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Chapitre 1

Introduction

Figure 1.1 – En haut à gauche, l’image de référence. Les trois autres sont
des approximations par courbe de l’image de référence.
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2 CHAPITRE 1. INTRODUCTION

L’objectif de cette thèse est double, tout d’abord cette thèse décrit une
méthode permettant de calculer une distance entre une courbe et une image.
Notre oeil est un instrument d’optique merveilleux qui nous permet de dire
que dans la Figure 1.1 l’image encadrée de jaune “semble” la plus proche de
l’image d’origine, suivie par la verte puis la bleue. Même si physiologique-
ment ce problème nous apparaît facile, sa formulation mathématique est non
triviale.

Pour mesurer le degré de similarité entre ces images, nous pouvons penser
à une méthode mathématique consistant à mesurer le carré de la différence
entre l’image de référence et les images construites avec des courbes (norme
L2). Cependant cette méthode donne des résultats contre intuitifs (l’image
encadrée en vert est plus proche que l’image encadrée en jaune qui a été
malicieusement translatée vers le coin supérieur droit).

Une méthode plus intéressante est de flouter l’image de référence ainsi
que l’image représentée par une courbe puis de calculer la même différence
L2. Une façon primitive de se convaincre de l’intérêt de cette méthode est
de regarder les quatre images en fronçant les yeux et d’observer une diffé-
rence moins prononcée entre l’image d’origine et les images représentées par
des courbes 1. Moralement, il apparaît cavalier de comparer une courbe où
l’information est très localisée avec une image continue. Ajouter un flou à
la courbe va rendre sa représentation continue et ainsi nous permettre de
mieux pouvoir comparer deux objets qui vont être de même nature. Cette
distance est étudiée mathématiquement et porte le nom de distance de convo-
lution [118, 26, 61, 127, 66].

Cette thèse traite d’un autre type de distance : la distance de transport,
imaginons cette fois que les images soient représentées avec du sable à la ma-
nière de l’artiste ukrainienne Kseniya Simonova 2. La distance de transport
entre deux images a une interprétation très physique, il s’agit de l’énergie
minimale que l’on doit fournir pour déplacer le sable de la première image
vers la seconde image. Cette énergie définit une distance entre deux images,
c’est la distance de transport optimal.

Le problème du calcul de transport optimal pour des objets similaires a
déjà été étudié par le passé. Soit d’un point de vue théorique [92] ou d’un
point de vue plus applicatif mais sans garanties théoriques pour l’infogra-

1. Vous pouvez retrouver les images que vous devriez obtenir en Figure 1.2 plus bas.

2. :https://youtu.be/NaqZ9Eo5psA
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phie [72, 70]. Cette thèse est à l’entre-deux dans la mesure où les algorithmes
proposés permettent la résolution numérique du transport optimal. Aussi une
attention particulière est donnée à la justification théorique des méthodes
proposées.

Malheureusement, le calcul exact du transport optimal entre une courbe
continue et image reste numériquement hors de portée. De façon à pouvoir le
rendre possible nous proposons d’approcher la courbe : soit par un ensemble
de points soit par un ensemble de segments. De plus, nous apportons des
résultats de consistance pour les approximations par points et par segments
proposées.

Enfin le second objectif est de développer des algorithmes permettant
d’obtenir les images présentées ci-dessus. Nous proposons des méthodes ité-
ratives pour optimiser la position de la mesure structurée (courbe discrétisée)
de façon à réduire sa distance par rapport à une mesure cible donnée. Ces mé-
thodes nous ont permis de réaliser une collection d’applications numériques
montrant la polyvalence de notre méthode.
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Figure 1.2 – Image originale et images représentées par des courbes floutées
par une gaussienne de variance 13. Toutes les images présentées dans cette
figure sont de résolution de 1024× 1024.
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1.1 Distance de transport optimal
Le transport optimal est une discipline avec de nombreuses applications,

notamment en économie [54] pour modéliser le marché de recherche d’emploi
ou déterminer les prix de l’immobilier. Le transport optimal peut être aussi
utilisé dans le domaine de l’affectation de ressources, par exemple pour le
placement optimal de zones de collecte par rapport à une population [71].
Ces applications couvrent aussi la planification optimale [129]. Plus récem-
ment, des nouvelles applications sont proposées en infographie pour com-
parer et mesurer des distances entre des images [93, 94, 18] ou simuler des
écoulements de fluides [35]. Le transport optimal peut être aussi utilisé pour
assister la conception d’instrument d’optique [97], mais aussi dans le domaine
mathématique des équations aux dérivées partielles où il permet la discré-
tisation d’équations aux dérivées partielles pour permettre leur résolution
numérique [11]. Le transport optimal peut être aussi utilisé en mécaniques
des fluides où il permet la résolution numérique des équations d’Euler incom-
pressible [55]. Plus récemment le transport optimal a connu un nouvel essor
dans le machine learning avec l’introduction de nouveaux algorithmes très
rapides [32, 10, 105, 119] permettant le calcul de distances de transport en
grande dimension. Ces nouvelles applications sont nombreuses et énumérées
dans le papier [81].

Dans la suite, (X,AX) et (Y,AY ) sont deux espaces mesurables polonais,
on note P(X) l’ensemble des mesures de probabilité sur X. Étant donné
M, un sous-ensemble paramétrisé de P(X) et une mesure cible µ ∈ P(Y ),
l’objectif de cette thèse est de trouver la mesure de probabilité π ∈ M qui
soit la plus proche possible de µ au sens de la distance de transport.

La distance de transport ou distance Wasserstein a été introduite par
le mathématicien Français Gaspard Monge au XVIIIème siècle. On rappelle
qu’une application mesurable T : X → Y induit une notion de transport de
mesure T] : P(X)→ P(Y ) (mesure image) définie par :

T]π = ν ⇐⇒ ∀B ∈ AY , ν(B) = π(T−1(B)).

La version de Monge du transport optimal associé à une fonction coût de
transport c : X × Y → R+ ∪ {+∞} revient à chercher un plan de transport
T minimisant la fonctionnelle suivante :

inf
T]π=µ

∫
X
c(x, T (x))dµ(x), (1.1)
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Des hypothèses supplémentaires sur les mesures π et µ sont nécessaires
pour garantir l’existence d’un plan de transport T . En effet, le plan de trans-
port T déplace la masse d’un atome δx vers δT (x) et ne peut scinder cette
masse. Par exemple, si les deux mesures sont atomiques avec les mêmes
masses sur tous les atomes et que le nombre d’atomes de la mesure π n’est
pas un multiple du nombre d’atomes de la mesure µ alors il n’y a pas d’exis-
tence d’un plan de transport T satisfaisant T]π = µ. Enfin, la formulation
de Monge n’est pas symétrique, cependant elle permet de se familiariser avec
le caractère “physique” du transport optimal où l’on cherche à déplacer la
masse d’une mesure vers une autre de façon optimale.

Face à ces problèmes, une version relaxée du transport optimal a été
développée par Kantorovitch [76, 77] dans les années 1940. Elle est basée
sur la notion de couplage optimal. On rappelle qu’un couplage entre deux
mesures π ∈ P(X) et µ ∈ P(Y ) est une mesure de probabilité sur l’espace
produitX×Y dont les marginales respectives sont π et µ. En d’autres termes,
en notant Γ(π, µ) l’ensemble des couplages entre π et µ on a :

γ ∈ Γ(π, µ)⇔


∫
X φ(x)dπ(x) =

∫
X×Y φ(x)dγ(y, x) ∀φ ∈ L1(π)

et∫
Y ψ(y)dµ(y) =

∫
X×Y ψ(y)dγ(y, x) ∀ψ ∈ L1(µ)

. (1.2)

La généralisation du problème de Monge (1.1), nommée formulation de
Monge Kantorovitch, ne consiste non plus à minimiser les coûts de transport
c sur l’ensemble des plans de transport T mais sur l’ensemble des couplages
Γ(π, µ) :

inf
γ∈Γ(π,µ)

∫
X×Y

c(x, y)dγ, (1.3)

L’ensemble des couplages Γ(π, µ) est non vide. En effet, il contient a
minima π⊗µ. De plus si le coût de transport c est à valeurs dans [0,+∞] et
est semi-continu inférieurement alors le problème (1.3) admet une solution
(Théorème 1.7 de [116]).

La formulation (1.3) peut être réécrite sous sa version duale. En interpré-
tant φ ∈ L1(π) et ψ ∈ L1(µ) comme des multiplicateurs de Lagrange de la
contrainte γ ∈ Γ(π, µ), le problème primal (1.3) est minoré par le problème
dual suivant en optimisant en φ :

sup
φ(x)+ψ(y)≤c(x,y)

∫
X
φdπ +

∫
Y
ψdµ (1.4)
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Sous les mêmes hypothèses pour le coût de transport c, le saut de dualité est
nul et il y a égalité entre le problème primal (1.3) et le problème dual (1.4)
(Théorème 1.42 de [116]). De plus, si c est uniformément continu et borné
sur X × Y , le problème (1.4) admet une solution finie donnée par le couple
(φ, φc) solution du problème de maximisation suivant :

sup
φ∈Φ

∫
X
φ(x)dπ(x) +

∫
Y
φc(y)dµ(y), (1.5)

où φc est donnée par la formule suivante :

φc(y) = inf
x∈X

c(x, y)− φ(x).

et Φ est l’ensemble des fonctions c-concave :

Φ =
{
φ ∈ L1(X), φ(x) = inf

y∈Y
c(x, y)− φc(y)

}

Dans cette thèse, la distance de transport optimal étudiée est la distance
de 2-Wasserstein (W2) où le coût de transport considéré est la norme eu-
clidienne au carré c(x, y) = ‖x − y‖2. Cette fonction coût vérifie toutes les
hypothèses de continuité. Aussi, les espaces X et Y sont supposés compacts,
ce qui garantit l’égalité entre toutes les formulations (1.3), (1.4) et (1.5).

1.2 Calcul numérique de la distance de Trans-
port optimal

Il existe trois grandes familles de méthodes permettant le calcul numé-
rique de la distance de transport optimal. Ces méthodes sont catégorisées
selon la nature de la paire de mesures (π, µ) considérée.

1.2.1 Transport optimal discret
Pour la première méthode, on considère des mesures π et µ atomiques :

π =
n∑
i=1

aiδxi et µ =
m∑
j=1

bjδyj
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Le problème de Kantorovitch se réécrit alors :

min
γ∈Rn×m

n∑
i=1

m∑
j=1

γijCij (1.6)

s.c. γij ≥ 0 et ∀i,
m∑
j=1

γij = ai et ∀j,
n∑
i=1

γij = bj,

avec C la matrice des coûts de transport donnée par Cij = c(xi,yj) et où les
deux contraintes linéaires sont les contraintes de marginales (1.2). Comme
les deux mesures sont discrètes, alors le couplage γ est de la forme γ =∑n
i=1

∑m
j=1 γijδxiδyj de sorte que l’intégrale de la formulation (1.3) se réécrit

comme une somme finie.
Le problème (1.6) est un problème de programmation linéaire sous contraintes

linéaires pour lequel il existe différents algorithmes tels que les solveurs li-
néaires CPLEX ou Lemon. Toutefois, le nombre de variables d’optimisation est
nm ce qui rend cette méthode prohibitive pour un nombre d’atomes impor-
tant.

Dans le cas particulier où les deux mesures sont constituées du même
nombre d’atomes m = n de masse uniforme ai = bi = 1/n, l’algorithme
Hongrois permet de résoudre (1.6) en temps polynomial O(n3), voir [82].

Pour des mesures discrètes quelconques l’algorithme d’enchère (auction
algorithm)[15, 14], visant à améliorer de façon itérative une des variables
duales du problème (1.6) permet lui aussi une résolution en temps polynomial
O((n+m)3 log(min(m,n)‖C‖∞)) où ‖C‖∞ = maxij |Cij|.

Enfin, l’algorithme Network simplex [106] permet de résoudre ce problème
en modélisant le problème de transport optimal par un graphe acyclique
où les sommets représentent des atomes et où les arcs entre ces sommets
représentent les échanges de masses entre les deux mesures. Cet algorithme
permet lui aussi d’obtenir une complexité en temps polynomiale en O((n +
m)nm log(n+m) log((n+m)‖C‖∞).

Ces trois méthodes permettent de résoudre exactement le problème de
Kantorovitch (1.3) et ne nécessitent aucune hypothèse de régularité sur le
coût de transport c. Cependant leur complexité cubique ne leur permet pas
d’être utilisées de façon intensive dans les domaines émergeants du machine
learning ou du data mining où la taille des données (n et m) est importante.

Une manière élégante de contourner la difficulté de résolution du problème
linéaire (1.6), est de régulariser avec un terme entropique. L’ajout d’une ε-
régularisation “lisse” les plans de transport γ et rend le problème strictement
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convexe. Le problème régularisé se réécrit alors comme la minimisation d’une
distance de Kullback-Leibler entre la matrice de couplage γ et le noyaux de
Gibbs e−C/ε [32, 10]. En passant au problème dual, le nombre de variables
devient n+m et la solution régularisée peut-être calculée rapidement à l’aide
de l’algorithme de Sinkhorn, voir Section 3.2.3 pour plus de détails. De plus
l’algorithme de Sinkhorn se prête aisément à une implémentation GPU [32,
4, 83, 58, 49]. C’est pour cette raison que cet méthode de calcul du transport
est devenue très populaire, notamment dans le domaine du machine learning.

1.2.2 Transport optimal continu
Si les deux mesures sont à densité et si le coût de transport est la norme

euclidienne au carré c(x, y) = ‖x − y‖2, le problème de Monge (1.1) peut
être résolu numériquement. La distance de transport peut être calculée en
cherchant un chemin de taille minimale entre les deux mesures. Ce chemin
est décrit par un champ de vecteur transportant la mesure source vers la
mesure cible. Dans ce cadre, le chemin et le champ de vecteur obéissent à
des lois de conservation ; c’est formulation de Benanou-Brenier [9]. Ce sys-
tème dynamique d’équations aux dérivées partielles peut être résolu à l’aide
d’une méthode de Lagrangien augmenté. Cette méthode peut être interprété
comme un cas particulier de l’algorithme de Douglas Rachford, et d’autres
types d’éclatements proximaux peuvent être considérés pour résoudre ce
problème [108]. Cependant pour être résolues numériquement les équations
doivent être discrétisées en temps et en espace. Toutefois cette méthode est
inadaptée aux mesures qui ne sont pas à densité.

1.2.3 Transport optimal semi-discret
Si la mesure π est discrète et la mesure µ est absolument continue par

rapport à la mesure de Lebesgue et de densité ρ :

π =
n∑
i=1

ωiδxi et µ = ρ(y)dy, (1.7)

alors le caractère discret de la mesure π nous permet de réécrire la formula-
tion (1.5) de la façon suivante :

max
φ∈Rn

n∑
i=1

φiωi +
∫
Y

min
i∈J1,nK

(
c(xi, y)− φi

)
dµ(y). (1.8)
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En effet, pour le calcul de la c-transformée φc(y) nous pouvons nous limiter au
support de π. Le problème du calcul du transport optimal se réécrit comme
un problème de maximisation en dimension finie (1.8) et peut être sous cette
forme résolu numériquement.

Pour chaque i notons Ti la cellule :

Ti =
{
y ∈ Y : ∀j, c(xi, y)− φi ≤ c(xj, y)− φj

}
,

alors,
φc(y) = c(xi, y)− φi, ∀y ∈ Ti.

En supposant que ∀j 6= i, µ(Ti ∩ Tj) = 0, alors le problème dual de
Kantorovitch se réécrit :

max
φ∈Rn

n∑
i=1

φiωi +
n∑
i=1

∫
Ti

(c(xi, y)− φi) dµ(y). (1.9)

La condition µ(Ti ∩ Tj) est vérifiée pour tous les coûts de transport de la
distance de p-Wasserstein, c(x, y) = ‖x− y‖p.

Pour le cas p = 2, les cellules Ti portent le nom de cellules de Laguerre.
Elles sont notées Li(φ,x) et sont données par la formule suivante :

Li(φ,x) =
{
y ∈ Y : ∀j 6= i, ‖xi − y‖2 − φi ≤ ‖xj − y‖2 − φj

}
. (1.10)

Notons que si φi = φj pour tout i, j, le diagramme de Laguerre est un
diagramme de Voronoï qui est un objet important en géométrie algorith-
mique, en infographie, et en recherche opérationnelle [6]. Le diagramme de
Laguerre est une version à poids du diagramme de Voronoï. Les cellules de
Laguerre (1.10) sont des polytopes convexes.

Le diagramme de Laguerre en dimension d peut être construit comme
l’intersection d’un diagramme de Voronoï de dimension d + 1 et Rd (voir
Observation 7. [85]). La complexité en temps relative à la construction d’un
diagramme de Laguerre est donnée par O(n log n) pour d = 2 et O(n log n+
nb

d
2 c+1) pour d > 2 [5].
Pour le cas p = 1, l’ensemble des partitions Ti portent le nom de dia-

gramme d’Apollonius [17, 47]. Chacune des cellules d’Apollonius a une forme
étoilée et sa frontière est constituée d’arcs ou de surfaces hyperboliques ou
de droites et de plan. La complexité en temps associé à la construction d’un
tel diagramme est O(nb d2 c+1 log n).
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Pour évaluer la fonction profit à maximiser (1.9), il faut intégrer la densité
µ sur chacune des cellules Ti. Algorithmiquement, il est cependant beaucoup
plus aisé de calculer ces intégrales sur des cellules aux frontières linéaires,
telles que les cellules de Laguerre (1.10). De plus, la distance de transport
associée au coût quadratique p = 2 est liée à la minimisation d’une éner-
gie cinétique. Ainsi les méthodes développées pour résoudre le problème de
transport optimal semi-discret ont connu un essor plus important pour la
norme euclidienne au carré [94, 34, 85, 19].

Dans le cadre de cette thèse nous nous sommes intéressé au calcul du
transport optimal L2 semi-discret

Les résultats préliminaires au développement numérique de ces méthodes
sont dûs à Aurenhammer [7]. Le premier théorème établit l’optimalité du
plan de transport induit par la mosaïque de Laguerre.

Théorème 1.2.1. Le plan de transport T donné par la mosaïque de Laguerre
de centroïdes x et de poids φ, défini presque partout par :

T :
∣∣∣∣∣ Rd → Rd

x 7→ xi, t.q. x ∈ Li(φ,x) ,

est un plan de transport optimal au sens de Monge pour W 2 entre la mesure
µ absolument continue de densité ρ et la mesure atomique π = ∑

i ωiδxi si et
seulement si ωi = µ(Li(φ,x)).

Le second théorème établit la faisabilité d’un plan de transport optimal
L2 lorsque les masses des Diracs ωi sont prescrites.

Théorème 1.2.2. Soit µ une mesure de probabilité absolument continue par
rapport à la mesure de Lebesgue à densité non nulle ρ, et π une mesure
atomique définie en (1.7) avec x ∈ Rn×d . Alors, il existe un vecteur de poids
φ? ∈ Rn tel que :

∀i, µ(Li(φ?,x)) = ωi.

Numériquement la résolution du transport optimal L2 semi-discret passe
par la résolution du problème de maximisation suivant :

max
φ∈Rn

g(φ,x), avec g(φ,x) =
n∑
i=1

∫
Li(φ,x)

(‖xi − x‖2 − φi)dµ(x) +
n∑
i=1

φiωi (1.11)
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La fonction g est deux fois dérivable par rapport à la variable duale φ,
ses dérivées sont données par :

∂g

∂φi
= ωi −

∫
Li(φ,x)

dµ(x)

∂2g

∂φi∂φj
=



∫
Li(φ,x)∩Lj(φ,x)

1
‖xi − xj‖

dµ si i 6= j

∑
j 6=i
− ∂2g

∂φi∂φj
sinon

(1.12)

Sous certaines hypothèses explicitées dans la Partie 4.2.1 la Hessienne est de
classe C2,α [80] par rapport à la variable φ.

De plus, les points critiques vérifient la condition suivante :∫
Li(φ,x)

dµ(x) = ωi,

la fonction g est concave par rapport à φ comme un infimum de fonctions
linéaires [38] ce qui peut se retrouver dans le calcul de sa Hessienne qui est
à diagonale dominante avec tous ses termes diagonaux sont négatifs ou nuls.
Les points critiques sont donc maxima globaux, ce qui permet de retrouver
le Théorème 1.2.1.

Pour l’optimisation de ce problème de maximisation une méthode de dam-
ped Newton peut être mise en oeuvre, sous certaines hypothèses de régularité
la convergence est globale [80, 96].

La fonctionnelle de Kantorovitch (1.11) peut-être aussi optimisée par rap-
port à la position des masses de Dirac x. Si la mesure µ est à densité suf-
fisamment régulière (de classe C2) alors la fonctionnelle de Kantorovitch est
C1 par rapport à x et sa dérivée est donnée par :

∂g

∂xi
= 2

∫
Li

(xi − x) dµ(x).

De plus, pour les diagrammes de Voronoï, Lévy et al. [89] a montré la
régularité C2 presque partout de g(0Rn ,x) par rapport à la variable x et
conjecturé que la régularité de la mesure de fond pouvait être affaiblie à
C0. Enfin il a montré l’intérêt pratique des méthodes de second ordre pour
le problème du CVT (centroidal Voronoi tessellation) plus rapides et plus
robustes que les méthodes du premier ordre.
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1.3 Génération de schéma d’échantillonnage
en IRM

Ce travail est motivé par le problème d’acquisition compressé en imagerie
IRM [21, 84] où l’objectif est d’échantillonner le domaine de Fourier pour
reconstruire à l’aide des coefficients de Fourier une image médicale. L’IRM
acquiert des échantillons le long de trajectoires suffisamment régulières, notre
objectif est d’optimiser ces trajectoires. L’ensemble des trajectoires générées
S doit respecter des conditions cinématiques, de façon à ce que la trajectoire
soit réalisable avec un IRM et que le temps d’acquisition soit limité, à savoir :

S =
{
s : [0, 1]→ Rd, s ∈ C2,∀t ‖s′(t)‖ ≤ c1 et ‖s′′(t)‖ ≤ c2

}
.

Pour avoir la meilleure reconstruction possible, la mesure portée par la tra-
jectoire doit approcher une densité cible µ non uniforme [21, 1]. Pour mesurer
la qualité d’approximation de cette densité cible nous utilisons la distance de
transport optimal L2, de sorte que le problème se réécrive :

inf
s∈S
W2(s]λ, µ),

où s]λ est la mesure image de λ : la mesure de Lebesgue de [0, 1], par l’ap-
plication s.

La mesure portée par la trajectoire n’étant pas à densité, le transport
continu ne peut être utilisé.

Si on suppose maintenant que la courbe est discrétisée par un ensemble
de points et que la mesure cible µ est discrète, l’utilisation du transport opti-
mal discret et de l’algorithme de Sinkhorn est légitime. Cependant, nos tests
numériques ont révélé que le terme de régularisation isotrope ε devait être
choisi avec précaution et suffisamment petit. Or, un paramètre de régulari-
sation trop petit génère de grandes instabilités numériques. Nous décrivons
avec plus de précisions ces effets dans le Chapitre 3.

Face à ce problème nous avons décidé dans un premier temps d’adopter
le formalisme semi-discret en considérant cette fois que la mesure µ est abso-
lument continue et que la mesure portée par la trajectoire est discrétisée par
un ensemble de points. Par la suite nous appelons ce problème curvling. Ce
problème est similaire au bluenoise semi-discret [34] si ce n’est que nous im-
posons des contraintes sur la position des masses de Dirac x. Nous étudions
ce problème dans le Chapitre 5.
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Finalement, si la mesure µ est discrète et s]λ est portée par une courbe,
nous pouvons utiliser le transport optimal semi-discret. L’optimisation de
la fonctionnelle (1.11) nécessite d’intersecter la mesure portée par la trajec-
toire s]λ avec chacune des cellules de Laguerre. Toutefois, le calcul de ces
intersections pour une trajectoire continue est numériquement difficile. Dans
le Chapitre 6, en introduisant une discrétisation sur la courbe (linéaire par
morceaux), nous explicitons une méthode rapide pour le calcul de ces inter-
sections et du transport optimal associé à ce problème. Le calcul du transport
optimal pour cette nouvelle méthode diffère de la méthode employée dans le
cas du stippling [96], où la fonctionnelle de Kantorovitch (1.11) est de classe
C2.

1.4 Plan de la thèse
Dans cette thèse nous voulons résoudre le problème d’optimisation sur

des espaces de mesures suivant :

inf
s∈S
W2(s]λ([0,1]), µ),

Dans le Chapitre 3 les différentes méthodes numériques permettant de
calculer une distance entre deux mesures et notamment le transport optimal
L2 sont comparées. Nous décrivons les limitations propres à chacune de ces
méthodes et l’algorithmie qui leur est associée. Cette discussion motive notre
choix pour le transport optimal semi-discret.

Dans le Chapitre 4, nous déterminons les conditions suffisantes rendant
la fonctionnelle du transport optimal semi-discret (1.11) deux fois continû-
ment dérivable par rapport à la variable duale mais aussi par rapport à la
position des masses de Dirac. Les résultats sur la régularité C2 par rapport la
variable duale développés par Mérigot et ont permis d’établir la convergence
de l’algorithme de damped Newton [80, 96]. Aussi, certaines de nos hypo-
thèses sont similaires aux travaux de Mérigot et al. [80, 96], cependant la
méthode de preuve proposée dans le Chapitre 4 est plus générale et permet
aussi de prouver la régularité du transport optimal par rapport à la posi-
tion des masses de Dirac. L’existence d’une dérivée seconde par rapport à
la position des masses de Dirac laisse entrevoir l’utilisation d’une méthode
de second ordre pour l’optimisation du placement des masses de Dirac à la
manière de Lévy et al. [89]. Dans la Partie 4.3, l’intérêt pratique des mé-
thodes du second ordre est éprouvé pour deux problèmes particuliers que
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sont le Bluenoise et le Stippling et pour différentes expériences numériques.
Le résultat de ces expériences est nuancé : le nombre d’itérations globale est,
comme attendu, plus faible avec un algorithme du second ordre, notamment
grâce aux dernières itérations où la convergence est quadratique. Cependant,
le coût d’un pas de descente peut nécessiter la résolution de plusieurs pro-
blèmes de transport optimal et est plus important que celui que l’algorithme
de Lloyd (qui consiste simplement à déplacer la masse de Dirac sur la position
du barycentre de la cellule de Laguerre qui lui est associée).

Dans le Chapitre 5, nous présentons les différentes méthodes numériques
utilisées pour la résolution du transport optimal L2. Ces méthodes per-
mettent d’approcher une mesure absolument continue par une mesure ato-
mique quelconque, supportée par une trajectoire à vitesse et à accélération
bornée ou constante ou par un ensemble de segments. Le calcul du transport
optimal L2 pour ces mesures est similaire à celles utilisées pour le transport
optimal semi-discret [34, 85, 96] à la différence qu’elles sont rendues plus ro-
bustes pour fonctionner dans des configurations de points compliquées et des
mesures de fond plus alambiquées. Nous décrivons aussi les différents projec-
teurs utilisés permettant de discrétiser une trajectoire avec des contraintes
sur sa vitesse et son accélération par une mesure atomique. Enfin, notre al-
gorithme robuste de calcul distance de transport L2 est comparé avec une
méthode préexistante [34], et avec une implémentation de la distance de
convolution [21]. La comparaison s’établit sur la rapidité des algorithmes
mais aussi sur leur complexité théorique.

Dans le Chapitre 6, la discrétisation de trajectoire s n’est plus constante
par morceaux mais linéaire par morceaux et la mesure de fond est supposée
atomique. De cette façon la mesure d’approximation n’est plus une mesure
atomique mais par une mesure portée par une polyligne (trajectoire continue
et linéaire par morceau). Toujours à l’aide de la bibliothèque de géométrie
algorithmique CGAL [128], un nouvel algorithme de de calcul de transport
optimal est présenté, il permet de calculer le transport optimal entre une
mesure atomique et un mesure portée par une polyligne. Malgré les récents
progrès théoriques [96] prouvant la convergence de l’algorithme de damped
Newton pour des mesures portées par des simplexes de dimension de Haus-
dorff inférieure à la dimension ambiante, la question des mesures portées par
des courbes est vierge, et est le sujet du Chapitre 6. Nous avons baptisé ce
nouveau problème transport optimal 3

4 -discret. Dans ce cas précis, la fonc-
tionnelle de Kantorovitch est moins régulière par rapport à sa variable duale
φ : elle n’est plus que C1. La méthode d’optimisation doit être modifiée. Nous
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essayons donc de nombreuses méthodes afin d’établir celle qu’il est la plus
rapide.

Dans le Chapitre 7 nous vérifions la consistance des approximations faites
au cours des chapitre 5 et 6. En effet, la trajectoire s continue a été discrétisée
soit par une trajectoire constante par morceaux ou par une trajectoire linéaire
par morceaux. Une question naturelle est d’estimer vitesse convergence de
l’approximation considérée vers la courbe continue s recherchée. Dans ce cha-
pitre, la distance de Hausdorff entre des polylignes ou des courbes atomiques
dont les dérivées discrètes sont bornées avec l’ensemble des courbes à dérivées
bornées est explicitée. Le résultat de cette section est intuitif, à savoir, l’ap-
proximation par une polyligne converge quadratiquement vers l’ensemble des
courbes continues là où l’approximation constante par morceaux ne converge
que linéairement.

Enfin, dans le Chapitre 8 nous décrivons en détail la méthode d’intégra-
tion rapide, utilisée lors du Chapitre 5 pour le calcul de la distance de trans-
port semi-discrète, permettant de convertir les intégrales sur les volumes des
cellules de Laguerre en intégrales sur leur frontières via la formule de Green.
Après de brefs rappels théoriques, les problèmes inhérents à la maximisation
de la fonctionnelle de Kantorovitch dans le cadre du curvling sont décrits.
Nous exposons avec précision les difficultés numériques auxquelles nous avons
été confrontés et les différentes méthodes, plus ou moins concluantes, qui ont
été essayées. Enfin, nous examinons les avantages de la méthode de New-
ton régularisée. Dernièrement, nous présentons l’algorithme multi-échelle qui
nous a permis de réaliser toutes les simulations numériques pour le curvling
et pour un grand nombre de points.



Chapter 2

Introduction

Figure 2.1 – The original image is top left. The other three images are curve
approximations of the original one.

17
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The aim of this thesis is two-fold. First, it describes a method that enables
the computation of a distance between a curve and an image. The human eye
is a wonderful optical instrument that allows us to say whether in Figure 2.1
the image framed in yellow, green or blue is closest to the original image.
Although this problem seems simple to us, its mathematical formulation is
non-trivial.

To measure the similarity between these images, one possible approach is
to measure the square of the difference between the original image and the
images constructed using curves (L2 norm). However this method leads to
counter intuitive results : the image framed in green is closer than the image
framed in yellow, as the latter has been slightly shifted towards the upper
right-hand corner.

A more interesting method involves blurring the reference image as well
as the images constructed using curves, and then computing the same L2

distance. A simple way of convincing ourselves of the benefit of this me-
thod is to look at the four images with slightly closed eyes and observe that
the difference between the original image and the curve approaching images
is then reduced 1. Morally, it seems cavalier to wish to compare a curve,
for which information is very localized, to a continuous image. Blurring the
curve makes its representation continuous and allows us to better compare
two objects that are now of the same nature. The distance involved when
using this method is known as the convolution distance and has been studied
mathematically [118, 61, 26, 127, 66].

This thesis deals with another type of distance : the transport distance.
Imagine this time that the images are represented by piles of sand, in the style
of the Ukrainian artist Kseniya Simonova 2. The optimal transport distance
between the two images has a very physical interpretation : it is the minimal
energy needed in order to move the sand from the original image to the
second image. This energy defines a distance between two images, it is the
optimal transport distance.

The optimal transport computation problem has already been studied
for similar objects, either with a very theoretical point of view [92] or with
a very applied point of view in computer graphics [72, 70]. This thesis is
in between the two previous topics as it provides numerical algorithms to

1. Figure 2.2 show the images you should see when using this method.

2. :https://youtu.be/NaqZ9Eo5psA
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solve the optimal transport problem along with a strong emphasis on their
theoretical foundations.

Unfortunately, the exact calculation of optimal transport between a conti-
nuous curve and an image remains numerically inaccessible. As a workaround,
we attempt to approach the curve either by a set of points or by a set of line
segments. We justify these methods by providing consistency results for both
point and line segment approximations.

Finally, the second aim is to develop algorithms that generate the curve
approximating images presented above. We propose iterative methods to op-
timize the position of the structured measure (discretized curve) in order to
reduce its distance from the given target measure. Our methods have allowed
us to carry out many numerical applications, thus highlighting the versatility
of our method.
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Figure 2.2 – Reference image and curve-approaching images, images are
blurred performing a convolution with a gaussian kernel of standard deviation
13. The displayed images are of size 1024× 1024
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2.1 Optimal transport distance
Optimal transport is a discipline whose possible applications are nume-

rous. Indeed, it is used in economy [54] to model the job market or compute
real estate prices. Another field of application is resource allocation where
it can be used to place collection zones optimally with respect to people’s
density in a city [133]. These applications also cover optimal planning [129].
More recently, new applications are proposed in infography to compare and
measure distances between images [93, 94, 18] or simulate fluid flow [35].
Optimal transport can also be used to help with the design of optical ins-
truments [97], but can additionally be used to discretize partial differential
equations and thus enable their numerical resolution [11]. Another field of
application is fluid mechanics where it enables the numerical resolution of
incompressible Euler equations [55]. More recently, optimal transport has
known a new boom in machine learning with the introduction of extremely
quick algorithms [32, 10, 105, 119] allowing the computation of the transport
distances in high dimension. These new applications are numerous and are
listed in the following paper [81].

In the following (X,AX) et (Y,AY ) are two Polish measurable spaces, we
denote P(X) the set of probability measures on X. GivenM, a parametrized
subset of P(X) and a target measure µ ∈ P(Y ), the aim of this thesis is to
find the probability measure π ∈M that is the closest to µ for the transport
distance. The transport distance, or Wasserstein distance, was introduced
by the French mathematician Gaspard Monge in the XVIIIth century. We
recall that a measurable application T : X → Y prompts the notion of
push-forward measure T] : P(X)→∈ P(Y ) defined by :

T]π = µ⇐⇒ for any Ω ∈ B(Y ), µ(B) = π(T−1(B)).

Computing the optimal transport formulated by Monge for a transport
cost function c : X ×Y → R+ ∪{+∞} equates to finding the transport plan
T under the constraint T]µ = π that minimizes the following functional :

inf
T]π=µ

∫
X
c(x, T (x))dµ(x). (1.1)

We need extra hypotheses on measures π and µ to guarantee the existence
of a transport plan T . Indeed, the transport plan T shifts the mass of an atom
δx to δT (x) and cannot split this mass. For example, if the two measures are



22 CHAPTER 2. INTRODUCTION

atomic with the same mass on each atom, and if the number of atoms of the
measure π is not a multiple of the number of atoms of the measure µ, then
there does not exists a transport plan T satisfying T]π = µ. Also, Monge’s
formulation is not symmetrical however it allows us to familiarize ourselves
with the "physical" aspect of optimal transport where we wish to optimally
transport the mass of one measure to another.

Consequently a relaxed formulation of optimal transport was developed
by Kantorovitch [76, 77] in the 1940s. This formulation is based on the
concept of optimal coupling. In probability theory, a coupling of two mea-
sures π ∈ P(X) and µ ∈ P(Y ) is a probability measure on the product space
X × Y whose respective marginals are π and µ. In other terms, denoting
Γ(π, µ) the set of couplings between π and µ we have :

γ ∈ Γ(π, µ)⇔


∫
X φ(x)dπ(x) =

∫
X×Y φ(x)dγ(y, x) ∀φ ∈ L1(π)

and∫
Y ψ(y)dµ(y) =

∫
X×Y ψ(y)dγ(y, x) ∀ψ ∈ L1(µ)

. (1.2)

The generalization of Monge’s problem (1.1), named Monge Kantorovitch
formulation, no longer involves minimizing transport costs c on the set of
transport plans T but on the set of couplings Γ(π, µ) :

inf
γ∈Γ(π,µ)

∫
X×Y

c(x, y)dγ, (1.3)

The set of couplings Γ(π, µ) is non empty. Indeed, it contains at least
π ⊗ µ. Furthermore if c is valued in [0,+∞] and is lower semi-continuous
then Problem (1.3) has a solution (Theorem 1.7 of [116]).

Formulation (1.3) can be rewritten under its dual form. Interpreting φ ∈
L1(π) and ψ ∈ L1(µ) as Lagrange multipliers of the constraint Γ(π, µ), the
primal problem (1.3) is lower bounded by the following dual problem :

sup
φ(x)+ψ(y)≤c(x,y)

∫
X
φdπ +

∫
Y
ψdµ (1.4)

The duality gap is zero and there is equality between the primal problem (1.3)
and the dual problem (1.4) (Theorem 1.42 of [116]). Furthermore, if c is
uniformly continuous and bounded on X × Y , Problem (1.4) has a finite
solution given by the couple (φ, φc) solution to the following maximization
problem :

sup
φ∈Φ

∫
X
φdπ +

∫
Y
φc, (1.5)
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where φc is given by the following formula :

φc(y) = inf
a∈X

c(a, y)− φ(a),

and where Φ is the set of c-concave functions :

Φ =
{
φ ∈ L1(X), φ(x) = inf

y∈Y
c(x, y)− φc(y)

}
.

In this thesis, the optimal transport distance studied is the 2-Wasserstein
distance (W2), where the transport cost is c(x, y) = ‖x− y‖2 which satisfies
all of the continuity hypotheses. Furthermore we suppose that the spaces X
and Y are compacts, this guarantees equality of the formulations (1.3), (1.4)
and (1.5).

2.2 Numerical computation of the optimal trans-
port distance

To compute the optimal transport distance, three big families of numerical
methods exist. These families are named according to the nature of the pairs
of measures (π, µ) that they can be applied to.

