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Abstract

Data are an indispensable component of any machine learning system. For spe-
cialised domains, labelled data can be very hard and expensive to obtain. For
example, gathering labelled medical data requires significant time and effort of doc-
tors and biologists. This thesis proposes methods for unlabelled and weakly labelled
data for two problems in computer vision and medical imaging. The first problem
centres around morphable model learning for computer vision, where a framework
for learning a morphable model without an intensive image acquisition process is
introduced. The second problem is focussed on automatic diagnosis of lymphopro-
liferative disorders in the presence of lymphocytosis with weak, patient-level ground
truth labels.

The first contribution of this thesis (Chapter 2) is a model for unsupervised
dense alignment of 2D images of an object category. A model is proposed to learn
a canonical space for the category from a set of unconstrained images and simulta-
neously to infer dense correspondences between an image of the category and the
canonical template. This is achieved using a deep autoencoder, which disentangles
the appearance and shape of the object in its latent space. The appearance latent
vector is used to decode the appearance of the object in the template space, while
the shape latent vector is used to decode a dense deformation between the template
space and the image space. A technique to regress the dense deformation grid using
a convolutional decoder is introduced and it is shown that this technique outper-
forms direct regression of the grid or the residual grid (offsets). The alignment
in the canonical space is evaluated using landmark localisation and the proposed
method is shown to outperform the state-of-the-art. It is also demonstrated that,
for face images, we can further disentangle the appearance latent vector into albedo
and shading, and that it becomes an easier problem because of the aligned nature
of the template space. Finally, applications of the alignment method to registration
of lung MRIs and satellite imagery are demonstrated.
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Chapter 3 extends the ideas of unsupervised dense alignment in 2D to learn
3D shapes for faces. While treating the alignment in 2D as ground truth, it is
shown that it is possible to recover 3D shape using non-rigid structure-from-motion
(nrsfm). In similar fashion to Chapter 2, an autoencoder is employed to regress
image-specific parameters for deformation as well as pose. A mean (or base) shape in
the form of a surface mesh in 3D is learnt simultaneously. The regressed parameters
and the base shape determine the image-specific mesh, which is then rendered
during image formation. A significant addition to the model is achieved using weak
supervision for pose, identity, and expression, using which the proposed framework
is able to learn a highly controllable 3D model for the human face. The resulting
model is evaluated using landmark localisation, and a method is proposed for the
validation of the inferred shape and pose using Procrustes analysis.

The use of weakly supervised learning for medical imaging is investigated in
Chapter 4. An important part of the diagnosis of a patient exhibiting lymphocyto-
sis, i.e., absolute lymphocyte count above 4×109/L, is determining whether its cause
is reactive or the manifestation of a lymphoproliferative disorder. Due to large inter-
and intra-operator variability in assessing individual lymphocytes, ground truth is
available only at the patient-level, not at the image level. A multi-instance classifi-
cation framework based on embedding-level pooling and a mixture-of-experts model
is proposed to reliably classify cases as reactive or tumoral. A further comparison
with the average prediction of 12 experienced biologists is made, in which the pro-
posed method is shown to perform better. Promising results show that it is possible
to reliably delegate this diagnosis to a machine.
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Chapter 1

Introduction

Deep learning has revolutionised the applications of machine learning and computer
vision to our daily lives. The past decade has seen staggering growth in deep
learning research which has eventually led to unprecedented rise in the number of
companies and start-up companies based on the deep learning model, be it through
social media, urban organisation, transportation, medicine, or weather. This has
been made possible by the vast amounts of data available for computational use.
Even though a lot of effort has been invested in order to minimise the burden
of annotation, it still takes a considerable amount of effort to gather, annotate,
compile, and release data. On top of that, annotators can have high variance
because different people can have different interpretations of the data and the rules
of annotation. For specialised domains, for example, medical imaging, data can be
hard to obtain and even harder to annotate as it requires the time and effort of
specialised personnel.

Humans are capable of learning from sparsely annotated data by generalising
efficiently to unseen data. To replicate the learning process of the human brain,
we must understand and replicate its inner workings. Most contemporary artificial
intelligence research is based on supervised methods [He 2017,Gkioxari 2019], and
requires large amounts of human-annotated training data. This is contrary to the
way we as humans learn, which is simply by observing and making connections and
drawing inferences based on what we have observed so far [LeCun 2015].

Early research in unsupervised deep learning focussed on learning discrimina-
tive feature representations from data, that were later validated by their perfor-
mance on related classification tasks [Lee 2009]. This is important for scenarios
where annotated examples are not available or not as straightforward to obtain,
and unsupervised feature learning can allow us to facilitate learning. For exam-
ple, Figure 1.1a depicts unsupervised feature extraction using mnist digits. In the
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closely related weakly supervised learning paradigm, the goal is to learn associa-
tions between data xi and targets yi when (xi, yi) pairs are not exactly known. For
example, in the weakly supervised semantic segmentation problem, the goal is to
segment an object in an image when only the image-level object category label is
available (Figure 1.1b). Unsupervised and weakly supervised methods remain an
important area of research in machine learning. In this thesis, we examine such
deep learning methods for two problems in computer vision and medical imaging.
These are elaborated further.

(a) (b)

Figure 1.1: (a) Feature extraction with unsupervised feature learning; and (b)
weakly supervised semantic segmentation using FickleNet using image-level labels.
Figures taken from [Tang 2011] and [Lee 2019].

Morphable models. Morphable models for object categories define a shape
and/or texture basis to explain or generate images of the object. Building mor-
phable models is a rather cumbersome process. Early work in morphable model
building required carefully calibrated 3D scans of human faces [Blanz 1999]. While
more automated processes have been proposed recently [Booth 2018], they still re-
quire highly sophisticated pipelines. Further, while there have been considerable
advances in unsupervised morphable model fitting using deep learning [Richard-
son 2016,Tewari 2017,Tewari 2018], few works have targetted jointly learning and
fitting a morphable model. In this thesis, we propose advances in order to answer
the following question—

Is it possible to learn a morphable model for an object category using a
set of unlabelled images of the category?

Automated diagnosis of lymphocytosis. Lymphocytosis is a widely observed
medical condition in which the absolute lymphocyte count crosses 4× 109/L. This
is symptomatic of either reactive lymphocytosis, or the manifestation of lympho-
proliferative disorder. The former is typically caused by infection, stress, and viral
illnesses. The latter is an indication of tumoral behaviour and hence, the patient
requires further care. Doctors and biologists spend a considerable amount of time
analysing blood smears to diagnose patients exhibiting lymphocytosis as either re-
active or tumoral and prescribing further examination based on it. For them, it is
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preferable to delegate this task to an automated system due to the analytical nature
of the problem. The second problem that we target in this thesis is as follows—

Is it possible to learn correlations between blood smears and tumoral
lymphocytosis using weakly-labelled examples?

In the following section, some published works related to the problems discussed
above are reviewed.

1.1 Previous Work

A short review of unsupervised deep learning methods is followed by a recall of works
on deformable models in computer vision. Finally, applications of deep learning to
medical imaging problems are discussed.

1.1.1 Unsupervised and Weakly Supervised Deep Learning

Unsupervised learning using deep learning methods dates back to the introduction
of restricted Boltzman machines (rbms) [Smolensky 1986]. An rbm (Figure 1.2)
is a simple model represented by a bipartite graph, with the two groups of node
represents visible units and hidden units. [Hinton 2002,Carreira-Perpinan 2005] in-
troduced and studied a learning algorithm for rbms, called contrastive divergence
(CD). This learning algorithm uses mcmc sampling to compute weight updates,
resulting in meaningful hidden representations of input examples. The resulting
representations can be used for dimensionality reduction [Makhzani 2015], cluster-
ing [Chandra 2013,Xie 2016], feature learning [Coates 2011], and classification [Hin-
ton 2002] among other applications.

Figure 1.2: A restricted Boltzmann machine (rbm) with four visible and three
hidden units.

rbms can be stacked to produce deep belief networks [Hinton 2006], which have
been shown to demonstrate higher learning capacity. [Bengio 2007] proposed a
method of training deep belief with greedy layer-wise pretraining of each layer
using contrastive divergence, followed by supervised fine-tuning. [Hinton 2006] also
showed stacking rbms with greedy layer-wise pretraining gives in a better low-
dimensional codes for data. In 1998, the seminal work of [LeCun 1998] showed the
application of convolutional neural networks to handwritten character recognition.
These convolutional nets were able to learn shift-invariant features for accurate
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classification, with the classification becoming more robust with the addition of
random deformations to training examples. Applying these notions to rbms, [Des-
jardins 2008] were the first to explore convolutional kernels in rbms for feature
extraction, quickly followed by a more extensive study [Lee 2009, Lee 2011]. In
the latter, the authors introduced hierarchical probabilistic inference which can be
used to reconstruct masked portions of an image based on the regions around by
sampling from the joint probability distribution. Their hierarchical model, called
the convolutional deep belief network, was able to learn hierarchies of features,
from edges, to object parts, to entire objects. Figure 1.3 shows and example of the
hierarchy learnt on images of faces.

Layer 1 Layer 3Layer 2

Figure 1.3: Hierarchical features learnt using a convolutional deep belief network.

rbms, though effective for dimensionality reduction, are only one layer “deep”.
Autoencoders are another popular dimensionality technique, built as an encoder-
decoder pipeline, where each of the two consists of several stacked non-linearities
(Figure 1.4). Autoencoders are trained to minimise reconstruction loss, and their
modelling typically sees progressive reduction in the size of the latent code, followed
by progressive expansion back to the original dimension. The central layer, called
the bottleneck layer [Hinton 2016], is set according to the desired compression. Some
variants of the autoencoder include the sparse autoencoder [Ng 2011], which con-
strains the latent representation to be sparse by minimising a kl-divergence term
for every latent unit; the k-sparse autoencoder [Makhzani 2013], which enforces
sparsity by reconstructing using only the latent units with the top-k activations,
the variational autoencoder [Kingma 2013], which is able to learn a more control-
lable model by forcing latent units to follow certain distribution; and convolutional
autoencoders [Masci 2011], which use convolutional layers instead of fully-connected
layers in the encoder and the decoder. Figure 1.5 visualises some features learnt
using a sparse autoencoder.

1.1.1.1 Adversarial learning

So far, rbms and autoencoders have tried to capture data, but using reconstruction
loss, which is usually the mean-squared error (mse). Minimising the mse is equiv-
alent to maximising the log-likelihood of a Gaussian over the pixel values. This,
however, inherently introduces blur into reconstructed images [Mathieu 2015]. Fur-
thermore, instead of capturing the real data distribution actively, the reconstruction
loss tries to achieve it passively by fitting a model to the shown training examples.
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Figure 1.4: A schematic diagramme of the autoencoder. Figure taken from [Hin-
ton 2006].

Figure 1.5: Filters learnt using a sparse autoencoder. Image taken from [Ng 2011].

To better capture the true data distribution, [Goodfellow 2014] proposed a new
model called the Generative Adversarial Net (gan). A gan consists of a generator
G and a discriminator D. The goal of the generator is to capture the true data
distribution and drawing examples from it, while the goal of the discriminator is to
determine whether an example was drawn from the true distribution or from the
generator’s distribution. [Goodfellow 2014] show that in such a competing scenario,
it is possible to reach a solution whereG captures the true distribution exactly, while
D fails to discriminate between the two. [Radford 2015] and [Salimans 2016] intro-
duced new insights into training convolutional architectures with adversarial losses
for learning interpretable representations in an unsupervised manner. As a result,
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adversarial nets have been shown capable of generating hyper-realistic and control-
lable images [Pumarola 2018, Karras 2019], image-to-image transfer [Isola 2016],
super resolution [Ledig 2017], and face aging [Antipov 2017]. An application of
image-to-image transfer to 3D face reconstruction was shown in [Sela 2017] in
which the authors train an image-to-image translation network to predict depth
and dense uv maps from an image of the human face. The inferred maps are then
used for unrestricted 3D reconstruction. For training, the authors use synthetic
images created using a 3D morphable model (1.1.2.1) and the corresponding depth
and correspondence maps. [Zhu 2017a] proposed a model for image-to-image trans-
fer that does not require paired examples. It introduced a new cycle-consistency
loss for gans (Figure 1.6) which was shown to allow meaningful image-to-image
translation without requiring paired examples in the two domains.

Figure 1.6: gans with cycle consistency loss for unpaired image-to-image transla-
tion.

1.1.1.2 Unsupervised and weakly supervised disentanglement

Disentanglement can be understood as dividing the latent space of an encoder-
decoder network into independent parts that represent different sources of variation,
and can also possibly be manipulated independently. Disentanglement is a power-
ful tool for unsupervised learning as focussing on prominent image characteristics,
often suited to the task at hand, can help achieve better object understanding.
For instance, [Chen 2016b] use variational mutual information maximisation [Bar-
ber 2003] to learn digit type, width, and orientation in mnist digits, azimuth, ele-
vation, and lighting for 3D faces, and facial characteristics and emotions for CelebA
images. [Worrall 2017] achieve disentanglement in an unsupervised setting by forc-
ing equivariance through additional losses. [Shu 2017] disentangle a face image into
albedo, shading, and normals using an encoder-decoder architecture. They also
demonstrate that the learnt model is able to manipulate facial attributes like age,
smile, spectacles, etc. by moving on the learnt latent manifold. [Sengupta 2018b]
learn to disentangle face images into shape, reflectance, and illumination, in a semi-
supervised setting. They use synthetic labelled data to aide the disentanglement.
Unlike [Shu 2017], this work uses a 3dmm to generate training examples which
guides the learning process. Another work [Tewari 2017] also disentangles shape
and appearance using a 3dmm, with the added benefit of directly encoding im-
ages into interpretable pose, shape, expression, and illumination parameters. [Sun-



1.1. Previous Work 9

dermeyer 2018] use an autoencoder for 6D object detection. They show that by
rendering synthetic views at various rotations and using reconstruction loss, it is
possible to predict the rotation from the latent representation in new examples.
More recently, [Wiles 2018b] disentangle pose and expression from identity using
a video of a person, and show that it is possible to synthesise new videos of the
person using a target video.

1.1.1.3 Unsupervised alignment

Significant work has been done recently in achieving unsupervised alignment using
deep learning. One approach taken quite often is to locate a given number of dis-
criminative landmark locations in images and to find a transformation of the image
to canonical space using these landmarks. [Thewlis 2017b] propose an unsupervised
method for discovering a canonical shape S ⊂ R3 for a category of objects from
observed images x ∈ Λ ⊂ R3. Let ΦS(·,x) : R3 → R3 be a function that maps
a point in the image space to a point in the canonical space. At the core of this
method lies the equivariance constraint, which says that if the image x is visualised
from another viewpoint to give an image x′ under a 2D warp g, then

∀ p ∈ S, ΦS(p,x ◦ g) = g ◦ ΦS(p,x) . (1.1)

This paper demonstrates unsupervised landmark discovery on cats, shoes, and
human faces. Landmark detection using the learnt models is also shown on the
mafl [Zhang 2014a] aflw [Zhu 2016] test sets. The authors further improve land-
mark learning in [Thewlis 2017b] by adding a constraint for the detected land-
marks to be distinctive. They also include dilations in the neural network archi-
tecture used and demonstrate an increase in landmark accuracy of 1 percentage
point. [Zhang 2018] add separation and concentration constraints on top of the
equivariance constraints, which correspond respectively to inter-landmark variance
and concentration of one landmark to a region. They also use landmark-based de-
coders to train the network end-to-end using reconstruction loss. [Jakab 2018a] use
a cycle-consistency constraint on the detected landmarks by learning two functions
Φ and Ψ , Φ : Λ→ Y and Ψ : Λ× Y → Λ, so that

x′ = Ψ(x, Φ(x′)) , (1.2)

where x,x ∈ Λ are images of two objects viewed from different viewpoints, and Y ⊂
R2 is the set of desired landmarks. To prevent learning identity mappings for Φ and
Ψ , they enforce sparse latent representations by concentrating each landmark to one
location. [Suwajanakorn 2018] extend this notion to 3D keypoints, using multi-view
consistency and introducing weak supervision in the form of rigid transformations
between the views.
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1.1.1.4 Multiple instance and weakly supervised learning

Multiple instance learning (mil) is a learning paradigm in which data points consists
of bags and labels. Each bag consists of several instances. Akin to a classical
classification problem, the goal is to predict the label given the bag. However,
this problem is more difficult because the relationship between the instances and
the bag-level label is not known [Keeler 1991,Dietterich 1997]. The standard mil
assumption models this relationship by the presence of at least one positive instance,
i.e., the instance are assumed to take positive and negative labels, and the bag
is given a positive label if at least one instance is positive [Foulds 2010a]. This
assumption can however be strict for some problems, so smoother functions are
sometimes used [Pinheiro 2015]. In essence, this problem can be said to lie in the
subset of weakly supervised learning. We will hence discuss some previous work in
these two paradigms together in this section.

Weakly supervised learning has seen considerable application in the problem of
object detection. In the problem of object classification the goal is to predict a class
label for every image. Object detection, on the other hand, differs from classifica-
tion problems in that it entails prediction of a bounding box around objects along
with the class label, which renders the problem more difficult, and at the same time,
requires more annotations for the training data. Weakly supervised object detec-
tion tries to circumvent this problem by using image-level labels coupled with other
techniques to predict bounding boxes for objects. [Pinheiro 2015] proposed using
a cnn to predict pixel-wise heatmaps for object classes coupled with an aggrega-
tion function for class scores to give an image-level label. The image-level classifier
can be trained with negative log-likelihood. They show that using a smooth maxi-
mum function over the heatmaps to aggregate the scores enables learning localised
detections using the heatmaps, which can be smoothed to simultaneously predict
bounding boxes. [Oquab 2014] localise objects using a cnn pre-trained on ImageNet
on top of sliding windows on images to generate training examples for an object de-
tector for Pascal voc object detection problem. In a follow-up work [Oquab 2015],
they use a modified loss function which transfers labels to sliding windows based
on the image-level label. [Zhou 2016a] achieve object localisation by projectecting
class activation maps onto the image using global averagen pooling. [Bilen 2016]
use a pre-trained cnn and a region-proposal network followed by dedicated classifi-
cation and detection branches to learn from image-level labels. [Cinbis 2016] use an
iterative method of training using the mil strategy, by splitting the training data
into folds, in order to escape local minima. [Kantorov 2016] score regions of in-
terest (rois) using surrounding context under additive and constrastive strategies.
They answer the object detection question in two different forms, respectively-
(a)whether the object is in the context as well as the roi, and (b) whether the
object is in the context but not in the roi. Moving on to segmentation and saliency
maps, some recent works also propose approaches for weakly supervised seman-
tic segmentation. [Chaudhry 2017] propose a network for joint classification and
semantic segmentation using class labels. [Huang 2018] use region growing using
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initially predicted discriminative regions in the image to grow the segmentation.
Figure 1.7 shows an example of the iterative refinement of semantic segmentation
of their method. Their framework updates the ground truth labels at each itera-
tion. [Lee 2019] use stochastically sampled hidden units to obtain localisation maps
that identify discriminative and non-discriminative parts in the image.

Figure 1.7: Iterative refinement of the prediction pixel-level labels. Image taken
from the paper.

mil has also seen applications to in other domains. [Kraus 2016] propose the
Noisy-AND aggregation function for classification and segmentation of microscopy
images. [Wang 2018] show applications of embedding-level pooling in mil coupled
with deep supervision to various datasets. [Ilse 2018] use an attention mechanism
in a deep-learning scheme to discriminate a certain type of nucleus from others in
histopathology images. [Hou 2016] use mil in an em framework to find discrimina-
tive regions in whole slide histopathology images. [Li 2019a] propose a two-stage
framework for prostrate whole slide image classification. Each stage is mil-based
using an attention module to locate discriminative regions in the slide. [Papadopou-
los 2019] propose an architecture inspired by [Ilse 2018] for automatic detection of
tremorous episodes related to Parkinson’s disease. [Li 2019b] show the benefits of a
multi-scale model with mil and top-k pooling for clasification of medical images.

1.1.2 Computer Vision

We will now recall previous work in computer vision that is related to the topics
discussed in this thesis.

1.1.2.1 Deformable Models

Deformable models represent the shape of an object category using a mean shape
along with a set of principal deformation vectors. The texture is similary modelled,
with illumination being modelled separately sometimes as well. In this section we
review advances in deformable template and morphable model generation, learning,
and fitting.
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Deformable templates have been used for object understanding since long. Fur-
thermore, point-to-point correspondences have been used to compute and register
deformable templates to observed objects. Albrecht Dürer, in his work Four Books
on Human Proportion [Dürer 1534], published his research on using specifically
marked points on the human body and comparing then accross subjects to develop
a parts-based understanding of the body. These are used to develop canonical ap-
pearance images which are then transformed to model observed subjects. Figure 1.8
shows a visualisation of such a transformation.

Figure 1.8: left: generating human heads using a template [Dürer 1534]; and right:
deformations between different species of fish [Thompson 1917]. Images takes from
respective works.

The deformable template paragidm has proved successful at targetting several
computer vision tasks, for example, object localisation [Jain 1996], object matching
and retrieval [Funkhouser 2003]

One of the principal works to which unsupervised dense alignment is closely
related is continuous joint alignment, or congealing [Learned-Miller 2006]. Given
a set of binary images of an object category, this method minimises the empirical
entropy Ĥ(xi) of binary pixel values xji at pixel locations i over all images j in the
dataset. This entropy is defined as

Ĥ(xi) = −
(
N0
N

log2
N0
N

+ N1
N

log2
N1
N

)
, (1.3)

where N = N0 +N1, and N0 and N1 represent, respectively, the number of images
with a value 0 and 1 at pixel location i. This value is minimised when all pixel
values are either 0 or 1, which in line with the alignment of images. The objective
function for overall alignment is then

Lcongealing = R+
i=P∑
i=1

Ĥ(xi) , (1.4)

where R is a regularisation term to keep deformations small, usually the `2 norm
of the deformation vectors.

This work further demonstrates the potential applications of congealing to char-
acter recognition and registration of mri images [Learned-Miller 2005]. The authors
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Figure 1.9: The effect of congealing. (a) mean image from a set of handwritten 0s;
(b) mean image after congealing; and (c-d) the same effect on a set of handwritten
2s. Image taken from [Learned-Miller 2006].

have shown further extensions to 3-dimensional data [Zöllei 2005] and more com-
plex images [Huang 2007]. The latter work [Huang 2007] shows alignment results
on images of cars and objects—object caterogies that much more complicated than
handwritten characters—without using additional annotations. To exploit congeal-
ing algorithm’s alignment capacity, this alignment uses sift [Lowe 2004] feature
descriptors.

A closely-related work is Collection Flow [Kemelmacher-Shlizerman 2012] which
proposes learning a deformable template using a collection of face photos taken in-
the-wild, downloaded from the Internet. This powerful approach manages to learn
deformable templates using repeated applications of pca and optical flow. They
show that normally about k = 4 first principal components of the design matrix
(formed using pixel values of images in the collection) are good enough to generate
an expression-neutral template and capture illumination changes. However, using
higher principal components captures expressions as well as expression changes are
less dominant than illumination changes. Then, optical flow and projection onto the
principal components are used iteratively to remove variability due to expressions
and retain sharper images at the same time. Their results Figure 1.10 show that
they are able to discover a high-resolution template, as well as synthesize images
by interpolating between representations of two images.

Figure 1.10: Discovering a template face from a collection of faces using Collection
Flow. left: A set of input images; centre: input images warped to align with the
template; and right: interpolating between two photos (extreme left and extreme
right). Images taken from the paper.

1.1.2.2 Active Shape Models

A method of discovering the mean shape and modes of variation was introduced
in [Cootes 1992], called Point Distribution Models (pdms). pdms work by consuming
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accurate human annotations of keypoints on objects, and discovering a mean shape
and primary deformations. The method first aligns the images using an iterative
process, and then computes the modes of variation using the covariance matrix
of per-instance deformation from the mean shape. Active Shape Models (asms)
[Cootes 1995] take this idea further by finding instances of objects in images which
conform with the learnt shape using the training set. This is done by iteratively
improving pose, shape, and scale parameters of the underlying pdm by examining
the region around each point of an initial estimate of the object in the image. asms,
however, do not model the appearance explicitly.

1.1.2.3 Active Appearance Models

Active apperance models (aams) [Cootes 1998,Matthews 2004] model a set of im-
ages in the shape, as well as the apperance domains. Independent aams model the
shape and appearance independently by parametrising them with different sets of
parameters. In this parametrisation, shape and appearance are modelled as a base
vector plus a linear combination of several vectors, each determining one axis of
variation. More concretely, the appearance, A, and shape, S are written as

A(p) = A0(p) +
NA∑
i=1

aiAi(p) , and (1.5)

S = S0 +
NS∑
j=1

sjSj , (1.6)

where p represents a pixel location, and ai and sj represent the appearance and
shape parameters, respectively. In this thesis, we will also refer to them as mixing
coefficients. Fitting an aam to an image boils down to optimising these parameters
with respect to the image. The vectors Ai and Sj are inferred from a set of hand-
labelled training images. The annotations highlight a set of landmark locations
in the images, and hence represent a set of corresponding points in any subset of
training images. We will denote by Vji ∈ R2, the i-th landmark in the j-th training
image. Further, let Vi = {Vji | j = 1, 2, . . . ,M}.

