
HAL Id: tel-02897810
https://theses.hal.science/tel-02897810

Submitted on 12 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of machine learning techniques for evidential
3D perception, in the context of autonomous driving

Édouard Capellier

To cite this version:
Édouard Capellier. Application of machine learning techniques for evidential 3D perception, in the
context of autonomous driving. Artificial Intelligence [cs.AI]. Université de Technologie de Compiègne,
2020. English. �NNT : 2020COMP2534�. �tel-02897810�

https://theses.hal.science/tel-02897810
https://hal.archives-ouvertes.fr

Par Édouard CAPELLIER

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Application of machine learning techniques for
evidential 3D perception, in the context of
autonomous driving

Soutenue le 14 janvier 2020
Spécialité : Robotique et Sciences et Technologies de
l’Information et des Systèmes : Unité de recherche Heudyasic
(UMR-7253)

 D2534

UNIVERSIT ́E DE TECHNOLOGIE DE
COMPI ̀EGNE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Doctor

by Edouard CAPELLIER

Application of machine learning techniques for evidential
3D perception, in the context of autonomous driving

Application de l’apprentissage machine pour la
perception crédibiliste 3D, dans le contexte de la conduite

autonome

Defense date: January 14th, 2020
Thesis committee:

Reviewers Frédéric Pichon Université d’Artois
François Goulette Mines ParisTech

Examiners Thierry Denoeux Heudiasyc - UTC
Samia Ainouz LitisLab - INSA de Rouen

Supervisors Véronique Cherfaoui Heudiasyc - UTC
Franck Davoine Heudiasyc - UTC

Invited Member You Li Renault SAS

Robotique et Sciences et Technologies de l'Information et des Systèmes

Abstract

The perception task is paramount for self-driving vehicles. Being able to ex-
tract accurate and significant information from sensor inputs is mandatory, so as
to ensure a safe operation. The recent progresses of machine-learning techniques
revolutionize the way perception modules, for autonomous driving, are being de-
veloped and evaluated, while allowing to vastly overpass previous state-of-the-art
results in practically all the perception-related tasks.

Therefore, efficient and accurate ways to model the knowledge that is used
by a self-driving vehicle is mandatory. Indeed, self-awareness, and appropriate
modeling of the doubts, are desirable properties for such system. In this work,
we assumed that the evidence theory was an efficient way to finely model the
information extracted from deep neural networks. Based on those intuitions,
we developed three perception modules that rely on machine learning, and the
evidence theory. Those modules were tested on real-life data.

First, we proposed an asynchronous evidential occupancy grid mapping algo-
rithm, that fused semantic segmentation results obtained from RGB images, and
LIDAR scans. Its asynchronous nature makes it particularly efficient to handle
sensor failures. The semantic information is used to define decay rates at the cell
level, and handle potentially moving object.

Then, we proposed an evidential classifier of LIDAR objects. This system is
trained to distinguish between vehicles and vulnerable road users, that are de-
tected via a clustering algorithm. The classifier can be reinterpreted as perform-
ing a fusion of simple evidential mass functions. Moreover, a simple statistical
filtering scheme can be used to filter outputs of the classifier that are incoherent
with regards to the training set, so as to allow the classifier to work in open
world, and reject other types of objects.

Finally, we investigated the possibility to perform road detection in LIDAR
scans, from deep neural networks. We proposed two architectures that are in-
spired by recent state-of-the-art LIDAR processing systems. A training dataset
was acquired and labeled in a semi-automatic fashion from road maps. A set of
fused neural networks reaches satisfactory results, which allowed us to use them
in an evidential road mapping and object detection algorithm, that manages to
run at 10 Hz.

2

Acknowledgements

First of all, I would like to thank my supervisors Veronique Cherfaoui, Franck
Davoine, and You Li, for their availability and advice during this 3-year PhD. I
also want to express my gratitude to the members of the jury who have agreed
to ˙participate in my PhD defense. I would like to thank my colleagues in the
Heudiasyc laboratory with whom I have had the chance and the pleasure to
collaborate, especially Thierry Monglon and Stéphane Bonnet. I appreciated
their help and remarks as well as the discussions we have had. My sincere
thanks go to all the people that I have met at Heudiasyc and Renault, and
especially to the friends I have made during this 3-year-long journey. I also want
to thank Nicolas Caddart who, in the context of the internship that he did at
Renault, participated in the last work that will be presented in this manuscript,
by helping me to manually label LIDAR scans, and by developing and testing
software modules that greatly helped me in my work. Last but not least, I want
to express my profound gratitude to my parents, my brother and my partner,
who supported me through my moments of doubts, both physically and mentally.

3

Contents

1 Introduction 7
1.1 General context . 7
1.2 Framework of the work and objectives 9
1.3 Organization of the thesis . 10

2 Machine learning for perception in autonomous driving 13
2.1 Introduction . 13
2.2 Which datasets for which tasks ? 14
2.3 Deep neural networks architectures for images and LIDAR scans . 15

2.3.1 Artificial neural networks (ANNs) 15
2.3.2 Convolutional neural networks (CNNs): ANNs for image

processing . 16
2.3.3 Deep neural networks for LIDAR point-cloud processing . 18

2.4 Road detection via machine learning, from RGB images and LI-
DAR scans . 20

2.5 Semantic segmentation of road scenes 23
2.6 3D LIDAR Object detection and classification 25
2.7 Conclusion . 26

3 The evidence theory, and its applications in autonomous driving 27
3.1 Introduction . 27
3.2 The evidential framework . 27
3.3 Use of the evidence theory in perception tasks for autonomous

driving . 30

4 Asynchronous evidential grid mapping from RGB images and
LIDAR scans 33
4.1 Introduction . 33
4.2 From raw LIDAR scans and images to evidential grids 35

4.2.1 Generating evidential grids from LIDAR scans 35
4.2.2 Generating evidential grids from segmented images 37
4.2.3 Asynchronous fusion of LIDAR data and image segmenta-

tion results as an evidential grid 39
4.3 Experimental results . 41

4.3.1 Handling sporadic semantic segmentation errors 42
4.3.2 Handling systematically contradictory information 43
4.3.3 Handling sensor failures 43
4.3.4 Evaluation of the importance of handling moving objects . 47

4.4 Conclusion . 48

4

5 Evidential LIDAR object classification 49
5.1 Introduction . 49
5.2 Evidential end-to-end formulation of binary logistic regression clas-

sifiers . 51
5.2.1 Binary generalized logistic classifiers 51
5.2.2 Binary GLR classifiers as a fusion of simple mass functions 51

5.3 End-to-end evidential interpretation of a binary GLR classifier
and online statistical filtering . 52

5.4 Evidential classification of LIDAR objects 55
5.4.1 Training dataset . 55
5.4.2 Model . 56
5.4.3 Model training . 58
5.4.4 Evaluation . 59

5.5 Examples . 61
5.6 Discussion on the use of unnormalized mass functions 63

5.6.1 Proper filtering of the simple mass functions 63
5.6.2 Representation of unknown objects 65

5.7 Conclusion . 66

6 Road detection in LIDAR scans 67
6.1 Introduction . 67
6.2 TadNet: Transformation-adversarial network for point-level road

detection in LIDAR rings . 68
6.2.1 Ring-level PointNet . 68
6.2.2 Transformation-adversarial network for LIDAR rings . . . 68
6.2.3 Training procedure . 70

6.3 RoadSeg: a deep learning architecture for road detection in LI-
DAR scans . 71
6.3.1 Dense range image generation from LIDAR scans 72
6.3.2 From SqueezeSeg to RoadSeg 73

6.4 Automatic labeling procedure of LIDAR scans from lane-level HD
Maps . 75
6.4.1 Soft-labeling procedure . 75
6.4.2 Data collection and resulting dataset 78

6.5 Evaluation of the performances of TadNet 82
6.6 Evaluation of the performances of RoadSeg 84

6.6.1 Evaluation on the KITTI Road dataset 84
6.6.2 Evaluation on the manually labeled Guyancourt dataset . 86
6.6.3 Comparison of the evidential mass functions obtained from

the fused RoadSeg networks 91
6.6.4 Examples of results . 93

6.7 Conclusion . 96

5

7 Application of RoadSeg: evidential road surface mapping 97
7.1 Introduction . 97
7.2 Projection on the xy-plane of the segmentation results 97
7.3 Conflict analysis . 100
7.4 Clustering and road object detection 102
7.5 Road accumulation and ego-motion compensation 103
7.6 Implementation and example of output 104
7.7 Conclusion . 107

8 Conclusion 108
8.1 Conclusion . 108

8.1.1 Asynchronous evidential grid mapping from RGB images
and LIDAR scans . 108

8.1.2 Evidential LIDAR object classification 109
8.1.3 Road detection in LIDAR scans for evidential grid mapping 109

8.2 Perspectives . 110
8.2.1 Towards an unified evidential perception system 110
8.2.2 Towards evidential perception integrity 111

6

Chapter 1

Introduction

Contents
1.1 General context . 7

1.2 Framework of the work and objectives 9

1.3 Organization of the thesis 10

1.1 General context

Self-driving urban vehicles have been fantasized for more than thirty years, by
engineers and researchers all around the world. Launched in the late 1980’s, the
Eureka PROMETHEUS Project (Programme for a European traffic of highest
efficiency and unprecedented safety) was for instance the first large-scale R&D
project in the field of autonomous driving, and involved more than forty aca-
demic and industrial partners over Europe. Inventions that date back from this
research effort were the basis of many modern advanced driving assistance sys-
tems (ADAS), such as autonomous intelligent cruise control (AICC) [1], that
are nowadays available in consumer cars. In 2007, the DARPA Urban Chal-
lenge demonstrated the feasibility of autonomous driving in quasi-urban envi-
ronments [2]–[4]. Since then, many experiments, both on controlled areas and
open roads, have been led in various locations, although safety drivers or remote
operators were still monitoring the vehicles [5]–[7].

One of the most paramount issues to solve, in order to make self-driving ur-
ban vehicles socially acceptable and generalized, is possibly the perception task.
Perception, in general, is defined as the ability to see, hear, or become aware of
something through the senses (Oxford dictionary, 2019). Of course, self-driving
vehicles do not have senses per se, but instead can rely on various sensors, such
as cameras, laser scanners, or radars, to get a raw representation of their environ-
ment. The perception task for a robotic system, similarly to what it is for human
beings, can then be defined as the process of extracting information from raw
sensor inputs. In the case of self-driving vehicles, the information to be extracted
is probably extremely specific: one could easily consider that a self-driving urban
vehicle has to know where is the road for the autonomous driving task, but do
not especially need to know to color of the eyes of all the pedestrians that are
present in the scene.

7

The ability to extract key information from sensor inputs, and to prove that
key information will always be extracted, will be what will make self-driving
vehicles viable. Indeed, a recent report from NHTSA [8] estimated that, in the
US, between 2005 and 2007, the critical reason that led to a car crash could be
assigned to the driver in approximately 94% of the cases. Recognition errors,
including driver’s inattention, distraction and inadequate surveillance, and non-
performance errors, which mostly means sleep, were considered as the actual
critical reason in nearly half of those crashes. Theoretically, self-driving vehicles
could then outperform human drivers in terms of crash numbers, as computers do
not need to sleep, and cannot be distracted as easily as humans. This however
supposes that those autonomous systems can perceive their environment, and
extract meaningful information, as efficiently as humans, in all cases. Otherwise,
self-driving vehicles might only be considered as very expensive robots, that have
failure modes that are just different from humans, and that are thus not that
useful.

Ensuring that a perception system always reaches a sufficient performance
level is a very hard, and composite problem. Indeed, this could require to solve
several cognitive, nay philosophical, problems, such as:

• Quantifying the distance between the performances of a perception system,
and the performances of human drivers

• Listing exhaustively all the tasks that have to be performed, by a self-
driving vehicle, to achieve at least human-like perception

• Ensuring that each one of these atomic tassk is achieved with sufficient
performance, in dedicated situations

• Ensuring that each one of these atomic tasks is achieved with sufficient
performance, in all situations

We do not know how to solve those issues, as perception systems are often
evaluated on a per-pixel basis, that is very different from the way humans un-
derstand the world. We do not even know if those issues can be solved, nor if
all those issues have to be solved. We however consider as a sound assumption
that perception systems, when used in self-driving vehicles and possibly com-
pared with human drivers, should represent their trust in what they perceive
as precisely as possible, and as objectively as possible. In this context, machine
learning approaches seem of particular interest for perception tasks. Indeed, such
algorithms are mathematically optimized to work on datasets, which are assumed
to depict, exhaustively, all the possibile use cases that should be covered.

The recent technological achievements, in autonomous driving, were concur-
rent with the generalization of the use of machine-learning algorithms, in au-
tonomous vehicles. This was justified by the success of Stanley, a prototype

8

vehicle designed in Stanford University, which won the 2005 DARPA Grand Chal-
lenge, and relied on machine learning, especially to detect the drivable area [9].
Since then, several driving oriented labeled datasets were publicly released, such
as the KITTI dataset [10] or the CityScapes dataset [11]. Consequently, various
and numerous contributions in the field of perception for autonomous driving,
that rely on recent machine learning techniques, were proposed over the recent
years. Deep convolutional neural networks are especially popular for vision-
related tasks, such as semantic segmentation and instance segmentation in 2D
images. Machine learning algorithms have the benefit of being as objective as
possible, as they basically learn to extract statistical features from a training
dataset, that is supposed to be representative of the task they have to solve. For
tasks that have objectively correct answers, as it is the case for several perception
tasks, using machine learning algorithms could be safer than relying on explitcit,
and therefore subjective, models. Yet, this does not mean that machine learning
algorithms in general, and deep neural networks in particular, do not have in-
trinsic limitations and failure modes that have to be accounted for [12]. In this
context, we assumed that the theory of belief functions could be of interest, in
order to represent more properly the behavior of machine learning algorithms,
and deep neural networks in particular.

The theory of belief functions, or evidence theory, extends the commonly used
Bayesian framework, by reasoning on the power set of the frame of discernment.
A more detailed representation of the knowledge is then obtained. For instance,
to model the result obtained after having tossed a dice, the Bayesian framework
would typically be used to represent the fact of having either a one, a two, a
three, a four, a five or a six. In the same conditions, for the same possible
outcomes, the evidence theory will allow for other results to be modeled, such
as having an ambiguous result. This could correspond, for instance, to the fact
that the dice was tossed, but rolled under a dresser, which makes the result
impossible to read. Again, in the context of autonomous driving, being able
to obtain such additional and refined knowledge from the perception system
is, probably, a desirable property, to model the current performance-level of a
perception system.

1.2 Framework of the work and objectives

Our work was focused on the proposition of perception modules, intended to
be used by a self-driving urban vehicle, which relied on machine learning to
accomplish perception-oriented tasks, and the evidence theory to represent the
knowledge they extract. We thus aimed at obtaining objective knowledge that is
accurately represented. In particular, we focused on a 3D understanding of the
scene, as autonomous vehicles typically need to evolve in a 3D environment. The
algorithms were designed to be integrated into the software stack of prototypes
of autonomous electric shuttles, called Renault ZoeCab.

9

We thus primarily focused on the use of RGB images and a LIDAR scanner.
Localization sensors, such as GNSS receptors with RTK corrections or odometry
sensors, were also used, but only to realign the data over time. HD maps are
also available to ZoeCab systems in dedicated areas. By HD maps, we designate
geo-referenced maps that have a centimeter-level accuracy. We chose not to rely
on them, at least during the actual perception task, as we considered that this
pre-existing information is not perceived, per se. We however benefited from
them, for offline processings.

We focused on only a subset of all the possible perception tasks, that seemed
mandatory to us for the deployment of self-driving urban vehicles. Those tasks
are road detection, object detection, and object classification. As ZoeCab sys-
tems are intended to be deployed as urban shuttles, the algorithms are tailored for
urban and peri-urban areas. We, for instance, do not assume that our road detec-
tion algorithm can be used directly on highways. Our algorithms were tested on
real-life data acquired from ZoeCab systems and, when possible, trained on data
obtained from those prototypes. They were thus implemented as ROS nodes,
that can be interfaced with other ROS modules that exist for ZoeCab systems.

This work was part of the research activities of SIVAlab (LABoratoire des
Systèmes Intègres pour le Véhicule Autonome), a joint laboratory between Re-
nault SAS and the Heudiasyc Laboratory, UMR UTC/CNRS 7253. It was funded
by a CIFRE fellowship, that was granted from Renault SAS.

1.3 Organization of the thesis

The next chapters of this manuscript are organized as follows.

Chapter 2 briefly presents the current state-of-the art machine learning algo-
rithms to solve typical 2D and 3D perception tasks, in autonomous driving. Most
of those approaches rely on the use of very specific architectures, intended to be
used on images: convolutional neural networks. As we could not exhaustively
cover all the existing perception tasks that have been addressed, we only focus
on those that correspond to the modules we chose to develop for ZoeCab sys-
tems: road detection, semantic segmentation, and 3D LIDAR object detection
and classification.

Chapter 3 covers the general evidence theory, and presents both the framework
and usual mathematical tools that are used to reason in this framework. We
present the Dempster-Shafer combination rule, its unnormalized variant, several
indicators about the quality of evidential mass functions, and how evidential
mass functions can be expressed in terms of probability. We also present some
applications of the evidence theory in perception for autonomous driving, that

10

do not necessarily rely on machine learning. Most of those applications are grid
mapping systems.

Chapter 4 presents a first, naive, use of the evidence theory, in a sensor fu-
sion context. A deep convolutional neural network, that was previously trained
to output semantic segmentation results from RGB images, is used to obtain
classification results, that are semantically reinterpreted in the evidence theory.
An asynchronous fusion of the segmentation results is realized with observations
from a 360◦ LIDAR scanner. Though flexible, this approach does not completely
benefit from the evidence theory, as the outputs are only reinterpreted semanti-
cally, while the actual behavior of the neural network could have been modeled
using the theory of belief functions.

Chapter 5 thus presents a neural network used as a LIDAR object classifier,
that can be reinterpreted as a fusion of simple evidential mass functions. In
this work, we mainly focused on the classification of objects as either vehicles,
or vulnerable road users. The reinterpretation of the classifier as performing a
fusion of simple mass functions allowed us to rely on a simple statistical filtering
scheme, to detect and rejects mass functions that are not usable for the final
classification of the LIDAR objects, and allow for an operation in open-world.

Chapter 6 builds on this previous work, and proposes two convolutional ar-
chitectures for road detection in LIDAR scans. One of them is heavily inspired
by PointNet [13], and processes LIDAR rings, while the other one is inspired by
both PointNet and SqueezeSeg [14], and processes LIDAR scans that are orga-
nized as dense range images. Evidential mass functions can be obtained from the
systems in both cases, and later used in a fusion framework. A training dataset
for those systems was obtained in a semi-automatic fashion, from geo-referenced
maps.

Chapter 7 extends section 6, and presents an evidential road surface map-
ping algorithm, that relies on a fusion of neural networks. LIDAR scans are
segmented, and their results are accumulated over time to build a dense repre-
sentation of the road structure. A conflict analysis, during evidential fusion, is
also used to detect road obstacles during the fusion process.

Chapter 8 finally concludes our manuscript, summarizes our contributions,
and offers some perspectives about possible future works.

This manuscript is based on the following publications, that we proposed dur-
ing out PhD research work from 2017 to 2020:

• Capellier, E., Davoine, F., Frémont, V., Ibañez-Guzmán, J., & Li, Y. (2018,
November). Evidential grid mapping, from asynchronous LIDAR scans and

11

RGB images, for autonomous driving. In 2018 21st International Confer-
ence on Intelligent Transportation Systems (ITSC) (pp. 2595-2602). IEEE.

• Capellier, E., Davoine, F., Cherfaoui, V., & Li, Y. (2019, June). Evidential
deep learning for arbitrary LIDAR object classification in the context of
autonomous driving. In 2019 IEEE Intelligent Vehicles Symposium (IV)
(pp. 1304-1311). IEEE.

• Capellier, E., Davoine, F., Cherfaoui, V.,& Li, Y. (2019, November). Transformation-
adversarial network for road detection in LIDAR rings, and model-free
evidential road grid mapping. Proceedings of the 11th workshop on Per-
ception, Navigation and Planning for Intelligent Vehicles. Available online
at https://project.inria.fr/ppniv19/program/

• Capellier, E., Davoine, F., Cherfaoui, V., & Li, Y. Fusion of neural networks
for road detection in LIDAR scans, and evidential road surface mapping –
under submission to the “Journal of Field robotics”

12

Chapter 2

Machine learning for perception
in autonomous driving

Contents
2.1 Introduction . 13

2.2 Which datasets for which tasks ? 14

2.3 Deep neural networks architectures for images and
LIDAR scans . 15

2.3.1 Artificial neural networks (ANNs) 15

2.3.2 Convolutional neural networks (CNNs): ANNs for im-
age processing . 16

2.3.3 Deep neural networks for LIDAR point-cloud processing 18

2.4 Road detection via machine learning, from RGB im-
ages and LIDAR scans 20

2.5 Semantic segmentation of road scenes 23

2.6 3D LIDAR Object detection and classification 25

2.7 Conclusion . 26

2.1 Introduction

This section focuses on a presentation of how machine-learning is used to solve
perception problems, in the context of autonomous driving. As previously said,
we only focus on a subset of tasks, that correspond to those that we considered
during our thesis. First of all, we will present the datasets that are currently
available for the training and evaluation of perception modules. Then, we will
briefly present how deep neural networks, which are the most common machine-
learning architectures nowadays, are used to process images and LIDAR data.
Finally, we will present the current state-of-the-art approaches for road detection,
semantic segmentation, and 3D LIDAR object detection and classification that
are available on those datasets.

13

2.2 Which datasets for which tasks ?

As machine-learning algorithms are data-driven approaches, their development
depends on the availability of pre-existing datasets. One of the first tasks, in an
autonomous driving context, that was solved using machine-learning, is road de-
tection. This was justified by the availability of the KITTI road dataset [15],
which consists in RGB images and pixel-level road labels, and the ease of label-
ing of the road in RGB images. Indeed, relatively accurate road labels can be
obtained by polygonal annotation of RGB images. The KITTI road dataset also
includes LIDAR scans, that were synchronized and calibrated with regards to the
RGB camera that generated the labeled images, so that road detection algorithms
developed from the KITTI dataset can also rely on 3D information. However,
although road detection is crucial for autonomous driving, many other classes
of objects have to be detected. This thus lead to the release of the CityScapes
dataset, which consists in 5000 RGB images that were recorded from a driving
vehicle. Those images were finely labeled according to nineteen semantic classes
that were decided to be useful in the context of autonomous driving (pedestrian,
car, truck, road, sidewalk, among others), and 20 000 additional images with
coarse labels were also released. Instance-level labels are also available.

Yet, both KITTI and CityScapes are image-oriented dataset and, even if LI-
DAR scans or disparity maps are made available alongside the labeled data, the
evaluation procedures are always biased towards an interpretation in the im-
age domain. For instance, a LIDAR-only road detection approach evaluated on
KITTI is expected to produce dense road detections, even if LIDAR scans are
sparse by nature. The labeled data also only corresponds to the front view of
the vehicles in both cases, which limits the possibility of using those dataset
for complete scene understanding. This justified the release, in 2019, of many
similar datasets, that are oriented towards 3D object detection, tracking, and
scene understanding: the TUBS dataset [16], NuScenes [17], Argoverse [18], Lyft
level 5 [19], and the Waymo Open Dataset [20]. All those datasets include RGB
images and 3D 360◦LIDAR data, in which objects of interests have been labeled
via bounding boxes. NuScenes, Argoverse and Lyft level 5 also include road
maps corresponding to the area where the raw data was acquired, so as to depict
the reality of the road network in the dataset. Some evolutions are expected for
these five datasets, such as new kinds of labels, or additional data.

Semantic segmentation of LIDAR scans is another dynamic field, where datasets
are emerging. One of those recent datasets is the Paris-Lille-3D dataset [21],
which consists in approximately 2 kilometers of labeled LIDAR scans. Yet, the
LIDAR used in dataset was mounted with an angle of 30 degrees between the
axis of rotation and the horizontal. Also the individual scans are registered into a
dense point-clouds, and the evaluation procedure used for this dataset focuses on
coarse classes. For instance, roads and sidewalks are subsumed under a ground
class. As a result, this dataset is mainly oriented towards the task of semantic

14

mapping, rather than perception. Similarly to the KITTI dataset, the TUBS
dataset for instance recently included fine labels for seven classes of objects in
RGB images, which can easily be projected into the LIDAR scans. Finally, again
in 2019, the SemanticKITTI dataset was released [22]. SemanticKITTI consists
in more than 43000 LIDAR point-clouds, splitted into 22 sequences of consecu-
tive scans that originally belonged to the KITTI dataset, that were labeled at
the point-level according to 28 semantic classes.

A dynamic community is thus participating in the release of new datasets
that enable the development of perception modules for autonomous driving that
heavily rely on autonomous driving. 2019 was especially a very dynamic year in
terms of datasets for autonomous driving. The tasks of semantic segmentation
of LIDAR point-clouds, semantic SLAM, and map-aided perception will prob-
ably gain popularity, as large-scale datasets are now available, to develop and
evaluate those approaches. Yet, the fact that some of these new datasets (espe-
cially NuScenes, Lyft level 5, and Argoverse) have very similar features, makes
it difficult to anticipate whether one of these datasets will become a standard,
or if researchers will have to evaluate all of their approaches with regards to
those datasets. One might be afraid that the amount of time needed to properly
evaluate approaches, on all of these new datasets, will make the global research
work focus on very specific sensor setups and situations. Roundabouts are for
instance very rare in those datasets. Field experiments, if they ever happen,
will also have to be properly justified, especially for the semantic-SLAM, object
detection and object classification tasks.