2.2.1 Discrete optimal transport
For the first method we consider π and µ two atomic measures :

π =
n∑
i=1

aiδxi and µ =
m∑
i=1

biδyi

In this case, the Kantorovitch problem rewrites as :

min
γ∈Rn×m

n∑
i=1

m∑
j=1

γijCij (1.6)

s.t. γij ≥ 0 and ∀i,
m∑
j=1

γij = ai and ∀j,
n∑
i=1

γij = bj,

where C is the matrix of transport costs given by Cij = c(xi,yj) and
where the two linear constraints are the marginal constraints (1.2). The
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discrete nature of the two measures yields a discrete coupling of the form
γ = ∑n

i=1
∑m
j=1 γijδxiδyj such that the integral of formulation (1.3) rewrites

as a finite sum.

Problem (1.6) is a linear program with linear constraints for which several
algorithms exist such as the linear solvers CPLEX and Lemon. However the
number of optimization variables is nm, which can make the complexity
blows off when using the method with a high number of atoms.

In the particular case where both measures are made up of the same
number of atoms m = n of uniform mass ai = bi = 1/n, the Hungarian
algorithm solves Problem (1.6) with a polynomial time complexity O(n3),
see [82] .

For general discrete measures, the auction algorithm [15, 14], that aims
to iteratively improve one of the dual variables of the problem (1.6) also
has a polynomial time complexity O((n + m)3 log(min(m,n)‖C‖∞)) where
‖C‖∞ = maxij |Cij|.

Finally, the Network simplex algorithm [106] solves the problem by mode-
ling the optimal transport problem as an acyclical graph where the vertices
represent atoms and the edges represent the mass exchanges between the
two measures. This algorithm has a polynomial time complexity of O((n +
m)nm log(n+m) log((n+m)‖C‖∞).

These three methods allow us to solve the Kantorovitch problem (1.3) and
do not require any hypotheses on the transport cost c. However their cubic
complexity means that they cannot be used intensively in the emerging fields
of machine learning or data mining where the data sizes (n and m) are big.

An elegant way of bypassing the difficulties linked to solving linear pro-
blem (1.6) is to regularize with an entropy term. This ε-regularization term
”smooths” the coupling γ and makes the problem strictly convex. The re-
gularized problem then rewrites as the minimization of a Kullback-Leibler
distance between the coupling matrix γ and the Gibbs kernel e−C/ε [32, 10].
Writing the dual problem, the number of variables becomes n + m and the
regularized solution can be computed quickly using the Sinkhorn algorithm,
see Section 3.2.3 for more details. Furthermore the Sinkhorn algorithm can
lend itself to a GPU implementation [32, 4, 83, 58, 49]. This is why this re-
gularized method has become very popular, especially in the field of machine
learning.
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2.2.2 Continuous optimal transport
If both measures are given by a probability density function and if the

transport cost is the square of the euclidean norm c(x, y) = ‖x − y‖2, the
Monge problem (1.1) can be solved numerically. The transport distance can
be computed by searching for the shortest path between the two measures.
This path is described as a vector field that advects the source measure to the
target measure. In this context, the path and the vector field obey to some
conservation laws ; it is the Benanou-Brenier formulation [9]. This dynamic
system of partial differential equations can be solved using an augmented
Lagrangian method. This method can be interpreted as a particular case of
the Douglas Rachford algorithm, and other types of proximal splitting can be
considered to solve this problem [108]. However to be solved numerically, the
equations must be discretized in time and space. Nevertheless, this method
is available only if both of the measures have a density.

2.2.3 Semi-discrete optimal transport
If the measure π is discrete and the measure µ is absolutely continuous

with respect to the Lebesgue measure, with density ρ :

π =
n∑
i=1

ωiδxi and µ = ρ(y)dy, (1.7)

then the discrete nature of measure π allows us to rewrite formulation (1.5)
in the following way :

max
φ∈Rn

n∑
i=1

φiωi +
∫
Y

min
i∈J1,nK

(
c(xi, y)− φi

)
dµ(y). (1.8)

Indeed, to compute the c-transform φc(y) we can limit ourselves to the sup-
port of π. The new formulation (1.8), which is a finite dimensional maximi-
zation problem, can now be solved numerically.

For each i let us denote as Ti the cell :

Ti =
{
y ∈ Y : ∀j, c(xi, y)− φi ≤ c(xj, y)− φj

}
,

then,
φc(y) = c(xi, y)− φi, ∀y ∈ Ti.
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Supposing that ∀j 6= i, µ(Ti ∩ Tj) = 0, the Kantorovitch dual problem
rewrites as :

max
φ∈Rn

n∑
i=1

φiωi +
n∑
i=1

∫
Ti

(c(xi, y)− φi) dµ(y). (1.9)

The condition µ(Ti ∩ Tj) is verified for all of the transport costs of the
p-Wasserstein distance, c(x, y) = ‖x− y‖p.

When p = 2, the cells Ti are called Laguerre cells. They are denoted
Li(φ,x) and are given by :

Li(φ,x) =
{
y ∈ Y : ∀j 6= i, ‖xi − y‖2 − φi ≤ ‖xj − y‖2 − φj

}
. (1.10)

Note that if φi = φj for all i and j, the Laguerre diagram is a Voronoi
diagram which is an important object in algorithmic geometry, in computer
graphics and in operational research [6]. The Laguerre diagram is a weigh-
ted version of the Voronoi diagram. The Laguerre cells (1.10) are convex
polytopes.

The Laguerre diagram in dimension d can be constructed as the intersec-
tion of a Voronoi diagram of dimension d+1 and Rd (see Observation 7. [85]).
The time complexity relative to the construction of a Laguerre diagram is
O(n log n) for d = 2 and O(n log n+ nb

d
2 c+1) for d > 2 [5].

In the case where p = 1, the set of partitions Ti is called an Apollonius
diagram [17, 47]. Each of the Apollonius cells is star shaped and its boundary
is made up of edges or hyperbolics surfaces or lines and planes. The time
complexity for the construction of such a diagram is O(nb d2 c+1 log n).

In order to evaluate the profit function that we wish to maximize (1.9),
we have to integrate the density µ on each of the cells Ti. Algorithmically,
it is however easier to integrate the density µ on cells whose boundaries are
linear. Furthermore, the transport distance for the quadratic cost p = 2 is
linked to the minimization of a kinetic energy. Thus the methods developed
to solve the semi-discrete optimal transport problem have evolved much more
for the square of the euclidean norm p = 2 [94, 34, 85, 19].

In the context of this thesis we focused our interest on the calculation of
L2 semi-discrete optimal transport.

The preliminary results for the numerical development of this method are
owed to Aurenhammer [7]. The first theorem establishes the optimality of the
transport plan induced by the Laguerre tessellation.
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Theorem 2.2.1. The transport plan T given by the Laguerre tesselation with
centroids x and weights φ, defined almost everywhere as :

T :
∣∣∣∣∣ Rd → Rd

x 7→ xi, s.t. x ∈ Li(φ,x) ,

is an optimal transport plan (as defined by Monge forW 2) between the absolu-
tely continuous measure µ of density ρ and the atomic measure π = ∑

i ωiδxi
if and only if ωi = µ(Li(φ,x)).

The second theorem establishes the feasibility of an L2 optimal transport
plan when the Dirac masses ωi are prescribed.

Theorem 2.2.2. Let µ be a probability measure, absolutely continuous with
respect to the Lebesgue measure with non zero density ρ, and π an atomic
measure defined in (1.7) with x ∈ Rn×d . Then, there exists a weight vector
φ? ∈ Rn such that :

∀i, µ(Li(φ?,x)) = ωi.

The numerical resolution of the L2 semi-discrete optimal transport in-
volves solving the following maximization problem :

max
φ∈Rn

g(φ,x), with g(φ,x) =
n∑
i=1

∫
Li(φ,x)

(‖xi − x‖2 − φi)dµ(x) +
n∑
i=1

φiωi (1.11)

The function g is twice differentiable with respect to the dual variable φ
and its derivatives are given by :

∂g

∂φi
= ωi −

∫
Li(φ,x)

dµ(x)

∂2g

∂φi∂φj
=



∫
Li(φ,x)∩Lj(φ,x)

1
‖xi − xj‖

dµ if i 6= j

∑
j 6=i
− ∂2g

∂φi∂φj
otherwise

(1.12)

Under certain hypotheses stated in Part 4.2.1, the Hessian is of class C2,α [80]
with respect to the variable φ.
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Furthermore, the critical points verify the following condition :∫
Li(φ,x)

dµ(x) = ωi,

the function g is concave with respect to φ as an infimum of linear func-
tions [38] (which can be found in the computation of its Hessian which has a
dominating diagonal with only negative or zero diagonal terms). The critical
points are thus global maxima, which is in line with Theorem 2.2.1.

To optimize this maximization problem, a damped Newton method can be
implemented, under certain regularity hypotheses the convergence is global
[80, 96].

The Kantorovitch functional (1.11) can also be optimized with respect
to the position of the Dirac masses x. If the density of measure µ is regular
enough (of class C2) then the Kantarovitch functional is C1 with respect to
x and its differential is given by :

∂g

∂xi
= 2

∫
Li

(xi − x) dµ(x).

Furthermore, regarding Voronoï diagrams, Lévy et al. [89] showed the
almost-everywhere C2 regularity of g(0Rn ,x) with respect to the variable x
and conjectured that the regularity of the base measure could be weakened
to C0. Finally he pointed out the practical interest of second order methods
for the CVT (centroidal Voronoi tessellation) problem : these are faster and
more robust than first order methods.

2.3 MRI sampling scheme generation
This work is motivated by the compressive sampling problem in MRI

imaging [21, 84] where the aim is to sample in the Fourier domain to then
reconstruct a medical image. The MRI machine collects samples along suffi-
ciently continuous trajectories, our objective is to optimize these trajectories.
However, the set of generated trajectories S must satisfy kinetic conditions,
in such a way that the trajectory can be followed by a MRI and also such
that the acquisition time is limited, meaning that :

S =
{
s : [0, 1]→ Rd, s ∈ C2, ∀t ‖s′(t)‖ ≤ c1 et ‖s′(t)‖ ≤ c2

}
.
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In order to obtain the best possible reconstruction, the trajectory must
approach a non uniform target density µ [21, 1]. To measure the quality of
approximation we use the optimal transport distance L2 in a such a way that
the problem rewrites as :

inf
s∈S
W2(s]λ, µ),

where s]λ is the image measure of the Lebesgue measure [0, 1] by the appli-
cation s.

As the measure carried by the trajectory does not have a density, conti-
nuous transport cannot be used.

If we now suppose that the curve is discretized by a set of points and
that the target measure µ is discrete, the use of discrete optimal transport
and of the Sinkhorn algorithm is justified. However, our numerical tests have
shown that the isotropic regularization term ε has to be chosen carefully
and be small enough, and when the regularization term is too small lots
of numerical instability occurs. We describe these effects in more detail in
Chapter 3.

To deal with this problem, we first use the semi-discrete formalism and
consider this time that the measure µ is absolutely continuous and that the
measure carried by the trajectory is discretized by a set of points. We call this
problem curvling. This problem is similar to semi-discrete bluenoise [34] up
to the fact that we enforce constraints on the positions of the Dirac masses
x. We study this problem in Chapter 5.

Finally if the measure µ is discrete and s]λ is carried by a curve, we may
use semi-discrete optimal transport. To be able to perform the optimization,
the functional (1.11) requires us to be able to intersect the measure carried by
the trajectory s]λ with each of the Laguerre cells. However computing these
intersections for a continuous trajectory is numerically difficult. In Chapter
6, we provide a piecewise linear discretization of the curve and we explicit
a fast method for the computation of these intersections and of the related
optimal transport. The computation of the optimal transport for this new
method differs from the method employed in the stippling case [96], where
the Kantorovitch functional (1.11) belongs to the C2 class.
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2.4 Thesis plan
In this thesis, we wish to solve the optimization problem on the following

set of measures :
inf
s∈S
W2(s]λ([0,1]), µ),

In Chapter 3 we perform a comparison of the different numerical methods
allowing the computation of distances between measures, with a focus on the
L2 optimal transport distance. We describe both the algorithmics and the
limitations of each method. This discussion motivates our choice for the semi-
discrete optimal transport.

In Chapter 4, we determine sufficient conditions that make the semi-
discrete optimal transport functional two times continuously differentiable
with respect to the dual variable but also with respect to the position of
the Dirac masses. The results on the C2 regularity with respect to the dual
variable were developed by Mérigot and led to the proof of convergence of the
damped Newton algorithm [80, 96]. Also, some of our hypotheses are similar
to those of the works of Merigot et al. [80, 96], but the method of proof given
in Chapter 4 is more general and also allows us to prove the regularity of the
optimal transport with respect to the position of the Dirac masses.

The existence of a second order derivative with respect to the Dirac masses
suggests the use of a second order method for the optimization of the Diracs’
positions in the style of Levy et al. [89]. In Part 4.3, the practical interest of
second order methods is proven for two specific problems that are Bluenoise
and Stippling, and for different numerical experiments. The result of these
experiments is mixed : the global number of iterations is, as expected, lower
with a second order method, notably thanks to the last iterations for which
the convergence rate is quadratic. However, the cost of a descent step can
require the resolution of several optimal transport problems and is higher
than that of the Lloyd algorithm (which simply moves the Dirac mass onto
the barycenter of its related Laguerre cell).

In Chapter 5, we present the different numerical methods used to solve
L2 optimal transport. These methods allow us to approach an absolutely
continuous measure by an atomic measure, borne by a trajectory whose speed
and acceleration are bounded or constant, or a set of line segments. The
methods to compute L2 optimal transport are similar to those used for semi-
discrete optimal transport [34, 85, 96] with the difference that they are made
more robust allowing them to work for complicated point configurations and
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more intricate base measures. We also describe the different projectors used
to discretize a trajectory with bounded speed and acceleration by an atomic
measure. Finally we compare our robust algorithm for the computation of
the L2 transport distance with a pre-existing method [34], and with the
convolution distance [21]. The comparison focuses on the numerical speed of
the algorithms but also their theoretical complexity.

In Chapter 6, the discretization of the trajectory s is no more piece-
wise constant but piecewise linear and the base measure is supposed atomic.
Thus the approximation measure is not atomic but is a measure carried by
a polyline (continuous and piecewise linear trajectory). Still using the the
algorithmical geometry library CGAL [128], a new algorithm for the compu-
tation of optimal transport is presented. It allows the computation of the
optimal transport between an atomic measure and a measure carried by a
polyline. Despite recent theoretical progress [96] proving the convergence of
the damped Newton algorithm for measures carried by simplexes of Hauss-
dorf dimension smaller than the ambiant dimension, the problem has not
been treated for measures carried by curves and is the object of Chapter 6.
We coin this new problem 3

4 -discrete optimal transport. In this specific case,
the functional to optimize is less regular : C1. The optimization method to
use cannot be the same one and we have thus tried many methods in order
to establish the quickest one.

In Chapter 7 we check that our previously made approximations are
consistant. Indeed we have discretized a continuous trajectory as either a
piecewise constant curve or a piecewise linear curve. A natural question that
arises is that of the convergence speed of the approximation to the continuous
curve. In this chapter we therefore bound the Haussdorf distance between po-
lylines and atomic curves whose discrete derivatives are bounded with the set
of curves with bounded derivatives. The result of this section is the one that
we could expect : the approximation by a polyline converges quadratically
whereas the piecewise continuous approximation only converges linearly.

Finally in Chapter 8 we provide a detailed description of the rapid inte-
gration method, used in Chapter 5 to compute the semi-discrete transport
distance, allowing the conversion of Laguerre cell volume integrals into in-
tegrals on the boundaries via Green’s formula. After some brief theorical
reminders, the problems related to maximizing the Kantorovitch functional
in the curvling case are described. We expose with a great deal of precision
the numerical difficulties that we were exposed to and the different methods
that were tested. Finally, we examine the advantages of the regularized New-
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ton method before presenting the multi-scale algorithm that allowed us to
perform all of the numerical simulations for the curvling problem and for a
great number of points.
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Résumé

Le stippling est un problème qui a beaucoup progressé dernièrement grâce
à l’introduction de méthodes variationnelles. On s’intéresse ici à deux types
de formulations. L’une repose sur une distance L2 entre mesures et fait appel
à des outils d’analyse harmonique appliquée. L’autre repose sur la distance de
Wasserstein et fait appel à des outils de géométrie algorithmique. Différentes
méthodes de résolution et de discrétisation sont comparées et nous présentons
leurs atouts et leurs limitations.

Abstract

Stippling is a problem that recently found elegant and efficient solutions
thanks to the introduction of variational methods. The aim of this paper is to
compare two state-of-the-art approaches : one is based on the minimization
of an L2 norm (with links to applied harmonic analysis), while the other is
based on the Wasserstein distance (with links to computational geometry).

This chapter was published in

F. de Gournay, J. Kahn, L. Lebrat, and Pierre Weiss
Approches variationnelles pour le stippling : distance L2 ou
transport optimal ? In GRETSI 2017 XXVI Sept. 2017.
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3.1 Introduction
Le stippling consiste à approcher une mesure de probabilité cible µ sur

Ω ⊂ R2 par une mesure discrète de la forme ν = ν(p) = 1
n

∑n
i=1 δpi , avec des

positions p = (pi)1≤i≤n ∈ Ωn. Le principe des méthodes variationnelles est
de trouver un ensemble de positions p qui minimise une certaine distance
d(µ, ν) entre µ et ν :

min
p
d(µ, ν(p)). (3.1)

Deux types de distance ont été proposées récemment.

Distances L2. La première [118, 26] repose sur une distance L2, après
régularisation par un noyau de convolution. Elle est définie par :

dL2 (µ, ν(p)) = 1
2‖h ? (µ− ν(p))‖2

2, (3.2)

où h ∈ C0(Ω) est un noyau régularisant.

Distances de transport. La seconde [34] utilise la distance W2 de Was-
serstein (aussi appelée distance de transport) définie par :

dW2(µ, ν) =
(

inf
γ∈Π(ν,µ)

∫
Ω2
‖x− y‖2dγ(x, y)

) 1
2

, (3.3)

où Π est l’ensemble des couplages entre µ et ν, i.e. l’ensemble des mesures
sur Ω2 dont les marginales sur x et y sont respectivement µ et ν.

Contribution. Cet article est une étude de l’efficacité de ces deux dis-
tances d’un point de vue numérique et qualitatif. Nous décrivons plusieurs
algorithmes, dont certains sont originaux. Ils font appel à des outils très
différents tels que l’analyse harmonique appliquée (transformées de Fourier
non uniformes), la géométrie algorithmique (diagrammes de Laguerre), l’op-
timisation convexe et non convexe (méthodes proximales). Ces outils sont
utilisés par des communautés différentes qui s’ignorent partiellement. Notre
ambition est d’aider à rapprocher ces communautés en popularisant certaines
approches encore méconnues par un grand nombre de chercheurs en traite-
ment du signal.
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3.2 Méthodes numériques
Sous une apparente simplicité, la classe de problèmes (3.1) est en fait

extrêmement complexe. Par exemple, elle contient le problème de Thomson
(placer des points de façon “uniforme” sur une sphère) qui est dans la liste
de Smale [121] des problèmes ouverts de mathématiques à résoudre pour le
XXIème siècle. Nous détaillons ci-dessous les méthodes numériques émer-
gentes pour le résoudre lorsque le nombre n de diracs est grand. Dans le
cas de la distance de transport, nous présenterons trois approches : discrète,
discrète régularisée et semi-discrète.

3.2.1 Distance de convolution
Théorie Lorsque d = dL2 , le problème (3.1) peut se réécrire sous la forme
d’un problème non convexe sur les positions p :

min
p∈Ωn

1
n2

n∑
i=1

n∑
j=1

H(pi − pj)︸ ︷︷ ︸
F (p)≡Répulsion

− 1
n

n∑
i=1

∫
Ω
H(x− pi)dµ(x)︸ ︷︷ ︸

G(p)≡Attraction

, (3.4)

où H est défini par sa transformée de Fourier : Ĥ = |ĥ|2.
Le problème (3.4) peut être interprété comme un problème d’attraction-

répulsion [118] : des particules chargées positivement sont attirées par les
zones claires de l’image et elles se repoussent deux à deux.

Algorithmie Bien que le problème (3.4) soit fortement non convexe, il
peut être résolu par des techniques simples de type descente de gradient
[26]. Il y a cependant trois difficultés techniques importantes : le choix du
noyau H, le calcul des intégrales et le calcul du gradient de la fonctionnelle.
Le noyau H doit être choisi de telle manière que des particules éloignées
interagissent ensemble, ce qui semble assurer empiriquement une convergence
assez rapide des algorithmes de descente de gradient. En pratique, nous avons
choisi H(x) = ‖x‖2 dans ce papier. Pour ce choix, on obtient formellement :

[∇F (p)][i] = 1
n2

∑
j 6=i

pi − pj
‖pi − pj‖

, (3.5)

et on voit que l’intensité de la force de répulsion de la particule j sur la
particule i est indépendente de leur distance. Les intégrales peuvent être cal-
culées avec des formules de quadrature. Enfin, lorsque le nombre de particules
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est grand, calculer le gradient (3.5) directement coûte O(n2) opérations. En
pratique, on fait appel à des outils de simulation de particules tels que les
méthodes multipolaires ou les transformées de Fourier non uniformes [112]
qui permettent de réduire le coût par itération à O(n log(n/ε)) opérations où
ε représente la précision désirée sur le calcul de sommations rapide.

3.2.2 W2 discret
Théorie On suppose ici que µ est une mesure atomique de la forme

µ =
k∑
j=1

µjδmj . (3.6)

où les pointsmj appartiennent à une grille cartésienne. Ainsi, l’image à quan-
tifier est déjà discrète. Dans ces conditions, le plan de transport γ? est discret,
c’est-à-dire qu’il s’écrit sous la forme γ? = ∑

ij γijδpi×mj . Soit C la matrice de
coût définie par Cij = ‖pi −mj‖2

2, on obtient dW2(µ, ν) = 〈C, γ?〉 où 〈·, ·〉 est
le produit scalaire de Frobenius. Le plan de transport optimal, pour p fixé,
est donné par la solution du problème linéaire :

γ?(p) = argmin
γ≥0∑
i
γij=µj∑

j
γij=1/n

〈C, γ〉, (3.7)

et (3.3) se réécrit comme :

dW2(µ, ν(p)) =
n∑
i=1

k∑
j=1

γ?ij(p)‖pi −mj‖2
2. (3.8)

À γ? fixé, la minimisation de (3.8) donne

pi = 1
n

∑
j

γ?ijmj, (3.9)

ce qui correspond à choisir la position pi comme le barycentre des positions
mj pondérées par le plan de transport γ?.

Pour résoudre (3.1) on propose d’utiliser une minimisation alternée en γ
et en p, à l’itération k, γ?(pk) est obtenu en résolvant (3.7) avec un solveur
linéaire, puis pk+1 est obtenu par la relation (3.9).
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Algorithmie Le calcul de la distance de Wasserstein est un problème
de programmation linéaire (PL) à nk variables. Beaucoup de solveurs per-
mettent de le faire, mais ils sont trop coûteux pour les dimensions typiques
rencontrées en traitement du signal (e.g. k = 106 et n = 105). Ce type de
méthode ne peut donc être appliqué qu’en dimension relativement modérée.
De plus, les solutions de (3.7) ne sont pas continues par rapport à la va-
riable p. Ce phénomène peut entraîner des instabilités numériques lors de
l’optimisation.

3.2.3 W2 discret régularisé
Théorie Quand le nombre de points de discrétisation (n+k) est grand, ou
quand la mesure cible µ est bruitée, le plan de transport donné par (3.7) peut-
être très irrégulier. Pour régulariser le problème, une méthode popularisée
récemment consiste à ajouter un terme entropique [32, 10]. Soit

E(γ) =
∑
ij

γij (log(γij)− 1) (3.10)

l’entropie de γ. Dans ces méthodes, on remplace 〈C, γ〉 dans (3.7) par 〈C, γ〉−
εE(γ). Le problème ε-régularisé devient alors strictement convexe et admet
une unique solution, il peut être réécrit sous la forme :

W2,ε(µ, ν) = min
γ∈Π(ν,µ)

KL(γ|ξ(ε)) avec ξ(ε) = e−
C
ε , (3.11)

où KL(γ|ξ) = ∑
ij γij (log(γij)− log(ξij)− 1)) est la divergence de Kullback-

Leibler.

Algorithmie Une méthode de résolution numérique popularisée récem-
ment [32, 10], consiste à utiliser des algorithmes simples de projections itérées
de Bregman, voir algorithme 1. Dans cet algorithme l’exponentielle de ma-
trice, la division et la multiplication entre vecteurs sont des opérations terme
à terme. Le vecteur µ représente les poids de la mesure cible. Le nombre de
variables d’optimisation du problème direct est limité (n+k) mais la matrice
ξ contient nk éléments et ne doit en général pas être calculée. Les produits
ξu et ξv peuvent être calculés efficacement avec la transformée de Fourier
rapide si les points m sont sur une grille cartésienne.

L’algorithme 1 fournit en général une solution approchée acceptable en
une centaine d’itérations. Le coût de chaque itération est dominé par les
produit ξv et ξTu qui peuvent être effectués en O(n log(n)) opérations.
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Algorithm 1 Algorithme de Sinkhorn
Input : C, ε, µ, IterMax
Output : γ? le plan de transport régularisé
Initialisation : v = 1, ξ = e−

C
ε

1: while 1 ≤ nit ≤ IterMax do
2: u = 1

nξv
3: v = µ

ξTu
4: end while

Return γ∗ = Diag(u)ξDiag(v) ;

Une fois γ? obtenu par l’algorithme présenté précédemment, on utilise la
relation (3.8) pour optimiser la position des points.

Le choix du paramètre de régularisation ε est très délicat. Si ε est trop
grand, les masses de Dirac s’agglutinent (voir Figure 3.2). A l’inverse si ε
est trop petit les vecteurs u = ν

ξv et v = µ
ξTu deviennent trop grand (ce

qui arrive rapidement comme ξ = e−
C
ε ) et ne peuvent pas être représentés

en double précision. Globalement, on voit qu’une implémentation “naïve” de
cette méthode n’est pas satisfaisante.

3.2.4 W2 semi-discret
Théorie Le cas semi-discret consiste à ne pas décrire µ comme une somme
de masses de Dirac, mais comme une mesure à densité continue. Par exemple,
on peut trianguler les pixels de l’image et supposer que l’image est linéaire
sur chaque triangle. Un grand avantage de cette formulation est que le plan
de transport est unique [132], ce qui assure une certaine stabilité. La forme
duale du problème (3.3) est donnée par [132] :

W2(µ, ν) = sup
φ∈L1(Ω),
ψ∈L1(Ω),

s.c. φ(x)+ψ(y)≤‖x−y‖2
2

∫
Ω
φ(x)dµ(x) +

∫
Ω
ψ(y)dν(y), (3.12)

La résolution exacte de ce problème selon la variable φ donne l’équation
suivante :

W2(µ, ν) = sup
ψ

∫
Ω

min
i
‖x− pi‖2

2 − ψ(pi)dµ+ 1
n

∑
i

ψ(pi). (3.13)
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Ce problème peut être résolu numériquement en introduisant les cellules de
Laguerre définies par :

Li =
{
x ∈ Ω, ‖x− pi‖2

2 − wi ≤ ‖x− pj‖2
2 − wj, ∀j 6= i

}
.

Le diagramme de Laguerre (Li)1≤i≤n est l’union de n polygones convexes
formant une partition de Ω [7]. En posant ψ(Pi) = wi, le problème (3.12) se
réécrit comme la maximisation de la fonctionnelle g(w) [85], avec

g(w) =
∑
i

(∫
Li

(
‖x− pi‖2

2 − wi
))

dµ+ 1
n

∑
i

wi. (3.14)

où g(w) est une fonction concave, sa dérivée et sa Hessienne sont données
dans [80].

Algorithme La solution w? de (3.14) pour p fixé peut être calculée avec
un algorithme de Newton avec recherche linéaire de Wolfe [80]. A chaque
évaluation du poids w?, la position des points p peut être optimisée grâce
à un algorithme de type Lloyd : chaque masse de Dirac est déplacée sur le
barycentre de la cellule de Laguerre associée :

pi =
∫
Li xdµ(x)
µ(Li)

. (3.15)

Dans notre implémentation, le calcul du diagramme de Laguerre est réa-
lisé par la librairie CGAL [128]. Celui-ci peut être calculé en O(n log(n))
opérations. Une fois les cellules de Laguerre (polygones) calculées, les inté-
grations nécessaires au calcul des dérivées de g(w) sont réalisées rapidement
grâce à la formule de Green (intégration de fonctions sur les arêtes unique-
ment). On peut montrer que le coût de calcul est en O(

√
kn) opérations. Cet

algorithme couple une méthode de second ordre pour le calcul du transport
optimal et une méthode de premier ordre pour l’optimisation de la posi-
tion des points. Il fournit des résultats satisfaisants visuellement en très peu
d’itérations. Par exemple, les auteurs de [34] suggèrent que quatres itérations
suffisent en général.

3.3 Comparaison des méthodes
La Figure 3.1 montre un premier test de quantification de l’indicatrice

d’un disque. La Figure 2 montre l’influence du paramètre de régularisation
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ε introduit en Section 3.2.3. La Figure 3 montre un résultat de stippling sur
un dégradé linéaire. Ces quelques résultats montrent que les méthodes les
plus simples à implémenter (transport optimal discret et transport optimal
régularisé) souffrent malheureusement de sérieux problèmes numériques qui
les rendent inutilisables pour le problème de stippling. Le transport optimal
semi-discret et la distance dL2 fournissent tous les deux des résultats très
satisfaisants, cependant l’implémentation est bien plus difficile. En terme de
rapidité de calcul, le transport optimal semi-discret semble le meilleur. Ce-
pendant il n’est pas clair que ce constat reste valable en dimension supérieure,
car la complexité de construction des diagrammes de Laguerre augmente,
alors que la complexité de la NFFT est inchangée. Pour finir le tableau 3.4
donne quelques propriétés supplémentaires des différentes méthodes.
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Figure 3.1 – Approximation de la fonction caractéristique d’un disque par
les méthodes : L2 (en haut à gauche), W2 discret (en haut à droite), W2
discret régularisé (en bas à gauche) et W2 semi-discret (en bas à droite). Ici,
toutes les méthodes produisent des résultats satisfaisants. Noter cependant
les nombreuses irrégularités obtenues avec le transport optimal discret.
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Figure 3.2 – Approximation de la fonction caractéristique d’un disque par
la méthode de transport optimal régularisé pour un paramètre de régulari-
sation ε valant respectivement 2.5 10−4 et 6.0 10−3. Si ε est trop important,
la régularisation entropique a tendance à agréger les points plutôt que les
disposer de façon uniforme.
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Figure 3.3 – Stippling d’un dégradé linéaire. De haut en bas : W2 discret,
W2 discret régularisé, W2 semi-discret et dL2 . Noter que le transport optimal
discret tend à aligner les points avec la grille, car les masses de Dirac de la
mesure cible sont localisées sur une grille. Pour le transport régularisé, la
valeur de ε est la plus petite possible avant que des NaN apparaissent, car
des divisions par des nombres trop petits ont lieu.
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Figure 3.4 – Quelques propriétés des différents algorithmes.
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Abstract

This paper aims at determining under which conditions the semi-discrete
optimal transport is twice differentiable with respect to the parameters of the
discrete measure and exhibits numerical applications. The discussion focuses
on minimal conditions on the background measure to ensure differentiability.
We provide numerical illustrations in stippling and blue noise problems.

This chapter was published in

F. de Gournay, J. Kahn, and L. Lebrat
Differentiation and regularity of semi-discrete optimal trans-
port with respect to the parameters of the discrete measure.
In Numerische Mathematik, 141(2) : 429 :453, 2019.
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4.1 Introduction
Optimal transport [99, 77] is a blossoming subject that has known major

breakthroughs these last decades. Its applications range from finance [107],
mesh generation [44], PDE analysis [75] and imaging [114, 135] to machine
learning and clustering [123, 50].

This paper is limited to the semi-discrete case, which consists in transpor-
ting discrete measures (Dirac masses) towards a background measure. Ho-
wever we allow more general background measures than the densities with
respect to the Lebesgue measure that are usually found in the literature.
In this setting, we prove second order differentiability of the optimal trans-
port distance for an arbitrary cost with respect to the locations of the Dirac
masses.

Precursors include De Goes [33] (Proposition 2.5.4) who has given the
formula of the Hessian in the Euclidean setting. However he has given no
proof of existence. We will make use of the framework developed by Kitagawa
et al. [80] to overcome these restrictions.

As a by-product, we obtain the second order differentiability conditions
for the so-called energy of a Voronoi diagram. The latter remark generalizes
results presented in [42, 89] to higher dimensions and lower regularity of the
background measure.

4.1.1 Semi-discrete optimal transport
The optimal transport [132] between two probability measures µ and ν

defined respectively on the spaces X and Y with cost c : Y ×X → R+ is the
minimization problem :

min
γ∈Π(ν,µ)

∫
Y×X

c(y, x)dγ(y, x), (4.1)

where Π(ν, µ) is the set of positive measures on Y ×X with marginal distri-
butions on Y (resp. X) equal to ν (resp. µ), that is :

γ ∈ Π(ν, µ)⇔


∫
Y φ(y)dµ(y) =

∫
Y×X φ(y)dγ(y, x) ∀φ ∈ L1(µ)

and∫
X ψ(x)dν(x) =

∫
Y×X ψ(x)dγ(y, x) ∀ψ ∈ L1(ν)

.

Intuitively, a coupling γ may be seen as a way to transport the mass of
µ to the mass of ν. Specifically γ(B,A) is the mass moved from A to B.
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Interpreting φ and ψ as Lagrange multipliers of the constraint Π(µ, ν)
and using a standard inf-sup inversion (see [132] for details), one derives the
Kantorovitch dual problem :

sup
φ(y)+ψ(x)≤c(y,x)

∫
Y
φ(y)dµ(y) +

∫
X
ψ(x)dν(x).

When φ is given, it can be explicitly solved in ψ and the problem turns into

sup
φ
g(φ) with g(φ) =

∫
Y
φ(y)dµ(y) +

∫
X

inf
y∈Y

(c(y, x)−φ(y))dν(x), (4.2)

where the function g, as a dual function, is naturally concave.
Recall that a Lipschitz set is a set for which the boundary is, up to a

partition and rotations, the graph of a Lipschitz function. Suppose that the
support of ν is included in a bounded convex Lipschitz set Ω ⊂ Rd, and that
µ is a discrete measure on Rd, that is, given n ∈ N, there exists z = (zi)i=1..n
with zi ∈ Rd and m = (mi)i=1..n ∈ Rn such that

µ =
n∑
i=1

miδzi ,

where δzi is a Dirac measure located at zi. In this case the set of test functions
φ can be identified to Rn, so that φ = (φi)i=1..n ∈ Rn.

Finally introducing the Laguerre tessellation [5] defined by its cells

Li(z, φ) = {x ∈ Ω such that c(zi, x)−φi ≤ c(zj, x)−φj ∀j ∈ J1, nK}, (4.3)

so that the final formulation of the optimal transport problem (4.1) in the
semi-discrete setting is

sup
φ
g(φ, z,m) with

g(φ, z,m) =
n∑
i=1

∫
Li(z,φ)

(
c(zi, x)− φi

) 1
#M−1({x})dν(x) +

n∑
i=1

φimi, (4.4)

where #M−1({x}) is defined in Section 4.2.1 as the counting factor of the
number of Laguerre cells containing x.

The Laguerre cells Li(z, φopt) associated to an optimal φopt in the maxi-
mization (4.4) are the “arrival” zones of the mass located at each zi by a
coupling γ of optimal transportation, namely :

γ(zi, A) =ν(A) ∀A ⊂ L̊i(z, φopt),
γ(zi, B) =0 if B ∩ Li(z, φopt) = ∅.
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We aim at studying the differentiation properties up to the second order
of g(φ, z,m) with respect to its parameters. The differentiation with respect
to m is rather straightforward and will not be discussed hereafter. The se-
cond order differentiability of g with respect to φ is known [95, 34, 85] and
proved in [80]. This proof mainly uses that the Laguerre cells Li(z, φ) are
the intersection for all j 6= i of the sub-level sets (with respect to the value
of φi− φj) of the function x 7→ c(zi, x)− c(zj, x). Using the co-area formula,
the authors are able to compute the differential of g with respect to φ. Dif-
ferentiating with respect to z is more involved and is the main goal of the
present paper. Note also that the authors of [80] prove C2,α regularity with
respect to φ, whereas we only deal with second order derivatives. Hence our
set of hypotheses is slightly different.

Proposition 4.2.2 provides an easier version of the main theorem by res-
tricting to the Euclidean case. Readers only interested in the standard L2

transportation distance might want to skip directly to Proposition 4.2.2.

4.1.2 Link with Voronoi diagrams
The Voronoi diagram {Vi(z)}i is the special case of the Laguerre tessel-

lation when φ = 0 and the cost is the square Euclidean distance, as can be
seen from definition (4.3),

Vi(z) = Li(z, 0) = {x ∈ Ω such that ‖zi − x‖2
2 ≤ ‖zj − x‖2

2 ∀j ∈ J1, nK}.

Moreover, as noticed by Aurenhammer et al. [5], for any choice of Lagrange
multipliers φ, the vector of masses mi = ν(Li(z, φ)) turns φ into a solution of
(4.4). In particular, the Voronoi diagram is the Laguerre tessellation of the
optimal transport problem associated to the choice of mass m̃i := ν(Vi(z)).
Now recall that φ is a Lagrange multiplier for the mass constraint in (4.1),
so that setting φ = 0 releases this constraint and the corresponding choice of
m̃ minimizes the optimal transportation cost :

g(0, z, m̃) = sup
φ
g(φ, z, m̃)

= inf
m

sup
φ
g(φ, z,m). (4.5)

Another more physical interpretation of (4.5) is that, without mass constraints,
the best way to transport a measure ν to a finite number of points is to send
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each part of ν to its closest neighbour. Hence we build the Voronoi diagram
of the points.

The expression (4.5) has been coined as the energy of the Voronoi dia-
gram :

GS(z) = g(0, z, m̃) =
∑
i

∫
Vi(z)
‖x− zi‖2dν(x) (4.6)

Finding critical points of this energy GS is also known as the centroidal
Voronoi tessellation (CVT) problem. Indeed, at a critical point z̄ of GS, each
z̄i is the barycenter of Vi(z̄) with respect to the measure ν :

z̄i
∫
Vi(z̄)

dν(x) =
∫
Vi(z̄)

xdν(x).

