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To my family and Thao. . .

“You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York
and his head is meowing in Los Angeles. Do you understand this? And radio operates
exactly the same way: you send signals here, they receive them there. The only difference
is that there is no cat.”

Albert Einstein

“We live on an island surrounded by a sea of ignorance. As our island of knowledge grows,
so does the shore of our ignorance.”

John Archibald Wheeler

“But the absence of fighting or hatred or desire also means the opposites do not exist either.
No joy, no communion, no love. Only where there is disillusionment and depression and
sorrow does happiness arise; without the despair of loss, there is no hope.”

Haruki Murakami
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Résumé

Dans les communications sans fil sur des canaux à évanouissement, en particulier à
antennes multiples, la connaissance instantanée des coefficients de canal, appelés informa-
tions d’état de canal (CSI), est essentielle car elle permet d’adapter la transmission et la
réception aux conditions actuelles du canal. La communication avec CSI a priori au niveau
du récepteur est dite cohérente. En pratique, cependant, le CSI n’est pas disponible avant
la communication et doit être estimé à un coût qui ne doit pas être ignoré, en particulier
dans un environnement hautement mobile. Ainsi, la communication sans CSI a priori,
également appelée communication noncohérente, est un cadre plus pratique et général.
Cette thèse contribue à la compréhension des limites théoriques des communications non-
cohérentes, ainsi qu’à la conception d’un système de communication pratique noncohérent
à évanouissement par bloc. Nous considérons trois scénarios: le canal point à point (P2P),
le canal à accès multiple (MAC) et le canal de diffusion (BC).

Dans la première partie, nous étudions les limites fondamentales des communications
noncohérentes en termes de débit de données et de degrés de liberté (DoF) réalisables.
Nous considérons un évanouissement par bloc générique dans lequel le canal a une entropie
différentielle finie et un second moment fini. Nous établissons d’abord le DoF optimal pour
le canal P2P noncohérent à entrées multiples et sorties multiples (MIMO) en utilisant
l’approche de la dualité pour borner les informations mutuelles. Deuxièmement, en utilisant
une approche de dualité similaire, nous dérivons la région de DoF optimale pour le MAC
SIMO à deux utilisateurs, qui peut être obtenue par partage de temps entre des schémas
à pilotes simples. Troisième, nous dérivons les régions débit et DoF réalisable pour le
BC MIMO noncohérent avec un évanouissement spatialement corrélé en exploitant la
diversité de corrélation de transmission, qui est la différence entre la corrélation subie
par différents utilisateurs. Ce faisant, nous concevons soigneusement des schémas de
transmission basés sur des pilotes et sur le partage de débit, la superposition de produits
et une combinaison de ceux-ci pour transmettre efficacement des signaux dans les parties
communes et mutuellement exclusives des sous-espaces de corrélation.

Dans la deuxième partie, nous concevons la constellation et les schémas de détection
efficaces pour les communications noncohérentes sur le canal d’évanouissement de type
Rayleigh par bloc. Premièrement, nous proposons une constellation Grassmannienne
structurée pour le canal P2P SIMO qui est simple à générer, a une efficacité d’empilement
élevée, admet un étiquetage binaire simple mais efficace et permet une détection efficace
douce et dure. Deuxièmement, nous étudions la conception de constellation conjointe
pour le MAC MIMO. Nous introduisons des critères de conception simples et efficaces
afin de minimiser l’erreur de détection conjointe et proposons quelques constructions de
constellation simples. Troisièmement, nous proposons un schéma de détection souple
multi-utilisateurs noncohérent pour le MAC SIMO à l’évanouissement de Rayleigh corrélé
spatialement basé sur l’inférence approximative par propagation d’espérance. Ce schéma
présente une complexité polynomiale dans la dimension du canal tout en produisant des
marginaux postérieurs approximatifs par utilisateur précis conduisant à des performances
d’erreur quasi-optimales.

Mots clés: communications noncohérentes, évanouissement par bloc, information
sur l’état du canaux, degrés de liberté, constellations Grassmanniennes, détection multi-
utilisateurs
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Abstract

In wireless communication over fading channels, especially multiple-antenna communica-
tion, the instantaneous knowledge of channel coefficients, so-called channel state information
(CSI), is critical because it enables to adapt the transmission and reception to current
channel conditions. The communication with a priori CSI at the receiver is said to be
coherent. In practice, however, CSI is not granted for free prior to communication and
needs to be estimated at a cost that should not be ignored, especially in a highly mobile
environment. Thus, communication without a priori CSI, also known as noncoherent
communication, is a more practical and general framework. This thesis contributes to
the understanding of the theoretical limits of noncoherent communications, as well as the
design of a practical noncoherent communication system in block fading. We consider three
scenarios: the point-to-point (P2P) channel, the multiple-access channel (MAC), and the
broadcast channel (BC).

In the first part, we study the fundamental limits of noncoherent communications in
terms of achievable data rate and degrees of freedom (DoF). We consider generic block
fading in which the channel has finite differential entropy and finite second moment. First,
we derive the optimal DoF for the noncoherent multiple-input multiple-output (MIMO)
P2P channel by using the duality approach to bound the input-output mutual information.
Second, using a similar duality approach, we derive the optimal DoF region for the two-user
noncoherent single-input multiple-output (SIMO) MAC, which can be achieved by time
sharing between simple pilot-based schemes. Third, we derive achievable rate and DoF
regions for the noncoherent MIMO BC with spatially correlated fading by exploiting the
transmit correlation diversity, which is the difference between the correlation experienced
by different users. In doing so, we carefully design pilot-based transmission schemes based
on rate splitting, product superposition, and a combination of them to effectively transmit
signals in both the common and mutually exclusive parts of the correlation subspaces.

In the second part, we design the constellation and efficient detection schemes for
noncoherent communications over Rayleigh block fading channel. First, we propose a
structured Grassmannian constellation for the SIMO P2P channel that is simple to generate,
has high packing efficiency, admits a simple yet effective binary labeling, and allows for
efficient soft and hard detection. Second, we investigate joint constellation design for the
MIMO MAC. We introduce some simple and effective design criteria so as to minimize
the joint detection error, and propose some simple constellation constructions. Third, we
propose a noncoherent multi-user soft detection scheme for the SIMO MAC in spatially
correlated Rayleigh fading based on expectation propagation approximate inference. This
scheme has polynomial complexity in the channel dimension while producing accurate
approximate per-user posterior marginals leading to near-optimal error performance.

Keywords: noncoherent communications, block fading, channel state information,
degrees of freedom, Grassmannian constellations, multi-user detection



vii

Contents

Acknowledgements iii

Résumé v

Abstract vi

Acronyms xii

Notation xv

List of Figures xviii

List of Tables xx

1 Introduction 1
1.1 Wireless Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The History and Evolution of Wireless Communications . . . . . . . 1
1.1.2 Wireless Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 The MIMO Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Coherent Communications: The Role of Channel State Information . 8
1.1.5 The Cost of Acquiring CSI . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Noncoherent Wireless Communications . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 The Point-to-Point Channel . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 The Multiple-Access Channel . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 The Broadcast Channel . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Thesis Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . 24
1.3.2 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.3 Contributions Outside the Scope of the Thesis . . . . . . . . . . . . 27

1.A Appendix: Information Theoretic Functions and the Duality Approach . . . 28
1.A.1 Entropy and Differential Entropy . . . . . . . . . . . . . . . . . . . . 28
1.A.2 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . . 29
1.A.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.A.4 The Duality Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.B Appendix: Grassmann Manifold . . . . . . . . . . . . . . . . . . . . . . . . 33
1.B.1 Definition and Invariant Measure . . . . . . . . . . . . . . . . . . . . 33
1.B.2 Principal Angles and Metrics . . . . . . . . . . . . . . . . . . . . . . 34
1.B.3 Sphere Packing in the Grassmannian . . . . . . . . . . . . . . . . . . 35
1.B.4 Manifold-Constrained Optimization . . . . . . . . . . . . . . . . . . 36



I Fundamental Limits of Noncoherent Communications 40

2 The MIMO Point-to-Point Channel 42
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 System Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 The SIMO (M = 1) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 The MIMO Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 The Case T = 2,M ≥ 2, N ≥ 2 . . . . . . . . . . . . . . . . . . . . . 48
2.5.2 The Case M ≥ N,T ≥ 2N . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.3 The Case M ≤ N,T ≥ 2M . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.A.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.A.2 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.A.3 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.A.4 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.A.5 Proof of Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 The Two-User SIMO Multiple-Access Channel 59
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 System Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 The Converse for the Case T ≥ 3, N > 1 . . . . . . . . . . . . . . . . . . . . 62

3.4.1 The Case T ≥ N + 1 > 2 . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 The Case 3 ≤ T ≤ N . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.A.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.A.2 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 The Spatially Correlated MIMO Broadcast Channel 72
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Two-User Broadcast Channel: DoF Analysis . . . . . . . . . . . . . . . . . . 76
4.4 Two-User Broadcast Channel: Rate Analysis . . . . . . . . . . . . . . . . . 79

4.4.1 The Single-User Case . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 A Baseline TDMA Scheme . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3 Rate Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.4 Product Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.5 Hybrid Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 K-User Broadcast Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1 The Symmetric K-user BC: An Achievable DoF Region with Rate

Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.2 The General K-User BC: An Extension of Hybrid Superposition . . 104

4.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



II Transceiver Design for Noncoherent Communications 108

5 Cube-Split: A Structured Grassmannian Constellation 110
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 System Model and Grassmannian Constellations . . . . . . . . . . . . . . . 111

5.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Constellations on the Grassmannian of Lines . . . . . . . . . . . . . 113

5.3 Cube-Split Constellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.1 Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Constellation Specifications . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.3 Minimum Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.4 Binary Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Low-Complexity Receiver Design . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.1 Low-Complexity Greedy Decoder . . . . . . . . . . . . . . . . . . . . 122
5.4.2 Demapping Error Analysis . . . . . . . . . . . . . . . . . . . . . . . 124
5.4.3 Log-Likelihood Ratio Computation and Code Design . . . . . . . . . 125

5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.1 A Baseline Pilot-Based Scheme . . . . . . . . . . . . . . . . . . . . . 128
5.5.2 Achievable Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.3 Error Rates of Uncoded Constellations . . . . . . . . . . . . . . . . . 129
5.5.4 Performance with Channel Coding . . . . . . . . . . . . . . . . . . . 130

5.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.A.1 Extension to the MIMO Case . . . . . . . . . . . . . . . . . . . . . . 135
5.A.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 135
5.A.3 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.A.4 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.A.5 Proof of Corollary 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 A Joint Constellation Design for the MIMO Multiple-Access Chanel 140
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . 141
6.3 Constellation Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Pairwise Error Probability Analysis . . . . . . . . . . . . . . . . . . 143
6.3.2 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.3 The Single-User Case . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.4 The Two-User Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.5 The K-User Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.6 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Two Simple Constructions for Given Transmit Power . . . . . . . . . . . . . 149
6.4.1 Partitioning Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4.2 Precoding Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Power Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6.1 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.6.2 The Symmetrical Rate and Equal Power Case . . . . . . . . . . . . . 159
6.6.3 The Asymmetrical Rate Case with Power Optimization . . . . . . . 161

6.7 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.A.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 164



6.A.2 Proof that lim
N→∞

P(XXX →XXX ′) = 0 for Any Pair of Distinct Symbols
XXX and XXX ′ of an Identifiable Joint Constellation . . . . . . . . . . . . 166

6.A.3 Proof of Lemma 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.A.4 Proof of Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.A.5 The Riemannian Gradient of g(CCC) . . . . . . . . . . . . . . . . . . . 169

7 A Multi-User Detection Scheme Based on Expectation Propagation 171
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2.2 Multi-User Detection Problem . . . . . . . . . . . . . . . . . . . . . 174
7.2.3 Achievable Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.3 Expectation Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.4 Application of EP to Non-Coherent Detection . . . . . . . . . . . . . . . . . 178

7.4.1 The EP Message Updates . . . . . . . . . . . . . . . . . . . . . . . . 180
7.4.2 Initialization of the EP Messages . . . . . . . . . . . . . . . . . . . . 183
7.4.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.5 Simplifications of the EP Detector . . . . . . . . . . . . . . . . . . . . . . . 184
7.5.1 EP with Approximate Kronecker Products (EPAK) . . . . . . . . . 184
7.5.2 Minimum Mean Square Error—Successive Interference Approxima-

tion (MMSE-SIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.6 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.6.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.6.2 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.7 Greedy Detectors for the Precoding-Based Constellation . . . . . . . . . . . 189
7.7.1 Separation-First Detector . . . . . . . . . . . . . . . . . . . . . . . . 191
7.7.2 Denoising-First Detector . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.7.3 POCIS: Interference Mitigation . . . . . . . . . . . . . . . . . . . . . 192

7.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.8.1 Test Constellations, State-of-the-Art Detectors, and Benchmarks . . 193
7.8.2 Convergence and Running Time . . . . . . . . . . . . . . . . . . . . 194
7.8.3 Achievable Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.8.4 Symbol Error Rates of Hard Detection . . . . . . . . . . . . . . . . . 196
7.8.5 Bit Error Rates with a Channel Code . . . . . . . . . . . . . . . . . 197

7.9 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.A.1 Exponential Family . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.A.2 Properties of the Gaussian probability density function (PDF) . . . 203
7.A.3 Proof of Proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . 204

8 Conclusions and Outlook 205
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A Resumé en Français 209
A.1 Communications Sans Fil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.1.1 L’Histoire et l’Évolution des Communications Sans Fil . . . . . . . . 209
A.1.2 Propagation Sans Fil . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.1.3 Le Canal MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
A.1.4 Communications Cohérentes: le Rôle des Informations sur l’État des

Canaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



A.1.5 Le Coût d’Acquisition de CSI . . . . . . . . . . . . . . . . . . . . . . 213
A.2 Communications Sans Fil Non-Cohérentes . . . . . . . . . . . . . . . . . . . 214

A.2.1 Hypothèses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
A.2.2 Le Canal Point à Point . . . . . . . . . . . . . . . . . . . . . . . . . 215
A.2.3 Le Canal d’Accès Multiple . . . . . . . . . . . . . . . . . . . . . . . . 217
A.2.4 Le Canal de Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.3 Description de la Thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.3.1 Aperçu et Contributions de la Thèse . . . . . . . . . . . . . . . . . . 221
A.3.2 Liste des Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.3.3 Contributions en Dehors du Champ de la Thèse . . . . . . . . . . . 227

Bibliography 228

About the Author 245





xiii

Acronyms

The meaning of an acronym is usually indicated once, when it first occurs in the text. The
English acronyms are also used for the French summary.

AWGN additive white Gaussian noise

BC broadcast channel
BER bit error rate
bpcu bits per channel use
BSTM Beta-variate space-time modulation

CDF commulative distribution function
CDI channel distribution information
CDMA code-division multiple access
CSI channel state information
CSIR channel state information at the receiver
CSIT channel state information at the transmitter

DoF degrees of freedom

EP expectation propagation
EPAK expectation propagation with approximate Kronecker

FDMA frequency-division multiple access

GMI generalized mutual information

IID independent and identically distributed

JSDM joint spatial division multiplexing

KL Kullback-Leibler

LLR log-likelihood ratio
LS least-squares
LTE long-term evolution

MAC multiple-access channel
MGF moment generation function
MIMO multiple-input multiple-output
MISO multiple-input single-output



xiv

ML maximum likelihood
MLC multilevel coding
MMSE minimum mean square error
MSD multistage decoding
MSE mean square error

NND nearest-neighbor decoding
NP non-deterministic polynomial-time

OFDM orthogonal frequency division multiplexing

P2P point-to-point
PAM pulse amplitude modulation
PDF probability density function
PEP pairwise error probability
PMF probability mass function
POCIS Projection onto the Orthogonal Complement of the Interference

Subspace
PSK phase shift keying

QAM quadrature amplitude modulation

RWBS repeated weighted boosting search

SER symbol error rate
SESD Schnorr-Euchner sphere decoder
SIA successive interference approximation
SIMO single-input multiple-output
SISO single-input single-output
SNR signal-to-noise ratio
SVD singular value decomposition

TDM time division multiplexing
TDMA time-division multiple access

URLLC ultra-reliable low-latency communication
USTM unitary space-time modulation

w.l.o.g. without loss of generality
w.r.t. with respect to

ZF zero forcing



xv

Notation

In general, we denote scalars with normal-font letters, e.g., x, vectors with lower-case
bold-font letters, e.g., xxx, and matrices with upper-case bold-font letters, e.g., XXX. For
random quantities, we use nonitalic letters with sans-serif fonts, e.g., a scalar x, a vector vvv,
and a matrix MMM. Deterministic quantities are denoted with italic letters, e.g., a scalar x, a
vector vvv, and a matrix MMM . We adopt the column convention for vectors.

Linear Algebra

‖vvv‖ Euclidean norm of a vector vvv
‖MMM‖F Frobenius norm of a matrix MMM
MMM∗ conjugate of MMM
MMMT (resp. MMM−T) transpose of MMM (resp. MMM−1)
MMMH (resp. MMM−H) conjugate transpose of MMM (resp. MMM−1)
MMM † Moore-Penrose (pseudo) inverse of MMM , i.e., MMM † =

(MMMHMMM)−1MMMH

tr(MMM) trace of MMM
rank(MMM) rank of MMM
det(MMM) determinant of MMM
σi(MMM) the i-th eigenvalue of a matrixMMM in decreasing order, unless

otherwise specified
MMM � 0 MMM is positive semi-definite
MMM1�MMM2 or MMM2�MMM1 MMM1 −MMM2 � 0
|MMM | a matrix having the same singular vectors asMMM and singular

values as the absolute value of the singular values of MMM , i.e.,
ifMMM = UUUΣΣΣVVV H, then |MMM | = UUUΣ̃ΣΣVVV H where Σ̃ΣΣ is the component-
wise absolute value of ΣΣΣ

[MMM ]i,j (i, j)-th element of MMM
MMM [i] i-th column of MMM
MMM [i:j] sub-matrix containing the i-th to j-th columns of MMM
diag(x1, . . . , xN ) diagonal matrix with diagonal entries x1, . . . , xN
Span(UUU) the column space of a “tall” matrix UUU
XXX ⊗ YYY Kronecker product of XXX and YYY
IIIm m ×m identity matrix (the dimension m is omitted when

confusion is not likely)
eeei i-th column of III , i.e., the canonical basis vector with 1 at

position i and 0 elsewhere, where the dimension will be
specified



0m (resp. 1m) m×1 all-zero (resp. all-one) vector (the dimension m is omitted
when confusion is not likely)

0m×n (resp. 1m×n) m× n all-zero (resp. all-one) matrix (the dimensions m and n
are omitted when confusion is not likely)

Analysis

R (resp. C) set of real (resp. complex) numbers
 =
√
−1 imaginary unit

Re(z) (resp. Im(z)) real (resp. imaginary) part of z ∈ C
[n] set of integers {1, 2, . . . , n}
|x| absolute value of x
∝ proportional to∏
,× the conventional or Cartesian product (depend-

ing on the factors)
A := B or B =: A A is defined by B

1{A} :=
{

1 if A is true
0 if A is false

indicator function

δ(t) 1{t = 0}(n
k

)
:= n!

k!(n−k)!1{n ≥ k} binomial coefficient, i.e., the number of k-element
subsets of an n-element set [1, (3.1.2)]

f−1(·) the inverse of a function f(·)

γ ≈ 0.5772 Euler’s constant [1, (6.1.3)]
e = ∑∞

n=1
1
n! ≈ 2.71828 Euler’s number [1, (4.1.17)]

(x)+ max{x, 0}
exp(·) ≡ e(·) := ∑∞

k=0
1
k!(·)k the exponential function where the argument is

a scalar or a square matrix [1, (4.2.1)]
ln(x) :=

∫ z
1

dt
t natural (base-e) logarithm of x [1, (4.1.1)]

loga(x) := lnx
ln a base-a logarithm of x; a is omitted if the base is

immaterial
log+(x) log(max{x, 1})
ψ(k) := −γ +∑k−1

n=1
1
n Euler’s (digamma) psi-function [1, (6.3.2)]

Γ(x) :=
∫∞

0 zx−1e−z dz, x > 0 the Gamma function [1, (6.1.1)]
Γ(x, y) :=

∫∞
y zx−1e−z dz, x > 0, y ≥ 0 the upper incomplete Gamma function [1,

(6.5.3)]
γ(x, y) :=

∫ y
0 z

x−1e−z dz, x > 0, y ≥ 0 the lower incomplete Gamma function [1, (6.5.2)]
Γm(a) := πm(m−1)/2∏m

k=1 Γ(a− k + 1) the complex multivariate Gamma function
E1(x) :=

∫∞
x

e−t

t dt the exponential integral function [1, (5.1.1)]

f(x) = O(g(x)) there exists a constant c > 0 and some x0 such
that |f(x)| ≤ c|g(x)|,∀x ≥ x0

f(x) = Θ(g(x)) f(x) = O(g(x)) and g(x) = O(f(x))
f(x) = o(g(x)) lim

x→∞
f(x)
g(x) = 0



Probability

∼ distributed as
P(A) the probability of an event A
Exxx[·] (resp. EP [·]) the expected value of a random quantity calculated w.r.t. random

variable xxx (resp. distribution P)
Gamma(k, θ) Gamma distribution with shape k and scale θ
NC
(
µ, σ2) circularly symmetric complex Gaussian distribution of mean µ and

variance σ2

NC(µµµ,ΣΣΣ) circularly symmetric complex Gaussian vector distribution of mean
µµµ and covariance matrix ΣΣΣ

Information Theoretic Functions (see Appendix 1.A)

H(·) (resp. h(·)) entropy (resp. differential entropy) function
D(P‖Q) the Kullback-Leibler divergence from a distribution P to a distribu-

tion Q
I(xxx;yyy) mutual information between xxx and yyy

Topological Space

The Grassmann manifold G(KT ,M) is defined as the space of M -dimensional subspaces in
KT with K = C or K = R. In particular, G(KT , 1) is the Grassmannian of lines. We use a
truncated unitary matrix UUU ∈ CT×M , i.e., UUUHUUU = IIIM , to represent its column span, which
is a point in G(KT ,M). The chordal distance between two points represented by UUU1 and
UUU2 is d(UUU1,UUU2) =

√
M − ‖UUUH

1UUU2‖2F. (See Appendix 1.B.)

Commonly Used Symbols

The following symbols are used repeatedly in the thesis, possibly with a user index.

M number of transmit antennas
N number of receive antennas
K number of users
T coherence interval
C capacity
R achievable rate
d distance / degrees of freedom
P power
B number of bits
Pe symbol error probability
X/ C constellation
XXX/ xxx/ x transmitted signal
YYY/ yyy/ y received signal
HHH/ hhh/ h channel
ZZZ/ zzz/ z noise
RRR correlation/covariance matrix
r matrix rank
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Chapter 1

Introduction

1.1 Wireless Communications

1.1.1 The History and Evolution of Wireless Communications

Wireless communication1 is commonly understood as the electromagnetic transfer of
information between points that are not connected by an electrical conductor [6]. In
the history, the early communications between separated points were done by means
of signals (i.e., changes in a physical quality) that human senses can directly perceive,
e.g., auditorily such as shouts and drums, or visually such as smokes, flashes and flag
semaphore. The electromagnetic transfer of information started when James C. Maxwell
postulated the transmission of electromagnetic waves in 1864, and then Heinrich Hertz
verified and demonstrated it in 1880 and 1887, respectively. This effect allows to use
electromagnetic waves as information carriers with the help of electronic devices at the
transmitter (source) and the receiver (destination). Marconi implemented a wireless
telegraph and patented a complete wireless system in 1897. With the development of
integrated circuits, electromagnetic wireless communication grew rapidly as radio and
television broadcasting became widespread worldwide. Wireless systems evolved from the
transmission of analog signals to the transmission of digital signals composed of bits, which
was rooted in the seminal work of Claude Shannon in 1948 [7] and deployed in the 1980s.

Since the 1980s, the evolution of mobile wireless systems have been progressing from
one generation to the next every nearly ten years. Each generation features different
regulation, services, and innovations [8], [9]. In the first generation (1G), each country
developed its own (analog or digital) system which provided only basic voice calling and
fax service at a high price. The second generation (2G) was deployed in the 1990s and
provided improved voice calls, short messaging service (SMS), and low-rate digital data
services, such as e-mail and personal information management. The dominant standard
was the GSM (first stood for Groupe Spécial Mobile and then Global System for Mobile
communications) started in Europe, which was based on narrowband frequency-division
multiple access (FDMA)/time-division multiple access (TDMA). Other standards included
the American IS95 based on code-division multiple access (CDMA) and the Japanese
Personal Digital Cellular (PDC) based on TDMA. In preparation for the third generation

1Standard texts on wireless communications include [2]–[5].



2 Chapter 1. Introduction

(3G), the Third Generation Partnership Project (3GPP) was established for the specification
of the Universal Mobile Telecommunication System (UMTS), whose main air interface was
wideband CDMA (WCDMA). It provided higher-rate data services, but encountered fierce
competition from wireless local area network (WLAN). The fourth generation (4G) in the
2010s saw the success of long-term evolution (LTE) and LTE-Advanced, which are based
on orthogonal frequency division multiplexing (OFDM) using multiple carriers. It achieves
a high speed in both downlink and uplink, and facilitates a wide range of services that
bring ever-increasing revenue.

The fifth generation (5G) [10], [11] has been under development since early 2010s. 5G
networks are envisioned to support a large number and heterogeneity of end devices, i.e.,
the internet of things (IoT) [12]. Three main use cases targeted in 5G are enhanced mobile
broad band (eMBB), ultra-reliable low-latency communication (URLLC), and massive
machine-type communications (mMTC) [13]. 5G networks have been tested in many
countries and are now in the early stage of commercial deployment [14]. Meanwhile, the
research activities towards the sixth generation (6G) have been initiated. Although it
remains unclear what 6G will be, many (speculative) visions for 6G have been provided
from different perspectives in, e.g., [15]–[20].

1.1.2 Wireless Propagation

In this subsection, we review the propagation effect of electromagnetic waves through a
wireless channel. Electromagnetic waves are emitted by an antenna at the transmitter and
intercepted by an antenna at the receiver. In principle, one could solve the electromagnetic
field Maxwell’s equations to find the received waves at the receive antenna. However, since
this is too complex, simpler models are used to approximate the signal propagation. A
transmitted wave is reflected, scattered, and diffracted when it interacts with objects in
the environment as it propagates toward the receiver. Therefore, the receiver observes
multiple copies of this wave at different delays, each experiences a specific attenuation.
In other words, the wave travels through multiple paths, gets attenuated in each path,
and arrives at the receive antenna at different delays. Furthermore, due to the relative
movement of the transmitter, receiver, and objects in the environment, the attenuation
factors, i.e., channel gains, vary over time. This effect is called fading. Let an(t) be the
complex channel gain of path n at time t. Consider a transmission of a signal x(t) at time
t and carrier frequency fc, the received signal is the superposition of the all the multipath
components as [4, Eq.(3.2)]

y(t) =
Np(t)∑
n=0

an(t)x(t− τn(t))e2πfc(t−τn(t)), (1.1)

where n = 0 corresponds to the line-of-sight path, Np(t) is the number of resolvable
multipath components and τn(t) is the delay of the n-th path at time t. The received
signal can also be expressed as [4, Eq.(3.5)]

y(t) =
(∫ ∞
−∞

h(τ, t)x(t− τ) dτ
)
e2πfct, (1.2)

where [4, Eq.(3.6)]

h(τ, t) :=
Np(t)∑
n=0

e−2πfcτn(t)an(t)δ(τ − τn(t)) (1.3)
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is the channel impulse response at time t and delay τ , i.e., the response of the channel at
time t to an impulse transmitted at time t− τ . In this way, the Maxwell’s equations are
replaced by an input/output relation of a linear time-varying system.

In general, due to the random nature of the environment, the attenuation gain an(t),
the delay τn(t), and the number of paths Np(t) are random. Therefore, the channel impulse
response h(τ, t) is modeled as realization of a random variable h(τ, t). It is commonly
assumed that h(τ, t) is a Gaussian process, when the number of multipath components
Np(t) is large, by evoking the central-limit theorem. Another common assumption is that
the phase of each multipath component is uniformly distributed. Under these assumptions,
the channel impulse response statistics are fully characterized by the mean E[h(τ, t)] and
autocorrelation function [4, Eq.(3.50)]

Ah(τ1, τ2; t1, t2) := E[h∗(τ1, t1)h(τ2, t2)]. (1.4)

If the joint statistics of h(τ1, t1) and h(τ2, t2), in particular Ah(τ1, τ2; t1, t2), depend only
on the time difference ∆t = t2 − t1, the channel is said to be wide-sense stationary (WSS).
Furthermore, if the channel response of a given multipath component at different delays τ
are uncorrelated, the channel has uncorrelated scattering (US). WSS and US are reasonable
assumptions in practice.

In the frequency domain, the channel frequency response is given by the Fourier
transform of h(τ, t) with respect to (w.r.t.) τ [4, Eq.(3.57)]

H(f, t) :=
∫ ∞
−∞

h(t, τ)e−2πft dτ. (1.5)

Given that h(t, τ) is a WSSUS (i.e., WSS and US) Gaussian process, H(f, t) is also a
WSSUS Gaussian process with autocorrelation function

AH(∆f ; ∆t) := E[H∗(f, t)H(f + ∆f, t+ ∆t)], (1.6)

which depends only one the time difference ∆t and frequency difference ∆f . Two channel
frequency responses at the same time instant, i.e. ∆t = 0, and frequency separation ∆f are
approximately independent if AH(∆f ; 0) ≈ 0. The frequency Bc where AH(∆f ; 0) ≈ 0 for
all ∆f > Bc is called the coherence bandwidth of the channel. Bc is inversely proportional
to the delay spread of h(τ, t) in time. In general, if the transmitted signal has narrow
bandwidth B � Bc, then the channel response is roughly constant across the entire signal
bandwidth. This is referred to as flat fading. On the contrary, if B � Bc, then the channel
response varies widely across the signal bandwidth. This is referred to as frequency-selective
fading. On the other hand, the autocorrelation AH(∆f ; ∆t) for ∆f = 0 characterizes how
the channel responses decorrelates over time. If AH(0; ∆t) ≈ 0, then the channel measured
at time instants separated by ∆t are approximately uncorrelated and therefore independent.
The time duration Tc where AH(0; ∆t) ≈ 0 for all ∆t > Tc is called the coherence time
of the channel. It is inversely proportional to the Doppler spread. A block of coherence
bandwidth Bc and coherence time Tc is called a coherence block, and the total length
T = TcBc of a coherence block is called coherence interval.

By a shift in the frequency domain (i.e, down-converting) of the received signal (1.2),
we have an equivalent baseband representation. Furthermore, by sampling and considering
an additive noise, we obtain a discrete-time baseband model given by [5, Eq.(2.39)]

y[m] =
∑
l

hl[m]x[m− l] + z[m], (1.7)
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where at sampling instant m/B (B is the bandwidth), y[m] and x[m] are respectively the
samples of the received and transmitted signal in baseband, z[m] is the low-pass filtered
noise, and

hl[m] :=
Np(t)∑
n=1

e−πfcτn(m/B)an(m/B) sinc(l − τn(m/B)B), (1.8)

with sinc(t) := sin(πt)
πt , is the l-th complex channel filter tap. hl[m] and z[m] are also

normally assumed to be (discrete) Gaussian process.

1.1.3 The MIMO Channel

We now assume that the antenna arrays at the transmitter and the receiver have multiple
elements. Specifically, the transmitter is equipped with M antennas and the receiver with
N antennas. We assume a frequency-flat channel and use a statistical channel model as in
the previous subsection with a single-tap discrete-time baseband representation.2 At time
m, the transmitter sends a signal xj [m] from the j-th antenna. The received signal at the
i-th antenna is

yi[m] =
M∑
j=1

hij [m]xj [m] + zi[m], i ∈ [N ], (1.9)

where hij is the channel coefficient from the j-th transmit antenna to the i-th receive
antenna with arbitrary distribution, and zi[m] is the additive white Gaussian noise (AWGN)
following the NC(0, 1) distribution. Using the vector/matrix representation

xxx[m] =


x1[m]
x2[m]
. . .

xM [m]

, yyy[m] =


y1[m]
y2[m]
. . .

yN [m]

, zzz[m] =


z1[m]
z2[m]
. . .

zN [m]

,

HHH[m] =


h11[m] h12[m] . . . h1M [m]
h21[m] h22[m] . . . h2M [m]

...
... . . . ...

hN1[m] hN2[m] . . . hNM [m]

, (1.10)

we obtain the following channel model

yyy[m] = HHH[m]xxx[m] + zzz[m]. (1.11)

This channel is referred to as a multiple-input multiple-output (MIMO) point-to-point
(P2P) channel. A conceptual illustration is given in Fig. 1.1.

1.1.3.a Fundamental Limits of MIMO Channel

At the transmitter, using a channel coding scheme, information is encoded into mes-
sages {M} where each message is represented by a channel codeword. Then each
codeword is mapped into a sequence of Ns transmitted complex vector-valued symbols
xxx[1],xxx[2], . . . ,xxx[Ns]. Due to the regulation and hardware limits, the transmitted signal is
subject to a power constraint as

1
Ns

Ns∑
i=1

∥∥xxx[i]
∥∥2 ≤ P. (1.12)

2In the remainder of the thesis, we consider the baseband representation of the channel model.
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Figure 1.1: Conceptual illustration of a MIMO channel with M transmit antennas and N receive
antennas.

That is, P is the maximal total transmit power from M transmit antenna in average. Since
the noise has unit power, P is also the average power ratio between the transmitted signal
and the noise at each receive antenna, and is referred to as the signal-to-noise ratio (SNR)
of the channel. The receiver detects the transmitted symbols using an maximum likelihood
(ML) detector as

{x̂xx[i]}Nsi=1 = arg max
{xxx[i]}Nsi=1

p
(
{yyy[i]}Nsi=1 | {xxx[i]}Nsi=1

)
, (1.13)

where the maximization is over all possible codewords subject to the power constraint
(1.12), {yyy[i]}Nsi=1 are the corresponding received signals, and the conditional probability
p
(
{yyy[i]}Nsi=1 | {xxx[i]}Nsi=1

)
is implicitly conditioned on the knowledge about the channel and

noise available at the receiver.3 Then, the receiver decodes the detected symbol sequence to
obtain an estimate M̂ of the messageM. The reliability of this information transmission is
captured by the error probability P

(
M̂ 6=M

)
which depends on the codelength Ns. One

would be interested in finding the maximal rate at which information can be transmitted
and received reliably at the receiver. This quantity is the called the (Shannon) capacity of
the channel and defined as follows.

Definition 1.1 (Channel capacity). The capacity C of the channel is the maximal data
rate, i.e., the maximal number of information units needed to represent a message M
normalized by the communication time, such that there exists a channel coding scheme
achieving arbitrarily low error probability P

(
M̂ 6=M

)
as the codelength Ns goes to infinity.

The channel capacity is normally measured in bits per channel use (bpcu). From the
definition, reliable communication is not possible, even with infinite codelength, if one
transmits at a rate above the channel capacity.

Since our considered channel (1.9) is memoryless, i.e., the output yyy depends only on the
input xxx at the time and is independent of all previous inputs, the channel capacity is given
by [21], [22]

C(P ) = max
pxxx : E[‖xxx‖2]≤P

I(xxx;yyy), (1.14)

where I(xxx;yyy) is the mutual information (see Appendix 1.A) between two distributions pxxx
and pyyy implicitly conditioned on the available knowledge about the channel and noise.

3We assume that the distribution of the channel and the noise are known. The availability of the
instantaneous value of the channel matrix will be discussed in subsequent subsections.
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A capacity-achieving input distribution is the solution to the maximization in (1.14). If
one transmits with a given input distribution pxxx satisfying the power constraint but not
necessarily capacity achieving, then the mutual information

R(P ) = I(xxx;yyy) (1.15)

is an achievable rate of the channel. In many situations, deriving the channel capacity or
achievable rate is very challenging, and one can resort to an asymptotic coarse representation
of these quantities given by the degrees of freedom (DoF). An achievable DoF and the
optimal DoF of the channel are respectively defined by

dachievable := lim
P→∞

R(P )
log2(P ) and doptimal := lim

P→∞

C(P )
log2(P ) . (1.16)

With this, the achievable rate and capacity behave in the high-SNR regime as R(P ) =
dachievable log2(P ) + o(log2 P ) and C(P ) = doptimal log2(P ) + o(log2 P ). Therefore, the DoF
is also called the pre-log factor of the rate/capacity. Roughly speaking, the DoF is the
number of additional bits that can be transmitted reliably when the signal power is doubled.

1.1.3.b Practical Design for a MIMO Channel

Assuming that the channel HHH is independent over time, one can simplify the ML detection
(1.13) to the symbol-by-symbol detection

x̂xx = arg max
xxx

p(yyy |xxx). (1.17)

Constellation Design

Although the capacity-achieving input distribution is often continuous, in practice, the
transmitted signal xxx is normally drawn from a finite discrete set to reduce complexity.
This set is referred to as the constellation and each element is called a constellation
point/symbol. Consider a constellation X := {xxx1,xxx2, . . . ,xxx|X |} with 1

|X |
∑|X |
i=1 ‖xxxi‖2 ≤ P .

Let xxx be uniformly drawn from X , i.e., the input distribution is pxxx(xxx) = 1
|X |1{xxx ∈ X}, then

the achievable data rate is given as

R(P,X ) = I(xxx;yyy) (1.18)

= E

log2
p(yyy|xxx)

1
|X |
∑
xxx∈X p(yyy|xxx = xxx)

 (1.19)

= log2 |X | − E
[
log2

∑
xxx∈X p(yyy|xxx = xxx)

p(yyy|xxx)

]
bpcu, (1.20)

where the expectation is over the joint distribution of the input and output. Here, log2 |X |—
the number of bits required to represent a constellation symbol—is the rate achievable in
the noiseless case, and E

[
log2

∑
xxx∈X p(yyy|xxx=xxx)
p(yyy|xxx)

]
is the rate loss due to noise. The constellation

X should be designed so as to maximize the achievable rate:4

X ∗ = arg max
X

R(P,X ), (1.21)

4In principle, the constellation and the probability mass function (PMF) of the transmitted signal in
this constellation should be jointly optimized. The optimization of this PMF for a fixed constellation is
called signal shaping [23].
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where the optimization space can be the Cartesian product of M instances of the unit
complex disc

D(0, 1) := {z ∈ C : |z|2 ≤ 1}, (1.22)

scaled by the transmit power per antenna such that the power constraint (1.12) holds.
In the large constellation regime |X | → ∞, the uniform distribution of the signal xxx in X
converges to a continuous distribution. The constellation should be designed such that this
limit distribution is close to the capacity-achieving input distribution, and as a consequence,
the achievable rate converges to the channel capacity.

Another constellation design criterion is to minimize the detection error Pe(X ) =
P(x̂xx 6= xxx) = 1

|X |
∑|X |
i=1 P(x̂xx 6= xxxi |xxx = xxxi):

X ∗ = arg min
X

Pe(X ). (1.23)

Since the error event {x̂xx 6= xxxi |xxx = xxxi} is the union of the pairwise error events {p(yyy |xxxj) >
p(yyy |xxxi) |xxx = xxxi} for all j 6= i, we have the following union bound

Pe(X ) ≤ 1
|X |

|X |∑
i=1

|X |∑
j=1,j 6=i

P(p(yyy |xxxj) > p(yyy |xxxi) |xxx = xxxi). (1.24)

Therefore, the criterion (1.23) amounts to

X ∗ = arg min
X

max
1≤i<j≤|X |

P(p(yyy |xxxj) > p(yyy |xxxi) |xxx = xxxi). (1.25)

Efficient Detection Design

Due to the discrete domain of the symbols, the ML detection (1.17) is often non-
deterministic polynomial-time (NP) hard [24]. To solve it, one has to enumerate the whole
constellation, which is cumbersome if the constellation size is large. Therefore, from a
practical point of view, it is favorable to use a sub-optimal detection with low complexity.
If the likelihood function metric p(yyy |xxx) is replaced with a sub-optimal detection metric
p̂(yyy |xxx) (which might be easier to compute) in (1.17), then according to [25, Section II],
the highest data rate reliably achievable—so-called the mismatched rate—is lower bounded
by the generalized mutual information (GMI) given by

RGMI(P,X , p̂) = sup
s≥0

E
[
log2

p̂(yyy |xxx)s∑
xxx∈X P(xxx = xxx)p̂(yyy |xxx)s

]
(1.26)

= sup
s≥0

E
[
log2 |X | − log2

∑
xxx∈X p̂(yyy |xxx)s
p̂(yyy |xxx)s

]
(1.27)

= log2 |X | − inf
s≥0

E
[
log2

∑
xxx∈X p̂(yyy |xxx)s
p̂(yyy |xxx)s

]
bpcu, (1.28)

where the expectation is over the joint distribution of xxx and yyy, and the second equality
follows from the uniformity of xxx in X . If the constellation X has a structure, one can
also exploit this structure to design efficient detection by, e.g., decoupling (1.17) into the
detection of each component of xxx.
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1.1.4 Coherent Communications: The Role of Channel State Informa-
tion

The instantaneous value of HHH is referred to as channel state information (CSI). If the
transmitter and/or receiver has this information, the communication is said to be coherent.
We assume that the channel is independent and identically distributed (IID) Rayleigh
fading so that the channel components hij are independent and follow NC(0, 1). Let the
receiver have CSI. In this case, if the transmitter only knows the channel distribution, the
capacity was derived by Telatar [26] and Foschini and Gans [27] as

C(P ) = EHHH
[

log2 det
(
IIIN + P

MHHHHHHH
)]

bpcu, (1.29)

and the capacity-achieving input distribution is the circularly symmetric complex vector
Gaussian NC

(
0, PM IIIM

)
. Furthermore, if CSI is also available at the transmitter (CSIT),

then the capacity is given by

C(P ) = EHHH

[
max

QQQ∈CM×M : QQQ�0,tr(QQQ)=P
log2 det

(
IIIN + HHHQQQHHHH)] bpcu, (1.30)

and the capacity-achieving input distribution is adapted to each realization of HHH as
NC(0,QQQopt(HHH)) where QQQopt(HHH) is the solution to the maximization in (1.30) when HHH = HHH.
The eigenvectors of QQQopt(HHH) are the same as the right singular vectors of HHH, while the
eigenvalues of QQQopt(HHH) are obtained from the singular values ofHHH by the waterfilling power
allocation [26], [28]. In both cases, the capacity scales as

C(P ) = min{M,N} log2 P +O(1), (1.31)

thus the optimal DoF is given by min{M,N}. In fact, for each realization of HHH, the MIMO
channel can be converted to min{M,N} parallel, non-interfering single-input single-output
(SISO) channels through a singular value decomposition (SVD) of HHH. Each parallel channel
has gain corresponding to a singular value of HHH and has one DoF. Therefore, with CSI, the
capacity scales up linearly with the number of antennas.

In coherent communications, one normally uses a scalar constellation C containing a set
of points in the disc D(0, 1) (1.22) for each component of xxx (thus X =

{
ρ[x1 . . . xM ]T :

xi ∈ C, i ∈ [M ]
}
where ρ is a scaling factor). The most common scalar constellations are

pulse amplitude modulation (PAM), phase shift keying (PSK), and quadrature amplitude
modulation (QAM), where the constellation points differ respectively in their amplitude,
phase, and both amplitude and phase. A diagram of these constellations is shown in
Fig. 1.2.

Given the IID Rayleigh fading matrix HHH = HHH and xxx = xxx, the channel output yyy is a
Gaussian vector with mean HHHxxx and covariance matrix IIIN , thus the likelihood function is
given by

pyyy |xxx,HHH(yyy |xxx,HHH) = 1
πN

exp
(
−‖yyy −HHHxxx‖2

)
. (1.32)

Therefore, the ML detection (1.17) given yyy = yyy and HHH = HHH is equivalent to the least-squares
(LS) problem

x̂xx = arg min
xxx∈X
‖yyy −HHHxxx‖2. (1.33)

This is also referred to as nearest-neighbor decoding (NND) since it looks for the closest (in
terms of Euclidean distance) symbol xxx to yyy in the subspace of HHH. The coherent detection
problem (1.33) has been investigated extensively in the literature. Since it is NP-hard [24],
many sub-optimal schemes have been proposed to reduce complexity, including:
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Figure 1.2: Diagram of three common scalar constellations: PAM, PSK, and QAM. The circle is
the boundary of the disc D(0, 1).

• linear detectors consisting in component-wise demapper of x̂xx = TTTyyy, such as matched-
filter with TTT = HHHH, zero forcing (ZF) with TTT = (HHHHHHH)−1HHHH =: HHH† (assuming
N ≥M), and minimum mean square error (MMSE) with TTT = (HHHHHHH + IIIN )−1HHHH;

• interference cancellation aided detectors, such as successive/parallel/multi-stage/decision-
feedback interference cancellation;

• tree-search based detectors, such as sphere decoders;

• lattice-reduction aided detectors.

In short, CSI enables to adapt the transmission and reception to the current fading
state. Comprehensive surveys of coherent MIMO transmission and detection can be found
respectively in [29] and [30].

1.1.5 The Cost of Acquiring CSI

Although coherent communication exploits effectively the extra spatial resources of a
MIMO channel to increase the spectral efficiency, it relies on the availability of CSI. In
practice, since the channel matrix is random and fades over time and frequency, its value is
not given a priori and has to be estimated. Typically, channel estimation is carried out by
sending reference symbols, so-called pilots, known to the receiver in some channel uses of a
coherence block. The receiver estimates the channel in these channel uses using the known
pilots, then inter/extrapolates them to infer the channel gains of the remaining channel
uses within the coherence block. By treating the channel estimate as the known channel,
coherent communication can be performed in these remaining channel uses. This is called a
pilot-based scheme/approach [31]. To properly analyze the system performance, one needs
to take into account the cost of channel estimation and the channel estimation error.

Since the pilot symbols are known to the receiver, they do not carry any information.
On the other hand, they occupy a fraction of communication time/frequency resource. In a
MIMO channel withM transmit antennas, one would need to send at leastM pilot symbols
for the receiver to determine M channel vectors corresponding to the M antennas [31].
Let T = TcBc be the coherence interval, then the fraction of resource spent for channel
estimation is M

T and there remains a 1−M
T fraction of the coherence block for coherent data

transmission. In a highly mobile environment where the channel state changes rapidly, the
coherence interval T is short, and the fraction of pilot transmission can be disproportionate
to data transmission, especially if the number of antennas is large.
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Channel estimation error has negative impact on both channel throughput and error
performance. On one hand, if one treats the channel estimate as the true channel and
disregard any inaccuracy, the optimal detector under this assumption is a mismatched
detector for the channel with channel estimation error, and the channel throughput is
determined by the mismatched rate. On the other hand, even if the statistics of the channel
estimation error is taken into account, this residual error imposes a secondary noise which
increases the total noise power and reduces the channel capacity for a given signal power.
The effect of imperfect channel knowledge on channel capacity has been investigated in,
e.g., [32], [33] and on detection error in, e.g., [34], [35].

In some scenarios, pilot-based channel estimation becomes difficult or even impossible.
For example, in the uplink of a multi-user system, pilot sequences are assigned per user
and orthogonally across users. If the total number of users is larger than the coherence
interval (but probably only a random number of users are active at a time), pre-assigning
mutually orthogonal pilot sequences to every user present in the system is not possible.
One can consider non-orthogonal pilots, but accurate CSI acquisition is still challenging.

Communication without a priori CSI at any node is said to be noncoherent. This
framework provides a more realistic standpoint to system analysis and design. Noncoherent
communication is also a more general framework since, as aforementioned, one can first
estimate the channel and then perform coherent communication. Nevertheless, sequen-
tial/joint channel estimation and coherent data detection might not be optimal. When
the cost of channel estimation is significant, the channel estimation error is severe, or
pilot-based channel estimation becomes inconvenient/impossible, it might be beneficial to
refrain from doing it by using a communication scheme that does not rely on the knowledge
of CSI. Noncoherent communication accounts for such a scheme.

In this thesis, we focus on noncoherent communications. We review the state-of-the-art
of noncoherent communications in the next section.
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1.2 Noncoherent Wireless Communications
In this section, we provide an overview of the state-of-the-art of noncoherent wireless
communications, as well as the questions that we want to answer in this thesis.

1.2.1 Assumptions

Throughout this section, we consider the following assumptions on the fading coefficients.

1.2.1.a Channel Information Availability

• Channel Distribution Information: The distribution of the channel coefficients, so-
called channel distribution information (CDI), is assumed to be known to all the
communicating nodes. This is because CDI characterizes the macroscopic propagation
effects that are stable, and thus can be tracked with negligible communication
resources. In particular, the channel statistics, such as the mean and covariance, are
assumed to be known.

• No Channel State Information: We assume that the instantaneous value of the
channel coefficients, i.e. CSI, is not known at any node.

1.2.1.b Channel Variation

• Stationary Fast Fading: In an extremely highly mobile environment, the channel
coefficients can be assumed to be mutually uncorrelated. In this case, the random
channel process is stationary [36].

• Block Fading: The block fading assumption refers to the case where the channel
coefficients within a coherence block of length T = TcBc are highly correlated such
that they can be considered unchanged within the block. Furthermore, the channel
coefficients in different blocks are assumed to be independent and identically dis-
tributed. The block fading model approximates, in a tractable manner, a continuous
fading process, such as Jakes’ [2], by a piecewise-constant process. The inter-block
independence is also relevant for a system with, e.g., block interleaving, random
TDMA, frequency hopping, or sporadic transmissions, in which the gap between
successive transmissions (to the same receiver) is large or indefinite. The special case
T = 1 coincides with stationary fast fading. In the multi-user case, we assume that
the coherence blocks have equal length and are synchronous across users.5 Because
the channel coefficients are statistically identical between different coherence blocks,
one can focus on a single representative coherence block.

1.2.1.c Channel Distribution

For a channel matrix HHH, either of following assumptions on its distribution will be considered.

• IID Rayleigh Fading: the entries of HHH are independent and identically Gaussian
distributed.

5The case where the coherence blocks of different users are asynchronous and unequal in length, so-called
coherence diversity, was investigated in [37].
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• Generic Fading: The fading is said to be generic if the channel matrix has finite
differential entropy6 and finite second moment:

h(HHH) > −∞, E
[
‖HHH‖2F

]
<∞. (1.34)

The IID Rayleigh fading is a special case of generic fading.

• Spatial Correlated Fading: In practice, the channel coefficients between different
antennas are often correlated, i.e., the channel gains and directions are not inde-
pendent: the received signal gain in some spatial directions are larger than in the
others. The spatial correlation can stem from the propagation environment or the
spatially dependent patterns of the antennas. We consider the Kronecker (separable)
correlation model

HHH = RRR
1
2
r H̆HHRRR

1
2
t , (1.35)

where RRRr ∈ CN×N and RRRt ∈ CM×M are deterministic and known correlation matrices
at the receiver and transmitter sides, respectively; H̆HH may have IID Gaussian entries
(spatially correlated Rayleigh fading) or follow a generic distribution as in (1.34)
(spatially correlated generic fading).

In the following, we focus on the P2P channel, the multiple-access channel (MAC), and
the broadcast channel (BC). For other channels, refer to, e.g., [39] for the interference
channel, [40], [41] for the relay channel, and [42] for the two-hop diamond network.

1.2.2 The Point-to-Point Channel

1.2.2.a Channel Model

Transmitter Receiver

⊕

⊕

⊕

xxx1

xxx2

xxxM

...

yyy1

yyy2

yyyN

...

h11

h21
hN1

h12

h22
hN2

h1M
h2M

hNM

zzz1

zzz2

zzzN

...

Figure 1.3: Conceptual illustration of a MIMO P2P channel with M transmit antennas and
N receive antennas in block fading. Each transmitted signal vector xxxi ∈ CT contains the scalar
symbols transmitted from antenna i during a coherence block of length T .

We consider anM×N MIMO P2P channel as in Section 1.1.3 but with joint transmission
within each coherence block as illustrated in Fig. 1.3. During a coherence block b, the
transmitter sends an M ×T signal matrix XXX[b] across M antennas and T channel uses, and
the receiver receives an N × T signal matrix

YYY[b] = HHH[b]XXX[b] + ZZZ[b], b = 1, 2, . . . , (1.36)
6The fading in which the channel matrix has (negative) finite differential entropy is so called regular

fading [38].
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where ZZZ[b] ∈ CN×T is the AWGN with IID NC(0, 1) entries independent of HHH. We consider
the power constraint

1
ν

ν∑
b=1
‖XXX[b]‖2F ≤ PT, (1.37)

where ν is the number of the blocks spanned by a channel codeword. P is the SNR of the
channel.

1.2.2.b Fundamental Limits and Capacity-Achieving Signal

The capacity of the noncoherent P2P channel has been investigated in a large body of work.
In general, the explicit capacity is unknown and only approximations in the extreme-SNR
regime are known in some settings. A commonly considered setting is the IID Rayleigh
fading in which the components of HHH are IID Gaussian random variables.

T = 1 (stationary fast fading)

Under the IID Rayleigh fading assumption for the SISO channel (M = N = 1) in fast
fading (T = 1), Richters conjectured in 1967 that, although the channel is continuous, the
capacity-achieving input distribution is discrete [43]. Later, Abou-Faycal et al. proved this
conjecture and showed that the capacity-achieving input distribution has a finite number
of mass points with one of them located at the origin [44]. Under the same setting, Taricco
and Elia showed that the capacity scales as α log logP ≤ C ≤ log logP + O(1) for some
α ∈ (0, 1) when P →∞ [45].

The double-logarithmic scaling of the capacity w.r.t. the SNR was proved rigorously
in a more general setting by Lapidoth and Moser in [36]. They considered a MIMO
channel under generic fading (see (1.34)). To bound the channel capacity, they used a dual
expression and replaced the maximization over channel input distribution (as in (1.14)) by
a minimization over channel output distribution (see Appendix 1.A.4). With this duality
approach, they proved that the capacity scales as

C = log logP + χ(HHH) + o(1), (1.38)

where χ(HHH) is the so-called fading number of the channel. Therefore, under fast fading,
communication at rates significantly higher than the fading number is extremely power
inefficient. Upper and lower bounds on the fading number are derived for various channels.
In particular, the fading number for IID Rayleigh fading is bounded as

−γ − 1 ≤ χ(HHH) ≤ −N − log Γ(N) +N log inf
AAA∈CN×N : det(AAAAAAH)=1

tr(AAAAAAH), (1.39)

where γ is Euler’s constant and Γ(·) is the Gamma function. A sharper result for the
capacity with IID Rayleigh fading is [36, Section IV-F.2]

C = inf
α,β>0

inf
δ>0

{
−N + (N − α)ψ(N)− log Γ(N) + α log β + log Γ

(
α, δβ

)
+ N

β
(1 + P ) + δ

β
+ 1− α
N − 1δ1{α ≤ 1}

}
+ o(1) (1.40)

where ψ(·),Γ(·), and Γ(·, ·) denote Euler’s psi-function, the Gamma function, and the upper
incomplete Gamma function, respectively. Note that in both (1.39) and (1.40), any choice
of the arguments in the infima leads to valid upper bounds.
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Under spatially correlated Rayleigh fast fading as in (1.35) (where H̆HH has IID NC(0, 1)
entries), Jafar and Goldsmith showed that the capacity is a Schur-concave function of the
vector of eigenvalues of RRRt [46]. They also showed that the maximal possible capacity gain
due to transmit correlations w.r.t. independent fading is 10 log10M dB.

T ≥ 2 (block fading)

The characteristics of the capacity scaling and capacity-achieving input distribution
become rather different as soon as the channel remains constant for at least two channel
uses. One of the first studies to address the capacity in this case was done by Marzetta
and Hochward [47]. Assuming IID Rayleigh fading, they proved two important results on
the capacity and the structure of the capacity-achieving signal as follows.

• The capacity obtained with M > T is the same as the capacity obtained with M = T
transmit antennas for any T and N and arbitrary SNR. This is in contrast to the
unbounded linear growth of capacity with min{M,N} when CSI is available (see
(1.31)).

• The signal that achieves capacity can be represented as
XXX = DDDΦΦΦ, (1.41)

where DDD is an M ×M real, non-negative, diagonal matrix, and ΦΦΦ is an independent
M × T isotropically distributed truncated unitary matrix. That is, the probability
density of ΦΦΦ is unchanged when postmultiplied by a T × T unitary matrix.

They also derived the capacity for the SISO case (M = N = 1), and showed that the
noncoherent capacity approaches the coherent counterpart as T →∞ for a fixed number
of antennas. This can be intuitively interpreted as when T is large, one can spend a
negligible number of channel uses to estimate accurately the channel and then communicate
coherently. The probability density of the received signal YYY with isotropically distributed
truncated unitary input signal was then derived in closed form by Hassibi and Marzetta
in [48], enabling to evaluate the input-output mutual information with this input signal.
It was shown numerically that at high SNR, the mutual information is maximized for
M = min

{
N, T2

}
.

These results were later generalized and sharpened by Zheng and Tse in [49] for the T ≥
min{M,N}+N case and by Yang et al. in [50] for the T ≤M+N,M ≤ min{N, bT/2c} case.
These papers collectively showed that, under IID Rayleigh fading, for T ≥ 2 min{M,N},
the capacity in the high-SNR regime is

C = M ′
(

1− M ′

T

)
logP + c(T,M,N) + o(1), (1.42)

whereM ′ := min{M,N} and c(T,M,N) is a constant independent of the SNR given in [49,
Eq.(24)] and [50, Eq.(9)] as

c(T,M,N) := 1
T

log
(ΓM ′(M ′)ΓM ′(L)

ΓM ′(N)ΓM ′(T )

)
+M ′

(
1− M ′

T

)
log T

M ′

+ M ′L

T
log N

L
+ L

T

M ′∑
i=1

ψ(N − i+ 1)−M ′
 (1.43)

where L := min{N,T −M}, L := max{N,T −M}, ψ(·) is Euler’s psi-function, and Γm(a)
is the complex multivariate Gamma function. The input distribution that achieves the
capacity (1.42) inherits the structure in (1.41) with specified distributions of DDD and ΦΦΦ.7

7Gaussian signaling, which was optimal had CSI been available, is sub-optimal and its achievable mutual
information was evaluated in [51], [52].
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In general, ΦΦΦ is a truncated unitary and isotropically distributed matrix. Whereas the
distribution of DDD needs to be tailored according to the relation of the coherence interval
and the number of antennas.

• If T ≥M ′ +N , it is optimal to let the first M ′ diagonal elements of DDD equal
√

PT
M ′

and the remaining diagonal elements equal 0 with probability 1 [49]. That is to
say, only M ′ transmit antennas are used to transmit the first M ′ rows of ΦΦΦ with
equal power per antenna. The resulting input distribution is referred to as unitary
space-time modulation (USTM) [53].

• If T < M+N andM ≤ min{N, bT/2c}, the squared diagonal elements of the optimal
DDD have the same joint distribution as the ordered eigenvalues of a positive-definite
M ×M Beta-distributed random matrix [50]. That is, a power control is needed
for the signals transmitted from different transmit antennas. The resulting input
distribution is referred to as Beta-variate space-time modulation (BSTM). Note that
in this case, the achievable rate with USTM input is at a constant gap below the
capacity achieved with BSTM input. A closed-form PDF of the channel output with
BSTM input was derived in [52], allowing to evaluate the mutual information at
finite SNR.

When 1 < T < 2 min{M,N}, only the pre-log factor of the capacity, so-called the DoF,
was pointed out (without a rigorous proof) in [49, Section IV-D] to be bT/2c

(
1− bT/2cT

)
,

i.e., the capacity scales as

C = bT/2c
(

1− bT/2c
T

)
logP +O(1). (1.44)

Combining these cases, we have that the optimal DoF of the noncoherent MIMO block
fading channel is given by M∗

(
1− M∗

T

)
with M∗ := min{M,N, bT/2c}. Therefore, in the

high SNR regime, using more than M∗ transmit antennas does not increase, and in fact
may penalize, the capacity.

Takeuchi et al. derived an achievable rate for the noncoherent MIMO block fading
channel with successive decoding in the large system limit [54]. The paper [55] addresses the
noncoherent MIMO channel with asymmetric link strengths where the channel coefficients
are still independently zero-mean Gaussian distributed, but have different variances that
can scale differently with the power P . In this case, the capacity-achieving input signal
is similar to (1.35) with DDD replaced by a lower triangular matrix. The generalized DoF
were derived in terms of the coherence interval and the exponents in the SNR-scaling of
the channel gains for single-input multiple-output (SIMO), multiple-input single-output
(MISO), and 2 × 2 MIMO channels. In particular, the optimal generalized DoF can be
achieved for the SIMO and MISO channel by using only the statistically best receive and
transmit antenna, respectively.

When the channel is in spatially correlated Rayleigh fading with the Kronecker model
given by (1.35), Jafar and Goldsmith showed that the channel capacity depends on RRRt
through only the min{T,M} largest eigenvalues ofRRRt and is independent of the eigenvectors
of RRRt and RRRr [46]. In contrast to the result for the IID Rayleigh fading where using more
than T transmit antennas does not increase the capacity, [46] showed that the channel
capacity increases almost surely with M as long as the channel coefficients are spatially
correlated. As compared to (1.41), the capacity-achieving input is further premultiplied
with the matrix containing the eigenvectors of RRRt as its columns. Gohary et al. derived the
high-SNR capacity with spatially correlated Rayleigh fading within an SNR-independent
gap in [56].
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Since most of the aforementioned works in the T ≥ 2 case rely on the IID Rayleigh
fading assumption, the following question is still open:

Question 1.1. What is the capacity limit of the noncoherent MIMO P2P channel in
generic block fading (1.34)?

1.2.2.c Constellation Design

In this subsection, we focus on the constellation design for the T ≥ 2 case and, motivated
by the optimal DoF, assume that M ≤ min

{
N, bT/2c

}
. We consider the USTM input

XXX =
√
PT

M
ΦΦΦ, where ΦΦΦΦΦΦH = IIIM . (1.45)

From the previous subsection, we know that, for IID Rayleigh fading channel at high SNR,
USTM achieves a vanishing gap from the channel capacity if T ≥M +N , a constant gap
from the channel capacity if 2M ≤ T < M + N , and the optimal DoF if T ≤ 2M . In
addition, constellation design according to USTM has a nice geometric interpretation as
will be seen shortly.

With USTM, the input signal is invariant to rotation from the right and information
is embedded in the row space of the matrix ΦΦΦ. The intuition behind the optimality of
USTM is that the channel matrix HHH only scales and rotates the bases of the transmitted
signal matrix XXX without changing its subspace since the row spaces of XXX and the noise-free
observation HHHXXX are the same. Information is carried in the position of the row-space of ΦΦΦ
in the Grassmann manifold G(CT ,M), which is the space of M -dimensional subspaces of
CT .8 By definition, we see that XXX and HHHXXX represent the same element of G(CT ,M). At
high SNR, the additive noise has low impact on the subspace of the output signal, and the
subspace of XXX can be accurately recovered from the subspace of the noisy output.

From the above observation, a constellation for noncoherent MIMO communication over
block fading can be designed as a set of representatives of M -dimensional subspaces in
CT . Equivalently, these constellations represent a set of points on the Grassmann manifold
G(CT ,M), i.e., ΦΦΦT is drawn from

X :=
{
XXX1,XXX2, . . . ,XXX |X | ∈ CT×M : XXXH

iXXXi = IIIM , i ∈ [|X |]
}

(1.46)

where we have that{
Span(XXX1),Span(XXX2), . . . ,Span(XXX |X |)

}
⊂ G(CT ,M). (1.47)

We let the truncated unitary matrix XXXi ∈ CT×M represent its column space Span(XXXi),
which is a subspace in CT and a point in G(CT ,M). Therefore, we write XXXi ∈ G(CT ,M)
and X ⊂ G(CT ,M). We refer to constellations of this kind as Grassmannian constellations.

Given the constellation size, the Grassmannian constellation construction can be inter-
preted as a packing of points in the Grassmann manifold. The ultimate packing criteria is to
minimize the detection error under noisy observation. It was shown that the pair-wise error
probability between two symbols XXXi and XXXj decreases as any of the singular values of the
matrix XXXH

iXXXj decreases [53, Theorem 5]. On the other hand, these singular values are also
the principal angles between Span(XXXi) and Span(XXXj). Several distance metrics between
two points in the Grassmannian represented by XXXi and XXXj are defined as decreasing

8For a detailed review of the Grassmann manifold, see Appendix 1.B.
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functions of these principal angles (see Appendix 1.B.2). Therefore, the error-minimization
packing criterion typically amounts to maximizing the minimum pairwise distance between
the constellation points, i.e.,

X = arg max
{XXX1,...,XXX|X|}⊂G(CT ,M)

min
1≤i<j≤|X |

d(XXXi,XXXj) (1.48)

where d(XXXi,XXXj) is the considered distance. A commonly used distance measure is the
chordal distance defined as

d(XXXi,XXXj) :=
√
M − tr{XXXH

iXXXjXXX
H
iXXXj}. (1.49)

Other distance measures include the geodesic distance, Fubini-Study distance, the chordal
2-norm, and the projection 2-norm (see, e.g., [57], [58]).9 To assess the optimality of
a packing, one can compare it to the packing efficiency limits in terms of the maximal
minimum pairwise distance for a given constellation size derived in, e.g., [58], [60]–[62].

Based on this Grassmannian packing interpretation, a number of Grassmannian constel-
lations have been proposed with different criteria, constellation generation, and detection
methods. They follow two main approaches.

• The first approach uses numerical optimization tools to solve the sphere-packing
problem on the Grassmannian by maximizing the minimum symbol pairwise dis-
tance (1.48) [63]–[67] or directly minimizing the error probability upper bound [68],
[69]. This results in constellations with a good distance spectrum but no particular
structure. Due to the lack of structure, this kind of constellation needs to be stored
at both the transmitter and receiver, and decoded with the high-complexity ML
decoder, which limits practical use to only small constellations.

• The second approach imposes particular structure on the constellation based on, e.g.,
algebraic construction [70]–[72], parameterized mappings of unitary matrices [73]–[75],
concatenation of PSK and coherent space-time codes [76], or geometric motion on
the Grassmannian [77]. The pilot-data structured input of a pilot-based scheme can
also be seen as a noncoherent code [78]. The constellation structure facilitates low
complexity constellation mapping and, probably, demapping.

Given a Grassmannian constellation, one can further optimize the input probabilities
and per-antenna amplitudes for the constellation points at a given SNR as done in [79].
Grassmannian constellations can be used for a bit-interleaved coded modulation scheme
with iterative soft demapping and decoding [80]. The performance of Grassmannian
signaling and some other differential schemes over temporally-correlated channels has been
investigated in [81]. Therein, it was shown numerically that noncoherent communication
has clear advantage over coherent schemes in medium to high mobility scenarios, i.e., for
short coherence intervals. Grassmannian signaling was validated on a software-defined
radio testbed in [82], showing that noncoherent techniques are more robust to system
impairments than the coherent Alamouti approach. Furthermore, Grassmannian signaling
was shown to achieve tight bounds on the ergodic high-SNR capacity of the noncoherent
MIMO full-duplex relay channel [83].

In this thesis, we would like to give our answer to the following question.

9The Kullback-Leibler (KL) distance metric is used in [59] for constellation points belonging to hyper-
spheres of different radii and not necessarily the Grassmann manifold.
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Question 1.2. How to design a Grassmannian constellation that has a high packing
efficiency while being simple to generate (thus available for large constellation size and
large symbol length, and not requiring to be stored), admitting a simple and effective
labeling scheme, and allowing for an efficient detection scheme?

1.2.3 The Multiple-Access Channel

1.2.3.a Channel Model

Channel
HHH

⊕
⊕
⊕

Receiver
(Base Station)

User 1

User 2

User K

...

yyy1

yyy2

yyyN

...

XXX1

XXX2

XXXK

...

zzz1

zzz2

zzzN

...

Figure 1.4: Conceptual illustration of a K-user MIMO MAC with N receive antennas in block
fading.

We consider a MIMO MAC with K transmitters (so-called users) transmitting to a
receiver (so-called base station), as illustrated in Fig. 1.4. User k is equipped with Mk

antennas, k ∈ [K], while the receiver has N antennas. The channel of user k is represented
by the matrix HHHk ∈ CN×Mk whose (i, j)-th element is the random fading coefficient between
the i-th receive antenna and the j-th transmit antenna of user k. The channels are in
block fading with equal-length and synchronous coherence blocks (across users) of length
T . Only the channel distribution is known to the transceiver. During a coherence block b,
user k sends an Mk × T signal matrix XXXk[b] across Mk antennas and T channel uses, and
the receiver receives an N × T signal matrix

YYY[b] =
K∑
k=1

HHHk[b]XXXk[b] + ZZZ[b], b = 1, 2, . . . , (1.50)

where ZZZ[b] ∈ CN×T is AWGN with IID NC(0, 1) entries independent of HHH. Unless stated
otherwise, we consider the power constraint

1
ν

ν∑
b=1
‖XXXk[b]‖2F ≤ PT, k ∈ [K], (1.51)

where ν is the number of the blocks spanned by a channel codeword. P is the SNR
of the channel. The most important difference of the MAC to the P2P channel is the
independence between the signals transmitted from the antennas of different users.

1.2.3.b Fundamental Limits

Shamai and Marzetta studied the capacity of the SIMO MAC (Mk = 1, k ∈ [K]) in IID
Rayleigh fading in [84]. For fast fading (T = 1), they showed that the sum capacity for
K > 1 users is equal to the capacity for K = 1 user, thus TDMA is optimal. For block
fading (T > 1), they conjectured that the maximum sum capacity can be achieved by no
more than K = T users, which is supported by some asymptotic analysis, namely, high
SNR and large T , for a fixed M/T ratio. In the same setting with T > 1, Gopalan et
al. derived a constructive lower bound on the sum capacity from a successive decoding
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scheme [85]. Since the sum capacity of the MAC can be upper bounded by the capacity of
the P2P channel by allowing user cooperation, the MAC sum capacity under fast generic
fading can be shown to scale as a double logarithm of the SNR plus a fading number
as in (1.38). The fading number of the MISO MAC (N = 1) in Rician fading has been
derived by Lin and Moser in [86]. It is identical to the fading number of the single-user
Rician fading channel obtained when only the user with the best channel is activated and
all other users are silent. This holds also with individual per-user peak power constraint.
Devassy et al. provided non-asymptotic upper and lower bounds on the sum capacity of
the MIMO MAC under Rayleigh fading in [87]. Therein, the lower bound derived with
independent Grassmannian signaling from each user has a small gap to the upper bound
even at moderate SNR.

The aforementioned works address the sum capacity of the noncoherent MAC. The full
capacity region is unknown, and only some achievable DoF regions have been proposed.
An achievable DoF region for the two-user MIMO MAC under IID Rayleigh block fading
was proposed in [88] using a geometric approach. Specifically, assuming that M1 +M2 ≤ N
and T ≥ M1 + M2 + N , this achievable DoF region is the convex hull of the origin and
three DoF pairs (

M1

(
1− M1

T

)
, 0
)
, (1.52a)

(
0,M2

(
1− M2

T

))
, (1.52b)

and
(
M1

(
1− M1 +M2

T

)
,M2

(
1− M1 +M2

T

))
. (1.52c)

A generalization of this achievable DoF region to the K-user case is presented in [37,
Theorem 5] as

dj = M ′j

(
1−

∑
j∈J M

′
j

T

)
, for j ∈ J = {k1, k2, . . . , kJ} ⊆ [K], (1.53)

where M ′j = min
{
Mj ,

[
N −

∑j−1
m=1M

′
km

]+}
and T ≥ 2N . These achievable regions can be

achieved by a simple pilot-based scheme. A cooperative outer bound for the optimal DoF
region was also given in [37, Section VI-B] as

∑
j∈J

dj ≤ min
{
N,
∑
j∈J

Mj

}(
1−

min
{
N,
∑
j∈J Mj

}
T

)
, ∀J ⊆ [K]. (1.54)

It can be seen that the achievable DoF regions (1.52) and (1.53) are sum-DoF optimal.

In this thesis, we will investigate the optimal DoF region of the noncoherent MAC and
address the following open question.

Question 1.3. What is the optimal DoF region for the noncoherent MIMO MAC in
generic block fading?

1.2.3.c Constellation Design

As in the single-user (P2P) case, the transmitted signals XXXk of user k are normally drawn
from a finite discrete constellation Xk, so X := {[XXX1 XXX2 . . . XXXK ] : XXXk ∈ Xk, k ∈ [K]} is
the joint constellation for the MAC.
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A straightforward extension of the pilot-based scheme for the single-user case is to
divide the coherent block into two parts: 1) the training part in which mutually orthogonal
pilot sequences are sent to estimate the CSI for each user, and 2) the data transmission
part in which different users communicate simultaneously [89] using a scalar constellation
(e.g., PAM, QAM, PSK). The optimality of this approach in terms of achievable rate and
detection error remains unclear. Furthermore, it is not always possible to assign orthogonal
pilots to all the users in the system before the transmission, as discussed in Section 1.1.5.

An amplitude-based encoding scheme was proposed in [90], [91], but the accompanying
energy detector relies on a large number of receive antennas so that the average received
power across all antennas concentrates. Also with a massive receive antenna array, some
differential encoding schemes were investigated based on PSK [92], [93] or QAM [94].
Another line of work is based on PSK constellations which are absolutely additively
uniquely decomposable, i.e., each individual PSK symbol can be uniquely decoded from any
linear combination of two PSK constellation points with positive weights [95], [96]. In this
scheme, the unique decodability of the signal matrix relies on the asymptotic orthogonality
between the users’ channels in the massive MIMO regime. A similar uniquely decomposable
property was also exploited for QAM-based multi-user space-time modulation [97]. In
short, these schemes assume a large number of receive antennas.

Unlike the single-user case where a good constellation design criterion is known to be
the sphere packing in the Grassmann manifold, for the noncoherent MIMO MAC in flat
and block fading, a simple and effective constellation design criterion remains unclear.
In general, the joint constellation X for the MAC should be designed so as to minimize
the symbol detection error. If the users could cooperate, the system could be seen as
a
(∑K

k=1Mk

)
× N MIMO P2P noncoherent channel, for which the high-SNR optimal

input is uniformly distributed on the Grassmannian G
(
CT ,

∑K
k=1Mk

)
[49]. Inspired by

this, the joint constellation for the MAC can be treated as a Grassmannian constellation
in G

(
CT ,

∑K
k=1Mk

)
, which leads to a design criterion mimicking sphere packing in this

Grassmannian by maximizing the minimum pairwise chordal distance. Brehler and Varanasi
derived the error probability of the ML detector for the MIMO MAC in [98] and analyzed
the high-SNR asymptotics. However, an explicit constellation design criterion was not given
and the analysis led to a design for the MAC with cooperating users only. With cooperating
users, the design criterion is similar to that for a single-user channel proposed in [68,
Eq.(8)] by the same authors, which is different from the max-min pairwise chordal distance
criterion. This criterion can be used for the non-cooperating users case by modifying the
optimization space. It guarantees the full diversity order in the single-user case [68], but
depends on the number of receive antennas. The pairwise error exponent can be shown
to converge to the KL divergence between the output distributions conditioned on either
of the symbols transmitted [59]. Based on this, a criterion consisting in maximizing the
minimum KL divergence was proposed for the MAC in [97]. However, this work focuses on
QAM-based space-time modulation and only uses the criterion to optimize the transmit
powers and the sub-constellation assignment.

In the thesis, we would like to answer the following question to a further extent:

Question 1.4. How to design effective joint constellation for the noncoherent MIMO
MAC in order to achieve a low symbol error rate (SER)?
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1.2.3.d Multi-User Detection

We now move the focus to the receiver, whose task is to detect the transmitted symbols XXXk
(or rather the underlying bits) based on the noisy observation YYY (1.50). Since the optimal
ML coherent detection problem is NP-hard, the receiver can use a sub-optimal detector to
reduce complexity.

If the transmitted signals contain pilots, the receiver can estimate (normally imperfectly)
the channel based on the pilot symbols, then perform coherent detection based on the
channel estimate, as illustrated in Fig. 1.5(a). This approach leverages a rich literature of
coherent detection, in which many sub-optimal algorithms have been proposed, as listed
in Section 1.1.4. Channel estimation and data detection can also be done iteratively [99],
[100], or jointly based on tree search [101], [102]. These schemes require pilot transmission
for an initial channel estimate or to guarantee the identifiability of the data symbols. On
the other hand, with pilot-free transmission, the noncoherent detector does not perform
explicit channel estimation and exploits the statistical knowledge of HHH only, as shown in
Fig. 1.5(b).
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(a) Coherent detection with channel estimation
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(b) Noncoherent detection

Figure 1.5: Conceptual illustration of coherent and noncoherent detection schemes for a K-
user MIMO MAC with N receive antennas in block fading. The outputs of the detector are the
hard-detected symbols or their marginal posteriors.

The receiver might be interested in not only the hard detection of the symbols, but
also their posterior marginal PMF. This “soft” information is needed, for example, when
computing the bit-wise log-likelihood ratios (LLRs) required for soft-input soft-output
channel decoding. Computing an exact marginal PMF would require enumerating all
possible combinations of other-user signals, which is infeasible with many users, many
antennas, or large constellations. Thus, as for hard detection, a sub-optimal scheme is
needed. In contrast to probabilistic coherent MIMO detection, for which many schemes
have been proposed (e.g., [103]–[105]), the probabilistic noncoherent MIMO detection under
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general signaling, and Grassmannian signaling in particular, has not been well investigated.
Therefore, in this thesis, we would like to answer the following question:

Question 1.5. How to efficiently detect the symbols and estimate their marginal
posteriors in the noncoherent MIMO MAC with general constellations?

1.2.4 The Broadcast Channel

1.2.4.a Channel Model

Channel HHH1

Channel HHH2

Channel HHHK

⊕
⊕
⊕

Transmitter
(Base Station)

User 1

User 2

User K

...

YYY1

YYY2

YYYK

......

XXX

ZZZ1

ZZZ2

ZZZK

...

Figure 1.6: Conceptual illustration of a K-user MIMO BC with M transmit antennas in block
fading.

We consider a MIMO BC in which an M -antenna base station transmit to K users
as illustrated in Fig. 1.6. User k is equipped with Nk antennas, k ∈ [K]. The channel
HHHk ∈ CNk×M between the base station and user k is flat and block fading with equal-
length and synchronous coherence block (across the users) of length T . Let the matrix
XXX[b] ∈ CM×T be the transmitted signal from the M antennas during the coherence block b.
The received signal matrix at user k during interval b is

YYYk[b] = HHHk[b]XXX[b] + ZZZk[b], k ∈ [K], (1.55)

where ZZZk[b] ∈ CNk×T is the AWGN with NC(0, 1) entries. The input is subject to the
power constraint

1
ν

ν∑
b=1
‖XXX[b]‖2F ≤ PT, (1.56)

where ν is the number of blocks spanned by a channel codeword. P is the SNR of the
channel.

1.2.4.b Fundamental Limits and Transmission Schemes

Most studies on the capacity limits of the BC assume perfect channel state information at
the receivers (CSIRs) and different levels of channel state information at the transmitter
(CSIT), namely, perfect CSIT [106], [107] (with dirty paper coding (DPC)), imperfect
(partial) CSIT [108]–[110], and no CSIT [111], [112]. The noncoherent (no CSIT, no CSIR)
MISO BC with HHHk isotropically distributed was mentioned briefly by Jafar and Goldsmith
in [111, Section VII-C]. They showed that their proposed scalar upper bound on the
capacity region, which was successfully applied to the perfect CSIR case, becomes loose
for the noncoherent BC since it fails to account for the DoF loss due to the lack of CSIR.
Under IID Rayleigh block fading, Fadel and Nosratinia found the optimal DoF region of
the noncoherent MIMO BC given by [37, Theorem 1]

D =

(d1, . . . , dK) ∈ RK+ :
K∑
k=1

dk

N∗k
(
1− N∗

k
T

) ≤ 1

, (1.57)
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where N∗k := min{M,Nk, bT/2c} and R+ denotes the set of non-negative real numbers.
This is achievable with a TDMA scheme and the transmitter uses N∗k antennas while
transmitting to user k.

The aforementioned results assume the statistical independence between each pair
of transmit and receive antennas. In practice, however, the channels between different
antennas are often correlated because the propagation environment often causes stronger
received signal gains in some spatial directions, and also due to the spatially dependent
patterns of the antennas. Since the users are not co-located, they may have non-identical
correlation matrices. In this case, a useful tool leveraging the difference between the spatial
correlations observed by different users is transmit correlation diversity. For transmit
spatial correlation matrices that have mutually exclusive eigenspaces, transmit correlation
diversity can be harvested using a joint spatial division multiplexing (JSDM) transmission
scheme [113], [114] that reduces the overhead needed for channel estimation. The main
idea of JSDM is to partition the users into groups with approximately the same channel
correlation eigenspace. Another transmission scheme in product superposition proposed by
Li and Nosratinia in [115], [116] for the BC with mixed static (with CSIR) and dynamic
(no CSIR) users and then applied to spatially correlated noncoherent BCs with fully
overlapping correlation eigenspaces [117].

Note that the JSDM transmission scheme attempts to exploit the non-overlapping
(mutually exclusive) parts of the correlation eigenspaces, while product superposition
exploits the overlapping parts. In this thesis, we would like to exploit both parts by
answering the following question.

