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Abstract

Mechanical microstructured metamaterials are increasingly gaining attention from the scien-
tific and engineering community. The exotic properties provided by these man-made artifacts
could possibly revolutionize our everyday lives. However, the question of modeling the behav-
ior of metamaterials is still a debate and the answer to it is of extreme scientific importance.
Some renowned scientists choose to try and model the microstructure of a metamaterial at the
molecular level, by using techniques such as high-frequency homogenization. Others choose
an approach, which is reminiscent of the classical theory of elasticity: the one of enriched
continuum mechanics. As the name suggests, the models which stem from this approach
have enriched kinematics, in the sense that one adds extra degrees of freedom which account
for the vibrations taking place in the microstructure. The goal of this thesis is to employ the
novel enriched continuum model named relaxed micromorphic model in order to study wave
propagation and, mainly, reflection and transmission phenomena at interfaces between classical
materials and metamaterials.

The conception of new metamaterials showing unorthodox behaviors with respect to elastic
wave propagation has become possible in recent years thanks to powerful dynamical homogeniza-
tion techniques. Such methods effectively allow to describe the behavior of an infinite medium
generated by periodically architectured base materials. Nevertheless, when it comes to the study
of the scattering properties of finite-sized structures, dealing with the correct boundary condi-
tions at the macroscopic scale becomes challenging. In this thesis, we show how finite-domain
boundary value problems can be set-up in the framework of the relaxed micromorphic model
by imposing continuity of macroscopic displacement and of generalized traction when non-local
effects are neglected. The advantage of this approach is that these boundary conditions stem
from a variational principle, which renders our problem mathematically well-posed.

First, we set up the full two-dimensional plane wave solution of the scattering from an
interface separating a classical Cauchy medium from a relaxed micromorphic medium. Both
media are assumed to be isotropic and semi-infinite to ease the semi-analytical implementation
of the associated boundary value problem.

Generalized macroscopic boundary conditions are presented (continuity of macroscopic dis-
placement, continuity of generalized tractions and, eventually, additional conditions involving
purely microstructural constraints), which allow for the effective description of the scattering
properties of an interface between a homogeneous solid and a mechanical metamaterial. The
associated “generalized energy flux” is introduced in order to quantify the energy which is trans-
mitted at the interface via a simple scalar, macroscopic quantity.

Two cases are considered in which the left homogeneous medium is “stiffer” and “softer”
than the right metamaterial and the transmission coefficient is obtained as a function of the
frequency and of the direction of propagation of the incident wave. We show that the contrast
of the macroscopic stiffnesses of the two media, together with the type of boundary conditions,
strongly influence the onset of Stoneley (or evanescent) waves at the interface. This allows for the
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tailoring of the scattering properties of the interface at both low and high frequencies, ranging
from zones of complete transmission to zones of zero transmission well beyond the band-gap
region.

We then consider a bulk wave propagation problem and show that the transient waveforms
arising from several localised pulses in a micro-structured material can be reproduced by a
corresponding generalised continuum of the relaxed micromorphic type. Specifically, we compare
the dynamic response of a bounded micro-structured material to that of bounded continua with
special kinematic properties: (i) the relaxed micromorphic continuum and (ii) an equivalent
Cauchy linear elastic continuum. We show that, while the Cauchy theory is able to describe the
overall behavior of the metastructure only at low frequencies, the relaxed micromorphic model
goes far beyond by giving a correct description of the pulse propagation in the frequency band-
gap and at frequencies intersecting the optical branches. In addition, we observe a computational
time reduction associated with the use of the relaxed micromorphic continuum, compared to the
sensible computational time needed to perform a transient computation in a micro-structured
domain.

Finally, we present the case of a metamaterial slab of finite width. Its scattering properties
are studied via a semi-analytical solution of the relaxed micromorphic model and compared to
numerical simulations encoding all details of the selected microstructure. The reflection coef-
ficient obtained via the two methods is presented as a function of the frequency and of the
direction of propagation of the incident wave. We find excellent agreement for a large range
of frequencies going from the long-wave limit to frequencies beyond the first band-gap and for
angles of incidence ranging from normal to near parallel incidence. The case of a semi-infinite
metamaterial is also presented and is seen to be a reliable measure of the average behavior of
the finite metastructure. A tremendous gain in terms of computational time is obtained when
using the relaxed micromorphic model for the study of the considered metastructure.

Keywords: enriched continua, metamaterials, anisotropic metamaterials, band-gaps, wave-
propagation, Stoneley waves, relaxed micromorphic model, interface, total reflection and trans-
mission, transient dynamic response, scattering, finite-sized metastructures
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Resumé

Les métamatériaux mécaniques microstructurés attirent de plus en plus l’attention de la commu-
nauté scientifique et technique. Les propriétés exotiques de ces matériaux artificiels pourraient
révolutionner notre vie quotidienne. Cependant, la question de la modélisation du comporte-
ment des métamatériaux reste un débat et la réponse à cette question est d’extrême importance
scientifique. Certains scientifiques renommés choisissent d’essayer de modéliser la microstructure
des métamatériaux au niveau moléculaire, en utilisant des techniques comme l’homogénéisation
haute fréquence. D’autres choisissent une approche qui évoque la théorie classique de l’élasticité
: celle de la mécanique des milieux continus enrichie. Comme leur nom l’indique, les
modèles issus de cette approche ont enrichi la cinématique, dans le sens où on y ajoute des
degrés de liberté supplémentaires qui tiennent compte des vibrations qui se produisent dans la
microstructure. Le but de cette thèse est d’utiliser le nouveau modèle de continuité enrichie
appelé modèle micromorphique relaxé détendu afin d’étudier la propagation des ondes et,
principalement, les phénomènes de réflexion et de transmission aux interfaces entre matériaux
classiques et métamatériaux.

La conception de nouveaux métamatériaux présentant des comportements peu orthodoxes
par rapport à la propagation des ondes élastiques est devenue possible ces dernières années grâce
à de puissantes techniques d’homogénéisation dynamique. Ces méthodes permettent de décrire
efficacement le comportement d’un milieu infini généré par des matériaux de base périodiquement
architecturés. Néanmoins, lorsqu’il s’aĝıt d’étudier les propriétés de diffusion de structures de
taille finie, il devient difficile de traiter les conditions limites correctes à l’échelle macroscopique.
Dans cette thèse, nous montrons comment les problèmes aux valeurs limites de domaines finis
peuvent être mis en place dans le cadre du modèle micromorphique relâché en imposant la
continuité du déplacement macroscopique et dans le cadre des contraintes généralisées lorsque
les effets non locaux sont négligés. L’avantage de cette approche est que ces conditions aux
limites découlent d’un principe variationnel, ce qui rend notre problème mathématiquement
bien posé.

Tout d’abord, nous mettons en place la solution d’onde plane bidimensionnelle complète
de la diffusion à partir d’une interface séparant un milieu de Cauchy classique d’un milieu
micromorphique relaxé. Les deux milieux sont supposés isotropes et semi-infinis pour faciliter
la mise en œuvre semi-analytique du problème de valeur limite associé.

Les conditions aux limites macroscopiques généralisées sont présentées (continuité du déplace-
ment macroscopique, continuité des tractions généralisées et, éventuellement, conditions addi-
tionnelles impliquant des contraintes purement microstructurales). Ils permettent de bien décrire
les propriétés de diffusion d’une interface qui sépare un solide homogène d’un métamatériau
mécanique. Le ”flux d’énergie généralisé” associé est introduit afin de quantifier l’énergie qui
est transmise à l’interface à travers une simple quantité scalaire et macroscopique.

On considère deux cas différents dans lesquels le milieu homogène gauche est soit plus rigide
soit plus flexible que le métamatériau droit et le coefficient de transmission est obtenu en fonction
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de la fréquence et de la direction de propagation de l’onde incidente. On montre que le contraste
des raideurs macroscopiques des deux milieux, ainsi que le type de conditions limites, influencent
fortement l’apparition des ondes Stoneley (ou évanescentes) à l’interface. Cela permet d’adapter
les propriétés de diffusion de l’interface pour de basses et hautes fréquences, allant des zones
de transmission complète à des zones de transmission nulle bien au-delà de la zone de bande
passante. On considère par la suite un problème de propagation des ondes de volume et on
démontre que les formes d’ondes transitoires résultant de plusieurs impulsions localisées dans un
matériau microstructuré peuvent être reproduite par un milieu généralisé correspondant au type
micromorphe relaxé. Plus précisément, nous comparons la réponse dynamique d’un matériau
microstructuré et lié à celle d’un milieu lié avec des propriétés cinématiques particulières : (i)
le milieu micromorphique relaxé et (ii) un équivalent milieu élastique linéaire de Cauchy. On
démontre que, bien que la théorie de Cauchy soit capable de décrire le comportement global de
la métastructure à de basses fréquences, le modèle micromorphique détendu va bien au-delà en
donnant une description correcte de la propagation de l’impulsion dans la bande de fréquence et
à des fréquences qui croisent les branches optiques. De plus, on observe une réduction vis-à-vis
le temps de calcul en comparant avec le temps de calcul pour effectuer un calcul transitoire dans
un milieu micro-structuré, et ceci est due à l’utilisation du milieu micromorphique détendu.

Enfin, on présente le cas d’une dalle de métamatériau de largeur finie. Ses propriétés de
diffusion sont étudiées en utilisant une solution semi-analytique du modèle micromorphique re-
laxé et comparées à des simulations numériques codant tous les détails de la microstructure
sélectionnée. Le coefficient de réflexion obtenu par les deux méthodes est présenté en fonction
de la fréquence et la direction de propagation de l’onde incidente. On trouve un excellent accord
pour une large gamme de fréquences, allant de la limite des ondes longues aux fréquences au-delà
de la première limite de la bande, et pour des angles d’incidence allant d’une incidence normale
à une incidence presque parallèle. Le cas d’un métamatériau semi-infinie est également présenté
et est considéré comme une mesure fiable du comportement moyen de la métastructure finie. Un
gain considérable en termes de temps de calcul est obtenu en utilisant le modèle micromorphique
relaxé pour l’étude de la métastructure considérée.

Mots-Clés: millieux continus enrichis, métamatériaux, matériaux anisotropes, band-gaps,
propagation des ondes, ondes Stoneley, modèle micromorphe relaxé, interface, réflexion et trans-
mission totale, réponse dynamique transitoire, diffusion, metastructures de taille finie
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Chapter 1

General introduction

The word metamaterial is widely used today in specific scientific communities to indicate
materials that go beyond (“meta” means beyond in Greek) the usual notion of materials, i.e.
those produced by nature, or those more classical man-made materials, which are today part of
our everyday life. They are in fact architectured materials with exotic properties, which cannot
be found in natural or more classical man-made materials. This concept was first established for
optical metamaterials that exhibit a negative refraction index (as shown by Victor Veselago in
1968 [98]) and was subsequently extended to mechanical metamaterials, which are engineered in
such a way which provide, for instance, negative effective bulk modulus [52], negative effective
mass density [51], negative longitudinal and volume compressibility [80], etc. There are even
Mesoscopic Theories of Complex Continua (metamaterials of the a priori solid type that behave
like fluids [84]), as they have a finite bulk modulus but a vanishing shear modulus. They
are called metafluids and are illustrated by so-called “pentamode structures” [69]. General
introductory references are Engheta and Ziolkowski [33] and Zoudhi et al. (2008)[111].

The basic idea underlying the design of these metamaterials is that of suitably engineering
the architecture of their microstructure in such a way that the resulting macroscopic (homog-
enized) properties can exhibit the desired exotic characteristics. The most widespread class of
metamaterials consists of those which are obtained by a periodic repetition in space of a specific
unit cell and which are known as periodic metamaterials. One of the most appealing mechanical
features is the possibility to filter waves in specific ranges of frequencies, referred to as fre-
quency “stop-bands” or “band-gaps”, i.e. frequency ranges for which elastic wave propagation
is inhibited.

Nowadays, metamaterials hold a central role in engineering research thanks to their ex-
otic mechanical and electromagnetic behavior. By exploiting these unorthodox properties, the
conception of morphologically complex finite structures in many fields of engineering could be
revolutionized. For instance, a finite ordered set of a metamaterial’s unit-cell, that throughout
this thesis we will call metastructure, would inherit the filtering properties of the periodic
counterpart, leading to application ranging from seismic protection to stealth.

Recent years have seen the rapid development of acoustic metamaterials and phononic crys-
tals whose mechanical properties allow exotic material behaviors such as the aforementioned
band-gaps [56, 102, 108] but also cloaking [15, 20, 21, 26, 46, 73, 81, 97], focusing [28, 45, 93],
wave-guiding [47, 94] etc. For such metamaterials, renowned scientists have provided analytical
[103, 104, 105, 106] or numerical [40] homogenization techniques (in the spirit of the seminal
works of Bloch [13] and Floquet [39]), thus obtaining a homogenized model which suitably de-
scribes, to a good extent, the dynamical behavior of the bulk periodic metamaterial at the
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macroscopic scale. Rigorous models for studying the macroscopic mechanical behavior of non-
periodic structures become rarer and usually rely on the use of detailed finite element modeling
of the considered microstructures (see e.g. [48]), thus rendering the implementation of large
structures computationally demanding and impractical. Theoretical models which account for
every single element of such metastructures, however, are rapidly showing their limits both in
terms of complexity and computational performance.

If the bulk behavior of these metamaterials has gathered the attention of the scientific
community via the application of discrete modeling (such as Bloch-Floquet analysis or ho-
mogenization techniques [27, 55, 90, 103]) or, more recently, of enriched continuum models
[9, 29, 57, 58, 59, 60, 62, 63, 64, 77, 78, 79], the study of the reflective/refractive properties
at the boundary of such metamaterials is far from being well understood. Rare examples of
the study of scattering phenomena at metamaterials boundaries in the framework of classical
homogenization approaches can be found in [12, 19, 91, 103, 104]. The idea of using enriched
continuum theories to describe microstructured materials needs to be fully developed in order
to achieve a simplified modeling and more effective conception of large-sale engineering metas-
tructures made up of metamaterials as building blocks. This would allow for the design of real,
large-scale engineering structures which are able to resist vibrations and shocks in a large range
of frequencies.

It is clear that having a good knowledge of the reflective and transmittive properties of
metamaterial interfaces is a key point for the conception of metamaterial systems, which would
completely transform the idea we currently have about reflection and transmission of elastic
waves at the interface between two solids. It is for this reason that many authors convey
their research towards what they call “metasurfaces” [53, 54, 109], i.e. relatively thin layers of
metamaterials whose microstructure is able to interact with the incident wave-front in such a
way that the resulting reflection/transmission patterns exhibit exotic properties, such as total
reflection or total transmission, conversion of a bulk incident wave in interface waves, etc. At
the current state of knowledge, little effort is made in trying to model metastructures, due to the
difficulty of imposing suitable boundary conditions in the framework of homogenization theories
(see [91]).

Notwithstanding the paramount importance these metasurfaces may have for technological
advancements in the field of noise absorption or stealth, they show limitations in the sense that
they work for relatively small frequency ranges, for which the wavelength of the incident wave
is comparable to the thickness of the metasurface itself. This restricts the range of applicability
of such devices, above all for what concerns low frequencies which would result in very thick
metasurfaces.

We propose to shed new light in this direction by the introduction of an enriched continuum
model of the micromorphic type, equipped with the proper boundary conditions for the effective
description of finite sized band-gap metastructures. The relaxed micromorphic model (see
[2, 3, 9, 10, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 77, 78, 79] for preliminary results) has a simplified
structure which allows to describe the homogenized properties of (periodic or even non-periodic)
anisotropic metamaterials with a limited number of constant, frequency independent material
parameters and for an extended frequency range going from the long-wave limit to frequencies
which are beyond the first band-gap. The rigorous development of the relaxed micromorphic
model for anisotropic metamaterials has been given in [29], where applications to different classes
of symmetry and the particular case of tetragonal periodic metamaterials are also discussed.
In the latter paper, a procedure to univocally determine some of the material parameters for
periodic metamaterials with static tests is also provided. It is important to point out that
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the relaxed micromorphic model is not obtained via a formal homogenization procedure, but
is developed generalizing the framework of macroscopic continuum elasticity by introducing
enriched kinematics and enhanced constitutive laws for the strain energy density. In this way,
extra degrees of freedom are added to the classical macroscopic displacement via the introduction
of the micro-distortion tensor and the chosen constitutive form for the anisotropic strain energy
density. This allows to introduce a limited number of elastic parameters through fourth-order
macro and micro elasticity tensors working on the sym/skew orthogonal decomposition of the
introduced deformation measures (see [29] for details).

The need of using an enriched continuum model of the micromorphic type for describing
the broadband macroscopic behavior of acoustic metamaterials as emerging from a numerical
homogenization technique was recently proven in [90]. Nevertheless, the authors of the latter
paper showed that a huge number of elastic parameters (up to 600 for the studied tetragonal
two-dimensional metamaterials) is indeed needed to perform an accurate fitting of the dispersion
curves issued by the Bloch-Floquet analysis. This extensive number of parameters can also be
found in other micromorphic models of the Eringen [36] and Mindlin [71] type. The need of
this vast number of parameters is related to the fact that the macroscopic class of symmetry
of the metamaterial and the suitable (i.e. sym/skew-decomposed) deformation measures are
usually not accounted for. As a matter of fact, the relaxed micromorphic model, as proposed
in [29], is able to minimize the number of parameters (15 for the tetragonal 2D-case) thanks to
the introduction of “generalized classes of symmetry” for metamaterials and to the sym/skew-
decomposition choice of the introduced deformation measures. The fitting of the dispersion
curves, which can be obtained by the inverse fitting procedure proposed in [29], cannot reproduce
point-by-point the dispersion curves issued via Bloch-Floquet analysis (which is not the aim of
our work), but is general enough to capture the main features of the studied metamaterials’
behavior including dispersion, anisotropy, band-gaps for a wide range of frequencies and for
wavelengths which can become very small and even comparable to the size of the unit cell.

Last, but most importantly, since it is issued by a variational procedure, the relaxed micro-
morphic model is naturally equipped with the correct macroscopic boundary conditions which
have to be applied on the boundaries of the considered metamaterials. This implies that the
global refractive properties of metamaterials’ boundaries can be described in the simplified
framework of enriched continuum mechanics, thus providing important information while keep-
ing simple enough to allow important computational time-saving.

We want to stress here the fact that, when a new theory is being constructed, partial su-
perposition with previous works is unavoidable. It is exactly such incessant progress that will
ultimately allow to proceed towards the ambitious result of establishing a generalized version of
the theory of elasticity for the study of microstructured metamaterials. In fact, as the theory
of elasticity allows the averaged description of the mechanical behavior of classical materials
without accounting for the complexity of all the atoms and molecules that constitute them, our
long term goal is to build up a generalized theory of elasticity enclosing the dynamic response
of metamaterials but without accounting for the detailed microstructure. Given the ambition of
this final goal, it is clear that a series of papers is needed, with the aim to set up the model, to
encompass its generalization to general anisotropy, to establish a simplified fitting procedure on
real metamaterials, and to provide evidence that the obtained material parameters identifica-
tion is able to reproduce real behaviors at large scales. Further research will be needed to prove
the effectiveness of the established procedures to other metamaterials with different classes of
symmetry and also independent tests of the effectiveness of the model (for example studying
the reflective properties of interfaces embedded in anisotropic metamaterials) will be needed to

3

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI073/these.pdf 
© [A. Aivaliotis], [2019], INSA Lyon, tous droits réservés



1.1. Notation

valorize the results obtained up to now.
This thesis contains six main chapters. Chapter 1 consists of a general introduction and

also sets the notation used throughout the thesis. In chapter 2 discuss some main concepts of
continuum mechanics and introduce the reader to the theory of enriched continuum modeling.
Furthermore, we give some basic definitions and properties of periodic lattices, which we will
need later on. Chapter 3 is devoted to introducing the relaxed micromorphic model. We will
see how we can derive it from a variational principle and state the governing equations in the
cases of anisotropic and isotropic media. We will also discuss how we can represent classes of
symmetry, by making a recapitulation of the Mandel-Voigt vector notation.

After these preliminary chapters, we begin the presentation of the main results of this thesis.
Chapter 4 is dedicated to the study of interface problems in the case of isotropy. We will consider
an interface between two isotropic media, one described by the classical Cauchy equations of
elasticity and one by the isotropic relaxed micromorphic model. We will show in full detail how
we can study this problem and discuss the results obtained for two cases, one where the left
Cauchy material is “stiffer” and one where it is “softer” than the metamaterial on the right
side of the interface. We will then move on to discuss an application of the anisotropic relaxed
micromorphic model in chapter 5. Imposing a pulse signal in a 2D metamaterial’s plate we will
see how to describe bulk wave propagation via the relaxed micromorphic model and compare
the obtained results to in-silico experiments performed by direct numerical simulations in the
commercial Finite Element solver Comsol MultiphysicsTM. Chapter 6 is dedicated to the study
of reflection and transmission problems in the case of anisotropy, assuming metamaterials with
tetragonal symmetry. Comparisons between the results issued by the relaxed micromorphic
model and those obtained via direct numerical simulations are again provided Finally, chapter
7 discusses the conclusions of this thesis and further research perspectives.

1.1 Notation

Let R3×3 be the set of all real 3× 3 second order tensors (matrices) which we denote by capital
letters. A simple and a double contraction between tensors of any suitable order is denoted
by · and : respectively, while the scalar product of such tensors by 〈·, ·〉.1 The Einstein sum
convention is implied throughout this text unless otherwise specified. The standard Euclidean
scalar product on R3×3 is given by 〈X,Y 〉R3×3 = tr(X · Y T) and consequently the Frobenius
tensor norm is ‖X‖2 = 〈X,X〉R3×3 . From now on, for the sake of notational brevity, we omit the
scalar product indices R3,R3×3 when no confusion arises. The identity tensor on R3×3 will be
denoted by 1; then, tr(X) = 〈X,1〉. The following standard Lie-algebra theory abbreviations
are used:

• Sym(3) := {X ∈ R3×3|XT = X} is the vector space of all symmetric tensors.

• so(3) := {X ∈ R3×3|XT = −X is the Lie-algebra of all skew-symmetric tensors.

• sl(3) := {X ∈ R3×3| tr(X) = 0} is the Lie-algebra of all traceless tensors.

• R3×3 ∼= gl(3) = {sl(3) ∩ Sym(3)} ⊕ so(3) ⊕ R · 1 is the orthogonal Cartan decomposition
of the Lie algebra gl(3).

Furthermore, for all X ∈ R3×3, we set:

1For example, (A · v)i = Aijvj , (A · B)ik = AijBjk, A : B = AijBji, (C · B)ijk = CijpBpk, (C : B)i =
CijpBpj , 〈v, w〉 = v · w = viwi, 〈A,B〉 = AijBij , etc.
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• symX = 1
2(X +XT) ∈ Sym(3), the symmetric part of the tensor X.

• skewX = 1
2(X −XT) ∈ so(3), the skew-symmetric part of the tensor X.

• devX = X − 1
3 trX · 1 ∈ sl(3), the deviatoric part of the tensor X.

Finally, the Cartan-Lie decomposition of a tensor X ∈ R3×3 is:

X = dev symX + skewX +
1

3
tr(X) · 1. (1.1)

Consider a body which occupies a bounded open set BL ⊂ R3 and assume that the boundary
∂BL is a smooth surface of class C2. An elastic material fills the domain BL and we denote by
Σ any material surface embedded in BL. The outward unit normal to ∂BL will be denoted by
ν as will the outward unit normal to a surface Σ embedded in BL (see Fig. 1.1). Given a field

Figure 1.1: Schematic representation of the body BL, the surface Σ and the sub-bodies B−L and B+
L .

a defined on the surface Σ, we set
[[a]] = a+ − a−, (1.2)

which defines a measure of the jump of a through the material surface Σ, where

[·]− := lim
x∈B−L \Σ
x→Σ

[·], [·]+ := lim
x∈B+

L \Σ
x→Σ

[·], (1.3)

with B−L , B
+
L being the two subdomains which result from splitting BL by the surface Σ (see

again Fig. 1.1).
The Lebesgue spaces of square integrable functions, vectors or tensors fields on BL with

values on R,R3,R3×3 respectively, are denoted by L2(BL). Moreover we introduce the standard
Sobolev spaces2

H1(BL) =
{
u ∈ L2(BL)| ∇u ∈ L2(BL), ‖u‖2H1(BL) := ‖u‖2L2(BL) + ‖∇u‖2L2(BL)

}
,

H(curl;BL) =
{
v ∈ L2(BL)| curl v ∈ L2(BL), ‖v‖2H(curl;BL) := ‖v‖2L2(BL) + ‖curl v‖2L2(BL)

}
, (1.4)

H(div;BL) =
{
v ∈ L2(BL)| divv ∈ L2(BL), ‖v‖2H(div;BL) := ‖v‖2L2(BL) + ‖divv‖2L2(BL)

}
,

of functions u and vector fields v respectively.

2The operators ∇, curl and div are the classical gradient, curl and divergence operators. In symbols, for a
field u of any order, (∇u)i = u,i, for a vector field v, (curl v)i = εijkvk,j and for a field w of order greater than 1,
divw = wi,i.
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1.1. Notation

For vector fields v with components inH1(BL) and for tensor fields P with rows inH(curl;BL)
(resp. H(div;BL)), i.e.

v = (v1, v2, v3)T, vi ∈ H1(BL), P = (PT
1 , P

T
2 , P

T
3 )T, Pi ∈ H(curl;BL) resp. Pi ∈ H(div;BL),

(1.5)
where i = 1, 2, 3, we define

∇v =
(
(∇v1)T, (∇v2)T, (∇v3)T

)T
,

CurlP =
(
(curlP1)T, (curlP2)T, (curlP3)T

)T
, (1.6)

DivP = (divP1, divP2, divP3)T .

The corresponding Sobolev spaces are denoted by H1(BL), H(Div;BL), H(Curl;BL).
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Chapter 2

Classical and enriched continuum mechanics

2.1 Classical continuum mechanics

Continuum theories are successfully used for the description of the mechanical behavior of ma-
terials at the macroscopic scale. The main idea of continuum mechanics lies in the assumption
that a solid can be treated as a continuum, rather than a discrete set of molecules. This simpli-
fies the study of solids, since one does not have to take into account each separate interaction
taking place at the molecular level. This fundamental idea has been used consistently since
the 19th century, when Cauchy managed to prove that the use of such “averaged” theories was
a powerful tool for determining the mechanical behavior of large-scale engineering structures.
Indeed, one can immediately see the advantage of considering, say, a bridge as a large-scale
object as opposed to viewing each of its atoms separately.

Classical continuum mechanics started with the ground-braking works of G. Piola ([85])
and was then extended by A. L. Cauchy ([17]). The main result of Cauchy’s work was that
the interactions between parts of a solid can be described via a symmetric tensor, called the
symmetric Cauchy force-stress tensor, classically denoted by σ : Ω ⊂ R3 → Sym(3), where Ω is
some domain occupied by the solid. This claim was proven via the classical tetrahedron argument
(see, for example [22] for a demonstration). Following this, Cauchy derived the equations of
motion that balance inertiae, external forces and stresses.

The main assumptions of Cauchy’s theory are that:

(a). the displacement u : Ω ⊂ R3 → R3 is the only kinematic field,1

(b). the stress σ in each material point x is a symmetric tensor (Bolzmann’s axiom of symmetry)
and depends only on the gradient of the displacement ∇u evaluated in the same material
point x.

The resulting model can then be derived from a variational principle, via a strain energy density
and a kinetic energy density.2 These energy densities are given by:

W =
1

2
〈CM sym(∇u), sym(∇u)〉R3×3 , (2.1)

J =
1

2
ρ ‖u,t‖2 , (2.2)

1This is equivalent to saying that the only possible motion of each point of the body is a translation.
2We will describe the procedure of how to derive these equations of motions from these energy densities later

on in chapter 3.3.
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2.2. Conservation of energy and energy flux for the classical Cauchy model

where CM : Sym(3)→ Sym(3) is a symmetric fourth-order tensor with at most 21 independent
coefficients and ρ is a scalar mass density.

The classical Cauchy elasticity equations, as derived from the above strain and kinetic energy
densities, are then given by:

ρ u,tt = Div(CM sym∇u), in Ω, (2.3)

where Ω ⊂ R3 is a bounded domain (the solid we are considering).
In this thesis, whenever we talk about a Cauchy medium, we will always assume it to be

isotropic, i.e. its material properties do not depend on the direction from which we examine
them. In this case the elasticity tensor CM has only 3 non-zero components and the only two
independent coefficients are the well-known Lamé parameters µ and λ. Then, the classical
equations of motion take the form:

ρ u,tt = Div σ, ρ ui,tt = σij,j , (2.4)

where
σ = 2µ sym∇u+ λ tr(sym∇u)1, σij = µ(ui,j + uj,i) + λuk,kδij . (2.5)

Equation (2.4) can be rewritten in the following way:

ρ u,tt = (λ+ µ)∇(Div u) + µ∇2u. (2.6)

The displacement u can be rewritten in its Helmholtz decomposition, according to which u can be
written as the sum of an irrotational (curl-free) scalar potential and a solenoidal (divergence-free)
vector potential. We have:

u = ∇φ+ curlA, (2.7)

where φ : R3 → R is the scalar potential and A : R3 → R3 is the vector potential. Since divA = 0
(gauge-invariance), we can show that equation (2.6) can be decomposed into two wave equations
for the two potentials:

“longitudinal”: (2µ+ λ)∇2φ = ρ φ,tt, (2.8)

“shear”: µ∇2A = ρA,tt. (2.9)

These equations govern the propagation of longitudinal and shear waves respectively. More
details on this topic will be given in chapter 6.

Although this classical theory is indeed a very good approximation for many applications,
modern day microstructured materials require a more refined theory to better capture their
behavior [57, 58, 59]. This novel theory will be introduced in the following chapter and applied
in chapters 4, 5 and 6.

2.2 Conservation of energy and energy flux for the classical Cauchy model

In this section we discuss energy conservation and derive the expression of the energy flux for
the classical isotropic Cauchy model.

The mechanical system we are considering is conservative and, therefore, energy must be
conserved in the sense that the following differential form of a continuity equation must hold:

E,t + divH = 0, (2.10)
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where E = J + W is the total energy of the system and H is the energy flux vector, whose
explicit expression we now compute.

We begin by differentiating expressions (2.1) and (2.2) with respect to time and using defi-
nition (2.5). We have:

E,t = J,t+W,t = ρ 〈u,t, u,tt〉+〈(2µ sym∇u+ λ tr(sym∇u)1), sym∇(u,t)〉 = ρ 〈u,t, u,tt〉+〈σ, sym∇(u,t)〉 .

We now replace ρ u,tt from the equations of motion (2.4) and we use the fact that 〈σ, sym∇(u,t)〉 =
〈σ,∇(u,t)〉 = Div(σ · u,t)−Div σ · u,t (which is due to the symmetry of the Cauchy stress tensor
σ,) to get

E,t = Div σ · u,t + Div(σ · u,t)−Div σ · u,t = Div(σ · u,t). (2.11)

Thus, by comparing (2.11) to the conservation of energy (2.10), we can deduce that the energy
flux in a Cauchy continuum is given by (see e.g. [1])

H = −σ · u,t, Hk = −σikuk,t. (2.12)

2.3 Enriched continuum theories

In the framework of continuum theories, the systematic use of Cauchy theories may sometimes
represent too drastic a simplification of reality, especially when dealing with metamaterials,
since some essential characteristics related to the heterogeneity of their microstructure are im-
plicitly neglected. Indeed, every material is actually heterogeneous when one goes down to the
molecular or atomic level. Nevertheless, as already pointed out, the effect of the microstructure
is often not evident in the engineering scale. In such cases, a continuum Cauchy theory is a
suitable choice for modeling the macroscopic mechanical behavior of the considered materials in
the simplest and most effective way. On the other hand, there are cases in which the considered
materials are heterogeneous even at relatively large scales and, as a consequence, the effect of
their microstructure on the overall mechanical behavior of the medium cannot be neglected.
In such cases, a continuum Cauchy theory may not be sufficient to fully describe the mechan-
ical behavior of the considered material, especially when considering particular loading and/or
boundary conditions.

Enriched continuum theories are an advanced tool at the frontier of which many disciplines
meet: mathematics, theoretical and applied mechanics and engineering. For this reason, in order
to surely advance towards the desired engineering applications passing through the intricate and
nearly unexplored field of the continuum mechanics of metamaterials, we need to be guided by
secure mathematical principles. In the meanwhile, we need to take care of introducing the
minimal level of complexity in order to efficiently describe the targeted phenomena. To come
to the point, we need to reach a reasonable compromise between the complexity of the model
that we want to use and the detail at which microstructures can be described. And this is what
we do thereupon. The general ideas may be traced back to Duhem (1893) [32] and Voigt (1887)
[99].

An enriched continuum model is, as the name suggests, a continuum model where we enrich
the kinematics by adding additional degrees of freedom. This means, that we no longer assume
the displacement to be the only kinematical field.

Indeed, the kinematics are enriched by introducing an additional field of micro-distortions
in the form of a second order tensor, which we denote by P . This new set of degrees of freedom
accounts for microstructure related phenomena attached to each macroscopic material point
x ∈ Ω.
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2.3. Enriched continuum theories





Figure 2.1: Enriched kinematics for a micromorphic continuum.

The introduction of additional kinematical fields was first proposed by the Cosserat brothers
[25]. In their model, the added micromorphic displacements were meant to describe rigid rota-
tions at the microscopic level and so, the newly introduced degrees of freedom are in the form
of a skew-symmetric tensor A ∈ so(3). However, as it often happens, the work of the Cosserat
brothers was not appreciated and expanded until the second half of the 20th century. Mindlin
[71, 72], Green and Rivlin [44], Toupin [95, 96], Eringen [34, 36, 37, 38] and Germain [41] all
developed the brothers’ work and gave it credibility. In Mindlin and Erigen’s work, the kinemat-
ics was enriched introducing an additional non-symmetric field of micro-distortions P ∈ R3×3.
In this way, in each macroscopic material point x ∈ Ω there is a substructure attached. This
micro-deformation was generalized to include micro-stretches, micro-strains, micro-shear, micro-
distortions and micro-rotations and it was described by an affine mapping 1+P (Fig. 2.1). For
an extensive historic perspective see [78].

We now give a very short review of the classical enriched continuum models before moving
on to discuss the novel enriched continuum model, which is the topic of this thesis.

The Mindlin-Eringen model

Maybe the best known and celebrated enriched continuum model is the Mindlin-Eringen model
introduced in the early 1960’s [23, 34, 35, 37, 38, 70, 71]. The additional degrees of freedom are
represented by the second-order tensor P ∈ R3×3, so there are 9 additional degrees of freedom.
The elastic energy of the general anisotropic centro-symmetric micromorphic model of Mindlin
and Eringen ([72] and [36]) is given by:

W =
1

2
〈Ce(∇u− P ), (∇u− P )〉R3×3 +

1

2
〈Cm symP, symP 〉R3×3

+
1

2
〈Ecross(∇u− P ), symP 〉R3×3 +

µL2
c

2
〈L̂∇P,∇P 〉R3×3 , (2.13)

where Ce : R3×3 → R3×3 is a 4th order micromorphic elasticity tensors with at most 45 indepen-
dent coefficients and acts on the non-symmetric elastic distortion e = ∇u−P . Ecross : R3×R3 →
R3×R3 is a 4th order cross-coupling tensor with the symmetry (Ecross)ijkl = (Ecross)jikl and has
at most 54 independent coefficients, Cm : Sym(3)→ Sym(3) has the 21 independent coefficients
of classical elasticity and finally, L̂ : R3×3×3 → R3×3×3 is a 6th order tensor containing 378
independent coefficients. The parameter µ > 0 is a typical shear modulus and Lc > 0 is a
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characteristic length.3 We see then that we have a total of 498 independent coefficients.

The Cosserat micropolar model

The second famous micromorphic model is Cossreat’s micropolar model [25]. “Micropolar con-
tinua” is the denomination given by A.C. Eringen to a subclass of “micromorphic” bodies, in
which the additionally introduced internal deformation at each material point reduces to a pure
rotation. Here, the microstructure is assumed to have three orthogonal rigid directions and,
therefore, the micro-deformation field can only describe micro-rotations. Under this assump-
tion, it suffices to consider a skew-symmetric micromorphic distortion field A ∈ so(3), thus
introducing only 3 additional degrees of freedom instead of 9 as in the Mindlin-Eringen model.
The strain energy of the Cosserat model is:

W =
1

2
〈Ce sym∇u, sym∇u〉R3×3 +

1

2
〈Cc(skew∇u−A), (skew∇u−A)〉R3×3

+
µL2

c

2
〈L∇ axlA,∇ axlA〉R3×3 , (2.14)

where Ce : Sym(3)→ Sym(3) is the classical 4th order elasticity tensor acting on the symmetric
strain sym∇u, Cc : so(3)→ so(3) is a 4th order tensor acting on the 2nd order skew-symmetric
strain skew(∇u − A) and L : R3×3 → R3×3 is a 4th order constitutive tensor acting on the 2nd

order tensor ∇ axlA.
Although a wide set of materials seem to fit the hypothesis that the mircrostructure can only

rotate, it is still difficult to fit additional parameters in a reliable manner ([68]).

3Here we have assumed just a decoupled format of the energy. Mixed terms of strain and curvature have been
discarded by assuming centro-symmetry.
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Chapter 3

The relaxed micromorphic model

The relaxed micromorphic model, introduced and described in [9, 42, 77, 78, 79], is an
enriched continuum model. It differs from the Mindlin-Eringen representation in that it is
endowed with more geometric structure (by introducing the sym/skew decomposition of the
chosen deformation measures). In order to formally derive the governing equations for the model,
we introduce a strain and a kinetic energy density. Following standard variational techniques,
we demonstrate in this chapter how we can derive both the bulk governing equations as well as
the boundary conditions for the relaxed micromorphic model but also of the classical Cauchy
model. This is achieved by setting the first variation of the action functional to be equal to zero.