Results of second order differentiability of GS with respect to z has been
proven in [89] and inferred in many different previous papers [73, 3, 43]. Ho-
wever those papers do not tackle the question of the regularity of ν. Moreover
the cost c in the Voronoi setting is the square of the Euclidean distance. Our
work is a generalization of both of this points. Indeed differentiability of GS

stems from differentiablity of g, see equations (4.17) and (4.19).

4.1.3 Organization of the paper
In Section 4.2, the main result is given. The hypotheses needed to en-

sure second order differentiability are given in 4.2.1, the result is stated in
Section 4.2.2, Theorem 4.2.1 and is reformulated in the Euclidean case in Sec-
tion 4.2.3. The rest of Section 4.2 is devoted to the proof of Theorem 4.2.1.
Section 4.3 presents some numerical results.

4.2 Second order differentiability
The main goal of this section is to state, in Theorem 4.2.1, the sufficient

conditions that ensure differentiability of second order of the function

g̃(φ, z) =
∫

Ω
min
i

(
c(zi, x)− φi

)
dν(x),

which yields immediately the second order derivatives of g = g̃+φ ·m defined
in (4.4).
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Figure 4.1 – Typical example of eik and the neighborhoods Nik(ε) for i = 1.

4.2.1 Hypotheses and notation
In order to state the hypotheses required for Theorem 4.2.1, additional

notation is required. For all x ∈ Ω, denote M(x) the subset of J1, nK given
by

M(x) =
{
i ∈ J1, nK s.t c(zi, x)− φi ≤ c(zj, x)− φj ∀j ∈ J1, nK

}
. (4.7)

The Laguerre cell Li(z, φ) is then exactly given by

x ∈ Li(z, φ)⇔ i ∈M(x).

For i 6= k ∈ J1, nK, denote

eik := {x ∈ Rd s.t. c(zi, x)− φi = c(zk, x)− φk}. (4.8)

Note that Li(z, φ) ∩ Lk(z, φ) is included in eik but the converse fails to
be true. First notice that eik is not included in Ω whereas the Laguerre cells
are included in Ω by definition. Second eik is only the “competition zone"
between the ith and the kth Laguerre cells but it may (and will) happen that
x ∈ eik is included in Lj(z, φ) for some other j and in neither Li(z, φ) nor
Lk(z, φ). Note also that the dependence of both eik and M(x) in (z, φ) is
dropped to shorten the notation.

For all i and k, we denote the ε-neighborhood of eik by Nik(ε). By conven-
tion, ei0 is the boundary of Ω and thus Ni0(ε) is an ε-neighborhood of ∂Ω.
Figure 4.1 illustrates these geometric objects.
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In the following definitions σ denotes the d − 1-Hausdorff measure. The
sufficient geometric hypotheses on the Laguerre tessellation for second order
differentiability are :

Definition 4.2.0.1 (Diff-2). We say that hypothesis (Diff-2) holds at point
(z0, φ0) iff

— for all 1 ≤ i ≤ n, (z, x) 7→ c(zi, x) is W 2,∞(B(z0, r) × Ω), where
B(z0, r) is a ball around the point z0.

— there exists ε > 0 such that for all 1 ≤ k 6= i ≤ n, ∀x ∈ eik

‖∇xc(zi0, x)−∇xc(zk0 , x)‖ ≥ ε, (Diff-2-a)

— for all i, there exists s, C > 0 such that for all 0 ≤ k 6= j ≤ n, for all
ε, ε′ in ]0, s[, it holds

|Nik(ε) ∩Nij(ε′)| ≤ Cεε′. (Diff-2-b)

and
lim
ε→0

σ
(
eik ∩Nij(ε)

)
= 0, (Diff-2-c)

In the above definition, all the geometric objects eik,Nik(ε),Nij(ε) are defined
with parameters (z, φ) = (z0, φ0).

The geometric hypothesis for continuity of second order derivatives is

Definition 4.2.0.2 (Cont-2). We say that hypothesis (Cont-2) holds at point
(z0, φ0) iff there exists C > 0 such that for all i, j

σ(eij ∩ Ω) ≤ C, (Cont-2)

where eij is defined in (4.8) with parameters (z, φ) = (z0, φ0).

Remark 4.2.1. At some point, we closely follow the ideas of [80]. Our hy-
potheses (Diff-2) and (Cont-2) are a consequence of more general geometric
hypotheses in [80], in particular Loeper’s condition. Using Loeper’s condition
requires an exponential mapping to reduce the problem to a convex one. Hence
the proofs of this paper would be even more technical and hard to read.
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4.2.2 Main result

Directional derivative of g̃ can be obtained using very mild assumptions
on the cost function c and the approximated measure ν.

Proposition 4.2.1. Set Ω a bounded Lipschitz convex set and z0 a vector of
positions of Dirac masses. Suppose that for all i and for ν-almost every x,
the function y 7→ c(y, x) is differentiable around y = zi0 and that there exists
h ∈ L1(Ω, ν) with |∇yc(zi, x)| ≤ h(x) ν-a.e. for all z around z0. Then g̃ is
directionally derivable at point (φ0, z0) with derivative given by :

lim
t→0+

g̃((φ0 + tdφ, z0 + tdz))− g̃(φ0, z0)
t

=
∑

A⊂J1,nK

∫
M−1(A)

min
i∈A

(
〈∇yc(zi0, x), diz〉 − diφ

)
dν(x),

whereM is defined in (4.7) with parameters (z, φ) = (z0, φ0). If ν(M−1(A)) =
0 for each A of cardinal ≥ 2, it holds that g̃ is differentiable and

∂zg̃(φ0, z0) =
n∑
i=1

∫
Li(z0,φ0)

∇yc(zi0, x)dν(x) and ∂g̃

∂φi
(φ0, z0) = −ν(Li(z0, φ0))

If in addition for ν-almost every x, the function y 7→ ∇yc(y, x) is continuous
around zi0 for all i, then g̃ is C1 around (φ0, z0).

The theorem ensuring second order differentiability is :

Theorem 4.2.1. If the hypotheses of Proposition 4.2.1 and (Diff-2) hold at
point (φ0, z0), and if ν admits a density with respect to the Lebesgue measure
which is W 1,1(Ω)∩L∞(Ω) then g̃ is twice differentiable at point (φ0, z0). Let
σ denote the d − 1 Hausdorff measure, m be the density of ν, and k 6= l be
in J1, nK, the formula for the Hessian at point (φ0, z0) is given by :
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∂2g̃

∂φk∂φl
=

∫
∂Lk∩∂Ll

1
‖∇xc(zk0 , x)−∇xc(zl0, x)‖m(x)dσ

∂2g̃

(∂φk)2 =
∑
j 6=k

∫
∂Lk∩∂Lj

−1
‖∇xc(zk0 , x)−∇xc(zj0, x)‖

m(x)dσ

∂2g̃

∂φk∂zl
=

∫
∂Lk∩∂Ll

−∇yc(zl0, x)
‖∇xc(zk0 , x)−∇xc(zl0, x)‖m(x)dσ

∂2g̃

∂φk∂zk
=

∑
j 6=k

∫
∂Lk∩∂Lj

∇yc(zk0 , x)
‖∇xc(zk0 , x)−∇xc(zj0, x)‖

m(x)dσ

∂2g̃

∂zk∂zl
=

∫
∂Lk∩∂Ll

∇yc(zk0 , x)⊗∇yc(zl0, x)
‖∇xc(zk0 , x)−∇xc(zl0, x)‖m(x)dσ

∂2g̃

(∂zk)2 =
∫
Lk

∂2c

∂y2 (zk0 , x)dν(x)−
∑
j 6=k

∫
∂Lk∩∂Lj

∇yc(zk0 , x)⊗∇yc(zk0 , x)
‖∇xc(zk0 , x)−∇xc(zj0, x)‖

m(x)dσ

Note that the Laguerre cells in consideration are computed for parameters
(z, φ) = (z0, φ0) and that for each j ∈ J1, nK, zj is a vector in Rd. As a
consequence, differentiating g̃ once with respect to zj yields a vector in Rd

and differentiating g̃ twice with respect to zj yields a matrix. Recall that the
derivatives in y of c refer to derivatives in the first variable.
If in addition (Cont-2) holds at point (φ0, z0) and if the density m is C0(Ω)
then g̃ is C2.

4.2.3 The Euclidean case
This section deals specially with the Euclidean case c(zi, x) = 1

2‖z
i−x‖2

2.
Then we have

Proposition 4.2.2. If c(y, x) = 1
2‖y − x‖2

2, all the hypotheses of Theo-
rem 4.2.1 are verified if ν admits a C0(Ω) ∩ W 1,1(Ω) density with respect
to the Lebesgue measure, and zi0 6= zj0 for i 6= j and if the Laguerre tessel-
lation for (z0, φ0) has no cell of zero Lebesgue volume. In this case the first
order formulas are given by :

∂g̃

∂zi
(φ0, z0) =

∫
Li

(
zi0 − x

)
dν(x) and ∂g̃

∂φi
(φ0, z0) = −ν(Li)
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and the second order formula are given by :

∂2g̃

∂φi∂φj
(φ0, z0) =

∫
∂Li∩∂Lj

m(x)
‖zi0 − z

j
0‖
dσ if i 6= j

∂2g̃

(∂φi)2 (φ0, z0) = −
∑
j 6=i

∂2g̃

∂φi∂φj
(φ0, z0)

∂2g̃

∂φi∂zj
(φ0, z0) = −

∫
∂Li∩∂Lj

(zj0 − x)m(x)
‖zi0 − z

j
0‖

dσ if i 6= j

∂2g̃

∂φi∂zi
(φ0, z0) = −

∑
j 6=i

∂2g̃

∂φj∂zi

∂2g̃

∂zi∂zj
(φ0, z0) =

∫
∂Li∩∂Lj

(zj0 − x)(zi0 − x)Tm(x)
‖zi0 − z

j
0‖

dσ if i 6= j

∂2g̃

(∂zi)2 (φ0, z0) = Idν(Li)−
∑
j 6=i

∫
∂Li∩∂Lj

(zi0 − x)(zi0 − x)Tm(x)
‖zi0 − z

j
0‖

dσ,

where the Laguerre cells Li,Lj in consideration are computed with parameters
(z0, φ0) and Id is the identity matrix of dimension d.

Proof 4.2.1. In the Euclidean case the regularity assumption on c is trivially
satisfied. Moreover eik is an hyperplane and Ω is bounded so that (Cont-2) is
trivial.

A direct computation shows that

‖∇xc(zi0, x)−∇xc(zj0, x)‖ = ‖zi0 − z
j
0‖,

which is non zero by hypothesis and hence uniformly non-zero, so that Hypo-
thesis (Diff-2-a) is satisfied.

For j, k 6= 0, the sets Nik(ε) are ε-neighbourhoods of the hyperplane eik, so
that (Diff-2-b) and (Diff-2-c) are verified as soon as the hyperplanes eik and
eij are different for j 6= k. On the other hand, it is impossible that eik = eij

for any j 6= k. Indeed, by the definition (4.8), it would mean that zi0,zk0 and zl0
are aligned and that the Laguerre cell corresponding to the point between the
two others has empty interior, contradicting the hypotheses of the theorem.

Similarly, if eik∩∂Ω is not reduced to at most two points, by the convexity
of Ω, the set Ω lies on one side of eik and one of the two Laguerre cells
Li(z0, φ0) or Lk(z0, φ0) is therefore empty. This final argument proves the
case (Diff-2-b) and (Diff-2-c) for j = 0.
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Now let A be of cardinal ≥ 2. Let i and k belong to A, then M−1(A) is
included in eik, but eik is an hyperplane which is of zero Lebesgue measure,
hence ν(M−1(A)) = 0.

The rest of the hypotheses of Proposition 4.2.1 is trivial to prove.
As proved in [80], the constant C appearing in (Diff-2-b) depends on the

minimal angle between the intersection of two competition zones eik and eil.
This constant is non-zero since there is a finite number of such intersections
and it drives the C2,α regularity of the function g.

4.2.4 Technical lemmas
This section is devoted to proving two technical lemmas, the first one

ensures second-order differentiability of the function g̃ and the second one
ensures continuity. In this section, fix i, fix a C∞ mapping t 7→ (z(t), φ(t))
that we aim at deriving at time t = 0 . Set s small enough and consider
only t ∈ [0, s]. Throughout this section the objects that depend on (z, φ)
(say of the Laguerre cell Lj(z, φ)) will be written as depending on t (with
the obvious notation Lj(t)). Denote

uikt (x) := c(zi(t), x)− φi(t)−
(
c(zk(t), x)− φk(t)

)
.

Denote (uikt )−1(0) := {x ∈ Rd s.t. uikt (x) = 0}. Note that (uik0 )−1(0) = eik,
where eik is defined in (4.8), Section 4.2.1.
Lemma 4.2.2. Suppose that the Laguerre tessellation verifies (Diff-2). Let

ξ : t 7→
∫
Li(t)

f(x, t)dx,

with f in W 1,1(Ω× R) ∩ L∞(Ω× R) then ξ is derivable at time t = 0 with :

∂tξ(0) =
∑
k

∫
Li(0)∩Lk(0)

∂tu
ik
0 (x)

‖∇xuik0 (x)‖f(x, 0)dσ +
∫
Li(0)

∂tf(x, 0)dx,

where σ is the d− 1 Hausdorff measure.
Lemma 4.2.3. Suppose the Laguerre tessellation verifies (Cont-2). Let f be
continuous, then ξ : t 7→

∫
Li(t)∩Lk(t) f(x, t)dσ is continuous.

These lemmas are proven using tools of differential geometry via a bi-
Lipchsitz map θ that maps approximatively Li(0) to Li(t). The organization
of this section is as follows : In Section 4.2.4.1 the map θ is built, and it is
shown that θ(Li(0)) ' Li(t). The lemmas are then proven in Section 4.2.4.2.
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4.2.4.1 Construction of the flow

For any k 6= i, k > 0, (Diff-2-a) ensures that ‖∇xu
ik
0 (x)‖ is uniformly non-

zero on (uik0 )−1(0). By Lipschitz regularity of ∇xu, ‖∇xu
ik
t (x)‖ is uniformly

non-zero for all x ∈ Nik(s), t ∈ [0, s], provided s is chosen small enough.
Hence the vector field defined as :

V k
t (x) := −∂tuikt (x) ∇xu

ik
t (x)

‖∇xuikt (x)‖2 ∀x ∈ Nik(s), t ∈ [0, s],

is Lipschitz and can be extended as wanted outside Nik(s).
The flow θk associated to V k

t is defined as :

θk0(x) = x and ∂tθkt (x) = V k
t (θkt (x)). (4.9)

The flow θk preserves the level-sets of uikt in the sense that for all x, the
mapping t 7→ uikt (θkt (x)) is a constant as long as θkt (x) remains in Nik(s).
Hence the flow θkt preserves the competition zone between Li(t) and Lk(t).

The objective is to build a flow θ which preserves the whole boundary of
Li(t). To that end, introduce :

N ?
ik(ε) =

⋃
0≤j 6=k≤n

Nij(ε),

and denote δk(x) the distance function to N ?
ik(0)

δk(x) = inf
y

‖y − x‖, s.t. y ∈ ∂Ω
⋃ ⋃

1≤j 6=k≤n
eij

 .
Set ζ a non-decreasing C∞(R+,R) function equal to zero on [0, 1/2] and

to one on [1,+∞[ and for all x, 0 ≤ t ≤ s define

Ṽ k
t (x) = ζ(δk(x)

s
)V k

t (x) Vt(x) =
n∑
k=1

Ṽ k
t (x)

Then Vt is equal to V k
t on Nik(s) \ N ?

ik(s). One can safely interpret that
Vt = V k

t on the edge of Li(t) that is shared with Lk(t) and has been smoothed
to zero on every corner of Li(0).

Denote θ the flow associated to Lipschitz vector field V . We claim that
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L1

L2
V 2
t

V 4
t

V 3
t

e13(t)

L4

Ṽ 3
t :

Figure 4.2 – Example of the vector fields V 3
t and Ṽ 3

t for i = 1

Proposition 4.2.3. There exists C, c > 0 such that for all s small enough,
for all k, and 0 ≤ t ≤ cs, the symmetric difference between θt(Li(0)) and
Li(t) has Lebesgue volume bounded by Cst.

Proof Note first that the vector field Vt is always zero on ∂Ω so that
θt(Ω) = Ω for all t. In the sequel Cv denotes an upper bound of the velocity
of θ and θk. Set c ≤ 1/Cv, then for all k :

θkt (eik) ⊂ Nik(s), (4.10)

and then θkt (eik) = (uikt )−1(0). Let x ∈ θt(Li(0))∆Li(t) and denote x0 such
that x = θt(x0). We claim that there exists k ∈ J1, nK and 0 ≤ r1, r2 ≤ t such
that uikr1(θr1(x0)) = 0 and uikr2(θr2(x0)) 6= 0.

Indeed, if for instance x ∈ θt(Li(0)) but x /∈ Li(t), then trivially x0 ∈
Li(0), meaning that for all k, uik0 (x0) ≤ 0. But x /∈ Li(t) means that there
exists a k such that uikt (θt(x0)) > 0. The continuity of the mapping t 7→
uikt (θt(x)) ensures that for some r1 we have uikr1(θr1(x0)) = 0. The other case
is done the same way.

Since θ has bounded velocity,

∀r ≤ t ‖θr(x0)− θr1(x0)‖ ≤ Cv|r − r1|.

By (4.10), since θr1(x0) ∈ (uikr1)−1(0), then θr1(x0) ∈ Nik(Cvr1), then

∀0 ≤ r ≤ t, θr(x0) ∈ Nik(2Cvt). (4.11)
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Upon reducing c by a factor 2, θr(x0) ∈ Nik(s). We now claim that

there exists 0 ≤ r3 ≤ t such that θr3(x0) ∈ N ?
ik(s). (4.12)

Indeed, if it is not the case, then for all r Vr(θr(x0)) = V k
r (θr(x0)) and then

θr(x0) = θkr (x0) and hence uikr (θr(x0)) is a constant which is in contradiction
with uikr2(θr2(x0)) 6= 0 and uikr1(θr1(x0)) = 0. Using the bounded velocity of θ,
and (4.12) we conclude that x = θt(x0) ∈ N ?

ik(s + Cvt) ⊂ N ?
ik(2s). Finally,

using (4.11), we obtain

x ∈ N ?
ik(2s) ∩Nik(Cvt) =

⋃
j 6=k

(Nij(2s) ∩Nik(Cvt)) .

By hypothesis (Diff-2-b), the last set has volume bounded by Cst for some
constant depending on Cv, the maximum velocity of θk and θ. Since Cv may
be chosen independently of s when s is small enough, then C is independent
of s and t. �.

4.2.4.2 Proof of lemmas

We are now ready to tackle the proof of Lemmas 4.2.2 and 4.2.3 in this
section.

Proof of Lemma 4.2.2 In this proof, the rate of convergence of o(t)
t

towards 0 depends on s (as s−1). Let f in L∞(Ω × R) with gradient in
L1(Ω× R) and s small enough. For all t ≤ cs, Proposition 4.2.3 asserts∫

Li(t)
f(x, t)dx =

∫
θt(Li(0))

f(x, t)dx+O(st)

=
∫
Li(0)

f(θt(x), t)|det(Jθt(x))|dx+O(st)

Where Jθt is the Jacobian matrix of θt.
Using θt(x) = x+ tV0(x) + oL∞(t), we then have (see [68])

f(θt(x)) = f(x, 0) + t∂tf(x, 0) + t∇xf(x, 0) · V0(x) + oL1(t),

|det(Jθt(x))| = 1 + tdiv(V0) + oL∞(t),
where oLa(t) is a time dependent function that, when divided by t goes to-
wards zero in La norm as t goes to zero. The rate of convergence depends on
the Lipschitz norm of Vt which scales as s−1.



62 CHAPTER 4. DIFFERENTIATION AND REGULARITY

Then finally∫
Li(t)

f(x, t)dx−
∫
Li(0)

f(x, 0)dx = tαf (s) + o(t) +O(st) (4.13)

with αf (s) =
∫
Li(0)

(∂tf(x, 0) +∇xf(x, 0) · V0(x) + f(x, 0)div(V0)) dx.

Recall that V0 depends on s, hence αf depends on s.
A Stokes formula yields

αf (s) =
∫
Li(0)

∂tf(x, 0)dx+
∫
∂Li(0)

f(x, 0)V0(x) · nidσ

This formula is true for Lipschitz domain and Li(0) is Lipschitz because
each eik is Lipschitz as can be proven by a an implicit function theorem
using (Diff-2-b).

Denote Y (s) = {x ∈ ∂Li(0) ∩ ∂Lk(0) s.t. ζ( δk(x)
s

) 6= 1}. Since

Y (s) ⊂
⋃
j 6=k

(
Nij(s) ∩ eik

)
,

we know lim
s→0

σ(Y (s)) = 0 by (Diff-2-c).
Since f is in W 1,1, its trace on eik is in L1(eik) for the measure σ [24].

Hence, noticing that

1∂Li(0)V0(x) =
∑
k 6=i

1∂Li(0)∩∂Lk(0)ζ(δk(x)
s

)V k
0 (x),

the dominated convergence theorem asserts that α(s) converges as s goes to
zero towards

lim
s→0

αf (s) := αf (0) =
∫
Li(0)

∂tf(x, 0)dx+
∑
k 6=i

∫
∂Li(0)∩∂Lk(0)

f(x, 0)V k
0 (x) · nidσ.

Now denote,

r(t) = t−1
(∫
Li(t)

f(x, t)dx−
∫
Li(0)

f(x, 0)dx
)
.

Let t go to zero in (4.13), we have lim sup0+ r(t) = αf (s)+O(s) and lim inf0+ r(t) =
αf (s) +O(s). Letting s goes to zero shows that lim0+ r(t) exists and is equal
to αf (0) which proves lemma 4.2.2.
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Proof of lemma 4.2.3 The proof of this proposition owes so much
to [80], proposition 3.2 that we even take the same notations. Consider the
following partition of Li(t) ∩ Lk(t) :

At =
{
θkt (x) s.t. θkr (x) ∈ Li(r) ∩ Lk(r) ∀r ∈ [0, s]

}
Bt = {x ∈ Li(t) ∩ Lk(t) s.t. x /∈ At}

It is clear that for all t ≤ s, we have

ξ(t) =
∫
At
f(x, t)dσ +

∫
Bt
f(x, t)dσ

In [80], in the first part of the proof of Proposition 3.2, the authors show that

lim
s→0+

∫
As
f(x, s)dσ =

∫
A0
f(x, 0)dσ,

while actually controlling the convergence rate by the modulus of continuity
of f . The reason is that θkt is a bi-Lipschitz map between At and A0 and
that a change of variable allows to prove continuity. Note that no regularity
assumption is made on the set At except that its d − 1 Hausdorff measure
is bounded, which is exactly hypothesis (Cont-2). In order to prove that the
sets Bt are small with respect to the measure dσ, we follow a slightly simpler
and quicker path than [80] due to the fact that we use a stronger hypothesis
in (Diff-2-c).

First if x = θkt (x0) ∈ Bt, then there exists r ∈ [0, s], such that :

θkr (x) ∈ ∂Ω
⋃

j /∈{i,k}
(uijr )−1(0) (4.14)

Indeed if x ∈ Bt then θkr (x) is in Li(r) ∩ Lk(r) for r = t and strictly
outside this set for some r = r1. Recalling that

Li(t)∩Lk(t) =
{
x ∈ Ω s.t. uikt (x) = 0 and uijt (x) ≤ 0 and ukjt (x) ≤ 0 ∀j /∈ {i, k}

}
,

and that θkt preserves the level-set 0 of uikt , then for some r, we must have
by the intermediate value theorem either θkr (x) ∈ ∂Ω or uijr (θkr (x)) = 0 or
ukjr (θkr (x)) = 0. Finally if ukjr (θkr (x)) = 0, then implies that uijr (θkr (x)) = 0,
since uikr (θkr (x)) = 0.



64 CHAPTER 4. DIFFERENTIATION AND REGULARITY

Suppose that we are in the case uijr (θkr (x0)) = 0 in (4.14), then θkr (x0) is
in (uijr )−1(0), which, by finite velocity of θj, is at distance at most Cvs of
eij = (uij0 )−1(0). By finite velocity of θk, x0 is at distance at most Cvs of
θkr (x0), meaning that x0 is at distance at most 2Cvs of eij. Since uik0 (x0) = 0,
we have that x0 ∈ C0 := eik ∩ N ?

ik(2Cvs) which dσ goes to zero as s goes to
zero by (Diff-2-c). Finally

Bt ⊂ θkt (C0),
since θkt is a bi-Lipschitz map. Hence as s goes to zero, dσ(Bt) goes to 0 and
hence.

lim
s→0+

∫
Bt
f(x, t)dσ = 0 = lim

s→0+

∫
B0
f(x, 0)dσ.

4.2.5 Proof of the results of Section 4.2
The goal of this section is to prove the different results of Section 4.2. We

begin by Proposition 4.2.1. Suppose first zi 7→ c(zi, x) is differentiable ν a.e.
for all i and that ν is a positive Borelian measure of finite mass and rewrite
g̃ as

g̃(t) =
∫

Ω
ψopt(z(t), φ(t), x)dν(x)

where

ψopt(z, φ, x) = min
i
ψi(z, φ, x) with ψi(z, φ, x) = c(zi, x)− φi,

As the minimum of a finite number of differentiable functions, ψopt is mea-
surable and is ν-a.e directionally derivable with formula

ψopt
′(x) := lim

t→0+

ψopt(z + tdz, φ+ tdφ, x)− ψopt(z, φ, x)
t

= min
i∈M(x)

〈∇ψi(x), d〉,

with d = (dz, dφ) and ∇ is the gradient with respect to z and φ. Recall for
that purpose thatM(x) is exactly the argmin of ψi(x). The function (ψopt)′
is seen to be measurable when rewritten as :

ψopt
′(x) =

∑
A⊂J1,nK

1{M−1(A)}(x) min
i∈A
〈∇ψi(x), d〉,

the setM−1(A) being measurable since

(M(x) = A)⇔ (ψi(x) = ψopt(x) ∀i ∈ A and ψi(x) > ψopt(x) ∀i ∈ Ac)
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A standard dominated convergence theorem asserts that the directional de-
rivative of g̃ exists and is given by :

g̃′ =
∫

Ω
(ψopt)′(x)dν(x)

and we retrieve

g̃′ =
∑

A⊂J1,nK

∫
M−1(A)

min
i∈A
〈∇ψi(x), d〉dν(x)

which is exactly the formula of Proposition 4.2.1. When one supposes that
ν(M−1(A)) = 0 as soon as the cardinal of A is strictly greater than 1, then
g̃′ is linear w.r.t d and hence differentiable. In this case, we haveM−1({i}) =
Li(z, φ) up to a set of zero ν-measure, and hence

∇g̃(z, φ) =
n∑
i=1

∫
Li(z,φ)

∇ψi(z, φ, x)dν(x)

In order to prove the continuity of the gradient of g̃, we use the following
technical lemma with f = ∇ψi(z, φ, x).

Lemma 4.2.4. Suppose that ν(M−1(A)) = 0 if #(A) ≥ 2. If f is continuous
with respect to z, φ for almost every x and if there exists l ∈ L1(ν) such that
|f(z, φ, x)| ≤ l(x) ν-a.e. for all (z, φ) then

Fi : (z, φ) 7→
∫
Li(z,φ)

f(z, φ, x)dν

is continuous.

Proof of Lemma 4.2.4 First recall that

Li(z, φ) = {x ∈ Ω s.t. ψi(z, φ, x) ≤ ψopt(z, φ, x)}.

For a sequence (zn, φn) that goes to (z, φ), denote

hn(x) = f(zn, φn, x) 1ψi(zn,φn,x)≤ψopt(zn,φn,x)(x) 1Ω(x),

and h = 1Lif . Then

Fi(zn, φn) =
∫

Ω
hndν, Fi(z, φ) =

∫
Ω
hdν.
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Moreover hn ≤ l for all n.
If x is such that i /∈ M(x), that is ψi(z, φ, x) > ψopt(z, φ, x), then hn(x)

converges to h(x). If x is such that M(x) = {i}, then by continuity of
ψj(z, φ, x) for all j 6= i, ψi(zn, φn, x) = ψopt(zn, φn, x) for n sufficiently large,
hence hn(x) converges to h(x). Then hn converges to h = 1Lif except possibly
on the sets where M−1(A) is of cardinal greater or equal than 2, which is,
by hypothesis, of zero ν-measure.

Since hn ≤ l for all n, a dominated convergence theorem ensures the
continuity of the integral with respect to (z, φ). �

Proof of Theorem 4.2.1 The proof of Theorem 4.2.1 is straightforward.
We apply Lemma 4.2.2 to f(z, x) = ∂zc(zi, x)m(x) or f(z, x) = m(x), where
m is the density of ν. Then we apply Lemma 4.2.3 to the formula of the
second order derivative in order to prove second order continuity. We obtain
the following formula for the second order derivatives of g, taken at point
(φ, z) = (φ0, z0) :

∂2g̃

∂a∂b
=
∑
i 6=j

∫
∂Li∩∂Lj

(∂ac(zj, x)− ∂aφj − ∂ac(zi, x) + ∂aφ
i)(∂bc(zi, x)− ∂bφi)

‖∇xc(zi, x)−∇xc(zj, x)‖ m(x)dσ

+
∑
i

∫
Li

∂2c

∂a∂b
(zi, x)dν(x),

where σ is the d−1 Hausdorff measure, m is the density of ν and a or b have
to be replaced by the coordinates of φ or of one of the point zk. Replacing
the a and b, yields the formulas stated in Theorem 4.2.1.

4.3 Numerical experiments
In this section we test a second order algorithm for the 2-Wasserstein

distance, when c is the Euclidean cost. Two problems will be solved : Blue
Noise and Stippling. In both cases, we optimize a measure µ of the form
µ(z,m) = ∑n

i=1m
iδzi , so that the 2-Wasserstein distance W2(µ(z,m), ν) is

minimal. The cost function for the Stippling problem is refered to as GS, the
one for the Blue Noise as GB. We denote by GB/S the cost function when no
difference is made between the two problems.

There are many applications for the Blue Noise and Stippling problems,
from data compression in computer graphics to clustering in data science
described in [43], or more recently in anisotropic meshing [86]. Note also that
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these problems fall within the scope of optimum quantization, that is finding
a set of supporting points that approximates a probability distribution, see
[62, 65] and the references inside.

— Blue Noise : Here the weights mi are fixed. Hence the functional to
minimize reads as :

inf
z∈Rnd

GB(z) with GB(z) = W2(µ(z,m), ν) = max
φ

g(φ, z,m). (4.15)

— Stippling : This problem consists in optimizing in m and in z simul-
taneously :

inf
z∈Rnd

inf
m∈∆n

W2(µ(z,m), ν),

where ∆n is the canonical simplex.
The Stippling problem is actually easier than the Blue Noise problem.

Following the discussion of Section 4.1.2, optimizing the mass amounts to set
φ = 0 and m̃i = ν(Vi) :

inf
z∈Rnd

GS(z) with GS(z) = W2(µ(z, m̃), ν) = g(0, z, m̃), (4.16)

where GS is the Voronoi energy defined in (4.6). Hence no optimization pro-
cedure is required in φ and m̃ is merely given by computing the ν-mass of
each Voronoi cells.

Note that ∂zGB/S, the differential of GB/S with respect to z is equal to :

∂zGB = ∂zg and ∂zGS = ∂zg + ∂mg∂zm̃

since ∂mg = 0 when φ = 0, we obtain

∂zGB/S = ∂zg (4.17)

Formulas Recall that in the Euclidean case, the formulas for g boils down
to

∂g

∂zi
= M i(zi − z̄i)

∂2g

∂zizj
=

∫
∂Li∩∂Lj

(zj − x)(zi − x)Tm(x)
‖zi − zj‖

dσ if i 6= j

∂2g

∂(zi)2 = M i −
∑
i 6=j

∂2g

∂zizj

where M i =
∫
Li dν is the mass of the ith Laguerre cell and z̄i =

∫
Li xdν/M

i

is its barycenter.
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4.3.1 Lloyd’s algorithm

Algorithm 2 Lloyd’s algorithm with Wolfe stabilization.
1: Inputs :
2: Initial guess z0

3: target measure ν
4: Outputs :
5: An approximation of the solution of (4.15).
6: while Until convergence do
7: Compute φopt(zk).
8: Compute z̄ki the barycenter of the ith Laguerre cell Li(zk, φopt(zk)).
9: Set dk = z̄ki − zki

10: Set σk = 1 and zk+1
i = zki + σkdk

11: while The Wolfe conditions are not fulfilled do
12: σk = σk/2 and zk+1

i = zki + σkdk.
13: end while
14: k = k + 1
15: end while
16: Return zk.

The gradient algorithm for computing the Blue Noise (resp. the Stippling
problem) is to move each point in the direction of the barycenter of its La-
guerre cell (resp. Voronoi cell). Taking the diagonal metric given by the mass
of the cellsM = (M i)i=1..n (which is a decent approximation of the Hessian),
yields the following formula for the gradient of GB/S

〈a, b〉M =
∑
i

M iaibi =⇒ ∇GB/S(zk) = zi − z̄i. (4.18)

A fixed step gradient Algorithm with step 1 is to set each point zi exactly
at the location of the barycenter z̄i. This algorithm is well known as a Lloyd-
like or a relaxation algorithm [90, 43]. An improvement of Lloyd’s algorithm
is to ensure a Wolfe step condition [13].

GB/S(zk+1) < GB/S(zk) + 10−4〈∇GB/S(zk), zk+1 − zk〉M (Wolfe)

This naturally leads to algorithm 2. The only difference between the Stippling
and Blue Noise problems lies in the choice of φopt(z). It is chosen equal to 0
in the Stippling problem and to argmaxφg in the Blue Noise problem.
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Numerical experiment shows that it is not necessary to check for Wolfe’s
second condition which ensures that the step is not too small, indeed Lloyd’s
algorithm (and Newton’s algorithm) have a natural step σk = 1.

4.3.2 Newton’s Algorithm
The second algorithm is a Newton algorithm. Denoting by H the Hessian,

in the Stippling case, we have by (4.17) :

HzzGS = Hzzg (4.19)

The computation of HzzGB for the Blue Noise case is more involved. A chain
rule yields

HzzGB = Hzzg +Hzφg · ∇zφopt

The existence of ∇zφopt is given by an implicit function theorem, from

∇φg(φopt(z), z,m) = 0.

Differentiating the above equation with respect to z and applying the chain
rule, we get

Hzφg +Hφφg∇zφopt = 0

and hence
HzzGB = Hzzg −Hzφg(Hφφg)−1Hφzg.

The implicit function theorem that proves existence of ∇zφopt requires the
matrix Hφφg to be invertible. Note that constant φ are always part of the
kernel of Hφφg since g is invariant under the addition of constants to φ .
Upon supposing that φ has zero average, the invertibility of Hφφg is verified
throughout the optimization procedure. In theory, Hφφg can only be proven
to be invertible generically [96, Theorem 18].

Once the Hessian is computed, the Newton algorithm with preconditio-
ning by the matrix M amounts to changing in Algorithm 2 the descent di-
rection dk by a solution to the linear problem

AM1/2dk = −M1/2∇GB/S(zk) with A = (M−1/2HzzGB/SM
−1/2), (4.20)

and ∇GB/S(zk) is defined in (4.18) as the gradient with respect to the metric
M . Newton’s algorithm fails if the Hessian is not positive definite, hence we
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propose a work-around based on the conjugate gradient method on the sys-
tem (4.20). Recall that conjugate gradient method solve exactly the problem
in the Krylov space and that the residues of the conjugate gradient method
form an orthogonal basis of this Krylov space, hence are equal (up to a nor-
malization procedure) to the Lanczos basis. Denote πn the projection on the
Krylov space at iteration n, the matrix πnAπn is tridiagonal in the Lanczos
basis hence the computation of its determinant is a trivial recurrence [115].
By monitoring the sign of the determinant throughout iterations one checks
the positiveness of the matrix. The conjugate gradient algorithm is stopped
whenever the matrix A stops being positive definite. The descent direction
is then given by

(πnAπn)M1/2dk = −πnM1/2∇GB/S(zk),

By convention for n = 0, we solve dk = −∇GB/S(zk). If A is positive, then
the problem (4.20) is solved exactly.

4.3.3 Other considerations
The computation of φ? in the Blue Noise problem is a standard uncons-

trained concave maximization procedure with knowledge of second order
derivatives. In order to compute φopt in a robust manner, we settled on a
Levenberg-Marquardt type algorithm : denoting H(σ) = Hφφg − 1

σ
Id, we

take as descent direction −H(σ)−1∇g(φ), where σ is reduced until Wolfe’s
first order conditions are met. In the Stippling problem, the computation of
φ? = 0 is trivial.

The Laguerre tessellation is computed by CGAL [128]. All the tests where
performed using a standard Lena image as background measure ν which has
been discretized as bilinear by pixel (Q1 finite element method). In the Blue
Noise problem, the mass m is constrained to be equal to 1

n
for all Dirac

masses.

4.3.4 Numerical results

4.3.5 Direct comparaison of the algorithms
For the first example, we search the optimal positions of the Dirac masses

for either the Blue Noise or Stippling problem. Three methods are benchmar-
ked, the Gradient method (Lloyd-like method), the Newton method discussed
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in the previous section and a LBFGS method with the memory of the 8 pre-
vious iterations. Tests are performed for 1K and 10K uniformly drawn points.
The evolution of the cost functions and the L2 norms of the gradient are dis-
played throughout iterations. Figure 4.3 displays the results obtained for the
Stippling problem whereas Figure 4.4 displays the results for the Blue Noise
problem. The tests are made with the same set of initial points, a different
initialization leads to comparable results.

L2 norm of the gradient Objective function
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Figure 4.3 – Stippling problem with 1Kpts (Top) and 10 Kpts (Bottom).
Left : norm of the gradient, Right : evolution of the cost function.