The shape vectors Sj are obtained first. We begin by aligning Vi over the
training set using generalised Procrustes analysis [Gower 1975] in order to remove
large variations arising from global translations, scalings, and rotations of shape.
We wish to constrain the shape vectors to learn local non-rigid deformations only.
We can then apply Principal Component Analysis (pca) to the normalised points,
thus recovering principal axes of variations that ultimately become Sj , and a base
shape S0. To compute appearance vectors, all images are warped to align with the
base shape, thus removing variations due to shape, followed by principal component
analysis to discover vectors Ai and a base appearance A0.

Combined aams use the same set of parameters to model both, shape and
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Figure 1.11: Modelling a face using an aam. Appearance and shape are represented
as linear combinations of learnt appearance and shape vectors. The final image is
obtained by warping the appearnce with a deformation grid resulting from the shape
parameters. Image taken from respective papers.

appearance. In the combined aam model,

A(p) = A0(p) +
N∑
i=1

ciAi(p) , and (1.7)

S = S0 +
N∑
i=1

ciSi . (1.8)

Learning AAMs. Better aam learning algorithms have been explored in liter-
ature. [Walker 2002] use salient points on the object (for example, eyes, nose, etc.
for human faces) as landmarks to discover the shape basis, in order to side-step
the labelling of images. However, the feature extraction process is less robust than
human annotations. The work of [Kokkinos 2007] proposes a em-based approach
to learn objects as a combination of deformable parts with their relationship being
modelled using a Markov random field. [Baker 2004] propose an encoding-decoding
process, where the decoding corresponds to the image generation process, and the
encoding to the fitting process. They formulate the objective so as to optimise the
aam appearance and shape bases, as well as fitting parameters jointly. Our work
in Chapter 2 follows a similar approach where we use deep autoencoders in our
encoding-decoding formulation.
Fitting AAMs. The fitting of aams comprises optimising the parameters with
respect to a goodness-of-fit criterion, which is normally the squared error in pixel
intensities [Cootes 1998,Matthews 2004]. This is a non-linear optimisation prob-
lem. Solutions have been tried with gradient descent and its varaints [Sclaroff 1998,
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Blanz 2003b,Jones 1998]. These, however, are usually because of extensive compu-
tations involved.

Improvements to these have been proposed which model the parameter incre-
ments as a linear function of the error, so that computing further iterates in the
optimisation algorithm does not involve computing high dimensional hessian ma-
trices [Cootes 2004]. They assume that these linear operators are not dependent
on model parameters and hence can be pre-computed. It is however, difficult to
determine these operators, and hence are computed by fitting a linear regression
model to data points generated by perturbing model parameters and observing the
error [Edwards 1998].

Another fitting algorithm is Lucas-Kanade [Lucas 1981] applied to aams. It
uses a Taylor series expansion of the error function to approximate it by a linear
function in the parameters of the model. Other fitting algorithms include forward
compositional alignment, inverse compositional alignment [Matthews 2004]. Ex-
tensions of this algorithm were also proposed in [Gross 2005,Papandreou 2008,Tz-
imiropoulos 2017]. [Donner 2006] proposed discovering correlations between model
parameters and residuals of the synthesised texture image using canonical corre-
lations analysis (cca) to speed up the convergence of the parameter search by a
factor of four.

1.1.2.4 3D Morphable Models

The seminal work of [Blanz 1999] was the first to introduce high resolution models
for human face understanding. In this work, the authors proposed building a 3D
surface-based model which is obtained by observing densely annotated keypoints on
high-resolution laser scans of 200 human faces. The dense sampling gives a much
more refined surface geomtry than sparsely sampled keypoints, as is the case in
aams. As a result, the authors are able to build a triangulated 3D surface to fit
human faces. Further, applying pca similarly as in aams, we can also obtain a
shape and texture basis from the 200 scans, and thus express the morphable model
as

Smodel = S̄ +
m−1∑
i=1

αisi ; and (1.9)

Tmodel = T̄ +
m−1∑
i=1

βiti . (1.10)

Here, S̄ and T̄ are the mean shape and texture vectors, si and ti are the shape
and texture bases, and αi and βi are the weighting coefficients for the i-th shape
and texture basis vectors. This results in a generative model that can (a) express
new shapes and views as a linear combination of certain basis vectors; and (b)
disentangles shape and texture information into separate bases so that they can
be manipulated independently. Extensions of the morphable models have further
disentangled the pose and expression components of shape, as well as illumination
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and colour components of texture.
In the work of [Blanz 1999], model fitting is done by formulating a similarly

function between the pixel values of the rendered image and the observed image.
The rendered image is obtained by a given set of values for the parameters αi, βi,
as well as pose and illumination parameters. Perspective projection is used in
the rendering pipeline, and the optimisation process starts with an initial estimate
of the projection parameters from the user, and is done using stochastic gradi-
ent descent. The authors show in a subsequent work [Blanz 2003b] how the 3D
morphable model can be used for face recognition by representing a face with the
fitted models’ parameters, while further works showed other possible uses [Romd-
hani 2005,Heisele 2007,Allen 2003,Blanz 2003a,Leopold 2001].

Figure 1.12: left: Construction of a 3D morphable model from a database, and
fitting it to a 2D image; right: face manipulation using the fitted morphable model.
Images taken from [Blanz 1999].

There have been further works proposing other morphable models, typically
varying in the way the group-wise alignment is performed, the number of people
scanned, the diversity in the scanned population, and method of collecting the an-
notations. [Blanz 1999] performs the alignment using few feature points marked
on the surfaces. [Patel 2009] propose to instead use generalised Procrustes anal-
ysis to find a more robust estimate of the mean shape, which results in a better
deformation basis. Further, to find dense correspondences between faces, they use
few manually-annotated reliable landmarks followed by thin-plate splines to warp
each scan to the mean landmarks. [Paysan 2009] construct a new morphable model,
called the Basel face model (bfm) by aligning the scans with a template using the
nonrigid iterative closest point algorithm [Amberg 2007]. This method has also
been shown to work for registration of 3D medical volumes [Liang 2018].

Several works use bfm as a 3dmm for varied tasks in human face understanding.
[Genova 2018] use cnns to regress fitting parameters using auxiliary guiding losses.
[Higgins 2017,Chen 2016b] learn disentangled representations using bfm. [Zhu 2016,
Zhu 2017b] improve morphable model fitting over a large range of poses, with profile
views up to 90◦, and use the bfm’s identity basis.

Contemporary morphable model offer powerful controllable representations of
faces, by separating shape and expression [Cao 2013], shape, expression, and appear-
ance [Gerig 2018], shape, expression, and pose [Li 2017]. The Surrey face model [Hu-
ber 2016] offers a multi-resolution mesh of either 3, 448, 16, 759, or 29, 587 vertices,
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with annotated landmarks. A more complete list of contemporary 3D morphable
models can be found at [Community 2019,Egger 2019].

3DMM fitting. Fitting models based on pixel values alone can be unrealiable as
the texture does not always convey information about the location. For instance,
the texture on the forehead comprises a wide area is mostly uniform, while that on
the cheeks can be uniform too, under certain lighting conditions. Methods avoiding
this problem focus on feature-based error functions instead of pixel intensity-based
ones. [Sanyal 2019] detect landmark points detected using a 2D landmark detector
and use the reprojection loss. [Romdhani 2005] use edges and specular highlights
as further cues in the energy function.

Deep networks have been shown to learn powerful representations from data us-
ing non-linear encoders. As a straightforward application, several works have shown
that deep networks can be used to regress 3dmm parameters directly, without the
need for iterative optimisation, in supervised, weakly-supervised and self-supervised
settings. [Richardson 2016] use synthetic examples with known geomtry to train a
cnn to predict geomtry from a single image. [Tewari 2017] remove the synthetic im-
ages constraint and also introduce a self-supervised approach encode semantically
significant image features like pose, shape, expression, reflectance, and illumina-
tion. They extend this notion to videos [Tewari 2018] and show that adding tempo-
ral information on identity greatly improves reconstruction quality. [Genova 2018],
on the other hand, add the identity constraint to disentanglement by rendering
synthetic examples from different poses using the regressed morphable model pa-
rameters. [Güler 2017] take a new approach to model fitting by regressing not the
morphable model parameters, but dense uv coordinates using a quantised regres-
sion technique. [Bulat 2017b] construct a 2D-to-3D network to predict landmarks
in 3D using a novel 3D Face Alignment Network (fan) and propose a new dataset
for 3D facial landmarks [Bulat 2017a].

Shape from Non-Rigid Structure from Motion . Non-rigid structure-from-
motion (nrsfm) models shape as a linear combination of a set of basis vectors. This
relaxes the rigid constraint imposed by classical structure-from-motion. One of the
first works to use nrsfm for shape prediction, [Bregler 2000], formulates the system
as a factorisation problem to separate motion into pose and shape. They write the
shape S at an instant of time t as a linear combination of K basis vectors,

S(t) =
K∑
i=1

l
(t)
i si , (1.11)

where {si} is the shape basis, and l(t)i are shape coefficients. The points in the basis
shapes, at time t, under a scaled orthographic projection defined by rotation matrix
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By concatenating these matrices over all time instances t, we get
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= QB = Q̂GG−1B̂ . (1.15)

where G is used to enforce orthonormality in the rotation by solving the least
squares problems [
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W is then factorised to obtain pose and shape by observing that the part of the ma-
trix Q corresponding to each time instance is of rank 1. [Xiao 2004] later showed that
this factorisation is not necessarily unambiguous, as one cannot recover basis shapes
and shape coefficients uniquely. They further propose to add orthonormality con-
straints on the basis shapes to overcome this ambiguity. [Akhter 2009] later showed
that this does not necessarily lead to an ambiguous shape, but suggested that the
difficulty in achieving good 3D reconstruction is rather due to the optimisation and
not the orthogonality constraints. [Dai 2014] proposed an optimisation algorithm
to address this difficulty without using additional priors like orthonormality con-
straints on the basis and rotation. Other notable works focussing on improving the
optimisation process can be found in [Paladini 2009,Garg 2013].In other contem-
porary works, to cope with the ill-posed nature of the 3D reconstruction problem
as well as enforce restrictions on the shape, [Torresani 2008] use probabilistic pca
to estimate the shape basis. They take advantage of the robustness of probabilistic
pca towards missing data [Tipping 1999]. They further propose an em algorithm
to estimate the underlying probabilistic model to estimate motion and shape. [Rus-
sell 2011] formulate the nrsfm task as a labelling problem. In their formulation,
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deformations are modelled by piece-wise models, with points being explained by
them, where the labelling determines which model explains a point. They further
allow labellings where one point might be explained by several models, so as to
allow overlap between adjacent models and enforce global uniformity. [Garg 2013]
also model the shape with a low-rank representation, but instead of fixing the num-
ber of basis shapes, they learn a rank-minimised matrix. They also introduce total
variation smoothness constraints. [Yu 2015] further incorporate strong cues using
optical flow.

Other prominent works extending nrsfm ideas have since been proposed. [Car-
reira 2016] proposed lifting object categories from 2D to 3D for object detec-
tion. They use ground-truth segmentations with annotated keypoints to retrieve
category-specific 3D reconstructions. [Kanazawa 2018b] proposed a system that de-
codes 3D structure of an object category from an image, using a photometric loss
coupled with a keypoints projection loss. They demonstrate reconstruction results
on the birds and show that their system is able to further learn meaningful de-
formation components. [Garrido 2016] combine photometric stereo, optical flow,
and multi-view stereo and solves them together to generate detailed 3D reconstruc-
tions. [Liu-Yin 2017] use a similar strategy, where they use a non-Lambertian model
to predict shape jointy with the reconstruction objective.

1.1.2.5 Modelling deformations with deep neural nets

Over the last decade, several works have used deep learning to model deformations
and alignment for computer vision and medical imaging problems. The pioneer-
ing work of [Jaderberg 2015] on spatial transformer networks was one of the first
to explore the idea of introducing deformations in convolutional networks to im-
prove classification and detection. Figure 1.13 shows a spatial transformer module
that can be inserted into a feed-forward convolutional network. The module has
a learnable part, denoted by floc, which regresses a set of deformation parameters
θ from a feature map (U). U , being an intermediate feature map in the cnn, can
be a multi-channel image, in which case the deformation is applied to all channels
equally (the deformation is always 2D). The parameters θ are then used to generate
a dense sampling grid, which is in turn used to warp the feature map using bi-linear
sampling. As all of these operations are differentiable, the spatial transformer can
be inserted between two layers of a cnn.

Instead of warping the feature map, some works propose introducing offsets into
the following convolution operation. While this does mean the overhead of warping
the feature map is reduced, it introduces an extra bi-linear sampling operation per
offset just before the convolution operation, and can be difficult to implement in
standard deep learning frameworks. [Jeon 2017] proposed learning a convolution-
specific offset that is applied universally to all pixels. Deformable convolutional
neural networks [Dai 2017] go a step further by relaxing the global constraint, as
well by predicting the offsets dynamically depending on the feature map.
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Figure 1.13: A spatial transformer module. The localisation net determines an
appropriate deformation, which is then used to warp the feature map U to produce
a warped feature map V . Image taken from [Jaderberg 2015].

1.1.3 Deep Learning for Medical Imaging

Since the break-through paper from Krizhevsky and Hinton [Krizhevsky 2012]
demonstrating the potential of deep learning for computer vision tasks, there has
been keen interest on targetting medical imaging problems with deep learning [Ron-
neberger 2015,Seyedhosseini 2013,Badrinarayanan 2017,Milletari 2016,Çiçek 2016,
Kamnitsas 2017]. [Ronneberger 2015] proposed the fully-convolutional semantic seg-
mentation network called U-Net (Figure 1.14) which achieved state-of-the-art re-
sults on cell segmentation and cell tracking problems. They use skip connections
between the encoder and decoder. There are several demonstrated applications of
U-Net to other medical image segmentation problems. Some of these include [Xi-
ancheng 2018] for blood vessel segmentation in retina scans, [Skourt 2018] for lung
ct segmentation, and [Christ 2017] for liver and tumor segmentation. Further im-
provements on the U-net have also been proposed. [Milletari 2016] extend the U-Net
approach to 3-dimensional data by applying the resulting V-net to the problem of
prostate segmentation. They also introduce a soft Dice loss for training which works
better than cross entropy, particularly for unbalanced regions. [Yu 2017] improve
over their method using a similar model, but trained with deep supervision. In a
further work, [Zhou 2018] propose augmenting the skip connections of the U-Net us-
ing dense convolutional connections, in the style of DenseNets [Huang 2017]. They
further incorporate both, cross entropy and the soft Dice loss in their network, along
with deep supervision.

Deep learning has seen a consistent rise in histopathology as well. [Chen 2014]
propose cell detection on H&E images using an extension of the colour un-mixing
technique of [Ruifrok 2001]. [Chen 2016a] propose lymphocyte detection using a deep
neural network. However it does not generalise to tumor cells. Weakly-supervised
approaches are widely used in analysis of histopathology images. Whole slide im-
ages with image-level annotations demand patch-based processing of the slide, as
the entire slide is too big to fit into memory. However, being that the number
of patches can vary and that patch-level annotations are usually not available, a
weakly-supervised approach is best suited. For such a setting, [Hou 2016] propose
an approach to find discriminative tiles in a whole-slide histopathology image. They
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Figure 1.14: The fully-convolutional U-Net architecture for semantic segmentation.
Image taken from paper.

model this as a hidden variable in an em method coupled with a cnn. Another
recent method from [Jia 2017] predicts cancerous regions in histopathology images
in a multi-instance learning framework. They also employ weak supervision signals
based on the area of the cancerous regions, and also a multi-stage cross entropy
loss. However, for extremely large slides, existing methods are not enough because
they cannot fit on a gpu or in memory. For such scenarios, [Xu 2017] develop
a distributed computing approach that targets image classification, segmentation,
and clustering problems for images with ∼ 10 billion pixels.

Deep learning has also extensively been used with mri and ct images. [Lu 2016]
use cnns for kidney localisation by aggregating inference from several models and
local context obtained at three orthogonal orientations. [Thong 2018] use sliding
window operations to segment kidneys using cnns. Their cnn predicts the class
scores for the central patch in a window. [Hussain 2017b] use multiple cnns which
observe the 3D volume from three directions and detect kidneys by aggregating
inferences from the three models. They further use this detection to estimate the
size of the renal volume. [Hussain 2017a] detect renal cell carcinoma from ct scans
by arranging all slices from the 3D volume into a regular 2D grid. This enables
transferring the volume-level label to the patch-level and hence, enables meaningful
feature extraction using a cnn. [Alansary 2016] use a 3D multi-scale cnn followed
by a dense CRF to segment placenta from mri scans. They also propose a visualisa-
tion framework which converts the segmented placenta into a mesh-based textured
surface representation. [Moeskops 2016] use a single cnn to segment mr brain im-
ages, mr breast images, and coronary arteries in cardiac cta. Their multi-task cnn
is able to achieve equal performance to task-specific cnns.
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1.1.3.1 Unsupervised and weakly supervised approaches

One of the main difficulties encountered in medical imaging tasks is that there
are few data available. This is because (a) the data are real specimens showing
normal/abnormal organs and are not cheap or easy to acquire; and (b) annotations
on the data need to be performed by experts working in the field [Hou 2016],
unlike how crowd-sourced annotations are possible for other computer vision tasks
[Güler 2018]. When coupled with the (usually) high dimensionality of the data
(histopathology images, ct scans), researchers are faced with problems comprising
generalisation, memory usage, and overfitting. To reduce the annotation task, few-
shot learning [Li 2006, Larochelle 2008, Gidaris 2018] has also seen applicability
to dataset generation [Pierrard 2019]. Currently, few methods in medical image
analysis using deep learning focus on unsupervised learning and weakly-supervised
learning.

In histopathology images analysis, dataset and annotation issues are particularly
apparent. Whole-slide tissue images, when viewed at maximum magnification, can
range from several ten to hundred thousand pixels per side [Hou 2016,Xu 2017]. To
circumvent the difficulty in obtaining new samples as well as valuable time spent by
pathologists annotating the collected samples, several recent works propose gener-
ating new datasets of training images using existing annotations, thereby increasing
the training data size manyfold.

In mammography, [Kallenberg 2016] proposed an weakly supervised approach
to estimate risk of breast cancer. Their method first extracts multi-scale sparse
representations of mammograms using an autoencoder, followed by segmentation
of breast density and scoring of mammographic texture. [Hwang 2016] propose a
self-supervised cnn to classify and localise of abnormalities in mammograms. They
do so without using pre-trained networks of any sort. In this architecture, the
localisation and classification branches share a common feature extractor. The
network is trained in an alternating fashion, with one branch fixed while the other
is trained, thus “transfering” the learnt feature extractor between tasks.

Attention-based models, which operate in the setting of weak labels, try to solve
the multi-instance learning problem of learning from weak, bag-level labels using
attention mechanisms. A recent work [Ilse 2018] shows the application of an atten-
tion network to detection of epithelial cells in histopathology images. [Katharopou-
los 2019] improve over their method by approximating the attention distribution
and sampling it to improve classification.

1.2 Contributions of the Thesis

A list of contributions of this thesis follows. The first three entries below are
contributions towards answering the first question on morphable model learning,
followed by our contibutions on automated diagnosis of lymphocytosis.
Unsupervised dense alignment. A principal contributions of this thesis is un-
supervised dense alignment on images of an object category. Dense correspondences
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are essential for learning shape [Matthews 2004,Torresani 2008] and is also one of
the stages in morphable model building [Blanz 1999,Paysan 2009]. However, gen-
erating dense correspondences using optical flow can be computationally expensive
and can also limit the number of images we can use [Kemelmacher-Shlizerman 2013].
Generating dense correspondences using deep learning in an unsupervised manner
can alleviate these issues. To this end, we propose deforming autoencoders (daes)
to learn jointly, a canonical template space for an object category, as well dense
correspondences between an object in the image space with the canonical space.
The unsupervised alignment is evaluated against other state-of-the-art methods on
landmark detection accuracy using the disentangled dense deformation grid.

Figure 1.15: Discovering a canonical space with a dae.

3D shape using nrsfm and daes. By treating the dense alignment obtained
using daes as ground truth, we show that we can learn a 3D morphable model which
learns a mean shape, a camera basis, and a deformation basis separately. This is
also achieved in an autoencoder framework where the latent space represents the
shape and camera coefficients, while the mean shape is represented by a mesh. The
resulting model, which we call a lifting autoencoder (lae) learns 3D shape from 2D
dense correspondences using deep non-rigid structure from motion. We evaluate
our shape prediction and pose prediction using a method that utilises Procrustes
analysis for landmark alignment.

Disentangled representations. For both, the dae and the lae, disentanglement
of object properties in the latent space is demonstrated. Specifically, shape, albedo,
and shading are disentangled in the dae’s latent space, while identity, pose, expres-
sion, albedo, and shading are disentangled in the lae’s latent space. Controllable
image synthesis can then be performed by manipulating one or more of the latent
vectors. For the case of the lae, this means visualising a shape from different poses,
interpolating between identities and expressions of different faces, and transferring
illumination from a source face image to a target face image.

Deep multi-instance learning for automated diagnosis. We introduce a
deep convolutional model for automated prediction of the chance of tumoral lym-
phocytosis in a patient from blood smears only. A mixture-of-experts model is also
evaluated to combine predictions from images and clinical data. Comparisons are
performed with state-of-the-art deep multi-instance learning approaches and predic-
tions of 12 biologists. We show that our method beats attention-based mechanisms,
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Figure 1.16: top: disentanglement of shape, albedo, and shading using dae. From
left to right: input image, shading in canonical space, albedo in canonical space,
texture in canonical space, shading in image space, albedo in image space, texture
in image space; emphbottom: disentanglement of expression and pose with lae.
For the input image on the left, visualisations of learnt 3D shape from different
poses while keeping the expression intact.

as well as the average prediction of the biologists, thus making a strong case for
deployment in real-world scenarios.

Figure 1.17: A mixture-of-experts model for the diagnosis of lymphocytosis.

1.3 Organisation of the Thesis

This thesis is organised as follows.

1. In Chapter 2, we introduce deforming autoencoders as a means of achieving
unsupervised dense alignment of objects of a category in 2D. We also demon-
strate shape, albedo, and shading disentanglement with daes. We introduce
a simple and effective method of regressing the deformation grid using a con-
volutional neural network. We further show that this method performs well
at registration tasks in medical imaging as well as remote sensing.

2. In Chapter 3, we introduce lifting autoencoders that build on daes and use the
unsupervised dense alignment to lift objects from 2D to 3D in an unsupervised
manner. We also show that by introducing pose, identity, and expression
cues, we can learn a fully controllable 3D morphable model using minimal
supervision.
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3. In Chapter 4, we move our focus to medical imaging, and introduce a model
for automatic prediction of tumoral lymphocytosis. We combine inference
from images and clinical data in an end-to-end trainable deep neural network
to capture the probability of the presence of cancer.

4. Finally, we conclude in Chapter 5 and present possible future work based on
the contributions of this thesis.

1.4 List of Publications

1. Z. Shu, M. Sahasrabudhe, R. A. Güler, D. Samaras, N. Paragios, I. Kokki-
nos. Deforming Autoencoders: Unsupervised Disentangling of Shape and Ap-
pearance, ECCV 2018.

2. M. Sahasrabudhe*, Z. Shu*, E. Bartrum, R. A. Güler, D. Samaras, I.
Kokkinos. Lifting Autoencoders: Unsupervised Learning of a Fully-Disentangled
3D Morphable Model using Deep Non-Rigid Structure from Motion (oral), Ge-
ometry Meets Deep Learning Workshop, ICCV 2019.

3. M.Sahasrabudhe, P. Sujobert, E. Zacharaki, E. Maurin, B. Grange, L. Jal-
lades, N. Paragios, M. Vakalopoulou, Deep Multi-Instance Learning for Diag-
nosis of Lymphocytosis (under submission). IEEE Journal of Biomedical And
Health Informatics.

4. S. Christodoulidis, M. Sahasrabudhe, M. Vakalopoulou, G. Chassagnon,
M.-P. Revel, S. Mougiakakou, N. Paragios. Linear and Deformable Image
Registration with 3D Convolutional Neural Networks (oral), RAMBO work-
shop, MICCAI 2018.

5. M. Vakalopoulou, S. Christodoulidis, M. Sahasrabudhe, S. Mougiakakou,
N. Paragios, Image Registration of Satellite Imagery with Deep Convolutional
Neural Networks (oral), IGARSS 2019.

1.5 Dissemination Activities

• Code, data, and models available online at https://msahasrabudhe.github.
io.