The relaxed micromorphic model is not obtained via a direct upscaling approach based, for
example, on classical or numerical dynamical homogenization [26, 90, 103]. The theoretical
framework is set up directly at the macroscopic scale and the homogenized behavior can be
mapped back onto specific metamaterials’ microstructures via an inverse fitting procedure of
the dispersion curves, e.g. on Bloch-Floquet diagrams. If it cannot be expected that the relaxed
micromorphic model reproduces point by point the dispersive behavior of real metamaterials, it
can, to a very good extent, qualitatively and quantitatively reproduce the averaged properties of
such materials, including the metamaterial’s dispersion, band-gap and macroscopic scattering.

Previous studies have provided the foundation of the theoretical basis for the definition
of isotropic and anisotropic relaxed micromorphic media, including well-posedness results [42,
77, 78, 83]. They have also explored the bulk behavior of such media, starting a comparison
with real metamaterials [58, 59, 64] and have attempted some academic studies of 1D refractive
problems at relaxed micromorphic interfaces [58, 65]. In this thesis, for the first time, we propose
a complete 2D framework for the study of the refractive properties of relaxed micromorphic
interfaces. Potentially, this provides powerful tools for advancing towards the validation of the
model on real metastructures, where it is certain that the scattering properties do not only
depend on the frequency, but also on the angle of incidence. Although we could target specific
microstructures (as we will do, for example in chapters 5 and 6), the true efficacy of the model
lies in its ability of providing boundary conditions (continuity of macroscopic displacement and
of “generalized” tractions), which are pertinent at the macroscopic scale.

The rigorous development of the relaxed micromorphic model for anisotropic metamaterials
has been given in [29], where applications to different classes of symmetry and the particular
case of tetragonal periodic metamaterials are also discussed. In the latter paper, a procedure
to univocally determine some of the material parameters for periodic metamaterials with static
tests is also provided.

None of the other generalized continuum models (as second gradient models or Mindlin-
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3.1. Energy formulation of the relaxed micromorphic model

Eringen model) have been able to well describe band-gaps in metamaterials to the same extent
as the relaxed micromorphic model ([60, 62]). Indeed, second gradient models cannot grasp
complex dispersion due to their simplified kinematics, allowing only acoustic branches to be
accounted for. On the other hand, the Mindlin-Eringen model, although it considers an appro-
priate kinematical framework, relies on a large number of constitutive parameters, thus making
any physical interpretation very tricky. Due to its simplified constitutive relations for the strain
energy density, the relaxed micromorphic model allows to account for the main overall dispersion
properties of band-gap metastructures, via a relatively contained number of elastic parameters.
Such parameters simplification relies on the “sym-skew-trace” orthogonal decomposition adopted
for the micro and macro deformation measures of the relaxed micromorphic model.

3.1 Energy formulation of the relaxed micromorphic model

We begin with the most general case possible, which is the fully anisotropic case but we do not
assume any specific symmetry class or under any other assumption, as will be done in the latter
chapters of this thesis, in order to make our results as general as possible.1

Let Ω be an open bounded domain in R3 with piecewise smooth boundary ∂Ω and closure Ω
and [0, T ] ⊂ R the time interval. Furthermore, we set Ω0 = Ω × {0}. The kinematical fields of
the relaxed micromorphic model are the macro-displacement u and the micro-distortion tensor
P , where:

u : Ω× [0, T ]→ R3, P : Ω× [0, T ]→ R3×3. (3.1)

We now need an appropriate space of functions, the so-called space of configurations, in order
to perform the variation of the action functional. This space is given by:

Q :=
{

(u, P ) ∈ C1
(
Ω× [0, T ],R3

)
× C1

(
Ω× [0, T ],R3×3

)
: (u, P ) verify (C1) and (C2)

}
, (3.2)

where,

• (C1) is the following set of boundary conditions to our problem:

u(x, t) = φ(x, t)

Pi(x, t)× ν = pi(x, t)

 on ∂Ω× [0, T ], (3.3)

where i = 1, 2, 3, ν is the unit normal vector to ∂Ω × [0, T ] and Pi are the rows of P .
Finally, φ and pi are prescribed functions.

• (C2) is the following set of initial conditions:

u|Ω0 = u0, u,t|Ω0 = u0

P |Ω0 = P0, P,t|Ω0 = P 0

 in Ω0, (3.4)

where u0(x), u0(x), P0(x), P 0(x) are prescribed functions.

We remark here that the boundary condition Pi(x, t) × ν = 0, i = 1, 2, 3 is equivalent to
Pi(x, t) · n = 0, i = 1, 2, 3 for all tangential vectors n on ∂Ω. This is due to the fact that the
problem is posed for P ∈ H(Curl; Ω) and so the variational setting allows only to prescribe
tangential boundary condition, see [78] for more details.

1In the forthcoming chapters, we will mainly work in the tetragonal symmetry case and under the plane-strain
assumption.
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3.1.1 Strain energy density

The strain energy for an anisotropic relaxed micromorphic medium is given by [3, 4, 29]:

W (∇u, P,CurlP ) =
1

2
〈Ce sym(∇u− P ), sym(∇u− P )〉︸ ︷︷ ︸

anisotropic elastic-energy

+
1

2
〈Cmicro symP, symP 〉︸ ︷︷ ︸

micro-self-energy

+
1

2
〈Cc skew(∇u− P ), skew(∇u− P )〉︸ ︷︷ ︸
local anisotropic rotational elastic coupling

+
L2
c

2
(〈Le sym CurlP, sym CurlP 〉+ 〈Lc skew CurlP, skew CurlP 〉)︸ ︷︷ ︸

curvature

.

(3.5)

Here, Ce,Cmicro : Sym(3) → Sym(3) are classical 4th order elasticity tensors, with at most 21
independent components, acting on symmetric second order tensors only. This is seen by the fact
that Ce acts on the symmetric elastic strain εe := sym(∇u−P ) and Cmicro acts on the symmetric
micro-strain symP and both map to symmetric tensors. The tensor Cc : so(3) → so(3) is a
4th order tensor, with 6 independent components, acting only on skew-symmetric tensors and
this action gives skew-symmetric tensors. Finally, Le : Sym(3)→ Sym(3) is a classical, positive-
definite tensor with at most 21 independent parameters acting on the symmetric part of the
curvature sym CurlP , and Lc : so(3) → so(3) is a positive definite tensor with at most 6
independent components acting on the skew-symmetric part of the curvature.

The relaxed micromorphic curvature can be written as

CurlP = −Curl(∇u− P ), (3.6)

since Curl is gauge-invariant (the curl of the divergence of a vector field is always zero), see [77].
Furthermore, CurlP supports a completely invariant setting, as seen in [75, 76]. The algebraic
advantage of using the curl of P (instead of the gradient) in the strain energy density is that
the Curl operator acting on a second order tensor is again a second order tensor and so, we no
longer need Mindlin-Eringen’s 6th order tensors but a 4th order tensor, which acts on CurlP .
This is crucial, because the anisotropy classification of such tensors is easier and well-known
[18].

This constitutive expression for the strain energy density of the relaxed micromorphic model
is the most general one we can provide in the anisotropic and centrosymmetric setting. Counting
coefficients, we see that this representation has maximally 75 (21 + 21 + 6 + 21 + 6) independent
coefficients. This number is reduced according to the symmetry class and state of the system
(plane-strain/stress) one considers. For example, in the tetragonal symmetry case with the
plane-strain assumption, this number reduces to 11 (3 + 3 + 1 + 3 + 1) independent coefficients
(see chapters 5 and 6).

An important feature which we must point out is that the relaxed micromorphic model can
be used with Cc positive semi-definite or even zero. On the other hand, we assume that the
constitutive tensors Ce and Cmicro are strictly positive definite. Furthermore, the tensors Le and
Lc are positive definite and the characteristic length Lc is non-negative. Positive definiteness
means that:
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3.1. Energy formulation of the relaxed micromorphic model

∃c+
e > 0 : ∀S ∈ Sym(3) : 〈CeS, S〉R3×3 ≥ c+

e ||S||2R3×3 ,

∃c+
m > 0 : ∀S ∈ Sym(3) : 〈CmicroS, S〉R3×3 ≥ c+

m||S||2R3×3 ,

∃c+
l > 0 : ∀S ∈ R3×3 : 〈LeS, S〉R3×3 ≥ c+

l ||S||
2
R3×3 .

(3.7)

As for the tensors Cc and Lc acting only on skew-symmetric second order tensors, we require
them to be only positive semi-definite, i.e:

∀A ∈ so(3) : 〈CcA,A〉R3×3 ≥ 0,

∀A ∈ so(3) : 〈LcA,A〉R3×3 ≥ 0. (3.8)

The above definition implies that the rotational coupling tensor Cc could vanish, in which case
the relaxed micromorphic model is rendered non-redundant [88]. This means that, although Cc
could be identically equal to zero, the skew-symmetric part of P is not controlled locally but as
a result of a boundary value problem and boundary conditions. In this sense, allowing Cc ≡ 0
is one of the decisive possibilities offered by the relaxed micromorphic model.

The isotropic case

In the case of isotropy, the strain energy (3.5) simplifies to [2, 3, 58, 62, 63, 64, 78, 79]

W = µe ‖sym(∇u− P )‖2 +
λe
2

(tr(∇u− P ))2︸ ︷︷ ︸
isotropic elastic-energy

+µc ‖skew(∇u− P )‖2︸ ︷︷ ︸
invariant local isotropic

rotational elastic coupling

+ µmicro ‖symP‖2 +
λmicro

2
(trP )2︸ ︷︷ ︸

micro-self-energy

+
µeL

2
c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

. (3.9)

Strict positive definiteness of the strain energy in the isotropic case implies the following
simple relations for the introduced parameters ([78])

µe > 0, 2µe + 3λe > 0, µmicro > 0, 2µmicro + 3λmicro > 0, µc ≥ 0, Lc ≥ 0. (3.10)

Observe here that µc can be equal to zero, which is the equivalent to Cc ≡ 0 in the anisotropic
case.

Finally, we must remark that in the isotropic case, the relaxed micromorphic model admits
linear elasticity as an upper energetic limit for any characteristic length scale Lc > 0 (see [9, 29]).

3.1.2 Kinetic energy density

The kinetic energy of the fully anisotropic relaxed micromorphic model is given by [4, 29]:

J(u,t,∇u,t, P,t) =
1

2
ρ ‖u,t‖2 +

1

2
〈Jmicro symP,t, symP,t〉+

1

2
〈Jc skewP,t, skewP,t〉

+
1

2
〈Te sym∇u,t, sym∇u,t〉+

1

2
〈Tc skew∇u,t, skew∇u,t〉, (3.11)

Here, Jmicro : Sym(3) → Sym(3) is the classical 4th order free micro-inertia density tensor,
Te : Sym(3) → Sym(3) is the classical 4th order gradient micro-inertia density tensor with, in
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3

general, 21 independent components each, Jc,Tc : so(3) → so(3) are 4th order coupling tensors
with 6 independent components and ρ : Ω→ R+ is the macro-inertia mass density.

As for the positive definiteness and positive semi-definiteness of the constitutive tensors
appearing in the kinetic energy density, we have:

∃c+
j > 0 : ∀S ∈ Sym(3) : 〈JmicroS, S〉R3×3 ≥ c+

j ||S||2R3×3 ,

∃c+
t > 0 : ∀S ∈ Sym(3) : 〈TeS, S〉R3×3 ≥ c+

t ||S||2R3×3 ,
(3.12)

and

∀A ∈ so(3) : 〈JcA,A〉R3×3 ≥ 0,

∀A ∈ so(3) : 〈TcA,A〉R3×3 ≥ 0. (3.13)

The isotropic case

In the isotropic case, the equivalent expression to (3.11) is given by ([57, 60])

J =
1

2
ρ 〈u,t, u,t〉+

1

2
η1 ‖dev symP,t‖2 +

1

2
η2 ‖skewP,t‖2 +

1

6
η3 tr (P,t)

2

+
1

2
η1 ‖dev sym∇u,t‖2 +

1

2
η2 ‖skew∇u,t‖2 +

1

6
η3 tr (∇u,t)2 . (3.14)

Positive definiteness in the isotropic case implies:

ρ > 0, η1 > 0, η2 > 0, η3 > 0, η1 > 0, η2 > 0, η3 > 0 (3.15)

However, the most simplified form of the isotropic energy, which we will be considering in
chapter 4, as discussed in [2, 3, 65], is given by

J =
1

2
ρ ‖u,t‖2 +

1

2
η ‖P,t‖2 , (3.16)

where ρ > 0 is the apparent macroscopic density and η > 0 is the micro-inertia density. Com-
paring (3.16) to (3.14), we see that all the gradient micro-inertia terms vanish and that there
is no Cartan-Lie splitting of the micro-distortion tensor P . This, however, will not be a partic-
ular issue, since the isotropic example we will be considering later on in chapter 4, is a purely
“academic” experiment and not fitted on a specific real metamaterial (as done for example in
[4, 57, 59]). Therefore, the need for a better fitting of dispersion curves (something which is
achieved by introducing the gradient micro-inertia terms) will not be present when we discuss
reflection and transmission problems in isotropic media and so, we will choose the simplest
formulation possible for the kinetic energy as given by (3.16).

3.2 Variation of the action functional

Having introduced an appropriate space of configurations Q (given in (3.2)) and discussed the
energy densities from which the relaxed micromorphic model stems, we are now ready to perform
the variation of the action functional in order to derive the governing equations for the anisotropic
and isotropic relaxed micromorphic model. This procedure is known and well-understood and
for the sake of clarity we will not demonstrate each step here. The detailed computations are
presented in Appendices A1 and A2.
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3.2. Variation of the action functional

The action functional A : Q → R is the sum of the internal and external action functionals
Aint,Aext : Q → R, (recall equation (3.2)) defined by

Aint[(u, P )] :=

∫ T

0

∫
Ω
L(u,t,∇u,t, P,t,∇u, P,CurlP )dx dt, (3.17)

Aext[(u, P )] :=

∫ T

0

∫
Ω
〈bext, u〉+ 〈M ext, P 〉dx dt, (3.18)

where L is the Lagrangian density of the system and bext and M ext are the external body force
and body double force (or, momentum), respectively. We assume throughout this computation
that no external action affects the system, so we set f ext = M ext = 0. The derivatives appearing
in (3.17) and (3.18) are to be understood in the sense of distributions.

The Lagrangian energy density is the standard split of kinetic minus strain energy, i.e.:

L(u,t,∇u,t, P,t,∇u, P,CurlP ) = J(u,t,∇u,t, P,t)−W (∇u, P,CurlP ). (3.19)

We are looking for stationary points of the action functional A = Aint + Aext = Aint, since we
assume no external forces. To that end, we have to calculate its first variation δA and solve:

δA =

∫ T

0

∫
Ω

J(u,t,∇u,t, P,t)−W (∇u, P,CurlP ) dx dt = 0. (3.20)

In the following, we show how to solve this problem by considering the variations of the
strain and kinetic energies separately.

Variation of the strain energy

We begin with the variation of the strain energy. Using expression (3.5), we have:

δ

∫ T

0

∫
Ω

W (∇u, P,CurlP )dx dt = δ

∫ T

0

∫
Ω

1

2
〈Ce sym(∇u− P ), sym(∇u− P )〉 dx dt

+ δ

∫ T

0

∫
Ω

1

2
〈Cmicro symP, symP 〉 dx dt

+ δ

∫ T

0

∫
Ω

1

2
〈Cc skew(∇u− P ), skew(∇u− P )〉 dx dt (3.21)

+ δ

∫ T

0

∫
Ω

L2
c

2
〈Le sym CurlP, sym CurlP 〉 dx dt

+ δ

∫ T

0

∫
Ω

〈Lc skew CurlP, skew CurlP 〉 dx dt.

To compute these integrals, we apply integration by parts and make use of the symmetry of the
constitutive tensors which appear in each term (see Appendix A1).

We can then collect the bulk and boundary terms. We find:∫ T

0

∫
Ω
−〈Div(Ce sym(∇u− P ) + Cc skew(∇u− P )), δu〉 dx dt

+

∫ T

0

∫
Ω
〈−Ce sym(∇u− P )− Cc skew(∇u− P ) + Cmicro symP (3.22)

+ L2
c Curl (Le sym CurlP + Lc skew CurlP ) , δP 〉 dx dt,
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for the bulk term and∫ T

0

∫
∂Ω
〈(Ce sym(∇u− P ) + Cc skew(∇u− P )) · ν, δu〉dSdt

+ L2
c

3∑
i=1

∫ T

0

∫
∂Ω
〈((Le sym CurlP + Lc skew CurlP )i × curl(δP )i) , ν〉 dS dt, (3.23)

for the boundary term.

Variation of the kinetic energy

As for the kinetic energy, using expression (3.11), we have:

δ

∫ T

0

∫
Ω

J(u,t,∇u,t, P,t)dx dt =δ

∫ T

0

∫
Ω

1

2
ρ ‖u,t‖2 dx dt

+ δ

∫ T

0

∫
Ω

1

2
〈Jmicro symP,t, symP,t〉 dx dt

+ δ

∫ T

0

∫
Ω

1

2
〈Jc skewP,t, skewP,t〉 dx dt (3.24)

+ δ

∫ T

0

∫
Ω

1

2
〈Te sym∇u,t, sym∇u,t〉 dx dt

+ δ

∫ T

0

∫
Ω

1

2
〈Tc skew∇u,t, skew∇u,t〉 dx dt.

These integrals are computed again by applying integration by parts and using the symmetries
of the constitutive tensors. The detailed computations are shown in Appendix A2.

Once again we collect the bulk and boundary terms which result from the first variation of
the action functional. The bulk term is:∫ T

0

∫
Ω

〈−ρ u,tt+Div(Te sym∇u,tt+Tc skew∇u,tt), δu〉−〈Jmicro symP,tt+Jc skewP,tt, δP 〉 dx dt, (3.25)

while the boundary term is given by:∫ T

0

∫
∂Ω
〈(Te sym∇u,tt + Tc skew∇u,tt) · ν, δu〉 dS dt. (3.26)

A remark on the boundary terms

In the above procedure, we did not consider any external boundary terms. Indeed, the external
action was assumed to occur only by body forces (such as gravity). We can, of course, add
external tractions to our variational problem if we wish. This would result to the boundary
terms being equal to a known given function instead of zero. In that case, the external action
would take to form

Aext[(u, P )] :=

∫ T

0

∫
Ω
〈bext, u〉+ 〈M ext, P 〉dx dt+

∫ T

0

∫
∂Ω
〈text, u〉+ 〈τ ext, P 〉dS dt, (3.27)

where, as before, bext and M ext are the external body force and body double force, respectively
and text and τ ext are external tractions assigned on the boundary of the domain.
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3.2. Variation of the action functional

3.2.1 The governing equations of the anisotropic relaxed micromorphic model

We are now ready to write down the bulk governing equations of the anisotropic relaxed micro-
morphic model. This is done by imposing the first variation of the action functional to vanish,
i.e. δA = 0. This is now known and given as the sum of expressions (3.22) and (3.25). Since all
these calculations were done for an arbitrary closed bounded domain Ω and for an arbitrary time
T , we can drop the integrals and equate the terms which are coupled with the same variation
(δu or δP ). Finally, we are left with the following system of governing equations (presented here
in the sym− skew split):

ρ utt −Div σ̂,tt = Div σ̃,

Jmicro symP,tt = σ̃e − s− sym Curlm,

Jc skewP,tt = σ̃c − skew Curlm,

(3.28)

where we set

σ̃e = Ce sym(∇u− P ), σ̃c = Cc skew(∇u− P ), σ̃ = σ̃e + σ̃c, σ̂ = Te sym∇u+ Tc skew∇u,
s = Cmicro symP, m := L2

c (Le sym CurlP + Lc skew CurlP ). (3.29)

In the case where we impose some external action (see (3.27)), the boundary conditions
which accompany these bulk equations are

f := (σ̃ + σ̂) · ν = text(x, t), or u = φ(x, t), ∀x ∈ ∂Ω0, (3.30)

τ · ni := −m · ε · ν = τ ext(x, t), or P · ni = pi(x, t), i = 2, 3, ∀x ∈ ∂Ω0, (3.31)

where ε is the Levi-Civita permutation symbol, ν is the normal to the boundary and n1 and n2

are orthogonal vectors tangent to the boundary ∂Ω0 (a contour where the external perturbation
is applied). We will discuss the boundary conditions (3.30) and (3.31) in greater detail in the
following chapters.

3.2.2 The isotropic governing equations

In the case of isotropy, we take the same steps, but we change the energy: instead of (3.5) we
consider expression (3.9) for the strain energy and instead of (3.11) we consider (3.14) for the
kinetic energy. The same considerations apply and the variation of the (new) action functional is
done in a virtually identical way. For the sake of clarity and coherence, we skip the calculations
for the case of isotropy and simply write down the resulting governing equations. These are: ρ utt −Div σ̂,tt = Div σ̃

Ĩ,tt = σ̃ − s− Curlm
, (3.32)

where,

σ̂ = η1 dev sym∇u+ η2 skew∇u+
η3

3
tr (∇u)

σ̃ = 2µe sym(∇u− P ) + 2µc skew(∇u− P ) + λe tr (∇u− P )1,

Ĩ = η1 dev symP + η2 skewP +
η3

3
tr(P )1 (3.33)

s = 2µmicro symP + λmicro tr(P )1

m = µeL
2
c CurlP.
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3

As noted in section 3.1.2, we will be considering an even simpler kinetic energy for the
isotropic case without the split on P and the micro-gradient inertia terms, which is given by
(3.16). For this energy and again following the same steps in order to impose the first variation
of the action functional to vanish, the governing equations are given by:

 ρ utt = Div σ̃

η Ptt = σ̃ − s− Curlm,
(3.34)

where,

σ̃ = 2µe sym(∇u− P ) + λe tr(∇u− P )1 + 2µc skew(∇u− P ),

s = 2µmicro symP + λmicro (trP ) 1, (3.35)

m = µeL
2
c CurlP.

3.3 Variation of the action functional and the governing equations of the
classical Cauchy model

In this section we will present how to derive the classical Cauchy model from the strain and
kinetic energies (2.1) and (2.2) by following the recipe presented in section 3.2. This is a simpler
calculation and easier to follow than the case of the relaxed micromorphic model and is therefore
presented in full detail. Once again, the main tool in the following computations is integration
by parts.

We begin with the variation of the strain energy density (2.1). We have

δ

∫ T

0

∫
Ω
W (∇u)dx dt = δ

∫ T

0

∫
Ω

1

2
〈CM sym(∇u), sym(∇u)〉dx dt

(symmetry of CM) =

∫ T

0

∫
Ω
〈CM sym∇u,∇δu〉dx dt

=

∫ T

0

∫
Ω

div (CM sym∇u · δu) dx dt−
∫ T

0

∫
Ω
〈Div(CM sym∇u), δu〉dx dt

=

∫ T

0

∫
∂Ω
〈CM sym∇u · ν, δu〉dx dt−

∫ T

0

∫
Ω
〈Div(CM∇u), δu〉dx dt.

(3.36)

The bulk term is given by ∫ T

0

∫
Ω
〈Div(CM∇u), δu〉dx dt, (3.37)

while the boundary term by

∫ T

0

∫
∂Ω
〈CM sym∇u · ν, δu〉dx dt (3.38)
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3.4. The constitutive tensors in the Mandel-Voigt notation

As for the variation of the kinetic energy density (2.2), we have:

δ

∫ T

0

∫
Ω
J(u,t)dx dt =

1

2
δ

∫ T

0

∫
Ω
ρ ‖u,t‖2 dx dt

= ρ

∫ T

0

∫
Ω
〈u,t, δu,t〉dx dt

= ρ

∫ T

0

∫
Ω

d

dt
〈u,t, δu〉dx dt− ρ

∫ T

0

∫
Ω
〈u,tt, δu〉dx dt

= ρ

∫ T

0

d

dt

(∫
Ω
〈u,t, δu〉dx

)
dt− ρ

∫ T

0

∫
Ω
〈u,tt, δu〉dx dt

= ρ

∫
0×{T}

〈u,t(x, T ), δu(x, T )〉dx− ρ
∫

Ω×{0}
〈u,t(x, 0), δu(x, 0)〉dx

− ρ
∫ T

0

∫
Ω
〈u,tt, δu〉dx dt. (3.39)

The bulk term from the variation of the kinetic energy is given by

ρ

∫ T

0

∫
Ω
〈u,tt, δu〉dx dt. (3.40)

The bulk terms (3.37) and (3.40) give the governing equations:

ρ u,tt = Div(CM sym∇u), in Ω, (3.41)

while the (spatial) boundary term (3.38) gives the expression for the traction:

f := (CM sym∇u) · ν, on ∂Ω, (3.42)

where, once again, we can assign it to a prescribed function or set it equal to zero.

3.4 The constitutive tensors in the Mandel-Voigt notation

We will now consider an equivalent formulation of the relaxed micromorphic model, which is
obtained by using the Mandel-Voigt vector notation for the macro-strain sym∇u as well as for
the micro-strain symP .

The idea is to replace these second order tensors with appropriate vectors, whose components
are the column-wise sorted components of the tensors (a sorting which is done arbitrarily). In
a similar fashion, the fourth-order constitutive tensors will be assigned to corresponding second
order tensors. This representation is more suitable and easier to handle if one wants to specify
the anisotropy classes of the constitutive tensors in a format easily found in the literature. This
method was first put forth by Mandel [66] and Voigt [100, 101], hence the name. We mainly
follow [9] in the following.

Consider the linear mapping Mαij : Sym(3) → R6, which isomorphically maps the inde-
pendent components of (sym∇u)ij and (sym∇u)ij to corresponding vectors εα and βα in the
following way:

εα = Mαij(sym∇u)ij , (3.43)

and
βα = Mαij(symP )ij . (3.44)
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Here, Latin subscripts can take the values {1, 2, 3} while Greek subscripts range in {1, 2, 3, 4, 5, 6}.
We then have:

ε =



(sym∇u)11

(sym∇u)22

(sym∇u)33

c (sym∇u)23

c (sym∇u)13

c (sym∇u)12


, β =



(symP )11

(symP )22

(symP )33

c (symP )23

c (symP )13

c (symP )12


, (3.45)

where the coefficient c is either 2 (for Voigt [100, 101]) or
√

2 (for Mandel [66]). Equation (3.45)
defines the mapping M. The components of this mapping can be represented as 3× 3 matrices.
We fix the index α and we have:

M1ij =


1 0 0

0 0 0

0 0 0

 , M2ij =


0 0 0

0 1 0

0 0 0

 , M3ij =


0 0 0

0 0 0

0 0 1



M4ij =


0 0 0

0 0 c
2

0 c
2 0

 , M5ij =


0 0 c

2

0 0 0

c
2 0 0

 , M6ij =


0 c

2 0

c
2 0 0

0 0 0


(3.46)

The inverse mapping M−1
ijα : R6 → Sym(3) is defined as:

(sym∇u)ij = M−1
ijα εα, (symP )ij = M−1

ijα βα. (3.47)

Furthermore, we require that

Mγij M
−1
ijγ = δ̃αγ , (3.48)

where δ̃ is the Kronecker delta in R6 × R6. The components of this inverse mapping are given
by:

Mij1 =


1 0 0

0 0 0

0 0 0

 , M−1
ij2 =


0 0 0

0 1 0

0 0 0

 , M−1
ij3 =


0 0 0

0 0 0

0 0 1



M−1
ij4 =


0 0 0

0 0 1
c

0 1
c 0

 , M−1
ij5 =


0 0 1

c

0 0 0

1
c 0 0

 , M−1
ij6 =


0 1

c 0

1
c 0 0

0 0 0


(3.49)
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3.4. The constitutive tensors in the Mandel-Voigt notation

The mapping M has zeros everywhere, except in the {111, 222, 333, 423, 513, 612} compo-
nents. We can express it compactly as (see [9] for a proof):

Mαij = δ̃α1δi1δj1 + δ̃α2δi2δj2 + δ̃α3δi3δj3 +
c

2

(
δ̃α4(δi2δj3 + δi3δj2) + δ̃α5(δi1δj3 + δi3δj1)

)
(3.50)

+
c

2
δ̃α6 (δi1δj2 + δi2δj1)

In the same fashion, we have for the inverse mapping M−1:

M−1
ijα = δ̃α1δi1δj1 + δ̃α2δi2δj2 + δ̃α3δi3δj3 +

1

c

(
δ̃α4(δi2δj3 + δi3δj2) + δ̃α5(δi1δj3 + δi3δj1)

)
(3.51)

+
1

c
δ̃α6 (δi1δj2 + δi2δj1).

The anisotropic strain energy of the relaxed micromorphic model (3.5) can be written in
index notation as:

W =
1

2
(Ce)ijkl(sym(∇u− P ))ij(sym(∇u− P ))kl +

1

2
(Cc)ijkl(skew(∇u− P ))ij(skew(∇u− P ))kl

+
1

2
(Cm)ijkl(symP )ij(symP )kl +

µeL
2
c

2
(Pia,bεjab) (Pic,dεjcd) . (3.52)

The symmetric term in ∇u− P is:

1

2
(Ce)ijkl(sym(∇u− P ))ij(sym(∇u− P ))kl. (3.53)

We can now express this in terms of ε− β as:

1

2

(
C̃e
)
αγ

(εα − βα)(εγ − βγ) =
1

2

(
C̃e
)
αγ

Mαij(sym(∇u− P ))ijMγkl(sym(∇u− P ))kl, (3.54)

where C̃e : R6 → R6 is a general second order symmetric tensor on R6×6 (matrix) with at most
21 independent components. It is the Mandel-Voigt equivalent to Ce and we can now define it
using the mapping M. Comparing (3.54) to the corresponding part of (3.52), we find:

(Ce)ijkl = Mαij

(
C̃e
)
αγ

Mγkl, (Ce)−1
ijkl = M−1

ijα

(
C̃e
)−1

αγ
M−1

klγ . (3.55)

The second equation in (3.55) is proven in [9].

The converse relations to (3.55) are given by:

(
C̃e
)
αγ

= M−1
ijα (Ce)ijklM

−1
klγ ,

(
C̃e
)−1

αγ
= Mαij (Ce)−1

ijklMγkl. (3.56)

Following the same procedure we can obtain analogous equations for all the remaining sym-
metric constitutive tensors appearing in the energies (3.5) and (3.11). We have, thus found a
way to formally represent fourth order symmetric tensors as second order symmetric tensors and
conversely.
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Using (3.56) and (3.51), we see that the second order tensor C̃e can now be written with
respect to the fourth-order tensor Ce, as:

C̃e =



(Ce)1111 (Ce)1122 (Ce)1133
2
c (Ce)1123

2
c (Ce)1113

2
c (Ce)1112

(Ce)2211 (Ce)2222 (Ce)2233
2
c (Ce)2223

2
c (Ce)2213

2
c (Ce)2212

(Ce)3311 (Ce)3322 (Ce)3333
2
c (Ce)3323

2
c (Ce)3313

2
c (Ce)3312

2
c (Ce)2311

2
c (Ce)2322

2
c (Ce)2333

4
c2

(Ce)2323
4
c2

(Ce)2313
4
c2

(Ce)2312

2
c (Ce)1311

2
c (Ce)1322

2
c (Ce)1333

4
c2

(Ce)1323
4
c2

(Ce)1313
4
c2

(Ce)1312

2
c (Ce)1211

2
c (Ce)1222

2
c (Ce)1233

4
c2

(Ce)1223
4
c2

(Ce)1213
4
c2

(Ce)1212


, (3.57)

which is a symmetric 6 × 6 matrix. This last fact is due to the symmetry of Ce, according to
which (Ce)ijkl = (Ce)klij .

We now must find a way to suitably represent fourth order skew-symmetric tensors as second
order tensors. This is done via the the axl mapping. Given a skew-symmetric matrix A ∈ so(3)

A =


0 A12 A13

−A12 0 A23

−A13 −A23 0

 , (3.58)

we define:

axl(A) =
(
−A23, A13,−A12

)T
,
[
axl(A)

]
k

= −1

2
εijkAij =

1

2
εkijAji. (3.59)

We can then always represent a fourth order tensor Cc : so(3) → so(3) acting on skew-
symmetric matrices by its version acting only on axial vectors [9]. We have:

〈Cc skew(X), skew(X)〉R3×3 = 〈C̃c axl(skew(X)), axl(skew(X))〉R3 , (3.60)

where C̃c : R3 → R3 is a symmetric second order tensor. Therefore, C̃c has only 6 independent
components and so does Cc. Finally, given a second order tensor X, we have:

‖skew(X)‖2R3×3 = 2 ‖axl(skew(X))‖2R3 . (3.61)

3.4.1 Invariance conditions

In this section we will discuss how this reduced formulation provided by the Mandel-Voigt
representation is able to be treated in an invariant setting.

Let G be the symmetry group of the material and Q ∈ G a coordinate transformation. The
application of this transform (which generates the so-called Rayleigh action [5]) to the macro-
displacement u and the micro-distortion tensor P ([9]) is:

x = QT · ξ, P#(ξ) := Q ·
[
P
(
QT · ξ

)]
·QT,

u#(ξ) := Q · u(QT · ξ), ∇ξu#(ξ) = Q · ∇xu(QT · ξ) ·QT.
(3.62)
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3.4. The constitutive tensors in the Mandel-Voigt notation

This means that we require that P transforms as ∇u under simultaneous rotations of the
reference and spatial configurations. Using this definition, it can be shown ([75]) that:

Curlξ P
#(ξ) = Q ·

[
Curlx P

(
QT · ξ

)]
·QT. (3.63)

In [75], the authors explain in detail that possessing a material symmetry is equivalent to re-
quiring that, under the transformation (3.62) with any Q ∈ G−symmetry group of the material,
both the strain and the kinetic energy density are form-invariant. This means that we require
([9]):

W
(
∇ξu#(ξ), P#(ξ),Curlξ P

#(ξ)
)

= W (∇xu(x).P (x),Curlx P (x)) , (3.64)

J
(
u#(ξ),∇ξu#(ξ), P

)
= J (u(x),∇xu(x), P (x)) .

This is equivalent to saying that, for every Q ∈ G − symmetry group of the material, we have
[9]:

W (∇u, P,CurlP ) = W
(
Q · ∇u ·QT, Q · P ·QT, Q · (CurlP ) ·QT

)
, (3.65)

J (u,∇u, P ) = J
(
Q · u,Q · ∇u ·QT, Q · P ·QT

)
.

This invariance condition is dependent on the set G, which contains the transformation
matrix Q. Depending on the symmetry properties of this group we can define different material
classes [9, 29].2

3.4.2 Tetragonal symmetry and isotropy

In this thesis we will be considering two cases of material symmetries: tetragonal symmetry
and isotropy. For this reason, we will see how the symmetric and skew-symmetric constitutive
tensors can be considered in this section. From now on, we denote by Ẽ a symmetric tensor and
by K̃ a skew-symmetric tensor (both in Mandel-Voigt notation). So, the constitutive tensors
C̃e, C̃micro, L̃e, J̃micro, T̃e acting on vectors in R6 (and are equivalent to symmetric matrices) must
have the form of Ẽ, while the skew-symmetric tensors C̃c, L̃c, T̃c which act on vectors in R3 (and
are equivalent to skew-symmetric matrices) must have the form of K̃.

Tetragonal symmetry

The tetragonal crystal lattice has a unit cell shaped like a rectangular prism with a square
basis. Thus, the material symmetry has three mutually orthogonal planes of reflection, plus 90◦

rotation symmetry with respect to one of those planes. This means that a rotation of the unit
cell through an angle of 90◦ brings the atoms in their initial position. The constitutive tensors
in this case have the following structure:

Ẽtetr =



2µe + λe λe λ∗e 0 0 0

2µe + λe λ∗e 0 0 0

ve 0 0 0

µ∗e 0 0

sym µ∗e 0

µ∗∗e


, K̃tetr =

1

2


µ∗c 0 0

0 µ∗c 0

0 0 µc

 , (3.66)

2For example, the case of full anisotropy corresponds to G = {−1,1}, while the case of isotropy to G = SO(3).
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where µe, λe, λ
∗
e, µ
∗
e, ve, , µ

∗∗
e , µ

∗
c , µe are the 6 + 2 independent coefficients of the tetragonal sym-

metry case.

Isotropy

Isotropy means that the properties of the crystal lattice are completely independent of the
direction. If we want to visualize the unit cell in this case, one could imagine a sphere. The
constitutive tensors in this case are given by:

Ẽiso =



2µe + λe λe λe 0 0 0

2µe + λe λe 0 0 0

2µe + λe 0 0 0

µe 0 0

sym µe 0

µe


, K̃iso =

µc
2
1, (3.67)

3.5 Conservation of energy and energy flux for the relaxed micromorphic
model

In this section we will discuss energy conservation and derive the expression for the energy flux
for the relaxed micromorphic model, much as we did for the classical Cauchy model in chapter
2.2. We will demonstrate here how to compute the expression for the energy flux in the case
of isotropy, which is the main focus of chapter 4. The detailed computation for the case of
anisotropy, which is the point of interest of chapter 6 is merely stated here and presented in full
detail in Appendix A3.1.

Energy conservation is once again given by equation (2.10):

E,t + divH = 0,

where E = J +W is the total energy of the system and H is the generalized energy flux vector.
We remark here that the kinetic energy density is given by expression (3.16) and not by the
more general (3.14).

In order to derive the expression for the flux, we first need to recall some facts from differential
calculus.

