J. Rouault, P. Chellapandi, B. Raj, P. Dufour, C. Latge et al., Sodium fast reactor design: fuels, neutronics, thermal-hydraulics, structural mechanics and safety, Handbook of Nuclear Engineering, pp.2321-2710, 2010.

A. Ganier and F. Mathé, Infographie : filières et générations de réacteurs nucléaires, 2015.

, GIF R&D Outlook for Generation IV Nuclear Energy Systems, Generation IV International Forum, 2009.

. Cea-saclay-et-groupe and . Moniteur, Monographie DEN « Les réacteurs nucléaires à caloporteur sodium, pp.1950-2672, 2014.

. Cea-saclay-et-groupe and . Moniteur, Monographie DEN « La neutronique, 2013.

J. A. Webb and I. Charit, Monte Carlo criticality analysis of simple geometries containing tungsten-rhenium alloys engrained with uranium dioxide and uranium mononitride, Nuclear Engineering and Design, vol.241, pp.2968-2973, 2011.

, Les réacteurs à neutrons rapides de 4e génération à caloporteur sodium, 2012.

, Rapport institutionnel de la Direction de l'énergie nucléaire du CEA -Tome 3 -Les réacteurs à neutrons rapides de 4e génération à caloporteur sodium : le démonstrateur technologique Astrid, 2012.

D. Gosset and P. Herter, Matériaux absorbants neutroniques pour le pilotage des réacteurs, Techniques de l'ingénieur. Génie Nucléaire, 2007.

D. Gosset, Structural Materials for Generation IV Nuclear Reactors, pp.533-567, 2017.

K. Froment, D. Gosset, M. Guery, B. Kryger, and C. Verdeau, Neutron irradiation effects in boron carbides: Evolution of microstructure and thermal properties, Journal of Nuclear Materials, vol.188, pp.185-188, 1992.

D. Simeone, Contribution à l'étude de l'évolution du carbure de bore sous irradiation neutronique, 1999.

H. O. Pierson, Characteristics and Properties of Silicon Carbide and Boron Carbide, in: Handbook of Refractory Carbides and Nitrides, pp.137-155, 1996.

F. Thevenot, Boron carbide -a comprehensive review, Journal of the European Ceramic Society, vol.6, pp.205-225, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00304390

M. Bouchacourt and F. Thevenot, The melting of boron carbide and the homogeneity range of the boron carbide phase, Journal of the Less Common Metals, vol.67, pp.327-331, 1979.

M. Bouchacourt and F. Thevenot, The properties and structure of the boron carbide phase, Journal of the Less Common Metals, vol.82, pp.227-235, 1981.
URL : https://hal.archives-ouvertes.fr/hal-00307194

D. R. Tallant, T. L. Aselage, A. N. Campbell, and D. Emin, Boron carbides: evidence for molecular level disorder, Journal of Non-Crystalline Solids, vol.106, pp.370-373, 1988.

K. A. Schwetz and P. Karduck, Investigations in the boron-carbon system with the aid of electron probe microanalysis, Journal of the Less-Common Metals, vol.175, pp.1-11, 1991.

A. Saengdeejing, J. E. Saal, V. R. Manga, and Z. Liu, Defects in boron carbide: Firstprinciples calculations and CALPHAD modeling, Acta Materialia, vol.60, pp.7207-7215, 2012.

M. Beauvy, Stoichiometric limits of carbon-rich boron carbide phases, Journal of the Less Common Metals, vol.90, pp.169-175, 1983.

H. Werheit and S. Shalamberidze, Advanced microstructure of boron carbide, Journal of Physics: Condensed Matter, vol.24, p.385406, 2012.

H. Werheit, Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable, Solid State Sciences, vol.60, pp.45-54, 2016.

U. Kuhlmann and H. Werheit, On the microstructure of boron carbide, Solid State Communications, vol.83, pp.849-852, 1992.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, Boron carbide: structure, properties and stability under stress, Journal of the American Ceramic Society, vol.94, pp.3605-3628, 2011.

A. C. Larson, Comments concerning the crystal structure of B4C, pp.109-113, 1986.

A. Kirfel, A. Gupta, and G. Will, The nature of the chemical bonding in boron carbide, B13C2. I. Structure refinement, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.35, pp.1052-1059, 1979.

A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. Murthy, Synthesis and consolidation of boron carbide: a review, International Materials Reviews, vol.55, pp.4-40, 2010.

