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Introduction

Machine learning is the study of designing algorithms that learn from training

data to achieve a specific task. The resulting model is then used to predict over

new (unseen) data points without any outside help. This data can be of many

forms such as images (matrix of pixels), signals (sounds,...), transactions (age,

amount, merchant,...), logs (time, alerts, ...). Datasets may be defined to address

a specific task such as object recognition, voice identification, anomaly detection,

etc. In these tasks, the knowledge of the expected outputs encourages a supervised

learning approach where every single observed data is assigned to a label that

defines what the model predictions should be. For example, in object recognition,

an image could be associated with the label ”car” which suggests that the learning

algorithm has to learn that a car is contained in this picture, somewhere. This is in

contrast with unsupervised learning where the task at hand does not have explicit

labels. For example, one popular topic in unsupervised learning is to discover

underlying structures contained in visual data (images) such as geometric forms

of objects, lines, depth, before learning a specific task. This kind of learning is

obviously much harder as there might be potentially an infinite number of concepts

to grasp in the data. In this manuscript, we focus on a specific scenario of the

supervised learning setting: 1) the label of interest is under represented (e.g.

anomalies) and 2) the dataset increases with time as we receive data from real-life

events (e.g. credit card transactions). In fact, these settings are very common in

the industrial domain in which this thesis takes place.

Problems and Motivations

Today, IT companies are much more involved in AI research than a few years

ago. Lately, we saw the creation of new research centers such as Deepmind in

2010, Google Brain in 2011 (Alphabet), FAIR (Facebook AI Research) in 2013

and OpenAI in 2015. In Figure 1, we present the number of publications from

1
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Figure 1: Number of publications per year by the 5 most advanced companies in

Artificial Intelligence for top-tier conferences in machine learning.

such companies throughout the years 1 in prestigious machine learning confer-

ences and a recent craze for companies to publish and share their most recent

research is noticeable. This trend is spreading to many companies for two main

reasons: the development of hardware and the data available. Indeed, the hard-

ware improved a lot over the past decades with 1 TFLOPS (Tera FLoating-point

Operations Per Second) costing around 1 million euros in 2000 dropping to 30

euros in 2017. Naturally, companies started to invest in building more powerful

computing infrastructure to handle their massive amount of data. This latter is

what makes a huge difference between the academia working mainly on public

datasets and the industry having terabytes of data. In addition, they also gather

the biggest computing infrastructure in the world, making them prevalent actors

for the use of machine learning. Note that most of machine learning algorithms

used today such as neural networks, boosting, random forest, logistic regression,

SVM, and many more were created around the 2000’s but the accessibility to more

computing power and more data pushed the limits of these algorithms forward.

Nevertheless, these algorithms have been developed in confined settings where

datasets are clean and relatively small. These new datasets coming from the in-

dustry offer new challenges. In this manuscript, we tackle several important points

raised by their nature. It is important to note that real datasets coming from the

industry is a rare commodity in the public domain. There are many different rea-

sons why this data are kept away from the public research such as privacy and the

1Note that data were collected using the Google Scholar search engine thus there might be

some omitted papers.
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fact that they are an asset for the company owning them. However, recently, many

companies started publishing extracts of their data fully anonymized through a

competition format (e.g. kaggle) which makes them worthless from a business

point of view but priceless for the data science community. That being said, it

is clear that gathering a lot of data is costly in terms of human work especially

because of the labelling part (for supervised learning) where one has to assign

a ground truth to every data point. Moreover, data are more and more subject

to many different social constraints. The most common one is the data privacy

which can partially be solved by anonymizing the data at the potential cost of a

loss of information available that could be relevant for a learning algorithm. As

of today, the General Data Protection Regulation (GDPR) European laws have

made the use of data legal only under very strict rules which makes the use of AI

models more complex. In addition, these datasets, built over real-life events, are

subject to many processes that often introduce some noise (e.g. human mistakes

on labelling).

In this manuscript, one important focus is made on imbalanced datasets where

the class of interest (e.g. fraudulent transactions) is under represented. At Atos

Worldline, the company where this thesis has been done in collaboration with the

Hubert Curien laboratory, we witness this issue in extreme and unprecedented

cases where the fraudulent transactions appear about once out of two thousand

times. We will show that in such a case, the evaluation metric is primordial and

that the state of the art on imbalanced supervised learning suffers from biases

induced by public datasets that are often very small.

Today, many companies use machine learning models in production. However,

they are often being obsolete in the short term due to different concept drifts

through time. For example, spam detection, fraud detection, anomaly detection,

recommendation systems or click predictions are constantly evolving problems

(e.g. new fraudulent strategies, new anomalies, new users’ taste, ...) and models

must adapt quickly to the changes in patterns. In production, for the majority

of companies using machine learning, the role of a data scientist is often to main-

tain the models by watching the performances through metrics and retraining the

models from scratch when needed. This is certainly not the optimal scenario. We

would rather like a model that could adapt itself automatically as the data arrive

and learn through time. Indeed, in real-life applications, data does not come in a

finite set but rather arrive in a stream that never stops, defining actual events in

the real-life. This thesis also takes a step forward solving this problematic.
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Context of this thesis

Context of this thesis This thesis is part of a collaboration between the

academy and the industry. Worldline is a company focused on e-payment ser-

vices and has a special role to do with e-payment security. Indeed, several banks

rely on their fraud detection system in order to anticipate on fraudulent behaviours

and block fraudsters from stealing too much money before the card holders dis-

cover the fraud. Obviously, Worldline has access to different information for every

transaction made. However, today, the fraud detection system mainly relies on

fraud experts who build the so-called expert rules defined after analysis and in-

vestigations on the transactions. This is costly and in the long term, unrealistic.

This is where machine learning comes in. Substantial amounts of data arrive every

day in Worldline’s system with multiple kinds of information. This thesis aims

at adapting existing machine learning techniques to the challenges that offers the

fraud detection problem. More generally, we tackle the supervised anomaly de-

tection problem with two main constraints: the class imbalance problem and the

continuous data feed.

Contributions and Structure of the Manuscript

This manuscript contains two main contributions and is structured in four dif-

ferent chapters. In Chapter 1, we introduce machine learning fundamentals used

throughout this manuscript and present the general class imbalance domain with

its imbalance learning methods and its evaluation metrics. We finally present

some of the most famous ensemble methods with a focus on boosting that we use

throughout this thesis.

Chapter 2 presents the specific application case in which this thesis took place:

credit card fraud detection. We present different methods and show that, in our

specific case, they introduce many constraints and biases that are complicated

to handle with machine learning models. A large experimental study is made

on a private dataset from Worldline to highlight the previous point. In these

experiments we show some drawbacks behind different well-known performance

metrics in the class imbalance case. We further conclude that metrics independent

of this threshold better estimates the potential performance of a model. This

brings us to the first main contribution.

Optimization of the average precision

Chapter 3 is our first contribution where we study the supervised anomaly detec-

tion problem. We propose an approach based on a learning to rank strategy by
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optimizing different smooth surrogate of the Average Precision (AP), a particu-

larly suited metric in the context of class imbalance data, in a Stochastic Gradient

Boosting algorithm. We show that using AP is much better to optimize the top

rank alerts than other commonly used measures. This learning to rank approach

fits in the machine learning context where we wish to assist to the day-to-day job

of human experts. This contribution was followed by a patent on the credit card

fraud detection application.

Online Non-Linear Boosting

In the previous contribution, we mainly worked with the standard gradient boost-

ing algorithm that uses linear combination. This latter naturally averages the

performance of the models in the combination. It turns out that we could take

advantage of non-linear combination to exploit the full potential of the models

in the combination. In Chapter 4, our second main contribution, we study how

we can make such combinations and take into account another important point

of these real-life applications: the continuous flow of data. This contribution lies

in the online learning domain where models must learn ”on the fly” as examples

arrive. We propose a new online boosting algorithm that uses more advanced

combinations than in standard linear gradient boosting. We end this manuscript

by a general conclusion, open questions and perspectives.
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Table 1: Notations.

Notation Description

R Set of real numbers

X ,Y Input Space, Output Space

x Vector

d Number of dimensions in x

y Target ground truth of example x

FT Ensemble model with T different classifiers

ht tth weak learner in a boosting model

f(·) Function

E(·) Expectation

Rtrue(·) True risk

R(·) Empirical risk

τ Decision threshold

ρ Imbalance ratio



Chapter 1

Preliminaries

Abstract

In this chapter we introduce several notions used throughout this manuscript.

We formally define the supervised learning setting, the ensemble methods

and more specifically, boosting. Lastly, we present learning methods and

metrics of the state of the art for imbalanced datasets.

1.1 Supervised Machine Learning

In this section, we define precisely the setup for a supervised machine learning

problem. In this type of learning, as for humans, the algorithm learns from obser-

vations and gets a feedback known as the ground truth. We first define a sample:

x ∈ X ⊆ Rd,

where X is the input space typically defined over Rd with d being the number of

dimensions/features of a vector x such that we have x = {x1, x2, ..., xd}. In this

framework we also have the target y of the example x:

y ∈ Y ⊆ R,

with Y , the output space, discrete or continuous over R. In this manuscript, we

mainly focus on binary classification where Y = {−1, 1}.

In practice, we have a training set S of size M defined as S = {xi, yi}Mi=1 where

the M instances are supposedly independently and identically distributed (i.i.d.)

according to an unknown joint distribution D over X × Y .

7



8 Chapter 1. Preliminaries

Now that we have established the basic notations, we can describe formally what

supervised learning means. In this framework, we generally want to find a function

f ∈ F where F is the function space that maps the input features X to the target

output space, Y ,

f ∈ F → Y ,

where f is the function that predicts y given x for any (x, y) drawn from D. In

other words, we want to find f(x) the function that best approximates F (x), the

true (unknown) function of the problem at hand. However, the real world has a

lot of noise induced by missing features, wrong labelling, etc... We define ε the

irreducible error that we are not able to recover from such that y = F (x) + ε (this

ε also relates to the Bayes error which is the error of the Bayes optimal classifier).

In order to find the best function f for a given problem, we first need a performance

metric. Let us define the loss function `(·, ·) that takes both the predicted output

of the model f(x) and the expected label y. As we later present, this loss function

can be of many forms but it generally focuses in evaluating the agreement between

f(x) and y. We first define the notion of Generalization Error (or True Risk)

Rtrue(·) which is the expected error of our model f over D:

Rtrue(f) = E(x,y)∼D(`(f(x), y)).

In practice, we are only given a restricted training set S where every data point is

assumed to be drawn randomly from the distribution D and that every example

is generated independently from the others. This is the most common assumption

made in machine learning which state that the data is independently and identi-

cally distributed (i.i.d. assumption). Thus, generally, the access to the expected

error over D is impossible and we rather compute its empirical counterpart R

using S:

R(f) =
1

M

M∑
i=1

`(f(xi), yi).

The empirical risk is proven to converge to the true risk (Hoeffding, 1963)R(f)
M→∞−−−−→

Rtrue(f). In the end, we are looking for f such that f = inff∈F R(f). A straight

forward approach would be to minimize the empirical risk to find the function f

such that:

f = inf
f∈F

R(f) = inf
f∈F

1

M

M∑
i=1

`(f(xi), yi).
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However, optimizing over all possible f ∈ F functions may end up with a function

that would perfectly fit the samples from the training set with a high generalization

error. This phenomenon is known as overfitting and is explained by the following

uniform convergence PAC bounds (Valiant, 1984) (or generalization error) derived

from the Hoeffding’s inequality (Hoeffding, 1963)

Rtrue(f) ≤ R(f) +

√
log(|F|) + log( 2

γ
)

2M
, (1.1)

where |F| defines the number of functions in the search space F and 1− γ is the

probability for Eq. 1.1 to hold. This equation states that the generalization error

becomes bigger as |F| → ∞ and tends to decrease as M → ∞. Moreover, if the

space of function F is large then finding the right model becomes computation-

ally unrealistic. Note that in the infinite case (i.e. |F| = ∞, e.g. when F is

the family of hyperplanes in Rd), we need to resort to a complexity measure to

estimate the expressiveness of F . An example of such measure is the V C (Vapnik

Chervonenkis) dimension (Vapnik, 1971).

In machine learning, a famous notion is the bias-variance trade-off. The bias

represents the average prediction error of the model f(x) on the true function

F (x). It is defined as follows:

Bias(f(x)) = E (f(x)− F (x)) .

A high bias tends to mean that the model is too simple leading often to a true risk

relatively high. This phenomenon is known as underfitting where the model does

not learn enough on the training set. The variance, on the contrary, represents

the variability of the model with regard to the data.

Var(f(x)) = E
(
f(x)2

)
− E (f(x))2 .

In practice, the simpler the model (i.e. the smaller the number of parameters to

learn) the smaller the variance. As we previously mentioned, the true function

that we want to approximate is given through a set of observations that are subject

to noise. The risk of having a model with high variation is to induce a model that

tries to approximate this noise. The intuition of this notion in Figure 1.1 where

overfitting (high variance) and underfitting (high bias) are represented in function

of the model complexity. In summary, having too complex models makes them

prone to overfitting while too simple models are not able to learn the idiosyncrasies

of the target concept. In practice we can estimate the curve of the true risk by

evaluating the model on a test set {xi, yi}Ti=1 ∈ Stest ∼ D\S. The optimal trade-off

is the one that minimizes both bias and variance.
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Empirical Risk
True Risk

Figure 1.1: Representation of the bias-variance trade-off. On the left, the model

complexity is low which makes the model too weak to learn well. This leads

to underfitting. While on the right, the model complexity is high making the

empirical risk low since the model is able to perfectly fit the training set. However,

it can’t generalize to new examples and thus has a high true risk. In the middle, a

bias-variance trade-off is found yielding the best true risk reachable for the sample

set available (w.r.t. the empirical risk).

We give an intuitive visual example in Figure 1.2. Three polynomial regression

models aim to approximate the cosine function with some noise following a uniform

distribution (ε ∼ U), cos(3
2
πx)+ε = y, by learning over a limited set of observations

(xi, yi)
M
i=1. The only difference between these models is the degree of polynomial

that they are allowed to have during training. We see that for a model with the

highest complexity (the red curve), the training data points are perfectly predicted

at the price of making huge errors in areas where there was no sample. This model

is trying to learn the random noise ε. On the other hand, the green model underfits

the data and is not able to capture the specificity of the target concept. By playing

around with the model hyper-parameters (degree of the polynomial), we can find a

model that tends to generalize well by finding the right trade-off in blue. However,

”playing around” with the model complexity to find a model that generalize well

can be a very difficult task.

In such a context, the Regularized Risk Minimization adds a regularization term

and tries to find a trade-off between fitting the data and controlling the complexity

of the model.

f = argmin
f∈F

M∑
i=1

`(f(xi)) + λ||f ||,

where ||f || is a norm and λ is a trade-off parameter which is basically determined

empirically by cross-validation. This method is used to penalize complex methods
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Figure 1.2: Example of regression with three different models.

to prevent overfitting. However, finding the right regularization is not trivial and

depends on the task at hand.

Let us now we define more precisely the loss function, `(·, ·). Intuitively, it might

be set to the 0/1 loss such as to assess the quality of a model using a classification

error measure, as follows:

`0/1(f(x), y) =

{
1, iff(x) 6= y

0, otherwise.

As simple as the 0/1 loss may seem, finding the minimizer of inff∈F R(f) is difficult

(NP-hard) mainly because of its non-differentiability, but also because of its non-

convexity in f . Instead of using the 0/1 loss, we rather use convex surrogate loss

functions. As mentioned earlier, there exist many different ones. We present the

most common losses in Figure 1.3.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
yf(x)

0.0
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4.0 0/1 loss
Hinge loss
Logistic loss
Exponential loss
Square loss

Figure 1.3: Main surrogate loss functions based on the margin yf(x).
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The hinge loss `hinge(f(x), y) = [1−yf(x)]+ = max(0, 1−yf(x)), mainly used

in Support Vector Machines (SVM) (Cortes and Vapnik, 1995). This loss basically

is 0 when y and f(x) agree and is linearly increasing with f(x) when they disagree.

While it is not differentiable at 1, the hinge loss still has a subgradient with respect

to the model parameters which is sufficient for the optimization.

The exponential loss `exp(f(x), y) = e−yf(x), used for example in Adaboost (Fre-

und and Schapire, 1997). This loss is a bit harder to optimize due to its exponential

nature. Indeed, little variation in the model increases the loss exponentially. That

being said, some learning methods are able to handle it quite effectively.

Logistic loss `log(f(x), y) = log(1 + e−yf(x)), which is ubiquitous in neural net-

works and also used in LogitBoost (Friedman et al., 2000). This loss function has

a story where one wants to use f(x) to estimate the probability of the associated

label y, P (y|x). In fact, this probability can be estimated with the logistic function

(or the sigmoid),

P (y = +1|x) =
1

1 + e−f(xi)
, P (y = −1|x) =

1

1 + ef(xi)
.

From this observation, one can compute the likelihood of the labels occurring in

the training set,

L
(
(x1, y1), ..., (xM , yM)|f

)
=

M∏
i=1

1

1 + e−yif(xi)
= e−

∑M
i=1 log(1+e

−yif(xi)).

Maximizing the likelihood is then equivalent to minimizing the logistic loss of

this model. Apart from the fact that this loss is differentiable and convex which

makes it a suitable loss for optimization, it has also bounded gradients (unlike the

exponential loss) and leads to a better probability estimates.

Squared error `se(f(x), y) = (y−f(x))2, the well-known loss for the regression

task. It is used for almost every single algorithm (Friedman, 2001) doing regres-

sion. In our context, we will use it in Gradient Boosting where our (weak) learner

does not perform a classification but rather a regression task.

In this manuscript, we focus on ensemble learning that aims at combining different

models {fl}Ll=1 ⊆ F such that their combination outperforms the best single model

fbest ∈ {fl}Ll=1:

Rtrue(
1

L

L∑
l=1

fl(x)) < Rtrue(fbest), (1.2)
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where L is the number of models being combined. The main point of ensemble

learning is to take advantage of the diversity between the different models compos-

ing the ensemble. Of course, if they are too similar and do not complete each other

in any way then building an ensemble with these models is not going to make our

ensemble more robust. Thus, we need our models to bring some diversity and have

a relevant empirical performance (e.g. better than random guessing). This last

point differs between the ensemble method we use. In the following, we present

different ensemble learning methods and their specificities.

1.2 Ensemble learning

We introduce here a key notion of this manuscript. Can we combine several models

to increase the overall performance? In Section 1.1, we discussed how we could

handle the bias-variance trade-off. It turns out that ensemble methods handle the

bias-variance trade-off quite effectively while being relatively simple to train. We

review three important methods that were the root of multiple algorithms.

At a time where decision trees (Quinlan, 1986; Breiman, 1984) were popular, they

still suffered from handling the bias-variance trade-off very poorly. Indeed, a de-

cision tree is a model that basically splits the dataset into two parts based on

an information criterion (e.g. entropy) that defines how well the two resulting

subsets (children nodes) perform compared to the parent. In practice, the number

of nodes in a decision tree can go up to #nodes ≤
∑M

p=0 2p where p is the depth

of the tree. Clearly, learning a tree where every single instance is correctly clas-

sified can lead to a very large tree that simply overfit the training set. Pruning

methods (Quinlan, 1987) that aim at removing potential irrelevant nodes can be

used but these techniques increase the complexity of the learning algorithm and

are subject to arbitrary choices (Breiman, 1984). Ensemble learning appeared as

a nice solution to build trees without too many human efforts (e.g. no manual

pruning). Today, ensemble methods are used a lot to build efficient models and

we will use them in Chapter 3 and 4. We now briefly describe these methods.

Bagging (Breiman, 1996) As in any ensemble method, bagging combines many

classifiers by averaging their outputs into a final prediction. Its peculiarity is to

train every classifier over a different subset S ′, drawn randomly from S such that

S ′ ⊂ S. This technique is called sampling with replacement where the idea is to

randomly draw examples from S and put them back in S such that the examples

have a chance of being drawn multiple times. As we previously mentioned, trees

are easy to train and have multiple advantages but their regularization was difficult
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mainly because their growth without limit potentially leads to overfit the training

dataset. Bagging offers a nice way to build trees without paying attention to how

it overfits. Indeed, the randomness that we add using sampling makes trees more

diverse and the final prediction much more robust to overfitting even if every single

tree has a very high variance. The final bagging model is defined as follows:

Fbagging(x) =
1

T

T∑
t=1

ft(x).

Random forest (Breiman, 2001) (RF) is probably the most famous bagging method

today. Inserting randomness during the training improved the results significantly.

Indeed, we need models that bring a different, yet complementary knowledge to

others. This is mainly done by (i) bagging the data (sampling with replacement)

and (ii) selecting randomly subsets of features at each level of the tree.

Figure 1.4 presents how a RF makes it easy to handle the overfitting behaviour of

a single tree and build a more general model.
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Figure 1.4: On the left, a single regression tree is completely overfitting the training

set. In the middle, many different decision trees learned over different S ′ ⊂ S are

overfitting over the subsets. On the right, we plot the average of their outputs

giving a single final decision.

Stacking (Wolpert, 1992) The idea of the stacking method comes from the

observation that combining models linearly does not always yield the best solution.

However, it is hard to combine different models efficiently since we don’t know how

they complement each other. A solution is to use a meta-learner that takes model

outputs for every example and builds its own rules on how to combine them.

Fstacking(x) = Meta
(
f0(x), f1(x), f2(x), ..., fT (x)

)
,

We will present a method inspired from stacking methods in Chapter 4.3.

Figure 1.5 gives an example of how many different learners can be used as the

inputs of another model and yield better performance.
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Figure 1.5: On the left, a single model is learned. In the middle, many different are

learned with some diversity. On the right, a meta learner is taking their outputs

as inputs and learns a better model.

Predicting on parts of the space where there is no training example is not an easy

task. Ensemble methods like bagging and stacking offer a very simple and efficient

way of finding models with a good generalization by combining many different

models with a poor individual generalization. As we can see, the construction

of the models composing the ensemble is made easy by willingly overfitting or

underfitting. The combination of their outputs can also be very straight-forward

as in bagging (simple linear combination). On the other hand, combining the

model using stacking offers, potentially, an infinite number of combinations. Thus

this technique is more prone to over-fitting than the others. A good compromise

is the boosting approach that we present in the following section.

1.3 Boosting

The concept of boosting emerged with the work of Schapire (1990) which showed

that, in theory, it is possible to improve the performance of any learner by com-

bining a set of weak classifiers under the simple assumption that the base learner

behaves better than random guessing. In machine learning, we often struggle to

build a relevant model with high performances without falling into the overfit-

ting scenario. And even without the overfitting problem, building a classifier to

reach a high performance can be subject to computational constraints (i.e. infi-

nite amount of data points). Boosting allows to alleviate the previous problems

by only building weak learners. Two questions arise in this setting: 1) How do we

use the information brought by each classifier? and 2) how can we build several

weak learners such that they are complementary to solve the problem? In Freund

and Schapire (1997), the authors develop the first and still so famous boosting

algorithm, Adaboost (for Adaptive Boosting) which is a first approach to answer

both questions.

The boosting process is basically focusing on the examples that were misclassified
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by the already learned classifiers. In other words, boosting tends to learn general

rules at the beginning and specializes to ”difficult” examples along its T learning

iterations. The final prediction in boosting is a weighted combination defined as

follows:

Fboosting(x) =
T∑
l=1

αtht(x),

where, {αt}Tt=1 represents the relative performance of the weak learners. For the

rest of this manuscript, we write our T weak learners: {ht}Tt=1 to make our nota-

tions similar to that of the boosting community. We call them weak hypotheses or

weak learners.

Figure 1.6 shows how boosting can create a strong model out of many weak and

different learners.
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Figure 1.6: On the left, a single decision tree is underfitting. In the middle, many

different decision trees learned using the boosting method (note that we plot here

αtht(x) instead of just ht(x)). On the right, we plot their linear combination into

a final decision.

Adaboost

Adaboost (Freund and Schapire, 1997) is the first boosting algorithm and initiated

many algorithmic and theoretic research. This algorithm attracted many different

fields due to its simplicity, performance and theoretical properties. To cite a few:

• Natural Language Processing (Abney et al., 1999; Carreras et al., 2003)

• Bioinformatics (Niu et al., 2006)

• Spam detection (Carreras and Marquez, 2001)

• Computer vision (Viola and Jones, 2001; Grabner and Bischof, 2006)

• Fraud detection (Viaene et al., 2004; Fan et al., 1999)

Adaboost operates as a rule of thumbs where, at each iteration, the most accurate

rule to classify the dataset is found. Each new rule is built such as to focus more
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on the examples that have been missed by the previous rules. By repeating the

process for many iterations we finally end up with many rules that are combined

linearly. The prediction is a weighted vote that defines the strong model.

In order to build diverse rules, the algorithm uses a weight wi,t for the example

xi at iteration t. Note that the number of iterations in boosting is defined by the

number of models that compose the ensemble. The weight for a given observation

varies along the training process and an asset of Adaboost is that this weight

automatically adapts to the performance of the previous weak learners on this

example. This is mainly why Adaboost is said to be adaptive. Moreover, every

single rule ht in the ensemble is given a weight αt.