Let ψ be a vector field and A a second order tensor field. Then

〈∇ψ,A〉 = Div(ψ ·A)− 〈ψ,DivA〉. (3.68)

Taking ψ = u,t and A = σ̃ we have

〈∇u,t, σ̃〉 = Div(u,t · σ̃)− 〈u,t,Div σ̃〉 . (3.69)

Furthermore, we have the following identity:

〈m,CurlP,t〉 = Div
(
(mT · P,t) : ε

)
+ 〈Curlm,P,t〉 , (3.70)

which follows from the identity div(v×w) = w · curl v− v · curlw, where v, w are suitable vector
fields, × is the usual vector product and : is the double contraction between tensors. Finally,

27

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI073/these.pdf 
© [A. Aivaliotis], [2019], INSA Lyon, tous droits réservés



3.6. An equivalent macroscopic Cauchy model

we recall that given a symmetric tensor S, a skew-symmetric tensor A and a generic tensor C,
we have

〈S,C〉 = 〈S, symC〉 , and 〈A,C〉 = 〈A, skewC〉 . (3.71)

We can now derive the energy flux of an isotropic relaxed micromorphic medium with no
gradient micro-inertia. Differentiating equations (3.9) and (3.16) with respect to time, we have:

E,t = ρ 〈u,t, u,tt〉+ η 〈P,t, P,tt〉+ 〈2µe sym(∇u− P ), sym(∇u,t − P,t)〉+ 〈λe tr(∇u− P )1,∇u,t − P,t〉
+ 〈2µc skew(∇u− P ), skew(∇u,t − P,t)〉+ 〈2µmicro symP, symP,t〉+ 〈λmicro(trP )1, P,t〉
+
〈
µeL

2
c CurlP,CurlP,t

〉
, (3.72)

or equivalently, suitably collecting terms and using definitions (3.29) for σ̃, s and m and the
identities (3.71):

E,t = ρ 〈u,t, u,tt〉+ η 〈P,t, P,tt〉+ 〈2µe sym(∇u− P ) + λe tr(∇u− P ), sym(∇u,t − P,t)〉
+ 〈2µc skew(∇u− P ), skew(∇u,t − P,t)〉+ 〈2µmicro symP + λmicro(trP )1, symP,t〉
+
〈
µeL

2
c CurlP,CurlP,t

〉
= ρ 〈u,t, u,tt〉+ η 〈P,t, P,tt〉+ 〈σ̃,∇u,t〉 − 〈σ̃ − s, P,t〉+ 〈m,CurlP,t〉 . (3.73)

We can now replace ρ u,tt and η P,tt by the governing equations (3.34) and use (3.69) and (3.70)
to finally get

E,t = 〈u,t,Div σ̃〉+ 〈P,t, σ̃ − s− Curlm〉+ Div (u,t · σ̃)− 〈u,t,Div σ̃〉 − 〈σ̃ − s, P,t〉+ 〈m,CurlP,t〉
= Div(σ̃T · u,t)− 〈Curlm,P,t〉+ Div

((
mT · P,t

)
: ε
)

+ 〈Curlm,P,t〉
= Div

(
σ̃T · u,t +

(
mT · P,t

)
: ε
)
. (3.74)

Energy conservation is once again expressed by the continuity equation

E,t + divH = 0,

where E = J +W is the total energy and H the generalized energy flux vector. Thus, by com-
parison of (3.74) with the above equation, the energy flux for a relaxed micromorphic medium
is given by:

H = −σ̃T · u,t −
(
mT · P,t

)
: ε, Hk = −ui,tσ̃ik −mihPij,tεjhk. (3.75)

Finally, the energy flux for an anisotropic relaxed micromorphic continuum is given by:

H = − (σ̃ + σ̂)T · u,t −
(
mT · P,t

)
: ε, Hk = −ui,t (σ̃ik + σ̂ik)−mihPij,tεjhk. (3.76)

This expression is derived in detail in Appendix A3.1.

3.6 An equivalent macroscopic Cauchy model

When considering wavelengths which are larger than the typical microstructure size, the in-
fluence of the microstructure itself becomes minimal and the relaxed micromorphic model is
equivalent to a classical Cauchy continuum with elastic stiffness tensor Cmacro (see [9, 29]). A
clear identification of the equivalent macroscopic fourth order tensor Cmacro via the constitutive
tensors Cmicro and Ce can also be derived as a harmonic tensor mean, i.e.

Cmacro := Cmicro (Cmicro + Ce)−1 Ce . (3.77)
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The homogenization formula (3.77) can be used to characterize the material with classical ex-
perimental (or numerical) procedures and to obtain a useful relation between the parameters of
the relaxed micromorphic model and those of the equivalent Cauchy continuum which can be
considered representative of the dynamic response of the metastructure at low frequencies. The
equations of motion for the macroscopic Cauchy model are the ones of classical elasticity with
constitutive tensor Cmacro:

ρ u,tt = Div [Cmacro sym∇u] ∀x ∈ Ω, (3.78)

f : = (Cmacro sym∇u) · ν = text(x, t) or u = ϕ(x, t), ∀x ∈ ∂Ω0,

where ν is, as usual, the normal to the boundary of the domain Ω occupied by the solid.
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Chapter 4

Low-and high-frequency Stoneley waves, reflection and
transmission at a Cauchy/relaxed micromorphic interface

We begin the main part of this thesis with this chapter, which mainly focuses on the study of
reflection and transmission problems on an interface separating a classical homogeneous medium
and a mechanical metamaterial described by the relaxed micromorphic model. Here, both media
under consideration (the classical Cauchy and the relaxed micromorphic) are assumed to be
isotropic. We assume that the kinetic energy density of the relaxed micromorphic medium is
given by (3.16) and, therefore, the continuum is governed by equations (3.34), which we restate
here for clarity:  ρ utt = Div σ̃

η Ptt = σ̃ − s− Curlm,

where,

σ̃ = 2µe sym(∇u− P ) + λe tr(∇u− P )1 + 2µc skew(∇u− P ),

s = 2µmicro symP + λmicro (trP ) 1,

m = µeL
2
c CurlP.

In this chapter, we model the reflective and diffractive properties of an interface which sep-
arates a bulk homogeneous material from a bulk metamaterial. This interface does not itself
contain any internal structure, but its refractive properties can be modulated by suitably tailor-
ing the bulk properties of the two adjacent media and, in particular, their relative macroscopic
stiffness. The homogeneous material is modeled via a classical linear-elastic Cauchy model, while
the metamaterial is described by the linear relaxed micromorphic model.

Concerning the study of the metamaterial’s boundaries, the relaxed micromorphic model is a
powerful tool, which, as we saw in chapter 3, provides coherent macroscopic boundary conditions
allowing the study of realistic interface problems.

As we saw in chapter 3.6, the relaxed micromorphic model can be assumed to be an equivalent
Cauchy model for wavelengths large enough with constitutive tensor Cmacro given by (3.77). We
are able to clearly show that when the homogeneous material is “stiffer” than the considered
metamaterial (in the sense of the equivalent Cauchy model), zones of very high (sometimes
total) transmission can be found at both low and high frequencies. More precisely, we find
that high-frequency total transmission is discriminated by a critical angle, beyond which total
transmission gradually shifts towards total reflection. Engineering systems of this type could
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4.1. Boundary conditions

be fruitfully exploited for the conception of wave filters, for non-destructive evaluation or for
selective cloaking.

On the other hand, we show that when the homogeneous material is “softer” than the
metamaterial (in the sense of the equivalent Cauchy model), zones of very high (sometimes total),
broadband total reflection can be achieved for almost all frequencies and angles of incidence.
This could be of paramount importance for the conception of wave screens that are able to
isolate regions from noise and/or vibration. We are also able to show that such total reflection
phenomena are related to the onset of classical Stoneley interface waves at low frequencies
[92] and of new microstructure-related interface waves at higher frequencies. Interface waves
propagating at the interface between an elastic solid and air are called Rayleigh waves, after
Lord Rayleigh, who was the first to show their existence [87]. Interface waves propagating at
the surface between two solids are called Stoneley waves after R. Stoneley who first showed their
existence [92].

We underline again the fact that no precise microstructure is targeted in this chapter, since
the presented results can be re-adjusted for any specific metamaterial without changing the
overall results. This is due to the fact that the properties we unveil here only depend on the
“relative stiffnesses” of the considered media and not on the absolute stiffness of the metamaterial
itself.

We begin by discussing the types of boundary conditions, which have to be imposed in the
interface problems we will discuss. We will then make a digression into classical wave propagation
theory in elastic media, in order to set up notation and concepts. Following that, we will see
how we can model interface problems in this setting. We will then generalize these ideas into
generalized continua modeled via the relaxed micromorphic model, with our final goal being
to study interfaces between classical homogeneous media and metamaterials. We will finally
present results and findings.

4.1 Boundary conditions

4.1.1 Boundary conditions on an interface between two classical Cauchy media

As it is well known (see e.g. [1, 43, 65]), the boundary conditions which can be imposed at an
interface between two Cauchy media are continuity of displacement or continuity of traction.1

For the displacement, this means

[[u]] = 0⇒ u− = u+, (4.1)

where u− is the macroscopic displacement on the “minus” side (the x1 < 0 half-plane) and u+

is the macroscopic displacement on the “plus” side (the x1 > 0 half-plane).

As for the jump of traction we have

[[t]] = 0⇒ t− = t+, (4.2)

where t− and t+ are the surface traction vectors on the “minus” and on the “plus” side, respec-
tively. We recall that in a Cauchy medium, t = σ · ν, ν being the outward unit normal to the
surface and σ being the Cauchy stress tensor given by (2.5).

1It is also well known that if no surface tractions are present at the considered interface, imposing continuity
of displacement implies continuity of tractions and vice versa. Both such continuity conditions must then be
satisfied at the interface.
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4.1.2 Boundary conditions on an interface between a classical Cauchy medium and
a relaxed micromorphic medium

We will be imposing two kinds of boundary conditions between a Cauchy and a relaxed micro-
morphic medium (see [65] for a detailed discussion). The first kind is that of a free microstruc-
ture, i.e. we allow the microstructure to vibrate freely. The second kind is that of a fixed
microstructure, i.e. we do not allow any movement of the microstructure at the interface.

Again, we impose continuity of displacement, i.e.

u− = u+, (4.3)

where now the “plus” side is occupied by the relaxed micromorphic medium.2 Imposing conti-
nuity of displacement also implies continuity of traction,3 i.e.

t = t̃,

where t = σ · ν is the surface traction calculated on the Cauchy side and the traction for the
relaxed micromorphic model is given by

t̃i = σ̃ijνj , (4.4)

where ν is the outward unit normal vector to the interface and σ̃ is given in (3.29).

The least action principle provides us with another jump duality condition for the case of the
connection between a Cauchy and a relaxed micromorphic medium. This extra jump condition
specifies what we call “free microstructure” or “fixed microstructure” (see chapter 3.2.1 and
[65]).

In order to define the two types of boundary conditions we are interested in, we need the
concept of double force τ which is the dual quantity of the micro-distortion tensor P and is
defined as [65]

τ = −m · ε · ν, τij = −mikεkjhνh, (4.5)

where the involved quantities have been defined in (3.29).

Free microstructure

In this case, the macroscopic displacement is continuous while the microstructure of the relaxed
micromorphic medium is free to move at the interface ([57, 58, 65]). Leaving the interface free
to move means that P is arbitrary, which, on the other hand, implies the double force τ must
vanish. We have then

[[ui]] = 0, t̃i − ti = 0, τij = 0, i = 1, 2, 3, j = 2, 3. (4.6)

Figure 4.1 gives a schematic representation of this boundary condition.

2In the following, it will be natural to collect variables of the relaxed medium in two vectors v1 and v2, so
that the components of the displacement u+ will be denoted by u+ = (v11 , v

1
2 , v

1
1)T, see equations (4.71), (4.72).

3This fact can be deduced from the minimization of the action functional. Indeed, imposing the variation to
be zero, we find the boundary condition [[〈T, δu〉]] = 0 ⇒ t u+ − t̃ u− = 0, which implies t = t̃ since we impose
continuity of displacement.
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4.1. Boundary conditions
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Figure 4.1: Schematic representation of a macro internal clamp with free microstructure at a
Cauchy/relaxed-micromorphic interface [58, 65].

Fixed microstructure

This is the case in which we impose that the microstructure on the relaxed micromorphic side
does not vibrate at the interface. The boundary conditions in this case are (see [65])4

[[ui]] = 0, t̃i − ti = 0, Pij = 0, i = 1, 2, 3, j = 2, 3. (4.7)

Observe that in equations (4.6) and (4.7) the components tangent to the interface do not have
to be assigned when considering a relaxed micromorphic medium. This is explained in detail in
[65, 77, 78], where the peculiarities of the relaxed micromorphic model are presented. In Figure
4.2 we give a schematic representation of the realization of this boundary condition between a
homogeneous material and a metamaterial.

As we briefly mentioned in chapter 3.1 (and is explained in [77, 78] in greater detail), only
the tangent part of the double force in (4.6) or of the micro-distortion tensor in (4.7) must be
assigned. This is peculiar of the relaxed micromorphic model and is related to the fact that
only CurlP appears in the energy. In a standard Mindlin-Eringen model, where the whole
∇P appears in the energy, the whole double force τ (or alternatively the whole micro-distortion
tensor P ) must be assigned at the interface. Finally, in an internal variable model (no derivatives
of P in the energy), no conditions on P or τ must be assigned at the considered interface.

We explicitly remark (and we will show this fact in all detail in the remainder of this chapter)
that the free microstructure boundary condition of Fig. 4.1 is the only one that permits one to
obtain an equivalent Cauchy/Cauchy system when considering low frequencies. Indeed, in this
case, since the tensor P is left free, it can adjust itself in order to recover a Cauchy medium in
the homogenized limit. On the other hand, the fixed microstructure boundary condition of Fig.
4.2 imposes an artificial value on P along the interface, so that the effect of the microstructure
is present in the system. It follows that a Cauchy/Cauchy interface cannot be recovered as a
homogenized limit of the system shown in Fig. 4.2.

4Let us remark again that the first condition (continuity of displacement) implies the second one when no
surface tractions are applied at the interface. On the other hand, imposing the tangent part of P to be equal to
zero implies that the double force τ is left arbitrary.
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Figure 4.2: Schematic representation of a macro internal clamp with fixed microstructure at a
Cauchy/relaxed-micromorphic interface [58, 65].

4.2 Wave propagation, reflection and transmission at an interface between
two Cauchy media

We now want to study wave propagation, reflection and transmission at the interface between
two Cauchy media in two space dimensions. All the results of this section are well established,
but it is essential to repeat them in order to set up notation and to clearly present the conceptual
steps which must be followed in order to solve the interface problem.

When we discuss reflection and transmission, we assume that the surface of discontinuity
(the interface between the two media) from which the wave reflects and refracts is the x2 axis
(x1 = 0), see Fig. 4.3.

Medium 1 Medium 2

Figure 4.3: Generic representation of an interface separating two media at x1 = 0. The figure
also schematically represents the conventions used for incident, reflected and transmitted waves.

Incident waves propagate from −∞ in the x1 < 0 half-plane towards the interface, reflected
waves propagate from the interface towards −∞ in the x1 < 0 half-plane and refracted (or,
equivalently, transmitted) waves propagate from the interface towards +∞ in the x1 > 0 half-
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4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

plane. Remark that, since we consider 2D wave propagation, the incident wave can hit the
interface at an arbitrary angle.

As is classical, we will consider both in-plane (in the (x1x2)− plane) and out-of-plane (along
the x3 direction) motions. Nevertheless, all the considered components of the displacement,
namely u1, u2 and u3 will only depend on the x1, x2 space components (plane wave hypothesis).
We hence write

u = (u1(x1, x2, t), u2(x1, x2, t), u3(x1, x2, t))
T. (4.8)

As will be evident, depending on the type of wave (longitudinal, SV shear or SH shear)5

some components of these fields will be equal to zero.

We now make a small digression on wave propagation in classical Cauchy media. These
results are of course well known (see e.g. [1, 43]), however, we present them here in detail
following our notation, so that we can carry all the results and considerations over to the relaxed
micromorphic model as a natural extension.

4.2.1 Wave propagation in Cauchy media

We start by writing the governing equations (2.4) for the special case where the displacement
only depends on the in-plane space variables x1 and x2. Plugging u as in (4.8) into (2.4) gives
the following system of PDEs:

ρ u1,tt = (2µ+ λ)u1,11 + (µ+ λ)u2,12 + µu1,22

ρ u2,tt = (2µ+ λ)u2,22 + (µ+ λ)u1,12 + µu2,11

 (4.9)

ρ u3,tt = µ(u3,11 + u3,22). (4.10)

We remark that the first two equations (4.9) are coupled, while the third (4.10) is uncoupled
from the first two.

We now formulate the plane wave ansatz, according to which the displacement vector u
takes the same value at all points lying on the same orthogonal line to the (x1x2)−plane (no
dependence on x3). Moreover, we also consider that the displacement field is periodic in space.
In symbols, the plane-wave ansatz reads

u = ψ̂ ei(〈x,k〉−ωt) = ψ̂ ei(x1k1+x2k2−ωt), (4.11)

u3 = ψ̂3 e
i(〈x,k〉−ωt) = ψ̂3 e

i(x1k1+x2k2−ωt), (4.12)

where ψ̂ = (ψ̂1, ψ̂2)T is the vector of amplitudes, k = (k1, k2)T is the wave-vector, which fixes
the direction of propagation of the considered wave and x = (x1, x2)T is the position vector.
Moreover, ψ̂3 is a scalar amplitude for the third component of the displacement. We explicitly
remark that in equation (4.11) we consider (with a slight abuse of notation) u = (u1, u2)T to
be the vector involving only the in-plane displacement components u1 and u2 which are coupled
via equations (4.9). We start by considering the first system of coupled equations and we plug

5Following classical nomenclature ([1]) we call longitudinal (or L) waves the waves whose displacement vector
is in the same direction of the wave vector. Moreover SV waves are shear waves whose displacement vectors is
orthogonal to the wave vector and lies in the (x1x2)−plane. SH waves are shear waves whose displacement vector
is orthogonal to the wave vector and lies in a plane orthogonal to the (x1x2)−plane.
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the plane-wave ansatz (4.11) into (4.9), so obtaining

(ω2 − c2
Lk

2
1 − c2

Sk
2
2)ψ̂1 − c2

V k1k2ψ̂2 = 0,

−c2
V k1k2ψ̂1 + (ω2 − c2

Lk
2
2 − c2

Sk
2
1)ψ̂2 = 0, (4.13)

where we made the abbreviations

c2
L =

2µ+ λ

ρ
, c2

S =
µ

ρ
, c2

V = c2
L − c2

S =
µ+ λ

ρ
, (4.14)

where µ, λ are the Lamé parameters of the material and ρ is its apparent density. This system of
algebraic equations can be written compactly as A · ψ̂ = 0, where A is the matrix of coefficients

A =

 ω2 − c2
Lk

2
1 − c2

Sk
2
2 −c2

V k1k2

−c2
V k1k2 ω2 − c2

Lk
2
2 − c2

Sk
2
1

 . (4.15)

For A · ψ̂ = 0 to have a solution other than the trivial one, we impose detA = 0. We have (see
Appendix B for a detailed calculation of this expression)

detA =

(
(2µ+ λ)

(
k2

1 + k2
2

)
− ρω2

) (
µ
(
k2

1 + k2
2

)
− ρω2

)
ρ2

. (4.16)

We now solve the algebraic equation detA = 0 with respect to the first component k1 of the
wave-vector k (as will be evident in section 4.2.2, the second component of the wave-vector k2

is always known when imposing boundary conditions)(
(2µ+ λ)

(
k2

1 + k2
2

)
− ρω2

) (
µ
(
k2

1 + k2
2

)
− ρω2

)
= 0,

(2µ+ λ)
(
k2

1 + k2
2

)
− ρω2 = 0 or µ

(
k2

1 + k2
2

)
− ρω2 = 0,

k2
1 =

ρω2

2µ+ λ
− k2

2 or k2
1 =

ρ

µ
ω2 − k2

2, (4.17)

k1 = ±

√
ω2

c2
L

− k2
2 or k1 = ±

√
ω2

c2
S

− k2
2, (4.18)

As we will show in the remainder of this subsection, the first and second solution in (4.18)
is associated to what we call a longitudinal and SV shear wave, respectively. The choice of sign
for these solutions is related to the direction of propagation of the considered wave (positive for
incident and transmitted waves, negative for reflected waves).6

We will show later on in detail, that once boundary conditions are imposed at a given
interface between two Cauchy media, the value of the component k2 of the wave-vector k can
be considered to be known. We will see that k2 is always real and positive, which means that,
according to (4.18), the first component k1 of the wave-vector can be either real or purely
imaginary, depending on the values of the frequency and of the material parameters. Two
scenarios are then possible:

6As a matter of fact, the sign + or − in expressions (4.18) is uniquely determined by imposing that the solution
preserves the conservation of energy at the considered interface. For Cauchy media, as well as for isotropic relaxed
micromorphic media, it turns out that one must choose positive k1 for transmitted and incident waves and negative
k1 for reflected ones (according to our convention).
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4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

1. both k1 and k2 are real: This means that, according to the wave ansatz (4.11), we have a
harmonic wave which propagates in the direction given by the wave-vector k lying in the
(x1x2)− plane. The wave-vector of the considered wave has two non-vanishing components
in the (x1x2)−plane. A simplified illustration of this case is given in Fig. 4.4.

Figure 4.4: Schematic representation of an incident wave which propagates after hitting the
interface. For graphical simplicity, only normal incidence and normal transmission are depicted.

2. k2 is real and k1 purely imaginary: In this case, according to equation (4.11), the wave
continues to propagate in the x2 direction (along the interface), but decays with a negative
exponential in the x1 direction (away from the interface). Such a wave propagating only
along the interface is known as a Stoneley interface wave ([7, 92]). An illustration of this
phenomenon is given in Fig. 4.5.

Figure 4.5: Schematic representation of an incident wave which is transformed into an interface
wave along the interface and decays exponentially away from it (Stoneley wave).

In conclusion, we can say that when considering wave propagation in 2−dimensional Cauchy
media, it is possible that, given the material parameters, some frequencies exist for which all the
energy of the incident wave can be redirected in Stoneley waves traveling along the interface,
thus inhibiting transmission across the interface. Such waves are also possible at the interface
between a Cauchy and a relaxed micromorphic medium, in a generalized setting.
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Assuming the second component k2 of the wave-vector to be known, we now calculate the
solution ψ̂ to the algebraic equations A · ψ̂ = 0; these solutions make up the kernel (or nullspace)
of the matrix A and are essentially eigenvectors to the eigenvalue 0. Hence, as is common
nomenclature ([65]), we call them eigenvectors.

Using the first solution of (4.18), we see that it also implies

k2
1 =

ω2

c2
L

− k2
2. (4.19)

Using this relation between k1 and k2 in the first equation of (4.13), we obtain

(
ω2 − c2

L

(
ω2

c2
L

− k2
2

)
− c2

Sk
2
2

)
ψ̂1 − c2

V

√
ω2

c2
L

− k2
2 k2ψ̂2 = 0,

(ω2 − ω2 + c2
Lk

2
2 − c2

Sk
2
2)ψ̂1 − c2

V

√
ω2

c2
L

− k2
2 k2ψ̂2 = 0,

(c2
L − c2

S︸ ︷︷ ︸
=c2V

)k2
2ψ̂1 − c2

V

√
ω2

c2
L

− k2
2 k2ψ̂2 = 0, (4.20)

this implies

ψ̂2 =
k2√

ω2

c2L
− k2

2

ψ̂1 ⇔ ψ̂2 =
cLk2√

ω2 − c2
Lk

2
2

ψ̂1. (4.21)

So, the eigenvector of the matrix A in this case is given by

ψ̂L :=

 1

cLk2√
ω2−c2Lk

2
2

 =

 1

k2
k1

 . (4.22)

We explicitly remark that the definition of ψ̂L given by the first equality allows us to compute
the vector ψ̂L once k2 is known, i.e. when imposing boundary conditions. On the other hand,
the equivalent definition ψ̂L = (1, k2/k1)T allows us to remark that k1ψ̂

L = (k1, k2)T is still
a solution of the equation A · ψ̂ = 0. In this case, the vector of amplitudes is collinear with
the wave-vector k. This allows us to talk about longitudinal waves, since the displacement
vector (u1, u2)T given by expression (4.11) (and hence the motion) is parallel to the direction
of propagation of the traveling wave. We also notice that, given the eigenvector ψ̂L, all vectors
a ψ̂L, with a ∈ C, are solutions to the equation A · ψ̂ = 0. Analogous considerations can be
carried out when considering the second solution of (4.18), which also implies

k2
1 =

ω2

c2
S

− k2
2. (4.23)

Using this relation between k1 and k2 in the second equality of (4.13) gives
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4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

(
ω2 − c2

L

(
ω2

c2
S

− k2
2

)
− c2

Sk2

)
ψ̂1 − c2

V

√
ω2

c2
S

− k2
2 k2ψ̂2 = 0,

(
ω2 −

c2
L

c2
S

ω2 + c2
Lk

2
2 − c2

Sk
2
2

)
ψ̂1 − c2

V

√
ω2

c2
S

− k2
2 k2ψ̂2 = 0,

(
ω2 c

2
S − c2

L

c2
S

+ (c2
L − c2

S)k2
2

)
ψ̂1 − c2

V

√
ω2

c2
S

− k2
2 k2ψ̂2 = 0,

(
−ω2 c

2
V

c2
S

+ c2
V k

2
2

)
ψ̂1 − c2

V

√
ω2

c2
S

− k2
2 k2ψ̂2 = 0, (4.24)

(4.25)

this implies

k2

√
ω2 − k2

2c
2
S ψ̂2 =

k2
2c

2
S − ω2

cS
ψ̂1 ⇔ ψ̂2 =

k2
2c

2
S − ω2

k2cS

√
ω2 − k2

2c
2
S

ψ̂1. (4.26)

Therefore, the eigenvector of the matrix A in this case is given by7

ψ̂SV :=

 1

k22c
2
S−ω

2

k2cS
√
ω2−k22c2S

 =

 1

−k1
k2

 . (4.27)

Finally, replacing the plane-wave ansatz (4.12) for the third component u3 of the displacement
in equation (4.10) gives8

−ω2ρ ψ̂3e
i(〈x,k〉−ωt) = µ(−k2

1 − k2
2)ψ̂3e

i(〈x,k〉−ωt),

ρ ω2 = µ(k2
1 + k2

2),

k1 = ±

√
ω2

c2
S

− k2
2. (4.28)

This relation, compared to the second of equations (4.18), tells us that the same relation between
k1 and k2 exists when considering SV or SH waves.

Equations (4.18) and (4.28) give rise to the well-known dispersion curves for Cauchy continua
for in-plane and out-of-plane waves (see Fig. 4.6).

7Analogously to the case of longitudinal waves, we can remark that the vector (k2,−k1)T is still a solution

of the equation A · ψ̂ = 0. This means that, in this case, the vector of amplitudes lies in the (x1x2)−plane
and is orthogonal to the direction of propagation given by the wave-vector k. This allows us to introduce the
concept of transverse in-plane waves, or “shear vertical” SV waves, since the displacement (u1, u2)T given by
(4.11) (and hence the motion) is orthogonal to the direction of propagation of the traveling wave, but lying in

the (x1x2)−plane. We also remark that any vector a ψ̂SV , with a ∈ C, is solution to the equation A · ψ̂ = 0. The

first equality defining ψ̂ in (4.27) allows to directly compute ψ̂ when k2 is known, i.e. when imposing boundary
conditions.

8The component u3 of the displacement being orthogonal to the (x1x2)−plane and thus to the direction
of propagation of the wave, allows us to talk about transverse, out-of-plane waves or, equivalently, “shear
horizontal” SH waves. Such waves have the same speed cS as the SV waves.
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(a) (b)

Figure 4.6: Dispersion diagrams for in-plane (a) and out-of-plane (b) modes in isotropic Cauchy continua. The
material parameters used in these Figures are the ones given in Table 4.5.
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Plane-wave ansatz: solution for the displacement field in a Cauchy medium

We have seen in section 4.2.1 how to write the displacement field making use of the concepts of
longitudinal, SV and SH waves.

According to equations (4.11) and (4.12) and considering the 2D eigenvectors (4.22) and
(4.27), we can finally write the solution for the displacement field u = (u1, u2, u3)T as

u = uL + uSV = aLψLei(x1k
L
1 +x2kL2 −ωt) + aSV ψSV ei(x1k

SV
1 +x2kSV2 −ωt), (4.29)

when we consider a longitudinal or an SV wave, or

u = uSH = aSHψSHei(x1k
SH
1 +x2kSH2 −ωt), (4.30)

when we consider an SH wave. In these formulas, starting from equations (4.22) and (4.27), we
defined the unit vectors

ψL =
1∣∣∣ψ̂L∣∣∣


ψ̂L1

ψ̂L2

0

 , ψSV =
1∣∣∣ψ̂SV ∣∣∣


ψ̂SV1

ψ̂SV2

0

 , and ψSH =


0

0

1

 . (4.31)

Finally, aL, aSV , aSH ∈ C are arbitrary constants.

We also explicitly remark that in equations (4.29) and (4.30), kL1 and kL2 are related via the
first equation of (4.18), kSV1 and kSV2 via the second equation of (4.18) and kSH1 and kSH2 via
(4.28).

As we already mentioned, k2 will be known when imposing boundary conditions, so the
only unknowns in the solution (4.29) (resp (4.30)) remain the scalar amplitudes aL, aSV (resp.
aSH). We will show in the following subsection how, using the form (4.29) (resp. (4.30)) for the
solution in the problem of reflection and transmission at an interface between Cauchy media,
the unknown amplitudes can be computed by imposing boundary conditions.
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4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

4.2.2 Interface between two Cauchy media

We now turn to the problem of reflection and transmission of elastic waves at an interface
between two Cauchy media (cf. Fig. 4.3). We assume that an incident longitudinal wave9

propagates on the “minus” side, hits the interface (which is the x2 axis) and is subsequently
reflected into a longitudinal wave and an SV wave and is transmitted into the second medium on
the “plus” side into a longitudinal wave and an SV wave as well, according to equations (4.29).
If we send an incident SH wave, equation (4.30) tells us that it will reflect and transmit only
into SH waves.

Incident longitudinal/SV-transverse wave

According to our previous considerations, and given the linearity of the considered problem, the
solution of the dynamical problem (2.4) on the “minus” side can be written as10

u−(x1, x2, t) = aL,iψL,iei(〈x,k
L,i〉−ωt)+aL,rψL,rei(〈x,k

L,r〉−ωt)+aSV,rψSV,rei(〈x,k
SV,r〉−ωt) =: uL,i+uL,r+uSV,r.

(4.32)

As for the “plus” side, the solution is

u+(x1, x2, t) = aL,tψL,tei(〈x,kL,t〉−ωt) + aSV,tψSV,tei(〈x,kSV,t〉−ωt) =: uL,t + uSV,t. (4.33)

The vectors ψL,i, ψSV,r and ψSV,t are as in (4.31).

Now the new task is given an incident wave, i.e. knowing aL,i and kL,i, to calculate all the
respective parameters of the “new” waves.

We see that the jump condition (4.1) can be further developed considering that u− = uL,i +
uL,r + uSV,r and u+ = uL,t + uSV,t. We equate the first components of (4.1)

uL,i1 + uL,r1 + uSV,r1 = uL,t1 + uSV,t1 ,

which, evaluating the involved expression at x1 = 0 (the interface), implies

aL,iψL,i1 ei(x2k
L,i
2 −ωt) + aL,rψL,r1 ei(x2k

L,r
2 −ωt) + aSV,rψSV,r1 ei(x2k

SV,r
2 −ωt)

=aL,tψL,t1 ei(x2k
L,t
2 −ωt) + aSV,tψSV,t1 ei(x2k

SV,t
2 −ωt),

or, simplifying everywhere the time exponential

aL,iψL,i1 eix2k
L,i
2 + aL,rψL,r1 eix2k

L,r
2 + aSV,rψSV,r1 eix2k

SV,r
2 = aL,tψL,t1 eix2k

L,t
2 + aSV,tψSV,t1 eix2k

SV,t
2 . (4.34)

This must hold for all x2 ∈ R. The exponentials in this expression form a family of linearly inde-
pendent functions and, therefore, we can safely assume that the coefficients aL,i, aL,r, aSV,r, aL,t, aSV,t

are never all zero simultaneously. This means, than in order for (4.34) to hold, we must require
that the exponents of the exponentials are all equal to one another. Canceling out the imaginary
unit i and x2, we deduce the fundamental relation11

9The exact same considerations can be carried over when the incident wave is SV transverse.
10With a clear extension of the previously introduced notation, we denote by aL,i, aL,r, aL,t, aSV,r, aSV,t and

ψL,i, ψL,r, ψL,t, ψSV,r, ψSV,t the amplitudes and eigenvectors of longitudinal incident, reflected, transmitted, in-
plane transverse incident, reflected and transmitted waves respectively. Analogously, aSV,i and ψSV,i will denote
the amplitude and eigenvector related to in-plane transverse incident waves.

11It is now clear why we said previously that the second components of all wave-vectors are known, since they
are all equal to the second component of the wave-vector of the prescribed incident wave, which is known by
definition.
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4

kL,i2 = kL,r2 = kSV,r2 = kL,t2 = kSV,t2 , (4.35)

which is the well-known Snell’s law for in-plane waves (see [1, 7, 43, 110]). Using (4.35) we see
that the exponentials in (4.34) can be canceled out leaving only

aL,iψL,i1 + aL,rψL,r1 + aSV,rψSV,r1 = aL,tψL,t1 + aSV,tψSV,t1 . (4.36)

Analogously, equating the second components of the displacements in the jump conditions (4.1),
using (4.35) and the fact that this must hold for all x2 ∈ R, gives

aL,iψL,i2 + aL,rψL,r2 + aSV,rψSV,r2 = aL,tψL,t2 + aSV,tψSV,t2 . (4.37)

As for the jump of traction, we remark that the total traction on both sides is

T− = tL,i + tL,r + tSV,r, T+ = tL,t + tSV,t,

with the t’s being evaluated at x1 = 0. The tractions are vectors of the form

t = (t1, t2, 0)T , (4.38)

with

ti = σijνj , (4.39)

where ν = (ν1, ν2, ν3)T = (1, 0, 0)T is the normal vector to the interface, i.e. to the x2 axis.12

The traction jump condition (4.2) can now be written component-wise as

σL,i11 + σL,r11 + σSV,r11 = σL,t11 + σSV,t11 , (4.40)

σL,i21 + σL,r21 + σSV,r21 = σL,t21 + σSV,t21 . (4.41)

Calculating the stresses according to eq. (2.5), where we use the solutions (4.32) and (4.33) for
the displacement and again using (4.35) gives

aL,i
(

(2µ+ λ)ψL,i1 kL,i1 + λψL,i2 kL,i2

)
+ aL,r

(
(2µ+ λ)ψL,r1 kL,r1 + λψL,r2 kL,r2

)
+ aSV,r

(
(2µ+ λ)ψSV,r1 kSV,r1 + λψSV,r2 kSV,r2

)
= aL,t

(
(2µ+ + λ+)ψL,t1 kL,t1 + λ+ψL,t2 kL,t2

)
+ aSV,t

(
(2µ+ + λ+)ψSV,t1 kSV,t1 + λ+ψSV,t2 kSV,t2

)
,

(4.42)

and

aL,iµ
(
ψL,i1 kL,i2 + ψL,i2 kL,i1

)
+ aL,rµ

(
ψL,r1 kL,r2 + ψL,r2 kL,r1

)
+ aSV,rµ

(
ψSV,r1 kSV,r2 + ψSV,r2 kSV,r1

)
= aL,tµ+

(
ψL,t1 kL,t2 + ψL,t2 kL,t1

)
+ aSV,tµ+

(
ψSV,t1 kSV,t2 + ψSV,t2 kSV,t1

)
.

(4.43)

Thus, equations (4.36), (4.37), (4.42), (4.43) form an algebraic system for the unknown ampli-
tudes aL,r, aSV,r, aL,t, aSV,t from which we can fully calculate the solution.

12We immediately see that the only components of the stress tensor which have a contribution in the calculation
of the traction jump are σ11 and σ21.
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4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

Incident SH-transverse wave

In this case, the solution on the “minus” side of the interface is

u−(x1, x2, t) = aSH,iψSH,iei(〈x,kSH,i〉−ωt) + aSH,rψSH,rei(〈x,kSH,r〉−ωt), (4.44)

and on the “plus” side

u+(x1, x2, t) = aSH,tψSH,tei(〈x,kSH,t〉−ωt), (4.45)

where the vectors ψSH,i, ψSH,r, ψSH,t are all equal to (0, 0, 1)T, according to the third equation of
(4.31). Following the same reasoning as in section 4.2.2, the continuity of displacement condition
now only involves the u3 component, which is the only non-zero one, and reads (evaluating again
at x1 = 0)

aSH,iei(x2k
SH,i
2 ) + aSH,rei(x2k

SH,r
2 ) = aSH,tei(x2k

SH,t
2 ), (4.46)

which, since the exponentials build a family of linearly independent functions and if we exclude
the case where all amplitudes aSH,i, aSH,r, aSH,t are identically equal to zero, becomes Snell’s
law for out-of-plane motions

kSH,i2 = kSH,r2 = kSH,t2 . (4.47)

Using that, we see that the exponentials in (4.46) cancel out leaving only

aSH,i + aSH,r = aSH,t. (4.48)

As for the jump in traction in the case of SH waves, the total traction on both sides is
T− = tSH,i + tSH,r, T+ = tSH,t, with the t’s being evaluated at x1 = 0. Now the tractions are
vectors of the form

t = (0, 0, t3)T,

where, once again, fi = σijνj , where ν = (1, 0, 0)T is the vector normal to the interface.13

Condition (4.2) can now be written as

σSH,i31 + σSH,r31 = σSH,t31 (4.49)

The stresses are calculated again by (2.5) and using the solutions (4.44) and (4.45) for the
displacement and using (4.47) gives

µ
(
aSH,ikSH,i1 + aSH,rkSH,r1

)
= µ+aSH,tkSH,t1 . (4.50)

Equations (4.48) and (4.50) build a system for the unknown amplitudes aSH,r, aSH,t, which
we can solve to fully determine the solution to the reflection-transmission problem.

