1.4: Deux types de problème de Plateau. Les compétiteurs ont un
bord fixe à gauche et un bord libre à droite.

Definition (Compétiteurs de Nakauchi). Fixons Γ un compact de Rn et L
un sous-groupe de Hd−1(Γ). Les compétiteurs de Nakauchi sont les compacts
E ⊂ Rn tels que pour tous v ∈ L, il existe u ∈ Hd−1(E∩Γ) tel que i∗(u) = v
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et i′∗(u) = 0 où i∗ et i′∗ sont les morphismes induits par inclusions:

Hd−1(Γ)

Hd−1(E ∩ Γ)

Hd−1(E).

i∗

i′∗

Nakauchi minimise Hd(E \ Γ) mais il serait également intéressant de
minimiser Hd(E) pour prendre en compte le bord libre. En 2015, Fang
([Fn]) a donné une nouvelle preuve des problèmes de Reifenberg et Nakauchi
pour tous les groupes de coefficient et minimisant Hd(E \ Γ). Son idée
est de tirer parti de la semicontinuité inférieure de l’aire sur les ensembles
quasiminimaux (on les présente dans le prochain paragraphe). Grâce à une
construction de Feuvrier ([Feuv]), il obtient une suite minimisante alternative
composée d’ensembles quasiminimaux. Fang remplace aussi les mesures de
Hausdorff par des fonctionnelles plus générales appelées intégrants elliptiques.

Inspiré par les restricted sets d’Almgren ([Alm]), David a introduit les
compétiteurs glissant dans [DS] et [D6]. Il compare l’aire d’une surface avec
son image sous l’action de déformations continues. Une déformation glis-
sante d’un ensemble E est une application lipschitz φ : E → Rn telle qu’il
existe une application continue Φ: [0, 1]× E → Rn satisfaisant Φ(0, ·) = id,
Φ(1, ·) = φ, Φ(t, ·) = id en dehors d’un compact et Φ(t, E ∩Γ) ⊂ Γ. On peut
penser à un film de savon se mouvant le long d’un tube par exemple.

Definition (Compétiteurs glissants). Fixons Γ un compact de Rn et E0 un
compact Hd fini de Rn. Les compétiteurs glissants induits par E0 sont les
images de E0 par les déformations glissantes.

L’existence de solutions est encore inconnue! On peut se demander
pourquoi la déformation initiale φ est lipschitz tandis que l’homotopie Φ
est simplement continue. L’hypothèse lipschitz est un héritage d’Almgren.
Elle se révèle utile car les fonctions lipschitz ont une actions sur les courants,
les ensembles Hd mesurables, Hd finis et Hd rectifiables. L’hypothèse de
continuité sur Φ sert à imposer une contrainte topologique de la façon la
plus générale possible. On peut observer que les solutions de Reifenberg
et du problème glissant satisfont une propriété intermédiaire: leur aire est
minimale sous l’actions des déformations glissantes. Ceci motive la notion
d’ensembles minimaux glissants. Ce sont des ensembles fermés et Hd locale-
ment finis E ⊂ Rn tels que pour toute déformation glissante φ de E,

Hd(E ∩W ) ≤ Hd(φ(E ∩W )).
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où Hd est la mesure de Hausdorff de dimension d et W est l’ensemble

W = {x ∈ Rn | φ(x) 6= x } .

Cette propriété fait écho à l’élasticité et la stabilité des films de savon sous
l’actions de (petites) déformations. Malheureusement, ce n’est qu’en petite
dimension et loin du bord que nous connaissons de bons résultats de régular-
ité à leur propos (voir le théorème de Jean Taylor, [Ta], [D4]). Les ensembles
quasiminimaux satisfont une généralisation de cette définition où la mesure
Hd est remplacée par des fonctionnelles plus générales et l’ensemble W est
localisé dans des petites boules. On connait des résulats faibles de régular-
ité sur les ensembles quasiminimaux en toutes dimensions (voir [DS], [D6],
[D2] et [D3]). David a étudié les propriétés de passage à la limite des suites
quasiminimisantes ([D1]). Il a prouvé en particulier qu’une limite de Haus-
dorff locale d’ensembles quasiminimaux est encore un ensemble quasiminimal
([D6], Theorem 10.8).

Dans [DLGM] et [DPDRG1], De Lellis, De Philippis, De Rosa, Ghi-
raldin et Maggi ont introduit un nouveau type de méthode directe. Comme
Reifenberg, ils travaillent avec des ensembles et des mesures de Hausdorff de
l’espace euclidien mais ils remplacent les limites de Hausdorff par des limites
faibles. Présentons leur travail avec plus de détails. Les auteurs fixent un
fermé Γ ⊂ Rn (la frontière) et se placent dans Rn \ Γ (loin de la frontière).
Ils considèrent une classe de sous-ensembles relativement fermés E ⊂ Rn \Γ
(les compétiteurs). À une suite minimisante de compétiteurs (Ek) pour Hd,
ils associent la suite de mesures de Radon (Hd Ek). Ils font alors converger
la suite faiblement vers une mesure de Radon µ dans l’espace ambiant Rn\Γ.
Le point essentiel de cette méthode est que, si la classe des compétiteurs est
suffisamment complète, on a

µ = Hd E∞

où E∞ est le support de µ dans Rn \ Γ. En ce sens, l’ensemble E∞ est
une limite faible de la suite minimisante (Ek). Cette stratégie donne en
particulier la semicontinuité inférieure de l’aire:

Hd(E∞) ≤ lim
k
Hd(Ek).

La démonstration repose sur la construction de bons compétiteurs. Les au-
teurs passent par une information intermédiaire: ils montrent que E∞ est un
ensemble Hd rectifiable grâce au théorème de rectifiabilité de Preiss. Pour
résoudre le problème de Plateau, il reste à voir si E∞ est un compétiteur.
Les auteurs montrent que c’est le cas pour le problème de Harrison-Pugh
([HP]).

Definition (Compétiteurs de Harrison et Pugh). Fixons Γ un compact de
Rn et C un ensemble de plongements lisses γ : Sn−d → Rn \ Γ qui est stable
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par homotopie dansRn\Γ. Les compétiteurs sont les ensembles relativement
fermés E ⊂ Rn \ Γ tels que pour tout γ ∈ C, γ ∩ E 6= ∅.

Ils montrent que c’est aussi le cas pour le problème de Reifenberg (avec un
groupe de coefficient compact) dans [DPDRG3]. Dans le cas général, ce n’est
pas forcément vrai mais les auteurs obtiennent tout de même une information
sur la structure de E∞: l’ensemble E∞ est Almgren-minimal dans Rn \ Γ.
Dans les articles [DLDRG3] et [DPDRG3], les auteurs remplacent les mesures
de Hausdorff par des Lagrangiens anisotropes plus généraux. Le théorème de
rectifiabilité de Preiss est à son tour remplacé par une extension du théorème
de rectifiabilité d’Allard pour les varifolds ([DPDRG2]).

Dans cette thèse, on généralise aux suites quasiminimisantes, la limite
faible de suites minimisantes introduite par De Lellis, De Philippis, De Rosa,
Ghiraldin et Maggi. On montre qu’une limite faible d’ensembles quasimini-
maux est quasiminimal. Ce résultat est analogue au théorème de passage à
la limite de David pour la convergence de Hausdorff locale. Notre démon-
stration est inspirée par celle de David tout en étant plus simple. De plus,
elle n’a pas recours pas au théorème de rectifiabilité de Preiss, ni à la théorie
des varifolds. Elle n’est pas non plus limitée à l’espace ambiant Rn \ Γ.
Ceci signifie que l’on peut prendre en compte la partie du compétiteur qui se
trouve sur la frontière. Bien que l’on minimise la mesure de Hausdorff, nos
techniques pourraient s’adapter aux intégrants elliptiques. On déduit une
méthode directe pour prouver l’existence de solutions à divers problèmes de
Plateau, même quand on minimise les compétiteurs sur la frontière. On
l’applique ensuite à deux variantes du problème de Reifenberg (minimisant
ou non la frontière libre) pour tous les groupes de coefficient. D’autre part,
on propose une structure pour construire des projections de Federer-Fleming
ainsi qu’une nouvelle estimation sur le choix des centres de projection.

1.3 Principaux résultats

Notre espace ambiant est un ouvert X de Rn. On fixe un entier 1 ≤ d ≤ n.
L’expression un ensemble fermé S ⊂ X signifie que S est relativement fermé
dans X. Pour x ∈ X et s ∈ [0,∞], on définit

rs(x) = min { s
1+sd(x,Xc), s } .

On exprime l’échelle d’une boule B(x, r) dans X comme le paramètre s ∈
[0,∞] tel que r = rs. L’interval [0, 1] est noté I. Étant donné un ensemble
E ⊂ X et une fonction F : I ×E → X, la notation Ft signifie F (t, ·). Étant
donnés deux ensembles A,B ⊂ Rn, la notation A ⊂⊂ B signifie qu’il existe
un compact K ⊂ Rn tel que A ⊂ K ⊂ B. Pour une boule U de centre x
et de rayon r pour h ≥ 0, le symbole hU désigne la boule de centre x et de
rayon hr. La frontière est un ensemble fermé Γ ⊂ X qui a de la structure et
de la régularité (on en discutera à la fin de l’introduction).
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Definition (Déformation glissante le long d’une frontière). Soit E un fermé
Hd localement fini deX. Une déformation glissante de E dans un ouvert U ⊂
X est une application lipschitz f : E → X telle qu’il existe une homotopie
continue F : I × E → X réalisant les conditions suivantes:

F0 = id

F1 = f

∀t ∈ I, Ft(E ∩ Γ) ⊂ Γ

∀t ∈ I, Ft(E ∩ U) ⊂ U
∀t ∈ I, Ft = id in E \K,

où K est un sous-ensemble compact de E ∩K. Alternativement, le dernier
axiome peut s’écrire

{ x ∈ E | ∃ t ∈ I, Ft(x) 6= x } ⊂⊂ E ∩ U.

On définit les déformations glissantes globales dans U comme les défor-
mations glissantes de X dans U (l’ensemble E est remplacé par X dans la
définition précédente).

Les principaux objets de cette thèse sont les ensembles minimaux et
quasiminimaux. Les ensembles quasiminimaux sont des surfaces dont les dé-
formations glissantes ne peuvent pas réduire l’aire en dessous d’un pourcent-
age fixé κ−1 (et modulo une erreur de petite taille). La contrainte topologique
empêchant l’écrasement de l’aire peut venir de U car Ft(E ∩ U) ⊂ U et
Ft = id dans X \ U ou de le frontière car Ft(E ∩ Γ) ⊂ Γ

Definition (Ensembles quasiminimaux). Soit E un fermé Hd localement
fini de X. Soit P = (κ, h, s) un triplet de paramètres composé de κ ≥ 1,
h ≥ 0 et d’une échelles ∈]0,∞]. On dit que E est P-quasiminimal dans
X si pour tout x ∈ E, pour tout 0 < r ≤ rs(x) et pour toute déformation
glissante f de E dans U = B(x, r), on a

Hd(Wf ) ≤ κHd(f(Wf )) + hHd(E ∩ hU),

où
Wf = {x ∈ E | f(x) 6= x } .

On dit que E est minimal dans le cas P = (1, 0,∞).

Ces notions trouvent leur inspiration dans les travaux d’Almgren. Elles
ont été introduites par David et Semmes dans [DS] (sans frontière) puis
généralisées par David dans [D6] (avec une frontière). Le facteur κ permet
d’inclure les graphes lipschitziens parmi les ensembles quasiminimaux. De
son côté, hHd(E ∩ hU) est un un terme de plus petit ordre qui élargit la
classe des fonctionnelles minimisées. En pratique, on suppose que h est
assez petit en fonction de n et Γ. On peut aussi considérer un terme de
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la form hdiam(U)d mais il pose problème pour notre théorème de passage
à la limite. Les premières propriétés des ensembles quasiminimaux sont
l’invariance bilipschitz (Remarque 3.1.2), l’Ahlfors régularité (Proposition
5.1.1) et la rectifiabilité (Corollaire 5.1.1).

Le principal résultat de la thèse est qu’une limite faible d’ensembles quasi-
minimaux est un ensemble quasiminimal. On omet les hypothèses sur la
frontière dans les deux prochains énoncés. Les résultats complets sont le
Théorème 5.2.1 et le Corollaire 6.1.1.

Theorem (Théorème de passage à la limite). On fixe un triplet de paramètres
(κ, h, s) et un paramètre additionnel κ0 ≥ 1. On suppose que h est assez petit
(en fonction de n et Γ). Soit (Ei) une suite de fermés Hd localement finis
de X satisfaisant les conditions suivantes:

1. la suite des mesures de Radon (Hd Ei)i a une limite faible µ dans X;

2. pour tout x ∈ spt(µ), pour tout 0 < r ≤ rs(x), il existe une suite
(εi)→ 0 telle que pour toute déformation glissante globale f dans U =
B(x, r),

Hd(Ei ∩Wf ) ≤ κHd(f(Ei ∩Wf )) + hHd(Ei ∩ hU) + εi

et
Hd(Ei ∩ U) ≤ κ0H

d(f(Ei ∩ U)) + εi.

Alors E = spt(µ) est (κ, κ0h, s)-quasiminimal et on a

Hd E ≤ µ ≤ κ0H
d E.

Ce théorème fait suite aux travaux de David ainsi que de De Lellis, De
Philippis, De Rosa, Ghiraldin et Maggi. David a démontré qu’une limite
de Hausdorff locale d’ensembles quasiminimaux est quasiminimal dans [D6]
(Theorem 10.8). Les limites de Hausdorff sont utilisées pour résoudre des
problèmes de Plateau depuis Reifenberg. D’autre part, l’équipe italienne a
développé une notion de limite faible pour les suites minimisantes de com-
pétiteurs. Notre théorème étend cette notion aux suites quasiminimisantes
et montre qu’une limite faible d’ensembles quasiminimaux est quasiminimal.
On déduit une nouvelle démonstration de la méthode directe de l’équipe ital-
ienne (voir [DLGM], théorème 7 et [DPDRG1], théorème 1.8) mais elle ne
repose ni sur le théorème de rectifiabilité de Preiss, ni sur la théorie des var-
ifolds. Notre version permet de minimiser les compétiteurs sur la frontière.

Corollary (Méthode directe). Soit C une classe de fermés de X telle que

m = inf {Hd(E) | E ∈ C } <∞
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et on suppose que pour tout E ∈ C, pour toute déformation glissante f de E
dans X,

m ≤ Hd(f(E)).

Soit (Ek) une suite minimisante pour Hd dans C. À une sous-suite près, il
existe un ensemble coral2 minimal E∞ dans X tel que

Hd Ek ⇀ Hd E∞.

où la flèche ⇀ dénote la convergence faible des mesures de Radon dans X.
En particulier, Hd(E∞) ≤ m.

En application, on définit les compétiteurs de Reifenberg à bord libre et
on résout deux formulation du problème (avec ou sans le bord libre). Dans
les travaux de Reifenberg, la limite de Hausdorff d’une suite minimisante est
un compétiteur mais l’aire n’est pas semicontinue inférieurement. Reifenberg
a travaillé avec un groupe de coefficient compact pour construire une suite
minimisante alternative. Avec les limites faibles, la semicontinuité inférieure
découle du théorème précédent mais il nous faut encore montrer que la limite
est un compétiteur. On le démontre pour tout groupe de coefficient en
construisant des recouvrements appropriés.

Definition (Compétiteurs de Reifenberg). Fixons un fermé Γ de Rn et un
sous-groupe L de Hd−1(Γ). Un compétiteur de Reifenberg est un compact
E ⊂ Rn tel que le morphisme induit par inclusion,

Hd−1(Γ) Hd−1(E ∪ Γ),

est nul sur L.

On verra que cette formulation est essentiellement équivalente à celle de
Nakauchi.

Lemma. Soit (Ek) ⊂ Rn une suite de compétiteurs de Reifenberg. Soit E
un compact de Rn. On suppose que

1. il existe un compact C ⊂ Rn tel que pour tout k, Ek ⊂ C;

2. pour tout ouvert V ⊂ Rn contenant E ∪ Γ,

lim
k
Hd(Ek \ V ) = 0.

Alors E est un compétiteur de Reifenberg.
2Un ensemble E ⊂ X est coral dans X si E est le support de Hd E dans X. De façon

équivalente, E est fermé dans X et pour tout x ∈ E et pour tout r > 0, Hd(E∩B(x, r)) >
0.
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Theorem (Reifenberg en minimisant le bord libre). on suppose que

m = inf {Hd(E) | E compétiteur de Reifenberg } <∞

et qu’il existe un compact C ⊂ Rn tel que

m = inf {Hd(E) | E compétiteur de Reifenberg, E ⊂ C } .

Alors il existe un compétiteur de Reifenberg E ⊂ C tel que Hd(E) = m.

Le prochain théorème est similaire au théorème 1.3 de [Fn] (qui se fonde
sur la construction de Feuvrier) et au théorème 3.4 de [DPDRG3] (qui se
fonde sur les limites faibles de suites minimimisantes). Cependant, nous
n’avons pas encore traité les intégrants elliptiques.

Theorem (Reifenberg sans minimiser le bord libre). On suppose que

m = inf {Hd(E \ Γ) | E compétiteur de Reifenberg } <∞

et qu’il existe un compact C ⊂ Rn tel que

m = inf {Hd(E \ Γ) | E compétiteur de Reifenberg, E ⊂ C } .

Alors il existe un compétiteur de Reifenberg E ⊂ C tel que Hd(E \ Γ) = m.

Remark. Si Γ est compact et Hd(Γ) < ∞, cela revient à minimiser Hd(E)
parmi les compétiteurs de Reifenberg contenant Γ.

1.4 Outils du théorème de passage à la limite

1.4.1 Une classe de déformations

Le lemme suivant est inspiré des techniques de David dans [D6]. Il contient
la principale partie technique de la preuve. La constante de lipschitz d’une
application f est notée ‖f‖L.

Lemma. Soit f une déformation glissante globale dans un ouvert U ⊂ X.
Soit W un ouvert de U et soit E ⊂W un ensemble Hd mesurable, Hd fini et
Hd rectifiable. Pour tout ε > 0, il existe une déformation glissante gloable g
dans U et un ouvert V ⊂W telle que g− f a un support compact inclu dans
W , |g − f | ≤ ε, ‖g − f‖L ≤ C‖f‖L (where C ≥ 1 depends on n, Γ) and

Hd(E \ V ) ≤ ε
Hd(g(V )) ≤ Hd(f(E)) + ε.

En résumé, on construit une déformation glissante g qui «écrase» un
presque-voisinage de E ∩W sur f(E ∩W ).
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1.4.2 La projection de Federer-Fleming

La projection de Federer-Fleming pour les ensembles a été introduite par
David et Semmes dans [DS] en suivant les idées de la projection pour les
courants. Il s’agit d’envoyer un ensemble E de dimension d dans le d-
squelette d’un réseau de cube tout en contrôlant la mesure de l’image. Pour
commencer, on choisit un centre de projection non adhérent à E dans chaque
cube. On réalise alors une projection radiale dans chaque cube pour envoyer
E sur les faces de dimensions (n − 1). Comme les centres de projection ne
sont pas adhérents à E, chaque projection radiale est lipschitz sur E et la
mesure de E est multipliée par la constante de lipschitz. Malheureusement,
on ne contrôle pas cette constante a priori. David et Semmes sont parvenus
à choisir des centres de projection tels que la mesure de E est multipliée par
une constante qui ne dépend que de n. On itère le procédé dans chaque face
de dimension (n−1) pour projeter E dans les faces de dimension (n−2). On
s’arrête en général quand E est envoyé dans les faces de dimension d car on
ne peut plus s’assurer qu’il existe des centres de projections non adhérents
à l’image de E. On présente le lemme de David et Semmes sur le choix des
centres de projection:

Lemma ([DS], Lemma 3.22). Soit Q un cube Rn, soit E un sous-ensemble
borélien de Q. Alors

1

|Q|

∫ ∗
1
2
Q
Hd(φx(E)) dx ≤ CHd(E),

où φx est la projection radiale de Q \ x sur ∂Q, C est une constante qui ne
dépend que de n.

On développe un lemme analogue pour une autre jauge qui a l’avantage
d’annuler la partie purement non rectifiable de E. Commençons par rappeler
quelques notations. La grassmanienne G(d, n) est l’ensemble de tous les d-
plans vectoriels de Rn. Un plan vectoriel V peut être représenté par sa
projection orthogonale pV . Ainsi, la norme d’opérateur par rapport à la
norme euclidenne induit une distance naturelle sur G(d, n). Cet espace est
aussi muni d’une mesure canonique invariante dV . On renvoit à l’appendice
B (et alternativement, [Mat], Section 3). On définit la jauge ζd sur les
boréliens de Rn par

ζd(E) :=

∫

G(d,n)
Hd(pV (E)) dV.

On appelle cellule une face de cube de dimension quelconque. Pour une
cellule A, on pose la restriction de cette jauge à A:

ζd A(E) :=

∫

G(aff(A),d)
Hd(pV (E ∩A)) dV,
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où aff(A) est l’enveloppe affine de A etG(aff(A), d) est l’ensemble des d-plans
vectoriels de aff(A) centrés en un point quelconque de aff(A). On rappelle
aussi la notion d’intégrale supérieure. Pour un ensemble S ⊂ Rn muni d’une
mesure µ et pour une fonction f : S → [0,+∞], l’intégrale supérieure de f
est définie par ∫ ∗

S
f dµ := inf

ψ

∫

S
ψ dµ

pour tout fonction µ-mesurable ψ : S → [0,+∞] telle que f ≤ ψ. Il n’est
pas sûr qu’on ait réellement besoin de l’intégrale supérieure mais on ne s’en
soucie pas.

Lemma. Soit Q un cube de Rn, soit E un sous-ensemble borélien de Q.
Alors

1

|Q|

∫ ∗
1
2
Q

sup
A
ζd A(φx(E)) dx ≤ Cζd(E),

où φx est la projection radiale de Q \ x sur ∂Q, le sup est indexé par toutes
les cellules A ⊂ ∂Q et C est une constante qui ne dépend que de n.

La gauge ζd A se simplifie enHd A quand A est une cellule de dimension
d. À la dernière étape de la projection, une fois que l’ensemble E a été envoyé
dans le d-squelette, on obtient une estimation de la forme

Hd(φ(E)) ≤ C
∫

G(d,n)
Hd(pV (E)) dV.

En particulier, la partie purement non rectifiable de E est annulée par le côté
droit. Feuvrier avait déjà montré qu’il était possible de choisir les centres
de projections pour supprimer la partie non rectifiable avec une méthode
différente ([Feuv], Lemma 4.3.16).

Considérons un ensemble quasiminimal E. On peut tester la propriété de
quasiminimalité contre des projections de Federer-Fleming dans des grilles
de cubes. Cela mène à des estimations de densité (see Corollary 5.1.1): pour
tout x ∈ E∗ (le support de Hd E) et pour tous les petits rayons r > 0,

C−1rd ≤ Hd(E ∩B(x, r)) ≤ C
∫

G(d,n)
Hd(pV (E ∩B(x, 16

√
nr))) dV.

On obtient en même temps l’Ahlfors régularité d-dimensionnelle de E∗,

C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd,

et la rectifiabilité Hd de E. On utilisera de telles estimations pour mon-
trer que l’ensemble E∞ du théorème de passage à la limite est Hd rectifi-
able. La projection de Federer-Fleming est donc un outil important de la
démonstration. Si on veut que les projections de Federer-Fleming soient des
déformations glissantes, il faut néanmoins qu’elles préservent la frontière.
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1.4.3 Une frontière régulière

L’ensemble Γ qui joue le rôle de frontière est d’abord un fermé de X. On est
susceptible d’utiliser trois hypothèses supplémentaires.

1. Premièrement, on peut vouloir que Γ soit un retract lipschitz local de
X. Ceci signifie qu’il existe un ouvert O ⊂ X contenant Γ et une
application lipschitz p : O → Γ telle que p = id sur Γ.

2. Deuxième, on peut vouloir que pour tout ε > 0, il existe un ouvert
O ⊂ X et une application (1 + ε)-lipschitz p : O ∪ Γ → Γ tels que
Hd(Γ \ O) = 0 et p = id sur Γ. L’intérêt des retractions (1 + ε)-
lipschitz est qu’elles n’agrandissent pas trop les mesures de Hausdorff.
La condition précédente autorise des coins non convexes pourvu qu’ils
soient Hd négligeables.

3. Troisièmement, on voudrait pouvoir construire des projections de Federer-
Fleming qui préservent la frontière.

Au chapitre 4, on propose une structure générale pour construire des pro-
jections de Federer-Fleming. Ainsi, on peut définir une large de classe de
frontières compatibles avec les projections de Federer-Fleming. On consid-
ère un ensemble K de faces de cube de diamètres variables; c’est la liste
des faces dans lesquelles on effectuer une projection radiale. Si la relation
d’inclusion ⊂ dans K est compatible avec la topologie en un certain sens,
ces projections radiales peuvent être recollées et composées pour former une
projection de Federer-Fleming. La structure de K est similaire à un CW-
complexe mais le bord d’une face n’est pas forcément recouvert par d’autres
faces. Sur la figure 1.5 par exemple, les arêtes externes ne font pas partie de
K.

Definition. Une cellule est une face de cube dans Rn. L’intérieur d’une
cellule est l’intérieur relatif à son enveloppe affine. Le support d’un ensemble
K de cellules est défini par

|K| =
⋃
{A ∈ K } .

Un complexe K est un ensemble de cellules tels que

1. les intérieurs des cellules { int(A) | A ∈ K } sont mutuellement dis-
joints;

2. tout x ∈ |K| admet un voisinage relatif dans |K| qui rencontre un
nombre fini de cellules A ∈ K;

3. pour tout cellule A ∈ K, l’ensemble

VA :=
⋃
{ int(B) | B ∈ K contains A }

est un voisinage relatif de int(A) dans |K|.
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Figure 1.5: Dans cet example, on fait une projection radiale dans chaque
carré (blanc), puis dans chaque arête interne (bleu). On regroupe ces faces
dans un ensemble K.

On présente une méthode simple pour construire de tels complexes en
recollant des complexes élémentaires. Cette technique est analogue à une
limite directe en algèbre. Ainsi, on construit des complexes qui remplissent
un ouvert de façon similaire à une décomposition de Whitney. Enfin, on
définit nos frontières comme des images bilipschitz d’unions de cellules de
tels complexes.
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Chapter 2

Introduction

2.1 From soap films to the Plateau problem

The Plateau problem consists in minimizing the area of a surface spanning
a boundary. This paragraph is devoted to explaining this statement and its
origins. Joseph Plateau was a Belgian physicist and mathematician of the
nineteenth century. He is renowned for his pioneering works on persistence of
vision and his animation device, the phenakistiscope. He also studied surface
tension and soap films. By dipping a rigid frame in a soapy solution, one gives
form to a soap film bordered by the frame. The frame acts as the boundary
of the soap film whereas the soap film spans the frame. In the simplest case,
the boundary is a circle and the soap film is the correspnoding disk. If the
boundary is the skeleton of a polyhedron, the surface is a suprising system
of faces that Plateau called laminar system. Plateau observed that these

Figure 2.1: Soap films spanning the skeleton of a tetrahedron (left) and the
skeleton of a cube (right).

systems were regular and symmetric and he undertook to understand their
geometrical configuration.
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How do we explain the singular shapes of soap films? The molecules of
soap interface the air and the water, giving elasticity and stability to the
surface. This one tends to minimize its area as much as possible to reach an
equilibrium position. In our situation, "as much as possible" means "while
spanning the boundary". Mathematicians have isolated this property. They
define a Plateau problem as the statement of the "surfaces spanning a given
boundary" and of their "area". As solution is a surface spanning the bound-
ary with a minimal area in the sense of theses definition. Plateau problem
simplify the physical reality of soap films but they also generalize it because
they can be formulated in more general spaces than our 3-dimensional Eu-
clidian space. However, these concepts proved intricate to formalize.

Figure 2.2: In his book Statique expérimentale et théorique des liquides
soumis aux seules forces moléculaires [Pl], Plateau presents his experiments
and develops laws describing laminar systems.

2.2 Approaches of the Plateau problem

What do we expect from an optimal formulation of the Plateau problem?

1. It should include a definition of "surfaces spanning a given boundary"
(also called competitors) and their "area".

2. It should lend itself to the direct method of the calculus of variation
(find a solution as a limit of a minimizing sequence). It is in general dif-
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ficult to have both a compactness principle on the class of competitors
and a lower semicontinuity principle on the area.

3. It should stay close to Plateau’s orginal motivations: describing soap
films. This means that we want to work with the kind of boundaries
one can build with a wire and obtain the corresponding soap films as
solutions.

We present a few approaches below (the reader can also be interested by
[D5]). The boundary will be denoted by Γ.

The classical approaches minimizes over parametrizations whose base
space is a disk. This is the formulation of Radò and Douglas in the 1930s (see
[Rado] and [Doug]). Let us say a bit more. Let the closed unit disk and the
unit circle of the Euclidean plane be denoted by D2 and S1 respectively. Fix
a rectifiable Jordan curve Γ inR3 (a homeomorphic image of S1 whose length
is finite). A surface spanning Γ is defined as a continuous map f : D2 → R3

such that f sends S1 homemorphically onto Γ. The corresponding area is
defined as the total variation of f (Radò and Douglas called it the area-
integral or area functional). If f is a C1 map, the total variation can be
computed directly by the formula

∫

D
Jf dx

where Jf is the Jacobian of f ,

Jf =

∣∣∣∣
|∂1f |2 ∂1f · ∂2f

∂1f · ∂2f |∂2f |2
∣∣∣∣
1
2

.

The total variation differs from the area of the image because of eventual
multiplicities but it has the advantage to be lower semicontinuous. Radò and
Douglas are looking for a smooth immersion f which minimizes the total vari-
ation. Thus, f would locally parametrize a minimal surface in the classical
sense. It is yet difficult to let converge a minimizing sequence of parametriza-
tions to a smooth immersion. The problem owes particularly its complexity
to the diversity of parametrizations of a given surface. Even a sequence of
them may not converge at all. As curves which have the parametrization
by arc length, 2-dimensional surfaces have privileged parametrizations: the
conformal parametrizations1. Moreover, a conformal parametrization f de-
scribes a minimal surface if and only if f is harmonic. This leads Radò
and Douglas to specify the problem as the research of a harmonic and con-
formal map minimizing the total variation. Radò works with a sequence
of "approximately conformal" competitors minimizing the total variation.
Douglas minimizes a simpler functional for which the first variation can only

1A map f is conformal if |∂1f | = |∂2f | and ∂1f · ∂2f = 0.
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vanish at conformal maps. The main drawback of this approach is that
it cannot be generalized to three or more variables because it depends too
much on the theory of conformal mappings. In addition, we would prefer
solutions which describe the singularies observed by Plateau. A solution of
Radò and Douglas locally parametrizes a minimal surface but its full image
has not a minimal area. Let us take for example a knot Γ whose solution
has self-intersections. The pieces that meet are independently minimal but
the way they intersect is not taken into account by the total variation. This
explains why transverse planes can be found in the solutions of Radó and
Douglas whereas they do not exists in soap films. We also point out that this
approach only compares parametrizations defined on the disk, fixing thus the
topological type of the competitors.

In the sixties appeared two approaches which include all dimensions
and codimensions and whose competitors have a varying topological type:
Federer-Fleming and Reifenberg. Federer and Fleming work with integral
currents and minimize their mass (an area computed with multiplicity).
They have developped the flat convergence for which integral currents enjoy
a compactness principle and the mass is lower semicontinuous. They de-
duce the existence of mass minimizing rectifiable currents whose boundary
is given. However, their solutions are too smooth away from the boundary
to describe the singularities of soap films. Instead of minimizing the mass,
one could minimize the size (the area of the support). Such point of view
is very close to the one of Reifenberg. Reifenberg works with sets of the
Euclidean space which span a boundary in the sense of algebraic topology
and minimizes their (spherical) Hausdorff measure. A d-dimensional set E
spans a boundary Γ if E contains Γ and cancel the (d− 1)-cycles of Γ (or a
subgroup of them).

Definition (Reifenberg competitors). Fix Γ a compact subset of Rn and let
L be a subgroup of the homology group Hd−1(Γ). A Reifenberg competitor
is a compact subset E ⊂ Rn such that E contains Γ and the morphism
induced by inclusion,

Hd−1(Γ) Hd−1(E),

is zero on L.

We recall the definition of the spherical d-dimensional Hausdorff measure.

Definition (Spherical Hausdorff measure).

Sd(E) := lim
δ→0+

inf

{∑

k

diam(Bk)
d

∣∣∣∣∣ E = ∪k∈NBk,diam(Bk) ≤ δ
}
.

where (Bk) is a sequence of balls.
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Figure 2.3: Computation of the S1 measure of a spiral.

The most classical example is the case where Γ is composed of two disks
C1 ∪ C2 of same radius and centred on a same axis of symmetry. The soap
films spanning Γ are the two parallel disks, the catenoid and the catenoid
with a disk (this surface is composed of two pieces of catenoid which meet
an intermediate disk with an angle of 120 degrees). The two formers only
exist if the distance between the circles is small enough compared to their
radius. One can relate this phenomenon to the fact that the area of these
films area is less than the area of the two disks. We adress the point of view
of Reifenberg, assuming that the circles are close to ignore the parallel disks.
We are going to see that the choice of L discriminates the catenoid and the
catenoid with disk. If L is the whole group H1(Γ;Z), then the catenoid is
not a competitor and the minimizer is the catenoid with a disk. If L is the
subgroup of H1(Γ;Z) generated by γ2−γ1, where γi is a cycle corresponding
to Ci, then the Reifenberg minimizer is the catenoid. We conclude that to
interpret a given soap film as a Reifenberg minimizer, one has to specify the
group to be canceled.

Reifenberg proved the existence of a solution to his problem in 1960 for
the Čech homology theory and compact Abelian coefficient groups ([Rei]).
The continuity property of the Čech theory implies that a Hausdorff limit of
competitors is a competitor. Thus, a solution can be searched as a Hausdorff
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limit of a minimizing sequence.

Theorem (Continuity of the Čech Homology). Let (Ek) be a decreasing
sequence of compact sets. Then for every d ∈ N,

Hd(E∞) = lim
k
Hd(Ek),

where E∞ =
⋂
k Ek, limkHd(Ek) is the inverse limit with respect to the mor-

phisms induced by the inclusions Ek+1 ⊂ Ek and the = sign is the morphism
induced by the inclusions E∞ ⊂ Ek.

However, the area is not lower semicontinuous with respect to Hausdorff
limits. For instance, one can imagine a minimizing sequence which has more
and more dense tentacles so that the limit set is too large. Reifenberg worked
with compact coefficient groups to have the Excision Axiom and thus to be
able to cut out the tentacles and patch the holes. His construction leads
to an alternative minimizing sequence for which the area is lower semicon-
tinuous. Nakauchi ([Na]) stated and solved a free boundary variant in 1984
(for compact Abelian coefficient groups as well). We mean by this that the
intersection E ∩ Γ varies among the competitors E.

E

Γ

E

Γ
Figure 2.4: Two types of Plateau problem. The competitors have a fixed
boundary on the left and a free boundary on the right.