Question 1.6. What are the fundamental limits of the noncoherent spatially correlated
BC in generic block fading with partially overlapping correlation eigenspaces and how
to effectively exploit transmit correlation diversity under this condition?
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1.3 Thesis Description
This thesis is a contribution to noncoherent wireless communications. We assume through-
out that the channel distribution is known, but the CSI is not known by any communicating
node, and channel coefficients are in block fading with coherence interval T . The assump-
tion on channel distribution (Rayleigh/generic, correlated/uncorrelated) will be specified in
each chapter. We study the P2P channel, the MAC, and the BC in terms of fundamental
limits (capacity, achievable rate, DoF) and transceiver design (constellation design, efficient
detection design). The main contribution of the thesis is the answer or extension of
existing answers to the questions posed in the previous section. The detailed outline and
contributions of the thesis are presented next.

1.3.1 Thesis Outline and Contributions

The remainder of the thesis is organized as follows. At the end of this chapter, we provide
the common mathematical preliminaries. After that, the thesis comprises two main parts
addressing respectively the fundamental limits and transceiver design aspects of noncoherent
communications, followed by the conclusion and outlook.

Part I: Fundamental Limits of Noncoherent Communications

In Chapter 2, we partly answer Question 1.1 by studying the optimal DoF of the noncoherent
MIMO P2P channel in generic block fading (1.34). We show that the optimal DoF for the
MIMO P2P channel under IID Rayleigh fading (found in [49], [50]) also holds under generic
fading. We introduce a novel converse proof technique based on a genie-aided bound and
the duality approach [36]. The results in this chapter are presented in [118], [119].

In Chapter 3, we respond toQuestion 1.3, i.e., the optimal DoF region for the noncoherent
MAC in generic block fading, in the SIMO case. We prove that the achievable DoF region
in (1.52) when M1 = M2 = 1 is optimal. The converse proof follows by showing that the
average power constraint can be replaced by a peak power constraint without changing the
optimal DoF region, together with a similar genie-aided bound and the duality approach
as in Chapter 2. The results in this chapter are presented in [118], [119].

Chapter 4 presents our answer to Question 1.6. Considering a spatially correlated MIMO
BC with partially overlapping correlation eigenspaces, we exploit transmit correlation
diversity by carefully designing transmission schemes based on rate splitting, product
superposition [115], and a hybrid version of them. In doing so, we find some achievable
rate and DoF regions for the BC in the two-user case, and some achievable DoF regions in
the K-user case. The achievable DoF regions significantly improve over TDMA, which was
shown to be DoF-optimal for uncorrelated fading [37]. As a by-product, we also derive an
achievable rate for the MIMO P2P channel under spatially correlated fading. The result in
this chapter was published in [120] and [121].

Part II: Transceiver Design for Noncoherent Communications

Chapter 5 gives our answer to Question 1.2 in the SIMO case. We propose a structured
constellation in the Grassmannian of lines so-called cube-split constellation. It is gener-
ated by partitioning the Grassmannian of lines into a collection of bent hypercubes and
defining a mapping onto each of these bent hypercubes such that the resulting symbols
are approximately uniformly distributed on the Grassmannian. This constellation fulfills
all the desired characteristics in Question 1.2: it has a high packing efficiency represented
by the minimum pairwise chordal distance while being simple to generate (thus available
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for large constellation size and large symbol length, and not requiring to be stored); it
admits a simple and effective binary labeling scheme; and it allows for efficient hard
and soft detection. These advantages over the pilot-based scheme and other structured
Grassmannian constellations are more pronounced in the regime of short coherence interval
and large constellation size, as verified by numerical results. The result in this chapter was
published in [122], [123], and [124].

In Chapter 6, we present a joint constellation design for the noncoherent MIMO MAC
in IID Rayleigh block fading, thus give our answer to Question 1.4. We analyze the ML
detection error and introduce novel design criteria so as to minimize the error probability.
We further simplify the metrics by a high-SNR analysis. Our metrics can be used for
joint constellation construction by (numerically) optimizing them over the set of signal
matrices. Moreover, based on these metrics, we propose two simple constructions consisting
respectively in partitioning a single-user constellation or precoding single-user constellations
of lower dimension. We investigate the option of building each individual constellation as
a Grassmannian constellation scaled by the respective transmit power. Numerical results
show that our proposed metrics are meaningful, and the resulting constellations perform
better, for the same transmission rate and power, than a pilot-based scheme and the
constellations optimized with existing metrics. The results in this chapter are presented
collectively in [125], [124], [126], and [127].

In Chapter 7, we focus on the receiver side of a MAC and answer Question 1.5. We
propose a noncoherent multi-user soft detection scheme for the SIMO MAC under spatially
correlated Rayleigh block fading. Our detector is based on expectation propagation (EP)
approximate inference and has polynomial complexity in the number of users, number
of receive antennas and coherence interval. We also propose two simplifications of this
detector with reduced complexity. The proposed detectors can be used for general signaling
with vector-valued symbols transmitted over each coherence block. In this chapter, we also
propose an efficient detection scheme for the precoding-based constellation in Chapter 6,
which has lower complexity but performs inferior to the EP detector. With pilot-assisted
signaling, the EP detector outperforms, in terms of symbol error rate, some conventional
coherent pilot-based detectors, namely, a linear MMSE decoder, a sphere decoder and a
joint channel estimation–data detection scheme. Our EP-based detectors produce accurate
approximates of the true posterior leading to high achievable sum-rates. The gains of these
detectors are further observed in terms of the bit error rate when using their soft outputs
for a turbo channel decoder. The results in this chapter were published in [128], [125] and
[129].

Conclusion and Outlook

We conclude the thesis in Chapter 8 which summarizes the main results and provides
an outlook to future work. We will put noncoherent communications, especially what
we have developed in this thesis, in the context of other (emerging) topics in wireless
communications.

Finally, a French summary is provided in Appendix A.

We summarize the main results of the thesis in Table 1.1.

1.3.2 List of Publications

The publications included in the main result of this thesis are listed below.
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Table 1.1: The main results of the thesis

Channel Part I: Fundamental Limits Part II: Transceiver Design
Achievable rate/DoF Optimal DoF Constellation design Detection design

P2P Chapter 4 Chapter 2 Chapter 5
MAC — Chapter 3 Chapter 6 Chapter 7
BC Chapter 4 — — —
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1.A Appendix: Information Theoretic Functions and the
Duality Approach

In this appendix, based on [22, Chapter 2], we define and enlist some properties of some
relevant information theoretic functions. Then, we review the duality approach in [36].

1.A.1 Entropy and Differential Entropy

Entropy

Let x be a discrete random variable with domain X and PMF px. The entropy of x, which
is the uncertainty about the outcome of x, is defined as

H(x) := −
∑
x∈X

px(x) log px(x) = −Ex[log px(x)], (1.58)

where the base of the log is arbitrary and determines the information unit. In this thesis,
we consider base 2, i.e., information is measured in bits. H(x) is a concave function in px
and satisfies

0 ≤ H(x) ≤ log |X |. (1.59)

Let x be an arbitrary random variable and y | {x = x} be discrete for every x, the conditional
entropy of y given x is given by

H(y | x) := −Ex,y[log py | x(y | x)]. (1.60)

It holds that

H(y | x) ≤ H(y), (1.61)

i.e., conditioning reduces entropy. The joint entropy of a pair of discrete random variables
(x, y) ∼ px,y is defined as

H(x, y) := −Ex,y[log px,y(x, y)]. (1.62)

A chain rule for joint entropy follows

H(x, y) = H(x) +H(y | x) = H(y) +H(x | y). (1.63)

Applying inductively this chain rule, the entropy of a discrete random vectors xxx = {xi}ni=1
is defined as

H(xxx) = H(x1) +H(x2 | x1) + · · ·+H(xn | x1, . . . , xn−1) (1.64)

=
n∑
i=1

H(xi | x1, . . . , xi−1). (1.65)

Differential Entropy

Let x be a continuous random variable with domain X and PDF px. The differential
entropy of x is defined as

h(x) := −
∫
X
px(x) log px(x) = −Ex[log px(x)]. (1.66)
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Unlike the entropy, the differential entropy can be negative. Similar as for the entropy, we
can define the conditional different entropy as

h(y | x) := −Ex,y[log py | x(y | x)] ≤ h(y), (1.67)

the joint differential entropy of xxx = {xi}ni=1 with joint PDF pxxx as

h(xxx) := −Epxxx

[
log pxxx(xxx)

]
=

n∑
i=1

h(xi | x1, . . . , xi−1). (1.68)

Furthermore, the differential entropy is invariant under translation:

h(xxx + aaa) = h(xxx), (1.69)

for any deterministic vector aaa, but not under scaling:

h(AAAxxx) = h(xxx) + log |det(AAA)|2, (1.70)

for any non-singular deterministic complex matrix AAA. In particular, if AAA is a unitary matrix,
then |det(AAA)|2 = det(AAAHAAA) = det(III ) = 1, thus h(AAAxxx) = h(xxx), i.e., rotating does not change
differential entropy. The following lemma is obtained by generalizing the real counterpart
in [22, Chapter 2.2] to the complex case.

Lemma 1.1 (Maximum differential entropy). For a complex random vector xxx = {xi}ni=1,

h(xxx) ≤ log det(πeE[xxxxxxH]) ≤
n∑
i=1

log
(
πeE

[
|xi|2

])
, (1.71)

where the first inequality holds with equality if and only if xxx is a zero-mean Gaussian vector,
and the second inequality holds with equality if and only if the entries of xxx are mutually
independent.

1.A.2 Kullback-Leibler Divergence

Let P and Q be two (discrete or continuous) probability measures such that P is absolutely
continuous w.r.t. Q, then the KL divergence (also known as relative entropy) from P to Q
is defined as

D(P‖Q) =
∫

log dP
dQ dP, (1.72)

where dP/dQ is the Radon-Nikodym derivative [134]. Note that the KL divergence
is asymmetric (hence the term “from P to Q”). Let p(·) and q(·) be respectively the
PDF/PMF of P and Q. For a random vector xxx with domain X ,

D(P‖Q) :=


∫
X p(xxx) log p(xxx)

q(xxx) dxxx if X is continuous,∑
xxx∈X p(xxx) log p(xxx)

q(xxx) if X is discrete.
(1.73)

We have that

D(P‖Q) ≥ 0 (1.74)

with equality if and only if p(xxx) = q(xxx) almost everywhere.
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1.A.3 Mutual Information

For two random variables x and y, the mutual information I(x; y) is defined as the KL
divergence from the joint measure to the product measure of x and y:

I(x; y) := D(px,y‖pxpy). (1.75)

Thus the mutual information is non-negative and becomes zero if and only if px,y(x, y) =
px(x)py(y),∀x, y, i.e., x and y are independent. Let the domain of x and y be respectively
X and Y. The mutual information can be expanded as

I(x; y) =
∑

(x,y)∈X×Y
px,y(x, y) log px,y(x, y)

px(x)py(y) (1.76)

= H(x)−H(x | y) (1.77)
= H(y)−H(y | x) (1.78)
= H(x) +H(y)−H(x, y) (1.79)

if x and y are discrete;

I(x; y) =
∫
X×Y

px,y(x, y) log px,y(x, y)
px(x)py(y) dx dy (1.80)

= h(x)− h(x | y) (1.81)
= h(y)− h(y | x) (1.82)
= h(x) + h(y)− h(x, y) (1.83)

if x and y are continuous; and

I(x; y) = h(y)− h(y | x) = H(x)−H(x | y) (1.84)

if x is discrete and y | {x = x} is continuous for every x. The conditional mutual information
is given by

I(x; y | z) = H(x | z)−H(x | y, z) (1.85)
= H(y | z)−H(y | x, z) (1.86)
= H(x | z) +H(y | z)−H(x, y | z) (1.87)

for discrete random variables, and similarly for continuous random variables. I(x; y | z)
is non-negative and becomes zero if and only if x and y are independent given z, i.e.,
x ↔ z↔ y forms a Markov chain.

Lemma 1.2 (Data processing inequality). If x ↔ y↔ z forms a Markov chain, then

I(x; z) ≤ I(x; y). (1.88)

The mutual information can be extended straightforwardly to random vectors. In
particular, we have chain rule

I({xi}ni=1; y) =
n∑
i=1

I(xi; y | x1, . . . , xi−1). (1.89)
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1.A.4 The Duality Approach

Consider a discrete memoryless channel with input x ∈ X , output y ∈ Y, and the channel
law py | x. The Shannon capacity of this channel is given by [21, Chapter 7]

C = max
px∈P(X )

I(x; y), (1.90)

where P(X ) is the set of all possible distributions in X (satisfying all the underlying, e.g.
power, constraints), and the distribution of the output y is Ex[py | x]. A dual expression for
the channel capacity is [135]

C = min
py∈P(Y)

max
x∈X

D(py | x=x‖py) (1.91)

where P(Y) is the set of all possible distributions in Y. Any choice of auxiliary output
distribution py leads to an upper bound on the channel capacity:

C ≤ max
x∈X

D(py | x=x‖py). (1.92)

This bound can be tightened as [36, Eq.(11)]

I(x; y) ≤
∑
x∈X

px(x)D(py | x=x‖py) (1.93)

for any x ∼ px ∈ P(X ) and y ∼ py ∈ P(Y). Therefore, the maximization over input
distribution in (1.90) is replaced by a minimization over output distribution in (1.91). One
can bound the capacity and the achievable rate by choosing an auxiliary output distribution
py in (1.92) and (1.93), respectively. This is referred to as the duality approach and was
extended to continuous alphabets in [36], [38].

We can also interpret the duality approach by looking at the expression I(x; y) =
h(y)− h(y | x). While h(y | x) can be computed easily for many channels, the differential
entropy h(y) is normally hard to compute. Assume that py is the true output distribution,
we consider another auxiliary output distribution qy and have that

h(y) = −E[log py(y)] (1.94)
= −E[log qy(y)]−D(py‖qy) (1.95)
≤ −E[log qy(y)], (1.96)

due to the non-negativity of the KL divergence D(py‖qy). Note that the expectation is
w.r.t. py. This imposes an upper bound on the channel capacity.

Using the duality approach to upper bound the capacity, one should first “guess” the
capacity-achieving output distribution, then choose an auxiliary output distribution to be
close to that while guaranteeing that (1.92), (1.93), and (1.96) are tractable. The next
lemma introduces a family of vector-valued distribution that will be used to define auxiliary
output distributions in Chapter 2 and Chapter 3.

Lemma 1.3. Let yyy ∈ CN be a random vector with distribution P. Consider another family
of distributions R whose densities are given by

ryyy(yyy) = Γ(N)|detAAA|2
πNβαΓ(α) ‖A

AAyyy‖2(α−N) exp
(
−‖A

AAyyy‖2

β

)
, yyy ∈ CN , (1.97)

where α, β > 0, AAA is any non-singular deterministic N × N complex matrix. When
β = EP [‖AAAyyy‖2] and α = 1/ log(β) = 1/ log(EP [‖AAAyyy‖2]), denote this distribution as R(N,AAA).
In this case,

EP [− log(ryyy(yyy))] = − log |detAAA|2 +NEP
[
log ‖AAAyyy‖2

]
+O

(
log log

(
EP
[
‖AAAyyy‖2

]))
. (1.98)
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Note that if AAA = IIIN , (1.98) becomes

EP [− log(ryyy(yyy))] = NEP
[
log ‖yyy‖2

]
+O

(
log log

(
EP
[
‖yyy‖2

]))
.

Proof. In this proof, all expectations are implicitly w.r.t. P . A direct calculation from (1.97)
yields

E[− log(ryyy(yyy))] = − log |detAAA|2 + (N − α)E
[
log ‖AAAyyy‖2F

]
+ E

[
‖AAAyyy‖2F

]
β

+ log Γ(α) + log βα + log πN

Γ(N) . (1.99)

When β = E
[
‖AAAyyy‖2F

]
and α = 1

log(β) = 1
log(E[‖AAAyyy‖2F]) , this becomes

E[− log(ryyy(yyy))] = − log |detAAA|2 +NE
[
log ‖AAAyyy‖2F

]
− E

[
log ‖AAAyyy‖2F

]
log(E

[
‖AAAyyy‖2F

]
)

+ log Γ
(

1
log(E

[
‖AAAyyy‖2F

]
)

)
+ log eπN

Γ(N) (1.100)

= − log |detAAA|2 +NE
[
log ‖AAAyyy‖2F

]
+O

(
log log

(
E
[
‖AAAyyy‖2F

]))
, (1.101)

where the last equality is because 0 < E[log ‖AAAyyy‖2F]
log(E[‖AAAyyy‖2F]) < 1 (due to Jensen’s inequality) and

log Γ
(

1
log(E

[
‖AAAyyy‖2F

]
)

)
− log log

(
E
[
‖AAAyyy‖2F

])
→ 0 as E

[
‖AAAyyy‖2F

]
→∞ (1.102)

due to

lim
x→∞

log Γ
(1
x

)
− log x = lim

x→∞
log
(1
x

Γ
(1
x

))
= lim

x→∞
log
(

Γ
(

1 + 1
x

))
= log(Γ(1))
= 0. (1.103)

This concludes the proof.

This family of distribution R is a special case of the one primarily defined in [36,
Section IV-A]. If we take yyy as the channel output (of a MIMO channel), as long as
E
[
‖AAAyyy‖2

]
≤ SNRc0 for any constant c0 whose value only depends on the channel statistics,

the term O(log log(EP [‖AAAyyy‖2])) scales double-logarithmically with SNR. Therefore, in the
DoF sense, it is enough to consider only the first two terms in (1.98).
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1.B Appendix: Grassmann Manifold

1.B.1 Definition and Invariant Measure

Consider a T -dimensional Euclidean space KT , where K can be R or C.

Definition 1.2 (Grassmann manifold). The Grassmann manifold (so-called Grassmannian)
G(KT ,M) is the set of all M -dimensional vector subspaces of KT with M < T .

The Grassmannian is a compact Riemann manifold. For example, whenM = 1, G(KT , 1)
is the set of one-dimensional subspaces, i.e. lines, in KT , and is thus referred to as the
Grassmannian of lines. An illustration of G(R2, 1) is given in Fig. 1.7.

The Grassmann manifold is isomorphic to a quotient of unitary/orthogonal groups:

G(KT ,M) ∼= U(T )/(U(M)× U(T −M)), (1.104)

where the division slash denotes a quotient space and the unitary/orthogonal group U(n)
is the set of all n× n unitary/orthogonal matrices, i.e.,

U(n) := {UUU ∈ Kn×n : UUUHUUU = III n}. (1.105)

This equivalence is interpreted as follows. Each element of U(T ) is an orthonormal basis
of KT and can be split into M vectors spanning an M -dimensional subspace and the
remaining T −M vectors spanning the orthogonal complement of that subspace. The
M -dimensional subspace and its orthogonal complement are invariant to unitary rotation of
the set of M vectors and the remaining T −M vectors, respectively. Therefore, to uniquely
represent an M -dimensional subspace, which is an element in G(KT ,M), we need to divide
U(T ) by the space of these rotations, which are U(M) and U(T −M), respectively [136].
The Grassmann manifold can also be represented as a space of equivalence classes in the
Stiefel manifold, which is the space of T ×M truncated unitary matrices in KT , i.e.,

S(KT ,M) := {QQQ ∈ KT×M : QQQHQQQ = IIIM}. (1.106)

Defining the equivalence between two elements QQQ1 and QQQ2 of S(KT ,M) as QQQ1 = QQQ2UUU for
some UUU ∈ U(M), we have that each element in the Grassmann manifold G(KT ,M) is an
equivalence class in the Stiefel manifold S(KT ,M).

From the quotient space representation (1.104), the real dimension of the Grassmannian
G(KT ,M) can be calculated as

dim(G(KT ,M)) = dim(U(T ))− dim(U(M))− dim(U(T −M)) (1.107)
= βM(T −M), (1.108)

where β = 1 if K = R and β = 2 if K = C. A uniform measure in G(KT ,M) can be induced
from the Haar measure on the unitary/orthogonal group as follows. Let µH(·) be the unit
Haar measure on the unitary/orthogonal group U(T ) and fix a point V in G(KT ,M). For
any setM⊆ G(KT ,M), the measure µ(M) on G(KT ,M) is defined as

µ(M) = µH{UUU ∈ U(T ) : UUUV ∈ M}. (1.109)

This measure is invariant under actions from the group U(T ), i.e., µ(UUUM) = µ(M) for
any UUU ∈ U(T ). With this measure, the volume of a Grassmann manifold is given by

∣∣G(KT ,M)
∣∣ =

∏T
i=T−M+1

2πi
(i−1)!∏M

i=1
2πi

(i−1)!
. (1.110)

An isotropically distributed matrix in KT×M has subspace uniformly distributed on the
Grassmannian G(KT ,M) w.r.t. this invariant measure.
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uuu1

uuu2uuu3

uuu4
θ

R2 dc(uuu1,uuu2) = sin θ

1

Figure 1.7: An illustration of four elements of the Grassmannian of lines G(R2, 1) in the plane R2.
Each element i is a set {λuuui : λ ∈ R,uuui ∈ R2, ‖uuui‖ = 1}, which is a line in R2. It is represented
by the unit vector uuui, i.e., the intersection of the line and the unit circle. Note that uuui and −uuui
represent the same Grassmannian point. The principal angle between two Grassmannian points
represented by uuu1 and uuu2 is the acute angle θ between two corresponding lines. The chordal distance
between these two points is simply the sine of that angle, i.e., dc(uuu1,uuu2) = sin θ.

1.B.2 Principal Angles and Metrics

The Grassmannian is a metric space with the metric defined through the principal angles
between the points on the manifold. The principal angles between two M -dimensional
subspaces U and V of KT , which are two points on G(KT ,M), are defined in a sequential
manner as follows. The first angle is the smallest angle between two unit vectors in U and
V, respectively, i.e., θ1 = arccos |uuuH

1vvv1| with11

(uuu1, vvv1) = arg max
uuu∈U,‖uuu‖=1
vvv∈V,‖vvv‖=1

|uuuHvvv|. (1.111)

The next principal angle is the smallest angle between two unit vectors in U and V and
orthogonal to uuu1 and vvv1, respectively, i.e., θ2 = arccos |uuuH

2vvv2| with

(uuu2, vvv2) = arg max
uuu∈U,‖uuu‖=1,uuuHuuu1=0
vvv∈V,‖vvv‖=1,vvvHvvv1=0

|uuuHvvv|. (1.112)

Inductively, the i-th principal angle is the smallest angle between two unit vectors in U
and V orthogonal to uuuj and vvvj for all 1 ≤ j < i, respectively, i.e., θi = arccos |uuuH

i vvvi| with

(uuui, vvvi) = arg max
uuu∈U,‖uuu‖=1,uuuHuuuj=0,∀1≤j<i
vvv∈V,‖vvv‖=1,vvvHvvvj=0,∀1≤j<i

|uuuHvvv|, (1.113)

for i ∈ [M ]. The principal angles are between 0 and π
2 . For example, the principal angle

between two points in G(R2, 1) is simply the acute angle between two corresponding lines
in R2, as illustrated in Fig. 1.7.

Let

θθθ := [θ1 θ2 . . . θM ], and sinθθθ := [sin θ1 sin θ2 . . . sin θM ]. (1.114)

There are several distance metrics defined between U and V , such as the geodesic distance
dg(U ,V) := ‖θθθ‖, the chordal distance dc(U ,V) := ‖ sinθθθ‖, the Fubini-Study distance

11The conjugate transpose is implicitly replaced by the transpose for the real Grassmannian.
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dFS(U ,V) := arccos
(∏M

i=1 cos θi
)
, and the chordal Frobenius norm dcF(U ,V) :=

∥∥2 sin θθθ
2
∥∥

(see, e.g., [57], [58]). Among them, the chordal distance is widely used and has some
advantages, such as it allows an isometric embedding of the Grassmannian in a sphere [60].
Its values range from 0 to

√
M . For example, the chordal distance between two points in

G(R2, 1) is the sine of the acute angle between two corresponding lines in R2, as illustrated
in Fig. 1.7.

The principal angles can be computed from the matrix representatives of the subspaces.
Let UUU and VVV be T ×M matrices with orthonormal columns spanning the subspaces U
and V, respectively. Then the singular values of the product UUUHVVV are the cosines of the
principal angles between U and V. Therefore, these principal angles can be found by a
SVD of UUUHVVV . The distance between U and V can also be expressed in terms of UUU and VVV .
For example, the chordal distance is written as

dc(U ,V) = ‖UUUHUUU − VVV HVVV ‖F =
√
M − tr(UUUHVVV VVV HUUU). (1.115)

For this reason, we also denote the chordal distance as dc(UUU,VVV ) for convenience, although
its value does not depend on the choice of matrices UUU and VVV that represent the two
subspaces. From now on, we consider the chordal distance and omit the subscript “c”
whenever confusion is not likely. Letting a matrix UUU ∈ KT×M represent its column span,
we write with a slight abuse of notation that UUU ∈ G(KT ,M).

1.B.3 Sphere Packing in the Grassmannian

Following [62, Corollary 1], the next lemma gives the volume of a metric ball in the
Grassmannian.

Lemma 1.4 (The volume of a metric ball in G(KT ,M)). With the invariant measure
µ(·), the volume of a metric ball B(δ) of radius δ (defined with chordal distance) in the
Grassmann manifold G(KT ,M) is given by

µ(B(δ)) = cT,M,βδ
βM(T−M), (1.116)

where

cT,M,β := 1
Γ
(
β
2M(T −M) + 1

) min{M,T−M}∏
i=1

Γ
(
β
2 (T − i+ 1)

)
Γ
(
β
2 (min{M,T −M} − i+ 1)

) , (1.117)

where β = 1 if K = R and β = 2 if K = C.

A packing C in G(KT ,M) is a finite-size discrete subset of G(KT ,M). For example,
Fig. 1.7 depicts a packing of four points in G(R2, 1). The sphere packing problem in the
Grassmannian has a variety of applications in wireless communications. It provides a
geometric interpretation of the capacity of a noncoherent MIMO block-fading channel [49,
Section III-C]. A Grassmannian packing can be used as a constellation for such channel [53],
[64] (see Section 1.2.2.c of this thesis). It can also be used as a CSI quantization or precoding
codebook in limited-feedback communication systems [137]. The set of the intersections of
the Grassmannian constellation symbols and the unit sphere is also called an antipodal
spherical code, which has applications in designing measurement matrix for compressive
sensing [138].

Let us focus on the complex Grassmannian G(CT ,M). A common sphere packing
criterion is the maximization of minimum pairwise distance between the elements/symbols
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for a given packing size, i.e.,

C = arg max
{CCC1,...,CCC|C|}⊂G(CT ,M)

min
1≤i<j≤|C|

d(CCCi,CCCj). (1.118)

The sphere packing bounds characterize the fundamental limits regarding the size of the
packing and the minimum distance. Using upper bounds on spherical codes and the
embedding of the Grassmannian in a sphere, Conway et al. derived the well-known Rankin
bounds for real Grassmannian packing [60]. These bounds naturally generalize to the
complex case as

δ(C) ≤


√

M(T−M)
T

|C|
|C|−1 , if |C| ≤ T (T+1)

2 ,√
M(T−M)

T , if |C| > T (T+1)
2 .

(1.119)

There exist sequences of small-size packings that meet the Rankin bounds [139]. However,
the Rankin bounds quickly become loose as the packing size grows. Another approach
relates the packing size to the volume of the metric ball of radius equal to the minimum
distance δ. Specifically, for any positive integer K such that Kµ(B(δ)) ≤ 1, there exists
a packing C of size K + 1 with minimum distance δ. This is captured by the Gilbert-
Varshamov lower bound [62, Eq.(2)]: there exists a packing with minimum distance δ and
size

|C| > 1
µ(B(δ)) . (1.120)

On the other hand, the total volume of the balls of radius δ/2 centered at each symbol
is upper bounded by the volume of the Grassmannian. This implies the Hamming upper
bound [62, Eq.(3)] as

|C| ≤ 1
µ(B(δ/2)) . (1.121)

Substituting the volume formula in Lemma 1.4 into the Gilbert-Varshamov lower bound
and the Hamming upper bound, the next lemma follows readily.

Lemma 1.5 (Grassmannian sphere packing bounds). The minimum distance δ(Copt) of an
optimal packing Copt of cardinality |C| on the complex Grassmannian G(CT ,M) is bounded
by

min
{√

M, 2(|C|cT,M )−
1

2M(T−M)
}
≥ δ(Copt) ≥ (|C|cT,M )−

1
2M(T−M) , (1.122)

where cT,M := 1
(M(T−M))!

∏min{M,T−M}
i=1

(T−i)!
(min{M,T−M}−i)! .

The sphere packing problem can be solved numerically by, e.g., Newton’s or (conjugate)
gradient descent as presented in the next subsection. An alternative projection method
was proposed in [136], but works well for sparse packings (small |C|, large T ) only.

1.B.4 Manifold-Constrained Optimization

Consider a minimization of a function f(CCC) defined on the Grassmann manifold

min
CCC∈G(CT ,M)

f(CCC). (1.123)
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To apply standard optimization methods, such as Newton’s and the (conjugate) gradient
descent, one needs to derive the Riemannian (conjugate) gradient, the Hessian of the
function f(CCC) and the motion of a point on the Grassmannian.

The motion on the Grassmann manifold can be obtained using the differential-geometric
methods [57]. Consider a moving point on the Grassmannian, which is located at CCC(0) =
CCC ∈ G(CT ,M) at time t = 0. Let this point move along a geodesic in the direction
HHH = CCC⊥BBB where CCC⊥ ∈ CT×(T−M) has orthonormal columns spanning the orthogonal
complement of Span(CCC) in CT and BBB is an arbitrary (T −M) ×M matrix. Then, its
location at an arbitrary time instant t is given by

CCC(t) = [CCC CCC⊥] exp
(
t

[
0 −BBBH

BBB 0

])[
IIIM
0

]
. (1.124)

According to [57, Section 2.5.3] and [140, Section 3.6], the Riemannian gradient of f at
CCC is defined as the tangent vector ∇Rf(CCC) such that tr(∇H

Ef(CCC)∆) = tr(∇T
Rf(CCC)∆) for

all tangent vectors ∆ at CCC, where ∇Ef(CCC) is the Euclidean gradient of f(CCC), i.e.,

[∇Ef(CCC)]i,j = ∂f

∂[CCC]i,j
. (1.125)

It follows that

∇Rf(CCC) = (III T −CCCCCCH)∇Ef(CCC). (1.126)

The Riemannian Hessian of f(CCC) is defined as the quadratic form HessRf(∆,∆) =
d2

dt2
∣∣
t=0f(CCC(t)) where CCC(t) is a geodesic with tangent ∆ at CCC(0). It is computed as

HessRf(∆1,∆2) =
∑
i,j,k,l

[
HessEf(∆1,∆2)

]
ij,kl

[∆1]i,j [∆2]k,l − tr(∆H
1∆2CCC

H∇H
Ef(CCC)),

(1.127)

where HessEf(∆1,∆2) is the Euclidean Hessian of f(CCC), i.e.,

[
HessEf(∆1,∆2)

]
ij,kl

= ∂2f

∂[YYY ]i,j∂[YYY ]k,l
. (1.128)

Finally, Newton’s and the (conjugate) gradient descent methods to solve the minimization
(1.123) on the Grassmannian are summarized in [57], [140].

When the optimization is over a set of points on the Grassmannian, such as the sphere
packing problem (1.118), one can consider the set of optimization points as a single element
of a manifold in larger dimension. For example, one can construct the block diagonal
matrix C̄CC with CCC1, . . . ,CCC |C| as diagonal blocks, which is a single point in a sub-manifold
of G(CT |C|,M |C|). By examining the tangent space of this sub-manifold, the techniques
for single-point optimization on the Grassmann manifold can be applied. This was done
in [64] to solve (1.118). Another difficulty in solving (1.118) is that the objective function
min1≤i<j≤|C| d(CCCi,CCCj) = −max1≤i<j≤|C|−d(CCCi,CCCj) is not smooth. We can approximate
it with a smooth function using the well-known approximation

max
i
xi ≈ ε ln

∑
i

exp(xi/ε) (1.129)
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for a small “diffusion constant” ε. The smaller ε is, the more accurate this approximation
is. However, if ε is too small, the optimization becomes slow due to the small step size and
numerical problems, such as floating point overflow errors, may occur.

In the following, we investigate a particular example of sphere packing in the Grass-
mannian of lines G(CT , 1).

Example 1.1 (Sphere packing in the Grassmannian of lines). Consider the instance of
the sphere packing problem (1.118) with M = 1:

max
C={ccci}|C|i=1⊂G(CT ,1)

min
1≤i<j≤|C|

√
1− |cccH

i cccj |2. (1.130)

This optimization is equivalently expressed as

min
C={ccci}|C|i=1⊂G(CT ,1)

max
1≤i<j≤|C|

|cccH
i cccj |, (1.131)

For smoothness, we approximate the objective function using (1.129) to obtain

min
C={ccci}|C|i=1⊂G(CT ,1)

ε ln
∑

1≤i<j≤|C|
exp

( |cccH
i cccj |
ε

)
. (1.132)

This smooth optimization is, however, jointly over multiple points on the Grassmannian
of lines. To tackle this, we construct the matrix CCC := [ccc1 . . . ccc|C|], then CCC belongs to the
oblique manifold OB(T, |C|) defined as

OB(n,m) :=
{
XXX = [xxx1 . . .xxxm] ∈ Cn×m : ‖xxx1‖ = · · · = ‖xxxm‖ = 1

}
. (1.133)

The oblique manifold OB(n,m) can be seen as an embedded Riemannian manifold of Cn×m
endowed with the usual inner product, or as the product manifold of m unit spheres in
Cn [140, Section 3.4.1]. Then, the optimization problem (1.132) can be reformulated as a
single-variable optimization on this oblique manifold as

min
CCC∈O(T,|C|)

ε ln
∑

1≤i<j≤|C|
exp

( |cccH
i cccj |
ε

)
︸ ︷︷ ︸

=:g(CCC)

. (1.134)

The derivative of g(CCC) w.r.t. a symbol cccm is

∂g(CCC)
∂cccm

= ε

 ∑
1≤i<j≤|C|

exp
( |cccH

i cccj |
ε

)−1∑
i<m

∂ exp(|cccH
i cccm|/ε)

∂cccm
+
∑
j>m

∂ exp(|cccH
mcccj |/ε)

∂cccm

,
(1.135)

where

∂ exp(|cccH
i cccm|/ε)

∂cccm
= ∂ exp(|cccH

mccci|/ε)
∂cccm

(1.136)

= 1
ε

exp
( |cccH

i cccm|
ε

)
∂|cccH

i cccm|
∂cccm

(1.137)

= 1
ε

exp
( |cccH

i cccm|
ε

)
cccH
i cccm
|cccH
i cccm|

ccci. (1.138)
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Consequently, the Euclidean gradient of g(CCC) w.r.t. CCC is given by

∇T
Eg(CCC) =

[
∂g(CCC)
∂ccc1

∂g(CCC)
∂ccc2

. . .
∂g(CCC)
∂ccc|C|

]T

(1.139)

=

 ∑
1≤i<j≤|C|

exp
( |cccH

i cccj |
ε

)−1

×



0 exp(|cccH
2ccc1|/ε) c

ccH
2ccc1
|cccH

2ccc1|
. . . exp(|cccH

|C|ccc1|/ε)
cccH
|C|ccc1

|cccH
|C|ccc1|

exp(|cccH
1ccc2|/ε) c

ccH
1ccc2
|cccH

1ccc2|
0 . . . exp(|cccH

|C|ccc2|/ε)
cccH
|C|ccc2

|cccH
|C|ccc2|

...
... . . . ...

exp(|cccH
1ccc|C||/ε)

cccH
1ccc|C|
|cccH

1ccc|C||
exp(|cccH

2ccc|C||/ε)
cccH
2ccc|C|
|cccH

2ccc|C||
. . . 0


CCCH.

(1.140)

Then, the Riemannian gradient of g(CCC) is computed based on (1.126).

A useful tool for optimization on manifolds is the Manopt toolbox [141] in Matlab. It
provides a large library of manifolds and ready-to-use Riemannian optimization algorithms.
In this thesis, we resort to this toolbox to solve numerically the manifold-constrained
optimizations, which we encounter in Chapter 5, Chapter 6, and Chapter 7. Note that in
manifold-constrained optimization, the optimization space is nonlinear, and the objective
functions that we consider in this thesis are in general nonconvex. Thus, most descent
algorithms only guarantee to return an (approximate) critical point. In order to ensure
that this point is a local minimum and not a saddle point, the search direction needs to
be carefully constructed. Several rules to construct the new search direction based on a
linear combination of the previous search direction and the new (preconditioned) gradient
are provided for the Euclidean in [142]. The Manopt toolbox adapts these rules to the
Riemannian space. If no descent direction is found, one can restart, i.e., switch to the
negative gradient. This is equivalent to resetting the direction to a steepest descent step,
which discards the past information. The Manopt toolbox implements the Powell’s restart
strategy [143].

For further details concerning the Grassmann manifold, sphere packing, and manifold-
constrained optimization, refer to, e.g., [57], [60], [140], [144].
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Chapter 2

The MIMO Point-to-Point Channel

The high-SNR capacity of noncoherent MIMO P2P channel has been derived for the case of
IID Rayleigh block fading by exploiting the Gaussianity of the channel matrix. This implies
the optimal DoF. Nevertheless, as far as the DoF is concerned, it is apparent that the result
holds for a wider class of fading channels. In this chapter, we show that the optimal DoF
for the IID Rayleigh block fading channel is also the optimal DoF for a more general class
of generic block fading channels, in which the random channel matrix has finite power and
finite differential entropy. In doing so, we introduce a novel converse proof technique based
on a genie-aided bound and the duality approach.

2.1 Overview
As presented in Section 1.2.2.b, for an M ×N MIMO channel in IID Rayleigh block fading
with coherence interval T > 1, the optimal DoF is given by [49], [50]

DoF = M∗
(

1− M∗

T

)
, with M∗ := min{M,N, bT/2c}. (2.1)

The converse of this result was based on the IID Rayleigh fading assumption, using either
a direct approximation at high SNR [49] or a duality upper bound with a carefully chosen
auxiliary output distribution [50]. On the other hand, the optimal DoF for the case T = 1
(fast fading) is known to be zero for a much wider class of fading model, namely, the
generic fading in which the channel matrix has finite differential entropy and finite second
moment [36].

In this chapter, we generalize the DoF result of [49], [50] to the generic fading model as
in [36]. Specifically, we prove that the DoF given in (2.1) is also the optimal DoF under
generic block fading. The main technical contribution of this paper lies in the converse
proof. Leveraging the duality upper bound [36], we carefully choose an auxiliary output
distribution (inspired by a pilot-based scheme) with which we derive a tight DoF upper
bound.1

1Another useful tool for the converse bounds in the literature is the escape-to-infinity property [36],
which allows one to assume without loss of generality (w.l.o.g.) that the high-SNR capacity-achieving input
distribution has no mass in a disk around the origin, whose radius can be made arbitrarily large. This
property is necessary to derive the constant term after the logarithmic term in the capacity high-SNR
expansion. In our work, since we focus on the pre-log characterization, we do not rely on this property.
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The remainder of this chapter is organized as follows. The system model and prelim-
inaries are presented in Section 2.2. In Section 2.3, we provide the main result and the
achievability proof. Then, we present the converse proof for the SIMO and MIMO cases in
Section 2.4 and Section 2.5, respectively. Some concluding remarks are given in Section 2.6.
Some detailed proofs are deferred to the appendices.

2.2 System Model and Preliminaries
We consider an M ×N MIMO P2P channel as in Section 1.2.2. The channel between the
transmitter and the receiver is flat and block fading with coherence interval T channel
uses. The distribution of the channel matrix HHH ∈ CN×M is assumed to be known, but its
realizations are unknown to both the transmitter and the receiver. During a coherence
block b, the received signal is

YYY[b] = HHH[b]XXX[b] + ZZZ[b], b = 1, 2, . . . , (2.2)

where ZZZ[b] ∈ CN×T is the AWGN with IID NC(0, 1) entries and XXX[b] is the transmitted
signal satisfying the power constraint

1
ν

ν∑
b=1
‖XXX[b]‖2F ≤ PT, (2.3)

where ν is the number of blocks spanned by a channel codeword. P is identified with the
SNR of the channel. Hereafter, we omit the block index b whenever confusion is not likely.

If the rate R(P ) (in bpcu) is achievable at SNR P , ∀P > 0, i.e., inferior to the channel
capacity, we say that d is an achievable DoF with

d := lim
P→∞

R(P )
log2(P ) . (2.4)

The optimal DoF is the supremum of the achievable DoF over all possible input distribution
satisfying the power constraint. We assume that the channel matrix HHH is drawn from a
generic distribution satisfying the following conditions:

h(HHH) > −∞, E
[
‖HHH‖2F

]
<∞. (2.5)

That is, the channel matrix has finite different entropy and finite second moment.

2.2.1 Mathematical Preliminaries

The following results are useful for our main analysis.

Lemma 2.1. Let AAA ∈ Cm×t have full column rank, WWW ∈ Cn×m be a random matrix such
that h(WWW) > −∞ and E

[
‖WWW‖2F

]
<∞, then we have

h(WWWAAA) = n log det(AAAHAAA) + c0 (2.6)

where c0 is bounded by some constant that only depends on the statistics of WWW.

Proof. The proof is provided in Appendix 2.A.1.

Lemma 2.2. Let u ≥ 0 be some random variable such that E[u] <∞ and h(u/E[u]) > −∞.
Then, for any 0 < α < 1 and β > 0,

E[log(β + u)] ≥ α log(β + E[u]) + c0 (2.7)

where c0 > −∞ is some constant that only depends on α, β, and h(u/E[u]).
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Proof. The proof is provided in Appendix 2.A.2.

From the above result and the upper bound E[log(β+u)]
log(β+E[u]) ≤ 1 (from Jensen’s inequality),

we observe that when E[u]→∞, E[log(β+u)]
log(β+E[u]) ≈ 1 since we can let α be arbitrarily close to 1.

Lemma 2.3. Consider an m× n complex matrix XXX with n ≥ m. Let {λ1, λ2, . . . , λn} be
the eigenvalues of XXXHXXX sorted in decreasing order. For any m′ ≤ m, there exist index sets
sss = {s1, s2, . . . , sm′} ⊂ [n], s1 < · · · < sm′, such that

log det
(
IIIm′ +XXXH

[sss]XXX [sss]
)
−

m′∑
i=1

log(1 + λi) = O(1), (2.8)

whereXXX [sss] :=
[
XXX [s1] XXX [s2] . . .XXX [sm′ ]

]
and O(1) denotes a constant independent of {λ1, . . . , λn}.

Proof. The proof is provided in Appendix 2.A.3.

Hereafter, unless otherwise specified, {σi(MMM)}ni=1 denote n eigenvalues in decreasing
order of a matrix MMM ∈ Cn×n.

Lemma 2.4 (Inclusion Principle [145, Theorem 4.3.28]). Let AAA be an n × n Hermitian
matrix and BBB be an m×m block along the diagonal of AAA.2 Then

σi(AAA) ≥ σi(BBB) ≥ σi+n−m(AAA), i ∈ [m]. (2.9)

Corollary 2.1. Let AAA be an n× n Hermitian matrix and BBB be an m×m block along the
diagonal of AAA. Then

log det(III n +AAA) ≥ log det(IIIm +BBB). (2.10)

2.3 Main Result
The optimal DoF of the noncoherent MIMO generic block fading channel described above
is stated in Theorem 2.1.

Theorem 2.1. For the M ×N noncoherent channel in generic, flat, and block fading with
coherence interval T , if T = 1, the optimal DoF is zero; otherwise, the optimal DoF is
given by

dopt = M∗
(

1− M∗

T

)
with M∗ := min{M,N, bT/2c}. (2.11)

The zero optimal DoF result for T = 1 has been shown in [36] and is included in
Theorem 2.1 for completeness.

Corollary 2.2. In the SIMO/MISO/SISO case (min{M,N} = 1) or the T = 2 case, the
optimal DoF is dopt = 1− 1

T .

Remark 2.1. The DoF in (2.11) was shown to be optimal for the noncoherent IID Rayleigh
block fading channel in [49], [50].3 Theorem 2.1 generalizes this result to generic block
fading.

2BBB is called a principal sub-matrix of AAA—see Definition 2.1 in Appendix 2.A.3.
3The converse proof for the case 1 < T < 2 min{M,N} given in [49, Section IV-D] was, however, based

on some heuristic arguments and not rigorous.
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For T ≥ 2, the optimal DoF is achieved by using only M∗ antennas and a simple
pilot-based scheme: let the transmitter send pilot symbols in the first M∗ channel uses,
then data symbols in the remaining T − M∗ channel uses; the receiver estimates the
channel based on the received pilot symbols and detects coherently the data symbols. In
the following, we present the converse proof, first for the SIMO case, and then for the
general MIMO case.4

2.4 The SIMO (M = 1) case
We first consider the SIMO case with M = 1 and T ≥ 2. The received signal is

YYY = hhh xxxT + ZZZ, (2.12)

where hhh ∈ CN×1 and xxx ∈ CT×1. If the channel is IID Rayleigh fading, i.e., hhh ∼ NC(0, IIIN ),
it was shown that the optimal DoF is 1− 1

T and can be achieved with either a pilot-based
scheme [31] or well-designed space time modulations [49], [50], [53]. For the converse of the
high-SNR capacity (which implies the converse of the DoF), while h(YYY|xxx) can be calculated
easily, the upper bound for h(YYY) is much more involved [49], [50]. In this section, we
provide a simpler proof for the converse of the DoF, which holds for generic fading, using
the duality approach (see Appendix 1.A.4) as in [50] but with a simple choice of auxiliary
output distribution.

First, let us define a random variable v as the index of the strongest input component,
i.e.,5

v := arg max
i∈[T ]
|xi|2. (2.13)

Thus, xv denotes the entry in xxx with the largest magnitude. Let the genie give v to the
receiver,6 we have

I(xxx;YYY) ≤ I(xxx;YYY, v) (2.14)
= I(xxx;YYY|v) + I(xxx; v) (2.15)
≤ h(YYY|v)− h(YYY|xxx, v) +H(v) (2.16)
≤ h(YYY|v)− h(YYY|xxx) + log2(T ), (2.17)

where the last inequality holds because we have the Markov chain v ↔ xxx ↔ YYY and
H(v) ≤ log2(T ). For each given xxx = xxx, we can apply Lemma 2.1 with WWW = [hhh ZZZ] and
AAA = [xxx III T ]T to obtain

h(YYY|xxx) = NE
[
log2 det

(
III T + xxx∗xxxT)]+O(1) (2.18)

= NE
[
log2

(
1 + ‖xxx‖2

)]
+O(1). (2.19)

To bound h(YYY|v), we use the duality approach [36] (see Appendix 1.A.4) as follows

h(YYY|v) = E[− log2 p(YYY|v)]
= E[− log2 q(YYY|v)]− Ev[D(pYYY|v‖qYYY|v)]
≤ E[− log2 q(YYY|v)], (2.20)

4Under the assumption (2.5), we assume w.l.o.g. that E
[
‖hhhk‖2

]
= N for any column hhhk of HHH for

convenience.
5When there are more than one such components, we pick an arbitrary one.
6This technique of giving the index of the strongest input component to the receiver was initially

proposed in [146] for phase noise channel, which is also a type of noncoherent channel.
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due to the nonnegativity of the KL divergence D(pYYY|v‖qYYY|v). Here, conditioned on v, the
distribution pYYY|v with PDF p(·) is imposed by the input, channel, and noise distributions,
while qYYY|v is any distribution in CN×T with the PDF q(.). Note that a proper choice of
qYYY|v is the key to a tight upper bound. Our choice is inspired by a pilot-based scheme.
Specifically, if we send a pilot symbol at channel use v ∈ [T ], then the output vector YYY[v]
being the sum of hhh and ZZZ[v] should have comparable power in each direction since hhh is
generic by assumption. Therefore, it is reasonable (in the DoF sense) to let

YYY[v] ∼ R(N, IIIN ), (2.21)

where the family of distributions R(N,AAA) is defined in Lemma 1.3. Now, YYY[v] should
provide a rough estimate of the direction of the channel vector hhh. Based on such an
observation, it is also reasonable to assume that, given YYY[v], all other YYY[i], i 6= v, are
mutually independent and follow

YYY[i] ∼ R
(
N,
(
IIIN + YYY[v]YYYH

[v]

)− 1
2
)
, ∀i 6= v. (2.22)

We thus obtain a “guess” of the auxiliary joint distribution qYYY|v=v.

Proposition 2.1. With the above choice of auxiliary output distribution, we have the
following bound for E[− log2 q(YYY|v)] and h(YYY|v):

h(YYY|v) ≤ E[− log2 q(YYY|v)] ≤ (N + T − 1)E
[
log2(1 + |xv|2)

]
+NE

 T∑
i=1,i 6=v

log2

(
1 + |xi|2

1 + |xv|2

)+O(log logP ). (2.23)

Proof. The proof is provided in Appendix 2.A.4.

Plugging (2.19) and (2.23) into (2.17), we obtain

I(xxx;YYY) ≤ (T − 1)E
[
log2(1 + |xv|2)

]
+NE

[
log2

1 + |xv|2

1 + ‖xxx‖2

]

+NE

 T∑
i=1,i 6=v

log2

(
1 + |xi|2

1 + |xv|2

)+O(log logP ) (2.24)

≤ (T − 1) log2

(
1 + E

[
|xv|2

])
+O(log logP ) (2.25)

≤ (T − 1) log+
2 P +O(log logP ), (2.26)

where we have applied Jensen’s inequality and the fact that |xi|2 ≤ |xv|2 ≤ ‖xxx‖2, ∀i 6= v.
Thus, the DoF is upper bounded by T−1

T , which is tight.

2.5 The MIMO Case

We now consider the general MIMO case and focus on the setting T ≥ 2 min{M,N} ≥ 2,
i.e., M∗ = min{M,N}. The converse proof for 2 < T < 2 min{M,N} can be found in [119].

Let us fix a value N0 ∈ [min{M,N}]. Let λ1, λ2, . . . , λM be the random eigenvalues of
XXXHXXX sorted in decreasing order. According to Lemma 2.3, for any realization XXX of XXX, there
exist index vectors sss of length N0 with elements in [min{M,N}] such that

log2 det
(
IIIN0 +XXXH

[sss]XXX [sss]
)
−

N0∑
i=1

log2(1 + λi) = O(1). (2.27)
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We define a random vector vvv whose values are drawn uniformly from all the possible sss for
each realization of XXX such that (2.27) holds. We have the Markov chain vvv↔ XXX↔ YYY.

Letting the genie give vvv to the receiver, and using the duality bound as in (2.17) and
(2.20) in Section 2.4, we have

I(XXX;YYY) ≤ E[− log2 q(YYY|vvv)]− h(YYY|XXX) + log2

(
T

N0

)
, (2.28)

where q(.) is the PDF of an auxiliary output distribution qYYY|vvv.

Given vvv, we can always permute the columns of XXX such that XXX[v1],XXX[v2], . . . ,XXX[vN0 ] become
the first to N0-th columns. For notational simplicity, we assume implicitly that XXX (and
hence YYY) is the permuted version. By using Lemma 2.1 with WWW = [HHH ZZZ] and AAA = [XXX III T ]T

for each realization XXX of XXX, the entropy h(YYY|XXX) is given by

h(YYY|XXX) = NE
[
log2 det(III T + XXXHXXX)

]
+O(1). (2.29)

Next, for E[− log2 q(YYY|vvv)], we choose the auxiliary PDF qYYY|vvv such that

YYY[i] ∼ R(N, IIIN ), ∀i ∈ [N0], (2.30)

and given YYY[1:N0], the other columns are independent and follow

YYY[j] ∼ R
(
N, (IIIN + YYY[1:N0]YYYH

[1:N0])−
1
2
)
, j = N0 + 1, . . . , T. (2.31)

As in the SIMO case, this choice is inspired by a pilot-based scheme that transmits pilot
symbols in the first N0 channel uses and data symbols in the remaining T −N0 channel
uses of a coherence block.

From Lemma 1.3 and Jensen’s inequality, we have that

E[− log2 q(YYY|vvv)]

= N
N0∑
i=1

E
[
log2 ‖YYY[i]‖2

]
+N

T∑
i=N0+1

E
[
log2

∥∥∥∥(IIIN + YYY[1:N0]YYYH
[1:N0]

)− 1
2 YYY[i]

∥∥∥∥2
]

+ (T −N0)E
[
log2 det

(
IIIN + YYY[1:N0]YYYH

[1:N0]

)]
+O(log logP ) (2.32)

≤ N
N0∑
i=1

E
[
log2

(
‖XXX[i]‖2 + 1

)]
+N

T∑
i=N0+1

E
[
log2

(
YYYH

[i]
(
IIIN + YYY[1:N0]YYYH

[1:N0]
)−1YYY[i]

)]
+ (T −N0)E

[
log2 det

(
IIIN0 + XXXH

[1:N0]XXX[1:N0]
)]

+O(log logP ). (2.33)

Plugging the bounds into (2.28), we get that

I(XXX;YYY) ≤ N
N0∑
i=1

E
[
log2

(
1 + ‖XXX[i]‖2

)]
+ (T −N0)E

[
log2 det

(
IIIN0 + XXXH

[1:N0]XXX[1:N0]
)]

+N
T∑

i=N0+1
E
[
log2

(
YYYH

[i]
(
IIIN + YYY[1:N0]YYYH

[1:N0]
)−1YYY[i]

)]
−NE

[
log2 det

(
III T + XXXHXXX

)]
+O(log logP ). (2.34)
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Proposition 2.2. With the chosen auxiliary output distribution, the mutual information
I(XXX;YYY) can be bounded as

I(XXX;YYY) ≤ NN0E[log2(1 + λ1)] + (T −N0)
N0∑
i=1

E[log2(1 + λi)]

+N(T −N0)E

min{M,N,N0+1}∑
i=1

log2(1 + λi)−
N0∑
i=1

log2(1 + λi)


−N

M∑
i=1

E[log2(1 + λi)] +O(log logP ), (2.35)

for any N0 ≤ min{M,N}.

Proof. The proof is provided in Appendix 2.A.5.

2.5.1 The Case T = 2,M ≥ 2, N ≥ 2

In this case, λi = 0 for all i > 2. We let N0 = T/2 = 1 in (2.35) and obtain the bound

I(XXX;YYY) ≤ NE[log2(1 + λ1)] + E[log2(1 + λ1)] +NE[log2(1 + λ2)]

−N
2∑
i=1

E[log2(1 + λi)] +O(log logP ) (2.36)

= E[log2(1 + λ1)] +O(log logP ) (2.37)
≤ log2(1 + E[λ1]) +O(log logP ) (2.38)
≤ log+

2 P +O(log logP ) (2.39)

where (2.38) follows from Jensen’s inequality and the last inequality holds because E[λ1] ≤
E
[
‖XXX‖2F

]
≤ PT . Therefore, the optimal DoF is upper bounded by 1/2.

2.5.2 The Case M ≥ N, T ≥ 2N
In this case, we let N0 = N in (2.35) and obtain

I(XXX;YYY) ≤ N2E[log2(1 + λ1)] + (T − 2N)
N∑
i=1

E[log2(1 + λi)] +O(log logP ) (2.40)

≤
(
N2 +N(T − 2N)

)
E[log2(1 + λ1)] +O(log logP ) (2.41)

≤ N(T −N) log2(1 + E[λ1]) +O(log logP ) (2.42)
≤ N(T −N) log+

2 P +O(log logP ), (2.43)

where (2.41) holds because T − 2N ≥ 0 and λi ≤ λ1, ∀i; (2.42) follows from Jensen’s
inequality; and the last inequality holds because E[λ1] ≤ E

[
‖XXX‖2F

]
≤ PT . Therefore, the

optimal DoF is upper bounded by N
(
1− N

T

)
.

2.5.3 The Case M ≤ N, T ≥ 2M

In this case, HHH is a tall matrix and can be written as

HHH =
[

HHH1
HHH2

]
, (2.44)
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where HHH1 ∈ CM×M and HHH2 ∈ C(N−M)×M . Because E
[
‖HHH‖2F

]
<∞, we have that E

[
‖HHH1‖2F

]
<

∞ and E
[
‖HHH2‖2F

]
<∞. Furthermore, since HHH is generic, it is full rank almost surely (since

otherwise, the differential entropy of HHH approaches −∞), and therefore, we may w.l.o.g.
assume that HHH1 is full rank almost surely. Therefore, there exists almost surely a spanning
matrix H̃HH ∈ C(N−M)×M such that

HHH2 = H̃HHHHH1. (2.45)

The matrix H̃HH must satisfy E
[
‖H̃HH‖2F

]
<∞ (because otherwise, E

[
‖HHH2‖2F

]
=∞), and as a

consequence, h(H̃HH) <∞. Then we have that

• h(HHH1 | H̃HH) = h(HHH1, H̃HH)−h(H̃HH) = h(HHH)−h(H̃HH) > −∞ because h(HHH) > −∞ and h(H̃HH) <∞;

• E
[
‖HHH1‖2F

∣∣∣ H̃HH
]
<∞ almost surely because if P

(
H̃HH ∈ H

)
> 0 where

H :=
{

H̃HH ∈ C(N−M)×M : E
[
‖HHH1‖2F

∣∣∣ H̃HH
]

=∞
}

then E
[
‖HHH1‖2F

]
=∞, which is not true.

This implies that conditioned on H̃HH, HHH1 is generic.

The channel output can be expressed as

YYY =
[

YYY1
YYY2

]
=
[

HHH1XXX + ZZZ1
HHH2XXX + ZZZ2

]
, (2.46)

where ZZZ1 and ZZZ2 contain the first M rows and the remaining N −M rows of ZZZ, respectively.
We have that

I(XXX;YYY) = I(XXX;YYY1,YYY2) (2.47)
≤ I(XXX;YYY1,YYY2, H̃HH) (2.48)
= I(XXX;YYY1, H̃HH) + I(XXX;YYY2|YYY1, H̃HH) (2.49)
= I(XXX;YYY1, H̃HH) + h(YYY2|YYY1, H̃HH)− h(YYY2|XXX,YYY1, H̃HH) (2.50)
≤ I(XXX;YYY1|H̃HH) +O(1), (2.51)

where the last inequality follows because

h(YYY2|XXX,YYY1, H̃HH) = h(H̃HH(YYY1 −ZZZ1) + ZZZ2|XXX,YYY1, H̃HH) (2.52)
≥ h(ZZZ2 − H̃HHZZZ1|XXX,YYY1, H̃HH,ZZZ1) (2.53)
= h(ZZZ2) (2.54)
> 0, (2.55)

and

h(YYY2|YYY1, H̃HH) = h(YYY2 − H̃HHYYY1 |YYY1, H̃HH) (2.56)
= EH̃HH

[
h(ZZZ2 − H̃HHZZZ1| YYY1, H̃HH = H̃HH)

]
(2.57)

≤ EH̃HH
[
h(ZZZ2 − H̃HHZZZ1 | H̃HH = H̃HH)

]
(2.58)

= MEH̃HH

[
log2 det

(
IIIM + H̃HHHH̃HH

)]
+O(1) (2.59)

= M
M∑
i=1

E
[
log2

(
1 + σi(H̃HH

HH̃HH)
)]

+O(1) (2.60)

≤M2 log2

(
1 + E

[
‖H̃HH‖2F

])
+O(1) (2.61)

= O(1). (2.62)
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Here, (2.58) holds because removing condition does not reduce entropy ; (2.59) holds
because given H̃HH, ZZZ2 − H̃HHZZZ1 is a Gaussian matrix with M independent columns having the
same covariance matrix IIIN−M + H̃HHH̃HHH; (2.61) holds due to σi(H̃HH

HH̃HH) ≤ ‖H̃HH‖2F and Jensen’s
inequality; and the last equality is because E

[
‖H̃HH‖2F

]
<∞ by assumption.

Following (2.51), we aim to find an upper bound on I(XXX;YYY1|H̃HH). Observe that given H̃HH,
YYY1 is the output of a M ×M generic fading channel (since given H̃HH, HHH1 is generic), which
falls into the case of Section 2.5.2. Thus by the same argument as in Section 2.5.2, we can
show that I(XXX;YYY1|H̃HH) ≤M(T −M) log+

2 P +O(log logP ). Plugging this into (2.51) yields

I(XXX;YYY) ≤M(T −M) log+
2 P +O(log logP ), (2.63)

thus the optimal DoF is upper bounded by M
(
1− M

T

)
.

Summarizing the results in Section 2.5.2 and Section 2.5.3, we conclude that the optimal
DoF of the channel is upper bounded by min{M,N}

(
1− min{M,N}

T

)
if T ≥ 2 min{M,N}.

2.6 Closing Remarks

Table 2.1: The optimal DoF of the noncoherentM×N MIMO P2P channel
in block fading with coherent interval T (the gray-colored cells contain the

results of this chapter)

Assumption T = 1 T ≥ 2

Generic fading
0 [36]

min{M,N, bT/2c}
(
1− min{M,N,bT/2c}

T

)
IID Rayleigh fading min{M,N, bT/2c}

(
1− min{M,N,bT/2c}

T

)
[49], [50]

In this chapter, we study the optimal DoF of the noncoherent MIMO P2P channel with
generic block fading. The findings are summarized, together with the known results, in
Table 2.1. Based on the duality approach, we proposed an upper bound which coincides
with the inner bound achieved by a simple pilot-based scheme. Our results generalize the
optimal DoF of the Rayleigh fading case.

2.A Appendices

2.A.1 Proof of Lemma 2.1

Consider the eigendecomposition AAA = UUUΣΣΣVVV , where UUU ∈ Cm×m and VVV ∈ Ct×t are unitary

matrices, and ΣΣΣ =
[
ΣΣΣ′
0

]
with ΣΣΣ′ ∈ Ct×t a diagonal matrix containing the singular values of

AAA. Let WWW′ = WWWUUU , we have

h(WWWAAA) = h(WWWUUUΣΣΣVVV ) (2.64)
= h(WWW′ΣΣΣ) (2.65)
= h(WWW′[1:t]ΣΣΣ′) (2.66)
= h(WWW′[1:t]) + n log |det(ΣΣΣ′)|2 (2.67)
= h(WWW′[1:t]) + n log det(AAAHAAA), (2.68)
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where the second equality is because rotationing does not change differential entropy and
(2.67) follows from (1.70). It remains to bound h(WWW′[1:t]). Since the average powers of WWW′[1:t]
and WWW′[t+1:m] are bounded by E

[
‖WWW′‖2F

]
= E

[
‖WWW‖2F

]
<∞, we have that

h(WWW′[1:t]) <∞ (2.69)

and h(WWW′[t+1:m]) <∞ by evoking the maximum differential entropy lemma in Appendix 1.A.1.
Furthermore, it follows from h(WWW′[1:t]) + h(WWW′[t+1:m]) ≥ h(WWW′) = h(WWW) > −∞ that

h(WWW′[1:t]) > −∞− h(WWW′[t+1:m]) > −∞. (2.70)

Therefore, h(WWW′[1:t]) is bounded by some constant that only depends on the statistics of WWW.
This concludes the proof.

2.A.2 Proof of Lemma 2.2

If E[u] ≤ β, we have that E[log(β + u)] ≥ log(β) and α log(β + E[u]) ≤ α log(2β), so (2.7)
holds with c0 = log(β)− α log(2β) = (1− α) log β − α log 2.

Let p(·) be the PDF of u. We introduce an auxiliary distribution with density

q(u) =
( 1
α
− 1

)
β

1
α
−1(β + u)−1/α, u ≥ 0, (2.71)

with parameters α < 1, β > 0. Then it follows that h(u) + E[log(q(u))] = −D(p‖q) ≤ 0,
which yields

E[log(β + u)] ≥ αh(u) + α log
( 1
α
− 1

)
+ (1− α) log β. (2.72)

If E[u] > β, we have

h(u) = h

(
E[u] u

E[u]

)
(2.73)

= log(E[u]) + h

( u
E[u]

)
(2.74)

= log(2E[u])− log 2 + h

( u
E[u]

)
(2.75)

> log(β + E[u])− log 2 + h

( u
E[u]

)
, (2.76)

then applying (2.72), (2.7) holds with

c0 = α log
( 1
α
− 1

)
+ (1− α) log β − α log 2 + αh

( u
E[u]

)
> −∞.

2.A.3 Proof of Lemma 2.3

The following results are necessary for our proof.

Definition 2.1 (Principal sub-matrix and principal minor [145, Section 0.7]). Consider a
matrix MMM ∈ Cn×n. For each index set sss = {s1, s2, . . . , st} ⊂ [n], t ≤ n, let MMM [sss,sss] denote
the sub-matrix of MMM obtained by deleting all the rows i /∈ sss and columns j /∈ sss of MMM . Then
MMM [sss,sss] is called a principal sub-matrix of MMM , and det

(
MMM [sss,sss]

)
a principal minor of order t

of MMM .



52 Chapter 2. The MIMO Point-to-Point Channel

Lemma 2.5. Consider a matrix MMM ∈ Cn×n with n eigenvalues λ1, λ2, . . . , λn sorted in
decreasing order. It holds that

∑
1≤i1<···<it≤n

t∏
j=1

λij =
∑

sss⊂[n] : |sss|=t
det(MMM [sss,sss]), ∀t ∈ [n], (2.77)

and

det(III n +MMM) = 1 +
n∑
t=1

∑
sss⊂[n] : |sss|=t

det
(
MMM [sss,sss]

)
. (2.78)

Proof. (2.77) follows from [145, Thm. 1.2.16]. Using (2.77) and the factorization

det(III n +MMM) = (1 + λ1)(1 + λ2) . . . (1 + λn) (2.79)

= 1 +
n∑
t=1

∑
1≤i1<···<it≤n

t∏
j=1

λij , (2.80)

we obtain (2.78).

We prove Lemma 2.3 by construction. Let MMM := XXXHXXX, then MMM [sss,sss] := XXXH
[sss]XXX [sss] is a

principal sub-matrix of MMM . Let sss∗ ⊂ [n] be the index set corresponding to the highest
principal minor of order at most m′, i.e.,

det
(
MMM [sss∗,sss∗]

)
= max

sss⊂[n]:|sss|≤m′
det
(
MMM [sss,sss]

)
. (2.81)

Consider an index set sss† ⊂ [n], |sss†| = m′, such that sss∗ ⊂ sss†. Applying (2.78) in Lemma 2.5
to XXXH

[sss†]XXX [sss†], we obtain

det
(
IIIm′ +XXXH

[sss†]XXX [sss†]
)

= 1 +
m′∑
t=1

∑
sss⊂sss†:|sss|=t

det
(
XXXH

[sss]XXX [sss]
)

(2.82)

and thus

1 + det
(
MMM [sss∗,sss∗]

)
≤ det(IIIm′ +XXXH

[sss†]XXX [sss†]) (2.83)

≤ 1 +
m′∑
t=1

(
m′

t

)
det
(
MMM [sss∗,sss∗]

)
. (2.84)

On the other hand, using (2.77) in Lemma 2.5, we have that

m′∏
i=1

(1 + λi) = 1 +
m′∑
t=1

∑
1≤i1<···<it≤m′

t∏
j=1

λij (2.85)

≤ 1 +
m′∑
t=1

∑
1≤i1<···<it≤n

t∏
j=1

λij (2.86)

= 1 +
m′∑
t=1

∑
sss⊂[n]:|sss|=t

det(MMM [sss,sss]) (2.87)

≤ 1 +
m′∑
t=1

(
n

t

)
det
(
MMM [sss∗,sss∗]

)
, (2.88)
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where (2.86) holds because λi ≥ 0,∀i ∈ [n] (since MMM = XXXHXXX is positive semi-definite). Let
r be the rank of MMM [sss∗,sss∗]. Since MMM [sss∗,sss∗] is a principle sub-matrix of MMM , from the inclusion
principle (Lemma 2.4), we have that the r eigenvalues of MMM [sss∗,sss∗] sorted in decreasing
order are respectively smaller than the corresponding r largest eigenvalues of MMM . Thus
det
(
MMM [sss∗,sss∗]

)
≤
∏r
i=1 λi, which implies that

1 + det
(
MMM [sss∗,sss∗]

)
≤

m′∏
j=1

(1 + λj). (2.89)

Therefore,

1
1 +∑m′

t=1
(n
t

) ≤ 1 + det
(
MMM [sss∗,sss∗]

)
1 +∑m′

t=1
(n
t

)
det
(
MMM [sss∗,sss∗]

) (2.90)

≤
det
(
IIIm′ +XXXH

[sss†]XXX [sss†]
)

∏m′
i=1(1 + λi)

(2.91)

≤
1 +∑m′

t=1
(m′
t

)
det
(
MMM [sss∗,sss∗]

)
1 + det

(
MMM [sss∗,sss∗]

) (2.92)

≤ 1 +
m′∑
t=1

(
m′

t

)
, (2.93)

where (2.91) follows from (2.83) and (2.88); (2.92) from (2.84) and (2.89); (2.90) and (2.93)
are due to 1+ax

1+x ≤ 1 + a for any x > 0, a > 0. Taking the logarithm, this implies (2.8) with
sss = sss†. Thus, we complete the proof.

2.A.4 Proof of Proposition 2.1

Using Lemma 1.3, it follows that

E[− log2 q(YYY|v = v)]

= NE
[
log2 ‖YYY[v]‖2

]
+

T∑
i=1,i 6=v

E
[

log2 det
(
IIIN + YYY[v]YYYH

[v]

)
+N log2

∥∥(IIIN + YYY[v]YYYH
[v]

)− 1
2 YYY[i]

∥∥2]
+O(log logP ) (2.94)

= NE
[
log2 ‖YYY[v]‖2

]
+

T∑
i=1,i 6=v

E
[
log2

(
1 + ‖YYY[v]‖2

)
+N log2

(
‖YYY[i]‖2 −

|YYYH
[i]YYY[v]|2

1 + ‖YYY[v]‖2

)]
+O(log logP ) (2.95)

= (N + T − 1)E
[
log2(1 + ‖YYY[v]‖2)

]
+N

T∑
i=1,i 6=v

E
[

log2(‖YYY[i]‖2 + ‖YYY[i]‖2‖YYY[v]‖2 − |YYYH
[i]YYY[v]|2)− log2(1 + ‖YYY[v]‖2)

]
+O(log logP ), (2.96)

where in the second equality, we used the identities det(III + uuuvvvH) = 1 + vvvHuuu and ‖(III +
uuuuuuH)−1/2xxx‖2 = xxxH(III + uuuuuuH)−1xxx = xxxH

(
III − uuuuuuH

1+uuuHuuu

)
xxx = ‖xxx‖2 − |xxxHuuu|2

1+‖uuu‖2 .



54 Chapter 2. The MIMO Point-to-Point Channel

By expanding YYY[1], . . . ,YYY[T ], we get that, given xxx and for a fixed v ∈ [T ],

Ehhh,ZZZ
[
‖YYY[i]‖2

]
= N(1 + |xi|2), ∀i, (2.97)

Ehhh,ZZZ
[
‖YYY[i]‖2‖YYY[v]‖2 − |YYYH

[i]YYY[v]|2
]

= (N2 −N)(1 + |xv|2 + |xi|2), i 6= v. (2.98)

Then, it follows that

E[− log2 q(YYY|v = v)]

≤ (N + T − 1)E
[
log2(1 +N +N |xv|2)

]
+N

T∑
i=1,i 6=v

E
[
log2

N +N |xi|2 + (N2 −N)(1 + |xv|2 + |xi|2)
1 +N +N |xv|2

]
+O(log logP ) (2.99)

= (N + T − 1)E
[
log2(1 + |xv|2)

]
+N

T∑
i=1,i 6=v

E
[
log2

(
1 + |xi|2

1 + |xv|2

)]
+O(log logP ), (2.100)

where (2.99) is obtained by using Jensen’s inequality and applying Lemma 2.2 (with β = 1
and α arbitrarily close to 1) to ‖YYY[v]‖2. Then, taking expectation of both sides of (2.100)
w.r.t. v, we obtain (2.23).

It remains to show that u := ‖YYY[v]‖2 fulfills the conditions E[u] <∞ and h(u/E[u]) > −∞
for Lemma 2.2. To see this, first, E[u] = N(1 + |xv|2), so it is finite for any fixed input
entry xv = xv. Second, we have that7

h(u/E[u]) = h(u)− log2(E[u]) (2.101)
= h(‖hhhxv + ZZZ[v]‖2)− log2(N(1 + |xv|2)). (2.102)

It follows from [36, Lemma 6.17] that

h(‖www‖2) = h(www)− hλ
( www
‖www‖

∣∣∣‖www‖)− (N − 1)E
[
log2(‖www‖2)

]
+ 1, (2.103)

for a complex random vector www ∈ CN , where hλ(.) is the modified differential entropy
function defined for random unit-norm vector, w.r.t. the area measure on the unit sphere.
Since the unit sphere in CN has finite area 2πN

Γ(N) , we have that

hλ

( www
‖www‖

∣∣∣‖www‖) ≤ log2
2πN
Γ(N) . (2.104)

7In the case of IID Rayleigh fading hhh ∼ CN (0, IIIN ), we can compute explicitly h(u/E[u]) = N+log2
Γ(N)
N
−

(N − 1)ψ(N), where ψ(N) is Euler’s digamma function. It is obvious that h(u/E[u]) <∞.
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Taking www = hhhxv + ZZZ[v] and plugging h(‖www‖2) from (2.103) to (2.102) yields

h(u/E[u])

≥ h(hhhxv + ZZZ[v])− (N − 1)E
[
log2(‖hhhxv + ZZZ[v]‖2)

]
− log2(N(1 + |xv|2))− log2

πN

Γ(N)
(2.105)

≥ max{h(hhhxv), h(ZZZ[v])} − (N − 1) log2

(
E
[
‖hhhxv + ZZZ[v]‖2

])
− log2(N(1 + |xv|2))

− log2
πN

Γ(N) (2.106)

= max{h(hhh) +N log2(|xv|2), N log2(πe)} −N log2(1 + |xv|2)− log2
(Nπ)N
Γ(N) (2.107)

= N log2

(
max{|xv|2eh(hhh)/N , πe}

)
−N log2(1 + |xv|2)− log2

(Nπ)N
Γ(N) (2.108)

≥ N log2(πe)−N log2

(
1 + πe1−h(hhh)/N

)
− log2

NN

Γ(N) (2.109)

> −∞, (2.110)

where the second inequality follows from Jensen’s inequality and

h
(

hhhxv + ZZZ[v]
)
≥ max

{
h
(

hhhxv), h(ZZZ[v]
)}

;

the second-to-last inequality follows by inspecting two cases |xv|2eh(hhh)/N ≥πe and |xv|2eh(hhh)/N <
πe; and the last inequality holds because h(hhh) is finite by assumption.

2.A.5 Proof of Proposition 2.2

We bound each term in the right-hand side of (2.34) as follows. The first term is bounded
using

E
[
log2(1 + ‖XXX[i]‖2)

]
≤ E

[
log2(1 + ‖XXX‖2F)

]
(2.111)

= E

log2

1 +
N0∑
j=1

λj

 (2.112)

≤ E[log2(1 + λ1)] +O(1). (2.113)

For the second term, it follows from (2.27) that

E
[
log2 det

(
IIIN0 + XXXH

[1:N0]XXX[1:N0]
)]

=
N0∑
i=1

E[log2(1 + λi)] +O(1). (2.114)
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The third term is bounded as

E
[
log2

(
YYYH

[i]
(
IIIN + YYY[1:N0]YYYH

[1:N0]
)−1YYY[i]

)]
≤ E

[
log2

(
1 + YYYH

[i]
(
IIIN + YYY[1:N0]YYYH

[1:N0]
)−1YYY[i]

)]
(2.115)

= E
[
log2 det

(
IIIN +

(
IIIN + YYY[1:N0]YYYH

[1:N0]
)−1YYY[i]YYYH

[i]

)]
(2.116)

= E
[
log2 det

((
IIIN + YYY[1:N0]YYYH

[1:N0]
)−1(IIIN + YYY[1:N0]YYYH

[1:N0] + YYY[i]YYYH
[i]
))]

(2.117)

= E
[
log2 det

(
IIIN + [YYY[1:N0] YYY[i]][YYY[1:N0] YYY[i]]H

)]
− E

[
log2 det

(
IIIN + YYY[1:N0]YYYH

[1:N0]

)]
(2.118)

= E
[
log2 det

(
IIIN + HHH[XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]HHHHH

)]
− E

[
log2 det

(
IIIN + HHHXXX[1:N0]XXXH

[1:N0]HHH
H
)]

+O(1) (2.119)

= E
[
log2 det

(
IIIM + [XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]HHHHHHHH

)]
− E

[
log2 det

(
IIIM + XXX[1:N0]XXXH

[1:N0]HHH
HHHH
)]

+O(1), (2.120)

where (2.119) is obtained by applying Lemma 2.6 at the end of this appendix, which says
that an additive Gaussian noise with bounded variance does not affect the pre-log. We
proceed to bound the two expected values in (2.119). For an n× n matrix MMM , we denote
σ1(MMM), σ2(MMM), . . . , σn(MMM) its n eigenvalues sorted in decreasing order. Noting that the
rank of [XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]HHHHHHHH is upper bounded by min{M,N,N0 + 1}, we obtain

E
[
log2 det

(
IIIM + [XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]HHHHHHHH

)]
=

min{M,N,N0+1}∑
i=1

E
[
log2

(
1 + σi([XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]HHHHHHHH)

)]
(2.121)

≤
min{M,N,N0+1}∑

i=1
E
[
log2

(
1 + σi([XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]H)σ1(HHHHHHH)

)]
(2.122)

≤
min{M,N,N0+1}∑

i=1
EXXX
[
log2

(
1 + σi([XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]H)EHHH

[
‖HHH‖2F

])]
(2.123)

=
min{M,N,N0+1}∑

i=1
E
[
log2

(
1 + σi([XXX[1:N0] XXX[i]][XXX[1:N0] XXX[i]]H)

)]
+O(1) (2.124)

≤
min{M,N,N0+1}∑

i=1
E[log2(1 + λi)] +O(1), (2.125)

where (2.122) follows by applying Lemma 2.7 at the end of this appendix; (2.123) is
due to σ1(HHHHHHH) ≤ ‖HHH‖2F and Jensen’s inequality; (2.124) holds because E

[
‖HHH‖2F

]
< ∞

by assumption; and (2.125) is due to the inclusion principle (Lemma 2.4). Consider the

eigendecomposition XXX[1:N0]XXXH
[1:N0] = UUU

[ΣΣΣ 0
0 0

]
UUUH where ΣΣΣ is an N0 ×N0 diagonal matrix,
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we have that

log2 det
(
IIIM + XXX[1:N0]XXXH

[1:N0]HHH
HHHH
)

= log2 det
(

IIIM + UUU
[ΣΣΣ 0
0 0

]
UUUHHHHHHHH

)
(2.126)

= log2 det
(

IIIM +
[ΣΣΣ 0
0 0

]
H̃HHHH̃HH

)
(2.127)

≥ log2 det
(
IIIN0 + ΣΣΣH̄HHHH̄HH

)
(2.128)

=
N0∑
i=1

log2

(
1 + σi

(
ΣΣΣH̄HHHH̄HH

))
(2.129)

≥
N0∑
i=1

log2

(
1 + σi(XXX[1:N0]XXXH

[1:N0])σN0

(
H̄HHHH̄HH

))
, (2.130)

where in (2.127), H̃HH := HHHUUU is also a generic fading matrix; (2.128) follows from Corollary 2.1
with H̄HH containing the first N0 columns of H̃HH; (2.130) is obtained by applying Lemma 2.7
and the fact that ΣΣΣ contains N0 largest eigenvalues of XXX[1:N0]XXXH

[1:N0]. Since H̃HH is generic,
H̄HHHH̄HH is full rank almost surely, thus σN0

(
H̄HHHH̄HH

)
≥ c0 > 0 almost surely. Therefore, taking

the expectation, we have that

E
[
log2 det

(
IIIM + XXX[1:N0]XXXH

[1:N0]HHH
HHHH
)]

≥
N0∑
i=1

E
[
log2

(
1 + σi

(
XXX[1:N0]XXXH

[1:N0]
))]

+O(1) (2.131)

= E
[
log2 det

(
IIIN0 + XXXH

[1:N0]XXX[1:N0]
)]

+O(1) (2.132)

=
N0∑
i=1

E[log2(1 + λi)] +O(1), (2.133)

where the last equality follows from (2.27). Plugging (2.125) and (2.133) into (2.118), we
have an upper bound on the third term in the right-hand side of (2.34).

The fourth term in the right-hand side of (2.34) is expanded using det
(
III T + XXXHXXX

)
=∏M

i=1(1 + λi).

Finally, substituting the bound/expansion of each term in the right-hand side of (2.34),
we obtain (2.35).

Lemma 2.6. Consider an m × n random matrix GGG = ĜGG + G̃GG where G̃GG has IID NC(0, 1)
entries independent of ĜGG. It holds that

EG̃GG
[
log det

(
IIIm + GGGGGGH)] = log det

(
IIIm + ĜGGĜGGH

)
+ o(logP ). (2.134)

Proof. Following the footsteps of [147, Lemma 1], we can show that

EG̃GG
[
log det

(
IIIm + GGGGGGH)] =

τ∑
i=1

log
(
1 + σi

(
ĜGGĜGGH))+ o(logP ), (2.135)

where τ ≤ rank
(
ĜGG
)
is the number of eigenvalues of ĜGGĜGGH that do not vanish with P , i.e.,

σi(ĜGGĜGGH) = o(1) when P →∞, ∀i > τ . It follows that

EG̃GG
[
log det

(
IIIm + GGGGGGH)] =

rank(ĜGG)∑
i=1

log(1 + σi(ĜGGĜGGH)) + o(logP ) (2.136)
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since the remaining rank
(
ĜGG
)
− τ eigenvalues do not contribute more than o(logP ) to the

expectation. This implies (2.134).

