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1

General Introduction

As its title indicates, this thesis treats the subject of building thermal modeling
using data-driven techniques, where data collected from the system is used to find a
suitable mathematical model of the building. This thesis proposes a special class of
models called hybrid models for representing the thermal dynamics in a building.
Hence, the introductory part of this work provides a general background on the
importance of building thermal modeling together with the motivation behind this
thesis and its main contributions.

Why is having accurate models for the thermal behavior of
buildings so important?

As the quality of human life has been improving for the past decades, a discernible
increase in the energy consumption has been observed and this has risen concerns
about climate change and energy shortage. Hence, the European Commission has
adopted an energy efficient plan in March 2011 which was followed, in October
2012, by a directive (2012/27/EU) on the energy efficiency. The aim was to im-
plement actions in a common framework to promote energy efficiency and also to
foresee the establishment of indicative national energy efficiency targets for 2020.
European Union (EU) countries then agreed on a new 2030 framework for climate
and energy, including EU-wide targets and policy objectives for the period between
2020 and 2030. The EU wishes to achieve a secure and sustainable energy system
to meet its long-term 2050 target of cutting greenhouse gas emissions to 80% below
1990 levels [EUROPA, 2012; European Commission, 2011].

Among all economic sectors, the building sector is a major energy consumer.
Therefore, a directive specifically dedicated to the energy performance of buildings
was established in 2010 (DIRECTIVE 2010/31/EU) [EPBD, 2010]. This directive
stated that the building sector is responsible for the biggest part of the final energy
consumption 1 with a share that goes up to 40% and also 36% of CO2 emissions in
Europe. Fig. 1 shows the distribution of the final energy consumption in the EU
per sectors in 2015. The residential sector, which includes the households sector
and the services sector, accounts for 39% of the final energy consumption in the EU.
The sector being in full expansion, its energy consumption is bound to increase.
Therefore, measures such as the reduction of energy consumption and the use of
energy from renewable sources in the building sector constitute important measures
needed to reduce the EU energy dependency and greenhouse gas emissions.

1Final energy consumption is the total energy consumed by end users, such as households, industry
and agriculture. It excludes energy used by the energy sector for deliveries and transformation.
Primary energy consumption measures the total energy demand of a country. It covers consumption
of the energy sector itself, losses during transformation (for example, from oil or gas into electricity)
and distribution of energy, and the final consumption by end users.



2 General Introduction

(a) (b)

FIGURE 1: (a) Share of each sector in the final energy consumption in
the EU in 2015. (b) Share of buildings sector constituted by household

and services sectors. Source: Eurostat, EU-28, 2015

Energy consumption of buildings is related to various factors including: ar-
chitecture, thermo-physical properties of the building elements and construction
materials, climate zone, quality of the installed systems for Heating, Ventilation and
Air Conditioning (HVAC) and occupants’ behavior, just to name a few. Therefore,
to meet the goals set by the EU nations, one has to act from several directions. The
most effective way to improve the energy efficiency without reducing the indoor
environment quality and the tenants well-being is to design the building in a way
to take maximum profit from the environment and the natural energy sources (like
day-light, natural ventilation, passive solar heating during the cold season, passive
cooling in the warm season, etc.). When designing a building in cold climates, the
heat losses through the envelope and ventilation should be reduced (by using high
thickness insulating materials, high performance double or triple glazed windows
and highly efficient heat recovery units coupled with mechanical ventilation sys-
tems) and the solar gains should be maximized. In hot climates, insulation materials
help reduce the heat fluxes entering the building from the outdoor environment
and solar shading devices protect sun facing windows. Early constructed buildings
rarely have these specifications, hence, retrofitting and renovation should be
considered for these buildings to improve their energy efficiency, along with the
installation of energy efficient systems. Still, in all these cases, occupants play a
major role in managing the energy consumption of the building as they interact
with control systems and building elements to reach their own personal desired
level of comfort. This is done in different ways like turning the air-conditioning
ON or OFF, adjusting the thermostat temperature, opening and closing windows,
adjusting blinds, using hot water, etc. Some solutions were proposed with the aim
of encouraging tenants to optimize their energy use [Guerassimoff and Thomas,
2015]. Despite the variety of research work dedicated to modeling the occupants’
behavior [Vorger, 2014; Amayri et al., 2016], this remains one of the most complex
tasks in building thermal modeling.

At the building level, the potential actions for improving energy efficiency are fa-
cilitated by the availability of accurate models providing a description of the thermal
behavior of buildings and a good estimate of their energy performance. A model is
a description of the real physical system. A thermal model of a building is a model
that describes the heat transfer phenomena occurring in the system. The purpose
of the model is to observe and predict the thermal response of the building under
normal use. The need for a model describing the thermal behavior of a building
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arises in many stages of its life cycle and for many purposes among which we cite
the following:

◦ At the design stage, the thermal model helps predict the general thermal be-
havior of the building in terms of its location, architecture and materials used.
At this stage, the thermal model could give insight into the best architecture
and materials to be used to improve the energy efficiency of the building. The
surface, orientation and composition of windows could, for example, change
in order to maximize or minimize the heat gain from the sun depending on
the position and location of the building.

◦ The appropriate design of Heating Ventilation and Air Conditioning (HVAC)
systems also depends on the estimate of maximum loads needed for heating
and/or cooling the building which could be calculated using the thermal
models. The maximum load defines the best size for the HVAC systems.

◦ Another important information that the thermal models deliver at the design
stage is the compliance of the energy efficiency of the building with the
regulations of each country. According to the legislation issued by the EU, the
member states must set minimum energy performance requirements for new
buildings, for the major renovation of buildings and for the replacement or
retrofit of building elements (heating and cooling systems, roofs, walls and so
on). In France, the new thermal regulation, RT2012, sets the consumption of
primary energy in new constructions to a maximum of 50kWh/m2/year [RT
2012]. Owners are therefore required to undertake an energy study of their
proposed new construction to prove that it will have a primary energy con-
sumption lower than 50 kWh/m2/year. On completion of the works, owners
will also be required to attest that the energy performance has been achieved,
for which purpose a post-completion study will also need to be undertaken.
In order to assess the compliance of new buildings to this regulation, tools
were introduced to provide the calculation of regulatory indicators on the
energy efficiency of the building and the degree of comfort of occupants. The
calculations can be made by specialist consultants using computer software
programs specifically designed for this purpose. The studies are done by
creating the building model based on its architectural and physical properties
and then simulating the model under normal usage scenarios of occupancy,
set point temperature, lighting and ventilation for each type of buildings.

◦ In the early lifetime of a building, there might be a disagreement between
the energy use estimated in the design phase and the actual energy use. To
examine this discrepancy, a model is needed to check the operation of the
building. The simulation should have the occupancy schedules that reflect
the actual occupancy of the building. These simulations may be used at this
stage to refine and optimize control strategies and to bring adjustments to the
building (like replacing the HVAC equipment) to achieve the requirements
of the project as initially set by the owner and as designed by architects and
engineers. This is known as building commissioning.



4 General Introduction

◦ The gain in the energy efficiency of a building is highly related to the effi-
ciency of its energy systems. The biggest share of the energy consumption in a
building comes from its HVAC systems. Therefore, it is important to simulate
the response of the building under different HVAC control strategies and
choose the most efficient solution. In this context, the comfort of the occupants
is an important factor to keep in mind, which is why modeling the indoor air
temperature of a building or a building zone and the control of HVAC systems
has become an important research topic in this area. This could be done at the
design stage or later on during operation.

◦ A big share of buildings, in France and worldwide, were built before the
existence of any thermal regulation. The thermal renovation of these buildings
plays an important role in reducing the energy consumption and the environ-
mental impact of the building sector. A thermal model is used in this case to
investigate the impact of different renovation strategies applied to a building
and hence deciding on the most effective ones.

◦ Recently, the advances that were made in the smart grid2 revealed the neces-
sity for building models providing real time observations and short time pre-
dictions of their energy need in order to support the decision making process.
Furthermore, the concept of smart buildings and positive energy buildings that
use renewable energies to fulfill their energy needs, offers high flexibility in en-
ergy demand and this also represents a challenge to the smart grid and should
be predicted using accurate thermal models.

◦ A thermal model could also be used for detecting faults in the energy systems
in a building. On big sites, a complex heating or cooling system exists with
multiple components and subsystems including cooling towers, chillers,
pumps, heat exchangers, etc. A fault in one of these components often leads
to a failure in the whole system. A thermal model could be used in this case
for detecting and locating the faults.

Hence, a model describing the thermal behavior of a building system is needed
in the design phase, as well as during operation, for the implementation of actions
that contribute to enhancing its energy efficiency. During the last decades, many
modeling techniques were developed for this purpose, some of them being particu-
larly adapted to the design phase and others being more suitable for operation.

Advantages and limitations of existing techniques in model-
ing the thermal behavior of buildings

A model can be formulated either as a set of equations based on the underlying
physics or as a set of purely mathematical equations, with no physical interpre-
tation, relating the inputs to the outputs of a system. Existing thermal models
for buildings are divided into three main categories: "white box" models, "black

2The smart grids are modern electric power grid infrastructures for enhanced efficiency and re-
liability through automated control, high-power converters, modern communications infrastructure,
sensing and metering technologies, and modern energy management techniques based on the opti-
mization of demand, energy and network availability (definition from [Kolokotsa, 2016]).
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box" models and "grey box" models. "White box" models are based on solving the
equations that describe the physical heat transfer phenomena in a building coupled
to aeraulic and hygric transfers. They are also known as physical models or forward
modeling approaches. "Black box" models, on the other hand, do not require any
physical information. They are based on mathematical equations developed based
on samples of data representing the system from which they were collected. "Grey
box" models use data and a model based on physical interpretation to determine
the unknown parameters of the model, hence combining these former approaches.

"White box" models are generally seen as robust models for modeling the
thermal behavior of buildings because they are based on equations that represent
the actual physical behavior of the system. They have been used for more than 60
years now in the building industry and they are very effective in the design phase.
However, because of their dependency on the physical equations, these models
need a detailed description of the physical system. An extensive knowledge about
the building geometry, the type of materials used for construction, as well as details
about the HVAC systems in the building, the occupants’ behavior and the outdoor
environment (nearby buildings, vegetation, etc.) are required. Therefore, "white
box" models are mostly used in the preliminary design phase where a detailed
description of the building is available. For existing buildings, a detailed description
is not always available, and even if it was, errors related to the aging of materials,
or to the fact that the builder did not follow the specifications exactly might lead
to bias between the actual behavior and the simulated one. Researchers tried to
find alternative models to deal with the lack of information in this case. They
saw that "black box" or "grey box" models, being constructed from measured data,
provide a feasible alternative to the characterization of existing buildings. The main
limitation of these latter models is that they need rich sets of data collected during
the operation of the building, therefore they cannot be used in the design phase.
They would, however, make very good candidates for providing simple models
that could be employed for real time observations and short time predictions in
order to implement the best control strategies, or for helping the facility manager
with the building maintenance and optimization. "White box" models, being more
complex and more time consuming, show limitations from this point of view.

In most EU countries, half of the residential stock was built before 1970, when
the first thermal regulations were introduced [EUROPA]. Thus, it is important to
predict the thermal behavior and energy performance of these buildings, optimize
their operation and control and integrate them in the growing smart grid. Having
easily automated models that give quick results using actual data from these
buildings during normal usage would offer tremendous benefits in terms of time
and costs. "Grey box" and "black box" models represent both relatively easy to
implement models and are built using data collected from the real system. "Grey
box" models start from a preliminary description of the building (hence they rely
heavily on expert knowledge) and the values of the parameters are found by solving
an optimization problem to minimize the error between the data and the model.
This is a growing research topic, but issues related to the optimization problem
like the correctness of the model structure, the initial guess for the parameters and
the large number of parameters make the application of these approaches rather
limited. On the other hand, "black box" models offer advantages like accuracy,
simplicity, ease of implementation, low computational cost and little need for
expertise and time for building the model. Hence, in this thesis, we propose to
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study the feasibility of reproducing the thermal behavior of buildings using "black
box" models constructed entirely from input output data of the system.

Contribution of the thesis

In this thesis, we present a novel data driven technique for modeling the thermal
behavior of buildings based on a hybrid system approach. A hybrid system is
a system that consists of both continuous and discrete dynamics. A building is
a complex system characterized by a nonlinear behavior and the occurrence of
different events like opening/closing windows and shades, turning the heating
ON/OFF, etc. The appearance of these events leads to a different dynamic thermal
behavior in the building which cannot be described by linear models. The main
limitation of most "black box" techniques used in the literature is the assumption of
a linear structure. Therefore, this work proposes to describe the thermal behavior of
buildings via a nonlinear model by linearizing it around different operating points.
This leads to a hybrid structure combining the continuous nature of the thermal
behavior in the building and the discrete dynamics that result from the occurrence
of different configurations or events. We use a System Identification (SI) technique
called Piece Wise AutoRegressive eXogeneous inputs (PWARX) for clustering the
data into several groups representing different configurations, each configuration
being modeled by a mathematical equation.

The contributions of the thesis can be summarized in the following points:

◦ A lumped Resistance Capacitance (RC) model of a building which employs
switches to account for sudden changes due to turning the heating on/off and
opening/closing the windows and the shades.

◦ A new data-driven approach for modeling the thermal behavior of building
zones which uses hybrid system identification together with support vector
machines for data classification.

◦ A methodology for predicting the energy consumption of buildings by inte-
grating the hybrid model in a hybrid control loop.

The manuscript is organized as follows:

◦ Chapter 1 summarizes the state-of-the-art related to the thermal modeling of
buildings. Research related to all three modeling approaches "white box",
"black box" and "grey box" along with their advantages and drawbacks is pre-
sented. The common theme of the work included in this state of the art is that
its objective is to predict the thermal behavior of buildings and their energy
performance.

◦ Chapter 2 presents the motivation for using a hybrid system approach for the
thermal modeling of buildings. The equations derived from a building de-
scribed as an RC circuit are used to prove that the occurrence of some sud-
den events like turning the heating ON/OFF, opening/closing the windows
or shades and the presence or absence of occupants leads to different configu-
rations characterized by a change in the value of some parameters appearing
in the transfer function of the system thus yielding a new dynamical model.
The proposed PWARX approach is also presented in detail. It is based on a
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clustering technique to group similar data points (representing the same con-
figuration) and an estimation technique based on least squares to estimate the
model behind each cluster.

◦ Chapter 3 details the various test cases employed for the numerical validation
of the proposed PWARX technique in modeling the indoor air temperature of
buildings. These range from a small unoccupied room to an entire occupied
building. We showcase in this chapter the ability of this technique to describe
and predict the thermal behavior of the buildings when different configura-
tions occur.

◦ Chapter 4 describes a full methodology aiming at predicting the energy con-
sumption of buildings under normal use. The previously proposed approach
is completed by integrating the identified hybrid model in a closed loop with
a hybrid control for simulating standardized scenarios and predicting the
amount of energy consumed for each of them. A test case of a building lo-
cated in France, for which renovation work was done, is presented. We show
that the improvement in the energy performance due to renovation work can
be accurately and quickly predicted using our developed approach based on
data collected from the system without any knowledge on the physical details
of the building.

◦ The last part of the thesis is dedicated to summarizing these research findings,
drawing a conclusion on the previous chapters and outlining some suggestions
for future work.
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Chapter 1

State of the art in building thermal
modeling and energy performance
prediction

This first chapter gives an overview of the state of the art on building thermal and
energy modeling. Such models can generally be divided into three main categories:
"white box", "black box" and "grey box" models. This chapter presents the most
important work done within each one of these areas.

1.1 Introduction

The thermal modeling of buildings is generally characterized by two thermal
behavior: the static thermal behavior and the dynamic thermal behavior. In the
static thermal behavior, energy assessment is performed in steady state conditions
while considering a limited number of factors. They are usually applied to simplify
the thermal model and to overcome the limitations of computing resources. They
are mostly used for regulatory calculations and energy labeling in order to compare
different performances in standard use conditions. They can also be used to calcu-
late relative parameters like the heat loss coefficient. A static model is not usually
seen as a robust model to give accurate and precise information about the real
energy consumption of buildings because important factors, like the inertia of the
building and the occupants’ behavior, are not taken into consideration. On the other
hand, the dynamic thermal simulation seeks to understand the thermal exchange
between the building and its environment. It studies the transient response of
the building under different weather conditions, as well as under the influence
of the behavior of the occupants, the use of electrical devices, the characteristics
of the heating/cooling system, etc. They are capable of capturing the building
and systems dynamics and are seen as robust models for predicting the thermal
behavior of buildings. Therefore, this study will focus only on dynamic models.

Before detailing the methods employed for the characterization of the thermal
behavior of buildings, some terms have to be defined. The model is the set
of equations that compute an output variable in terms of input variables. For
instance, the output of the thermal model of a building could be the indoor air
temperature and the inputs could be, among others, all weather related data.
We call parameters the elements of the equations that define the model. They
represent the link between the output/s of the model and the inputs. For example,
in a linear regression, the parameters are the coefficients that are multiplied by
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the input variables, while in a conduction heat transfer equation, the thermal
conductivity is a parameter. There exist different types of equations, i.e., models,
to represent a system and different techniques for identifying their parameters. In
what follows, the main techniques employed for building simulations are presented.

Building thermal modeling approaches are divided into three main categories:
the physics based approaches known as "white box", the data based approaches
known as "black box" and a third approach joining the two previous ones called
"grey box". Physics based techniques consist in solving the equations that describe
the physical phenomena occurring in a building. Three main physics based thermal
building models are currently used: the Computational Fluid Dynamics (CFD),
the zonal and the multi-zonal also known as nodal methods. The "black box"
models are based on equations that are determined based on measured data of the
system. Many techniques are employed for this, among which we cite the System
Identification (SI) techniques like regression models, machine learning techniques
like SVM, Artificial Neural Networks (ANN), decision trees and optimization
techniques like Genetic Algorithms (GAs). The third and last approach is the "grey
box". It consists in joining physics based equations and measurements from the
system in order to construct the model. This could be done in different ways as will
be shown later on, by using different physics based and data-based techniques. The
classification of these modeling approaches is presented in Fig. 1.1. A state of the art
on building thermal modeling and energy performance prediction is presented in
many papers in which the authors explain the difference between these approaches
[Koulamasa et al., 2018; Wang and Zhai, 2016; Soto and Jentsch, 2016; Harish and
Kumar, 2016; Foucquier et al., 2013; Wang et al., 2012]. Details on each modeling
approach together with examples of research papers exemplifying each of them will
be presented hereafter.

Thermal modeling of buildings

« White box » « Grey box » « Black box »

CFD

Zonal

Nodal

Regression

SVM

ANN

Decision

tree

GA

Mixed

Machine 

Learning

Optimization

System 

Identification

Physics based Physics and data based Data based

FIGURE 1.1: Building thermal modeling approaches
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1.2 "White box" models

"White box" models are based on physical equations that describe the thermal,
aeraulic and hygric transfer between the building and its environment. The
choice of equations to implement and the associated phenomena differs from one
model to another. They can also be distinguished by the level of details in the
employed numeric resolution. The most common physics based approaches used
for building thermal modeling are the CFD approach, the multi-zonal or nodal
approach and the zonal approach. They are usually incorporated in software
tools with a graphical interface to enter the parameters relative to the building
architecture, materials used in construction, occupants and energy systems. These
are known as Building energy Simulation (BES) tools performing dynamic ther-
mal simulations and they have been accepted as powerful tools for modeling
the thermal dynamics of a building and its energy performance. This modeling
approach begins with a detailed description of the building, its systems, com-
ponents and environment like weather data, neighboring buildings, etc., then a
thermodynamic building model is built using fundamental engineering principles.
It is particularly adapted to the design of buildings and has been historically used
for this purpose. Nowadays it is commonly used for verifying the compliance of
buildings with the thermal regulations and for evaluating their energy performance.

1.2.1 CFD approach

Computational Fluid Dynamics (CFD) was first introduced to the building industry
in the 1970s [Nielsen, 1976]. It is considered the most complete but also the most
complicated approach in building thermal simulations. In fact, each building zone
is decomposed into a large number of small volumes generated by a mesh, which
is why this method is considered to be three-dimensional. It is known for offering
a detailed fluid flow description and is mainly used in the building community for
predicting indoor and outdoor airflow, pressure, temperature, humidity, pollutants
and chemical species distribution. The approach is based on a numerical solution of
the governing equations for fluid flow, namely, Navier-Stokes equations.

Many CFD software tools are available, to name a few: Fluent [Fluent, 2012],
Massachusetts Institute of Technology MIT-CFD, PHOENICS-CFD [CHAM, 2005],
etc. For buildings applications, the CFD approach is mostly dedicated to inves-
tigating the effect of airflow from different aspects. For example, the impact of
surrounding buildings on the wind characteristics was investigated by [Lee, 2017].
The aim was to study the effect of the number of surrounding buildings considered
during a simulation on the resultant wind pressure on the facades and roof of a
target building which could be helpful to estimate the infiltration rate. The study
was done in Copenhagen city center where a building was under observation and
the main variable was the total number of layers of buildings around it. Four
different number of layers were tested by taking four different radial distances from
the target building. The center was digitally constructed and the simulations were
performed using ANSYS Fluent [Fluent, 2012]. CFD was also successfully employed
for studying the natural ventilation in buildings. [Prakash and Ravikumar, 2015]
studied the effect of the size and orientation of window openings on the thermal
comfort of occupants and indoor air flow characteristics in naturally ventilated
buildings. The paper focused on studying the effects of window openings on
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adjacent walls. The CFD technique was employed to identify a new set of strategies
to find the best location of window openings for a three-dimensional room model.
In the same context, [Gao and Lee, 2011] evaluated the influence of different
opening configurations on natural ventilation performance of a residential unit
in Honk Kong. It was found that better natural ventilation performance could be
achieved when the two openings groups were positioned in opposite directions
or perpendicular to each other. [Song and Meng, 2015] used Fluent to study the
improvement of ventilation design in school buildings. The study focused on one
classroom were a field study was carried to collect the actual data of boundary
conditions for CFD simulation. Four different ventilation systems were simulated,
compared and analyzed. The four cases correspond to the number of windows open
and the operation of exhaust fans and ceiling fans. In another work, [Guo et al.,
2015] proposed a methodology for optimizing the natural ventilation in a green
building through CFD wind environment simulation from three aspects, i.e., site
planning, building shape and building envelope. The goal is to help architects in
designing green buildings that are energy efficient and environmentally friendly by
a complete qualitative analysis and evaluation of building natural ventilation. In the
same context, [Yang and Jiang, 2017] used CFD to simulate the natural ventilation in
a college students dormitory in Jinan. Based on the analyses, the paper puts forward
a design strategy and optimization method of natural ventilation in the dormitory.
In other works, researchers employed CFD for studying the comfort of occupants
regarding the indoor air temperature and velocity. [Zhang et al., 2017] studied the
thermal comfort in ancient architecture towers in Beijing using a floor-type fan
coil air-conditioner for controlling the physical environment. CFD was used for
calculating the indoor temperature and velocity fields in the summer period for one
ancient tower building in Beijing.

In these papers, CFD was mostly employed for airflow characterization. For the
evaluation of the energy consumption of a building, loads prediction and indoor
air temperature prediction, the CFD approach is frequently coupled with BES tools
and that will be presented later on in Sect. 1.2.3. In fact, the integration of building
energy simulation and computational fluid dynamics programs can provide more
accurate predictions about building energy use and indoor environment due to the
complementary information provided by the two programs.

1.2.2 Zonal approach

The zonal approach is a simplification of the CFD approach. It consists in dividing
each building zone into several cells (small parts of a room) in which the air is
assumed to be perfectly mixed with a homogeneous temperature and humidity,
hence it is considered as a two-dimensional approach. Zonal models are a promising
way to predict air movement in a room with respect to comfort conditions and
gradient of temperature because they require smaller computation times compared
to the CFD approach. The airflow and temperature distributions are determined
by solving the pressure field and the mass and energy balance equations in each
cell. It is possible to evaluate the spatial distribution of the temperature, pressure,
concentration or air velocity using a reasonable computational time, it is also con-
venient for investigating thermal comfort, indoor air quality and energy analysis.
SimSPARK [Mora, 2003], developed from the object-oriented simulation environ-
ment SPARK [SPARK, 2003; Sowell and Haves, 2001], is a frequently employed
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building modeling software based on the zonal approach. Another such software
is POMA (Pressurized zOnal Model with Air-diffuser) [Haghighat et al., 2001],
developed to predict airflow patterns and temperature distribution in a ventilated
room.