2.3 Deep neural networks architectures for im-

ages and LIDAR scans

2.3.1 Artificial neural networks (ANNs)

The most widely used machine learning algorithms, for perception tasks, belong
to a very specific class of algorithms: deep neural networks, that extend artificial
neural networks (ANN). ANNs are inspired by the formal model of neuron that
was proposed by McCulloch and Pitts, which corresponded to the way biological
neurons were expected to work in the 1940’s. Such a neuron is modeled as a
mathematical function, with x an input numerical vector of n values and y the
output of function, as follows:

y = φ(w0 +
n∑
i=1

wixi) (2.1)

φ is typically a non-linear function, such as the Heaviside function or the ReLU
function. The w0 parameter is called bias, and the bias and wi parameters are

15

Figure 2.1: Example of artificial neural network (ANN). The input layer corre-
sponds to the input vector, and a numerical vector is outputted by the function.

selected according to the application modeled by this function. For instance, if φ
is the Sigmoid function, the neuron performs binary logistic regression, and can
be used to model the probability that the input belongs, or not, to a class. To
model complex functions, those neurons, or units, can be organized in networks.
An ANN then consists in a set of units that follow the mathematical model
in Equation 2.1, and are organized in stacked layers, as depicted in Figure 2.1.
Between the input and output layers, at least one hidden layer of units is present.

Deep neural networks are actually ANNs that have more than one hidden
layer. The parameters of each unit are usually learnt, thanks to an objective
function, or loss function, that penalizes errors of the system (for instance, mis-
classifying pixels), and an optimization algorithm, such as the stochastic gradient
descent algorithm. In particular, deep neural networks which have all their units
connected together are called multi-layer perceptrons (MLP). Other types of
deep neural networks have been proposed, to process specific types of data. In
particular, convolutional neural networks (CNN) are refined deep neural networks
that are used to process images.

2.3.2 Convolutional neural networks (CNNs): ANNs for
image processing

The need for specific architectures for images was justified by the fact that fully
connected architectures, which would take image pixels as inputs, would be ex-
tremely inefficient. Indeed, an MLP that would directly be fed with image pixels
would only be able to process images with a fixed number of pixels. Local fea-
tures would also be hard to extract for such an MLP, as each unit would only
reason on the global image. A high sensitivity to shift, distortion and scaling
would have to be expected in this case. CNNs, instead of reasoning on full im-

16

Figure 2.2: LeNet5, a convolutional neural network for handwritten digit recog-
nition. Illustration originally coming from [23].

ages, reason on neighborhoods. Each unit only processes neighboring pixels, in
a sliding window fashion. As a result, the wi parameters in Equation 2.1 are
then seen as the parameters of a convolution matrix. The units of such networks
are thus relying on a bank of convolutional filters whose parameters are learnt,
which justified that such deep ANNs for image processing were called convolu-
tional neural networks. Consecutive convolutional hidden layers are then applied
to the image, to extract features from the images. To further enforce invariance
to rotation, distortion and scaling, CNNs architecture can also subsample out-
puts from hidden layers, generally via Max-Pooling or Average Pooling. Finally,
fully connected hidden layers can, for instance, be used to reason on the fea-
tures extracted by the consecutive convolutional and sub-sampling operations.
LeNet5, which is depicted in Figure 2.2, follows this typical architecture, and
applies it for handwritten digit recognition.

LeNet5 was originally used for a task of image classification. However, CNNs
can also be used for semantic segmentation, which is equivalent to per-pixel clas-
sification. In this case, the output size of the network is expected to be equal
to the size of the input image. Upsampling is thus needed. Most approaches
for semantic segmentation of images rely on a hourglass-like architecture: early
convolutional and sub-sampling operations are used to extract features from the
input image (or encode the image); then upsampling and convolutional opera-
tions are used, in a decoder network, to predict per-pixel segmentation results,
from the encoded features. An example of typical encoder-decoder network for
semantic segmentation is SegNet, which is depicted in Figure 2.3. As no fully
connected layers are used anymore, such networks can be said to be fully convo-
lutional neural networks (FCN).

Regarding the processing of LIDAR scans, no standard type of architecture,
that is as widely used as CNNs and FCNs, currently exists. Several approaches
exist however. The machine learning algorithms that are able to process raw
LIDAR scans can be split into two main categories. On the one hand, some
approaches consider LIDAR scans as unorganized point-clouds, and usually rely
on PointNet-like architectures [13]. On the other hand, other approaches are
heavily inspired by SqueezeSeg [14], and consider that LIDAR scans are orga-

17

Figure 2.3: SegNet, an encoder-decoder convolutional neural network, for seman-
tic segmentation. Illustration originally coming from [24].

nized point-clouds, which can be processed as range images obtained by spherical
projections.

2.3.3 Deep neural networks for LIDAR point-cloud pro-
cessing

Figure 2.4: PointNet, a general neural network architecture to process unorga-
nized point-clouds. Illustration originally coming from [13].

PointNet applies a common multi-layer perceptron to the features of each point
of a point-cloud. A global max-pooling operation is then used to extract a cloud-
level feature. Such an architecture was mathematically demonstrated to be able
to approximate any set function. Further layers can then be trained to perform
for object classification, semantic segmentation, or part segmentation. However,
PointNet expects normalized, and relatively constrained inputs, which involves
several pre-processing steps. Engelmann et. al. for instance investigated, with-
out reaching fully satisfactory results, several PointNet-like architectures for se-
mantic segmentation of large-scale virtual 3D point-clouds, which relied on the
parallel processing of subsets of virtual LIDAR scans [25]. The general architec-
ture of PointNet is depicted in Figure 2.4. Recent evolutions of PointNet, such
as PointNet++ [26], aim at extracting information from local neighborhoods of
points, to extract more refined features from the input point-cloud.

18

Figure 2.5: SqueezeSeg, a convolutional architecture to process LIDAR scans.
Illustration originally from [14]

SqueezeSeg [14], on the other hand, was introduced as a refined version of
SqueezeNet [27], a highly efficient convolutional neural network with a limited
number of parameters, and a low memory footprint. SqueezeNet heavily re-
lies on Fire layers, that require less computations and use less parameters than
traditional convolution layers. SqueezeSeg re-adapts SqueezeNet for semantic
segmentation of LIDAR scans, by considering that LIDAR scans are organized
point-clouds, which can be represented by range images. Spherical projection can
indeed be used to generate dense range images from LIDAR scans. The height of
those range images corresponds to the number of lasers that are used by the sen-
sor, and their width is equal to the field-of-view of the sensor divided by its hori-
zontal resolution. The number of channels correspond to the number of features
available for each point. This means that the network architecture depends on
the specifications of the LIDAR sensor. A conditional random field (CRF), rein-
terpreted as a recurrent neural network, was also trained alongside SqueezeSeg,
to further improve the segmentation results. Recently, SqueezeSegV2 introduced
a context aggregation module, to cope with the fact that LIDAR scans usually
include missing points, due to the limited range of the sensor, and sensor noise.
The input range image used in SqueezeSegV2 also includes an additional chan-
nel that indicates whether a valid sensor reading was available, at each angular
position. Finally, SqueezeSegV2 extensively uses batch-normalization, contrary
to SqueezeSeg. Other refinements regarding the training of the system, and
fine-tuning from simulated data, were also proposed.

19

Both SqueezeSeg-like and PointNet-like architectures then suffer from draw-
backs, when used to process LIDAR data. On the one hand, SqueezeSeg-like
architectures are designed to process inputs that heavily depend on the specifi-
cations of the LIDAR scans that generated them, and it is thus doubtful that
they generalize well for any type of LIDAR sensor. PointNet-like networks are
mainly designed for constrained outputs, which may require to pre-proces their
input LIDAR scan, and struggle to extract local information. However, several
new architectures are being proposed, to deal with those drawbacks. KPConv
for instance relies on kernel functions that are similar to convolution kernels, but
are designed to process neighborhoods of points [28]. This approach currently
reaches state-of-the-art results for semantic segmentation on the Paris-Lille-3D
dataset, by consecutively processing subsets of the registered point-cloud and
using a voting scheme to select the final class of each point. Such a framework
seems incompatible with real-time perception, but the original idea behind KP-
Conv might be reused in specific systems that are tailored to process LIDAR
scans. On the other hand, similar architectural refinements might also be used
in SqueezeSeg-like networks, that process organized LIDAR point-clouds. After
having briefly introduced the most common machine-learning architectures to
process RGB images and LIDAR scans, we will, in the next section, present how
such architectures can be used for road detection, semantic segmentation and
object classification.

2.4 Road detection via machine learning, from

RGB images and LIDAR scans

The approaches that we will present now were all developed and evaluated
from the KITTI road dataset, as this is currently the only dataset in which the
road detection task is evaluated individually. State-of-the-art approaches on the
KITTI dataset can then benefit from either RGB images, LIDAR scans, or both.
First, we will focus on image-only approaches.

With a MaxF-score of 94.88% on the test set of the KITTI road dataset, Multi-
Net [29] is the third best performing image-only road detection approach on the
KITTI road dataset. A CNN encoder, that was previously pretrained on the
ImageNet dataset, is used to extract features from the input RGB image. This
encoder generates a feature map of 39x12 pixels. Then, three decoders are used
to perform jointly three tasks from the encoded features: road detection, street
type classification and vehicle detection. As these three types of labels are not
available together for the images of the KITTI road dataset, MultiNet is alter-
natively trained on one of the three tasks, and thus relies on data that does not
belong to the KITTI road dataset for its optimization. The road detection task
is performed in a fully convolutional fashion, with clasification scores evaluated
for each pixels ; the street type classification task is done via fully-connected
layers that output a probability score, which indicates whether the RGB scene

20

depicts a minor road or a highway ; the detection task is done by predicting, for
each pixel of the encoded features, a confidence score indicating the presence of a
vehicle at this position, and the coordinates of a bounding box in the area around
each pixel of the encoded feature map. Those predictions are then upsampled, to
fit the original size of the input image. By aiming at performing several tasks at
once, MultiNet is expected to encode general features from RGB images, which
is expected to facilitate the training. RBNet [30], the second best performing ap-
proach for road detection on the KITTI road dataset also relies on multi-tasking.
RBNet only relies on the data from the KITTI-road dataset, and works in a fully
convolutional fashion. A pretrained encoder is again used to generate the input
to two decoders. One performs pixel-level road detection, and the other one per-
forms pixel-level road-boundary detection. The results are refined with regards
to the estimated road boundaries, as pixels that are classified as belonging to the
road, but outside the detected road boundaries, are considered as false positives.
RBNet reaches a Max-F score of 94.97% on the KITTI road test set. Finally,
the best image-only approach for road detection on the KITTI road dataset was
proposed by Han et. al. in [31]. Again, a multi-task fully convolutional network
is used for multi-tasking. A decoder branch predicts per-pixel road classification
scores, and another one classifies the road depicted in the scene as either straight,
branch, or curve. However, inspired by GANs [32], Han et. al. also propose to
train a discriminative network, which must detect whether the road detection
and classification system processes labeled data from the KITTI road dataset,
or unlabeled data. This way, the system can benefit from unlabeled data during
the training. Yet, it thus relies on additional training data, and additional road
type labels that Han et. al. had to add themselves. Yet, this system reaches a
Max-F score of 95.53% on the KITTI test set.

Other approaches on the KITTI-road dataset only rely on LIDAR scan to per-
form road detection, but actually rely on image processing techniques. Fernandes
et. al. [33] proposed to project and upsample LIDAR points into a 2D image
plane, and to detect the road in this image plane via an histogram similarity
measure. They reach a Max-F score of 82.72%. Lyu et. al. [34] proposed to
train a neural network on range images obtained from the spherical projection
of LIDAR scans, similarly to what is done for SqueezeSeg, and to fit a polygon
on the predicted road points to obtain a dense prediction. In this work, some
LIDAR points are lost on the projection process, as each pixel of the range image
could represent several LIDAR points. A Max-F score of 94.05% is reached by
this method. Finally, another proposition from Caltagirone et. al. was to project
LIDAR points into a 2D sparse feature grid corresponding to a bird’s eye view,
and to train a convolutional neural network to predict a dense road region from
this representation [35]. This method reached a Max-F score of 94.07%.

21

Figure 2.6: Example of road detection re-
sult obtained by [35]. The top RGB im-
age depicts the situation, the bottom-left im-
age depicts the LIDAR grid used as input
to the neural network, and the bottom˙right
presents the corresponding road detection.

Although those approaches are
currently the best performing
LIDAR-only road-detection ap-
proaches on the KITTI dataset,
they share the same limitation:
they aim at predicting a dense
road area from a sparse LIDAR
scan, and thus rely on upsam-
pling, since they are evaluated
with regards to dense, image-level
road labels. All those approaches
then predict the presence of road
on locations where no actual LI-
DAR measurements were actually
available, which can be consid-
ered as an incorrect behavior for
a LIDAR-only road detection al-
gorithm. This is for instance the
case in Figure 2.6, which presents

a result of Caltagirone et. al. Indeed, gaps or small obstacles could be present
but remain unobserved due to the sparsity of LIDAR scans. Moreover, due to
the limitations of the KITTI dataset, in which the road is only labeled in the
front camera view, those systems are not designed to detect the road at 360◦,
and might require to be significantly modified to detect the road on full LIDAR
scans, without any guarantee of success.

The best performing approaches for road detection on the KITTI-road dataset
actually benefit from both LIDAR scans and RGB images. Gu et. al. [36] propose
to perform a purely geometrical road detection in LIDAR scans, to upsample the
results and to project them in the image plane. Road detection in the RGB im-
age can then be performed via an FCN, and the two results can then be fused
via a conditional random field. This approach reaches a Max-F score of 95.68%.
Another possible approach is to use an FCN to process both LIDAR scans and
RGB images. In [37], a two-stream network processes an upsampled LIDAR
scan that was projected into the image plane, and the corresponding RGB im-
age. Intermediate fusion of the encoded features is performed by performing an
element-wise weighted sum between intermediate LIDAR features and interme-
diate RGB features. These weights are learnt alongside the other parameters of
the network. This approach reaches a Max-F score of 96.03%. PLARD [38], the
current best performing approach for road detection on the KITTI road dataset,
is conceptually close to this previous work. Indeed, instead of directly learn-
ing the weights for the intermediate weighted sum of features, PLARD relies
on convolution layers applied to the concatenated RGB and LIDAR features to
predict both the weight for the weighted sum, and an additional bias added to
the resulting summed feature. LIDAR scans are projected into the image plane,

22

but each pixel correspond to an altitude gradient, instead of full coordinates.
This is justified by the fact that the road typically belong to the ground, and
is relatively flat. PLARD reaches a Max-F score of 97.03% on the KITTI road
dataset.

Road detection from deep neural networks, on the KITTI dataset, relies on
specific architectures that are tailored for this specific task. In order to improve
the results, it is common to rely on multi-task approaches, and additional data
coming from several sensors, or unlabeled dataset. The task of semantic segmen-
tation, which is more general than road detection, is thus likely to rely on less
specific architectures.

2.5 Semantic segmentation of road scenes

According to the leaderboards of the CityScapes dataset, the task of semantic
segmentation of RGB images seems to have reached a certain level of maturity.
Indeed, the three best performing approaches on CityScapes, which all rely on
the use of fully convolutional architectures, have very similar results. Li et. al.
proposed GALD, a network relying on global aggregation and local distribution,
to model pixel-to-pixel relations [39]. Global aggregation relies on long-range
operators, such as Average Pooling, to enforce a consistent segmentation of large
objects. Yet, this process tends to over-smooth small objects, which is addressed
via local distribution. The local distribution module predicts, in an unsupervised
fashion, object masks that are used by the network to focus on features corre-
sponding to objects of interest. GALD reaches a mean Intersection-over-Union
score (mIoU) of 83.3 on CityScapes. The second best performing approach on
CityScapes was proposed by Zhu et. al. [40]. As video sequences are available in
CityScapes, while only specific frames have been labeled, a video reconstruction
network is used to propagate manual labels to other frames of the raw original
video recording. Additional coarse training data is then constructed. To account
for the fact that those reconstructed labels might be imperfect, the penalization
of the network, when it predicts wrong and conflicting classes among neighboring
pixels, is reduced. This work reaches a 83.5 mIoU on the CityScapes dataset.
The currently best performing approach on CityScapes was proposed by Yuan
et. al [41]. Their fully convolutional architectures aims at extracting global fea-
tures from intermediate classification results: a first segmentation of the image is
generated, and all the pixels that were classified as belonging to the same class,
in the image, are used to build a class-wise feature. This additional class-level in-
formation is later used to refine the intermediate classification results by further
convolutions. This work reaches a 83.5 mIoU score on the CityScapes dataset.

23

Figure 2.7: Example of semantic segmenta-
tion result obtained from RangeNet++ [42].

Semantic segmentation of LI-
DAR scans for autonomous driv-
ing is, comparatively to RGB im-
ages, not often addressed, due
to the lack of dedicated datasets.
The currently best performing ap-
proaches are actually Squeeze-
Seg [14], and its variants. Orig-
inally, SqueezeSeg was designed
to perform semantic segmentation
of road users, from the KITTI
dataset. Indeed, 3D bounding
box labels corresponding to cars,
cyclists and pedestrians are avail-
able in the KITTI-object dataset.
However, those boxes only corre-

spond to objects that are visible in RGB images. The 3D position was manually
inferred from the LIDAR scans, but some objects that are visible in the RGB
images are difficult to distinguish in the LIDAR scan, and only actually corre-
spond to a few LIDAR points. Yet, SqueezeSeg was trained on LIDAR scans
with point-level labels, that were derived from those bounding boxes. Points
that were enclosed within a bounding box were labeled according to the class
of the bounding box, with thus a risk of mislabeling LIDAR points due to cali-
bration and synchronization errors. SqueezeSegV2 [43] introduced many refine-
ments, the biggest one being that the network was also trained on synthetic
LIDAR data rendered from a video-game. The release of the SemanticKITTI
dataset will clearly boost the research efforts towards semantic segmentation of
LIDAR scans for autonomous driving. RangeNet++ [42], the baseline method
proposed by the authors of the SemanticKITTI dataset, relies on the same idea
as SqueezeSeg, and processes LIDAR scans that were organized in range images
via spherical projection. Yet, RangeNet++ uses a network that is significantly
deeper that SqueezeSeg and SqueezeSegV2, and a post-processing step relying
on an optimized KNN algorithm, to correct the predictions of the network. The
comparisons made by the authors of RangeNet++ indicate that it vastly out-
performs both SqueezeSeg and SqueezeSegV2, but maintains a framerate that is
four times lower than SqueezeSegV2 without its CRF layer. As SqueezeSegV2
was initially designed to detect only four classes, while SemanticKITTI includes
labels for 19 classes, this result is not counterintuitive. To our knowledge, no re-
cent machine-learning approach, that performs semantic segmentation from both
RGB images and LIDAR scans for autonomous driving, was proposed. Again,
the release of the SemanticKITTI dataset will probably trigger various research
works in this direction.

24

2.6 3D LIDAR Object detection and classifica-

tion

Semantic segmentation is probably a paramount task in the context of au-
tonomous driving. However, to track and anticipate the behavior of individual
road users, an object-level detection and classification is mandatory. A possible
pipeline for such an object-level reasoning would be to, first, detect the objects,
and then classify them. Object detection in dense LIDAR scans usually relies
on two-step geometrical approaches, which first remove ground points, and then
cluster the remaining points. Classifiers can then be used to train to classify each
type of object [44]–[46]. In [44], a Naive Bayes classifier is for instance used to
classify object tracks as pedestrian, bicyclist, motor bike, passenger car, van or
truck. Yet, this assumes that the classified track belongs to one of those classes.
The original baseline method proposed to demonstrate the interest of the TUBS
dataset [16] was actually an object classification algorithm. LIDAR points that
are enclosed into the ground truth boxes are projected into dense images via
spherical projection, as done for SqueezeSeg, and a convolutional architecture is
used to predict the class of the objects. In both cases, those systems are de-
pendent on the correct operation of the other perception algorithms (clustering
for [16], clustering and tracking for [44]).

Figure 2.8: Example of object detection re-
sult result obtained by Simon et. al. [47].

A more popular trend is to
jointly perform the object de-
tection and classification tasks,
by training a system to extract
objects of interests. Simon et.
al. [47] thus proposed to per-
form bounding box regression and
multi-class classification jointly
by training an image-domain ob-
ject detector on feature grids gen-
erated from a LIDAR scan. The
object detector relies on a convo-
lutional architecture that outputs
bonding box dimension and class
scores, similarly to what was done
in MultiNet. Albeit this approach
runs at a high framerate, its gen-
eral performances are significantly worse than pure LIDAR-domain classifiers,
such as SECOND. SECOND [48] splits a LIDAR scan into equally-sized voxels,
and applies a PointNet network to the points enclosed in each voxel. Additional
convolutions followed by a region proposal network are then used to predict
bounding box dimensions and an objectness score for each voxel. However, this
approach is computationally challenging. Indeed, the bounding box parameters
and regression scores are only calculated for a single class, and different models

25

are needed for each class. A similar concept was used in PointPillars [49]. Pillars
of LIDAR points by discretizing the x-y plane into an evenly spaced grid. Points
that can be projected into an common grid cell are considered to form a pillar. A
simplified PointNet is then used to extract a feature vector describing each pillar.
Finally, a simple convolutional architecture can be used to perform bounding box
regression and classification on the resulting feature map. PointPillars reaches
a 0.305 mean Average Precision score (mAP) on the NuScenes dataset. The
current best performing approach on NuScenes, for LIDAR object detection and
classification, was proposed by Zhu et. al [50]. They rely on sparse 3D convo-
lutions to extract features from the LIDAR scans, and further use convolutional
layers for the bounding box regression and classification tasks. However, they ob-
served that the NuScenes dataset is particularly imbalanced, as cars in NuScenes
represent more than 43% of the objects, while bicycles represent less than 3% of
the labeled objects. To facilitate the training, object classes are thus merged into
6 groups that are less imbalanced and depend on the object dimensions, and the
network aims at predicting first the group of each object, and then the actual
class. This work reaches a mAP score of 0.528 on the NuScenes dataset.

2.7 Conclusion

In conclusion, we can highlight the fact that machine-learning in general, and
deep learning in particular, are now particularly common to address perception
tasks for autonomous driving, with state-of-the-art results. Semantic segmen-
tation is especially efficiently addressed by many approaches that have similar
results, in terms of pixel-level accuracy. 2019 was especially a significant year
for the perception community, as many new datasets have been released, which
will facilitate the work of many researchers. However, the availability of such
datasets, when addressing the tasks of perception for autonomous driving, can
also have pernicious effects. Indeed, the research works are oriented towards
specific sensor setups, problems and use cases. For instance, PLARD assumes
that the ground is mostly flat, and benefits from the fact that the KITTI dataset
focuses on broad and flat roads. It is doubtful whether this system could be used
in complex urban environment. Moreover, exhaustively testing new approaches
on all the possible dataset will probably be extremely time consuming for future
researchers. This would at least have the interest of confirming that approaches
that reach satisfactory results, on all the possible datasets, can be considered as
efficient in the general case. Using these systems in actual self-driving vehicles
will however require efficient software architectures and fusion frameworks to be
defined. For that reason, we propose to rely on the theory of belief functions, or
evidence theory.

26

Chapter 3

The evidence theory, and its
applications in autonomous
driving

Contents
3.1 Introduction . 27

3.2 The evidential framework 27

3.3 Use of the evidence theory in perception tasks for
autonomous driving . 30

3.1 Introduction

The evidence theory has been originally proposed by Dempster [51], and further
refined by Shafer [52] and Smets [53]. By generalizing the probability theory,
it allows for finer representations of the available information. In the following
section, we will first introduce the general concept of this theory, and the main
mathematical tools used in this framework. We will then focus describing how
this theory can be used, mainly in grid mapping frameworks, to solve perception
tasks for autonomous driving.

3.2 The evidential framework

Let Θ = {θ1, ..., θn} be a finite set of all the possible answers to a question.
An evidential mass function m is a mapping m : 2Θ → [0, 1] such that m(∅) = 0
and ∑

A⊆Θ

m(A) = 1 (3.1)

In the binary case, n = 2, and 2Θ = {∅, θ1, θ2,Θ}. Then, m(θ1) represent the
amount of evidence towards the fact that the answer is θ1, and m(Θ) is the
evidence towards the fact that nothing can be said about the answer (i.e. it is
unknown). It must be noted that, in this context, m(Θ) does not support neither
θ1 nor θ2. If m(θi) > 0, θi is said to be a focal element, or focal set, of m.

27

As it is imposed that m(∅) = 0, ∅ cannot be a focal element. However, if this
constraint is relaxed, and m(∅) > 0, m is said to be subnormal. Then, m(∅)
can be interpreted as evidence towards the fact that Θ is not exhaustive. If Θ is
however considered to be exhaustive, m can be transformed into a normal mass
function, via Dempster’s normalization:

K = m(∅) (3.2)

m(∅) = 0 (3.3)

m(A) =
m(A)

1−K ,∀A ⊂ 2Θ \ {∅} (3.4)

In this case, K is the degree of conflict.

Two evidential mass functions m1 and m2, that are produced by independent
sources of information, and share the same frame of discernment that is consid-
ered to be exhaustive, can be fused into a new joint mass m1,2 = m1 ⊕m2 via
Dempster’s rule of combination, as follows:

K =
∑

B∩C=∅

m1(B)m2(C) (3.5)

m1,2(A) =
1

1−K
∑

B∩C=A,A 6=∅

m1(B)m2(C) (3.6)

Otherwise, if the frame of discernment is not exhaustive, the unnormalized Demp-
ster’s rule of combination [54] can be used instead:

m1,2(A) =
∑

B∩C=A

m1(B)m2(C) (3.7)

An evidential mass function m is simple if:

∃A ⊂ Θ,m(A) = s,m(Θ) = 1− s (3.8)

Let w := −ln(1 − s) be the weight of evidence associated with m. In this case,
m can be represented as {A}w. Then {A}w1 ⊕ {A}w2 = {A}w1+w2.