S. T. Benton and D. R. Masters, Method for preparing boron-carbide articles, US 3914371 A, 1975.

R. Ridgway, Boron carbide and method of making the same, US1897214 A, 1933.

G. Goller, C. Toy, A. Tekin, and C. K. Gupta, The production of boron carbide by carbothermic reduction, High Temperature Materials and Processes, vol.15, pp.117-122, 1996.

A. Alizadeh, E. Taheri-nassaj, and N. Ehsani, Synthesis of boron carbide powder by a carbothermic reduction method, Journal of the European Ceramic Society, vol.24, pp.3227-3234, 2004.

A. Sinha, T. Mahata, and B. P. Sharma, Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor, Journal of Nuclear Materials, vol.301, pp.165-169, 2002.

A. M. Hadian and J. A. Bigdeloo, The effect of time, temperature and composition on boron carbide synthesis by sol-gel method, Journal of Materials Engineering and Performance, vol.17, pp.44-49, 2008.

G. H. Rafi-ud-din, Z. Zahid, M. Asghar, E. Maqbool, T. Ahmad et al., Ethylene glycol assisted low-temperature synthesis of boron carbide powder from borate citrate precursors, Journal of Asian Ceramic Societies, vol.2, pp.268-274, 2014.

M. Kakiage, Y. Tominaga, I. Yanase, and H. Kobayashi, Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid-polyol product, Powder Technology, vol.221, pp.257-263, 2012.

S. Mondal and A. K. Banthia, Low-temperature synthetic route for boron carbide, Journal of the European Ceramic Society, vol.25, pp.287-291, 2005.

E. G. Gray, Process for the production of boron carbide, US2834651 A, 1958.

J. H. Lee, C. W. Won, S. M. Joo, D. Y. Maeng, and H. S. Kim, Preparation of B4C powder from B2O3 oxide by SHS process, Journal of Materials Science Letters, vol.19, pp.951-954, 2000.

G. Jiang, J. Xu, H. Zhuang, and W. Li, Fabrication of B4C from Na2B4O7 + Mg + C by SHS method, Ceramics International, vol.37, pp.1689-1691, 2011.

E. M. Sharifi, F. Karimzadeh, and M. H. Enayati, Mechanochemical assisted synthesis of B4C nanoparticles, Advanced Powder Technology, vol.22, pp.354-358, 2011.

P. Asgarian, A. Nourbakhsh, P. Amin, R. Ebrahimi-kahrizsangi, and K. J. Mackenzie, The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction, Ceramics International, vol.40, pp.16399-16408, 2014.

F. Farzaneh, F. Golestanifard, M. Sh, A. A. Sheikhaleslami, and . Nourbakhsh, New route for preparing nanosized boron carbide powder via magnesiothermic reduction using mesoporous carbon, Ceramics International, vol.41, pp.13658-13662, 2015.

S. Chen, D. Z. Wang, J. Y. Huang, and Z. F. Ren, Synthesis and characterization of boron carbide nanoparticles, Applied Physics A, vol.79, 2004.

W. Han, Y. Bando, K. Kurashima, and T. Sato, Boron-doped carbon nanotubes prepared through a substitution reaction, Chemical Physics Letters, vol.299, pp.368-373, 1999.

A. Mishra, R. K. Sahoo, S. K. Singh, and B. K. Mishra, Synthesis of low carbon boron carbide powder using a minimal time processing route: Thermal plasma, Journal of Asian Ceramic Societies, vol.3, pp.373-376, 2015.

G. Jiayin, F. Xiaobao, R. Dolbec, X. Siwen, J. Jurewicz et al., Development of nanopowder synthesis using induction plasma, Plasma Science and Technology, vol.12, p.188, 2010.

D. Bernache-assollant, Chimie-physique du frittage, Hermès, 1993.

D. Bernache-assollant and J. Bonnet, Frittage: aspects physico-chimiques, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00497555

M. Bougoin, F. Thevenot, J. Dubois, and G. Fantozzi, Synthèse et caractérisation de céramiques denses en carbure de bore, Journal of the Less-Common Metals, vol.114, pp.257-271, 1985.

S. L. Dole, S. Prochazka, and R. H. Doremus, Microstructural coarsening during sintering of boron carbide, Journal of the American Ceramic Society, vol.72, pp.958-966, 1989.

T. K. Roy, C. Subramanian, and A. K. Suri, Pressureless sintering of boron carbide, Ceramics International, vol.32, pp.227-233, 2006.

H. Lee and R. F. Speyer, Pressureless Sintering of Boron Carbide, Journal of the American Ceramic Society, vol.86, pp.1468-1473, 2003.

Y. Q. Li and T. Qiu, Oxidation behaviour of boron carbide powder, Materials Science and Engineering: A, vol.444, pp.184-191, 2007.