The zonal approach was initially developed to study the interaction between the
terminal unit and the rest of the room [Lebrun, 1971; Laret, 1980; Sandberg, 1987;
Bouia and Dalicieux, 1991; Wurtz, 1995]. Later on, it was used for different purposes
like modeling temperature stratification [Allard and Inard, 1992], prediction of
contaminant distribution [Huang et al., 2005], design [Bozonnet et al., 2005], thermal
comfort evaluation [Musy et al., 2002], modeling solar domestic hot water systems
[Kenjo et al., 2007], etc. [Megri and Haghighat, 2007] presented a review on the
development and applications of the zonal modeling approach for simulating the
indoor environment of buildings. They separated the experimentally based zonal
models from the generalized zonal models and others that have seen additional
developments. The first category has been driven by experimental studies like the
one presented by [Ngendakumana, 1991] where the author studied the temperature
distribution in a five-zone scheme. He suggested seven airflow paths that were
obtained from experimental observation. Then he developed an analytical model,
based on the energy conservation equation and some complementary equations
like the convective heat flow equation and the power heat flow equation, to predict
the temperature in the zones. Similar experiments were conducted and different
analytical solutions were proposed [Laret, 1980]. Over the years, the developed
models were extended by integrating branches for commercial heating systems and
the displacement ventilation. On the other hand, the generalized zonal models are
based on the mass and energy conservation equations in different cells, and no
assumptions for airflow direction are required. In this context, the object-oriented
environment SPARK [Sowell and Haves, 2001] was created.

[Tittelein et al., 2008] compared the effects of two types of ventilation techniques
(counter-flow ventilation and a single-flow ventilation) on the energy efficiency of
a passive house located in France. They described the thermo-aeraulic behavior in
buildings using the SimSpark platform to investigate the effect of counter-flow ven-
tilation on the heating demand and the effect of adding overhangs above windows.
In recent works, the zonal approach was mainly employed for predicting airflows
and temperature distribution as it is less time consuming than CFD models and more
accurate than nodal models which will be detailed in the next section. [Fang et al.,
2017] implemented a new algorithm in a developed zonal model computer program
based on the POMA software [Haghighat et al., 2001]. The purpose of this algorithm
is to predict the indoor thermal environment of a lab room (temperature distribu-
tion and airflows) under a natural convection condition and mechanical ventilation.
An underfloor air distribution strategy for which the diffusers are set in the floor and
they deliver fresh air bottom up rather than top down is used. To assess the accuracy
of the implemented algorithm, the simulation results were compared to experimen-
tal measurements. [Megri and Yu, 2015] developed a new zonal model (POMA+)
to predict temperature and airflow distribution within a room in a building. The
model was evaluated by comparison to other existing models and calibrated using
experimental results. [Kuznik et al., 2011] presented a numerical modeling of a Dou-
ble Skin Facade (DSF) using a zonal model approach for the mass transfer based on
the pressure difference in the DSF. The radiative and convective heat transfers were
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also taken into account. The numerical modeling has been validated using the ex-
perimental data collected from a full-scale DSF during the summer season. Once the
numerical model has been validated, it was used to study the influence of different
airflow rates through the air channels of the facade and different angles of the solar
shading devices on the heat transfer in the DSF.

1.2.3 Nodal or multi-zonal approach

This method is the simplest between the three "white box" approaches. The building
is divided into several zones where a zone generally represents one or multiple
rooms, a wall, the exterior environment, but it can also represent a specific load like
the loads from occupants or electrical devices. Each zone is a node described by the
same value of the physical parameters: temperature, pressure, concentration, etc.
Therefore, the state variables (temperature, humidity, pollutant concentration, pres-
sure, etc.) are assumed to be homogeneous within the zone, hence, this approach is
considered to be uni-dimensional. For each node, the thermal transfer equations are
solved. The nodal approach is mostly used to quantify the energy consumption of
a building. It is also suitable for design and system sizing since it provides a rapid
solution.

A considerable number of software tools employing the nodal approach is at
the users’ disposal like EnergyPlus [Crawley et al., 2001], TRNSYS [Trnsys, 2000],
IDA-ICE [IDA-ICE, 2014], Pleiades+Comfie [Peuportier and Sommereux, 1990],
ESP-r [Clarke and McLean, 1988], etc. These tools are particularly dedicated to the
modeling of the energy consumption (heating and cooling), estimating the thermal
comfort of occupants but also for verifying the regulatory requirements in terms of
the building energy performance.

EnergyPlus was used in [Shabunko et al., 2016] to benchmark the energy
performance of 400 residential buildings. The EnergyPlus models calculated the
energy use per year for each of these buildings and the results were verified using
the power consumption data. [Recht et al., 2014] presented a methodology to study
the reliability of Comfie when a passive house is considered. The software was
coupled to the statistical software R. The process included a sensibility study and
an uncertainty propagation in order to quantify the simulation errors related to the
uncertainty of the input parameters. In other types of work, BES tools were used to
model the thermal behavior and energy consumption of buildings containing Phase
Change Materials (PCM) in their walls. For example, [Sang et al., 2017] investigated
the effect of integrating PCM in the construction of a test room on the thermal
comfort, the temperature fluctuation and the space heating. They used EnergyPlus
and the results were compared to experimental measurements. On the other hand,
[Al-Saadi and Zhai, 2015] used TRNSYS for simulating PCM-enhanced walls in
order to help design engineers and architects to select effective PCM thermal
properties to achieve maximum savings in heating and cooling loads. The model
was then validated using experimental data from literature. Another application
field for BES tools is to study the impact of different kinds of facades on the energy
performance of buildings. For example, [Dahanayake and Chow, 2017] studied the
impact of VGS (Vertical Greenery systems) on the energy performance of buildings.
VGS represent the concept of integrating vegetation into vertical facades of build-
ings that in addition to aesthetic benefits, provide diversified benefits including
air quality improvement, minimizing the heat island effect, improvement of the
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building thermal performance [Kenaï et al., 2018], noise reduction by absorption
and additional supply of oxygen. The study proposed a mathematical model for the
VGS that was integrated into EnergyPlus. In [Andelkovic et al., 2016], the authors
studied the reliability of EnergyPlus for modeling double skin facades. The study
was carried out on a multi-story building in Belgrade with naturally ventilated
double skin facade. The simulation results for the cavity air temperature and
velocity were compared with the data of a long term experimental analysis of the
building. [Hilliaho et al., 2015] examined the suitability of IDA-ICE software tool for
the glazed space energy simulation in theory and practice. They analyzed how the
program performs in predicting the temperature and energy consumption of flats
with highly glazed space and compared the results to the actual field measurement
case. In another context, a mixed-mode predictive control system was proposed by
[Zhao et al., 2016] by coupling Matlab [MATLAB, 1998] and EnergyPlus in order to
optimize HVAC energy consumption while meeting the individual thermal comfort
preference. In a recent work, [Nageler et al., 2018] proposed a detailed comparison
of 1D building energy simulation tools with 3D CFD simulation and measurement
data from a test bed (Test-Box), exposed to natural environmental conditions. They
selected Dymola [Dymola and Catia, 2015], EnergyPlus, IDA ICE and TRNSYS
for comparison against highly accurate real measurement data and dynamic CFD
results. They used the same boundary conditions for all tools and compared the
prediction accuracy of the air temperature against each other and against measured
data.

As mentioned in Sect. 1.2.1, BES tools are frequently coupled with CFD for the
thermal modeling of indoor environments. In a recent work, [Tian et al., 2018] pre-
sented a review of the motivations, methods and applications linking the CFD and
BES tools. This coupling takes the advantages of both techniques: the BES performs
rapid calculations related to thermal load predictions that can provide boundary
conditions to CFD. CFD, on the other hand, provides information to BES related
to local airflow in order to study the HVAC control and improve load calculation.
For example, [Zhai et al., 2002] coupled a BES tool to a CFD software to predict the
cooling or heating demand in an office. The authors used EnergyPlus to calculate
the heating or cooling demand, and they used MIT-CFD to simulate the air flow
and find the temperature distribution inside an office in Boston. They implemented
a quasi-dynamic coupling strategy for which, the BES part first produces a set of
surface temperatures and a heating load at the first hour and passes them to the
CFD part. Based on these boundary conditions, the CFD part calculates the flow
and temperature distributions for the next time step. Then, the BES part uses the
room air temperatures and the convective heat transfer coefficients from the CFD
results for the next hour running, and so on. In a similar work, [Pan et al., 2010]
coupled EnergyPlus and Fluent to estimate the cooling load of an atrium in hot
and humid regions. In the same way as before, EnergyPlus provides Fluent with
the boundary conditions, and Fluent provides EnergyPlus with the air temperature
distribution in order to calculate the right cooling load.

Another nodal approach consists in using a thermodynamic equivalent circuit
to model the thermal behavior of buildings. This type of modeling is used in some
software tools libraries like the ones developed for Dymola. Dymola [Dymola
and Catia, 2015] is a modeling and simulation environment based on the open-
source equation-based and object-oriented modeling language Modelica. Some
libraries containing dynamic simulation models for building energy and control
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systems were developed for it [Burhenne et al., 2013; Wetter et al., 2015; Videla
and Lie, 2006]. Modeling the building using a thermal network is very popular
because of its simplicity and low computational cost [Crabb et al., 1987; Boyer
et al., 1996]. Thermal networks provide an alternative physics-based modeling
technique which uses the analogy with electrical circuits by writing the model as
a Resistance Capacitance (RC) network [Crabb et al., 1987]. The electric resistances
and capacitances are equivalent to thermal ones, the electric potential is equivalent
to the temperature gradient and the electric current is equivalent to the heat flux.
This basic physical approach is simpler when compared to complex detailed
thermodynamic equations, thus having much lower computational cost but enough
accuracy and precision. First, the model structure as an RC network is determined
using physical insight and afterwards, the parameter values are obtained from the
thermal properties of construction materials. However, for existing buildings, an
accurate and detailed description is not always available. Errors due to the aging
of materials or poor knowledge of the construction characteristics might lead to an
inappropriate estimation of the parameters, the values of R and C being dependent
on material properties. In this case, these parameters are most commonly identified
from input-output data of the building which leads us to the "grey box" modeling
approach as will be explained in Sect. 1.4. We recall here some of the works
done using the electric analogy as a "white box" model, i.e., without using data
for estimating the parameters. [Goyal and Barooah, 2012] proposed to predict
the temperature and humidity in a multi-zone building by modeling the building
using the electric analogy. The goal was to propose a low order model that would
be suitable for HVAC control and monitoring. [Fraisse et al., 2002] studied how
to transform a multi-layer wall into a three resistances and four capacities model
(3R4C). They also presented a global analogical model of a building by connecting a
water loop model (1R2C) with two wall models (3R4C), which they integrated into
the simulation software TRNSYS.

1.2.4 Summary and discussion on the physical models

This section presented the three main physics based approaches used in the
literature of building simulations. The CFD approach is the most complete (3D)
and therefore the most complex approach because it uses less assumptions than
the other two approaches. In building modeling, it is especially dedicated to the
description of airflow and the distribution of temperature. Its main disadvantage
is its significant computation time and its complexity due to the fact that a detailed
description of the building and a fine mesh are required. It also requires a high
level of expertise and knowledge of fluid dynamics equations and its results are
sensitive to boundary conditions. Another limitation is that it is not possible to
use CFD simulations for energy and loads prediction. The zonal approach is a
simplification of the CFD approach (2D), it is also dedicated in particular to the
description of airflow and distribution of temperature and it provides detailed
investigation of the thermal comfort, indoor air quality and energy analysis. It
provides an improvement over the well-mixed assumption used for nodal models
and it gives faster results than CFD models. Another advantage is that it can be
easily coupled with other BES tools. The limitation of the zonal model lies in its
lack of capability in modeling turbulent flows therefore one has to go back to CFD
simulations. It also keeps a certain level of complexity and therefore, the user must
have a minimum knowledge about fluid mechanics. The last approach is the nodal
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or multi-zonal approach. It is based on the assumption that indoor air variables
are uniform in each zone (1D). The advantage of the nodal approach is its ability
to describe the behavior of a multiple zone building on a large time scale with a
small computation time. It is particularly adapted to the evaluation of the energy
consumption of buildings and the description of the evolution of an averaged
temperature in a zone. However, this approach is unable to study the air quality
inside a zone, it is inaccurate for large volume rooms where thermal stratification
takes place and cannot consider the local effects of heat load or pollutant. To solve
these problems, the nodal approach is commonly coupled with the CFD approach.
Thermal networks are a specific way to model the thermal behavior of buildings
using the nodal approach. The advantages of this approach are its low compu-
tation time and the limited number of parameters that should be defined by the user.

Each one of these approaches has its own advantages and limitations. The choice
of the type to be used highly depends on the goal behind the application and the
expected results. It also depends on the complexity of the phenomena observed, the
parameters investigated, and the degree of required accuracy. "White box" models
respect the physical aspect of the phenomena occurring in the building, and thus,
lead to physically significant parameters. They outperform "grey box" and "black
box" models at the design stage as they do not rely on measured data. However,
in order to apply these methods, a deep level of detail about building geometry
and description of material properties and existing HVAC systems is required.
This leads to a large number of parameters to be set, whose values are not always
available and precise. Moreover, an expert is needed to build the model, calibrate
it and interpret the results. For existing buildings, finding a detailed and accurate
description about its construction materials is not always possible. The properties
of the materials actually installed could be different than the ones reported in the
literature and the builder may not have followed all the original specifications.
Moreover, most of the time, discrepancies between the expected performance of the
building at the design stage and the one observed during operation exist due to
the fact that the occupants’ behavior plays a major role in determining the energy
performance of the building. This is one of the most important difficulties that exist
when dealing with "white box" models. This could be solved by calibrating the
model using measurements from the building, however, this requires a big number
of measurements that are rather complicated and uncertain [Amayri et al., 2016;
Caucheteux et al., 2013, 2016]. Therefore, to overcome the limitations related to the
availability of the physical description of the building, and to offer simple models
that need little expertise but maintain an acceptable accuracy in representing the
thermal behavior of the building during operation, researchers have tried to find
alternative approaches namely "black box" and "grey box" models.

1.3 "Black box" models

"Black box" models are based on mathematical equations derived from input-output
data acquired from the system. This faculty of generating a model only from mea-
surements implies that "black box" models do not need any physical details about
the building geometry or physical properties about the construction components.
They do need however a rich amount of data to accurately represent the behavior
of the system [Scanu, 2017]. They are easier to implement and less time consuming
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than "white box" models, that is why, the last decade has witnessed an increased
interest in this type of modeling. Many data-driven techniques have been employed
for modeling the thermal behavior of buildings for different purposes including, but
not limited to, prediction of their energy consumption [Amiri et al., 2015], estimation
of the physical parameters [Rouchier et al., 2015], fault detection [Turner et al., 2017]
and development of simple but accurate temperature models that can be employed
for implementing control strategies [Mustafaraj et al., 2010]. This latter is a very
important aspect of these models because the HVAC systems are responsible for the
biggest share of the energy consumption in a building [Pérez-Lombard et al., 2008],
hence, a lot of efforts have been and are still dedicated to finding the best control
strategies that guarantee the thermal comfort of occupants and at the same time,
optimize the energy consumption of the building. Model Predictive Control (MPC)
is a promising strategy for achieving both objectives, however it is based on a model
representing the temperature behavior, and the control would be as effective as the
accuracy of the model. In this context, "black box" models represent an advantage
over "white box" models by offering simple, accurate and low computational time
consuming models that could be used for real-time command and control.

The most common data-driven techniques for building thermal modeling and
energy performance evaluation are mainly classified between System Identification
(SI) and Machine Learning (ML) techniques, however, one can find other statistical
and optimization methods implemented for the same purpose. In the following,
some of the main techniques employed and related works are summarized.

1.3.1 System Identification via parametric models

System identification (SI) is the science of building mathematical models of dynami-
cal systems from measured data [Ljung, 1998]. The idea is to predict a certain output
variable as a combination of the input variables and an error term. We focus on
parametric models, i.e., models employing a finite-dimensional parameter vector.
A detailed description of different types of models used in SI, including parametric
models, is given in the book [Ljung, 1998].

One of the most implemented SI techniques in building thermal modeling is lin-
ear regression. The widely used energy signature method [Fels et al., 1986] employs
the simplest regression model that estimates the energy consumption of a building
in terms of the ambient air temperature. Another widely used model equation repre-
senting a dynamic system in a simple form is the AutoRegressive with eXogeneous
inputs (ARX) equation. An ARX model aims at finding a mathematical relationship
between the output of the system and its past instances (the autoregressive part that
represents the dynamic aspect of the system) and the inputs (the exogeneous vari-
ables). The relationship in its simplest form for one output y(t) and one input u(t)
is given as:

y(t) + a1y(t− 1) + . . . + ana y(t− na) = bnk u(t− nk) + . . . + bnk+nb−1u(t− nb − nk + 1) + e(t), (1.1)

where y(t) is the output at instant t ∈ Z, u(t) is the input at instant t and e(t)
is the effect of disturbances (measurement noise, etc.) assumed to have a normal
distributionN (0, σ2). na and nb are fixed beforehand and they are the model orders
which represent the memory of the system or the maximum relevant past terms
and nk is the pure delay between them [Ljung, 1998]. The coefficients bi and ai are
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the parameters to be determined. This equation represents the output in terms of a
single input, but it can be extended to multiple inputs and outputs. Eq. 1.1 can be
rewritten as

y(t) = −a1y(t− 1)− ...− ana y(t− na) + bnk u(t− nk) + ... + bnb+nk−1u(t− nb − nk + 1) + e(t) (1.2)

where the current output y(t) is expressed in terms of its na past values and nb past
input values. The estimated output is:

ŷ(t) = −a1y(t− 1)− ...− ana y(t−na)+ bnk u(t−nk)+ ...+ bnb+nk−1u(t−nb−nk + 1).
(1.3)

The parameters to identify can be collected into a vector

θ =
[
−a1 . . . −ana bnk . . . bnb+nk−1

]> (1.4)

and the past values of the output and input into the regression vector

ϕ(t) =
[

y(t− 1) . . . y(t− na) u(t− nk) . . . u(t− nb − nk + 1)
]> . (1.5)

Hence, Eq. (1.2) can be rewritten as

y(t) = θ>ϕ(t) + e(t) (1.6)

and Eq. (1.3) as
ŷ(t) = θ>ϕ(t). (1.7)

The solution to these equations, i.e., the value of the parameter vector θ, is found
by applying the least squares estimation that consists in minimizing the cost function
defined as the 2-norm of the difference between the estimated and the measured
output vectors, as a function of the unknown parameters θ:

J(θ) =
N

∑
t=1

(y(t)− ŷ(t))2 =
N

∑
t=1

(y(t)− θ>ϕ(t))2, (1.8)

where N is the number of samples. The minimum for this cost function occurs when
the gradient with respect to the parameter θ is equal to zero. The solution to this
optimization problem is provided by the normal equation:

θ̂ = (Φ>Φ)−1Φ>Y (1.9)

where Y =
[

y(1) . . . y(N)
]> and Φ =

[
ϕ(1) . . . ϕ(N)

]>.

The state-of-the-art of building thermal simulations is rich with publications
employing this kind of models. It is used for modeling and predicting the indoor
air temperature and humidity, the energy consumption, physical parameter identi-
fication and fault detection [Amasyali and El-Gohary, 2018; Foucquier et al., 2013;
xiang Zhao and Magoulès, 2012; Jiménez et al., 2008a; Lee et al., 1996]. The authors
of [Parti and Parti, 1980] were the first to propose a new method for the prediction
of the end-use appliance specific energy consumption in buildings using linear
regression in 1980. The idea was to deduce monthly and yearly residential end-use
consumption from the sum of several end-use consumption from household
invoices added to a noise term.
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[Mustafaraj et al., 2010] investigated the potential of using linear parametric
models to predict room temperature and relative humidity for different time scales
(30 min or 2 h ahead) for an office in London throughout the summer, autumn and
winter seasons. They compared the performance of Box–Jenkins (BJ), AutoRegres-
sive with eXternal inputs (ARX), AutoRegressive Moving Average with eXternal
inputs (ARMAX) and Output Error (OE) models in identifying the thermal behavior
of the office. The goal is to use these models for improving the performance of the
thermal environment control system. External and internal climate data, recorded
over the summer, autumn and winter seasons, were used to build and validate the
models. Similarly, [Ríos-Moreno et al., 2007] investigated to what extent linear ARX
and ARMAX could be used in order to predict the interior air temperature of a
building. The results are shown for classrooms of a university in México. Outside
air temperature, global solar radiation flux, outside air relative humidity and air
velocity were used as the input variables. The measures were done by sampling
every 5 min during a period of 36 days; the first two thirds of the data record
were used in order to determine the model coefficients and the remaining data for
validation. Many other works can be classified in this context, i.e., predicting indoor
air temperature for control purposes. [Freire et al., 2008] presented a methodology
for obtaining linear regression equations that represent the indoor air temperature
and relative humidity for two building models. The collected data was obtained
from simulations performed with a building simulation tool. [Royer et al., 2014]
developed a procedure for modeling a building and its thermal zones using system
identification techniques. The goal is to build a scalable and reusable model that
can model the indoor air temperature on the zone as well as the building level and
that can be applied on different buildings. The authors chose a state space model
structure because it is more suitable for modeling MIMO (Multiple Inputs Multiple
Outputs) systems with the outputs being the air temperature in the considered
thermal zone and the inputs being the outdoor temperature, direct normal solar
radiation and HVAC power in the considered thermal zone.

In other works, researchers used system identification to assess the energy
consumption in buildings. One of the earliest well known methods that used
linear regression for estimating energy consumption is the PrInceton Scorekeeping
Method (PRISM) [Fels et al., 1986] that has been used broadly to analyze conserva-
tion and refurbishment measures in buildings in the US. It is a two variable linear
regression model that uses monthly billing data for one year from a dwelling to find
a weather-adjusted Normalized Annual Consumption (NAC). Later on, [Rabl, 1988]
presented the dynamic inverse models based on system identification. The author
provides an overview of different methods for implementing the identification
process in building thermal modeling with a particular attention focused on their
physical interpretation. All the methods are tested with data from an office building.
[Bauer and Scartezzini, 1998] proposed a regression method to handle both heating
and cooling calculations simultaneously by dealing with internal and solar gains. In
more recent papers, [Arregi and Garay, 2017; Geng et al., 2018; Mottahedi et al., 2015;
Amiri et al., 2015] used regression techniques for estimating the energy performance
of buildings. A review of data-driven models applied for the prediction of the
energy consumption in buildings is presented by [Amasyali and El-Gohary, 2018].

Regression models are also used to determine the values of some parameters.
The equivalence between the structure of physics based models, like the differential
equations derived from an RC network of a building, and "black box" models,
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like linear regression, makes it possible to find the physical parameters of the
building from the identified parameters of the regression model. [Jiménez et al.,
2008b] presented an application of the system identification toolbox IDENT in
Matlab [MATLAB, 1998] to estimate the thermal properties of a wall component by
comparing parametric models to the physical ones derived from the RC network
equivalent of the component. In another work, [Naveros et al., 2015] used in-situ
measured data and the equivalence between an ARX model and an RC network
model for identifying the parameters (U-value, dynamic solar energy transmittance
and effective heat capacity) of a simple homogeneous wall.

Regression models are also applied for detecting faults in the operation of a
building, the faults being most commonly located on the HVAC systems level. For
example, [Turner et al., 2017] introduced a data-driven automated building HVAC
fault detection method that uses a recursive least-squares model approach. The
authors used only the indoor and outdoor temperatures to produce the model.
The parameters of the model are then observed and estimated in real time and the
faults are detected when the model parameters deviate from their values computed
during normal system operation. In another work, [Xiao et al., 2011] presented a
fault diagnosis strategy based on a regression model and a set of centrifugal rules
for centrifugal chillers. Faults are detected by the residuals which are the differences
between the fault indexes calculated by the model and the actual measurements
from the system, the fault indexes being characteristic quantities of the chiller.