Definition (Nakauchi competitors). Fix a compact subset Γ of Rn and a
subgroup L of Hd−1(Γ). The Nakauchi competitors are the compacts sets
E ⊂ Rn such that for all v ∈ L, there exists u ∈ Hd−1(E ∩ Γ) such that
i∗(u) = v and i′∗(u) = 0 where i∗ and i′∗ are the morphisms induced by
inclusions:

Hd−1(Γ)

Hd−1(E ∩ Γ)

Hd−1(E).

i∗

i′∗
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Nakauchi minimizes Hd(E \ Γ) but it would be also interesting to min-
imize Hd(E) to take into account the free boundary. In 2015, Fang ([Fn])
gave a new proof of the Reifenberg and Nakauchi problems for all coefficient
groups and minimizing Hd(E \Γ). His idea is to take advantage of the lower
semicontinuity of the area on quasiminimal sets (we present them in the
next paragraph). Thanks to a construction of Feuvrier ([Feuv]), he obtains
an alternative minimizing sequence composed of quasiminimal sets. Fang
also replaces the Hausdorff measures with more general functionals, called
elliptic integrands.

Inspired by restricted sets of Almgren ([Alm]), David introduced the
sliding competitors in [DS] and [D6]. He compares the area of surface with
its image under continuous deformations. A sliding deformation of a set
E is a Lipschitz map φ : E → Rn such that there exists a continuous map
Φ: [0, 1] × E → Rn satisfying Φ(0, ·) = id, Φ(1, ·) = φ, Φ(t, ·) = id outside
a compact set and Φ(t, E ∩ Γ) ⊂ Γ. One can think of a soap film moving
along a tube for example.

Definition (Sliding competitors). Fix Γ a compact subset of Rn and E0 a
compact, Hd finite subset of Rn. The sliding competitors induced by E0 are
the images of E0 under sliding deformations.

The existence of solutions is still unknown! One may wonder why the ini-
tial deformation φ is Lipschitz whereas the homotopy Φ is merely continuous.
The Lipschitz assumption is a legacy of the restricted sets of Almgren. It
turns useful because Lipschitz maps have an action on currents, Hd measur-
able sets, Hd finite sets and Hd rectifiable sets. The continuity assumption
on Φ is used to impose a topological constraint in the most general way. One
can observe that the solutions of the Reifenberg problem or of the sliding
problem satisfy an intermediate property: their area is minimal under slid-
ing deformations. This motivates the notion of sliding minimal sets. They
are a closed and Hd locally finite sets E ⊂ Rn such that for every sliding
deformation φ of E,

Hd(E ∩W ) ≤ Hd(φ(E ∩W )).

where Hd is the d-dimensional Hausdorff measure and W is the set

W = {x ∈ Rn | φ(x) 6= x } .

This property echoes the elasticity and stability of soap films under (small)
deformations. Unfortunately, it is only in small dimensions and away from
the boundary that we know good regularity results about them (see the The-
orem of Jean Taylor, [Ta], [D4]). Quasiminimal sets satisfy a generalization
of this definition where the measure Hd is replaced more general functionals
and where the setW is localised in small balls. We know weak results of regu-
larity on quasiminimal sets in all dimensions (we refer to [DS], [D6], [D2] and
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[D3]). David studied the limiting properties of quasiminimizing sequences
([D1]). He proved especially that a local Hausdorff limit of quasiminimals
sets is again a quasiminimal set ([D6], Theorem 10.8).

In [DLGM] and [DPDRG1], De Lellis, De Philippis, De Rosa, Ghiraldin
and Maggi introduced a new type of direct method to solve Plateau prob-
lems. As Reifenberg, they work with sets and Hausdorff measures of the
Euclidean space but they replace local Hausdorff limits by weak limits. Let
us present their work in more details. The authors fix a closed set Γ ⊂ Rn

(the boundary) and place themselves in Rn \ Γ (away from the boundary).
They consider a class of relatively closed subsets of Rn \Γ (the competitors).
To a minimizing sequence (Ek) for Hd, they associate the sequence of Radon
measures (Hd Ek). Then they let converge the sequence weakly to a Radon
measure µ in the ambiant space Rn \ Γ. The main point of the method is
that, if the class of competitors is complete enough, one have

µ = Hd E∞

where E∞ is the support of µ in Rn \Γ. In that sense, the set E∞ is a weak
limit of the minimizing sequence (Ek). This strategy yields in particular the
lower semicontinuity of the area:

Hd(E∞) ≤ lim
k
Hd(Ek).

The proof is based on the construction of good competitors. The authors go
through an intermediate information: they show that E∞ is Hd rectifiable
thanks to the Preiss’s rectifiability theorem. To solve the Plateau problem,
it is left to see if E∞ is a competitor. The authors show that this is the case
for the problem of Harrison-Pugh ([HP]).

Definition (Harrison and Pugh competitors). Fix Γ a compact subset of Rn

and C a set of smooth embeddings γ : Sn−d → Rn \ Γ which is stable under
homotopies in Rn \ Γ. The corresponding competitors are the relatively
closed sets E ⊂ Rn \ Γ such that for every γ ∈ C, γ ∩ E 6= ∅.

They also show that this is the case for the problem of Reifenberg (with
a compact coefficient group) in [DPDRG3]. In the general case, this is not
necessarily true but the authors still obtain a piece of information about the
structure of E∞: the set E∞ is Almgren minimal in Rn \ Γ. In the articles
[DLDRG3] and [DPDRG3], they authors replace the Hausdorff measure Hd

by more general anisotropic Lagrangians. The Preiss’s rectifiability theo-
rem is in turn replaced by an extension of Allard’s rectifiability theorem on
varifolds ([DPDRG2]).

In this thesis, we generalize to quasiminimizing sequences, the weak limit
of minimizing sequences introduced by De Lellis, De Philippis, De Rosa,
Ghiraldin and Maggi. We show that a weak limit of quasiminimal sets is
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quasiminimal. This result is analogous to the limiting theorem of David for
the local Hausdorff convergence. Our proof is inspired by David’s one while
being simpler. In addition, it does not resort to the Preiss’s rectifiability
theorem, neither the theory of varifolds. It is neither limited to the ambiant
space Rn \ Γ. This means that we are able to take into account the part
of the competitor that lies on the boundary. Although we minimize the
Hausdorff measure, our techniques could be adapted to elliptic integrands.
We deduce a direct method to prove existence of solutions to various Plateau
problem, even one minimizes the competitors on the boundary. We apply
this method to two variants of the Reifenberg problem (minimizing or not
the free boundary) for all coefficient groups. Furthermore, we propose a
structure to build Federer-Fleming projections as well as a new estimate on
the choice of the projection centers.

2.3 Main results

Our ambiant space is an open set X of Rn. We fix an integer 1 ≤ d ≤ n.
The term a closed set S ⊂ X means that S is relatively closed in X. For
x ∈ X and s ∈ [0,∞], we define

rs(x) = min { s
1+sd(x,Xc), s } .

We express the scale of a ball B(x, r) in X as the parameter s ∈ [0,∞] such
that r = rs. The interval [0, 1] is denoted by the capital letter I. Given a
set E ⊂ X and a function F : I × E → X, the notation Ft means F (t, ·).
Given two sets A,B ⊂ Rn, the notation A ⊂⊂ B means that there exists a
compact set K ⊂ Rn such that A ⊂ K ⊂ B. For a ball U of center x and
radius r, for h ≥ 0, the symbol hU denotes the ball of center x and radius
hr. The boundary is a closed subset Γ ⊂ X which has some structure and
regularity (we will discuss about it at the end of the introduction).

Definition (Sliding deformation along a boundary). Let E be a closed, Hd

locally finite subset of X. A sliding deformation of E in an open set U ⊂ X
is a Lipschitz map f : E → X such that there exists a continuous homotopy
F : I × E → X satisfying the following conditions:

F0 = id

F1 = f

∀t ∈ I, Ft(E ∩ Γ) ⊂ Γ

∀t ∈ I, Ft(E ∩ U) ⊂ U
∀t ∈ I, Ft = id in E \K,

where K is some compact subset of E ∩U . Alternatively, the last axiom can
be stated as

{ x ∈ E | ∃ t ∈ I, Ft(x) 6= x } ⊂⊂ E ∩ U.
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We define the global sliding deformations in U as the sliding deformations
of X in U (the set E is replaced by X in the previous definition).

The main objects of the thesis areminimal and quasiminimal sets. Quasi-
minimal sets are surfaces for which sliding deformations cannot decrease
the area below a fixed percentage κ−1 (and modulo an error of small size).
The topological constraint preventing the collapse might come from U as
Ft(E∩U) ⊂ U and Ft = id in X \U or from the boundary as Ft(E∩Γ) ⊂ Γ.

Definition (Quasiminimal sets). Let E be a closed, Hd locally finite subset
of X. Let P = (κ, h, s) be a triple of parameters composed of κ ≥ 1, h ≥ 0
and a scale s ∈]0,∞]. We say that E is P-quasiminimal in X if for all x ∈ E,
for all 0 < r ≤ rs(x) and for all sliding deformation f of E in U = B(x, r),
we have

Hd(Wf ) ≤ κHd(f(Wf )) + hHd(E ∩ hU),

where Wf = {x ∈ E | f(x) 6= x }. We say that E is a minimal set in the
case P = (1, 0,∞).

These notions find their inspirations in the works of Almgren. They
have been introduced by David and Semmes in [DS] (without boundary),
then generalised by David in [D6] (with a boundary). The factor κ includes
Lipschitz graphs among quasiminimal sets. For its part, hHd(E ∩ hU) is
a lower order term which broadens the class of functionals that are to be
minimized. In practice, h is assumed small enough depending only on n and
Γ. On can also consider a term of the form hdiam(U)d but it poses a problem
to our limiting theorem. The first properties of quasiminimal sets are the
bilipschitz invariance (Remark 3.1.2), the Ahlfors regularity (Proposition
5.1.1) and the rectifiability (Corollary 5.1.1).

The main result of this thesis is that a weak limit of quasiminimal sets
is a quasiminimal set. We omit the assumptions on the boundary in the
two next statements. The complete results are Theorem 5.2.1 and Corollary
6.1.1.

Theorem (Limiting theorem). Fix a triple of parameters (κ, h, s) and an
additionnal parameter κ0 ≥ 1. Assume that h is small enough (depending
on n and Γ). Let (Ei) be a sequence of closed, Hd locally finite subsets of X
satisfying the following conditions:

1. the sequence of Radon measures (Hd Ei) has a weak limit µ in X;

2. for all x ∈ spt(µ), for all 0 < r ≤ rs(x), there exists a sequence
(εi)→ 0 such that for all global sliding deformation f in U = B(x, r),

Hd(Ei ∩Wf ) ≤ κHd(f(Ei ∩Wf )) + hHd(Ei ∩ hU) + εi

and
Hd(Ei ∩ U) ≤ κ0H

d(f(Ei ∩ U)) + εi.
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Then, E = spt(µ) is (κ, κ0h, s)-quasiminimal in X and we have

Hd E ≤ µ ≤ κ0H
d E.

This theorem follows the works of David and De Lellis, De Philippis, De
Rosa, Ghiraldin and Maggi. David proved that a local Hausdorff limit of
quasiminimal sets is quasiminimal in [D6] (Theorem 10.8). Hausdorff limits
are used to solve Plateau problems since Reifenberg. On the other hand, the
Italian team developped a notion of weak limit for minimizing sequences of
competitors. Our theorem extends this notion to quasiminizing sequence and
shows that a weak limit of quasiminimal sets is quasiminimal. We deduce a
new proof of the direct method of the Italian team (see [DLGM], Theorem 7
and [DPDRG1], Theorem 1.8) but it does not rely on the Preiss’s rectifiability
theorem, neither the theory of varifolds. Our version allows to minimize the
competitors on the boundary.

Corollary (Direct method). Let C be a class of closed subsets of X such
that

m = inf {Hd(E) | E ∈ C } <∞
and assume that for all E ∈ C, for all sliding deformations f of E in X,

m ≤ Hd(f(E)).

Let (Ek) be a minimizing sequence for Hd in C. Up to a subsequence, there
exists a coral2 minimal set E∞ in X such that

Hd Ek ⇀ Hd E∞.

where the arrow ⇀ denotes the weak convergence of Radon measures in X.
In particular, Hd(E∞) ≤ m.

As an application, we define Reifenberg competitors with free bound-
ary and solve two formulations of the problem (minimizing or not the free
boundary). In the works of Reifenberg, the Hausdorff limit of a minimizing
sequence is a competitor but the area is not lower semicontinuous. Reifenberg
worked with a compact coefficient group to build an alternative minimizing
sequence. With weak limits, the lower semicontinuity follows from the pre-
vious theorem but we have yet to show that the limit is a competitor. We
prove it for any coefficient group by building suitable coverings.

Definition (Reifenberg competitors). Fix a closed subset Γ of Rn and a
subgroup L of Hd−1(Γ). A Reifenberg competitor is a compact subset E ⊂
Rn such that the morphism induced by inclusion,

Hd−1(Γ) Hd−1(E ∪ Γ),

is zero on L.
2A set E ⊂ X is coral in X if E is the support of Hd E in X. Equivalently, E is

closed in X and for all x ∈ E and for all r > 0, Hd(E ∩B(x, r)) > 0.
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We will see that this formulation is essentially equivalent to the formu-
lation of Nakauchi.

Lemma. Let (Ek) ⊂ Rn be a sequence of Reifenberg competitors. Let E be
a compact subset of Rn. We assume that

1. there exists a compact set C ⊂ Rn such that for all k, Ek ⊂ C;

2. for all open sets V containing E ∪ Γ,

lim
k
Hd(Ek \ V ) = 0.

Then E is a Reifenberg competitor.

Theorem (Reifenberg - minimizing the free boundary). We assume that

m = inf {Hd(E) | E Reifenberg competitor } <∞

and that there exists a compact set C ⊂ Rn such that

m = inf {Hd(E) | E Reifenberg competitor, E ⊂ C } .

Then there exists a Reifenberg competitor E ⊂ C such that Hd(E) = m.

The next theorem is similar to Theorem 1.3 of [Fn] (which is based on
Feuvrier’s construction) and Theorem 3.4 of [DPDRG3] (which is based on
weak limits of minimizing sequences). However, we have not yet dealt with
elliptic integrands.

Theorem (Reifenberg - without minimizing the free boundary). We assume
that

m = inf {Hd(E \ Γ) | E Reifenberg competitor } <∞
and that there exists a compact set C ⊂ Rn such that

m = inf {Hd(E \ Γ) | E Reifenberg competitor, E ⊂ C } .

Then there exists a Reifenberg competitor E ⊂ C such that Hd(E \ Γ) = m.

Remark. If Γ is compact andHd(Γ) <∞, this amounts to minimizingHd(E)
among Reifenberg competitors containing Γ.

2.4 Tools of the limiting theorem

2.4.1 A class of deformations

The next lemma is inspired by the techniques of David in [D6]. It contains the
main technical part of the proof. The Lipschitz constant of a map f : Rn →
Rn is denoted by ‖f‖L.
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Lemma. Let f be a global sliding deformation in an open set U ⊂ X. Let
W be an open subset of U and let E ⊂W be a Hd measurable, Hd finite and
Hd rectifiable set. For all ε > 0, there exists a global sliding deformation g
in U and an open set V ⊂W such that g−f has a compact support included
in W , |g − f | ≤ ε, ‖g − f‖L ≤ C‖f‖L (where C ≥ 1 depends on n, Γ) and

Hd(E \ V ) ≤ ε
Hd(g(V )) ≤ Hd(f(E)) + ε.

In summary, we build a sliding deformation g which "smashes" an almost-
neighborhood of E ∩W onto f(E ∩W ).

2.4.2 The Federer-Fleming projection

The Federer-Fleming projection for sets was introduced by David and Semmes
in [DS] following the ideas of the projection for currents. It consists in send-
ing a d-dimensional set E in the d-skeleton of a lattice of cubes which con-
troling the measure of the image. To start with, we choose a projection
center away from the closure of E in each cube. We then carry out a radial
projection in each cube to send E in the (n − 1)-dimensional faces. Since
the projection centers are not in the closure of E, each radial projection is
Lipschitz on E and the measure of E is multiplied by the Lipschitz constant.
Unfortunalty, we do not control this constant a priori. David and Semmes
achieved to choose projection centers such that the measure of the E is mul-
tiplied by a constant that depends only on n. We iterate the process in each
(n − 1)-dimensional face to project E in the (n − 2)-dimensional faces, etc.
We stop in general when E is sent in the d-skeleton because we cannot any-
more make sure that there exists a projection center away from the closure
of the image of E. We present the Lemma of David and Semmes on the
choice of projection centers:

Lemma ([DS], Lemma 3.22). Let Q be a cube of Rn, let E be a Borel subset
of Q. Then

1

|Q|

∫ ∗
1
2
Q
Hd(φx(E)) dx ≤ CHd(E),

where φx is the radial projection from Q \ x onto ∂Q, C is a constant that
depends only on n.

We develop a similar lemma for another gauge which has the advantage to
cancel the purely nonrectifiable part. Let us start by recalling some notation.
The Grassmannian G(d, n) is the set of all d-linear planes in Rn. A linear
plane can be represented by its orthogonal projection pV . Thus, the operator
norm with respect to the Euclidean norm induces a natural metric in G(d, n).
This space is also equipped of a canonic invariant measure dV . We refer to
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Appendix B (and alternatively, [Mat], Section 3). We define the gauge ζd

on Borel subsets of Rn by

ζd(E) :=

∫

G(d,n)
Hd(pV (E)) dV.

We call cell a face of cube of any dimension. For a cell A, we restrict this
gauge to A

ζd A(E) :=

∫

G(aff(A),d)
Hd(pV (E ∩A)) dV,

where aff(A) is the affine span of A and G(aff(A), d) is the set of all d-linear
planes of aff(A) centered at an arbitrary point of aff(A). We also recall the
notion of upper-integral. For a set S ⊂ Rn equipped with a measure µ and
for a function f : S → [0,+∞], the upper integral of f is defined by.

∫ ∗

S
f dµ = inf

ψ

∫

S
ψ dµ

where ψ run through the µ-measurable functions S → [0,+∞] such that
f ≤ ψ. It is not sure we really need upper-integral but we do not bother.

Lemma. Let Q be a cube of Rn, let E be a Borel subset of Q. Then

1

|Q|

∫ ∗
1
2
Q

sup
A
ζd A(φx(E)) dx ≤ Cζd(E),

where φx is the radial projection from Q \ x onto ∂Q, the sup is indexed by
all cells A ⊂ ∂Q and C is a constant that depends only on n.

The gauge ζd A simplifies toHd A when A is a d-dimensional cell. At the
last step of the projection, once the set E has been sent in the d-dimensional
skeleton, we obtain an estimate of the form

Hd(φ(E)) ≤ C
∫

G(d,n)
Hd(pV (E)) dV.

In particular, the purely non-rectifiable part of E is canceled by the right
hand side. Feuvrier had already proved that it was possible to choose the
projection centers to nullify the non rectifiable part with a different method
([Feuv], Lemma 4.3.16).

Let us consider a quasiminimal set E. We can test the quasiminimality
of E against Federer-Fleming projections in grids on cubes. This leads to
density estimates (see Corollary 5.1.1): for x ∈ E∗ (the support of Hd E)
and for all small radii r > 0,

C−1rd ≤ Hd(E ∩B(x, r)) ≤ C
∫

G(d,n)
Hd(pV (E ∩B(x, 16

√
nr))) dV.

36



We obtain at the same time the d-dimensional Ahlfors regularity of E∗,

C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd,

and the Hd rectifiability of E. We will use such estimate to prove that
the set E∞ of the limiting theorem is Hd rectifiable. The Federer-Fleming
projection is therefore an important tool of the proof. If one wants the
Federer-Fleming projections to be sliding deformations, they however have
to preserve the boundary.

2.4.3 A regular boundary

The set Γ which plays the role of boundary is first of all a closed set of X.
We might use three additional assumptions.

1. First, we might want Γ to be a Lipschitz neighborhood retract of X.
This means that there exists an open set O ⊂ X containing Γ and
there exists a Lipschitz map p : O → Γ such that p = id on Γ.

2. Secondly, we might want that for all ε > 0, there exists an open set
O ⊂ X such that Hd(Γ\O) = 0 and a (1+ε)-Lipschitz map p : O∪Γ→
Γ such that p = id on Γ. The point of (1 + ε)-Lipschitz retractions
is that they do not enlarge too much the Hausdorff measures. The
previous condition allows non convex corners as long as they are Hd

negligible.

3. Thirdly, we would like to build Federer-Fleming projections which pre-
serve the boundary.

In chapter 4, we propose a structure to build Federer-Fleming projections.
Thus, we are able to define a large class of boundaries compatible with
Federer-Fleming projections. We consider a setK of faces of cubes of varying
diameters; this is the list of faces in which we are going to perform a radial
projection. If the inclusion relation ⊂ in K is compatible with the topology
in some sense, these radial projections can be pasted and composed to form a
Federer-Fleming projection. The structure of K is similar to a CW-complex
but the boundary of a face may not be covered by other faces. On Figure
2.5 for example, the external edges are not part of K.

Definition. A cell is a face of cube in Rn. The interior of a cell is the
interior relative to its affine span. The support of a set K of cells is defined
by

|K| =
⋃
{A ∈ K } .

A complex K is a set of cells such that

1. the cells interior { int(A) | A ∈ K } are mutually disjoint;
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Figure 2.5: In this example, we make a radial projection in each square
(white), then in each internal edge (blue). We gather these cells in a set K.

2. every x ∈ |K| admits a relative neighborhood in |K| which meets a
finite number of cells A ∈ K;

3. for every cell A ∈ K, the set

VA :=
⋃
{ int(B) | B ∈ K contains A }

is a relative neighborhood of int(A) in |K|.

We present a simple method to build such complexes by pasting elemen-
tary complexes. This technique is analogous to a direct limit in algebra.
Thus, we build complexes which fill an open set in a similar way as Whitney
decomposition. Finally, we define our boundaries as bilipschitz images of
unions of cells of varying dimensions of such complexes.
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Chapter 3

Sliding deformations

3.1 Definitions

Our ambiant space is an open set X of Rn. We fix an integer 1 ≤ d ≤ n.
The term a closed set S ⊂ X means that S is relatively closed in X. For
x ∈ X and s ∈ [0,∞], we define

rs(x) = min { s
1+sd(x,Xc), s } . (3.1)

We express the scale of a ball B(x, r) in X as the parameter s ∈ [0,∞] such
that r = rs. The interval [0, 1] is denoted by the capital letter I. Given a
set E ⊂ X and a function F : I × E → X, the notation Ft means F (t, ·).
Given two sets A,B ⊂ Rn, the notation A ⊂⊂ B means that there exists a
compact set K ⊂ Rn such that A ⊂ K ⊂ B. For a ball U of center x and
radius r, for h ≥ 0, the symbol hU denotes the ball of center x and radius
hr. We fix a closed subset Γ of X (the boundary).

Definition 3.1.1 (Sliding deformation along a boundary). Let E be a closed,
Hd locally finite subset of X. A sliding deformation of E in an open set
U ⊂ X is a Lipschitz map f : E → X such that there exists a continuous
homotopy F : I × E → X satisfying the following conditions:

F0 = id (3.2a)
F1 = f (3.2b)
∀t ∈ I, Ft(E ∩ Γ) ⊂ Γ (3.2c)
∀t ∈ I, Ft(E ∩ U) ⊂ U (3.2d)
∀t ∈ I, Ft = id in E \K, (3.2e)

where K is some compact subset of E ∩U . Alternatively, the last axiom can
be stated as

{ x ∈ E | ∃ t ∈ I, Ft(x) 6= x } ⊂⊂ E ∩ U. (3.3)
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Definition 3.1.2 (Quasiminimal sets). Let E be a closed, Hd locally finite
subset of X. Let P = (κ, h, s) be a triple of parameters composed of κ ≥ 1,
h ≥ 0 and a scale s ∈]0,∞]. We say that E is P-quasiminimal in X if for
all x ∈ E, for all 0 < r ≤ rs(x) and for all sliding deformation f of E in
U = B(x, r), we have

Hd(Wf ) ≤ κHd(f(Wf )) + hHd(E ∩ hU), (3.4)

where Wf = {x ∈ E | f(x) 6= x }. We say that E is a minimal set in the
case P = (1, 0,∞).

Remark 3.1.1 (Replacing Wf by a larger open set). We keep the previous
notations and we consider an open set W such that Wf ⊂ W . Then, (3.4)
implies

Hd(E ∩W ) ≤ (κ+ 1)Hd(f(E ∩W )) + hHd(E ∩ hU). (3.5)

Taking W = U and h < 1, we obtain the simplier inequality

Hd(E ∩ U) ≤ (κ+1)
1−h H

d(f(E ∩ U)). (3.6)

Remark 3.1.2 (Action of bilipschitz maps). Let T : x 7→ Tx be bilipschitz
map from X onto an open set T (X) of Rn. Let α be the Lipschitz constant
of T , β be the the Lipschitz constant of T−1, let γ = αβ ≥ 1. Let E
be (κ, s, h)-quasiminimal set along Γ in X. We show that the set T (E) is
quasiminimal along T (Γ) in T (X) with respect to deformed parameters that
depends only on κ, s, h, α and β.

First of all, we want to check that for all x ∈ X,

d(Tx, T (X)c) ≤ αd(x,Xc). (3.7)

For 0 ≤ r < d(Tx, T (X)c), we observe that

T (X ∩B(x, α−1r)) ⊂ B(Tx, r) ⊂ T (X) (3.8)

so
X ∩B(x, α−1r) ⊂ T−1(B(Tx, r)) ⊂ X (3.9)

and thus
X ∩B(x, α−1r) = T−1(B(Tx, r)) ∩B(x, α−1r). (3.10)

This set is both relatively open and relatively closed in B(x, α−1r) so by
connectedness, B(x, α−1r) ⊂ X. This means that r ≤ αd(x,Xc). We let r
converges to its supremum value to obtain d(Tx, T (X)c) ≤ αd(x,Xc).

Now, we fix x ∈ E and 0 < r ≤ rt(Tx) for some t > 0 to be determined.
Let g be a sliding deformation of T (E) along T (Γ) in V = B(Tx, r). We
consider the conjugate map f = T−1◦g◦T . It is easy to check that T (Wf ) =
Wg and that f is a sliding deformation of E along Γ in U = B(x, βr).
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In order to apply the quasiminimality of E against f in U , we need that
βr ≤ rs(x). Thus, we determine a rough t > 0 such that βrt(Tx) ≤ rs(x).
As d(Tx, T (X)c) ≤ αd(x,Xc), we have

rt(Tx) = min { t
1+td(Tx, T (X)c), t } (3.11)

≤ tmin {d(Tx, T (X)c), 1 } (3.12)
≤ max {α, 1 } tmin { d(x,Xc), 1 } (3.13)

and on the other hand,

rs(x) = min { s
1+sd(x,Xc), s } (3.14)

≥ s
1+s min { d(x,Xc), 1 } . (3.15)

We conclude that it suffices to take

t =
1

βmax {α, 1 }
s

1 + s
. (3.16)

Assuming r ≤ rt(y), we have finally

Hd(T (E) ∩Wg) = Hd(T (E ∩Wf )) (3.17)

≤ αdHd(E ∩Wf ) (3.18)

≤ αdκHd(f(E ∩Wf )) + αdhHd(E ∩ hU) (3.19)

≤ γdκHd(g(T (E) ∩Wg))

+ γdhHd(T (E) ∩ γhV ).
(3.20)

This shows that T (E) is (γdκ, γdh, t)-quasiminimal in T (X) along T (Γ).
Note that if T is an affine similitude of Rn, γ = 1 so T just changes the
scale.
Remark 3.1.3 (Global sliding deformations). We test the quasiminimality
against sliding deformations defined only on E. Alternatively, we could
work with deformations defined on the ambiant space X. We define the
global sliding deformation in U as the sliding deformations of X in U (the
set E is replaced by X in Definition 3.1.1). We feel that sliding deformations
defined only on E are more natural than global sliding deformations. On the
other hand, global sliding deformations are handier for our limiting theorem
(Theorem 5.2.1). In Section 3.3, we prove that if the boundary is a Lipschitz
neighborhood retract in X (Definition 3.1.3), these two notions induce the
same quasiminimal sets.

We cannot build much sliding deformations without assuming that the
boundary is at least a Lipschitz neighborhood retract of X.

Definition 3.1.3. A Lipschitz neighborhood retract of X is a closed subset
Γ ⊂ X for which there exists an open set O ⊂ X containing Γ and a Lipschitz
map r : O → Γ such that r = id on Γ.
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We sometimes need that the retraction r has a Lipschitz constant suffi-
ciently close to 1. Thus, r does not enlarge too much the Hausdorff measures.
However, we also want to allow boundaries with nonconvex corners. We find
a compromise by asking that the boundary admits (1 + ε)-Lipschitz retrac-
tions outside a null set.

Definition 3.1.4. A closed set Γ ⊂ X is said Hd regular if for all ε > 0,
there exists an open set O ⊂ X and a (1 + ε)-Lipschitz map r : O ∪ Γ → Γ
such that Hd(Γ \O) = 0 and r = id on Γ.

Γ
O

Figure 3.1: A closed set Γ in black. An open set O containing almost all Γ
in gray. One can builds a retraction from O∪Γ onto Γ with a good Lipschitz
constant because O avoids the nonconvex corners.

We will often need to localise a retraction of the boundary in a given
open set.

Lemma 3.1.1. Let Γ be a Lipschitz neighborhood retract of X. For all open
sets U ⊂ X and for all ε > 0, there exists a Lipschitz map p : Rn → Rn and
an open subset O ⊂ X such that Γ ∩ U ⊂ O ⊂ U and

|p− id| ≤ ε (3.21a)
p(O) ⊂ Γ (3.21b)
p = id in Γ ∪ (Rn \ U). (3.21c)

Moreoever, we can build p such that its Lipschitz constant depends only on
n and Γ (but not U and ε).

Proof. Let r be a Lipschitz retraction from an open set O0 containing Γ onto
Γ. Let ε > 0, we define the open set

O = { x ∈ U ∩O0 | |r(x)− x| < εmin { d(x, U c), 1 } } . (3.22)

In particular, Γ ∩ U ⊂ O ⊂ U and r(O) ⊂ Γ. Consider the partially defined
map

p =

{
r in O
id in X \ U.

(3.23)
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Notice that Γ ⊂ O ∪ (X \ U) so p = id on Γ. It is straightforward that
|p− id| ≤ ε because |r − id| ≤ ε in O. Next, we estimate the Lipschitz
constant of p− id. Let ‖r‖ be the Lipschitz constant of r. For x, y ∈ O,

|(p− id)(x)− (p− id)(y)| ≤ |r(x)− r(y)|+ |x− y| (3.24)
≤ (1 + ‖r‖)|x− y|. (3.25)

For x ∈ O and for y ∈ X \ U ,

|(p− id)(x)− (p− id)(y)| ≤ |r(x)− x| (3.26)
≤ εd(x,X \ U) (3.27)
≤ ε|x− y|. (3.28)

We assume ε ≤ 1 so that p− id is (1 + ‖r‖)-Lipschitz on its domain. Finally
we apply Lemma A.2.1 in Appendix A to p − id. Thus, p extends as a
Lipschitz map p : Rn → Rn such that (p− id) is C(1+‖r‖)-Lipschitz (where
C depends only on n) and |p− id| ≤ ε.

3.2 Stability of sliding deformations

The next lemma says that a slight modification of a sliding deformation is
still a sliding deformation.

Lemma 3.2.1. Let Γ be a Lipschitz neighborhood retract of X. Let E be a
closed subset of X. Let f be a sliding deformation of E in an open subset
U ⊂ X. Let W be an open set such that W ⊂⊂ E ∩ U . Then there exists
δ > 0 such that all Lipschitz maps g : E → Rn satisfying

|g − f | ≤ δ, (3.29a)
g(E ∩ Γ) ⊂ Γ, (3.29b)
g = id in E \W, (3.29c)

are sliding deformations of E in U .

Proof. Let F be a sliding homotopy associated to f . We define

W0 = W ∪ { x ∈ E | ∃t ∈ I, Ft(x) 6= x } (3.30)

and we underline that W0 ⊂⊂ E∩U . Thus, there exists an open set U0 such
that

F (I ×W0) ⊂ U0 ⊂⊂ U. (3.31)

We fix δ0 > 0 such that d(U0, X \U) ≥ δ0. We apply Lemma 3.1.1 to obtain
a Lipschitz function p : X → Rn and an open set O ⊂ X containing Γ such
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that

|p− id| ≤ δ0 (3.32a)
p(O) ⊂ Γ (3.32b)
p = id in Γ. (3.32c)

The map p will not be used in step 1 but the open set O will be needed.
Step 1. Let δ > 0 (to be precised momentarily) and let g be as the

statement. We introduce the homotopy Gt = Ft + t(g − f). It is clear that
G0 = id, G1 = g and for all t ∈ I, Gt = id in E \ W0. The condition
|g − f | ≤ δ also implies that for all t ∈ I, |Gt − Ft| ≤ δ. We are going to see
that if δ is sufficiently small, then for all t ∈ I,

Gt(E ∩ Γ) ⊂ O, (3.33)
Gt(E ∩ U0) ⊂ U0. (3.34)

Since I × W0 is compact and F (I × W0) ⊂ U0, we can take δ > 0 small
enough so that for all t ∈ I, for all x ∈W0,

d(Ft(x),Rn \ U0) > δ. (3.35)

Thus, for all t ∈ I, x ∈W0,

Gt(x) ∈ B(Ft(x), δ) ⊂ U0. (3.36)

We deduce that for all t ∈ I, Gt(E ∩ U0) ⊂ U0 as Gt = id in E ∩ U0 \W0.
Similarly, I × (Γ∩W0) is compact and F (I × (Γ∩W0)) ⊂ O because F (I ×
(Γ ∩ E)) ⊂ Γ ⊂ O. We take δ > 0 small enough so for all t ∈ I, for all
x ∈ Γ ∩W0,

d(Ft(x),Rn \O) > δ (3.37)

and we deduce that for all t ∈ I, Gt(E ∩ Γ) ⊂ O.
Step 2. We would like to retract Gt(Γ) onto Γ so we define

Ht =





id in (0× E) ∪ (I × (E \W0))

p ◦Gt in I × (E ∩ Γ)

g in 1× E.
(3.38)

This map is continuous as a pasting of continuous maps in closed domains
(relative to I × E). As Gt(E ∩ Γ) ⊂ O, we have Ht(E ∩ Γ) ⊂ Γ. Since
|p− id| ≤ δ0, H also satisfies the inequality |Ht −Gt| ≤ δ0. We apply
the Tietze Extension Theorem (Lemma A.1.1, Appendix A) in the working
space I × E to H − G. Thus, we extend H into a continuous function
H : E → Rn such that |Ht −Gt| ≤ δ0 in E. Combining |Ht −Gt| ≤ δ0

and Gt(E ∩ U0) ⊂ U0, we deduce that Ht(E ∩ U0) ⊂ U by definition of δ0.
Moreover, Ht = id on E \ U0 so we have in fact Ht(U) ⊂ U . We conclude
that H is a sliding homotopy.
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3.3 Global sliding deformations

We recall that a global sliding deformation in an open set U ⊂ X is a
sliding deformation of X in U (the set E is replaced by X in Definition
3.1.1). Our goal is to show that global sliding deformations induce the same
quasiminimal sets. First, we present a necessary and sufficient condition for
a sliding deformations on E to extend as a global deformation.