Lemma 2.7. If AAA and BBB are n× n Hermitian positive semidefinite matrices, then

σi(AAA)σn(BBB) ≤ σi(AAABBB) ≤ σi(AAA)σ1(BBB), i ∈ [n]. (2.137)

Proof. The result follows immediately by applying [148, Theorem 3] and [148, Theorem 4]
with k = 1 therein.
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Chapter 3

The Two-User SIMO Multiple-Access
Channel

The optimal DoF region of the non-coherent block-fading MAC is still unknown in general.
In this chapter, we make some progress by deriving the entire optimal DoF region in the
case of the two-user SIMO MAC in generic block fading. The achievability is based on a
simple pilot-based scheme. The novelty of our result lies in the converse using a genie-aided
bound and the duality upper bound.

3.1 Overview

For the non-coherent MAC, the sum capacity has been studied in [84]–[87]. The capac-
ity/DoF region is not known, and only some achievable DoF regions achieving the optimal
sum DoF in IID Rayleigh block fading have been proposed [37], [88].

In this chapter, we make some progress for the non-coherent SIMO MAC. Specifically,
we derive the optimal DoF region in the case of two single-antenna transmitters (users)
and a N -antenna receiver in generic block fading channel with coherence interval T . When
N = 1, the region is achieved with a simple time division multiplexing (TDM) between two
users. In this case, letting two users cooperate does not help exploit more DoF and it is
optimal to activate only one user at a time to achieve 1− 1

T DoF for that user. When N > 1,
a pilot-based scheme can achieve another DoF pair. We let two users send orthogonal
pilots for channel estimation in 2 of the channel uses, and send data simultaneously in the
remaining T − 2 channel uses. In this way, each user achieves 1− 2

T DoF.

The main technical contribution of this chapter lies in the converse proof. Leveraging
the duality upper bound [36], we carefully choose an output distribution with which we
derive a tight outer bound on the DoF region. This is a generalization of our converse
proof technique for the single-user SIMO case in Chapter 2. Unlike previous results such
as [37], [84], [85], [87], [88], we do not assume Gaussianity of the channel coefficients, which
makes our proof more general.

The remainder of this chapter is organized as follows. The system model and prelim-
inaries are presented in Section 3.2. In Section 3.3, we provide the main result on the
optimal DoF region of the two-user MAC, as well as the proof for the case N = 1 and the
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achievability for the case N > 1. We show the tight outer bound for the case N > 1 in
Section 3.4. Finally, we conclude the chapter in Section 3.5.

3.2 System Model and Preliminaries
We consider a SIMO MAC in which two single-antenna users send their signals to a receiver
with N antennas. The channel between the users and the receiver is flat and block fading
with equal-length and synchronous coherence interval (across users) of T channel uses.
That is, the channel vector hhhk ∈ CN×1, k = 1, 2, remains unchanged during each block of
length T and changes independently between blocks. The realizations of hhh1 and hhh2 are
unknown to both the users and the receiver. The received signal during the coherence
block b is

YYY[b] = hhh1[b]xxxT
1[b] + hhh2[b]xxxT

2[b] + ZZZ[b], b = 1, 2, . . . , (3.1)

where xxx1[b] ∈ CT and xxx2[b] ∈ CT are the transmitted signals from user 1 and user 2,
respectively, with the power constraint

1
νk

νk∑
b=1

∥∥xxxk[b]∥∥2 ≤ PT, k = 1, 2, (3.2)

where νk is the number of blocks spanned by a channel codeword of user k, k ∈ [K], and
ZZZ[b] ∈ CN×T is the AWGN with IID NC(0, 1) entries. The parameter P is the SNR of the
channel. In the remainder of the chapter, we omit the block index b whenever confusion is
unlikely.

Since the channel is block memoryless, it is well known that a rate pair (R1(P ), R2(P ))
in bpcu is achievable at SNR P , i.e., lies within the capacity region CAvg(P ), for the MAC
if and only if 

R1 ≤ 1
T
I(xxx1;YYY |xxx2), (3.3a)

R2 ≤ 1
T
I(xxx2;YYY |xxx1), (3.3b)

R1 +R2 ≤ 1
T
I(xxx1,xxx2;YYY), (3.3c)

for some input distribution subject to the average power constraint P (as the channel
codeword length goes to infinity) [22]. Then, we say that (d1, d2) is an achievable DoF pair
with

dk := lim
P→∞

Rk(P )
log2(P ) , k = 1, 2. (3.4)

The optimal DoF region DAvg is defined as the set of all achievable DoF pairs.

We assume that the channel vectors hhh1 and hhh2 are independent and drawn from a generic
distribution satisfying the following conditions:1

h(hhhk) > −∞, E
[
‖hhhk‖2

]
<∞, k = 1, 2. (3.5)

If the support of the input distribution is further bounded such that

‖xxxk‖2 ≤ P, k = 1, 2, (3.6)
1Under the assumption (3.5), we assume w.l.o.g. that E

[
‖hhhk‖2

]
= N, k = 1, 2, for convenience.
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then we say that the input satisfies the peak power constraint P . In this case, the capacity
region and DoF region are denoted CPeak(P ) and DPeak, respectively. Since the peak power
constraint implies the average power constraint, we have that

CPeak(P ) ⊆ CAvg(P ), DPeak(P ) ⊆ DAvg(P ). (3.7)

Lemma 3.1. For any rate pair (R1, R2) achievable under the average power constraint P ,
for any β > 1, there exists (R′1, R′2) achievable under the peak power constraint P β, such
that

Rk −R′k = O(P 1−β logP β), k = 1, 2. (3.8)

In short, with a slight abuse of notation,

CAvg(P ) ⊆ CPeak(P β) +O(P 1−β logP β), ∀β > 1. (3.9)

Proof. The proof is provided in Appendix 3.A.1

Since the pre-log of the gap P 1−β logP β is vanishing at high SNR for any β > 1, we
have the DoF region

DAvg(P ) ⊆ DPeak(P β) ⊆ DAvg(P β), ∀β > 1. (3.10)

Letting β arbitrarily close to 1, we conclude from (3.7) and (3.10) that using the peak
power constraint instead of the average power constraint does not change the optimal DoF
region. We therefore consider throughout this chapter the peak power constraint, which
can simplify considerably the analysis.

3.3 Main Result
The main finding of this chapter is the optimal DoF region of the MAC described above,
as stated in Theorem 3.1.

Theorem 3.1. For the non-coherent MAC with two single-antenna transmitters and an
N -antenna receiver in generic flat and block fading with coherence interval T , the optimal
DoF region is characterized by

d1 + d2 ≤ 1− 1
T
, (3.11)

if T ≤ 2 or N = 1, and 
d1

T − 2 + d2 ≤ 1− 1
T
, (3.12a)

d1 + d2
T − 2 ≤ 1− 1

T
, (3.12b)

otherwise.

Remark 3.1. When T →∞, the optimal DoF region approaches the region in the coherent
case given by {

d1 + d2 ≤ 1, if N = 1,
max{d1, d2} ≤ 1, if N > 1,

(3.13)

as shown in Fig. 3.1.
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Figure 3.1: The optimal DoF region of the two-user SIMO MAC with N receive antennas in
generic block fading with coherence interval T .

The case T = 1 (stationary fading) is trivial: zero DoF is achievable, even if two users
cooperate [36].

If T = 2 or N = 1, the optimal DoF region is achieved with TDM between the users,
noting that the active user can achieve 1 − 1

T DoF by either a pilot-based scheme [31]
or USTM [49], [53]. The tight outer bound follows by letting two users cooperate, then
according to Theorem 2.1 in Chapter 2, the optimal total DoF is 1− 1

T .

When T ≥ 3, N > 1, the region is the convex hull of the origin and three points:(
1− 1

T , 0
)
,
(
0, 1− 1

T

)
, and

(
1− 2

T , 1−
2
T

)
. The first two points are achieved by activating

only one user. The third point is achieved with a pilot-based scheme: let two users send
orthogonal pilots in the two arbitrary channel uses for the receiver to learn their channel,
and send data in the remaining T − 2 channel uses. The region is then achieved with
time sharing between these points. Another achievable scheme using a geometric approach
can be found in [88]. There, motivated by the geometric structure of the problem, the
transmitted signals xxx1 and xxx2 are drawn uniformly from quotient spaces of specified unitary
groups.

It remains to show the tight outer bound for the case T ≥ 3, N > 1. To this end, we
use the duality approach as done for the single-user case in Section 2.4. The details are
presented in the next section.

3.4 The Converse for the Case T ≥ 3, N > 1

We are going to show that, when T ≥ 3, N > 1, any achievable DoF pair (d1, d2) must
satisfy (3.12a) and (3.12b).

3.4.1 The Case T ≥ N + 1 > 2
Let us first consider the more straightforward case with T ≥ N + 1 > 2. We first bound
R1 and R2 using similar techniques as for the single-user case in Section 2.4, and then give
the tight outer bound for the DoF region in the following steps.
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Step 1: Output Rotation and Genie-Aided Bound

Given xxx2, the channel w.r.t. input xxx1 has equivalent noise hhh2xxxT
2 + ZZZ. Consider the following

eigendecomposition

xxx∗2xxxT
2 = UUU diag(0, . . . , 0, ‖xxx2‖2) UUUH, (3.14)

for some T × T unitary matrix UUU. We consider the rotated output ỸYY = YYYUUU = hhh1x̃xxT
1 + Z̃ZZ,

where x̃xxT
1 = xxxT

1UUU = [x̃11 x̃12 . . . x̃1T ] and Z̃ZZ = (hhh2xxxT
2 + ZZZ)UUU. Note that given xxx2, the first

T − 1 columns of the noise Z̃ZZ are IID Gaussian whereas the last column is stronger as the
sum of hhh2‖xxx2‖ and a Gaussian noise vector. Thus, from (3.3a) and the fact that unitary
rotation does not change the mutual information, we have that

TR1 ≤ I(xxx1;YYY|xxx2) = I(x̃xx1; ỸYY|xxx2), (3.15)

for any achievable rate R1 of user 1. Let us define the random variable v as the index of
the strongest among the first T − 1 elements of x̃xx1, namely,

v = arg max
i∈[T−1]

|x̃1i|2. (3.16)

Let a genie give v to the receiver. With the genie-aided bound, we have that

I(x̃xx1; ỸYY|xxx2) ≤ I(x̃xx1; ỸYY, v|xxx2) (3.17)
= I(x̃xx1; ỸYY|xxx2, v) + I(x̃xx1; v|xxx2) (3.18)
≤ h(ỸYY|xxx2, v)− h(ỸYY|x̃xx1,xxx2, v) +H(v) (3.19)
≤ h(ỸYY|xxx2, v)− h(ỸYY|x̃xx1,xxx2) + log2(T − 1). (3.20)

where the last inequality is because we have the Markov chain v ↔ (x̃xx1,xxx2) ↔ ỸYY and
H(v) ≤ log2(T − 1).

Step 2: Bounding h(ỸYY|x̃xx1,xxx2) and h(ỸYY|xxx2, v)

Given any realizations x̃xx1 of x̃xx1 and xxx2 of xxx2, we can apply Lemma 2.1 with WWW = [hhh1 hhh2 ZZZ]
and AAA = [x̃xx1 xxx2 III T ]TUUU to obtain

h(ỸYY|x̃xx1,xxx2) = NE[log2 det(AAAHAAA)] +O(1) (3.21)

= NE
[

log2

(
(1 + ‖xxx2‖2)

(
1 +

T−1∑
i=1
|x̃1i|2

)
+ |x̃1T |2

)]
+O(1), (3.22)

where the last equality is obtained by applying x̃xxT
1 = xxxT

1UUU.

For h(ỸYY|xxx2, v), we use the duality upper bound

h(ỸYY|xxx2, v) = E
[
− log2 p(ỸYY|xxx2, v)

]
(3.23)

= E
[
− log2 q(ỸYY|xxx2, v)

]
− Ev[D(pỸYY|xxx2,v‖qỸYY|xxx2,v)] (3.24)

≤ E
[
− log2 q(ỸYY|xxx2, v)

]
, (3.25)

where the only difference from the single-user case in Section 2.4 is the presence of
xxx2. Inspired by a pilot-based scheme with pilot transmission in channel use v and data
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transmission in all other channel uses, we choose the auxiliary distribution qỸYY|xxx2,v=v as
follows. Given v = v, v ≤ T − 1, we let

ỸYY[v] ∼ R(N, IIIN ) (3.26)

where the family of distributions R(N,AAA) was defined in Lemma 1.3 in Chapter 2, and
given ỸYY[v], the other ỸYY[i]’s are independent and follow

ỸYY[i] ∼ R
(
N,
(
IIIN + ỸYY[v]ỸYY

H
[v]

)− 1
2
)
, i 6∈ {v, T}, (3.27)

ỸYY[T ] ∼ R
(
N,
(
(1 + ‖xxx2‖2)IIIN + ỸYY[v]ỸYY

H
[v]

)− 1
2
)
. (3.28)

Proposition 3.1. With the above choice of auxiliary output distributions, we obtain the
following upper bound for E

[
− log2 q(ỸYY|xxx2, v)

]
, and hence for h(ỸYY|xxx2, v):

E
[
− log2 q(ỸYY|xxx2, v)

]
≤ (N + T − 2)E

[
log2(1 + |x̃1v|2)

]
+NE

 T−1∑
i=1,i 6=V

log2

(
1 + |x̃1i|2

1 + |x̃1v|2

)
+NE

[
log2(1 + ‖xxx2‖2)

]
+ E

[
log2

(
1 + |x̃1v|2

1 + ‖xxx2‖2

)]

+NE
[
log2

(
1 + |x̃1T |2

1 + ‖xxx2‖2 + |x̃1v|2

)]
+O(log logP ). (3.29)

Proof. The proof is provided in Appendix 3.A.2.

Step 3: Upper Bounds on R1 and R2

From (3.15), (3.20), (3.22) and (3.29), we have the bound for R1

TR1 ≤ E[f(x̃xx1,xxx2)] +O(log logP ), (3.30)

where

f(x̃xx1,xxx2) := (N + T − 2) log2

(
1 + max

i∈[T−1]
|x̃1i|2

)
+ log2

1 +
max
i∈[T−1]

|x̃1i|2

1 + ‖xxx2‖2


+N log2

1 + |x̃1T |2

1 + ‖xxx2‖2 + max
i∈[T−1]

|x̃1i|2

−N log2

(
1 +

T−1∑
i=1
|x̃1i|2 + |x̃1T |2

1 + ‖xxx2‖2

)
. (3.31)

Following the exact same steps by swapping the users’ role, we get that

TR2 ≤ E[f(x̃xx2,xxx1)] +O(log logP ), (3.32)

where x̃xx2 := xxx2UUU1 with UUU1 obtained from the decomposition

xxx∗1xxxT
1 = UUU1 diag(0, . . . , 0, ‖xxx1‖2) UUUH

1. (3.33)
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It follows that, for any λ1, λ2 ≥ 0, we have the following upper bound on the weighted
sum rate

λ1R1 + λ2R2 ≤
1
T
E[λ1f(x̃xx1,xxx2) + λ2f(x̃xx2,xxx1)] +O(log logP ) (3.34)

≤ 1
T

sup
xxx1,xxx2

[λ1f(x̃xx1,xxx2) + λ2f(x̃xx2,xxx1)] +O(log logP ), (3.35)

where the supremum is over all xxx1,xxx2 subject to the peak power constraints ‖xxx1‖2 ≤ P
and ‖xxx2‖2 ≤ P .

Step 4: DoF Upper Bounds

Since we are only interested in the pre-log at high SNR, it is without loss of optimality to
let ‖xxx1‖2 = Θ(P η1), ‖xxx2‖2 = Θ(P η2) for some η1, η2 ≤ 1. In addition, we assume that

max
i∈[T−1]

|x̃1i|2 = Θ(P η̄1), |x̃1T |2 = Θ(P η1T ), (3.36)

max
i∈[T−1]

|x̃2i|2 = Θ(P η̄2), |x̃2T |2 = Θ(P η2T ). (3.37)

Hence, at high SNR, η1 = max{η̄1, η1T }, η2 = max{η̄2, η2T }. From (3.31) and (3.35), we
have the weighted sum DoF bound

λ1d1 + λ2d2 ≤ λ1
N + T − 2

T
η̄1 + λ1

1
T

(η̄1 − η2)+

+ λ1
N

T
(η1T −max{η̄1, η2})+ − λ1

N

T
max{η̄1, η1T − η2}

+ λ2
N + T − 2

T
η̄2 + λ2

1
T

(η̄2 − η1)+

+ λ2
N

T
(η2T −max{η̄2, η1})+ − λ2

N

T
max{η̄2, η2T − η1}, (3.38)

subject to the constraints η̄1, η1T ≤ 1 and η̄2, η2T ≤ 1. Taking (λ1, λ2) as
(
1, 1

T−2

)
or(

1
T−2 , 1

)
, we can verify that, when 3 ≤ N + 1 ≤ T , (3.12a) and (3.12b) hold for all (d1, d2)

satisfying (3.38). Thus the optimal DoF region is characterized for this case.

3.4.2 The Case 3 ≤ T ≤ N

When T ≤ N , the above choice of auxiliary output distribution is not sufficient for a tight
DoF outer bound. To see this, let us take (λ1, λ2) =

(
1, 1

T−2

)
, then if η̄1 + η2 ≥ η1T = 1

and η2 = η̄1, (3.38) becomes

d1 + d2
T − 2 ≤

T − 1
T

η̄1 + N

T
(η1T − η̄1), (3.39)

which is loose since the right-hand side is larger than 1− 1
T whenever N ≥ T . Generally,

the bound (3.38) can be loose when η1T > max{η̄1, η2} or η2T > max{η̄2, η1}. To account
for such scenarios, we ought to refine our choice of auxiliary output distribution for the
duality upper bound. First, given xxx2, we define a pair of random variables (v, u) as

v := arg max
i∈[T ]

|x̃1i|2

σ2
i

, (3.40)
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where σ2
i = 1,∀i < T and σ2

T = 1 + ‖xxx2‖2, and

u :=

 1, if |x̃1T |2 ≥ max
{

max
i∈[T−1]

|x̃1i|2, 1 + ‖xxx2‖2
}
,

0, otherwise.
(3.41)

Thus, x̃1v is the input entry with the largest instantaneous SNR, and u determines a specific
configuration of input entry powers in which the choice of auxiliary output distribution in
the previous case possibly fails. Then similarly as for the case T ≥ N + 1, with output
rotation, genie-aided bound, and duality upper bound, we have that

TR1 ≤ I(x̃xx1; ỸYY|xxx2) (3.42)

≤ E
[
− log2 q(ỸYY|xxx2, v, u)

]
− h(ỸYY|x̃xx1,xxx2) + log2(T ) + 1, (3.43)

where h(ỸYY|x̃xx1,xxx2) was calculated in (3.22). For E
[
− log2 q(ỸYY|xxx2, v, u)

]
, we choose the

auxiliary PDF q(ỸYY|xxx2, v, u) as follows. Given v = v and u = u, we consider two scenarios:

• If v = T or {v < T, u = 0}, we let ỸYY[v] ∼ R(N, IIIN ) and conditioned on ỸYY[v], the
other ỸYY[i]’s are independent and follow

ỸYY[i] ∼ R
(
N,

(
σ2
i IIIN +

ỸYY[v]ỸYY
H
[v]

σ2
v

)− 1
2
)
, i 6= v. (3.44)

This choice is inspired by a pilot-based scheme in which the input symbol with
strongest SNR is used as pilot. After some manipulations similar as for Proposition 3.1,
we get the bounds

E
[
− log2 q(ỸYY|xxx2, v = v < T, u = 0)

]
≤ (N + T − 2)E

[
log2(1 + |x̃1v|2)

]
+NE

[
log2(1 + ‖xxx2‖2)

]
+ E

[
log2

(
1 + |x̃1v|2

1 + ‖xxx2‖2

)]
+O(log logP ), (3.45)

and

E
[
− log2 q(ỸYY|xxx2, v = T )

]
≤ NE

[
log2(1 + ‖xxx2‖2 + |x̃1T |2)

]
+ (T − 1)E

[
log2

(
1 + |x̃1T |2

1 + ‖xxx2‖2

)]
+O(log logP ).

(3.46)

• If {v < T, u = 1}, we let ỸYY[v] ∼ R(N, IIIN ) and conditioned on ỸYY[v], the other ỸYY[i]’s
are independent with

ỸYY[i] ∼ R
(
N,
(
IIIN + ỸYY[v]ỸYY

H
[v]

)− 1
2
)
, i 6∈ {v, T}, (3.47)

ỸYY[T ] ∼ R

N,((1 + ‖xxx2‖2)IIIN + P

‖ỸYY[v]‖2
ỸYY[v]ỸYY

H
[v]

)− 1
2
, (3.48)

where the only difference from (3.44) is the presence of the factor P
‖ỸYY[v]‖2

. This factor
is added to account for the fact that if u = 1, then |x̃1v|2 < |x̃1T |2, which can make
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the power of ỸYY[v] inferior to that of ỸYY[T ]. In this case, after some manipulations
similar as for Proposition 3.1, we have the bound

E
[
− log q(ỸYY|xxx2, v = v < T, u = 1)

]
≤ (N + T − 2)E

[
log(1 + |x̃1v|2)

]
+NE

[
log 1 + ‖xxx2‖2 + |x̃1T |2

1 + ‖xxx2‖2 + P

]

+NE
[
log(1 + ‖xxx2‖2)

]
+ E

[
log
(

1 + P

1 + ‖xxx2‖2
)]

+O(log logP ). (3.49)

The bounds (3.45), (3.46), and (3.49), together with (3.22), give us the upper bound
on R1 as

TR1 ≤ E[g(x̃xx1,xxx2)] +O(log logP ), (3.50)

where

g(x̃xx1,xxx2) :=

(T − 2) log2

(
1 + max

i∈[T−1]
|x̃1i|2

)
+ log2

1 +
max
i∈[T−1]

|x̃1i|2

1+‖xxx2‖2

,
if |x̃1T |2

1+‖xxx2‖2 < max
i∈[T−1]

|x̃1i|2 and |x̃1T |2 ≤ max
{

max
i∈[T−1]

|x̃1i|2, 1 + ‖xxx2‖2
}
,

(T−2) log2

(
1 + max

i∈[T−1]
|x̃1i|2

)
+N log2

(
1 + ‖xxx2‖2 + |x̃1T |2

1 + ‖xxx2‖2 + P

)
+ log2

(
1+ P

1 + ‖xxx2‖2

)
,

if |x̃1T |2
1+‖xxx2‖2 < max

i∈[T−1]
|x̃1i|2 and |x̃1T |2 > max

{
max
i∈[T−1]

|x̃1i|2, 1 + ‖xxx2‖2
}
,

(T − 1) log2

(
1 + |x̃1T |2

1+‖xxx2‖2
)
,

if |x̃1T |2
1+‖xxx2‖2 > max

i∈[T−1]
|x̃1i|2,

(3.51)

and the similar bound for R2

TR2 ≤ E[g(x̃xx2,xxx1)] +O(log logP ). (3.52)

The rest of the proof follows from a similar weighted sum bound for the rates and the DoFs
as done in the previous case.

3.5 Closing Remarks
In this chapter, we have proposed a new tight outer bound on the DoF region of the
two-user non-coherent SIMO MAC with generic block fading. The outer bound region
coincides with the inner bound region achieved by a simple pilot-based scheme. The
resulting optimal DoF region is given in Table 3.1, together with existing results on the
DoF/capacity limits of the non-coherent MAC.

3.A Appendices

3.A.1 Proof of Lemma 3.1

We prove the lemma by construction. Consider a rate pair (R1, R2) achievable with some
input PDF pxxx1(.) and pxxx2(.) satisfying the average power constraints P . Let us define a
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Table 3.1: The DoF/capacity region of the non-coherent MAC in block
fading with coherence interval T and N receive antennas (the gray-colored

cell contains the result of this chapter)

Assumption Two users K users

Generic
fading:
optimal
DoF region

SIMO
MAC


d1 + d2 ≤ 1− 1

T ,

if T ≤ 2 or N = 1
d1
T−2 +d2 ≤ 1− 1

T , d1+ d2
T−2 ≤ 1− 1

T ,

otherwise
Unknown

MIMO
MAC

Unknown

IID
Rayleigh
fading

DoF re-
gion

Achievability: (1.52) [88] Achievability: (1.53) [37]
Outer bound: (1.54) [37]

Sum ca-
pacity MAC [85] and MIMO MAC [87]

• Block fading: bounds on the sum capacity for the SIMO
users equals capacity with 1 user [84]
• Fast fading: sum capacity of the SIMO MAC with K > 1

IID Rician fast fading Fading number for the sum capacity of the MISO MAC: [86]

new input xxxk with domain {xxx ∈ CT , ‖xxx‖2 ≤ P β} and PDF

pxxxk(xxx) =


pxxxk (xxx)

P(‖xxxk‖2≤Pβ) , if ‖xxx‖2 ≤ P β,
0, if ‖xxx‖2 > P β,

(3.53)

for k = 1, 2, with β > 1. Then the inputs xxx1 and xxx2 satisfy the peak power constraint P β.
We define a random variable v as

v =


0, if ‖xxx1‖2 ≤ P β and ‖xxx2‖2 ≤ P β ,
1, if ‖xxx1‖2 ≤ P β and ‖xxx2‖2 > P β,

2, if ‖xxx1‖2 > P β.

(3.54)

Then, {xxxk | v = 0} ∼ pxxxk . By Markov’s inequality,

P(‖xxxk‖2 > P β) ≤ E
[
‖xxxk‖2

]
P β

≤ TP 1−β, k = 1, 2, (3.55)

then

P(v = 1) = P(‖xxx1‖2 ≤ P β)P(‖xxx2‖2 > P β) ≤ P(‖xxx2‖2 > P β) ≤ TP 1−β, (3.56)
P(v = 2) = P(‖xxx1‖2 > P β) ≤ TP 1−β. (3.57)

Assume that a genie gives v to the receiver:

TR1 ≤ I(xxx1;YYY|xxx2) (3.58)
≤ I(xxx1;YYY, v|xxx2) (3.59)
= I(xxx1;YYY|xxx2, v) + I(xxx1; v|xxx2) (3.60)
≤ P(v = 0)I(xxx1;YYY|xxx2, v = 0) + P(v = 1)I(xxx1;YYY|xxx2, v = 1)

+ P(v = 2)I(xxx1;YYY|xxx2, v = 2) + log2 3, (3.61)
≤ I(xxx1;YYY|xxx2) + P(v=1)I(xxx1;YYY|xxx2, v = 1) + P(v=2)I(xxx1;YYY|xxx2, v = 2) + log2 3,

(3.62)
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where (3.61) is due to I(xxx1; v|xxx2) ≤ H(v) ≤ log2(3) bits, and the last inequality is because
given v = 0, xxxk is identically distributed to xxxk, k = 1, 2. Next, since removing noise and
giving CSI increase the rate, for v ∈ {1, 2},

P(v = v)I(xxx1;YYY |xxx2, v = v)
= P(v = v)I(xxx1;HHH1xxxT

1 + HHH2xxxT
2 + ZZZ |xxx2, v = v) (3.63)

≤ P(v = v)I(xxx1;HHH1xxxT
1 + ZZZ |HHH1, v = v) (3.64)

≤ NP(v = v) log2

(
1 + E

[
‖xxx1‖2|v = v

])
. (3.65)

With v = 1, ‖xxx1‖2 ≤ P β, thus

P(v = 1) log2

(
1 + E

[
‖xxx1‖2

∣∣∣v = 1
])
≤ TP 1−β log2(1 + P β) (3.66)

= O(P 1−β logP β). (3.67)

With v = 2, ‖xxx1‖2 > P β, we have that

E
[
‖xxx1‖2

∣∣∣v = 2
]

=
∫ ∞
Pβ

x
p‖xxx1‖2(x)

P(‖xxx1‖2 > P β) dx (3.68)

≤
∫∞
0 xp‖xxx1‖2(x)dx
P(‖xxx1‖2 > P β) (3.69)

≤ P

P(‖xxx1‖2 > P β) . (3.70)

Thus,

P(v = 2) log2

(
1 + E

[
‖xxx1‖2

∣∣∣v = 2
])
≤ P(‖xxx1‖2 > P β) log2

(
1 + P

P(‖xxx1‖2 > P β)

)
(3.71)

≤ TP 1−β log2

(
1 + P

TP 1−β

)
(3.72)

= O(P 1−β logP β), (3.73)

where the second inequality is because the function x log2(1 + 1/x) is monotonically
increasing in x for x ≥ 0 and 0 ≤ P(‖xxx1‖2 > P β) ≤ TP 1−β. Plugging (3.67) and (3.73)
into (3.65), then (3.65) into (3.62) yields

TR1 ≤ I(xxx1;YYY|xxx2) +O(P 1−β logP β). (3.74)

Following the same steps by swapping the users’ roles, we get the bound for R2

TR2 ≤ I(xxx2;YYY|xxx1) +O(P 1−β logP β). (3.75)

Using similar techniques, we can also show that

T (R1 +R2) ≤ I(xxx1,xxx2;YYY) +O(P 1−β logP β). (3.76)

Therefore, there exists (R′1, R′2) satisfying

R′1 ≤ 1
T
I(xxx1;YYY |xxx2), (3.77a)

R′2 ≤ 1
T
I(xxx2;YYY |xxx1), (3.77b)

R′1 +R′2 ≤ 1
T
I(xxx1,xxx2;YYY), (3.77c)

i.e., achievable with the constructed inputs xxx1 and xxx2 satisfying the peak power constraint
P β, such that (3.8) holds. This concludes the proof.
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3.A.2 Proof of Proposition 3.1

We obtain from Lemma 1.3 that

E
[
− log(q(ỸYY|xxx2, v = v)

]
= NE

[
log ‖ỸYY[v]‖2

]
+

T−1∑
i=1,i 6=v

E
[

log det
(
IIIN + ỸYY[v]ỸYY

H
[v]

)
+N log

∥∥∥∥(IIIN + ỸYY[v]ỸYY
H
[v]

)− 1
2 ỸYY[i]

∥∥∥∥2]

+ E
[

log det
(
(1 + ‖xxx2‖2)IIIN + ỸYY[v]ỸYY

H
[v]

)
+N log

∥∥∥((1 + ‖xxx2‖2)IIIN + ỸYY[v]ỸYY
H
[v]

)− 1
2 ỸYY[T ]

∥∥∥2]
+O(log logP ) (3.78)

≤ NE
[
log(1 + |x̃1v|2)

]
+

T∑
i=1,i 6=v

Bi +O(log logP ), (3.79)

where

Bi := E

log
(
1 + ‖ỸYY[v]‖2

)
+N log

(
‖ỸYY[i]‖2 −

|ỸYYH
[i]ỸYY[v]|2

1 + ‖ỸYY[v]‖2

), i /∈ {v, T}, (3.80)

BT := E
[
log

(
(1 + ‖xxx2‖2)N

(
1 +

‖ỸYY[v]‖2

1 + ‖xxx2‖2

))

+N log
(

1
1 + ‖xxx2‖2

(
‖ỸYY[T ]‖2 −

|ỸYYH
[T ]ỸYY[v]|2

1 + ‖xxx2‖2 + ‖ỸYY[v]‖2

)). (3.81)

By expanding ỸYY[1], . . . , ỸYY[T ], we get that, given xxx1 and xxx2,

EHHH1,ZZZ
[
‖ỸYY[v]‖2‖ỸYY[i]‖2 − |ỸYY

H
[i]ỸYY[v]|2

]
= (N2 −N)

(
1 + |x̃1v|2 + |x̃1i|2

)
, i /∈ {v, T}, (3.82)

EHHH1,ZZZ
[
‖ỸYY[v]‖2‖ỸYY[T ]‖2 − |ỸYY

H
[T ]ỸYY[v]|2

]
= (N2 −N)

(
(1 + ‖xxx2‖2)(1 + |x̃1v|2) + |x̃1T |2

)
≤ (N2 −N)(1 + ‖xxx2‖2)(1 + |x̃1v|2 + |x̃1T |2). (3.83)

Then, applying repeatedly Lemma 2.2 (with β = 1 and α arbitrarily close to 1) and Jensen’s
inequality, we get that

Bi = E
[
−(N − 1) log

(
1 + ‖ỸYY[v]‖2

)]
+NE

[
log
(
‖ỸYY[i]‖2 + ‖ỸYY[i]‖2‖ỸYY[v]‖2 − |ỸYY

H
[i]ỸYY[v]|2

)]
≤ E

[
−(N − 1) log

(
1 +N +N |x̃1v|2

)]
(3.84)

+NE
[
log
(
N2(1 + |x̃1i|2) + (N2 −N)|x̃1v|2

)]
+O(1) (3.85)

= E
[
log
(
1 + |x̃1v|2

)]
+NE

[
log
(

1 + |x̃1i|2

1 + |x̃1v|2

)]
+O(1), (3.86)
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for i /∈ {v, T}. Similarly, by applying repeatedly Lemma 2.2 (with β = 1 + ‖xxx2‖2 and α
arbitrarily close to 1) and Jensen’s inequality,

BT = NE
[
log
(
1 + ‖xxx2‖2

)]
+ E

[
log
(

1 + ‖ỸYYv‖2
1 + ‖xxx2‖2

)]

+NE

log

‖ỸYY[T ]‖2 +
‖ỸYY[v]‖2‖ỸYY[T ]‖2 − |ỸYY

H
[T ]ỸYY[v]|2

1 + ‖xxx2‖2


−NE

[
log
(
1 + ‖xxx2‖2 + ‖ỸYYv‖2

)]
(3.87)

≤ NE
[
log
(
1 + ‖xxx2‖2

)]
+ E

[
log
(

1 + N +N |x̃1v|2

1 + ‖xxx2‖2

)]
+NE

[
log
(
N(1 + ‖xxx2‖2) + (N2 −N)(1 + |x̃1v|2) +N2|x̃1T |2

)]
−NE

[
log
(
1 + ‖xxx2‖2 +N +N |x̃1v|2

)]
+O(1) (3.88)

= NE
[
log
(
1 + ‖xxx2‖2

)]
+ E

[
log
(

1 + |x̃1v|2

1 + ‖xxx2‖2

)]

+NE
[
log
(

1 + |x̃1T |2

1 + ‖xxx2‖2 + |x̃1v|2

)]
+O(1) (3.89)

Note that we have applied Lemma 2.2 with u = ‖YYY[v]‖2 in (3.85) and u = ‖ỸYY[v]‖2 in (3.88).
The conditions E[u] <∞ and h(u/E[u]) > −∞ can be verified as done in Appendix 2.A.4.

Plugging (3.85) and (3.89) into (3.79) then taking expectation over v, we obtain (3.29),
which concludes the proof.
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Chapter 4

The Spatially Correlated MIMO
Broadcast Channel

In a MIMO BC, the difference in spatial transmit correlation matrices of different users is
called transmit correlation diversity. This diversity was conceived for channels in which
transmit correlation matrices have mutually exclusive eigenspaces, allowing noninterfering
pilot and data transmission. This chapter broadens the scope of transmit correlation
diversity in a noncoherent MIMO BC to the case of partially overlapping eigenspaces and
introduces techniques to harvest these generalized gains. For the two-user case, we derive
achievable DoF regions and achievable rate regions. We then extend the DoF results to the
K-user case by analyzing the interference graph that characterizes the overlapping structure
of the correlation eigenspaces. Our achievability results employ a combination of product
superposition in the common part of the eigenspaces, and pre-beamforming (rate splitting)
to create multiple data streams in nonoverlapping parts of the correlation eigenspaces.

4.1 Overview

In [37], Fadel and Nosratinia found the optimal DoF region for the noncoherent block-
fading BC under the assumption that the channel components are IID, which can be
achieved by TDMA. In practice, however, the channels between different antennas are
often correlated. The correlation arises from the propagation environment causing the
received signal gains to be larger in some spatial directions, and also from the spatially
dependent patterns of the antennas. The interest in spatial correlation was sharpened by
its experimental validation [149], [150], and more recently by the increasing attention to
higher frequencies [151] and larger number of antennas [152].

The effect of spatial correlation on the capacity of MIMO links has been a subject of
long-standing interest. Shiu et al. proposed an abstract “one-ring” model to determine the
spatial fading correlation and studied its effect on the MIMO capacity [153]. In single-user
channels with CSIR but no CSIT, channel correlation can boost power but may reduce
the DoF [154], [155], thus it can be detrimental at high signal-to-noise ratio (SNR) but a
boon at low SNR. Tulino et al. characterized analytically the capacity of correlated MIMO
channels under a general correlation model in the large antenna array regime in [156].
In [157], Chang et al. showed that channel rank deficiency due to spatial correlation lowers
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the diversity-multiplexing tradeoff curves from that of uncorrelated channels. Capacity
bounds subject to channel estimation errors in correlated fading were characterized in [158],
[159].

Under the assumption that all users experience identical correlation, Al-Naffouri et al.
showed that correlation is detrimental to the sum rate scaling of the MIMO BC achieved with
various transmission schemes, including the dirty paper coding [160]. However, in practice,
the users may have different correlation matrices because they are not co-located [161],
making it difficult to draw conclusions based on [160]. The sum-rate capacity under
user-specific transmit correlations with CSIR was studied in [162], [163]. Furthermore,
at higher frequencies or with a large number of antennas, when spatial correlation is
unavoidable, comparing capacity against a hypothetically uncorrelated channel may have
limited operational impact. Instead, a more relevant question in that case could be: how
to maximize performance in the presence of spatial correlation? A useful tool for that
purpose is transmit correlation diversity, i.e., leveraging the difference between the spatial
correlation observed by different users in the system.

Transmit correlation diversity was originally conceived for transmit spatial correlation
matrices that have mutually exclusive eigenspaces. Under this condition, a JSDM trans-
mission scheme was proposed [113], [114] that reduces the overhead needed for channel
estimation. For multi-user networks with orthogonal eigenspace correlation matrices,
Adhikary and Caire showed that transmit correlation helps in multi-cell network by parti-
tioning the user spaces into clusters [164]. It was also concluded that transmit correlation
benefits the sum rate in the downlink performance of a heterogeneous cellular network
(HetNet) where both macro and small cells share the same spectrum [165]. Non-overlapping
transmit correlation eigenspaces have also been exploited in a two-tier system where a
large number of small cells are deployed under a macro cell [166].

One might ask: how often do nonoverlapping correlation eigenspaces naturally occur?
Certainly in some scenarios, e.g., severely rank-deficient MIMO links, the occurrence of
such link characteristics may be commonplace. However, in many other scenarios, transmit
correlation matrices may be different but have overlapping eigenspaces, and a natural
motivation exists to explore and understand transmit correlation diversity in this more
general setting. This chapter significantly broadens the conditions under which correlation
diversity can be exploited, and proposes new techniques to harvest these gains. We focus
on the noncoherent case, i.e., neither CSIT nor CSIR.

The main contributions of this chapter are summarized as follows.

1. We derive an achievable DoF region for the two-user noncoherent BC in spatially
correlated block fading (Theorem 4.1). This region is significantly larger than the
TDMA region, especially when the rank r0 of the overlap between two correlation
eigenspaces is large (see Fig. 4.1).

2. Also for the two-user BC, we propose an achievable rate region with rate splitting
(pre-beamforming) for arbitrary input distribution satisfying the average power
constraint (Theorem 4.3). We characterize this rate region with an explicit input
distribution based on orthogonal pilots and Gaussian data symbols (Theorem 4.4).
We also derive the rate achieved with product superposition (Theorem 4.5) and a
hybrid version of pre-beamforming and product superposition (Theorem 4.6). As a
by-product, we find the rate achieved with pilot-based schemes for the P2P channel
(Theorem 4.2), which generalizes of the results in [31] to correlated fading.
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3. We derive achievable DoF regions for the K-user BC in spatially correlated fading
with symmetrically partially overlapping eigenspaces (Theorems 4.7, 4.8) and general
correlation structure (Theorem 4.9).

For the achievability results above, we employ rate splitting, product superposition, and a
combination of them, thus showing that these transmission techniques are suitable tools to
harvest the gain of transmit correlation diversity with partially overlapping eigenspaces.
We note that most of our results do not require the fading to be Rayleigh, but rather hold
for generic fading.

The remainder of the chapter is organized as follows. First, the system model is
introduced in Section 4.2. Then, Section 4.3 and Section 4.4 present respectively the
achievable DoF and rate region analysis for the two-user case. Section 4.5 presents the
achievable DoF region analysis for the K-user case. Finally, Section 4.6 concludes the
chapter.

4.2 System Model
We consider a MIMO BC in which a transmitter equipped with M antennas transmitting
to K receivers (users), where user k is equipped with Nk antennas, k ∈ [K]. The
channel between the transmitter and user k is flat and block fading with equal-length and
synchronous coherence interval (across the users) of T channel uses. That is, the channel
propagation matrix HHHk ∈ CNk×M , k ∈ [K], remains constant during each block of length T
symbols and changes independently between blocks. Let the matrix XXX[b] ∈ CM×T be the
transmitted signal from the M antennas during a coherence block b. The received signal
matrix at user k is

YYYk[b] = HHHk[b]XXX[b] + ZZZk[b], k ∈ [K], b = 1, 2, . . . , (4.1)

where ZZZk[b] ∈ CNk×T is the AWGN with IID NC(0, 1) entries. The input is subject to the
power constraint

1
ν

ν∑
b=1
‖XXX[b]‖2F ≤ PT, (4.2)

where ν is the number of blocks spanned by a channel codeword. Therefore, P is the SNR
of the channel. Hereafter, we omit the block index b whenever confusion is not likely.

Channel Spatial Correlation

We assume that the channel is spatially correlated according to the Kronecker model (a.k.a.
separable model), and focus on the transmit-side correlation. Thus the channel matrices
are expressed as

HHHk = H̆HHkRRR
1
2
k , k ∈ [K], (4.3)

where RRRk = 1
Nk

E
[
HHHH
kHHHk

]
∈ CM×M , tr(RRRk) = M , is the transmit correlation matrix of user

k with rank rk, and H̆HHk ∈ CNk×M is drawn from a generic distribution satisfying the
conditions

h(H̆HHk) > −∞, E
[
H̆HHH
kH̆HHk

]
= NkIIIM , k ∈ [K]. (4.4)
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Since the correlation matrices might be rank-deficient, H̆HHk is not necessarily a minimal
representation of the randomness in HHHk. The correlation eigenspace of user k is revealed
via an eigendecomposition of the correlation matrix:

RRRk = UUUkΣΣΣkUUU
H
k (4.5)

where ΣΣΣk is a rk × rk diagonal matrix containing rk nonzero eigenvalues of RRRk, and UUUk
is an M × rk matrix whose orthonormal unit column vectors are the eigenvectors of RRRk
corresponding to the nonzero eigenvalues. The rows of HHHk belong to the rk-dimensional
subspace Span(UUUk) of RRRk, also called as the eigenspace of user k. The channel expression
(4.3) can be expanded as

HHHk = H̆HHkUUUkΣΣΣ
1
2
kUUU

H
k = GGGkΣΣΣ

1
2
kUUU

H
k, (4.6)

where GGGk := H̆HHkUUUk is equivalently drawn from a generic distribution satisfying h(GGGk) > −∞,
E
[
GGGH
kGGGk

]
= NkIII rk , k ∈ [K].

The eigenspaces Span(UUUk) have a prominent role in transmit correlation diversity. For
example, methods such as JSDM [113], [114] are critically dependent on finding groups
of users whose eigenspaces have no intersection. In contrast, in this chapter, we propose
transmission schemes that take advantage of both common and private parts of the
eigenspaces. To this end, in several instances, we build an equivalent channel H̄HHk that
resides in a subspace of the eigenspace Span(UUUk) via the linear transformation

H̄HHk = HHHkVVV k, (4.7)

for some truncated unitary matrix VVV k ∈ CM×sk , sk ≤ rk, such that Span(VVV k) ⊂ Span(UUUk).
Unlike UUUk, k ∈ [K], that characterize the correlation eigenspaces of the links, the subspaces
Span(VVV k) also depend on the proposed transmission schemes and may be customized
throughout the chapter.

Channel Information Availability

We assume throughout the chapter that the distribution of HHHk, in particular the second-
order statistic RRRk (and thus ΣΣΣk and UUUk), is known to both the transmitter and user k.
This is reasonable because RRRk represents long-term behavior of the channel that is stable
and can be easily tracked. On the other hand, the realization of HHHk is not known a priori
at any node. User k might attempt to estimate HHHk with the help of known pilot symbols
inserted in XXX.

Achievable Rate and DoF

Assuming K independent messages are communicated (no common message), and the
corresponding rate tuple (R1(P ), . . . , RK(P )) is achievable at SNR P , ∀P ≥ 0, i.e., lie within
the capacity region of the channel, then we define an achievable DoF tuple (d1, . . . , dK) as

dk := lim
P→∞

Rk(P )
log2 P

, k ∈ [K]. (4.8)

The set of achievable rate (resp., DoF) tuples defines an achievable rate (resp., DoF) region
of the channel.

Throughout the chapter, whenever we mention a BC (e.g., in a theorem/proposition),
we refer to the noncoherent spatially correlated block-fading BC described in this section,
unless otherwise specified. Hereafter, we assume that T ≥ 2 max(rk, Nk) and denote for
convenience that N∗k := min(Nk, rk), k ∈ [K].
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4.3 Two-User Broadcast Channel: DoF Analysis
In this section, the DoF performance of the two-user noncoherent BC is presented. If the
two eigenspaces are fully overlapping, i.e., the eigenspace of one user is a subspace of the
other user’s, a DoF pair achievable with product superposition for the BC was proposed
in [76] as follows.

Proposition 4.1 ([76, Theorem 4]). For the two-user BC, when the eigenspace of user 2
is a subspace of user 1’s (implying r2 ≤ r1 ≤M), the DoF pair

(
N∗1
(
1− r1

T

)
, N∗2

r1−r2
T

)
is

achievable.

The DoF pair in Proposition 4.1 is achieved with product superposition [115]. The main
idea is to embed information to one user in the pilot for the other user. The details are
given in the following to be self-contained.

Proof of Proposition 4.1. There exist transmit eigendirections VVV 1 ∈ CM×(r1−r2) and VVV 0 ∈
CM×r2 that are aligned with the noncommon and common parts, respectively, of the two
channel eigenspaces such that

Span(VVV 0) = Span(UUU2), (4.9)
Span(VVV 1) = Span(UUU1) ∩ Span(UUU2)⊥. (4.10)

Define VVV := [VVV 0 VVV 1]. Let the transmitter send the signal XXX = VVVXXX2XXX1 during a coherence

block, with XXX1 = [III r1 SSS1] ∈ Cr1×T and XXX2 =
[
III r2 SSS2
0 III r1−r2

]
∈ Cr1×r1 , where SSS1 ∈ Cr1×(T−r1)

contains symbols for user 1 and SSS2 ∈ Cr2×(r1−s0) contains symbols for user 2. The received
signal at user 1 is

YYY1 = HHH1VVVXXX2XXX1 + ZZZ1 = HHH1VVVXXX2[III r1 SSS1] + ZZZ1. (4.11)

User 1 estimates the equivalent channel HHH1VVVXXX2 and then decodes SSS1, achieving N∗1 (T − r1)
DoF. The received signal at user 2 during the first r1 channel uses is

YYY2[1:r1] = HHH2VVV

[
III r2 SSS2
0 III r1−r2

]
III r1 + ZZZ2[1:r1] = HHH2VVV 0[III r2 SSS2] + ZZZ2[1:r1], (4.12)

where we used the fact that HHH2VVV 1 = 0 due to (4.10). User 2 estimates the equivalent
channel HHH2VVV 0, and then decodes SSS2, achieving N∗2 (r1− r2) DoF. Therefore, the normalized
DoF pair

(
N∗1
(
1− r1

T

)
, N∗2

r1−r2
T

)
is achievable.

In the following, we exploit both rate splitting and product superpositions to generalize
Proposition 4.1 to a more general setting of partially overlapping eigenspaces.

Theorem 4.1. For the two-user noncoherent BC and rank(Span(UUU1) ∩ Span(UUU2)) =:
r0 ≥ 0, the DoF pairs

(
N∗1
(
1− N∗1

T

)
, 0
)
and

(
0, N∗2

(
1− N∗2

T

))
are achievable. Furthermore,

for any integers (s1, s2, s0) such that 0 ≤ s1 ≤ r1 − r0, 0 ≤ s2 ≤ r2 − r0, and 0 ≤ s0 ≤ r0,
the DoF pairs

D1 =
(

min(s0, N1)s2
T
,min(s2 + s0, N2)

(
1− s2 + s0

T

))
, (4.13)

D2 =
(

min(s1 + s0, N1)
(
1− s1 + s0

T

)
,min(s0, N2)s1

T

)
(4.14)
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are achievable. On top of that, if s1 ≥ s2, the DoF pairs

D3 =
(

min(s1 + s0, N1)
(
1− s1 + s0

T

)
,

min(s2, N2)s1 − s2
T

+ min(s2, (N2 − s0)+)
(
1− s1 + s0

T

))
, (4.15)

D4 =
(

min(s1, (N1 − s0)+)
(
1− s1 + s0

T

)
,

min(s2, N2)s1 − s2
T

+ min(s2 + s0, N2)
(
1− s1 + s0

T

))
, (4.16)

D5 =
(

min(s1 + s0, N1)
(
1− s1 + s0

T

)
,

min(s2 + s0, N2)s1 − s2
T

+ min(s2, N2)
(
1− s1 + s0

T

))
(4.17)

are achievable; if s1 ≤ s2, the DoF pairs

D3 =
(

min(s1, N1)s2 − s1
T

+ min(s1, (N1 − s0)+)
(
1− s2 + s0

T

)
,

min(s2 + s0, N2)
(
1− s2 + s0

T

))
, (4.18)

D4 =
(

min(s1, N1)s2 − s1
T

+ min(s1 + s0, N1)
(
1− s2 + s0

T

)
,

min(s2, (N2 − s0)+)
(
1− s2 + s0

T

))
, (4.19)

D5 =
(

min(s1 + s0, N1)s2 − s1
T

+ min(s1, N1)
(
1− s2 + s0

T

)
,

min(s2 + s0, N2)
(
1− s2 + s0

T

))
(4.20)

are achievable. The convex hull of these DoF pairs (over all feasible values of s1, s2, and
s0) and the origin (0, 0) is an achievable DoF region for the BC.

Theorem 4.1 coincides with Proposition 4.1 when r0 = r2.

Remark 4.1. The parameters s1, s2, s0 represent the allocation of available dimensions
to encoding of messages for the two users. By tuning these parameters, we explore the
trade-off between the number of data dimensions (indicating the amount of channel uses
needed for pilot transmission) and the amount of channel uses for data transmission within
each section of the eigenspaces.

Proof of Theorem 4.1. The DoF pairs
(
N∗1

(
1− N∗1

T

)
, 0
)
and

(
0, N∗2

(
1− N∗2

T

))
are achieved

by activating only one user according to [117, Theorem 1].

For any nonnegative integers s1, s2, s0 satisfying s0 ≤ r0, s1 ≤ r1 − r0 and s2 ≤ r2 − r0,
there exist eigendirections VVV 0 ∈ CM×s0 ,VVV 1 ∈ CM×s1 ,VVV 2 ∈ CM×s2 that are aligned with a
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part of the common and noncommon sections of the two channel eigenspaces such that1

Span(VVV 0) ⊂
(

Span(UUU1) ∩ Span(UUU2)
)
, (4.21)

Span(VVV 1) ⊂
(

Span(UUU1) ∩ Span(UUU2)⊥
)
, (4.22)

Span(VVV 2) ⊂
(

Span(UUU2) ∩ Span(UUU1)⊥
)
. (4.23)

To achieve D1, the transmitter employs product superposition and transmits

XXX = [VVV 0 VVV 1]XXX2XXX1, (4.24)

with XXX1 = [III s1+s0 SSS1] and XXX2 =
[
III s0 SSS2
0 III s1

]
, where SSS1 ∈ C(s1+s0)×(T−s1−s0) and SSS2 ∈ Cs0×s1

contain symbols for user 1 and user 2, respectively. Following steps similar to the proof of
Proposition 4.1, it can be shown that this achieves the DoF pair D1. The DoF pair D2 can
be achieved similarly by switching the users’ roles.

When s1 ≥ s2, the pairs D3 and D4 are achieved with rate splitting as follows. Let the
transmitter send

XXX = [VVV 0 VVV 1 VVV 2]

 III s0 [0s0×s1 SSS0]
0s1×s0 [III s1 SSS1]
0s2×s0 [III s2 SSS2]

, (4.25)

where SSS0 ∈ Cs0×(T−s1−s0) is a common signal to both users while SSS1 ∈ Cs1×(T−s1−s0) and
SSS2 ∈ Cs2×(T−s2−s0) are private signals to user 1 and user 2, respectively. The received
signal at user 1 is

YYY1 = HHH1[VVV 0 VVV 1 VVV 2]XXX + ZZZ1

= HHH1[VVV 0 VVV 1]
[
III s0 0 SSS0
0 III s1 SSS1

]
+ ZZZ1.

(4.26)

User 1 estimates the equivalent channel HHH1[VVV 0 VVV 1] during the first s1 + s0 channel uses
and decodes both SSS1 and SSS0 during the remaining T − s1 − s0 channel uses, achieving
min(s1 + s0, N1)T−s1−s0T DoF. The received signal at user 2 is

YYY2 = HHH2[VVV 0 VVV 1 VVV 2]XXX + ZZZ2

= HHH2[VVV 0 VVV 2]
[
III s0 0 [0s0×(s1−s2) SSS0]
0 III s2 SSS2

]
+ ZZZ2.

(4.27)

User 2 estimates the equivalent channel HHH2[VVV 0 VVV 2] and then decodes SSS0 and SSS2, achieving
min(s2, N2) s1−s2T + min(s2 + s0, N2)T−s1−s0T DoF. By dedicating SSS0 to only user 1 or user 2,
we can achieve the DoF pairs D3 and D4, respectively.

To achieve D5 (still assuming s1 ≥ s2), we employ a hybrid version of rate splitting and
product superposition, referred to as hybrid superposition, as follows. The transmitted
signal is constructed as

XXX = [VVV 0 VVV 1]XXX′2XXX1 + VVV 2XXX2, (4.28)
1VVV 0 can be calculated from UUU1 and UUU2 using, e.g., the Zassenhaus algorithm [167]. Specifically, this

algorithm uses elementary row operations to transform the (r1 + r2) × 2M matrix
[
UUUT

1 UUUT
1

UUUT
2 0r2×M

]
(or[

UUUT
2 UUUT

2
UUUT

1 0r1×M

]
) to the row echelon form

[
VVV T

0 ∗∗∗
0 VVV T

0
0 0

]
, where ∗∗∗ stands for a matrix which is not of interest.

VVV 1 and VVV 2 can be found similarly by applying the Zassenhaus algorithm to UUU1 and null(UUU2), and null(UUU1)
and UUU2, respectively, where null(UUUk) is the matrix such that [UUUk null(UUUk)] is unitary.
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with XXX2 = [0s0×s0 III s2 SSS2], XXX1 = [III s1+s0 SSS1], and XXX′2 =
[

III s0 [0s0×s2 SSS′2]
0s1×s0 III s1

]
, where

SSS1 ∈ C(s1+s0)×(T−s1−s0) contains symbols intended for user 1 while SSS ∈ Cs2×(T−s2−s0) and
SSS′2 ∈ Cs0×(s1−s2) contain symbols intended for user 2. The received signal at user 1 is

YYY1 = HHH1[VVV 0 VVV 1]XXX′2XXX1 + ZZZ1

= HHH1[VVV 0 VVV 1]XXX′2[III s1+s0 SSS1] + ZZZ1.
(4.29)

User 1 estimates the equivalent channel HHH1[VVV 0 VVV 1]XXX′2, and then decodes SSS1 to achieve
min(s0 + s1, N1)T−s0−s1T DoF. The received signal at user 2 is

YYY2 = HHH2[VVV 0 VVV 1 VVV 2]XXX + ZZZ2

= HHH2[VVV 0 VVV 2]
[

III s0 0s2×s2 [SSS′2 A]
0s0×s0 III s2 SSS2

]
+ ZZZ2,

(4.30)

where A := [III s0 0s0×s2 SSS′2]SSS1. user 2 estimates its equivalent channel HHH2[VVV 0 VVV 2] in the
first s2 + s0 channel uses, and then decodes SSS′2 and SSS2, achieving min(s2 + s0, N2) s1−s2T +
min(s2, N2)T−s1−s0T DoF in total. Therefore, D5 is achieved.

The proof for the case where s1 ≥ s2 is completed. A similar analysis applies to the
case s2 ≥ s1 and completes the proof of Theorem 4.1.

In Fig. 4.1, the achievable DoF region in Theorem 4.1 is shown for the scenario where
T = 24, N1 = 12, N2 = 12, (r1, r2) ∈ {(12, 10), (12, 12)}, and r0 ∈ {0, 3, 6, 9}. We see
that exploiting the channel correlation improves significantly the DoF region upon TDMA
(which is optimal for uncorrelated Rayleigh fading), especially for small r0.
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Figure 4.1: The achievable DoF region for the two-user BC achieved with TDMA or the
proposed scheme (Theorem 4.1) for T = 24, N1 = 12, N2 = 12, (r1, r2) ∈ {(12, 10), (12, 12)}, and
r0 ∈ {0, 3, 6, 9}.

4.4 Two-User Broadcast Channel: Rate Analysis
In this section, we analyze the achievable rate region of the two-user BC in finite SNR
regime. Following are some preliminaries and known results that are useful for our analysis.
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Lemma 4.1 (Worst case uncorrelated additive noise [31]). Consider the P2P channel

yyy =
√
P

M
HHHxxx + zzz, (4.31)

where the channel HHH ∈ CN×M is known to the receiver, and the signal xxx ∈ CM×1 and the
noise zzz ∈ CN×1 satisfy the power constraints 1

ME
[
‖xxx‖2

]
= 1 and 1

NE
[
‖zzz‖2

]
= 1, are both

complex Gaussian distributed, and are uncorrelated, i.e, E[xxxzzzH] = 0. Let RRRxxx := E[xxxxxxH] and
RRRzzz := E[zzzzzzH]. Then the mutual information I(yyy;xxx |HHH) is lower bounded as

I(yyy;xxx |HHH) ≥ E
[
log2 det

(
IIIN + P

M
RRR−1

zzz HHHRRRxxxHHHH
)]
,

∀ RRRxxx : tr(RRRxxx) = M , ∀ RRRzzz : tr(RRRzzz) = N (4.32)

≥ min
RRRzzz,tr(RRRzzz)=N

E
[
log2 det

(
IIIN + P

M
RRR−1

zzz HHHRRRxxxHHHH
)]
, ∀ RRRxxx : tr(RRRxxx) = M. (4.33)

If the distribution of HHH is left rotationally invariant, i.e., p(ΘΘΘHHH) = p(HHH) for any deterministic
N ×N unitary matrix ΘΘΘ, then the minimizing noise covariance matrix in (4.33) is RRRzzz,opt =
IIIN .

Proof. The proof follows from the proof of [31, Theorem 1].2 Specifically, the mutual
information lower bound (4.32) was stated in [31, Eq.(27)]. To show that RRRzzz,opt = IIIN ,
we diagonalize RRRzzz using the left rotational invariance of HHH, and then use the convexity of
E
[
log2 det

(
IIIN + P

MRRR
−1
zzz HHHRRRxxxHHHH

)]
in the diagonalized RRRzzz.

The next lemma gives the MMSE estimator used for pilot-based channel estimation.

Lemma 4.2 (MMSE estimator). Consider the following linear model

YYY = HHHXXX + ZZZ, (4.34)

where HHH ∈ CN×M has correlation matrix RRR = 1
NE

[
HHHHHHH

]
, XXX ∈ CM×M is known, and

ZZZ ∈ CN×M has IID NC(0, 1) entries. The linear MMSE estimator for HHH is given by

ĤHH = YYY(XXXHRRRXXX + IIIM )−1
XXXHRRR. (4.35)

The MMSE estimate ĤHH is also the conditional mean: ĤHH = E[HHH |XXX,YYY]. The estimate ĤHH and
the estimation error H̃HH = HHH− ĤHH are uncorrelated, have zero mean and row covariance

1
N

E
[
ĤHHHĤHH

]
= RRRXXX(XXXHRRRXXX + IIIM )−1

XXXHRRR, (4.36)
1
N

E
[
H̃HHHH̃HH

]
= RRR−RRRXXX(XXXHRRRXXX + IIIM )−1

XXXHRRR. (4.37)

Proof. The linear MMSE channel estimator is given by ĤHH = YYYAAA where AAA is the minimizer
of the mean square error (MSE)

1
N

E
[
‖HHH− ĤHH‖2F

]
= tr(RRR)− tr(RRRXXXAAA)− tr(AAAHXXXHRRR) + tr(AAAH(XXXHRRRXXX + IIIM )AAA). (4.38)

Solving ∂
∂AAA

1
NE

[
‖HHH− ĤHH‖2F

]
= 0 yields the optimal AAAopt = (XXXHRRRXXX + IIIM )−1

XXXHRRR. Some
further simple manipulations give (4.36) and (4.37).

In the following, we consider partially overlapping eigenspaces and rk ≤ Nk, k ∈ {1, 2}.
In addition, we assume w.l.o.g. that r1 ≥ r2.

2The argument that the worst case uncorrelated additive noise is Gaussian distributed can also be found
in [32].
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4.4.1 The Single-User Case

Let us first consider the single-user case and, for simplicity, drop the user’s index. The
received signal is

YYY = HHHXXX + ZZZ, (4.39)

where the assumptions for the transmitted signal XXX, the Gaussian noise ZZZ, and the channel HHH
are as before. In particular, HHH is block fading with coherence interval T and has correlation
matrix RRR = UUUΣΣΣUUUH, thus can be written as HHH = GGGΣΣΣ 1

2UUUH with GGG ∈ CN×r drawn from a
generic distribution. The following theorem states the achievable rate in bpcu for this
channel.

Theorem 4.2. For the single-user spatially correlated channel,

1. if the transmitter does not exploit RRR, the following rate is achievable with a pilot-based
scheme

R =
(

1− M

T

)
E

log2 det

IIIN + PδPτ

Pδtr
(
(ΣΣΣ−1 + PτIII r)−1

)
+M

ĤHHĤHHH

, (4.40)

for some power factors Pτ and Pδ satisfying PτM + Pδ(T − M) ≤ PT , where
ĤHH ∈ CN×M is a Gaussian matrix with independent rows following

NC
(
0,RRR

(
IIIM + PτRRR

)−1
RRR
)
;

2. if the transmitter exploits RRR, the following rate is achievable with a pilot-based scheme
by transmitting in the eigenspace of RRR:

• if the transmitter uses orthogonal pilots:

R =
(

1− r

T

)
E

log2 det

IIIN + PδPτ

Pδtr
((
R̄RR
−1 + PτIII r

)−1)+ r
Ω̂ΩΩΩ̂ΩΩH

, (4.41)

where Ω̂ΩΩ ∈ CN×r is a Gaussian matrix with independent rows following

NC
(
0, R̄RR(III r + PτR̄RR)−1R̄RR

)
,

• if the transmitter optimizes the pilots:

R =
(

1− r

T

)
E

log2 det

IIIN + Pδ

rPδ
(
Pτ + 1

r tr
(
R̄RR
−1))−1

+ r
Ω̂ΩΩΩ̂ΩΩH


, (4.42)

where Ω̂ΩΩ ∈ CN×r is a Gaussian matrix with independent rows following

NC

(
0, R̄RR−

(
Pτ + 1

r
tr
(
R̄RR
−1))−1

III r
)
,

for some power factors Pτ and Pδ satisfying Pτr+Pδ(T−r) ≤ PT , where R̄RR := VVV HRRRVVV
for a truncated unitary matrix VVV ∈ CM×r such that Span(VVV ) = Span(UUU). The optimal
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power allocation maximizing the rate in (4.42) is characterized by Pτ = (1−α)PT
r and

Pδ = αPT
T−r with

α =
{ 1

2 , if T = 2r,
b−

√
b(b− a), if T > 2r,

(4.43)

where a := 1 + tr
(
R̄RR
−1)

PT − r2

PT tr(R̄RR) and b := T−r
T−2r

(
1 + tr

(
R̄RR
−1)

PT

)
.

Corollary 4.1. If the channel is uncorrelated, i.e., RRR = IIIM , the achievable rate is

R =
(

1− M

T

)
E
[
log2 det

(
IIIN + PδPτ

M(1 + Pδ + Pτ )HHHHHHH
)]

bpcu, (4.44)

where HHH ∈ CN×M is the uncorrelated channel matrix. This coincides with [31, Eq.(21)].

Proof of Theorem 4.2. We prove by constructing pilot-based schemes that can achieve
(4.40), (4.41), and (4.42). The proof follows by extending the analysis in [31] to the case of
correlated generic fading.

Case 1: The Transmitter Does Not Exploit RRR

In this case, the transmitter ignores RRR and forms the transmitted signal as if the channel is
uncorrelated. Within each coherence block, the transmitter first sends an orthogonal pilot
matrix XXXτ ∈ CM×M such that XXXτXXX

H
τ = MIIIM during the first M channel uses (this is

optimal for uncorrelated fading [31, Sec. III-A]), and then sends IID NC(0, 1) data matrix
XXXδ ∈ CM×(T−M) during the remaining T −M channel uses. That is,

XXX =

√Pτ
M
XXXτ

√
Pδ
M

XXXδ

, (4.45)

where Pτ and Pδ are the average power used for training and data phases, respectively,
and satisfy the power constraint PτM + Pδ(T −M) ≤ PT .

In the training phase, the receiver observes YYYτ := YYY[1:M ] =
√

Pτ
M HHHXXXτ +ZZZ[1:M ]. Following

Lemma 4.2, it performs a linear MMSE channel estimator as

ĤHH =
√
Pτ
M

YYYτ
(
Pτ
M
XXXH
τRRRXXXτ + IIIM

)−1
XXXH
τRRR. (4.46)

The estimate ĤHH and the estimation error H̃HH = HHH− ĤHH have zero mean and row covariance

1
N

E
[
ĤHHHĤHH

]
= Pτ
M
RRRXXXτ

(
Pτ
M
XXXH
τRRRXXXτ + IIIM

)−1
XXXH
τRRR = PτRRR(IIIM + PτRRR)−1RRR, (4.47)

1
N

E
[
H̃HHHH̃HH

]
= RRR− PτRRR(IIIM + PτRRR)−1RRR. (4.48)

In the data transmission phase, the received signal is

YYYδ := YYY[M+1:T ] =
√
Pδ
M

HHHXXXδ + ZZZ[M+1:T ] =
√
Pδ
M

ĤHHXXXδ + ZZZδ, (4.49)



4.4. Two-User Broadcast Channel: Rate Analysis 83

where ZZZδ :=
√

Pδ
M H̃HHXXXδ + ZZZ[M+1:T ] is the combined noise consisting of additive noise and

channel estimation error. With MMSE estimator, ZZZδ and XXXδ are uncorrelated because

E
[
XXXδZZZH

δ |XXXτ ,YYYτ
]

= E

XXXδ

(√
Pδ
M

XXXH
δH̃HH

H + ZZZH
δ

) ∣∣∣∣∣XXXτ ,YYYτ

 (4.50)

=
√
Pδ
M

E
[
XXXδXXXH

δ(HHH− ĤHH)
∣∣∣XXXτ ,YYYτ

]
(4.51)

= 0, (4.52)

since E
[
HHH− ĤHH

∣∣∣XXXτ ,YYYτ
]

= 0. From Lemma 4.1, a lower bound on the achievable rate is
obtained by replacing ZZZδ by IID Gaussian noise with the same variance

σ2
ZZZδ = 1

N(T −M)trE
[
ZZZH
δZZZδ

]
= Pδ
M

tr
(
RRR− PτRRR(IIIM + PτRRR)−1RRR

)
+ 1 (4.53)

= Pδ
M

tr
(
(ΣΣΣ−1 + PτIII r)−1

)
+ 1. (4.54)

Thus, the achievable rate is lower bounded by

R = T −M
T

E
[
log2 det

(
IIIN + Pδ

Mσ2
ZZZδ

ĤHHĤHHH
)]
. (4.55)

From (4.47), ĤHH has correlation matrix PτRRR(IIIM + PτRRR)−1RRR. This shows (4.40).

Case 2: The Transmitter Exploits RRR

By exploiting RRR, the transmitter can project the signal onto the eigenspace of RRR and
can also adapt the pilot symbols. The transmitter builds a precoder VVV ∈ CM×r with r
orthonormal columns such that Span(VVV ) = Span(UUU). Let ΦΦΦ = UUUHVVV . The transmitted
signal is

XXX = VVV

√Pτ
r
XXXτ

√
Pδ
r

XXXδ

 (4.56)

where XXXτ ∈ Cr×r such that rank(XXXτ ) = r and tr(XXXH
τXXXτ ) = r2 is the pilot matrix, and

XXXδ ∈ Cr×(T−r) is the data matrix containing NC(0, 1) entries. The average pilot and data
powers satisfy Pτr + Pδ(T − r) ≤ PT .

The received signal during the training phase is then YYYτ := YYY[1:r] =
√

Pτ
r GGGΣΣΣ 1

2ΦΦΦXXXτ+ZZZ[1:r].

The equivalent channel Ω := GGGΣΣΣ 1
2ΦΦΦ has correlation matrix R̄RR = ΦΦΦHΣΣΣΦΦΦ = VVV HRRRVVV . According

to Lemma 4.2, the MMSE channel estimate for the equivalent channel Ω is given by

Ω̂ΩΩ =
√
Pτ
r

YYYτ
(
Pτ
r
XXXH
τR̄RRXXXτ + III r

)−1
XXXH
τR̄RR. (4.57)

The estimate Ω̂ΩΩ and the estimation error Ω̃ΩΩ = GGGΣΣΣ 1
2ΦΦΦ−Ω̂ΩΩ have zero mean and row covariance

1
N

E
[
Ω̂ΩΩHΩ̂ΩΩ

]
= Pτ

r
R̄RRXXXτ

(
Pτ
r
XXXH
τR̄RRXXXτ + III r

)−1
XXXH
τR̄RR, (4.58)

1
N

E
[
Ω̃ΩΩHΩ̃ΩΩ

]
= R̄RR− Pτ

r
R̄RRXXXτ

(
Pτ
r
XXXH
τR̄RRXXXτ + III r

)−1
XXXH
τR̄RR =

(
R̄RR
−1 + Pτ

r
XXXτXXX

H
τ

)−1
. (4.59)
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In the data transmission phase, the received signal is

YYYδ := YYY[r+1:T ] =
√
Pδ
r

GGGΣΣΣ
1
2ΦΦΦXXXδ + ZZZ[r+1:T ] =

√
Pδ
r

Ω̂ΩΩXXXδ + ZZZδ, (4.60)

where ZZZδ :=
√

Pδ
r Ω̃ΩΩXXXδ + ZZZ[r+1:T ]. From Lemma 4.1, a lower bound on the achievable rate is

obtained by replacing ZZZδ with IID Gaussian noise with the same variance

σ2
ZZZδ = 1

N(T − r)trE
[
ZZZH
δZZZδ

]
= Pδ

r
tr
((

R̄RR
−1 + Pτ

r
XXXτXXX

H
τ

)−1
)

+ 1. (4.61)

The corresponding achievable rate lower bound is

R = T − r
T

E
[
log2 det

(
IIIN + Pδ

rσ2
ZZZδ

Ω̂ΩΩΩ̂ΩΩH
)]

(4.62)

=
(

1− r

T

)
E
[
log2 det

(
IIIN + Pδ

Pδtr(BBB) + r
Ω̂ΩΩΩ̂ΩΩH

)]
(4.63)

where we used (4.61) and Ω̂ΩΩ has correlation matrix R̄RR−BBB with BBB :=
(
R̄RR
−1 + Pτ

r XXXτXXX
H
τ

)−1

according to (4.58).

TakingXXXτ such thatXXXτXXX
H
τ = rIII r (i.e., orthogonal pilots), we haveBBB =

(
R̄RR
−1 +PτIII r

)−1,
and the achievable rate R is given in (4.41).

We can also optimize the pilot XXXτ so as to maximize R. The pilot matrix XXXτ affects
the achievable rate bound primarily through the effective SNR

Peff = Pδ
rσ2

ZZZδ

1
N

Etr
(
Ω̂ΩΩHΩ̂ΩΩ

)
=
Pδtr

(
R̄RR−BBB

)
Pδtr(BBB) + r

(4.64)

which decreases with tr(BBB). Therefore, to maximize R, we would like to minimize tr(BBB).
That is

min
tr(XXXH

τXXXτ)=r2
tr
((

R̄RR
−1 + Pτ

r
XXXτXXX

H
τ

)−1
)
. (4.65)

Using Lagrange multiplier λ, we minimize

L(XXXτ , λ) = tr
((

R̄RR
−1 + Pτ

r
XXXτXXX

H
τ

)−1
)

+ λ(tr(XXXτXXX
H
τ )− r2). (4.66)

Solving ∂L(XXXτ ,λ)
∂XXXτXXX

H
τ

= 0, we obtain the minimizer XXXτXXX
H
τ =

√
r
Pτλ

III r − r
Pτ
R̄RR
−1
. Using the

constraint tr(XXXH
τXXXτ ) = r2, we find that Pτ

r XXXτXXX
H
τ =

(
Pτ + 1

r tr
(
R̄RR
−1))III r − R̄RR−1

. With this,

BBB =
(
Pτ + 1

r tr
(
R̄RR
−1))−1

III r, and R is given in (4.42). The effective SNR is now written as

Peff = Pδ

Pδr
(
Pτ + 1

r tr
(
R̄RR
−1))−1

+ r

[
tr
(
R̄RR
)
− r

(
Pτ + 1

r
tr
(
R̄RR
−1))−1

]
. (4.67)

Let Pτr = (1− α)PT and Pδ(T − r) = αPT for α ∈ (0, 1), we can derive that

Peff =
PT tr

(
R̄RR
)

r(T − 2r)
−α2 + aα

−α+ b
(4.68)

where a := 1 + tr
(
R̄RR
−1)

PT − r2

PT tr(R̄RR) and b := T−r
T−2r

(
1 + tr

(
R̄RR
−1)

PT

)
. Noting that T − 2r ≥ 0,

we obtain the optimal value of α that maximizes Peff as given in (4.43). This concludes
the proof.
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4.4.2 A Baseline TDMA Scheme

We consider a baseline scheme based on orthogonal transmission, i.e., TDMA that activates
only one user at a time. According to Theorem 4.2, the following corollary demonstrates
the achievable rate with TDMA.

Corollary 4.2. For the two-user noncoherent BC, if the transmitter does not exploit RRRk,
the following rate is achievable by activating only user k:

Rk =
(

1− M

T

)
E

log2 det

IIINk + PδPτ

Pδtr
((

ΣΣΣ−1
k + PτIII rk

)−1)+M
ĤHHĤHHH

 (4.69)

for some power factors Pτ and Pδ satisfying PτM + Pδ(T −M) ≤ PT , where ĤHH ∈ CNk×M
is a Gaussian matrix with independent rows following NC

(
0,RRRk(IIIM + PτRRRk)−1RRRk

)
. If the

transmitter transmits in the eigenspace of RRRk and optimize the pilot, the following rate is
achievable by activating only user k:

Rk =
(

1− rk
T

)
E

log2 det

IIINk + Pδ

rkPδ
(
Pτ + 1

rk
tr
(
ΣΣΣ−1
k

))−1
+ rk

Ω̂ΩΩΩ̂ΩΩH


 (4.70)

for some power factors Pτ and Pδ satisfying Pτr+Pδ(T − r) ≤ PT , where Ω̂ΩΩ ∈ CNk×r is a
Gaussian matrix with independent rows following NC

(
0,ΣΣΣk −

(
Pτ + 1

rk
tr
(
ΣΣΣ−1
k

))−1
III rk
)
.

Furthermore, the optimal power allocation for the rate in (4.70) is given by Pτrk = (1−α)PT
and Pδ(T − rk) = αPT with

α =
{ 1

2 , if T = 2rk,
b−

√
b(b− a), if T > 2rk,

(4.71)

where a := 1 + tr(ΣΣΣ−1
k )

PT − r2
k

PT tr(ΣΣΣk) and b := T−rk
T−2rk

(
1 + tr(ΣΣΣ−1

k )
PT

)
. The convex hull of (0, 0),

(R1, 0), and (0, R2) is an achievable rate region with TDMA for the BC.

Note that to achieve (4.70), the transmitter uses the precoder VVV k = UUUk and optimizes
the pilots.

4.4.3 Rate Splitting

In the following, we analyze the rate achievable with the schemes achieving the DoF region
in Theorem 4.1. Recall that for a set of nonnegative integers s0 ≤ r0, s1 ≤ r1 − r0, and
s2 ≤ r2 − r0, we build the precoding matrices VVV k, k ∈ {0, 1, 2}, as in (4.21)-(4.23). For
k ∈ {1, 2}, we denote

• ΦΦΦk := UUUH
k[VVV 0 VVV k], ΦΦΦk0 := UUUH

kVVV 0, ΦΦΦkk := UUUH
kVVV k (so ΦΦΦk = [ΦΦΦk0 ΦΦΦkk]);

• R̄RRk := ΦΦΦH
kΣΣΣkΦΦΦk, R̄RRk0 := ΦΦΦH

kΣΣΣkΦΦΦk0, R̄RRkk := ΦΦΦH
kΣΣΣkΦΦΦkk (so R̄RR = [R̄RRk0 R̄RRkk]);

• R̆RRk0 := ΦΦΦH
k0ΣΣΣkΦΦΦk0, R̆RRkk := ΦΦΦH

kkΣΣΣkΦΦΦkk.

With rate splitting, we let the transmitter transmit

XXX = VVV 0XXX0 + VVV 1XXX1 + VVV 2XXX2, (4.72)
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where XXX0, XXX1, and XXX2 are independent and satisfy the power constraint

E
[
‖XXX0‖2F + ‖XXX1‖2F + ‖XXX2‖2F

]
≤ PT. (4.73)

Thanks to the precoders, the private signal XXXk is seen by user k only, while the common
signal XXX0 is seen by both users. Specifically, the received signals is

YYY1 = GGG1ΣΣΣ
1
2
1 ΦΦΦ10XXX0 + GGG1ΣΣΣ

1
2
1 ΦΦΦ11XXX1 + ZZZ1, (4.74)

YYY2 = GGG2ΣΣΣ
1
2
2 ΦΦΦ20XXX0 + GGG2ΣΣΣ

1
2
2 ΦΦΦ22XXX2 + ZZZ2, (4.75)

where the equivalent channels GGGkΣΣΣ
1
2
kΦΦΦk0 ∈ CNk×s0 and GGGkΣΣΣ

1
2
kΦΦΦkk ∈ CNk×sk , k ∈ {1, 2},

are correlated and unknown. It can be observed that the received signal at each user
is similar to a noncoherent two-user MAC: (4.74) as the MAC 1 with (s0, s1) equivalent
transmit antennas and N1 receive antennas, (4.75) as the MAC 2 with (s0, s2) equivalent
transmit antennas and N2 receive antennas. The two MACs share a common signal XXX0.
From the capacity region of the MACs [22], we know that the rate pairs (R0, R

p
1) and

(R0, R
p
2) are simultaneously achievable for the MAC 1 and MAC 2, respectively, if the rates

R0 ≥ 0, Rp1 ≥ 0, Rp2 ≥ 0 satisfy

R0 ≤ 1
T
I(YYY1;XXX0|XXX1), (4.76a)

Rp1 ≤ 1
T
I(YYY1;XXX1|XXX0), (4.76b)

R0 +Rp1 ≤ 1
T
I(YYY1;XXX0,XXX1), (4.76c)

R0 ≤ 1
T
I(YYY2;XXX0|XXX2), (4.76d)

Rp2 ≤ 1
T
I(YYY2;XXX2|XXX0), (4.76e)

R0 +Rp1 ≤ 1
T
I(YYY2;XXX0,XXX2). (4.76f)

Then for the BC, user 1 achieves rate Rp1 with private signal XXX1, user 2 achieves rate Rp2 with
private signal XXX2, and both users can achieve rate R0 with common signal XXX0. Let R0k be the
user k’s share in R0, then the BC can achieve the rate pair (R1, R2) = (R01 +Rp1, R02 +Rp2).
Replacing R0 = R01 + R02, Rp1 = R1 − R01, and Rp2 = R2 − R02 in (4.76) and applying
Fourier-Motzkin elimination, we obtain the following achievable rate region of the BC.

Theorem 4.3. With rate splitting, the two-user noncoherent BC can achieve any rate pair
(R1, R2) satisfying

R1 ≤ 1
T

min{I(YYY1;XXX1,XXX0), I(YYY1;XXX1|XXX0) + I(YYY2;XXX0|XXX2)}, (4.77a)

R2 ≤ 1
T

min{I(YYY2;XXX2,XXX0), I(YYY2;XXX2|XXX0) + I(YYY1;XXX0|XXX1)}, (4.77b)

R1 +R2 ≤ 1
T

min{I(YYY1;XXX1|XXX0) + I(YYY2;XXX2,XXX0), I(YYY1;XXX1,XXX0) + I(YYY2;XXX2|XXX0)}, (4.77c)

for input distributions pXXX0, pXXX1, and pXXX2 satisfying the power constraint

E
[
‖XXX0‖2F + ‖XXX1‖2F + ‖XXX2‖2F

]
≤ PT.