A condition for the onset of Stoneley waves at a Cauchy/Cauchy interface

In this subsection we show how we can find explicit conditions for the onset of Stoneley waves
at Cauchy/Cauchy interfaces. This can be done by simply requesting that the quantities under
the square roots in equation (4.18) become negative.

13We now see that the component of the stress which has an influence in this boundary condition is σ31.
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Assume that the incident wave is longitudinal. This means that its speed is given by
c−L =

√
(2µ− + λ−)/ρ− and that the wave vector k can now be written as

k = (k1, k2) = |k|(sin θi,− cos θi),

where |k| = ω/c−L and θi is the angle of incidence. This incident longitudinal wave gives rise
to a longitudinal and a transverse wave both on the “−” and on the “+” side. Setting the
quantity under the square root in the first equation in (4.18) to be negative and using the fact
that k2 = −|k| cos θi, gives a condition for the appearance of Stoneley waves in the case of an
incident longitudinal wave:

ω2

(c+
L )2
− k+

2 < 0⇔ ω2

(c+
L )2
− k2

2 < 0⇔ ω2

(c+
L )2

< |k|2 cos2 θi

⇔ ω2

(c+
L )2

<
ω2

(c−L )2
cos2 θi

⇔ cos2 θi >

(
c−L
c+
L

)2

⇔ cos2 θi >
ρ+(2µ− + λ−)

ρ−(2µ+ + λ+)
. (4.51)

To establish the previous relation we also used the fact that k+
2 = k2, as established by Snell’s

law in (4.35).
Similar arguments can be carried out when considering all other possibilities for incident,

transmitted and reflected waves, as detailed in Tables 4.1 and 4.2.

Incident Wave Transmitted L Transmitted SV Transmitted SH

L cos2 θi >
ρ+(2µ−+λ−)
ρ−(2µ++λ+)

cos2 θi >
ρ+(2µ−+λ−)

ρ−µ+ −

SV cos2 θi >
ρ+µ−

ρ−(2µ++λ+)
cos2 θi >

ρ+µ−

ρ−µ+ −

SH − − cos2 θi >
ρ+µ−

ρ−µ+

Table 4.1: Conditions for the appearance of transmitted Stoneley waves for all types of waves at a
Cauchy/Cauchy interface.

Incident Wave Reflected L Reflected SV

L − −

SV cos2 θi >
µ−

2µ−+λ− −

SH − −

Table 4.2: Conditions for the appearance of reflected Stoneley waves for all types of waves at a
Cauchy/Cauchy interface.

The conditions in Tables 4.1 and 4.2 establish that the square of the cosine of the angle of
incidence must be greater than a given quantity (this happens for smaller angles) for Stoneley
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4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

waves to appear. This means that it is most likely to observe Stoneley waves when the angle of
incidence is smaller than the normal incidence angle, i.e. for incident waves which are inclined
with respect to the surface upon which they hit. Moreover, if there exists a strong contrast in
stiffness between the two sides and the “−” side is by far stiffer than the “+” side, then Stoneley
waves could be observed for angles closer to normal incidence. On the other hand, if the “−”
side is only slightly stiffer than the “+” side, then Stoneley waves will be observed only for
smaller angles (far from normal incidence). We refer to Appendix B3 for an explicit calculation
of all these conditions.

In order to fix ideas, assuming that both materials on the left and on the right have the same
density, i.e. ρ− = ρ+ and examining Table 4.1, we can deduce that Stoneley waves appear only
when the expressions on the right of each inequality are less than one, i.e:14

• For an incident L wave, the transmitted L mode becomes Stoneley only if the Lamé
parameters of the material are chosen in such a way that 2µ+ + λ+ > 2µ− + λ−.

• For an incident L wave, the transmitted SV mode becomes Stoneley only if the Lamé
parameters of the material are chosen in such a way that µ+ > 2µ− + λ−.

• For an incident SV wave, the transmitted L mode becomes Stoneley only if the Lamé
parameters of the material are chosen in such a way that 2µ+ + λ+ > µ−.

• For an incident SV wave, the transmitted SV mode becomes Stoneley only if the Lamé
parameters of the material are chosen in such a way that µ+ > µ−.

• For an incident SH wave, the transmitted SH mode (which is the only transmitted mode)
becomes Stoneley only if the Lamé parameters of the material are chosen in such a way
that µ+ > µ−.

• Reflected waves can become Stoneley waves only when the incident wave is SV. The only
mode which can be converted into a Stoneley wave is the L mode when µ− > −λ−.

All these cases are shown graphically in Figure 4.7. Figures 4.7(a) and 4.7(b) demonstrate
the case of an incident L wave. From Table 4.1 we deduce that either only the L transmitted
mode will be Stoneley or both L and SV (when ρ− = ρ+). The same is true for the case of an
incident SV wave as shown in Figures 4.7(c) and 4.7(d). For incident SH waves, we only have
one transmitted mode which can also be Stoneley as shown in Figure 4.7(e). Figure 4.7(f) shows
the only possible manifestation of a reflected Stoneley wave, which is the L mode for the case
of an incident SV wave.

14In order to respect positive definiteness of the strain energy density, we must require that 2µ+ +λ+ > 0 and
µ+ > 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Possible manifestations of Stoneley waves at a Cauchy/Cauchy interface for L and
SV transmitted modes for all possible incident waves. The vectors in black represent propagative
modes, while the vectors in red represent modes which propagate along the surface only (Stoneley
modes).

47

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI073/these.pdf 
© [A. Aivaliotis], [2019], INSA Lyon, tous droits réservés



4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

Determination of the reflection and transmission coefficients

We denote by H1 the first (normal) component of the flux vector and we introduce the following
quantities

J i =
1

T

∫ T

0
H i

1(x, t)dt, J r =
1

T

∫ T

0
Hr

1(x, t)dt, J t =
1

T

∫ T

0
Ht

1(x, t)dt, (4.52)

where H i
1 = HL,i

1 (or, H i
1 = HSV,i

1 if we consider an incident SV wave), Hr
1 = HL,r

1 +HSV,r
1 and

Ht
1 = HL,t

1 +HSV,t
1 , T being the period of the wave.15 Then, the reflection and transmission

coefficients are defined as

R =
J r

J i
, T =

J t

J i
. (4.53)

These coefficients tell us what part of the average normal flux of the incident wave is reflected
and what part is transmitted; also, since the system is conservative, we must have R+ T = 1.

The integrals involved in these expressions are the average normal fluxes of the respective
waves (incident, reflected or transmitted). We use Lemma 1 (provided with proof in Appendix
B) in the computations of these coefficients.

In order to have a physical meaning, the final solution for the displacement u must be real,
so that we consider only the real parts of the displacements and stresses for the computation
of the flux. For the first component of the flux vector for a longitudinal or SV wave, we have,
according to equation (2.12) and using the plane-wave ansatz

1

T

∫ T

0
H1dt =

1

T

∫ T

0
Re (−u1,t) Re (σ11) + Re (−u2,t) Re (σ12) dt

=
1

T

∫ T

0
Re
(
i ω aψ1e

i(〈x,k〉−ωt)
)

Re
(

[(2µ+ λ)ψ1 k1 + λψ2 k2] i a ei(〈x,k〉−ωt)
)

+ Re
(
i ωaψ2 e

i(〈x,k〉−ωt)
)

Re
(
µ (ψ1 k2 + ψ2 k2)i a ei(〈x,k〉−ωt)

)
dt

=
Lemma1

1

2
Re
([

(2µ+ λ)|ψ1|2k1 + λψ∗1ψ2 k2 + µ
(
ψ1 ψ

∗
2 k2 + |ψ2|2k1

)]
|a|2ω

)
. (4.54)

As for the case of an SH wave, we have

1

T

∫ T

0
H1dt =

1

T

∫ T

0
Re (−u3,t) Re (σ13) dt (4.55)

=
1

T

∫ T

0
Re
(
i ω a ei(〈x,k〉−ωt)

)
Re
(
i k1 µa e

i(〈x,k〉−ωt)
)
dt

=
Lemma1

1

2
Re
(
µk1|a|2ω

)
. (4.56)

These expressions for the fluxes, together with the linear decompositions given for Hr
1 and Ht

1,
allow us to explicitly compute the reflection and transmission coefficients.

4.2.3 The particular case of propagative waves

We have seen that, when considering two Cauchy media with an interface, two cases are possible,
namely waves which propagate in the two considered half-planes and Stoneley waves, which only

15Or, in the case of an incident SH wave H i
1 = HSH,i

1 , Hr
1 = HSH,r

1 and Ht
1 = HSH,t

1 .
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propagate along the interface but decay away from it. Stoneley waves do not propagate in the
considered media and are related to imaginary values of the first component of the wave number.
When considering fully propagative waves (k1 and k2 both real) the results provided before can
be interpreted on a more immediate physical basis, which we detail in the present section.
The previous ansatz and calculations were performed without any hypothesis on the nature
of the components of k: they were assumed to be either real or imaginary. However, when
we consider a fully propagating wave we will demonstrate that we can recover some classical
formulas and results which are usually found in the literature by considering the vector of
direction of propagation of the wave, instead of the wave-vector k. For a fully propagative wave,
the plane-wave ansazt can be written as

u = ψ̂ ei(|k|〈x,ξ〉−ωt) = ψ̂ ei(|k|(x1ξ1+x2ξ2)−ωt), (4.57)

where |k| is now the wave-number, which is defined as the modulus of the wave-vector k and
ξ = (ξ1, ξ2)T := k

|k| is the so-called vector of propagation. This real vector ξ has unit length

(ξ2
1 + ξ2

2 = 1).
By inserting k1 = |k| ξ1 and k2 = |k| ξ2 in (4.17) we find

|k|2 =
ω2

c2
L

or |k|2 =
ω2

c2
S

, (4.58)

or,

|k| = ± ω
cL

or |k| = ± ω
cS
, (4.59)

where, again, the signs in (4.59) must be chosen depending on what kind of wave we consider
(positive for incident and transmitted waves, negative for reflected waves). Expressions (4.59)
give the well-known linear dependence between the frequency ω and the wave-number |k| through
the speeds cL and cS for longitudinal and shear waves respectively. Such behavior is known as a
“non-dispersive” behavior, which means that in a Cauchy medium longitudinal and shear waves
propagate at a constant speed (cL for longitudinal and cS for shear waves).

Choosing the first solution in (4.59), so that ω = |k|cL and inserting k = |k|ξ into (4.22) we
can can find the nullspace in the case of a propagative longitudinal wave

ψ̂ =

 1

cL|k|ξ2√
|k|2c2L−c

2
L|k|ξ

2
2

 =

 1

ξ2
ξ1

 (4.60)

Equivalently, choosing the second solution in (4.58) so that ω = |k|cS and again inserting
k = |k|ξ into (4.27) we find for the second component of the eigenvector

k2
2c

2
S − ω2

k2cS

√
ω2 − k2

2c
2
S

=
|k|2ξ2

2c
2
S − |k|2c2

S

|k|ξ2cS

√
|k|2c2

S − |k|2ξ2
2c

2
S

= − ξ2
1

ξ2ξ1
, (4.61)

so the eigenvector for a propagative shear wave is16

ψ̂ =

 1

− ξ1
ξ2

 . (4.62)

16We neglected the sign of the |k| in the above calculations. Fixing the direction of propagation will automat-
ically impose the sign of both |k| and ξ1, which we then plug into equations (4.60) or (4.62).
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4.2. Wave propagation, reflection and transmission at an interface between two Cauchy media

The forms (4.60) and (4.62) for the eigenvectors of L and SV propagative waves are sug-
gestive because they allow to immediately visualize the vector of propagation ξ and, thus, the
eigenvectors ψ themselves in terms of the angles formed by the considered propagative wave and
the interface (see Figure 4.8 and Table 4.3).

Figure 4.8: Illustration of reflection and transmission patterns for propagative waves and Snell’s
law at a Cauchy/Cauchy interface. The second components of all wave-vectors are equal to each
other according to (4.35), forcing the reflected and transmitted wave-vectors to form angles with
the interface as shown here according to (4.66).

In the propagative case, the solutions (4.32) and (4.33) particularize into

u−(x1, x2, t) = aL,iψL,iei(〈x,|k|ξL,i〉−ωt) + aL,rψL,rei(〈x,|k|ξL,r〉−ωt) + aSV,rψSV,rei(〈x,|k|ξSV,r〉−ωt),
(4.63)

u+(x1, x2, t) = aL,tψL,tei(〈x,|k|ξL,t〉−ωt) + aSV,tψSV,tei(〈x,|k|ξSV,t〉−ωt). (4.64)

Wave ξ ψ Speed of propagation

L, i
(
sin θLi ,− cos θLi , 0

)T (
sin θLi ,− cos θLi , 0

)T
cL

SV, i
(
sin θSVi ,− cos θSVi , 0

)T (
cos θSVi , sin θSVi , 0

)T
cS

L, r
(
− sin θLr ,− cos θLr , 0

)T (
− sin θLr ,− cos θLr , 0

)T
cL

SV, r
(
− sin θSVr ,− cos θSVr , 0

)T (
cos θSVr ,− sin θSVr , 0

)T
cS

L, t
(
sin θLt ,− cos θLt , 0

)T (
sin θLt ,− cos θLt , 0

)T
c+
L

SV, t
(
sin θSVt ,− cos θSVt , 0

)T (
cos θSVt , sin θSVt , 0

)T
c+
S

Table 4.3: Summary of the vectors of direction of propagation and of vibration for all different waves
produced at a Cauchy/Cauchy interface.

Using (4.63), (4.64) and the forms given in Table 4.3 for the propagation vectors ξ and the
eigenvectors ψ as well as expressions (4.59) and (4.60), we can remark that the only unknowns
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are the amplitudes a and the angles θ. The angles θ of the different waves can be computed in
terms of the angle of the incident wave by using boundary conditions. Indeed, condition (4.35)
can be rewritten in the propagative case as

|kL,i|ξL,i2 = |kL,r|ξL,r2 = |kSV,r|ξSV,r2 = |kL,t|ξL,t2 = |kSV,t|ξSV,t2 , (4.65)

which, using equations (4.59) and (4.60), as well as the ξ2 given in Table 4.3 and simplifying the
frequency, gives the well-known Snell’s law (Fig. 4.8)17

cos θLi
ci

=
cos θLr
cL

=
cos θSVr
cS

=
cos θLt
c+
L

=
cos θSVt
c+
S

, (4.66)

where we have to choose the speed of the incident wave ci = cL if it is longitudinal, or ci = cS
if it is shear.

As already remarked, once the angles of the different propagative waves are computed,
the only unknowns in the solutions (4.63) and (4.64) are the scalar amplitudes a, which can
be computed as done in subsections 4.2.2, by imposing boundary conditions. The treatise
made in this section does not add new features to the previous considerations, but allows us
to visualize the traveling waves according to the classical Snell’s law and to recover classical
results concerning the dispersion curves. Clearly, such reasoning cannot be repeated for Stoneley
waves, for which the more general digression made in section 4.2.2 must be addressed.

4.3 Basics on dispersion curves analysis for bulk wave propagation in relaxed
micromorphic media

Since it is useful for the comparison with the literature, we recall here the classical analysis of
dispersion curves for the considered relaxed micromorphic medium (see [30, 62, 65]).

To that end, we make the hypothesis of propagative waves (see eq. (4.76)) and we show the
plots of the frequency ω against the wave-number |k| which are known as dispersion curves.

We will show that some frequency ranges, known as band-gaps, exist, such that for a given
frequency in this range, no real value of the wave-number |k| can be found. This basically
means that the hypothesis of propagative wave is not satisfied in this range of frequencies and
the solution must be more generally written as

ei(x1k1+x2k2−ωt), (4.67)

where k1 and k2 are both imaginary, giving rise to evanescent waves (i.e. waves decaying
exponentially in both the x1 and the x2 direction).

We explicitly remark here, that this treatise on dispersion curves in the relaxed micromorphic
model has already been performed in [30, 62, 65], but we recall it here for the 2D case in order
to have a direct idea on the band-gap region of the considered medium.

From now on, we set the following parameter abbreviations for characteristic speeds and

17Equation (4.66) clarifies why the angles of the different reflected and transmitted waves are chosen to be as
in Fig. 4.8, instead of choosing the opposite ones.
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4.3. Basics on dispersion curves analysis for bulk wave propagation in relaxed micromorphic
media

frequencies:

cm =

√
µeL2

c

η
, cs =

√
µe + µc

ρ
, cp =

√
λe + 2µe

ρ
, cl =

√
λe + µe − µc

ρ
,

ωs =

√
2(µe + µmicro)

η
, ωr =

√
2µc
η
, ωt =

√
µmicro

η
, ωl =

√
λmicro + 2µmicro

η
, (4.68)

ωp =

√
(3λe + 2µe) + (3λmicro + 2µmicro)

η
.

As done for the Cauchy case, we suppose that the involved kinematic fields only depend on
x1 and x2 (no dependence on the out-of-plane variable x3), i.e.

u = (u1(x1, x2, t), u2(x1, x2, t), u3(x1, x2, t))
T, P = (PT

1 (x1, x2, t), P
T
2 (x1, x2, t), P

T
3 (x1, x2, t))

T,
(4.69)

where we recall that, according to our notation, PT
i , i = 1, 2, 3 are the rows of the micro-

distortion tensor P .
We plug u and P from (4.69) into (3.34). The resulting system of equations is presented

in Appendix B4.1 in component-wise notation. We proceed to make the following change of
variables which are motivated by the Cartan-Lie decomposition of the tensor P :

PS =
1

3
(P11 + P22 + P33), PD1 = P11 − PS , PD2 = P22 − PS , P(1γ) =

1

2
(P1γ + Pγ1),

P[1γ] =
1

2
(P1γ − Pγ1), P(23) =

1

2
(P23 + P32), P[23] =

1

2
(P12 − P21), (4.70)

with γ = 2, 3. We can then collect the variables which are coupled (see the equations presented
in Appendix B4.2) as

v1 =
(
u1, u2, P

D
1 , P

D
2 , P

S , P(12), P[12]

)T
, (4.71)

v2 =
(
u3, P(13), P[13], P(23), P[23]

)T
. (4.72)

We make the following plane-wave ansatz:

v1 = φ̂ ei(〈x,k〉−ωt) = φ̂ ei(x1k1+x2k2−ωt), (4.73)

v2 = χ̂ ei(〈x,k̃〉−ωt) = χ̂ ei(x1k̃1+x2k̃2−ωt), (4.74)

and end up with two mutually uncoupled systems of the form (see Appendix B4.3 for the explicit
form of the matrices A1 and A2)

A1 · φ̂ = 0, A2 · χ̂ = 0, (4.75)

where A1 ∈ C7×7, A2 ∈ C5×5, φ̂ ∈ C7 and χ̂ ∈ C5. Closer examination of the first system reveals
that the components of the kinematic fields involved in these equations are the first and second
only, while in the second system only components involving the out-of-plane direction x3 are
always present in every equation. This means that, in analogy to the case of Cauchy media, we
have the same kind of uncoupling between movement in the (x1x2)− plane (in-plane) and in the
(x2x3)− plane (out-of-plane). There is, however, no immediate distinction of longitudinal and
shear waves.
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4.3.1 In-plane variables

We assume a propagating wave in which case the plane-wave ansatz is

v1 = φ̂ ei(|k|(x1ξ1+x2ξ2)−ωt), (4.76)

where ξ = (ξ1, ξ2)T is a real unit vector and φ̂ is the vector defined of amplitudes.

The polynomial detA1 is of degree 14 in ω and of degree 10 in |k|. Solving the equation
detA1 = 0 with respect to ω gives fourteen solutions of the form

ω(|k|) = ±ω1(|k|), ±ω2(|k|), ±ω3(|k|), ±ω4(|k|), ±ω5(|k|), ±ω6(|k|), ±ω7(|k|); (4.77)

while solving detA1 = 0 with respect to |k|, gives ten solutions of the form

|k|(ω) = ±|k(1)|(ω), ±|k(2)|k(ω), ±|k(3)|(ω), ±|k(4)|(ω), ±|k(5)|(ω); (4.78)

in both cases, we keep only the positive values because the wave is traveling in the x1 > 0
direction.

Plotting the functions ωi(|k|), i = 1, . . . , 7 in the (ω, |k|)− plane gives us the dispersion
curves for plane waves propagating in a relaxed micromorphic medium in two space dimensions
(see Figure 4.10). The results concerning the dispersive behavior of relaxed micromorphic media
are presented in [62, 65] and are recalled in Appendix B4.4 for the sake of completeness.

Dispersion curves, isotropic in-plane
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Figure 4.9

Figure 4.10: Dispersion diagrams for in-plane modes in the isotropic relaxed micromorphic
continua. The material parameters used in these Figures are the ones given in Table 4.4.

4.3.2 Out-of-plane variables

Analogously to the case of in-plane variables, we assume a propagating wave in which case the
plane-wave ansatz is

v2 = χ̂ ei(|k̃|(x1ξ1+x2ξ2)−ω̃t), (4.79)

where ξ = (ξ1, ξ2)T is a real unit vector and χ̂ is the vector of amplitudes.
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4.4. Reflective properties of a Cauchy/isotropic relaxed micromorphic interface

The polynomial detA2 is of degree 10 in ω̃ and of degree 8 in |k̃|. Solving the equation
detA2 = 0 with respect to ω̃ gives ten solutions of the form

ω̃(|k̃|) = ±ω̃1(|k̃|), ±ω̃2(|k̃|), ±ω̃3(|k̃|), ±ω̃4(|k̃|), ±ω̃5(k); (4.80)

while solving detA2 = 0 with respect to to k̃, gives eight solutions

|k̃|(ω̃) = ±|k̃(1)|(ω̃), ±|k̃(2)|(ω̃), ±|k̃(3)|(ω̃), ±|k̃(4)|(ω̃). (4.81)

Once again, we only consider the positive values of the ω̃’s and |k̃|’s since the waves are
traveling in the x1 > 0 direction. The dispersion curves for the out-of-plane variables are
presented in Figure 4.12.

Dispersion curves, isotropic out-of-plane
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Figure 4.12: Dispersion diagrams for out-of-plane modes in the isotropic relaxed micromorphic
continua. The material parameters used in these Figures are the ones given in Table 4.4.

Extra details are given in [65] and recalled in Appendix B4.4.

4.4 Reflective properties of a Cauchy/isotropic relaxed micromorphic interface

In this section, closely following what was done for the Cauchy case in section 4.2.1, we look for
non-trivial solutions of the equations (4.75) imposing detA1 = 0 and detA2 = 0. Once again,
we fix the second component k2 (resp. k̃2) of the wave-vector and solve these equations with
respect to k1 (resp. k̃1).18 The expressions for the solutions of these equations are quite complex
and we do not present them explicitly here. As discussed before, we find five and four solutions
for the two systems respectively19

± k(1)
1 (k2, ω), ±k(2)

1 (k2, ω), ±k(3)
1 (k2, ω), ±k(4)

1 (k2, ω), ±k(5)
1 (k2, ω), (4.82)

18We will show later on that also in the case of an interface between a Cauchy and a relaxed micromorphic
medium, the component k2 of the wave-vector can be considered to be known when imposing the jump conditions
holding at the interface

19Since, as already stated, in this case we cannot a priori distinguish which modes are longitudinal and which
are shear, we slightly shift our notation and use numbers in parentheses instead of describing the nature of the
mode.
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4

for the in-plane problem and

± k̃(1)
1 (k̃2, ω), ±k̃(2)

1 (k̃2, ω), ±k̃(3)
1 (k̃2, ω), ±k̃(4)

1 (k̃2, ω), (4.83)

for the out-of-plane problem.
Such solutions for k1 (resp. k̃1) depend on the second component k2 (resp. k̃2) of the wave-

vector and on the frequency, but of course also on the values of the material parameters of the
relaxed micromorphic model. We plug these solutions of the characteristic polynomials into the
matrix A1 (resp. A2) and calculate for each different k (resp. k̃) the five (resp. four) nullspaces
of the matrix. We find

φ̂(1), φ̂(2), φ̂(3), φ̂(4), φ̂(5), (4.84)

χ̂(1), χ̂(2), χ̂(3), χ̂(4), (4.85)

as solutions to the equations A1 · φ̂ = 0 and A2 · χ̂ = 0, respectively. We normalize these vectors,
thus introducing the normal vectors

φ(i) =
1

|φ̂(i)|
φ̂(i), χ(j) =

1

|χ̂(j)|
χ̂(j), (4.86)

i = 1, . . . 5, j = 1, . . . 4. Finally, we can write the solution to equations (3.34) as

v1 = α1φ
(1)ei(〈x,k

(1)〉−ωt)+α2φ
(2)ei(〈x,k

(2)〉−ωt)+α3φ
(3)ei(〈x,k

(3)〉−ωt)+α4φ
(4)ei(〈x,k

(4)〉−ωt)+α5φ
(5)ei(〈x,k

(5)〉−ωt),
(4.87)

v2 = β1χ
(1)ei(〈x,k̃

(1)〉−ωt) + β2χ
(2)ei(〈x,k̃

(2)〉−ωt) + β3χ
(3)ei(〈x,k̃

(3)〉−ωt) + β4χ
(4)ei(〈x,k̃

(4)〉−ωt), (4.88)

where αi, βj ∈ C for i = 1, . . . 5, j = 1, . . . , 4 are the unknown amplitudes of the different modes
of propagation.20

We explicitly remark that expressions (4.82) and (4.83) for the first component k1 and k̃1

of the wave-vectors, can give rise, similarly to the Cauchy case, to different scenarios when
varying the value of the frequency ω and the material parameters. As a matter of fact, we
briefly remarked before that k2 can be considered to be known when imposing jump conditions.
Indeed, following analogous steps to those performed to obtain equation (4.35) for the interface
between two Cauchy media, we can impose the continuity of displacements between a Cauchy
and a relaxed micromorphic medium. Considering the first component of the vector equation
for the continuity of displacement, in which the plane-wave ansatz has been used, one can find,
when imposing a longitudinal incident wave on the Cauchy side21

kL,i2 = kL,r2 = kSV,r2 = k
(1),t
2 = k

(2),t
2 = k

(3),t
2 = k

(4),t
2 = k

(5),t
2 .

Generalized in-plane Snell’s Law

(4.89)

On the other hand, when imposing an out-of-plane shear incident wave, the continuity of dis-
placement at the interface gives

kSH,i2 = kSH,r2 = k̃
(1),t
2 = k̃

(2),t
2 = k̃

(3),t
2 = k̃

(4),t
2 .

Generalized out-of-plane Snell’s Law

(4.90)

20We recall again that, once the eigenvalue problem is solved (i.e. once the wave-vector k (resp. k̃ is known)
and the eigenvectors φ (resp. χ) are computed, the only unknowns of the problem remain the five (resp. four)
amplitudes α (resp β), which can be computed by imposing boundary conditions.

21When imposing a longitudinal incident wave on the Cauchy side, kL,i2 is considered to be known. The same
reasoning holds when imposing an incident SV wave; in this case, kL,i2 must be replaced by kSV,i2 in eq. (4.89).
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4.4. Reflective properties of a Cauchy/isotropic relaxed micromorphic interface

Equations (4.89) and (4.90) tell us that, when fixing the incident wave in the Cauchy medium to
be longitudinal (kL,i2 known), in-plane shear (kSV,i2 known) or out-of-plane shear (kSH,i2 known),
the second components of all the reflected and transmitted wave-vectors are known. They are
the generalized Snell’s law for the case of a Cauchy/relaxed micromorphic interface. As
before, this traces two possible scenarios, given that the value of k2 for the incident wave is
always supposed to be real and positive (propagative wave)

1. both k1 and k2 (resp. k̃1, k̃2) are real (when computing k1 or k̃1 via (4.82) or (4.83)
respectively) so that one has propagative waves.

2. k2 (resp. k̃2) is real and k1 (resp. k̃1), when computed via (4.82) (resp. (4.83)) is imaginary,
so that one has Stoneley waves propagating only along the interface and decaying away
from it.

Figure 4.13: Simplified representation of the onset of an interface wave (in red) propagating
along the interface between a homogeneous solid and a metamaterial. Depending on the relative
stiffnesses of the two media, each of the existing low and high-frequency modes can either become
Stoneley or remain propagative.

Depending on the values of the frequency, of the material parameters and of the angle of inci-
dence, each of the five in-plane waves, or of the four out-of-plane waves, can be either propagative
or Stoneley. Thus, Stoneley waves can appear at the considered homogeneous solid/metamaterial
interface (see Fig. 4.13 for a simplified illustration), both for low and for high-frequency modes.

4.4.1 Determination of the reflection and transmission coefficients in the case of a
relaxed micromorphic medium

As for the flux, the normal outward pointing vector to the surface (the x2 axis) is ν = (−1, 0, 0).
This means that in the expression (3.75) for the flux, we need only take into account the first
component. According to our definition (3.75), we have

H1 = −ui,tσ̃i1 −mihPij,tεjh1, i, j, h ∈ {1, 2, 3}. (4.91)
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This equation for the flux must now be written with respect to the new variables v1 and v2.
It is a tedious but easy calculation to see that the following holds

H̃ := H1 = v1
,t · (H11 · v1

,1 +H12 · v1
,2 +H13 · v1), (4.92)

for the in-plane problem and

H̃ := H1 = v2
,t · (H21 · v2

,1 +H22 · v2
,2 +H23 · v2), (4.93)

for the out-of plane problem, where H11, H12, H13, and H21, H22, H23 are matrices of suitable
dimensions (found in Appendix B4.6).

Having calculated the “transmitted” flux, we can now look at the reflection and transmission
coefficients for the case of a Cauchy/relaxed micromorphic interface.

To that end, we again define

J i =
1

T

∫ T

0
H i(x, t)dt, Jr =

1

T

∫ T

0
Hr(x, t)dt, J t =

1

T

∫ T

0
Ht(x, t)dt, (4.94)

where H i = HL,i, Hr = HL,r + HSV,r and Ht = H̃. Then the reflection and transmission
coefficients are

R =
J r

J i
, T =

J t

J i
. (4.95)

In order to easily compute these coefficients, we again employ Lemma 1. Finally, once again
we have that R+ T = 1.

In the case of a Cauchy/relaxed micromorphic interface, the dependency of the fluxes on the
frequency ω is maintained. This is due to the fact that the amplitudes needed to calculate the
flux depend on ω (dispersive response), something which is not the case in the Cauchy/Cauchy
interface, as was evident in the previous section.

4.5 Results

In this section we present our results concerning the reflective properties of an interface between
a Cauchy medium and a relaxed micromorphic medium. We will show that, at low frequencies,
the considered interface can be regarded as an interface between a Cauchy medium and a second
Cauchy medium, equivalent to the relaxed micromorphic one and with macroscopic stiffnesses
λmacro and µmacro, when suitable boundary conditions are imposed.

Moreover, we will be able to show that critical angles for the incident wave can be identified
in the low-frequency regime, beyond which we can observe the onset of Stoneley waves. These
angles are computed from the relations established in Table 4.1.

In order to present explicit numerical results for the reflective properties of the interface
between a Cauchy and a relaxed micromorphic medium, we chose the values for the parameters of
the relaxed micromorphic medium as shown in Table 4.4. We explicitly remark that other values
of such parameters could be chosen, which would be more or less close to real metamaterials
parameters ([29, 57, 58]). Nevertheless, the basic results which we want to show in the present
chapter are not qualitatively affected by this choice since they only depend on the relative
stiffness of the two media which are considered on the two sides and not on the absolute values
of such stiffnesses.
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4.5. Results

ρ [kg/m3] η [kg/m] µc [Pa] µe [Pa] µmicro [Pa] λmicro [Pa] λe [Pa] Lc [m]

2000 10−2 2× 109 2× 108 108 108 4× 108 10−2

Table 4.4: Numerical values of the constitutive parameters chosen for the relaxed micromorphic medium.

We can now use the homogenization formula (3.77) ([9, 29]), to compute the equivalent
macroscopic coefficients of the Cauchy medium which is approximating the relaxed micromorphic
medium at low frequencies. In this isotropic case, formula (3.77) particularizes to:

µmacro =
µe µmicro

µe + µmicro
, 2µmacro + 3λmacro =

(2µe + 3λe)(2µmicro + 3λmicro)

2(µe + µmicro) + 3(λe + λmicro)
. (4.96)

Note that the Cosserat couple modulus µc does not appear in the homogenization formulas
(4.96).

Using formulas (4.96), we compute the stiffnesses λmacro and µmacro of the Cauchy medium
which is equivalent to the relaxed micromorphic medium of Table 4.4 in the low-frequency
regime, as in the following Table:

ρ [kg/m3] λmacro [Pa] µmacro [Pa]

2000 8.25397× 107 6.66667× 107

Table 4.5: Macro parameters of the equivalent Cauchy medium corresponding to the relaxed medium
of Table 4.4 at low frequencies.

At this point, we will consider the two cases in which the Cauchy medium on the “−” side
(where the incident wave is traveling) is stiffer or softer than the equivalent Cauchy medium
on the “+” side. We will show how, as expected, this difference in stiffness affects the onset of
Stoneley waves at low frequencies and, as a consequence, the transmission patterns across the
interface. Furthermore, we will show that the relaxed micromorphic model is able to predict
the appearance of Stoneley waves at higher frequencies, which are substantially microstructure-
related. Finally, we will show that the relaxed micromorphic model also allows for the description
of wide frequency bounds, for which extraordinary reflection is observed. Such frequency bounds
go beyond the band-gap region and are related to the presence of the interface, as well as the
relative mechanical properties of the considered media. In some cases, high-frequency critical
angles discriminating between total transmission and total reflection can also be identified.

4.5.1 Cauchy medium which is “stiffer” than the relaxed micromorphic one

We chose the material parameters of the left Cauchy medium to be those presented in Table 4.6
and we explicitly remark that these values are greater than those of Table 4.5, which are relative
to the equivalent Cauchy medium corresponding to the considered relaxed micromorphic one.

For the chosen values of the constitutive parameters, the critical angles of the incident wave
giving rise to low-frequency Stoneley waves can be calculated using Tables 4.1 and 4.2. They
are found to be θL,rcrit = 33π/100 and θL,tcrit = 17π/200 for an incident SV wave. For this choice of
parameters, no critical angles appear for incident L or SH waves.

Figure 4.14 shows the transmission coefficient for the considered Cauchy/relaxed micromor-
phic interface, as a function of the angle of incidence and of the frequency, when the microstruc-
ture is free to move at the interface (P is left arbitrary at the interface). The coloring of this plot
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ρ [kg/m3] λ [Pa] µ [Pa]

2000 4× 108 2× 108

Table 4.6: Lamé parameters and mass density of the Cauchy medium on the left side of the considered
Cauchy/relaxed micromorphic interface.

(and of the subsequent ones) is such that the dark blue regions mean zero transmission, while the
gradual change towards red is the increase in transmission (red being total transmission). Before
commenting on the details of the behavior of the transmission coefficient, we recall that the case
of free microstructure boundary condition is the only one which allows us to precisely obtain a
Cauchy/equivalent Cauchy interface in the low-frequency regime, something which is not possi-
ble when imposing the fixed microstructure boundary condition (Pij = 0, i = 2, 3, j = 1, 2, 3)
at the interface. As a matter of fact, it is firmly established that a relaxed micromorphic contin-
uum is equivalent to a Cauchy continuum with stiffnesses λmacro and µmacro when considering
the low-frequency regime (see [79]), but this is proven only for the bulk medium. When consid-
ering an interface between a Cauchy and a relaxed micromorphic medium, the latter will behave
exactly as an equivalent Cauchy medium at low frequencies only if the micro-distortion tensor
P is left free at the interface. Indeed, this tensor will arrange its values at the interface in order
to let the low-frequency reflective properties of the Cauchy/relaxed micromorphic interface be
equivalent to those of a Cauchy/equivalent Cauchy interface. On the other hand, if we impose
the fixed microstructure boundary conditions, the tangential components of the tensor P are
forced to vanish at the interface, so that the effect of the microstructure is artificially introduced
in the response of the material even for those low frequencies for which the bulk material would
tend to behave as an equivalent Cauchy medium.

Having drawn such preliminary conclusions, we can now comment Figures 4.14 and 4.15
in detail. For the set of numerical values of the parameters given in Table 4.6 and 4.5, we
established that Stoneley waves can appear in the low-frequency regime only when imposing the
incident wave to be SV.

In particular, the onset of Stoneley waves in the low-frequency regime can be observed in
this case only for longitudinal reflected and transmitted waves when the angles of incidence are
beyond θL,rcrit and θL,tcrit, respectively. This fact can be retrieved in Figure 4.14(b), in which an
increase of the transmission coefficient can be observed in the low-frequency regime correspond-
ing to θL,rcrit (Stoneley reflected waves are created, producing a decrease of the reflected normal
flux and, due to energy conservation, a consequent increase of the transmitted normal flux).
On the other hand, we can notice in the same figure a decrease of the transmitted energy in
the low-frequency regime beyond the critical angle θL,tcrit. This is sensible, given that beyond the

value of θL,tcrit, transmitted Stoneley waves are created, which do not contribute to propagative
transmitted waves in the relaxed micromorphic continuum. We can also explicitly remark that
such a decrease of transmitted energy beyond θL,tcrit in the low-frequency regime is much more
pronounced than in the corresponding Figures 4.14(a) and 4.14(c).
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4.5. Results
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Figure 4.14: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω
for L (a), SV (b) and SH (c) incident waves for the case of macro-clamp with free microstructure. The origin
coincides with normal incidence (θi = π/2), while the angle of incidence decreases towards the right until it
reaches the value θi = 0, which corresponds to the limit case where the incidence is parallel to the interface. The
band-gap region is highlighted by two dashed horizontal lines, where, as expected, we observe no transmission.
The low-frequency regime is highlighted by the bottom horizontal dashed line, while the critical angles for the
onset of Stoneley waves are denoted by vertical dashed lines. The dark blue zone shows that no transmission
takes place, while the gradual change from dark blue to red shows the increase of transmission, red being total
transmission.
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Figure 4.15: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for
L (a), SV (b) and SH (c) incident waves for the case of macro-clamp with fixed microstructure.