• Poster presentation at ECCV 2018.

• Oral and poster presentations at Geomtry Meets Deep Learning workshop,
ICCV 2019.

https://msahasrabudhe.github.io
https://msahasrabudhe.github.io
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1.6 Other Academic Activities

• Visiting researcher at Harvard Medical School from Oct to Dec 2019 (PI: Dr.
Tomas Kirchhausen).

• Reviewer for the conferences JURSE 2019, ICANN 2019, and the journal
CVIU.

• Course TA for Foundations of Machine Learning (2016-18), and Introduction
to Visual Computing (2019) at CentraleSupélec.

• Course instructor for Programming and Languages at ESSEC and Centrale-
Supélec (2018-19).





Chapter 2

Deforming Autoencoders:
Unsupervised Dense Alignment in 2D

We first introduce the deforming autoencoder (dae), a generative model for images
that infers dense alignment between object categories by disentangling shape from
appearance in an unsupervised setting.

2.1 Introduction

Disentangling factors of variation is important for the broader goal of controlling and
understanding deep networks, but also for applications such as image manipulation
through interpretable operations. This pushes this line of research by following the
deformable template paradigm [Amit 1991,Yuille 1991,Cootes 1998,Blanz 2003b,
Matthews 2004]. In particular, we consider that object instances are obtained by
deforming a prototypical object, or ‘template’, through dense, deformation fields.
This makes it possible to factor object variability within a category into varia-
tions that are associated to spatial transformations, generally linked to the object’s
2D/3D shape, and variations that are associated to appearance (or, ‘texture’ in
graphics), e.g. due to facial hair, skin color, or illumination. In particular we con-
sider that both sources of variation can be modelled in terms of a low-dimensional
latent code that is learnable in an unsupervised manner from images. We achieve
disentangling by breaking this latent code into separate parts that are fed into sep-
arate decoder networks that deliver appearance and deformation estimates. Even
though one could hope that a generic convolutional architecture will learn to repre-
sent such effects, we argue that explicitly injecting this inductive bias in a network
can help with the training, while also yielding control over the generative process.
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in 2D

Our main contributions in this work can be summarized as follows. First, we in-
troduce the deforming autoencoder architecture, bringing together the deformable
modelling paradigm with unsupervised deep learning. We treat the template-to-
image correspondence task as that of predicting a smooth and invertible transfor-
mation. As shown in Figure 2.1, our network predicts this transformation field
alongside with the template-aligned appearance and subsequently deforms the syn-
thesized appearance to generate an image similar to its input. This allows for a
disentanglement of the shape and appearance parts of image generation by explicitly
modelling the effects of image deformation during the decoding stage.

Second, we explore different ways in which deformations can be represented and
predicted by the decoder. Instead of building a generic deformation model, we com-
pose a global, affine deformation field, with a non-rigid field that is synthesized as
a convolutional decoder network. We develop a method that allows us to constrain
the synthesized field and template to be semantically meaningful, and show that it
simplifies training and improves accuracy. We also show that class-related informa-
tion can be exploited, when available, to learn better deformation models-this yields
sharper images and can be used to learn models that jointly account for multiple
classes, e.g., all mnist digits.

Third, we show that disentangling appearance from deformation comes with
several advantages when it comes to modelling and manipulating images. By using
disentangling we obtain clearly better synthesis results when manipulating images
for tasks such as expression, pose or identity interpolation when compared to stan-
dard autoencoder architectures. Along the same lines, we show that accounting
for deformations facilitates a further disentangling of the appearance components
into an intrinsic, shading-albedo decomposition which completely fails when naively
performed in the original image coordinates. This allows us to perform re-shading
through simple operations on the latent shading coordinate space.

We complement these qualitative results with a quantitative analysis of the
learnt model in terms of landmark localization accuracy. We show that our method
is not too far below supervised methods and outperforms with a margin the latest
state-of-the-art works on self-supervised correspondence estimation [Thewlis 2017c],
even though we never explicitly trained our network for correspondence estimation,
but rather only aimed at reconstructing pixel intensities.

2.2 Related Work

Progress in the direction of disentangling the latent space of deep generative mod-
els has facilitated the separation of latent image representations into dimensions
that account for independent factors of variation, such as identity, illumination,
normals, and spatial support [Chen 2016b,Shu 2017,Worrall 2017,Sengupta 2017],
low-dimensional transformations, such as rotations, translation, or scaling, [Memi-
sevic 2010,Worrall 2016,Park 2017] or finer-levels of variation, including age, gen-
der, wearing glasses, or other attributes e.g. [Shu 2017,Lample 2017] for particular
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classes, such as faces.
Shape variation is more challenging as it amounts to a transformation of a func-

tion’s domain, rather than its values. Even simple, supervised additive models of
shape result in complex nonlinear optimization problems [Cootes 1998,Matthews 2004].
Despite this challenge several works in the previous decade aimed at learning
shape/appearance factorizations in an unsupervised manner, exploring groupwise
image alignment, [Learned-Miller 2006,Kokkinos 2007,Frey 2003,Jojic 2003]. In the
context of deep learning several works have aimed at incorporating deformations and
alignment in a supervised setting, including Spatial Transformers [Jaderberg 2015],
Deep Epitomic Networks [Papandreou 2015], Deformable cnns [Dai 2017], Mass
Displacement Networks [Neverova 2018], Mnemonic Descent [Trigeorgis 2016], or
Densereg [Güler 2017]. These works have shown that one can improve the accuracy
of both classification and localization tasks by injecting deformations and alignment
within traditional cnn architectures.

Turning to unsupervised deep learning, even though most works focus on rigid,
or low-dimensional parametric deformations, e.g. [Memisevic 2010,Worrall 2016],
several works have attempted to incorporate richer non-rigid deformations within
learning. A thread of works has been aimed at dynamically rerouting the process-
ing of information within the network’s graph based on the input, starting from
neural computation arguments [Hinton 1981,Olshausen 1995,Malsburg 1981] and
eventually translating into concrete algorithms, such as the ‘capsule’ works of [Hin-
ton 2011,Sabour 2017] that bind neurons on-the-fly. Still, these works lack a trans-
parent, parametric handling of non-rigid deformations. Working on a more geomet-
ric direction, several works have recently aimed at recovering dense correspondences
between pairs [Bristow 2015] or sets of RGB images, as e.g. in the recent works
of [Zhou 2016b,Gaur 2017]. These works however do not have the notion of a refer-
ence coordinate system (‘template’) to which images can get mapped - this makes
the image generation and manipulation harder. More recently, [Thewlis 2017c] use
the equivariance principle in order to align sets of images to a common coordinate
system, but do not develop this into a full-blown generative model of images.

2.3 Deforming Autoencoders

Our architecture embodies the deformable template paradigm in an autoencoder ar-
chitecture. The premise of our work is that image generation can be interpreted as
the combination of two processes: a synthesis of appearance on a deformation-free
coordinate system (‘template’), followed by a subsequent deformation that intro-
duces shape variability. Denoting by T (p) the value of the synthesized appearance
(or, texture) at coordinate p = (x, y) and byW (p) the estimated deformation field,
we consider that the observed image, I(p) can be reconstructed as follows:

I(p) ' T (W (p), (2.1)
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Figure 2.1: Deforming Autoencoders follow the deformable template paradigm and
model image generation through a cascade of appearance (or, texture) synthesis in
a canonical coordinate system and a spatial deformation that warps the texture to
the observed image coordinates. By keeping the latent vector for texture short the
network is forced to model shape variability through the deformation branch, so as
to minimize a reconstruction loss. This allows us to train a deep generative image
model that disentangles shape and appearance in an entirely unsupervised manner.

namely the image appearance at position p is obtained by looking up the synthesized
appearance at positionW (p). This is implemented in terms of a spatial transformer
layer [Jaderberg 2015] that allows us to pass gradients through the warping process.

The appearance and deformation functions are synthesized by independent de-
coder networks. The inputs to the decoders are delivered by a joint encoder network
that takes as input the observed image and delivers a low-dimensional latent rep-
resentation, Z, of shape and appearance. This is split into two parts, Z = [ZT ,ZS ]
which feed into the appearance and shape networks respectively, providing us with
a clear separation of shape and appearance.

2.3.1 Deformation Field Modelling

Rather than leave deformation modelling entirely to back-propagation, we use some
domain knowledge to simplify and accelerate learning. The first observation is that
global aspects can be expressed using low-dimensional linear models. We account
for global deformations by an affine Spatial Transformer layer, that uses a six-
dimensional input to synthesize a deformation field as an expansion on a fixed
basis [Jaderberg 2015]. This means that the shape representation, ZS described
above is decomposed into two parts, ZW ,ZA, where ZW accounts for the non-rigid
part of the deformation field, and ZA for the affine. These deformation fields are
generated by separate decoders, and are composed, so that the affine transformation
warps the detailed non-rigid warps to the image positions where they should apply.
This is also a common decomposition in deformable models for faces [Cootes 1998,
Matthews 2004].

Turning to local deformation effects, we quickly realized that not every de-
formation field is plausible. Without appropriate regularization we would often
obtain deformation fields that could expand small areas to occupy whole regions,
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Figure 2.2: Our warping module design only permits locally consistent warping, as
shown in (b), while the flipping of relative pixel positions, as shown in (c), is not
allowed by design. To achieve this, we let the deformation decoder predict the hor-
izontal and vertical increments of the deformation (∇xW and ∇yW , respectively)
and use a ReLU transfer function to remove local flips, caused by going back in the
vertical or horizontal direction. A spatial integral module is subsequently applied
to generate the grid. This simple mechanism serves as an effective constraint for
the deformation generation process, while allowing us to model free-form/non-rigid
local deformation.

and/or would be non-diffeomorphic, meaning that the deformation could spread a
connected texture pattern to a disconnected image area (Figure 2.2-(f)).

To prevent this problem, instead of making the shape decoder cnn directly pre-
dict the local warping field W (p) = (Wx(x, y),Wy(x, y)), we consider a ‘differential
decoder’ that generates the spatial gradient of the warping field: ∇xWx and ∇yWy,
where ∇c denotes the c-th component of the spatial gradient vector. These two
quantities measure the displacement of consecutive pixels - for instance ∇xWx = 1
amounts to translation in the horizontal axis, ∇xWx = 2 amounts to horizontal
shifting by a size of 2, while ∇xWx = −1 amounts to left-right flipping; a similar
behavior is associated with ∇yWy in the vertical axis. We note that global rotations
are handled by the affine warping field, and the ∇xWy,∇yWx are associated with
small local rotations of minor importance - we therefore focus on ∇xWx,∇yWy.

Having access to these two values gives us a handle on the deformation field,
since we can prevent folding/excessive stretching by controlling ∇xWx,∇yWy.

In particular, we pass the outputs of our differential decoder through a Rec-
tified Linear Unit (ReLU) module, which enforces positive horizontal offsets on
horizontally adjacent pixels, and positive vertical offsets on vertically adjacent pix-
els. We subsequently apply a spatial integration layer, implemented in terms of
a fixed network layer, on top of the output of the ReLU layer to reconstruct the
warping field from its spatial gradient. By doing so, the new deformation mod-
ule enforces the generation of smooth and regular warping fields that avoid self-
crossings. In practice we found that also clipping the decoded offsets by a maximal
value significantly eases the training, which amounts to replacing the ReLU layer,
ReLU(x) = max(x, 0) with a HardTanh0,δ(x) = min(max(x, 0), δ) layer. In our
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experiments, we set δ = 5/W where W denotes the number of pixels along one
dimension of the image.

2.3.2 Class-aware Deforming Autoencoder

ZC

ZI

Input Image

Decoder

Encoder

Decoder

ZD

Cross Entropy Loss Spatial
Warping

Reconstruction

Figure 2.3: A class-aware model can account for multi-modal deformation distri-
butions by utilizing class information. Introducing a classification loss into latent
space helps the model learn a better representation of the input as demonstrated
on mnist.

We can require our network’s latent representation to be predictive of not only
shape and appearance, but also of instance class, if that is available during training.
We note that this information, being discrete may be easier to acquire than the
actual deformation field, which would require manual landmark annotation. For
instance, for faces such discrete information could represent the expression or a
person’s identity.

In particular we consider that the latent representation can be decomposed as
follows: Z = [ZT ,ZC ,ZS ], where ZT ,ZS are as previously the appearance- and
shape- related parts of the representation, respectively, while ZC is fed as input
to a sub-network trained to predict the class associated with the input image.
Apart from assisting the classification task, the latent vector ZC is fed into both
the appearance and shape decoders. Intuitively this allows our decoder network to
learn a mixture model that is conditioned on class information, rather than treating
the joint, multi-modal distribution through a monolithic model. Even though the
class label is only used during training, and not for reconstruction, our experimental
results show that a network trained with class supervision can deliver more accurate
synthesis results.

2.3.3 Intrinsic Deforming Autoencoder: Deformation, Albedo and
Shading Decomposition

Having outlined Deforming Autoencoders, we now use a Deforming Autoencoder
to model complex physical image signals, such as illumination effects, without a
supervision signal. For this we design the Intrinsic Deforming-Autoencoder, named
Intrinsic-dae to model shading and albedo for in-the-wild face images. As shown
in Fig. 2.4-(a), we introduce two separate decoders for shading S and albedo A,
each of with has the same structure as the original texture decoder. The texture is
computed by T = S ◦A where ◦ denotes the Hadamard product.
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In order to model the physical properties of shading and albedo, we follow the
intrinsic decomposition regularization loss used in [Shu 2017]: we apply the L2
smoothness loss on ∇S, meaning that shading is expected to be smooth, while
leaving albedo unconstrained. As shown in Fig. 2.4 and more extensively in the
experimental results section, when used in tandem with an Deforming Autoencoder
this allows us to successfully decompose of face image into shape, albedo, and
shading components, while a standard Autoencoder completely fails at decomposing
unaligned images into shading and albedo.

Figure 2.4: Autoencoders with intrinsic decomposition. (a) Deforming Autoen-
coder with intrinsic decomposition (Intrinsic-dae): we model the texture by the
Hadamard product of shading and albedo components, each of which is decoded
by an individual decoder. The texture is subsequently warped by the predicted
deformation field. (b) A plain autoencoder with intrinsic decomposition. Both net-
works are trained with reconstruction loss (Lreconstruction) on the final output and
regularization losses on shading (Lshade) and deformation (Lwarp), if it exists.

2.3.4 Training

Our objective function is formed as the sum of three losses, combining the recon-
struction error with the regularization terms required for the modules described
above. Concretely, the loss of the deforming autoencoder can be written as

LDAE = Lreconstruction + Lwarp , (2.2)

where the reconstruction loss is defined as the standard `2 loss

Lreconstruction = ‖Î − I‖2, (2.3)

and the warping loss is decomposed as follows:

Lwarp = Lsmooth + Lbiasreduce (2.4)

In particular the smoothness cost, Lsmooth, penalizes quickly-changing deformations
encoded by the local warping field. It is measured in terms of the total variation
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norm of the horizontal and vertical differential warping fields, and is given by

Lsmooth = λ1 (‖∇Wx(x, y)‖1 + ‖∇Wy(x, y)‖1) , (2.5)

where λ1 = 10−6. Finally, Lbiasreduce is a regularization on (1) the affine parameters
defined as the L2-distance between SA and S0, S0 being the identity affine transform;
and (2) the average of the deformation grid for a random batch of training data
being close to identity mapping grid, given by

Lbiasreduce = λ2‖SA − S0‖2 + λ′2‖W̄ −W0‖2 . (2.6)

where λ2 = λ′2 = 0.01. W̄ denotes the average deformation grid of a mini-batch
of training data and W0 denotes an identity mapping grid. In the class-aware
variant described in Sec. 2.3.2 we augment the loss above with the cross-entropy
loss evaluated on the classification network’s outputs.

For Intrinsic-dae, we add the following objective function in training:

Lshade = λ3‖∇S‖2, where λ3 = 10−6 . (2.7)

We experiment with two types of architectures; the majority of our results are
obtained with a standard auto-encoder architecture, where both encoder and de-
coders are cnns with standard convolution-BatchNorm-ReLU blocks. The number
of filters and the texture bottleneck capacity can vary per experiment, image reso-
lution, and dataset, as detailed in the Appendix A.1.2.

Follow the recent work on densely connected convolutional networks [Huang 2017],
we have also experimented with incorporating dense connections into our encoder
and decoders architectures respectively (no skip connections over the bottleneck
layer for latent representations). In particular, we follow the architecture of DenseNet-
121, but without the 1 × 1 convolutional layers inside each dense block. These
have been shown to better exploit larger datasets, as indicated in the quantita-
tive analysis of unsupervised face alignment. We call this version of the deforming
autoencoder Dense-dae.

2.4 Experiments

To demonstrate the properties of our deformation disentangling network, we con-
duct experiments on the following three datasets:

• Deformed mnist. A synthetic dataset designed specifically to explore the
deformation modelling power of our network. Deformed mnist consists of
handwritten mnist images randomly distorted using a mixture of sinusoidal
waveforms.

• mug facial expression dataset [Aifanti 2010]. This dataset consists of videos
of individuals performing facial expressions, with simple blue background and
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Figure 2.5: Unsupervised deformation-appearance disentangling on a single mnist
digit. Our network learns to reconstruct the input image while automatically de-
riving a canonical appearance for the input image class. In this experiment, the
dimension of the latent representation for appearance ZT is 1.

Figure 2.6: Class-aware deforming autoencoders effectively model the appearance
and deformation for multi-class data.

minor translation. The dataset also offers frames from the videos, classified
according to the facial expression, as well as the subject.

• Faces-in-the-wild dataset: mafl [Zhang 2014b] and CelebA [Liu 2015]. These
datasets consist of uncontrolled “in-the-wild” faces with variability in pose,
illumination, expression, age, etc.

Using these datasets we experimentally explored the ability of the unsupervised
appearance-shape (or texture-deformation) disentangling network on 1) unsuper-
vised image alignment/appearance inference; 2) learning semantically meaningful
manifolds for shape and appearance; 3) decomposition into illumination intrinsics
(shading, albedo); 4) unsupervised landmark detection, as detailed below. We in-
tend to make all of the code of our system publicly available in order to facilitate
the reproduction of our results.

2.4.1 Unsupervised Appearance Inference

We first use our network to model canonical appearance and deformation for single
category objects. For this purpose, we demonstrate the results in the mnist and
mug facial expression datasets (Fig. 2.5, 2.6, 2.7).
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Figure 2.7: Experiment on mug dataset of face expressions: (a) With 0-length ZT ,
Deforming Autoencoders learn a single texture (row 3) from a subject in the mug
facial expression dataset. By doing so, the subject’s facial expression is encoded
only in the deformation domain. (b): Our network is able to disentangle the facial
expression deformation and encode this information in a meaningful latent represen-
tation. By interpolating the latent deformation representation from the source (in
orange) to the target (in blue), it generates sharp images and a smooth deformation
interpolation between expressions as shown in each row.

We observe that by heavily limiting the size of ZT (1 in Fig. 2.5 and 0 in
Fig. 2.7), we can successfully infer a canonical appearance for such a class. In
Fig. 2.5, all different types of handwritten digits ’3’ are aligned to a simple canonical
shape. In Fig. 2.7, by limiting the dimension of ZT to 0, the network learns to
encode a single texture image for all expressions, and successfully distills expression-
related information exclusively in the shape space. In Fig. 2.7-(b) we show that by
interpolating the learnt latent representations, we can generate meaningful shape
interpolations that mimic facial expressions.

In cases where data has a multi-modal distribution exhibiting multiple differ-
ent canonical appearances, e.g., multi-class mnist digit images, learning a single
appearance is less meaningful and often challenging (Fig. 2.6-(b)). In such cases,
utilizing class information (Sec. 2.3.2) significantly improves the quality of multi-
modal appearance learning (Fig. 2.6-(d)). As the network learns to classify the
images implicitly in its latent space, it learns to generate a single canonical appear-
ance for each class. Misclassified data will be decoded into an incorrect class: the
image at position (2,4) in Fig. 2.6-(c,d) is interpreted as a 6.

We now demonstrate the effectiveness of texture inference using our network on
in-the-wild human faces. Using the mafl face dataset, we show that our network is
able to align the faces to a common texture space under various poses, illumination
conditions, or facial expressions (Fig. 2.10)-(d). The aligned textures retain the
information of the input image such as lighting, gender, and facial hair, without
a relevant supervision training signal. We further demonstrate the alignment on
the 11k Hands dataset [Afifi 2017], where we align palmar images of the left hand
of several subjects 2.8. This property of our network is especially useful for appli-
cations such as computer graphics, where establishing correspondences (UV map)
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between a class of objects is important but usually difficult.

Figure 2.8: Unsupervised alignment on images of palms of left hands. (a) The input
images; (b) reconstructed images; (c) texture images warped with the average of
the decoded deformation; (d) the average input image; and (e) the average texture.

2.4.2 Autoencoders vs. Deforming Autoencoders

We show the ability of our network to learn meaningful deformation representations
without supervision. We compare our disentangling network with a plain auto-
encoder (Fig. 2.9). Contrary to our network which disentangles an image into a
template texture and a deformation field, the auto-encoder is trained to encode all
of the image in a single latent representation, i.e., the bottleneck.

We train both networks in the mafl faces-in-the-wild dataset. To evaluate
the learnt representation, we conduct manifold traversal (i.e., latent representation
interpolation) between two randomly sampled face images: given a source face
image Is and a target image It, we first compute their latent representations Zs.
We use ZT (Is) and ZS(Is) to denote the latent representations in our network for
Is, and ZAE(Is) for the latent representation learnt by a plain autoencoder. We
then conduct linear interpolation on Z, between Zs and Zt,

Zλ = λZs + (1− λ)Zt . (2.8)

We subsequently reconstruct the image Iλ from Zλ using the corresponding de-
coder(s), as shown in Figure 2.9.

By traversing the learnt deformation representation only, we can change the
shape and pose of a face while maintaining its texture (Figure 2.9-(1)); interpolating
the texture representation results in pose-aligned texture transfer (Figure 2.9-(2));
traversing on both representations will generate a smooth deformation from one
image to another (Figure 2.9-(3,5,7)). Compared to the interpolation using the
autoencoder (Figure 2.9-(4,6,8)), which often exhibits artifacts, our traversal stays
on the semantic manifold of faces and generates sharp facial features.

2.4.3 Intrinsic Deforming Autoencoders

Having demonstrated the disentanglement abilities of Deforming Autoencoders, we
now explore the disentanglement capabilities of Intrinsic-dae described in Sec.
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Figure 2.9: Latent representation interpolation: we embed a face image in the
latent space provided by an encoder network trained on the mafl dataset. Our
network disentangles the texture and deformation in the respective parts of the
latent representation vector, allowing a meaningful interpolation between images.
Interpolating the deformation-specific part of the latent representation changes the
face shape and pose (1); interpolating the latent representation for texture will
generate a pose-aligned texture transfer between the images (2); traversing both
latent representations will generate smooth and sharp image deformations (3,5,7).
In contrast, when using a standard auto-encoder (4,6,8) such an interpolation often
yields artifacts. For more results, please see Figure A.5,A.6 in Appendix.

2.3.3. Using only the LDAE and regularization losses, the Intrinsic-dae is able
to generate convincing shading and albedo estimates without direct supervision
(Fig. 2.10-(b) to (g)). Without the “learning-to-align” property, a baseline autoen-
coder structure with an intrinsic decomposition design (Fig. 2.4-(b)) cannot decom-
pose the image into plausible shading and albedo components (Fig. 2.10-(h),(i),(j)).

In addition, we show that by manipulating the learnt latent representation of
S, Intrinsic-dae allows us to simulate illumination effects for face images, such as
interpolating lighting directions (Fig. 2.11).
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Figure 2.10: Unsupervised intrinsic decompostion with Deforming Autoencoders
(Intrinsic-dae). Thanks to the “automatic dense aligment” property of dae, shad-
ing and albedo are faithfully separated (e,f) by the intrinsic decomposition loss.
Shading (b) and albedo (c) are learnt in an unsupervised manner in the densely
aligned canonical space. With the deformation field also learnt without supervision,
we can recover the intrinsic image components for the original shape and viewpoint
(e,f). Without dense alignment, the intrinsic decomposition loss fails to decompose
shading and albedo (h,i,j).

Figure 2.11: Lighting interpolation with Intrinsic-dae. With latent representations
learnt in an unsupervised manner for shading, albedo, and defomation, the dae
allows us to simulate smooth transitions of the lighting direction. In this example,
we interpolate the latent representation of the shading from source (lit from the left)
to target (mirrored source, hence lit from the right). The network generates smooth
lighting transitions, without explicitly learning geometry, as shown in shading (1)
and texture (2). Together with the learnt deformation of the source image, dae
enables the relighting of the face in its original pose (3).