This achievable rate region is fully characterized by the mutual information terms
I(YYYk;XXXk,XXX0), I(YYYk;XXXk |XXX0), and I(YYYk;XXX0 |XXXk), k ∈ {1, 2}. By considering an explicit
input distribution and deriving these mutual information, we obtain an achievable rate
region as follows.



4.4. Two-User Broadcast Channel: Rate Analysis 87

Theorem 4.4. With rate splitting, the two-user noncoherent BC can achieve any rate pair
(R1, R2) satisfying 

R1 ≤ min{R′1, R
p
1 +R02}, (4.78a)

R2 ≤ min{R′2, R
p
2 +R01}, (4.78b)

R1 +R2 ≤ min{Rp1 +R′2, R
′
1 +Rp2}, (4.78c)

where

R′1 =
(

1− s1 + s0
T

)
E

log2 det

IIIN1 + 1
tr
((
R̄RR
−1
1 +PPP 1τ

)−1
PPP 1δ

)
+ 1

Ω̄ΩΩ1R̄RR1PPP 1δR̄RR1Ω̄ΩΩ
H
1

,
(4.79)

Rp1 =
(

1− s1 + s0
T

)
E

log2 det

IIIN1 + P1δ

s1
[
tr
((
R̄RR
−1
1 +PPP 1τ

)−1
PPP 1δ

)
+1
]Ω̄ΩΩ1R̄RR11R̄RR

H
11Ω̄ΩΩ

H
1


,

(4.80)

R01 =
(

1− s1 + s0
T

)
E

log2 det

IIIN1 + P0δ

s0
[
tr
((
R̄RR
−1
1 +PPP 1τ

)−1
PPP 1δ

)
+1
]Ω̄ΩΩ1R̄RR10R̄RR

H
10Ω̄ΩΩ

H
1


,

(4.81)

where

PPP 1τ :=
[
P0τIII s0 0

0 P1τIII s1

]
, PPP 1δ :=

[
P0δ
s0

III s0 0
0 P1δ

s1
III s1

]
,

and Ω̄ΩΩ1 ∈ CN1×(s0+s1) is a Gaussian matrix with independent rows following

NC

(
0,PPP

1
2
1τ

(
PPP

1
2
1τR̄RR1PPP

1
2
1τ + III s1+s0

)−1
PPP

1
2
1τ

)
;

R′2 = s1 − s2
T

E

log2 det

IIIN2 + P2δ

P2δtr
(
R̄RR

H
22(R̄RR2 + R̄RR2PPP 2τR̄RR2)−1R̄RR22

)
+ s2

Ω̄ΩΩ2R̄RR22R̄RR
H
22Ω̄ΩΩ

H
2


+
(

1− s1 + s0
T

)
E

log2 det

IIIN2 + 1
tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δ

)
+ 1

Ω̄ΩΩ2R̄RR2PPP 2δR̄RR2Ω̄ΩΩ
H
2

,
(4.82)

Rp2 = s1−s2
T

E

log2 det

IIIN2 + P2δ

P2δtr
(
R̄RR

H
22(R̄RR2+R̄RR2PPP 2τR̄RR2)−1R̄RR22

)
+s2

Ω̄ΩΩ2R̄RR2R̄RR22R̄RR
H
22R̄RR2Ω̄ΩΩ

H
2



+
(
1− s1+s0

T

)
E

log2 det

IIIN2 + P2δ

s2
[
tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δ

)
+1
]Ω̄ΩΩ2R̄RR2R̄RR22R̄RR

H
22R̄RR2Ω̄ΩΩ

H
2


,

(4.83)

R02 =
(
1− s1+s0

T

)
E

log2 det

IIIN2 + P0δ

s0
[
tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δ

)
+1
]Ω̄ΩΩ2R̄RR2R̄RR20R̄RR

H
20R̄RR2Ω̄ΩΩ

H
2


,

(4.84)
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where

PPP 2τ :=
[
P0τIII s0 0

0 P2τIII s2

]
, PPP 2δ :=

[
P0δ
s0

III s0 0
0 P2δ

s2
III s2

]
,

and Ω̄ΩΩ2 ∈ CN2×(s0+s2) is a Gaussian matrix with independent rows following

NC

(
0,PPP

1
2
2τ

(
PPP

1
2
2τR̄RR2PPP

1
2
2τ + III s2+s0

)−1
PPP

1
2
2τ

)
;

s0, s1, s2 are integers such that s0 ≤ r0, s1 ≤ r1 − r0, and s2 ≤ r2 − r0; and the power
components Piτ , Pδ, i ∈ {0, 1, 2}, satisfy the power constraint

P0τs0 + P0δ(T − s1 − s0) +
2∑
i=1

[
Piτsi + Piδ(T − si − s0)

]
≤ PT. (4.85)

The convex hull of (4.78a), (4.78b), (4.78c) over all feasible values of s0, s1, s2 and all
possible power allocations (4.85) is an achievable rate region for the two-user BC.

Specifically, the input distribution that achieves the rate region in Theorem 4.4 is
characterized by

XXX0 =
[√

P0τIII s0 0s0×s1

√
P0δ
s0

SSS0

]
, (4.86)

XXX1 =
[
0s1×s0

√
P1τIII s1

√
P1δ
s1

SSS1

]
, (4.87)

XXX2 =
[
0s2×s0

√
P2τIII s2

√
P2δ
s2

SSS2

]
, (4.88)

where SSS0 ∈ Cs0×(T−s1−s0), SSS1 ∈ Cs1×(T−s1−s0), and SSS2 ∈ Cs2×(T−s2−s0) are data matrices
containing independent NC(0, 1) symbols and the power components Piτ , Pδ, i ∈ {0, 1, 2}
satisfy the power constraint (4.85). In the following, we derive the mutual information terms
with this input distribution and show that I(YYYk;XXXk,XXX0) ≥ TR′k, I(YYYk;XXXk |XXX0) ≥ TRpk, and
I(YYYk;XXX0 |XXXk) ≥ TR0k, k ∈ {1, 2}, thus prove Theorem 4.4.

4.4.3.a Rates of User 1

The received signal at user 1 is

YYY1 = GGG1ΣΣΣ
1
2
1 ΦΦΦ1

√P0τIII s0 0
√

P0δ
s0

SSS0

0
√
P1τIII s1

√
P1δ
s1

SSS1

+ ZZZ1 (4.89)

=
[

GGG1ΣΣΣ
1
2
1 ΦΦΦ1PPP

1
2
1τ + ZZZ1[1:s1+s0]︸ ︷︷ ︸
YYY1τ

GGG1ΣΣΣ
1
2
1 ΦΦΦ1PPP

1
2
1δ

[
SSS0
SSS1

]
+ ZZZ1[s1+s0+1;T ]︸ ︷︷ ︸

YYY1δ

]
(4.90)

where PPP 1τ :=
[
P0τIII s0 0

0 P1τIII s1

]
and PPP 1δ :=

[
P0δ
s0

III s0 0
0 P1δ

s1
III s1

]
are the power matrices for

the pilot and data, respectively. The equivalent channel Ω1 := GGG1ΣΣΣ
1
2
1 ΦΦΦ1 has correlation

matrix R̄RR1. Following Lemma 4.2, user 1 performs a MMSE channel estimation based on
YYY1τ as

Ω̂1 = YYY1τ
(
PPP

1
2
1τR̄RR1PPP

1
2
1τ + III s1+s0

)−1
PPP

1
2
1τR̄RR1. (4.91)
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The estimate Ω̂1 and the estimation error Ω̃ΩΩ1 = GGG1ΣΣΣ
1
2
1 ΦΦΦ1 − Ω̂1 have zero mean and row

covariance

1
N

E
[
Ω̂H

1Ω̂1
]

= R̄RR1PPP
1
2
1τ

(
PPP

1
2
1τR̄RR1PPP

1
2
1τ + III s1+s0

)−1
PPP

1
2
1τR̄RR1, (4.92)

1
N

E
[
Ω̃ΩΩH

1Ω̃ΩΩ1
]

= R̄RR1 − R̄RR1PPP
1
2
1τ

(
PPP

1
2
1τR̄RR1PPP

1
2
1τ + III s1+s0

)−1
PPP

1
2
1τR̄RR1 =

(
R̄RR
−1
1 +PPP 1τ

)−1
. (4.93)

A Lower Bound on I(YYY1;XXX1,XXX0):

The received signal during the data transmission phase can be written as

YYY1δ = ĜGG1ΣΣΣ
1
2
1 ΦΦΦ1PPP

1
2
1δ

[
SSS0
SSS1

]
+ ZZZ1δ, (4.94)

where ZZZ1δ := Ω̃ΩΩ1PPP
1
2
1δ

[
SSS0
SSS1

]
+ ZZZ1[s1+s0+1:T ] is the combined noise and residual interference

due to channel estimation error. By a similar analysis using Lemma 4.1 as for (4.41) in
Theorem 4.2, we have

I(YYY1;XXX1,XXX0) = I(YYY1δ;SSS1,SSS0 |YYY1τ ) + I(YYY1τ ;SSS1,SSS0)︸ ︷︷ ︸
=0

(4.95)

= I(YYY1δ;SSS1,SSS0 | Ω̂1) (4.96)
≥ TR′1, (4.97)

where R′1 is given in (4.79).

A Lower Bound on I(YYY1;XXX1 |XXX0):

We rewrite YYY1δ as

YYY1δ =
√
P1δ
s1

GGG1ΣΣΣ
1
2
1 ΦΦΦ11SSS1 +

√
P0δ
s0

GGG1ΣΣΣ
1
2
1 ΦΦΦ10SSS0 + ZZZ1δ. (4.98)

While decoding SSS1, the term
√

P0δ
s0

GGG1ΣΣΣ
1
2
1 ΦΦΦ10SSS0 is an interference. Given the knowledge of

SSS0 and the channel estimate Ω̂1 =
[
Ω̂10 Ω̂11

]
, where Ω̂10 and Ω̂11 are respectively the

estimates of GGG1ΣΣΣ
1
2
1 ΦΦΦ10 and GGG1ΣΣΣ

1
2
1 ΦΦΦ11, the receiver can partly remove the interference to

obtain

YYY1δ −
√
P0δ
s0

Ω̂10SSS0 =
√
P1δ
s1

GGG1ΣΣΣ
1
2
1 ΦΦΦ11SSS1 +

√
P0δ
s0

[
GGG1ΣΣΣ

1
2
1 ΦΦΦ10 − Ω̂10

]
SSS0 + ZZZ1[s1+s0+1:T ]

(4.99)

=
√
P1δ
s1

Ω̂11SSS1 + ZZZ1δ. (4.100)
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With a similar analysis using Lemma 4.1 as for (4.41) in Theorem 4.2, we have the bound

I(YYY1;XXX1 |XXX0) = I(YYY1δ;SSS1 |SSS0,YYY1τ ) (4.101)
= I

(
YYY1δ;SSS1 |SSS0, Ω̂1

)
(4.102)

= I

(
YYY1δ −

√
P0δ
s0

Ω̂10SSS0;SSS1

∣∣∣∣∣ SSS0, Ω̂1

)
(4.103)

= I

(√
P1δ
s1

Ω̂11SSS1 + ZZZ1δ;SSS1

∣∣∣∣∣ Ω̂11

)
(4.104)

≥ TRp1, (4.105)

where Rp1 is given in (4.80).

A Lower Bound on I(YYY1;XXX0 |XXX1):

Given SSS1 and the channel estimate Ω̂1 =
[
Ω̂10 Ω̂11

]
, the receiver can remove partly

the interference in (4.98) to obtain

YYY1δ −
√
P1δ
s1

Ω̂11SSS1 =
√
P0δ
s0

GGG1ΣΣΣ
1
2
1 ΦΦΦ10SSS0 +

√
P1δ
s1

[
GGG1ΣΣΣ

1
2
1 ΦΦΦ11 − Ω̂11SSS1

]
+ ZZZ1[s1+s0+1:T ]

(4.106)

=
√
P0δ
s0

Ω̂10SSS0 + ZZZ1δ. (4.107)

With a similar analysis as for (4.41) in Theorem 4.2, we have the bound

I(YYY1;XXX0 |XXX1) = I(YYY1δ;SSS0 |SSS1,YYY1τ ) (4.108)

= I
(

YYY1δ;SSS0 |SSS1, Ω̂1
)

(4.109)

= I

(
YYY1δ −

√
P1δ
s1

Ω̂11SSS1;SSS0

∣∣∣∣∣ SSS1, Ω̂1

)
(4.110)

= I

(√
P0δ
s0

Ω̂10SSS0 + ZZZ1δ;SSS0

∣∣∣∣ Ω̂10

)
(4.111)

≥ TR01, (4.112)

where R01 is given in (4.81).

4.4.3.b Rates of User 2

The received signal at user 2 is

YYY2 = GGG2ΣΣΣ
1
2
2 ΦΦΦ2

√P0τIII s0 0 0s0×(s1−s2)

√
P0δ
s0

SSS0

0
√
P2τIII s2

√
P2δ
s2

SSS2a
√

P2δ
s2

SSS2b

+ ZZZ2 (4.113)

=
[

GGG2ΣΣΣ
1
2
2 ΦΦΦ2PPP

1
2
2τ + ZZZ2[1:s2+s0]︸ ︷︷ ︸
YYY2τ

√
P2δ
s2

GGG2ΣΣΣ
1
2
2 ΦΦΦ22SSS2a + ZZZ2[s2+s0+1:s1+s0]︸ ︷︷ ︸

YYY2δa

GGG2ΣΣΣ
1
2
2 ΦΦΦ2PPP

1
2
2δ

[
SSS0
SSS2b

]
+ ZZZ2[s1+s0+1:T ]︸ ︷︷ ︸

YYY2δb

]
, (4.114)
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where SSS2a and SSS2b contain respectively the first s1−s2 columns and the remaining T−s1−s0

columns of SSS2; PPP 2τ :=
[
P0τIII s0 0

0 P2τIII s2

]
and PPP 2δ :=

[
P0δ
s0

III s0 0
0 P2δ

s2
III s2

]
are the power

matrices for the pilot and data, respectively. Following Lemma 4.2, user 2 performs a
MMSE channel estimation of Ω2 := GGG2ΣΣΣ

1
2
2 ΦΦΦ2 = [Ω20 Ω22] =

[
GGG2ΣΣΣ

1
2
2 ΦΦΦ20 GGG2ΣΣΣ

1
2
2 ΦΦΦ22

]
based

on YYY2τ as

Ω̂2 = YYY2τ
(
PPP

1
2
2τR̄RR2PPP

1
2
2τ + III s2+s0

)−1
PPP

1
2
2τR̄RR2. (4.115)

The estimate Ω̂2 =
[
Ω̂20 Ω̂22

]
and the estimation error Ω̃ΩΩ2 = GGG2ΣΣΣ

1
2
2 ΦΦΦ2 − Ω̂2 have zero

mean and row covariance

1
N

E
[
Ω̂H

2Ω̂2
]

= R̄RR2PPP
1
2
2τ

(
PPP

1
2
2τR̄RR2PPP

1
2
2τ + III s2+s0

)−1
PPP

1
2
2τR̄RR2, (4.116)

1
N

E
[
Ω̃ΩΩH

2Ω̃ΩΩ2
]

= R̄RR2 − R̄RR2PPP
1
2
2τ

(
PPP

1
2
2τR̄RR2PPP

1
2
2τ + III s2+s0

)−1
PPP

1
2
2τR̄RR2 =

(
R̄RR
−1
2 +PPP 2τ

)−1
. (4.117)

A Lower Bound on I(YYY2;XXX2,XXX0):

Using the chain rule, we have that

I(YYY2;XXX2,XXX0) = I(YYY2τ ,YYY2δa,YYY2δb;SSS0,SSS2a,SSS2b) (4.118)
= I(YYY2δa,YYY2δb;SSS0,SSS2a,SSS2b |YYY2τ ) + I(YYY2τ ;SSS0,SSS2a,SSS2b)︸ ︷︷ ︸

=0

(4.119)

= I(YYY2δa,YYY2δb;SSS0,SSS2a,SSS2b | Ω̂2) (4.120)
= I(YYY2δa;SSS2a | Ω̂2) + I(YYY2δa;SSS0,SSS2b |SSS2a, Ω̂2)︸ ︷︷ ︸

=0

+ I(YYY2δb;SSS0,SSS2b |YYY2δa, Ω̂2)︸ ︷︷ ︸
≥I(YYY2δb;SSS0,SSS2b | Ω̂2)

+ I(YYY2δb;SSS2a |SSS0,SSS2b,YYY2δa, Ω̂2)︸ ︷︷ ︸
=0

(4.121)

≥ I(YYY2δa;SSS2a | Ω̂22) + I(YYY2δb;SSS0,SSS2b | Ω̂2). (4.122)

Following a similar analysis as for (4.41) in Theorem 4.2, we lower bound 1
T I(YYY2δa;SSS2a | Ω̂22)

and 1
T I(YYY2δb;SSS0,SSS2b | Ω̂2) respectively by the first and the second terms in the right-hand

side of (4.82). Therefore, I(YYY2;XXX2,XXX0) ≥ TR′2 with R′2 given in (4.82).

A Lower Bound on I(YYY2;XXX2 |XXX0):

We write YYY2δ := [YYY2δa YYY2δb] as

YYY2δ =
√
P2δ
s2

GGG2ΣΣΣ
1
2
2 ΦΦΦ22SSS2 +

√
P0δ
s0

GGG2ΣΣΣ
1
2
2 ΦΦΦ20[0 SSS0] + ZZZ2[s2+s0+1:T ]. (4.123)

Similar as for I(YYY1;XXX1 |XXX0), using interference cancellation and worst-case additive noise
as for (4.41) in Theorem 4.2, we have the following bound

I(YYY2;XXX2|XXX0) = I
(

YYY2δ;SSS2
∣∣∣SSS0, Ω̂2

)
(4.124)

= I

(
YYY2δ −

√
P0δ
s0

Ω̂20[0 SSS0];SSS2

∣∣∣∣∣ SSS0, Ω̂2

)
(4.125)

≥ TRp2, (4.126)
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where Rp2 is given in (4.83).

A Lower Bound on I(YYY2;XXX0 |XXX2):

Again, using interference cancellation and a similar analysis as for (4.41) in Theorem 4.2,
we have the following bound

I(YYY2;XXX0|XXX2) ≥ I
(

YYY2δb;SSS0
∣∣∣SSS2b, Ω̂2

)
(4.127)

= I

(
YYY2δb −

√
P2δ
s2

Ω̂22SSS2b;SSS0

∣∣∣∣∣ SSS2b, Ω̂2

)
(4.128)

≥ TR02 (4.129)

where R02 is given in (4.84).

4.4.4 Product Superposition

Theorem 4.5. With product superposition, the two-user noncoherent BC can achieve any
rate pair (R1, R2) of the form

R1 = s2
T
E

log2 det

IIIN1 + ρ1δP2τ

s0 + ρ1δP2τ tr
((
R̆RR
−1
k0 + ρ1τP2τIII s0

)−1)Ω̂ΩΩ10Ω̂ΩΩ
H
10


, (4.130)

where Ω̂ΩΩ10 ∈ CN1×s0 is a Gaussian matrix with N1 independent rows following

NC
(
0, ρ1τP2τR̆RR10

(
ρ1τP2τR̆RRk0 + III s0

)−1
R̆RRk0

)
,

and

R2 =
(

1− s2 + s0
T

)
E

log2 det

IIIN2 + P2δ

s2 + s0 + P2δtr
((
RRR−1

2e + P2τIII s2+s0
)−1)ĜGG2eĜGG

H
2e


(4.131)

where ĜGG2e ∈ CN2×(s2+s0) has distribution imposed by

ĜGG2e =
√
P2τ

(√
P2τGGG2ΣΣΣ

1
2
2 ΦΦΦ2XXX1 + ZZZ2[1:s2+s0]

)
(P2τRRR2e + III s2+s0)−1RRR2e (4.132)

for integers s0 ≤ r0, s2 ≤ r2 − r0 and the power constraint

(s0ρ1τ + s2(ρ1δ + ρ1a))
(
P2τ + T − s2 − s0

s2 + s0
P2δ

)
≤ PT. (4.133)

In (4.132),

XXX1 :=
[√

ρ1τIII s0
√

ρ1δ
s0

SSS1

0 √
ρ1aIII s2

]
where SSS1 ∈ Cs0×s2 and ZZZ2[1:s2+s0] ∈ CN2×s2+s0 both have IID NC(0, 1) entries; and

RRR2e :=
[

ρ1τR̆RR20
√
ρ1τρ1aΦΦΦH

20ΣΣΣ2ΦΦΦ22√
ρ1τρ1aΦΦΦH

22ΣΣΣ2ΦΦΦ20
ρ1δ
s0

tr
(
R̆RR20

)
III s2 + ρ1aR̆RR22

]
. (4.134)

By swapping the users’ roles, a similar rate pair is achievable. The convex hull of the
origin and all these rate pairs over all feasible values of s0, s1, s2 and all feasible power
allocation (4.133) is an achievable rate region for the two-user noncoherent BC.
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We consider the input distribution characterized by

XXX = [VVV 0 VVV 2]XXX1XXX2, (4.135)

with

XXX1 =
[√

ρ1τIII s0
√

ρ1δ
s0

SSS1

0 √
ρ1aIII s2

]
, (4.136)

XXX2 =
[√

P2τIII s2+s0

√
P2δ

s2 + s0
SSS2

]
, (4.137)

where SSS1 ∈ Cs0×s2 and SSS2 ∈ C(s2+s0)×(T−s2−s0) are the data matrices of user 1 and user 2
respectively, both contain IID NC(0, 1) symbols. The power constraint E

[
tr
(
XXXHXXX

)]
≤ PT

translates to (4.133). In the following, we show that the rate pair (R1, R2) defined by
(4.130) and (4.131) can be achieved with this input distribution, thus prove Theorem 4.5.

4.4.4.a Rate of User 1

In the first s2 + s0 channel uses, user 1 receives

YYY1[1:s2+s0] =
√
P2τGGG1ΣΣΣ

1
2
1 ΦΦΦ10

[√
ρ1τIII s0

√
ρ1δ
s0

SSS1

]
+ ZZZ1[1:s2+s0] (4.138)

=
[√

ρ1τP2τGGG1ΣΣΣ
1
2
1 ΦΦΦ10 + ZZZ1[1:s0]︸ ︷︷ ︸

YYY1τ

√
ρ1δP2τ
s0

GGG1ΣΣΣ
1
2
1 ΦΦΦ10SSS1 + ZZZ1[s0+1:s2+s0]︸ ︷︷ ︸

YYY1δ

]
.

(4.139)

Following Lemma 4.2, user 1 estimates the equivalent channel ΩΩΩ10 = GGG1ΣΣΣ
1
2
1 ΦΦΦ10 using a

MMSE estimator based on YYY1τ as

Ω̂10 =
√
ρ1τP2τYYY1τ

(
ρ1τP2τR̆RRk0 + III s0

)−1
R̆RRk0. (4.140)

The estimate Ω̂10 and the estimation error Ω̃ΩΩ10 = GGG1ΣΣΣ
1
2
1 ΦΦΦ10 − Ω̂10 have zero mean and row

covariance
1
N

E
[
Ω̂H

10Ω̂10
]

= ρ1τP2τR̆RRk0
(
ρ1τP2τR̆RRk0 + III s0

)−1
R̆RRk0, (4.141)

1
N

E
[
Ω̃ΩΩH

10Ω̃ΩΩ10
]

= R̆RRk0 − ρ1τP2τR̆RRk0
(
ρ1τP2τR̆RRk0 + III s0

)−1
R̆RRk0

(
R̆RR
−1
k0 + ρ1τP2τIII s0

)−1
.

(4.142)

Using the data processing inequality, we have that

I(YYY1;XXX1) ≥ I(YYY1[1:s2+s0];XXX1) = I(YYY1δ;SSS1 |YYY1τ ) = I(YYY1δ;SSS1 | Ω̂10). (4.143)

Then, using the worst-case noise argument and Lemma 4.1, we have a lower bound on
I(YYY1δ;SSS1 | Ω̂10), which yields the rate R1 achievable for user 1 defined in (4.130).
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4.4.4.b Rate of User 2

The received signal at user 2 is

YYY2 = GGG2ΣΣΣ
1
2
2 ΦΦΦ2XXX1

[√
P2τIII s2+s0

√
P2δ

s2 + s0
SSS2

]
+ ZZZ2 (4.144)

=
[√

P2τGGG2e + ZZZ2[1:s2+s0]︸ ︷︷ ︸
YYY2τ

√
P2δ

s2 + s0
GGG2eSSS2 + ZZZ2[s2+s0+1:T ]︸ ︷︷ ︸

YYY2δ

]
, (4.145)

where GGG2e := GGG2ΣΣΣ
1
2
2 ΦΦΦ2XXX1 is the equivalent channel with the correlation matrix

RRR2e := 1
N2

E
[
GGGH

2eGGG2e
]

=
[

ρ1τR̆RR20
√
ρ1τρ1aΦΦΦH

20ΣΣΣ2ΦΦΦ22√
ρ1τρ1aΦΦΦH

22ΣΣΣ2ΦΦΦ20
ρ1δ
s0

tr
(
R̆RR20

)
III s2 + ρ1aR̆RR22

]
. (4.146)

Following Lemma 4.2, user 2 estimates the equivalent channel GGG2e using a MMSE estimator
based on YYY2τ as

ĜGG2e =
√
P2τYYY2τ (P2τRRR2e + III s2+s0)−1RRR2e. (4.147)

The estimate ĜGG2e and the estimation error G̃GG2e = GGG2e − ĜGG2e have zero mean and row
covariance

1
N2

E
[
ĜGGH

2eĜGG2e
]

= P2τRRR2e(P2τRRR2e + III s2+s0)−1RRR2e, (4.148)

1
N2

E
[
G̃GGH

2eG̃GG2e
]

= RRR2e − P2τRRR2e(P2τRRR2e + III s2+s0)−1RRR2e =
(
RRR−1

2e + P2τIII s2+s0

)−1
. (4.149)

We have that

I(YYY2;XXX2) = I(YYY2δ;SSS2 |YYY2τ ) = I(YYY2δ;SSS2 | ĜGG2e). (4.150)

Then, using the worst-case noise argument and Lemma 4.1, we have the achievable rate R2
for user 2 as defined in (4.131).

4.4.5 Hybrid Superposition

We recall that hybrid superposition refers to a composite scheme that involves both rate
splitting and product superposition. An achievable rate region with product superposition
for the two-user noncoherent BC is given as follows.

Theorem 4.6. With hybrid superposition, the two-user noncoherent BC with r1 ≥ r2 can
achieve any rate pair (R1, R2) of the form

R1 =
(

1− s1 + s0
T

)
E

log2 det

IIIN2 + P1δ

s1 + s0 + P1δtr
((
RRR−1

1e + P1τIII s1+s0
)−1)ĜGG1eĜGG

H
1e

,
(4.151)

where ĜGG1e ∈ CN2×(s1+s0) has distribution imposed by

ĜGG1e =
√
P1τ

(√
P1τGGG1ΣΣΣ

1
2
1 ΦΦΦ1XXX′2 + ZZZ1[1:s1+s0]

)
(P1τRRR1e + III s1+s0)−1RRR1e, (4.152)
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and

R2 = s1 − s2
T

E

log2 det

IIIN2 + 1
tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δa

)
+ 1

Ω̄ΩΩ2PPP 2δaΩ̄ΩΩ
H
2


+
(

1− s1 + s0
T

)
E

log2 det

IIIN2 + 1
tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δb

)
+ 1

Ω̄ΩΩ2PPP 2δbΩ̄ΩΩ
H
2


−
(

1− s1 + s0
T

)
E
[
log2 det

(
IIIN2 + P1δ

(
ρ2τ + ρ2δ

s1 − s2
s0

)
Ω̄ΩΩ20Ω̄ΩΩ

H
20

)]
, (4.153)

for integers s0 ≤ r0, s1 ≤ r1 − r0, s2 ≤ r2 − r0 and the power constraint

(s0ρ2τ + s1ρ2a + (s1 − s2)ρ2δ)
(
P1τ + T − s1 − s0

s1 + s0
P1δ

)
+ s2P2τ + (T − s2 − s0)P2δ ≤ PT.

(4.154)
In (4.152),

XXX′2 :=
[√

ρ2τIII s0
[
0s0×s2

√
ρ2δ
s0

SSS′2
]

0 √
ρ2aIII s1

]
∈ C(s1+s0)×(s1+s0)

where SSS′2 ∈ Cs0×(s1−s2) and ZZZ1[1:s1+s0] ∈ CN1×(s1+s0) both have IID NC(0, 1) entries; and

RRR1e :=


ρ2τR̆RR10

√
ρ2τρ2aΦΦΦH

10ΣΣΣ1ΦΦΦ11

√
ρ2τρ2aΦΦΦH

11ΣΣΣ1ΦΦΦ10

[
0 0
0 ρ2δ

s0
tr
(
R̆RR10

)
III s1−s2

]
+ ρ2aR̆RR22

. (4.155)

In (4.153),

PPP 2δa :=
[
ρ2δP1τ
s0

III s0 0
0 P2δ

s2
III s2

]
, PPP 2δb :=

[
P1δ

T−s1−s0
(
ρ1τ + ρ2δ

s1−s2
s0

)
III s0 0

0 P2δ
s2

III s2

]
;

Ω̄ΩΩ2 ∈ CN2×(s2+s0) is a Gaussian matrix with independent rows following

NC
(
0, R̄RRH

2
(
R̄RR2 +PPP−1

2τ
)−1

R̄RR2
)
;

and Ω̄ΩΩ20 ∈ CN2×s0 is a Gaussian matrix with independent rows following NC
(
0, R̆RR20

)
. The

convex hull of the origin and these rate pairs with all feasible values of s0, s1, s2 and all
feasible power allocation (4.154) is an achievable rate region for the two-user noncoherent
BC.

We consider the the input distribution defined by
XXX = [VVV 0 VVV 1] XXX′2XXX1 + VVV 2XXX2 (4.156)

with

XXX1 =
[√

P1τIII s1+s0

√
P1δ

s1 + s0
SSS1

]
∈ C(s1+s0)×T , (4.157)

XXX2 =
[
0s2×s0

√
P2τIII s2

√
P2δ
s2

SSS2

]
∈ Cs2×T , (4.158)

XXX′2 =
[√

ρ2τIII s0
[
0s0×s2

√
ρ2δ
s0

SSS′2
]

0 √
ρ2aIII s1

]
∈ C(s1+s0)×(s1+s0), (4.159)

where SSS1 ∈ C(s1+s0)×(T−s1−s0), SSS2 ∈ Cs2×(T−s2−s0), and SSS′2 ∈ Cs0×(s1−s2) are data matrices
containing NC(0, 1) entries. The power constraint E

[
tr
(
XXXHXXX

)]
≤ PT translates to (4.154).

In the following, we show that the rate pair (R1, R2) given in (4.151) and (4.153) is
achievable with this input distribution, thus prove Theorem 4.6.
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4.4.5.a Rate of User 1

The received signal at user 1 is

YYY1 = GGG1ΣΣΣ
1
2
1 ΦΦΦ1XXX′2

[√
P1τIII s1+s0

√
P1δ

s1 + s0
SSS1

]
+ ZZZ1 (4.160)

=


√
P1τGGG1e + ZZZ1[1:s1+s0]︸ ︷︷ ︸

YYY1τ

√
P1δ

s1 + s0
GGG1eSSS1 + ZZZ1[s1+s0+1:T ]︸ ︷︷ ︸

YYY1δ

, (4.161)

where GGG1e := GGG1ΣΣΣ
1
2
1 ΦΦΦ1XXX′2 is the equivalent channel with correlation matrix

RRR1e := 1
N1

E
[
GGGH

1eGGG1e
]

=


ρ2τR̆RR10

√
ρ2τρ2aΦΦΦH

10ΣΣΣ1ΦΦΦ11

√
ρ2τρ2aΦΦΦH

11ΣΣΣ1ΦΦΦ10

[
0 0
0 ρ2δ

s0
tr
(
R̆RR10

)
III s1−s2

]
+ ρ2aR̆RR22

. (4.162)

Following Lemma 4.2, user 1 estimates the equivalent channel GGG1e using a MMSE estimator
based on YYY1τ as

ĜGG1e =
√
P1τYYY1τ (P1τRRR1e + III s1+s0)−1RRR1e. (4.163)

The estimate ĜGG1e and the estimation error G̃GG1e = GGG1e − ĜGG1e have zero mean and row
covariance

1
N1

E
[
ĜGGH

1eĜGG1e
]

= P1τRRR1e(P1τRRR1e + III s1+s0)−1RRR1e, (4.164)

1
N1

E
[
G̃GGH

1eG̃GG1e
]

= RRR1e − P1τRRR1e(P1τRRR1e + III s1+s0)−1RRR1e =
(
RRR−1

1e + P1τIII s1+s0

)−1
. (4.165)

Using the worst-case noise argument and Lemma 4.1 as before, we have the achievable rate
R1 for user 1 as defined in (4.151).

4.4.5.b Rate of User 2

After some manipulations, the received signal at user 2 can be written as

YYY2 = GGG2ΣΣΣ
1
2
2 ΦΦΦ2

√ρ2τP1τIII s0 0
[√

ρ2δP1τ
s0

SSS′2 AAA
]

0
√
P2τIII s2

√
P2δ
s2

SSS2

+ ZZZ2 (4.166)

=
[
YYY2τ YYY2δa YYY2δb︸ ︷︷ ︸

YYY2δ

]
, (4.167)

where AAA :=
[√
ρ2τIII s0 0

√
ρ2δ
s0

SSS′2
]√

P1δ
s1+s0 SSS1 and

YYY2τ := GGG2ΣΣΣ
1
2
2 ΦΦΦ2PPP

1
2
2τ + ZZZ2[1:s2+s0], (4.168)

YYY2δa := GGG2ΣΣΣ
1
2
2 ΦΦΦ2

 √
ρ2δP1τ
s0

SSS′2√
P2δ
s2

SSS2[1:s1−s2]

+ ZZZ2[s2+s0+1:s1+s0], (4.169)

YYY2δb := GGG2ΣΣΣ
1
2
2 ΦΦΦ2

[
AAA√

P2δ
s2

SSS2[s1−s2+1:T−s2]

]
+ ZZZ2[s1+s0+1:T ], (4.170)
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where PPP 2τ :=
[
ρ2τP1τIII s0 0

0 P2τIII s2

]
. The rate that user 2 can achieve is 1

T I(YYY2;SSS′2,SSS2)

bits/channel use with

I(YYY2;SSS′2,SSS2) = I(YYY2τ ,YYY2δ;SSS′2,SSS2) (4.171)
= I(YYY2τ ;SSS′2,SSS2)︸ ︷︷ ︸

=0

+I(YYY2δ;SSS′2,SSS2 |YYY2τ ) (4.172)

= I(YYY2δ;SSS′2,SSS2,AAA |YYY2τ )− I(YYY2δ;AAA |YYY2τ ,SSS′2,SSS2) (4.173)

where the second and third equalities follow from the chain rule.

Using the worst-case noise argument and Lemma 4.1 as before, we can bound the term
I(YYY2δ;SSS′2,SSS2,AAA |YYY2τ ) by the sum of the first two terms in the right-hand side of (4.153).
Whereas the term I(YYY2δ;AAA |YYY2τ ,SSS′2,SSS2) can be upper bounded as

I(YYY2δ;AAA |YYY2τ ,SSS′2,SSS2)
= I(YYY2δb;AAA |SSS′2,SSS2,YYY2τ ) (4.174)
= I(YYY2δb;AAA |SSS2,YYY2τ )− I(YYY2δb;SSS′2 |SSS2,YYY2τ ) (4.175)
≤ I(YYY2δb;AAA |SSS2[s1−s2+1:T−s2−s0],YYY2τ ) (4.176)
= h(AAA|SSS2[s1−s2+1:T−s2−s0],YYY2τ )− h(AAA|SSS2[s1−s2+1:T−s2−s0],YYY2τ ,YYY2δb) (4.177)

≤ h(AAA|SSS2[s1−s2+1:T−s2−s0],YYY2τ )− h(AAA|SSS2[s1−s2+1:T−s2−s0],YYY2τ ,YYY2δb,GGG2ΣΣΣ
1
2
2 ΦΦΦ2) (4.178)

= h(AAA|SSS2[s1−s2+1:T−s2−s0],GGG2ΣΣΣ
1
2
2 ΦΦΦ2)− h(AAA|SSS2[s1−s2+1:T−s2−s0],YYY2δb,GGG2ΣΣΣ

1
2
2 ΦΦΦ2) (4.179)

= I(YYY2δb;AAA |SSS2[s1−s2+1:T−s2−s0],GGG2ΣΣΣ
1
2
2 ΦΦΦ2) (4.180)

= I

(
YYY2δb−

√
P2δ
s2

GGG2ΣΣΣ
1
2
2 ΦΦΦ22SSS2[s1−s2+1:T−s2−s0];AAA

∣∣∣∣∣ SSS2[s1−s2+1:T−s2−s0],

GGG2ΣΣΣ
1
2
2 ΦΦΦ20,GGG2ΣΣΣ

1
2
2 ΦΦΦ22

)
(4.181)

= I

(
GGG2ΣΣΣ

1
2
2 ΦΦΦ20AAA + ZZZ2[s1+s0+1:T ];AAA

∣∣∣∣ GGG2ΣΣΣ
1
2
2 ΦΦΦ20

)
(4.182)

= (T − s1 − s0)E
[
log2 det

(
IIIN2 + P1δ

(
ρ2τ + ρ2δ

s1 − s2
s0

)
Ω̄ΩΩ20Ω̄ΩΩ

H
20

)]
, (4.183)

where Ω̄ΩΩ20 ∈ C(N2 × s0) has independent rows following NC
(
0, R̆RR20

)
. Here, (4.174) and

(4.175) follows from the Markov chains YYY2δa ↔ SSS′2 ↔ AAA and YYY2δb ↔ AAA↔ SSS′2, respectively;
(4.176) holds because mutual information is nonnegative and both YYY2δb and AAA are inde-
pendent of SSS2[1:s1−s2]; (4.178) holds because conditioning reduces entropy; (4.179) holds
because AAA is independent of both YYY2τ and GGG2ΣΣΣ

1
2
2 ΦΦΦ2, while given YYY2δb, AAA depends on YYY2τ only

through GGG2ΣΣΣ
1
2
2 ΦΦΦ2; and in the last equality, we used that E

[
AAAAAAH] = P1δ

(
ρ2τ + ρ2δ

s1−s2
s0

)
III s0 .

4.4.6 Numerical Results

In this subsection, we compute numerically the achievable rate regions for the BC with the
aforementioned schemes, namely, TDMA, rate splitting, product superposition, and hybrid
superposition. We assume Rayleigh fading, i.e., GGGk has independent NC(0, 1) entries. We
generate the correlation matrix RRRk = UUUkΣΣΣkUUU

H
k, k ∈ {1, 2}, as follows:

• The eigenvalues in ΣΣΣk are drawn from the joint distribution of the nonzero eigenvalues
of a Wishart matrix BBBBBBH where BBB is a M × rk random matrix with independent
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NC(0, 1) entries, and normalized such that tr(ΣΣΣk) = M . This is suggested by the
maximum-entropy channel modeling approach [168], [169].

• The eigenvectors UUUk are generated as UUUk = ÛUUkΞΞΞk, where ÛUU1 and ÛUU2 are drawn
respectively by selecting randomly r1 and r2 columns of a random unitary matrix
UUU which is uniformly distributed in the space of M ×M unitary matrix, and the
rotation matrix ΞΞΞk is drawn uniformly from the space of rk × rk unitary matrix.

In Fig. 4.2, we plot the rate regions for the BC achieved with these schemes in a
setting of T = 24, M = 16, N1 = N2 = 12, r1 = 10, r0 = 6, r2 = 4 and T = 32,
M = N1 = N2 = 16, r1 = 8, r0 = 7, r2 = 1, at SNR P = 30 dB. We observe that the rate
region of TDMA while transmitting in the channel eigenspace Span(UUUk) (see (4.70)) is
much larger than the region of TDMA while transmitting in full space CM (see (4.69)).
This is because the former scheme spends less time (rk channel uses) for channel estimation
than the latter scheme (spending M channel uses), while both schemes essentially estimate
the same effective channel. The rate region can be largely improved with the proposed
schemes. Rate splitting achieves a large region w.r.t. other schemes, especially when the
ranks of the two eigenspaces are close to each other (as r1 = 9, r2 = 7 in Fig. 4.2(a)).
The improvement by product superposition is more pronounced when the rank difference
between two eigenspaces is more significant (as r1 = 10, r2 = 6 in Fig. 4.2(b)) since the gains
achieved by product superposition come from the nonoverlapping part of the eigenspaces.

4.5 K-User Broadcast Channel
In this section, we extend our DoF studies to the K-user scenario. In this case, a product
superposition scheme was proposed in [76], resulting in an achievable DoF tuple as follows.

Proposition 4.2 ([76, Theorem 5]). For the K-user noncoherent BC where the correlation
eigenvectors are nested such that UUUk−1 = [ŪUUk UUUk] with ŪUUk being a basis of the complement
of Span(UUUk) in Span(UUUk−1), k ∈ {2, 3, . . . ,K}, the DoF tuple (d1, . . . , dK) given by

d1 = N∗1

(
1− r1

T

)
and dk = N∗k

rk−1 − rk
T

, k ∈ {2, 3, . . . ,K} (4.184)

is achievable.

The nested correlation eigen-structure in Proposition 4.2 is a strong assumption. In this
section, we consider more general settings. We first describe further the correlation model
as follows. Recall that the rows of HHHk belong to the eigenspace Span(UUUk) of RRRk. Denote
the union of all channel eigenspaces as

V =
⋃

k∈[K]
Span(UUUk). (4.185)

V can be partitioned into 2K − 1 subspaces VJ of dimension rJ whose rJ basis vectors
span the channel of every user in a nonempty group J ⊂ [K] and are orthogonal to all
vectors in Span(UUUk) for k ∈ {[K] \ J }. In other words, VJ = ⋂

k∈J Span(UUUk). Obviously,∑
J⊂[K] rJ = rank(V) ≤M and ∑J⊂[K]: k∈J rJ = rank(Span(UUUk)) = rk. An example of

the correlation structure for the case of three-user BC is shown in Fig. 4.3.

In this way, the signal transmitted in the subspace VJ can be seen by every user in J
and is not seen by all other users. On the other hand, the signals transmitted in VJ and
VK interfere each other at every user in J ∩ K. To characterize the interfering relation
between signals transmitted in different subspaces, we introduce the concept of interference
graph as follows:
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Figure 4.2: The rate regions of various schemes for the spatially correlated BC with T = 24,
N1 = N2 = 12, M = 16, and at SNR P = 30 dB.

Definition 4.1. For k ∈ [K], the interference graph of order k, denoted by G(K, k), is an
undirected graph for which:

• the set of vertices is the set of unordered subsets of cardinality k of [K], i.e., J ⊂
[K] : |J | = k, hence a vertex is also denoted by a subset J ;

• there exists an edge between two vertices J and K if and only if J ∩ K 6= ∅.
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CM

V{1} V{2}

V{3}

V{1,2}

V{1,3} V{2,3}

V{1,2,3}

Figure 4.3: The channel eigenspace overlapping structure of the three-user BC.

The interference graph G(K, k) has
(K
k

)
vertices. It is a regular graph [170, Sec. 1.2]

of degree
(K
k

)
−
(K−k

k

)
− 1. Let χ(G(K, k)) denote the chromatic number of G(K, k), i.e.,

the minimum number of colors to color all the vertices such that adjacent vertices have
different colors. We have the following property.

Property 4.1 (The chromatic number of the interference graph). It holds that

χ
(
G(K, k)

)
= 1 if k = 1,
≤
(K
k

)
−
(K−k

k

)
− 1 if 1 < k ≤ bK/2c,

=
(K
k

)
if k > bK/2c.

(4.186)

Proof. χ
(
G(K, 1)

)
= 1 since G(K, 1) is edgeless. χ

(
G(K, k)

)
=
(K
k

)
when k > bK/2c

because in this case, G(K, k) is complete. The results for the case 1 < k ≤ bK/2c follows
from Brook’s theorem [170, Theorem 5.2.4].

4.5.1 The Symmetric K-user BC: An Achievable DoF Region with Rate
Splitting

We first consider the symmetric case:

rJi = rJj , ∀Ji,Jj ⊂ [K] : |Ji| = |Jj |. (4.187)

That is, the rank of the common channel eigenspace VJ is the same for all groups J
containing the same number of users. (In the two-user case, this corresponds to r1 = r2.)
Define

pk = rJ , ∀J ⊂ [K] : |J | = k, (4.188)
for k ∈ [K]. Then the set of parameters (p1, . . . , pK) characterizes the correlation structure
of the K-user symmetric BC. Furthermore, we assume that rk ≤ Nk, ∀k.

Theorem 4.7. The K-user symmetric noncoherent BC characterized by (p1, . . . , pK) can
achieve any permutation of the DoF tuple DK,L(p1, . . . , pK) = (d1, d2, . . . , dK), for any
L ∈ {0, 1, . . . ,K − 1}, defined by

dk = 1
T

K−max(k−1,L)∑
i=1

min
((

K − i
i− 1

)
pi, Nk

)T − Tτ (K,L) +
K−i∑

j=bK/2c+1

(
K − i
k

)
pj

,
(4.189)



4.5. K-User Broadcast Channel 101

for k ∈ [K], where Tτ (K,L) := ∑K−L
k=1 χ

(
G(K, k)

)
pk.

Let us first describe the achievable scheme in the 3-user case for clarity, then go for the
K-user case.

Example 4.1 (Achievable scheme for Theorem 4.7 for K = 3). When K = 3, the
correlation structure is illustrated in Fig. 4.3. Under the symmetry assumption, we have
r{1} = r{2} = r{3} := p1, r{1,2} = r{1,3} = r{2,3} := p2, r{1,2,3} := p3. The achievable scheme
for

D3,0(p1, p2, p3) =(
(p1 + 2p2 + p3)

(
1− Tτ

T

)
+ p1p2

T
, (p1 + p2)

(
1− Tτ

T

)
+ p1p2

T
, p1

(
1− Tτ

T

)
+ p1p2

T

)
,

(4.190)

is based on rate splitting and channel training as illustrated in Table 4.1.

Table 4.1: Illustration of pilot and data alignment for the scheme achieving
D3,0(p1, p2, p3)

V{1} Pilot Data Data
V{2} Pilot Data Data
V{3} Pilot Data Data
V{1,2} Pilot Data
V{2,3} Pilot Data
V{1,3} Pilot Data
V{1,2,3} Pilot Data

← p1 → ← p2 → ← p2 → ← p2 → ← p3 → ←− T − (p1 + 3p2 + p3) −→

Owing to linear precoding using a basis VVV J of VJ , pilots can be sent in each subspace
VJ ,J ⊂ [3], so that all users in J can learn the channel directions in VK. User 1 needs
to learn channel directions in V{1}, V{1,2}, V{1,3}, and V{1,2,3}, and similar for user 2 and
user 3. To avoid pilot interference, the pilots in V{1,2}, V{2,3}, and V{1,3} must be sent in
different channel uses. Whereas pilots in V{1}, V{2}, and V{3} can be sent simultaneously
because they do not interfere with each other. This alignment of pilots can be interpreted as
interference graph coloring: pilots can be transmitted simultaneously in both VJ and VK if
J ∩K = ∅, i.e., the vertices corresponding to J and K are not connected and thus assigned
different colors. The interference graph G(3, 1) has chromatic number χ

(
G(3, 1)

)
= 1,

which is also the amount of time, normalized by p1, needed for pilot transmission without
interference in V{1}, V{2}, and V{3}. Similarly, it takes χ

(
G(3, 2)

)
p2 = 3p2 channel uses to

transmit pilot interference-free in V{1,2}, V{2,3}, and V{1,3}, and takes χ
(
G(3, 3)

)
p3 = p3

channel uses for pilot transmission in V{1,2,3}.

In this way, the total time for channel training is Tτ = ∑3
k=1 χ

(
G(3, k)

)
pk = p1 +3p2 +p3

channel uses and there remains T − Tτ channel uses for simultaneous data transmission in
all subspaces. By dedicating the data transmitted in V{1,2}, V{1,3}, and V{1,2,3} to user 1,
user 1 achieves (p1 + 2p2 + p3)(1− Tτ

T ) DoF. By dedicating the data transmitted in V{2,3}
to user 2, user 2 achieves (p1 + p2)(1− Tτ

T ) DoF. User 3 achieves p1(1− T−τ
T ) DoF from

the data transmitted in V{3}. On top of that, the transmitter can transmit additional data
to user 3 in V{3} by superimposing it with the pilot for user 1 and user 2 in V{1,2} without
interference. Similarly, user 1 and user 2 can also receive additional data. With these
additional data, each user achieves p1p2

T DoF. Therefore, D3,0(p1, p2, p3) is achieved.
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To achieve D3,1(p1, p2, p3), which is(
(p1+2p2)

(
1− p1+3p2

T

)
+ p1p2

T
, (p1+p2)

(
1− p1+3p2

T

)
+ p1p2

T
, p1

(
1− p1+3p2

T

)
+ p1p2

T

)
,

(4.191)

we simply ignore the subspace V{1,2,3}. Then, we do not send pilot in this subspace and
have more time to send data in all other subspaces. As a price for that, we lose the data
we could send in V{1,2,3} during the last T − Tτ channel uses. When rank

(
V{1,2,3}

)
= p3 is

small enough, this loss is not significant and we can gain DoF. The achievable scheme is
illustrated in Table 4.2.

Table 4.2: Illustration of pilot and data alignment for the scheme achieving
D3,1(p1, p2, p3)

V{1} Pilot Data Data
V{2} Pilot Data Data
V{3} Pilot Data Data
V{1,2} Pilot Data
V{2,3} Pilot Data
V{1,3} Pilot Data
V{1,2,3}

← p1 → ← p2 → ← p2 → ← p2 → ←−−−−−−− T − (p1 + 3p2) −−−−−−−→

Similarly, D3,2(p1, p2, p3) =
(
p1
(
1 − p1

T

)
, p2
(
1 − p2

T ), p3(1 − p3
T

))
can be achieved by

ignoring V{1,2}, V{2,3}, V{1,3}, and V{1,2,3}, as illustrated in Table 4.3.

Table 4.3: Illustration of pilot and data alignment for the scheme achieving
D3,2(p1, p2, p3)

V{1} Pilot Data
V{2} Pilot Data
V{3} Pilot Data
V{1,2}
V{2,3}
V{1,3}
V{1,2,3}

← p1 → ←−−−−−−−−−−−−−−−−−−−− T − p1 −−−−−−−−−−−−−−−−−−−−→

Due to symmetry, any permutation of D3,L, L ∈ {0, 1, 2} is achieved by permuting the
users’ indices.

Proof of Theorem 4.7. We first show the achievable scheme for DK,0(p1, . . . , pK) given by

dk = 1
T

K−k+1∑
i=1

(
K − i
i− 1

)
pi

T − Tτ (K, 0) +
K∑

j=bK/2c+1

(
K − i
j

)
pj

. (4.192)

The scheme is based on rate splitting and channel training with two key elements: alignment
of pilots in different subspaces, and superposition of additional data on top of pilots without
causing interference.

User k needs to learn the channel directions in all subspaces VJ such that k ∈ J
and is oblivious to signals (pilot or data) transmitted in other subspaces. To avoid pilot
interference, the pilots in VJ and VK need to be orthogonal in time if J ∩ K = ∅, i.e, J
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and K are connected in the interference graph. Pilots in VJ and VK can be transmitted
simultaneously if J ∩ K = ∅, i.e., J and K are not connected. Therefore, the problem of
pilot alignment can be interpreted as interference graph coloring: pilots can be transmitted
at the same time without interference in the subspaces corresponding to vertices with the
same color. The minimum total amount of time for pilot transmission, normalized by
the subspace dimension, is thus the minimum number of colors, which is the chromatic
number of the graph. That is, the total training time is Tτ (K, 0) = ∑K

k=1 χ
(
G(K, k)

)
pk

channel uses. In the remaining T − Tτ (K, 0) channel uses, data is transmitted in all
subspaces. The DoF that user k, k ∈ J , can achieve with the message transmitted in VJ
is 1

T p|VJ |
(
T − Tτ (K, 0)

)
.

Notice that for any l > bK/2c, the interference graph G(K, l) is fully connected, the
pilots in subspaces VK for |K| = l cannot be transmitted at the same time. However,
additional data can be transmitted in any subspace VJ such that VK ∩ VJ = ∅. In this
way, during the training of all subspaces VK with |K| = l, for each subset J which does not
intersect with |K|, additional data can be transmitted in

(K−|J |
l

)
pl channel uses, enabling

each user in J to achieve 1
T

(K−|J |
l

)
pJ pl more DoF.

Summing up the DoF, the number of DoF that each user in J can obtain from the
message transmitted in VJ is

1
T
p|J |

(
T − Tτ (K, 0)

)
+ 1
T

K∑
l=bK/2c+1

(
K − |J |

l

)
p|J |pl

= 1
T
p|J |

T − Tτ (K, 0) +
K∑

l=bK/2c+1

(
K − |J |

l

)
pl

. (4.193)

By dedicating all the messages transmitted in VK such that k ∈ J and J ∩ [k − 1] = ∅
to user k, user k achieves dk DoF where dk is given in (4.192). Then DK,0(p1, . . . , pK) is
achievable.

Similar to the 3-user case, DK,L(p1, . . . , pK) with L ∈ [K − 1] is achieved by ignoring
all the subspaces VJ with |J | > K − L. Finally, due to symmetry, any permutation of
DK,L(p1, . . . , pK) with L = 1, . . . ,K−1 can be achieved by permuting the users’ indices.

Remark 4.2. We can improve the achievable scheme by sending additional data during
the training of VK with |K| ≤ bK/2c also. However, the possibility for this additional
data depends on the actual coloring of the interference graph and would not admit nice
expressions of achievable DoF tuples. We therefore do not follow this direction in the
interest of developing closed-form expressions.

Computing the chromatic number χ
(
G(K, k)

)
is NP-complete in general [171]. Therefore,

one might confine to the achievable DoF tuples in the following corollary.

Corollary 4.3. The K-user symmetric noncoherent BC can achieve the DoF tuple
DK,l(p1, . . . , pK) given in Theorem 4.7, with Tτ (K,L) replaced by

K−L∑
k=1

((
K

k

)
−
(
K − k
k

)
− 1{1 < k ≤ bK/2c}

)
pk.

This corollary follows from Theorem 4.7 and Property 4.1.

Based on Theorem 4.7, we have the following achievable DoF region for the symmetric
K-user BC.
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Figure 4.4: An achievable DoF region of the symmetric three-user noncoherent BC with spatial
correlation with T = 24, r{1} = r{2} = r{3} =: p1 = 4, r{1,2} = r{1,3} = r{2,3} =: p2 = 2, and
r{1,2,3} =: p3 = 1.

Theorem 4.8. The K-user symmetric noncoherent BC characterized by (p1, . . . , pK) can
achieve the convex hull of all permutations of any DoF tuple of the form(

DK,L(p∗1, . . . , p∗k), 0, . . . , 0
)
, for k ∈ [K], L ∈ {0, . . . , k − 1}, (4.194)

with DK,L(·) defined in (4.189) and p∗l = ∑K−k
i=0

(K−k
i

)
pl+i for l ∈ [k].

Proof. When k = K, (4.194) becomes DK,L(p1, . . . , pk), which can be achieved as stated
in Theorem 4.7.

When k < K, by ignoring the last K − k users, we construct a new symmetric BC with
k users. For example, by ignoring user 3 in the symmetric 3-user BC, we obtain a two-user
BC in which the private subspace of user 1 and user 2 are V{1} ∩ V{1,3} and V{2} ∩ V{2,3},
respectively, both of rank p∗1 = p1 + p2; whereas the common subspace of two users is
V{1,2}∩V{1,2,3} of rank p∗2 = p2 +p3. In general, the new K-user BC is characterized by the
new set of parameters (p∗1, . . . , p∗k), where p∗l = ∑K−k

i=0
(K−k

i

)
pl+i, l ∈ [k]. Then, applying

Theorem 4.7 to this k-user symmetric BC, we have that Dk,L(p∗1, . . . , p∗k) is achievable.
Therefore,

(
Dk,L(p′1, . . . , p′k), 0, . . . , 0

)
is achievable for the original K-user symmetric BC.

Any permutation of (4.194) can be achieved by permuting the users’ indices.

In Fig. 4.4, we plot the achievable DoF region for the symmetric 3-user BC given
in Theorem 4.8 with T = 24, r{1} = r{2} = r{3} = 4, r{1,2} = r{1,3} = r{2,3} = 2, and
r{1,2,3} = 1.

4.5.2 The General K-User BC: An Extension of Hybrid Superposition

For the general K-user BC, an achievable DoF region with hybrid superposition is stated
in the next theorem.
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Theorem 4.9. The K-user noncoherent BC can achieve the DoF tuple (d1, . . . , dK) given
by

dk =
∑

J⊂[k]: k∈J
rJ
(
1− rk

T

)
+

K∑
l=k+1

∑
J⊂[K]: k∈J ,|{k+1,...,K}∩J |<2

rJ
rl − rk
T

, (4.195)

where it is assumed w.l.o.g. that rK ≥ rK−1 ≥ · · · ≥ r1.

Proof. For simplicity, let us focus on the 3-user case. We assume w.l.o.g. that r3 ≥ r2 ≥ r1.
For each partition VJ , J ⊂ [3], we build a precoder VVV J ∈ CM×rJ as an orthonormal
basis of VJ , thus UUUH

kVVV J = 0, ∀k /∈ J , and rank(UUUH
kVVV J ) = rJ , ∀k ∈ J . To combine rate

splitting and product superposition, the transmitted signal is

XXX = [VVV {1,2,3} VVV {2,3} VVV {1,3} VVV {3}]S̃SS2SSS3 + [VVV {1,2,3} VVV {2}]S̃SS1SSS2 + VVV {1}SSS1, (4.196)

with

SSS3 = [III r3 SSSd,3] ∈ Cr3×T , (4.197)
SSS2 = [0(r{1,2}+r{2})×(r{1,2,3}+r{2,3}) III r{1,2}+r{2} SSSd2] ∈ C(r{1,2}+r{2})×T , (4.198)

SSS1 = [0r{1}×(r{1,2,3}+r{1,3}+r{1,2}) III r SSSd1] ∈ Cr{1}×T , (4.199)

S̃SS2 =

III r{1,2,3}+r{2,3} 0(r{1,2,3}+r{2,3})×(r{1,2}+r{2}) S̃SSd2
0r{1,3}×r{1,2,3} III r{1,3} 0r{1,3}×(r{1,2}+r{1}) S̃SSd21

S̄SS2

 ∈ Cr3×r3 , (4.200)

S̃SS1 =
[
0r{1,2}×(r{1,3}−r{2,3}) III r{1,2} 0r{1,2}×r{1} S̃SSd1

S̄SS1

]
∈ C(r{1,2}+r{2})×(r{1,2}+r{2}), (4.201)

where S̄SS2 and S̄SS1 are designed to guarantee that S̃SS2 and S̃SS1 are respectively nonsingular.

The received signal at user 3 is

YYY3 = HHH3[VVV {1,2,3} VVV {2,3} VVV {1,3} VVV {3}]S̃SS2[III r3 SSSd3] + ZZZ3. (4.202)

User 3 estimates the equivalent channel HHH3[VVV {1,2,3} VVV {2,3} VVV {1,3} VVV {3}]S̃SS2 in the first r3
channel uses and then decode SSSd3 to achieve full individual DoF r3(1− r3

T ).

The received signal at user 2 is

YYY2 = HHH2[VVV {1,2,3} VVV {2,3}][III r{1,2,3}+r{2,3} 0 S̃SSd2]SSS3 + HHH2[VVV {1,2} VVV {2}]S̃SS1SSS2 + ZZZ2 (4.203)

= HHH2[VVV {1,2,3} VVV {2,3} [VVV {1,2} VVV {2}]S̃SS1]
[
III r{1,2,3}×r{2,3} 0 [S̃SSd2 BBB]

0 III r{1,2}+r{2} SSSd2

]
+ ZZZ2,

(4.204)

where BBB := [III r{1,2,3}+r{2,3} 0 S̃SSd2]SSSd3. User 2 can learn the equivalent channel

HHH2[VVV {1,2,3} VVV {2,3} [VVV {1,2} VVV {2}]S̃SS1]

in the first r2 channel uses and then decode both S̃SSd2 and SSSd2 to achieve (r{1,2,3} +
r{2,3}) r3−r2T + (r{1,2} + r{2})(1− r2

T ) DoF in total.
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The received signal at user 1 is

YYY1 = HHH1[VVV {1,2,3} VVV {1,3}]
[
III r{1,2,3} 0r{1,2,3}×(r{1,3}+r{1,2}+r{2})S̃SSd2[1:r{1,2,3}]
0r{1,3}×r{1,2,3} III r{1,3} 0r{1,3}×(r{1,2}+r{1}) S̃SSd21

]
SSS3

+ HHH1VVV {1,2}[0r{1,2}×(r{1,3}−r{2,3}) III r{1,2}0r{1,2}×r{1} S̃SSd1]SSS2 + HHH1VVV {1}SSS1 + ZZZ1 (4.205)

=HHH1[VVV {1,2,3}VVV {1,3}VVV {1,2}VVV {1}]


III {1,2,3} 0 0 0 [0r{1,2,3}×(r2−r1) S̃SSd2[1:r{1,2,3}] CCC]

0 III r{1,3} 0 0 [S̃SSd21 DDD]
0 0 III r{1,2} 0 [S̃SSd1 EEE]
0 0 0 III r{1} SSSd1


+ ZZZ1. (4.206)

whereCCC := [III r{1,2,3} 0 S̃SSd2[1:r{1,2,3}]]SSSd3, DDD := [0r{1,3}×r{1,2,3} III r{1,3} 0r{1,3}×(r{1,2}+r{1}) S̃SSd21]SSSd3,
and EEE := [0r{1,2}×(r{1,3}−r{2,3}) III r{1,2} 0r{1,2}×r{1} S̃SSd2]. User 1 learns the equivalent channel
HHH1[VVV {1,2,3} VVV {1,3} VVV {1,2} VVV {1}] in the first r1 channel uses then decode S̃SSd21, S̃SSd1 and SSSd1
to achieve r{1,3} r3−r1T + r{1,2}

r2−r1
T + r{1}(1− r1

T ) DoF in total. Therefore, the 3-user BC
can achieve the DoF triple(

r3

(
1− r3

T

)
,
(
r{1,2,3} + r{2,3}

)r3 − r2
T

+
(
r{1,2} + r{2}

)(
1− r2

T

)
,

r{1,3}
r3 − r1
T

+ r{1,3}
r3 − r1
T

+ r{1}

(
1− r1

T

))
. (4.207)

Following the same line, for the general K-user case such that rK ≥ rK−1 ≥ · · · ≥ r1,
we can achieve the DoF tuple given in (4.195).

4.6 Closing Remarks

Table 4.4: The achievable DoF and rate regions of the noncoherent MIMO
BC in spatially correlated generic block fading

Scenario Result Stated in

Singe user Achievable rate Theorem 4.2

Two users

Achievable DoF region Theorem 4.1
Achievable rate region with rate splitting Theorem 4.3,

Theorem 4.4
Achievable rate region with product superposition Theorem 4.5
Achievable rate region with hybrid superposition Theorem 4.6

K users Achievable DoF region with rate splitting Theorems 4.7, 4.8
Achievable DoF region with hybrid superposition Theorem 4.9

In this chapter, we study the noncoherent MIMO BC with spatial correlation. It is shown
that transmit correlation diversity, i.e., the difference in spatial correlations experienced
by different users, is beneficial. We study various scenarios with mutually nonexclusive
eigenspaces of the channel correlation matrices and propose pilot-based schemes that
achieve gains over conventional transmissions. The proposed schemes use pre-beamforming
(with rate splitting), product superposition, and a composition thereof. The main idea
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is to allow users to communicate in the nonoverlapping eigen-directions simultaneously
without causing interference and get some additional gain through the overlapping part.
Our schemes provide methods to exploit transmit correlation diversity to improve the
achievable DoF and rate of a MIMO BC using only statistical CSI. The proposed achievable
DoF and rate regions are summarized in Table 4.4.
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Noncoherent Communications
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Chapter 5

Cube-Split: A Structured Grassmannian
Constellation

In this chapter, we propose a practical structured Grassmannian constellation for nonco-
herent communication with a single transmit antenna over a Rayleigh flat and block fading
channel. The constellation is generated by partitioning the Grassmannian of lines into a
collection of bent hypercubes and defining a mapping onto each of these bent hypercubes such
that the resulting symbols are approximately uniformly distributed on the Grassmannian.
With a reasonable choice of parameters, this so-called cube-split constellation has higher
packing efficiency, represented by the minimum distance, than the existing structured con-
stellations. Furthermore, exploiting the constellation structure, we propose low-complexity
greedy symbol decoder and LLR computation, as well as an efficient way to associate it to a
multilevel code with multistage decoding. Numerical results show that the performance of the
cube-split constellation is close to that of a numerically optimized constellation and better
than other structured constellations. It also outperforms a coherent pilot-based scheme in
terms of error probability and achievable data rate in the regime of short coherence interval
and large constellation size.

5.1 Overview
We consider noncoherent single-user SIMO communication in which a single-antenna
transmitter transmits to an N -antenna receiver. We assume flat and block fading channel,
i.e., the channel vector remains constant within each coherence block of T channel uses
with T ≥ 2 and changes independently between blocks. According to [49], the optimal
strategy achieving the high-SNR capacity in IID Rayleigh fading is to transmit isotropically
distributed vectors on CT belonging to the Grassmannian of lines, which is the space
of one-dimensional subspaces in CT [144], and use the span of these vectors to carry
information.1 Thus, the constellation design for this channel can be formulated as sphere
packing on the Grassmann manifold.2 The ultimate packing criteria is to minimize the

1When T < N + 1, a further condition for achieving the capacity is that the input norm square is beta
distributed; the rate achieved with constant-norm isotropically distributed input approaches the capacity
within a constant factor of O( lnN

T
) [50].

2See Section 1.2.2 in the introduction for a review of the capacity-achieving signal and Grassmannian
constellation design for the general MIMO case.
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detection error under noisy observation. This typically amounts to maximizing the distance
between the constellation points.

Although a numerical sphere-packing optimization on the Grassmannian results in
constellations with a good distance spectrum [63]–[66], [68], [69], this kind of constellation
has limited practical application due to the storage and ML-decoder complexity require-
ments. In this chapter, we go for another approach that imposes particular structure on
the constellation, thus facilitates low complexity constellation mapping and demapping.
We introduce a novel fully structured Grassmannian constellation. This constellation is
structurally generated by partitioning the Grassmannian of lines with a collection of bent
cubes and mapping the symbol’s coordinates in the Euclidean space onto one of these bent
cubes.3 The main advantages of our so-called cube-split constellation are as follows:

1. It has a good packing efficiency: its minimum distance is larger than that of existing
structured constellation and compares well with the fundamental limits.

2. It allows for a systematic decoder which has low complexity, hence can be easily
implemented in practice, yet achieves near-ML performance.

3. It admits a very simple yet effective binary labeling which leads to a low bit error
rate (BER).

4. It allows for an accurate LLR approximation which can be efficiently computed, and
can be efficiently associated to a multilevel coding-multistage decoding (multilevel
coding (MLC)-multistage decoding (MSD)) [173] scheme.

We verify by simulation that under IID Rayleigh block fading channel, in terms of error
probability (with or without channel codes) and achievable data rate, our cube-split
constellation achieves performance close to the numerically optimized constellation, and
outperforms existing structured Grassmannian constellations and a (coherent) pilot-based
scheme in the regime of short coherence interval and large constellation size.

The remainder of this chapter is organized as follows. The system model is presented and
Grassmannian constellations are overviewed in Section 5.2. We describe the construction
and labeling of our cube-split constellation in Section 5.3. We next propose low-complexity
decoder and LLR computation, and a MLC-MSD scheme in Section 5.4. Numerical results
on the error rates and achievable data rate are provided in Section 5.5. Section 5.6 concludes
the chapter. We discuss the extension to the MIMO case and present the preliminaries
and proofs in the appendices.

5.2 System Model and Grassmannian Constellations

5.2.1 System Model

We consider a SIMO noncoherent channel in which a single-antenna transmitter transmits
to a receiver equipped with N antennas. The channel between the transmitter and the
receiver is assumed to be flat and block fading with coherence interval T symbol periods
(T ≥ 2). That is, the channel vector hhh ∈ CN remains constant during each coherence block
of T symbols, and changes to an independent realization in the next block, and so on. The
distribution of hhh is known, but its realizations are unknown to both ends of the link. We
assume IID Rayleigh fading, i.e., hhh ∼ NC(0, IIIN ). Within a coherence block, the transmitter

3Our constellation was used in [172] as a quantization codebook on the Grassmannian of lines. Although
the constellation structure is similar, the labeling and LLR computation presented here do not appear in
the quantization problem.
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sends a signal xxx ∈ CT , and the receiver receives the T ×N signal matrix

YYY =
√
PTxxxhhhT + ZZZ, (5.1)

where ZZZ ∈ CT×N is the additive noise with IID NC(0, 1) entries independent of hhh, and the
block index is omitted for simplicity. We consider the power constraint E

[
‖xxx‖2

]
= 1, so

that the transmit power P is identified with the SNR at each receive antenna. From [50,
Eq.(9)] (see (1.42) in Chapter 1), the high-SNR capacity of this channel is given by

C(P,N, T ) =
(

1− 1
T

)
log2 P + c(N,T ) + o(1) bpcu (5.2)

as P →∞, with

c(N,T ) = 1
T

log2
(L− 1)!

(N − 1)!(T − 1)! +
(
1− 1

T

)
log2 T

+ L

T
log2

N

L
+ L

T
(ψ(N)− 1)log2 e, (5.3)

where L := min{N,T − 1}, L := max{N,T − 1}, and ψ(·) is Euler’s digamma function.
Note that this generalizes and coincides with [49, Eq.(24)] when T ≥ N + 1.

We assume that the input xxx is taken from a finite constellation X of size |X |. Given an
observation YYY = YYY , the ML decoder is

x̂xxML = arg max
xxx∈X

pYYY|xxx(YYY |xxx). (5.4)

Conditioned on xxx = xxx, YYY is a Gaussian matrix with independent columns having the same
covariance matrix III T + PTxxxxxxH, hence the likelihood function pYYY|xxx(YYY |xxx) can be derived as

pYYY|xxx(YYY |xxx) = exp
(
−tr{YYY H(III T + PTxxxxxxH)−1YYY }

)
πTdet(III T + PTxxxxxxH) (5.5)

=
exp

(
− ‖YYY ‖2F + PT

1+PT‖xxx‖2 ‖YYY
Hxxx‖2

)
πT (1 + PT‖xxx‖2) . (5.6)

Thus, for unit-norm input ‖xxx‖ = 1, the ML decoder (5.4) is simply

x̂xxML = arg max
xxx∈X
‖YYY Hxxx‖2. (5.7)

Assuming that all constellation symbols are equally likely to be transmitted, i.e., the
input law is pxxx(xxx) = 1

|X |1{xxx ∈ X}, the achievable data rate is given as

R = 1
T
I(xxx;YYY) (5.8)

= 1
T
E

log2
pYYY|xxx(YYY|xxx)

1
|X |
∑
xxx∈X pYYY|xxx(YYY|xxx)

 (5.9)

= log2 |X |
T

− 1
T
E
[
log2

∑
xxx∈X pYYY|xxx(YYY|xxx)
pYYY|xxx(YYY|xxx)

]
bpcu. (5.10)

Here, log2 |X |
T is the rate achievable in the noiseless case, and 1

T E
[
log2

∑
xxx∈X pYYY|xxx(YYY|xxx)
pYYY|xxx(YYY|xxx)

]
is the

rate loss due to noise. In the large constellation regime, the achievable rate converges to
the channel capacity C = maxpxxx

1
T I(xxx;YYY) as the considered constellation gets close to the

optimal constellation. Thus it can be used as a performance metric as done in [70, Section
V]. The expectation in (5.10) does not have a closed form in general, and we resort to the
Monte Carlo method to compute R.
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5.2.2 Constellations on the Grassmannian of Lines

It was shown that the high-SNR capacity (5.2) is achieved with isotropically distributed
input xxx such that its distribution is invariant under rotation, i.e., pxxx(xxx) = pxxx(QQQxxx) for any
T ×T deterministic unitary matrix QQQ [49], [50]. The span of such xxx is uniformly distributed
on the Grassmannian of lines G(CT , 1) [144]. Motivated by this, the constellation X can
be designed by choosing |X | elements of G(CT , 1), represented by |X | unit-norm vectors
{xxx1, . . . ,xxx|X |}. Both xxx and the noise-free observation hjxxx at receive antenna j ∈ [N ] belong
to the set {λxxx, λ ∈ C}. Thus, by definition, xxx and hjxxx represent the same symbol in
G(CT , 1). Therefore, Grassmannian signaling guarantees error-free detection without CSI
in the noiseless case if the symbols are not colinear. When the noise ZZZ is present, since its
columns are almost surely not aligned with the signal xxx, the one-dimensional span of the
received signal at each receive antenna deviates from that of xxx w.r.t. a distance measure,4
leading to a detection error if YYY is outside the decision region of the transmitted symbol.
With the chordal distance d(xxx,yyy) :=

√
1− |xxxHyyy|2, the decision regions of the optimal ML

decoder (5.7) in the case N = 1 are the Voronoi regions defined for symbol xxxj , j ∈ [|X |],
as

Vj =
{
ccc ∈ G(CT , 1) : d(ccc,xxxj) ≤ d(ccc,xxxl),∀l 6= j

}
. (5.11)

The constellation X should be designed so as to minimize the probability of decoding error.

Following the footsteps of [53], we can derive the pairwise error probability (PEP) of
mistaking a symbol xxxj for another symbol xxxl of the ML decoder as

PML
j,l = P

(
‖YYYHxxxl‖2 > ‖YYYHxxxj‖2

∣∣∣ xxx = xxxj
)

(5.12)

= 1
2

1−
(

1 + 4(1 + PT )
(d(xxxj ,xxxl)PT )2

)− 1
2
. (5.13)

We can verify that the PEP is decreasing with the chordal distance. The error probability
PML
e of the ML decoder can be upper bounded in terms of the PEP using the union bound

as

PML
e = 1

|X |

|X |∑
j=1

P(x̂xx 6= xxx|xxx = xxxj) (5.14)

≤ 1
|X |

|X |∑
j=1

∑
l 6=j

PML
j,l (5.15)

≤ |X | − 1
2

1−
(

1 + 4(1 + PT )
(dminPT )2

)− 1
2

, (5.16)

where dmin := min
1≤j<l≤|X |

d(xxxj ,xxxl) is the minimum pairwise chordal distance of the constella-
tion. Therefore, maximizing the minimum pairwise distance minimizes the union bound.
This leads to a commonly used constellation design criteria

max
X={xxx1,...,xxx|X|}

min
1≤j<l≤|X |

d(xxxj ,xxxl). (5.17)

4As mentioned in Appendix 1.B, there are several choices for the distance measure between subspaces,
such as chordal distance, spectral distance, Fubini-Study distance, geodesic distance. For the Grassmannian
of lines, these distances are equivalent up to a monotonically increasing transformation. We adopt the
commonly used chordal distance.
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This optimization problem can be solved numerically. The resulting constellation, however,
is hard to exploit in practice due to its lack of structure. In particular, the unstructured
constellations are normally used with the high-complexity ML decoder, do not admit a
straightforward binary labeling, and need to be stored at both ends of the channel. On
the other hand, another approach imposes particular structure on the constellation, thus
facilitates low complexity constellation mapping and, probably, demapping.

Let us briefly review some existing structured Grassmannian constellations for the
SIMO channel. The Fourier constellation [70] contains the rows of the discrete Fourier
transform matrix. It coincides with the algebraically constructed constellation in [71,
Section III-A] when T = 2. Unfortunately, this design still requires numerical optimization
of the Fourier frequencies and needs ML decoding. The exp-map constellation [74] is
obtained by mapping each vector qqq containing T − 1 QAM symbols into a noncoherent
symbol xxx via the exponential map xxx =

[
cos(γ‖qqq‖) − sin(γ‖qqq‖)

‖qqq‖ qqqT
]T

with the homothetic
factor γ given in [74, Eq.(19)]. The coprime-PSK constellation [76] has symbols of the
form xxx = [x y zzzT]T where x and y are respectively Qx-PSK and Qy-PSK symbols such that
Qx and Qy are coprime, and zzz ∈ C(T−2)×1 belongs to a sub-constellation {zzz1, . . . , zzzQz}
such that zzzj and zzzl are linearly independent for any j 6= l. The drawback of this design is
that a good choice for {zzz1, . . . , zzzQz} is not specified and one might need to numerically
generate it. The constellation in [77] has a multi-layer construction: starting from an
initial constellation, the layer-j symbols are generated by moving each previous-layer
symbols along a set of K geodesics. Specifically, given xxx, the new symbol x̄xx is generated as
x̄xx = xxxvk cos(φj) + xxx⊥ sin(φj) where vk, |vk| = 1, determines the k-th geodesic, sin(φj) is
the moving distance, and xxx⊥ is orthogonal to xxx. According to [77, Theorem 2], {vk}Kk=1
should be evenly spread on the unit circle. However, a good choice for sin(φj) is not
known. Both the coprime-PSK constellation [76] and the multi-layer constellation [77]
require ML decoding. The constellations in [71, Section III-B] and [72] are designed for the
multi-transmit-antenna case only, while the constellation based on the Cayley transform [75]
relies partly on numerical optimization of T × T matrices. The construction in [174] is
possible only for constellations of size at most T 2.

In the next section, we design a novel fully structured constellation in the Grassmannian
of lines.

5.3 Cube-Split Constellation

5.3.1 Design Approach

Our design approach follows by first partitioning the Grassmannian of lines into a collection
of cells, then defining a mapping from an Euclidean space onto one of these cells. The
details are as follows.

5.3.1.a Partitioning of the Grassmannian

We consider a set of V Grassmannian points {ζζζ1, . . . , ζζζV } and partition the Grassmannian
into V cells whereby cell i is defined as

Si :=
{
xxx ∈ G(CT , 1) : d(xxx,ζζζi) < d(xxx,ζζζj), ∀j ∈ [V ] \ {i}

}
. (5.18)

We ignore the cell boundaries for which d(xxx,ζζζi) = d(xxx,ζζζj) ≤ d(xxx,ζζζk) for some i 6= j and
any k /∈ {i, j} since this is a set of measure zero. In this way, a symbol xxx belongs to cell Si
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if

i = arg min
j∈[T ]

d(xxx,ζζζj), (5.19)

that is, ζζζi is the closest point to xxx among {ζζζ1, . . . , ζζζV }. Thus, these cells correspond to the
Voronoi regions associated to the initial set of points {ζζζ1, . . . , ζζζV }.

5.3.1.b Mapping from the Euclidean Space onto a Cell

The Grassmannian of lines G(CT , 1) has T − 1 complex dimensions, i.e. 2(T − 1) real
dimensions, and so do the cells. Therefore, any point on a cell can be parameterized by
2(T − 1) real coefficients. We choose to define these coefficients in the Euclidean space of
2(T − 1) real dimensions, and let them determine the symbol through a bijective mapping
gggi(·) from this Euclidean space onto the cell Si. On the other hand, to define a grid in the
Euclidean space, let Aj denote finite sets of 2Bj points regularly spread on the interval
(0, 1) in order to maximize the minimum distance within the set (Bj then denotes the
number of bits necessary to characterize a point in Aj) so that

Aj =
{

1
2Bj+1 ,

3
2Bj+1 , . . . ,

2Bj+1 − 1
2Bj+1

}
, j ∈ [2(T − 1)]. (5.20)

The Cartesian product of these sets ⊗2(T−1)
j=1 Aj is then a grid in the Cartesian product of

2(T − 1) intervals (0, 1) that we denote by (0, 1)2(T−1).

The constellation can be formally described as the collection of the mapping of this grid
onto each cell S1, . . . , SV , i.e.

X =

xxx = gggi(aaa) : i ∈ [V ], aaa ∈
2(T−1)⊗
j=1

Aj

. (5.21)

We refer to i as the cell index of symbol xxx = gggi(aaa) since it identifies the cell which xxx
belongs to, and to the components of aaa as the (local) coordinates of xxx since they identify
the location of xxx within the cell (i.e. the relative position of xxx w.r.t. the cell center ζζζi). The
constellation X can be seen as the collection of V deformed lattice constellations containing
in total V ∏2(T−1)

i=j 2Bj symbols. Note that for asymptotically large Bj , choosing the points
in Aj with equal probability defines a distribution that converges weakly to the uniform
distribution on (0, 1). Therefore, in this regime, the distribution of the points on the
Euclidean grid ⊗2(T−1)

j=1 Aj converges to a continuous uniform distribution in (0, 1)2(T−1).
On the other hand, as mentioned in Section 5.2.2, an optimal constellation has symbols
uniformly distributed on the Grassmannian. Therefore, focusing on this asymptotic regime
(to support large constellations), we design {ζζζi}Vi=1 and {gggi}Vi=1 such that for any i, the
image of the uniform distribution in (0, 1)2(T−1) through gggi is uniformly distributed in Si,
i.e., we seek mappings satisfying the following property.

