Keywords: 4, 6 Average number of weak learners

rank optimization

Introduction

Machine learning is the study of designing algorithms that learn from training data to achieve a specific task. The resulting model is then used to predict over new (unseen) data points without any outside help. This data can be of many forms such as images (matrix of pixels), signals (sounds,...), transactions (age, amount, merchant,...), logs (time, alerts, ...). Datasets may be defined to address a specific task such as object recognition, voice identification, anomaly detection, etc. In these tasks, the knowledge of the expected outputs encourages a supervised learning approach where every single observed data is assigned to a label that defines what the model predictions should be. For example, in object recognition, an image could be associated with the label "car" which suggests that the learning algorithm has to learn that a car is contained in this picture, somewhere. This is in contrast with unsupervised learning where the task at hand does not have explicit labels. For example, one popular topic in unsupervised learning is to discover underlying structures contained in visual data (images) such as geometric forms of objects, lines, depth, before learning a specific task. This kind of learning is obviously much harder as there might be potentially an infinite number of concepts to grasp in the data. In this manuscript, we focus on a specific scenario of the supervised learning setting: 1) the label of interest is under represented (e.g. anomalies) and 2) the dataset increases with time as we receive data from real-life events (e.g. credit card transactions). In fact, these settings are very common in the industrial domain in which this thesis takes place.

Problems and Motivations

Today, IT companies are much more involved in AI research than a few years ago. Lately, we saw the creation of new research centers such as Deepmind in 2010, Google Brain in 2011 (Alphabet), FAIR (Facebook AI Research) in 2013 and OpenAI in 2015. In Figure 1, we present the number of publications from such companies throughout the years1 in prestigious machine learning conferences and a recent craze for companies to publish and share their most recent research is noticeable. This trend is spreading to many companies for two main reasons: the development of hardware and the data available. Indeed, the hardware improved a lot over the past decades with 1 TFLOPS (Tera FLoating-point Operations Per Second) costing around 1 million euros in 2000 dropping to 30 euros in 2017. Naturally, companies started to invest in building more powerful computing infrastructure to handle their massive amount of data. This latter is what makes a huge difference between the academia working mainly on public datasets and the industry having terabytes of data. In addition, they also gather the biggest computing infrastructure in the world, making them prevalent actors for the use of machine learning. Note that most of machine learning algorithms used today such as neural networks, boosting, random forest, logistic regression, SVM, and many more were created around the 2000's but the accessibility to more computing power and more data pushed the limits of these algorithms forward.

Nevertheless, these algorithms have been developed in confined settings where datasets are clean and relatively small. These new datasets coming from the industry offer new challenges. In this manuscript, we tackle several important points raised by their nature. It is important to note that real datasets coming from the industry is a rare commodity in the public domain. There are many different reasons why this data are kept away from the public research such as privacy and the fact that they are an asset for the company owning them. However, recently, many companies started publishing extracts of their data fully anonymized through a competition format (e.g. kaggle) which makes them worthless from a business point of view but priceless for the data science community. That being said, it is clear that gathering a lot of data is costly in terms of human work especially because of the labelling part (for supervised learning) where one has to assign a ground truth to every data point. Moreover, data are more and more subject to many different social constraints. The most common one is the data privacy which can partially be solved by anonymizing the data at the potential cost of a loss of information available that could be relevant for a learning algorithm. As of today, the General Data Protection Regulation (GDPR) European laws have made the use of data legal only under very strict rules which makes the use of AI models more complex. In addition, these datasets, built over real-life events, are subject to many processes that often introduce some noise (e.g. human mistakes on labelling).

In this manuscript, one important focus is made on imbalanced datasets where the class of interest (e.g. fraudulent transactions) is under represented. At Atos Worldline, the company where this thesis has been done in collaboration with the Hubert Curien laboratory, we witness this issue in extreme and unprecedented cases where the fraudulent transactions appear about once out of two thousand times. We will show that in such a case, the evaluation metric is primordial and that the state of the art on imbalanced supervised learning suffers from biases induced by public datasets that are often very small. Today, many companies use machine learning models in production. However, they are often being obsolete in the short term due to different concept drifts through time. For example, spam detection, fraud detection, anomaly detection, recommendation systems or click predictions are constantly evolving problems (e.g. new fraudulent strategies, new anomalies, new users' taste, ...) and models must adapt quickly to the changes in patterns. In production, for the majority of companies using machine learning, the role of a data scientist is often to maintain the models by watching the performances through metrics and retraining the models from scratch when needed. This is certainly not the optimal scenario. We would rather like a model that could adapt itself automatically as the data arrive and learn through time. Indeed, in real-life applications, data does not come in a finite set but rather arrive in a stream that never stops, defining actual events in the real-life. This thesis also takes a step forward solving this problematic.

Context of this thesis

Context of this thesis This thesis is part of a collaboration between the academy and the industry. Worldline is a company focused on e-payment services and has a special role to do with e-payment security. Indeed, several banks rely on their fraud detection system in order to anticipate on fraudulent behaviours and block fraudsters from stealing too much money before the card holders discover the fraud. Obviously, Worldline has access to different information for every transaction made. However, today, the fraud detection system mainly relies on fraud experts who build the so-called expert rules defined after analysis and investigations on the transactions. This is costly and in the long term, unrealistic. This is where machine learning comes in. Substantial amounts of data arrive every day in Worldline's system with multiple kinds of information. This thesis aims at adapting existing machine learning techniques to the challenges that offers the fraud detection problem. More generally, we tackle the supervised anomaly detection problem with two main constraints: the class imbalance problem and the continuous data feed.

Contributions and Structure of the Manuscript

This manuscript contains two main contributions and is structured in four different chapters. In Chapter 1, we introduce machine learning fundamentals used throughout this manuscript and present the general class imbalance domain with its imbalance learning methods and its evaluation metrics. We finally present some of the most famous ensemble methods with a focus on boosting that we use throughout this thesis.

Chapter 2 presents the specific application case in which this thesis took place: credit card fraud detection. We present different methods and show that, in our specific case, they introduce many constraints and biases that are complicated to handle with machine learning models. A large experimental study is made on a private dataset from Worldline to highlight the previous point. In these experiments we show some drawbacks behind different well-known performance metrics in the class imbalance case. We further conclude that metrics independent of this threshold better estimates the potential performance of a model. This brings us to the first main contribution.

Optimization of the average precision

Chapter 3 is our first contribution where we study the supervised anomaly detection problem. We propose an approach based on a learning to rank strategy by optimizing different smooth surrogate of the Average Precision (AP), a particularly suited metric in the context of class imbalance data, in a Stochastic Gradient Boosting algorithm. We show that using AP is much better to optimize the top rank alerts than other commonly used measures. This learning to rank approach fits in the machine learning context where we wish to assist to the day-to-day job of human experts. This contribution was followed by a patent on the credit card fraud detection application.

Online Non-Linear Boosting

In the previous contribution, we mainly worked with the standard gradient boosting algorithm that uses linear combination. This latter naturally averages the performance of the models in the combination. It turns out that we could take advantage of non-linear combination to exploit the full potential of the models in the combination. In Chapter 4, our second main contribution, we study how we can make such combinations and take into account another important point of these real-life applications: the continuous flow of data. This contribution lies in the online learning domain where models must learn "on the fly" as examples arrive. We propose a new online boosting algorithm that uses more advanced combinations than in standard linear gradient boosting. We end this manuscript by a general conclusion, open questions and perspectives.

Supervised Machine Learning

In this section, we define precisely the setup for a supervised machine learning problem. In this type of learning, as for humans, the algorithm learns from observations and gets a feedback known as the ground truth. We first define a sample:

x ∈ X ⊆ R d ,
where X is the input space typically defined over R d with d being the number of dimensions/features of a vector x such that we have x = {x 1 , x 2 , ..., x d }. In this framework we also have the target y of the example x:

y ∈ Y ⊆ R,
with Y, the output space, discrete or continuous over R. In this manuscript, we mainly focus on binary classification where Y = {-1, 1}.

In practice, we have a training set S of size M defined as S = {x i , y i } M i=1 where the M instances are supposedly independently and identically distributed (i.i.d.) according to an unknown joint distribution D over X × Y. Now that we have established the basic notations, we can describe formally what supervised learning means. In this framework, we generally want to find a function f ∈ F where F is the function space that maps the input features X to the target output space, Y,

f ∈ F → Y,
where f is the function that predicts y given x for any (x, y) drawn from D. In other words, we want to find f (x) the function that best approximates F (x), the true (unknown) function of the problem at hand. However, the real world has a lot of noise induced by missing features, wrong labelling, etc... We define the irreducible error that we are not able to recover from such that y = F (x) + (this also relates to the Bayes error which is the error of the Bayes optimal classifier).

In order to find the best function f for a given problem, we first need a performance metric. Let us define the loss function (•, •) that takes both the predicted output of the model f (x) and the expected label y. As we later present, this loss function can be of many forms but it generally focuses in evaluating the agreement between f (x) and y. We first define the notion of Generalization Error (or True Risk) R true (•) which is the expected error of our model f over D:

R true (f) = E (x,y)∼D ((f (x), y)).

In practice, we are only given a restricted training set S where every data point is assumed to be drawn randomly from the distribution D and that every example is generated independently from the others. This is the most common assumption made in machine learning which state that the data is independently and identically distributed (i.i.d. assumption). Thus, generally, the access to the expected error over D is impossible and we rather compute its empirical counterpart R using S:

R(f) = 1 M M i=1 (f (x i), y i).
The empirical risk is proven to converge to the true risk [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]) R(f)

M →∞ ----→ R true (f). In the end, we are looking for f such that f = inf f ∈F R(f). A straight forward approach would be to minimize the empirical risk to find the function f such that:

f = inf f ∈F R(f) = inf f ∈F 1 M M i=1 (f (x i), y i).
However, optimizing over all possible f ∈ F functions may end up with a function that would perfectly fit the samples from the training set with a high generalization error. This phenomenon is known as overfitting and is explained by the following uniform convergence PAC bounds [START_REF] Leslie | A theory of the learnable[END_REF] (or generalization error) derived from the Hoeffding's inequality [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF])

R true (f) ≤ R(f) + log(|F|) + log(2 γ) 2M , (1.1)
where |F| defines the number of functions in the search space F and 1 -γ is the probability for Eq. 1.1 to hold. This equation states that the generalization error becomes bigger as |F| → ∞ and tends to decrease as M → ∞. Moreover, if the space of function F is large then finding the right model becomes computationally unrealistic. Note that in the infinite case (i.e. |F| = ∞, e.g. when F is the family of hyperplanes in R d), we need to resort to a complexity measure to estimate the expressiveness of F. An example of such measure is the V C (Vapnik Chervonenkis) dimension [START_REF] Vn | On the uniform convergence of relative frequencies of events to their probabilities[END_REF].

In machine learning, a famous notion is the bias-variance trade-off. The bias represents the average prediction error of the model f (x) on the true function F (x). It is defined as follows:

Bias(f (x)) = E (f (x) -F (x)) .

A high bias tends to mean that the model is too simple leading often to a true risk relatively high. This phenomenon is known as underfitting where the model does not learn enough on the training set. The variance, on the contrary, represents the variability of the model with regard to the data.

Var(f (x)) = E f (x) 2 -E (f (x)) 2 .
In practice, the simpler the model (i.e. the smaller the number of parameters to learn) the smaller the variance. As we previously mentioned, the true function that we want to approximate is given through a set of observations that are subject to noise. The risk of having a model with high variation is to induce a model that tries to approximate this noise. The intuition of this notion in Figure 1.1 where overfitting (high variance) and underfitting (high bias) are represented in function of the model complexity. In summary, having too complex models makes them prone to overfitting while too simple models are not able to learn the idiosyncrasies of the target concept. In practice we can estimate the curve of the true risk by evaluating the model on a test set {x i , y i } T i=1 ∈ S test ∼ D\S. The optimal trade-off is the one that minimizes both bias and variance. We give an intuitive visual example in Figure 1.2. Three polynomial regression models aim to approximate the cosine function with some noise following a uniform distribution (∼ U), cos(3 2 πx)+ = y, by learning over a limited set of observations (x i , y i) M i=1 . The only difference between these models is the degree of polynomial that they are allowed to have during training. We see that for a model with the highest complexity (the red curve), the training data points are perfectly predicted at the price of making huge errors in areas where there was no sample. This model is trying to learn the random noise . On the other hand, the green model underfits the data and is not able to capture the specificity of the target concept. By playing around with the model hyper-parameters (degree of the polynomial), we can find a model that tends to generalize well by finding the right trade-off in blue. However, "playing around" with the model complexity to find a model that generalize well can be a very difficult task. In such a context, the Regularized Risk Minimization adds a regularization term and tries to find a trade-off between fitting the data and controlling the complexity of the model.

f = argmin f ∈F M i=1 (f (x i)) + λ||f ||,
where ||f || is a norm and λ is a trade-off parameter which is basically determined empirically by cross-validation. This method is used to penalize complex methods to prevent overfitting. However, finding the right regularization is not trivial and depends on the task at hand.

Let us now we define more precisely the loss function, (•, •). Intuitively, it might be set to the 0/1 loss such as to assess the quality of a model using a classification error measure, as follows:

0/1 (f (x), y) = 1, iff (x) = y 0, otherwise.
As simple as the 0/1 loss may seem, finding the minimizer of inf f ∈F R(f) is difficult (NP-hard) mainly because of its non-differentiability, but also because of its nonconvexity in f . Instead of using the 0/1 loss, we rather use convex surrogate loss functions. As mentioned earlier, there exist many different ones. We present the most common losses in Figure 1.3. The hinge loss hinge (f (x), y) = [1 -yf (x)] + = max(0, 1 -yf (x)), mainly used in Support Vector Machines (SVM) [START_REF] Cortes | Support vector machine[END_REF]. This loss basically is 0 when y and f (x) agree and is linearly increasing with f (x) when they disagree. While it is not differentiable at 1, the hinge loss still has a subgradient with respect to the model parameters which is sufficient for the optimization.

The exponential loss exp (f (x), y) = e -yf (x) , used for example in Adaboost (Freund and Schapire, 1997). This loss is a bit harder to optimize due to its exponential nature. Indeed, little variation in the model increases the loss exponentially. That being said, some learning methods are able to handle it quite effectively.

Logistic loss log (f (x), y) = log(1 + e -yf (x)), which is ubiquitous in neural networks and also used in LogitBoost [START_REF] Friedman | Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)[END_REF]. This loss function has a story where one wants to use f (x) to estimate the probability of the associated label y, P (y|x). In fact, this probability can be estimated with the logistic function (or the sigmoid),

P (y = +1|x) = 1 1 + e -f (x i) , P (y = -1|x) = 1 1 + e f (x i) .
From this observation, one can compute the likelihood of the labels occurring in the training set,

L (x 1 , y 1), ..., (x M , y M)|f = M i=1 1 1 + e -y i f (x i) = e -M i=1 log(1+e -y i f (x i)) .
Maximizing the likelihood is then equivalent to minimizing the logistic loss of this model. Apart from the fact that this loss is differentiable and convex which makes it a suitable loss for optimization, it has also bounded gradients (unlike the exponential loss) and leads to a better probability estimates.

Squared error se (f (x), y) = (y -f (x)) 2 , the well-known loss for the regression task. It is used for almost every single algorithm [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF] doing regression. In our context, we will use it in Gradient Boosting where our (weak) learner does not perform a classification but rather a regression task.

In this manuscript, we focus on ensemble learning that aims at combining different models {f l } L l=1 ⊆ F such that their combination outperforms the best single model

f best ∈ {f l } L l=1 : R true (1 L L l=1 f l (x)) < R true (f best), (1.2)
where L is the number of models being combined. The main point of ensemble learning is to take advantage of the diversity between the different models composing the ensemble. Of course, if they are too similar and do not complete each other in any way then building an ensemble with these models is not going to make our ensemble more robust. Thus, we need our models to bring some diversity and have a relevant empirical performance (e.g. better than random guessing). This last point differs between the ensemble method we use. In the following, we present different ensemble learning methods and their specificities.

Ensemble learning

We introduce here a key notion of this manuscript. Can we combine several models to increase the overall performance? In Section 1.1, we discussed how we could handle the bias-variance trade-off. It turns out that ensemble methods handle the bias-variance trade-off quite effectively while being relatively simple to train. We review three important methods that were the root of multiple algorithms.

At a time where decision trees [START_REF] Quinlan | Induction of decision trees[END_REF][START_REF] Breiman | Classification and regression trees[END_REF] were popular, they still suffered from handling the bias-variance trade-off very poorly. Indeed, a decision tree is a model that basically splits the dataset into two parts based on an information criterion (e.g. entropy) that defines how well the two resulting subsets (children nodes) perform compared to the parent. In practice, the number of nodes in a decision tree can go up to #nodes ≤ M p=0 2 p where p is the depth of the tree. Clearly, learning a tree where every single instance is correctly classified can lead to a very large tree that simply overfit the training set. Pruning methods [START_REF] Quinlan | Simplifying decision trees[END_REF]) that aim at removing potential irrelevant nodes can be used but these techniques increase the complexity of the learning algorithm and are subject to arbitrary choices [START_REF] Breiman | Classification and regression trees[END_REF]. Ensemble learning appeared as a nice solution to build trees without too many human efforts (e.g. no manual pruning). Today, ensemble methods are used a lot to build efficient models and we will use them in Chapter 3 and 4. We now briefly describe these methods.

Bagging [START_REF] Breiman | Bagging predictors[END_REF] As in any ensemble method, bagging combines many classifiers by averaging their outputs into a final prediction. Its peculiarity is to train every classifier over a different subset S , drawn randomly from S such that S ⊂ S. This technique is called sampling with replacement where the idea is to randomly draw examples from S and put them back in S such that the examples have a chance of being drawn multiple times. As we previously mentioned, trees are easy to train and have multiple advantages but their regularization was difficult mainly because their growth without limit potentially leads to overfit the training dataset. Bagging offers a nice way to build trees without paying attention to how it overfits. Indeed, the randomness that we add using sampling makes trees more diverse and the final prediction much more robust to overfitting even if every single tree has a very high variance. The final bagging model is defined as follows:

F bagging (x) = 1 T T t=1 f t (x).
Random forest [START_REF] Breiman | Random forests[END_REF]) (RF) is probably the most famous bagging method today. Inserting randomness during the training improved the results significantly. Indeed, we need models that bring a different, yet complementary knowledge to others. This is mainly done by (i) bagging the data (sampling with replacement) and (ii) selecting randomly subsets of features at each level of the tree.

Figure 1.4 presents how a RF makes it easy to handle the overfitting behaviour of a single tree and build a more general model. Stacking (Wolpert, 1992) The idea of the stacking method comes from the observation that combining models linearly does not always yield the best solution. However, it is hard to combine different models efficiently since we don't know how they complement each other. A solution is to use a meta-learner that takes model outputs for every example and builds its own rules on how to combine them.

F stacking(x) = Meta f 0 (x), f 1 (x), f 2 (x), ..., f T (x) ,
We will present a method inspired from stacking methods in Chapter 4.3. In the middle, many different are learned with some diversity. On the right, a meta learner is taking their outputs as inputs and learns a better model.

Predicting on parts of the space where there is no training example is not an easy task. Ensemble methods like bagging and stacking offer a very simple and efficient way of finding models with a good generalization by combining many different models with a poor individual generalization. As we can see, the construction of the models composing the ensemble is made easy by willingly overfitting or underfitting. The combination of their outputs can also be very straight-forward as in bagging (simple linear combination). On the other hand, combining the model using stacking offers, potentially, an infinite number of combinations. Thus this technique is more prone to over-fitting than the others. A good compromise is the boosting approach that we present in the following section.

Boosting

The concept of boosting emerged with the work of Schapire (1990) which showed that, in theory, it is possible to improve the performance of any learner by combining a set of weak classifiers under the simple assumption that the base learner behaves better than random guessing. In machine learning, we often struggle to build a relevant model with high performances without falling into the overfitting scenario. And even without the overfitting problem, building a classifier to reach a high performance can be subject to computational constraints (i.e. infinite amount of data points). Boosting allows to alleviate the previous problems by only building weak learners. Two questions arise in this setting: 1) How do we use the information brought by each classifier? and 2) how can we build several weak learners such that they are complementary to solve the problem? In Freund and Schapire (1997), the authors develop the first and still so famous boosting algorithm, Adaboost (for Adaptive Boosting) which is a first approach to answer both questions.

The boosting process is basically focusing on the examples that were misclassified by the already learned classifiers. In other words, boosting tends to learn general rules at the beginning and specializes to "difficult" examples along its T learning iterations. The final prediction in boosting is a weighted combination defined as follows:

F boosting (x) = T l=1 α t h t (x),
where, {α t } T t=1 represents the relative performance of the weak learners. For the rest of this manuscript, we write our T weak learners: {h t } T t=1 to make our notations similar to that of the boosting community. We call them weak hypotheses or weak learners. On the left, a single decision tree is underfitting. In the middle, many different decision trees learned using the boosting method (note that we plot here α t h t (x) instead of just h t (x)). On the right, we plot their linear combination into a final decision.

Adaboost

Adaboost [START_REF] Freund | A decision-theoretic generalization of online learning and an application to boosting[END_REF] is the first boosting algorithm and initiated many algorithmic and theoretic research. This algorithm attracted many different fields due to its simplicity, performance and theoretical properties. To cite a few: • Fraud detection [START_REF] Viaene | A case study of applying boosting naive bayes to claim fraud diagnosis[END_REF]Fan et al., 1999) Adaboost operates as a rule of thumbs where, at each iteration, the most accurate rule to classify the dataset is found. Each new rule is built such as to focus more on the examples that have been missed by the previous rules. By repeating the process for many iterations we finally end up with many rules that are combined linearly. The prediction is a weighted vote that defines the strong model. In order to build diverse rules, the algorithm uses a weight w i,t for the example x i at iteration t. Note that the number of iterations in boosting is defined by the number of models that compose the ensemble. The weight for a given observation varies along the training process and an asset of Adaboost is that this weight automatically adapts to the performance of the previous weak learners on this example. This is mainly why Adaboost is said to be adaptive. Moreover, every single rule h t in the ensemble is given a weight α t .

To accomplish all these steps, Adaboost is based on minimizing the exponential loss function exp . The objective function can be written as follows:

R exp (F T) = 1 M M i=1 exp (F T (x i), y i) = 1 M M i=1 e -y i F T (x i) ,
where F T (x) = T t=1 α t h t and h t ∈ {-1, 1}. All the losses presented in Section 1.1 could potentially be used, however, the choice of the exponential loss has several assets in this framework:

1. It opens the door to theoretical properties (Schapire and Singer, 1999).

2. It is very convenient to compute the weights for the dataset at each iteration.

3. It makes the optimal value α t very easy to compute.

The main potential drawback of this loss function is the fact that it grows exponentially fast as F t is wrong. In case of noise in the dataset, Adaboost could potentially spend a lot of effort classifying this noise correctly [START_REF] Freund | A short introduction to boosting[END_REF]. In Dietterich (2000), the authors show that Adaboost is indeed susceptible to noise. Different solutions exist to cope with this problem such as the Brownboost [START_REF] Freund | An adaptive version of the boost by majority algorithm[END_REF] algorithm where the examples that are misclassified for too many iterations are left aside to let the learner focus on the remaining examples. The specificity of Adaboost lies in the re-weighting schema used for all examples in the training set S with {w i,t } M i=1 , the weights, at each boosting iteration t. Note that we assume to have a base learner allowing to train with weighted samples. At iteration t, the weight w i,t+1 is found such that it represents how well the strong learner F t (x i) classifies x i . This can be done using the following equation:

w i,t+1 = e -y i Ft(x i) .
(1.3) Mathematically, at iteration t we already computed w i,t = e -y i F t-1 (x i) . This allows us to have a simpler update for w i,t+1 :

w i,t+1 = e -y i F t-1 (x i) e -y i αtht = w i,t-1 e -y i αtht .
Due to the exponential nature of the loss, the weights are normalized to get a statistical distribution such that M i=1 w i,t+1 = 1.

These weights are used to find a new h t such that this weak learner minimizes the sum of the weights for the misclassified examples:

h t = argmin h h(x i) =y i w i,t .
The second important point in Adaboost is to find the α t that minimizes R exp (F t) such that:

α t = argmin α M i=1 e -y i (F t-1 +αht) .
The exponential loss and the assumption made on the output of the weak learners allow a very simple derivation to find a close form solution for which α t is optimal.

R exp = M i=1 e -y i F t-1 e -y i αtht = y i =ht(x i) e -y i F t-1 (x i) e -αt + y i =ht(x i) e -y i F t-1 e αt .
It remains to find ∂R exp ∂αt = 0.