Lemma 3.3.1 (Sliding Deformation Extension). Let Γ be a Lipschitz neigh-
borhood retract of X. Let E be a closed subset of X. Let f be a sliding
deformation of E in an open set U ⊂ X. Then f extends as a global sliding
deformation in U if and only if there exists a constant C ≥ 1 such that for
all x ∈ E,

d(f(x),Γ) ≤ Cd(x,Γ). (3.39)

Proof. Let us justify that the condition is necessary. Assume that there
exists a global sliding deformation g in U which coincides with f on E. For
all x ∈ E, for all y ∈ Γ, we have g(y) ∈ Γ so

d(f(x),Γ) ≤ |f(x)− g(y)| (3.40)
≤ |g(x)− g(y)| (3.41)
≤ ‖g‖|x− y|, (3.42)

where ‖g‖ is the Lipschitz constant of g. Since y ∈ Γ is arbitrary, it follows
that d(f(x),Γ) ≤ ‖g‖d(x,Γ). From now on, we assume (3.39) and we build
an extension of f .

This paragraph is devoted to introducing a few objects and notation.
Let F be a sliding homotopy associated to f . Our extension of F risks
overstepping U so we are going to work in a smaller open set U0 which is
relatively compact in U . Let K ⊂ E ∩ U be a compact set such that for all
t, Ft = id in E \K. As F (I ×K) is a compact subset of U , there exists an
open set U0 ⊂⊂ U such that F (I ×K) ⊂ U0. In particular K ⊂ U0 because
F0 = id. Let W be an open set such that K ⊂W ⊂⊂ U0. The point of such
set W is that there exists a constant M > 0 such that for all x ∈ E ∩K,

|f(x)− x| ≤Md(x,X \W ). (3.43)

Of course, the inequality still holds for all x ∈ E since f = id outside K.
This inequality will allow to extend f in a Lipschitz way by f = id in X \W .
Finally, we want a Lipschitz retraction onto Γ. We apply Lemma 3.1.1 to
obtain a Lipschitz map p : X → Rn and an open subset O ⊂ X containing
Γ such that

|p− id| ≤ ε (3.44a)
p(O) ⊂ Γ (3.44b)
p = id in Γ, (3.44c)
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where ε is a small positive constant that we will specify later.
Step 1. The first part of the proof consists in building a continuous

function G : I ×X → Rn which is an extension of F and such that

G0 = id (3.45a)
G1 is Lipschitz (3.45b)
∀t ∈ [0, 1], Gt(Γ) ⊂ O (3.45c)
∀t ∈ [0, 1], Gt(U0) ⊂ U0 (3.45d)
∀t ∈ [0, 1], Gt = id in X \W. (3.45e)

The partially defined function
{
Ft in I × E
id in (0×X) ∪ (I × (X \W ))

(3.46)

is continuous because it is obtained by pasting continuous functions in closed
domains. We apply the Tietze Theorem to obtain a continuous extension
G : I × X → Rn. In order to obtain the conditions (3.45), we will re-
parametrize Gt. By compactness, the inclusion I × K ⊂ G−1(U0) implies
the existence of an open set V ⊂ X such that K ⊂ V and

I × V ⊂ G−1(U0). (3.47)

We apply the same argument in I × Γ where the inclusion I × (Γ ∩ K) ⊂
G−1(Γ) ⊂ G−1(O) implies the existence of a relative open set VΓ ⊂ Γ such
that Γ ∩K ⊂ VΓ and

I × VΓ ⊂ G−1(O). (3.48)

Let ϕ : X → [0, 1] be a continuous function such that ϕ = 1 in K and ϕ = 0
in X \ V and Γ \ VΓ. We define

G′t(x) = Gtϕ(x)(x). (3.49)

Hence G′ is a continuous function which satisfies

G′0 = id (3.50a)
∀t ∈ [0, 1], G′t(VΓ) ⊂ O (3.50b)
∀t ∈ [0, 1], G′t(V ) ⊂ U0 (3.50c)
∀t ∈ [0, 1], G′t = id in (X \W ) ∪ (X \ V ) ∪ (Γ \ VΓ). (3.50d)

In addition, G′ coincides with F on I × E. Combining G′t(V ) ⊂ U0 and
G′t = id in X \ V , one deduces that G′t(U0) ⊂ U0. Similarly, G′t(Γ) ⊂ O.
Nex, we replace G′1 with a Lipschitz approximation. AsW ⊂⊂ U0, G(I×W )
is a compact subset of U0 and there exists δ > 0 such that for all t ∈ I, for
all x ∈W ,

B(Gt(x), δ) ⊂ U0. (3.51)
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The set G(I× (Γ∩W )) is also a compact subset of O so we can assume that
for all t ∈ I, for all x ∈ Γ ∩W ,

B(Gt(x), δ) ⊂ O. (3.52)

We are going to replace G′1 with a Lipschitz function g : X → Rn such that
g = G′1 in E ∪ (X \W ) and |g −G′1| ≤ δ in X. We start by checking that
G′1 is Lipschitz in E ∪ (X \W ). Indeed G1 = f in E, G1 = id in X \W and
for x ∈ E and y ∈ X \W , (3.43) yields

|G1(x)−G1(y)| = |f(x)− y| (3.53)
≤ |f(x)− x|+ |x− y| (3.54)
≤Md(x,X \W ) + |x− y| (3.55)
≤ (M + 1)|x− y|. (3.56)

We can apply Lemma A.2.1 to G′1 − id as it is continuous with compact
support. Hence we obtain a Lipschitz function v : X → Rn such that v =
G′1 − id in E ∪ (X \W ) and |G′1 − id− v| < δ. Then we define g = v + id
and we replace G′ with

G′′t = G′t + t(g −G′1). (3.57)

Combining (3.51), (3.52) and the facts that |g −G′1| < δ and g = id in
X \W , one can see that G′′t (Γ) ⊂ O and G′′t (U0) ⊂ U0. We conclude that
G′′ solves step 1. It will be denoted G in the next step.

Step 2. We would like to retract Gt(Γ) onto Γ so we define

Ht =





id in 0×X
p ◦Gt in I × Γ

Gt in I × (E ∪ (X \W )).

(3.58)

This function is continuous as a pasting of continuous functions in closed
domains. As Gt(Γ) ⊂ O, we have Ht(Γ) ⊂ Γ. It satisfies the inequality
|Ht −Gt| ≤ ε because |p− id| ≤ ε. Let us check that H1 is Lipschitz on
its domain. The Lipschitz constants of p, p − id and g are denoted by ‖p‖,
‖p− id‖ and ‖g‖ respectively. Note that for all x ∈ Rn, for all y ∈ Γ,

|p(x)− x| = |(p− id)(x)− (p− id)(y)| (3.59)
≤ ‖p− id‖|x− y| (3.60)

whence for all x ∈ X,

|x− p(x)| ≤ ‖p− id‖d(x,Γ). (3.61)
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Using the Lemma assumption (3.39), we deduce that for x ∈ E and y ∈ Γ,
we have

|H1(x)−H1(y)| = |f(x)− pg(y)| (3.62)
≤ |f(x)− pf(x)|+ |pg(x)− pg(y)| (3.63)
≤ ‖p− id‖d(f(x),Γ) + ‖p‖‖g‖|x− y| (3.64)
≤ ‖p− id‖Cd(x,Γ) + ‖p‖‖g‖|x− y| (3.65)
≤ ‖p− id‖C|x− y|+ ‖p‖‖g‖|x− y|. (3.66)

We also have for x ∈ X \W and y ∈ Γ,

|H1(x)−H1(y)| = |x− pg(y)| (3.67)
≤ |x− p(x)|+ |pg(x)− pg(y)| (3.68)
≤ ‖p− id‖d(x,Γ) + ‖p‖‖g‖|x− y| (3.69)
≤ ‖p− id‖|x− y|+ ‖p‖‖g‖|x− y|. (3.70)

We apply the extension Lemma A.2.1 to extend H1 as a Lipschitz function
H1 : X → Rn such that |H1 − g| ≤ ε. Then, we use the Tietze Extension
Lemma (Lemma A.1.1, Appendix A) to extend H as a continuous function
H : I ×X → Rn such that |Ht −Gt| ≤ ε. We assume that ε is small enough
so that for all x ∈ U0, B(x, ε) ⊂ U . Thus, the conditions Gt(U0) ⊂ U0 and
|Ht −Gt| ≤ ε ensure that Ht(U0) ⊂ U . Moreover Ht = id in X \ U0, so we
have in fact Ht(U) ⊂ U . We conclude that H solves the lemma.

Combining the previous lemmas, we prove that every sliding deformation
can be replaced by an equivalent global sliding deformation.

Lemma 3.3.2 (Sliding Deformation Alternative). Let Γ be a Lipschitz neigh-
borhood retract of X. Let E be a closed subset of X which is Hd locally finite
in X. Let f be a sliding deformation of E in an open subset U ⊂ X. Then
for all ε > 0, there exists a global sliding deformation g in U such that
|g − f | ≤ ε, E ∩Wg ⊂⊂Wf and

Hd(g(Wf ) \ f(Wf )) ≤ ε (3.71)

where

Wg = { x ∈ X | g(x) 6= x } , (3.72)
Wf = { x ∈ E | f(x) 6= x } . (3.73)

Proof. Given Lemmas 3.3.1 and 3.2.1, it suffices to build a Lipschitz function
g : E → Rn which satisfies the following conditions: |g − f | ≤ ε, g(E ∩ Γ) ⊂
Γ, Wg ⊂⊂Wf , there exists C ≥ 1 such that for all x ∈ E,

d(g(x),Γ) ≤ Cd(x,Γ) (3.74)
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and finally,
Hd(g(Wf ) \ f(Wf )) ≤ ε0. (3.75)

We fix ε0 > 0. The construction will brings into play an intermediate
variable ε > 0. First, we want to build a Lipschitz function p : X → Rn

(whose Lipschitz constant depends only on Γ) such that |p− id| ≤ ε0, p = id
on Γ and such that there exists an open set O with Γ ⊂ O ⊂ X and p(O) ⊂ Γ.
Moreover, we want that

Hd(Wf ∩Wp) ≤ ε0 (3.76)

and
Hd(Wf ∩ f−1(Wp)) ≤ ε0, (3.77)

where Wp = {x ∈ X | p(x) 6= x }. Let us proceed to build p. Since Wf is a
compact subset of E, we have Hd(Wf ) < ∞ so we can find an open set V
such that Γ ⊂ V ⊂ X and

Hd(Wf ∩ V \ Γ) ≤ ε0 (3.78)

and
Hd(Wf ∩ f−1(V \ Γ)) ≤ ε0. (3.79)

Then we apply Lemma 3.1.1 in the open set V : there exists a Lipschitz
function p : X → Rn (whose Lipschitz constant depends only on Γ) and an
open set O such that Γ ∩ V ⊂ O ⊂ V and

|p− id| ≤ ε0 (3.80a)
p(O) ⊂ Γ (3.80b)
p = id in Γ ∪ (X \ V ). (3.80c)

As Wp ⊂ V \ Γ, we deduce

Hd(Wf ∩Wp) ≤ ε0 (3.81)

and
Hd(Wf ∩ f−1(Wp)) ≤ ε0. (3.82)

Next, we truncate f in view of obtaining the property Wg ⊂⊂ Wf . We
introduce the set

Wε = {x ∈ E | d(x,E \Wf ) ≥ ε } (3.83)

and sinceWf is a relative an open subset of E, we can assume ε small enough
so that

Hd(Wf \W2ε) ≤ ε0. (3.84)
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Let f ′ be partially defined by

f ′ =

{
f in W2ε

id in E \Wε.
(3.85)

We are going to estimate |f − f ′| and the Lipschitz constant of f − f ′. The
Lipschitz constant of f − id plays a special role in these estimates and is
denoted by L. We start by proving that for x ∈ E \Wε,

|f(x)− x| ≤ Lε (3.86)

Indeed, for x ∈ E \Wε, there exists y ∈ E \Wf such that |x− y| ≤ ε whence

|f(x)− x| = |(f − id)(x)− (f − id)(y)| (3.87)
≤ L|x− y| (3.88)
≤ Lε. (3.89)

Now, it is straighforward that |f ′ − f | ≤ Lε on the domain of f ′. We are
going to see that f ′ − f is L-Lipschitz on the domain of f ′. It is clear that
f − f ′ is L-Lipschitz on W2ε and E \ Wε respectively. For x ∈ W2ε and
y ∈ X \Wε, we have |x− y| ≥ ε so

∣∣(f ′ − f)(x)− (f ′ − f)(y)
∣∣ = |f(y)− y| (3.90)
≤ Lε (3.91)
≤ L|x− y|. (3.92)

We apply Lemma A.2.1 to f ′ − f so as to extend f ′ as a Lipschitz map
f ′ : E → Rn such that |f ′ − f | ≤ Lε with a Lipschitz depending only on n
and f . Before moving to the next paragraph, we require f ′(E) ⊂ X. As
f(E) ⊂ X and Wf is a compact subset of E, we can assume ε small enough
so that for all x ∈Wf ,

d(f(x),Rn \X) > Lε. (3.93)

This implies f ′(E) ⊂ X as f ′ = f in E \Wf and |f ′ − f | ≤ Lε.
We finally define the map g on E by

g = p ◦ f ′ + id− p. (3.94)

We have |p− id| ≤ ε0 and |f ′ − f | ≤ Lε so |g − f | ≤ 2ε0 + Lε. We assume
ε small enough so that |g − f | ≤ 3ε0. Observe that g = id in E \Wε so
Wg ⊂⊂ Wf . Next, we prove that there exists a constant C ≥ 1 such that
for all x ∈ E,

d(g(x),Γ) ≤ Cd(x,Γ). (3.95)

This inequality is clearly true for x ∈ E \Wf so we focus on Wf . As Γ is
relatively closed in X and Wf is compact subset of X, Γ ∩Wf is compact.
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Its image f(Γ∩Wf ) is a compact subset of Γ ⊂ O so there exists δ > 0 such
that for all y ∈ f(Γ ∩Wf ),

d(y,X \O) ≥ δ. (3.96)

We introduce
Oδ = { y ∈ X | d(y,X \O) ≥ δ } (3.97)

so the set f−1(Oδ) is a relative open set of E containing Γ ∩Wf . By com-
pactness, we can assume ε small enough so that

{x ∈Wf | d(x,Γ) ≤ ε } ⊂ f−1(Oδ). (3.98)

Then for x ∈ Wf such that d(x,Γ) ≤ ε, we have f(x) ∈ Oδ and thus
f ′(x) ∈ O assuming ε small enough so that |f ′ − f | ≤ δ. We are also going
to need the fact that for x ∈ E,

|p(x)− x| ≤ ‖p− id‖d(x,Γ), (3.99)

where ‖p− id‖ is the Lipschitz constant of p− id. Indeed for all x ∈ E and
all y ∈ Γ,

|p(x)− x| = |(p− id)(x)− (p− id)(y)| (3.100)
≤ ‖p− id‖|x− y| (3.101)

and since y is arbitrary in Γ, |p(x)− x| ≤ ‖p− id‖d(x,Γ). We are ready to
prove (3.95). For x ∈ Wf , we have either d(x,Γ) ≤ ε, either d(x,Γ) ≥ ε. In
the first case, f ′(x) ∈ O so p ◦ f(x) ∈ Γ and then

d(g(x),Γ) ≤ |g(x)− p ◦ f(x)| (3.102)
≤ |p(x)− x| (3.103)
≤ ‖p− id‖d(x,Γ). (3.104)

In the second case,

d(g(x),Γ) ≤ sup { d(g(u),Γ) | u ∈Wf } (3.105)

≤ sup {d(g(u),Γ) | u ∈Wf } ε−1d(x,Γ). (3.106)

In both cases, we have d(g(x),Γ) ≤ Cd(x,Γ), where C ≥ 1 is a constant
that does not depends on x. To finish the proof, we show that

Hd(g(Wf ) \ f(Wf )) ≤ 3‖g‖ε0 (3.107)

where ‖g‖ is the Lipschitz constant of g (it depends only on n, f and Γ).
Observe that g = f on W2ε \ (Wp ∪ f−1(Wp)). Moreover by (3.84),

Hd(Wf \W2ε) ≤ ε0 (3.108)

and by (3.76), (3.77),

Hd(Wf ∩ (Wp ∪ f−1(Wp))) ≤ 2ε0. (3.109)

The result follows.
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Chapter 4

Rigid and Lipschitz boundaries

4.1 Complexes

The Federer-Fleming projection for sets was introduced by David and Semmes
in [DS] following the ideas of the Federer-Fleming projection for currents.
Given a lattice of cubes, the Federer-Fleming projection of a d-dimensional
set E is a technique to send E into the d-dimensional skeleton of the lattice.
In each cube, we choose a center of projection which is not in the closure of
E. We perfom a radial projection in each cube to send E into the (n − 1)-
dimensional faces. Since the centers of projection are not in the closure of
E, the radial projections are Lipschitz on E. The measure of the image is
therefore multiplied by the Lipschitz constant to the power (n − 1). How-
ever, we may not have a good control over this Lipschitz constant. David
and Semmes proved that in average among centers of projection, the measure
of the image is multiplied by a constant that depends only on n. Then one
iterates the process in each (n − 1)-dimensional face to project once again
E into the (n− 2)-dimensional faces, etc. One usually stops when E is sent
into the d-skeleton because it is no longer possible to ensure that there exists
a center of projection away from E.

The goal of this section is to axiomatize the structure which supports
Federer-Fleming. As a consequence, we will be able to define a large class of
boundaries preserved by Federer-Fleming projections. We consider a set K
made of the faces of varying dimensions in which we intend to perform radial
projections. In order to glue and compose radial projections, the inclusion
relation ⊂ between the faces of K should be compatible with the topology
in some sense. We adopt a formalism close the one of CW -complex , except
that the boundary of a cell may not be covered by other subcells. On Figure
4.1 for example, the external edges are not part of the set K.

We define a cell as a face of cubes of Rn. We could take a more general
definition but it is easier to build complexes that way. The dimension of a
cell A is the dimension of its affine span. Its interior int(A) and boundary
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Figure 4.1: A set of cells composed of 2-cells (white squares), 1-cells (blue
edges) and 0-cells (blue vertices). The associated Federer-Fleming projection
consists in making a radial projection in each white square and then in each
blue edge. We take the convention that a radial projection in a 0-cell is the
identity map.

∂A are the interior and boundary relative to its affine span. Given a set of
cells K, we define the support of K by

|K| :=
⋃
{A | A ∈ K } . (4.1)

For an integer i = 0, . . . , n, the subset of K composed of the i-dimensional
cells is denoted by Ki. Let us motivate our next axioms. Say K is a set of
cells in Rn and we want to glue radial projections in its n-cells, then in its
(n − 1)-cells, etc. It is natural to ask that the cells have disjoint interiors
because we want the gluing of our radial projections to be well-defined. It is
more problematic to ensure that the gluing is continuous. We will have to
glue a family of continuous maps (radial projections)

φA : A→ A (4.2)

indexed by A ∈ Kd (for some d ∈ { 0, . . . , n }) and a continuous map (the
identity map)

φ : |K| \
⋃
{ int(A) | A ∈ K, dimA ≥ d } → |K|. (4.3)

We make use of the classical argument which says that a pasting of continu-
ous maps on two closed domains is a continuous map. This also works for a
locally finite family of closed domains1. We require the cells to constitute a

1In a topological space X, a family of sets (Ai) is locally finite provided that for every
x ∈ X, there exists a neighborhood U of x such that { i | Ai ∩ U 6= ∅ } is finite. As a
consequence, if the sets Ai are closed, their union

⋃
Ai is closed in X.
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locally finite family in |K| so that we can glue continuously the maps (φA).
Next, we require the set

|K| \
⋃
{ int(A) | A ∈ K, dimA ≥ d } (4.4)

to be closed. The corresponding axiom is more precise: we require that
for every A ∈ K, the set

⋃ { int(B) | B ∈ K, A ⊂ B } is a neighborhood of
int(A).

Definition 4.1.1 (Complex). A complex K is a set of cells such that

1. the cells interior { int(A) | A ∈ K } are mutually disjoint;

2. every x ∈ |K| admits a relative neighborhood in |K| which meets a
finite number of cells A ∈ K;

3. for every cell A ∈ K, the set

VA :=
⋃
{ int(B) | B ∈ K contains A } (4.5)

is a relative neighborhood of int(A) in |K|.

These are expected properties of CW-complexes but in our case, the
boundary of a cell may not be covered by other cells. We present a few
general properties of a complex K. By the local finiteness axiom, K is at
most countable. For each A ∈ K, the set VA is relatively open in |K|.
Indeed for each cell B ∈ K containing A, VA is also a neighborhood of
int(B). Finally, we are going to see that a nonempty intersection of the form
int(A) ∩B is meaningful.

Lemma 4.1.1. Let K be a complex.

• For A,B ∈ K, int(A) ∩B 6= ∅ implies A ⊂ B.

• For A,B ∈ K such that dimA > dimB, we have int(A) ∩B = ∅.

• For A,B ∈ K of the same dimension, int(A) ∩B 6= ∅ implies A = B.

Proof. Let us prove the first point. The set VA is a relative open set of |K|
which meets B = int(B) so it also meets int(B). As the cells of K have
disjoint interiors, we deduce that B contains A. The second point is now
obvious. Next, we assume that A and B have the same dimension and we
prove that A = B. According to the inclusion A ⊂ B and a dimension
argument, the affines spaces aff(A) and aff(B) are equals. As int(A) is
relatively open in aff(B), we deduce int(A) ⊂ int(B). Then A = B because
the cells have disjoint interiors.

We introduce the natural subspace of a complex.
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Definition 4.1.2 (Subcomplex). Let K be a complex. A subcomplex of K
is a subset L ⊂ K such that for all A ∈ L,

{B ∈ K | B contains A } ⊂ L. (4.6)

The rigid open set induced by L is the set

U(L) :=
⋃
{ intA | A ∈ L } . (4.7)

If L is a subcomplex of K, then L is a also a complex. Moreover, U(L)
is relatively is relatively open in K by the second axiom of Definition 4.1.1.

We are going to present a way of building complexes by pasting pieces
of grids. The result is called a n-complex. As an example, we will see that
the Whitney decomposition of an open set is a n-complex. The model case
is the canonical n-complex.

Definition 4.1.3 (Canonical n-complex). The canonical n-complex of Rn

is

En =

{
n∏

i=1

[0, αi]

∣∣∣∣∣ α ∈ {−1, 0, 1 }n
}
. (4.8)

Figure 4.2: The canonical grid of the plane is represented in dotted lines.
The complex E2 is made of the four gray squares, the four black edges et
the black vertice.

We are going to show that En is a complex. Moreover, we will see that
there exists a constant κ ≥ 1 (depending only on n) such that for all A ∈ En,
the set

VA(κ) :=
{
x ∈ |K|

∣∣ d(x,A) < κ−1d(x, ∂A)
}

(4.9)

is contained in VA. The set VA(κ) is a neighborhood of int(A) and the
parameter κ quantifies how wide it is.
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Proof. Consider α ∈ {−1, 0, 1 }n and the corresponding cell A =
∏

[0, αi].
The interior of A is

int(A) =
n∏

i=1

(0, αi), (4.10)

where (0, αi) =]0, αi[ if αi 6= 0 and (0, αi) = { 0 } otherwise. Observe that
different index α, β induce cells

∏
[0, α],

∏
[0, β] which have disjoint interiors.

Thus, the cells of En have disjoint interiors. Next, we show that there exists
κ ≥ 1 (depending only on n) such that for all A ∈ En,

{
x ∈ Rn

∣∣ d(x,A) < κ−1d(x, ∂A)
}
⊂ VA. (4.11)

Without loss of generality, we work with A = [0, 1]d × { 0 }n−d. Thus,
VA =]0, 1[d×]− 1, 1[n−d. (4.12)

We proceed by contraposition. Fix x ∈ Rn \ VA. We have either xi /∈]0, 1[
for some i = 1, . . . , d or xi /∈] − 1, 1[ for some i = d + 1, . . . , n. In the first
case, the distance d(x,A) is attained on ∂A so d(x,A) = d(x, ∂A). In the
second case we have d(x,A) ≥ 1. As the triangular inequality yields

d(x, ∂A) ≤ d(x,A) + diam(A) (4.13)

≤ d(x,A) +
√
d, (4.14)

we deduce
d(x, ∂A) ≤ (1 +

√
d)d(x,A). (4.15)

In both cases, one has d(x, ∂A) ≤ κd(x,A), where κ depends only on n.
Finally, it is clear that En is locally finite because it has 3n cells.

Definition 4.1.4 (Subordinate complex). We say that a complex L is subor-
dinate to a complex K when for every A ∈ L, there exists B ∈ K (necessary
unique) such that

int(A) ⊂ int(B). (4.16)

This relation is denoted by L � K.

We call n-charts the image of a subcomplex of En by a similarity of Rn

(translations, isometries, homothetys and their compositions).

Definition 4.1.5 (n-complex). A n-complex K is a complex of Rn such
that for every A ∈ K, there exists a n-chart L � K containing A.

Lemma 4.1.2. Let K be a n-complex.

1. There exists a constant κ ≥ 1 (depending only on n) such that for all
A ∈ K, the set

VA(κ) := {x ∈ Rn | d(x, ∂A) < κ−1d(x,A) } (4.17)

is contained in VA;
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Figure 4.3: A n-complex (white squares, blue edges, blue vertices) and two
subordinate n-charts (gray/black).

2. The rigid open sets of K are open in Rn;

3. Every cell A ∈ K is included in at most 3n cells B ∈ K.

Proof. We make a few observations before justifying each properties. Let
A ∈ K and let F � K be a n-chart containing A. As F inherit the properties
of En, we have

VA(κ) ⊂
⋃
{ int(B) | B ∈ F, A ⊂ B } , (4.18)

where κ is the constant that we found when we studied En. For every B ∈ F ,
there exists a unique π(B) ∈ K such that int(B) ⊂ int(π(B)). Let us show
that

{π(B) | B ∈ F, A ⊂ B } = {C ∈ K, A ⊂ C } . (4.19)

For B ∈ F containing A, the inclusion int(B) ⊂ int(π(B)) implies the inclu-
sion of the closures B ⊂ π(B). Hence π(B) contains A as well. Reciprocally,
consider C ∈ K containing A. The set VA(κ) contains int(A) so it meets
C. As VA(κ) is open and C is the closure of int(C), VA(κ) also meets
int(C). By (4.18), we deduce that there exists B ∈ F containing A such
that int(B) ∩ int(C) 6= ∅. Finally C = π(B) as the cells of K have disjoint
interiors.

Now, the lemma is easy to prove. Combining (4.18) and (4.19), we have

VA(κ) ⊂ { int(C) | C ∈ K, A ⊂ C } . (4.20)

We deduce that VA is a neighborhood of int(A) in Rn (as opposed to being
only a relative neighborhood in |K|). As a consequence, for every subcomplex
L of K and every A ∈ L, U(L) is a neighborhood of int(A) in Rn. This
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explains why U(L) is an open set of Rn. Also, it is clear from (4.19) and
the definition of En that for every cell A, there exists at most 3n cells C
containing A.

The natural way of building n-complexes consists in pasting a family
of n-charts (Kα). This principle is close to the notion of direct limit in
algebra (see the remark below Definition 4.1.6). We paste the family by
"identifying" the cells A,B for which there exists another cell C such that
int(A), int(B) ⊂ int(C). We need a few assumptions to ensure that each
equivalent class has a maximal cell and that such cells form a n-complex.

Definition 4.1.6. A system of n-charts is a family of n-charts (Kα) such
that

1. for all A,B ∈ ⋃Kα

int(A) ∩ int(B) 6= ∅ =⇒ int(A) ⊂ int(B) or int(B) ⊂ int(A) (4.21)

2. for every x ∈ ⋃ |Kα|, there exists a relative neighborhood V of x in⋃ |Kα| and a finite finite set S ⊂ ⋃
Kα such that whenever a cell

A ∈ ⋃Kα meets V , there exists B ∈ S such that int(A) ⊂ int(B).

We define a maximal cell of the system as a cell A ∈ ⋃Kα such that for all
B ∈ ⋃Kα,

int(A) ∩ int(B) 6= ∅ =⇒ int(B) ⊂ int(A). (4.22)

The collection of all maximal cells is called the limit of the system K∞. It is
a n-complex such that |K∞| =

⋃ |Kα| and whose local charts are given by
the family (Kα).

We prove our claims on K∞ below the remark.

Remark 4.1.1. The goal of this remark is to precise the analogy between a
system of n-charts and the notion of direct system in algebra. Let the index
set of (Kα) be denoted by M . Equip M with the following quasi-order:
α ≤ β if Kα � Kβ . When α ≤ β, there exists a natural function

πβα : Kα → Kβ (4.23)

which associate to each A ∈ Kα, the unique B ∈ Kβ such that int(A) ⊂
int(B). It is clear that

παα = identity (4.24)

and for α ≤ β ≤ γ in M ,
πγβπ

β
α = πγα. (4.25)

Given α and β, the first axiom of our definition allows to paste Kα and Kβ .
The result is a n-complex K such that Kα,Kβ � K and which can be added
to the system. In this way, M becomes a directed set. Then we say that two
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cells A ∈ Kα and B ∈ Kβ are equivalent if there exists some γ ≥ α, β such
that πγα(A) = πγβ(B). The direct limit of such system in algebra would be
the set of all equivalent classes. Our definition took a few shortcuts because
the abstract equivalent classes are replaced by a collection of maximal cells.
We could not avoid a long axiom to say that these maximal cells are locally
finite.

Proof. It is straightforward from the definition that the cells of K∞ have
disjoint interiors. Moreover, the second axiom implies that K∞ is locally
finite in

⋃ |Kα|. Let us prove that for every A ∈
⋃
Kα, there exists Â ∈ K∞

such that
int(A) ⊂ int(Â). (4.26)

It will follow immediatly that |K∞| =
⋃ |Kα|, that the charts Kα are sub-

ordinate to K∞ and that they induce a n-complex structure. We search a
biggest element in the set

X = {B ∈
⋃
Kα | int(A) ⊂ int(B) } (4.27)

and then we will prove that it belongs to K∞. Using the second axiom for
any point x ∈ int(A), we obtain a finite subset S ⊂ ⋃

Kα such that for
all B ∈ X, there exists C ∈ S such that int(B) ⊂ int(C). In particular,
B ⊂ C and C ∈ X. We deduce that the biggest element of X should be
searched for in the finite set X ∩ S. Moreover, the first axiom implies that
X is totally ordered. It follows that X has a biggest element Â. Let us
prove that Â ∈ K∞. For all B ∈ ⋃Kα such that int(B) ∩ int(Â) 6= ∅, the
first axiom says that we have either int(B) ⊂ int(Â) or int(Â) ⊂ int(B). In
the second case, B ∈ X so we have in fact Â = B by maximality of Â. We
conclude that Â ∈ K∞.

Example 4.1.1. Remember

En =

{
n∏

i=1

[0, αi]

∣∣∣∣∣ α ∈ {−1, 0, 1 }n
}
. (4.28)

The family of translations of En by Zn,

{ p+ En | p ∈ Zn } , (4.29)

is a system of n-charts. Its limit is the canonic lattice of Rn. We could have
defined this lattice directly as the set of all cells of the form

p+
n∏

i=1

[0, αi], (4.30)

where p ∈ Zn and α ∈ {−1, 0, 1 }n.
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Example 4.1.2. Let X an open set of Rn. We build a n-complex describing
X and which is analogous to a Whitney decomposition. For k ∈ N and
p ∈ 2−kZn, we introduce the dyadic chart of center p and sidelength 2−k:

En(p, k) = p+ 2−kEn, (4.31)

i.e.

En(p, k) =

{
n∏

i=1

[pi, pi + 2−kαi]

∣∣∣∣∣ α ∈ {−1, 0, 1 }n
}
. (4.32)

Then consider the family
{
En(p, k)

∣∣∣ k ∈ N, p ∈ 2−kZn, |En(p, k)| ⊂ X
}
. (4.33)

It satisfies the first axiom of definition 4.1.6 as a general property of dyadic
cells. Let us focus on the second axiom. Instead of working with the
Euclidean norm, we work with the maximum norm | · |∞, with its corre-
sponding distance d∞ and its open (cubic) balls U . For x ∈ X, define
rx = min { 1, d∞(x,Xc) }. Let k ∈ N be such that 2−k+1 ≤ rx ≤ 2−k+2.
There exists p ∈ 2−k−1Zn such that |x− p|∞ < 2−k−1. Then, the triangular
inequality gives

U(x, 1
8rx) ⊂ U(p, 2−k) ⊂ U(p, 2−k) ⊂ U(x, rx). (4.34)

Or equivalently,

U(x, 1
8rx) ⊂ U(En(p, k)) ⊂ |En(p, k)| ⊂ U(x, rx). (4.35)

By the right hand side inclusion and the definition of rx, En(p, k) belongs to
the system. Let A be a cell of the system which meets U(En(p, k)). Then
int(A) also meets U(En(p, k)) because U(En(p, k)) is an open set and A is
the closure of int(A). Thus, int(A) meets the interior of a cell B ∈ En(p, k).
Either the sidelength of A is ≥ 2−k, either it is ≤ 2−k and int(A) ⊂ int(B).
In both cases, int(A) is contained in int(B), where B is a cell of the system
of sidelength ≥ 2−k. By local finitness of dyadic lattices in Rn, there exists
a finite number of dyadic cells of sidelength ≥ 2−k which meet U(x, rx). We
deduce the second axiom of definition 4.1.6.

In Definition 4.1.2, we have seen the notion of rigid open set. We define
a rigid closed set as an union of cells of varying dimensions.

Definition 4.1.7. Let K be a complex. A rigid open set of K is a set of
the form

U(L) =
⋃
{ int(A) | A ∈ L } , (4.36)

where L is a subcomplex of K. A rigid closed set of K is a set of the form

|M | =
⋃
{A ∈M } (4.37)

where M ⊂ K.
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It is natural to ask whether the rigid closed sets are the complements of
rigid open sets. Consider a subset M ⊂ K. The set

L = {A ∈ K | @B ∈M, A ⊂ B } (4.38)

is a subcomplex of K and we clearly have |K \ L| = |M |. We are led to
wonder whether the subcomplexes L of K satisfies |K \ L| = |K| \ U(L) in
general. First, Lemma 4.1.1 shows that

|K \ L| ⊂ |K| \ U(L). (4.39)

This inclusion may not be an equality. Indeed, the right-hand-side contains
the "boundary" |K|\U(K) which may not be covered by cells ofK\L. In the
case where |K| = U(K), one sees that we always have |K \ L| = |K| \ U(L)
so the two points of view are equivalent. Now, we introduce the notion of
a Whitney complex. It is a n-complex which decompose an open set and
where one can "work locally in big charts". Here, "working locally in big
charts" reminds Lebesgue’s number Lemma where one can works locally in
big balls subordinated to an open set of a cover. This definition is motivated
by Example 4.1.2. In the introduction of Chapter 3, the reader can find the
definition of the gauge rs and its interpretation.

Definition 4.1.8 (Whitney complex). A Whitney complex of Rn is a n-
complex K such that

1. |K| = U(K);

2. there exists s > 0 such that for all x ∈ U(K), there exists an image F
of En by a similarity such that F � K and

B(x, rs(x)) ⊂ |F |. (4.40)

Finally, we come to the notion of a Lipschitz subset of an open set X.
They will play the role of boundaries in the next chapters.