(a) (b) (c)

Incident L Incident SV Incident SH

W
a
v
e

fr
eq

u
en

cy
[1

0
6

1
/
s]

Angle of incidence [rad]

W
a
v
e

fr
eq

u
en

cy
[1

0
6

1
/
s]

Angle of incidence [rad]

W
a
v
e

fr
eq

u
en

cy
[1

0
6

1
/
s]

Angle of incidence [rad]

Figure 4.16: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for
L (a), SV (b) and SH (c) incident waves for the case of a Cauchy/Cauchy interface. The parameters of the left
Cauchy continuum are given in Table 4.6, while the ones of the right Cauchy medium are given in Table 4.5.
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This means that the creation of transmitted Stoneley waves contributes to a decrease of
the transmitted energy in the low-frequency regime, but a decreasing trend for the transmission
coefficient is observed also for the other cases, when considering angles which are far from normal
incidence. This goes along the common feeling, according to which the more inclined the incident
wave is with respect to the interface, the less transmission one can expect. The same behavior,
even if qualitatively and quantitatively different, can be found in Figure 4.15(b), in which an
increase of transmission can be observed after θL,rcrit and a decrease after θL,tcrit, also for the case of
fixed microstructure boundary conditions.

Direct comparison of Figures 4.14 and 4.15 allows us to identify the effect that the chosen
type of boundary conditions has on the transmission properties of the interface. We already
remarked that, at low frequencies, common trends can be identified which are related to critical
angles determining the onset of Stoneley waves at the Cauchy/equivalent Cauchy interface.
Nevertheless, some differences can also be remarked which are entirely related to the choice of
boundary conditions. Surprisingly, the effect of boundary conditions intervenes already for low
frequencies, meaning that imposing the value of P at the interface introduces a tangible effect
of the interface microstructured properties on the overall behavior of the considered system. In
particular, we can notice that forcing the tangential part of P to vanish at the interface globally
reduces the low-frequency transmission for angles which are much closer to normal incidence,
than for the case of free microstructure. This means that considering a microstructure which
is not free to vibrate at the interface, allows for microstructure-related reflections, even if the
frequency is relatively low. Such additional reduction of transmission takes place for incident
waves which are very inclined with respect to the surface (θi ≤ π/4).

For the sake of completeness and in order to immediately visualize the extent to which
the relaxed micromorphic model generalizes the classical setting of linear elasticity, Figure 4.16
shows the analogous transmission coefficients for the case of a Cauchy/Cauchy interface. These
coefficients are obtained for a Cauchy medium on the right, which is the low-frequency limit of
the relaxed micromorphic continuum of Fig. 4.14. It is immediately evident that a reasonable
agreement is observed only with the very low frequency regime of Figures 4.14 and 4.15. Given
that in Cauchy elasticity the transmission coefficient does not depend on the frequency, all other
effects at higher frequencies are lost, well before the band-gap region.

Up to now, we only discussed the transmittive properties of the considered Cauchy/relaxed
micromorphic interface on the low-frequency regime. Some of the features that we discussed on
Stoneley waves can be retrieved by observing Figures 4.17, 4.18 and 4.19 in which the plots of
the imaginary part of the first component of the wave vector k1 are given for each mode of the
relaxed micromorphic medium, for L, SV and SH incident waves respectively.

The blue region denotes Im(k1) = 0 (which implies that k1 is real), while Im(k1) is not
vanishing in the red regions. In other words, we can say that for each mode, the red color
means that there are Stoneley waves associated to that mode. The first two modes in Figures
4.17 and 4.18 correspond to L and SV Cauchy-like modes, while the first mode in Figure 4.19
is the SH Cauchy-like mode in the low-frequency regime. Since we are considering a relaxed
micromorphic medium, three additional modes with respect to the Cauchy case are present both
for the in-plane (Figures 4.17 and 4.18) and for the out-of-plane problem (Fig. 4.19). For the
Cauchy-like modes we can observe that at low frequencies they are always propagative, except
in the case of an incident SV wave, for which Stoneley longitudinal waves appear beyond θL,tcrit

(also Stoneley reflected waves can be observed in this case, but we do not present the plots of
Im(k1) for reflected waves to avoid overburdening). We can note by inspecting Figures 4.17, 4.18
and Fig. 4.19 that the presence of Stoneley waves at high frequencies is much more widespread
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4.5. Results

than at low frequencies for all 5 (resp. 4) modes.
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Figure 4.17: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five
modes of the relaxed micromorphic medium and for the case of an incident L wave. The origin coincides with
normal incidence (θi = π/2), while the angle of incidence decreases towards the right until it reaches the value
θi = 0, which corresponds to the limit case where the incidence is parallel to the interface. The first two modes
(a) and (b) correspond to the L and SV modes for the equivalent Cauchy continuum at low frequencies. The red
color in these plots means that the mode is Stoneley and does not propagate, while blue means that the mode is
propagative.
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Figure 4.18: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five
modes of the relaxed micromorphic medium and for the case of an incident SV wave.
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Figure 4.19: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the
four modes of the relaxed micromorphic medium and for the case of an incident SH wave.

We can observe by direct observation of Figures 4.17, 4.18 and 4.19 that high-frequency
critical angles exist for each mode corresponding to which a transition from Stoneley to prop-
agative waves takes place. The value of such critical angles depends on the frequency for the
medium-frequency regime and becomes constant for higher frequencies. The influence of the
existence of such high-frequency critical angles can be directly observed on the patterns of the
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transmission coefficient in Figures 4.14 and 4.15, in which high frequency transmission is ob-
served for angles closer to normal incidence and no transmission is reported for smaller angles
due to the simultaneous presence of Stoneley waves for all modes. We can call such zones in
which transmission is equal to one “extraordinary transmission regions” (see e.g. [73]). Such
extraordinary transmission can be used as a basis for the conception of innovative systems such
as selective cloaking and non-destructive evaluation.

We can finally remark that the influence of the choice of boundary conditions on the high-
frequency behavior of the transmission coefficient is still present, but does not determine drastic
changes on the transmission patterns (see Figures 4.14 and 4.15).

4.5.2 Cauchy medium which is “softer” than the relaxed micromorphic one

In this section we present the reflective properties of a Cauchy/relaxed micromorphic interface for
which we consider that the Cauchy medium on the left is “softer” than the relaxed micromorphic
medium on the right in the same sense as in the previous section. To that end, we choose the
material parameters of the left Cauchy medium to be those presented in Table 4.7 and we
explicitly remark that these values are smaller than those of Table 4.5.

ρ [kg/m3] λ [Pa] µ [Pa]

2000 2× 107 0.7× 107

Table 4.7: Lamé parameters of the “softer” Cauchy medium on the left side of the considered
Cauchy/relaxed micromorphic interface.

With these new parameters we can compute again, following Tables 4.1 and 4.2, the critical
angles for the appearance of Stoneley waves at low frequencies. They are found to be θL,tcrit =

37π/100 and θSV,tcrit = 49π/200 for an incident L wave (no reflected Stoneley mode), θL,rcrit = 7π/20,

θL,tcrit = 11π/25 and θSV,tcrit = 39π/100 for an incident SV wave and θSH,tcrit = 39π/100 for an incident
SH wave.

Figures 4.20 and 4.21 show the transmission coefficient for the softer Cauchy/relaxed micro-
morphic interface as a function of the angle of incidence and of frequency for both boundary
conditions.

We see that when the incident wave travels in a soft medium and hits the interface separating
this medium from a stiffer one, many critical angles exist which determine the onset of Stoneley
waves for all types of incident waves at low frequencies. Since many more Stoneley waves are
created with respect to the previous case of section 4.5.1, we would expect less transmission in
the low-frequency regime than before. This is indeed the case if we inspect Figures 4.20 and
4.21: the presence of low-frequency Stoneley waves induces a wide zero-transmission zone in
the low-frequency regime. We can also detect a certain role of boundary conditions in widening
these zero-transmission zones when considering the fixed microstructure boundary condition (see
Figure 4.21).

Also in this case of a left “softer” Cauchy medium, we plot in Fig. 4.22 the analogous
transmission coefficient when the right side of the interface is occupied by a Cauchy medium.
Again, this Cauchy medium on the right is the homogenized limit of the considered micromorphic
material. By directly comparing to Fig. 4.20, we infer that a reasonable agreement can be
observed only for very low frequencies. All other higher frequency effects are lost before the
band-gap.
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4.5. Results

Figures 4.23, 4.24 and 4.25 once again show the imaginary part of the first component of
the wave-vector k1 for each mode of the relaxed micromorphic medium on the right. We see
that Stoneley waves are observed almost everywhere both at low and high frequencies, with
the exception of angles which are very close to normal incidence. Once again, the blue region
denotes Im(k1) = 0 (which implies that k1 is real), while Im(k1) is not vanishing in the red
regions, which means that for each mode, the red color denotes that there are Stoneley waves
associated to that mode. The first two modes in Figures 4.23 and 4.24 correspond to L and
SV Cauchy-like modes, while the first mode in Figure 4.25 is the SH Cauchy-like mode in the
low-frequency regime.

Since we are considering a relaxed micromorphic medium, three additional modes with re-
spect to the Cauchy case are present both for the in-plane (Figures 4.23 and 4.24) and for the
out-of-plane problem. For this choice of parameters which make the left-side medium “softer”
than the corresponding Cauchy medium on the right, we see that the Cauchy-like modes for all
incident waves become Stoneley waves after a critical angle (clearly denoted on the plots with a
vertical dashed line). Also Stoneley reflected waves can be observed in this case, but we do not
present the plots of Im(k1) for reflected waves to avoid overburdening.

We see that it is possible to create an almost perfect total screen, which completely reflects
incident waves for almost all angles of incidence and wave frequencies. This extraordinary
possibility can be obtained by simply tailoring the properties of the left Cauchy medium which
has to be chosen to be suitably softer than the right equivalent Cauchy medium. Regions of
extraordinary transmission for very wade ranges of incident angles and wave frequencies can be
engineered, opening the door to exciting applications.

Before concluding the Results section, we point out a last interesting property of the trans-
mission coefficient obtained by the relaxed micromorphic model. In both cases (see Figures 4.14,
4.15, 4.20, 4.21) the band-gap for SV incident waves is more extended than the band-gap for L
incident waves for angles close to normal incidence. This phenomenon is due to the uncoupling
of L and SV “activated” acoustic modes close to normal incidence outlined in Fig. 4.10. Close
to normal incidence, only the green modes are activated by an incident SV wave, so that the
band-gap is widened. This “uncoupling” effect can often be observed in real metamaterials. An
analogous “mode uncoupling” at higher frequencies is responsible for the wider zero-transmission
high-frequency region for SV incident waves compared to L incident waves.
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Figure 4.20: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for
L (a), SV (b) and SH (c) incident waves for the case of macro-clamp with free microstructure and for a “softer”
Cauchy medium on the left.
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Figure 4.21: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for
L (a), SV (b) and SH (c) incident waves for the case of macro-clamp with fixed microstructure and for a “softer”
Cauchy medium on the left.
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Figure 4.22: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for
L (a), SV (b) and SH (c) incident waves for the case of a Cauchy/Cauchy interface. The parameters of the left
Cauchy continuum are given in Table 4.7, while the ones of the right Cauchy medium are given in Table 4.5.
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Figure 4.23: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five
modes of the relaxed micromorphic medium for the case of an incident L wave and a “softer” Cauchy medium on
the left.
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Figure 4.24: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five
modes of the relaxed micromorphic medium for the case of an incident SV wave and a “softer” Cauchy medium
on the left.
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Figure 4.25: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the four
modes of the relaxed micromorphic medium for the case of an incident SH wave and a “softer” Cauchy medium
on the left.

4.6 Conclusions

In this chapter we presented the detailed study of the reflective and refractive properties of a
two-dimensional interface separating a classical Cauchy medium from a relaxed micromorphic
medium. Both media are assumed to be semi-infinite.

We show in great detail that critical angles of incidence exist, beyond which classical Stoneley
waves appear at low frequencies. It is shown that these critical angles directly depend on the
relative mechanical properties of the two media. Moreover, we unveil the existence of critical
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angles which give rise to Stoneley waves at higher frequencies. These Stoneley waves are clearly
related to the presence of an underlying microstructure in the metamaterial.

We show that, due to the onset of low and high-frequency Stoneley waves, wide frequency
bounds where total reflection and/or total transmission occur can be engineered. This total
reflection/transmission phenomenon is appealing for applications, in which total screens for
elastic waves, such as cloaks or wave-filters, are desirable. It is clear that the ability of widening
the frequency and incident angle intervals for which total reflection/transmission occur, would
be of paramount importance for conceiving new devices which are more and more performant
for wavefront manipulation.

We also clearly show that the simple fact of suitably tailoring the relative stiffnesses of the
two media allows for the possibility of conceiving almost perfect total screens which do not
transmit elastic waves for any kind of incident wave (longitudinal, in-plane and out-of-plane
shear) and for almost all (low and high) frequencies and angles of incidence. Acting on such
relative stiffnesses allows to achieve also the opposite situation, where total transmission occurs
for large frequency bounds before a microstructure-related critical angle. This could be exploited
for the conception of selective cloaks which make objects transparent to waves dependently on
the angle of incidence.

The results presented in this chapter have been published in references [2] and [3].
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Chapter 5

Relaxed micromorphic model of transient wave propagation in
anisotropic band-gap metastructures

Forced (i.e. non-homogeneous) scalar (out-of-plane) and vector (in-plane) problems of linear
elasticity in micro-structured unbounded domains have been studied extensively in the liter-
ature. The Green’s function provides a formidable analytical tool to write down an integral
representation of the solution which can be evaluated, via analytical or numerical tools, in dif-
ferent frequency regimes. Colquitt et al. [24] obtained the out-of-plane displacement field in
square and triangular elastic lattices, with a particular emphasis on the resonances associated
with dynamic anisotropy and primitive waveforms arising at saddle points in the dispersion
diagram. These primitive waveforms have also been examined in the papers by Langley [49],
Ruzzene et al. [89], Ayzenberg-Stepanenko and Slepyan [8], and Osharovich et al. [82], among
others. We also mention the papers by Martin [67] and Movchan and Slepyan [74], which analyze
the properties of the vector dynamic Green’s functions for a square lattice in the pass and stop
band, respectively. Nonetheless, the use of such analytical tools for continua with a complex mi-
crostructure can be challenging, especially in the transient regime. Therefore, transient and/or
time-harmonic finite element solutions for such problems can be used.

One of the most widespread tools used to study the ability of periodic media to support or
inhibit free wave propagation is the Bloch-Floquet analysis [14]. This technique allows to reduce
the free wave propagation problem, posed in a periodic domain, to an eigenvalue problem in its
period, referred to as unit-cell, with quasi-periodic boundary conditions at the boundaries of the
unit-cell.

This chapter shows that the relaxed micromorphic model is rich enough to face exciting prob-
lems concerning the mechanical behavior of two-dimensional (2D) anisotropic micro-structured
materials, which possess frequency band-gaps and non-trivial dispersive properties. More specif-
ically, we compare the high-frequency dynamic response of a specific micro-structured material
- subjected to space-concentrated and time-modulated loads - to the corresponding response
issued by the relaxed micromorphic continuum. In particular, it is shown that the transient
waveforms within the chosen metastructure are well-captured by the relaxed micromorphic con-
tinuum model, while the classical Cauchy continuum model is only accurate at lower frequencies.

We particularize our analysis to 2D plain-strain continua belonging to the tetragonal sym-
metry class. An outline of this chapter is given as follows: in section 5.2.1, we introduce the
micro-structured material of interest, define its unit cell and perform Bloch-Floquet analysis.
The dispersive properties of the periodic structure are shown, via dispersion curves along spec-
ified paths in the first Brillouin zone. In addition, we compare the Bloch-Floquet dispersion
diagram with the dispersion diagram issued via the relaxed micromorphic continuum model,
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5.1. The plane-strain tetragonal symmetry case

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: High-frequency waveforms in the transient regime for the considered tetragonal
metastructure (panels (b) and (f)) agree with those obtained in a relaxed micromorphic contin-
uum model (panels (c) and (g)). The aforementioned waveforms are generated by the application
of space-concentrated pulses, whose time-dependence is shown in panels (a) and (e), respectively.
The blue arrows in panels (a) and (e) indicate the time at which the waveforms on their right
have been evaluated. Panels (d) and (h) report the transient waveform in an equivalent Cauchy
continuum, showing propagation instead of localisation. We refer to section 5.4 for a detailed
discussion.

enabling us to determine the constitutive parameters of our enriched model by a simple in-
verse approach. In section 5.3, we introduce a space-concentrated and time-modulated pulse
to be applied to (i) a finite metastructure, (ii) a finite continuum governed by the relaxed mi-
cromorphic model and (iii) a finite continuum modeled by an equivalent Cauchy model. The
time-dependence of the prescribed pulse is tailored in order to explore different frequency re-
gions within the dispersion diagram of the corresponding periodic structure (see Fig. 5.1(a) and
5.1(e), for example). Section 5.4 is devoted to the discussion of the main results of this chap-
ter: we show that a relaxed micromorphic continuum subjected to the aforementioned transient
pulse, displays similar waveforms to those exhibited by the micro-structured domain, including
localized waveforms corresponding to frequencies in the band-gap and optical branches. On
the other hand, the Cauchy model is not descriptive outside the low frequency regime. An
illustrative anticipation of the obtained results is shown in Fig. 5.1. In addition, we show that
by using our enriched continuum model instead of the explicit calculation of all the details of
the microstructure provides a true advantage in terms of computational time, especially when
considering large metastructures.

5.1 The plane-strain tetragonal symmetry case

Contrary to our analysis in chapter 4, in this chapter we will focus only on the in-plane be-
havior of a metamaterial introducing the plane-strain assumption, which implies the following
constraints:

• we consider only the in-plane degrees of freedom, i.e. u3, P13, P31, P23, P32 and P33 are
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5

set to zero;

• we consider only the in-plane deformations i.e. all the derivatives on the out-of-plane
direction are set to be zero.

These assumptions correspond to the following simplified form of the kinematical fields:

u(x1, x2, t) =


u1(x1, x2, t)

u2(x1, x2, t)

0

 , P (x1, x2, t) =


P11(x1, x2, t) P12(x1, x2, t) 0

P21(x1, x2, t) P22(x1, x2, t) 0

0 0 0

 . (5.1)

Moreover, since we are interested in studying the dynamic response of the metastructure gener-
ated by the unit cell given in Fig. 5.2, we consider that the corresponding relaxed micromorphic
continuum must be particularized to the same symmetry class of the unit cell, i.e. the tetragonal
symmetry.

Following [29], we denote the second order constitutive tensors in Voigt notation correspond-
ing to the fourth order ones appearing in the kinetic and strain energy expressions (3.11) and
(3.5) by a tilde, as done in chapter 3.4.1 With the proposed assumptions, the constitutive ten-
sors of the relaxed micromorphic model in the tetragonal symmetry case are given by (5.2) (see
[9, 29])

C̃e =



2µe + λe λe ? 0 0 0

λe 2µe + λe ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 µ∗e


, C̃c =


? 0 0

0 ? 0

0 0 4µc

 ,

C̃micro =



2µmicro + λmicro λmicro ? 0 0 0

λmicro 2µmicro + λmicro ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 µ∗micro


,

J̃micro =



2 η1 + η3 η3 ? 0 0 0

η3 2 η1 + η3 ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 η∗1


, J̃c =


? 0 0

0 ? 0

0 0 4 η2

 ,

1For example, the 4th order tensor Ce is written as C̃e in Voigt notation.
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5.2. Dispersive properties of a band-gap metamaterial with tetragonal symmetry

(5.2)

T̃e =



2 η̄1 + η̄3 η̄3 ? 0 0 0

η̄3 2 η̄1 + η̄3 ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 η̄∗1


, T̃c =


? 0 0

0 ? 0

0 0 4 η̄2

 ,

where we denoted by a star those components, which work on out-of-plane macro- and micro-
strains and do not play any role in the considered in plane (plane-strain) problem.

5.2 Dispersive properties of a band-gap metamaterial with tetragonal sym-
metry

In this section, we choose a specific two-dimensional (2D) metamaterial whose dispersive prop-
erties and frequency band-gaps have already been investigated in the literature (see [29] and
section 5.2.3). The unit-cell of the considered metamaterial is represented in Fig. 5.2(a).

Figure 5.2: Panel (a) is a schematic representation of the unit-cell of the square lattice. In panel
(b), the gray square represents the boundaries of the first Brillouin zone. The path connecting
the high-symmetry points Γ, X and M, on which the dispersion surfaces will be projected is also
shown (black dashed line).

a c b 2π/a Γ X

M

In Fig. 5.2(a), the shaded areas represent aluminum while the white areas denote cross-
shaped holes. In Table 5.1, we give the geometric parameters of the unit cell (left), as well as
physical parameters for aluminum (right).
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a b c

[mm] [mm] [mm]

1 0.9 0.3

E ν µ λ ρAl

[GPa] − [GPa] [GPa]
[
Kg/m3

]
70 0.33 26.32 51.08 2700

Table 5.1: Geometric parameters of the unit-cell (see also Fig. 5.2(a)), elastic parameters and
mass density ρAl of aluminum. For the reader’s comfort we give both the values of Young’s
modulus and Poisson’s ratio (E, ν), as well as the Lamé parameters (λ, µ).

In the following subsections, we will present the basis to analyze the dynamical behavior of
the unit-cell by means of a Bloch-Floquet analysis (section 5.2.1), via the relaxed micromorphic
model (section 5.2.2) and we will show the resulting dispersion curves in section 5.2.3.

5.2.1 Bloch-Floquet dispersion diagram

The 2D Bravais lattice with unit-cell in Fig. 5.2(a) has primitive vectors

a1 =


1

0

0

 a, and a2 =


0

1

0

 a, (5.3)

and reciprocal lattice primitive vectors

G1 =
2π

a


1

0

0

 , and G2 =
2π

a


0

1

0

 . (5.4)

The first Brillouin zone for the lattice coincides with the Wigner-Seitz unit cell of the reciprocal
Bravais lattice and is represented in Fig. 5.2(b). We also mark the representative points in the
first Brillouin zone

Γ =
π

a


0

0

0

 , X =
π

a


1

0

0

 , M =
π

a


1

1

0

 , (5.5)

which will be used for the representation and discussion of the dispersive properties of the
periodic structure. Those properties are obtained by solving the PDE eigenfrequency problem
governed by time-harmonic linear plain strain elasticity in the domain Ω0 represented by the
unit cell.

The Bloch-Floquet boundary conditions for the displacement field in the periodic structure
are

u
(
x+ l(n)

)
= ei〈k,l

(n)〉u(x), x ∈ Ω0, (5.6)

where we have introduced the lattice nodal points

l(n) = n1a1 + n2a2, n = (n1, n2)T ∈ Z2, (5.7)
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5.2. Dispersive properties of a band-gap metamaterial with tetragonal symmetry

and the Bloch-Floquet wave vector k = (k1, k2, 0)T, with

(k1, k2)T ∈
[
−π
a
,
π

a

]
×
[
−π
a
,
π

a

]
. (5.8)

The right-hand-side in Eq (5.8) is the first Brillouin zone for the square lattice under considera-
tion (see also Fig. 5.2(b) for a schematic representation). We assume that the cross-like holes in
Fig 5.2(a) delimit vacuum. Therefore we assign traction-free boundary conditions in correspon-
dence of the boundary of the cross-like hole in Fig 5.2(a). We use Comsol MultiphysicsTM to solve
the Bloch-Floquet eigenvalue problem described above, with spectral parameter ω = ω(k1, k2).

5.2.2 Relaxed micromorphic model: identification of the constitutive parameters
and the plane wave ansatz

An explicit procedure for the a priori determination of the material parameters of a specific
unit-cell has been proposed in [29]. Although the setup of this procedure is not the main
objective of this chapter, it is, nevertheless, worthwhile to recap the determination procedure,
as it is of crucial importance to understand the interest of using the relaxed micromorphic
model with respect to other enriched continuum models available in the literature. In fact, the
relaxed micromorphic model features a limited number of constitutive parameters, all with a
clear physical meaning, which can be determined a-priori on the basis of simple static tests.
More specifically, Cmacro represents the mechanical properties of a very large specimen of the
considered metamaterial, Cmicro encloses the mechanical properties of smaller specimens, down
to the unit cell scale, and Ce gives the transition between the two scales. As already anticipated,
most of the parameters can be determined directly starting from a simulation of the unit-cell.
Indeed,

• applying Periodic Boundary Conditions (PBCs) to the boundary of the unit-cell, the
macroscopic tensor CM can be determined. This procedure is equivalent to running a
standard mechanical test on a large specimen of the considered metamaterial to obtain its
mechanical properties. It is also equivalent to classical homogenisation procedures;

• applying Kinematically Uniform (Dirichlet) Boundary Conditions (KUBCs) to the bound-
ary of the unit-cell, the microscopic tensor Cmicro can be determined (see [29] for an ex-
tensive treatment and, in particular, for a motivation of the choice of KUBC rather than
other possible boundary conditions); this procedure is equivalent to running mechanical
tests on specimens of the metamaterial whose dimensions are comparable to those of the
unit cell;

• Ce is directly computed inverting the harmonic tensor mean (3.77);

• from the cut-off frequencies (obtained via a Bloch-Floquet analysis, see section 5.2.3),
we derive the micro-inertiae η1, η3 and η∗1 and an explicit relation between the Cosserat
couple modulus µc and η2. As a matter of fact, the cut-off frequencies are related to the
parameters of the relaxed micromorphic model via the simple formulae

ωr =

√
µc
η2
, ωs =

√
µe + µmicro

η1
, ω∗s =

√
µ∗e + µ∗micro

η∗1
, ωp =

√
µe + µmicro + λe + λmicro

η1 + η3
.

(5.9)
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Thus, the only parameters which are still free after the proposed identification procedure are
the inertiae η̄1, η̄∗1 and η̄3 linked to ∇u,t and η2. Those parameters can be used to fine-tune the
dispersion curves or some other specific behavior of the proposed metamaterial. In Table 6.1,
we present the material parameters resulting from the systematic physically-grounded procedure
described above (we refer the reader to [29] for an extensive discussion about this point), as well
as the fine tuning of the dispersion curves. The characteristic length Lc is set to be 0. Neverthe-
less, a non-vanishing Lc is a crucial point for a description of the non-locality of metamaterials,
but the task of its identification is postponed to forthcoming work.

λe µe µ∗e

[GPa] [GPa] [GPa]

− 0.77 17.34 0.67

λe µmicro µ∗micro

[GPa] [GPa] [GPa]

5.98 8.93 8.33

µc

[GPa]

2.2 · 10−2

Lc

[m]

0

λmacro µmacro µ∗macro

[GPa] [GPa] [GPa]

1.74 5.89 0.62

ρ η1 η2 η3 η∗1 η1 η2 η3 η∗1[
kg/m3

]
[kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m]

1485 9.5 · 10−5 1 · 10−7 0.86 · 10−5 3.27 · 10−5 5 · 10−5 5 · 10−5 8 · 10−5 0

Table 5.2: Summary of the numerical values for the elastic (top) and inertia (bottom) parameters
of the tetragonal relaxed micromorphic model in 2D. The macroscopic parameters of the resulting
homogenized Cauchy material are also provided.

The fitting performed in this chapter in order to capture the dispersive behavior of the
tetragonal metamaterial with the relaxed micromorphic model is a preliminary one. Indeed,
as we will see in chapter 6 where we will consider scattering problems in interfaces with this
metamaterial, we will then have an additional tool which will help us fine-tune the material
parameters.

As done for the case of isotropy in chapter 4, the fundamental analytical solutions of the
PDEs system (3.28) are given by the plane waves

u (x, t) = û ei(〈k,x〉−ωt), P = P̂ ei(〈k,x〉−ωt), k = (k1, k2, 0)T, (5.10)

where x = (x1, x2, 0)T, and the plane strain assumption (see section 5.1) implies

û =


û1

û2

0

 , P̂ =


P̂11 P̂12 0

P̂21 P̂22 0

0 0 0

 . (5.11)

Substituting (5.10) in (3.28), the system of PDEs (3.28) turns into an algebraic problem:

Â (k, ω) · v = 0, (5.12)

where Â (k, ω) is a 6×6 semi-positive definite matrix (see [79]), whose components are functions
of the relaxed micromorphic constitutive parameters, of the wave vector k and of frequency ω and
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5.2. Dispersive properties of a band-gap metamaterial with tetragonal symmetry

v = (û1, û2, P̂11, P̂12, P̂21, P̂22)T. The explicit expression of the matrix Â is algebraically involved,
but easily tractable with standard numerical tools, such as MathematicaTM or MatlabTM. For
the explicit expression of the matrix D, we refer to [29] and Appendix C1. The algebraic system
(5.12) admits non-trivial solutions if and only if

det Â(k, ω) = 0, (5.13)

which is the dispersion equation for the micromorphic continuum. The solutions ω = ω (k)
of Eq. (5.13) provide the dispersion relations for plane wave propagation in the anisotropic
micromorphic continuum.

We remark that, by choosing a wave vector k and thus a propagation direction, the frequen-
cies ω = ω(k) can be obtained as roots of Eq. (5.13). In the present thesis we choose to project
the dispersion surfaces over the path v, by sampling such a path, and iteratively solving Eq.
(5.13).

5.2.3 Dispersive properties of the metamaterial and of the equivalent continuum

Fig. 5.3 shows the dispersion diagrams over the path k ∈ MΓXM in the first Brillouin zone of
the considered periodic structure (see the dashed line in Fig. 5.2(b)). The dotted lines in Fig 5.3
are obtained by performing the Bloch-Floquet analysis outlined in section 5.2.1. The solid lines
are the roots ω = ω(k) of the relaxed micromorphic dispersion equation (5.13) for k ∈ MΓXM
(see section 5.2.2). For the considered microstructure, we obtain the cut-off frequencies shown
in Table 5.3.

ωr ωs ω∗s ωp

[rad/s] [rad/s] [rad/s] [rad/s]

0.4 · 107 1.68 · 107 1.68 · 107 1.75 · 107

Table 5.3: Numerical values of the cut-offs for the considered metamaterial.

It is worthwhile pointing out that the notion of first Brillouin zone for a homogeneous
continuum medium such as the relaxed micromorphic model, loses its sense, since a continuum
is intrinsically macroscopic and a relation with specific unit cells can only be found a posteriori.
On the other hand, dispersion diagrams in periodic media with microstructure are periodic in
the reciprocal space identified by k, the period being the first Brillouin zone.

We explicitly remark that the relaxed micromorphic model is able to account for the overall
dispersive properties of the metamaterial with unit cell in Fig. 5.2(a) (see Fig. 5.3). Some differ-
ences can be appreciated especially in the neighborhood of the boundaries of the first Brillouin
zone, corresponding to large values of the Bloch vector. This means that the relaxed micro-
morphic continuum model is less accurate when considering small wavelengths which become
comparable with the size of the unit cell. Even if a loss of precision for small wavelengths is
expected when considering continuum models, further generalizations of the relaxed micromor-
phic model will allow a better precision also for such small wavelengths. Nevertheless, as we
will show in the next section, the used homogenized model is precise enough for describing the
propagation of pulses in metastructures, also at relatively high frequencies.
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Figure 5.3: Comparison of dispersion curves obtained solving Eq. (5.13) for the relaxed micro-
morphic model (solid lines) and the Bloch-Floquet dispersion diagrams for the micro-structured
domain (see section (5.2.1)) (dotted lines). We project the dispersion curves over the path
MΓXM in the first Brillouin zone for the periodic structure (see Fig. 5.2(b)). With reference
to Tab. 5.4, the blue shadow area has thickness ∆ωLF/2 (the negative part is omitted) and
is delimited from below by ωLF

0 = 0. The vertical thicknesses of the remaining shadows, from
bottom to top, correspond to the values of ∆ω and are centred around ωi0, i = {MF,BG,HF},
respectively (see Tab. 5.4). The blue curves refer to pressure dominated modes, while the green
curves identify shear-dominated and rotation-dominated modes. Such identification cannot be
done at high frequency, where the dispersion branches are represented in black.

5.3 Description of transient pulse propagation in metastructures via the
relaxed micromorphic model

As pointed out in the introductory section, time-harmonic problems in discrete lattices and
micro-structured continua have been extensively studied in the literature. For non-homogeneous
elastic problems in infinite micro-structured domains, finite-element time-harmonic solutions
heavily rely on the ability to model a perfectly absorbing frame in a finite computational domain.
For lattice structures, it is often sufficient to introduce a damping term in the equations of motion
for the masses belonging to an exterior computational frame [16, 24, 93, 94]. For continua with
microstructure, this is not possible and the research is currently ongoing, even if several ad-hoc
solutions, based on the perfectly matched layer method, have been already proposed [31].

To overcome this problem, we choose to apply a concentrated pulse in the middle of the
considered metastructure. We show transient waveforms in the time-domain, before spurious
reflections, stemming from the interaction with the boundaries of the computational domains,
intervene. This method allows us to avoid the implementation of perfectly absorbing frames,
but demands the precise definition of a space-concentrated and time-modulated prescribed dis-
placement. The remainder of this section is devoted to such a definition.
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5.3. Description of transient pulse propagation in metastructures via the relaxed
micromorphic model

5.3.1 Computational domains

The computational domains implemented in Comsol MultiphysicsTM are schematically rep-
resented in Fig. 5.4(a) and Fig. 5.4(b). These domains are squares each of which has side
A = 121 a and is centered at the origin of the 2D Cartesian system of coordinates (x1, x2).
Fig. 5.4(a) is textured with a microstructure, whose magnification is given in Fig. 5.4(c). Fig.
5.4(b) shows a continuous domain in which we solve the system of PDEs (3.28) for the relaxed
micromorphic model and the system of PDEs (3.78) for the equivalent Cauchy continuum.

Fig. 5.4(d) is a magnification of Fig. 5.4(b). The solid red squares in Figs 5.4(c) and
5.4(d), here referred to as ∂Ω0, denote the boundaries on which the prescribed displacements
are applied (see also the boundary conditions in equations (3.30), (3.31) and (3.78) for the
boundary conditions pertaining the relaxed micromorphic and the equivalent Cauchy models,
respectively). On the other hand, the micro-structured computational domain in Fig 5.4(a) is

(a) (b) (c) (d)

A B

Figure 5.4: Schematic representations of the computational domains. Panel (a) is a micro-
structured domain textured with cross-like holes. Panel (b) is a homogeneous domain modeled
as a generalized continuum. The red inner square ∂Ω0, represents the boundary where the
external prescribed displacement is applied. Panels (c) and (d) are magnifications of panels (a)
and (b), respectively, comprising the square domain ∂Ω0. The dimension A is relative to the
whole computational domain, while the squares of side B are the windows over which the results
are reported (see Figs 5.7-5.15).

governed by the equations of classical linear elasticity

ρAl u,tt = Div [C sym∇u] ∀x ∈ Ω, (5.14)

f : = (C sym∇u) · n = text(x, t) or u = ϕ(x, t), ∀x ∈ ∂Ω0,

where C is the stiffness matrix for aluminum, with elastic parameters given in Tab. 5.1. In
solving equation (5.14), traction-free boundary conditions are used at the cross-like holes and
at the external boundary ∂Ω2. In the following we define the time and space dependence of the
external prescribed displacement ϕ, which appear in equations (3.30), (3.31) (3.78) and (5.14).

5.3.2 Definition of the concentrated and modulated pulse

The concentrated and modulated pulse is a prescribed displacement for the systems of PDEs
governing the structures in Fig. 5.4. We assume that the frequency spectrum of the applied

2We explicitly remark that, for the micro-structured solid, the domain Ω which appears in equations (5.14)
coincides with the gray area in Figs 5.4(a) and 5.4(c).
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pulses is of the Gaussian-type. The Gaussian function describing the frequency content has a
mean ω0, corresponding to either the acoustic branches, the band-gap or the optical cut-offs
of the dispersion diagram in Fig. 5.3 (see Table 5.3). The Gaussian function has a standard
deviation proportional to ∆ω, whose values have been deliberately chosen to be much smaller
than the highest cut-off frequency of the structure. The frequency content of the time-dependent
part of the prescribed displacement can be represented as the following function

f (ω) =
2

∆ω
exp

[
−2

(
ω − ω0

∆ω

)2
]
, with ∆ω � ωp. (5.15)

Since the problem is linear, the choice of a Fourier spectrum like in equation (5.15) guarantees
that the structure will respond only to predefined frequency intervals which are ∆ω wide and
have ω0 mean value.

The Fourier anti-transform of the function (5.15) is

I (t) = F−1[f(ω)] = exp

[
−iω0t−

1

8
(∆ω)2 t2

]
. (5.16)

As mentioned earlier, a time-modulated pulse allows us to explore selected frequency regimes
in the dispersion diagram. We denote these frequency regimes as low frequency regime (LF),
medium frequency regime (MF), band-gap regime (BG) and high frequency (HF) regime. In
each of these frequency regimes, the Fourier transform in equation (5.18) has to be considered
with different values of ω0 and ∆ω. Those values are listed in Tab. 5.4. The values of ω0 are also
marked along the y−axis of Fig. 5.3. In Fig. 5.5(a), we evaluate the functions (5.15), in each
frequency regime, as a function of frequency: blue, orange, green and red curves correspond to
the LF, MF, BG and HF regimes, respectively. Figs 5.5(b), 5.5(c), 5.5(d) and 5.5(e) represent
the Fourier anti-transform (5.16) as a function of time, in the LF, MF, BG and HF regimes,
respectively. With reference to Fig. 5.5, in panels (b), (c), (d) and (e) we have introduced a
time scale t0. We choose as initial and final time of the transient pulse the times t = −t0 and
t = t0, respectively. The time scale t0 is not arbitrary: with reference to equation (5.16), in
order to have ‖I (t) ‖t=±t0 � 1, i.e. a small pulse at the initial and final times, it follows that

|t0| � 1/∆ω. (5.17)

This means that the values of t0 have to be chosen according to the values of ∆ω, and thus
depend on the frequency regime. The values we use for the time scale t0 are reported in the
third column of Tab. 5.4.