Our interpretation of Figure 4.3 is the following : in the 1K points pro-
blem, the best methods for finding critical points and minimum are, by de-
creasing order, Newton, 8-BFGS and Lloyd, which is coherent with theory.
For the 10K points problems, the three different methods seem equivalent.
Our interpretation of the 10K points behavior is the combination of two fac-
tors. First we believe that an augmentation of the number of points reduces
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L2 norm of the gradient Objective function
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Figure 4.4 – Blue Noise problem with 1Kpts (Top) and 10 Kpts (Bottom).
Left : norm of the gradient, Right : evolution of the cost function.

the basin of attraction of local minimum. Indeed, in our test the Newton me-
thod failed to attain locally convex points (the Hessian always had a negative
eigenvalue throughout iterations). The second effect of the augmentation of
the number of points is that numerical errors trickle down the algorithm,
eventually preventing the Newton method to accurately find the minimum.

As a conclusion, we find that using second order derivative information in
computing centroidal Voronoi tessellation (Stippling problem) is useful for a
small number of points, which renders the application range of this method
quite limited. Note that very similar tests have already been performed in
[89]. The main conclusions of the tests in Figure 4.3 and Figure 4.4 is that
the basin of attraction of the Newton method for the Blue Noise problem
seems bigger than the one of the Stippling problem. Hence a second order
method for the Blue Noise problem is of interest as the number of points
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rises.

4.3.6 Adding a point
In order to exhibit the helpfulness of second order method for Stippling,

we build an example where the classic gradient algorithm fails to converge.
Empirically the main drawback of Lloyd algorithm is its lack of globalisation.
Suppose one has optimized the position of n Dirac masses for the Blue Noise
or Stippling problem and that one adds one mass at some random location
and wants to optimize the position of the n + 1 Dirac masses. Lloyd’s al-
gorithm for the Stippling problem will converge slowly due to the fact that
the new point will modify the Voronoi cells of its neighbours only, whereas
the Blue Noise functional is global and every Laguerre cell will be modified
at the first iteration. Hence Lloyd’s algorithm for the Stippling problem has
to wait for the information to propagate through each Voronoi cell, like the
peeling of an onion, one layer at each iteration. The advantages of the second
order method can then be seen, since the Hessian encodes the connectivity
and propagates instantly the information. This effect should be less impor-
tant for the Blue Noise case where information is propagated instantly. In
Figure 4.5, we exhibit this effect for the Blue Noise and Stippling problem.
We optimize with 1K pts with a second order method and then test either
Lloyd’s or Newton’s method.

Our interpretation of Figure 4.5 lies mainly in the observation of the cost
function. Newton’s method converges for the Blue noise or Stippling case,
where LLoyd’s method convergence rate towards a critical point is way slower.
Note however that the objective function for the Stippling problem decreases
very slowly for Lloyd’s method compared to the Newton method whereas
the decrease of the objective function for the Blue Noise is comparable. We
interpret this result as the "peeling layers" effect, only seen in the Stippling
problem, described earlier.

4.4 Conclusion
In this paper we have studied the conditions under which second order dif-

ferentiability of the semi-discrete optimal transport with respect to position
of the Dirac masses holds for generic cost function c. This result encompasses
the second order differentiability of the energy of a Voronoi diagram. We have
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Figure 4.5 – Evolution of the cost function (Right) and the norm of the
gradient (Left) for the Stippling problem (Top) and the Blue Noise problem
(Bottom) when one point is added.
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numerically implemented the second order procedure for both the Blue Noise
and Stippling problem. In the Stippling problem, the numerical applications
are limited by arithmetic precision and small basins of attraction. The Blue
Noise problem is less sensitive to theses effects. An interpretation of this fact
is that the Blue Noise problem is global, a change in the position of a mass
as an effect on the whole set of masses, whereas in the Stippling problem, a
mass only sees its direct neighbours. The Blue Noise problem is then a more
stable problem than the Stippling one.

It is then of the highest interest to understand the smallness of the basins
of attraction and the disposition of local minima for the two corresponding
problem. It is also the aim of future work to understand optimal transporta-
tion between Dirac masses and non-regular background measures (say mea-
sures supported by curves) and the corresponding Blue Noise problem. Such
an application requires to differentiate the semi-discrete optimal transport
with respect to parameters that describe the underlying background mea-
sure ν.
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Abstract

We propose a fast and scalable algorithm to project a given density on a set
of structured measures defined over a compact 2D domain. The measures can
be discrete or supported on curves for instance. The proposed principle and
algorithm are a natural generalization of previous results revolving around
the generation of blue-noise point distributions, such as Lloyd’s algorithm or
more advanced techniques based on power diagrams. We analyze the conver-
gence properties and propose new approaches to accelerate the generation
of point distributions. We also design new algorithms to project curves onto
spaces of curves with bounded length and curvature or speed and accelera-
tion. We illustrate the algorithm’s interest through applications in advanced
sampling theory, nonphotorealistic rendering and path planning.

This chapter was published in

F. de Gournay, J. Kahn, L. Lebrat, and P. Weiss
Optimal Transport Approximation of 2-Dimensional Mea-
sures. In SIAM Journal on Imaging Sciences, 12(2) : 762 :787, 2019.
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(a) Original (b) Stippling

(c) Curvling (d) Dashing

Figure 5.1 – Approximating an image with a measure supported on points
(stippling, 100k, 202"), curve (curvling, 100k, 313") or segments (dashing,
33k, 237”). In each case, the iterative algorithm starts from a set of points
drawn uniformly at random.

5.1 Introduction
The aim of this paper is to approximate a target measure µ with probabi-

lity density function ρ : Ω→ R+ with probability measures possessing some
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structure. This problem arises in a large variety of fields including finance
[107], computer graphics [122], sampling theory [21], and optimal facility lo-
cation [57]. An example in nonphotorealistic rendering is shown in Figure 5.1,
where the target image in Fig. 5.1a is approximated by an atomic measure in
Fig. 5.1b, by a smooth curve in Fig. 5.1c and by a set of segments in Fig. 5.1d.
Given a set of admissible measuresM (i.e. atomic measures, measures sup-
ported on smooth curves or segments), the best approximation problem can
be expressed as follows :

min
ν∈M

D(ν, µ), (5.1)

where D is a distance between measures.

5.1.1 Contributions
Our main contributions in this article are listed below.
— Develop a few original applications for the proposed algorithm.
— Develop a fast numerical algorithm to minimize problem (5.1), when

D is the W2 transportation distance and Ω = [0, 1]2.
— Show its connections to existing methods such as Lloyd’s algorithm

[90] and optimal transport halftoning [34].
— Provide some theoretical convergence guarantees for the computation

of the optimal semi-discrete transportation plan, especially for com-
plicated point configurations and densities, for which an analysis was
still lacking.

— Design algorithms specific to the case where the space of admissible
measuresM consists of measures supported on curves with geometric
constraints (e.g. fixed length and bounded curvature).

— Generate a gallery of results to show the versatility of the approach.
In the next section, we put our main contributions in perspective.

5.1.2 Related works
5.1.2.1 Projections on measure spaces

To the best of our knowledge, the generic problem (5.1) was first proposed
in [26] with a distance D constructed through a convolution kernel. Similar
problems were considered earlier, with spaces of measures restricted to a fixed
support for instance [92], but not with the same level of generality.
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Formulation (5.1) covers a large number of applications that are often
not formulated explicitly as optimization problems. We review a few of them
below.

Finitely supported measures Many approaches have been developed for
cases whenM is the set of uniform finitely supported measures

Mf,n =
{
ν(x) = 1

n

n∑
i=1

δx[i],x ∈ Ωn

}
, (5.2)

where n is the support cardinality or the set of atomic measures defined by

Ma,n=
{
ν(x,w)=

n∑
i=1

w[i]δx[i],x ∈ Ωn,w ∈ ∆n−1

}
, (5.3)

where ∆n−1 = {∑n
i=1 w[i] = 1,w[i] ≥ 0 ∀i} is the canonical simplex.

For these finitely supported measure sets, solving problem (5.1) yields nice
stippling results, which is the process of approximating an image with a finite
set of dots (see Fig. 5.1b). This problem has a long history and a large number
of methods were designed to find dots locations and radii that minimize visual
artifacts due to discretization [52, 90, 131, 8]. Lloyd’s algorithm is among
the most popular. We will see later that this algorithm is a solver of (5.1),
withM =Ma,n. Lately, explicit variational approaches [118, 34] have been
developed. The work of de Goes et al [34] is closely related to our paper since
they propose solving (5.1), where D is the W2 transportation distance and
M = Mf,n. This sole problem is by no means limited to stippling and it is
hard to provide a comprehensive list of applications. A few of them are listed
in the introduction of [138].

Best approximation with curves Another problem that is met fre-
quently is to approximate a density by a curve. This can be used for non-
photorealitistic rendering of images or sculptures [78, 2]. It can also be used
to design trajectories of the nozzle of 3D printers [28]. It was also used for
the generation of sampling schemes [21].

Apart from the last application, this problem is usually solved with me-
thods that are not clearly expressed as an optimization problem.
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Best approximation with arbitrary objects Problem (5.1) encom-
passes many other applications such as the optimization of networks [57],
texture rendering or nonphotorealistic rendering [69, 70, 117, 79, 41], and
sampling theory [22].

Overall, this paper unifies many problems that are often considered as
distinct with specific methods.

5.1.2.2 Numerical optimal transport

In order to quantify the distance between the two measures, we use trans-
portation distances [99, 76, 132]. In our work, we are interested mostly in the
semi-discrete setting, where one measure is a density and the other is discrete.
In this setting, the most intuitive way to introduce this distance is via Mon-
ge’s transportation plan and allocation problems. Given an atomic measure
ν ∈ Ma,n and a measure µ with density, a transport plan T ∈ T (x,w) is a
mapping T : Ω→ {x[1], . . . ,x[n]} such that ∀1 ≤ i ≤ n, µ(T−1(x[i])) = w[i].
In words, the mass at any point x ∈ Ω is transported to point T (x). In this
setting, the W2 transportation distance is defined by

W 2
2 (µ, ν) = inf

T∈T (x,w)

∫
Ω
‖x− T (x)‖2

2dµ(x), (5.4)

and the minimizing mapping T describes the optimal way to transfer µ to ν.
Computing the transport plan T and the distance W2 is a challenging

optimization problem. In the semi-discrete setting, the paper [7] provided an
efficient method based on a “power diagram” or “Laguerre diagram”. This
framework was recently further improved and analyzed in [34, 94, 85, 80]. The
idea is to optimize a concave cost function with second-order algorithms. We
will make use of those results in this paper and improve them by stabilizing
them while keeping the second-order information.

5.1.2.3 Numerical projections on curve spaces

Projecting curves on admissible sets is a building block for many al-
gorithms. For instance, mobile robots are subject to kinematic constraints
(speed and acceleration), while steel wire sculptures have geometric constraints
(length and curvature).

While the projection on kinematic constraints is quite easy, due to convexity
of the underlying set [27], we believe that this is the first time projectors on
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sets defined through intrinsic geometry have been designed. Similar ideas
have been explored in the past. For instance, curve shortening with mean
curvature motion [48] is a long-studied problem with multiple applications
in computer graphics and image processing [139, 98, 124]. The proposed al-
gorithms allow exploration of new problems such as curve lengthening with
curvature constraints.

5.1.3 Paper outline

The rest of the paper is organized as follows. We first outline the ove-
rarching algorithm in Section 5.2. In Sections 5.3 and 5.4, we describe more
precisely and study the theoretical guarantees of the algorithms used respecti-
vely for computing the Wasserstein distance, and for optimising the positions
and weights of the points. We describe the relationships with previous models
in Section 5.5. The algorithms in Sections 5.3 and 5.4 are enough for, say,
halftoning, but do not handle constraints on the points. In Section 5.6, we
add those constraints and design algorithms to make projections onto curve
spaces with bounded speed and acceleration, or bounded length and curva-
ture. Finally, some application examples and results are shown in Section 5.7.

5.2 The minimization framework
In this section, we show how to numerically solve the best approximation

problem :
inf
ν∈M

W 2
2 (ν, µ), (5.5)

whereM is an arbitrary set of measures supported on Ω = [0, 1]2.

5.2.1 Discretization

Problem (5.5) is infinite-dimensional and first needs to be discretized
to be solved using a computer. We propose approximating M by a subset
Mn ⊆ Ma,n of the atomic measures with n atoms. The idea is to construct
Mn as

Mn = {ν(x,w),x ∈ Xn,w ∈Wn}, (5.6)
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where the mapping ν : (Ωn ×∆n−1)→Ma,n is defined by

ν(x,w) =
n∑
i=1

w[i]δx[i]. (5.7)

The constraint set Xn ⊆ Ωn describes interactions between points and the
set Wn ⊆ ∆n−1 describes the admissible weights.

We have shown in [26] that for any subsetM of the probability measures,
it is possible to construct a sequence of approximation spaces (Mn)n∈N of the
type (5.6), such that the solution sequence (ν∗n)n∈N of the discretized problem

inf
ν∈Mn

W 2
2 (ν, µ), (5.8)

converges weakly along a subsequence to a global minimizer ν∗ of the original
problem (5.5). Let us give a simple example : assume that M is a set of
pushforward measures of curves parameterized by a 1-Lipschitz function on
[0, 1]. This curve can be discretized by a sum of nDirac masses with a distance
between consecutive samples bounded by 1/n. It can then be shown that this
spaceMn approximatesM well, in the sense that each element ofMn can
be approximated with a distance O(1/n) by an element inM and vice versa
[26]. We will show explicit constructions of more complicated constraint sets
Xn and Wn for measures supported on curves in Section 5.6.

The discretized problem (5.8) can now be rewritten in a form convenient
for numerical optimization :

min
x∈X,w∈W

F (x,w), (5.9)

where we dropped the index n to simplify the presentation and where

F (x,w) = 1
2W

2
2 (ν(x,w), µ). (5.10)

5.2.2 Overall algorithm
In order to solve (5.9), we propose using an alternating minimization

algorithm : the problem is minimized alternately in x with one iteration of
a variable metric projected gradient descent and then in w with a direct
method. Algorithm 3 describes the procedure in detail.
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A few remarks are in order. First notice that we are using a variable
metric descent algorithm with a metric Σk � 0. Hence, we need to use a
projector defined in this metric by :

ΠΣk
X (x0) := Argmin

x∈X
‖x− x0‖2

Σk with

‖x− x0‖2
Σk = 〈Σk(x− x0), (x− x0)〉.

Second, notice that X may be nonconvex. Hence, the projector ΠΣk
X on X

might be a point-to-set mapping. In the x-step, the usual sign = is therefore
replaced by ∈.

Below are listed five major difficulties in implementing this algorithm :
ψ step : How to compute efficiently F (x,w) ?
w step : How to compute argmin

w∈W
F (x,w) ?

x step : How to compute the gradients ∇xF and the metric Σk ?
Π step : How to implement the projector ΠΣk

X ?
Generally : How to accelerate the convergence given the specific pro-

blem structure ?
The next four sections provide answers to these questions.
Note that if there are no constraints like in halftoning or stippling, there

is no projection and the Π-step is trivial : xk+1 = yk+1.

5.3 Computing the Wassertein distance F :
ψ-step

5.3.1 Semi-discrete optimal transport
In this section, we review the main existing results about semi-discrete

optimal transport and explain how it can be computed. Finally, we provide
novel computation algorithms that are more efficient and robust than existing
approaches. We work under the following hypotheses.

Assumption 5.3.1.
— The space Ω is a compact convex polyhedron, typically the hypercube.
— µ is an absolutely continuous probability density function w.r.t. the

Lebesgue measure.
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Algorithm 3 Alternating projected gradient descent to minimize (5.1).
Require: Oracle that computes F . ψ-step.
Require: Projectors ΠX on X.
1: Inputs :
2: Initial guess x0
3: Target measure µ
4: Number of iterations Nit.
5: Outputs :
6: An approximation (x̂, ŵ) of the solution of (5.1).
7: for k = 0 to Nit− 1 do
8: wk+1 = argmin

w∈W
(F (xk,w)) . w-step

9: Choose a positive definite matrix Σk, a step sk.
10: yk+1 = xk − skΣ−1

k ∇xF (xk,wk+1). . x-step
11: xk+1 ∈ ΠΣk

X (yk+1) . Π-step
12: end for
13: Set x̂ = xNit and ŵ = wNit.

— ν is an atomic probability measure supported on n points.

Let us begin with a theorem stating the uniqueness of the optimal trans-
port plan, which is a special case of Theorem 10.41 in the book [133].

Theorem 5.3.1. Under Assumption 5.3.1, there is a unique optimal trans-
portation plan µ-a.e.T ∗ for the solution of problem (5.4).

Before further describing the structure of the optimal transportation plan,
let us introduce a fundamental tool from computational geometry [6].

Definition 5.3.0.1 (Laguerre diagram). Let x ∈ Ωn denote a set of point
locations and ψ ∈ Rn denote a weight vector. The Laguerre cell Li is a closed
convex polygon set defined as

Li(ψ,x) = {x ∈ Ω, ∀1 ≤ j ≤ n, j 6= i, ‖x−x[i]‖2
2−ψ[i] ≤ ‖x−x[j]‖2

2−ψ[j]}.
(5.11)

The Laguerre diagram generalizes the Voronoi diagram, since the latter
is obtained by taking ψ = 0 in (5.11).

The set of Laguerre cells partitions Ω into polyhedral pieces. It can be
computed in O(n log(n)) operations for points located in a plane [6]. In our
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numerical experiments, we make use of the CGAL library to compute them
[128]. We are now ready to describe the structure of the optimal transporta-
tion plan T ∗, see [56, Example 1.9].
Theorem 5.3.2. Under Assumption 5.3.1, there exists a vector ψ∗ ∈ Rn,
such that

(T ∗)−1(x[i]) = Li(ψ∗,x). (5.12)
In words, (T ∗)−1(x[i]) is the set where the mass located at point x[i] is

sent by the optimal transportation plan. Theorem 5.3.2 states that this set
is a convex polygon, namely the Laguerre cell of x[i] in the tessellation with
a weight vector ψ∗. More physical insight on the interpretation of ψ∗ can
be found in [87]. From a numerical point of view, Theorem 5.3.2 allows the
transformation of the infinite-dimensional problem (5.4) into the following
finite-dimensional problem :

W2(µ, ν) = max
ψ∈Rn

g(ψ,x,w), (5.13)

where

g(ψ,x,w) =
n∑
i=1

∫
Li(ψ,x)

(
‖x[i]− x‖2 −ψ[i]

)
dµ(x) +

n∑
i=1
ψ[i]w[i]. (5.14)

Solving the problem (5.13) is the subject of numerous recent papers, and
we suggest an original approach in the next section.

5.3.2 Solving the dual problem
In this section, we focus on the resolution of (5.13), i.e. computing the

transportation distance numerically. The following proposition summarizes
some concavity and differential properties of the functional g.
Proposition 5.3.1. Under Assumption 5.3.1, the function g is concave with
respect to the variable ψ and differentiable with a Lipschitz gradient. Its gra-
dient is given by :

∂g

∂ψi
= w[i]− µ(Li(ψ,x)). (5.15)

In addition, if ρ ∈ C1(Ω), then g is also twice differentiable w.r.t. ψ
almost everywhere and - when defined - its second order derivatives are given
by :

∂2g

∂ψi∂ψj
=
∫
∂Li(ψ,x)∩∂Lj(ψ,x)

dµ(x)
‖x[i]− x[j]‖ if i 6= j. (5.16)
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The formula for the diagonal term ∂2g
∂ψi∂ψi

is given by the closure relationship

∀1 ≤ i ≤ n,
n∑
j=1

∂2g

∂ψi∂ψj
= 0. (5.17)

Proof 5.3.1. Most of these properties have been proved in [80] and refined
in [38]. The Lipschitz continuity of the gradient seems to be novel.

Twice differentiability. If a Laguerre cell Li(ψ,x) is empty, it remains so
for small variations of ψ, by the definition (5.11). It remains to prove that
the set of ψ for which there exist nonempty Laguerre cells with zero measure
is negligible. The fact that Li(ψ,x) is nonempty of zero Lebesgue measure
means that it is either a segment or a point. We consider the case, when the
points x are in generic position, meaning that any three distinct points are
not aligned. This implies that Li(ψ,x) is a singleton {x} since the boundaries
of the Laguerre cell cannot be parallel. We further assume that x belongs to
the interior of Ω. Under those assumptions, x necessarily satisfies at least 3
equalities of the form

‖x− x[i]‖2
2 −ψ[i] = ‖x− x[jk]‖2

2 −ψ[jk], (5.18)

for some jk 6= i (i.e. Li(ψ,x) is the intersection of at least 3 half spaces). The
set of ψ allowing satisfaction of a system of equations of the form (5.18) is of
codimension at least 1. Indeed, this system implies that x is the intersection of
3 lines, each perpendicular to one of the segments [x[i],x[jk]] and translated
along the direction of this segment according to ψ. Now, by taking all the
finitely many sets of quadruplets (i, j1, j2, j3), we conclude that the set of
ψ allowing us to make Li(ψ,x) a singleton is of zero Lebesgue measure. It
remains to treat the case of x belonging to the boundary of Ω. This can be
done similarly, by replacing one or more equalities in (5.18), by the equations
describing the boundary.

The case of points in nongeneric position can also be treated similarly,
since for 3 aligned points at least 2 equations of the form (5.18) allow to turn
Li(ψ,x) into a line of zero Lebesgue measure. A solution of such a system is
also of codimension 1.

Lipschitz gradient. In order to prove the Lipschitz continuity of the gra-
dient, we first remark that the Laguerre cells defined in (5.11) are intersec-
tions of half spaces with a boundary that evolves linearly w.r.t. ψ. The rate
of variation is bounded from above by η = 1

mini 6=j ‖x[i]−x[j]‖2
. Hence, letting
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∆ ∈ Rn denote a unit vector, a rough bound on the variation of a single cell
is :

‖µ(Li(ψ + t∆,x))− µ(Li(ψ,x))‖ ≤ t(n− 1)‖ρ‖∞ηdiam(Ω).

Summing this inequality over all cells, we get that

‖∇ψg(ψ + t∆,x)−∇ψg(ψ + t∆,x)‖2 ≤ tn3/2‖ρ‖∞ηdiam(Ω).

Notice that this upper bound is very pessimistic. For instance, applying Ger-
shgorin’s circle theorem shows that - when defined - the minimum eigenvalue
of the Hessian matrix given in (5.16) is bounded below by −nη‖ρ‖∞diam(Ω).

In addition, the following proposition given in [96, Thm. 6] shows that
the function g is well behaved around the minimizers.

Proposition 5.3.2. If minx∈Ω ρ(x) > 0 and the points (x[i]) are pairwise
disjoint, problem (5.13) admits a unique maximizer, up to the addition of
constants. The function g is twice differentiable in the vicinity of the mini-
mizers and strongly concave on the set of vectors with zero mean.

Many methods have been proposed in the literature to compute the opti-
mal vector ψ∗, with the latest references providing strong convergence gua-
rantees [7, 34, 94, 85, 80]. This may give the false impression that the problem
has been fully resolved : in practice the conditions guaranteeing convergence
are often unmet. For instance, it is well known that the convergence of first-
order methods depends strongly on the Lipschitz constant of the gradient
[102, Thm 2.1.7]. Unfortunately, this Lipschitz constant may blow up depen-
ding on the geometry of the point set x and the regularity of the density ρ, see
Remark 5.3.1. On the other hand, the second-order methods heavily depend
on the Hölder regularity of g [74, 63]. Unfortunately, it can be shown that g
is Hölder with respect to ψ only under certain circumstances. In particular,
the mass of the Laguerre cells µ(Li(ψ,x)) should not vanish [80, Remark
4.2]. Hence, only first-order methods should be used in the early steps of
an optimization algorithm, and the initial guess should be well chosen due
to slow convergence. Then, second-order methods should be the method of
choice.

The Levenberg-Marquardt algorithm and the trust-region methods [137]
are two popular solutions that interpolate between first- and second- or-
der methods automatically. Unfortunately, to the best of our knowledge, the
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existing convergence theorems rely on a global C2-regularity of the functio-
nal, which is not satisfied here. In this work, we therefore advocate the use
of a regularized Newton method [111], which retains the best of first- and
second-order methods : a global convergence guarantee and a locally quadra-
tic convergence rate. The algorithm reads as follows :

ψk+1 = ψ − tk(A(ψ) + ‖∇ψg(ψk)‖2Id)−1∇ψg(ψk), (5.19)

where

A(ψ) =

∇2
ψg(ψk) if ∇2

ψg is defined at ψk,
0 otherwise.

(5.20)

The algorithm is implemented on the set of vectors with zero mean to ensure
the uniqueness of a solution, see Proposition 5.3.2.

Without the term ‖∇ψg(ψk)‖2Id, the equation (5.19) would simplify to a
pure Newton algorithm. The addition of this term makes the method (5.19)
similar to a Levenberg-Marquardt algorithm, with the important difference
that the regularization parameter is set automatically to ‖∇ψg(ψk)‖2. The
rationale behind this choice is that the gradient vanishes close to the minimi-
zer, making (5.19) similar to a damped Newton method and that the gradient
amplitude should be large far away from the minimizer, making (5.19) closer
to a pure gradient descent.

Following [111], we get the following proposition.

Proposition 5.3.3. Algorithm (5.19) implemented with step-sizes tk satis-
fying the Wolfe conditions converges globally to the unique maximizer of
(5.13). In addition, the convergence is quadratic in the vicinity of the mi-
nimizer.

To the best of our knowledge, this is the first algorithm to come with
a global convergence guarantee. Up to now, the convergence was only local
[80].

To further accelerate the convergence, the method can be initialized with
the multiscale approach suggested in [94]. In practice, replacing (5.19) by a
standard Levenberg-Marquardt method i.eψk+1 = ψ−(A(ψ)+ckId)−1∇ψg(ψk),
yields a similar rate of convergence. In this case ck > 0 is interpreted as the
“step” of the descent method and it is decreased or increased following the0
Wolfe criterion.
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‖xi − xi+1‖

(a) Example with 5
points

‖xi − xi+1‖

(b) Example with 25
points

Figure 5.2 – Configurations of points generating a high Lipschitz constant
for the gradient of g in ψ.

Remark 5.3.1 (High Lipschitz constant of the gradient). In this example
illustrated by Figure 5.2, we show that the Lipschitz constant of the gradient
can be arbitrarily large. We consider that µ is the uniform measure on Ω
and that ν is an atomic measure supported on n points aligned vertically and
equispaced i.e. x[i] =

(
1
2 ,

1+2i
2n

)
on Ω = [0, 1]2. In this case the Hessian is a

multiple of the matrix of the 1d Laplacian with Neumann boundary conditions
and the largest eigenvalue of H scales as 4n. The Lipschitz constant hence
blows up with the dimension. Notice that this situation is typical when it
comes to approximating a density with a curve.

5.3.3 Numerical integration
The algorithm requires computing the integrals (5.14) and (5.16). In all

our numerical experiments, we use the following strategy. We first discretize
the density ρ associated to the target measure µ using a bilinear or a bicubic
interpolation on a regular grid. Then, we observe that the volume integrals
in Equation (5.14) can be replaced by integrals of polynomials along the
edges of the Laguerre diagram by using Green’s formula. Hence computing
the cost function, the Hessian, and the gradient all boil down to computing
edge integrals.

Then, since the underlying density is piecewise polynomial, it is easy
to see that only the first moments of the measure µ along the edges are
needed to compute all formulas. We pre-evaluate the moments by using exact
quadrature formulas and then use linear combinations of the moments to
finish the evaluation.
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To the best of our knowledge, this is a novel lightweight procedure. It
significantly speeds up the calculations compared to former works [94, 34],
which enables discretization of the density ρ over an arbitrary 3D mesh. After
finishing this paper, we realized that the idea of using Green’s formula was
already suggested by [138], although not implemented. It is to be noted that
this idea is particularly well suited to Cartesian grid discretization of the
target density ρ. Indeed, in this case, we take advantage of the fact that the
intersection of the Laguerre cells and the grid can be computed analytically
without search on the mesh.

5.4 Optimizing the weights and the positions :
w and x steps

5.4.1 Computing the optimal weights
In this section, we focus on the numerical resolution of the following

subproblem
argmin

w∈W
F (x,w). (5.21)

5.4.1.1 Totally constrained w

When W = {w} is reduced to a singleton, the solution of (5.21) is ob-
viously given by w∗ = w.

5.4.1.2 Unconstrained minimization in w

When W is the simplex, the unconstrained minimization problem (5.21)
can be solved analytically.
Proposition 5.4.1. If W = ∆n−1, the solution w∗ of (5.21) is given for
all 1 ≤ i ≤ n by

w∗[i] = µ(Li(0,x)), (5.22)
that is the volume (w.r.t. the measure µ) of the i-th Laguerre cell with zero
cost ψ, i.e. the i-th Voronoï cell.
Proof 5.4.1. In expression (5.14), the vector ψ can be interpreted as a
Lagrange multiplier for the constraint

µ(T−1(x[i])) = w[i].



5.4. OPTIMIZING THE WEIGHTS AND THE POSITIONS : W AND X STEPS93

Since the minimization in w removes this constraint, the Lagrange multiplier
might be set to zero.

5.4.2 Gradient ∇xF and the metric Σk

The following proposition provides some regularity properties of ∇xF . It
can be found in [38].

Proposition 5.4.2. Let ψ∗ denote the maximizer of (5.13). Assume that
ρ ∈ C0 ∩W 1,1(Ω), that w > 0, and that the points in x are separated. Then
F is C2 at (x,w) with respect to the variable x and its gradient ∇xF (x,w)
is given by the following formula :

∂F (x,w)
∂x[i] = w[i] (x[i]− b[i]) (5.23)

where b[i] is the barycenter of the i-th Laguerre cell Li(ψ∗,x) :

b[i] = b(x)[i] =
∫
Li(ψ∗,x) xdµ(x)∫
Li(ψ∗,x) dµ(x) . (5.24)

Now, we discuss the choice of the metric (Σk) in Algorithm 3. In what
follows, we refer to the “unconstrained case” as the case where there is no
Π-step in Algorithm 3. The metric used in our paper is the following :

Σk = diag(µ(Li(ψ∗k,x∗k)))1≤i≤n. (5.25)

We detail the rationale behind this choice below. First, with the choice
(5.25), we have xk − Σ−1

k ∇xF (xk) = b(xk). In the unconstrained case, this
particular choice of Σk amounts to moving the points x towards their bary-
centers, which is the celebrated Lloyd’s algorithm.

In addition to this nice geometrical intuition, in the unconstrained case,
the choice (5.25) leads to an alternating direction minimization algorithm.
Indeed, given a set of points, this algorithm computes the optimal transport
plan (ψ-step). Then, fixing this transport plan and the associated Laguerre
tessellation, the mass of the point is moved to the barycenter of the Laguerre
cell, which is the optimal position for a given tessellation. This algorithm is
widespread because it does not require additional line-search.

Third, in the unconstrained case, the choice (5.25) leads to an interesting
regularity property around the critical points. Assume that ∇xF (x∗) = 0,



94 CHAPTER 5. CURVLING

i.e. that x∗[i] = b(x∗)[i] for all i, then the mapping x 7→ b(x) is locally
1-Lipschitz [43, Prop. 6.3]. This property suggests that a variable metric
gradient descent with metric Σk and step-size 1 may perform well in practice
for X = Ωn, at least around critical points.

Fourth, this metric is the diagonal matrix with coefficients obtained by
summing the coefficients of the corresponding line of Hxx[F ], the Hessian of
F with respect to x see [38]. In this sense, Σk is an approximation of Hxx[F ].
In the unconstrained case Algorithm 3 can be interpreted as a quasi-Newton
algorithm.

A safe choice of the step sk in Algorithm 3 to ensure convergence could be
driven by Wolfe conditions. In view of all the above remarks, it is tempting
to use a gradient descent with the choice sk = 1. In practice, it gives a
satisfactory rate of convergence for Algorithm 3. For all the experiments
presented in this paper, we therefore make this empirical choice. We provide
some elements to justify the local convergence under a more conservative
choice of parameters in Appendix 5.8.

5.5 Links with other models

5.5.1 Special cases of the framework
5.5.1.1 Lloyd’s algorithm

Lloyd’s algorithm [90] is well known to be a specific solver for problem
(5.5), with X = Ω and W = ∆n−1, i.e. to solve the quantization problem
with variable weights. We refer the reader to the excellent review by [43] for
more details. It is easy to check that Lloyd’s algorithm is just a special case
of Algorithm 3, with the specific choice of metric

Σk = diag (µ(Li(0,x))) . (5.26)

5.5.1.2 Blue noise through optimal transport

The authors of [34] has proposed performing stippling by using optimal
transport distance. This application can be cast as a special case of problem
(5.5), with X = Ω and W =

{
1

n

}
. The algorithm proposed therein is also a

special case of Algorithm 3 with

Σk = diag (µ(Li(φ?(x),x))) = 1
n

(5.27)
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and the step-size τk is optimized through a line search. Note, however, that
the extra cost of applying a line-search might not be worth the effort, since
a single function evaluation requires solving the dual problem (5.13).

5.5.2 Comparison with electrostatic halftoning
In [118, 127, 61, 53, 26], an alternative to the W2 distance was proposed,

implemented and studied. Namely, the distance D in (5.1) is defined by

D(ν, µ) = 1
2‖h ? (ν − µ)‖2

L2(Ω), (5.28)

where h is a smooth convolution kernel and ? denotes the convolution pro-
duct. This distance can be interpreted intuitively as follows : the measures are
first blurred by a regularizing kernel to map them in L2(Ω) and then compa-
red using a simple L2 distance. This appears in the literature under different
names such as maximum mean discrepancies, kernel norms, and blurred SSD.
In some cases, the two approaches are actually quite similar from a theoreti-
cal point of view. Indeed, it can be shown that the two distances are strongly
equivalent under certain assumptions [109].

The two approaches however differ significantly from a numerical point
of view. Table 5.1 provides a quick summary of the differences between the
two approaches. We detail this table below.

— The theory of optimization is significantly harder in the case of optimal
transport since it is based on a subtle mix of first- and second-order
methods.

— The convolution-based algorithms require the use of methods from ap-
plied harmonic analysis dedicated to particle simulations such as fast
multiple methods (FMM) [64] or non-uniform fast Fourier transforms
(NUFFT) [112]. On their side, the optimal transport based approaches
require the use of computational geometry tools such as Voronoi or
Laguerre diagrams. The former has been parallelized efficiently on
CPU and GPU and turnkey toolboxes are now available, while the
latter seem to be less accessible for now and some implementations
are intrinsically serial.

— The examples provided here are only two-dimensional. Many applica-
tions in computer graphics require dealing with 3D problems or larger
dimensional problems (e.g. clustering problems). In that case, the nu-
merical complexity of convolution based problems seems much better
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Convolution Optimal transport
Optimization 1st order Mix of 1st and 2nd
Computation FMM/NUFFT Power diagram
Scaling to d Linear Exponential
Speed in 2D Slower Faster
Quality Good Good

Table 5.1 – A comparison between convolution and optimal transport based
approximation of measures.

controlled : it is only linear in the dimension d (i.e. O(dn log(n))),
while the exact computation of Laguerre diagrams requires on ave-
rage O(ndd/2e) operations, the worst case time complexity for d = 2
is O(n log n)[5]. Hence, for a large number of particles, the approach
suggested here is mostly restricted to d = 2.

— In terms of computational speed for 2D applications, we observed that
the optimal transport based approach was usually between 1 and 2
orders of magnitude faster. This is mostly due to the fact that the des-
cent algorithm based on optimal transport converges in significantly
fewer iterations than that based on convolution distances.

— Finally, we did not observe significant differences in terms of approxi-
mation quality from a perceptual point of view.

5.5.2.1 Benchmark with other methods

In this section we provide compare 4 methods : two versions of electro-
static halftoning [26], ibnot (a semi-discrete optimal transport toolbox [34])
and the code presented in this paper.

Choice of a stopping criterion The comparison of different methods
yields the question of a stopping criterion. Following [118], the signal-to-
noise ratio (SNR) of the original image and the stippled image convolved
with a Gaussian function has been chosen. The standard deviation of the
Gaussian is chosen as 1/

√
n, which is the typical distance between points.

Figure 5.3 shows different values of this criterion for an increasing quality
of stippling. In all the forthcoming benchmarks, the algorithms have been
stopped when the underlying measured reached a quality of 31dB.
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Figure 5.3 – Evolution of the PSNR through iteration : top left 8dB, top
right 25dB, bottom left 31dB, bottom right 34dB

Benchmarks The first benchmark is illustrated in Table 5.2. For this test
the background measure has a constant density and consists of 1024×1024
pixels. The number of Dirac masses increases from 210 to 218. The initializa-
tion is obtained by a uniform Poisson point process.

In this case ibnot and our code present the same complexity and roughly
the same number of x-steps to achieve convergence. The time per iterations
is significantly smaller in our code due to the use of Green’s formula for
integration (see Section 5.3.3), which reduces the integration’s complexity
from n to

√
n where n the number of pixels. We tested multiple versions of

electrostatic halftoning, differing in the choice of the optimization algorithm.
The code Electro 20 cores corresponds to a constant step-size gradient descent
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# pts Electro � (20) Electro BB � (20) ibnot B (1) our B (1)
210 130.3 | 317 34.4 | 84 131.47 | 15 4.03 | 19
211 240.1 | 558 49.5 | 115 165.42 | 18 4.83 | 23
212 293.9 | 637 47.8 | 104 267.59 | 22 10.86| 19
213 415.2 | 798 78.8 | 152 235.87 | 15 26.43 | 20
214 783.5 | 1306 106.3 | 177 344.77 | 17 47.90| 21
215 1160.5 | 1319 156.8 | 178 598.60 | 18 99.63| 18
216 4568.5 | 3286 569.2 | 410 1208.45 | 20 252.24| 26
217 15875.0 | 4628 1676.3 | 489 2498.58 | 19 620.90| 19
218 TL 12125.2 | 1103 5633.68 | 23 1136.51| 21

Table 5.2 – Times in second and number of iterations to achieve conver-
gence for the uniform background measure. TL means that the computing
time was too long and that we stopped the experiment before reaching the
stopping criterion. For the Electrostatic halftoning, two different methods
are compared : a gradient descent with constant step-size (2nd column), and
the Brazalai Borwein method (third column), numbers between brackets are
number of physical core(s) used for the experiment.

as proposed in [118]. The code Electro BB 20 cores is a gradient descent with
a Barzilai-Borwein step-size rule. In our experience, this turns out to be the
most efficient solver (e.g. more efficient than an L-BFGS algorithm). The
algorithms have been parallelized with Open-MP and evaluated on a 20-core
machine using the NFFT to evaluate the sums [112].