∂R exp ∂α t = ∂ y i =ht(x i) e -y i F t-1 (x i) e -αt + y i =ht(x i) e -y i F t-1 e αt ∂α t = 0 = -e -αt y i =ht(x i) e -y i F t-1 (x i) + e αt y i =ht(x i) e -y i F t-1 = 0 e αt e -αt = y i =ht(x i) e -y i F t-1 y i =ht(x i) e -y i F t-1 (x i) e 2αt = y i =ht(x i) e -y i F t-1 y i =ht(x i) e -y i F t-1 (x i) α t = 1 2 log y i =ht(x i) e -y i F t-1 y i =ht(x i) e -y i F t-1 (x i) .
Algorithm 1 Adaboost algorithm 1: Given: (x i , y i) where x i ∈ X and y i ∈ {-1, +1}: 2: Initialize:

w i,1 = 1 M for i = 1, ..., M . 3: for t = 1 to T do 4:
Train h t : X → {-1, +1} using the weights w t .

5:

Choose α t = 1 2 log(1-t t).

6:

Update the weights:

w i,t+1 = w i,t e -αty i ht(x i) Z t ,
where Z t is a normalization factor such that w t+1 is a distribution.

7: end for 8: Output the final model:

F * (x) = sign(T t α t h t (x)).
Or as it is more commonly written in the literature:

α t = 1 2 log(1 -t t),
where t = ht(x i) =y i w i,t is the weighted error rate of a given weak learner h t . We summarize the steps of Adaboost in Alg. 1.

In [START_REF] Freund | A decision-theoretic generalization of online learning and an application to boosting[END_REF], the authors show that the empirical error (training error) is at most R(F ada) ≤ e (-2 t=1 γ 2 t) where γ t is the edge over random guessing of the t th weak learner such that t = 1 2 -γ t . This bound shows that the empirical error decreases exponentially fast along the boosting iterations. In the same paper, the authors also present how to bound the generalization error (true risk) of the final model in terms of its training error, the sample size M , the VC-dimension V and the number of boosting rounds T .

R true (F ada) < R(F ada) + O T V M
This bound suggests that Adaboost will overfit as T becomes large. This has been debated in many papers as it was experimentally shown that Adaboost does not overfit even for thousands of rounds [START_REF] Breiman | Arcing the edge[END_REF][START_REF] Drucker | Boosting decision trees[END_REF]. Moreover, it has been experimentally shown that, while the training error reaches 0, the test error still decreases which clearly contradicts the above bound.

t=1 α t .
The margin is positive if the model correctly classifies the example x and negative otherwise. This value can also be interpreted as the confidence of the model for a given example. With this value, the authors were able to derive a new bound defined as follows:

R true (F ada) < P (m(x) ≤ θ) + O V h M θ 2
for any θ > 0 where V h is the VC-dimension of the weak learner. This upper bound has the great advantage of not being dependent on the number of iteration T in its second term. It turns out that the first term was shown to be bounded above by

P (m(x) ≤ θ) ≤ 2 T T t=1 t (1 -t).
Adaboost is a very efficient algorithm but it only runs with the exponential loss which can be hard to handle in some cases (e.g. noisy datasets). In the following, we present a different boosting approach that uses a different loss function.

Additive Logistic Regression

This section presents the additive logistic regression algorithm (Logitboost) (Friedman et al., 2000) which uses the logistic loss instead of the exponential loss:

R log = 1 M M i=1 log (F L (x i), y i) = 1 M M i=1 log(1 + e -y i F L (x i)).
Before explaining the Logitboost algorithm let us take a step back on its origins as it played a significant role in the evolution of boosting methods.

A simple linear model can be written in the following form:

F (x) = α 0 + α 1 x 1 + α 2 x 2 + ... + α d x d .
where {α t } d t=1 are the parameters of the model. It assumes that the problem can be explained as a linear combination of the input variables. However, in many cases and especially on real-life problems, a linear model is not expressive enough to capture the full underlying concept of the data. To solve this problem, Additive Models [START_REF] Jerome | Projection pursuit regression[END_REF] and its generalized version GAM [START_REF] Hastie | Generalized additive models[END_REF]) have been introduced. Instead of using a linear combination of the parameters, the goal is to use non-parametric functions that introduce nonlinearity. The form of an additive models is as follows:

F (x) = f 1 (x 1) + f 2 (x 2) + ... + f d (x d).
This model is composed of different learners, one per feature. In order to update each function, the backfitting algorithm [START_REF] Breiman | Estimating optimal transformations for multiple regression and correlation[END_REF] is used to find f j :

f j = argmin f 1 M M i=1 y i - k =j f k (x k i) -f (x j i) 2 ,
or in other words, f j is updated such as to correct the error of the other functions. These functions only take a single dimension d of the whole feature input vector but more generally, we can assume that these functions use all inputs from x such that the model becomes more general:

F t (x) = f 1 (x) + f 2 (x) + ... + f t (x).
Finally, instead of having all the functions already defined, F t (x) can be updated in a greedy forward stepwise approach where a new model f t+1 is added:

f t+1 = argmin f M i=1 (y i -F t (x i) -f (x i)) 2 .
At this step, we can see the connection with boosting where the {f t } T t=1 would be the weak learners. This backfitting algorithm was first made to work for regression tasks. In [START_REF] Hastie | Generalized additive models[END_REF], the authors propose a new version of backfitting using the Newton-Raphson method for GAM and more specifically for the Additive Logistic Regression Model called Local Scoring and defined as:

F t (x) = 1 1 + e -(f 1 (x)+f 2 (x)+...+ft(x)) = P (y = 1|x) = p(x).
The Newton-Raphson method [START_REF] Wallis | A Treatise of Algebra, Both Historical and Practical[END_REF][START_REF] Raphson | Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ac demonstrata[END_REF] is successively used as in the gradient descent algorithm to find the root of a function. The main difference is that it requires the second derivatives such that θ = θ+

∂ (f (x),y) ∂θ ∂ 2 (f (x),y) ∂ 2 θ
where θ is the parameter to update to find the root of (•, •). The higher order method Chapter 1. Preliminaries Algorithm 2 Logitboost algorithm 1: INPUT: A training set S = (x i , y i) M i=1 where x i ∈ X and y i ∈ {0, 1}: 2: Initialize: w i,1 = 1 M and p(x i) for i = 1, ..., M , F (x) = 0. 3: for t = 1 to T do 4:

Compute the newton step:

z i = y i -p(x i) p(x i)(1 -p(x i)) , w i,t = p(x i)(1 -p(x i))
.

5:

Fit the weak learner f t by a weighted least-squares regression to z i using weight w i,t for all i ∈ 1, ..., M .

6:

Update F (x) ← F (x) + 1 2 f t (x) and p(x) ← 1 1+e -F (x) . 7: end for 8: Output the final model:

F * (x) = sign(T t f t (x)).
allows to build better approximations and thus to converge in less iterations. However, it requires the second derivative which can be computationally expensive to have. Basically, the idea of Local Scoring is to find a new model f t+1 such that:

f t+1 = argmin f F t + y -p(x) p(x)(1 -p(x)) -F t -f ,
where y-p(x) p(x)(1-p(x)) is the Newton-Raphson update. In fact, we only need f t+1 to approximate this update. The simplest strategy is to fit the new model over this update using a simple regression. Naturally, if the function perfectly fits the update, then no other step is required (all examples are well classified). However, in practice, we use weak learners as in Adaboost to handle the overfitting scenario. In [START_REF] Friedman | Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)[END_REF], the authors actually use the same principle. The steps of LogitBoost are described in Alg. 2.

While the original LogitBoost algorithm is slightly different from Adaboost, in [START_REF] Collins | Logistic regression, adaboost and bregman distances[END_REF] the authors a direct transformation to have an equivalence to Logitboost in the Adaboost framework with a single line modification in the Adaboost algorithm:

w i,k+1 = 1 1 + e y i Ft .
(1.4)

Adaboost and Logitboost are both boosting algorithms that are built for specific losses. The former based on the exponential loss while the later works with the logistic loss. This last algorithm is in fact less constrained by its loss function: since the weights are based on the newton step, any other loss could potentially be used (as long as the second derivative is computationally feasible). In the following, we present the gradient boosting algorithm that basically generalizes the previous two methods to any loss function.

Gradient Boosting

The generic version of boosting for any loss function was first introduced by Breiman (1997) and later generalized by [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF]. We previously presented the weights used in Adaboost and LogitBoost. In fact, Eq. 1.3 can be seen as the absolute gradient of R exp (F t (x i)) in function of F t (x i) such that

∂R exp (F t) ∂F t (x i) = -y i e -y i Ft(x i) = e -y i Ft(x i) = w i,k+1 ,
and the same applies for Eq.1.4 in LogitBoost:

∂R log (F t) ∂F k (x i) = -y i 1 + e y i F k (x i) = 1 1 + e y i Ft(x i) = w i,k+1 .
Indeed, the examples are weighted by the absolute value of the first derivative for the loss function used. At a given iteration t, we need to find h t for a classification loss function c as follows:

h t = argmin h R c (F t-1 + h) = 1 M M i=1 c (F t-1 (x i) + h(x i), y i).
(1.5) Solving Eq.1.5 without assumption on the weak learner or the loss used is difficult. To solve this task, gradient boosting leverages regression algorithms to approximate the negative gradients also called the residuals such as to make a step toward the optimal solution of F L in the function space (hence the name of functional gradient descent is often used for this method).

r t i = - ∂R c (F t-1) ∂F t-1 (x i) .
As it was previously done in Logitboost, we want the weak learner h t to minimize R sq :

h t = argmin h R sq (F t-1 + h) = argmin h 1 M M i=1 r t i -h(x i) 2 .
Finally, an advantage of boosting weak learners is the nice generalization behaviour of the final model. However, most of the time, we need to increase the complexity Algorithm 3 Gradient boosting 1: INPUT: a training set S = {z i = (x i , y i)} M i=1 , a weak learner 2: Initialize F 0 (x) = 0 3: for t = 1 to T do 4:

Compute the residuals:

r i t = - ∂ (z i , F t-1 (x)) ∂F t-1 (x) , ∀z i = (x i , y i) ∈ S (1.6) 5:
Fit a weak classifier (e.g. a regression tree) h t (x) to predict the targets r t 6:

Find α t = argmin α M i=1 c (z i , F t-1 (x i) + αh t (x i)) 7: Update F t (x) such that F t (x) = F t-1 (x) + α t h t (x)
8: end for 9: Output the final model:

F * (x) = sign(T t f t (x)).
of these learners to reach better performance which also increases the risk of overfitting. One way to handle this is to regularize. In gradient boosting, we can mainly play with two parameters:

1. The learning rate λ which is a constant that shrinks the outputs of the weak learners T t λα t h t (x). This parameter is only used during training and can then be removed.

2. A parameter which basically imitates bagging and summarizes the stochastic gradient boosting developed in [START_REF] Jerome H Friedman | Stochastic gradient boosting[END_REF]. The idea is simply to take a subsample of the data for every weak learner. As in bagging, random successive subsampling helps to have a final model with a better generalization.

The steps of gradient boosting are summarized in Alg.3 Gradient boosting offers much more flexibility than other boosting algorithm based on Adaboost (i.e. any loss function can be used assuming we can find its first derivative and any base-learner doing regression is also a fit).

Note on the greedy approximation The greedy approximation of the residuals using a regression algorithm introduces an unwanted phenomenon. Indeed, when a weak learner is highly confident in its prediction and is correct regarding the true label such that h(x i) >> 0 for y i = 1 or h(x i) << 0 for y i = -1 then, the classification loss tends to zero, c (h(x i), y i) → 0. However, when the weak learner is being trained, it is highly penalized when its prediction is far from the residual r i even if the sign of the prediction is correct and, therefore, actually minimizing the classification loss. This side effect of the greedy approximation can make the training of the weak learner more difficult since it is subject to more constraints than it should be. However, from a different point of view, penalizing too confident weak learners can also be in favour of the boosting algorithm which is above all a collaboration between different models. Indeed, as the prediction of h(x i) gets closer to r i , the regression loss decreases. However, when this prediction goes too high and potentially makes the weak learner a decision-maker for the ensemble, the regression loss increases and penalizes the overconfidence.

The base learner For clarity, a base learner defines the algorithm boosted in the model while the weak learners define the models built during the training process. So far, we have not made any assumption on the base learner simply because any learner is acceptable in the theoretical framework of boosting. Even a strong learner could be used at the risk making the model prone to overfitting. Note that, in practice, respecting the weak assumption (γ t > P M , where P M is the accuracy of a random classifier) is not mandatory since the weak learner weight, if correctly computed, should appropriately switch the signs of the predictions if the weak learner is less than the random guess and discredit the prediction of this weak learner by lowering the weight to 0. That being said, since its invention, trees have proved to be much more efficient than other base-learners (Schapire and Singer, 1999; [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF][START_REF] Jerome H Friedman | Stochastic gradient boosting[END_REF][START_REF] Freund | Experiments with a new boosting algorithm[END_REF]) (e.g. naive bayes, perceptron, ...). Moreover, trees are very straight forward learning algorithms with different assets:

1. They can be learned with sample weights rather easily (i.e. by using these weights in the splitting criterion)

2. They are invariant on the input variables (i.e. no pre-processing required to scale the continuous features).

3. They are easily distributed which improves a lot the computation time.

4. The internal rules are human-readable which is a rare commodity in machine learning algorithms to address the problem of interpretable AI.

5. The Random Forest bagging method [START_REF] Breiman | Random forests[END_REF] proved to be a very good algorithm on real datasets and also uses trees.

We formally define a tree structure as:

h tree (x; {b j , L j } J 1) = J j=1 b j I(x ∈ L j),
where {L j } L j=1 are different final leaves of the tree that cover the entire space of x and I(•) is the indicator function that takes the value one if • is true and 0 otherwise. In gradient boosting, the trees used are doing a regression over the residuals where b j is the value of the region R j . Note that, in case of stumps, we only have J = 2 (decision tree with a single split) thus only two values define the entire input space. The training process of a decision tree is a greedy learning algorithm that tests every possible split in the dataset over the x i ∀x ∈ S, i ∈ {1, 2, ..., d} and, in general, every parent node only splits into two parts. In order to find these splits, we have a criterion that allows us to evaluate the quality of a split for a given node containing {x i , y i } ∈ S node ⊂ S. In gradient boosting, regression trees are used and the splitting criterion is defined as follows:

v split = argmax x d a |S L | |S node | x d i <x d a (r i -rL) 2 + |S R | |S node | x d i ≥x d a (r i -rR) 2 - x i (r i -r) 2 , (1.7)
where

|S L | = x d i <x d a 1, |S R | = x d i ≥x d a 1, rL = x d i <x d a r i |S L | , rR = x d i ≥x d a r i |S R | and r = x i r i x i
1 . v split is the feature value that best splits the entire dataset at the node. Note that in Eq. 1.7, x i (r i -r) 2 is only used for the stopping criterion. Indeed, the regression loss cannot be improved in the children's nodes then there exists no x d a such that

|S L | |S node | x d i <x d a (r i -rL) 2 + |S R | |S node | x d i ≥x d a (r i -rR) 2 - x i (r i -r) 2 > 0,
and the boosting algorithm can be stopped. In practice, we might allow this behavior and thus remove the stopping criterion.

Earlier, we mentioned some constraints induced by the regression algorithm fit over the residuals. In fact we can slightly modify Eq. 1.7 such as to remove the constraints by simply maximizing the sign of the residuals in the two children nodes as follows:

v split = argmax x d a |S L | |S node |   x d i <x d a r i   2 + |S R | |S node |   x d i ≥x d a r i   2 - x i r i 2 .
(1.8)

Boosting

Eq. 1.8 is induced from the work of [START_REF] Mason | Boosting algorithms as gradient descent[END_REF] in which they define a new algorithm called Anyboost where they propose to find the best h t as follows:

h t = argmax h 1 M M i=1 r t i • h(x i) 2 .
In the following section, we present a recent gradient boosting algorithm with a similar approach to compute the best splitting value. Note that this modification might not be easily feasible for any weak learner.

Another advantage of using trees as weak learners in gradient boosting is the fact that the weight α can be computed at the leaf level instead of the entire tree. This implies that we have multiple weights for one weak learner equal to the number of terminal leaves {α j t } J j . This has a strong advantage over using a single weight because different terminal leaves do not yield the same predictive performance and therefore should be weighted differently. In fact, other weak learners such as perceptron, naive bayes or neural network could benefit from such weighting schema. In Chapter 4.3, we generalize this weighting schema to different weak learners.

In the following section, we detail a variant of gradient boosting which improved the training process in terms of computation speed but also generalizes the Newton-Raphson method used in Logitboost to different loss functions assuming trees as weak learners.

Extreme Gradient Boosting

Extreme Gradient Boosting (Chen and Guestrin, 2016), also called XGBoost, is a competitive machine learning algorithm by its efficiency and its flexibility. There are some distinct differences with the original gradient boosting algorithm that basically aim to get a better generalization. First, the set of hyper-parameters in XGboost is much bigger than in the classical gradient boosting algorithm. An important point in XGBoost is that, instead of using the objective function directly, it uses a second order Taylor approximation. We present this objective function in Eq. 1.9. The constraint is only to be able to compute the first and second order derivatives for a given loss function.

R = M i=1 [(F t-1 (x i) + h t (x i), y i)] + ω(h t) ≈ M i=1 [(F t-1 , y i) + g i h t (x i) + 1 2 h i h 2 t (x i)] + ω(h t) = R taylor .
Chapter 1. Preliminaries

Note that now (F t-1 , y i) is a constant in the objective function and can be removed. We end up with the following simplified objective function:

R taylor = M i=1 [g i h t (x i) + 1 2 h i h 2 t (x i)] + ω(h t), (1.9)
where

g i = ∂ c(Ft-1(xi),yi) ∂F t-1 (x i) , h i = ∂ 2 c(Ft-1(xi),yi) ∂ 2 F t-1 (x i)
and ω = γT + 1 2 λ J j=1 b 2 j with γ and λ two regularization terms. This Taylor approximation of the objective function offers a nice property that was introduced in Friedman et al. (2000) where they use a Newton update as the optimal value for a given leaf. Indeed, we can rewrite Eq. 1.9 with the new tree h tree such as to minimize the loss function.

R taylor tree = M i=1 [g i h tree (x i) + 1 2 h i h 2 tree (x i)] + ω(h tree) = J j=1   x i ∈L j [g i b j + 1 2 h i b 2 j]   + γT + 1 2 λ J j=1 b 2 j = J j=1   (x i ∈L j g i)b j + 1 2 (x i ∈L j h i + λ)b 2 j   + γT.
It only remains to find the optimal value b * j for a leaf by solving ∂R taylor tree ∂b * j = 0.

∂R taylor tree ∂b * j = (

x i ∈L j g i) + (x i ∈L j h i + λ)b j = 0 b * j = - x i ∈L j g i x i ∈L j h i + λ = x i ∈L j r i x i ∈L j h i + λ ,
where b * j is a Newton Raphson step. Thus we can compute the corresponding objective function for h tree by plugging this optimal leaf value in R taylor tree and taking r i = -g i :

R taylor tree = 1 2 J j=1 (x i ∈L j r i) 2 x i ∈L j h i + λ + γT.
(1.10) Eq.1.10 gives us the total error of the tree considering all terminal leaves. At a given node, the best splitting value v split can be found as follows:

v split = argmax x d a - 1 2    x d i <x d a r i 2 x d i <x d a h i + λ + x d i ≥x d a r i 2 x d i ≥x d a h i + λ - x i r i 2 x i h i + λ    -γ. (1.11)
In summary, as we previously mentioned, boosting algorithms aim at finding a new h new such that:

h new = argmin h M i=1 c (F t + h, y).
(1.12)

For Adaboost, and gradient boosting, it boils down to finding a h new such that it approximates the residuals. For Logitboost and XGboost, the new weak learner approximates the Newton-Raphson update such that:

h new ≈ - ∂ (Ft,y) ∂Ft ∂ 2 (Ft,y) ∂ 2 Ft .
The classical gradient boosting and XGboost differ mainly in the splitting criterion when building the weak learner (e.g. Eq.1.7 for gradient boosting and Eq.1.11 for XGboost). That being said, it is hard to compare them since they both have advantages and drawbacks. First, gradient boosting approximates the residuals using the mean squared loss while XGboost finds an optimal solution to the taylor approximation of objective function. XGboost approximation allows to quickly find the optimal splits and values of the trees that seem more intuitive even if the optimal values found are based on a Taylor approximation and thus are not optimal regarding the true objective function. Despite the recent fame of XGboost framework, in this work, we found some constraints to use XGboost. While gradient boosting only needs the objective function to be differentiable, XGboost needs it to be twice differentiable and different from 0. This leads to another "issue" that is, XGboost only works for strictly convex objective functions while it is not required for gradient boosting. As we will see in Chapter 3, we sometimes need to get rid of the convexity constraint to reach a more specific goal (e.g. optimizing the top rank).

Actual class Positive Negative Total

Predicted class Positive TP FP

M i=1 I(f (x i) = 1) Negative FN TN M i=1 I(f (x i) = -1) Total P N M
Table 1.1: Confusion matrix with the number of True Positives (TP), True Negative (TN), False Positive (FP) and the False Negative (FN).

Class Imbalance Learning

In this section, we describe the class-imbalance problem that has been repeatedly reported in the literature (Chawla et al.

S + = {z + i = (x + i , y + i)|y i = +1} P i=1 and S -= {z - i = (x - i , y - i)|y i = -1} N i=1
where S + ∪ S -= S. We define the imbalance ratio as ρ = N P and the proportion of examples in the minority class as π = 1 1+ρ = P M

Evaluation metrics

The evaluation metric is a rather important part of machine learning since, depending on the selected criterion, different models are preferable. We first describe the well-known confusion matrix in Table 1.1, that contains four standard measures in classification:

1. True Positives (TP), the number of positive examples correctly classified.

2. False Positives (FP), the number of misclassified negative examples.

TP = P i=1 I(f (x i) = 1) FN = P i=1 I(f (x i) = -1)
Positive examples

TN = N i=1 I(f (x i) = -1) FP = N i=1 I(f (x i) = 1)
Negative examples.

We mentioned previously that the 0/1 loss was directly related to the accuracy which can be written with the previous terms:

Accuracy = TP + TN TP+TN+FP+FN , (1.13)
or in other words, the percentage of correctly classified instances. It is clear that in the case where P >> N or N >> P , the minority class is under-represented. Figure 1.7 illustrates this problem using a toy dataset over which we learn two linear classifiers, h 1 and h 2 over two classes: the blue class and the red class (in minority). In this example, h 1 only makes 3 errors compared to h 2 that misclassifies 4 examples. From the accuracy point of view, h 1 is better. However, h 1 classifies every example as negative which makes it a poor classifier not able to predict any positive example where h 2 correctly classifies all the minority class (red) at the price of less accuracy (more false positive, FP). From this example, we see that the accuracy can be irrelevant in the class imbalanced setting. In the literature, this problem has been observed many times [START_REF] Guo | Learning from imbalanced data sets with boosting and data generation: the databoost-im approach[END_REF][START_REF] Gary | Mining with rarity: a unifying framework[END_REF][START_REF] Nitesh | Smoteboost: Improving prediction of the minority class in boosting[END_REF][START_REF] Sun | Costsensitive boosting for classification of imbalanced data[END_REF]. We need different metrics to assess the quality of the models in terms of classification that we present in the following. Alone, Precision (Eq. 1.14) or Recall (Eq. 1.15) do not inform enough to make any conclusion on the classifier performance simply because we can have a precision close to 1 with a recall close to 0 and vice versa. We rather use metrics that combine both of them.

F β score is the weighted harmonic mean between precision and recall. As to offer more flexibility, we can use β to emphasize more on precision or recall.

F β = (1 + β 2) • precision • recall (β 2) • precision + recall , (1.16)
with F β ∈ [0, 1] where F β = 1 is the best achievable value (perfect classifier).

Matthews Correlation Coefficient (MCC) is the geometric mean

M CC = TP • TN -FP • FN (TP + FP)(TP + FN)(TN + FP)(TN + FN) , (1.17)
with M CC ∈ [-1, 1] where M CC = 1 is the best achievable value (perfect classifier).

These metrics are subject to debates in the literature to know which one is the best. In Chicco (2017), the authors claim that the F β score could be overoptimistic in case where the number of positive examples is much higher than the number of positive examples. Indeed, since the F β focuses on the class of interest (the positive class), having an imbalanced dataset with more positives than negatives would highly affect this metric by increasing it while the model could be very bad on the negative class. The authors then claim that the M CC score, not focused on a particular class is a better metric for imbalance problems. However, nothing prevents the F β score from being focused on the negative class if the previous case arises. There also exist different ways of computing precision, recall, the F β score and M CC that are mainly used in multi-class settings:

• Standard: only compute the metric over the class of interest.

