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To my family and Thao. ..

“You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York
and his head is meowing in Los Angeles. Do you understand this? And radio operates
exactly the same way: you send signals here, they receive them there. The only difference
is that there is no cat.”

Albert Einstein

“We live on an island surrounded by a sea of ignorance. As our island of knowledge grows,
so does the shore of our ignorance.”

John Archibald Wheeler

“But the absence of fighting or hatred or desire also means the opposites do not exist either.
No joy, no communion, no love. Only where there is disillusionment and depression and
sorrow does happiness arise; without the despair of loss, there is no hope.”

Haruki Murakami
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Résumé

Dans les communications sans fil sur des canaux a évanouissement, en particulier a
antennes multiples, la connaissance instantanée des coefficients de canal, appelés informa-
tions d’état de canal (CSI), est essentielle car elle permet d’adapter la transmission et la
réception aux conditions actuelles du canal. La communication avec CSI a priori au niveau
du récepteur est dite cohérente. En pratique, cependant, le CSI n’est pas disponible avant
la communication et doit étre estimé & un colit qui ne doit pas étre ignoré, en particulier
dans un environnement hautement mobile. Ainsi, la communication sans CSI a priori,
également appelée communication noncohérente, est un cadre plus pratique et général.
Cette these contribue a la compréhension des limites théoriques des communications non-
cohérentes, ainsi qu’a la conception d’un systeme de communication pratique noncohérent
a évanouissement par bloc. Nous considérons trois scénarios: le canal point a point (P2P),
le canal a acces multiple (MAC) et le canal de diffusion (BC).

Dans la premiere partie, nous étudions les limites fondamentales des communications
noncohérentes en termes de débit de données et de degrés de liberté (DoF) réalisables.
Nous considérons un évanouissement par bloc générique dans lequel le canal a une entropie
différentielle finie et un second moment fini. Nous établissons d’abord le DoF optimal pour
le canal P2P noncohérent a entrées multiples et sorties multiples (MIMO) en utilisant
I’approche de la dualité pour borner les informations mutuelles. Deuxiémement, en utilisant
une approche de dualité similaire, nous dérivons la région de DoF optimale pour le MAC
SIMO a deux utilisateurs, qui peut étre obtenue par partage de temps entre des schémas
a pilotes simples. Troisieme, nous dérivons les régions débit et DoF réalisable pour le
BC MIMO noncohérent avec un évanouissement spatialement corrélé en exploitant la
diversité de corrélation de transmission, qui est la différence entre la corrélation subie
par différents utilisateurs. Ce faisant, nous concevons soigneusement des schémas de
transmission basés sur des pilotes et sur le partage de débit, la superposition de produits
et une combinaison de ceux-ci pour transmettre efficacement des signaux dans les parties
communes et mutuellement exclusives des sous-espaces de corrélation.

Dans la deuxiéme partie, nous concevons la constellation et les schémas de détection
efficaces pour les communications noncohérentes sur le canal d’évanouissement de type
Rayleigh par bloc. Premiérement, nous proposons une constellation Grassmannienne
structurée pour le canal P2P SIMO qui est simple a générer, a une efficacité d’empilement
élevée, admet un étiquetage binaire simple mais efficace et permet une détection efficace
douce et dure. Deuxiemement, nous étudions la conception de constellation conjointe
pour le MAC MIMO. Nous introduisons des critéres de conception simples et efficaces
afin de minimiser I'erreur de détection conjointe et proposons quelques constructions de
constellation simples. Troisiemement, nous proposons un schéma de détection souple
multi-utilisateurs noncohérent pour le MAC SIMO a ’évanouissement de Rayleigh corrélé
spatialement basé sur I'inférence approximative par propagation d’espérance. Ce schéma
présente une complexité polynomiale dans la dimension du canal tout en produisant des
marginaux postérieurs approximatifs par utilisateur précis conduisant a des performances
d’erreur quasi-optimales.

Mots clés: communications noncohérentes, évanouissement par bloc, information
sur I’état du canaux, degrés de liberté, constellations Grassmanniennes, détection multi-
utilisateurs
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Abstract

In wireless communication over fading channels, especially multiple-antenna communica-
tion, the instantaneous knowledge of channel coefficients, so-called channel state information
(CSI), is critical because it enables to adapt the transmission and reception to current
channel conditions. The communication with a priori CSI at the receiver is said to be
coherent. In practice, however, CSI is not granted for free prior to communication and
needs to be estimated at a cost that should not be ignored, especially in a highly mobile
environment. Thus, communication without a priori CSI, also known as noncoherent
communication, is a more practical and general framework. This thesis contributes to
the understanding of the theoretical limits of noncoherent communications, as well as the
design of a practical noncoherent communication system in block fading. We consider three
scenarios: the point-to-point (P2P) channel, the multiple-access channel (MAC), and the
broadcast channel (BC).

In the first part, we study the fundamental limits of noncoherent communications in
terms of achievable data rate and degrees of freedom (DoF'). We consider generic block
fading in which the channel has finite differential entropy and finite second moment. First,
we derive the optimal DoF for the noncoherent multiple-input multiple-output (MIMO)
P2P channel by using the duality approach to bound the input-output mutual information.
Second, using a similar duality approach, we derive the optimal DoF region for the two-user
noncoherent single-input multiple-output (SIMO) MAC, which can be achieved by time
sharing between simple pilot-based schemes. Third, we derive achievable rate and DoF
regions for the noncoherent MIMO BC with spatially correlated fading by exploiting the
transmit correlation diversity, which is the difference between the correlation experienced
by different users. In doing so, we carefully design pilot-based transmission schemes based
on rate splitting, product superposition, and a combination of them to effectively transmit
signals in both the common and mutually exclusive parts of the correlation subspaces.

In the second part, we design the constellation and efficient detection schemes for
noncoherent communications over Rayleigh block fading channel. First, we propose a
structured Grassmannian constellation for the SIMO P2P channel that is simple to generate,
has high packing efficiency, admits a simple yet effective binary labeling, and allows for
efficient soft and hard detection. Second, we investigate joint constellation design for the
MIMO MAC. We introduce some simple and effective design criteria so as to minimize
the joint detection error, and propose some simple constellation constructions. Third, we
propose a noncoherent multi-user soft detection scheme for the SIMO MAC in spatially
correlated Rayleigh fading based on expectation propagation approximate inference. This
scheme has polynomial complexity in the channel dimension while producing accurate
approximate per-user posterior marginals leading to near-optimal error performance.

Keywords: noncoherent communications, block fading, channel state information,
degrees of freedom, Grassmannian constellations, multi-user detection
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The meaning of an acronym is usually indicated once, when it first occurs in the text.
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AWGN additive white Gaussian noise

BC broadcast channel

BER bit error rate

bpcu bits per channel use

BSTM Beta-variate space-time modulation
CDF commulative distribution function

CDI channel distribution information

CDMA code-division multiple access

CSI channel state information

CSIR channel state information at the receiver
CSIT channel state information at the transmitter
DoF degrees of freedom

EP expectation propagation

EPAK expectation propagation with approximate Kronecker
FDMA frequency-division multiple access

GMI generalized mutual information

11D independent and identically distributed
JSDM joint spatial division multiplexing

KL Kullback-Leibler

LLR log-likelihood ratio

LS least-squares

LTE long-term evolution

MAC multiple-access channel

MGF moment generation function

MIMO multiple-input multiple-output

MISO multiple-input single-output

xiii

The



Xiv

ML
MLC
MMSE
MSD
MSE

NND
NP

OFDM

P2P
PAM
PDF
PEP
PMF
POCIS

PSK
QAM
RWBS

SER
SESD
SIA
SIMO
SISO
SNR
SVD

TDM
TDMA

URLLC
USTM

w.l.o.g.
w.r.t.

ZF

maximum likelihood
multilevel coding

minimum mean square error
multistage decoding

mean square error

nearest-neighbor decoding
non-deterministic polynomial-time

orthogonal frequency division multiplexing

point-to-point

pulse amplitude modulation

probability density function

pairwise error probability

probability mass function

Projection onto the Orthogonal Complement of the Interference
Subspace

phase shift keying

quadrature amplitude modulation
repeated weighted boosting search

symbol error rate

Schnorr-Fuchner sphere decoder
successive interference approximation
single-input multiple-output
single-input single-output
signal-to-noise ratio

singular value decomposition

time division multiplexing
time-division multiple access

ultra-reliable low-latency communication
unitary space-time modulation

without loss of generality
with respect to

zero forcing
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Notation

In general, we denote scalars with normal-font letters, e.g., x, vectors with lower-case
bold-font letters, e.g., £, and matrices with upper-case bold-font letters, e.g., X. For
random quantities, we use nonitalic letters with sans-serif fonts, e.g., a scalar x, a vector v,
and a matrix M. Deterministic quantities are denoted with italic letters, e.g., a scalar x, a
vector v, and a matrix M. We adopt the column convention for vectors.

Linear Algebra

|lv]| Euclidean norm of a vector v

| M ||r Frobenius norm of a matrix M

M* conjugate of M

M7 (resp. M77) transpose of M (resp. M~ 1)

M" (resp. M) conjugate transpose of M (resp. M~1)

M Moore-Penrose (pseudo) inverse of M, ie., M! =
(M"M)~1M"

tr(M) trace of M

rank (M) rank of M

det(M) determinant of M

oi;(M) the i-th eigenvalue of a matrix M in decreasing order, unless
otherwise specified

M>0 M is positive semi-definite

M{>My;or Mo<M; M;—-M;>0

M| a matrix having the same singular vectors as M and singular

values as the absolute value of the singular values of M, i.e.,
if M =UXV", then |M| = UXV" where X is the component-
wise absolute value of ¥

[M]; ; (1,7)-th element of M

M ; i-th column of M

M. ; sub-matrix containing the i-th to j-th columns of M

diag(z1,...,xN) diagonal matrix with diagonal entries z1,...,zn

Span(U) the column space of a “tall” matrix U

XY Kronecker product of X and Y

I, m x m identity matrix (the dimension m is omitted when
confusion is not likely)

e; i-th column of I, i.e., the canonical basis vector with 1 at

position ¢ and 0 elsewhere, where the dimension will be
specified



0,, (resp. 1,,) m x 1 all-zero (resp. all-one) vector (the dimension m is omitted
when confusion is not likely)

0. xn (resp. ly,xn) m x n all-zero (resp. all-one) matrix (the dimensions m and n
are omitted when confusion is not likely)

Analysis

R (resp. C)
J=v-1
f{e]z(z) (resp. Im(z))

||

o

[, x
A:=BorB=:A

A} = 1 if A is true
0 if A is false
4(t)

(%) = mr {n > £}

v = 0.5772
e=3r", L ~ 271828
()"

w(k) ——7+ZZ 15

)i= [Pz e dz, >0
,) fooxl “*dz, x>0,y >0

Y(z,y) = [§ 2* te*dz, >0,y >0
Tp(a) = 7™ =D2 T T(a—k+1)

Ey(x) = f;oe—;tdt

set of real (resp. complex) numbers

imaginary unit

real (resp. imaginary) part of z € C

set of integers {1,2,...,n}

absolute value of

proportional to

the conventional or Cartesian product (depend-
ing on the factors)

A is defined by B

indicator function

Kt =0}

binomial coefficient, i.e., the number of k-element
subsets of an n-element set [1, (3.1.2)]

the inverse of a function f(-)

Euler’s constant [1, (6.1.3)]
Euler’s number [1, (4.1.17)]

max{x,0}

the exponential function where the argument is
a scalar or a square matrix [1, (4.2.1)]

natural (base-e) logarithm of z [1, (4.1.1)]
base-a logarithm of z; a is omitted if the base is
immaterial

log(max{z,1})

Euler’s (digamma) psi-function [1, (6.3.2)]

the Gamma function [1, (6.1.1)]

the upper incomplete Gamma function [1,
(6.5.3)]

the lower incomplete Gamma function [1, (6.5.2)]
the complex multivariate Gamma function

the exponential integral function [1, (5.1.1)]

there exists a constant ¢ > 0 and some x( such
that | f(z)| < clg(x)|,Vz > xg
f(z) = O(g(x)) and g(z) = O(f(z))

o f®)
A oy =0



Probability

B(4)
Ex[-] (resp. Ep[])

Gamma(k, 6)
N(C (:U'u 02)

NC(“: 2)

distributed as

the probability of an event A

the expected value of a random quantity calculated w.r.t. random
variable x (resp. distribution P)

Gamma distribution with shape k and scale 8

circularly symmetric complex Gaussian distribution of mean p and
variance o2

circularly symmetric complex Gaussian vector distribution of mean

p and covariance matrix X

Information Theoretic Functions (see Appendix 1.A)

H{(:) (resp. h(-))
D(P|Q)

I(x;y)

Topological Space

entropy (resp. differential entropy) function

the Kullback-Leibler divergence from a distribution P to a distribu-
tion @

mutual information between x and y

The Grassmann manifold G(K”, M) is defined as the space of M-dimensional subspaces in
K” with K = C or K = R. In particular, G(KT, 1) is the Grassmannian of lines. We use a
truncated unitary matrix U € CT*M je., U"U = I,;, to represent its column span, which
is a point in G(K?, M). The chordal distance between two points represented by U and

Uy is d{Uy,Us) = /M — ||[UU||%. (See Appendix 1.B.)

Commonly Used Symbols

The following symbols are used repeatedly in the thesis, possibly with a user index.

SRR IQASR

=
~
aQ

X/ x/ x
Y/y/y
H/h/ h
Z/z/z

number of transmit antennas
number of receive antennas
number of users

coherence interval

capacity

achievable rate

distance / degrees of freedom
power

number of bits

symbol error probability
constellation

transmitted signal

received signal

channel

noise

correlation/covariance matrix
matrix rank
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Chapter 1

Introduction

1.1 Wireless Communications

1.1.1 The History and Evolution of Wireless Communications

Wireless communication' is commonly understood as the electromagnetic transfer of
information between points that are not connected by an electrical conductor [6]. In
the history, the early communications between separated points were done by means
of signals (i.e., changes in a physical quality) that human senses can directly perceive,
e.g., auditorily such as shouts and drums, or visually such as smokes, flashes and flag
semaphore. The electromagnetic transfer of information started when James C. Maxwell
postulated the transmission of electromagnetic waves in 1864, and then Heinrich Hertz
verified and demonstrated it in 1880 and 1887, respectively. This effect allows to use
electromagnetic waves as information carriers with the help of electronic devices at the
transmitter (source) and the receiver (destination). Marconi implemented a wireless
telegraph and patented a complete wireless system in 1897. With the development of
integrated circuits, electromagnetic wireless communication grew rapidly as radio and
television broadcasting became widespread worldwide. Wireless systems evolved from the
transmission of analog signals to the transmission of digital signals composed of bits, which
was rooted in the seminal work of Claude Shannon in 1948 [7] and deployed in the 1980s.

Since the 1980s, the evolution of mobile wireless systems have been progressing from
one generation to the next every nearly ten years. Each generation features different
regulation, services, and innovations [8], [9]. In the first generation (1G), each country
developed its own (analog or digital) system which provided only basic voice calling and
fax service at a high price. The second generation (2G) was deployed in the 1990s and
provided improved voice calls, short messaging service (SMS), and low-rate digital data
services, such as e-mail and personal information management. The dominant standard
was the GSM (first stood for Groupe Spécial Mobile and then Global System for Mobile
communications) started in Europe, which was based on narrowband frequency-division
multiple access (FDMA)/time-division multiple access (TDMA). Other standards included
the American IS95 based on code-division multiple access (CDMA) and the Japanese
Personal Digital Cellular (PDC) based on TDMA. In preparation for the third generation

'Standard texts on wireless communications include [2]-[5].
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(3G), the Third Generation Partnership Project (3GPP) was established for the specification
of the Universal Mobile Telecommunication System (UMTS), whose main air interface was
wideband CDMA (WCDMA). It provided higher-rate data services, but encountered fierce
competition from wireless local area network (WLAN). The fourth generation (4G) in the
2010s saw the success of long-term evolution (LTE) and LTE-Advanced, which are based
on orthogonal frequency division multiplexing (OFDM) using multiple carriers. It achieves
a high speed in both downlink and uplink, and facilitates a wide range of services that
bring ever-increasing revenue.

The fifth generation (5G) [10], [11] has been under development since early 2010s. 5G
networks are envisioned to support a large number and heterogeneity of end devices, i.e.,
the internet of things (IoT) [12]. Three main use cases targeted in 5G are enhanced mobile
broad band (eMBB), ultra-reliable low-latency communication (URLLC), and massive
machine-type communications (mMTC) [13]. 5G networks have been tested in many
countries and are now in the early stage of commercial deployment [14]. Meanwhile, the
research activities towards the sixth generation (6G) have been initiated. Although it
remains unclear what 6G will be, many (speculative) visions for 6G have been provided
from different perspectives in, e.g., [15]-[20].

1.1.2 Wireless Propagation

In this subsection, we review the propagation effect of electromagnetic waves through a
wireless channel. Electromagnetic waves are emitted by an antenna at the transmitter and
intercepted by an antenna at the receiver. In principle, one could solve the electromagnetic
field Maxwell’s equations to find the received waves at the receive antenna. However, since
this is too complex, simpler models are used to approximate the signal propagation. A
transmitted wave is reflected, scattered, and diffracted when it interacts with objects in
the environment as it propagates toward the receiver. Therefore, the receiver observes
multiple copies of this wave at different delays, each experiences a specific attenuation.
In other words, the wave travels through multiple paths, gets attenuated in each path,
and arrives at the receive antenna at different delays. Furthermore, due to the relative
movement of the transmitter, receiver, and objects in the environment, the attenuation
factors, i.e., channel gains, vary over time. This effect is called fading. Let a,(t) be the
complex channel gain of path n at time ¢. Consider a transmission of a signal x(t) at time
t and carrier frequency f., the received signal is the superposition of the all the multipath
components as [4, Eq.(3.2)]

Np(t)
y(t) = D an(t)z(t — (1)) =t (1.1)

n=0

where n = 0 corresponds to the line-of-sight path, NNV, (t) is the number of resolvable
multipath components and 7,(t) is the delay of the n-th path at time ¢. The received
signal can also be expressed as [4, Eq.(3.5)]

y(t) = ( /_ O:O h(r, )t — 7) d7-> e et (1.2)

where [4, Eq.(3.6)]

Np(1)
h(rt) =Y e 2 fem®) g ()5 (T — (1)) (1.3)
n=0
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is the channel impulse response at time ¢ and delay 7, i.e., the response of the channel at
time ¢ to an impulse transmitted at time ¢ — 7. In this way, the Maxwell’s equations are
replaced by an input/output relation of a linear time-varying system.

In general, due to the random nature of the environment, the attenuation gain a,(t),
the delay 7, (), and the number of paths N,(t) are random. Therefore, the channel impulse
response h(7,t) is modeled as realization of a random variable h(7,¢). It is commonly
assumed that h(7,t) is a Gaussian process, when the number of multipath components
N, (t) is large, by evoking the central-limit theorem. Another common assumption is that
the phase of each multipath component is uniformly distributed. Under these assumptions,
the channel impulse response statistics are fully characterized by the mean E[h(7,t)] and
autocorrelation function [4, Eq.(3.50)]

An (11,725 t1,t2) := E[h* (71, t1)h(72, t2)]. (1.4)

If the joint statistics of h(7y,¢1) and h(7g,t2), in particular Ay (71, 2;t1,t2), depend only
on the time difference At = to — ¢1, the channel is said to be wide-sense stationary (WSS).
Furthermore, if the channel response of a given multipath component at different delays
are uncorrelated, the channel has uncorrelated scattering (US). WSS and US are reasonable
assumptions in practice.

In the frequency domain, the channel frequency response is given by the Fourier
transform of h(7,t) with respect to (w.r.t.) 7 [4, Eq.(3.57)]

H(f, ) = / h(t, 7)e 727t dr. (1.5)
Given that h(t,7) is a WSSUS (i.e., WSS and US) Gaussian process, H(f,t) is also a
WSSUS Gaussian process with autocorrelation function

An(Af; At) = EH*(f, O H(f + Af,t + At)], (1.6)

which depends only one the time difference At and frequency difference Ay. Two channel
frequency responses at the same time instant, i.e. At =0, and frequency separation Af are
approximately independent if Ay(Af;0) =~ 0. The frequency B, where Ay(Af;0) ~ 0 for
all Af > B, is called the coherence bandwidth of the channel. B, is inversely proportional
to the delay spread of h(7,t) in time. In general, if the transmitted signal has narrow
bandwidth B < B, then the channel response is roughly constant across the entire signal
bandwidth. This is referred to as flat fading. On the contrary, if B > B., then the channel
response varies widely across the signal bandwidth. This is referred to as frequency-selective
fading. On the other hand, the autocorrelation Ay(Af; At) for Af = 0 characterizes how
the channel responses decorrelates over time. If Ay(0; At) =~ 0, then the channel measured
at time instants separated by At are approximately uncorrelated and therefore independent.
The time duration T, where Ay (0; At) =~ 0 for all At > T, is called the coherence time
of the channel. It is inversely proportional to the Doppler spread. A block of coherence
bandwidth B, and coherence time 7, is called a coherence block, and the total length
T =T.B. of a coherence block is called coherence interval.

By a shift in the frequency domain (i.e, down-converting) of the received signal (1.2),
we have an equivalent baseband representation. Furthermore, by sampling and considering
an additive noise, we obtain a discrete-time baseband model given by [5, Eq.(2.39)]

y[m] = Z hy[m|x[m — 1] + z[m], (1.7)
l
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where at sampling instant m/B (B is the bandwidth), y[m| and x[m] are respectively the
samples of the received and transmitted signal in baseband, z[m] is the low-pass filtered
noise, and

Np(t)
hyfm] == > e e/ Bla (m/B) sinc(l — 7,(m/B)B), (1.8)
n=1
with sinc(t) := %, is the I-th complex channel filter tap. h;[m]| and z[m] are also

normally assumed to be (discrete) Gaussian process.

1.1.3 The MIMO Channel

We now assume that the antenna arrays at the transmitter and the receiver have multiple
elements. Specifically, the transmitter is equipped with M antennas and the receiver with
N antennas. We assume a frequency-flat channel and use a statistical channel model as in
the previous subsection with a single-tap discrete-time baseband representation.? At time
m, the transmitter sends a signal x;[m] from the j-th antenna. The received signal at the
t-th antenna is
M
yilm] =) _ hij[m]x;[m] + zi[m], i€ [N], (1.9)
j=1

where h;; is the channel coefficient from the j-th transmit antenna to the i-th receive
antenna with arbitrary distribution, and z;[m] is the additive white Gaussian noise (AWGN)
following the N¢(0,1) distribution. Using the vector/matrix representation

[ x1[m] y1[m] z1[m]
il = ||y = 2l =
| xar[m] yn|[m] zn[m]
hll[m] h]g[m] e th[m]
_th[m] hNg[m] hNM[m]

we obtain the following channel model

y[m] = H[m|x[m] + z[m]. (1.11)
This channel is referred to as a multiple-input multiple-output (MIMO) point-to-point
(P2P) channel. A conceptual illustration is given in Fig. 1.1.
1.1.3.a Fundamental Limits of MIMO Channel

At the transmitter, using a channel coding scheme, information is encoded into mes-
sages {M} where each message is represented by a channel codeword. Then each
codeword is mapped into a sequence of Ny transmitted complex vector-valued symbols
x[1],x[2],...,x[N;]. Due to the regulation and hardware limits, the transmitted signal is
subject to a power constraint as

1 Y an2
& o Il < P. (1.12)
S =1

2In the remainder of the thesis, we consider the baseband representation of the channel model.
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FI1GURE 1.1: Conceptual illustration of a MIMO channel with M transmit antennas and N receive
antennas.

That is, P is the maximal total transmit power from M transmit antenna in average. Since
the noise has unit power, P is also the average power ratio between the transmitted signal
and the noise at each receive antenna, and is referred to as the signal-to-noise ratio (SNR)
of the channel. The receiver detects the transmitted symbols using an maximum likelihood
(ML) detector as

(X[} = arg max pUYEI e [ X)), (1.13)

i=1

where the maximization is over all possible codewords subject to the power constraint
(1.12), {y[i]}Ys, are the corresponding received signals, and the conditional probability
p({y[i]}, | {x[i]}Y>,) is implicitly conditioned on the knowledge about the channel and
noise available at the receiver.® Then, the receiver decodes the detected symbol sequence to
obtain an estimate M of the message M. The reliability of this information transmission is
captured by the error probability IP(M #* /\/l) which depends on the codelength Ns. One
would be interested in finding the maximal rate at which information can be transmitted
and received reliably at the receiver. This quantity is the called the (Shannon) capacity of
the channel and defined as follows.

Definition 1.1 (Channel capacity). The capacity C' of the channel is the mazimal data
rate, i.e., the maximal number of information units needed to represent a message M
normalized by the communication time, such that there exists a channel coding scheme
achieving arbitrarily low error probability ]P’(M # /\/l) as the codelength Ny goes to infinity.

The channel capacity is normally measured in bits per channel use (bpcu). From the
definition, reliable communication is not possible, even with infinite codelength, if one
transmits at a rate above the channel capacity.

Since our considered channel (1.9) is memoryless, i.e., the output y depends only on the
input x at the time and is independent of all previous inputs, the channel capacity is given
by [21], [22]

c(P) = I(x;y), (1.14)

max
px: B[x[I?]<P

where I(x;y) is the mutual information (see Appendix 1.A) between two distributions py
and py implicitly conditioned on the available knowledge about the channel and noise.

3We assume that the distribution of the channel and the noise are known. The availability of the
instantaneous value of the channel matrix will be discussed in subsequent subsections.
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A capacity-achieving input distribution is the solution to the maximization in (1.14). If
one transmits with a given input distribution px satisfying the power constraint but not
necessarily capacity achieving, then the mutual information

R(P) = I(x;y) (1.15)

is an achievable rate of the channel. In many situations, deriving the channel capacity or
achievable rate is very challenging, and one can resort to an asymptotic coarse representation
of these quantities given by the degrees of freedom (DoF). An achievable DoF and the
optimal DoF of the channel are respectively defined by

P
and  doptimal := lim cp)

R(P)
dachievable 1= i =
hievabl m P—oo logy(P)

P—o0 logy (P) (1.16)

With this, the achievable rate and capacity behave in the high-SNR regime as R(P) =
dachievable 1082 (P) + o(logy P) and C(P) = doptimal logs(P) + o(logy P). Therefore, the DoF
is also called the pre-log factor of the rate/capacity. Roughly speaking, the DoF is the
number of additional bits that can be transmitted reliably when the signal power is doubled.

1.1.3.b Practical Design for a MIMO Channel

Assuming that the channel H is independent over time, one can simplify the ML detection
(1.13) to the symbol-by-symbol detection

X = argm)gxp(y\x). (1.17)

Constellation Design

Although the capacity-achieving input distribution is often continuous, in practice, the
transmitted signal x is normally drawn from a finite discrete set to reduce complexity.
This set is referred to as the constellation and each element is called a constellation
point/symbol. Consider a constellation X' := {z1,Z2,...,Z x|} with ﬁ,‘ Zlﬁl |z;]|?> < P.
Let x be uniformly drawn from X, i.e., the input distribution is px(z) = |71‘]1{:1: € X'}, then
the achievable data rate is given as

R(P, X) = I(x;y) (1.18)
_Elo p(y[x)
= E|log, T xR :m)] (1.19)
= log, | X| — E[logz Zzexp](’)((ﬂ’)( - x)} bpcu, (1.20)

where the expectation is over the joint distribution of the input and output. Here, log, |X|—
the number of bits required to represent a constellation symbol—is the rate achievable in

3, v ply=2)
Tk

X should be designed so as to maximize the achievable rate:*

the noiseless case, and E {logQ ] is the rate loss due to noise. The constellation

X* = argm/‘z}xR(P, X), (1.21)

“In principle, the constellation and the probability mass function (PMF) of the transmitted signal in
this constellation should be jointly optimized. The optimization of this PMF for a fixed constellation is
called signal shaping [23].
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where the optimization space can be the Cartesian product of M instances of the unit
complex disc

D(0,1):={z€C: |2]* <1}, (1.22)

scaled by the transmit power per antenna such that the power constraint (1.12) holds.
In the large constellation regime |X'| — oo, the uniform distribution of the signal x in X’
converges to a continuous distribution. The constellation should be designed such that this
limit distribution is close to the capacity-achieving input distribution, and as a consequence,
the achievable rate converges to the channel capacity.