A commonality function Q, associated to a mass function m, can be defined
as follows:

Q(A) =
∑
B⊇A

m(B),∀A ⊆ Θ (3.9)

The evidential mass function m can be recovered from the commonality values,
as follows:

m(A) =
∑
B⊇A

(−1)|B|−|A|Q(B) (3.10)

28

The commonality function of l mass functions to be fused via Dempster’s rule of
combination can be combined as follows:

(Q1 ⊕ ...⊕Ql)(A) =
l∏

j=1

Qj(A),∀A ⊆ Θ (3.11)

In particular, the fused mass function can then be obtained from the fused com-
monalities, and Equation 3.10.

Belief and plausibility functions are defined, respectively, as

bel(A) =
∑
∅6=B⊆A

m(B) (3.12)

pl(A) =
∑

B∩A 6=∅

m(B) (3.13)

An evidential mass function can be transformed into a probability distribution.
Originally, this was done via the pignistic transformation [53]:

BetP (θi) =
∑

A⊆Θ,θi∈A

m(A)

|A| (3.14)

This expression was justified by the fact that Dutch Books had to be prevented,
when reasoning on probability distributions obtained from evidential mass func-
tions. A Ducth Book happens, in gambling, when incoherent odds lead to a
systematic win, or loss. It was initially considered in [55] that, to ensure the
absence of Dutch Books, the transformation used to convert evidential mass
functions into probability distributions had to be linear. Under this assumption,
the only possible transformation is the pignistic transformation.

However, several criticisms have been made regarding this assumption, and
this expression. First, a counter-example in which a Dutch Book happens when
reasoning on the pignistic transformation was proposed in [56]. Then, it was ob-
served in [57] that the pignistic transformation can be inconsistent with Demp-
ster’s rule of combination: use cases can be constructed where fusing several
evidential mass functions would increase the support a specific element of the
frame of discernment, while the pignistic probability of this element would be
decreased after fusion.

To replace the pignistic transformation, the plausibility transformation was
proposed. Let Pl P be the probability distribution obtained by plausibility trans-
formation, or plausibility probability function. This distribution is defined as
follows:

Pl P (θi) =
pl(θi)∑
θj∈Θ pl(θj)

(3.15)

29

Case m(θ1) m(θ2) m(Θ) Pl P (θ1) Pl P (θ2)
1 0.8 0.2 0 0.8 0.2
2 0.78 0.12 0.1 0.8 0.2
3 0.76 0.04 0.2 0.8 0.2

Table 3.1: Example of different evidential mass functions having equal plausibil-
ity probability functions.

In particular, this expression is extremely interesting because it has a direct link
with Bayesian fusion. Indeed, let ⊗ depicts the independent opinion poll fusion
of probability distributions. Then, if m = m1⊕ ...⊕ml is a joint evidential mass
function obtained by Dempster’s combination rule, and Pm is the corresponding
plausibility probability function, then Pm = P1 ⊗ ...⊗ Pl.

The plausibility transformation shows that the evidence theory is more ex-
pressive than simple probability distributions, as several evidential mass func-
tions can lead to similar plausibility probability functions. We explicit this phe-
nomenon on a binary frame of discernment in Table 3.1, with three different
evidential mass functions that have the equal plausibility probability functions.
In those example, we see that for the case 1, no ambiguity about the class is
present, as m(Θ) is equal to 0. Yet, in the second case, we see that the support
for Θ is not neglectable, indicating a certain level of doubt on both θ1 and θ2.
Finally, the case 3 depicts a case where θ2 has an extremely low support, while
all the available knowledge does not support θ1. Now that the basic concepts and
ideas behind the evidence theory have been introduced, we can briefly present
how it is used top solve perceptions tasks for autonomous driving.

3.3 Use of the evidence theory in perception

tasks for autonomous driving

The evidence theory can potentially be used for any perception, with proper
modeling. It was for instance used by Wang et. al [58] for stereo-matching
of images from the KITTI dataset. The evidence that supports each possible
disparity value for a pixel, that is considered to belong to a finite set of values, is
modeled by normalizing the cost values associated to each possible location. In
particular, the evidence on the frame of discernment is used to model the fact that
a given pixel does not have a disparity, which can actually be caused, for instance,
by occlusions. Another example of use of the evidence theory was proposed by
Magnier et. al. [59], for RADAR object association and tracking. At each time
step, the distance between each detected RADAR object, and pre-existing object
tracks, is evaluated. From this distance, evidential mass functions can be defined,
such that the frame of discernment represents the set of existing tracks to which
each object could be associated. The mass on the full frame of discernment is

30

considered as an uncertainty indicator for each possible association, and the mass
on ∅ as an indicator for the need of new tracks.

However, the evidence theory is mainly used, in robotics and autonomous driv-
ing, for occupancy grid mapping, especially from LIDAR scans. Evidential and
Bayesian occupancy grids currently coexist. Bayesian grids model the occupancy
probability of each cell, while evidential occupancy grids use a frame of discern-
ment corresponding to the fact of being occupied, for a given cell. Evidential
grids tend to better represent unobserved areas (which correspond to evidence on
the complete frame of discernment), and conflicting information. Indeed, Rum-
melhard et. al. [60] proposed a Bayesian grid mapping framework, in which the
displacement of each potentially moving cell is estimated via a particle filtering
approach. Yet, to initialize the filter and create particles, a difference between
unobserved and observed cells has to be made. The solution that was chosen
was to track the state changes of each cells, and update the occupancy probabil-
ities according to ad hoc transition parameters, as soon as a first observation is
made. This use of ad hoc transitions for each cell makes the system particularly
sensitive to false positives, while the evidence theory can represent unobserved
cells simply via the mass on the frame of discernment. In this case, the explicit
transition parameters, and tracking of the state of each cell over time, are not
needed anymore.

The first evidential occupancy grid mapping system that relied on LIDAR sen-
sors was proposed in [61]. Evidential mass functions were constructed at the cell
level from several stationary-beam LIDAR sensors, via ray tracing and ad-hoc
false alarm and missed detection rates. The use of the evidential framework was
shown to better represent uncertainty and the fact of not knowing, when com-
pared to a traditional Bayesian fusion scheme. The Caroline vehicle already used
evidential occupancy grid maps during the 2007 DARPA Urban Challenge [62],
but the reasoning was done globally from both LIDAR scans and point-clouds
generated by stereo-vision, without considering the specificity of LIDAR sensors.

It was proposed in [63] to extend the original work from Yang et. al. to a
four-layer LIDAR scanner. Based on a proposal from [64], a discount factor was
applied to an evidential polar grid, before fusing it with new sensor observations.
Evidential mass functions were again generated from ray tracing, and ad-hoc
false alarm and missed detection rates. Yu et. al. generalized this model to
a more complex 360◦Velodyne HDL-64 LIDAR scanner [65]. A first ground-
detection step, based on a simple thresholding, is used to classify LIDAR points
as either belonging to an obstacle or to the drivable area. Then, evidential mass
functions were created at the cell level, from the classification results and from,
again, ad-hoc false-alarm and missed-detection rates.

More recent works aim at tackling some intrinsic limitations of LIDAR-based
evidential occupancy grid mapping. Nuss et. al. proposed to couple an evidential

31

model with particle-filtering, in order to estimate the speed of each grid cell, and
detect moving objects [66] from a four-layer LIDAR scan. This comes at the cost
of various hyper-parameters to manually tune, and a computational complexity,
as virtually any occupied cell could be associated with a set of particles. Another
recent work aims at predicting dense evidential occupancy grid maps from indi-
vidual LIDAR scans [67]. Consecutive LIDAR scans are registered, and dense
grids are obtained from the resulting point-cloud thanks to a ground removal
step, and manually defined false-alarm and missed detection rates. A convolu-
tional neural network is then trained to recreate the dense evidential grids from
a feature grid generated from only one of the original scans.

Given the observations that the evidential theory is particularly suitable for
occupancy grid mapping, an obvious way to use machine learning approaches
in an evidential framework would be to fuse outputs from neural networks into
a grid mapping system. In the following section, we thus propose a simple,
asynchronous occupancy mapping algorithm, that fuses semantic segmentation
results obtained from RGB images, and LIDAR grids obtained from a geometrical
model.

32

Chapter 4

Asynchronous evidential grid
mapping from RGB images and
LIDAR scans

Contents
4.1 Introduction . 33

4.2 From raw LIDAR scans and images to evidential grids 35

4.2.1 Generating evidential grids from LIDAR scans 35

4.2.2 Generating evidential grids from segmented images . . 37

4.2.3 Asynchronous fusion of LIDAR data and image seg-
mentation results as an evidential grid 39

4.3 Experimental results 41

4.3.1 Handling sporadic semantic segmentation errors . . . 42

4.3.2 Handling systematically contradictory information . . 43

4.3.3 Handling sensor failures 43

4.3.4 Evaluation of the importance of handling moving objects 47

4.4 Conclusion . 48

4.1 Introduction

We propose an evidential fusion algorithm between LIDAR scans and RGB im-
ages. LIDAR points are classified as either belonging to the ground, or not, and
RGB images are processed by a state-of-the-art convolutional neural network to
obtain semantic labels. The results are fused into an evidential grid to assess the
drivability of an area met by an autonomous vehicle, while accounting for inco-
herences over time and between sensors. The dynamic behavior of potentially
moving objects can be estimated from the high-level semantic labels. LIDAR
scans and images are not assumed to be acquired at the same time, making the
proposed grid mapping algorithm asynchronous. This approach is justified by
the need for coping with, at the same time, sensor uncertainties, incoherences of
results over time and between sensors, and the need for handling sensor failure.
In classical LIDAR/camera fusion, in which LIDAR scans and images are con-
sidered to be acquired at the same time (synchronously), the failure of a single

33

Sensor Reading(ti)

Switch:
Type of sensor input

CASE: Lidar ScanCASE: Image

DeepLab-v2

Bird’s eye view

Segmentation

Ground points Obstacle points

Evidential Grid

SensorGrid(ti)
Fusion of grids by

Dempster’s rule

of combination

EgoGrid(ti)

Decay Pose

EgoGrid(ti−1)

Ego-Motion

compensation

EgoGrid(ti)

Figure 4.1: Asynchronous fusion based algorithm. Images and LIDAR scans are
individually processed once acquired. An evidential grid is then built from the
sensor input, and fused with the current global grid, or EgoGrid, based on the
current vehicle pose. Thus, no LIDAR/camera synchronization is needed.

sensor leads to the failure of the whole fusion algorithm. On the contrary, the
proposed asynchronous approach can be used to fuse contradictory information
over time, while allowing the vehicle to operate even in the event of the failure of
a single sensor. Experiments on a challenging use case highlight the interest of
the method. The general grid mapping system is depicted in Figure 4.1. In order
to generate the final evidential grid, individual grids for each sensor reading have
first to be computed, and then fused. The final goal is to know, at every mo-
ment, whether a location in the perceived environment, i.e. a cell of a grid, can
be passed through by an autonomous vehicle. A corresponding frame of discern-
ment Ω was thus defined as {D, ¬D}, where the two singletons D and ¬D are
propositions respectively indicating that a cell is either drivable or non-drivable.
It is then possible to derive 2|Ω| subsets from Ω, the set of which form the power
set 2Ω = {∅, D,¬D,Ω}. Each singleton of the power set is a proposition. The
empty set ∅ indicates that the cell is not in a state that corresponds to the model,
and Ω indicates that the state of the cell is unknown. This explicit quantification
of ignorance is one of the specificities of evidential grids.

34

4.2 From raw LIDAR scans and images to evi-

dential grids

Before being able to use the fusion scheme described previously, evidential grids
have to be generated. The following section describes how such grids can be
produced from LIDAR scans and images, and how they are fused.

4.2.1 Generating evidential grids from LIDAR scans

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ΩΩ ΩD D D NDΩΩ
H

ND

Figure 4.2: Evidential mapping from a LIDAR scan. The state having the largest
mass is reported for each cell. The curved arrow indicates the occurrence of
backward propagation.

To convert LIDAR scans into evidential grids, an approach inspired by Yu
et al.’s polar grid mapping [65] is proposed, to create evidential scan grids in a
Cartesian coordinate system. The resulting grids can then be fused over time,
based on the odometry of the vehicle. Fig. 4.2 illustrates how evidential grids are
built from LIDAR scans. When converting a scan to an evidential grid, drivable
areas are those where only points corresponding to the ground are detected,
and non-drivable ones are those where an obstacle is detected. The ground
is assumed to be flat. Provided that the altitude and rotation of the LIDAR
relatively to the ground is known, each point can be projected on this ground
plane. This plane is then divided into regular cells to build an evidential grid. To
quantify the amount of proof associated with each state in every cell, false alarm
and missed-detection rates are defined. A false alarm happens if it is wrongly
considered, due to sensor noise for instance, that an obstacle is present. On the
opposite, a missed detection happens when an obstacle that is actually present
is not detected by the LIDAR, often because of its size or reflectivity. Let αFA
be the false alarm rate in a given cell, no the number of points that hit this
cell and are classified as obstacles, ng the number of points that hit the cell and
are classified as ground points, and αMD(ng) the corresponding missed detection
rate. For each cell, the corresponding basic belief assignment (BBA), denoted as
ml, is computed as follows:

ml(∅) = 0 (4.1)

If no point has hit the cell:

ml(D) = 0,ml(¬D) = 0,ml(Ω) = 1 (4.2)

35

If all the points that hit the cell are classified as ground:

ml(D) = 1− αMD(ng),ml(¬D) = 0,ml(Ω) = αMD(ng) (4.3)

If at least one point that hit the cell is classified as obstacle:

ml(D) = 0,ml(¬D) = 1− αnoFA,ml(Ω) = αnoFA (4.4)

Figure 4.3: Estimating the maximum number of ground points in a grid cell.

On the one hand, the false alarm rate is considered to be the same for every
cell. On the other hand, an unique missed detection rate is computed for every
particular cell, as the number of laser impacts that can intercept a regular cell
depends on its position. Figure 4.3 summarizes the geometrical model that is
used to estimate the maximum number of ground points that hit a cell, based
on which we estimate missed detection rates. To compute the missed detection
rate of a given cell, the maximum number of laser impacts that can occur in this
area is computed, and compared with the actual number of points classified as
ground points that hit the cell. Given the beam divergence and the horizontal
angular resolution of a LIDAR, this maximum number of hits can be deduced
from the maximum angle between two points belonging to the cell. For the sake of
simplicity and computational workload, the maximum angle is considered to be,
for every cell, the maximum angle formed by opposite corners of the cell, named
A and B, and the origin of the grid, i.e. the origin of the LIDAR projected on
the ground plane, named O. Let o be the size of the diagonal of a cell, b the
distance between O and A, and a the distance between O and B. This maximum
angle γ can be computed from the law of cosines, as follow:

γ = cos−1(
o2 − a2 − b2

−2ab
) (4.5)

Let lbd be the beam divergence of a LIDAR. The LIDAR is assumed to be in a
position such that any cell belonging to the ground can only be hit by a single

36

rotating laser. Thus, for every cell, the missed detection rate can be estimated
as follow:

αMD(ng) = 1− ng · lbd
γ

(4.6)

Finally, backward extrapolation, given a maximum threshold H, is performed:
masses of cells classified as drivable are propagated to cells where nothing is
detected, but obstacles taller than H cannot be present. Figure 4.4 presents an
example of evidential grid obtained from a LIDAR scan.

Figure 4.4: Example of evidential grid obtained from a LIDAR scan. The green
point indicates the position of the LIDAR sensor. White cells have a mass value
for D higher than 0.5 ; red cells have a mass value for ¬D higher than 0.5; black
cells have a mass value for Ω higher than, or equal, to 0.5.

4.2.2 Generating evidential grids from segmented images

Fusing evidential grids generated from a LIDAR and pixel-wise segmentation
results requires the later to be converted into an evidential grid. Contrary to
the work in [68], stereo-vision is not used to estimate the depth of observed
objects. Instead, the segmentation results generated from a mono-camera can
be projected into a bird’s eye view, corresponding to the ground plane in the
LIDAR’s coordinate system, to generate an evidential grid. The popular pinhole
camera model is used to represent the behavior of an undistorted camera. Let
K ∈ R3×3 be the camera intrinsic matrix. The extrinsic matrix corresponding
to the transformation between the camera’s coordinate system and the LIDAR’s
coordinate system is supposed to be known. This matrix is composed of T ∈ R3×1

37

and R ∈ R3×3, respectively the translation vector and rotation matrix relating
the two coordinate systems. Let x = (X, Y, Z, 1)T be a LIDAR point. It can be
matched to a pixel y = s · (u, v, 1)T as follow:

y = K
[
R T

]
x (4.7)

Then, the RANSAC algorithm, fed with matched LIDAR points and pixels be-
longing to the ground plane, can be used to compute the perspective projection
matrix Hpg ∈ R3×3, between the ground plane in the LIDAR’s coordinate system,
and the camera plane. In practice, LIDAR points and pixels belonging to the
ground were manually matched together by hand. It is then possible to match
each pixel with a grid cell. To keep the computational workload low, only the
center of each cell of the resulting grid is matched to a segmented pixel, instead
of projecting every pixel in the evidential grid’s coordinate system. Let xcell be
the known coordinates of the center of a cell, and ypixel, the coordinates of the
corresponding image pixel ; ypixel can be computed as follow:

ypixel = Hpg · xcell (4.8)

Finally, the output of a fully convolutional neural network is used to build a
new mass function, for every grid cell. The activation values are normalized, for
every pixel mapped to a grid cell, via the softmax function, and then used to
build a new mass function mc. Let Ωcnn = {A0, A1, ..., An} be the set of classes
the convolutional neural network has been trained on. Let zp = (zp0 , z

p
1 , ..., z

p
n)

be the corresponding activation values generated during inference by the neural
network, for a pixel p. Let σ(zpi) be the normalized activation for the class Ai
and the pixel p, obtained from the softmax function. Then:

σ(zpi) =
exp zpi
n∑
k=0

exp zpk

(4.9)

σ(zpi) ∈ [0, 1] and
n∑
i=0

σ(zpi) = 1. Let ∪Bi∈B be the union of all the sets, depicted

as Bi, that belong to the B set. It is assumed that there exists a partition of
Ωcnn = {AD, A¬D, AΩ} such that:

∪A∈AD = D (4.10)

∪A∈AND = ¬D (4.11)

∪A∈AΩ
= Ω (4.12)

A mass mp can then be computed for each pixel p mapped to a grid cell, as
follow:

mp(∅) = 0 (4.13)

mp(D) =
∑
Ai∈AD

σ(zpi) (4.14)

38

mp(¬D) =
∑

Ai∈AND

σ(zpi) (4.15)

mp(Ω) =
∑
Ai∈AΩ

σ(zpi) (4.16)

A new evidential grid is then obtained from the segmented image thanks to
Equation (4.8), which is used to map each cell of the grid with the corresponding
segmentation results, and mass values. Fig. 4.5 illustrates how the mass value
for each proposition, in each cell, is derived from the corresponding segmentation
result. As showed in Fig. 4.5(c), when objects that do not belong to the ground
are projected, they are stretched, which is normal since their presence occludes
the ground in the distance. Since the information is meaningful, the grids are
kept as they are.

4.2.3 Asynchronous fusion of LIDAR data and image seg-
mentation results as an evidential grid

If the speed vector of the vehicle is available at any instant, and if all the sensor
readings are accurately timestamped, grids corresponding to consecutive sensor
readings can be processed independently from the type of sensor that issued
the raw data. The grid obtained after fusion is called EgoGrid (cf. Fig 4.1),
and has a BBA denoted as meg for each cell. At every new sensor reading,
issued at a date ti, a single evidential grid SensorGrid(ti) is generated based on
the type of sensor input (cf. Fig 4.1). After the ego-motion of the vehicle is
compensated in EgoGrid(ti−1), meg(Ω) is set to 1 for all the new cells that cover
previously absent areas. Then, SensorGrid(ti) can be fused with EgoGrid(ti−1)
into a new EgoGrid(ti) evidential grid via Dempster’s conjunctive rule. Thanks
to this framework, new sensors can easily be added to the fusion process, and
a faulty sensor can be ignored without preventing the system from working in
a degraded mode. Furthermore, contradictions between successive frames at a
given locations are handled during fusion based on the mass associated to each
state, in each frame. However, objects that have potentially moved between
successive sensor readings have to be accounted for. No strong dynamic model,
for any type of object, is presupposed. Instead, a decay factor is used to force
every cell to eventually tend to the unknown state, similarly to [63]. The types of
the object present in the scene are made available by using a convolutional neural
network, to process the original undistorted RGB image. An unique decay rate
can be computed for each cell, based on the likelihood of the presence of a moving
object. Let β be the decay rate associated with a cell of the current EgoGrid.
Four main types of objects, that have similar dynamic behaviors, were identified:
four-wheeled vehicles, two-wheeled vehicles, pedestrians and fixed objects. Each
behavior is associated with a typical decay rate: β4W , β2W , βP and βF . If no
semantic information has been previously provided about a cell of the EgoGrid,
a default value is used as the decay rate. Yet, if semantic information has been
available for a given cell of the EgoGrid at previous dates, four values, indicating

39

(a) Original image (b) Segmentation result

(c) Perspective projection. (d) Masses on D

(e) Masses on ¬D (f) Masses on Ω

Figure 4.5: Building process of an image-based evidential grid. The picture of a
driving scene is segmented by DeepLab-V2 [69], a convolutional neural network,
before being projected on the ground plane. The masses for D (drivable), ¬D
(non-drivable) and Ω (unknown) are then derived from the activations for each
segmented class. In (d), (e), (f), the lighter a pixel is, the larger the mass is.

the likelihood that the object detected at this position correspond to one of those
dynamic behaviors, are computed. Those indicators are denoted as L4W , L2W ,
LP and LF . Typically, when DeepLab-v2 is used, L4W is equal to the sum of
the activations corresponding to four-wheeled vehicles in the previous frames,
for the given cell ; L2W is equal to the sum of the activations corresponding
to two-wheeled vehicles in the previous frames ; LP is equal to the sum of the
activations corresponding to pedestrians in the previous frames, and LF is equal
to the sum of the activations corresponding to fixed objects, such as the road, or
buildings, in the previous frames. Then, the final decay rate for the cell is given
by a weighted arithmetic mean:

β =
L4Wβ4W + L2Wβ2W + LPβP + LFβF

L4W + L2W + LP + LF
(4.17)

Before fusing EgoGrid(ti−1) and SensorGrid(ti), each cell of EgoGrid(ti−1) is
updated using β, as follows:

meg(A) = β ·meg(A), A ⊂ Ω (4.18)

meg(Ω) = 1− β + β ·meg(Ω) (4.19)

Then, a Dempster-Shafer fusion can be used to fuse the mass values among the
grids, at the cell level, as follows:

EgoGrid(ti) = SensorGrid(ti)⊕ EgoGrid(ti−1) (4.20)

4.3 Experimental results

The evidential fusion scheme was implemented thanks to the software library
proposed by Fankhauser et al. [70]. It was tested on real-life driving data col-
lected around HeuDiaSyc Lab in Compiègne, France. The evidential grids are
built from a VLP-16 LIDAR and a single HD camera, and the pose and speed
of the vehicle were obtained from an IMU. Popular LIDAR/camera datasets,
such as KITTI, were not considered for those tests, since one of the specificity
of the proposed method is that it is intended to work in an asynchronous fash-
ion. Evidential grids of (90×90)m2 are built from the collected data, with cells
of size (0.1×0.1)m2. H was empirically set to 0.2m, αFA to 0.05, the default
value of β to 0.995, β4W to 0.80, β2W to 0.75, βP to 0.95 and βF also to 0.995.
LIDAR scans were acquired at 10 Hz, and the camera was freely running at 30
Hz. The extrinsic calibration matrix between the LIDAR’s coordinate system
and the camera’s coordinate system was estimated from the semi-automatic tool
offered within the Autoware software stack [71]. The recent and fast algorithm
described in [72] was used to classify each LIDAR point as either ground point or
obstacle. DeepLab-v2 was finetuned on the publicly available Mapillary Vistas
dataset [73], consisting in 25000 real-life driving scenes labeled into 66 object
categories, to make it usable in our experiments. To speed up and ease the

41

fine-tuning of DeepLab-v2, the total number of classes was reduced, by factor-
izing some of them. A class for unlabeled objects in Mapillary Vistas was also
reserved, and included in the loss calculation as an unknown class. Doing so,
pixels are not forced to be classified into a meaningful class. Thus, in this set
up, AΩ ={unknown, sky}, as the pixels depicting the sky are not supposed to
be part of the ground plane. The unknown class in AΩ corresponds to the pixels
that are labeled as unknown in Mapillary Vistas. AD ={road, road marking,
crosswalk}, and the remaining classes form A¬D. The classical stochastic gradi-
ent descent with momentum was used for fine-tuning DeepLab-v2, with the same
parameters as in [69]. The loss function was modified to handle class imbalance
within the dataset, by weighting the error for each pixel depending on the target
class thanks to median class balancing [74]. The fine-tuning of DeepLab was per-
formed during sixteen epochs, until the validation loss started increasing. Three
cases, each highlighting specific advantages and drawbacks of the proposed ap-
proach, are presented. They were generated from the same driving sequence, but
at different instants. The data collection vehicle was driven in a peri-urban en-
vironment and overtaken by another vehicle. During the overtaking, the camera
was permanently switched off, to simulate a sensor failure.