In Table 5.2, the electrostatic halftoning algorithms are always slower
than our optimal transport algorithms despite being multi-threaded on 20
cores.

The second test is displayed in Table 5.3. It consists in trying to approxi-
mate a nonconstant density ρ(x, y) equal to 2 if x < 0.5 and 0 if x > 0.5. In
this test we also start from a uniform point process.

In this test ibnot always fails to converge since the Hessian in ψ is not
definite. In comparison with the previous test, our code is slightly slower since
the first ψ-step requires to finding a ψ that maps Laguerre cells far away
from the localization of their site (x). After the first x-step, the position
of the site is decent and the optimization routine performs as well as the
previous example. Again, the computing time of electro-static halftoning is
significantly worse than that of optimal transport. Notice, in particular, how
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# pts Electro BB 20 cores ibnot 1 core our 1 core
210 40.2 | 99 NC 4.34 | 24
211 59.6 | 142 NC 9.70 | 21
212 84.5 | 190 NC 15.36| 19
213 125.1 | 248 NC 29.76| 25
214 177.7 | 282 NC 79.73| 27
215 287.6 | 298 NC 113.56 |18
216 746.3 | 424 NC 280.02| 17
217 3052.9 | 712 NC 703.39| 21
218 39546.1 | 2022 NC 1315.01|24

Table 5.3 – Times in seconds and number of iterations to achieve conver-
gence for the non uniform setting. NC stands for does not converge. TL
stands for too long (exceeding 4 hours of computations on 20 cores).

the number of iterations needed to reach the stopping criterion increases
with the number of points, while it remains about constant for the optimal
transport algorithm.

5.6 Projections on curves spaces

In this section, we detail a numerical algorithm to evaluate the projector
ΠX, for spaces of curves with kinematic or geometric constraints.

5.6.1 Discrete curves

A discrete curve is a set of points x ∈ Ωn with constraints on the distance
between successive points. Let

Aa1 : x→


x[2]− x[1]

...
x[n]− x[n− 1]

x[1]− x[n]

 (5.29)
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and

Ab1 : x→


x[2]− x[1]
x[3]− x[2]

...
x[n]− x[n− 1]

 (5.30)

denote the discrete first order derivatives operators with or without circular
boundary conditions. From here on, we let A1 denote any of the two ope-
rators. In order to control the distance between two neighboring points, we
will consider two types of constraints : kinematic and geometrical.

5.6.1.1 Kinematic constraints

Kinematic constraints typically apply to vehicles : a car for instance has
a bounded speed and acceleration. Bounded speeds can be encoded through
inequalities of type

‖(A1x)[i]‖2 ≤ α1,∀i. (5.31)
Similarly, by letting A2 denote a discrete second order derivative, which can
for instance be defined by A2 = AT1A1, we may enforce bounded acceleration
through

‖(A2x)[i]‖2 ≤ α2,∀i. (5.32)
The set X is then defined by

X = {x ∈ Ωn, ‖A1x‖∞,2 ≤ α1, ‖A2x‖∞,2 ≤ α2}, (5.33)

where, for y = (y[1], . . . ,y[n]), ‖y‖∞,p = sup1≤i≤n ‖y[i]‖p.

5.6.1.2 Geometrical constraints

Geometrical constraints refer to intrinsic features of a curve such as its
length or curvature. In order to control those quantities using differential
operators, we need to parameterize the curve with its arc length. Let s :
[0, T ]→ R2 denote a C2 curve with arc length parameterization, i.e. ‖ṡ(t)‖2 =
1,∀t ∈ [0, T ]. Its length is then equal to T . Its curvature at time t ∈ [0, T ] is
equal to κ(t) = ‖s̈(t)‖2.

In the discrete setting, constant speed parameterization can be enforced
by imposing

‖(A1x)[i]‖2 = α1, ∀i. (5.34)
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The total length of the discrete curve is then equal to (n− 1)α1.
Similarly, when (5.34) is satisfied, discrete curvature constraints can be

captured by inequalities of type

‖(A2x)[i]‖2 ≤ α2, ∀i. (5.35)

Indeed, at a index 2 ≤ i ≤ n− 1, we get :

‖(A2x)[i]‖2
2 = ‖(x[i]− x[i− 1])− (x[i+ 1]− x[i])‖2

2

= ‖x[i]− x[i− 1]‖2
2 + ‖x[i+ 1]− x[i]‖2

2

− 2〈x[i]− x[i− 1],x[i+ 1]− x[i]〉
= 2α2

1(1− cos (θi)),

where θi = ∠ (x[i]− x[i− 1],x[i+ 1]− x[i]) is the angle between successive
segments of the curve. Hence, by imposing (5.34) and (5.35), the angle θi
satisfies

|θi| ≤ arccos
(

1− α2
2

2α2
1

)
. (5.36)

In order to fix the length and bound the curvature, we may thus choose
the set X as

X = {x ∈ Ωn, ‖(A1x)[i]‖2 = α1, ‖A2x‖∞,2 ≤ α2}. (5.37)

Let us note already that this set is nonconvex, while (5.33) was convex.

5.6.1.3 Additional linear constraints

In applications, it may be necessary to impose other constraints such as
passing at a specific location at a given time, closing the curve with x1 = xn
or having a specified mean value. All these constraints are of the form

Bx = b, (5.38)

where B ∈ Rp×2n and b ∈ Rp are a matrix and vector describing the p linear
constraints.
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5.6.1.4 Summary

In this paper, we will consider discrete spaces of curves X defined as
follows :

X = {x such that Aix ∈ Yi, 1 ≤ i ≤ m,Bx = b}, (5.39)
The operators Ai may be arbitrary, but in this paper, we will focus on diffe-
rential operators of different orders. The set Yi describes the admissible set
for the i-th constraint. For instance, to impose a bounded speed (5.31), we
may choose

Y1 = {y ∈ Rn×2, ‖yi‖2 ≤ α1,∀i}. (5.40)
Throughout the paper, the set of admissible weights W will be either the
constant {1/n} or the canonical simplex ∆n−1.

5.6.2 Numerical projectors
The Euclidean projector ΠX : Rn → X is defined for all z ∈ Ωn by

ΠX(z) = Argmin
x∈X

1
2‖x− z‖2

2

= Argmin
Akx∈Yk,1≤k≤m

Bx=b

1
2‖x− z‖2

2 (5.41)

When X is convex, ΠX(z) is a singleton. When it is not, there exists z such
that ΠX(z) contains more than one element. The objective of this section is
to design an algorithm to find critical points of (5.41).

The specific structure of (5.41) suggests using splitting-based methods
[30], able to deal with multiple constraints and linear operators. The sparse
structure of differential operator makes the alternating direction method of
multipliers (ADMM, [60]), particularly suited for this problem. Let us turn
(5.41) into a form suitable for the ADMM.

Let γ1, . . . , γm denote positive reals used as preconditioners. Define

A =


γ1A1
...

γmAm

 , y =


y1
...

ym

 , (5.42)

and
Y = γ1Y1 × . . .× γmYm. (5.43)



5.6. PROJECTIONS ON CURVES SPACES 103

Problem (5.41) then becomes

ΠX(z) = Argmin
Bx=b
Ax=y
y∈Y

1
2‖x− z‖2

2

= Argmin
Ax=y

f1(x) + f2(y), (5.44)

where f1(x) = 1
2‖x − z‖2

2 + ιL(x), f2(y) = ιY(y), L = {x, Bx = b} denotes
the set of linear constraints and the indicator ιY of Y is defined by :

ιY(y) =

0 if y ∈ Y,
+∞ otherwise.

(5.45)

The ADMM for solving (5.44) is given in Algorithm 4. Specialized to our
problem, it yields Algorithm 5. The linear system can be solved with a linear
conjugate gradient descent.

Algorithm 4 Generic ADMM.
Inputs :
functions f1 and f2, matrix A, initial guess (x0,λ0), parameter β > 0.

1: while Stopping criterion not met do
yk+1 = Argmin

y
f2(y) + β

2 ‖Ax− yk+1 + λk‖2
2.

xk+1 = Argmin
x

f1(x) + β

2 ‖Ax− yk+1 + λk‖2
2.

λk+1 = λk + Axk+1 − yk+1.
2: end while

Convergence issues The convergence and rate of convergence of the ADMM
is a complex issue that depends on the properties of functions f1 and f2 and
on the linear transform A. In the convex setting (5.33), the sequence (xk)k
converges to ΠX(z) linearly (see Corollary 2 in [59]). The behavior in a non-
convex setting (5.37) is still mostly open despite recent advances in [88].
Nevertheless, we report that we observed convergence empirically towards
critical points of Problem (5.41).
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Algorithm 5 ADMM to solve the projection problem.
Inputs :
Vector to project z, initial guess (x0,λ0), matrices A and B, projector
(ΠY), β > 0.

1: while Stopping criterion not met do
yk+1 = ΠY(Axk + λk).
Solve [

βATA+ I BT

B 0

](
xk+1
µ

)
=
(
βAT (yk+1 − λk) + z

b

)
.

λk+1 = λk + Axk+1 − yk+1.
2: end while

Choosing the coefficients β and (γi) Despite recent advances [104], a
theory to select good values of β and (γi) still seems lacking. In this paper,
we simply set γi = ‖Ai‖2, the spectral norm of Ai. In practice, it turns out
that this choice leads to stable results. The parameter β is set manually to
obtain a good empirical behavior. Notice that for a given application, it can
be tuned once for all.

5.6.3 Numerical examples
To illustrate the proposed method, we project the silhouette of a cat onto

spaces of curves with fixed length and bounded curvature in Fig. 5.4. In the
middle, we see how the algorithm simplifies the curve by making it smaller
and smoother. On the right, we see how the method is able to make the curve
longer, by adding loops of bounded curvature, while still keeping the initial
cat’s shape.

5.6.4 Multiresolution implementation
When X is a set of curves, the solution of (5.9) can be found more ef-

ficiently by using a multiresolution approach. Instead of optimizing all the
points simultaneously, it is possible to only optimize a down-sampled curve,
allowing to get cheap warm start initialization for the next resolution.

In our implementation, we use a dyadic scaling. We up-sample the curve
by adding mid-points in between consecutive samples. The weights from one
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Figure 5.4 – Examples of projections of a curve (in red) on spaces of curves
with constraints (in blue). Center : projection on sets of curves with smaller
length and bounded curvature. Right : projection on sets of curves with longer
length and bounded curvature.

resolution to the next are simply divided by a factor of 2.

5.7 Applications

5.7.1 Non Photorealistic Rendering with curves

In the following subsections we exhibit a few rendering results of images
using different types of measures setsM.

5.7.1.1 Gray-scale images

A direct application of the proposed algorithm allows to approximate an
arbitrary image with measures supported on curves. An example is displayed
in Fig. 5.5 with curves satisfying different kinematic constraints.

5.7.1.2 Color images

There are different ways to render color images with the proposed idea.
We refer the reader, for instance, to [136, 25] for two different examples. In
this section, we propose a simple alternative idea to give a color to the dots
or curves. Given a target vectorial density ρ = (ρR, ρG, ρB) : Ω→ [0, 1]3, the
algorithm we propose simply reads as follows :
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(a) Original (b) Curve length l

(c) Curve length l
3 (d) Curve length l

12

Figure 5.5 – Examples of curvling (stippling + curve projection, 256k, ≈
10’),
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(a) Target color image (b) Approximate color measure

Figure 5.6 – Examples of color curvling, 512k, ≈ 24’),

1) We first construct a gray level image defined by :

ρ̄ = (ρR + ρG + ρB)/3. (5.46)

2) Then, we project the density ρ̄ onto the set of constraints M with
Algorithm 3. This yields a sequence of points x ∈ Ωn.

3) Then, for each point x[i] of the discretized measure, we select a color
as ρ(x[i])

ρ̄(x[i])) .
We use only saturated colors, explaining the division in step 3). The

parallel for gray-scale images, is that we represent stippling results with disks
taking only the maximal intensity. Then, the mean in step 1) is used to attract
the curve towards the regions of high luminance of the image. An example
of result of the proposed algorithm is shown in Fig. 5.6.

5.7.1.3 Dynamic examples

The codes can also be used to approximate videos. The principle is simple :
first we approximate the first sequence of the frame with our projection al-
gorithm starting from an arbitrary initial guess. Then, the other frames are
obtained with the projection algorithm, taking as an initial guess, the result
of the previous iteration. This ensures some continuity of the dots or curves
between consecutive frames. Some videos are given in the supplementary
material.
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5.7.2 Path planning

In this section, we provide two applications of the proposed algorithm to
path planning problems.

5.7.2.1 Videodrone

Drone surveillance is an application of increasing interest to cities, com-
panies, and even private individuals. In this paragraph, we show that the pro-
posed algorithms can be used to plan the drone trajectories for surveillance
applications. We use the criminal data provided by [29] to create a density
map of crime in Philadelphia, see Fig. 5.7a. We give different weights to dif-
ferent types of crimes. By minimizing (5.1), we can design an optimal path,
in the sense that it satisfies the kinematic constraints of the drone and passes
close to dangerous spots more often than in the remaining locations. In this
example, we impose a bounded speed and a maximal yaw angular velocity
and also pass at a given location at a given time to recharge the drone to
satisfy autonomy constraints.

(a) The crime density µ (b) Path adopted by the drone

Figure 5.7 – The data superimposed on a map of Philadelphia. A possible
drone trajectory made. In this example, the drone passes 4 times to its re-
charging location, explaining the different colors of the trajectory. In this
example, the trajectory was discretized with 8k points and optimized in 30”.
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5.7.2.2 Laser engraving

In Fig. 5.8, we gave a trajectory to a laser engraving machine in order to
reproduce a landscape with a continuous line. We suspect that the same tech-
niques could be used to optimize the nozzle and the flow of matter trajectory
of 3D printers.

(a) Laser engraving machine (b) The resulting wood engraved trajectory

Figure 5.8 – Example of wood engraving. Left : a laser burning the wood
by following an input trajectory. Right : the final result.

5.7.2.3 Sampling in MRI

Following [21], we propose generating compressive sampling schemes in
MRI (Magnetic Resonance Imaging), using the proposed algorithm.

In MRI, images are probed indirectly through their Fourier transform.
Fourier transform values are sampled along curves with bounded speed and
bounded acceleration, which exactly corresponds to the set of constraints
defined in (5.33). The latest compressed sensing theories suggest that a good
way of subsampling the Fourier domain, consists in drawing points indepen-
dently at random according to a certain distribution µ, that depends on the
image sparsity structure in the wavelet domain [21, 1]. Unfortunately, this
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strategy is impractical in MRI due to physical constraints. To simulate such a
sampling scheme, we therefore propose projecting µ onto the set of admissible
trajectories.

Let u : [0, 1]2 → R denote a magnetic resonance image. The sampling
process yields a set of Fourier transform values y[i] = û(x[i]). Given this
set of values, the image is then reconstructed by solving a nonlinear convex
programming problem :

min
v,v|x=y

1
2‖v̂(x)− y‖2

2 + λ‖Ψu‖1, (5.47)

where Ψ is a linear sparsifying transform, such as a redundant wavelet trans-
form.

5.8 Theoretical convergence of Algorithm 3
The following result is a direct application of standard convergence re-

sults, see e.g. [101].

Theorem 5.8.1. Suppose that X ⊂ Rn is closed and convex, that Σk = Σ
is a constant positive definite matrix. In addition, suppose that F is a C1

function with Lipschitz continuous gradient :

∀(x1,x2), ‖∇F (x1)−∇F (x2)‖Σ−1 ≤ L‖x1 − x2‖Σ. (5.48)

Finally suppose that either X is compact or F is coercive. Then Algorithm 3
converges to a critical point of F for step-size sk = 1

L
.

Applying Theorem 5.8.1 requires Σk to be constant, hence the mass w to
be prescribed. We make this assumption in this section.

Theorem 5.8.1 shows that it is critical to evaluate - if it exists - the
Lipschitz constant of ∇xF . By equation (5.23), we need to evaluate the va-
riations of the Laguerre cells barycenter b with respect to x. Unfortunately,
following the Hessian computation in [38], the Lipschitz constant scales as
mini 6=j ‖x[i] − x[j]‖−1 and cannot be proven to be uniform in x. Hence, we
can only hope for a local result describing the Lipschitz constant.

Hence, if the hypotheses of existence of the Hessian of F are met (see
[38]), an estimation of the Lipschitz constant of F by its Hessian yields a
theory of local convergence of F in a vicinity V(x∗) of a local minimizer
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x∗, for small enough steps sk. Without these assumptions, local Lipschitz
continuity of the gradient of F cannot be enforced.

If in addition there is no Π-step, that is X = Ωn, the gradient of F is
1-Lipschitz around critical points (the so-called centroidal tessellation), see
[43, Prop. 6.3]. Hence, convergence can be proven in a vicinity of x∗ for step
choice sk = 1 and the metric Σk. However, the size of the vicinity V(x∗) relies
on the geometrical properties of the “optimal” Laguerre tessellation. The
quality of such a local minimum could be very far from the global minimizer,
nevertheless numerical experiments tend to indicate that is it not the case.
For the same problem, hundreds of random initializations converge to a set
of stationary points with a nice visual property.

5.9 Outlook
All the methods described in this chapter can be carried to Ω ⊂ R3. The

complexity for building a Laguerre tesselation in 3D is increased but affor-
dable (as shown in Chapter 6). The use of Green’s formula that converts
volume integration into surface integration is possible although its imple-
mentation is tedious. Methods to compute the 3D optimal transport distance
exist and we refer the interested reader to Geogram, 1 a toolbox developed by
Bruno Lévy.

1. http ://alice.loria.fr/index.php/software/4-library/75-geogram.html
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(a) Target density µ (b) Sampling scheme

(c) True image (d) Reconstructed image

Figure 5.9 – Example of sampling scheme generation and image reconstruc-
tion in MRI. The target density µ is shown in 5.9a. The sampling scheme
generated by our algorithm is shown in 5.9b. The background shows the Fou-
rier transform of u in log-scale. It contains one fourth of the total number of
Fourier transform values. The true image and the reconstructed image are
shown in Fig. 5.9c and 5.9d.



Chapter 6
3
4 discrete optimal transport

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 115
6.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Reminders on 2-Wasserstein distance . . . . . . . . 118
6.2.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Derivatives of the cost function . . . . . . . . . . 121
6.3.1 First order derivative with respect to φ . . . . . . 121
6.3.2 Computation of the second order derivative with

respect to φ . . . . . . . . . . . . . . . . . . . . . . 121
6.3.3 Computation of the first order derivative with res-

pect to P and ρ . . . . . . . . . . . . . . . . . . . . 123
6.4 Numerical implementation . . . . . . . . . . . . . 127

6.4.1 Integration computation . . . . . . . . . . . . . . . 127
6.4.2 Parallelism . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Computation of the optimal transport . . . . . . 130
6.5.1 Choice of optimization method . . . . . . . . . . . 132

6.6 Numerical examples . . . . . . . . . . . . . . . . . 137
6.6.1 Representation of picture . . . . . . . . . . . . . . 137

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 139

113



114 CHAPTER 6. 3/4 DISCRETE OPTIMAL TRANSPORT

� source code

https://github.com/lebrat/3forthOptimalTransport

Abstract

This paper deals with the 3
4 -discrete 2-Wasserstein optimal transport bet-

ween two measures, where one is supported on a set of line segments and
the other one is supported on a set of points. We select the most suitable
optimization procedure that computes the optimal transport. Then we ad-
dress the problem of projecting point clouds on the set of measures supported
on segments for the optimal transportation distance. We provide numerical
examples of approximation of point clouds by segments.

This chapter is a preprint

F. de Gournay, J. Kahn, L. Lebrat
3/4-discrete optimal transport.
arXiv preprint arXiv :1806.09537,2018.
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6.1 Introduction
The numerical computation of optimal transport between two measures

in the sense of the 2-Wasserstein distance has seen several breakthroughs
in the last decade. One can distinguish three kinds of methods : The first
method is based on the PDE theory [9] and is only available when the mea-
sures are absolutely continuous with respect to the Lebesgue measure. The
second method handles discrete measures and is known as the Sinkhorn al-
gorithm [32, 10]. The main idea of this latter method is to add an entropic
regularization in the Kantorovitch formulation.

The third method is known as semi-discrete [94, 85, 34] optimal transport
and is limited to the case where one measure is atomic and the other is
absolutely continuous. This method uses tools of computational geometry,
the Laguerre tessellation which is an extension of the Voronoi diagram. The
aim of this paper is to develop an efficient method to approximate a discrete
measure (a point cloud) by a measure carried by a curve.

In order to solve this problem, we discretize the curve by a sequence of
line segments and we solve the optimal transport between a discrete measure
and a measure carried by a seuqence of line segments. Since this setting lies
between the fully-discrete setting and the semi-discrete setting, we coined
this problem as the 3/4-discrete optimal transportation problem.

Pre-existing methods and choice of a 3/4 optimal transport. We
discuss in this section the reasons that lead us to prefering 3/4 discrete opti-
mal transport to the other methods when computing the optimal transport
between a point cloud and a curve.

The first method, the PDEs formulation, requires the measures to be
absolutely continuous. Even if it is always possible to mollify the considered
measures, we discarded the idea of accurately meshing the space to recover
a regularization of a curve.

If the Sinkhorn algorithm is to be applied to this problem, then the curve
has to be sampled by points. But to the best of our knowledge [39], taking
Dirac masses along anisotropic ”objects”, here, a curve may dwindle the
efficiency of this algorithm. Indeed, in this particular case the parameter of
regularization of the Sinkhorn algorithm has to be chosen smaller than the
curve-sampling precision, which causes numerical issues. Since regularization
has a detrimental effect on this particular type of problem, one could consider
exact methods such as the Hungarian algorithm [82], the network simplex
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formulation[106] or the auction algorithm [12, 15]. However time complexity
of these methods is polynomial and prohibitive for a large number of points.

The semi-discrete optimal transport is the more favorable setting for such
problem. In a previous paper [40] we described a method to approximate an
image by a curve. We also detailed numerous applications of this method
that range from non-photo realistic rendering to compress sampling schemes.
This method relies on sampling of the curve by points and computes the
Wasserstein distance between a density ( the image) and a point cloud ( the
discretization of the curve). The semi-discrete approach suffers from several
drawbacks, the first one is that solving the optimal transport problem is
more and more difficult as discretization step of the curve decreases. Indeed
the closer the Dirac masses are taken along the curve the more stretched the
Laguerre tessellation is. The second flaw is the poor quality of approximation
of a curve by a sum of Dirac masses. We develop this discussion in [37], to cut
a long story short, an object of Hausdorff dimension one approximates more
effectively a curve of Hausdorff dimension one than 0 dimensional object
(Dirac masses). Finally having a plain piecewise linear curve is preferable
since it eliminates a casting operation (from points to curve). Note however
that if the image is understood as a probability measure with density, the
approximation of an image by a curve in the 3/4-discrete setting is made at
the expense of projecting this image on a sum of Dirac masses. One goal of
this paper is to weight the pros and cons of the 3/4-discrete setting.

Lately, progresses have been made to extend the semi discrete optimal
transport algorithm to measures supported by simplices of dimension at least
2. In this context [96] showed that the cost function is C2 under standard
genericity conditions of the point cloud and connectedness of the simplices.
Unfortunately, these results are not applicable to our framework since the
measure has a one-dimensional support and the cost function is C1.

Using ideas from the semi-discrete optimal transport, a solution to the
above objections is to compute the optimal transport between an absolutely
continuous measure and a measure carried by segments. The main tool of
such computations is an extension of the Laguerre tessellation with conic
boundaries. The difficulty arises when it comes to integrates the continuous
density over theses Laguerre cells. In fact, a robust algorithm with exact in-
tegration is complex to develop. This is the reason why computer graphic
community [72, 70] implements numerical approximations for those Voronoi
cells (Laguerre cells with equals weights) using shape primitives and raste-
risation with graphic hardware. However numeric precision is intrinsically
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tied to grid (pixel). Hence, refinement for this method scales badly when the
dimension increases.

In order to overpass theses limitations, we prefer to approximate the
measure supported by curve by a measure supported by segments and to
compute the optimal transport between an atomic measure and a measure
supported on a set of segments.

Contributions. This paper provides and studies an efficient algorithm to
compute the 2-Wasserstein distance between a discrete measure and a mea-
sure supported by a set of segments. This algorithm is scalable in 2D and 3D
and is parallelized. We also study the problem of optimizing the parameter of
the measure carried by the set of segments and provide the formula of the gra-
dient with respect to the parameter of the measure. The 3

4 -discrete optimal
transport benefits from the strength of Laguerre tessellation. As a byproduct
the integration of the density over convex polygons (2D) or polyhedrons (3D)
is straightforward. Indeed the integrations needed for the computation of the
cost function boils down to computing intersections between polyhedrons and
to integrate the moments of ν over segments.

The ideas of this paper owes a much to [34, 94, 85] and the semi-discrete
approach but it considers a measure supported by a set of segments instead of
a measure with regular density. This modification annihilates the convergence
theory developed in [80]. The optimal transport plan is no longer unique and
Kantorovitch functional is no longer C2. But under slight geometric condition
(see (H)) one can show that the dual functional is C1 with respect to the dual
variables.

Outline of the paper. Section 6.2 is devoted to set up the notations and
the known results used in this paper. In (6.5) of Section 6.2, we introduce
the computation of the Wasserstein distance as the maximization of a dual
function g. In Section 6.3 we compute the different derivatives of the function
g with respect to its parameters. In Section 6.4 we discuss technical details
about the numerical implementation of the computation of the function g. In
Section 6.5 we settle for the optimization procedure that solves the optimal
transport, and in Section 6.6 we showcase numerical approximations of cloud
data by segments.
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6.2 Setting

6.2.1 Reminders on 2-Wasserstein distance
The 2-Wasserstein distance is a special instance of the optimal transport

distance between two probabilities measures. It is defined as follow :
Given Ω ⊂ Rd, µ ∈ P(Ω) and ν ∈ P(Ω) two probability measures on Ω,

the 2-Wasserstein distance between µ and ν, W2(ν, µ) is given by :

W 2
2 (ν, µ) = inf

γ∈Π(ν,µ)

∫
Ω2
‖x− y‖2

2 dγ(x, y), (MK)

where Π(ν, µ) is the set of coupling between µ and ν, that is, the set of
measures whose marginals are µ and ν :

γ ∈ Π(ν, µ)⇔



∫
Ω
ψ(x)dν(x) =

∫
Ω2
ψ(x)dγ(x, y) ∀ψ ∈ L1(ν)

and∫
Ω
φ(y)dµ(y) =

∫
Ω2
φ(y)dγ(x, y) ∀φ ∈ L1(µ)

(6.1)

An elegant way [133] to solve (MK) is via its dual

sup
ψ∈L1(ν),φ∈L1(µ)

∫
Ω
ψdν +

∫
Ω
φdµ (6.2)

s.t ∀(x, y) ∈ Ω2 : ψ(x) + φ(y) ≤ ‖x− y‖2
2,

where φ and ψ are the Lagrange multipliers for (6.1), the marginals constraints
of (MK). Introducing the c-transform of φ as :

φc(x) = inf
y∈Ω
‖x− y‖2

2 − φ(y).

The problem (6.2) can be rewritten as :

sup
φ∈L1(µ)

∫
Ω
φcdν +

∫
Ω
φdµ. (6.3)

Consider now the case where the measure µ is atomic with n atoms : µ(x,m) =∑n
i=1miδxi ,xi ∈ Rd,mi ∈ R+∗. In this case L1(µ) can be identified with Rn

and if φ = (φi)i=1...n, then φc(x) = mini∈J1,nK ‖x − xi‖2
2 − φi. This naturally

leads to the definition of the i-th Laguerre cell [5] :

Li(φ, µ) = {x ∈ Ω such that ‖x− xi‖2
2 − φi ≤ ‖x− xj‖2

2 − φj ∀j ∈ J1, nK}.
(6.4)



6.2. SETTING 119

Provided that ν(Li∩Lj) = 0 for every i 6= j, the final problem states as :

W 2
2 (ν, µ) = sup

φ∈Rn
g(φ, ν, µ), with g(φ, ν, µ) =

∑
i

∫
Li(φ,µ)

(
‖x− xi‖2

2 − φi
)
dν+miφi.

(6.5)
Assuming that a φ? ∈ Rn, a maximum of (6.5) exists, then the physical

interpretation of the Laguerre cell Li(φ?, µ) is that the Dirac mass located
at xi is transported to supp(ν) ∩ Li(φ?, µ).

6.2.2 Setting
In this paper µ denotes a n-atomic probability measure on Rd :

µ(x,m) =
n∑
i=1

miδxi , s.t
∑
i

mi = 1 with xi ∈ Rd,mi ∈ R+, for all 1 ≤ i ≤ n.

By contrast, ν is a probability measure supported by a polyline. A polyline
is a sequence of p consecutive line segments [Pα, Pα+1], where Pα ∈ Rd and
α runs from 1 to p+ 1. The measure ν carries a non negative mass ρα on the
segment [Pα, Pα+1]. In order to define mathematically ν, we introduce lα, the
α-th segment line by :

lα : [0, 1] → Rd

t 7→ (1− t)Pα + tPα+1.
(6.6)

If λ[0,1] is the Lebesgue measure on [0, 1], we denote lα#λ[0,1] the push-forward
through lα of λ[0,1]. In this case, ν can be written as :

ν =
p∑

α=1
ραl

α
#λ[0,1]. (6.7)

The fact that ν is a probability measure translates into ∑α ρα = 1. No-
tice that ρα = 0 is admissible and in this case the support of the resulting
probability ν will be composed of disjoint polylines.

In order to ensure the regularity of function g defined in (6.5) we enforce
hypothesis (H) throughout the paper.

∀α ∈ J1, pK, ∀(i, j) ∈ J1, nK2, i 6= j : 〈Pα+1 − Pα,xi − xj〉 6= 0. (H)
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Moreover, under (H), for all φ we have ν(Li(φ, µ) ∩ Lj(φ, µ)) = 0. Indeed
if Li and Lj are two Laguerre cells with a common boundary Li ∩ Lj, the
boundary has to be orthogonal to xi − xj. Hypothesis (H) prevents tiny
perturbation of φ to harshly shift the association of the segment’s mass from
one Dirac mass to another, see Figure 6.1. Under this assumption g is a C1

function of φ, see [38] and Section 6.3.1. Note however than even if it is easy
to check Hypothesis (H) for fixed families of (xi)i and (Pα)α, when trying
to approximate data cloud by polylines and hence optimizing the optimal
transport distance w.r.to (Pα)α, there is no way to enforce Hypothesis (H)
throughout the optimisation procedure.

xi

xj

Pα

Pα+1

Figure 6.1 – When the hypothesis (H) is violated one can cook up a φ such
that the functional g in (6.5) is no longer C1 with respect to φ. Here a small
perturbation on φi or φj induces a discontinuity on ∇φg.

Let I be the set of indices (i, α) such that the ith Laguerre cell meets the
αth segment, that is :

I = {(i, α) s.t. Li(φ, µ) ∩ [Pα, Pα+1] 6= ∅} .

If the space Ω is convex then the Laguerre cells defined in (6.4) are convex
and Li ∩ [Pα, Pα+1] is a segment. For every (i, α) ∈ I denote tiαs , tiαe the
starting (respectively ending) time of the αth segment [Pα, Pα+1] in the ith
Laguerre cell :

0 ≤ tiαs ≤ tiαe ≤ 1 and Li ∩ [Pα, Pα+1] = [lα(tiαs ), lα(tiαe )]. (6.8)



6.3. DERIVATIVES OF THE COST FUNCTION 121

Then the cost function g(φ, ν, µ) defined in (6.5) can be re-written as :

g(φ, ν, µ) =
∑

(i,α)∈I

∫ tiαe

tiαs

riα(t)dt+
n∑
i=1

φimi (6.9)

with riα(t) = (‖łα(t)− xi‖2
2 − φi)ρα

6.3 Derivatives of the cost function

6.3.1 First order derivative with respect to φ

Hypothesis (H) ensures that ν(Li(φ, µ) ∩ Lj(φ, µ)) = 0,∀i 6= j. A direct
application of [38] shows that g is differentiable with respect to φ and :

∂g

∂φi
(φ, ν, µ) = mi −

∫
Li(φ,µ)

dν. (6.10)

6.3.2 Computation of the second order derivative with
respect to φ

If there exists a segment [Pα, Pα+1] that passes through the intersection
of at least three Laguerre cells then the functional g fails to be twice diffe-
rentiable. On the one hand it is impossible to design an hypothesis in the
spirit of hypothesis (H) that can prevent such a pathological case to happen
during the optimization in φ. On the other hand such a baneful case almost
surely never happens. Hence in this section the Hessian is computed without
proof of existence by following a cumbersome calculus.

Denote by (ei)i the canonical basis on Rn, following the calculation of the
first derivative given in (6.10), the second order derivative is given by :

∂2g

∂φiφj
= − lim

ε→0

∫
Li(φ+εej ,µ) dν −

∫
Li(φ,µ) dν

ε
. (6.11)

Denote nil the outer normal of Li on the facet Li ∩ Ll, that is nil = xl−xi
‖xl−xi‖

.
Denote by δil the first order approximation of the evolution of the facet Li∩Ll
in the normal direction nil when we change the Lagrange multiplier of the
j-th cell, that is, when we change φ into φ+ εej, see Figure 6.2 (left). If both
i and l are different from j then δil = 0. For j = l 6= i δij is given by :

y + εδijnij ∈ (Li ∩ Lj) (φ+ εej, µ)



122 CHAPTER 6. 3/4 DISCRETE OPTIMAL TRANSPORT

⇔‖y + εδijnij − xj‖2
2 − φj − ε = ‖y + εδijnij − xi‖2

2 − φi (6.12)

⇒δij = −1
2‖xi − xj‖

.

Now if i = j 6= l, the i-th Laguerre cell increases its size, again with the
same rate δij = (2‖xi − xl‖)−1.

xi

xl

xk

xm
δik

δil δim
Lm

Li

Lk

Ll

Pα+1

Pα Pα−1

nik δik

∂g
∂φi∂φm

∂g
∂φi∂φk

θikα

δim

nim

θimk−1

Lm

Li

Lk

Figure 6.2 – (Left) Normal displacements (δil, δik, δim) of the boundary of
the Laguerre cell when φi increases and (φl, φk, φm) remain constant. (Right)
geometrical interpretation of the Hessian

Denote Θij the indices of the segments that intersect the facet Li ∩Lj, it
is given by

Θij = {α such that, [Pα, Pα+1] ∩ (Li(φ, µ) ∩ Lj(φ, µ))} .

For every α in Θij denote θijα the angle between the segment [Pα, Pα+1] and the
outer normal nij, see Figure 6.2 (right). The second derivative is given by the
variation of the first derivative (6.10), hence to the variation of the mass seen
by each Laguerre cell. Now using the expression of δij and some trigonometric
formulas one can compute this variation, this leads to the following expression
of the Hessian :

∂g

∂φiφj
(φ,x) =



∑
α∈Θij

ρα

2‖xj − xi‖ cos(θijα )
if i 6= j,

−
∑
k 6=i

∂g

∂φiφk
otherwise.

(6.13)
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6.3.3 Computation of the first order derivative with
respect to P and ρ

In this section we compute the derivatives of the 2-Wasserstein distance
with respect to the parameters of the measure ν. We denote generically as
∂a the derivative with respect to one of the parameters that define ν, that is
either one of the positions Pα or one of the densities ρα. Let φ? be an optimal
Lagrange multiplier in (6.5) defined up to an additive constant. The first step
is to ensure the differentiability of φ? w.r.to the considered parameter. In
order to do so, additional hypotheses may be required. For instance, work in
the subspace of zero-mean function in order to remove the additive constant
of φ and suppose that g admits a continuous invertible the Hessian with
respect to φ. An implicit function theorem will then ensure existence of ∂aφ?.
It seems difficult however to cook up a geometric hypothesis in the spirit
of (H) that ensures existence of ∂aφ?. We have to resort to assume this
differentiability φ?. An application of the chain rule formula yields :

W 2
2 (µ, ν) = g(φ?, ν, µ)⇒ ∂W 2

2
∂a

= ∂g

∂φ

∂φ?

∂a
+ ∂g

∂a
= ∂g

∂a
, (6.14)

since φ? is a solution of (6.5), the derivative of g with respect to φ is zero
at φ?. Hence computing the differential of W 2

2 consists in differentiating the
cost function g while keeping φ fixed at φ?. Differentiating (6.9) with respect
to ν we obtain :

∂aW
2
2 =

∑
(i,α)∈I

(∂atiαe )riα(tiαe )− (∂atiαs )riα(tiαs ) +
∫ tiαe

tiαs

∂ar
iα(t)dt

When considering ∂atiα only three cases can occur :
1. If Pα belongs to the interior of the ith Laguerre cell then, tiαs = 0 and
∂at

iα
s = 0.

2. If Pα+1 belongs to the interior of the ith Laguerre cell then, tiαe = 1
and ∂atiαe = 0.

3. For all i there exists exactly one j such that tiαs = tjαe . The segment
[Pα, Pα+1] intersects Li ∩ Lj at point lα(tiαs ). For all x in Li ∩ Lj,
by definition of the Laguerre cell (6.4), the following equality holds
‖x− xi‖2

2 − φi = ‖x− xj‖2
2 − φj then riα(tiαe ) = rjα(tjαs ).
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It follows that
∂aW

2
2 =

∑
(i,α)∈I

∫ tiαe

tiαs

∂ar
iα(t)dt (6.15)

Note that equation (6.15) can be obtained directly by a formal argument.
Assuming that ∂νφ? exists and define

h(φ, ν) =
∫

Ω
φdµ+

∫
Ω
φcdν.

We then have, at a formal level :

W 2
2 (µ, ν) = sup

φ∈L1(µ)
h(φ, a)⇒ ∂W 2

2
∂a

= ∂h

∂φ

∂φ?