Training with L2 reconstruction losses, autoencoder-like architectures are prone
to generating smooth images which lack visual realism (Fig. 2.10). Inspired by
the success of generative adversarial networks (GANs) [Goodfellow 2014], we follow
previous work [Shu 2017] where an adversarial loss is adopted to generate visually
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realistic images: we train the Intrinsic-dae with an extra adversarial loss term
Ladversarial applied on the final output. The loss function becomes:

LintrinsicDAE = Lreconstruction + Lwarp + λ4Ladversarial . (2.9)

In practice, we apply a PatchGAN [Li 2016, Isola 2016] as the discriminator and
set λ4 = 0.1. We found that the adversarial loss improves the visual sharpness of
the reconstruction while the deformation, shading are still successfully disentangled
(Fig. 2.12).

Figure 2.12: Intrinsic-dae with an adversarial loss: (a/d) reconstruction (b/e)
albedo, (c/f) shading, in image and template coordinates, respectively. Applying an
adversarial loss to the final output results improves the visual quality of the image
reconstruction (a) of Intrinsic-dae, while the deformation, albedo, and shading can
still be successfully disentangled.
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2.4.4 Unsupervised alignment evaluation

Figure 2.13: 1st row: Sample images from the mafl test set; 2nd row: Estimated
deformation grid; and 3rd row: Image reverse-transformed to texture space 4th
row: semantic landmark locations (green: ground truth landmark locations, blue:
estimated landmark locations, red: error lines).

Having qualitatively analyzed the disentanglement capabilities of our networks,
we now turn to quantifying their performance on the task of unsupervised image
alignment. We report the performance of our face dae’s alignment on landmark
detection on face images, specifically, the eyes, the nose, and corners of the mouth.
We report performance on the mafl dataset, which contains manually annotated
landmark locations for 19,000 training and 1,000 test images. In our experiments,
we use a model trained on the CelebA dataset without any form of supervision
to estimate deformation fields on the mafl training set. Following the evalua-
tion protocol of the work that we directly compare to [Thewlis 2017c], we train a
landmark regressor post-hoc on these deformation fields using the provided anno-
tations. We use landmark locations from the mafl training set as training data
for this regressor, but do not pass gradients to the Deforming Autoencoder, which
thereby remains fixed to the model learnt without supervision. The regressor is a
2-layer fully-connected neural network. Its inputs are flattened deformation fields
(vectors of size 64 × 64 × 2), which are provided as input to a 100-dimensional
hidden layer, followed by a ReLU and a 10-D output layer to predict the spatial
coordinates ((x, y)) for five landmarks corresponding to the eyes, nose, and mouth
corner landmarks. We use L1 loss as the objective function for this regression task.

In testing, we predict landmark locations using the trained regressor and the
deformation fields on the mafl test set. In Table 1 we report the mean error in
landmark localization as a percentage of the inter-ocular distance. As the defor-
mation field determines the alignment in the texture space, it serves as an effective
mapping between landmark locations on the aligned texture and those on the origi-
nal, unaligned faces. Hence, the mean error we report directly quantifies the quality
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of the (unsupervised) face alignment.

A, mafl I, mafl A + I, mafl A + I, CelebA A + I, CelebA, with Regressor

14.13 9.89 8.50 7.54 5.96

Table 2.1: Improvement in landmark localization errors on the mafl test set as we
add new types of deformation and new data. In the table, A indicates a model which
uses the affine transformation, I indicates one with the integral transformation,
whereas mafl and CelebA denote which dataset the deforming autoencoder was
trained on. For columns 1 to 4, we manually annotate landmarks on the average
texture image, while for column 5, we train a regressor on the deformation fields to
predict them. In all experiments, each latent vector in the dae is of size 32.

In Table 2 we compare with the results of the best current method for semi-
supervised image registration [Thewlis 2017c]. We observe that by better modelling
of the deformation space we quickly bridge the gap in performance, even though we
never explicitly trained to learn correspondences.

Method Normalised Mean Error (NME)

[Zhang 2016] 7.95

[Thewlis 2017c] 5.83

dae

32-NR 10.24
32-Res 9.93
16 5.71
32 5.96
64 5.70
96 6.46

Dense-dae
16 6.85
64 5.50
96 5.45

Table 2.2: Mean error on unsupervised landmark detection on the mafl test set,
expressed as a percentage of the inter-ocular distance: modelling non-rigid deforma-
tions clearly reduces error more than just modelling affine ones. dae and Dense-dae
denote two flavours of the deforming autoencoder - with and without dense convo-
lutional connections, respectively. Under dae and Dense-dae we specify the size
of each latent vector in the deforming autoencoder. NR signifies training without
regularization on the estimated deformations, while Res signifies training by esti-
mating the residual deformation grid instead of the integral. Our results clearly
outperform the self-supervised method of [Thewlis 2017c] trained specifically for
establishing correspondences.

2.5 Applications to Other Domains

We also test our method of modelling the deformation grid by applying it to other
domains. More specifically, we look at registration problems in medical imaging



2.5. Applications to Other Domains 45

and remote sensing.

2.5.1 Deformable Lung Registration

In medical image analysis, an important problem is registering MRI scans of lungs
to a common template, or to other scans. From a medical point of view, registra-
tion can assess spatio-temporal behaviour of organs, and can help in diagnosis and
analysis of disease progression [Sotiras 2013].

We thus test our integral deformation modelling for applications to medical im-
age registration problems. We use our module in a set-up to register 3-dimensional
MRI scans of lungs. We employ a cnn to regress a dense deformation grid W from
a source image S and a moving image R. The cnn is trained so that the grid W is
a dense warp from S to R. The moved source image D is defined as D =W(S,W ),
where W represents a trilinear interpolation sampling operation under the defor-
mation grid W . Figure 2.14 shows the architecture of this cnn. The encoder
adopts dilated convolutional kernels along with multi-resolution feature merging,
while the decoder employs non-dilated convolutional layers and up-sampling opera-
tions. Specifically, a kernel size of 3×3×3 was set for the convolutional layers while
LeakyReLU activation was employed for all convolutional layers except the last two.
Instance normalization was included before most of the activation functions. In to-
tal five layers are used in the encoder and their outputs are merged along with the
input pair of image to form a feature map of 290 features with a total receptive field
of 25×25×25. In the decoder, two branches were implemented—one for the spatial
deformation gradients and the other for the affine matrix. As far as the former is
concerned, a squeeze-excitation block [Hu 2018] was added in order to weigh the
most important features for the spatial gradients calculation while for the latter a
simple global average operation was used to reduce the spatial dimensions to one.
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Figure 2.14: cnn architecture used to compute a dense deformation grid between
a source image and a moving image.

The network was trained by minimizing the mean squared error (MSE) between
the R and D image intensities as well as the regularization terms of the affine



46
Chapter 2. Deforming Autoencoders: Unsupervised Dense Alignment

in 2D

transformation parameters and the spatial deformation gradients using the Adam
optimizer [Kingma 2014a].

2.5.1.1 Dataset

MRI exams were acquired as a part of a prospective study aiming to evaluate the
feasibility of pulmonary fibrosis detection in systemic sclerosis patients by using
magnetic resonance imaging (MRI) and an elastic registration-driven biomarker.
This study received institutional review board approval and all patients gave their
written consent. The study population consisted of 41 patients (29 patients with
systemic sclerosis and 12 healthy volunteers). Experienced radiologists annotated
the lung field for the total of the 82 images and provided information about the
pathology of each patient (healthy or not). Additionally, eleven characteristic land-
marks inside the lung area had been provided by two experienced radiologists.

As a pre-processing step, the image intensity values were cropped within the
window [0, 1300] and mapped to [0, 1]. Moreover, all the images were scaled down
along all dimensions by a factor of 2/3 with cubic interpolation resulting to an image
size of 64× 192× 192 to compensate for GPU memory constraints. A random split
was performed and 28 patients (56 pairs of images) were selected for the training
set, resulting in 3136 training pairs, while the rest 13 were used for validation.

2.5.1.2 Results and Discussion

In Table 2.3 the mean Dice coefficient values along with their standard deviations
are presented for different methods. We performed two different types of tests. In
the first set of experiments (Table 2.3: Inhale-Exhale), we tested the performance of
the different methods for the registration of the MRI images, between the inhale and
exhale images, for the 13 validation patients. The SyN implementation reports the
lowest Dice scores while at the same time, it is computationally quite expensive due
to its CPU implementation. Moreover, we tested three different similarity metrics
along with their combinations using the method proposed in [Ferrante 2017] as
described earlier. In this specific setup, the MI metric seam to report the best Dice
scores. However, the scores reported by the proposed architecture are superior by at
least ∼ 2.5% to the ones reported by the other methods. For the proposed method,

(a) Reference image (b) Moving image (c) Deformed image (d) Difference

Figure 2.15: A visualised registration of a pair of images, generated by the proposed
architecture. The initial and deformed grids are superimposed on the images.
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Method Inhale-Exhale All Combinations Time (s)

Unregistered 75.62±10.89 57.22±12.90 −

Deformable with NCC [Ferrante 2017] 84.25±6.89 76.10±7.92 ∼1 (GPU)
Deformable with DWM [Ferrante 2017] 88.63±4.67 75.92±8.81 ∼2 (GPU)
Deformable with MI [Ferrante 2017] 88.86±5.13 76.33±8.74 ∼2 (GPU)
Deformable with all above [Ferrante 2017] 88.81±5.85 78.71±8.56 ∼2 (GPU)
SyN [Avants 2008] 83.86±6.04 − ∼2500 (CPU)

Proposed w/o Affine 91.28±2.47 81.75±7.88 ∼0.5 (GPU)
Proposed 91.48±2.33 82.34±7.68 ∼0.5 (GPU)

Table 2.3: Dice coefficient scores (%) calculated over the deformed lung masks and
the ground truth. The running time indicated is per patient.

the addition of a linear component to the transformation layer does not change the
performance of the network significantly in this experiment.

2.5.2 Remote Sensing

Image registration in multimodal, multitemporal satellite imagery is one of the
most important problems in remote sensing and essential for a number of other
tasks such as change detection and image fusion [Karantzalos 2014b,Dawn 2010,
Vakalopoulou 2016]. In this context, we employ a cnn to register a source satellite
image to a moving one. The architecture we employ is the same as Figure 2.14,
except that the input images are 2-dimensional instead of 3-dimensional. The net-
work is again optimised to minimise the reconstruction error, and we use both affine
and integral components of the deformation grid.

2.5.2.1 Dataset

For our experiments, we used a pair of multispectral very high resolution images
from the Quickbird satellite. The pair has been acquired in 2006 and 2007, covering
a 14 km2 region in the East Prefecture of Attica in Greece. This particular dataset
was challenging due to the very large size of the high resolution satellite images,
their complexity due to different acquisition angles, shadows, important height dif-
ferences, numerous terrain objects, and the sparse multitemporal acquisitions. For
evaluating the proposed architecture, patches of size 256 × 256 were created. In
particular, 450 patches were selected randomly for training, 50 for validation and
50 for testing the proposed framework.

2.5.2.2 Results and Discussion

To evaluate the performance of our method we perform different experiments using
only the affine or the integral components, and also using their ensemble. We also
compare the performance of our method with a state-of-the-art algorithm based
on graphs as presented in [Karantzalos 2014a] that has been proven to work very
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in 2D

Unregistered [Karantza-
los 2014a]

Proposed, only
affine

Proposed, only
integral Proposed

Figure 2.16: Qualitative evaluation for three different pairs of images. With red
rectangles we indicate regions of interest.

Method dx (pixel) dy (pixel) ds (pixel) Time (s)
Unregistered 7.3 6.3 9.6 –
[Karantzalos 2014a] 1.3 2.3 2.6 ∼2
Proposed, only affine 2.5 2.8 3.7 ∼0.02
Proposed, only integral 1.2 2.0 2.3 ∼0.02
Proposed 0.9 1.8 1.9 ∼0.02

Table 2.4: Errors measured as average euclidean distances between landmark lo-
cations in the moved and target images. dx and dy denote distances along x-, y-,
respectively, while ds denotes the average error along all axes.

well on large remote sensing imagery. [Karantzalos 2014a] used normalized cross
correlation as the similarity metric.

In Figure 2.16 we present three different pairs of images using checkerboard
visualizations between the target R and warped image D before and after the reg-
istration using the different tested approaches. Even if the initial displacements
were quite important all the methods recover the geometry and register the pair
of images. However, the proposed method trained only with the affine deforma-
tion fails to register accurately high buildings which have the largest deformations,
due to the global nature of the transformation. Finally, the proposed method with
only the deformable part, was slightly more difficult to be trained, proving that the
additional linear component is a valuable part of the proposed framework.

For quantitative evaluation, a number of landmarks, mainly on the buildings
corners were selected and their errors in each of the axes computed (Table 2.4). It
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should be noted that for all the methods the same landmarks have been selected
and around 10 image pairs were used to extract the landmarks. These landmarks
contained mainly roofs of buildings as they were the ones presenting the higher
registration errors. One can observe that the proposed method using only the
affine component does not perform as well as the rest of the approaches as it fails
to recover the geometry in places with local deformations. On the other hand the
rest of the approaches report very low errors with the proposed method using both
affine and integral parts performing slightly better. Finally, it should be noted that
the proposed method is very fast, with inference time for an image pair of size
256 × 256 less than half a second, giving a big advantage for very large datasets
such as the remote sensing ones, and allowing even real-time applications.

2.6 Summary

In this chapter we have developed deep autoencoders that can disentangle shape
and appearance in latent representation space. We have shown that this method
can be used for unsupervised groupwise image alignment. To achieve this, we have
proposed a new module for dense deformation field regression that can be plugged
into a neural network easily. Experiments show that this module helps generate
more meaningful deformation grids that other methods, for example, predicting
the residual grid. Our experiments with expression morphing in humans, image
manipulation, such as shape and appearance interpolation, as well as unsupervised
landmark localization, show the generality of our approach. We have shown that
bringing images in a canonical coordinate system allows for a more extensive form
of image disentangling, facilitating the estimation of decompositions into shape,
albedo and shading without any form of supervision. We expect that this will lead
in the future to a full-fledged disentanglement into normals, illumination, and 3D
geometry. Furthermore, applications of the deformation field modelling are shown
to unsupervised registration problems in medical imaging and remote sensing, where
it is shown to beat other contemporary methods. We will now extend the notions
of 2D dense alignment to obtain 3D shape in the following chapter.

2.7 Contributions

This chapter presents a joint work to which several authors have contributed. My
contributions to the work are as follows.

1. I contributed to building models and experiments.

2. I contributed to the evaluation of deformation field regresion and unsupervised
landmark localisation.

3. I contributed to the application to medical image registration.

4. I contributed to the application to remote sensing.





Chapter 3

Lifting Autoencoders: From 2D Dense
Alignment to a 3D Morphable Model

In this chapter, we introduce lifting autoencoders (lae), a generative 3D surface-
based model of object categories. We bring together ideas from non-rigid structure
from motion, image formation, and morphable models to learn a controllable, geo-
metric model of 3D categories in an entirely unsupervised manner from an unstruc-
tured set of images.

3.1 Introduction

Computer vision can be understood as the task of inverse graphics, namely the
recovery of the scene that underlies an observed image. The scene factors that
govern image formation primarily include surface geometry, camera position, ma-
terial properties and illumination. These are independent of each other, but jointly
determine the observed image intensities.

In this work we incorporate these factors as disentangled variables in a deep
generative model of an object category and tackle the problem of recovering all of
them in an entirely unsupervised manner. We integrate in our network design ideas
from classical computer vision, including structure-from-motion, spherical harmonic
models of illumination and deformable models, and recover the three-dimensional
geometry of a deformable object category in an entirely unsupervised manner from
an unstructured collection of RGB images. We focus in particular on human faces
and show that we can learn a three-dimensional morphable model of face geometry
and appearance without access to any 3D training data, or manual labels. We
further show that by using weak supervision we can further disentangle identity
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Figure 3.1: We introduce lifting autoencoders, a deep generative model of 3D shape
variability that is learned from an unstructured photo collection without supervi-
sion. Having access to 3D allows us to disentangle the effects of viewpoint, non-rigid
shape (due to identity/expression), illumination and albedo and perform entirely
controllable image synthesis.

and expression, leading to even more controllable 3D generative models.
The resulting model allows us to generate photorealistic images of persons in

a fully-controllable manner: we can manipulate 3D camera pose, expression, tex-
ture and illumination in terms of disentangled and interpretable low-dimensional
variables.

Our starting point is the deforming autoencoder (dae) model introduced in
Chapter 2 to learn an unsupervised deformable template model for an object cate-
gory. daes incorporate deformations in the generative process of a deep autoencoder
by associating pixels with the UV coordinates of a learned deformable template. As
such, they disentangle appearance and shape variability and learn dense template-
image correspondences in an unsupervised manner.

We first introduce lifting autoencoders (laes) to recover, and then exploit the
underlying 3D geometry of an object category by interpreting the outputs of a dae
in terms of a 3D representation. For this we train a network task so as minimize
a Non-Rigid SfM minimization objective, which results is a low-dimensional mor-
phable model of 3D shape, coupled with an estimate of the camera parameters. The
resulting 3D reconstruction is coupled with a differentiable renderer [Kato 2018b]
that propagates information from a 3D mesh to a 2D image, yielding a generative
model for images that can be used for both image reconstruction and manipulation.

Our second contribution consists in exploiting the 3D nature of our novel gener-
ative model to further disentangle the image formation process. This is done in two
complementary ways. For illumination modeling we use the 3D model to render
normal maps and then shading images, which are combined with albedo maps to
synthesize appearance. The resulting generative model incorporates our spherical-
harmonics-based [Zhang 2005,Wang 2007,Wang 2009] modeling of image formation,
while still being end-to-end differentiable and controllable. For shape modeling we
use sources of weak supervision to factor the shape variability into 3D pose, and
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Figure 3.2: Lifting autoencoders bring Non-Rigid Structure from Motion (nrsfm)
into the problem of learning disentangled generative models for object categories.
We start from a deforming-autoencoder (dae) that interprets images in terms of
non-rigid, 2D warps between a template and an image. We train a lifting au-
toencoder network by minimizing a nrsfm-based reprojection error between the
learned, 3D Morphable Model-based vertices and their respective dae-based po-
sitions. Combined with a differentiable renderer providing 3D-to-2D information.
and an adversarially trained refinement network this provides us with an end-to-end
trainable architecture for photorealistic image synthesis.

non-rigid identity and expression, allowing us to control the expression or identity
of a face by working with the appropriate latent variable code.

Finally, we combine our reconstruction-driven architecture with an adversarially
trained refinement network which allows us to generate photo-realistic images as its
output.

As a result of these advances we have a deep generative model that uses 3D
geometry to model shape variability and provides us with a clearly disentangled
representation of 3D shape in terms of identity, expression and camera pose and
appearance in terms of albedo and illumination/shading. We report quantitative
results on a 3D landmark localization task and show multiple qualitative results of
controllable photorealistic image generation.

3.2 Related Work

The task of disentangling deep models can be understood as splitting the latent
space of a network into independent sources of variation. In the case of learning
generative models for computer vision, this amounts to uncovering the independent
factors that contribute to image formation. This can both simplify learning, by
injecting inductive biases about the data generation process, and can also lead to
interpretable models that can controlled by humans in terms of a limited number
of degrees of freedom. This would for instance allow computer graphics to benefit
from the advances in the learning of generative models.
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Over the past few years rapid progress has been made in the direction of disen-
tangling the latent space of deep models into dimensions that account for generic fac-
tors of variation, such as identity and low-dimensional transformations [Chen 2016b,
Worrall 2017,Memisevic 2010,Worrall 2016,Sundermeyer 2018], or even non-rigid,
dense deformations from appearance [Zhou 2016b,Gaur 2017,Thewlis 2017c,Shu 2018,
Wiles 2018b]. Several of these techniques have made it into some of the most com-
pelling photorealistic, controllable generative models of object categories [Pumarola 2018,
Karras 2019].

Moving closer to graphics, recent works have aimed at exploiting our knowledge
about image formation in generative modeling by replicating the inner workings
of graphics engines in deep networks. On the synthesis side, geometry-driven gen-
erative models using intrinsic images [Shu 2017,Alhaija 2018, Sengupta 2018b] or
the 2.5D image sketch [Zhu 2018] as inputs to image synthesis networks have been
shown to deliver sharper, more controllable image and video [Kim 2018] synthesis
results. On the analysis side, several works have aimed at intrinsic image decom-
position [Barrow 1978] using energy minimization, e.g [Gehler 2011, Kong 2014].
The disentanglement of image formation into all of its constituent sources (surface
normals, illumination and albedo) was first pursued in [Barron 2013], where priors
over the constituent variables were learned from generic scenes and then served
as regularisers to complement the image reconstruction loss. More recently, deep
learning-based works have aimed at learning the intrinsic image decomposition from
synthetic supervision [Narihira 2015], self supervision [Janner 2017] or multi-view
supervision [Yu 2018].

These works can be understood in D. Marr’s terms as getting 2.5D proxies to
3D geometry, which could eventually lead to 3D reconstruction [Wu 2017]: texture
is determined by shading, shading is obtained from normals and illumination, and
normals are obtained from the 3D geometry. This leads to the task of 3D geometry
estimation as being the key to a thorough disentanglement of image formation.

Despite these advances, the disentanglement of the three-dimensional world
geometry from the remaining aspects of image formation still remains very re-
cent in deep learning. Effectively all works addressing aspects related to 3D ge-
ometry rely on paired data for training, e.g. multiple views of the same ob-
ject [Tulsiani 2017], videos [Novotny 2017] or some pre-existing 3D mesh repre-
sentation that is the starting point for further disentanglement [Genova 2018,Sen-
gupta 2018a,Yao 2018,Tewari 2018] or self-supervision [Zhou 2017]. This however
leaves open the question of how one can learn about the three-dimensional world
simply by observing a set of unstructured images.

Very recently, a few works have started tackling the problem of recovering the
three-dimensional geometry of objects from more limited information. In [Kanazawa 2018b]
the authors used segmentation masks and keypoints to learn a cnn-driven 3D
morphable model of birds, trained in tandem with a differentiable renderer mod-
ule [Kato 2018b]. Apart from the combination with an end-to-end learnable frame-
work, this requires however the same level of manual annotation (keypoints and
masks) that earlier works had used to lift object categories to 3D [Carreira 2016].
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A similar approach has been proposed in [Tran 2018] to learn morphable models
from keypoint annotations.

The LiftNet architecture proposed more recently by [Wiles 2018a] uses a 3D
geometry-based reprojection loss to train a depth regression FCN by using corre-
spondences of object instances during training. This however is missing the surface-
based representation of a given category, and is using geometry only implicitly, in
its loss function - the network itself is a standard FCN.

[Jimenez Rezende 2016] was the first work to propose unsupervised training
of volumetric cnns using toy examples and mostly binary masks. Most recently, a
GAN-based volumetric model of object categories was introduced in [Henzler 2018],
showing that one can recover 3D geometry from an unstructured photo collection
using adversarial training. Still, this is far from a rendering pipeline, in the sense
that the effects of illumination and texture are coupled together, and the volumetric
representation implies limitations in resolution.

Even though these works present exciting progress in the direction of deep 3D
reconstruction, they fall short of providing us with a model that operates like a
full-blown rendering pipeline. By contrast in our work we propose for the first time
a deep learning-based method that recovers a three-dimensional, surface-based, de-
formable template of an object category from an unorganised set of images, leading
to controllable photorealistic image synthesis.

We do so by relying on on Non-Rigid Structure from Motion (nrsfm). Rigid
SFM is a mature technology, with efficient algorithms existing for multiple decades
years [Tomasi 1992,Hartley 2003], systems for large-scale, city-level 3D reconstruc-
tion were introduced a decade ago [Agarwal 2009], while high-performing systems
are now publicly available [Schönberger 2016]. Rigid SFM has very recently been
revisited from the deep learning viewpoint, leading to exciting new results [Um-
menhofer 2017,Zhou 2017].

In contrast, nrsfm is still a largely unsolved problem. Developed originally to
establish a 3D model of a deformable object by observing its motion [Bregler 2000]
it was developed to solve increasingly accurately the underlying mathematical opti-
mization problems [Torresani 2008,Paladini 2009,Akhter 2009,Dai 2014], extending
to dense reconstruction [Garg 2013], lifting object categories from keypoints and
masks [Carreira 2016,Kanazawa 2018b], incorporating spatio-temporal priors [Si-
mon 2014] and illumination models [Liu-Yin 2017], while leading to impressively
high-resolution 3D Reconstruction results [Gotardo 2015, Liu-Yin 2017, Hernan-
dez 2017]. In [Kong 2019] it has recently been proposed to represent non-rigid
variability in terms of a deep architecture - but still the work relies on given point
correspondences between instances of the same category. By contrast, our proposed
method has a simple, linear model for the shape variability, as classical morphable
models, but establishes the correspondences automatically.