To accomplish all these steps, Adaboost is based on minimizing the exponential

loss function `exp. The objective function can be written as follows:

Rexp(FT ) =
1

M

M∑
i=1

`exp(FT (xi), yi) =
1

M

M∑
i=1

e−yiFT (xi),

where FT (x) =
∑T

t=1 αtht and ht ∈ {−1, 1}. All the losses presented in Section 1.1

could potentially be used, however, the choice of the exponential loss has several

assets in this framework:

1. It opens the door to theoretical properties (Schapire and Singer, 1999).

2. It is very convenient to compute the weights for the dataset at each iteration.

3. It makes the optimal value αt very easy to compute.

The main potential drawback of this loss function is the fact that it grows ex-

ponentially fast as Ft is wrong. In case of noise in the dataset, Adaboost could

potentially spend a lot of effort classifying this noise correctly (Freund et al.,

1999). In Dietterich (2000), the authors show that Adaboost is indeed susceptible

to noise. Different solutions exist to cope with this problem such as the Brown-

boost (Freund, 2001) algorithm where the examples that are misclassified for too

many iterations are left aside to let the learner focus on the remaining examples.

The specificity of Adaboost lies in the re-weighting schema used for all examples

in the training set S with {wi,t}Mi=1, the weights, at each boosting iteration t. Note

that we assume to have a base learner allowing to train with weighted samples. At

iteration t, the weight wi,t+1 is found such that it represents how well the strong

learner Ft(xi) classifies xi. This can be done using the following equation:

wi,t+1 = e−yiFt(xi). (1.3)
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Mathematically, at iteration t we already computed wi,t = e−yiFt−1(xi). This allows

us to have a simpler update for wi,t+1:

wi,t+1 = e−yiFt−1(xi)e−yiαtht = wi,t−1e
−yiαtht .

Due to the exponential nature of the loss, the weights are normalized to get a

statistical distribution such that
∑M

i=1wi,t+1 = 1.

These weights are used to find a new ht such that this weak learner minimizes the

sum of the weights for the misclassified examples:

ht = argmin
h

∑
h(xi) 6=yi

wi,t.

The second important point in Adaboost is to find the αt that minimizes Rexp(Ft)

such that:

αt = argmin
α

M∑
i=1

e−yi(Ft−1+αht).

The exponential loss and the assumption made on the output of the weak learners

allow a very simple derivation to find a close form solution for which αt is optimal.

Rexp =
M∑
i=1

e−yiFt−1e−yiαtht

=
∑

yi=ht(xi)

e−yiFt−1(xi)e−αt +
∑

yi 6=ht(xi)

e−yiFt−1eαt .

It remains to find ∂Rexp

∂αt
= 0.

∂Rexp

∂αt
=
∂
(∑

yi=ht(xi)
e−yiFt−1(xi)e−αt +

∑
yi 6=ht(xi) e

−yiFt−1eαt
)

∂αt
= 0

= −e−αt
∑

yi=ht(xi)

e−yiFt−1(xi) + eαt
∑

yi 6=ht(xi)

e−yiFt−1 = 0

eαt

e−αt
=

∑
yi=ht(xi)

e−yiFt−1∑
yi 6=ht(xi) e

−yiFt−1(xi)

e2αt =

∑
yi=ht(xi)

e−yiFt−1∑
yi 6=ht(xi) e

−yiFt−1(xi)

αt =
1

2
log

( ∑
yi=ht(xi)

e−yiFt−1∑
yi 6=ht(xi) e

−yiFt−1(xi)

)
.
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Algorithm 1 Adaboost algorithm

1: Given: (xi, yi) where xi ∈ X and yi ∈ {−1,+1}:
2: Initialize: wi,1 = 1

M
for i = 1, ...,M .

3: for t = 1 to T do

4: Train ht : X → {−1,+1} using the weights wt.

5: Choose αt = 1
2

log(1−εt
εt

).

6: Update the weights:

wi,t+1 =
wi,te

−αtyiht(xi)

Zt
,

where Zt is a normalization factor such that wt+1 is a distribution.

7: end for

8: Output the final model:

F ∗(x) = sign(
T∑
t

αtht(x)).

Or as it is more commonly written in the literature:

αt =
1

2
log(

1− εt
εt

),

where εt =
∑

ht(xi) 6=yi wi,t is the weighted error rate of a given weak learner ht. We

summarize the steps of Adaboost in Alg. 1.

In Freund and Schapire (1997), the authors show that the empirical error (training

error) is at most R(Fada) ≤ e(−2
∑
t=1 γ

2
t ) where γt is the edge over random guessing

of the tth weak learner such that εt = 1
2
−γt. This bound shows that the empirical

error decreases exponentially fast along the boosting iterations. In the same paper,

the authors also present how to bound the generalization error (true risk) of the

final model in terms of its training error, the sample size M , the VC-dimension V
and the number of boosting rounds T .

Rtrue(Fada) < R(Fada) +O

(√
TV
M

)
This bound suggests that Adaboost will overfit as T becomes large. This has

been debated in many papers as it was experimentally shown that Adaboost does

not overfit even for thousands of rounds (Breiman, 1997; Drucker and Cortes,

1996). Moreover, it has been experimentally shown that, while the training error

reaches 0, the test error still decreases which clearly contradicts the above bound.

An explanation of this behaviour was made in Schapire et al. (1998) where the
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authors give a different analysis using the margin of the training examples. The

margin m(x) ∈ [−1,+1] is defined to be

m(x) =
y
∑

t=1 αtht(x)∑
t=1 αt

.

The margin is positive if the model correctly classifies the example x and negative

otherwise. This value can also be interpreted as the confidence of the model for

a given example. With this value, the authors were able to derive a new bound

defined as follows:

Rtrue(Fada) < P (m(x) ≤ θ) +O

(√
Vh
Mθ2

)
for any θ > 0 where Vh is the VC-dimension of the weak learner. This upper

bound has the great advantage of not being dependent on the number of iteration

T in its second term. It turns out that the first term was shown to be bounded

above by

P (m(x) ≤ θ) ≤ 2T
T∏
t=1

√
εt(1− εt).

Adaboost is a very efficient algorithm but it only runs with the exponential loss

which can be hard to handle in some cases (e.g. noisy datasets). In the following,

we present a different boosting approach that uses a different loss function.

Additive Logistic Regression

This section presents the additive logistic regression algorithm (Logitboost) (Fried-

man et al., 2000) which uses the logistic loss instead of the exponential loss:

Rlog =
1

M

M∑
i=1

`log(FL(xi), yi) =
1

M

M∑
i=1

log(1 + e−yiFL(xi)).

Before explaining the Logitboost algorithm let us take a step back on its origins

as it played a significant role in the evolution of boosting methods.

A simple linear model can be written in the following form:

F (x) = α0 + α1x
1 + α2x

2 + ...+ αdx
d.

where {αt}dt=1 are the parameters of the model. It assumes that the problem can

be explained as a linear combination of the input variables. However, in many

cases and especially on real-life problems, a linear model is not expressive enough
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to capture the full underlying concept of the data. To solve this problem, Additive

Models (Friedman and Stuetzle, 1981) and its generalized version GAM (Hastie

and Tibshirani, 1986) have been introduced. Instead of using a linear combination

of the parameters, the goal is to use non-parametric functions that introduce non-

linearity. The form of an additive models is as follows:

F (x) = f1(x
1) + f2(x

2) + ...+ fd(x
d).

This model is composed of different learners, one per feature. In order to update

each function, the backfitting algorithm (Breiman and Friedman, 1985) is used to

find fj:

fj = argmin
f

1

M

M∑
i=1

[
yi −

∑
k 6=j

fk(x
k
i )− f(xji )

]2
,

or in other words, fj is updated such as to correct the error of the other functions.

These functions only take a single dimension d of the whole feature input vector

but more generally, we can assume that these functions use all inputs from x such

that the model becomes more general:

Ft(x) = f1(x) + f2(x) + ...+ ft(x).

Finally, instead of having all the functions already defined, Ft(x) can be updated

in a greedy forward stepwise approach where a new model ft+1 is added:

ft+1 = argmin
f

M∑
i=1

(yi − Ft(xi)− f(xi))
2 .

At this step, we can see the connection with boosting where the {ft}Tt=1 would be

the weak learners.

This backfitting algorithm was first made to work for regression tasks. In Hastie

and Tibshirani (1986), the authors propose a new version of backfitting using the

Newton-Raphson method for GAM and more specifically for the Additive Logistic

Regression Model called Local Scoring and defined as:

Ft(x) =
1

1 + e−(f1(x)+f2(x)+...+ft(x))
= P (y = 1|x) = p(x).

The Newton-Raphson method (Wallis et al., 1685; Raphson, 1697) is successively

used as in the gradient descent algorithm to find the root of a function. The main

difference is that it requires the second derivatives such that θ = θ+
∂`(f(x),y)

∂θ
∂2`(f(x),y)

∂2θ

where

θ is the parameter to update to find the root of `(·, ·). The higher order method
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Algorithm 2 Logitboost algorithm

1: INPUT: A training set S = (xi, yi)
M
i=1 where xi ∈ X and yi ∈ {0, 1}:

2: Initialize: wi,1 = 1
M

and p(xi) for i = 1, ...,M , F (x) = 0.

3: for t = 1 to T do

4: Compute the newton step:

zi =
yi − p(xi)

p(xi)(1− p(xi))
,

wi,t = p(xi)(1− p(xi)).

5: Fit the weak learner ft by a weighted least-squares regression to zi using

weight wi,t for all i ∈ 1, ...,M .

6: Update F (x)← F (x) + 1
2
ft(x) and p(x)← 1

1+e−F (x) .

7: end for

8: Output the final model:

F ∗(x) = sign(
T∑
t

ft(x)).

allows to build better approximations and thus to converge in less iterations.

However, it requires the second derivative which can be computationally expensive

to have. Basically, the idea of Local Scoring is to find a new model ft+1 such that:

ft+1 = argmin
f

(
Ft +

y − p(x)

p(x)(1− p(x))
− Ft − f

)
,

where y−p(x)
p(x)(1−p(x)) is the Newton-Raphson update. In fact, we only need ft+1 to

approximate this update. The simplest strategy is to fit the new model over

this update using a simple regression. Naturally, if the function perfectly fits the

update, then no other step is required (all examples are well classified). However,

in practice, we use weak learners as in Adaboost to handle the overfitting scenario.

In Friedman et al. (2000), the authors actually use the same principle. The steps

of LogitBoost are described in Alg. 2.

While the original LogitBoost algorithm is slightly different from Adaboost, in Collins

et al. (2002) the authors a direct transformation to have an equivalence to Logit-

boost in the Adaboost framework with a single line modification in the Adaboost

algorithm:

wi,k+1 =
1

1 + eyiFt
. (1.4)



1.3. Boosting 23

Adaboost and Logitboost are both boosting algorithms that are built for specific

losses. The former based on the exponential loss while the later works with the

logistic loss. This last algorithm is in fact less constrained by its loss function:

since the weights are based on the newton step, any other loss could potentially

be used (as long as the second derivative is computationally feasible). In the

following, we present the gradient boosting algorithm that basically generalizes

the previous two methods to any loss function.

Gradient Boosting

The generic version of boosting for any loss function was first introduced by Breiman

(1997) and later generalized by Friedman (2001). We previously presented the

weights used in Adaboost and LogitBoost. In fact, Eq. 1.3 can be seen as the

absolute gradient of Rexp(Ft(xi)) in function of Ft(xi) such that∣∣∣∣∂Rexp(Ft)

∂Ft(xi)

∣∣∣∣ =
∣∣−yie−yiFt(xi)∣∣ = e−yiFt(xi) = wi,k+1,

and the same applies for Eq.1.4 in LogitBoost:∣∣∣∣∂Rlog(Ft)

∂Fk(xi)

∣∣∣∣ =

∣∣∣∣ −yi
1 + eyiFk(xi)

∣∣∣∣ =
1

1 + eyiFt(xi)
= wi,k+1.

Indeed, the examples are weighted by the absolute value of the first derivative for

the loss function used. At a given iteration t, we need to find ht for a classification

loss function `c as follows:

ht = argmin
h
Rc(Ft−1 + h) =

1

M

M∑
i=1

`c(Ft−1(xi) + h(xi), yi). (1.5)

Solving Eq.1.5 without assumption on the weak learner or the loss used is dif-

ficult. To solve this task, gradient boosting leverages regression algorithms to

approximate the negative gradients also called the residuals such as to make a

step toward the optimal solution of FL in the function space (hence the name of

functional gradient descent is often used for this method).

rti = −∂R
c(Ft−1)

∂Ft−1(xi)
.

As it was previously done in Logitboost, we want the weak learner ht to minimize

Rsq:

ht = argmin
h
Rsq(Ft−1 + h) = argmin

h

1

M

M∑
i=1

(
rti − h(xi)

)2
.

Finally, an advantage of boosting weak learners is the nice generalization behaviour

of the final model. However, most of the time, we need to increase the complexity
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Algorithm 3 Gradient boosting

1: INPUT: a training set S = {zi = (xi, yi)}Mi=1, a weak learner

2: Initialize F0(x) = 0

3: for t = 1 to T do

4: Compute the residuals:

rit = −
[∂`(zi, Ft−1(x))

∂Ft−1(x)

]
, ∀zi = (xi, yi) ∈ S (1.6)

5: Fit a weak classifier (e.g. a regression tree) ht(x) to predict the targets rt
6: Find αt = argminα

∑M
i=1 `c(zi, Ft−1(xi) + αht(xi))

7: Update Ft(x) such that Ft(x) = Ft−1(x) + αtht(x)

8: end for

9: Output the final model:

F ∗(x) = sign(
T∑
t

ft(x)).

of these learners to reach better performance which also increases the risk of

overfitting. One way to handle this is to regularize. In gradient boosting, we can

mainly play with two parameters:

1. The learning rate λ which is a constant that shrinks the outputs of the weak

learners
∑T

t λαtht(x). This parameter is only used during training and can

then be removed.

2. A parameter which basically imitates bagging and summarizes the stochas-

tic gradient boosting developed in Friedman (2002). The idea is simply to

take a subsample of the data for every weak learner. As in bagging, random

successive subsampling helps to have a final model with a better generaliza-

tion.

The steps of gradient boosting are summarized in Alg.3

Gradient boosting offers much more flexibility than other boosting algorithm based

on Adaboost (i.e. any loss function can be used assuming we can find its first

derivative and any base-learner doing regression is also a fit).

Note on the greedy approximation The greedy approximation of the resid-

uals using a regression algorithm introduces an unwanted phenomenon. Indeed,

when a weak learner is highly confident in its prediction and is correct regarding
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the true label such that h(xi) >> 0 for yi = 1 or h(xi) << 0 for yi = −1 then, the

classification loss tends to zero, `c(h(xi), yi)→ 0. However, when the weak learner

is being trained, it is highly penalized when its prediction is far from the residual

ri even if the sign of the prediction is correct and, therefore, actually minimizing

the classification loss. This side effect of the greedy approximation can make the

training of the weak learner more difficult since it is subject to more constraints

than it should be. However, from a different point of view, penalizing too confident

weak learners can also be in favour of the boosting algorithm which is above all

a collaboration between different models. Indeed, as the prediction of h(xi) gets

closer to ri, the regression loss decreases. However, when this prediction goes too

high and potentially makes the weak learner a decision-maker for the ensemble,

the regression loss increases and penalizes the overconfidence.

The base learner For clarity, a base learner defines the algorithm boosted in

the model while the weak learners define the models built during the training

process. So far, we have not made any assumption on the base learner simply

because any learner is acceptable in the theoretical framework of boosting. Even

a strong learner could be used at the risk making the model prone to overfitting.

Note that, in practice, respecting the weak assumption (γt >
P
M

, where P
M

is the

accuracy of a random classifier) is not mandatory since the weak learner weight,

if correctly computed, should appropriately switch the signs of the predictions if

the weak learner is less than the random guess and discredit the prediction of this

weak learner by lowering the weight to 0. That being said, since its invention,

trees have proved to be much more efficient than other base-learners (Schapire

and Singer, 1999; Friedman, 2001, 2002; Freund et al., 1996) (e.g. naive bayes,

perceptron, ...). Moreover, trees are very straight forward learning algorithms

with different assets:

1. They can be learned with sample weights rather easily (i.e. by using these

weights in the splitting criterion)

2. They are invariant on the input variables (i.e. no pre-processing required to

scale the continuous features).

3. They are easily distributed which improves a lot the computation time.

4. The internal rules are human-readable which is a rare commodity in machine

learning algorithms to address the problem of interpretable AI.

5. The Random Forest bagging method (Breiman, 2001) proved to be a very

good algorithm on real datasets and also uses trees.
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We formally define a tree structure as:

htree(x; {bj, Lj}J1 ) =
J∑
j=1

bjI(x ∈ Lj),

where {Lj}Lj=1 are different final leaves of the tree that cover the entire space of x

and I(·) is the indicator function that takes the value one if · is true and 0 otherwise.

In gradient boosting, the trees used are doing a regression over the residuals where

bj is the value of the region Rj. Note that, in case of stumps, we only have J = 2

(decision tree with a single split) thus only two values define the entire input

space. The training process of a decision tree is a greedy learning algorithm that

tests every possible split in the dataset over the xi∀x ∈ S, i ∈ {1, 2, ..., d} and, in

general, every parent node only splits into two parts. In order to find these splits,

we have a criterion that allows us to evaluate the quality of a split for a given

node containing {xi, yi} ∈ Snode ⊂ S. In gradient boosting, regression trees are

used and the splitting criterion is defined as follows:

vsplit = argmax
xda

|SL|
|Snode|

∑
xdi<x

d
a

(ri − r̄L)2 +
|SR|
|Snode|

∑
xdi≥xda

(ri − r̄R)2 −
∑
xi

(ri − r̄)2 ,

(1.7)

where |SL| =
∑

xdi<x
d
a

1, |SR| =
∑

xdi≥xda
1, r̄L =

∑
xd
i
<xda

ri

|SL|
, r̄R =

∑
xd
i
≥xda

ri

|SR|
and

r̄ =
∑
xi
ri∑

xi
1

. vsplit is the feature value that best splits the entire dataset at the node.

Note that in Eq. 1.7,
∑

xi
(ri − r̄)2 is only used for the stopping criterion. Indeed,

the regression loss cannot be improved in the children’s nodes then there exists

no xda such that

|SL|
|Snode|

∑
xdi<x

d
a

(ri − r̄L)2 +
|SR|
|Snode|

∑
xdi≥xda

(ri − r̄R)2 −
∑
xi

(ri − r̄)2 > 0,

and the boosting algorithm can be stopped. In practice, we might allow this

behavior and thus remove the stopping criterion.

Earlier, we mentioned some constraints induced by the regression algorithm fit

over the residuals. In fact we can slightly modify Eq. 1.7 such as to remove the

constraints by simply maximizing the sign of the residuals in the two children

nodes as follows:

vsplit = argmax
xda

|SL|
|Snode|

∑
xdi<x

d
a

ri

2

+
|SR|
|Snode|

∑
xdi≥xda

ri

2

−

(∑
xi

ri

)2

. (1.8)
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Eq. 1.8 is induced from the work of Mason et al. (2000) in which they define a

new algorithm called Anyboost where they propose to find the best ht as follows:

ht = argmax
h

1

M

( M∑
i=1

rti · h(xi)
)2
.

In the following section, we present a recent gradient boosting algorithm with a

similar approach to compute the best splitting value. Note that this modification

might not be easily feasible for any weak learner.

Another advantage of using trees as weak learners in gradient boosting is the fact

that the weight α can be computed at the leaf level instead of the entire tree. This

implies that we have multiple weights for one weak learner equal to the number

of terminal leaves {αjt}Jj . This has a strong advantage over using a single weight

because different terminal leaves do not yield the same predictive performance

and therefore should be weighted differently. In fact, other weak learners such

as perceptron, naive bayes or neural network could benefit from such weighting

schema. In Chapter 4.3, we generalize this weighting schema to different weak

learners.

In the following section, we detail a variant of gradient boosting which improved

the training process in terms of computation speed but also generalizes the Newton-

Raphson method used in Logitboost to different loss functions assuming trees as

weak learners.

Extreme Gradient Boosting

Extreme Gradient Boosting (Chen and Guestrin, 2016), also called XGBoost, is a

competitive machine learning algorithm by its efficiency and its flexibility. There

are some distinct differences with the original gradient boosting algorithm that

basically aim to get a better generalization. First, the set of hyper-parameters in

XGboost is much bigger than in the classical gradient boosting algorithm. An im-

portant point in XGBoost is that, instead of using the objective function directly,

it uses a second order Taylor approximation. We present this objective function

in Eq. 1.9. The constraint is only to be able to compute the first and second order

derivatives for a given loss function.

R =
M∑
i=1

[`(Ft−1(xi) + ht(xi), yi)] + ω(ht)

≈
M∑
i=1

[`(Ft−1, yi) + giht(xi) +
1

2
hih

2
t (xi)] + ω(ht) = Rtaylor.
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Note that now `(Ft−1, yi) is a constant in the objective function and can be re-

moved. We end up with the following simplified objective function:

Rtaylor =
M∑
i=1

[giht(xi) +
1

2
hih

2
t (xi)] + ω(ht), (1.9)

where gi = ∂`c(Ft−1(xi),yi)
∂Ft−1(xi)

, hi = ∂2`c(Ft−1(xi),yi)
∂2Ft−1(xi)

and ω = γT + 1
2
λ
∑J

j=1 b
2
j with γ and

λ two regularization terms. This Taylor approximation of the objective function

offers a nice property that was introduced in Friedman et al. (2000) where they

use a Newton update as the optimal value for a given leaf. Indeed, we can rewrite

Eq. 1.9 with the new tree htree such as to minimize the loss function.

Rtaylor tree =
M∑
i=1

[gihtree(xi) +
1

2
hih

2
tree(xi)] + ω(htree)

=
J∑
j=1

∑
xi∈Lj

[gibj +
1

2
hib

2
j ]

+ γT +
1

2
λ

J∑
j=1

b2j

=
J∑
j=1

(
∑
xi∈Lj

gi)bj +
1

2
(
∑
xi∈Lj

hi + λ)b2j

+ γT.

It only remains to find the optimal value b∗j for a leaf by solving ∂Rtaylor tree

∂b∗j
= 0.

∂Rtaylor tree

∂b∗j
= (

∑
xi∈Lj

gi) + (
∑
xi∈Lj

hi + λ)bj = 0

b∗j = −
∑

xi∈Lj gi∑
xi∈Lj hi + λ

=

∑
xi∈Lj ri∑

xi∈Lj hi + λ
,

where b∗j is a Newton Raphson step. Thus we can compute the corresponding

objective function for htree by plugging this optimal leaf value in Rtaylor treeand

taking ri = −gi:

Rtaylor tree =
1

2

J∑
j=1

[
(
∑

xi∈Lj ri)
2∑

xi∈Lj hi + λ

]
+ γT. (1.10)

Eq.1.10 gives us the total error of the tree considering all terminal leaves. At a

given node, the best splitting value vsplit can be found as follows:

vsplit = argmax
xda

−1

2


(∑

xdi<x
d
a
ri

)2∑
xdi<x

d
a
hi + λ

+

(∑
xdi≥xda

ri

)2∑
xdi≥xda

hi + λ
−
(∑

xi
ri
)2∑

xi
hi + λ

−γ. (1.11)
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In summary, as we previously mentioned, boosting algorithms aim at finding a

new hnew such that:

hnew = argmin
h

M∑
i=1

`c(Ft + h, y). (1.12)

For Adaboost, and gradient boosting, it boils down to finding a hnew such that it

approximates the residuals. For Logitboost and XGboost, the new weak learner

approximates the Newton-Raphson update such that:

hnew ≈ −
∂`(Ft,y)
∂Ft

∂2`(Ft,y)
∂2Ft

.

The classical gradient boosting and XGboost differ mainly in the splitting crite-

rion when building the weak learner (e.g. Eq.1.7 for gradient boosting and Eq.1.11

for XGboost). That being said, it is hard to compare them since they both have

advantages and drawbacks. First, gradient boosting approximates the residuals

using the mean squared loss while XGboost finds an optimal solution to the taylor

approximation of objective function. XGboost approximation allows to quickly

find the optimal splits and values of the trees that seem more intuitive even if

the optimal values found are based on a Taylor approximation and thus are not

optimal regarding the true objective function. Despite the recent fame of XGboost

framework, in this work, we found some constraints to use XGboost. While gradi-

ent boosting only needs the objective function to be differentiable, XGboost needs

it to be twice differentiable and different from 0. This leads to another ”issue”

that is, XGboost only works for strictly convex objective functions while it is not

required for gradient boosting. As we will see in Chapter 3, we sometimes need to

get rid of the convexity constraint to reach a more specific goal (e.g. optimizing

the top rank).
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Actual class

Positive Negative Total

Predicted class
Positive TP FP

∑M
i=1 I(f(xi) = 1)

Negative FN TN
∑M

i=1 I(f(xi) = −1)

Total P N M

Table 1.1: Confusion matrix with the number of True Positives (TP), True Nega-

tive (TN), False Positive (FP) and the False Negative (FN).