• Average: compute the metric for each class and take their mean.

• Micro: compute the TP, FP, FN, and TN for each class and sum them up respectively to obtain a final number for each measure (unsuitable in the class imbalance setting)

• Weighted average: similar to the Average but uses a weight for each class.

While the Average, Micro and Weighted average methods can be good in multilabel classification, their usefulness in binary class datasets is rather limited. Indeed, in this setting, we can assume that the classifier performance on the majority class is always better (since it is biased toward it) and thus we can focus only on the metrics for the minority class which is the class of interest. Moreover, in the binary setting, the confusion matrix offers enough information on the majority class whereas in the multi-class setting all the classes other than the focused one are mixed together. For these reasons, in the following, we only use the Standard method.

Measuring the potential of a model

We now look at the model performance evaluation from another angle. So far we assumed that f is a function f : X → Y but most learning algorithms naturally output a score before actually predicting a class. It feels then more natural for these algorithms to write f : X → Z where Z is a decision space. In the rest of this manuscript, we assume that z ∈ Z ⊆ R , P (y = 1|z) z→+∞ ----→ 1 and

P (y = -1|z) z→-∞
----→ 0. Now that we defined the new decision space, we write a function f * such that

f * (x) = +1, iff (x) > τ -1, otherwise.
where τ is the decision threshold. This new parameter τ offers the possibility to potentially create an infinite number of classifiers since for every value of τ the classifier predictions change. Based on this observation, we can review how we assess a model given its output prediction scores. The main drawback of the previous evaluation metrics is that they assess only one level of decision (one decision threshold). For a given classification problem there is no reason for this decision threshold to be the best one. This is all the more true when the data are imbalanced. Figure 1.7 illustrates our previous statement. h 1 is going to be the resulting classifier when using a classical linear classifier, however, by modifying the decision threshold the resulting model is much more relevant (h 1 can potentially be equal to h 2). In fact, the decision threshold is often biased toward the majority class which often leads to undesirable classification.

A popular metric to assess the model performance over all possible decision thresholds and thus estimate the "potential" of a model is the Area Under the Receiver Operator Characteristic curve (AUCROC). Instead of using the quantity directly from the confusion matrix, the ROC curve uses the True Positive Rate (TPR= P (f (x +) > τ) =Recall (Eq. 1.15)) and the False Positive Rate (FPR = FP FP+TN = P (f (x -) > τ)). The use of these probabilities instead of the quantities makes the ROC curve insensitive to the class imbalance.

AUCROC =

1 0 P (f (x +) > τ)dP (f (x -) > τ) = +∞ -∞ P (f (x +) > τ) ∂P (f (x -) > τ) ∂τ dτ = P (f (x +) > f (x -)).
(1.18)

We give an example of the ROC curve in Figure 1.8.

The last evaluation metric that we present is closely related to the precision (Eq. 1.14) and recall (Eq. 1.15). However, instead of computing these metrics for one predefined decision threshold, we compute them for all relevant decision threshold and average them. This metric is called the Area Under the Precision and Recall Curve (AUCPR) or the average precision.

AU CP R = 1 0 P (y = 1|f (x +) > τ)dP (f (x +) > τ) (1.19)
We give an example of the precision and recall curve in Figure 1.9.

In Chapter 3, we present AUCROC and AUCPR in more details and provide a smooth objective function derived from AUCPR.

Sampling Methods

When dealing with class imbalance learning, a standard solution consists in resorting to sampling methods. The idea is to rebalance the dataset such that both classes are well-represented in the training dataset. These methods are mainly based on either removing examples from the majority class (undersampling) and/or increasing the examples of the minority class (oversampling). For the following, we remind that S + defines our minority class and S -the majority class.

Random Undersampling Used in the early ages of machine learning [START_REF] Breiman | Classification and regression trees[END_REF], the idea is to randomly remove examples from S -such that the minority class gets more importance in the eyes of the learning algorithm. We want S - * ⊂ S -where S - * is our new set of examples from the majority class. This method is rather straightforward and has the advantage of reducing the training time by decreasing the number of examples over which the algorithm is learning. However, a strong negative point of this method is the potentially huge amount of information that might be lost by removing those examples which makes the right imbalance ratio hard to find. Compute the distance vector dist(x i , x i) 5:

Multiply distance vector by a random number δ ∈ [0, 1] 6:

x new = x i + δ dist(x i , x i) 7:
Add x new to S min 8: end for Tomek links [START_REF] Tomek | An experiment with the edited nearest-neighbor rule[END_REF] As random undersampling suffers from removing relevant information, Tomek links removes examples from the majority class by selecting those that are the closest to the minority class. In other words, we remove the examples from the majority class, starting by x remove = argmin x i dist(x i , x j) where i ∈ {1, ..., |S -|}, j ∈ {1, ..., |S + | and dist is a distance (e.g. Euclidean distance, dist = (x i -x j) 2). This x remove is called a Tomek link. The process is repeated until user satisfaction. Note that this method is very computationally expensive as M → +∞.

Random Oversampling This is a really naive way to increase the number of examples in the minority class S + such that {x i , y i } O i=1 ∼ {x i , y i } P i=1 ∈ S + where O > P . However, such oversampling method is prone to overfitting in case of extreme class imbalance ratio. As well as for undersampling, many different methods were then introduced based on SMOTE such as Borderline-SMOTE [START_REF] Han | Borderline-smote: a new oversampling method in imbalanced data sets learning[END_REF] or ADASYN (He et al., 2008) and hybrid methods that we present later. Note that, in the literature, SMOTE is used with only one random number for the whole feature vector. However, in Chawla et al. (2002), the algorithm presenting SMOTE has a random number for each feature. These two versions differ mainly in the space where they add new synthetic examples. The version using only one random number adds new examples on the line connecting the two examples from the minority class.

SMOTE Synthetic Minority Oversampling

Actual class Positive

Negative There is no study on these two methods and the original paper does not clearly state which one it uses. However, we believe that using a single line to create new examples is not enough for high dimensions of the vector x.

Predicted class Positive C(1, 1) C(-1, 1) = c -1 Negative C(1, -1) = c 1 C(-1, -1)
When the dataset contains categorical features the distance between two points is not straightforward. Indeed, Alg. 4 only works for continuous features. In a small variant of SMOTE, the authors propose to penalize the distance between two points based on how many times their categorical features differ. In practice the authors propose to add the median of the standard deviation of all continuous features. In other words, the distance between two points is increased by a certain value multiplied by the number of times their categorical features differ.

Cost-Sensitive Learning

Sampling methods are a way to balance the dataset when it is very skewed. However, they have main drawbacks: they remove potentially relevant information or they add new examples that should not exist. An alternative to a sampling method is to weigh the examples during the training such that the minority class gets more importance. To present this kind of learning, we can redefine our cost matrix as presented in Table 1.4.3 (similarly to Table 1.1). Note that we don't usually set a cost on well classified instances. The application of these costs can be straight forward using the objective function R:

R cost = P i=1 c (f (x i), 1)c 1 + N i=1 c (f (x i), 0)c -1 . (1.20)
Eq 1.20 allows the user to give more importance to the minority class. Now, in some specific applications, examples from the minority class are not equally important. For that reason, one can redefine the costs such that each example is weighted by a relative importance. For example, in fraud detection, one could assume that examples with the highest amount are more important than the others. As we will present in Chapter 2, while it seems that this method is suited for fraud detection, there are many constraints from the real life that make the cost very hard to find.

Threshold learning

We presented before that most learners are based on a decision threshold where

f * (x i) = 1 if f (x i) > τ and f * (x i) = -1 if f (x i) ≤ τ .
In fact, the decision threshold τ is implicit in most learning algorithms. For example, a perfect boosting model gives F (x +) > 0 for positive examples where F (x -) < 0 for negative examples. The decision threshold is simply set at 0. However, in case of imbalance learning, this implicit value τ can be disastrous. For example, a basic classifier learned over a dataset where ρ = 1000 is highly biased toward the negative class with a high risk of having f (x n) = 0, ∀x n ∼ D which yields an accuracy of 99.9% but is useless from the positive class perspective. In fact, even changing the distribution using sampling or cost-sensitive learning techniques may give a misleading implicit decision threshold (Dal Pozzolo et al., 2015c;[START_REF] Provost | Machine learning from imbalanced data sets 101[END_REF][START_REF] Yu | Odoc-elm: Optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data[END_REF]. This section presents threshold learning methods which assume that the classifier already has a good knowledge of the task but the best decision threshold is still to be found. We give an intuitive example in Figure 1.7.

In the previous evaluation metrics, the decision threshold τ is not fixed such as ROC (Eq. 1.8) and AUCPR (Eq. 1.9). In fact, these curves can help us to decide what decision threshold is the best. A straightforward approach is to have a holdout set over which we compute the previous curves and pick the best threshold. The reason why this is done experimentally is that every real life classification task, and not only the ones that suffer from the class imbalance problem, are under strong user preferences. Clearly, depending on the problem, one would prefer precision over recall when another would do the opposite. We give more precise examples in Chapter 2.

The goal of the thresholding method is to optimize a decision threshold dependent evaluation metric such as the F 1 score. Many different research highlighted the need to use this technique, especially when sampling or cost-sensitive methods were used (Dal Pozzolo et al., 2015c,b). In Parambath et al. (2014) the authors present an optimization method based on cost-sensitive learning to maximize the F 1 score and even then, the authors advise adjusting, a posteriori, the threshold based on the classifier scores. Their claim is that by optimizing the F 1 score, the knowledge of the classifier is better suited.

Ensemble learning for the class imbalance setting

So far we presented general methods that could be applied to most learning algorithms. We already presented ensemble methods whose idea is to combine a set of classifiers to achieve better performance. In fact, there exist different ensemble methods that are dedicated to address the imbalanced case scenario. Balance Cascade and Easy Ensemble [START_REF] Liu | Exploratory undersampling for class-imbalance learning[END_REF]

S + ∪ S - k ⊂ S -such that |S + | = |S - k |.
The experience is repeated until we reach the number of classifiers wanted by the user. This method is a generalization of [START_REF] Chen | Using random forest to learn imbalanced data[END_REF] where they use this same process for random forests.

Balance Cascade The idea of cascade algorithms is very similar to boosting in the sense that we want the new learners to rather focus on misclassified instances. The principle is based on the fact that if x ∈ S is correctly classified by h k-1 (x), then it is considered as redundant in S and so is discarded such that h k only accesses S \ x. In Balance Cascade algorithms, the idea is the same but instead of removing correctly classified examples from S, it rather only eliminates the examples from the majority class S -that are well classified. In other words, Balance Cascade algorithm aims at building different classifiers (not necessarily weak) over a balanced class distribution. Balance Cascade follows the same bagging schema as Easy Ensemble by taking into account the example removed:

S + ∪S - k ⊂ S -\x - such that |S + | = |S - k |.
For both methods, in practice, the decision threshold τ k for each classifier h k is defined by the user. More particularly, in Balance Cascade, the objective is to have models with a very low false negative rate. The final prediction of the learned classifiers for both methods is the average of the outputs for all learners using their specific thresholds:

F * L = sign(L k=1 h k - k=1 τ k).
In practice, any classifier that outputs scores is suitable for the h k . In [START_REF] Liu | Exploratory undersampling for class-imbalance learning[END_REF], the authors use Adaboost such as to do a weighted average using the weighted linear combination of the weak learners from the boosting model.

AdaCost Well-known cost-sensitive boosting methods are built around Adaboost. In fact, many versions of Adaboost have been invented such that the cost is taken into consideration during the learning process. The straightforward approach in Eq 1.20 is one of them and is called AdaC2. The update of the sample weights becomes:

w i,k+1 = w i,k e -y i α k h k c y i .
Nikolaou et al. (2016) present a comparison between the standard Adaboost method and many different cost-sensitive boosting methods. The conclusion, similar to the one we give in Chapter 2, is that using the standard Adaboost with calibrated probability estimates and shifted decision thresholds is the best option. Nonetheless, in specific applications such as fraud detection, these methods may be a solution to maximize the savings, for example. In Chapter 2 we show how this could be used with its advantages and drawbacks.

Why using Gradient Boosting in this thesis?

In Figure 1.12, we illustrate the re-weighted distribution by a boosting algorithm along its iterations. We take a simple imbalanced dataset (Figure 1.11) and learn a gradient boosting model. At each iteration, we can have the relative importance of each example "through the eyes" of the boosting algorithm by simply getting |r k i |∀i ∈ {1, 2, ..., M }. Also, note that it is common practice to initialize the first weak learner regarding the imbalance ratio such that P i=1 h 0 (x + i) = 1 and

N i=1 h 0 (x - i) = -1.
Here we rather initialize h 0 = 0 and let the gradient boosting re-weigh the examples naturally.

We emphasize that, by nature, boosting algorithms focus on hard examples. When the class distribution is highly imbalanced, the boosting algorithm is driven by the minority class. In Figure 1.12, we show this phenomenon. After very few iterations (T < 5), the importance of a positive example far exceeds the importance of a negative example. Moreover, after more iterations, the only examples considered in the learning process are the ones near the positive examples. At that point, the weak learners find rules that only concern this little subset of points. This can be seen as an undersampling scenario where only a small fraction of negative points remains.

This little experiment motivates our choice of using boosting in the imbalance class setting. Indeed, boosting does not suffer from the class imbalance as much as other The more intense to the black colour, the more important is an example at this boosting iteration. At first, it does not have a particular focus and sees all the examples equally important (most left figure). After very few iterations, a positive example has much more importance than a negative example (middle figure). Finally, the figure on the right shows the data point importance after many rounds. In fact, at this point, the new weak learner is learning over a very small subset containing the hardest samples to classify in the dataset. learning algorithms. Although sampling methods combined with boosting might have a relevant impact in case of specific objectives, boosting naturally modifies the original class distribution by re-weighting iteratively the examples in regards to how well they were classified by the already learned weak models.

In the next chapter, we will focus on a specific problem where the class of interest is highly under-represented given by an industrial context in which this thesis takes place. In this setting, we will present imbalanced learning methods applied to a large scale dataset on credit card transactions.

Chapter 2

Learning with Extreme Imbalanced Data: Application to fraud detection.

Abstract

In this chapter, we first present a general overview of a specific classimbalance problem: the anomaly detection. We then focus on the supervised fraud detection case accompanied with a brief description of Worldline's fraud detection system that served as a realistic environment for the realization of this thesis. This mainly comes down to dealing with a high imbalance setting coupled with large-scale issues that we characterize as extreme imbalanced data. In this context, we provide an analysis of the main metrics used for model evaluation and carry an experimental study with the state of the art method for fraud detection. Our analysis illustrates that the de facto standard machine learning techniques do not necessarily allow a behaviour adapted to the fraud detection problem we consider in the context of two settings: (i) sampling methods (ii) cost-based classification methods. We finish this chapter with a conclusion and open new directions for the extreme class imbalance data problem.

Introduction

In Chapter 1, we reminded some important notions and state of the art methods for class-imbalance problems. In this chapter, we extend the setting of imbalanced learning to a more extreme case. Specifically, we consider two main assumptions:

1. An extremely imbalanced dataset (ρ > 500) 2. A high number of observations (M > 1, 000, 000) These settings arise recently in different fields such as bioinformatics [START_REF] Triguero | Rosefw-rf: the winner algorithm for the ecbdl14 big data competition: an extremely imbalanced big data bioinformatics problem[END_REF] or fraud detection [START_REF] Wei | Effective detection of sophisticated online banking fraud on extremely imbalanced data[END_REF] where companies have to deal with large-scale data. However, apart from few publications, it seems that there is a clear lack of study on datasets that meet the above conditions in the literature [START_REF] Krawczyk | Learning from imbalanced data: open challenges and future directions[END_REF]. We define this as extreme imbalanced data where the imbalance ratio is extreme but the examples from the minority class are abundant.

An application that often fits the above conditions is the anomaly detection problem. More specifically, at Worldline, we focus on one of its subdomains which is the fraud detection task. In this chapter, we wish to unravel the effectiveness of previous imbalanced learning methods described in Chapter 1 within the fraud detection application. To this end, this chapter is divided in three main parts. First, we introduce the anomaly detection problem and one of its sub-domains, the fraud detection task. We then present the specificity of Worldline Fraud Detection System and the data. Finally, we discuss the cost sensitive approach for such problem and propose an experimental study of the state of the art methods for credit card fraud detection datasets.

Anomaly detection

Anomalies refer to the case where relatively few observations out of large amount of data are abnormal in the sense that they do not follow a well-defined notion of normal behaviour. Anomaly detection is a very active research topic [START_REF] Chandola | Anomaly detection: A survey[END_REF][START_REF] Charu | Outlier analysis[END_REF][START_REF] Akoglu | Graph based anomaly detection and description: a survey[END_REF][START_REF] Ahmed | A survey of network anomaly detection techniques[END_REF]. In the following we present different characteristics of these anomalies from a machine learning point of view.

The anomaly detection problem can be divided in two main settings that depend on whether labels are available or not. In the first case, supervised machine learning tend to be used while for the second case, unsupervised machine learning is the default choice. In both cases, while the class imbalance problem is present and can potentially make the learning process challenging, it turns out that it is not necessarily an issue in itself but is rather relative to the problem complexity. Figure 2.2 presents two different anomaly detection problems that are conducive to outlier detection (unsupervised learning). In this problem, it is rather easy for an unsupervised method to actually separate the normal data (in blue) from the abnormal ones (in red). However, this is obviously not the case of most anomaly detection problems since 1) datasets can be very noisy and 2) some applications such as fraud detection are subject to concepts drifts that make the fraudulent behaviour hard to differentiate from the normal ones. This latter makes the task more complex even from a human expert point of view. Figure 2.3 is an example of datasets where anomalies would be indistinguishable from the normal examples if we did not have the labels. In this kind of setting, finding the anomaly is very hard for an unsupervised learning approach while it is very challenging but a more achievable task for a supervised learning approach. In our case, labels are available which allows us to use supervised learning approaches.

In general, we can distinguish three main types of anomalies that we summarize here:

Point anomalies A single data point is sufficient to identify its abnormality compared to normal observations. A simple example is shown on the left in Figure 2.2.

Contextual Anomalies

In this type of anomaly, one can only spot the abnormal data point by looking at the context in which this observation belongs. For example, on the right of Figure 2.2 we see a time series problem where at some point the data do not follow the sinusoidal function. However, unless you take a step back and look at the behaviour of the points near the anomaly, there is nothing that tells you that this is indeed an anomaly simply (i.e. very similar observation are no anomalies at specific times).

Collective anomalies While the point anomaly case let us see that an example is actually an abnormal just by looking at this observation, a collective anomaly exists only if we can annotate an anomaly based on multiple instances. Figures 2.3 shows such a case where only by looking at all anomalies we can extract a pattern.

In fact, it is common to see all types of anomalies gathered in one complex problem. There exist many applications that lies in the anomaly detection problem. In health care an abnormal pattern can indicate a potential illness. In Zacharaki et al. (2009), the authors present an example of such application where they focus on tumour detection in MRI images. While this subject is very interesting, it suffers from a main difficulty which is to gather enough observations (MRI images) with their labels (expert decisions). In fact we can observe that most of the publications on this domain suffer from a lack of available data [START_REF] Kourou | Machine learning applications in cancer prognosis and prediction[END_REF] due to their sensitive nature. While few recent studies are able to access large amount of real life data for building health care machine learning model [START_REF] Chen | Disease prediction by machine learning over big data from healthcare communities[END_REF], it still remains a rare commodity in the public domain. This application tends to belong in the point anomaly case where a single image is enough to detect whether a patient is ill or not. However there might be cases where having a prior knowledge on the patient can be relevant for the anomaly detection and thus considering the contextual anomaly case is relevant too.

Another promising domain for anomaly detection is in security. The main difference with health care is the large amount of data available and continuously increasing. Indeed, whether in sensors anomaly detection [START_REF] Xie | Anomaly detection in wireless sensor networks: A survey[END_REF]; Hill and Minsker, 2010), in Network intrusion detection [START_REF] Tsai | Intrusion detection by machine learning: A review[END_REF] or in Danger detection in crowded scene (Li et al., 2014b), the data is often available, however, having the ground truth is a different story. Indeed, the labels for such data are often not available for the simple reason that it is very costly for an expert to label such dataset (i.e. a single human is particularly slow for such task). In this application, many scientific contributions apply unsupervised or semi-supervised learning method but as it has been mentioned in Sommer and Paxson (2010), these methods still fail in real world systems where they suffer from specific constraints given by the environment. Recent studies as in [START_REF] Javaid | A deep learning approach for network intrusion detection system[END_REF] show promising results in a real-world application using deep learning methods, however, it assumes a labelled dataset. This domain most likely lies in the collective anomaly case where a single data point is very difficult to classify as an anomaly (wrong value of a sensor, network attacks). Therefore we rather look at a collection of observations to conclude that they are anomalies.

Fault diagnosis [START_REF] Gao | A survey of fault diagnosis and fault-tolerant techniquespart i: Fault diagnosis with model-based and signalbased approaches[END_REF][START_REF] Cai | Bayesian networks in fault diagnosis[END_REF]) is a growing application where the goal is to detect and identify abnormalities and faults as early as possible for minimizing performance degradation and avoiding dangerous situations. In [START_REF] Ince | Real-time motor fault detection by 1-d convolutional neural networks[END_REF] they propose an approach based on neural networks to early motor fault detection. In this application, obtaining the real label can be challenging as one needs to observe real system failure to actually have the anomaly in the dataset. However, in this paper, the authors simulated the failures with simple tricks. While it can be argued that real failure might be very different from simulated ones, it allows the authors to completely control the dataset over which the machine learning model is trained. This application enters in the contextual anomaly case since this is mostly a time series problem.

The last domain of anomaly detection presented in this manuscript concerns finance. Naturally, financial machine learning applications are of great interest for industrials. The most famous one is fraud detection (Bolton and Hand, 2002; Abdallah et al., 2016). Frauds have been observed since the first times of humanity and as long as they were done in a society there has always been a consensus to fight them. Machine learning research also increased through the years on this topic and is today a very active subject (Figure 2.1 presents the trend of research publications concerning the problem of fraud detection). Beside the attractive financial aspect of fraud detection, a reason for its popularity is also the number of applications that fits in this context:

• Click in mobile advertisement [START_REF] Badhe | Click fraud detection in mobile ads served in programmatic inventory[END_REF]).

• Taxes [START_REF] Bonchi | A classification-based methodology for planning audit strategies in fraud detection[END_REF][START_REF] Van Vlasselaer | Gotcha! network-based fraud detection for social security fraud[END_REF].

• Telecommunication (Farvaresh and Sepehri, 2011; Jain, 2017).

• Health insurance (Kirlidog and Asuk, 2012; Rawte and Anuradha, 2015).

• Automobile insurance (Wang and Xu, 2018).

• Check (Hines and Youssef, 2018) also subjects to many patents [START_REF] Kotovich | System and method for check fraud detection using signature validation[END_REF][START_REF] James | Check fraud detection techniques using encrypted payee information[END_REF].

• Ratings/Reviews [START_REF] Hooi | Birdnest: Bayesian inference for ratings-fraud detection[END_REF].

• Credit card transactions (Bolton and Hand, 2002; Dal Pozzolo, 2015).

The fraud detection application is likely to lie in the contextual anomaly. For example, in case of transaction fraud detection, genuine pattern can be specific to the cardholder or to the merchant. That being said, collective anomalies (e.g. repeated transactions/ratings/clicks) and point anomalies (e.g. illogical characteristics of a data point) also appear in such data and allows us to detect the fraud.

In all these applications, a redundant gap between the public research and the industry can be found. In On the right anomalies there is no direct pattern and detecting them is a challenge. In both problems, unsupervised learning is not an option. In this context, it is crucial to have labelled examples.

Credit Card Fraud Detection

In transactions, a fraud can be defined as stealing someone's identity to briefly acquire its privileges which has the main consequence for the fraudster to earn money illegally. There exist many different strategies for the fraudster to operate. We present briefly the most common procedures both in offline and online scenarios.

Offline fraud is a rare type of fraud where the fraudster actually steals the physical credit card from the cardholder or copy the magnetic stripe. In most cases, the victim contacts the bank to instantly block the lost credit card such that following transactions made on this card get refused.

Online fraud is today the typical fraud where fraudster steal the credit card's information through malicious online means. This type of fraud is the most dangerous as the fraudster is not aware of the theft [START_REF] Patidar | Credit card fraud detection using neural network[END_REF] and may happen through different strategies. Among the most frequent strategies, the first one is skimming where the idea is to steal the cardholder information during a genuine transaction through a modified payment terminal that stores all the card information. In recent years, ATMs have been used by skimmers to extract card information (Krebs, 2010) (i.e. by setting fake keyboard, a camera or other tools that capture the relevant card information). Another very popular strategy is called phishing where the fraudster uses a website to steal the card information by either cloning an existing one or simply by creating one with unsafe payment processes. Other strategies exist such as spreading Trojan-type malware which has become a very common practice. This kind of strategy is, however, not as effective as the previous ones given that it is hard to extract the relevant credit card information. Finally, simple tricks such as fooling the cardholder with malicious mails are also common.