4.3.1 Handling sporadic semantic segmentation errors

First, the robustness of the fusion scheme against incoherences between successive
sensor readings, and especially sporadic false alarms, is highlighted in Figure 4.6.
In the semantic segmentation result, white indicates that the class with the
highest activation is ”road” ; grey that it is ”road marking” ; blue that it is
”building” ; purple that it is ”sidewalk” ; green that it is ”border”. In the grids,
red cells are those where the largest mass is for ¬D ; white that the largest
mass is for D ; black that it is for Ω ; the green point indicates the origin of the
LIDAR, considered to be the vehicle’s position. In Fig. 4.6b, many segmentation
errors seem to come from the fact that the road is particularly damaged, and
was repaired many times. As a result, objects are wrongly considered to be
present, especially a building in the bottom-left corner. In the SensorGrid, a
blue rectangle indicates the cells corresponding to this wrongly detected building.
The mass of the cells in this area is larger for Ω, which indicates that even
if the activation for the ”building” class is the largest, the sum of the classes
corresponding to AΩ is larger. The segmentation result is thus very uncertain in
this area. This is not the case for the pixels wrongly classified as ”side-walk”, but
belonging in fact to the road, since small obstacles are detected in SensorGrid
in front of the vehicle. The EgoGrid(ti−1) to be fused with the SensorGrid was
generated from 6 previous LIDAR scans and 7 previous images. The resulting
EgoGrid(ti) is marginally impacted, as no obstacle is considered to be present in
front of the origin, even if a small area is considered to be unknown. This means
that the mass for the areas falsely considered to be non-drivable in SensorGrid
was not very high, compared to the corresponding mass in EgoGrid(ti−1) for the
D proposition. This shows the interest of fusing all the information over time,

42

and to consider all the activations of the neural network.

4.3.2 Handling systematically contradictory information

If sporadic errors can efficiently be handled via temporal fusion, among successive
frames and sensor inputs, the behavior against systematic errors is not always
as satisfactory. The ground segmentation algorithm used in this experimental
set-up is mainly designed to detect ground planes. As such, roads and side-
walks are often both considered to be drivable in a SensorGrid generated from a
LIDAR scan. Nevertheless, side-walk borders are efficiently detected, thanks to
the gap between roads and side-walks, as shown in Fig. 4.7. Side-walks though
remain uncertain, as the corresponding cells are not consistently classified as
non-drivable.

4.3.3 Handling sensor failures

The last case regards the moment when a camera failure was simulated. Sensor-
Grids can then only be generated from LIDAR scans. As a result, the EgoGrid
was updated less often, and the decay was less applied. As shown in Fig. 4.8d,
this results in the conservation of outdated information, coming from previous
detections. However, the car is still detected, and after a few more scans, the
results become more consistent, as seen in Fig. 4.8e. Finally, as the side-walk
borders are still detected, an autonomous navigation in such a fail-soft mode
would have still been possible.

43

(a) Original image (b) Semantic segmentation

(c) SensorGrid(ti) (d) EgoGrid(ti−1)

(e) Resulting EgoGrid(ti) after fusion

Figure 4.6: Robustness of the fusion against sporadic errors. As displayed in (b),
an object was wrongly detected by DeepLab. However, the conversion and fusion
of this information in the evidential framework efficiently filtered the semantic
segmentation result.

(a) SensorGrid generated from an
image segmentation result

(b) SensorGrid generated from a
LIDAR scan

(c) EgoGrid generated at this position

Figure 4.7: Result of systematic inconsistencies between SensorGrids. The dark
blue rectangle indicate the approximative position of a side-walk.

(a) Last image before camera failure
(b) Last segmentation result before
camera failure

(c) Last EgoGrid before camera failure

(d) EgoGrid after 1s (e) EgoGrid after 2s

Figure 4.8: Handling camera failure. Blue rectangles indicate the actual position
of the overtaking car, and blue lines highlight the border of the sidewalk.

4.3.4 Evaluation of the importance of handling moving
objects

(a) Mean specificity for a fixed decay
rate

(b) Mean specificity for a not-fixed decay
rate

Figure 4.9: Comparison of the average specificity for a fixed decay rate, and the
proposed class-dependent decay rate

Following the procedure proposed in [68], we evaluate our grids by calculating
entropy and specificity values. The effectiveness of the proposed grid mapping
scheme can be analyzed from such indicators. Let Em be the entropy of the mass
function m, and Sm its specificity. Let the plausibility of a set A be pl(A) =∑
B∩A 6=∅

m(B).

Em = −
∑
A⊆Ω

m(A).ln(pl(A)) (4.21)

Sm =
∑

A⊆Ω,A 6=∅

m(A)

card(A)
(4.22)

A high degree of specificity and low-degree of entropy indicate that the mass
function is informative and non-ambiguous. The mean entropy and specificity
of the mass assignment in the cells of an evidential grid are thus representative
indicators of the quality of the whole representation.

Those values were calculated for each frame of the sequence, in two cases:
first, with a fixed decay rate of 0.98 for each cell as in [65], and then based on
the values of β4W , β2W , βP and βF . The camera failure was simulated from the
frame 163. In both cases, the entropy was extremely low, and below 0.015. Yet,
as shown in Fig.4.9a and 4.9b, the specificity is higher for this sequence when
the class of the object in each cell is considered, making the resulting grids more
informative. Indeed, the average specificity for the sequence is 0.580 when a
fixed decay rate is used, and 0.659 when the decay rate is computed based on
the activations of the neural network.

47

4.4 Conclusion

We presented an asynchronous grid mapping algorithm that relies on LIDAR
scans and RGB images. The occupation of each cell is estimated from either
a geometrical model associated to LIDAR scans, or a semantic segmentation
result generated from an convolutional neural network and the raw image pixels.
A limitation of this approach, however, is that it relies on the evidential theory
in a purely semantic way. Actually modeling the behavior of the network might
lead to more trustworthy results, and open the path to new applications. This
is what we tried to do for LIDAR object classification, as presented in the next
section.

48

Chapter 5

Evidential LIDAR object
classification

Contents
5.1 Introduction . 49

5.2 Evidential end-to-end formulation of binary logistic
regression classifiers . 51

5.2.1 Binary generalized logistic classifiers 51

5.2.2 Binary GLR classifiers as a fusion of simple mass func-
tions . 51

5.3 End-to-end evidential interpretation of a binary GLR
classifier and online statistical filtering 52

5.4 Evidential classification of LIDAR objects 55

5.4.1 Training dataset . 55

5.4.2 Model . 56

5.4.3 Model training . 58

5.4.4 Evaluation . 59

5.5 Examples . 61

5.6 Discussion on the use of unnormalized mass functions 63

5.6.1 Proper filtering of the simple mass functions 63

5.6.2 Representation of unknown objects 65

5.7 Conclusion . 66

5.1 Introduction

Detecting and recognizing road users is paramount for autonomous vehicles that
are intended to drive on public road. 3D sensors, and especially LIDAR scanners,
seem particularly suitable for those tasks. Indeed, an accurate 3D position of the
detected objects, with regards to the origin of the sensor, can be obtained from
LIDAR scanners. In parallel, unmanned ground vehicles that follow the standard
4D/RCS model [75] rely on processing pipelines that include a segmentation step
-to detect objects- and a classification step -to infer the type of each detected
object. Using similar design choices in the context of autonomous driving, when
working with LIDAR raw data, thus appears natural.

49

Figure 5.1: Example of output from a LIDAR perception pipeline using the
proposed classifier. The yellow lines correspond to a pre-existing map of the
scene; the red LIDAR points belong to obstacles ; the grey 3D polygons represent
objects classified as unknown objects; the blue 3D polygon represents an object
classified as vehicle.

However, a classifier used within such a processing pipeline should be able to
cope with any possible object generated during the segmentation step, and always
output pertinent results. A naive way to cope with this requirement would be to
collect large amounts of data which would be accurately labeled afterwards, and
to train a classifier on the resulting dataset. Unfortunately, this method is not
guaranteed to cover all the randomness that an autonomous vehicle is likely to
meet on public roads. This would then lead to errors in situation understanding.
For instance, in the situation in Fig. 5.1, if a pedestrian detector were to consider
that the poles on the sides of the roundabout are pedestrians because it wasn’t
trained to reject them, this would falsely complexify the situation understood by
the vehicle.

A more realistic way to grapple with this randomness might be to use classi-
fiers that are able to classify objects as unknown, while having only been trained
on known objects. The evidential theory, or Dempster-Shafer theory, in which
the unknown is explicitly represented, seems of particular use. Nevertheless, this
approach also has two main limits. First evidential labels, in which the fact of
not knowing is quantified, are hard to obtain. Then, evidential classifiers usually
rely on a closed-world assumption [76]: objects classified as unknown are usually
ambiguous ones with regards to the training dataset.

To address those two limits, a multi-task multi-layer perceptron (MLP) is
trained on labeled LIDAR objects, and its outputs are reinterpreted as a fu-
sion of evidential mass functions. This is accomplished via an extension of T.
Denoeux’s recent work on generalized logistic regression (GLR) classifiers [77],
which enables statistically incoherent features to be filtered. This work only

50

aims at classifying vehicles (cars, trucks) and vulnerable road users (pedestrians,
two-wheeled vehicles), while classifying other objects as unknown without hav-
ing represented them explicitly in the training dataset. Fig. 5.1 highlights the
interest of such a system: the object that was not classified as an unknown one
was the vehicle in the roundabout, although the classifier wasn’t trained on the
other objects.

5.2 Evidential end-to-end formulation of binary

logistic regression classifiers

5.2.1 Binary generalized logistic classifiers

Let a binary classification problem with X = (x1, ..., xd), a d-dimensional input
vector, and Y ∈ Θ a class variable. Let p1(x) be the probability that Y = θ1

according to the fact that X = x. Then 1 − p1(x) = p2(x) is the corresponding
probability that Y = θ2. Let w be the output of a binary logistic regression clas-
sifier, trained to solve the aforementioned classification problem. A generalized
binary logistic regression classifier corresponds to the case where there exists a
C-dimensional vector xc and such that x = (φ1(xc), ..., φd(xc)). Then, p1(x) is
such that:

p1(x) = S(w) = S(
d∑
i=1

βiφi(xc) + β0) (5.1)

with S being the sigmoid function, and the β values being usually learnt alongside
those of the potentially non-linear φi mappings. In Equation 5.1, w exactly
corresponds to the output of a multi-layer perceptron trained as a binary GLR
classifier.

5.2.2 Binary GLR classifiers as a fusion of simple mass
functions

The sigmoid function is strictly increasing. Then, in Equation 5.1, the larger w
is, the larger p1(x) is and the smaller p2(x) is. Moreover, w can be rewritten as
follows:

w =
d∑
j=1

wj =
d∑
j=1

(βjφj(xc) + αj) (5.2)

with
d∑
j=1

αj = β0 (5.3)

Each wj can then be seen as piece of evidence towards θ1 or θ2, depending on
its sign. Let us assume that the wj values are weights of evidence of simple
mass functions, denoted by mj. Let w+

j = max(0, wj) be the positive part of wj,

51

and let w−j = max(0,−wj) be its negative part. Whatever the sign of wj, the
corresponding mj can be written as

mj = {θ1}w
+
j ⊕ {θ2}w

−
j (5.4)

If the mi mass functions are independent, the Dempster-Shafer operator can
be used to fuse them together. The resulting mass function obtained from the
output of the binary logistic regression classifier, noted mLR is as follows:

mLR = ⊕dj=1({θ1}w
+
j ⊕ {θ2}w

−
j) = {θ1}w

+ ⊕ {θ2}w
−

(5.5)

with w+ =
∑d

j=1w
+
j and w− =

∑d
j=1 w

−
j . From Equation 5.5, mLR can be

expressed as follows:

mLR(θ1) =
[1− exp(−w+)] (exp(−w−))

1−K (5.6a)

mLR(θ2) =
[1− exp(−w−)] (exp(−w+))

1−K (5.6b)

mLR(Θ) =
exp(−w+ − w−)

1−K (5.6c)

with (5.6d)

K =
[
1− exp(−w+)

] [
1− exp(−w−)

]
(5.6e)

By applying the plausibility transformation in Equations 3.15 to this mass func-
tion, the following probability can be obtained:

pmLR(θ1) = S(w) (5.7)

which exactly corresponds to the output of the GLR classifier, depicted in Equa-
tion 5.1. This means that any binary GLR classifier can be seen as a fusion of
independent and simple mass functions, that can be derived from its parameters.
In the case of a multi-layer perceptron, its output can be converted into a mass
function via Equations 5.6, only using the output from its penultimate layer and
the parameters of its final layer. However, the αi values in Equation 5.3 have to
be estimated.

5.3 End-to-end evidential interpretation of a bi-

nary GLR classifier and online statistical fil-

tering

T. Denoeux proposed to explicitly compute the αi values after the training,
so that the resulting simple mass functions are the most uncertain ones. This
means that the weights of evidence of those mass functions should be as small
as possible, which leads to the following minimization problem [77]:

minf(α) =
n∑
i=1

d∑
j=1

(βjφj(xi) + αj)
2 (5.8)

52

with {(xi, yi)}ni=1 being the training dataset, and α = (αi, ...αd).
However, we observe that this minimization problem can be instead solved

during the training, under the assumption that the last layer of the MLP performs
Instance Normalization [78]. Let υ(xc) = (υ1(xc), ..., υd(xc)) be the mapping
modeled by all the consecutive layers of the MLP but the last one ; let υj be the
mean value of the υj function on the training set, and σ(υj)

2 its corresponding
variance. The output of the MLP depicted in Equation 5.1 then becomes:

p1(x) = S(w) = S(
d∑
j=1

(βj
υj(xc)− υj√
σ(υj)2 + ε

) +
d∑
j=1

αj) (5.9)

In particular, it can be noticed that α parameters are already present, given the
expression of Instance Normalization. After develepment, the expression in 5.8
becomes:

minf(α) =
d∑
j=1

βj
2(

n∑
i=1

φj(xi)
2) + n

d∑
j=1

αj
2 + 2

d∑
j=1

βjαj

n∑
i=1

φj(xi) (5.10)

The third term in this expression is equal to 0 when using Instance Normaliza-
tion. Indeed, Instance Normalization produces centered features, meaning that∑n

i=1 φj(xi) = 0. We rewrite the first term in the expression, again considering
that Instance Normalization is used in the final layer. We assume that ε can
be neglected with regards to the σ(υj)

2 values. This assumption is reasonable
in the general case, as the value of ε is chosen to be small, and is only used for
numerical stability. The minimization problem in Equation 5.8 becomes after
development:

minf(α) =
d∑
j=1

β2
j

∑n
i=1(υj(xc)− υj)2

σ(υj)2
+ n

d∑
j=1

αj
2 (5.11)

It has to be noted that:

σ(υj)
2 =

1

n

n∑
i=1

(υj(xc)− υj)2 (5.12)

From 5.11 and 5.12, we get:

minf(α) = n
d∑
j=1

β2
j + n

d∑
j=1

α2
j (5.13)

The minimization problem can then be trivially solved in an online fashion,
by simply applying weight decay to the parameters of the final Instanec Normal-
ization layer. Applying Batch Normalization to the final layer of the MLP also
has another interest: it can be the basis for an online statistical filtering scheme.

Let z(υj(xi)) =
υj(xi)−υj
σ(υj)

be the Z-score of υj(xi). Under the assumption that

the υj function can be modeled as a random variable following a normal distribu-
tion, a simple thresholding can be used to define confidence levels: the larger the

53

Z-score is, the more unlikely to happen υj(xi) is. Moreover, the Central Limit
Theorem states that a sum of independent random variables can be modeled as
a normal distribution [79]. If the MLP mainly implements linear functions, the
υj(xi) values can be approximately considered as sums of random variables. Sta-
tistically abnormal υj(xi) values can then be rejected by a simple thresholding
on their Z-score.

Again under the assumption that ε can be neglected with regards to the
σ(υj)

2 values, the wj values in Equation 5.2 can be seen as:

wj ≈ βj ∗ Zscore(υj(xc)) + αj (5.14)

When trying to classify inputs without any guarantee that only pertinent objects
will be passed to the classifier, the Z-Score can be used to detect objects that
are extremely different from the training set, and for which the mass function
obtained from wj is unlikely to be reliable. Abnormal objects with regards to
the application domain of the classifier can then be easily accounted for, by
introducing an additional hyperparameter. Let ZMax be a threshold value.
During inference, each wj for which the Zscore overpasses the ZMax value can
then be excluded from the final fusion process. The final mass values are then
only computed by fusing simple mass functions whose wj weights are reliable,
with regards to the training set. Shutting down a wj based on the ZScore is
equivalent to the following procedure:

wj =


0, if | υj(xi)−υj√

σ(υj)2+ε
|> Zmax

βj ∗ υj(xi)−υj√
σ(υj)2+ε

+ αj, otherwise

(5.15)

According to Equation 5.4, the mj mass function corresponding to the case where

| υj(xi)−υj√
σ(υj)2+ε

|> Zmax becomes:

mj(θ1) = 0, mj(θ2) = 0, mj(Θ) = 1 (5.16)

This vacuous mass function represents a completely uninformative piece of evi-
dence, over the frame of discernment. By this online statistical filtering scheme,
the final mass function in Equation 5.6 is then affected, and the value for mLR(Θ)
is increased. From this formalism, an evidential multi-task multi-layer percep-
tron was designed, and trained to classify LIDAR objects as either vehicles,
vulnerable road users, or unknown objects.

Observations

A statistical outlier, for which the Zscore overpasses ZMax, should not the-
oretically be associated with a vacuous mass function. Indeed, it would make
sense to instead associate this event with an unnormalized mass function maxi-
mizing the evidence on the empty set, as this would correspond to classification
in open-world. Therefore, mj would be in this case:

mj(∅) = 1, mj(θ1) = 0, mj(θ2) = 0, mj(Θ) = 0 (5.17)

54

Yet, this mass function is not usable in practice. It is indeed the absorbing
element of the unnormalized rule of combination (cf. Equation 3.7). This means
that if only one of the wj values are detected as outliers, based on their associated
Zscore, the final mass function after fusion would also be equal to the one in
Equation 5.17, making the classifier overly sensitive to rare and atypical input
features. On the contrary, using a vacuous mass function allows for a finer
representation, as it only affects some of the wj weights, and not the whole
resulting mass. Due to this expected behavior, we instead chose to simply follow
the procedure in Equation 5.15. Section 5.6 will deepen this discussion on the
use of unnormalized mass functions.

5.4 Evidential classification of LIDAR objects

5.4.1 Training dataset

Although publicly available datasets of labeled LIDAR objects exist, such as
the KITTI dataset [10], they do not include any explicitly unknown objects.
Moreover, we assumed that the classification of LIDAR objects must be per-
formed after a detection step. Then, a coupling with a pre-existing detection
system, and a dataset with labeled unknown objects, were needed to test the evi-
dential framework that was previously defined, when applying it to LIDAR object
classification. Raw point clouds were thus acquired from a ZoeCab platform, via
a Velodyne VLP-32C sensor. ZoeCabs are robotized electrical vehicles, based on
Renault Zoes, that are augmented with perception and localization sensors, and
intended to be deployed as autonomous shuttles in urban and peri-urban areas.

Figure 5.2: The ZoeCab data acquisition
platform used to collect LIDAR objects ; the
LIDAR sensor stands on top of the vehicle

The final dataset is the result
of three independent recordings:
two that happened on different
dates in Guyancourt, France, and
one in Toulouse, France. In to-
tal, this represents approximately
ninety minutes of raw data. The
data acquisition platform is de-
picted in Fig. 5.2. A ground de-
tection algorithm [72] was used to
detect the ground, and the points
that did not belong to the ground
were clustered into objects, via a
real-time implementation of the
DBSCAN algorithm [80]. De-
tected objects that comprised less
than ten points and were further

than 45 meters from the vehicle were rejected. Object tracks were then cre-
ated by associating and tracking the remaining objects over time via a simple
Extended Kalman Filter. For each track, a single tracklet was then manually

55

labeled as either ”unknown”, ”car”, ”truck”, ”bike” or ”pedestrian”, and the
label was propagated to all the other objects of the track. Tab. 5.1 depicts the
number of samples for each class in the dataset.

label number of samples
Car 91297

Truck 9713
Pedestrian 3461

Bike 946
Unknown 10492

Table 5.1: Number of LIDAR objects per class in the dataset

Although the main goal of this work was only to classify vehicles and vulner-
able road users while rejecting unknown objects, extra labels were needed during
training. Indeed, trucks, which are way larger than cars, could for instance easily
be considered as outliers in a dataset of vehicles. This could be problematic with
the statistical filtering scheme presented in the previous section.

A bounding box was fitted to each object by using the Variance Minimization
algorithm in [81], and each object was converted into a vector of nine features:

• Distance between the centroid of the box and the sensor;

• Length, width and height of the fitted bounding box;

• Mean distance between the object points and the centroid of the fitted
bounding box, and the corresponding standard deviation;

• The three eigenvalues, computed from a principal component analysis on
the Euclidean coordinates of the object points;

5.4.2 Model

A multi-task multi-layer perceptron, depicted in Fig. 5.3, was trained on the
dataset of LIDAR objects. The neural network includes linear layers, PReLU
activation layers and batch normalization layers. The PReLU activation was
used since it always applies a linear function to its input, though its behavior
depends on the sign of the input. The multi-task behavior corresponds to the
model defined in section IV, which applies to binary GLR classifiers. The MLP
has four outputs, corresponding to four binary GLR classifiers, as four different
classes are present, at least during the training. For each object x, the multi-task
MLP can then predict four probabilities:

• Px(P): probability of the object being a pedestrian

• Px(B): probability of the object being a bike

56

Figure 5.3: The proposed multi-task architecture

• Px(C): probability of the object being a car

• Px(T): probability of the object being a truck

Let ¬ represent logical negation. From Equation 5.6, those probabilities can be
converted into evidential mass functions:

m(P), m(¬P), m({P,¬P}) (5.18a)

m(B), m(¬B), m({B,¬B}) (5.18b)

m(C), m(¬C), m({C,¬C}) (5.18c)

m(T), m(¬T), m({T,¬T}) (5.18d)

Let Ω = {V,W} a frame of discernment, V representing the fact that an
object is a vehicle, W representing the fact that an object is a vulnerable road
user. This new frame of discernment is justified by the fact that the original goal
of the work is only to classify vehicles and vulnerable road users. It is assumed
that the fact of not being a car or a truck (resp. a pedestrian or a bike) is not
considered as an evidence towards the fact of being a vulnerable road user (resp.
a vehicle). The mass functions in Equation 5.18 can then be projected into this
new frame of discernment as follows:

mp(V) = 0, mp(W) = m(P), mp({V,W}) = 1−m(P) (5.19)

mb(V) = 0, mb(W) = m(B), mb({V,W}) = 1−m(B) (5.20)

mc(V) = m(C), mc(W) = 0, mc({V,W}) = 1−m(C) (5.21)

mt(V) = m(T), mt(W) = 0, mt({V,W}) = 1−m(T) (5.22)

Those four mass functions can then be fused via the Dempster-Shafer oper-
ator, to get the final mass value m generated from the MLP:

m = mp ⊕mb ⊕mc ⊕mt (5.23)

57

Algorithm 1 Interval Dominance decision rule on {V,W}
if 1−Bel(V) ≤ 1− Pl(W) then

The object is classified as a vehicle
else if 1−Bel(W) ≤ 1− Pl(V) then

The object is classified as a vulnerable road user
else

The object is classified as unknown
end if

5.4.3 Model training

The multi-task MLP was implemented in PyTorch. The evidential formulation
is not used during inference. The training is only done on the object of the
”pedestrian”, ”bike”, ”car” and ”truck” classes, which compose a dataset of
pertinent objects noted Dp. The ”unknown” objects are only used to create a
one class Du dataset, which will only be used to evaluate the evidential output
of the MLP. The parameters of the Batch Normalization layers are estimated
during the training. Thus, no Dropout was used, as the statistics in the Batch
Normalization layers have to be as accurate as possible to justify the behavior
proposed in Equation 5.15. Moreover, the training iterations were done on a
single batch composed of all the pertinent objects. A training set Dpt and a
validation set Dpv were created from Dp by a 70/30 split. As seen in Tab. 5.1,
Dp is very unbalanced. Dpt was then refined by randomly sampling objects of
the ”car” class, and by using the SMOTE algorithm [82] on the ”pedestrian” and
”bike” classes, to realign the number of samples for each class on the number of
”trucks” in Dpt. The resulting refined training dataset is noted D′pt.The ADAM
optimizer was used with its default parameters, and a learning rate of 0.001.
Moreover, following the results in Equation 5.13, a weight decay of 1e-5 was
used on the linear parameters of the final Batch Normalization layers. The
training was done during 400 epochs, and the selected model was the one that
minimized the training loss, over the 400 epochs. Let ypi, ybi, yci, yti be binary
indicators respectively indicating whether xi belongs to the class ”pedestrian”,
”bike”, ”car” or ”truck”. The loss function is a sum of cross-entropies:

(5.24)

−

 ∑
xi∈D′pt

(ypilogPxi(P) + (1− ypi)log(1− Pxi(P)))

+
∑
xi∈D′pt

(ybilogPxi(B) + (1− ybi)log(1− Pxi(B)))

+
∑
xi∈D′pt

(ycilogPxi(C) + (1− yci)log(1− Pxi(C))

+
∑
xi∈D′pt

(ytilogPxi(T) + (1− yti)log(1− Pxi(T))))


58

Pedestrian or not Bike or not
Accuracy F1-score Accuracy F1-score

0.993 0.939 0.996 0.833

Car or not Truck or not
Accuracy F1-score Accuracy F1-score

0.983 0.990 0.989 0.943

Table 5.2: Probabilistic classification results on Dpv

5.4.4 Evaluation

Probabilistic evaluation

First of all, the proposed multi-task MLP can be evaluated after training on
the validation set Dpv, only using its initial probabilistic outputs. No Z-score
filtering is used in this case, as this would not be meaningful with regards to the
Sigmoid function S. An object is considered as classified into a class when the
corresponding probabilistic output is higher than 0.5 (for e.g., if Px(C) > 0.5,
then x is classified as ”car”, otherwise it is classified as ”not car”). In Tab. 5.2,
the results for each classification task are given as accuracy scores and F1-scores.
The results are satisfactory, as all these indicators are above 0.9 except the
F1-score for the bike classification. This can be explained by the significantly
lower number of ”bikes” compared to the other classes, which justified the use
of the SMOTE algorithm. The results for the car and pedestrian classes are
still satisfactory, although under-sampling and oversampling were used on these
classes.