1.3.2 Artificial Neural Networks (ANNs)

The Artificial Neural Network (ANN) is a nonlinear statistical learning technique
inspired by biological neural networks. It was introduced in 1959 [Lettvin et al.,
1959]. The network usually consists of an input layer, some hidden layers and an
output layer. Each layer is made up of some interconnected neurons which have
an activation function. Each neuron is connected to neurons of a previous layer
through adaptable weights (see Fig. 1.2). The network uses a learning mode, in
which an input is presented to the network along with the desired output and the
weights are adjusted so that the network attempts to produce the desired output.
The weights after training contain meaningful information whereas before training
they are random and have no meaning.

Three types of parameters are therefore used to define ANNs: the interconnec-
tion pattern between neurons of different layers; the learning process of updating
the weights of the interconnection; and the activation function that converts a
neuron’s weighted input to its output activation as in Fig. 1.3. A first step would
be to properly choose the inputs according to the desired outputs. An initial weight
wi is chosen randomly for each input neuron. Then, the learning algorithm adjusts
the weights of each neuron. Fig. 1.3 illustrates the calculation done at the neuron
level. The node receives weighted activation of other nodes through its incoming
connections. First, these are added up (summation). An activation function is then
applied to the summation result, the outcome is the activation of the node. For each
of the outgoing connections, this activation value is multiplied with the specific
weight and transferred to the next node.
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FIGURE 1.2: Graphical representation of a Neural Network
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FIGURE 1.3: Graphical representation of the activation function in an
ANN

During the past two decades, ANNs have been applied to predict various
types of building energy use, such as the overall building energy consumption,
cooling and heating loads, electricity consumption, sub-level components operation
and optimization and estimation of usage parameters. A number of applications
using ANNs in energy systems are presented by [Kalogirou, 2000]. In 2006, the
same author [Kalogirou, 2006] did a brief review of the use of ANNs in energy
applications particularly in buildings, including solar water heating systems, air
flow distribution inside a room, prediction of energy consumption, indoor air
temperature, HVAC system analysis, etc. In early publications, [Kalogirou and
Bojic, 2000] presented an artificial neural network for the prediction of the energy
consumption of a passive solar building. In this study, the training data was gen-
erated by a simulation program. The input parameters were related to: insulation
(characterizing whether thermal insulation was used on all walls or not), masonry
thickness, a function characterizing whether the heat transfer coefficient was
constant or variable, and time of day. The output is a single value of the simulated
energy consumption of the building in kWh. Various network architectures, such
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as three, four and five-layers, have been investigated aiming at finding the one
that could result in the best overall performance. [Olofsson et al., 1998] predicted
the annual heating demand of a number of small single family buildings in the
north of Sweden. As model inputs they used the difference between indoor and
outdoor temperatures, a building-climate perspective obtained from a dynamic
energy simulation software and a measure of inhabitant influence. Later, [Olofsson
and Andersson, 2001] developed a neural network which makes long-term energy
demand (the annual heating demand) predictions based on short-term (typically
2–5 weeks) measured data with a high prediction rate for single family buildings.
[Mechaqrane and Zouak, 2004] used a Neural Network AutoRegressive with
eXogenous input (NNARX) model to predict the indoor temperature of a residential
building. They also compared the performance of this model with a linear ARX
model. [Kumar et al., 2013] gave a review on energy analysis of a building using
artificial neural networks. In recent works, [Khayatian et al., 2016] used an ANN
for predicting heat demand indicators to validate a data set of energy certificates.
The number of inputs and hidden neurons was optimized in order to achieve
better accuracy. [Magalhães et al., 2017] aimed at producing tools to assess the
relationship between heating energy use and indoor temperatures at different
levels of occupants’ behavior (in terms of where, when and at what temperature
households heat their dwellings). [Deb et al., 2018] aimed to develop prediction
models for HVAC related energy saving in office buildings. The modeling made use
of data gathered from reports that entail building and energy consumption data for
56 office buildings in Singapore. ANN was also employed for fault detection and
diagnosis in building energy systems. For example, [Lee et al., 2004] used a general
regression neural network to detect and diagnose faults in a building air-handling
unit and [Hou et al., 2006] developed a strategy combining a rough set approach
and an ANN method to detect and diagnose sensor faults based on the past running
performance data in HVAC systems.

1.3.3 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are supervised learning models used for classifi-
cation and regression analysis. They are considered as robust and accurate methods
in the field of data mining. The original algorithm for SVM was introduced by
Vapnik in 1963 [Vapnik, 1963] while the current incarnation was published in 1995
[Cortes and Vapnik, 1995] and has been increasingly used in research and industry
for various analyses such as regression, classification and nonlinear function ap-
proximation. The ability of SVMs in solving nonlinear problems made them useful
for forecasting the energy consumption with high accuracy. Therefore, the past
years have witnessed increased number of studies conducted on building energy
analysis with a primary goal of predicting the energy consumption or temperature.

For the buildings heating/cooling load predictions, most of the SVM used is for
regression. Therefore, the basic theory behind SVM for regression is presented in
this section. Given a set of data points (x1, y1), (x2, y2), . . . (xN , yN)(xi, yi ∈ R), SVM
approximates the function of the following form

f (x) = 〈ω, φ(x)〉+ b (1.10)
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with 〈 , 〉 a scalar product, φ(x) representing a high-dimensional feature space and ω
and b are estimated by an optimization problem that corresponds to a minimization
of the regularized risk function norm

minω,b,ξi ,ξ∗i

1
2
‖ω‖2 + C

1
n

N

∑
i=1

(ξi + ξ∗i ) (1.11)

subject to 
yi − 〈ω, φ(xi)〉 − b ≤ ε + ξi
〈ω, φ(xi)〉+ b− yi ≤ ε + ξ∗i , i = 1, . . . N
ξi, ξ∗i ≥ 0

(1.12)

The first term ω is the regularized term and it controls the smoothness of the
model. The second term is the empirical error measured by the ε-insensitive loss
function. C is a regularization parameter that represents a tradeoff between the
flatness of f and the maximal tolerated deviation larger than ε imposed by the user,
and last, but not least, ξi and ξ∗i are two slack variables allowing a flexibility in the
constraints.

The basic idea of SVM for regression is to transform a nonlinear relation between
x and y into a linear map. That is done by sending the nonlinear problem to a
high-dimensional space called feature space and to perform a linear regression
in this feature space. Therefore, a kernel function, defined as the dot product in
the feature space k(xi, xj) = 〈φ(xi), φ(xj)〉 is introduced. With the introduction of
kernels, all necessary computations can be performed directly in the input space,
without having to compute the map φ(x). The most popular kernel functions are:
linear k(xi, xj) = xi · xj; polynomial k(xi, xj) = (xi · xj + c)d; Radial Basis Function

(RBF) k(xi, xj) = e− ‖xi−xj‖2

2σ2 . Using different kernel functions, one can construct
different learning machines with arbitrary types of decision surfaces.

[Dong et al., 2005] presented the first study using SVM for energy consumption
prediction in buildings. The authors examined the feasibility and applicability of
SVM in building load forecasting. They predicted the monthly electricity consump-
tion of four randomly selected commercial buildings in Singapore. Three input
features were considered: monthly mean outdoor dry-bulb temperature, relative
humidity and global solar radiation. They used three years data to train the model
and the derived model was applied to predict the landlord utility for one year.
[Lai et al., 2008] employed SVM to forecast the energy consumption of a residential
building. The data included one year and three months of daily recordings of
electrical consumption and climate data. The predictions were done for the last
month. In another work, [Li et al., 2009a] and [Li et al., 2009b] used SVM to predict
the hourly cooling load in an office building in China and compared it with other
statistical methods. [Fu et al., 2015] used SVM to predict next day electricity load of
public buildings with sub-metering devices.

1.3.4 Genetic Algorithms (GAs)

The Genetic Algorithm (GA) is a stochastic optimization technique deduced from
an analogy with the process of natural selection and evolution theory of Darwin.
It was introduced in 1975 [Fogel et al., 1975], further developed in 1989 [Goldberg,



1.3. "Black box" models 25

2014] and has been used in building simulation since 1990.

In building simulations, GA is used to find the proper equation of a prediction
model able to fit the problem. Three types of equations are frequently adopted:

◦ linear: y = w1x1 + . . . + wnxn,

◦ quadratic: y = w1x1 + . . . + wnxn + wlx1x2 + . . . + wmx1xn + wpx2x3 +
. . . wqxn−1xn + wrx2

1 + . . . + wsx2
n + wt,

◦ exponential: y = w0 + w1xw′1
1 + . . . + wnxw′n

n ,

where y is the output, (x1, . . . xn) are the input variables and wi and w′i are real
valued weights. The task of a GA is to find the best weights. It is a powerful
optimization method that is able to deal with complex problems with a large
number of inputs.

In building modeling, GA is used to find a prediction model of the energy
consumption, for the optimization of the equipment/load demand and for finding
an optimal estimate of the parameters in an energy model. [Sadeghi et al., 2011]
aimed at estimating the consumption of electricity per capita in the residential sector
based on economic indicators in Iran using the genetic algorithm approach. Three
forms of equations (linear, quadratic and exponential equations) were developed
to estimate the electricity demand, the developed models were validated with
actual data and the best estimated model was selected. In another work, [Ozturk
et al., 2005] studied the annual electricity consumption estimation in Turkey. They
implemented two prediction models of the annual electricity consumption for
both the industrial and the total Turkish demand. [Canyurt et al., 2005] developed
three forms of equations to better analyze energy use and make future predictions
based on GA approach. The models developed in the quadratic form are applied to
Turkey. The estimation is based on the Gross Domestic Product (GDP), population,
import, export, house production, cement production and basic house appliances
consumption figures. [Ooka and Komamura, 2009] used GA for design purposes.
They applied two genetic algorithms to propose an optimal design method for
building energy systems. The goal of the method was to ensure the energy efficiency
of the system and the best operational planning for heating and cooling taking
into consideration important criteria like energy consumption and CO2 emissions.
The first GA was for the equipment capacity, and the second one for the operation
planning. Another application of GA is parameter identification. For example,
[Wang and Xu, 2006] used GA to identify the parameters of their energy model. The
building energy model consisted of the simplified models of the building envelopes
and the simplified model of the building internal mass. The parameters of the
building envelopes are identified using available physical properties, however, the
parameters of the building internal mass model are identified using monitored
operation data and optimized using GA.

1.3.5 Decision trees

A decision tree is a technique to partition data into groups using a tree-like chart.
It is therefore a graph consisting of a root node and a couple of branch nodes. The
root nodes correspond to the input data. These root nodes are split into different
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groups based on the predictor variables. The split data is then disseminated to
sub-nodes as branches. The data on the sub-nodes can undergo further split or not.
In a decision tree model, each non-leaf node represents one feature, each branch of
the tree represents a different value for a feature, and each leaf node represents a
class of prediction as shown in Fig. 1.4.

Root node
(predictor variable)

Outdoor air temperature<26°C

Yes No

Leaf node
Conditioners turned OFF

Internal node
(predictor variable) 

Presence of Occupants 

Yes No

Leaf node
Conditioners turned OFF

Leaf node
Conditioners turned ON

FIGURE 1.4: Graphical representation of a decision tree

Decision tree is a relatively new approach for building thermal modeling and
energy consumption prediction, therefore, limited number of publications using this
type of modeling is found in the state of the art. [Yu et al., 2010] developed a building
energy demand predictive model based on the decision tree method. The method
is applied to estimate residential building energy performance indexes by modeling
building Energy Use Intensity (EUI) levels. The method provided the combination
of significant factors as well as the threshold values that will lead to high building
energy performance. [Hong et al., 2012] developed a decision support model for se-
lecting the facility expected to be effective in generating energy savings and making
the facility improvement program more effective. Energy consumption data were
collected from 6282 elementary schools. The decision tree was used to establish
groups of schools based on their energy consumption. Then, the accuracy of pre-
diction was improved using a combination of genetic algorithms, artificial neural
networks, and multiple regression analysis. The application of a prediction model
after forming a cluster based on the energy consumption using decision trees im-
proved the prediction accuracy.

1.3.6 Summary and discussion on the statistical models

This section described five data-driven methods employed in the literature for mod-
eling the thermal behavior of buildings and predicting their energy consumption.
Linear regression is frequently employed in this domain for its simplicity, prediction
accuracy and low computational cost. Another advantage of linear models is that
they are easier to use in control schemes than nonlinear models and need less
amount of data. However the main limitation remains their linear structure which
makes them unable to describe nonlinear phenomena. ANNs are also widely used
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in the building community. The ability of ANNs in solving nonlinear problems
made them effective for forecasting the energy consumption of buildings because
of the complexity of the latter system. The ANN models used in the literature
show relatively good performance but a huge limitation of this method is its lack of
interpretability and the large amount of learning and relevant data required. The
third technique presented was the SVM. SVM algorithms present an advantage by
their ability to handle nonlinear problems with a less amount of data than ANN,
however, their main limitation remains in the choice of the appropriate kernel func-
tion and their high computational time. GAs are also employed for building energy
consumption prediction and for optimizing the functioning of some equipment or
the value of some parameters in the model. The advantage of this method is its
ability to deal with complex problems with a large number of inputs. It is also a
powerful optimization method. However, a main drawback of this method is that
one can never be sure that the GA has generated the optimal solution. It is also a
time consuming method. The last data-driven technique presented was the decision
trees. Their main advantage is their technical simplicity, they are interpretable
flowchart-like tree structures that enable the user to extract useful information. In
comparison to other data-driven approaches, decision trees are easy to understand,
less complex and are not expensive in terms of computation time. However, their
prediction accuracy is not very high and they still have limited performance when
it comes to non linear problems.

For the "white box" models we saw that the choice of the software tool or tech-
nique depends on the desired output of the application itself. However, in the case
of statistical techniques, this does not hold as it is hard to say which technique is
more suitable for which type of application. Choosing one statistical technique over
another is mainly related to the desired simplicity of the model and the richness
of available data. The level of interpretability could also be a factor to consider for
choosing one method over another. For instance, linear regression provides more in-
terpretable results and a better representation of the dynamicity of the system than
the other "black box" techniques. In order to overcome the physical interpretability
of the model, some researchers proposed a mix between "black box" and "white box"
techniques to introduce the so-called "grey box" models.

1.4 "Grey box" models

"Grey box" models were introduced as a complementary approach between physics
based and data-driven models. The goal behind joining these two is to remove
the drawbacks of each one of them when applied alone. These would be the
lack of physical interpretation and the need of a large amount of data for "black
box" models and the need of a detailed physical description of the system and
the complexity found in "white box" models. A "grey box" model is therefore a
model that respects the physical aspect of the system without the need of a detailed
physical knowledge about it or a big amount of data.

1.4.1 Thermal networks based "grey box" models

One of the most common "grey box" approaches employed for building thermal
modeling is the approach based on a representation of the building as an RC thermal
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network as shown in Fig. 1.5. It uses data collected from the system to estimate
the values of the parameters (resistances and capacitances) and the differential
equations derived from the network to model the thermal behavior of the building
1. The interior environment is modeled by a temperature node Ti and a capacitance
Ci, the heater is modeled by an input heating power φh, the solar radiation on the
envelope is also represented by an input heating power Awφs, the building envelope
is represented by a temperature node inside the envelope Te, two resistances on
each side of the node Rie and Rea and a capacitance Ce, the solar radiation inside
the building is represented by the heat input Aeφs while the ambient temperature
is represented by the node Ta. The differential equations describing the thermal
behavior of the building are derived from the network and the parameters of
the network, i.e., the resistances and capacitances, are identified using statistical
techniques.

FIGURE 1.5: Example of an RC thermal network for buildings [Bacher
and Madsen, 2011]

One of the earliest research work applying the analogy between the electric
circuit and a thermal network for a whole building is presented by [Sonderegger,
1978]. The house is represented by a single electrical analog, composed of one
capacitor and a few resistors and the parameters are fitted to recorded time histories
of weather and measurements of heating load and indoor temperature in the house.
In the following years, many researchers have employed this type of modeling for
describing the building thermal behavior. We cite in particular the work of [Madsen
and Holst, 1995; Andersen et al., 2000] in which the authors describe the continuous-
time modeling of the heat dynamics of a building based on discrete-time data and
statistical methods. The statistical methods are used in parameter estimation and
model validation, while physical knowledge is used in forming the model structure.
The suggested lumped parameter model is thus based on thermodynamics and
formulated as a system of stochastic differential equations. The parameters in
the continuous-time model are estimated by the maximum likelihood method
where a Kalman filter is used in calculating the likelihood function. This work
was extended after and has lead to one of the most cited papers in this domain
[Bacher and Madsen, 2011] in which the authors suggested a procedure based on
"grey-box" models for the identification of suitable models for the heat dynamics
of a building. They formulated a hierarchy of models of increasing complexity
based on prior physical knowledge and they suggested a forward selection strategy
enabling the modeler to iteratively select suitable models of increasing complexity.

1When the R and C parameters are determined using physical properties obtained from the tech-
nical sheets of a building, the thermal network model is considered as "white box" since it relies com-
pletely on the physical knowledge of the building.



1.4. "Grey box" models 29

They applied their procedure on a single storey building and the performance of
the models was compared using likelihood ratio tests. More works can be found
from the 90’s until the present day. For example, the work of [Boyer et al., 1996]
shows the adaptation of the nodal analysis linked to the case of a building thermal
behavior where the authors considered the case of conduction into a wall using the
thermo-electric analogy. [Wang and Xu, 2006] proposed a method to simplify the
building thermal model and to identify the parameters of the simplified model. For
building envelopes, the model parameters can be determined using the physical
details. However, since the building internal mass involves various components, it
is very difficult to obtain the detailed physical properties. Therefore, the building
internal mass is represented by a thermal network of lumped thermal mass and the
parameters are identified using GA estimators. [Park et al., 2013] modeled a build-
ing system by a second order RC thermal network and the thermal parameters of
the model were identified using different linear parametric models. [Reynders et al.,
2014] proposed the identification of reduced-order grey-box models of increased
complexity. They analyzed the robustness of the identified models for day-ahead
predictions as well as the physical interpretation of the identified parameters. Five
model types were investigated ranging from 1st to 5th order models. [Harb et al.,
2016] also presented a model identification approach for forecasting the building
thermal response based on grey-box models. They compared four models in their
ability to forecast the building indoor temperature behavior. They found that a
two-capacitor (second order) model structure with an additional consideration
of the indoor air as a mass-less node (4R2C-model) enables the most accurate
qualitative prediction of the indoor temperature. In a very recent work, [Brastein
et al., 2018] investigated the dispersion of parameter estimates of a grey box model
based on a lumped parameter thermal networks by use of randomization. They
showed that a significant dispersion in the parameter estimates exists when using
randomized initial conditions for a numerical optimization algorithm.

[Ferracuti et al., 2017] provided a comparison of three data-driven models for
short-term thermal behavior prediction in a real building. The considered building
models are: three lumped element grey-box models of first, second and third order,
an ARX and a Nonlinear ARX (NARX). The models identification is performed by
means of real measured data. Nevertheless the quantity and quality of the available
input data, all the data-driven models show good accuracy in predicting short-term
behavior of the real building both in winter and summer. Among the grey-box mod-
els, the third order one shows the best performance.

1.4.2 Other "grey box" examples

Although the thermal network model is one of the most popular "grey box" models
used, different structures and approaches exist in which the authors couple BES
tools with statistical techniques in order to obtain an accurate thermal model. For
example, [Lü et al., 2015] presented a methodology based on a physical–statistical
approach designed to account for building heterogeneity that arises from weather
conditions, energy flows, occupancy, etc. Stochastic parameters are introduced into
the physical model and the statistical time series model is formulated to reflect
model uncertainties and individual heterogeneity in buildings. [Zhao et al., 2014]
focused on learning the behavior of occupants in an office building. They developed
a data mining approach using office appliance power consumption data to learn
the occupants’ behavior. The impact of the occupants’ behavior on the energy
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consumption of the HVAC system was investigated by simulating EnergyPlus
models. [Qin et al., 2012] coupled CFD with a machine learning technique for
the prediction of the thermal dynamic behavior in an atrium. CFD enables the
prediction of indoor thermal data for buildings while an energy simulation model
provides a whole building energy analysis. An ANN is used as an integrating tool
to couple the energy simulation model and the CFD model. In an original work,
[Macarulla et al., 2017] studied the potential of creating predictive models using a
stochastic grey-box modeling approach to predict CO2 concentrations in a room
that are most commonly estimated by the differential equation of the tracer-gas
mass balance. A set of stochastic differential equations are first defined and then,
the model parameters are estimated using a maximum likelihood method. The
approach therefore combines physical knowledge and information embedded in the
monitored data to identify a suitable parametrization for the model. [Hasan et al.,
2014] presented in their paper a new control approach that depends on a Monte
Carlo method to generate an optimal heating plan. The approach is a minimization
problem with the following constraints: the building inertia, the energy dynamic
pricing and the thermal comfort of occupants. For this purpose, they used a
second order state space model, for which the parameters were estimated using
input-output data. The output of the developed model is the interior temperature
while the inputs are the outside temperature, the energy supplied by the heating
system and the solar and interior gains. The data sets used for estimating the
parameters and validating the model concern historical recorded data of interior,
exterior temperatures and the associated supply of energy.

1.4.3 Summary and discussion on the "grey box" approaches

As we can see from the previous examples, the advantages of "grey box" approaches
are clear as they are a compromise between "white box" and "black box" models.
They present the advantages of both techniques and thus remove some important
drawbacks.

The lumped thermal network method is frequently employed because, from the
physical point of view, it is easy to implement when compared to other physics
based methods. The main limitation was in determining the right value of the R
and C parameters. This was solved by combining this representation with statistical
techniques using measurements from the system in order to find the most accurate
values of the parameters. However, the limitation of this method remains in the
fact that the structure of the network cannot be easily determined. Therefore, one
has to test many orders and construct multiple thermal networks in order to find
the best one, which is time consuming and also needs a certain level of expertise in
the domain. The accuracy of the model will depend on the available data and the
optimization technique used. Moreover, the model is represented by first order dif-
ferential equations so it remains linear and probably unable to describe the existing
nonlinearities, a problem attempted to be solved by having stochastic differential
equations. Other types of "grey box" models exist and it is hard to have one single
axe of comparison because of the big variety of methods that could be coupled for
different purposes.
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1.5 Conclusion

In this first chapter, a short selection of papers in the field of building thermal
modeling and energy performance prediction was presented. The focus was on
dynamic models to the detriment of static ones. Some of the presented articles
were related to the air flow in buildings and occupants’ comfort. As one can
see, the field has been at the heart of the research community for almost 50 years
now. A rich state of the art exists with a big variety of techniques classified into
three groups: the physics based, the data based and the last one joining both aspects.

First, the physics based category was presented for which three sub-categories
were defined, each category being adapted for a certain type of applications.
Then, the "black-box" approach was presented where the models are developed by
measuring the input and output data of the system and by fitting a mathematical
function to the data. The main limitation of "black box" models is the need of a rich
data set of measurements collected from the system to identify an accurate model
[Scanu, 2017]. This implies that these models cannot be used at the design stage, or
for deciding on the most efficient renovation strategies. The fact that they do not
rely on the physical aspect of the system can be seen as an advantage in terms of the
non-necessity for any information about the physical properties of the system, but it
can also be seen as a limitation because of the lack of physical interpretability of their
parameters. The use of this kind of models is intended to complement the use of
classical "white box" models by trying to overcome some of their limitations, namely
the need for a large number of precise physical parameters and their inability to
accurately model the occupants’ behavior which leads to discrepancies between
the expected and real output. "Black box" models, being based on data collected
from the system during operation phase, could be the solution for providing an
accurate description of the thermal behavior of buildings taking into account the
occupants’ behavior. Another advantage of some data-driven techniques is the
simplicity of the model compared to "white box" models which makes them more
attractive for control purposes, an aspect that is very important, given that control
strategies are increasingly used to ensure occupants’ comfort and optimize the
energy consumption of HVAC systems. A compromise between the "white box"
models and the "black box" models can be found in the last modeling approach
presented, the "grey box" techniques. They consist in coupling the two previous
models and remove some of their drawbacks. However, a certain level of expertise
will still be required in order to develop such models. All other aspects such as
computation time, accuracy, physical knowledge and required data will depend on
the types of techniques employed and a lot of combinations exist. The choice of this
modeling technique depends on the expertise of the modeler, the desired outcome
and the available data. This type of techniques seems to be a promising field for the
near future, their development being highly dependent on the cooperation between
the "white box" and "black box" communities.