The two types of fraud just described are still relevant today, however, it has not always been the case. Indeed, the credit card system was popularized in 1950 and, at that time, the first frauds were obviously offline. The first attempt to counter these frauds was to use a hologram that could be recognized by the merchant to prevent fake id cards [START_REF] Lopata | Fraud resistant credit card system[END_REF]. When e-commerce started in the 90s, breaches were abundant for fraudsters to start designing fraudulent strategies. As soon as the online business spread all over the world, the need to have more elaborated fraud detection systems was crucial and first research papers on credit card fraud detection appeared with expert systems [START_REF] Leonard | Detecting credit card fraud using expert systems[END_REF]. In these systems, the fraud detection is mainly based on human experts that analyse the data thoroughly.

In the following we briefly present the state of the art of machine learning applied to the credit fraud detection problem. As we mentioned previously, this can be seen as a temporal problem where transactions from a card holder follow a certain order. Basically, a cardholder makes series of transactions that implicitly define its behaviour. Clearly, taking time into account is important and apart from models that can naturally use temporal relations, a common practice is to build new features that take these relations into account.

In [START_REF] Whitrow | Transaction aggregation as a strategy for credit card fraud detection[END_REF] and Bahnsen et al. (2016) the authors explore this idea and design new handful sets of features such as average amount last 5 transactions, time since last transaction ... In fact they also define new features to describe the cardholder behaviour such as the average daily/week/month expenses, min and max amount spent in one transaction. This approach is called feature engineering and is a common way to give more relevant information to the model. This is a common practice to quickly improve the performance of a model especially in fraud detection where the raw set of feature is not accompanied with cardholder historical information [START_REF] Dal Pozzolo | Learned lessons in credit card fraud detection from a practitioner perspective[END_REF]. As it turns out, terminals and merchants can be used in the exact same way to build historical features of a specific merchant or terminal [START_REF] Van Vlasselaer | Apate: A novel approach for automated credit card transaction fraud detection using network-based extensions[END_REF]. Finally, new methods show interesting results in building these features automatically and implicitly (Fu et The creation of these new features is also a way to counter the concept drift that occurs through time. Indeed, fraudsters strategies tend to evolve with time. However, these new concepts are very hard to identify since they may be due to many changes. For example, during the Christmas period, each year, the behaviour of millions of customers change which makes the change in the fraudsters behaviour very hard to detect. One way of identifying them is often to observe a drop in the model performance, however, at this point it is often too late to recover from the loss. In Dal Pozzolo et al. (2015a), the authors present a method to build more relevant machine learning models using delayed feedback (i.e. labels arrive only a short period after the related transaction rather than being directly available). In this case, the authors take the time into account and thus relearn models as data arrive. This type of learning is called incremental learning. Typically, models a trained over some specific time periods (e.g. days, months,...) and retrained from scratch whenever sufficient data is available. In Kulkarni and Ade (2016), the authors use ensemble methods and imbalanced learning methods coupled with incremental learning.

Finally, as we may have implied previously, this task of fraud detection was found to be closely related to the domain of imbalanced learning He and Garcia (2008); [START_REF] Phua | Minority report in fraud detection: classification of skewed data[END_REF]. In Chan et al. (1999), the authors introduce a first experimental study where they use AdaCost. Their work showed the great potential of ensemble methods on the credit card fraud detection task. However, they also emphasize on the fact that the costs are really hard to find and that the only solution to find them is through a lot of trials and errors. In [START_REF] Akbani | Applying support vector machines to imbalanced datasets[END_REF], the authors propose a new algorithm based on SVM to compete with SMOTE on the specific case of fraud data. In fact, this imbalanced learning approach to credit card fraud detection was adopted by many recent contributions. In Padmaja et al. (2007 To summarize, we reviewed 3 main approaches to solve the fraud detection task on credit card transactions. The first one is manual feature engineering that relies on expert knowledge to handcraft new sets of features. This approach requires a lot of human effort to analysis the data thoroughly and may be unrealistic in case of concept drift where relevant features can change through time.

To cope with the drawbacks brought by human expertise, people started investigating automatic feature engineering. These techniques are mainly over models that handle spatial information (CNN or LSTM type of neural networks). In our context, this spatial information is time where these models try to extract patterns with regards to the sequence of transactions. These approaches seem to be promising, however, due to the potentially infinite amount of information that could be created as we look further in the past, it remains complicated to reach expert-level performance.

The first two approaches are data specific. In fact, the third approach that we identified is not an alternative to the two previous but could rather be combined with the two previous to build a more relevant model on such data. This is the imbalanced learning approach. The idea is to view the credit card fraud detection as an imbalanced classification problem. Typically, sampling methods and costsensitive learning methods are used. As it turns out, cost-sensitive learning comes in with some difficulties related to the credit card fraud detection that we detail in the following.

Actual class Fraud Genuine

Predicted class

Fraud c a c a Genuine Amt i 0 2016). The idea is to apply specific costs for each transaction. In such problem we can write the confusion matrix as shown in Table 2.4 where c a (regardless of its true label) is the cost of blocking a card and Amt i the amount of the transaction x i . The value of c a is very specific to the fraud detection system and the agreement that Worldline has with banks and merchants. In our context setting a price for blocking on a specific transaction is very difficult since transactions follow different constraints (e.g. different merchants and different banks that not not always undergo the same process).

From an expert point of view, emphasizing on high amount transactions is not necessarily optimal to save money. This is a very counter-intuitive statement that we try to explain in the following.

The first important point is that frauds with low amounts are often a strategy used by fraudsters to test whether a credit card actually works. Often, these transactions are made in specific merchants that accept transactions with few or no security level. Moreover, when these low amount fraudulent transactions happen, it often announces bigger amount fraudulent transactions. We remind that machine learning models work in near-real-time thus they are not allowed to block the transaction being analyzed. Thus, blocking the card after the low amount fraudulent transaction is made is much more valuable than waiting for the high amount transaction. In other words, high amount fraudulent transactions would have to be accepted and customers refunded even if our model is good at detecting them.

A concerning point regarding the cost of a false negative (a fraud not detected by the system) is that our dataset comprises a lot of transactions where Amt i = 0 (around 3% of the genuine transactions and around 12% for fraudulent transactions) which would imply that they are irrelevant to the model. The reasons for such transaction to happen are many, for example, gas stations often charge a 0 euro transaction to make sure that the cardholder can pay the gas that he will take.

It follows from the previous points that setting a higher importance for transaction with high amounts would tend to have a negative impact on the recall (less fraud detected). Moreover, taking another approach such as generally increasing the weights for positive examples would tend to make the model produce more false alert. This could cause a negative impact on the precision.

To conclude on cost-sensitive learning with financial costs, while it seems like a good approach for the credit card fraud detection problem we presented some concerning points when applying such technique to the real use-case. That being said, there exist fraud detection problems where this is applied quite effectively such as in cheque fraud detection [START_REF] Metzler | Tree-based cost sensitive methods for fraud detection in imbalanced data[END_REF] or financial statement fraud detection (Kim et al., 2016) while the choice of the cost c a remains mysterious. That being said, we believe that further study with the production team of the FDS at Worldline to define these costs could potentially open different nice perspectives. Today, it remains very complicated to estimates the cost fairly.

Worldline's Fraud Detection System

Fraud Detection Systems can be complicated due to the real life constraints. We explain the one implemented at Worldline based on Figure 2.4 that was kindly shared by the authors of Dal Pozzolo et al. (2018). At the input of such system are the transactions coming from real-life events (we give more details on these transactions in the following section). The first step is a very basic step made at the terminal level where simple verification process are performed such as if the correct pin code was entered or if the account has enough money for the purchase.

The transaction then enters the transaction blocking rules block.

What we just described enters in the real-time process where there is a strict response time limit (≤ 10ms). This process is able to block the transactions. Thus, the rules that make up this process must be very fast. An example of such rule is given in the following:

if trx amount > 5 × mean carholder amount spent and trx country = cardholder country and is ecom = F alse then is f raud = T rue

In the near-real-time process, the main goal is to make a deeper analysis of the transaction. However, the main difference with the real-time process is that the transaction is never denied since it undergoes several operations that may take up to several minutes. They are composed of two main blocks: the expert-driven rules and the data-driven rules. In the former, experts (also called investigators) do a day-to-day analysis to build, update, and remove rules such that the performance remains stable. In reality, these rules are not trivial to compute. In fact, a single rule often contains several dozen lines of SQL code which obviously is complicated to maintain. These rules are monitored with specific metrics such as fraud detection rate (the true positive rate also called recall) and false alert rate (or false positive rate) and are removed if they exceed a certain threshold for any of the metrics. The experts are in charge to label the transactions either as fraudulent or genuine. This labeling part follows some guidelines. First, if there is no claim for a transaction to be a fraud after a given number of days (i.e. 30 days), confidence in the genuine label is close to 100% and is set in this way in the database. At the same time, experts have to check risky transactions raised by both the scoring rules and the data-driven model. If a transaction if found to be fraudulent, the card is eventually blocked and will be refused in future transactions. Finally, they are also in charge to label the transactions as fraudulent whenever a customer claims that a transaction in its bank account is a fraud.

Clearly, experts have to handle a lot of tasks which has a non-negligible cost. Specifically, Worldline can't hire enough experts to review all transactions since this would cost more than the frauds themselves and they are only able to achieve a specific amount of work in a given time. This makes the credit card fraud detection very costly in both money and time. This latter brings us to the datadriven part where rules are built automatically (e.g. machine learning models) based on the data they receive. As for the experts rules, their performance is monitored throughout time. It turns out that, today, in production, there is more effort toward expert systems rather the data-driven models. There are multiple societal reasons for that such as a poor confidence of customers in AI approaches for their solutions or simply a fear of human workers to be double-crossed by the AI. An important reason is the fact that, at the time or writing, machine learning models did not prove to reach human level performance on the task. One objective of this PhD thesis is to show that machine learning is today able to really help the experts in their daily job.

Regarding our data, it should be added that, even if the transaction is denied

Rules

Fig. 1. A scheme illustrating the layers of control in a FDS. Our focus is mainly on the data-driven model and the alert-feedback interaction, which regulates the way recent supervised samples are provided.

Only a limited number of alerted transactions are reported to the investigators, which represent the final layer of control. 5) Investigators: Investigators are professionals experienced in analyzing credit card transactions and are responsible of the expert-driven layers of the FDS. In particular, investigators design transaction-blocking and scoring rules.

Investigators are also in charge of controlling alerts raised by the scoring rules and the DDM, to determine whether these correspond to frauds or false alarms. In particular, they visualize all the alerted transactions in a case management tool, where all the information about the transaction is reported, including the assigned scores/probabilities, which in practice indicate how risky each transaction is. Investigators call cardholders and, after having verified, assign the label "genuine" or "fraudulent" to the alerted transaction, and return this information to the FDS. In the following we refer to these labeled transactions as feedbacks and use the term alert-feedback interaction to describe this mechanism yielding supervised information in a real-world FDS.

Any card that is found victim of a fraud is immediately blocked, to prevent further fraudulent activities. Typically, investigators check all the recent transactions from a compromised card, which means that each detected fraud can potentially generate more than one feedback, not necessarily corresponding to alerts or frauds. In a real-world FDS, investigators can only check few alerts per day [45] as this process can be long and tedious. Therefore, the primary goal of a DDM is to return precise alerts, as investigators might ignore further alerts when too many false alarms are reported.

B. Features Augmentation

Any transaction request is described by few variables such as the merchant ID, cardholder ID, purchase amount, date and time. All transactions requests passing the blocking rules are entered in a database containing all recent authorized transactions, where the feature-augmentation process starts. During feature augmentation, a specific set of aggregated features associated to each authorized transactions is computed, to provide additional information about the purchase and better discriminate frauds from genuine transactions. Examples of aggregated features are the average expenditure of the customer every week/month, the average number of transactions per day or in the same shop, the average transaction amount, the location of the last purchases [7], [8], [23], [41], [45], [66]. Van Vlasselaer et al. [63] show that additional informative features can be extracted from the social networks connecting the cardholders with merchants/shops. Aggregated features are very informative, as they summarize the recent cardholder activities. Thus, they allow to alert transactions that are not suspicious by themselves but might be unusual compared to the shopping habits of the specific cardholder. Features augmentation can be computationally expensive, and aggregated features are often precomputed offline for each cardholder on the basis of historical transactions. at any of verification process, it still enters Worldline's database. In the end, data are stored for a period of 6 months (with respect to the data protection laws) over which the experts can build new rules. After this period, data is removed permanently. In the following section we give a description of the data that Worldline receives continuously.

The Data

In this section we detail the data over which Worldline based its fraud detection system. First we would like to point out that a very small sample of Worldline's data containing 285, 000 transactions has been published on Kaggle1 and is, at the time of writing, the most famous dataset on this platform with twice as much popularity score than the second most one2 . This clearly confirms the attractiveness of the fraud detection task and should be a motivation for Worldline to open the data to the public domain (while making sure that they respect privacy and security).

In the data coming from real-life events and over which Worldline bases its rules, each transaction comes in the system with a handful set of features. It basically describes the transaction with different information such as the transaction date/amount, the cardholder birthday/gender/location, the card credit limit/type/expiration date and other different transaction specific variables. In this manuscript we do not focus on the feature engineering but rather take the dataset at hand. The data then have new information such as the average amount the cardholder spent for the past hour, past day, past week and other time-related features built on the same basis.

As we mentioned above, we want to study the class imbalance problem and in this sense we give different relevant figures in the following. In 2000, the percentage of fraud was estimated to occur once out of a thousand transactions (1 : 1000) [START_REF] Lisboa | Business applications of neural networks: the state-of-the-art of real-world applications[END_REF]. Today, the ratio of fraud is relatively similar with an average of one fraud for 700 transactions (1:700). However, the quantity of data increased with time. As a matter of fact, in 2013, Worldline received around 330, 000 transactions per day for a total of 120, 000 cards. Today, the average number of transactions received per day is around 680, 000 for a total of 440, 000 cards. In average per day, we have around 1100 fraudulent transactions for a total of 370 fraudulent cards.

It is interesting to note that today, approximately 90% of the frauds are made online (i.e. e-commerce). Figure 2.5 presents the day-to-day flow and the cumulative graph of data arriving in Worldline's FDS. In the left figure, we can distinguish days of the week by the number of transactions arriving in the FDS where Sundays are the lowest points in the repeated pattern and Saturdays are the highest peaks.

In the right figure, we show that the quantity of data at hand grows quickly and linearly with time.

In machine learning it is rare to be able to visualize the data as the number of dimensions largely exceeds the number of dimensions that we can visualize. However, we believe that it may help to understand the task and thus we provide different visualization using two different dimension-reduction methods known as Principal Component Analysis [START_REF] Pearson | Liii. on lines and planes of closest fit to systems of points in space[END_REF] or PCA in the following and T-Distributed Stochastic Neighbour Embedding (Maaten and Hinton, 2008) or T-SNE in the following.

PCA seeks a linear combination of the features such as to extract the maximum variance. It then removes this variance, repeats the process with a second linear combination and repeat the process and so on. These linear combinations are called the principal components and are linearly uncorrelated to each other. Since we want to plot them in a 2 or 3 dimensional space, we only want to compute the first 2 or 3 principal components.

T-SNE is a more advanced method to visualize data in 2 or 3 dimensions. The main reason for using this method is its ability to compute non-linear combinations of the features which is not the case for the PCA. This offers a different visualization of the data. T-SNE first creates a probability distribution based on the distances between the examples. In a second step, it learns a low-dimensional space that follows this probability distribution as best as possible. Note that T-SNE has the main drawback of not defining a specific function which prevents the projection of new data point in the visual space. Figure 2.8 shows a 3D visualization of the data built with T-SNE where we can see clusters that represent different behaviour. On the upper left, two clusters represent two different merchants. The one on the most left is a risky merchant in the sense that fraudsters use it to make fraudulent transactions. Interestingly, the frauds on the cluster are gathered on the same space and may be relatively easy to detect. These kinds of visualization may be very interesting from an expert point of view to understand the data, however, at the time of writing these tools still need improvement to allow an appropriate use for the experts. Moreover, as we stated, T-SNE do not allow new data points to be projected in the already built dimensional space which is a non-negligible drawback. It is important to note that these figures are highly misleading in the sense that the class distribution has been readjusted such as to ease the visualization. Indeed, to have an idea of the real class distribution, the number of blue points should actually be much times higher. In this setting, the genuine transactions (blue points) completely overlap the fraudulent transactions which makes the fraud detection problem a very difficult task. On the other hand, it also shows that sampling methods may be an interesting way to help the models to learn over this kind of data.

Lastly, as we mentioned previously, data are subject to changes in time (e.g. concept drift). This is also the case for the imbalance ratio that varies slightly with time as shown as Figure 2.9 where we see the positive ratio π change over time. The same goes for the time of the day (Figure 2.10. Note that the changes in this π can either be caused by fluctuations in the amount of genuine transactions or fraudulent transactions or both at the same time (i.e. it does not necessarily means more frauds).

In this section, we study the effectiveness of imbalanced learning methods for credit card fraud detection. The state of the art is today divided between three domains: cost-sensitive learning, sampling methods and ensemble methods. We present the in the following applied to the specific use-case. Interestingly, gradient boosting (GB) hasn't been extensively used in such problem. In this experiment, we include GB as its internal properties allows a nice behaviour on imbalanced data (see Section 1.4.5). In Nikolaou et al. (2016) they support this idea by showing that boosting does not benefit from cost-sensitive learning since it naturally assigns higher cost for the minority class. We also combine GB with the three sampling methods, namely, random undersampling, SMOTE and EasyEnsemble.

Experiments with

An interesting property of RF and GB is their implementation using trees. The rules that make up these trees are interpretable and similar, in some sense, to the expert rules which is a non-negligible asset. Indeed, interpretability is today a priceless feature for a machine learning model to be able to justify potential sensible decisions that the model could make.

We now present our experimental protocol with its specific settings. As we mentioned, the data we work on are related to time. Indeed, it would be unfair for a machine learning model to learn on the future to predict past frauds. The main reason is that it does not apply in the realistic case. Another important reason is that we observed that machine learning models could overfit in some way (by combining sets of features) to recognize the card and thus would have overoptimistic performance when tested over transactions close to the test regarding the time. To avoid that, we carefully split our in four parts: train, validation, gap and test in the chronological order. The gap is used such as to make sure we do not have the behaviour mentioned above. Figure 2.11 presents these splits.

In the following, we use 2 months of training data, 1 week of gap and 1 month for the test. The imbalance ratio is τ = 557 or π = 0.179% where π = P M = 1 1+ρ is the proportion of positive examples where

P = M i=1 1(y i = 1), N = M i=1 1(y i = -1)
and M is the total number of examples in the training set.

The experiments are carried over a machine with 800 gigabytes of RAM and 56 CPUs. In order to validate our models, we use the hold-out validation set and search for the best hyper-parameters for both the RF3 and GB implementation4 as follows:

• Gradient boosting hyper-parameters: n_estimators ∈ {10, 50, 100, 200, 300, 500, 1000} that defines the total number of weak learners, max_depth ∈ {2, 5, 6, 10, 13, 15} that stops the learning of the tree at a specific depth, eta ∈ {0.001, 0.01, 0.1, 0.3, 0.5} the learning rate and subsample ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 1} that defines the proportion of examples randomly drawn over which a weak learner is trained. This last parameter also implements [START_REF] Jerome H Friedman | Stochastic gradient boosting[END_REF] where they introduce the Stochastic Gradient Boosting algorithm.

• Random forest hyper-parameters: n_estimators ∈ {10, 50, 100, 200, 300, 500, 1000} that defines the total number of trees in the ensemble and max_features ∈ { √ d, log 2 (d)} the number of features to consider at each split of the tree where d is the total number of features. π r ∈ {0.002, 0.003, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} For each combination of hyper-parameters, we evaluate the model on the validation set with the metric over which we want to evaluate the models and select the set of hyper-parameters that maximizes it. The final reported results are then computed over the test set.

Side Effect of Sampling Methods

Now that we explained the experimental protocol we point out the fact that the sampling methods have some drawbacks that have been highlighted in the literature (Dal Pozzolo et al., 2015c,b): 1. It increases the variance of the classifier.

It produces posterior probabilities that may not be relevant on the test set.

In order to handle the variance, we take advantage of the nice generalization of ensemble methods and a large grid-search over a consequent hold-out validation set. The second effect mainly affects metrics based on the decision threshold.

To illustrate this, we present the F 1 score for both RF and GB at different decision thresholds τ . Both model hyper-parameters are selected using the hold-out validation procedure. Figures 2.12 and 2.14 present GB and RF respectively, trained over a balanced training set using undersampling while Figures 2. 13 A first observation is the clear difference between the training and test set figures (left vs. right figures). The first hypothesis why this happen is that the model could be overfitting the training set even with a hold-out validation. Another reason could be caused by a concept drift. Indeed, there might be concepts learned in the training set that do not appear in the test set.

Apart from their shape that heavily change from training to test sets, we can also see that they reach their maximum at different τ . When using undersampling (Figure 2.12 and 2.14), the optimal on the test set is very different from the one on the training set. This can be explained by the huge difference in the prior π in the two sets. For the models learned over the original training (Figure 2.13 and 2.15) it seems that the shape of the curves are more coherent between train and test. That being said, there exist a τ for which the RF, Figure 2.13, achieves a perfect F 1 score on the training set. This clearly shows that the model did overfit (as he test is far from being perfect. This is in fact not the case for GB, Figure 2.13, that show similar curves for both the training and test set and yet, the F 1 score is still not reached at the same τ .

A second observation can be made on the opposition between the balanced and original training set. Here we only focus on the performance obtained in the test sets (right figures). For both models, the conclusion is the same. The class distribution of the training set influence greatly the posterior probabilities. The probability P (y = 1|x) given by the models is in fact shifted toward the class distribution. For example, in Figure 2.12 and 2.14, where the training set is balanced, the optimal threshold is near 1.0 while for the original dataset in Figures 2. 13 and 2.15 the optimal threshold is close to 0.0.

From the previous observations, it is clear that one should carefully redefine the decision threshold. Another possibility is to find a new positive ratio achievable through undersampling such that the posterior probability becomes well calibrated. For example, Figure 2.16 presents a GB model trained over a re-sampled dataset with π r = 1.9% or around 10 times higher than the original dataset. However, to obtain the right π r that gives a good calibration of the posterior probabilities we had to experimentally test many different ratios which is very costly. Moreover, the best achievable F 1 score in this setting is lower than the one using the original training set.

It is clear that metrics such as the F 1 score are highly dependent on the decision threshold and that the default one is in often not optimal. For these reasons, in the following, we tune the decision threshold over the validation set such as to maximize the metric of interest (i.e. F 1 score).

Experiments

We compare RF and GB coupled with the sampling methods from above. We observe 3 different metrics that are very common in class imbalance problems, namely, AUCROC, AP and F 1 score. Since all methods are non-deterministic (i.e. all methods have a random variable) we average their results over 30 runs on the test set. The final results are reported in Table 2.2.

We quickly remind the intuition behind the 3 different metrics we use in this experiment. The F 1 score represents the harmonic mean at a specific decision threshold. It is quite clear that the lower the measure is the less precision and recall we can reach. Thus, when it decreases, the model does more false alerts while catching less frauds. The average precision (AP) is harder to interpret. This measure takes into account every possible relevant decision threshold and computes the precision for each of them. AP is finally the average of these precision. In other words, this measure evaluate the potential of the model or how well it does in average at every decision threshold. It also emphasizes in ranking well the positive instances. We come back to this in Chapter 3. Finally, the AUCROC has a very intuitive explanation as it is the probability of a randomly chosen positive example to be ranked above a randomly chosen negative example. In other words, an AUCROC of 0.5 gives a ranking of the examples completely random.

The first observation on the results is the optimal π r that is in average very different for AUCROC compared to the other metrics. Indeed, while the F 1 score and AP are in agreement regarding this term, AUCROC prefers much higher π r . To understand why this occurs we plot the three metrics while we chose different value of π r with the random undersampling method in Figure 2.17. We can clearly see that the undersampling only decreases the model's performance in terms of both AP and F 1 score when π r > 0.004. Interestingly, AUCPR and F 1 score find their maximum when π r = π + where stands for a small positive quantity. It turns out that the proportion of positive examples on the test set is slightly higher (π test = 0.214). Indeed, our models are built over a prior π r that is assumed to be the same on the test set. For this reason, when π r ≈ π test both metrics find their maximum.