∂a
+ ∂h

∂a
= ∂h

∂a
=
∫

Ω
(φ?)c(∂adν),

(6.16)
where the term ∂adν is the variation of the measure dν with respect to the
parameter a. Despite being even more formal, this latter argument allows to
prove differentiability w.r.to the mass ρα. Indeed in this case, h is linear with
respect to ρα, and thenW 2

2 is convex with respect to ρα. Up to translating the
formula (6.16) in the language of subgradients, is indeed true. Note finally
that this does not help at all to differentiate W2 with respect to Pα.

6.3.3.1 Derivative with respect to P

We are first interested in differentiating the Wasserstein distance with
respect to the position of the endpoints (Pα)α∈J1,p+1K of the polyline. A direct
application of (6.15) yields :

∂W 2
2

∂Pα
=

∑
i∈K(α−1)

∫ t
i(α−1)
e

t
i(α−1)
s

∂Pαr
i(α−1)(t)dt+

∑
i∈K(α)

∫ tiαe

tiαs

∂Pαr
iα(t)dt

The differential of riα(t) with respect to Pα amounts to differentiate
‖lα(t)− xi‖2, we have that :

∂‖lα(t)− xi‖2

∂Pα
= 2(1− t) (lα(t)− xi)

∂‖l(α−1)(t)− xi‖2

∂Pα
= 2t

(
l(α−1)(t)− xi

)
.
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Let K(α) the set of indices i such that the i-th Laguerre cell has a non-empty
intersection with the α-th segment :

K(α) = {i s.t. Li(x, φ) ∩ [Pα, Pα+1] 6= ∅} = {i such that (i, α) ∈ I}.

We add the two previous equations together and notice that Pα−1, Pα, Pα+1
are integrated between 0 and 1 :

∂W 2
2

∂Pα
=
Pα + Pα−1 − Pα

3 − 2
∑

i∈K(α−1)

∫ t
i(α−1)
e

t
i(α−1)
s

txidt

 ρα−1

+
Pα + Pα+1 − Pα

3 − 2
∑

i∈K(α)

∫ †tiαe
†
tiαs

txidt

 ρα (6.17)

where †t is the reverse parameterization of the segment [Pα, Pα+1], that is

†
tiαs = 1− tiαe and †

tiαe = 1− tiαs .

We may interpret (6.17) as the sum of the torques of the surrounding
segments [Pα−1, Pα] and [Pα, Pα+1] around the point Pα.

6.3.3.2 Derivative with respect to ρ

The functional g defined in Equation (6.9) is linear in ρα, and its derivative
is therefore trivial. Throughout this paper, we consider that the density is
constant by segment. As a consequence

ρα = ‖Pα − Pα+1‖∑
β ‖Pβ − Pβ+1‖

. (6.18)

Set S = ∑
β ‖Pβ − Pβ+1‖, the derivative of ρ with respect to P is given

by :

∂ρα
∂Pα

= 1
S

(Pα − Pα+1)
‖Pα − Pα+1‖

+ 1
S2

(
Pα+1 − Pα + (Pα−1 − Pα) ‖Pα − Pα+1‖

‖Pα−1 − Pα‖

)

6.3.3.3 Optimization algorithm

The aim of this section is to describe the algorithm which optimizes the
Wasserstein distance W 2

2 with respect to the position of the endpoints Pα of
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the polyline. The proposed algorithm is a gradient descent method with a
metric Σ, we recall that the gradient of W 2

2 with respect to P is given by :

∇PW
2
2 = ∂W 2

2
∂P

+ ∂W 2
2

∂ρ

∂ρ

∂P
, (6.19)

The differential of W 2
2 with respect to P and ρ are discussed in Section

6.3.3.1 and Section 6.3.3.2 respectively. The main goal of this section is to
discuss the choice of the metric Σ.

Let us consider an isolated segment [Pα, Pα+1], that is ρα−1 = ρα+1 = 0.
The average of the gradient for the segment [Pα, Pα+1] is given by :

1
2

(
∂W 2

2
∂Pα

+ ∂W 2
2

∂Pα+1

)
=
1

2Pα + 1
2Pα+1 −

∑
i∈Kα

∫ tiαe

tiαs

xidt

 ρα = ρα(cα − x̄α)

(6.20)
where cα is the center of the α-th segment and x̄α is the weighted average

of points xi seen by the α-th segment :

cα = Pα + Pα+1

2 and x̄α =
∑
i∈Kα

∫ tiαe

tiαs

xidt.

Equation (6.20) is reminiscent of the formula of the derivative of W 2
2 in the

semi-discrete setting, see [85, 34, 94]. In this setting, µ is a measure with
density and the approximating measure ν is a sum of Diracs :

ν =
p∑

α=1
mαδxα

In this case, the derivative ofW 2
2 with respect to the position of the points

is given by :
∂W 2

2
∂yα

= mα(yα − bα), (6.21)

where bα = 1
mα

∫
Lα ydµ is the barycenter of the αth Laguerre cell.

In the semi-discrete setting, the most commonly used algorithm when
minimizing W 2

2 with respect to y is to update the point position yα to their
barycenters bα. This procedure is known as Lloyd’s algorithm [34, 94, 85]. In
view of the formula of the gradient (6.21), this method is a gradient descent
with metric Σ = diag(mα). Indeed, in Lloyd’s algorithm, the update formula
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for yα is yα → yα − 1
m
∂W2

2
∂yα . In our case it is natural to consider a metric Σ

defined via ρα as an analogy to the semi-discrete setting. We define :

Σ = diag(ρα−1 + ρα
2 ). (6.22)

The main algorithm that minimizes W 2
2 with respect to P is given by

algorithm 6 below

Algorithm 6 Optimization polyline position
1: procedure Optimization in P
2: ∇PW

2
2 ← 0

3: do
4: P ← P −Σ−1 · ∇PW

2
2 . with Σ defined in (6.22), ∇PW

2
2 defined

in (6.19)
5: ρ← normalizedDensity(P ) . as in (6.18)
6: φ∗,∇PW

2
2 ← computeOptimalTransport(x,m, P, ρ) . see

Algorithm 7
7: while ‖∇P‖∞ ≥ 10−3

8: end procedure

6.4 Numerical implementation
The Laguerre cells are computed using the computational geometry li-

brary CGAL [128]. In 2D the algorithm is fast and scalable, the average
complexity for n sites randomly drawn is linear in time and memory. For 3D
triangulation the worst case complexity is quadratic, but for random point
configurations the complexity is observed to be almost linear [46]. In this
section we discuss the computation of g and its parallelization.

6.4.1 Integration computation
The main issue when computing g and its derivative is to evaluate the

intersections (6.8) between the polylines and the Laguerre cells. The inter-
sections are computed by following each segment lα(t) with t increasing. We
first focus our attention on computing the exit time of the Laguerre cell j
knowing the starting time tiαs . To clarify things suppose that at the known
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time tiαe = tjαs the segment exits the Laguerre cell Li and enters the Laguerre
cell Lj. The objective is to compute the time tjαe = tkαs and the index k such
that the segment exits the Laguerre cell Lj at time tjαe and enters the La-
guerre cell Lk. Such a time is computed by solving the following minimization
problem

k = argmin
m s.t. m 6=i, tjαs <tm≤1

tm,

with tm =2〈Pα,xj − xm〉+ ‖xm‖2 − φm + φj − ‖xj‖2
2

2〈Pα − Pα+1,xj − xm〉
. (6.23)

First notice that tm is the time when the α-th segment hits the intersection
of the cells i and j if all the other Laguerre cells are ignored. Second, the
constraintsm 6= i and tjαs < tm are deliberatively redundant, it is a numerical
safeguard that prevent the code from endless loops.

The exit time tjαe is now equal to tk. Note that the choice of m can be
restricted to the indexes of adjacent Laguerre cells, which is a small set in
practice (a dozen of indexes). If the set {m 6= i, tjαs < tm ≤ 1} is empty,
the segment ends in the Laguerre cell Lj and we set tjαe = 1 and we stop the
procedure for the segment.

In the case when tjαs = 0, that is the segment starts in the Laguerre cell Lj,
we consider the same minimization problem as (6.23) where the constraint
set is replaced with {m, 0 ≤ tm ≤ 1} .

We still have to compute the index of the Laguerre cell where the segment
[Pα, Pα+1] begins. If α > 0, it is obviously the index of the ending Laguerre
cell of [Pα−1, Pα]. For the case α = 0, we add a dummy segment [xl, Pα],
where xl is the position of the l-th Dirac mass corresponding to the largest
multiplier φl = maxk φk. By definition of the Laguerre diagram (6.4) the
point xl belongs to Ll.

Given the starting and ending times, the computation of g(φ, ν, µ) and its
derivative abridge to integrate polynomials within [tjαs , tjαe ] using Gaussian
quadrature.

There might exist several solutions k to the minimization problem (6.23).
In this case, the segment encounters a corner, the intersection of at least
3 Laguerre cells. In practice this case never occurs thanks to floating point
arithmetic but the rounding error can elect a non-suitable candidate. In this
case, the algorithm assigns a segment of negligible length to the candidate,
see Figure 6.3.
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Li Ll

Lj
Pα

Pα+1

Li Ll

Lj

ε

Li Ll

Lj

Figure 6.3 – Example of non-uniqueness to the minimization problem (6.23).
At the left the polyline [Pα, Pα+1] intersects the junction of 3 Laguerre cells
(i, j, l). In the center k = l chosen as expected. At the right k = j chosen
and tjαe − tjαs = ε, a small error occurs assigning a bit of the segment to the
jth Laguerre cell.

6.4.2 Parallelism

The evaluation of g(φ, ν, µ) and its derivative with respect to φ are discus-
sed in Section 6.4.1. For each segment of the polyline the intersection times
are computed sequentially by (6.23) and the integration is performed on the
fly. The parallelism is unfurled at the highest level of the algorithm for the
segments. Remember that the computation of the intersection of the polyline
and the Laguerre tessellation requires for each segment the knowledge of the
cell of its starting point. This cell can be inferred from the calculation of
the previous segment. Hence, we slice the polyline into contiguous chunks
of segments with equivalent size, each worker dealing with one chunk. For
each of these chunks the sequential integration procedure is launched and
then the results are merged. We carry out both OpenMP and c++11 thread
class implementation. For a standard chunk size and for a regular processor
the c++11 performance overtakes the OpenMP’s one. We suppose that this
difference of performance (up to a factor two) is due to OpenMP overhead.

In Figure 6.4, the evolution of the computation time of the cost function
g and its gradient with respect to φ is benchmarked. The speedup unit is
defined as the ratio of the execution time of the non-parallelized task over the
parallelized task. OpenMP and c++11 thread class are both implementations
of shared memory parallelization, the memory is simultaneously accessible
for every thread. The performance of a process depends intrinsically on how
close the data is. If the data is on processor cache the latency is a dozens
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Figure 6.4 – Speedup for the computation of the cost function g with c++11
thread class in blue, and OpenMP in orange . The parallelism is placed over
the segment integration for n = 200K points and p = 80K segments for
an increasing number of threads with a super-calculator equipped with Intel
Xeon R© E5-2680

of CPU cycles, if the data is located on RAM, the latency is 40ns. In our
experiment, for large number of threads, 30

6.5 Computation of the optimal transport
The goal of this section is to compare the available methods to optimize

g with respect to φ (6.5). The functional g is concave with respect to φ
since it is a dual formulation of the problem (MK) see [133]. Under the
hypothesis (H) the functional g is C1 with respect to φ. Note that a higher
level of regularity cannot be established as argued in Figure 6.5. This lack of
regularity precludes the use of the convergence framework for second order
methods established by Mérigot et al. [80].

However, we may apply classical convergence results of concave analysis
to functional the g. To trigger those arguments, the Lipschitz constant of
the gradient L has to be bounded. Under Hypothesis (H), using the notation
of Section 6.3.2 summarized in Figure 6.2 and the expression of the Hessian
matrix (6.13), we establish a finite upper bound for L using the Gershgorin
circle theorem :
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xi
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Pα−1
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Pα+1

Pα

φi

∇g(φi)

Figure 6.5 – Counter-example to the smoothness of ∇g. Consider the a
Laguerre tessellation and a set of segment as displayed in the left and increase
φi. The Laguerre cell Li increases and the gradient of g with respect to φ
exhibits kinks. Those kinks happen each time a Laguerre cell meets a line
segment for the first time. Under Hypothesis (H) boundary segments of the
Laguerre cell are never parallel to a line segment. If Hypothesis (H) is not
met ∇g may fail to exist.

|L| ≤ 2 max
i

∑
j 6=i

∣∣∣∣∣ ∂2g

∂φi∂φj

∣∣∣∣∣ ≤ p(n− 1) max
α

(ρα)
min
l 6=m

(‖xl − xm‖2) min
i,j,α,i6=j

| cos((θijα ))|
, (6.24)

where p is the number of segments composing the polyline and n the number
of Dirac masses composing the discrete measure, ρα is the density associated
to each segment and θijα is the angle between the vector Pα+1 − Pα and
(xj − xi). For fixed measures ν and µ the evaluation of the bound (6.24) is
costly as it involves combinatorial quantities and is not evaluated in practice.

The gradient Lipschitz condition (6.24) is sufficient to ensure convergence
of ascent methods. Note that g is bounded from above as µ and ν are com-
pactly supported measures with the same total mass. The gradient method
with step s < 2

L
converges to a stationary point φ? see [110, 13, 102]. The

same holds for variant step-size method with line search such as Global Bra-
zalai Borwein algorithm [113, 51].

Because of the counter-example in Figure 6.5, and the lack of regularity
of the gradient of g, quadratic convergence cannot be guaranteed for second



132 CHAPTER 6. 3/4 DISCRETE OPTIMAL TRANSPORT

order methods. Note also that in a generic setting, the Newton method is
impractical since the Hessian matrix defined in equation (6.13) fails to be
invertible, see Section 6.5.1.3.

6.5.1 Choice of optimization method
The different methods are tested against the same benchmark. It consists

in drawing uniformly 10K points and 500 segments in 2D. Several realization s
of the optimization procedure are performed and plotted in the corresponding
figures 6.6, 6.7, 6.8 and 6.9. The methods are benchmarked in Table 6.1.

6.5.1.1 First order method

We first implement a gradient ascent method. The generic convergence
history is displayed in Figure 6.6. As explained in Section 6.5, the Lipschitz
constant of the gradient cannot be satisfactorily computed, so the step-size is
chosen according to strong Wolfe conditions. In practice the algorithm settles
for a constant step of 0.05. As it can be observed in Figure 6.6 the rate of
convergence of the gradient towards zero is too slow for this method to be
used in practice.

0 1000 2000 3000 4000 5000 6000 7000
iterations

0.000
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0.004

0.006

0.008

0.010

0 1000 2000 3000 4000 5000 6000 7000
iterations

10 2

3 × 10 3

4 × 10 3

6 × 10 3

Figure 6.6 – Gradient ascent method : cost function history (left) and norm
of the gradient (right). Method stopped by the max iteration criterion.

We have tried other first order methods including Polak-Ribière, Fletcher-
Reeves, Barzalai Borwein and Nesterov acceleration. Only Nesterov accele-
ration has behaved differently from the other methods and it is displayed in
Figure 6.7. Note however, that Nesterov acceleration requires an estimation
of L, the Lipschitz constant of the gradient. Figure 6.7 was obtained with
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an estimation of L that promotes quick decreases of gradient norm at the
beginning of the algorithm. Note however that the estimation of L seems too
optimistic since the Nesterov algorithm does not converge. A more pessimis-
tic choice of L leads to a convergence rate similar to the gradient algorithm,
at least during the first 7K iterations.
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6 × 10 3

Figure 6.7 – Nesterov acceleration of gradient ascent : cost function history
(left) and norm of the gradient (right). Method stopped by the max iteration
criterion.

6.5.1.2 Quasi-Newton Method

The main idea behind quasi-Newton methods is to build at the iteration k
an approximation of the Hessian matrix of g. We choose the limited memory
BFGS method, which only stores a limited amount of vectors determined by
the user. The result is displayed in Figure 6.8. This method converges faster
than first order method, the L-BFGS algorithm reaches the desired gradient
tolerance 5.10−5 within 1500 iterations. By contrast first order methods failed
to converge in 7000 iterations. However when the method is close to a critical
point the convergence speed tends to decrease.

6.5.1.3 Newton and quasi-Newton hybridization

In the light of the previous section, the flaw of the quasi-Newton method
is its lack of briskness when it reaches the vicinity of a maximizer. Second-
order methods are known to converge quadratically in the basin of attraction
of a maximizer. The idea of the hybrid algorithm is to start with a quasi-
Newton method, and then switch to a second order Newton algorithm when
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Figure 6.8 – L-BFGS method : cost function history (left) and norm of the
gradient (right). Method converges to the targeted gradient norm 5.10−5 in
a average of 1500 iterations.

the basin of attraction is reached. The quandary is to determine when to
start the Newton method in preference to the L-BFGS method. Indeed far
from the basin of attraction the direction given by the Newton method is
poor and the natural step 1 is truncated by the line search which causes
extra computation time.

We propose to switch from the L-BFGS algorithm to the Newton algo-
rithm as soon as there is no empty Laguerre cell. A Laguerre cell Li is called
empty as long as there is no mass assigned to its centroid xi that is ν(Li) = 0.
This criterion is informally motivated by the fact that the second order infor-
mation relates the competition and the connectivity between Laguerre cells,
hence if one of them is empty its information is inconsequential. From a prac-
tical point of view, this condition ensures that the Hessian has a kernel of
dimension 1 (the dual variable φ is defined up to an additive constant). The
condition ν(Li) 6= 0 is checked throughout the algorithm via the variable
hiddenNumber which totals the number of empty Laguerre cells. In order
to invert the Hessian, it is first shifted with a small multiple of the identity
in order to prevent the 0 eigenvalue and a Cholesky procedure is performed.
This procedure is described in Algorithm 7 and the result are displayed in
Figure 6.9.

In the numerical tests, the switch between the two Newton method hap-
pens approximatively 30 iterations before termination of the algorithm. Du-
ring the Newton phase of the hybrid algorithm, the algorithm typically under-
goes two stages. During the twenty first iterations of the Newton method the
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Algorithm 7 Computation of optimal transport
Ensure: Dirac positions x and masses m.
Ensure: Nodes P and density ρ of the polyline.
Require: φinit a starting φ for the computation of g
Require: gradTol L2 tolerance on the gradient norm
Require: outerMax maximum number of iterations
Require: wolfeProcedure standard line search with strong Wolfe condition

and initial step s = 1. [13]
1: function computeOptimalTransport(x,m,P ,ρ)
2: bf← LBFGS(memSize) . Initialization of L-BFGS
3: φ← φinit
4: ∇φ,cost,hiddenNumber ← computeIntegration(φ)
5: i← 0
6: while i < outerMax & gradTol < ‖∇φ‖2 do
7: if hiddenNumber 6= 0 then
8: d ← bf.findDirection(∇φ)
9: else
10: H ← computeHessian(φ)
11: d ← −H−1∇φ . The Hessian is definite so Newton direction

is taken
12: end if
13: s← wolfeProcedure(cost, φ, s, d)
14: ∇φold ← ∇φ
15: ∇φ,cost,hiddenNumber ← computeIntegration(φ+ sd)
16: bf.addDirection(∇φold −∇φ, sd) . Actualize memory of the

L-BFGS algorithm
17: φ← φ+ sd
18: end while
19: end function
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algorithm stabilizes around the maximum and the Wolfe line-search prevents
picking s = 1. During the second stage, quadratic convergence is achieved in
few iterations.

Levenberg-Marquartdt’s method was also implemented with a regulariza-
tion parameter that tends to zero when approaching the basin of convergence,
however in large scale optimization problems the lightweight hybrid method
is preferable since it requires the inversion of the Hessian only in the last
iterations.

0 100 200 300 400 500 600
iterations

0.000

0.002

0.004

0.006

0.008

0.010

0 100 200 300 400 500 600
iterations

10 11

10 9

10 7

10 5

10 3

10 1

Figure 6.9 – Hybrid Newton method : cost function history (left) and norm
of the gradient (right). The method converges to the targeted gradient norm
10−6 in 600 iterations on average.

BBG Nesterov BFGS BFGS/Newt LM

Time/iteration 36.4ms 36.7ms 49.4ms 186ms 649ms
gradient norm 5.5 10−3 1.2 10−3 1.5 10−4 10−15 5.4 10−5

Table 6.1 – Comparison of algorithms for solving the optimal transport
problem for 104 points and 500 lines. Time required for an iteration in milli-
second and the gradient norm after 1000 iterations. The time per iterations
are averaged over 104 iterations, the standard deviation of this mean is below
0.5%. The BFGS/Newton method converges up to numerical error.
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6.6 Numerical examples

6.6.1 Representation of picture

The approximation of a measure by a curve has multiple applications of
which some are described in [40]. In this section we discuss the represen-
tation of a picture by a polyline. The first step is the discretization of the
picture, here a landscape, by a sum of Dirac masses of weights m. Several
approaches are possible but the most intuitive is to take the Dirac positions
x on a Cartesian grid and their weights equal to the pixels intensities. The
polyline is then initialized randomly, and Algorithm 6 is launched. With
no speed or curvature constraints, the gradient method in P described in
Algorithm 6 empirically gives a stationary point. This solution is highly non-
smooth, the length of the segments and the angle between them are disparate
see Figure 6.10 top right. We implement the projection step on kinematical
constraints (Π-step of Algorithm 3) described in Chapter 5 after computing
the optimal transport’s gradient step. This step allows to cancel scibbled
result depticted in the top right image of Figure 6.10.

This scribbled solution is, in practice, difficult to carry out with laser
engravers. Indeed for the same number of segments p, the engraving time
of uncontrolled trajectories can be up to five times longer. In order to get
around this problem, we follow the method described in [40], that is projec-
ting the polyline after the gradient step of Algorithm 6 on a set of kinematic
constraints. The constraints imposed on the speed and the acceleration po-
lyline read as :

K(K1, K2) =
{

(Pα)α∈J1,pK s.t
∣∣∣∣∣ ‖Pα+1 − Pα‖ ≤ K1, ∀α ∈ J1, p− 1K
‖2Pα − Pα−1 − Pα+1‖ ≤ K2, ∀α ∈ J2, p− 1K

}
,

(6.25)
withK1 the constant controlling the speed of the polyline andK2 its accelera-
tion. The projection on the set K(K1, K2) is performed using the Alternating
Direction Method of Multipliers (ADMM) [60].

The authors wish to thank Andrew Gibson for letting them use the ori-
ginal picture and Alban Gossard for his priceless help in realizing the wood
engraving.
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Figure 6.10 – Curvling by 3
4 -discrete optimal transport. Original image

(top left), approximation by a polyline with 400K segments without
any constraints (top right), approximation by a polyline with kinematic
constraints and 250K segments (bottom left), final rendering after wood en-
graving, the polyline is composed of 80K segments (bottom right). In all tests
measure µ is represented by 320K Dirac masses.

6.6.1.1 Galaxy filaments

Galaxies are known to cluster along filaments and other low dimensional
structures [125, 16]. However mathematical extraction of these filaments is
a challenging task. We might try to apply refinements of our algorithm to
find those filaments. As a naive proof of concept, we have applied our me-
thod while setting ρ2k+1 = 0 for all k, so that the lines are disjoint. We use
the data of [126] available at : https://github.com/etempel/bisous. The
galaxies are represented by Dirac masses. Note that in our tests their masses
m are arbitrarily set to 1

n
but the code support other values. In Figure 6.11,

computations are performed for n = 180K galaxies and a decreasing number
of filaments 8K,1K,500.

Despite the fact that the representation of this 3D data is difficult to
interpret, we believe that searching directly solution of the galaxy filaments
by our method is not a reasonable thing to do. Indeed our problem is prone
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to be stuck at local minima. We are currently working on using our method
as a post-processing algorithm which is fed by accurate initialization given
by state-of-the-art algorithms.

6.7 Conclusion
We study the approximation of point clouds by curves for the Wasser-

stein distance. We first discuss the choice of discretization and then settle
for discretizing curves by line segments. We use Laguerre cells in order to
compute the optimal transport problem. We derive formally the formulas for
the differentiation of the Wasserstein distance with respect to the discreti-
zation parameters of the curve. We discuss technical points of the numerical
implementation and we illustrate our method by numerical experiments in
2D and 3D. The main drawback of this work is that we assume existence
of differential of the Wasserstein distance with respect to the discretization
parameters of the curve. An interesting future work is to find simple and
plausible hypotheses that allow this differential to exist.
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Figure 6.11 – A thin slice of a solution for locating galaxy filaments (white),
and galaxies (yellow).
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� source code

https://github.com/lebrat/eulerianApproximation

Abstract

In this paper we compute the Hausdorff distance between sets of conti-
nuous curves and sets of piecewise constant or linear discretizations. These
sets are Sobolev balls given by the continuous or discrete Lp-norm of the de-
rivatives. We detail the suitable discretization or smoothing procedure which
are preservative in the sense of these norms. Finally we exhibit the link
between Eulerian numbers and the uniformly space knots B-spline used for
smoothing.

This chapter is a preprint

F. de Gournay, J. Kahn, L. Lebrat
Approximation of curves with piecewise constant or piecewise
linear functions.
arXiv preprint arXiv :1909.04582, 2019.
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7.1 Introduction
In this paper we compute the Hausdorff distance between sets of conti-

nuous curves and sets of piecewise constant or linear discretizations. These
sets are Sobolev balls given by the continuous or discrete Lp-norm of the de-
rivatives. We detail the suitable discretization or smoothing procedure which
are preservative in the sense of these norms. Finally we exhibit the link
between Eulerian numbers and the uniformly space knots B-spline used for
smoothing.

Introduction
This article focuses on a widespread problem of approximation which

consists in approaching a curve by a set of points or by a piecewise linear
function (line segments or polyline). We also analyze the reverse operation
called smoothing, which amounts to, given a set of points or polyline find an
approaching curve with an higher level of regularity. These two approaches
yields the instinctive question : how well can we approximate a particular
space of curves with a particular set of points sets or polyline sets.

This subject has been thoroughly studied, especially by the computer vi-
sion community [45, 130, 100]. The most common approach is to find minimal
length objects controlling some approximation error and the limit error. Our
view is different, since we want to approximate in a Hausdorff sense, that is
to approximate each curve by a set of points or polylines, and each set of
points or polylines by a curve, so that all approximations are close for an
appropriate distance.

In practice, the authors have encountered this question when trying to
computationally project a measure on a space of pushforward measures of
curves [21, 26, 36, 40] : the implementation needs a discretization, and it is
guaranteed to work only if both directions of approximation are small for
the transportation distance W1. It is likely that this kind of results may be
useful in other contexts in computer science.

In this article, we prove that Sobolev balls and similar spaces may be
approximated by discretized Sobolev spaces, where the norm is given by
discrete derivatives. As explained in the notations, the Hausdorff distance
comes from the transportation distance on both time and space, giving a
very robust meaning to the approximation.
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An ingredient in the proof is exhibiting a Sobolev curve that approximates
a given set of points. The construction makes use of Eulerian numbers. Given
their known connection to B-splines [67, 134], this might not be so surprising.

7.2 Notation
Throughout the paper, κa will denote a constant depending only on a

that might change from line to line.
Curves are in Rd and we identify discretization of curves with families

of vectors p = (p0, . . . ,pn−1). Even if we tackle both periodic and non-
periodic cases, the notations are tailored for the periodic case, which allows
the abuse of notation pi = pi (mod n) for each i ∈ Z. In this setting, the
discrete convolution product for a family of vectors p ∈ Rn×d and K ∈ Rn

reads as :

(K ? p)i =
n−1∑
j=0

Kjpi−j,

Given any norm ‖ • ‖ in Rd, the discrete renormalized `q norm is defined as

‖p‖`q =
(

1
n

n−1∑
i=0
‖pi‖q

)1/q

.

Note that this special choice of renormalization of the `q norm turns Young’s
convolution inequality into :

‖K ? p‖`q ≤ n‖K‖`1‖p‖`q ∀q ≥ 1. (7.1)

The convolutional discrete derivative operator, ∆ is defined by

(∆ ? p)i = pi − pi−1.

Similarly for any m ∈ N, the m-order discrete convolutional derivative ope-
rator ∆?m ∈ Rn is defined by the recursion formula ∆?(m+1) = ∆ ?∆?m with
∆?1 = ∆. Its closed form is given by :

∆?m
i = (−1)i

(
m

i

)
. (7.2)
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Let us also define 1 as the identity for the convolution, and T the shift
operator :

1 =

10 = 1
1i = 0 i 6= 0

and T =

T1 = 1
Ti = 0 i 6= 1.

The discrete derivative operator can be written as ∆ = 1− T .
Given α = (α0, . . . ,αm) with αi ∈ R+∗, we consider the periodic Sobolev

multiballs Wm,q
] (α) and their discrete counterparts Pm,q],n (α) defined as :

Wm,q
] (α) =

{
f ∈ L1

]

(
[0, 1]→ Rd

)
s.t. ‖f (r)‖Lq

]
([0,1]) ≤ αr ∀r, 0 ≤ r ≤ m

}
,

Pm,q],n (α) =
{
p ∈ Rn×d s.t. nr‖∆?r ? p‖`q ≤ αr ∀r, 0 ≤ r ≤ m

}
,

where L1
] is the set of periodic functions in L1 and f (r) denotes the derivative

of order r of f .
In the non-periodic case we define the Sobolev multiballs as :

Wm,q(α) =
{
f ∈ L1

(
[0, 1]→ Rd

)
s.t. ‖f (r)‖Lq([0,1]) ≤ αr ∀r, 0 ≤ r ≤ m

}
,

Pm,qn (α) =

p ∈ Rn×d s.t. nr
(
n−1∑
i=r

1
n
‖(∆?r ? p)i‖q

)1/q

≤ αr ∀r, 0 ≤ r ≤ m

.
We consider two different discretizations of curves : given a family of

points p the 0-spline discretization is defined by :

s0(p) : t 7→ pbntc,

which simply amounts to considering the piecewise constant function with
plateaus on the intervals [ i

n
, i+1
n

], 0 ≤ i ≤ n − 1. On the other hand the
1-spline discretization is the linear interpolation between the points, it is
defined by :

s1(p) : t 7→ pbntc + {nt}
(
pdnte − pbntc

)
,

where b•c, d•e are respectively the floor and ceiling function ; we denote the
decimal part of a number as : {nt} = nt − bntc ∈ [0, 1]. We introduce the
Sobolev multiballs of 0-splines and of 1-splines as :

Sm,qn (α) =
{
s0(p) with p ∈ Pm,qn (α)

}
,
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Lm,qn (α) =
{
s1(p) with p ∈ Pm,qn (α)

}
,

with of course Sm,q],n (α) and Lm,q],n (α) their periodic counterparts.
Finally, we specify a metric between curves. Given curves f and g from

[0, 1] to Rd, the distance between f and g is defined as :

d(f, g) =
∫ 1

0
‖f(t)− g(t)‖dt. (7.3)

The distance (7.3) enforces that the set of values of f and g are similar
but also that their time parameterizations are close. The distance (7.3) is
related to the 1-Wasserstein distance, if one considers :

f̃(t) = (f(t), t) and c((x1, t1), (x2, t1)) = ‖x1 − x2‖+ |t1 − t2|.

Denote dλf̃ the push-forward of the Lebesgue measure λ of [0, 1] on Rd+1,
that is :

For any Borel set A ⊂ Rd+1, dλf̃(A) = λ
(
f̃−1(A)

)
.

Note that, for instance

dλs̃
0(A,B) =

n−1∑
i=0

1
n
δpi(A)λ(B ∩ [ i

n
,
i+ 1
n

]) ∀A ⊂ Rp, B ⊂ R.

Introduce the 1-Wasserstein distance between the corresponding measures
dλf̃ and dλg̃. We have

W1(dλf̃ , dλg̃) = inf
γ∈π

∫
Rd+1×Rd+1

c((x, tx), (y, ty))dγ(x× tx, y × ty),

where π is the set of measures on Rd+1×Rd+1 whose first and second marginals
are given by dλf̃ and dλg̃ respectively. One such coupling γ is given by the
time parameter of the curve, so that :

W1(dλf̃ , dλg̃) ≤
∫ 1

0
‖f(t)− g(t)‖ dt. (7.4)
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7.3 Main result
Introduce the Hausdorff distance between to sets of functions A and B

by :
dH(A,B) = sup

f∈A
inf
g∈B

d(f, g) + sup
g∈B

inf
f∈A

d(f, g),

where d is defined in (7.3). Our main theorems are stated as follows,

Theorem 7.3.1. If m ≥ 1, the Hausdorff distance between the multi-balls of
radii α of zero-order periodic splines and the multi-balls of radii α of periodic
Sobolev functions is bounded by κα

n
.

Theorem 7.3.2. If m ≥ 1, the Hausdorff distance between the multi-balls
of radii α of zero-order non-periodic splines and the multi-balls of radii α of
non-periodic Sobolev functions is bounded by κα

n
.

Theorem 7.3.3. If m ≥ 2, the Hausdorff distance between the multi-balls of
radii α of first-order periodic splines and the multi-balls of radii α of periodic
Sobolev functions is bounded by κα

n2 .

Remark 7.3.1. More precisely, Theorem 7.3.3 states that, if m ≥ 2 for any
f ∈ Wm,q

] (α), there exists p ∈ Pm,q],n (α) such that

W1(f, s1(p)) ≤ κα
n2 , (7.5)

and for any p ∈ Pm,q],n (α), there exists f ∈ Wm,q
] (α) such that (7.5) holds.

We first describe the approximant, for the discrete to continuous case, in
the following proposition.

Proposition 7.3.1. Given a sequence of points p, define the function fp by

∀t ∈ [0, 1[, fp(t) =
n−1∑
i=0

gi (nt− i) , (7.6)

with gi(x) =
m∑
k=0

(Cm−k ?∆?k ? p)i
xk

k! χ0≤x<1,

with χA the indicator function of the set A. Then the two following properties
are equivalent :
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— For each r and i the coefficient Cr
i satisfies

∀r ≥ 1, Cr
i = Er

i−1
r! and C0 = 1 (7.7)

where Ek
i , k ≥ 1 is the i-th Eulerian number of degree k.

— The curve fp is a spline of order m, m − 1 time continuously diffe-
rentiable whose mth order derivative is given by

f (m)
p (t) = nm(∆?m ? p)i for t ∈

]
i

n
,
i+ 1
n

[
. (7.8)

In the course of the proof of Proposition 7.3.1 we prove the following
seemingly new recurrence relationship between the Eulerian numbers.

Proposition 7.3.2. The Eulerian numbers are solution to each of the two
recurrence equations :

Em
i =

m∑
k=1

(
m

k

)
k−1∑
l=0

(−1)l
(
k − 1
l

)
Em−k
i−1−l (7.9)

Em
i−1 =

m∑
k=0

(
m

k

)
k∑
l=0

(−1)l−1
(
k − 1
l − 1

)
Em−k
i−l (7.10)

Propositions 7.3.1 and 7.3.2. Let fp be the function defined in Equation
(7.6). It is trivial to see that Equation (7.8) is true if C0 is the convolution
identity kernel. It remains to check the regularity at the connections, indeed
the l-th derivatives on the right and on the left of the spline fp have to be
equal at each connection, that is, for each i ∈ J0, n− 1K and l ∈ J0,m− 1K

lim
t→0

g
(l)
i+1(t) = lim

t→1
g

(l)
i (t).

This gives the following equation :(
Cm−l ?∆?l ? p

)
i+1

=
m∑
k=l

1
(k − l)!

(
Cm−k ?∆?k ? p

)
i

=
m−l∑
k=0

1
k!
(
Cm−l−k ?∆?(k+l) ? p

)
i
, (7.11)

Since p is arbitrary, it can be removed, this yields :
s∑

k=0

1
k!
(
T ? Cs−k ?∆?k

)
= Cs, 0 ≤ s ≤ m.
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Subtracting the first term of the sum from the right hand side one has
s∑

k=1

1
k!
(
T ? Cs−k ?∆?k

)
i

= (Cs − T ? Cs)i = Cs
i − Cs

i−1 = (∆ ? Cs)i. (7.12)

Finally, fp is m−1 continuously differentiable if and only if the coefficient
C verify the recursive formula :

∀ 1 ≤ s ≤ m,
s∑

k=1

1
k!
(
T ? C(s−k) ?∆?k−1

)
= Cs. (7.13)

We turn our attention to solving Equation (7.13) and to obtain that for
all s,

Cs
i = Es

i

s! with Es
i =

i∑
k=0

(−1)k
(
s+ 1
k

)
(i− k)s and E0

i = 1 iff i = 0,

where Ek
i+1, k ≥ 1 is the i − th Eulerian number [31] of degree k. Suppose

the formula for Cr is valid up to r = s − 1, replacing Cs−k by its value in
Equation (7.13) and replacing ∆?k by its expression (7.2) one obtains :

s!Cs
i =

s∑
k=1

(
s

k

)
k−1∑
l=0

(−1)l
(
k − 1
l

)
i−1−l∑
r=0

(−1)r
(
s+ 1− k

r

)
(i− 1− l − r)s−k.

Changing the index r by q = r + l and extending the summation of q from l
to 0 one gets

s!Cs
i =

i−1∑
q=0

(−1)q
s∑

k=1

(
s

k

)
(i− 1− q)s−k

k−1∑
l=0

(
k − 1
l

)(
s+ 1− k
q − l

)
.

Summing in l the right hand side, one has

s!Cs
i =

i−1∑
q=0

(−1)q
(
s

q

)
s∑

k=1

(
s

k

)
(i− q − 1)s−k.

Now using the binomial theorem,

s!Cs
i =

i−1∑
q=0

(−1)q
(
s

q

)
((i− q)s − (i− (q + 1))s) ,



150 CHAPTER 7. APPROXIMATION OF CURVES

an Abel transform gives

s!Cs
i =

i−1∑
q=1

(−1)q(i− q)s
[(
s

q

)
+
(

s

q − 1

)]
+ 1.

Finally, Pascal’s rule yields formula s!Cs
i = Es

i and the proof of Proposi-
tion 7.3.1 is finished. �

In order to prove Proposition 7.3.2, we rewrite Equations (7.11),(7.12)
where we substitute C with the corresponding Eulerian number E using
formula (7.7).