Method IoU Accuracy F1-score on V F1-score on W F1-score on Ω
Ours, probabilistic output with no Z-score filtering 0.312 0.729 0.890 0.408 0.377

Ours, evidential output with no Z-score filtering 0.320 0.733 0.890 0.412 0.388
Ours, evidential output with ZMax = 2.58 0.558 0.825 0.938 0.458 0.675
Ours, evidential output with ZMax = 1.96 0.682 0.872 0.945 0.570 0.786
Ours, evidential output with ZMax = 1.65 0.725 0.897 0.929 0.661 0.825

One-class SVMs [83] 0.507 0.661 0.672 0.556 0.660

Table 5.3: Classification results on Drc ; V stands for ”vehicle”, W stands for
”vulnerable road user”, Ω stands for ”unknown” object

Evidential evaluation

The evaluation of the evidential outputs generated from the MLP is done
with regards to the Ω = {V,W} frame of discernment, with the mass functions
generated from Equations 5.6, 5.18, 17 and 5.23. The interval dominance (ID)
preference relation in [84], and depicted in Algorithm 1, is used to classify objects
based on the mass values on V and W . The ZMax value in Equation 5.15 is
still to be defined. When working with Gaussian random variables, the three
common thresholds to work with Z-scores are 2.58, 1.96, and 1.65, respectively

59

Method Accuracy F1-score (V) F1-score (W)
Ours, ZMax = 1.65 0.914 0.959 0.890

Table 5.4: Results of the evidential classification on Dpv

corresponding 99%, 95% and 90% confidence levels [79]. The MLP is thus tested
with those three possible Zmax values.

The decisions based on the evidential mass functions generated from the MLP
are compared with decisions based on its probabilistic outputs, and classification
results obtained from a set of one-class SVMs [83]. One-class SVMs are com-
monly used when trying to detect unknown objects. Moreover, such SVMs can
be trained and tested directly on the dataset of LIDAR objects that was created
in the context of this work. For a fair comparison with the proposed multi-task
MLP, four one-class SVMs are trained on the Dpt dataset. Each one of those four
SVMs is trained on one class of Dpt: ”car”, ”truck”, ”pedestrian” or ”bike”. The
following classification rule is used to classify objects as vehicles or vulnerable
road users from either the probabilistic outputs of the MLP, or the set of four
one-class SVMs:

• If an object is classified as a pedestrian or a bike, or as both, and neither
as a car nor as a truck, then it is classified as a vulnerable road user (W);

• Else, if an object is classified as a car or as a truck, or as both, and neither
as a pedestrian nor as a bike, then it is classified as a vehicle (V);

• Otherwise, the object is classified as unknown (Ω);

To simulate a test on real-life conditions, the set of SVMs and the MLP with
the corresponding classification rules are tested on Drc = Du ∪ Dpv, the union
of the validation dataset and the dataset of unknown objects. The results are
presented in Tab. 5.3.

Based on the Intersection Over Union (IoU) scores, the best performing ap-
proach is the evidential classification with ZMax equal to 1.65. This version is
also the best on practically all the indicators, except the F1-score on V . The
interest of Z-score filtering with an evidential formulation of a neural network is
visible. Indeed, the worst performing approach is the purely probabilistic one,
and the IoU scores increase with the ZMax values. The Z-Score filtering scheme
proved to be efficient, as the F1-score for Ω is equal to 0.825 when ZMax is equal
to 1.65, although the system was never trained on those unknown objects. Vul-
nerable road users are still challenging to correctly classify though, as the best
F1-score for W is only 0.661. This can again be explained by the fact that the
original dataset was highly unbalanced. As seen on Fig. 5.4, using evidential
classification with ZMax = 1.65 leads to the desirable feature that, on Drc, all
the wrongly classified vehicles and vulnerable road users were classified as un-
known objects. Moreover, it is also to be noted that 81% of the vulnerable road
users are correctly classified, and that the low F1-score for this class is explained
by the 19% that are classified as unknown objects and the 8% of unknown objects

60

Figure 5.4: Normalized confusion matrix for evidential classification with
ZMax=1.65 on Drc

that are classified as vulnerable road users. This can also be seen in Tab. 5.4,
which indicates the accuracy and F1-scores only computed on Dpv. The IoU
score and F1-score for Ω are not reported as these values are not meaningful
anymore. In this case, the F1-score for W is equal to 0.890, which is more sat-
isfactory. What’s more, given that the dataset was created in a semi-automatic
fashion, it can be assumed that a certain amount of vulnerable road users were
wrongly labeled, making it challenging to classify them. In the next section, we
thus propose an evidential road mapping approach that relies on road detection
in LIDAR scans, via neural networks, and the conversion of the classification
results into evidential mass functions.

5.5 Examples

In the following section, we present some real-life examples where LIDAR objects
were classified by our system, with a ZMax value of 1,65.

Crossroad

Figure 5.5 presents a scans recorded in a crossroad. The yellow lines represent
a pre-existing map of the area. Red points are points that belong to a LIDAR
object, other points are colored according to the returned intensity. To better
understand the scene, ground points were accumulated over different frames, but

61

Figure 5.5: Crossroad with two vehicles

the obstacle points only correspond to a single scan. Grey objects are classified
as unknown, blue ones as vehicles. On this scene, the classifier can detect, and
reject, all the non pertinent objects, without having been trained on them, and
the two vehicles are properly detected.

Example of pedestrian

Figure 5.6: Pedestrian on a sidewalk

The orange object in Figure 5.6 is a pedestrian on a sidewalk, and is classified
as a vulnerable road user. Points are colored according to their height to help
the reader understand the geometry of the scene.

Handling clustering errors

In Figure 5.7, the clustering algorithm wrongly merged the vehicle in front of
the autonomous platform with a portion of a wall on the side of the road. Such
an incoherent object is also considered as unknown by the classifier. However, it
was not explicitly trained to reject objects generated after clustering errors.

62

Figure 5.7: Misclustered object classified as unknown

5.6 Discussion on the use of unnormalized mass

functions

5.6.1 Proper filtering of the simple mass functions

In the observations of Section 5.3, we observed that using unnormalized mass
functions would be more significant, in the context of open-world classification.
Yet, simply setting the mass value for the empty set to one was assumed to lead
to an over sensitive filtering scheme, since such a mass function is the absorbing
element of the unnormalized combination rule. We made some tests on our
validation dataset, to confirm this assumption. We still used several ZMax
threshold to filter the simple mass functions that were expected to be irrelevant,
with regards to the training set, and replaced them by m(∅) = 1. We kept
the I-D rule for the decision making but, since there’s no difference between
Ω and ∅ in our labeled unknown objects, objects that were not classified as
vehicles or vulnerable road users were classified as unknown objects in the broad
sense. We tested the same ZMax thresholds as in Section 5.4.4, and report the
corresponding confusion matrices in Figure 5.8.

We observe that even for a ZMax value of 2.58, the results are significantly
worse than those in Figure 5.4, as more objects are falsely considered as unknown
ones. For ZMax = 1.96 values, nearly all the objects are classified as unknown,
and for ZMax = 1.65, all the objects are considered as unknown. This confirms
the expected over sensitivity of the classifier, when the filtered mass functions
are replaced by m(∅) = 1. A way to solve this issue would be to finely quantify
the mass values on ∅, instead of setting its value to one when statistical outliers
are detected. This is however a complex problem, as ∅ represents what is not
modeled by the network, based on the frame of discernment. Yet, being able
to estimate those masses on ∅ after the training, and during the deployment in
open-world conditions, would probably lead to significantly better performances,
and a finer representation of the knowledge for each object.

63

Figure 5.8: Results after having replaced the filtered mass functions by m(∅) = 1

64

5.6.2 Representation of unknown objects

As previously said, the unknown objects in our labeled dataset are unknown
in the broad sense. They were just considered as neither vehicles nor vulnerable
road users. Nevertheless, by using unnormalized mass functions, a finer repre-
sentation of the information available for these objects is possible. The mass
on Ω could correspond, for instance, to objects that are ”between” vehicles and
vulnerable road users, such as motorbikes or electric scooters; the mass on the ∅
would then represent objects that are completely out of the frame of discernment.
Evaluating such a behavior is hard, since very specific, and very subjective, labels
would then be needed. This is one of the reason why we focused on unknown
objects in the broad sense.

In Equation 5.23, we used the normalized version of Dempster’s operator. We
could have also used the unnormalized version, so as to have non-zero mass values
on the empty set. As we were focusing on unknown objects in the broad sense,
doing so would not change the final results we obtained, provided that we sticked
to the I-D rule. Indeed, the belief and plausibility values in the normalized case
can be obtained from their counterpart in the unnormalized case, by dividing
them by 1 −m(∅). The ordering between the belief values and the plausibility
values are thus the same in the normalized and unnormalized cases. Therefore,
the results would be the same, since we do not specifically classify objects as ∅
or Ω.

Figure 5.9: Example of scan from
an agile LIDAR: the AEye iDAR.
The scan was adjusted to be
denser between selected angular
positions, and coarser in other ar-
eas. This behavior can be ad-
justed on-the-fly.

Yet, using the unnormalized combination
rule, and having non-zero values on ∅, might
have practical interests, for perception. One
example that can be thought of, for instance,
is to select region of interests in which ad-
ditional information is needed. Objects that
have high mass values for m(Ω) are ambigu-
ous by definition, and thus, trying to ex-
tract more information about them, to con-
firm their class, makes sense. This would not
theoretically be the case for objects with high
mass values on ∅, as they are expected to be
out of the frame of discernment that the sys-
tem is designed for. Agile LIDAR sensors,
that allow to change their scanning pattern
on the fly, are currently emerging. It would
make sense to use such LIDAR to increase
the number of points that are returned, for
objects associated with high mass values on
Ω. It would be then possible to have a better
understanding about them. A less sensor-

65

dependent approach might also be to deploy specific algorithms to refine the
knowledge about objects for which the mass value on Ω is high.

5.7 Conclusion

We presented a classifier of LIDAR objects, that takes geometrical features
as inputs, and returns evidential mass values indicating whether the object is
a vehicle, a vulnerable road user, or unknown. This is done by reinterpreting
the classifier as a set of simple mass functions that are fused together. A simple
statistical filtering scheme is used to account for objects that seem incoherent,
with regard to the training set. Further work will have to benefit from the use of
unnormalized mass functions, to improve the classification results and to allow for
the implementation of new functionalities. These unnormalized mass functions
might be of interest, for instance, in the context of active perception, where the
perception system focuses on regions of interests that are selected on-the-fly. As
the reinterpretation of GLR classifiers, as a fusion of simple mass functions, lead
to interesting results for object classification, we considered that this technique
might also be of interest in the context of evidential grid mapping. In particular,
we investigated, in the following chapters, the possibility to create evidential
grids that represent the road surface, from LIDAR scans only. We were aiming at
improving the grid mapping system described in Chapter 4, especially regarding
the processing of LIDAR scans. Indeed, many geometrical assumptions were
made, which limited the applicability of this grid mapping system in a general
context.

66

Chapter 6

Road detection in LIDAR scans

Contents
6.1 Introduction . 67

6.2 TadNet: Transformation-adversarial network for point-
level road detection in LIDAR rings 68

6.2.1 Ring-level PointNet 68

6.2.2 Transformation-adversarial network for LIDAR rings . 68

6.2.3 Training procedure . 70

6.3 RoadSeg: a deep learning architecture for road de-
tection in LIDAR scans 71

6.3.1 Dense range image generation from LIDAR scans . . . 72

6.3.2 From SqueezeSeg to RoadSeg 73

6.4 Automatic labeling procedure of LIDAR scans from
lane-level HD Maps . 75

6.4.1 Soft-labeling procedure 75

6.4.2 Data collection and resulting dataset 78

6.5 Evaluation of the performances of TadNet 82

6.6 Evaluation of the performances of RoadSeg 84

6.6.1 Evaluation on the KITTI Road dataset 84

6.6.2 Evaluation on the manually labeled Guyancourt dataset 86

6.6.3 Comparison of the evidential mass functions obtained
from the fused RoadSeg networks 91

6.6.4 Examples of results . 93

6.7 Conclusion . 96

6.1 Introduction

When operating in urban or peri-urban areas, autonomous vehicles need an
accurate representation of the road, as no other area is supposed to be drivable.
In ideal conditions, geometrical models could detect the road in LIDAR scans,
at the cost of a manual tuning of hyper-parameters, and a lack of flexibility.
We instead propose to rely on refined versions of the SqueezeSeg and PointNet

67

architectures, to detect the road in 360◦LIDAR scans. The road detection re-
sults can later be fused into evidential road grid, after having reinterpreted the
output of the neural networks as a collection of simple evidential mass functions.
Since road labels were needed for training, a soft labeling procedure relying on
a localization error model, and lane-level HD maps, was used to generate coarse
training and validation sets. An additional test set was manually labeled to
properly evaluate the road detection results. The system was trained and eval-
uated on real-life data, and a suboptimal implementation of the road mapping
and object detection algorithm maintains a 10Hz framerate. Our contributions
in this chapter are then twofold:

• TadNet, a refined version of PointNet for road detection in LIDAR rings

• RoadSeg, a refined version of SqueezeSeg for road detection in LIDAR scans

6.2 TadNet: Transformation-adversarial network

for point-level road detection in LIDAR rings

6.2.1 Ring-level PointNet

Typically, dense LIDAR sensors rely on stacked lasers that individually sweep
the scene. A LIDAR ring represents a set of points that is obtained after the
sweep of the environment by a single laser of a LIDAR. To detect the road in
LIDAR scans, without having to transform the raw points into another represen-
tation, a classifier inspired by PointNet can be used. To leverage the limitations
of PointNet that were exposed in Sec. 2.3.3, the processing is done at the ring
level. Indeed, the maximum number of points that a LIDAR ring can include can
be computed from the angular resolution of the LIDAR. Then, contrary to what
was done in [13] and [25], no sampling of the point-cloud is needed. Moreover,
LIDAR rings are often dense, especially at short range, since each laser sweeps
the whole scene. This was expected to facilitate the reasoning of a PointNet-like
network. However, LIDAR rings vary significantly among each others: a ring
acquired by a top laser and a bottom laser include points that were acquired at
very different distances. A training scheme, inspired by the recent successes of
generative-adversarial networks (GAN) in the image domain [32], was proposed
to cope with this issue.

6.2.2 Transformation-adversarial network for LIDAR rings

GANs rely on the conjunction of two alternatively trained systems. The first
one, called the generator, is optimized to generate artificial samples that are
as realistic as possible. The second one, called the discriminator, is trained to
discriminate real and artificial samples. The two systems are competing against
each other: the generator aims at fooling the discriminator, and the discriminator
aims at detecting samples generated by the generator. Similarly, we propose a

68

Figure 6.1: Transformation-adversarial network for road-detection in LIDAR rings

Transformation-adversarial network, or TAdNet, depicted in Figure 6.1. It is
composed of a Transformation network (blue sub-network in Figure 6.1), and a
Classification/Discrimination network (yellow sub-network in Figure 6.1). In the
original PointNet, T-Nets predict affine transformation matrices applied to the
whole input cloud, and to intermediate features extracted by point-level MLPs.
Those T-Nets are optimized during the training, alongside the other parameters
of the network.

The Transformation network that we propose, which also applies a transfor-
mation predicted by a T-Net to the input, is optimized separately from the rest
of the system. To cope with the variability among LIDAR rings, the Transfor-
mation network also includes an H-Net. This H-Net (standing for homothety
network) processes the transformed point-cloud obtained from the transforma-
tion predicted by the T-Net, and predicts an explicit rescaling factor, that is
applied to the coordinates of all the points. The input points are represented
by their Cartesian coordinates (x,y,z), spherical coordinates (ρ,φ,θ), and their
intensity. To account for the risk of redundancy among the point features, the
φ and θ angles are the uncorrected azimuth and zenith at which the point was
acquired, while the Cartesian coordinates are obtained after correction. Let h be
the scale predicted by the H-Net. Then, the coordinates of the input points are
rescaled as follows: x∗ = hx, y∗ = hy, z∗ = hz, ρ∗ = hρ. All the other features
are left unchanged.

The Transformation network is then expected to learn to remap all the LI-
DAR rings into a constrained range, that is suitable for the road classification
task. We assumed that it should be difficult to predict the ring ID of properly
remapped and constrained LIDAR rings. The Transformation network is thus
trained alongside a Classification/Discrimination network, and aims at generat-
ing similar LIDAR rings. This Classification/Discrimination network is in fact
a multi-task PointNet, without any initial T-Net. It has to both perform road
detection among the LIDAR points, and predict the ID of the LIDAR ring that
it processes. This ring ID is predicted from the output of a small PointNet-

69

like subnetwork that is fed with the vector of concatenated point-level features
and cloud-level features, that can be obtained after the max-pooling operation
that every PointNet-like network uses. Following the results in Equation 5.13,
Instance-Normalization and L2 regularization are used on the outputs, so that
the α parameters lead to cautious evidential mass functions, with significant
mass values that are assigned to the frame of discernment. Indeed, TadNet was
intended to be used to perform evidential road grid mapping.

6.2.3 Training procedure

A PointNet-like system is typically trained with a multi-task loss. In the context
of this study, the problem is point-level road detection in LIDAR rings. The loss
chosen for this task, noted Lce was the classical cross-entropy loss. The second
component of the loss used for the training was a geometrical regularization loss,
common with other PointNet-like networks. Let A be the transformation matrix
predicted by the T-Net inside the Classification/Transformation network. This
64 by 64 matrix is more difficult to optimize than the simple transformation
matrix predicted by the first T-Net, but should be as orthogonal as possible.
Then, the loss on A to minimize, noted Lgeo, is:

Lgeo(A) = ||I − AAT ||2 (6.1)

Finally, the ring ID prediction error is again evaluated from a cross-entropy
loss, calculated from the actual ring ID. We note this loss Lring. Let LTr, the loss
used to optimize the Transformation network, and LCD, the loss used to optimize
the Classification/Discrimination network. For each ring, let Proad, Yroad, PRing
and YRing be, respectively, the point-wise predicted probability that each point
belongs to the road, the corresponding road labels, the predicted ring ID and the
corresponding ring label. Then:

LCD = Lce(Yroad, Proad)

+ Lce(YRing, PRing)

+ Lgeo(A)

LTr = Lce(Yroad, Proad)

− Lce(YRing, PRing)

+ Lgeo(A)

The whole system is trained thanks to the algorithm 2. Preliminary experiments,
whose result are presented in Section 6.5, seemed to show that such a system
would outperform regular PointNet networks. However, the resulting system
was twice as long to train, when compared to PointNet, due to the adversarial
training algorithm that we used. Moreover, its inference time was incompatible
with real-time constraints, even with high end GPUs. We thus explored the
possibility to instead propose a refined version of SqueezeSeg for road detection,
that we call RoadSeg.

70

Algorithm 2 Training of the proposed system
Transformation network: T ;
Classification/Discrimination network: CD ;
N training rings are available ;
for e epochs do

for N/n iterations do
Sample n batches (b0, .., bt) from the training set
for i in range(n) do

b∗i = T(bi)
RoadClassif, RingID = CD(b∗i)
Update CD from LCD

end for
for i in range(n) do

b∗i = T(bi)
RoadClassif, RingID = CD(b∗i)
Update T from LTr

end for
end for

end for

6.3 RoadSeg: a deep learning architecture for

road detection in LIDAR scans

To properly detect the road in LIDAR scans, we propose an architecture that
is heavily inspired by SqueezeSeg [14] and SqueezeSegV2 [43], as those networks
are particularly efficient to process LIDAR scans. However, we introduce several
refinements to the original architectures and training schemes, so as to better fit
the task of road detection, and allow for evidential fusion of segmented scans.
We name the resulting architecture ”RoadSeg”.

71

6.3.1 Dense range image generation from LIDAR scans

Figure 6.2: Conversion of a LIDAR scan into a multi-channel range image by
spherical projection. The channels in the lower part correspond to the returned
intensity, the Cartesian coordinates, and the measured range.

Similarly to SqueezeSeg, RoadSeg processes LIDAR scans that are stored into
dense range images. Such a representation corresponds to raw sensor measure-
ments, as LIDAR scanners actually return distances at fixed angular positions.
The dimensions of those range images then depend on the specifications of the LI-
DAR that was used to generate them. Our dataset was generated with VLP32C
sensors that were operating at 10Hz, and scanning at 360◦. This sensor relies on
32 stacked lasers, each scanning at a different zenith angle, and has a horizon-
tal angular resolution of 0.2◦when operating at 10Hz. As such, only 32*360/0.2
angular positions can be observed by the sensor. Each LIDAR scan of the train-
ing, validation and test set can then be represented by a 32*1800*C grid, with
C being the number of features available for each point. This grid can be con-
sidered as an image with an height of 32 pixels, a width of 1800 pixels, and C
channels. Let (x, y, z) be the Cartesian coordinates of a LIDAR point. Let α, β
be the indexes of the pixel that correspond to this point, and RingId the index
of the laser that measured the point. A RingId of 0 indicates that the point was
measured by the topmost laser, and a RingId of 31 indicates that the point was
measured by the lowest laser. Then α and β are such that:

α = arcsin(
z√

x2 + y2 + z2
) ∗ 5

β = RingId

The channels of the pixel at the (α,β) position can then be filled with the
features of the corresponding point. Figure 6.2 presents the resulting ranges
images obtained after spherical projection of LIDAR points. In practice, the
VLP32C scanner returns ethernet packets containing measured ranges that are
already ordered by laser and azimuth position. The range images can then be
obtained directly from the sensor, without having to pre-process a Cartesian
LIDAR scan. This projection was used in the generation of the labeled data,

72

as the scans of the test set were easier to label in Cartesian coordinates, and
the LIDAR points had to be localized in Cartesian coordinates before being
projected into our HD maps. But when run on the vehicle, RoadSeg processes
range images that are directly obtained from the ethernet packets.

In total, we chose to represent a LIDAR point by its Cartesian coordinates, its
spherical coordinates, and its returned intensity. Additionally, a validity channel
was added, as done for SqueezeSegV2. A point is valid, and the corresponding
validity is equal to 1, if the range that was measured at its angular position
is strictly positive. Otherwise, the point is not valid, which can correspond to
missed-detections, or lost ethernet LIDAR packets.

*
+

+

+

(a) General road classification architecture

(b) T-Net of RoadSeg

Figure 6.3: RoadSeg, a refined SqueezeSeg-like architecture for road detection
and evidential fusion

6.3.2 From SqueezeSeg to RoadSeg

Figure 6.3 depicts the RoadSeg architecture, which is very close to the original
SqueezeSeg architecture, as it also relies on the use of Fire and Fire-deconvolutional

73

layers, and skip connections. RoadSeg also only downsamples horizontally, as
SqueezeSeg and SqueezeSegV2. RoadSeg uses one downsampling step less than
SqueezeSegV2. Indeed, the first convolutional layer of RoadSeg has a stride of 1
in both direction, while SqueezeSeg has a horizontal stride of 2. The kernel size
is however still equal to 3. This is justified by the fact that, in the case of road
detection, downsampling might make road hard to distinguish at long-range.
SqueezeSeg benefited from this downsampling because it was originally designed
for semantic segmentation of road users, which are often relatively close to the
sensor. RoadSeg then also has one deconvolutional layer less than SqueezeSeg.
Additionally, as done in SqueezeSegV2, RoadSeg uses Batch Normalization after
each convolution, both inside and outside the Fire layers.

An initial Batch Normalization is also applied on the input of the network,
as a normalizing operation. This mechanism was proposed to replace the man-
ual normalization step, that is used in both SqueezeSeg and SqueezeSegV2. As
the normalization parameters initially used in SqueezeSeg and SqueezeSegV2
are computed from the train set, manual normalization assumes that the sensor
setup is the same in the train, validation and test sets. As our labeled LIDAR
scans were not acquired by the same vehicles, this assumption does not hold any-
more. Applying Batch Normalization to the inputs of RoadSeg is thus a way to
train the network on inputs that are not exactly normalized. A T-Net, inspired
by PointNet [13], can also be used to realign the LIDAR scans, by predicting a
3 × 3 affine transformation matrix that is applied on the Cartesian coordinates
of the LIDAR points. The TNet is composed of three 1× 1 convolutional layers,
with respective output sizes of 32, 64 and 512 ; a channel-wise max-pooling; and
three linear layers having output sizes of 256, 128 and 9. Finally, according to
the results of Equations. 5.9 and 5.13, the final convolutional layer is replaced, in
RoadSeg, by an Instance-Normalization layer and a sum over the output chan-
nels.

In order to limit the total number of weights in RoadSeg, the number of output
channels produced by the Fire layers were reduced, with regards to their coun-
terparts in SqueezeSeg and SqueezeSegV2. Table 6.1 compares the Fire layers in
RoadSeg and in SqueezeSeg/SqueezeSegV2. The Fire-deconvolutional layers were
left unchanged. The Conditional Random Field (CRF) layer that was, originally,
refining the outputs of SqueezeSeg and SqueezeSegV2, was removed for several
reasons. First, as it was originally implemented as a recurrent neural network,
generating evidential mass functions from this layer was more complex than from
a regular convolutional layer, or an Instance-Normalization layer. Secondly, the
removal of this layer was a way to reduce the computational cost of RoadSeg.
Finally, experiments showed than the CRF layer was degrading the performances
of SqueezeSegV2, for the road detection task, and was thus assumed not to be
suitable for RoadSeg.