Earlier nrsfm-based work has shown that 3D morphable model learning is pos-
sible in particular for human faces [Kemelmacher-Shlizerman 2013,Kemelmacher-
Shlizerman 2012, Kemelmacher-Shlizerman 2011] by using a carefully designed,
flow-based algorithm to uncover the organization of the image collection - effec-
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tively weaving a network of connections between pixels of images, and feeding
this into nrsfm. As we now show this is no longer necessary - we delegate the
task of establishing correspondences across image pixels of multiple images to a
Deforming Auto-Encoder [Shu 2018] and proceed to lifting images through an end-
to-end trainable deep network as we now describe. . Several other works have
shown that combining a prior template about the object category shape with video
allows for an improved 3D reconstruction of the underlying geometry, both for
faces [Thies 2016, Tewari 2018,Koujan 2018] and quadrupeds [Biggs 2018]. How-
ever, these methods still require multiple videos and a template, while our method
does not. We intend to explore the use of video-based supervision in future work.

3.3 Lifting Autoencoders

We start by briefly describing how daes can help us learn structure from deforma-
tions, as this is the starting point of our work. We then turn to our contributions
of 3D lifting in Section 3.3.1 and shape disentanglement in Section 3.4.2.

3.3.1 LAEs: 3D structure-from-deformations

We now turn to the problem of recovering the 3D geometry of an object category
from an unstructured set of images. For this we rely on daes to identify cor-
responding points across this image set, and address our problem by training a
network to minimize an objective function that is inspired from Non-Rigid Struc-
ture from Motion (nrsfm). Our central observation is that daes provide us with an
image representation on which nrsfm optimization objectives can be easily applied.
In particular, disentangling appearance and deformation labels all image positions
that correspond to a single template point with a common, discovered UV value.
laes take this a step further, and interpret the dae’s UV decoding outputs as indi-
cating the positions where an underlying 3D object surface position projects to the
image plane. The task of an lae is to then infer a 3D structure that can successfully
project to all of the observed 2D points.

Given that we want to handle a deformable, non-rigid object category, we in-
troduce a loss function that is inspired from Non-Rigid Structure from Motion, and
optimise with respect to it. The variables involved in the optimization include (a)
the statistical 3D shape representation, represented in terms of a linear basis (b) the
per-instance expansion coefficients on this basis and (c) the per-instance 3D camera
parameters. We note that in standard nrsfm all of the observations come from a
common instance that is observed in time - by constrast in our case every training
sample stems from a different instance of the same category, and it is only thanks to
the dae-based preprocessing that these distinct instances become commensurate.
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3.3.2 3D Lifting Objective

Our 3D structure inference task amounts to the recovery of a surface model that
maps an intrinsic coordinate space (u, v) to 3D coordinates, S : ci → R3, where
ci = (ui, vi). Even though the underlying model is continuous, our implementation
is discrete—we consider a set of 3D points sampled uniformly on a cartesian grid
in intrinsic coordinates,

Si = S(ci), ci ∈ D ×D, (3.1)

with D =
{

0, 1
n
,

2
n
, . . . , 1

}
, i = 1, . . . , N = (n+ 1)2, (3.2)

where n determines the spatial resolution at which we discretise the surface. We
begin by constructing a mesh of regular n × n 2D lattice using a standard trian-
gulation technique as shown in Figure 3.3. Each vertex in this mesh is associated
with a UV-coordinate.

Figure 3.3: The triangulation of the regular 2D lattice of (ui, vi) coordinates. This
triangulation converts the set of points into a mesh that can be interpreted by a
rendering module.

We parameterise the three-dimensional position of these vertices in terms of
a low-dimensional linear model, that captures the dominant modes of variation
around a mean shape B0,

Si = B0
i +

B∑
j=1

sjBji , (3.3)

where B is the number of elements in the number of components in the linear
combination, excluding the mean shape. Here, Bji refers to the i-th element of
the j-th component, which determines the contribution of this element towards the
vertex cooresponding to the i-th UV-location, ci. One can think of the mean shape
B0 as denoting default positions of the vertices Si. The residual

∑B
j=1 sjBji can

then be thought of as instance-specific deformation of the mean shape, because the
mixing coefficients sj are inferred from the image. In our formulation, the mean
shape B0 as well as the components Bj are learnable parameters of the model, while
the mixing coeffecients sj are regressed from an image using a cnn.
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In morphable models [Vetter 1997,Booth 2018] the mean shape and deformation
basis elements are learnt by PCA on a set of aligned 3D shapes, but in our case we
discover them from 2D by solving an nrsfm minimization problem that involves
the projection to an unknown camera viewpoint.

In particular we consider scaled orthographic projection P through a camera
described by a rotation matrix R and translation vector t. Under this assumption,
the 3D surface points project to the points x̂i, given by

x̂i = P [RSi] + t , (3.4)

P =
[
σ 0 0
0 σ 0

]
, (3.5)

where σ defines a global scaling.
We measure the quality of a 3D reconstruction in terms of the Euclidean distance

of the predicted projection of a 3D point and its actual position in the image. In our
case a 3D point Si is associated with surface coordinate (ui, vi), whereas its actual
position is the one we obtain from the dae. To find this ‘ground truth’ position,
we find the image position x that the dae’s deformation decoder labels as (ui, vi),

xi = arg min
x∈R×R

‖W−1(x)− (ui, vi)‖2 . (3.6)

Here, W is the deformation predicted by the dae, and W−1(x) denotes the point
in the canonical space to which the inverse deformation of W maps the point x. In
practice, we find xi by warping (ui, vi) under W and locating the point in image
coordinates that it warps to. This is effectively equivalent to placing a value of
1 at (ui, vi) in the canonical space with 0s everywhere else, warping it under the
deformation grid, and computing a weighted average of the responses this produces
at all locations the image space, weighted by the intensity of response. For some i,
(ui, vi) might not produce a response anywhere, corresponding to cases where (ui, vi)
vanishes under the deformation. For such cases, we set a visibility variable νi to 0.
All other UV-coordinates receive a visibility value of 1. Note that this is translates
directly to occlusion of the associated mesh vertex i after the corresponding rotation
and projection are applied to Si. This process is equivalent to searching the image
coordinates for a point x that would project to (ui, vi) when warped using the inverse
of the deformation inferred by the dae. Since in practice, we work in a discrete
setting, we use a warper that uses backward bilinear interpolation sampling.

We express this reprojection objective in terms of the remaining variables—

L(R, t, σ, s,B) =
N∑
i=1

νi‖xi − x̂i(R, t, σ,S, s)‖22 (3.7)

where we have expressed x̂i as a differentiable function of R, t,S, s through Equa-
tion 3.4 and Equation 3.3.

For a set of K images (k = 1, . . . ,K) we denote by (Rk, tk), σk, sk the camera



3.3. Lifting Autoencoders 59

and shape parameters for the k-th image, since we consider a non-rigid object
seen from different viewpoints. The basis elements B are however considered to be
common across all images, since they describe the inherent shape variability of the
whole category. Our 3D non-rigid reconstruction problem thus becomes:

L3D =
K∑
k=1

L(Rk, tk, σk, sk,B) (3.8)

3.3.3 LAE learning via Deep NRSfM

Minimizing the objective of Equation 3.8 amounts to the common Non-Rigid Structure-
from-Motion objective [Bregler 2000, Torresani 2008, Paladini 2009, Akhter 2009,
Dai 2014]. Even though highly efficient and scalable algorithms have been pro-
posed for its minimization, we would only consider them for initialization, since
we want 3D Lifting to be a component of a larger deep generative model of im-
ages. We do not use any such technique, in order to simplify our model’s training,
implementing it as a single deep network training process.

The approach we take is to handle the shape basis B as the parameters of a
linear ‘morphable’ layer, tasked with learning the shape model for our object cat-
egory. We train this layer in tandem with complementary, multi-layer network
branches that regress from the image to (a) the expansion coefficients sk, (b) the
Euler angles/rotation matrix Rk, and (c) the displacement vector tk describing
the camera position. In the limit of very large hidden vectors the related an-
gle/displacement/coefficient heads could simply memorize the optimal values per
image, as dictated by the optimization of Equation 3.8. With a smaller number of
hidden units these heads learn to successfully regress camera and shape vectors and
can generalize to unseen images. As such, they are components of a larger deep
network that can learn to reconstruct an image in 3D— a task we refer to as Deep
nrsfm.

If we only train a network to optimise this objective we obtain a network that
can interpret a given image in terms of its 3D geometry, as expressed by the 3D
camera position (rigid pose) and the instance-specific expansion coefficients (non-
rigid shape). Having established this, we can conclude the task of image synthesis
by projecting the 3D surface back to 2D. For this we combine the 3D lifting network
with a differentiable renderer [Kato 2018b], and bring the synthesized texture image
in correspondence with the image coordinates. The resulting network is an end-to-
end trainable pipeline for image generation that passes through a full-blown, 3D
reconstruction process.

Having established a controllable, 3D-based rendering pipeline, we turn to pho-
torealistic synthesis. For this we further refine the rendered image by a U-Net [Ron-
neberger 2015] architecture that takes as input the reconstructed image and aug-
ments the visual plausibility. This refinement module is trained using two losses,
firstly an L2 loss to reconstruct the input image and secondly an adversarial loss
to provide photorealism. The results of this module are demonstrated in Figure
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3.7 - we see that while keeping intact the image generation process, we achieve a
substantially more realistic synthesis.

3.4 Geometry-Based Disentanglement

A lifting autoencoder provides us with a disentangled representation of images in
terms of 3D rotation, non-rigid deformation, and texture, leading to controllable
image synthesis.

In this section we show that having access to the underlying 3D scene behind an
image allows to further decompose the image generation into distinct, controllable
sub-models, in the same way that one would do within a graphics engine. These
contributions rely on certain assumptions and data that are reasonable for human
faces, but could also apply to several other categories.

We first describe in Section 3.4.1 how surface-based normal estimation allows us
to disentangle appearance into albedo and shading using a physics-based model of
illumination. In Section 3.4.2 we then turn to learning a more fine-grained model
of 3D shape and use weak supervision to disentangle per-instance non-rigid shape
into expression and identity.

3.4.1 LAE-lux: Disentangling Shading and Albedo

Given the 3D reconstruction of a face we can use certain assumptions about im-
age formation that lead to physically-plausible illumination modeling. For this we
extend laewith albedo-shading disentangling, giving rise to lae-lux where we ex-
plicitly model illumination.

As in several recent works [Shu 2017, Sengupta 2018b] we consider a Lamber-
tian reflectance model for human faces and adopt the Spherical Harmonic model to
model the effects of illumination on appearance [Zhang 2005,Wang 2007,Wang 2009].
We pursue the intrinsic decomposition [Barrow 1978] of the canonical texture T
into albedo, A and shading, S:

T = S �A (3.9)

where � denotes Hadamard product, by constraining the shading image to be con-
nected to the normals delivered by the laesurface.

In particular, denoting by L the representation of the scene-specific spherical
harmonic illumination vector, and by H(N(x)) the representation of the local nor-
mal field N(x) on the first 9 spherical harmonic coefficients, we consider that the
local shading, S(x) is expressed as an inner product:

S(x) = 〈L,H(N(x))〉. (3.10)

As such the shading field can be obtained by a linear layer that is driven by regressed
illumination coefficients L and the surface-based harmonic field, H(N(x)). Given
S(x), the texture can then be obtained from albedo and shading images according
to Eq. 3.9.
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In practice, the normal field we estimate is not as detailed as would be needed,
e.g. to capture sharp corners, while the illumination coefficients can be inaccurate.
To compensate for this, we first render an estimate of the shading Srender with
spherical harmonics parameters L and normal maps Nand then use a U-Net to
refine it, obtaining Sadapted.

Figure 3.4: Texture decoder for lae-lux: disentangling albedo and illumination
with 3D shape and Spherical Harmonics representation for illumination.

In our experiments we have initialized lae-lux with a converged lae, discarded
the last layer of the lae’s texture prediction and replaced it with the inrinsic pre-
dictor outlined above. The albedo image is obtained through an albedo decoder
that has an identical architecture to the texture decoder in dae. The latent code
for albedo ZA and the spherical harmonics parameters L are obtained as separate
linear layers that process the penultimate layer of the texture encoder.

In training, only the texture decoders are updated while other encoding and
decoding networks are fixed. When instead training everything jointly from scratch
we observed implausible disentanglement results, presumably due to the ill-posed
nature of the decomposition problem.

Given that the shading-albedo decomposition is an ill-posed problem, we fur-
ther use a combination of losses that capture increasingly detailed prior knowledge
about the desired solution. First, as in [Shu 2017] we employ intrinsic image-based
smoothness losses on albedo and shading:

Lsmooth
shading = λshade

∥∥∥∇Sadapted
∥∥∥

2
,Lalbedo = λalbedo ‖∇A‖1 , (3.11)

where ∇ represents the spatial gradient, which means that we allow the albedo
to have sharp discontinuities, while the shading image should have mostly smooth
variations [Samaras 2000]. In our experiment, we set λshade = 1×10−4 and λalbedo =
2×10−6.

Second, we compute a deterministic estimate L̂ of the illumination parameters
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and penalise its distance to the regressed illumination values:

LL =
∥∥∥L− L̂∥∥∥

2
. (3.12)

More specifically, L̂ is based on the crude assumption that the face’s albedo is
constant, Â(x) = 0.5, where we treat albedo as a grayscale. Even though clearly
very rough, this assumption captures the fact that a face is largely uniform, and
allows us to compute a proxy to the shading in terms of Ŝ = T �Â where � denotes
Hadamard division. We subsequently compute the approximation L̂ from Ŝ and
the harmonic field H(N) using least squares. For face images, similar to [Shu 2017],
L̂ serves as a reasonably rough approximation of the illumination coefficient and is
used for weak supervision in Equation 3.12.

Finally, the shading consistency loss regularizes the U-Net, and is designed to
encourage the U-Net based adapted shading Sadapted to be consistent with the
shading rendered from the spherical harmonics representation Srendered—

Lconsistencyshading = Huber(Sadapted, Srendered), (3.13)

where we use Huber loss for a robust regression since Srendered can contain some
outlier pixels due to an imperfect 3D shape.

3.4.2 Disentangling Expression, Identity and Pose

Having outlined our geometry-driven model for disentangling appearance variability
into shading and albedo, we now turn to the task of disentangling the sources of
shape variability.

In particular, we consider that face shape, as observed in an image is the com-
posite effect of camera pose, identity and expression. Without some guidance the
parameters controlling shape can be mixed - for instance accounting for the effects
of camera rotation through non-rigid deformations of the face.

We start by allowing our representation to separately model identity and ex-
pression, and then turn to forcing it to disentangle pose, identity and expression.

For a given identity we can understand expression-based shape variability in
terms of deviation from a neutral pose. We can consider that a reasonable approx-
imation to this consists in using a separate linear basis BI for identity and another
for expression BE , which amounts to following model:

Si(sI , sE) = B0
i +

I∑
s=1

sIsB
I,s
i +

E∑
s=1

sEs B
E,s
i (3.14)

Even though the model is still linear and is at first sight equivalent, clearly
separating the two subspaces means that we can control them through side infor-
mation. For instance when watching a video of a single person, or a single person
from multiple viewpoints one can enforce the identity expansion coefficients sI to
remain constant through a siamese loss [Koch 2015]. This would force the training
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to model all of the person-specific variability through the remaining subspace, by
changing the respective coefficients sE per image.

Here we use the MultiPIE [Gross 2010] dataset to help disentangle the latent
representation of person identity, facial expression, and pose (camera). MultiPIE is
captured under a controlled environment and contains image pairs acquired under
identical conditions with differences only in (1) facial expression, (2) camera posi-
tion, and (3) illumination conditions. We use this dataset to disentangle the latent
representation for shape into distinct components.

We denote by S the concatenation of all shape parameters: S =
[
sC , sI , sE

]
and

turn to the task of forcing the different components of S to behave as expected. We
use facial expression distentangling as an example, and follow a similar procedure
for pose and camera disentangling. Given an image Iexp with known expression
exp, we sample two more images. The first, I+

exp has the same facial expression
but different identity, pose, and illumination conditions. The second, I−exp, has a
different facial expression but the same identity, pose and illumination condition
as Iexp. We use siamese training to encourage Iexp and I+

exp to have similar latent
representations for facial expression, and a triplet loss to ensure that Iexp and I+

exp
are closer in expression space than Iexp and I−exp:

Lexpression = Lsimilarity
expression + Ltripletexpression,where (3.15)

Lsimilarity
expression =

∥∥∥fexp(Iexp)− fexp(I+
exp)

∥∥∥
2
, (3.16)

Ltripletexpression = max(0, 1 +
∥∥∥fexp(Iexp)− fexp(I+

exp)
∥∥∥

2

−
∥∥∥fexp(Iexp)− fexp(I−exp)

∥∥∥
2
). (3.17)

Following a similar collection of triplets for the remaining sources of variability,
we disentangle the latent code for shape in terms of camera pose, identity, and
expression. With MultiPIE, the overall disentanglement objective for shape is hence

Ldisentangle = Lexpression + Lidentity + Lpose, (3.18)

where Lidentity and Lpose are defined similarly to Lexpression. In our experiments, we
used the scaling parameter for this loss, λdisentangle = 1.

3.4.3 Complete Objective

Having introduced the losses that we use for disentangling, we now turn to forming
our complete training objective.

We control the model learning with a regularization loss defined as follows:

Lreg = λscale

K∑
k=1
‖σk‖2 + λshape

K∑
k=1

∥∥∥∥∥
S∑
s=1

sksBs
∥∥∥∥∥

2
, (3.19)

where σ is the scaling parameter in Equation 3.4 and
∑S
s=1 ssBsi is the non-rigid
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deviation from the mean shape, B0. We use λscale = 0.01, and λshape = 0.1 in all
our experiments.

Combining this with the reprojection loss, L3D, defined in Equation 3.8, we can
write the complete objective function, which is trained end-to-end:

Ltotal = λ3D · L3D +
λdisentangle · Ldisentangle +
λscale · Lscale +
λshape · Lshape.

(3.20)

In our experiments, we used the scaling factor for the 3D reprojection loss, λ3D = 50.
This relatively high scaling factor was chosen so that the reprojection loss is not
overpowered by other losses at later training iterations.

For training the lae-Lux, we also add the albedo-shading disentanglement
losses, summarised by

Llux = Lsmooth
shading + Lconsistensyshading + Lalbedo + LL. (3.21)

3.5 Experiments

(a) Visualising reconstructions from various yaw angles (b) Inferred shape

Figure 3.5: VIsualisations of the learnt 3D shapes from various yaw angles. Our
reconstructions respect prominent face features such as the nose, forehead, and
cheeks, allowing us to rotate an object reconstruction in 3D.

3.5.1 Architectural Choices

Our encoder and decoder architectures are similar to the ones employed in [Shu 2018],
but working on images of size 128× 128 pixels instead of 64× 64. We use convolu-
tional neural networks with five stridedConv-batchNorm-leakyReLU layers in image
encoders, which regress the expansion coefficients ss. Image decoders consist simi-
larly of five stridedDeconv-batchNorm-ReLU layers.
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Figure 3.6: Interpolation on the shape, pose, and texture latent vectors. We show
renderings of intermediate 3D shapes, with intermediate poses and textures, as we
move around on all three latent spaces.

Figure 3.7: Photorealistic refinement: starting from an image reconstruction by an
lae(left), an adversarially-trained refinement network adds details to increase the
photorealism of a face (right).

In all of these experiments the training process was started with a base learning
rate of 0.0001, which was reduced by a factor of 0.5 every fifty epochs of training.
We used the Adam optimiser [Kingma 2014a] and a batch size of 64. All training
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Figure 3.8: Landmark localization on a few aflw2000 test images. We manually
annotated landmarks in the UV space and visualized them after reprojection of the
vertices. The laeis able to localize landmarks for small pose variability. Ground-
truth landmarks are shown in green, whereas the predicted ones are shown in blue.

images were cropped and resized to a shape of 128 × 128 pixels, while a mesh of
size 64× 64 was used in training. This allowed us to sample one keypoint for every
four pixels in the UV space, making the mesh fairly high resolution. The mesh was
initialized as a Gaussian surface, and was initially positioned so that it faces toward
the camera.

3.5.2 Datasets

We now note the face datasets that we used for our experiments. Certain among
them contain side information, for instance multiple views of the same person, or
videos of the same person. This side information was used for expression-identity
disentanglement experiments, but not for the 3D lifting part. For the reconstruc-
tion results our algorithms were only provided with unstructured datasets, unless
otherwise noted.

1. CelebA [Liu 2015]: This dataset contains about 200,000 in-the-wild images,
and is one of the datasets we use to train our dae. A subset of this dataset,
mafl [Zhang 2014a], was also released which contains annotations for five
facial landmarks. We use the training set of mafl in our evaluation exper-
iments, and report results on the test set. Further, as mafl is a subset of
CelebA, we removed the images in the mafl test set from the CelebA training
set before training the dae.

2. Multi-PIE [Gross 2010]: Multi-PIE contains images of 337 subjects of 7 facial
expressions, each of which is captured under 15 viewpoints and 19 illumination
conditions simultaneously.

3. AFLW2000-3D [Zhu 2017b]: This dataset consists of 3D fitted faces for
the first 2000 images of the aflw dataset. In this paper, we employ it for
evaluation of our learned shapes using 3D landmark localization errors.

3.5.3 Qualitative Results

In this section, we show examples of the learned 3D shapes. Figure 3.5 shows
visualizations of reconstructed faces from various yaw angles using a model that
was trained only on CelebA images. We see that the model learns a shape that
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expresses the input well. However, when using no pose information from Multi-
PIE, and the completely unsupervised nature of our alignment, it is not able to
properly decode side poses. This drawback is quickly overcome when we add weak
pose supervision from the Multi-PIE dataset, as seen in Figure 3.7.

a) Input

c) Learned
      Shape

b) Pose manipulation results

d) Re�ned pose manipulation results

Figure 3.9: Changing Pose with lae. Given input face image (a), laelearns to
recover the 3D shape (c), with which we can manipulate the pose of the faces
(b). With the additional refinement network, we can enhance the manipulated face
image by adding facial details (d) that better preserve the characteristic features of
the input faces.

3.5.4 Face Manipulation Results

In this section, we show some results of manipulating the expression and pose latent
spaces. In Figure 3.9 (b), we visualize the decoded 3D shape from input images in
3.9 (a) from various camera angles. Furthermore, in Figure 3.9 (d), we show results
after passing the visualizations in Figure 3.9 (b) through the refinement network.

Similarly, in Figures 3.10 and 3.11 (a)-(e), we interpolate over the expression
latent space from each of the images in (a) to the image in (b), and visualize the
shape at each intermediate step in Figure (c), the output in (d), and the refined
output in (e).
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interpolation extrapolation

0.0              0.2              0.4            0.6              0.8            1.0             1.2            1.4             1.6              1.8

c)  Shape progression of expression interpolation and extrapolation

d)  Expression interpolation and extrapolation

e)  Re�ned expression interpolation and extrapolation

b) Target Expression

a) Input Images

Figure 3.10: Changing Expression with lae. With laewe can perform facial ex-
pression interpolation and extrapolation. Given the input faces (a), we can simply
transfer the facial expression from another image (b) onto (a) with varying in-
tensities by manipulating the learned expression representations. From (c,d,e) we
observe continuous facial expression transformation from the input (a) to the target
(b) (column 1 to 6), as well as realistic expression enhancements (column 7 to 10)
via latent representation extrapolation (note the mouth and the eyes region).

Finally, in Figure 3.6, we interpolate over all three latent spaces—texture, pose,
and shape.

3.5.5 Landmark Localization

Our system allows us to roughly estimate landmarks, by annotating them only
once in the aligned, canonical space, as also shown by [Shu 2018]. Here we further
visualize detected landmarks using the learned 3D shape in Figure 3.8 on some
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Method NME

Thewlis et al. (2017) [Thewlis 2017a] 6.67
Thewlis et al. (2018) [Thewlis 2017b] 5.83
Jakub et al. (2018) [Jakab 2018b] 2.54
Shu et al. (2018), dae, no regressor [Shu 2018] 7.54
Shu et al. (2018), dae, with regressor [Shu 2018] 5.45
lae, CelebA (no regressor) 7.96
lae, CelebA (with regressor) 6.01

Table 3.1: 2D landmark localization results for the proposed laecompared with
other state-of-the-art approaches. All numbers signify the average error per land-
mark normalized by the inter-ocular distance, over the entire dataset.

images from the aflw2000-3D dataset.

3.5.6 Albedo-Shading Disentanglement

In Fig. 3.12 we show that with the disentangled physical representation for illumi-
nation, we can hallucinate illumination manipulation with lae-lux.

3.5.7 Quantitative Analysis: Landmark Localization

We evaluate our approach quantitatively in terms of landmark localization. Specif-
ically, we evaluate on two datasets—the mafl test set for 2D landmarks, and the
aflw2000-3D for 3D shape. In both cases, as we do not train with ground-truth
landmarks, we manually annotate, only once, the necessary landmarks on the base
shape as linear combinations of one or more mesh vertices. That is to say, each
landmark location corresponds to a linear combination of the locations of several
vertices.