Another constellation design criterion is to minimize the detection error P.(X) =

P(x #x) = ik DI P(x £ 2 [x = 27):
x* :argm)%nPe(X). (1.23)

Since the error event {X # x; |[x = z;} is the union of the pairwise error events {p(y |z;) >
p(y |z;) |x = @;} for all j # i, we have the following union bound

x| x|
Z Y. Plly|z)) > ply|zi) |x = z:). (1.24)
=1 j=1,j#i

Therefore, the criterion (1.23) amounts to

Xt = i P , N x = z;). 1.25
argmin _max (ply |z;) > ply|zi) [x = x;) (1.25)

Efficient Detection Design

Due to the discrete domain of the symbols, the ML detection (1.17) is often non-
deterministic polynomial-time (NP) hard [24]. To solve it, one has to enumerate the whole
constellation, which is cumbersome if the constellation size is large. Therefore, from a
practical point of view, it is favorable to use a sub-optimal detection with low complexity.
If the likelihood function metric p(y |x) is replaced with a sub-optimal detection metric
p(y |x) (which might be easier to compute) in (1.17), then according to [25, Section II],
the highest data rate reliably achievable—so-called the mismatched rate—is lower bounded
by the generalized mutual information (GMI) given by

A Py | %)*
R P X, p)=supE|lo 1.26
ani(P, X, p) = sup l 8 Plx=2)ply|z)° (1.26)
ZmeXﬁ(y,x)s}
= E|l Xl —1 AR A 1.27
sup log2 4] ~ o By [x)° (1.27)
. > Xﬁ(Y’-’L’)T
=1 X|—infE|l cwed PN 17 b 1.28
ogy | X| ;1210 [OgQ ply [x)* pcu, ( )

where the expectation is over the joint distribution of x and y, and the second equality
follows from the uniformity of x in X. If the constellation X has a structure, one can
also exploit this structure to design efficient detection by, e.g., decoupling (1.17) into the
detection of each component of x.
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1.1.4 Coherent Communications: The Role of Channel State Informa-
tion

The instantaneous value of H is referred to as channel state information (CSI). If the
transmitter and/or receiver has this information, the communication is said to be coherent.
We assume that the channel is independent and identically distributed (IID) Rayleigh
fading so that the channel components h;; are independent and follow Mg (0,1). Let the
receiver have CSI. In this case, if the transmitter only knows the channel distribution, the
capacity was derived by Telatar [26] and Foschini and Gans [27] as

C(P) =Ey [logQ det (IN + ﬁHHHﬂ bpcu, (1.29)

and the capacity-achieving input distribution is the circularly symmetric complex vector
Gaussian N¢ (0, %I ). Furthermore, if CSI is also available at the transmitter (CSIT),
then the capacity is given by

C(P) = Ey { log, det(I'n + HQHH)} bpcu, (1.30)

max
QeCMXM; Q=0,tr(Q)=P
and the capacity-achieving input distribution is adapted to each realization of H as
Nc(0,Q i (H)) where Q. (H) is the solution to the maximization in (1.30) when H = H.
The eigenvectors of Q,,(H) are the same as the right singular vectors of H, while the
eigenvalues of @, (H) are obtained from the singular values of H by the waterfilling power
allocation [26], [28]. In both cases, the capacity scales as

C(P) = min{M, N}logy P + O(1), (1.31)

thus the optimal DoF is given by min{M, N}. In fact, for each realization of H, the MIMO
channel can be converted to min{M, N} parallel, non-interfering single-input single-output
(SISO) channels through a singular value decomposition (SVD) of H. Each parallel channel
has gain corresponding to a singular value of H and has one DoF. Therefore, with CSI, the
capacity scales up linearly with the number of antennas.

In coherent communications, one normally uses a scalar constellation C containing a set
of points in the disc D(0,1) (1.22) for each component of x (thus X = {p[x1 ... zum]" :
z; € C,i € [M]} where p is a scaling factor). The most common scalar constellations are
pulse amplitude modulation (PAM), phase shift keying (PSK), and quadrature amplitude
modulation (QAM), where the constellation points differ respectively in their amplitude,
phase, and both amplitude and phase. A diagram of these constellations is shown in
Fig. 1.2.

Given the IID Rayleigh fading matrix H = H and x = &, the channel output y is a
Gaussian vector with mean Hax and covariance matrix Iy, thus the likelihood function is
given by

1
py|x,H(y’x7H) = W—Nexp(—Hy—H.'l:HQ). (132)

Therefore, the ML detection (1.17) giveny = y and H = H is equivalent to the least-squares
(LS) problem

:i:arggéi)I(lHy—Hm||2. (1.33)

This is also referred to as nearest-neighbor decoding (NND) since it looks for the closest (in
terms of Euclidean distance) symbol z to y in the subspace of H. The coherent detection
problem (1.33) has been investigated extensively in the literature. Since it is NP-hard [24],
many sub-optimal schemes have been proposed to reduce complexity, including:
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F1GURE 1.2: Diagram of three common scalar constellations: PAM, PSK, and QAM. The circle is
the boundary of the disc D(0,1).

e linear detectors consisting in component-wise demapper of & = Ty, such as matched-
filter with T = H", zero forcing (ZF) with T = (H"H) " 'H" =: H' (assuming
N > M), and minimum mean square error (MMSE) with T = (H"H + I y) *H";

o interference cancellation aided detectors, such as successive/parallel/multi-stage /decision-
feedback interference cancellation;

e tree-search based detectors, such as sphere decoders;
e lattice-reduction aided detectors.

In short, CSI enables to adapt the transmission and reception to the current fading
state. Comprehensive surveys of coherent MIMO transmission and detection can be found
respectively in [29] and [30].

1.1.5 The Cost of Acquiring CSI

Although coherent communication exploits effectively the extra spatial resources of a
MIMO channel to increase the spectral efficiency, it relies on the availability of CSI. In
practice, since the channel matrix is random and fades over time and frequency, its value is
not given a priori and has to be estimated. Typically, channel estimation is carried out by
sending reference symbols, so-called pilots, known to the receiver in some channel uses of a
coherence block. The receiver estimates the channel in these channel uses using the known
pilots, then inter/extrapolates them to infer the channel gains of the remaining channel
uses within the coherence block. By treating the channel estimate as the known channel,
coherent communication can be performed in these remaining channel uses. This is called a
pilot-based scheme/approach [31]. To properly analyze the system performance, one needs
to take into account the cost of channel estimation and the channel estimation error.

Since the pilot symbols are known to the receiver, they do not carry any information.
On the other hand, they occupy a fraction of communication time/frequency resource. In a
MIMO channel with M transmit antennas, one would need to send at least M pilot symbols
for the receiver to determine M channel vectors corresponding to the M antennas [31].
Let T = T.B. be the coherence interval, then the fraction of resource spent for channel
estimation is % and there remains a 1 — % fraction of the coherence block for coherent data
transmission. In a highly mobile environment where the channel state changes rapidly, the
coherence interval T is short, and the fraction of pilot transmission can be disproportionate

to data transmission, especially if the number of antennas is large.
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Channel estimation error has negative impact on both channel throughput and error
performance. On one hand, if one treats the channel estimate as the true channel and
disregard any inaccuracy, the optimal detector under this assumption is a mismatched
detector for the channel with channel estimation error, and the channel throughput is
determined by the mismatched rate. On the other hand, even if the statistics of the channel
estimation error is taken into account, this residual error imposes a secondary noise which
increases the total noise power and reduces the channel capacity for a given signal power.
The effect of imperfect channel knowledge on channel capacity has been investigated in,
e.g., [32], [33] and on detection error in, e.g., [34], [35].

In some scenarios, pilot-based channel estimation becomes difficult or even impossible.
For example, in the uplink of a multi-user system, pilot sequences are assigned per user
and orthogonally across users. If the total number of users is larger than the coherence
interval (but probably only a random number of users are active at a time), pre-assigning
mutually orthogonal pilot sequences to every user present in the system is not possible.
One can consider non-orthogonal pilots, but accurate CSI acquisition is still challenging.

Communication without a priori CSI at any node is said to be noncoherent. This
framework provides a more realistic standpoint to system analysis and design. Noncoherent
communication is also a more general framework since, as aforementioned, one can first
estimate the channel and then perform coherent communication. Nevertheless, sequen-
tial /joint channel estimation and coherent data detection might not be optimal. When
the cost of channel estimation is significant, the channel estimation error is severe, or
pilot-based channel estimation becomes inconvenient/impossible, it might be beneficial to
refrain from doing it by using a communication scheme that does not rely on the knowledge
of CSI. Noncoherent communication accounts for such a scheme.

In this thesis, we focus on noncoherent communications. We review the state-of-the-art
of noncoherent communications in the next section.
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1.2 Noncoherent Wireless Communications

In this section, we provide an overview of the state-of-the-art of noncoherent wireless
communications, as well as the questions that we want to answer in this thesis.

1.2.1 Assumptions

Throughout this section, we consider the following assumptions on the fading coefficients.

1.2.1.a Channel Information Availability

e Channel Distribution Information: The distribution of the channel coefficients, so-
called channel distribution information (CDI), is assumed to be known to all the
communicating nodes. This is because CDI characterizes the macroscopic propagation
effects that are stable, and thus can be tracked with negligible communication
resources. In particular, the channel statistics, such as the mean and covariance, are
assumed to be known.

e No Channel State Information: We assume that the instantaneous value of the
channel coefficients, i.e. CSI, is not known at any node.

1.2.1.b Channel Variation

o Stationary Fast Fading: In an extremely highly mobile environment, the channel
coefficients can be assumed to be mutually uncorrelated. In this case, the random
channel process is stationary [36].

e Block Fading: The block fading assumption refers to the case where the channel
coefficients within a coherence block of length T' = T.B, are highly correlated such
that they can be considered unchanged within the block. Furthermore, the channel
coefficients in different blocks are assumed to be independent and identically dis-
tributed. The block fading model approximates, in a tractable manner, a continuous
fading process, such as Jakes’ [2], by a piecewise-constant process. The inter-block
independence is also relevant for a system with, e.g., block interleaving, random
TDMA, frequency hopping, or sporadic transmissions, in which the gap between
successive transmissions (to the same receiver) is large or indefinite. The special case
T =1 coincides with stationary fast fading. In the multi-user case, we assume that
the coherence blocks have equal length and are synchronous across users.? Because
the channel coefficients are statistically identical between different coherence blocks,
one can focus on a single representative coherence block.

1.2.1.c Channel Distribution

For a channel matrix H, either of following assumptions on its distribution will be considered.

o IID Rayleigh Fading: the entries of H are independent and identically Gaussian
distributed.

5The case where the coherence blocks of different users are asynchronous and unequal in length, so-called
coherence diversity, was investigated in [37].
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e Generic Fading: The fading is said to be generic if the channel matrix has finite
differential entropy® and finite second moment:

h(H) > —oc0, E[[H[}}] < oo. (1.34)
The IID Rayleigh fading is a special case of generic fading.

o Spatial Correlated Fading: In practice, the channel coefficients between different
antennas are often correlated, i.e., the channel gains and directions are not inde-
pendent: the received signal gain in some spatial directions are larger than in the
others. The spatial correlation can stem from the propagation environment or the
spatially dependent patterns of the antennas. We consider the Kronecker (separable)
correlation model

1. 1
H=R?HR;?, (1.35)

where R, € CN*N and R, € CM*M are deterministic and known correlation matrices
at the receiver and transmitter sides, respectively; H may have IID Gaussian entries
(spatially correlated Rayleigh fading) or follow a generic distribution as in (1.34)
(spatially correlated generic fading).

In the following, we focus on the P2P channel, the multiple-access channel (MAC), and
the broadcast channel (BC). For other channels, refer to, e.g., [39] for the interference
channel, [40], [41] for the relay channel, and [42] for the two-hop diamond network.

1.2.2 The Point-to-Point Channel
1.2.2.a Channel Model

hii
X1 ——> oot —Pp—> Y1 —
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F1GURE 1.3: Conceptual illustration of a MIMO P2P channel with M transmit antennas and
N receive antennas in block fading. Each transmitted signal vector x; € CT contains the scalar
symbols transmitted from antenna i during a coherence block of length T

We consider an M x N MIMO P2P channel as in Section 1.1.3 but with joint transmission
within each coherence block as illustrated in Fig. 1.3. During a coherence block b, the
transmitter sends an M x T signal matrix X[b] across M antennas and 7' channel uses, and
the receiver receives an N x T signal matrix

Y[B] = HBJX[b] + Z[b], b=1,2,..., (1.36)

5The fading in which the channel matrix has (negative) finite differential entropy is so called regular
fading [38].
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where Z[b] € CV*T is the AWGN with ITD N¢(0,1) entries independent of H. We consider
the power constraint

1 14
ST IXEIR < P, (L37)
b=1

where v is the number of the blocks spanned by a channel codeword. P is the SNR of the
channel.

1.2.2.b Fundamental Limits and Capacity-Achieving Signal

The capacity of the noncoherent P2P channel has been investigated in a large body of work.
In general, the explicit capacity is unknown and only approximations in the extreme-SNR
regime are known in some settings. A commonly considered setting is the IID Rayleigh
fading in which the components of H are IID Gaussian random variables.

T =1 (stationary fast fading)

Under the IID Rayleigh fading assumption for the SISO channel (M = N = 1) in fast
fading (7" = 1), Richters conjectured in 1967 that, although the channel is continuous, the
capacity-achieving input distribution is discrete [43]. Later, Abou-Faycal et al. proved this
conjecture and showed that the capacity-achieving input distribution has a finite number
of mass points with one of them located at the origin [44]. Under the same setting, Taricco
and Elia showed that the capacity scales as aloglog P < C' < loglog P + O(1) for some
a € (0,1) when P — oo [45].

The double-logarithmic scaling of the capacity w.r.t. the SNR was proved rigorously
in a more general setting by Lapidoth and Moser in [36]. They considered a MIMO
channel under generic fading (see (1.34)). To bound the channel capacity, they used a dual
expression and replaced the maximization over channel input distribution (as in (1.14)) by
a minimization over channel output distribution (see Appendix 1.A.4). With this duality
approach, they proved that the capacity scales as

C =loglog P+ x(H) + o(1), (1.38)

where y(H) is the so-called fading number of the channel. Therefore, under fast fading,
communication at rates significantly higher than the fading number is extremely power
inefficient. Upper and lower bounds on the fading number are derived for various channels.
In particular, the fading number for IID Rayleigh fading is bounded as

—vy—1<x(H) <—N —logI'(N) + Nlog inf tr(AA"), (1.39)
AECNXN: det(AAM)=1

where v is Euler’s constant and I'(-) is the Gamma function. A sharper result for the
capacity with IID Rayleigh fading is [36, Section IV-F.2]

C = inf inf{—N+(N—a)¢(N)—logF(N)+alog6+logF<a,g)

a,8>0 §>0
N g(l P+ g oo < 1}} +o(1) (1.40)

where ¥(-),'(+), and I'(-, -) denote Euler’s psi-function, the Gamma function, and the upper
incomplete Gamma function, respectively. Note that in both (1.39) and (1.40), any choice
of the arguments in the infima leads to valid upper bounds.
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Under spatially correlated Rayleigh fast fading as in (1.35) (where H has IID N¢(0,1)
entries), Jafar and Goldsmith showed that the capacity is a Schur-concave function of the
vector of eigenvalues of Ry [46]. They also showed that the maximal possible capacity gain
due to transmit correlations w.r.t. independent fading is 10log;y, M dB.

T > 2 (block fading)

The characteristics of the capacity scaling and capacity-achieving input distribution
become rather different as soon as the channel remains constant for at least two channel
uses. One of the first studies to address the capacity in this case was done by Marzetta
and Hochward [47]. Assuming IID Rayleigh fading, they proved two important results on
the capacity and the structure of the capacity-achieving signal as follows.

e The capacity obtained with M > T is the same as the capacity obtained with M =T
transmit antennas for any 7' and N and arbitrary SNR. This is in contrast to the
unbounded linear growth of capacity with min{M, N} when CSI is available (see
(1.31)).

o The signal that achieves capacity can be represented as
X =Do, (1.41)

where D is an M x M real, non-negative, diagonal matrix, and ® is an independent
M x T isotropically distributed truncated unitary matrix. That is, the probability
density of ® is unchanged when postmultiplied by a T' x T" unitary matrix.

They also derived the capacity for the SISO case (M = N = 1), and showed that the
noncoherent capacity approaches the coherent counterpart as T'— oo for a fixed number
of antennas. This can be intuitively interpreted as when T is large, one can spend a
negligible number of channel uses to estimate accurately the channel and then communicate
coherently. The probability density of the received signal Y with isotropically distributed
truncated unitary input signal was then derived in closed form by Hassibi and Marzetta
in [48], enabling to evaluate the input-output mutual information with this input signal.
It was shown numerically that at high SNR, the mutual information is maximized for
M = min {N, %}

These results were later generalized and sharpened by Zheng and Tse in [49] for the 7' >
min{M, N}+N case and by Yang et al. in [50] for the T < M+N, M < min{N, |T/2]} case.
These papers collectively showed that, under IID Rayleigh fading, for 7' > 2min{M, N},
the capacity in the high-SNR regime is

/
C= M’(l - ]\;) log P+ ¢(T, M, N) + o(1), (1.42)

where M’ := min{M, N} and ¢(T, M, N) is a constant independent of the SNR given in [49,
Eq.(24)] and [50, Eq.(9)] as

o(T, M,N) i= log(FM'(M/)FM' (L)> + M’(l - M) log —

T T (N0 (T) T M
ML N TL[X

= log ~ 4+ = N—it1)—M 14
+— ogL+T(i§:1w( i+1) ) (1.43)

where L := min{N,T — M}, L := max{N,T — M}, v(-) is Euler’s psi-function, and T';,(a)
is the complex multivariate Gamma function. The input distribution that achieves the
capacity (1.42) inherits the structure in (1.41) with specified distributions of D and ®.7

"Gaussian signaling, which was optimal had CSI been available, is sub-optimal and its achievable mutual
information was evaluated in [51], [52].
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In general, ® is a truncated unitary and isotropically distributed matrix. Whereas the
distribution of D needs to be tailored according to the relation of the coherence interval
and the number of antennas.

o If T > M'+ N, it is optimal to let the first M’ diagonal elements of D equal \/%
and the remaining diagonal elements equal 0 with probability 1 [49]. That is to
say, only M’ transmit antennas are used to transmit the first M’ rows of ® with

equal power per antenna. The resulting input distribution is referred to as unitary
space-time modulation (USTM) [53].

o IfT < M+ N and M < min{N, |T/2]}, the squared diagonal elements of the optimal
D have the same joint distribution as the ordered eigenvalues of a positive-definite
M x M Beta-distributed random matrix [50]. That is, a power control is needed
for the signals transmitted from different transmit antennas. The resulting input
distribution is referred to as Beta-variate space-time modulation (BSTM). Note that
in this case, the achievable rate with USTM input is at a constant gap below the
capacity achieved with BSTM input. A closed-form PDF of the channel output with
BSTM input was derived in [52], allowing to evaluate the mutual information at
finite SNR.

When 1 < T < 2min{M, N}, only the pre-log factor of the capacity, so-called the DoF,
was pointed out (without a rigorous proof) in [49, Section IV-D] to be |T'/2] (1 - LT—T/ZJ)
i.e., the capacity scales as
1 7/2]

C=|T/2] (1_ >logP+O(1). (1.44)
Combining these cases, we have that the optimal DoF of the noncoherent MIMO block
fading channel is given by M* (1 - M?*) with M* := min{M, N, [T'/2]|}. Therefore, in the
high SNR regime, using more than M* transmit antennas does not increase, and in fact
may penalize, the capacity.

Takeuchi et al. derived an achievable rate for the noncoherent MIMO block fading
channel with successive decoding in the large system limit [54]. The paper [55] addresses the
noncoherent MIMO channel with asymmetric link strengths where the channel coefficients
are still independently zero-mean Gaussian distributed, but have different variances that
can scale differently with the power P. In this case, the capacity-achieving input signal
is similar to (1.35) with D replaced by a lower triangular matrix. The generalized DoF
were derived in terms of the coherence interval and the exponents in the SNR-scaling of
the channel gains for single-input multiple-output (SIMO), multiple-input single-output
(MISO), and 2 x 2 MIMO channels. In particular, the optimal generalized DoF can be
achieved for the SIMO and MISO channel by using only the statistically best receive and
transmit antenna, respectively.

When the channel is in spatially correlated Rayleigh fading with the Kronecker model
given by (1.35), Jafar and Goldsmith showed that the channel capacity depends on Ry
through only the min{T, M} largest eigenvalues of R; and is independent of the eigenvectors
of R; and R, [46]. In contrast to the result for the IID Rayleigh fading where using more
than T transmit antennas does not increase the capacity, [46] showed that the channel
capacity increases almost surely with M as long as the channel coefficients are spatially
correlated. As compared to (1.41), the capacity-achieving input is further premultiplied
with the matrix containing the eigenvectors of R; as its columns. Gohary et al. derived the
high-SNR capacity with spatially correlated Rayleigh fading within an SNR-independent
gap in [56].
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Since most of the aforementioned works in the T' > 2 case rely on the IID Rayleigh
fading assumption, the following question is still open:

Question 1.1. What is the capacity limit of the noncoherent MIMO P2P channel in
generic block fading (1.34)?

1.2.2.c Constellation Design

In this subsection, we focus on the constellation design for the T" > 2 case and, motivated
by the optimal DoF, assume that M < min {N, [T//2]}. We consider the USTM input

X= \/%4), where ®®" =1,,. (1.45)

From the previous subsection, we know that, for IID Rayleigh fading channel at high SNR,
USTM achieves a vanishing gap from the channel capacity if T' > M + N, a constant gap
from the channel capacity if 2M < T < M + N, and the optimal DoF if T' < 2M. In
addition, constellation design according to USTM has a nice geometric interpretation as
will be seen shortly.

With USTM, the input signal is invariant to rotation from the right and information
is embedded in the row space of the matrix ®. The intuition behind the optimality of
USTM is that the channel matrix H only scales and rotates the bases of the transmitted
signal matrix X without changing its subspace since the row spaces of X and the noise-free
observation HX are the same. Information is carried in the position of the row-space of ®
in the Grassmann manifold G(CT, M), which is the space of M-dimensional subspaces of
CT.# By definition, we see that X and HX represent the same element of G(CT, M). At
high SNR, the additive noise has low impact on the subspace of the output signal, and the
subspace of X can be accurately recovered from the subspace of the noisy output.

From the above observation, a constellation for noncoherent MIMO communication over
block fading can be designed as a set of representatives of M-dimensional subspaces in
CT. Equivalently, these constellations represent a set of points on the Grassmann manifold
G(CT, M), i.e., ® is drawn from

Xo={X1,Xo,..., Xy € CTM  XIX; =Iy,i € [|X]]} (1.46)
where we have that

{Span(X1), Span(X>), ..., Span(X x)) } < G(CT, M). (1.47)

We let the truncated unitary matrix X; € C'*M represent its column space Span(X;),
which is a subspace in CT and a point in G(CT, M). Therefore, we write X; € G(CT, M)
and X C G(CT, M). We refer to constellations of this kind as Grassmannian constellations.

Given the constellation size, the Grassmannian constellation construction can be inter-
preted as a packing of points in the Grassmann manifold. The ultimate packing criteria is to
minimize the detection error under noisy observation. It was shown that the pair-wise error
probability between two symbols X; and X ; decreases as any of the singular values of the
matrix X; X ; decreases [53, Theorem 5]. On the other hand, these singular values are also
the principal angles between Span(X;) and Span(X ;). Several distance metrics between
two points in the Grassmannian represented by X; and X; are defined as decreasing

8For a detailed review of the Grassmann manifold, see Appendix 1.B.
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functions of these principal angles (see Appendix 1.B.2). Therefore, the error-minimization
packing criterion typically amounts to maximizing the minimum pairwise distance between
the constellation points, i.e.,

X = arg max min d(Xi,Xj) (1.48)
{X1,... X x| }CG(CT M) 1<i<j<|X|

where d(X;,X ) is the considered distance. A commonly used distance measure is the
chordal distance defined as

(X3, X;) = /M — e { XX, X0X ) (1.49)

Other distance measures include the geodesic distance, Fubini-Study distance, the chordal
2-norm, and the projection 2-norm (see, e.g., [57], [58]).” To assess the optimality of
a packing, one can compare it to the packing efficiency limits in terms of the maximal
minimum pairwise distance for a given constellation size derived in, e.g., [58], [60]-[62].

Based on this Grassmannian packing interpretation, a number of Grassmannian constel-
lations have been proposed with different criteria, constellation generation, and detection
methods. They follow two main approaches.

e The first approach uses numerical optimization tools to solve the sphere-packing
problem on the Grassmannian by maximizing the minimum symbol pairwise dis-
tance (1.48) [63]-[67] or directly minimizing the error probability upper bound [68],
[69]. This results in constellations with a good distance spectrum but no particular
structure. Due to the lack of structure, this kind of constellation needs to be stored
at both the transmitter and receiver, and decoded with the high-complexity ML
decoder, which limits practical use to only small constellations.

e The second approach imposes particular structure on the constellation based on, e.g.,
algebraic construction [70]-[72], parameterized mappings of unitary matrices [73]-[75],
concatenation of PSK and coherent space-time codes [76], or geometric motion on
the Grassmannian [77]. The pilot-data structured input of a pilot-based scheme can
also be seen as a noncoherent code [78]. The constellation structure facilitates low
complexity constellation mapping and, probably, demapping.

Given a Grassmannian constellation, one can further optimize the input probabilities
and per-antenna amplitudes for the constellation points at a given SNR as done in [79].
Grassmannian constellations can be used for a bit-interleaved coded modulation scheme
with iterative soft demapping and decoding [80]. The performance of Grassmannian
signaling and some other differential schemes over temporally-correlated channels has been
investigated in [81]. Therein, it was shown numerically that noncoherent communication
has clear advantage over coherent schemes in medium to high mobility scenarios, i.e., for
short coherence intervals. Grassmannian signaling was validated on a software-defined
radio testbed in [82], showing that noncoherent techniques are more robust to system
impairments than the coherent Alamouti approach. Furthermore, Grassmannian signaling
was shown to achieve tight bounds on the ergodic high-SNR capacity of the noncoherent
MIMO full-duplex relay channel [83].

In this thesis, we would like to give our answer to the following question.

°The Kullback-Leibler (KL) distance metric is used in [59] for constellation points belonging to hyper-
spheres of different radii and not necessarily the Grassmann manifold.



18 Chapter 1. Introduction

Question 1.2. How to design a Grassmannian constellation that has a high packing
efficiency while being simple to generate (thus available for large constellation size and
large symbol length, and not requiring to be stored), admitting a simple and effective
labeling scheme, and allowing for an efficient detection scheme?

1.2.3 The Multiple-Access Channel
1.2.3.a Channel Model

L Channel =(,+§2 Y2 »  Receiver
: : H : : (Base Station)
L,i J\gN YN .

F1GURE 1.4: Conceptual illustration of a K-user MIMO MAC with N receive antennas in block
fading.

We consider a MIMO MAC with K transmitters (so-called users) transmitting to a
receiver (so-called base station), as illustrated in Fig. 1.4. User k is equipped with Mj
antennas, k € [K], while the receiver has N antennas. The channel of user k is represented
by the matrix H, € CN>*Mr whose (i, j)-th element is the random fading coefficient between
the i-th receive antenna and the j-th transmit antenna of user k. The channels are in
block fading with equal-length and synchronous coherence blocks (across users) of length
T. Only the channel distribution is known to the transceiver. During a coherence block b,
user k sends an M}, x T signal matrix Xy [b] across M}, antennas and T channel uses, and
the receiver receives an N x T signal matrix

Y[ = i Hy[BXi[0] + ZB], b=1,2,..., (1.50)
k=1

where Z[b] € CNV*T' is AWGN with IID N¢(0, 1) entries independent of H. Unless stated
otherwise, we consider the power constraint

1 12
- S OIXkb|E < PT, k€ [K], (1.51)
b=1

where v is the number of the blocks spanned by a channel codeword. P is the SNR
of the channel. The most important difference of the MAC to the P2P channel is the
independence between the signals transmitted from the antennas of different users.

1.2.3.b Fundamental Limits

Shamai and Marzetta studied the capacity of the SIMO MAC (M, = 1,k € [K]) in IID
Rayleigh fading in [84]. For fast fading (7" = 1), they showed that the sum capacity for
K > 1 users is equal to the capacity for K = 1 user, thus TDMA is optimal. For block
fading (T" > 1), they conjectured that the maximum sum capacity can be achieved by no
more than K = T users, which is supported by some asymptotic analysis, namely, high
SNR and large T, for a fixed M /T ratio. In the same setting with 7" > 1, Gopalan et
al. derived a constructive lower bound on the sum capacity from a successive decoding
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scheme [85]. Since the sum capacity of the MAC can be upper bounded by the capacity of
the P2P channel by allowing user cooperation, the MAC sum capacity under fast generic
fading can be shown to scale as a double logarithm of the SNR plus a fading number
as in (1.38). The fading number of the MISO MAC (N = 1) in Rician fading has been
derived by Lin and Moser in [86]. It is identical to the fading number of the single-user
Rician fading channel obtained when only the user with the best channel is activated and
all other users are silent. This holds also with individual per-user peak power constraint.
Devassy et al. provided non-asymptotic upper and lower bounds on the sum capacity of
the MIMO MAC under Rayleigh fading in [87]. Therein, the lower bound derived with
independent Grassmannian signaling from each user has a small gap to the upper bound
even at moderate SNR.