Property 5.1. Let aaa be a random vector uniformly distributed on (0, 1)2(T−1), then for
any i ∈ [V ], gggi(aaa) is uniformly distributed on the cell Si of G(CT , 1).

5.3.2 Constellation Specifications

We construct our constellation using the above approach as follows. We first choose the
cell centers to be the canonical basis vectors {eee1, . . . , eeeT }, so V = T . With this choice, the
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cells S1, . . . , ST are easily characterized since Si can be defined in terms of the symbol’s
coordinates as

Si :=
{
xxx ∈ G(CT , 1) : |xi| > |xj |,∀j ∈ [T ] \ {i}

}
. (5.22)

However, the direct manipulation of the Grassmannian cell Si is not straightforward. Hence,
we equivalently define the mapping gggi as

gggi(aaa) = 1√
1 +∑T−1

j=1 |tj |2
[t1 . . . ti−1 1 ti . . . tT−1]T. (5.23)

where ttt = [t1 . . . tT−1]T is obtained from aaa via a mapping ξT−1 : aaa 7→ ttt = [t1 . . . tT−1]T. The
rationale of this definition is that the target space of ξT−1 is then an Euclidean space,
which can be manipulated in a simpler fashion than the Grassmannian target space of gggi.
The design of the mapping gggi thus boils down to the design of ξT−1. Note that, from the
definition of Si, the fact that gggi takes values in Si is equivalent to the fact that ξT−1 takes
values in D(0, 1)T−1 with D(0, 1) := {z ∈ C : |z| ≤ 1}.

Let us first define ξ1 in the case T = 2. In this case, ttt is a complex scalar. According
to Lemma 5.4, Property 5.1 is equivalent to ξ1(aaa) being distributed as a Cauchy(0, 1)
truncated in the unit disc D(0, 1). In that case, we show in Lemma 5.6 that Property 5.1
is satisfied by considering

ξ1(aaa) :=

√√√√1− exp(− |w|22 )
1 + exp(− |w|22 )

w

|w|
(5.24)

with w = N−1(a1) + N−1(a2).

When T > 2, for xxx to be uniformly distributed on Si, the distribution underlying ttt
has dependencies which are hard to characterize. We choose to ignore these dependencies
and design ξT−1 in a way similar to the case T = 2. To this end, we apply ξ1 to aaa in a
component-wise manner

ξT−1(aaa) =
[
ξ1([a1 a2]T) . . . ξ1([a2T−3 a2T−2]T)

]T
. (5.25)

However, note that Property 5.1 is not satisfied in that case. Combining (5.23), (5.24) and
(5.25) completely defines gggi. This mapping is bijective and its inverse aaa = ggg−1

i (xxx) : Si →
(0, 1)2(T−1) is given by a2j−1 = N (Re(wj)) and a2j = N (Im(wj)), j ∈ [T − 1], where

wj =
√

2 ln 1 + |tj |2
1− |tj |2

tj
|tj |

, (5.26)

ttt =
[
x1
xi
, . . . ,

xi−1
xi

,
xi+1
xi

, . . . ,
xT
xi

]T

. (5.27)

The constellation is then constructed as in (5.21) where the coordinate sets {Aj} is
given in (5.20). The grid of symbols in each cell is analogous to a bent hypercube, hence
the name cube-split constellation. The constellation contains T ∏2(T−1)

j=1 2Bj symbols. An
example of the grid of points in (0, 1)2(T−1) is shown in Fig. 5.1(a) and the resulting
cube-split constellation is illustrated in Fig. 5.1(b). For the sake of representation, we plot
the constellation built on the real Grassmannian G(RT , 1) following the same principle.
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(a) The grid of points on (0, 1)2

e3

e1

e2

cell 1

c2

c1

cell 3

cell 1

(b) The cube-split constellation on G(R3, 1)

Figure 5.1: Illustration of the cube-split constellation on G(R3, 1) for B1 = B2 = 3 bits. The
symbols, represented by the dots, are mapped from a grid on (0, 1)2 (left) to one of the cells depicted
by different gray levels (right). Note that each symbol in G(R3, 1) is depicted twice due to the sign
indeterminacy associated to the Grassmannian. The constellation defines T × 2B1+B2 = 192 lines
in R3. Two symbols xxx1 and xxx2 with minimum distance are in the middle of an edge of a cell.

5.3.3 Minimum Distance

The following corollary of Lemma 1.5 provides theoretical benchmarks for the minimum
distance of an optimal constellation in G(CT , 1) with given size.5

Corollary 5.1. The minimum distance δ of an optimal constellation Xopt of cardinality
|X | on the complex Grassmannian of lines G(CT , 1) is bounded by

min
{

1, 2|X |−
1

2(T−1)
}
≥ δ ≥ |X |−

1
2(T−1) . (5.28)

In Fig. 5.2(a), we compare the minimum distance of the cube-split constellation for
T = 2 and T = 4 with these fundamental limits. We also plot the minimum distance of the
numerically optimized constellation generated by approximating the optimization (5.17) by
minX ln∑1≤j<l≤|X | exp

( |xxxH
j xxxl|
ε

)
with a small “diffusion constant” ε for smoothness, then

solving it by conjugate gradient descent on the Grassmann manifold using the Manopt
toolbox [141] (see Example 1.1 for details). We also compare with other structured constel-
lations: the Fourier constellation [70], which coincides with the constellation in [71, Section
III-A] when T = 2; the exp-map constellation [74]; the coprime-PSK constellation [76]
where zzz is taken from a numerically optimized constellation in G(CT−2, 1); and the multi-
layer constellation [77] in which we use the canonical basis as the initial constellation and
adopt the parameters in [77, Section IV]: L = 3 layers, the moving distances sin(φ2) = 0.6
and sin(φ3) = 0.35.

We observe that the cube-split constellation has the largest advantage over other
structured constellations when B0 := B1 = · · · = B2(T−1). (For T = 4, this corresponds to
log2(|X |) = 8, 14, 20 bits/symbol.) In this case, all the real dimensions of a cell accommodate
the same number of symbols, thus the symbols are more evenly spread. Hereafter, we
denote this symmetric cube-split constellation by CS(T,B0). Let us consider a pair of

5In our setting with Bj ≥ 1, j ∈ [2(T − 1)], the upper bound in (5.28) is tighter than the Rankin bounds
δ ≤

√(
1− 1

T

) |X|
|X|−1 if |X | ≤ T (T+1)

2 and δ ≤
√

1− 1
T

if |X | > T (T+1)
2 [60].
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Figure 5.2: The minimum distance of the cube-split constellation in comparison with other
constellations and the fundamental limits of an optimal constellation given in (5.28).

symbols xxx1 and xxx2 in CS(T,B0) that are in the same cell of G(CT , 1) with respective local
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coordinates aaa(1) and aaa(2) differing in only one component such that

a
(1)
j0
6= a

(2)
j0
,
{
a

(1)
j0
, a

(2)
j0

}
=
{1

2 −
1

2B0+1 ,
1
2 + 1

2B0+1

}
, (5.29)

a
(1)
j = a

(2)
j ∈

{ 1
2B0+1 , 1−

1
2B0+1

}
, ∀j 6= j0, (5.30)

for some j0 ∈ [2(T − 1)]. One such pair of symbols is illustrated in Fig. 5.1. The two
symbols are in the middle of an edge of a cell. We conjecture, and have verified with all
the cases depicted in Fig. 5.2, that this pair of symbols achieves the minimum distance
of CS(T,B0). While a proof of this conjecture for general B0 remains elusive, it can be
proved for the particular case B0 = 1.

Lemma 5.1. For the CS(T, 1) constellation, two symbols with minimum distance are in
the same cell and have the respective local coordinates given by (5.29) and (5.30) with
B0 = 1. The minimum distance is given by

dmin(T, 1) =

√√√√1−
∣∣∣∣1− 1 + 

c−1 + T − 1

∣∣∣∣2, (5.31)

where c := 1−e−m2

1+e−m2 with m := N−1(3/4).

Proof. The proof is given in Appendix 5.A.3.

We plot the minimum distance of the CS(T, 1) constellation as a function of T in
Fig. 5.2(b). For the cases where we can compute the minimum distance of the Fourier
constellation and the exp-map constellation of the same size, we notice that these constel-
lations have smaller minimum distance than that of our constellation, especially for small
T .

In general, the conjectured minimum distance over the constellation, i.e., the distance
between xxx1 and xxx2 defined by (5.29) and (5.30), is given by

d̃(T,B0) :=

√√√√1−
∣∣∣∣1 + α

α+ β
(e2ϕ − 1)

∣∣∣∣2, (5.32)

where α := 1−exp
(
−
m2

0+m2
1

2

)
1+exp

(
−
m2

0+m2
1

2

) , β := 1 + (T − 2)1−e−m
2
0

1+e−m
2
0
, and ϕ := arctan

(
m1
m0

)
, with m0 :=

N−1
(
2−B0−1

)
and m1 := N−1

(
1
2 + 2−B0−1

)
.

Lemma 5.2. When |X | is large, it holds that

log2

(
d̃(T,B0)

)
= − 1

2(T − 1) log2(|X |)− 1
2 log2 log2(|X |) +O(1). (5.33)

Proof. First, it is straightforward to see that, when |X | is large, i.e. B0 is large, m0 goes to
−∞ and m1 goes to 0 and it follows that α goes to 1, β goes to T −1, and ϕ = m1

m0
+o
(
m1
m0

)
.

Then

d̃(T,B0) =
√

2α
α+ β

(1− cos(2ϕ)− sin(2ϕ))−
(

α

α+ β

)2
|e2ϕ − 1|2 (5.34)

=
√

4
T
ϕ2 − 4

T 2ϕ
2 + o(ϕ2) (5.35)

= 2
√
T − 1
T

|ϕ|+ o(|ϕ|). (5.36)
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On the other hand, using [1, Section 26.2], it follows that m1 =
√

2π2−B0−1 + o
(
2−B0

)
and

|m0| =
√

2 ln(2B0+1) + o

(√
2 ln(2B0+1)

)
. Inserting this and ϕ = m1

m0
+ o

(m1
m0

)
into (5.36)

gives

log2

(
d̃(T,B0)

)
= log2(m1)− log2(|m0|) +O(1) (5.37)

= −B0 −
1
2 log2(B0) +O(1), (5.38)

which yields the result.

Therefore, under the conjecture that d̃(T,B0) is the minimum distance of the CS(T,B0)
constellation, the constellation is asymptotically optimal w.r.t. the bounds in Corollary 5.1
up to a log factor and a constant. In Fig. 5.3, we plot the spectrum of the symbol-wise
minimum distance, i.e., the distance from each symbol to its nearest neighbor, of CS(2, 4)
and CS(4, 1). The symbol-wise minimum distances are concentrated and compare well
to the bounds. Every symbol in CS(4, 1) has the same distance to its nearest neighbor,
which is dmin(4, 1). This property holds for any CS(T, 1) constellation because for any
xxx1 ∈ CS(T, 1), there exists another symbol xxx2 in the same cell with coordinates satisfying
(5.29) and (5.30) for B0 = 1, thus d(xxx1,xxx2) = dmin(T, 1).
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Figure 5.3: The symbol-wise minimum distance spectrum of the CS(2, 4) and CS(4, 1) constella-
tions. The dashed and dash-dotted lines are respectively the upper and lower bounds (5.28) of the
minimum distance of an optimal constellation of the same size.

5.3.4 Binary Labeling

Another important aspect of designing a constellation is to label each symbol with a binary
vectors. If T is a power of 2, the number of bits B required to represent a symbol is

B = log2(T ) +
2(T−1)∑
j=1

Bj . (5.39)

This can be understood as a hierarchical labeling, where T bits indicate the cell index, and
the remaining bits indicate the local coordinates of a symbol. If B − log2 T is not divisible
by 2(T − 1), the sets Aj , j ∈ [2(T − 1)] cannot be chosen to have equal size. In that case,
we can initially let B1 = · · · = B2(T−1) =

⌊
B−log2(T )

2(T−1)

⌋
, then allocate one more bit to each
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of B − log2(T )− 2(T − 1)
⌊
B−log2(T )

2(T−1)

⌋
randomly selected dimensions. If T is not a power of

2, the constellation size is also not a power of 2, which does not support a convenient bit
mapping. Although we can manipulate (e.g., augment or truncate) the constellation such
that the size becomes a power of 2, this alters the constellation structure. In the remainder
of the chapter, we focus on the case T being a power of 2 whenever the bit mapping is
concerned.

The binary labels should be assigned such that a symbol error does not cause many bit
errors. This requires that symbols which are likely to be mistaken for each other should
differ by a minimal number of bits in their labels. In other words, symbols with small
(chordal or Euclidean) distance are given labels with small Hamming distance. This is the
principle of Gray labeling which was shown to be optimal in terms of average bit error
probability for structured scalar constellations such as PSK, PAM, and QAM [175], and
has been widely used, such as in bit-interleaved coded modulation (BICM) [176]. Ideally,
a Gray labeling scheme gives the neighboring symbols labels that differ by exactly one
bit. As shown in [177, Theorem 1], this is possible for a special case of the Grassmannian
constellation in [72]. Nevertheless, this is rarely the case in general due to the irregular
neighboring properties. When a true Gray labeling is not possible, finding a quasi-Gray one
requires an exhaustive search over |X |! candidate labelings. Therefore, one often resorts to
sub-optimal labeling schemes.

An iterative labeling scheme consisting in propagating the labels along the edges of the
neighboring graph was proposed in [178]. Unfortunately, building and storing such a graph
is possible only for constellations of low dimension and small size. In [179], two matching
methods to label a Grassmannian constellation, say X , are proposed. The first, so-called
match-and-label algorithm, matches X to an auxiliary constellation which can be Gray
labeled. The second, so-called successive matching algorithm, matches the chordal distance
spectrum of X with the Hamming distance spectrum of an auxiliary Gray label. However,
these three schemes still have complexity at least cubic in the constellation size and do not
offer any optimality guarantee.

For our cube-split constellation, we introduce a simple yet effective and efficient Gray-like
labeling scheme by exploiting the constellation structure. Recall that the number of bits
per symbol is B = log2(T ) +∑2(T−1)

j=1 Bj , and a symbol is entirely determined by the cell
index i and the set of local coordinates {a1, . . . , a2(T−1)}. Our labeling scheme works as
follows.

• We let the first log2(T ) bits represent the cell index i and denote them by cell bits.
These bits are defined simply as the binary representation of i − 1. Note that no
optimization of the labels of the cell index is possible since each cell have common
boundaries with all other cells, as can be seen in Fig. 5.1.

• We let each of the next groups of Bj bits represent the local coordinate aj ∈ Aj and de-
note them by coordinate bits. Since Aj is a set of points in one dimension, there always
exist Gray labels associated to its elements, in the same manner as a Gray labeling for
a PAM constellation. For example, if Bj = 3 (as in Fig. 5.1), Aj =

{ 1
16 ,

3
16 ,

5
16 , . . . ,

15
16
}

and one option to Gray label it is {000, 001, 011, 010, 110, 111, 101, 100}, as illustrated
in Fig. 5.4.

Thanks to the structured constellation design and labeling scheme outlined above, the
complexity of generating a constellation symbol xxx from its binary representation is essentially
linear in T . It can be done on-the-fly and requires no storage.
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Figure 5.4: A visualization of a Gray labeling for the coordinate set Aj with Bj = 3.

In Fig. 5.5, we compare the performance in terms of BER of this Gray-like labeling
scheme with random labeling, graph propagation labeling [178], match-and-label labeling
and successive matching labeling [179]. For the match-and-label scheme, we use the exp-
map constellation [74] as the auxiliary constellation. This constellation is mapped from
coherent symbols qqq ∈ CT−1 containing T − 1 QAM symbols, and thus can be quasi-Gray
labeled by taking the Gray label of qqq. It can be seen that for the considered CS(2, 4) and
CS(4, 1) constellations, our Gray-like labeling scheme, albeit being simpler, outperforms
the other considered schemes.

5.4 Low-Complexity Receiver Design
In this section, leveraging the constellation structure, we design efficient symbol decoder
and LLR computation from the observation YYY.

5.4.1 Low-Complexity Greedy Decoder

In order to avoid the high-complexity ML decoder, we propose to decode the symbol in a
greedy manner by estimating sequentially the cell index i and the local coordinates aaa.

5.4.1.a Step 1 - Denoising

We first use the fact that, by construction, the signal of interest is supported by a rank-
1 component of YYY (see (5.1)). We compute the left singular vector uuu = [u1 u2 . . . uT ]T

corresponding to the largest singular value of YYY, which is also the solution of

arg max
uuu∈CT : ‖uuu‖2=1

‖YYYHuuu‖2. (5.40)

Observe that this is a relaxed version of the ML decoder (5.7) if we disregard the discrete
nature of the constellation. Thus, uuu serves as a rough estimate of the transmitted symbol
xxx on the unit sphere.

5.4.1.b Step 2 - Estimating the Cell Index and the Local Coordinates

We then find the closest symbol to uuu by localizing uuu on the system of bent grids defined for
the constellation.6 To do so, we estimate the cell index and the local coordinates. The cell
index estimate is obtained as

î = arg min
j∈[T ]

d(uuu, eeej) = arg max
j∈[T ]

|uj |. (5.41)

In the noise-free case, YYY =
√
PTxxxhhhT has rank one and uuu = eθxxx for some θ ∈ [0, 2π], thus

î = i since xi is the strongest component in xxx by construction (see (5.23)). The local
coordinates are estimated by first applying the inverse mapping ggg−1

î
(see (5.26) and (5.27))

6This is equivalent to the problem of quantizing uuu using X as a quantization codebook on G(CT , 1),
see [172].
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Figure 5.5: The BER of the cube-split constellation with ML decoder and different labeling
schemes in a single-receive-antenna system. The proposed Gray-like labeling outperforms the other
schemes.

to obtain ãaa = [ã1 . . . ã2T−2]T = ggg−1
î

(uuu) and then find the closest point to ãaa in ⊗2(T−1)
j=1 Aj .

This can be done component-wise as

âj = arg min
a∈Aj

|ãj − a|, j ∈ [2(T − 1)]. (5.42)

Again, in the absence of noise, uuu = eθxxx, î = i, and thus âaa = aaa = ggg−1
i (xxx).

The decoded symbol x̂xx is then identified from the estimated parameters {̂i, âaa} as x̂xx = gggî(âaa).
The cell bits are decoded by taking the binary representation of î − 1. The coordinate
bits are demapped from âi using the Gray code defined for Aj , independently for each real
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component j ∈ [2(T − 1)]. We observe that the decision regions of the proposed greedy
decoder are close to the Voronoi regions (5.11), which are the optimal decision regions, as
depicted in Fig. 5.6 for the constellation shown in Fig. 5.1(b) and N = 1.

Figure 5.6: Illustration of the decision regions of the greedy decoder for a section (around the
cell boundaries) of the cube-split constellation on G(R3, 1) with B1 = B2 = 3 bits. These decision
regions well match the Voronoi regions (5.11), which are the optimal decision regions.

The complexity of this greedy decoder is O(NT min{N,T}) (dominated by the singular
value decomposition of YYY to find uuu), independent of the constellation size. This is signifi-
cantly reduced w.r.t the ML decoder whose complexity order is O(NT |X |). Among the
other aforementioned structured constellations, only the exp-map constellation admits a
simple sub-optimal decoder [74, Section IV-B]. That decoder solves (5.40) to find uuu, then
applies the inverse exponential mapping on uuu to find the QAM vector estimate q̂qq, and a
scalar QAM demapping on q̂qq. It also has complexity order O(NT min{N,T}).

5.4.2 Demapping Error Analysis

With the above greedy decoder, two types of error can occur. First, a cell error can occur
due to false detection of the cell index i. The probability of cell error is

P(̂i 6= i) = P
(

arg max
j
|uj | 6= arg max

j
|xj |
)
. (5.43)

Second, a coordinate error occurs when at least one of the local coordinates in aaa is wrongly
detected. The probability of a coordinate error given correct cell detection is P(âaa 6= aaa

∣∣̂i = i).
Then, the symbol error probability of the greedy decoder is

Pe = P(̂i 6= i) + (1− P(̂i 6= i))P(âaa 6= aaa
∣∣̂i = i). (5.44)

The error rate can be computed analytically for the CS(T, 1) constellation and N = 1 as
follows.

Proposition 5.1. When N = 1 and B1 = · · · = B2(T−1) = 1, the cell error probability is

P(̂i 6= i) = 1−
∫ ∞

0

∫ ∞
0

(
1−Q1(

√
2cP0x,

√
2y)
)T−1

I0(2
√
P0xy)e−y−(P0+1)x dy dx, (5.45)

where m := N−1(3/4), c := 1−e−m2

1+e−m2 , P0 := PT
1+(T−1)c , I0(x) := 1

π

∫ π
0 exp(x cos(θ)) dθ is

the modified Bessel function of the first kind at order 0 [1, Eq.(9.6.16)], and Q1(a, b) :=
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∫∞
b x exp

(
−x2+a2

2

)
I0(ax) dx is the Marcum Q-function [180, Eq.(16)] with parameter 1.

Given correct cell detection, the error probability of one pair of local coordinates is given as

P
(
{â2j−1, â2j} 6= {a2j−1, a2j}

∣∣ î = i
)

= P
(
q̂j 6= qj

∣∣̂i = i
)

= 1−
(

1 + (1− c)P0√
(2 + (1 + c)P0)2 − 4cP 2

0

)−1

×

1
4 +

√
2cP0 arccot 1+(c−

√
c
2 )P0√

1+(c+1)P0+ c
2P

2
0

π
√

1 + (1 + c)P0 + c
2P

2
0

+
(1− c)P0 arccot 2+(1−2

√
2c+c)P0√

(2+(1+c)P0)2−4cP 2
0

π
√

(2 + (1 + c)P0)2 − 4cP 2
0

,
(5.46)

for all j ∈ [T − 1]. The symbol error probability is then bounded by the union bound as

Pe ≤ P
(̂
i 6= i

)
+ (T − 1)

(
1− P

(̂
i 6= i

))
P
(
q̂j 6= qj

∣∣̂i = i
)
. (5.47)

Proof. The proof is given in Appendix 5.A.4.

In particular, if T = 2, the symbol error probability can be computed in closed form as
follows.

Corollary 5.2. When N = 1, T = 2 and B1 = · · · = B2(T−1) = 1, the cell error probability
can be written explicitly as

P(̂i 6= i) = 1
2

1− (1− c)P0√
(2 + (1 + c)P0)2 − 4cP 2

0

, (5.48)

whereas the conditional coordinate error probability P(âaa 6= aaa|̂i = i) is exactly the right-hand
side of (5.46). Accordingly, the symbol error probability Pe is

Pe = 7
8 −

√
cP0 arccot 1+

(
c−
√

c
2

)
P0√

1+(c+1)P0+ c
2P

2
0

π
√

2 + 2(1 + c)P0 + cP 2
0

−
(1− c)P0 arccot 2+

(
1−2
√

2c+c
)
P0√

(2+(1+c)P0)2−4cP 2
0

2π
√

(2 + (1 + c)P0)2 − 4cP 2
0

. (5.49)

Proof. The proof is given in Appendix 5.A.5.

5.4.3 Log-Likelihood Ratio Computation and Code Design

When a channel code is employed, most channel decoders require the LLR of the coded bits
as an input. LLR computation is performed independently from the code structure, assum-
ing uniform input probabilities, i.e., all the symbols are equally likely to be transmitted,
and so are the bits. Denote the binary label of symbol xxx as bbb(xxx) = [b1(xxx) b2(xxx) . . . bB(xxx)].
The LLR of bit bi given the observation YYY = YYY can be computed using (5.6) as

LLRj(YYY ) = ln
pYYY|bj (YYY |1)
pYYY|bj (YYY |0) (5.50)

= ln
∑
ααα∈Xji(1) pYYY|xxx(YYY |ααα)∑
βββ∈X (0)

j

pYYY|xxx(YYY |βββ) (5.51)

= ln

∑
ααα∈X (1)

j

exp
(

PT
1+PT ‖YYY

Hααα‖2
)

∑
βββ∈X (0)

j

exp
(

PT
1+PT ‖YYY

Hβββ‖2
) , (5.52)
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where X (b)
j denotes the set of all possible symbols in X with bit j being equal to b, i.e.,

X (b)
i := {xxx ∈ X : bi(xxx) = b}, for i ∈ [B] and b ∈ {0, 1}.

In general, the LLR distribution differs between the bit positions, thus have different
error protection properties. This can be seen in Fig. 5.7, where we depict the LLR histogram
of the cell bit and the first two coordinate bits (the remaining two coordinate bits have the
same LLR distribution as the first two due to symmetry), given that 0 was sent in that bit,
for the CS(2, 2) constellation and single receive antenna. It can also be observed that the
LLR distribution truncated on [0,∞) (or (−∞, 0]) closely fits the exponential distribution
(or the flipped exponential distribution, respectively). The LLR distribution fitting can
be useful, e.g., to calculate the mutual information I(bi(xxx); LLRi(YYY)), which reveals how
much information is carried in different bit positions, as well as in the framework of an
extrinsic information transfer (EXIT) chart [181] analysis.
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Figure 5.7: Histograms of the LLR of the first 3 bits, given that 0 was sent, of the CS(2, 2)
constellation (5 bits/symbol), single receive antenna, and SNR = 10 dB. The red solid lines show
the fitted exponential distribution of the LLR truncated on [0,∞) and the fitted flipped exponential
distribution of the LLR truncated on (−∞, 0] obtained by matching the first moment (mean).

5.4.3.a Low-Complexity LLR Computation

Computing the LLR according to (5.52) requires enumerating the whole constellation.
To avoid this, we propose a low-complexity LLR computation as follows. First, for any
real-valued array x1, . . . , xn, denote byMm the set of m largest values, i.e., xj ≤ xl for all
xl ∈Mm and xj /∈Mm. We have that

ln
n∑
j=1

exj = ln
∑

x∈Mm

ex + ln
(

1 +
∑
xj /∈Mm

exj∑
x∈Mm

ex

)
(5.53)

≤ ln
∑

x∈Mm

ex + ln
(

1 + (n−m) exp
(

max
x/∈Mm

x−max
j∈[n]

xj

))
. (5.54)

For a sufficiently large value of maxj∈[n] xj−maxx/∈Mm
x, the second term in the right-hand

side vanishes and ln∑n
j=1 e

xj can be well approximated7 by ln∑x∈Mm
ex. Applying this

to (5.52) yields

LLRj(YYY ) ≈ ln
∑

ααα∈M(1)
η,j

exp
(

PT

1 + PT
‖YYY Hααα‖2

)
− ln

∑
βββ∈M(0)

η,j

exp
(

PT

1 + PT
‖YYY Hβββ‖2

)
, (5.55)

7When m = 1, this approximation coincides with the well-known one ln
∑

j
exj ≈ maxj xj .
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whereM(b)
η,j stores the η symbols corresponding to the η largest terms in

{
‖YYY Hxxx‖

}
xxx∈X (b)

j

for b ∈ {0, 1}. Observe that one symbol in either M(1)
η,j or M(0)

η,j is exactly the output
x̂xxML of the ML decoder (5.7). The remaining symbols inM(1)

η,j andM
(0)
η,j are expected to

be close to x̂xxML since they also lead to high likelihood of YYY . Furthermore, x̂xxML can be
approximated by the output x̂xx of the greedy decoder.8 Thus, the symbols in M(1)

η,j and
M(0)

η,j are expected to be in the neighborhood of the greedy decoder’s output x̂xx. Therefore,
the LLR can be further approximated by replacingM(1)

η,j andM
(0)
η,j in (5.55) by the sets of

the greedy decoder’s output x̂xx and its neighbors as

LLRj(YYY ) ≈ ln
∑

ααα∈Bj(x̂xx,1)
exp

(
PT

1 + PT
‖YYY Hααα‖2

)
− ln

∑
βββ∈Bj(x̂xx,0)

exp
(

PT

1 + PT
‖YYY Hβββ‖2

)
,

(5.56)

where the set Bj(xxx, b) contains η nearest symbols to xxx (one of them being xxx) with the j-th
bit in their labels being equal to b, i.e,

Bj(xxx, b) :=
{
x̂xx1, . . . , x̂xxη ∈ X :

{
d(x̂xxl,xxx) ≤ d(xxx,xxx), ∀xxx ∈ X \ {x̂xx1, . . . , x̂xxη}, l ∈ [η]
bj(x̂xx1) = · · · = bj(x̂xxη) = b

}
(5.57)

for xxx ∈ X , b ∈ {0, 1}, and j ∈ [B].

The sets Bj(xxx, b) can be precomputed for each xxx ∈ X prior to communication (with
negligible complexity) and stored at the receiver. In this way, the complexity of computing
the right-hand side of (5.56) is only O(NT min{N,T}+NTη) (O(NT min{N,T}) for the
hard detection to find x̂xx and O(NTη) for the computation of the right-hand side of (5.56)).
Alternatively, one can look for an approximation of Bj(x̂xx, b) (possibly constructed on-the-fly
upon detecting x̂xx) when the constellation size is too large. The latter option does not
require storage but increases the complexity.

5.4.3.b Multilevel Coding and Multistage Decoding

We propose a MLC-MSD scheme [173] customized for the cube-split constellation as follows.
First, each input bit stream is divided into two substreams and each substream is fed
into an individual channel encoder. Note that the two encoders can have different code
rates. Then, the coded bits are mapped into cube-split symbols by taking the cell bits
from the output of the first encoder and the coordinate bits from the output of the second
encoder. At the receiver, the cell bits are decoded first (using the exact LLR (5.52) or
approximate LLR (5.56)), thus we obtain an estimate of the cell index of each transmitted
symbol. Then the LLRs of the coordinate bits are computed based on the received signal
and the estimated cell index in a manner similar to (5.56) except that Bj(x̂xx, b) is replaced
by Sj (̂i, b) where î is the estimated cell index of the corresponding transmitted symbol
and Sj (̂i, b) is the set of constellation symbols in cell Sî with bit j being equal to b, i.e.,
Sj (̂i, b) := {xxx ∈ X ∩ Sî : bj(xxx) = b}. This decoding structure is also similar to a turbo
equalization receiver [182].

5.5 Performance Evaluation
We evaluate numerically the performance of our cube-split constellation in comparison
with other constellations and a baseline (coherent) pilot-based scheme.

8We will see in Section 5.5 that the greedy decoder achieves near-ML performance.
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5.5.1 A Baseline Pilot-Based Scheme

We consider a baseline scheme based on channel training [31]. The transmitted signal is

xxx = (PT )−
1
2
[√

Pτ
√
PdxxxT

d

]T
, (5.58)

i.e., the first symbol is constant and known to the receiver, the data symbol vector
xxxd = [x2 . . . xT ]T is normalized such that E[xxxdxxxH

d] = III T−1. The power factors Pτ and Pd
satisfy Pτ + (T − 1)Pd = PT and can be optimized. The received signal can be written as
YYY = [yyyτ YYYT

d]T where yyyτ =
√
Pτhhh + zzzτ and YYYd =

√
PdxxxdhhhT + ZZZd are the received signals in

the training phase and data transmission phase, respectively. The receiver uses MMSE
channel estimation ĥhh =

√
Pτ

1+Pτ yyyτ ∼ NC
(
0, Pτ

1+Pτ IIIN
)
. Let h̄hh := ĥhh

( 1
NE

[
‖ĥhh‖2

])− 1
2 ∼ NC(0, IIIN )

be the normalized estimate. From [31, Theorem 3], a lower bound on the achievable rate
of this pilot-based scheme with IID Gaussian input xxxd ∼ NC(0, 1

T−1III T−1) is given as

Rpilot(P,N, T )

:=
(

1− 1
T

)
E
[
log2

(
1 + Peff‖h̄hh‖2

)]
(5.59)

= T − 1
T

log2(e)
N∑
n=1

(N − 1)!
(N − n)!

(
− 1
Peff

)N−n[
e1/PeffE1

( 1
Peff

)
+
N−n∑
m=1

(m− 1)!(−Peff)m
]
,

(5.60)

where Peff = PτPd
1+Pτ+Pd , E1(x) :=

∫∞
x

e−t

t dt is the exponential integral function, and (5.60)
is derived using [183, p. 4.337.5]. The optimal power allocation is given by

Pτ =

P, if T = 2,
√
T−1+PT

(√
(T−1)(1+PT )−

√
T−1+PT

)
T−2 , if T > 2.

(5.61)

Let h̃hh = hhh − ĥhh be the channel estimation error, then h̃hh ∼ NC
(
0, 1

1+Pτ IIIN
)
and h̃hh and

ĥhh are uncorrelated. The output can be written as YYYd =
√
Pdxxxdĥhh

T + ẐZZd, where ẐZZd =√
Pdxxxdh̃hh

T + ZZZd. Given the input, the rows of ẐZZd are independent and the j-th row follows
NC
(
0,
(
1 + Pd|xj |2

1+Pτ
)
IIIN
)
, j ∈ {2, . . . , T}. Thus, the likelihood function of the output at slot

j ∈ {2, . . . , T} is

pYYY[j]|xj ,ĥhh
(YYY [j]|xj , ĥhh) = π−N

(
1 + Pd|xj |2

1 + Pτ

)−N
exp

−∥∥YYY [j] −
√
Pdxjĥhh

T∥∥2

1 + Pd|xj |2
1+Pτ

, (5.62)

where YYY[j] denotes the j-th row of YYY.

In practice, the data symbols in xxxd are normally taken from finite scalar constellations
such as QAM or PSK in order to reduce the complexity of the ML decoder based on (5.62).
A sub-optimal method consists in linear equalization followed by component-wise scalar
demapping. With ZF or MMSE equalizer, the equalized symbols are respectively

x̂xxzf
d = YYYd√

Pd

ĥhh∗

‖ĥhh‖2
, or x̂xxmmse

d = YYYd√
Pd

ĥhh∗

‖ĥhh‖2 + 1/Pd
. (5.63)

The LLR of bit bi given YYY = YYY and the channel estimate ĥhh = ĥhh is calculated as

LLRpilot
j (YYY , ĥhh) = ln

∑
α∈Q(1)

j

pYYY|x{j},ĥhh
(YYY |α, ĥhh)∑

β∈Q(0)
j

pYYY|x{j},ĥhh
(YYY |β, ĥhh)

, (5.64)
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where Q(b)
j , b ∈ {0, 1}, denotes a subset of the chosen scalar constellation (e.g., QAM) with

bit j being b, x{j} denotes the symbol accounting for bit bj , and pYYY|x{j},ĥhh
is given in (5.62).9

In the remainder of this section, we compare different schemes with the same transmission
rate of B bits/symbol. Having observed in Fig. 5.2 that the Fourier constellation [70]
and the exp-map constellation [74] have similar or higher packing efficiency than the
coprime-PSK constellation [76] and the multi-layer constellation [77], and to keep the
comparison clear, we hereafter consider only the two former constellations.

5.5.2 Achievable Data Rate

In Fig. 5.8(a), we compare the achievable rate (computed as in (5.10)) of cube-split
constellation with the rate of the numerically optimized constellation and the high-SNR
capacity C(P,N, T ) given in (5.2) for T = 2 and single receive antenna. We also include
the rate lower bound Rpilot(P,N, T ) of a pilot-based scheme with Gaussian input given
in (5.60), and the achievable rate of the pilot-based scheme with QAM input. The cube-split
constellation can achieve almost the same rate as the numerically optimized constellation
and a higher rate than the pilot-based scheme with QAM input at a given SNR. For
example, at 25 dB, the cube-split constellation can achieve about 0.3 bits/channel use
higher than the rate achieved with the pilot-based scheme. Furthermore, the achievable
rate of a large cube-split constellation approaches the high-SNR capacity C(P,N, T ).

Next, in Fig. 5.8(b), we plot the achievable rate of the cube-split constellation, the
numerically optimized constellation, the Fourier constellation [70], and the exp-map
constellation [74], and the pilot-based scheme with QAM input for T = 4 and N = 2.
Again, the rate achieved with cube-split constellation is close to the rate achieved with the
numerically optimized constellation and higher than that of other structured constellations
and the pilot-based scheme.

5.5.3 Error Rates of Uncoded Constellations

In Fig. 5.9(a) and Fig. 5.9(b), we plot the SER of the cube-split constellation (with ML
or greedy decoder), the pilot-based scheme with QAM input, the numerically optimized
constellation (with ML decoder), the Fourier constellation [70] (with ML decoder), and
the exp-map constellation [74] (with ML or greedy decoder). In Fig. 5.9(c), we show the
corresponding BER but omit the Fourier and the numerically optimized constellations
for their lack of an effective binary labeling scheme. The cube-split constellation uses the
Gray-like labeling in Section 5.3.4, the exp-map constellation takes the Gray label of the
QAM vector qqq for the mapped symbol xxx, and the pilot-based scheme uses Gray labels of
the QAM symbols. We observe that the greedy decoder for the cube-split constellation
achieves near-ML performance. The cube-split constellation achieves performance close to
the numerically optimized constellation, and outperforms other structured constellations
and the pilot-based scheme.

In Fig. 5.10, we show the SER and BER of the CS(T, 1) constellation, the exp-map
constellation, and the pilot-based scheme with QAM input for T ∈ {8, 16}, N = T/2, and
B = log2(T ) + 2(T − 1). Note that for this large B, the numerically optimized constellation
and the Fourier frequencies optimization for the Fourier constellation become infeasible.

9One can also compute the LLR based on the equalized symbols x̂j . When N = 1, the likelihood
function px̂j |xj for ZF equalized symbols (5.63) can be derived explicitly using Lemma 5.3 as px̂zf

j
|xj (x̂

zf
j |xj) =

1+Pτ
PτPd(T−1) +

|x̂zf
j
|2

Pτ

π

(
1+Pτ

PτPd(T−1) +
|xj |2

Pτ
+|x̂zf

j
−xj |2

)2 , j ∈ {2, . . . , T}.
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Figure 5.8: The achievable rate (5.10) of the cube-split constellation in comparison with the
channel capacity given in (5.2), and the rate achieved with the numerically optimized constellation,
other structured constellations, and the pilot-based scheme with Gaussian input (5.60) or QAM
input for T ∈ {2, 4}, N = T/2, and different transmission rate B bits/symbol.

We see that in this regime, the gain of the cube-split constellation w.r.t. the exp-map
constellation and the pilot-based scheme is more significant.

5.5.4 Performance with Channel Coding

Next, we integrate a systematic parallel concatenated rate-1/3 standard turbo code [184].
The coded bits are mapped into symbols using the Gray-like labeling scheme described
in Section 5.3.4. The turbo decoder calculates the LLR of the coded bits as in (5.52) or
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Figure 5.9: The error rates of the cube-split constellation in comparison with the numerically
optimized constellation, other structured constellations, and the pilot-based scheme with QAM
input for T ∈ {2, 4}, N = T/2, and different transmission rate B.
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Figure 5.10: The error rates of the CS(T, 1) constellation in comparison with the exp-map
constellation and the pilot-based scheme with QAM input for T ∈ {8, 16}, N = T/2, and B =
log2(T ) + 2(T − 1).

(5.56), and performs 10 decoding iterations for each packet. For the pilot-based scheme,
the LLR is computed as in (5.64).

Fig. 5.11 presents the BER of the coded cube-split constellation (with exact LLR (5.52)
or approximate LLR (5.56)) as compared to the coded pilot-based scheme when the turbo
encoder is applied in each packet of 640 bits. We also consider the MLC-MSD scheme in
which the same turbo encoder is used in both coding levels and the exact or approximate
cell-bit LLR is used in the first decoding stage. For the T = 2 case (Fig. 5.11(a)), the BER
of the cube-split constellation with approximate LLR is close to the BER with exact LLR.
With the considered turbo code, the cube-split constellation outperforms the pilot-based
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scheme: the power gain is about 2.5 dB for the same transmission rate of 9 bits/symbol.
On the other hand, for the T ∈ {4, 8} case (Fig. 5.11(b)), with the same (single-level) turbo
code, the pilot-based scheme performs better than our cube-split constellation. However,
with the MLC-MSD scheme, the performance of the cube-split constellation is greatly
improved and can be better than that of the pilot-based scheme. This is because as
the number of cells increases, the reliability of the cell bits becomes more crucial to the
overall performance, and by protecting the cell bits with an individual code then using the
estimated cell bits as a basis for decoding the coordinate bits, the error rate is reduced.
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Figure 5.11: The BER of the cube-split constellation in comparison with the pilot-based scheme
with turbo codes for T ∈ {2, 4, 8}, N = T/2, and different transmission rate B.
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In the considered setting, a channel codeword spans from 430 to 1288 channel uses. In
low-latency communications, which is a relevant use case in 5G, it is favorable to transmit
short packets. To this end, we consider the setting T = 4, N = 1, B = 8, and a channel
codeword spanning 62 coherence blocks, i.e., 248 channel uses. In Fig. 5.12, we plot the
packet error rate of our cube-split constellation (with multilevel coding) and compare with
that of the exp-map constellation and the pilot-based scheme. For benchmark, we plot the
saddle-point approximations of the random coding upper bound and meta converse lower
bound on the lowest possible packet error rate for given packet length and transmission rate
in [185]. It is observed that our cube-split constellation surpasses the exp-map constellation
and the pilot-based scheme, but is still at about 2.2 dB gap from the upper bound for the
same packet error rate of 10−3. Note that in the literature, such as [186], [187], the gap
between the considered practical coding schemes and the fundamental bounds is typically
higher than 2 dB.

Figure 5.12: The packet error rate of the cube-split constellation in comparison with the pilot-
based scheme and the exp-map constellation with turbo codes for T = 4, N = 1, B = 8 and packet
length 248 channel uses.

5.6 Closing Remarks
We proposed a novel Grassmannian constellation for noncoherent SIMO communications.
The structure of this constellation allows for on-the-fly symbol generation, a simple yet
effective binary labeling, low-complexity symbol decoder and bit-wise LLR computation, and
an efficient association with a multilevel coding-multistage decoding scheme. Analytical
and numerical results show that this constellation is close to optimality in terms of
packing properties, has larger minimum distance than other structured constellations in the
literature. For small coherence time/large constellation size, it outperforms the coherent
pilot-based approach in terms of error rates with/without channel codes and achievable
data rate under Rayleigh block fading channel.
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5.A Appendices

5.A.1 Extension to the MIMO Case

In general, if the transmitter has M ≤ T
2 antennas, we may consider constellation symbols

belonging to the Grassmannian G(CT ,M) represented by T×M truncated unitary matrices.
To extend the cube-split design to the case M > 1, we would follow two essential steps:
partitioning the Grassmannian into cells and defining a mapping from an Euclidean space
onto a cell. To partition G(CT ,M), we consider a set of reference subspaces {EEE1, . . . ,EEEV }
defining an initial constellation in G(CT ,M) and its associated Voronoi cells

Si := {XXX ∈ G(CT ,M) : d(EEEi,XXX) ≤ d(EEEj ,XXX), ∀j ∈ [V ] \ {i}} (5.65)
= {XXX ∈ G(CT ,M) : ‖EEET

iXXX‖F ≥ ‖EEET
jXXX‖F,∀j ∈ [V ] \ {i}}, (5.66)

where d(QQQ1,QQQ2) :=
√
M − tr{QQQH

1QQQ2QQQ
H
2QQQ1} is the chordal distance between the subspaces

spanned by the columns of T ×M truncated unitary matrices QQQ1 and QQQ2. The problem of
choosing the initial constellation EEE1, . . . ,EEEV and designing a mapping from an Euclidean
space onto each cell Si preserving a property similar to Property 5.1 is not evident and left
as perspective for future work. In particular, it seems difficult to describe each Voronoi
region Si as in the case for the regions of Grassmannian of lines where the condition
‖EEET

iXXX‖F ≥ ‖EEET
jXXX‖F expressed on the canonical basis simply translates into a coordinate-

wise condition
∣∣xj
xi

∣∣ < 1.

5.A.2 Mathematical Preliminaries

Definition 5.1 (Univariate complex Cauchy distribution). Let µ ∈ C and γ > 0. The
probability distribution with density

f(x) = 1

πγ

[
1 +

(
|x−µ|
γ

)2
]2 , x ∈ C, (5.67)

is called the univariate complex Cauchy distribution with location µ and scale γ, denoted
by Cauchy(µ, γ).

A multivariate version of the complex Cauchy distribution is given in [188, Eq.(2)].

Lemma 5.3. Cauchy(µ, γ) is the distribution of the ratio u1
u2

where [u1 u2]T ∼ NC(0,ΣΣΣ)
with ΣΣΣ = c0

[
γ+‖µ‖2 µ
µ∗ 1

]
for some constant c0. Specifically, if u1 ∼ NC(0, σ2

1), u2 ∼ NC(0, σ2
2),

and E[u1u∗2]
σ1σ2

=: β then µ = β σ1
σ2

and γ = (1− |β|2)σ
2
1
σ2

2
.

This relation between the Cauchy and Gaussian distributions was stated in, e.g., [188],
[189].

Lemma 5.4. The span of xxx = [x1 x2]T is uniformly distributed in S1 :=
{
xxx ∈ G(C2, 1) :

|x1| > |x2|
}
if and only if the quotient x2

x1
follows a Cauchy(0, 1) distribution truncated on

{t ∈ C : |t| < 1}.

Proof. From Lemma 5.3, if x2
x1
∼ Cauchy(0, 1) then x2

x1
is identically distributed to y2

y1
with

yyy = [y1 y2]T ∼ NC(0, III 2). Since Grassmannian symbols are defined up to a scaling, Span xxx
has the same distribution as Span yyy. On the other hand, according to [188], Span yyy is
uniformly distributed in G(C2, 1). Therefore, Span xxx is uniformly distributed in G(C2, 1).
Furthermore, x2

x1
∈ {t ∈ C : |t| < 1} means Span xxx ∈ S1. The converse follows from the

bijectivity of the mapping x2
x1
7→ Span xxx.
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Definition 5.2 (F(2, 2) distribution [190, Chap. 27]). The probability distribution with
PDF f(x) = 1

(1+x)2 and commulative distribution function (CDF) F (x) = x
1+x , x ≥ 0, is

called the F-distribution with (2, 2) DoF denoted by F(2, 2). F(2, 2) is the distribution of
the ratio of two independent chi-square random variables with 2 DoF.

Lemma 5.5. If x = reθ where r and θ are independent, r2 ∼ F(2, 2), and θ is uniformly
distributed in [0, 2π], then x ∼ Cauchy(0, 1).

Proof. Since r2 and θ are independent, fr2,θ(r2, θ) = fr2(r2)fθ(θ) = 1
(1+r2)2

1
2π . A change of

variable from x to (r2, θ) yields 1
2fx(reθ) = fr2,θ(r2, θ), so fx(x) = 1

π(1+|x|2)2 , which is the
Cauchy(0, 1) PDF.

Lemma 5.6. Let [a1 a2]T be uniformly distributed on (0, 1)2. Then w := N−1(a1) +

N−1(a2) follows a NC(0, 2) distribution and t :=
√

1−exp(− |w|
2

2 )

1+exp(− |w|
2

2 )
w
|w| follows a Cauchy(0, 1)

distribution truncated on {t ∈ C : |t| < 1}.

Proof. The Gaussianity of w is a standard result. Then, |w|2 is independent from w
|w| (thus

|t|2 is independent from t
|t|) and is chi-square distributed with 2 DoF, and 1− exp(− |w|

2

2 )

follows a uniform distribution on (0, 1). Then, 1−exp(− |w|
2

2 )

1+exp(− |w|
2

2 )
has CDF F (x) = 2x

1+x , x ∈ (0, 1).

Using Definition 5.2, we see that 1−exp(− |w|
2

2 )

1+exp(− |w|
2

2 )
follows a F(2, 2) distribution truncated on

(0, 1). Finally, using Lemma 5.5, we conclude that t follows a Cauchy(0, 1) distribution
truncated on {t ∈ C : |t| < 1}.

5.A.3 Proof of Lemma 5.1

If B1 = · · · = B2(T−1) = 1, we have Aj =
{1

4 ,
3
4
}
, ∀j ∈ [2(T − 1)]. Let m := N−1(3

4) =
−N−1(1

4), then wj ∈ {±m ± m} and |wj | = m
√

2. Then tj =
√
cqj , j ∈ [T − 1], where

c := 1−e−m2

1+e−m2 and qj ∈
{
± 1√

2 ± 
1√
2
}
is a 4-QAM symbol with unit power. Substituting tj

in (5.23), a constellation symbol can be written simply as

xxx(qqq) =
(
c−1 + T − 1

)− 1
2
[
q1 . . . qi−1 c

− 1
2 qi . . . qT−1

]T
. (5.68)

Consider another symbol x̄xx(q̄qq) 6= xxx(qqq).

5.A.3.a If xxx and x̄xx Are in the Same Cell

The correlation between xxx and x̄xx is xxxHx̄xx = (c−1 + T − 1)−1(c−1 +∑T−1
i=j q

∗
j q̄j
)
. Notice that

q∗j q̄j ∈ {±1,±}, we denote by na the number of terms q∗j q̄j having value a ∈ {±1,±}.
We have that n1 +n−1 +n +n− = T − 1 and n1 < T − 1. We would like to find {na} that
maximize |xxxHx̄xx|2 = (c−1 +T −1)−2[(c−1 +n1−n−1)2 +(n−n−)2]. The optimal {na} must
satisfy {n1 = 0 or n−1 = 0} and {n = 0 or n− = 0} since otherwise, there always exists
other {na} that increases |xxxHx̄xx|2. Specifically, the optimal {na} falls into one of two cases:
{n = 0 or n− = 0;n−1 = 0} or {n = 0 or n− = 0;n1 = 0;n−1 ≥ c−1}. By inspecting
these cases, we find that the maximal value of |xxxHx̄xx|2 is (c−1 + T − 1)−2[(c−1 + T − 2)2 + 1]
achieved with n1 = T − 2, (n;n−) ∈ {(0; 1), (1; 0)}.
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5.A.3.b If xxx Is in Cell Si and x̄xx Is in Cell Sī with ī 6= i

We denote rrr =
[
q1 . . . qi−1 c−

1
2 qi . . . qT−1

]T and r̄rr =
[
q̄1 . . . q̄ī−1 c−

1
2 q̄ī . . . q̄T−1

]T.
Then xxxHx̄xx = (c−1 + T − 1)−1[c− 1

2 (rī + r̄i) + ∑
j∈[T ]\{i,̄i} r

∗
j r̄j
]
. Observe that rī + r̄i ∈

{0,±
√

2,±
√

2,±
√

2 ± 
√

2}. By looking at each value of rī + r̄i and inspecting {na}
as done in the previous case, we find that the maximal value of |xxxHx̄xx|2 is: (c−1 + T −
1)−2(T − 2)2 if rī + r̄i = 0; (c−1 +T − 1)−2(

√
2c−1 +T − 2)2 if rī + r̄i ∈ {±

√
2,±

√
2}; and

(c−1 + T − 1)−2(
√

2c−1 + T − 2)2 + 2c−1 if rī + r̄i ∈ {±
√

2± 
√

2}. The maximal value of
|xxxHx̄xx|2 among these is (c−1 + T − 1)−2(

√
2c−1 + T − 2)2 + 2c−1.

Comparing the above two cases, we conclude that the overall maximal value of |xxxHx̄xx|2

is (c−1 + T − 1)−2[(c−1 + T − 2)2 + 1] =
∣∣1 − 1+

c−1+T−1
∣∣2 attained with n1 = T − 2 and

(n;n−) ∈ {(0; 1), (1; 0)}, which translates to (5.29) and (5.30) with B0 = 1.

5.A.4 Proof of Proposition 5.1

With CS(T, 1), the transmitted signal is

xxx =
(
c−1 + T − 1

)− 1
2
[
q1 . . . qi−1 c

− 1
2 qi . . . qT−1

]T
, (5.69)

where c = 1−e−m2

1+e−m2 , m = N−1(3
4), and qj ∈

{
± 1√

2 ± 
1√
2
}
, j ∈ [T −1] (see Appendix 5.A.3).

The received symbols are yi =
√
P0h + zi, and yj =

√
cP0qlh + zj for l = j − 1{j ≤ i} if

j 6= i, where h ∼ NC(0, 1), zj ∼ NC(0, 1), j ∈ [T ], and P0 = PT
1+(T−1)c .

5.A.4.a Cell Error Probability

A cell error occurs if ∃j 6= i such that |yj | > |yi|.10 Given h and yi,

P(̂i 6= i | h, yi) = P(∃j 6= i : |yj |2 > |yi|2 | h, yi) (5.70)
= 1−∏j 6=i P(|yj |2 ≤ |yi|2 | h, yi) (5.71)

= 1−
(
1−Q1(

√
2cP0|h|,

√
2|yi|)

)T−1
, (5.72)

where Q1(., .) is the Marcum Q-function with parameter 1. Here, (5.71) holds because
conditioned on h and yi, the events |yj | ≤ |yi| are mutually independent for all j 6= i; (5.72)
is because given h, the variables 2|yj |2 for j 6= i are independently noncentral chi-squared
distributed with two DoF and noncentrality parameters 2cP0|h|2, denoted by χ2

2(2cP0|h|2).

Next, by averaging P(̂i 6= i| h, yi) over |yi|2 and |h|2, taking into account that |h|2 is
exponentially distributed with mean 1, and given h, 2|yi|2 ∼ χ2

2(2P0|h|2), we get

P(̂i 6= i) = 1− E|h|2E|yi|2|h
[
1− (1−Q1(

√
2cP0|h|,

√
2|yi|))T−1

]
= 1−

∫ ∞
0

∫ ∞
0

[
1− (1−Q1(

√
2cP0|h|,

√
2|yi|))T−1

]
· exp

(
−|yi|2 − (1 + P0)|h|2

)
I0
(
2
√
P0|yi||h|

)
d|yi|2 d|h|2,

where I0(·) is the modified Bessel function of the first kind of order 0. From this, a simple
change of variables gives (5.45).

10Without the additive noise zzz, |yi|2 = 1+e−m
2

1−e−m2 |yj |2 > |yj |2 for all j 6= i, and therefore, there is no cell
error.
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5.A.4.b Coordinate Error Probability given Correct Cell Detection

We assume that the cell index i has been correctly decoded, i.e., î = i, and, without
loss of generality, i = T . The decoding strategy for the coordinate bits is similar to
a 4-QAM demapper on ttt = [t1 . . . tT−1] =

[
y1
yT . . .

yT−1
yT

]
. Given qj = qj , we have

yj =
√
cP0 qjh + zj ∼ NC(0, 1 + cP0) for j < T , yT =

√
P0h + zT ∼ NC(0, 1 + P0), and

E[yjy∗T ] =
√
cP0qj . Thus, according to Lemma 5.3, conditioned on qj = qj , tj = yj

yT follows
the Cauchy

( √
cP0qi

(1+P0)2 ,
(1+cP0

1+P0

)2 − cP 2
0 |qi|

2

(1+P0)4

)
distribution with the PDF

ftj |qj (t|qj) := (1 + P0)2(1 + (c+ 1)P0)
π
(
1 + (c+ 1)P0 + |(1 + P0)t−

√
cP0qj |2

)2 . (5.73)

Furthermore, given that î = i = T , we have |yT | > |yj |, ∀j < T . Therefore, the distribution
of tj is further truncated on the unit circle. The conditional PDF of tj is given by

ftj |qj ,̂i=i=T (t|qj) =
ftj |qj (t|qj)∫

|x|≤1 ftj |qj (x|qj) dx. (5.74)

An error happens at tj if Re(tj) Re(qj) < 0 or Im(tj) Im(qj) < 0.11 Therefore,

P(q̂j 6= qj | qj = qj , î = i = T ) = 1−
∫
Rj ftj |qj (t|qj) dt∫
|t|≤1 ftj |qj (t|qj) dt , (5.75)

where Rj := {t ∈ C : |t| ≤ 1,Re(t) Re(qj) > 0, Im(t) Im(qj) > 0}. Using the polar
coordinate, we have that ftj |qj (t|qj) dt = f̃(r, θ, qj)r dr dθ, where f̃(r, θ, qj) := ftj |qj (reθ|qj).
Then

P(q̂j 6= qj | qj = qj , î = i = T ) = 1−
∫ 1

0
∫

Θj f̃(r, θ, qj)r dθ dr∫ 1
0
∫ 2π

0 f̃(r, θ, qj)r dθ dr
, (5.76)

where Θj is [0, π/2] if qj = 1√
2 + 1√

2 , [π/2, π] if qj = − 1√
2 + 1√

2 , [π, 3π/2] if qj = − 1√
2−

1√
2 ,

and [3π/2, 2π] if qj = 1√
2 − 

1√
2 . After some manipulations, we obtain that

∫ 1

0

∫ 2π

0
f̃(r, θ, qj)r dθ dr = 1

2 + (1− c)P0

2
√

(2 + (1 + c)P0)2 − 4cP 2
0

, (5.77)

and for all qj ∈
{
± 1√

2 ± 
1√
2
}
,

∫ 1

0

∫
Θj
f̃(r, θ, qj)r dθ dr

= 1
8 +

√
2cP0 arccot 1+

(
c−
√

c
2

)
P0√

1+(c+1)P0+ c
2P

2
0

2π
√

1 + (1 + c)P0 + c
2P

2
0

+
(1− c)P0 arccot 2+

(
1−2
√

2c+c
)
P0√

(2+(1+c)P0)2−4cP 2
0

2π
√

(2 + (1 + c)P0)2 − 4cP 2
0

. (5.78)

Substituting this in (5.76), and using the fact that P(q̂j 6= qj | qj , î = i = i1) = P(q̂j 6=
qj | qj , î = i = i2), for all i1, i2 ∈ [T ], we obtain (5.46). The union bound for Pe follows
readily.

11As for the cell error, there is no coordinate error in the absence of additive noise since in this case,
tj =

√
c qj .
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5.A.5 Proof of Corollary 5.2

The conditional PDF ft|q1(t|q1) of t = y2−i
yi is given in (5.73). The conditional cell error is

simply

P(̂i 6= i|q1 = q1) = 1− P(|t| < 1|q1 = q1) = 1−
∫
|t|≤1

ft|q1(t|q1) dt (5.79)

By calculating the integral using polar coordinates (which results in the same value for any
q1 ∈

{
± 1√

2 ± 
1√
2
}
) and averaging over q1, we obtain (5.48). Furthermore, when T = 2,

the union bound (5.47) of Pe is tight.
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Chapter 6

A Joint Constellation Design for the
MIMO Multiple-Access Chanel

We consider the joint constellation design problem for the non-coherent MIMO MAC. Based
on an analysis of the non-coherent ML detection error, we propose novel design criteria so
as to minimize the error probability. Our first criterion is the minimum expected pairwise
log-likelihood ratio over the joint constellation. From an analysis of this metric at high
signal-to-noise ratio, we obtain further simplified metrics. For any given set of constellation
sizes, we can optimize the proposed metrics over the set of signal matrices. Based on these
criteria, we propose two simple constructions: partitioning a single-user constellation, which
is effective for relatively small constellations, and precoding individual constellations of
lower dimension. For a fixed joint constellation, the design metrics can be further optimized
over the per-user transmit power, especially when the users transmit at different rates.
We investigate the option of building each individual constellation as a Grassmannian
constellation scaled by the respective transmit power. Numerical results show that our
proposed metrics are meaningful, and can be used as objectives to generate constellations
through numerical optimization that perform better, for the same transmission rate and
power constraint, than a common pilot-based scheme and the constellations optimized with
existing metrics.

6.1 Overview
In this chapter, we consider a K-user MIMO MAC in Rayleigh flat and block fading with
coherence interval T ≥ 2 where user k is equipped with Mk antennas and the receiver with
N antennas. We aim to derive simple and effective joint constellation construction criteria
so as to minimize the joint maximum likelihood (ML) symbol detection error.

If the users could cooperate, the system could be seen as a Mtot ×N MIMO point-to-
point non-coherent channel with Mtot := ∑K

k=1Mk, for which the high-SNR optimal input
is uniformly distributed on the Grassmannian G

(
CT ,Mtot

)
[49]. Inspired by this, the joint

constellation can be treated as a Grassmannian constellation in G
(
CT ,Mtot

)
, which leads

to a design criterion mimicking sphere packing in this Grassmannian by maximizing the
minimum pairwise chordal distance. Brehler and Varanasi derived the error probability
of the ML detector for the MIMO MAC in [98] and analyzed the high-SNR asymptotic.
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With cooperating users, this analysis led to a design criterion similar to that for a single-
user channel proposed in [68, Eq.(8)] by the same authors, which is different from the
max-min pairwise chordal distance criterion. However, for non-cooperating users (as we
consider in this chapter), no explicit constellation design criterion was given. The joint
ML pairwise error exponent can be shown to converge to the KL divergence between the
output distributions conditioned on either of the symbols transmitted [59]. Based on this,
a criterion consisting in maximizing the minimum KL divergence was proposed for the
MAC in [97]. However, that work focuses on QAM-based space-time modulation and only
uses the criterion to optimize the transmit powers and the sub-constellation assignment.

Following the approach of [98], we analyze the worst-case pairwise error probability and
derive constellation design metrics. The contributions of this chapter are summarized as
follows.

1. We propose a constellation design metric for the MIMO MAC, which is the minimum
expected pairwise log-likelihood ratio (PLLR) over the joint constellation. This
coincides with the minimum KL divergence metric in the massive MIMO regime.
Our metric accounts for the fact that the individual constellations can have different
sizes and different average symbol power.

2. From the dominant term of the expected PLLR at high SNR, we obtain further sim-
plified metrics. We also propose an alternating optimization consisting in iteratively
optimize one user at a time to simplify the optimization.

3. Based on our metrics, we propose two simple constructions. The first one consists in
partitioning a single-user constellation and is effective for not-so-large constellations.
The second one is based on precoding individual constellations of lower dimension in
the SIMO case.

4. Furthermore, for a fixed joint constellation, we investigate the power optimization and
find analytically the optimal per-user power optimizing the metrics in the two-user
SIMO case.

For any given set of constellation sizes, we can optimize the proposed metrics over the set
of signal matrices. Assuming Grassmannian signaling, we numerically solve the metric
optimization problem to generate joint constellations, and compare with a pilot-based
constellation and constellations optimized with existing metrics induced by the single-user
metrics. Numerical results show that our proposed metrics are meaningful and effective,
and the resulting constellations outperform the aforementioned baselines.

The remainder of the paper is organized as follows. In Section 6.2, we present the
system model and formulate the problem. In Section 6.3, we analyze the detection
error probability and derive the design metrics, based on which we propose two simple
constellation constructions in Section 6.4. In Section 6.5, we address the transmit power
optimization. We present the numerical results in Section 6.6 and conclude the paper in
Section 6.7. The preliminaries and proofs can be found in the appendices.

6.2 System Model and Problem Formulation
We consider a MIMO MAC consisting of a receiver equipped with N antennas and K users,
user k with Mk antennas, k ∈ [K]. The channel is assumed to be flat and block fading
with equal-length and synchronous (across the users) coherence block of length T ≥ 2.
Furthermore, the distribution of the channel HHHk ∈ CN×Mk of user k, k ∈ [K], is assumed
to be known, but its realizations are unknown to both the users and the receiver. We
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consider IID Rayleigh fading, namely, the rows of HHH:=[HHH1 HHH2 . . . HHHK ] are independent and
follow NC

(
0, IIIMtot

)
. Within a coherence block, each user k sends a signal matrix symbol

XXXk ∈ CT×Mk , and the receiver observes

YYY =
K∑
k=1

XXXkHHHT
k + ZZZ, (6.1)

where the additive noise ZZZ ∈ CT×N has IID NC(0, 1) entries independent of HHHk, k ∈ [K],
and the block index is omitted for simplicity. We consider the power constraint E

[
‖XXXk‖2F

]
≤

PT, k ∈ [K]. Thus, P is the SNR of the transmitted signal of each user at each receive
antenna.

We assume that the transmitted symbol XXXk takes value from a finite constellation Xk
with equally likely symbols of fixed size |Xk| = 2RkT , where Rk bpcu is the transmission rate.
To satisfy the power constraint, we assume that 1

|Xk|
∑
XXXk∈Xk ‖XXXk‖2F = PkT ≤ PT, k ∈ [K].

We assume without loss of generality or optimality that P = maxk Pk. Let us rewrite (6.1)
as

YYY = [XXX1 XXX2 . . . XXXK ][HHH1 HHH2 . . . HHHK ]T + ZZZ = XXXHHHT + ZZZs, (6.2)
where the concatenated signal matrix XXX := [XXX1 XXX2 . . . XXXK ] takes value from X :=
{[XXX1 XXX2 . . . XXXK ] : XXXk ∈ Xk}, denoted by X = X1 × X2 × · · · × XK = ∏K

k=1Xk.
Our goal is to derive the desirable properties of the set tuple (X1,X2, . . . ,XK) for a given
rate tuple (R1, R2, . . . , RK) to achieve low symbol detection error probability.

Remark 6.1. In the trivial case where only one of the users has non-zero rate, the joint
constellation design problem boils down to the single-user constellation design.

Given XXX = XXX, the received signal YYY is a Gaussian matrix with independent columns
having the same covariance matrix III T +XXXXXXH. Thus, the likelihood function pYYY|XXX is given
by

pYYY|XXX(YYY |XXX) = exp(−tr(YYY H(III T +XXXXXXH)−1YYY ))
πNTdetN (III T +XXXXXXH)

. (6.3)

Therefore, given the received symbol YYY = YYY , the joint-user ML symbol detector is

Ξ(YYY ) = arg max
XXX∈X

(
− tr

(
(III T +XXXXXXH)−1YYY YYY H)−N ln det(III T +XXXXXXH)

)
. (6.4)

We aim to design the joint constellation X so as to minimize the ML detection error
Pe(X ) = P(Ξ(YYY) 6= XXX), i.e.,

X ∗ = arg max
X

Pe(X ). (6.5)

Since the likelihood function depends on the symbol XXX only through XXXXXXH, the following
proposition is straightforward.

Proposition 6.1 (Identifiability condition). With the ML detector, the joint constellation
X must satisfy XXXXXXH 6= XXX ′XXX ′

H for any pair of distinct symbols XXX and XXX ′ in X .

Remark 6.2. Although we consider IID fading, we remark that if there is correlation
between the antennas of the same user,1 namely, the rows of HHH are independent and follow

the same distribution NC(0,RRR) with RRR :=
[
RRR1 0

...
0 RRRK

]
where RRRk is a Mk ×Mk positive

definite matrix, the solution to (6.5) can be expressed as X̄k = {XXXkRRR
−1/2
k : XXXk ∈ X ∗k }

where {X ∗k }Kk=1 is the solution to (6.5) for the considered uncorrelated fading but with a
new power constraint 1

n

∑n
t=1 ‖XXXk[t]RRR

−1/2
k ‖2F ≤ PkT, k ∈ [K].

1The correlation between the antennas of different users is not likely since the users are not co-located.
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In the next section, we analyze the error probability and derive more specific design
criteria.

6.3 Constellation Design Criteria

With XXX uniformly distributed in X , Pe(X ) can be written as

Pe(X ) = 1
|X |

∑
XXX∈X

P(Ξ(YYY) 6= XXX|XXX = XXX). (6.6)

We denote the pairwise error event as {XXX → XXX ′} := {pYYY|XXX(YYY|XXX) ≤ pYYY|XXX(YYY|XXX ′)|XXX = XXX}.
For any given XXX = XXX, the ML detection error event {Ξ(YYY) 6= XXX|XXX = XXX} is the union of the
pairwise error events denoted by ⋃XXX′∈X :XXX′ 6=XXX{XXX →XXX ′}. After some simple manipulations,
we have the following upper and lower bounds on Pe(X )

1
|X |

max
XXX 6=XXX′∈X

P(XXX →XXX ′) ≤ Pe(X ) ≤ (|X | − 1) max
XXX 6=XXX′∈X

P(XXX →XXX ′). (6.7)

We see that for a given |X |, the symbol detection error Pe(X ) vanishes if and only if the
worst-case pairwise error probability (PEP), max

XXX 6=XXX′∈X
P(XXX →XXX ′), vanishes. Therefore, our

goal from now on is to minimize the worst-case PEP.

6.3.1 Pairwise Error Probability Analysis

Following [98], [191], the PEP P(XXX →XXX ′) can be derived in closed form as follows.

Proposition 6.2. Let {λl}Ll=1 be the distinct non-zero eigenvalues of

ΛΛΛ := (III T +XXXXXXH)
(
III T +XXX ′XXX ′

H)−1 − III T , (6.8)

with multiplicities {µl}Ll=1, and let {λl}Lpl=1 be positive and {λl}Ll=Lp+1 negative. The PEP is
given by

P(XXX→XXX ′) =


1 +∑Lp

k=1 ξk
(
N ln det(IIIT+XXXXXXH)

det
(
IIIT+XXX′XXX′H

)), if det(III T +XXXXXXH) ≥ det
(
III T +XXX ′XXX ′H

)
,

−
∑L
k=Lp+1 ξk

(
N ln det(IIIT+XXXXXXH)

det
(
IIIT+XXX′XXX′H

)), if det(III T +XXXXXXH) ≤ det
(
III T +XXX ′XXX ′H

)
,

(6.9)

with ξk(c) := Res
(

esc

s
∏L

l=1 λ
µlN

l

(
s+1/λl

)µlN , −1
λk

)
where

Res(f(s), x) := 1
(m− 1)! lim

s→x
dm−1

dsm−1
[
(s− x)mf(s)

]
is the residue of a function f(s) in a pole x of multiplicity m.

Proof. The closed-form expression of the PEP follows readily from [98, Proposition 1] by
noting that the matrix CNC

ij therein is equal to ΛΛΛ⊗ IIIN in our setting, thus has the same
nonzero eigenvalues as ΛΛΛ with multiplicities N .

Another way to calculate the PEP is as follows. Let us rewrite the PEP as

P(XXX →XXX ′) = P
(

ln
pYYY|XXX(YYY|XXX)
pYYY|XXX(YYY|XXX ′) ≤ 0

)
= P

(
L(XXX →XXX ′) ≤ 0

)
(6.10)
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with the PLLR L(XXX →XXX ′) := ln pYYY|XXX(YYY|XXX)
pYYY|XXX(YYY|XXX′) . Using (6.3), we obtain

L(XXX →XXX ′) = N ln
det
(
III T +XXX ′XXX ′

H)
det(III T +XXXXXXH) − tr

((
(III T +XXXXXXH)−1 − (III T +XXX ′XXX ′

H)−1)YYYYYYH
)
.

(6.11)

Let YYY0 := YYY(III T + XXXXXXH)−1/2 be a “whitened” version of YYY, then YYY0 is a Gaussian matrix
with independent columns following NC(0, III T ). The PLLR can be expressed as

L(XXX →XXX ′) = −N ln det
(
III T + Λ̄ΛΛ

)
+ tr

(
Λ̄ΛΛYYY0YYYH

0

)
, (6.12)

where the matrix Λ̄ΛΛ := (III T +XXXXXXH) 1
2
(
III T +XXX ′XXX ′

H)−1(III T +XXXXXXH) 1
2 − III T has the same

eigenvalues as ΛΛΛ. The matrix YYY0YYYH
0 follows the complex Wishart distribution WT (N, III )

(see Appendix 6.A.1.a). If Λ̄ΛΛ, or equivalently ΛΛΛ, is semidefinite, a closed-form expression of
the PEP is given as follows.

Proposition 6.3. If ΛΛΛ � 0, i.e. XXXXXXH �XXX ′XXX ′H, the PEP is given by P(XXX →XXX ′) = ψ; if
ΛΛΛ � 0, i.e. XXXXXXH �XXX ′XXX ′H, the PEP is given by P(XXX →XXX ′) = 1− ψ, where

ψ := ςTNdet(|ΛΛΛ|)−N

×
∞∑
k=1

γ
(
TN + k, Nς | ln det(III T + ΛΛΛ)|

)
k!(TN + k − 1)!

∑
κ(T,k)

[N ]κ(T,k)Cκ(T,k)(III T − ς|ΛΛΛ|−1), (6.13)

for arbitrary ς > 0. Here, κ(T, k) = {ki}Ti=1 is a partition of k into T integers k1 ≥
k2 ≥ · · · ≥ kT such that ∑T

i=1 ki = k; [N ]κ(T,k) := ∏T
i=1(N − i + 1)ki with (a)k :=

a(a+1) . . . (a+k−1); and γ(s, x) :=
∫ x

0 t
s−1e−tdt is the lower incomplete Gamma function.

For a T × T matrix ΣΣΣ with eigenvalues σ1, . . . , σT , Cκ(T,k)(ΣΣΣ) denotes the complex zonal
polynomial corresponding to a partition κ(T, k) = {k1, k2, . . . , kT } defined as

Cκ(T,k)(ΣΣΣ) := k!
∏

1≤i<j≤T (ki − kj − i− j)∏T
i=1(ki + T − i)!

det
({
σ
kj+T−j
i

}
i,j

)
det
({
σT−ji

}
i,j

) , (6.14)

where {a(i, j)
}
i,j

denotes a matrix with a(i, j) as the (i, j)-th component.

Proof. From (6.10) and (6.12), the PEP is the CDF (resp. complementary CDF) of
the trace of |Λ̄ΛΛ|1/2YYY0YYYH

0|Λ̄ΛΛ|1/2 evaluated at N | ln det(III T + Λ̄ΛΛ)| if Λ̄ΛΛ � 0 (resp. Λ̄ΛΛ � 0).
Since YYY0YYYH

0 ∼ WT (N, III ), according to [192, Thm. 3.2.5], we have that |Λ̄ΛΛ|1/2YYY0YYYH
0|Λ̄ΛΛ|1/2 ∼

WT (N, |Λ̄ΛΛ|). The proof then follows from the CDF of the trace of a complex Wishart
matrix given in Lemma 6.2 in Appendix 6.A.1.a, and the fact that ΛΛΛ and Λ̄ΛΛ have the same
eigenvalues.

Proposition 6.3 can be seen as a special case of Proposition 6.2 when Lp ∈ {0, L}. These
closed-form expressions, however, do not bring clear insights to constellation design. A
high-SNR asymptotic expression of the PEP was given in [98, Proposition 3], but is also
hard to exploit since it involves the number of different individual symbols in XXX and XXX ′,
which is highly non-smooth. In the following, we derive some simple but effective design
criteria.
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6.3.2 Design Criteria

We resort to the following bound on the PEP

P
(
L(XXX →XXX ′) ≤ 0

)
≤

Var
[
L(XXX→XXX ′)

]
Var

[
L(XXX→XXX ′)

]
+ E

[
L(XXX→XXX ′)

]2 (6.15)

which follows from Cantelli’s inequality.2 Note that the upper bound decreases with
E[L(XXX→XXX′)]2
Var[L(XXX→XXX′)] . We choose to relax the problem into maximizing the expected PLLR E

[
L(XXX→

XXX ′)
]
. Although maximizing E[L(XXX→XXX′)]2

Var[L(XXX→XXX′)] and maximizing E
[
L(XXX→XXX ′)

]
are equivalent

only when Var
[
L(XXX→XXX ′)

]
is constant over different symbol pairs, the relaxation makes

the problem tractable.

We further justify our choice by pointing out the connection of our problem to the
following hypothesis testing problem. Let us consider two hypotheses:

H0 : {yyyi}Ni=1 ∼ NC(0, III T +XXXXXXH), (6.16)
H1 : {yyyi}Ni=1 ∼ NC

(
0, III T +XXX ′XXX ′

H)
, (6.17)

where {yyyi}Ni=1 are realizations of N columns of YYY. Then, the PEP P(XXX →XXX ′) can be seen
as the type-1 error probability of the optimal likelihood ratio test. From (6.15) and the

fact that E[L(XXX→XXX′)]2
Var[L(XXX→XXX′)] →∞ as N →∞, we have that P(XXX →XXX ′)→ 0 as N →∞ for any

constellation satisfying the identifiability condition in Proposition 6.1. (A proof is given in
Appendix 6.A.2.) Switching the symbols’ roles, we deduce that P(XXX ′ →XXX) ≤ ε ∈ (0, 1/2)
for N large enough. Then, from the Chernoff-Stein Lemma [21, Theorem 11.8.3], we have
that

lim
N→∞

1
N lnP(XXX →XXX ′) = −D

(
NC(0, III T +XXXXXXH)

∥∥∥NC
(
0, III T +XXX ′XXX ′

H))
= −E

[
L(XXX→XXX ′)

]
. (6.18)

Therefore, maximizing E
[
L(XXX→XXX ′)

]
maximizes the pairwise error exponent when N →∞.

The convergence of the pairwise error exponent to the KL divergence was also used in [59],
[97].

Therefore, let emin(X ) := 1
N min
XXX 6=XXX′∈X

E
[
L(XXX→XXX ′)

]
, we consider the following design

criterion
X ∗ = arg max

X
emin(X ) (6.19)

where it follows from (6.11) and E[YYYYYYH] = N
(
III T +XXXXXXH) that

E
[
L(XXX→XXX ′)

]
= N ln

det
(
III T +XXX ′XXX ′

H)
det(III T +XXXXXXH) −N +Ntr

(
(III +XXX ′XXX ′

H)−1)
+Ntr

(
(III T +XXX ′XXX ′

H)−1XXXXXXH). (6.20)

Remark 6.3. A criterion following from treating the joint constellation as a Grassmannian
constellation in G

(
CT ,Mtot

)
is X ∗ = arg max

X
min

XXX 6=XXX′∈X
tr
(

III− XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
, or equivalently,

X ∗ = arg min
X

max
XXX 6=XXX′∈X

tr
(
XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
. (6.21)

2Cantelli’s inequality [193, Section II.8] states that P(x−µ ≤ λ) ≤ σ2

σ2+λ2 for a real-valued random variable
x with mean µ and variance σ2, and λ < 0. Applying this with x = L(XXX →XXX ′) and λ = −E

[
L(XXX→XXX ′)

]
,

we obtain (6.15).
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Another criterion originally proposed for the single-user channel in [68, Eq.(8)] is

X ∗ = arg min
X

∑
XXX 6=XXX′∈X

det−N
(
III − XXXHXXX′XXX′HXXX

‖XXX‖2F‖XXX
′‖2F

)
. (6.22)

We denotem1(X ) := max
XXX 6=XXX′∈X

tr
(
XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
andm2(X ) := ln

∑
XXX 6=XXX′∈X

det−N
(
III−XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
for future reference.

In the following, we further simplify the design criterion (6.19).

Lemma 6.1. Let XXX and XXX ′ be such that ‖XXX‖2F = Θ(P ) and ‖XXX ′‖2F = Θ(P ) as P → ∞.

We have tr
(
(III T +XXX ′XXX ′

H)−1) = O(1); ln det
(
IIIT+XXX′XXX′H

)
det(IIIT+XXXXXXH) = O(1) if Span(XXX) = Span(XXX ′) and

Θ(lnP ) otherwise. Furthermore, tr
(
(III T +XXX ′XXX ′

H)−1XXXXXXH) = O(1) if Span(XXX) = Span(XXX ′)
and Θ(P ) otherwise.

Proof. The proof is provided in Appendix 6.A.3.

We see that the only term in (6.20) that can scale up linearly with P is d(XXX →XXX ′) :=
tr
(
(III T +XXX ′XXX ′

H)−1XXXXXXH). Let dmin(X ) := min
XXX,XXX′∈X :XXX 6=XXX′

d(XXX →XXX ′), we have the following
design criterion

X ∗ = arg max
X

dmin(X ). (6.23)

Hereafter, we assume for simplicity that all users have the same number of antennas,
i.e. M1 = · · · = MK = M , although the general case follows in a straightforward manner.

6.3.3 The Single-User Case

In the single-user case with M transmit antenna, it is known that the high-SNR optimal
input signal belongs to the Grassmann manifold [49]. We consider Grassmannian constel-
lation [64] X ⊂ G(CT ,M), thus XXXHXXX = PT

M IIIM , ∀XXX ∈ X . Using the Woodbury identity
(III T +XXX ′XXX ′

H)−1 = III T −XXX ′(IIIM +XXX ′
H
XXX ′)−1XXX ′

H, we have that

d(XXX →XXX ′) = tr
((

III T −XXX ′(IIIM +XXX ′
H
XXX ′)−1XXX ′

H)
XXXXXXH

)
(6.24)

= tr(XXXHXXX)− tr
(
XXXHXXX ′(IIIM +XXX ′

H
XXX ′)−1XXX ′

H
XXX
)

(6.25)

= PT

(
1− αP,T,M

‖XXX ′HXXX‖2F
(PT )2

)
, (6.26)

where αP,T,M :=
(

1
PT + 1

M

)−1
and the last equality follows from XXXHXXX=XXX ′HXXX ′= PT

M IIIM .
Therefore, the design criterion (6.23) is equivalent to X = arg min

X
max

XXX,XXX′∈X :XXX 6=XXX′
‖XXX ′HXXX‖2F.

This coincides with the common criterion of maximizing the minimum pairwise chordal
distance between the symbols [60], [64], [74], [123].