This work focuses on "black box" models, in particular, system identification ap-
plied to hybrid systems, i.e., systems that exhibit both continuous and discrete dy-
namics. This is motivated by the desire of offering simple, easy to implement but
also accurate models representing the dynamic aspect of the thermal behavior of
existing buildings for which the physical knowledge may be lacking. The difficul-
ties presented by classical ARX models in terms of their inability to model nonlinear
phenomena are overcome by the idea of using a particular class of hybrid system
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identification techniques called Piece Wise ARX (PWARX), dedicated to the model-
ing of nonlinear systems. The next chapter presents in more details the motivation
behind using this type of modeling techniques for describing the thermal behavior
of buildings.
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Chapter 2

Hybrid system approach:
motivation, background and
applied methodology

This chapter introduces the hybrid dynamical systems approach proposed in this
thesis for modeling the thermal behavior of buildings. After a general background
on hybrid models, the motivation behind using this type of model for describing
the thermal dynamics of a building system is given in Sect. 2.2. Sect. 2.3 presents
a concise literature review on hybrid system identification while Sect. 2.4 details
the PWARX algorithm applied in this thesis in its original form. Finally, Sect. 2.5
concludes this chapter.

2.1 Introduction

The first chapter recalled some of the state-of-the-art in the area of the thermal
simulations for buildings and the evaluation of their energy performance. Despite
the variety of options available, finding a reliable model describing the thermal
behavior of a building is not an easy task considering the complex and nonlinear
processes governing the building environment. Moreover, a building is charac-
terized by the occurrence of different events like opening/closing windows or
changing the heating mode. These events could greatly affect the thermal dynamics
in the building and therefore, the model should take them into account. “White
box" models being derived from physics laws present advantages over the other
types of modeling techniques with their ability of modeling such events. However,
a number of limitations that were detailed in the previous chapter, typically related
to the need of a high number of precise parameters, the complexity of the model
and the need of measurements to calibrate it, has pushed researchers to try to find
complementary modeling approaches. On the other hand, the main limitation of
other types of state-of-the-art modeling techniques is that changes in the venti-
lation rate or the occupancy level are most commonly disregarded or treated as
disturbances using stochastic approaches [Madsen and Holst, 1995]. Moreover, the
limitation of system identification techniques commonly used for building thermal
modeling [Ljung, 1998] is the hypothesis of a linear model that makes them yield an
incomplete description.

This thesis presents a methodology based on a nonlinear data-driven technique
for modeling the thermal dynamics of buildings. This methodology uses input-
output measurements: the inputs are the typical ones related to solar radiation,
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heating and temperature in the surrounding environment and the output is the
temperature in the building zone. No physical knowledge is needed, therefore,
the proposed approach is particularly suitable for existing buildings. It is based
on a switched system representation, with an easy to implement, reliable and
automated model generation, capable of characterizing the continuous behavior
of the temperature when discrete events affect the system. The method detects
different configurations by joining data points representing the same behavior in
one class and then identifying an appropriate model for it. Instead of a single model
representing the dynamics of the temperature inside a building, this thesis proposes
to model the building system via a set of continuous sub-models, each one of them
representing certain dynamics.

This methodology takes profit of recent advances in the hybrid system iden-
tification community. Hybrid systems are heterogeneous dynamical systems that
combine simultaneously continuous and discrete dynamics. For example, the
air temperature evolution in a building is continuous, but could be disrupted
by discrete events, after which, it goes back to being continuous. This type of
systems can be represented (in a state space form or input-output form) by a
set of continuous sub-models where each one represents a discrete mode [Vidal
et al., 2002; Doucet et al., 2001; Bemporad and Morari, 1999a]. The idea of using
hybrid models for building thermal modeling has been virtually unexplored in
the literature of building dynamic thermal modeling up to now. [Luo and Ariyur,
2010] and [Lin et al., 2012] emphasized the significant effect of the convective heat
transfer through an open door on the thermal dynamics and the energy savings
inside a zone which motivates the use of different models for the case of an open
or closed door and that is what [Lin et al., 2012] did in their paper. [Yun et al.,
2012] presented a time and temperature indexed ARX model for thermal load
prediction in buildings. This means that they used different sets of coefficients in
the ARX predictive equation depending on the time of the day and the ambient
temperature. [Paulus et al., 2015] employed change point models or piecewise linear
regression models to predict the energy consumption in buildings. They proposed
an algorithm to automatically select a correct model shape based solely on outdoor
temperature. Five different model shapes were proposed and the correct change
point model shape was determined through a series of tests. In these works, the
necessity of using different models for representing different kinds of dynamics in a
building is highlighted. Moreover, [Fazenda et al., 2016] investigated context-based
thermodynamic modeling of buildings using an RC thermal network where the
model changes according to the configuration. They used a context-dependent
reduced thermal network model and many configurations were tested like changing
the heating mode, the ventilation rate, etc. This work falls in the same category
as ours, the general idea being the same, i.e. changing the model according to
the configuration/context. However, in this previous work, the authors use a
physical approach, and consider that the number of contexts (configurations) and
the boundary conditions that control the transitions are observable and previously
known. In our work, these transitions are detected automatically by the algorithm
based solely on input-output data of the system, without any prior knowledge on
the occurrence time of the transitions, or the number of discrete states. This means
that anytime a new dynamic behavior of the temperature in the building is detected
for one reason or another, the algorithm estimates a new model to describe the new
behavior.
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For this purpose, a particular class of hybrid switching models called PWARX
(PieceWise Autoregressive eXogenous input) introduced in [Boukharouba, 2011] is
employed in this thesis because of its suitability for this type of application, namely
the fact that no previous knowledge about the number of sub-models/discrete
states or events that may exist in a building is available. In the next section, this
type of modeling is motivated through an equivalence with the thermal conditions
in a building system in terms of the occurrence of discrete events changing the
underlying physical processes.

2.2 Theoretical Foundations

This section presents the motivation behind using switching models for building
thermal modeling from a physical and mathematical point of view. For this, the
example of a simple building modeled using the thermal network approach is
discussed. On the basis of the physical equations derived from the RC thermal
model, it is shown how a configuration change could lead to a change in the
dynamic behavior of the indoor temperature in terms of its model structure and
parameters [Ajib et al., 2017].

2.2.1 Lumped RC thermal model for a building

We consider the case of a typical small occupied building subject to normal weather
conditions. The RC model is shown in Fig. 2.1.

Re1Tex Re2

Envelope

Rh

Th

Ch

Heating system Air film Interior OccupantsOutdoor

Windows

S3φh

Tf ilm

C f ilm

S3

R f ilm

S3Te

Ceαφs

S1

Rvent

Rwd

S2

Rsh

Tin

Cin βφs

S4
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FIGURE 2.1: RC model of the building

In this RC model, one capacitance and two resistances (Ce, Re1, Re2) are used to
model the envelope. The heating system is modeled by one capacitance (Ch), one
resistance (Rh) and a heat flow input (φh). The occupants are modeled in the same
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way (Cocc, Rocc, φocc)1. One capacitance is considered for modeling the indoor envi-
ronment (Cin). An extra one is considered for modeling the indoor air temperature
in case the heating is ON (C f ilm), as will be explained later on. Windows and shut-
ters are considered of a low thermal capacity and are therefore represented solely by
resistances (Rwd, Rsh). One resistance (Rvent) is used to model the thermal resistance
for ventilation when the windows are open. Besides the heat flow from the heat-
ing system and the occupants, the outdoor temperature (Tex), solar radiation (on the
exterior walls (αφs) and transmitted to the building through the windows (βφs)) are
the remaining model inputs. The model output is the indoor air temperature. The
configuration changes are represented via switches S1, S2, S3 and S4 as follows:

◦ Windows
{

S1 = 0 (S̄1 = 1), S1 up, windows open
S1 = 1 (S̄1 = 0), S1 down, windows closed.

◦ Shades
{

S2 = 0 (S̄2 = 1), S2 up, shades open,
S2 = 1 (S̄2 = 0), S2 down, shades closed.

◦ Heating
{

S3 = 0 (S̄3 = 1), S3 up, heating OFF,
S3 = 1 (S̄3 = 0), S3 down, heating ON.

◦ Occupants
{

S4 = 0 (S̄4 = 1), S4 up, absence of occupants,
S4 = 1 (S̄4 = 0), S4 down, presence of occupants.

A third, fourth or fifth order thermal network model is hence obtained depend-
ing on the position of the switches S3 and S4, as shown in Fig. 2.1. This figure shows
the building with its main components: the interior environment of the room (air
volume, equipment and furniture), the heating system, the windows (controlling
the ventilation), the envelope and the occupants. This lumped model, based on
simplified physical equations, explains why different configurations occurring in a
building lead to a hybrid model.

The parameters are detailed in the list of symbols. Eq. (2.1) presents the coupled
differential equations derived from this model:
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(2.1)

with Req = S̄1Rvent + S1(Rwd + S2Rsh).

1In the literature, for simplification purposes, the heat gain from the occupants and the heating
system are most of the time considered as input flows [Bacher and Madsen, 2011; Reynders et al., 2014].
In this work, the goal behind the proposed thermal network is to investigate the effect of different
configurations on the structure and the parameters of the thermal model. Therefore, these components
are not simplified by an input heat source, they are presented by their capacitance and resistance to
properly analyze their effect on the model for different configurations.
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These equations are rewritten in state space form as shown in Eq. (2.2):
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Ṫin

S4Ṫocc
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Eq. (2.2) is a state-space equation with the state vector x(t) containing the tem-

peratures of the exterior wall, the air film next to the radiator (controlled by S3), the
heater, the indoor air and the occupants’ body (controlled by the presence of occu-
pants via S4) while the input vector u(t) contains the solar radiation φs, the heat flux
from the heater φh, the ambient temperature Tex and the heat flux from the occupants
φocc. State vector components are internal variables describing the dynamics of the
system and evolving with time (first derivative) under the influence of the inputs.
Matrix A is the state matrix and B is the input matrix. The output equation

y(t) = Cx(t) + Du(t) (2.3)

is an algebraic equation expressing the measured quantity y(t) as a linear combi-
nation between state and input vectors with coefficients given by the entries of the
matrices C and D, respectively. In our case, the indoor temperature is the model
output, hence C=[0 0 0 1 0] and D=0, since there is no direct influence of the inputs
on the outputs. The transfer function is obtained by applying the Laplace transform
to both the state Eq. (2.2) and the output Eq. (2.3) and by finding the ratio out-
put/input (H(s)=Y(s)/U(s)). The transfer function can be directly determined from
the state-space representation as follows:

H(s) = C(sI − A)−1B + D =
P(s)
q(s)

=
[

p1(s)
q(s) . . . pnu (s)

q(s)

]
, (2.4)

where s is the Laplace variable, a complex number, nu is the number of inputs (4 in
this case). For Linear Time Invariant (LTI) systems, H(s) is a rational function, hence
it can be expressed as a ratio of two polynomials as in Eq. (2.4), with pj(s) and q(s)
being polynomials of order na and nb respectively:

pj(s) =
nb

∑
i=0

bi jsi, j = 1, nu (2.5)

q(s) =
na

∑
i=0

aisi. (2.6)

These polynomials define the transfer function, but the coefficients ai and bij
lack any physical interpretation. The system zeros and poles are found as the roots
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of the numerator and denominator polynomials, respectively, and they offer some
physical insight into the behavior of the system. The poles of the system are also the
eigenvalues of the system matrix A and represent the time constants related to the
system dynamics [Rabl, 1988]. In building systems, the time constant is a function
of the product between the thermal resistances and capacitances (τ = RC). Any
change in the values of the elements of matrices A or B will change the coefficients of
the transfer function (see Eq. (2.4)). Changes in A affect the calculated eigenvalues,
and thereby, the values of the time constants.

2.2.2 Physical interpretation of model switches

Let us consider the two configurations induced by the switch S3, i.e. heating
ON/OFF, and the resulting equations for each configuration, taking into account
the presence of occupants (S4 = 1).

Heating OFF (S3 = 0, S̄3 = 1):
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(2.7)

In this case, the heat flow is off, the temperature of the room Tin is considered
to be homogeneous, the air film next to the radiator does not have a distinct
temperature Tf ilm, and therefore, the system is represented by a fourth order model
as in Eq. (2.7) (the model order is given by the dimension of the system matrix A).

Heating ON (S3 = 1, S̄3 = 0):
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ẋ(t)

=


− 1

Ce (
1

Re1
+ 1

Re2
) 1

Ce
1

Re2
0 0 0

1
C f ilm

1
Re2

− 1
C f ilm

( 1
Re2

+ 1
Rh

+ 1
R f ilm

) 1
C f ilm

1
Rh

1
C f ilm

1
R f ilm

0

0 1
Ch

1
Rh

− 1
Ch

1
Rh

0 0

0 1
Cin

1
R f ilm

0 − 1
Cin

( 1
Req +

1
R f ilm

+ 1
Rocc )

1
Cin

1
Rocc

0 0 0 1
Cocc

1
Rocc − 1

Cocc
1

Rocc


︸ ︷︷ ︸

A

 Te
Tf ilm

Th
Tin
Tocc


︸ ︷︷ ︸

x(t)

+


α

Ce 0 1
Ce

1
Re1

0
0 0 0 0
0 1

Ch
0 0

β
Cin

0 1
Cin

1
Req 0

0 0 0 1
Cocc


︸ ︷︷ ︸

B

[
φs
φh
Tex
φocc

]
︸ ︷︷ ︸

u(t)

(2.8)
When the heating is turned ON, the temperature of the air close to the radiator

increases significantly compared to the temperature of the air on the other side
of the room. This high temperature air film increases the heat exchange with the
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surrounding environment (in our case, the outside and the air on the other side
of the room). We therefore no longer consider one homogeneous temperature Tin
representing the room, instead, we add the air film temperature Tf ilm and the new
heat exchange coefficient with the environment R f ilm. The system in this case is rep-
resented by a fifth order model as in Eq. (2.8). The transition from one configuration
(heating ON) to another (heating OFF) changes the structure and the values of the
coefficients in matrices A and B. The change in the values of the elements in matrix
A leads to new eigenvalues and new time constants. Changes in matrix B will
change the numerators of the transfer function (2.5) and, consequently, the system
zeros. Therefore, switching the heating ON/OFF changes the dynamical behavior of
the indoor air temperature and implies a new representative dynamic hybrid model.

In the same way we demonstrate that the presence/absence of occupants,
induced by toggling the switch S4, leads to a change in the model structure and the
parameters in the matrices. Opening/closing windows or shades leads also to a
switched system. In fact, the equivalent resistance Req changes if we open/close the
windows or the shades. In case of open windows (S1 = 0), we have Req = Rvent

2.
However, if the windows are closed and the shades are open (S1 = 1, S2 = 0), then
Req = Rwd (windows resistance), and in the case of closed shades (S1 = 1, S2 = 1),
Req = Rwd + Rsh (windows and shades resistances). In this case, the value of Req in
matrices A and B changes with respect to the configuration, implying also a change
in the dynamics of the temperature.

This section corresponds to the first contribution of this thesis as it showed
why hybrid or switching models are appropriate to represent the dynamics of the
temperature in the building. The above physical and mathematical analysis showed
that the events that occur in a building like opening/closing the windows and
shades, turning the heating ON/OFF or the presence of occupants have a direct
effect on the model structure and parameters. These sudden events, represented
by switches, lead to different state space models and therefore local transfer
functions that characterize each mode or configuration. This hybrid model will
join the discrete aspect of the system related to the transition between different
configurations, and the continuous aspect of the temperature evolution that lies
behind each configuration. We can thus assume that the output follows at any
time instant one of these sub-models which are more accurate to reproduce specific
dynamics associated to a variety of discrete modes. A discrete mode corresponds
to a unique local configuration and a discrete event leads to a jump between two
modes. Therefore, the second contribution of this thesis will be to show how one
can build such models from input-output data.

2.2.3 Equivalence between PWARX models and local transfer functions
derived from the thermal network

In this section, we establish the equivalence between the interpretation given in Sect.
2.2.1 and 2.2.2 using transfer functions derived from the state space representation
of the building system and PWARX models. In those sections, it was shown how
the change in some of the parameters in the state and input matrices, caused by
the change in the configuration of the building, lead to local transfer functions

2The ventilation resistance through the windows is much lower than the conduction heat transfer
resistance.
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representing different dynamics. In this thesis, we use a PWARX model, which is a
collection of ARX models in input-output form and not in transfer function form,
however, these two representations (input-output and transfer function) of the same
system are equivalent.

First of all, the transfer function in Eq. (2.4) is represented in the continuous-
time domain, the discrete-time equivalent of this function is obtained by applying
the z− trans f orm. The transfer function H(s) corresponds to Hd(z), where the in-
dex d denotes the discrete form and z is a complex number, through the bilinear
transformation, also known as Tustin’s method [Matsuno, 1984]:

Hd(z) = H(
2
T

.
z− 1
z + 1

). (2.9)

It maps points on the jω axis (Re[s] = 0) in the s-plane to the unit circle (|z| = 1) in
the z-plane [Matsuno, 1984]. The discrete-time transfer function is therefore written
similarly as in Eq. (2.4):

Hd(z) =
[

p1(z)
q(z) . . . pnu (z)

q(z)

]
(2.10)

where

pj(z) =
nb

∑
i=0

bi jz
−i, (2.11)

q(z) =
na

∑
i=0

aiz−i (2.12)

are different than pj(s) and q(s) in (2.5) and (2.6) but, by abuse of notation, we use
the same notation.

We recall now the ARX equations presented in Sect. 1.3.1, i.e., Eq. (1.2) and Eq.
(1.3) and for simplicity we consider nk = 1:

y(t) = −a1y(t− 1)− ...− ana y(t− na) + b1u(t− 1) + ... + bnb u(t− nb) + e(t) (2.13)

and

ŷ(t) = −a1y(t− 1)− ...− ana y(t− na) + b1u(t− 1) + ... + bnb u(t− nb). (2.14)

If we introduce
q(z) = 1 + a1z−1 + ... + ana z−na , (2.15)

and
p(z) = b1z−1 + ... + bnb z−nb , (2.16)

where z−1 is the backward shift operator such that z−iy(t) = y(t− i), we obtain

q(z)y(t) = p(z)u(t) + e(t), (2.17)

thus, Eq. (2.13) becomes

y(t) =
p(z)
q(z)

u(t) +
1

q(z)
e(t). (2.18)
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Therefore, a transfer function having the same structure of polynomials con-
stituting the discrete-time transfer function derived from a state space model (Eq.
(2.10), (2.11), (2.12)) can be derived from an ARX model. The PWARX model con-
sists of a group of different ARX models where each one corresponds to a certain
configuration of the building. The parameters of the ARX models change from one
mode to the other. This is equivalent to the change in the numerator and denomi-
nator parameters of the transfer function when switching from one configuration to
another as explained in Sect. 2.2.2. Each ARX model is therefore equivalent to a local
transfer function describing the dynamics of the system for a certain mode. There-
fore, the use of PWARX is consistent with the interpretation given in Sect. 2.2.1 and
2.2.2 by finding local transfer functions that correspond to different discrete states in
a building system.

2.3 Background on hybrid systems identification

Hybrid systems can be used to describe real phenomena with discontinuous or
nonlinear behavior. Different methods for the identification of hybrid systems exist
and they have attracted increasing attention due to their potential applications.
Most efforts in this domain have been devoted to the identification of PieceWise
Affine (PWA) models [Sontag, 1981]. However, other model structures can be
found in the literature for representing dynamic hybrid systems like Mixed Logical
dynamical (MLD) models [Bemporad and Morari, 1999b], Linear Complementarity
(LC) models [Schumacher et al., 2000], Extended Linear Complementarity (ELC)
models [De Schutter, 2000], Max-Min-Plus-Scaling (MMPS) models [De Schutter
and Van den Boom, 2001] and Markov jump linear models [Costa et al., 2006;
Do Valle Costa et al., 2012]. Given the equivalence between PWA models and some
of these classes of hybrid models that was first established in 2000 by [Bemporad
et al., 2000], PWA system identification techniques can be regarded as general
hybrid system identification techniques that are suitable for modeling many types
of switched and hybrid systems. Moreover, the universal properties of PWA maps
make them attractive for nonlinear system identification via multiple linearizations
at different functioning points.

This class of hybrid models has actually proven to be effective in problems
involving complex nonlinear systems with large data sets. It was successfully
applied in various application domains, namely, computer vision [Vidal and Ma,
2006], electromechanical and automotive systems like DC motors [Canty and
O’Mahony, 2009], suspension systems [Xu et al., 2016] and wind turbines [Vašak
et al., 2011], systems biology [Imura et al., 2010; Vries et al., 2009], environmental
systems like open channel systems [Boukharouba et al., 2010], water tanks [Mayer
et al., 2015; Joseph et al., 2015, 2017], food industry [Xin et al., 2018] etc. This type
of modeling has also given relatively satisfactory results for the modeling of a
greenhouse [Rajaoarisoa et al., 2012], a system that could be considered close to a
building system. A more exhaustive background on PWA models, their advantages
and applications can be found in [Xu and Xie, 2014].

A PWA system is a collection of affine systems sharing the same continuous state
and the switching between them is indexed by a discrete-valued signal called the
discrete state. PWA models are obtained by partitioning the state-input domain into
a finite number of non-overlapping convex polyhedral regions and by considering
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linear/affine sub-systems in each region [Paoletti et al., 2007]. The identification of
PWA models from measurements is a challenging problem involving the estimation
of various parameters as will be explained later on and a clustering problem to
associate each data point to the corresponding sub-model [Ohlsson and Ljung, 2011].

PWA systems can be represented in state-space form and in input-output form.
In state-space from, a discrete-time switched affine system is represented by the fol-
lowing equations:

x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t) + fσ(t) + ω(t)
y(t) = Cσ(t)x(t) + Dσ(t)u(t) + gσ(t) + υ(t), (2.19)

where x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny are respectively the continuous state,
the input and the output of the system at time t ∈ Z; n, nu and ny being respectively
the number of states, number of inputs and number of outputs. ω(t) ∈ Rn and
υ(t) ∈ Rny are noise terms. σ(t) ∈ {1, . . . , s} is the discrete state. It selects the active
mode (affine model) at time t, s being the number of modes. Ai, Bi, Ci, Di, fi and
gi, i = {1, . . . , s} are matrices and vectors of real values and appropriate dimensions
describing each affine dynamics. Hence, model (2.19) can be seen as a collection of
affine models with continuous state x(t), connected by switches indexed by the dis-
crete state σ(t). In PWA systems [Sontag, 1981], σ(t) is determined by a polyhedral
partition of the state and input space and is given by the rule

σ(t) = i ⇐⇒
[

x(t)
u(t)

]
∈ Ωi, (2.20)

where {Ωi}s
i=1 are convex polyhedra defining a complete partition of the state-input

domain Ω ⊆ Rn+nu .

PieceWise affine ARX (PWARX) models represent the input-output version of
PWA models. They are defined by introducing the regression vector (for a Multiple
Input Multiple Output (MIMO) system)

ϕ(t) = [y(t− 1)> . . . y(t− na)
>u(t− nk)

> . . . u(t− nb − nk + 1)>]> (2.21)

where u(t) ∈ Rnu is the input vector and y(t) ∈ Rny is the measured output of the
system at time t ∈ Z (cf. Eq. (1.2-1.6)). The output y(t) is expressed as

y(t) = θ>σ(t) ϕ̄(t) + e(t) (2.22)

with ϕ̄(t) =

[
ϕ(t)

1

]
the extended regression vector to take into account the

constant element of the affine model; na, nb, nk are respectively the output order, the
input order (relevant past terms) and the pure delay between them. e(t) ∈ Rny is the
noise term assumed to have a normal distribution N (0, σ2). σ(t) ∈ {1, . . . , s} is the
discrete state, s is the number of modes, and {θi}s

i=1 is the collection of parameter
vectors defining the ARX model for each mode i.