74

Output channels
Layer SqueezeSegV1/V2 RoadSeg
Fire2 128 96
Fire3 128 128
Fire4 256 192
Fire5 256 256
Fire6 384 256
Fire7 384 256
Fire8 384 256
Fire9 512 256

Table 6.1: Comparison of the fire layers in RoadSeg and SqueezeSeg

6.4 Automatic labeling procedure of LIDAR scans

from lane-level HD Maps

Reliable semantic segmentation labels are usually generated manually, by ex-
pert annotators. This however proves to be expensive and time consuming. Au-
tomatic labeling can instead be used to generate labeled LIDAR scans, on which
a road detection algorithm could be trained. Ideally, an error model should be
associated to an automatic labeling procedure, as the resulting data is likely to
include errors. We thus propose to softly label the road in LIDAR scans from
pre-existing lane-level maps, and according to a localization error model.

6.4.1 Soft-labeling procedure

The automatic soft-labeling procedure used in the context of this work is pre-
sented in Figure 6.4. It is assumed that the LIDAR scans can be acquired
in areas where reliable geo-referenced maps, with correct positions and road di-
mensions, are available. Moreover, the LIDAR scans are supposed to be acquired
from a moving data acquisition platform, which includes a 360◦ LIDAR scanner
that can perceive the ground and obstacles, and a GNSS localization system
which returns an estimation of its pose in the map frame, and a correspond-
ing covariance matrix. Those sensors are considered to be rigidly attached to
the acquisition platform, and calibrated together. The coordinates in the map
frame are expressed in terms of northing and easting offsets with regards to an
origin. This origin is close to the data acquisition platform. Under the classical
assumption that the localization error follows a zero-mean Gaussian model [85],
an uncertainty ellipse can be obtained from the covariance matrix associated
with the current pose. A probability of belonging to a mapped road can then be
estimated, for each LIDAR point.

75

Figure 6.4: Automatic soft-labeling of LIDAR scans from road maps

Let xli represent the coordinates a LIDAR point, and xmi the corresponding
point after projection in the map frame. Let yi, the labeled probability that xli
belongs to the road. First, a ground detection step is used to segregate obvious
obstacles from points that potentially belong to the road. It is assumed that
the algorithm does not falsely classify ground points as obstacles. If xli does
not belong to the detected ground, then yi = 0, since it belongs to an obstacle.
Otherwise, xli is projected into the map frame. Given that the projection into
the map frame relies on a rigid transformation, the localization uncertainty of
the resulting xmi is equal to the uncertainty of the pose measured by the GNSS
localization system. The closer from a road edge xmi is, the lower the probability
that it belongs to the road is. Let di be the minimum distance between xmi
and a mapped road edge. The covariance matrix given by the GNSS localization
system could, ideally, be used to estimate the standard-deviation of the Gaussian
distribution that models the error on di, by considering the heading of the road in
the map frame [86]. However, the value of this heading can be ambiguous in curbs
or roundabouts. To account for those use cases and facilitate the computations,
a bounding of this standard-deviation, noted σb, is thus estimated instead. Let
σn and σe be, respectively, the standard-deviation in the northing and easting

76

directions; then σb is estimated as follows:

σb = Max(σn, σe) + γ (6.3)

The γ term is an ad-hoc parameter, that is used to account for the uncertainty in
the measures of the LIDAR sensor, and possible errors in the estimated extrinsic
calibration parameters. Then, if xli belongs to the ground, yi can be estimated
as follows: If xmi falls into a mapped road:

yi =

∫ di

−∞

1

σb
√

2π
exp

− 1
2

(x
σb

)2

dx (6.4)

Otherwise:

yi = 1−
∫ di

−∞

1

σb
√

2π
exp

− 1
2

(x
σb

)2

dx (6.5)

Figure 6.5 presents two use cases and the resulting softly labeled LIDAR scans.

77

(a) Use case 1: two opposite lanes (b) Use case 2: Roundabout

(c) Use case 1: Automatic labels (d) Use case 2: Automatic labels

Figure 6.5: Use cases and examples of automatically labeled LIDAR scans. The
data acquisition platform is depicted in white, and the map in yellow. Green
points are pre-classified as ground points ; the purpler a point is, the higher
its probability of belonging to the road is; the redder a point is, the lower its
probability of belonging to the road is.

6.4.2 Data collection and resulting dataset

Appropriate data was needed to apply this automatic labeling procedure. Ac-
curate maps and localization were needed. Open source maps, such as Open-
StreetMap, were thus not considered, as the road dimensions, and especially their
width, are rarely available and accurate. The NuScenes dataset [87] includes LI-
DAR scans and an accurate map ; however, the localization of the vehicle, though
extremely accurate, is not provided with uncertainty indicators, which prevented
us from using this dataset. Data was thus collected in several areas where Re-
nault S.A.S has access to lane-level HD-map. Those maps follow the framework
described in [88].

78

Data acquisition platform

ZoeCab platforms were used to collect data. In this work, a VLP32C Velodyne
LIDAR running at 10 Hz was used with a Trimble BX940 inertial positioning
system, coupled with an RTK Satinfo, so that centimeter-accurate localization
can be achieved when RTK corrections are available. The other sensors were not
used for the data collection. The PPS signal provided by the GPS receiver was
used to synchronize the computers and sensors together.

(a) A ZoeCab platform (b) Velodyne VLP32C and GNSS antenna

Figure 6.6: Data collection platform for the generation of the automatically
labeled dataset

Coarse training dataset for TadNet

2334 scans were then recorded, and coarsely labeled from our lane-level maps,
in Guyancourt. These scans were actually originally used to create a first train-
ing/validation dataset for TadNet. The validation subset was obtained via a
70/30 split of this original data. The validation data only correspond to the ear-
liest and latest fifteen percents of this initial dataset, to ensure that the validation
is different enough from the training set.

Coarse training dataset for RoadSeg

In order to get diverse training samples, LIDAR and localization data was
acquired in four different cities and locations in France, with two different ZoeCab
systems:

• Compiègne

• Rambouillet

• Renault Techocentre

• Paris-Saclay campus

One of the vehicles was used to collect the data in Compiègne and Rambouillet,
and the other one was used in Renault Technocentre and the Paris-Saclay cam-
pus. All those locations are urban or peri-urban areas. The sensor setup was

79

similar, but not identical, between those vehicles, with a a VLP32C LIDAR and
GNSS antenna on top of the vehicle and the Trimble localization system in the
trunk. LIDAR scans were only automatically labeled every ten meters, to limit
the redundancy in the training set. As an accurate localization was needed to
label the LIDAR point-clouds from the map, the LIDAR scans were only labeled
when the variance in the easting and northing direction, associated with the pose
estimated by the localization system, were lower than 0.5m. The γ parameter in
Equation 6.3 was empirically set to 10 cm. The initial ground detection was real-
ized thanks to a reimplementation of the algorithm described in [72]. Figure 6.7
presents the areas in which data was collected. The total number of collected
and labeled samples for each location is reported in Table 6.2.

(a) Technocentre (b) Rambouillet

(c) Compiègne

(d) Paris-Saclay campus

Figure 6.7: Automatically labeled dataset, in four locations. Each point indicates
a position where a LIDAR scan was automatically labeled, and the white arrows
are oriented towards the north direction. The blue points correspond to the
training set, the orange points correspond to the validation set.

Technocentre Rambouillet Compiègne Paris-Saclay Campus Total

Number of samples 647 337 160 356 1500

Table 6.2: Number of automatically labeled LIDAR scans

80

Test dataset for RoadSeg

Though a training and validation dataset were obtained, they would not enable
road detection algorithms to be properly evaluated, as the obtained labels are
not binary, and may still include errors. An additional test set, that would
only be used to evaluate the performances of the road detection, was thus also
created. As no open-source dataset uses a VLP32C LIDAR scanner, this test
dataset was specifically labeled by hand for our work. The platform used to
collect the data was the ZoeCab system that was used to collect the Renault
Technocentre and Paris-Saclay datasets, and was driven in Guyancourt, France.
Yet, the LIDAR sensor that was used to collect the test data was different from
the one that was, previously, used to create the automatically labeled dataset.
Indeed, we observed that some differences with regards to the returned intensity
exist among different VLP32C LIDAR sensors, even if the sensors are properly
calibrated. Additionally, the sensor was put five centimeters lower than the
position that was used, previously, to collect the training and validation sets.
347 scans were manually labeled to create a test set to evaluate RoadSeg. Those
347 scans actually correspond to a subset of the dataset of the original dataset
collected for TadNet. The manual labeling procedure thus consisted in, manually
,refining the coarse labels that were already obtained, from the lane-level maps
of the ZoeCab systems. Figure 6.8 presents the locations where the test dataset
was collected.

Figure 6.8: Generation of the test dataset in Guyancourt. Each green point
indicates a location where a manually labeled LIDAR scan was recorded.

A specificity of the Guyancourt area is that there exist reserved lanes for
buses that are physically separated from the rest of the road. Those lanes might
have unique and particular set-ups. Figure 6.9 presents for instance a bus lane
that goes through a roundabout, while the other vehicles have to drive in circles.
In Figure 6.9b, it can be observed that the bus lane was separated from the other
lanes before the roundabout. In Figure 6.9c, it can be seen that the part of the
bus lane that goes through the roundabout does not have the same texture as
the other parts of the road. As those bus lanes are very particular, and might
have a different texture from the rest of the road, they were labeled as belonging
to a Do not care class. In our manual labels, we considered that classifying those
bus lanes as roads was not relevant, but not an error per se, as they are still

81

technically roads. They were then not considered in the evaluations done on the
Test set.

(a) Example of situation in
the test set, with a reserved
bus lane that goes through a
roundabout

(b) Camera view 1 ; the orange mask represents the
reserved the bus lane

(c) Camera view 2 ; the orange mask represents the
reserved the bus lane

(d) Corresponding manually labeled LIDAR scan. Purple points are labeled as road,
red points as obstacle, and green points as do not care, since they belong to a reserved
bus lane.

Figure 6.9: Example of reserved bus lane in Guyancourt that goes through a
roundabout

6.5 Evaluation of the performances of TadNet

TadNet was thus first evaluated on our original Guyancourt coarse dataset,
which consisted in 2334 automatically labeled scans recorded in Guyancourt.
TadNet was not kept in our following experiments, because the inference time
that it needed to process a full LIDAR scan was approximately of 140ms on a
TitanX GPU, which made it incompatible with real-time operation. Moreover,

82

All labels 0-1 labels

Model F1-score Accuracy F1-score Accuracy

PointNet [13] - ring 0.868 0.973 0.907 0.983
PointNet [13] - scan 0.899 0.980 0.933 0.988

TAdNet - ours 0.933 0.987 0.959 0.993

Table 6.3: Classification results for PointNet on LIDAR scans and rings, and for
the proposed TAdNet, on the validation set

its training can take up to two days on a TitanX GPU, making the finetuning of
the system, and the exploration of new architecture refinements, extremely hard
in practice.

We report the classification results in Table 6.3. Three systems were evalu-
ated: the proposed Transformation-Adversarial Network (TAdNet), a ring-level
PointNet, and a scan-level PointNet, to quantify the interest of the refinements
introduced with TAdNet. The point-level MLPs were following the original ar-
chitecture proposed in [13], with a ReLU activation function and systematic use
of Batch Normalization. The three systems were implemented in PyTorch. The
two PointNets consisted in exactly the same layers as TAdNet, except for the
H-Net and the ring-ID prediction subnetwork that were removed. Instance Nor-
malization was still used, as the resulting systems were all intended to be used
for model-free evidential road-grid mapping. The Adam optimizer [89] was used
for the three networks, with a learning rate of 0.0001. Empirical observations
showed that, instead of only applying L2-regularization to the final layer of the
networks, applying it to all the parameters led to better numerical stability.
Then, a weight-decay of 0.0001 was applied to all the parameters of the three
networks, except for the parameters of the Transformation-network in TAdNet,
on which a weight-decay of 0.00001 was applied. All the T-Nets and the H-Net
were initialized with identity transformations. TAdNet and the ring-level Point-
Net were trained on mini-batches including 64 rings, and the scan-level PointNet
was trained on mini-batches of 2 scans, as each scan was composed of 32 rings.

We report F1-scores and accuracies on the full validation dataset, and on only
the 96.5% of 0-1 labels. Indeed, due to our soft labeling procedure, some labels
were not binary. In the case of non-binary labels, a point was considered to
be labeled as a road-point if its labeled probability was higher than 0,5. And
a point was considered to be classified as road if the predicted probability was
higher than 0,5. Table 6.3 reports the respective results of those approaches
in the validation set. All approaches have satisfactory results, even if TAdNet
outperforms all the approaches in all the indicators. The interest of the rescaling
performed by TAdNet is obvious, as the ring-level PointNet is by far the worst
performing approach, while TAdNet outperforms the scan-level PointNet, even

83

though it only processes rings.

As RoadSeg was a more efficient network, all the further developments were
made from this architecture. The performances of the RoadSeg are mainly eval-
uated on our manually labeled test set. The KITTI dataset is also used to give
some preliminary, though limited, results, as it is one of the most commonly used
dataset for road detection.

6.6 Evaluation of the performances of RoadSeg

6.6.1 Evaluation on the KITTI Road dataset

Contrary to other approaches that are evaluated on the KITTI road dataset,
we evaluate ourselves at the scan level, and do not aim at predicting the presence
of road in areas that are not observed by the LIDAR sensor. No publication to the
KITTI road benchmark was then possible. The labels of the KITTI road dataset
are only given in an image plane corresponding to a camera whose intrinsic
calibration parameters are available, alongside extrinsic calibration parameters
with regards to a Velodyne HDL64 LIDAR, which was synchronized with the
camera. The image road labels can then be projected into the LIDAR scans, to
create ground-truth for road detection in LIDAR scans. Each point was then
represented by its Cartesian coordinates, its reflectance, the range measured by
the LIDAR sensor, and its validity. The scans are then represented as 6×64×512
images.

The TNet of RoadSeg only predicts transformations for the Cartesian coordi-
nates, and left the ranges and intensities unchanged. The LIDAR scans can only
be labeled partially, because the camera view only covers a section of the corre-
sponding LIDAR scan. Moreover, some LIDAR points can easily be mislabeled.
Indeed, the labels in the KITTI road dataset are not accurate, especially around
road objects, and synchronization and calibration errors between the sensors ex-
ist in the KITTI dataset. Figure 6.10 displays an example of labels obtained
from the KITTI dataset. Short range points are unlabeled, most of 360◦scan is
excluded from the labeling procedures, and the image labels around the cyclist
and the parked vehicles are noticeably coarse. Public labels are only available
for the 289 scans that are present in training set of the KITTI road dataset.

Given the small number of labeled scans that is available in the KITTI dataset,
a 5-fold cross-validation procedure was used to estimate the performances of
RoadSeg. RoadSeg was compared with both SqueezeSegV2, and SqueezeSegV2
without its CRF layer. Each model was trained for 200 epochs on 4 of the folds.
The training procedure was the same for the three models, and followed the one
originally used by SqueezeSegV2, except that the batch size was set to 16 for all
the models. The training was repeated until each model was trained on every

84

(a) Labels from the KITTI road dataset in the image plane

(b) Labeled LIDAR scan by projection of the image labels.
Points that do not intersect the field-of-view of the camera
are not displayed. Green points are labeled as road, red
points as not road, and grey points are unlabeled.

Figure 6.10: Generation of LIDAR labels from the KITTI road dataset.

possible combination of folds. The 5 folds were the same for each model. After
the 200 epochs, the selected parameters for each model correspond to those that
maximize the F1-score over the 4 training folds. Only the points that are both
valid and labeled are considered in the loss function and by those metrics. We
considered that a point for which a probability of belonging to the road was
strictly higher that 0.5 was predicted as being a road point. Finally, average F1,
Recall, Precision and IoU scores were computed from the results of each model on
the corresponding test folds, and reported in Table 6.4. We also report maximum
and minimum scores over the 5 test folds, alongside the average execution time
of each model on an NVidia TitanX GPU.

85

Precision Recall F1-score IoU Inference time

Model Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Mean
SqueezeSegV2 without CRF 0.927 0.957 0.888 0.911 0.967 0.835 0.918 0.943 0.879 0.849 0.891 0.784 16.3 ms

SqueezeSegV2 with CRF 0.928 0.942 0.899 0.907 0.964 0.830 0.917 0.946 0.873 0.847 0.897 0.775 17.8 ms
RoadSeg 0.941 0.974 0.825 0.976 0.994 0.965 0.957 0.978 0.891 0.920 0.958 0.803 30.8 ms

Table 6.4: Comparison of the fire layers in RoadSeg and SqueezeSeg

The amount of data that is available on the KITTI dataset is probably inad-
equate for proper training, and thus limits the the relevance of those evaluations.
The limitations of the projection procedure also prevent us from considering that
those results are completely reliable. However, they tend to show that RoadSeg
vastly outperforms SqueezeSegV2 for road detection. This however comes with
an increased mean inference time. Yet, RoadSeg still processes LIDAR scans at a
high rate, with a mean inference time of 30.8 ms. We also observe that the CRF
layer of SqueezeSegV2 seems not to improve the performances in road detection.
This may mean that using a CRF alongside SqueezeSegV2 may require other
hyperparameters, or kernels, for road detection. This could also mean that the
CRF layer struggles with large objects, such as the road, as it aims at locally
smoothing the segmentation results. More reliable results are given in the next
section, as the models are evaluated on our manually labeled dataset, after hav-
ing been trained on the automatically labeled dataset that was generated from
our HD Maps.

6.6.2 Evaluation on the manually labeled Guyancourt dataset

Classification performances

To give more significant results, we report metrics on our manually labeled test
set. All the approaches were only trained thanks to the 1500 automatically la-
beled LIDAR scans that were recorded in Compiègne, Renault Technocentre,
Rambouillet and the Paris-Saclay Campus, and thus have never been trained on
the area where the manually labeled data was recorded. The training/validation
split was exactly the one presented in Figure 6.7, and all the approaches were
trained with the same procedure, which is close to the one used for the KITTI
dataset except for some details. The batch size was reduced to 10 for all the
approaches. This was needed because, while the scans from the KITTI dataset
only cover the front view, our training set is composed of 360◦scans. This also
justified to modify the behavior regarding the padding of the feature maps pro-
cessed by the networks. Indeed, the left and right sides of the inputs actually
correspond to neighboring areas. The left (respectively right) padding is then
obtained by mirroring the right (respectively left) side. We tested several vari-
ants. First of all, SqueezeSegV2, SqueezeSegV2 without CRF, RoadSeg, and
RoadSeg without TNet have been trained on the whole automatically labeled
dataset, and each point was represented by the eight available features (Carte-
sian coordinates, spherical coordinates, intensity and validity). We also trained
four additional and lighter networks.

• RoadSeg-Intensity: the points are only represented by their intensity, ele-

86

vation angle, and validity.

• RoadSeg-Spherical: the points are only represented by their spherical co-
ordinates, and their validity

• RoadSeg-Cartesian: the points are only represented by their Cartesian
corrdinates, and their validity

• RoadSeg-Cartesian without TNet: like RoadSeg-Cartesian, but without
the TNet

RoadSeg-Intensity and RoadSeg-Spherical do not include TNets. Indeed,
TNets normally predict an affine transformation matrix for Cartesian coordi-
nates. Yet, in the case of RoadSeg-Intensity and RoadSeg-Spherical, only spher-
ical features are used. A spherical transformation could be predicted by a modi-
fied TNet. Yet, since the elevation and azimuth angles are unique for each posi-
tion in the range image, such a transformation would be equivalent to an image
deformation, which could complexify the further convolutions used in RoadSeg.
RoadSeg-Intensity processes the elevation angle, alongside the intensity, to cope
with the individual behavior of each LIDAR laser. Indeed, the intensity might
be inconsistent among each LIDAR laser. Each model was trained ten times on
the training set, to account for the possible variability in the results due to the
random initialization of the network. At each training session, the parameters
that were kept were those that maximize the F1-score on the validation set. We
again report, in Table 6.5, average F1, Recall, Precision and IoU scores reached
by all the models on the test set. We also report maximum and minimum scores
alongside the average execution time of each model on an NVidia TitanX GPU.
As the test set is manually labeled, and considered as reliable, it is a proper
way to evaluate what was learnt by the networks from the automatically labeled
dataset.

Precision Recall F1-score IoU Inference time

Model Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Mean
SqueezeSegV2 without CRF 0.880 0.910 0.860 0.798 0.827 0.778 0.836 0.859 0.795 0.719 0.731 0.660 12,3 ms

SqueezeSegV2 with CRF 0.861 0.899 0.832 0.792 0.806 0.780 0.825 0.835 0.805 0.702 0.717 0.674 14,1 ms
RoadSeg with TNet 0.856 0.880 0.820 0.859 0.910 0.798 0.856 0.880 0.836 0.749 0.785 0.646 33,4 ms

RoadSeg without TNet 0.827 0.855 0.794 0.890 0.9316 0.8668 0.857 0.875 0.843 0.750 0.778 0.711 11,7 ms
RoadSeg-Intensity 0.769 0.801 0.747 0.808 0.887 0.765 0.787 0.811 0.753 0.649 0.682 0.603 11.5 ms
RoadSeg-Spherical 0.857 0.897 0.825 0.878 0.904 0.841 0.866 0.883 0.850 0.764 0.741 0.790 11.6 ms

RoadSeg-Cartesian with TNet 0.853 0.891 0.816 0.893 0.916 0.860 0.872 0.887 0.859 0.773 0.798 0.754 33,1 ms
RoadSeg-Cartesian without TNet 0.867 0.890 0.832 0.885 0.918 0.857 0.876 0.886 0.866 0.779 0.796 0.763 11,6 ms

Table 6.5: Comparison of variants of RoadSeg and SqueezeSegV2

Interestingly, SqueezeSegV2 without CRF seems to have the best precision
on the test set. Yet, this is compensated by its poor performances in terms of
recall. We can assume that this is mainly due to the additional sub-sampling
that it uses with regards to RoadSeg: SqueezeSegV2 cannot properly process
points at long-range, and considers a significant amount of remote road points as
obstacles. We again observe that the use of the CRF degrades the performances
for road detection. RoadSeg, when used without the TNet and trained on the full

87

set of features, outperforms SqueezeSegV2, while being slightly faster. The use
of the TNet does not seem relevant when training on the full set of features, as it
doubles the inference time while slightly degrading the performances, except for
the precision scores. Another interesting result is that RoadSeg-Spherical and
both versions of RoadSeg-Cartesian outperform the networks that are trained
on the full set of features. The best F1-score and IoU are even reached by a
specific instance of RoadSeg-Cartesian that relies on a TNet. However, RoadSeg-
Cartesian without TNet is faster, and easier to train since it has best F1-score
and IoU in average. This network thus seems to be the best trade-off for road-
detection. However, the performances reached so far are still relatively low.
This can be explained by the automatic labeling procedure that we used to
generate the train set, as it is very sensitive to unmapped roads, localization
errors and improper obstacle filtering. This results also highlight the difficulties
for RoadSeg and SqueezeSeg to process numerous features for a given point,
as the best performing approaches only process a limited number of features.
A possible improvement might then consist in fusing the results from several
networks that process different sets of features.

Evidential fusion of neural networks

RoadSeg has been designed to allow for the generation of evidential mass
functions from its outputs. A straightforward way to fuse several RoadSeg-like
networks could then be to rely on an evidential fusion. We thus propose to use
the model described in Equation 5.6 to generate evidential mass functions for
each LIDAR point, from a set of neural networks. The resulting mass functions
can then be fused, for each point, thanks to Dempster’s rule of combination that
is described in Equation 3.4. Figure 6.11 displays examples of evidential mass
functions that can be obtained from all the variants of RoadSeg that are expected
to be independent. Those mass functions are directly obtained after the train-
ing, from the biases of the final Instance-Normalization layer, and without any
optimization of the α vector. The plausibility transformation in Equation 3.15
can then be used to compute the fused probability that each points belongs to
the road, and the results can then be evaluated again on our test set. Given
to the properties of plausibility transformation [57], fusing the evidential mass
functions obtained from the different networks via Dempster’s rule, and then ap-
plying plausibility transformation on the resulting mass function, is equivalent
to a Bayesian independent opinion poll fusion among the probabilities obtained
from each network. This means that a classification which purely relies on a
Bayesian interpretation of the probabilities, obtained from the networks, only
depends on the sum of the values of the α vector in Equation 5.2, which is sup-
posed to be equal for all the possible α vectors. As we have chosen to consider
that LIDAR points are classified as belonging to the road when the probabili-
ties that are predicted by the network are higher than 0.5, we are in this case.
We thus report in Table 6.6 recomputed F1-score, Precision, Recall and IoU
obtained after the fusion of different sets of networks. To prevent data incest,

88

(a) m({R}) from
RoadSeg-Cartesian
without TNet

(b) m({¬R}) from
RoadSeg-Cartesian
without TNet

(c) m({R,¬R}) from
RoadSeg-Cartesian
without TNet

(d) m({R}) from
RoadSeg-Cartesian

(e) m({¬R}) from
RoadSeg-Cartesian

(f) m({R,¬R}) from
RoadSeg-Cartesian

(g) m({R}) from
RoadSeg-Spherical

(h) m({¬R}) from
RoadSeg-Cartesian

(i) m({R,¬R}) from
RoadSeg-Spherical

(j) m({R}) from
RoadSeg-Intensity

(k) m({¬R}) from
RoadSeg-Intensity

(l) m({R,¬R}) from
RoadSeg-Intensity

0 1

(m) Color map

Figure 6.11: Example of evidential mass functions, obtained from the weights
optimized after the training, from all the variants of RoadSeg that can be fused
together

89

only RoadSeg-Intensity, RoadSeg-Spherical, RoadSeg-Cartesian and RoadSeg-
Cartesian without TNet are considered. We also do not fuse RoadSeg-Cartesian
and RoadSeg-Cartesian without TNet together, again to prevent data incest.
Since the networks are then not trained jointly, a set of parameters has to be
chosen for each one, among the ten that are available after the evaluations that
were previously done. For a fair comparison, the parameters that were selected
for each network correspond to the best ones in terms of F1-score on the val-
idation set. Indeed, they are not necessarily the best performing ones on the
test set. We thus only report one Precision, Recall, F1-score and IoU for each
combination.