6.3.4 The Two-User Case

In the two-user case, we first develop

d(XXX →XXX ′) = tr
(
XXXH

1(III T +XXX ′XXX ′
H)−1XXX1

)
+ tr

(
XXXH

2(III T +XXX ′XXX ′
H)−1XXX2

)
, (6.27)

where we recall that XXX := [XXX1 XXX2], XXX ′ := [XXX ′1 XXX ′2] with XXXk,XXX
′
k ∈ Xk, k ∈ {1, 2}, and

XXX ′ 6= XXX. There are two types of error event.
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1. Simultaneous detection error, i.e., XXX1 6= XXX ′1, XXX2 6= XXX ′2:

d(XXX →XXX ′) = tr
(
XXXH

1
(
III T +XXX ′1XXX

′H
1 +XXX ′2XXX

′H
2
)−1

XXX1
)

+ tr
(
XXXH

2
(
III T +XXX ′

H
1XXX
′
1 +XXX ′

H
2XXX
′
2
)−1

XXX2
)
. (6.28)

2. One sided detection error, i.e., XXXk = XXX ′k, XXX l 6= XXX ′l, k 6= l ∈ {1, 2}:

d(XXX →XXX ′) = tr
(
XXXH
k

(
III T +XXXkXXX

H
k +XXX ′lXXX

′H
l

)−1
XXXk

)
+ tr

(
XXXH
l

(
III T +XXX ′

H
kXXX
′
k +XXX ′

H
lXXX
′
l

)−1
XXX l

)
. (6.29)

Let us define

d1(X ) := min
XXX1 6=XXX′1∈X1
XXX2∈X2

tr
(
XXXH

1(III T +XXX ′1XXX
′H
1 +XXX2XXX

H
2)−1XXX1

)
, (6.30)

d2(X ) := min
XXX2 6=XXX′2∈X2
XXX1∈X1

tr
(
XXXH

2(III T +XXX1XXX
H
1 +XXX ′2XXX

′H
2)−1XXX2

)
. (6.31)

Since 0 ≤ tr
(
XXXH
k

(
III T +XXXkXXX

H
k +XXX ′lXXX

′H
l

)−1
XXXk

)
≤ M , ∀ k 6= l, considering both types of

error, we obtain the following bounds

min{d1(X ), d2(X )} ≤ dmin(X ) ≤ min{d1(X ), d2(X )}+M. (6.32)

Therefore, dmin(X ) is within a constant gap to min{d1(X ), d2(X )}, and dmin(X ) scales
linearly with P when P is large if and only if min{d1(X ), d2(X )} does so. Based on this
observation, we propose the following design criterion

X ∗ = arg max
X

min{d1(X ), d2(X )}. (6.33)

6.3.5 The K-User Case

We now generalize the analysis of the two-user case to the K-user case. We develop

d(XXX →XXX ′) =
K∑
k=1

tr
(
XXXH
k(III T +XXX ′XXX ′

H)−1XXXk

)
, (6.34)

where we recall that XXX = [XXX1 . . .XXXK ],XXX ′ = [XXX ′1 . . .XXX ′K ] with XXXk,XXX
′
k ∈ Xk, k ∈ [K] and

XXX 6= XXX ′. XXX andXXX ′ are regarded as the transmitted and detected joint symbols, respectively.
For any K ⊂ [K], if all users in K are wrongly detected, while all users in L = [K] \ K are
correctly detected, then

d(XXX →XXX ′) =
∑
k∈K

tr
(
XXXH
k

(
III T +XXX ′kXXX

′
k

H +
∑
j 6=k

XXX ′jXXX
′
j

H)−1
XXXk

)
+
∑
l∈L

tr
(
XXXH
l

(
III T +XXX lXXX

H
l +

∑
j 6=l

XXX ′jXXX
′
j

H)−1
XXX l

)
. (6.35)

In this case, the minimal value of d(XXX →XXX ′) is defined as

dKmin(X ) := min
XXXk 6=XXX

′
k
∈Xk,∀k∈K,

XXXl=XXX
′
l
∈Xl,∀l∈[K]\K

d(XXX →XXX ′)
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. Then, it is straightforward that dmin(X ) is the minimum value of dKmin(X ) over all possible
K ⊂ [K], i.e., dmin(X ) = minK⊂[K] d

K
min(X ). Let us define

dk(X ) := min
XXXk 6=XXX

′
k
∈Xk

XXXj∈Xj ,j 6=k

tr
(
XXXH
k

(
III T +XXX ′kXXX

′
k

H +
∑
j 6=k

XXXjXXX
H
j

)−1
XXXk

)
. (6.36)

We have that

dKmin(X ) ≥ min
k∈K

dk(X ) ≥ min
k∈[K]

dk(X ),∀K ⊂ [K], (6.37)

where the first inequality holds since the constraint under the min in dk(X ) subsumes that
in dKmin(X ), and the trace in dk(X ) is one of the nonnegative summands in dKmin(X ); the
second inequality holds since K ⊂ [K]. Taking K∗ = arg min

K⊂[K]
dKmin(X ) yields

dmin(X ) = dK
∗

min(X ) ≥ min
k∈[K]

dk(X ). (6.38)

On the other hand, since tr
(
XXXH
l

(
III T +XXX lXXX

H
l +∑

j 6=lXXX
′
jXXX
′
j

H)−1
XXX l

)
≤M , ∀ l ∈ [K], we get

that d{k}min(X ) ≤ dk(X ) + (K − 1)M for all k ∈ [K]. Let k∗ = arg mink∈[K] dk(X ), we have
that

dmin(X ) = min
K⊂[K]

dKmin(X ) (6.39)

≤ d{k
∗}

min (X ) (6.40)
≤ dk∗(X ) + (K − 1)M (6.41)
≤ min

k∈[K]
dk(X ) + (K − 1)M. (6.42)

From (6.38) and (6.42), we see that dmin(X ) is within a constant gap to mink∈[K] dk(X ),
and thus dmin(X ) scales linearly with P when P is large if and only if mink∈[K] dk(X ) does
so. Based on this observation, we propose the following design criterion

X ∗ = arg max
X

min
k∈[K]

dk(X ). (6.43)

6.3.6 Simplifications

6.3.6.a Alternating Optimization

To simplify the constellation optimization, we propose an alternating optimization as
follows. First {Xk}Kk=1 are initialized. Then, for k = 1, . . . ,K, we iteratively optimize
Xk by X ∗k = arg max

Xk
m(X ) for fixed {Xl}l 6=k in a round robin manner, where m(X ) is

the considered metric. At each iteration, it has fewer variables to optimize than directly
solving (6.19), (6.23), or (6.43). However, the solution of alternating optimization is not
guaranteed to converge to the exact optimum.

6.3.6.b Solution Space Reduction

In the most general setting, the simplified criteria (6.19), (6.23), (6.43) still have a large
solution space. Specifically, X belongs to a product space of

{
XXX

(1)
k , . . . ,XXX

(|Xk|)
k ∈ CT×Mk : 1

|Xk|

|Xk|∑
i=1

∥∥XXX(i)
k

∥∥2 ≤ PT
}
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, and thus has ∏K
k=1(TMk)|Xk| free variables to optimize. To reduce the solution space, we

make the suboptimal assumption that the individual constellations Xk are Grassmannian,
thus have equal power for each transmitted symbol XXXk. From a practical perspective,
this is desirable since the constellation is oblivious to the presence of the other users
and Grassmannian signaling is high-SNR optimal for the single-user channel. Under this
assumption, we have that XXXH

kXXXk = PkT
T IIIM , ∀XXXk ∈ Xk, k ∈ [K]. That is, the symbol XXXk is

a scaled truncated unitary matrix representative of a point in the Grassmann manifold
G(CT ,M). Thus, the solution space is reduced to the Cartesian product of K instances
of G(CT ,M) (for the signal subspace) and K instances of the interval [0, P ] (for the
signal power). Furthermore, the optimization for signal subspace and power can be done
separately, as in the next sections.

6.4 Two Simple Constructions for Given Transmit Power
In this section, inspired by the proposed criteria, we propose two simple constellation
constructions for fixed power Pk, k ∈ [K].

6.4.1 Partitioning Design

In this subsection, we consider the symmetrical power case Pk = P, ∀k ∈ [K]. This is a
reasonable assumption if the users transmit at symmetric rate R1 = · · · = RK . Also, with
Grassmannian signaling, we have that XXXH

kXXXk = PT
M IIIM , ∀XXXk ∈ Xk, k ∈ [K]. Nevertheless,

there must be constraints between the symbols of different users. For instance, if the
constellations are such that XXX1 =XXX2 = · · · = XXXK for XXXk ∈ Xk can occur, then dk(X ) is
upper-bounded by a constant for any k. This can be developed in a formal way as follows.

An upper bound can be obtained by removing the terms inside the inverse in dk(X ),
namely,

dk(X ) ≤ min
{

min
XXXk 6=XXX′k∈Xk

tr
(
XXXH
k(III T +XXX ′kXXX

′
k

H)−1XXXk

)
,

min
XXXk∈Xk,XXXl∈Xl,l 6=k

tr
(
XXXH
k(III T +XXX lXXX

H
l )−1XXXk

)}
. (6.44)

For dk(X ) to be large, the upper bounds must be large. This is made precise in the next
proposition.

Proposition 6.4 (Necessary condition). Let {Xk}Kk=1 be such thatXXXH
kXXXk = PT

M IIIM , ∀XXXk ∈
Xk, k ∈ [K]. If the following lower bound holds for some c ∈ [0, 1/M ]

min
k∈[K]

dk(X ) ≥ PT (1− αP,T,M c), (6.45)

where αP,T,M :=
( 1
PT + 1

M

)−1, then we must have

1
(PT )2 max

{
max

XXXk 6=XXX′k∈Xk,k∈[K]

∥∥XXX ′kH
XXXk

∥∥2
F, max
XXXk∈Xk,XXXl∈Xl,k 6=l∈[K]

‖XXXH
kXXX l‖2F

}
≤ c. (6.46)

Proof. The proof follows the same steps as in the single-user case in Section 6.3.3, applying
to the upper bound (6.44).

The above proposition shows that symbol pairs from different users should fulfill similar
distance criteria as symbol pairs from the same constellation when it comes to identifiability
conditions. However, it is unclear whether (6.46) alone is enough to guarantee a large
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value of mink∈[K] dk(X ). In the following, we shall show that these conditions are indeed
sufficient if c is small.

Proposition 6.5 (Sufficient condition). Let {Xk}Kk=1 be such that XXXH
kXXXk = PT

M IIIM , ∀XXXk ∈
Xk, k ∈ [K]. If

1
(PT )2 max

{
max

XXXk 6=XXX′k∈Xk,k∈[K]

∥∥XXX ′kH
XXXk

∥∥2
F, max
XXXk∈Xk,XXXl∈Xl,k 6=l∈[K]

‖XXXH
kXXX l‖2F

}
≤ c (6.47)

for some c ∈ [0, 1/M ], then we have

min
k∈[K]

dk(X ) ≥ PT
(

1−K
(

1
PT

+ 1
M
−

√
K(K − 1)c

21{K=2}

)−1

c

)
. (6.48)

Proof. The proof is provided in Appendix 6.A.4.

The two propositions above motivate the following simplified design criterion

X ∗ = arg min
X

max
{

max
XXXk 6=XXX′k∈Xk,k∈[K]

∥∥XXX ′kH
XXXk

∥∥2
F, max
XXXk∈Xk,XXXl∈Xl,k 6=l∈[K]

‖XXXH
kXXX l‖2F

}
. (6.49)

Based on the criterion (6.49), we propose a simple construction as follows. Let XSU be a
single-user constellation and let c := 1

(PT )2 max
XXX 6=XXX′∈XSU

‖XXX ′HXXX‖2F ∈
[
0, 1
M

]
. Then, we can

generate {Xk}Kk=1 by partitioning XSU into K disjoint subsets. In this way, from (6.38)
and Proposition 6.5, we can guarantee that

dmin(X ) ≥ PT
(

1−K
(

1
PT

+ 1
M
−

√
K(K − 1)c

21{K=2}

)−1

c

)
. (6.50)

With such a construction, the joint constellation design problem becomes essentially
an individual constellation design problem. A random partition would be sufficient to
guarantee (6.50), although one can smartly partition the set XSU to improve over (6.50).
The optimal partition problem is equivalent to a min-max graph partitioning problem [194].
Also note that for the right-hand side of (6.50) to scale linearly with P , c must be small
enough, which requires the initial single-user constellation XSU to be sparse enough in
G(CT ,M) and thus limits the size of XSU. This is made precise in the following.

Proposition 6.6. For a joint constellation {Xk}Kk=1 generated by partitioning a single-
user constellation XSU, for the lower bound of dmin(X ) in (6.50) to scale linearly with P ,
the minimum pairwise chordal distance between the elements of XSU, i.e. δmin(XSU) :=

min
XXX 6=XXX′∈XSU

√
M − 1

P 2T 2 ‖XXX ′
H
XXX‖2F, must satisfy

δmin(XSU) >

√√√√√M −
( 1

KPT
+ 1
KM

+ K − 1
4K21{K=2}

)1/2
−

√
K − 1

4K21{K=2}

2

, (6.51)

which is possible only if

|XSU| < c−1
T,M22M(T−M)

×

M − [( 1
KPT

+ 1
KM

+ K − 1
4K21{K=2}

) 1
2
−

√
K − 1

4K21{K=2}

]2−M(T−M)

,

(6.52)
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with

cT,M = 1
(M(T −M))!

min{M,T−M}∏
i=1

(T − i)!
(min{M,T −M} − i)! . (6.53)

Proof. The right-hand side of (6.50) scales linearly with P if

1−K
( 1
PT

+ 1
M
−

√
K(K − 1)c

21{K=2}

)−1
c > 0,

that is

c <

( 1
KPT

+ 1
KM

+ K − 1
4K21{K=2}

)1/2
−

√
K − 1

4K21{K=2}

2

. (6.54)

By definition, we have that δmin(XSU) =
√
M − c, so (6.54) is equivalent to (6.51). On

the other hand, according to Lemma 1.4, the volume of a metric ball B(δ) of radius δ
(in chordal distance) in G(CT ,M) with normalized invariant measure µ(·) is given by
µ(B(δ)) = cT,Mδ

2M(T−M) with cT,M defined in (6.53). Since XSU is a packing on G(CT ,M)
with minimum chordal distance δmin(XSU), we have the Hamming upper bound (1.121) on
the size of XSU as |XSU| ≤ 1

µ(B(δmin(XSU)/2)) . From this and (6.51), we obtain (6.52).

In the high-SNR regime (P →∞), the bounds of δmin(XSU) and |XSU| in Proposition 6.6
respectively converge to

ν(K,M) :=

√√√√√M −
( 1

KM
+ K − 1

4K21{K=2}

)1/2
−

√
K − 1

4K21{K=2}

2

, (6.55)

β(T,K,M) := c−1
T,M22M(T−M)

×

M − [( 1
KM

+ K − 1
4K21{K=2}

) 1
2
−

√
K − 1

4K21{K=2}

]2−M(T−M)

. (6.56)

Fig. 6.1 shows the values of log2(β(T,K,M)), which is the high-SNR upper bound on the
number of bits per symbol log2(|XSU|) in XSU, for K ∈ {2, 4} and some values of T and
M . As can be seen, for a fixed M , the bound monotonically increases in T ; for a fixed T ,
the bound first increases in M then decreases after a peak value and becomes 0 (imposing
a zero transmission rate) when M ≈ 0.73T ; and the bound is not sensitive to the value of
K.

Remark 6.4. The Grassmann manifold G(CT ,M) has 2M(T −M) real dimensions. From
(6.56), an upper bound on the number of bits per real dimension for XSU is given by

log2 β(T,K,M)
2M(T −M) ≤ ζ(K,M) (6.57)

where

ζ(K,M) := 1− 1
2 log2

1− 1
M

[( 1
KM

+ K − 1
4K21{K=2}

)1/2
−

√
K − 1

4K21{K=2}

]2. (6.58)

In fact, using Stirling’s formula
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n [195], we can show that
log2 β(T,M)
2M(T−M) ↑ ζ(K,M) as T → ∞, where “↑” means “approach from below”. After some
simple manipulations, we have that ζ(K,M) ≤ 2 − 1

2 log2 3 < log2 3 for any K and M .
That is, roughly speaking, one should not pack more than 2 symbols of XSU in each real
dimension of the manifold on average.
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Figure 6.1: The upper bound log2(β(T,K,M)) on the number of bits per symbol log2(|XSU|) for
the lower bound (6.50) of dmin(X ) to scale linearly with P .

6.4.2 Precoding Design

We consider the SIMO case (M = 1), where the constellation symbols are vector valued.
We propose a constellation design as follows.

6.4.2.a Design Principle

We first define for each user a constellation Ck = {ccc(1), . . . , ccc(|Xk|)} in G(CT−K+1, 1), then
construct Xk as the image of Ck through a mapping

fffk :
{

CT−K+1 → CT ,
ddd

(i)
k 7→ ccc

(i)
k .

(6.59)

That is,

xxx
(i)
k = fffk

(
ccc

(i)
k

)
, i = 1, . . . , 2|Xk|. (6.60)

While the constellations Ck can be identical or different amongst the users, the encoder
mapping fffk needs to be unique for each user in order to guarantee the identifiability
condition.

In particular, we consider a mapping consisting of a linear transformation followed by a
normalization, such that fffk can be defined through a full-rank precoder UUUk ∈ CT×(T−K+1)

as

xxx
(i)
k = PkT

M

UUUkccc
(i)
k

‖UUUkccc
(i)
k ‖

. (6.61)

We refer to this kind of mapping as normalized linear encoder mapping. Therefore, each
symbol xxx(i)

k of user k belongs to the column space Uk of UUUk. For example, when T = 3,
K = 2, and |X1| = |X2| = 4, a geometric interpretation for the precoders UUU1 = [eee1 eee3] and
UUU2 = [eee2 eee3] is provided in Fig. 6.2.

Remark 6.5. The precoders impose a geometric separation between the individual constel-
lations. This is the discrimination factor of the signals transmitted from different users.
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Figure 6.2: A geometric interpretation on the real Grassmannian for the precoders UUU1 = [eee1 eee3]
and UUU2 = [eee2 eee3] (eeek denotes the k-th column of III T ) for T = 3, K = 2, |X1| = |X2| = 4. The
symbols of user 1 and user 2—represented by their projections on the sphere—belong to the column
spaces U1 and U2 of UUU1 and UUU2, respectively. The axis xt, t = 1, 2, 3, corresponds to the t-th
component of a symbol.

In Chapter 7, we will exploit this geometric separation to design an efficient detector that
decouples the joint detection into multiple single-user detection problems. We recall that we
focus on ML detection in the current chapter.

Let VVV k ∈ CT×(K−1) denote a basis of the orthogonal subspace of Uk, i.e., VVV H
kUUUk = 0,

VVV H
kVVV k = IIIK−1.

Property 6.1 (Distance preservation). If UUUH
kUUUk = III T−K+1, the chordal distance of any

pair of symbols in Ck is preserved by the normalized linear encoder mappings.

Proof. For any two symbols ccc1 and ccc2 in Ck, the chordal distance between their precoded
versions is

d(UUUkccc1,UUUkccc2) =
√

1− |cccH
2UUU

H
kUUUkccc1|2 =

√
1− |cccH

2ccc1|2 = d(ccc1, ccc2), (6.62)

since UUUH
kUUUk = III by assumption.

This property states that the distance spectrum of the individual constellations Xk is
the same as that of Ck if UUUH

kUUUk = III .

6.4.2.b Precoder Design

For fixed constellations Ck, the precoders can be optimized according to the criteria in
(6.19) and (6.23). To reduce the complexity, we consider a more greedy approach by taking
the QR factorization of the precoders:

UUUk = QQQkRRRk, k ∈ [K], (6.63)

where the truncated-unitary matrix QQQk ∈ CT×(T−K+1) determines the subspace Uk which
the symbols ccc(i)

k lie in, and the upper triangular matrix RRRk ∈ C(T−K+1)×(T−K+1) partially
decides the orientation of the symbols in this subspace. Both QQQk and RRRk need to be
optimized so as to optimize the metrics minXXX 6=XXX′∈X E

[
L(XXX→XXX ′)

]
and dmin(X ).
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From Lemma 6.1, we know that E
[
L(XXX→XXX ′)

]
and d(XXX →XXX ′) are upper bounded by

a constant if Span(XXX) = Span
(
XXX ′
)
. In fact, these metrics become larger as Span(XXX) and

Span
(
XXX ′
)
share less dimensions (see Appendix 6.A.3). Therefore, the precoders should

be designed such that Span(XXX) and Span
(
XXX ′
)
are maximally orthogonal for any pair

XXX 6= XXX ′ ∈ X . Since Span(XXX) is also the column space of [UUU1 . . . UUUK ] for any XXX, Span(XXX)
and Span

(
XXX ′
)
are both spanned by the shared dimensions of U1, . . . ,UK . Therefore,

to separate Span(XXX) and Span
(
XXX ′
)
, we minimize the number of shared dimensions in

U1, . . . ,UK . In other words, we would like to optimize {QQQk} so that the subspaces Uk are
maximally distant from each other. Considering the max-min chordal distance optimization
problem, we have

{QQQ1, . . . ,QQQK} = arg max
QQQk: QQQH

kQQQk=III ,k∈[K]
min

1≤i<j≤K
‖QQQiQQQH

i −QQQjQQQH
j‖2F (6.64)

= arg max
QQQk: QQQH

kQQQk=III ,k∈[K]
min

1≤i<j≤K
‖VVV iVVV

H
i − VVV jVVV

H
j‖2F , (6.65)

since VVV k is a basis of the orthogonal complement of QQQk, k ∈ [K]. When T ≥ K(K − 1),
the solution is obvious: we set all VVV k orthogonal to each other as in the following example.

Example 6.1 (Precoder Type I). If T ≥ K(K − 1), for k ∈ [K],

UUUk = [eee1 . . . eee(k−1)(K−1) eeek(K−1)+1 . . . eeeT ], (6.66)
VVV k = [eee(k−1)(K−1)+1 . . . eeek(K−1)]. (6.67)

For RRRk, we consider the special case RRRk = diag(η(k)
1 , η

(k)
2 , . . . , η

(k)
T−K+1), where the factor

η
(k)
i indicates the weight of a symbol in the dimension of Uk represented by column i of
UUUk. By adjusting these factors, we control the orientation of the symbols in Uk. When
U1, . . . ,UK overlap, let us denote by U∩ = ⋂K

k=1 Uk the intersection of these subspaces. If
there exists a set of symbols xxxk 6= xxx′k ∈ Uk, k ∈ [K] and xxxl ∈ Ul, l 6= k all belonging to
U∩, then it can be shown that dk(X ) in (6.36) is upper bounded by a constant, and so is
minXXX 6=XXX′∈X d(XXX →XXX ′). Therefore, we avoid placing the symbol in the intersection U∩. In
Fig. 6.2, this can be seen as putting the points representing the symbols further away from
the point I representing the intersection of U1 and U2. We next present an example of
precoders in this spirit.

Example 6.2 (Precoder Type II). For k ∈ [K],

UUUk =
[√
η1eeek

√
η2[eeeK+1 . . . eeeT ]

]
, (6.68)

VVV k = [eee1 . . . eeek−1 eeek+1 . . . eeeK ], (6.69)

where3 η1 = K(T−K+1)
T and η2 = T−K+1

T . Note that the factor η2 indicating the weight of a
symbol in the dimensions in the intersection U∩ is smaller than η1 indicating the power in
the mutually exclusive part of {Uk}. Also, η1 and η2 are designed such that in [UUU1 . . . UUUK ],
equal power is allocated to every direction.

6.5 Power Optimization
When the users transmit at different rates, it might not be optimal to let them transmit at
equal power. For example, in the extreme case when only one of the users transmits at

3Precoder Type II is of the same spirit as the pilot-based scheme: the users’ signals are orthogonal in
the first K channel uses.
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non-zero rate, all other users should remain silent, i.e., transmit at power zero, to avoid
causing interference. Therefore, power optimization also plays a key role. For a fixed
constellation X (possibly generated with equal transmit power), we can further optimize
the transmit power so as to maximize the metrics emin(X ) or dmin(X ).

Let us focus on the two-user SIMO case and consider a joint Grassmannian constellation
X = X1×X2 with average symbol power {P1, P2}, that is, Xk = {

√
PkTxxx

(i)
k : ‖xxx(i)

k ‖ = 1, i ∈
[|Xk|]}, k = 1, 2. Let X̄ = X̄1×X̄2 where X̄k = {xxx(i)

k }
[|Xk|]
i=1 is the set of the normalized symbols

of user k. We assume that X̄ is fixed and would like to optimize the transmit powers {P1, P2}.
To this end, we define θ := P2/P1 and denote X as X θ for convenience. The parameter θ is
the ratio between the transmit powers of the two users that we would like to optimize. From
Section ??, we deduce that min{d1(X θ), d2(X θ)} ≤ dmin(X θ) ≤ min{d1(X θ), d2(X θ)}+ 1
where d1(X θ) = min

xxx1,xxx′1,xxx2
δ1(θ) and d2(X θ) = min

x̂xx1,x̂xx2,x̂xx
′
2

δ2(θ) with

δ1(θ) := P1Txxx
H
1(III T +P1Txxx

′
1xxx
′H
1 +θP1Txxx2xxx

H
2)−1xxx1, (6.70)

δ2(θ) := θP1Tx̂xx
H
2(III T +P1Tx̂xx1x̂xx

H
1 +θP1Tx̂xx

′
2x̂xx
′H
2 )−1x̂xx2, (6.71)

for {xxx1,xxx
′
1, x̂xx1} ⊂ X̄1, {xxx2, x̂xx2, x̂xx

′
2} ⊂ X̄2 such that xxx1 6= xxx′1 and x̂xx2 6= x̂xx′2. The optimal value

of θ can be found by analyzing d1(X θ) and d2(X θ), as stated in the following proposition.

Proposition 6.7. In the two-user SIMO case:

1. min{d1(X θ), d2(X θ)} is maximized at θ = θ∗ such that d1(X θ∗) = d2(X θ∗), and

dmin(X θ∗) ≤ max
θ
dmin(X θ) ≤ dmin(X θ∗) + 1; (6.72)

2. the value θ∗ is given by θ∗ = arg min
θ∈ΘΘΘ

δ(θ) where ΘΘΘ is the set of θ > 0 such that

δ1(θ) = δ2(θ) =: δ(θ) (6.73)

for some {xxx1,xxx
′
1, x̂xx1} ⊂ X̄1, {xxx2, x̂xx2, x̂xx

′
2} ⊂ X̄2 such that xxx1 6= xxx′1 and x̂xx2 6= x̂xx′2; the

solution to (6.73) is given by

θ = 1
3a

[
2
√

∆ cos
(1

3 arccos
(9abc− 2b3 − 27a2d

2
√

∆3

))
− b
]

(6.74a)

with a := P1T
[
1 + P1T (1− |xxx′H1xxx2|2)

]
e2, (6.74b)

b := (1 + P1T )e2 +
[
1 + P1T (1− |xxx′H1xxx2|2)

][
1 + P1T (1− |x̂xxH

1x̂xx2|2)
]

−
[
P1T + P 2

1 T
2(1− |x̂xxH

1x̂xx
′
2|2)

]
e1, (6.74c)

c := −(1 + P1T )e1 −
[
1 + P1T (1− |x̂xxH

1x̂xx
′
2|2)

][
1 + P1T (1− |xxxH

1xxx
′
1|2)

]
+
(
1 + 1

P1T

)[
1 + P1T (1− |x̂xxH

1x̂xx2|2)
]
, (6.74d)

d := −
(
1 + 1

P1T

)[
1 + P1T (1− |xxxH

1xxx
′
1|2)

]
, (6.74e)

e1 := 1− |xxxH
1xxx2|2 + P1T

[
(1− |xxxH

1xxx
′
1|2)(1− |xxx′H1xxx2|2)

− |xxxH
1xxx
′
1xxx
′H
1xxx2 − xxxH

1xxx2|2
]
, (6.74f)

e2 := 1− |x̂xxH
2x̂xx
′
2|2 + P1T

[
(1− |x̂xxH

2x̂xx1|2)(1− |x̂xxH
1x̂xx
′
2|2)

− |x̂xxH
2x̂xx1x̂xx

H
1x̂xx
′
2 − x̂xxH

2x̂xx
′
2|2
]
, (6.74g)

∆ := b2 − 3ac. (6.74h)

Proof. Throughout proof, xxx1,xxx
′
1, x̂xx,xxx2, x̂xx2, x̂xx

′
2 implicitly satisfy the conditions mentioned

after (6.73), i.e., {xxx1,xxx
′
1, x̂xx1} ⊂ X̄1, {xxx2, x̂xx2, x̂xx

′
2} ⊂ X̄2 such that xxx1 6= xxx′1 and x̂xx2 6= x̂xx′2.
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1. From Lemma 6.5 in Appendix 6.A.1.b, we have that δ1(θ) is monotonically decreasing
in θ for any xxx1,xxx

′
1,xxx2, so d1(X θ) = min

xxx1,xxx′1,xxx2
δ1(θ) (see (6.30)) is also monotonically

decreasing in θ. Also from Lemma 6.5, δ2(θ) is strictly increasing in θ for any
x̂xx1, x̂xx2, x̂xx

′
2, and so is d2(X θ) = min

x̂xx2,x̂xx
′
2,x̂xx1

δ2(θ) (see (6.31)). Furthermore, δ1(0) = P1T −

P 2
1 T

2|xxxH
1xxx
′
1|

2

1+P1T
> P1T

1+P1T
> 0 = δ2(0) for any xxx1,xxx

′
1, x̂xx,xxx2, x̂xx2, x̂xx

′
2, so d1(X θ) > d2(X θ) at

θ = 0. Therefore, there exists a unique θ∗ > 0 such that d1(X θ∗) = d2(X θ∗), and
thus θ∗ maximizes min{d1(X θ), d2(X θ)}.

Let θ̃ = arg maxθ dmin(X θ). Then dmin(X θ∗) ≤ dmin(X θ̃). Also, we have that
dmin(X θ̃) ≤ min{d1(X θ̃), d2(X θ̃)} + 1 ≤ min{d1(X θ∗), d2(X θ∗)} + 1 ≤ dmin(X θ∗) +
1, where the first and the third inequalities follow from (6.32), and the second
inequality holds because θ∗ maximizes min{d1(X θ), d2(X θ)}. Therefore, dmin(X θ∗)≤
maxθ dmin(X θ)≤ dmin(X θ∗) + 1, implying that θ∗ is approximately the solution to
maxθ dmin(X θ).

2. Since d1(X θ∗) = d2(X θ∗) =: δ(θ∗), it is straightforward that θ∗ ∈ ΘΘΘ. Let θ̂ :=
arg min

θ∈ΘΘΘ
δ(θ) and δ̂k(θ) be the function δk(θ) with xxx1,xxx

′
1, x̂xx,xxx2, x̂xx2, x̂xx

′
2 satisfying (6.73),

i.e., δ̂1(θ̂) = δ̂2(θ̂) = δ(θ̂). We have δ̂1(θ∗) ≥ d1(X θ∗) = δ(θ∗) ≥ δ(θ̂) = δ̂1(θ̂) where
the first equality follows from the min in d1(X θ∗) and the second inequality holds
because θ∗ ∈ΘΘΘ. As a consequence, θ∗ ≤ θ̂ because δ̂1(θ) is decreasing in θ. Similarly,
we have that δ̂2(θ∗) ≥ d2(X θ∗) = δ(θ∗) ≥ δ(θ̂) = δ̂2(θ̂), so θ∗ ≥ θ̂ because δ̂1(θ) is
increasing in θ. We conclude that θ∗ = θ̂. Finally, (6.73) can be written as a cubic
equation aθ3 + bθ2 + cθ + d = 0 (note that a > 0). Then, (6.74) follows by solving
this equation for a positive root.

The first part of Proposition 6.7 says that there exists a unique θ∗ that maximizes
min{d1(X θ), d2(X θ)}, and this θ∗ is also approximately the value of θ maximizing dmin(X θ).
The second part states that θ∗ can be found by enumerating the closed-form expression
(6.74) over the given set of normalized symbols X̄k, k = 1, 2. In Fig. 6.3, we numerically
verify Proposition 6.7 by plotting the values of emin(X θ), dmin(X θ), d1(X θ) and d2(X θ) as
a function of θ for P1 = 20 dB and different X̄ with T = 4, B1 = 6, and B2 = 2. We see
that dmin(X θ) is within a constant gap from the minimum of d1(X θ), which decreases with
θ, and d2(X θ), which increases with θ. dmin(X θ) is maximized approximately at θ∗ such
that d1(X θ∗) = d2(X θ∗). These observations agree with Proposition 6.7. Furthermore, θ∗
is also near the value of θ that maximizes the metric emin(X θ).

Therefore, given a joint normalized constellation X̄ , one can further optimize the power
so as to maximize the design metrics. Taking the power constraint P into account, the
optimal power can be obtained as follows. First, we let P1 = P, P2 = θP , i.e., user 1
transmits at full power, and find the optimal θ in [0, 1] by solving

θ̃ = arg max
θ∈[0,1]

emin(X θ), or θ̃ = arg max
θ∈[0,1]

dmin(X θ). (6.75)

Following Proposition 6.7, θ̃ can be approximated by θ∗ such that d1(X θ∗) = d2(X θ∗),
which can be found in closed form. Then, we let P2 = P, P1 = θP2, i.e., user 2 transmits
at full power, and solve (6.75) with the users’ roles swapped to find the optimal θ̆ in
[0, 1]. Finally, the optimal power is given by choosing between {P1 = P, P2 = θ̃P} and
{P2 = P, P1 = θ̆P2} the option with higher metric value. In the numerical result in the
next section, we shall see that it is favorable to let the user with higher transmission rate
transmit at full power P .
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Figure 6.3: The values of the metrics emin(X θ), dmin(X θ), d1(X θ) and d2(X θ) as a function of θ
for P1 = 20 dB, P2 = θP1, T = 4, B1 = 6, B2 = 2, and different given normalized constellation X̄ .

In Table 6.1, we summarize the existing/proposed design criteria/constructions (not
including the proposed criteria (6.43), (6.49), and the alternating optimization).

6.6 Numerical Results

In this section, we consider the single transmit antenna case (M1 = · · · = MK = 1) and
assume Grassmannian signaling, i.e., Xk = {

√
PkTxxxki}

|Xk|
i=1 with each xxxki being a unit-norm

vector representative of a point in G(CT , 1), k ∈ [K], and a joint symbolXXX ∈ X is formed as
XXX = [

√
P1Txxx1 . . .

√
PKTxxxK ] for xxxk ∈ Xk. For the precoding design, we consider Precoder

Type II and numerically optimized Ck. We will compare our design to the constellations
optimized with the criteria Min-m1 (6.21) and Min-m2 (6.22) in terms of joint ML symbol
error rate (6.6). We also consider the joint constellation in which the symbols in Xk are
generated as xxxk =

√
Pk
[√
KẽeeT

k

√
T−K
Pavg

x̃xxT
k

]T
where ẽeek is the k-th column of IIIK and x̃xxk is a

vector of scalar symbols in a QAM constellation with average power Pavg. This corresponds
to the scenario where K users transmit mutually orthogonal pilot sequences, followed by
spatially multiplexed parallel data transmission. With this pilot-based constellation, the
receiver uses either an ML detector (6.4) or a linear MMSE detector consisting of MMSE
channel estimation, MMSE equalization, and component-wise QAM demapper.
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Table 6.1: The existing/proposed joint constellation design crite-
ria/constructions

Criterion/Construction Shorthand Motivation

Existing X ∗ = arg min
X

m1(X ) (6.21) Min-m1 Treating X as a Grassmannian
constellation in G

(
CT ,Mtot

)
X ∗ = arg min

X
m2(X ) (6.22) (from

[68, Eq.(8)])
Min-m2

Proposed

X ∗ = arg max
X

emin(X ) (6.19) Max-emin Minimizing the PEP
X ∗ = arg max

X
dmin(X ) (6.23) Max-dmin Maximizing the high-SNR

dominant term in emin(X )
Partitioning a single-user constella-
tion XSU (Section 6.4.1)

Partitioning dmin(X ) is large if XSU is
sparse enough

Precoding single-user constellations
in G(CT−K+1, 1) (Section 6.4.2, for
the SIMO MAC)

Precoding Imposing a geometric separa-
tion between individual con-
stellations

6.6.1 Numerical Optimization

We solve numerically Max-emin (6.19), Max-dmin (6.23) and the alternating optimization
for given powers {Pk}. In general, we want to solve the manifold-constrained optimization

max
X=X1×···×XK

min
XXX 6=XXX′∈X

f(XXX,XXX ′), where f(XXX,XXX ′) is customized according to the considered
criterion. Note that the objective function is not smooth because of the min. To smoothen
it, we use the approximation maxi xi ≈ ε ln∑i exp(xi/ε) with a small ε and obtain

min
X=X1×···×XK

ε ln
∑

XXX 6=XXX′∈X
exp

(
− f(XXX,XXX ′)

ε

)
. (6.76)

This smooth optimization is, however, jointly over multiple points on the Grassmannian
of lines. To tackle this, we construct the matrix CCC := [xxx11 . . .xxx1|X1| . . . xxxK1 . . .xxxK|X2|] ∈
CT×

∑K

k=1 |Xk|, then CCC belongs to the oblique manifold OB
(
T,
∑K
k=1 |Xk|

)
(see Example 1.1).

Consequently, the optimization problem (6.76) can be reformulated as a single-variable
optimization in this oblique manifold as

min
CCC∈OB

(
T,
∑K

k=1 |Xk|
) ε ln

∑
XXX=[
√
P1Txxx1i1 ...

√
PKTxxxKiK

]

6=XXX′=[
√
P1Txxx1j1 ...

√
PKTxxxKjK

]

exp
(
− f(XXX,XXX ′)

ε

)

︸ ︷︷ ︸
=:g(CCC)

. (6.77)

In Appendix 6.A.5, we compute the Riemannian gradient of g(CCC). Finally, we resort to
the Manopt toolbox [141] to solve the optimization by conjugate gradient descent on the
manifold. Recall that this toolbox provides several search direction construction rules and
a restart strategy in order to ensure a convergence to a local minimum. Furthermore, we
initialize the optimization with either the precoding-based, partitioning-based, or pilot-
based constellation (which are easily generated), and choose the best optimized constellation
among these options.

The other criteria (6.21) and (6.22) are similarly solved numerically with the Manopt
toolbox. Hereafter, in all figures, the legends representing our proposed schemes are in
bold face.
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6.6.2 The Symmetrical Rate and Equal Power Case

We first consider the symmetrical rate setting R1 = · · · = RK = B/T with equal power
P1 = · · · = PK = P for all users. We optimize the joint constellation at P = 30 dB (even
when the performance of the resulting constellations is benchmarked at other SNR values).

6.6.2.a The Two-User Case

For the two-user (K = 2) case, in Fig. 6.4, we plot the joint symbol error rate (SER) (6.6)
of the considered schemes for T = 5, B = 5, and N = 4. We observe that the constellations
optimized with our metrics emin(X ) (6.19) and dmin(X ) (6.23) achieve similar performance
and are the best among the schemes with the same rate pair. The performance of the
alternatively optimized constellation is slightly inferior to that and better than the pilot-
based scheme. The partitioning design (with random partition) and the precoding design
have similar performance. The constellations optimized with the Min-m1 and Min-m2
criteria, especially the latter, perform worse than that with our criteria.
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Figure 6.4: The joint SER of the proposed constellations compared to the baselines for T = 5,
K = 2, B = 5, and N = 4.

To assess the effectiveness of the design metrics, we show the values of our metrics
dmin(X ) and emin(X ), and the other metrics m1(X ) and m2(X ) for these constellations
in the same setting in Fig. 6.5. In Fig. 6.5(a), dmin(X ) is very close to emin(X ) for
SNR ≥ 20 dB. The constellations with low joint ML SER in Fig. 6.4 exhibit a large value
of these metrics. This confirms that our proposed metrics are meaningful for constellation
design and evaluation. In Fig. 6.5(b) and Fig. 6.5(c), we see that the relative order of
the constellations in terms of the value of the metrics in (6.21) and (6.22) is unrevealing
about the SER performance in Fig. 6.4. In particular, although the constellation optimized
with the metric m1(X ) (6.21) also achieves a low joint ML SER (and a high value of our
metrics), this is not true for other constellations, such as the partitioning design.

In Fig. 6.6, we consider larger constellations (B = 8) for which numerical optimization
of the joint metrics becomes cumbersome. However, the partitioning and precoding
constructions, which are based on our metrics, achieve good performance and outperform
the pilot-based constellation.
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(c) The metric m2(X ) in (6.22) with N=4

Figure 6.5: The value of the metrics emin(X ), dmin(X ), m1(X ) and m2(X ) for the considered
constellations for T = 5 and B = 5.

6.6.2.b The Three-User Case

In the three-user (K = 3) case, we consider T = 4, B = 3, N = 4, and plot the joint SER
of various constellations in Fig. 6.7. We observe again that maximizing dmin(X ) results in
a good constellation that outperforms all others. The constellations obtained from Min-m1
and Min-m2 are outperformed by the pilot-based and precoding-based constellations. The
SER of the Min-m2 constellation and the partitioning-based constellation decreases slower
with the SNR than the other schemes.
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(a) T = 5, B = 8, N = 4
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(b) T = 6, B = 8, N = 4

Figure 6.6: The joint SER of the partitioning design in comparison with the precoding design
and a pilot-based scheme for T ∈ {5, 6}, K = 2, B = 8, and N = 4.
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Figure 6.7: The joint SER of the proposed constellations compared to the baselines for T = 4,
K = 3, B = 3, and N = 4.

Fig. 6.8 depicts the values of our metrics emin(X ) and dmin(X ), and the other metrics
m1(X ) and m2(X ) for these constellations. In Fig. 6.8(a), the values of emin(X ) and
dmin(X ) are very close, and the relative order of these values for different constellations
agree with the order of the SER performance of these constellations at high SNR in Fig. 6.7.
For the Min-m2 constellation and the partitioning-based constellation, the metrics emin(X )
and dmin(X ) do not grow linearly in P , which is consistent with their SER performance.
In fact, we can verify that these constellations violate (6.51) in Proposition 6.6 when P
is large: the minimum pairwise chordal distance δmin(XSU) of the concatenation XSU of
their individual constellations are about 0.2958 and 0.8264 respectively, both smaller than
ν(K = 3,M = 1) ≈ 0.9543. From Fig. 6.8(b) and Fig. 6.8(c), we further observe that the
metrics m1(X ) and m2(X ) are not meaningful for constellation design and evaluation.

6.6.3 The Asymmetrical Rate Case with Power Optimization

We now consider the asymmetrical rate case and focus on the two-user case. We set
T = 4, B1 = 6, and B2 = 2 (as in Fig. 6.3). In Fig. 6.9, we plot the joint SER of
the constellations generated by Max-dmin, precoding, or partitioning and compare with
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(c) The metric m2(X ) in (6.22) with N = 4

Figure 6.8: The value of the metrics emin(X ), and dmin(X ), m1(X ) and m2(X ) for the considered
constellations for T = 4, K = 3, and B = 3.

a pilot-based constellation with the same transmit rate for each user. Furthermore, we
consider equal and full transmit power P1 = P2 = P , or optimized power as in Section 6.5.
The constellations obtained by Max-dmin significantly outperforms other schemes. For this
constellation, the optimal power coincides with full power P1 = P2 = P for all P > 4 dB.
For the precoding and partitioning designs, the optimal power is to let user 1 (which has
higher transmission rate) transmit at full power P1 = P and user 2 at lower power P2 = θ̃P
with θ̃ obtained from optimizing dmin(X ) as in (6.75). The SER with optimized power
is only slightly lower than the SER with full power. This is because the values of the
metrics with optimized power is not significantly higher than that with full power, as seen
in Fig. 6.3. However, using optimized power helps reduce the transmit power of user 2. In
Fig. 6.10, we plot the optimized power fraction θ̃ for user 2 obtained from (6.75). For the
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Figure 6.9: The joint SER of the proposed constellations with full transmit power P1 = P2 = P
or optimized transmit power as in Section 6.5, compared to a pilot-based constellation for T = 4,
K = 2, B1 = 6, B2 = 2, and N = 4.

precoding design, as power constraint P grows, θ̃ increases, i.e., user 2 should use more
power. Whereas for the partitioning design, user 2 should use less power as P grows. We
note that this behavior might not hold for all constellations of the kind.
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Figure 6.10: The optimal power fraction θ̃ for user 2 by (6.75) for the precoding and partitioning
designs for T = 4, B1 = 6, B2 = 2.

6.7 Closing Remarks
This chapter is an attempt of joint constellation design for non-coherent MIMO MAC
in Rayleigh block fading. By analyzing the joint detection error, we have derived some
closed-form metrics which turned out to be effective for designing joint constellations that
achieve a low symbol error rate.
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6.A Appendices

6.A.1 Mathematical Preliminaries

6.A.1.a Complex Wishart Matrix and the Distribution of the Trace

Definition 6.1 (Complex Wishart distribution). An m×m random matrix AAA is said to
have a complex Wishart distribution with n degrees of freedom and covariance matrix ΣΣΣ,
denoted by AAA ∼ Wm(n,ΣΣΣ), if AAA = BBBBBBH, where the columns of BBB ∈ Cm×n are independent
and follow NC(0,ΣΣΣ).

The support of AAA is the space Sm of m×m positive definite Hermitian matrices. When
m ≤ n, the PDF of AAA is given by [196]

f(AAA) = det(AAA)n−m

Γm(n)det(ΣΣΣ)n exp
(
−tr

(
ΣΣΣ−1AAA

))
, AAA ∈ Sm, (6.78)

where Γm(n) := πm(m−1)/2∏m
i=1 Γ(n− i+ 1) is the complex multivariate Gamma function.

When m > n, the matrix AAA is singular and does not admit a PDF on Sm. In this case, the
distribution is referred to as the singular Wishart, and AAA admits a PDF on the space Sm,n
of m×m positive semidefinite Hermitian matrices of rank n given by [197, Theorem 3]

f(AAA) = πn(n−m)det(ΓΓΓΓΓΓΓΓΓ)n−m

Γn(n)det(ΣΣΣ)n exp
(
−tr

(
ΣΣΣ−1AAA

))
, AAA ∈ Sm,n, (6.79)

where ΓΓΓ is the diagonal matrix containing the n non-zero eigenvalues of AAA.

Lemma 6.2 (Distribution of the trace of a complex Wishart matrix). Let AAA ∼ Wm(n,ΣΣΣ)
and u := tr(AAA). The moment generation function (MGF) of u is given by

φu(t) = det(IIIm − tΣΣΣ)−n. (6.80)

The CDF of u is given by

Fu(u) = ςmndet(ΣΣΣ)−n
∞∑
k=0

γ(mn+ k, u/ς)
k!(mn+ k − 1)!

∑
κ(n,k)

[n]κ(n,k)Cκ(n,k)(IIIm − ςΣΣΣ−1) (6.81)

for arbitrary ς > 0, where the lower incomplete Gama function γ(·, ·), the partition
κ(n, k), the function [n]κ(n,k), and the complex zonal polynomial Cκ(n,k)(·) were defined in
Proposition 6.3.

Proof. The proof follows by generalizing [192, Theorem 8.3.4] to the complex case and to
include the non-singular case. Let

Γ̃(m,n) := Γm(n)1{m ≤ n}+ Γn(n)
πn(n−m)1{m > n}, (6.82)

S̃(m,n) := Sm1{m ≤ n} ∪ Sm,n1{m > n}, (6.83)
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and d̃et(AAA) be the product of non-zero eigenvalues of AAA. From the Wishart PDF given
in (6.78) and (6.79), the MGF of u is derived as

φu(t) = E[exp(ttr(AAA))] (6.84)

=
∫

AAA∈S̃(m,n)
exp(ttr(AAA))f(AAA) dAAA (6.85)

= det(ΣΣΣ)−n

Γ̃(m,n)

∫
AAA∈S̃(m,n)

exp
(
−tr

(
(ΣΣΣ−1 − tIIIm)

)
AAA
)
d̃et(AAA)n−m dAAA (6.86)

= det(ΣΣΣ)−ndet
(
ΣΣΣ−1 − tIIIm

)−n
(6.87)

= det(IIIm − tΣΣΣ)−n. (6.88)

In order to invert φu(t) to find the PDF of u, we first write φu(t) in terms of more familiar
MGFs. Specifically, we write

φu(t) = (1− tς)−mndet
(
ς−1ΣΣΣ

)−n
det
(

IIIm −
1

1− tς (IIIm − ςΣΣΣ−1)
)−n

(6.89)

= (1− tς)−mndet
(
ς−1ΣΣΣ

)−n ∞∑
k=0

∑
κ(n,k)

[n]κ(n,k)Cκ(n,k)(IIIm − ςΣΣΣ−1)
k!(1− tς)k (6.90)

= ςmndet(ΣΣΣ)−n
∞∑
k=0

1
k! (1− tς)

−mn−k ∑
κ(n,k)

[n]κ(n,k)Cκ(n,k)(IIIm − ςΣΣΣ−1) (6.91)

for arbitrary ς > 0. Here, (6.90) follows from the fact that
∞∑
k=1

∑
κ(n,k)

1
k! [n]κ(n,k)Cκ(n,k)(XXX) = 1F0(n;XXX) = det(IIIm −XXX)−n,

where 1F0(n;XXX) is a special case of the hypergeometric function with matrix argument [198,
Section 2.1.2] and the infinite sum converges if ‖XXX‖2 < 1 with ‖ · ‖2 denoting the spectral
norm of a matrix. Note that the convergence condition for the infinite sum in (6.90) reads
‖IIIm − ςΣΣΣ−1‖2 < |1 − tς|. By recognizing that (1 − tς)−mn−k is the MGF of a Gamma
distribution with shape mn+ k and scale ς, i.e. Gamma(mn+ k, ς), we can invert φu(t)
term by term to get the PDF of u as

fu(u) = ςmndet(ΣΣΣ)−n
∞∑
k=0

1
k!gmn+k,ς(u)

∑
κ(n,k)

[n]κ(n,k)Cκ(n,k)(IIIm − ςΣΣΣ−1), (6.92)

where gk,θ(x) := xk−1e−x/θ

(k−1)!θk denotes the PDF of the Gamma(k, θ) distribution. By integrating
w.r.t. u, we get the CDF of u given in (6.81).

6.A.1.b Eigenvalues of Matrices, and Other Preliminaries

For an n× n matrixMMM , we denote by σ1(MMM), σ2(MMM), . . . , σn(MMM) its n eigenvalues sorted
in decreasing order.

Lemma 6.3 (Eigenvalue perturbation of Hermitian matrix). For two T × T Hermitian
matrices AAA and BBB, it holds that

|σi(AAA+BBB)− σi(AAA)| ≤ ‖BBB‖F, ∀i ∈ [T ]. (6.93)

Proof. From [199, Corollary 8.1.6], |σi(AAA+BBB)− σi(AAA)| is upper bounded by the spectral
norm of BBB. Then, (6.93) follows since the spectral norm is upper bounded by the Frobenius
norm.
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Corollary 6.1. For two T × T Hermitian matrices AAA and BBB whose entries depend on a
parameter P , if ‖BBB‖F = O(1) as P →∞, then

σi(AAA+BBB) = σi(AAA) +O(1), ∀i ∈ [T ], P →∞. (6.94)

Lemma 6.4. Let QQQ :=
[ IIIm AAAm×n
AAAH
m×n IIIn

]
be positive semidefinite. Then, the m+n eigenvalues

of QQQ are

1 + σ1(AAA), . . . , 1 + σmin{m,n}(AAA), 1, . . . , 1, 1− σmin{m,n}(AAA), . . . , 1− σ1(AAA). (6.95)

Proof. The singular value decomposition of AAA leads to a block diagonalization of QQQ with
2× 2 blocks. The result then follows immediately.

Lemma 6.5. Consider three distinct T -dimensional unit vectors aaa, bbb, ccc, a parameter
ρ > 0, a variable θ ≥ 0, and two functions δ1(θ) := ρaaaH(III T + ρbbbbbbH + ρθccccccH)−1aaa and
δ2(θ) := ρθaaaH(III T + ρbbbbbbH + ρθccccccH)−1aaa. Then, δ1(θ) is monotonically decreasing in θ while
δ2(θ) is strictly increasing in θ.

Proof. After some simple manipulations, we obtain

∂δ1
∂θ

= − ρ2|ρaaaHbbbbbbHccc− (1 + ρ)aaaHccc|2

(1 + ρ+ ρ(1 + ρ(1− |bbbHccc|2))θ)2 , (6.96)

∂δ2
∂θ

= 1
ρ+ ρ2(1− |bbbHccc|2)

[
ρ2(1− |aaaHccc|2) + ρ3[(1− |aaaHbbb|2)(1− |bbbHccc|2)− |aaaHbbbbbbHccc− aaaHccc|2

]
+ (1 + ρ)|ρaaaHbbbbbbHccc− (1 + ρ)aaaHccc|2

(1 + ρ+ ρ(1 + ρ(1− |bbbHccc|2))θ)2

]
. (6.97)

It is obvious that ∂δ1
∂θ ≤ 0,∀θ ≥ 0. Let {b̄bbi}T−1

i=1 be a basis of the orthogonal complement of
Span(bbb), i.e., bbbbbbH +∑T−1

i=1 b̄bbib̄bb
H
i = III T , we have that

(1− |aaaHbbb|2)(1− |bbbHccc|2)− |aaaHbbbbbbHccc− aaaHccc|2

= aaaH(III T − bbbbbbH)aaacccH(III T − bbbbbbH)ccc− |aaaH(III T − bbbbbbH)ccc|2 (6.98)

=
(
T−1∑
i=1
|aaaHb̄bbi|2

)(
T−1∑
i=1
|cccHb̄bbi|2

)
−
∣∣∣∣∣
T−1∑
i=1

aaaHb̄bbib̄bb
H
i ccc

∣∣∣∣∣
2

(6.99)

≥ 0, (6.100)

where the last inequality is due to the Cauchy–Schwarz inequality. This and |aaaHccc|2 < 1
(since aaa 6= ccc) imply that ∂δ2

∂θ > 0,∀θ ≥ 0.

6.A.2 Proof that lim
N→∞

P(XXX → XXX ′) = 0 for Any Pair of Distinct Symbols
XXX and XXX ′ of an Identifiable Joint Constellation

From (6.12), we develop L(XXX → XXX ′) as L(XXX → XXX ′) = −N ln det(III T + Λ̄ΛΛ) + ∑T
i=1 λigi,

where λ1, . . . , λT are T eigenvalues of Λ̄ΛΛ = (III T +XXXXXXH) 1
2 (III T +XXX ′XXX ′H)−1(III T +XXXXXXH) 1

2 −III T ,
and g1, . . . , gT are independent Gamma random variables with shape N and scale 1. It
follows that

E
[
L(XXX→XXX ′)

]
= −N ln det(III T + Λ̄ΛΛ) +∑T

i=1 λi = −N ln det(III T + Λ̄ΛΛ) +Ntr(Λ̄ΛΛ), (6.101)

Var
[
L(XXX→XXX ′)

]
= N

∑T
i=1 λ

2
i = Ntr

(
Λ̄ΛΛ2)

. (6.102)
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For any joint constellation satisfying the identifiability condition in Proposition 6.1, we
have XXXXXXH 6= XXX ′XXX ′

H, thus Λ̄ΛΛ 6= 0. Therefore, tr(Λ̄ΛΛ) − ln det(III T + Λ̄ΛΛ) is strictly positive.
We have that

E
[
L(XXX→XXX ′)

]2
Var

[
L(XXX→XXX ′)

] = N

(
tr(Λ̄ΛΛ)− ln det(III T + Λ̄ΛΛ)

)2
tr
(
Λ̄ΛΛ2) →∞, as N →∞. (6.103)

From this and (6.15), we conclude that lim
N→∞

P(XXX → XXX ′) = 0 for any pair of distinct
symbols XXX and XXX ′ of a joint constellation satisfying the identifiability condition.

6.A.3 Proof of Lemma 6.1

It is straightforward that tr
((

III T +XXX ′XXX ′
H)−1) = O(1) because the eigenvalues of (III T +

XXX ′XXX ′
H)−1 are all smaller than 1.

Using polar decomposition, the input matrix XXX can be decomposed into an orthonormal
matrixWWW ∈ CT×Mtot whose columns span the column space of XXX and a full-rank spanning
matrix DDD. That is XXX = WWWDDDH, where ‖DDD‖2F = Θ(P ). Similarly, XXX ′ = WWW ′DDD′

H
, for some

orthonormal matrix WWW ′ ∈ CT×Mtot and some full-rank spanning matrices DDD′ such that
‖DDD′‖2F = Θ(P ). We assume w.l.o.g. that the column subspaces ofXXX andXXX ′ share r ≤Mtot
eigenmodes and thus express WWW and WWW ′ as

WWW = [UUU VVV ], and WWW ′ = [UUU VVV ′], (6.104)

with UUU ∈ CT×r, VVV ∈ CT×(Mtot−r), and VVV ′ ∈ CT×(Mtot−r) such that UUUHUUU = III , VVV HVVV = III ,
VVV ′

H
VVV ′ = III , UUUHVVV = 0, UUUHVVV ′ = 0, and VVV HVVV ′ = 0.

6.A.3.a Proof that ln det
(
IIIT+XXX′XXX′H

)
det(IIIT+XXXXXXH) = O(1) if Span(XXX) = Span(XXX ′) and Θ(lnP )

otherwise

Let

ΓΓΓ := (III T +XXX ′XXX ′
H)(III T +XXXXXXH)−1 (6.105)

= XXX ′XXX ′
H(III T +XXXXXXH)−1 + (III T +XXXXXXH)−1. (6.106)

Applying Corollary 6.1 with AAA = XXX ′XXX ′
H(III T +XXXXXXH)−1 and BBB = (III T +XXXXXXH)−1, we have

that

σi(ΓΓΓ) = σi
(
XXX ′XXX ′

H(III T +XXXXXXH)−1)+O(1) (6.107)

=
{
σi
(
XXX ′

H(III T +XXXXXXH)−1XXX ′
)

+O(1), i ≤Mtot,

O(1), i > Mtot.
(6.108)

Recalling the decomposition XXX = WWWDDDH, we have that XXXXXXH = WWWΣΣΣWWW H with ΣΣΣ := DDDHDDD.
LetWWW⊥ be the orthonormal complement ofWWW , i.e., [WWW WWW⊥] is unitary. Thus, III T +XXXXXXH =
WWW (III T +ΣΣΣ)WWW H +WWW⊥WWW H

⊥, (III T +XXXXXXH)−1 = WWW
(
III T +ΣΣΣ

)−1
WWW H +WWW⊥WWW H

⊥, and we can expand

XXX ′
H(III T +XXXXXX)−1XXX ′

H = XXX ′
H
WWW (III T + ΣΣΣ)−1WWW HXXX ′ +XXX ′

H
WWW⊥WWW

H
⊥XXX

′. (6.109)

Recalling that XXX ′ = WWW ′DDD′
H and using (6.104), we have that

XXX ′
H
WWW (III T + ΣΣΣ)−1WWW HXXX ′ = DDD′

H

[
III r 0
0 0

]
(III T + ΣΣΣ)−1

[
III r 0
0 0

]
DDD′ (6.110)

= DDD′
H
1(III r + ΣΣΣ1)−1DDD′1, (6.111)
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where DDD′1 contains the first r columns of DDD′ and ΣΣΣ1 denotes the top-left r × r block of ΣΣΣ,
respectively. Therefore, ‖XXX ′HWWW (III T + ΣΣΣ)−1WWW HXXX ′‖2F ≤

‖DDD′1‖2F
1+σmin(ΣΣΣ1) = O(1), where σmin(ΣΣΣ1)

is the smallest eigenvalue of ΣΣΣ1. With this, we apply Corollary 6.1 to (6.109) and obtain
σi
(
XXX ′

H(III T +XXXXXXH)−1XXX ′
)

= σi
(
XXX ′

H
WWW⊥WWW

H
⊥XXX

′) + O(1). Plugging this in (6.108), we get
that

σi(ΓΓΓ) =
{
σi
(
XXX ′

H
WWW⊥WWW

H
⊥XXX

′)+O(1), i ≤Mtot,

O(1), i > Mtot,
(6.112)

=
{

Θ(P ), i ≤Mtot − r,
O(1), i > Mtot − r.

(6.113)

If Span(XXX) = Span
(
XXX ′
)
, then r = Mtot, so σi(ΓΓΓ) = O(1) for all i ∈ [T ]. Thus ln det(ΓΓΓ) =

O(1). Otherwise, σi(ΓΓΓ) = Θ(P ) for some i, so ln det(III T + ΓΓΓ) = ∑T
i=1 ln σi = Θ(lnP ).

6.A.3.b Proof that tr
(
(III T + XXX ′XXX ′

H)−1XXXXXXH) = O(1) if Span(XXX) = Span(XXX ′) and
Θ(P ) otherwise

We expand

XXXH(III +XXX ′XXX ′
H)−1XXX = XXXH

(
III −XXX ′(III +XXX ′

H
XXX ′)−1XXX ′

H
)
XXX (6.114)

= DDDWWW H
(
III T −WWW ′DDD′H(III T +DDD′WWW ′

H
WWW ′DDD′

H)−1DDD′WWW ′
H
)
WWWDDDH (6.115)

= DDDDDDH −DDD
[III r 0

0 0

]
DDD′

H(III T +DDD′DDD′
H)−1

DDD′
[III r 0

0 0

]
DDDH (6.116)

= DDDDDDH −
[
P 2T 2DDD1DDD

′H
1
(
III r +DDD′1DDD

′H
1
)−1

DDD′1DDD
H
1 0

0 0

]
(6.117)

where DDD1 and DDD′1 contain the first r columns of DDD and DDD′, respectively. Thus,

tr
(
(III +XXX ′XXX ′

H)−1XXXXXXH
)

= tr(DDD2DDD
H
2) + tr

(
DDD1DDD

H
1 −DDD1DDD

′H
1
(
III r +DDD′1DDD

′H
1
)−1

DDD′1DDD
H
1

)
(6.118)

= ‖DDD2‖2F + tr
((

III r +DDD′1DDD
′H
1
)−1

DDDH
1DDD1

)
, (6.119)

where DDD2 contains the last Mtot − r columns of DDD. Since
(
III r + DDD′1DDD

′H
1
)−1 � (1 +

σmin(DDD′H1DDD′1))−1III where σmin(DDD′H1DDD′1) is the smallest eigenvalue of DDD′H1DDD′1, we have that

‖DDD2‖2F ≤ tr
(
(III +XXX ′XXX ′

H)−1XXXXXXH
)
≤ ‖DDD2‖2F + ‖DDD1‖2F

1 + σmin(DDD′H1DDD′1)
. (6.120)

If Span(XXX) = Span
(
XXX ′
)
, we have r = Mtot and thus DDD2 is an empty matrix. Therefore,

tr
(
(III +XXX ′XXX ′

H)−1XXXXXXH
)
≤ ‖DDD1‖2F

1+σmin(DDD′H1DDD′1)
= O(1). Otherwise, r < Mtot and ‖DDD2‖2F = Θ(P ),

thus tr
(
(III +XXX ′XXX ′

H)−1XXXXXXH
)

= Θ(P ).

6.A.4 Proof of Proposition 6.5

Let us rewriteXXX ′kXXX ′k
H+∑l 6=kXXX lXXX

H
l = X̄XXX̄XX

H where X̄XX :=
[
XXX1 . . . XXXk−1 XXX

′
k XXXk+1 . . . XXXK

]
∈

X . Then, the trace in (6.36) becomes

tr
(
XXXH
k

(
III T + X̄XXX̄XX

H)−1
XXXk

)
= tr(XXXH

kXXXk)− tr
(
XXXH

1X̄XX
(
III T + X̄XX

H
X̄XX
)−1

X̄XX
H
XXXk

)
(6.121)

= PT − tr
(
XXXH
kUUUΣΣΣ

(
III T + ΣΣΣ2)−1ΣΣΣUUUHXXXk

)
, (6.122)
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where X̄XX = UUUΣΣΣVVV H with UUU ∈ Cr×T , VVV ∈ CKM×r being orthogonal matrices, and r being
the rank of X̄XX; ΣΣΣ contains r singular values of X̄XX in decreasing order. Then, since(
III T +ΣΣΣ2)−1 � (1 +σ2

min(X̄XX))−1III with σ2
min(X̄XX) being the minimum non-zero singular value

of X̄XX, we have

tr
(
XXXH
k

(
III T + X̄XXX̄XX

H)−1
XXXk

)
≥ PT −

(
1 + σ2

min(X̄XX)
)−1tr(XXXH

kUUUΣΣΣΣΣΣUUUHXXXk) (6.123)
= PT −

(
1 + σ2

min(X̄XX)
)−1∥∥X̄XXH

XXXk

∥∥2
F (6.124)

= PT −
(
1 + σ2

min(X̄XX)
)−1

‖XXX ′kH
XXXk‖2F +

∑
l 6=k
‖XXXH

lXXXk‖2F

. (6.125)

From (6.125), the key is to find a lower bound on the non-zero singular value σmin(X̄XX).

• For anyK, applying Lemma 6.3 withAAA = IIIKM andBBB = X̄XX
H
X̄XX−PT

M IIIKM , we have that
|σmin(X̄XXH

X̄XX)−PT
M | ≤

∥∥X̄XXH
X̄XX−PT

M IIIKM
∥∥

F =
√∑

k 6=l∈[K] ‖XXXH
lXXXk‖2F ≤ PT

√
K(K − 1)c,

thus σ2
min(X̄XX) ≥ PT

( 1
M −

√
K(K − 1)c

)
.

• For K = 2, the bound can be tightened. For k 6= l ∈ {1, 2}, applying Lemma 6.4 to
the matrix QQQ = M

PT X̄XX
H
X̄XX with AAA = M

PTXXX
′
k

H
XXX l, we see that the minimum non-zero

eigenvalues of QQQ is 1 − σ∗( MPTXXX
′
k

H
XXX l) if there exists at least one singular value of

M
PTXXX

′
k

H
XXX l strictly smaller than 1 and σ∗( MPTXXX

′
k

H
XXX l) is the largest among such values.

Otherwise, if all singular values of M
PTXXX

′
k

H
XXX l are 1, the minimum non-zero eigenvalue

of QQQ is two. In any case, the minimum non-zero eigenvalue of QQQ is lower bounded by
1− ‖ MPTXXX

′
kXXX

H
l ‖F ≥ 1−M

√
c. Hence, σ2

min(X̄XX) ≥ PT
( 1
M −

√
c
)
.

Plugging the bound of σ2
min(X̄XX) into (6.125) yields (6.48).

6.A.5 The Riemannian Gradient of g(CCC)

According to [140, Section 3.6] (see (1.126)), the Riemannian gradient can be computed by
projection as ∇Rg(CCC) = (III T −CCCCCCH)∇Eg(CCC) where

∇Eg(CCC) =
[
∂g(CCC)
∂xxx11

. . .
∂g(CCC)
∂xxx1|X1|

. . .
∂g(CCC)
∂xxxK1

. . .
∂g(CCC)
∂xxxK|XK |

]
is the Euclidean gradient of g(CCC) with

∂g(CCC)
∂xxxkn

= −
( ∑
XXX 6=XXX′∈X

exp
(
− f(XXX,XXX ′)

ε

))−1

×
∑

XXX=[
√
P1Txxx1i1 ...

√
PKTxxxKiK ]

6=XXX′=[
√
P1Txxx1j1 ...

√
PKTxxx1jK ],

{1i1,...,Kik,1j1,...,KjK}3kn

exp
(
− f(XXX,XXX ′)

ε

)
∂f(XXX,XXX ′)
∂xxxkn

. (6.126)

In our proposed criteria, f(XXX,XXX ′) is given by 1
NE

[
L(XXX→XXX ′)

]
for the criterion (6.19) and

tr
(
(III T +XXX ′XXX ′H)−1XXXXXXH), for the criterion (6.23). Essentially, we would like to compute the

derivative of d(XXX →XXX ′) = tr
(
(III T +XXX ′XXX ′

H)−1XXXXXXH) (the derivative of tr
(
(III T +XXX ′XXX ′

H)−1)



170 Chapter 6. A Joint Constellation Design for the MIMO Multiple-Access Chanel

is similar) and ψ(XXX,XXX ′) := ln det(IIIT+XXX′XXX′H)
det(IIIT+XXXXXXH) . With XXX = [

√
P1Txxx1i1 . . .

√
PKTxxxKiK ] and

XXX ′ = [
√
P1Txxx1j1 . . .

√
PKTxxx1jK ], after some manipulations, we get

∂d(XXX →XXX ′)
∂xxxkn

=


2PkT

(
III T +XXX ′XXX ′

H
)−1

xxxkn, if n = ik,

2PkT
(
xxxH

1nAAA
−1XXXXXXHAAA−1xxx1n(IIIT+PkTAAA−1)

(1+PkTxxxH
kn
AAA−1xxxkn)2 − AAA−1XXXXXXHAAA−1

1+PkTxxxH
kn
AAA−1xxxkn

)
xxxkn,

with AAA := III T +∑
l 6=k xxxljlxxx

H
ljl
, if n = jk.

(6.127)

In the two-user case, we have ψ(XXX,XXX ′) = ln
Q−|xxxH

1i1
xxx2i2 |

2

Q−|xxxH
1j1
xxx2j2 |2

with Q :=
(
1 + 1

P1T

)(
1 + 1

P2T

)
, so

∂ψ(XXX,XXX ′)
∂xxxknk

=
2xxxk̄nk̄xxx

H
k̄nk̄

Q− |xxxH
knk

xxxk̄nk̄
|2
xxxknk , for k ∈ {1, 2}, n ∈ {i, j}, k̄ = 2− k. (6.128)

(The gradients of the metrics in (6.21) and (6.22) are computed similarly.)
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Chapter 7

A Multi-User Detection Scheme Based
on Expectation Propagation

We consider the non-coherent SIMO multiple access channel under spatially correlated
Rayleigh block fading. We propose a novel soft-output multi-user detector that computes an
approximate marginal posterior of each transmitted signal. Our detector is based on EP
approximate inference and has polynomial complexity in the number of users, number of
receive antennas and channel coherence interval. We also propose two simplifications of this
detector with reduced complexity. The proposed detectors can be used for general signaling
with vector-valued symbols transmitted over each coherence block. In particular, with the
precoding-based constellation in the previous chapter, the proposed detectors outperform
a non-coherent detector with projection-based interference mitigation that exploits the
precoder structure. With pilot-assisted signaling, the EP detector outperforms, in terms
of symbol error rate, some conventional coherent pilot-based detectors, namely, a linear
MMSE decoder, a sphere decoder and a joint channel estimation–data detection scheme.
Our EP-based detectors produce accurate approximates of the true posterior leading to high
achievable sum-rates. The gains of these detectors are further observed in terms of the bit
error rate when using their soft outputs for a turbo channel decoder.

7.1 Overview
We consider a SIMO MAC in Rayleigh flat and block fading with coherence interval T ≥ 2.
We assume that the communication signals are independently transmitted from K single-
antenna non-cooperating users. We design the detector without assuming any specific
structure of the signal transmitted over a coherence block. Thus, the designed detector
can be used for both pilot-assisted and pilot-free transmission. We consider the case where
the receiver is interested not only in the hard detection of the symbols but also in their
posterior marginal PMFs. This “soft” information is needed, for example, when computing
the bit-wise LLRs required for soft-input soft-output channel decoding. Computing an
exact marginal PMF would require enumerating all possible combinations of other-user
signals, which is infeasible with many users, many antennas, or large constellations. Thus,
we seek sub-optimal schemes with practical complexity.
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In contrast to soft coherent MIMO detection, for which many schemes have been
proposed (e.g., [103]–[105]), the soft non-coherent MIMO detection under general signaling,
and Grassmannian signaling in particular, has not been well investigated. The list-based
soft demapper in [80] reduces the number of terms considered in posterior marginalization
by including only those symbols at a certain distance from a reference point. However, it
was designed for the single-user case only and has no obvious generalization to the MAC.
The semi-blind joint/iterative channel estimation and data detection approaches [99]–[102]
for the MIMO P2P channel can be extended to the MAC. However, these schemes are
restricted to transmitted signals with pilots.

In this chapter, we propose message-passing algorithms for posterior marginal inference
of non-coherent multi-user MIMO transmissions over spatially correlated Rayleigh block
fading channels. Our algorithms are based on EP approximate inference [200], [201].
EP provides an iterative framework for approximating posterior beliefs by parametric
distributions in the exponential family [202, Section 1.6]. Although there are many possible
ways to apply EP to our non-coherent multi-user detection problem, we do so by choosing
as variable nodes the indices of the transmitted symbols and the noiseless received signal
from each user. The EP algorithm passes messages between the corresponding variable
nodes and factor nodes on a bipartite factor graph. In doing so, the approximate posteriors
of these variables are iteratively refined. We also address numerical implementation issues
of the EP algorithm.

To measure the accuracy of the approximate posterior generated by the soft detectors,
we compute the mismatched sum-rate of the system that uses the approximate posterior
as the decoding metric. This mismatched sum-rate approaches the achievable rate of the
system as the approximate posterior gets close to the true posterior. We also evaluate the
symbol error rate when using the proposed schemes for hard detection, and the bit error
rate when using these schemes for turbo equalization with a standard turbo code.

The contributions of this chapter are summarized as follows:

1. We propose soft and hard multi-user detectors for the non-coherent SIMO MAC
using EP approximate inference, and methods to stabilize the EP updates. The
proposed detectors work for general vector-valued transmitted symbols within each
channel coherence block, i.e., it is general enough to include both the pilot-assisted
and pilot-free signaling cases.

2. We propose two simplifications of the EP detector with reduced complexity. The first
one, so-called EPAK, is based on approximating the EP messages with Kronecker
products. The second one can be interpreted as soft MMSE estimation and successive
interference approximation (successive interference approximation (SIA)).

3. We design some efficient greedy detection schemes for the precoding-based constella-
tion in Chapter 6, called POCIS.

4. We analyze the complexity and numerically evaluate the convergence, running time,
and performance of the proposed EP, EPAK, and MMSE-SIA, and POCIS detec-
tors, the optimal ML detector, a genie-aided detector, the state-of-the-art detector
from [125], and some conventional coherent pilot-based schemes. Our results suggest
that the proposed EP-based detectors offer significantly improved mismatched sum-
rate, symbol error rate, and coded bit error rate w.r.t. some existing sub-optimal
schemes, while having lower complexity than the ML detector.

To the best of our knowledge, our proposed approach is the first message-passing scheme
for non-coherent multi-user MIMO detection in block fading with general constellations.
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The remainder of this chapter is organized as follows. The system model is presented
in Section 7.2. A brief review of EP is presented in Section 7.3, and the EP approach
to non-coherent detection is presented in Section 7.4. In Section 7.5, two simplifications
(MMSE-SIA and EPAK) of the EP detector are presented. Implementation aspects of EP,
MMSE-SIA, and EPAK are discussed in Section 7.6. In Section 7.7, we present greedy
detectors for the precoding-based constellations (from Chapter 6), which later serve as
baseline for the EP-based detectors. Numerical results and conclusions are presented in
Section 7.8 and Section 7.9, respectively. The mathematical preliminaries and proofs are
provided in the appendices.

7.2 System Model

7.2.1 Channel Model

We consider a SIMO MAC in which K single-antenna users transmit to an N -antenna
receiver. We assume that the channel is flat and block fading with an equal-length and
synchronous (across the users) coherence block of T channel uses. That is, the channel
vectors hhhk ∈ CN×1, which contain the fading coefficients between the transmit antenna of
user k ∈ [K] and the N receive antennas, remain constant within each coherence block of
T channel uses and change independently between blocks. Furthermore, the distribution of
hhhk is assumed to be known, but its realizations are unknown to both ends of the channel.
Since the users are not co-located, we assume that the hhhk are independent across users.
We consider Rayleigh fading with receiver-side correlation, i.e., hhhk ∼ NC(0,RRRk), where
RRRk ∈ CN×N is the spatial correlation matrix. We assume that 1

N tr(RRRk) =: ξk where ξk is
the large-scale average channel gain from one of the receive antennas to user k. We assume
that T > K and N ≥ K.

Within a coherence block, each transmitter k sends a signal vector xxxk ∈ CT , and the
receiver receives a realization YYY of the random matrix

YYY =
K∑
k=1

xxxkhhhT
k + ZZZ = XXXHHHT + ZZZ, (7.1)

where XXX = [xxx1 . . . xxxK ] ∈ CT×K and HHH = [hhh1 . . . hhhK ] ∈ CN×K concatenate the transmitted
signals and channel vectors, respectively, ZZZ ∈ CT×N is the Gaussian noise with IIDNC(0, σ2)
entries independent of HHH, and the block index is omitted for simplicity. We assume that
the transmitted signals have average unit norm, i.e., E

[
‖xxxk‖2

]
= 1, k ∈ [K]. Under this

normalization, the SNR of the transmitted signal from user k at each receive antenna is
SNRk = ξk/(Tσ2).

We assume that the transmitted signals belong to disjoint finite discrete individual
constellations with vector-valued symbols. That is, xxxk ∈ Xk :=

{
xxx

(1)
k , . . . ,xxx

(|Xk|)
k

}
, k ∈ [K].

In particular, Xk can be a Grassmannian constellation on G(CT , 1), i.e., each constellation
symbol xxx(i)

k is a unit-norm vector representative of a point in G(CT , 1). Another example
is when the constellation symbols contain pilots and scalar data symbols.1 Each symbol in
Xk is labeled with a binary sequence of length Bk := log2 |Xk|.

1In this case, the constellations are disjoint thanks to the fact that pilot sequences are user-specific.
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7.2.2 Multi-User Detection Problem

Given XXX = XXX = [xxx1, xxx2, . . . , xxxK ], the received signal YYY has zero mean complex jointly
Gaussian entries with the correlation characterized by

E
[
[YYY]t1,n1 [YYY]∗t2,n2

∣∣∣ XXX = XXX
]

=
K∑

k1=1

K∑
k2=1

E
[
[HHH]k1,n1 [HHH]∗k2,n2

]
[S]t1,k1 [S]∗t2,k2 +E

[
[ZZZ]t1,n1 [ZZZ]∗t2,n2

]

=
K∑
k=1

[RRRk]n1,n2 [xxxkxxxH
k]t1,t2 + σ2

1{t1 = t2, n1 = n2}. (7.2)

Therefore, the conditional probability density pYYY|XXX, also known as likelihood function, is
derived similar to [46, Eq.(9)] as

pYYY|XXX(YYY |XXX) =
exp

(
− vec(YYY T)H

(
σ2IIINT +∑K

k=1xxxkxxx
H
k ⊗RRRk

)−1vec(YYY T)
)

πNTdet(σ2IIINT +∑K
k=1xxxkxxx

H
k ⊗RRRk)

. (7.3)

Given the received signal YYY = YYY , the joint multi-user ML symbol decoder is then

X̂XX = arg min
XXX∈
∏K

k=1 Xk

(
vec(YYY T)H

(
σ2IIINT +

K∑
k=1

xxxkxxx
H
k ⊗RRRk

)−1
vec(YYY T)

+ log det
(
σ2IIINT +

K∑
k=1

xxxkxxx
H
k ⊗RRRk

))
. (7.4)

Since the ML decoding metric depends onXXX only through∑K
k=1xxxkxxx

H
k⊗RRRk, for identifiability,

it must hold that∑K
k=1xxxkxxx

H
k⊗RRRk 6=

∑K
k=1xxx

′
kxxx
′
k

H⊗RRRk for any pair of distinct joint symbols
XXX = [xxx1, . . . ,xxxK ] and XXX ′ = [xxx′1, . . . ,xxx′K ] in ∏K

k=1Xk.