Definition 4.1.9 (Lipschitz subset). Let X be an open set of Rn. A Lips-
chitz subset of X is a closed subset Γ ⊂ X for which there exists a Whitney
complex K of Rn, a bijective and bilipschitz map T : |K| → X and a subset
M ⊂ K such that Γ = T (|M |).

By the previous discussion, there also exists a subcomplex L of K such
that Γ = T (|K| \ U(L)).

4.2 Existence of retractions

The next proposition justifies that a Lipschitz subset of an open set X is a
also Lipschitz neighborhood retract of X. We build a retraction by following
the scheme of the Federer-Fleming projection.
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Proposition 4.2.1 (Scheme of Federer-Fleming projection). Let K be a n-
complex, let L be a subcomplex of K. Then there exists a Lipschitz function
φ : |K| → |K| satisfying the following properties:

1. for all A ∈ K, φ(A) ⊂ A;

2. φ = id in |K| \ U(L);

3. there exists a relative open set O ⊂ |K| containing |K|\U(L) such that

φ(O) ⊂ |K| \ U(L). (4.41)

Proof. We build by induction a family of locally Lipschitz functions

(φm) : |K| → |K| (4.42)

indexed by a decreasing integer m = n+ 1, . . . , 0. We define

Um(L) =
⋃
{ int(A) | A ∈ L, dimA ≥ m } . (4.43)

and require that

1. for all A ∈ K, φm(A) ⊂ A,

2. φm = id in |K| \ Um(L),

3. there exists a relative open set O ⊂ |K| containing |K| \ Um(L) such
that

φ(O) ⊂ |K| \ Um(L). (4.44)

The induction starts with φn+1 = id. Assume that φm+1 is well-defined for
some m ≤ n. We will post-compose φm+1 with a function ψm made of radial
projections in the cells of L of dimension m. First we define

ψm = id in |K| \ Um(L). (4.45)

We want to extend ψm as a Lipschitz function on |K| \Um+1(L) by defining
ψm on each cell A ∈ Lm as a radial projection. For A ∈ Lm, let xA be the
center of A and let δA > 0 be such that

A ∩B(xA, δA) ⊂ int(A). (4.46)

Define ψm in A \ B(xA, δA) to be the radial projection centered in xA onto
∂A (if A is a 0-cell, A \B(xA, δA) is empty and we are not doing anything).
In particular ψm is Lipschitz: for all x, y ∈ A \B(xA, δA),

|ψm(x)− ψm(y)| ≤ Cdiam(A)δ−1
A |x− y|. (4.47)
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We extend ψm as a Cdiam(A)δ−1
A -Lipschitz function ψm : A → A. Remem-

ber from Lemma 4.1.1 that |Lm| is disjoint from Um+1(L). It follows that

|K| \ Um+1(L) = |Lm| ∪ (|K| \ Um(L)) (4.48)

and ψm is now a well-defined function on |K|\Um+1(L). Let us prove that it
is Lipschitz. Consider A,B ∈ Lm such that A 6= B and let x ∈ A and y ∈ B.
According to Lemma 4.1.1, we have VA∩B = ∅. And by Lemma 4.1.2, there
exists a constant κ ≥ 1 such that VA(κ) ⊂ VA. We deduce that y /∈ VA(κ),
i.e. d(y, ∂A) ≤ κd(y,A). Let z ∈ ∂A be such that |y − z| = d(y, ∂A), in
particular

|y − z| ≤ κ|x− y|. (4.49)

Similarly, one can find z′ ∈ ∂B such that
∣∣x− z′

∣∣ ≤ κ|x− y|. (4.50)

Using the triangular inequality, we see that

|x− z|,
∣∣y − z′

∣∣,
∣∣z − z′

∣∣ ≤ Cκ|x− y|. (4.51)

Thus

|ψm(x)− ψm(y)| ≤ |ψm(x)− ψm(z)|+
∣∣ψm(z)− ψm(z′)

∣∣
+
∣∣ψm(z′)− ψm(y)

∣∣ (4.52)

≤ |ψm(x)− ψm(z)|+
∣∣z − z′

∣∣+
∣∣ψm(z′)− ψm(y)

∣∣ (4.53)

≤ Cκ(diam(A)δ−1
A + diam(B)δ−1

B + 1)|x− y|. (4.54)

Next consider A ∈ Lm, let x ∈ A and y ∈ |K| \ Um(L). We have VA(κ) ⊂
VA ⊂ Um(L) so d(y, ∂A) ≤ κd(y,A). Let z ∈ ∂A be such that |y − z| =
d(y, ∂A), in particular

|y − z| ≤ κ|x− y|. (4.55)

Using the triangular inequality, we see that |x− z| ≤ Cκ|x− y|. It follows
that

|ψm(x)− ψm(y)| ≤ |ψm(x)− ψm(z)|+ |ψm(z)− ψm(y)| (4.56)
≤ |ψm(x)− ψm(z)|+ |z − y| (4.57)

≤ Cκ(diam(A)δ−1
A + 1)|x− y|. (4.58)

Note that we can always choose δA in such way that diam(A)δ−1
A ≤ C. We

didn’t make this simplification earlier because we aim to use this proof where
we have no control over the ratio diam(A)δ−1

A . This concludes the proof that
ψm is well-defined and C-Lipschitz on |K| \ Um+1(L).
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In this paragraph, we extend ψm over |K| in such way that for each
A ∈ K, ψm(A) ⊂ A. Let us start with the extension process and we will
check afterward that ψm preserves every face. If m = n, we have

|K| \ Um+1(L) = |K| (4.59)

so ψm is already defined over |K|. Assume that m < n. For A ∈ Lm+1,
Lemma 4.1.1 says that

A \ Um+1(L) = ∂A (4.60)

so ψm is defined and C-Lipschitz on ∂A and we can extend it as a C-Lipschitz
function ψm : A→ A. Then, ψm is well-defined on |K|\Um+2(L) and we can
show that it is Lipschitz using a similar proof as in the previous paragraph.
The main difference is that we no longer have ψm = id on the boundaries
but it is enough to know that φ is Lipschitz on the boundaries. We continue
the process until ψm is defined on |K|. Let us prove that ψm preserves every
face A ∈ K. There are two cases to distinguish. If A ⊂ |K| \ Um(L), then
ψm = id on A by (4.45). If A ∩ Um(L) 6= ∅, there exists B ∈ L such that
dim(B) ≥ m and A∩ int(B) 6= ∅. By the first point of Lemma 4.1.1, B ⊂ A
so diam(A) ≥ m and, by the properties of subcomplex, A ∈ L. We conclude
that ψm preserves A by construction.

We finally define φm = ψm ◦ φm+1. By construction, φm is C-Lipschitz
and satisfies the first and second requirement of the induction. Let us check
that it satisfies the third requirement. Let O be a relative open set of |K|
containing |K| \ Um+1(L) and such that

φm+1(O) ⊂ |K| \ Um+1(L) (4.61)

We will solve the induction with the set

O′ = O \ φ−1
m+1

( ⋃

A∈Lm
A ∩B(xA, δA)

)
. (4.62)

The set O′ contains |K| \Um(L) because |K| \Um(L) ⊂ |K| \Um+1(L) ⊂ O
and φm+1 = id on |K| \ Um(L) and for A ∈ Lm,

A ∩B(xA, δA) ⊂ int(A) ⊂ Um(L). (4.63)

Let us justify that O′ is open. The family (A∩B(xA, δA))A is a locally finite
family of closed sets in |K| so its union is relatively closed and O′ is relatively
open. Finally,

φm(O′) ⊂ ψm ◦ φm+1(O′) (4.64)

⊂ ψm(|K| \ (Um+1(L) ∪
⋃

A∈Lm
A \B(xA, δA)) (4.65)

⊂ |K| \ Um(L). (4.66)
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Corollary 4.2.1. Let X be an open set of Rn. A Lipschitz subset of X is
also a Lipschitz neighborhood retract.

Finally, we precise the notion of "convex corner" for a set of cells M .
We are going to see that if the nonconvex corners of M are Hd negligible,
then |M | is Hd regular. We expect the Hd regularity to be preserved by
diffeomorphism but we don’t formalize it.

Definition 4.2.1. Let M be a set of cells. A cell A ∈M is called regular if
the set

⋃ {B ∈M | A ⊂ B } is convex. The regular support of M is the set

reg(M) =
⋃
{ int(A) | A ∈M, regular } . (4.67)

Figure 4.4: A set of cells (light blue squares, blue edges, black/blue vertices).
The nonregular cells are black.

We are going to see that for all ε > 0, we can construct a (1+ε)-retraction
onto reg(M).

Proposition 4.2.2 (Almost retraction on the regular part). Let K be a
complex and M be a subset of K. For all ε > 0, there exists a relative open
set O ⊂ |K| containing reg(M) and a (1+ε)-Lipschitz map p : O∪|M | → |M |
such that p = id on |M |.
Proof. Consider a regular cell A ∈ M . The set [A] =

⋃ {B ∈M | A ⊂ B }
is convex and also compact by local finitness of K. Let the orthogonal
projection onto [A] be denoted by pA. We want to define a relative open set
OA ⊂ |K| which contains int(A) and such that all x ∈ OA, the projection
pA(x) is the unique distance minimizer of x in M . We introduce

OA := {x ∈ |K| | |x− pA(x)| < εd(x, |K| \ VA) } . (4.68)

This set is relatively open in |K|. Moreover, it contains int(A) because
pA = id on int(A) and VA is a relative neighborhood of int(A). Now we
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justify that for all x ∈ OA, pA(x) is the unique distance minimizer of x in
M . Let y ∈ |M | be distinct from pA(x). We distinguish two cases. If y ∈ VA,
consider a cell B ∈ M such that y ∈ B. As B ∩ VA 6= ∅, we deduce A ⊂ B
by Lemma 4.1.1. We conclude that y ∈ [A] and then |x− pA(x)| < |x− y|
because x has a unique distance minimizer in [A]. If y /∈ VA, the definition
of OA shows that (assuming ε ≤ 1)

|x− pA(x)| < ε|x− y| ≤ |x− y|. (4.69)

This finishes the proof that pA(x) is the unique distance minimizer in |M |.
Now, we define O as the reunion of all the sets OA, where A is a regular

cell of |M |. For x ∈ O∪|M |, we define p(x) as the unique distance minimizer
of x in M . Let us show that p has a good Lipschitz constant. We consider
x, y ∈ O ∪ |M | and we distinguish three cases. First, we assume x, y ∈ |M |.
We have p(x) = x and p(y) = y so |p(x)− p(y)| = |x− y|. Secondly, we
assume x ∈ OA, where A is a regular cell of M and y ∈ |M |. If y ∈ VA, we
have y ∈ [A] (see the first paragraph) so p(y) = y = pA(y) and

|p(x)− p(y)| = |pA(x)− pA(y)| ≤ |x− y|. (4.70)

If y /∈ VA, we have |x− pA(x)| < ε|x− y| (see the first paragraph) so

|p(x)− p(y)| = |pA(x)− y| (4.71)
≤ |pA(x)− x|+ |x− y| (4.72)
≤ (1 + ε)|x− y|. (4.73)

Thirdly, we assume x ∈ OA and y ∈ OB, where A,B are regular cells of M .
If p(y) ∈ VA, we have p(y) ∈ [A] (first paragraph) so p(y) = pA(y) and

|p(x)− p(y)| = |pA(x)− pA(y)| ≤ |x− y|. (4.74)

If p(x) ∈ VB, we reason similarly. If p(y) /∈ VA and p(x) /∈ VB, we have

|x− p(x)| < ε|x− p(y)| ≤ ε(|x− y|+ |y − p(y)|) (4.75a)
|y − p(y)| < ε|y − p(x)| ≤ ε(|x− y|+ |x− p(x)|) (4.75b)

whence
|x− p(x)|+ |y − p(y)| ≤ 2ε

1− ε |x− y|. (4.76)

We conclude that

|p(x)− p(y)| ≤ |p(x)− x|+ |x− y|+ |y − p(y)| (4.77)

≤ (1 +
2ε

1− ε)|x− y|. (4.78)
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4.3 The Federer-Fleming projection

We state the Federer-Fleming projection in the language of complexes and
we present a new estimate (see (4.81) below).

Proposition 4.3.1 (Federer-Fleming projection). Let K be n-complex. Let
E ⊂ |K| be a Borel set such that Hd+1(|K| ∩ E) = 0. Then there exists a
locally Lipschitz function φ : |K| → |K| satisfying the following properties:

1. for all A ∈ K, φ(A) ⊂ A;

2. φ = id in |K| \⋃ { int(A) | dimA > d };

3. there exists a relative open set O ⊂ |K| such that E ⊂ O and

φ(O) ⊂ |K| \
⋃
{ int(A) | dimA > d } ; (4.79)

4. for all A ∈ K,

Hd(φ(int(A) ∩ E)) ≤ CHd(int(A) ∩ E); (4.80)

5. for all A ∈ Kd,

Hd(A ∩ φ(E)) ≤ C
∫

G(d,n)
Hd(pV (VA ∩ E) dV, (4.81)

where C ≥ 1 is a constant that depends only on n. In addition, let us assume
that there exists a constant M ≥ 1 such that

1. for all A,B ∈ K such that A ⊂ B, diam(B) ≤Mdiam(A);

2. for all bounded subset S ⊂ E, for all radius 0 < r ≤ diam(S), the set
E ∩ S can be covered by at most Mr−ddiam(S)d balls of radius r > 0.

Then, we can build such φ with a Lipschitz constant that depends only on n
and M .

Before proving Proposition 4.3.1, we introduce the two preliminary lem-
mas which are the origins of the estimates (4.80) and (4.81). David and
Semmes showed in [DS] (Lemma 3.22) that, in average among centers of
radial projections, the measure of the image is not much larger that the
original set. We state the Lemma without proof below.

Lemma 4.3.1 ([DS], Lemma 3.22). Let Q be a cube of Rn, let E be a Borel
subset of Q. Then

diam(Q)−n
∫

1
2
Q
Hd(φx(E)) dx ≤ CHd(E), (4.82)

where φx is the radial projection from Q \ x onto ∂Q and C is a constant
that depends only on n.
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We develop a similar lemma for another jauge which has the advantage
to cancel the purely nonrectifiable part. We recall that the Grassmannian
G(d, n) is the set of all d-linear planes in Rn. A linear plane can be repre-
sented by its orthogonal projection pV . Thus, the operator norm with respect
to the Euclidean norm induces a natural metric on G(d, n). This space is
also equipped with a canonic invariant measure dV . We refer to Appendix
B (and possibly, [Mat], Section 3). Following the notation of Federer ([Fe],
2.10.5), we define the gauge ζd on Borel subsets of Rn by

ζd(E) :=

∫

G(d,n)
Hd(pV (E)) dV. (4.83)

For a cell A, we define the restriction of this gauge to A

ζd A(E) :=

∫

G(aff(A),d)
Hd(pV (A ∩ E)) dV, (4.84)

where aff(A) is the affine span of A and G(aff(A), d) is the set of all d-linear
planes of aff(A) centered at an arbitrary point. Finally, we recall the notion
of upper-integral. Given a set S ⊂ Rn equipped with a measure µ and given
any function f : S → [0,+∞], the upper-integral of f is defined by

∫ ∗

S
f dµ = inf

ψ

∫

S
ψ dµ (4.85)

where ψ run through the µ-measurable functions S → [0,+∞] such that
f ≤ ψ. It is not certain we really need an upper-integral but we do not want
to check.

Lemma 4.3.2. Let Q be a cube of Rn, let E be a Borel subset of Q. Then

diam(Q)−n
∫ ∗

1
2
Q

sup
A
ζd A(φx(E)) dx ≤ Cζd(E), (4.86)

where φx is the radial projection from Q \ x onto ∂Q, the sup is indexed on
all cells A ⊂ ∂Q and C is a constant that depends only on n.

Proof. The principle is that for all cell A ⊂ ∂Q, for all x ∈ 1
2Q \ E,

diam(Q)−d sup
A
ζd A(φx(E)) ≤ Cγn−d,n({W | (x+W ) ∩ E 6= ∅ }) (4.87)

and, by a Fubini argument,

diam(Q)−n
∫

Q
γn−d,n({W | (x+W ) ∩ E 6= ∅ }) dx

≤ Cdiam(Q)−dζd(E). (4.88)
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To start with, we work with Q = [−1, 1]n and A = [−1, 1]n−1 × { 1 }. We
will explain in step 3 how to deal with general cells A ⊂ ∂Q.

Step 1. We prove inequality (4.87) for x = 0 (this is not a suspicious loss
of generality). Let φ be the radial projection from Q \ 0 onto ∂Q. We want
to show

ζd A(φ(E)) ≤ Cγn−d,n({W |W ∩ E 6= ∅ }). (4.89)

Let L0 be the line generated by the vector (0, · · · , 0, 1). In particular L0 is
orthogonal to aff(A). We apply the disintegration formula (see Proposition
B.2.1),

γn−d,n({W |W ∩ E 6= ∅ })

=

∫

G(1,n)
γd,L⊥({V | (L+ V ⊥) ∩ E 6= ∅ }) dL

(4.90)

≥
∫

B(L0,α)
γd,L⊥({V | (L+ V ⊥) ∩ E 6= ∅ }) dL, (4.91)

where V ∈ G(d, L⊥) and V ⊥ is the orthogonal complement of V in L⊥,
α ∈ (0, 1) is a constant close to 1 that we will specify later and B(L0, α)
is the ball of center L0 and radius α in G(1, n). For L ∈ G(1, n) such that
d(L,L0) ≤ α, we show that

γd,L⊥({V | (L+ V ⊥) ∩ E 6= ∅ })
≥ C(α)−1γd,L⊥0

({V | (L+ V ⊥) ∩ E 6= ∅ }), (4.92)

where C(α) is a constant that depends on n and α. Let us define

u : L⊥0 → L⊥ (4.93)

to be the orthogonal projection onto L⊥. Since d(L,L0) ≤ α < 1, (B.1)
in Appendix B says that u is an isomorphism with ‖u‖ ‖u−1‖ ≤ C(α).
According to Lemma B.1.3, u induces a C(α)-bi-Lipschitz and one-to-one
correspondence from G(L⊥0 , d) onto G(L⊥, d). Finally, notice that for all
V ∈ G(L⊥0 , d),

L+ u(V ⊥) = L+ V ⊥ (4.94)

because, for x ∈ L⊥0 , u(x) − x ∈ L. By the action of Lipschitz functions on
Hausdorff measures, we conclude that

∫

G(L0,α)
γd,L⊥({V | (L+ V ⊥) ∩ E 6= ∅ }) dL

≥ C(α)−1

∫

G(L0,α)
γd,L⊥0

({V | (L+ V ⊥) ∩ E 6= ∅ }). (4.95)
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The right hand side allows an application of Fubini,

∫

B(L0,α)
γd,L⊥0

({V | (L+ V ⊥) ∩ E 6= ∅ }) dL

=

∫

G(d,L⊥0 )
γ1,n({L ∈ B(L0, α) | (L+ V ⊥) ∩ E 6= ∅ }) dV. (4.96)

We apply Lemma B.2.2 to see that for some universal α ∈]0, 1[ (close enough
to 1), for all V ∈ G(L⊥0 , d),

γ1,n({L ∈ B(L0, α) | (L+ V ⊥) ∩ E 6= ∅ })
≥ C−1Hn−1({x ∈ 2A | (L(x) + V ⊥) ∩ E 6= ∅ }), (4.97)

where L(x) is the linear line generated by x. Moreover, it clear from the
definition of φ that

{x ∈ A | (L(x) + V ⊥) ∩ E 6= ∅ }
= {x ∈ 2A | (x+ V ⊥) ∩ φ(E) 6= ∅ } . (4.98)

Using the decomposition of the Lebesgue measure in aff(A),

voln−1 = (vold V )× (voln−1−d V ⊥), (4.99)

we finally obtain

Hn−1({x ∈ 2A | (x+ V ⊥) ∩ φ(E) 6= ∅ }) ≥ C−1Hd(pV (A∩φ(E))). (4.100)

Step 2. By duality of G(d, n),

∫

Q
γn,n−d({W | (x+W ) ∩ E 6= ∅ }) dx

=

∫

Q
γn,d({V | (x+ V ⊥) ∩ E 6= ∅ }) dx. (4.101)

We apply Fubini,

∫

Q
γn,d({V | (x+ V ⊥) ∩ E 6= ∅ }) dx

=

∫

G(d,n)
voln({x ∈ Q | (x+ V ⊥) ∩ E 6= ∅ }) dV. (4.102)

Using the decomposition of the Lebesgue measure in Rn,

voln = (vold V )× (voln−d V ⊥), (4.103)
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we obtain

voln({x ∈ Q | (x+ V ⊥) ∩ E 6= ∅ }) ≤ CHd(pV (E)). (4.104)

Step 3. In this step, we explain how to deal with arbitrary cells. Let A
be any cell included in ∂Q. A convexity argument justifies that there exists
a (n − 1)-face R of Q containing A. In the previous part, we have proved
that

diam(Q)−n
∫ ∗

1
2
Q
ζd R(φx(E)) dx ≤ Cζd(E). (4.105)

To extend this inequality to A, we show that ζd A ≤ ζd R. We apply (4.105)
with E being replaced by a Borel set F ⊂ R and the inequality simplifies to

ζd R(F ) ≤ Cζd(F ). (4.106)

It follows that for all affine hyperplane V , for all bounded Borel subset
F ⊂ V ,

ζd V (F ) ≤ Cζd(F ) (4.107)

because we can artificially include F in a (n− 1)-face of a cube. We deduce
by induction that for all affine planes V,W such that V ⊂W , for all bounded
Borel subset F ⊂ V ,

ζd V (F ) ≤ Cζd W (F ) (4.108)

It is now clear that ζd A ≤ ζd R on Borel subsets because aff(A) ⊂
aff(R).

We are prepared to prove Proposition 4.3.1.

Proof of Proposition 4.3.1. In the following proof, the letter C plays the role
of a constant ≥ 1 that depends on n. Its value can increase from one line
to another (but a finite number of times). We postpone the case where E is
semiregular to the end of the proof. The principle of the proof is to build by
induction a family of locally Lipschitz functions

(φm) : |K| → |K| (4.109)

indexed by a decreasing integer m = n+ 1, . . . , d+ 1. We define

Um(K) =
⋃
{ int(A) | A ∈ K, dimA ≥ m } . (4.110)

and require that

1. for all A ∈ K, φm(A) ⊂ A;

2. φm = id in |K| \ Um(K);

72



3. there exists a relative open set O ⊂ |K| containing |K| \ Um(K) such
that

φ(O) ⊂ |K| \ Um(K); (4.111)

4. for all A ∈ K,

Hd(φm(int(A) ∩ E)) ≤ CHd(int(A) ∩ E); (4.112)

5. for all A ∈ K,

ζd A(int(A) ∩ φm(E)) ≤ Cζd(VA ∩ E). (4.113)

The proof follows the same scheme as Proposition 4.2.1 (where the subcom-
plex L is the set of cells A ∈ K of dimension ≥ d + 1) but we choose the
center of projection wisely. The induction starts with φn+1 = id. Assume
that φm+1 is well-defined for some m ≤ n. We are going to post-compose
φm+1 with a function ψm made of radial projections in the cells of K of
dimension m. First we define

ψm = id in |K| \ Um(K). (4.114)

Then we define ψm on each cell A ∈ Km as a radial projection. Fix A ∈ Km.
For x ∈ int(A), let φx be the radial projection onto ∂A centered at x. We
want a center of projection xA ∈ 1

2A such that

1. xA /∈ φm+1(E);

2. for all B ∈ K containing A,

Hd(φxA(AB)) ≤ CHd(AB), (4.115)

where AB = int(A) ∩ φm+1(int(B) ∩ E);

3. for all B ∈ K contained in ∂A,

ζd B(φxA(A∗)) ≤ Cζd A(A∗), (4.116)

where A∗ = int(A) ∩ φm+1(E).

We are going to show that such centers xA exists. First, we justify that

Hd+1(int(A) ∩ φm+1(E)) = 0. (4.117)

This means that the first requirement is satisfied for Hm-almost every xA ∈
int(A). For y ∈ int(A)∩φm+1(E), there exists x ∈ E such that y = φm+1(x)
and there exists B ∈ K such that x ∈ B. According to the induction
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assumptions, φm+1(B) ⊂ B so int(A) ∩ B 6= ∅ and then A ⊂ B by Lemma
4.1.1. Thus

int(A) ∩ φm+1(E) ⊂
⋃

A⊂B
φm+1(B ∩ E). (4.118)

There exists only a finite number of B ∈ K containing A (by local finitness
or by Lemma 4.1.2) so the union

⋃
A⊂B φm+1(B ∩E) is compact. Moreover

for each B ∈ K containing A,

Hd+1(φm+1(B ∩ E)) = 0 (4.119)

because φm+1 is Lipschitz on B. We deduce (4.117). Now let’s deal with
with the second requirement on xA. Let B ∈ K containing A. We use
Lemma 4.3.1 in combination with the Markov inequality to estimate that
for C ′ > 0,

diam(A)−mHm({x ∈ int(A) | Hd(φx(AB)) ≥ C ′Hd(AB) }) ≤ C

C ′
(4.120)

If C ′ is big enough (depending on n), there is a big set of x ∈ 1
2A such that

Hd(φx(AB)) ≤ C ′Hd(AB). As there are at most 3n cells B containing A by
Lemma 4.1.2, we can also require that this condition is true for every B ∈ K
containing A (the constant C ′ increases a finite number of times). We obtain
the third requirement in the same fashion using Lemma 4.3.2. Now that xA
is chosen, we let δA > 0 be such that

A ∩B(xA, δA) ⊂ int(A) \ φm+1(E) (4.121)

and we define ψm in A \ B(xA, δA) to be the radial projection centered in
xA onto ∂A. In particular ψm is Cdiam(A)δ−1

A Lipschitz and we extend ψm
as a Cdiam(A)δ−1

A -Lipschitz function ψm : A → A. The construction of ψm
continues just as in the proof of Lemma 4.2.1 and φm is finally defined as
φm = ψm ◦ φm+1.

We only show the fourth and the fifth requirement of the induction be-
cause the other requiremements are practically proved in 4.2.1. Let us start
with the fourth. We fix B ∈ K and we prove that

Hd(φm(int(B) ∩ E)) ≤ CHd(int(B) ∩ E)). (4.122)

We recall that

φm+1(E) ⊂ |K| \
⋃
{ int(A) | dimA ≥ m+ 1 } . (4.123)

For y ∈ φm(int(B) ∩ E), there exists x ∈ int(B) ∩ E such that y = φm(x).
Either φm+1(x) ∈ ⋃ { int(A) | dimA ≥ m } and then y = φm+1(x); either
φm+1(x) ∈ int(A) for some cell A ∈ Km. In the latter case, notice that
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int(A) ∩ B 6= ∅ because φm+1(x) ∈ int(A) ∩ B. It follows that A ⊂ B by
Lemma 7. We thus have in the second case,

φm+1(x) ∈ AB := int(A) ∩ φm+1(int(B) ∩ E)), (4.124)

where A ∈ Km is such that A ⊂ B. In conclusion,

Hd(φm(int(B) ∩ E))

≤ Hd(φm+1(int(B) ∩ E)) +
∑

A

Hd(ψm(φm+1(AB))) (4.125)

≤ Hd(φm+1(int(B) ∩ E)) +
∑

A

Hd(φxA(AB)) (4.126)

≤ CHd(φm+1(int(B) ∩ E)) + C
∑

A

Hd(AB) (4.127)

≤ CHd(φm+1(int(B) ∩ E)) (4.128)

≤ CHd(int(B) ∩ E), (4.129)

where
∑

A is indexed by the cells A ∈ Km such that A ⊂ B. We have used
the second requirement on xA, the additivity of the measure Hd and the
induction assumption 4. Now we check the fifth requirement. We fix B ∈ K
and we prove that

ζd B(int(B) ∩ φm(E)) ≤ Cζd(VB ∩ E). (4.130)

The reasoning is similar except that B is not an initial cell but a final cell.
For y ∈ int(B) ∩ φm(E), there exists x ∈ E such that y = φm(x). Either
φm+1(x) ∈ ⋃ { int(A) | dimA ≥ m } and y = φm+1(x); either φm+1(x) ∈
int(A) for some cell A ∈ Km. In the latter case, notice that int(B)∩∂A 6= ∅
because y = ψm ◦ φm+1(x) ∈ int(B) ∩ ∂A. It follows that B ⊂ A by Lemma
4.1.1 but we can say more. Since int(A) ∩ ∂A = ∅, we necessarily have
A 6= B which implies that A and B have disjoint interiors. We deduce that
int(B) ⊂ ∂A and, by taking the closure, B ⊂ ∂A. Thus, for the second case,

φm+1(x) ∈ A∗ := int(A) ∩ φm+1(E), (4.131)

where A ∈ Km is such that B ⊂ ∂A. In sum,

ζd B(int(B) ∩ φm(E))

≤ ζd B(int(B) ∩ φm+1(E)) +
∑

A

ζd B(ψm(A∗))
(4.132)

≤ ζd B(int(B) ∩ φm+1(E)) +
∑

A

ζd B(φxA(A∗)) (4.133)

≤ ζd B(int(B) ∩ φm+1(E)) +
∑

A

ζd A(A∗) (4.134)

≤ ζd(E ∩ VB), (4.135)
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where
∑

A is indexed by the cells A ∈ Km such that B ⊂ ∂A. Here we have
used the third requirement on xA, we have bounded the sum because there
are at most 3n cells containing B (ζd is not additive!) and we have used the
induction assumption 5.

In the last paragraph, we assume that there exists a constant M ≥ 1
such that

1. for all A,B ∈ K such that A ⊂ B, diam(A) ≤Mdiam(A);

2. for all bounded subset S ⊂ E, for all radius 0 < r ≤ diam(S), the set
S can be covered by at most Mr−ddiam(S)d balls of radius r > 0.

The letter C plays now the role of constant ≥ 1 that depends on on n and
M . The principle is that, given a C-Lipschitz φm+1, we want to build a
C-Lipschitz ψm. According to the proof of Lemma 4.2.1, it suffices that for
all A ∈ Km,

diam(A)δ−1
A ≤ C. (4.136)

Thus, we prove the existence of xA ∈ 1
2 such that

1. diam(A)d(x, φm+1(E))−1 ≤ C;

2. for all B ∈ K containing A,

Hd(φxA(AB)) ≤ CHd(AB), (4.137)

where AB = int(A) ∩ φm+1(int(B) ∩ E);

3. for all B ∈ K contained in ∂A,

ζd B(φxA(A∗)) ≤ Cζd A(A∗), (4.138)

where A∗ = int(A) ∩ φm+1(E).

Remember that to obtain the second requirement on xA, we have chosen C
big enough (depending on n) so that for B ∈ K containing A,

diam(A)−mHm({x ∈ int(A) | Hd(φx(AB)) ≥ CHd(AB) }) (4.139)

is sufficiently small (depending on n). We have obtained the third require-
ment on xA similarly. Now, we also want C big enough (depending on n,
M) so that

diam(A)−mHm({x ∈ int(A) | d(x, φm+1(E)) ≤ C−1diam(A) }) (4.140)

is sufficiently small (depending on n). Thus, the points x ∈ int(A) that do
not satisfy all our criteria will have a small Hm-measure compare to Hm(A).
Fix 0 < δ ≤ 1. We recall that

int(A) ∩ φm+1(E) ⊂
⋃

B

φm+1(B ∩ E), (4.141)

76



where
⋃
B is indexed by the cells B ∈ K containing A. For such B, we

can cover E ∩ B by at most Cδ−d balls of radius δdiam(A). Since φm+1 is
C-Lipschitz and since, by Lemma 4.1.2, there are at most 3n cells B ∈ K
containing A, the set int(A) ∩ φm+1(E) is covered by at most Cδ−d balls of
radius Cδdiam(A). We deduce that

Hm({x ∈ int(A) | d(x, φm+1(E)) < Cδdiam(A) })
≤ Cδm−ddiam(A)m. (4.142)

As m > d and δ is arbitrary small, we can find C big enough so that

diam(A)−mHm({x ∈ int(A) | d(x, φm+1(E)) ≤ C−1diam(A) }) (4.143)

is sufficiently small.

Remark 4.3.1. Let us assume that there exists s > 0 and M ≥ 1 such that
for all x ∈ E, for all 0 < r ≤ diam(E),

M−1rd ≤ Hd(E ∩B(x, r)) ≤Mrd, (4.144)

then we show that for all bounded subset S ⊂ E, for all radius 0 < r ≤
diam(S), the set S can be covered by at most (2dM)2r−ddiam(S)d balls
of radius r. Let us note that the upper inequality of (4.144) holds for all
r > 0. Indeed, E ⊂ B(x,diam(E)) so for r ≥ diam(E),

Hd(E ∩B(x, r)) = Hd(E ∩B(x,diam(E))) (4.145)

≤Mdiam(E)d (4.146)

≤Mrd. (4.147)

Let S be a (nonempty) bounded subset of E and let 0 < r ≤ diam(S).
Let (xi) be a maximal sequence of points in S such that |xi − xj | ≥ r.
By maximality, S is covered by the balls B(xi, r). Then, we estimate the
cardinal N of such family. The balls E∩B(xi,

1
2r) are disjoints and included

in E ∩B(xS , 2diam(S)), where xS is any fixed point of S. It follows that
∑

Hd(E ∩B(xi,
1
2r)) ≤ Hd(E ∩B(xS , 2diam(S))). (4.148)

We apply the Ahlfors regularity of E in this inequality and obtain

(2dM)−1Nrd ≤ 2dMdiam(S)d. (4.149)
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Chapter 5

Properties of quasiminimal sets

5.1 Ahlfors regularity and rectifiability

The following proposition is a adaptation of ([DS], Proposition 4.1) or ([D6],
Propositions 4.1 and 4.74) to our formalism of boundaries (Definition 4.1.9).

Proposition 5.1.1 (Ahlfors regularity). Fix a Lipschitz subset Γ of X. Fix
a triple of parameters P = (κ, h, s) assuming h small enough depending on
n, Γ. Let E be a P-quasiminimal set in X. There exists C > 1 (depending
on n, κ, Γ) and t > 0 (depending on n, s, Γ) such that for all x ∈ E∗, for
all 0 < r ≤ rt(x),

C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd. (5.1)

Proof. Let K be a Whitney complex of Rn, let T : |K| → X be a bijective
and bilipschitz map and let L be a subcomplex of K such that Γ = T (|K| \
U(L)). Remember that by Remark 3.1.2, the image T−1(E) is quasiminimal
along T−1(Γ) in |K| (with respect to deformed parameters). As property
(5.1) is preserved by bilipschitz maps, it suffices to prove it for T (E). Thus,
we can assume T = id without loss of generality. In this case, h and C will
depend on n and κ only.