M. Georges, Approche du frittage SPS de céramiques fines de carbure de bore : rôle des poudres initiales et de la mise en forme, 2016.

B. M. Moshtaghioun, F. L. Cumbrera-hernández, D. Gómez-garcía, S. Bernardi-martín, A. Domínguez-rodríguez et al., Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4), Journal of the European Ceramic Society, vol.33, pp.361-369, 2013.

S. Hayun, S. Kalabukhov, V. Ezersky, M. P. Dariel, and N. Frage, Microstructural characterization of spark plasma sintered boron carbide ceramics, Ceramics International, vol.36, pp.451-457, 2010.

M. Beauvy and R. , Method for the determination of free graphite in boron carbide, Journal of the Less Common Metals, vol.80, issue.81, pp.90096-90101, 1981.

F. Réjasse, O. Rapaud, J. Léchelle, G. Trolliard, H. Khodja et al., Novel insight into the chemical analysis of light elements in oxycarbides, Acta Materialia, vol.157, pp.11-20, 2018.

M. Asadikiya, C. Rudolf, C. Zhang, B. Boesl, A. Agarwal et al., Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C, Journal of Alloys and Compounds, vol.699, pp.1022-1029, 2017.

V. G. Slutskii, E. S. Severin, and L. A. Polenov, An Ab initio study of reactions in the H3BO3/B2O3/H2O system, Russian Journal of Physical Chemistry B, vol.1, pp.549-552, 2007.

J. P. Viricelle, P. Goursat, and D. Bahloul-hourlier, Oxidation behaviour of a boron carbide based material in dry and wet oxygen, Journal of Thermal Analysis and Calorimetry, vol.63, pp.507-515, 2000.

M. A. Rossi, M. J. Matthewson, A. Kaza, D. Niesz, and R. L. Haber, Modeling of Gas-Phase Transport and Composition Evolution during the Initial-Stage Sintering of Boron Carbide with Carbon Additions, Journal of the American Ceramic Society, vol.93, pp.3691-3699, 2010.

B. M. Moshtaghioun, D. Gómez-garcía, A. Domínguez-rodríguez, and A. L. Ortiz, Enhancing the spark-plasma sinterability of B4C nanopowders via room-temperature methylation induced purification, Journal of the European Ceramic Society, vol.36, pp.2843-2848, 2016.

N. Cho, K. G. Silver, Y. Berta, R. F. Speyer, N. Vanier et al., Densification of carbon-rich boron carbide nanopowder compacts, Journal of Materials Research, vol.22, pp.1354-1359, 2007.

J. E. Zorzi, C. A. Perottoni, and J. A. Da-jornada, Hardness and wear resistance of B4C ceramics prepared with several additives, Materials Letters, vol.59, pp.2932-2935, 2005.

L. S. Sigl, Processing and mechanical properties of boron carbide sintered with TiC, Journal of the European Ceramic Society, vol.18, issue.98, pp.71-76, 1998.

M. Heydari, H. R. Baharvandi, and K. Dolatkhah, Effect of TiO2 nanoparticles on the pressureless sintering of B4C-TiB2 nanocomposites, International Journal of Refractory Metals and Hard Materials, vol.51, pp.6-13, 2015.

R. Angers and M. Beauvy, Hot-pressing of boron carbide, Ceramics International, vol.10, pp.90025-90032, 1984.

F. Thevenot, Sintering of boron carbide and boron carbide-silicon carbide two-phase materials and their properties, Journal of Nuclear Materials, vol.152, pp.154-162, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00303905

D. R. Glasson and J. A. Jones, Formation and reactivity of borides, carbides and silicides. II. Production and sintering of boron carbide, J. Appl. Chem, vol.19, pp.137-140, 1969.

H. Kim, Y. Koh, and H. Kim, Densification and Mechanical Properties of B4C with Al2O3 as a Sintering Aid, Journal of the American Ceramic Society, vol.83, pp.2863-2865, 2000.

C. Xu, H. Zeng, and G. Zhang, Pressureless sintering of boron carbide ceramics with Al-Si additives, International Journal of Refractory Metals and Hard Materials, vol.41, pp.2-6, 2013.

S. Ebrahimi, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, Effect of iron on the wetting, sintering ability, and the physical and mechanical properties of boron carbide composites: A review, International Journal of Refractory Metals and Hard Materials, vol.57, pp.78-92, 2016.