The behaviour of RF and GB are fairly different regarding the value of π r . Indeed, for RF, undersampling seems to have a non-negligible positive effect on the AU-CROC. In fact by increasing π r from π r = 0.002 to π r = 0.1 AUCROC is greatly increased. This is in contrast with GB that remains somewhat stable regardless of the π r values. In the end, results in Table 2.2 suggest that only EasyEnsemble Figure 2.17: From left to right, AP, F 1 score and the AUCROC reported at different π r using undersampling.

was able to reach the best results that were obtained by the RF and GB models without sampling methods.

It is interesting to note that the resulting RF model learned over the original training set is around 3, 000 megabytes in size while GB only is 10 megabytes. This can be explained by the trees generated in both methods. In RF, they are very deep since there is no pruning. However, for GB, the trees are "weak" (with a maximum depth of 15) which makes the model much lighter. An interesting observation can be made by looking at the optimal π r chosen by every sampling method. Indeed, π r ≈ π for all of the three sampling methods. The dataset obtained with this π r is in fact still very imbalanced. In this sense, sampling methods do not seem to have a strong impact on the model's performance. The decision threshold is, however, very important. Indeed, the F 1 score that would be obtained with the standard threshold τ = 0.5 would be much worse. Figure 2.18 illustrates such phenomenon. In this figure, we use different values of π r . In this case, the F 1 score computed is left by default which has the main consequence for the undersampling to increase performance of the models. As one may notice, this figure is very similar to Figures 2.15 and 2.13 (right figures) that are learned over the original distribution. It seems that the optimal decision threshold is very correlated to the sampling ratio π r where the best performance of the models is achieved.

Regarding the metrics, they emphasize on different things. More specifically, AU-CROC gives a different conclusion than the F 1 score and AP. Moreover, for RF, a perfectly balanced dataset offer almost the best performance in AUCROC while it gives the worst performance on the two other metrics. In our case, a lower AP means higher probability of making false positives and having less true positives (i.e. less precision, less recall) which is absolutely not desirable. AS it turns out, the F 1 score and AP are highly correlated. We provide a experimental study on their correlation in Appendix. A. This observation follows on [START_REF] Davis | The relationship between precision-recall and roc curves[END_REF] that presented this problem earlier on. Recently, in [START_REF] Saito | The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets[END_REF], the authors presents a framework where AP is more informative than AUCROC. The main reason standing out why one would prefer to use AUCROC over AP is its ability to interpolate between points in the ROC curve while it is not possible to do the same in the PR curve. Another reason is the AUCROC being invariant on the prior π. That being said, a recent study presents a possible way to build the PR curve such that it can benefit from the same advantage as the ROC curve by redefining the precision and recall [START_REF] Flach | Precision-recall-gain curves: Pr analysis done right[END_REF]. In fact this problem arises when the data points are relatively far from each other in the precision and recall space. Indeed, interpolating between distant points in the PR space would highly overestimate the AP. In our case, when working over the fraud dataset the models we build give a sufficient number of scores to make the problem of interpolating between points negligible.

Today, a lot of different publications on class imbalanced problems still report AUCROC as the evaluation metric. More importantly, recent studies [START_REF] Brabec | Bad practices in evaluation methodology relevant to class-imbalanced problems[END_REF][START_REF] Haixiang | Learning from class-imbalanced data: Review of methods and applications[END_REF] rise a concern in the use of evaluation metrics for class imbalance problems. In fact, in [START_REF] Haixiang | Learning from class-imbalanced data: Review of methods and applications[END_REF] the authors report that 38% of applied papers dealing with class imbalance problems in different domains use the accuracy as an evaluation metric. As we have presented in Section 1.4, using the accuracy in the class imbalance setting can be very misleading. Today, metrics for class imbalance learning should be carefully chosen such as to represent as best as possible the desired performances.

Conclusion

In this chapter, we covered the anomaly detection task and more specifically the fraud detection problem applied to credit card transactions. Fraud detection is today a very popular topic that has received a lot of attention from the machine learning community as it is a practical domain for supervised learning (i.e. it gathers both data and labels). We presented an overview of imbalanced learning methods applied to credit card fraud detection.

In a second step we reviewed the state of the art imbalanced learning method applied to fraud detection. We presented the cost-sensitive method and why this could be of great interest from a financial point of view (i.e. emphasizing on high amount fraudulent transactions). However, setting the costs is not trivial and we showed that focusing on high amount transactions is not always ideal.

It comes out that ensemble methods stand out because of their performance and generalization behaviour. In order to understand how these methods impact the model, we presented three different strategies that appeared as the best methods in the literature:

1. Random undersampling, 2. SMOTE,

EasyEnsemble.

All these methods were used with a Random Forest Gradient Boosting. Models were evaluated using three different metrics namely, AUCROC, AP and F 1 score.

We observed a different behaviour from AUCROC compared with the F 1 score and the AP. The former tends to be maximized as the training set becomes more balanced while the latter is clearly showing to be maximized as the training set prior gets closer to the original one. Not only do they behave differently but they also completely disagree on the choice of the best model. This latter prompted us to investigate more on the meaning of these measures and we concluded that the AUCROC as well as the accuracy are both misleading for credit card fraud detection data or more generally extreme imbalanced data problems.

In the end, sampling and cost-sensitive are a lot effort for few or no reward. Indeed, SMOTE and its hybrid counterparts such as SMOTEBoost are very impractical in our context where millions of examples have to be generated. Undersampling however, benefits from easing the learning process of the models by removing a large set of genuine transactions. That being said, we did not notice a significant improvement at any imbalance ratio in terms of AP and F 1 score. Undersampling does help RF to increase the AUCROC at the cost of lowering the precision. We believe that the loss of information caused by undersampling our data is dramatically impacting the decision that becomes less precise and biased toward a different distribution. While AP and F 1 score are better metrics to measure the model's performance on such dataset, we showed that the F 1 score is biased toward the decision threshold.

To summarize, we identified two main problems in fraud detection. The first is the extreme imbalanced data setting. To tackle this problem, we build upon the observations made in this chapter and address the problem by neither using sampling nor cost-sensitive methods. In fact, we rather use the original training set. Moreover, we believe that guiding our model toward maximizing the metric of choice would allow us to have better performances. In our case, we choose to focus on AP for 2 main reasons: 1) It disregards the decision threshold which allows to express the entire potential of the model (regardless of the decision threshold).

2) It takes into account both precision and recall which are two very important measure in fraud detection. In the following chapter, we present a way to optimize this metric in a GB framework. The second identified problem is the uninterrupted flow of data entering the system. This problem clearly makes learning in the offline setting unrealistic as time passes. This latter will be our main focus in Chapter 4. On the other hand, it is worth noticing that a peculiarity of the use cases mentioned above is the need to resort to a (often limited) number of human experts to assess the potential anomalies found by the learned model. Actually, our contribution stands in a context where the number of false positives (FP) may be significantly larger than the false negative (FN) due to the high class imbalance and where the impact of FP is very penalizing. For example, in fraud detection for credit card transactions, it is out of the question to automatically block a credit card without the expert approval (which may risk the confidence of customers having their credit card falsely blocked). In this context, the goal of the automatic system is more to make the shortest list of alerts preventing the expert from going through thousands of transactions. In other words, one aims at maximizing the number of true positives in the top rank alerts (i.e. the so-called precision) rather than discriminating between abnormal and normal cases. This is the reason why we tackle in this chapter the supervised anomaly detection task with a learning to rank approach. This strategy has gained a lot of interest in the information retrieval community [START_REF] Liu | Learning to Rank for Information Retrieval[END_REF]. Given a query, the goal is to give the most relevant links to the user in a small set of top-ranked items. It turns out that apart the notion of query, the anomaly detection task can relate to this setting aiming at finding the anomalies with the highest precision without giving too many genuine examples to the experts.

In such settings, different machine learning algorithms have been efficiently used such as SVMs (e.g. SVM-Rank [START_REF] Joachims | Optimizing search engines using clickthrough data[END_REF], SVM-AP [START_REF] Yue | A support vector method for optimizing average precision[END_REF]) or ensemble methods (e.g. random forest [START_REF] Breiman | Random forests[END_REF], boosting [START_REF] Freund | A short introduction to boosting[END_REF]). It turns out that gradient boosting has shown to be a powerful method on real life datasets to address learning to rank problems [START_REF] Chapelle | Yahoo! learning to rank challenge overview[END_REF]. Its popularity comes from two main features: (i) it performs the optimization in function space [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF]) (rather than in parameter space) which makes the use of custom loss functions much easier; (ii) boosting focuses step by step on difficult examples that gives a nice strategy to deal with imbalanced datasets by strengthening the impact of the positive class. In order to be efficient in learning to rank problems, gradient boosting needs to be fed with a loss function leading to a good precision in the top-ranked examples.

In the literature, many approaches resort to pairwise loss functions [START_REF] Freund | An efficient boosting algorithm for combining preferences[END_REF][START_REF] Burges | Learning to rank using gradient descent[END_REF][START_REF] Herschtal | Optimising area under the roc curve using gradient descent[END_REF], typically checking that every positive example is ranked before any negative instance. Note that all those methods implicitly optimize the area under the ROC curve. Therefore they aim at minimizing the number of incorrectly ranked pairs but do not directly optimize the precision of top ranked items as shown in (Burges, 2010).

To overcome this issue, recent works in learning to rank suggested optimizing other criteria like the Average Precision (AP) or the Normalized Discounted Cumulative Gain (NDCG) such as in Adarank [START_REF] Xu | Adarank: a boosting algorithm for information retrieval[END_REF], LambdaMART [START_REF] Wu | Adapting boosting for information retrieval measures[END_REF] or LambdaRank [START_REF] Burges | Learning to rank with nonsmooth cost functions[END_REF]. It has been shown that both AP and N DCG are much more suited for enhancing ranking methods. However, due to the non-convexity and non-differentiability of those criteria, the previous methods rather work on standard surrogate convex objective functions (such as the pairwise cross-entropy or the exponential loss) and take into account the AP and N DCG in the form of weighting coefficients only. In other words, the gradients are not computed as derivatives of AP and N DCG. Therefore, used in this way, these criteria only tend to guide the optimization process in the right direction. We claim here that there is room for doing much better and directly considering the analytical expressions of those criteria in a gradient boosting method.

In this paper, our contribution is three-fold: (i) focusing on AP , we show how to optimize a loss function based on a surrogate of this criterion; (ii) unlike the state-of-the-art learning to rank methods requiring a quadratic complexity to minimize the ranking measures, we show that AP can be handled linearly in gradient boosting without penalizing the quality of the solution; (iii) compared to the state of the art, we show that our method allows us to highly improve the quality of the top-ranked items. We even show that this advantage is much larger when the imbalance of the datasets is very important. This is a particularly interesting feature when addressing anomaly detection problems where the positive examples are very sparse.

The rest of this paper is organized as follows : In Section 2 we first introduce our notations, then describe our performance measures and present an approximation to AP . We then describe our method in a boosting framework and define a more suitable smoothed AP as the loss function in Section 3. We demonstrate the effectiveness of our work in the experiments section where we compare several state of the art machine learning models in Section 4.

Evaluation Criteria and Related Work

We remind some notations used in this chapter. We consider a binary supervised learning setting with a training set S = {z i = (x i , y i)} M i=1 composed of M labelled data, where x i ∈ X is a feature vector and y i ∈ {-1, 1} is the label. In imbalanced scenarios, y = 1 often describes the minority (positive) class while y = -1 represents the majority (negative) class. Let P (resp. N) be the number of positive (resp. negative) examples such that P + N = M . We also define

S + = {z + i = (x + i , y + i)|y i = +1} P i=1 and S -= {z - i = (x - i , y - i)|y i = -1} N i=1
where S + ∪ S -= S. We assume that the training data z i = (x i , y i) is independently and identically distributed according to an unknown joint distribution D Z over Z = X × {-1, 1}.

In this work, we aim at learning from S a function (or hypothesis) f : X → R that gives a real value to any new x ∈ X .

As already dicussed in Chapter 1.1, assessing the quality of f in an imbalanced scenario requires the use of an appropriate evaluation criterion.

In Chapter 2 we showed that the different possibilities evoked in Section 1.4 often induce different unexpected effect that may reduce the potential performance of a model. In this part, we focus on the learning to rank scenario. Rather than discriminating examples belonging to the positive and negative classes, we rather aim at ranking the data with a maximal number of TP in the top ranked examples which can be interpreted as a short list of alerts. This setting is actually very relevant for fraud detection systems relying on expert validation such as Worldline Fraud Fetection Fystem, since one expert may just have to check the top k instances reported in the list. In this context two measures are well used in the literature: the pairwise AU CROC measure and the listwise average precision AP that we recall below.

From a statistical point of view, we remind that the AU CROC represents the probability that a classifier ranks a randomly drawn positive instance higher than a randomly chosen negative one. The expression of this measure is equivalent to the Wilcoxon-Mann-Whitney statistic [START_REF] James | The meaning and use of the area under a receiver operating characteristic (roc) curve[END_REF]:

AU CROC = 1 P N P i=1 N j=1 I 0.5 (f (x + i) -f (x - j)), (3.1)
where I 0.5 , is a special indicator function that yields

1 if f (x + i) -f (x - j) > 0, 0.5 if f (x + i) -f (x - j)
= 0 and 0 otherwise. In the following we will use the classic indicator function I(*) that yields 1 if * is true, 0 otherwise. 1 -AU CROC has been exploited in Rankboost algorithm [START_REF] Freund | An efficient boosting algorithm for combining preferences[END_REF] as an objective function where the authors use the exponential as a surrogate to the indicator function.

Let roc (z i , f) = 1 N N j=1 e (f (z - j)-f (z + i))
be the loss suffered by f at z i . We get the following upper bound on 1 -AU CROC:

1 -AU CROC ≤ 1 P P i=1 1 N N j=1 e (f (z - j)-f (z + i)) = 1 P P i=1 roc (z i , f) = E z i ∈S + roc (z i , f) (3.2)
We can notice that this objective is a pairwise function inducing an algorithmic complexity O(P N). Moreover, as illustrated later in this section, earlier in Chapter 2 and shown in (Burges, 2010), roc is not well suited to maximize the precision in the top ranked items.

A better strategy consists in using an alternative criterion based on the average precision AP that we presented in Equation 1. 19. In fact, we can redefine this AP to a simpler form where we assume that our predictions are complete ranking (no ties).

AP = 1 P P i=1 p(k i), (3.3)
where p(k i) is the precision with respect to the rank k i of the i th positive example. Since the rank depends on the outputs of the model f , we get:

p(k i) = 1 k i P j=1 I(f (x + i) ≤ f (x + j)) (3.4) with k i = M j=1 I(f (x + i) ≤ f (x j)). (3.5)
Plugging Eq.(3.4) and Eq.(3.5) in Eq.(4.9) we get: AP has been used in recent papers to enhance learning to rank algorithms.

AP = 1 P P i=1 1 M j=1 I(f (x + i) ≤ f (x j)) M j=1 I(y j = 1)I(f (x + i) ≤ f (x + j)). (3.6)
In Burges (2010); [START_REF] Burges | Learning to rank with nonsmooth cost functions[END_REF], the authors introduce a new objective function, called LambdaRank, which can be used with different criteria, including AP . This function depends on the criterion of interest without requiring to compute the derivatives of that measure. This specificity allows them to bypass the issues due to the non differentiability of the criterion. The objective function takes the following form:

1

N P i=1 λRank (z + i , f) (3.7) with λRank (z + i , f) = 1 N N j=1 log(1 + e -(f (x + i)-f (x - j))
)|AP ij | the loss suffered by f at z i . Here, |AP ij | is the absolute difference in AP when one swaps, in the ranking, example x i with x j . LambdaMART [START_REF] Wu | Adapting boosting for information retrieval measures[END_REF]) made use of LambdaRank in a gradient boosting method and got good results as reported in (Chapelle and Chang, 2011). However, it is worth noticing that in this algorithm, the analytical expression of AP as defined in Eq.(3.6) is not involved in the calculation of the gradient. |AP ij | can be viewed as a weighting coefficient which hopefully tends to guide the optimization process towards a good solution. One objective of this chapter is to directly use AP in the algorithm and therefore to use the same criterion at both training and test time. In Section 2.6, we highlighted some drawbacks of using AU CROC for extreme imbalanced data. In the following, we present the effect of AU CROC and AP in terms of quality of top ranked items. Figure 3.1 compares these criteria in two different situations according to the location of two positive (in dark colour) Figure 3.2: Comparison of the emphasis given by AP (arrows on the left) and the emphasis given AU CROC (arrows on the right) (Burges, 2010). One can compare this emphasis to the intensity of gradients w.r.t the examples if AP and AU CROC were continuous functions. and eight negative (in light colour) examples that are ordered according to their predicted scores (highest score at the top). The key point of this figure is to show that AU CROC and AP disagree on which list is the best. AU CROC prefers the list on the left because the positive examples are rather well ranked even though the first three items are negative. Therefore, we can note that this criterion is very relevant if we are interested in classifying examples into two classes, for example, the classifier being based on a threshold (likely after the fifth rank, here) splitting the items into two parts. AP is in favour of the list on the right because it prefers to champion the top list accepting to pay the price to miss some positives. This criterion is thus very relevant to deal with anomaly and fraud detection where the goal is to provide the shortest list of alerts (here, typically the first two items) with the largest precision. Figure 3.2 (inspired from Burges (2010)) illustrates graphically how the emphasis is done while computing gradients from pairwise loss function such as AU CROC (black arrows on the right) or a listwise loss function such as AP (red arrows on the left) respectively. We can notice that a learning algorithm optimizing the AU CROC would champion first the worst positive to get a good classifier (w.r.t. an appropriate threshold) while the AP would promote first the best positive to get a good top rank. The previous analysis shows the advantage of optimizing AP in a learning to rank algorithm. This is the objective of the next section where we introduce a differentiable expression of AP in a gradient boosting algorithm. The previous analysis shows the advantage of optimizing AP in a learning to rank algorithm. In the next section, we propose a method for optimizing AP in a gradient boosting algorithm. Actually, we do not optimize directly the AP since gradient boosting requires the use of differentiable loss functions as metionned in the related part of Section 1.3. We rather introduce a differentiable approximation of AP that can then be optimized in a gradient boosting algorithm.

Stochastic gradient boosting with AP

In this section, we recall the stochastic gradient boosting framework as presented by [START_REF] Jerome H Friedman | Stochastic gradient boosting[END_REF] and already introduced in Section 1.3 of this document. Then we instantiate the loss function in two different ways: first, we introduce a differentiable version of AP using the sigmoid function. Then, in order to reduce the algorithmic complexity, we suggest using a rough approximation based on the exponential function. We show that this second strategy allows us not only to drastically reduce the complexity but also, to get similar or even better results than the sigmoid-based loss. We give some explanations about this behaviour at the end of the section.

Stochastic gradient boosting

Like other boosting methods, gradient boosting is based on a sequential and adaptive learning over weak learners that are linearly combined. However, instead of setting a weight for every example, gradient boosting builds each new weak learner on the residuals of the previous linear combination. We can see gradient boosting as gradient descent in functional space. The linear combination at step t is defined as follows:

F t (x) = F t-1 (x) + α t h t (x),
with h t ∈ H a hypothesis belonging to a class of models H (typically, regression trees) and α t the weight underlying the performance of h t in the linear combination. Residuals are defined by the negative gradients of the loss function computed w.r.t. the previous linear combination of weak learners:

r i t = - ∂ (z i , f t-1 (x i)) ∂f t-1 (x i) , i = 1 . . . M.
As in standard boosting, hard examples get more importance along the iterations of gradient boosting. Note that a mini-batch strategy is usually used to speed-up the procedure by randomly selecting a proportion λ ∈ [0, 1] of examples at each iteration. Additionally, this stochastic approach allows us to avoid falling in a local optima. A generic version of the stochastic gradient boosting is presented in Algorithm 5.

Algorithm 5 Stochastic gradient boosting INPUT: a training set S = {z i = (x i , y i)} M i=1 , a parameter λ ∈ [0, 1], a weak learner Require: Initialize F 0 (x) = 0 for t = 1 to T do Select randomly from S a set S = {x i , y i } λM i=1

r i t = - ∂ (z i , F t-1 (x)) ∂F t-1 (x i) , ∀z i = (x i , y i) ∈ S (3.8)
Fit a weak classifier (e.g. a regression tree) h t (x) to predict the targets r t Find

α t = argmin α M i=1 (z i , F t-1 (x i) + αh t (x i)) Update F t (x) such that F t (x) = F t-1 (x) + α t h t (x)
end for Output the final model:

F * (x) = sign(T t f t (x)).
The key step of this algorithm takes place in Eq. (3.8). It requires the definition of a differentiable loss function with its associated gradients. Unlike the state of the art ranking methods which make use of gradient boosting, we aim at directly optimizing in the loss function a surrogate of AP.

Sigmoid-based Surrogate of AP

To define a loss function based on AP, we need to transform the non-differentiable Eq.(3.6) into an expression for which one will be able to compute gradients on AP. Therefore, we need to get rid of the indicator function. A standard way consists in replacing I(f (x i) ≤ f (x j)) by the sigmoid function :

I(f (x i) ≤ f (x j)) ≈ 1 1 + e -α(f (x j)-f (x i)) = σ(f (x j) -f (x i))
with α a smoothing parameter. As α grows the approximation gets closer to the true AP . Considering that M j=1 I(y j = 1) = P , we get the following differentiable surrogate of AP:

ÂP sig = 1 P P i=1 1 M j=1 1 1 + e -α(f (x j)-f (x + i)) P j=1 1 1 + e -α(f (x + j)-f (x + i)) = 1 P P i=1 P j=1 σ(f (x + j) -f (x + i)) M h=1 σ(f (x h) -f (x + i)) = 1 P P i=1 p(k i) ≈ 1 P P i=1 p(k i). (3.9)
From ÂP sig , we get the following objective function:

1 -ÂP sig = E z i ∈S + sig ap (z i , f),
where sig ap (z i , f) = 1 -p(k i) is the loss suffered by f in terms of precision at z i (let us remind that k i is the rank (predicted by f) of the i th positive example z i). In fact, we can simply rewrite our objective function as:

1 -ÂP sig = 1 P P i=1 N j=1 σ(f (x - j) -f (x + i)) M h=1 σ(f (x h) -f (x + i))
For the sake of simplicity, let us use the following notations: σ(f (x j) -f (x i)) = σ ji and we have

∂σ ji ∂f t (x j) = -σ ji (1 -σ ji) = -σ ji , ∂σ ji ∂f t (x i) = σ ji (1 -σ ji) = σ ji .
The gradient w.r.t f t (x + p) or f t (x - p), for positive and negative examples respectively are given by:

∂(1 -ÂP sig) ∂f t (x + p) = ∂(1 -ÂP sig) ∂σ jp ∂σ jp ∂f t (x + p) + ∂(1 -ÂP sig) ∂σ pi ∂σ pi ∂f t (x + p) = P j=1 (σ jp M h=1 σ hp -σ jp N h=1 σ hp) (N h=1 σ hp) 2 + P i=1 (σ pi N h=1 σ hi -σ jp σ pi) (N h=1 σ hi) 2 , ∂(1 -ÂP sig) ∂f t (x - p) = ∂(1 -ÂP sig) ∂σ pi ∂σ pi ∂f t (x - p) = P i=1 P j=1 -σ ji σ pi (N h=1 σ hi) 2 , (3.10) as,
∂(1-ÂP sig) ∂σ jp ∂σ jp ∂ft(x - p) = 0, since the example x p from the previous formulation will always be positive in 1 -ÂP .

The proposed approximation of AP presented above makes use of a sigmoid-based approximation of the indicator function. We denote as SGBAP sig , the stochastic Gradient Boosting algorithm using this sigmoid-based approximation. While this approach allows us to have a differentiable approximation of AP, it has the drawback to require a quadratic time for being computed which can be intractable on very large scale datasets. In the next subsection, we discuss another approximation of AP able to be computed more efficiently.

Exponential-based Surrogate of AP

A quadratic computation time for the estimation we presented in the previous section may be a too strong algorithmic constraint to deal with real-world applications (e.g. fraud detection in credit card transactions contains millions of data points). To overcome this issue, we suggest here to resort to a less costly surrogate of AP using the exponential function as an approximation of the indicator function.

I(f (x i) ≤ f (x j)) ≈ e (f (x j)-f (x i)) .
As already done in Rankboost [START_REF] Freund | An efficient boosting algorithm for combining preferences[END_REF], we can show that the use of this exponential function allows us to reduce the time complexity for binary datasets to O(P + N).