The proof consists in building Federer-Fleming projections of E in small
finite n-complexes M � K. The condition M � K ensures that a Federer-
Fleming projection of U(M) ∩ E in M induces a global sliding deformation
in every open ball containing |M |. Let us justify this claim. Let φ be a
Federer-Fleming projection of U(M)∩E in M (as in Proposition 4.3.1). We
know that φ is locally Lipschitz in |M | but sinceM is finite, φ is Lipschitz in
|M |. We justify that φ can be extended as a Lipschitz function φ : Rn → Rn

by φ = id in Rn \|M |. By Lemma 4.1.2, U(M) is an open set of Rn included
in |M | so ∂|M | ⊂ |M | \ U(M). For x ∈ Rn \ |M | and y ∈ |M |, the segment
[x, y] meets ∂|M | at a point z and then φ(z) = z because z ∈ |M | \ U(M).
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As a consequence, we have

|φ(y)− φ(x)| ≤ |φ(y)− φ(z)|+ |φ(z)− φ(x)| (5.2)
≤ ‖φ‖|y − z|+ |x− z| (5.3)
≤ (‖φ‖+ 1)|x− y|, (5.4)

where ‖φ‖ is the Lipschitz constant of φ in |M |. Finally, we show that the
homotopy

φt = (1− t)id + tφ (5.5)

preserves Γ. This amounts to proving that for all x ∈ Γ, [x, φ(x)] ⊂ Γ. For
x ∈ Γ, either x /∈ U(M) and φ(x) = x or there exists A ∈ M such that
x ∈ int(A). We focus on the case x ∈ int(A). By the properties of Federer-
Fleming projections, φ(x) ∈ A and by convexity of cells, [x, φ(x)] ⊂ A. As
M � K, there exists B ∈ K such that int(A) ⊂ int(B). Since x ∈ int(A)∩Γ,
we have x ∈ int(B) \ U(L) so B /∈ L. We deduce that B ⊂ X \U(L) by the
first point of Lemma 4.1.1 and the definition of a subcomplex. In summary,
A ⊂ B ⊂ Γ so [x, φ(x)] ⊂ Γ.

Step 1. There exists C ≥ 1 (depending on n, κ) and t > 0 (depending on
n, s, Γ) such that for all x ∈ E and for all 0 < r ≤ rt(x),

Hd(E ∩B(x, r)) ≤ Crd. (5.6)

We are going to reduce the problem. According to Definition 4.1.8, there
exists t0 > 0 such that for all x ∈ X, there exists an image F of En by a
similarity such that F � K and

B(x, rt0(x)) ⊂ |F |. (5.7)

In addition, we assume t0 ≤ 1
5 . Let x ∈ E and let F � K be a n-chart similar

to En such that B(x, rt0(x)) ⊂ |F |. To simplify the notations, we work in a
new coordinate system so as to assume that F = En. For 0 < r ≤ rt0(x), we
are going to approximate B(x, r) by a chart of the form

En(p, k) = p+ 2−kEn, (5.8)

where k ∈ N and p ∈ ⋃i 2−iZn. Let the maximal norm (in the new coordi-
nate system) be denoted by | · |∞ and the associated open balls by U(·, r).
As rt0 ≤ t0 ≤ 1

5 , we have r < 1
4 so there exists k ∈ N such that 2−k−3 ≤

r < 2−k−2. There also exists p ∈ 2−k−1Zn such that |x− p|∞ ≤ 2−k−2.
According to the triangular inequality with respect to the norm | · |∞,

U(x, r) ⊂ U(p, 2−k−1) ⊂ U(p, 2−k) ⊂ U(x, 16r) (5.9)

whence
B(x, r) ⊂ U(p, 2−k−1) ⊂ U(p, 2−k) ⊂ B(x, 16

√
nr) (5.10)

80



We are going to work in En(p, k) and prove that there exists C ≥ 1 (depend-
ing on n, κ) such that

Hd(E ∩ U(p, 2−k−1)) ≤ C(2−k)d. (5.11)

The proof will require that En(p, k) � K. This point holds as soon as
16
√
nr ≤ rt0(x) because B(x, rt0(x)) ⊂ |En| and En � K. Moreover, we will

need that 16
√
nr ≤ rs to be able to apply the quasiminimality in the ball

U = B(x, 16
√
nr). Thus, we restrict the previous construction to the radii

r ≤ rt(x) where 0 < t ≤ t0 is chosen such that

16
√
nrt(x) ≤ min { rt0(x), rs(x) } . (5.12)

This choice depends only on n, s and t0. For example, we have

rt(x) = min { t
1+td(x,Xc), t } (5.13)

≤ tmin {d(x,Xc), 1 } (5.14)

and

rs(x) = min { s
1+sd(x,Xc), s } (5.15)

≥ s
1+s min { d(x,Xc), 1 } . (5.16)

so we can take t ≤ 1
16
√
n

s
1+s , etc. Finally, we change the coordinate system

once again to assume En(p, k) = En.
The letter C plays the role of a constant ≥ 1 that depends on n, κ. Its

value can increase from one line to another (but a finite number of times).
We are going to prove that

Hd(E ∩ 1
2 ]−1, 1[) ≤ C. (5.17)

We fix a parameter 0 < µ < 1 which is close enough to 1 (this will be precised
later). We aim to apply the Federer-Fleming projection in a sequence of
complexes (Mk)k∈N whose supports is of the form

|Mk| = (1− µk)[−1, 1]n. (5.18)

We also want the complexes Mk to be composed of dyadic cells so that
Mk � En. Thus, we define a sequence (q(k))k∈N of nonnegative integers
such that (1 −∑i≥k 2−q(i))[−1, 1]n will be the support of Mk and, in some
sense, ∑

i≥k
2−q(i) =

1

2
−
∑

i<k

2−q(i) ∼ µk. (5.19)

We define (q(k))k by induction. Assuming that q(0), · · · , q(k− 1) have been
built and 1 −∑i<k 2−q(i) > 0, we define q(k) as the smallest nonnegative
integer such that

1
2 −

∑
i≤k 2−q(i)

1
2 −

∑
i<k 2−q(i)

≥ µ. (5.20)
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We present the main properties of this sequence, some of which will only be
useful in step 2. It is straightforward that q(k) ≥ 2 otherwise the numer-
ator of (5.20) is nonpositive. We rewrite (5.20) as q(k) being the smallest
nonnegative integer such that

2−q(k)

1
2 −

∑
i<k 2−q(i)

≤ 1− µ. (5.21)

We can deduce that (q(k)) is nondecreasing. Indeed, by definition of q(k+1)
we have,

2−q(k+1)

1
2 −

∑
i<k 2−q(i)

≤ 2−q(k+1)

1
2 −

∑
i<k+1 2−q(i)

≤ 1− µ. (5.22)

so q(k + 1) ≥ q(k). More generally, the minimality of q(k) with respect to
(5.21) is equivalent to

1

2
(1− µ) <

2−q(k)

1
2 −

∑
i<k 2−q(i)

≤ (1− µ). (5.23)

An induction on (5.20) shows that for all k ≥ 0,

1

2
−
∑

i<k

2−q(i) ≥ 1

2
µk. (5.24)

We combine (5.23) and (5.24) to obtain

2−q(k) ≥ 1

4
(1− µ)µk, (5.25)

Finally, we justify that
∑

i 2−q(i) = 1
2 . It is clear that

∑
i 2−q(i) ≤ 1

2 so
lim
i→∞

2−q(i) = 0 and then (5.23) implies that 1
2 −

∑
i 2−q(i) = 0.

Now, we are ready to build the complexes (Mk)k. For k ≥ 0, let
Sk be the system of dyadic charts of sidelength 2−q(k) in the cube (1

2 +∑
i<k 2−q(i))[−1, 1]n (see Definition 4.1.6). We define Mk as the limit of⋃k
i=0 Si . The set Mk is a finite n-complex subordinated to En and

|Mk| = (1
2 +

∑

i<k

2−q(i))[−1, 1]n, (5.26a)

U(Mk) = (1
2 +

∑

i<k

2−q(i))]−1, 1[n. (5.26b)

Moreover, we have Mk ⊂Mk+1. Indeed, for A ∈Mk and for B ∈ ⋃Sk+1,

int(A) ∩ int(B) 6= ∅ =⇒ int(B) ⊂ int(A) (5.27)

because A and B are dyadic cells and the sidelength of B is less than or
equal to the sidelength of A.
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Figure 5.1: From left to right, examples of M0, M1, M2.

We define Uk = U(Mk) and U∞ =
⋃
k Uk = ]− 1, 1[n. Let φ be a Federer-

Fleming projection of E ∩ Uk+1 in Mk+1. We apply the quasiminimality of
E with respect to φ in U = B(x, 16

√
nr). We assume h small enough

(depending on n) such that hHd(E ∩ hU) ≤ 1
2H

d(E ∩ B(x, r)). We have
then

Hd(E ∩ Uk+1)) ≤ CHd(φ(E ∩ Uk+1)) + 1
2H

d(E ∩ Uk+1) (5.28)

so
Hd(E ∩ Uk+1)) ≤ CHd(φ(E ∩ Uk+1)). (5.29)

We decompose E ∩ Uk+1 in two parts: E ∩ Uk and E ∩ Uk+1 \ Uk. First,
we claim Hd(φ(E ∩ Uk)) ≤ Hd(Mk+1)d. Indeed, by the properties of the
Federer-Fleming projections,

φ(E ∩ Uk) ⊂ |Mk+1| \
⋃
{ int(A) | A ∈Mk+1, dim(A) > d } . (5.30)

As Mk ⊂ Mk+1, φ preserves the cells of Mk so φ(Uk) ⊂ |Mk|. We conclude
that

φ(E ∩ Uk) ⊂ |Mk| \
⋃
{ int(A) | A ∈Mk+1, dim(A) > d } (5.31)

⊂ Uk+1 \
⋃
{ int(A) | A ∈Mk+1, dim(A) > d } (5.32)

⊂
⋃
{ int(A) | A ∈Mk+1, dim(A) ≤ d } . (5.33)

Next, we claim that Hd(φ(E ∩ Uk+1 \ Uk)) ≤ CHd(E ∩ Uk+1 \ Uk). This is
deduced from the observation that Uk+1\Uk =

⋃ { int(A) | A ∈Mk+1 \Mk }
and the fact that for all A ∈Mk+1,

Hd(φ(E ∩ int(A))) ≤ CHd(E ∩ int(A)). (5.34)

In conclusion,

Hd(E ∩ Uk+1) ≤ CHd(Md
k+1) + CHd(E ∩ Uk+1 \ Uk). (5.35)
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We rewrite this inequality as

Hd(E ∩ Uk)− λHd(E ∩ Uk+1) ≤ Hd(Md
k+1), (5.36)

where λ = C−1(C − 1). We multiply both sides of the inequation by λk:

λkHd(E ∩ Uk)− λk+1Hd(E ∩ Uk+1) ≤ λkHd(Md
k+1). (5.37)

We sum this inequality over k ≥ 0 and since 0 < λ < 1 andHd(E∩U∞) <∞,
the telescopic side simplifies to

Hd(E ∩ U0) ≤
∑

k

λkHd(Md
k+1). (5.38)

It is left to bound
∑

k λ
kHd(Md

k+1) ≤ C. We choose µ so that µn−d = λ.
As the the cells of Mk+1 have a sidelength ∼ µk, we will see that this choice
implies

λk(Hd(Md
k+1)−Hd(Md

k )) ≤ C|Uk+1 \ Uk| (5.39)

where | · | denotes the Lebesgue measure. Summing (5.39) over k ≥ 0 gives
then

(1− λ)
∑

k

λkHd(Md
k+1) ≤ C

∑

k

|Uk+1 \ Uk| (5.40)

≤ C. (5.41)

Now, we justify (5.39). By the choice µn−d = λ, the fact that µk ≤ C2−q(k+1)

(see (5.25)) and the fact that the cells of Mk+1 are of sidelength 2−q(k+1),
we have

λk(Hd(Md
k+1)−Hd(Md

k )) ≤ λk
∑

A∈Md
k+1\Md

k

diam(A)d (5.42)

≤ C
∑

A∈Md
k+1\Md

k

diam(A)n (5.43)

≤ C|Uk+1 \ Uk|. (5.44)

Step 2. There exists C ≥ 1 (depending on n, κ) and t > 0 (depending on
n, s, Γ) such that for all x ∈ E∗ and for all 0 < r ≤ rt(x),

Hd(E ∩B(x, r)) ≥ C−1rd. (5.45)

We reduce the problem just as in step 1. The letter C plays the role of a
constant ≥ 1 that depends on n, κ. Its value can increase from one line to
another (but a finite number of times). We are going to prove by contradic-
tion that

Hd(E ∩ ]−1, 1[n) ≥ C−1. (5.46)

84



We fix 0 < µ < 1 close enough to 1 (this will be precised later). We aim to
apply the Federer-Fleming projection in a sequence of complexes (Mk)k∈N
whose supports is of the form

|Mk| = (1
2 + µk)[−1, 1]n. (5.47)

We also want the complexes Mk to be composed of dyadic cells so that
Mk � En. We define the same sequence (q(k))k∈N as in step 1 such that

∑

i≥k
2−q(i) =

1

2
−
∑

i<k

2−q(i) ∼ µk. (5.48)

For each k, let Mk be the set of dyadic cells of sidelength 2−q(k) subdivis-
ing the cube (1 −∑i<k 2−q(i))[−1, 1]n. The set Mk is a finite n-complex
subordinated to En and

|Mk| = (1−
∑

i<k

2−q(i))[−1, 1]n, (5.49a)

U(Mk) = (1−
∑

i<k

2−q(i))]−1, 1[n. (5.49b)

Moreover, we have Mk+1 �Mk. Indeed, U(Mk+1) ⊂ U(Mk) and the dyadic
cells composing Mk+1 have a sidelength which is less than or equal to those
of Mk.

We define Uk = U(Mk) and U∞ =
⋂
k Uk = 1

2 [−1, 1]n. Let φ be a Federer-
Fleming projection of E∩Uk inMk. By the properties of the Federer-Fleming
projection, there exists C0 ≥ 1 (depending on n) such that for all A ∈Md

k ,

Hd(φ(E ∩ Uk) ∩A) ≤ C0H
d(E ∩ Uk). (5.50)

As the cells of Mk have sidelength 2−q(k), the area Hd(1
2A) is of the form

C2−dq(k). We deduce that there exists C1 > 0 (depending only on n) such
that

Hd(E ∩ Uk) ≤ C−1
1 2−dq(k) =⇒ Hd(φ(E ∩ Uk) ∩ 1

2A) < Hd(1
2A). (5.51)

In this case, the set φ(E ∩Uk)∩A does not include 1
2A. It can be postcom-

posed with a radial projection centered in 1
2A and sent to ∂A. If Hd(E ∩

Uk) ≤ C−1
1 2−dq(k), we can thus assume that for all A ∈Md

k , H
d(φ(E ∩Uk)∩

A) = 0. That being done, we apply the quasiminimality of E with respect
to φ in U = B(x, 16

√
nr). We assume h small enough (depending on n) such

that hHd(E ∩ hU) ≤ 1
2H

d(E ∩B(x, r). We have then

Hd(E ∩ Uk)) ≤ CHd(φ(E ∩ Uk)) + 1
2H

d(E ∩ Uk) (5.52)

so
Hd(E ∩ Uk)) ≤ CHd(φ(E ∩ Uk)). (5.53)
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We decompose E∩Uk in two parts. The points of E∩Uk+1 are sent into the
d-dimensional skeleton of Mk (as in step 1) and then radially projected in
the (d− 1)-skeleton so their image is Hd-negligible. On the other hand, Uk \
Uk+1 =

⋃ { int(A) | A ∈Mk \Mk+1 } so Hd(φ(E ∩ Uk \ Uk+1)) ≤ CHd(E ∩
Uk+1 \ Uk). In sum,

Hd(E ∩ Uk) ≤ CHd(E ∩ Uk \ Uk+1). (5.54)

We rewrite this inequality as

Hd(E ∩ Uk+1)− λHd(E ∩ Uk) ≤ 0. (5.55)

where λ = C−1(C − 1). Multiplying this inequality by λ−k, we obtain a
telescopic term:

λ−(k+1)Hd(E ∩ Uk+1)− λkHd(E ∩ Uk) ≤ 0. (5.56)

We choose µ such that µd = λ. Next, we show that there exists a constant
C3 ≥ 1 (depending on n, κ) such that if Hd(E∩U0) ≤ C−1

3 , then (5.56) holds
for all k ∈ N. The idea is to observe that if (5.56) holds for i = 0, . . . , k− 1,
we can sum this telescopic inequality and obtain

λ−kHd(E ∩ Uk)−Hd(E ∩ U0) ≤ 0. (5.57)

so
Hd(E ∩ Uk) ≤ λkHd(E ∩ U0). (5.58)

According to the choice µd = λ and (5.23), there exists C2 ≥ 1 (depending
on n, κ) such that for all k ∈ N, 2−dq(k) ≥ C−1

2 λk. We conclude that if
Hd(E ∩ U0) ≤ (C1C2)−1, then

Hd(E ∩ Uk) ≤ C−1
1 2−dq(k) (5.59)

and the process can be iterated. However, taking the limit k →∞ in (5.57)
yields a contradiction because 0 < λ < 1, Hd(E ∩ U∞) > 0 (remember that
x ∈ E∗) and Hd(E ∩ U0) <∞.

We use our new estimate on the Federer-Fleming projection to improve
the Ahlfors regularity. As a consequence, we obtain the rectifiability of quasi-
minimal sets thanks to the Besicovitch-Federer Theorem ([Mat], Theorem
18.1).

Corollary 5.1.1. Fix a Lipschitz subset Γ of X. Fix a triple of parameters
P = (κ, h, s) assuming h small enough (depending on n, Γ). Let E be a
P-quasiminimal set in X, then E is Hd rectifiable.

86



Proof. Let K be a Whitney complex of Rn, let T : |K| → X be a bijective
and bilipschitz map and let L be a subcomplex of K such that Γ = T (|K| \
U(L)). Remember that by Remark 3.1.2, the image T−1(E) is quasiminimal
along T−1(Γ) in |K| (with respect to deformed parameters). As the Hd

rectifiability is preserved by bilipschitz maps, it suffices to prove the property
for T (E). Thus, we can assume that T = id without loss of generality. In
this case, we prove a stronger property than the Hd rectifiability. There
exists C ≥ 1 (depending on n, κ) and t > 0 (depending on n, s, Γ) such that
for all x ∈ E∗, for all 0 < r ≤ rt(x),

Hd(E ∩B(x, r)) ≤ C
∫

G(d,n)
Hd(pV (E ∩B(x, 16

√
nr))) dV. (5.60)

This implies the Hd rectifiability of E because the right hand side integral
cancels the purely nonrectifiable part.

We reduce the problem as in Proposition 5.1.1. The letter C plays the
role of a constant ≥ 1 that depends on n, κ. Its value can increase from one
line to another (but a finite number of times). We are going to prove that

Hd(E ∩ 1
2 ]−1, 1[n) ≤ C

∫

G(d,n)
Hd(pV (E ∩ ]−1, 1[n)) dV. (5.61)

Since E is Alfhors-regular (Proposition 5.1.1), we can assume that

Hd(E ∩ ]−1, 1[n) ≤ CHd(E ∩ 1
2 ]−1, 1[n) (5.62)

We fix q ∈ N∗. For 0 ≤ k ≤ 2q, letMk be the set of dyadic cells of sidelength
2−q subdivising the cube (1− k2−q)[−1, 1]n (except the boundary). The set
Mk is a finite n-complex subordinated to En and

|Mk| = (1− k2−q)[−1, 1]n, (5.63a)
U(Mk) = (1− k2−q)]−1, 1[n. (5.63b)

Moreover, it is clear that Mk+1 ⊂ Mk. We define Uk = U(Mk). Let φ be a
Federer-Fleming projection of E ∩Uk in Mk. We apply the quasiminimality
of E with respect to φ in U = B(x, 16

√
nr). We assume h small enough

(depending on n) such that hHd(E ∩ hU) ≤ 1
2H

d(E ∩ B(x, r)). We have
then

Hd(E ∩ Uk) ≤ CHd(φ(E ∩ Uk)) + 1
2H

d(E ∩ Uk) (5.64)

so
Hd(E ∩ Uk) ≤ CHd(φ(E ∩ Uk)). (5.65)

We decompose E ∩Uk in two parts: E ∩Uk+1 and E ∩Uk \Uk+1. First, we
have (as in step 1 of Proposition 5.1.1) ,

φ(E ∩ Uk+1) ⊂
⋃
{A ∈Mk | dim(A) ≤ d } . (5.66)
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We recall that for A ∈Md
k ,

Hd(φ(E) ∩A) ≤ C
∫

G(d,n)
Hd(pV (E ∩ U0)) dV (5.67)

and since Md
k contains at most C2q cells,

Hd(φ(E ∩ Uk+1)) ≤ C2qd
∫

G(d,n)
Hd(pV (E ∩ U0)) dV. (5.68)

Next, we have Hd(φ(E ∩ Uk \ Uk+1)) ≤ CHd(E ∩ Uk+1 \ Uk) because Uk \
Uk+1 =

⋃ { int(A) | A ∈Mk \Mk+1 }. In sum,

Hd(E ∩ Uk) ≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV

+ CHd(E ∩ Uk \ Uk+1). (5.69)

We use a Chebychev argument to find an index 0 ≤ k ≤ 2q (depending on
n, κ) such that 1

2 ]−1, 1[n ⊂ Uk and Hd(E∩Uk+1 \Uk) ≤ 1
2H

d(E∩ 1
2 ]−1, 1[n).

We start by observing that the sets E ∩ Uk+1 \ Uk are disjoint so

∑

k

Hd(E ∩ Uk+1 \ Uk) ≤ Hd(E ∩ U0). (5.70)

By (5.63), there are at least 2q−1 index k such that 1
2 ]−1, 1[n ⊂ Uk so there

exists an index k such that 1
2 ]−1, 1[n ⊂ Uk and

2q−1Hd(E ∩ Uk+1 \ Uk) ≤ Hd(E ∩ U0). (5.71)

By Ahlfors regularity (5.62), we deduce that

Hd(E ∩ Uk+1 \ Uk) ≤ C2−qHd(E ∩ 1
2 ]−1, 1[n). (5.72)

so we can choose q big enough (depending on n, κ) such that

Hd(E ∩ Uk+1 \ Uk) ≤ 1
2H

d(E ∩ 1
2 ]−1, 1[n), (5.73)

Now, (5.69) becomes

Hd(E ∩ 1
2 ]−1, 1[n) ≤ C

∫

G(d,n)
Hd(pV (E ∩ U0)) dV. (5.74)

The constant 2q has been absorbed in C because q depends now on n, κ.
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5.2 Weak limits of quasiminimal sets

In this section, we prove that a weak limit of quasiminimal sets (of uni-
form parameters) is also a quasiminimal set (of the same parameters). Our
working space is an open set X of Rn.

Theorem 5.2.1 (Limiting Theorem). Fix a Lipschitz subset Γ of X which is
Hd regular. Fix a triple of parameters (κ, h, s) and an additionnal parameter
κ0 ≥ 1. Assume that h is small enough (depending on n and Γ). Let (Ei) be
a sequence of closed, Hd locally finite subsets of X satisfying the following
conditions:

1. the sequence of Radon measures (Hd Ei) has a weak limit µ in X;

2. for all x ∈ spt(µ), for all 0 < r ≤ rs(x), there exists a sequence
(εi)→ 0 such that for all global sliding deformation f in U = B(x, r),

Hd(Ei ∩Wf ) ≤ κHd(f(Ei ∩Wf )) + hHd(Ei ∩ hU) + εi (5.75)

and
Hd(Ei ∩ U) ≤ κ0H

d(f(Ei ∩ U)) + εi. (5.76)

Then, E = spt(µ) is (κ, κ0h, s)-quasiminimal in X and we have

Hd E ≤ µ ≤ κ0H
d E. (5.77)

Theorem 5.2.1 is proved by constructing relevant sliding deformations.
We distinguish three intermediate result:

1. The limit measure µ is d-dimensional Ahlfors regular and Hd rectifi-
able. We adapt the techniques used to prove that quasiminimal sets
are Ahlfors regular and rectifiable. The rectifiability plays an essential
role in the two next steps. Here, an error term of the form hdiam(U)d

would pose a problem to the lower Ahlfors regularity and the rectifia-
bility.

2. For all sliding deformation f of E = spt(µ) in local balls U , we have

µ(Wf ) ≤ κHd(f(Wf )) + hµ(hU). (5.78)

This part follows from a technical lemma which is inspired by the
techniques of David in [D6]. The lemma was not conceptualised in
[D6] and allows significant simplifications. A similar argument shows
that µ ≤ κ0H

d E.

3. We have µ ≥ Hd E. We make use of an argument introduced by Fang
in [Fn]. It bypasses the concentration Lemma of Dal Maso, Morel and
Solimini when the limit is already known to be rectifiable.

Although we minimize the Hausdorff measure, our techniques could be adapted
to elliptic integrands.

89



5.2.1 Technical lemmas

Given a map f : Rn → Rn, the symbol ‖f‖L means the Lipschitz constant
of f .

Lemma 5.2.1. Let W be an open set of Rn and let E ⊂ W be a Hd

measurable, Hd finite and Hd rectifiable set. Let f : Rn → Rn be a Lipschitz
map. For all ε > 0, there exists a Lipschitz map g : Rn → Rn such that
g − f has a compact support included in W , |g − f | ≤ ε, ‖g − f‖L ≤ ‖f‖L
and such that there is an open set V ⊂W satisfying

Hd(E \ V ) ≤ ε (5.79a)

Hd(g(V )) ≤ Hd(f(E)) + ε. (5.79b)

Roughly speaking, g smashes an almost neighborhood V of E onto f(E).

Proof. Let us get rid of the case ‖f‖L = 0, that is f constant. In this case,
we take g = f . If E 6= ∅, then f(W ) = f(E) so we can choose V = W . If
E = ∅, we choose V = ∅. From now on, we assume ‖f‖L > 0. To start with,
we justify that the (outer) measures

µ : A→ Hd(E ∩ f−1(A)) (5.80)

and
λ : A→ Hd(f(E) ∩A) (5.81)

are Radon measures in Rn. We adopt the formalism of Mattila ([Mat],
Definition 1.15). In particular, we recall that an (outer) measure in Rn

is a Radon measure if and only if it is Borel regular and Hd locally finite
([Mat], Corollary 1.11). We recall that the measure Hd is Borel regular
([Mat], Corollary 4.5). We also recall that the image of an Hd measurable
set by a Lipschitz map isHd measurable; this follows from the approximation
theorem ([Mat], Theorem 1.10) applied to Hd. As Hd is Borel regular and
f(E) is Hd measurable and Hd(f(E)) ≤ LdHd(E) <∞, we conclude that λ
is a Radon measure ([Mat], Theorem 1.9). Let us pass to µ. The measure µ
is finite because Hd(E) < ∞. As of the Borel regularity, it suffices to show
that for all A ⊂ Rn,

µ(A) = inf {Hd(C) | Cis a Borel set containing A } . (5.82)

Let U be an open set of Rn containing f−1(A). Then the set

B = { y ∈ Rn | f−1(y) ⊂ U } (5.83)
= Rn \ f(Rn \ U) (5.84)

is a Borel set (because Rn \U is σ-compact for example), it contains A and

µ(B) = Hd(E ∩ f−1(B)) ≤ Hd(E ∩ U). (5.85)
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To conclude, we observe that by regularity of the Radon measure Hd E,

µ(A) = inf {Hd(E ∩ U) | f−1(A) ⊂ U is open } . (5.86)

We are going to differentiate µ with respect to λ. For t > 0, we introduce
Yt: the set of points y ∈ f(E) such that

lim inf
r→0

Hd(E ∩ f−1(B(y, r)))

Hd(f(E) ∩B(y, r))
≤ t. (5.87)

Using [Mat] (Remark 2.10 and Lemma 2.13), we draw two properties of Yt.
First, Yt is Hd measurable. Secondly, if we define E1 = E ∩ f−1(Yt) and
E2 = E \ f−1(Yt), then for all A ⊂ Rn,

Hd(E1 ∩ f−1(A)) ≤ tHd(A ∩ Yt) (5.88)

and
Hd(E2 ∩ f−1(A)) ≥ tHd(A ∩ Yt). (5.89)

Finally, we fix a constant ε0 > 0 for all the proof. We will deal independently
with E1 and E2 in step 1 and step 2 respectively. However, the parameter t
is arbitrary in step 1 whereas it is chosen in step 2.

Step 0. We build two open sets W1,W2 ⊂⊂ W such that W1 ∩W2 = ∅
and

Hd(Ei \Wi) ≤ 1
3ε0. (5.90)

According to the approximation theorem ([Mat], Theorem 1.10), there exists
two compact sets K1,K2 ⊂ W and two open sets O1, O2 ⊂ W such that
Ki ⊂ Ei ⊂ Oi and

Hd E(Oi \Ki) ≤ 1
3ε0. (5.91)

As K1 and K2 are disjoint compact sets such that Ki ⊂ Oi, there exists two
open sets Wi ⊂⊂ Oi (i = 1, 2) such that Ki ⊂ Wi and W1 ∩W2 = ∅. As
Ei ⊂ Oi,

Hd(Ei \Wi) ≤ Hd(E ∩Oi \Ki) ≤ 1
3ε0. (5.92)

Step 1. We build a Lipschitz map g1 : Rn → Rn such that g1 − f has a
compact support included in W1, |g1 − f | ≤ ε0, ‖g1 − f‖L ≤ ‖f‖L and such
that there is an open set V1 ⊂W1 satisfying

Hd(E1 \ V1) ≤ ε0, (5.93a)

Hd(g1(V1)) ≤ Hd(f(E)) + ε0. (5.93b)

We are going to use classical properties of rectifiable sets (see [Mat], 15.17,
15.19 and 16.2). From now on, the letter C plays the role of a constant ≥ 1
that depends on n. Its value can increase from one line to another (but a
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finite number of times). For x ∈ Rn, for V a plane passing through x and
for 0 < ε ≤ 1, we introduce the open cone

C(x, V, ε) := { z ∈ Rn | d(z, V ) < ε|z − x| } . (5.94)

We take the convention that the Hd measure of a d-dimensional disk of radius
r ≥ 0 equals (2r)d.

The set Yt is Hd measurable, Hd finite and Hd rectifiable so for Hd-ae.
y ∈ Yt,

lim
r→0

(2r)−dHd(Yt ∩B(y, r)) = 1. (5.95)

Let us fix 0 < a < 1 (to be specified later). The previous property implies
that for Hd-ae. y ∈ Yt,

lim
r→0

(2r)−dHd(Yt ∩B(y, r) \ aB(y, r)) = 1− ad (5.96)

whence
lim sup
r→0

r−dHd(Yt ∩B(y, r) \ aB(y, r)) ≤ C(1− a). (5.97)

Moreoever, for Hd-ae. y ∈ Yt, there exists a unique d-plane Vy such that for
all 0 < ε ≤ 1,

lim
r→0

r−dHd(Yt ∩B(y, r) \ C(x, V, ε)) = 0. (5.98)

Let 0 < ε ≤ 1. We apply the Vitali covering theorem ([Mat], Theorem
2.8) see to obtain a finite sequence of open balls (Bj)j (of center yj ∈ Yt and
radius 0 < rj ≤ 1) such that the closure (Bj) are disjoint, Hd(Yt\

⋃
j Bj) ≤ ε

and

Hd(Yt ∩Bj) ≥ (1 + ε)−1(2rj)
d (5.99a)

Hd(Yt ∩Bj \ aBj) ≤ C(1− a)rdj (5.99b)

Hd(Yt ∩Bj \ Cj) ≤ εrdj , (5.99c)

where Cj = C(yj , Vyj , ε). In addition, we require Hd(Yt ∩ ∂Bj) = 0 and we
obtain the "almost-coverering" condition on the open balls,

Hd(Yt \
⋃

j

Bj) ≤ ε. (5.99d)

In each ball Bj , we define a projection onto Vyj , the tangent plane to Yt at
yj . Let πj be partially defined by

πj(x) =

{
y′ in aBj ∩ Cj
y in Rn \Bj ,

(5.100)
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where y′ is the orthogonal projection of y onto Vyj . By definition of Cj , we
have |πj − id| ≤ εrj in aBj ∩ Cj . Next, we estimate the Lipschitz constant
of πj − id. The map πj − id is 1-Lipschitz in aBj ∩ Cj by properties of
orthogonal projection. As

d(aBj ,R
n \Bj) ≥ (1− a)rj , (5.101)

we have for x ∈ aBj ∩ Cj and for y ∈ Rn \Bj ,

|(πj − id)(x)− (πj − id)(y)| ≤ |(πj − id)(x)| (5.102)
≤ εrj (5.103)

≤ ε

1− a |x− y|. (5.104)

We choose a = 1−√ε so that

|(πj − id)(x)− (πj − id)(y)| ≤ C√ε (5.105)

If ε is small enough, then πj − id is this 1-Lipschitz on its domain. We
apply the Kirzbraun theorem to πj − id and extend πj as a Lipschitz map
πj : Rn → Rn such that |πj − id| ≤ εrj and πj − id is 1-Lipschitz. It is left
to paste together the functions πj into a function π:

π =

{
πj in Bj
id in Rn \⋃j Bj .