Proposition 7.3.3. The periodic spline fp satisfying Equalities (7.7),(7.8)
can be expressed in the B-Spline basis. It turns out that the control points are
exactly the pi :

fp(t) =
∑
i∈Z

Bm(nt− i)pi (7.14)

with Bm(x) = 1
m!

m+1∑
k=0

(−1)k
(
m+ 1
k

)
(x− k)m+ ,

where (a)m+ denotes the m-th power of the positive part of a. Note that the
formula defined is periodic and the support of Bm is [0,m+ 1[, so that, for a
fixed t, fp is a finite sum.

Proposition 7.3.3. The function which satisfies condition (7.8) is defined up
to the addition of a polynomial of degree m− 1. This polynomial has to be
periodic then it is reduced to a constant. Finally the homogeneity of fp in p
yields its uniqueness.

It remains to show that the function defined in (7.14) satisfies condi-
tion (7.8). Using the differentiation formula of the equispaced B-spline [120],
the k-th derivative of fp(t) is given by :

f (k)
p (t) =

∑
i∈Z

pink
k∑
j=0

(−1)j
(
k

j

)
Bm−k(nt− i− j)

Since B0(t) = χt∈[0,1[ m-th derivative reads as :

f (m)
p (t) =

∑
i∈Z

pinm
m∑
j=0

(−1)j
(
m

j

)
χt∈[ i+j

n
, i+1+j

n
[.
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f (m)
p (t) =

∑
i∈Z

nm
m∑
a=0

(−1)a
(
m

a

)
pi−aχt∈[ a

n
, a
n

[.

For t in [ i
n
, i+1
n

] one has

f (m)
p (t) = nm

m∑
k=0

(−1)k
(
m

k

)
pi−k = nm (∆?m ? p)i

which allows to conclude.

7.4 Proof of the theorems
This section deals with the proofs of the main theorems. It is subdivided

into 4 sections. In Section 7.4.1, we introduce some useful results and opera-
tors used throughout the rest of the proof. In Section 7.4.2, we construct the
spline approximation when the continuous curve is given and show that the
distance between the spline and the continuous curve is bounded with the
correct rate with respect to n. In Section 7.4.3, we construct a continuous
curve when the spline approximation is given. In Section 7.4.4 the distance
between constructed continuous curve and the given spline approximation is
proven with the correct rate but the continuous curve does not belong to
the correct multi-ball. Finally in Section 7.4.5, we gather the results of the
different sections and prove the main theorems.

7.4.1 Notations and technical lemmas
In the following, we make extensive use of the shift operator σm defined

as 
(σm ? p)i = pi+m+1

2
if m is odd

(σm ? p)i = 1
2

(
pi+m/2 + pi+m/2+1

)
if m is even.

(7.15)

Moreover, we need a notion of support of the convolution kernel, this
notion is well suited to the non-periodic case and is only useful in this context.

Lemma 7.4.1. Let α, β ∈ N with α + β < n, we say that a kernel K has
support in [−α, β] if Ki = 0 for each β < i < n − α. For such a kernel K,
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we have, for all A ∈ Rn, for all a ≥ β and b < n− α,
(

b∑
i=a
‖(K ? A)i‖q

) 1
q

≤ n‖K‖`1
 b+α∑
i=a−β

‖Ai‖

 1
q

.

Finally we introduce the operator ∆−1, the inverse of the operator ∆.

Lemma 7.4.2. Let α, β ∈ N. If A has support in [−α, β] and verifies∑n−1
i=0 Ai = 0, define ∆−1(A) as

∆−1(A)i =
i∑

j=0
Aj −

β∑
j=0

Aj.

Then ∆ ? ∆−1(A) = A . Moreover ∆−1(A) has support in [−α, β − 1] and
‖∆−1(A)‖`1 ≤ (β + α)‖A‖`1.

Next we gather some results about the Eulerian numbers in the following
lemma.

Lemma 7.4.3. For m ≥ 2 the kernel Cm sums up to 1 and have support in
[0,m] and the kernel Cm ? σm is symmetric. Moreover if

A = Cm ? σm − 1,

then ∆−2(A) exists. For m = 0, 1, then A = 0.

Lemma 7.4.3. First we recall the following well-known properties of Eulerian
numbers, valid for m ≥ 1, see [31]

Em
k = Em

m−k+1, and Em
k = (m− k + 1)Em−1

k−1 + kEm−1
k

We prove ∑m+1
k=1 C

m
k = ∑m

k=0
Emk
m! = 1 by an induction on m.∑

1≤k≤m
Em
k =

∑
1≤k≤m

(m− k + 1)Em−1
k−1 + kEm−1

k

=
m−1∑
k=1

(m− k)Em−1
k + kEm−1

k = m
m−1∑
k=1

Em−1
k = m! �

We now study the symmetry of Cm ?σm. If m is odd this property is a direct
consequence Em

i = Em
m−i+1. If m is even, simply notice that

(Cm ? σm)i = 1
2
(
Cm
i+m

2
+ Cm

i+m
2 +1

)
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= 1
2
(
Cm
−i+m

2 +1 + Cm
−i+m

2

)
= (Cm ? σm)−i.

The coefficients of A sum up to 0 and A has support in [−
⌊
m
2

⌋
,
⌊
m
2

⌋
] so that

∆−1(A) exists. For n large enough, we now prove that the symmetry of A
ensures that the coefficients of ∆−1(A) sum up to 0. For that purpose, for
each j, denote u = n− j so that Au = Aj.

n−1∑
i=0

∆−1(A)i =
n−1∑
i=0

 i∑
j=0

Aj

− n β∑
j=0

Aj =
n−1∑
j=0

(n− j)Aj − n
β∑
j=0

Aj

= 1
2

 n∑
u=1

uAu +
n−1∑
j=0

(n− j)Aj

− n

2

 β∑
j=0

Aj +
n∑

u=n−β
Au


= 1

2

 n∑
u=1

uAu −
n−1∑
j=0

jAj

− n

2

n−1∑
j=0

Aj + An


= n

2An −
n

2An = 0.

Hence ∆−2(A) exists and has support in [−
⌊
m
2

⌋
,
⌊
m
2

⌋
−1]. Moreover,we have

‖∆−2(A)‖`1 ≤
κm
n

for n ≥ m.

7.4.2 Approximation of function by splines
We now describe the approximating spline for a continuous curve in the

periodic and non-periodic case. We prove that the approximations belong to
the correct Sobolev multi-balls. We also prove that theW1-distance between
this approximation and the continuous curve is bounded with the correct
rates.

Proposition 7.4.1. Let f ∈ Wm,q
] (α), (resp. f ∈ Wm,q(α)), define p ∈

Rn×d as pi = f
(
i
n

)
for all i = 0 . . . n− 1 .

— Then p ∈ Pm,q],n (α) (resp. Pm,qn (α))
— If m ≥ 1, then d(f, s0(p)) ≤ α1

n
.

— If m ≥ 2, then d(f, s1(p)) ≤ α2

n2 .
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This proposition states that the distance from the multi-balls of Sobolev func-
tions to the set of splines behaves exactly as stated in Theorems 7.3.1,7.3.2
and 7.3.3.

Let f ∈ Wm,q
] (α) (resp. f ∈ Wm,q(α)) and set pi = f( i

n
), we first prove

that p ∈ Pm,q],n (α) (resp. p ∈ Pm,qn (α)).

Démonstration. For any k ≤ m, let i ≥ k in the case f ∈ Wm,q(α) and let i
be arbitrary in the case f ∈ Wm,q

] (α), we have

(∆?k ? p)i = 1
nk

∫ i

s1=i−1

∫ s1

s2=s1−1
· · ·

∫ sk−1

sk=sk−1−1
f (k)

(
sk
n

)
dsk · · · ds2ds1

Notice that sk is integrated on the interval [i−k, i]. We use a Fubini theorem,
and in the periodic case , we use a change of variable sk + k → sk to obtain :

‖nk(∆?k ? p)i‖ ≤
∫ n

sk=0

∫ sk+1

sk−1=sk
. . .
∫ s2+1

s1=s2
‖f (k)

(
sk
n

)
‖χs1∈]i−1,i]ds1 · · · dsk−1dsk

≤
∫ n

sk=0

∥∥∥∥f (k)
(
sk
n

)∥∥∥∥ θi(sk)dsk.
In the periodic case, the functions θi are functions that verify

∀s, 0 ≤ θi(s) ≤ 1,
n∑

i=K
θi(s) = 1 and

∫ n

0
θi(s)ds ≤ 1 ∀i ≥ K,

where K = 0 in the periodic case and K = k in the non-periodic case. By
Jensen’s inequality, we have :

‖nk(∆?k ? p)i‖q ≤
(∫ n

sk=0

∥∥∥∥f (k)
(
sk
n

)∥∥∥∥ θi(sk)‖θi‖L1
dsk

)q
‖θi‖L1

q

≤
(∫ n

sk=0

∥∥∥∥f (k)
(
sk
n

)∥∥∥∥q θi(sk)dsk) ‖θi‖L1
q−1

≤
∫ n

sk=0

∥∥∥∥f (k)
(
sk
n

)∥∥∥∥q θi(sk)dsk
The k-th semi-norm of p is then bounded by :

nk
∥∥∥∆?k ? p

∥∥∥
`q
≤

(
n−1∑
i=K

1
n

∫ n

sk=0

∥∥∥∥f (k)
(
sk
n

)∥∥∥∥q θi(sk)dsk
)1/q
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≤
(∫ n

s=0

∥∥∥∥f (k)
(
s

n

)∥∥∥∥q dsn
)1/q

= αk (7.16)

This proves that p ∈ Pm,q],n (α) in the periodic case, and p ∈ Pm,qn (α) in the
non-periodic case.

The second item of Proposition 7.4.1 involves bounding the distance bet-
ween f and s0(p). In the periodic and non-periodic case, we have

d(f, s0(p)) ≤
∫ 1

0

∥∥∥∥∥f (t)− f
(
btnc
n

)∥∥∥∥∥ dt
≤

n−1∑
i=0

∫ i+1
n

i
n

∥∥∥∥∥
∫ t

btnc
n

f ′(s)ds
∥∥∥∥∥ dt ≤ 1

n

n−1∑
i=0

∫ i+1
n

i
n

‖f ′(s)‖ ds

= 1
n
‖f ′‖L1([0,1]) ≤

1
n
‖f ′‖Lq([0,1]) ≤

α1

n

The last statement of Proposition 7.4.1 amounts to bounding the distance
between f and s1(p), assuming that m ≥ 2.

Introducing for each i the point mi = i+1/2
n

, and performing a Taylor
expansion around this point, we have, for every t ∈ [−1

2n ,
1

2n ] :

f(mi + t) = f(mi) + tf ′(mi) +
∫ t+mi

mi
f ′′(s)(mi + t− s)ds

s1(p)(mi + t) = (1
2 − nt)f

(
i

n

)
+ (nt+ 1

2)f
(
i+ 1
n

)
= f(mi) + tf ′(mi) + (1

2 − nt)
∫ i

n

mi
f ′′(s)(mi −

1
2n − s)ds

+ (nt+ 1
2)
∫ i+1

n

mi
f ′′(s)(mi + 1

2n − s)ds

(f − s1(p))(t+mi) =
∫ t+mi

mi
f ′′(s) (mi − s+ t)︸ ︷︷ ︸

β(t,s)

ds

+
∫ i+1

n

i
n

f ′′(s)

nt(mi − s) + 1
4n + (mi − s

2 + t

2)(χs≥mi − χs≤mi)︸ ︷︷ ︸
γ(t,s)

 ds

For t ∈ [−1
2n ,

1
2n ] and the s under consideration, we have |β(t, s)| ≤ |t| and
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|γ(t, s)| ≤ |t|+ 1
2n , so that

‖(f − s1(p))(t+mi)‖ ≤ ( 1
2n + 2|t|)

∫ i+1
n

i
n

‖f ′′(s)‖ds

Finally we have

d(f, s1(p)) ≤
∫ 1

0

∥∥∥f(t)− s1(p)(t))
∥∥∥ dt

≤
n−1∑
i=0

∫ 1
2n

t=− 1
2n

( 1
2n + 2|t|)dt

∫ i+1
n

i
n

‖f ′′(s)‖ds = 1
n2

∫ 1

0
‖f ′′(s)‖ ds

≤ 1
n2 ‖f

′′(s)‖Lq([0,1]) = α2

n2 .

Thus the proof of Proposition 7.4.1 is complete. This calculus holds both for
periodic and non periodic functions.

7.4.3 Approximation of splines by functions
Now that the spline are known, this section is devoted to the construction

of the continuous curve with the correctW1-distance and the correct Sobolev
constants α.

7.4.3.1 Construction of the approximant

As announced, we have the following proposition

Proposition 7.4.2. Let p ∈ Pm,q],n (α), let fσm?p be as defined in Proposi-
tion 7.3.1, then there exists κα a constant that depends only on α such that
the spline fσm?p belongs to Wm,q

]

(
(1 + κα

n2 )α
)
.

The shift kernel σm defined in Equation (7.15) either drifts the indexes
of p or of its mid points 1

2(p + T ∗ p) depending on the parity of the desired
spline. Notice that ‖σm‖`1 = n−1 so that for any p ∈ Pm,q],n (α), we have
σm ? p ∈ Pm,q],n (α) by virtue of Young’s convolution inequality (7.1).

The l − th derivative of the spline fσm?p is given by :

f (l)
σm?p(t) = nlg

(l)
i

(
nt− i

n

)
χt∈[ i

n
, i+1
n

]

For every i in J0, n− 1K, the l-th derivative of gi reads as :
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∀t ∈ [0, 1], g(l)
i (t) =

m∑
k=l

(
Cm−k ?∆?k ? σm ? p

)
i

tk−l

(k − l)!
We first deal with the case l = m. In this case

‖f (m)‖Lq = nm
(
n−1∑
i=0

1
n

∫ 1

0

∥∥∥(C0 ?∆?m ? σm ? p
)
i

∥∥∥q dt)1/q

= αm.

Now suppose that l ≤ m − 1. Notice that T = (0, 1, 0, . . . ) = Id −∆, using
Lemma 7.4.2 the coefficients of Cm−l−1 and of Cm−l sum up to one. Hence the
operator A = ∆−1(Cm−l−1 − Cm−l ? T−1) exists and there exists a constant
κm,l that depends only on m and l such that ‖A‖`1 ≤ κm,l

n
and

Cm−l−1 = Cm−l ? T−1 + A ?∆, .

Note also that in the case l = m− 1, one has A = 0. Set q = σm ? p, by the
triangle inequality, we have :

‖f (l)‖Lq = nl
(
n−1∑
i=0

1
n

∫ 1

0

∥∥∥∥∥
m∑
k=l

(
Cm−k ?∆?k ? q

)
i

tk−l

(k − l)!

∥∥∥∥∥
q

dt

)1/q

≤ nl

n−1∑
i=0

1
n

∫ 1

0

∥∥∥∥∥
l+1∑
k=l

(
Cm−k ?∆?k ? q

)
i

tk−l

(k − l)! − t
(
A ?∆?(l+2) ? q

)
i

∥∥∥∥∥
q

dt

1/q

: β

+nl
n−1∑
i=0

1
n

∫ 1

0

∥∥∥∥∥∥
m∑

k=l+2

(
Cm−k ?∆?k ? q

)
i

tk−l

(k − l)! + t
(
A ?∆?(l+2) ? q

)
i

∥∥∥∥∥∥
q

dt

1/q

: γ

We claim that the first term, β, is bounded by αl and that the second term,
γ, scales as O(n−2). Indeed for the term β, we have, since ∆ = Id− T :

Cm−l−1 ?∆ = −Cm−l + Cm−l ? T−1 + A ?∆?2

so that

β = nl
(
n−1∑
i=0

1
n

∫ 1

0

∥∥∥∥(1− t) (Cm−l ?∆?l ? q
)
i
+ t

(
Cm−l ?∆?l ? q

)
i+1

∥∥∥∥q dt
)1/q

≤ nl
(
n−1∑
i=0

1
n

∫ 1

0
(1− t)

∥∥∥(Cm−l ?∆?l ? q
)
i

∥∥∥q + t
∥∥∥∥(Cm−l ?∆?l ? q

)
i+1

∥∥∥∥q dt
)1/q

.



158 CHAPTER 7. APPROXIMATION OF CURVES

A change of index in i allows us to conclude

β ≤ nl‖Cm−l ?∆?l ? σm ? p‖`q . (7.17)

By virtue of Young’s inequality (7.1) and ‖Cm−l ? σm‖`1 = n−1, we have
β ≤ αl.

In order to deal with the second term γ, first assume that l ≤ m − 2.
Indeed in the case l = m− 1, we have A = 0 and then γ = 0 and nothing is
to be proven. In the case l ≤ m− 2, bound t by 1, introduce the operator

Q =
m∑

k=l+2

1
(k − l)!

∣∣∣Cm−k ?∆?(k−(l+2))
∣∣∣+ |A|, (7.18)

and note that there exists a constant κm,l that depends only on m and l such
that ‖Q‖`1 ≤ κm,l

n
. Then Young’s inequality yields :

|γ| ≤ nl‖Q ?∆?(l+2) ? q‖`q ≤ κm,ln
l‖∆?(l+2) ? p‖`q ≤ κm,l

αl+2

n2 .

Hence for any l ≤ m− 1, we have

‖f (l)‖Lq ≤ αl + κm,l
αl+2

n2 ,

and for l = m or l = m− 1, we have

‖f (l)‖Lq ≤ αl.

Lemma 7.4.4. Let m ≥ 1 and p ∈ Pm,qn (α).
For θ = 1− 20m

n
and τ = 10m

n
define :

f̃p(t) = fσm?p (θt+ τ) ,

where fσm?p is defined in Proposition 7.3.1, then f̃p ∈ Wm,q(α+ κα
n2 )

Lemma 7.4.4. The differentials of f̃p are given by :

f̃ (l)
p (t) = (θn)lg(l)

i (nθt+ nτ − i)χt∈[iθ,(i+1)θ)],

the Sobolev semi-norm of f̃ can be written as :

‖f̃ (l)
p ‖Lq = (nθ)l

(
n−10m∑
i=10m

1
nθ

∫ 1

0

∥∥∥∥∥
m∑
k=l

(
Cm−k ?∆?k ? σm ? p

)
i

tk−l

(k − l)!

∥∥∥∥∥
q

dt

)1/q
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≤ θ−
1
q β̃ + θ−

1
q γ̃,

where we used |θ| < 1 to obtain the last bound and where the variables β̃
and γ̃ are similar to β and γ defined in proof of Proposition 7.4.2, other than
their sums in i range from 10m to n− 10m.

We can then follow the same outline of the proof of Proposition 7.4.2 ;
using Lemma 7.4.1 we can verify that the σm shift does not interfere with
non-periodicity of p, owing to the sufficiently large buffer τ . Then, one has
similar bounds :

‖f̃ (l)
q ‖Lq ≤ θ−

1
q

(
αl + κm,l

αl+2

n2

)
. (7.19)

Now using that θ−1q ≤ 1 + κ/n, one can conclude that

‖f̃ (l)
q ‖Lq ≤ αl + κm,l,α

n
.

7.4.4 Wasserstein distance
It remains to bound the distance d between the piecewise constant or

linear discretization and f the continuous approximant built with the vector
p.

Lemma 7.4.5. Let m ≥ 1 and p ∈ Pm,q],n (α) and let fσm?p be defined as in
Proposition 7.3.1, then

d(fσm?p, s0(p)) ≤ κα
n
.

The distance d between fσm?p and s0(p) is bounded by :

d(fσm?p, s0(p)) =
n−1∑
i=0

∫ i+1
n

i
n

∥∥∥∥gi (nt− i

n

)
− pi

∥∥∥∥ dt (7.20)

=
n−1∑
i=0

1
n

∫ 1

0
‖gi(u)− pi‖du. (7.21)

Now using the triangle inequality, one has

‖gi(t)− pi‖ ≤ ‖(Cm ? σm ? p)i − pi‖



160 CHAPTER 7. APPROXIMATION OF CURVES

+
m∑
k=1

∥∥∥∥∥(Cm−k ?∆?k ? σm ? p
)
i

tk

k!

∥∥∥∥∥ (7.22)

Integrating in t at the first line and summing in i at the second line, allows us
to use Young’s inequality for the third line given the fact that ‖Cm−k?σm‖`1 ≤
1/n. Now for the last line, using that the `1-norm is lower than `p-norm (by
Jensen’s inequality), one can conclude that second term of (7.22) is bounded
by :

n−1∑
i=0

1
n

∫ 1

0

∥∥∥∥∥
m∑
k=1

(
Cm−k ?∆?k ? σm ? p

)
i

tk

k!

∥∥∥∥∥ dt
≤

n−1∑
i=0

1
n

m∑
k=1

∥∥∥∥∥(Cm−k ?∆?k ? σm ? p
)
i

1
(k + 1)!

∥∥∥∥∥
≤

m∑
k=1

∥∥∥(∆?k ? p
)∥∥∥

`p

1
(k + 1)!

≤ α1

n
+ κα
n2 . (7.23)

It remains to deal with the first term appearing in inequality (7.22) which
can be rewritten as

‖ (Cm ? σm ? p)i − pi‖ = ‖K ? pi‖ with K = Cm ? σm − 1.

Notice that K sums up to zero, so that there exists A = ∆−1(K) with
‖A‖`1 ≤ κm

n
for some constant κm. As a result,

n−1∑
i=0

1
n

∫ 1

0
‖(Cm ? σm ? p)i − pi‖ dt ≤ ‖K ? p‖`1 ≤ ‖K ? p‖`q

≤ κm‖∆p‖`q ≤
α1

n
κm (7.24)

Hence, up to another constant κm,

d(fσm?p, s0(p)) ≤ α1

n
κm + κα

n2

Lemma 7.4.6. Let m ≥ 2 and p ∈ Pm,q],n (α) and let fσm?p be defined as in
Proposition 7.3.1, then

d(fσm?p, s1(p)) ≤ κα
n2
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The distance d(fσm?p, s1(p)) is given by :

d(fσm?p, s1(p)) =
∫ 1

0

∥∥∥f(t)− s1(p)(t)
∥∥∥

1
dt

=
n−1∑
i=0

∫ i+1
n

i
n

∥∥∥∥gi (nt− i

n

)
− s1(p)

∥∥∥∥
1
dt,

hereafter we divide the right hand side into three parts, β, γ, δ :∥∥∥gi(t)− s1(p)(t)
∥∥∥ ≤ ‖((Cm ? σm − 1) ? p)i‖ : β

+
∥∥∥(Cm−1 ? σm ?∆ ? p

)
i
t− (pi+1 − pi)t

∥∥∥ : γ

+
∥∥∥∥∥
m∑
k=2

(
Cm−k ?∆?k ? σm ? p

)
i

tk

k!

∥∥∥∥∥ : δ

The β term is treated in a similar fashion to the previous section. Using
Lemma 7.4.3, there exists a constant κm that depends only on m and a
kernel A with ‖A‖`1 ≤ κm

n
such that A = ∆−2(Cm ? σm − 1). Hence β ≤

‖(A?∆2 ?p)i‖. In order to deal with the δ term, bound t by 1, introduce the
operator

Q =
m∑
k=2

Cm−k ?∆?(k−2) ? σm,

then δ ≤ ‖(Q ?∆2 ? p)i‖. It is easy to check that there exists a constant κm
that depends only on m such that ‖Q‖`1 ≤ κm

n
. It remains to deal with the

γ term. For that purpose notice that

(
Cm−1 ? σm ?∆ ? p

)
i
− (pi+1 − pi) =

(
Cm−1 ? σm ?∆ ? p− σ−3 ?∆ ? p

)
i

=
((
Cm−1 ? σm − σ−3

)
?∆ ? p

)
i
.

The operator Cm−1 ? σm − σ−3 sums up to zero and has support in [−m,m]
so that it is a first order derivative kernel in the sense of Lemma 7.4.2
and there exists a constant κm that depends only on m and a kernel R =
∆−1 (Cm−1 ? σm − σ−3) with ‖R‖`1 ≤ κm

n
, so that γ ≤ ‖(R ?∆2 ? p)i‖.

Collecting all the terms we have,
∥∥∥gi(t)− s1(p)(t)

∥∥∥ ≤ 3∑
j=1
‖(Aj ?∆2p)i‖ with‖Aj‖`1 ≤

κm
n
,
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and finally

d(fσm?p, s1(p)) ≤ 1
n

n−1∑
i=0

∫ 1

0
‖gi(t)− s1(p)(t)‖dt ≤ κm

α2

n2 .

Lemma 7.4.7. Let m ≥ 1 and p ∈ Pm,qn (α), let f̃σm?p be defined as in
Lemma 7.4.4, then

d(f̃σm?p, s0(p)) ≤ κα
n

Lemma 7.4.8. Let m ≥ 2 and p ∈ Pm,qn (α) and let f̃σm?p be defined as in
Lemma 7.4.4, then

d(f̃σm?p, s1(p)) ≤ κα
n

Lemmas 7.4.7 and 7.4.8. Since for any p, d(s0
p, s

1
p) ≤ α1

n
, it suffices to prove

Lemma 7.4.7. We have

d(f̃σm?p, s0
p) =

∫ 1

0

∥∥∥f̃σm?p(t)− s0
p(t)

∥∥∥ dt
≤
∫ 1

0

∥∥∥f̃σm?p(t)− s0
p (θt+ τ)

∥∥∥ dt︸ ︷︷ ︸
α

+
∫ 1

0

∥∥∥s0
p (θt+ τ)− s0

p(t)
∥∥∥ dt︸ ︷︷ ︸

β

The α term is a subpart of the equation (7.20) and can be bounded in a
similar fashion to (7.22) :

α =
∫ 1

0

∥∥∥fσm?p(θt+ τ)− s0
p(θt+ τ)

∥∥∥ = θ−1
n−10m∑
i=10m

∫ i+1
n

i
n

‖fσm?p(t)− s0
p(t)‖dt

≤ θ−1


1
n

n−10m∑
i=10m

‖(Cm ? σm ? p)i − pi‖︸ ︷︷ ︸
ζ

+ 1
n

n−10m∑
i=10m

m∑
k=1
‖(Cm−k ?∆?k ? σm ? p)i

1
(k + 1)!‖︸ ︷︷ ︸

η
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Given that the support of Cm−k ? σm is included in [−m,m] and using
Lemma 7.4.1 the η term can be bounded in the same manner as in Equa-
tion (7.23) . For the ζ part define A = ∆−1(Cm ? σm − 1) ; the support of A
is included in [−m,m] by virtue of Lemma 7.4.1 and bounding θ−1 by 1 + κ

n
,

we have that :
α ≤ κα

n
For the β part notice that θ + 2τ = 1, so that :

|θt+ τ − t| ≤ τ

β =
n−1∑
i=0

∫ i+1
n

i
n

∥∥∥s0
p(θt+ τ)− pi

∥∥∥ dt ≤ n−1∑
i=0

∫ i+1
n

i
n

nτ∑
k=−nτ+1

‖pi+k − pi+k−1‖χi+k∈J1,n−1Kdt

≤ 1
n

n−1∑
i=1

2nτ‖(∆ ? p)i‖ = 2nτ‖∆ ? p‖`1 ≤ κ
α1

n

Since ‖∆ ? p‖`1 ≤ α1
n

and τ ≤ κ
n
. This allows us to conclude that :

d
(
f̃σm?p, s

0
p

)
≤ α1

n
κm + κα

n2 ,

and
d
(
f̃σm?p, s

1
p

)
≤ α1

n
κm + κα

n2 .

7.4.5 Proof of theorems
The end of the proof proceeds as follows. For any p ∈ Pm,qn (α), build

q = σm ? p, notice that ‖σm‖`1 = n−1 so that q ∈ Pm,q],n (α). We have that
fq ∈ Wm,q

] (α+ κα

n2 ). Let δ ∈ R be a scaling factor such that δfq ∈ Wm,q
] (α).

Notice that there exists yet another constant depending on α only and still
denoted κα such that δ = 1 + κα

n2 , we then have

d(δfq, fq) ≤ κα
n2

By the triangle inequality for the distance d, we conclude that

d(s0(p), δfq) ≤ κ

n
, and d(s1(p), δfq) ≤ κ

n2 if m ≥ 2. (7.25)
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Thence δfq ∈ Wm,q
] (α) is sufficiently close to s0(p) ( resp. s1(p)). This ends

the proof.

Theorems 7.3.1 to 7.3.3. For any function f inWm,q
] (α) (resp. f inWm,q(α))

take p ∈ Rd×n such that pi = f
(
i
n

)
, then p ∈ Pm,q],n (α) (resp. p ∈ Pm,qn (α))

by virtue of Proposition 7.4.1. Still using the result of Proposition 7.4.1, the
distance between f and its approximant, whether it is a piecewise constant
or a piecewise linear spline, is bounded with the correct rate.

Now for any piecewise constant or linear function s0(p) ∈ Sm,q],n (α) or
s1(p) ∈ Lm,q],n (α) (resp. s0(p) ∈ Sm,qn (α) or s1(p) ∈ Lm,qn (α)) build q =
σm ? p and the smoothing spline fq defined as in Proposition 7.3.1 (resp.f̃q
defined as in Lemma 7.4.4). This spline belongs to Wm,q

] ((1+ κα

n2 )α) by using
Proposition 7.4.2 (resp.Wm,q((1+κα

n2 )α) by using Lemma 7.4.4). The distance
d between fq (resp. f̃q) and the piecewise constant or linear spline is bounded
and the result of Lemmas 7.4.5 or 7.4.6 (resp. Lemmas 7.4.7 or 7.4.8) with
the correct rates. Introduce the scaled function δfq (resp. δf̃q) as described
in (7.25) to obtain a function in Wm,q

] (α) (resp. Wm,q(α)) whose distance
with respect to the spline is bounded with the correct rate.

Conclusion
In this article, we bound the Hausdorff distance between set of continuous

curve with a prescribed Sobelev semi-norm on their derivative and their dis-
crete piecewise constant and piecewise linear counterparts. Bounding the
Hausdorff requires a twofold control that is :

— given a continuous curve, discretize the curve with a piecewise constant
or linear spline sufficiently close in the sense of the 1-Wasserstein dis-
tance and which belongs to the suitable spline set.

— given a piecewise constant or linear spline, construct a continuous
function sufficiently close in the sense of the 1-Wasserstein distance
and which belong to the correct Sobolev multiballs.

The discretization step is trivial and given by the uniform sampling of the
continuous curve. On the over hand finding a m times continuous function
that approximates the 0-th or 1-st order spline is trickier. The construction
of this continuous approximant involves using B-splines of order m but it
appears that its expression is elegant (see Proposition 7.3.3). The derivatives
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continuousness of this approximant yields recurrence relationships involving
Eulerian numbers and that are, to the best of our knowledge new.

7.5 Numerical implementation
Authors released an open source implementation of the presented smoo-

thing Eulerian B-splines 1. The code implements for d = 2 the previously
presented method with a graphical user interface. Note that this code is ea-
sily scalable to higher dimensions since its it time complexity depends only
on the number of points p. Approximation results using this toolbox are
depicted in Figure 7.1 and 7.5.

7.6 Outlook
In this chapter, the approximation spline defined in Equation 7.6 is tai-

lored for periodic curves. When the curve is non-periodic, the trick involves
shifting and scaling the time parametrization (see Lemma 7.4.4) to cope with
the inherent periodicity of the discrete convolutional operator.

This definition allows the re-use of previously demonstrated inequalities in
the periodic case. We believe that the approximation built with this technique
yields non-optimal constants due to slack in the non-periodic inequalities.
Note that other approximation tricks could be used, like phantom points, to
improve the constants of Lemma 7.4.7 and 7.4.8.

1. https://github.com/lebrat/eulerianApproximation
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Figure 7.1 – Periodic approximation spline f (7.6) in blue for the controls
points p in green. The degree of the approximation spline is m = 3 (top) and
m = 4 (bottom).
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Figure 7.2 – Periodic approximation spline f (7.6) in blue for the controls
points p in green. The degree of the approximation spline is m = 5 (top) and
m = 8 (bottom).
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8.1 Performing the integration over Laguerre
cells

In this section we discuss the integration procedure required to com-
pute the Monge Kantorovitch functional (1.11) and its derivatives in the
semi-discrete case, see Chapter 5 for details. First one can notice that the
integration can be split into two subproblems : integration over the whole
Laguerre cell and integration over the boundaries of the Laguerre cell. Ge-
nerally speaking, integrating over the boundary is less complex. Indeed, the
computation of the Laguerre Tessellation in dimension two by the CGAL li-
brary [128] yields directly the description of the Laguerre cells in term of their
vertices and edges (the later can be either segments/rays/lines). Integrating
over the interior of the Laguerre cell remains trickier and is computationally
more expensive.

First, let us describe the usual methods used to compute these integrals.
Authors of [34] in the ibnot toolbox compute the intersection between the
raw pixels describing the µ measure and each underlying Laguerre cell. Au-
thors of [94] use a similar technique but enhance the computation of se-
cond order moments by triangulating the background measure and summing
for each triangle the value of the integral obtained in closed-form. Bruno
Levy [85], in his toolbox geogram (which includes a library for the computa-
tion of the Laguerre tessellation) supposes that the image density is given on
a triangular mesh and efficiently computes its intersection with the Laguerre
tessellation.

As noted in [89, 138] the volume integration required for the computation
of the cost function and its gradient can be recast to contour integration using
a standard divergence theorem. To recap, for each Laguerre cell one needs to
compute the following integrals :

I1 =
∫
Li(φ,x)

(
‖xi − x‖2 − φi

)
dµ(x), and I2 =

∫
Li(φ,x)

dµ(x),

for respectively the cost function (5.14) and its gradient (5.15). To solve this
problem, it is sufficient to compute the moment of the measure µ on each Li
up to order 2. Indeed one can trivially expand the dot product to get :

I1 =
∫
Li(φ,x)

‖x‖2dµ(x)− 2xi ·
∫
Li(φ,x)

xdµ(x) +
(
‖xi‖2 − φi

) ∫
Li(φ,x)

dµ(x)
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8.1.1 Green’s method of integration
Let M be a H1(Li) vector field then Green’s formula states [23] :∫

Li
∇ ·Mdx =

∫
∂Li

M · nidx,

where ni is the outward pointing normal vector of the boundary ∂Li . This
theorem is key since it helps us to curtail the integration of the Laguerre
cell down to line integrals along the sequence of oriented edges. Note that
computing these line integrals does not introduce extra computations. Indeed
the integration procedure already goes over these edges for Hessian compu-
tation (1.12).

The final ingredient to describe this new integration algorithm is to re-
write the k-th order moment of the µ-measure as the divergence of a H1

vector field. In the following paragraph we describe the method for the spe-
cial case of dimension 2.

The measure µ has a density defined as a bilinear interpolation (Q1 La-
grangian finite elements) of the input image u of size (n1× n2). The support
of µ is the box [0, 1] × [0, 1]. Define the discretization step-size in the i-th
direction as ∆xi = 1

ni−1 . For any (x1, x2) denote i =
⌊
x1

∆x1

⌋
and j =

⌊
x2

∆x2

⌋
.

The expression of the considered density µ is :

µ(x1, x2) = u [i, j] + θ∆ux1 [i, j] + β∆ux2 [i, j] + θβ∆ux1x2 [i, j] , (8.1)

with θ =
{
x1

∆x1

}
and β =

{
x2

∆x2

}
,

where {a} = a− bac denotes the decimal part of a, with∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆ux1 [i, j] = u [i + 1, j]− u [i, j]

∆ux2 [i, j] = u [i, j + 1]− u [i, j]

∆ux1x2 [i, j] = u [i, j + 1] + u [i + 1, j + 1]

−u [i + 1, j]− u [i, j + 1]

(8.2)

For each ` ∈ J0, 2K and for each k ∈ J0, dK we denote M `
k a well chosen vector

field such that
∇ ·M `

k = (x · ek)`µ.
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where ek is k-th vector of the canonical basis.
In order to compute exact integration, several choices for the vector fields

M `
k are possible. The simplest one is to suppose that M `

k derives from a
gradient and to a solve a Laplace equation. Note however that the right hand
side can be a Q3 finite element so that M has to be a Q5 finite element. In
order to limit space complexity of the integration procedure, we rather use
integration on a well chosen direction. Hence our choice of vector fields M `

k

are always directed along a principal axis of the image, the whole procedure
is detailed below.

8.1.2 Detail of the computations

This section details meticulously calculations that yield the vector fields
required to convert integrals over Laguerre cells into integrals over the boun-
daries of the Laguerre cells. These details allow a more digestible reading of
our code.

For the 0-th order raw moment The vector field M0
k does not depend

on k and is chosen colinear to e1,

M0
k = M̃0e1,

with,

M̃0 = ∆x1

(
θu + θ2

2 ∆ux1 + θβ∆ux2 + θ2

2 β∆ux1x2 + r0 + βr1

)

where r0 and r1 are functions that are constant over a pixel and ensure the
continuity of the vector field M0, their closed form is given by :

r0 [i, j] =
i−1∑
k=0

u[k, j] + 1
2 (u[i, j]− u[0, j])

r1[i, j] =
i−1∑
k=0

(u[k, j + 1]− u[k, j]) + 1
2 (u[i + 1, j + 1]− u[i + 1, j]

−u[0, j + 1] + u[0, j]) .
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For the 1-st order raw moment In the following paragraph we wish to
integrate x1dµ and x2dµ. With respect to the parameter x1, we define the
vector field M1

1 as :
M1

1 = M̃1
1 e1

with,

M̃1
1 = ∆2

x1

[
i
(
θu + θ2

2 ∆ux1 + βθ∆ux2 + β
θ2

2 ∆ux1x2

)

+θ
2

2 u + θ3

3 ∆ux1 + β
θ2

2 ∆ux2 + β
θ3

3 ∆ux1x2 + r0 + βr1

]
,

where r0 and r1 are given by :

r0 [i, j] =
i−1∑
k=0

k
(

u[k, j] + 1
2∆ux1 [k, j]

)
+ 1

2u[k, j] + 1
3∆ux1 [k, j]

r1[i, j] =
i−1∑
k=0

k
(

∆ux2 [k, j] + 1
2∆ux1x2 [k, j]

)
+ 1

2∆ux2 [k, j] + 1
3∆ux1x2 [k, j].

Similarly the vector field M1
2 = M̃1

2 e2 is prescribed to be align with the
second direction with :

M̃1
2 = ∆2

x2

[
j
(
βu + θβ∆ux1 + β2

2 ∆ux2 + θ
β2

2 ∆ux1x2

)

+b
2

2 u + θ
β2

2 ∆ux1 + β3

3 ∆ux2 + θ
β3

3 ∆ux1x2 + r0 + θr1

]
.