Using the new approximation, AP takes the following form:

ÂP exp = 1 P P i=1 P j=1 e f (x + j) e -f (x + i) M h=1 e f (x h) e -f (x + i) = 1 P P i=1 e -f (x + i) P j=1 e f (x + j) e -f (x + i) M h=1 e f (x h) = P j=1 e f (x + j) M h=1 e f (x h)
as for the sigmoid approximation, we rather use 1 -ÂP exp to minimize it.

1 -ÂP exp = M h=1 e f (x h) -P j=1 e f (x + j) N h=1 e f (x h) = N n=1 e f (x - n) M h=1 e f (x h) (3.11)
Finally, finding the gradients of this new objective function is straightforward.

∂1 -ÂP exp ∂f (x + p) = -e f (x + p) N n=1 e f (x - n) (M h=1 e f (x h)) 2 ∂1 -ÂP exp ∂f (x - p) = e f (x - p) M i=1 e f (x h) -e f (x - p) N n=1 e f (x - n) (M h=1 e f (x h)) 2
(3.12)

In the following, we call our method SGBAP, the stochastic gradient boosting based on our approximation 1 -ÂP exp .

Note that in Eq. 3.12, one can see an adverse effect brought by the exponential approximation of the indicator function. Indeed, if f (x i) is first in the ranking, the gradient of x i , g(x i), should decrease as there is no other position in which it will improve the overall AP . However, in our approximation, when f (x i) is significantly high, the gradient for this example will be the highest.

Assume ∀j ∈ S \ x i , f (x i) >> f (x j), we have g(x i) ≈ 1 and g(x k) ≈ 0 ∀k ∈ S -\ x i . In fact, this effect is limited with stochastic gradient boosting. Indeed, since g(x i) is not computed during all the iteration thanks to the random mini-batches, the gradient is then automatically regularized. However, running the gradient boosting algorithm instead of the stochastic version would raise the previous effect. The same holds for any basic gradient descent based algorithm.

Comparison between the Approximations of AP

In this section, we compare experimentally the approximations used in this paper -ÂP exp and ÂP sig -with a simple one-dimensional sample described in Table 4.1.

For this experiment, we use a simple linear model f (x) = θ 0 + θ 1 x. The toy dataset has been made such that the model has three ranking choices: (i) rank the examples in descending order from x = +7 to x = -6 (when θ 1 > 0), (ii) rank the examples in descending order from x = -6 to x = +7 (θ 1 < 0) or (iii) give the same rank to every example (θ 1 = 0). We give the AP and AU CROC measures in each case : AP = 0.29, AU CROC = 0.52 when θ 1 < 0, AP = 0.33, AU CROC = 0.49 when θ 1 > 0 and AP = 0.22, AU CROC = 0.5 when θ 1 = 0. Figure 3.3, shows that the two objective functions considered are obviously not convex. However, they both find their minimum in θ 1 > 0 which yields the best AP .

Note that on Figure 3.3, 1-ÂP exp has another advantage than the time complexity over the sigmoid approximation. Indeed, for negative examples with high scores Table 3.1: Toy dataset constituted of 14 examples on the real line with their associated labels. x correspond to the feature value and y the class.

x -6 -5 -4 -3 -2 -1 0 (e.g. when θ 1 > 1), 1-ÂP sig tends to have vanishing gradients while, for 1-ÂP exp , they tend to increase exponentially. Indeed, on Figure 3.3, the cost increases for the exponential approximation while it decreases for the sigmoid approximation.

1 2 3 4 5 6 7 y -1 -1 -1 +1 +1 -1 -1 -1 -1 -1 -1 -1 +1 -1
Figure 3.4 presents the pairwise cost function based on AU CROC and a surrogate of the accuracy, the logistic loss. The minimum for these two functions is reached for a θ 1 < 0 which reverses the ranking compared to the one obtained by optimizing a surrogate of AP. Interestingly, all ranking based surrogate functions do not depend on θ 0 . Only the logistic loss make use of this parameter to correct the classification regarding the decision threshold.

Experiments

In this section, we present an experimental evaluation of our approach in two parts. In a first setup, we provide a comparative study with different state-ofthe-art methods and various evaluation measures on 5 imbalanced public datasets coming either from the UCI Irvine Machine Learning repository or the LIBSVM datasets1 and on a real dataset of credit card transactions provided by the private company Worldline that is representative of the industrial application introduced in Chapter 2. In a second experiment, we study the robustness of our method to undersampling of positive instances.

Top-rank quality over imbalanced datasets

In this experiment, we use the public datasets Pima, Breast cancer, HIV, Heart Cleveland, w8a and the real fraud detection dataset over credit card transactions provided by Worldline. This dataset contains 2 million transactions labelled as 1 fraudulent or -1 genuine where 0.2% are fraudulent. It is constituted of 2 subsets of transactions of 3 consecutive days each. The first one is fixed as the training set and the second as the test. Each subset being separated by one week in order to have the same week days (e.g. Tuesday to Thursday) in train and test. This setting models a realistic scenario where the feedback for every transaction is obtained only few days after the transaction was performed. The properties of the different datasets are summarized in Table 4.4. We now describe our experimental setup. For the public datasets where the training/testing sets are not available directly, we randomly generate 2/3-1/3 splits of the data to obtain training and test sets respectively. Hyperparameters are tuned thanks to a 5-fold cross-validation over the training set, keeping the values offering the best AP. We repeat the process over 30 runs and average the results.

We compare our method, named SGBAP, to 4 other baselines 2 : SGBAP sig as de- [START_REF] Freund | An efficient boosting algorithm for combining preferences[END_REF], a pairwise version of AdaBoost for ranking. For each method, we fix a time limit to 86, 000sec.

We evaluate the previous methods according to 4 criteria measured on the test sets. First, we use the classic average precision (AP) and AU CROC. Additionally, we also consider 2 measures to better assess the quality of the approaches for top-rank precision. For this purpose, we use the performance P os@T op, defined in (Li et al., 2014a), that gives the percentage of positive example retrieved before a negative appears in the ranking. In other words, it corresponds to the recall before the precision drops under 100%.

We also evaluate the P @k from Eq. 3.4. In our setup, we set k being the number of positive examples, which makes sense in our context of highly imbalanced data when the objective is to provide a short list of alerts to an expert and where the number of positive examples is much smaller than the negative examples. In fact, the latter measure is both precision and recall at rank k.

The results obtained are reported on Table 3.3. First, we can remark that except for the Pima dataset that has the highest positive ratio, our approach is always better in terms of AP . SGBAP is also better than other baselines in terms of P os@top which is the hardest measure for evaluating the top-rank performance. Additionally, we see that for all datasets with a significantly low positive ratio (less than 15%), our approach is always better according to the P@k measure. Overall, we can remark that when the imbalance is high, our approach is always significantly better than other baselines according to 3 criteria: AP , P os@top and notion of query that is not adapted to our framework.

P @k which clearly confirms that our method performs better for optimizing toprank results. Note that, for the dataset HIV, SGBAP sig performed quite poorly. We believe that this is because of the early vanishing gradient due to the imbalance in the dataset. This effect does not appear in heart cleveland dataset most likely because of the small dataset size.

Top rank capability for a decreasing positive ratio

In this section, we present an experiment showing the robustness of our approach when the number of positive examples decreases. We consider the Pima dataset because it has the highest ratio of positive instances and because our approach did not perform the best for all criteria. We aim at under-sampling the positive class (i.e. to decrease the positive ratio P M). We start from the original positive ratio (34%) and go down to 3% by steps of ∼ 0.05. For every new dataset, we follow the same experimental setup as described previously. At the end of the 30 runs for a given positive ratio dataset, we compute the average rank obtained by the examples in the test set and remove the top k positive instances such that P -k M is equal to the next positive ratio to evaluate. We repeat the previous set up until we reach 3% of positive examples in the dataset. We repeat this process independently for each method. The objective is to remove from the current dataset the easiest positive examples for each approach to evaluate its capability to move to the top new positive examples. Note that this makes harder the problem of ranking correctly in the top positive instances. Thus, the top rank performance measures should globally decrease.

Figure 3.5: The average precision and P@k at different positive example ratio for pima dataset.

The results with respect to the AP criterion and P @k are presented on Figure 3.5. From this experiment, we see that SGBAP outperforms the other models as the imbalance ratio increases and notably when the ratio of positives becomes smaller than 15% which confirms that our approach behaves clearly the best when the level of the imbalance is high in comparison to other state of the art approaches.

Conclusion and Perspectives

In this paper, we presented SGBAP, a novel Stochastic Gradient Boosting based approach for optimizing directly a surrogate of the average precision measure.

Our approximation is based on an exponential surrogate allowing us to compute our criterion in linear time which is crucial for dealing with large scale datasets such as for fraud detection tasks. We claim that this approach is well adapted for supervised anomaly detection in the context of highly imbalanced settings. Indeed, our criterion focuses specifically on the top-rank yielding a better precision in the top k positions.

A perspective of this work would be to optimize other interesting measures for learning to rank such as NDCG by means of a stochastic gradient descent approach. Another direction would be to adapt the optimization of the surrogate of average precision to other learning models such as neural networks where we could take benefit from recent results in non-convex optimization. There is also interesting modifications of the AP Flach and Kull (2015) that benefit from different advantages (mainly, the interpolation between points and the invariance of the metric for different class distribution) and that could form an interesting loss to use as an objective function.

In this work we observed that specific weak learners or a combination of weak learner could achieve higher precision on the precision and recall curve. Due to the linear combinations in gradient boosting, this performance is averaged with all the other learners. This prompted us to in a different direction, where we use gradient boosting to learn non-linear combinations of weak learners instead of the linear combination usually considered. This is the objective of the contribution presented in the next chapter of this thesis. 2017). In these methods, the boosted model is updated after seeing one example.

Introduction

While they can process efficiently large amount of data, their practical limitations include: (i) an edge assumption usually made on the asymptotic accuracy (i.e. the edge over random guessing) of the weak learners making some approaches hard to tune (ii) the absence of a weighting scheme of the weak learners that depends on their performance and (iii) for some of them, a lack of adaptiveness (despite the fact that it was a strong point of Adaboost [START_REF] Freund | A decision-theoretic generalization of online learning and an application to boosting[END_REF]).

Moreover, all the previous online methods face another issue: they usually perform a linear combination over a finite number of learned hypotheses which may limit the expressiveness of the final model to reach complex target concepts.

In the previous chapter, we used a linear gradient boosting (GB) to optimize the average precision with a new objective function. While working with GB, it sometimes appears that combining linearly the weak learners outputs was not optimal. In Figure 4.1 we show this phenomenon on a two-dimensional toy dataset. The right figure shows the optimal probability boundaries of linear GB with two decision stumps. We clearly see that a huge mistake is made on the upper left corner by assigning high probability to these examples to belong the red class while most of them are from the blue class. We will come back to this example in Section 4.5.

Another limitation of GB is its adaptation to the online setting. While the batch setting would allow us to add step by step new hypotheses and capture the complexity of the underlying problem, an online algorithm keeps the same set of weak learners all along the process. This remark prompted us to investigate the way to develop a non-linear gradient boosting algorithm with an enhanced expressiveness. To the best of our knowledge, there is only one work specific to non-linear boosting (García-Pedrajas et al., 2007) but only usable in a batch setting. This is why the main contribution of this chapter takes the form of a new algorithm, called ONLB -for Online Non-linear gradient Boosting. Inspired from previous research in domain adaptation [START_REF] Becker | Non-linear domain adaptation with boosting[END_REF], boostedmultitask learning (Chapelle et al., 2011) and boosting in concept drift [START_REF] Scholz | Boosting classifiers for drifting concepts[END_REF], ONLB resorts to the same set of boosted weak learners, projects their outputs in different latent spaces and takes advantage of their complementarity to learn non-linearly the idiosyncrasies of the underlying concept. ONLB is illustrated in Figure 4.2. At first glance, it looks similar to boosted neural networks, as done in [START_REF] Han | Incremental boosting convolutional neural network for facial action unit recognition[END_REF][START_REF] Opitz | Bier-boosting independent embeddings robustly[END_REF], where the embedding layer is learned with boosting in order to infer more diversity. However, our method aims at learning the weak hypotheses iteratively where the following weak learner tries to minimize the error made by the network restricted to the previous hypotheses (see the solid lines in Figure 4.2).

The other main difference comes from the back-propagation that is performed at each step only on the parameters related to the weak learner subject to an update (see the red lines in Figure 4.2). Thanks to the non-linear function brought by the last layer to combine the different representation output, ONLB converges much faster than the other state of the art online boosting algorithms.

The chapter is organized as follows: Section 4.2 is devoted to the presentation of the related work. Our new non-linear online gradient boosting algorithm ONLB is presented in Section 4.3 and its batch counterpart in Section 4.4. Section 4.5 is dedicated to a large experimental comparison with the state of the art methods where we also provide an evidence for NLB to outperform linear gradient boosting on imbalanced datasets. We conclude the chapter in Section 4.6.

Related work

Online boosting methods have been developed soon after their batch counterpart. The first one introduced in (Oza, 2005) uses a resampling method based on a Poisson distribution and was applied in computer vision by [START_REF] Grabner | On-line boosting and vision[END_REF] for feature selection. Theoretical justifications were developed later in [START_REF] Shang-Tse Chen | An online boosting algorithm with theoretical justifications[END_REF] where they notably discuss the number of weak learners needed in an online boosting framework. This is indeed a major concern since having too many of them could lead to predictions dominated by redundant weak learners that perform poorly. On the other hand, too few weak learners could make the boosting process itself irrelevant, as the goal is still to improve upon the performance of a simple base learner. More recently, (Beygelzimer et al., 2015b) extends this previous work to propose an optimal version of boosting in terms of the number of weak learners for classification.

An adaptation of this framework to multiclass online boosting was proposed in [START_REF] Hun | Online multiclass boosting[END_REF]. While these methods come with a solid theory, the assumption usually made on the asymptotic accuracy of the weak learners leads to two main practical limitations. The first one is the undeniable difficulty to estimate this edge without prior knowledge on the task at hand. The second comes from the fact that the edge of each weak learner might be very different depending on their own performance. And it turns out that the latter is never taken into consideration and might impact the overall performance of boosting.

Online gradient boosting was introduced by [START_REF] Leistner | On robustness of on-line boosting -a competitive study[END_REF] allowing one to use more general loss functions but without any theoretical guarantees. Later, Beygelzimer et al. (2015a) and its extension to non-smooth losses [START_REF] Hu | Gradient boosting on stochastic data streams[END_REF], propose online gradient boosting algorithms with theoretical justifications. However, the linear aspect of these methods limit their expressiveness strongly.

Another series of related works is the use of boosting in neural network methods. Recently, neural networks were used with incremental boosting [START_REF] Han | Incremental boosting convolutional neural network for facial action unit recognition[END_REF] to train a specific layer. In [START_REF] Opitz | Bier-boosting independent embeddings robustly[END_REF], the authors built upon Beygelzimer et al. (2015a) to optimize and increase the diversity of their embedding layer. Our work is related in the sense that we boost a layer to build a new feature space. However, the main goal is not to learn a general neural network. This layer is rather used to make connections between our different weak learners. This is why our back-propagation procedure differs by focusing only on the parameters of the weak learner to be optimized at each step.

Apart from online boosting methods, our work is also related to non-linear boosting. However, as far as we know, only (García-Pedrajas et al., 2007) tackled this topic by proposing a non-linear boosting projection method where, at each iteration of boosting, they build a new neural network only with the examples misclassified at the previous round. They finally take the new feature space induced by the hidden layer and feed it as the input space for the next learner. Nonetheless, it is very expensive and unsuitable to online learning.

Online Non-Linear gradient Boosting

In this study, we consider a binary supervised online learning setting where at each time step i = 1, 2, ..., M one receives a labelled example (x i , y i) ∈ X ×{-1, 1} where X is a feature space. In this setting, the learner makes a prediction f (x i), the true label y i is then revealed and it suffers a loss (f (x i), y i).

Boosting aims at combining different weak hypotheses. In batch gradient boosting, weak learners are learned sequentially while in the online setting, they are not allowed to see all examples at once. Thus, it is not possible to simply add new models iteratively in the combination as in the batch boosting. In fact, online boosting maintains a sequence of T weak online learning algorithms A 1 , ..., A T such that each weak learner h t is updated by A t in an online fashion. Note that every A t considers hypotheses from a given restricted hypothesis class H. The final model corresponds to a weighted linear combination of the T weak learners:

F (x) = T t=1 α t h t (x), (4.1)
where α t stands for the weight of the weak learner h t .

We now present our Online Non-Linear gradient Boosting, ONLB. As shown in Figure 4.2, our method maintains P different representations that correspond to different combinations of the T learned weak learners, projecting their outputs into different latent spaces. Every representation p is updated right after a weak learner is learned. The outputs given by the p representations are then merged together to build a strong classifier, F (x). To capture non-linearity during this process, we propose to pass the output of each representation p into a non-linear function L p . We define the prediction of our model F (x) as follows:

F (x) = P p=1 α p L p T t=1 α p t h t (x) , (4.2)
where α p t is the weight projecting the outputs of the weak learner h t in the latent space p and α p the weight of this representation. Eq (4.2) illustrates clearly the difference with linear boosting formulation of Eq (4.1). We denote by F k the classifier restricted to the first k weak learners:

F k (x) = P p=1 α p L p k t=1 ηα p t h t (x) .
Our method aims thus at combining the same set of classifiers into different latent spaces. A key point here relies in making these classifiers diverse while still being relevant in the final decision. To achieve this goal, we update every weak learner h t to decrease the error of the previous model F t-1 such that:

h t = argmin h M i=1 c P p=1 α p L p t-1 k=1 α p k h k (x i) + h(x i) , y i , (4.3)
where c (•, •) is a classification loss. In other words, we look for a learner h t able to improve the current model F t-1 .

In gradient boosting [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF], one way to learn the following weak learner is to approximate the negative gradient (residuals) of F t-1 by minimizing the square loss between these residuals and the weak learner predictions. We define r i t the residual at iteration i for the example x i as follows:

r i t = - ∂ c (F t-1 (x i), y i)) ∂F t-1 (x i) . (4.4)
In fact, from this functional gradient descent approach, we can define a greedy approximation of Eq (4.3) by using a regression loss r on the residuals computed in Eq (4.4):

h t = argmin h M i=1 r (h(x i), r i t). (4.5)
As stated above, when a weak learner h t is updated, we need: (i) to update the weights α p t associated to this learner in each representation p and (ii) update the representation weights α p in the final decision as follows:

α p := α p - η T ∂ c (F t (x i), y i) ∂α p ; α p t := α p t -η ∂ c (F t (x i), y i) ∂α p t .
Note that we use a learning rate η T since these weights are updated T times for a single example. All the steps of our ONLB training process are summarized in Algorithm 6.

In practice, we instantiate our losses with the square loss for regression tasks and the logistic loss for classification problems as follows:

c (f (x i), y i) = log(1 + e -y i Ft(x i)); r (f (x i), r i t) = (r i t -f (x i)) 2 .
The choice of the logistic loss is motivated by the need to have a bounded gradient. This avoids the residuals computed during training to grow exponentially with the iterations which can happen for noisy instances, for example. The square loss is the main loss function for regression tasks and has demonstrated superior computational and theoretical properties for the online setting [START_REF] Gao | One-pass auc optimization[END_REF]. Then, according to Eq (4.5), the weak classifiers are updated as follows:

h t = argmin h M i=1 (h(x i) -r i t) 2 . (4.6)
Eq (4.6) suggests a fairly simple update of each weak learner: each weak online learning algorithm A i uses a simple online gradient descent with respect to one example at each step. The equation to obtain the residuals is straightforward:

r i t = -y i 1 + e y i F t-1 (x i) .
Algorithm 6 Online Non-Linear gradient Boosting (ONLB)

1: INPUT: T online weak learners, a learning rate η and P latent spaces.

2: Initialize h 0 = 0 3: for i = 1 to M do 4:

Receive example x i 5:

Predict F 0 (x i) = h 0 = 0 6:
for t = 1 to T do 7:

Reveal y i the label of example x i 8:

Compute the residual

r i t = -∂ c(Ft-1(xi),yi)) ∂F t-1 (x) 9:
Predict h t (x i) 10:

A t suffers loss r (r i t , h t (x i)) and updates the hypothesis h t 11:

for p = 1 to P do 12:

α p := α p -η N ∂ c(Ft(xi),yi) ∂α p ; α p t := α p t -η ∂ c(Ft(xi),yi) ∂α p t 13:
end for 14:

end for 15: end for Finally, we used a Rectified Linear Unit [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF], activation function such that:

L(x) = x if x > 0, 0 otherwise.
The weights of the latent spaces α p t and α p are now updated as follows:

α p t := α p t + η y i α p ht(x i) 1+e y i F t (x i) if α p t h t (x i) > 0, 0 otherwise ; α p := α p + η N y i L p M i=1 α p t h t (x i) 1 + e y i Ft(x i)
.

At test time, our model learned with Algorithm. 6 computes its prediction for any instance x as follows:

F * (x) = sign F (x) = sign P p=1 α p L p T t=1 α p t h t (x) .

Extension to Batch Non-Linear Gradient Boosting

While the focus of this chapter is devoted to an online setting for non-linear gradient boosting model ONLB, our approach can be easily extended to the batch setting. We propose to present this extension in this section which will be useful later for comparison purpose. In fact, the adaptation to the batch setting is rather

Experiments

In this section, we provide an experimental evaluation of our non-linear online boosting methods ONLB and NLB methods with both quantitative and qualitative analysis. We first study the batch version NLB in two steps. We begin by an intuitive illustration of the principle of NLB in the imbalanced setting and then compare this batch approach to its linear counter part over different imbalanced datasets. Second, we perform a comparative study between ONLB with different state-of-the-art online boosting algorithms on public datasets. Finally, we terminate this experimental evaluation with a qualitative analysis of the representations learned by ONLB.

NLB Experimental Evaluation Graphical Visualization

In this experiment, we propose to evaluate the models with two different metrics. The first one is the F 1 score which is known to be relevant especially in the class imbalance problems where one needs to emphasize on the class of interest (usually, the positive class). We remind the F 1 score to be:

F 1 = 2 × p × r p + r ,
where p and r are the precision and recall respectively.

The second evaluation metric is the Average Precision (AP), a well-known measure in the learning to rank community. We explain this choice for two main reasons.

1) It offers a good intuition of the potential of a model regardless of the decision threshold learned. Indeed, in the class imbalance setting, the decision threshold is likely to be suboptimal (see Section 2.6.2). 2) In Chapter 3 we showed that AP makes more sense when the classes are highly skewed than other metrics such as the AUCROC. We remind this measure defined as follows:

AP = 1 P P i=1 p(k i), (4.9)
where p(k i) is the precision with respect to the rank k i of the i th positive example and P the number of positive examples.

We generate an imbalanced dataset (the red class is in minority) in two dimensions with a proportion of red points, π = P M = 0.1 to highlight the main differences during the training NLB and GB. The underlying concept is rather easy with a specificity on the top left corner where examples are randomly overlapping. Two different uniform distribution gives a probability for the blue example to appear in one of the two rectangles comprising the blue points. The same goes for the rest class.

In this experiment, both algorithms are allowed to build two weak learner (or T = 2) where each of them is a stump (tree with only one split). We allow 10 different representation spaces (P = 10) for NLB. Their probability boundaries (continuous scores) are used instead of the decision boundaries (binary classification) to illustrate internal decision rules. We compute these probability boundaries as P (y = 1|x) = 1 1+e F (x) , where F (x) is the value output given by either NLB our GB. Finally the two metrics are evaluated on the training set (using a test set was not primordial in this experiment since we can observe whether the models overfit). The results of this experiment can be observed in Figure 4.3 for NLB and Figure 4.1. A red region shows a probability P (y = 1|x) > 0.5 while a blue region says the opposite P (y = 1|x) < 0.5. A white region, on the other hand, gives a probability P (y = 1|x) ≈ 0.5 .

It is worth noticing that both algorithms learn the exact same splits. However, their weighting schema is different. In fact, GB (on the right of Figure 4.1) and NLB (Figure 4.3) build their two hypotheses naturally: first splitting the dataset vertically on x 2 . Then splitting horizontally on x 1 . For this second split, the only solution using the linear combination of the hypotheses is to assign more weight for the examples on the left to belong to the red class. However, this gives a higher probability for the examples on the upper left area to belong to the red class. NLB, instead, finds a representation of the hypotheses learned such as to give the highest probabilities on parts where the examples are not overlapping.

At this stage of learning, GB has a AP = 0.4476 while NLB has AP = 0.9088. The best F 1 scores for both algorithm is F 1 = 0.7012 and F 1 = 0.8874 for GB and NLB respectively. Another interesting methodological remark: The next iterations for GB are going to be more specialized on misclassified examples and thus the risk of overfitting will increase. In fact, with decision stumps, GB is not able to reach NLB's performances.