The aforementioned works address the sum capacity of the noncoherent MAC. The full
capacity region is unknown, and only some achievable DoF regions have been proposed.
An achievable DoF region for the two-user MIMO MAC under ITD Rayleigh block fading
was proposed in [88] using a geometric approach. Specifically, assuming that M; + My < N
and T' > M; 4+ Ms + N, this achievable DoF region is the convex hull of the origin and

three DoF pairs
M
<M1 (1 - Tl),0>, (1.52a)

(07 M, (1 - Af)) (1.52b)

M, + M. M + M
and <M1 (1 - 1;:2>,M2(1 - T)) (1.52¢)

A generalization of this achievable DoF region to the K-user case is presented in [37,
Theorem 5] as

/ ZjEJ MJ/ .

dj = Mj(1- =T ) for j € T = {ku ks, ko) € K], (1.53)
, +

where M j’ = min{Mj, {N — Zin_:ll M ém} } and T > 2N. These achievable regions can be

achieved by a simple pilot-based scheme. A cooperative outer bound for the optimal DoF
region was also given in [37, Section VI-B] as

min{N,> ..~ M,
Zdjgmin{N,ZMj}<1_ (NS ]}>7 o, s
, ; T
JjeTJ JjeTJ
It can be seen that the achievable DoF regions (1.52) and (1.53) are sum-DoF optimal.

In this thesis, we will investigate the optimal DoF region of the noncoherent MAC and
address the following open question.

Question 1.3. What is the optimal DoF region for the noncoherent MIMO MAC in
generic block fading?

1.2.3.c Constellation Design

As in the single-user (P2P) case, the transmitted signals X}, of user k are normally drawn
from a finite discrete constellation Xy, so X := {[X1 Xo ... Xg|: X € Xk, k € [K]} is
the joint constellation for the MAC.
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A straightforward extension of the pilot-based scheme for the single-user case is to
divide the coherent block into two parts: 1) the training part in which mutually orthogonal
pilot sequences are sent to estimate the CSI for each user, and 2) the data transmission
part in which different users communicate simultaneously [89] using a scalar constellation
(e.g., PAM, QAM, PSK). The optimality of this approach in terms of achievable rate and
detection error remains unclear. Furthermore, it is not always possible to assign orthogonal
pilots to all the users in the system before the transmission, as discussed in Section 1.1.5.

An amplitude-based encoding scheme was proposed in [90], [91], but the accompanying
energy detector relies on a large number of receive antennas so that the average received
power across all antennas concentrates. Also with a massive receive antenna array, some
differential encoding schemes were investigated based on PSK [92], [93] or QAM [94].
Another line of work is based on PSK constellations which are absolutely additively
uniquely decomposable, i.e., each individual PSK symbol can be uniquely decoded from any
linear combination of two PSK constellation points with positive weights [95], [96]. In this
scheme, the unique decodability of the signal matrix relies on the asymptotic orthogonality
between the users’ channels in the massive MIMO regime. A similar uniquely decomposable
property was also exploited for QAM-based multi-user space-time modulation [97]. In
short, these schemes assume a large number of receive antennas.

Unlike the single-user case where a good constellation design criterion is known to be
the sphere packing in the Grassmann manifold, for the noncoherent MIMO MAC in flat
and block fading, a simple and effective constellation design criterion remains unclear.
In general, the joint constellation X for the MAC should be designed so as to minimize
the symbol detection error. If the users could cooperate, the system could be seen as

a (Zszl Mk) x N MIMO P2P noncoherent channel, for which the high-SNR optimal

input is uniformly distributed on the Grassmannian G(CT, K | M) [49]. Inspired by
this, the joint constellation for the MAC can be treated as a Grassmannian constellation
in G (CT, Zle M), which leads to a design criterion mimicking sphere packing in this
Grassmannian by maximizing the minimum pairwise chordal distance. Brehler and Varanasi
derived the error probability of the ML detector for the MIMO MAC in [98] and analyzed
the high-SNR asymptotics. However, an explicit constellation design criterion was not given
and the analysis led to a design for the MAC with cooperating users only. With cooperating
users, the design criterion is similar to that for a single-user channel proposed in [68,
Eq.(8)] by the same authors, which is different from the max-min pairwise chordal distance
criterion. This criterion can be used for the non-cooperating users case by modifying the
optimization space. It guarantees the full diversity order in the single-user case [68], but
depends on the number of receive antennas. The pairwise error exponent can be shown
to converge to the KL divergence between the output distributions conditioned on either
of the symbols transmitted [59]. Based on this, a criterion consisting in maximizing the
minimum KL divergence was proposed for the MAC in [97]. However, this work focuses on
QAM-based space-time modulation and only uses the criterion to optimize the transmit
powers and the sub-constellation assignment.

In the thesis, we would like to answer the following question to a further extent:

Question 1.4. How to design effective joint constellation for the noncoherent MIMO
MAC in order to achieve a low symbol error rate (SER)?
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1.2.3.d Multi-User Detection

We now move the focus to the receiver, whose task is to detect the transmitted symbols Xp,
(or rather the underlying bits) based on the noisy observation Y (1.50). Since the optimal
ML coherent detection problem is NP-hard, the receiver can use a sub-optimal detector to
reduce complexity.

If the transmitted signals contain pilots, the receiver can estimate (normally imperfectly)
the channel based on the pilot symbols, then perform coherent detection based on the
channel estimate, as illustrated in Fig. 1.5(a). This approach leverages a rich literature of
coherent detection, in which many sub-optimal algorithms have been proposed, as listed
in Section 1.1.4. Channel estimation and data detection can also be done iteratively [99],
[100], or jointly based on tree search [101], [102]. These schemes require pilot transmission
for an initial channel estimate or to guarantee the identifiability of the data symbols. On
the other hand, with pilot-free transmission, the noncoherent detector does not perform
explicit channel estimation and exploits the statistical knowledge of H only, as shown in
Fig. 1.5(b).

X gl ( ~\ X; or p(X Y,I:I

User 1 — > Y1 > ! p( 1| )=
X kz X, or p(X Y,HA

User 2 2 Ql ol . Yo . Coherent 2 rp( 2| )=

H MIMO
: . rk : Detector . : .
X N y Xx or p(Xk|Y,H)
A
H

Channel
Estimator

X - Kl ———— X, or o(X;lY

User 1 — &, 5 Y1 > 1 p(Xy1]Y) .
X 2 Xs or p(Xa|Y

User 2 2 Channel ;5 Yo . Noncoherent 2 or p(Xa|Y) .

H MIMO

Detector

L.K, ;\%N Yn ] X or ;;(XK\Y) .

(b) Noncoherent detection

FIGURE 1.5: Conceptual illustration of coherent and noncoherent detection schemes for a K-
user MIMO MAC with N receive antennas in block fading. The outputs of the detector are the
hard-detected symbols or their marginal posteriors.

The receiver might be interested in not only the hard detection of the symbols, but
also their posterior marginal PMF. This “soft” information is needed, for example, when
computing the bit-wise log-likelihood ratios (LLRs) required for soft-input soft-output
channel decoding. Computing an exact marginal PMF would require enumerating all
possible combinations of other-user signals, which is infeasible with many users, many
antennas, or large constellations. Thus, as for hard detection, a sub-optimal scheme is
needed. In contrast to probabilistic coherent MIMO detection, for which many schemes
have been proposed (e.g., [103]-[105]), the probabilistic noncoherent MIMO detection under
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general signaling, and Grassmannian signaling in particular, has not been well investigated.
Therefore, in this thesis, we would like to answer the following question:

Question 1.5. How to efficiently detect the symbols and estimate their marginal
posteriors in the noncoherent MIMO MAC with general constellations?

1.2.4 The Broadcast Channel
1.2.4.a Channel Model

Transmitter X —> =éz 2 Ys =

(Base Station) : . .
. ZK YK :
L | Channel Hy 4»35—>

FIGURE 1.6: Conceptual illustration of a K-user MIMO BC with M transmit antennas in block
fading.

We consider a MIMO BC in which an M-antenna base station transmit to K users
as illustrated in Fig. 1.6. User k is equipped with Ny antennas, k € [K]. The channel
H;, € CNe*M hetween the base station and user k is flat and block fading with equal-
length and synchronous coherence block (across the users) of length T'. Let the matrix
X[b] € CM*T be the transmitted signal from the M antennas during the coherence block b.
The received signal matrix at user k during interval b is

Yi[b] = He[DX[b] + Zi[b0], & € [K], (1.55)

where Z;[b] € CM*T is the AWGN with N¢(0,1) entries. The input is subject to the
power constraint

1 14
= IXpllE < PT, (1.56)
v
b=1
where v is the number of blocks spanned by a channel codeword. P is the SNR of the
channel.

1.2.4.b Fundamental Limits and Transmission Schemes

Most studies on the capacity limits of the BC assume perfect channel state information at
the receivers (CSIRs) and different levels of channel state information at the transmitter
(CSIT), namely, perfect CSIT [106], [107] (with dirty paper coding (DPC)), imperfect
(partial) CSIT [108]-[110], and no CSIT [111], [112]. The noncoherent (no CSIT, no CSIR)
MISO BC with Hy, isotropically distributed was mentioned briefly by Jafar and Goldsmith
in [111, Section VII-C]. They showed that their proposed scalar upper bound on the
capacity region, which was successfully applied to the perfect CSIR case, becomes loose
for the noncoherent BC since it fails to account for the DoF loss due to the lack of CSIR.
Under IID Rayleigh block fading, Fadel and Nosratinia found the optimal DoF region of
the noncoherent MIMO BC given by [37, Theorem 1]

D:{(dl,...,dK)eRf:ideg)gl}, (1.57)

SN
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where N} := min{M, Ni, |T/2]} and R, denotes the set of non-negative real numbers.
This is achievable with a TDMA scheme and the transmitter uses N}, antennas while
transmitting to user k.

The aforementioned results assume the statistical independence between each pair
of transmit and receive antennas. In practice, however, the channels between different
antennas are often correlated because the propagation environment often causes stronger
received signal gains in some spatial directions, and also due to the spatially dependent
patterns of the antennas. Since the users are not co-located, they may have non-identical
correlation matrices. In this case, a useful tool leveraging the difference between the spatial
correlations observed by different users is transmit correlation diversity. For transmit
spatial correlation matrices that have mutually exclusive eigenspaces, transmit correlation
diversity can be harvested using a joint spatial division multiplexing (JSDM) transmission
scheme [113], [114] that reduces the overhead needed for channel estimation. The main
idea of JSDM is to partition the users into groups with approximately the same channel
correlation eigenspace. Another transmission scheme in product superposition proposed by
Li and Nosratinia in [115], [116] for the BC with mixed static (with CSIR) and dynamic
(no CSIR) users and then applied to spatially correlated noncoherent BCs with fully
overlapping correlation eigenspaces [117].

Note that the JSDM transmission scheme attempts to exploit the non-overlapping
(mutually exclusive) parts of the correlation eigenspaces, while product superposition
exploits the overlapping parts. In this thesis, we would like to exploit both parts by
answering the following question.

Question 1.6. What are the fundamental limits of the noncoherent spatially correlated
BC in generic block fading with partially overlapping correlation eigenspaces and how
to effectively exploit transmit correlation diversity under this condition?
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1.3 Thesis Description

This thesis is a contribution to noncoherent wireless communications. We assume through-
out that the channel distribution is known, but the CSI is not known by any communicating
node, and channel coefficients are in block fading with coherence interval 1. The assump-
tion on channel distribution (Rayleigh/generic, correlated /uncorrelated) will be specified in
each chapter. We study the P2P channel, the MAC, and the BC in terms of fundamental
limits (capacity, achievable rate, DoF) and transceiver design (constellation design, efficient
detection design). The main contribution of the thesis is the answer or extension of
existing answers to the questions posed in the previous section. The detailed outline and
contributions of the thesis are presented next.

1.3.1 Thesis Outline and Contributions

The remainder of the thesis is organized as follows. At the end of this chapter, we provide
the common mathematical preliminaries. After that, the thesis comprises two main parts
addressing respectively the fundamental limits and transceiver design aspects of noncoherent
communications, followed by the conclusion and outlook.

Part I: Fundamental Limits of Noncoherent Communications

In Chapter 2, we partly answer Question 1.1 by studying the optimal DoF of the noncoherent
MIMO P2P channel in generic block fading (1.34). We show that the optimal DoF for the
MIMO P2P channel under IID Rayleigh fading (found in [49], [50]) also holds under generic
fading. We introduce a novel converse proof technique based on a genie-aided bound and
the duality approach [36]. The results in this chapter are presented in [118], [119].

In Chapter 3, we respond to Question 1.3, i.e., the optimal DoF region for the noncoherent
MAC in generic block fading, in the SIMO case. We prove that the achievable DoF region
in (1.52) when M; = My =1 is optimal. The converse proof follows by showing that the
average power constraint can be replaced by a peak power constraint without changing the
optimal DoF region, together with a similar genie-aided bound and the duality approach
as in Chapter 2. The results in this chapter are presented in [118], [119].

Chapter / presents our answer to Question 1.6. Considering a spatially correlated MIMO
BC with partially overlapping correlation eigenspaces, we exploit transmit correlation
diversity by carefully designing transmission schemes based on rate splitting, product
superposition [115], and a hybrid version of them. In doing so, we find some achievable
rate and DoF regions for the BC in the two-user case, and some achievable DoF regions in
the K-user case. The achievable DoF regions significantly improve over TDMA, which was
shown to be DoF-optimal for uncorrelated fading [37]. As a by-product, we also derive an
achievable rate for the MIMO P2P channel under spatially correlated fading. The result in
this chapter was published in [120] and [121].

Part II: Transceiver Design for Noncoherent Communications

Chapter 5 gives our answer to Question 1.2 in the SIMO case. We propose a structured
constellation in the Grassmannian of lines so-called cube-split constellation. It is gener-
ated by partitioning the Grassmannian of lines into a collection of bent hypercubes and
defining a mapping onto each of these bent hypercubes such that the resulting symbols
are approximately uniformly distributed on the Grassmannian. This constellation fulfills
all the desired characteristics in Question 1.2: it has a high packing efficiency represented
by the minimum pairwise chordal distance while being simple to generate (thus available
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for large constellation size and large symbol length, and not requiring to be stored); it
admits a simple and effective binary labeling scheme; and it allows for efficient hard
and soft detection. These advantages over the pilot-based scheme and other structured
Grassmannian constellations are more pronounced in the regime of short coherence interval
and large constellation size, as verified by numerical results. The result in this chapter was
published in [122], [123], and [124].

In Chapter 6, we present a joint constellation design for the noncoherent MIMO MAC
in ITD Rayleigh block fading, thus give our answer to Question 1.4. We analyze the ML
detection error and introduce novel design criteria so as to minimize the error probability.
We further simplify the metrics by a high-SNR analysis. Our metrics can be used for
joint constellation construction by (numerically) optimizing them over the set of signal
matrices. Moreover, based on these metrics, we propose two simple constructions consisting
respectively in partitioning a single-user constellation or precoding single-user constellations
of lower dimension. We investigate the option of building each individual constellation as
a Grassmannian constellation scaled by the respective transmit power. Numerical results
show that our proposed metrics are meaningful, and the resulting constellations perform
better, for the same transmission rate and power, than a pilot-based scheme and the
constellations optimized with existing metrics. The results in this chapter are presented
collectively in [125], [124], [126], and [127].

In Chapter 7, we focus on the receiver side of a MAC and answer Question 1.5. We
propose a noncoherent multi-user soft detection scheme for the SIMO MAC under spatially
correlated Rayleigh block fading. Our detector is based on expectation propagation (EP)
approximate inference and has polynomial complexity in the number of users, number
of receive antennas and coherence interval. We also propose two simplifications of this
detector with reduced complexity. The proposed detectors can be used for general signaling
with vector-valued symbols transmitted over each coherence block. In this chapter, we also
propose an efficient detection scheme for the precoding-based constellation in Chapter 6,
which has lower complexity but performs inferior to the EP detector. With pilot-assisted
signaling, the EP detector outperforms, in terms of symbol error rate, some conventional
coherent pilot-based detectors, namely, a linear MMSE decoder, a sphere decoder and a
joint channel estimation—data detection scheme. Our EP-based detectors produce accurate
approximates of the true posterior leading to high achievable sum-rates. The gains of these
detectors are further observed in terms of the bit error rate when using their soft outputs
for a turbo channel decoder. The results in this chapter were published in [128], [125] and
[129].

Conclusion and Outlook

We conclude the thesis in Chapter 8 which summarizes the main results and provides
an outlook to future work. We will put noncoherent communications, especially what
we have developed in this thesis, in the context of other (emerging) topics in wireless
communications.

Finally, a French summary is provided in Appendix A.

We summarize the main results of the thesis in Table 1.1.

1.3.2 List of Publications

The publications included in the main result of this thesis are listed below.
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TABLE 1.1: The main results of the thesis
Channel Part I: Fundamental Limits Part II: Transceiver Design
Achievable rate/DoF ‘ Optimal DoF | Constellation design | Detection design
P2P Chapter 4 Chapter 2 Chapter 5
MAC — Chapter 3 Chapter 6 Chapter 7
BC Chapter 4 — — —
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In [130], we propose a generalized Gaussian model for data-driven model identification in
MIMO communications. [131] and [132] are extensions of my master thesis and address
scalable content delivery with coded caching in fading broadcast channel by using multiple
antennas or opportunistically scheduling the users. [133] contains an extension of my
bachelor thesis on software-defined radio implementation of OFDM-based network coding
and cognitive radio.
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1.A Appendix: Information Theoretic Functions and the
Duality Approach

In this appendix, based on [22, Chapter 2], we define and enlist some properties of some
relevant information theoretic functions. Then, we review the duality approach in [36].
1.A.1 Entropy and Differential Entropy

Entropy

Let x be a discrete random variable with domain X and PMF py. The entropy of x, which
is the uncertainty about the outcome of x, is defined as

H(x):=— Z x () log pu(x) = —Ex[log px(x)], (1.58)
reX

where the base of the log is arbitrary and determines the information unit. In this thesis,
we consider base 2, i.e., information is measured in bits. H(x) is a concave function in py
and satisfies

0 < H(x) <log|X]|. (1.59)

Let x be an arbitrary random variable and y | {x = =} be discrete for every z, the conditional
entropy of y given x is given by

H(y|x) := —E,xy[log py|«(y[x)]. (1.60)
It holds that
H(y|x) < H(y), (1.61)

i.e., conditioning reduces entropy. The joint entropy of a pair of discrete random variables
(X,y) ~ pyx,y is defined as

H(x,y) = —Exy[log pey (x,y)]- (1.62)
A chain rule for joint entropy follows
H(x,y) = H(x) + H(y|x) = H(y) + H(x|y). (1.63)

Applying inductively this chain rule, the entropy of a discrete random vectors x = {x; }}_;
is defined as

H(x)=H(x1)+ H(xo|x1)+ -4+ HXn | X150y %Xn-1) (1.64)
:ZH(XHXl,...,Xi,l). (165)
i=1

Differential Entropy

Let x be a continuous random variable with domain X and PDF p,. The differential
entropy of x is defined as

h(x) = — /X () log py(x) = —Ey [log pe(x)]. (1.66)



1.A. Appendix: Information Theoretic Functions and the Duality Approach 29

Unlike the entropy, the differential entropy can be negative. Similar as for the entropy, we
can define the conditional different entropy as

h(y [x) := =Exyllog py |x(y [x)] < h(y), (1.67)

the joint differential entropy of x = {x;}I_; with joint PDF py as

n

h(x) = —Ep [log px(x)] = > h(x; |x1, ..., xi—1). (1.68)
i=1

Furthermore, the differential entropy is invariant under translation:
h(x +a) = h(x), (1.69)
for any deterministic vector a, but not under scaling:
h(Ax) = h(x) + log |det(A)|?, (1.70)

for any non-singular deterministic complexr matrix A. In particular, if A is a unitary matrix,
then |det(A)|> = det(A"A) = det(I) = 1, thus h(Ax) = h(x), i.e., rotating does not change
differential entropy. The following lemma is obtained by generalizing the real counterpart
in [22, Chapter 2.2] to the complex case.

Lemma 1.1 (Maximum differential entropy). For a complex random vector x = {x;}I" 4,
n

h(x) < log det(meE[xx"]) < Zlog(weE[\xi\QD, (1.71)
i=1

where the first inequality holds with equality if and only if x is a zero-mean Gaussian vector,
and the second inequality holds with equality if and only if the entries of x are mutually
independent.

1.A.2 Kullback-Leibler Divergence

Let P and @ be two (discrete or continuous) probability measures such that P is absolutely
continuous w.r.t. @, then the KL divergence (also known as relative entropy) from P to @
is defined as

D(P||Q) = /logdgdP, (1.72)

d
where dP/dQ is the Radon-Nikodym derivative [134]. Note that the KL divergence
is asymmetric (hence the term “from P to Q7). Let p(-) and ¢(-) be respectively the
PDF/PMF of P and Q. For a random vector x with domain X,

z)lo p(z) dz if X is continuous,
D(P|Q) = () ® @) @) e v 1 (1.73)
> xex P(x) log Z;(T) if X is discrete.
We have that
D(P|Q) =0 (1.74)

with equality if and only if p(z) = ¢(z) almost everywhere.
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1.A.3 Mutual Information

For two random variables x and y, the mutual information I(x;y) is defined as the KL
divergence from the joint measure to the product measure of x and y:

I(x;y) := D(pxyllpxpy)- (1.75)

Thus the mutual information is non-negative and becomes zero if and only if p. y(z,y) =
Px(z)py(y),Va,y, i.e., x and y are independent. Let the domain of x and y be respectively
X and Y. The mutual information can be expanded as

Dxy ($, y)

I(x;y) = wy(T,y)1 1.76
b= B P ) i
— H(x)— H(x|y) (1.77)
= H(y) — H(y|x) (1.78)
= H(x)+ H(y) = H(x,y) (1.79)
if x and y are discrete;
I(x;y) = y log LT, q
(5y) o, Pey(@: ) log @y (o) Y (1.80)
— h(x) — hx]Y) (1.81)
— hy) - hly|x) (1.82)
= h(x) + h(y) = h(x,y) (1.83)
if x and y are continuous; and
I(x;y) = h(y) = h(y|x) = H(x) = H(x]y) (1.84)
if x is discrete and y | {x = z} is continuous for every x. The conditional mutual information
is given by
I(xiy|2) = H(x|2) — H(x|y.2) (1.85)
=H(ylz) = H(y[x,2) (1.86)
= H(x|z) + H(y|z) - H(x,y|2) (1.87)

for discrete random variables, and similarly for continuous random variables. I(x;y|z)
is non-negative and becomes zero if and only if x and y are independent given z, i.e.,
X <> z <+ y forms a Markov chain.

Lemma 1.2 (Data processing inequality). If x <>y <> z forms a Markov chain, then

I(x;z) < I(x;y). (1.88)

The mutual information can be extended straightforwardly to random vectors. In
particular, we have chain rule

n

I({xiYieysy) = D> I(xisy [ %1, - xi1). (1.89)

=1
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1.A.4 The Duality Approach

Consider a discrete memoryless channel with input x € X', output y € ), and the channel
law py .. The Shannon capacity of this channel is given by [21, Chapter 7]
C= max I(x;y), 1.90
max I(x:y) (1.90)
where P(X) is the set of all possible distributions in X (satisfying all the underlying, e.g.
power, constraints), and the distribution of the output y is Ey [py|x]. A dual expression for
the channel capacity is [135]
C= i D - 1.91
o it e D(py sl lPy) (1.91)
where P()) is the set of all possible distributions in ). Any choice of auxiliary output
distribution p, leads to an upper bound on the channel capacity:

< glea%D(pﬂx:pry)' (192)
This bound can be tightened as [36, Eq.(11)]
I(xy) < Y px(@) D(py jx=sllpy) (1.93)
zeX

for any x ~ px € P(X) and y ~ p, € P(Y). Therefore, the maximization over input
distribution in (1.90) is replaced by a minimization over output distribution in (1.91). One
can bound the capacity and the achievable rate by choosing an auxiliary output distribution
py in (1.92) and (1.93), respectively. This is referred to as the duality approach and was
extended to continuous alphabets in [36], [38].

We can also interpret the duality approach by looking at the expression I(x;y) =
h(y) — h(y|x). While h(y|x) can be computed easily for many channels, the differential
entropy h(y) is normally hard to compute. Assume that py is the true output distribution,
we consider another auxiliary output distribution ¢, and have that

h(y) = —E[log py(y)] (1.94)
= —E[loggy(y)] — D(pyllay) (1.95)
< —Eflog gy(y)], (1.96)

due to the non-negativity of the KL divergence D(py|qy). Note that the expectation is
w.r.t. py. This imposes an upper bound on the channel capacity.

Using the duality approach to upper bound the capacity, one should first “guess” the
capacity-achieving output distribution, then choose an auxiliary output distribution to be
close to that while guaranteeing that (1.92), (1.93), and (1.96) are tractable. The next
lemma introduces a family of vector-valued distribution that will be used to define auxiliary
output distributions in Chapter 2 and Chapter 3.

Lemma 1.3. Lety € CV be a random vector with distribution P. Consider another family
of distributions R whose densities are given by

[(N)|detA|? o Ay|)?
i) = S e Mo (LE) e

where o, 8 > 0, A is any non-singular deterministic N x N complex matriz. When
B = Ep[||Ay||?] and o = 1/1og(B) = 1/ log(Ep[||Ay||?]), denote this distribution as R(N,A).
In this case,

Ep[- log(ry(y))] = — log|detAP + NEp|log |Ay|*] + O( loglog (E»[|4y|*])). (1.98)
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Note that if A = Iy, (1.98) becomes
Ep[log(ry(y))] = NEp[log |ly[[*] + O(loglog (Ep[lly|?])).

Proof. In this proof, all expectations are implicitly w.r.t. P. A direct calculation from (1.97)
yields

E[||Ay||?
B[ og(ry 1)) = —og et A + (¥ — o) [og | Ay[] + = LYIE]
TI'N )
+ logI'(«) + log B + log . 1.99
(o) o (
_ 2 _ 1 _ 1 s
When 3 = E[||4dy|7] and a = 58] — o E[|AYIE])" this becomes
E [log [ Ay||3]
E[—log(ry(y))] = —log |detA|? + NE|log || Ay||z| — ———Z1FL
[~ og(ry(y))] detA® + NE[log | ylft] - {2
1 enN
+logl'| —==—F—5-~ | +10g =—= 1.100
<log<E[|rAy||%]>) () (1.100)

— —log|detA[> + NE[log | 4y|}2] + O(log log (E[||Ay||%D), (1.101)

E[log || Ay||?]

Toa(E[ | AyIIZ]) < 1 (due to Jensen’s inequality) and

where the last equality is because 0 <

1
10gF<log(E[HAy”%])> ~loglog (E[||Ay[}]) = 0 as E[[|4y|2] — oo (1.102)

due to
. 1 . 1_/1
xlggo log I’ (x) —logz = xlgglo log<xf (x))
1
= lim log<F 1—1—))
T—00 T

= log(I'(1))

=0. (1.103)
This concludes the proof. ]

This family of distribution R is a special case of the one primarily defined in [36,
Section IV-A]. If we take y as the channel output (of a MIMO channel), as long as
E[||Ay|?] < SNR® for any constant ¢y whose value only depends on the channel statistics,
the term O(loglog(Ep[||Ay||?])) scales double-logarithmically with SNR. Therefore, in the
DoF sense, it is enough to consider only the first two terms in (1.98).
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1.B  Appendix: Grassmann Manifold

1.B.1 Definition and Invariant Measure

Consider a T-dimensional Euclidean space K”, where K can be R or C.

Definition 1.2 (Grassmann manifold). The Grassmann manifold (so-called Grassmannian)
G(KT, M) is the set of all M-dimensional vector subspaces of KT with M < T.

The Grassmannian is a compact Riemann manifold. For example, when M = 1, G(K”, 1)
is the set of one-dimensional subspaces, i.e. lines, in K7, and is thus referred to as the
Grassmannian of lines. An illustration of G(R?,1) is given in Fig. 1.7.