Intensity Spherical Cartesian Cartesian (w/o TNet) Precision Recall F1-score IoU
X X 0.8986 0.8588 0.8782 0.7829

X X 0.8932 0.8991 0.8962 0.8119
X X 0.9114 0.8740 0.8923 0.8055

X X 0.8869 0.8830 0.8849 0.7936
X X 0.8920 0.8501 0.8705 0.7707
X X X 0.9178 0.8694 0.8929 0.8066
X X X 0.9098 0.8904 0.9000 0.8182

Table 6.6: Evaluation of the results of several fusion schemes among RoadSeg
networks

Fusion leads to significantly better Precision and F1-scores and IoU scores,
with Recall scores that are in par with the best ones that are obtained from
single networks. Fusion then prevents false-positives from happening, without
significantly increasing the false-negative rate. Especially, the fusion of RoadSeg-
Intensity, RoadSeg-Spherical and RoadSeg-Cartesian leads to the best results.
The obtained road detection is satisfactory, as the F1-score is equal to 0.9, and
the IoU is higher than 0.8. This is significantly better than the performances of
each individual network, which seems to confirm that, originally, RoadSeg did
not have enough parameters to properly detect the road from all the available
features. This result moreover is particularly satisfactory because the training
and validation labels were obtained automatically.

The use of a TNet improves the results, but that comes at the cost of an
increased inference time, as observed in Table 6.5. We however consider that
the use of the TNet is relevant, when using evidential fusion. Indeed, the risk
of data incest among RoadSeg-Spherical and RoadSeg-Cartesian exists, because
the Cartesian coordinates can be obtained from the Spherical ones, and vice-
versa. As Dempster’s rule of combination is designed to fuse independent mass
functions, this risk of data incest should better be limited when operating in
real-life conditions. As the TNet transforms the input to the fire modules
by an affine transformation, this dependence between RoadSeg-Cartesian and
RoadSeg-Spherical is less likely to happen. To support this claim, we observe
that just fusing RoadSeg-Spherical and RoadSeg-Cartesian leads to the second
best results in terms of F1-score and IoU, while the fusion of RoadSeg-Spherical

90

and RoadSeg-Cartesian without any TNet is significantly less accurate. We also
show in Figure 6.12 a LIDAR scan belonging to the test set, and the point-cloud
obtained after transformation by the TNet used in the evidential fusion. The
transformation predicted by the TNet is normally applied to a point-cloud that
was normalized by batch-normalization, but for the sake of clarity, we apply it
on the original point-cloud. Indeed, the normalized point-cloud is, by defini-
tion, more compact, and harder to visualize. We can see that, in this case, the
TNet mainly applies rotations around the x and z axes. The global alignment
of the scan is thus modified. The initial Batch-Normalization layer of RoadSeg-
Spherical could also be seen as a global affine transformation applied to the scan.
Yet, it is extremely unlikely that both a RoadSeg-Cartesian using a TNet and
a RoadSeg-Spherical actually apply the same affine transformation to their in-
put. The TNet can then be considered as a way to enforce independence among
RoadSeg-Cartesian and RoadSeg-Spherical.

(a) Original test scan (b) Test scan transformed by the TNet

Figure 6.12: Effect of the TNet on a LIDAR scan. Purple points were manually
labeled as road points, red ones as not belonging to the road. The two pictures
correspond to the same field of view and scale.

6.6.3 Comparison of the evidential mass functions ob-
tained from the fused RoadSeg networks

As a reminder, RoadSeg networks are trained as SqueezeSegV2 was originally
on the KITTI object dataset, and thus use a weight decay of 0.0001, which was
also needed by the results displayed in Equation 5.13. We propose to compare
the different evidential mass functions that can be obtained from the fusion of
RoadSeg-Cartesian, RoadSeg-Spherical and RoadSeg-Intensity, as this is our best
performing model, so as to verify their behavior depending on how the α vector is
obtained. Especially, we focus on the points of the test set that are misclassified
by this fusion of networks. A desirable behavior would be to have uncertain
mass values generated for those falsely classified points. We chose to rely on
the decomposable entropy for the evidential theory, defined in [90], to quantify

91

Set(s) used for post-processing
None train validation additional train additional test Mean Entropy on misclassified points
X 0.3537

X 0.3663
X X 0.3664

X 0.3676
X 0.3668

X X X 0.3669
X X X 0.3664
X X X X 0.3668

Table 6.7: Comparison of the mean evidential entropies that were generated,
for misclassified points, by RoadSeg-Intensity, RoadSeg-Spherical and RoadSeg-
Cartesian

the uncertainty level of the mass functions obtained from the fused RoadSeg
networks. This entropy is similar to Shannon’s entropy, especially in the sense
that an uncertain evidential mass function will lead to a high entropy. In our
case, this entropy measure H on a mass function m is computed as:

H(m) =− (m({R}) +m({R,¬R}))log2(m({R}) +m({R,¬R}))
− (m({¬R}) +m({R,¬R}))log2(m({¬R}) +m({R,¬R}))
+m({R,¬R})log2(m({R,¬R}))

(6.6)

We report in Table 6.7 the mean entropy on the misclassified points, from ev-
idential mass functions obtained by solving the minimization problem described
in Equation 5.8 on several sets. We compare those values with their equivalent
obtained without post-processing of the weights. The considered sets for the
post processing were the training set, the training and validation sets, a collec-
tion of 2221 unlabeled random LIDAR scans that were acquired at the same
locations as the training and validation sets, and a collection of 695 unlabeled
scans acquired in Guyancourt alongside the test set. The latest sets correspond
to a tenth of the whole sequences that were recorded to make the training, val-
idation and test set. To ensure variety among the scans, the difference between
the timestamps of those unlabeled scans is at least of one second. Those sets are
denoted respectively as additional train and additional test.

The lowest mean entropy on the misclassified points corresponds to the vanilla
results, when no post-processing is used on the weights of the networks. This
is thus the most over-confident case. However, all the values of mean entropy
are extremely close among each other. Interestingly the maximum entropy is
achieved when only additional train is used for post-processing. The use of data
similar to the test set does not seem particularly useful and, strangely, the use of
bigger sets did not necessarily lead to more cautious evidential mass functions. As
a conclusion, evidential mass functions can be generated only using the training
and validation sets, and potentially additional similar and unlabeled data. The

92

use of Instance Normalization and weight decay is confirmed as a way to obtain
near-optimal evidential mass functions during the training, as no differences are
perceptible in our case in terms of classification results, while the differences in
terms of entropy are barely visible. It could even be considered that no post-
processing should be used, since the dataset on which it should be computed is
not clear, but this should be confirmed by further experimental and theoretical
analyses.

6.6.4 Examples of results

We now present some segmentation results from the test set, that were generated
from the fusion of RoadSeg-Cartesian, RoadSeg-Spherical and RoadSeg-Intensity.

Best F1 score

We first show the scan for which the fused networks reach the best results, in
terms of per-scan F1-score. On this situation, the fused networks achieved an
F1-score of 0.9569, and an IoU of 0.9173. As displayed in Figure 6.13, this is
a very simple situation with a straight road, and no other vehicles, although a
small part of the scan is missing. The fact that the system can handle such simple
situations is reassuring. We also point out the fact that the reserved bus lane,
labeled in green, was fully classified as road. Following the policy we previously
exposed, those points corresponding to the bus lane were not considered in the
evaluation.

(a) Labels (b) Predicted road probabilities

Figure 6.13: Scan for which the network achieves the best F1-score. On the left
side, purple points were manually labeled as road; red ones as obstacles; green
ones as do not care, as they correspond to a reserved bus lane. On the right, the
purpler a point is, the higher the probability of being a road point is high.

Worst F1 score

We show here the scan for which the fused networks achieve the worst results in
terms of F1-score and IoU. The F1-score for this scan is equal to 0.8971, and the

93

IoU is equal to 0.8133. The errors are mainly localized on the left side, because
the central median partially occluded this area. The results on the ego-lane are
still satisfactory.

(a) Labels (b) Predicted road probabilities

Figure 6.14: Scan for which the fused network achieve the worst F1-score.

Crossroad

We present a result at a crossroad. Most of the road surface is classified as road.
Narrow roads are undetected. This is because those roads are hard to distinguish
when projected into the range images processed by the RoadSeg networks. The
network achieves an F1-score of 0.9271 and an IoU of 0.8641 on this scan.

(a) Labels (b) Predicted road probabilities

Figure 6.15: Example of result at a crossroad.

94

Junction

To counterbalance the results on the previous use case, we present results
obtained at a junction. Again most of the road surface is properly detected.
However, the networks consider that the entrance to the road on the right is
narrower than what it actually is. This is because of our label generation proce-
dure, which relied on a map. Indeed, many of the junctions in those maps were
mapped similarly, which under-estimated entrance width that were considered
to be equal to the roads’ length. The fused networks still achieve an F1-score of
0.9323 and IoU of 0.8732 on this scan.

(a) Labels (b) Predicted road probabilities

Figure 6.16: Example of result at a junction.

Roundabout

(a) Labels (b) Predicted road probabilities

Figure 6.17: Example of result at a roundabout.

We conclude with a roundabout. The results are very satisfying, as most of
the actual road surface is properly detected. The remote vehicle is also properly
considered as an obstacle. The central median in front of the vehicle is however
partially considered as belonging to the road. The fused networks achieve an
F1-score of 0.9010 and an IoU of 0.8199 on this scan.

95

6.7 Conclusion

The fusion of RoadSeg-Cartesian, RoadSeg-Spherical and RoadSeg-Intensity leads
to very promising results, especially in straight roads and roundabouts. Junc-
tions and crossroads can also be processed with a certain efficiency, although the
network is limited by what was present in the training set. Indeed, very few
crossroads were automatically labeled, and the approximative representation of
the junctions in the maps that we used influence the final results of the network.
Hopefully, the fact that these results have been achieved with a relatively small
training set, that was automatically labeled, indicates that there is probably
room for improvement. Additional and finer training data would certainly cor-
rect the behavior of the fused networks. As TadNet and RoadSeg were originally
designed to be used for evidential road mapping, we propose in the next section
to focus, again, on evidential grid mapping. We propose a LIDAR only evidential
road surface mapping and object detection algorithm, that could potentially be
extended with the other works of this thesis, and that relies on our road detection
results.

96

Chapter 7

Application of RoadSeg:
evidential road surface mapping

Contents
7.1 Introduction . 97

7.2 Projection on the xy-plane of the segmentation results 97

7.3 Conflict analysis . 100

7.4 Clustering and road object detection 102

7.5 Road accumulation and ego-motion compensation . . 103

7.6 Implementation and example of output 104

7.7 Conclusion . 107

7.1 Introduction

From the satisfactory results that can be obtained by fusing several RoadSeg
networks, and evidential mass functions that can be generated from their outputs,
an usable representation of the road for a navigation algorithm can be created, by
fusing consecutive road detection results. We chose to rely on an evidential grid
mapping framework. Inspired by the work in [63], in which it is observed that
the conflict induced by the fusion of evidential grids can correspond to moving
objects, we propose an evidential road mapping algorithm, that generate both a
grid depicting the actual road surface, and a list of moving road obstacles. We
consider that the area below a moving road obstacle should be considered as road,
and that the road grid should only depict the reality of the road, independently of
the presence of obstacles. Figure 7.1 depicts the whole algorithm, and Figure 7.2
presents a possible output of the system. In the next sections, we present its
different steps in details.

7.2 Projection on the xy-plane of the segmen-

tation results

As an evidential fusion of RoadSeg-Intensity, RoadSeg-Spherical and RoadSeg-
Cartesian leads to the best classification performances, the algorithm processes
the segmentation results obtained after evidential fusion of the three networks.

97

RoadSeg
(w/ TNet)
Cartesian

RoadSeg
(w/o TNet)
Intensity

RoadSeg
(w/o TNet)
Spherical

Segmented
Lidar scan

Projection on the
xy-plane

Ego-motion
compensation

CAN Readings

 Conflict Analysis

Clustering and
road obstacle

detection

Moved objects
removal

Road
Accumulation

RoadGrid(ti)ClusterMap(ti)

Dempster-shafer operator LIDAR sensor

ScanGrid(ti) RoadGrid(ti-1)

ObsMap(ti)

Figure 7.1: General evidential road mapping and road object detection algorithm

We use the original weights obtained after the training, without any post-processing,
for the generation of evidential mass functions. We arbitrarily chose to make the
road grid correspond with the xy-plane, in the reference coordinate system used
by the LIDAR. This plane is split into equally sized grid cells, which cover a
pre-defined area around the sensor. The state of each cell of index i can be rep-
resented by three evidential mass values mi({R}) (road), mi({¬R}) (not road)
and mi({R,¬R}) (unknown). Similarly to what is done at the LIDAR point
level, those evidential mass values respectively quantify the evidence towards
the fact that the ith cell belongs to the road, does not belong to the road, or is in
an unknown state. A straightforward way to compute mi({R}),mi({¬R}) and
mi({R,¬R}) is to project, into the xy-plane, all the LIDAR points, and the evi-
dential mass values that are obtained after the fusion of the RoadSeg networks.
Then, mi({R}),mi({¬R}) and mi({R,¬R}) can be obtained by fusing the mass
values of the points projected into the grid-cell i, thanks to the Dempster’s rule
of combination. To reduce the computational complexity of this projection and
fusion step, each grid cell should be processed in parallel. For the sake of clarity,

98

Figure 7.2: Results obtained from the road mapping and object detection
pipeline. The LIDAR scan classified by the three RoadSeg network is visible.
Below, a greyscale RoadGrid represents the belief for m({R}) in each cell. The
clustered objects (mainly vehicles on the road) are colored according to their
cluster id.

we drop the cell-index i. The number of points projected into each grid-cell is un-
known, and varies over time and for each cell of the grid. To solve this issue, we
rely on the rewriting of the Dempster-Shafer operator in terms of commonality
functions [52].

For Ω = {R,¬R} our binary frame of discernment, a commonality value Q(A)
can be computed from a mass function m for each element A ∈ 2Ω, as follows:

Q(A) =
∑
B⊇A

m(B) (7.1)

The evidential mass function m can be recovered from the commonality values,
as follows:

m(A) =
∑
B⊇A

(−1)|B|−|A|Q(B) (7.2)

Commonality functions can be used to fuse n evidential mass functions into a
fused mass function mres as follows:

1. Compute Q1,...,Qn from the n mass functions, using Equation 7.1

2. For each A ∈ 2Ω, Qres(A) = exp(
∑n

j=1 ln(Qj(A)))

3. Compute m∗res from Qres, the unnormalized version of mres using Equa-
tion 7.2

4. Normalize mres as follows: ∀A ∈ 2Ω \ {∅}, mres(A) = Km∗res(A) with
K = 1/(1−m(∅)) ; m(∅) = 0

99

This procedure is equivalent to consecutively applying the Dempster’s rule of
combination among the n evidential mass functions. However, this formulation
enables the projection and fusion operations to be reinterpreted as an operation
on a 2D histogram.

The log-commonalities associated to each point can trivially be computed in
parallel, after the fusion of the results generated by the three RoadSeg networks.
If n corresponds to the number of points that are projected into a grid cell,
and whose evidential mass functions have to be fused,

∑n
j=1 ln(Qj(A)) can be

computed by histogramming the x and y coordinates of each point, and by
weighting the samples by the corresponding log-commonalities. The evidential
mass values associated to each cell can then be recovered for each cell. We call
the resulting evidential grid, which was only generated from a single scan, a
ScanGrid.

7.3 Conflict analysis

In order to generate a dense representation of the road, ScanGrids have to be
fused over time. Let a RoadGrid be an evidential grid that has been obtained by
accumulating several previous ScanGrids. A RoadGrid is supposed to only repre-
sent the road surface, without considering objects that might stand on the road.
The latest ScanGrid is noted ScanGrid(ti), and the latest RoadGrid available is
noted RoadGrid(ti−1). Let mti be the evidential mass function that correspond
to a given cell of ScanGrid(ti), and mti−1

the evidential mass function of the cell
of RoadGrid(ti−1) that is at the same position. A naive way to accumulate Scan-
Grids would be to use, again, the Dempster-Shafer operator to fuse all the mtis
with the correspondingmti−1

. Yet, as depicted in the Figure 7.3, this could lead to
a catastrophic accumulation of objects over time, that would affect the estimated
road surface, without corresponding to actual objects. The current LIDAR scan
is depicted in green and red. Green points are classified as road points, and red
points as obstacles (not road). Under the scan, an evidential grid corresponding
to the simple accumulation of ScanGrids is depicted. White cells are classified
as road cells (m({R}) > 0.5), black cells as obstacle cells (m({¬R}) > 0.5), and
the grey ones are in an unknown state (m({R,¬R}) > 0.5). We can observe that
the vehicles that are driving on the road create artifacts, and cells that inter-
sect their trajectories are falsely considered as not belonging to the road surface.
Consequently, it must be ensured that the objects that stand on the road, and
are potentially moving, are not falsely fused with the RoadGrid. We introduce
two frame of discernments: Ωobs = {O,¬O} and Ωdisplaced = {D,¬D}. The first
one models the presence of road obstacles that do not belong to the road surface,
as the O proposition. The second one models the fact that a previously present
road obstacles is no longer present, as the D proposition. This case typically
corresponds to a vehicle that was static on the road, while the RoadGrid was
being generated, and started moving.

100

Figure 7.3: Example of RoadGrid obtained by accumulating ScanGrids without
considering the objects that stand on the road. White cells have an m({R})
value higher than 0.5, black cells have an m({¬R}) value higher than 0.5, grey
cells have an m({R,¬R}) value higher than 0.5.

Ωobs can be used to detect which cells of the ScanGrid(ti) should not be fused
with RoadGrid(ti−1). The evidential mass functions in this frame of discernment
can be computed, for each cell, from the conflict between the mti−1

and mti

mass functions. Indeed, a high value for both mti({¬R}) and mti−1
({R}) can

indicate that a moving road obstacle is currently observed in the corresponding
ScanGrid(ti) cell, and thus should not be fused with RoadGrid(ti−1). However,
it could also indicate that the neural network has trouble detecting a given road,
meaning that the corresponding cells should instead be fused. Let mobs be the
evidential mass function associated to a cell of ScanGrid(ti) under the Ωobs frame
of discernment. We propose to compute mobs as follows:

mobs({O}) = α(Z) ∗mti−1
({R}) ∗mti({¬R}) (7.3a)

mobs({¬O}) = 0 (7.3b)

mobs({O,¬O}) = 1−mobs({O}) (7.3c)

This formulation supposes that only mti−1
({R}) and mti({¬R}) can indicate the

presence of a road obstacle. The α function computes a discounting factor, which
depends on the mean z coordinates of the points that have been projected, while
creating the ScanGrid(ti), into the considered grid cell. This mean elevation is
noted Z. As the LIDAR used by the ZoeCab systems is put on the roof of the
vehicles, Z is typically negative when only ground points have been projected
into a grid cell. We define α as follows:

α(z) = min(exp(ν(z + ξ)), 1) (7.4)

This function only generates discounting factors in the]0,1] range. The ξ pa-
rameter indicates the absolute value of the height from which the conflict does
not have to be discounted. The ν factor monitors the growth of α(z).

101

Similarly, we can define mdisplaced as the evidential mass function associated to
a cell of ScanGrid(ti) under the Ωdisplaced frame of discernment. We propose to
compute mdisplaced as follows:

mdisplaced({D}) = (1− α(Z)) ∗mti({R}) ∗mti−1
({¬R}) (7.5a)

mdisplaced({¬D}) = 0 (7.5b)

mdisplaced({D,¬D}) = 1−mdisplaced({D}) (7.5c)

Additionally, grids cells that should not be considered anymore as occupied in
RoadGrid(ti−1) can easily be detected frommdisplaced. The grids in RoadGrid(ti−1)
for which mdisplaced(D) is higher than 0.5 are reinitialized to a fully unknown
state: mti−1

({R}) = 0, mti−1
({¬R}) = 0, mti−1

({R,¬R}) = 1.

7.4 Clustering and road object detection

Similarly, the mobs mass can be used to detect grid cells that belong, in a Scan-
Grid, to a moving road obstacle, and should not be fused with RoadGrid(ti−1).
We consider that static obstacles do not have to be detected, as they would
cover an area that is not drivable. A binary ObsMap(ti) map is created from
ScanGrid(ti) and the mobs values. This binary map represents, for each cell, the
presence of a road obstacle. A binary cell is set to 1 if the corresponding cell in
ScanGrid(ti) has an mobs(O) value higher than 0.5. Otherwise, it is set to 0.

ObsMap(ti) can be used to generate a list of detected road obstacles. First
of all, a 5×5 maximum filter is applied to ObsMap(ti), to inflate the detected
objects. This pessimistic behavior is justified by the need of taking into account
the fact that the LIDAR points at the edges of those objects, when having been
projected into the grid cells, might have been projected into cells where road
points were also present. The α function might then be affected, and return
an under-confident discounting factor. This maximum filtering is also used to
connect grid cells that belong to the same physical obstacle, which might not be
the case because of the sparsity of the LIDAR scans. Finally, ObsGrid(ti) is con-
verted into a grid of cluster ids, noted ClusterMap(ti), by connected component
labeling, with an 8-connectivity. In each cell of ClusterMap(ti) is indicated the
id of the cluster to which the cell belongs, or 0 if the cell does not correspond
to a clustered object. This ClusterMap(ti) can be seen as a list of localized
road obstacles. Afterwards, the cells of ScanGrid(ti) for which a cluster id has
been returned are also reinitialized to a fully unknown state: mti({R}) = 0,
mti({¬R}) = 0, mti({R,¬R}) = 1. Each grid used in this step is presented in
Figure 7.4.

102

(a) m({R}) in RoadGrid(ti−1) (b) m({¬R}) in ScanGrid(ti)

(c) Max filtered ObsMap(ti) (d) ClusterMap(ti)

Figure 7.4: Grids used for clustering and road object detection.

7.5 Road accumulation and ego-motion com-

pensation

As potential road objects and displaced objects have been removed, ScanGrid(ti)
and RoadGrid(ti−1) can trivially be fused, by simply using the Dempster-Shafer
operator on mti and mti−1

for each grid cell. The resulting RoadGrid(ti) is then
available for a navigation system, and can be fused with new incoming LIDAR
scans. However, when a new ScanGrid will be generated, the displacement of the
vehicle over time will have to be considered, before fusing it with a RoadGrid. An
odometry model is thus needed to reproject the RoadGrid. A odometry model
can be used to track the movement of the acquisition platform, and reproject the
RoadGrid when a new ScanGrid will be available. Cells of the RoadGrid that
are not projected into the area covered by the new ScanGrid are dropped. New
cells that cover previously unobserved areas are initialized to a fully unknown

103

state, with a mass value of 1 for {R,¬R}.

7.6 Implementation and example of output

Figure 7.5: Runtime of the road mapping and object detection algorithm relying
on the fused RoadSeg networks

The algorithm was implemented as a Python ROS node. The inference and
evidential fusion of the neural networks is done via the PyTorch framework, and
the operations on the grid are performed thanks to the Numpy, OpenCV and
Scipy libraries. The TitanX GPU that was used for the training is reused for the
inference of the neural networks, but all the grid operations are done on an Intel
i7-6700K octacore CPU. An 80m × 50m grid is computed around the vehicle,
with a cell size of 0.2m. Only points that have a Z coordinate in the [-2.5,0] range
are considered. The odometry is evaluated from an Extended Kalman filter re-
lying on a classical Constant Turn Rate and Velocity (CTRV) model. The CAN
networks provides the system with speed an heading direction measurements at
10 Hz, and a yaw rate measurement at 100Hz. The CTRV model normally also
fuses position measurements obtained from a GNSS sensor, but we chose to rely
on a pure CAN odometry, so as to be agnostic to the localization system that is
in use. The ν and ξ values in the α function are respectively set to 4 and 1,5.
Similarly to what was done for the training, validation and test sets, the LIDAR
scans are obtained from a VLP32C running at 10Hz. We report in Figure 7.5
the temporal behavior of the algorithm over a 12-minute recording session in
Guyancourt. The measured run-times cover the unpacking of the LIDAR scans,
the inference of the neural networks, their fusion, and all the steps of the grid-
level mapping and detection algorithm. Our current implementation manages to

104

match, on this recording session, the publication rate of the LIDAR, as the run
time is always below 100ms. Yet, the processing time is sometimes very close to
100ms, due to significant jitter. We thus cannot guarantee that the LIDAR scans
will always be processed at 10Hz with the current implementation. However, the
fact that most of the current implementation relies on standard functions, with-
out extensive use of the GPU, indicates that the performances will be improved
by using a dedicated, pure GPU implementation of the functions used in this
road mapping and object detection algorithm. We report an additional example
of the outputs that are available from the algorithm, in Figure 7.6. This example
highlights one limitation with using conflict analysis for object detection: objects
at road edges tend to generate false positives, especially when the odometry is
imprecise.

105

(a) m({R}) for each point (b) m({¬R}) for each point (c) m(Ω) for each point

(d) m({R}) in RoadGrid (e) m({¬R}) in RoadGrid (f) m(Ω) in RoadGrid

(g) ClusterMap and RoadGrid

Figure 7.6: Outputs from the road mapping and object detection algorithm

106

7.7 Conclusion

We presented an algorithm that uses this road detection system to map the
road surface over time, and cluster road objects. A simple CPU/GPU imple-
mentation of this algorithm is able to process LIDAR scans at approximately
10 Hz, which fits the usual publication rate of state-of-the-art LIDAR sensors.
Additional training data is likely to lead to even better results, which is easy to
obtain from our automatic label generation procedure, provided that accurate
maps are available. Multi-class classification would also be valuable, especially
for road object detection.