For PWARX systems, the switching is determined by a polyhedral partition of
the regression domain where the sets {<i}s

i=1 form a complete partition of the re-
gression space < ⊆ Rd, with d = ny.na + nu.(nb + nk − 1). Each region <i is a
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convex polyhedron with

<i = {ϕ̄ ∈ Rd+1 : Hi ϕ̄ ≤ 0}, (2.23)

with Hi, a matrix of appropriate dimensions and 0, the null vector. This means that
for these models the discrete state σ(t) is given by

σ(t) = i ⇐⇒ ϕ(t) ∈ <i. (2.24)

By introducing the PWA map f of the following form:

f (ϕ) =


θ>1 ϕ̄(t), if ϕ(t) ∈ <1

...
θ>s ϕ̄(t), if ϕ(t) ∈ <s

(2.25)

the PWARX model ((2.22), (2.24)) takes the form of a nonlinear ARX model:

y(t) = f (ϕ(t)) + e(t). (2.26)

PWARX models are a sub-class of SARX (Switched ARX) models. SARX [Vidal
et al., 2002] models are generalized switching models because the transition from
one sub-model to another is arbitrary while in case of PWARX the governing laws
for switching from one sub-model to another depends on the regression vector
(commutation law defined by a polyhedral partition of the regression space).

In general, the identification problem for PWARX models is defined as follows:

Problem 1 Given a collection of N input-output pairs (y(t), u(t)), t = 1, . . . N, estimate
the model orders na and nb, the pure delay nk, the number of modes s, the parameter vector
for each sub-model θs

i=1 and the regions <s
i=1.

Remark. In the case of PWARX models, estimating the regions <i implies the
estimation of the discrete state σ(t) according to Eq. (2.24).

The difficulty in solving this problem depends on which quantities are assumed
to be known or fixed a priori. The difficulty also lies in the fact that the identification
problem includes a clustering problem where each data point has to be associated to
the most suitable sub-model. Many identification techniques exist in the literature
in order to solve this problem [Paoletti et al., 2007]. Most of these identification
techniques consider that the orders na and nb and the pure delay nk of the system
are fixed while for the rest of the parameters, different assumptions are made.

In this thesis, we use the PWARX identification technique introduced by
[Boukharouba et al., 2009]. This technique considers na, nb and nk as fixed inputs
to the algorithm, while the rest of the parameters are unknown. Therefore, Problem
1 becomes:

Problem 2 Given a collection of N input-output pairs (y(t), u(t)), t = 1, . . . N, the model
orders na and nb and the pure delay nk, estimate the number of modes s, the parameter vector
for each sub-model θs

i=1 and the regions <s
i=1.

Details on the methodology are presented in the next section.
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2.4 PWARX algorithm

As different dynamic behavior occur in a building system, the novelty of the
proposed approach in this thesis is to model these different configurations using a
data-driven approach based on hybrid system identification [Boukharouba, 2011;
Bako, 2008]. The challenges behind this modeling technique are, on the one hand,
finding the discrete states based solely on input-output measurements and, on the
other hand, estimating the continuous model associated to each discrete state. In our
application, the proposed method detects different configurations in the building
by grouping data representing the same behavior in one sub-class, and finds the
proper mathematical equation in the form of an affine autoregressive model with
exogeneous inputs for each sub-mode [Ajib et al., 2016]. In this section, we review
the proposed PWARX method for modeling the thermal behavior of buildings from
collected measurements.

For our application of modeling the indoor air temperature of a building having
a variety of local configurations and nonlinear dynamics, a PWARX model is a set
of sub-models where each sub-model is an ARX equation (Eq. (1.2)) representing
a certain configuration or thermal behavior of the building zone. The method
consists of a clustering procedure to group data points in sub-classes associated to
each sub-model and an estimation problem to estimate the parameter vector for
every state/configuration found. The commutation between one discrete mode
and another that could correspond to a building functioning change, is based on
a decision rule acquired from the regression data. For example, in Fig. 2.2, the
regression data is distributed into three regions <i=1,2,3, each region corresponding
to a configuration, and a parameter vector θi is associated to each one of them. The
borders of the regions are estimated in terms of the components of the regression
vector (past inputs and outputs). Data belonging to region <1 follows the model
defined by the parameter vector θ1 that represents a certain dynamic behavior of
the temperature and so on. Afterwards, these sub-models can be used to predict the
temperature depending on the configuration. For simplicity, the sub-models in this
algorithm are considered to have the same structure, which could be of the highest
order, in terms of the orders nb and na in Eq. (1.2) and the pure delay between them
nk [Ljung, 1998]. The values of na, nb and nk are inputs to the algorithm, which
should be supplied by the user based on insight.

The general structure of a PWARX model was introduced in Sect. 2.3 (cf. Eq.
(2.25), (2.26)). The PWARX identification algorithm used in this work for model-
ing the thermal behavior was introduced by Boukharouba [Boukharouba, 2011;
Boukharouba et al., 2009]. It simultaneously treats clustering of regression data
and parameter estimation. The clustering of data uses a novel similarity measure
based on a mixture of the Euclidean distance between data in the regression vector
on one hand, and on the other hand, the error between the prediction output of
the neighbouring sub-models and the true output of the system. The parameter
estimation is performed using the least squares technique and the algorithm is
implemented in Matlab [MATLAB, 1998].

Given N data vectors X(i) = [ϕ(i)>, y(i)]>, where i is the index of a data point
i = 1, ..., N, from measurements of the system, the approach consists of three steps:

1. Initialization,
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FIGURE 2.2: Example of repartition of a PWARX system with 3 sub-
models

2. Data re-affectation and model estimation,

3. Convergence test.

For the initialization part, the number of sub-models is set to s = N, i.e. each data
point is a sub-model. N clusters are obtained, C = {C1, ..., CN}, where Ci = {X(i)}.
To these N clusters, the initial parameter vector Θ(0) = [θ

(0)
1 , ..., θ

(0)
N ] is assigned,

where θ
(0)
i is calculated by considering the data X(i) of the sub-model Ci and its

c nearest neighbors, denoted as cNN, and by using the least squares technique on
these c + 1 data. The parameter c is set by the user.

For data re-affectation, the aim is to reduce the number of clusters by reclassi-
fying each data point and to estimate the parameters of each sub-model. Data will
migrate towards the most representative clusters according to a specific decision
rule. The less representative clusters become empty and thus are eliminated. Let
Γc(X(i)) be the set of the cNN of X(i) and let X(j) ∈ Γc(X(i)), j = 1, ..., c, be one of
its neighbors that belongs to Cp, p ∈ {1, ..., s̄}, s̄ being the number of detected sub-
models changing in each iteration. We introduce the following similarity measure
used for the membership decision rule:

φi
j = exp(−αpdi

j
2 − βpe2

i ) (2.27)

where exp is the exponential function,

di
j = ‖X(i)− X(j)‖2 , (2.28)

is the Euclidean distance between X(i) and the neighbor X(j), and

ei = y(i)− θ>p ϕ̄(i) (2.29)

is the error between the output of the sub-model p and the measured output y(i), as
shown in Fig. 2.3. θp is the parameter vector associated to cluster Cp. The similarity
measure has a maximum value equal to 1 if X(i) = X(j) and the error between the
real output y(i) and the constructed output θ>p ϕ̄(i) is equal to zero. Lastly, αp and βp
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FIGURE 2.3: Three sub-models in the regression space with schematic
explanation of the distances taken into account in Eq. (2.27)

[Boukharouba, 2011].

are weighting factors associated to each cluster Cp, computed by the formulas:

αp = 1/d2
p, βp = 1/e2

p, (2.30)

where dp is the average distance between data belonging to cluster Cp, defined as:

dp =
1
| Cp | ∑

i/X(i)∈Cp

∑
j/X(j)∈Cp

‖X(i)− X(j)‖2 (2.31)

and ep is the average error between the measured and the sub-model output written
as:

ep =
1
| Cp | ∑

i/X(i)∈Cp

(
y(i)− θ>p ϕ̄(i)

)
, (2.32)

| Cp | being the cardinality of cluster Cp.

For the membership decision, we use the probability for which data point X(i)
belongs to Cp:

P(X(i) ∈ Cp) =

∑
j/X(j)∈{Γc(X(i)∩Cp}

φi
j

c
∑

j=1
φi

j

, p ∈ {1, ..., s}. (2.33)

This probability is equal to 1, if all the cNN of X(i) belong to the cluster Cp and it
is equal to 0 if none of them belongs to Cp. The decision is then made by assigning
the data X(i) to the cluster Cret, ret ∈ {1, ..., s}, that achieves the maximum of P.
The data X(i) are re-affected after each iteration to the most representative class and
the parameters vector θi of each sub-class is recomputed for each iteration using the
least squares technique to take into consideration the incoming or outgoing data.
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The less representative classes become empty and are therefore eliminated. Param-
eters αp and βp, p ∈ {1, ..., s}, as well as the number of classes s are recalculated at
each iteration.

The procedure ends when the stopping criterion is achieved:

‖ Θ(r+1) −Θ(r) ‖≤ η, (2.34)

r being the iteration index and η a threshold set by the user, or when the number of
iterations reaches a maximum r > rmax.

Algorithm 1 PWARX

Step 1: Initialization
Set c, the number of nearest neighbors
Number of iteration r=0, number of classes s = N
Compute Θ(0) = [θ

(0)
1 , ..., θ

(0)
N ]

Repeat
Step 2: Data re-affectation and model estimation
r=r+1
for i=1,...,N do

for j=1,...,c / X(j) ∈ Γc(X(i)) do
φi

j = exp(−αpdi
j
2 − βpe2

i )

P(X(i) ∈ Cp) =
∑

j/X(j)∈{Γc(X(i)∩Cp}
φi

j

c
∑

j=1
φi

j

, p ∈ {1, ..., s}

end for
X(i) migrates towards the class that achieves the highest P

end for
Eliminate empty classes
s=number of non-empty classes
for i=1,...,s do

Compute θ
(r)
i using least squares technique

Update α and β
end for

Until
Step 3: Convergence test
‖ Θ(r+1) −Θ(r) ‖≤ η or r > rmax

2.5 Conclusion

In this chapter we introduced the hybrid system identification technique proposed
for modeling the thermal behavior of buildings based on the idea that a building
is a complex system exhibiting different dynamics induced by sudden events.
The first section was dedicated to the validation of this proposal by means of
physics-based equations. The analysis was based on an RC thermal network
model of a typical building and showed that the events or configurations that
exist in a building (like opening/closing doors or windows and changing the
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heating state) change the parameters and the structure of the model representing
the system dynamics. Hence, one can conclude that the thermal behavior of the
building could be represented by means of different local models representing
specific dynamics. The hybrid PWARX technique is perfectly adapted to this
purpose as it consists in switching between a set of linear sub-models sharing the
same continuous state. The method clusters data available from the system into dif-
ferent regions and estimates the dynamic model that best fits the data in each cluster.

The following chapter presents some application examples to showcase the per-
formance of the PWARX technique in modeling the thermal behavior of buildings
and buildings zones. Different cases are tested ranging from a small unoccupied
room in an office building to a whole occupied residential building.
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Chapter 3

Evaluation of the proposed
modeling approach

This chapter details the results obtained for modeling the thermal behavior of build-
ings using the proposed PWARX technique. Three complementary test cases are
presented: the first one uses real measurements from an unoccupied room subject
to simple scenarios, the second one uses synthetic data generated by a software for
more complex scenarios while the third one represents the most complete case as it
uses real measurements collected from an occupied building. The goal behind these
experiments is to evaluate the performance of a hybrid PWARX model in represent-
ing the thermal behavior of different types of buildings, under different conditions.
The performance of the model is evaluated via a set of commonly used validation
criteria, namely, the Fit, the Mean Absolute Error (MAE), the Root Mean Squared
Error (RMSE) and the adjusted coefficient of determination R2

adj.

3.1 Introduction

To study the feasibility of predicting the thermal behavior of buildings using a
PWARX model, several test cases were tested. For data-driven models, one has to
have at their disposal two separate data sets: the training data set and the validation
data set. The training data set is used to train the model, to find the parameters
such that a good fit is obtained. In the case of the PWARX model employed here,
the training data set is used to find the number of sub-models (number of modes or
configurations) and the parameter vector for each one of them as in Eq. (2.25). The
validation data set is used to investigate the accuracy of the estimated model [Ajib
et al., 2018a]. It should contain the same configurations that were modeled using the
estimation data set, otherwise the prediction will not be accurate enough. All data
provided for each test case is hence divided into a training data set and a validation
data set. A special attention should be given here to the sampling time that should
be small enough to capture the dynamics of the temperature. Considering the
model in Eq. (2.2), the sampling rate has to be chosen by considering the lowest
RC value representing the fastest dynamics (τ = RC), however, in our case, it is
unknown.

The first case is for an unoccupied room located in an office building in the
North of France. Data recorded over several days during winter time is used to
train a PWARX model and afterwards the model is used to predict the temperature
profile in the room for the next 48 hours. The configurations tested for this first case
are related to the heating system (heating ON/OFF). The second test case is for a
numerical virtual room created on Dymola software. In a similar way, synthetic
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data over several days is used to train the model and then predict the temperature
for future days, however in this case, several configurations related to the heating
system, ventilation rate, shades position and occupants’ presence are tested. The
last test case is for a whole occupied building located in England. For this case,
measurements over several years are provided. The data for 10 days of each season
is used to train the model and then the predictions are done for the three next days
of each season. For the prediction phase, we couple the PWARX technique to an
SVM classification technique. The SVM model is used to classify new data (the
validation data) in the corresponding clusters so that the right sub-model could be
used to predict the temperature as will be explained in Sect. 3.6.2.

To determine the accuracy of the estimated model, its performance is evaluated
via a number of validation criteria typically used in the literature. These are
introduced in the third section of this chapter, but first, important points about
data collection are presented. Afterwards, three sections are presented where each
provides a description of a separate case study together with the applied scenarios
and the estimation and validation results. At last, Sect. 3.7 is dedicated to the results
analysis.

3.2 Important points about data collection

Before beginning the data collection phase, it is important to identify the output
and the potential inputs of the model. The output is usually defined based on the
purpose of the modeling work in a way that respects the causality of the system.
In our case, the output of the thermal model is the indoor air temperature. The
inputs are usually the ones related to meteorological data including the ambient air
temperature, the ambient humidity, the solar radiation, and also the ones related
to the heating and ventilation systems like the heat input and the ventilation air
flow rate when available. A building is usually subject to a lot of disturbances like
air infiltration and occupants’ behavior, therefore it is a complex evolving system
exhibiting various kinds of dynamics. Hence, the collected data should be rich
enough to capture the various thermal behaviors that a building could be subject to.
It can have both rapid and slow dynamics, the rapid ones being mainly caused by
the ventilation process while slow ones are represented by the heat transfer through
the envelope. Therefore, a special attention should be given to the sampling time
that should be small enough to capture the fast dynamics (in the order of minutes).

3.3 Model performance evaluation criteria

The model accuracy is computed by means of the goodness of Fit, the Mean Abso-
lute Error (MAE), the Root Mean Squared Error (RMSE) and the adjusted coefficient
of determination R2

adj of respective equations:

Fit = 100.

1−

√
∑N

t=1(yest(t)− y(t))2√
∑N

t=1(y(t)− ȳ)2

 , (3.1)
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MAE =
1
N

N

∑
t=1
| yest(t)− y(t) |, (3.2)

RMSE =

√√√√ 1
N

N

∑
t=1

(yest(t)− y(t))2, (3.3)

R2
adj = 1− (1− R2)

N − 1
N − nu − 1

, (3.4)

with the coefficient of determination R2 being defined as:

R2 = 1− ∑N
t=1(y(t)− yest(t))2

∑N
t=1(y(t)− ȳ)2

. (3.5)

In these equations, y is the measured output, ȳ = 1
N ∑N

t=1 y(t) its mean, yest
is the output of the estimated model, N is the number of samples and nu is the
number of inputs. R2

adj is function of R2 and it is computed to take into account the
number of variables in the model by adding a penalty for having a large number of
independent variables (nu). For an accurate model, the Fit must be close to 100 %,
the MAE and the RMSE must be close to 0 and the R2

adj must be close to 1.

3.4 Test case 1: Eco-Confort room in Douai

The first test case discussed in this thesis considers real measurements from an
unoccupied room in an office building where the possible configurations are
induced by turning the heating ON/OFF.

3.4.1 Description of the test case

The first case study is a 27 m2 room located on the ground floor of an office building
in Douai in the North of France. It has one wall in contact with a hallway inside the
building. Two walls and the roof are in contact with other offices, while one wall
with two windows with shades is in contact with the outside as shown in Fig. 3.1.
An incomplete partition wall divides the room into two. Heating is provided by
three electric heaters with 1000 W maximum heating power.

The room is equipped with wireless sensors measuring the value of various pa-
rameters:

◦ three sensors measuring the air temperature and humidity at different loca-
tions in the room,

◦ one sensor per heater measuring its power and energy consumption,

◦ one sensor on each window to indicate whether the windows are open or
closed in addition to a similar sensor on the door,

◦ two motion sensors,

◦ one luminosity sensor,
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FIGURE 3.1: Eco-Confort room used to collect measurements for sce-
nario 1

◦ one sensor for measuring the temperature and humidity of the ambient air
outside,

◦ four temperature and humidity sensors are placed in adjacent offices and the
hallway.

The data acquisition and command system installed in the room allows the
control of the equipment (radiators, shades) and the storage of all measured data.
The PWARX algorithm is applied to model and predict the temperature in the room.
The output of the model is therefore the air temperature. The temperature of the
room is considered to be equal to the mean of the temperatures measured by the
three sensors. The inputs taken into account are: heating power, meteorological
data (ambient temperature and humidity, solar radiation power) and surrounding
humidity and temperature. The heating power is the sum of the power generated
by the three radiators, while the surrounding temperature and humidity are
considered equal to the average values of those measured in the adjacent offices
and the hallway. For the solar radiation, the value measured by a small weather
station located in Douai nearly 2 km away from the room is used because no such
measurements are available on site.

3.4.2 Scenario 1: heating ON/OFF

We consider a simple scenario investigating the possible configurations due to
turning the heating ON/OFF. The temperature in the room is set to 22◦C between 06
AM and 06 PM, and 18◦C during the night, for the period ranging from 14/01/2017
at 12 PM to 20/01/2017 at 09 AM, except for 19/01/2017 where the temperature
was set to 26◦C between 06 AM and 06 PM. The sampling time for all data is taken
as 5 minutes. Using data measured in the room, adjacent rooms and meteorological
data, we apply the PWARX algorithm detailed in Sect. 2.4 for modeling the
temperature behavior in the room. The 5 minutes sampled data was then divided
into two disjoint sets: the estimation data, considered as the first two thirds of the
whole data set (from 14 to 18/01/2017), is used for the identification of PWARX
models; the validation data, considered as the last third (from 18 to 20/01/2017),
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is used to determine the ability of the model to predict the temperature behavior
using the model found in the estimation step.

FIGURE 3.2: Model inputs for scenario 1: heating ON/OFF

Fig. 3.2 shows the inputs for the whole period. The top left figure shows the
ambient and the surrounding temperature. The ambient temperature outside is
negative for the last days of the scenario while the surrounding temperature is
maintained at 22◦C during the day and drops to 18◦C during the night. The ambient
relative humidity changes between 60 and 96% for the outdoors and between 24
and 32% inside the building. A low amount of solar radiation was received during
the first three days, while for the last three days it goes up to nearly 300 W/m2. The
heating power curve shows that, to attain the set point temperature of 22◦C during
the day, the heating is switched ON between 06 AM and 06 PM, with some short
cut offs to maintain the temperature at 22◦C, while for the rest of the period, to
maintain the set point temperature of 18◦C, the heating remains OFF.

3.4.2.1 Results for the estimation data set

When applying the PWARX algorithm to the estimation data set, the following
parameters need to be specified prior to the simulation: the orders of the model: na,
nb, and nk (Eq. (1.2)), and c, the number of nearest neighbors. Since these parameters
are unknown, we loop over orders na and nb between 1 and 8, nk between 0 and 1
and c between 10 and 200, and retain the values that give the most accurate results.
The number of nearest neighbors is the parameter that has the largest influence on
the number of sub-models. This parameter should be chosen such that we attain
a good compromise between the accuracy of the estimated hybrid model and the
number of sub-models to keep the model as simple as possible.

The most accurate model is found for na = 5, nb = 4 and nk = 1. Fig. 3.3
shows the number of detected sub-models and the accuracy of the estimated model
in terms of the number of nearest neighbors c. This same figure shows that the num-
ber of detected sub-models decreases in a non-linear way as the number of nearest
neighbors increases and it stabilizes at 2 for c ≥ 100. For these values of c, the Fit of
the estimated model is quasi stable, ranging between 93 and 94%. The highest value
of the Fit was 94.04% and it was recorded for c = 100. For low numbers of nearest
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neighbors, the estimation was not accurate. In fact, having a low number of nearest
neighbors leads to a high number of sub-models. This increases the risk of classify-
ing some data points in the wrong sub-model which leads to a bad estimation of the
temperature for these data points and decreases the Fit significantly.

FIGURE 3.3: Number of detected sub-models and accuracy of the es-
timated model in terms of the number of nearest neighbors c for sce-

nario 1

FIGURE 3.4: Estimation results for scenario 1 (heating ON/OFF).
From the top to the bottom: measured and estimated temperature;
detected discrete states (number of configurations); heating power in-

put.

The best estimation result is presented in Fig. 3.4. This figure shows that, during
this period, two configurations/discrete states were detected correctly in terms of
the heating ON/OFF: the first one (sub-model 1) corresponds to the configuration
heating ON to maintain 22◦C during the day, while the second one (sub-model 2)
represents the configuration heating OFF. These two configurations are induced by
switch S3 of the model presented in Sect. 2.2. In fact, the dynamics of the system
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when the heating is turned ON are different than the dynamics when the heating
is turned OFF for the reasons explained is that same section. The parameters of
the thermal model are no other than the coefficients of the transfer function (2.18).
Therefore, it is suitable to consider that they change when passing from one of
these two configurations to the other, as proved in Sect. 2.2, thus generating two
sub-models. For this estimation part we obtain: Fitest = 94.22%, MAEest = 0.06◦C,
RMSEest = 0.07◦C and R2

adj,est = 0.99 for na = 5, nb = 4, nk = 1 and c = 100.

3.4.2.2 Results for the validation data set

The models found in the estimation part are used to predict the behavior of the tem-
perature for the last two days of the period. To do that, the model computed for
discrete state 1 is used for predicting the temperature for the last two days when
the heating is ON, while the model computed for discrete state 2 is used for pre-
dicting the temperature when the heating is OFF. The prediction of the indoor air
temperature is hence based on the following rule:

σ(t) = 1⇔ T̂(t) = θ>1 ϕ̄(t) i f HP(t) > 0
σ(t) = 2⇔ T̂(t) = θ>2 ϕ̄(t) i f HP(t) = 0.

(3.6)

where σ(t) is the discrete state, θ1 and θ2 are the parameter vectors of sub-models
1 and 2 respectively. T̂(t), HP(t) and ϕ̄(t) are respectively the predicted indoor air
temperature, the heat power input and the extended regression vector at time t. In
this case the switching rule depends solely on the heat power input because this was
clear from the estimation results. However, in more complex cases, the switching
rule could be related to more than one variable of the regression vector. Validation
results are shown in Fig. 3.5: a good match can be seen between the predicted and
measured temperatures with a mean error of MAEpred = 0.17◦C, a Fitpred = 91.16%,
a RMSEpred = 0.2◦C and a R2

adj,pred = 0.99.

FIGURE 3.5: Prediction results over two days for scenario 1 (heating
ON/OFF). Figure on top: measured and predicted temperature using

PWARX. Figure in the bottom: heating power input.