The Grassmann manifold is isomorphic to a quotient of unitary/orthogonal groups:
GKT, M) = U(T)/(UM) x U(T — M)), (1.104)

where the division slash denotes a quotient space and the unitary/orthogonal group U(n)
is the set of all n x n unitary/orthogonal matrices, i.e.,

Un):={U e K"™" . U"U =1,}. (1.105)

This equivalence is interpreted as follows. Each element of U(T") is an orthonormal basis
of KT and can be split into M vectors spanning an M-dimensional subspace and the
remaining T — M vectors spanning the orthogonal complement of that subspace. The
M-dimensional subspace and its orthogonal complement are invariant to unitary rotation of
the set of M vectors and the remaining T'— M vectors, respectively. Therefore, to uniquely
represent an M-dimensional subspace, which is an element in G(K”', M), we need to divide
U(T) by the space of these rotations, which are U(M) and U(T — M), respectively [136].
The Grassmann manifold can also be represented as a space of equivalence classes in the
Stiefel manifold, which is the space of T'x M truncated unitary matrices in K’ i.e.,

S(KT, M) :={Q e KT"M . Q"Q =1I,,}. (1.106)

Defining the equivalence between two elements @, and @, of S(K?, M) as Q, = Q,U for
some U € U(M), we have that each element in the Grassmann manifold G(K”, M) is an
equivalence class in the Stiefel manifold S(KT, M).

From the quotient space representation (1.104), the real dimension of the Grassmannian
G(KT, M) can be calculated as

dim(G(KT, M)) = dim(U(T)) — dim(U(M)) — dim(U (T — M)) (1.107)

=BM(T — M), (1.108)

where 3 = 1if K=R and 8 = 2 if K = C. A uniform measure in G(K”, M) can be induced
from the Haar measure on the unitary/orthogonal group as follows. Let pg(-) be the unit

Haar measure on the unitary/orthogonal group U(T) and fix a point V in G(K*, M). For
any set M C G(K”, M), the measure p(M) on G(K”, M) is defined as

M) = ug{U € U(T) : UV € M}. (1.109)

This measure is invariant under actions from the group U(T), i.e., u(UM) = u(M) for
any U € U(T'). With this measure, the volume of a Grassmann manifold is given by

T @
Hz’:T—M-H (iﬂl)g

M _2nt
=1 G-

(1.110)

|G(KT, M)| =

An isotropically distributed matrix in K7™ has subspace uniformly distributed on the
Grassmannian G (KT, M) w.r.t. this invariant measure.
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R2 dc(ul,ug) =sin6

Uy U

FIGURE 1.7: An illustration of four elements of the Grassmannian of lines G(R?, 1) in the plane R2.
Each element i is a set {Mu; : A € R,u; € R?, ||Ju;|| = 1}, which is a line in R?. It is represented
by the unit vector u;, i.e., the intersection of the line and the unit circle. Note that u; and —u;
represent the same Grassmannian point. The principal angle between two Grassmannian points
represented by u; and us is the acute angle 6 between two corresponding lines. The chordal distance
between these two points is simply the sine of that angle, i.e., dc(uq,us) = sin 6.

1.B.2 Principal Angles and Metrics

The Grassmannian is a metric space with the metric defined through the principal angles
between the points on the manifold. The principal angles between two M-dimensional
subspaces U and V of K”', which are two points on G(K”, M), are defined in a sequential
manner as follows. The first angle is the smallest angle between two unit vectors in &/ and
V, respectively, i.e., 6 = arccos [ufjv| with!!

= Hyl. 1.111
(u1,01) = arg | max  |u"y| (1.111)
veY,||v||=1

The next principal angle is the smallest angle between two unit vectors in ¢/ and V and
orthogonal to u; and vy, respectively, i.e., 6 = arccos |[ubve| with
(u2,v2) = arg max [uv|. (1.112)
ueu,lluH:l,uHuI:O
veV,HvH:l,vHvlzo
Inductively, the i-th principal angle is the smallest angle between two unit vectors in U
and V orthogonal to w; and v; for all 1 < j < ¢, respectively, i.e., 8; = arccos |[u}'v;| with

(u;,v;) = arg max [u"v|, (1.113)
uEM,HuH:l,uHuj:O,Vl§j<i

veV,llvll=1,0Hv;=0,v1<j<i

for i € [M]. The principal angles are between 0 and 7. For example, the principal angle
between two points in G(R?, 1) is simply the acute angle between two corresponding lines
in R?, as illustrated in Fig. 1.7.

Let
0:=1[0102 ... Op], and sin@:=[sinf; sinfy ... sinfy]. (1.114)

There are several distance metrics defined between U and V), such as the geodesic distance
dg(U,V) := |0, the chordal distance d.(U,V) := | sin@|, the Fubini-Study distance

"The conjugate transpose is implicitly replaced by the transpose for the real Grassmannian.
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dps(U, V) := arccos ([, cos6;), and the chordal Frobenius norm dep (U, V) = ||2sin §||
(see, e.g., [67], [58]). Among them, the chordal distance is widely used and has some
advantages, such as it allows an isometric embedding of the Grassmannian in a sphere [60].
Its values range from 0 to v/M. For example, the chordal distance between two points in

G(R?,1) is the sine of the acute angle between two corresponding lines in R?, as illustrated
in Fig. 1.7.

The principal angles can be computed from the matrix representatives of the subspaces.
Let U and V be T x M matrices with orthonormal columns spanning the subspaces U
and V, respectively. Then the singular values of the product U"V are the cosines of the
principal angles between U/ and V. Therefore, these principal angles can be found by a
SVD of U"V. The distance between U and V can also be expressed in terms of U and V.
For example, the chordal distance is written as

de(U, V) = UM = V"'V |[p = /M — a(U"VV'D). (1.115)

For this reason, we also denote the chordal distance as d.(U, V') for convenience, although
its value does not depend on the choice of matrices U and V that represent the two
subspaces. From now on, we consider the chordal distance and omit the subscript “c”
whenever confusion is not likely. Letting a matrix U € KT*M represent its column span,
we write with a slight abuse of notation that U € G(K”, M).

1.B.3 Sphere Packing in the Grassmannian

Following [62, Corollary 1], the next lemma gives the volume of a metric ball in the
Grassmannian.

Lemma 1.4 (The volume of a metric ball in G(K*, M)). With the invariant measure
w(+), the volume of a metric ball B(d) of radius § (defined with chordal distance) in the
Grassmann manifold G(K”', M) is given by

n(B(3)) = er,ag,gd?M T, (1.116)
where
. min{M,T—M} r(5(r—i+1)
CT M5 = o (1117)

P(gM(r—my+1) i D(5min{M, T~ M} —i+1))

where =14 K=R and =2 if K=C.

A packing C in G(K”, M) is a finite-size discrete subset of G(K”, M). For example,
Fig. 1.7 depicts a packing of four points in G(R?,1). The sphere packing problem in the
Grassmannian has a variety of applications in wireless communications. It provides a
geometric interpretation of the capacity of a noncoherent MIMO block-fading channel [49,
Section III-C]. A Grassmannian packing can be used as a constellation for such channel [53],
[64] (see Section 1.2.2.c of this thesis). It can also be used as a CSI quantization or precoding
codebook in limited-feedback communication systems [137]. The set of the intersections of
the Grassmannian constellation symbols and the unit sphere is also called an antipodal
spherical code, which has applications in designing measurement matrix for compressive
sensing [138].

Let us focus on the complex Grassmannian G(C?, M). A common sphere packing
criterion is the maximization of minimum pairwise distance between the elements/symbols
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for a given packing size, i.e.,

C— C..C)). 1118
T8 Ot ar ) 150 WCT C) (1.118)

The sphere packing bounds characterize the fundamental limits regarding the size of the
packing and the minimum distance. Using upper bounds on spherical codes and the
embedding of the Grassmannian in a sphere, Conway et al. derived the well-known Rankin
bounds for real Grassmannian packing [60]. These bounds naturally generalize to the
complex case as

0 < w\c'% if |C| < T“)7 (1.119)
T\ JETD e s T,

There exist sequences of small-size packings that meet the Rankin bounds [139]. However,
the Rankin bounds quickly become loose as the packing size grows. Another approach
relates the packing size to the volume of the metric ball of radius equal to the minimum
distance . Specifically, for any positive integer K such that Ku(B()) < 1, there exists
a packing C of size K + 1 with minimum distance . This is captured by the Gilbert-
Varshamov lower bound [62, Eq.(2)]: there exists a packing with minimum distance ¢ and
size

1
n(B(8))

On the other hand, the total volume of the balls of radius §/2 centered at each symbol

is upper bounded by the volume of the Grassmannian. This implies the Hamming upper
bound [62, Eq.(3)] as

c| > (1.120)

1
n(B(9/2))

Substituting the volume formula in Lemma 1.4 into the Gilbert-Varshamov lower bound
and the Hamming upper bound, the next lemma follows readily.

€] < (1.121)

Lemma 1.5 (Grassmannian sphere packing bounds). The minimum distance 6(Copt) of an
optimal packing Copt of cardinality |C| on the complex Grassmannian G(CT, M) is bounded
by

win {3, 2(Clez.ar) T | > 6(Copt) 2 ([Cler,ar) PO, (1.122)
where cr M = rr=nmn T ) Hmm{MT M (min{z\(},’:ﬁ_i)z!\ﬂfi)!-

The sphere packing problem can be solved numerically by, e.g., Newton’s or (conjugate)
gradient descent as presented in the next subsection. An alternative projection method
was proposed in [136], but works well for sparse packings (small |C|, large T') only.
1.B.4 Manifold-Constrained Optimization

Consider a minimization of a function f(C') defined on the Grassmann manifold

i C). 1.123
ol f(C) ( )



1.B. Appendix: Grassmann Manifold 37

To apply standard optimization methods, such as Newton’s and the (conjugate) gradient
descent, one needs to derive the Riemannian (conjugate) gradient, the Hessian of the
function f(C') and the motion of a point on the Grassmannian.

The motion on the Grassmann manifold can be obtained using the differential-geometric
methods [57]. Consider a moving point on the Grassmannian, which is located at C(0) =
C € G(CT,M) at time t = 0. Let this point move along a geodesic in the direction
H = C, B where C; € CT*(T=M) has orthonormal columns spanning the orthogonal
complement of Span(C) in CT and B is an arbitrary (T — M) x M matrix. Then, its
location at an arbitrary time instant ¢ is given by

Ci#) =[cCl exp(t [g _fHD [I(ﬂ. (1.124)

According to [57, Section 2.5.3] and [140, Section 3.6], the Riemannian gradient of f at
C is defined as the tangent vector Vg f(C) such that tr(V'% f(C)A) = tr(VRf(C)A) for
all tangent vectors A at C, where Vg f(C) is the Euclidean gradient of f(C), i.e.,

of
dCi;

[VEf(C))ij = (1.125)

It follows that
Vrf(C) = (Ir - CCYVf(C). (1.126)

The Riemannian Hessian of f(C) is defined as the quadratic form Hessgpf(A,A) =
%hzof(C’(t)) where C(t) is a geodesic with tangent A at C(0). It is computed as

HeSSRf(Al, Az) = Z [HeSSEf(Al, A2)Lj7kl[A1]iJ [AZ]IC,Z — tI‘(ATAQCHVHEf(C)),

1,5,k,1
(1.127)
where Hessg f(A1, Ag) is the Euclidean Hessian of f(C), i.e.,
% f
[Hessg f(A1, Ag)] (1.128)

ikl B[Y]; ;0¥ [y

Finally, Newton’s and the (conjugate) gradient descent methods to solve the minimization
(1.123) on the Grassmannian are summarized in [57], [140].

When the optimization is over a set of points on the Grassmannian, such as the sphere
packing problem (1.118), one can consider the set of optimization points as a single element
of a manifold in larger dimension. For example, one can construct the block diagonal
matrix C with Cy,...,C lc| as diagonal blocks, which is a single point in a sub-manifold
of G(CTICI, M|C|). By examining the tangent space of this sub-manifold, the techniques
for single-point optimization on the Grassmann manifold can be applied. This was done
in [64] to solve (1.118). Another difficulty in solving (1.118) is that the objective function
min; <, j<|c| d(Ci,C;) = — max;<;<j<|c| —d(Ci, C}) is not smooth. We can approximate
it with a smooth function using the well-known approximation

max z; ~ eanexp(:ni/e) (1.129)

(2
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for a small “diffusion constant” €. The smaller € is, the more accurate this approximation
is. However, if € is too small, the optimization becomes slow due to the small step size and
numerical problems, such as floating point overflow errors, may occur.

In the following, we investigate a particular example of sphere packing in the Grass-
mannian of lines G(CT1).

Example 1.1 (Sphere packing in the Grassmannian of lines). Consider the instance of
the sphere packing problem (1.118) with M = 1:

i — leHe |2
max mu;l(:'\/l cfe;]?. (1.130)

c={e:}!¢ ca(er ) 15i<y

This optimization is equivalently expressed as

min max le'c;l, (1.131)
C={Ci}LC=‘1CG(<CT,1) 1<i<5<|C|

For smoothness, we approzimate the objective function using (1.129) to obtain

min eln Z exp(‘c?cj‘). (1.132)
€

C
C={cz‘}L:‘1CG(CT,1) 1<i<j<|C]

This smooth optimization is, however, jointly over multiple points on the Grassmannian
of lines. To tackle this, we construct the matrix C := [e; .. .c|c‘], then C belongs to the
oblique manifold OB(T,|C|) defined as

OB(n,m) := {X =[x1... 2] €CV™: 21| = - = ||z = 1}. (1.133)
The oblique manifold OB(n,m) can be seen as an embedded Riemannian manifold of C"*™
endowed with the usual inner product, or as the product manifold of m unit spheres in
C™ [140, Section 3.4.1]. Then, the optimization problem (1.132) can be reformulated as a
single-variable optimization on this oblique manifold as

: leie;|
min €eln Z exp| ——— | . (1.134)

Ccco(T,|c)) 1<i<j<|C] ‘

=:9(C)

The derivative of g(C) w.r.t. a symbol ¢y, is

am»:% 5 “ﬁ@wwywzamW%Wd+ZawM%WM
€ e, dem ’

oc, 1<i<j</c| i<m Jj>m
(1.135)
where
dexp(|cienml/€) _ dexp(lep.cil/e) (1.136)
(9cm acm .
Lyl 2
—— 1.137
coo () TG (1137)
1 H H
= — exp<|cz Cm|) cchm C;. (1.138)
€ € |ci cm|
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Consequently, the Euclidean gradient of g(C) w.r.t. C is given by

9g(C) 9g(C)  dg(C)]"
U o(C) — 1.139
£9(C) [ dey des deye| ( :
! -1
_ Z exp(cicj)
1<i<j<|C] ¢
_ H CH C1 T
0 exp(leier|/) e exp(leferenl/ i ey
H C , C2
y exp(]ci‘cﬂ/e)'zg; 0 eXP(’ercQ’/e)% oul
H . C?C\CI H cgc\cl 0
_exp(!clcm |/€) e eXp(\Czc|C| |/€) e e | |
(1.140)

Then, the Riemannian gradient of g(C) is computed based on (1.126).

A useful tool for optimization on manifolds is the Manopt toolbox [141] in Matlab. It
provides a large library of manifolds and ready-to-use Riemannian optimization algorithms.
In this thesis, we resort to this toolbox to solve numerically the manifold-constrained
optimizations, which we encounter in Chapter 5, Chapter 6, and Chapter 7. Note that in
manifold-constrained optimization, the optimization space is nonlinear, and the objective
functions that we consider in this thesis are in general nonconvex. Thus, most descent
algorithms only guarantee to return an (approximate) critical point. In order to ensure
that this point is a local minimum and not a saddle point, the search direction needs to
be carefully constructed. Several rules to construct the new search direction based on a
linear combination of the previous search direction and the new (preconditioned) gradient
are provided for the Euclidean in [142]. The Manopt toolbox adapts these rules to the
Riemannian space. If no descent direction is found, one can restart, i.e., switch to the
negative gradient. This is equivalent to resetting the direction to a steepest descent step,
which discards the past information. The Manopt toolbox implements the Powell’s restart
strategy [143].

For further details concerning the Grassmann manifold, sphere packing, and manifold-
constrained optimization, refer to, e.g., [57], [60], [140], [144].
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Chapter 2

The MIMO Point-to-Point Channel

The high-SNR capacity of noncoherent MIMO P2P channel has been derived for the case of
1ID Rayleigh block fading by exploiting the Gaussianity of the channel matriz. This implies
the optimal DoF. Nevertheless, as far as the DoF is concerned, it is apparent that the result
holds for a wider class of fading channels. In this chapter, we show that the optimal DoF
for the IID Rayleigh block fading channel is also the optimal DoF for a more general class
of generic block fading channels, in which the random channel matriz has finite power and
finite differential entropy. In doing so, we introduce a novel converse proof technique based
on a genie-aided bound and the duality approach.

2.1 Overview

As presented in Section 1.2.2.b, for an M x N MIMO channel in IID Rayleigh block fading
with coherence interval T > 1, the optimal DoF is given by [49], [50]

*

]‘i ) with M* = min{M, N, | T/2]}. (2.1)

DoF:M*(l—

The converse of this result was based on the IID Rayleigh fading assumption, using either
a direct approximation at high SNR [49] or a duality upper bound with a carefully chosen
auxiliary output distribution [50]. On the other hand, the optimal DoF for the case T' =1
(fast fading) is known to be zero for a much wider class of fading model, namely, the
generic fading in which the channel matrix has finite differential entropy and finite second
moment [36].

In this chapter, we generalize the DoF result of [49], [50] to the generic fading model as
in [36]. Specifically, we prove that the DoF given in (2.1) is also the optimal DoF under
generic block fading. The main technical contribution of this paper lies in the converse
proof. Leveraging the duality upper bound [36], we carefully choose an auxiliary output
distribution (inspired by a pilot-based scheme) with which we derive a tight DoF upper
bound.!

! Another useful tool for the converse bounds in the literature is the escape-to-infinity property [36],
which allows one to assume without loss of generality (w.l.0.g.) that the high-SNR capacity-achieving input
distribution has no mass in a disk around the origin, whose radius can be made arbitrarily large. This
property is necessary to derive the constant term after the logarithmic term in the capacity high-SNR
expansion. In our work, since we focus on the pre-log characterization, we do not rely on this property.
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The remainder of this chapter is organized as follows. The system model and prelim-
inaries are presented in Section 2.2. In Section 2.3, we provide the main result and the
achievability proof. Then, we present the converse proof for the SIMO and MIMO cases in
Section 2.4 and Section 2.5, respectively. Some concluding remarks are given in Section 2.6.
Some detailed proofs are deferred to the appendices.

2.2 System Model and Preliminaries

We consider an M x N MIMO P2P channel as in Section 1.2.2. The channel between the
transmitter and the receiver is flat and block fading with coherence interval T' channel
uses. The distribution of the channel matrix H € CV*M is assumed to be known, but its
realizations are unknown to both the transmitter and the receiver. During a coherence
block b, the received signal is

Y[o] = HBIX[)] + Z[6], b=1,2,..., (2.2)

where Z[b] € CN*T is the AWGN with IID N¢(0,1) entries and X[b] is the transmitted
signal satisfying the power constraint

1 1%
=D IX[)E < PT, (2.3)
v
b=1
where v is the number of blocks spanned by a channel codeword. P is identified with the
SNR of the channel. Hereafter, we omit the block index b whenever confusion is not likely.

If the rate R(P) (in bpcu) is achievable at SNR P, VP > 0, i.e., inferior to the channel
capacity, we say that d is an achievable DoF with

d:= lim R(P) .

(2.4)

The optimal DoF is the supremum of the achievable DoF over all possible input distribution
satisfying the power constraint. We assume that the channel matrix H is drawn from a
generic distribution satisfying the following conditions:

h(H) > —o0, E[|H||}] < oo. (2.5)

That is, the channel matrix has finite different entropy and finite second moment.

2.2.1 Mathematical Preliminaries
The following results are useful for our main analysis.

Lemma 2.1. Let A € C"™*t have full column rank, W € C™*™ be a random matriz such
that h(W) > —oo and E[|W||%] < oo, then we have

h(WA) = nlogdet(A"A) + co (2.6)

where ¢ is bounded by some constant that only depends on the statistics of W.
Proof. The proof is provided in Appendix 2.A.1. O

Lemma 2.2. Let u > 0 be some random variable such that E[u] < oo and h(u/E[u]) > —oc.
Then, for any 0 < a <1 and 8 > 0,
Eflog(8 + u)] > alog(B + E[u]) + co (2.7)

where ¢y > —oo is some constant that only depends on «, 3, and h(u/E[u]).
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Proof. The proof is provided in Appendix 2.A.2. O
From the above result and the upper bound % <1 (from Jensen’s inequality),
we observe that when E[u] — oo, % ~ 1 since we can let a be arbitrarily close to 1.
Lemma 2.3. Consider an m x n complex matriz X with n > m. Let {\1, Ao, ..., A} be
the eigenvalues of X" X sorted in decreasing order. For any m’ < m, there exist index sets
8 ={s1,82,...,8n} C[n], s1 <+ < Sy, such that
m/
log det (T, + X}y X () = > log(1+ As) = O(1), (2.8)
i=1

where X (g 1= | X[5;] Xlsy) - - .X[Sm,ﬂ and O(1) denotes a constant independent of { A1, ..., \n}.
Proof. The proof is provided in Appendix 2.A.3. O
Hereafter, unless otherwise specified, {o;(M)}?_; denote n eigenvalues in decreasing

order of a matrix M € C"*™,

Lemma 2.4 (Inclusion Principle [145, Theorem 4.3.28]). Let A be an n x n Hermitian
matriz and B be an m x m block along the diagonal of A.? Then

0i(A) > 0i(B) > 0iyn-m(A4), i€ [m]. (2.9)

Corollary 2.1. Let A be an n x n Hermitian matriz and B be an m x m block along the
diagonal of A. Then

log det(I,, + A) > logdet(I,, + B). (2.10)

2.3 Main Result

The optimal DoF of the noncoherent MIMO generic block fading channel described above
is stated in Theorem 2.1.

Theorem 2.1. For the M x N noncoherent channel in generic, flat, and block fading with
coherence interval T, if T = 1, the optimal DoF is zero; otherwise, the optimal DoF is
given by

*

Aj{) with  M* := min{M, N, |T/2]}. (2.11)

dopt :M*(l -

The zero optimal DoF result for 7' = 1 has been shown in [36] and is included in
Theorem 2.1 for completeness.

Corollary 2.2. In the SIMO/MISO/SISO case (min{M,N} = 1) or the T = 2 case, the
optimal DoF is dopy = 1 — %

Remark 2.1. The DoF in (2.11) was shown to be optimal for the noncoherent IID Rayleigh
block fading channel in [49], [50].> Theorem 2.1 generalizes this result to generic block
fading.

2B is called a principal sub-matrix of A—see Definition 2.1 in Appendix 2.A.3.
3The converse proof for the case 1 < T < 2min{M, N} given in [49, Section IV-D] was, however, based
on some heuristic arguments and not rigorous.
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For T' > 2, the optimal DoF is achieved by using only M* antennas and a simple
pilot-based scheme: let the transmitter send pilot symbols in the first M* channel uses,
then data symbols in the remaining T' — M™* channel uses; the receiver estimates the
channel based on the received pilot symbols and detects coherently the data symbols. In
the following, we present the converse proof, first for the SIMO case, and then for the
general MIMO case.*

2.4 The SIMO (M =1) case
We first consider the SIMO case with M =1 and T" > 2. The received signal is
Y=hx"+2Z, (2.12)

where h € CV*! and x € CT*!, If the channel is IID Rayleigh fading, i.e., h ~ N¢(0,Iy),
it was shown that the optimal DoF is 1 — % and can be achieved with either a pilot-based
scheme [31] or well-designed space time modulations [49], [50], [53]. For the converse of the
high-SNR capacity (which implies the converse of the DoF), while A(Y|x) can be calculated
easily, the upper bound for A(Y) is much more involved [49], [50]. In this section, we
provide a simpler proof for the converse of the DoF, which holds for generic fading, using
the duality approach (see Appendix 1.A.4) as in [50] but with a simple choice of auxiliary
output distribution.

First, let us define a random variable v as the index of the strongest input component,

ie.’

2
= 2. 2.13
v i= argmax ] (2.13)

Thus, x, denotes the entry in x with the largest magnitude. Let the genie give v to the

6

receiver,’ we have

Ix;Y) < I(x;Y,v) (2.14)

(x;Y|v) + I(x;v) (2.15)
(Ylv) = h(Y[x,v) + H(v) (2.16)
(Ylv) = h(Y[x) + logy(T), (2.17)

I
1
h
h

VANVAN

where the last inequality holds because we have the Markov chain v +» x < Y and
H(v) < logy(T). For each given x = &, we can apply Lemma 2.1 with W = [h Z] and
A = [z I7]" to obtain

h(Y|x) = NE[log, det(I7 +x*x")] + O(1) (2.18)
= NE|[log, (1+ [x|%) | + O(1). (2.19)
To bound h(Y]v), we use the duality approach [36] (see Appendix 1.A.4) as follows

h(Y|v) = E[—logy p(Y|v)]
= E[—logy ¢(Y|V)] — Ey[D(pypllavy)]
< E[~log, ¢(Y|v)], (2.20)

4Under the assumption (2.5), we assume w.l.o.g. that ]E[HthQ] = N for any column h; of H for
convenience.

5When there are more than one such components, we pick an arbitrary one.

5This technique of giving the index of the strongest input component to the receiver was initially
proposed in [146] for phase noise channel, which is also a type of noncoherent channel.
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due to the nonnegativity of the KL divergence D(py),|lgy| ). Here, conditioned on v, the
distribution py|, with PDF p(+) is imposed by the input, channel, and noise distributions,
while gy, is any distribution in CN*T with the PDF ¢(.). Note that a proper choice of
qy|v is the key to a tight upper bound. Our choice is inspired by a pilot-based scheme.
Specifically, if we send a pilot symbol at channel use v € [T, then the output vector Yy,
being the sum of h and Z, should have comparable power in each direction since h is
generic by assumption. Therefore, it is reasonable (in the DoF sense) to let

Y ~ R(N, Iy), (2.21)

where the family of distributions R(N,A) is defined in Lemma 1.3. Now, Y, should
provide a rough estimate of the direction of the channel vector h. Based on such an
observation, it is also reasonable to assume that, given Y|, all other Y, i # v, are
mutually independent and follow

Y~ R(N, (IN +Y[U}Y'[*U])2>, Vi # v. (2.22)

We thus obtain a “guess” of the auxiliary joint distribution gyjy—,-

Proposition 2.1. With the above choice of auxiliary output distribution, we have the
following bound for E[—logy q(Y|v)] and h(Y|v):

h(Y|v) < E[~logy q(Y)] < (N + T = 1)E [logy(1 + [x,[)]

T 2
il
+ NE ' Z log, <1+ T‘XVP +O(loglogP). (2.23)
i=1,i7v
Proof. The proof is provided in Appendix 2.A 4. O

Plugging (2.19) and (2.23) into (2.17), we obtain

1+ ’XV|2
. o 2
I(x;Y) < (T = DE|logy(1 + [x,|)] + NE|log, T
d i
+ NE i:%:#v logy | 1+ T4 + O(loglog P) (2.24)
< (T = 1)logy (1+E[[x,]) + O(loglog P) (2.25)
< (T —1)logg P+ O(loglog P), (2.26)

where we have applied Jensen’s inequality and the fact that |x;|? < |x,|? < [jx||?, Vi # v.
Thus, the DoF is upper bounded by %, which is tight.

2.5 The MIMO Case

We now consider the general MIMO case and focus on the setting 7 > 2min{M, N} > 2,
ie., M* = min{M, N}. The converse proof for 2 < T' < 2min{M, N} can be found in [119].

Let us fix a value Ny € [min{M, N}]. Let A1, A2, ..., Ay be the random eigenvalues of
X"X sorted in decreasing order. According to Lemma 2.3, for any realization X of X, there
exist index vectors s of length Ny with elements in [min{M, N}] such that

No
log, det (INO + XFS]X[S]) - ZlogQ(l + ) =0(1). (2.27)
i=1
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We define a random vector v whose values are drawn uniformly from all the possible s for
each realization of X such that (2.27) holds. We have the Markov chain v <» X <+ Y.

Letting the genie give v to the receiver, and using the duality bound as in (2.17) and
(2.20) in Section 2.4, we have

106:Y) < E[~log, a(YIv)] — h(Y[X) + log, ( §0> (2.28)

where ¢(.) is the PDF of an auxiliary output distribution gyjy .

Given v, we can always permute the columns of X such that Xy, 1, Xpy,p, - -, Xy o] become
the first to No-th columns. For notational simplicity, we assume implicitly that X (and
hence Y) is the permuted version. By using Lemma 2.1 with W = [H Z] and A = [X I7]"
for each realization X of X, the entropy h(Y|X) is given by

h(Y|X) = NE[log, det(I7 + X"X)] + O(1). (2.29)

Next, for E[—log, q(Y|v)], we choose the auxiliary PDF gy}, such that
Y~ R(N,In), Vi€ [No], (2.30)
and given Y[;.;], the other columns are independent and follow
_1 .
Y[]} ~ R(Na (IN + Y[l:No]YFI:N()v 2)7 J = NO + 17 ce 7T' (231)

As in the SIMO case, this choice is inspired by a pilot-based scheme that transmits pilot
symbols in the first Ny channel uses and data symbols in the remaining 7" — Ny channel
uses of a coherence block.