We use five landmarks for the mafl test set, namely the two eyes, the tip of
the nose, and the ends of the mouth. Similarly to [Thewlis 2017a,Thewlis 2017b,
Shu 2018], we evaluate the extent to which landmarks are captured by our 3D shape
model by training a linear regressor to predict them given the locations of the mesh
vertices in 3D.

We observe from Table 3.1 that our system is able to perform at-par with the
dae, which is our starting model - and as such serves as the upper bound on the
performance that we can attain. This shows that while being able to successfully
perform the lifting operation, we do not sacrifice localization accuracy. The small
increase in error can be attributed to the fact that perfect reconstruction of a system
is nearly impossible with a low-dimensional shape model. Furthermore we use a
feedforward, single-shot camera and shape regression network, while in principle
this is a problem that could require iterative model fitting techniques to align a 3D
deformable model to 2D landmarks [Pavlakos 2017].



70
Chapter 3. Lifting Autoencoders: From 2D Dense Alignment to a 3D

Morphable Model

interpolation extrapolation
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c)  Shape progression of expression interpolation and extrapolation

d)  Expression interpolation and extrapolation

e)  Re�ned expression interpolation and extrapolation

b) Target Expression

a) Input Images

Figure 3.11: Changing Expression with lae. With laewe can perform facial ex-
pression interpolation and extrapolation. Given the input faces (a), we can simply
transfer the facial expression from another image (b) onto (a) with varying in-
tensities by manipulating the learned expression representations. From (c,d,e) we
observe continuous facial expression transformation from the input (a) to the target
(b) (column 1 to 6), as well as realistic expression enhancements (column 7 to 10)
via latent representation extrapolation (note the mouth and the eyes region).

We report localization results in 3D on 21 landmarks that feature in the aflw2000-
3D dataset. As our unsupervised system is often unable to locate human ears, the
learned face model does not account for them in the UV space. This makes it im-
possible to evaluate landmark localization for points that lie on or near the ears,
which is the case for two of these landmarks. Hence, for the aflw2000-3D dataset,
we report localization accuracies only for 19 landmarks. Furthermore, as an eval-
uation of the discovered shape, we also show landmark localization results after
rigid alignment (without reflection) of the predicted landmarks with the ground
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truth. We perform Procrustes analysis, with and without adding rotation to the
alignment, the latter giving us an evaluation of the accuracy of pose estimation as
well.

Table 3.2 also demonstrates the gain achieved by adding weak supervision via the
Multi-PIE dataset. We see that the mean NMEs for laes trained with and without
the Multi-PIE dataset increase as the yaw angle increases. This is also visible in
our qualitative results shown in Fig. 3.7, where we visualize the discovered shapes
for both of these cases.

3.6 Summary

In this work we have introduced an unsupervised method for lifting an object cate-
gory into a 3D representation, allowing us to learn a 3D morphable model of faces
from an unorganised photo collection. We have shown that we can use the resulting
model for controllable manipulation and editing of observed images. Deep image-
based generative models have shown the ability to deliver photorealistic synthet-
sis results with substantially more diverse categories than faces [Brock 2019,Kar-
ras 2018] - we anticipate that their combination with 3D representations like laes
will further unleash their potential for controllable image synthesis.

3.7 Contributions

This chapter presents a joint work to which several authors have contributed. My
contributions to the work are as follows.

1. I contributed to the models and experiments using deep nrsfm.

2. I contributed to the keypoint sampling to link dae ground truth with lae
targets.

3. I contributed to the evaluation of unsupervised shape learning using landmark
localisation and Procrustes analysis.
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Table 3.2: Mean 3D landmark localization errors, after Procrustes analysis, nor-
malized by bounding box size and averaged over the entire aflw2000-3D test set.
The number in brackets for the laes refers to the dimension of the latent space for
the rigid and non-rigid components of the deformable model. The second column
specifies whether rotation is included in the Procrustes analysis. We also note the
training dataset used for training each lae.
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Figure 3.12: Lighting manipulation with lae-lux. With disentangled albedo and
shading and explicit shading representation using Spherical Harmonics, we can ma-
nipulate the illumination of faces. We show illumination editing of 3 examples from
given input faces (a), to a hallucinated lighting from left ((c) - left side) and a hal-
lucinated lighting from right ((c) - right side). Interpolation of Spherical Harmonics
coefficients generates smooth transition of shading effect (d), combining with the
learned albedo (b), we obtain the dense aligned texture with different illumination
effect (e). Final results (c) are obtained by applying deformation learned in laeto
(e), and a refinement step.





Chapter 4

Deep Multi-Instance Learning for
Diagnosis of Lymphocytosis

The analysis of blood cell count is the most prescribed analysis in medical biology.
It includes a quantitative count of different blood cell subsets, and the qualitative
analysis of the blood smear, performed through a cytology exam. The latter is char-
acterized by large intra- and inter-operator variability, as the differences between
normal and abnormal cells are not evident in most of the cases. This being one of the
first steps in the clinical diagnosis of lymphocytosis, it is important to investigate
solutions to remove these intra- and inter-operator variabilities, as well as retain
high performance. To this end, in this chapter, we explore a weakly-supervised deep
learning architecture that combines information from the quantitative cell count, as
well as the blood smears which form a part of the qualitative test. A repeatability
test is also conducted on unseen examples in order to test the robustness of the
proposed approach in a clinical diagnosis setting.

4.1 Introduction

Lymphocytosis (i.e., absolute lymphocyte count above 4×109/L) is a common find-
ing, which can be either reactive (to infection, acute stress, and so on), or the man-
ifestation of a lymphoproliferative disorder (a type of cancer of the lymphocytes).
In existing clinical practice, diagnosis relies on visual microscopic examination of
the blood cells (Figure 4.1) together with the integration of clinical attributes such
as age and lymphocyte count. Taking into consideration the visual assessment of
the entire set of blood cells and the clinical attributes, a diagnosis of the subtype
of lymphoid malignancy is performed. On the positive side such practice is fast
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and affordable, but it suffers from poor reproducibility. Additional clinical tests
are required, with flow cytometry being the gold standard to definitively affirm the
malignant nature of the lymphocytes. However, this analysis is relatively expensive
and time consuming, and therefore cannot be performed for every patient in prac-
tice. Therefore, the development of automatic and accurate processes could lead
to a better way to determine which patient should be referred for flow cytometry
analysis in order to confirm or exclude a lymphoproliferative disorder, augmenting
and assisting the assessment of the clinicians.

Imaging offers great potential to analyze blood cells in a non-invasive and re-
peatable manner. In the last decade radiomics has emerged in oncology as a way to
extract imaging features for diagnosis or prediction of treatment outcome or to be
used as a surrogate of oncogenic processes that are difficult to explore by contex-
tual biopsies [Ravi 2017,Limkin 2017,Sun 2018]. In a standard radiomic approach,
tumors or regions of interest (ROI) are detected and outlined, and subsequently fea-
tures are extracted describing, e.g., shape, texture, or morphology [Zacharaki 2009].
A detailed review of texture analysis methods focusing on microscopy images of cells
or tissues can be found in [Cataldo 2017]. In such a setting, (i) the segmented ROIs
and pre-defined features are choice-dependent, and (ii) feature extraction is per-
formed independently from statistical modelling, thus diminishing the ability to
find evidence-driven correlations, a thriving innovation in precision medicine. We
argue that we have no evidence that those primitive features capture all the hidden
information and that the independent processes of feature extraction and predic-
tion modelling do not necessarily take full benefit of the richness of the information
space. The problem becomes even more difficult when the disease category is given
on the subject level and not the individual observation level. This is also the case for
the diagnosis of lymphocytosis, where multiple images of blood cells are available
for each subject (Figure 4.1) without all of them necessarily belonging to the same
category (normal or abnormal). A patient is then associated with these images,
with their number varying for each patient. Furthermore, it is difficult for biolo-
gists to annotate each individual image as either normal or abnormal, and even if
they are able, this annotation suffers from inter-observer variability, so ground truth
target variables are only available at the patient-level, the target being the nature
of the symptoms, i.e., either reactive or tumoral. Finally, presence of abnormal
lymphocytes does not guarantee tumoral nature of the symptoms.

In this chapter, we address these issues and present a novel approach for the
challenging task of reliable diagnosis of lymphocytosis where our proposed approach
is able to predict the nature of symptoms (reactive/tumoral) from an acquired set
of blood smears. In particular, the contributions of this work are fourfold. First,
we propose a multi-instance deep CNN for extracting visual representations from
multiple microscopy images and associate them directly with patient’s diagnosis.
Second, we investigate how different aggregation methods for the multiple instance
scores affect the model’s predictions together with directly trained attention mech-
anisms. Thirdly, we introduce a mixture-of-experts model [Jacobs 1991] adapted
to the problem in order to learn a classifier from both images and the patient’s
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Figure 4.1: An example from lymphocyte images for a patient with a lymphocyte
count of 6.967× 1010/L. The six images in the left group depict abnormal lympho-
cytes while the two in the right one are normal.

clinical attributes to render a diagnosis using information from both of them. Fi-
nally, we show comparisons with classical radiomic-based methods coupled with
multi-instance classification, as well as recent deep learning-based attention meth-
ods reporting better performance for our proposed method.

This chapter is organized as follows. Section 4.2 discusses previous work on
multiple-instance learning as well as deep learning applied to medical analysis. We
then describe our method, and present its components and implementation details
in Section 4.3, followed by descriptions of competing methods in Section 4.4. The
dataset used for this study is introduced in Section 4.5, which is followed by a
discussion of the evaluation setting and the results of our experiments (Section
4.6). An extensive comparison with other methods and ratings of clinical experts
is presented along with a discussion of the results in Section 4.7.

4.2 Related Work

Multiple instance learning (mil) [Keeler 1991,Dietterich 1997] applies to problems
where objects (bags) are described by multiple observations (instances) with labels
being provided only for the bags. It can be also considered as a form of weakly
supervised learning. The challenge that arises for such representations is the lack
of precise annotation for each individual instance, and the fact that some of the
instances could lack information or encode even misleading information about the
object’s class (e.g. not all cells are malignant in a histopathology image with ma-
lignancy as shown in Figure 4.1). Several methods have been proposed exploiting
local or global information and implementing different classifiers or mapping func-
tions [Amores 2013,Foulds 2010b].

Specifically for histopathological image analysis, a variety of machine learning
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techniques have been investigated and are exhaustively presented in various re-
views [Gurcan 2009,Komura 2018]. Methods based on content-based image retrieval
were very commonly used to address this problem [Zhang 2015,Sparks 2016]. More-
over, especially for the task of cell segmentation, a variety of methods have been pro-
posed using bag-of-words [Caicedo 2009], support vector machines [Spanhol 2016],
neural networks [Theera-Umpon 2007] or Gaussian mixture models [Dundar 2011].
However, all these methods use predefined hand-crafted radiomics features from the
images and fail to take full benefit of the domain specificity. A recent work [Pa-
pastergiou 2018] exploits features from tensor decomposition for histopathological
diagnosis in order to avoid dedicated feature extraction.

There are a lot of studies that adapt cnn models for mil by using different pool-
ing layers such as the maximum, mean, generalized mean, log-sum-exponentiation
(LSE) [Ramon 2000] or the noisy-and function [Kraus 2016]. In particular, [Kraus 2016]
presents a cnn architecture which classifies and segments microscopy images using
an end-to-end multiple instance scheme. Further, [Ilse 2018] propose an attention-
based multi-instance architecture to classify histophathological images.

Our approach extends the notions of these methods towards a generic multi-
instance deep learning framework from weak annotations that are augmented by
information relevant to the patient’s clinical data.

4.3 Methodology

In this section, we present a deep learning-based framework for the task of predict-
ing tumoral lymphocytosis. We will start with introducing the cnn-based models
we used, and then describe a classical radiomics-based approach that we compare
against.

Let us first introduce some notation to describe the proposed approach. We are
given a set of N subjects, with a set of images being associated with each patient—
the number of which can vary from one patient to the other— along with patient
attributes, namely age and lymphocyte count. We represent the data of a patient
as

Si =
({
Xj
i

}j=Ni

j=1
, ai, ci, yi

)
, (4.1)

where {Xj
i } represents the Ni images obtained from the i-th patient, and ai, and

ci represent their age in years, and lymphocyte count in number of cells per litre of
blood, respectively. The target class is represented by a binary variable yi ∈ {0, 1},
with the values indicating a normal and malignant case, respectively. We will use
this notation throughout the chapter, while further pertinent notation shall be
introduced later.

4.3.1 Standard MIL assumption

In the standard mil assumption each instance is considered to fall into one of
the two categories—positive (1), or negative (0) [Dietterich 1997, Foulds 2010a].
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(a) Averaging Model

(b) Mixture-of-Experts (moe) model

Figure 4.2: Schematic representations of the two models—top: averaging model;
and bottom: mixture-of-experts (moe) model. Red arrows in the averaging model
indicate that data flow through these arrows is not involved in the training phase,
but only in the prediction phase. Further, Σ in the moe model refers to Equation
4.17. Lcnn and Lmlp in the figure indicate that these two sub-networks can be
trained separately. We refer to the cnn model as the cnn trained only with Lcnn,
and the mlp model as the mlp trained only with Lmlp.

Furthermore, the existence of one or more positive class instances in the bag renders
the bag itself positive. Concretely, this can be written as

yi =

1 if
∑
j y

j
i ≥ 1 ,

0 otherwise.
(4.2)

Since yji ∈ {0, 1}, this equation can further be simplified as

yi = max
j
yji . (4.3)
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This, however, is quite a strong assumption for our problem.
Firstly it requires knowledge of the instance-level class which is not available.

To address this challenge, many algorithms arbitrarily assume that each instance
inherits the class from the bag it belongs to. Such an assumption is not suitable
for our problem because the malignancy of an individual lymphocyte is uncertain
looking only at the blood smear as cytologists can have differing opinions on the
matter.

Secondly, the presence of only one abnormal lymphocyte does not justify a
diagnosis of tumoral lymphocotycosis for the patient. To more closely adhere to
the knowledge-based diagnostic approach followed by cytologists, we should draw
inference form all instances in a bag.

This reasoning leads us to the choice of a more general aggregation approach.
The aggregation function should be one that is invariant to permutation of the
instances. Broadly, we can classify aggregation approaches into two classes instance-
level and embedding-level mil [Foulds 2010a]-

1. Instance-level MIL. This approach aggregates instance-level predictions to
give bag-level predictions. Thus, a model predicts yji , which is followed by
an aggregation function to yield an estimate of yi. Examples of aggregation
functions that fall into this category are the max and mean functions [Hus-
sain 2018], log-sum-exp [Ramon 2000], log-mean-exp, noisy-or [Maron 1998],
and noisy-and [Kraus 2016].

2. Embedding-level MIL. In this approach, instead of aggregating predictions
at the instance-level, a low-dimensional embedding of instances is learnt, and
a bag-level classifier is trained on top of the aggregation of the embeddings
of all instances in the bag. We shall refer to the vector resulting after the
aggregation as the pooled feature vector, and the aggregation operation itself
as pooling. This approach was employed in [Wang 2018], and also shown to
perform well on document classification [Denil 2014,Kotzias 2014], as well as
whole-slide histopathology images [Hou 2016, Ilse 2018].

It can easily be observed that the max approach discussed above is indeed
invariant to permutation, and is an instance-level approach. In this chapter, we
employ a deep-learning model with embedding-level pooling. The premise for using
an embedding-level approach is based on the earlier discussion on why the standard
multi-instance learning assumption is not a valid assumption for this problem. We
will also introduce the pooling functions that were employed, and compare the
performances of each of them.

4.3.2 Proposed Deep Learning Architecture

The proposed deep learning architecture consists of a convolutional neural network
as a feature extractor. The cnn works on the entire (unmasked) lymphocyte image.
We aim to predict the probability P (yi = 1 | Si), where the variable yi = 1 indicates
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the presence of disease, and yi = 0, otherwise. We investigate three neural network
models to model this probability. We will first introduce the deep learning model
which draws patient-level inference using only the images {Xj

i }. In this setting,
we will refer to each patient as a bag, and to the yis as bag-level labels. Similarly,
we call each image in {Xj

i } an instance, and use yji to denote instance-level labels
corresponding to Xj

i . In the supplied ground truth, we are provided only with yi.

4.3.2.1 CNN for Blood Smears

To generate the low-dimensional embeddings, we use a convolutional feature ex-
tractor. The feature extractor is followed by a pooling operation in the embedding
space, and a classifier which predicts the probability of disease trained on top of
the pooled representations. We design the model so that it is end-to-end trainable,
in that it learns the low-dimensional embedding as well as the classifier jointly.

Let M be the function that represents the feature extractor. M operates on in-
stances (Xj

i ) and generates an embedding in a low-dimensional space. Let fPool rep-
resent a pooling function on these embeddings which is permutation-invariant. As
mentioned before, we employ three pooling functions—the element-wise maximum
function (fMax), the element-wise average (fMean), and the log-sum-exp function
(fLSE). The pooling functions used in this chapter are defined as—

fMax
(
{hji}

)
=
(

max
j

hji (k)
)

1≤k≤E
; (4.4)

fMean
(
{hji}

)
= 1
Ni

∑
j

hji ; and (4.5)

fLSE
(
{hji}

)
= 1
r

log

 1
Ni

∑
j

exp
(
r · hji

) , (4.6)

where hji = M(Xj
i ) ∈ RE represents the embedding ofXj

i , and E is the dimension of
this embedding. We will further represent the pooled embedding over all instances
by the vector pi, i.e.,

pi = fPool
(
{hji}

)
, (4.7)

for fPool ∈ {fMax, fMean, fLSE}. For the convolutional neural network M , we use a
ResNet [He 2016]. However, we set the the width of the ResNet as a hyperparameter
of our model. Denoting by K, the the base “step size”, shown in Table 4.1 is the
architecture of the ResNet, with the number of channels doubling at each residual
layer. In a standard ResNet [He 2016], K is set to 64. However, the original ResNets
were intended for large-scale computer vision applications, and as such use “wide”
latent representations. Since our problem has limited data, we make a design choice
to experiment with different values of K, where K ∈ {8, 16, 32, 64}.

Once we have an aggregate representation of a bag as an embedding in the low-
dimensional space, we pass it through a linear classifier to predict the bag label.
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The linear classifier assigns a score to the bag given by

ŷcnn
i = θ>Cpi + β , and (4.8)

P (yi = 1 | {Xj
i }) = σ (ŷcnn

i ) . (4.9)

Here, σ(x) = 1
1 + exp(−x) is the logistic function, and θC and β are, respectively,

the weight vector and the bias of the classifier. Overall, this models the bag proba-
bility as a Bernoulli distribution. To train the model end-to-end, we use the negative
log-likelihood. Concretely, the loss function is defined as

Lcnn = − ln σ(ŷcnn
i )

∣∣
yi=1 − ln (1− σ(ŷcnn

i ))
∣∣
yi=0 . (4.10)

We will henceforth refer to this model as cnn (in small caps). It should be
noted that cnn uses only the images for diagnosis.

4.3.2.2 Multi-layer Perceptron for Clinical Data

Since the clinical data (ai, ci) are also helpful for cytologists during their diagnosis,
we employ them as well in our model as an additional source of information. In
order to integrate the clinical data, we use a multi-layer perceptron consisting of
one hidden layer and one output layer to predict the probability of disease.

The multi-layer perceptron consists of an input layer with two units, connected
to a hidden layer which also has two units. The sigmoid activation function is used
in the hidden layer. The output layer has just one unit which represents the score of
the classifier. We denote the score for a bag i by ŷmlp

i . The multi-layer perceptron
is also trained with the negative log-likelihood loss as described in Equation 4.10.
Let L represent the multi-layer perceptron. Then we can write

ŷmlp
i = L(ai, ci) ; (4.11)

P (yi = 1 | ai, ci) = σ(ŷmlp
i ) ; and (4.12)

Lmlp = − ln σ(ŷmlp
i )

∣∣
yi=1 − ln (1− σ(ŷmlp

i ))
∣∣
yi=0 . (4.13)

We will henceforth refer to this model as mlp. It should be noted that mlp
does not use images for diagnosis.

We have described two models that use different training data to predict the
same variable. The two types of input data are not completely independent of each
other, but the extent of the relationship is unknown at worst and difficult to model
at best. Based on this, we combine the predictions of the two models in two possible
ways.
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4.3.2.3 Averaging Model

The averaging model simply averages the two scores from these two models. The
combined prediction is

ŷavg
i = 1

2 (ŷcnn
i + ŷmlp

i ) . (4.14)

Since each predictor can be trained separately, there is no joint training in the
averaging model. We refer to this model as avg.

4.3.2.4 Mixture-of-Experts Model

So far, we have represented a patient either as a set of images (cnn model), or as a
set of clinical attributes (mlp model) and used different models for them. It is not
unreasonable to assume that the two models might have disagreements over cer-
tain examples, as the biologists themselves are not always in agreement. It therefore
makes sense to choose the better of the two models depending on the patient. To this
end, we propose to employ a mixture-of-experts [Hampshire 1992,Jordan 1994,Mo-
erland 1997] model to learn simultaneously from both, the images as well as the
clinical attributes. However, instead of targeting cooperation between the models,
in which minimization of the loss function targeting to minimise the prediction er-
ror over the average of all models’ predictions, we wish to promote specialisation,
such that each model specializes over a certain set of examples [Jacobs 1991]. More
concretely, we have two “experts”—the cnn and the mlp—with a gating network
weighting the contributions of the two experts. The gating network operates on
the pooled features pi, as well the attributes ai and ci, and outputs a set of mixing
coeffecients. Such a model learns to output a mixture of probability distributions
learnt by each of the experts. Examples of uses of a mixture-of-experts are ap-
plications to speech recognition [Jacobs 1991,Nowlan 1991,Waterhouse 1998] and
disease classification [Ng 2007], among other tasks.

We formulate the gating network as an aggregation kernel learnt on the embed-
ding space, followed by a linear layer to regress the contributions. The complete
model used for the gating network is

πcnn
i = G(pi, ai, ci) = σ

θ>G


ci

ai

θ>Api

 ; and (4.15)

πmlp
i = 1− πcnn

i , (4.16)

where πcnn
i and πmlp

i contributions of the cnn and the mlp, respectively. The final
prediction of the mixture-of-experts model is given by

P (yi = 1 | Si) = ŷmoe
i = πcnn

i σ (ŷcnn
i ) + πmlp

i σ (ŷmlp
i ) , (4.17)

Contrary to the parameter free avg model, the mixture-of-experts uses the gat-
ing network is parameterized θA and θG as trainable parameters, and hence can be
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Layer Layer Name Output Size Residual Blocks
1 conv1 112 × 112 -

2 conv2 56 × 56
[

3 × 3, K
3 × 3, K

]
3 conv3 28 × 28

[
3 × 3, 2K
3 × 3, 2K

]
4 conv4 14 × 14

[
3 × 3, 4K
3 × 3, 4K

]
5 conv5 7 × 7

[
3 × 3, 8K
3 × 3, 8K

]
6 flatten 7 · 7 · 8K -

Table 4.1: Architecture of the convolutional neural network M used to estimate
hji . The input to the network is an image of size 224 × 224. Each row defines an
operation, where each convolution is followed by batch normalisation and ReLU.
The residual layers are layers 2-5. K is a hyperparameter which determines the
width of the residual network. We test with the values {8, 16, 32, 64} for K.

trained end-to-end. The loss function to train this model encourages specialisation,
in that it lets each expert concentrate on examples it can classify better. We use
the following loss fuction—

Lmoe = − ln ŷmoe
i

∣∣
yi=1 − ln (1− ŷmoe

i )
∣∣
yi=0 . (4.18)

We will henceforth refer to the mixture-of-experts model as moe. We further
explore three paradigms in the moe framework—(P1) training the entire model
end-to-end with no initialisation; (P2) initialising the cnn and mlp with models
trained uniquely with Lcnn and Lmlp, respectively, and then training only G; and
(P3) initialising the cnn and mlp as before, and training end-to-end.

4.3.3 Training

We train our networks with the negative log likelihood loss. Depending on which
model is used, we employ one of the losses out of Lcnn, Lmlp, and Lmoe. Training
is performed with standard backpropagation. The entire batch was used to get
gradients at every epoch leads to a much more stable model than using a smaller
batch size. However, for the cnn feature extractor, a smaller batch of size 32 was
used. This means the batch normalisation layers of the cnn M have as input a
batch of size 32 and compute statistics accordingly. This number, however, can be
increased without increase in gpu memory usage.

We train several models with different combinations of configurations, i.e., with
varied combinations of K, fPool, training data (images, attributes), and averaging
and mixture-of-experts models.



4.3. Methodology 85

4.3.4 Overfitting

As we have very few training examples, we find that the model is susceptible to
overfitting. With the available data and the randomly selected train, validation
and test splits, the number of training examples is significantly smaller than the
trainable parameters of our architectures.