Remark. The PWARX model was able to accurately predict the temperature
during the last day even though the set-point temperature is 26◦C instead of 22◦C.
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FIGURE 3.6: Prediction results for scenario 1 (heating ON/OFF) using
PWARX and classical ARX with two model structures: ARX 551 that
had the best Fit and ARX 541 to test the same structure as the one

found for the PWARX model

Model structure (na,nb,nk) Fit (%) MAE (◦C) RMSE (◦C) R2
adj

PWARX 541 91.16 0.17 0.21 0.99
ARX 541 65.19 0.64 0.82 0.87
ARX 551 66.5 0.62 0.78 0.88

TABLE 3.1: Comparison of validation criteria computed for predic-
tion results of scenario 1 using PWARX and ARX models

The use of ARX models for predicting the thermal behavior of buildings is fre-
quent in the state-of-the-art (cf. Sect. 1.3.1). Therefore, to evaluate the performance
of PWARX, the prediction results are compared to those of an ARX model estimated
using the system identification toolbox of Matlab [Ljung, 1998]. Different model
structures are tested and the orders yielding the best prediction result are retained.
For the sake of comparison, the same orders as the ones found before for PWARX
(na = 5, nb = 4 and nk = 1) are also tested. The comparison is shown in Fig. 3.6
(ARX 551 stands for the ARX model computed for na = 5, nb = 5, nk = 1). The
ARX models fail to properly predict the temperature in the room with a highest
Fitpred = 67% for na = 5, nb = 5, nk = 1, while the prediction Fit using PWARX
was up to 91%. For an ARX model having the same orders as the ones found for
the PWARX model na = 5, nb = 4, nk = 1, a Fitpred = 64% is found. Table 3.1
summarizes these results.

3.5 Test case 2: Virtual room created with Dymola software

The second test case is for a numerical model of a room created with Dymola soft-
ware using Modelica building library [Wetter et al., 2015]. The motivation behind
using a software to generate a synthetic scenario is to create complementary and
more complex scenarios to validate our proposed approach.



3.5. Test case 2: Virtual room created with Dymola software 57

3.5.1 Description of case study

The numerical model of the room is presented is Fig. 3.7. This virtual room is in-
spired from the Eco-Confort room: their dimensions are the same as well as the
orientation and dimensions of the windows. However, for the virtual room, the
walls are all in contact with the outside and the weather file used is for a typical year
for Boulogne-sur-mer, a city located on the coast in the North West of France. The
ventilation for this virtual room is determined by the means of a fixed air change
rate input, the number of occupants can also be given as input and the shades are
activated/deactivated by the means of a boolean input. We recall that these inputs
are given to Dymola for simulating the desired scenarios. They are not given as in-
puts to the PWARX algorithm, the goal being to be able to detect and model these
changes.

FIGURE 3.7: Virtual room created with Dymola software used to gen-
erate data for scenario 2

3.5.2 Scenario 2: heating ON/OFF, ventilation switch, shades open/closed
and change in occupancy

We consider a second scenario, in which we investigate the effects of turning the
heating ON/OFF, modifying the air change rate, opening/closing shades as well
as the presence of occupants. Although this scenario does not represent a real case
behavior (where increasing the ventilation rate for example should occur when the
occupants are present), the goal here is to have separate long time configurations
to facilitate the interpretation of results. To apply this complex scenario, the virtual
room created with Dymola software is used. This scenario is first applied during
the first 5 days of January for identifying the PWARX model. The same scenario is
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then applied during the first 5 days of February for validation. The first part of the
first day for both estimation and validation data sets was not considered in order to
disregard the influence of the initial conditions in Dymola.

The ambient temperature and humidity, the solar radiation and the heating
power are the inputs (recall that for this virtual room, all room surfaces are in contact
with the outside). Fig. 3.8 presents the weather inputs for both the estimation and
validation parts. The number of occupants, the ventilation rate and the state of
shades are not given as inputs to the PWARX model. The change in the temperature
behavior due to these events is detected automatically using algorithm 1. The
sampling time is 5 minutes. The applied configurations are presented in Table 3.2.
They are also presented in the bottom plots of Fig. 3.8.

FIGURE 3.8: Weather inputs for the estimation and validation periods
for scenario 2

Day Heating (W) Shades Ventilation (vol/h) Occupants
1 0 Closed 0.2 0
2 1000 Closed 0.2 0
3 0 Open (for 12 hours) 0.2 0
4 1000 Closed 1 (every 4 hours) 0
5 0 Closed 0.2 4(for 12 hours)

TABLE 3.2: Scenario 2 configurations

3.5.2.1 Results for the estimation data set

To find the best model structure, the orders of the models and the number of nearest
neighbors were integrated in a loop. na changed between 1 and 8, nb between 1 and
na (because the causality of the model implies that nb ≤ na, nk between 0 and 1 and c
between 10 and 300. The most accurate model was found for na = 3, na = 2, nk = 1
and c = 100. The number of nearest neighbors, required for the clustering phase in
algorithm 1, has the biggest influence on the number of detected sub-models. Fig.
3.9 shows the number of detected sub-models and the Fit of the estimated model
with respect to the number of nearest neighbors c for na = 3, nb = 2 ans nk = 1.
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FIGURE 3.9: Number of detected sub-models and accuracy of the es-
timated model in terms of the number of nearest neighbors c for sce-

nario 2

As in the previous case, this figure shows that none of the two curves changes
linearly with respect to the number of nearest neighbors. The number of detected
sub-models decreases with respect to the number of nearest neighbors to attain a
constant equal to 2 after a value of nearest neighbors equal to 180. For this scenario,
an acceptable model is found for c in the range of 30-40 and 90-150, while for the rest
of the cases the model does not correctly represent the behavior of the temperature.
The Fit stabilizes when the number of detected sub-models stabilizes. The best Fit
was found for c = 100. The low accuracy for a small number of nearest neighbors,
i.e., high number of sub-models is due to misclassification which might lead to big
errors that decrease the Fit significantly. The low accuracy that was found for high
values of nearest neighbors show that a low number of sub-models is not enough to
represent the temperature behavior in this scenario.

Fig. 3.10 shows the estimation results obtained for this scenario for na = 3, nb =
2, nk=1 and c = 100 with Fitest = 81.55%, MAEest = 0.44◦C, RMSEest = 0.64◦C
and R2

adj,est = 0.96. This same figure shows that, during the identification phase, 6
sub-models are estimated:

◦ For the first day, the scenario corresponds to a free evolution of the temperature
(no heating, no occupants, low ventilation rate, shades closed). We can observe
a switching between sub-models 2 and 3. The switch between sub-models 2
and 3 is induced by the solar radiation effect (Fig. 3.8). Therefore, when the
solar radiation is at its peak (>150 W/m2), sub-model 3 is applied and, in the
other case, the temperature behavior is represented by sub-model 2.

◦ Sub-model 5 corresponds to the second day configuration presented in Table
3.2.

◦ For the third day where the shades are open, the temperature behavior is once
again modeled by sub-models 2 and 3 and the switching between them is due
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FIGURE 3.10: Estimation results for scenario 2 (heating, ventilation,
shades and occupants switch). From the top to the bottom: tem-
peratures estimated by PWARX model and obtained for the virtual
room; detected discrete states; air change rate and occupancy scenar-

ios; shades and heating scenarios.

to the solar radiation power level. As seen in the temperature plot, opening the
shades did not have a big effect on the indoor air temperature and the reason
behind that is the fact that the window is facing the North. Therefore, the
models describing the temperature behavior are the same as the ones estimated
in Day 1.

◦ For the fourth day the heating is turned ON again and the air change rate
switches between a minimum of 0.2 vol/h and a maximum of 1 vol/h every
4 hours. For this day, sub-models 1, 4 and 5 are estimated. Sub-model 4 rep-
resents the behavior of the temperature at the beginning of the day when the
ventilation rate is equal to 1 vol/h. It continues when the ventilation rate drops
to 0.2 vol/h but with a less accurate estimation. Sub-model 5 represents the be-
havior of the temperature for rest of the day with one switch to sub-model 1
when the solar radiation is at its peak and a degraded accuracy when the ven-
tilation rate is high as the temperature curves in Fig. 3.10 show. This result
and the result for day 2 helped us conclude that sub-model 5 occurs when the
heating is ON and the ventilation rate is low and sub-model 4 occurs when the
heating is ON and the ventilation rate is high.

◦ For the fifth day, the first half is characterized by the presence of four occupants
without any heating. The new behavior of the temperature is represented by
sub-model 6. The rest of the day is similar to Day 1 so once again the behavior
is represented by sub-model 2 with a possible switching to sub-model 3 if the
solar radiation is high enough.

The correspondence between each of the identified sub-models and the tested
configurations is summarized in Table 3.3. It can be noticed that an analysis should
be done after the estimation part in order to understand the physical reasons behind
the switching. To make the switching clear, we chose to test long configurations for
this scenario.

Remark. In the case of a real occupied building a lot of configurations can ap-
pear because of the randomness of the tenants’ behavior, hence, the most dominant
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sub-models should be retained for the prediction phase in order to keep the hybrid
model as simple as possible.

Sub-model Solar radiation (W/m2) Heating (W) Ventilation rate (vol/h) Occupants
1 > 150 1000 0.2 0
2 < 150 0 0.2 0
3 > 150 0 0.2 0
4 < 150 1000 1 0
5 < 150 1000 0.2 0
6 < 150 0 0.2 4

TABLE 3.3: Configurations related to each sub-model estimated in
scenario 2

3.5.2.2 Results for the validation data set

For validating the estimated model, the same configurations of the estimation part
are applied again but this time for the first five days of February. Hence, the sub-
models estimated for a certain configuration are used to predict the temperature for
the same configuration. For example, sub-model 5 is applied when the heating is
turned ON, sub-models 2 and 3 are applied for a free evolution of the temperature
without heating, ventilation or occupants, with a switching between 2 and 3 that
corresponds to the solar radiation level, etc. The switching rule is hence based on
testing the values at instant t of the influencing variables as presented in Table. 3.3,
these variables being known from the prediction phase. For instance,

σ(t) = 2⇔ T̂(t) = θ>2 ϕ̄(t) i f
HP(t) = 0, VR(t) = 0.2, Occ(t) = 0, SR(t) < 150W/m2

σ(t) = 3⇔ T̂(t) = θ>3 ϕ̄(t) i f
HP(t) = 0, VR(t) = 0.2, Occ(t) = 0, SR(t) > 150W/m2,

(3.7)

where σ(t) is the discrete state, θ2 and θ3 are the parameters vectors of sub-models
2 and 3 respectively. T̂(t), HP(t), VR(t), Occ(t), SR(t) and ϕ̄(t) are respectively
the predicted indoor air temperature, the heat power input, the ventilation rate, the
number of occupants, the solar radiation input and the extended regression vector
at time t. The same applies for the other sub-models following the values in Table
3.3. The simulation for the whole validation period is shown in Fig. 3.11. A good
Fitpred of 80.39% is found with a MAEpred of 0.54◦C, a RMSEpred of 0.66◦C, and a
R2

adj,pred = 0.96.

A comparison with the prediction results of an ARX model is also provided
for this test case. Fig. 3.12 shows the results obtained for both the PWARX
model and classical ARX models. The best Fitpred is found for an ARX model of
structure na = 4, nb = 3 and nk = 1 with Fit = 34%. For an ARX model having
the same orders as the ones found for PWARX model na = 3, nb = 2, nk = 1 a
Fitpred = 27% is found. Once again, PWARX models show a better performance than
classical ARX models. One can see that when more configurations came into play,
the classical models became less accurate. Table 3.4 summarizes the obtained results.
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FIGURE 3.11: Prediction results for scenario 2 (heating, ventilation,
shades and occupants switch). From the top to the bottom: tem-
peratures predicted by PWARX model and obtained for the virtual
room, detected discrete states; air change rate and occupancy scenar-

ios; shades and heating scenarios.

FIGURE 3.12: Prediction results for scenario 2 using a classical ARX
model with two structures: ARX 321 to test the same structure as the
one found for the PWARX model, ARX 431 that had the best Fit=34%.

Model structure Fit (%) MAE (◦C) RMSE (◦C) R2
adj

PWARX 321 80.39 0.54 0.66 0.96
ARX 321 25.95 1.91 2.5 0.45
ARX 431 32.96 1.71 2.26 0.55

TABLE 3.4: Comparison of validation criteria computed for predic-
tion results of scenario 2 using PWARX and ARX models

3.6 Occupied building

In this section, data collected from an occupied building located in the United
kingdom (UK) is used for evaluating the performance of the PWARX approach
in modeling the indoor air temperature of an occupied building. The data was
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provided in the context of the Annex 71 meetings 1.

3.6.1 Description of the case study

The case study is a south-facing end-terrace house built in Gainsborough, UK. It is
a two-story dwelling with a total floor area of 67 m2 [Sodagar and Starkey, 2016].
The living room, kitchen, toilet and entrance hall are located on the ground floor.
Two bedrooms and a bathroom are situated on the first floor. Also, a small technical
room is located on the landing of the first floor, housing the metering equipment for
the PhotoVoltaic (PV) system as well as the metering for the ventilation system. The
house has been monitored for 3 years, starting October 2012 until November 2015.
The building was used by two adults and one child up to January 2013. In March
2013, new tenants (1 adult and 2 children) have moved in. Due to tenancy change,
the house was vacant and unheated in January and February 2013.

Space heating and Domestic Hot Water (DHW) production are provided by a
gas boiler. Space heating is controlled using two room thermostats, in the hall and
one of the bedrooms. The gas consumption of the heating system is monitored with
volumetric gas meters. Sub-meters to differentiate between space heating and DHW
production were not installed. Therefore, the energy uses for domestic hot water
and space heating need to be estimated based on the gas consumption data. A water
meter is available that measures the total mains (cold and warm) consumption of
the house. Ventilation is provided using a Mechanical Ventilation system with Heat
Recovery (MVHR). The system is equipped with a monitoring system that registers
temperature and relative humidity of supply and return air, as well as the electricity
consumption of the ventilation unit. In addition to the electricity consumption of the
MVHR, the total electricity use of the house is monitored together with the output
of the PV system. Apart from the measurements of the MVHR no sub-metering
has been installed for the electricity consumption. Hence, the measurements cover
everything from lighting to appliances, pumps etc.

Time series data is provided for this house over the period from October 2012
until November 2015 with a 5 min interval. The dataset covers:

◦ CO2 concentration (ppm) in the lounge (living room),

◦ On-site external air temperature (◦C) and relative humidity (%),

◦ Gas consumption meter (m3),

◦ Total electricity consumption (kWh) ,

◦ Supply and return temperature of MVHR (◦C),

◦ Relative humidity supply and return air of MVHR (%),

◦ Electricity consumption MVHR (kWh),

◦ PV production (kWh),

1Annex 71 is a European project on building energy performance assessment based on optimized
in-situ measurements organized by the International Energy Agency (IEA) as a part of the Energy in
Buildings and Communities Program (EBC).
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◦ Temperature (◦C) and relative humidity (%) in the lounge,

◦ Temperature (◦C) and relative humidity (%) in bedroom 1,

◦ Mains water consumption (m3).

As only the outdoor temperature and relative humidity were measured on site,
weather data from a nearby weather station is included as an additional data set.
Hourly averaged outdoor temperature, wind speed, wind direction and global
horizontal solar radiation is collected from a weather station nearby.

One of the problems encountered in this test case was the absence of sub-metered
data for the energy use of the space heating and for the production of domestic hot
water. Consequently, a splitting of the gas consumption has to be performed. A
split of this gas consumption was provided by the Annex organizers. The separa-
tion of the data is obtained by a deterministic method that assumes that domestic
hot water and space heating cannot occur simultaneously. The assumption is based
on common practice technologies for gas boilers, but could not be confirmed by
the technical data available for the heating system. Given that there is no domestic
hot water storage tank and that production of space heating does not coincide with
domestic hot water, the method assumes that when gas use occurs on moments of
water consumption, the gas is used for domestic hot water production. Clearly, this
deterministic approach has some limitations:

◦ 5 minute sample time: for short hot water withdrawals (less than 5 min), the
method will allocate the gas consumption of the entire 5 min sample to domes-
tic hot water.

◦ If in winter, water consumption coincides with space heating, the gas use is
always allocated to domestic hot water, even when in practice it could be
space heating and cold water withdrawal.

For this test case, since data is available throughout full years, it would be
interesting to model the indoor air temperature for all seasons. However, taking the
5 min sampled data over a full year leads to a very large number of samples that
needs a large computation power and time. Therefore, the models estimation and
validation are done using 5 min sampled data over the four seasons of the year by
considering the first 10 days for each one. The estimation data set covers the periods
going from 01/01/2014 to 07/01/2014 for winter; 01/04/2014 to 07/04/2014 for
spring; 01/07/2014 to 07/07/2014 for summer and 01/10/2014 to 07/10/2014 for
autumn. The validation is done for the three following days (08-10) of each season.
This gives a total of 8064 samples for the estimation part and 3456 samples for
validation.

The output of the model is the air temperature in the lounge of the house and the
following inputs are considered:

◦ Weather data: Ambient Temperature and relative humidity, solar radiation,
wind direction and speed,

◦ Consumption data in the house: gas consumption (for hot water and heating
separated), water consumption and mains electricity consumption,

◦ CO2 concentration in the lounge of the house,
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◦ Ventilation system data: supply air temperature and humidity and the electric-
ity consumption of the mechanical ventilation system.

Figures 3.13, 3.14 and 3.15 show the variables for the first 10 days of January
2014.

(a) (b)

(c) (d)

(e)

FIGURE 3.13: Weather data recorded for January 2014

3.6.2 Combining PWARX model with SVM classifiers

The key for validating the PWARX model is to identify the decision rule for switch-
ing between one discrete mode and another in order to determine the corresponding
sub-model that each new data point belongs to. This section shows how to use the
SVM classification technique for identifying this rule.

3.6.2.1 Need for an automated classification technique

For a PWARX model, the commutation rule is determined by a polyhedral parti-
tioning of the regression domain where each sub-model is valid on a well-defined
region <i ((2.23), (2.24)) as explained in Sect. 2.3. Estimating these regions would
be the final step for the identification problem, cf. Problem 1. Recall that for the
first two test cases, since simple configurations lasting a few hours each were
tested, it was possible to do the link between the estimated sub-models and the
variables responsible for the switching. Therefore, the regions of validation of
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.14: House data recorded for January 2014

(a) (b)

(c)

FIGURE 3.15: Ventilation system data recorded for January 2014
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each sub-model were clear and the rule was extracted directly from the values of
influencing variables. Moreover, the influencing variables were considered to be
known for the prediction phase. For instance, in scenario 1 (Sect. 3.4.2) , it was clear
from the estimation results that the commutation between sub-model 1 and 2 is due
to the heating mode, therefore, for the prediction, the decision rule for switching
was based on the heat power input (as in Eq. (3.6)), this latter considered to be
known for the whole prediction period. In scenario 2 (Sect. 3.5.2), the decision rule
for switching between different sub-models became more complex because of the
occurrence of a higher number of configurations and influencing variables (heat
input, solar radiation, number of occupants, ventilation rate). The decision rule for
this second case was also based on the values of these influencing variables at each
time instant t as in (3.7), the values of these variables also supposed known for the
whole prediction phase.

For realistic test cases, the PWARX model estimated from data could generate
modes for which it is difficult to understand the physical configuration which
generated them. This could be due to the fact that one might not be able to fully
observe the operation of the building or because of having several switching signals
generating a large number of configurations. For this reason, for the validation
phase of this third test case, the PWARX technique (algorithm 1) is coupled with
a classification technique, namely, SVM, in order to identify the decision rule for
commutation between the discrete modes. Using this classification technique, the
equations of the borders of the convex polyhedrals separating the regression space
can be determined (see Eq. (2.23)), and therefore, new data (validation data) could
be classified in the right region based on the values in the regression vector.

3.6.2.2 SVM classifiers

SVMs are supervised learning methods for classifying new data points based on the
acquired labeled data used to train the classifier [Vapnik, 2013]. In other words,
given labeled training data, the algorithm outputs an optimal hyperplane which
separates the regions defined by the labeled data and is used for categorizing new
data. In a two-dimensional space, this hyperplane is simply a line dividing the plane
in two parts, each class laying on one side. For example, given the linearly separable
data points shown in Fig. 3.16(a), the idea is to find the equation

f (X) = w>X + b, (3.8)

of the line separating the blue circular points from the red triangular ones as shown
in Fig. 3.16(b), with w being the weight vector, X the input vector and b the bias.
The values of w and b are optimized by the SVM algorithm in order to maximize the
margin around the separating hyperplane.

In some cases, the data could not be linearly separable in the original input space.
Therefore, the data is mapped to a higher dimensional space called feature space, by
applying what is known as the "kernel trick", after which, the separation could be
linear in this higher dimensional space. This transformation is defined as

Φ : X → φ(X). (3.9)
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𝑋1

𝑋2

(a)

𝑋1

𝑋2 𝑓 𝑋 = 0

𝑓 𝑋 > 0𝑓 𝑋 < 0

(b)

FIGURE 3.16: Bi-dimensional linear classification using SVM

Hence, the separating plane in the new feature space becomes

f (φ(X)) = w>φ(X) + b. (3.10)

The kernel trick avoids the explicit mapping, i.e., the identification of φ(X). In
fact, the SVM linear classifier relies on a dot product between data point vectors. In
the new feature space, this becomes an inner product between vectors in the new
space. The Kernel function satisfies this inner product:

k(X, X′) = 〈φ(X), φ(X′)〉, (3.11)

which allows us to estimate the linear classifier in the new space without explicitly
knowing φ(X), but by applying a kernel function to the data in the original space.

Different types of Kernel functions exist, among which we cite the following:

◦ Linear Kernel
K(X, X′) = X.X′. (3.12)

◦ Polynomial Kernel
K(X, X′) = (X.X′ + 1)d (3.13)

where d is the degree of the polynomial.

◦ Radial basis Kernel

K(X, X′) = exp(−‖ X− X′ ‖2

2σ2 ) (3.14)

For example, the data in Fig. 3.17(a) cannot be separable by a line in the original
space. That is why a new feature is added (X3 = X2

1 + X2
2) and the data is projected

to a higher dimension space containing the additional feature. In this new space, a
hyperplane could separate the transformed data as in Fig. 3.17(b).

3.6.2.3 Estimating regions in the regression space using SVM

The PWARX algorithm used in this work is based on a clustering and an estimation
procedure. The clustering aims at dividing regression data in groups characterized
by their own dynamics and associating each regression vector to the correspond-
ing group label. Hence, each group becomes defined on a certain region of the
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𝑋1

𝑋2

(a) (b)

FIGURE 3.17: non-linear SVM classification by feature space transfor-
mation

regression space. Then, for the estimation part, a parameter vector is computed for
each cluster and it represents the dynamic behavior of the building for that specific
region of the regression space.

SVMs use the set of clustered data formed by the regression vectors and their
associated label to identify the optimum hyperplanes that separate the data in the
regression space.

The regression vector

ϕ(t) =
[

y(t− 1) . . . y(t− na) u(t− nk) . . . u(t− nb − nk + 1)
]> (3.15)

contains na past values of the output and nb +nk− 1 past values of the input u. Given
N regression vectors, the PWARX associates a label si, i = 1, . . . , s to each regression
vector. The SVM uses the labeled regression vectors to compute the vectors ω and
the parameter b defining the equations of the hyperplanes dividing the regression
space into s regions:

ω>ϕ(t) + b = 0. (3.16)

Fig. 3.18 shows this learning step of the SVM algorithm.

FIGURE 3.18: SVM learning

The SVM algorithm involves an optimization technique to calculate the values
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of the parameters ω and b defining the hyperplanes such that the distance between
the hyperplane and the closest data point is maximal. For more details about the
calculation steps, the reader could refer to [Yu and Kim, 2012].

3.6.2.4 Predicting discrete states using SVM

Once the parameters of the hyperplane equations are computed, regression data for
the prediction phase, ϕ′ can be assigned to the corresponding region by computing
the value of ω>ϕ′(t) + b.

For example, let us consider that the regression vector contains only two param-
eters: the previous output and one input at the previous time

ϕ(t) = [y(t− 1) u(t− 1)]>, (3.17)

and that two regions were estimated by the PWARX algorithm. Since this is a two-
dimensional space, the SVM computes the equation of the line that separates these
two regions. Let the equation of this line be

ω1y(t− 1) + ω2u(t− 1) + b = 0. (3.18)

For a new regression vector

ϕ′(t) = [y′(t− 1) u′(t− 1)]>, (3.19)

if
ω1y′(t− 1) + ω2u′(t− 1) + b > 0, ϕ′(t) ∈ <1 ⇔ σ(t) = 1,

else
ϕ′(t) ∈ <2 ⇔ σ(t) = 2.