Once again r0 and r1 have to be chosen to ensure continuity the of M̃1
2 :

r0 [i, j] =
j−1∑
k=0

k
(

u[i, k] + 1
2∆ux2 [i, k]

)
+ 1

2u[i, k] + 1
3∆ux2 [i, k]

r1 [i, j] =
j−1∑
k=0

k
(

[∆ux1 [i, k] + 1
2∆ux1x2 [i, k]

)
+ 1

2∆ux1 [i, k] + 1
3∆ux1x2 [i, k]

For the 2-nd order raw moment Finally we describe how to integrate
the second order term. First in the x1 direction, we define the vector field
M2

1 as :
M2

1 = M̃2
1 e1
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with,

M̃2
1 = ∆3

x1

[
i2
(
θu + θ2

2 ∆ux1 + θβ∆ux2 + β
θ2

2 ∆ux1x2

)

+2i
(
θ2

2 u + θ3

3 ∆ux1 + θ2

2 β∆ux2 + θ3

3 β∆ux1x2

)

+θ
3

3 + u + θ4

4 ∆ux1 + θ3

3 β∆ux2 + θ4

4 β∆ux1x2 + r0 + βr1

]
,

where r0 and r1 are given by :

r0 [i, j] =
i−1∑
k=0

k2
(

u[k, j] + 1
2∆ux1 [k, j]

)
+ 2k

(1
2u[k, j] + 1

3∆ux1 [k, j]
)

+ 1
3u[k, j] + 1

4∆ux1 [k, j]

r1[i, j] =
i−1∑
k=0

k2
(

∆ux2 [k, j] + 1
2∆ux1x2 [k, j]

)
+ 2k

(1
2∆ux2 [k, j] + 1

3∆ux1x2 [k, j]
)

+ 1
3∆ux2 [k, j] + 1

4∆ux1x2 [k, j].

In a similar fashion we define M2
2 = M̃2

2 e2

M̃2
2 = ∆3

x2

[
j2
(
βu + θβ∆ux1 + β2

2 ∆ux2 + θ
β2

2 ∆ux1x2

)

+2j2
(
β2

2 u + θ
β2

2 ∆ux1 + β3

3 ∆ux2 + θ
β3

3 ∆ux1x2

)

+β
3

3 u + θ
β3

3 ∆ux1 + β4

4 ∆ux2 + θ
β4

4 ∆ux1x2 + r0 + θr1

]
,

where r0 and r1 are given by :

r0 [i, j] =
j−1∑
k=0

k2
(

u[i, k] + 1
2∆ux2 [i, k]

)
+ 2k

(1
2u[i, k] + 1

3∆ux2 [i, k]
)

+ 1
3u[i, k] + 1

4∆ux2 [i, k]
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r1 [i, j] =
j−1∑
k=0

k2
(

∆ux1 [i, k] + 1
2∆ux1x2 [i, k]

)
+ 2k

(1
2∆ux1 [i, k] + 1

3∆ux1x2 [i, k]
)

+ 1
3∆ux1 [i, k] + 1

4∆ux1x2 [i, k]

With these vector fields the contour integrals can be computed following
the two steps :

— Intersect the pixel grid with the edges defining the boundary of the
Laguerre cell. Note that these intersections have a closed form and are
efficiently computed.

— Perform exact computation of the integral using Gaussian quadrature
rule.

8.1.3 Complexity analysis
We can now compare the complexity of volume integration with the com-

plexity of contour integration. The principal crux of volume integration stems
from assigning the pixels to each Laguerre cell. Thence both the time and
space complexity are linear with respect to the number of pixels. According
to the previous notation the complexity is of order O(n1n2).

In contrast contour integration requires extra space complexity. Indeed,
one has to store 14 auxiliary matrices of the size of the input image. Note
that this computation is done beforehand since these matrices are tessellation
invariant, and this computation is done once and for all when a image is given
(throughout the computation of optimal transport and the optimization of
Dirac masses and Dirac position).

Nevertheless time complexity is reduced, since contour integrations al-
ready appear in the Hessian computation. One can bound time complexity
of contour integration by

O
(

2 max(n1, n2)#x max
i

deg(Li)
)
,

with #x the number of points composing the discrete measure and deg(Li)
the number of neighbors of the ith Laguerre cell.

In Figure 8.1 we compare the time required to perform integrations for
these methods. For the pixel integration we use the iBnot toolbox 1. The
results are consistent with the complexity analysis.

1. http://www.geometry.caltech.edu/BlueNoise/data/bnot-src.zip
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Figure 8.1 – Time to compute the gradient of the Monge Kantorovitch
functional for an increasing number of pixels and a fixed number of Dirac
masses in the discrete measure.
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8.2 Standard tools of optimization and com-
putational linear algebra

The aim of the following subsections 8.2.1, 8.2.2, 8.2.3 is to recall some
properties in optimization and computational linear algebra. These in-depth
knowledges are key to understanding the subtleties of the damped Newton
algorithm used to optimized the Kantorovitch functional.

First, we describe iterative methods used to solve unconstrained convex
minimization problem. Standard algorithm are performed by repeating the
two following steps at iteration k :

1. Find a descent direction d(k).

2. Select a timestep τ (k) and update the variable x : x(k+1) = x(k) +
τ (k)d(k).

The algorithm is stopped when some convergence criterion are met. When
the derivatives of the functional are known up to the second order one can
distinguish two major types of methods :

— First order methods, that make only use of the gradient information
to determine a descent direction d(k).

— Second order methods or Newton type methods, where the second or-
der information (or its approximation) is used to find a descent direc-
tion. Typically this direction reads as d(k) = −(B(k)(x(k)))−1∇f(x(k)).
When B(k) is the Hessian of f the method is called Newton me-
thod. Conversely, when B(k) is an approximation of the Hessian of f
the resulting algorithm is termed quasi-Newton method.

In the following section we will describe more precisely second order me-
thods, which are more appropriate to solve the semi-discrete L2 optimal
transport problem [34, 94, 138, 85, 80, 96].

8.2.1 Basin of attraction of the Newton method

The principal asset of the Newton type method is its quadratic conver-
gence in a vicinity of minimizer. This neighborhood, where the convergence
rate of the algorithm is boosted is coined as the basin of attraction. First
let us recap several properties of second order methods, before describing in
more details the basin of attraction of Newton type methods.
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Define f̂ the approximation of f at point x(k) by :

f̂(x(k) + h) = f(x(k)) +∇f(x(k))Th+ 1
2h

TB(k)(x(k))h, (8.3)

when B(k) = H[f ](x(k)), then the approximation f̂ is the Taylor approxima-
tion of f . If B(k) is a semi-definite positive matrix, then the quadratic form
f̂ is convex in h. The optimality condition for the approximate f̂ yields :

h? = −(B(k)(x(k)))−1∇f(x(k)) := d(k). (8.4)

The direction d(k) is called the (quasi)-Newton direction. If B(k) is s.d.p.,
one can easily checks that d(k) is a descent direction, that is :

∇f(x)Td(k) = −∇f(x)T (B(k))−1∇f(x) < 0 if ∇f(x) 6= 0.

The Newton-type iterate minimizes the local second order approximation
f̂ of f , it is given by :

x(k+1) = x(k) − τ (k)(B(k)(x(k)))−1∇f(x(k)), (8.5)

with B(k) the Hessian or its approximation, and τ (k) the stepsize. When
τ (k) is set to 1, and B(k) is the Hessian, then (8.5) is called pure Newton’s
step. If the function f is quadratic, and strictly convex the pure Newton’s
step gives the exact minimizer in one iteration. If the function is close to
quadratic, Newton’s iteration with the natural stepsize τ (k) = 1 should be a
good estimate.

However, the pure Newton method has to be used with caution, indeed
this method can diverge even for strictly convex functions. We recall Neste-
rov’s famous counter example [102], let f be strictly convex and given by :

f(x) =
√

1 + x2 with f ′(x) = x√
1 + x2

and f ′′(x) = 1
(1 + x2)3/2 .

In this case the pure Newton iterate (scheme (8.5) with τ (k) = 1) reads as :

x(k+1) = −
(
x(k)

)3
.

So that the pure Newton method diverges if x0 > 1 and oscillates if x0 = ±1.
The insight to take away from this counter-example is : if we are not inside
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the basin of attraction of a minimizer, then the pure Newton’s method can
diverge.

The Newton algorithm can be interpreted as a steepest descent method
for the metric H[f ](x), so that, if one stay sufficiently close to a minimum x?
then the metric chosen H[f ](x) ≈ H[f ](x?) is neat. Intuition suggests that
the rate of change of this metric is also crucial in the performance of the
Newton method. Assume that the Hessian of f is Lipschitz continuous with
constant M , that is :

‖H[f ](x)−H[f ](y)‖2 ≤M ‖x− y‖2 ,

thenM is a bound of the third order derivative of f . The quantityM depicts
the rate of variation of the metric for the steepest descent method, or to put
it in another way the speed of variation of the quadratic model (8.3). We
recall the following theorem from Nesterov [102].

Theorem 8.2.1. Suppose that :
1. The function f is C2(R2) with M-Lipschitz continuous Hessian.
2. There exists a local minimum x? with a positive definite Hessian :

H[f ](x?) � l?In, l? > 0.

3. The initial starting point x0 is close enough to x? :

‖x0 − x?‖ <
2l?
3M (8.6)

Then ‖x(k) − x?‖ < 2l?
3M for all k and the pure Newton method converges

quadratically :

‖x(k+1) − x?‖ ≤
M‖x(k) − x?‖2

2 (l −M‖x(k) − x?‖)
(8.7)

This theorem tells us that the Newton method will converge if the initial
guess is close enough to the minimizer. The vicinity of size 2l?

3M around the
minimizer x? (8.6) is called basin of attraction of the Newton method.

8.2.2 Damped Newton method
Outside the basin of attraction the Newton method with stepsize 1 may

diverge. In order to have an algorithm that converges globally one has to
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enforce the Armijo-Wolfe rule on the Newton iterate (8.5) by finding τ (k) < 1
that ensures a sufficient decrease of the cost function. Such an algorithm is
called damped Newton method. The convergence analysis (see [102] for
details) is then split in two phases, first the damped Newton phase and then
when we are sufficiently close to a basin of attraction the Newton phase
(τ (k) = 1) with quadratic convergence.

Let L−x0(f) denote the sublevel set of f for the value f(x(0)) :

L−
x(0)(f) =

{
x ∈ Rn, f(x) ≤ f(x(0))

}
Suppose that f is strongly convex and that its Hessian is bounded on L−

x(0)(f) :

∀x ∈ L−
x(0)(f), H[f ](x) � lIn and H[f ](x) � LIn with 0 < l ≤ L

There exist upper bounds [20] on the number of damped Newton iterations
ndn in order to attain the basin of quadratic convergence given by :

ndn ≤
f(x0)− f(x?)

γ
with γ = l5

L2M2 . (8.8)

Note that in Equation (8.8) the upper bound on the number of iterations
depends on the ratio l

L
. This quantity differs from the inverse of the condition

number κ−1 since we are looking within L−x0(f) to the smallest and the largest
eigenvalues of the Hessian.

This bound is very pessimistic and unusable in practice to have a descent
estimate of the time spent in the damped Newton phase. Nevertheless, two
quantities are of interest in this formula the Lipschitz constant M of the
Hessian matrix and the ratio of the smallest and largest eigenvalues.

8.2.3 Condition number and its effect in solving a li-
near system

Let us recap some properties of computational linear algebra associated
with the condition number of a matrix. The condition number measures how
sensitive the linear function is to errors or similarly how a small change of
the input affects its output. The spectral condition number of a symmetric
positive-definite matrix A is given by :

κ(A) := λmax

λmin
, (8.9)
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where λmax and λmin are the largest (respectively the smallest) eigenvalues
of the matrix A. When κ(A) is large the system is said to be ill-conditioned
and one should expect numerical problems.

If we want to solve the system Ax = rhs with a computer, we can first
remark the impact of the condition number κ(A) on the precision of the solu-
tion x = A−1rhs found. Indeed, since the computations are made in floating
point arithmetic the result x given by a computer is subject to rounding,
cancellation and absorption errors.

Remark 8.2.1. The precision for solving a linear system depends on the
machine epsilon (εma), and on the condition number of the matrix in the
following way :

err
(
A−1

)
∝ εmaκ(A) (8.10)

For instance, for the double precision, the epsilon machine is 2−53 ≈
1.1e − 16 so that if the condition number is 1e10 the solution will have
roughly six digits of accuracy.

There exist two different numerical methods solve the linear system Ax =
rhs with A a sparse matrix :

— An iterative method based on the conjugate gradient algorithm po-
tentially with preconditioning.

— A direct sparse method that performs Gaussian elimination.
If we use iterative method to solve x = A−1rhs an approximation er-

ror is added up to the intrinsic floating point arithmetic error described in
Remark 8.2.1. It is important to quantify how the additional approximation
error is decreasing with respect to the number of iterations made by the
iterative method.

Lemma 8.2.2. The vanilla conjugate gradient algorithm solves Ax? = b.
The convergence rate of the iterates xm toward the solution x? is given by
[115] :

‖x? − xm‖A ≤ 2

√
κ(A)− 1√
κ(A) + 1

m ‖x? − x0‖A,

where x0 is the initial guess, and ‖x‖A :=
√

(Ax, x).

The rate of convergence given in Lemma 8.2.2 can be improved by pre-
conditioning the matrix A. However the speed of convergence towards the
solution x? depends intrinsically on the condition number of the matrix A.
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8.3 Optimal transport optimization for curv-
ling

In this section we apply some of the theoretical results described in the
previous section to the special case of curvling (when the Dirac masses are
taken along a curve), in order to detail how it differs from the regular semi-
discrete setting (where the Dirac masses are constraints-free). With these dif-
ferences new numerical challenges appear. Indeed, solving an optimal trans-
port problem is more difficult when the Dirac masses are taken along a line.
In the following section, we summarize geometrical characteristic of the La-
guerre tessellations in the curvling setting. These features are premonitory
signs of the future hardships in optimizing the Monge Kantorovitch functio-
nal.

8.3.1 Geometric properties of Laguerre tessalations in
the curvling setting

We detail in Section 1.2.3 how the use of the Laguerre tessellation allows
us to cast an infinite dimensional problem (continuous valued coupling) into
a finite dimensional concave maximization problem. The transport plan is
then given by the Laguerre cell associated with each Dirac mass ; and the
optimization involves finding the optimal Laguerre tessellation which satisfies
the following optimality condition :

∀i, µ (Li) = νi.

In practice, this capacity matching problem is solved by shrinking or
extending the size of the Laguerre cells accordingly to the µ-mass they lie
on. This optimization is driven by the Lagrange multiplier φ, indeed every
point x belonging to the Laguerre cell i satisfies :

‖xi − x‖2
2 − φi ≤ ‖xj − x‖2

2 − φj, ∀j 6= i. (8.11)

From inequality (8.11), one can easily deduce that when the difference bet-
ween two multipliers φi − φj of two adjacent cells Li and Lj varies, the
boundary Li ∩ Lj moves linearly in the outward normal direction at a rate
(see Chapter 6 Equation (6.12) for details of the calculation) :

1
2 ‖xi − xj‖

. (8.12)
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The optimization of the Monge Kantorovitch functional using the La-
guerre tessellation has an elegant geometric interpretation. Thence inspecting
the overall tessellation aspect provides an insightful grasp on the potential
difficulties.

When the Dirac masses of the semi-discrete optimal transport are ta-
ken along a curve, the optimal Laguerre tessellation is very narrow in the
tangential direction of curve as shown in Figure 8.2.

In contrast, in the bluenoise setting (when no constraints are imposed on
the location of Dirac masses), the tessellation tends to be hexagonal. In two
dimensions, the centroidal Voronoi tessellation (CVT) is an hexagonal mesh
and some boundary pieces [103].

As a consequence of these tessellations specificities, the curvling case is
harder to optimize. Indeed :

— The minimal distance between two points is small and diminishes as
we discretize the curve in a thinner manner, so that the magnitude of
the boundaries’ displacement (8.12) is larger. For a fixed length curve
and in two dimensions, when the number of points is multiplied by a
factor n the typical distance between points is divided by a factor n.
In contrast for the stippling case this distance divided by

√
n.

— The "thickness" of the Laguerre cell can be tracked using the radius
of the largest inscribing circle in the Laguerre cell. Numerically, we
observe that for the same number of points, this quantity is always
bigger for stippling. In the curvling case, due to the quasi-alignment
of points along the curve, the tessellation is made up of elongated
Laguerre cells. As a consequence, the minimal perturbation to make
a cell disappear for curvling is smaller in comparison with stippling.

The main conclusion to be drawn from these observations is that compu-
ting the optimal transport distance in the curvling case is trickier. Indeed,
the optimization of the Kantorovitch functional with respect to the dual va-
riable φ has to be performed cautiously selecting small stepsizes in order to
make no Laguerre cells disappear.

8.3.2 Condition number of the Hessian in OT

Hessian describes the variations of the gradient of g which is proportional
to the mass seen by each Laguerre cell. In this respect, Hessian analysis is
closely linked to the geometric discussion of Section 8.3.1.
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Figure 8.2 – Evolution of the geometry of optimal Laguerre tessellation
when the number of discretization points of the curve increases. Here the
green curve is discretized by red Dirac masses (from top to bottom 400,
1000, 2000, 4000).
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The condition number (8.9) is the ratio of the largest and smallest eigenva-
lues of H[g]. This quantity is difficult to track. To the best of our knowledge,
the sole approximate of the localizations of the eigenvalues can be obtained
via Gershgorin circle theorem. This theorem tells us that the eigenvalues are
contained within the following discs :

λi ∈ [0, 2Pµ(Li)] with Pµ(Li) =
∑
j 6=i

1
‖xi − xj‖

∫
∂Li∩∂Lj

dµ(x).

In the curvling case the radius of these disks grows as the discretization step
decreases faster than in the stippling case. Indeed the distance between the
points x decreases. Moreover the µ-perimeter of the Laguerre cells should be
larger due to their elongated shape far away from the hexagonal tilling of
stippling (honeycomb conjecture).

However, this reasoning is quite rough, and the increasing size of these
disks is not enough to conclude on the precise localizations of the highest
and smallest eigenvalues. Nevertheless, the spectral condition number can be
computed numerically (see Figure 8.3) with linear algebra libraries. This nu-
merical experiment confirms our intuition, for the same number of points the
curvling case has an higher condition number. Moreover, when the number of
points increases, the condition number of the Hessian scales quadratically in
the curvling case, whereas this same quantity scales linearly in the stippling
case.

8.3.2.1 Consequences of the high condition number of the Hessian

The precision of the Newton’s descent direction (8.4) is key to have a
good rate of convergence of the damped Newton method method. In
Section 8.2.3 we recalled that the error is driven by the condition number of
the Hessian matrix.

There is a tradeoff between the quality of the Newton direction and the
time spent computing it. Although iterative methods with preconditioning
seem appealing for their promptness of convergence, we did not manage to
find a method that yields a precise Newton direction within decent amount
of time. Indeed, in the curvling setting, having a small approximation error
requires a lot of iterations of the iterative method. This is why, in our codes,
we compute the Newton direction using a direct sparse solver.

Even with this choice of method the floating point arithmetic error of Re-
mark 8.2.1 remains. We suspect this error to sully the quality of the Newton
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Figure 8.3 – Evolution of the value of the maximum eigen value of the
Hessian matrix when the number of points increases.
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direction found by inverting the Hessian.

8.3.3 Size of the basin of attraction in the semi-discrete
OT

In Section 8.2.1 the speed of convergence of the damped Newton me-
thod depends on the quickness to reach the basin of attraction, where the
convergence rate of the method is quadratic. This section, is devoted to ana-
lyze how rapidly these basins can be reached in both stippling and curvling
when computing of the semi-discrete optimal transport.

The Lipschitz constant M of the Hessian matrix cannot be computed
explicitly, since we do not have the expression of the third order derivative of
f . Formally, third order derivatives measure the variation of the second order
derivatives of the Kantorovitch functional which are computed with the µ-
perimeter of the Laguerre cells. In the light of the geometrical Section 8.3.1,
variations of the perimeter of a hexagonal tessellation seem to be smoother
than a thin rectangular tilling.

Moreover empirical estimates of condition number the Hessian perfor-
med in Section 8.3.2 are higher in the curvling case. Now using the damped
Newton’s iteration estimate (8.8) one can reasonably think that the damped
Newton will be lengthy in the curvling setting. In the following paragraph
we cook up a numerical example that illustrates how attaining the Newton
phase is more difficult in the curvling than in the stippling case.

In this experiment we take a background measure that is uniform on [0, 1]2
for an increasing number of points. We distinguish three point configurations :

— Points uniformly taken on the whole support of the measure [0, 1]2
stippling 1.

— Points uniformly taken on a sub-domain of the support [0, 1/2]2 stip-
pling 2.

— Points taken along a curve : curvling (see Figure 8.2).
The variable γ is computed using the relation :

γ ≤≤ f(x0)− f(x?)
ndn

,

with ndn the number of damped Newton iterations, it is proportional to the
cost function’s improvement made following the Newton descent direction.

For the stippling 1 case we observe that the Voronoi tilling (the initia-
lization) is really close to the optimal Laguerre tessellation, and a unique
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stippling 1 stippling 2 curvling
# of points γ # dn γ # dn γ # dn
5000 2.7 10−4 1 1.4 10−2 5 1.4 10−4 22
10000 8.4 10−5 1 9.2 10−3 7 5.9 10−5 25
25000 3.2 10−5 1 9.2 10−3 8 3.6 10−5 32
50000 2.1 10−5 1 7.5 10−3 10 2.1 10−5 45

Table 8.1 – Evolution of the upper bound on γ and # dn number of damped
newton iterations when the number of points increases.

damped Newton iteration is enough to converge. Since the first guess is close
to the optimal solution, the cost function decrease is small which leads to a
small upper bound of γ.

In the stippling 2 case the initial guess is deliberately further away from
the final minimum, as a consequence the number of damped Newton itera-
tions increases. However the γ value remains fairly constant and the Newton
phase is reached in at most ten iterations.

In the curvling case the initialization is far from the optimal value and
we need many more iterations to reach the Newton phase (from 20 to 45).
Moreover the value of γ decreases with the number of points.

Note that for a number of points higher than 50000, and in the curvling
case, the classical damped Newton iteration starts to yield tessellations with
empty cells. These empty cells cause an early termination of the algorithm
since the Hessian ceases to be invertible.

In addition the choice of a uniform background measure promotes the
regularity of the derivatives, and thus gives a very optimistic overview of
the damped Newton algorithm in the curvling case. This example shows the
limitations of this algorithm for our setting.

However it is hard to determine if the optimization problem is intrinsically
difficult with small basins of attraction for its minimizer, or if the problem is
only due to numerical errors inverting the Hessian during the Newton step.
The rest of this section is devoted to finding an optimization algorithm which
overcomes these difficulties.
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8.3.4 Non definite Hessian in OT
Let us first point out a severe pitfall in the damped Newton optimization

which is cells with zero µ-mass. Indeed at these points the Hessian is non-
invertible and the convergence theory developed in [80] does not apply.

In the previous sections we analyzed the limits of the damped Newton
algorithm for curvling. Its principal deficiency is that for a given descent
direction, and for a step-size which satisfies an Amijo-Wolfe condition empty
cells can appear. The first idea that should come to mind to fix this problem
is to enforce an extra condition in the line-search :

∀i, µ(Li) > 0 (8.13)

This supposedly naïve method allows us to cope with empty Laguerre cells
as long as the initialization φinit is conform ; that is, each Laguerre cell issued
from the weighted diagram (x, φinit) has a non-empty µ-mass . In practice,
and for difficult problems the non-empty cell condition (8.13) is difficult to
meet, and the chosen stepsizes are small, hence the line-search procedure is
time consuming. Since the overall method selects small stepsizes, the Newton
metric can undergo slight modifications for a long period, the convergence of
the algorithm can be very slow.

In the damped Newton method the stepsize is selected in a geometric
way ; a hyper-parameter κ in chosen in ]0, 1[ and the stepsize is then set as
τ (k) = κi for the smallest integer i which satisfies the Armijo-Wolfe condi-
tions. Picking an admissible τ (k) can therefore be cumbersome. In the follo-
wing paragraph we propose a method that explicitly computes the minimal
admissible stepsize.

First suppose that at iteration k the Laguerre tessellation with weights
φ(k) has no hidden cells, and that the update φ(k+1) = φ(k) + τ (k)d(k) makes
some cells disappear. The algorithm in 2D is the following : list all the points
with an empty Laguerre cell. For each point xh in that list, find the face
of the regular triangulation (triangle) in which the point lies, and denote
{i1; i2, i3} the indexes of the corresponding vertices of that face. Note that if
only one hidden point lies in the face (xi1 ,xi2 ,xi3) its Laguerre cell has to be
in competition with Li1 ,Li2 and Li3 , due to the duality between the regular
triangulation and the Laguerre tessellation. Moreover the Laguerre cell Lh
will spawn for a sufficiently small τ at the intersection Li1 ∩ Li2 ∩ Li3 . This
point of competition xτ satisfies the following equation :
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∀i ∈ {i1; i2, i3}, ‖xi − xτ‖2 − φi − τdi = constant. (8.14)

This point can be computed explicitly solving the following linear system :

Axτ = b + τc,

with

A =
(

2(xi2 − xi1)T
2(xi3 − xi1)T

)
b =

(
‖xi2‖

2 − ‖xi1‖
2 + φi1 − φi2

‖xi3‖
2 − ‖xi1‖

2 + φi1 − φi3

)
c =

(
di1 − di2
di1 − di3

)
.

The value of parameter τ that discloses Lh can be evaluated via the following
formula :

τ = ‖xi1‖
2 − ‖xh‖2 + φh − φi1 + 2 < xh − xi1 , A−1b >

di1 − dh − 2 < xh − xi1 , A−1c > . (8.15)

Now two adaptations of the algorithm can be considered :
— One-pass underestimation of τmin : in this case the algorithm proceeds

as explained above and returns a potentially lower bound of the maxi-
mal τ . When several hidden points are in the same face one iteration of
the presented algorithm may not pick the maximal value of τ that dis-
closes all the hidden vertices. Indeed, the computation of xτ is based
on the underlying power diagram connectivity that yields the indexes
of the competing Laguerre cells. When several points are contained in
same face this connectivity is incorrect.

— Exact computation of τ , in this algorithm, if a hidden vertex is alone
in a power diagram face then the value of τ is computed with Equa-
tion (8.15) and compared to the minimal value found so far. If seve-
ral hidden vertices share the same power diagram face, all the pos-
sible values of τ are computed and the highest value : τm is correct,
and compared to the current minimal value of τ . Indeed, the points
(xi1 ,xi2 ,xi3) can be in competition with at most one hidden vertex,
τm is the value that spawns the Laguerre cell associated to this hid-
den vertex. Then for all the remaining vertices of the face, recompute
a power diagram for a τ < τm. Repeat this step until there are no
more points to process. This algorithm computes the minimal value
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τmin for which the weight update φ(k) + τ
(k)
mind

(k) yields a Laguerre tes-
sellation where the cells are at least reduced to a point. Then we set
φ(k+1) = φ(k) + ξτ

(k)
mind

(k) with ξ in ]0, 1[.
Note that if two or more hidden vertices are contained in the same
face, the maximum value of τ within the face is exact, the remaining
value are lower bounds on the real τ . Indeed, the computed xτ for
these vertices is remote from the actual point of competition, hence
the resulting τ computed with (8.15) is pessimistic.

These two algorithms are written in C++ using the CGAL [128] library,
and they benefit from its swift implementation. This routine reduces the time
spent in the linesearch when there are hidden cells, but the Amijo-Wolfe and
the non-empty condition (8.13) still need to be enforced. This method yields
a cut-off value of τ , and in the second version (exact computation) the largest
admissible stepsize we could take to ensure that none of the cells are hidden.

Note that there is a difference between hidden and empty cells, hidden
cells are Laguerre cells that are reduced to a void set, on the opposite, empty
cells have zero µ-mass but are not reduced to the empty set. The explicit
computation of τ only deals with hidden cells.

Indeed, for background measure µ with a non-ubiquitous support, some
Laguerre cells can be non-hidden but empty, even with the natural initializa-
tion choice φinit = 0Rn which yields a Voronoi tessellation. Nevertheless, under
the assumption that the starting point φinit has no empty Laguerre cells, the
condition (8.13) can be upheld through the iterates even if it requires taking
small steps. Notwithstanding this nice property when optimizing the Monge
Kantorovitch functional with respect to the φ variable, when we optimize
with respect to the Dirac masses locations x, there is no guarantee of finding
a valid φinit.

We now collect all the evidences that points towards the necessity of a
change of optimization method :

— The resulting damped Newton algorithm assumes the existence and
continuity of the Hessian and its invert which is simply not embedded
in our framework.

— The high condition number of the Hessian leads numerical error that
impacts the computation of the Newton direction.

— For the curvling setting the quality of the metric given by the Newton
method is poor, at least in the early stages of the optimization.

— If some Laguerre cells are empty, the algorithm stops. In section 8.3.6,
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we describe a multiscale algorithm that provides us a good initializa-
tion for the Dirac masses positions and the Lagrange multipliers. Du-
ring algorithm we can encounter empty Laguerre cells. For this reason,
the damped newton algorithm is inadequate for multi-scaled runs.

8.3.5 Regularized Newton method for Curvling
In this Section, we search for a more robust alternative to the damped

Newton algorithm for the curvling case. Using the ideas developed in [111],
we regularize the Hessian adding an identity term proportional to the norm
of the gradient. This idea is quite similar to a method developed in the
sixties [91], and known as the Levenberg-Marquardt regularization, which is
a Newton-type method (8.5) for the following approximation of the Hessian
matrix :

Bλ = − (H[f ] + λI)−1∇f, (8.16)

with I the identity matrix, and where λ is a parameter that tunes the blending
between first order and second order descent directions. Indeed, for several
choices of λ we recognize well-known methods :

— For the choice λ = 0, B0 is the Newton direction.
— For the choice λ = ‖∇f‖, B‖∇f‖ is the regularized Newton direction.
— The choice λ→∞, Bλ is equivalent to the steepest descent direction

with step 1/λ.
In Table 8.2, we reproduce the numerical experiment carried out in Table 8.1

in order compare convergence efficiency of the Newton direction against re-
gularized Newton direction. The first conclusion to be drawn from this expe-
riment is that the Newton direction cannot be beaten close to a minimizer
(stippling 1 case). Indeed, close to a minimizer the function is close to qua-
dratic and the metric given by Newton is foolproof. The second conclusion
is that when the problem become harder (curvling), in the sense that it re-
quires more iterations to attain the Newton phase for the damped Newton
algorithm, the regularized Newton method converges promptly.

In Section 8.2, we emphasize the importance of the condition number
of the Hessian. In fact, the local “quality” of the Hessian direction can be
estimated with it. A high condition number indicates huge variations of the
quadratic approximation, hence a coarse direction to follow. The numerical
tests tend to suggest that the regularized Newton is in this case a better
direction to follow in terms of the decrease of the gradient’s. In the curvling
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stippling 1 stippling 2 curvling
# of point # DN # RNM # DN # RNM # DN # RNM
5000 1 3 5 10 22 15
10000 1 4 7 8 25 17
25000 1 4 8 10 32 18
50000 1 3 10 11 45 20

Table 8.2 – Comparison of the damped Newton algorithm (DN) against the
regularized Newton method (RNM)

case, and for 50000 points the regularized Newton method converges in half of
the iterations needed for the classical damped Newton method. Note that for
fairness, the two algorithms are tested with the same Armijo Wolfe condition
and the same linesearch in such a way that only the direction differs.

On the other hand, in Section 8.3.2 we discuss numerical quality of the
descent direction d found by solving Bλd = −∇f with respect to the spectral
condition number of the matrix Bλ. The Levenberg-Marquardt regularization
decreases the spectral condition number if it is greater than 1, so that the
regularized descent direction is less tarnished by numerical error.

The global convergence of the Monge Kantorovitch maximization problem
can be extended when its functional is less smooth, that is not C2, which is the
case when µ(Li(x, φ)) = 0. Thanks to the regularized Newton method, global
convergence and quadratic rate in the vicinity of the maximizer can be gua-
ranteed, see Proposition 5.3.3 for details. However the numerical experiment
of Table 8.2 illustrates that the damped Newton algorithm outperforms the
regularized Newton method in the more straightforward stippling 1 case.

Based on this analysis, the engineering idea involves in tuning the re-
gularization parameter λ of the Levenberg-Marquardt regularization (8.16).
Indeed in simple cases, we want to blend more second-order information and
in the hard cases more first-order information. In Algorithm 8, the decrease
of the regularization is driven by the parameter γ1, whereas γ2 controls the
increase of regularization.

Note that condition (8.13) is lessened though condition Empty(φ + d)≤
Empty(φ), where Empty is a function that returns the number of Laguerre
cells such that their mass is lower than 10−12. The Algorithm 8 is tailored
to work with zero µ-mass cells, hence we only enforce the non-increasing
number of empty cells condition. This new condition allows take larger steps
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Algorithm 8 Levenberg-Marquardt regularization for semi-discrete optimal
transport

Inputs :
Oracle for (f ,∇f ,H[f ]), Empty number of empty Laguerre cells,
c1 and c2 (line-search parameter),
γ1 and γ2 (regularization parameters),
tol,iterMax termination criterion
φ initial point

1: itt ← 0
2: λ← ‖∇f‖

γ1
.

3: while ‖∇f‖ > tol and itt < iterMax do
λ← min(γ1λ, ‖∇f‖)
d← −(H[f ](φ) + λI)−1∇f(φ)

4: while
(
∇f(φ+ d)Td < c2∇f(φ)Td andf(φ+ d) < f(φ) + c1∇f(φ)Td

5: and Empty(φ+ d)> Empty(φ)
)
do

6: λ← γ2λ
7: d← −(H[f ](φ) + λI)−1∇f(φ)
8: end while
9: itt ← itt + 1

10: φ← φ+ d
11: end while
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which enable the method to reach the Newton phase faster.

8.3.6 Multiscale algorithm for Curvling

In this section we present a multiscale algorithm that allows us to quickly
obtain curves carried by a large number of Dirac masses. In order to have a
scheme that scales consistently with the number of points we have to norma-
lize the finite difference operators defined in Equations (5.29) and (5.30).

The optimization of the positions of the Dirac masses (denoted x) can be
very difficult for a large number of points and for an arbitrary initialization.
The objective of this method is to produce a good initialization for n points.
Following the ideas of [94] we develop a multi-scale algorithm for both the
dual variable φ and the positions x. This method successively solves the op-
timization of easier stippling subproblems with n2−` points. For each of these
subproblems we compute the optimal transport distance before updating the
positions. This optimization is repeated until obtaining a discretized curve
sufficiently close to the target image. We then apply the upscaling step that
involves doubling the number of Dirac masses and updating `← `− 1. This
procedure is repeated until ` = 0. The positions of the Dirac masses for an
upscale from the level `+ 1 to ` reads as :

∀i ∈ J0, n2−l−1 − 2K,



x`2i = x`+1
i

x`2i+1 = x`+1
i + x`+1

i+1

x`n2−l−2 = x`+1
n2−(`+1)−1

x`n2−l−1 = 1
2
(
x`+1

0 + x`+1
n2−(`+1)−1

)

for a periodic curve.
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In the non-periodic case, the upscaling is defined by :

∀i ∈ J0, n2−l−1 − 2K,



x`2i = x`+1
i

x`2i+1 = x`+1
i + x`+1

i+1

x`n2−l−2 = x`+1
n2−(`+1)−1

x`n2−l−1 = 1
2
(
3x`+1

n2−(`+1)−1 − x`+1
n2−(`+1)−2

)
The idea in [94] is to assign to the Lagrange multiplier of each Dirac mass

of level `, the multiplier’s value of the closest Dirac mass in the level ` + 1.
In our multiscale setting, finding the nearest point is trivial. However when
the index of a point of level ` is odd the point is equidistant from two points
of level `+ 1. In that case we set the Lagrange multiplier equal to the mean
of the Lagrange multipliers of Dirac masses at the same distance. The value
of the Lagrange multiplier of level `, φ`i is then given by :

∀i ∈ J0, n2−l−1 − 2K,



φ`2i = φ`+1
i

φ`2i+1 = φ`+1
i + φ`+1

i+1

φ`n2−l−2 = φ`+1
n2−(`+1)−1

φ`n2−l−1 = 1
2
(
φ`+1

0 + φ`+1
n2−(`+1)−1

)
in the periodic case. In the non-periodic case it is given by :

∀i ∈ J0, n2−l−1 − 2K,



φ`2i = φ`+1
i

φ`2i+1 = φ`+1
i + φ`+1

i+1

φ`n2−l−2 = φ`+1
n2−(`+1)−1

φ`n2−l−1 = 1
2
(
3φ`+1

n2−(`+1)−1 − φ
`+1
n2−(`+1)−2

)
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Empirically, we notice that initializations given by the multiscale algo-
rithm converge up to 5 times faster than arbitrary initialization curves (for
a number of points larger than 105). Hence the multiscale approach is very
appealing for measures with hundreds thousands of points : in this case a mul-
tiscale approach leads to 2 − 3 times faster convergence (even if it requires
the resolution of a few stippling subproblems).
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Figure 8.4 – Multiscale example with from left to right and top to bottom
214,215,216, 217 points to discretize the curve.
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Figure 8.5 – Multiscale example with from left to right and top to bottom
218,219,220 points to discretize the curve and the original image.
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Abstract

This thesis focuses on the approximation for the 2-Wasserstein metric of pro-
bability measures by structured measures . The set of structured measures
under consideration is made of consistent discretizations of measures car-
ried by a smooth curve with a bounded speed and acceleration. We compare
two different types of approximations of the curve : piecewise constant and
piecewise linear. For each of these methods we develop fast and scalable al-
gorithms to compute the 2-Wasserstein distance between a given measure
and the structured measure. The optimization procedure reveals new theore-
tical and numerical challenges, it consists in two steps : first the computation
of the 2-Wasserstein distance, second the optimization of the parameters of
structure. This work is initially motivated by the design of trajectories in
MRI acquisition, however we provide new applications of these methods.
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