From Lemma 1.3 and Jensen’s inequality, we have that

E[—logy q(Y|v)]

it
(In +Yng Y 2Yi

T

No T
:NZE[log2 vayﬂ+N > EllogQ

i=1 i=No+1
+ (T = No)Elogy det (I + Y, NO]Y'[*l_ xol) | + O(loglog P) (2.32)
No
1
<N Eflog, (Xl +1)] + N Z E [log (Y} (I + Y pin Y)Y
=1 i=No+1
+ (T — ND)E[logz det (INO —|—X[H1:NO]X[1:NO})] + O(loglog P). (2.33)

Plugging the bounds into (2.28), we get that

No
IX;Y) <N ZE[log2 (1+ X Hz)} + (T - J\fo)ﬂa[log2 det (INO + XFLNO}X[LNO])}

T
+ N Z E|:10g2 (YE} (IN +Y[1:N0}Yl[_|1:No})_1Y[i])j|
1=Nop+1

— NE[log, det (I + X"X)] + O(log log P). (2.34)
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Proposition 2.2. With the chosen auxiliary output distribution, the mutual information
I(X;Y) can be bounded as

No
I(X;Y) < NNoE[logy (1 + A1)] + (T — No) D Ellogy (1 + )]
i=1
min{M,N,No+1} No
+ N(T — No)E > logy (14 Ai) = > logy(1+ Ai)
i=1 =1
M
— N> Ellogy(1 + A;)] + O(loglog P), (2.35)
=1
for any No < min{M,N}.
Proof. The proof is provided in Appendix 2.A.5. O

2.5.1 The Case T'=2,M >2,N > 2
In this case, \; =0 for all i > 2. We let Ny =T/2 =1 in (2.35) and obtain the bound

I(X;Y) < NE[logs(1 + A1)] + E[logs(1 4+ A1)] + NE[logs (1 + A2)]

2
— N> Ellogy(1 + A;)] + O(loglog P) (2.36)
i=1
= E[logy(1 + A\1)] + O(loglog P) (2.37)
< logy(1 + E[A1]) + O(loglog P) (2.38)
<logy P + O(loglog P) (2.39)

where (2.38) follows from Jensen’s inequality and the last inequality holds because E[A1] <
E[||X||2] < PT. Therefore, the optimal DoF is upper bounded by 1/2.

2.5.2 The Case M > N,T > 2N
In this case, we let Ng = N in (2.35) and obtain

N

I(X;Y) < N?E[logy (1 + A\)] + (T — 2N) ZE[logQ(l + Ai)] + O(log log P) (2.40)
=1

< (N? 4 N(T — 2N))E[logy(1 + ;)] + O(log log P) (2.41)

< N(T — N)logy(1 4+ E[A]) + O(loglog P) (2.42)

< N(T — N)logg P+ O(loglog P), (2.43)

where (2.41) holds because T'— 2N > 0 and \; < Ay, Vi; (2.42) follows from Jensen’s
inequality; and the last inequality holds because E[A1] < E[||X||2] < PT. Therefore, the

optimal DoF is upper bounded by N(l — %)

2.5.3 The Case M < N, T >2M

In this case, H is a tall matrix and can be written as

H,
[l 0
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where H; € CM>*M and Hy € CN=M)*M | Because E[||H||Z] < oo, we have that E[|[Hy||%] <
oo and E[[|Hz||3] < co. Furthermore, since H is generic, it is full rank almost surely (since
otherwise, the differential entropy of H approaches —c0), and therefore, we may w.l.o.g.

assume that Hy is full rank almost surely. Therefore, there exists almost surely a spanning
matrix H € CIN=M)*M guch that

Hy = AH,. (2.45)

The matrix H must satisfy E[HI:IH%} < 0o (because otherwise, E[|[Hz||Z] = 00), and as a

consequence, h(H) < co. Then we have that
o h(H;|H) = h(H;,H)—h(H) = h(H)—h(H) > —oc because h(H) > —oco and h(H) < oo;
. E{HHlH%‘ I:I} < oo almost surely because if IP(I:I € H) > 0 where
H o= {H e COMME[|H, 2] H] = oo}
then E[||H||2] = oo, which is not true.

This implies that conditioned on I:I, H. is generic.

The channel output can be expressed as

Y1
where Z1 and Z5 contain the first M rows and the remaining N — M rows of Z, respectively.
We have that

HX +7Z;

HoX + 2, | (2.46)

IX:Y) = I(X;Y1,Y2) (2.47)
< I(X;Y1,Y2, H) (2.48)
= I(X;Y1,H) 4+ I(X;Y2|Yy, H) (2.49)
= I(X; Y1, H) + h(Ya|Y1, H) — h(Y2[X, Y1, H) (2.50)
< I(X;Y1[H) + 0(1), (2.51)

where the last inequality follows because
h(Y2X,Y1,H) = h(H(Y1 — Z) + Zo|X, Y1, H) (2.52)
> h(Zy —HZ,X,Y1,H,Z)) (2.53)
= h(Zy) (2.54)
>0, (2.55)

and

h(Y2Y1,H) = h(Yy —HY | Y, H) (2.56)
=Eg[M(Z2 —HZy| Y1,H = H)] (2.57)
Eq[h(Z2 —HZ; |H = H)] (2.58)
= MEy [log, det(In +H"H)| + 0(1) (2.59)
= M%E[logg (1+ o;(H" H))} +0(1) (2.60)

=1
< Mlog, (1 +E|[H[}]) + 0 (2.61)

= 0(1). (2.62)
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Here, (2.58) holds because removing condition does not reduce entropy ; (2.59) holds
because given H, Zy — HZ; is a Ga}1§sﬁian matrix with M indepnglclent columns having the
same covariance matrix In_p +HH'; (2.61) holds due to o;(H H) < |[H||# and Jensen’s

inequality; and the last equality is because E[HHH%} < oo by assumption.

Following (2.51), we aim to find an upper bound on (X;Y1|I:I); Observe that given H,
Y1 is the output of a M x M generic fading channel (since given H, H; is generic), which
falls into the case of Section 2.5.2. Thus by the same argument as in Section 2.5.2, we can

show that I(X;Y1|H) < M(T — M)log§ P + O(loglog P). Plugging this into (2.51) yields
I(X;Y) < M(T — M)logg P+ O(loglog P), (2.63)

thus the optimal DoF is upper bounded by M(l — %)

Summarizing the results in Section 2.5.2 and Section 2.5.3, we conclude that the optimal
DoF of the channel is upper bounded by min{M, N} (1 - %) if T'> 2min{M,N}.

2.6 Closing Remarks

TABLE 2.1: The optimal DoF of the noncoherent M x N MIMO P2P channel
in block fading with coherent interval T' (the gray-colored cells contain the
results of this chapter)

Assumption T=1 T>2
Generic fading 0 [36] min{M, N, LT/QJ}(l _ W)
IID Rayleigh fading min{M, N, LT/QJ}(l — %LT/QJU [49], [50]

In this chapter, we study the optimal DoF of the noncoherent MIMO P2P channel with
generic block fading. The findings are summarized, together with the known results, in
Table 2.1. Based on the duality approach, we proposed an upper bound which coincides
with the inner bound achieved by a simple pilot-based scheme. Our results generalize the
optimal DoF of the Rayleigh fading case.

2.A  Appendices

2.A.1 Proof of Lemma 2.1
Consider the eigendecomposition A = UXV, where U € C"™*™ and V € C**! are unitary

/
matrices, and X = [ 0] with ¥/ € C*** a diagonal matrix containing the singular values of

A. Let W = WU, we have

hWA) = W(WUEV) (2.64)
= h(W'E) (2.65)
= h(W[.4%) (2.66)
= h(Wfy) +nlog |det(X)|? (2.67)
= h(Wiy) + nlogdet(A"A), (2.68)
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where the second equality is because rotationing does not change differential entropy and
(2.67) follows from (1.70). It remains to bound h(W'[l:ﬂ). Since the average powers of W'[M]

and W1, are bounded by E[|W'|[§] = E[|W/|[#] < oo, we have that
B(W/,) < o0 (2.69)

and h(W/[t +1:m]) < o0 by evoking the maximum differential entropy lemma in Appendix 1.A.1.
Furthermore, it follows from h(Wl[l:t]) + h(W/[t+1:m}) > h(W') = h(W) > —oo that

h(Wl[lzt]) > —00 — h(W,[tJrl:m}) > —00. (270)
Therefore, h(W'[M]) is bounded by some constant that only depends on the statistics of W.
This concludes the proof.
2.A.2 Proof of Lemma 2.2

If E[u] < B, we have that E[log(8 + u)] > log(3) and alog(f + E[u]) < alog(243), so (2.7)
holds with ¢y = log(3) — alog(28) = (1 — ) log f — alog 2.

Let p(-) be the PDF of u. We introduce an auxiliary distribution with density

atw) = (5 ~1)8 @+ w1 uzo, (2.71)

(0}

with parameters a < 1,5 > 0. Then it follows that h(u) + Eflog(g(u))] = —D(pll¢) <0,
which yields

Eflog(8 + u)] > ah(u) + alog(; — 1) + (1 —«a)logp. (2.72)

If E[u] > 3, we have

h(u) = h(IE[u]ElEu]> (2.73)
— log(E[u]) + h(E‘Eu]) (2.74)
— log(2E[u]) — log 2 + h(EF@) (2.75)
> log(8 + E[u]) — log 2 + h(IE‘Eu]), (2.76)

then applying (2.72), (2.7) holds with

1
o —alog(a — 1) + (1 —a)logﬂ—alog2+ah(ElEu]> > —00.

2.A.3 Proof of Lemma 2.3
The following results are necessary for our proof.

Definition 2.1 (Principal sub-matrix and principal minor [145, Section 0.7]). Consider a
matriz M € C"*". For each indexr set 8 = {s1,52,...,8:} C [n], t <n, let Ms4 denote
the sub-matriz of M obtained by deleting all the rows i ¢ s and columns j ¢ s of M. Then
M, 4 is called a principal sub-matrix of M, and det (M [s,s}) a principal minor of order t
of M.
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Lemma 2.5. Consider a matriz M € C™*" with n eigenvalues A1, o, ..., A\n sorted in
decreasing order. It holds that

t
> [Tx,= > det(Myy), Vten], (2.77)
1<ip<-<ig<n j=1 sC[n]: |s|=t
and
det(In+ M) =1+ > det(My). (2.78)

t=1sC[n]: |s|=t
Proof. (2.77) follows from [145, Thm. 1.2.16]. Using (2.77) and the factorization

det(I + M) = (1+ A1) (1 + M) ... (1+ M) (2.79)

=1+ Zn: > f[ Aij (2.80)

t=1 1<ij<-<iz<n j=1
we obtain (2.78). O
We prove Lemma 2.3 by construction. Let M := X"X, then Myq = er]X[s] is a

principal sub-matrix of M. Let s, C [n] be the index set corresponding to the highest
principal minor of order at most m/, i.e.,

det (M, 1) = o det (M) (2.81)
Consider an index set st C [n], |s;| = m/, such that s, C s;. Applying (2.78) in Lemma 2.5
to X7, X s, we obtain
det (Im/ + XFST]X[STO =1+ Z Z det (XFS]X[S]) (2.82)
t=1sCs;:|s|=t
and thus
Lt det (Mg, 1) < det(L + XJy 1 X)) (2.83)

<1 +z< e (M) (284

On the other hand, using (2.77) in Lemma 2.5, we have that

(1 +A) =1 S )\Z (2.85)
J
= t=11<i1 << <m/ j=1

m/

<1 + > H Ai; (2.86)

=11<i1 <<t <n j=1

=1+ Z > det(My) (2.87)
t=1sC[n]:|s|=t

m/

<1+ Z <7Z> det(M[s*,s*])v (2.88)
t=1
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where (2.86) holds because \; > 0,Vi € [n] (since M = X"X is positive semi-definite). Let
7 be the rank of Mg, 4,). Since Mg, 4.} is a principle sub-matrix of M, from the inclusion
principle (Lemma 2.4), we have that the r eigenvalues of M|, ,  sorted in decreasing
order are respectively smaller than the corresponding r largest eigenvalues of M. Thus

det (M[S*M) < II’—, \s, which implies that

1+ det (M[s*,s*]> < (14 X). (2.89)
j=1
Therefore,
1+ det(M
o < ) (2.90)
T4+ 3302 () 1+Zt 1 (3 )det(M[s* s*])
e (Lo + Xio X ) (2.91)
i1+ )
1+ det (M
< Zt 1 ( ) e ( [3*78*]) (292)

1+ det (M[s*,s*})
<1+Y <"Z> (2.93)
t=1

where (2.91) follows from (2.83) and (2.88); (2.92) from (2.84) and (2.89); (2.90) and (2.93)
are due to i—“f < 1+a for any x > 0,a > 0. Taking the logarithm, this implies (2.8) with
8 = 8;. Thus, we complete the proof.

2.A.4 Proof of Proposition 2.1

Using Lemma 1.3, it follows that

E[—1logy q(Y|v = v)]
= NE[log; [Y,[I?]

+ XT: E|logy det (In + Yy Yi) + Nlogy || (In + Y[v]YFv])_%Y[i] ]

i=1,i7v
+ O(log log P) (2.94)
T VI 2 s VY
— [log2||Y[U]H ]+ > E 10g2(1+ 1Y ] )+N10g2 1Yl — T+ Vo2
i=1,iv Y
+ O(log log P) (2.95)

= (N +T = DE[logy(1 + [[¥1,y|*)]

+ N Z [logz Yl + 1Y@ P IY 12 = Y5 Y ) — 10g2(1+||Y[UH|2)}
i1=1,i7#v

+ O(loglog P), (2.96)

where in the second equality, we used the identities det(I +uv") =1+ v"u and ||(I +

H,, 12
wu') Pz |2 =2 (I +uu") 'z =z (I — )-’E = Jl||* - %

1+u u
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By expanding Yy, ..., Y[r), we get that, given x and for a fixed v € [T7,

Enz[IY@l?] = N1+ [xil?), Vi, (2.97)
Enz (1YY w2 = Y[ Y] = (N2 = N)(L+ [xo|® + [xif?), i # v (2.98)

Then, it follows that

B[~ logy ¢(Y]v = v)]
< (V47 ~ 1)E[logy(1 + N + N )

T
N + Nxi[> 4+ (N2 = N)(1 + [x|* + [x]?)
N E|l
- Z._lz;#v lo& L+ N+ Njx 2
+ O(log log P) (2.99)
2 = x>
= (N+T - 1DE[logy(1+ [x,[)] + N Y Ellogy( 14— —
i=1,i#v 1+ [x]
+ O(loglog P), (2.100)

where (2.99) is obtained by using Jensen’s inequality and applying Lemma 2.2 (with g =1
and « arbitrarily close to 1) to |[Y[,[|*. Then, taking expectation of both sides of (2.100)
w.r.t. v, we obtain (2.23).

It remains to show that u := ||Y,||? fulfills the conditions E[u] < co and h(u/E[u]) > —oc
for Lemma 2.2. To see this, first, E[u] = N(1 + |x,|?), so it is finite for any fixed input
entry x, = 2,. Second, we have that”

h(u/E[u]) = h(u) — logy(E[u)) (2.101)

=h
= (|lhxy + Zpy)|1%) = logy (N (1 + |x|*)). (2.102)
It follows from [36, Lemma 6.17] that

w
w1 = h(w) — o (oIl ) = (V= 1) log (jw|)] + 1. (2.103)
for a complex random vector w € CV, where hy(.) is the modified differential entropy
function defined for random unit-norm vector, I\W.r.t. the area measure on the unit sphere.
Since the unit sphere in CV has finite area %, we have that

w N
h,\( ||w|> <logy 27 (2.104)
HWH‘ *T(N)

"In the case of IID Rayleigh fading h ~ CA(0, I v), we can compute explicitly h(u/E[u]) = N+log, % —

(N — 1)y(N), where 9(N) is Euler’s digamma function. It is obvious that h(u/E[u]) < co.
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Taking w = hx, + Z[,) and plugging h(||w||?) from (2.103) to (2.102) yields

h(u/Eu])
7TN
> hihve, + Zjo) = (N = DE [loga(lIve, + Ziul[*)] ~ loga(N (1 + bof) = logs 15
(2.105)
> max{h(hx,), h(Zy))} = (N = 1) logy (E[[lhx, +Zy[2] ) — loga(N (1 + x?)
7rN
— log, TN (2.106)
= max{h(h) + N logy(|x,|?), N logy(me)} — N logy(1 + |x,|?) — log ()™ (2.107)
2 v ) 2 2 v 2 F(N)
T N
= Nlog, (max{]xv]2eh(h)/N, 7re}) — Nlogy(1 + |x|?) — log, (1]1\[(]\;) (2.108)
N1 N1 B/ _gg, NV
> Nlogy(me) — N log, (1 + me ) — log, (N (2.109)
> —o0, (2.110)

where the second inequality follows from Jensen’s inequality and
h(hxy + Z[v}) > max{h(hxv), h(ZM)};

the second-to-last inequality follows by inspecting two cases |x,|[2e"®/N > e and |x,|2e"™M/N <
me; and the last inequality holds because h(h) is finite by assumption.
2.A.5 Proof of Proposition 2.2

We bound each term in the right-hand side of (2.34) as follows. The first term is bounded
using

E [loga (1 + [X(3[%)] < E[logy(1 + X[2)] (2.111)
=E [logQ (1 + %O: Yy ] (2.112)

j=1
< E[logy(1 4 A1)] + O(1). (2.113)

For the second term, it follows from (2.27) that

No

]E[logQ det (IN0 + x[“l:No]xD:NO])} =3 " Ellogy(1 + \)] + O(1). (2.114)
=1
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The third term is bounded as

E [logz (Y'Fi] (In + Y[1:N0]Y[H1:N0])_1Y[i}”

<E :logz (1 Y Iy + Y[LNO]Y['LNO])_lY[i]ﬂ (2.115)
_E [1og2 det (IN + Iy + YH:NO]Y[“LNO])*lv[i]vri])} (2.116)
—E :10g2 det ((IN +Y g Yiene) v + Y g Y + YMYE}))} (2.117)
= E[logy det (I + [Y(u.n0) Y)Y vy Yal")| — B [logy det(Tn + Y juovg Yiivg )|
(2.118)
=E :108;2 det (IN + HIX(1:vg) Xl X r:v) X[z']]HHHﬂ
— B [logy det (I + HX 1y, Xfi.ny H') | +0(1) (2.119)
~E :logz det (IM + Xpaeno) Xiig Xpen) xm]HHHH)]
— E [logy det (I + X X1y H'H) | +0(1), (2.120)

where (2.119) is obtained by applying Lemma 2.6 at the end of this appendix, which says
that an additive Gaussian noise with bounded variance does not affect the pre-log. We
proceed to bound the two expected values in (2.119). For an n x n matrix M, we denote
o1(M),09(M),...,0,(M) its n eigenvalues sorted in decreasing order. Noting that the
rank of [Xi1.no) Xl [X:ng) Xpig]"H"H is upper bounded by min{M, N, Ny + 1}, we obtain

E{IOgQ det (IM + [X[I:No} X[i]HX[l:NO] X[i]]HHHH)]
min{M,N,No+1}
= > Elog (14 0ilXpuve) X X Xl "HH) )| (2.121)
=1
min{M,N,No+1}
S Eflog (1+ 0i(Xpuave) Xl Xpng) Xal*)or (HH)) | (2.122)
=1
min{M,N,No+1}
S Bx|logy (14 ou(Xpung X)Xy Xl Eu[IHIE])]  (2.123)
=1
min{M,N,No+1}
= > E[logy (14 ol Xpuvg Xl Kppwg) Xigl")] +0(1) (2.124)
=1
min{M,N,No+1}
< > Eflogy (1 + A;)] + O(1), (2.125)
=1

IN

IN

where (2.122) follows by applying Lemma 2.7 at the end of this appendix; (2.123) is
due to o1(H"H) < ||H|% and Jensen’s inequality; (2.124) holds because E[||H|3] < oo
by assumption; and (2.125) is due to the inclusion principle (Lemma 2.4). Consider the
X 0

0 O} U" where X is an Ny x Ny diagonal matrix,

eigendecomposition X[I:No}x[Hl;No] =U [
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we have that

log, det (IM + X[1:N0}X[H1;NO]H H = log, det <IM + U U H H> (2.126)
= log, det <I HHH) (2.127)

> logy det (I, +TH H) (2.128)

= Zlog2 (1+0:(ZH"H)) (2.129)

> Zlog2(1 + i Kppeno X))o (H'H) ), (2.130)

where in (2.127), H := HU is also a generic fading matrix; (2.128) follows from Corollary 2.1
with H containing the first Ny columns of H; (2.130) is obtained by applying Lemma 2.7
and the fact that ¥ contains Ny largest eigenvalues of X;. No}XFL No]- Since H is generic,

H"H is full rank almost surely, thus TN, (I:iHI:i) > ¢o > 0 almost surely. Therefore, taking
the expectation, we have that

E {10g2 det (IM + X[I:NO]X'[—'LNO]HHH)}

No
> ZE{logQ (1 + 0 (X[lzNo]XFl:No}))] +0(1) (2.131)

=1
= I [logy det (I, + Xt vy Xp1ov)) | + O(1) (2.132)
No

=Y Eflogy(1+Ai)] +O(1), (2.133)
=1

where the last equality follows from (2.27). Plugging (2.125) and (2.133) into (2.118), we
have an upper bound on the third term in the right-hand side of (2.34).

The fourth term in the right-hand side of (2.34) is expanded using det(I7 + X"X) =
M

Finally, substituting the bound/expansion of each term in the right-hand side of (2.34),
we obtain (2.35).

Lemma 2.6. Consider an m x n random matriz G = G + G where G has IID Ne(0,1)
entries independent of G. It holds that

Eg [log det(I,, + GG")] = log det (Im + GGH) + o(log P). (2.134)
Proof. Following the footsteps of [147, Lemma 1], we can show that
Eg[logdet (I, + GG")] = "log (1 + o; (GG")) + o(log P), (2.135)
i=1

where 7 < rank(é) is the number of eigenvalues of GGM that do not vanish with P, i.e.,
0:(GG") = o(1) when P — oo, Vi > 7. It follows that

rank(é)

Eg[logdet(I, + GG")] = Y log(1 + 0;(GG")) + o(log P) (2.136)
i=1
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since the remaining rank(é) — 7 eigenvalues do not contribute more than o(log P) to the
expectation. This implies (2.134). O

Lemma 2.7. If A and B are n x n Hermitian positive semidefinite matrices, then
0i(A)o,(B) < 0;(AB) < 0;(A)o1(B), i€ n]. (2.137)

Proof. The result follows immediately by applying [148, Theorem 3] and [148, Theorem 4]
with k£ =1 therein. O
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Chapter 3

The Two-User SIMO Multiple-Access
Channel

The optimal DoF region of the non-coherent block-fading MAC is still unknown in general.
In this chapter, we make some progress by deriving the entire optimal DoF region in the
case of the two-user SIMO MAC in generic block fading. The achievability is based on a
simple pilot-based scheme. The novelty of our result lies in the converse using a genie-aided
bound and the duality upper bound.

3.1 Overview

For the non-coherent MAC, the sum capacity has been studied in [84]-[87]. The capac-
ity /DoF region is not known, and only some achievable DoF regions achieving the optimal
sum DoF in IID Rayleigh block fading have been proposed [37], [88].

In this chapter, we make some progress for the non-coherent SIMO MAC. Specifically,
we derive the optimal DoF region in the case of two single-antenna transmitters (users)
and a N-antenna receiver in generic block fading channel with coherence interval T'. When
N =1, the region is achieved with a simple time division multiplexing (TDM) between two
users. In this case, letting two users cooperate does not help exploit more DoF and it is
optimal to activate only one user at a time to achieve 1— % DoF for that user. When N > 1,
a pilot-based scheme can achieve another DoF pair. We let two users send orthogonal
pilots for channel estimation in 2 of the channel uses, and send data simultaneously in the
remaining T — 2 channel uses. In this way, each user achieves 1 — % DoF.

The main technical contribution of this chapter lies in the converse proof. Leveraging
the duality upper bound [36], we carefully choose an output distribution with which we
derive a tight outer bound on the DoF region. This is a generalization of our converse
proof technique for the single-user SIMO case in Chapter 2. Unlike previous results such
as [37], [84], [85], [87], [88], we do not assume Gaussianity of the channel coefficients, which
makes our proof more general.

The remainder of this chapter is organized as follows. The system model and prelim-
inaries are presented in Section 3.2. In Section 3.3, we provide the main result on the
optimal DoF region of the two-user MAC, as well as the proof for the case N = 1 and the
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achievability for the case N > 1. We show the tight outer bound for the case N > 1 in
Section 3.4. Finally, we conclude the chapter in Section 3.5.

3.2 System Model and Preliminaries

We consider a SIMO MAC in which two single-antenna users send their signals to a receiver
with N antennas. The channel between the users and the receiver is flat and block fading
with equal-length and synchronous coherence interval (across users) of T channel uses.
That is, the channel vector h;, € CV*! k = 1,2, remains unchanged during each block of
length T" and changes independently between blocks. The realizations of hy and hs are
unknown to both the users and the receiver. The received signal during the coherence
block b is

Y[o] = hy[0]xI[b] + ha[b] x5 (8] + Z[], b=1,2,..., (3.1)

where x1[b] € CT and x3[b] € CT are the transmitted signals from user 1 and user 2,
respectively, with the power constraint

Vi
LS IlbllF < PT. k=12, (3.2)
Yk b—1

where vy, is the number of blocks spanned by a channel codeword of user k, k € [K], and
Z[b) € CV*T is the AWGN with IID N¢(0, 1) entries. The parameter P is the SNR of the
channel. In the remainder of the chapter, we omit the block index b whenever confusion is
unlikely.

Since the channel is block memoryless, it is well known that a rate pair (R1(P), R2(P))
in bpcu is achievable at SNR P, i.e., lies within the capacity region Cayg(P), for the MAC
if and only if

1

R1 S TI(Xl;Y ’XQ), (33&)
1

R2 < TI(XQ;Y |X1), (33b)
1

R+ Ry < TI(Xl,XQ;Y), (3.3¢)

for some input distribution subject to the average power constraint P (as the channel
codeword length goes to infinity) [22]. Then, we say that (dy,ds2) is an achievable DoF pair
with
Ri(P
dy := lim k(P) ,

k=1,2. (3.4)

The optimal DoF region Dy, is defined as the set of all achievable DoF pairs.

We assume that the channel vectors hy and hy are independent and drawn from a generic
distribution satisfying the following conditions:!

hihg) > —o0, Elflhg]?] <oo, k=12 (3.5)

If the support of the input distribution is further bounded such that

Ixel?> <P, k=1,2, (3.6)

!Under the assumption (3.5), we assume w.l.o.g. that E[\|hk\|2] = N,k = 1,2, for convenience.
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then we say that the input satisfies the peak power constraint P. In this case, the capacity
region and DoF region are denoted Cpeak (P) and Dpeak, respectively. Since the peak power
constraint implies the average power constraint, we have that

CPeak(P) c CAvg(P)u DPeak(P) c DAvg(P)- (37)

Lemma 3.1. For any rate pair (R, R2) achievable under the average power constraint P,
for any B > 1, there exists (R}, Ry) achievable under the peak power constraint PP, such
that

Ry — R, = 0P PlogP?), k=12 (3.8)

In short, with a slight abuse of notation,
Cavg(P) € Cpeak(P?) + O(P'Plog PP), V3 > 1. (3.9)
Proof. The proof is provided in Appendix 3.A.1 O

Since the pre-log of the gap P'~#log PP is vanishing at high SNR for any 8 > 1, we
have the DoF region

Davg(P) C Dpear(P?) C Daye(P?), VB> 1. (3.10)

Letting (8 arbitrarily close to 1, we conclude from (3.7) and (3.10) that using the peak
power constraint instead of the average power constraint does not change the optimal DoF
region. We therefore consider throughout this chapter the peak power constraint, which
can simplify considerably the analysis.

3.3 Main Result

The main finding of this chapter is the optimal DoF region of the MAC described above,
as stated in Theorem 3.1.

Theorem 3.1. For the non-coherent MAC with two single-antenna transmitters and an
N-antenna receiver in generic flat and block fading with coherence interval T, the optimal
DoF region is characterized by

1
di +ds < 1_T7 (3.11)
ifT<2o0rN=1, and
dy 1
d <1-——= 12
T_2 @ =T (3:-12a)
do 1
d <1-— .12b

otherwise.

Remark 3.1. When T — oo, the optimal DoF region approaches the region in the coherent
case given by

di+dy < 1 PN =1
{1+2— : i ’ (3.13)

max{dy,d2} <1, if N >1,

as shown in Fig. 3.1.
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09r

T = oo (coherent), N > 1

0.8
0.7
0.6
< 0.5
0.4
0.3

0.2

FIGURE 3.1: The optimal DoF region of the two-user SIMO MAC with N receive antennas in
generic block fading with coherence interval T'.