(5.106)

It is clear that |π − id| ≤ ε. The map π − id is also locally 1-Lipschitz.
Indeed, π = id in the open set Rn \ ⋃j Bj and for each index j, π = πj

in the open set Rn \⋃i 6=j Bi. These these open sets cover Rn because the
closed balls (Bi)i are disjoints. We deduce that π is globally 1-Lipschitz by
convexity of Rn. Eventually, we define

V ′1 =
⋃

j

aBj ∩ Cj (5.107)

and we estimate Hd(Yt \ V ′1) and Hd(π(V ′1)). According to (5.99) and the
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choice a = 1−√ε, we have

Hd(Yt \ V ′1) ≤ Hd(Yt \
⋃

j

Bj) +
∑

j

Hd(Yt ∩ (Bj \ aBj))

+
∑

j

Hd(Yt ∩ (Bj \ Cj))
(5.108)

≤
∑

j

C(1− a)rdj + εrdj + ε (5.109)

≤ C√ε
∑

j

rdj + ε (5.110)

≤ C√ε
∑

j

Hd(Yt ∩Bj) + ε (5.111)

≤ C√εHd(f(E)) + ε (5.112)

and

Hd(π(V ′1)) ≤
∑

j

Hd(π(aBj ∩ Cj)) (5.113)

≤
∑

j

(2rj)
d (5.114)

≤ (1 + ε)
∑

j

Hd(Yt ∩Bj) (5.115)

≤ (1 + ε)Hd(f(E)) (5.116)

Now, we want to set g1 = π ◦ f but we also need that g1 = f in Rn \W1.
By definition of W1, Hd(E1 \W1) ≤ 1

3ε0 so there exists open sets W ′′1 ⊂⊂
W ′1 ⊂⊂W1 such that

Hd(E1 \W ′′1 ) ≤ 2
3ε0. (5.117)

Now, we define
V1 = W ′′1 ∩ f−1(V ′1) (5.118)

and

g1 =

{
π ◦ f in V1

f in Rn \W ′1.
(5.119)

It is straightforward that |g1 − f | ≤ ε because |π − id| ≤ ε. In particular,
|g1 − f | ≤ ε0 for ε small enough. Let us estimate the Lipschitz constant of
g1 − f . For x, y ∈ V1, we have

|(g1 − f)(x)− (g1 − f)(y)| ≤ |(π − id)f(x)− (π − id)f(y)| (5.120)
≤ |f(x)− f(y)| (5.121)
≤ ‖f‖L|x− y| (5.122)
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because (π − id) is 1-Lipschitz. For x ∈ V1 and for y ∈ Rn \W ′1,

|(g1 − f)(x)− (g1 − f)(y)| ≤ |(π − id)f(x)| (5.123)
≤ ε (5.124)

≤ εd(W ′′1 ,R
n \W ′1)−1|x− y|. (5.125)

We can take ε small enough so that g1 − f is ‖f‖L-Lipschitz on its domain.
We apply Lemma A.2.1 in Appendix A to g1−f and obtain a Lipschitz map
g1 : Rn → Rn such that ‖g1 − f‖L ≤ ‖f‖L. Next, we estimate Hd(E1 \ V1)
and Hd(g1(V1)). By (5.88) and (5.112), we have

Hd(E1 \ V1) ≤ Hd(E1 \W ′′1 ) +Hd(E1 \ f−1(V ′1)) (5.126)

≤ 2
3ε0 + tHd(Yt \ V ′1) (5.127)

≤ 2
3ε0 + t(C

√
εHd(f(E)) + ε). (5.128)

By the definition of g1 and (5.116), we have

Hd(g1(V1)) ≤ Hd(π(V ′1)) ≤ (1 + ε)Hd(f(E)). (5.129)

We take one last time ε small enough so that

Hd(E1 \ V1) ≤ ε0, (5.130)

Hd(g1(V1)) ≤ Hd(f(E)) + ε0. (5.131)

Step 2. We build a Lipschitz map g2 : Rn → Rn such that g2 − f has a
compact support included in W2, |g2 − f | ≤ ε, ‖g2 − f‖L ≤ ‖f‖L and such
that there is an open set V2 ⊂W2 satisfying

Hd(E2 \ V2) ≤ ε0, (5.132a)

Hd(g2(V2)) ≤ ε0. (5.132b)

Let 0 < ε ≤ 1, let 0 < a < 1 (to be chosen later). We recall that for Hd-ae.
x ∈ E2,

lim
r→0

(2r)−dHd(E ∩B(x, r)) = 1 (5.133)

lim sup
r→0

r−dHd(E ∩ aB(x, r) \B(x, r)) ≤ C(1− a)rd (5.134)

lim
r→0

r−dHd(E ∩B(x, r) \ C(x, Vx, ε) = 0. (5.135)

Moreover, by the properties of Lipschitz functions and rectifiable sets, for
Hd-ae. x ∈ E2, there exists a (unique) affine map Txf : Vx → Rn and a
radius r > 0 such that for all y ∈ Vx ∩B(x, r),

|f(y)− Txf(y)| ≤ ε|y − x|. (5.136)
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By definition of W2, Hd(E2 \ W2) ≤ 1
3ε0 so there exists a compact set

K ⊂ E2 ∩W2 and a radius 0 < r0 ≤ 1 such that

Hd(E2 \K) ≤ 2
3ε0 (5.137)

and for all x ∈ K,

B(x, r0) ⊂W2 (5.138a)

∀ 0 < r ≤ r0, (2r)−dHd(E ∩B(x, r)) ≥ 1
2 (5.138b)

∀ 0 < r ≤ r0, H
d(E ∩B(x, r) \ aB(x, r)) ≤ C(1− a)rd (5.138c)

∀ 0 < r ≤ r0, H
d(E ∩B(x, r) \ C(x, Vx, ε) ≤ εrd (5.138d)

∀y ∈ Vx ∩B(x, r0), |f(y)− Txf(y)| ≤ ε|y − x|. (5.138e)

Let (Dj) be a sequence of closed balls (of center yj ∈ f(K) and radius
0 < ρj ≤ εr0) such that

f(K) ⊂
⋃

j

Dj (5.139)

and ∑

j

diam(Dj)
d ≤ 2dHd(f(K)) + ε. (5.140)

The compact set K is covered by open balls of center x ∈ K and radius
r > 0 such that for some j, x ∈ f−1(Dj) and r = ε−1ρj . We extract a finite
covering of K by open balls (Bk) of center xk ∈ K and radius rk > 0 such
that for all k, there exists j such that xk ∈ f−1(Dj) and rk = ε−1ρj . Let
us note that |f(xk)− yj | ≤ εrk. In any metric space, a finite family of balls
(Bk)k admits a a subfamily of disjoint balls (Bl)l such that

⋃
k Bk ⊂

⋃
l 3Bl.

Thus, we can also require that the reduced balls (1
3Bk) are disjoint while

K ⊂ ⋃k Bk.
Since ρj ≤ εr0, we have rk ≤ r0 ≤ 1. In particular, Bk ⊂W2 by (5.138a).

Moreover, (5.138b) and the fact that the balls (1
3Bk) are disjoint yields

∑

k

rdk ≤ CHd(E). (5.141)

In each ball Bk, we are going to replace f by an orthogonal projection onto
ImTxkf . For each k, we define pk as the orthogonal projection onto ImTxk .
We can write pk as

pk = f(xk) + ~pk(· − f(xk)), (5.142)

where ~pk is the linear orthogonal projection onto the direction of ImTxkf .
We consider a maximal sequence (~πl)l of linear orthogonal projection of rank
≤ d and of mutual distances > ε. The index set of (~πl)l contains at most
C(ε) elements, where C(ε) depends on n and ε. For each k, we define j(k)
to be an index such that xk ∈ E ∩ f−1(Dj(k)) and rk = ε−1ρj(k). We also
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define l(k) to be an index such that ‖~pk − ~πl(k)‖ ≤ ε. Finally, we let πk be
the orthogonal projection onto the affine plane yj(k) + Im~πl(k), that is

πk = yj(k) + ~πl(k)(· − yj(k)). (5.143)

Without loss of generality we assume that the domain of definition of (Bk)
is totally ordered and that the radius (rk) are decreasing. We define

g2 =

{
πk ◦ f in aBk ∩ Ck \

⋃
i<k Bi

f in Rn \⋃k Bk,
(5.144)

where Ck = C(xk, Vxk , ε). We start by estimating |g2 − f |. For all x ∈
aBk ∩ Ck \

⋃
i<k Bi, we have

|g2(x)− f(x)| = |πkf(x)− f(x)| (5.145)
≤ |πkf(x)− pkf(x)|+ |pkf(x)− f(x)|. (5.146)

By construction

|πkf(x)− pkf(x)| ≤
∣∣f(xk)− yj(k)

∣∣+
∣∣~πl(k)(f(xk)− yj(k))

∣∣
+
∣∣(~pk − ~πl(k))(f(x)− f(xk))

∣∣ (5.147)

≤ 2
∣∣f(xk)− yj(k)

∣∣+
∥∥~pk − ~πl(k)

∥∥|f(x)− f(xk)| (5.148)

≤ 2εrk + ‖f‖Lεrk. (5.149)

On the other hand, by the properties of orthogonal projections, the definition
of Ck and (5.138e),.

|pkf(x)− f(x)| = d(f(x), ImTxkf) (5.150)
≤
∣∣f(x)− Txk(x′ − xk)

∣∣ (5.151)
≤
∣∣f(x)− f(x′)

∣∣+
∣∣f(x′)− Txk(x′ − xk)

∣∣ (5.152)
≤ ‖f‖Lεrk + εrk, (5.153)

where x′ is the orthogonal projection of x onto Vxk . In conclusion, |g2 − f | ≤
C(‖f‖L + 1)εrk in aBk ∩ Ck \

⋃
i<k Bi. Next, we estimate the Lipschitz

constant of g2−f . In each set aBk∩Ck\
⋃
i<k Bi, the map g2−f = (πk−id)f

is ‖f‖L-Lipschitz because πk − id is 1-Lipschitz. As

d(aBk,R
n \Bk) ≥ (1− a)rk, (5.154)

we have for x ∈ aBk ∩ Ck \
⋃
i<k Bi and y ∈ Rn \⋃k Bk,

|(g2 − f)(x)− (g2 − f)(y)| ≤ |g2(x)− f(x)| (5.155)
≤ C(‖f‖L + 1)εrk (5.156)

≤ C(‖f‖L + 1)
ε

1− a |x− y|. (5.157)
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For x ∈ aBk ∩Ck \
⋃
i<k Bi and y ∈ aBl ∩Cl \

⋃
i<lBi where k < l, we have

similarly

|(g2 − f)(x)− (g2 − f)(y)| ≤ |g2(x)− f(x)|+ |g2(y)− f(y)| (5.158)
≤ C(‖f‖L + 1)εrk + C(‖f‖L + 1)εrl (5.159)
≤ C(‖f‖L + 1)εrk (5.160)

≤ C(‖f‖L + 1)
ε

1− a |x− y|. (5.161)

Taking a = 1 − √ε, we conclude that g2 − f is C(‖f‖L + 1)
√
ε-Lipschitz.

We assume ε so that we can apply Lemma A.2.1 Appendix A to g2 − f and
extend g2 as a Lipchitz map Rn → Rn such that ‖g2 − f‖L ≤ ‖f‖L and
|g2 − f | ≤ ε0.

Now, we define
V2 =

⋃

k

Bk \A, (5.162)

where A is the compact set A =
⋃
k Bk \ (aBk ∩ Ck) and we estimate

Hd(g2(V2)) and Hd(E2 \V2). By (5.138), (5.141) and the choice a = 1−√ε,

Hd(E2 \ V2) ≤ Hd(E2 \K) +Hd(K \ V ) (5.163)

≤ 2
3ε0 +Hd(K ∩A) (5.164)

≤ 2
3ε0 +

∑

k

Hd(E ∩Bk \ aBk)

+
∑

k

Hd(E ∩Bk \ Ck)
(5.165)

≤ 2
3ε0 + C(1− a)

∑

k

rdk + ε
∑

k

rdk (5.166)

≤ 2
3ε0 + C

√
ε
∑

k

rdk (5.167)

≤ 2
3ε0 + C

√
εHd(E) (5.168)

By the definition of g2,

g2(V2) ⊂
⋃

k

g2(Bk \A) (5.169)

⊂
⋃

k

g2(aBk ∩ Ck \
⋃

i<k

Bi) (5.170)

⊂
⋃

k

(yj(k) + Im~πl(k)) ∩B(f(xk), C(‖f‖L + 1)rk) (5.171)

⊂
⋃

k

(yj(k) + Im~πl(k)) ∩B(yj(k), C(‖f‖L + 1)rk) (5.172)
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Then by the definition of (Dj) and (5.89),

Hd(g2(V2)) ≤ C(ε)(‖f‖L + 1)d
∑

j

diam(Dj)
d (5.173)

≤ C(ε)(‖f‖L + 1)dHd(f(K)) (5.174)

≤ C(ε)(‖f‖L + 1)dt−1Hd(E). (5.175)

We fix ε small enough so that Hd(E2 \ V ) ≤ ε0. Then we fix t big enough
such that Hd(g2(V2)) ≤ ε0.

Step 3. We define V = V1 ∪ V2 and g the piecewise function

g(z) =





g1(z) in W1

g2(z) in W2

f(z) in Rn \ (W1 ∪W2).

(5.176)

We have |g − f | ≤ ε0 and ‖g − f‖L ≤ ‖f‖L (g − f is locally ‖f‖L-Lipschitz
because gi − f has a compact support included in Wi and then globally
‖f‖L-Lipschitz by convexity of Rn). Finally, we estimate

Hd(g(V )) ≤ Hd(g1(V1)) +Hd(g2(V2)) (5.177)

≤ Hd(f(E))) + 2ε0 (5.178)

and

Hd(E \ V ) ≤ Hd(E1 \ V1) +Hd(E2 \ V2) (5.179)
≤ 2ε0. (5.180)

Lemma 5.2.2 (Adaptation of Lemma 5.2.1 for sliding deformations). Fix Γ
a Lipschitz neighborhood retract of X which is Hd regular. Let f be a global
sliding deformation in an open set U ⊂ X. Let W be an open subset of U
and let E ⊂ W be a Hd measurable, Hd finite and Hd rectifiable set. For
all ε > 0, there exists a global sliding deformation g in U and an open set
V ⊂ W such that g − f has a compact support included in W , |g − f | ≤ ε,
‖g − f‖L ≤ C‖f‖L (where C ≥ 1 depends on n, Γ) and

Hd(E \ V ) ≤ ε (5.181a)

Hd(g(V )) ≤ Hd(f(E)) + ε. (5.181b)

Proof. This proof is an adaptation of the proof of Lemma 5.2.1 but we want
build a map which preserves the boundary. In the following proof, the letter
C plays the role of a constant ≥ 1 that depends on n and Γ. Its value can
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increase from one line to another (but a finite number of times). For a radius
δ > 0, the δ-neighborhood of Γ is denoted by Γ(δ), i.e.

Γ(δ) := {x ∈ X | d(x,Γ) < δ } . (5.182)

Without loss of generality, we assume W ⊂⊂ U . We extend f as a Lipschitz
map f : Rn → Rn with a Lipschitz constant multiplied by C. We can get
rid of the case ‖f‖L = 0 as in Lemma 5.2.1 and assume ‖f‖L > 0. We fix
ε0 > 0. For t > 0, we define Yt to be the set of points y ∈ f(E) such that

lim inf
r→0

Hd(E ∩ f−1(B(y, r)))

Hd(f(E) ∩B(y, r))
≤ t. (5.183)

As in Lemma 5.2.1, this set is Hd measurable. We define E1 = E ∩ f−1(Yt)
and E2 = E \ f−1(Yt), and thus for all A ⊂ Rn,

Hd(E1 ∩ f−1(A)) ≤ tHd(A ∩ Yt) (5.184)

and
Hd(E2 ∩ f−1(A)) ≥ tHd(A ∩ Yt). (5.185)

The parameter t is arbitrary in step 1 whereas it is chosen in step 2. Our
constructions will rely on intermediate variables 0 < δ, ε ≤ 1. These variables
will be as small as we want but the choice of ε will be subordinated to the
choice of δ.

We introduce an "almost-retraction" p1 on the boundary with a good
Lipschitz constant and a retraction p2 on the boundary with a bad Lipschitz
constant. The boundary Γ is Hd regular so there exists an open set O1 ⊂ X
and a (1 + δ)-Lipschitz map p1 : Γ ∪ O1 → Γ such that Hd(Γ \ O1) = 0
and p1 = id on Γ. The boundary Γ is also a Lipschitz neighborhood retract
so there exists an open set O2 ⊂ X containing Γ and a C-Lipschitz map
p2 : O2 → Γ such that p2 = id on Γ. We underline that the Lipschitz
constant of p2 depends only on n and Γ. We restrict each set Oi so as to
assume that Oi ⊂ Γ( δ2) and |pi − id| ≤ 1

2δ
2 ≤ 1

2δ (for i = 1, 2). We extend
pi on X \ Γ(δ) by pi = id. Let us check that this extension is still Lipschitz
with the same Lipschitz constant: (1 + δ) for p1 and C for p2. For x ∈ Oi
and y ∈ X \ Γ(δ), we have |x− y| ≥ δ

2 so

|pi(x)− pi(y)| ≤ |pi(x)− y| (5.186)
≤ |pi(x)− x|+ |x− y| (5.187)

≤ 1
2δ

2 + |x− y| (5.188)
≤ (1 + δ)|x− y|. (5.189)

Now, we use Lemma A.2.1 to extend p2 as a C-Lipschitz map p2 : X → Rn

such that |p2 − id| ≤ δ
2 . However, we have to be careful with p1 because
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we do not want to lose its good Lipschitz constant. We use the Kirzbraun
theorem to extend p1 as a (1 + δ)-Lipschitz map p1 : X → Rn. At the same
time, we would like that |p1 − id| ≤ δ

2 . This is true on X \ Γ(δ) because
p1 = id on X \ Γ(δ). For x ∈ Γ(δ), there exists y ∈ Γ such that |x− y| ≤ δ
so

|p1(x)− x| ≤ |p1(x)− p1(y)|+ |x− y| (5.190)
≤ (1 + δ)|x− y|+ |x− y| (5.191)
≤ (1 + δ)δ + δ. (5.192)

To simplify, we assume |p1 − id| ≤ δ
2 .

Step 0. We build two open sets W1,W2 ⊂⊂ W such that W1 ∩W2 = ∅
and

Hd(Ei \Wi) <
1
3ε0. (5.193)

We refer to the corresponding step of Lemma 5.2.1.
Step 1. We build a Lipschitz map h1 : Rn → Rn such that h1 − f has a

compact support included in W1, |h1 − f | ≤ ε0, ‖h1 − f‖L ≤ ‖f‖L, h1(Γ) ⊂
Γ and such that there is an open set V1 ⊂W1 satisfying

Hd(E1 \ V1) ≤ ε0, (5.194a)

Hd(h1(V1)) ≤ Hd(f(E)) + ε0. (5.194b)

By definition of W1, Hd(E1 \W1) < 1
3ε0 so there exists open sets W ′′1 ⊂⊂

W ′1 ⊂⊂W1 such that
Hd(E1 \W ′′1 ) ≤ 1

3ε0. (5.195)

We appy step 1 of Lemma 5.2.1 to find a Lipschitz map g : Rn → Rn such
that g − f has a compact support included in W ′1, |g − f | ≤ ε, ‖g − f‖L ≤
‖f‖L, and such that such that there is an open set V ⊂W ′1 satisfying

Hd(E1 \ V ) ≤ 1
3ε0, (5.196a)

Hd(g(V )) ≤ Hd(f(E)) + 1
2ε0. (5.196b)

We want to ensure that g(X) ⊂ X. As W ′1 is a compact subset of X and
f(X) ⊂ X, we can assume that ε is small enough so that for all x ∈W ′1,

d(f(x),Rn \X) > ε. (5.197)

We deduce that g(X) ⊂ X because g = f in X \W ′1 and |g − f | ≤ ε. In
addition, we would like that

g(V ) ⊂ (X \ Γ(δ)) ∪O1 (5.198)

to be able to retract g(V ∩Γ) onto the boundary without enlarging too much
its measure. We consider the open set

V ′δ,ε := { y ∈ X | d(y,Γ) > δ + ε or d(y,X \O1)) > ε } . (5.199)
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When ε→ 0, the sets Vδ,ε are increasing to

V ′δ := { y ∈ X | d(y,Γ) > δ or y ∈ O1 } (5.200)

and when δ → 0, the sets Vδ are increasing to

V ′0 := { y ∈ X | y /∈ Γ or y ∈ O1 } (5.201)
:= X \ (Γ \O1) (5.202)

because Γ is a closed subset of X. Let us recall that Hd(Γ \ O1) = 0. As
Hd(f(E)) <∞, we can choose δ > 0 small enough so that

Hd(f(E) \ V ′δ ) < 1
3 t
−1ε0 (5.203)

and then ε > 0 small enough so that

Hd(f(E) \ V ′δ,ε) ≤ 1
3 t
−1ε0. (5.204)

Now, we replace the set V by

V1 = V ∩W ′′1 ∩ f−1(V ′δ,ε). (5.205)

In particular, g(V1) ⊂ (X \ Γ(δ)) ∪ O1 because g(V1) ⊂ X and |f − g| ≤ ε.
By (5.184) and (5.204), we estimate

Hd(E1 \ V1) ≤ Hd(E1 \ V ) +Hd(E1 \W ′′1 ) +Hd(E1 \ f−1(Vδ,ε)) (5.206)
≤ ε0. (5.207)

Finally, we compose g with p2 ◦ p1. More precisely, we consider the partially
defined map

h1 =

{
p2 ◦ p1 ◦ g in V1 ∪ Γ

g (= f) in Rn \W ′1.
(5.208)

The map h1 is well-defined because V1 ⊂ W ′′1 ⊂ W ′1 and pi = id on Γ
(i = 1, 2). We start by estimating |h1 − f |. As |p2p1 − id| ≤ δ, we have
|h1 − g| ≤ δ. Moreover, |g − f | ≤ ε so |h1 − f | ≤ δ + ε. We can assume δ
and ε small enough so that |h1 − f | ≤ ε0. Next, we show that ‖h1 − f‖L ≤
C‖f‖L. It suffices to have ‖h1 − g‖L ≤ C‖f‖L. The first ingredients are the
facts that |p2p1 − id| ≤ δ and, for δ small enough, d(W ′′1 ,R

n\W ′1) ≥ δ‖f‖−1
L .

As a consequence, for x ∈ V1 and y ∈ Rn \W ′1,

|(h1 − g)(x)− (h1 − g)(y)| ≤ |(h1 − g)(x)|+ |(h1 − g)(y)| (5.209)
≤ 2δ (5.210)
≤ 2‖f‖L|x− y|. (5.211)
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The second ingredients are the facts that p2p1 is C-Lipschitz and p2p1 = id
on Γ. It implies that, for all x ∈ X,

|p2p1(x)− x| ≤ ‖p2p1 − id‖Ld(x,Γ) (5.212)
≤ Cd(x,Γ). (5.213)

As a consequence, for x ∈ Γ and y ∈ Rn \W ′1,

|(h1 − g)(x)− (h1 − g)(y)| ≤ |h1(x)− g(x)| (5.214)
≤ Cd(g(x),Γ) (5.215)
≤ C|g(x)− f(x)| (5.216)
≤ C|(g − f)(x)− (g − f)(y)| (5.217)
≤ C‖f‖L|x− y|. (5.218)

We extend h1 as a Lipschitz map h1 : Rn → Rn such that ‖h1 − f‖L ≤
C‖f‖L and |h1 − f | ≤ ε0. Next, we prove that h1(Γ) ⊂ Γ. In view of the
definition of p2 and O2, it suffices that g(Γ) ⊂ p−1

1 (O2). As Γ is relatively
closed in X and W ′1 is a compact subset of X, the intersection Γ ∩W ′1 is
compact. Its image f(Γ∩W ′1) is a compact subset of Γ ⊂ p−1

1 (O2). We take
ε is small enough so that for all x ∈ Γ ∩W ′1,

d(f(x),Rn \ p−1
1 (O2)) > ε. (5.219)

We deduce that g(Γ) ⊂ p−1
1 (O2) as g = f in Rn \ W ′1 and |g − f | ≤ ε.

Finally, we estimate Hd(h1(V1)). We recall the key argument:

g1(V1) ⊂ (X \ Γ(δ)) ∪O1. (5.220)

This implies that p1g1(V1) ⊂ (X \ Γ(δ)) ∪ Γ and then p2 = id on p1g1(V1).
We deduce that p2p1 is (1 + δ)-Lipschitz on g1(V1). Hence

Hd(h1(V1)) ≤ (1 + δ)dHd(g(V1)) (5.221)

≤ (1 + δ)d(Hd(f(E ∩W )) + 1
2ε0) (5.222)

We choose δ > 0 small enough so that Hd(h1(V1)) ≤ Hd(f(E ∩W )) + ε0.
Step 2. We build a Lipschitz map h2 : Rn → Rn such that h2 − f has a

compact support included in W2, |h2 − f | ≤ ε, ‖h2 − f‖L ≤ C‖f‖L and such
that there is an open set V2 ⊂W2 satisfying

Hd(E2 \ V2) ≤ ε0, (5.223a)

Hd(h2(V2)) ≤ ε0. (5.223b)

By definition of W2, Hd(E2 \W2) < 1
3ε0 so there exists open sets W ′′2 ⊂⊂

W ′2 ⊂⊂W2 such that
Hd(E2 \W ′′2 ) ≤ 1

2ε0. (5.224)
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We appy step 2 of Lemma 5.2.1 to find a Lipschitz map g : Rn → Rn such
that g − f has a compact support included in W ′2, |g − f | ≤ ε, ‖g − f‖L ≤
‖f‖L, and such that such that there is an open set V ⊂W ′2 satisfying

Hd(E2 \ V ) ≤ 1
2ε0, (5.225a)

Hd(g(V )) ≤ C−dε0. (5.225b)

We replace the open set V by

V2 = V ∩W ′′2 . (5.226)

We still have

Hd(E2 \ V2) ≤ Hd(E2 \ V ) +Hd(E2 \W ′′2 ) (5.227)
≤ ε0. (5.228)

Next, we compose g with p2. We consider the partially defined map

h2 =

{
p2 ◦ g in V2 ∪ Γ

g (= f) in Rn \W ′2.
(5.229)

We proceed as before to extend h2 as a Lipschitz map h2 : Rn → Rn such
that |h2 − f | ≤ ε0 and ‖h2 − f‖L ≤ C‖f‖L. We can also assume ε small
enough so that h2(Γ) ⊂ Γ. Since p2 is C-Lipschitz, we have finally

Hd(h2(V2)) ≤ CdHd(g(V2)) ≤ ε0. (5.230)

Step 3. We define V = V1 ∪ V2 and h the piecewise function

h(z) =





h1(z) in W1

h2(z) in W2

f(z) in Rn \ (W1 ∪W2).

(5.231)

We can conclude as in step 3 of Lemma 5.2.1 but in addition h(Γ) ⊂ Γ. As
W ⊂⊂ U and h = f in X \W , Lemma 3.2.1 says that h is a global sliding
deformation, provided that ε0 is small enough.

5.2.2 Proof of the limiting theorem

Proof. In this proof, the letter C is an unspecified constant ≥ 1 that depends
on n, κ, Γ. Its value can increase from one line to another (but a finite
number of times). Similarly, the letter t is an unspecified constant > 0 that
depends on n, s, Γ and whose value can decrease from one line to another.
Let E be the support of µ in X. Let K be a Whitney complex of Rn, let
T : |K| → X be a bijective and bilipschitz map and let L be a subcomplex
of K such that Γ = T (|K| \ U(L)).
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Step 1. We show that for all x ∈ E, for all 0 < r ≤ rt(x) and for i big
enough,

C−1rd ≤ Hd(Ei ∩B(x, r)) ≤ Crd. (5.232)

Before proving step 1, we draw its main consequences. It yields that for
x ∈ E and for 0 < r ≤ rt(x),

C−1rd ≤ µ(B(x, r)) ≤ Crd. (5.233)

According to the density theorems on Radon measures (see [Mat], Theorem
6.9), we have

C−1Hd E ≤ µ ≤ CHd E. (5.234)

so E is Ahlfors regular.
Now, we proceed to the proof of step 1. It relies on two ingredients:

i) the sets Ei satisfy (5.75) in local balls centered in E;

ii) for all x ∈ E, for all r > 0, lim infiH
d(Ei ∩B(x, r)) > 0.

As T is a bilipschitz map, it suffices to prove (5.232) for the sets T−1(Ei) with
respect to T−1(E). Morever, the sets T−1(Ei) satisfy the same ingredients
with respect to T−1(E) (the parameters of (5.75) are deformed as in Remark
3.1.2). Thus, we assume T = id directly.

Let x ∈ E and 0 < r ≤ rt(x). We build sliding deformations in the open
ball U = B(x, 16

√
nr) to get that

Hd(Ei ∩B(x, r)) ≤ Crd (5.235)

Hd(Ei ∩B(x, 16
√
nr)) ≥ C−1rd. (5.236)

We can reduce the problem by assuming

B(x, r) ⊂ 1
2 ]−1, 1[n ⊂ [−1, 1]n ⊂ B(x, 16

√
nr), (5.237)

En � K, 16
√
nr ≤ rs(x) and by proving that

Hd(Ei ∩ 1
2 ]−1, 1[n) ≤ Crd, (5.238)

Hd(Ei ∩ ]−1, 1[) ≥ C−1rd. (5.239)

Let (εi) be the sequence associated to U . As lim infiH
d(Ei ∩ hU) > 0, we

deduce that for i big enough, εi ≤ hHd(Ei ∩ hU). Then, we can proceed as
in the proofs of the reduced problems of Proposition 5.1.1.

Step 2. We show that E is Hd-rectifiable. The proof relies on on two
ingredients:

i) the sets Ei satisfy (5.75) in local balls centered in E;

ii) the set E is Ahlfors regular of dimension d.
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As T is a bilipschitz map, it suffices to prove that T−1(E) is Hd rectifi-
able. Morever, the sets T−1(Ei) satisfy the same ingredients with respect to
T−1(E). Thus, we assume T = id directly.

Let x ∈ E and 0 < r ≤ rt(x). We build sliding deformations in the open
ball U = B(x, 16

√
nr) to get that

Hd(E ∩B(x, r)) ≤ C
∫

G(d,n)
Hd(pV (E ∩B(x, 16

√
nr)) dV. (5.240)

We can reduce the problem by assuming

B(x, r) ⊂ 1
2 ]−1, 1[n ⊂ [−1, 1]n ⊂ B(x, 16

√
nr), (5.241)

En � K, 16
√
nr ≤ rs(x) and by proving that

Hd(E ∩ 1
2 ]−1, 1[n) ≤ C

∫

G(d,n)
Hd(pV (E ∩ ]−1, 1[n)) dV. (5.242)

Let (εi) be the sequence associated to U . We have lim infiH
d(Ei ∩ hU) > 0

so for i big enough, εi ≤ hHd(Ei ∩ hU). We want to proceed as in the proof
of the reduced problem of Corollary 5.1.1 but there is a difference. We are
not going to make Federer-Fleming projection of the sets Ei but of the set
E instead.

We fix q ∈ N∗. For 0 ≤ k ≤ 2q, let Mk be the set of dyadic cells of
sidelength 2−q subdivising the cube (1−k2−q)[−1, 1]n (except the boundary).
The set Mk is a finite n-complex subordinated to En and

|Mk| = (1− k2−q)[−1, 1]n, (5.243a)
U(Mk) = (1− k2−q)]−1, 1[n. (5.243b)

Moreover, it is clear that Mk+1 ⊂ Mk. We define Uk = U(Mk). Let φ be a
Federer-Fleming projection of E ∩ Uk in Mk (not Ei ∩ Uk!). We apply the
quasiminimality of Ei with respect to φ in U = B(x, 16

√
nr). We assume h

small enough (depending only on n) such that hHd(Ei ∩ hU) ≤ 1
4H

d(Ei ∩
B(x, r)). We also recall that i is big enough so that εi ≤ hHd(Ei ∩hU). We
have then

Hd(Ei ∩ Uk) ≤ CHd(φ(Ei ∩ Uk)) + 1
2H

d(Ei ∩ Uk) (5.244)

so
Hd(Ei ∩ Uk) ≤ CHd(φ(Ei ∩ Uk)). (5.245)

We prove that there exists an open set O ⊂ Uk+1 which contains E ∩ Uk+1

and such that

Hd(φ(O)) ≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV + ε (5.246)
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where ε > 0 is an error term which is small compared to Hd(Ei∩Uk). Later,
we will decompose Ei ∩ Uk in two parts: Ei ∩ O and Ei ∩ Uk \ O. By the
properties of the Federer-Fleming projection (Proposition 4.3.1), there exists
an open set O′ ⊂ Uk containing E ∩ Uk and such that

φ(O′) ⊂ |Mk| \
⋃
{ int(A) | A ∈Mk, dim(A) > d } . (5.247)

As Mk+1 ⊂ Mk, φ preserves the cells of Mk+1 so φ(Uk+1) ⊂ |Mk+1|. We
deduce that

φ(O′ ∩ Uk+1) ⊂ |Mk+1| \
⋃
{ int(A) | A ∈Mk, dim(A) > d } (5.248)

⊂ Uk \
⋃
{ int(A) | A ∈Mk, dim(A) > d } (5.249)

⊂ Sk (5.250)

where
Sk =

⋃
{ int(A) | A ∈Mk, dim(A) ≤ d } . (5.251)

We recall that for A ∈Md
k ,

Hd(φ(E) ∩A) ≤ C
∫

G(d,n)
Hd(pV (E ∩ U0)) dV. (5.252)

Since φ(E ∩ Uk+1) ⊂ S and Md
k contains at most C2q cells, we deduce that

Hd(φ(E ∩ Uk+1)) ≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV. (5.253)

The set O that we intend to build is a small neighborhood of E ∩ Uk+1 for
which this estimate still holds with an error term ε. First, we observe that
Hd S is a Radon measure because M is finite. According to the regularity
properties of Radon measure, there exists an open set O′′ containing φ(E ∩
Uk+1) such that

Hd(S ∩O′′) ≤ Hd(φ(E ∩ Uk+1)) + ε. (5.254)

Since φ(O′ ∩Uk+1) ⊂ S, the set O = O′ ∩Uk+1 ∩φ−1(O′′) is a solution: it is
an open subset of Uk+1 which contains E ∩Uk+1 and which satisfies (5.246).
In conclusion,

Hd(Ei ∩ Uk) ≤ CHd(φ(Ei ∩ Uk)) (5.255)

≤ CHd(φ(O)) + CHd(Ei ∩ Uk \O)) (5.256)

≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV + Cε

+ CHd(φ(Ei ∩ Uk \O)).

(5.257)
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As lim infiH
d(Ei∩B(x, r)) > 0, we can take ε small enough (independently

from i) so that Cε < 1
2 lim infiH

d(Ei∩B(x, r)) and then assume i big enough
so that

Cε ≤ 1
2H

d(Ei ∩ Uk). (5.258)

Thus,

Hd(Ei ∩ Uk) ≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV+

CHd(φ(Ei ∩ Uk \O)). (5.259)

Moreover, E is Ahlfors regular of dimension d so we can assume that φ is
C-Lipschitz (see the second part of Proposition 4.3.1 as well as Remark 4.3.1
applied to E ∩ Uk). Thus,

Hd(Ei ∩ Uk) ≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV

+ CHd(Ei ∩ Uk \O). (5.260)

We pass to the limit i→∞,

Hd(E ∩ Uk) ≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV

+ CHd(E ∩ |Mk| \O). (5.261)

The open set O contains E ∩ Uk+1 so

Hd(E ∩ Uk) ≤ C2q
∫

G(d,n)
Hd(pV (E ∩ U0)) dV

+ CHd(E ∩ |Mk| \ Uk+1)). (5.262)

This is (almost) the same inequality as (5.69) in the proof of Corollary 5.1.1.
We can conclude in the same way by a Chebychev argument.

Step 3. We show that for all x ∈ E, for all 0 < r ≤ rs(x), for all sliding
deformation f of E in U = B(x, r),

µ(Wf ) ≤ κHd(f(E ∩Wf )) + hµ(hU). (5.263)

This step relies mainly on Lemma 5.2.2. Let us fix x ∈ E and 0 < r ≤ rs(x).
Let f be a sliding deformation of E in U = B(x, r). Let ε > 0. Let K be
a compact subset of E ∩Wf such that µ(Wf \K) ≤ ε. There exists δ > 0
such that |f − id| > δ on K. According to Lemma 3.3.2, there exists a global
sliding deformation f1 in U such that |f1 − f | ≤ δ

2 , E ∩Wf1 ⊂⊂Wf and

Hd(f1(Wf ) \ f(Wf )) ≤ ε. (5.264)
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In particular, K ⊂Wf1 because |f − f1| < |f − id| on K. We deduce that

Hd(E ∩Wf \Wf1) ≤ ε. (5.265)

We are going to apply Lemma 5.2.2. There exists a global sliding deformation
g in U (whose Lipschitz constant does not depend on ε) and an open set
V ⊂Wf1 such that Wg ⊂Wf1 , |g − f1| ≤ δ

2 and

Hd(E ∩Wf1 \ V ) ≤ ε (5.266a)

Hd(g(V )) ≤ Hd(f1(E ∩Wf1)) + ε. (5.266b)

Let us draw a few consequences. It is straightforward that E ∩Wg ⊂ Wf .
Moreover, K ⊂Wg because |g − f | < |f − id| on K. The conditions (5.265),
(5.266a) imply

µ(Wf \ V ) ≤ µ(Wf \Wf1) + µ(Wf1 \ V ) (5.267)
≤ Cε. (5.268)

and the conditions (5.264), (5.266b) imply

Hd(g(V )) ≤ Hd(f1(E ∩Wf1)) + ε (5.269)

≤ Hd(f1(Wf )) + ε (5.270)

≤ Hd(f(Wf )) + 2ε. (5.271)

Now, we apply the quasiminimality of Ei with respect to g in U ,

Hd(Ei ∩Wg) ≤ κHd(g(Ei ∩Wg)) + hHd(Ei ∩ hU) + εi. (5.272)

By construction,

Hd(g(Ei ∩Wg)) ≤ Hd(g(V )) +Hd(g(Ei ∩Wg \ V )) (5.273)

≤ Hd(f(Wf )) + ‖g‖Hd(Ei ∩Wg \ V ) + 2ε (5.274)

where ‖g‖ is the Lipschitz constant of g. Passing to the limit in i, we have

lim sup
i

Hd(g(Ei ∩Wg)) ≤ Hd(f(Wf )) + ‖g‖µ(Wg \ V ) + 2ε (5.275)

≤ Hd(f(Wf )) + ‖g‖µ(Wf \ V ) + 2ε (5.276)

≤ Hd(f(Wf )) + C‖g‖ε+ 2ε. (5.277)

On the other hand, we have

lim inf
i

µ(Ei ∩Wg) ≥ µ(Wg) ≥ µ(K). (5.278)

We conclude that

µ(Wf ) ≤ µ(K) + ε (5.279)

≤ κHd(f(Wf )) + hµ(hU) + κ(C‖g‖ε+ 2ε). (5.280)
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The Lipschitz constant of g does not depend on ε so we can make ε→ 0 to
obtain

µ(Wf ) ≤ κHd(f(Wf )) + hµ(hU). (5.281)

To replace U by U in the lower order term, we can apply the previous
reasoning in a slightly smaller ball U ′ where f is still a sliding deformation.