1.4 Class Imbalance Learning

In this section, we describe the class-imbalance problem that has been repeatedly

reported in the literature (Chawla et al., 2004; He and Ma, 2013; He and Garcia,

2008; Kubat et al., 1997) and present different solutions from the state of the

art. As stated earlier, we focus on the binary supervised learning setting with

y ∈ {−1, 1}. In imbalanced scenarios, y = 1 often describes the minority (positive)

class while y = −1 represents the majority (negative) class. Let P (resp. N) be

the number of positive (resp. negative) examples such that P + N = M . In this

setting, we rewrite the training set S such that S+ = {z+i = (x+i , y
+
i )|yi = +1}Pi=1

and S− = {z−i = (x−i , y
−
i )|yi = −1}Ni=1 where S+ ∪ S− = S. We define the

imbalance ratio as ρ = N
P

and the proportion of examples in the minority class as

π = 1
1+ρ

= P
M

1.4.1 Evaluation metrics

The evaluation metric is a rather important part of machine learning since, de-

pending on the selected criterion, different models are preferable. We first describe

the well-known confusion matrix in Table 1.1, that contains four standard mea-

sures in classification:

1. True Positives (TP), the number of positive examples correctly classified.

2. False Positives (FP), the number of misclassified negative examples.

3. True Negatives (TN), the number of negative examples correctly classified.

4. False Negatives (FN), the number of misclassified positive examples.

TP =
∑P

i=1 I(f(xi) = 1)

FN =
∑P

i=1 I(f(xi) = −1)

}
Positive examples
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Figure 1.7: Comparison of different classifiers on an imbalanced toy dataset in two

dimensions.

TN =
∑N

i=1 I(f(xi) = −1)

FP =
∑N

i=1 I(f(xi) = 1)

}
Negative examples.

We mentioned previously that the 0/1 loss was directly related to the accuracy

which can be written with the previous terms:

Accuracy =
TP + TN

TP+TN+FP+FN
, (1.13)

or in other words, the percentage of correctly classified instances. It is clear that

in the case where P >> N or N >> P , the minority class is under-represented.

Figure 1.7 illustrates this problem using a toy dataset over which we learn two

linear classifiers, h1 and h2 over two classes: the blue class and the red class (in mi-

nority). In this example, h1 only makes 3 errors compared to h2 that misclassifies

4 examples. From the accuracy point of view, h1 is better. However, h1 classifies

every example as negative which makes it a poor classifier not able to predict any

positive example where h2 correctly classifies all the minority class (red) at the

price of less accuracy (more false positive, FP). From this example, we see that

the accuracy can be irrelevant in the class imbalanced setting. In the literature,

this problem has been observed many times (Guo and Viktor, 2004; Weiss, 2004;

Chawla et al., 2003; Sun et al., 2007). We need different metrics to assess the

quality of the models in terms of classification that we present in the following.
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Precision defines the percentage of well-classified positive examples (minority

class) over the total number of examples classified in the same class.

precision =
TP

TP+FP
, (1.14)

with precision ∈ [0, 1] and where precision = 1 is when there is no false positive

example.

Recall defines the percentage of retrieved positive examples (from the minority

class).

recall =
TP

TP + FN
, (1.15)

with recall ∈ [0, 1] where recall = 1 is the best value where all examples from the

positive class are well-classified.

Alone, Precision (Eq. 1.14) or Recall (Eq. 1.15) do not inform enough to make any

conclusion on the classifier performance simply because we can have a precision

close to 1 with a recall close to 0 and vice versa. We rather use metrics that

combine both of them.

Fβ score is the weighted harmonic mean between precision and recall. As to

offer more flexibility, we can use β to emphasize more on precision or recall.

Fβ = (1 + β2) · precision · recall

(β2) · precision + recall
, (1.16)

with Fβ ∈ [0, 1] where Fβ = 1 is the best achievable value (perfect classifier).

Matthews Correlation Coefficient (MCC) is the geometric mean

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (1.17)

with MCC ∈ [−1, 1] where MCC = 1 is the best achievable value (perfect classi-

fier).

These metrics are subject to debates in the literature to know which one is the

best. In Chicco (2017), the authors claim that the Fβ score could be overoptimistic

in case where the number of positive examples is much higher than the number

of positive examples. Indeed, since the Fβ focuses on the class of interest (the

positive class), having an imbalanced dataset with more positives than negatives

would highly affect this metric by increasing it while the model could be very bad

on the negative class. The authors then claim that the MCC score, not focused
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on a particular class is a better metric for imbalance problems. However, nothing

prevents the Fβ score from being focused on the negative class if the previous case

arises. There also exist different ways of computing precision, recall, the Fβ score

and MCC that are mainly used in multi-class settings:

• Standard: only compute the metric over the class of interest.

• Average: compute the metric for each class and take their mean.

• Micro: compute the TP, FP, FN, and TN for each class and sum them up

respectively to obtain a final number for each measure (unsuitable in the

class imbalance setting)

• Weighted average: similar to the Average but uses a weight for each class.

While the Average, Micro and Weighted average methods can be good in multi-

label classification, their usefulness in binary class datasets is rather limited. In-

deed, in this setting, we can assume that the classifier performance on the majority

class is always better (since it is biased toward it) and thus we can focus only on

the metrics for the minority class which is the class of interest. Moreover, in the

binary setting, the confusion matrix offers enough information on the majority

class whereas in the multi-class setting all the classes other than the focused one

are mixed together. For these reasons, in the following, we only use the Standard

method.

Measuring the potential of a model

We now look at the model performance evaluation from another angle. So far we

assumed that f is a function f : X → Y but most learning algorithms naturally

output a score before actually predicting a class. It feels then more natural for

these algorithms to write f : X → Z where Z is a decision space. In the rest

of this manuscript, we assume that z ∈ Z ⊆ R , P (y = 1|z)
z→+∞−−−−→ 1 and

P (y = −1|z)
z→−∞−−−−→ 0. Now that we defined the new decision space, we write a

function f ∗ such that

f ∗(x) =

{
+1, iff(x) > τ

−1, otherwise.

where τ is the decision threshold. This new parameter τ offers the possibility to

potentially create an infinite number of classifiers since for every value of τ the

classifier predictions change. Based on this observation, we can review how we

assess a model given its output prediction scores.
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Figure 1.8: Example of ROC curve.

The main drawback of the previous evaluation metrics is that they assess only one

level of decision (one decision threshold). For a given classification problem there

is no reason for this decision threshold to be the best one. This is all the more true

when the data are imbalanced. Figure 1.7 illustrates our previous statement. h1 is

going to be the resulting classifier when using a classical linear classifier, however,

by modifying the decision threshold the resulting model is much more relevant (h1
can potentially be equal to h2 ). In fact, the decision threshold is often biased

toward the majority class which often leads to undesirable classification.

A popular metric to assess the model performance over all possible decision thresh-

olds and thus estimate the ”potential” of a model is the Area Under the Re-

ceiver Operator Characteristic curve (AUCROC). Instead of using the quantity

directly from the confusion matrix, the ROC curve uses the True Positive Rate

(TPR= P (f(x+) > τ) =Recall (Eq. 1.15)) and the False Positive Rate (FPR =
FP

FP+TN
= P (f(x−) > τ)). The use of these probabilities instead of the quantities

makes the ROC curve insensitive to the class imbalance.

AUCROC =

∫ 1

0

P (f(x+) > τ)dP (f(x−) > τ)

=

∫ +∞

−∞
P (f(x+) > τ)

∂P (f(x−) > τ)

∂τ
dτ

= P (f(x+) > f(x−)).

(1.18)

We give an example of the ROC curve in Figure 1.8.

The last evaluation metric that we present is closely related to the precision

(Eq. 1.14) and recall (Eq. 1.15). However, instead of computing these metrics

for one predefined decision threshold, we compute them for all relevant decision
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Figure 1.9: Example of the precision and recall curve.

threshold and average them. This metric is called the Area Under the Precision

and Recall Curve (AUCPR) or the average precision.

AUCPR =

∫ 1

0

P (y = 1|f(x+) > τ)dP (f(x+) > τ) (1.19)

We give an example of the precision and recall curve in Figure 1.9.

In Chapter 3, we present AUCROC and AUCPR in more details and provide a

smooth objective function derived from AUCPR.

1.4.2 Sampling Methods

When dealing with class imbalance learning, a standard solution consists in re-

sorting to sampling methods. The idea is to rebalance the dataset such that

both classes are well-represented in the training dataset. These methods are

mainly based on either removing examples from the majority class (undersam-

pling) and/or increasing the examples of the minority class (oversampling). For

the following, we remind that S+ defines our minority class and S− the majority

class.

Random Undersampling Used in the early ages of machine learning (Breiman,

1984), the idea is to randomly remove examples from S− such that the minor-

ity class gets more importance in the eyes of the learning algorithm. We want

S−∗ ⊂ S− where S−∗ is our new set of examples from the majority class. This

method is rather straightforward and has the advantage of reducing the training

time by decreasing the number of examples over which the algorithm is learning.

However, a strong negative point of this method is the potentially huge amount

of information that might be lost by removing those examples which makes the

right imbalance ratio hard to find.
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Algorithm 4 SMOTE algorithm (Chawla et al., 2002)

1: INPUT: Smin, k the number of neighbours to consider

2: for i = 1 to |Smin| do

3: Compute the k-NN set {xn}kn=1 for xi and choose a random neighbour x̂i ∈
{xn}kn=1

4: Compute the distance vector dist(x̂i, xi)

5: Multiply distance vector by a random number δ ∈ [0, 1]

6: xnew = xi + δ dist(x̂i, xi)

7: Add xnew to Smin

8: end for

Tomek links (Tomek, 1976) As random undersampling suffers from removing

relevant information, Tomek links removes examples from the majority class by

selecting those that are the closest to the minority class. In other words, we remove

the examples from the majority class, starting by xremove = argminxi dist(xi, xj)

where i ∈ {1, ..., |S−|}, j ∈ {1, ..., |S+| and dist is a distance (e.g. Euclidean

distance, dist = (xi − xj)2). This xremove is called a Tomek link. The process is

repeated until user satisfaction. Note that this method is very computationally

expensive as M → +∞.

Random Oversampling This is a really naive way to increase the number of

examples in the minority class S+ such that {xi, yi}Oi=1 ∼ {xi, yi}Pi=1 ∈ S+ where

O > P . However, such oversampling method is prone to overfitting in case of

extreme class imbalance ratio.

SMOTE Synthetic Minority Oversampling Technique is a method to create new

examples Chawla et al. (2002) from the minority class in a clever way such that

there is also a certain diversity between the examples. This method is introduced

in Chawla et al. (2002) where, based on a k-NN algorithm (Altman, 1992), they

create new synthetic and diverse examples. This advanced oversampling technique

is presented in Alg. 4.

As well as for undersampling, many different methods were then introduced based

on SMOTE such as Borderline-SMOTE (Han et al., 2005) or ADASYN (He et al.,

2008) and hybrid methods that we present later. Note that, in the literature,

SMOTE is used with only one random number for the whole feature vector. How-

ever, in Chawla et al. (2002), the algorithm presenting SMOTE has a random

number for each feature. These two versions differ mainly in the space where they

add new synthetic examples. The version using only one random number adds

new examples on the line connecting the two examples from the minority class.
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Actual class

Positive Negative

Predicted class
Positive C(1, 1) C(−1, 1) = c−1
Negative C(1,−1) = c1 C(−1,−1)

Figure 1.10: Cost matrix

For the version where a random number is created per feature, the new examples

are added in the hypercube where the two examples are the opposite vertices.

There is no study on these two methods and the original paper does not clearly

state which one it uses. However, we believe that using a single line to create new

examples is not enough for high dimensions of the vector x.

When the dataset contains categorical features the distance between two points

is not straightforward. Indeed, Alg. 4 only works for continuous features. In a

small variant of SMOTE, the authors propose to penalize the distance between

two points based on how many times their categorical features differ. In practice

the authors propose to add the median of the standard deviation of all continuous

features. In other words, the distance between two points is increased by a certain

value multiplied by the number of times their categorical features differ.

1.4.3 Cost-Sensitive Learning

Sampling methods are a way to balance the dataset when it is very skewed. How-

ever, they have main drawbacks: they remove potentially relevant information

or they add new examples that should not exist. An alternative to a sampling

method is to weigh the examples during the training such that the minority class

gets more importance. To present this kind of learning, we can redefine our cost

matrix as presented in Table 1.4.3 (similarly to Table 1.1). Note that we don’t

usually set a cost on well classified instances. The application of these costs can

be straight forward using the objective function R:

Rcost =
P∑
i=1

`c(f(xi), 1)c1 +
N∑
i=1

`c(f(xi), 0)c−1. (1.20)

Eq 1.20 allows the user to give more importance to the minority class. Now, in

some specific applications, examples from the minority class are not equally im-

portant. For that reason, one can redefine the costs such that each example is

weighted by a relative importance. For example, in fraud detection, one could as-

sume that examples with the highest amount are more important than the others.

As we will present in Chapter 2, while it seems that this method is suited for fraud
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detection, there are many constraints from the real life that make the cost very

hard to find.

1.4.4 Threshold learning

We presented before that most learners are based on a decision threshold where

f ∗(xi) = 1 if f(xi) > τ and f ∗(xi) = −1 if f(xi) ≤ τ . In fact, the decision

threshold τ is implicit in most learning algorithms. For example, a perfect boost-

ing model gives F (x+) > 0 for positive examples where F (x−) < 0 for negative

examples. The decision threshold is simply set at 0. However, in case of imbalance

learning, this implicit value τ can be disastrous. For example, a basic classifier

learned over a dataset where ρ = 1000 is highly biased toward the negative class

with a high risk of having f(xn) = 0, ∀xn∼ D which yields an accuracy of 99.9%

but is useless from the positive class perspective. In fact, even changing the distri-

bution using sampling or cost-sensitive learning techniques may give a misleading

implicit decision threshold (Dal Pozzolo et al., 2015c; Provost; Yu et al., 2016).

This section presents threshold learning methods which assume that the classifier

already has a good knowledge of the task but the best decision threshold is still

to be found. We give an intuitive example in Figure 1.7.

In the previous evaluation metrics, the decision threshold τ is not fixed such

as ROC (Eq. 1.8) and AUCPR (Eq. 1.9). In fact, these curves can help us to

decide what decision threshold is the best. A straightforward approach is to

have a holdout set over which we compute the previous curves and pick the best

threshold. The reason why this is done experimentally is that every real life

classification task, and not only the ones that suffer from the class imbalance

problem, are under strong user preferences. Clearly, depending on the problem,

one would prefer precision over recall when another would do the opposite. We

give more precise examples in Chapter 2.

The goal of the thresholding method is to optimize a decision threshold dependent

evaluation metric such as the F1 score. Many different research highlighted the

need to use this technique, especially when sampling or cost-sensitive methods

were used (Dal Pozzolo et al., 2015c,b). In Parambath et al. (2014) the authors

present an optimization method based on cost-sensitive learning to maximize the

F1 score and even then, the authors advise adjusting, a posteriori, the threshold

based on the classifier scores. Their claim is that by optimizing the F1 score, the

knowledge of the classifier is better suited.
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1.4.5 Ensemble learning for the class imbalance setting

So far we presented general methods that could be applied to most learning algo-

rithms. We already presented ensemble methods whose idea is to combine a set

of classifiers to achieve better performance. In fact, there exist different ensemble

methods that are dedicated to address the imbalanced case scenario.

Balance Cascade and Easy Ensemble (Liu et al., 2009) are two ensemble methods

created specifically to answer this problem. As we stated earlier, while undersam-

pling has a strong advantage in terms of computation by removing parts of the

dataset, it also discards potential relevant information and alters the real class

distribution. These two ensemble methods use sampling but also try to answer

the previous problem.

Easy Ensemble In (Liu et al., 2009), the authors present this method which is

very close to bagging. Instead of sampling randomly S ′ ⊂ S, a new classifier hk
is learned over a balanced set where S+ ∪ S−k ⊂ S− such that |S+| = |S−k |. The

experience is repeated until we reach the number of classifiers wanted by the user.

This method is a generalization of Chen et al. (2004) where they use this same

process for random forests.

Balance Cascade The idea of cascade algorithms is very similar to boosting in

the sense that we want the new learners to rather focus on misclassified instances.

The principle is based on the fact that if x ∈ S is correctly classified by hk−1(x),

then it is considered as redundant in S and so is discarded such that hk only

accesses S \x. In Balance Cascade algorithms, the idea is the same but instead of

removing correctly classified examples from S, it rather only eliminates the exam-

ples from the majority class S− that are well classified. In other words, Balance

Cascade algorithm aims at building different classifiers (not necessarily weak) over

a balanced class distribution. Balance Cascade follows the same bagging schema

as Easy Ensemble by taking into account the example removed: S+∪S−k ⊂ S−\x−

such that |S+| = |S−k |.

For both methods, in practice, the decision threshold τk for each classifier hk
is defined by the user. More particularly, in Balance Cascade, the objective is

to have models with a very low false negative rate. The final prediction of the

learned classifiers for both methods is the average of the outputs for all learners

using their specific thresholds:

F ∗L = sign(
L∑
k=1

hk −
∑
k=1

τk).
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In practice, any classifier that outputs scores is suitable for the hk. In (Liu et al.,

2009), the authors use Adaboost such as to do a weighted average using the

weighted linear combination of the weak learners from the boosting model.

AdaCost Well-known cost-sensitive boosting methods are built around Ad-

aboost. In fact, many versions of Adaboost have been invented such that the

cost is taken into consideration during the learning process. The straightforward

approach in Eq 1.20 is one of them and is called AdaC2. The update of the sample

weights becomes:

wi,k+1 = wi,ke
−yiαkhkcyi .

Nikolaou et al. (2016) present a comparison between the standard Adaboost

method and many different cost-sensitive boosting methods. The conclusion, sim-

ilar to the one we give in Chapter 2, is that using the standard Adaboost with

calibrated probability estimates and shifted decision thresholds is the best option.

Nonetheless, in specific applications such as fraud detection, these methods may

be a solution to maximize the savings, for example. In Chapter 2 we show how

this could be used with its advantages and drawbacks.

Why using Gradient Boosting in this thesis?

In Figure 1.12, we illustrate the re-weighted distribution by a boosting algorithm

along its iterations. We take a simple imbalanced dataset (Figure 1.11) and learn

a gradient boosting model. At each iteration, we can have the relative importance

of each example ”through the eyes” of the boosting algorithm by simply getting

|rki |∀i ∈ {1, 2, ...,M}. Also, note that it is common practice to initialize the

first weak learner regarding the imbalance ratio such that
∑P

i=1 h0(x
+
i ) = 1 and∑N

i=1 h0(x
−
i ) = −1. Here we rather initialize h0 = 0 and let the gradient boosting

re-weigh the examples naturally.

We emphasize that, by nature, boosting algorithms focus on hard examples. When

the class distribution is highly imbalanced, the boosting algorithm is driven by the

minority class. In Figure 1.12, we show this phenomenon. After very few iterations

(T < 5), the importance of a positive example far exceeds the importance of a

negative example. Moreover, after more iterations, the only examples considered

in the learning process are the ones near the positive examples. At that point, the

weak learners find rules that only concern this little subset of points. This can be

seen as an undersampling scenario where only a small fraction of negative points

remains.

This little experiment motivates our choice of using boosting in the imbalance class

setting. Indeed, boosting does not suffer from the class imbalance as much as other
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Figure 1.11: Imbalanced toy dataset. The blue points are part of the majority

class while the red points are part of the minority class.
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Figure 1.12: The three figure above shows how important a data point is in the

eyes of boosting. The more intense to the black colour, the more important is an

example at this boosting iteration. At first, it does not have a particular focus

and sees all the examples equally important (most left figure). After very few

iterations, a positive example has much more importance than a negative example

(middle figure). Finally, the figure on the right shows the data point importance

after many rounds. In fact, at this point, the new weak learner is learning over a

very small subset containing the hardest samples to classify in the dataset.

learning algorithms. Although sampling methods combined with boosting might

have a relevant impact in case of specific objectives, boosting naturally modifies

the original class distribution by re-weighting iteratively the examples in regards

to how well they were classified by the already learned weak models.

In the next chapter, we will focus on a specific problem where the class of interest

is highly under-represented given by an industrial context in which this thesis

takes place. In this setting, we will present imbalanced learning methods applied

to a large scale dataset on credit card transactions.
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Chapter 2

Learning with Extreme

Imbalanced Data: Application to

fraud detection.

Abstract

In this chapter, we first present a general overview of a specific class-

imbalance problem: the anomaly detection. We then focus on the super-

vised fraud detection case accompanied with a brief description of World-

line’s fraud detection system that served as a realistic environment for the

realization of this thesis. This mainly comes down to dealing with a high

imbalance setting coupled with large-scale issues that we characterize as

extreme imbalanced data. In this context, we provide an analysis of the

main metrics used for model evaluation and carry an experimental study

with the state of the art method for fraud detection. Our analysis illustrates

that the de facto standard machine learning techniques do not necessarily

allow a behaviour adapted to the fraud detection problem we consider in the

context of two settings: (i) sampling methods (ii) cost-based classification

methods. We finish this chapter with a conclusion and open new directions

for the extreme class imbalance data problem.

2.1 Introduction

In Chapter 1, we reminded some important notions and state of the art methods

for class-imbalance problems. In this chapter, we extend the setting of imbalanced

learning to a more extreme case. Specifically, we consider two main assumptions:

43
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1. An extremely imbalanced dataset (ρ > 500)

2. A high number of observations (M > 1, 000, 000)

These settings arise recently in different fields such as bioinformatics (Triguero

et al., 2015) or fraud detection (Wei et al., 2013) where companies have to deal

with large-scale data. However, apart from few publications, it seems that there

is a clear lack of study on datasets that meet the above conditions in the lit-

erature (Krawczyk, 2016). We define this as extreme imbalanced data where the

imbalance ratio is extreme but the examples from the minority class are abundant.

An application that often fits the above conditions is the anomaly detection prob-

lem. More specifically, at Worldline, we focus on one of its subdomains which is

the fraud detection task. In this chapter, we wish to unravel the effectiveness of

previous imbalanced learning methods described in Chapter 1 within the fraud

detection application. To this end, this chapter is divided in three main parts.

First, we introduce the anomaly detection problem and one of its sub-domains,

the fraud detection task. We then present the specificity of Worldline Fraud De-

tection System and the data. Finally, we discuss the cost sensitive approach for

such problem and propose an experimental study of the state of the art methods

for credit card fraud detection datasets.

2.2 Anomaly detection

Anomalies refer to the case where relatively few observations out of large amount

of data are abnormal in the sense that they do not follow a well-defined notion of

normal behaviour. Anomaly detection is a very active research topic (Chandola

et al., 2009; Aggarwal, 2015; Akoglu et al., 2015; Ahmed et al., 2016). In the

following we present different characteristics of these anomalies from a machine

learning point of view.

The anomaly detection problem can be divided in two main settings that depend

on whether labels are available or not. In the first case, supervised machine

learning tend to be used while for the second case, unsupervised machine learning

is the default choice. In both cases, while the class imbalance problem is present

and can potentially make the learning process challenging, it turns out that it is

not necessarily an issue in itself but is rather relative to the problem complexity.

Figure 2.2 presents two different anomaly detection problems that are conducive

to outlier detection (unsupervised learning). In this problem, it is rather easy for

an unsupervised method to actually separate the normal data (in blue) from the
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abnormal ones (in red). However, this is obviously not the case of most anomaly

detection problems since 1) datasets can be very noisy and 2) some applications

such as fraud detection are subject to concepts drifts that make the fraudulent

behaviour hard to differentiate from the normal ones. This latter makes the task

more complex even from a human expert point of view. Figure 2.3 is an example

of datasets where anomalies would be indistinguishable from the normal examples

if we did not have the labels. In this kind of setting, finding the anomaly is very

hard for an unsupervised learning approach while it is very challenging but a more

achievable task for a supervised learning approach. In our case, labels are available

which allows us to use supervised learning approaches.

In general, we can distinguish three main types of anomalies that we summarize

here:

Point anomalies A single data point is sufficient to identify its abnormality

compared to normal observations. A simple example is shown on the left in Fig-

ure 2.2.

Contextual Anomalies In this type of anomaly, one can only spot the abnor-

mal data point by looking at the context in which this observation belongs. For

example, on the right of Figure 2.2 we see a time series problem where at some

point the data do not follow the sinusoidal function. However, unless you take

a step back and look at the behaviour of the points near the anomaly, there is

nothing that tells you that this is indeed an anomaly simply (i.e. very similar

observation are no anomalies at specific times).

Collective anomalies While the point anomaly case let us see that an example

is actually an abnormal just by looking at this observation, a collective anomaly

exists only if we can annotate an anomaly based on multiple instances. Figures 2.3

shows such a case where only by looking at all anomalies we can extract a pattern.

In fact, it is common to see all types of anomalies gathered in one complex problem.

There exist many applications that lies in the anomaly detection problem. In

health care an abnormal pattern can indicate a potential illness. In Zacharaki et al.

(2009), the authors present an example of such application where they focus on

tumour detection in MRI images. While this subject is very interesting, it suffers

from a main difficulty which is to gather enough observations (MRI images) with

their labels (expert decisions). In fact we can observe that most of the publications

on this domain suffer from a lack of available data (Kourou et al., 2015) due to
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their sensitive nature. While few recent studies are able to access large amount of

real life data for building health care machine learning model (Chen et al., 2017),

it still remains a rare commodity in the public domain. This application tends

to belong in the point anomaly case where a single image is enough to detect

whether a patient is ill or not. However there might be cases where having a

prior knowledge on the patient can be relevant for the anomaly detection and thus

considering the contextual anomaly case is relevant too.