C. Subramanian, T. K. Roy, T. S. Ch, P. Murthy, G. B. Sengupta et al., Effect of zirconia addition on pressureless sintering of boron carbide, Ceramics International, vol.34, pp.1543-1549, 2008.

J. Deng, J. Zhou, Y. Feng, and Z. Ding, Microstructure and mechanical properties of hotpressed B<sub>4<:sub>C/(W,Ti)C ceramic composites, Ceramics International, vol.28, pp.425-430, 2002.

X. Du, Z. Zhang, Y. Wang, J. Wang, W. Wang et al., Hot-pressing kinetics and densification mechanisms of boron carbide, Journal of the American Ceramic Society, vol.98, pp.1400-1406, 2015.

X. Zhang, H. Gao, Z. Zhang, R. Wen, G. Wang et al., Effects of pressure on densification behaviour, microstructures and mechanical properties of boron carbide ceramics fabricated by hot pressing, Ceramics International, vol.43, pp.6345-6352, 2017.

D. Gosset, S. Miro, S. Doriot, G. Victor, and V. Motte, Evidence of amorphisation of boron carbide under slow, heavy ion irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.365, pp.300-304, 2015.

D. Gosset, Handbook of Nuclear Engineering, 2010.

T. Stoto, N. Housseau, and L. Zuppiroli, Swelling and microcracking of boron carbide subjected to fast neutron irradiations, Journal of Applied Physics, vol.68, pp.3198-3206, 1990.

P. D. Kervalishvili and S. S. Shavelashvili, Effect of lithium on hot-pressed boron-carbide parts, At Energy, vol.57, pp.489-491, 1984.

A. Suhaimi, R. Wölfle, S. M. Qaim, and G. Stöcklin, Measurement of 10B (n,t) 2? Reaction Gross Section in the Energy Range of 2.5 to 10.6 MeV: Diffusion of Tritium in Boron Carbide, Radiochimica Acta, vol.40, pp.113-118, 1986.

K. Schnarr and H. Münzel, Release of tritium from boron carbide, Journal of the Chemical Society, vol.86, pp.651-656, 1990.

T. Donomae and M. Itoh, Retention and release of tritium in B4C irradiated as control rod of fast breeder reactor, Journal of Nuclear Science and Technology, 2012.

D. E. Mahagin, J. L. Bates, and D. E. Baker, Boron carbide thermal conductivity, 1973.

T. Maruyama, S. Onose, T. Kaito, and H. Horiuchi, Effect of fast neutron irradiation on the properties of boron carbide pellet, Journal of Nuclear Science and Technology, vol.34, pp.1006-1014, 1997.

G. W. Hollenberg and J. A. Basmajian, Crack propagation in irradiated B4C induced by swelling and thermal gradients, Journal of the American Ceramic Society, vol.65, pp.179-181, 1982.

T. Maruyama, S. Onose, T. Kaito, and H. Horiuchi, Effect of Fast Neutron Irradiation on the Properties of Boron Carbide Pellet, Journal of Nuclear Science and Technology, vol.34, pp.1006-1014, 1997.

V. I. Shcherbak, V. P. Tarasikov, V. N. Bykov, and V. A. Rudenko, Radiation damage in neutron irradiated boron carbide, Atomic Energy, vol.60, pp.227-230, 1986.

L. Zuppiroli and D. Lesueur, Modelling the swelling and microcracking of boron carbide under neutron irradiation, Philosophical Magazine A, vol.60, pp.539-551, 1989.

G. W. Hollenberg and W. V. Cummings, Effect of fast neutron irradiation on the structure of boron carbide, Journal of the American Ceramic Society, vol.60, pp.520-525, 1977.

A. Jostsons, C. K. Dubose, G. L. Copeland, and J. O. Stiegler, Defect structure of neutron irradiated boron carbide, Journal of Nuclear Materials, vol.49, pp.136-150, 1973.

G. W. Hollenberg, B. Mastel, and J. A. Basmajian, Effect of irradiation temperature on the growth of helium bubbles in boron carbide, Journal of the American Ceramic Society, vol.63, pp.376-380, 1980.

V. P. Tarasikov, Electron-microscopic investigation of boron carbide irradiated in a fast reactor, Atomic Energy, vol.106, pp.220-224, 2009.

V. Motte, Comportement de l'hélium implanté dans le carbure de bore B4C, 2017.

K. H. Ashbee, Defects in boron carbide before and after neutron irradiation, Acta Metallurgica, vol.19, pp.1079-1085, 1971.

J. A. Kuszyk and R. C. Bradt, Influence of grain size on effects of thermal expansion anisotropy in MgTi2O5, Journal of the American Ceramic Society, vol.56, pp.420-423, 1973.