To reduce overfitting, we introduce standard data augmentation during train-
ing of the cnn. We add random flips along the x- and y-axes, as well as random
rotations from the set

{
0, π2 , π,

3π
2

}
. We additionally use standard colour augmen-

tation [Krizhevsky 2012]. We use a probability of 0.5 for each of the flips and
rotations. We also use standard colour augmentation [Krizhevsky 2012]. More
specifically, First, we perform pca on rgb pixel values over the training dataset.
Next, for a training image, three values, αi, are sampled from a normal distribution
with mean 0 and standard deviation 0.1. The colour of the training image is then
rescaled by adding

[e1, e2, e3] [α1λ1, α2λ2, α3λ3]> (4.19)

where ei and λi are, respectively, the eigenvectors and eigenvalues of the 3 × 3
covariance matrix of rgb pixel values over the entire training dataset.

Furthermore, we record the performance of the model on the validation set at
each training epoch. We keep the model that performs best on the validation set
at any point during training. Using the best model for evaluation is equivalent to
employing early stopping, where we stop the training process before it has converged
on the training set.

Figure 4.3: Training and validation losses for different models using the fMean
pooling function with varying ResNet widths.

4.3.5 Implementation Details

The code was written in Python with the PyTorch [Paszke 2017] library, and ex-
ecuted on a machine equipped with a nvidia gtx 1080 GPU, a 12-core 3.5 GHz
processor, and 32 gigabytes of memory. The models were trained using the Adam
optimiser [Kingma 2014b], starting with a learning rate of 0.0001, and decay it by a
factor of 0.1 every 96, 000 iterations. We use β1 = 0.9 and a weight decay of 0.0005.
We train for 220, 000 iterations for training. This number is not fixed, because
we choose the model that generalises best on the validation set during training.
Training took about one and a half days per model.
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The original images in our dataset are of size 360× 360, but we resize them to
224×224, as we observed that we do not lose any significant information under the
resizing operation, and it allows us to curb overfitting as well as use less memory
overall. The images are then centered using the per-pixel mean over the entire
dataset.

4.4 Compared Methods

In this section the methods that are used for comparison are presented together
with their implementation details.

4.4.1 Classical Radiomics

To evaluate the performance of our proposed method we compare it with an MIL
framework using classical radiomics.

4.4.1.1 Feature Extraction

Before we employ an MIL scheme, we need to extract radiomics features. These
features must be extracted from the area of interest, i.e., the lymphocytes in the im-
ages. Under this framework, a segmentation of lymphocytes in needed to compute
several imaging and shape characteristics. The lymphocytes were automatically seg-
mented in each image instance Xj

i by first smoothing every image using the Simple
Linear Iterative Clustering (SLIC) superpixels algorithm [Achanta 2012]. SLIC is
a gradient ascent method implementing a local K-means clustering to generate a
K-superpixel segmentation. Since the best value for K is not known in advance,
we perform multiple segmentations for different values of K and then created an
average segmentation for each instance and each of the RGB image channels. This
multi-scale fuzzy segmentation step did not require any parameter tuning and aimed
to smooth the boundaries of ambiguous regions while at the same time retain the
crisp boundaries of regions that were present in more scales. The smoothed RGB
image was then segmented using the K-means clustering algorithm in HSV (hue,
saturation, value) colour representation scale using K = 3. The three obtained
clusters represented i) the lymphocytes (with the cytoplasm), ii) all other cells,
and iii) the background. If several lymphocytes were found in an image, only the
largest of them was retained and used for feature extraction. The radiomic analysis
was based on 94 features extracted from each of the segmented blood smear images
per subject. These features are described in detail below.

Shape The shape of the largest lymphocyte in each image was described by 12
features: area, major axis length, minor axis length, eccentricity, convex area, filled
area, Euler number, equivalent diameter, solidity, extent, and perimeter calculated
in two ways using different weights for diagonal pixels and corners.
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Image Statistics 3 intensity statistics (minimum, maximum, average) were ex-
tracted for each of the 3 RGB channels inside the region of interest.

Texture 24 texture variables [Haralick 1973] including the average fractal dimen-
sion and statistical measures (autocorrelation, contrast, correlation1, correlation2,
cluster prominence, cluster shade, dissimilarity, energy, entropy, homogeneity1,
homogeneity2, maximum probability, sum of squares, sum average, sum variance,
sum entropy, difference variance, difference entropy, information measure of correlation1,
information measure of correlation2, inverse difference, normalised inverse differ-
ence, moment normalised inverse difference) from the gray-level co-occurrence ma-
trix were calculated for pairs of pixel in 0◦, 45◦, 90◦, 135◦, for each of the 3 channels.

Density The number of lymphocytes in the image was used as a measure of cell
density.

4.4.1.2 MIL Training

The feature vectors from all blood smear images of each subject comprised a
multiple instance dataset which was introduced into a MIL classifier for predic-
tion of lymphocytosis. We investigated several standard MIL classifiers from the
multiple instance learning literature, such as the expectation maximization max-
imum diverse density (EMDD) [Zhang 2002], multi-instance support vector ma-
chine (MI-SVM) [Andrews 2003], multi-instance learning in embedded subspaces
(MILES) [Chen 2006], but the best performing, which was finally selected, was the
specialising MIL (SPEC_MIL) which is a generalisation of MI-SVM. The only hy-
perparameter in this algorithm is the fraction of positive instances, which was tuned
by 3-fold cross validation on the training set and then fixed to the value attaining
most often the highest classification accuracy. Two experiments were performed.
The one relied only on the radiomics features whereas the other included also ai
and ci. Integration of the clinical variables with the radiomics features was per-
formed in an early phase and led to a joint dataset that was introduced into the
multi-instance classifiers.

4.4.2 Attention-based Methods

We also experimented with the attention-based model recently proposed in [Ilse 2018].
In this approach, a CNN is trained along with an attention mechanism which learns
to focus on discriminative images in data. This approach employs a pooling function
fPool in the latent space which is effectively a weighted average, with the weights
being determined by the attention mechanism. This can formally be written as

mj
i = ReLU(V0hji ) , (4.20)

pi = fAttention
(
{hji}

)
=

Ni∑
j=1

wjim
j
i , (4.21)
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where mj
i are lower-dimensional embeddings of hji , and the weights wji are given by

wji =
exp

(
W> tanh

(
V1mj

i

))
∑Ni
k=1 exp

(
W> tanh

(
V1mj

i

)) . (4.22)

W ∈ RL×1, V0 ∈ RD×E , and V1 ∈ RL×D are learnable parameters of the attention
mechanism. We used L = 16 and D = 64 in our experiments, We observed that
higher values for L and D caused the models to overfit.

4.5 Dataset

Blood smears and patient attributes were collected from 204 patients. The inclusion
criteria were (a) a lymphocyte count above 4 × 109/L, and (b) absence of opposi-
tion to the research. The blood smears were automatically produced by a Sysmex
automat, and the nucleated cells were automatically photographed with a DM-96
device (Cellavision). All the cells labelled as lymphocytes by the DM-96 device were
used for analysis. To determine the presence of the lymphocytosis, flow cytometry
was used incorporating a panel of antibodies for the diagnosis of lymphoprolifera-
tive disorders (CD3, CD4, CD5, CD8, CD10, CD56, CD20, CD19, kappa, lambda).
In our dataset, the minimum and maximum number of images per patient were 16
and 198, with a mean and standard deviation of 82 and 45, respectively.

4.5.0.1 Data split

The training cohort used of all our models consists of 142 subjects with 44 reactive
and 98 malignant cases. The validation cohort consists of 21 subjects with 6 reactive
and 15 malignant cases, while the test cohort includes 42 subjects with 13 reactive
and 29 malignant examples.

4.6 Experimental Results

Model K = 8 K = 16 K = 32 K = 64
fMax fMean fLSE fMax fMean fLSE fMax fMean fLSE fMax fMean fLSE

cnn 0.60 0.82 0.82 0.47 0.88 0.72 0.47 0.95 0.77 0.89 0.96 0.82
avg 0.87 0.90 0.91 0.88 0.91 0.89 0.88 0.94 0.89 0.90 0.95 0.90
moe-P1 - 0.90 - - 0.92 - - 0.94 - - 0.94 -

Table 4.2: Area under the receiver operating characteristics curve for various models
and configurations. Similarly, cnn is trained only using the images. moe-P1, 2, and
3 refer to the three paradigms explored when training the moe model (see Section
4.3.2.4).

In this section, results from the proposed and compared algorithms are pre-
sented. The results obtained from the algorithms are also compared with the visual
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Method Data Sensitivity Specificity Accuracy
Balanced
Accu-
racy

Biologists imgs, attrs 0.7529 ±
0.0953

0.7885 ±
0.0126

0.7639 ±
0.0690

0.7707 ±
0.0705

mlp attrs 0.8621 0.6923 0.8095 0.7772

Radiomics imgs 1.0000 0.3846 0.8095 0.6923
imgs, attrs 0.8966 0.6923 0.8333 0.7944

Deep mil [Ilse 2018], K = 32 imgs 0.9655 0.6923 0.8810 0.8289
Deep mil [Ilse 2018], K = 64 imgs 1.0000 0.2308 0.7619 0.6154

fMean,K = 32, cnn imgs 0.9310 0.6923 0.8571 0.8117
fMean,K = 32, avg imgs, attrs 0.9310 0.6923 0.8571 0.8117
fMean,K = 32, moe-P1 imgs, attrs 0.8621 0.8462 0.8571 0.8541
fMean,K = 32, moe-P2 imgs, attrs 0.8621 0.6923 0.8095 0.7772
fMean,K = 32, moe-P3 imgs, attrs 0.8621 0.6154 0.7857 0.7387
fMean,K = 64, cnn imgs 0.8621 0.8462 0.8571 0.8541
fMean,K = 64, avg imgs, attrs 0.9310 0.6154 0.8571 0.8117
fMean,K = 64, moe-P1 imgs, attrs 0.8621 0.8462 0.8571 0.8541
fMean,K = 64, moe-P2 imgs, attrs 0.8621 0.8462 0.8571 0.8541
fMean,K = 64, moe-P3 imgs, attrs 0.8966 0.6923 0.8333 0.7944

Table 4.3: Different evaluation metrics for models discussed in this chapter, evalu-
ated on the testing cohort for the diagnosis of lymphocytosis. The second column
signifies the type of incorporated training data (imgs: images, attrs: clinical at-
tributes, i.e. age and lymphocyte count), as explained in section A.2.1.7.

assessment annotations from 12 different biologists from the Lyon University Hos-
pital. The biologists provided their diagnoses for each of the patients of the test
cohort, based on the images and the supporting clinical data. The obtained results
are evaluated and compared based on the following metrics: sensitivity, specificity,
accuracy, balanced accuracy and in terms of area under receiver operating charac-
teristic curve (roc-auc).

In Table 4.2 different components of the proposed method are evaluated in terms
of roc-auc. The tested aggregation functions and the width of ResNet (K) are
evaluated for the cnn, avg, and moe-P1 models. The best performance is obtained
by K = 64 and using the fMean pooling operation for both models. Based on these
observations we performed the evaluation of the moe model only for the fMean
pooling operation.

In Table 4.3 a comparison between the different methods is presented. To cal-
culate the evaluation metrics we did not perform any optimisation for the threshold
value and a value of 0.5 is used to separate healthy and diseased patients for all the
methods. In general, the predictions of the biologists have a very wide variation
that can reach even 9% for the sensitivity metric. Moreover, we can observe that a
lot of information is captured by patient attributes as a relatively simple MLP per-
forms better than the experts in almost all of the evaluation metrics and achieves
similar balanced accuracy with them. This good influence of the patient attributes
is also indicated in classical radiomics as our experiments indicate a boost in the
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overall and balanced accuracy when the attributes are combined with the prede-
fined features extracted from the images. However, the performance of the classical
radiomics is inferior to the one reported by the attention based method [Ilse 2018].
The latter obtains quite high sensitivity but relatively low specificity indicating that
this method detects much more false positives for the diseased category.

Table 4.3 summarises also the performance of our proposed method using dif-
ferent configurations and parameters. The most of them outperform all baselines
with all the metrics, while all of them are higher than 70%. In particular, dif-
ferent configurations of the proposed method namely the fMean,K = 32, moe-P1,
fMean,K = 64, cnn and fMean,K = 32, moe-P1 report the highest balanced accu-
racy while they also report very high values for the rest of the metrics. This proves
the robustness of the method on different configurations. Moreover, one very inter-
esting point is that the proposed model based solely on imaging information can
perform similarly with models that use additional source of information about the
patients.

For a better and more complete evaluation of the reported methods we compare
the areas under their roc (Figure 4.4) curves (roc-auc) in Table 4.4. In general
all the methods report roc-auc greater than 0.83 with the proposed method using
the fMean reporting values higher than 0.91 proving its robustness and stability.
Finally, a simple MLP using only the clinical information of the patients reports
an roc-auc of 0.88 which is at least 3% lower than the models that are using
information produced by the images.

Model roc-auc

Biologists’ average 0.9204

mlp 0.8912

Radiomics, img 0.8727
Radiomics, img+attr 0.8329

Deep mil [Ilse 2018], K = 32 0.9151
Deep mil [Ilse 2018], K = 64 0.9390

fMean, K = 32, cnn 0.9416
fMean, K = 64, cnn 0.9629
fMean, K = 32, moe-P1 0.9416
fMean, K = 32, moe-P2 0.9178
fMean, K = 32, moe-P3 0.9151
fMean, K = 64, moe-P1 0.9443
fMean, K = 64, moe-P2 0.9178
fMean, K = 64, moe-P3 0.9390

Table 4.4: A comparison of the cnn, moe using the fMean pooling function with
attention models by roc-auc together with the comparisons with the attention
module, classical radiomics and an mlp-only model trained only with the patient
attributes. We also show a comparison against the average prediction of the twelve
expert biologists.
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Figure 4.4: Receiver operating characteristics for methods discussed in this chap-
ter. Top left: curves for the cnn-only models compared with the mlp as well as
radiomics; top-right: curves for the averaging model; bottom-left: the mixture-of-
experts model; and bottom-right: comparison of the cnn models with attention
models from [Ilse 2018]. All cnn models shown here use the fMean aggregation
function.

4.6.1 Repeatability

In order for our system to be used in clinical practice, the proposed models need
to be robust in terms of repeatability. That is to say, the proposed models should
arrive at the same conclusion as long as a clinically relevant set of images is sampled
from a patient for testing. To this end, we design a test to assess the performance
of our model over several observations on the same patient. On five additional
patients, five different sets of blood smears were extracted, where the patients had
representatives of both reactive and tumoral cases. This results in five different
sets of images per patient. Ideally, each set of images for a patient should result in
the same conclusion after analysis. The goal of this test of repeatability is then to
evaluate the performance of the proposed models per smear for each patient and
examine the variance that is introduced in them.

In Table 4.5, we list the result of the best cnn, mlp, and moe models. The
true behaviour for each patient is listed in row 2, while the prediction of each of
the two models is listed in columns 4, 5, and 6. For the prediction row of cnn and
moe-P1, each column indicates which image set (row 3) was used for diagnosis,
whereas the maj. vote row is the diagnosis obtained by a majority vote over the
predictions on the image sets. We note that the moe model is more stable in terms
of its conclusion with much fewer intra-patient disagreements, whereas the images-
only cnn model is more sensitive to the set of sampled images as there are more
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intra-patient disagreements. By majority vote, the moe model is also able to give
the correct prediction for each patient while the cnn and mlp models fail.

4.7 Discussion

To the best of our knowledge this is the first study that provides a deep learning-
based method for accurate diagnosis of lymphocytosis. Our proposed method is
evaluated with standard multi instance learning schemes that are used in literature
and other recently proposed deep learning based methods while it is also compared
with the visual assessment of 12 different biologists. Our experiments indicate
the superiority of our method, showing the potential of such a tool for automated
diagnosis of lymptocytosis in clinical practice.

Different pooling operators, network parameters (number of channelsK), config-
urations (using images and clinical attributes) and training strategies are reported
in this study in order to show the behavior of our proposed method. Starting with
the pooling operators, fMax and fLSE show comparatively poor performance over
the tested values of K. We postulate that the fMax operator is too strong for the
problem at hand, while the fLSE operator—being a smooth approximation to the
maximum—performs better than fMax. However, both fMax and fLSE fail to cap-
ture the relationship between the instance and the bags unlike fMean, which reports
the best performance for all the configurations.

Our experiments further indicate that the models work better when a wider
ResNet is used, i.e., a higher value of K. In particular, narrower networks seem
not powerful enough to capture all the available information and learn enough
features from the data. This is in accordance with other studies in literature [?].
However, both K = 32, 64 perform similarly with both values reporting very close
performance (Tables 4.2 and 4.3). This result also alleviates overfitting concerns
with wider models.

Concerning the training strategies used for the moe model, our experiments indi-
cate that the moe model works better with the P1 training paradigm, where both
models are trained end-to-end without initialisation. This is expected behaviour
under the training loss used. The training is done to encourage specialisation, but
under the P2 and P3 paradigms, the participating experts (cnn and mlp) have
been pre-trained to fit the entire data instead of specialising over a portion of it,
whereas under the P1 paradigm, they are uninitialised.

We argue that the attention-based models [Ilse 2018], which are one of the
competing methods, have lower performance than the proposed approach because
of the high variance in the number of images per patient. As the attention-based
models use a softmax function to compute image weights (Equation 4.22), these
weights tend to become skewed when there are several important examples in the
set. This renders the learning the classifier a more difficult task.

Here it is worth mentioning that almost all the methods reach similar and higher
performances compared to the experts indicating the high potentials of such a
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tool in clinical practice. Our experiments also show that a deep learning-based
method is able to extract more discriminative features than a classical radiomics-
based approach. The performance of the images-only model (cnn) shows that it is
possible to extract and exploit information from blood smears using an automated
tool. However, it is still sensitive to the set of images extracted as seen in Section
??. The moe model, on the other hand, is able to correct errors that the cnn
and mlp models were individually making. This indicates that while neither of
clinical attributes and images alone is enough to make a reliable diagnosis, the moe
model is able to combine information from them for the correct diagnosis. This
demonstrates the robustness of the moe model to data acquisition.

Finally, another aspect that can be taken into account is the time-efficiency of
the proposed approaches. The proposed methods are fast when drawing inference,
making the entire process rapid and efficient. For our test cohort which contains
42 patients, testing required 30s in all, which corresponds to about 0.72s per test
example. This time is better than the one needed by a biologist who may need
considerably longer for the examination of one case.

4.8 Summary

This chapter presents a deep mil scheme for reliable diagnosis of lymphocytosis.
Imaging features from lymphocytes which are extracted automatically are coupled
with patient attributes in a dynamic way taking advantage of all available infor-
mation for each patient. Our method has been validated under different training
schemes and different pooling operators proving its robustness and accuracy. More-
over, it has been also evaluated against human experts, classical radiomics MIL
frameworks and recently proposed attention-based methods. We also propose a
mixture-of-experts model which combines information from acquired blood smears
and clinical attributes of a patient for a more robust assessment. Overall, we found
that deep learning based approaches outperform conventional methodologies while
models that are based only on the images report better performance demonstrat-
ing their diagnostic capacity for lymphocytosis prediction. A repeatability test also
evaluates the robustness of the cnn and the moe models and demonstrates that the
moe model is indeed able to combine information from the two sources efficiently
(attributes and images) for a more reliable diagnosis.

As we can also see from Table 4.3, our method outperforms the biologists’ av-
erage prediction. With all our experiments, we demonstrated that our method can
give a reliable tool to biologists in order to assist them in their everyday practice, be-
ing deployed in real-life scenarios. However, further tests, especially using datasets
from different hospitals, must be undertaken in order to extensively validate the
accuracy of the method. This is the principal immediate future direction of our
work.
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Table 4.5: Test of repeatability. Please see text for more details.



Chapter 5

Conclusion and Future Work

Within this thesis, we have discussed two challenging problems in computer vision
and medical imaging. Below, the contributions of this thesis are summarised in more
detail with discussions of potential future work to advance the ideas presented in
this thesis.

• We propose a simple autoencoder model, deforming autoencoder (dae), to
discover a canonical space for an object category and simultaneously infer a
dense mapping between images and the canonical space. It is demonstrated
quantitatively that objects are well aligned in this canonical space.

• Modelling appearance in this canonical space allows us to disentangle object
appearance and shape, with the shape being modelled by the dense defor-
mation grid. This is achieved via. a simple, novel method of regressing
the deformation grid which allows the shape decoder to predict semantically
meaningful deformations. A differentiable warping operation based on bilinear
interpolation allows use of reconstruction loss on the warped appearance.

• Applications of this method of modelling of the deformation grid to medical
imaging and remote sensing demonstrate efficient unsupervised registration
of two images are demonstrated. For the medical imaging application, we
register 3D MRI scans of the lung taken during inspiration phase with those
taken during the expiration phase. Similarly, we register satellite images of
the same regions taken one year apart.

• We show that the canonical space facilitates further disentanglement of ap-
pearance (texture) into albedo and shading. This is achieved by regress-
ing shading and albedo separately—with the shading being a single channel
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image—and weighting the albedo with the shading map. Since shading and
albedo both exist in the canonical coordinate system, warping only one of
them using the deformation grid gives us shading and albedo maps in the
image space.

• We also introduce a weakly-supervised variant of the dae, which introduces
a classification component to the latent space. This component is shared by
both, the appearance and shape decoders, and is learnt using the negative
log-likelihood loss. We demonstrate that this allows us to learn multiple
appearance spaces for datasets containing several clusters of examples.

• We extend the notion of unsupervised dense alignment in 2D to recover 3D
shape using nrsfm. Using an autoencoder, image-specific mesh deformation
and pose parameters are predicted, while a base mesh is learnt simultane-
ously. The system is trained using reprojection loss, with the ground truth
for keypoints supplied by the dae.

• Estimating shading using cues from the learnt morphable model is demon-
strated. The learnt shape is used to predict a shading map which is then
refined using a U-Net, resulting in albedo-shading disentanglement in the
template space of the lae.

• The utility of weak supervision for the lae is further demonstrated by util-
ising it for enforcing disentanglement of pose, expression, and identity in the
lae. We demonstrate qualitatively and quantitatively that adding the weak
supervision signal also helps us recover better shapes.

• An application of weakly-supervised learning to medical imaging is also demon-
strated. A multi-instance framework is evaluated in a mixture-of-experts
model for the diagnosis of tumoral lymphocytosis, where the system is able
to beat the average predictions of 12 biologists.

• The proposed method is compared against classical radiomics and attention-
based methods and is shown to perform better than them, thus making a
strong case for deployment in real-world.

With the contributions of the thesis summarised, a few possible future research
directions based on this thesis are stated below.

5.1 Future Work

5.1.1 Morphable Model Learning

Morphable model generation, as summarised in Chapter 1 is a cumbersome process.
It involves gathering subjects and acquiring images under controlled conditions of
pose, illumination, expression, et cetera. However, morphable models also give us
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extremely high resolution textures and realistic object shapes. In this thesis, we
attempted to bridge the gap between the two by proposing a framework for unsu-
pervised morphable model learning coupled with photo-realistic image formation
using only weak supervision and no ground truth sparse or dense landmarks.

We learn from existing works and trends in 3D reconstruction [Blanz 2003b,
Matthews 2004,Torresani 2008,Garg 2013,Güler 2017,Kanazawa 2018a,Booth 2018,
Feng 2018] that correspondence plays a central role in capturing object shape. In
Chapter 2, we have followed a similar approach by addressing the task of unsu-
pervised dense alignment of object categories. As Chapter 3 builds on top of this,
improving this unsupervised dense alignment can lead to much better model re-
covery. Indeed, as is shown in Figure 5.1, using dense correspondences obtained
using DenseReg [Güler 2017] to train the lae results in highly accurate 3D shape
recovery.

Figure 5.1: Shape recovery with lae using dense correspondences obtained through
DenseReg. For each case, column 1 shows the input image, column 2 shows the
mean shape, column 3 shows the recovered shape (i.e., mean shape + image-specific
deformations), and column 4 shows the reconstructed image (using the correct pose
parameters). For columns 2 and 3, the three rows show visualisations from different
camera angles.

5.1.1.1 Part-based models

Extending the unsupervised dense alignment approach to other, more complicated
object categories is the first future direction for achieving fully-unsupervised model
learning. Following the recent work DensePose [Güler 2018], which attempts dense
regression of UV coordinates for the human body, and their follow-up HoloPose
[Guler 2019], a part-based model can help facilitate the dense regression problem.
This is also shown in [Kokkinos 2007] where a part-based model improves the learn-
ing of an active appearance model, while [Lorenz 2019] have shown unsupervised
part-based disentanglement of shape and appearance. A important future direction
in this area is investing the integration of object parts into daes.
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5.1.1.2 UV spaces

Recent unsupervised approaches have also demonstrated the power of learning ef-
ficient UV representations. Canonical surface mapping [Kulkarni 2019], a recent
work, aims at learning canonical UV spaces for unseen objects using a template and
ground truth segmentation masks. Their approach uses a cyclic consistency loss,
much like the equivariance constraints demonstrated in Section1.1.1.3, in order to
learn UV mappings between the image space and the template shape. Another re-
cent approach [Wu 2020] exploits the symmetry of objects to learn canonical shapes
of objects. Their approach does not need template shapes or ground truth masks
and can discover 3D shapes from a bag of 2D images. While symmetry assump-
tion at first thought seems rather strong, it is able to capture a surprisingly large
category of objects, for example, cars, faces, cats.