Step 4. We show that
µ ≤ κ0H

d E (5.282)

This is quite the same reasoning. We fix x ∈ E, 0 < r ≤ rs(x). We consider
f = id and U = B(x, r). Let ε > 0. According to Lemma 5.2.2, there exists a
global sliding deformation g in U (whose Lipschitz constant does not depend
on ε) and an open set V ⊂ U such that

Hd(E ∩ U \ V ) ≤ ε (5.283a)

Hd(g(V )) ≤ Hd(E ∩ U) + ε. (5.283b)

Now, we apply the quasiminimality of Ei with respect to g in U ,

Hd(Ei ∩ U) ≤ κ0H
d(g(Ei ∩ U)) + εi. (5.284)

By construction,

Hd(g(Ei ∩ U)) ≤ Hd(g(V )) +Hd(g(Ei ∩ U \ V )) (5.285)

≤ Hd(E ∩ U) + ‖g‖Hd(Ei ∩ U \ V ) + ε (5.286)

where ‖g‖ is the Lipschitz constant of g. Passing to the limit in i, we have

lim sup
i

Hd(g(Ei ∩ U)) ≤ Hd(E ∩ U) + ‖g‖µ(U \ V ) + ε (5.287)

≤ Hd(E ∩ U) + ‖g‖µ(∂U) + C‖g‖ε+ ε. (5.288)

On the other hand, we have

lim inf
i

µ(Ei ∩ U) ≥ µ(U). (5.289)

We conclude that

µ(U) ≤ κ0H
d(E ∩ U) + κ0(‖g‖µ(∂U) + C‖g‖ε+ ε). (5.290)

The Lipschitz constant of g does not depend on ε so we can make ε→ 0 to
obtain

µ(U) ≤ κ0H
d(E ∩ U) + κ0‖g‖µ(∂U). (5.291)

To get rid of µ(∂U), we can apply the previous reasoning in slightly smaller
balls U ′ where f is still a sliding deformation and such that µ(∂U ′) = 0.

Step 5. We show that
Hd E ≤ µ. (5.292)
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We take the convention that the Hd measure of a d-dimensional disk of radius
r ≥ 0 equals (2r)d. According to the density Theorem ([Mat], Theorem 6.9),
it suffices to prove that for Hd-almost all x ∈ E,

lim inf
r

(2r)−dµ(B(x, r)) ≥ 1. (5.293)

The proof relies on an argument introduced by Fang ([Fn]). It is an alterna-
tive to the concentration Lemma of Dal Maso, Morel and Solimini and relies
on the fact that E is Hd-rectifiable. First of all, we define the "good" points
x ∈ X we want to work with. As µ is a rectifiable measure, for µ-ae. x ∈ X,
there exists a d-plane V passing through x and a positive constant θ > 0
such that

r−dµx,r ⇀ θHd V, (5.294)

where µx,r : A 7→ µ(x + r(A − x)) and the arrow ⇀ denotes the weak con-
vergence of Radon measures as r → 0. Moreover, for µ-ae. x ∈ Γ,

lim
r→0

r−dµ(B(x, r) \ Γ) = 0. (5.295)

This can be justified by applying ([Mat], Theorem 6.2) to the set E \Γ. Fix
x ∈ Γ satisfying (5.294) and (5.295). We prove that for all 0 < ε ≤ 1, there
exists r > 0 such that

V ∩B(x, r) ⊂ { y ∈ X | d(y,Γ) ≤ ε|y − x| } . (5.296)

If the statement is not true, there exists a sequence yk ∈ V such that yk → x
and d(yk,Γ) > ε|yk − x|. As x ∈ Γ and yk /∈ Γ, we necessarily have yk 6= x.
Let rk = |yk − x| and ŷk = x + r−1

k (yk − x). The point ŷk belongs to
V ∩ S(x, 1) where S(x, 1) is the unit sphere centred at x. By compactness,
we can assume that ŷk → ẑ ∈ V ∩ S(x, 1). Observe that by definition,

yk = x+ rk(ŷk − x). (5.297)

We consider the sequence (zk) defined by

zk = x+ rk(ẑ − x) (5.298)

which has the advantage that, by the weak convergence (5.294),

lim
k
r−dk µ(B(zk,

1
2εrk)) = θHd(V ∩B(z, 1

2ε)) > 0. (5.299)

On the other hand, we have |yk − zk| ≤ rk|ŷk − ẑ| so, whenever k is big
enough such that |ŷk − ẑ| ≤ 1

2ε,

d(zk,Γ) ≥ d(yk,Γ)− |zk − yk| ≥ 1
2εrk. (5.300)
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This means that the open ball B(zk,
1
2εrk) is disjoint from Γ. Then, by

(5.295),

lim sup
k

r−dk µ(B(zk,
1
2εrk)) ≤ lim sup

k
r−dk µ(B(x, 2rk) \ Γ) = 0. (5.301)

This is a contradiction!
Now, we fix x which satisfies the weak convergence (5.294) and which

satisfies either x /∈ Γ, either x ∈ Γ and (5.295). Our goal is to prove that θ ≥
1. We proceed by contradiction and assume that θ < 1. This assumptions
will allow us build special sliding deformations in small balls centered at x.
To simplify the notations, we assume that x = 0 and that

V = {x ∈ Rn | xi = 0 for i = d+ 1, . . . , n } . (5.302)

In particular, we identify V to Rd. For r > 0, let Qr = [−r, r]n. We fix
0 < a ≤ 1

3 (close to 0). We introduce the disk

Dr = (1− 2a)[−r, r]d, (5.303)

we define layers surrounding this disk,

Rr = (1− 2a)[−r, r]d × a[−r, r]n−d (5.304)

R′r = (1− a)[−r, r]d × 2a[−r, r]n−d (5.305)

R′′r = [−r, r]d × 3a[−r, r]n−d. (5.306)

and we define an area of Qr away from V ,

Sr = Qr \ (V × a]−r, r[n−d). (5.307)

We are going to project Ei ∩Rr onto ∂Dr. The layers Rr, R′r, R′′r will help
us to make a transition between this projection and the identity outside Qr.
The set Sr is a transition area where we do not control well the image of Ei.
To solve this problem, we are going to make a Federer-Fleming projection of
Ei ∩ Sr into a (d− 1)-skeleton so as to assume that Hd(Ei ∩ Sr) = 0. This
strategy is analogous to the proof of Theorem 1.3 in [DPDRG1] but we have
to deal with the boundary.

We introduce a neighborhood of Sr,

Or = ]−2r, 2r[n \ (V × a
2 [−r, r]n−d). (5.308)

The main property of Or is that we can assume that Ei has a very small
measure Hd in Or. Let us precise this claim. Observe that by the weak
convergence Hd Ei ⇀ µ in X, we have

lim sup
i

Hd(Ei ∩Or) ≤ µ(Or) (5.309)
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and by the weak convergence r−dµ0,r ⇀ θHd V ,

lim
r
r−dµ(Or) = Hd V (]−2, 2[n \ (V × a

2 [−1, 1]n−d) (5.310)

= 0. (5.311)

Now we fix ε > 0 (to be chosen later). For r > 0 small enough, µ(Or) < εrd

and then for i big enough (depending on r),

Hd(Ei ∩Or) < εrd. (5.312)

Then, we build a global sliding deformation φ in Or such that

Hd(φ(Ei ∩Or)) ≤ CHd(E ∩Or) (5.313)

Hd(φ(Ei ∩Or) ∩ Sr) = 0. (5.314)

The idea consists in applying a Federer-Fleming projection to the set Ei∩Sr.
However, we work with its image T−1(Ei ∩ Sr) because the rigid boundary
is easier to deal with. Let x′ = T−1(0), there exists a cell A ∈ K such that
x′ ∈ int(A). By definition of a n-complex, there exists a n-chart (the image of
a subcomplex of En by a similitude) which contains A and which is subordi-
nated to K. We deduce that there exists a Cartesian frame (O, (e1, . . . , en))
and a length ` > 0 such that

A = O + `
m∑

i=1

[0, 1]ei, where m = dim(A), (5.315)

and for all cells of the form

D = O + `

n∑

i=1

[0, αi]ei, where α ∈ {−1, 0, 1 }n , (5.316)

if D contains A (that is, αi = 1 for i = 1, . . . ,m), there exists B ∈ K such
that int(D) ⊂ int(B). Fix q ∈ N∗ and let Mr be the complex composed of
all the cells of the form

O +

n∑

i=1

[pi, pi + (2−qr)αi]ei, (5.317)

where p ∈ (2−qr)Zn and α ∈ {−1, 0, 1 }n. This is a uniform grid of sidelength
2−qr as in Example 4.1.1 of Chapter 4. Then, we consider the subcomplex

Nr = {D ∈Mr | D ∩ T−1(Sr) 6= ∅ } . (5.318)

It is clear that T−1(Sr) ⊂ int(Nr). Moreover, we are going to see if q is big
enough (depending on n, κ, Γ, a),

|Nr| ⊂ T−1(Or). (5.319)
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By definition of a cell D ∈ Nr, the image T (D) meets Sr. As Or contains
a (C−1ar)-neighborhood of Sr and diam(D) ≤ C2−qr, we deduce that if q
is big enough (depending on n, κ, Γ, a but not r, i), T (D) ⊂ Or. Next,
we justify that Nr � K for r small enough. This is an important property
to ensure that a Federer-Fleming projection in Nr preserves the cells of K.
First, observe that the set

O + `
∑

i≤m
]0, 1[ei + `

∑

i>m

]−1, 1[ei (5.320)

is a neighborhood of in(A) and in particular of x′ = T−1(0). We assume
r > 0 so that T−1(2Qr) is included in this neighborhood. Let D be a cell of
Nr. It can be written

D = O +
n∑

i=1

[pi, pi + (2−qr)αi]ei, (5.321)

where p ∈ (2−qr)Zn and α ∈ {−1, 0, 1 }n. Since |D| ⊂ T−1(Or) ⊂ T−1(2Qr),
we have in particular

D ⊂ O + `
∑

i≤m
]0, 1[ei + `

∑

i>m

]−1, 1[ei. (5.322)

By projection on the coordinate axis, it follows that for i = 1, . . . ,m,

[pi, pi + (2−qr)αi] ⊂ `]0, 1[ (5.323)

and for i = m+ 1, . . . , n,

[pi, pi + (2−qr)αi] ⊂ `]−1, 1[. (5.324)

As pi ∈ (2−qr)Z and αi ∈ {−1, 0, 1 }, we deduce that for i = m + 1, . . . , n,
there exists βi ∈ {−1, 0, 1 } such that

(pi, pi + (2−qr)αi) ⊂ `(0, βi) (5.325)

where (x, y) means ]x, y[ if x 6= y and {x } if x = y. In summary, int(D) ⊂
int(D′) where

D′ = O + `
∑

i≤m
[0, 1]ei + `

∑

i>m

[0, βi]ei. (5.326)

By definition of the Cartesian frame (O, (e1, . . . , en)) and the sidelength `,
there exists B ∈ K such that int(D′) ⊂ int(B). In particular, int(D) ⊂
int(B). This proves that Nr � K.

Let φ′ be a Federer-Fleming projection of T−1(Ei)∩ int(Nr) in Nr. Thus,
φ′ : |Nr| → |Nr| is a Lipschitz map such that

1. for all D ∈ Nr, φ′(D) ⊂ D;
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2. φ′ = id in |Nr| \ int(Nr);

3. for all D ∈ Nr,

Hd(φ′(T−1(Ei) ∩ int(D))) ≤ CHd(T−1(Ei) ∩ int(D)). (5.327)

By (5.327), we have

Hd(φ′(T−1(Ei) ∩ int(Nr))) ≤ CHd(T−1(Ei) ∩ int(Nr)). (5.328)

By construction, |Nr| ⊂ T−1(Or) so the previous ineqality gives

Hd(φ′(T−1(Ei) ∩ int(Nr))) ≤ CHd(T−1(Ei) ∩ T−1(Or)) (5.329)

≤ CHd(Ei ∩Or). (5.330)

We extend φ′ over Rn by φ′ = id in Rn \ int(Nr) (this extension is still
Lipschitz, as we have check at the beginning of the proof of Lemma 5.1.1).
It follows that

Hd(φ′(T−1(Ei) ∩ T−1(Or)))

≤ Hd(φ′(T−1(Ei) ∩ T−1(Or) ∩ int(Nr)))

+Hd(φ′(T−1(Ei) ∩ T−1(Or) \ int(Nr)))

(5.331)

≤ Hd(φ′(T−1(Ei) ∩ int(Nr))) +Hd(T−1(Ei) ∩ T−1(Or)) (5.332)

≤ CHd(Ei ∩Or). (5.333)

As φ′(T−1(Ei)) ∩ int(Nr) ⊂ φ′(T−1(Ei) ∩ int(Nr)), we have also

Hd(φ′(T−1(Ei)) ∩ int(Nr)) ≤ CHd(Ei ∩Or). (5.334)

We recall that Hd(Ei ∩ Or) ≤ Cεrd. The cells of Nr have a sidelength of
2−qr so if ε > 0 is chosen small enough (depending on n, κ, Γ, a but not
r, i), we can make additional projections in the d-dimensional cells D ∈ Nd

r

and obtain that
Hd(φ′(T−1(Ei)) ∩ int(Nr)) = 0; (5.335)

in particular
Hd(φ′(T−1(Ei)) ∩ T−1(Sr)) = 0. (5.336)

As Nr � K, φ′ preserves each cell of K and, by convexity, the homotopy
t 7→ tφ′ + (1 − t)id also preserves the cells of K. We conclude that φ′ is a
global sliding deformation along T−1(Γ) in T−1(Or). Thus, φ = T ◦φ′ ◦T−1

is a global sliding deformation along Γ in Or. By (5.333) and (5.336),

Hd(φ(Ei ∩Or)) ≤ CHd(Ei ∩Or) (5.337)

Hd(φ(Ei) ∩ Sr) = 0. (5.338)

115



In the next part, we work with the set φ(Ei) instead of Ei.
We are going to squash the points of φ(Ei) ∩ Rr to ∂Dr. Let π be the

orthogonal projection from Rn onto Dr. We want to postcompose π with a
radial projection onto ∂Dr. We prove that there exists a center of projection
ci ∈ int(Dr) \ π(φ(Ei)∩Rr) by comparing the measure Hd of φ(Ei)∩Rr to
the measure of Dr. As φ = id outside Or and by (5.337), we have

Hd(φ(Ei) ∩Rr) ≤ Hd(φ(Ei ∩Or) ∩Rr) +Hd(φ(Ei \Or) ∩Rr) (5.339)

≤ Hd(φ(Ei ∩Or)) +Hd(Ei ∩Rr) (5.340)

≤ CHd(Ei ∩Or) +Hd(Ei ∩Rr). (5.341)

Moreover,

lim sup
r

lim sup
i

r−dHd(Ei ∩Rr) ≤ lim
r
r−dµ(Rr) (5.342)

≤ θHd([−1, 1]d) (5.343)

and
lim
r

lim sup
i

r−dHd(Ei ∩Or) = 0 (5.344)

We deduce that if r is big enough and i big enough (depending on r),

Hd(φ(Ei) ∩Rr) < θ+1
2 Hd([−r, r]d). (5.345)

Finally, we assume a small enough (depending on θ) such that θ+1
2 < (1 −

2a)d. Thus,

Hd(φ(Ei) ∩Rr) < θ+1
2 Hd([−r, r]d) (5.346)

< (1− 2a)dHd([−r, r]d) (5.347)

< Hd(Dr). (5.348)

The map π is 1-Lipschitz so we have also Hd(π(φ(Ei)∩Rr)) < Hd(Dr). We
conclude that there exists a point ci ∈ int(Dr) such that ci /∈ π(φ(Ei)∩Rr).
As φ(Ei) ∩Rr is compact, there also exists a small radius ri > 0 such that

B(ci, ri) ⊂ int(Dr) \ π(φ(Ei) ∩Rr). (5.349)

Let ψ be the radial projection from Dr \ B(ci, ri) onto ∂Dr centered at ci.
We extend ψ as a Lipschitz function ψ : Dr → Dr. Let ϕ : Rn → [0, 1] be a
C(ar)−1-Lipschitz function such that ϕ = 1 on Rr and ϕ = 0 on Rn \ R′r.
Then we define

f = ϕ(ψ ◦ π) + (1− ϕ)id. (5.350)

Observe that f = ψ ◦ π in Rr and f = id in Rn \R′r. We have

f(R′r) ⊂ R′r (5.351)
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because ψ ◦ π takes its values in Dr ⊂ R′r and because R′r is convex. This
also implies that f(Qr) ⊂ Qr. The map f is Lipschitz on Rn because

f − id = ϕ · (ψ ◦ π − id), (5.352)

ϕ is Lipschitz with compact support and (ψ ◦π− id) is Lipschitz. We do not
have a good control over this Lipschitz constant but we can show that f is
C-Lipschitz on Qr \ (Rr ∪ Sr). On this set, the values of π belongs to ∂Dr

so

f − id = ϕ · (ψ ◦ π − id) (5.353)
= ϕ · (π − id). (5.354)

On the one hand, ϕ is C(ar)−1-Lipschitz and |ϕ| ≤ 1. On the other hand,
(π − id) is 2-Lipschitz and |π − id| ≤ Car on Qr \ (Rr ∪ Sr).

Next, we want to postcompose f with a retraction onto the boundary to
obtain a sliding deformation. If 0 /∈ Γ, then for r > 0 small enough, Qr is
disjoint from Γ and there is nothing to do. We assume that 0 ∈ Γ and we
define our retraction. There exists an open set O ⊂ X containing Γ and a
C-Lipschitz map r : O → Γ such that r = id on Γ. We are going to see that
if r is small enough, then |r − id| ≤ Car in R′r. By (5.296), we can assume
that r > 0 is small enough so that

[−r, r]d ⊂ { y ∈ X | d(y,Γ) ≤ ar } . (5.355)

Let y ∈ R′r and let u be the orthogonal projection of y onto V . Thus,
u ∈ [−r, r]d and |y − u| ≤ Car. By (5.355), d(u,Γ) ≤ ar so there exists
v ∈ Γ such that |y − v| ≤ Car. Then,

|(r − id)(y)| = |(r − id)(y)− (r − id)(v)| (5.356)
≤ C|y − v| (5.357)
≤ Car. (5.358)

We restrict r to Γ∪R′r and then extend this restriction as a C-Lipschitz map
r : X → Rn such that |r − id| ≤ Car. We still have r(R′r) ⊂ Γ and r = id
on Γ. Let ϕ′ : X → [0, 1] be a C(ar)−1-Lipschitz function such that ϕ′ = 1
on R′r and ϕ = 0 on X \R′′r . We finally define

p = ϕ′r + (1− ϕ′)id. (5.359)

Observe that p = r in R′r and p = id in X \ R′′r and p = id on Γ because
r = id on Γ. The map p is C-Lipschitz on X because

p− id = ϕ′(r − id) (5.360)

and ϕ′ is C(ar)−1-Lipschitz, |ϕ′| ≤ 1, r − id is C-Lipschitz, |r − id| ≤ Car.
As |p− id| ≤ Car, we can assume a small enough so that

p(Qr) ⊂ int(2Qr). (5.361)
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Now, we consider g = p ◦ f . It is clear that g(Qr) ⊂ int(2Qr), g = id
in Rn \ int(Qr). We have g(Γ) ⊂ Γ because f(R′r) ⊂ R′r and p(R′r) ⊂ Γ
and f = id outside R′r. Finally, we justify that the map g is a global sliding
deformation in int(2Qr). We introduce

G =





id in ({ 0 } ×Rn) ∪ (I × (Rn \ int(Qr)))

p ◦ gt in I × Γ

g in { 1 } ×Rn,

(5.362)

where gt = (1 − t)id + tg. We see as previously that Gt(Γ) ⊂ Γ. The map
G is continuous as a pasting of continuous maps in closed domains of X.
According to the Tietze extension theorem, it can be extend as a continuous
map G : I × Rn → Rn such that Gt(Qr) ⊂ int(2Qr). Thus, g is a sliding
deformation in int(2Qr).

Both g and φ are sliding deformations in int(2Qr). We apply the quasi-
minimality of Ei with respect to gφ in int(2Qr). We assume h small enough
(depending only on n) such that hHd(Ei∩hB(0, 2

√
nr)) ≤ 1

2H
d(Ei∩int(Qr)).

As gφ = id outside int(Qr) ∪Or, the quasiminimality gives

Hd(Ei ∩ (int(Qr) ∪Or)) ≤ CHd(gφ[Ei ∩ (int(Qr) ∪Or)]) + εi. (5.363)

Since g = p ◦ f and p is C-Lipschitz, we have

Hd(gφ[Ei ∩ (int(Qr) ∪Or)]) ≤ CHd(fφ[Ei ∩ (int(Qr) ∪Or)]). (5.364)

By the fact that f = id outside Qr, that φ = id outside Or and by (5.337),
we estimate

Hd(fφ[Ei ∩ (int(Qr) ∪Or)])
≤ Hd(f(φ(Ei) ∩Qr)) +Hd(f(φ[Ei ∩ (int(Qr) ∪Or)] \Qr))
≤ Hd(f(φ(Ei) ∩Qr)) +Hd(φ[Ei ∩ (int(Qr) ∪Or)] \Qr)

(5.365)

≤ Hd(f(φ(Ei) ∩Qr)) +Hd(φ(Ei ∩Or)) (5.366)

≤ Hd(f(φ(Ei) ∩Qr)) + CHd(Ei ∩Or). (5.367)

We decompose the set φ(Ei) ∩ Qr in three parts by taking its intersection
with Rr, Sr and Qr \ (Rr ∪ Sr). First, f(φ(Ei) ∩Rr) ⊂ ∂Dr so

Hd(f(φ(Ei) ∩Rr)) = 0. (5.368)

Next, by (5.338),
Hd(f(φ(Ei) ∩ Sr)) = 0. (5.369)

Finally, f is C-Lipschitz on Qr \ (Rr ∪ Sr) so

Hd(f(φ(Ei) ∩Qr \ (Rr ∪ Sr)))
≤ CHd(φ(Ei) ∩Qr \ (Rr ∪ Sr))

(5.370)

≤ CHd(Ei ∩Or) + CHd(Ei ∩Qr \ (Rr ∪ Sr)). (5.371)
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In sum,

Hd(Ei ∩ int(Qr)) ≤ CHd(Ei ∩Qr \ (Rr ∪ Sr))
+ CHd(Ei ∩Or) + εi. (5.372)

Then we pass to the limit i→ +∞ and obtain

µ(int(Qr)) ≤ Cµ(Qr \ (Rr ∪ Sr)) + Cµ(Or). (5.373)

We multiply both sides by r−d and we pass to the limit r → 0. In particular,
lim supr r

−dµ(Or) = 0 so

Hd([−1, 1]d) ≤ CHd([−1, 1]d \ (1− 2a)[−1, 1]d). (5.374)

This is true for all a small enough so we can make a→ 0 and obtain

Hd([−1, 1]d) = 0. (5.375)

Contradiction!
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Chapter 6

Direct method

6.1 Scheme

We use Theorem 5.2.1 to derive a scheme of direct method. This is the same
strategy as [DLGM], [DPDRG1] but we can minimize the competitors on
the boundary. Our working space is an open set X of Rn.

Corollary 6.1.1 (Direct method). Fix a Lipschitz subset Γ of X which is
Hd regular. Let C be a class of closed subsets of X such that

m = inf {Hd(E) | E ∈ C } <∞ (6.1)

and assume that for all E ∈ C, for all sliding deformations f of E in X,

m ≤ Hd(f(E)). (6.2)

Let (Ek) be a minimizing sequence for Hd in C. Up to a subsequence, there
exists a coral1 minimal set E∞ in X such that

Hd Ek ⇀ Hd E∞. (6.3)

where the arrow ⇀ denotes the weak convergence of Radon measures in X.
In particular, Hd(E∞) ≤ m.

Remark 6.1.1. The limit E∞ may not belong to C.

Proof. Let (Ek) be a minimizing sequence. Then (Hd Ek) is a bounded
sequence of Radon measure in X and, up to a subsequence, there exists a
Radon measure µ in X such that

Hd Ek ⇀ µ. (6.4)

1A set E ⊂ X is coral in X if E is the support of Hd E in X. Equivalently, E is
closed in X and for all x ∈ E and for all r > 0, Hd(E ∩B(x, r)) > 0.
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For all k, for all global sliding deformation f in X,

Hd(Ek) ≤ m+ o(1) (6.5)

≤ Hd(f(Ek)) + o(1) (6.6)

≤ Hd(f(Ek ∩Wf )) +Hd(Ek \Wf ) + o(1) (6.7)

whence
Hd(Ek ∩Wf ) ≤ Hd(f(Ek ∩Wf )) + o(1). (6.8)

According to Theorem 5.2.1, we have µ = Hd E, where E is the support of
µ. Moreover, for all sliding deformation f in X,

Hd(E ∩Wf ) ≤ Hd(f(E ∩Wf )). (6.9)

6.2 Application to the Reifenberg problem

6.2.1 Reifenberg competitors

A Reifenberg competitor is a set which cancels the holes of the boundary
in the language of algebraic topology. The goal of this section is to define
Reifenberg competitors and to prove a nice limiting theorem: the class of
Reifenberg competitors is closed under weak limits. Given a topological space
X and an integer k , Hk(X;G) is the kth Čech homology group of X over
an Abelian coefficient group G. We abbreviate this notation as Hk(X) since
the coefficient group is not significant for us. Throughout this section, we fix
a closed set Γ of Rn and a subgroup L of Hd−1(Γ).

Definition 6.2.1 (Reifenberg competitor). A Reifenberg competitor is a
compact subset E ⊂ Rn such that the morphism induced by inclusion,

Hd−1(Γ) Hd−1(E ∪ Γ),

is zero on L.

This definition is different from the original definition of Reifenberg be-
cause the competitor E may not contain Γ. In the remainder of this para-
graph, we compare this definition to the definition of Nakauchi ([Na]). Let E
be a compact subset of Rn and consider the following commutative diagram
induced by the inclusions:

Hd−1(Γ)

Hd−1(E ∩ Γ) Hd−1(E ∪ Γ).

Hd−1(E)

j∗i∗

i′∗ j′∗

122



E

Γ

E

Γ
Figure 6.1: Two types of Plateau problem. The competitors have a fixed
boundary on the left and a free boundary on the right.

The set E is a Nakauchi competitor provided that for all v ∈ L, there exists
u ∈ Hd−1(E ∩ Γ) such that i∗(u) = v and i′∗(u) = 0. Assuming that the
Mayer Vietoris sequence holds for the sets Γ, E in E ∪ Γ, the following
sequence is exact:

Hd−1(E ∩ Γ) Hd−1(Γ)⊗Hd−1(E) Hd−1(E ∪ Γ).
(i∗,i′∗) j∗−j′∗

Observe that E satisfies Definition 6.2.1 if and only if all elements of the
form (v, 0) ∈ L⊗Hd−1(E) are in the kernel of j∗− j′∗. And E is a Nakauchi
competitor if and only if all elements of the form (v, 0) ∈ L ⊗ Hd−1(E)
are in the image of (i∗, i′∗). Thus, the Mayer Vietoris sequence implies that
Definition 6.2.1 is equivalent to the definition of Nakauchi. In that sense, we
consider these definitions to be essentially equivalent. We favor Definition
6.2.1 because we are able to prove that it is stable under weak limits (see
Lemma 6.2.3).

6.2.2 Operations on the competitors

We present three operations that preserve the Reifenberg competitors: supsets,
continuous image by sliding deformations and weak limits.

Lemma 6.2.1. Let E be a Reifenberg competitor. Let F be a compact subset
of Rn containing E. Then F is a Reifenberg competitor.

Proof. This follows from the following commutative diagram

Hd−1(Γ) Hd−1(E ∪ Γ)

Hd−1(F ∪ Γ)

where the arrows are the morphisms induced by inclusion.

Lemma 6.2.2. Let E be a Reifenberg competitor. Let f : E ∪ Γ → Rn be
a continuous map such that there exists a continuous map F : I × Γ → Γ
satisfying F0 = id and F1 = f . Then f(E) is a Reifenberg competitor.
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Proof. Consider the following commutative diagram

Hd−1(Γ) Hd−1(E ∪ Γ)

Hd−1(Γ) Hd−1(f(E) ∪ Γ)

f∗ f∗

where the unlabeled arrows are the morphisms induced by inclusion. As
f : Γ→ Γ is homotopic to id, f∗ = id on Hd−1(Γ).

The lemma assumed f to be defined on E∪Γ but the image f(E) depends
only on the values of f on E. In the two following remarks, we are going to
see that it is generally enough for f to be defined on E. In particular, the
second remark applies to sliding deformations.

Remark 6.2.1. Let f : E → Rn be a continuous map such that f = id on
E ∩ Γ. As E and Γ are closed sets of Rn, the gluing

g =

{
f in E
id in Γ

(6.10)

is continuous. Then Gt = (1− t)id + tg is a continuous homotopy from id to
g and Gt = id on Γ. We deduce that f(E) is a Reifenberg competitor.

Remark 6.2.2. Let f : E → Rn be a continuous map such that there exists
a continuous map F : I× (E ∩Γ)→ Γ satisfying F0 = id and F1 = f . Let us
assume that Γ is a neighborhood retract i.e. there exists an open set O ⊂ Rn

and a continuous map r : O → Γ such that r = id on Γ. According to the
Homotopy Extension Lemma, F extends as a continuous map F : I×Γ→ Γ.
Moreover, the gluing

g =

{
f in E
F1 in Γ

(6.11)

is continous because E and Γ are closed sets of Rn. We deduce that f(E) is
a Reifenberg competitor.

We finally present our lemma about weak limits of Reifenberg competi-
tors.

Lemma 6.2.3. Let (Ek) ⊂ Rn be a sequence of Reifenberg competitors. Let
E be a compact subset of Rn. We assume that

1. there exists a compact set C ⊂ Rn such that for all k, Ek ⊂ C;

2. for all open sets V containing E ∪ Γ,

lim
k
Hd(Ek \ V ) = 0. (6.12)
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Then E is a Reifenberg competitor.

The proof requires a preliminary lemma about the general position of
spheres. For x ∈ Rn and r > 0, let S(x, r) denote the Euclidean sphere of
center x and radius r of Rn. Given an integer k, a k-sphere is an Euclidean
sphere of positive radius relative to a (k + 1)-affine plane. We extend this
definition to k < 0, by calling k-sphere the empty set.

Lemma 6.2.4. Let Sk be a k-sphere in Rn and let x be a point in Rn. Then
for all r > 0 (except for at most one value), Sk ∩ S(x, r) is a subset of a
(k − 1)-sphere.

Proof. We assume k ≥ 1. The proof is based on the observation that the
intersection of a sphere with a k-affine plane is either empty, a point, or a
(k − 1)-sphere. In all cases, this intersection is part of a (k − 1)-sphere. Let
P0 be the (k+1)-affine plane associated to Sk, let x0 ∈ P0 be the center of Sk

and r0 > 0 be its radius. For r > 0, a point y ∈ Sk ∩S(x, r) is characterized
by the system

y ∈ P0 (6.13a)
|y − x| = r (6.13b)
|y − x0| = r0 (6.13c)

or equivalently

y ∈ P0 (6.14a)
|y − x| = r (6.14b)

|y − x|2 − |y − x0|2 = r2 − r2
0. (6.14c)

Assume x = x0. If r 6= r0 (this removes one value of r), equation (6.14c)
has no solutions. Then, Sk ∩ S(x, r) is empty and it is part of a (k − 1)-
sphere. Assume x 6= x0. Equation (6.14c) defines an hyperplane and, if
|x− x0|2 6= r2 − r2

0 (this removes at most one value of r), this hyperplane
does not contain x0. Then, the intersection of the two planes (6.14a) and
(6.14c) is included in a k-affine plane. The intersection of this plane with
the sphere (6.14b) is part of a (k − 1)-sphere as seen in introduction.