When a channel code is used, most channel decoders require the LLRs of the bits. The
LLR of the j-th bit of user k, denoted by bk,j , given the observation YYY = YYY is defined as

LLRk,j(YYY ) := log
pYYY|bk,j (YYY |1)
pYYY|bk,j (YYY |0) = log

∑
ααα∈X (1)

k,j

pYYY|xxxk(YYY |ααα)∑
βββ∈X (0)

k,j

pYYY|xxxk(YYY |βββ) = log

∑
ααα∈X (1)

k,j

pxxxk|YYY(ααα|YYY )∑
βββ∈X (0)

k,j

pxxxk|YYY(βββ|YYY ) (7.5)

where X (b)
k,j denotes the set of all possible symbols in Xk with the j-th bit being equal

to b for j ∈ [Bk] and b ∈ {0, 1}. To compute (7.5), the posteriors pxxxk|YYY, k ∈ [K], are
marginalized from

pXXX|YYY(XXX|YYY ) =
pYYY|XXX(YYY |XXX)pXXX(XXX)

pYYY(YYY ) ∝ pYYY|XXX(YYY |XXX)pXXX(XXX). (7.6)

Assuming that the transmitted signals are independent and uniformly distributed over the
respective constellations, the prior pXXX factorizes as

Pr(XXX = [xxx1, . . . ,xxxK ]) =
K∏
k=1

1
|Xk|

1{xxxk ∈ Xk}. (7.7)

On the other hand, the likelihood function pYYY|XXX(YYY |[xxx1, . . . ,xxxK ]) involves all xxx1, . . . ,xxxK in
such a manner that it does not straightforwardly factorize. Exact marginalization of pXXX|YYY
requires computing

pxxxk|YYY(xxxk|YYY ) =
∑

xxxl∈Xl,∀l 6=k
pXXX|YYY([xxx1, . . . ,xxxK ]|YYY ) for k ∈ [K]. (7.8)
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That is, it requires computing pYYY|XXX(YYY |XXX) (which requires the inversion of an NT ×NT
matrix) for all XXX ∈ ∏K

k=1Xk. Thus, the total complexity of exact marginalization is
O(K62KB).2 This is formidable for many users or large constellations. Thus, we seek
alternative approaches to estimate

pXXX|YYY([xxx1, . . . ,xxxK ]|YYY ) ≈ p̂XXX|YYY([xxx1, . . . ,xxxK ]|YYY ) =
K∏
k=1

p̂xxxk|YYY(xxxk|YYY ). (7.9)

7.2.3 Achievable Rate

According to [25, Section II], the highest sum-rate reliably achievable with a given decoding
metric p̂XXX|YYY, so-called the mismatched sum-rate, is lower bounded by the generalized mutual
information (GMI) given by

RGMI = 1
T

sup
s≥0

E

log2
p̂XXX|YYY(XXX|YYY)s∑

XXX′∈
∏K

k=1 Xk
Pr(XXX = XXX ′)p̂XXX|YYY(XXX ′|YYY)s

 (7.10)

= 1
T

sup
s≥0

E

 K∑
k=1

Bk − log2

∑
XXX′∈

∏K

k=1 Xk
p̂XXX|YYY(XXX ′|YYY )s

p̂XXX|YYY(XXX|YYY)s

 (7.11)

= 1
T

K∑
k=1

Bk −
1
T

inf
s≥0

E
[
K∑
k=1

log2

∑
xxx′
k
∈Xk p̂xxxk|YYY(xxx′k|YYY)s

p̂xxxk|YYY(xxxk|YYY)s

]
(7.12)

bits/channel use, where the expectation is over the joint distribution of XXX and YYY, i.e.,
pYYY|XXXpXXX. Here, (7.11) holds because the transmitted symbols are independent and have
uniform prior distribution, and (7.12) follows from the factorization of p̂XXX|YYY in (7.9). The
generalized mutual information RGMI is upper bounded by the sum-rate achieved with the
optimal decoding metric pXXX|YYY given by

R = 1
T
I(XXX;YYY) = 1

T
h(XXX)− 1

T
h(XXX|YYY) (7.13)

= 1
T

K∑
k=1

Bk −
1
T
E
[
log2

1
pXXX|YYY(XXX|YYY)

]
(7.14)

= 1
T

K∑
k=1

Bk −
1
T
E

log2

∑
XXX′∈

∏K

k=1 Xk
pYYY|XXX(YYY|XXX ′)

pYYY|XXX(YYY|XXX)

 (7.15)

bits/channel use, where (7.15) follows from the Bayes’ law and the uniformity of the prior
distribution. RGMI approaches R as p̂XXX|YYY gets close to pXXX|YYY. Note that if we fix s = 1 in
place of the infimum in (7.12), it holds that

R−RGMI(s = 1) = 1
T
E
[
log2

pXXX|YYY(XXX|YYY)
p̂XXX|YYY(XXX|YYY)

]
= 1
T
EYYY
[
D(pXXX|YYY‖p̂XXX|YYY)

]
, (7.16)

which converges to zero when the KL divergence between p̂XXX|YYY and pXXX|YYY vanishes.

The expectations in (7.12) and (7.15) cannot be derived in closed form in general.
Alternatively, we can evaluate R and RGMI (and also EYYY[D(pXXX|YYY

∥∥p̂XXX|YYY)]) numerically with
2Throughout the chapter, as far as the complexity analysis is concerned, we assume for notational

simplicity that T = O(K), N = O(K), and |Xk| = O(2B), ∀k ∈ [K]. If the channels are uncorrelated
(RRRk = IIIN ), the likelihood function can be simplified as pYYY|XXX(YYY |XXX) = exp(−tr{YYY H(σ2IIIT+XXXXXXH)−1YYY })

πNT detN (σ2IIIT+XXXXXXH) . Thus,
the complexity of exact marginalization is reduced to O(K32KB).
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the Monte Carlo method. Note that when K or Bk is large, even a numerical evaluation
of R and EYYY[D(pXXX|YYY

∥∥p̂XXX|YYY)] is not possible. Therefore, we choose to use the mismatched
sum-rate lower bound RGMI as an information-theoretic metric to evaluate how close p̂XXX|YYY
is to pXXX|YYY.

In what follows, we design a posterior marginal estimation scheme based on EP. We
start by providing a brief review of EP in the next section.

7.3 Expectation Propagation

The EP algorithm was first proposed in [200] and summarized in, e.g., [201] for approximate
inference in probabilistic graphical models. EP is an iterative framework for approximating
posterior beliefs by parametric distributions in the exponential family [202, Section 1.6].
Let us consider a set of unknown variables represented by a random vector sss with posterior
of the form

psss(sss) ∝
∏
α

ψα(sssα), (7.17)

where sssα is the subset of variables involved in the factor ψα corresponding to a partition
{sssα} of sss. Furthermore, let us partition the components of sss into some sets {sssβ}, where
no sssβ is split across factors (i.e., ∀α, β either sssβ ⊂ sssα or sssβ ∩ sssα = ∅). The partition {sssα}
represents the local dependency of the variables given by the intrinsic factorization (7.17),
while the partition {sssβ} groups the variables that always occur together in a factor. We
are interested in the posterior marginals w.r.t. the partition {sssβ}. In the following, we
omit sss in the subscripts since it is obvious.

EP approximates the true posterior p from (7.17) by a distribution p̂ that can be
expressed in two ways. First, it can be expressed w.r.t. the “target” partition {sssβ} as

p̂(sss) =
∏
β

p̂β(sssβ), (7.18)

where p̂β are constrained to be in the exponential family (see Appendix 7.A.1), such that

p̂β(sssβ) = exp
(
γγγT
βφφφβ(sssβ)−Aβ(γγγβ)

)
, (7.19)

for sufficient statistics φφφβ(sssβ), parameters γγγβ, and log-partition function

Aβ(γγγ) := ln
∫
eγγγ

Tφφφβ(sssβ) dsssβ.

Second, p̂ can also be expressed w.r.t. the partition {sssα} as

p̂(sss) ∝
∏
α

mα(sssα), (7.20)

in accordance with (7.17). For (7.18) and (7.20) to be consistent, the terms mα should
also factorize over β, i.e., there exist factors mα,β of the form mα,β(sssβ) = exp

(
γγγT
α,βφφφβ(sssβ)

)
such that

mα(sssα) =
∏
β∈Nα

mα,β(sssβ) = exp
( ∑
β∈Nα

γγγT
α,βφφφβ(sssβ)

)
, (7.21)

p̂β(sssβ) ∝
∏
α∈Nβ

mα,β(sssβ) = exp
( ∑
α∈Nβ

γγγT
α,βφφφβ(sssβ)

)
, (7.22)
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where Nα collects the indices β for which sssβ ⊂ sssα, and Nβ collects the indices α for which
sssβ ⊂ sssα. It turns out that mα,β can be interpreted as a message from the factor node α to
the variable node β on a bipartite factor graph [203]. In this case, mα(sssα) is the product
of all messages emanating from factor node α, and p̂β(sssβ) is proportional to the product of
all messages impinging on variable node β.

EP works by first initializing all mα(sssα) and p̂β(sssβ) (typically by the respective priors,
which are assumed to also belong to the considered exponential family), then iteratively
updating each approximation factor mα in turn. Let us fix a factor index α. According
to [200], the “tilted” distribution qα is constructed by swapping the true potential ψα for
its approximate mα in p̂(sss) as

qα(sss) = p̂(sss)ψα(sssα)
mα(sssα) , (7.23)

where it is assumed that
∫
qα(sss) dsss <∞. This tilted distribution is projected back onto

the exponential family by minimizing the KL divergence:

p̂new
α (sss) = arg min

p∈P
D
(
qα(sss)

∥∥p(sss)), (7.24)

where P is the set of distributions of the form of p̂ in (7.18), i.e., p(sss) = ∏
β pβ(sssβ) =∏

β exp
(
γγγT
β
φφφβ(sssβ)−Aβ(γγγ

β
)
)
for some {γγγ

β
}. Following [200], [201], the solution to (7.24)

is given as follows.

Proposition 7.1. The solution to (7.24) is given by p̂new
α (sss) = ∏

β p̂
new
α,β (sssβ) with p̂new

α,β (sssβ) =
p̂β(sssβ), ∀β /∈ Nα, and p̂new

α,β (sssβ) = exp
(
γT
β
φφφβ(sssβ)−Aβ(γ

β
)
)
with γ

β
such that Ep̂new

α,β
[φφφβ(sssβ)] =

Eqα [φφφβ(sssβ)], ∀β ∈ Nα, whenever the expectation Eqα [·] exists.

Proof. The proof is provided in Appendix 7.A.3.

The factor mα is then updated via

mnew
α (sssα) = p̂new

α (sss)mα(sssα)
p̂(sss) (7.25)

=
[ ∏
β∈Nα

mα,β(sssβ)
]∏

β∈Nα p̂
new
α,β (sssβ)∏

β∈Nα p̂β(sssβ) (7.26)

∝
[ ∏
β∈Nα

mα,β(sssβ)
] ∏

β∈Nα p̂
new
α,β (sssβ)∏

β∈Nα
[
mα,β(sssβ)∏α′∈Nβ\αmα′,β(sssβ)

] (7.27)

=
∏
β∈Nα

mnew
α,β (sssβ), (7.28)

with

mnew
α,β (sssβ) :=

p̂new
α,β (sssβ)∏

α′∈Nβ\αmα′,β(sssβ) . (7.29)

Note that, on the right-hand side of (7.25), all terms dependent on {sssβ}β/∈Nα cancel, leaving
the dependence only on {sssβ}β∈Nα . Thus, the update of mα only affects the approximate
posterior of nodes β in the neighborhood of node α. After that, the process is repeated
with the next α.
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A message-passing view of Proposition 7.1 can be seen by expanding qα(sss) as

qα(sss) = ψα(sssα)
mα(sssα)

[ ∏
β∈Nα

∏
α′∈Nβ

mα′,β(sssβ)
][ ∏

β/∈Nα

p̂β(sssβ)
]

(7.30)

= ψα(sssα)
[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(sssβ)
][ ∏

β/∈Nα

p̂β(sssβ)
]
, (7.31)

then, using the natural logarithm for the KL divergence, it follows that

D
(
qα(sss)

∥∥p(sss))
=
∫
qα(sss) ln qα(sss)

p(sss) dsss (7.32)

=
∫
ψα(sssα)

[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(sssβ)
][ ∏

β/∈Nα

p̂β(sssβ)
]

× ln
(ψα(sssα)∏β∈Nα

∏
α′∈Nβ\αmα′,β(sssβ)∏

β∈Nα pβ(sssβ)

∏
β/∈Nα p̂β(sssβ)∏
β/∈Nα pβ(sssβ)

)
dsss (7.33)

=
∫
ψα(sssα)

[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(sssβ)
]

ln
ψα(sssα)∏β∈Nα

∏
α′∈Nβ\αmα′,β(sssβ)∏

β∈Nα pβ(sssβ) dsssα

+
∑
β/∈Nα

∫
p̂β(sssβ) ln p̂β(sssβ)

p
β
(sssβ) dsssβ (7.34)

=
∑
β∈Nα

∫
qα,β(sssβ) ln qα,β(sssβ)

p
β
(sssβ) dsssβ +

∑
β/∈Nα

D
(
p̂β
∥∥p
β

)
+ c0 (7.35)

=
∑
β∈Nα

D
(
qα,β

∥∥p
β

)
+
∑
β/∈Nα

D
(
p̂β
∥∥p
β

)
+ c0, (7.36)

where

qα,β(sssβ) :=
∫
ψα(sssα)

[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(sssβ)
]

dsssα\β (7.37)

and c0 represents a constant w.r.t. the distribution p (which we optimize) whose value
is irrelevant and may change at each occurrence. Equation (7.36) says that, for each β
in the neighborhood of node α, the optimal p

β
(i.e., p̂new

α,β ) is uniquely identified as the
moment match of qα,β in the exponential family with sufficient statistics φφφβ(sssβ), where
qα,β is formed by taking the product of the true factor ψα and all the messages impinging
on that factor, and then integrating out all variables except sssβ. Furthermore, (7.29) says
that the new message mnew

α,β passed from α to β ∈ Nα equals p̂new
α,β divided by the product

of messages {mα′,β}α′∈Nβ\α, i.e., previous messages to β from all directions except α. An
illustrative example is shown in Fig. 7.1.

7.4 Application of EP to Non-Coherent Detection
In order to apply EP to the non-coherent detection problem described in Section 7.2,
we express the transmitted signal as xxxk = xxx

(ik)
k , where i1, . . . , iK are independent random

indices.3 With the assumption that the constellation symbols are transmitted with equal
3The application of EP to non-coherent multi-user detection is non-trivial. Many choices can be made

to model and partition the unknowns, but may not result in tractable derivation. Our choice is carefully
made to enable closed-form message updates.
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ψa

ψb

ψc

sss1

sss2

sss3

sss4

ma,1

ma,2

mb,2
mb,3
m
b,4

mc,3

mc,4

Figure 7.1: An example of the factor graph representation of EP for α ∈ {a, b, c} and
β ∈ {1, 2, 3, 4}. For α = b and β = 2, according to (7.37) and (7.29), qb,2(sss2) =∫
ψb(sss2, sss3, sss4)ma,2(sss2)mc,3(sss3)mc,4(sss4) dsss3 dsss4 and mnew

b,2 (sss2) = p̂new
b,2 (sss2)
ma,2(sss2) , respectively.

probability, ik are uniformly distributed over [|Xk|], k ∈ [K]. We rewrite the received
signal (7.1) in vector form as

yyy =
K∑
k=1

wwwk + zzz, (7.38)

where yyy := vec(YYYT), wwwk := (xxx(ik)
k ⊗ IIIN )hhhk, and zzz := vec(ZZZT) ∼ NC(0, σ2IIINT ). The problem

of estimating pxxxk|YYY is equivalent to estimating pik|YYY since they admit the same PMF.

With www := [wwwT
1, . . . ,wwwT

K ]T and iii := [i1, . . . , iK ]T, we can write

piii,www|yyy(iii,www|yyy) ∝ piii,www,yyy(iii,www,yyy) = pyyy|www(yyy|www)pwww|iii(www|iii)piii(iii) (7.39)

= ψ0(www1, . . . ,wwwK)
[ K∏
k=1

ψk1(wwwk, ik)
][ K∏

k=1
ψk2(ik)

]
, (7.40)

corresponding to (7.17), where

ψ0(www1, . . . ,wwwK) := pyyy|www(yyy|www) = NC

(
yyy;

K∑
k=1

wwwk, σ
2IIINT

)
, (7.41)

ψk1(wwwk, ik) := pwwwk|ik(wwwk) = NC
(
wwwk; 0, (xxx(ik)

k xxx
(ik)H
k )⊗RRRk

)
, (7.42)

ψk2(ik) := pik(ik) = 1
|Xk|

for ik ∈ [|Xk|]. (7.43)

In the following, we consider a realization yyy of yyy and use EP to infer the posterior of
the indices {ik} and, as a by-product, the posterior of wwwk, k ∈ [K]. To do so, we choose
the partition sss = {wwwk, ik}Kk=1 and illustrate the interaction between these variables and the
factors ψ0, ψk1, ψk2 on the bipartite factor graph in Fig. 7.2. This graph is a tree with a
root yyy and K leaves {ψk2}Kk=1.

We write the EP approximation according to (7.18) as

p̂sss|yyy(sss|yyy) = p̂iii,www|yyy(iii,www|yyy) =
K∏
k=1

p̂wwwk(wwwk)p̂ik(ik), (7.44)

where p̂wwwk(wwwk) and p̂ik(ik) are implicitly conditioned on yyy = yyy and constrained to be a
Gaussian vector distribution and a discrete distribution with support [|X |] (both belong to
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ψ0yyy wwwk

µµµk0,CCCk0−−−−−→

www1

µµµ 10
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10

−−−
−−→
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µµµ
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−−−−−−→

ψ11

µµµ11,CCC11←−−−−−
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µµµk1,CCCk1←−−−−−

ψK1

µµµK1,CCCK1←−−−−−−
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{π(i)

11 }
|Xk|
i=1−−−−−−→
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{π(i)

k1}
|Xk|
i=1−−−−−−→

iK
{π(i)
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Figure 7.2: A factor graph representation of the non-coherent multi-user detection problem. Each
factor node represents the conditional PDF of the variable on the left given the variable(s) on the
right. The messages are depicted with under-arrows showing their direction from a factor node to a
variable node.

the exponential family), respectively. Specifically, they are parameterized as

p̂wwwk(wwwk) = NC(wwwk; ŵwwk,ΣΣΣk) such that ΣΣΣk is positive definite, (7.45)

p̂ik(ik) = π̂
(ik)
k for ik ∈ [|Xk|] such that ∑|Xk|

i=1 π̂
(i)
k = 1. (7.46)

We also write the EP approximation according to (7.20) as

p̂sss|yyy(sss|yyy) = p̂iii,www|yyy(iii,www|yyy) ∝ m0(www1, . . . ,wwwK)
[ K∏
k=1

mk1(wwwk, ik)
][ K∏

k=1
mk2(ik)

]
, (7.47)

where we define

m0(www1, . . . ,wwwK) ∝
K∏
k=1
NC(wwwk;µµµk0,CCCk0), (7.48)

mk1(wwwk, ik) ∝ NC(wwwk;µµµk1,CCCk1)π(ik)
k1 , (7.49)

mk2(ik) = π
(ik)
k2 for ik ∈ [|Xk|]. (7.50)

On the factor graph in Fig. 7.2, we can interpret (µµµk0,CCCk0) as the message from factor node
ψ0 to variable node wwwk, (µµµk1,CCCk1) as the message from factor node ψk1 to variable node
wwwk,

{
π

(ik)
k1
}|Xk|

ik=1 as the message from factor node ψk1 to variable node ik, and
{
π

(ik)
k2
}|Xk|

ik=1 as
the message from factor node ψk2 to variable node ik.

Remark 7.1. Our choice of Gaussian distribution (within the exponential family) in (7.45)
is motivated by the fact that when the noise and channel are Gaussian, the symbol posterior
takes the form of a Gaussian mixture. It also allows a tractable derivation (using the
Gaussian PDF multiplication rule) and closed-form update expressions, as will be shown
in the next subsection. If a general (possibly non-Gaussian) channel model is considered,
the factor ψk1(wwwk, ik) in (7.42) may be different, but the factor graph in Fig. 7.2 remains
unchanged.

7.4.1 The EP Message Updates

In the following, we derive the message updates from each of the factor nodes ψ0, ψk1,
and ψk2, k ∈ [K], to the corresponding variable nodes. To do so, for each α ∈ {k1, k2, 0},
we compute the projected density p̂new

α = ∏K
k=1 p̂

new
α,wwwk(wwwk)p̂new

α,ik (ik) according to (7.44) and
Proposition 7.1, and then update the factor mα according to (7.28).
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7.4.1.a Message
{
π

(ik)
k2
}|Xk|
ik=1 from Factor Node ψk2 to Variable Node ik

First, we compute p̂new
k2,ik and then the EP message

{
π

(ik)
k2

}|Xk|
ik=1

from node ψk2 to node ik.

From (7.36) and (7.46), we know that p̂new
k2,ik is the discrete distribution with PMF

{
π̂

(i)
k2

}|Xk|
i=1

proportional to ψk2(ik)π(ik)
k1 , and so

π̂
(ik)
k2 = ψk2(ik)π(ik)

k1∑|Xk|
i=1 ψk2(i)π(i)

k1

= π
(ik)
k1∑|Xk|

i=1 π
(i)
k1

for ik ∈ [|Xk|], (7.51)

since ψk2(ik) is constant over these ik. With p̂new
k2,ik computed, (7.28) implies that the

message from node ψk2 to node ik is the PMF proportional to

p̂new
k2,ik(ik)
π

(ik)
k1

= π̂
(ik)
k2

π
(ik)
k1

= 1∑|Xk|
i=1 π

(i)
k1

= c0 for ik ∈ [|Xk|], (7.52)

and thus π(ik)
k2 = 1

|Xk| for ik ∈ [|Xk|].

7.4.1.b Messages from Factor Node ψk1 to Variable Nodes wwwk and ik

Next, we compute p̂new
k1 = ∏K

k=1 p̂
new
k1,wwwk(wwwk)p̂

new
k1,ik(ik) and the messages

{
π

(ik)
k1
}|Xk|
ik=1 and

(µµµk1,CCCk1) from node ψk1 to nodes ik and wwwk, respectively.

Message
{
π

(ik)
k1

}|Xk|
ik=1

from Node ψk1 to Node ik:

We first compute p̂new
k1,ik(ik). From (7.36) and (7.46), we know that p̂new

k1,ik(ik) is the
discrete distribution with support [|Xk|] and PMF π̂

(ik)
k1 proportional to∫

ψk1(wwwk, ik)NC(wwwk;µµµk0,CCCk0)π(ik)
k2 dwwwk

= 1
|Xk|

∫
NC
(
wwwk; 0, (xxx(ik)

k xxx
(ik)H
k )⊗RRRk

)
NC(wwwk;µµµk0,CCCk0) dwwwk (7.53)

= 1
|Xk|

∫
NC
(
wwwk; ŵwwkik ,ΣΣΣkik

)
NC
(
0;µµµk0, (xxx

(ik)
k xxx

(ik)H
k )⊗RRRk +CCCk0

)
dwwwk (7.54)

= 1
|Xk|
NC
(
0;µµµk0, (xxx

(ik)
k xxx

(ik)H
k )⊗RRRk +CCCk0

)
, (7.55)

where the second equality follows from the Gaussian PDF multiplication rule in Lemma 7.1
(see Appendix 7.A.2) with

ΣΣΣki =
(
[(xxx(i)

k xxx
(i)H
k )⊗RRRk]−1 +CCC−1

k0
)−1 (7.56)

=
[
(xxx(i)
k xxx

(i)H
k )⊗RRRk

](
(xxx(i)
k xxx

(i)H
k )⊗RRRk +CCCk0

)−1
CCCk0, (7.57)

ŵwwki = ΣΣΣkiCCC
−1
k0 µµµk0 (7.58)

=
[
(xxx(i)
k xxx

(i)H
k )⊗RRRk

](
(xxx(i)
k xxx

(i)H
k )⊗RRRk +CCCk0

)−1
µµµk0. (7.59)

Thus

π̂
(ik)
k1 =

NC
(
0;µµµk0, (xxx

(ik)
k xxx

(ik)H
k )⊗RRRk +CCCk0

)
∑|Xk|
i=1 NC

(
0;µµµk0, (xxx

(i)
k xxx

(i)H
k )⊗RRRk +CCCk0

) for ik ∈ [|Xk|]. (7.60)
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With p̂new
k1,ik(ik) computed, (7.28) implies that the message π(ik)

k1 from node ψk1 to node ik
is the PMF proportional to

p̂new
k1,ik

(ik)

π
(ik)
k2

= |Xk|π̂(ik)
k1 for ik ∈ [|Xk|], and thus

π
(ik)
k1 = |Xk|π̂

(ik)
k1∑|Xk|

i=1 |Xk|π̂
(i)
k1

= π̂
(ik)
k1 for ik ∈ [|Xk|]. (7.61)

Message (µµµk1,CCCk1) from Node ψk1 to Nodes wwwk:

We next compute p̂new
k1,wwwk(wwwk). From (7.36) and (7.45), we know that p̂new

k1,wwwk(wwwk) is
the Gaussian distribution with mean ŵwwk and covariance ΣΣΣk matched to that of the PDF
proportional to

|Xk|∑
ik=1

ψk1(wwwk, ik)NC(wwwk;µµµk0,CCCk0)π(ik)
k2

= 1
|Xk|

|Xk|∑
i=1
NC
(
wwwk; 0, (xxx(i)

k xxx
(i)H
k )⊗RRRk

)
NC(wwwk;µµµk0,CCCk0) (7.62)

= 1
|Xk|

|Xk|∑
i=1
NC
(
wwwk; ŵwwki,ΣΣΣki

)
NC
(
0;µµµk0, (xxx

(i)
k xxx

(i)H
k )⊗RRRk +CCCk0

)
(7.63)

∝
|Xk|∑
i=1
NC
(
wwwk; ŵwwki,ΣΣΣki

)
π̂

(i)
k1 , (7.64)

where the second equality follows from the Gaussian PDF multiplication rule in Lemma 7.1
with ΣΣΣki and ŵwwki defined in (7.57) and (7.59), respectively. Thus, from (7.61), we have

ŵwwk =
|Xk|∑
i=1

π
(i)
k1ŵwwki, (7.65)

ΣΣΣk =
|Xk|∑
i=1

π
(i)
k1 (ŵwwkiŵwwH

ki + ΣΣΣki)− ŵwwkŵwwH
k. (7.66)

With p̂new
k1,wwwk(wwwk) computed, (7.28) implies that the message from node ψk1 to node wwwk is

proportional to

p̂new
k1,wwwk(wwwk)

NC(wwwk;µµµk0,CCCk0) = NC(wwwk; ŵwwk,ΣΣΣk)
NC(wwwk;µµµk0,CCCk0) ∝ NC(wwwk;µµµk1,CCCk1), (7.67)

with

CCCk1 =
(
ΣΣΣ−1
k −CCC

−1
k0
)−1

, (7.68)
µµµk1 = CCCk1

(
ΣΣΣ−1
k ŵwwk −CCC−1

k0 µµµk0
)
. (7.69)

Equations (7.68) and (7.69) can be verified using

NC(wwwk; ŵwwk,ΣΣΣk) ∝ NC(wwwk;µµµk1,CCCk1)NC(wwwk;µµµk0,CCCk0),

which follows from (7.22) and the Gaussian PDF multiplication rule in Lemma 7.1.
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7.4.1.c Message (µµµk0,CCCk0) from Factor Node ψ0 to Variable Node wwwk

Finally, we compute p̂new
0,wwwk and the EP message (µµµk0,CCCk0) from node ψ0 to node wwwk for

each k ∈ [K]. From (7.36) and (7.45), we know that p̂new
0,wwwk is the Gaussian distribution

with mean ŵwwk0 and covariance ΣΣΣk0 matched to that of the PDF proportional to

NC(wwwk;µµµk1,CCCk1)
∫
ψ0(www1, . . . ,wwwK)

[ ∏
j 6=k
NC(wwwj ;µµµj1,CCCj1) dwwwj

]

= NC(wwwk;µµµk1,CCCk1)
∫
NC

(
yyy;wwwk +

∑
j 6=k

wwwj , σ
2IIINT

)[ ∏
j 6=k
NC(wwwj ;µµµj1,CCCj1) dwwwj

]
(7.70)

= NC(wwwk;µµµk1,CCCk1)NC

(
wwwk;yyy −

∑
j 6=k

µµµj1, σ
2IIINT +

∑
j 6=k

CCCj1

)
, (7.71)

where (7.71) follows by applying repeatedly Lemma 7.1. Applying the Gaussian PDF
multiplication rule to (7.71), we obtain

ΣΣΣk0 =
(
CCC−1
k1 +

[
σ2IIINT +

∑
j 6=k

CCCj1
]−1)−1

, (7.72)

ŵwwk0 = ΣΣΣk0

(
CCC−1
k1 µµµk1 +

[
σ2IIINT +

∑
j 6=k

CCCj1
]−1[

yyy −
∑
j 6=k

µµµj1

])
. (7.73)

Given p̂new
0,wwwk(wwwk) = NC(wwwk; ŵwwk0,ΣΣΣk0), (7.28) implies that the message from node ψ0 to node

wwwk is proportional to

p̂new
0,wwwk(wwwk)

NC(wwwk;µµµk1,CCCk1) = NC(wwwk; ŵwwk0,ΣΣΣk0)
NC(wwwk;µµµk1,CCCk1) ∝ NC(wwwk;µµµk0,CCCk0), (7.74)

with CCCk0 =
(
ΣΣΣ−1
k0 − CCC

−1
k1
)−1 and µµµk0 = CCCk0

(
ΣΣΣ−1
k0wwwk0 − CCC−1

k1 µµµk1
)
. This is verified using

NC(wwwk; ŵwwk0,ΣΣΣk0) ∝ NC(wwwk;µµµk1,CCCk1)NC(wwwk;µµµk0,CCCk0), which follows from (7.22), and the
Gaussian PDF multiplication rule in Lemma 7.1. Plugging in the expressions for ΣΣΣ−1

k0 and
ŵwwk0 from (7.72) and (7.73) yields

CCCk0 = σ2IIINT +
∑
j 6=k

CCCj1, (7.75)

µµµk0 = yyy −
∑
j 6=k

µµµj1. (7.76)

This concludes the derivation of the EP message updates.

7.4.2 Initialization of the EP Messages

We initialize the EP messages as follows. First, we choose the non-informative initialization
CCC−1
k0 = 0 and µµµk0 = 0, so that, from (7.60), the initial message from node ψk1 to node ik

coincides with the uniform prior π(ik)
k1 = π̂

(ik)
k1 = 1

|Xk| for ik ∈ [|Xk|], and, from (7.57) and
(7.59), the initial parameters ΣΣΣki = (xxx(i)

k xxx
(i)H
k )⊗RRRk and wwwki = 0, respectively, for k ∈ [K]

and i ∈ [|Xk|]. This leads to the initial parameters of p̂k(wwwk) from (7.65) and (7.66) as
ŵwwk = 0 and ΣΣΣk = 1

|Xk|
∑|Xk|
i=1 (xxx(i)

k xxx
(i)H
k )⊗RRRk, and the initial message from node ψk1 to node

wwwk given in (7.68) and (7.69) as CCCk1 = ΣΣΣk = 1
|Xk|

∑|Xk|
i=1 (xxx(i)

k xxx
(i)H
k )⊗RRRk, and µµµk1 = ŵwwk = 0.

Finally, the initial messages from node ψ0 to node wwwk follows from (7.75) and (7.76) as
CCCk0 = σ2IIINT +∑

j 6=k
1
|Xj |

∑|Xj |
i=1 (xxx(i)

j xxx
(i)H
j )⊗RRRk, and µµµk0 = yyy.
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7.4.3 The Algorithm

We summarize the proposed EP scheme for probabilistic non-coherent detection in Al-
gorithm 1. In the end, according to (7.22) and (7.46), the estimated PMF p̂xxxk|YYY(xxx(ik)

k |YYY )
is given by p̂k(ik) = π̂

(ik)
k ∝ π

(ik)
k1 π

(ik)
k2 , that is p̂k(ik) = π

(ik)
k1 since π(ik)

k2 is constant. The
algorithm goes through the branches of the tree graph in Fig. 7.2 in a round-robin manner.
In each branch, the factor nodes are visited from leaf to root. We note that other message
passing schedules can be implemented.

Algorithm 1: EP for probabilistic non-coherent detection
Input: the observation YYY ; the constellations X1, . . . ,XK ;

1 set the maximal number of iterations tmax ;
2 initialize the messages {π(ik)

k1 }
|Xk|
ik=1,µµµk1,CCCk1,µµµk0,CCCk0, for k ∈ [K] ;

3 t←− 0 ;
4 repeat
5 t←− t+ 1 ;
6 for k ← 1 to K do
7 update

{
π

(ik)
k1
}|Xk|
ik=1 according to (7.61) and (7.60) ;

8 compute {ŵwwki}|Xk|i=1 and {ΣΣΣki}
|Xk|
i=1 according to (7.59) and (7.57), respectively ;

9 compute ŵwwk and ΣΣΣk according to (7.65) and (7.66), respectively ;
10 update µµµk1 and CCCk1 according to (7.69) and (7.68), respectively ;
11 update

{
µµµj0
}
j 6=k and

{
CCCj0

}
j 6=k according to (7.76) and (7.75), respectively ;

end
until convergence or t = tmax;

12 return the PMF
{
π

(ik)
k1

}|Xk|
ik=1

of p̂xxxk|YYY(xxx(ik)
k |YYY ) for k ∈ [K] ;

In the EP algorithm, the dominant operation is the update of π(ik)
k1 , ΣΣΣki, and ŵwwki, which

involves the inverse of the NT × NT matrix
(
xxx

(ik)
k xxx

(ik)H
k

)
⊗RRRk +CCCk0 (with complexity

O(K6)) for all k ∈ [K] and ik ∈ [|Xk|]. The complexity of computing ŵwwk, ΣΣΣk, µµµk1, CCCk1,{
µµµj0
}
j 6=k, and

{
CCCj0

}
j 6=k are all of lower order. Therefore, the complexity per iteration is

given by O(K72B). In order to reduce this complexity, we derive two simplifications of the
EP scheme in the next section.

7.5 Simplifications of the EP Detector
In this section, we attempt to simplify EP by avoiding the inverse of NT ×NT matrices.

7.5.1 EP with Approximate Kronecker Products (EPAK)

We observe that if CCCk0 could be expressed as a Kronecker product C̄CCk0 ⊗RRRk with C̄CCk0 ∈
CT×T , we could rewrite π(ik)

k1 in (7.60) as

π
(ik)
k1 =

NC
(
0;µµµk0, (xxx

(ik)
k xxx

(ik)H
k + C̄CCk0)⊗RRRk

)
∑|Xk|
i=1 NC

(
0;µµµk0, (xxx

(i)
k xxx

(i)H
k + C̄CCk0)⊗RRRk

) . (7.77)
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Let MMMk0 ∈ CT×N such that µµµk0 = vec
(
MMMT

k0
)
, (7.77) could be computed efficiently using

NC
(
0;µµµk0,

(
xxx

(ik)
k xxx

(ik)H
k + C̄CCk0

)
⊗RRRk

)
∝
(
1 + xxx

(ik)H
k C̄CC

−1
k0 xxx

(ik)
k

)−N exp
(tr

{
C̄CC
−1
k0 xxx

(ik)
k xxx

(ik)H
k MMMk0(RRR−1

k )TMMMH
k0
}

1 + xxx
(ik)H
k C̄CC

−1
k0 xxx

(ik)
k

)
(7.78)

since only the T ×T matrix C̄CCk0 needs to be inverted (the inverse of RRRk can be precomputed
and stored). In general, CCCk0 does not have a Kronecker structure. Thus we propose to fit
CCCk0 to the form of a Kronecker product by solving the least squares problem

min
C̄CCk0∈CT×T

‖CCCk0 − C̄CCk0 ⊗RRR‖2F (7.79)

as formulated in [204, Section 4]. Let CCCk0{i, j} be the N ×N sub-matrix containing the
elements in rows from (i− 1)N + 1 to iN and columns from (j − 1)N + 1 to jN of CCCk0.
Let c̄ij be the element in row i and column j of C̄CCk0. It follows that

‖CCCk0 − C̄CCk0 ⊗RRRk‖2F

=
T∑
i=1

T∑
j=1
‖CCCk0{i, j} − c̄ijRRRk‖2F (7.80)

=
T∑
i=1

T∑
j=1
‖CCCk0{i, j}‖2F − c̄ijtr(CCCk0{i, j}HRRRk)− c̄∗ijtr(RRRkCCCk0{i, j}) + |c̄ij |2tr

(
RRR2
k

)
. (7.81)

Observe that ‖CCCk0 − C̄CCk0 ⊗RRRk‖2F is the sum of convex quadratic functions of c̄ij . Setting
the partials ∂‖CCCk0−C̄CCk0⊗RRRk‖2F

∂c̄ij
to zeros, the optimal C̄CCk0 is given by

c̄ij = tr(CCCk0{i, j}RRRk)
tr
(
RRR2
k

) . (7.82)

With the approximation CCCk0 ≈ C̄CCk0 ⊗RRRk, we can approximate π(ik)
k1 by the right-hand side

of (7.77). Also, it follows from (7.57) and (7.59) that

ΣΣΣki ≈
[
(xxx(ik)
k xxx

(ik)H
k )

(
xxx

(ik)
k xxx

(ik)H
k + C̄CCk0

)−1
C̄CCk0

]
⊗RRRk, (7.83)

ŵwwki ≈ vec
([
xxx

(ik)
k xxx

(ik)H
k

(
xxx

(ik)
k xxx

(ik)H
k + C̄CCk0

)−1
MMMk0

]T)
. (7.84)

To compute CCCk1 and µµµk1 in (7.69) and (7.68), the inversion of CCCk0 can be simplified as
CCC−1
k0 ≈ C̄CC

−1
k0 ⊗RRR−1

k , but the inverse of NT ×NT matrices involving ΣΣΣk is still required.

To keep an accurate message update at early iterations4, let us fix a threshold t0 ∈ [tmax]
and modify Algorithm 1 as follows. At iteration t, if t ≤ t0, the messages are updated as
in lines 7–11; if t > t0, in line 7, (7.60) is replaced by (7.77) for the update of π(ik)

k1 , and
in line 8, (7.59) and (7.57) are replaced by (7.84) and (7.83) for the update of ΣΣΣki and
ŵwwki, respectively. We refer to this scheme as expectation propagation with approximate
Kronecker (EPAK). It coincides with EP if t0 = tmax. At iteration t > t0, the dominant
operations in EPAK are the inverse of xxx(i)

k xxx
(i)H
k + C̄CCk0 (with complexity O(K3)) in (7.83)

and (7.84) for each k ∈ [K] and i ∈ [|Xk|], and the inverse of NT × NT matrices (with
complexity O(K6)) to compute CCCk1 and µµµk1 for each k ∈ [K]. Thus the complexity at
iteration t of EPAK is O(K72B) if t ≤ t0 and O(K42B +K7) if t > t0.

4In the uncorrelated fading case, i.e., RRRk = IIIN , the approximation of CCCk0 with Kronecker products
becomes more accurate when π̂k1 is closer to a Kronecker-delta distribution, i.e., we have high confidence
in one of the symbols. This is likely the case at high SNR after some EP iterations. At early iterations,
however, the approximation CCCk0 ≈ C̄CCk0 ⊗RRR can be inaccurate.
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7.5.2 Minimum Mean Square Error—Successive Interference Approxi-
mation (MMSE-SIA)

Another method to simplify EP is as follows. In the EP scheme, as in (7.64) and (7.67),
the message NC(wwwk;µµµk1,CCCk1) from node ψk1 to node wwwk is derived by first projecting
p̂new
k1,wwwk(wwwk) ∝

∑|Xk|
i=1 π

(i)
k1NC(wwwk; ŵwwki,ΣΣΣki) onto the Gaussian family, then dividing the

projected Gaussian by NC(wwwk;µµµk0,CCCk0). If we skip the projection of p̂new
k1 (wwwk) onto

the Gaussian family, i.e., we derive NC(wwwk;µµµk1,CCCk1) by dividing directly p̂new
k1,wwwk(wwwk) to

NC(wwwk;µµµk0,CCCk0), then the mean µµµk1 and covariance matrix CCCk1 are matched to that of
the PDF proportional to

p̂new
k1,wwwk(wwwk)

NC(wwwk;µµµk0,CCCk0) =
|Xk|∑
i=1

π
(i)
k1
NC(wwwk; ŵwwki,ΣΣΣki)
NC(wwwk;µµµk0,CCCk0) (7.85)

∝
|Xk|∑
i=1

π
(i)
k1NC

(
wwwk; 0, (xxx(i)

k xxx
(i)H
k )⊗RRRk

)
(7.86)

= NC
(
wwwk; 0,QQQk ⊗RRRk

)
. (7.87)

where QQQk := ∑|Xk|
i=1 π

(i)
k1xxx

(i)
k xxx

(i)H
k . (7.86) can be verified using

NC(wwwk; ŵwwki,ΣΣΣki) ∝ NC
(
wwwk; 0,

(
xxx

(i)
k xxx

(i)H
k

)
⊗RRRk

)
NC(wwwk;µµµk0,CCCk0),

which follows from the Gaussian PDF multiplication rule with ŵwwki and ΣΣΣki given in (7.59)
and (7.57), respectively. It follows that µµµk1 = 0 and CCCk1 = QQQk ⊗RRRk. As a consequence
(see (7.76) and (7.75)), µµµk0 = yyy and CCCk0 = σ2IIINT +∑

l 6=kQQQl ⊗RRRk.

This scheme can be alternatively interpreted as follows. We expand yyy in (7.38) as

yyy = (xxxk ⊗ IIIN )hhhk +
∑
l 6=k

(xxxl ⊗ IIIN )hhhl + zzz. (7.88)

The second term tttk := ∑
l 6=k(xxxl ⊗ IIIN )hhhl is the interference from other users while decoding

the signal of user k. Since the signals xxxl are independent of the channels hhhl and the channels
hhhl have zero mean, we have that E[tttk] = 0. The covariance matrix of tttk is E[tttktttH

k] =∑
l 6=k E[xxxlxxxH

l ]⊗RRRk = ∑
l 6=kQQQl⊗RRRk. If we treat the interference term tttk as a Gaussian vector

with the same mean and covariance matrix5, then tttk + zzz ∼ NC
(
0,
∑
l 6=kQQQl ⊗RRRk + σ2IIINT

)
.

The single-user likelihood under this approximation is

p̂yyy|xxxk(yyy|xxxk) = NC

(
yyy; 0,xxxkxxxH

k ⊗RRRk +
∑
l 6=k

QQQl ⊗RRRl + σ2IIINT
)
. (7.89)

With this and Lemma 7.1, the update of the approximate posterior p̂xxxk|yyy(xxxk|yyy) ∝ p̂yyy|xxxk(yyy|xxxk)
coincides with (7.60) for µµµk0 = yyy and CCCk0 = σ2IIINT +∑

l 6=kQQQl ⊗RRRk. The matrix QQQk is
then recalculated with the updated value of p̂xxxk|yyy(xxx(ik)

k |yyy), ik ∈ [|Xk|]. The matrices CCC l0
are updated accordingly, and then used to update p̂xxxl|yyy(xxx(il)

l |yyy), il ∈ [|Xl|], l 6= k.

In short, the derived simplification of the EP scheme above iteratively MMSE-estimates
the signal wwwk of one user at a time while treating the interference as Gaussian. At each
iteration, the Gaussian approximation of the interference for each user is successively
improved using the estimates of the signals of other users. We refer to this scheme as
MMSE-SIA and summarize it in Algorithm 2. In particular, as for the EP scheme, we can
start with the non-informative initialization p̂xxxk|YYY(xxx|YYY ) = 1

|Xk|1{xxx ∈ Xk}.
5Another choice is to treat each xxxl, l 6= k, as a Gaussian. With this choice, however, the interference

term tttk is a product of Gaussians which makes the approximate single-user likelihood difficult to evaluate.
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Algorithm 2: MMSE-SIA for probabilistic non-coherent detection
Input: the observation YYY ; the constellations X1, . . . ,XK ;

1 set the maximal number of iterations tmax ;
2 initialize the posteriors p̂xxxk|YYY(xxxk|YYY ) for xxxk ∈ Xk, and QQQk = Ep̂xxxk|YYY

[xxxkxxxH
k] for k ∈ [K] ;

3 t←− 0 ;
4 repeat
5 t←− t+ 1 ;
6 for k ← 1 to K do
7 compute CCCk0 = σ2IIINT +∑

l 6=kQQQl ⊗RRRk ;
8 update p̂xxxk|YYY(xxxk|YYY ), xxxk ∈ Xk, according to (7.60) with µµµk0 = yyy and CCCk0

computed ;
9 update QQQk = Ep̂xxxk|YYY

[xxxkxxxH
k] ;

end
until convergence or t = tmax;

10 return p̂xxxk|YYY(xxxk|YYY ) for xxxk ∈ Xk, k ∈ [K] ;

The complexity order of Algorithm 2 is the same as EP due to the NT ×NT matrix
inversion in (7.60). However, MMSE-SIA still has a complexity advantage over EP since
no other matrix inversion is required, and there is no need to compute {ŵwwki}, {ΣΣΣki}, ŵwwk,
ΣΣΣk, or update µµµk1. If the channel is uncorrelated (RRRk = IIIN ), the complexity order of
MMSE-SIA can be reduced. In this case, CCCk0 is the Kronecker product C̄CCk0 ⊗ IIIN with
C̄CCk0 := ∑K

l=1,l 6=kQQQl + σ2III T , and thus in (7.60),

NC
(
0;µµµk0, (xxx

(ik)
k xxx

(ik)H
k )⊗RRRk +CCCk0

)
= NC

(
0;yyy,

(
xxx

(ik)
k xxx

(ik)H
k + C̄CCk0

)
⊗ IIIN

)
(7.90)

∝
(
1 + xxx

(ik)H
k C̄CC

−1
k0 xxx

(ik)
k

)−N exp
( ∥∥YYYHC̄CC

−1
k0 xxx

(ik)
k

∥∥2

1 + xxx
(ik)H
k C̄CC

−1
k0 xxx

(ik)
k

)
. (7.91)

Then, only the inverse of C̄CCk0 is computed, which requires O(K3) operations. Given C̄CC−1
k0 ,

the complexity of computing the right-hand side of (7.91) is then O(K2) for each ik ∈ [|Xk|].
Therefore, the complexity of computing p̂xxxk|YYY(xxxk|YYY ) is O(K3 +K22B) for k ∈ [K]. Finally,
the complexity per iteration of the MMSE-SIA algorithm for uncorrelated fading is given
by O(K4 +K32B).

7.6 Implementation Aspects

7.6.1 Complexity

We summarize the computational complexity of the considered schemes in Table 7.1.

7.6.2 Stabilization

We discuss some possible numerical problems in the EP algorithm and our solutions.

7.6.2.a Singularity of ΣΣΣk

First, in (7.66), since the NT ×NT matrix ΣΣΣk is the weighted sum of the terms of rank less
than NT , it can be close to singular if at a certain iteration, only few of the weights π(i)

k1
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Table 7.1: Complexity order of different non-coherent multi-user detectors
with T = O(K), N = O(K), and |Xk| = O(2B), k ∈ [K]

Detector Complexity order
Correlated fading Uncorrelated fading RRRk = IIIN ,∀k

Optimal (exact marginalization) O(K62BK) O(K32BK)
EP O(K72Btmax)
EPAK O

(
K72Bt0 + (K42B +K7)(tmax − t0)

)
MMSE-SIA O(K72Btmax) O(K4tmax +K32Btmax)

tmax denotes the number of iterations. t0 ∈ [tmax].

are sufficiently larger than zero. The singularity of ΣΣΣk can also arise from the constellation
structure. For example, the constellations proposed in [125] are precoded versions of a
constellation in G(CT−K+1, 1) and the maximal rank of ΣΣΣk is N(T −K + 1) ≤ NT . To
avoid the inverse of ΣΣΣk, we express CCCk1 in (7.68) and µµµk1 in (7.69) respectively as

CCCk1 = −CCCk0
(
ΣΣΣk −CCCk0

)−1ΣΣΣk, (7.92)

µµµk1 = CCCk0
(
ΣΣΣk −CCCk0

)−1
(

ΣΣΣk −
|Xk|∑
i=1

π
(i)
k1ΣΣΣki

)
CCC−1
k0 µµµk0. (7.93)

7.6.2.b “Negative variance”

Another problem is that CCCk1 is not guaranteed to be positive definite even if both CCCk0 and
ΣΣΣk are. When CCCk1 is not positive definite, from (7.75), CCCk0 can have negative eigenvalues,
which, through (7.60), can make π̂(ik)

k1 become close to a Kronecker-delta distribution (even
at low SNR) where the position of the mode can be arbitrary, and the algorithm may
diverge. Note that this “negative variance” problem is common in EP (see, e.g., [200,
Section 3.2.1], [205, Section 5.3]). There has been no generally accepted solution and
one normally resorts to various heuristics adapted to each problem. In our problem, to
control the eigenvalues of CCCk1, we modify (7.92) by first computing the eigendecomposition
−CCCk0

(
ΣΣΣk−CCCk0

)−1ΣΣΣk = VVVΛΛΛVVV −1, then computing CCCk1 as CCCk1 = VVV |ΛΛΛ|VVV −1, where |ΛΛΛ| is the
element-wise absolute value of ΛΛΛ. This manipulation of replacing the variance parameters
by their absolute values was also used in [206].

7.6.2.c Overconfidence at early iterations

Finally, due to the nature of the message passing between continuous and discrete distribu-
tion, it can happen that all the mass of the PMF π̂

(ik)
k1 is concentrated on a small region

of a potentially large constellation Xk. For example, if π(ik)
k1 is close to a Kronecker-delta

distribution with a single mode at i0, then (7.59) and (7.57) implies that ΣΣΣk is approxi-
mately ΣΣΣki0 , and then from (7.68), CCCk1 ≈ (xxx(i0)

k xxx
(i0)H
k )⊗RRRk. In this case, almost absolute

certainty is placed on the symbol xxx(i0)
k , and the algorithm will not be able significantly

update its belief in the subsequent iterations. This can be problematic when the mode of
π

(ik)
k1 is placed on the wrong symbol at early iterations. To smooth the updates, we apply

damping on the update of the parameters of the continuous distributions NC(wwwk;µµµk1,CCCk1)
and NC(wwwk;µµµk0,CCCk0). That is, with a damping factor η ∈ [0; 1], at iteration t and for each
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user k, we update

CCCk1(t) = ηVVV (t)|ΛΛΛ(t)|VVV −1(t) + (1− η)CCCk1(t− 1), (7.94)
µµµk1(t) = ηCCCk0(t− 1)

(
ΣΣΣk(t)−CCCk0(t− 1)

)−1

×

ΣΣΣk(t)−
|Xk|∑
i=1

π
(i)
k1 (t)ΣΣΣki(t)

CCC−1
k0 (t− 1)µµµk0(t− 1)

+ (1− η)µµµk1(t− 1), (7.95)

CCC l0(t) = η

(
σ2IIINT +

∑
j 6=l

CCCj1(t)
)

+ (1− η)CCC l0(t− 1), ∀l 6= k, (7.96)

µµµl0(t) = η

(
yyy −

∑
j 6=l

µµµj1(t)
)

+ (1− η)µµµl0(t− 1), ∀l 6= k. (7.97)

In short, we stabilize the EP message updates by replacing (7.94), (7.95), (7.96), and
(7.97) for (7.68), (7.69), (7.75), and (7.76), respectively. This technique also applies
to EPAK. For MMSE-SIA, we damp the update of C̄CCk0 and QQQk in a similar manner as
C̄CCk0(t) = η

(∑
l 6=kQQQl(t−1)+σ2III T

)
+(1−η)C̄CCk0(t−1) andQQQk(t) = η

∑|Xk|
ik=1 π

(ik)
k1 (t)xxx(ik)

k xxx
(ik)H
k +

(1−η)QQQk(t−1). Note that damping does not change the complexity order of these schemes.
The approaches described in this subsection were implemented for the numerical results in
the next section.

7.7 Greedy Detectors for the Precoding-Based Constella-
tion

In this section, we present a greedy approach for detection of signals transmitted with the
precoding-based constellation in Chapter 6. Recall that in this constellation, the symbols
are constructed as

xxx
(i)
k = UUUkccc

(i)
k∥∥∥UUUkccc(i)
k

∥∥∥ , i ∈ [|Xk|], k ∈ [K], (7.98)

where
{
ccc

(i)
k , . . . , ccc

(|Xk|)
k

}
=:Ck is a single-user Grassmannian constellation in G(CT−K+1, 1)

and UUUk ∈ CT×T−K+1 is the precoder matrix defined uniquely for user k. The received
signal is given in (7.1) with xxxk drawn from Xk. Recall that VVV k ∈ CT×(K−1) is a basis of
the orthogonal complement of Span(UUUk), i.e., VVV H

kUUUk = 0, VVV H
kVVV k = IIIK−1. We have the

following property.

Property 7.1. With normalized linear encoder mappings (7.98), the transmitted signals
can be separated and detected error-free in the noiseless case if rank(HHH) = K and

EEEk := VVV H
k[UUU1x̃xx1 . . .UUUk−1x̃xxk−1 UUUk+1x̃xxk+1 . . .UUUKx̃xxK ] (7.99)

is full rank for any k ∈ [K] and any possible symbol association

{x̃xx1, . . . , x̃xxk−1, x̃xxk+1, . . . , x̃xxK} ∈
∏
l 6=k
Cl. (7.100)

Proof. For any realization of HHH such that rank(HHH) = K, there exists a matrix AAAk ∈
CN×(N−K+1) with orthogonal columns such that HHHT

−kAAAk = 0, with

HHH−k := [hhh1 . . . hhhk−1 hhhk+1 . . . hhhK ]. (7.101)
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That is, the columns of AAAk span the orthogonal complement of the column space of HHH∗−k.
With XXX constructed using the mapping (7.98), in the noiseless case YYY = XXXHHHT, we have

UUU †kYYYAAAk = UUU †kXXXHHHTAAAk = x̃xxkhhhT
kAAAk. (7.102)

Each column of x̃xxkhhhT
kAAAk is a scaled version of the Grassmannian symbol x̃xxk ∈ G(CT−K+1, 1),

and thus is identical to x̃xxk in G(CT−K+1, 1). Therefore, x̃xxk can be detected without error
from YYY if AAAk is known. Note that in the noiseless case, AAAk spans the null space of VVV H

kYYY since
VVV H
kYYYAAAk = EEEkHHHT

−kAAAk = 0, and thus AAAk can be identified from VVV H
kYYY without the knowledge

of HHH as long as EEEk is full rank.

We now specify the condition in Property 7.1 for the two precoder designs in Chapter 6.
This condition can be equivalently stated as

K∑
l=1,l 6=k

αlUUU lx̃xxl /∈ Span(UUUk), (7.103)

for all k ∈ [K] and any possible codeword association {x̃xx1, . . . , x̃xxk−1, x̃xxk+1, . . . , x̃xxK} ∈
∏
l 6=k Cl,

and any complex weights {αl} such that ∑K
l=1,l 6=k |αl|2 > 0.

Proposition 7.2. Precoder Type I fulfills the condition in Property 7.1 if

det(XXX−k,(k−1)(K−1)+1:k(K−1)) 6= 0, (7.104)

for any k ∈ [K] and any XXX−k ∈
∏
l 6=k Xl, where XXX−k,(k−1)(K−1)+1:k(K−1) denotes the sub-

matrix containing the rows from (k − 1)(K − 1) + 1 to k(K − 1) of XXX−k.

Proof. For Precoder Type I, the condition (7.103) is violated when K∑
l=1,l 6=k

αlUUU lx̃xxl


(k−1)(K−1)+1:k(K−1)

= 0, (7.105)

which can be written as

XXX−k,(k−1)(K−1):k(K−1)+1



α1
...

αk−1
αk+1
...
αK


= 0, (7.106)

where XXX−k,(k−1)(K−1)+1:k(K−1) denotes the sub-matrix containing the rows from (k−1)(K−
1) + 1 to k(K − 1) of XXX−k = [xxx1 . . .xxxk−1 xxxk+1 . . .xxxK ]. There exists non-zero solution {αl}
to the homogeneous system (7.104) if det(XXX−k,(k−1)(K−1)+1:k(K−1)) = 0. Therefore, the
condition for Precoder Type I is finally stated as in (7.104).

Remark 7.2. As soon as K > 3, a necessary (but not sufficient) condition is that the con-
stellations Ck, k ∈ [K], are all different, since otherwise we have det(XXX−k,(k−1)(K−1)+1:k(K−1)) =
0 whenever x̃xxk+1 = x̃xxk+2 or x̃xxk−1 = x̃xxk−2.

Proposition 7.3. Precoder Type II fulfills the condition in Property 7.1 if
K∏
k=1

x̃xxT
keee1 6= 0, ∀{x̃xx1, . . . , x̃xxK} ∈

K∏
k=1
Dk. (7.107)
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Proof. Let x̃k,l = x̃xxT
keeel denote the l-th entry of x̃xxk. We can derive

K∑
l=1,l 6=k

αlUUU lx̃xxl =



α1
√
η1x̃1,1
...

αk−1
√
η1x̃k−1,1
0

αk+1
√
η1x̃k+1,1
...

αK
√
η1x̃K,1∑

l 6=k αl
√
η2x̃l,2

...∑
l 6=k αl

√
η2x̃l,T−K+1



. (7.108)

Thus the condition (7.103) is fulfilled if

α1
√
η1x̃1,1
...

αk−1
√
η1x̃k−1,1

αk+1
√
η1x̃k+1,1
...

αK
√
η1x̃K,1


6= 0, (7.109)

for any k and any {αl} such that ∑K
l=1,l 6=k |αl|2 > 0. This is true when η1 = K(T−K+1)

T > 0
and x̃1,1, . . . , x̃k−1,1, x̃k+1,1, . . . , x̃K,1 are all non-zero for any k ∈ [K]. Since T > K − 1, this
means that (7.107) holds.

The condition (7.107) for Precoder Type II is much easier to be fulfilled than the
condition (7.104) for Precoder Type I. We note that given a fixed {Ck} whose design does
not necessarily take the conditions in Propositions 7.2 and 7.3 into account, we can apply
a random rotation to have C̃k = FFFkCk, which has the same distance spectrum as Ck, where
FFFk ∈ C(T−K+1)×(T−K+1) is a random unitary matrix. Then, the condition in Property 7.1
is guaranteed with high probability.

At the receiver, the greedy approach exploits Property 7.1 to separate the signals of
different users and detect each signal as in the single-user case. As a consequence, the
multi-user ML detection is decoupled into K single-user detection problems. The details
are as follows.

7.7.1 Separation-First Detector

Inspired by Property 7.1, we directly separate the signal of user k using a matrix AAAk ∈
CN×(N−K+1), AAAH

kAAAk = IIIN−K+1, computed from YYY such that VVV H
kYYYAAAk = 0. The matrix AAAk

spans the null-space of VVV H
kYYY = EEEkHHH−k + VVV H

kZZZ with

EEEk := VVV H
k[UUU1x̃xx1 . . . UUUk−1x̃xxk−1 UUUk+1x̃xxk+1 . . . UUUKx̃xxK ]. (7.110)

Assuming that EEEk is full rank, AAAk serves as an estimate of the basis of the subspace
orthogonal to the row space of HHH∗−k. Then,

ỸYYk = UUU †kYYYAAAk = x̃xxkhhhT
kAAAk +UUU †k

(
K∑

l=1,l 6=k
UUU lx̃xxlhhhT

l + ZZZ
)

AAAk
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is equivalent to a SIMO P2P channel output with channel vector h̃hhk = AAAT
khhhk ∈ CN−K+1

and equivalent noise Z̃ZZk = UUU †k

(∑K
l=1,l 6=kUUU lx̃xxlhhhT

l + ZZZ
)

AAAk. We next decode x̃xxk from ỸYYk using
a single-user detector.

By construction, AAAk is a truncated unitary matrix independent of hhhk. Thus, in the
case of IID Rayleigh fading hhhk ∼ NC(0, IIIN ), we get h̃hhk ∼ NC(0, IIIN−K+1) which allows to
approximate the ML detector for x̃xxk, considering the equivalent noise as a white Gaussian
vector, by

ˆ̃xxxk = arg max
x̃xx∈Ck

∥∥ỸYYH
kx̃xx
∥∥2
. (7.111)

For correlated Rayleigh fading hhhk ∼ NC(0,RRRk), we get h̃hhk ∼ NC(0,AAAT
kRRRkAAAk), and the

approximate ML detector is given (similar to (7.4)) by

ˆ̃xxxk = arg min
x̃xx∈Ck

(
vec(ỸYYT)H(σ2III +x̃xxkx̃xxH

k ⊗AAAT
kRRRkAAAk

)−1vec(ỸYYT) + log det
(
σ2III +x̃xxkx̃xxH

k ⊗AAAT
kRRRkAAAk

))
.

(7.112)

The marginal posteriors can be computed accordingly. In general, the approximate ML
detector has complexity O(K22B) per user for uncorrelated fading and O(K62B) per user
for correlated fading. (Note that this complexity can be further reduced if the single-user
constellation Ck has a structure, such as the cube-split constellation in Chapter 5.) Since
the computation of AAAk and ỸYYk both have complexity order O(K3), k ∈ [K], the total
complexity order of the separation-first detector is O(K4 +K32B) for uncorrelated fading
and O(K72B) for correlated fading, equivalent to that of one MMSE-SIA iteration.

7.7.2 Denoising-First Detector

This detector is similar to the separation-first detector except that before the separation
step (find AAAk and compute ỸYYk), we perform a denoising step by solving{

X̂XX,HHH
}

= arg max
HHH∈CN×K , XXX∈CT×K : XXXHXXX=IIIK

‖YYY −XXXHHHT‖2F. (7.113)

The solution of this optimization is HHH = YYYTX̂XX∗
(

X̂XXTX̂XX∗
)−1

with

X̂XX = arg max
XXX∈CT×K : XXXHXXX=III

‖YYYHXXX‖2F. (7.114)

Thus X̂XX is the collection of the K singular vectors of YYY associated to the K strongest
singular values. Then we find the unique ˆ̃xxx1, . . . , ˆ̃xxxK such that [UUU1ˆ̃xxx1 . . . UUUK ˆ̃xxxK ] spans the
column space of X̂XX, seeing that each UUUkˆ̃xxxk is in the column space of UUUk. In order to do
so, we now apply the separation step in the separation-first detector to X̂XX. That is, we
first find a unit vector aaak ∈ CK such that VVV H

kX̂XXaaak = 0, then consider ỹyyk = UUU †kX̂XXaaak as the
input of a single-user detector. In doing so, the multi-user detection is decoupled into K
single-user SISO detection problems. The total complexity order is O(K4 +K22B).

7.7.3 POCIS: Interference Mitigation

In the above detectors, the interference ∑K
l=1,l 6=kUUU lx̃xxlhhhT

l is partially mitigated using an
estimation (AAAk) of its row space. Now, assuming that we have the estimates ˆ̃xxx1, . . . , ˆ̃xxxK
of x̃xx1, . . . , x̃xxK from the separation-first or denoising-first detector, we can try to further
cancel the residual interference. Let OOOk be an orthonormal basis of the column space
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of [UUU1ˆ̃xxx1 . . .UUUk−1ˆ̃xxxk−1 UUUk+1ˆ̃xxxk+1 . . .UUUK ˆ̃xxxK ], which is approximately, up to the noise per-
turbation, the column space of the interference. We project the received signal onto the
orthogonal of this approximate interference space

ỸYYk = UUU †k(III T −OOOkOOOH
k)YYYAAAk (7.115)

= UUU †k(III T −OOOkOOOH
k)UUUkx̃xxkh̃hh

T
k +UUU †k

(
III T −OOOkOOOH

k

)( K∑
l=1,l 6=k

UUU lx̃xxlhhhT
l + ZZZ

)
AAAk. (7.116)

We then decode for x̃xxk or its posterior from ỸYYk using a single-user detector. With these
new estimates ˆ̃xxx1, . . . , ˆ̃xxxK , we can repeat the interference mitigation, making it an iterative
process. Each iteration is equivalent in complexity to the separation-first or denoising-first
detector. We refer to this iterative interference mitigation detector as Projection onto the
Orthogonal Complement of the Interference Subspace (POCIS). Using the separation-first
detector for each iteration, POCIS has the same complexity order as MMSE-SIA.

7.8 Performance Evaluation
In this section, we evaluate the performance of our proposed schemes for a given set
of individual constellations. We assume that B1 = . . . BK =: B. We consider the local
scattering model [207, Section 2.6] for the correlation matricesRRRk. Specifically, the (l,m)-th
element of RRRk is generated as

[RRRk]l,m = ξkEδk [exp(2πdH(l −m) sin(ϕk + δk))], (7.117)

where dH is the antenna spacing in the receiver array (measured in number of wavelengths),
ϕk is a deterministic nominal angle, and δk is a random deviation. We consider dH = 1

2 ,
ϕk generated uniformly in [−π, π], and δk uniformly distributed in [−

√
3σϕ,

√
3σϕ] with

angular standard deviation σϕ = 10◦. We also consider ξk = 1,∀k. We set a damping factor
η = 0.9 for EP, EPAK, and MMSE-SIA.

7.8.1 Test Constellations, State-of-the-Art Detectors, and Benchmarks

7.8.1.a Precoding-Based Grassmannian Constellations

We consider the precoding-based constellation design in Chapter 6. Recall that this
design imposes a geometric separation between the individual constellations through a
set of precoders UUUk, k ∈ [K]. Specifically, starting with a Grassmannian constellation6

C =
{
ccc(1), . . . , ccc(2B)} in G(CT−K+1, 1), the individual constellation Xk is generated as

xxx
(i)
k = UUUkccc

(i)

‖UUUkccc(i)‖
, i ∈ [2B]. We consider the Precoder Type II and two candidates for C:

• A numerically optimized constellation generated by solving the max-min distance
criteria

max
ccc(i)∈G(CT−K+1,1),i=1,...,2B

min
1≤i<j≤2B

d(ccc(i), ccc(j)), (7.118)

where d(ccc(i), ccc(j)) :=
√

1− |ccc(i)Hccc(j)|2 is the chordal distance between two Grassman-
nian points represented by ccc(i) and ccc(j). A constellation with maximal minimum
pairwise distance leads to low symbol error rate in the absence of the interference. In
our simulation, we approximate (7.118) by minC log∑1≤i<j≤2B exp

( |ccc(i)Hccc(j)|
ε

)
with

a small ε for smoothness, then solve it using gradient descent on the Grassmann
manifold using the Manopt toolbox [141]. Please see Example 1.1 for details.

6The constellation C can be different for different users. Here, we consider a common constellation.
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• The cube-split constellation introduced in Chapter 5. This structured constellation
has good distance properties and allows for low-complexity single-user decoding and
a simple yet effective binary labeling scheme.

We consider the POCIS detector in Section 7.7 as baseline. Note that only the indices
of the estimated symbols are passed in POCIS, as opposed to the soft information on the
symbols as in EP, MMSE-SIA, and EPAK.

7.8.1.b Pilot-Based Constellations

We also consider the pilot-based constellations in which the symbols are generated as
xxx

(i)
k =

[√
K
T eee

T
k

√
T−K
TPavg

x̃xx
(i)T
k

]T
where eeek is the k-th column of IIIK , x̃xx(i)

k is a vector of
data symbols taken from a scalar constellation, such as QAM, and Pavg is the average
symbol power of the considered scalar constellation. Note that this corresponds to the
scenario where the K users transmit mutually orthogonal pilot sequences, followed by
spatially multiplexed parallel data transmission. Many MIMO detectors have been proposed
specifically for these constellations. We consider some representatives as follows.

• The receiver MMSE-estimates the channel based on the first K rows of YYY, then
MMSE-equalizes the received data symbols in the remaining T −K rows of YYY, and
performs a scalar demapper on the equalized symbols. This is referred to as a linear
MMSE detector.

• The receiver MMSE-estimates the channel, then decodes the data symbols using the
sphere decoder by Schnorr and Euchner [208], referred to as Schnorr-Euchner sphere
decoder (SESD).

• The receiver performs the semi-blind joint ML channel estimation and data detection
scheme in [100] with repeated weighted boosting search (RWBS) for channel estimation
and SESD for data detection, referred to as RWBS-SESD.

We note that the sphere decoder has near optimal performance given the channel knowledge,
but its complexity is non-deterministic and can be exponential in the channel dimension if
the channel matrix is ill-conditioned.

7.8.1.c Benchmarks

We consider the optimal ML detector, whenever it is feasible, as a benchmark. When the
optimal detector is computationally infeasible, we resort to another benchmark consisting in
giving the receiver, while it decodes the signal xxxk of user k, the knowledge of the signals xxxl
(but not the channel hhhl) of all the interfering users l 6= k. With this genie-aided information,
optimal ML decoding (7.4) can be performed by keeping xxxl fixed for all l 6= k and searching
for the best xxxk in Xk, thus reducing the total search space size from 2BK to K2B. The
posterior marginals are computed separately for each user accordingly. This genie-aided
detector gives an upper bound on the performance of EP, MMSE-SIA, EPAK, and POCIS.

7.8.2 Convergence and Running Time

To assess the convergence of the algorithms, we evaluate the total variation distance between
the estimated marginal posteriors p̂xxxk|YYY at each iteration and the exact marginal posteriors
pxxxk|YYY when exact marginalization (7.8) is possible. The total variation distance between
two probability measures P and Q on S is defined as T V(P,Q) := 1

2
∑
x∈S |P (x)−Q(x)|.

At iteration t where the estimated posteriors are p̂(t)
xxxk|YYY, k ∈ [K], we evaluate the average
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total variation distance as

∆t = 1
K

K∑
k=1

EYYY
[
T V

(
p̂

(t)
xxxk|YYY, pxxxk|YYY

)]
. (7.119)

We consider the precoding-based Grassmannian constellations. In Fig. 7.3, we show the
empirical average total variation ∆t for T = 6, K = 3, N = 4, and B = 4 at SNR = 8 dB.
As can be seen, at convergence, EP provides the most accurate estimates of the marginal
posteriors in average although it is less stable than other schemes. EP converges after 6
iterations while MMSE-SIA converges after 5 iterations. For uncorrelated fading, EPAK
with t0 = 2 can be eventually better than MMSE-SIA, but converges slower. For correlated
fading, EPAK totally fails because of the inaccuracy of the approximation with Kronecker
products. POCIS converges very quickly after 2 iterations but achieves a relatively low
accuracy of the posterior estimation.
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Figure 7.3: The empirical average total variation ∆t over 1000 realizations of the transmitted
signal, channel, and noise versus iteration for different non-coherent soft detection schemes for
T = 6, K = 3, B = 4, and N = 4 at SNR = 8 dB. The error bars show the standard error, which is
the standard deviation normalized by the square root of the number of samples. For correlated
fading, these figures are further averaged over 10 realizations of the correlation matrices.

Fig. 7.4 depicts the average running time (on a local server) of exact marginalization in
comparison with 6 iterations of EP, EPAK, MMSE-SIA, and POCIS at SNR = 8 dB. These
schemes have significantly lower computation time than exact marginalization. The running
time saving of EPAK w.r.t. EP is not significant, even with t0 = 0. For uncorrelated
fading, MMSE-SIA has much shorter running time than all other schemes.

From these convergence behaviors, hereafter, we fix the number of iterations of EP,
MMSE-SIA, and EPAK as 6 and of POCIS as 3. Furthermore, we consider EPAK only for
uncorrelated fading. For correlated fading, we generate the correlation matrices once and
fix them over the simulation.

7.8.3 Achievable Rate

We first plot the achievable mismatched sum-rate RGMI of the system calculated as in (7.12)
for T = 6, K = 3, N = 4 and B ∈ {4, 8} in Fig. 7.5. We consider the precoding-based
Grassmannian constellations. For C, we use the numerically optimized constellation if
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Figure 7.4: The average running time over 1000 realizations of the transmitted signal, channel,
and noise of exact marginalization in comparison with 6 iterations of the considered detection
schemes for T = 6, K = 3, B = 4, and N = 4 at SNR = 8 dB. The error bars show the standard
deviation. For correlated fading, the running time is further averaged over 10 realizations of the
correlation matrices.

B = 4 and the cube-split constellation if B = 8. For uncorrelated fading (Fig. 7.5(a), the
rates achieved with EP and MMSE-SIA detectors are very close to the achievable rate of
the system (with the optimal detector) and not far from that of the genie-aided detector.
EPAK (with t0 = 2) achieves a very low rate, especially in the low SNR regime where the
Kronecker approximation is not accurate. For correlated fading, (Fig. 7.5(b)), the rates
achieved with EP and MMSE-SIA are only marginally lower than that of the optimal
detector and genie-aided detector. In both cases, the rate achieved with POCIS is lower
than that of EP and MMSE-SIA in the lower SNR regime and converges slowly with SNR
to the limit BK

T bits/channel use.

7.8.4 Symbol Error Rates of Hard Detection

Next, we use the outputs of EP, EPAK, MMSE-SIA and POCIS for a maximum-a-
posteriori (MAP) hard detection. We evaluate the performance in terms of SER.

In Fig. 7.6, we consider the precoding-based constellations with T = 6, K = 3, N ∈
{4, 8}, and B = 4, for which the optimal ML detector (7.4) is computationally feasible.
We observe that the SER of the EP and MMSE-SIA detectors are not much higher than
that of the optimal detector, especially in the lower SNR regime. The SER of EPAK is
significantly higher than that of EP and MMSE-SIA for t0 = 0. This is greatly improved
by setting t0 = 2, i.e., keeping the first two iterations of EP. The gain of EP w.r.t. EPAK
and MMSE-SIA is more pronounced when the SNR increases. For correlated fading,
EP performs almost as good as the optimal detector, whose SER performance is closely
approximated by the genie-aided detector.

In Fig. 7.7, we consider T = 6, K = 3, N = 8, and B = 9 and use the genie-aided
detector as a benchmark. In Fig. 7.7(a), we consider uncorrelated fading and use the
pilot-based constellations with 8-QAM data symbols. The performance of EP is very
close to that of the genie-aided detector. The performance of MMSE-SIA is close to
EP in the low SNR regime (SNR ≤ 8 dB). We also depict the SER of the three pilot-
based detectors in Section 7.8.1.b, namely, 1) linear MMSE detector, 2) SESD, and 3)
RWBS-SESD. These three schemes are outperformed by the EP detectors. In Fig. 7.7(b),
we consider correlated fading and use the precoding-based Grassmannian constellations
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Figure 7.5: The mismatched rate of the system with EP, EPAK (with t0 = 2), MMSE-SIA, and
POCIS detectors in comparison with the optimal detector and/or the genie-aided detector for
T = 6, K = 3, N = 4, and B ∈ {4, 8}.

with C numerically optimized. We observe again that EP achieves almost the same SER
performance as the genie-aided detector.

7.8.5 Bit Error Rates with a Channel Code

In this subsection, we use the output of the soft detectors for channel decoding. We consider
the precoding-based Grassmannian constellations with the cube-split constellation for C
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Figure 7.6: The symbol error rate of the system with EP, EPAK (with t0 ∈ {0, 2}), MMSE-SIA,
and POCIS detectors in comparison with the optimal detector and the genie-aided detector for
T = 6, K = 3, N ∈ {4, 8} and B = 4.

since it admits an effective and simple binary labeling [123]. We take the binary labels of
the symbols in C for the corresponding symbols in Xk. We integrate a standard symmetric
parallel concatenated rate-1/3 turbo code [184]. The turbo encoder accepts packets of 1008
bits; the turbo decoder computes the bit-wise LLR from the soft outputs of the detection
scheme as in (7.5) and performs 10 decoding iterations for each packet.

In Fig. 7.8, we show the BER with this turbo code using B = 8 bits/symbol and
different values of T and K = N . EP achieves the closest performance to the genie-aided
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Figure 7.7: The symbol error rate of the system with EP, EPAK (t0 ∈ {0, 2}), MMSE-SIA,
POCIS vs. the genie-aided detector for T = 6, K = 3, N = 8, and B = 9. For uncorrelated fading,
these schemes are compared with three pilot-based detectors using respectively MMSE equalizer,
sphere decoding [208], and joint channel estimation–data detection [100].

detector and the optimal detector (7.8). The BER of MMSE-SIA vanishes slower with the
SNR than the other schemes, and becomes better than POCIS as K and N increase. The
BER of EPAK with t0 = 2 is higher than all other schemes. Under uncorrelated fading, for
T = 7 and K = N = 4, the power gain of EP w.r.t. MMSE-SIA, POCIS, and EPAK for
the same BER of 10−3 is about 3 dB, 4 dB, and 8 dB, respectively. We also observe that
the genie-aided detector gives very optimistic BER performance results compared to the
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optimal detector.

0 2 4 6 8 10 12

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr
o
r
R
a
te

Optimal detector

Genie-aided detector

EP

EPAK, t0 = 2

MMSE-SIA

POCIS

T = 5, K = N = 2

T = 6, K = N = 3

T = 7, K = N = 4

(a) Uncorrelated fading

-2 0 2 4 6 8 10 12 14

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr
o
r
R
a
te

Optimal detector

Genie-aided detector

EP

MMSE-SIA

T = 5, K = N = 2

T = 6, K = N = 3

T = 7, K = N = 4

(b) Correlated fading

Figure 7.8: The bit error rate with turbo codes of EP, EPAK (with t0 = 2), MMSE-SIA, POCIS,
and the optimal/genie-aided detector for B = 8 bits/symbol and K = N .

Finally, in Fig. 7.9, we consider T = 6, K = 3, N = 4, and compare the BER with the
same turbo code for different B. For B = 5, both EP and MMSE-SIA have performance
close to the optimal detector. Under uncorrelated fading, MMSE-SIA can be slightly better
than EP. This is due to the residual effect (after damping) of the phenomenon that all the
mass of π(ik)

k1 is concentrated on a possibly wrong symbol at early iterations, and EP may
not be able to refine significantly the PMF in the subsequent iterations if the constellation
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is sparse. This situation is not observed for B = 8, i.e., larger constellations. Also, as
compared to the case T = 6,K = 3, B = 8 in Fig. 7.8, the performance of MMSE-SIA is
significantly improved as the number of receive antennas increases from N = 3 to N = 4.
As in the previous case, EPAK does not perform well.
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Figure 7.9: The bit error rate with turbo codes of EP, EPAK (with t0 = 2), MMSE-SIA, POCIS,
and the optimal/genie-aided detector for T = 6, K = 3, and N = 4.
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7.9 Closing Remarks

We proposed an EP based scheme and two simplifications (EPAK and MMSE-SIA) of this
scheme for multi-user detection in non-coherent SIMO multiple access channel with spatially
correlated Rayleigh fading. EP and MMSE-SIA are shown to achieve good performance in
terms of mismatched sum-rate, symbol error rate when they are used for hard detection,
and bit error rate when they are used for soft-input soft-output channel decoding. EPAK
has acceptable performance with uncorrelated fading. It performs well for hard symbol
detection but inadequately for soft-output detection. While MMSE-SIA and EPAK have
lower complexity than EP, the performance gain of EP with respect to MMSE-SIA and
EPAK is more significant when the number of users and/or the constellation size increase.

7.A Appendices

7.A.1 Exponential Family

The exponential family [202, Section 1.6] is a common statistical model for inference.
The exponential family is a set of probability distributions whose PDF (or PMF) can be
parameterized as

psss(sss|γγγ) = h(sss) exp
(
γγγTφφφ(sss)−A(γγγ)

)
, (7.120)

where sss = [s1 . . . sn]T is a n-dimensional complex random vector with realization sss ∈ Cn,
γγγ ∈ Cm is a parameter vector (m can be different from n), h(sss) is a scalar function and
φφφ(sss) = {φi(sss)}mi=1 is a vector of functions evaluated at sss, and we define the log-partition
function

A(γγγ) := ln
∫
Cn
h(sss) exp

(
γγγTφφφ(sss)

)
dsss. (7.121)

Here, φφφ(sss) is called the sufficient statistics of sss.

An example of a distribution in the exponential family is the discrete distribution

psss(sss) =
n∏
i=1

πi(si)1{si ∈ Si}, (7.122)

for sss = [s1, . . . , sn]T, where Si is the discrete domain of the component si and πi(.) such
that (such that) ∑s∈Si πi(s) = 1 defines a marginal PMF of si. This can be deduced from
(7.120) by taking h(sss) = ∏n

i=1 1{si ∈ Si}, φi(sss) = ln(πi(si)), i ∈ [n], γγγ = 1n, and A(γγγ) = 0.

Another example is the Gaussian vector distribution denoted by sss ∼ NC(µµµ,ΣΣΣ) where µµµ
is the mean vector and ΣΣΣ is the covariance matrix. It has PDF

NC(sss;µµµ,ΣΣΣ) := 1
πndet(ΣΣΣ) exp

(
− (sss−µµµ)HΣΣΣ−1(sss−µµµ)

)
, sss ∈ Cn. (7.123)

This distribution is generated from (7.120) with h(sss) = 1 for all sss ∈ Cn and

φφφ(sss) =
[
{si}ni=1, {s∗i }ni=1, {s∗i sj}1≤i≤j≤n

]T
, (7.124)

γγγ =
[{ n∑

j=1
σijµ

∗
j

}n
i=1
,
{ n∑
j=1

σjiµj
}n
i=1
,
{
2σij

}
1≤i≤j≤n

]T

, (7.125)

A(γγγ) = ln det(ΣΣΣ) +µµµHΣΣΣ−1µµµ+ n ln π, (7.126)

where ΣΣΣ−1 = {σi,j}i,j=1,...,n.
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7.A.2 Properties of the Gaussian PDF

Lemma 7.1. Let sss be an n-dimensional complex Gaussian vector. It holds that

1. NC(sss;µµµ,ΣΣΣ) = NC(sss+ yyy;µµµ− yyy,ΣΣΣ) for yyy ∈ Cn;

2. Gaussian PDF multiplication rule:

NC(sss;µµµ1,ΣΣΣ1)NC(sss;µµµ2,ΣΣΣ2) = NC(sss;µµµnew,ΣΣΣnew)NC(0;µµµ1 −µµµ2,ΣΣΣ1 + ΣΣΣ2), (7.127)

where ΣΣΣnew :=
(
ΣΣΣ−1

1 + ΣΣΣ−1
2
)−1 and µµµnew := ΣΣΣnew

(
ΣΣΣ−1

1 µµµ1 + ΣΣΣ−1
2 µµµ2

)
.