The case T' =1 (stationary fading) is trivial: zero DoF is achievable, even if two users
cooperate [36].

If T'=2 or N =1, the optimal DoF region is achieved with TDM between the users,
noting that the active user can achieve 1 — % DoF by either a pilot-based scheme [31]
or USTM [49], [53]. The tight outer bound follows by letting two users cooperate, then
according to Theorem 2.1 in Chapter 2, the optimal total DoF is 1 — %

When T > 3, N > 1, the region is the convex hull of the origin and three points:
(1 — %, 0), (0, 1-— %), and (1 - %, 1-— %) The first two points are achieved by activating
only one user. The third point is achieved with a pilot-based scheme: let two users send
orthogonal pilots in the two arbitrary channel uses for the receiver to learn their channel,
and send data in the remaining 7' — 2 channel uses. The region is then achieved with
time sharing between these points. Another achievable scheme using a geometric approach
can be found in [88]. There, motivated by the geometric structure of the problem, the
transmitted signals x; and xs are drawn uniformly from quotient spaces of specified unitary
groups.

It remains to show the tight outer bound for the case T' > 3, N > 1. To this end, we
use the duality approach as done for the single-user case in Section 2.4. The details are
presented in the next section.

3.4 The Converse for the Case T"> 3, N > 1

We are going to show that, when 7" > 3, N > 1, any achievable DoF pair (d;, dy) must
satisfy (3.12a) and (3.12b).

341 The Case T >N +1>2

Let us first consider the more straightforward case with T'> N + 1 > 2. We first bound
R1 and R using similar techniques as for the single-user case in Section 2.4, and then give
the tight outer bound for the DoF region in the following steps.
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Step 1: Output Rotation and Genie-Aided Bound

Given xa, the channel w.r.t. input x; has equivalent noise haxj + Z. Consider the following
eigendecomposition

x3x3 = U diag(0,...,0, [jxa|?) U", (3.14)

for some T x T’ unitary matrix U. We consider the rotated output Y = YU = hix] + Z
where X] = xjU = [X11 X2 . x17| and Z= (hax3 + Z)U. Note that given xo, the first
T — 1 columns of the noise Z are IID Gaussian whereas the last column is stronger as the
sum of ha||xz2|| and a Gaussian noise vector. Thus, from (3.3a) and the fact that unitary
rotation does not change the mutual information, we have that

TRy < I(x1:Y|x2) = I(X1;Y|x2), (3.15)

for any achievable rate R; of user 1. Let us define the random variable v as the index of
the strongest among the first 7' — 1 elements of X1, namely,

v = arg ier?jgzcl] |%1:]%. (3.16)

Let a genie give v to the receiver. With the genie-aided bound, we have that

I(%1;Y[x2) < I(%1; Y, v[x2) (3.17)
= I(%1;Y|x2,v) + I(X1; v[x2 (3.18)
< h(¥|xo,v) — h(¥[%1,%0,v) + H(v) (3.19)
< h(Yxa,v) — h(Y[%1,x2) + logy(T — 1). (3.20)

where the last inequality is because we have the Markov chain v < (X1,x2) < Y and
H(v) <logy(T —1).
Step 2: Bounding h(Y|X1,x2) and h(Y|xa,v)

Given any realizations ; of X; and &2 of x2, we can apply Lemma 2.1 with W = [h; hy Z]
and A = [Z; x5 I7]"U to obtain

h(Y|%1,x2) = NE[log, det(A"A)] + O(1) (3.21)

T—1
— NE[IO& ((1 + [Ix2[|) <1 +) iliIQ) + |>?1T|2> +0(1), (3.22)

=1

where the last equality is obtained by applying x; = xjU.

For h(?’XQ, v), we use the duality upper bound
h(Y[x3,v) = E|~ logy p(¥|xa, V)| (3.23)
= B[~ 1og, q(Vjx2,v)| = Bu[D(py, , 990, 0)] (3.24)
< E[— logy q(Y[x2, v)}, (3.25)

where the only difference from the single-user case in Section 2.4 is the presence of
xo. Inspired by a pilot-based scheme with pilot transmission in channel use v and data
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transmission in all other channel uses, we choose the auxiliary distribution U xy e DS
follows. Given v=wv, v <T — 1, we let

Y ~ R(N, Iy) (3.26)

where the family of distributions R(V, A) was defined in Lemma 1.3 in Chapter 2, and
given Yy}, the other Y[;;’s are independent and follow

Yi ~ R(N, (IN +\?[U]\?Fﬂ)2>, ié{v, T}, (3.27)

_1
Y[T} ~ R(N, ((1 + ||X2H2)IN —i—Y[U}YE}]) 2). (3.28)

Proposition 3.1. With the above choice of auxiliary output distributions, we obtain the
following upper bound for E{— log, q(Y|xQ,v)} , and hence for h(Y|xa,Vv):

E[— log, q(?|x2,v)} <(N+T- 2)E{log2(1 + |>~(1v|2)}

Til log <1+|)~(M‘2 )
2 .12

i=1,i£V 1+ [

’>~<1VI2

lo 14+ —

g2< 1+ 2

xi7]?

lo 1+ — + O(loglog P). 3.29
g2< 1+”X2H2+|X1v|2 ( g 10g ) ( )

Proof. The proof is provided in Appendix 3.A.2. O

+ NE

+ NE[logy(1 + [}xa|*)] + E

+ NE

Step 3: Upper Bounds on R; and R»
From (3.15), (3.20), (3.22) and (3.29), we have the bound for R;

TRy < E[f(x1,x2)] + O(loglog P), (3.30)
where
nax %14
f(X1,x2) := (N +T — 2)log, (1 + ien[ljgﬁ] |>~<1¢|2> +logy | 1+ m
+ Nlogy [ 1+ Farl 3 | — Nlog, <1 * TZ_l [%1al* + |X1T’2> (3.31)
1+ x> + ax %1 = L+ [Ix2f?
Following the exact same steps by swapping the users’ role, we get that
TRy < E[f(%2,%1)] + O(loglog P), (3.32)

where Xo := x5U; with U; obtained from the decomposition

xix] = Uy diag(0,...,0,[jx||*) UY. (3.33)
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It follows that, for any Aj, Ao > 0, we have the following upper bound on the weighted
sum rate

1 - -
MER1+ MRy < TE[)\IJC(Xl,XQ) + /\Qf(XQ,Xl)] + O(log log P) (3.34)
1 . -
< T Sup AL f(Z1,22) + Ao f (Z2,21)] + O(loglog P), (3.35)
1,22

where the supremum is over all &1, Z> subject to the peak power constraints ||z1[|?> < P
and ||z2||? < P.
Step 4: DoF Upper Bounds

Since we are only interested in the pre-log at high SNR, it is without loss of optimality to
let ||z1]]? = ©(P™M),||z2||?> = ©(P™) for some 11,72 < 1. In addition, we assume that

max ’j1i|2 = @(Pm), ’leP = @(PTIIT>, (3.36)
1€[T—1]

max |Zg;]? = O(P™), |Zor|? = O(P™T). (3.37)
1€[T—1]

Hence, at high SNR, 11 = max{n,mir}, 72 = max{n, nor}. From (3.31) and (3.35), we
have the weighted sum DoF bound

N+T—-2_ 1 _
A1dy + Aods < )\1#771 + )\1T(771 — )"

N _ N _
+ )\1?(771T — max{i1, 2 }) " — )\1? max {7, mr — N2}

N+T—-2_ 1 _
Mo e N (e — )T
+ A2 T N2 + 2T(772 )
N N
+ /\2?(7727’ —max{m,m})" — /\2? max {72, Nor — M}, (3.38)

subject to the constraints 71, m7 < 1 and 72,97 < 1. Taking (A, \2) as (l,ﬁ) or

(713,1), we can verify that, when 3 < N +1 < T, (3.12a) and (3.12b) hold for all (dy, dy)

satisfying (3.38). Thus the optimal DoF region is characterized for this case.

3.4.2 The Case 3<T <N

When T' < N, the above choice of auxiliary output distribution is not sufficient for a tight
DoF outer bound. To see this, let us take (A1, A2) = (1, ﬁ), then if 7y +m2 > mpr =1
and 12 = 11, (3.38) becomes
do T-1 N

<

M+ = (mr —m), (3.39)

ht7 557 T

which is loose since the right-hand side is larger than 1 — % whenever N > T'. Generally,

the bound (3.38) can be loose when n17 > max{n1,72} or ner > max{mn2,n:}. To account
for such scenarios, we ought to refine our choice of auxiliary output distribution for the
duality upper bound. First, given x2, we define a pair of random variables (v, u) as

V = arg max |>~<1i‘2, (3.40)
i€[T] 01-2
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where 02 = 1,Vi < T and 02 = 1 + ||x2||?, and

1, if [xi7|2 > max{ max [xy;]%, 1+ ||xa|/? ¢,
Xir|® = {ie[T—l}‘ v 2| (3.41)

u:=
0, otherwise.

Thus, X1y is the input entry with the largest instantaneous SNR, and u determines a specific

configuration of input entry powers in which the choice of auxiliary output distribution in

the previous case possibly fails. Then similarly as for the case T' > N + 1, with output
rotation, genie-aided bound, and duality upper bound, we have that

TRy < I(%1;Yx2) (3.42)

< IE[— logs q(Y|x2, v, u)} — h(Y|%1,x2) + logy(T) + 1, (3.43)

where h(Y|%1,x2) was calculated in (3.22). For E{— logy (Y X2, v, u)], we choose the
auxiliary PDF q(?[xz, v, u) as follows. Given v =wv and u = u, we consider two scenarios:
o If v =T or {v<T,u=0}, welet ?[U] ~ R(N,Iy) and conditioned on ?[U}’ the
other ?m’s are independent and follow
. Y, Yo\ "2
Yy ~ R(N, (JEIN + [”}2”> > i . (3.44)
o

(%

This choice is inspired by a pilot-based scheme in which the input symbol with
strongest SNR is used as pilot. After some manipulations similar as for Proposition 3.1,
we get the bounds

]E{— logy q(Y|x,v =10 < T,u= 0)}
< (N +T — 2)E[loga (1 + [%1)] + NE[loga (1 + [xa )]
‘>~<1U|2
lo 14+ —r—
&< 1+ [[xa2

+E + O(loglog P), (3.45)

and

E|[~log, q(Yixs,v = T)| < NE[logy(1 + [xa|* + [%17[%)]

[xir[?
+ (T —1DE|logs( 1+ ———= | | + O(loglog P).

(3.46)

o If {v <T,u=1}, welet ?[v] ~ R(N,Iy) and conditioned on ?[v], the other Y[i]’s
are independent with

~ N |
Y ~ R(N, (IN +Y[U]Y[HUO 2), i ¢ {v,T}, (3.47)

1
- P - - T2
[v]

where the only difference from (3.44) is the presence of the factor H\?P R This factor
[v]

is added to account for the fact that if u = 1, then |%1,|? < |[%17|?, which can make
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the power of ?[v} inferior to that of ?[T}' In this case, after some manipulations
similar as for Proposition 3.1, we have the bound

E{—logq(ﬂxz,v:v <T,u= 1)]

1+ [jx2]|* + [%17|?
1+ HXQH2 + P

ﬂ + O(loglog P). (3.49)

<(N+T- 2)E{log(1 + |)~(1v’2)} + NE|log

+ NE[log(1 + [x:[)] + E {10g<1 Tl

The bounds (3.45), (3.46), and (3.49), together with (3.22), give us the upper bound
on R; as

TR; < Elg(x1,%x2)] + O(loglog P), (3.50)
where

g<)~(17X2) =

n[lzélxu [%1if*
- 192 i€
(T — 2)log, (1 + hax Xl ) Hloga | L+ = e |

|X1T\
i el

) L+ [jxa[? + [ [? P
T—2)log, (1+ max [x;]?)+Nlo + logy | 1+ ,
(T=2)log, (1+ mas, f2f”) g2< L+ [ + P 2T T el

e max ]x12| and [%17|? <max{'max ]>~<1i|2,1—|—||x2||2
ie[T—1 €[T-1]

if 1|+Xiz2‘HQ < eI?[(ljélX %15)% and |%;7|? > max eI?[(ljélX %152, 1+ ||Ix2|? 3,
(7= Dlogs (1 + ).
if 1L—HX2\2\2 > H[lzg,xl] 14|12,
(3.51)
and the similar bound for Ry
TRy < E[g(x2,%1)] + O(loglog P). (3.52)

The rest of the proof follows from a similar weighted sum bound for the rates and the DoFs
as done in the previous case.

3.5 Closing Remarks

In this chapter, we have proposed a new tight outer bound on the DoF region of the
two-user non-coherent SIMO MAC with generic block fading. The outer bound region
coincides with the inner bound region achieved by a simple pilot-based scheme. The
resulting optimal DoF region is given in Table 3.1, together with existing results on the
DoF /capacity limits of the non-coherent MAC.

3.A Appendices

3.A.1 Proof of Lemma 3.1

We prove the lemma by construction. Consider a rate pair (R, R2) achievable with some
input PDF py, (.) and px, (.) satisfying the average power constraints P. Let us define a
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TABLE 3.1: The DoF/capacity region of the non-coherent MAC in block
fading with coherence interval T' and N receive antennas (the gray-colored
cell contains the result of this chapter)

Assumption ‘ Two users ‘ K users
di+dy <1-— 7,
Generic SIMO ; it T 512 or Ndz 1 1
fading: MAC Tastrds < 1=, di+7%5 < 1—m, Unknown
optimal otherwise
DoF region| MIMO Unknown
MAC
11D DoF re- Achievability: (1.52) [88)] ochievbiliny: (i-gi) [??:;]
Rayleigh gion uter bound: (1.54) [37]
fading e Fast fading: sum capacity of the SIMO MAC with K > 1
Sum ca. | ST equals capacity with 1 user [84]
pacity e Block fading: bounds on the sum capacity for the SIMO

MAC [85] and MIMO MAC [87]

IID Rician fast fading | Fading number for the sum capacity of the MISO MAC: [86]

new input x,, with domain {x € C7,||z||> < P?} and PDF

Px, (T) = P(lxx [|°<PP)’ 1 H“’H2 = 57 (3.53)
0, if ||z||* > P”,

for k = 1,2, with 3 > 1. Then the inputs x; and x, satisfy the peak power constraint P¥.
We define a random variable v as
0, if [[x1]|> < PP and |[x2||> < P?,
v=< 1, if [x1]|?> < PP and |jx2||? > P¥, (3.54)
2, if |x¢|? > PP.

Then, {x)|v = 0} ~ px, . By Markov’s inequality,

E 2
P(|[xx|> > P?) < [”;’;H] <TPP k=12, (3.55)
then
P(v=1) = P(|x|]* < PP)P(}x2|* > P”) < P(|}x2|* > P?) < TP'"7, (3.56)
P(v =2) = P(|x||> > P?) < PP, (3.57)
Assume that a genie gives v to the receiver:
TRl < I(Xl;Y|X2) (358)
< I(x1;Y, v[x2) (3.59)
= I(x1;Y|x2,V) + I(X1;V|x2) (3.60)
< P(V = O)I(Xl;Y’XQ,V = 0) + P(V = 1)I(X1;Y‘X2,V = 1)
+ P(v =2)1(x1;Y|x2,v = 2) + log, 3, (3.61)
< I(x1;Y|x9) + P(v=1)I(x1;Y|x2,v=1) + P(v=2)I(x1;Y|x2,v = 2) + log, 3,

(3.62)
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where (3.61) is due to I(x1;v|x2) < H(v) <logy(3) bits, and the last inequality is because
given v = 0, x;, is identically distributed to x;, k = 1,2. Next, since removing noise and
giving CSI increase the rate, for v € {1,2},

P(v =v)I(x1;Y |x2,v =)

:P(V = U)I(Xl;H1X11—+H2X-2r+Z’X2,V = U) (363)
< P(v=v)I(x1;Hix] + Z|Hy,v =) (3.64)
< NP(v =v)log, (1+E|[[x[*v = v]). (3.65)

With v = 1, [x;[|> < P#, thus
P(v=1)log, (1+ E[Hle?‘v =1]) < TP logy(1 + PP) (3.66)
= O(P*Plog P). (3.67)

With v = 2, ||x1||? > P?, we have that

o, _ o] _ [ Paf2(@)
= P([xi? > PF)
P
< 3.70
= B(al? > P9) (370
Thus,
P(V = 2) 10g2 (1 + E[HX1H2’V = 2}) § ]P)(H)(lH2 > Pﬁ) 10g2 (1 + W) (371)
P
1-8

= O(P'Plog PP), (3.73)

where the second inequality is because the function xlogy(1l + 1/x) is monotonically
increasing in 2 for z > 0 and 0 < P(||x,||> > P?) < TP'~A. Plugging (3.67) and (3.73)
into (3.65), then (3.65) into (3.62) yields

TRy < I(x1;Y|xy) + O(P P log PP). (3.74)
Following the same steps by swapping the users’ roles, we get the bound for Rs
TRy < I(x9;Y[x;) + O(P P log PP). (3.75)
Using similar techniques, we can also show that
T(R1 + Ro) < I(x,%9:Y) + O(P' P log PP). (3.76)
Therefore, there exists (R}, R5) satisfying
1
Ry < TI(&?Y‘)&Q% (3.77a)
1
R < TI(&?Y\)&)? (3.77b)
1
1+Ry < TI(L(LL(Q;Y), (3.77¢)

i.e., achievable with the constructed inputs x; and x, satisfying the peak power constraint
P# such that (3.8) holds. This concludes the proof.
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3.A.2 Proof of Proposition 3.1

We obtain from Lemma 1.3 that

E[— log(q(Y|x2,v = v)}

= NE [log ”?[U]HQ} + Til E [log det (IN +?[v]?'[—|v]> + N log (IN JerY[,U]) %?[ﬂ

T

i=1,i#v
1 2

[logdet Lt el P+ V¥ )+ Nog | (0 + el P I+ Y0¥ ) Vi ]
O(loglog P) (3.78)

T
NE[log (1+ %]+ Y Bi+O(loglog P), (3.79)

i=1,i#v
where

v 2 LYYl .
B, = E |log(1+ [¥yl2) + Nog [ ¥ 2 — ) | g o1y, (3.80)

L+ (Y |12
1Y ]I
Br:=Ellog | (1 + |jxo|>)V |1+ —2"_
T [ g(( H 2” ) < 1+HX2H2
1 - WFT]?[UHQ
+Nlog | —— [ IIYmll? = - . 3.81
(1+ e (” L S AT 51
By expanding ?[1], . ,?[T], we get that, given x; and Xo,

Br, 2|Vl P 12 = Y Y2

Br, 2 [Vl IPIY 12 = ¥y Y 2]

(N2 = N) (14 [z1o* + [%0?), i ¢ {v, T}, (3.82)

(N2 = N)((1+ %)+ |51 [2) + =1 ?)
(N2 = N)(1+ [%o]*) (1 + [R10f? + 517 [?).  (3.83)

IN

Then, applying repeatedly Lemma 2.2 (with 5 = 1 and « arbitrarily close to 1) and Jensen’s
inequality, we get that

B; = E[—(N — 1) log (1 + [V )]
+ NE [log (V2 + IV PV 12 = IV Y1y ?) ]
<E[~(N = 1)log(1+ N + N[z [?)] (3.84)
+ NE[log(N?(1 + [z1:?) + (N? = N)[1[?) | + O(1) (3.85)

%14
log{ 14+ ———
g( 1+ %102

:E[log(H \fqvlz)} + NE +0(1), (3.86)
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for i ¢ {v,T}. Similarly, by applying repeatedly Lemma 2.2 (with 3 = 1 + |[x2/|? and «
arbitrarily close to 1) and Jensen’s inequality,

o1 ¥l
T+ 2

Y IPIY 12 = (¥ fry Y g 2
1+ [xo] 2

Br = NE [1og(1 + |ylel2)} +E

+ NE

10%(W[T]HQ +

~ NE[log(1+ [xa]* + Y )] (3.87)

N+Nmﬁ>

< NE{IOg(I + HXQH2H +E 1+ [xa| 2

log<1 +

+ VE[ log (N (14 [lea]*) + (V? = N)(1 + [fn*) + N[5

— NE[log(1+ [xa]® + N + Nfz1[*)| + 0(1) (3.88)
|>~<1v’2
log( 1+ —wl
g( T+ a2
log( 1+ Karl* +0(1) (3.89)
1+ ||x2]]2 + [X10 |2

Note that we have applied Lemma 2.2 with u = |[Y},[|? in (3.85) and u = H?[U]H2 in (3.88).
The conditions E[u] < oo and h(u/E[u]) > —oo can be verified as done in Appendix 2.A.4.

= NE [log(1+ [jxa|?)| + E

+ NE

Plugging (3.85) and (3.89) into (3.79) then taking expectation over v, we obtain (3.29),
which concludes the proof.
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Chapter 4

The Spatially Correlated MIMO
Broadcast Channel

In a MIMO BC, the difference in spatial transmit correlation matrices of different users is
called transmit correlation diversity. This diversity was conceived for channels in which
transmit correlation matrices have mutually exclusive eigenspaces, allowing noninterfering
pilot and data transmission. This chapter broadens the scope of transmit correlation
diversity in a noncoherent MIMO BC to the case of partially overlapping eigenspaces and
introduces techniques to harvest these generalized gains. For the two-user case, we derive
achievable DoF regions and achievable rate regions. We then extend the DoF results to the
K-user case by analyzing the interference graph that characterizes the overlapping structure
of the correlation eigenspaces. Our achievability results employ a combination of product
superposition in the common part of the eigenspaces, and pre-beamforming (rate splitting)
to create multiple data streams in nonoverlapping parts of the correlation eigenspaces.

4.1 Overview

In [37], Fadel and Nosratinia found the optimal DoF region for the noncoherent block-
fading BC under the assumption that the channel components are IID, which can be
achieved by TDMA. In practice, however, the channels between different antennas are
often correlated. The correlation arises from the propagation environment causing the
received signal gains to be larger in some spatial directions, and also from the spatially
dependent patterns of the antennas. The interest in spatial correlation was sharpened by
its experimental validation [149], [150], and more recently by the increasing attention to
higher frequencies [151] and larger number of antennas [152].

The effect of spatial correlation on the capacity of MIMO links has been a subject of
long-standing interest. Shiu et al. proposed an abstract “one-ring” model to determine the
spatial fading correlation and studied its effect on the MIMO capacity [153]. In single-user
channels with CSIR but no CSIT, channel correlation can boost power but may reduce
the DoF [154], [155], thus it can be detrimental at high signal-to-noise ratio (SNR) but a
boon at low SNR. Tulino et al. characterized analytically the capacity of correlated MIMO
channels under a general correlation model in the large antenna array regime in [156].
In [157], Chang et al. showed that channel rank deficiency due to spatial correlation lowers



4.1. Overview 73

the diversity-multiplexing tradeoff curves from that of uncorrelated channels. Capacity
bounds subject to channel estimation errors in correlated fading were characterized in [158],
[159].

Under the assumption that all users experience identical correlation, Al-Naffouri et al.
showed that correlation is detrimental to the sum rate scaling of the MIMO BC achieved with
various transmission schemes, including the dirty paper coding [160]. However, in practice,
the users may have different correlation matrices because they are not co-located [161],
making it difficult to draw conclusions based on [160]. The sum-rate capacity under
user-specific transmit correlations with CSIR was studied in [162], [163]. Furthermore,
at higher frequencies or with a large number of antennas, when spatial correlation is
unavoidable, comparing capacity against a hypothetically uncorrelated channel may have
limited operational impact. Instead, a more relevant question in that case could be: how
to maximize performance in the presence of spatial correlation? A useful tool for that
purpose is transmit correlation diversity, i.e., leveraging the difference between the spatial
correlation observed by different users in the system.

Transmit correlation diversity was originally conceived for transmit spatial correlation
matrices that have mutually exclusive eigenspaces. Under this condition, a JSDM trans-
mission scheme was proposed [113], [114] that reduces the overhead needed for channel
estimation. For multi-user networks with orthogonal eigenspace correlation matrices,
Adhikary and Caire showed that transmit correlation helps in multi-cell network by parti-
tioning the user spaces into clusters [164]. It was also concluded that transmit correlation
benefits the sum rate in the downlink performance of a heterogeneous cellular network
(HetNet) where both macro and small cells share the same spectrum [165]. Non-overlapping
transmit correlation eigenspaces have also been exploited in a two-tier system where a
large number of small cells are deployed under a macro cell [166].

One might ask: how often do nonoverlapping correlation eigenspaces naturally occur?
Certainly in some scenarios, e.g., severely rank-deficient MIMO links, the occurrence of
such link characteristics may be commonplace. However, in many other scenarios, transmit
correlation matrices may be different but have overlapping eigenspaces, and a natural
motivation exists to explore and understand transmit correlation diversity in this more
general setting. This chapter significantly broadens the conditions under which correlation
diversity can be exploited, and proposes new techniques to harvest these gains. We focus
on the noncoherent case, i.e., neither CSIT nor CSIR.

The main contributions of this chapter are summarized as follows.

1. We derive an achievable DoF region for the two-user noncoherent BC in spatially
correlated block fading (Theorem 4.1). This region is significantly larger than the
TDMA region, especially when the rank rg of the overlap between two correlation
eigenspaces is large (see Fig. 4.1).

2. Also for the two-user BC, we propose an achievable rate region with rate splitting
(pre-beamforming) for arbitrary input distribution satisfying the average power
constraint (Theorem 4.3). We characterize this rate region with an explicit input
distribution based on orthogonal pilots and Gaussian data symbols (Theorem 4.4).
We also derive the rate achieved with product superposition (Theorem 4.5) and a
hybrid version of pre-beamforming and product superposition (Theorem 4.6). As a
by-product, we find the rate achieved with pilot-based schemes for the P2P channel
(Theorem 4.2), which generalizes of the results in [31] to correlated fading.
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3. We derive achievable DoF regions for the K-user BC in spatially correlated fading
with symmetrically partially overlapping eigenspaces (Theorems 4.7, 4.8) and general
correlation structure (Theorem 4.9).

For the achievability results above, we employ rate splitting, product superposition, and a
combination of them, thus showing that these transmission techniques are suitable tools to
harvest the gain of transmit correlation diversity with partially overlapping eigenspaces.
We note that most of our results do not require the fading to be Rayleigh, but rather hold
for generic fading.

The remainder of the chapter is organized as follows. First, the system model is
introduced in Section 4.2. Then, Section 4.3 and Section 4.4 present respectively the
achievable DoF' and rate region analysis for the two-user case. Section 4.5 presents the
achievable DoF region analysis for the K-user case. Finally, Section 4.6 concludes the
chapter.

4.2 System Model

We consider a MIMO BC in which a transmitter equipped with M antennas transmitting
to K receivers (users), where user k is equipped with Ny antennas, k € [K]. The
channel between the transmitter and user k is flat and block fading with equal-length and
synchronous coherence interval (across the users) of 7' channel uses. That is, the channel
propagation matrix H, € CV#*M k¢ [K], remains constant during each block of length T
symbols and changes independently between blocks. Let the matrix X[b] € CM*T be the
transmitted signal from the M antennas during a coherence block b. The received signal
matrix at user k is

Yilb] = Hu[BX[] + Zi[b], k€ [K],b=1,2,..., (4.1)

where Zj[b] € CV*T is the AWGN with IID N¢(0, 1) entries. The input is subject to the
power constraint

1 1%
ST IXBIR < P, (4.2)
b=1

where v is the number of blocks spanned by a channel codeword. Therefore, P is the SNR
of the channel. Hereafter, we omit the block index b whenever confusion is not likely.

Channel Spatial Correlation

We assume that the channel is spatially correlated according to the Kronecker model (a.k.a.
separable model), and focus on the transmit-side correlation. Thus the channel matrices
are expressed as

o 1
H, =H.R?, ke lK], (4.3)

where R, = N%CE[HZHk] € CMXM "tr(Ry,) = M, is the transmit correlation matrix of user

k with rank rg, and H, € CN+*M s drawn from a generic distribution satisfying the
conditions

v

h(Hk) >—o0, E

—

HHy| = NiIos, k€ [K]. (4.4)
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Since the correlation matrices might be rank-deficient, Hy is not necessarily a minimal
representation of the randomness in H;. The correlation eigenspace of user k is revealed
via an eigendecomposition of the correlation matrix:

Ry, = UkEkUZ (4.5)

where ¥ is a 1, X r; diagonal matrix containing r; nonzero eigenvalues of Ry, and Uy,
is an M X rp matrix whose orthonormal unit column vectors are the eigenvectors of Ry
corresponding to the nonzero eigenvalues. The rows of Hy belong to the ri-dimensional
subspace Span(Uy) of Ry, also called as the eigenspace of user k. The channel expression
(4.3) can be expanded as

o 1 1
Hy, = HUS2UY = GS2UY, (4.6)

where G, := H U, is equivalently drawn from a generic distribution satisfying h(Gy) > —oo,
E[GZGk] = Nk:ITku ke [K]

The eigenspaces Span(Uy) have a prominent role in transmit correlation diversity. For
example, methods such as JSDM [113], [114] are critically dependent on finding groups
of users whose eigenspaces have no intersection. In contrast, in this chapter, we propose
transmission schemes that take advantage of both common and private parts of the
eigenspaces. To this end, in several instances, we build an equivalent channel H, that
resides in a subspace of the eigenspace Span(Uy) via the linear transformation

Hy = H.V,, (4.7)

for some truncated unitary matrix Vi € CM*sk s < 1y, such that Span(V},) C Span(Uy).
Unlike Uy, k € [K], that characterize the correlation eigenspaces of the links, the subspaces
Span(V) also depend on the proposed transmission schemes and may be customized
throughout the chapter.