Another promising domain for anomaly detection is in security. The main dif-

ference with health care is the large amount of data available and continuously

increasing. Indeed, whether in sensors anomaly detection (Xie et al., 2011; Hill

and Minsker, 2010), in Network intrusion detection (Tsai et al., 2009) or in Danger

detection in crowded scene (Li et al., 2014b), the data is often available, however,

having the ground truth is a different story. Indeed, the labels for such data are

often not available for the simple reason that it is very costly for an expert to

label such dataset (i.e. a single human is particularly slow for such task). In this

application, many scientific contributions apply unsupervised or semi-supervised

learning method but as it has been mentioned in Sommer and Paxson (2010), these

methods still fail in real world systems where they suffer from specific constraints

given by the environment. Recent studies as in Javaid et al. (2016) show promis-

ing results in a real-world application using deep learning methods, however, it

assumes a labelled dataset. This domain most likely lies in the collective anomaly

case where a single data point is very difficult to classify as an anomaly (wrong

value of a sensor, network attacks). Therefore we rather look at a collection of

observations to conclude that they are anomalies.

Fault diagnosis (Gao et al., 2015; Cai et al., 2017) is a growing application where

the goal is to detect and identify abnormalities and faults as early as possible for

minimizing performance degradation and avoiding dangerous situations. In Ince

et al. (2016) they propose an approach based on neural networks to early motor

fault detection. In this application, obtaining the real label can be challenging

as one needs to observe real system failure to actually have the anomaly in the

dataset. However, in this paper, the authors simulated the failures with simple

tricks. While it can be argued that real failure might be very different from

simulated ones, it allows the authors to completely control the dataset over which

the machine learning model is trained. This application enters in the contextual

anomaly case since this is mostly a time series problem.

The last domain of anomaly detection presented in this manuscript concerns fi-

nance. Naturally, financial machine learning applications are of great interest for
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industrials. The most famous one is fraud detection (Bolton and Hand, 2002; Ab-

dallah et al., 2016). Frauds have been observed since the first times of humanity

and as long as they were done in a society there has always been a consensus to

fight them. Machine learning research also increased through the years on this

topic and is today a very active subject (Figure 2.1 presents the trend of research

publications concerning the problem of fraud detection). Beside the attractive

financial aspect of fraud detection, a reason for its popularity is also the number

of applications that fits in this context:

• Click in mobile advertisement (Badhe, 2017).

• Taxes (Bonchi et al., 1999; Van Vlasselaer et al., 2016).

• Telecommunication (Farvaresh and Sepehri, 2011; Jain, 2017).

• Health insurance (Kirlidog and Asuk, 2012; Rawte and Anuradha, 2015).

• Automobile insurance (Wang and Xu, 2018).

• Check (Hines and Youssef, 2018) also subjects to many patents (Kotovich

and Nepomniachtchi, 2007; Carney, 2001).

• Ratings/Reviews (Hooi et al., 2016).

• Credit card transactions (Bolton and Hand, 2002; Dal Pozzolo, 2015).

The fraud detection application is likely to lie in the contextual anomaly. For

example, in case of transaction fraud detection, genuine pattern can be specific

to the cardholder or to the merchant. That being said, collective anomalies (e.g.

repeated transactions/ratings/clicks) and point anomalies (e.g. illogical charac-

teristics of a data point) also appear in such data and allows us to detect the

fraud.

In all these applications, a redundant gap between the public research and the

industry can be found. In Ngai et al. (2011) the authors stress out the need

for the industry to encourage research on real life systems since most developed

research methods suffer from a lack of knowledge of industrial fraud detection

systems. This problem was observed in the early work of Phua et al. (2004) on

imbalanced learning applied to fraud detection. We come back to this matter in

the next section.
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Figure 2.1: Number of publications on fraud detection with machine learning.
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Figure 2.2: On the left, a typical dataset with a cluster in the middle and noisy

example around. This can be solved with simple outlier detection algorithms. On

the right, a time series problem. Both problems can be relatively easily solved

with unsupervised learning algorithms.
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Figure 2.3: On the left, anomalies form a circle hidden inside the normal examples.

On the right anomalies there is no direct pattern and detecting them is a challenge.

In both problems, unsupervised learning is not an option. In this context, it is

crucial to have labelled examples.



2.3. Credit Card Fraud Detection 49

2.3 Credit Card Fraud Detection

In transactions, a fraud can be defined as stealing someone’s identity to briefly

acquire its privileges which has the main consequence for the fraudster to earn

money illegally. There exist many different strategies for the fraudster to oper-

ate. We present briefly the most common procedures both in offline and online

scenarios.

Offline fraud is a rare type of fraud where the fraudster actually steals the

physical credit card from the cardholder or copy the magnetic stripe. In most

cases, the victim contacts the bank to instantly block the lost credit card such

that following transactions made on this card get refused.

Online fraud is today the typical fraud where fraudster steal the credit card’s

information through malicious online means. This type of fraud is the most dan-

gerous as the fraudster is not aware of the theft (Patidar et al., 2011) and may

happen through different strategies. Among the most frequent strategies, the first

one is skimming where the idea is to steal the cardholder information during a

genuine transaction through a modified payment terminal that stores all the card

information. In recent years, ATMs have been used by skimmers to extract card

information (Krebs, 2010) (i.e. by setting fake keyboard, a camera or other tools

that capture the relevant card information). Another very popular strategy is

called phishing where the fraudster uses a website to steal the card information

by either cloning an existing one or simply by creating one with unsafe payment

processes. Other strategies exist such as spreading Trojan-type malware which

has become a very common practice. This kind of strategy is, however, not as ef-

fective as the previous ones given that it is hard to extract the relevant credit card

information. Finally, simple tricks such as fooling the cardholder with malicious

mails are also common.

The two types of fraud just described are still relevant today, however, it has not

always been the case. Indeed, the credit card system was popularized in 1950 and,

at that time, the first frauds were obviously offline. The first attempt to counter

these frauds was to use a hologram that could be recognized by the merchant

to prevent fake id cards (Lopata, 1987). When e-commerce started in the 90s,

breaches were abundant for fraudsters to start designing fraudulent strategies.

As soon as the online business spread all over the world, the need to have more

elaborated fraud detection systems was crucial and first research papers on credit

card fraud detection appeared with expert systems (Leonard, 1993). In these
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systems, the fraud detection is mainly based on human experts that analyse the

data thoroughly.

In the following we briefly present the state of the art of machine learning applied

to the credit fraud detection problem. As we mentioned previously, this can be

seen as a temporal problem where transactions from a card holder follow a certain

order. Basically, a cardholder makes series of transactions that implicitly define

its behaviour. Clearly, taking time into account is important and apart from

models that can naturally use temporal relations, a common practice is to build

new features that take these relations into account.

In Whitrow et al. (2009) and Bahnsen et al. (2016) the authors explore this idea

and design new handful sets of features such as average amount last 5 transactions,

time since last transaction ... In fact they also define new features to describe the

cardholder behaviour such as the average daily/week/month expenses, min and

max amount spent in one transaction. This approach is called feature engineering

and is a common way to give more relevant information to the model. This is

a common practice to quickly improve the performance of a model especially in

fraud detection where the raw set of feature is not accompanied with cardholder

historical information (Dal Pozzolo et al., 2014). As it turns out, terminals and

merchants can be used in the exact same way to build historical features of a

specific merchant or terminal (Van Vlasselaer et al., 2015). Finally, new methods

show interesting results in building these features automatically and implicitly (Fu

et al., 2016; Roy et al., 2018; Jurgovsky et al., 2018).

The creation of these new features is also a way to counter the concept drift that

occurs through time. Indeed, fraudsters strategies tend to evolve with time. How-

ever, these new concepts are very hard to identify since they may be due to many

changes. For example, during the Christmas period, each year, the behaviour of

millions of customers change which makes the change in the fraudsters behaviour

very hard to detect. One way of identifying them is often to observe a drop in the

model performance, however, at this point it is often too late to recover from the

loss. In Dal Pozzolo et al. (2015a), the authors present a method to build more

relevant machine learning models using delayed feedback (i.e. labels arrive only a

short period after the related transaction rather than being directly available). In

this case, the authors take the time into account and thus relearn models as data

arrive. This type of learning is called incremental learning. Typically, models

a trained over some specific time periods (e.g. days, months,...) and retrained

from scratch whenever sufficient data is available. In Kulkarni and Ade (2016),

the authors use ensemble methods and imbalanced learning methods coupled with

incremental learning.
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Finally, as we may have implied previously, this task of fraud detection was found

to be closely related to the domain of imbalanced learning He and Garcia (2008);

Phua et al. (2004). In Chan et al. (1999), the authors introduce a first experimental

study where they use AdaCost. Their work showed the great potential of ensemble

methods on the credit card fraud detection task. However, they also emphasize

on the fact that the costs are really hard to find and that the only solution to find

them is through a lot of trials and errors. In Akbani et al. (2004), the authors

propose a new algorithm based on SVM to compete with SMOTE on the specific

case of fraud data. In fact, this imbalanced learning approach to credit card fraud

detection was adopted by many recent contributions. In Padmaja et al. (2007),

the authors use different sampling techniques. In Dal Pozzolo et al. (2014), the

authors present different aspects of the credit card fraud detection problem from

an interesting practitioner point of view and have a large experimental section ded-

icated to imbalanced learning methods. Lastly, many different papers, approach

the problem with ensemble learning methods (bagging) (Zareapoor et al., 2015;

Dal Pozzolo et al., 2013, 2018).

To summarize, we reviewed 3 main approaches to solve the fraud detection task

on credit card transactions. The first one is manual feature engineering that relies

on expert knowledge to handcraft new sets of features. This approach requires a

lot of human effort to analysis the data thoroughly and may be unrealistic in case

of concept drift where relevant features can change through time.

To cope with the drawbacks brought by human expertise, people started investi-

gating automatic feature engineering. These techniques are mainly over models

that handle spatial information (CNN or LSTM type of neural networks). In our

context, this spatial information is time where these models try to extract pat-

terns with regards to the sequence of transactions. These approaches seem to be

promising, however, due to the potentially infinite amount of information that

could be created as we look further in the past, it remains complicated to reach

expert-level performance.

The first two approaches are data specific. In fact, the third approach that we

identified is not an alternative to the two previous but could rather be combined

with the two previous to build a more relevant model on such data. This is the

imbalanced learning approach. The idea is to view the credit card fraud detection

as an imbalanced classification problem. Typically, sampling methods and cost-

sensitive learning methods are used. As it turns out, cost-sensitive learning comes

in with some difficulties related to the credit card fraud detection that we detail

in the following.
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Actual class

Fraud Genuine

Predicted class
Fraud ca ca
Genuine Amti 0

Table 2.1: Cost matrix

2.4 Constraints of Cost-Sensitive Learning with

Financial Cost

A approach that seems natural for fraud detection is to use cost-sensitive using

financial information Sahin et al. (2013); Bahnsen et al. (2016). The idea is to

apply specific costs for each transaction. In such problem we can write the con-

fusion matrix as shown in Table 2.4 where ca (regardless of its true label) is the

cost of blocking a card and Amti the amount of the transaction xi. The value of

ca is very specific to the fraud detection system and the agreement that Worldline

has with banks and merchants. In our context setting a price for blocking on a

specific transaction is very difficult since transactions follow different constraints

(e.g. different merchants and different banks that not not always undergo the

same process).

From an expert point of view, emphasizing on high amount transactions is not

necessarily optimal to save money. This is a very counter-intuitive statement that

we try to explain in the following.

The first important point is that frauds with low amounts are often a strategy

used by fraudsters to test whether a credit card actually works. Often, these

transactions are made in specific merchants that accept transactions with few

or no security level. Moreover, when these low amount fraudulent transactions

happen, it often announces bigger amount fraudulent transactions. We remind

that machine learning models work in near-real-time thus they are not allowed

to block the transaction being analyzed. Thus, blocking the card after the low

amount fraudulent transaction is made is much more valuable than waiting for the

high amount transaction. In other words, high amount fraudulent transactions

would have to be accepted and customers refunded even if our model is good at

detecting them.

A concerning point regarding the cost of a false negative (a fraud not detected by

the system) is that our dataset comprises a lot of transactions where Amti = 0

(around 3% of the genuine transactions and around 12% for fraudulent transac-

tions) which would imply that they are irrelevant to the model. The reasons for
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such transaction to happen are many, for example, gas stations often charge a 0

euro transaction to make sure that the cardholder can pay the gas that he will

take.

It follows from the previous points that setting a higher importance for transaction

with high amounts would tend to have a negative impact on the recall (less fraud

detected). Moreover, taking another approach such as generally increasing the

weights for positive examples would tend to make the model produce more false

alert. This could cause a negative impact on the precision.

To conclude on cost-sensitive learning with financial costs, while it seems like a

good approach for the credit card fraud detection problem we presented some con-

cerning points when applying such technique to the real use-case. That being said,

there exist fraud detection problems where this is applied quite effectively such as

in cheque fraud detection (Metzler et al., 2018) or financial statement fraud detec-

tion (Kim et al., 2016) while the choice of the cost ca remains mysterious. That

being said, we believe that further study with the production team of the FDS at

Worldline to define these costs could potentially open different nice perspectives.

Today, it remains very complicated to estimates the cost fairly.

2.5 Worldline’s Fraud Detection System

Fraud Detection Systems can be complicated due to the real life constraints. We

explain the one implemented at Worldline based on Figure 2.4 that was kindly

shared by the authors of Dal Pozzolo et al. (2018). At the input of such system

are the transactions coming from real-life events (we give more details on these

transactions in the following section). The first step is a very basic step made at

the terminal level where simple verification process are performed such as if the

correct pin code was entered or if the account has enough money for the purchase.

The transaction then enters the transaction blocking rules block.

What we just described enters in the real-time process where there is a strict

response time limit (≤ 10ms). This process is able to block the transactions.

Thus, the rules that make up this process must be very fast. An example of such

rule is given in the following:

if trx amount > 5×mean carholder amount spent

and trx country 6= cardholder country

and is ecom = False then
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is fraud = True

In the near-real-time process, the main goal is to make a deeper analysis of the

transaction. However, the main difference with the real-time process is that the

transaction is never denied since it undergoes several operations that may take

up to several minutes. They are composed of two main blocks: the expert-driven

rules and the data-driven rules. In the former, experts (also called investigators)

do a day-to-day analysis to build, update, and remove rules such that the per-

formance remains stable. In reality, these rules are not trivial to compute. In

fact, a single rule often contains several dozen lines of SQL code which obviously

is complicated to maintain. These rules are monitored with specific metrics such

as fraud detection rate (the true positive rate also called recall) and false alert

rate (or false positive rate) and are removed if they exceed a certain threshold for

any of the metrics. The experts are in charge to label the transactions either as

fraudulent or genuine. This labeling part follows some guidelines. First, if there

is no claim for a transaction to be a fraud after a given number of days (i.e. 30

days), confidence in the genuine label is close to 100% and is set in this way in

the database. At the same time, experts have to check risky transactions raised

by both the scoring rules and the data-driven model. If a transaction if found to

be fraudulent, the card is eventually blocked and will be refused in future trans-

actions. Finally, they are also in charge to label the transactions as fraudulent

whenever a customer claims that a transaction in its bank account is a fraud.

Clearly, experts have to handle a lot of tasks which has a non-negligible cost.

Specifically, Worldline can’t hire enough experts to review all transactions since

this would cost more than the frauds themselves and they are only able to achieve

a specific amount of work in a given time. This makes the credit card fraud

detection very costly in both money and time. This latter brings us to the data-

driven part where rules are built automatically (e.g. machine learning models)

based on the data they receive. As for the experts rules, their performance is

monitored throughout time. It turns out that, today, in production, there is more

effort toward expert systems rather the data-driven models. There are multiple

societal reasons for that such as a poor confidence of customers in AI approaches

for their solutions or simply a fear of human workers to be double-crossed by the

AI. An important reason is the fact that, at the time or writing, machine learning

models did not prove to reach human level performance on the task. One objective

of this PhD thesis is to show that machine learning is today able to really help

the experts in their daily job.

Regarding our data, it should be added that, even if the transaction is denied
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Fig. 1. A scheme illustrating the layers of control in a FDS. Our focus is mainly on the data-driven model and the alert-feedback interaction, which regulates
the way recent supervised samples are provided.

Only a limited number of alerted transactions are reported to
the investigators, which represent the final layer of control.

5) Investigators: Investigators are professionals experi-
enced in analyzing credit card transactions and are responsible
of the expert-driven layers of the FDS. In particular, investi-
gators design transaction-blocking and scoring rules.

Investigators are also in charge of controlling alerts raised
by the scoring rules and the DDM, to determine whether
these correspond to frauds or false alarms. In particular, they
visualize all the alerted transactions in a case management
tool, where all the information about the transaction is re-
ported, including the assigned scores/probabilities, which in
practice indicate how risky each transaction is. Investigators
call cardholders and, after having verified, assign the label
“genuine” or “fraudulent” to the alerted transaction, and return
this information to the FDS. In the following we refer to
these labeled transactions as feedbacks and use the term
alert-feedback interaction to describe this mechanism yielding
supervised information in a real-world FDS.

Any card that is found victim of a fraud is immediately
blocked, to prevent further fraudulent activities. Typically,
investigators check all the recent transactions from a com-
promised card, which means that each detected fraud can
potentially generate more than one feedback, not necessar-
ily corresponding to alerts or frauds. In a real-world FDS,
investigators can only check few alerts per day [45] as this
process can be long and tedious. Therefore, the primary goal

of a DDM is to return precise alerts, as investigators might
ignore further alerts when too many false alarms are reported.

B. Features Augmentation

Any transaction request is described by few variables such
as the merchant ID, cardholder ID, purchase amount, date and
time. All transactions requests passing the blocking rules are
entered in a database containing all recent authorized transac-
tions, where the feature-augmentation process starts. During
feature augmentation, a specific set of aggregated features
associated to each authorized transactions is computed, to
provide additional information about the purchase and better
discriminate frauds from genuine transactions. Examples of
aggregated features are the average expenditure of the cus-
tomer every week/month, the average number of transactions
per day or in the same shop, the average transaction amount,
the location of the last purchases [7], [8], [23], [41], [45], [66].
Van Vlasselaer et al. [63] show that additional informative
features can be extracted from the social networks connecting
the cardholders with merchants/shops.

Aggregated features are very informative, as they summa-
rize the recent cardholder activities. Thus, they allow to alert
transactions that are not suspicious by themselves but might
be unusual compared to the shopping habits of the specific
cardholder. Features augmentation can be computationally ex-
pensive, and aggregated features are often precomputed offline
for each cardholder on the basis of historical transactions.

Figure 2.4: Fraud Detection System (FDS) at Worldline (Dal Pozzolo et al., 2018)

at any of verification process, it still enters Worldline’s database. In the end,

data are stored for a period of 6 months (with respect to the data protection

laws) over which the experts can build new rules. After this period, data is

removed permanently. In the following section we give a description of the data

that Worldline receives continuously.

2.5.1 The Data

In this section we detail the data over which Worldline based its fraud detection

system. First we would like to point out that a very small sample of Worldline’s

data containing 285, 000 transactions has been published on Kaggle 1 and is, at

the time of writing, the most famous dataset on this platform with twice as much

popularity score than the second most one 2. This clearly confirms the attractive-

ness of the fraud detection task and should be a motivation for Worldline to open

the data to the public domain (while making sure that they respect privacy and

security).

In the data coming from real-life events and over which Worldline bases its rules,

each transaction comes in the system with a handful set of features. It ba-

sically describes the transaction with different information such as the trans-

action date/amount, the cardholder birthday/gender/location, the card credit

1Most popular platform for data science competitions
2Link to the Kaggle dataset: https://www.kaggle.com/mlg-ulb/creditcardfraud

https://www.kaggle.com/mlg-ulb/creditcardfraud
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Figure 2.5: On the left the day-to-day volume of data arriving in the servers. On

the right, the cumulative graph showing the amount of data gathered through

time.

limit/type/expiration date and other different transaction specific variables. In

this manuscript we do not focus on the feature engineering but rather take the

dataset at hand. The data then have new information such as the average amount

the cardholder spent for the past hour, past day, past week and other time-related

features built on the same basis.

As we mentioned above, we want to study the class imbalance problem and in this

sense we give different relevant figures in the following. In 2000, the percentage of

fraud was estimated to occur once out of a thousand transactions (1 : 1000) (Lisboa

et al., 2000). Today, the ratio of fraud is relatively similar with an average of one

fraud for 700 transactions (1:700). However, the quantity of data increased with

time. As a matter of fact, in 2013, Worldline received around 330, 000 transactions

per day for a total of 120, 000 cards. Today, the average number of transactions

received per day is around 680, 000 for a total of 440, 000 cards. In average per

day, we have around 1100 fraudulent transactions for a total of 370 fraudulent

cards.

It is interesting to note that today, approximately 90% of the frauds are made on-

line (i.e. e-commerce). Figure 2.5 presents the day-to-day flow and the cumulative

graph of data arriving in Worldline’s FDS. In the left figure, we can distinguish

days of the week by the number of transactions arriving in the FDS where Sundays

are the lowest points in the repeated pattern and Saturdays are the highest peaks.

In the right figure, we show that the quantity of data at hand grows quickly and

linearly with time.

In machine learning it is rare to be able to visualize the data as the number

of dimensions largely exceeds the number of dimensions that we can visualize.

However, we believe that it may help to understand the task and thus we provide
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different visualization using two different dimension-reduction methods known as

Principal Component Analysis (Pearson, 1901) or PCA in the following and T-

Distributed Stochastic Neighbour Embedding (Maaten and Hinton, 2008) or T-

SNE in the following.

PCA seeks a linear combination of the features such as to extract the maximum

variance. It then removes this variance, repeats the process with a second linear

combination and repeat the process and so on. These linear combinations are

called the principal components and are linearly uncorrelated to each other. Since

we want to plot them in a 2 or 3 dimensional space, we only want to compute the

first 2 or 3 principal components.

T-SNE is a more advanced method to visualize data in 2 or 3 dimensions. The

main reason for using this method is its ability to compute non-linear combina-

tions of the features which is not the case for the PCA. This offers a different

visualization of the data. T-SNE first creates a probability distribution based on

the distances between the examples. In a second step, it learns a low-dimensional

space that follows this probability distribution as best as possible. Note that T-

SNE has the main drawback of not defining a specific function which prevents the

projection of new data point in the visual space.

Figure 2.6 presents the first two principal components ont he fraud dataset. It

is rather clear that the centroid of fraudulent transactions is shifted compared to

the centroid of genuine transactions. In Figure 2.7, we take advantage of T-SNE

to plot the data with a non-linear transformation. Similarly to the PCA, T-SNE

offers a nice visual interpretation where the fraudulent transactions appear in parts

where the genuine transactions are less present. On this figure, we can distinguish

sequences of transactions represented by clusters of points that follow each other

in a sort of line. The left and right representations are taken over different periods.

Figure 2.8 shows a 3D visualization of the data built with T-SNE where we can

see clusters that represent different behaviour. On the upper left, two clusters

represent two different merchants. The one on the most left is a risky merchant in

the sense that fraudsters use it to make fraudulent transactions. Interestingly, the

frauds on the cluster are gathered on the same space and may be relatively easy to

detect. These kinds of visualization may be very interesting from an expert point

of view to understand the data, however, at the time of writing these tools still

need improvement to allow an appropriate use for the experts. Moreover, as we

stated, T-SNE do not allow new data points to be projected in the already built

dimensional space which is a non-negligible drawback.
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Figure 2.6: Representation with PCA in 2 dimensions of 5, 000 fraudulent trans-

actions (in red) against 5, 000 genuine transactions (in blue).

Figure 2.7: Representation with T-SNE in 2 dimensions of 5, 000 fraudulent trans-

actions against 5, 000 genuine transactions. The two figures are taken over different

periods.
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Figure 2.8: Representation with T-SNE in 3 dimensions of 5, 000 fraudulent trans-

actions against 5, 000 genuine transactions.

It is important to note that these figures are highly misleading in the sense that the

class distribution has been readjusted such as to ease the visualization. Indeed, to

have an idea of the real class distribution, the number of blue points should actually

be much times higher. In this setting, the genuine transactions (blue points)

completely overlap the fraudulent transactions which makes the fraud detection

problem a very difficult task. On the other hand, it also shows that sampling

methods may be an interesting way to help the models to learn over this kind of

data.

Lastly, as we mentioned previously, data are subject to changes in time (e.g.

concept drift). This is also the case for the imbalance ratio that varies slightly

with time as shown as Figure 2.9 where we see the positive ratio π change over

time. The same goes for the time of the day (Figure 2.10. Note that the changes in

this π can either be caused by fluctuations in the amount of genuine transactions

or fraudulent transactions or both at the same time (i.e. it does not necessarily

means more frauds).

In this section, we study the effectiveness of imbalanced learning methods for

credit card fraud detection. The state of the art is today divided between three

domains: cost-sensitive learning, sampling methods and ensemble methods. We

present the in the following applied to the specific use-case.
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Figure 2.9: Positive ratio per month.

Figure 2.10: Positive ratio per hour.
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2.6 Experiments with Imbalanced Learning Meth-

ods for Credit Card Fraud Detection

2.6.1 Experimental Setup

In this section we compare the most promising approaches to credit card fraud

detection. In the previous we presented different studies that provide methods

to tackle the credit card fraud detection problem (Dal Pozzolo et al., 2013, 2018;

Zareapoor et al., 2015; Kulkarni and Ade, 2016). It turns out that, ensemble

methods clearly outperform all other learning algorithm compared in these studies

(e.g. SVM, Naive Bayes, K-NN). More specifically, three methods stand out:

1. Random undersampling with the Random Forest (RF).

2. SMOTE with RF.

3. EasyEnsemble with RF.

We remind briefly how these methods work. RF is a bagging method that com-

bines different decision trees learned over different subsets. These trees are often

not pruned thus with high variance. The specificity of RF compared to bag-

ging lies in the random selection of features for each split of the trees. When

coupled with undersampling or SMOTE, the training data over which the sub-

sets are built is balanced such as to have a similar proportion of examples in all

classes. While random undersampling remove examples from the majority class

randomly, SMOTE, on the other hand, creates new synthetic examples based on

the K Nearest Neighbour algorithm (see Section 1.4 for more details on these

methods). Lastly, EasyEnsemble with RF relies on several balanced subsets cre-

ated with random undersampling over which different RF will be trained (instead

of a single one for random undersampling with RF).