C. Estournès, Mise en forme de matériaux par frittage flash, Techniques de l'ingénieur, 2006.

R. Belon, G. Antou, N. Pradeilles, A. Maître, and D. Gosset, Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics, Ceramics International, vol.43, pp.6631-6635, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01913390

M. Gendre, Approche des mécanismes de synthèse par carboréduction et de frittage « flash » de l'oxycarbure de zirconium, 2010.

P. Guyot, Frittage SPS de matériaux céramiques et métallique : étude des phénomènes électromagétiques associés et comparaison avec le frittage sous charge par modélisation analytique, 2013.

B. M. Moshtaghioun, F. L. Cumbrera, A. L. Ortiz, M. Castillo-rodríguez, and D. Gómez-garcía, Additive-free superhard B4C with ultrafine-grained dense microstructures, Journal of the European Ceramic Society, vol.34, pp.841-848, 2014.

B. M. Moshtaghioun, A. L. Ortiz, D. Gómez-garcía, and A. Domínguez-rodríguez, Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition, Journal of the European Ceramic Society, vol.33, pp.1395-1401, 2013.

X. Li, D. Jiang, J. Zhang, Q. Lin, Z. Chen et al., Densification behavior and related phenomena of spark plasma sintered boron carbide, Ceramics International, vol.40, pp.4359-4366, 2014.

C. Xu, Y. Cai, K. Flodström, Z. Li, S. Esmaeilzadeh et al., Spark plasma sintering of B4C ceramics: the effects of milling medium and TiB2 addition, International Journal of Refractory Metals and Hard Materials, vol.30, pp.139-144, 2012.

C. Xu, K. Flodstrom, and S. Esmaeilzadeh, Low temperature densification of B4C ceramics with CaF2/Y2O3 additives, International Journal of Refractory Metals and Hard Materials, vol.35, pp.311-314, 2012.

P. Badica, S. Grasso, H. Borodianska, S. S. Xie, P. Li et al., Tough and dense boron carbide obtained by high-pressure (300 MPa) and low-temperature (1600°C) spark plasma sintering, Journal of the Ceramic Society of Japan, vol.122, pp.271-275, 2014.

M. Cengiz, B. Yavas, Y. Celik, G. Goller, O. Yucel et al., Spark plasma sintering of boron carbide ceramics using different sample geometries and dimensions, Acta Physica Polonica A, vol.125, pp.260-262, 2014.

K. Sairam, J. K. Sonber, T. S. Ch, C. Murthy, R. K. Subramanian et al., Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide, International Journal of Refractory Metals and Hard Materials, vol.42, pp.185-192, 2014.

B. M. Moshtaghioun, D. Gomez-garcia, A. Dominguez-rodriguez, and R. I. Todd, Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics, Journal of the European Ceramic Society, vol.36, pp.1829-1834, 2016.

W. Yucheng and F. Zhengyi, Study of temperature field in spark plasma sintering, Materials Science and Engineering: B, vol.90, pp.34-37, 2002.

A. Zavaliangos, J. Zhang, M. Krammer, and J. R. Groza, Temperature evolution during field activated sintering, Materials Science and Engineering: A, vol.379, pp.218-228, 2004.

K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van-der et al., Modelling of the temperature distribution during field assisted sintering, Acta Materialia, vol.53, pp.4379-4388, 2005.

U. Anselmi-tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions, Materials Science and Engineering: A, vol.394, pp.139-148, 2005.

J. Diatta, G. Antou, N. Pradeilles, and A. Maître, Numerical modeling of spark plasma sintering-Discussion on densification mechanism identification and generated porosity gradients, Journal of the European Ceramic Society, vol.37, pp.4849-4860, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01913346

G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi, Relation Between Microstructure, Properties and Spark Plasma Sintering (SPS) Parameters of Pure Ultrafine WC Powder, Science and Technology of Advanced Materials, vol.8, p.644, 2007.

C. Wang, L. Cheng, and Z. Zhao, FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation, Computational Materials Science, vol.49, pp.351-362, 2010.

G. Antou, M. Gendre, G. Trolliard, and A. Maître, Spark plasma sintering of zirconium carbide and oxycarbide: Finite element modeling of current density, temperature, and stress distributions, Journal of Materials Research, vol.24, pp.404-412, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00360204

E. A. Olevsky, S. Kandukuri, and L. Froyen, Consolidation enhancement in spark-plasma sintering: Impact of high heating rates, Journal of Applied Physics, vol.102, p.114913, 2007.