Proof of Lemma 6.2.3. Observe that the sequence (Ek ∪ E)k also satisfies
the Lemma assumptions. So without loss of generality, we assume that for
all k, E ⊂ Ek. We define a general covering as an open family γ = (γj)j∈Vγ
of Rn satisfying the following properties:

1. there exists k such that Ek ∪ Γ ⊂ ⋃j∈Vγ γj ;

2. for every subset S ⊂ Vγ of cardinal d+ 1,
⋂

S

γj 6= ∅ =⇒ (E ∪ Γ) ∩
⋂

S

γj 6= ∅. (6.15)
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The main goal of the proof is to show that for any open covering α = (αi)i of
E ∪Γ, there exists a general covering γ = (γj)j∈Vγ such that ((E ∪Γ)∩ γj)j
is a refinement of α. Let us explain how to conclude from there. A general
covering γ induces simplicial complexes:

K(Γ) = {S ⊂ Vγ finite | Γ ∩
⋂

S

γj 6= ∅ } , (6.16)

K(E ∪ Γ) = {S ⊂ Vγ finite | (E ∪ Γ) ∩
⋂

S

γj 6= ∅ } , (6.17)

K(Ek ∪ Γ) = {S ⊂ Vγ finite | (Ek ∪ Γ) ∩
⋂

S

γj 6= ∅ } . (6.18)

The inclusions K(Γ) ⊂ K(E ∪ Γ) ⊂ K(Ek ∪ Γ) induce morphisms i∗ and j∗:

Hd−1(K(Γ)) Hd−1(K(E ∪ Γ)) Hd−1(K(Ek ∪ Γ)).i j

As Ek is a Reifenberg set, we have j∗ ◦ i∗ = 0 on L. However, the second
axiom of general coverings says that the simplicial complexes K(E ∪ Γ) and
K(Ek ∪ Γ) have the same d-simplexes. Hence the d-chains of K(E ∪ Γ) and
K(Ek ∪ Γ) are identical and they induce the same boundaries. We deduce
that j∗ is injective and then, i∗ = 0 on L. Since every open covering α of
E ∪ Γ is refined by such general covering γ, we conclude that the morphism
induced by inclusion Hd−1(Γ)→ Hd−1(E ∪ Γ) is nul on L. Step 1. We fix a
relative open covering α = (αi)i of E ∪ Γ and we build a locally finite open
sequence β = (βj)j∈N in Rn such that

1. β cover E ∪ Γ and ((E ∪ Γ) ∩ βj)j is a refinement of α;

2. for every finite subset S ⊂ N, the intersection of boundaries
⋂
S ∂βi is

included in a finite union of (n−m)-spheres, where m is the cardinal
of S;

3. for every finite subset S ⊂ N,
⋂

S

βj 6= ∅ =⇒ (E ∪ Γ) ∩
⋂

S

βj 6= ∅. (6.19)

We work with the closed set F := E ∪ Γ. For all x ∈ F , there exists i such
that x ∈ αi so there exists an open ball B centred at x such that F∩2B ⊂ αi.
We extract a sequence of open ball (Bj)j∈N covering F such that (2Bj)j is
locally finite in Rn and (F ∩ 2Bj)j is a refinement of α. Next, we build by
induction an open sequence (βj)j∈N such that for all j,

1. F ∩Bj ⊂ βj and there exists i such that F ∩ βj ⊂ αi.

2. for every subset S ⊂ { 1, . . . , j }, the intersection of boundaries
⋂
S ∂βi

is included in a finite union of (n−m)-spheres, where m is the cardinal
of S;

126



3. for every subset S ⊂ { 1, . . . , j },
⋂

S

βi 6= ∅ =⇒ F ∩
⋂

S

βi 6= ∅. (6.20)

Assume that β0, . . . , βj−1 has been built and let us built βj . For all x ∈
F ∩Bj , there exists an open ball B centered at x such that

1. B ⊂ 2Bj ;

2. for all finite subset S ⊂ { 1, . . . , j − 1 }, the intersection of boundaries
∂B ∩⋂S ∂βi is included in a finite union of (n−m− 1)-spheres, where
m is the cardinal of S;

3. for all finite subset S ⊂ { 1, . . . , j − 1 },

(F ∩Bj) ⊂ Rn \
⋂

S

βj =⇒ B ⊂ Rn \
⋂

S

βj (6.21)

or, équivalently

B ∩
⋂

S

βj 6= ∅ =⇒ (F ∩Bj) ∩
⋂

S

βj 6= ∅. (6.22)

Extract a finite covering of F ∩Bj by such balls B and denote βj their union.
Then βj solves the next step of the induction.

Step 2. We complete the family β with an open set β∞ to obtain a covering
of one of the Ek. We take care not to introduce new d-simplexes on E ∪ Γ.
We want to reduce the problem to the case where for some k, Ek \

⋃
j βj is a

(d− 1)-dimensional grid. Using a Federer-Fleming projection, we are going
to project Ek in a (d− 1)-dimensional grid away from E ∪ Γ. Let ` > 0 and
consider a complex K describing a uniform grid of sidelength ` in Rn (as
in Example 4.1.1 of Chapter 4). In particular, Rn = |K| = U(K) and the
cells of K have a diameter ≤ √n`. We select the cells in which we want to
perform the Federer-Fleming projection. Let B0 be an open ball such that
for all k, Ek ⊂ B0. Let L be the subcomplex of K defined by

L = {A ∈ K | ∃x ∈ A, x ∈ 2B0 and d(x,E ∪ Γ) ≥ 2
√
n` } . (6.23)

Consider x ∈ 2B0 such that d(x,E ∪ Γ) ≥ 2
√
n`. As Rn = U(K), there

exists a cell A ∈ K such that x ∈ int(A) and, in particular, A ∈ L. We
deduce that

{x ∈ 2B0 | d(x,E ∪ Γ) ≥ 2
√
n` } ⊂ U(L) (6.24)

As E ∪ Γ is a closed set included in
⋃
j βj , the function x 7→ d(x,E ∪ Γ) is

positive on Rn \ ⋃j βj . Moreover, 2B0 \
⋃
j βj is compact so the function

x 7→ d(x,E ∪ Γ) has a positive minimum on 2B0 \
⋃
j βj . This minimum
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does not depend on ` so we can assume ` small enough so that for all x ∈
2B0 \

⋃
j βj , d(x,E ∪ Γ) > 4

√
n`. By contraposition,

{x ∈ 2B0 | d(x,E ∪ Γ) ≤ 4
√
n` } ⊂

⋃

j

βj . (6.25)

Next, we introduce the Federer-Fleming projection of Ek ∩ |L| in L. First,
we justify that Hd(Ek∩|L|) <∞. In fact, we are going to have much better.
By local finitness of K, |L| is a closed subset of Rn. Since the cells of K have
a diameter ≤ √n`, the definition of L implies that the cells of L cannot meet
E ∪Γ. Thus, the set V = Rn \ |L| is open and contains E ∪Γ. According to
the Lemma assumptions,

lim
k
Hd(Ek ∩ |L|) = 0. (6.26)

Now, we apply Lemma 4.3.1 of Chapter 4 and we obtain a continuous map
φ : |L| → |L| such that

1. for all A ∈ L, φ(A) ⊂ A;

2. φ(Ek ∩ |L|) ⊂ |L| \
⋃ { int(A) | A ∈ L, dim(A) > d };

3. for all A ∈ Ld,

Hd(φ(Ek ∩ |L|) ∩A) ≤ CHd(Ek ∩ |L|) (6.27)

where C is a positive constant that depends only on n. When k is big enough
(depending on `), Hd(Ek ∩ |L|) becomes sufficiently small so that one can
perform additional projections in the d-dimensional cells of L. Thus, the
second axiom becomes

φ(Ek ∩ |L|) ⊂ |L| \
⋃
{ int(A) | A ∈ L, dim(A) ≥ d } ; (6.28)

In particular,

φ(Ek ∩ |L|) ∩ U(L) ⊂
⋃
{ int(A) | A ∈ L, dim(A) ≤ d− 1 } . (6.29)

The sets E∪Γ and |L| are disjoint and closed so we can extend φ continuously
on E ∪ Γ by φ = id. Observe that |φ− id| ≤ √n` because φ preserves the
cells of L. We can extend φ continuously on Rn in such that way that
|φ− id| ≤ √n`. Let us show that

φ(Ek) ⊂ |Ld−1| ∪
⋃

j∈N
βj . (6.30)

Remember that Ek ⊂ B0. We assume ` small enough so that
√
n` ≤ 1

whence φ(Ek) ⊂ 2B0. For x ∈ Ek, we distinguish two cases. If d(x,E∪Γ) ≤

128



3
√
n`, then d(φ(x), E∪Γ) ≤ 4

√
n` so φ(x) ∈ ⋃j βj by (6.25). If d(x,E∪Γ) ≥

3
√
n`, then we have both d(x,E ∪ Γ) ≥ 2

√
n` and d(φ(x), E ∪ Γ) ≥ 2

√
n`

so (6.25) shows that x ∈ U(L) and φ(x) ∈ U(L). By (6.29), we have thus
φ(x) ∈

∣∣Ld−1
∣∣.

Now, we are all set to introduce

β∞ = Rn \ (E ∪ Γ ∪
⋃

|S|=d

⋂

S

βj). (6.31)

First, we justify that β∞ is open. It suffices to show that the family
(⋂

S

βj

)

|S|=d
(6.32)

is locally finite in Rn. In step 1, we have built the family (βj)j∈N such that
it is locally finite: for all x ∈ Rn, there exists an open set U containing x
such that the set

S0 = { j ∈ N | U ∩ βj 6= ∅ } (6.33)

is finite. Let S be a subset of N with cardinal d such that U meets
⋂
S βj .

Then for all j ∈ S, U ∩ βj 6= ∅ and thus U ∩ βj 6= ∅ because U is open.
This means that S ⊂ S0. We deduce that there exists only a finite number
of subsets S ⊂ N of cardinal d such that U meets

⋂
S βj 6= ∅. We conclude

that β∞ is open. Observe that β∞ is disjoint from E ∪ Γ and that for all
S ⊂ N of cardinal d,

β∞ ∩
⋂

S

βj = ∅. (6.34)

In other words, for all S ⊂ N of cardinal d + 1, the condition
⋂
S βj 6= ∅

implies S ⊂ N. This means that the family (βj)j∈N∪{∞} does not induce
additional d-simplexes. Finally, we would like

φ(Ek) ⊂ β∞ ∪
⋃

j∈N
βj . (6.35)

This is where (d − 1)-dimensional grid helps us a lot. According to (6.30),
the condition (6.35) holds if |Ld−1| \ β∞ ⊂

⋃
j βj , that is, for all S ⊂ N of

cardinal d,
|Ld−1| ∩

⋂

S

βj ⊂
⋃

j

βj . (6.36)

We are going to see that a suitable translation of K allows to assume that
|Kd−1| is disjoint from the intersection of boundaries

⋂
S ∂βj . Fix S ⊂ N

of cardinal d. As
⋂
S ∂βj is included in a finite union of (n− d)-spheres, we

deduce that for all (d− 1)-linear plane P ,

Hn(
⋂

S

∂βj + P ) = 0. (6.37)
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In particular,
Hn(

⋂

S

∂βj + (−|Kd−1| )) = 0. (6.38)

This means that for almost every x ∈ Rn, x+|Kd−1| is disjoint from⋂S ∂βj .
There are only a countable number of subsets S ⊂ N of cardinal d so we
can find x such that this is true for all of them. To simplify the notation,
we assume that x = 0 and that (6.36 holds).

We are about to finish the proof. We define the domain Vγ = N ∪ {∞}
and for j ∈ Vγ , we define the open set γj = φ−1(βj). Remember that φ = id
on E ∪ Γ so for all j ∈ N ∪ {∞},

(E ∪ Γ) ∩ γj = (E ∪ Γ) ∩ βj . (6.39)

The family γ covers Ek ∪ Γ because (βj)j∈N∪{∞} covers E ∪ Γ and φ(Ek).
The family ((E ∪Γ)∩ γj)j∈Vγ is a refinement of α because (E ∪Γ)∩ γ∞ = ∅
and because for all j ∈ N, γj coincides with βj on E ∪ Γ. Finally, for all
S ⊂ Vγ of cardinal d+ 1, the condition

⋂

S

γj 6= ∅ (6.40)

implies
⋂
S βj 6= ∅ and then by (6.34), S ⊂ N. By construction of (βj)j∈N,

we have (E ∪ Γ) ∩⋂S βj 6= ∅ or equivalently,

(E ∪ Γ) ∩
⋂

S

γj 6= ∅ (6.41)

since γj coincides with βj on E ∪ Γ.

6.2.3 Existence of Plateau solutions

We solve two formulations of the Reifenberg Plateau problem. In the first
one, we work inX = Rn and minimizeHd(E) among Reifenberg competitors
E. In the second one, we work in X = Rn \ Γ (that is, away from the
boundary) and minimize Hd(E \ Γ) among Reifenberg competitors E. In
this second case, we do not require regularity on the boundary.

Theorem 6.2.1 (Reifenberg - minimizing the free boundary). Fix a Lips-
chitz subset Γ of Rn which is Hd regular and fix a subgroup L of Hd−1(Γ).
We assume that

m = inf {Hd(E) | E Reifenberg competitor } <∞ (6.42)

and that there exists a compact set C ⊂ Rn such that

m = inf {Hd(E) | E Reifenberg competitor, E ⊂ C } . (6.43)

Then there exists a Reifenberg competitor E ⊂ C such that Hd(E) = m.
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Proof. We work in X = Rn and we consider the class

C = {E | E is a Reifenberg competitor } . (6.44)

By Lemma 6.2.2, the class C is preserved by sliding deformations in Rn so
it satisfies the requirement of Corollary 6.1.1. Let (Ek) be a minimizing
sequence of C such that for all k, Ek ⊂ C. According to Corollary 6.1.1,
there exists a coral set E∞ of Rn such that

Hd Ek ⇀ Hd E∞. (6.45)

We prove that E∞ is a Reifenberg competitor. First, we show that E∞ is a
compact subset of C. Observe that Rn \C is an open set and that by lower
semicontinuity,

Hd(E∞ \ C) ≤ lim inf
k

Hd(Ek \ C) = 0. (6.46)

This proves that the support of Hd E∞ is included in C. As E is coral, E
is a subset of C and therefore compact. Next, we appy Lemma 6.2.3 to the
set E∞. For all open set V containing E∞ ∪ Γ,

lim sup
k

Hd(Ek \ V ) = lim sup
k

Hd(Ek ∩ C \ V ) (6.47)

≤ Hd(E∞ ∩ C \ V ) (6.48)
≤ 0. (6.49)

We conclude that E∞ is a Reifenberg competitor. Finally, we show that
Hd(E∞) = m. As E∞ is a Reifenberg competitor, we have of course
Hd(E∞) ≥ m. The fact that Hd(E∞) ≤ m was already observed in Corol-
lary 6.1.1.

The next theorem is similar to Theorem 1.3 of [Fn] (which is based on
Feuvrier’s construction) and Theorem 3.4 of [DPDRG3] (which is based on
weak limits of minimizing sequences). However, we have not dealt with
elliptic integrands yet.

Theorem 6.2.2 (Reifenberg - without minimizing the free boundary). Fix
a closed set Γ of Rn and a subgroup L of Hd−1(Γ). We assume that

m = inf {Hd(E \ Γ) | E Reifenberg competitor } <∞ (6.50)

and that there exists a compact set C ⊂ Rn such that

m = inf {Hd(E \ Γ) | E Reifenberg competitor, E ⊂ C } . (6.51)

Then there exists a Reifenberg competitor E ⊂ C such that Hd(E \ Γ) = m.
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Remark 6.2.3. If Γ is compact and Hd(Γ) <∞, this amounts to minimizing
Hd(E) among Reifenberg competitors containing Γ.

Proof. We work in X = Rn \ Γ (away from the boundary) and we consider
the class

C = {E \ Γ | E is a Reifenberg competitor } . (6.52)

By Lemma 6.2.2, the class C is preserved by sliding deformations in X so
it satisfies the requirement of Corollary 6.1.1. Let (Ek) be a sequence of
Reifenberg competitor such that (Ek \ Γ) is a minimizing sequence of C and
for all k, Ek ⊂ C. According to Corollary 6.1.1, there exists a coral set S∞
of X such that

Hd (Ek \ Γ) ⇀ Hd S∞ in X. (6.53)

We prove that there exists a Reifenberg competitor E∞ ⊂ C such that
S∞ = E∞ \Γ. First, we justify that S∞ ⊂ C. Observe that X \C is an open
set of X and that by lower semicontinuity,

Hd(S∞ \ C) ≤ lim inf
k

Hd((Ek \ Γ) \ C) = 0. (6.54)

As a consequence, the support of Hd S∞ in X is included in C. As S∞ is
coral in X, S∞ is a subset of C. Now, let

E∞ = (S∞ ∪ Γ) ∩ C (6.55)
= S∞ ∪ (Γ ∩ C). (6.56)

The set S∞ is closed in X so S∞ ∪ Γ is closed in Rn and E∞ is compact.
We appy Lemma 6.2.3 to the set E∞. For all open set V containing E∞∪Γ,
C \ V is a compact subset of X so

lim sup
k

Hd(Ek \ V ) = lim sup
k

Hd(Ek ∩ C \ V ) (6.57)

= lim sup
k

Hd((Ek \ Γ) ∩ C \ V ) (6.58)

≤ Hd(E∞ ∩ C \ V ) (6.59)
≤ 0. (6.60)

In conclusion, E∞ is a Reifenberg competitor and S∞ = E∞\Γ ∈ C. Finally,
we show that Hd(S∞) = m. As S∞ ∈ C, we have of course Hd(S∞) ≥ m.
The fact that Hd(S) ≤ m has already been observed in Corollary 6.1.1.
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Appendix A

Continuous and Lipschitz
extensions

A.1 Continuous extensions

Lemma A.1.1 (Tietze extension). Let X be a metric space and A be a
closed subset of X. Any continuous function f : A → Rn has a continous
extension g : X → Rn.

Remark A.1.1. Note that we can post-compose g with the orthogonal projec-
tion onto the closed convex hull of f(A). Thus, we obtain another continuous
extension whose image is included in the convex hull of f(A). For example,
if |f | ≤M , we can assume |g| ≤M as well.

A.2 Lipschitz extensions

The McShane-Whitney formula is a simple technique to build Lipschitz ex-
tensions.

Lemma A.2.1 (McShane-Whitney extension). Let X be a metric space and
A ⊂ X. Any Lipschitz function f : A → Rn has a Lipschitz extension
g : X → Rn.

Proof. We cover the case n = 1 because it suffices to extend each coordinate
functions independantly. Let L be the Lipschitz constant of f . Then the
McShane-Whitney extension of f is given by the formula

g(x) = inf
y∈A
{ f(y) + L|y − x| } . (A.1)

One can check that g is real-valued, coincides with f in A and is L-Lipschitz.
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Remark A.2.1. If ‖f‖ is the Lipschitz constant of f , the McShane-Whitney
extension is C‖f‖-Lipschitz, where C is a posivite constant that depends only
on n. In the case X = Rm, the Kirzbraun theorem gives an extension g with
the same Lipschitz constant as f . As before, we can post-compose g with
the orthogonal projection onto the closed convex hull of f(A). We obtain
another Lipschitz extension whose image is included in the closed convex
hull of f(A) (and this operation does not change the Lipschitz constant).
For example, if |f | ≤ M , we can assume |g| ≤ M as well without changing
the Lipschitz constant of g.

We also want to approximate continuous functions by Lipschitz functions.

Lemma A.2.2. Let X be a metric space. Let f : X → Rn be a bounded and
uniformly continuous function. Then for all ε > 0, there exists a Lipschitz
function g : X → Rn such that |g − f | ≤ ε.
Proof. We cover the case n = 1 because it suffices to approximate each
coordinate functions independently. We denote M = sup |f |. Let us fix
ε > 0; there exists δ > 0 such that for all x, y ∈ X with |x− y| ≤ δ,
|f(x)− f(y)| ≤ ε. Define

g(x) = inf
y∈X
{ f(y) + 2Mδ−1|x− y| } . (A.2)

One can check that g is real-valued, g ≤ f and g is 2Mδ−1-Lipschitz. Next,
we check that f ≤ g + ε. For x, y ∈ X, either |x− y| ≥ δ and then

f(x) ≤ f(y) + 2M (A.3)

≤ f(y) + 2Mδ−1|x− y| (A.4)

or |x− y| ≤ δ and then

f(x) ≤ f(y) + ε (A.5)

≤ f(y) + 2Mδ−1|x− y|+ ε. (A.6)

In both cases, f(x) ≤ f(y) + 2Mδ−1|x− y|+ ε and since y ∈ X is arbitrary,
f(x) ≤ g(x) + ε.

Corollary A.2.1. Let X be a metric space. Let f : X → Rn be a bounded
uniformily continuous function which is Lipschitz on some subset A ⊂ X.
Then, for all ε > 0, there exists a Lipschitz function g : X → Rn such that
|g − f | < ε in X and g = f in A.

Proof. According to Lemma A.2.2, there exists a Lipschitz function g : X →
Rn such that |g − f | ≤ ε

2 . The function u = f − g is Lipschitz on A and
satisfies |u| ≤ ε

2 , so Lemma A.2.1 say that it admits a Lipschitz extension
v : X → Rn with |v| ≤ ε

2 . We conclude that g + v is a solution to our
problem.
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Appendix B

Grassmannian space

Let E be an Euclidean vector space and d be a nonnegative integer. The
Grassmannian G(d,E) is the set of all d-linear planes of E. In the case
E = Rn, G(d,E) is simply denoted by G(d, n). The operator norm with
respect to the Euclidean norm of a linear map u : E → E is denoted by
‖u‖E or ‖u‖ when there is no ambiguity.

B.1 Metric structure

Each linear plane V ∈ G(d, n) is uniquely identified by the orthogonal pro-
jection pV onto V . This correspondance induces a metric on G(d, n):

d(V,W ) = ‖pV − pW ‖.

Remark B.1.1. The action of O(n) on G(d, n), (g, V ) 7→ g(V ), is distance-
preserving because pg(V ) = gpV g

−1.

Remark B.1.2. The application G(d, n)→ G(n− dn), V → V ⊥ is an isome-
try. It establishes a duality between G(d, n) and G(n− d, n).

It is helpful to compute the norm ‖pV − pW ‖ on specific subspaces.

Lemma B.1.1. For V,W ∈ G(d, n),

d(V,W ) = max { ‖pV − pW ‖V , ‖pV − pW ‖V ⊥ }
= max { ‖pV − pW ‖V , ‖pV − pW ‖W } .

Proof. For x ∈ Rn, we denote xV = pV (x) and xV ⊥ = pV ⊥(x). Note that
(pV − pW )(xV ) ∈W⊥ and (pV − pW )(xV ⊥) ∈W so

|pV (x)− pW (x)|2 = |pV (xV )− pW (xV )|2 + |pV (xV ⊥)− pW (xV ⊥)|2.

We deduce that

‖pV − pW ‖ ≤ max { ‖pV − pW ‖V , ‖pV − pW ‖V ⊥ } .

137



Since the maps (pV − pW ) : V ⊥ →W and (pV − pW ) : W → V ⊥ are adjoints
of one another, we have ‖pV − pW ‖V ⊥ = ‖pV − pW ‖W . Finally, it is clear
that

max(‖pV − pW ‖V , ‖pV − pW ‖W ) ≤ ‖pV − pW ‖.

The next lemma describes the local structure of G(d, n).

Lemma B.1.2. 1. For all V,W ∈ G(d, n), d(V,W ) ≤ 1 and there is
equality if and only if V ∩W⊥ 6= 0 or V ⊥ ∩W 6= 0.

2. Let V,W ∈ G(d, n) be such that d(V,W ) < 1, then for all x ∈W ,

|x| ≤ 1√
1− d(V,W )2

|pV (x)| (B.1)

Thus pV induces an isomorphism fromW to V andW = { x+ ϕ(x) | x ∈ V },
where ϕ : V → V ⊥, x→ p−1

V (x)− x.

3. Let V,W ∈ G(d, n) and assume there exists a linear application ϕ : V →
V ⊥ such that W = { x+ ϕ(x) | x ∈ V }, then

d(V,W ) =
‖ϕ‖√

1 + ‖ϕ‖2
. (B.2)

Proof. 1) For x ∈ Rn, the orthogonal projection pV (x) satisfies the equation
pV (x) · (x− pV (x)) = 0 which is equivalent to

∣∣pV (x)− x
2

∣∣ = |x|
2 (we have a

similar property for pW (x)). According to the triangular inequality,

|pV (x)− pW (x)| ≤
∣∣∣pV (x)− x

2

∣∣∣+
∣∣∣pW (x)− x

2

∣∣∣

≤ |x|
2

+
|x|
2

≤ |x|.

so ‖pV − pW ‖ ≤ 1. Assume that |pV (x)− pW (x)| = |x| for some x ∈ Rn \ 0.
The previous triangular inequality becomes an egality:

|pV (x)− pW (x)| =
∣∣∣pV (x)− x

2

∣∣∣+
∣∣∣pW (x)− x

2

∣∣∣.

We deduce that pV (x) and pW (x) are antipodals on the sphere S(x2 ,
|x|
2 ),

whence
pV (x)− x

2
= −

(
pW (x)− x

2

)

or equivalently
pV (x) + pW (x) = x.
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As x 6= 0, we have either pV (x) 6= 0 or pV ⊥(x) 6= 0. In the first case,

pV (x) = pW⊥(x) ∈ V ∩W⊥ \ 0

and in the second case

pV ⊥(x) = pW (x) ∈ V ⊥ ∩W \ 0.

The converse is straighforward.
2) For all x ∈W ,

|x|2 = |pV (x)|2 + |x− pV (x)|2

= |pV (x)|2 + |pW (x)− pV (x)|2

≤ |pV (x)|2 + d(V,W )2|x|2

so
|x| ≤ 1√

1− d(V,W )2
|pV (x)|.

3) First, we show that

W⊥ =
{
x− ϕ∗(x)

∣∣∣ x ∈ V ⊥
}
,

where ϕ∗ : V ⊥ → V is the adjoint of ϕ. It is easy to check that

{x− ϕ∗(x) | x ∈ V ⊥ } ⊂W⊥

using the fact that W = {x+ ϕ(x) | x ∈ V }. For all x ∈ V and for all
y ∈ V ⊥,

(x+ ϕ(x)) · (y − ϕ∗(y)) = ϕ(x) · y − x · ϕ∗(y)

= 0

By a dimension argument, this inclusion is in fact an equality.
Next we prove that d(V,W ) ≤ ‖ϕ‖√

1+‖ϕ‖2
. According to Lemma B.1.1,

d(V,W ) = max { ‖id− pW ‖V , ‖id− pW⊥‖V ⊥ } .

If we show that
‖id− pW ‖V ≤

‖ϕ‖√
1 + ‖ϕ‖2

, (B.3)

the same proof will yield by duality,

‖id− pW⊥‖V ⊥ ≤
‖−ϕ∗‖√

1 + ‖−ϕ∗‖2
=

‖ϕ‖√
1 + ‖ϕ‖2

.
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Therefore, we only prove (B.3). Let us fix x ∈ V \ 0. As |x− pW (x)| =
d(x,W ), we have for all t ∈ R, |x− pW (x)| ≤ |x− t(x+ ϕ(x))|. The right
hand side attains its minimum for

t =
x · (x+ ϕ(x))

|x+ ϕ(x)|2
=

|x|2

|x+ ϕ(x)|2

and one can compute

|x− t(x+ ϕ(x)|2 = (1− t)2|x|2 + t2|ϕ(x)|2

=
|x|2|ϕ(x)|2

|x|2 + |ϕ(x)|2

≤ ‖ϕ‖2

1 + ‖ϕ‖2
|x|2.

We conclude that d(V,W ) ≤ ‖ϕ‖√
1+‖ϕ‖2

. It is left to prove the reverse inequal-

ity. For all x ∈ V ,

|ϕ(x)| = |(x+ ϕ(x))− x|
= |pW (x+ ϕ(x))− pV (x+ ϕ(x))|
≤ d(V,W )|x+ ϕ(x)|.

By (B.1), we have

|x+ ϕ(x)| ≤ 1√
1− d(V,W )2

|pV (x+ ϕ(x))|

≤ 1√
1− d(V,W )2

|x|.

We deduce that ‖ϕ‖ ≤ d(V,W )√
1−d(V,W )2

or equivalently,

‖ϕ‖√
1 + ‖ϕ‖2

≤ d(V,W ).

Finally, we estimate the Lipschitz constant of a linear isomorphism acting
on G(d, n).

Lemma B.1.3. Let u : Rn → Rn be a linear isomorphism. Then for all
V,W ∈ G(d, n),

d(u(V ), u(W )) ≤ ‖u‖ ‖u−1‖ d(V,W ).
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Proof. According to Lemma B.1.1,

d(u(V ), u(W )) = max {
∥∥id− pu(W )

∥∥
u(V )

,
∥∥id− pu(V )

∥∥
u(W )

} .

By symmetry, we only need to show that
∥∥id− pu(W )

∥∥
u(V )

≤ ‖u‖‖u−1‖d(V,W ).

Fix y ∈ u(V ). By the properties of orthogonal projection,
∣∣(id− pu(W ))(y)

∣∣ = d(y, u(W )).

Taking an element x ∈ V such that y = u(x), we compute

d(y, u(W )) = d(u(x), u(W ))

≤ |u(x)− u(pW (x))|
≤ ‖u‖ |x− pW (x)|
≤ ‖u‖ |pV (x)− pW (x)|
≤ ‖u‖ d(V,W )|x|
≤ ‖u‖ ‖u−1‖ d(V,W )|y|.

B.2 Invariant measure

Let E be an Euclidean vector space and d be a nonnegative integer. The
measure γd,E is the unique Radon measure on G(d,E) whose total mass is 1
and which is invariant under the action of O(n) (see [Mat], for existence and
unicity). In the case E = Rn , it is simply denoted by γd,n. We admit that
γd,n coincides, up to a multiplicative constant, to the Hausdorff measure of
dimension d(n− d).

Lemma B.2.1 (Disintegration formula). Let p, q, n be non-negative integers
with p+ q ≤ n. For all Borel set A ⊂ G(n, p+ q),

γp+q,n(A) =

∫

G(p,n)
γq,V ⊥({W | V +W ∈ A }) dV.

We omit W ∈ G(q, V ⊥) for ease of notation.

Proof. We introduce some notation so as to interpret the right-hand side as
a pushforward measure. Let us define the space

X = { (V,W ) ∈ G(p, n)×G(q, n) | V ⊥W } .
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This space is closed in G(p, n)×G(q, n) because it can be written as
⋂

x,y∈Rn

{ (V,W ) ∈ G(p, n)×G(q, n) | pV (x) · pW (y) = 0 } .

and for each x ∈ Rn, the evaluation map V 7→ pV (x) is |x|-Lipschitz (and
so is W 7→ pW (y)). We equip X with the Radon measure γp⊥q,n defined by

γp⊥q,n(A) =

∫

G(p,n)
γV ⊥,q({W | (V,W ) ∈ A }) dV

for all Borel set A ⊂ X. Finally we define the map f : X → G(p + q, n),
(V,W )→ V +W . It is Lipschitz because V ⊥W implies pV+W = pV + pW .

Now, the lemma reduces to showing that

γp+q,n = f#γn,p⊥q.

According to ([Mat], Theorem 1.18) f#γn,p⊥q is a Radon measure on G(p+
q, n). It is invariant by linear isometries and its total mass is 1. By unicity of
uniformly distributed measures on G(p+ q, n), it coincides with γp+q,n.

Lemma B.2.2. Let H be an affine hyperplane in Rn+1 which does not pass
through 0. Then for all bounded subset A ⊂ H,

Hn(A) ≤ C
(
r2

r0

)n
γn+1,1({L ∈ B(L0, α) | L ∩A 6= ∅ }),

where L0 is the linear line orthogonal to H, r = sup
x∈A
|x|, r0 = d(0, H),

α =
√

1−
(
r0
r

)2 and C is a constant that depends only on n.

Proof. Let x0 be the orthogonal projection of 0 onto H, in particular L0 is
the line generated by x0. For L ∈ B(L0, 1), define xL to be the intersection
point of L and H. This point exists because there is a linear application
ϕL : L0 → L⊥0 such that

L = { x+ ϕL(x) | x ∈ L0 }

and xL = x0 + ϕL(x0).
Step 1. We show that for L ∈ B(L0, 1),

d(L,L0) =

√
1−

(
x0

xL

)2

.

According to (B.2), we have

d(L,L0) =
‖ϕL‖√

1 + ‖ϕL‖2
.
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Since ϕL is defined on a line, it is easy to compute ‖ϕ‖:

‖ϕL‖ =
|ϕL(x0)|
|x0|

=

√
|xL|2 − |x0|2

|x0|
and the result follows.

Step 2. We want to evaluate the Lipschitz constant of f : L 7→ xL in a
neighborhood of L0. For L1, L2 ∈ B(L0, 1), we show that

|xL1 − xL2 | ≤
|xL1 ||xL2 |

r0
d(L1, L2).

We start by computing pLi(x0) for i = 1, 2. The function t 7→ |txLi − x0|
attains its minimum at

t =
xLi · x0

|xLi |2
=
|x0|2

|xLi |2

As Li is a linear line generated by xLi , we deduce that pLi(x0) = |x0|2

|xLi |2
xLi .

Thus
|pL1(x0)− pL2(x0)| = |x0|2

∣∣∣∣
xL1

|xL1 |2
− xL2

|xL2 |2
∣∣∣∣.

One can check that for all u, v ∈ Rn \ 0,
∣∣∣ u
|u|2 −

v
|v|2
∣∣∣ = |u−v|

|u||v| so

|pL1(x0)− pL2(x0)| = |x0|2
|xL1 ||xL2 |

|xL1 − xL2 |.

By definition of d(L1, L2),

|pL1(x0)− pL2(x0)| ≤ d(L1, L2)|x0|
and this concludes step 2.

Step 3. Conclusion. For x ∈ A, let L(x) be the line generated by x. Since
L(x) and L0 are not orthogonal, we have d(L(x), L0) < 1. More precisely,
we can bound d(L(x), L0) according to step 1:

d(L(x), L0) ≤
√

1−
(r0

r

)2
= α

hence
A ⊂ f({L ∈ B(L0, α) | f(L) ∈ A }).

Step 2 shows that f is r2

r0
-Lipschitz on {L ∈ B(L0, α) | f(L) ∈ A }. Accord-

ing to the properties of Hausdorff measures, we conclude that

Hn(A) ≤ C
(
r2

r0

)n
γn+1,1({L ∈ B(L0, α) | f(L) ∈ A }).
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Résumé: Au dix-neuvième siècle, Joseph
Plateau a décrit la disposition géométrique des
films de savons. Leur forme s’explique par leur
tendance à minimiser leur aire pour atteindre
une position d’équilibre. Les mathématiciens
ont abstrait le concept de « surface d’aire min-
imale s’appuyant sur un bord » et ont nommé
le problème de minimisation correspondant, «
problème de Plateau ». Il fait l’objet de dif-
férentes formulations qui correspondent à autant
de façons de définir la classe des « surfaces bor-
dées par une frontière fixée » et « l’aire » à min-
imiser.

Dans cette thèse, on généralise aux suites
quasiminimisantes, la limite faible de suites min-
imisantes introduite par De Lellis, De Philip-

pis, De Rosa, Ghiraldin et Maggi. On montre
qu’une limite faible d’ensembles quasiminimaux
est quasiminimal. Ce résultat est analogue au
théorème de passage à la limite de David pour
la convergence de Hausdorff locale. Notre dé-
monstration est inspirée par celle de David tout
en étant plus simple. On déduit une méthode
directe pour prouver l’existence de solutions à
divers problèmes de Plateau, même avec une
frontière libre. On l’applique ensuite à deux
variantes du problème de Reifenberg (frontière
libre ou fixe) pour tous les groupes de coefficient.
D’autre part, on propose une structure pour
construire des projections de Federer-Fleming
ainsi qu’une nouvelle estimation sur le choix des
centres de projection.
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Abstract: In the nineteenth century, Joseph
Plateau described the geometrical disposition of
soap films. Their shape is explained by their
tendency to minimize their area to a reach an
equilibrium. Mathematicians have abstracted
the concept of "surface with minimal area span-
ning a boundary" and have named the corre-
sponding minimization problem, "Plateau prob-
lem". It has different formulations correspond-
ing to as many ways of defining the class of
"surfaces spanning a given boundary" and the
"area" to minimize.

In this thesis, we generalize to quasimini-
mizing sequences, the weak limit of minimizing

sequences introduced by De Lellis, De Philippis,
De Rosa, Ghiraldin and Maggi. We show that
a weak limit of quasiminimal sets is quasimin-
imal. This result is analogous to the limiting
theorem of David for the local Hausdorff con-
vergence. Our proof is inspired by David’s one
while being simpler. We deduce a direct method
to prove existence of solutions to various Plateau
problem, even with a free boundary. We apply
it then to two variants of the Reifenberg prob-
lem (fixed or free boundary) for all coefficient
groups. Furthermore, we propose a structure to
build Federer-Fleming projections as well as a
new estimate on the choice of projection cen-
ters.
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