Interestingly, gradient boosting (GB) hasn’t been extensively used in such prob-

lem. In this experiment, we include GB as its internal properties allows a nice

behaviour on imbalanced data (see Section 1.4.5). In Nikolaou et al. (2016) they

support this idea by showing that boosting does not benefit from cost-sensitive

learning since it naturally assigns higher cost for the minority class. We also

combine GB with the three sampling methods, namely, random undersampling,

SMOTE and EasyEnsemble.

An interesting property of RF and GB is their implementation using trees. The

rules that make up these trees are interpretable and similar, in some sense, to
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the expert rules which is a non-negligible asset. Indeed, interpretability is today

a priceless feature for a machine learning model to be able to justify potential

sensible decisions that the model could make.

We now present our experimental protocol with its specific settings. As we men-

tioned, the data we work on are related to time. Indeed, it would be unfair for a

machine learning model to learn on the future to predict past frauds. The main

reason is that it does not apply in the realistic case. Another important reason

is that we observed that machine learning models could overfit in some way (by

combining sets of features) to recognize the card and thus would have overopti-

mistic performance when tested over transactions close to the test regarding the

time. To avoid that, we carefully split our in four parts: train, validation, gap and

test in the chronological order. The gap is used such as to make sure we do not

have the behaviour mentioned above. Figure 2.11 presents these splits.

In the following, we use 2 months of training data, 1 week of gap and 1 month for

the test. The imbalance ratio is τ = 557 or π = 0.179% where π = P
M

= 1
1+ρ

is the

proportion of positive examples where P =
∑M

i=1 1(yi = 1), N =
∑M

i=1 1(yi 6= −1)

and M is the total number of examples in the training set.

The experiments are carried over a machine with 800 gigabytes of RAM and 56

CPUs. In order to validate our models, we use the hold-out validation set and

search for the best hyper-parameters for both the RF 3 and GB implementation 4

as follows:

• Gradient boosting hyper-parameters: n_estimators ∈ {10, 50, 100, 200, 300, 500, 1000}
that defines the total number of weak learners, max_depth ∈ {2, 5, 6, 10, 13, 15}
that stops the learning of the tree at a specific depth, eta ∈ {0.001, 0.01, 0.1, 0.3, 0.5}
the learning rate and subsample ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 1} that defines the

proportion of examples randomly drawn over which a weak learner is trained.

This last parameter also implements Friedman (2002) where they introduce

the Stochastic Gradient Boosting algorithm.

• Random forest hyper-parameters: n_estimators ∈ {10, 50, 100, 200, 300, 500, 1000}
that defines the total number of trees in the ensemble and max_features

∈ {
√
d, log2(d)} the number of features to consider at each split of the tree

where d is the total number of features.

3Implementation from scikit-learn, https://github.com/scikit-learn/scikit-learn
4Implementation from Extreme Gradient Boosting, https://github.com/dmlc/xgboost

n_estimators
max_depth
eta
subsample
n_estimators
max_features
https://github.com/scikit-learn/scikit-learn
https://github.com/dmlc/xgboost
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Figure 2.11: Experimental setup to validate and test a model on the credit card

fraud detection dataset.

For the sampling methods, we selected different values for πr, the proportion of

positive examples in the balanced training set.

πr ∈ {0.002, 0.003, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}

For each combination of hyper-parameters, we evaluate the model on the validation

set with the metric over which we want to evaluate the models and select the set of

hyper-parameters that maximizes it. The final reported results are then computed

over the test set.

2.6.2 Side Effect of Sampling Methods

Now that we explained the experimental protocol we point out the fact that the

sampling methods have some drawbacks that have been highlighted in the litera-

ture (Dal Pozzolo et al., 2015c,b):

1. It increases the variance of the classifier.

2. It produces posterior probabilities that may not be relevant on the test set.

In order to handle the variance, we take advantage of the nice generalization of

ensemble methods and a large grid-search over a consequent hold-out validation

set. The second effect mainly affects metrics based on the decision threshold.

To illustrate this, we present the F1 score for both RF and GB at different deci-

sion thresholds τ . Both model hyper-parameters are selected using the hold-out

validation procedure.

Figures 2.12 and 2.14 present GB and RF respectively, trained over a balanced

training set using undersampling while Figures 2.13 and 2.15 present the same

models trained over the original training set. The goal of this experiment is to

show how the posterior probability behave when training over the original and

balanced training set. Note that, by default, the decision threshold is naturally

set to τ = 0.5.
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A first observation is the clear difference between the training and test set figures

(left vs. right figures). The first hypothesis why this happen is that the model

could be overfitting the training set even with a hold-out validation. Another

reason could be caused by a concept drift. Indeed, there might be concepts learned

in the training set that do not appear in the test set.

Apart from their shape that heavily change from training to test sets, we can

also see that they reach their maximum at different τ . When using undersampling

(Figure 2.12 and 2.14), the optimal on the test set is very different from the one on

the training set. This can be explained by the huge difference in the prior π in the

two sets. For the models learned over the original training (Figure 2.13 and 2.15)

it seems that the shape of the curves are more coherent between train and test.

That being said, there exist a τ for which the RF, Figure 2.13, achieves a perfect

F1 score on the training set. This clearly shows that the model did overfit (as he

test is far from being perfect. This is in fact not the case for GB, Figure 2.13,

that show similar curves for both the training and test set and yet, the F1 score

is still not reached at the same τ .

A second observation can be made on the opposition between the balanced and

original training set. Here we only focus on the performance obtained in the

test sets (right figures). For both models, the conclusion is the same. The class

distribution of the training set influence greatly the posterior probabilities. The

probability P (y = 1|x) given by the models is in fact shifted toward the class distri-

bution. For example, in Figure 2.12 and 2.14, where the training set is balanced,

the optimal threshold is near 1.0 while for the original dataset in Figures 2.13

and 2.15 the optimal threshold is close to 0.0.

From the previous observations, it is clear that one should carefully redefine the

decision threshold. Another possibility is to find a new positive ratio achiev-

able through undersampling such that the posterior probability becomes well cal-

ibrated. For example, Figure 2.16 presents a GB model trained over a re-sampled

dataset with πr = 1.9% or around 10 times higher than the original dataset.

However, to obtain the right πr that gives a good calibration of the posterior

probabilities we had to experimentally test many different ratios which is very

costly. Moreover, the best achievable F1 score in this setting is lower than the one

using the original training set.

It is clear that metrics such as the F1 score are highly dependent on the decision

threshold and that the default one is in often not optimal. For these reasons, in

the following, we tune the decision threshold over the validation set such as to

maximize the metric of interest (i.e. F1 score).
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Figure 2.12: The figures present the F1 score for the train (left figure) and test

(right figure) at different decision thresholds. In this experiment undersampling

was applied on the training set. This experiment was carried with a GB model.

Figure 2.13: The figures present the F1 score for the train (left figure) and test

(right figure) at different decision thresholds. The training set was left in its

original state. This experiment was carried with a GB model.



66 Chapter 2. Learning with Extreme Imbalanced Data: Application to fraud detection.

Figure 2.14: The figures present the F1 score for the train (left figure) and test

(right figure) at different decision thresholds. In this experiment undersampling

was applied on the training set. This experiment was carried with a RF model.

Figure 2.15: The figures present the F1 score for the train (left figure) and test

(right figure) at different decision thresholds. The training set was left in its

original state. This experiment was carried with a RF model.

Figure 2.16: F1 score at different decision threshold. The positive ratio was set at

1.9% for the training set using undersampling. This experiment was carried with

a GB model.
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2.6.3 Experiments

We compare RF and GB coupled with the sampling methods from above. We

observe 3 different metrics that are very common in class imbalance problems,

namely, AUCROC, AP and F1 score. Since all methods are non-deterministic

(i.e. all methods have a random variable) we average their results over 30 runs on

the test set. The final results are reported in Table 2.2.

We quickly remind the intuition behind the 3 different metrics we use in this exper-

iment. The F1 score represents the harmonic mean at a specific decision threshold.

It is quite clear that the lower the measure is the less precision and recall we can

reach. Thus, when it decreases, the model does more false alerts while catching

less frauds. The average precision (AP) is harder to interpret. This measure takes

into account every possible relevant decision threshold and computes the precision

for each of them. AP is finally the average of these precision. In other words, this

measure evaluate the potential of the model or how well it does in average at

every decision threshold. It also emphasizes in ranking well the positive instances.

We come back to this in Chapter 3. Finally, the AUCROC has a very intuitive

explanation as it is the probability of a randomly chosen positive example to be

ranked above a randomly chosen negative example. In other words, an AUCROC

of 0.5 gives a ranking of the examples completely random.

The first observation on the results is the optimal πr that is in average very

different for AUCROC compared to the other metrics. Indeed, while the F1 score

and AP are in agreement regarding this term, AUCROC prefers much higher πr.

To understand why this occurs we plot the three metrics while we chose different

value of πr with the random undersampling method in Figure 2.17. We can clearly

see that the undersampling only decreases the model’s performance in terms of

both AP and F1 score when πr > 0.004. Interestingly, AUCPR and F1 score find

their maximum when πr = π + ε where ε stands for a small positive quantity. It

turns out that the proportion of positive examples on the test set is slightly higher

(πtest = 0.214). Indeed, our models are built over a prior πr that is assumed to be

the same on the test set. For this reason, when πr ≈ πtest both metrics find their

maximum.

The behaviour of RF and GB are fairly different regarding the value of πr. Indeed,

for RF, undersampling seems to have a non-negligible positive effect on the AU-

CROC. In fact by increasing πr from πr = 0.002 to πr = 0.1 AUCROC is greatly

increased. This is in contrast with GB that remains somewhat stable regardless

of the πr values. In the end, results in Table 2.2 suggest that only EasyEnsemble
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Figure 2.17: From left to right, AP, F1 score and the AUCROC reported at

different πr using undersampling.

was able to reach the best results that were obtained by the RF and GB models

without sampling methods.

It is interesting to note that the resulting RF model learned over the original

training set is around 3, 000 megabytes in size while GB only is 10 megabytes.

This can be explained by the trees generated in both methods. In RF, they are

very deep since there is no pruning. However, for GB, the trees are ”weak” (with

a maximum depth of 15) which makes the model much lighter.

An interesting observation can be made by looking at the optimal πr chosen by

every sampling method. Indeed, πr ≈ π for all of the three sampling methods.

The dataset obtained with this πr is in fact still very imbalanced. In this sense,

sampling methods do not seem to have a strong impact on the model’s perfor-

mance. The decision threshold is, however, very important. Indeed, the F1 score

that would be obtained with the standard threshold τ = 0.5 would be much worse.

Figure 2.18 illustrates such phenomenon. In this figure, we use different values

of πr. In this case, the F1 score computed is left by default which has the main

consequence for the undersampling to increase performance of the models. As

one may notice, this figure is very similar to Figures 2.15 and 2.13 (right figures)

that are learned over the original distribution. It seems that the optimal decision

threshold is very correlated to the sampling ratio πr where the best performance

of the models is achieved.

Regarding the metrics, they emphasize on different things. More specifically, AU-

CROC gives a different conclusion than the F1 score and AP. Moreover, for RF, a

perfectly balanced dataset offer almost the best performance in AUCROC while

it gives the worst performance on the two other metrics. In our case, a lower AP

means higher probability of making false positives and having less true positives

(i.e. less precision, less recall) which is absolutely not desirable. AS it turns out,

the F1 score and AP are highly correlated. We provide a experimental study on

their correlation in Appendix. A.



2.6. Experiments with Imbalanced Learning Methods for Credit Card Fraud Detection69

Figure 2.18: F1 score reported for different positive ratio using undersampling

without tuning the decision threshold.

This observation follows on Davis and Goadrich (2006) that presented this prob-

lem earlier on. Recently, in Saito and Rehmsmeier (2015), the authors presents a

framework where AP is more informative than AUCROC. The main reason stand-

ing out why one would prefer to use AUCROC over AP is its ability to interpolate

between points in the ROC curve while it is not possible to do the same in the

PR curve. Another reason is the AUCROC being invariant on the prior π. That

being said, a recent study presents a possible way to build the PR curve such that

it can benefit from the same advantage as the ROC curve by redefining the preci-

sion and recall (Flach and Kull, 2015). In fact this problem arises when the data

points are relatively far from each other in the precision and recall space. Indeed,

interpolating between distant points in the PR space would highly overestimate

the AP. In our case, when working over the fraud dataset the models we build give

a sufficient number of scores to make the problem of interpolating between points

negligible.

Today, a lot of different publications on class imbalanced problems still report

AUCROC as the evaluation metric. More importantly, recent studies (Brabec

and Machlica, 2018; Haixiang et al., 2017) rise a concern in the use of evaluation

metrics for class imbalance problems. In fact, in Haixiang et al. (2017) the au-

thors report that 38% of applied papers dealing with class imbalance problems in

different domains use the accuracy as an evaluation metric. As we have presented

in Section 1.4, using the accuracy in the class imbalance setting can be very mis-

leading. Today, metrics for class imbalance learning should be carefully chosen

such as to represent as best as possible the desired performances.
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Table 2.2: Experiment results on the fraud dataset. The positive ratio chosen πr
is specified for each method where π is the original positive ratio.
Method AUCROC (πr) F1 score (πr) AP (πr)

Undersampling + RF 0.9137± 0.0006 (0.500) 0.2417± 0.0118 (0.002) 0.1439± 0.0062 (0.002)

Undersampling + GB 0.9291± 0.0009 (0.020) 0.2458± 0.0033 (0.003) 0.1656± 0.0003 (0.003)

SMOTE + RF 0.8616± 0.0012 (0.500) 0.2293± 0.0212 (0.003) 0.1354± 0.0057 (0.003)

SMOTE + GB 0.9266± 0.0010 (0.002) 0.2296± 0.0199 (0.002) 0.1554± 0.0042 (0.002)

EasyEnsemble + RF 0.9193± 0.0002 (0.500) 0.2459± 0.0041 (0.002) 0.1580± 0.0036 (0.002)

EasyEnsemble + GB 0.9292± 0.0002 (0.050) 0.2465± 0.0038 (0.003) 0.1684± 0.0021 (0.003)

RF 0.9018± 0.0076 ( π ) 0.2464± 0.0051 ( π ) 0.1579± 0.0028 ( π )

GB 0.9291± 0.0004 ( π ) 0.2473± 0.0027 ( π ) 0.1682± 0.0019 ( π )

2.7 Conclusion

In this chapter, we covered the anomaly detection task and more specifically the

fraud detection problem applied to credit card transactions. Fraud detection is

today a very popular topic that has received a lot of attention from the machine

learning community as it is a practical domain for supervised learning (i.e. it

gathers both data and labels). We presented an overview of imbalanced learning

methods applied to credit card fraud detection.

In a second step we reviewed the state of the art imbalanced learning method

applied to fraud detection. We presented the cost-sensitive method and why this

could be of great interest from a financial point of view (i.e. emphasizing on high

amount fraudulent transactions). However, setting the costs is not trivial and we

showed that focusing on high amount transactions is not always ideal.

It comes out that ensemble methods stand out because of their performance and

generalization behaviour. In order to understand how these methods impact the

model, we presented three different strategies that appeared as the best methods

in the literature:

1. Random undersampling,

2. SMOTE,

3. EasyEnsemble.

All these methods were used with a Random Forest Gradient Boosting. Models

were evaluated using three different metrics namely, AUCROC, AP and F1 score.

We observed a different behaviour from AUCROC compared with the F1 score

and the AP. The former tends to be maximized as the training set becomes more

balanced while the latter is clearly showing to be maximized as the training set
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prior gets closer to the original one. Not only do they behave differently but they

also completely disagree on the choice of the best model. This latter prompted

us to investigate more on the meaning of these measures and we concluded that

the AUCROC as well as the accuracy are both misleading for credit card fraud

detection data or more generally extreme imbalanced data problems.

In the end, sampling and cost-sensitive are a lot effort for few or no reward. Indeed,

SMOTE and its hybrid counterparts such as SMOTEBoost are very impractical

in our context where millions of examples have to be generated. Undersampling

however, benefits from easing the learning process of the models by removing a

large set of genuine transactions. That being said, we did not notice a significant

improvement at any imbalance ratio in terms of AP and F1 score. Undersampling

does help RF to increase the AUCROC at the cost of lowering the precision. We

believe that the loss of information caused by undersampling our data is dramati-

cally impacting the decision that becomes less precise and biased toward a different

distribution. While AP and F1 score are better metrics to measure the model’s

performance on such dataset, we showed that the F1 score is biased toward the

decision threshold.

To summarize, we identified two main problems in fraud detection. The first

is the extreme imbalanced data setting. To tackle this problem, we build upon

the observations made in this chapter and address the problem by neither using

sampling nor cost-sensitive methods. In fact, we rather use the original training

set. Moreover, we believe that guiding our model toward maximizing the metric of

choice would allow us to have better performances. In our case, we choose to focus

on AP for 2 main reasons: 1) It disregards the decision threshold which allows

to express the entire potential of the model (regardless of the decision threshold).

2) It takes into account both precision and recall which are two very important

measure in fraud detection. In the following chapter, we present a way to optimize

this metric in a GB framework. The second identified problem is the uninterrupted

flow of data entering the system. This problem clearly makes learning in the offline

setting unrealistic as time passes. This latter will be our main focus in Chapter 4.
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Chapter 3

Learning with imbalanced data

from a learning to rank point of

view

This chapter is based on the following publication

Frery, Jordan, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-

Guelton. ”Efficient top rank optimization with gradient boosting for supervised

anomaly detection.” In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pp. 20-35. Springer, Cham, 2017.

Abstract

In this chapter we address the anomaly detection problem in a supervised

setting where positive examples might be very sparse. We tackle this task

with a learning to rank strategy by optimizing a differentiable smoothed

surrogate of the so-called Average Precision (AP). Despite its non-convexity,

we show how to use it efficiently in a stochastic gradient boosting framework.

We show that using AP is much better to optimize the top rank alerts than

the state-of-the-art measures. We demonstrate on anomaly detection tasks

that the interest of our method is even reinforced in highly imbalanced

scenarios.

3.1 Introduction

As discussed in the first two chapters of this manuscript, there exist several

methods to get rid of the issues due to imbalanced datasets. The most fa-

mous are sampling-based strategies, either by undersampling or oversampling the

73
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data (Chawla et al., 2002; Ramentol et al., 2012). The former aims at remov-

ing instances from the majority class while the latter creates synthetic data from

the minority class. Several hybrid methods such as SMOTEBoost (Chawla et al.,

2003), RUSBoost (Seiffert et al., 2010) and Adacost (Fan et al., 1999) combine a

learning algorithm with a sampling or cost-sensitive methods. However, it turns

out that these approaches have been shown to be hard to use when facing highly

imbalanced situations (Dal Pozzolo et al., 2015b) leading to either insufficient

generated diversity (by oversampling) or too drastic reduction of the dataset size

(by undersampling).vIn addition, sampling methods induce a bias in the posterior

probabilities (Niculescu-Mizil and Caruana, 2005; Dal Pozzolo et al., 2015c). We

discussed all this problems in Chapter 2.

On the other hand, it is worth noticing that a peculiarity of the use cases mentioned

above is the need to resort to a (often limited) number of human experts to assess

the potential anomalies found by the learned model. Actually, our contribution

stands in a context where the number of false positives (FP) may be significantly

larger than the false negative (FN) due to the high class imbalance and where

the impact of FP is very penalizing. For example, in fraud detection for credit

card transactions, it is out of the question to automatically block a credit card

without the expert approval (which may risk the confidence of customers having

their credit card falsely blocked). In this context, the goal of the automatic system

is more to make the shortest list of alerts preventing the expert from going through

thousands of transactions. In other words, one aims at maximizing the number

of true positives in the top rank alerts (i.e. the so-called precision) rather than

discriminating between abnormal and normal cases.

This is the reason why we tackle in this chapter the supervised anomaly detection

task with a learning to rank approach. This strategy has gained a lot of interest

in the information retrieval community (Liu, 2011). Given a query, the goal is to

give the most relevant links to the user in a small set of top-ranked items. It turns

out that apart the notion of query, the anomaly detection task can relate to this

setting aiming at finding the anomalies with the highest precision without giving

too many genuine examples to the experts.

In such settings, different machine learning algorithms have been efficiently used

such as SVMs (e.g. SVM-Rank (Joachims, 2002), SVM-AP (Yue et al., 2007)) or

ensemble methods (e.g. random forest (Breiman, 2001), boosting (Freund et al.,

1999)). It turns out that gradient boosting has shown to be a powerful method on

real life datasets to address learning to rank problems (Chapelle and Chang, 2011).

Its popularity comes from two main features: (i) it performs the optimization in
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function space (Friedman, 2001) (rather than in parameter space) which makes

the use of custom loss functions much easier; (ii) boosting focuses step by step on

difficult examples that gives a nice strategy to deal with imbalanced datasets by

strengthening the impact of the positive class. In order to be efficient in learning

to rank problems, gradient boosting needs to be fed with a loss function leading

to a good precision in the top-ranked examples.

In the literature, many approaches resort to pairwise loss functions (Freund et al.,

2003; Burges et al., 2005; Herschtal and Raskutti, 2004), typically checking that

every positive example is ranked before any negative instance. Note that all those

methods implicitly optimize the area under the ROC curve. Therefore they aim

at minimizing the number of incorrectly ranked pairs but do not directly optimize

the precision of top ranked items as shown in (Burges, 2010).

To overcome this issue, recent works in learning to rank suggested optimizing other

criteria like the Average Precision (AP ) or the Normalized Discounted Cumulative

Gain (NDCG) such as in Adarank (Xu and Li, 2007), LambdaMART (Wu et al.,

2010) or LambdaRank (Burges et al., 2007). It has been shown that both AP and

NDCG are much more suited for enhancing ranking methods. However, due to

the non-convexity and non-differentiability of those criteria, the previous methods

rather work on standard surrogate convex objective functions (such as the pairwise

cross-entropy or the exponential loss) and take into account the AP and NDCG

in the form of weighting coefficients only. In other words, the gradients are not

computed as derivatives of AP and NDCG. Therefore, used in this way, these

criteria only tend to guide the optimization process in the right direction. We

claim here that there is room for doing much better and directly considering the

analytical expressions of those criteria in a gradient boosting method.

In this paper, our contribution is three-fold: (i) focusing on AP , we show how

to optimize a loss function based on a surrogate of this criterion; (ii) unlike the

state-of-the-art learning to rank methods requiring a quadratic complexity to min-

imize the ranking measures, we show that AP can be handled linearly in gradient

boosting without penalizing the quality of the solution; (iii) compared to the state

of the art, we show that our method allows us to highly improve the quality of

the top-ranked items. We even show that this advantage is much larger when

the imbalance of the datasets is very important. This is a particularly interesting

feature when addressing anomaly detection problems where the positive examples

are very sparse.

The rest of this paper is organized as follows : In Section 2 we first introduce our

notations, then describe our performance measures and present an approximation
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to AP . We then describe our method in a boosting framework and define a more

suitable smoothed AP as the loss function in Section 3. We demonstrate the

effectiveness of our work in the experiments section where we compare several

state of the art machine learning models in Section 4.

3.2 Evaluation Criteria and Related Work

We remind some notations used in this chapter. We consider a binary supervised

learning setting with a training set S = {zi = (xi, yi)}Mi=1 composed of M la-

belled data, where xi ∈ X is a feature vector and yi ∈ {−1, 1} is the label. In

imbalanced scenarios, y = 1 often describes the minority (positive) class while

y = −1 represents the majority (negative) class. Let P (resp. N) be the number

of positive (resp. negative) examples such that P + N = M . We also define

S+ = {z+i = (x+i , y
+
i )|yi = +1}Pi=1 and S− = {z−i = (x−i , y

−
i )|yi = −1}Ni=1 where

S+ ∪ S− = S. We assume that the training data zi = (xi, yi) is independently

and identically distributed according to an unknown joint distribution DZ over

Z = X × {−1, 1}.

In this work, we aim at learning from S a function (or hypothesis) f : X → R
that gives a real value to any new x ∈ X .

As already dicussed in Chapter 1.1, assessing the quality of f in an imbalanced

scenario requires the use of an appropriate evaluation criterion.

In Chapter 2 we showed that the different possibilities evoked in Section 1.4 often

induce different unexpected effect that may reduce the potential performance of

a model. In this part, we focus on the learning to rank scenario. Rather than

discriminating examples belonging to the positive and negative classes, we rather

aim at ranking the data with a maximal number of TP in the top ranked examples

which can be interpreted as a short list of alerts.

This setting is actually very relevant for fraud detection systems relying on expert

validation such as Worldline Fraud Fetection Fystem, since one expert may just

have to check the top k instances reported in the list. In this context two measures

are well used in the literature: the pairwise AUCROC measure and the listwise

average precision AP that we recall below.