E. A. Olevsky and L. Froyen, Impact of thermal diffusion on densification during SPS, Journal of the American Ceramic Society, vol.92, 2009.

E. A. Olevsky, Theory of sintering: from discrete to continuum, Materials Science and Engineering: R: Reports, vol.23, pp.41-100, 1998.

C. Wolff, Modélisation du processus thermo-électro-mécanique de Frittage Flash, 2011.

C. Wolff, S. Mercier, H. Couque, and A. Molinari, Modeling of conventional hot compaction and Spark Plasma Sintering based on modified micromechanical models of porous materials, Mechanics of Materials, vol.49, pp.72-91, 2012.

M. Abouaf and J. L. Chenot, A numerical-model for hot deformation of metal powders, Journal De Mecanique Theorique Et Appliquee, vol.5, pp.121-140, 1986.

C. Wolff, S. Mercier, H. Couque, A. Molinari, F. Bernard et al., Thermal-electricalmechanical simulation of the nickel densification by Spark Plasma Sintering. Comparison with experiments, Mechanics of Materials, vol.100, pp.126-147, 2016.

G. Antou, N. Pradeilles, M. Gendre, and A. Maître, New approach of the evolution of densification mechanisms during Spark Plasma Sintering: Application to zirconium (oxy-)carbide ceramics, Scripta Materialia, vol.101, pp.103-106, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02571106

M. Stübner, Élaboration et caractérisation de B4C fritté par SPS à partir de poudres nanométriques disponibles industriellement, 2016.

D. Simeone, X. Deschanels, B. Berthier, and C. Tessier, Experimental evidence of lithium migration out of an irradiated boroncarbide material, Journal of Nuclear Materials, vol.245, pp.27-33, 1997.

D. Simeone, C. Mallet, P. Dubuisson, G. Baldinozzi, C. Gervais et al., Study of boron carbide evolution under neutron irradiation by Raman spectroscopy, Journal of Nuclear Materials, vol.277, pp.1-10, 2000.

B. Kryger, D. Gosset, and J. M. Escleine, Irradiation performances of the Superphenix type absorber element, 1995.

M. Rallini, M. Natali, J. M. Kenny, and L. Torre, Effect of boron carbide nanoparticles on the fire reaction and fire resistance of carbon fiber/epoxy composites, Polymer, vol.54, pp.5154-5165, 2013.

S. Hayun, V. Paris, M. P. Dariel, N. Frage, and E. Zaretzky, Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering, Journal of the European Ceramic Society, vol.29, pp.3395-3400, 2009.

R. Belon, G. Antou, N. Pradeilles, A. Maître, and D. Gosset, Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics, Ceramics International, vol.43, pp.6631-6635, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01913390

A. M. Turatti and A. S. Pereira, Wear resistant boron carbide compacts produced by pressureless sintering, Ceramics International, vol.43, pp.7970-7977, 2017.

R. Dolbec, M. Boulos, E. Bouchard, and N. Kuppuswamy, Nanopowders synthesis at industrial-scale production using the inductively-coupled plasma technology, International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, pp.21-24, 2013.

A. Jay, Conception in silico d'une nouvelle phase de carbure de bore, Thèse de l'École Polytechnique, 2015.

G. Victor, Etude des modifications structurales induites dans le carbure de bore B4C par irradiation aux ions dans différents domaines d'énergie, 2016.

P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, pp.387-409, 1912.

F. Réjasse, O. Rapaud, G. Trolliard, O. Masson, and A. Maître, Experimental investigation and thermodynamic evaluation of the C-O-Zr ternary system, RSC Adv, vol.6, pp.100122-100135, 2016.

R. L. Coble, Mechanisms of densification during Hot-Pressing, Sintering and Related Phenomena, Gordon and Breach, pp.329-350, 1967.

B. M. Moshtaghioun, A. L. Ortiz, D. Gómez-garcía, and A. Domínguez-rodríguez, Densification of B4C nanopowder with nanograin retention by spark-plasma sintering, Journal of the European Ceramic Society, vol.35, pp.1991-1998, 2015.

R. W. Rice, C. Cm, F. Wu, and . Boichelt, Hardness-Grain-Size Relations in Ceramics, Journal of the American Ceramic Society, vol.77, pp.2539-2553, 1994.

R. W. Rice, Evaluation and extension of physical property-porosity models based on minimum solid area, Journal of Materials Science, vol.31, pp.102-118, 1996.

K. Niihara, A. Nakahira, and T. Hirai, The effect of stoichiometry on mechanical properties of boron carbide, Journal of the American Ceramic Society, vol.67, 2006.