Finally, we would like to point out that, in this case, the meta-learning part does not modify the boundaries created by the weak learners. Indeed, the meta-learner does not create new boundaries but rather re-weights the existing areas as to improve the performance on the given task and so does not increase the risk of overfitting.

Evaluation of NLB on imbalance classification tasks

We now present an experimental study of NLB compared with GB other real datasets. We select 24 different datasets from the KEEL repository1 that we shortly describe in Table 4.1.

Our experimental protocol generates 2/3-1/3 splits of the data to obtain the training and test sets respectively. Note that we use decision trees as our base learners. We tune the models over this 2/3 split using a 3-fold cross validation. The parameters tuned are the number of weak learners T ∈ {0, 1, ..., 100}, the depth of each decision tree and the learning rate. We set a maximum limit of depth 5 such as to have very weak learners. We report the averaged metrics obtained on the test sets over 30 runs in Table 4.2.

In general, NLB outperforms linear gradient boosting. Interestingly, we can see that the two metrics do not always agree on the best method. For example, for the dataset kr-vs-k-zero vs eight, the AP for NLB is close to perfect (0.99) and better than for GB (0.95). However, the F 1 score is much lower (0.77) for NLB than GB (0.81) on this same dataset. An explanation is that the decision threshold is not optimal regarding the F 1 score for NLB resulting in a loss in this metric. That's one of the reasons why AP is often preferable as an evaluation metric (see Chapter 3). As we discussed in Chapter 2, the metric of choice in imbalanced data is very relative to the domain (i.e. emphasizing more on the recall rather than the precision and vice versa) thus having very general metrics when the goal is not very well defined (emphasizing on recall rather than precision or vice versa) is important. We see that, on average, GB builds more complex base learners and needs almost twice as many weak learners as NLB. Also note that the model complexity depends mainly on the hyper parameter of the tree depth and that, as the depth increases linearly, the model complexity grows exponentially.

We give in Figure 4.5 the performances F 1 and AP as we add more weak learners.

GB not only converges slower toward its final state but it also has an optimal solution which is less efficient than NLB. With only 15 weak learners, NLB achieves the same results as GB with 100 weak learners. While NLB shows a better convergence rate in terms of weak learners, it still needs an extra step to update the meta learner parameters. However, since we update our parameters sequentially and only once per weak learner and per representation, the overall update time of the meta learner is not larger than the time to train a basic neural network with one layer and T inputs (the number of weak learners).

ONLB Experimental Evaluation

In this section we first conduct an experiment in the online learning setting and then present an in-depth analysis of the learned representation in ONLB.

Online Learning Experiments

We use 10 public datasets from the UCI repository by considering binary classification problems where we focus on larger scale datasets than for NLB experiments that can be processed by online learning approaches (multiclass datasets were converted into binary problems as indicated in parentheses): Poker (0 vs [1,9]), MNIST ([0,4] vs [5,9]), Wine ([3,6] vs [7,9]), Abalone ([0,9] vs [10,29]), Covtype (2 vs all), Shuttle (1 vs all), Pima, Adult, HIV and w8a. A summary of these datasets is presented in Table 4.4.

Our experimental setup is defined as follows. For every dataset, we apply a 3fold cross validation. For tuning the hyper-parameters, we perform in each fold a progressive validation [START_REF] Blum | Beating the hold-out: Bounds for k-fold and progressive cross-validation[END_REF] on the training set as proposed in (Beygelzimer et al., 2015b): when a new example arrives, it is first used to evaluate the model before the label is revealed to the learner for training. The progressive validation is a simple increment on the different quantity of the confusion matrix (TP, TP, FP, FN) given the predictions of the model on a given example before the label is revealed. Note that we simulate the online learning setting by giving the examples in a random order to the algorithm. We train different models in parallel with respect to their hyper-parameter values (i.e. the number of weak learners T , the learning rate η and γ the weak learner edge) and we select the one achieving the lowest progressive validation error. The selected model is then evaluated on the test set. For all the algorithms, we choose as a relatively weak classifier a neural network with one hidden layer and two units that we update in an online learning fashion using stochastic gradient descent. We report the classification error obtained for each algorithm in Table 4.5.

ONLB achieves competitive results with the state of the art online boosting methods and even outperforms them on most datasets. In some cases, such as for MNIST or Poker, we clearly see that, while using much more weak learners (see Figure 4.5), the other methods were not able to capture the target concept as much as ONLB did. Note that, a mandatory condition in our experiments was T > 1 such that the boosting takes part in the learning process but in some cases, the online boosting algorithms were not able to do better than the baseline on the test set. For example, on the Adult database, only ONLB and OGB achieved an average error lower than the base learner.

In Table 4.6, we present the average number of weak learners chosen with respect to the progressive validation process for each model. While being an online linear boosting algorithm, online.BBM achieves its performances with a significantly smaller number of weak learners compared to the other linear boosting methods. As mentioned in (Beygelzimer et al., 2015b), this algorithm is optimal in the sense that no online linear boosting algorithm can achieve the same error rate Finally, in Figure 4.5, we plot the convergence curves with respect to the increasing number of examples used for two datasets: MNIST and Abalone. For all algorithms, each curve corresponds to the evolution of the error rate according to the progressive validation error measured during training. We observe that ONLB still achieves the best convergence rate for both datasets. A similar behaviour has been observed for the other datasets and exhibits the nice fast convergence property of our algorithm which needs less weak learners to converge to its optimum.

Analysis of the learned multi-latent representations

In this section, we present two different qualitative analyses on the latent representations learned by our algorithm. First, we show that given a sufficiently large number of weak base learners, the representations obtained tend to be rather uncorrelated. This provides an evidence that ONLB can generate some diversity. Then, we show that these representations contribute in a comparable way to the final decision.

For our study, we use the following setup. We consider a model with 100 representations (i.e. P = 100). We use two base learners: a relatively weak neural network with one hidden layer composed of 2 units (2-NN) and a stronger learner consisting of a neural network with 500 units in its unique hidden layer (500-NN). All representation weights are initialized following a uniform distribution such that the different representations are highly uncorrelated. We consider the MNIST dataset used above for learning.

Our first analysis aims at showing that the learned representations tend to be uncorrelated when using a very weak learner. For this purpose, we compute a correlation matrix C between all the representations such that C nm = covnm √ covnn * covmm measures the correlation between the latent representations n and m, cov is the covariance matrix computed with respect to the input weights {α m t } N i=1 and {α n t } N i=1 of these representations.

We show, in Figure 4.6, the C matrix for the latent space representations obtained after convergence with the 2-NN base learners. We can see that most of the representations tend to be uncorrelated or weakly correlated. In contrast, Figure 4.7 presents the C matrix using the 500-NN base learner. We see here that most of the representations are highly correlated. This experiment shows that by using sufficiently weak base learners, we are able to learn diverse and uncorrelated representations.

In our second analysis, we want to confirm that the uncorrelated latent repre-sentations are informative enough to contribute in a comparable way to the final strong model. We propose to compute, for each representation p, a relative importance coefficient Ω p by taking the absolute values of the predictions of p right before they are merged together with the other representation outputs to form the final prediction. We average this coefficient over {x i } K t=1 examples taken from a validation set independently from the learning sample as follows:

Ω p = 1 K K i=1 |α p L p M i=1 α p t h t (x i) |.
(4.10)

We expect for important representations a high Ω p (i.e. having a high impact in the final decision) and a low Ω p for irrelevant ones (i.e. having low impact in the final decision).

We consider then the models learned with the 2-NN and 500-NN base learners as previously. For each model, we plot the importance coefficient Ω p (y-axis) against the average correlation of each representation (x-axis) that we define as C p = 1 P P i=1 C pi . This illustrates the importance of each representation in the final decision with respect to their correlation level. Figure 4.8 gives the plot for the model using the 2-NN base learner. We see here that all the representations are involved in the final decision and that their relative importance coefficients are rather comparable. This is in opposition to the plot of Figure 4.9 that provides the results for the model using the 500-NN base learners. First, we see that many representations are not used in the final decision and these correspond to the ones that are uncorrelated. In fact, representations involved in the final decision are the ones that are all highly correlated with an average correlation coefficient around 0.75. Clearly, since these representations have a high correlation level, actually only one representation is really useful at the end. But note that this representation can in fact be learned by a standard linear gradient boosting.

From this experiment, we see that complex models are hard to diversify in online boosting. Moreover, tuning their hyperparameters is harder making the probability of overfitting higher and they require a significant larger amount of training time which makes such complex models useless for online boosting.

Conclusion

In this chapter, we presented a new Online Non-Linear Boosting algorithm and with its extension to the batch setting. In this method, we combine different representations of the same set of weak classifiers to produce a non-linearly boosted model in order to learn the idiosyncrasies of the target concept. Our experimental results showed that non-linear gradient boosting allows us to learn better models than classic linear gradient boosting and also exhibits a general improvement over current state of the art online boosting methods.

Additionally, the non-linear architecture of the model allows the method to use less weak learners and to obtain faster convergence in terms of examples. Our approach has also the interesting property to produce efficiently diverse latent spaces contributing actively to the model predictions. This property makes our model adaptive by giving more importance to the best current representations. In the online learning setting, a very important point is to be able to extract as much information as possible from the examples when we receive them without overfitting.

While in our experimental online setting, we have used neural network-based weak classifiers for convenience, a first perspective is to evaluate the behaviour of our approach with other types of online weak classifiers such as non-differentiable ones (e.g. decision trees) allowed by our framework. In another direction, studying the impact of delayed feedback (i.e. labels arriving only after some time delay) and possible adaptation of transfer learning and continuous learning in the online setting are also particularly promising in the context of machine learning production systems such as fraud detection applications. Finally, if we take the online learning apart, we can imagine more advanced techniques such as building new architecture [START_REF] Cortes | Adanet: Adaptive structural learning of artificial neural networks[END_REF] with this method. In this context, a general comparison with classic Neural Networks/Deep learning algorithms for example can also be an interesting future work to position our gradient boosting framework with respect to other general state of the art models.

Conclusion and Perspectives

In this manuscript, we presented two main problems that arise when using supervised machine learning for extremely imbalanced data flows such as in the task of credit card fraud detection. Before presenting the perspectives of this work, we can draw two general conclusions: one with respect to the scientific contributions of the document and another one on the impact of this thesis on the company.

Fraudulent transactions are, by nature, much less than genuine transactions. The class distribution is therefore highly skewed toward the majority class. This brings many difficulties for training machine learning algorithms that have been largely studied in the literature. However, we observe two main flaws.

1. The literature relates to relatively small datasets to validate the methods.

2. Evaluation metrics are often chosen by default which can greatly influence the conclusion.

General Discussion on the Contributions

In this thesis, we study different machine learning methods and compare their performance on real life data brought by Worldline company. It turns out that ensemble methods show a clear superiority in an extreme imbalanced context. Indeed, our experiments highlighted that Random Forest and Gradient Boosting are the most promising methods.

In Chapter 2, we carry experiments on the real-life fraud detection data using three of the most used metrics to assess the model performance on imbalanced datasets, namely AUCROC, AP and the F 1 score. We criticize the use of AUCROC to assess the model performance in case of class imbalance especially for applications that need a descent precision. We stress out the need to carefully analyze the metric of choice such as to select the most appropriate for the problem at hand which is often neglected in the literature.

In this continuum, imbalance learning methods such as sampling should also be used with caution. In Chapter 2 we presented how decision threshold dependent 113 metrics may be biased by a sub-optimal decision threshold. In this context, sampling methods appears to be much less efficient than simply calibrating the output probability or tuning the decision threshold on a validation set. In this sense, we recommend to use metrics independent of this decision threshold if the application allows it. In particular, ensemble methods such as gradient boosting studied in this thesis do not benefit in general from sampling methods that rather tend to worsen the results. From our analysis, we face to the problem that imbalance learning methods did not generally seem as effective as reported in the literature in the context of extreme imbalance settings which has justified the contributions of this thesis.

In the light of these findings, we proposed a first contribution to optimize the average precision, which is among the most appropriate metrics in our industrial context, for supervised anomaly detection problems in a stochastic gradient boosting algorithm. This contribution rather links the fraud detection task to the learning to rank domain. In other words, we propose to focus on the top ranked example instead of a pure classification problem. This approach also agrees with the fraud detection system in production where experts analyze the most probable fraudulent transactions before taking any action. In this contribution, we derive a smooth surrogate of the average precision and use it as a loss function.

Our second contribution addresses a negative aspect of boosting encountered in the first contribution. The classic combination of models used in gradient boosting is linear which tend to average the performance of these models instead of taking advantage of their idiosyncrasies. We propose a non-linear version of the gradient boosting algorithm. We apply this new method in the online setting such as to be able to deal with large scale uninterrupted flows of data.

Apart from these two contributions, in this manuscript we tried to follow a general guideline aiming at proposing a research driven by the need of developing novel contributions able to solve real-life data science problems which takes in particular the form for us on large imbalanced flows of data.

A Review on the Impact for the Company

Apart from the methodological scientific contributions presented above, this thesis was also the core of important new contributions for the company that can be summarized in four main aspects.

Helping to push machine learning in production such at to improve the already existing fraud detection system. This thesis is also part of a large project where the goal is mainly to prove the effectiveness of AI methods and that its implementation into a production system is possible. In this sense, throughout this thesis, there have been many discussions with the production team to understand their needs and find solutions implying machine learning approaches. For companies that have always been relying on human expertise, such transition is not easy. At the end of this thesis, the system embedding many machine learning solutions and developed in the R&D team at Worldline has been shared with the production team which is a major step forward. In the near future, it should be integrated in the production pipeline.

The choice of a reference metric for fraud detection that followed from a large study done on imbalance learning and learning to rank. From a general perspective, the average precision (AP) has shown to have the main advantages for the credit card fraud application and is today used on a daily basis to assess the performance of the running models.

The choice of the learning algorithm of reference for the specific task of credit card fraud detection has converged to the boosting algorithm. This followed significantly higher performance in terms of both training time and predictive power on the credit card fraud detection dataset. It also is a much lighter final model than previously used learning algorithms (e.g. Random Forest).

Incorporation of online learning mechanisms in the pre-production system where a single model learns continuously on arriving data and predicts on the future. This in fact, demands a lot of modification on the work flow already implemented for the fraud detection task. The implementation of such system also raised a lot of different concerns such as how we assess the model's performance in real-time or how and when we update the models.

Patent on the credit card fraud detection based on the optimization of the average precision. Indeed, our view of the fraud detection application based on the learning to rank domain fits the fraud detection system where experts are given a short list of potential frauds. This led us to a write a patent that was reviewed and accepted.

Perspectives of this Thesis

This manuscript naturally leads to many different open questions induced by the contributions. First, we find necessary the thorough review of machine learning metrics before using them in an application case. In this sense, a large study of known metrics for different use cases could be of great value for the machine learning community.

We found that the average precision is one of the best metrics for our general case, however, it has the main drawback of being highly dependent on the imbalance ratio. Further work to adapt this metric such as to make it invariant on the imbalance could be of crucial importance for many applications (e.g. monitoring through time where changes in the class distribution naturally occur).

In this manuscript we study metrics at the transaction level. It turns out that, we can compute all the metrics studied in this manuscript at the card level quite easily. However, machine learning algorithms are learning at the transaction level, therefore, using these metrics as objective functions is not straightforward and deserve further studies.

The application of fraud detection has an a delayed feedback that was not deeply studied in this thesis. However, the pace at which we receive the labels can impact the performance of our models. For this reason, online learning with delayed feedback should be further studied to understand the real impacts. The use of lifelong learning approaches also represents an appealing perspective in order to adapt the models continuously to the evolution of fraudster strategies. Indeed, some concepts may appear once per year which would be very hard for a standard online learning method to "remember" while still learning over new concepts.

As online learning gains more interest for applications such as the one studied in this manuscript, we believe that online extreme class imbalance learning would be a typical research interest to follow on our contributions. Indeed, such problems have many open questions such as finding a fair evaluation metrics that works in this context.

Finally, all contributions and discoveries in this manuscript were driven by a private dataset that comprises specific settings that are not common in the public domain. We believe that it could be of great value for the machine learning community to test their algorithms on such datasets. While sharing this data should not be done on a whim, we believe that it would have a great impact on the scientific world and therefore means should be put in place to make this happen.

 Figure 1: Number of publications per year by the 5 most advanced companies in Artificial Intelligence for top-tier conferences in machine learning.

Figure 1 . 2 :

 12 Figure 1.2: Example of regression with three different models.

Figure 1

 1 Figure 1.3: Main surrogate loss functions based on the margin yf (x).

Figure 1 . 4 :

 14 Figure1.4: On the left, a single regression tree is completely overfitting the training set. In the middle, many different decision trees learned over different S ⊂ S are overfitting over the subsets. On the right, we plot the average of their outputs giving a single final decision.

Figure 1 .Figure 1 . 5 :

 115 Figure 1.5 gives an example of how many different learners can be used as the inputs of another model and yield better performance.

Figure 1 .

 1 Figure 1.6 shows how boosting can create a strong model out of many weak and different learners.

 Figure1.6: On the left, a single decision tree is underfitting. In the middle, many different decision trees learned using the boosting method (note that we plot here α t h t (x) instead of just h t (x)). On the right, we plot their linear combination into a final decision.

 , 2004; He and Ma, 2013; He and Garcia, 2008; Kubat et al., 1997) and present different solutions from the state of the art. As stated earlier, we focus on the binary supervised learning setting with y ∈ {-1, 1}. In imbalanced scenarios, y = 1 often describes the minority (positive) class while y = -1 represents the majority (negative) class. Let P (resp. N) be the number of positive (resp. negative) examples such that P + N = M . In this setting, we rewrite the training set S such that

3.

 True Negatives (TN), the number of negative examples correctly classified. 4. False Negatives (FN), the number of misclassified positive examples.

Figure 1 . 7 :

 17 Figure 1.7: Comparison of different classifiers on an imbalanced toy dataset in two dimensions.

Precision

 defines the percentage of well-classified positive examples (minority class) over the total number of examples classified in the same class. precision ∈ [0, 1] and where precision = 1 is when there is no false positive example. Recall defines the percentage of retrieved positive examples (from the minority classrecall ∈ [0, 1] where recall = 1 is the best value where all examples from the positive class are well-classified.

Figure 1 . 8 :

 18 Figure 1.8: Example of ROC curve.

Figure 1 . 9 :

 19 Figure 1.9: Example of the precision and recall curve.

Algorithm 4

 4 SMOTE algorithm (Chawla et al., 2002) 1: INPUT: S min , k the number of neighbours to consider 2: for i = 1 to |S min | do 3: Compute the k-NN set {x n } k n=1 for x i and choose a random neighbour xi ∈ {x n } k n=1 4:

 Technique is a method to create new examples Chawla et al. (2002) from the minority class in a clever way such that there is also a certain diversity between the examples. This method is introduced in Chawla et al. (2002) where, based on a k-NN algorithm (Altman, 1992), they create new synthetic and diverse examples. This advanced oversampling technique is presented in Alg. 4.

Figure 1 .

 1 Figure 1.10: Cost matrix

Figure 1

 1 Figure 1.11: Imbalanced toy dataset. The blue points are part of the majority class while the red points are part of the minority class.

Figure 1 . 12 :

 112 Figure1.12: The three figure above shows how important a data point is in the eyes of boosting. The more intense to the black colour, the more important is an example at this boosting iteration. At first, it does not have a particular focus and sees all the examples equally important (most left figure). After very few iterations, a positive example has much more importance than a negative example (middle figure). Finally, the figure on the right shows the data point importance after many rounds. In fact, at this point, the new weak learner is learning over a very small subset containing the hardest samples to classify in the dataset.

 [START_REF] Ngai | The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature[END_REF] the authors stress out the need for the industry to encourage research on real life systems since most developed research methods suffer from a lack of knowledge of industrial fraud detection systems. This problem was observed in the early work of[START_REF] Phua | Minority report in fraud detection: classification of skewed data[END_REF] on imbalanced learning applied to fraud detection. We come back to this matter in the next section.

Figure 2 . 1 :Figure 2

 212 Figure 2.1: Number of publications on fraud detection with machine learning.

Figure 2 . 3 :

 23 Figure 2.3: On the left, anomalies form a circle hidden inside the normal examples.On the right anomalies there is no direct pattern and detecting them is a challenge. In both problems, unsupervised learning is not an option. In this context, it is crucial to have labelled examples.

), the authors use different sampling techniques. In Dal Pozzolo et al. (2014), the authors present different aspects of the credit card fraud detection problem from an interesting practitioner point of view and have a large experimental section dedicated to imbalanced learning methods. Lastly, many different papers, approach the problem with ensemble learning methods (bagging)[START_REF] Zareapoor | Application of credit card fraud detection: Based on bagging ensemble classifier[END_REF][START_REF] Dal Pozzolo | Racing for unbalanced methods selection[END_REF], 2018).

Figure 2

 2 Figure 2.4: Fraud Detection System (FDS) at Worldline (Dal Pozzolo et al., 2018)

Figure 2 . 5 :

 25 Figure 2.5: On the left the day-to-day volume of data arriving in the servers. On the right, the cumulative graph showing the amount of data gathered through time.

Figure 2 .

 2 Figure2.6 presents the first two principal components ont he fraud dataset. It is rather clear that the centroid of fraudulent transactions is shifted compared to the centroid of genuine transactions. In Figure2.7, we take advantage of T-SNE to plot the data with a non-linear transformation. Similarly to the PCA, T-SNE offers a nice visual interpretation where the fraudulent transactions appear in parts where the genuine transactions are less present. On this figure, we can distinguish sequences of transactions represented by clusters of points that follow each other in a sort of line. The left and right representations are taken over different periods.

Figure 2 . 6 :

 26 Figure 2.6: Representation with PCA in 2 dimensions of 5, 000 fraudulent transactions (in red) against 5, 000 genuine transactions (in blue).

Figure 2 . 7 :

 27 Figure 2.7: Representation with T-SNE in 2 dimensions of 5, 000 fraudulent transactions against 5, 000 genuine transactions. The two figures are taken over different periods.

Figure 2 . 8 :

 28 Figure 2.8: Representation with T-SNE in 3 dimensions of 5, 000 fraudulent transactions against 5, 000 genuine transactions.

Figure 2 . 9 :

 29 Figure 2.9: Positive ratio per month.

Figure 2 .

 2 Figure 2.10: Positive ratio per hour.

Figure 2 .

 2 Figure 2.11: Experimental setup to validate and test a model on the credit card fraud detection dataset.

 Figures 2.12 and 2.14 present GB and RF respectively, trained over a balanced training set using undersampling while Figures 2.13 and 2.15 present the same models trained over the original training set. The goal of this experiment is to show how the posterior probability behave when training over the original and balanced training set. Note that, by default, the decision threshold is naturally set to τ = 0.5.

Figure 2 . 12 :

 212 Figure 2.12: The figures present the F 1 score for the train (left figure) and test (right figure) at different decision thresholds. In this experiment undersampling was applied on the training set. This experiment was carried with a GB model.

Figure 2 . 13 :

 213 Figure 2.13: The figures present the F 1 score for the train (left figure) and test (right figure) at different decision thresholds. The training set was left in its original state. This experiment was carried with a GB model.

Figure 2 . 14 :

 214 Figure 2.14: The figures present the F 1 score for the train (left figure) and test (right figure) at different decision thresholds. In this experiment undersampling was applied on the training set. This experiment was carried with a RF model.

Figure 2 . 15 :

 215 Figure 2.15: The figures present the F 1 score for the train (left figure) and test (right figure) at different decision thresholds. The training set was left in its original state. This experiment was carried with a RF model.

Figure 2 . 16 :

 216 Figure 2.16: F 1 score at different decision threshold. The positive ratio was set at 1.9% for the training set using undersampling. This experiment was carried with a GB model.

Figure 2 .

 2 Figure 2.18: F 1 score reported for different positive ratio using undersampling without tuning the decision threshold.

Figure 3 . 1 :

 31 Figure 3.1: Two rankings (with two positives and eight negative examples) ordered from the highest score (at the top) to the lowest. On the left, we get AU CROC = 0.63 and AP = 0.33. On the right, AU CROC = 0.56 and AP = 0.38. Therefore, the two criteria disagree on the best ranked list.

Figure 3

 3 Figure 3.3: 1 -ÂP exp (on the left) and 1 -ÂP sig (on the right) costs in function of the two model parameters θ 0 and θ 1 .(better with colour)

Figure 3

 3 Figure 3.4: Rankboost objective function (on the left) and the logistic loss based objective function (on the right). They find their minimum in θ 1 = -0.14 and θ 0 = -1.28 θ 1 = -0.02 respectively.

Figure 4 . 1 :

 41 Figure 4.1: On the left, we present the toy dataset with two classes. The red class is in minority. The figure on the right shows the probability boundaries of GB on the test set. Blue areas show a strong probability for the examples to belong to the blue class while the red areas show a strong probability for the examples to belong to the red class. As the colour disappears, the model is uncertain to which class the examples belong. The model used here is a linear gradient boosting with two decision stumps.