This is the simple case of a two-dimensional regression space as the one shown
in Fig. 3.19. In practice, the dimension of the regression space is d = na + nu(nb +
nk − 1) for one output of order na, nu inputs of order nb and a pure delay nk. Each
region <i is therefore a convex polyhedron delineated by one or several planes of
equation

ω1ϕ(t, 1) + ω2ϕ(t, 1) + . . . + ωd ϕ(t, d) + b = 0. (3.20)

The discrete state σ(t) for the prediction phase is found by evaluating the product
in Eq. (3.20) of each identified plane and the regression vector for prediction ϕ′(t)
knowing that each region <i is delineated by a number of planes such that

σ(t) = i⇔ ϕ′(t) ∈ <i ⇔ Hi ϕ̄′(t) ≤ 0 (3.21)

where Hi is a matrix containing the parameters wj=1...d and b of each plane that
borders the region <i. Fig. 3.20 shows the procedure of predicting the indoor air
temperature using both SVM and PWARX algorithms. After the learning step (Fig.
3.18), the identified SVM classifier uses the new prediction data to find the region
to which each data point belongs by following the rules presented above. The dis-
crete state being identified, the PWARX algorithm uses it to estimate the indoor air
temperature by multiplying the extended regression vector and the parameter vec-
tor corresponding to the identified region. For SVM classification, we use the SVM
library LIBSVM, which handles multi-class classification problems [Chang and Lin,
2011].
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FIGURE 3.19: SVM classifier functioning

FIGURE 3.20: Predicting the temperature using SVM and PWARX
algorithm

3.6.3 Estimation results

The orders of the model are determined by testing all orders less than 8 and the
best result is found for na = 5, nb = 4 and nk = 1. Fig. 3.21 shows the number
of detected sub-models and the accuracy of the estimated model in terms of the
number of nearest neighbors c. The number of detected sub-models decreases
as the number of nearest neighbors increases and it stabilizes at 3 for c ≥ 600.
For these values of c, the Fit of the estimated model is quasi stable, ranging
between 65 and 66%. The highest value of the Fit was 70.38% and it was found
for c = 200, but this led to 15 detected sub-models. Therefore, we choose the
next best Fit found for a higher c, hence, lower number of sub-models, to keep the
model simple. The choice was c = 400, with a Fit = 70% and 6 detected sub-models.

Fig. 3.22 shows the PWARX estimation results for na = 5, nb = 4, nk = 1 and
c = 400. The number of detected sub-models is 6. The figure shows that some of
the sub-models are common to all four seasons (sub-models 3 and 4) while others
are specific to one season, like sub-model 5 only appearing in the summer period.
Some of the other sub-models can be dominant for some seasons more than the
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FIGURE 3.21: Number of detected sub-models and accuracy of the
estimated model in terms of the number of nearest neighbors c for

the case of the occupied building

others, like sub-model 3, that is more dominant in the spring and summer periods
than the winter and autumn periods. Having a large number of inputs renders the
relationship between the switching instances and the inputs to the model difficult to
interpret, hence, the SVM classification technique presented in the previous section
is used for the automated classification. The following values of the error criteria
are found for this estimation Fitest = 70%, MAEest = 0.39◦C, RMSEest = 0.5◦C and
R2

adj = 0.9.

FIGURE 3.22: PWARX estimation results for the third test case of the
occupied building
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3.6.4 Validation results

As explained in Sect. 3.6.2, an SVM classifier is used in this case study for validation
purposes as this classifier allows to determine the discrete state to be assigned to the
regression data in the prediction phase.

3.6.4.1 SVM validation

The classifier is trained using labeled data obtained from the PWARX algorithm.
First of all, to assess the accuracy of the classification, the labeled samples of
regression data obtained by the PWARX algorithm are divided into training and
testing samples. For the current example, labeled data from the first three seasons
is used to train the classifier and the data for the last season (autumn) is used for
determining the accuracy of the classification. The best classification is found for a
polynomial Kernel function of third degree with an accuracy of 97.8%.

3.6.4.2 PWARX validation results

In the previous examples, the prediction was done for the whole prediction period.
For this example, the prediction will also be done for different steps ahead. In a
residential building, predicting the indoor air temperature for several time scales
ahead could be needed for implementing control strategies. Since this test case is
for a real occupied building, it represents a more complete study, therefore, it would
be interesting to investigate predictions for a near horizon.

The one step ahead prediction considers that ŷ(t), which is the estimated output,
is computed from measured outputs up to instant t− 1 as follows:

ŷ(1)(t) = f [ŷ(0)(t− 1) . . . ŷ(0)(t− na)), u(t− 1) . . . u(t− nb)], (3.22)

with ŷ(0)(t − 1) is the actual measured value of the output at instant t − 1, i.e.
y(t− 1).

Based on this one step ahead formula, the multiple steps ahead predictions are
derived by recursively applying the same prediction formula [Zhang and Ljung,
2004]. The kth steps ahead prediction of the output is hence a function of the output
at the k − 1 step and the inputs as follows (we consider a pure delay of nk = 1 for
simplicity purposes),

ŷ(k)(t) = f [ŷ(k−1)(t− 1) . . . ŷ(k−1)(t− na)), u(t− 1) . . . u(t− nb)]. (3.23)

The two steps ahead prediction of the output is therefore calculated by

ŷ(2)(t) = f [ŷ(1)(t− 1) . . . ŷ(1)(t− na)), u(t− 1) . . . u(t− nb)], (3.24)

and so on.

We call simulation, the results obtained for the prediction of the output for the
entire prediction period (which can be viewed as infinite steps ahead predictions),
namely the 8th to the 10th of the first month of each season. This is given as

ŷ(t) = f [ŷ(t− 1) . . . ŷ(t− na)), u(t− 1) . . . u(t− nb)]. (3.25)



74 Chapter 3. Evaluation of the proposed modeling approach

In this case, the output at instant t is computed in terms of previous outputs
simulated by the model without using any measurements. Recall that for the first
two test cases, only simulation results were given.

FIGURE 3.23: PWARX simulation results for the whole prediction pe-
riod

The simulation results are given in Fig. 3.23. By observing the measured and
simulated temperature curves, one can see that the prediction is mostly accurate
during winter time while for spring and summer periods, the prediction seems
less accurate. Sub-models 3 and 4 are once again found most dominant for the
summer period while sub-model 5 is missing. The following results are found
for this simulation: Fitpred = 80.2%, MAEpred = 0.28◦C, RMSEpred = 0.36◦C and
R2

adj pred = 0.96.

FIGURE 3.24: Comparison between PWARX and ARX simulation re-
sults for the whole prediction period

As for the previous test cases, a comparison between the simulation results
obtained with the PWARX model and those obtained with an ARX model is
provided. For the ARX model the same orders seem to be the most accurate. The
results are given in Fig. 3.24 and they show that the prediction for winter time is
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close, however, the PWARX model seems to have more accurate predictions for the
remaining seasons. Table 3.5 shows the prediction results obtained for each season
separately for both ARX and PWARX models. The estimation data is the same, but
the prediction is done for each season separately. The following values are found for
the ARX model prediction for the whole period: Fitpred = 72.9%, MAEpred = 0.36◦C,
RMSEpred = 0.5◦C and R2

adj pred = 0.92.

Season Fit (%) MAE (◦C) RMSE (◦C) R2
adj

PWARX
Winter 80.1 0.29 0.37 0.96
Spring 54.16 0.25 0.32 0.78

Summer 34.71 0.31 0.4 0.56
Autumn 63.99 0.27 0.35 0.86

ARX
Winter 78.26 0.3 0.41 0.95
Spring 33.66 0.4 0.47 0.55

Summer 26.57 0.32 0.45 0.45
Autumn 35.17 0.43 0.63 0.57

TABLE 3.5: Validation criteria for prediction results of PWARX and
ARX models

Table 3.6 shows the performance of the PWARX and ARX models for 1 step ahead
prediction (5min), 6 steps ahead prediction (30 min) and 12 steps ahead prediction
(one hour), as well as the simulation for the whole period. The results in this table
show a better performance of the PWARX model. For small time horizon (5 min and
30 min ahead), the performance of these two models is very close, however, when
the prediction is for a longer time scale, the PWARX model outperforms the ARX
model. Fig. 3.25 shows the prediction for one hour ahead (12 steps) by the PWARX
model.

Prediction Step Fit (%) MAE (◦C) RMSE (◦C) R2
adj

PWARX
1 (5 min) 98.86 0.013 0.02 0.999
6 (30 min) 94.45 0.063 0.102 0.996
12 (1 hour) 89.66 0.116 0.1913 0.989

Simulation (12 days) 80.22 0.285 0.366 0.96
ARX

1 (5 min) 98.85 0.012 0.02 0.999
6 (30 min) 93.56 0.078 0.119 0.995
12 (1 hour) 88.32 0.147 0.216 0.986

Simulation (12 days) 72.97 0.36 0.5 0.926

TABLE 3.6: Validation criteria for prediction results of PWARX and
ARX models

3.7 Discussion of results and conclusion

This chapter aimed at investigating the performance of the PWARX approach in
modeling the indoor air temperature of buildings. For this purpose, three test cases
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FIGURE 3.25: One hour ahead prediction using PWARX

were presented ranging from the easiest to the most complex. The first two test
cases are rather academic. In the first one, the algorithm used data measured in
the Eco-confort room where configurations related to the heating mode (ON/OFF)
were identified. For the second one, the algorithm used data simulated by a
numerical model of a room where the configurations were related to the heating
mode (ON/OFF), the ventilation mode, the presence of occupants and the position
of shades. The third test case was for an occupied building monitored throughout
several years. The results showed that the PWARX model was able to detect
different configurations in each test case and to predict the indoor air temperature
with a higher accuracy than classical ARX models.

It was observed that the number of detected models and therefore the accuracy
of the model depends on the chosen number of nearest neighbors c. A compromise
between the number of sub-models and the accuracy of results has to be found.
An analysis done after the estimation of the sub-models could relate the switching
to the physical reasons. However, sometimes, due to the interference of multiple
configurations, the complexity of a building system and the lack of observability
of the occupants’ behavior, it is hard to determine the physical reasons behind the
switching.

The discrete states found for the first two test cases were related to the applied
configurations, however, for the third test case, no clear interpretation of the
switching could be derived. Hence, for the prediction phase, the discrete state for
the prediction data of the first two test cases was determined based on the values of
the influencing variables (heating, solar radiation, ventilation, etc.). However, for
the third test case, the number of influencing variables was high, hence, the discrete
state was determined in an automated way by using SVM classification.

In the three test cases, the PWARX models showed better performance than
classical ARX models. The difference in their performance becomes important when
the behavior of the temperature is highly influenced by sudden events leading
to a different dynamic behavior. This was observed for the second case, where
the PWARX clearly outperformed the ARX approach. In the third test case, the
performance of both ARX and PWARX was similar for short time ahead prediction.
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However, when the prediction horizon becomes longer, the PWARX outperforms
the classical ARX model.

In this chapter, the use of PWARX for modeling the indoor air temperature of
a building was validated through several test cases. In the next chapter, the use
of PWARX models for predicting the energy consumption of buildings is presented.
For that purpose, the models are incorporated in a hybrid control loop for simulating
standard scenarios.
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Chapter 4

Predicting the energy consumption
of buildings using a data driven
PWARX model

This chapter presents a contribution to the evaluation of the energy consumption
of buildings using data-driven approaches. To do that, the PWARX modeling tech-
nique, coupled with the SVM classification technique, are integrated in a closed loop
with controllers designed for each one of the continuous sub-models identified in
the modeling stage. The proposed methodology is applied on a test cell located in
Angers, France, for which measurements provided before and after applying insu-
lation are used to predict the energy consumption in each case and assess the gain
in energy efficiency.

4.1 Need for estimating the energy consumption of build-
ings

Previous chapters showed how to use PWARX algorithm for modeling the indoor
air temperature of a building. This chapter discusses how to integrate this ap-
proach in a control loop for the purpose of predicting the energy consumption of
a building previously modeled via a data driven approach. Because of the energy
and environmental impact of the building sector, many countries have adopted
legislations addressing the issue of building energy consumption and efficiency.
Hence, the need to verify the compliance of the building to the regulations has
risen. Moreover, the assessment of the energy consumption of buildings is the
key element before taking any energy efficient actions, whether they pertain to the
construction materials and envelope or to the HVAC systems. In France, the energy
performance of the building is estimated by simulating the building thermal and
energy response to so-called regulatory scenarios. These are predefined standard
scenarios related to the occupancy of the building, the set point temperature,
the lighting schedule, the ventilation, etc. Standard behavior of the occupants is
considered and the calculation of the energy consumption is based on this usage.
Different scenarios are possible according to the type of building (residential, hotels,
schools, etc.). For example, the set point temperature in winter in a residential
building is 19◦C when the house is occupied and 16◦C when the occupants are away.

This chapter presents a methodology showing how to use the PWARX model
developed from measurements as a tool for a fast and accurate estimation of the
energy consumption of a building subject to well defined scenarios. This methodol-
ogy is dedicated for existing buildings because of its dependency on data measured
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during the operation of the building. It can also use simulated data if measured
data is not available. This could be useful in case the original thermal model of
the building is too complicated to be used for simulating standard scenarios and
evaluating its energy performance. In this case, the original complex model is used
to generate simulated data that is used by the PWARX algorithm to estimate a
simpler model (a PWARX model) that can be used later on for estimating the energy
performance of the building.

The performance of the proposed methodology for predicting the energy con-
sumption of buildings is tested on an experimental cell located in Angers, France.
This cell has undergone renovation work, hence, two measurement campaigns were
conducted, one prior and the other after renovation. During each measurement
campaign, different scenarios were applied inside the cell. The proposed methodol-
ogy is used to predict the energy consumption of the cell before and after insulation
for the same scenario and assess the improvement in the energy efficiency due to
the insulation work. The result is then compared to the reduction percentage of the
overall Heat Transfer Coefficient (HTC) of the cell due to insulation, the HTC being
calculated using the physical and thermal properties of the envelope before and
after insulation.

The chapter is organized as follows. In Sect. 4.2, the concept of the proposed
control methodology is presented. In Sect. 4.3 a description of the case study of a
test cell in Angers, France is provided, and the obtained results are shown in Sect.
4.4 while Sect. 4.5 is dedicated to the conclusion.

4.2 Proposed control methodology

The general idea behind this methodology is to predict the amount of energy
needed to maintain the temperature in the building close to a reference temperature
set by the user, the building being subject to normal weather conditions. This is
done by integrating the model in a control loop. Designing an effective control loop
for regulating the indoor air temperature starts with creating a simple but accurate
model of the thermal behavior of the building at hand. In this case, the PWARX
model built from measurements is used. The control loop is presented in Fig. 4.1.

We call process variable the system variable to be controlled, in our case, the air
temperature of the building zone. This variable is predicted by the PWARX model
and fed into the control loop. The difference between the measured value of the
process variable and the desired set point is given to the controller that uses it to
determine the desired heat input to drive the system. This is the main principle
behind the closed control loop.

In our case, we use the PWARX technique presented in Sect. 2.4 for modeling
the indoor air temperature using inputs like the heating power and meteorological
data. The model is then integrated in a closed control loop to calculate the energy
needed to keep the temperature in the building within a certain range following a
scenario that we impose.
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FIGURE 4.1: Temperature regulation by closed loop control

The PWARX model is a hybrid model yielding a set of sub-models representing
different configurations or functioning modes of the building (heating ON/OFF,
ventilation ON/OFF, etc.). An important challenge at this point would be to design
a hybrid controller that corresponds to the hybrid aspect of the PWARX model of the
building and to select the right controller according to the temperature dynamics.
The decision rule for switching between one sub-model and another is acquired
from the regression data. In the previous chapter, it was shown how the SVM
classification technique is used to estimate the equations of the borders defining the
regions in the regression space, in order to estimate the discrete state of new data.
The same rule will be applied here for switching between controllers.

The first steps of the methodology have already been detailed in the previous
chapters. First of all the collection of data should respect the points mentioned in
Sect. 3.2. Once the inputs and outputs are selected and the data is collected, the next
step would be to identify dynamic thermal models using the PWARX algorithm
presented in Sect. 2.4. The reader should refer to Sections 2.3, 2.4 and 3.6.2 for more
details about the PWARX model structure and the main steps of the estimation
algorithm and the validation procedure using the SVM classification technique.

4.2.1 Simulate the identified models using standardized scenarios in
closed loops with PID controllers

In order to predict the energy consumption of the building, a closed loop simulation
is performed using the identified PWARX model. A first step would be to choose
and design an appropriate type of controllers. The most common controllers used
in the buildings industry are PID (Proportional Integral Derivative) controllers
[Åström and Hägglund, 1995]. The choice of this type of controllers is motivated by
the fact that they are known for the robustness of their performance, their simplicity
and the availability of many algorithms to tune their parameters: proportional,
integral and derivative coefficients, which are varied to obtain a response satisfying
the specifications. These specifications refer to the rise time, the settling time, the
overshoot or the steady-state error of the closed-loop response with respect to the
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set point temperature.

The controller is designed based on the specifications and the model available for
the plant, which are assumed known. The standard continuous-time PID controller
is defined by

c(t) = K
(
e(t) +

1
Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

)
(4.1)

where c(t) is the control signal and e(t) is the error between the measured process
variable and the reference variable (set point). The control signal is thus a sum of
three terms: the P-term (which is proportional to the error), the I-term (which is
proportional to the integral of the error), and the D-term (which is proportional to
the derivative of the error). The controller parameters are the proportional gain
K, the integral time Ti, and the derivative time Td. The integral, proportional and
derivative part can be interpreted as control actions based on the past, the present
and the future.

Eq. (4.1) can be rewritten in an expanded form to give another universal expres-
sion of the control function

c(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

, (4.2)

where Kp = K, Ki =
K
Ti

and Kd = KTd are respectively the proportional, integral, and
derivative terms coefficients to be tuned. The continuous-time transfer function of a
PID controller is found by taking the Laplace transform of Eq. (4.2):

C(s) = Kp +
Ki

s
+ Kds. (4.3)

This equation can be transformed from continuous-time to discrete-time using one of
the available methods: forward rectangular, backward rectangular or bilinear trans-
formation. We consider the bilinear method for which

s =
2
Ts

z− 1
z + 1

, (4.4)

where Ts is the sampling time and z is the backward shift operator. The discrete-time
transfer function is therefore:

Cd(z) = Kp + Ki
Ts

2
z + 1
z− 1

+ Kd
2
Ts

z− 1
z + 1

. (4.5)

Sometimes, a derivative filter is also considered in order to achieve a better per-
formance for the controller [Åström and Hägglund, 1995]. In this case the transfer
function becomes:

Cd(z) = Kp + Ki
Ts

2
z + 1
z− 1

+ Kd
1

Tf +
Ts
2

z+1
z−1

, (4.6)

where Tf is the derivative filter time constant.

The hybrid PWARX model being formed by a set of discrete-time sub-models,
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a set of discrete-time parallel PID controllers will be integrated in the closed loop.
The design of the PID controllers (tuning the three parameters) is done using the
PID Tuner application of Matlab based on the transfer function of the model. In Sect.
2.2.3, we established the equivalence between discrete transfer functions and models
in input-output form. For estimating the controllers, the tuning application is based
on the transfer function of the model, hence, PWARX models are transformed into
discrete-time transfer function models. Since the PWARX model is a set of Multiple
Inputs Single Output (MISO) sub-models, for each sub-model j, a transfer function
can be derived from the ARX sub-models for each input i as follows:

Hi
j(z) = T(t)

ui
j(t)

=
Bi

j(z)
Aj(z)

=
bi

j,nk
z−nk+...+bi

j,nk+nb−1z−nk−nb+1

1+aj,1z−1+...+aj,na z−na

(4.7)

where j = 1, . . . , s is the sub-model index, i = 1, . . . , nu is the input index, z−m

is the backward shift operator such that z−mT(t) = T(t − m) and finally bi
j,l ,

l = nk, . . . , nb + nk − 1 and aj,k, k = 1, . . . , na are the corresponding coefficients
(components of the parameter vector θ) multiplied by the input i and the tem-
perature output of sub-model j respectively. Hence, the control parameters are
computed by the tuning application for each local transfer function, thus generating
a set of controllers corresponding each to certain temperature dynamics (modes,
configurations) of the building.

The performance of the control system is done by investigating the response to
a step function used as the set point command variable. The response is usually
quantified by the waveform characteristics: rise time, settling time and overshoot
presented in Fig. 4.2. Rise time is the amount of time the system takes to go from
10% to 90% of the final value (steady-state) and settling time is the time required
by the process variable to settle within a certain percentage (2% for example) of
the steady-state value. Overshoot is the percentage of the final value by which the
process variable overshoots the final value. Steady-state error is the final difference
between the process variable and set point. The stability of the closed-loop system,
i.e., having a bounded output for every bounded input, is also an important aspect
to investigate. Changing the parameters of the PID controller changes the value of
these characteristics. For instance, increasing the proportional gain will increase
the speed of the control system response. However, if the proportional gain is too
large, the system might become unstable. The effect of the integral response is to
drive the steady-state error to zero. The derivative component attempts to reduce
overshoot and increase the speed of the overall control system response. However,
if the derivative time is too large the control system can become unstable.

The PID tuner graphical interface allows to see the effect of changing the
controller parameters on the response of the system. The initial parameters are
computed by the PID tuner based on the transfer function of the system, then the
parameters are altered in order to get the desired response. For this application, the
parameters are altered so that the response can be as quick as possible (reducing
rise and settling time) while maintaining the stability of the loop and an acceptable
overshoot (less than 10%).
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FIGURE 4.2: Control response characteristics

The design of the controller will be based solely on the SISO transfer function
Hheat

j (z) for the heat input for every sub-model j (uheat
j (t)), because the controller

will act on the heat power input to drive the temperature to its reference.

Hheat
j (z) = T(t)

uheat
j (t)

=
Bheat

j (z)
Aj(z)

=
bheat

j,nk
z−nk+...+bheat

j,nk+nb−1z−nk−nb+1

1+aj,1z−1+...+aj,na z−na .

(4.8)

We then design a parallel PID controller for each Hheat
j (z), j = 1, . . . , s as in the

following equation:

Cj(z) = K j
p + K j

i
Ts

2
z + 1
z− 1

+ K j
d

1

T j
f +

Ts
2

z+1
z−1

. (4.9)

where K j
p is the proportional gain, K j

i is the integral gain and K j
d is the derivative

gain and T j
f is the derivative filter time constant for controller Cj corresponding to

the jth sub-model.

As mentioned earlier, an important challenge is to select the right controller
corresponding to each discrete mode of the building. The switching between the
different controllers will follow the same decision rule acquired for the switching
between the discrete sub-models. This will result in a hybrid PID control, with each
controller being designed for a certain operating range. In this methodology, the
operating range for the controller is the same as the one found for the sub-model to
which it is related. In building thermal simulation, multiple research papers have
already introduced hybrid control to HVAC systems [Witrant et al., 2009; Shein
et al., 2012].

Lastly, the designed PID controller is integrated in the loop represented in Fig.
4.3 and its operation is detailed in the following. The algorithm starts by initializing
the temperature and the heat input. Using these values and the values of the other
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FIGURE 4.3: Control loop diagram

inputs like the ambient temperature and the solar radiation (which are no other
than the variables composing the regression vector), the SVM classifier finds the
current discrete state j. The discrete state allows to choose the jth sub-model of the
PWARX model which also uses the same inputs for predicting the temperature at
the current time t. The same discrete state j is used to choose the corresponding PID
controller. The error between the reference temperature and the one predicted by
the PWARX model is therefore fed to the jth PID controller that tries to minimize the
error by delivering the convenient heat input. The heat input is then used with the
other inputs to find the discrete state (using SVM) and the temperature at the next
time step (t + 1) and so on [Ajib et al., 2018b].