C. Cheng, .. M. Kolan, A. Reddy, T. Hirata, M. Fujita et al., Structure and mechanical properties of boron-rich boron carbides, Journal of the European Ceramic Society, vol.37, pp.4514-4523, 2017.

F. Réjasse, M. Georges, N. Pradeilles, G. Antou, and A. Maître, Influence of chemical composition on mechanical properties of spark plasma sintered boron carbide monoliths, Journal of the American Ceramic Society, vol.101, pp.3767-3772, 2018.

K. Y. Xie, V. Domnich, L. Farbaniec, B. Chen, K. Kuwelkar et al., Microstructural characterization of boron-rich boron carbide, Acta Materialia, vol.136, pp.202-214, 2017.

Y. Arita, Y. Nishi, M. Amaya, and T. Matsui, Isotope effects on thermal diffusivity of boron carbide, Thermochim Acta, pp.39-42, 2000.

B. Nait-ali, Influence de la structure poreuse sur la conductivité thermique effective, 2005.

T. Matsui, Y. Arita, K. Naito, and H. Imai, High temperature heat capacities and electrical conductivities of boron carbides, Journal of Nuclear Materials, vol.186, pp.7-12, 1991.

J. Diatta, G. Antou, F. Courreges, M. Georges, N. Pradeilles et al., Effect of the current pulse pattern during heating in a spark plasma sintering device: Experimental and numerical modeling approaches, Journal of Materials Processing Technology, vol.246, pp.93-101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01913376

A. Pavia, L. Durand, F. Ajustron, V. Bley, G. Chevallier et al., Electro-thermal measurements and finite element method simulations of a spark plasma sintering device, Journal of Materials Processing Technology, vol.213, pp.1327-1336, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00905512

M. Bouchacourt, Etudes sur la phase carbure de bore. Corrélations propriétéscomposition, 1982.
URL : https://hal.archives-ouvertes.fr/tel-01177071

C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga et al., Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process, Journal of the European Ceramic Society, vol.36, pp.741-748, 2016.

T. Vanherck, G. Jean, M. Gonon, J. Lobry, and F. Cambier, Spark Plasma Sintering: homogenization of the compact temperature field for non conductive materials, vol.12, pp.1-12, 2015.

G. Antou, P. Guyot, N. Pradeilles, M. Vandenhende, and A. Maître, Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina, J Mater Sci, vol.50, pp.2327-2336, 2015.

X. Wei, C. Back, O. Izhvanov, O. L. Khasanov, C. D. Haines et al., Spark plasma sintering of commercial zirconium carbide powders: Densification behavior and mechanical properties, Materials, vol.8, pp.6043-6061, 2015.

P. Guyot, G. Antou, N. Pradeilles, A. Weibel, M. Vandenhende et al., Hot pressing and spark plasma sintering of alumina: Discussion about an analytical modelling used for sintering mechanism determination, Scripta Materialia, pp.35-38, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01132508

M. Zhang, T. Yuan, R. Li, S. Xie, M. Wang et al., Densification mechanisms and microstructural evolution during spark plasma sintering of boron carbide powders, Ceramics International, vol.44, pp.3571-3579, 2018.

G. Bernard-granger and C. Guizard, Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification, Acta Materialia, vol.55, pp.3493-3504, 2007.

B. M. Moshtaghioun, D. G. García, and A. D. Rodríguez, High-temperature deformation of fully-dense fine-grained boron carbide ceramics: Experimental facts and modeling, Materials & Design, vol.88, pp.287-293, 2015.

E. Olevsky and L. Froyen, Constitutive modeling of spark-plasma sintering of conductive materials, Scripta Materialia, vol.55, pp.1175-1178, 2006.

R. J. Green, A plasticity theory for porous solids, International Journal of Mechanical Sciences, vol.14, pp.215-224, 1972.

H. Kuhn, Deformation characteristics and plasticity theory of sintered powder materials, Int. J. Powder Metall, vol.7, pp.15-26, 1971.

M. Bouchacourt and F. Thevenot, The correlation between the thermoelectric properties and stoichiometry in the boron carbide phase B4C-B10.5C, Journal of Materials Science, vol.20, pp.1237-1247, 1985.

. Afnor, Propriétés mécaniques des céramiques monolithiques à température ambiante -Partie 1 : Détermination de la résistance en flexion. NF EN 843-1, 2007.

P. Boch, Propriétés et applications des céramiques, 2001.

A. Nf and . Iso, Céramiques techniques -Méthodes d'essai pour la détermination de la ténacité à la rupture des céramiques monolithiques -Méthode sur éprouvette à entaille en V sur une seule face, Méthode SEVNB, 2016.