ω0 [107 rad/s] ∆ω [105rad/s] t0 [10−6 s]

LF 0 7.5 8.38

MF 0.47 7.5 7.02

BG 1.25 25 2.14

HF 1.66 7.5 6.72

Table 5.4: Parameters used to model the time dependence of the pulse.
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5.3. Description of transient pulse propagation in metastructures via the relaxed
micromorphic model

t/t0 t/t0

t/t0 t/t0

(a) (b) (c)

(d) (e)

Figure 5.5: Frequency contents and time-dependence of four prescribed displacements. Panel
(a) shows the time-Fourier transform of the pulses (see equation (5.15)). Blue, orange, green
and red curves are the LF, MF, BG, HF regimes, respectively. Panel (b), (c), (d) and (e) are
the real parts of the corresponding Fourier anti-transforms as a function of time ( i.e. Re(I(t)),
where I(t) is in equation (5.16)). The values of t0 are given in Tab. 5.4 for each of the four
frequency regimes.

The prescribed displacement has the space and time expression

ϕj (x, t) = ϕ0 I (t) Sj(x), x ∈ ∂Ω0, j = {p, s, r}, (5.18)

where the function I (t) has been introduced in equation (5.16), the domain ∂Ω0 corresponds to
the red squares in Fig. 5.2, and ϕ0 = 1.4× 10−4 m. The vector functions of the space variable
in equation (5.18) are

Sp(x1, x2) =


x1/a

x2/a

0

 , Ss(x1, x2) =


x2/a

x1/a

0

 , Sr(x1, x2) =


x2/a

−x1/a

0

 , (5.19)

where we recall that a is the side of the square unit-cell (see Fig. 5.2(a)). The functions of space
(5.19) result in a pressure-like (p), shear-like (s) or rotation-like (r) deformation of the square
∂Ω0, respectively. A schematic representation of the deformations induced by the functions
(5.19) is given in Fig. 5.6. The dashed red lines in Fig. 5.6 represent the undeformed squares
∂Ω0 and the solid lines represent, from left to right, pressure-like, shear-like and rotation-like
deformations.

The advantage of the transient problem with a prescribed displacement as in equation (5.18)
is that the anisotropic propagation or localization of the waveforms (both “fingerprints” of the
non-trivial dispersion in metamaterials) can be studied over finite time intervals, short enough
for the solution not to reach the boundary of the computational domain but long enough to
allow the signal to develop.
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Figure 5.6: Schematic representations (from left to right) of pressure-like, shear-like and rotation-like
prescribed displacement. The dotted red square represent the non-deformed square ∂Ω0 and the solid
red contours represent its deformations as prescribed by equations (5.19). The figure is out of scale.

5.4 Results and discussion

In this section, we report transient finite element solutions for the following PDE models:

• a fully resolved micro-structured domain, with physical properties as in Table 5.1 and
geometry depicted in Fig. 5.4(a); such medium is governed by the system of PDEs (5.14),
with prescribed displacement as in equation (5.18);

• a relaxed micromorphic model, with physical properties as in Table 6.1 and the domain
of Fig. 5.4(b); such enriched continuum is governed by the system of PDEs (3.28), with
prescribed displacement as in equation (5.18);

• an equivalent macroscopic Cauchy continuum governed by Cmacro (see equation (3.77) and
Table 6.1), in the domain depicted in Fig. 5.4(b).

For the relaxed micromorphic model, rather than considering the strong form in equation
(3.28), we implement the corresponding weak form, readily obtained imposing the first variation
of the action functional to be zero

The variation is here intended with respect to the six independent kinematic fields entering
the plane-strain assumption in equation (5.1).

In the following, transient solutions will be given at several times t, for the different models
mentioned above and a prescribed displacement of the type in equation (5.18). We consider
three different space dependencies (pressure-like, shear-like and rotation like) and the frequency
regimes defined in section 5.3.2, i.e.:

1. low frequency (LF);

2. medium frequency (MF);

3. band-gap (BG);

4. high frequency (HF).

Each of the following subsections will be devoted to the analysis of the transient response of the
metastructure in the aforementioned frequency regimes. The time domain is sampled with 10
time steps between the zeros of each signal in Figs 5.5(b) to 5.5(e). The results for the modulus
of the displacement field are represented on a square frames of side B = 30 a (see Figs 5.4(a)
and Figs 5.4(b)). The fully resolved finite element model solves for 250000 degrees-of-freedom at
every time step, whereas only 100000 degrees of freedom are needed to obtain convergent results
in the homogenized-Cauchy case and relaxed micromorphic case results. This reduction is due

81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI073/these.pdf 
© [A. Aivaliotis], [2019], INSA Lyon, tous droits réservés
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to the fact that the relaxed micromorphic model is a continuous model, while the full resolution
of the real system intrinsically reveals a discrete nature. Such intrinsic simplification related to
the use of an enriched continuum modeling will result in a computational time-saving as it will
be reported in the results section.

5.4.1 Low frequency regime

In this section, we consider a prescribed displacement as in equation (5.18) in the low frequency
regime (see the nomenclature introduced in section 5.3). Specifically, the frequency content is
centred around zero (see blue curve in Fig. 5.5(a)), which results in a Gaussian pulse in the
time domain (see Fig. 5.5(b)).

The first case considered is the pressure-like prescribed displacement, obtained inserting the
first of equations (5.19) in equation (5.18). In Fig. (5.7), we present snapshots of the resulting
transient displacement for the micro-structured domain, the relaxed micromorphic continuum
and a continuum governed by Cauchy elasticity, respectively. The directions of propagation are
given by the properties of the micro-structure and, in particular, the wave propagates mainly
on the directions of the beams in the micro-structure (0 and 90 degrees). As expected in the
low frequency regime, the anisotropy is very well described by both the relaxed micromorphic
model and the macroscopic Cauchy model. The columns correspond to different times, namely
t/t0 = {−1/2, 0, 1/2, 1} (t0 is the LF value in Tab. 5.4). The moduli of the displacements in
each of the four different columns match very well. This proves that the propagation speed is
very well described in the LF regime for pressure-like excitations.

Similar conclusions apply to Figures 5.8 and 5.9, where, shear-like and rotation-like pulse
propagations are respectively shown. The direction of propagation is, once again, given by the
micro-structure, leading to a relevant energy channeling at ±45 degrees, in both cases. Further-
more, we observe that there is no substantial difference between the computations in Fig. 5.8
pertaining to a shear-like pulse and in Fig. 5.9 pertaining to a rotation-like pulse. In our opin-
ion, the close similarity of the represented waveforms is due to the very low rotational stiffness
of the unit cell leading to a shear-like propagation also for rotation-like pulses. The rotational
mode, that is described by the skew-symmetric part of ∇u and P , has a very low stiffness also
in the chosen material parameters of the relaxed micromorphic model (µc ' µmacro/200). The
substantial equivalence between shear-like and rotation-like excitation is preserved in all the
frequency regimes. Therefore, we will refrain from showing the rotation-like excitations in the
remainder of the chapter.

Overall, the presented results show that, in the low frequency regime, there is no signifi-
cant difference between the three examined models. It also confirms a standard low frequency
homogenisation result according to which the low frequency dispersion, and the corresponding
PDEs, for a metamaterial with tetragonal symmetry are well captured by a macroscopic Cauchy
continuum with the same symmetry. Moreover, in [9] it was proven that Cmacro corresponds
to a macroscopic limit case for the relaxed micromorphic model and, in [29], it has already
been shown that the low frequency dispersion of the considered meta-structure is captured by
the equations of classical linear elasticity with effective tensor Cmacro in equation (3.77). More
specifically, it is shown in [29] that, at low frequencies, the dispersion curves of the equivalent
Cauchy continuum governed by Cmacro provide an excellent approximation for the low frequency
acoustic branches of the micromorphic continuum. By means of Fig. (5.7), (5.8) and (5.9), we
provide a further illustration of this result in the context of low-frequency transient solutions of
PDEs.
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Figure 5.7: Pressure-like pulse propagation in the low frequency regime. The color map
represents modulus of the displacement, with dark blue corresponding to zero displacement and
dark red corresponding to the |umax| = 3×10−5 m. This color scale is adopted in the remainder
of the chapter.
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Figure 5.8: Shear-like pulse propagation in the low frequency regime.
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Figure 5.9: Rotation-like pulse propagation in the low frequency regime.

5.4.2 Medium frequency regime

In this section, we investigate the pulse propagation in the medium frequency regime. This is
done by prescribing a displacement as in equation (5.19), with a time-dependence as in Fig.
5.5(c). The time-dependence has a spectral content as the orange curve in Fig. 5.5(a). The
spectral width (∆ωMF

0 ) and centre (ωMF
0 ) of this signal is also shown in Fig. 5.3 by the orange

shadow area (see MF-row in Tab. 5.4).

In Fig. 5.10, we report snapshots for the transient displacement as a result of a pressure-like
displacement in equation (5.18) (j = p in equation (5.19)), using the first of equations (5.19).
The rows correspond to the micro-structured domain, relaxed micromorphic domain and Cauchy-
elastic domain governed by Cmacro, respectively. Different columns correspond to different times
t/t0 = {−1/2, 0, 1/2, 1}. With reference to Figs 5.10, we observe that the anisotropic transient
waveforms in the micro-structured domain, are well captured by those pertaining to the relaxed
micromorphic model. Moreover, the Cauchy continuum governed by Cmacro still represents
an acceptable approximation for the waveforms in the micro-structured domain, as it can be
appreciated by direct comparison of the first and the third rows of Figs 5.10. As shown in
Fig. 5.3, the frequency mean value of the considered pulse (ωMF

0 ) as well as its spectral width
(∆ωMF

0 ), are located in correspondence of the acoustic branches of the dispersion diagram, in a
regime where such branches have a non-linear behavior as a function of the wave vector k. It is
well known that, when the dispersion curves deviate from a linear behavior, the group velocity
is not constant along the direction prescribed by k, thus depending on its modulus |k| = 2π/λ0,
with λ0 being the wavelength. In this case the medium is said to be dispersive.
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Figure 5.10: Pressure-like pulse propagation in the medium frequency regime.
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Figure 5.11: Shear-like pulse propagation in the medium frequency regime.
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It is also very well known that the group velocity for a Cauchy infinite medium is constant
along the direction prescribed by k, which translates into the fact that the dispersion curves as
a function of k = |k|k̂ - where k̂ is a fixed unit direction - are simply straight lines. Hence, a
Cauchy medium is referred to as dispersionless. Even if the relaxed micromorphic model is able
to account for the aforementioned dispersion, we observe that this fact does not improve the de-
scriptive power of the relaxed micromorphic model in the medium frequency regime with respect
to the Cauchy one. At this stage, we would like to recall that a relaxed micromorphic model
could be considered to be equivalent to a second gradient model for relatively low frequencies,
where the dispersion diagram comprises acoustic branches only. On the other hand, second gra-
dient models are not able to describe the behaviour of the metastructure at higher frequencies as
instead the relaxed micromorphic can do. It is then doubtful how second gradient theories could
give additional interesting information concerning wave propagation in real metastructures at
frequencies higher than the Cauchy-like regime, and at least for the considered symmetry class.

5.4.3 Band-gap regime

The advantage of using the relaxed micromorphic model can be directly appreciated in the
band-gap regime for the periodic structure (see Fig. 5.3). This section is devoted to such a
frequency regime. To investigate the band-gap regime, we design a pulse with frequency content
as represented by the green curve in Fig. (5.5)(a). The corresponding time dependence of the
pulse is reported in Fig. 5.5(d) and it is used in equation (5.18) as a prescribed displacement
over the square ∂Ω0.
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Figure 5.12: Pressure-like pulse propagation in the band-gap regime.
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Fig. 5.12 shows the propagation of a pressure-like pulse (j = p in equation (5.18)), in the
first row a micro-structured domain, in the second row a continuous domain governed by the
relaxed micromorphic model and in the last row a linear elastic continuous domain governed by
Cmacro. We observe that the pulse is localised throughout all the considered times, in both the
micro-structured medium (panels (a)) and in the relaxed micromorphic medium (panels (b)).
This agrees with the fact that ωBG

0 is in the band gap for both the micro-structured medium and
for the equivalent relaxed micromorphic continuum (see Fig. 5.3). This is not the case for the
panels (c), where the same pulse can propagate in the computational domain. This is because a
Cauchy medium, although able to capture anisotropy as shown earlier, is not able to reproduce
band-gaps, leading to pulse propagation at every frequency. Fig. 5.13 shows the propagation of
a shear-like pulse (j = s in equation (5.18)). Similar considerations, already done for Fig. 5.12,
apply for the shear-like pulse-localisation phenomena (Panels (a) and (b)) which are witnessed
in Fig. (5.13).
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Figure 5.13: Shear-like pulse propagation in the band-gap regime.

5.4.4 High frequency regime

In this section, we conclude our analysis by presenting pulse propagation results in the high-
frequency regime for the micro-structured domain and for the corresponding relaxed micromor-
phic continuum (see red shadow in Fig. 5.3). This is done by considering a frequency content
for the pulse as the red curve in Fig. (5.5)(a). The corresponding time-dependence, shown in
Fig. (5.5)(e), is assigned to the prescribed displacement in equation (5.18).
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Figure 5.14: Pressure-like pulse propagation in the high frequency regime.
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Figure 5.15: Shear-like pulse propagation in the high frequency regime.
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Similarly to what we have done in the previous frequency regimes, we here focus on a pressure-
like prescribed displacement (Fig. 5.14) and on a shear-like prescribed displacement (Fig. 5.15).
As suggested by the zero group velocity in the dispersion diagram, we expect almost complete
localization. The localization is observed for both the pressure-like and shear-like pulses, in
both the micro-structured domain and in the relaxed micromorphic continuum. On the other
hand, in the Cauchy continuum governed by Cmacro, the localization is completely lost since the
dispersion is linear in all the investigated frequency regimes, and hence propagation of waves is
always expected.

5.5 Conclusions

In this chapter we investigate the pertinence of using the relaxed micromorphic model to study
wave propagation in band-gap anisotropic metastructures. To this aim, we compare transient
waveforms corresponding to a pulse prescribed to the center of metastructures governed by
several equations of motion. The considered equations of motion are (i) a micro-structured do-
main governed by linear elasticity; (ii) the relaxed micromorphic model; and (iii) an equivalent
Cauchy continuum having the same macroscopic stiffness of the analogous relaxed micromor-
phic continuum. We show that the relaxed micromorphic model qualitatively captures the
behavior of transient waveforms arising in metastructures, including localized waveforms in the
band-gap and in the high frequency regime. The comparison has been performed using several
types of prescribed displacements, namely pressure-like, shear-like and rotation-like deforma-
tions. We observe that the waveforms arising from rotation-like prescribed displacements - in
every frequency regime - are identical to the waveforms obtained via the corresponding shear-
like prescribed displacement. Such substantial equivalence between shear-like and rotation-like
waveforms is remarked for the simple metastructure studied in the present chapter, and would
deserve a deeper investigation to check if it is also possible in more complex situations.

We clearly show that the Cauchy equivalent continuum is able to describe the pulse prop-
agation through the micro-structured domain only in the low frequency regime. The Cauchy
equivalent continuum rapidly loses its predictive power when higher frequencies are considered.
On the other hand, we show that the relaxed micromorphic model is able to account for the
overall behavior of the metastructure for all the considered frequency regimes, including the
band-gap and higher frequencies. This predictive ability is peculiar of the relaxed micromor-
phic model and is unrivaled by any other generalized continuum model. For example, for the
considered metastructure, the so called “second gradient” models would not be able to add
anything more to its description when compared to the equivalent Cauchy model. Second gra-
dient models are based on a kinematical framework which is identical to Cauchy classical theory
(only macroscopic displacements are provided) and the only difference with the latter consists
in a modified constitutive law which also contains second gradients of displacement, instead of
only first gradients. In the context of plane-wave propagation and dispersive properties of the
generalized continuum, this means that only acoustic modes can be described by a second gra-
dient medium and the only difference with Cauchy media would be the description of non-linear
dispersion for high wavenumbers. Failure to capture optical branches and finite frequency band-
gaps, represents an intrinsic limitation of second gradient models when applied to description
of metamaterials with complex microstructure, even at relatively low frequencies.

The results presented in this chapter have been published in [10].
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Chapter 6

Broadband scattering of finite-size anisotropic metastructures
via the relaxed micromorphic model

We now turn back to the study of interface problems, but in this case we will be considering
two reflection and transmission problems in anisotropic relaxed micromorphic media.

Very complex phenomena take place when an incident elastic wave hits a metamaterial’s
boundary, resulting in reflected and transmitted waves which can be propagative or evanescent
depending on the frequency and angle of incidence of the incident wave itself. The primor-
dial importance of evanescent (non-propagative) waves for the correct formulation of boundary
value problems for metamaterials has been highlighted in [91, 107], where the need of infinite
evanescent modes for obtaining continuity of displacement and of tractions at the considered
metamaterial’s boundary is pointed out.

We will show that we can describe, to a good extent, the overall behavior of the reflection
coefficient (generated by a plane incident wave) of an interface between a homogeneous medium
and a specific tetragonal band-gap metamaterial (both considered as semi-infinite in space), as
a function of the frequency and of the angle of incidence of the incident wave. Moreover, given
the auto-consistency of bulk PDEs and associated jump conditions, we are able to treat the
more realistic case of a metamaterial slab of finite width treated as an inclusion between two
semi-infinite homogeneous media. Also for the latter case, we are able to obtain the reflective
properties of the slab as a function of the frequency and angle of incidence of the plane incident
wave. To the authors’ knowledge, a boundary value problem which describes the dynamical be-
havior of realistic finite-size metamaterial structures via the introduction of rigorous macroscopic
boundary conditions, is presented here for the first time.

The results show very good agreement (for a wide range of frequencies extending from the
low-frequency Cauchy limit to frequencies beyond the first band-gap and for all the possible
angles of incidence) with the direct FEM numerical implementation of the considered system
in Comsol MultiphysicsTM, where the detailed geometry of the unit cell has been implemented
in the framework of classical linear elasticity. We observe a tremendous advantage in terms of
the computational time needed to perform the numerical simulations (few hours for the relaxed
micromorphic model against weeks for the direct FEM simulation).

We structure this chapter as follows: in Section 6.2 the plane-wave solutions for the Cauchy
and relaxed micromorphic continua are obtained as solutions of the corresponding eigenvalue
problems. In Section 6.1 we provide essential information concerning the correct boundary con-
ditions which have to be imposed at the metamaterial’s boundaries, in the relaxed micromorphic
framework. In Sections 6.3 and 6.4 the problems of the scattering from a relaxed micromor-
phic single interface and relaxed micromorphic slab of finite size, respectively, are rigorously set
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6.1. Boundary Conditions

up and solved. Section 6.5 presents the detailed implementation of the microstructured meta-
material slab based on classical elasticity and implemented in the commercial Finite Element
software Comsol MultiphysicsTM. Section 6.6 thoroughly presents our results by means of a
detailed discussion. Section 6.7 is devoted to conclusions and perspectives.

Throughout this chapter, we again assume a tetragonal metamaterial under the plane-strain
assumption, much as we did in chapter 5. Furthermore, from here on, we set again Lc = 0 for
the remainder of this chapter. Indeed, it will be shown that even if non-locality is switched off
(Lc = 0), the relaxed micromorphic model is able to capture the more relevant features of the
considered problem. Taking the internal length into account provides small corrections to the
overall behavior of the metamaterial.

6.1 Boundary Conditions

In this chapter we will study two types of interface problems: (i) a single interface separating a
Cauchy and a relaxed micromorphic medium, both assumed to be semi-infinite (much like we did
in chapter 4) and (ii) a micromorphic slab of finite size embedded between two semi-infinite
Cauchy media. In the following, we will simply denote “single interface” and “micromorphic
slab” the first and second problem, respectively.

In the single interface problem, two infinite half-spaces are occupied by two materials in
perfect contact with each other, similarly to the case described in chapter 4. The material on
the left of the interface is an isotropic classical Cauchy medium, while the material on the right
is a microstructured tetragonal metamaterial modeled by the tetragonal relaxed micromorphic
model (see Fig 6.1(a)).

In the micromorphic slab problem, two infinite half-spaces are separated by a micromorphic
slab of finite width h. Three materials are thus in perfect contact with each other: the material
on the left of the first interface is a classical linear elastic isotropic Cauchy medium, the material
in the middle is an anisotropic relaxed micromorphic medium, while the material on the right
of the second interface is again a classical isotropic Cauchy medium (see Fig. 6.1(b)).

6.1.1 Boundary conditions at an interface between a Cauchy continuum and a
relaxed micromorphic continuum with vanishing characteristic length Lc = 0

In the particular case where Lc = 0, there are two sets of boundary conditions which have to
be imposed: continuity of displacement and continuity of generalized traction (see [2, 3, 65] for
more details).1 For the displacement, we have:

[[u]] = 0⇒ u− = u+, on x1 = 0, (6.1)

where u− is the macroscopic displacement on the “minus” side (the x1 < 0 half-plane, occupied
by an isotropic Cauchy medium) and u+ is the macroscopic displacement on the “plus” side
(the x1 > 0 half-plane, occupied by an anisotropic relaxed micromorphic medium). As for the
jump of generalized traction we have:

t = t̃, (6.2)

where t is the Cauchy traction on the “minus” side and t̃ is the generalized traction on the
“plus” side. We recall that in a Cauchy medium, t = σ · ν, ν being the outward unit normal to

1On the other hand, if Lc > 0, one should also impose boundary conditions on the tangent part of the
micro-distortion tensor P and of the double force, which was exactly the case in chapter 4 (see [2, 3, 65]).
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Figure 6.1: Panel (a): single interface separating a Cauchy medium from a relaxed micromorphic
medium (both semi-infinite in the x1 direction). Panel (b): A micromorphic slab of width h
between two semi-infinite elastic Cauchy media. Both configurations (a) and (b) are semi-infinite
in the x2 direction.

the surface and σ being the Cauchy stress tensor given by (2.5). The generalized traction for
the relaxed micromorphic medium is given by

t̃ = (σ̃ + σ̂) · ν, t̃i = (σ̃ij + σ̂ij) · νj , on x1 = 0, (6.3)

where σ̃, σ̂ are defined in (3.29).

Continuity of macroscopic displacement and of generalized traction implies conser-
vation of energy at the interface

We have previously shown that conservation of energy for a bulk Cauchy and relaxed micromor-
phic medium is given by equation (2.10), where the energy flux is defined in (2.12) and (3.76),
respectively. It is important to remark that the conservation of energy (2.10) has a “boundary
counterpart”. This establishes that the jump of the normal part of the flux must be vanishing,
or, in other words, the normal part of the flux must be continuous at the considered interface
(this comes from the bulk conservation law and the use of the Gauss divergence theorem). In
symbols, when considering a surface Σ separating two continuous media, we have

[[H · ν]] = 0, on Σ. (6.4)

We want to focus the reader’s attention on the fact that, in the framework of a consistent
theory in which the bulk equations and boundary conditions are simultaneously derived by
means of a variational principle, the jump conditions imposed on Σ necessarily imply the surface
conservation of energy (6.4), as far as a conservative system is considered. We explicitly show
here that this is true for an interface Σ separating a Cauchy medium from a relaxed micromorphic
one. The same arguments, however, hold for interfaces between two Cauchy or two relaxed
micromorphic media.
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To that end, considering for simplicity that the interface Σ is located at x1 = 0 (so that its
normal is ν = (1, 0)T) and assuming Lc = 0 we get from equation (3.76) that the normal flux
computed on the “relaxed micromorphic” side is given by:

(H · ν)+ := H+
1 = −ν+ · (σ̃ + σ̂)T · u+

,t at x1 = 0. (6.5)

By the same reasoning, the flux at the interface on the “Cauchy” side is computed from
(2.12) and gives:

(H · ν)− := H−1 = −ν− · σ · u−,t . (6.6)

Equation (6.4) can then be rewritten as:

− ν+ · (σ̃ + σ̂)T · u+
,t = −ν− · σ · u−,t . (6.7)

It is clear that, given the jump conditions (6.1) and (6.2), the latter relation is automatically
verified.2

As we will show in the remainder of this chapter, when modeling a metamaterial’s boundary
via the relaxed micromorphic model, we only need a finite number of modes in order to exactly
verify boundary conditions and, consequently, surface energy conservation. This provides the
most powerful simplification of the relaxed micromorphic model with respect to classical ho-
mogenization methods, in which infinite modes are needed to satisfy conservation of stress and
displacement at the metamaterial’s boundary (see [105]). The first step towards the final goal
of studying finite-sized complex metastructures, will be made in this chapter by studying the
scattering properties of a finite-sized relaxed micromorphic slab.

6.1.2 Boundary conditions for a micromorphic slab embedded between two Cauchy
media

Given the macroscopic nature of the boundary conditions presented in section 6.1.1, they can
be used to solve more complex large-scale problems, in which multiple interfaces are present.
In particular, the boundary conditions to be satisfied at the two interfaces separating the slab
from the two Cauchy media in Fig. 6.1(b), are continuity of displacement and continuity of
generalized traction. This means that we have four sets of boundary conditions, two on each
interface. The finite slab has width h and we assume that the two interfaces are positioned at
x1 = −h/2 and x1 = h/2, respectively. The continuity of displacement conditions to be satisfied
at the two interfaces of the slab are:3

u− = ṽ, on x1 = −h
2
, ṽ = u+, on x1 =

h

2
. (6.8)

As for the continuity of generalized traction, we have:

t− = t̃, on x1 = −h
2
, t̃ = t+, on x1 =

h

2
, (6.9)

where t± = σ± · ν± are classical Cauchy tractions and t̃ is again given by (6.3).

2An analogous calculation can be done with Lc > 0, but in that case boundary conditions on the tangent
part of P and of the double force need to be used in order to automatically verify the conservation of energy on
the boundary.

3We denote by ṽ the first two components of the micromorphic field v defined in equation (6.20).
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6

6.2 Bulk wave propagation in Cauchy and relaxed micromorphic continua

6.2.1 Isotropic Cauchy continuum

We quickly repeat here the same procedure demonstrated in detail in chapter 4.

We make the plane-wave ansatz for the solution to (2.4):

u(x1, x2, t) = ψ̂ ei(〈k,x〉−ωt) = ψ̂ ei(k1x1+k2 x2−ωt), ψ̂ ∈ C2, (6.10)

where k = (k1, k2)T is the wave vector and ω is the angular frequency.4 Plugging (6.10) into
equation (2.4) we get a 2× 2 algebraic system of the form

A · ψ̂ = 0, (6.11)

where

A =

 ρω2 − (2µ+ λ) k2
1 − µk2

2 −(µ+ λ) k1 k2

−(µ+ λ) k1 k2 ρω2 − (2µ+ λ) k2
2 − µk2

1

 . (6.12)

The algebraic system (6.11) has a solution if and only if detA = 0. This is a bi-quadratic
polynomial equation which has the following four solutions:

kL,r1 = −
√

ρ

2µ+ λ
ω2 − k2

2, kS,r1 = −
√
ρ

µ
ω2 − k2

2, kL,t1 =

√
ρ

2µ+ λ
ω2 − k2

2, kS,t1 =

√
ρ

µ
ω2 − k2

2,

(6.13)

where we denote by L and S the longitudinal and shear waves and by r and t whether they are
“reflected” or “transmitted”, respectively. In a semi-infinite medium, the sign of these solutions
must be chosen according to the direction of propagation of the considered wave. We plug the
solutions (6.13) into (6.11) to calculate the corresponding eigenvectors

ψ̂L,r =

 1

−kL,r2

kL,r1

 , ψ̂S,r =

 1

kS,r1

kS,r2

 , ψ̂L,t =

 1

kL,t2

kL,t1

 , ψ̂S,t =

 1

−kS,t1

kS,t2

 . (6.14)

Normalizing these eigenvectors gives:

ψL,r :=
1∣∣∣ψ̂L,r∣∣∣ ψ̂L,r, ψS,r :=

1∣∣∣ψ̂S,r∣∣∣ ψ̂S,r, ψL,t :=
1∣∣∣ψ̂L,t∣∣∣ ψ̂L,t, ψS,t :=

1∣∣∣ψ̂S,t∣∣∣ ψ̂S,t. (6.15)

Then, the general solution to (2.4) can be written as:

u(x1, x2, t) = aL,rψL,rei(k
L,r
1 x1+kL,r

2 x2−ωt) + aS,rψS,rei(k
S,r
1 x1+kS,r

2 x2−ωt)

+ aL,tψL,tei(k
L,t
1 x1+kL,t

2 x2−ωt) + aS,tψS,tei(k
S,t
1 x1+kS,t

2 x2−ωt), (6.16)

where aL,r, aS,r, aL,t, aS,t ∈ C are constants to be determined from the boundary conditions,

kL,t1 = −kL,r1 and kS,t1 = −kS,r1 , according to (6.13). Depending on the specific problems which
are considered (e.g. semi-infinite media), only some modes may propagate in specific directions.

4As we will show in the following, k2, which is the second component of the wave-number, is always supposed
to be known and is given by Snell’s law when imposing boundary conditions on a given boundary.
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6.2. Bulk wave propagation in Cauchy and relaxed micromorphic continua

In this case, some of the terms in the sum (6.16) have to be omitted. In particular, if we are
considering waves propagating in the x1 < 0 half-space, then the solution to (2.4) reduces to:5

u(x1, x2, t) = aL,rψL,rei(k
L,r
1 x1+kL,r

2 x2−ωt) + aS,rψS,rei(k
S,r
1 x1+kS,r

2 x2−ωt), (6.17)

while if we are considering the x1 > 0 half-space, then the solution to (2.4) reduces to:

u(x1, x2, t) = aL,tψL,tei(k
L,t
1 x1+kL,t

2 x2−ωt) + aS,tψS,tei(k
S,t
1 x1+kS,t

2 x2−ωt). (6.18)

6.2.2 Relaxed micromorphic continuum

We start by collecting the unknown fields for the plane-strain case in a new variable:

v := (u1, u2, P11, P12, P21, P22)T. (6.19)

The plane-wave ansatz for this unknown field reads:

v = φ̂ ei(〈k,x〉−ωt) = φ̂ ei(k1 x1+k2x2−ω t), (6.20)

where φ̂ ∈ C6 is the vector of amplitudes, k = (k1, k2)T ∈ C2 is the wave-vector6 and ω is the
angular frequency. We plug this into (3.28) and get an algebraic system of the form

Â(k1, k2, ω) · φ̂ = 0, (6.21)

where Â(k1, k2, ω) ∈ C6×6 is a matrix depending on k1, k2, ω and all the material parameters
of the plane-strain tetragonal relaxed micromorphic model (see Appendix C1 for an explicit
presentation of this matrix). In order for this system to have a solution other than the trivial
one, we impose det Â = 0.

The equation det Â = 0 is a polynomial of order 12 in ω and it involves only even powers of
ω. This means that, plotting the roots ω = ω(k) gives 6 dispersion curves in the ω−k plane (see
Fig. 6.3). On the other hand, the same polynomial is of order 4 (and bi-quadratic), if regarded
as a polynomial of k1 (k2 is supposed to be known when imposing boundary conditions) when
setting Lc = 0. We can write the roots of the characteristic polynomial as:

k
(1)
1 (k2, ω), k

(2)
1 (k2, ω), k

(3)
1 (k2, ω) = −k(1)

1 (k2, ω), k
(4)
1 (k2, ω) = −k(2)

1 (k2, ω). (6.22)

We have verified that, plotting the two functions k(1)(ω) :=

√(
k

(1)
1

)2
+
(
k

(1)
2

)2
and

k(2)(ω) :=

√(
k

(2)
1

)2
+
(
k

(2)
2

)2
gives the same diagrams as in Fig. 6.3. This means that each of

the 2 modes k(i), i = {1, 2} actually gives rise to 3 branches in the k − ω plane.
We plug the solutions (6.22) into (6.21) and calculate the eigenvectors of Â, which we denote

by: φ̂(1), φ̂(2), φ̂(3), φ̂(4). We normalize these eigenvectors, thus introducing the normal
vectors

φ(1) :=
1

|φ̂(1)|
φ̂(1), φ(2) :=

1

|φ̂(2)|
φ̂(2), φ(3) :=

1

|φ̂(3)|
φ̂(3), φ(4) :=

1

|φ̂(4)|
φ̂(4). (6.23)

5This choice for the sign of k1 always gives rise to a solution which verifies conservation of energy at the
interface. We will show in the following, that this particular choice, which at a first instance is rather intuitive,
is not always the correct one when dealing with a relaxed micromorphic medium.

6Here again, as in the case of a Cauchy medium, k2 will be fixed and given by Snell’s law when imposing
boundary conditions.
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6

Considering a micromorphic medium in which all waves travel simultaneously, the solution to
(3.28) is:

v(x1, x2, t) =
4∑
j=1

αjφ
(j)e

i
(
k
(j)
1 x1+k

(j)
2 x2−ωt

)
, (6.24)

where αj ∈ C are unknown constants which will be determined from the boundary conditions,

k
(3)
1 = −k(1)

1 and k
(4)
1 = −k(3)

1 . If, on the basis of the particular interface problem one wants
to study only some waves traveling in the considered medium, then the extra waves must be
omitted from the sum in (6.24). This means that if we are considering waves traveling in the
x1 > 0 direction, then the solution to (3.28) is given by

v(x1, x2, t) = α1 φ
(1)e

i
(
k
(1)
1 x1+k

(1)
2 x2−ωt

)
+ α2 φ

(2)e
i
(
k
(2)
1 x1+k

(2)
2 x2−ωt

)
, (6.25)

while if the wave is traveling in the x1 < 0 direction, the solution to (3.28) is given by

v(x1, x2, t) = α3 φ
(3)e

i
(
k
(3)
1 x1+k

(3)
2 x2−ωt

)
+ α4 φ

(4)e
i
(
k
(4)
1 x1+k

(4)
2 x2−ωt

)
. (6.26)

6.3 Reflection and transmission at the single interface

In this section, we study the two-dimensional, plane-strain, time-harmonic scattering problem
from an anisotropic micromorphic half-space (see equations (3.28)), occupying the region x1 > 0
of Fig. 6.1(a). With reference to Fig. 6.1(a), the half-space x1 < 0 is filled with a linear elastic
Cauchy continuum, governed by equation (2.4). For simplicity, we assume that the incident
wave hits the interface at the origin. Considering that reflected waves only travel in the x1 < 0
Cauchy half-plane, only negative solutions for the k1’s must be kept in equation (4.18), so that
the total solution in the left half-space is

u−(x1, x2, t) = aL/S,iψL/S,iei(〈x,k
L/S,i〉−ωt) + aL,rψL,rei(〈x,k

L,r〉−ωt) + aS,rψS,rei(〈x,k
S,r〉−ωt)

=: uL/S,i + uL,r + uS,r, (6.27)

where we write L or S in the incident wave depending on whether the wave is longitudinal
or shear and i and r in the exponents stand for “incident” and “reflected”. Analogously, the
solution on the right half-space, which is occupied by a relaxed micromorphic medium, is7

v(x1, x2, t) = α1 φ
(1)ei(〈x,k

(1)〉−ωt) + α2 φ
(2)ei(〈x,k

(2)〉−ωt), (6.28)

where we have kept only terms with positive k1’s in the solution (6.22), since transmitted waves
are supposed to propagate in the x1 > 0 half-plane.

Since the incident wave is always propagative, the polarization and wave-vectors are given
by:

ψL,i = (sin θL,− cos θL)T, kL = |kL|(sin θL,− cos θL)T, (6.29)

ψS,i = (cos θS , sin θS)T, kS = |kS |(sin θS ,− cos θS)T, (6.30)

where, according to (4.18), |kL| = ω
cL

and |kS | = ω
cS

, with cL =
√

(2µ+ λ)/ρ and cS =
√
µ/ρ

the longitudinal and shear speeds of propagation and θL and θS the angles of incidence when the
wave is longitudinal or shear, respectively (see Fig. 6.1 and [2] for a more detailed exposition).

7We suppose here that, for the transmitted wave we have to consider only the positive solutions of (6.22).
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6.4. Reflection and transmission at a relaxed micromorphic slab

The continuity of displacement condition (6.1) provides us, as shown in detail in chapter 4
with the generalized Snell’s law for the case of a Cauchy/relaxed micromorphic interface:

k
L/S,i
2 = kL,r2 = kS,r2 = k

(1)
2 = k

(2)
2 .

Generalized Snell’s Law

(6.31)

As for the flux, the normal outward pointing vector to the surface (the x2 axis) is ν = (−1, 0).
This means that in expressions (2.12) and (3.76) for the fluxes, we need only take into account
the first component. According to our definitions (2.12) and (3.76) (remembering that Lc = 0
and that we impose the plane-strain restriction), we have

H−1 = −ui,t σi1, H+
1 = −vi,t (σ̃i1 + σ̂i1) , i = 1, 2. (6.32)

Having calculated the “transmitted” flux, we can now look at the reflection and transmission
coefficients for the case of a Cauchy/relaxed micromorphic interface. We define8

J i =
1

T

∫ T

0
H i(x, t)dt, J r =

1

T

∫ T

0
Hr(x, t)dt, J t =

1

T

∫ T

0
Ht(x, t)dt, (6.33)

where T is the time period of the considered harmonic waves, H i = H−1 (uL/S,i), Hr = H−1 (uL,r +
uS,r) and Ht = H+

1 (v), with H+
1 and H−1 defined in (6.32). Then the reflection and transmission

coefficients are

R =
J r

J i
, T =

J t

J i
. (6.34)

Since the system is conservative, we must have that R+ T = 1.