Figure 4

 4 Figure 4.2: Graphical representation of our Online Non-Linear gradient Boosting method: the first top layer corresponds to the learned weak classifiers; the second layer represents different linear combinations of their outputs; the bottom layer proceeds a non-linear transformation of those combinations. The thickest lines show the needed activated path to learn a given classifier (here h 2). The red lines show the update performed only on the parameters concerned by this weak learner. The dashed lines are not taken into account at this iteration.

Figure 4 . 3 :

 43 Figure 4.3: Probability boundaries of NLB on the toy dataset from Figure 4.1.

Figure 4

 4 Figure 4.4: AP (on the left) and F 1 score (on the right) for NLB and GB along their iterations for MNIST dataset.

Figure 4 . 5 :

 45 Figure 4.5: Progressive validation error with respect to the learning examples for MNIST on the left and Abalone on the right.

Figure 4

 4 Figure 4.6: Correlation matrix of the representations with 2-NN learners.

Figure 4 . 7 :

 47 Figure 4.7: Correlation matrix of the representations with the 500-NN learners.

Figure 4

 4 Figure 4.8: Importance of each latent representation with the 2-NN learners.

Figure 4 . 9 :

 49 Figure 4.9: Importance of each latent representation with the 500-NN learners.

 Conclusion . 3 Learning with imbalanced data from a learning to rank point of view 3.1 Introduction . 3.2 Evaluation Criteria and Related Work 3.3 Stochastic gradient boosting with AP . 3.4 Experiments . 3.5 Conclusion and Perspectives . Comparison of the emphasis given by AP and AU CROC 3.3 Surrogate loss function of AP . 3.4 Surrogate loss function of AUC-ROC and the accuracy (logistic loss) . . 3.5 AP and P@k at different positive example ratio 4.1 Toy dataset and visualization of the probability boundaries of GB 4.2 Graphical representation of our Online Non-Linear gradient Boosting method 4.3 Probability boundaries of NLB on the toy dataset fromFigure 4.1. 4.4 AP and F 1 score for NLB and GB along their iterations for MNIST dataset.105 4.5 Progressive validations error with respect to the learning examples 4.6 Correlation matrix of the representations with 2-NN learners. 4.7 Correlation matrix of the representations with the 500-NN learners. . . . 4.8 Importance of each latent representation with the 2-NN learners. 4.9 Importance of each latent representation with the 500-NN learners. . . .

Introduction 1 Preliminaries 1.1 Supervised Machine Learning . 1.2 Ensemble learning . 1.3 Boosting . 1.4 Class Imbalance Learning . 2 Learning with Extreme Imbalanced Data: Application to fraud detection. 2.1 Introduction . 2.2 Anomaly detection . 2.3 Credit Card Fraud Detection . 2.4 Constraints of Cost-Sensitive Learning with Financial Cost 2.5 Worldline's Fraud Detection System . 2.6 Experiments with Imbalanced Learning Methods for Credit Card Fraud Detection . 2.7 4 Non-Linear Gradient Boosting in Multi-Latent Spaces 4.1 Introduction . 4.2 Related work . 4.3 Online Non-Linear gradient Boosting . 4.4 Extension to Batch Non-Linear Gradient Boosting iii 3.2 A.1 AP vs F 1 score . A.2 AP vs. F 0.5 score . A.3 AP vs. F 2 score .

Table 1 :

 1 Notations.

	Notation Description
	R	Set of real numbers
	X ,Y	Input Space, Output Space
	x	Vector
	d	Number of dimensions in x
	y	Target ground truth of example x
	F T	Ensemble model with T different classifiers
	h t	t th weak learner in a boosting model
	f (•)	Function
	E(•)	Expectation
	R true (•)	True risk
	R(•)	Empirical risk
	τ	Decision threshold
	ρ	Imbalance ratio

 are two ensemble methods created specifically to answer this problem. As we stated earlier, while undersampling has a strong advantage in terms of computation by removing parts of the dataset, it also discards potential relevant information and alters the real class distribution. These two ensemble methods use sampling but also try to answer the previous problem.

Easy Ensemble In

[START_REF] Liu | Exploratory undersampling for class-imbalance learning[END_REF]

, the authors present this method which is very close to bagging. Instead of sampling randomly S ⊂ S, a new classifier h k is learned over a balanced set where

 al., 2016; Roy et al., 2018; Jurgovsky et al., 2018).

Table 2

 2

	.1: Cost matrix

Table 2 .

 2 2: Experiment results on the fraud dataset. The positive ratio chosen π r is specified for each method where π is the original positive ratio.

	Method	AUCROC (π r)	F 1 score (π r)	AP (π r)
	Undersampling + RF	0.9137 ± 0.0006 (0.500)	0.2417 ± 0.0118 (0.002)	0.1439 ± 0.0062 (0.002)
	Undersampling + GB 0.9291 ± 0.0009 (0.020)	0.2458 ± 0.0033 (0.003)	0.1656 ± 0.0003 (0.003)
	SMOTE + RF	0.8616 ± 0.0012 (0.500)	0.2293 ± 0.0212 (0.003)	0.1354 ± 0.0057 (0.003)
	SMOTE + GB	0.9266 ± 0.0010 (0.002)	0.2296 ± 0.0199 (0.002)	0.1554 ± 0.0042 (0.002)
	EasyEnsemble + RF	0.9193 ± 0.0002 (0.500)	0.2459 ± 0.0041 (0.002)	0.1580 ± 0.0036 (0.002)
	EasyEnsemble + GB 0.9292 ± 0.0002 (0.050)	0.2465 ± 0.0038 (0.003) 0.1684 ± 0.0021 (0.003)
	RF	0.9018 ± 0.0076 (π)	0.2464 ± 0.0051 (π)	0.1579 ± 0.0028 (π)
	GB	0.9291 ± 0.0004 (π) 0.2473 ± 0.0027 (π) 0.1682 ± 0.0019 (π)

 data[START_REF] Nitesh | SMOTE: synthetic minority over-sampling technique[END_REF][START_REF] Ramentol | SMOTE-RSB *: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory[END_REF]. The former aims at removing instances from the majority class while the latter creates synthetic data from the minority class. Several hybrid methods such as SMOTEBoost[START_REF] Nitesh | Smoteboost: Improving prediction of the minority class in boosting[END_REF], RUSBoost[START_REF] Seiffert | Rusboost: A hybrid approach to alleviating class imbalance[END_REF] and Adacost (Fan et al., 1999) combine a learning algorithm with a sampling or cost-sensitive methods. However, it turns out that these approaches have been shown to be hard to use when facing highly imbalanced situations(Dal Pozzolo et al., 2015b) leading to either insufficient generated diversity (by oversampling) or too drastic reduction of the dataset size (by undersampling).vIn addition, sampling methods induce a bias in the posterior probabilities[START_REF] Niculescu | Predicting good probabilities with supervised learning[END_REF] Dal Pozzolo et al., 2015c). We discussed all this problems in Chapter 2.

Table 3 .

 3 2: Properties of the 6 datasets used in the experiments.

		#examples Positives ratio #Features
	Pima	767	34%	8
	Breast cancer	286	30%	9
	HIV	3, 272	13.3%	8
	Heart cleveland (4 vs all)	303	4.3%	13
	w8a	64000	3%	300
	Fraud	2, 000, 000	0.2%	40
	fined previously, GB-Logistic which is the basic gradient boosting with a negative
	binomial log-likelihood loss function (Friedman, 2001) (pointwise and accuracy
	based for binary datasets), LambdaMART-AP (Wu et al., 2010) a version of gra-
	dient boosting that optimizes the average precision and RankBoost	

Table 3 .

 3 3: Results obtained for the different evaluation criteria used in the paper. We indicate in bold font the best method with respect to each dataset and each evaluation measure. A -indicates that the method did not finish before the time limit.

	Dataset	Algorithm	AU CROC	AP	P os@T op	P @k
		GB-Logistic	0.8279 ± 0.0352	0.7125 ± 0.0267	0.0388 ± 0.0379 0.6608 ± 0.0296
		RankBoost	0.8352 ± 0.0359 0.7281 ± 0.0621 0.0620 ± 0.0546 0.6586 ± 0.0298
	Pima	LambdaMART-AP 0.8177 ± 0.0304 0.7338 ± 0.0528 0.0407 ± 0.0443	0.6559 ± 0.0257
		SGBAP	0.8276 ± 0.0418	0.7119 ± 0.0486	0.0579 ± 0.0577	0.6455 ± 0.0356
		SGBAP sig	0.8215 ± 0.0215	0.7091±, 0.0328	0.0388 ± 0.0346	0.6514 ± 0.0325
		GB-Logistic	0.6821 ± 0.0756	0.5089 ± 0.0562	0.0931 ± 0.0561	0.4457 ± 0.0739
	Breast cancer	RankBoost LambdaMART-AP 0.6733 ± 0.0419 0.6492 ± 0.0562 SGBAP 0.7124 ± 0.0596 0.5602 ± 0.0830 0.1019 ± 0.1018 0.4980 ± 0.0612 0.4838 ± 0.0632 0.0461 ± 0.0513 0.4626 ± 0.0629 0.5280 ± 0.0680 0.0859 ± 0.0828 0.5196 ± 0.0624
		SGBAP sig	0.7131 ± 0.0521 0.5503 ± 0.0443	0.0729 ± 0.0693	0.5061 ± 0.0574
		GB-Logistic	0.8598 ± 0.0155	0.5557 ± 0.0376	0.0303 ± 0.0284	0.5391 ± 0.0364
		RankBoost	0.8599 ± 0.0127	0.5464 ± 0.0276	0.0401 ± 0.0363	0.5309 ± 0.0254
	HIV	LambdaMART-AP 0.8222 ± 0.0466	0.4286 ± 0.0887	0.0075 ± 0.0176	0.4874 ± 0.0814
		SGBAP	0.8661 ± 0.0150 0.5737 ± 0.0347 0.0536 ± 0.0410 0.5445 ± 0.0351
		SGBAP sig	0.7578 ± 0.0231	0.3928 ± 0.0434	0.041 ± 0.0250	0.3902 ± 0.0439
		GB-Logistic	0.7544 ± 0.1020	0.1638 ± 0.0931	0.0133 ± 0.0498	0.1 ± 0.1420
	Heart cleveland	Rankboost LambdaMART-AP 0.7277 ± 0.1225 0.8109 ± 0.0515 0.1739 ± 0.0638 0.1809 ± 0.1011 SGBAP 0.7789 ± 0.1178 0.2188 ± 0.1103 0.0483 ± 0.0970 0.2017 ± 0.1044 0.0150 ± 0.0565 0.0967 ± 0.1335 0.0383 ± 0.0863 0.1333 ± 0.1287
		SGBAP sig	0.7983 ± 0.0638	0.2136 ± 0.0964	0.045 ± 0.0906	0.1566 ± 0.1295
		GB-Logistic	0.9544 ± 0.0039	0.7385 ± 0.0154	0.0534 ± 0.0529	0.7091 ± 0.0152
		RankBoost	0.9712 ± 0.0028 0.7649 ± 0.0135	0.0392 ± 0.0451	0.7277 ± 0.008
	w8a	LambdaMART-AP	-	-	-	-
		SGBAP	0.9701 ± 0.0029 0.8351 ± 0.0100 0.1779 ± 0.0978 0.7972 ± 0.0132
		SGBAP sig	-	-	-	-
		GB-Logistic	0.8808	0.1477	0.0009	0.2411
		RankBoost	0.8829	0.1560	0.0005	0.2449
	Fraud	LambdaMART-AP	-	-	-	-
		SGBAP	0.6878	0.1747	0.0059	0.3203
		SGBAP sig	-	-	-	-

 Apart from the class imbalance problem, real life applications such as fraud detection, click prediction, spam detection and face recognition have a specificity rather 91 overlooked: the uninterrupted flow of data. As machine learning gains popularity in the industry, one must consider the problem of training models over always increasing volumes of data that always need more memory and more storage. While big data centres can partially solve the memory problem, training the model from scratch each time new instances arrive remains unrealistic.

	To overcome this problem, online boosting has received much attention during
	the past few years (Oza, 2005; Grabner and Bischof, 2006; Chen et al., 2012;
	Beygelzimer et al., 2015b; Jung et al., 2017; Beygelzimer et al., 2015a; Hu et al.,

Table 4 .

 4 1: Properties of the datasets used in the experiments.Finally, we report in Table4.3 the average number of weak learners and the average number of splits built by the trees to which we refer as the model complexity.

	Dataset	#Examples Imbalance ratio
	poker-8 vs 6	1477	0.0115
	abalone-20 vs 8-9-10	1916	0.0136
	winequality-red-3 vs 5	691	0.0145
	winequality-white-3-9 vs 5	1482	0.0169
	kr-vs-k-zero vs eight	1460	0.0185
	winequality-red-8 vs 6-7	855	0.0211
	winequality-white-3 vs 7	900	0.0222
	abalone-17 vs 7-8-9-10	2338	0.0248
	kr-vs-k-three vs eleven	2935	0.0276
	yeast5	1484	0.0296
	winequality-white-9 vs 4	168	0.0298
	yeast-1-2-8-9 vs 7	947	0.0317
	poker-9 vs 7	244	0.0328
	car-vgood	1728	0.0376
	glass-0-1-6 vs 5	184	0.0489
	zoo-3	101	0.0495
	abalone9-18	731	0.0575
	glass4	214	0.0607
	ecoli-0-1-4-6 vs 5	280	0.0714
	vowel0	988	0.0911
	yeast-0-5-6-7-9 vs 4	528	0.0966
	ecoli-0-1 vs 2-3-5	244	0.0984
	yeast-0-3-5-9 vs 7-8	506	0.0988
	yeast-2 vs 4	514	0.0992

Table 4 .

 4 2: The Average Precision (AP) and the F1 score (F1) reported for NLB and GB. We indicate in bold font the best method with respect to each dataset and each evaluation measure.

	Dataset	NLB(AP)	GB(AP)	NLB(F1)	GB(F1)
	poker-8 vs 6	29.3 ± 19.8 25.8 ± 31.3 28.9 ± 24.4 9.8 ± 19.8
	abalone-20 vs 8-9-10	27.9 ± 11.7 20.1 ± 18.9 20.2 ± 15.7 19.3 ± 20.0
	winequality-red-3 vs 5	8.7 ± 6.0	11.1 ± 12.3	7.2 ± 14.0	2.8 ± 7.9
	winequality-white-3-9 vs 5 23.8 ± 12.6 14.8 ± 12.9 25.8 ± 16.9 14.9 ± 16.3
	kr-vs-k-zero vs eight	99.0 ± 1.5	95.2 ± 7.0	77.1 ± 7.3 81.5 ± 16.4
	winequality-red-8 vs 6-7	13.1 ± 8.1	6.8 ± 3.9	12.8 ± 13.2	4.3 ± 8.4
	winequality-white-3 vs 7	41.5 ± 9.5	37.7 ± 19.2 36.2 ± 15.0 32.7 ± 16.5
	abalone-17 vs 7-8-9-10	28.7 ± 7.9	21.4 ± 7.5	22.2 ± 10.2	23.8 ± 7.6
	kr-vs-k-three vs eleven	99.8 ± 0.6	96.0 ± 5.1	96.8 ± 2.4	96.7 ± 2.8
	yeast5	67.2 ± 8.2	62.8 ± 16.8	67.6 ± 4.6	62.6 ± 13.4
	winequality-white-9 vs 4 41.7 ± 35.4 30.3 ± 34.6 22.2 ± 35.1 5.6 ± 15.7
	yeast-1-2-8-9 vs 7	29.9 ± 12.1 22.2 ± 13.6 25.4 ± 14.8 21.2 ± 16.7
	poker-9 vs 7	35.1 ± 17.1 25.4 ± 18.7 24.1 ± 23.0 15.4 ± 20.2
	car-vgood	99.9 ± 0.2	97.3 ± 5.0	96.4 ± 4.2	83.2 ± 31.7
	glass-0-1-6 vs 5	71.2 ± 28.9 65.7 ± 32.4 56.3 ± 34.4 36.7 ± 35.5
	zoo-3	35.3 ± 29.9 29.4 ± 21.4 32.2 ± 30.0 20.4 ± 29.2
	abalone9-18	40.1 ± 7.4	30.4 ± 9.9	37.9 ± 6.4	30.2 ± 11.4
	glass4	54.4 ± 16.4 51.2 ± 22.2	46.9 ± 24.8 54.0 ± 16.1
	ecoli-0-1-4-6 vs 5	69.9 ± 16.0 74.6 ± 18.4 68.9 ± 11.1 69.2 ± 11.8
	vowel0	94.7 ± 5.2	97.7 ± 2.1	89.4 ± 5.8	91.9 ± 4.5
	yeast-0-5-6-7-9 vs 4	46.8 ± 4.4 55.3 ± 12.7 40.3 ± 10.8 52.2 ± 12.3
	ecoli-0-1 vs 2-3-5	76.5 ± 11.1 67.7 ± 11.6 65.9 ± 12.9 57.0 ± 8.4
	yeast-0-3-5-9 vs 7-8	42.1 ± 8.3	36.9 ± 11.5	29.4 ± 6.9	29.1 ± 11.8
	yeast-2 vs 4	82.7 ± 7.4	80.7 ± 7.4	75.2 ± 6.5	71.0 ± 9.6

Table 4 .

 4 3: Average number of weak learners and number of splits per weak learner for GB and NLB.

			Model Average #Splits Average #Weak learners		
			GB	22.13 ± 7.92	67.25 ± 35.55		
			NLB	5.08 ± 3.83	35.42 ± 39.01		
	1.0									
	0.8					0.8				
	0.6 AP					0.6 F1score				
	0.4					0.4				
	0.2				NLB GB	0.2				NLB GB
	0	20	40 #Weak learners 60	80	100	0	20	40 #Weak learners 60	80	100

Table 4 .

 4 4: Properties of the datasets used in the experiments. We compare our method to different online boosting algorithms from current stateof-the-art: the four algorithms online.BBM, Adaboost.OL, Adaboost.OL.W, OGB from Beygelzimer et al. (2015b,a) and streamBoost from Hu et al. (2017) 2 .

		#examples #features
	Covtype	581, 012	54
	Poker	1, 025, 010	10
	MNIST	70, 000	718
	Abalone	4, 177	8
	Pima	767	8
	Adult	42, 842	14
	HIV	6, 590	8
	Shuttle	58, 000	9
	w8a	64, 000	300
	Wine	6, 497	12

Table 4 .

 4 5: Error rate reported for different online boosting algorithms. Dataset Base learner ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB streamBoost learners or examples asymptotically. That being said, our ONLB algorithm achieves, on average, better performance with twice less weak learners than online.BBM.

	Covtype	0.2401	0.2057	0.2242	0.2273	0.2313	0.2264	0.2128
	Poker	0.4182	0.0497	0.2375	0.1234	0.0953	0.3880	0.2668
	MNIST	0.1105	0.0561	0.1029	0.1557	0.0830	0.1139	0.0655
	Abalone	0.2673	0.2523	0.2831	0.2487	0.2531	0.2669	0.2720
	Pima	0.2992	0.2795	0.2913	0.2952	0.2835	0.2874	0.2953
	Adult	0.1523	0.1465	0.1530	0.1530	0.1526	0.1476	0.1586
	HIV	0.1986	0.1393	0.1273	0.1360	0.1291	0.1540	0.1526
	Shuttle	0.0211	0.0024	0.0173	0.0061	0.0058	0.0133	0.0050
	w8a	0.0189	0.0148	0.0158	0.0146	0.0167	0.0178	0.0155
	wine	0.1979	0.1687	0.1921	0.1931	0.1931	0.1743	0.1833
	with fewer weak						

Table 4 .

 4 6: Average number of weak learners (N) selected by progressive validation.

	Dataset ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB streamBoost
	Covtype	6	60	79	59	282	63
	Poker	52	222	348	311	320	285
	MNIST	14	66	147	207	431	131
	Abalone	5	6	12	3	166	8
	Pima	65	64	109	141	437	174
	Adult	13	6	18	17	161	119
	HIV	6	6	94	188	32	16
	Shuttle	30	43	243	108	121	159
	w8a	4	7	54	42	132	40
	wine	5	8	112	91	97	118
	Average	20	49	121	116	218	111

Note that data were collected using the Google Scholar search engine thus there might be some omitted papers.

Most popular platform for data science competitions

Link to the Kaggle dataset: https://www.kaggle.com/mlg-ulb/creditcardfraud

Implementation from scikit-learn, https://github.com/scikit-learn/scikit-learn

Implementation from Extreme Gradient Boosting, https://github.com/dmlc/xgboost

http://archive.ics.uc/du/ml/ and https:/www.csie.ntu.edu.tw/cjlin/ libsvmtools/

https://sci2s.ugr.es/keel/imbalanced.php

We used the implementations available in Vowpal Wabbit and reimplemented the stream-Boost and OGB algorithms.

Chapter 3

Learning with imbalanced data from a learning to rank point of view This chapter is based on the following publication Frery, Jordan, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-Guelton. "Efficient top rank optimization with gradient boosting for supervised anomaly detection." In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 20-35. Springer, Cham, 2017.

Abstract

In this chapter we address the anomaly detection problem in a supervised setting where positive examples might be very sparse. We tackle this task with a learning to rank strategy by optimizing a differentiable smoothed surrogate of the so-called Average Precision (AP). Despite its non-convexity, we show how to use it efficiently in a stochastic gradient boosting framework. We show that using AP is much better to optimize the top rank alerts than the state-of-the-art measures. We demonstrate on anomaly detection tasks that the interest of our method is even reinforced in highly imbalanced scenarios.

Introduction

As discussed in the first two chapters of this manuscript, there exist several methods to get rid of the issues due to imbalanced datasets. The most famous are sampling-based strategies, either by undersampling or oversampling the straightforward and Figure 4.2 remains unchanged in this version. We present the different steps of NLB in Algorithm 7.

The learning process is very similar, however, the constraint of online weak learners is no longer valid in this context. For this reason, in NLB algorithm, and generally in gradient boosting methods, the weak learners are regression trees.

The main difference between ONLB and NLB comes from the way we learn the weak learners and update our meta learner. A new weak learner h t is learned over the whole training set with residuals r i t as targets. Then, we need to find its corresponding weights α p t ∀p ∈ P . Note that adding a new weak learner influences each representation p and their parameters α p must be updated accordingly:

In practice, we use a Newton Raphson step to update these weight as it has already been proposed in [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF].

Algorithm 7 Non-linear boosting

At test time, our model learned with Algorithm. 7 predicts exactly the same way as in ONLB:

Finally, note that our models ONLB and NLB can be easily extended to the multiclass setting, see Appendix B for more details

Appendices

Appendix A

AP and F β Score Correlation

Throughout this manuscript, we emphasize that the average precision (AP) is a better metric for evaluating the model's performance than the F 1 score or more generally the F β score for the main reason that AP isn't biased by a sub-optimal decision threshold. It turns out that, if the decision threshold is well set, both metrics are highly correlated. This is what we want to show in this appendix.

As we presented, the average precision and the F β score are both closely related to the precision and recall. For AP, the precision is computed at each recall level and then averaged while the F β score corresponds to the weighted harmonic mean between precision recall at one recall level. In fact, β represents implicitly the different decision threshold.

In order to compare these measures, we simulate different scores and data distribution. We set up four different types of distributions described in Table A.1.

Appendix B ONLB in the Multi-Class Setting

An interesting extension of ONLB is its adaptation to the multiclass setting. In fact this is very straightforward since ONLB relies on a two layers neural network. In a standard neural network, multi-class problems are often solved using multiple output neurons [START_REF] Bentz | Neural networks and the multinomial logit for brand choice modelling: a hybrid approach[END_REF][START_REF] Schmidhuber | Multi-column deep neural networks for image classification[END_REF][START_REF] Chris | Multi-class protein fold recognition using support vector machines and neural networks[END_REF]. For a multiclass problem with J classes, we use J output neurons that form a vector of J dimensions representing the classes. This vector is passed through a softmax function defined as follows:

J j=1 e F j (x) where F j (x) is the output of the j th neuron predicting a score for sample x to belong to class j. The final modification is made on the loss function. In Chapter 1, we presented different loss functions that address the binary setting problem. Here we use a more general loss function that can be applied to any number of classes known as the multinomial logistic loss (or the cross entropy) (Böhning, 1992). First, we define our label y i = j as a one-hot vector of dimension J equal to 1 for the correct class j and 0 elsewhere. Now the loss function is defined as follows: mlog = -M i=1 y i log P (y i = j|x i) Then we can simply compute the derivative of mlog to update the weak learners and their weights.