107

Chapter 8

Conclusion

Contents
8.1 Conclusion . 108

8.1.1 Asynchronous evidential grid mapping from RGB im-
ages and LIDAR scans 108

8.1.2 Evidential LIDAR object classification 109

8.1.3 Road detection in LIDAR scans for evidential grid
mapping . 109

8.2 Perspectives . 110

8.2.1 Towards an unified evidential perception system . . . 110

8.2.2 Towards evidential perception integrity 111

8.1 Conclusion

8.1.1 Asynchronous evidential grid mapping from RGB
images and LIDAR scans

We proposed a grid-based asynchronous fusion algorithm of LIDAR scans and
RGB images. A new Cartesian mapping scheme from LIDAR scans was pro-
posed, and a way to cope with possibly moving objects based on their semantic
class was evaluated. The use of an adaptive decay rate, computed from semantic
classification results, seems to be an efficient way to generate a meaningful rep-
resentation, even when moving objects are present. Furthermore, the interest of
asynchronous fusion was highlighted. Processing each individual sensor reading,
and temporally aligning the generated grids, is a flexible and efficient way to
fuse information, while allowing the fusion system to continue working although
one of the sensors has failed. Real-time performances have not been reached yet,
especially because of the use of DeepLab-v2, and because each operation on grid
cells are done iteratively. The modular design of our algorithm will however allow
us to introduce more efficient image processing systems in the future. The need
for a more robust LIDAR classifier, especially in non-flat areas or in presence of
side-walks, was also highlighted by our experiments.

108

8.1.2 Evidential LIDAR object classification

An evidential classification system for LIDAR objects, represented as feature
vectors, was proposed. The algorithm, which was trained as a probabilistic clas-
sifier and converted as an evidential classifier afterwards, effectively classifies
unknown objects without having been trained on them. Evidential classifica-
tion is compatible with real-time constraints: on a TitanX Pascal GPU, all the
LIDAR objects in Drc (which is composed of 30190 objects) can be classified
at once in 0.4s with the current Pytorch implementation. Thus, several refine-
ments are possible, and will be explored in future works. First of all, the input
vector representing a LIDAR object could be replaced by an input vector en-
coded by a PointNet architecture [13], as nothing guarantees that the chosen
features are the most appropriate ones to classify unknown LIDAR objects. Yet,
this would require to define strategies to cope with the limitations and require-
ments of PointNet regarding its inputs. Secondly, the proposed Z-score filtering
scheme relies on a Gaussian assumption that is probably not completely exact:
thus, more refined selection strategies for the ZMax threshold would potentially
improve the results. Moreover, defining relevant strategies to generate unnor-
malized mass functions, based on statistical filtering, would be valuable, and
allow for a more detailed and accurate representation of the knowledge available
for each object. Finally, the definition of strategies to use this system within
an autonomous vehicle, in a fusion framework and with heuristics (for e.g. ”a
moving object is more likely to be pertinent”), is also a direction that has to be
explored.

8.1.3 Road detection in LIDAR scans for evidential grid
mapping

We proposed, and evaluated, two road detection systems that rely on deep
learning to detect the road in LIDAR scans. We also presented a road mapping
and object detection algorithm that fuses road detection results from several net-
works, and manages to run at 10 Hz. A simple CPU/GPU implementation of this
algorithm is able to process LIDAR scans at approximately 10 Hz, which fits the
usual publication rate of state-of-the-art LIDAR sensors. The results might be
further improved thanks to additional training data. A refinement of the training
procedure, to cope with the label noise in the automatic labels, is also a possible
research direction to improve the system. Multi-class classification would also be
valuable, especially for road object detection, but this would come at the cost of,
either, semantically enhanced maps, or intensive manual labeling. This would
however be very useful to detect more objects, as conflicts analysis only allows
us to detect objects on the road, but not on the sidewalks for instance. Huge
LIDAR datasets for semantic segmentation are emerging [22], but the burden of
manual labeling is still a reality, especially for LIDAR scans since each sensor
produces very different scans, in terms of granularity and resolution. This makes
the use of external data way more complex than for image segmentation.

109

8.2 Perspectives

8.2.1 Towards an unified evidential perception system

We were not able to propose an unified perception system relying on all the per-
ception modules that we developed. This was mainly due to time constraints,
and an unavailability of perception platforms and data during the first year
of the thesis. We however believe that those three modules could be linked
together straightforwardly, by replacing the LIDAR processing pipeline in our
asynchronous algorithm by out newest LIDAR road mapping algorithm. Con-
flict analysis could then be used to, again, detect objects, but this time in grids
that would be generated from both RGB images and LIDAR scans. Classifi-
cation would however be tricky, as conflict analysis and connected component
labeling leads to very coarse clusters, that can actually correspond to several
objects. Properly reclustering, and classifying, LIDAR objects that are detected
by conflict analysis would be a challenging, and extremely interesting, project.

Instead of relying on conflict analysis to detect objects, a neural network,
trained on adequate data, could be used to perform the detection. Nevertheless,
the system would then have to work without any human supervision. We instead
believe that an adequate World Model [75], designed to process our grids, would
be able to track the objects that we detect by conflict analysis. This World
model could also be used to model the detected objects in the context of the
scene, which could be reused in our LIDAR object classifier, to properly estimate
mass values on the empty set. The World model could for instance estimate the
relevance of objects in a scene, based on their location with regards to a pre-
existing HD map, and mass values on the empty set might be built from this
information. A very high object where the World model expects a pole or a
building, according to a pre-existing map, might be for instance associated with
a large mass value on the empty set, and our classifier would then be used to
refine the available information, and verify whether it is a vehicle, a vulnerable
road user, or something in between. More refined grids could also be obtained
via semantic segmentation of LIDAR scans, but additional training data and
labels would then be required.

A complete evidential representation of the environment could then be ob-
tained: the drivability of an area can be inferred from our road detection system,
a clustering algorithm could be used to detect objects, and our LIDAR objects
classifier could be used to localize vulnerable road users and vehicles. Such var-
ious observations can be used as inputs to further path planning systems. A
recent research direction that might be of interest in this context is mid-to-mid
driving: a deep neural network takes as input a representation of the environment
obtained from a perception system and pre-existing maps, and outputs a path
that the vehicle should follow, as done in ChaufferNet [91]. Figure 8.1 presents
an example of output of ChaufferNet. Yet, those systems usually assume that

110

Figure 8.1: Example of output from [91]. The blue points represent the past
path, the green points represent the future path chosen by the network. The
other features in the image represent the information extracted by the perception
system, and a pre-existing map of the environment. In particular, the yellow box
represents a vehicle.

the perception system generated a reliable representation of the environment.
The possibility of integrating an evidential interpretation of both the input and
outputs of such systems, that are very dependent on the accuracy of their input,
could potentially make them less sensitive to conflicts and uncertainties in the
perception process.

8.2.2 Towards evidential perception integrity

We also believe that the use of the theory of belief functions, in a percep-
tion system, would be extremely useful in defining, and measuring, perception
integrity indicators. The concept of integrity is traditionally related to the per-
formances of a localization system. It can be defined as the measure of the trust
that can be placed in the information supplied, in this context, by a localization
system [92]. This trust is evaluated via a protection level, that quantifies the
maximum error in localization, in the event of an undetected localization error.
A naive extension of this concept, for perception, could then rely on a measure
of the risk caused by an unperceived object. However, this definition can not be
complete, as perception is a composite task: to be perceived, an object must,
at least, be detected, confirmed, classified, tracked, and localized. Focusing on
objects is also unsatisfactory, as perception systems must also detect areas that
are traversable in the environment (typically for autonomous vehicles: the road).
Such continuous notions can not be represented by discrete objects. A more fruit-
ful approach to defining perception integrity might be to consider that, instead,
it is a measure of the certainty of the knowledge represented by the perception
system, in a given area. Instead of returning an integrity measure at the system
level, as it is the case for localization, the perception integrity should be queried
over a region of interest, which would be defined by other modules.

111

Figure 8.2: Simulated perception integrity over areas of the environment. An
evidential road grid, in grey and black, is overlaid with rectangles that are colored
according to the mean evidential entropy, over the grid cells that they cover. The
rectangles are assumed to be areas where a path planners wants to verify the
integrity of the information. In real-life, those rectangles would obviously be way
smaller.

The perception integrity of this area would represent all the information re-
turned by all the perception modules (road mapping, object detection, object
tracking,...). The evidential framework would then be of particular interest, as it
explicitly represents the fact of doubting (mass values on the complete frame of
discernment, on subsets that have a cardinality higher than one), and not know-
ing (mass on the empty set). In Figure 8.2, we simulated such a system, but
only focused on the road. We assumed that a path planner wanted to verify the
quality of the information over a possible path, and asked a perception integrity
value over four areas: the four color rectangles in Figure 8.2. The road surface in
Figure 8.2 was mapped thanks to the system in Chapter 7, and thus each grid cell
was associated with evidential mass values on Ω = {Road, notRoad}. Each rect-
angle was colored according to a perception integrity value, that we chose to be
the mean evidential entropy of the cells in the rectangle. Choosing this entropy
as an integrity value assumes not knowing is not an issue for the system, pro-
vided that it knows that it does not know. An efficient decision-making system
is unlikely to want to drive through unobserved areas. Only ambiguity among
the mass values matters in this case. Integrating the available information about
the objects presents in those rectangles, according to the mass values returned
by other perception modules, and fusing it with this evidential entropy value
regarding the presence of road, is likely to lead to usable perception integrity
measures.

112

Bibliography

[1] B. Van Arem, J. Hogema, and S. Smulders, “The impact of autonomous
intelligent cruise control on traffic flow,” in Intelligent Transportation: Re-
alizing the Future. Abstracts of the Third World Congress on Intelligent
Transport Systems (ITS), 1996.

[2] C. Urmson, J. A. Bagnell, C. Baker, M. Hebert, A. Kelly, R. Rajkumar,
P. E. Rybski, S. Scherer, R. Simmons, S. Singh, et al., “Tartan racing:
A multi-modal approach to the darpa urban challenge,” 2007, Visited on
2019-10-9. [Online]. Available: https://kilthub.cmu.edu/articles/
Tartan_Racing_A_Multi- Modal_Approach_to_the_DARPA_Urban_

Challenge/6561125/1.

[3] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al., “Junior: The stan-
ford entry in the urban challenge,” Journal of field Robotics, vol. 25, no. 9,
pp. 569–597, 2008.

[4] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz,
D. Hong, A. Wicks, T. Alberi, D. Anderson, et al., “Odin: Team Vic-
tortango’s entry in the darpa urban challenge,” Journal of field Robotics,
vol. 25, no. 8, pp. 467–492, 2008.

[5] J. Krafcik, “Waymo one: The next step on our self-driving journey,” Visited
on 2019-10-9. [Online]. Available: https://medium.com/waymo/waymo-
one-the-next-step-on-our-self-driving-journey-6d0c075b0e9b.

[6] C. Hampel, Autonomous services with Renault and Transdev, Visited on
2019-10-9. [Online]. Available: https://www.electrive.com/2019/05/
21/autonomous-services-with-renault-and-transdev/.

[7] Another milestone for easymile: The first fully driverless service, Visited
on 2019-10-9. [Online]. Available: https : / / easymile . com / another -

milestone-for-easymile-the-first-fully-driverless-service-

of-our-ez10-driverless-shuttle/.

[8] S. Singh. (2015). Critical reasons for crashes investigated in the national
motor vehicle crash causation survey. Visited on 2019-10-9, [Online]. Avail-
able: http://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/
812115.

[9] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot
that won the darpa grand challenge,” Journal of field Robotics, vol. 23,
no. 9, pp. 661–692, 2006.

113

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
KITTI dataset,” The International Journal of Robotics Research, vol. 32,
no. 11, pp. 1231–1237, 2013.

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The CityScapes dataset for semantic
urban scene understanding,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” CoRR,
vol. abs/1312.6199, 2013.

[13] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point
sets for 3d classification and segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 652–660.

[14] B. Wu, A. Wan, X. Yue, and K. Keutzer, “SqueezeSeg: Convolutional neu-
ral nets with recurrent crf for real-time road-object segmentation from 3D
lidar point cloud,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2018, pp. 1887–1893.

[15] J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure and
evaluation benchmark for road detection algorithms,” in International Con-
ference on Intelligent Transportation Systems (ITSC), 2013.

[16] C. Plachetka, J. Rieken, and M. Maurer, “The tubs road user dataset: A
new lidar dataset and its application to cnn-based road user classification
for automated vehicles,” in 2018 21st International Conference on Intelli-
gent Transportation Systems (ITSC), IEEE, 2018, pp. 2623–2630.

[17] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “Nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[18] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D.
Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d tracking
and forecasting with rich maps,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[19] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira,
M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni,
A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet, Lyft level 5 av
dataset 2019, https://level5.lyft.com/dataset/, 2019.

[20] Waymo open dataset: An autonomous driving dataset, 2019.

[21] X. Roynard, J.-E. Deschaud, and F. Goulette, “Paris-lille-3d: A large and
high-quality ground-truth urban point cloud dataset for automatic segmen-
tation and classification,” The International Journal of Robotics Research,
vol. 37, no. 6, pp. 545–557, 2018.

114

[22] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and
J. Gall, “Semantickitti: A dataset for semantic scene understanding of lidar
sequences,” in Proc. of the IEEE/CVF International Conf. on Computer
Vision (ICCV), 2019.

[23] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[24] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 12,
pp. 2481–2495, 2017.

[25] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe, “Exploring
spatial context for 3D semantic segmentation of point clouds,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 716–724.

[26] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017, pp. 5099–5108.

[27] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and ¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[28] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J.
Guibas, “Kpconv: Flexible and deformable convolution for point clouds,”
arXiv preprint arXiv:1904.08889, 2019.

[29] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, “Multi-
net: Real-time joint semantic reasoning for autonomous driving,” in 2018
IEEE Intelligent Vehicles Symposium (IV), IEEE, 2018, pp. 1013–1020.

[30] Z. Chen and Z. Chen, “Rbnet: A deep neural network for unified road and
road boundary detection,” in International Conference on Neural Informa-
tion Processing, Springer, 2017, pp. 677–687.

[31] X. Han, J. Lu, C. Zhao, S. You, and H. Li, “Semisupervised and weakly
supervised road detection based on generative adversarial networks,” IEEE
Signal Processing Letters, vol. 25, no. 4, pp. 551–555, 2018.

[32] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Ad-
vances in neural information processing systems, 2014, pp. 2672–2680.

[33] R. Fernandes, C. Premebida, P. Peixoto, D. Wolf, and U. Nunes, “Road
detection using high resolution lidar,” in 2014 IEEE Vehicle Power and
Propulsion Conference (VPPC), IEEE, 2014, pp. 1–6.

[34] Y. Lyu, L. Bai, and X. Huang, “Chipnet: Real-time lidar processing for
drivable region segmentation on an fpga,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2018.

115

[35] L. Caltagirone, S. Scheidegger, L. Svensson, and M. Wahde, “Fast lidar-
based road detection using fully convolutional neural networks,” in 2017
IEEE Intelligent Vehicles Symposium (IV), IEEE, 2017, pp. 1019–1024.

[36] S. Gu, Y. Zhang, J. Tang, J. Yang, and H. Kong, “Road detection through
crf based lidar-camera fusion,” in 2019 International Conference on Robotics
and Automation (ICRA), IEEE, 2019, pp. 3832–3838.

[37] L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, “Lidar–camera fu-
sion for road detection using fully convolutional neural networks,” Robotics
and Autonomous Systems, vol. 111, pp. 125–131, 2019.

[38] Z. Chen, J. Zhang, and D. Tao, “Progressive lidar adaptation for road de-
tection,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 3, pp. 693–
702, 2019.

[39] X. Li, L. Zhang, A. You, M. Yang, K. Yang, and Y. Tong, “Global aggre-
gation then local distribution in fully convolutional networks,” accepted to
BMVC2019, 2019.

[40] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and B.
Catanzaro, “Improving semantic segmentation via video propagation and
label relaxation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8856–8865.

[41] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for
semantic segmentation,” arXiv preprint arXiv:1909.11065, 2019.

[42] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet++: Fast and
accurate lidar semantic segmentation,” in Proc. of the IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2019.

[43] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “SqueezeSegV2: Im-
proved model structure and unsupervised domain adaptation for road-
object segmentation from a lidar point cloud,” in 2019 International Con-
ference on Robotics and Automation (ICRA), IEEE, 2019, pp. 4376–4382.

[44] M. Himmelsbach and H.-J. Wuensche, “Tracking and classification of ar-
bitrary objects with bottom-up/top-down detection,” in 2012 IEEE Intel-
ligent Vehicles Symposium, IEEE, 2012, pp. 577–582.

[45] I. Bogoslavskyi and C. Stachniss, “Efficient online segmentation for sparse
3d laser scans,” PFG – Journal of Photogrammetry, Remote Sensing and
Geoinformation Science, pp. 1–12, 2017. [Online]. Available: https://

link.springer.com/article/10.1007%2Fs41064-016-0003-y.

[46] P. Burger, B. Naujoks, and H.-J. Wuensche, “Fast dual decomposition
based mesh-graph clustering for point clouds,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018,
pp. 1129–1135.

[47] M. Simon, S. Milz, K. Amende, and H.-M. Gross, “Complex-yolo: Real-time
3D object detection on point clouds,” arXiv preprint arXiv:1803.06199,
2018.

116

[48] Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[49] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Point-
pillars: Fast encoders for object detection from point clouds,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 12 697–12 705.

[50] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced group-
ing and sampling for point cloud 3d object detection,” arXiv preprint
arXiv:1908.09492, 2019.

[51] A. Dempster, “Upper and lower probabilities induced by a multivmulti
mapping,” The Annals of Mathematical Statistics, vol. 38, 1976.

[52] G. Shafer, A mathematical theory of evidence. Princeton university press,
1976, vol. 42.

[53] P. Smets, Y.-T. Hsia, A. Saffiotti, R. Kennes, H. Xu, and E. Umkehren,
“The transferable belief model,” in European Conference on Symbolic and
Quantitative Approaches to Reasoning and Uncertainty, Springer, 1991,
pp. 91–96.

[54] F. Pichon and T. Denœux, “The unnormalized dempster’s rule of combi-
nation: A new justification from the least commitment principle and some
extensions,” Journal of Automated Reasoning, vol. 45, no. 1, pp. 61–87,
2010.

[55] P. Smets, “Decision making in the tbm: The necessity of the pignistic
transformation,” International Journal of Approximate Reasoning, vol. 38,
no. 2, pp. 133–147, 2005.

[56] P. Snow, “The vulnerability of the transferable belief model to dutch
books,” Artificial Intelligence, vol. 105, no. 1-2, pp. 345–354, 1998.

[57] B. R. Cobb and P. P. Shenoy, “On the plausibility transformation method
for translating belief function models to probability models,” International
Journal of Approximate Reasoning, vol. 41, no. 3, pp. 314–330, 2006.

[58] F. Wang, A. Miron, S. Ainouz, and A. Bensrhair, “Post-aggregation stereo
matching method using dempster-shafer theory,” in 2014 IEEE Interna-
tional Conference on Image Processing (ICIP), IEEE, 2014, pp. 3783–3787.

[59] V. Magnier, D. Gruyer, and J. Godelle, “Implementation of a multi-criteria
tracking based on the dempster-shafer theory,” in 2015 IEEE Intelligent
Vehicles Symposium (IV), IEEE, 2015, pp. 463–468.

[60] L. Rummelhard, A. Nègre, and C. Laugier, “Conditional monte carlo dense
occupancy tracker,” in 2015 IEEE 18th International Conference on Intel-
ligent Transportation Systems, IEEE, 2015, pp. 2485–2490.

117

[61] Tun Yang and V. Aitken, “Evidential mapping for mobile robots with
range sensors,” in 2005 IEEE Instrumentation and Measurement Technol-
ogy Conference Proceedings, vol. 3, May 2005, pp. 2180–2185. doi: 10.

1109/IMTC.2005.1604562.

[62] F. W. Rauskolb, K. Berger, C. Lipski, M. Magnor, K. Cornelsen, J. Ef-
fertz, T. Form, F. Graefe, S. Ohl, W. Schumacher, et al., “Caroline: An
autonomously driving vehicle for urban environments,” Journal of Field
Robotics, vol. 25, no. 9, pp. 674–724, 2008.

[63] J. Moras, V. Cherfaoui, and P. Bonnifait, “Moving objects detection by
conflict analysis in evidential grids,” in 2011 IEEE Intelligent Vehicles
Symposium (IV), Jun. 2011, pp. 1122–1127. doi: 10.1109/IVS.2011.

5940561.

[64] P. Smets, “Data fusion in the transferable belief model,” in Proceedings
of the Third International Conference on Information Fusion, vol. 1, Jul.
2000, PS21–PS33 vol.1. doi: 10.1109/IFIC.2000.862713.

[65] C. Yu, V. Cherfaoui, and P. Bonnifait, “An evidential sensor model for velo-
dyne scan grids,” in 13th International Conference on Control Automation
Robotics & Vision (ICARCV), IEEE, 2014, pp. 583–588.

[66] D. Nuss, S. Reuter, M. Thom, T. Yuan, G. Krehl, M. Maile, A. Gern, and
K. Dietmayer, “A random finite set approach for dynamic occupancy grid
maps with real-time application,” The International Journal of Robotics
Research, vol. 37, no. 8, pp. 841–866, 2018.

[67] S. Wirges, C. Stiller, and F. Hartenbach, “Evidential occupancy grid map
augmentation using deep learning,” in IEEE Intelligent Vehicles Sympo-
sium (IV), IEEE, 2018, pp. 668–673.

[68] C. Yu, V. Cherfaoui, and P. Bonnifait, “Evidential occupancy grid mapping
with stereo-vision,” in Intelligent Vehicles Symposium (IV), 2015 IEEE,
IEEE, 2015, pp. 712–717.

[69] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected CRFs,” arXiv preprint arXiv:1606.00915,
2016.

[70] P. Fankhauser and M. Hutter, “A universal grid map library: Implementa-
tion and use case for rough terrain navigation,” in Robot Operating System
(ROS), Springer, 2016, pp. 99–120.

[71] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada,
“An open approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6,
pp. 60–68, 2015.

[72] P. Chu, S. Cho, S. Sim, K. Kwak, and K. Cho, “A fast ground segmentation
method for 3D point cloud,” Journal of information processing systems,
vol. 13, no. 3, pp. 491–499, 2017.

118

[73] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder, “The Mapil-
lary Vistas dataset for semantic understanding of street scenes,” in Proceed-
ings of the International Conference on Computer Vision (ICCV), Venice,
Italy, 2017, pp. 22–29.

[74] D. Eigen and R. Fergus, “Predicting depth, surface normals and seman-
tic labels with a common multi-scale convolutional architecture,” in Pro-
ceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 2650–2658.

[75] J. S. Albus, “4D/RCS: A reference model architecture for intelligent un-
manned ground vehicles,” in Unmanned Ground Vehicle Technology IV,
International Society for Optics and Photonics, vol. 4715, 2002, pp. 303–
311.

[76] P. Smets et al., “What is dempster-shafer’s model,” Advances in the Dempster-
Shafer theory of evidence, pp. 5–34, 1994.

[77] T. Denoeux, “Logistic regression, neural networks and dempster–shafer
theory: A new perspective,” Knowledge-Based Systems, vol. 176, pp. 54–
67, 2019.

[78] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

[79] D. J. Rumsey, U Can: statistics for dummies. John Wiley & Sons, 2015.

[80] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” in Kdd,
vol. 96, 1996, pp. 226–231.

[81] X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient l-shape fitting for
vehicle detection using laser scanners,” in Intelligent Vehicles Symposium
(IV), IEEE, 2017, pp. 54–59.

[82] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” Journal of artificial intelli-
gence research, vol. 16, pp. 321–357, 2002.

[83] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural com-
putation, vol. 13, no. 7, pp. 1443–1471, 2001.

[84] M. C. Troffaes, “Decision making under uncertainty using imprecise prob-
abilities.,” International journal of approximate reasoning., vol. 45, no. 1,
pp. 17–29, 2007.

[85] K. A. B. Ahmad, M. Sahmoudi, and C. Macabiau, “Characterization of
GNSS receiver position errors for user integrity monitoring in urban envi-
ronments,” in ENC-GNSS 2014, European Navigation Conference, 2014.

119

[86] Z. Tao and P. Bonnifait, “Road invariant extended kalman filter for an
enhanced estimation of gps errors using lane markings,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2015, pp. 3119–3124.

[87] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “Nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[88] F. Li, P. Bonnifait, J. Ibanez-Guzman, and C. Zinoune, “Lane-level map-
matching with integrity on high-definition maps,” in 2017 IEEE Intelligent
Vehicles Symposium (IV), IEEE, 2017, pp. 1176–1181.

[89] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[90] R. Jiroušek and P. P. Shenoy, “A decomposable entropy of belief func-
tions in the dempster-shafer theory,” in International Conference on Belief
Functions, Springer, 2018, pp. 146–154.

[91] M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to drive
by imitating the best and synthesizing the worst,” arXiv preprint arXiv:1812.03079,
2018.

[92] O. Le Marchand, P. Bonnifait, J. Ibañez-Guzmán, and D. Bétaille, “Vehicle
localization integrity based on trajectory monitoring,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2009,
pp. 3453–3458.

120

	PDT CAPELLIER Edouard
	Soutenue le 14 janvier 2020

	Thèse Capellier pour STAR