6.4 Reflection and transmission at a relaxed micromorphic slab

As pointed out, in this case there are three media: the first Cauchy half-space, the anisotropic
relaxed micromorphic slab and the second Cauchy half-space. The two Cauchy half-spaces are
denoted by − and +, while the quantities considered in the slab have their own notation.

The solution on the first Cauchy half space is given, as in the case of a single interface, by

u−(x1, x2, t) = aL/S,iψL/S,iei(〈x,kL/S,i〉−ωt) + aL,rψL,,rei(〈x,kL,,r〉−ωt) + aS,rψS,rei(〈x,kS,r〉−ωt).
(6.35)

In the case of a relaxed micromorphic slab, when solving the eigenvalue problem we must
select and keep all the roots for k1, as given in (6.22), both positive and negative. This is due to
the fact that there are waves which transmit in the micromorphic part from the first interface
(x1 = −h/2), upon which the incident wave hits and waves which reflect on the second interface
(x1 = h/2). This means that the solution of the PDEs in the slab is

v(x1, x2, t) = α1 φ
(1)ei(〈x,k(1)〉−ωt)+α2 φ

(2)ei(〈x,k(2)〉−ωt)+α3 φ
(3)ei(〈x,k(3)〉−ωt)+α4 φ

(4)ei(〈x,k(4)〉−ωt),
(6.36)

where k
(1)
1 = −k(3)

1 and k
(2)
1 = −k(4)

1 (see section 6.2.2). Finally, the solution on the right Cauchy
half-space is

u+(x1, x2, t) = aL,tψL,tei(〈x,kL,t〉−ωt) + aS,tψS,tei(〈x,kS,t〉−ωt). (6.37)

8In order to easily compute these coefficients in the numerical implementation of the code, we employ Lemma
1 given in Appendix B2
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6

The continuity of displacement conditions (6.8) again imply a generalized form of Snell’s law
for the case of the micromorphic slab:

k
L/S,i
2 = kL,r2 = kS,r2 = k

(1)
2 = k

(2)
2 = k

(3)
2 = k

(4)
2 = kL,t2 = kS,t2 .

Generalized Snell’s Law in a micromorphic slab

(6.38)

In order to define the reflection and transmission coefficients in the case of the anisotropic
slab, we follow the same reasoning as for the single interface. However, in this case, the trans-
mitted flux is defined as the flux on the right of the second interface, which is occupied by an
isotropic Cauchy medium.

In this case, the reflected flux is evaluated at x1 = −h/2 and the transmitted flux at x1 = h/2.
Both the reflected and the transmitted fields propagate in isotropic Cauchy media, so that the
quantities J i, J r, J t defined in (6.33) are given by (see [2])

J i
slab =

1

2
Re

([
(2µ− + λ−)

∣∣∣ψj,i1

∣∣∣2 kj,i1 + λ−
(
ψj,i1

)∗
ψj,i2 k

j,i
2 + µ−

(
ψi

1

(
ψj,i2

)∗
kj,i2 +

∣∣∣ψj,i2

∣∣∣2 kj,i1

)] ∣∣∣aj,i∣∣∣2 ω) ,
(6.39)

Jr
slab =

∑
j∈J

1

2
Re

([
(2µ− + λ−)

∣∣∣ψj,r1

∣∣∣2 kj,r1 + λ−
(
ψj,r1

)∗
ψj,r2 kj,i2 + µ−

(
ψj,r1

(
ψ
j,(2)
2

)∗
kj,i2

∣∣∣ψj,r2

∣∣∣2 kj,r1

)] ∣∣∣aj,r∣∣∣2 ω) ,
(6.40)

Jt
slab =

∑
j∈J

1

2
Re

([
(2µ+ + λ+)

∣∣∣ψj,t1

∣∣∣2 kj,t1 + λ+
(
ψj,t1

)∗
ψj,t2 kj,i2 + µ+

(
ψj,t1

(
ψj,t2

)∗
kj,i2 +

∣∣∣ψj,t2

∣∣∣2 kj,t1

)] ∣∣∣aj,t∣∣∣2 ω) ,
(6.41)

where, J ∈ {L, S}, aj,i, aj,r, aj,t ∈ C and ψj,i, ψj,(2), ψj,t ∈ C2 with J ∈ {L, S}, are the ampli-
tudes and polarization vectors for incident, reflected and transmitted waves, respectively (see
also equation (6.15)), µ−, λ− and µ+, λ+ are the Lamé parameters of the left and right Cauchy
half-spaces, respectively.

So, the reflection and transmission coefficients for the slab are

Rslab =
J r

slab

J i
slab

, Tslab =
J t

slab

J i
slab

. (6.42)

Since the system is conservative, we must have Rslab + Tslab = 1.

6.5 Reflective properties of a micro-structured slab

Here, we consider the scattering of in-plane elastic waves from a slab containing cross like holes
drilled in an isotropic elastic material (see Fig. 6.2(a)). The holes in the micro-structured slab
are arranged according to a truncated square lattice, i.e. a finite number N of cells in the x1

direction and an infinite number of cells in the x2 direction.

We consider an incident time-harmonic plane wave

uj,i(x, t) = ūj,i(x)e−iωt = dj ei〈k
j ,x〉−iωt, (6.43)

where the index j ∈ {L, S} denotes longitudinal and shear waves, respectively. Accordingly,
kj = ω/cj(sin θ,− cos θ, 0)T, with j ∈ {L, S} and θ the angle of incidence, cL =

√
(λAl + 2µAl)/ρAl

and cS =
√
µAl/ρAl are the longitudinal and shear wave speeds for aluminum. The Lamé pa-

rameters of aluminum are λAl = 5.11 × 1010 Pa and µAl = 2.63 × 1010 Pa, and the density of
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6.5. Reflective properties of a micro-structured slab

θkj

x2

x1

N = 10

γ

(a)

νfhj(x)

∂(+)Ω

∂(−)Ω

Ω(n1, n2)

a c b

(b)

Figure 6.2: Panel (a) is a schematic representation of a slab of cross like-holes which is finite in
the x1-direction (N = 10 number of unit cells) and periodic in the x2-direction. The red shadows
represent the finite element domain γ where the scattering problem is set up and solved. The
domain γ contains two perfectly matched layers (darker red regions at the sides of the rectangular
domain γ). Panel (b) is a schematic representation of a unit cell Ω(n1, n2), for a generic pair
of integers (n1, n2). The inner boundary ∂(−)Ω(n1, n2) (dashed black line), the outer boundary
∂(+)Ω(n1, n2) (dot-dashed black line), and the normal and traction vectors along ∂(−)Ω(n1, n2)
(black and red arrow lines, respectively) are also shown.

aluminum is ρAl = 2700 Kg/m3. The Lamé parameters define uniquely the fourth order stiffness
tensor CAl, whose Voigt representation is

C̃Al =



2µAl + λAl λAl ? 0 0 0

λAl 2µAl + λAl ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 µAl


, (6.44)

where the stars denote the components which do not intervene in the plane-strain case. In
equation (6.43) we have introduced the polarization vectors dj , j ∈ {L, S} of amplitude d0 for
longitudinal and shear waves, defined as dL = d0(sin θ,− cos θ, 0)T and dS = d0(cos θ, sin θ, 0)T,
respectively. The scattering problem in terms of the elastic plane-strain field uj ≡ uj(x, t),
j ∈ {L, S}, in the micro-structured material, according to linear elasticity, can be written as


ρAl u

j
,tt = Div

(
CAl sym ∇uj

)
, x ∈ Ω0(n1, n2)

f(uj) = 0, x ∈ ∂(−)Ω(n1, n2), ∀n1 ∈ {1, · · · , N} and ∀n2 ∈ Z,
(6.45)
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6

where we have introduced the traction vectors

f(uj) = (CAl sym ∇uj) · ν, j ∈ {L, S}, (6.46)

ν being the normal unit vector (see black arrow line in Fig. 6.2(b)) to the cross-like holes
boundaries ∂(−)Ω(n1, n2) and where we denote by Ω0 the part of the domain Ω, which is non-
empty (occupied by aluminum). The elastic field in (6.45) can be written according to the
scattering time-harmonic ansatz

uj(x, t) =
(
ūj,i(x) + ūj,sc(x)

)
e−iωt, j ∈ {L, S}, (6.47)

where ūj,i has been introduced in equation (6.43) and ūj,sc is the so-called scattered solution.
By linearity of the traction vector (6.46), and using equation (6.47), we obtain

f(uj(x, t)) =
[
f(ūj,i(x)) + f(ūj,sc(x))

]
e−iωt = 0, j ∈ {L, S}. (6.48)

Using the fact that uj,i(x, t) is a solution of the PDE in equation (6.45), together with equation
(6.48), the PDEs system (6.45) can be rewritten in a time-harmonic form with respect to the
field uj,sc(x), as:
−ω2ρAl ū

j,sc = Div
(
CAl sym ∇ūj,sc

)
, x ∈ Ω0

f(ūj,sc) ≡ (CAl sym ∇ūj,sc) · ν = −f(ūj,i), x ∈ ∂(−)Ω(n1, n2), ∀n1 ∈ {1, · · · , N} and ∀n2 ∈ Z,
(6.49)

with j ∈ {L, S} and where we have canceled out time-harmonic factors. The analytical expres-
sions for the boundary conditions for the scattered field (see right-hand side of the boundary
conditions in equation (6.49)) are given component-wise as:

f(ūj,i) · e1 := f jv(x) = (CAl sym ∇ūj,i) · e1

=
iωρ

cj

{[
c2L sin θ dj,i1 − (c2L − 2c2S) cos θ dj,i2

]
e1 + c2S

[
− cos θ dj,i1 + sin θ dj,i2

]
e2

}
ei〈k

j,i,x〉,

(6.50)

with j ∈ {L, S} for vertical boundaries of ∂(−)Ω(n1, n2) with normal vector parallel to e1 (see
Fig. 6.2(b)). Similarly, for vertical boundaries with normal vector anti-parallel to e1 we have

f(ūj,i) = −f jv(x). In addition, for horizontal boundaries in ∂(−)Ω(n1, n2) whose normal vector
is parallel to e2 we have:

f(ūj,i) · e2 := f jh(x) = (CAl sym ∇ūj,i) · e2

=
iωρ

cj

{[
(c2L − 2c2S) sin θ dj,i1 − c2L cos θ dj,i2

]
e2 + c2S

[
− cos θ dj,i1 + sin θ dj,i2

]
e1

}
ei〈k

j,i,x〉,

(6.51)

with j ∈ {L, S}. Similarly, for vertical boundaries with normal vector anti-parallel to e2 we have
f(ūj,i) = −f jh(x).

6.5.1 Bloch-Floquet conditions

We recall that the primitive vectors of a square lattice are defined as:

a1 = a e1, and a2 = a e2, (6.52)
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6.5. Reflective properties of a micro-structured slab

where a is the side of the unit-cell (see Fig. 6.2(b)). Since the scatterers (i.e. the cross-like holes)
are periodic in the x2-direction, the displacement field in equation (6.47) satisfies Bloch-Floquet
boundary conditions

ūj,sc(x+ n2 a2) = ein2k2a ūj,sc(x), for x ∈ γ, and n2 ∈ Z, (6.53)

where k2 is the component along the x2-direction of the wave vector k. The value of k2 is known
and should be equal, given the considered geometry represented in Fig. 6.2(a), to the second
component of the wave vector of the incident wave. This requirement is essential in order to
construct a solution which satisfies the prescribed boundary conditions within a micro-structured
medium which is periodic in one dimension, i.e. in a layered micro-structured medium (see e.g.
[86]). This, of course, is the well known Snell’s law governing the refraction of waves at the
interface between two half-spaces with different material parameters which we derived in (4.35)
(see the book by Leckner [50] for a mathematical introduction encompassing several physical
scenarios). As it is customary in Floquet theory of PDEs with periodic coefficients, we can
obtain the solution of the PDEs system (6.49), by solving the problem in its period (i.e. the red
strip in Fig. 6.2(a) here denoted as γ) provided that the Bloch-Floquet condition (6.53) on the
scattered field is satisfied.

Although the x1 extension of the domain γ is infinite in our model problem, in the finite-
element implementation of the boundary value problem we are of course restricted to finite
computational domains. In order to annihilate the reflection from the sides of γ with constant
x1, we use perfectly matched layers [11] away from the microstructure.

6.5.2 Reflectance

The time-averaged Poynting vector associated with a 2D time-harmonic displacement field
u(x, t) = ū(x) e−iωt is defined as [2, 6]

F = −ω
2

Re (iσ · u∗) , (6.54)

where “∗” denotes complex conjugation and σ = CAl sym∇u is the Cauchy stress tensor asso-
ciated with the elastic field u. From equation (6.54), and using equation (6.43), it follows that
the energy flux associated with the incident displacement field (6.43) is

F j,i =
1

2
ρ cj |dj,i|2

kj,i

|kj,i|
, j ∈ {L, S}. (6.55)

Similarly, we define the flux F j,sc of the scattered field to be as in equation (6.54) with
u(x, t) = ūj,sc(x)e−iωt, where ūj,sc is the solution of the PDEs system (6.49)). The reflectance,
i.e. the ratio of reflected energy and incident energy passing through a vertical line of length a,
is

Rj =
1

〈F j,i, e1〉
1

a

∫ a/2

−a/2
〈F j,sc

∣∣
x1�−aN/2 , e1〉 dx2,

=
2

ρ cj |dj,i|2 sin(θ)

1

a

∫ a/2

−a/2
〈F j,sc

∣∣
x1�−aN/2 , e1〉 dx2, j ∈ {L, S}. (6.56)

The reflectance associated with incident shear waves (RS) differs from that associated with
incident longitudinal waves (RL). The Poynting vector is evaluated at a given x1 � −aN/2 away
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6

from the slab to avoid the contribution from the near elastic field close to the microstructure.
Provided the condition x1 � −aN/2 is satisfied, we have verified that the reflectance (6.56)
does not depend on the exact value of x1.

6.6 Results and discussion

In this section we present the comparison between the refractive behavior of the finite metama-
terial’s slab, as modeled in Comsol MultiphysicsTM (see Fig.6.2) and the relaxed micromorphic
model (see Fig. 6.1). We also provide the results concerning the relaxed micromorphic single
interface, which will be seen as an average behavior with respect to the micromorphic slab of
finite size. To this end, we chose the material parameters of the relaxed micromorphic model as
in Table 6.1.

λe µe µ∗e

[GPa] [GPa] [GPa]

2.33 10.93 0.67

λmicro µmicro µ∗micro

[GPa] [GPa] [GPa]

5.27 10.28 8.33

µc

[GPa]

2.26 · 10−3

Lc

[m]

0

λmacro µmacro µ∗macro

[GPa] [GPa] [GPa]

1.74 5.89 0.62

ρ η1 η2 η3 η∗1 η1 η2 η3 η∗1[
kg/m3

]
[kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m]

1485 8.6 · 10−5 1 · 10−7 0.86 · 10−5 3.27 · 10−5 10−5 2 · 10−4 2.5 · 10−8 2.85 · 10−5

Table 6.1: Summary of the numerical values for the elastic (top) and inertia (bottom) parameters
of the tetragonal relaxed micromorphic model in the 2D plane-strain case. The macroscopic
parameters of the resulting homogenized Cauchy material (see [2, 29]) are also provided (top
right).

The choice of the metamaterial parameters is made according to the procedure presented in
[29], which allows to determine the parameters of the relaxed micromorphic model on a specific
metamaterial by an inverse approach. This fitting procedure is based on the determination of
the elastic parameters of the relaxed micromorphic model via numerical static tests on the unit
cell and of the remaining inertia parameters via a simple inverse fitting of the dispersion curves
on the analogous dispersion patterns as obtained by Bloch-Floquet analysis (see [29] for details).
The fitting of the bulk dispersion curves for the periodic metamaterial, whose unit cell is shown
in Fig. 6.2(b), is presented in Fig. 6.3.

The choice of parameters presented in Table 6.1 differs from Table 5.2. This is mainly due
to the fact that when we performed the fitting procedure for the following results, we had an
additional fine-tuning tool: the reflection coefficient. Given the reflection coefficient provided
by direct discrete numerical simulations, we were able to calibrate the parameters of the relaxed
micromorphic model in such a way as to (almost) perfectly capture the behavior of this new
curve. An additional difference from the fitting performed in the previous chapter, is the range of
frequency, where we present our results. It became clear that the discrete numerical simulations
performed in Comsol MultiphysicsTM were unable to provide convergent results for the reflection
coefficient at very high frequencies (ω ≥ 1.74 rad/sec). We thus chose to neglect the mode which
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6.6. Results and discussion

has a cut-off frequency higher than this limit. A possible way out of this issue is to introduce
additional degrees of freedom in the energy densities, which will generate one Shear-like mode
in higher frequencies and will more accurately fit the dispersion diagram. This is still an open
question for forthcoming works, which is being worked upon and, as such, we limit our discussion
on frequencies lower than 1.74 rad/sec.

(a) (b)

Figure 6.3: Dispersion diagrams for normal (a) and 45 degrees (b) incidence. The solid curves are
obtained via the tetragonal anisotropic relaxed micromorphic model, while the dashed curves are issued
by Bloch-Floquet analysis. In panel (a), green color stands for modes which are mostly activated by
a shear incident wave, while blue color indicates modes which are mostly activated by a longitudinal
incident wave. This uncoupling between L and S activated modes at normal incidence is analytically
checked in the relaxed micromorphic model and only approximate for Bloch-Floquet modes. In panel
(b), we keep the same coloring, but all curves are coupled together, which means that L and S incident
waves may simultaneously activate all modes.

We checked that a sort of distinction between modes which are activated by an L or S incident
wave can be made for an incident wave which is orthogonal to the interface. This is exactly true
for the relaxed micromorphic model, but an analogous trend can be found for Bloch-Floquet
modes at least for the lower frequency modes (before the band-gap). The uncoupling between L
and S activated modes is present only for θ = 0 (and, by symmetry, θ = π/2), but is lost for any
other direction of propagation. In general, for any given frequency, all modes which are pertinent
at that frequency may be simultaneously activated by an L or S incident wave (excluding the
particular case of normal incidence). Nevertheless, we will show that this uncoupling hypothesis
can be retained with little error for angles of incidence which are close to normal incidence.

Once the bulk properties of the considered metamaterial, as modeled by the relaxed mi-
cromorphic model, have been established, they can be used to study the scattering problems
presented before.

6.6.1 Scattering at a relaxed micromorphic slab

We start by presenting the reflection coefficient of the relaxed micromorphic slab as a function
of the frequency for two fixed directions of propagation of the incident wave (θ = π

2 and θ = π
4 )

and for both longitudinal and shear incident waves.

Figure 6.4 shows the behavior of the reflection coefficient for the considered microstructured
slab in the case of a longitudinal incident wave and for normal incidence (Fig. 6.4(a)) as well
as for incidence at 45◦ (Fig. 6.4(b)). The black dashed line is the solution issued via the
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(a) (b)

Figure 6.4: Reflection coefficient at the relaxed micromorphic slab for an incident L wave and for two directions
of propagation θ = π/2 (normal incidence) (a) and θ = π/4 (b). The red curve is generated by the analytical
tetragonal relaxed micromorphic model and the black dashed line indicates the microstructured model. The
green vertical lines denote the long-wave limit, below which the relaxed micromorphic model is equivalent to a
homogenized Cauchy model. The dispersion diagrams for θ = π/2 and θ = π/4, given in Fig. 6.3 are also rotated
and displayed on the top of each picture to allow for a better interpretation of results.

(a) (b)

Figure 6.5: Reflection coefficient at the relaxed micromorphic slab for an incident S wave and for two directions
of propagation θ = π/2 (normal incidence) (a) and θ = π/4 (b).

microstructured model obtained by coding all the details of the unit cell presented in section
6.5. The red continuous line is obtained by solving the relaxed micromorphic problem presented
in section 6.4, using the software Mathematica.

It is immediately evident that the relaxed micromorphic model is able to capture the overall
behavior of the reflection coefficient for a very wide range of frequencies. More particularly, for
lower frequencies and up to the band-gap region, oscillations of the reflection coefficient due to
the finite size of the slab are observed in both models. The band-gap region is also correctly
described and corresponds to the frequency interval for which complete reflection (R = 1) is
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6.6. Results and discussion

observed.

After the band-gap region, a characteristic frequency can be identified corresponding to
which almost complete transmission occurs. This phenomenon is related to internal resonances
at the level of the microstructure. It is easy to see that the relaxed micromorphic model is
able to correctly describe also the internal resonance phenomenon. The internal resonance is
clearly visible in both the discrete and the relaxed micromorphic model at normal incidence. It
is, however, lost in the discrete simulation at 45◦ notwithstanding the presence of a zero group
velocity mode in both models. Similar arguments can be carried out for an S incident wave with
reference to Fig. 6.5.

In addition to the comments carried out for an L incident wave, we remark in Fig. 6.5(a)
the presence of a spurious internal resonance in the lower part of the band-gap for the relaxed
micromorphic model. This spurious resonance can be eliminated by activating the non-locality
of the model by setting Lc > 0. In this case, the moderate transmission present in Fig. 6.5(a)
before the band-gap can be reproduced. More details about non-localities will be given in
forthcoming papers. This moderate transmission observed in the microstructured simulations
are due to the imperfect uncoupling of the S (green) modes from the L (blue) acoustic mode in
the Bloch-Floquet dispersion diagram. Thus, there exist some small frequency ranges, for which
the L acoustic mode can be activated also by an S incident wave. The associated transmission
remains very small.

At this point, in order to fully present the potentialities of the relaxed micromorphic model,
we depict in Figures 6.6 and 6.7 the transmission coefficient (T = 1−R) as a function of both
the angle and frequency of the longitudinal incident wave for both the relaxed micromorphic
and the microstructured models.

Figure 6.6 shows the broadband transmission coefficient’s behavior for an L incident wave as
a function of the frequency and angle of incidence. We observe an excellent agreement between
the continuous and discrete simulation for frequencies lower than the band-gap. Transmission
is principally allowed by the blue acoustic mode for all directions of propagation. Even if there
exists some coupling at non-orthogonal incidence with the other lower frequency modes, the blue
acoustic mode is the one which is predominantly activated by an L incident wave and it is, to a big
extent, responsible for the transmission across the metamaterial slab. The band-gap region is also
correctly described. The validation of the fitting performed on higher frequencies was impossible
due to the difficulty of establishing the convergence of the microstructured simulations with the
semi-analytical results of relaxed micromorphic model. This issue deserves deeper investigation
and will be addressed in forthcoming works.

Figure 6.7 depicts the analogous results for an S incident wave. For frequencies lower than
the band-gap, we observe once again an excellent agreement between the discrete and continuous
simulations for all angles of incidence.

We also remark additional interesting phenomena. Firstly, for smaller angles of incidence,
we see that the band-gap region extends to lower frequencies. This is related to the previously
discussed acoustic mode uncoupling, which is observed for angles close to normal incidence. A
shear incident wave mostly activates the green acoustic mode (see Fig. 6.3) which is almost
entirely responsible for the propagation pattern. Since the blue acoustic mode is not activated
for angles close to normal incidence, the bottom band-gap limit is consequently lower compared
to the case of an L incident wave.

A first threshold value of the angle of incidence exists (around 5π/24), for which the two
acoustic modes start to couple and energy starts being transmitted. More remarkably, a second
threshold value of the incident angle exists (around π/3), for which the amount of transmission
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suddenly increases, approaching a total transmission pattern. This is due to a stronger coupling
between the two acoustic modes which are activated by an S incident wave for incident angles
beyond the second threshold. This impressive pattern is clearly associated to the tetragonal
symmetry of the metamaterial: the need for introducing “generalized classes of symmetry” in
an enriched continuum environment is now evident. The investigations for higher frequencies
will be discussed in forthcoming works.

We deduce that the agreement is very satisfactory for all the considered angles (going from
normal incidence to incidence almost parallel to interface) and for the considered range of fre-
quencies. This fact corroborates the hypothesis, which has been made according to Neumann’s
principle and which states that the class of symmetry of the metamaterial at the macroscopic
scale is the same as the symmetry of the unit cell (tetragonal symmetry in this case).

We conclude this section by pointing out that the simulations performed to obtain Figures
6.6 and 6.7 took less than 1 hour for the relaxed micromorphic model and 3 weeks for the discrete
model. Both computations were made with 200 points in the frequency range and for 90 angles.
This tremendous gain in computational time underlines the usefulness of an enriched continuum
model versus a discrete one for the description of the mechanical behavior of finite-size metama-
terials structures. Metamaterial characterization through the relaxed micromorphic model opens
the way to effective FEM implementation of other morphologically complex metastructures.

(a) (b)

Figure 6.6: Transmission coefficient of the metamaterial slab as a function of the angle of incidence θ and of the
wave-frequency ω for an incident L wave. Panel (a) depicts the microstructured simulations, while panel (b) the
analytical relaxed micromorphic model. The origin coincides with normal incidence (θ = π/2), while the angle of
incidence decreases towards the right until it reaches the value θ = 0, which corresponds to the limit case where
the incidence is parallel to the interface. The band-gap region is highlighted by two dashed horizontal lines, where,
as expected, we observe no transmission. The dark blue zone shows that no transmission takes place, while the
gradual change from dark blue to red shows the increase of transmission, red being total transmission.
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6.7. Conclusions

(a) (b)

Figure 6.7: Transmission coefficient of the metamaterial slab as a function of the angle of incidence θ and of
the wave-frequency ω for an incident S wave.

6.6.2 Scattering at a single relaxed micromorphic interface

In this subsection we show the results for the reflection coefficient obtained by using the single
interface boundary conditions for the relaxed micromorphic continuum as described in section
6.1.1.

Figure 6.8 shows the reflection coefficient as a function of the frequency for two different
angles of incidence (θ = π/2 and θ = π/4), when considering an L incident wave for the
“single interface” boundary conditions. Figure 6.9 shows the analogous results for an incident
S wave. As expected, the solution obtained using the “single interface” boundary conditions,
provides a sort of average behavior for the oscillation at lower frequencies. This is sensible, since
when considering a semi-infinite metamaterial, multiple reflections on the two boundaries of the
slab are not accounted for. The difference between “single” and “double interface” boundary
conditions in the relaxed micromorphic model becomes less pronounced for higher frequencies,
since the wavelength of the considered waves is expected to be much lower than the characteristic-
size of the slab.

We conclude this subsection by showing the transmission coefficients at the “single interface”,
as a function of the frequency and the angle of incidence for L and S incident waves (Fig. 6.10(a)
and 6.10(b), respectively). Comparing Fig. 6.6(b) to 6.10(a) and 6.7(b) to 6.10(b), we can
visualize the extent to which the single interface can be considered to represent a metastructure
of finite size. Although some basic averaged information is contained in Figures 6.10(a) and
6.10(b) (band-gap, critical angles), the detailed scattering behavior of the finite slab cannot be
inferred from it. This provides additional evidence for the real need to propose a framework
in which macroscopic boundary conditions can be introduced in a simplified way. Semi-infinite
problems for metamaterials are solved in the context of homogenization methods in [91, 104],
but to the author’s knowledge, the rigorous solution of scattering problems for metamaterials of
finite size is not available in the literature.

6.7 Conclusions

In this chapter we presented for the first time the scattering solution of a metamaterial slab of
finite size, modeled via a rigorous boundary value problem describing its homogenized behavior.
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(a) (b)

Figure 6.8: Reflection coefficient at the single interface for an incident L wave and for two directions of prop-
agation θ = π/2 (normal incidence) (a) and θ = π/4 (b). The blue curve is generated by the tetragonal relaxed
micromorphic model and the black dashed line indicates the microstructured model. The green vertical lines
denote the long-wave limit, below which the relaxed micromorphic model is equivalent to a homogenized Cauchy
model.The dispersion diagrams for θ = π/2 and θ = π/4, given in Fig. 6.3 are also rotated and displayed on the
top of each picture to allow for a better interpretation of results.

(a) (b)

Figure 6.9: Reflection coefficient at the single interface for an incident S wave and for two directions of propa-
gation θ = π/2 (normal incidence) (a) and θ = π/4 (b).

The correct macroscopic boundary conditions (continuity of macroscopic displacement and of
generalized tractions) are presented and are intrinsically compatible with the used macroscopic
bulk PDEs. The scattering properties of the considered finite-size metastructures, as obtained
via the relaxed micromorphic model, are compared to a direct microstructured simulation. This
simulation is obtained by assuming that the metamaterial’s unit cell is periodic and linear-
elastic. Excellent agreement is found for all angles of incidence and for frequencies going from
the long-wave limit to the first band-gap and beyond. Further work will be devoted to better
understanding the high-frequency behavior of the considered metamaterials so as to provide a
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6.7. Conclusions

(a) (b)

Figure 6.10: Transmission coefficient of the single interface as a function of the angle of incidence θ and of the
wave-frequency ω. Panel (a) depicts the case of an incident L wave, while panel (b) the case of an incident S
wave. The origin coincides with normal incidence (θ = π/2), while the angle of incidence decreases towards the
right until it reaches the value θ = 0, which corresponds to the limit case where the incidence is parallel to the
interface. The band-gap region is highlighted by two dashed horizontal lines, where, as expected, we observe no
transmission. The dark blue zone shows that no transmission takes place, while the gradual change from dark
blue to red shows the increase of transmission, red being total transmission.

final validation of the relaxed micromorphic model also for such higher frequencies.
The results presented in this chapter open the way to the future study of the scattering

properties of more complex 2D or 3D finite-sized metastructures in a simplified macroscopic
environment.

The results presented in this chapter can be found in [4].
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Chapter 7

Conclusions and further perspectives

Using a continuum relaxed micromorphic model could be an incredibly powerful tool for the
design of complex metastructures which are constituted by metamaterials with already known
mechanical properties. Indeed, the fact of dealing with few macroscopic elastic coefficients
makes the finite element implementation of the model rather easy, so allowing for the possibility
of designing complex structures with a relatively contained computational effort. Once the
material parameters of the considered metamaterials have been estimated by inverse approach,
standard finite element codes could be used in order to design structures with extended sizes
and complex geometries.

The results presented in this thesis strongly encourage the promotion of the relaxed micro-
morphic model to engineering science. Indeed, the following challenges can be identified and
will be treated in forthcoming works:

• The entire metamaterial’s characterization in the framework of the relaxed micromorphic
model presented in this thesis must be generalized to 3D metamaterials in order to enable
the conception of metastructures, which will have a true impact on our everyday life.

• Study of the behavior of more “geometrically complex” metastructures (e.g. morphologi-
cally complex 2D or simplified 3D); this will allow to demonstrate impressive time savings
in computations considering that, even for the relatively simple metastructure presented
here, we obtain a considerable reduction in computational time, from 53 minutes in the
micro-structured case down to 18 minutes for the relaxed micromorphic case.

• Study of the effect of the characteristic length scale Lc on description of the dynamic
response of metastructures. We will show in a forthcoming paper that the characteristic
length plays a non-negligible role when considering diffractive phenomena at an interface
embedded in a relaxed micromorphic model. Some non-negligible effects of Lc are also
expected for very high frequency and will be investigated in further works. The way
to that goal includes introducing additional degrees of freedom which will account for a
Shear-like mode in the very high frequency regime.

• Study of transient wave propagation in metastructures whose unit cell belongs to different
symmetry classes; this will demonstrate the unprecedented advantage of using the relaxed
micromorphic model rather than other enriched continua. In fact, due to its simplicity
compared to existing generalized continua - the relaxed micromorphic model features 4th
order tensors rather than 6th order tensors, as in the second gradient model - the relaxed
micromorphic model is able to add tangible improvements to the classical and (infinitely
simpler) Cauchy description.
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• Extend the present results to more general classes of symmetry of anisotropic media and
study refection/transmission properties at such interfaces.

• Study of the reflection and transmission properties at interfaces between finite media.
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Appendix A

Appendix for chapter 3.

A1 Variation of the strain energy

Using expression (3.5), we have:

δ

∫ T

0

∫
Ω

W (∇u, P,CurlP )dx dt = δ

∫ T

0

∫
Ω

1

2
〈Ce sym(∇u− P ), sym(∇u− P )〉 dx dt︸ ︷︷ ︸

P1

+ δ

∫ T

0

∫
Ω

1

2
〈Cmicro symP, symP 〉 dx dt︸ ︷︷ ︸

P2

+ δ

∫ T

0

∫
Ω

1

2
〈Cc skew(∇u− P ), skew(∇u− P )〉 dx dt︸ ︷︷ ︸

P3

+ δ

∫ T

0

∫
Ω

L2
c

2
〈Le sym CurlP, sym CurlP 〉 dx dt︸ ︷︷ ︸

P4

+ δ

∫ T

0

∫
Ω

〈Lc skew CurlP, skew CurlP 〉 dx dt︸ ︷︷ ︸
P5

.

We consider each term P1, P2, P3, P4, P5 separately.
For the term P1, we have:

P1 =
1

2

∫ T

0

∫
Ω

〈Ce sym(∇δu− δP ), sym(∇u− P )〉+ 〈Ce sym(∇u− P ), sym(∇δu− δP )〉 dx dt

=

∫ T

0

∫
Ω

〈Ce sym(∇u− P ), sym(∇δu− δP )〉 dx dt =

∫ T

0

∫
Ω

〈Ce sym(∇u− P ),∇δu− δP 〉 dx dt

=

∫ T

0

∫
Ω

〈Ce sym(∇u− P ),∇δu〉 dx dt−
∫ T

0

∫
Ω

〈Ce sym(∇u− P ), δP 〉 dx dt

=

∫ T

0

∫
Ω

〈div(Ce sym(∇u− P ) · δu)dx dt−
∫ T

0

∫
Ω

〈Div(Ce sym(∇u− P )), δu〉 dx dt

−
∫ T

0

∫
Ω

〈Ce sym(∇u− P ), δP 〉 dx dt

=

∫ T

0

∫
∂Ω

〈(Ce sym(∇u− P )) · ν, δu〉 −
∫ T

0

∫
Ω

〈Div(Ce sym(∇u− P )), δu〉 dx dt
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A1. Variation of the strain energy

−
∫ T

0

∫
Ω

〈Ce sym(∇u− P ), δP 〉 dx dt

For the term P2, we have:

P2 =
1

2

∫ T

0

∫
Ω

〈Cmicro sym δP, symP 〉+ 〈Cmicro symP, sym δP 〉dx dt =

∫ T

0

∫
Ω

〈Cmicro symP, sym δP 〉 dx dt

=

∫ T

0

∫
Ω

Cmicro symP, δP 〉 dx dt

For the term P3, we have:

P3 =
1

2

∫ T

0

∫
Ω

〈Cc skew(∇δu− δP ), skew(∇u− P )〉+ 〈Cc skew(∇u− P ), skew(∇δu− δP )〉 dx dt

=

∫ T

0

∫
Ω

〈Cc skew(∇u− P ), skew(∇δu− δP )〉 dx dt =

∫ T

0

∫
Ω

〈Cc skew(∇u− P ),∇δu− δP 〉 dx dt

=

∫ T

0

∫
Ω

〈Cc skew(∇u− P ),∇δu〉 dx dt−
∫ T

0

∫
Ω

〈Cc skew(∇u− P ), δP 〉 dx dt

=

∫ T

0

∫
Ω

〈div(Cc skew(∇u− P ) · δu)dx dt−
∫ T

0

∫
Ω

〈Div(Cc skew(∇u− P )), δu〉 dx dt

−
∫ T

0

∫
Ω

〈Cc skew(∇u− P ), δP 〉 dx dt

=

∫ T

0

∫
∂Ω

〈(Cc skew(∇u− P )) · ν, δu〉 −
∫ T

0

∫
Ω

〈Div(Cc skew(∇u− P )), δu〉 dx dt

−
∫ T

0

∫
Ω

〈Cc skew(∇u− P ), δP 〉 dx dt

For the term P4, we have:

P4 =
L2
c

2
δ

∫ T

0

∫
Ω

〈Le sym CurlP, sym CurlP 〉 dx dt = L2
c

∫ T

0

∫
Ω

〈Le sym CurlP, sym Curl δP 〉 dx dt

= L2
c

∫ T

0

∫
Ω

〈Le sym CurlP,Curl δP 〉 dx dt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

〈(Le sym CurlP )i, (Curl δP )i〉R3 dx dt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

〈(Le sym CurlP )i, curl(δP )i〉R3 dx dt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

(div ((Le sym CurlP )i × curl(δP )i) + 〈curl(Le sym CurlP )i, (δP )i〉R3)

= L2
c

3∑
i=1

∫ T

0

∫
∂Ω

〈((Le sym CurlP )i × curl(δP )i) , ν〉 dx dt

+ L2
c

∫ T

0

∫
Ω

〈Curl (Le sym CurlP ) , δP 〉R3×R3 dx dt

Finally, for the term P5, we have:

P5 =
L2
c

2
δ

∫ T

0

∫
Ω

〈Lc skew CurlP, skew CurlP 〉 dx dt = L2
c

∫ T

0

∫
Ω

〈Lc skew CurlP, skew Curl δP 〉 dx dt
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A

= L2
c

∫ T

0

∫
Ω

〈Lc skew CurlP,Curl δP 〉 dx dt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

〈(Lc skew CurlP )i, (Curl δP )i〉R3 dx dt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

〈(Lc skew CurlP )i, curl(δP )i〉R3 dx dt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

(div ((Lc skew CurlP )i × curl(δP )i) + 〈curl(Lc skew CurlP )i, (δP )i〉R3)

= L2
c

3∑
i=1

∫ T

0

∫
∂Ω

〈((Lc skew CurlP )i × curl(δP )i) , ν〉 dx dt

+ L2
c

∫ T

0

∫
Ω

〈Curl (Lc skew CurlP ) , δP 〉R3×R3 dx dt

A2 Variation of the kinetic energy

Using expression (3.11), we have:

δ

∫ T

0

∫
Ω

J(u,t,∇u,t, P,t)dx dt =
1

2
δ

∫ T

0

∫
Ω

ρ ‖u,t‖2 + 〈Jmicro symP,t, symP,t〉+ 〈Jc skewP,t, skewP,t〉

+ 〈Te sym∇u,t, sym∇u,t〉+ 〈Tc skew∇u,t, skew∇u,t〉 dx dt

= ρ

∫ T

0

∫
Ω

〈u,t, δu,t〉 dx dt︸ ︷︷ ︸
K1

+

∫ T

0

∫
Ω

〈Jmicro symP,t, sym δP,t〉dx dt︸ ︷︷ ︸
K2

+

∫ T

0

∫
Ω

〈Jc skewP,t, skew δP,t〉 dx dt︸ ︷︷ ︸
K3

+

∫ T

0

∫
Ω

〈Te sym∇u,t, sym∇δu,t〉 dx dt︸ ︷︷ ︸
K4

+

∫ T

0

∫
Ω

〈Tc skew∇u,t, skew∇δu,t〉 dx dt︸ ︷︷ ︸
K5

.