From a statistical point of view, we remind that the AUCROC represents the

probability that a classifier ranks a randomly drawn positive instance higher than

a randomly chosen negative one. The expression of this measure is equivalent to

the Wilcoxon-Mann-Whitney statistic (Hanley and McNeil, 1982):
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AUCROC =
1

PN

P∑
i=1

N∑
j=1

I0.5(f(x+i )− f(x−j )), (3.1)

where I0.5, is a special indicator function that yields 1 if f(x+i ) − f(x−j ) > 0, 0.5

if f(x+i ) − f(x−j ) = 0 and 0 otherwise. In the following we will use the classic

indicator function I(∗) that yields 1 if ∗ is true, 0 otherwise.

1 − AUCROC has been exploited in Rankboost algorithm (Freund et al., 2003)

as an objective function where the authors use the exponential as a surrogate to

the indicator function. Let `roc(zi, f) = 1
N

∑N
j=1 e

(f(z−j )−f(z+i )) be the loss suffered

by f at zi. We get the following upper bound on 1− AUCROC:

1−AUCROC ≤ 1

P

P∑
i=1

1

N

N∑
j=1

e(f(z
−
j )−f(z+i )) =

1

P

P∑
i=1

`roc(zi, f) = Ezi∈S+`roc(zi, f)

(3.2)

We can notice that this objective is a pairwise function inducing an algorithmic

complexity O(PN). Moreover, as illustrated later in this section, earlier in Chap-

ter 2 and shown in (Burges, 2010), `roc is not well suited to maximize the precision

in the top ranked items.

A better strategy consists in using an alternative criterion based on the average

precision AP that we presented in Equation 1.19. In fact, we can redefine this AP

to a simpler form where we assume that our predictions are complete ranking (no

ties).

AP =
1

P

P∑
i=1

p(ki), (3.3)

where p(ki) is the precision with respect to the rank ki of the ith positive example.

Since the rank depends on the outputs of the model f , we get:

p(ki) =
1

ki

P∑
j=1

I(f(x+i ) ≤ f(x+j )) (3.4)

with

ki =
M∑
j=1

I(f(x+i ) ≤ f(xj)). (3.5)

Plugging Eq.(3.4) and Eq.(3.5) in Eq.(4.9) we get:

AP =
1

P

P∑
i=1

1∑M
j=1 I(f(x+i ) ≤ f(xj))

M∑
j=1

I(yj = 1)I(f(x+i ) ≤ f(x+j )). (3.6)
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Figure 3.1: Two rankings (with two positives and eight negative examples) ordered

from the highest score (at the top) to the lowest. On the left, we get AUCROC =

0.63 and AP = 0.33. On the right, AUCROC = 0.56 and AP = 0.38. Therefore,

the two criteria disagree on the best ranked list.

AP has been used in recent papers to enhance learning to rank algorithms.

In Burges (2010); Burges et al. (2007), the authors introduce a new objective func-

tion, called LambdaRank, which can be used with different criteria, including AP .

This function depends on the criterion of interest without requiring to compute

the derivatives of that measure. This specificity allows them to bypass the issues

due to the non differentiability of the criterion. The objective function takes the

following form:

1

N

P∑
i=1

`λRank(z
+
i , f) (3.7)

with `λRank(z
+
i , f) = 1

N

∑N
j=1 log(1+e−(f(x

+
i )−f(x

−
j )))|APij| the loss suffered by f at

zi. Here, |APij| is the absolute difference in AP when one swaps, in the ranking,

example xi with xj. LambdaMART (Wu et al., 2010) made use of LambdaRank

in a gradient boosting method and got good results as reported in (Chapelle and

Chang, 2011). However, it is worth noticing that in this algorithm, the analytical

expression of AP as defined in Eq.(3.6) is not involved in the calculation of the

gradient. |APij| can be viewed as a weighting coefficient which hopefully tends

to guide the optimization process towards a good solution. One objective of this

chapter is to directly use AP in the algorithm and therefore to use the same

criterion at both training and test time.

In Section 2.6, we highlighted some drawbacks of using AUCROC for extreme

imbalanced data. In the following, we present the effect of AUCROC and AP

in terms of quality of top ranked items. Figure 3.1 compares these criteria in

two different situations according to the location of two positive (in dark colour)
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Figure 3.2: Comparison of the emphasis given by AP (arrows on the left) and the

emphasis given AUCROC (arrows on the right) (Burges, 2010). One can compare

this emphasis to the intensity of gradients w.r.t the examples if AP and AUCROC

were continuous functions.

and eight negative (in light colour) examples that are ordered according to their

predicted scores (highest score at the top). The key point of this figure is to show

that AUCROC and AP disagree on which list is the best. AUCROC prefers the

list on the left because the positive examples are rather well ranked even though

the first three items are negative. Therefore, we can note that this criterion is very

relevant if we are interested in classifying examples into two classes, for example,

the classifier being based on a threshold (likely after the fifth rank, here) splitting

the items into two parts. AP is in favour of the list on the right because it prefers

to champion the top list accepting to pay the price to miss some positives. This

criterion is thus very relevant to deal with anomaly and fraud detection where the

goal is to provide the shortest list of alerts (here, typically the first two items)

with the largest precision.

Figure 3.2 (inspired from Burges (2010)) illustrates graphically how the emphasis

is done while computing gradients from pairwise loss function such as AUCROC

(black arrows on the right) or a listwise loss function such as AP (red arrows

on the left) respectively. We can notice that a learning algorithm optimizing the

AUCROC would champion first the worst positive to get a good classifier (w.r.t.

an appropriate threshold) while the AP would promote first the best positive to

get a good top rank.

The previous analysis shows the advantage of optimizing AP in a learning to

rank algorithm. This is the objective of the next section where we introduce a

differentiable expression of AP in a gradient boosting algorithm.

The previous analysis shows the advantage of optimizing AP in a learning to rank

algorithm. In the next section, we propose a method for optimizing AP in a
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gradient boosting algorithm. Actually, we do not optimize directly the AP since

gradient boosting requires the use of differentiable loss functions as metionned in

the related part of Section 1.3. We rather introduce a differentiable approximation

of AP that can then be optimized in a gradient boosting algorithm.

3.3 Stochastic gradient boosting with AP

In this section, we recall the stochastic gradient boosting framework as presented

by (Friedman, 2002) and already introduced in Section 1.3 of this document.

Then we instantiate the loss function in two different ways: first, we introduce a

differentiable version of AP using the sigmoid function. Then, in order to reduce

the algorithmic complexity, we suggest using a rough approximation based on the

exponential function. We show that this second strategy allows us not only to

drastically reduce the complexity but also, to get similar or even better results

than the sigmoid-based loss. We give some explanations about this behaviour at

the end of the section.

3.3.1 Stochastic gradient boosting

Like other boosting methods, gradient boosting is based on a sequential and adap-

tive learning over weak learners that are linearly combined. However, instead of

setting a weight for every example, gradient boosting builds each new weak learner

on the residuals of the previous linear combination. We can see gradient boosting

as gradient descent in functional space. The linear combination at step t is defined

as follows:

Ft(x) = Ft−1(x) + αtht(x),

with ht ∈ H a hypothesis belonging to a class of models H (typically, regression

trees) and αt the weight underlying the performance of ht in the linear combina-

tion. Residuals are defined by the negative gradients of the loss function computed

w.r.t. the previous linear combination of weak learners:

rit = −
[∂`(zi, ft−1(xi))

∂ft−1(xi)

]
, i = 1 . . .M.

As in standard boosting, hard examples get more importance along the iterations

of gradient boosting. Note that a mini-batch strategy is usually used to speed-up

the procedure by randomly selecting a proportion λ ∈ [0, 1] of examples at each

iteration. Additionally, this stochastic approach allows us to avoid falling in a

local optima. A generic version of the stochastic gradient boosting is presented in

Algorithm 5.
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Algorithm 5 Stochastic gradient boosting

INPUT: a training set S = {zi = (xi, yi)}Mi=1, a parameter λ ∈ [0, 1], a weak

learner

Require: Initialize F0(x) = 0

for t = 1 to T do

Select randomly from S a set S ′ = {xi, yi}λMi=1

rit = −
[∂`(zi, Ft−1(x))

∂Ft−1(xi)

]
,∀zi = (xi, yi) ∈ S ′ (3.8)

Fit a weak classifier (e.g. a regression tree) ht(x) to predict the targets rt
Find αt = argminα

∑M
i=1 `(zi, Ft−1(xi) + αht(xi))

Update Ft(x) such that Ft(x) = Ft−1(x) + αtht(x)

end for

Output the final model:

F ∗(x) = sign(
T∑
t

ft(x)).

The key step of this algorithm takes place in Eq. (3.8). It requires the definition

of a differentiable loss function with its associated gradients. Unlike the state of

the art ranking methods which make use of gradient boosting, we aim at directly

optimizing in the loss function ` a surrogate of AP.

3.3.2 Sigmoid-based Surrogate of AP

To define a loss function ` based on AP, we need to transform the non-differentiable

Eq.(3.6) into an expression for which one will be able to compute gradients on AP.

Therefore, we need to get rid of the indicator function. A standard way consists

in replacing I(f(xi) ≤ f(xj)) by the sigmoid function :

I(f(xi) ≤ f(xj)) ≈
1

1 + e−α(f(xj)−f(xi))
= σ(f(xj)− f(xi))

with α a smoothing parameter. As α grows the approximation gets closer to the

true AP . Considering that
∑M

j=1 I(yj = 1) = P , we get the following differentiable

surrogate of AP:

ÂP sig =
1

P

P∑
i=1

1∑M
j=1

1

1 + e−α(f(xj)−f(x
+
i ))

P∑
j=1

1

1 + e−α(f(x
+
j )−f(x

+
i ))
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=
1

P

P∑
i=1

∑P
j=1 σ(f(x+j )− f(x+i ))∑M
h=1 σ(f(xh)− f(x+i ))

=
1

P

P∑
i=1

p̂(ki) ≈
1

P

P∑
i=1

p(ki). (3.9)

From ÂP sig, we get the following objective function:

1− ÂP sig = Ezi∈S+`sigap (zi, f),

where `sigap (zi, f) = 1− p̂(ki) is the loss suffered by f in terms of precision at zi (let

us remind that ki is the rank (predicted by f) of the ith positive example zi). In

fact, we can simply rewrite our objective function as:

1− ÂP sig =
1

P

P∑
i=1

∑N
j=1 σ(f(x−j )− f(x+i ))∑M
h=1 σ(f(xh)− f(x+i ))

For the sake of simplicity, let us use the following notations:

σ(f(xj)− f(xi)) = σji and we have

∂σji
∂ft(xj)

= −σji(1− σji) = −σ′ji,

∂σji
∂ft(xi)

= σji(1− σji) = σ′ji.

The gradient w.r.t ft(x
+
p ) or ft(x

−
p ), for positive and negative examples respectively

are given by:

∂(1− ÂP sig)

∂ft(x+p )
=
∂(1− ÂP sig)

∂σjp

∂σjp
∂ft(x+p )

+
∂(1− ÂP sig)

∂σpi

∂σpi
∂ft(x+p )

=
P∑
j=1

(σ′jp
∑M

h=1 σhp − σjp
∑N

h=1 σ
′
hp)

(
∑N

h=1 σhp)
2

+
P∑
i=1

(σ′pi
∑N

h=1 σhi − σjpσ′pi)
(
∑N

h=1 σhi)
2

,

∂(1− ÂP sig)

∂ft(x−p )
=
∂(1− ÂP sig)

∂σpi

∂σpi
∂ft(x−p )

=
P∑
i=1

P∑
j=1

−σjiσ′pi
(
∑N

h=1 σhi)
2
,

(3.10)
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as,
∂(1−ÂP sig)

∂σjp

∂σjp

∂ft(x
−
p )

= 0, since the example xp from the previous formulation will

always be positive in 1− ÂP .

The proposed approximation of AP presented above makes use of a sigmoid-based

approximation of the indicator function. We denote as SGBAPsig, the stochastic

Gradient Boosting algorithm using this sigmoid-based approximation. While this

approach allows us to have a differentiable approximation of AP, it has the draw-

back to require a quadratic time for being computed which can be intractable on

very large scale datasets. In the next subsection, we discuss another approximation

of AP able to be computed more efficiently.

3.3.3 Exponential-based Surrogate of AP

A quadratic computation time for the estimation we presented in the previous

section may be a too strong algorithmic constraint to deal with real-world appli-

cations (e.g. fraud detection in credit card transactions contains millions of data

points). To overcome this issue, we suggest here to resort to a less costly surro-

gate of AP using the exponential function as an approximation of the indicator

function.

I(f(xi) ≤ f(xj)) ≈ e(f(xj)−f(xi)).

As already done in Rankboost (Freund et al., 2003), we can show that the use

of this exponential function allows us to reduce the time complexity for binary

datasets to O(P +N).

Using the new approximation, AP takes the following form:

ÂP exp =
1

P

P∑
i=1

∑P
j=1 e

f(x+j )e−f(x
+
i )∑M

h=1 e
f(xh)e−f(x

+
i )

=
1

P

P∑
i=1

e−f(x
+
i )
∑P

j=1 e
f(x+j )

e−f(x
+
i )
∑M

h=1 e
f(xh)

=

∑P
j=1 e

f(x+j )∑M
h=1 e

f(xh)

as for the sigmoid approximation, we rather use 1− ÂP exp to minimize it.

1− ÂP exp =

∑M
h=1 e

f(xh) −
∑P

j=1 e
f(x+j )∑N

h=1 e
f(xh)

=

∑N
n=1 e

f(x−n )∑M
h=1 e

f(xh)
(3.11)



84 Chapter 3. Learning with imbalanced data from a learning to rank point of view

Finally, finding the gradients of this new objective function is straightforward.

∂1− ÂP exp

∂f(x+p )
=
−ef(x+p )

∑N
n=1 e

f(x−n )

(
∑M

h=1 e
f(xh))2

∂1− ÂP exp

∂f(x−p )
=
ef(x

−
p )
∑M

i=1 e
f(xh) − ef(x−p )

∑N
n=1 e

f(x−n )

(
∑M

h=1 e
f(xh))2

(3.12)

In the following, we call our method SGBAP, the stochastic gradient boosting

based on our approximation 1− ÂP exp.

Note that in Eq. 3.12, one can see an adverse effect brought by the exponential

approximation of the indicator function. Indeed, if f(xi) is first in the ranking,

the gradient of xi, g(xi), should decrease as there is no other position in which

it will improve the overall AP . However, in our approximation, when f(xi) is

significantly high, the gradient for this example will be the highest.

Assume ∀j ∈ S \xi, f(xi) >> f(xj), we have g(xi) ≈ 1 and g(xk) ≈ 0 ∀k ∈ S− \
xi. In fact, this effect is limited with stochastic gradient boosting. Indeed, since

g(xi) is not computed during all the iteration thanks to the random mini-batches,

the gradient is then automatically regularized. However, running the gradient

boosting algorithm instead of the stochastic version would raise the previous effect.

The same holds for any basic gradient descent based algorithm.

3.3.4 Comparison between the Approximations of AP

In this section, we compare experimentally the approximations used in this paper

- ÂP exp and ÂP sig - with a simple one-dimensional sample described in Table 4.1.

For this experiment, we use a simple linear model f(x) = θ0 + θ1x. The toy

dataset has been made such that the model has three ranking choices: (i) rank

the examples in descending order from x = +7 to x = −6 (when θ1 > 0), (ii)

rank the examples in descending order from x = −6 to x = +7 (θ1 < 0) or (iii)

give the same rank to every example (θ1 = 0). We give the AP and AUCROC

measures in each case : AP = 0.29, AUCROC = 0.52 when θ1 < 0, AP = 0.33,

AUCROC = 0.49 when θ1 > 0 and AP = 0.22, AUCROC = 0.5 when θ1 = 0.

Figure 3.3, shows that the two objective functions considered are obviously not

convex. However, they both find their minimum in θ1 > 0 which yields the best

AP .

Note that on Figure 3.3, 1−ÂP exp has another advantage than the time complexity

over the sigmoid approximation. Indeed, for negative examples with high scores
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Table 3.1: Toy dataset constituted of 14 examples on the real line with their

associated labels. x correspond to the feature value and y the class.

x −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

y −1 −1 −1 +1 +1 −1 −1 −1 −1 −1 −1 −1 +1 −1

Figure 3.3: 1− ÂP exp (on the left) and 1− ÂP sig (on the right) costs in function

of the two model parameters θ0 and θ1.(better with colour)

(e.g. when θ1 > 1), 1−ÂP sig tends to have vanishing gradients while, for 1−ÂP exp,

they tend to increase exponentially. Indeed, on Figure 3.3, the cost increases for

the exponential approximation while it decreases for the sigmoid approximation.

Figure 3.4 presents the pairwise cost function based on AUCROC and a surrogate

of the accuracy, the logistic loss. The minimum for these two functions is reached

for a θ1 < 0 which reverses the ranking compared to the one obtained by optimizing

a surrogate of AP. Interestingly, all ranking based surrogate functions do not

depend on θ0. Only the logistic loss make use of this parameter to correct the

classification regarding the decision threshold.

3.4 Experiments

In this section, we present an experimental evaluation of our approach in two

parts. In a first setup, we provide a comparative study with different state-of-

the-art methods and various evaluation measures on 5 imbalanced public datasets

coming either from the UCI Irvine Machine Learning repository or the LIBSVM

datasets 1 and on a real dataset of credit card transactions provided by the private

1http://archive.ics.uc/du/ml/ and https:/www.csie.ntu.edu.tw/cjlin/

libsvmtools/

http://archive.ics.uc/du/ml/
https:/www.csie.ntu.edu.tw/cjlin/libsvmtools/
https:/www.csie.ntu.edu.tw/cjlin/libsvmtools/
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Figure 3.4: Rankboost objective function (on the left) and the logistic loss based

objective function (on the right). They find their minimum in θ1 = −0.14 and

θ0 = −1.28 θ1 = −0.02 respectively.

company Worldline that is representative of the industrial application introduced

in Chapter 2. In a second experiment, we study the robustness of our method to

undersampling of positive instances.

3.4.1 Top-rank quality over imbalanced datasets

In this experiment, we use the public datasets Pima, Breast cancer, HIV, Heart

Cleveland, w8a and the real fraud detection dataset over credit card transactions

provided by Worldline. This dataset contains 2 million transactions labelled as

1 fraudulent or −1 genuine where 0.2% are fraudulent. It is constituted of 2

subsets of transactions of 3 consecutive days each. The first one is fixed as the

training set and the second as the test. Each subset being separated by one week

in order to have the same week days (e.g. Tuesday to Thursday) in train and test.

This setting models a realistic scenario where the feedback for every transaction

is obtained only few days after the transaction was performed. The properties of

the different datasets are summarized in Table 4.4.

We now describe our experimental setup. For the public datasets where the train-

ing/testing sets are not available directly, we randomly generate 2/3-1/3 splits of

the data to obtain training and test sets respectively. Hyperparameters are tuned

thanks to a 5-fold cross-validation over the training set, keeping the values offering

the best AP. We repeat the process over 30 runs and average the results.

We compare our method, named SGBAP, to 4 other baselines2: SGBAPsig as de-

2Note that we did not use AdaRank in our evaluation because the weight updates rely on a
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Table 3.2: Properties of the 6 datasets used in the experiments.

#examples Positives ratio #Features

Pima 767 34% 8

Breast cancer 286 30% 9

HIV 3, 272 13.3% 8

Heart cleveland (4 vs all) 303 4.3% 13

w8a 64000 3% 300

Fraud 2, 000, 000 0.2% 40

fined previously, GB-Logistic which is the basic gradient boosting with a negative

binomial log-likelihood loss function (Friedman, 2001) (pointwise and accuracy

based for binary datasets), LambdaMART-AP (Wu et al., 2010) a version of gra-

dient boosting that optimizes the average precision and RankBoost (Freund et al.,

2003), a pairwise version of AdaBoost for ranking. For each method, we fix a time

limit to 86, 000sec.

We evaluate the previous methods according to 4 criteria measured on the test sets.

First, we use the classic average precision (AP) and AUCROC. Additionally, we

also consider 2 measures to better assess the quality of the approaches for top-rank

precision. For this purpose, we use the performance Pos@Top, defined in (Li et al.,

2014a), that gives the percentage of positive example retrieved before a negative

appears in the ranking. In other words, it corresponds to the recall before the

precision drops under 100%.

We also evaluate the P@k from Eq. 3.4. In our setup, we set k being the number

of positive examples, which makes sense in our context of highly imbalanced data

when the objective is to provide a short list of alerts to an expert and where the

number of positive examples is much smaller than the negative examples. In fact,

the latter measure is both precision and recall at rank k.

The results obtained are reported on Table 3.3. First, we can remark that except

for the Pima dataset that has the highest positive ratio, our approach is always

better in terms of AP . SGBAP is also better than other baselines in terms of

Pos@top which is the hardest measure for evaluating the top-rank performance.

Additionally, we see that for all datasets with a significantly low positive ratio

(less than 15%), our approach is always better according to the P@k measure.

Overall, we can remark that when the imbalance is high, our approach is always

significantly better than other baselines according to 3 criteria: AP , Pos@top and

notion of query that is not adapted to our framework.
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P@k which clearly confirms that our method performs better for optimizing top-

rank results. Note that, for the dataset HIV, SGBAPsig performed quite poorly.

We believe that this is because of the early vanishing gradient due to the imbalance

in the dataset. This effect does not appear in heart cleveland dataset most likely

because of the small dataset size.

Table 3.3: Results obtained for the different evaluation criteria used in the paper.

We indicate in bold font the best method with respect to each dataset and each

evaluation measure. A − indicates that the method did not finish before the time

limit.

Dataset Algorithm AUCROC AP Pos@Top P@k

Pima

GB-Logistic 0.8279± 0.0352 0.7125± 0.0267 0.0388± 0.0379 0.6608± 0.0296

RankBoost 0.8352± 0.0359 0.7281± 0.0621 0.0620± 0.0546 0.6586± 0.0298

LambdaMART-AP 0.8177± 0.0304 0.7338± 0.0528 0.0407± 0.0443 0.6559± 0.0257

SGBAP 0.8276± 0.0418 0.7119± 0.0486 0.0579± 0.0577 0.6455± 0.0356

SGBAPsig 0.8215± 0.0215 0.7091±, 0.0328 0.0388± 0.0346 0.6514± 0.0325

Breast

cancer

GB-Logistic 0.6821± 0.0756 0.5089± 0.0562 0.0931± 0.0561 0.4457± 0.0739

RankBoost 0.6492± 0.0562 0.4838± 0.0632 0.0461± 0.0513 0.4626± 0.0629

LambdaMART-AP 0.6733± 0.0419 0.5280± 0.0680 0.0859± 0.0828 0.5196± 0.0624

SGBAP 0.7124± 0.0596 0.5602± 0.0830 0.1019± 0.1018 0.4980± 0.0612

SGBAPsig 0.7131± 0.0521 0.5503± 0.0443 0.0729± 0.0693 0.5061± 0.0574

HIV

GB-Logistic 0.8598± 0.0155 0.5557± 0.0376 0.0303± 0.0284 0.5391± 0.0364

RankBoost 0.8599± 0.0127 0.5464± 0.0276 0.0401± 0.0363 0.5309± 0.0254

LambdaMART-AP 0.8222± 0.0466 0.4286± 0.0887 0.0075± 0.0176 0.4874± 0.0814

SGBAP 0.8661± 0.0150 0.5737± 0.0347 0.0536± 0.0410 0.5445± 0.0351

SGBAPsig 0.7578± 0.0231 0.3928± 0.0434 0.041± 0.0250 0.3902± 0.0439

Heart

cleveland

GB-Logistic 0.7544± 0.1020 0.1638± 0.0931 0.0133± 0.0498 0.1± 0.1420

Rankboost 0.8109± 0.0515 0.1739± 0.0638 0.0150± 0.0565 0.0967± 0.1335

LambdaMART-AP 0.7277± 0.1225 0.1809± 0.1011 0.0383± 0.0863 0.1333± 0.1287

SGBAP 0.7789± 0.1178 0.2188± 0.1103 0.0483± 0.0970 0.2017± 0.1044

SGBAPsig 0.7983± 0.0638 0.2136± 0.0964 0.045± 0.0906 0.1566± 0.1295

w8a

GB-Logistic 0.9544± 0.0039 0.7385± 0.0154 0.0534± 0.0529 0.7091± 0.0152

RankBoost 0.9712± 0.0028 0.7649± 0.0135 0.0392± 0.0451 0.7277± 0.008

LambdaMART-AP − − − −
SGBAP 0.9701± 0.0029 0.8351± 0.0100 0.1779± 0.0978 0.7972± 0.0132

SGBAPsig − − − −

Fraud

GB-Logistic 0.8808 0.1477 0.0009 0.2411

RankBoost 0.8829 0.1560 0.0005 0.2449

LambdaMART-AP − − − −
SGBAP 0.6878 0.1747 0.0059 0.3203

SGBAPsig − − − −

3.4.2 Top rank capability for a decreasing positive ratio

In this section, we present an experiment showing the robustness of our approach

when the number of positive examples decreases. We consider the Pima dataset
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because it has the highest ratio of positive instances and because our approach

did not perform the best for all criteria. We aim at under-sampling the positive

class (i.e. to decrease the positive ratio
P

M
). We start from the original positive

ratio (34%) and go down to 3% by steps of ∼ 0.05. For every new dataset, we

follow the same experimental setup as described previously. At the end of the 30

runs for a given positive ratio dataset, we compute the average rank obtained by

the examples in the test set and remove the top k positive instances such that
P − k
M

is equal to the next positive ratio to evaluate. We repeat the previous

set up until we reach 3% of positive examples in the dataset. We repeat this

process independently for each method. The objective is to remove from the

current dataset the easiest positive examples for each approach to evaluate its

capability to move to the top new positive examples. Note that this makes harder

the problem of ranking correctly in the top positive instances. Thus, the top rank

performance measures should globally decrease.