Channel Information Availability

We assume throughout the chapter that the distribution of Hy, in particular the second-
order statistic Ry (and thus ¥j and Uy), is known to both the transmitter and user k.
This is reasonable because Ry, represents long-term behavior of the channel that is stable
and can be easily tracked. On the other hand, the realization of Hy is not known a priori
at any node. User k& might attempt to estimate H; with the help of known pilot symbols
inserted in X.

Achievable Rate and DoF

Assuming K independent messages are communicated (no common message), and the
corresponding rate tuple (Ry(P),..., Rx(P)) is achievable at SNR P, VP > 0, i.e., lie within

the capacity region of the channel, then we define an achievable DoF tuple (dy,...,dx) as
Ry (P)
dp =1 k € [K]. 4.
e g, P K] (48)

The set of achievable rate (resp., DoF) tuples defines an achievable rate (resp., DoF) region
of the channel.

Throughout the chapter, whenever we mention a BC (e.g., in a theorem/proposition),
we refer to the noncoherent spatially correlated block-fading BC described in this section,
unless otherwise specified. Hereafter, we assume that 7' > 2 max(rg, Ni) and denote for
convenience that N} := min(Ny,x), k € [K].
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4.3 Two-User Broadcast Channel: DoF Analysis

In this section, the DoF performance of the two-user noncoherent BC is presented. If the
two eigenspaces are fully overlapping, i.e., the eigenspace of one user is a subspace of the
other user’s, a DoF pair achievable with product superposition for the BC was proposed
in [76] as follows.

Proposition 4.1 ([76, Theorem 4]). For the two-user BC, when the eigenspace of user 2
is a subspace of user 1’s (implying ro <11 < M ), the DoF pair (Nf(l — 3, N;%) 18
achievable.

The DoF pair in Proposition 4.1 is achieved with product superposition [115]. The main
idea is to embed information to one user in the pilot for the other user. The details are
given in the following to be self-contained.

Proof of Proposition 4.1. There exist transmit eigendirections V1 € CM*("=72) and V €
CMXxr2 that are aligned with the noncommon and common parts, respectively, of the two
channel eigenspaces such that

Span(V) = Span(Us,), (4.9)
Span(V1) = Span(U1) N Span(Us)™*. (4.10)

Define V := [Vy V1]. Let the transmitter send the signal X = VX2X; during a coherence

I, S

block, with X; = [I,nl Sﬂ e C*T and Xy = [
0 I,

] € C" ¥ where §; € Cr1x(T—m1)

contains symbols for user 1 and Sy € C™2*("1—50) contains symbols for user 2. The received
signal at user 1 is

Y =H{ VXX, +2Z; = H1VX2[IT1 Sl] +2Z;. (411)

User 1 estimates the equivalent channel H;V' Xy and then decodes Sy, achieving Ny (T — ry)
DoF. The received signal at user 2 during the first 1 channel uses is

IT2 S2

o I I7‘1 + Z2[1:7"1] = HQVO[IT’2 52] + Z?[l:rl]v (412)
T1—T2

Yo = szl

where we used the fact that HaV'; = 0 due to (4.10). User 2 estimates the equivalent
channel HaV, and then decodes Sy, achieving N5 (1 — r2) DoF. Therefore, the normalized

DoF pair (Nl*(l — %),N;%) is achievable. O

In the following, we exploit both rate splitting and product superpositions to generalize
Proposition 4.1 to a more general setting of partially overlapping eigenspaces.
Theorem 4.1. For the two-user noncoherent BC and rank(Span(Ui) N Span(Usq)) =:
ro > 0, the DoF pairs (Nf(l - %), O) and (O7 Ny(1- %)) are achievable. Furthermore,
for any integers (s1, s2, So) such that 0 < s1 <ry —7rg, 0 < s9 <719 — 19, and 0 < 59 < 79,
the DoF pairs

: S . 2+ 8

Dy = <m1n(so,N1);,m1n(52 + so,Ng)(l -2 T 0)), (4.13)
. s51+s . s

Dy = (mm(sl +s0, M) (1 - 2 0),mm(so,N2)T1> (4.14)
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are achievable. On top of that, if s1 > sa, the DoF pairs

D3 = (min(sl + So,Nl)(l — %),
min(sg, No) 1% min(sg, (Ng — so)+)(1 - 81;—180)>, (4.15)
D . + s1+ S0
4 = mln(Sh(Nl_SO) )(1_T>7
min(sg, Na) 5152 + min(sy + sg, N2)(1 - 51;80)) (4.16)
. S1+ S0
D5 = <m1n(51 + So,Nl)(]_ — T),
min(s2 + So, N2)51 2 min(sa, Nz)(l — 51;80)> (4.17)
are achievable; if s1 < s9, the DoF pairs
. So — S . S "‘S
D3 = (mm(sl,Nl) 2 B ! + min(sy, (N7 — so)+)(1 _ 2 T 0),
min(sy + o, NQ)(l _ % ; SO)), (4.18)
Dy = (min(sl, N1)82 ; ik + min(sy + so, Nl)(l _st 80),
min sz, (N — s0)") (1 - 22 80)>7 (4.19)
Ds = (min(81 + so,Nl)S2 —a min(sl,Nl)(l — %)7
min(SQ + So Ng)(l — 82+80>) (4.20)
’ T

are achievable. The conver hull of these DoF pairs (over all feasible values of s1,s2, and
so) and the origin (0,0) is an achievable DoF region for the BC.

Theorem 4.1 coincides with Proposition 4.1 when rg = rs.

Remark 4.1. The parameters si, S9, Sg represent the allocation of available dimensions
to encoding of messages for the two users. By tuning these parameters, we explore the
trade-off between the number of data dimensions (indicating the amount of channel uses
needed for pilot transmission) and the amount of channel uses for data transmission within
each section of the eigenspaces.

Proof of Theorem 4.1. The DoF pairs (Nf(l — NTT),O> and (0, N3 (1 — N%k)) are achieved

by activating only one user according to [117, Theorem 1].

For any nonnegative integers s1, s2, sg satisfying sg < rg, s1 < ry —rg and so < 19 — 10,
there exist eigendirections Vo € CM*%0 V' € CM*s1 V', € CM*52 that are aligned with a
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part of the common and noncommon sections of the two channel eigenspaces such that!

Span(Vy) C (Span(U;) N Span(Us)), (4.21)
Span(V1) € (Span(U;) N Span(Us)™b), (4.22)
Span(Vs) C (Span(Usz) N Span(U;)™T). (4.23)

To achieve Dj, the transmitter employs product superposition and transmits
X = [Vo V1]X2X, (4.24)

I,, So

0o I
contain symbols for user 1 and user 2, respectively. Following steps similar to the proof of
Proposition 4.1, it can be shown that this achieves the DoF pair D;. The DoF pair D, can
be achieved similarly by switching the users’ roles.

with X; = [I5,45, S1] and Xo = [ ], where §; € Cs1+50)x(T=s1=50) 350 S, € Cs0*s1

When s > s9, the pairs D3 and D, are achieved with rate splitting as follows. Let the
transmitter send
Iso [Oso X 81 SO]
X=[VoViVsy]|0sxs, [Is, Si] |, (4.25)
052 X S0 [132 52]

where Sg € C%0%(T=s1=%0) jg a common signal to both users while S; € Cs1x(T=s1=50) and
S, € Cs2x(T—s2750) are private signals to user 1 and user 2, respectively. The received
signal at user 1 is

Y1 = Hl[V() V1 V2]X +Zl

I,, O So

(4.26)
=Hi[Vo Vi o I, S

‘|+21.

User 1 estimates the equivalent channel H1[Vy V1] during the first s; + so channel uses
and decodes both $; and Sy during the remaining T' — s; — sg channel uses, achieving
min(s; + So, Nl)w DoF. The received signal at user 2 is

Yo =Hy[Vo Vi Vo)X + Zy
(4.27)

I, 0 [0, (e_unS
=Hy [V Vo [ 00 I O x( §2 2) 0]] +Zs.
s2

User 2 estimates the equivalent channel Ha[Vy Vo] and then decodes Sg and So, achieving
min(sz, N2) #1724+ min(s2 + s, Ng)w DoF. By dedicating Sy to only user 1 or user 2,
we can achieve the DoF pairs D3 and Dy, respectively.

To achieve Dj (still assuming s; > s9), we employ a hybrid version of rate splitting and
product superposition, referred to as hybrid superposition, as follows. The transmitted
signal is constructed as

X = [Vo Vl]X’2X1 + VQXQ, (4.28)
'V can be calculated from U; and Uz using, e.g., the Zassenhaus algorithm [167]. Specifically, this
T T
algorithm uses elementary row operations to transform the (r1 + r2) x 2M matrix [gi o leM] (or
T2
UT UT VB *
{Uz 0 2 } ) to the row echelon form | 0 V|, where * stands for a matrix which is not of interest.
1 r1 XM
0 0

V1 and V3 can be found similarly by applying the Zassenhaus algorithm to U1 and null(U:), and null(U1)
and U, respectively, where null(U}) is the matrix such that [Uj null(Uj)] is unitary.
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Iso [080><82 5/2]
081 X S0 Is1
S; € Clrts0)x(T=s1=%0) contains symbols intended for user 1 while § € Cs2*(T=52=50) and
S, ¢ Cs0x(s1-52) contain symbols intended for user 2. The received signal at user 1 is

with Xo = [0syxso Is, S2)s X1 = [Is;4s, S1], and X = ], where

Y1 =H [V, Vi]X5X, +Z4

4.29
=H, [V ViIX5[Ls 45, S1] +Z1. (4.29)

User 1 estimates the equivalent channel Hi[Vy V1]X}, and then decodes S; to achieve
min(sg + 1, Nl)% DoF. The received signal at user 2 is

Y2 = HQ[VQ V1 V2]X + ZQ
I,

080 XS0

082><S2 [5/2 A} (4‘30)

= Hy [V V] T S,
52

+227

where A := [T, 05 xs, 55]S1. user 2 estimates its equivalent channel Hy[Vy V5] in the
first s3 + so channel uses, and then decodes S5 and S, achieving min(ss + so, Np) #7522
min(sg, NQ)% DoF in total. Therefore, D5 is achieved.

The proof for the case where s; > so is completed. A similar analysis applies to the
case sy > s1 and completes the proof of Theorem 4.1. O

In Fig. 4.1, the achievable DoF region in Theorem 4.1 is shown for the scenario where
T =24, Ny = 12, Ny = 12, (r1,r2) € {(12,10),(12,12)}, and ro € {0,3,6,9}. We see
that exploiting the channel correlation improves significantly the DoF region upon TDMA
(which is optimal for uncorrelated Rayleigh fading), especially for small rg.

5.83 — : : 6—
ro=0
s . Jo

af : n |
g 3 ro =6 231 )
2 : 2 ]
o = 9
1 --- TDMA N 1 1t --- TDMA R
— Proposed scheme (Theorem 4.1) \\\ — Proposed scheme (Theorem 4.1) \\\
%1 2 3 4 5 6 %71 2 3 1 >
dl dl
(a) =12, r2 =10, ro € {0,3,6,9} (b) r1 =72 =12, o € {0,3,6,9}
FIGURE 4.1: The achievable DoF region for the two-user BC achieved with TDMA or the

proposed scheme (Theorem 4.1) for T'= 24, Ny = 12, No = 12, (r1,7r2) € {(12,10),(12,12)}, and
ro € {0,3,6,9}.

4.4 'Two-User Broadcast Channel: Rate Analysis

In this section, we analyze the achievable rate region of the two-user BC in finite SNR
regime. Following are some preliminaries and known results that are useful for our analysis.
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Lemma 4.1 (Worst case uncorrelated additive noise [31]). Consider the P2P channel

NN ()

where the channel H € CN*M s known to the receiver, and the signal x € CM>*1 and the
noise z € CN*1 satisfy the power constraints ;E[||x]|?] =1 and +E[|z||?] = 1, are both
complex Gaussian distributed, and are uncorrelated, i.e, E[xz"] = 0. Let Ry := E[xx"] and
R, := E[zz"]. Then the mutual information I(y;x |H) is lower bounded as

I(y;x|H) > E[logg det <IN + ]\ZRZ_IHRXHHH ,
VR :tr(Rx) =M,VR,: tr(R;) =N (4.32)

: P
= R,,tf?ﬁ?):NE[IOgQ det (IN + MRZ 1HRXHHH, V Ry : tr(Ry) = M. (4.33)

If the distribution of H is left rotationally invariant, i.e., p(OH) = p(H) for any deterministic
N x N unitary matriz ©, then the minimizing noise covariance matriz in (4.33) is Rz opt =

Iy.

Proof. The proof follows from the proof of [31, Theorem 1].2 Specifically, the mutual
information lower bound (4.32) was stated in [31, Eq.(27)]. To show that R, op = I,
we diagonalize R, using the left rotational invariance of H, and then use the convexity of

E {logQ det (IN + %Rz_lHRxHHﬂ in the diagonalized R;. O
The next lemma gives the MMSE estimator used for pilot-based channel estimation.
Lemma 4.2 (MMSE estimator). Consider the following linear model
Y =HX +Z, (4.34)

where H € CN*M phas correlation matric R = %E[HHH], X € CM*XM s known, and
Z c CV*M phas IID N¢(0,1) entries. The linear MMSE estimator for H is given by

H=Y(X"RX +1,) 'X"R. (4.35)

The MMSE estimate IEI is also the conditional mean: H = E[H | X,Y]. The estimate H and
the estimation error H = H — H are uncorrelated, have zero mean and row covariance

%E [A"H] = RX(X"RX + )" 'X"R, (4.36)
%E [A"H] = R - RX(X"RX + 1)) 'X"R. (4.37)

Proof. The linear MMSE channel estimator is given by H = YA where A is the minimizer
of the mean square error (MSE)

%E{HH —H|2] = tr(R) - tr(RXA) — tr(A"X"R) + tr(A"(X"RX + In)A).  (4.38)

Solving %%E[HH - FIH%} — 0 yields the optimal Aoy, = (X"RX +1I5/) 'X"R. Some
further simple manipulations give (4.36) and (4.37). O

In the following, we consider partially overlapping eigenspaces and ry < Ng, k € {1,2}.
In addition, we assume w.l.o.g. that r; > ro.

2The argument that the worst case uncorrelated additive noise is Gaussian distributed can also be found
in [32].
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4.4.1 The Single-User Case

Let us first consider the single-user case and, for simplicity, drop the user’s index. The
received signal is

Y =HX +Z, (4.39)

where the assumptions for the transmitted signal X, the Gaussian noise Z, and the channel H
are as before. In particular, H is block fading with coherence interval 1" and has correlation
matrix R = UXU", thus can be written as H = GE:U" with G € CV*" drawn from a
generic distribution. The following theorem states the achievable rate in bpcu for this
channel.

Theorem 4.2. For the single-user spatially correlated channel,

1. if the transmitter does not exploit R, the following rate is achievable with a pilot-based
scheme

R = <1 — M)E log, det | Iy + Folbr T HHY , (4.40)
T Pytr((Z + PoL,) ) + M

for some power factors P. and Pjs satisfying PM + Ps(T — M) < PT, where
H e CN*M s o Gaussian matriz with independent rows following

Ne (0, R(Iy + PTR)_lR);

2. if the transmitter exploits R, the following rate is achievable with a pilot-based scheme
by transmitting in the eigenspace of R:

o if the transmitter uses orthogonal pilots:

PsP, A

R= <1 T)E log, det | Iy + - — Q0" ||, (@41

T P(;tr((R + P.I,) ) +r
where € CNX" is a Gaussian matriz with independent rows following
Ne(0,R(I, + P.R)"'R),
o if the transmitter optimizes the pilots:

T Py A AH

R= 1_f E|logydet| Iy + QQ ||, (4.42)

rP(;(PT T %tr(R_l))_l +r

where Q@ € CN*" is a Gaussian matriz with independent rows following

Ne(0.R = (P4 u(RT)) 1),

for some power factors Py and Ps satisfying Pyr+ Ps(T—r) < PT, where R := V'RV
for a truncated unitary matriz V.e CM*" such that Span(V') = Span(U). The optimal
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power allocation mazximizing the rate in (4.42) is characterized by P, = % and
Py = 9T with
[z if T =2, (4.43)
b—+bb—a), if T >2r,
tr(R™! 2 T_ tr Ril)
where a == 1+ (PT ) — PT:I‘(R) and b= 75— (1 + (PT )
Corollary 4.1. If the channel is uncorrelated, i.e., R = Iy, the achievable rate is

M PsP, )}

=(1— — JE|log,det| I HH" b 4.44

where H € CN*M s the uncorrelated channel matriz. This coincides with [31, Eq.(21)].

Proof of Theorem 4.2. We prove by constructing pilot-based schemes that can achieve
(4.40), (4.41), and (4.42). The proof follows by extending the analysis in [31] to the case of
correlated generic fading.

Case 1: The Transmitter Does Not Exploit R

In this case, the transmitter ignores R and forms the transmitted signal as if the channel is
uncorrelated. Within each coherence block, the transmitter first sends an orthogonal pilot
matrix X, € CMXM guch that X, X" = MI,; during the first M channel uses (this is
optimal for uncorrelated fading [31, Sec. III-A]), and then sends IID N¢(0, 1) data matrix
X5 € CM*(T=M) during the remaining 7' — M channel uses. That is,

/P, | Ps
TX. 22X
M M0

where P, and Pj are the average power used for training and data phases, respectively,
and satisfy the power constraint P,M + Ps(T — M) < PT.

X = : (4.45)

In the training phase, the receiver observes Y, :=Y[.p5) = 4/ %HX 7+ 2.0y Following
Lemma 4.2, it performs a linear MMSE channel estimator as

. P,

_ Pr o - H
H= MYT<MXTRXT+IM) X"R. (4.46)

The estimate H and the estimation error H = H — H have zero mean and row covariance

1 aOal PT PT H - Hp __ -1

NE[H H| = T RX (MXTRXT + IM> X"R=P.R(I,;+ P.R)"'R,  (4.47)
1 ren~

~E [H'H| = R~ P.R(I.s + P.R)'R. (4.48)

In the data transmission phase, the received signal is

P Ps,
Ys = Y[M+1:T] = \/EHX6 +Z[M+1:T} = \/EHXS + 267 (449)
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where Zg := \/%I:IX(; + Zpr41.7 is the combined noise consisting of additive noise and
channel estimation error. With MMSE estimator, Zs and Xs are uncorrelated because

E[X;Z8X,,Y,.] =E x5<,/]\P;xgH” +zg> ‘XT,YT (4.50)
= 5E[x5xH(H ~H)|X..Y,] (4.51)

M ) Ty VT
—0, (4.52)

since E[H —H|X T,YT] = 0. From Lemma 4.1, a lower bound on the achievable rate is
obtained by replacing Zs by IID Gaussian noise with the same variance

2 1 H _ P _ -1
%%, = N "E ) = —tr(R— PR(In + P,R)"'R) +1 (4.53)
_ Fs -1 -1
- —tr((E +P.I,) ) +1. (4.54)

Thus, the achievable rate is lower bounded by

T—-M Ps A n
= 1 — . 4.
R T Elogg det (IN + MU%5 HH )1 (4.55)

From (4.47), H has correlation matrix P,R(I; + P;R)"'R. This shows (4.40).

Case 2: The Transmitter Exploits R

By exploiting R, the transmitter can project the signal onto the eigenspace of R and
can also adapt the pilot symbols. The transmitter builds a precoder V.e CM*" with r
orthonormal columns such that Span(V') = Span(U). Let ® = U"V. The transmitted

signal is
P P,
JEX, ] 20X
r r

where X, € C™" such that rank(X,) = r and tr(X?X,) = 72 is the pilot matrix, and
X5 € C"*(T=7) is the data matrix containing Nc(0, 1) entries. The average pilot and data
powers satisfy Prr + Ps(T —r) < PT.

X=V (4.56)

The received signal during the training phase is then Y :=Y1,,) = 4/ %GE%Q)XH—Z[M}.

The equivalent channel €2 := GX:® has correlation matrix R = ®"E® = VV'RV. According
to Lemma 4.2, the MMSE channel estimate for the equivalent channel €2 is given by

—1
Q= PTYT<PTX$RXT+IT) X"R. (4.57)
r r

~ ~ 1 A .
The estimate 2 and the estimation error Q = GX2® —Q have zero mean and row covariance

-1
0| = RXT(PTXiRXT +IT) X"R, (4.58)
T

P,

B -1 o -1
Pr X"RX, + IT> X'"R = (R Ly TXTxﬁ) . (4.59)
T

LE[0'e) —R- Rx(

r

P,

r
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In the data transmission phase, the received signal is

P, Ps
Ys: =Yy = \/?Gzé@% +Zp1) = 769)(5 +Z;, (4.60)

where Zs := \/%QX(; +Z[,11.7)- From Lemma 4.1, a lower bound on the achievable rate is
obtained by replacing Zs with IID Gaussian noise with the same variance

2 1 H _ & <—1 & H>_1
(')'z5 = 7N(T — T)tI'E[Z(;Zg] = , tr R + , XTXT + ]- (461)

The corresponding achievable rate lower bound is

rR=1"Tg [mg2 det (IN - Pgm“) (4.62)
T r0Z,
- <1 - T)E[l d t(I + P‘SQQHH (4.63)
B T B2 AN Pstr(B) +r '

. _ _ -1
where we used (4.61) and Q has correlation matrix R — B with B := <R Yy %XJ(?)
according to (4.58).

Taking X, such that X, X" = rI, (i.e., orthogonal pilots), we have B = (Ril +P.I,) -1

and the achievable rate R is given in (4.41).

We can also optimize the pilot X so as to maximize R. The pilot matrix X, affects
the achievable rate bound primarily through the effective SNR

Pgtr(R — B)
Pstr(B) +r

Pup = 3Bt (0'02) =

4.64
'ra%a N ( )

which decreases with tr(B). Therefore, to maximize R, we would like to minimize tr(B).
That is

. -1 PT H -1
min  tr <R + XTXT) . (4.65)
tr(XHX - )=r2 r

Using Lagrange multiplier A, we minimize

__1 P -1
LX)\ = tr((R s XTX';) ) + Mtr(X X)) —r?). (4.66)
r
Solving 85)(()5;3) = 0, we obtain the minimizer X, X" = ol — PLTR_l. Using the

constraint tr(X#X ) = r?, we find that =X X" = (PT + Ltr (R_l))IT —R™'. With this,

-1
B = (PT + Ltr (R 1)) I,, and R is given in (4.42). The effective SNR is now written as
P, = 1 oo\ 7!
P = e fe(®) (o e )] e
P(ST(PT+%TJI‘<R )) +7r "
Let Prr = (1 —a)PT and Ps(T —r) = aPT for a € (0,1), we can derive that

 PTer(R) 2 4 qa

P.g = 4.

ft r(T'—2r) —a+b (4.68)
-1 =1

where a := 1 + tr(ﬁT ) — PT;Q(R) and b := TT:Q’; (1 + tr(gT )> Noting that T'— 2r > 0,

we obtain the optimal value of a that maximizes Peg as given in (4.43). This concludes
the proof. O



4.4. Two-User Broadcast Channel: Rate Analysis 85

4.4.2 A Baseline TDMA Scheme

We consider a baseline scheme based on orthogonal transmission, i.e., TDMA that activates
only one user at a time. According to Theorem 4.2, the following corollary demonstrates
the achievable rate with TDMA.

Corollary 4.2. For the two-user noncoherent BC, if the transmitter does not exploit Ry,
the following rate is achievable by activating only user k:

M P;P; -
Ry, = (1 - T)IE log, det (INk + o HHH)] (4.69)

Patr((z:,;l T PTITk)*l) M
for some power factors Py and Ps satisfying PrM + Ps(T — M) < PT, where H e CNexM
is a Gaussian matriz with independent rows following N (0, Rg (I + PTRk)*le). If the
transmitter transmits in the eigenspace of Ry and optimize the pilot, the following rate is
achievable by activating only user k:

Fs 00" (4.70)
73 Ps (PT + itr (21;1)> + 7

Ry = (1 - ?)E log, det | I'n, +

for some power factors P. and Py satisfying Prr+ Ps(T —r) < PT, where Qe CVexr s g
-1
Gaussian matriz with independent rows following N¢ (O,Ek — (PT + %ktr (2;1» ITk).

Furthermore, the optimal power allocation for the rate in (4.70) is given by Prry = (1—a)PT
and Ps(T — ry) = aPT with

1 f T =2
a=1{72 if T (4.71)
b—bb—a), if T > 2ry,
—1 -1
where a := 1 + tr(?,_’; ) _ PTQ%(E,C) and b := g:;fk 1+ tr(?,_’; )> The convez hull of (0,0),

(R1,0), and (0, R2) is an achievable rate region with TDMA for the BC.

Note that to achieve (4.70), the transmitter uses the precoder V, = U}, and optimizes
the pilots.

4.4.3 Rate Splitting

In the following, we analyze the rate achievable with the schemes achieving the DoF region
in Theorem 4.1. Recall that for a set of nonnegative integers so < 19, s1 < r1 — 79, and
so < rg — 1o, we build the precoding matrices Vi, k € {0,1,2}, as in (4.21)-(4.23). For
k € {1,2}, we denote

o Qk = UZ[VO Vk], (I)kO = UZV(), Qkk = U;:Vk (SO (I)k = [‘pkg Qk’k])7
o Ry =%, ®;, Ry := B8y, Rip := B8y (so R = [Ryo Ryxl);
o Ry := @} Ty ®y0, Riy := B, 51,84

With rate splitting, we let the transmitter transmit

X=VoXy+ViXi+ VQXQ, (472)
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where Xg, X1, and Xy are independent and satisfy the power constraint
E[[Xolf + X112 + X2 3] < PT. (4.73)

Thanks to the precoders, the private signal X;, is seen by user k only, while the common
signal Xy is seen by both users. Specifically, the received signals is

1 1

Y, = G1212¢1UX0 + G12f<I>HX1 + Zl, (474)
1 1

Yy = G2222 ®o0Xo + G2222 D0 Xo + Zo, (475)

1 1

where the equivalent channels G,X2®yo € CNkxs0 and GX2®yy, € CNexsk ke {1,2},
are correlated and unknown. It can be observed that the received signal at each user
is similar to a noncoherent two-user MAC: (4.74) as the MAC 1 with (s, s1) equivalent
transmit antennas and N; receive antennas, (4.75) as the MAC 2 with (so, s2) equivalent
transmit antennas and Ny receive antennas. The two MACs share a common signal X.
From the capacity region of the MACs [22], we know that the rate pairs (Ry, R}) and
(R, RY) are simultaneously achievable for the MAC 1 and MAC 2, respectively, if the rates
Ry >0, R‘Tf >0, Rg > 0 satisfy

Ry < %I(YBXO’Xl)a (4.76a)
R} < T(Y1XaXo), (4.76D)
Ro+ R < %f(vl;xo,xl), (4.76¢)
Ro < %I(Yg;xoyxg), (4.764)
R? < %I(Yg;x2 Xo), (4.76¢)
Ro+ R < %I(YQ;XO,XQ). (4.76)

Then for the BC, user 1 achieves rate R} with private signal X1, user 2 achieves rate RS with
private signal Xo, and both users can achieve rate Ry with common signal Xg. Let Rg be the
user k’s share in Ry, then the BC can achieve the rate pair (Ry, Ra) = (Ro1 + RY, Ro2 + Rb).
Replacing Ry = Ro1 + Ro2, RY = R1 — Ro1, and R) = Ry — Ry in (4.76) and applying
Fourier-Motzkin elimination, we obtain the following achievable rate region of the BC.

Theorem 4.3. With rate splitting, the two-user noncoherent BC can achieve any rate pair
(R1, R2) satisfying

1

Ry < o min{I(Y1:X1,Xo), 1(Y1: X1 [Xo) + 1(Y2; Xo[X2)}, (4.77a)
1

Ry < Tmin{I(Y2§x2,X0)aI(Y2;X2’X0) +I(Y1;X0|X1)}’ (477b)
1

Ri+Ry < T min{7(Y1;X1|Xo) + 1(Y2;X2,X0), 1(Y1;X1,Xo0) + I(Y2; X2X0)}, (4.77¢)

for input distributions px,, px,, and px, satisfying the power constraint

B [Xolf + X1 + X2 2] < PT.