5.1.2 Medical Imaging

With the rising interest in machine learning applications to medical imaging, there
is lot of potential for active use of deep learning in medical analysis. We will note
some possible future research directions related to this thesis here.

Cancer research is one of the largest domains with interest in machine learn-
ing [Litjens 2017]. With whole-slide image analysis becoming more and more stud-
ied [Wang 2017,Komura 2018], there is significant room for novel research in this
domain. An important component of cancer research is disease response prediction.
This is important as it can regular treatment costs substantially.

Specifically in the case of breast cancer, tumor-infiltrating lymphocytes (tils)
are shown to exhibit high correlation with achieving pathological complete response
and survival without medical events [Salgado 2015]. Pathologists hence spend a
considerable amount of time “scoring” the percentage of tils from whole-slide im-
ages during diagnosis. Recent deep learning approaches that try to score tils
automatically are largely supervised approaches [Saltz 2018, Le 2019] and semi-
supervised [Abousamra 2019]. [Hou 2019a] is a recently proposed generative model
for histopathology images which can be used in place of pathologists’ annotations
for training supervised architecture for scoring tils. An alternative to these ap-
proaches is using pathologists’ scores of tils as weak labels to learn significant
regions in whole-slide images. This is indeed a very active area of research and a
principal future research direction of the work presented in this thesis.

While til-count prediction is significant given diagnosis and medicine, unsuper-
vised and weakly-supervised segmentation of lymphocytes can improve scoring of
tils. To this end, [Hou 2019b] were one of the first to propose a fully-unsupervised
autoencoder for segmentation of nuclei in histopathology images. Their method is
demontrated to be efficient via. experiments showing pre-trained unsupervised au-
toencoder indeed outperformed other nuclei segmentation models. They follow up
with synthetic histopathology patch generation [Hou 2019a]. While these methods
are shown to perform well on related classification tasks, robust, fully-unsupervised



5.1. Future Work 99

segmentation of lymphocyte cells remains to be explored.





Appendices





Chapter A

Appendix: Additional Details and
Results

A.1 Deforming Autoencoders

In this section, we note additional results and architecture and implementation
details of deforming autoencoders.

A.1.1 Additional Results

A.1.1.1 Ablation Study: Dimension of ZT

In this section, we show experimental results on single deformed MNIST images
of the digit 3 (Figure A.1) as well as in-the-wild faces (without masking) from the
MAFL dataset (Figure A.2) to demonstrate the effect of varying the dimension of
ZT .
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(a) input

(b) 0-D ZT

(c) 1-D ZT

(d) 4-D ZT

(e) 8-D ZT

(f) 16-D ZT

reconstruction texture warping (x) warping (y)

Figure A.1: Effect of varying the dimensionality of the latent vector for the texture
encoding, ZT : The dimension of ZT is 0 for (b), 1 for (c), 4 for (d), 8 for (e), 16
for (f). ZW is fixed to 128. When ZT is 0-Dimensional, the texture decoder is
forced to generate an identical texture for every image (b). When we increase the
dimension of ZT to 1, the texture decoder learns to align the pose (c) with varying
stroke width. When further increasing the dimension of ZT , the network learns a
more diverse texture map for each image (d, e, f).
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Input

Reconstruction, 0-D

Texture, 0D

Reconstruction, 2D

Texture, 2D

Reconstruction, 4D

Texture, 4D

Reconstruction, 16D

Texture, 16D

Reconstruction, 32D

Texture, 32D

Reconstruction, 128D

Texture, 128D

Figure A.2: Effect of varying the dimensionality of the latent vector for the texture
envoding, ZT , on the MAFL face dataset; ZW is fixed to 128. The problem is
ill-posed and affords many solutions; if ZT is set to be 0D dimension, the texture
becomes a “bag of colored pixels” which, when deformed (at will) can reconstruct an
image. Increasing the dimension of ZT (4-32D) lets the network generates aligned
texture maps and more exact appearance; further increasing ZT (128-D) reduces
the alignment effect.
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A.1.1.2 Methods for deformation modelling

In this section, we demonstrate the effect of using different warping modules.
We first show additional comparisons between using our proposed affine + in-

tegral warping and a non-rigid warping field directly output from a convolutional
decoder for non-rigid deformation modelling (Figure A.3).

We visualize the utility of affine and integral warping modules in our network
with face images (Figure A.4). We can see that the affine transformation handles
global pose variance (Figure. A.4-(b)) but not local non-rigid deformation. Our
proposed integral warping module aligns the faces in a non-rigid manner (Figure
A.4-(c)). Incorporating both deformation modules improves the non-rigid alignment
(Figure A.4-(d)).

(a) Image

(b)-1 reconstruction

(b)-2 texture

(b)-3 warping (x)

(c)-1 reconstruction

(c)-2 texture

(c)-3 warping (x)

Figure A.3: Comparison between using our proposed affine + integral warping mod-
ules (c) and using a warping field directly predicted from a convolutional decoder
(b) for non-rigid deformation modelling. Our non-rigid deformation modelling gen-
erates better reconstructions and visually plausible texture maps.
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(a) Image

Affine:

(b)-1 reconstruction

(b)-2 texture

Integral:

(c)-1 reconstruction

(c)-2 texture

Affine + Integral:

(d)-1 reconstruction

(d)-2 texture

Figure A.4: Effect of affine and integral warping modules using in our network,
using faces in-the-wild. The affine transformation can handle global pose variation,
as shown in (b) but not local non-rigid deformation- eyes, noses, or other landmarks
are not aligned in the decoded texture images. The proposed integral warping
module aligns the faces in a non-rigid manner (c), but in an exaggerated manner,
causing smears in the texture image, e.g. around eyebrows. Incorporating both
deformation modules improves the non-rigid alignment (d). In this experiment, we
set ZA = 32, ZT = 32 and ZW = 32.
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A.1.1.3 Latent Manifold Traversal

We provide additional results and comparisons with a plain autoencoder on travers-
ing the learnt manifolds. In addition to Figure 13 in our manuscript, we provide two
more sets of results in Figure A.5 and Figure A.6. Compared to a plain autoen-
coder, our deforming autoencoder not only generates better reconstructions, but
also learns a better face manifold - interpolating between learnt latent representa-
tions generates sharper and more realistic face images. For this experiment, we use
the convolutional encoder and decoder architecture as described in Sec. A.1.2.1.

Figure A.5: Interpolating learnt representations using networks learnt on MAFL
dataset. Deforming autoencoder learns better latent representations for face com-
pared to a plain autoencoder. By interpolating the latent representations ZT and/or
ZW , we observe smooth transition of pose, shape and skin texture. Interpolated
results also stays on the face manifold and, generates more realistic image compared
to a plain autoencoder.
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Figure A.6: Interpolating learnt representations using networks learnt on MAFL
dataset. Deforming autoencoder learns better latent representations for face com-
pared to a plain autoencoder. By interpolating the latent representations ZT and/or
ZW , we observe smooth transition of pose, shape and skin texture. Interpolated
results also stays on the face manifold and, generates more realistic image compared
to a plain autoencoder.
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Figure A.7: Expression interpolation: Trained on the MUG facial expression
dataset, our network is able to disentangle the facial expression deformation and
encode this information in a meaningful latent representation. By interpolating
the latent deformation representation from the source (in orange) to the target (in
blue), our network generates sharp images and smooth deformation interpolation
between expressions as shown in each row. In this experiment, ther model for each
subject is independently trained, where we set dimension of ZT to 0 (assuming
single texture for each subject) and dimension of ZW to 128.



A.1. Deforming Autoencoders 111

A.1.1.4 Intrinsic Decomposition with DAE

In Fig. A.8 we provide additional results of unsupervised intrinsic disentangling for
faces-in-the-wild using Intrinsic-DAE. Using the architecture and objective func-
tions described in Sec. 2.3 of the main paper the network learns to bring faces
under different poses and illumination conditions, shown in Fig. A.8-(a), to a
canonical view, as shown in Fig. A.8-(d), while separating the shading, shown in
Fig. A.8-(b) and albedo, shown in Fig. A.8-(c) components in the canonical view
using two independent decoders. With the learnt deformation from the deformation
decoder, we can warp the aligned shading and aligned albedo to its original view
as in the input image, as shown in Fig. A.8-(e,f).

In Fig. A.9, we provide additional results for “changing lighting direction” of
a face image using Intinsic-DAE. We show that even without explicitly modelling
of geometry, we can simulate smooth and reasonable lighting direction changes in
the image by interpolating the learnt latent representation for shading, as shown in
Fig. A.9-a-(4),b-(4).

For Intrinsic-DAE, we use the DenseNet architecture as the encoders and de-
coders (A.1.2.2). The network is trained with a subset of 200, 000 images in the
CelebA dataset. The dimensions of latent representations are: 16 for albedo, 16 for
shading, and 128 for deformation field.

A.1.2 Architectural Details

A.1.2.1 Convolutional Encoders and Decoders

In our experiments, where input images are of size 64×64×Nc (Nc is 1 for MNIST
and 3 for faces), we use identical architectures for convolutional encoders and de-
coders.

The encoder architecture is

Conv(32)-LeakyReLU-Conv(64)-BN-LeakyReLU-Conv(128)->
->BN-LeakyReLU-Conv(256)-BN-LeakyReLU-Conv(Nz)->
->Sigmoid;

while the decoder architecture is

ConvT(256)-BN-ReLU-ConvT(128)-BN-ReLU-ConvT(64)->
->BN-ReLU-ConvT(32)-BN-ReLU-ConvT(32)-BN-ReLU-ConvT(Nc)->
->Threshold(0,1),

where

• Conv(n): convolution layer with n output feature map;

• ConvT(n): transposed convolution (deconvolution) layer with n output feature
map;



112 Appendix A. Appendix: Additional Details and Results

Figure A.8: Unsupervised intrinsic decomposition of faces-in-the-wild using
Intrinsic-DAE: The network learns to bring faces under different poses and illu-
mination conditions (a) to a canonical view (d), and further separate the shading
(b) and albedo (c) component in the canonical view using two independent de-
coders. With the learnt deformation from the deformation decoder we can warp
the aligned shading and aligned albedo to its original view as in the input image
(e,f).

• BN: batch normalization layer

• Nz: latent representation dimension

• Nc: number of output image channel

A.1.2.2 DenseNet-style Encoders and Decoders

For DenseNet-style architectures, we employ dense convolutional connections. The
architecture for the encoder is

BN-ReLU-Conv(32)-DBE(32,6)-TBE(32,64,2)->
->DBE(64,12)-TBE(64,128,2)-DBE(128,24)-TBE(128,256,2)->
->DBE(256,16)-TBE(256,Nz,4)-Sigmoid;
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Figure A.9: Lighting manipulation by interpolating latent representation of shading:
Intrinsic-DAE allows us to disentangle a latent representation for shading for a
given face image in an unsupervised manner. Therefore, manipulating the shading
component will result in lighting effects in the output images. In this experiment,
we interpolate the latent representation of shading from source to target, which
is the mirror of the source with reversed lighting direction. In the result, we can
observe that, even without explicitly modelling geometry in our network, we can
simulate smooth lighting direction change in both the shading (a-(3), b-(3)) and
the final reconstruction (a-(4), b-(4)).

whereas the architecture for the decoder is

BN-Tanh-ConvT(256)-DBD(256,16)-TBD(256,128)->
->DBD(128,24)-TBD(128,64)-DBD(64,12)-TBD(64,32)->
->DBD(32,6)-TBD(32,32)-BN-Tanh-ConvT(Nc)-Threshold(0,1),

where

• DBE(n,k): A dense encoder block with k 3× 3 convolutions with n channels.

• TBE(m,n,p): An encoder transition block of 1× 1 convolutions with m input
channels and n output channels. Also includes a max-pooling operation of
size p.

• DBD(n,k): A dense decoder block with k 3× 3 transposed convolution oper-
ations with n channels.
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• TBD(m,n): A decoder transition block of 4 × 4 convolutions, stride of 2 and
padding of 1. It has m input channels, and n output channels.

We describe the tensor sizes for intermediate convolution operations in Tables
A.1 and A.2.

Conv Encoder Conv Decoder
Output Size Operation Output size Operation
32× 32× 32 4× 4 Conv(32) 4× 4× 256 4× 4 ConvT(256)
16× 16× 64 4× 4 Conv(64) 4× 4× 128 4× 4 ConvT(128)
8× 8× 128 4× 4 Conv(128) 4× 4× 64 4× 4 ConvT(64)
4× 4× 256 4× 4 Conv(256) 4× 4× 32 4× 4 ConvT(32)

Nz 4× 4 Conv(Nz) 4× 4× 32 4× 4 ConvT(32)
4× 4×Nc 4× 4 ConvT(Nc)

Table A.1: Tensor sizes for intermediate convolutional operations in the convolu-
tional encoder and decoder architectures. The output shape denoted h × w × C,
where h and w are height and width of the feature maps, respectively, and C is the
number of channels.

Dense Conv Encoder Dense Conv Decoder
Output Size Operation Output size Operation
32× 32× 32 4× 4 Conv(32) 4× 4× 256 4× 4 ConvT(256)
32× 32× 32 DBE(32,6) 4× 4× 256 DBD(256,16)
16× 16× 64 TBE(32,64,2) 8× 8× 128 TBD(256,128)
16× 16× 64 DBE(64,12) 8× 8× 128 DBD(128,24)
8× 8× 128 TBE(64,128,2) 16× 16× 64 TBD(128,64)
8× 8× 128 DBE(128,24) 16× 16× 64 DBD(64,12)
4× 4× 256 TBE(128,256,2) 32× 32× 32 TBD(64,32)
4× 4× 256 DBE(256,16) 32× 32× 32 DBD(32,6)

Nz TBE(256,Nz,4) 64× 64× 32 TBD(32,32)
64× 64×Nc 3× 3 ConvT(Nc)

Table A.2: Tensor sizes for intermediate convolutional operations in the dense en-
coder and decoder architectures. The output shape denoted h × w × C, where h
and w are height and width of the feature maps, respectively, and C is the number
of channels.

A.2 Lifting Autoencoders

In this section, we note some additional implementation details for lifting autoen-
coders.
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A.2.1 Additional Details

A.2.1.1 Data Processing

In our experiments, we used images of size 128×128×3 pixels, which were cropped
from the CelebA and MultiPIE datasets using ground-truth bounding boxes.

For CelebA images, the cropping was performed by extracting a square patch
around the face with side-length equal to the length of the longer side of the bound-
ing box. It was then adjusted so that it lies entirely inside the image (by translating
it horizontally or vertically, or even scaling it down if necessary). Finally, we tight-
ened the resulting box by 12 pixels from each side as the bounding boxes are quite
loose crops, and resized the resulting square image to 128× 128. We use all images
from CelebA for training (about 200, 000 images) except the MAFL test set which
is contained entirely in CelebA (1000 images).

For MultiPIE dataset, we crop the face images according to landmarks positions
on the eyes, the corner of mouth, and the width of the frontal face. Specifically,
we use the mean coordinates of the 4 landmarks as the center of the crop, and use
1.4× the width of the face as the width of the images. We use the method proposed
in [Bulat 2017b] to detect the landmarks. For each person, the crop is identical
across all illumination condition for the same camera.

A.2.1.2 Architecture Details

We used convolutional encoders and decoders similar to the ones described in
[Shu 2018]. We detail the architectures here again for completeness. The con-
volutional encoder architecture is—

C onv(32)-LeakyReLU-Conv(64)->
->BN-LeakyReLU-Conv(128)->
->BN-LeakyReLU-Conv(256)->
->BN-LeakyReLU-Conv(256)->
->BN-LeakyReLU-Conv(Nz)->
->Sigmoid;

while the convolutional decoder architecture is— beginverbatim C onvT(512)-
BN-ReLU-ConvT(256)-> ->BN-ReLU-ConvT(128)-> ->BN-ReLU-ConvT(64)-> -
>BN-ReLU-ConvT(32)-> ->BN-ReLU-ConvT(32)-> ->BN-ReLU-ConvT(Nc)-> -
>Threshold(0,1). endverbatim

A.2.1.3 Refinement Networks

The refinement set-up consists of a generator network, and a discriminator network.
The generator is a standard UNet [Ronneberger 2015] for 128×128 images that are
downsampled to 1× 1 in the innermost latent layer.

The discrminiator is a PatchGAN discrminator [Isola 2016] with the following
architecture—
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C onv(64)-LeakyReLU-Conv(128)-BN->
->LeakyReLU-Conv(256)-BN->
->LeakyReLU-Conv(512)-BN->
->LeakyReLU->Conv(1)

In all these descriptions, Conv(x) signifies a 2D convolution layer with x chan-
nels, a kernel size of 4×4, a stride of 2, and a padding of 1. Similarly for ConvT(x),
except that it signifies a deconv layer.

A.2.1.4 Implementation Details

We implemented our system in Python 3.6 using the PyTorch library. We use con-
volutional, activation, and batch norm layers predefined in the torch.nn module,
and take advantage of the Autograd [Paszke 2017] framework to take care of the
gradients required by backpropagation.

A.2.1.5 Rotation Modeling

Modelling rotations using quaternions has several advantages over modelling them
using Euler angles, including computational ease, less ambiguity, and compact rep-
resentation [Dam 1998]. Quaternions were also employed by [Kanazawa 2018b] to
model mesh rotations. Following these works, we also use quaternions in our frame-
work to model rotations, by regressing them from the camera latent space, and
normalizing them to unit length.

A.2.1.6 The Neural Mesh Renderer

The Neural Mesh Renderer [Kato 2018b] is a recently proposed module that can
be inserted into a neural network to enable end-to-end training with a render-
ing operation. The renderer proposes approximate gradients to learn texture and
shape given the output rendering. The original module was released in Chainer
[Kato 2018a], but we use a PyTorch port of this module, which is a publicly-
available re-implementation [nr2 2018]. The renderer in our framework accepts a
texture image, the mean shape, the deviation from the mean shape, and the camera
parameters to output a 2D reconstruction of the original image.

A.2.1.7 Training Procedure

To train the lae, we first train a dae on the training data. We then fix the dae and
use it to extract dense correspondences between the image space and the canonical
space. These correspondences are used in the objective of the 3D reprojection loss
(Equation 3.7 and Equation 3.8).

To obtain image-specific camera, translation, and shape estimates, we train
another convolutional encoder. This encoder learns a disentangled latent space
where the shape estimates and camera and translation estimates are encoded by
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different vectors. For the MultiPIE experiments, the shape latent vector is further
divided into identity and expression vectors. We use linear layers to regress camera,
translation, and shape estimates from their latent encodings.

We train our system using the Adam [Kingma 2014a] optimiser for all learnable
parameters. We start with a learning rate of 0.0001, which is decayed every 50
training epochs by a factor of 0.5. We train for a total of 400 epochs.





Chapter B

Appendix: Synthèse de la Thèse

Les données sont indispensables à tout système d’apprentissage automatique. Cer-
tains domaines spécialisés requièrent des données labellisées qui peuvent parfois
être difficiles à obtenir et onéreuses. Par exemple, recueillir des données médi-
cales demande du temps et des efforts importants aux docteurs et aux biologistes.
Dans cette thèse, nous proposons des méthodes d’apprentissage sur données non-
labellisées et faiblement labellisées pour deux problématiques en vision par ordina-
teur et imagerie médicale. Notre premier sujet d’étude, en vision par ordinateur,
concerne l’apprentissage faiblement supervisé d’un modèle déformable. Dans un
second temps, nous traitons du diagnostic automatique d’hyperlymphocytosis en
utilisant une base de donnée faiblement labellisées.

La première contribution de cette thèse (Chapitre 2) est un modèle appelé
Auto-Encodeur Déformable (dae), utilisé pour l’apprentissage non-supervisé de
l’alignement 2-D dense d’images d’une classe donnée. Ce modèle est capable d’iden-
tifier un espace canonique pour cette classe d’objets à partir des images non-alignées
et non-labellisées. Nous proposons d’utiliser un auto-encodeur équipé d’un moyen
de séparation de deux caractéristiques importantes dans son espace latent, à savoir
l’apparence des objets dans l’espace canonique et la déformation dense associée
permettant de retrouver l’image réelle à partir de cette apparence. Une nouvelle
technique pour prédire la déformation à partir d’un vector latent est également
proposée, qui nous permet de trouver la déformation la plus significative. Nous
constatons que cette façon de prédire la déformation mène à de meilleurs résultats
que celle qui prédit le changement en position de chaque pixel. L’évaluation de
l’alignement dans l’espace canonique est faite par une méthode de localisation de
repères trouvés sur l’objet, et correspond à l’erreur moyenne normalisée suivant
cette métrique. Nous montrons que les résultats obtenus surpassent l’état de l’art.
En outre, le système proposé permet une meilleurs séparation, en albédo et ombre,
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une tâche rendue plus aisée dans l’espace canonique grâce à l’alignement. Pour con-
clure, nous illustrons l’application de cette méthode à d’autres domaines, à savoir,
l’alignement d’IRM de poumons et d’images satellites.

Dans le Chapitre 3, nous étendons le modèle et la méthode d’alignement 2-D
dense non-supervisé proposés dans le Chapitre 2 au cas de la 3-D afin d’apprendre
un modèle tridimensionnel pour les visages humains. Dans le cas où la sortie du dae
est considérée comme la vérité terrain, nous montrons qu’il est possible d’obtenir
un modèle 3-D à partir d’une méthode basée sur la structure non-rigide du mouve-
ment. Nous utilisons un auto-encodeur basé sur le même principe que le dae pour
apprendre un espace latent qui est utilisé pour prédire des paramètres spécifiques
pour la modélisation d’une image réelle. Ces paramètres incluent les coordonnées et
le point de vue de la caméra, ainsi que la déformation d’un modèle moyen associé à
cette image. Ces paramètres et le modèle moyen déterminent le maillage d’une sur-
face dans un environmment 3-D représentant la forme du visage. Le modèle moyen
est appris en même temps que ces paramètres et n’est pas initialisé par un modèle
de déformation 3-D. Nous proposons également un modèle plus approfondi utilisant
de la supervision faible pour séparer plusieurs types de déformation, à savoir l’angle
de vue de la caméra, le modèle 3-D propre au visage de la personne considérée, et
son expression faciale. Le modèle final est évalué de la même manière que le dae,
c’est-à-dire par l’utilisation de repères faciaux, cependant, dans le cas de ce modèle
les repères sont localisés en 3-D. L’évaluation de la forme est aussi faite par une
analyse procrustéenne sur la base de données AFLW2000-3D, en alignant la forme
estimée par notre modèle et la vérité terrain.

Dans le Chapitre 4, nous étudions l’apprentissage profond faiblement supervisé
appliqué au domaine d’imagerie médicale. Plus précisément, nous nous concentrons
sur une problématique liée au cancer du sang. Une partie importante du diagnos-
tique d’un patient présentant un symptôme d’hyperlymphocytosis—un nombre ab-
solu de lymphocyte très élevé, au-dessus de 4× 109 par litre—est de déterminer la
cause de ce dérèglement. Ce symptôme se manifeste soit en réaction à une infection
(le syndrôme est alors qualifié de réactif), soit en raison d’un cancer (syndrôme
tumoral). On note une certaine variabilit’e du résultat concernant le diagnostique
d’un même patient réalisé par plusieurs biologistes, ainsi qu’au sein d’un ensemble
de diagnostiques réalisés par un même praticien. Il nous faut donc un moyen de sur-
monter cette variabilité en gardant un bon niveau de la performance en prédiction.
La vérité terrain, c’est-à-dire le vrai diagnostique, n’étant obtenue qu’après des tests
complémentaires, cette problématique appartient à la catégorie de l’apprentissage
faiblement supervisé, le but étant de prédire la nature de la maladie. Pour cela nous
proposons un modèle convolutif pour encoder les images appartenant à un patient,
suivi par la concaténation de l’information contenue dans toutes les images, le résul-
tat de cette opération est classifié soit en tumoral, soit en réactif. Nous proposons
également un modèle mixture-of-experts pour accumuler l’information venant de
différents attributs des patients, à savoir l’âge et le nombre absolu de lymphocytes.
Nous démontrons également par un teste de reproductibilité que le modèle mixture-
of-experts est plus reliable que l’autre qui n’utilise que les images pour la prédiction.
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Nos résultats montrent que les modèles proposés sont de performances compara-
bles à celles des biologistes, et peuvent donc les aider dans l’élaboration de leur
diagnostique.
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