Figure 3.5: The average precision and P@k at different positive example ratio for

pima dataset.

The results with respect to the AP criterion and P@k are presented on Figure 3.5.

From this experiment, we see that SGBAP outperforms the other models as the

imbalance ratio increases and notably when the ratio of positives becomes smaller

than 15% which confirms that our approach behaves clearly the best when the

level of the imbalance is high in comparison to other state of the art approaches.
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3.5 Conclusion and Perspectives

In this paper, we presented SGBAP, a novel Stochastic Gradient Boosting based

approach for optimizing directly a surrogate of the average precision measure.

Our approximation is based on an exponential surrogate allowing us to compute

our criterion in linear time which is crucial for dealing with large scale datasets

such as for fraud detection tasks. We claim that this approach is well adapted for

supervised anomaly detection in the context of highly imbalanced settings. Indeed,

our criterion focuses specifically on the top-rank yielding a better precision in the

top k positions.

A perspective of this work would be to optimize other interesting measures for

learning to rank such as NDCG by means of a stochastic gradient descent ap-

proach. Another direction would be to adapt the optimization of the surrogate

of average precision to other learning models such as neural networks where we

could take benefit from recent results in non-convex optimization. There is also

interesting modifications of the AP Flach and Kull (2015) that benefit from dif-

ferent advantages (mainly, the interpolation between points and the invariance of

the metric for different class distribution) and that could form an interesting loss

to use as an objective function.

In this work we observed that specific weak learners or a combination of weak

learner could achieve higher precision on the precision and recall curve. Due to

the linear combinations in gradient boosting, this performance is averaged with

all the other learners. This prompted us to in a different direction, where we use

gradient boosting to learn non-linear combinations of weak learners instead of the

linear combination usually considered. This is the objective of the contribution

presented in the next chapter of this thesis.



Chapter 4

Non-Linear Gradient Boosting in

Multi-Latent Spaces

This chapter is based on the following publication

Frery, Jordan, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-

Guelton. ”Online Non-Linear Gradient Boosting in Multi-Latent Spaces” In In-

telligent Data Analysis. 2018

Abstract

Gradient Boosting is a popular ensemble method that combines linearly

diverse and weak hypotheses to build a strong classifier. In this work, we

propose a new Online Non-Linear gradient Boosting (ONLB) algorithm

and its batch counterpart, NLB, where we suggest to jointly learn differ-

ent combinations of the same set of weak classifiers in order to learn the

idiosyncrasies of the target concept. To expand the expressiveness of the

final model, our method leverages the non-linear complementarity of these

combinations. We perform an experimental study showing that ONLB (i)

outperforms most recent online boosting methods in terms of both conver-

gence rate and accuracy and (ii) learns diverse and useful new latent spaces.

Moreover, we present an experimental study for class imbalance problems

and show that NLB outperforms the linear version of gradient boosting.

4.1 Introduction

Apart from the class imbalance problem, real life applications such as fraud detec-

tion, click prediction, spam detection and face recognition have a specificity rather

91



92 Chapter 4. Non-Linear Gradient Boosting in Multi-Latent Spaces

overlooked: the uninterrupted flow of data. As machine learning gains popularity

in the industry, one must consider the problem of training models over always in-

creasing volumes of data that always need more memory and more storage. While

big data centres can partially solve the memory problem, training the model from

scratch each time new instances arrive remains unrealistic.

To overcome this problem, online boosting has received much attention during

the past few years (Oza, 2005; Grabner and Bischof, 2006; Chen et al., 2012;

Beygelzimer et al., 2015b; Jung et al., 2017; Beygelzimer et al., 2015a; Hu et al.,

2017). In these methods, the boosted model is updated after seeing one example.

While they can process efficiently large amount of data, their practical limitations

include: (i) an edge assumption usually made on the asymptotic accuracy (i.e. the

edge over random guessing) of the weak learners making some approaches hard to

tune (ii) the absence of a weighting scheme of the weak learners that depends on

their performance and (iii) for some of them, a lack of adaptiveness (despite the

fact that it was a strong point of Adaboost (Freund and Schapire, 1997)).

Moreover, all the previous online methods face another issue: they usually perform

a linear combination over a finite number of learned hypotheses which may limit

the expressiveness of the final model to reach complex target concepts.

In the previous chapter, we used a linear gradient boosting (GB) to optimize

the average precision with a new objective function. While working with GB,

it sometimes appears that combining linearly the weak learners outputs was not

optimal. In Figure 4.1 we show this phenomenon on a two-dimensional toy dataset.

The right figure shows the optimal probability boundaries of linear GB with two

decision stumps. We clearly see that a huge mistake is made on the upper left

corner by assigning high probability to these examples to belong the red class

while most of them are from the blue class. We will come back to this example in

Section 4.5.

Another limitation of GB is its adaptation to the online setting. While the batch

setting would allow us to add step by step new hypotheses and capture the com-

plexity of the underlying problem, an online algorithm keeps the same set of weak

learners all along the process. This remark prompted us to investigate the way to

develop a non-linear gradient boosting algorithm with an enhanced expressive-

ness. To the best of our knowledge, there is only one work specific to non-linear

boosting (Garćıa-Pedrajas et al., 2007) but only usable in a batch setting. This

is why the main contribution of this chapter takes the form of a new algorithm,

called ONLB - for Online Non-linear gradient Boosting.
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Figure 4.1: On the left, we present the toy dataset with two classes. The red class

is in minority. The figure on the right shows the probability boundaries of GB on

the test set. Blue areas show a strong probability for the examples to belong to

the blue class while the red areas show a strong probability for the examples to

belong to the red class. As the colour disappears, the model is uncertain to which

class the examples belong. The model used here is a linear gradient boosting with

two decision stumps.

Inspired from previous research in domain adaptation (Becker et al., 2013), boosted-

multitask learning (Chapelle et al., 2011) and boosting in concept drift (Scholz

and Klinkenberg, 2007), ONLB resorts to the same set of boosted weak learners,

projects their outputs in different latent spaces and takes advantage of their com-

plementarity to learn non-linearly the idiosyncrasies of the underlying concept.

ONLB is illustrated in Figure 4.2. At first glance, it looks similar to boosted

neural networks, as done in (Han et al., 2016; Opitz et al., 2017), where the em-

bedding layer is learned with boosting in order to infer more diversity. However,

our method aims at learning the weak hypotheses iteratively where the following

weak learner tries to minimize the error made by the network restricted to the

previous hypotheses (see the solid lines in Figure 4.2).

The other main difference comes from the back-propagation that is performed at

each step only on the parameters related to the weak learner subject to an update

(see the red lines in Figure 4.2). Thanks to the non-linear function brought by the

last layer to combine the different representation output, ONLB converges much

faster than the other state of the art online boosting algorithms.

The chapter is organized as follows: Section 4.2 is devoted to the presentation of

the related work. Our new non-linear online gradient boosting algorithm ONLB

is presented in Section 4.3 and its batch counterpart in Section 4.4. Section 4.5 is

dedicated to a large experimental comparison with the state of the art methods
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Figure 4.2: Graphical representation of our Online Non-Linear gradient Boosting

method: the first top layer corresponds to the learned weak classifiers; the second

layer represents different linear combinations of their outputs; the bottom layer

proceeds a non-linear transformation of those combinations. The thickest lines

show the needed activated path to learn a given classifier (here h2). The red

lines show the update performed only on the parameters concerned by this weak

learner. The dashed lines are not taken into account at this iteration.

where we also provide an evidence for NLB to outperform linear gradient boosting

on imbalanced datasets. We conclude the chapter in Section 4.6.

4.2 Related work

Online boosting methods have been developed soon after their batch counterpart.

The first one introduced in (Oza, 2005) uses a resampling method based on a

Poisson distribution and was applied in computer vision by (Grabner and Bischof,

2006) for feature selection. Theoretical justifications were developed later in (Chen

et al., 2012) where they notably discuss the number of weak learners needed in

an online boosting framework. This is indeed a major concern since having too

many of them could lead to predictions dominated by redundant weak learners that

perform poorly. On the other hand, too few weak learners could make the boosting

process itself irrelevant, as the goal is still to improve upon the performance of

a simple base learner. More recently, (Beygelzimer et al., 2015b) extends this

previous work to propose an optimal version of boosting in terms of the number
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of weak learners for classification.

An adaptation of this framework to multiclass online boosting was proposed in

(Jung et al., 2017). While these methods come with a solid theory, the assumption

usually made on the asymptotic accuracy of the weak learners leads to two main

practical limitations. The first one is the undeniable difficulty to estimate this

edge without prior knowledge on the task at hand. The second comes from the

fact that the edge of each weak learner might be very different depending on their

own performance. And it turns out that the latter is never taken into consideration

and might impact the overall performance of boosting.

Online gradient boosting was introduced by (Leistner et al., 2009) allowing one

to use more general loss functions but without any theoretical guarantees. Later,

Beygelzimer et al. (2015a) and its extension to non-smooth losses (Hu et al.,

2017), propose online gradient boosting algorithms with theoretical justifications.

However, the linear aspect of these methods limit their expressiveness strongly.

Another series of related works is the use of boosting in neural network methods.

Recently, neural networks were used with incremental boosting (Han et al., 2016)

to train a specific layer. In Opitz et al. (2017), the authors built upon Beygelzimer

et al. (2015a) to optimize and increase the diversity of their embedding layer. Our

work is related in the sense that we boost a layer to build a new feature space.

However, the main goal is not to learn a general neural network. This layer is

rather used to make connections between our different weak learners. This is why

our back-propagation procedure differs by focusing only on the parameters of the

weak learner to be optimized at each step.

Apart from online boosting methods, our work is also related to non-linear boost-

ing. However, as far as we know, only (Garćıa-Pedrajas et al., 2007) tackled

this topic by proposing a non-linear boosting projection method where, at each

iteration of boosting, they build a new neural network only with the examples

misclassified at the previous round. They finally take the new feature space in-

duced by the hidden layer and feed it as the input space for the next learner.

Nonetheless, it is very expensive and unsuitable to online learning.

4.3 Online Non-Linear gradient Boosting

In this study, we consider a binary supervised online learning setting where at

each time step i = 1, 2, ...,M one receives a labelled example (xi, yi) ∈ X ×{−1, 1}
where X is a feature space. In this setting, the learner makes a prediction f(xi),

the true label yi is then revealed and it suffers a loss `(f(xi), yi).
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Boosting aims at combining different weak hypotheses. In batch gradient boosting,

weak learners are learned sequentially while in the online setting, they are not

allowed to see all examples at once. Thus, it is not possible to simply add new

models iteratively in the combination as in the batch boosting. In fact, online

boosting maintains a sequence of T weak online learning algorithms A1, ...,AT
such that each weak learner ht is updated by At in an online fashion. Note that

every At considers hypotheses from a given restricted hypothesis class H. The

final model corresponds to a weighted linear combination of the T weak learners:

F (x) =
T∑
t=1

αtht(x), (4.1)

where αt stands for the weight of the weak learner ht.

We now present our Online Non-Linear gradient Boosting, ONLB. As shown in

Figure 4.2, our method maintains P different representations that correspond to

different combinations of the T learned weak learners, projecting their outputs

into different latent spaces. Every representation p is updated right after a weak

learner is learned. The outputs given by the p representations are then merged

together to build a strong classifier, F (x). To capture non-linearity during this

process, we propose to pass the output of each representation p into a non-linear

function Lp. We define the prediction of our model F (x) as follows:

F (x) =
P∑
p=1

αpLp
( T∑
t=1

αptht(x)
)
, (4.2)

where αpt is the weight projecting the outputs of the weak learner ht in the latent

space p and αp the weight of this representation. Eq (4.2) illustrates clearly the

difference with linear boosting formulation of Eq (4.1). We denote by Fk the clas-

sifier restricted to the first k weak learners: Fk(x) =
∑P

p=1 α
pLp
(∑k

t=1 ηα
p
tht(x)

)
.

Our method aims thus at combining the same set of classifiers into different latent

spaces. A key point here relies in making these classifiers diverse while still being

relevant in the final decision. To achieve this goal, we update every weak learner

ht to decrease the error of the previous model Ft−1 such that:

ht = argminh

M∑
i=1

`c
( P∑
p=1

αpLp
( t−1∑
k=1

αpkhk(xi) + h(xi)
)
, yi
)
, (4.3)

where `c(·, ·) is a classification loss. In other words, we look for a learner ht able

to improve the current model Ft−1.
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In gradient boosting (Friedman, 2001), one way to learn the following weak learner

is to approximate the negative gradient (residuals) of Ft−1 by minimizing the

square loss between these residuals and the weak learner predictions. We define

rit the residual at iteration i for the example xi as follows:

rit = −∂`c(Ft−1(xi), yi))
∂Ft−1(xi)

. (4.4)

In fact, from this functional gradient descent approach, we can define a greedy

approximation of Eq (4.3) by using a regression loss `r on the residuals computed

in Eq (4.4):

ht = argminh

M∑
i=1

`r(h(xi), r
i
t). (4.5)

As stated above, when a weak learner ht is updated, we need: (i) to update the

weights αpt associated to this learner in each representation p and (ii) update the

representation weights αp in the final decision as follows:

αp := αp − η

T

∂`c(Ft(xi), yi)

∂αp
; αpt := αpt − η

∂`c(Ft(xi), yi)

∂αpt
.

Note that we use a learning rate η
T

since these weights are updated T times for

a single example. All the steps of our ONLB training process are summarized in

Algorithm 6.

In practice, we instantiate our losses with the square loss for regression tasks and

the logistic loss for classification problems as follows:

`c(f(xi), yi) = log(1 + e−yiFt(xi)); `r(f(xi), r
i
t) = (rit − f(xi))

2.

The choice of the logistic loss is motivated by the need to have a bounded gradient.

This avoids the residuals computed during training to grow exponentially with

the iterations which can happen for noisy instances, for example. The square

loss is the main loss function for regression tasks and has demonstrated superior

computational and theoretical properties for the online setting (Gao et al., 2013).

Then, according to Eq (4.5), the weak classifiers are updated as follows:

ht = argminh

M∑
i=1

(h(xi)− rit)2. (4.6)

Eq (4.6) suggests a fairly simple update of each weak learner: each weak online

learning algorithm Ai uses a simple online gradient descent with respect to one

example at each step. The equation to obtain the residuals is straightforward:

rit =
−yi

1 + eyiFt−1(xi)
.
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Algorithm 6 Online Non-Linear gradient Boosting (ONLB)

1: INPUT: T online weak learners, a learning rate η and P latent spaces.

2: Initialize h0 = 0

3: for i = 1 to M do

4: Receive example xi
5: Predict F0(xi) = h0 = 0

6: for t = 1 to T do

7: Reveal yi the label of example xi
8: Compute the residual rit = −∂`c(Ft−1(xi),yi))

∂Ft−1(x)

9: Predict ht(xi)

10: At suffers loss `r(r
i
t, ht(xi)) and updates the hypothesis ht

11: for p = 1 to P do

12: αp := αp − η
N
∂`c(Ft(xi),yi)

∂αp
; αpt := αpt − η

∂`c(Ft(xi),yi)
∂αpt

13: end for

14: end for

15: end for

Finally, we used a Rectified Linear Unit (Glorot et al., 2011), activation function

such that:

L(x) =

{
x if x > 0,

0 otherwise.

The weights of the latent spaces αpt and αp are now updated as follows:

αpt := αpt +η

{
yiα

pht(xi)

1+eyiFt(xi)
if αptht(xi) > 0,

0 otherwise
; αp := αp+

η

N

yiLp
(∑M

i=1 α
p
tht(xi)

)
1 + eyiFt(xi)

.

At test time, our model learned with Algorithm. 6 computes its prediction for any

instance x as follows:

F ∗(x) = sign

(
F (x)

)
= sign

( P∑
p=1

αpLp
( T∑
t=1

αptht(x)
))

.

4.4 Extension to Batch Non-Linear Gradient Boost-

ing

While the focus of this chapter is devoted to an online setting for non-linear

gradient boosting model ONLB, our approach can be easily extended to the batch

setting. We propose to present this extension in this section which will be useful

later for comparison purpose. In fact, the adaptation to the batch setting is rather
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straightforward and Figure 4.2 remains unchanged in this version. We present the

different steps of NLB in Algorithm 7.

The learning process is very similar, however, the constraint of online weak learners

is no longer valid in this context. For this reason, in NLB algorithm, and generally

in gradient boosting methods, the weak learners are regression trees.

The main difference between ONLB and NLB comes from the way we learn the

weak learners and update our meta learner. A new weak learner ht is learned

over the whole training set with residuals rit as targets. Then, we need to find its

corresponding weights αpt∀p ∈ P . Note that adding a new weak learner influences

each representation p and their parameters αp must be updated accordingly:

αp = argminα

M∑
i=1

`c(
P∑
p=1

αLp
(
Ft−1(xi) + αptht(xi)

)
, yi) (4.7)

αpt = argminα

M∑
i=1

`c(
P∑
p=1

αpLp
(
Ft−1(xi) + αht(xi)

)
, yi) (4.8)

In practice, we use a Newton Raphson step to update these weight as it has already

been proposed in Friedman (2001).

Algorithm 7 Non-linear boosting
INPUT: T weak learners, {xi, yi}Mi=1

Initialize h0 = 0

Initialize αpt and αp

Predict F0(xi) = h0 = 0

for t = 1 to T do

Compute the residuals rit = −
∂`t(Ft−1(xi),yi))

∂Ft−1(x)

ht = argminh
∑M
i=1(h(xi)− rit)2

for p = 1 to P do

αp = argminα
∑M
i=1 `c(

∑P
p=1 αLp

(
Ft−1(xi) + ht(xi)

)
, yi)

αpt = argminα
∑M
i=1 `c(

∑P
p=1 α

pLp
(
Ft−1(xi) + αht(xi)

)
, yi)

end for

Predict Ft(xi)

end for

F (xi) = sign

(∑P
p=1 αpAp

(∑M
i=1 α

p
t ht(xi)

))

At test time, our model learned with Algorithm. 7 predicts exactly the same way

as in ONLB:

F ∗(x) = sign

(
F (x)

)
= sign

( P∑
p=1

αpLp
( T∑
t=1

αptht(x)
))

.

Finally, note that our models ONLB and NLB can be easily extended to the

multiclass setting, see Appendix B for more details
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4.5 Experiments

In this section, we provide an experimental evaluation of our non-linear online

boosting methods ONLB and NLB methods with both quantitative and qualita-

tive analysis. We first study the batch version NLB in two steps. We begin by an

intuitive illustration of the principle of NLB in the imbalanced setting and then

compare this batch approach to its linear counter part over different imbalanced

datasets. Second, we perform a comparative study between ONLB with different

state-of-the-art online boosting algorithms on public datasets. Finally, we termi-

nate this experimental evaluation with a qualitative analysis of the representations

learned by ONLB.

4.5.1 NLB Experimental Evaluation

Graphical Visualization

In this experiment, we propose to evaluate the models with two different metrics.

The first one is the F1 score which is known to be relevant especially in the class

imbalance problems where one needs to emphasize on the class of interest (usually,

the positive class). We remind the F1 score to be:

F1 = 2× p× r
p+ r

,

where p and r are the precision and recall respectively.

The second evaluation metric is the Average Precision (AP), a well-known measure

in the learning to rank community. We explain this choice for two main reasons.

1) It offers a good intuition of the potential of a model regardless of the decision

threshold learned. Indeed, in the class imbalance setting, the decision threshold

is likely to be suboptimal (see Section 2.6.2). 2) In Chapter 3 we showed that AP

makes more sense when the classes are highly skewed than other metrics such as

the AUCROC. We remind this measure defined as follows:

AP =
1

P

P∑
i=1

p(ki), (4.9)

where p(ki) is the precision with respect to the rank ki of the ith positive example

and P the number of positive examples.

We generate an imbalanced dataset (the red class is in minority) in two dimensions

with a proportion of red points, π = P
M

= 0.1 to highlight the main differences

during the training NLB and GB. The underlying concept is rather easy with a
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specificity on the top left corner where examples are randomly overlapping. Two

different uniform distribution gives a probability for the blue example to appear

in one of the two rectangles comprising the blue points. The same goes for the

rest class.

In this experiment, both algorithms are allowed to build two weak learner (or

T = 2) where each of them is a stump (tree with only one split). We allow 10

different representation spaces (P = 10) for NLB. Their probability boundaries

(continuous scores) are used instead of the decision boundaries (binary classifica-

tion) to illustrate internal decision rules. We compute these probability boundaries

as P (y = 1|x) = 1
1+eF (x) , where F (x) is the value output given by either NLB our

GB. Finally the two metrics are evaluated on the training set (using a test set

was not primordial in this experiment since we can observe whether the models

overfit). The results of this experiment can be observed in Figure 4.3 for NLB and

Figure 4.1. A red region shows a probability P (y = 1|x) > 0.5 while a blue region

says the opposite P (y = 1|x) < 0.5. A white region, on the other hand, gives a

probability P (y = 1|x) ≈ 0.5 .

It is worth noticing that both algorithms learn the exact same splits. However,

their weighting schema is different. In fact, GB (on the right of Figure 4.1) and

NLB (Figure 4.3) build their two hypotheses naturally: first splitting the dataset

vertically on x2. Then splitting horizontally on x1. For this second split, the only

solution using the linear combination of the hypotheses is to assign more weight

for the examples on the left to belong to the red class. However, this gives a

higher probability for the examples on the upper left area to belong to the red

class. NLB, instead, finds a representation of the hypotheses learned such as to

give the highest probabilities on parts where the examples are not overlapping.

At this stage of learning, GB has a AP = 0.4476 while NLB has AP = 0.9088. The

best F1 scores for both algorithm is F1 = 0.7012 and F1 = 0.8874 for GB and NLB

respectively. Another interesting methodological remark: The next iterations for

GB are going to be more specialized on misclassified examples and thus the risk

of overfitting will increase. In fact, with decision stumps, GB is not able to reach

NLB’s performances.

Finally, we would like to point out that, in this case, the meta-learning part does

not modify the boundaries created by the weak learners. Indeed, the meta-learner

does not create new boundaries but rather re-weights the existing areas as to

improve the performance on the given task and so does not increase the risk of

overfitting.
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Figure 4.3: Probability boundaries of NLB on the toy dataset from Figure 4.1.

Evaluation of NLB on imbalance classification tasks

We now present an experimental study of NLB compared with GB other real

datasets. We select 24 different datasets from the KEEL repository 1 that we

shortly describe in Table 4.1.

Our experimental protocol generates 2/3-1/3 splits of the data to obtain the train-

ing and test sets respectively. Note that we use decision trees as our base learners.

We tune the models over this 2/3 split using a 3-fold cross validation. The param-

eters tuned are the number of weak learners T ∈ {0, 1, ..., 100}, the depth of each

decision tree and the learning rate. We set a maximum limit of depth 5 such as

to have very weak learners. We report the averaged metrics obtained on the test

sets over 30 runs in Table 4.2.

In general, NLB outperforms linear gradient boosting. Interestingly, we can see

that the two metrics do not always agree on the best method. For example, for the

dataset kr-vs-k-zero vs eight, the AP for NLB is close to perfect (0.99) and better

than for GB (0.95). However, the F1 score is much lower (0.77) for NLB than

GB (0.81) on this same dataset. An explanation is that the decision threshold

is not optimal regarding the F1 score for NLB resulting in a loss in this metric.

That’s one of the reasons why AP is often preferable as an evaluation metric (see

Chapter 3). As we discussed in Chapter 2, the metric of choice in imbalanced data

is very relative to the domain (i.e. emphasizing more on the recall rather than

the precision and vice versa) thus having very general metrics when the goal is

not very well defined (emphasizing on recall rather than precision or vice versa)

is important.

1https://sci2s.ugr.es/keel/imbalanced.php

https://sci2s.ugr.es/keel/imbalanced.php
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Table 4.1: Properties of the datasets used in the experiments.

Dataset #Examples Imbalance ratio

poker-8 vs 6 1477 0.0115

abalone-20 vs 8-9-10 1916 0.0136

winequality-red-3 vs 5 691 0.0145

winequality-white-3-9 vs 5 1482 0.0169

kr-vs-k-zero vs eight 1460 0.0185

winequality-red-8 vs 6-7 855 0.0211

winequality-white-3 vs 7 900 0.0222

abalone-17 vs 7-8-9-10 2338 0.0248

kr-vs-k-three vs eleven 2935 0.0276

yeast5 1484 0.0296

winequality-white-9 vs 4 168 0.0298

yeast-1-2-8-9 vs 7 947 0.0317

poker-9 vs 7 244 0.0328

car-vgood 1728 0.0376

glass-0-1-6 vs 5 184 0.0489

zoo-3 101 0.0495

abalone9-18 731 0.0575

glass4 214 0.0607

ecoli-0-1-4-6 vs 5 280 0.0714

vowel0 988 0.0911

yeast-0-5-6-7-9 vs 4 528 0.0966

ecoli-0-1 vs 2-3-5 244 0.0984

yeast-0-3-5-9 vs 7-8 506 0.0988

yeast-2 vs 4 514 0.0992

Finally, we report in Table 4.3 the average number of weak learners and the average

number of splits built by the trees to which we refer as the model complexity.