This achievable rate region is fully characterized by the mutual information terms
I(Y5; Xe, Xo0), I(Ye; Xk | Xo), and I(Y;Xo | Xg), & € {1,2}. By considering an explicit
input distribution and deriving these mutual information, we obtain an achievable rate
region as follows.
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Theorem 4.4. With rate splitting, the two-user noncoherent BC can achieve any rate pair
(R1, R2) satisfying

R < min{ R/, Rll7 + Roz2}, (4.78a)
Ry < min{ R5, Rg + Ro1}, (4.78b)
Ry + Ry < min{R} + R}, R} + Rb}, (4.78¢)
where
_ , B RS
R, = (1 51;5‘))1@ logy det | Iny + —r—— — QR P;RQ) ||,
i tr((Ry +P1) ' Pis) +1 ]
(4.79)
» S$1 + So Pis ~ — —H =H
Rl — ]. - ]:E 10g2 det I]\[1 + — QlRllRIIQI 5
T —1 —1
sitr((Ry +P1r) " Pus) +1]
(4.80)
81+ So Pos N . p"of
Ro1 = (1 — T >IE 10g2 det IN1 + p— I 91R10R1091 R
so[tr((R; +P1r) " Pis) +1]
(4.81)
where -
| PorIy, 0 R 0
PlT — [ 0 P17I51‘|7 P15 T [ OO 1:7115.[51 )
and Q1 € CN*(s0+51) s o Gaussian matriz with independent rows following
1,1 1 -1 _1
Ne(0.PE(PELRIPE + L) PLL);
’ S1 — 89 P25 N =H A/H
Ry = E (log, det | In, + = = - e Q2R R5-82,
Pystr(Rjy(Ry + RoPor Ry) 'Ry ) + 52
1 _ _
+ (1 _ A + SO)E log, det IN2 + p—1 1 QQRQPQ(;RQQ; ,
T tr((R2 +P27—> P25) +1
(4.82)
D S1—89 P25 = »H » AH
R2 = T E log2 det IN2+ = — — F QQRQRQQRQQRQQQ
Pystr(Ryy(Ro+ RoPor Ro) ™ Roo ) + 55
S1+So0 Pys S~ 55 »H 5 AH
+{I-—F— E |log, det| I n, + — — QoRo R Ry R, ||,
soltr((Ry +Par) ™ Pag) +1]
(4.83)
P oo
Ry = <1—81+80)E log, det| Ty, + 0 QuRyR20Ry, R ||

S0 [tr((R;l +P2~,—) _1P25) + 1}
(4.84)
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where

L POTISO 0 o %))6[80 0
P2T o [ 0 P27I52 ’ P25 T 0 %2251-82 )

and Qy € CN2x(0+52) s ¢ Gaussian matriz with independent rows following
1,1 1 -1 _1
N (0.P5 (P5RoPS, + Tisy) P

S0, 81, 82 are integers such that sg < 1o, s1 < 11 — 1o, and sy < r9 — 1T9; and the power
components P, Ps, i € {0,1,2}, satisfy the power constraint

2
POTSO + PO(S(T — 81 — So) + Z [PiTSi + Pig(T — 8; — 80)] < PT. (4.85)
i=1

The convex hull of (4.78a), (4.78b), (4.78c) over all feasible values of so, s1,S2 and all
possible power allocations (4.85) is an achievable rate region for the two-user BC.

Specifically, the input distribution that achieves the rate region in Theorem 4.4 is
characterized by

[ | P
XO = |V POTISO OS()><81 0630 ’ (486)

_ Iz -
xl = 031 xs9 V P1T181 M 8711651 s (487)
| P
X2 = 32><so V P2T182 26

where Sy € Csox(T—s1=50) G, ¢ (CSIX(T*S“SO), and Sy € C2%(T—52-50) gre data matrices
containing independent N(0, 1) symbols and the power components P, Ps, i € {0,1,2}
satisfy the power constraint (4.85). In the following, we derive the mutual information terms
with this input distribution and show that I(Yy;Xg, Xo) > TR}, I(Yr; Xy | Xo) > TR}, and
I(Yy; Xo | X)) > TRok, k € {1,2}, thus prove Theorem 4.4.

(4.88)

4.4.3.a Rates of User 1

The received signal at user 1 is

1 VP I, 0 g
Y, =Gxig, |V 070 47, (4.89)

VPiI /25

1 1 So
= Glzfq)lplzr+zl[1:s1+so] Glz (I>1P S, +Zl[s1+so+1;T} (4.90)
1T
Yis
Py, I 0 Rsy _
here Py, := T %0 d Pys:=| % th t f

where P [ 0 P 151] and P [ 0 %5 I, are the power matrices for

1
the pilot and data, respectively. The equivalent channel €21 := G1¥7®; has correlation
matrix R;. Following Lemma 4.2, user 1 performs a MMSE channel estimation based on
Y, as

A

1_ 1 L1
O =Y, (PLRIP? +1,,4,,) PRy (4.91)
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N ~ 1 N
The estimate €7 and the estimation error ; = G;X7®; — € have zero mean and row
covariance
Lelava,] — RoPE (PP R, P “piR
NE [9191] = RlPlT <P17'R1P1T +131+SO> Pl’rRl? (492)
1 ranx - _ L/ 1 _ 1 -1 1 -1 ~1
NE[anl} — R, — R, P2 (PfTRleT +151+50> PiRi= (R +Pi) . (4.93)

A Lower Bound on I(Y1;X1,Xo):

The received signal during the data transmission phase can be written as

A 1 1
Yis= G1212Q1P125 —|—Zl(§, (4.94)

So
Si

-1
where Z;5 := Q1P Eﬂ + Zy[s,4s9+1:7] 18 the combined noise and residual interference

due to channel estimation error. By a similar analysis using Lemma 4.1 as for (4.41) in
Theorem 4.2, we have

I(Y1;X1,X0) = I1(Y15;51,50 | Y1r) + I(Y1+;51,50) (4.95)
=0

=I(Y15;51,S0| 1) (4.96)

> TR], (4.97)

where R is given in (4.79).
A Lower Bound on I(Y1;X1|Xo):

We rewrite Y5 as

P, 1 P, 1
Yis =/ SGiBi21S1 + [~ P GiB 210S) + Zis. (4.98)
1 0

1
While decoding S1, the term L 0‘SG 127 ®10S0 is an interference. Given the knowledge of
Sy and the channel estimate Ql = [910 Qn] where Qlo and QU are respectively the

estimates of G122<I>10 and G12 @1, the receiver can partly remove the interference to
obtain

Pys Pis Pys
Yis — 4/ SO Q10So = 4/ 11 G12 ®11S1 4+ — ” [G122‘I’10 - Q10}50 + 2[5y 450+ 1:7)

(4.99)

Pis ~
=4/ 8711591151 +Zy5. (4.100)
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With a similar analysis using Lemma 4.1 as for (4.41) in Theorem 4.2, we have the bound

I(Y1; X1 [Xo) = I(Y15:51 S0, Y1r) (4.101)

= 1(Y15;51 S0, ) (4.102)
Pys ~ A
= I<Y15 - 870591050§51 So, Ql) (4.103)
V' s0

B P15 A
- Qllsl + 215,51 911 (4.104)
> TR, (4.105)

where RY is given in (4.80).
A Lower Bound on I(Y1;Xo | X1):

Given Sy and the channel estimate € = [Qlo Qll] the receiver can remove partly
the interference in (4.98) to obtain

P P, P
Yis — \V s 1691151 =,/2q 122‘1’1050 + 16 12 D — Q1151} + 2[5, 4-50+1:T)

(4.106)

| P,
= 0691050 +Z1s. (4107)

With a similar analysis as for (4.41) in Theorem 4.2, we have the bound

I(Y1: X0 |X1) = I(Y15:S0 |S1,Y1r) (4.108)
I(Yh;, So|S1, le) (4.109)
— 1(\(16 - ,/P”Qllsl,so sl,fn) (4.110)
_ P05 -
=1 Qloso + 215,50 Q10 (4.111)
> TR, (4.112)

where Rp; is given in (4.81).

4.4.3.b Rates of User 2
The received signal at user 2 is

VPl 0 0 /TS
0 VAL, S \[Tusy

1 1 | P
= [GQZ% ¢2P227' + 22[1282+SQ] 26G22 QQQSQG + 22[82+80+1 31+SO]
Y2T

1
Y; = G2222 P, +2Z5 (4113)

Y25a

So

G228, P, ls

Yasp
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where So, and Sop, contain respectively the first s; —so columns and the remaining 7' — s1 — sg
POTIS 0 . @ISO 0
0 0 Py, and Pys = 500 %‘5132 are the power
matrices for the pilot and data, respectively. Following Lemma 4.2, user 2 performs a
1 1 1
MMSE channel estimation of €25 := GQEQQ(I)Q = [920 922] = [ngf ®y G225®22:| based

on Yo, as

columns of Sg; Py, = l

A 1_ 1 1
0y = Yo, (P2 RyP2 +1,,,,,) 'P2R,. (4.115)

A A ~ ~ 1 A
The estimate Qs = [0 292] and the estimation error Qy = GX3®9 — Q9 have zero
mean and row covariance
S - 1 1_ 1 -1 1
NE [9292} = R2P227' <P227R2P227 + IS2+80> P227'R27 (4116)

1 _ ranx - -1 1 1 Lo _ . -1
NE[QQQQ} =R, - R.PZ, <P§TR2P§T+IS2+SO> P;Ry= (R, +Py) . (4117)

A Lower Bound on I1(Y2;Xe,Xo):

Using the chain rule, we have that

I(Y2;X2,X0) = I(Y2r, Y254, Y2565 S0, S2a; Sab) (4.118)
= I(YQ(Saa Y26b; 507 SQaa SQb | Y2T) + I(YQT; SO, SQaa SZb) (4119)

=0
= I(Yasa, Y5 S0,S2a, Sop | 22) (4.120)

= I(Y250;S2a | ©2) + I(Y2sa; S0, S2v | S2a, 22)

=0
+ I(Ya65:0,S26 | Yosas 22) + I(Yas03 S2a | So, Sap, Yasa, 22) (4.121)
>1(Y264:S0,S25 | Q22) =0

> I(Y250;S2a | Q22) + 1 (Yas; S0, S | 22). (4.122)

Following a similar analysis as for (4.41) in Theorem 4.2, we lower bound =1(Y2s4; S2 | Q)

and %I (Yasp;S0,Sa | Qg) respectively by the first and the second terms in the right-hand
side of (4.82). Therefore, I(Y2;X2,Xo) > TR with R, given in (4.82).

A Lower Bound on I(Y2;Xz|Xo):
We write Yas5 := [Yasq Yasp] as

P. 1 P, 1
Yos5 = \/ST;G2222 2252 + 4/ 870:(;2222 ®©40[0 So] + Z[sy4-s9+1:7]- (4.123)

Similar as for I(Y;X;|Xo), using interference cancellation and worst-case additive noise
as for (4.41) in Theorem 4.2, we have the following bound

I(Y2; Xa[Xo) = I(YQ(;;SQ‘SO, ) (4.124)

Pos
= I<Y25 - \/87005920[0 Sol;S2

> TRS, (4.126)

So, Q2> (4.125)
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where RY is given in (4.83).
A Lower Bound on I(Y2;Xo | X2):

Again, using interference cancellation and a similar analysis as for (4.41) in Theorem 4.2,
we have the following bound

I(Y2;Xo[X2) > I(Y25b;50‘52b, 92) (4.127)
| Pas A

=7 (Yg(;b - 87226922521,; So Sgb, QQ) (4128)

> T'Roz (4.129)

where Rpg is given in (4.84).

4.4.4 Product Superposition

Theorem 4.5. With product superposition, the two-user noncoherent BC' can achieve any
rate pair (Ry, R2) of the form

P -
Rlz‘isz log, det | I, + -2 0 ||, (4130
S0 + Pwpzrtl"((Rko + /)1TP2TISO> )

where Q19 € CN1¥%0 s o Gaussian matriz with Ny independent rows following

Nc (03 p1rParRio(prr PorRio + I s,) _1Rk0> ;

and
P A4
Ry = <1 - 52;5‘))1@ log, det | Iy, + -_ — GGy,
$2 + 50 + P26tr<(R2e + Porlgyys) )
(4.131)
where Gge € CN2x(s2450) pas distribution imposed by
~ 1
Goe = V' Por (\/ PG5 ®oXy + 22[1:32+s0}) (PorRoc + sy 45) ' Rae (4.132)
for integers so < 1o, so < ro — 1o and the power constraint
T—s9—s
(sop1r + s2(p1s + p1a)) (Pzr + #P%) < PT. (4.133)
s2 + S0

In (4.132),
X1 — V plTISO %Sl
0 \/plaISQ

where Sy € C***2 and Zyy.4,45,) € CN2xs2+50 both have IID Ng(0,1) entries; and

p1-Rao VP17 P1a P55 X2 P22 1

o o 4.134
VP17 P1a®5:22P 20 %‘Str <R20>152 + praRo2 ( )

Ry, := [

By swapping the users’ roles, a similar rate pair is achievable. The convex hull of the
origin and all these rate pairs over all feasible values of sg, s1,s2 and all feasible power
allocation (4.133) is an achievable rate region for the two-user noncoherent BC.
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We consider the input distribution characterized by

X = [Vo VaXiXo, (4.135)
with
P1s
X, = [\/ p1rls s0 Sl]’ (4.136)
0 v plaIsg
P
Xy = [@182+80 = 52‘|’ (4.137)
S2 + So

where S € C%0%52 and Sy € Cls2+50)x(T=s2=50) gre the data matrices of user 1 and user 2
respectively, both contain IID N¢(0,1) symbols. The power constraint E[tr(X"X)] < PT
translates to (4.133). In the following, we show that the rate pair (Rp, Ry) defined by
(4.130) and (4.131) can be achieved with this input distribution, thus prove Theorem 4.5.

4.4.4.a Rate of User 1

In the first so + sg channel uses, user 1 receives
3 P15
Yi[t:so4s0] = V P2rG1E{ @10 {\/plTIso \/8051} + Z[1:50450] (4.138)
B s P16P2r ~ 3
= plTPQTGlzl 4)10 + Zl[l:so] 50 Glzl (I>10$1 + Zl[so+1:32+so] .

Y17'

Yis
(4.139)

1
Following Lemma 4.2, user 1 estimates the equivalent channel Q9 = G;X{®; using a
MMSE estimator based on Y, as

. y —1
Qo = Vp1r P Y1r (plTPQTRkO + Iso) Ryyo. (4.140)

A ~ 1 ~
The estimate €219 and the estimation error Q19 = G1X7®19 — 210 have zero mean and row
covariance

1 A v v -1
NE [QTOQN} = p17Par Ry (P1TP27R1€0 + Iso> Ry, (4.141)
1 _rxm = o o v -1y o1 -1
~E {910910} = Ryo — p1-Por Ry (plTPQTRk'O + Iso) Ry (Rko + P1TP27150) :
(4.142)
Using the data processing inequality, we have that
I(Y15X1) > I(Y[1sptse) X1) = 1(Y15551 [ Y1r) = I(Y15;S1 | Qo). (4.143)

Then, using the worst-case noise argument and Lemma 4.1, we have a lower bound on
I1(Y15;51 | Q10), which yields the rate Ry achievable for user 1 defined in (4.130).
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4.4.4.b Rate of User 2

The received signal at user 2 is

| P
vV PorIg, i S
274 s2+s0 S0+ S0 2
VPG, 1+ 7 D% 6,8y + 7 4.145
= 2rG2e + 2[1:s2+s0) 9 + So 292 + 2[s2+s0+1:T] |> ( )

Y27’
Yas

1
Y2 = G2222 (I>2X1

+Z5 (4.144)

1
where G, := GoX3 ®oX; is the equivalent channel with the correlation matrix

(4.146)

1 p1-Rao VP17 P1a P52 P20
Ry, := EE[ Sere} = [ 20 .

VP17 P1a @5, 282P 20 %‘str (Rzo)ISQ + praRos

Following Lemma 4.2, user 2 estimates the equivalent channel Go, using a MMSE estimator
based on Yo, as

Goe = VP Yor (ParRoc + Loyisy) ' Roe. (4.147)

The estimate Gg. and the estimation error Go, = Gg. — Go, have zero mean and row
covariance

1
N,
1
Ny

We have that

E [G;eé2ei| = PQTRQe(PQTRQe + I$2+80)_1R2€7 (4148)

~H = -1
E [G;eGQe} = Ry, — PQTR26<P2TR26 + ISQ+50)_1R2€ = (Rg_el + P27152+so) . (4-149)

I(Y2;X2) = I(Y25:S2 | Yar) = I(Ya5;S2 | Gae). (4.150)

Then, using the worst-case noise argument and Lemma 4.1, we have the achievable rate Ry
for user 2 as defined in (4.131).

4.4.5 Hybrid Superposition

We recall that hybrid superposition refers to a composite scheme that involves both rate
splitting and product superposition. An achievable rate region with product superposition
for the two-user noncoherent BC is given as follows.

Theorem 4.6. With hybrid superposition, the two-user noncoherent BC with r1 > ro can
achieve any rate pair (R1, Ra) of the form

P ..
Ry = <1 A JTF SO)E log, det | Iy, + - GGy, ||,
S1 + S0 + P15tr((R16 + P17'181+80) )

(4.151)

where Gle € CN2x(s1+50) has distribution imposed by

~ 1
Gie = VPrir (VPGIZ? 81X + Zy (1.4, ) ) (PrrRic + Loy 1) ' Rue, (4.152)
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and
_ 1 _ _
Ry = ) log, det | Iy, + — — 92P25a95'
tr((R2 +Py,) Pm) +1

_ X ) )

+ (1 _ A ; SO)E log, det | I, + — — Q2Pos 2y
i tr((R2 + PQT) P25b) +

S1+ S
- (1 - 1T0>E log, det <IN2 + P15 (PzT + pas )920920)] (4.153)

for integers so < rg,s1 <11 — 710,82 < 19 — 19 and the power constraint

(s0p2r + S1p24 + (51 — 52)p2s) <P17' + s_lbi 8_080 P16> + 59Por + (T' — 52 — 50) Pos < PT.
(4.154)
In (4.152),
I [MISO {OsOng ’;2065/2” c C(s1+s0)x(s1+50)
0 \/@I&
where Shy € C0*(51-52) g Zyj1.5, 450 € CNix(s1+50) both have IID N¢(0,1) entries; and
parRio \/M‘I’mg@n
Be = VP27 02,211 21®10 [g %‘Str(Rloﬁsl—SQ + poaRoa |’ (4.155)
n (4.153),
Py, = [infgI IZ%OISJ Py, = lT 1:1 0 (,017-(;[)25 E 82)180 P250182 ;
2 52

Qy € CN2x(s2+50) 5 o Gaussian matriz with independent rows following
Nc (0, R; (RQ + Pz_.rl)_lR2> ;

and Qo € CN2%5%0 45 ¢ Gaussian matriz with independent rows following N¢ (O,Rzo). The
convex hull of the origin and these rate pairs with all feasible values of sg, s1, S2 and all
feasible power allocation (4.154) is an achievable rate region for the two-user noncoherent

BC.

We consider the the input distribution defined by
X= [V() Vl] /2X1 +VoXs (4156)

[ | P
Xl = |V Pl‘rIS1+so 51 —11—58 Sl‘| € C(51+SO)XTa (4157)

X2 = 52><50 \% PQTISQ H 2652‘| S CSQXT, (4158)

with

r /
X} = pi; o [0 wﬂfs ” & Clorrsn)x(siton) (4.150)
L 2af s1

where §; € Cls1ts0)x(T=s1=50) G, ¢ Cs2x(T=s2-50) and S, € C*0*(1752) are data matrices
containing Nc(0,1) entries. The power constraint E[tr(X"X)] < PT translates to (4.154).
In the following, we show that the rate pair (Rp, R2) given in (4.151) and (4.153) is
achievable with this input distribution, thus prove Theorem 4.6.
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4.4.5.a Rate of User 1

The received signal at user 1 is

1 P,
Y, =GX?9:X, [\/PHISWO 1/3141—65051} +2Z (4.160)

[ Pis
= |V PGy + Zl[1:31+so] s1 _‘i SOGlesl + Zl[sl—f—so—i-l:T} ) (4161)

YlT

Yis

1
where Gy, := G12f<I>1X/2 is the equivalent channel with correlation matrix

) parRio VP2 P22 X1 P11
R = —E[G1.G\] = ) 0 0 | (w162)
Ny VP2 24211 X1®10 0 Lug (Rw)lsr32 + p2aRa2

Following Lemma 4.2, user 1 estimates the equivalent channel G, using a MMSE estimator
based on Y1, as

Gle Y% PlTYlT(PlTRle + Is1+so)71Rle- (4163)

The estimate Gi. and the estimation error Gy, = Gi. — Gi. have zero mean and row
covariance

1 AH A _
EE [Glecle] = PlTRle(PlTRle + Isl+so) 1R1€7 (4164)

1 H = _ _
EE[GTGGR] =Ry, — Pi;R1o(Pi-Ric + I 4s,) 'Ric = (Rlel + PlTISﬁSO) . (4.165)

Using the worst-case noise argument and Lemma 4.1 as before, we have the achievable rate
R; for user 1 as defined in (4.151).

4.4.5.b Rate of User 2

After some manipulations, the received signal at user 2 can be written as

1 |VperPirIs 0 pastiz gl A
Yo = GoEId, | VT [v/2555% A 17 (4.166)
0 v PQTIS2 %22552
= [Yar Yosa Yos ], (4.167)
Yas
where A := {,/pgTISO 0 %55'2} sﬁiosl and
1 1
Yor := G2222 ®,P5_ + 22[1:52_’_50], (4.168)
1 /,02<SP1-rS/2
Yosq 1= GQEQQ P, \/T%SST | + 22[32+so+1:81+50]7 (4169)
TS 2[1:s1—s2
Yosy = GoRI® l A z (4.170)
26 = G2X3 82| Pe + Lo, 450+1:7]5 4.170
5o O2[s1—82+1:T—s2]




4.4. Two-User Broadcast Channel: Rate Analysis 97

where Py, := lpZTPSTISO PQOI
74 59

bits/channel use with

]. The rate that user 2 can achieve is %I(Yg; 5,592)

I(Y2;S5,S2) = I(Yar,Y25;55,S2) (4.171)
= I(YQT;S/27$2) +1(Yas; /2,52 1Y2r) (4.172)

=0
— I(Y25:S),S9,A | Yar) — I(Yas;A|Yar,Sh,So) (4.173)

where the second and third equalities follow from the chain rule.

Using the worst-case noise argument and Lemma 4.1 as before, we can bound the term
I1(Y25;S5,52,AY2;) by the sum of the first two terms in the right-hand side of (4.153).
Whereas the term I(Ya5;A|Y2,,S5,S2) can be upper bounded as

I(Yas5;A|Y2,,S),S2)
= I(Yas;A[S5,S2,Yar) ( )
I(Yas;AS2,Ya) — I(Yasp; S5 |Sa, Yar) ( )
<I(Y25b7A‘S2[81 —8o+1:T—59— 50]7Y27') ( )
A|52[51 —80+1:T—s9— 50],Y27-)— (A|S2[51—52+1:T—82—80]7Y27>Y2(5b) (4177)
( )
( )
( )

= h(

< h(A[Sg[s; —sp 11755 so],Y2T)— (A]SQ[SI,&H:T?STSO]7Y2T7Y25b7G222%(I>2)
= h{ABops) -5 41752 So]’G222‘I’2) (A|SQ[51—52+1:T—52—50]aY26baGQEQ%QZ)
= I(Ya55; A | Sofs, — sy 4 1:7—s5—s0], G223 ‘I>2)

[ Pos L
- I<Y25b_ éGQEQQ (1)2252[51752+1:T732750];A ‘ 52[31732+1:T732730]a

1 1
G52 By, G232 <1>22> (4.181)

1 1
iy <G2222<I>20A - Zoger pay i A ‘ G2222<I>20> (4.182)

== (T — 81 — So) {logQ det <IN2 + P15 <p27- + pgg >920920)} (4.183)

where Q9 € C(Ny x s9) has independent rows following N (O,Ego). Here, (4.174) and
(4.175) follows from the Markov chains Yas, <+ S5 <> A and Yag, <+ A <> S5, respectively;
(4.176) holds because mutual information is nonnegative and both Y5, and A are inde-
pendent of Syj1.4, 4,5 (4.178) holds because conditioning reduces entropy; (4.179) holds

1

because A is independent of both Yo, and G2X3 ®2, while given Yos,, A depends on Ya, only
1

through GoX3®; and in the last equality, we used that E[AA"] = Py; (pzT + pas o 82)150.

4.4.6 Numerical Results

In this subsection, we compute numerically the achievable rate regions for the BC with the
aforementioned schemes, namely, TDMA, rate splitting, product superposition, and hybrid
superposition. We assume Rayleigh fading, i.e., G; has independent Ng(0,1) entries. We
generate the correlation matrix Ry = UpX U7}, k € {1,2}, as follows:

e The eigenvalues in ¥y, are drawn from the joint distribution of the nonzero eigenvalues
of a Wishart matrix BB" where B is a M x 7, random matrix with independent
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Nc(0,1) entries, and normalized such that tr(X;) = M. This is suggested by the
maximum-entropy channel modeling approach [168], [169].

o The eigenvectors Uj, are generated as Uy = U k=, where U 1 and ﬁg are drawn
respectively by selecting randomly 7; and 79 columns of a random unitary matrix
U which is uniformly distributed in the space of M x M unitary matrix, and the
rotation matrix Zj is drawn uniformly from the space of r; X 7 unitary matrix.

In Fig. 4.2, we plot the rate regions for the BC achieved with these schemes in a
setting of T' = 24, M = 16, Ny = No = 12, r1 = 10, rg = 6, 1o = 4 and T = 32,
M=N;=Ny=16,7r1 =8, 19 =7, 12 =1, at SNR P = 30 dB. We observe that the rate
region of TDMA while transmitting in the channel eigenspace Span(Uy) (see (4.70)) is
much larger than the region of TDMA while transmitting in full space CM (see (4.69)).
This is because the former scheme spends less time (r channel uses) for channel estimation
than the latter scheme (spending M channel uses), while both schemes essentially estimate
the same effective channel. The rate region can be largely improved with the proposed
schemes. Rate splitting achieves a large region w.r.t. other schemes, especially when the
ranks of the two eigenspaces are close to each other (as r; = 9,72 = 7 in Fig. 4.2(a)).
The improvement by product superposition is more pronounced when the rank difference
between two eigenspaces is more significant (as r; = 10,79 = 6 in Fig. 4.2(b)) since the gains
achieved by product superposition come from the nonoverlapping part of the eigenspaces.

4.5 K-User Broadcast Channel

In this section, we extend our DoF studies to the K-user scenario. In this case, a product
superposition scheme was proposed in [76], resulting in an achievable DoF tuple as follows.

Proposition 4.2 ([76, Theorem 5]). For the K-user noncoherent BC where the correlation
eigenvectors are nested such that Ui_1 = [Uy U] with Uy, being a basis of the complement
of Span(Uy,) in Span(Uy—_1), k € {2,3,..., K}, the DoF tuple (dy,...,dx) given by

1

dy = N7 (1- ?) and dj, = Ny EZL Tk

e ke{23. K} (4.184)

is achievable.

The nested correlation eigen-structure in Proposition 4.2 is a strong assumption. In this
section, we consider more general settings. We first describe further the correlation model
as follows. Recall that the rows of Hy belong to the eigenspace Span(Uy) of Ry. Denote
the union of all channel eigenspaces as

V=] Span(Uy). (4.185)
ke[K]

V can be partitioned into 2% — 1 subspaces V7 of dimension r; whose r; basis vectors
span the channel of every user in a nonempty group J C [K] and are orthogonal to all
vectors in Span(Uy,) for k € {[K]\ J}. In other words, V7 = Nic7 Span(Uy). Obviously,
> gcik) Ty =rank(V) < M and 3 ;c(k): ey 1y = rank(Span(Uy)) = ry. An example of
the correlation structure for the case of three-user BC is shown in Fig. 4.3.

In this way, the signal transmitted in the subspace V7 can be seen by every user in J
and is not seen by all other users. On the other hand, the signals transmitted in V7 and
Vi interfere each other at every user in J N K. To characterize the interfering relation
between signals transmitted in different subspaces, we introduce the concept of interference
graph as follows:
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FIGURE 4.2: The rate regions of various schemes for the spatially correlated BC with T = 24,
Ny = Ny =12, M = 16, and at SNR P = 30 dB.

Definition 4.1. For k € [K], the interference graph of order k, denoted by G(K, k), is an
undirected graph for which:

o the set of vertices is the set of unordered subsets of cardinality k of [K], i.e., J C
[K]:|J| =k, hence a vertex is also denoted by a subset J;

o there exists an edge between two vertices J and K if and on