S. Yamada, K. Hirao, Y. Yamauchi, and S. Kanzaki, High strength B4C-TiB2 composites fabricated by reaction hot-pressing, Journal of the European Ceramic Society, vol.23, pp.1123-1130, 2003.

O. Vasylkiv, D. Demirskyi, P. Badica, T. Nishimura, A. I. Tok et al., Room and high temperature flexural failure of spark plasma sintered boron carbide, Ceramics International, vol.42, pp.7001-7013, 2016.

G. D. With, High temperature fracture of boron carbide: experiments and simple theoretical models, Journal of Materials Science, vol.19, pp.457-466, 1984.

J. Sun, C. Liu, and C. Duan, Effect of Al and TiO2 on sinterability and mechanical properties of boron carbide, Materials Science and Engineering: A, vol.509, pp.89-93, 2009.

T. G. Abzianidze, A. M. Eristavi, and S. O. Shalamberidze, Strength and Creep in Boron Carbide (B4C) and Aluminum Dodecaboride (?-AlB12), vol.154, pp.191-193, 2000.

G. A. Gogotsi, Y. L. Groushevsky, O. B. Dashevskaya, Y. G. Gogotsi, and V. A. Lavrenko, Complex investigation of hot-pressed boron carbide, Journal of the Less Common Metals, vol.117, issue.86, pp.90037-90045, 1986.

J. J. Swab, J. J. Pittari, and W. R. Gamble, Uniaxial tensile strength and fracture analysis of a hot-pressed boron carbide, Journal of the European Ceramic Society, vol.39, pp.1965-1973, 2019.

K. A. Schwetz and W. Grellner, The influence of carbon on the microstructure and mechanical properties of sintered boron carbide, Journal of the Less Common Metals, vol.82, pp.90195-90203, 1981.

L. Vargas-gonzalez, R. F. Speyer, and J. Campbell, Flexural strength, fracture toughness and hardness of silicon carbide and boron carbide armor ceramics, International Journal of Applied Ceramic Technology, vol.7, pp.643-651, 2010.

A. Healey, J. Cotton, S. Maclachlan, P. Smith, and J. Yeomans, Understanding the ballistic event: methodology and initial observations, J Mater Sci, vol.52, pp.3074-3085, 2017.

Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J Mater Sci, vol.41, pp.763-777, 2006.

E. Zapata-solvas, D. Gómez-garcía, A. Domínguez-rodríguez, and W. E. Lee, High temperature creep of 20 vol%. SiC-HfB2 UHTCs up to 2000 °C and the effect of La2O3 addition, Journal of the European Ceramic Society, vol.38, pp.47-56, 2018.

A. K. Mukherjee, J. E. Bird, and J. E. Dorn, Experimental correlations for high-temperature creep, Presented at the Detroit Materials Engineering Congress of American Society for Metals, 1968.

W. R. Cannon and T. G. Langdon, Creep of ceramics -Part1: Mechanical characteristics, vol.18, pp.1-50, 1983.

J. Freidel, Dislocations in Crystals, 1964.

B. M. Moshtaghioun, D. G. García, A. D. Rodríguez, and N. P. Padture, High-temperature creep deformation of coarse-grained boron carbide ceramics, Journal of the European Ceramic Society, vol.35, pp.1423-1429, 2015.

W. Borchert and A. R. Kerler, Kinetic analysis of boron carbide sintering, Metall, vol.29, pp.993-1002, 1975.

. Afnor and . Nf, EN 632-2. Céramiques monolithiques -Propriétés générales et texturales. Partie 2 : Détermination de la masse volumique et de la porosité, 1993.

A. En, Propriétés mécaniques des céramiques monolithiques à température ambiante. Partie 4 : Essais de duret Vickers, 2005.

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.7, pp.1564-1583, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

B. Hay, J. Filtz, and J. Batsale, Mesure de la diffusivité thermique par la méthode flash, Techniques de l'ingénieur, pp.2955-2956, 2004.

J. A. Cape and G. W. Lehman, Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity, Journal of Applied Physics, vol.34, pp.1909-2200, 1987.

, Liste des annexes Annexe 1. Caractérisations structurales et chimiques

, Annexe 1.1. Distribution granulométrique et morphologique

, Mesure de densité, protocole de polissage et détermination des tailles de grains

, Mesure des propriétés de dureté et d'élasticité

, Annexe 5. Propriétés mécaniques, thermiques et électriques des matériaux utilisés dans le modèle numérique