4.2.2 Evaluation of the energy consumption

For the cell considered in this test case, the energy consumption is the power deliv-
ered by the radiator to maintain the set point temperature for the whole period of
the scenario. The amount of energy consumed during a scenario of length L with a
sampling time S and a heat power input at each time sample t (uheat(t)) is computed
as:

E(kWh) =
L

∑
t=1

(uheat(t)(kW) · S(hour)). (4.10)

4.3 Case study-HUMIBATEX Angers

The accuracy of the proposed methodology in predicting the energy consumption
due to heating is evaluated on the following case study. It is a small building with
a surface area of approximately 16m2 located in Angers, France and shown in Fig.
4.4. The building is separated into a humid zone (6 m2) and a dry zone (10 m2).
During the measurement campaign, the dry zone was subject to insulation work.
Hence, measurements collected before and after insulation in this zone will be
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used to investigate the ability of the proposed methodology to evaluate the energy
performance of the cell. The accuracy of this estimation is tested by calculating the
gain in the energy performance brought by renovation and then comparing it to the

FIGURE 4.4: Building under study-HUMIBATEX Angers

reduction in the overall Heat Transfer Coefficient (HTC) of the dry zone before and
after insulation, calculated based on the thermal properties of the construction and
the insulation material. The HTC calculates the overall heat lost by the building
envelope. The reduction in the HTC after insulation is highly linked to the gain in
the energy performance.

TABLE 4.1: Scenarios applied for this case study

Scenario Start date End date Insulation Heat DFV ABV
1 18/09/2015 08/10/2015 - - - -
2 14/10/2015 05/11/2015 - 3 - -
3 05/11/2015 04/12/2015 - 3 3 -
4 04/12/2015 07/01/2016 - 3 - 3

5 05/02/2016 04/03/2016 3 3 - 3

6 04/03/2016 01/04/2016 3 3 3 -
7 01/04/2016 29/04/2016 3 3 - -
8 29/04/2016 27/05/2016 3 - - -
9 27/05/2016 17/06/2016 3 - 3 -
10 17/06/2016 18/07/2016 3 - - 3

The building is equipped with various sensors measuring weather data (ambient
temperature and humidity, solar radiation and rain level) on each facade. Sensors
are installed inside the cell to measure the temperature and humidity inside each
zone at different height levels. Heating is provided in the dry zone via two electric
heaters of 750W maximum power each. Two types of ventilation mechanisms are
implemented, a Double Flux mechanical Ventilation (DFV) and a direct Air Blowing
Ventilation (ABV). The DFV uses two networks of ducts for supply and return air,
each equipped with a ventilator, the air flow being predetermined. The heat of the
exhaust air conducted outside the building is recovered in order to heat the new
incoming air. The ABV sucks the air from outside, heats it via an electric resistance
to avoid condensation, and then blows it directly into the building which creates
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an over-pressure. Then the air is naturally pushed outside via ventilation grilles.
Sensors are used in the air ducts to measure the temperature and humidity of
air conducted to and from the cell. Sensors are also used to measure the energy
consumption of the mechanical systems (radiators, ventilation systems, humidifier
and dehumidifier). The building is subject to different scenarios related to the
heating and ventilation before and after insulation. These are summarized in Table
4.1. Sampling time is 10 minutes.

4.4 Results

In this section, the results for modeling the air temperature of the dry zone of the
Humibatex building using the PWARX algorithm 1 before and after insulation
are presented, along with the results obtained for the control loop implemented
to estimate the energy consumption of the zone before and after insulation for
predefined scenarios.

4.4.1 Estimation and validation results

Two data sets corresponding to measurements before and after insulation are pro-
vided, hence, two PWARX models are estimated. Each data set is divided into two:
the first one contains the first half of each scenario and is dedicated to the model
identification process while the second one contains the other half of each scenario
and is used for validation. To reduce the errors caused by the discontinuity of data
at the beginning of each new scenario, the first na data points of each new scenario
are set equal to the measured ones for both estimation and validation. The output
of the PWARX model is the indoor air temperature. The inputs to the model are:
the ambient dry bulb temperature, the ambient relative humidity, the global solar
radiation, the heating power from the radiators, the temperature of the air blown
into the zone from both ventilation mechanisms and the air flow at the diffuser level.

To assess the precision of the model estimation and validation, the Fit (Eq. (3.1)),
MAE (Eq. (3.2)), RMSE (Eq. (3.3) and R2

adj (Eq. (3.4)) are used.

4.4.1.1 Before insulation

Fig. 4.5 shows the results obtained for modeling the indoor air temperature of the
dry zone before insulation (first four scenarios in Table 4.1). For na = 4, nb = 3,
nk = 1 and c = 500, four sub-models are found. The first sub-model corresponds to
the free evolution of the temperature without any heating or ventilation (scenario
1). The others correspond to different behaviors of the temperature caused by the
heating and ventilation. For this estimation we find Fitest = 75%, MAEest = 0.2◦C,
RMSEest = 0.28◦C and R2

adj,est = 0.94.

SVM classifiers are trained using labeled regression data from the estimation
period. They are then used to classify validation data into one of the four identified
regions and the corresponding sub-model is used to simulate the temperature in
each region (cf. Sect. 3.6.2). The validation results are shown in Fig. 4.6. A good
accuracy is found with Fitpred = 68%, MAEpred = 0.27◦C, RMSEpred = 0.4◦C and
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FIGURE 4.5: PWARX estimation results before insulation

FIGURE 4.6: PWARX validation results before insulation
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R2
adj,pred = 0.9.

4.4.1.2 After insulation

FIGURE 4.7: PWARX estimation results after insulation

The same procedure is applied on data collected in the building after insulation
(last 6 scenarios). The estimation results are shown in Fig. 4.7. Four sub-models
were also obtained but this time for na = nb = 5, nk = 1 and c = 500. Two sub-
models are estimated for the free evolution of the temperature without heating or
ventilation (scenario 8), the same sub-models are also found for an evolution with
ventilation (scenarios 9 and 10), the reason behind this being that during the last
three scenarios, the ambient temperature was quite high and in the same range of the
indoor air temperature, so the ventilation did not considerably change the behavior
of the temperature inside the building. The other two sub-models appear when the
heating in ON. This estimation gives Fitest = 70.75%, MAEest = 0.46◦C, RMSEest =
0.68◦C and R2

adj,est = 0.91. In the same way, an SVM classifier is trained using labeled
regression data from the estimation part and then used to classify validation data in
order to determine the discrete state at each instant t. The validation results are
presented in Fig. 4.8 with Fitpred = 69%, MAEpred = 0.56◦C, RMSEpred = 0.76◦C
and R2

adj,pred = 0.9.

4.4.2 Evaluating the energy consumption before and after insulation

To evaluate the energy consumption of the building, the PWARX models identified
in Sect. 4.4.1 are integrated in a closed loop with PID controllers and simulated for
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FIGURE 4.8: Validation after insulation

a predefined scenario. The switching between different controllers is based on the
discrete state determined by the SVM classification.

TABLE 4.2: PID controllers parameters for each sub-model

Sub-model Kp Ki Kd Tf
1 before ins. 1720 0.0948 4.2 ∗ 106 685
2 before ins. 9.43 ∗ 104 4.93 −5.87 ∗ 107 954
3 before ins. −3580 -0.497 −4.05 ∗ 106 1090
4 before ins. 1860 0.259 2.27 ∗ 106 1230
1 after ins. 1270 0.107 2.84 ∗ 106 985
2 after ins. 870 0.128 −2.78 ∗ 104 333
3 after ins. 369 0.012 2.66 ∗ 106 858
4 after ins. 502 0.0258 1.25 ∗ 106 760

The details on the parameters of the controllers found for all the sub-models
before and after insulation are given in Table 4.2 (before ins.: before insulation; after
ins.: after insulation). The controllers are then integrated in the closed loop (Fig. 4.3)
in order to estimate the heating power required for maintaining the temperature
in the desired rang defined by the scenario. This range is defined by the user, it
could be for example the scenario set by the regulations. In this case, the set point
temperature in the scenario is fixed to 21◦C between 6 AM and 8 PM and 18◦C for
the rest of the time.
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FIGURE 4.9: Ambient air temperature (used as input) and ventilation
mode for the simulated scenario

The heat input provided by the command is limited to a minimum of 0W and a
maximum of 1500W that corresponds to the maximum heating power that could be
delivered by the radiators. The ambient air temperature and the ventilation mode
for the simulated scenario are shown in Fig. 4.9. In order to assess the improvement
in the energy consumption brought by the insulation work, the same scenario is
applied for the models found before and after insulation and the same inputs are
given to both loops. The scenario is chosen to cover the two ventilation modes
(as shown in Fig. 4.9). The control results obtained before and after insulation are
respectively shown in Fig. 4.10 and Fig. 4.11.

FIGURE 4.10: Control results before insulation

Before insulation, the heating provided inside the building is quickly dissipated
through the construction. Therefore, the temperature takes a longer time to attain
its set point compared to the case after insulation, where the heating is preserved
inside the zone for a longer time and thus the temperature attains its set point faster.
In the same way, before insulation, the temperature quickly drops after the heating
is turned off, which is not the case after insulation. One can also notice that the
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FIGURE 4.11: Control results after insulation

control for the installed heaters is performing better (close to reference temperature)
after insulation while before insulation, the maximum heating power installed is
not sufficient to quickly attain the 21◦C maximum set temperature.

TABLE 4.3: Energy performance gain obtained by our approach and
classical physics approaches

Before insulation After insulation Gain
Our approach (kWh) 295 60 79%

HTC (W/K) 38.3 9.6 75%

The total energy consumed during this 17 days scenario (Fig. 4.9) is calculated
before and after insulation.

In order to evaluate the accuracy of this methodology, the reduction in the overall
HTC of the dry zone of the building was estimated using physical calculation based
on the properties of the installed insulation materials. The HTC is calculated 1 before
and after insulation using the following equation:

HTC = ∑(Si ∗Ui ∗ bi) + ∑(ψi ∗ Li ∗ bi). (4.11)

The first part of the equation represents the heat losses through the envelope
where Si(m2) is the surface area of wall i, Ui(W/m2.K) is its heat transfer coefficient
that depends on the thermal properties of the wall materials as indicated by the
manufacturers. The second part represents the heat losses through thermal bridges
2, where Li(m) is the length of the thermal bridge, ψi(W/m.K) represents the heat
loss coefficient of the linear bridge, it is estimated based on the calculation rules

1These calculations were performed by the CEREMA (Centre d’Etudes et d’expertise sur les
Eisques, l’Environnement, la Mobilité et l’Aménagement) center located in Angers, France, where the
test cell is built.

2A thermal bridge is an area of a building construction which has a significantly higher heat transfer
than the surrounding materials due to a break in the insulation, assembly junctions (roof to wall, wall
to floor, etc.), corners, etc. Thermal bridges result in additional heat losses.
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indicated in the French thermal regulation. Lastly, bi is a coefficient related to the
adjacent space, for instance, if the wall is exposed to the outdoor environment,
bi = 1 while if it is exposed to a heated area, bi is close to zero. This is the
conventional method defined by the French thermal regulations for calculating the
overall HTC of an existing building [Th-Bât]. It does not take into consideration
losses due to ventilation or air infiltration. This will lead to a certain difference
between the value estimated by this method and the one estimated by the proposed
methodology. This latter being based on data measured in the test cell, the losses
through ventilation or infiltration are embedded in the model parameters.

The obtained values are shown in Table 4.3. The gain estimated by physics
based methods is 75% which is close to the value of 79% found by the proposed
methodology.

The described methodology is therefore suitable for estimating the gain in the
energy performance of a certain building provided the availability of measurements.
The estimation of this gain using the HTC method requires detailed information
about the construction of the building. The advantage that the proposed data-based
methodology presents is that it provides the amount of energy consumed during a
certain period of time for a defined scenario. It therefore can be used for assessing
the energy performance of a building for standard scenarios.

4.5 Conclusion

In this chapter, a methodology for evaluating the energy performance of buildings
based on data driven techniques is presented. It relies on the PWARX hybrid
system identification technique presented in Sect. 2.4 for modeling the indoor air
temperature of the building combined with the SVM classification technique and
integrating a hybrid PID controller. The methodology was applied on a test cell
located in Angers, France, using data from experiments before and after insulation
work. The results showed that the reduction in the energy consumption of the test
cell due to renovation was accurately and quickly estimated using an automated
technique based entirely on real measurements.

This methodology can therefore be used to assess the energy performance of a
building by simulating it in a closed loop for standard scenarios. The methodology
relies on measurements collected from the building without any information about
its physics. Therefore, it is a quick way of estimating the energy performance of
existing buildings provided the availability of real measurements. It can also be
used to test different control strategies and choose the most efficient ones in terms
of occupants’ comfort and energy savings. The control in this test case was only
applied on the heating power, however, it can also be applied for other inputs like
ventilation rate.
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Conclusion and future work

Having an accurate model to describe the thermal dynamics of a building is
needed for implementing actions aiming at reducing the energy consumption of the
building sector and its environmental impact. For this purpose, building thermal
modeling has seen important developments for the past 50 years. Various modeling
approaches have been proposed, some based on physical equations describing the
heat, air and humidity transfer between the building and its environment, others
based on mathematical equations constructed entirely from measurements collected
from the building during operation. This thesis presents an original application
of a data-driven technique for modeling the thermal behavior of buildings. The
novelty of the proposed approach lies in using a hybrid system representation,
a system that exhibits both continuous and discrete dynamics, and in treat-
ing sudden events like opening the windows or turning the heating on as discrete
events affecting the temperature dynamics which generate a new continuous model.

Chapter 1 presented the three main modeling categories, namely, "white box",
"black box" and "grey box". This chapter detailed the techniques used within each
category along with their advantages and limitations, as well as a number of pub-
lications employing them. It was concluded that even though "white box" models
have been historically adopted for representing the thermal behavior of a building
system, discrepancies between the predicted behavior and the actual one has been
noticed throughout the years. This is due to three main factors:

◦ The parameters related to the building envelope and systems given to the
model are not accurate due to multiple reasons like the fact that the builder
did not respect the specifications or the materials properties have changed over
time, etc.

◦ The hypotheses and simplifications adopted by the model disregard important
factors such as air infiltration or the latent heat transfer.

◦ The occupants’ behavior considered in the model highly differs from the actual
one.

To overcome these limitations, researchers have proposed to use complementary
approaches such as the ones based on data measured from the building as they
eliminate some of the error sources. The main limitation of data-driven models
is their need of a rich amount of data that is representative of the behavior of the
building for different conditions. Another limitation of most of the data-driven
models is the usual assumption of a linear model structure that is not representative
of the complex phenomena occurring in the building. This thesis addresses this last
issue by proposing a nonlinear model with a hybrid structure, combining linear
continuous dynamics with discrete events corresponding to the linearization of a
nonlinear model around operating points.
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The thesis considers a special class of data-driven techniques used for the
identification of hybrid systems called PWARX [Boukharouba et al., 2009]. Such
systems are a collection of affine sub-models where each sub-model is an ARX
equation representing a certain configuration of the building characterized by its
particular dynamics. The use of a switching model is mathematically interpreted
and motivated in Chapter 2 using equations derived from the lumped RC thermal
circuit of a typical building. This first contribution shows how the events that occur
in a building like opening/closing windows or shutters, changing the heating mode
or the occupancy level can lead to a change in the structure and parameters of the
transfer function representing the system. This leads to a set of local transfer func-
tions changing according to the configuration, thus supporting the proposal made
in this thesis that consists in having a different model for each configuration. In the
second part of this same chapter, the PWARX algorithm is presented in details. It
is based on a clustering and an identification procedure that occur simultaneously.
The goal of the clustering step is to group similar data points in one group and then
for the identification part, the least squares method is applied to the data in each
cluster to find the representative model coefficients. As a result, several sub-models
are obtained where each one represents particular dynamics in the building. An
important aspect in this methodology is the fact that the number of sub-models is
not known a priori, which corresponds to the type of application considered in this
thesis as we do not have previous knowledge about the configurations that might
occur in a building. The number of sub-models is identified by the technique based
on the dynamics represented by the data.

The PWARX technique is used in this thesis to model the indoor air temper-
ature of the building. The validation of this methodology represents the second
contribution of the thesis and is presented in Chapter 3 for several test cases.
Data collected from different types of buildings, ranging from a simple case of a
small unoccupied room to an occupied residential building, was used to test the
performance of the PWARX models in predicting the indoor air temperature. The
results showed the capability of the PWARX technique to detect different thermal
behavior in a building. These are due to events leading to different dynamics
as the ones identified in Chapter 2 like turning the heating ON/OFF, increasing
the ventilation rate (opening windows), changing the occupancy, or to a certain
range of important factors like the solar radiation. The results also showed that the
prediction of the indoor air temperature using PWARX models is more accurate
than the prediction using classical ARX models. A clear out-performance of the
PWARX models was noticed when the previously mentioned events become more
frequent. Due to the large number of inputs and influencing factors for the case of
the occupied building, it was hard to determine the cause behind each switching
instance, thus an automated classification technique was proposed to determine the
switching rule. Sect. 3.6.2 showed how to use the SVM classification technique for
assigning new data to the right region allowing to use the right sub-model for the
prediction phase. Some sub-models are detected for a specific season, while others
were dominant throughout a whole. The prediction for this test case was performed
for several time horizons (k-steps ahead). The results show that when the prediction
horizon is very small (5 min), both ARX and PWARX give an accurate prediction,
however, as the prediction horizon increases, the PWARX outperforms the ARX.

The last contribution was detailed in Chapter 4, where it was shown how to
extend the methodology to predict the energy consumption of a building subject
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to standard or well defined scenarios. This is useful for having a quick evaluation
of the energy performance of an existing building. The implementation of this
methodology was done by integrating the PWARX model and the SVM classifica-
tion technique in a hybrid control loop that uses PID controllers. It was validated
using data collected before and after the renovation of a building located in France,
the goal being to predict the gain in its energy performance. The results showed
that this methodology was able to accurately estimate the gain in the energy
performance due to renovation work. In fact, a good agreement was found between
the gain estimated by the proposed methodology and the reduction in the overall
HTC coefficient calculated using physical equations. This has lead us to conclude
that the developed methodology can be used to assess the energy performance of a
building subject to standard scenarios.

This thesis was a feasibility study of the potential of using PWARX for the ther-
mal modeling and the prediction of the energy consumption of buildings. Therefore,
the most straightforward solutions available for the classification and control were
used, but other more advanced ones could yield better results. The results presented
in this thesis can be pursued further in several directions.

◦ The results obtained with the PWARX technique can be benchmarked against
a "white box" model for the same test case. For this purpose, data measured
for the building as well as a model of the same building using a BES tool are
needed.

◦ The methodology proposed in the last chapter can be used for the evaluation of
the energy performance of existing buildings for standard scenarios, provided
the availability of measurements. This could be useful for benchmarking the
energy performance of existing buildings with respect to the existing regula-
tions. This type of information could be useful for deciding on strategies for
the renovation of the park.

◦ The strength of this methodology lies in its ability to detect any change in
the behavior of the indoor air temperature in a building. The offline phase
in which the sub-models are identified is done already through the estimation
phase. Therefore, a potential application would be to use this methodology
for the online prediction where data measured in the building is continuously
fed to the algorithm that detects any change in the behavior, assigns data to
the corresponding sub-model and predicts with a high accuracy the indoor air
temperature for a near horizon. Since the switching rule relies on the regres-
sion data that contains previous values of the output, then having measured
values of this output will increase the accuracy of the classification and hence
the prediction. The sub-models could also be updated after a certain period
of time using the collected measurements. This helps adapting the model to
the changes that might be occurring in the building either due to the tenants’
behavior or weather conditions.

◦ The PID hybrid control loop was used offline for estimating the energy perfor-
mance of buildings in the last chapter. The control loop could be used for the
online prediction and control by using data measured from the system. This
contributes to the implementation of better control strategies which enhances
the performance and energy efficiency of the system. In this context, the use of
model predictive control (MPC) is interesting to investigate. MPC has already
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shown good performance in terms of the energy efficiency of the building and
the occupants’ comfort [Afram and Janabi-Sharifi, 2014]. Since it relies on the
system model, it would be as effective as the model representing the behavior
of the building, and the PWARX has shown good performance for predicting
future behavior of the temperature. MPC uses measurements from the system
in order to decide on future control actions. Combining the PWARX online
prediction with MPC could lead to the implementation of better control strate-
gies and contribute to ensuring the comfort of the occupants and the energy
efficiency of the building.

◦ For the prediction phase, the classification is of high importance. The PWARX
technique seems to be very effective in detecting different behavior and mod-
eling them but new data should be assigned to the right region to have an ac-
curate prediction. Therefore, further work could be done for the classification
part. SVM is one of the most popular and performing classification techniques
used in the literature. A compromise could be defined between the use of
SVM automated classification rules and some experts rules based on the phys-
ical knowledge of the building and the phenomena occurring in it and with its
environment.

◦ The algorithm used in this thesis supposes that the sub-models have the same
structure in terms of the orders na, nb and the delay nk. In the future, models
with different structures for each sub-model could be investigated. In fact, the
interpretation in Sect. 2.2.1 and 2.2.2 shows that the structure of the model
changes from one configuration to the other. An appropriate model structure
could be defined using physics rules, the model could then be reduced using
appropriate techniques, and its order could be given to the PWARX algorithm.

The PWARX approach presented in this thesis could also be used in favor of
other modeling techniques. Detecting different thermal behavior could be, for ex-
ample, used for adapting the parameters of a building RC thermal network for each
configuration, thus increasing the accuracy of the prediction.
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Modélisation thermique des bâtiments à partir des mesures en utilisant
l’identification de systèmes hybrides

Le secteur du bâtiment est un consommateur énergétique majeur, par conséquent,
un cadre d’actions a été décidé au niveau international dans le but de limiter son
impact. Afin de mettre en œuvre ces mesures, il est nécessaire d’avoir à disposition
des modèles offrants une description fiable du comportement thermique des
bâtiments. A cet effet, cette thèse propose l’application d’une nouvelle technique
guidée par les données pour la modélisation thermique des bâtiments en se basant
sur l’approche des systèmes hybrides, caractérisés par des dynamiques continues
et événementielles. Ce choix est motivé par le fait qu’un bâtiment est un système
complexe caractérisé par des phénomènes non-linéaires et l’apparition de dif-
férents événements. On utilise les modèles affines par morceaux ou PWARX pour
l’identification de systèmes hybrides. C’est une collection de sous-modèles affines
représentant chacun une configuration caractérisée par une dynamique particulière.
Le manuscrit commence par un état de l’art sur les principales techniques de
modélisation thermique des bâtiments. Ensuite, le choix d’une approche hybride
est motivé par une interprétation mathématique basée sur les équations d’un circuit
RC thermique. Ceci est suivi par une brève présentation des modèles hybrides et
une description détaillée de la méthodologie utilisée. On montre ensuite comment
utiliser la technique SVM pour classifier les nouvelles données. Enfin, l’intégration
des modèles PWARX dans une boucle de contrôle hybride afin d’estimer le gain
en performance énergétique d’un bâtiment après rénovation est présentée. La
méthodologie est validée en utilisant des données issues de cas d’études variés.
Mots-clés: Modélisation thermique des bâtiments, Identification de systèmes,
systèmes hybrides, modèles à commutation, PWARX.

Data-driven building thermal modeling using system identification for hybrid
systems

The building sector is a major energy consumer, therefore, a framework of actions
has been decided on by countries worldwide to limit its impact. For implementing
such actions, the availability of models providing an accurate description of the
thermal behavior of buildings is essential. For this purpose, this thesis proposes
the application of a new data-driven technique for modeling the thermal behavior
of buildings based on a hybrid system approach. Hybrid systems exhibit both con-
tinuous and discrete dynamics. This choice is motivated by the fact that a building
is a complex system characterized by nonlinear phenomena and the occurrence of
different events. We use a PieceWise AutoRegressive eXogeneous inputs (PWARX)
model for the identification of hybrid systems. It is a collection of sub-models where
each sub-model is an ARX equation representing a certain configuration in the
building characterized by its own dynamics. This thesis starts with a state-of-the-art
on building thermal modeling. Then, the choice of a hybrid system approach is
motivated by a mathematical interpretation based on the equations derived from an
RC thermal circuit of a building zone. This is followed by a brief background about
hybrid system identification and a detailed description of the PWARX methodology.
For the prediction phase, it is shown how to use the Support Vector Machine (SVM)
technique to classify new data to the right sub-model. Then, it is shown how to
integrate these models in a hybrid control loop to estimate the gain in the energy
performance for a building after insulation work. The performance of the proposed
technique is validated using data collected from various test cases.
Keywords: Building thermal modeling, system identification, hybrid systems,
switching models, PWARX.
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