Proof. The first part follows readily from the definition of NC(sss;µµµ,ΣΣΣ) in (7.123). The
complex Gaussian PDF multiplication rule is a straightforward generalization of the real
counterpart [209]. Specifically, we express the Gaussian PDF as

NC(sss;µµµ,ΣΣΣ) = 1
πndet(ΣΣΣ) exp(−sssHΣΣΣ−1sss+ sssHΣΣΣ−1µµµ+µµµHΣΣΣ−1sss−µµµHΣΣΣ−1µµµ). (7.128)

Then

NC(sss;µµµ1,ΣΣΣ1)NC(sss;µµµ2,ΣΣΣ2)

= 1
π2ndet(ΣΣΣ1)det(ΣΣΣ2) exp

(
− sssH(ΣΣΣ−1

1 + ΣΣΣ−1
2 )sss+ sssH(ΣΣΣ−1

1 µµµ1 + ΣΣΣ−1
2 µµµ2)

+ (µµµH
1ΣΣΣ−1

1 +µµµH
2ΣΣΣ−1

2 )sss−µµµH
1ΣΣΣ−1

1 µµµ1 −µµµH
2ΣΣΣ−1

2 µµµ2
)

(7.129)

=
exp

(
− sssHΣΣΣ−1

newsss+ sssHΣΣΣ−1
newµµµnew +µµµH

newΣΣΣ−1
newsss−µµµH

1ΣΣΣ−1
1 µµµ1 −µµµH

2ΣΣΣ−1
2 µµµ2

)
π2ndet(ΣΣΣ1)det(ΣΣΣ2) (7.130)

= C(µµµ1,µµµ2,ΣΣΣ1,ΣΣΣ2)
exp

(
− (sss−µµµnew)HΣΣΣ−1

new(sss−µµµnew)
)

πndet(ΣΣΣnew) (7.131)

= C(µµµ1,µµµ2,ΣΣΣ1,ΣΣΣ2)NC(sss;µµµnew,ΣΣΣnew), (7.132)

where µµµnew and ΣΣΣnew were defined above; in the second equality, we used the fact that
ΣΣΣ−1

new = ΣΣΣ−1
1 + ΣΣΣ−1

2 and ΣΣΣ−1
newµµµnew = ΣΣΣ−1

1 µµµ1 + ΣΣΣ−1
2 µµµ2; and the scaling factor is defined as

C(µµµ1,µµµ2,ΣΣΣ1,ΣΣΣ2) :=
exp

(
µµµH

newΣΣΣ−1
newµµµnew −µµµH

1ΣΣΣ−1
1 µµµ1 −µµµH

2ΣΣΣ−1
2 µµµ2

)
πndet

(
ΣΣΣ1ΣΣΣ−1

newΣΣΣ2
) . (7.133)

After some manipulations, we deduce that C(µµµ1,µµµ2,ΣΣΣ1,ΣΣΣ2) = NC(0;µµµ1 − µµµ2,ΣΣΣ1 + ΣΣΣ2).
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7.A.3 Proof of Proposition 7.1

Using the natural logarithm for the KL divergence, we can derive that

D
(
qα(sss)

∥∥p(sss)) =
∫
qα(sss) ln qα(sss)∏

β pβ(sssβ) dsss (7.134)

=
∑
β

∫
qα(sss) ln 1

p
β
(sssβ) dsss+ c0 (7.135)

=
∑
β∈Nα

∫
qα(sss) ln 1

p
β
(sssβ) dsss+

∑
β/∈Nα

∫
qα(sss) ln 1

p
β
(sssβ) dsss+ c0 (7.136)

=
∑
β∈Nα

∫
qα(sss) ln 1

p
β
(sssβ) dsss+

∑
β/∈Nα

∫
p̂β(sssβ) ln 1

p
β
(sssβ) dsssβ + c0 (7.137)

= −
∑
β∈Nα

∫
qα(sss)

[
γγγT
β
φφφ(sssβ)−Aβ(γγγ

β
)
]

dsss+
∑
β/∈Nα

D
(
p̂β
∥∥p
β

)
+ c0 (7.138)

=
∑
β∈Nα

[
Aβ(γγγ

β
)− γγγT

β
Eqα

[
φφφ(sssβ)

]]
+
∑
β/∈Nα

D
(
p̂β
∥∥p
β

)
+ c0, (7.139)

where (7.137) follows from qα(sss) = ψα(sssα)
mα(sssα)

[∏
β∈Nα p̂β(sssβ)

][∏
β/∈Nα p̂β(sssβ)

]
, and (7.138)

follows from (7.19). From (7.139), we can see that the optimization (7.24) of p decouples
over p

β
, and the optimal distribution can be expressed as p̂new

α (sss) = ∏
β p̂

new
α,β (sssβ).

For β /∈ Nα, the minimum of D
(
p̂β
∥∥p
β

)
is simply 0 and achieved with p̂new

α,β (sssβ) = p̂β(sssβ).

For β ∈ Nα, since the log-partition function Aβ(γγγ
β
) is convex in γγγ

β
(see, e.g., [210,

Lemma 1]), the minimum of Aβ(γγγ
β
)−γγγT

β
Eqα

[
φφφ(sssβ)

]
is achieved at the value of γγγ

β
where its

gradient is zero. Using the well-known property of the log-partition function, ∇γγγAβ(γγγ) =
Ep̂β [φφφβ(γγγ)], we get that the zero-gradient equation is equivalent to the moment matching
criterion Ep̂new

α,β
[φφφβ(sssβ)] = Eqα [φφφβ(sssβ)].
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Chapter 8

Conclusions and Outlook

8.1 Conclusions
Non-coherent wireless communications assume that the communicating nodes do not
know the instantaneous channel state information in advance, and only know the channel
distribution. This thesis contributes to the understanding of fundamental limits of non-
coherent communications, as well as to the design of non-coherent communication systems
in block fading, with a focus on the P2P channel, the MAC, and the BC. The main results
and corresponding possible extensions of the thesis are summarized as follows.

Fundamental Limits of Non-Coherent Communications

• In Chapter 2, we found the optimal DoF for the MIMO P2P channel under generic
block fading. Possible extensions include analyzing the finite-SNR achievable rate or
capacity, in particular, quantifying the constants after the logarithmic term. To this
end, the duality approach can be still useful, but one would need to refine the choice
of auxiliary input distribution. Furthermore, as far as the constant term is concerned,
one would need to rely on the escape-to-infinity property of the optimal input.

• In Chapter 3, we found the optimal DoF region for the two-user SIMO MAC under
generic block fading, where the corner points can be achieved by simple pilot-based
schemes. It would be interesting to extend to the MIMO and/or more-than-two-user
case. Finite-SNR characterization of the capacity region would be challenging, but
one can attempt to analyze the sum-rate capacity.

• In Chapter 4, we derive achievable rate and DoF regions for the MIMO BC under
spatially correlated generic block fading. In doing so, we propose novel transmission
schemes based on rate splitting, product superposition, and a combination of them
in order to effectively exploit the transmit correlation diversity. Although these
achievable regions improve significantly upon TDMA, one needs to characterize the
outer bounds to see how far these regions are from optimality. One approach is to
use the cooperative bound by letting users cooperate and considering them as one
macro user. However, the existing results for the P2P channel, such as [117, Theorem
1], do not apply immediately because the channel columns are not statistically
equivalent (due to the difference in their correlation matrices). Our attempts using
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the duality approach show that it is challenging to choose an adequate auxiliary
output distribution.

Transceiver Design for Non-Coherent Communications

• In Chapter 5, we propose a structured Grassmannian constellation for the SIMO
P2P channel under Rayleigh block fading. This so-called cube-split constellation has
a good distance properties and is suitable for practical uses because it is simple to
generate—thus available for large constellation size and large symbol length and does
not require to be stored, it admits a simple yet effective binary labeling scheme, and
its structure enables efficient hard and soft detection. A future work is to extend it
to the MIMO case where the main challenge is to find an efficient way to partition
the Grassmannian.

• In Chapter 6, we propose simple and effective metrics for joint constellation design for
the MIMO MAC under Rayleigh block fading so as to minimize the detection error.
Our metrics can be used to generate well-performing joint constellations through
numerical optimization, where the individual constellations can be Grassmannian.
They can also be used as benchmark to design joint constellations with a structure
that facilitates efficient detection as in the single-user case. We have demonstrated
the latter use with a precoding-based design. In the future, it is desirable to design
more effective structured joint constellations.

• In Chapter 7, we propose efficient multi-user soft detectors for the SIMO MAC under
spatially correlated Rayleigh block fading. Our detectors are based on expectation
propagation, a message passing approximate inference framework in probabilistic
graphical models. They achieve good performance in terms of mismatched sum-
rate, symbol error rate when they are used for hard detection, and bit error rate
when they are used for soft-input soft-output channel decoding. Possible extensions
include considering more complicated fading models and analyzing theoretically the
performance of EP for non-coherent detection.

8.2 Outlook
In this section, we provide a further outlook of non-coherent communications in the context
of other topics in wireless communications.

• Non-coherent communications in continuously varying channel: In block
fading, it is assumed that the channel coefficients are fully correlated (i.e., equal)
within a coherence block and uncorrelated across the blocks. In practice, the channel
coefficients are highly correlated but can vary within a block. Furthermore, the
coefficients separated by a coherence interval are weakly correlated, but two adjacent
coefficients across two adjacent blocks can be highly correlated. This can be observed
in both the time domain and frequency domain (with OFDM). In this scenario,
the DoF was studied in [211], [212]. In addition, Grassmannian signaling becomes
sub-optimal, and the block-fading ML detection becomes a mismatched detection.
In would be interesting to identify how “mismatched” Grassmannian constellation
and detection are, as has been investigated in [81] in terms of the error rate. This
mismatch can also be analyzed in terms of the mismatch data rate. The per-block
ML detection can be modified by taking into account the correlation of channel
coefficients within a block. On the other hand, we can try to adapt Grassmannian
constellations to continuously varying channel. For example, leveraging the fact that
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a Grassmannian symbol is invariant to scaling by a complex scalar, one can encode
some additional information bits in the phase shift of the symbols across coherence
blocks. We have reported this idea in [124].

• Using Grassmannian constellations for more sophisticated system design :
The design of Grassmannian constellations focus on the bit-to-symbol mapping and
symbol-to-bit demapping of a digital communication system. More general system
design using Grassmannian constellations as an ingredient can be done. For example,
in [213]–[215], multi-layer coding schemes are proposed in which Grassmannian
constellations are used in the lower-resolution layer that does not have access to CSI.
The integration of Grassmannian constellations into LTE networks was investigated
with a link-level performance study in [216]. Bit-interleaved coded modulation
systems using Grassmannian constellations have been designed in [80], [177].

• Non-coherent low-latency communications: In this thesis, we assume that an
information-carrying message, represented by a channel codeword, spans a large
number of coherence blocks. Therefore, we employ asymptotic metrics such as
the Shannon capacity and the DoF. In ultra-reliable low-latency communication
(URLLC), information is carried in small packets that should be received with low
latency. In this regime, non-coherent communication is suitable since the size of the
metadata (e.g., control information, pilots) is comparable to the size of data [217].
However, the classic asymptotic information-theoretic benchmarks are not applicable,
and one needs to switch to a framework that provides understanding of short-packet
transmissions. Finite-blocklength information theory [218] is appropriate for that
purpose, where the metric of interest is the maximum coding rate R∗(n, ε) at finite
blocklength1 n and finite packet error probability ε. Non-asymptotic bounds on the
non-coherent maximal coding rate have been proposed for the Rayleigh quasi-static
fading channel (a channel codeword spans a single coherence block) for the SISO
case in [219]. In block fading channel (a channel codeword spans multiple, but a
finite number of, coherence blocks), non-asymptotic bounds for the non-coherent
maximal coding rate was presented for the SISO case in [220] (Rayleigh fading) and
[187] (Rician fading), and the MIMO case in [186]. A non-coherent communication
scheme in which information is modulated onto the zeros of the transmitted baseband
signal’s z-transform was proposed for short-packet communication in [221].

• Non-coherent machine-type communication and massive random access :
In machine-type communication and massive random access, the system has to
support a very large number of users and only a random subset of them are active at
a time. The set of active users might not be known in advance, and it is impossible
to pre-assign mutually orthogonal pilots to every user. Therefore, non-coherent
pilot-free communication can be a suitable strategy. A non-coherent random access
protocol based on Gabor frames, which are also Grassmannian frames, was proposed
in [222]. In [223], Senel et al. proposed a non-coherent transmission scheme for
massive machine-type communication and developed a modified approximate message
passing algorithm to exploit the structured sparsity of this scheme. Compared
with coherent transmission, this non-coherent scheme performs significantly better,
especially when the number of bits is small. Recently, our cube-split constellation
has been used to construct a tensor-based unsourced massive random access scheme
in [224]. Furthermore, in the context of machine-type communication systems, one

1The term “block” in finite blocklength refers to a channel codeword and is different from that in coherence
block: in finite-blocklength information theory, a codeword can span multiple coherence blocks.
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may be interested in other performance metrics than capacity or error probability,
such as, e.g., information freshness.

• Machine learning for non-coherent communications: The use of machine
learning, especially deep learning, in wireless communications is growing rapidly and
profoundly in many aspects of physical-layer communications, from using learning for
a specific task such as channel estimation, symbol equalizer, signal detection, channel
coding/decoding, to a complete end-to-end learning-based transmission [225]–[227].
Non-coherent communications can certainly benefit from machine learning. A data-
driven machine learning method was proposed to design non-coherent transceiver for
short-packet transmission in [228]. Learning methods on the Grassmann manifold
can be used for non-coherent communication with Grassmannian signaling [229].
For example, Du et al. employed data clustering algorithms on the Grassmann
manifold to design an automatic modulation recognition scheme for Grassmannian
constellations in [230]. In end-to-end learning of communication systems through
neural network based autoencoders, channel estimation can be performed even with
an unknown channel model [231]. When the channel model is unknown, one can use
data-driven learning to fit the empirical input-output conditional probability to a
parametric model. We proposed a framework using generalized Gaussian model for
such purpose in [130]. An autoencoder for non-coherent energy-based communication
in a multi-carrier multi-user SIMO system was proposed in [232]. The paper [233]
presents waveform design for non-coherent multi-user MIMO systems through deep
learning.
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Appendix A

Resumé en Français

A.1 Communications Sans Fil

A.1.1 L’Histoire et l’Évolution des Communications Sans Fil

La communication sans fil [2]–[5] est communément considérée comme le transfert électro-
magnétique d’informations entre des points qui ne sont pas connectés par un conducteur
électrique [6]. Le transfert électromagnétique d’informations a commencé lorsque James
C. Maxwell a postulé la transmission des ondes électromagnétiques en 1864, puis Hein-
rich Hertz l’a vérifiée et démontrée en 1880 et 1887, respectivement. Cet effet permet
d’utiliser les ondes électromagnétiques comme supports d’information à l’aide d’appareils
électroniques au niveau de l’émetteur (source) et du récepteur (destination). Marconi a
mis en place un télégraphe sans fil et breveté un système sans fil complet en 1897. Avec
le développement des circuits intégrés, la communication sans fil électromagnétique s’est
développée rapidement à mesure que la radiodiffusion et la télévision se répandaient dans
le monde entier. Les systèmes sans fil sont passés de la transmission de signaux analogiques
à la transmission de signaux numériques composés de bits, ancrée dans le travail fondateur
de Claude Shannon en 1948 [7] et déployée dans les années 1980.

Depuis les années 1980, l’évolution des systèmes sans fil mobiles progresse d’une généra-
tion à l’autre tous les dix ans environ. Chaque génération présente une réglementation, des
services et des innovations différents [8], [9]. La cinquième génération (5G) [10], [11] est
en cours de développement depuis le début des années 2010. Les réseaux 5G sont censés
prendre en charge un grand nombre et une grande hétérogénéité des terminaux, c’est-à-dire
l’Internet des objets (IoT) [12]. Les trois principaux cas d’utilisation visés par la 5G sont les
communications mobiles à large bande améliorées (eMBB), les communications ultra-fiables
à faible latence (URLLC) et les communications massives de type machine (mMTC) [13].
Les réseaux 5G ont été testés dans de nombreux pays et en sont maintenant aux premiers
stades du déploiement commercial [14]. Entre-temps, les activités de recherche vers la
sixième génération (6G) ont été lancées. Bien que l’on ne sache pas exactement ce que
sera la 6G, de nombreuses visions (spéculatives) pour la 6G ont été fournies sous différents
angles, par exemple dans [15]–[20].

A.1.2 Propagation Sans Fil

Les ondes électromagnétiques sont émises par une antenne au niveau de l’émetteur, se
propagent à travers un canal sans fil et sont interceptées par une antenne au niveau du
récepteur. En principe, on pourrait résoudre les équations du champ électromagnétique
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de Maxwell pour trouver les ondes reçues à l’antenne de réception. Cependant, comme
c’est trop complexe, des modèles plus simples sont utilisés pour approximer la propagation
du signal. Une onde transmise est réfléchie, diffusée et diffractée lorsqu’elle interagit avec
des objets de l’environnement lorsqu’elle se propage vers le destinataire. Par conséquent,
le récepteur observe plusieurs copies de cette onde à différents délais, chacune subissant
une atténuation spécifique. En d’autres termes, l’onde parcourt plusieurs trajets, s’atténue
dans chaque trajet et arrive à l’antenne de réception avec différents retards. De plus, en
raison du mouvement relatif de l’émetteur, du récepteur et des objets dans l’environnement,
les facteurs d’atténuation, c’est-à-dire les gains de canal, varient dans le temps. Cet effet
est appelé évanouissement. Soit an(t) le gain de canal complexe du trajet n au temps t.
Considérons une transmission d’un signal x(t) au temps t et à la fréquence porteuse fc, le
signal reçu peut être exprimé comme [4, Eq.(3.5)]

y(t) =
(∫ ∞
−∞

h(τ, t)x(t− τ) dτ
)
e2πfct, (A.1)

où n = 0 correspond au trajet en visibilité directe, Np(t) est le nombre de composants à
trajets multiples résolvables, τn(t) est le retard du n-ème trajet au temps t, et

h(τ, t) :=
Np(t)∑
n=0

e−2πfcτn(t)an(t)δ(τ − τn(t)) (A.2)

est la réponse impulsionnelle du canal au temps t et au retard τ . De cette façon, les
équations de Maxwell sont remplacées par une relation entrée–sortie d’un système linéaire
variant dans le temps.

En général, en raison de la nature aléatoire de l’environnement, le gain d’atténuation
an(t), le retard τn(t) et le nombre de trajets Np(t) sont aléatoires. Par conséquent, la
réponse impulsionnelle de canal h(τ, t) est modélisée comme la réalisation d’une variable
aléatoire h(τ, t). On suppose généralement que h(τ, t) est un processus Gaussien, lorsque
le nombre de trajets Np(t) est grand, en évoquant le théorème de la limite centrale. Une
autre hypothèse courante est que la phase de chaque composant à trajets multiples est
uniformément distribuée. Si les statistiques conjointes de h(τ1, t1) et h(τ2, t2) ne dépendent
que de la différence de temps ∆t = t2− t1, le canal est dit stationnaire au sens large (WSS).
De plus, si la réponse de canal d’une composante à trajets multiples donnée à différents
retards n’est pas corrélée, le canal n’a pas de corrélation diffusion (US).

Dans le domaine fréquentiel, la réponse en fréquence du canal est donnée par la
transformée de Fourier de h(τ, t) par rapport à (w.r.t.) τ [4, Eq.(3.57)]

H(f, t) :=
∫ ∞
−∞

h(t, τ)e−2πft dτ. (A.3)

Étant donné que h(t, τ) est un processus Gaussien WSSUS (c’est-à-dire WSS et US), H(f, t)
est également un processus Gaussien WSSUS avec fonction d’autocorrélation

AH(∆f ; ∆t) := E[H∗(f, t)H(f + ∆f, t+ ∆t)], (A.4)

ce qui ne dépend que de la différence de temps ∆t et de la différence de fréquence ∆f . Les
réponses en fréquence à deux canaux au même instant, c’est-à-dire ∆t = 0, et la séparation
de fréquence ∆f sont approximativement indépendantes si AH(∆f ; 0) ≈ 0. La fréquence
Bc où AH(∆f ; 0) ≈ 0 pour tous ∆f > Bc est appelée largeur de bande de cohérence du
canal. En général, si le signal transmis a une bande passante étroite B � Bc, alors la
réponse du canal est à peu près constante sur l’ensemble du signal bande passante. C’est
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ce qu’on appelle la l’évanouissement plate. Au contraire, si B � Bc, alors la réponse du
canal varie largement à travers la bande passante du signal. C’est ce que l’on appelle
l’évanouissement sélectif en fréquence. En revanche, l’autocorrélation AH(∆f ; ∆t) pour
∆f = 0 caractérise la décorrélation des réponses des canaux dans le temps. Si B � Bc,
alors le canal mesuré à des instants temporels séparés par t est approximativement non
corrélé et donc indépendant. La durée Tc où AH(0; ∆t) ≈ 0 pour tout ∆t > Tc est appelée
temps de cohérence du canal. Elle est inversement proportionnelle à la propagation Doppler.
Un bloc de largeur de bande de cohérence Bc et de temps de cohérence Tc est appelé bloc
de cohérence, et la longueur totale T = TcBc d’un bloc de cohérence est appelée intervalle
de cohérence.

Par un décalage dans le domaine fréquentiel (c’est-à-dire une conversion vers le bas) du
signal reçu (A.1), nous avons une représentation en bande de base équivalente. De plus, en
échantillonnant et en considérant un bruit additif, nous obtenons un modèle de bande de
base à temps discret donné par [5, Eq.(2.39)]

y[m] =
∑
l

hl[m]x[m− l] + z[m], (A.5)

où y[m] et x[m] sont respectivement les échantillons du signal reçu et transmis en bande de
base, z[m] est le bruit filtré passe-bas, et hl[m] est le l-ème prise de filtre de canal complexe.
Ici, hl[m] et z[m] sont aussi normalement supposés être un processus Gaussien (discret).

A.1.3 Le Canal MIMO

Nous supposons maintenant que l’émetteur est équipé de M antennes et le récepteur de
N antennes. Nous supposons un canal plat en fréquence et utilisons un modèle de canal
statistique comme dans la sous-section précédente avec une représentation en bande de
base en temps discret à une seule pression. Le signal en bande de base reçu est

yyy[m] = HHH[m]xxx[m] + zzz[m], (A.6)

où HHH[m] ∈ CN×M est la matrice de canal contenant les coefficients d’évanouissement des
M antennes d’émission aux N antennes de réception avec une distribution arbitraire, et
zzz[m] est le bruit Gaussien blanc additif (AWGN) suivant la distribution NC(0, III ). Ce canal
est appelé canal point à point (P2P) à entrées multiples et sorties multiples (MIMO).

A.1.3.a Limites Fondamentales du Canal MIMO

En raison de la réglementation et des limites matérielles, le signal transmis est soumis à
une contrainte de puissance

1
Ns

Ns∑
i=1

∥∥xxx[i]
∥∥2 ≤ P (A.7)

où Ns est la longueur d’un mot de code de canal, qui représente un message. On serait
intéressé à trouver le débit maximal auquel les informations peuvent être transmises et
reçues de manière fiable au niveau du récepteur. Cette quantité est appelée la capacité
(Shannon) du canal et défini comme suit.

Definition A.1 (Capacité du canal). La capacité C du canal est le débit de données max-
imal, c’est-à-dire le nombre maximal d’unités d’informations nécessaires pour représenter
un message normalisé par le temps de communication, de sorte qu’il existe un schéma de
codage de canal réalisant une probabilité d’erreur arbitrairement faible lorsque la longueur
de code Ns va à l’infini.
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Ainsi, une communication fiable n’est pas possible, même avec une longueur de code
infinie, si l’on émet à un débit supérieur à la capacité du canal.

Étant donné que le canal considéré est sans mémoire, la capacité du canal est donnée
par [21], [22]

C(P ) = max
pxxx : E[‖xxx‖2]≤P

I(xxx;yyy). (A.8)

Une distribution d’entrée qui atteint la capacité est une solution à la maximisation ci-dessus.
Si l’on transmet avec une distribution d’entrée pxxx satisfaisant à la contrainte de puissance
mais pas nécessairement à la capacité atteinte, alors l’information mutuelle

R(P ) = I(xxx;yyy) (A.9)

est un débit réalisable du canal. Dans de nombreuses situations, il est très difficile de
calculer la capacité du canal ou le débit réalisable, et on peut recourir à une représentation
asymptotique grossière de ces quantités donnée par les degrés de liberté (DoF). Un DoF
réalisable et le DoF optimal du canal sont respectivement définis par

dréalisable := lim
P→∞

R(P )
log2(P ) and doptimal := lim

P→∞

C(P )
log2(P ) . (A.10)

Avec cela, le débit et la capacité réalisables se comportent dans le régime de SNR élevé
comme R(P ) = dréalisable log2(P ) + o(log2 P ) et C(P ) = doptimal log2(P ) + o(log2 P ). Par
conséquent, le DoF est également appelé le facteur de pré-log du débit / capacité. En gros,
le DoF est le nombre de bits supplémentaires qui peuvent être transmis de manière fiable
lorsque la puissance du signal est doublée.

A.1.3.b Conception Pratique pour un Canal MIMO

Conception de la constellation: Bien que la distribution d’entrée permettant d’atteindre
la capacité soit souvent continue, dans la pratique, le signal transmis xxx est normalement
tiré d’un ensemble discret fini X pour réduire la complexité. Cet ensemble est appelé
la constellation et chaque élément est appelé un point / symbole de constellation. La
constellation doit être conçue de manière à atteindre un débit de données élevé et / ou une
faible erreur de détection.

Conception de détection efficace: Le récepteur souhaite détecter le symbole transmis.
En raison du domaine discret des symboles, la détection du maximum de vraisemblance
(ML) est souvent NP-difficile [24]. Pour le résoudre, il faut énumérer toute la constellation,
ce qui est trop complexe si la taille de la constellation est grande. Par conséquent, d’un point
de vue pratique, il est favorable d’utiliser une détection sous-optimale à faible complexité.
Cela peut être fait en remplaçant la métrique de la fonction de vraisemblance par une
métrique de détection sous-optimale qui peut être plus facile à calculer. Si la constellation
a une structure, on peut également exploiter cette structure pour concevoir une détection
efficace.

A.1.4 Communications Cohérentes: le Rôle des Informations sur l’État
des Canaux

La valeur instantanée de HHH est appelée information d’état de canal (CSI). Si l’émetteur et
/ ou le récepteur dispose de ces informations, la communication est dite cohérente. Si le
canal est bien conditionné, alors la capacité cohérente est donnée par [26], [27]

C(P ) = min{M,N} log2 P +O(1), (A.11)
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ainsi le DoF optimal est min{M,N}. En fait, connaissant les réalisations de HHH, le canal
MIMO peut être converti en min{M,N} canaux parallèles, à entrée unique et à sortie
unique (SISO). Par conséquent, avec CSI, la capacité évolue linéairement avec le nombre
d’antennes.

Dans les communications cohérentes, on utilise normalement une constellation scalaire
pour chaque composante de xxx. Les constellations scalaires les plus courantes sont la
modulation d’amplitude d’impulsion (PAM), la modulation par déphasage (PSK) et la
modulation d’amplitude en quadrature (QAM), où les points de constellation diffèrent
respectivement dans leur amplitude, phase et à la fois amplitude et phase.

Étant donné la matrice d’évanouissement de Rayleigh indépendante et identiquement
distribué (IID) HHH = HHH, la détection ML donnée yyy = yyy est équivalente au problème des
moindres carrés (LS)

x̂xx = arg min
xxx∈X
‖yyy −HHHxxx‖2. (A.12)

Ce problème de détection cohérent a été étudié de manière approfondie dans la littérature.
Puisqu’il est NP-difficile [24], de nombreux schémas sous-optimaux ont été proposés pour
réduire la complexité, notamment:

• détecteurs linéaires consistant en un démappeur par composants de x̂xx = TTTyyy, tel qu’un
filtre adapté TTT = HHHH, un forçage nul (ZF) TTT = (HHHHHHH)−1HHHH =: HHH† (en supposant
N ≥M) et une moyenne minimale erreur carrée (MMSE) TTT = (HHHHHHH + IIIN )−1HHHH;

• détecteurs aidés à l’annulation des interférences, tels que l’annulation des interférences
successives / parallèles / multi-étapes / à retour de décision;

• détecteurs basés sur la recherche dans les arbres, tels que les décodeurs de sphères;

• détecteurs assistés à réduction de lattice.

En bref, CSI permet d’adapter la transmission et la réception à l’état d’évanouissement
actuel. Des enquêtes complètes sur la transmission et la détection cohérentes de MIMO
peuvent être trouvées respectivement dans [29] et [30].

A.1.5 Le Coût d’Acquisition de CSI

Bien que la communication cohérente exploite efficacement les ressources spatiales sup-
plémentaires d’un canal MIMO pour augmenter l’efficacité spectrale, elle repose sur la
disponibilité de CSI. En pratique, comme la matrice de canaux est aléatoire et s’estompe
dans le temps et la fréquence, sa valeur n’est pas donnée a priori et doit être estimée.
Typiquement, l’estimation de canal est effectuée en envoyant des symboles de référence,
appelés pilotes, connus du récepteur dans certaines utilisations de canal d’un bloc de
cohérence. Le récepteur estime le canal dans ces utilisations de canal en utilisant les pilotes
connus, puis les interpole / extrapole pour déduire les gains de canal des utilisations de
canal restantes dans le bloc de cohérence. En traitant l’estimation de canal comme le canal
connu, une communication cohérente peut être effectuée dans ces utilisations de canal
restantes. C’est ce qu’on appelle un schéma / une approche pilote [31]. Pour analyser
correctement les performances du système, il faut prendre en compte le coût de l’estimation
de canal et l’erreur d’estimation de canal.

Les symboles pilotes étant connus du récepteur, ils ne portent aucune information. En
revanche, ils occupent une fraction des ressources temps / fréquence de communication.
Dans un canal MIMO avecM antennes d’émission, il faudrait envoyer au moinsM symboles
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pilotes pour le récepteur afin de déterminer M vecteurs de canal correspondant aux M
antennes [31]. Soit T = TcBc l’intervalle de cohérence, alors la fraction de ressource
dépensée pour l’estimation de canal est M

T et il reste une fraction 1 − M
T du bloc de

cohérence pour une transmission de données cohérente. Dans un environnement très mobile
où l’état du canal change rapidement, l’intervalle de cohérence T est court et la fraction de
transmission pilote peut être disproportionnée par rapport à la transmission de données,
surtout si le nombre d’antennes est grande.

L’erreur d’estimation de canal a un impact négatif sur le débit du canal et les perfor-
mances d’erreur. D’une part, si l’on traite l’estimation de canal comme le vrai canal et
sans tenir compte de toute inexactitude, le détecteur optimal dans cette hypothèse est un
détecteur qui ne correspond pas pour le canal avec une erreur d’estimation de canal, et le
débit du canal est déterminé par le débit dépareillé. En revanche, même si les statistiques
de l’erreur d’estimation de canal sont prises en compte, cette erreur résiduelle impose un
bruit secondaire qui augmente la puissance de bruit totale et réduit la capacité du canal
pour une puissance de signal donnée. L’effet d’une connaissance de canal imparfaite sur
la capacité du canal a été étudié, par exemple, [32], [33] et sur l’erreur de détection, par
exemple, [34], [35].

Dans certains scénarios, l’estimation de canal basée sur pilote devient difficile, voire
impossible. Par exemple, dans la liaison montante d’un système multi-utilisateur, des
séquences pilotes sont attribuées par utilisateur et orthogonalement entre utilisateurs. Si le
nombre total d’utilisateurs est supérieur à l’intervalle de cohérence (mais probablement seul
un nombre aléatoire d’utilisateurs est actif à la fois), il n’est pas possible de pré-attribuer des
séquences pilotes mutuellement orthogonales à chaque utilisateur présent dans le système.
On peut envisager des pilotes non orthogonaux, mais l’acquisition précise de CSI reste
difficile.

La communication sans CSI a priori est dite non-cohérente. Ce cadre fournit un point de
vue plus réaliste à l’analyse et à la conception du système. La communication non-cohérente
est également un cadre plus général puisque, comme mentionné ci-dessus, on peut estimer
le canal, puis effectuer une communication cohérente. Néanmoins, l’estimation des canaux
et la détection de données cohérentes de manière séquentielle / conjointe pourraient ne
pas être optimales. Lorsque le coût de l’estimation de canal est important, que l’erreur
d’estimation de canal est grave ou que l’estimation de canal basée sur le pilote devient
gênante / impossible, il peut être avantageux de s’abstenir de le faire en utilisant un
schéma de communication qui ne repose pas sur la connaissance de CSI. La communication
non-cohérente explique un tel schéma.

Dans cette thèse, nous nous concentrons sur les communications non-cohérentes.

A.2 Communications Sans Fil Non-Cohérentes
Dans cette section, nous fournissons un aperçu de l’état de l’art des communications sans
fil non-cohérentes, ainsi que les questions auxquelles nous voulons répondre dans cette
thèse.

A.2.1 Hypothèses

• Pas de CSI: la distribution des coefficients de canal est supposée connue, mais la
valeur instantanée des coefficients de canal, c’est-à-dire CSI, n’est pas connue.



A.2. Communications Sans Fil Non-Cohérentes 215

• Évanouissement par bloc: l’hypothèse d’évanouissement par bloc se réfère au
cas où les coefficients de canal dans un bloc de cohérence de longueur T = TcBc
sont fortement corrélés de sorte qu’ils peuvent être considérés comme inchangés
dans le bloc. De plus, les coefficients de canal dans différents blocs sont supposés
être indépendants et identiquement distribués. Lorsque T = 1, cela devient un
évanouissement rapide stationnaire.

• Distribution des canaux: le canal est censé être un évanouissement Rayleigh
IID si les composants sont indépendantes et distribuées de manière Gaussienne
identiquement. Plus généralement, le canal est un évanouissement générique si la
matrice du canal a une entropie différentielle finie et un second moment fini. Le canal
est corrélé spatialement si les coefficients de canal entre différentes antennes sont
corrélés, c’est-à-dire que la norme et la direction de canal ne sont pas indépendants.

• Distribution du bruit: Nous supposons tout au long que le bruit est distribué de
manière Gaussienne IID.

A.2.2 Le Canal Point à Point

Considérons un canal P2P MIMO avec M antennes d’émission et N antennes de réception,
et contrainte de puissance P .

A.2.2.a Limites Fondamentales et Signal Qui Atteint la Capacité

La capacité du canal P2P non-cohérent a été étudiée dans un grand nombre de travaux.
En général, la capacité explicite est inconnue et seules des approximations dans le régime
du rapport signal / bruit (SNR) extrême sont connues dans certains contextes.

T = 1 (évanouissement rapide stationnaire)

Sous l’hypothèse d’évanouissement Rayleigh IID pour le canal SISO dans le fading rapide
(T = 1), Richters a conjecturé en 1967 que, bien que le canal soit continu, la distribution
des entrées de capacité est discrète [43]. Plus tard, Abou-Faycal et al. a prouvé cette
conjecture et a montré que la distribution des intrants générateurs de capacité a un nombre
fini de points de masse avec l’un d’eux situé à l’origine [44]. Dans le même cadre, Taricco et
Elia ont montré que la capacité s’échelonne en tant que α log logP ≤ C ≤ log logP +O(1)
pour α ∈ (0, 1) lorsque P →∞ [45].

La mise à l’échelle logarithmique double de la capacité w.r.t. le SNR a été prouvé
rigoureusement dans un cadre plus général par Lapidoth et Moser en [36]. En supposant
d’évanouissement générique, pour limiter la information mutuelle, ils ont utilisé une double
expression et remplacé la maximisation sur la distribution d’entrée du canal par une
minimisation sur la distribution de sortie du canal. Avec cette approche de dualité, ils ont
prouvé que les capacités évolue en

C = log logP + χ(HHH) + o(1), (A.13)

où χ(HHH) est ce que l’on appelle le nombre d’évanouissement du canal. Par conséquent,
en cas d’évanouissement rapide, la communication à des débits nettement supérieurs au
nombre d’évanouissements est extrêmement inefficace en termes de puissance.

T ≥ 2 (évanouissement par bloc)

Lorsque le canal reste constant pendant au moins deux utilisations de canal, l’une des
premières études pour aborder la capacité a été réalisée par Marzetta et Hochward [47].
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En supposant d’évanouissement Rayleigh IID, ils ont montré deux résultats importants
comme suit.

• La capacité obtenue avec M > T est la même que la capacité obtenue avec M = T
antennes d’émission pour tout T et N et SNR arbitraire. Cela contraste avec la
croissance linéaire illimitée de la capacité avec min{M,N} lorsque CSI est disponible.

• Le signal qui atteint la capacité peut être représenté comme

XXX = DDDΦΦΦ, (A.14)

où DDD ∈ RM×M est une matrice diagonale, non négative, et ΦΦΦ ∈ CM×T est une matrice
unitaire tronquée et distribuée de façon isotrope. Autrement dit, la densité de
probabilité de ΦΦΦ est inchangée lorsqu’elle est postmultipliée par une matrice unitaire
T × T .

Ces résultats ont ensuite été généralisés et affinés par Zheng et Tse dans [49] pour le cas T ≥
min{M,N}+N et par Yang et al. dans [50] pour le cas T ≤M +N,M ≤ min{N, bT/2c}.
Ils ont collectivement montré que, sous l’évanouissement Rayleigh IID, la capacité dans le
régime à SNR élevé est

C = M∗
(

1− M∗

T

)
logP +O(1), (A.15)

où M∗ := min{M,N, bT/2c}. Ainsi, le DoF optimal est M∗
(
1− M∗

T

)
. La distribution

d’entrée qui atteint la capacité au terme de second ordre à SNR élevé hérite de la structure
en (A.14) avec les distributions spécifiées de DDD et ΦΦΦ. En général, ΦΦΦ est une matrice unitaire
tronquée et distribuée isotrope. Alors que la distribution de DDD doit être adaptée en fonction
de la relation de l’intervalle de cohérence et du nombre d’antennes.

• Si T ≥ M ′ + N où M ′ := min{M,N}, il est optimal de laisser les premiers M ′

éléments diagonaux de DDD égaux à
√

PT
M ′ et les éléments diagonaux restants égaux

à 0 avec la probabilité 1 [49]. C’est-à-dire que seules M ′ antennes d’émission sont
utilisées pour émettre les premières M ′ lignes de puissance égale par antenne. La
distribution d’entrée résultante est référencée à modulation spatio-temporelle unitaire
(USTM) [53].

• Si T < M +N et M ≤ min{N, bT/2c}, les éléments diagonaux carrés du DDD optimal
ont la même distribution conjointe que les valeurs propres ordonnées d’une matrice
M ×M aléatoire bêta distribuée et positive-définie [50]. La distribution d’entrée
résultante est appelée modulation spatio-temporelle à variation beta (BSTM). Notez
que dans ce cas, le débit réalisable avec l’entrée USTM est à un écart constant
inférieur à la capacité atteinte avec l’entrée BSTM.

Étant donné que la plupart des travaux susmentionnés dans le cas T ≥ 2 reposent sur
l’hypothèse d’évanouissement Rayleigh IID, la question suivante est toujours ouverte:

Question A.1. Quelle est la limite de capacité du canal P2P MIMO non-cohérent en
évanouissement générique par bloc?

A.2.2.b Conception de Constellation

Dans cette sous-section, nous nous concentrons sur la conception de la constellation pour
le cas T ≥ 2 et, motivés par le DoF optimal, supposons que M ≤ min

{
N, bT/2c

}
. Nous
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considérons l’entrée USTM

XXX =
√
PT

M
ΦΦΦ, where ΦΦΦΦΦΦH = IIIM . (A.16)

Avec USTM, le signal d’entrée est invariant par rapport à la rotation à partir de la droite et
les informations sont intégrées dans l’espace de ligne de la matrice ΦΦΦ. L’intuition derrière
l’optimalité de USTM est que la matrice de canaux HHH ne fait que mettre à l’échelle et faire
pivoter les bases de la matrice de signaux transmis XXX sans changer son sous-espace car les
espaces de lignes de XXX et l’observation sans bruit HHHXXX sont les mêmes. L’information est
transportée à la position de l’espace de rangées de dans la variété Grassmann G(CT ,M), qui
est l’espace des sous-espaces à dimensions M de CT . Par définition, XXX et HHHXXX représentent
le même élément de G(CT ,M). À SNR élevé, le bruit additif a un faible impact sur le
sous-espace du signal de sortie, et le sous-espace de XXX peut être récupéré avec précision à
partir du sous-espace de la sortie bruyante.

D’après l’observation ci-dessus, une constellation pour une communication MIMO
non-cohérente sur un évanouissement par bloc peut être conçue comme un ensemble
de représentants de sous-espaces à dimension M en CT . De manière équivalente, ces
constellations représentent un ensemble de points sur la variété Grassmann G(CT ,M).
Nous appelons les constellations de ce type les constellations Grassmanniennes. Compte
tenu de la taille de la constellation, la construction de la constellation Grassmannienne
peut être interprétée comme un emballage de points dans la variété Grassmann. Le
critère d’emballage ultime est de minimiser l’erreur de détection sous observation bruyante.
Cela revient généralement à maximiser la distance par paire minimale entre les points de
constellation. Un certain nombre de constellations grassmanniennes ont été proposées avec
différents critères, génération de constellation et méthodes de détection. Ils suivent deux
approches principales.

• La première approche utilise des outils d’optimisation numérique pour résoudre le
problème d’emballage de sphères sur le Grassmannien [63]–[69]. Il en résulte des
constellations avec un bon spectre de distance mais sans structure particulière. En
raison du manque de structure, ce type de constellation doit être stocké à la fois à
l’émetteur et au récepteur, et décodé avec le décodeur ML de haute complexité, ce
qui limite l’utilisation pratique à seulement petites constellations.

• La seconde approche impose une structure particulière à la constellation [70]–[77].
L’entrée structurée de données–pilotes d’un schéma basé sur pilote peut également
être considérée comme un code non-cohérent [78]. La structure de la constellation
facilite la modulation et, probablement, la démodulation de faible complexité.

Dans cette thèse, nous souhaitons apporter notre réponse à la question suivante.

Question A.2. Comment concevoir une constellation Grassmannienne qui a une
efficacité d’emballage élevée tout en étant simple à générer (donc disponible pour une
grande taille de constellation et une grande longueur de symbole, et ne nécessitant pas
d’être stockée), en admettant un schéma d’étiquetage binaire simple et efficace, et en
permettant une schéma de détection efficace?

A.2.3 Le Canal d’Accès Multiple

Nous considérons un canal d’accès multiple (MAC) MIMO avec K émetteurs émettant
vers un récepteur. L’utilisateur k est équipé de Mk antennes, k ∈ [K], et le récepteur a N
antennes.
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A.2.3.a Limites Fondamentales

Shamai et Marzetta ont étudié la capacité du MAC à entrée unique et sorties multi-
ples (SIMO) (Mk = 1, k ∈ [K]) dans l’évanouissement Rayleigh IID dans [84]. Pour
l’évanouissement rapide (T = 1), ils ont montré que la capacité totale pour K > 1 utilisa-
teurs est égale à la capacité pour K = 1 utilisateur, donc l’accès multiple par répartition
dans le temps (TDMA) est optimal. Pour l’évanouissement par bloc (T > 1), ils ont
supposé que la capacité de somme maximale ne peut être atteinte que par plus de K = T
utilisateurs, ce qui est soutenu par une analyse asymptotique. Dans le même contexte
avec T > 1, Gopalan et al. a dérivé une borne inférieure constructive de la capacité de
somme d’un schéma de décodage successif [85]. Étant donné que la capacité de somme du
MAC peut être supérieure par la capacité du canal P2P en permettant la coopération de
l’utilisateur, la capacité de somme du MAC sous l’évanouissement rapide peut être montrée
à l’échelle comme un double logarithme du SNR plus un nombre d’évanouissement. Le nom-
bre décroissant de le MAC à entrées multiples sortie unique (MISO) dans l’évanouissement
Ricienne a été dérivé par Lin et Moser dans [86]. Devassy et al. fourni des limites
supérieures et inférieures non asymptotiques sur la capacité de somme du MAC MIMO
sous l’évanouissement Rayleigh dans [87]. Dans ce cas, la limite inférieure dérivée avec une
signalisation Grassmannienne indépendante de chaque utilisateur a un petit écart avec la
limite supérieure même à un SNR modéré.

Les travaux susmentionnés portent sur la capacité totale du MAC non-cohérent. La
région de pleine capacité est inconnue et seules quelques régions réalisables du DoF
ont été proposées. Une région DoF réalisable pour le MAC MIMO à deux utilisateurs
sous l’évanouissement Rayleigh IID a été proposée dans [88] en utilisant une approche
géométrique. Une généralisation de cette région DoF réalisable au cas de K-user est
présentée dans [37, Theorem 5]. Ces régions réalisables peuvent être atteintes par un
schéma pilote simple. Ces régions DoF réalisables sont somme-DoF optimales, mais
l’optimalité globale n’est pas connue. Une limite extérieure coopérative pour la région
optimale de DoF a également été donnée dans [37, Section VI-B].

Dans cette thèse, nous étudierons la région DoF optimale du MAC non-cohérent et
répondrons à la question ouverte suivante.

Question A.3. Quelle est la région DoF optimale pour le MAC MIMO non-cohérent
dans l’évanouissement générique par bloc?

A.2.3.b Constellation Design

Comme dans le cas d’un utilisateur unique (P2P), les signaux transmis XXXk de l’utilisateur k
sont normalement tirés d’une constellation discrète finie Xk, donc X := {[XXX1 XXX2 . . . XXXK ] :
XXXk ∈ Xk, k ∈ [K]} est la constellation conjointe du MAC.

Une extension simple du schéma pilote pour le cas d’un utilisateur unique consiste à
diviser le bloc cohérent en deux parties: 1) la partie d’apprentissage dans laquelle des
séquences pilotes mutuellement orthogonales sont envoyées pour estimer le CSI pour chaque
utilisateur, et 2) le partie de transmission de données dans laquelle différents utilisateurs
communiquent simultanément [89] en utilisant une constellation scalaire (par exemple,
PAM, QAM, PSK). L’optimalité de cette approche en termes de taux réalisable et d’erreur
de détection reste incertaine. De plus, il n’est pas toujours possible d’affecter des pilotes
orthogonaux à tous les utilisateurs du système avant la transmission, comme indiqué au
Section A.1.5.
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Un schéma de codage basé sur l’amplitude a été proposé dans [90], [91], mais le détecteur
d’énergie qui l’accompagne repose sur un grand nombre d’antennes de réception de sorte
que la puissance reçue moyenne à travers toutes les antennes se concentre. Également avec
un réseau d’antennes de réception massif, certains schémas de codage différentiel ont été
étudiés sur la base de PSK [92], [93] ou QAM [94]. Une autre ligne de travail est basée sur
les constellations PSK qui sont absolument additivement décomposables de manière unique,
c’est-à-dire que chaque symbole PSK individuel peut être décodé de manière unique à
partir de n’importe quelle combinaison linéaire de deux points de constellation PSK avec
des poids positifs [95], [96]. Dans ce schéma, la décodabilité unique de la matrice du signal
repose sur l’orthogonalité asymptotique entre les canaux des utilisateurs dans le régime
MIMO massif. Une propriété similaire uniquement décomposable a également été exploitée
pour la modulation spatio-temporelle multi-utilisateurs basée sur QAM [97]. En bref, ces
schémas supposent un grand nombre d’antennes de réception.

Contrairement au cas d’un utilisateur unique où un bon critère de conception de con-
stellation est connu pour être le remplissage de sphère dans le Grassmannien, pour le MAC
MIMO non-cohérent en évanouissement par bloc, un critère de conception de constellation
simple et efficace reste incertain. En général, la constellation conjointe X pour le MAC
doit être conçue de manière à minimiser l’erreur de détection de symbole. Si les utilisateurs
pouvaient coopérer, le système pourrait être considéré comme un canal non-cohérent P2P
MIMO

(∑K
k=1Mk

)
× N , pour lequel l’entrée optimale à SNR élevé est uniformément

distribué sur le Grassmannien G
(
CT ,

∑K
k=1Mk

)
[49]. Inspirée de cela, la constellation

conjointe pour le MAC peut être traitée comme une constellation Grassmannienne en
G
(
CT ,

∑K
k=1Mk

)
, ce qui conduit à un critère de conception imitant le remplissage des

sphères dans ce Grassmannien en maximisant la distance cordale par paire minimale.
Brehler et Varanasi ont dérivé la probabilité d’erreur du détecteur ML pour le MAC
MIMO dans [98] et ont analysé les asymptotiques à SNR élevé. Cependant, un critère
explicite de conception de constellation n’a pas été fourni et l’analyse a conduit à une
conception pour le MAC uniquement avec les utilisateurs coopérants. Avec les utilisateurs
coopérants, le critère de conception est similaire à celui d’un canal à utilisateur unique
proposé dans [68, Eq.(8)] par les mêmes auteurs, qui est différent du critère de max-min
distance cordale par paire. Ce critère peut être utilisé pour le cas des utilisateurs non
coopérants en modifiant l’espace d’optimisation. On peut montrer que l’exposant d’erreur
par paire converge vers la divergence de Kullback-Leibler (KL) entre les distributions de
sortie conditionnées sur l’un ou l’autre des symboles transmis [59]. Sur cette base, un
critère consistant à maximiser la divergence KL minimale a été proposé pour le MAC
dans [97]. Cependant, ce travail se concentre sur la modulation spatio-temporelle basée
sur QAM et utilise uniquement le critère pour optimiser les puissances de transmission et
l’attribution de la sous-constellation.

Dans cette thèse, nous souhaitons répondre davantage à la question suivante:

Question A.4. Comment concevoir une constellation conjointe efficace pour le MAC
MIMO non-cohérent afin d’obtenir un faible taux d’erreur de symbole (SER)?

A.2.3.c Détection Multi-Utilisateurs

Nous déplaçons maintenant le focus sur le récepteur, dont la tâche est de détecter les
symboles transmis (ou plutôt les bits sous-jacents) sur la base de l’observation bruyante.
Étant donné que le problème de détection cohérente ML optimal est NP-difficile, le récepteur
peut utiliser un détecteur sous-optimal pour réduire la complexité.
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Si les signaux transmis contiennent des pilotes, le récepteur peut estimer (normalement
imparfaitement) le canal sur la base des symboles pilotes, puis effectuer une détection
cohérente sur la base de l’estimation du canal. Cette approche s’appuie sur une riche
littérature de détection cohérente, dans laquelle de nombreux algorithmes sous-optimaux ont
été proposés, comme indiqué dans la Section A.1.4. L’estimation de canal et la détection de
données peuvent également être effectuées de manière itérative [99], [100] ou conjointement
sur la base d’une recherche d’arbre [101], [102]. Ces schémas nécessitent une transmission
pilote pour une estimation initiale du canal ou pour garantir l’identifiabilité des symboles de
données. En revanche, avec la transmission sans pilote, le détecteur non-cohérent n’effectue
pas d’estimation de canal explicite et exploite uniquement la connaissance statistique de la
matrice de canal.

Le récepteur pourrait être intéressé non seulement par la détection dure des symboles,
mais aussi par leur fonction de masse de probabilité marginale postérieure (PMF). Ces
informations “douce” sont nécessaires, par exemple, lors du calcul des rapports de vraisem-
blance logarithmique (LLR) au niveau du bit requis pour le décodage de canal. Le calcul
d’une PMF marginale exacte nécessiterait d’énumérer toutes les combinaisons possibles de
signaux provenant d’autres utilisateurs, ce qui est impossible avec de nombreux utilisateurs,
de nombreuses antennes ou de grandes constellations. Ainsi, comme pour la détection dure,
un schéma sous-optimal est nécessaire. Contrairement à la détection probabiliste MIMO
cohérente, pour laquelle de nombreux schémas ont été proposés (par exemple, [103]–[105]),
la détection probabiliste non-cohérente MIMO sous signalisation générale, et la signalisation
Grassmannienne en particulier, n’a pas été bien étudiée. Par conséquent, dans cette thèse,
nous aimerions répondre à la question suivante:

Question A.5. Comment détecter efficacement les symboles et estimer leurs postérieurs
marginaux dans le MAC MIMO non-cohérent avec des constellations générales?

A.2.4 Le Canal de Diffusion

Prenons un canal de diffusion (BC) MIMO dans lequel une station de base avecM antennes
transmet à K utilisateurs. L’utilisateur k est équipé de Nk antennes, k ∈ [K].

La plupart des études sur les limites de capacité du BC supposent des informations
parfaites sur l’état des canaux au niveau des récepteurs (CSIR) et différents niveaux
d’informations sur l’état des canaux au niveau de l’émetteur (CSIT): parfait CSIT [106],
[107] (avec codage sur papier sale (DPC)), CSIT imparfait (partiel) [108]–[110] et aucun
CSIT [111], [112]. Le BC MISO non-cohérent (pas de CSIT, pas de CSIR) avec canal
distribué isotrope a été brièvement mentionné par Jafar et Goldsmith dans [111, Section
VII-C]. Ils ont montré que la limite supérieure scalaire proposée sur la région de capacité,
qui a été appliquée avec succès au cas parfait du CSIR, devient lâche pour le BC non-
cohérent car elle ne tient pas compte de la perte de DoF en raison de l’absence de CSIR.
Dans le cadre de l’évanouissement Rayleigh IID par bloc, Fadel et Nosratinia ont trouvé la
région DoF optimale du MIMO BC non-cohérent donnée dans [37, Theorem 1], qui est
réalisable avec un schéma TDMA.

Les résultats susmentionnés supposent l’indépendance statistique entre chaque paire
d’antennes d’émission et de réception. En pratique, cependant, les canaux entre différentes
antennes sont souvent corrélés parce que l’environnement de propagation provoque souvent
des gains de signal reçu plus forts dans certaines directions spatiales, et également en raison
des modèles spatialement dépendants des antennes. Comme les utilisateurs ne sont pas
colocalisés, ils peuvent avoir des matrices de corrélation non identiques. Dans ce cas, un
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outil utile tirant parti de la différence entre les corrélations spatiales observées par différents
utilisateurs est la diversité de corrélation de transmission. Pour les matrices de corrélation
spatiale de transmission qui ont des espaces propres mutuellement exclusifs, la diversité
de corrélation de transmission peut être récoltée en utilisant un schéma de transmission
de multiplexage spatial joint (JSDM) [113], [114] qui réduit la surcharge nécessaire pour
l’estimation de canal. L’idée principale de JSDM est de partitionner les utilisateurs en
groupes avec approximativement le même espace de corrélation de canal. Un autre schéma
de transmission en superposition de produits proposé par Li et Nosratinia dans [115], [116]
pour le BC avec des utilisateurs mixtes statiques (avec CSIR) et dynamiques (sans CSIR),
puis appliqué à des BC non-cohérents spatialement corrélés avec des espaces propres de
corrélation qui se chevauchent complètement [117].

Notez que le schéma de transmission JSDM tente d’exploiter les parties non chevauchantes
(mutuellement exclusives) des espaces de corrélation, tandis que la superposition de produits
exploite les parties chevauchantes. Dans cette thèse, nous souhaitons exploiter les deux
parties en répondant à la question suivante.

Question A.6. Quelles sont les limites fondamentales de la BC non-cohérente spatiale-
ment corrélée dans l’évanouissement générique par bloc avec des espaces de corrélation
se chevauchant partiellement et comment exploiter efficacement la diversité de corréla-
tion de transmission dans cette condition?

A.3 Description de la Thèse
Cette thèse est une contribution aux communications sans fil non-cohérentes. Nous
supposons tout au long que la distribution des canaux est connue, mais le CSI n’est connu
par aucun nœud communiquant, et les coefficients des canaux sont en fondu avec l’intervalle
de cohérence T . L’hypothèse sur la distribution des canaux (Rayleigh / générique, corrélée
/ non corrélée) est spécifiée dans chaque chapitre. Nous étudions le canal P2P, le MAC et
le BC en termes de limites fondamentales (capacité, débit réalisable, DoF) et de conception
d’émetteur-récepteur (conception de constellation, conception de détection efficace). La
principale contribution de la thèse est la réponse ou l’extension des réponses existantes
aux questions posées dans la section précédente. Le plan détaillé et les contributions de la
thèse sont présentés ci-dessous.

A.3.1 Aperçu et Contributions de la Thèse

Cette thèse comprend deux parties principales traitant respectivement des limites fondamen-
tales et des aspects de conception d’émetteur-récepteur des communications non-cohérentes,
suivies de la conclusion et des perspectives.

Partie I: Limites Fondamentales des Communications Non-Cohérentes

Dans Chapitre 2, nous répondons en partie à Question 1.1 en étudiant la DoF optimale du
canal P2P MIMO non-cohérent dans l’évanouissement générique par bloc. Nous montrons
que le DoF optimal pour le canal P2P MIMO sous l’évanouissement Rayleigh IID (trouvé
dans [49], [50]) tient également sous l’évanouissement générique. Nous introduisons une
nouvelle technique de preuve inverse basée sur une liaison assistée par le génie et l’approche
de la dualité [36]. Les extensions possibles incluent l’analyse du débit / capacité réalisable
de SNR fini. Le résultat de ce chapitre a été présenté dans [118], [119].
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Dans Chapitre 3, nous répondons à Question 1.3, c’est-à-dire la région DoF optimale
pour le MAC non-cohérent dans l’évanouissement générique par bloc, dans le cas SIMO. La
preuve inverse suit en montrant que la contrainte de puissance moyenne peut être remplacée
par une contrainte de puissance de crête sans changer la région DoF optimale, avec une
borne assistée par le génie similaire et l’approche de la dualité comme au Chapitre 2. Il serait
intéressant d’étendre à le cas MIMO et / ou plus de deux utilisateurs. La caractérisation
par SNR fini de la région de capacité serait difficile, mais on peut tenter d’analyser la
capacité à somme. Le résultat de ce chapitre a été présenté dans [118], [119].

Chapitre 4 présente notre réponse à Question 1.6. En considérant un BC MIMO
spatialement corrélé avec des espaces de corrélation se chevauchant partiellement, nous
exploitons la diversité de corrélation de transmission en concevant soigneusement des
schémas de transmission basés sur le fractionnement de débit, la superposition de produits,
et une version hybride de ceux-ci. Ce faisant, nous trouvons des régions de débit et
de DoF réalisables pour le BC dans le cas de deux utilisateurs, et certaines régions de
DoF réalisables dans le cas de K utilisateurs. Les régions DoF réalisables s’améliorent
significativement par rapport à TDMA, qui s’est avéré être optimal pour le DoF pour
la décoloration non corrélée [37]. En tant que sous-produit, nous dérivons également un
débit réalisable pour le canal P2P MIMO avec un évanouissement spatialement corrélé.
Bien que ces régions réalisables s’améliorent considérablement par rapport à la TDMA,
il faut caractériser les limites extérieures pour voir dans quelle mesure ces régions sont
éloignées de l’optimalité. Une approche consiste à utiliser la coopérative liée en laissant les
utilisateurs coopérer et en les considérant comme un seul macro-utilisateur. Cependant,
les résultats existants pour le canal P2P, tels que [117, Theorem 1], ne s’appliquent pas
immédiatement car les colonnes de canal ne sont pas statistiquement équivalentes (en raison
de la différence dans leurs matrices de corrélation). Nos tentatives utilisant l’approche de la
dualité montrent qu’il est difficile de choisir une distribution de sortie auxiliaire adéquate.
Le résultat de ce chapitre a été publié dans [120] et [121].

Partie II: Conception de Système pour les Communications Non-Cohérentes

Chapitre 5 donne notre réponse à Question 1.2 dans le cas SIMO. Nous proposons une
constellation structurée dans le Grassmannien de lignes dites constellation de cube-split.
Il est généré en partitionnant le Grassmannien de lignes en une collection d’hypercubes
courbés et en définissant un mappage sur chacun de ces hypercubes courbés de telle
sorte que les symboles résultants sont répartis approximativement uniformément sur le
Grassmannien. Cette constellation remplit toutes les caractéristiques souhaitées à la
Question 1.2: elle a une efficacité de tassement élevée représentée par la distance cordale
par paire minimale tout en étant simple à générer (donc disponible pour une grande taille
de constellation et une grande longueur de symbole, et ne nécessitant pas d’être stockée);
il admet un schéma d’étiquetage binaire simple et efficace; et il permet une détection dure
et douce efficace. Ces avantages par rapport au schéma pilote et à d’autres constellations
Grassmanniennes structurées sont plus prononcés dans le régime d’intervalle de cohérence
court et de grande taille de constellation, comme le montrent les résultats numériques. Un
travail futur est de l’étendre au cas MIMO où le principal défi est de trouver un moyen
efficace de partitionner le Grassmannien. Le résultat de ce chapitre a été publié dans [122],
[123], and [124].

Dans Chapitre 6, nous présentons une conception de constellation conjointe pour le
MAC MIMO non-cohérent dans l’évanouissement par bloc de Rayleigh IID, ainsi donnons
notre réponse à Question 1.4. Nous analysons l’erreur de détection ML et introduisons de
nouveaux critères de conception afin de minimiser la probabilité d’erreur. Nous simplifions
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davantage les métriques par une analyse SNR élevée. Nos métriques peuvent être utilisées
pour la construction de constellations conjointes en les optimisant (numériquement) sur
l’ensemble des matrices de signaux. De plus, sur la base de ces métriques, nous proposons
deux constructions simples consistant respectivement en partitionnant une constellation
mono-utilisateur ou en précodant des constellations mono-utilisateur de dimension in-
férieure. Nous étudions la possibilité de construire chaque constellation individuelle sous
la forme d’une constellation Grassmannienne mise à l’échelle par la puissance de trans-
mission respective. Les résultats numériques montrent que nos métriques proposées sont
significatives et que les constellations résultantes fonctionnent mieux, pour le même débit
de transmission et la même puissance, qu’un schéma basé sur un pilote et les constellations
optimisées avec les métriques existantes. À l’avenir, il est souhaitable d’utiliser nos critères
comme lignes directrices pour concevoir des constellations articulaires structurées plus
efficaces. Les résultats de ce chapitre sont présentés collectivement dans [125], [124], [126],
and [127].

Dans Chapitre 7, nous nous concentrons sur le côté récepteur d’un MAC et répondons à
Question 1.5. Nous proposons un schéma de détection douce multi-utilisateur non-cohérent
pour le MAC SIMO sous évanouissement par bloc de Rayleigh corrélé spatialement. Notre
détecteur est basé sur la propagation d’espérance (EP) inférence approximative et présente
une complexité polynomiale dans le nombre d’utilisateurs, le nombre d’antennes de réception
et l’intervalle de cohérence. Nous proposons également deux simplifications de ce détecteur
à complexité réduite. Les détecteurs proposés peuvent être utilisés pour la signalisation
générale avec des symboles à valeur vectorielle transmis sur chaque bloc de cohérence. Dans
ce chapitre, nous proposons également un schéma de détection efficace pour la constellation
basée sur le précodage dans Chapitre 6, qui a une complexité plus faible mais fonctionne
moins bien que le détecteur EP. Avec la signalisation assistée par pilote, le détecteur EP
surpasse, en termes de taux d’erreur de symboles, certains détecteurs pilotes cohérents
conventionnels, à savoir un décodeur MMSE linéaire, un décodeur sphérique et un schéma
joint d’estimation de canal et de détection de données. Nos détecteurs basés sur l’EP
produisent des approximations précises de la vraie postérieure conduisant à un débit de
somme réalisables élevé. Les gains de ces détecteurs sont également observés en termes de
taux d’erreur binaire lors de l’utilisation de leurs sorties pour un décodeur de canal turbo.
Les extensions possibles incluent la prise en compte de modèles d’évanouissement plus
complexes et l’analyse théorique des performances de l’EP pour une détection non-cohérente.
Les résultats de ce chapitre ont été publiés dans [128], [125] and [129].

Nous résumons les principaux résultats de cette thèse dans Tableau 1.1.

Table A.1: Les principaux résultats de cette thèse

Canal
Partie I: Limites fondamentales Partie II: Conception du système
Débit / DoF
réalisable DoF optimal Conception de

constellation
Conception de

détection
P2P Chapitre 4 Chapitre 2 Chapitre 5
MAC — Chapitre 3 Chapitre 6 Chapitre 7
BC Chapitre 4 — — —

Conclusion et Perspectives

Nous concluons la thèse du Chapitre 8 qui résume les principaux résultats et donne
des perspectives pour les travaux futurs. Nous fournissons également une perspective
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supplémentaire des communications non-cohérentes dans le contexte d’autres sujets dans
les communications sans fil dans ce qui suit.

• Communications non-cohérentes dans un canal à variation continue : Dans
le cas d’un évanouissement par bloc, on suppose que les coefficients du canal sont
entièrement corrélés (c’est-à-dire égaux) dans un bloc de cohérence et non corrélés
entre les blocs. En pratique, les coefficients de canal sont fortement corrélés mais
peuvent varier au sein d’un bloc. De plus, les coefficients séparés par un intervalle de
cohérence sont faiblement corrélés, mais deux coefficients adjacents à travers deux
blocs adjacents peuvent être fortement corrélés. Cela peut être observé à la fois
dans le domaine temporel et le domaine fréquentiel (avec OFDM). Dans ce scénario,
le DoF a été étudié dans [211], [212]. De plus, la signalisation Grassmannienne
devient sous-optimale, et la détection ML à évanouissement par bloc devient une
détection ne correspondent pas. Il serait intéressant de déterminer dans quelle mesure
la constellation et la détection Grassmanniennes ne correspondent pas, comme cela
a été étudié dans [81] en termes de taux d’erreur. Cette non-concordance peut
également être analysée en termes de débit de données. La détection ML par bloc
peut être modifiée en tenant compte de la corrélation des coefficients de canal au
sein d’un bloc. D’un autre côté, nous pouvons essayer d’adapter les constellations
Grassmanniennes à des canaux variant en continu. Par exemple, en exploitant le
fait qu’un symbole Grassmannien est invariant à la mise à l’échelle par un scalaire
complexe, on peut coder des bits d’information supplémentaires dans le déphasage des
symboles à travers des blocs de cohérence. Nous avons rapporté cette idée dans [124].

• Utilisation des constellations grassmanniennes pour une conception de
système plus sophistiquée : La conception des constellations Grassmanniennes se
concentre sur le mappage bit à symbole et le démappage symbole à bit d’un système
de communication numérique. Une conception plus générale du système utilisant des
constellations Grassmanniennes comme ingrédient peut être effectuée. Par exemple,
dans [213]–[215], des schémas de codage multicouches sont proposés dans lesquels des
constellations Grassmanniennes sont utilisées dans la couche de résolution inférieure
qui n’a pas accès à CSI. L’intégration des constellations Grassmanniennes dans les
réseaux d’évolution à long terme (LTE) a été étudiée avec une étude de performance
au niveau de la liaison dans [216]. Des systèmes de modulation codés entrelacés par
bits utilisant des constellations Grassmanniennes ont été conçus dans [80], [177].

• Communications non-cohérentes à faible latence : Dans cette thèse, nous
supposons qu’un message porteur d’informations, représenté par un mot de code de
canal, s’étend sur un grand nombre de blocs de cohérence. Par conséquent, nous
utilisons des métriques asymptotiques telles que la capacité de Shannon et le DoF.
Dans la communication ultra-fiable à faible latence (URLLC), les informations sont
transportées dans de petits paquets qui doivent être reçus avec une faible latence. Dans
ce régime, la communication non-cohérente convient car la taille des métadonnées
(par exemple, informations de contrôle, pilotes) est comparable à la taille des données
[217]. Cependant, les repères classiques de la théorie de l’information asymptotique
ne sont pas applicables, et il faut passer à un cadre qui permet de comprendre les
transmissions de paquets courts. La théorie de l’information sur la longueur de bloc
finie1 [218] est appropriée à cette fin, où la métrique d’intérêt est le débit de codage
maximal R∗(n, ε) à la longueur de bloc finie n et la probabilité d’erreur de paquet fini

1Le terme “bloc” en longueur de bloc fini fait référence à un mot de code de canal et est différent de
celui de bloc de cohérence: dans la théorie de l’information à longueur de bloc finie, un mot de code peut
s’étendre sur plusieurs blocs de cohérence.
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ε. Des limites non asymptotiques sur le taux de codage maximal non-cohérent ont été
proposées pour le canal d’évanouissement quasi-statique de Rayleigh (un mot de code
de canal s’étend sur un seul bloc de cohérence) pour le cas SISO dans [219]. Dans
le canal à évanouissement par blocs (un mot de code de canal s’étend sur plusieurs,
mais un nombre fini, de blocs de cohérence), des limites non asymptotiques pour
le débit de codage maximal non-cohérent ont été présentées pour le cas SISO dans
[187], [220], et le cas MIMO dans [186]. Un schéma de communication non-cohérent
dans lequel les informations sont modulées sur les zéros de la transformée z du signal
de bande de base transmis a été proposé pour la communication par paquets courts
dans [221].

• Communication de type machine non-cohérente et accès aléatoire massif :
Dans la communication de type machine et l’accès aléatoire massif, le système doit
prendre en charge un très grand nombre d’utilisateurs et seul un sous-ensemble
aléatoire d’entre eux est actif à la fois. L’ensemble des utilisateurs actifs peut ne pas
être connu à l’avance et il est impossible de pré-affecter des pilotes mutuellement
orthogonaux à chaque utilisateur. Par conséquent, une communication sans pilote
non-cohérente peut être une stratégie appropriée. Un protocole d’accès aléatoire
non-cohérent basé sur des trames de Gabor, qui sont également des trames de
Grassmannian, a été proposé dans [222]. Dans [223], Senel et al. a proposé un schéma
de transmission non-cohérent pour les communications massives de type machine et a
développé un algorithme de passage de message approximatif modifié pour exploiter
la rareté structurée de ce schéma. Comparé à une transmission cohérente, ce schéma
non-cohérent fonctionne nettement mieux, surtout lorsque le nombre de bits est petit.
Récemment, notre constellation cube-split a été utilisée pour construire un schéma
d’accès aléatoire massif basé sur le tenseur dans [224].

• Apprentissage automatique pour les communications non-cohérentes :
L’utilisation de l’apprentissage automatique, en particulier l’apprentissage en pro-
fondeur, dans les communications sans fil se développe rapidement et profondément
dans de nombreux aspects des communications de la couche physique, de l’utilisation
de l’apprentissage pour une tâche spécifique telle que l’estimation de canal, l’égaliseur
de symboles, détection de signal, codage / décodage de canal, vers une transmission
complète basée sur l’apprentissage de bout en bout [225]–[227]. Les communications
non-cohérentes peuvent certainement bénéficier de l’apprentissage automatique. Une
méthode d’apprentissage automatique pilotée par les données a été proposée pour
concevoir un émetteur-récepteur non-cohérent pour la transmission de paquets courts
dans [228]. Les méthodes d’apprentissage sur la Grassmannien peuvent être utilisées
pour une communication non-cohérente avec la signalisation Grassmannienne [229].
Par exemple, Du et al. utilisé des algorithmes de regroupement de données sur la
variété Grassmann pour concevoir un schéma de reconnaissance de modulation au-
tomatique pour les constellations Grassmanniennes dans [230]. Dans l’apprentissage
de bout en bout des systèmes de communication via des auto-encodeurs basés sur un
réseau de neurones, l’estimation de canal peut être effectuée même avec un modèle
de canal inconnu [231]. Lorsque le modèle de canal est inconnu, on peut utiliser
l’apprentissage basé sur les données pour ajuster la probabilité conditionnelle d’entrée-
sortie empirique à un modèle paramétrique. Nous avons proposé un cadre utilisant
un modèle gaussien généralisé à cette fin dans [130]. Un autoencodeur pour une com-
munication basée sur l’énergie non-cohérente dans un système SIMO multi-porteuses
multi-utilisateurs a été proposé dans [232]. L’article [233] présente la conception de
formes d’ondes pour les systèmes MIMO multi-utilisateurs non-cohérents grâce à
l’apprentissage en profondeur.
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A.3.2 Liste des Publications

Les publications incluses dans le résultat principal de cette thèse sont listées ci-dessous.

Articles de Journaux

[119] K.-H. Ngo, S. Yang, and M. Guillaud, “The optimal degrees of freedom for the
point-to-point and multiple-access channels in generic block fading,” in preparation
to submit to IEEE Trans. Inf. Theory, 2020.

[127] K.-H. Ngo, S. Yang, M. Guillaud, and A. Decurninge, “Joint constellation design for
the noncoherent MIMO multiple-access channel,” in preparation to submit to IEEE
Trans. Wireless Commun., 2020.

[121] F. Zhang, K.-H. Ngo, S. Yang, and A. Nosratinia, “Transmit correlation diversity:
Generalization, new techniques, and improved bounds,” submitted to IEEE Trans.
Inf. Theory, 2020.

[129] K.-H. Ngo, M. Guillaud, A. Decurninge, S. Yang, and P. Schniter, “Multi-user
detection based on expectation propagation for the noncoherent SIMO multiple access
channel,” IEEE Trans. Wireless Commun., 2020, (arXiv preprint arXiv:1905.11152).

[123] K.-H. Ngo, A. Decurninge, M. Guillaud, and S. Yang, “Cube-split: A structured
Grassmannian constellation for noncoherent SIMO communications,” IEEE Trans.
Wireless Commun., vol. 19, no. 3, pp. 1948–1964, Mar. 2020.

Préimpression

[126] K.-H. Ngo, S. Yang, M. Guillaud, and A. Decurninge, “Joint constellation design for
the two-user noncoherent multiple-access channel,” arXiv preprint arXiv:2001.04970,
2020.

Conférence

[128] K.-H. Ngo, M. Guillaud, A. Decurninge, S. Yang, S. Sarkar, and P. Schniter, “Non-
coherent multi-user detection based on expectation propagation,” in 53rd Asilomar
Conference on Signals, Systems, and Computers, CA, USA, Nov. 2019.

[125] K.-H. Ngo, A. Decurninge, M. Guillaud, and S. Yang, “A multiple access scheme
for noncoherent SIMO communications,” in 52nd Asilomar Conference on Signals,
Systems, and Computers, CA, USA, Oct. 2018, pp. 1846–1850.

[118] K.-H. Ngo, S. Yang, and M. Guillaud, “The optimal DoF region for the two-user
noncoherent SIMO multiple-access channel,” in IEEE Information Theory Workshop
(ITW), arXiv preprint arXiv:1806.04102, Guangzhou, China, Nov. 2018.

[120] K.-H. Ngo, S. Yang, and M. Guillaud, “An achievable DoF region for the two-user
noncoherent MIMO broadcast channel with statistical CSI,” in IEEE Information
Theory Workshop (ITW), Nov. 2017, pp. 604–608.

[122] K.-H. Ngo, A. Decurninge, M. Guillaud, and S. Yang, “Design and analysis of a
practical codebook for noncoherent communications,” in 51st Asilomar Conference
on Signals, Systems, and Computers, CA, USA, Oct. 2017, pp. 1237–1241.
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[124] K.-H. Ngo, A. Decurninge, M. Guillaud, and S. Yang, “Transmitter and receiver
communication apparatus for noncoherent communication,” English, European patent,
Application number 6 860 390, Filed on 30 Oct. 2018.

A.3.3 Contributions en Dehors du Champ de la Thèse

Au cours de la thèse, nous avons également publié quelques autres contributions qui ne
sont pas incluses dans le résultat principal de cette thèse:

[130] K.-H. Ngo, S. Yang, and M. Guillaud, “Generalized Gaussian model for data-driven
learning in communications,” in International Zurich Seminar on Information and
Communication (IZS), poster, Zurich, Switzerland, Feb. 2020.

[131] K.-H. Ngo, S. Yang, and M. Kobayashi, “Scalable content delivery with coded caching
in multi-antenna fading channels,” IEEE Trans. Wireless Commun., vol. 17, no. 1,
pp. 548–562, Jan. 2018.

[132] A. Ghorbel, K.-H. Ngo, R. Combes, M. Kobayashi, and S. Yang, “Opportunistic
content delivery in fading broadcast channels,” in IEEE Global Communications
Conference (GLOBECOM ), Singapore, Dec. 2017.

[133] T. T. Q. Tran, V.-L. Nguyen, K.-H. Ngo, L.-T. Nguyen, Q.-T. Nguyen, E. Bastug, S.
Azarian, M. Debbah, and P. Duhamel, “Network coding and information security
in industry 4.0,” in 1st ASEAN IVO Workshop on Cybersecurity and Information
Security in Industry 4.0, poster, Hanoi, Vietnam, Mar. 2019.
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Titre: Communications Sans Fil Noncohérentes: Limites Fondamentales et Conception du Système
Mots clés: communications noncohérentes, évanouissement par bloc, information sur l’état du canaux, degrés de
liberté, constellations Grassmanniennes, détection multi-utilisateurs
Résumé: Dans les communications sans fil sur des
canaux à évanouissement, en particulier à antennes multi-
ples, la connaissance instantanée des coefficients de canal,
appelés informations d’état de canal (CSI), est essentielle
car elle permet d’adapter la transmission et la réception
aux conditions actuelles du canal. La communication avec
CSI a priori au niveau du récepteur est dite cohérente. En
pratique, cependant, le CSI n’est pas disponible avant la
communication et doit être estimé à un coût qui ne doit pas
être ignoré, en particulier dans un environnement haute-
ment mobile. Ainsi, la communication sans CSI a priori,
également appelée communication noncohérente, est un
cadre plus pratique et général. Cette thèse contribue à la
compréhension des limites théoriques des communications
noncohérentes, ainsi qu’à la conception d’un système de
communication pratique noncohérent à évanouissement
par bloc. Nous considérons trois scénarios: le canal point
à point (P2P), le canal à accès multiple (MAC) et le canal
de diffusion (BC).
Dans la première partie, nous étudions les limites fonda-
mentales des communications noncohérentes en termes
de débit de données et de degrés de liberté (DoF) réal-
isables. Nous considérons un évanouissement par bloc
générique dans lequel le canal a une entropie différentielle
finie et un second moment fini. Nous établissons d’abord
le DoF optimal pour le canal P2P noncohérent à entrées
multiples et sorties multiples (MIMO) en utilisant l’approche
de la dualité pour borner les informations mutuelles. Deux-
ièmement, en utilisant une approche de dualité similaire,
nous dérivons la région de DoF optimale pour le MAC SIMO
à deux utilisateurs, qui peut être obtenue par partage de
temps entre des schémas à pilotes simples. Troisième,

nous dérivons les régions débit et DoF réalisable pour
le BC MIMO noncohérent avec un évanouissement spa-
tialement corrélé en exploitant la diversité de corrélation
de transmission, qui est la différence entre la corrélation
subie par différents utilisateurs. Ce faisant, nous concevons
soigneusement des schémas de transmission basés sur
des pilotes et sur le partage de débit, la superposition de
produits et une combinaison de ceux-ci pour transmettre
efficacement des signaux dans les parties communes et
mutuellement exclusives des sous-espaces de corrélation.
Dans la deuxième partie, nous concevons la constellation
et les schémas de détection efficaces pour les communi-
cations noncohérentes sur le canal d’évanouissement de
type Rayleigh par bloc. Premièrement, nous proposons
une constellation Grassmannienne structurée pour le canal
P2P SIMO qui est simple à générer, a une efficacité
d’empilement élevée, admet un étiquetage binaire sim-
ple mais efficace et permet une détection efficace douce
et dure. Deuxièmement, nous étudions la conception de
constellation conjointe pour le MAC MIMO. Nous intro-
duisons des critères de conception simples et efficaces
afin de minimiser l’erreur de détection conjointe et pro-
posons quelques constructions de constellation simples.
Troisièmement, nous proposons un schéma de détection
souple multi-utilisateurs noncohérent pour le MAC SIMO à
l’évanouissement de Rayleigh corrélé spatialement basé
sur l’inférence approximative par propagation d’espérance.
Ce schéma présente une complexité polynomiale dans
la dimension du canal tout en produisant des marginaux
postérieurs approximatifs par utilisateur précis conduisant
à des performances d’erreur quasi-optimales.

Title: Noncoherent Wireless Communications: Fundamental Limits and System Design
Keywords: noncoherent communications, block fading, channel state information, degrees of freedom, Grassmannian
constellations, multi-user detection
Abstract: In wireless communication over fading chan-
nels, especially multiple-antenna communication, the in-
stantaneous knowledge of channel coefficients, so-called
channel state information (CSI), is critical because it en-
ables to adapt the transmission and reception to current
channel conditions. The communication with a priori CSI
at the receiver is said to be coherent. In practice, how-
ever, CSI is not granted for free prior to communication and
needs to be estimated at a cost that should not be ignored,
especially in a highly mobile environment. Thus, commu-
nication without a priori CSI, also known as noncoherent
communication, is a more practical and general framework.
This thesis contributes to the understanding of the theoreti-
cal limits of noncoherent communications, as well as the
design of a practical noncoherent communication system
in block fading. We consider three scenarios: the point-to-
point (P2P) channel, the multiple-access channel (MAC),
and the broadcast channel (BC).
In the first part, we study the fundamental limits of nonco-
herent communications in terms of achievable data rate
and degrees of freedom (DoF). We consider generic block
fading in which the channel has finite differential entropy
and finite second moment. First, we derive the optimal DoF
for the noncoherent multiple-input multiple-output (MIMO)
P2P channel by using the duality approach to bound the
input-output mutual information. Second, using a similar
duality approach, we derive the optimal DoF region for the
two-user noncoherent single-input multiple-output (SIMO)

MAC, which can be achieved by time sharing between sim-
ple pilot-based schemes. Third, we derive achievable rate
and DoF regions for the noncoherent MIMO BC with spa-
tially correlated fading by exploiting the transmit correlation
diversity, which is the difference between the correlation
experienced by different users. In doing so, we carefully
design pilot-based transmission schemes based on rate
splitting, product superposition, and a combination of them
to effectively transmit signals in both the common and mu-
tually exclusive parts of the correlation subspaces.
In the second part, we design the constellation and effi-
cient detection schemes for noncoherent communications
over Rayleigh block fading channel. First, we propose a
structured Grassmannian constellation for the SIMO P2P
channel that is simple to generate, has high packing effi-
ciency, admits a simple yet effective binary labeling, and
allows for efficient soft and hard detection. Second, we in-
vestigate joint constellation design for the MIMO MAC. We
introduce some simple and effective design criteria so as to
minimize the joint detection error, and propose some simple
constellation constructions. Third, we propose a noncoher-
ent multi-user soft detection scheme for the SIMO MAC
in spatially correlated Rayleigh fading based on expecta-
tion propagation approximate inference. This scheme has
polynomial complexity in the channel dimension while pro-
ducing accurate approximate per-user posterior marginals
leading to near-optimal error performance.
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