We see that, on average, GB builds more complex base learners and needs almost

twice as many weak learners as NLB. Also note that the model complexity depends

mainly on the hyper parameter of the tree depth and that, as the depth increases

linearly, the model complexity grows exponentially.

We give in Figure 4.5 the performances F1 and AP as we add more weak learners.

GB not only converges slower toward its final state but it also has an optimal

solution which is less efficient than NLB. With only 15 weak learners, NLB achieves

the same results as GB with 100 weak learners.
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Table 4.2: The Average Precision (AP) and the F1 score (F1) reported for NLB

and GB. We indicate in bold font the best method with respect to each dataset

and each evaluation measure.
Dataset NLB(AP) GB(AP) NLB(F1) GB(F1)

poker-8 vs 6 29.3± 19.8 25.8± 31.3 28.9± 24.4 9.8± 19.8

abalone-20 vs 8-9-10 27.9± 11.7 20.1± 18.9 20.2± 15.7 19.3± 20.0

winequality-red-3 vs 5 8.7± 6.0 11.1± 12.3 7.2± 14.0 2.8± 7.9

winequality-white-3-9 vs 5 23.8± 12.6 14.8± 12.9 25.8± 16.9 14.9± 16.3

kr-vs-k-zero vs eight 99.0± 1.5 95.2± 7.0 77.1± 7.3 81.5± 16.4

winequality-red-8 vs 6-7 13.1± 8.1 6.8± 3.9 12.8± 13.2 4.3± 8.4

winequality-white-3 vs 7 41.5± 9.5 37.7± 19.2 36.2± 15.0 32.7± 16.5

abalone-17 vs 7-8-9-10 28.7± 7.9 21.4± 7.5 22.2± 10.2 23.8± 7.6

kr-vs-k-three vs eleven 99.8± 0.6 96.0± 5.1 96.8± 2.4 96.7± 2.8

yeast5 67.2± 8.2 62.8± 16.8 67.6± 4.6 62.6± 13.4

winequality-white-9 vs 4 41.7± 35.4 30.3± 34.6 22.2± 35.1 5.6± 15.7

yeast-1-2-8-9 vs 7 29.9± 12.1 22.2± 13.6 25.4± 14.8 21.2± 16.7

poker-9 vs 7 35.1± 17.1 25.4± 18.7 24.1± 23.0 15.4± 20.2

car-vgood 99.9± 0.2 97.3± 5.0 96.4± 4.2 83.2± 31.7

glass-0-1-6 vs 5 71.2± 28.9 65.7± 32.4 56.3± 34.4 36.7± 35.5

zoo-3 35.3± 29.9 29.4± 21.4 32.2± 30.0 20.4± 29.2

abalone9-18 40.1± 7.4 30.4± 9.9 37.9± 6.4 30.2± 11.4

glass4 54.4± 16.4 51.2± 22.2 46.9± 24.8 54.0± 16.1

ecoli-0-1-4-6 vs 5 69.9± 16.0 74.6± 18.4 68.9± 11.1 69.2± 11.8

vowel0 94.7± 5.2 97.7± 2.1 89.4± 5.8 91.9± 4.5

yeast-0-5-6-7-9 vs 4 46.8± 4.4 55.3± 12.7 40.3± 10.8 52.2± 12.3

ecoli-0-1 vs 2-3-5 76.5± 11.1 67.7± 11.6 65.9± 12.9 57.0± 8.4

yeast-0-3-5-9 vs 7-8 42.1± 8.3 36.9± 11.5 29.4± 6.9 29.1± 11.8

yeast-2 vs 4 82.7± 7.4 80.7± 7.4 75.2± 6.5 71.0± 9.6

While NLB shows a better convergence rate in terms of weak learners, it still needs

an extra step to update the meta learner parameters. However, since we update

our parameters sequentially and only once per weak learner and per representation,

the overall update time of the meta learner is not larger than the time to train a

basic neural network with one layer and T inputs (the number of weak learners).

4.5.2 ONLB Experimental Evaluation

In this section we first conduct an experiment in the online learning setting and

then present an in-depth analysis of the learned representation in ONLB.
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Table 4.3: Average number of weak learners and number of splits per weak learner

for GB and NLB.
Model Average #Splits Average #Weak learners

GB 22.13± 7.92 67.25± 35.55

NLB 5.08± 3.83 35.42± 39.01
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Figure 4.4: AP (on the left) and F1 score (on the right) for NLB and GB along

their iterations for MNIST dataset.

Online Learning Experiments

We use 10 public datasets from the UCI repository by considering binary classifica-

tion problems where we focus on larger scale datasets than for NLB experiments

that can be processed by online learning approaches (multiclass datasets were

converted into binary problems as indicated in parentheses): Poker (0 vs [1,9]),

MNIST ([0,4] vs [5,9]), Wine ([3,6] vs [7,9]), Abalone ([0,9] vs [10,29]), Covtype

(2 vs all), Shuttle (1 vs all), Pima, Adult, HIV and w8a. A summary of these

datasets is presented in Table 4.4.

Our experimental setup is defined as follows. For every dataset, we apply a 3-

fold cross validation. For tuning the hyper-parameters, we perform in each fold

a progressive validation (Blum et al., 1999) on the training set as proposed in

(Beygelzimer et al., 2015b): when a new example arrives, it is first used to evaluate

the model before the label is revealed to the learner for training. The progressive

validation is a simple increment on the different quantity of the confusion matrix

(TP, TP, FP, FN) given the predictions of the model on a given example before

the label is revealed. Note that we simulate the online learning setting by giving

the examples in a random order to the algorithm. We train different models in

parallel with respect to their hyper-parameter values (i.e. the number of weak

learners T , the learning rate η and γ the weak learner edge) and we select the

one achieving the lowest progressive validation error. The selected model is then

evaluated on the test set.
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Table 4.4: Properties of the datasets used in the experiments.

#examples #features

Covtype 581, 012 54

Poker 1, 025, 010 10

MNIST 70, 000 718

Abalone 4, 177 8

Pima 767 8

Adult 42, 842 14

HIV 6, 590 8

Shuttle 58, 000 9

w8a 64, 000 300

Wine 6, 497 12

We compare our method to different online boosting algorithms from current state-

of-the-art: the four algorithms online.BBM, Adaboost.OL, Adaboost.OL.W, OGB

from Beygelzimer et al. (2015b,a) and streamBoost from Hu et al. (2017)2.

For all the algorithms, we choose as a relatively weak classifier a neural network

with one hidden layer and two units that we update in an online learning fashion

using stochastic gradient descent. We report the classification error obtained for

each algorithm in Table 4.5.

ONLB achieves competitive results with the state of the art online boosting meth-

ods and even outperforms them on most datasets. In some cases, such as for

MNIST or Poker, we clearly see that, while using much more weak learners (see

Figure 4.5), the other methods were not able to capture the target concept as

much as ONLB did. Note that, a mandatory condition in our experiments was

T > 1 such that the boosting takes part in the learning process but in some cases,

the online boosting algorithms were not able to do better than the baseline on the

test set. For example, on the Adult database, only ONLB and OGB achieved an

average error lower than the base learner.

In Table 4.6, we present the average number of weak learners chosen with respect

to the progressive validation process for each model. While being an online linear

boosting algorithm, online.BBM achieves its performances with a significantly

smaller number of weak learners compared to the other linear boosting methods.

As mentioned in (Beygelzimer et al., 2015b), this algorithm is optimal in the

sense that no online linear boosting algorithm can achieve the same error rate

2We used the implementations available in Vowpal Wabbit and reimplemented the stream-

Boost and OGB algorithms.
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Table 4.5: Error rate reported for different online boosting algorithms.
Dataset Base learner ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB streamBoost

Covtype 0.2401 0.2057 0.2242 0.2273 0.2313 0.2264 0.2128

Poker 0.4182 0.0497 0.2375 0.1234 0.0953 0.3880 0.2668

MNIST 0.1105 0.0561 0.1029 0.1557 0.0830 0.1139 0.0655

Abalone 0.2673 0.2523 0.2831 0.2487 0.2531 0.2669 0.2720

Pima 0.2992 0.2795 0.2913 0.2952 0.2835 0.2874 0.2953

Adult 0.1523 0.1465 0.1530 0.1530 0.1526 0.1476 0.1586

HIV 0.1986 0.1393 0.1273 0.1360 0.1291 0.1540 0.1526

Shuttle 0.0211 0.0024 0.0173 0.0061 0.0058 0.0133 0.0050

w8a 0.0189 0.0148 0.0158 0.0146 0.0167 0.0178 0.0155

wine 0.1979 0.1687 0.1921 0.1931 0.1931 0.1743 0.1833

with fewer weak learners or examples asymptotically. That being said, our ONLB

algorithm achieves, on average, better performance with twice less weak learners

than online.BBM.

Finally, in Figure 4.5, we plot the convergence curves with respect to the increasing

number of examples used for two datasets: MNIST and Abalone. For all algo-

rithms, each curve corresponds to the evolution of the error rate according to the

progressive validation error measured during training. We observe that ONLB still

achieves the best convergence rate for both datasets. A similar behaviour has been

observed for the other datasets and exhibits the nice fast convergence property of

our algorithm which needs less weak learners to converge to its optimum.

Table 4.6: Average number of weak learners (N) selected by progressive validation.
Dataset ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB streamBoost

Covtype 6 60 79 59 282 63

Poker 52 222 348 311 320 285

MNIST 14 66 147 207 431 131

Abalone 5 6 12 3 166 8

Pima 65 64 109 141 437 174

Adult 13 6 18 17 161 119

HIV 6 6 94 188 32 16

Shuttle 30 43 243 108 121 159

w8a 4 7 54 42 132 40

wine 5 8 112 91 97 118

Average 20 49 121 116 218 111

Analysis of the learned multi-latent representations

In this section, we present two different qualitative analyses on the latent repre-

sentations learned by our algorithm. First, we show that given a sufficiently large
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Figure 4.5: Progressive validation error with respect to the learning examples for

MNIST on the left and Abalone on the right.

number of weak base learners, the representations obtained tend to be rather un-

correlated. This provides an evidence that ONLB can generate some diversity.

Then, we show that these representations contribute in a comparable way to the

final decision.

For our study, we use the following setup. We consider a model with 100 represen-

tations (i.e. P = 100). We use two base learners: a relatively weak neural network

with one hidden layer composed of 2 units (2-NN) and a stronger learner consist-

ing of a neural network with 500 units in its unique hidden layer (500-NN). All

representation weights are initialized following a uniform distribution such that

the different representations are highly uncorrelated. We consider the MNIST

dataset used above for learning.

Our first analysis aims at showing that the learned representations tend to be

uncorrelated when using a very weak learner. For this purpose, we compute a cor-

relation matrix C between all the representations such that Cnm = covnm√
covnn∗covmm

measures the correlation between the latent representations n and m, cov is the co-

variance matrix computed with respect to the input weights {αmt }Ni=1 and {αnt }Ni=1

of these representations.

We show, in Figure 4.6, the C matrix for the latent space representations obtained

after convergence with the 2-NN base learners. We can see that most of the rep-

resentations tend to be uncorrelated or weakly correlated. In contrast, Figure 4.7

presents the C matrix using the 500-NN base learner. We see here that most

of the representations are highly correlated. This experiment shows that by us-

ing sufficiently weak base learners, we are able to learn diverse and uncorrelated

representations.

In our second analysis, we want to confirm that the uncorrelated latent repre-
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sentations are informative enough to contribute in a comparable way to the final

strong model. We propose to compute, for each representation p, a relative im-

portance coefficient Ωp by taking the absolute values of the predictions of p right

before they are merged together with the other representation outputs to form the

final prediction. We average this coefficient over {xi}Kt=1 examples taken from a

validation set independently from the learning sample as follows:

Ωp =
1

K

K∑
i=1

|αpLp
( M∑
i=1

αptht(xi)
)
|. (4.10)

We expect for important representations a high Ωp (i.e. having a high impact in

the final decision) and a low Ωp for irrelevant ones (i.e. having low impact in the

final decision).

We consider then the models learned with the 2-NN and 500-NN base learners

as previously. For each model, we plot the importance coefficient Ωp (y-axis)

against the average correlation of each representation (x-axis) that we define as

Ĉp = 1
P
∑P

i=1Cpi. This illustrates the importance of each representation in the

final decision with respect to their correlation level.

Figure 4.8 gives the plot for the model using the 2-NN base learner. We see here

that all the representations are involved in the final decision and that their relative

importance coefficients are rather comparable.

This is in opposition to the plot of Figure 4.9 that provides the results for the model

using the 500-NN base learners. First, we see that many representations are not

used in the final decision and these correspond to the ones that are uncorrelated.

In fact, representations involved in the final decision are the ones that are all highly

correlated with an average correlation coefficient around 0.75. Clearly, since these

representations have a high correlation level, actually only one representation is

really useful at the end. But note that this representation can in fact be learned

by a standard linear gradient boosting.

From this experiment, we see that complex models are hard to diversify in online

boosting. Moreover, tuning their hyperparameters is harder making the probabil-

ity of overfitting higher and they require a significant larger amount of training

time which makes such complex models useless for online boosting.
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Figure 4.6: Correlation matrix of the

representations with 2-NN learners.

Figure 4.7: Correlation matrix of the

representations with the 500-NN learn-

ers.

Figure 4.8: Importance of each latent

representation with the 2-NN learners.

Figure 4.9: Importance of each latent

representation with the 500-NN learn-

ers.

4.6 Conclusion

In this chapter, we presented a new Online Non-Linear Boosting algorithm and

with its extension to the batch setting. In this method, we combine different

representations of the same set of weak classifiers to produce a non-linearly boosted

model in order to learn the idiosyncrasies of the target concept. Our experimental

results showed that non-linear gradient boosting allows us to learn better models

than classic linear gradient boosting and also exhibits a general improvement over

current state of the art online boosting methods.

Additionally, the non-linear architecture of the model allows the method to use

less weak learners and to obtain faster convergence in terms of examples. Our
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approach has also the interesting property to produce efficiently diverse latent

spaces contributing actively to the model predictions. This property makes our

model adaptive by giving more importance to the best current representations.

In the online learning setting, a very important point is to be able to extract as

much information as possible from the examples when we receive them without

overfitting.

While in our experimental online setting, we have used neural network-based weak

classifiers for convenience, a first perspective is to evaluate the behaviour of our

approach with other types of online weak classifiers such as non-differentiable ones

(e.g. decision trees) allowed by our framework. In another direction, studying the

impact of delayed feedback (i.e. labels arriving only after some time delay) and

possible adaptation of transfer learning and continuous learning in the online set-

ting are also particularly promising in the context of machine learning production

systems such as fraud detection applications. Finally, if we take the online learning

apart, we can imagine more advanced techniques such as building new architec-

ture (Cortes et al., 2017) with this method. In this context, a general comparison

with classic Neural Networks/Deep learning algorithms for example can also be an

interesting future work to position our gradient boosting framework with respect

to other general state of the art models.
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Conclusion and Perspectives

In this manuscript, we presented two main problems that arise when using super-

vised machine learning for extremely imbalanced data flows such as in the task of

credit card fraud detection. Before presenting the perspectives of this work, we

can draw two general conclusions: one with respect to the scientific contributions

of the document and another one on the impact of this thesis on the company.

Fraudulent transactions are, by nature, much less than genuine transactions. The

class distribution is therefore highly skewed toward the majority class. This brings

many difficulties for training machine learning algorithms that have been largely

studied in the literature. However, we observe two main flaws.

1. The literature relates to relatively small datasets to validate the methods.

2. Evaluation metrics are often chosen by default which can greatly influence

the conclusion.

General Discussion on the Contributions

In this thesis, we study different machine learning methods and compare their

performance on real life data brought by Worldline company. It turns out that

ensemble methods show a clear superiority in an extreme imbalanced context.

Indeed, our experiments highlighted that Random Forest and Gradient Boosting

are the most promising methods.

In Chapter 2, we carry experiments on the real-life fraud detection data using three

of the most used metrics to assess the model performance on imbalanced datasets,

namely AUCROC, AP and the F1 score. We criticize the use of AUCROC to

assess the model performance in case of class imbalance especially for applications

that need a descent precision. We stress out the need to carefully analyze the

metric of choice such as to select the most appropriate for the problem at hand

which is often neglected in the literature.

In this continuum, imbalance learning methods such as sampling should also be

used with caution. In Chapter 2 we presented how decision threshold dependent

113
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metrics may be biased by a sub-optimal decision threshold. In this context, sam-

pling methods appears to be much less efficient than simply calibrating the output

probability or tuning the decision threshold on a validation set. In this sense, we

recommend to use metrics independent of this decision threshold if the application

allows it. In particular, ensemble methods such as gradient boosting studied in

this thesis do not benefit in general from sampling methods that rather tend to

worsen the results. From our analysis, we face to the problem that imbalance

learning methods did not generally seem as effective as reported in the literature

in the context of extreme imbalance settings which has justified the contributions

of this thesis.

In the light of these findings, we proposed a first contribution to optimize the

average precision, which is among the most appropriate metrics in our indus-

trial context, for supervised anomaly detection problems in a stochastic gradient

boosting algorithm. This contribution rather links the fraud detection task to the

learning to rank domain. In other words, we propose to focus on the top ranked

example instead of a pure classification problem. This approach also agrees with

the fraud detection system in production where experts analyze the most probable

fraudulent transactions before taking any action. In this contribution, we derive

a smooth surrogate of the average precision and use it as a loss function.

Our second contribution addresses a negative aspect of boosting encountered in

the first contribution. The classic combination of models used in gradient boosting

is linear which tend to average the performance of these models instead of taking

advantage of their idiosyncrasies. We propose a non-linear version of the gradient

boosting algorithm. We apply this new method in the online setting such as to be

able to deal with large scale uninterrupted flows of data.

Apart from these two contributions, in this manuscript we tried to follow a general

guideline aiming at proposing a research driven by the need of developing novel

contributions able to solve real-life data science problems which takes in particular

the form for us on large imbalanced flows of data.

A Review on the Impact for the Company

Apart from the methodological scientific contributions presented above, this thesis

was also the core of important new contributions for the company that can be

summarized in four main aspects.

Helping to push machine learning in production such at to improve the

already existing fraud detection system. This thesis is also part of a large project
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where the goal is mainly to prove the effectiveness of AI methods and that its

implementation into a production system is possible. In this sense, throughout

this thesis, there have been many discussions with the production team to under-

stand their needs and find solutions implying machine learning approaches. For

companies that have always been relying on human expertise, such transition is

not easy. At the end of this thesis, the system embedding many machine learning

solutions and developed in the R&D team at Worldline has been shared with the

production team which is a major step forward. In the near future, it should be

integrated in the production pipeline.

The choice of a reference metric for fraud detection that followed from a

large study done on imbalance learning and learning to rank. From a general

perspective, the average precision (AP) has shown to have the main advantages

for the credit card fraud application and is today used on a daily basis to assess

the performance of the running models.

The choice of the learning algorithm of reference for the specific task of

credit card fraud detection has converged to the boosting algorithm. This followed

significantly higher performance in terms of both training time and predictive

power on the credit card fraud detection dataset. It also is a much lighter final

model than previously used learning algorithms (e.g. Random Forest).

Incorporation of online learning mechanisms in the pre-production sys-

tem where a single model learns continuously on arriving data and predicts on

the future. This in fact, demands a lot of modification on the work flow already

implemented for the fraud detection task. The implementation of such system also

raised a lot of different concerns such as how we assess the model’s performance

in real-time or how and when we update the models.

Patent on the credit card fraud detection based on the optimization of

the average precision. Indeed, our view of the fraud detection application based

on the learning to rank domain fits the fraud detection system where experts are

given a short list of potential frauds. This led us to a write a patent that was

reviewed and accepted.

Perspectives of this Thesis

This manuscript naturally leads to many different open questions induced by the

contributions. First, we find necessary the thorough review of machine learning
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metrics before using them in an application case. In this sense, a large study

of known metrics for different use cases could be of great value for the machine

learning community.

We found that the average precision is one of the best metrics for our general case,

however, it has the main drawback of being highly dependent on the imbalance

ratio. Further work to adapt this metric such as to make it invariant on the

imbalance could be of crucial importance for many applications (e.g. monitoring

through time where changes in the class distribution naturally occur).

In this manuscript we study metrics at the transaction level. It turns out that,

we can compute all the metrics studied in this manuscript at the card level quite

easily. However, machine learning algorithms are learning at the transaction level,

therefore, using these metrics as objective functions is not straightforward and

deserve further studies.

The application of fraud detection has an a delayed feedback that was not deeply

studied in this thesis. However, the pace at which we receive the labels can impact

the performance of our models. For this reason, online learning with delayed

feedback should be further studied to understand the real impacts. The use of

lifelong learning approaches also represents an appealing perspective in order to

adapt the models continuously to the evolution of fraudster strategies. Indeed,

some concepts may appear once per year which would be very hard for a standard

online learning method to ”remember” while still learning over new concepts.

As online learning gains more interest for applications such as the one studied in

this manuscript, we believe that online extreme class imbalance learning would be

a typical research interest to follow on our contributions. Indeed, such problems

have many open questions such as finding a fair evaluation metrics that works in

this context.

Finally, all contributions and discoveries in this manuscript were driven by a pri-

vate dataset that comprises specific settings that are not common in the public

domain. We believe that it could be of great value for the machine learning com-

munity to test their algorithms on such datasets. While sharing this data should

not be done on a whim, we believe that it would have a great impact on the

scientific world and therefore means should be put in place to make this happen.
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Appendix A

AP and Fβ Score Correlation

Throughout this manuscript, we emphasize that the average precision (AP) is a

better metric for evaluating the model’s performance than the F1 score or more

generally the Fβ score for the main reason that AP isn’t biased by a sub-optimal

decision threshold. It turns out that, if the decision threshold is well set, both

metrics are highly correlated. This is what we want to show in this appendix.

As we presented, the average precision and the Fβ score are both closely related

to the precision and recall. For AP, the precision is computed at each recall level

and then averaged while the Fβ score corresponds to the weighted harmonic mean

between precision recall at one recall level. In fact, β represents implicitly the

different decision threshold.

AP =
1

P

P∑
i=1

precision@ki

Fβ = (1 + β2)
(1 + β2)× precision× recall

β2precision+ recall

In order to compare these measures, we simulate different scores and data dis-

tribution. We set up four different types of distributions described in Table A.1.

Table A.1: Different distribution used for the simulation. N indicates a normal

distribution and Beta, a beta distribution.

Positives Negatives

N(0,1) N(0,1)

Beta(4,1) Beta(1,1)

Beta(1,1) Beta(1,4)

N(3,1) N(0,1)
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Figure A.1: Every blue dot represents a simulation. The score of AP and the best

F1 score achievable is reported for each simulation on the x-axis and the y-axis

respectively.

In order to compare AP and F1, we generate 10, 000 different datasets. For each

dataset, we randomly pick one of the four distributions and generate randomly M

examples with M ∈ [100, 10000] with a positive ratio
P

M
∈ [0.01, 0.5] (also chosen

randomly).

For each simulation, we report the AP and the best F1 score achievable in Fig-

ure A.1. To find the latter for a given simulation, we compute the F1 score for

every decision threshold. The highest F1 score is kept and reported in Figure A.1

.

We find that both measures are closely correlated with the Pearson correlation

coefficient P = 0.91. From this result, one can assume that optimizing AP also

optimizes the best F1 score achievable for the model in question. In fact we find

similar results for different β = {0.5, 2} in Fβ score (see Figure A.2 and Figure A.3

respectively).

As expected, both measures are closely correlated with a Pearson correlation coef-

ficient ρ = 0.91. From this result, we conclude that optimizing AP also optimizes

Fβ score achievable for any β with the considered model.
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Figure A.2: Every blue dot represents a simulation. The score of AP and the best

F0.5 score achievable is reported for each simulation on the x-axis and the y-axis

respectively.

Figure A.3: Every blue dot represents a simulation. The score of AP and the best

F2 score achievable is reported for each simulation on the x-axis and the y-axis

respectively.
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Appendix B

ONLB in the Multi-Class Setting

An interesting extension of ONLB is its adaptation to the multiclass setting. In

fact this is very straightforward since ONLB relies on a two layers neural network.

In a standard neural network, multi-class problems are often solved using multiple

output neurons (Bentz and Merunka, 2000; Schmidhuber et al., 2012; Ding and

Dubchak, 2001). For a multiclass problem with J classes, we use J output neurons

that form a vector of J dimensions representing the classes. This vector is passed

through a softmax function defined as follows:

P (y = j|x) =
eF

j(x)∑J
j=1 e

F j(x)

where F j(x) is the output of the jth neuron predicting a score for sample x to

belong to class j. The final modification is made on the loss function. In Chapter 1,

we presented different loss functions that address the binary setting problem. Here

we use a more general loss function that can be applied to any number of classes

known as the multinomial logistic loss (or the cross entropy) (Böhning, 1992).

First, we define our label yi = j as a one-hot vector of dimension J equal to 1 for

the correct class j and 0 elsewhere. Now the loss function is defined as follows:

`mlog = −
M∑
i=1

yi log
(
P (yi = j|xi)

)
Then we can simply compute the derivative of `mlog to update the weak learners

and their weights.
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