Once again, we consider each term K1, K2, K3, K4, K5 separately and apply integration by parts to
each of these terms.

For the term K1, we have:

K1 = ρ

∫ T

0

∫
Ω

d

dt
〈u,t, δu〉 dx dt− ρ

∫ T

0

∫
Ω

〈u,tt, δu〉 dx dt

= ρ

∫ T

0

d

dt

(∫
Ω

〈u,t, δu〉 dx
)
dt− ρ

∫ T

0

∫
Ω

〈u,tt, δu〉 dx dt

=

∫
Ω×{T}

〈u,t(x, T ), δu(x, T )〉 dx−
∫

Ω×{0}
〈u,t(x, 0), δu(x, 0)〉 dx− ρ

∫ T

0

∫
Ω

〈u,tt, δu〉 dx dt.

For the term K2, we have:

K2 =

∫ T

0

∫
Ω

d

dt
〈Jmicro symP,t, sym δP 〉dx dt−

∫ T

0

∫
Ω

〈Jmicro symP,tt, sym δP 〉dx dt

=

∫ T

0

d

dt

(∫
Ω

〈Jmicro symP,t, δP 〉dx
)
dt−

∫ T

0

∫
Ω

〈Jmicro symP,tt, sym δP 〉dx dt
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A3. Energy flux for the anisotropic relaxed micromorphic model

=

∫
Ω×{T}

〈Jmicro symP,t(x, T ), δP (x, T )〉dx−
∫

Ω×{0}
〈Jmicro symP,t(x, 0), δP (x, 0)〉dx

−
∫ T

0

∫
Ω

〈Jmicro symP,tt, δP 〉dx dt

For the term K3, we have:

K3 =

∫ T

0

∫
Ω

d

dt
〈Jc skewP,t, skew δP 〉dx dt−

∫ T

0

∫
Ω

〈Jc skewP,tt, skew δP 〉dx dt

=

∫ T

0

d

dt

(∫
Ω

〈Jc skewP,t, δP 〉dx
)
dt−

∫ T

0

∫
Ω

〈Jc skewP,tt, skew δP 〉dx dt

=

∫
Ω×{T}

〈Jc skewP,t(x, T ), δP (x, T )〉dx−
∫

Ω×{0}
〈Jc skewP,t(x, 0), δP (x, 0)〉dx

−
∫ T

0

∫
Ω

〈Jc skewP,tt, δP 〉dx dt

For the term K4, we have:

K4 =

∫ T

0

∫
Ω

〈Te sym∇u,t,∇δu,t〉 dx dt

=

∫ T

0

∫
∂Ω

〈(Te sym∇u,t) · ν, δu,t〉 dx dt−
∫ T

0

∫
Ω

〈Div(Te sym∇u,t), δu,t〉 dx dt

=

∫
∂Ω×{T}

〈(Te sym∇u,t(x, T )) · ν, δu,t(x, T )〉 dx−
∫
∂Ω×{0}

〈(Te sym∇u,t(x, 0)) · ν, δu,t(x, 0)〉 dx

−
∫ T

0

∫
∂Ω

〈(Te sym∇u,tt) · ν, δu〉 dx dt

−

(∫ T

0

∫
Ω

d

dt
〈Div(Te sym∇u,t), δu〉 dx dt−

∫ T

0

∫
Ω

〈Div(Te sym∇u,tt, δu〉 dx dt

)

Finally, for the term K5, we have:

K5 =

∫ T

0

∫
Ω

〈Tc skew∇u,t,∇δu,t〉 dx dt

=

∫ T

0

∫
∂Ω

〈(Tc skew∇u,t) · ν, δu,t〉 dx dt−
∫ T

0

∫
Ω

〈Div(Tc skew∇u,t), δu,t〉 dx dt

=

∫
∂Ω×{T}

〈(Tc skew∇u,t(x, T )) · ν, δu,t(x, T )〉 dx−
∫
∂Ω×{0}

〈(Tc skew∇u,t(x, 0)) · ν, δu,t(x, 0)〉 dx

−
∫ T

0

∫
∂Ω

〈(Tc skew∇u,tt) · ν, δu〉 dx dt

−

(∫ T

0

∫
Ω

d

dt
〈Div(Tc skew∇u,t), δu〉 dx dt−

∫ T

0

∫
Ω

〈Div(Tc skew∇u,tt, δu〉 dx dt

)

A3 Energy flux for the anisotropic relaxed micromorphic model

A3.1 Derivation of expression (3.76)

The total energy is given by:

E = J(u,t,∇u,t, P,t) +W (∇u, P,CurlP ), (A.1)
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A

where J(u,t,∇u,t, P,t) and W (∇u, P,CurlP ) are defined in (3.11) and (3.5). Differentiating (A.1) with
respect to time1 we have:

E,t = 〈u,t, ρu,tt〉+ 〈symP,t, Jmicro symP,tt〉+ 〈skewP,t, Jc skewP,tt〉+ 〈sym∇u,t,Te sym∇u,tt〉
+ 〈skew∇u,t,Tc skew∇u,tt〉+ 〈Ce sym(∇u− P ), sym(∇u− P ),t〉+ 〈Cc skew(∇u− P ), skew(∇u− P ),t〉
+ 〈Cmicro symP, symP,t〉+ L2

c (〈Le sym CurlP, sym CurlP,t〉+ 〈Lc skew CurlP, skew CurlP,t〉) .
(A.5)

Using the governing equations (3.28), definitions (3.33) for σ̃, σ̂, s,m and (A.2), (A.3), (A.4) we have:

〈u.t, ρ u,tt〉 = 〈u,t,Div(Te sym∇u,tt + Tc skew∇u,tt) + Div σ̃〉
= 〈u,t,Div σ̃〉+ 〈u,t,Div(Te sym∇u,tt + Tc skew∇u,tt︸ ︷︷ ︸

:=σ̂

)〉

= 〈u,t,Div σ̃〉+ 〈u,t,Div σ̂〉,

〈symP,t, Jmicro symP,tt〉+ 〈skewP,t, Jc skewP,tt〉
= 〈symP,t + skewP,t, Jmicro symP,tt〉+ 〈symP,t + skewP,t, Jc skewP,tt〉
= 〈P,t, Jmicro symP,tt + Jc skewP,tt〉 = 〈P,t, σ̃e − s− sym Curlm+ σ̃c − skew Curlm〉
= 〈P,t, σ̃ − s− Curlm〉 = 〈P,t, σ̃〉 − 〈P,t, s〉 − 〈P,t,Curlm〉,

〈sym∇u,t,Te sym∇u,tt〉+ 〈skew∇u,t,Tc skew∇u,tt〉
= 〈sym∇u,t + skew∇u,t,Te sym∇u,tt〉+ 〈sym∇u,t + skew∇u,t,Tc skew∇u,tt〉
= 〈∇u,t,Te sym∇u,tt + Tc skew∇u,tt︸ ︷︷ ︸

=σ̂

〉 = 〈∇u,t, σ̂〉 = Div(u,t · σ̂)− 〈u,t,Div σ̂〉,

〈Ce sym(∇u− P ), sym(∇u− P ),t〉+ 〈Cc skew(∇u− P ), skew(∇u− P ),t〉
= 〈Ce sym(∇u− P ), sym(∇u− P ),t + skew(∇u− P ),t〉
+ 〈Cc skew(∇u− P ), sym(∇u− P ),t + skew(∇u− P ),t〉
= 〈Ce sym(∇u− P ) + Cc skew(∇u− P ), (∇u− P ),t〉 = 〈σ̃, (∇u− P ),t〉
= 〈σ̃,∇u,t〉 − 〈σ̃, Pt〉 = Div(u,t · σ̃)− 〈u,t,Div σ̃〉 − 〈σ̃, Pt〉,

〈Cmicro symP, symP,t〉 = 〈Cmicro symP, symP,t + skewP,t〉 = 〈Cmicro symP, P,t〉 = 〈s, P,t〉,
1We repeat again some identities from differential calculus. Let ψ be a vector field and A a second order

tensor field. Then
〈∇ψ,A〉 = Div(ψ ·A)− 〈ψ,DivA〉. (A.2)

Taking ψ = u,t and A = σ̃ we have

〈∇u,t, σ̃〉 = Div(u,t · σ̃)− 〈u,t,Div σ̃〉 . (A.3)

Furthermore, we have the following identity

〈m,CurlP,t〉 = Div
(

(mT · P,t) : ε
)

+ 〈Curlm,P,t〉 , (A.4)

which follows from the identity div(v × w) = w · curl v − v · curlw, where v, w are suitable vector fields, × is the
usual vector product and : is the double contraction between tensors.
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A3. Energy flux for the anisotropic relaxed micromorphic model

L2
c (〈Le sym CurlP, sym CurlP,t〉+ 〈Lc skew CurlP, skew CurlP,t〉)

= L2
c (〈Le sym CurlP, sym CurlP,t + skew CurlP,t〉+ 〈Lc skew CurlP, sym CurlP,t + skew CurlP,t〉)

= 〈L2
c(Le sym CurlP + Lc skew CurlP ),CurlP,t〉 = 〈m,CurlP,t〉 = Div

(
(mT · P,t) : ε

)
− 〈Curlm,Pt〉.

So, by adding all the above and simplifying, (A.5) becomes:

E,t = Div
[
(σ̃ + σ̂)

T · u,t +
(
mT · P,t

)
: ε
]
, (A.6)

from which we can define the energy flux for the general anisotropic relaxed micromorphic model:

H = − (σ̃ + σ̂)
T · u,t −

(
mT · P,t

)
: ε. (A.7)
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Appendix B

Appendix for chapter 4

B1 Calculation of the determinant of A

We demonstrate the explicit calculation of the determinant of the matrix

A =

 ω2 − c2l k2
1 − c2sk2

2 −c2V k1k2

−c2V k1k2 ω2 − c2l k2
2 − c2sk2

1

 . (B.1)

We have

detA = (ω2 − c2l k2
1 − c2sk2

2)(ω2 − c2l k2
2 − c2sk2

1)− c4V k2
1k

2
2

= ω4 − ω2c2l (k
2
1 + k2

2)− ω2c2s(k
2
1 + k2

2) + c2l c
2
s(k

4
1 + k4

2) + (c4l + c4s)k
2
1k

2
2 − c4V k2

1k
2
2 (B.2)

= ω4 − ω2(k2
1 + k2

2)(c2l + c2s) + c2l c
2
s(k

4
1 + k4

2) + (c4l + c4s)k
2
1k

2
2 − c2V k2

1k22

= ω4 − ω2(k2
1 + k2

2)
2µ+ λ+ µ

ρ
+

(2µ+ λ)µ

ρ2
(k4

1 + k4
2) +

(2µ+ λ)2 + µ2

ρ2
k2

1k
2
2 −

(µ+ λ)2

ρ2
k2

1k
2
2

=
1

ρ2

[
ρ2ω4 − ρω2

(
(2µ+ λ)k2

1 + (2µ+ λ)k2
2 + µk2

1 + µk2
2

)
+ µ(2µ+ λ)k4

1 + µ(2µ+ λ)k4
2 + 2µ(2µ+ λ)k2

1k
2
2

]
=

1

ρ2

[
ρ2ω4 − ρω2(2µ+ λ)(k2

1 + k2
2)− ρω2µ(k2

1 + k2
2) + (2µ+ λ)(k2

1 + k2
2)µ(k2

1 + k2
2)
]

=
1

ρ2

[
(µ(k2

1 + k2
2)− ρω2)(2µ+ λ)(k2

1 + k2
2)− ρω2(2µ+ λ)(k2

1 + k2
2) + ρ2ω4

]
=

1

ρ2

(
(2µ+ λ)(k2

1 + k2
2)− ρω2

) (
µ(k2

1 + k2
2)− ρω2

)
. (B.3)

B2 Lemma 1

We have the following well-known result.

Lemma 1. Let

u(x, t) = A(x)ei(〈k,x〉−ωt), σ(x, t) = B(x)ei(〈k,x〉−ωt)

be two functions with A,B : R3 → C. Then the following holds

1

T

∫ T

0

Re{u(x, t)}Re{σ(x, t)}dt =
1

2
Re(u(x, t)σ∗(x, t)), (B.4)

where T = 2π
ω is the period of the functions u, σ, ∗ denotes the complex conjugate, x = (x1, x2)T and

k = (k1, k2)T.
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B3. Conditions for the appearance of Stoneley waves

Proof. We have:

1

T

∫ T

0

Re{u(x, t)}Re{σ(x, t)}dt =
1

T

∫ T

0

Re
(
Aei(〈k,x〉−ωt)

)
Re
(
Bei(〈k,x〉−ωt)

)
dt

=
1

T

∫ T

0

Aei(〈k,x〉−ωt) +A∗e−i(〈k,x〉−ωt)

2

Bei(〈k,x〉−ωt) +B∗e−i(〈k,x〉−ωt)

2
dt

=
1

4T

∫ T

0

ABei2〈k,x〉 e−i2ωt︸ ︷︷ ︸
periodic

+AB∗ +A∗B +A∗B∗e−i2〈k,x〉 ei2ωt︸︷︷︸
periodic

dt

=
1

4T

∫ T

0

AB∗ +A∗Bdt

=
1

2
Re (AB∗)

=
1

2
Re (u(x, t)σ∗(x, t)) , (B.5)

since
1

2
Re (u(x, t)σ∗(x, t)) =

1

2
Re
(
Aei(〈k,x〉−ωt)B∗e−i(〈k,x〉−ωt)

)
=

1

2
Re (AB∗)

where we used the facts that the integral of the periodic function e2iωt over its period is zero and that
for any complex number z ∈ C: Re(z) = z+z∗

2 . �

Remark. In our case, when we use the above result to compute the fluxes in equations (4.54) and (4.56),
the coefficients A and B of the previous lemma are combinations of the wave-vector components k1 and
k2, the frequency ω, the amplitudes and the Lamé parameters of the material.

The reflected and transmitted fluxes are the sum of the flux of each mode, i.e. Hr
1 = HL,r

1 + HSV,r
1

and
Ht

1 = HL,t
1 +HSV,t

1 and since all operations involved (derivation, complex conjugation and the real part
of a complex quantity) are linear, Lemma B.4 is applied to each of the summands. This is the reason why
in the proof above we used the same k in both functions u and σ. Furthermore, this reasoning allows us
to deduce that the reflection and transmission coefficients as defined in (4.53) and (4.95) do not depend
either on x1 or x2.

B3 Conditions for the appearance of Stoneley waves

We explicitly demonstrate all calculations carried out in order to produce Tables 4.1 and 4.2.

Incident L, transmitted waves

In this case, k2 = −|k| cos θ = − ω
c−L

cos θ.

• L-mode:(
ω

c+L

)2

−k2
2 < 0⇒

(
ω

c+L

)2

< k2
2 ⇒

(
ω

c+L

)2

<

(
ω

c−L

)2

cos2 θ ⇒ cos2 θ >

(
c−L
c+L

)2

=
ρ+(2µ− + λ−)

ρ−(2µ+ + λ+)
.

(B.6)

• SV-mode:(
ω

c+S

)2

−k2
2 < 0⇒

(
ω

c+S

)2

< k2
2 ⇒

(
ω

c+S

)2

<

(
ω

c−L

)2

cos2 θ ⇒ cos2 θ >

(
c−L
c+S

)2

=
ρ+(2µ− + λ−)

ρ−µ+
.

(B.7)

120

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI073/these.pdf 
© [A. Aivaliotis], [2019], INSA Lyon, tous droits réservés



B

Incident SV, transmitted waves

In this case, k2 = −|k| cos θ = − ω
c−S

cos θ.

• L-mode:(
ω

c+L

)2

−k2
2 < 0⇒

(
ω

c+L

)2

< k2
2 ⇒

(
ω

c+L

)2

<

(
ω

c−S

)2

cos2 θ ⇒ cos2 θ >

(
c−S
c+L

)2

=
ρ+µ−

ρ−(2µ+ + λ+)
.

(B.8)

• SV-mode:(
ω

c+S

)2

− k2
2 < 0⇒

(
ω

c+S

)2

< k2
2 ⇒

(
ω

c+S

)2

<

(
ω

c−S

)2

cos2 θ ⇒ cos2 θ >

(
c−S
c+S

)2

=
ρ+µ−

ρ−µ+
. (B.9)

Incident SH, transmitted waves

In this case, k2 = −|k| cos θ = − ω
c−S

cos θ.

• SH-mode:(
ω

c+S

)2

− k2
2 < 0⇒

(
ω

c+S

)2

< k2
2 ⇒

(
ω

c+S

)2

<

(
ω

c−S

)2

cos2 θ ⇒ cos2 θ >

(
c−S
c+S

)2

=
ρ+µ−

ρ−µ+
.

(B.10)

Incident Longitudinal, reflected waves

In this case, k2 = −|k| cos θ = − ω
c−L

cos θ.

• L-mode:(
ω

c−L

)2

− k2
2 < 0⇒

(
ω

c−L

)2

< k2
2 ⇒

(
ω

c−L

)2

<

(
ω

c−L

)2

cos2 θ ⇒ cos2 θ >

(
c−L
c−L

)2

= 1, (B.11)

which renders the L mode becoming Stoneley in the case of an incident Longitudinal wave, impos-
sible.

• SV-mode:(
ω

c−S

)2

− k2
2 < 0⇒

(
ω

c−S

)2

< k2
2 ⇒

(
ω

c−S

)2

<

(
ω

c−L

)2

cos2 θ ⇒ cos2 θ >

(
c−L
c−S

)2

> 1, (B.12)

which renders the SV mode becoming Stoneley in the case of an incident Longitudinal wave, impossible,
since cL > cS by definition.

Incident SV, reflected waves

In this case, k2 = −|k| cos θ = − ω
c−S

cos θ.

• L-mode:(
ω

c−L

)2

− k2
2 < 0⇒

(
ω

c−L

)2

< k2
2 ⇒

(
ω

c−L

)2

<

(
ω

c−S

)2

cos2 θ ⇒ cos2 θ >

(
c−S
c−L

)2

=
µ−

(2µ− + λ−)
.

(B.13)

• SV-mode:(
ω

c−S

)2

− k2
2 < 0⇒

(
ω

c−S

)2

< k2
2 ⇒

(
ω

c−S

)2

<

(
ω

c−S

)2

cos2 θ ⇒ cos2 θ >

(
c−S
c−S

)2

= 1, (B.14)

which renders the SV mode becoming Stoneley in the case of an incident SV wave, impossible.
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B4. Appendix for the relaxed micromorphic model

Incident SH, reflected waves

In this case, k2 = −|k| cos θ = − ω
c−S

cos θ.

• SH-mode:

(
ω

c−S

)2

− k2
2 < 0⇒

(
ω

c−S

)2

< k2
2 ⇒

(
ω

c−S

)2

<

(
ω

c−S

)2

cos2 θ ⇒ cos2 θ >

(
c−S
c−S

)2

= 1, (B.15)

which shows that there can be no reflected Stoneley waves in the case of an incident SH wave.

B4 Appendix for the relaxed micromorphic model

B4.1 Governing equations in component-wise notation

u1,tt =
λe + 2µe

ρ
u1,11 +

µe + µc
ρ

u1,22 +
µe − µc + λe

ρ
u2,12 −

2µe
ρ
P11,1 −

λe
ρ

(P11,1 + P22,1 + P33,1)

− (µe + µc)

ρ
P12,2 −

(µe − µc)
ρ

P21,2,

u2,tt =
(λe + 2µe)

ρ
u2,22 +

µc + µe
ρ

u2,11 +
µe − µc + λe

ρ
u1,12 −

2µe
ρ
P22,2 −

λe
ρ

(P11,2 + P22,2 + P33,2)

− µe + µc
ρ

P21,1 −
µe − µc

ρ
P12,1,

u3,tt =
µe + µc

ρ
(u3,11 + u3,22)− µe − µc

ρ
(P13,1 + P23,2)− µe + µc

ρ
(P31,1 + P32,2),

P11,tt =
2µe + λe

η
u1,1 +

λe
η
u2,2 − 2

µe + µmicro

η
P11 −

λe + λmicro

η
(P11 + P22 + P33) +

µeL
2
c

η
(P11,22 − P12,12),

P12,tt =
µe + µc

η
u1,2 +

µe − µc
η

u2,1 −
µe + µc + µmicro

η
P12 −

µe − µc + µmicro

η
P21 +

µeL
2
c

η
(P12,11 − P11,12),

P13,tt =
µe − µc

η
u3,1 −

µe + µc + µmicro

η
P13 −

µe − µc + µmicro

η
P31 +

µeL
2
c

η
(P13,22 + P13,11),

P21,tt =
µe − µc

η
u1,2 +

µe + µc
η

u2,1 −
µe − µc + µmicro

η
P12 −

µe + µc + µmicro

η
P21 +

µeL
2
c

η
(P21,22 − P22,12),

P22,tt =
2µe + λe

η
u2,2 +

λe
η
u1,1 − 2

µe + µmicro

η
P22 −

λe + λmicro

η
(P11 + P22 + P33) +

µeL
2
c

η
(P22,11 − P21,12),

P23,tt =
µe − µc

η
u3,2 −

µe + µc + µmicro

η
P23 −

µe − µc + µmicro

η
P32 +

µeL
2
c

η
(P23,22 + P23,11),

P31,tt =
µe + µc

η
u3,1 −

µe − µc + µmicro

η
P13 −

µc + µe + µmicro

η
P31 +

µeL
2
c

η
(P31,22 − P32,12),

P32,tt =
µe + µc

η
u3,2 −

µe − µc + µmicro

η
P23 −

µe + µc + µmicro

η
P32 +

µeL
2
c

η
(P32,11 − P31,12),

P33,tt =
λe
η

(u1,1 + u2,2)− 2
µe + µmicro

η
P33 −

λe + λmicro

η
(P11 + P22 + P33) +

µeL
2
c

η
(P33,22 + P313,11).
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B

B4.2 Governing equations with new variables

Define the new variables1

PS =
1

3
(P11 + P22 + P33), PD1 = P11 − PS , PD2 = P22 − PS , P(1γ) =

1

2
(P1γ + Pγ1),

P[1γ] =
1

2
(P1γ − Pγ1), P(23) =

1

2
(P23 + P32), P[23] =

1

2
(P12 − P21),

with γ = 2, 3 and rewrite the equations with respect to these new variables:

u1,tt =
2µe + λe

ρ
u1,11 +

µe + µc
ρ

u1,22 +
µe − µc + λe

ρ
u2,12 − 2

µe
ρ
PD1,1 −

3λe + 2µe
ρ

PS,1 − 2
µe
ρ
P(12),2 − 2

µc
ρ
P[12],2,

u2,tt =
µe − µc + λe

ρ
u1,12 +

µe + µc
ρ

u2,11 +
2µe + λe

ρ
u2,22 − 2

µe
ρ
PD2,2 −

3λe + 2µe
ρ

PS,2 − 2
µe
ρ
P(12),1 + 2

µc
ρ
P[12],1,

PD1,tt =
4

3

µe
η
u1,1 −

2

3

µe
η
u2,2 − 2

µe + µmicro

η
PD1 +

µeL
2
c

3η
PD1,11 +

µeL
2
c

η
PD1,22 +

µeL
2
c

3η
PD2,22 −

2

3

µeL
2
c

η
PS,11 +

µeL
2
c

3η
PS,22

− µeLc

3η
P(12),12 −

µeL
2
c

η
P[12],12,

PD2,tt = −2

3

µe
η
u1,1 +

4

3

µe
η
u2,2 +

µeL
2
c

3η
PD1,11 − 2

µe + µmicro

η
PD2 +

µeL
2
c

η
PD2,11 +

µeL
2
c

3η
PD2,22 +

µeL
2
c

3η
PS,11 −

2

3

µeL
2
c

η
PS,22

− µeL
2
c

3η
P(12),12 +

µeL
2
c

η
P[12],12,

PS,tt =
2µe + 3λe

3η
u1,1 +

2µe + 3λe
3η

u2,2 −
µeL

2
c

3η
PD1,11 −

µeL
2
c

3η
PD2,22 −

(2µe + 3λe) + (2µmicro + 3λmicro)

η
PS +

2

3

µeL
2
c

η
PS,11

+
2

3

µeL
2
c

η
PS,22 −

2

3

µeL
2
c

η
P(12),12,

P(12),tt =
µe
η
u1,2 +

µe
η
u2,1 −

1

2

µcL
2
c

η
PD1,12 −

1

2

µcL
2
c

η
PD2,12 −

µcL
2
c

η
PS,12 − 2

µe + µmicro

η
P(12) +

1

2

µcL
2
c

η
P(12),11 +

1

2

µcL
2
c

η
P(12),22

+
1

2

µcL
2
c

η
P[12],11 −

1

2

µcL
2
c

η
P[12],22,

P[12],tt =
µc
η
u1,2 −

µc
η
u2,1 −

1

2

µeL
2
c

η
PD1,12 +

1

2

µeL
2
c

η
PD2,12 +

1

2

µeL
2
c

η
P(12),11 −

1

2

µeL
2
c

η
P(12),22 − 2

µc
η
P[12] +

1

2

µeL
2
c

η
P[12],11

+
1

2

µeL
2
c

η
P[12],22,

u3,tt =
µe + µc

ρ
(u3,11 + u3,22)− 2

µe
ρ
P(13),1 + 2

µc
ρ
P[13],1 − 2

µe
ρ
P(23),2 + 2

µc
ρ
P[23],2,

P(13),tt =
µe
η
u3,1 − 2

µe + µmicro

η
P(13) +

1

2

µeL
2
c

η
P(13),11 +

µeL
2
c

η
P(13),22 +

1

2

µeL
2
c

η
P[13],11 −

1

2

µeL
2
c

η
P(23),12 +

1

2

µeL
2
c

η
P[23],12,

P[13],tt = −µc
η
u3,1 +

1

2

µeL
2
c

η
P(13),11 − 2

µc
η
P[13] +

1

2

µeL
2
c

η
P[13],11 +

µeL
2
c

η
P[13],22 +

1

2

µeL
2
c

η
P(23),12 −

1

2

µeL
2
c

η
P[23],12,

P(23),tt =
µe
η
u3,2 −

1

2

µeL
2
c

η
P(13),12 +

1

2

µeL
2
c

η
P[13],12 − 2

µe + µmicro

η
P(23) +

µeL
2
c

η
P(23),11 +

1

2

µeL
2
c

η
P(23),22 +

1

2

µeL
2
c

η
P[23],22,

P[23],tt = −µc
η
u3,2 +

1

2

µeL
2
c

η
P(13),12 −

1

2

µeL
2
c

η
P[13],12 +

1

2

µeL
2
c

η
P(23),22 − 2

µc
η
P[23] +

µeL
2
c

η
P[23],11 +

1

2

µeL
2
c

η
P[23],22.

Collect the new variables as

v1 =
(
u1, u2, P

D
1 , P

D
2 , P

S , P(12), P[12]

)T
, (B.16)

v2 =
(
u3, P(13), P[13], P(23), P[23]

)T
. (B.17)

1The definitions are motivated by the Cartan-Lie decomposition of the tensor P .

123

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI073/these.pdf 
© [A. Aivaliotis], [2019], INSA Lyon, tous droits réservés



B4. Appendix for the relaxed micromorphic model

B4.3 The matrices A1 and A2

The form of the matrices being too complicated to fit in one page, we present both A1 and A2 in a
column-wise sense.

A11 =



(
k21

2µe+λe
ρ

+ k22
µe+µc
ρ

)
− ω2

k1k2
µe−µc+λe

ρ

−2ik1
µe
ρ

0

−ik1 3λe+2µe
ρ

−2ik2
µe
ρ

2ik2
µe
ρ



T

, A12 =



k1k2
µe−µc+λe

ρ(
k21

µe+µc
ρ

+ k22
2µe+λe

ρ

)
− ω2

0

−2ik2
µe
ρ

−ik2 3λe+2µe
ρ

−2ik1
µe
ρ

2ik1
µe
ρ



T

, (B.18)

A13 =



4
3
ik1

µe
η

− 2
3
ik2

µe
η(

k21
µeLc
3η

+ k22
µeL

2
c

η

)
+ 2µe+µmicro

η
− ω2

k22
µeL

2
c

3η(
k22

µeL
2
c

3η
− k21

µeL
2
c

η

)
−k1k2 µeL

2
c

3η

−k1k2 µeL
2
c

η



T

, A14 =



− 2
3
ik1

µe
η

+ 4
3
ik2

µe
η

k21
µeL

2
c

3η(
k21

µeL
2
c

η
+ k22

µeL
2
c

3η

)
+ 2µe+µmicro

η
− ω2(

k21
µeL

2
c

3η
− 2

3
k22

µeL
2
c

η

)
−k1k2 µeL

2
c

3η

k1k2
µeL

2
c

η



T

,

A15 =



ik1
2µe+3λe

3η

ik2
2µe+3λe

3η

−k21
µeL

2
c

3η

−k22
µeL

2
c

3η

2
3
(k21 + k22)

µeL
2
c

η
+ (2µe+3λe)+(2µmicro+3λmicro)

η
− ω2

− 2
3
k1k2

µeL
2
c

η

0



T

, A16 =



ik2
µe
η

ik1
µe
η

− 1
2
k1k2

µeL
2
c

η

− 1
2
k1k2

µeL
2
c

η

−k1k2 µeL
2
c

η

1
2
(k21 + k22)

µeL
2
c

η
+ 2µe+µmicro

η
− ω2

1
2
(k21 − k22)

µeL
2
c

η



T

,

(B.19)

A17 =



ik2
µc
η

−ik1 µc
η

− 1
2
k1k2

µeL
2
c

η

1
2
k1k2

µeL
2
c

η

0

1
2
(k21 − k22)

µeL
2
c

η

1
2
(k21 + k22)

µeL
2
c

η
+ 2µc

η
− ω2



T

. (B.20)

Then, the matrix A1 is

A1 = (A11, A12, A13, A14, A15, A16, A17)T. (B.21)
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B

As for A2 we have:

A21 =



(k2
1 + k2

2)µe+µc

ρ − ω2

2ik1
µe

ρ

−2ik1
µc

ρ

2ik2
µe

ρ

−2ik2
µc

ρ



T

A22 =



−ik1
µe

η(
k2

1
µeL

2
c

2η + k2
2
µeL

2
c

η

)
+ 2µe+µmicro

η − ω2

k2
1
µeL

2
c

2η

−k1k2
µeL

2
c

2η

k1k2
µeL

2
c

2η



T

A23 =



ik1
µc

η

k2
1
µeL

2
c

2η(
k2

1
µeL

2
c

2η + k2
2
µeL

2
c

η

)
+ 2µc

η − ω
2

k1k2
µeL

2
c

2η

−k1k2
µeL

2
c

2η



T

A24 =



−ik2
µe

η

−k1k2
µeL

2
c

2η

k1k2
µeL

2
c

2η(
k2

1
µeL

2
c

η + k2
2
µeL

2
c

2η

)
+ 2µe+µmicro

η − ω2

k2
2
µeL

2
c

2η



T

(B.22)

A25 =



ik2
µc

η

k1k2
µeL

2
c

2η

−k1k2
µeL

2
c

2η

k2
2
µeL

2
c

2η(
k2

1
µeL

2
c

η + k2
2
µeL

2
c

2η

)
+ 2µc

η − ω
2



T

. (B.23)

Then, the matrix A2 is

A2 = (A21, A22, A23, A24, A25)T. (B.24)

B4.4 Dispersion curves analysis of the relaxed micromorphic model

In-plane variables

First, observe that after replacing the wave form (4.76) in (3.34), A1 can be written as (see Appendix
B4.5 for a demonstration of these matrices):

A1 = |k|2AR1 − ω21− i|k|BR1 − CR1 . (B.25)

We now investigate the behaviour of the polynomial detA1 for the two limiting cases |k| → 0 and
|k| → ∞, the final goal being to be able to determine the cut-off frequencies and asymptotes of the
dispersion curves.

Letting |k| → 0 and using (B.25), the equation A1 · v1 = 0 becomes

(ω21 + CR1 ) · v1 = 0. (B.26)
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B4. Appendix for the relaxed micromorphic model

Using expression (B.45) for CR1 , we get

ω2 0 0 0 0 0 0

0 ω2 0 0 0 0 0

0 0 ω2 − ω2
s 0 0 0 0

0 0 0 ω2 − ω2
s 0 0 0

0 0 0 0 ω2 − ω2
p 0 0

0 0 0 0 0 ω2 − ω2
s 0

0 0 0 0 0 0 ω2 − ω2
r


· v1 = 0. (B.27)

This allows us to deduce that for small values of |k|, the cut-off frequencies of the dispersion curves are
ω = 0, ω = ωs, ω = ωr, ω = ωp as shown in Figure 4.10.

As for when |k| → ∞, we consider the case where the ratio |k|/ω remains finite and so instead of
studying the whole system we can simply regard the reduced system(

|k|2AR1 − ω21
)
· v1 = 0. (B.28)

The determinant of |k|2AR1 − ω21 is

det
(
|k|2AR1 − ω21

)
= ω4(|k|2c2m − ω2)3(|k|2c2f − ω2)(|k|2c2p − ω2). (B.29)

If we solve the equation det
(
|k|2AR1 − ω21

)
= 0, we find the solution ω = 0, which has to be excluded

since it violates the requirement |k|/ω finite for |k| → ∞. The other solutions are ω = cm|k|, ω = cf |k|,
ω = cp|k|; these are the asymptotes to the dispersion curves.
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Figure B.1: (a) Three distinct modes have distinct cut-off frequencies but a common asymptote with
slope cm, (b) Two distinct modes have the same cut-off frequencies but asymptotes with different slopes
cf and cp.
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Figure B.2: Two modes with horizontal asymptotes ωl and ωt.

Finally, the two horizontal asymptotes are ω = ωl and ω = ωt (see Section B4.4 for the analytical
method of how to find them).

The first, second and fifth modes all have the same asymptote ω = cm|k| (Figure B.1 (a)). Un-
fortunately, due to the very complicated expressions for ω2(|k|) and ω3(|k|), this cannot be analytically
reaffirmed; numerically, however, we find:

lim
|k|→∞

|ωi(|k|)− cm|k|| = 0,

for i = 1, 2, 5.
Figure 4.10 summarizes the main characteristics of the dispersion curves that we find for an isotropic

relaxed micromorphic medium (cut-off frequencies, horizontal and oblique asymptotes). Figures B.1 (a),
(b) and B.2 show in more detail the oblique and horizontal asymptotes for the different modes.

Out-of-plane variables

Similarly to the in-plane case, we can again write

A2 = |k̃|2AR2 − ω21− i|k̃|BR2 − CR2 . (B.30)

We now investigate the behavior of the polynomial detA2 for the two limiting cases |k̃| → 0 and |k̃| → ∞.

Letting |k̃| → 0, equation A2 · v2 = 0 becomes

ω2 0 0 0 0

0 ω2 − ω2
s 0 0 0

0 0 ω2 − ω2
r 0 0

0 0 0 ω2 − ω2
s 0

0 0 0 0 ω2 − ω2
r


· v2 = 0. (B.31)

This allows us to deduce that for small values of |k̃|, the cut-off frequencies of the dispersion curves are
ω = 0, ω = ωs, ω = ωr as shown in Figure 4.12.
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B4. Appendix for the relaxed micromorphic model

We now let |k̃| → ∞ and we once again assume that the ratio |k̃|/ω remains finite. Then, the system
reduces to

E2 · v2 := (|k̃|2AR2 − ω21) · v2 = 0, (B.32)

where2

E2 =



|k̃|2c2f − ω2 0 0 0 0

0 |k̃|2c2m
(
1
2
ξ21 + ξ22

)
− ω2 1

2
|k̃|2c2mξ21 − 1

2
|k̃|2c2mξ1ξ2 1

2
|k̃|2c2mξ1ξ2

0 1
2
|k̃|2c2mξ21 |k̃|2c2m

(
1
2
ξ21 + ξ22

)
− ω2 1

2
|k̃|2c2mξ1ξ2 − 1

2
|k̃|2c2mξ1ξ2

0 − 1
2
|k̃|2c2mξ1ξ2 1

2
|k̃|2c2mξ1ξ2 |k̃|2c2m(ξ21 + 1

2
ξ22)− ω2 1

2
ξ|k̃|2c2m22

0 1
2
|k̃|2c2mξ1ξ2 − 1

2
|k̃|2c2mξ1ξ2 1

2
|k̃|2c2mξ22 |k̃|2c2m(ξ21 + 1

2
ξ22)− ω2


(B.33)

The determinant of E2 is

detE2 = −ω2(|k̃|2c2m − ω2)3(|k̃|2c2f − ω2). (B.34)

The solutions of detE2 = 0 obviously are ω = 0, ω = cm, ω = cf . We have to exclude the first since

it violates the condition that k/ω is finite for |k̃| → ∞ and so we conclude that the two non-horizontal
asymptotes are the two remaining solutions. Finally, the only horizontal asymptote is ω = ωt (see Section
B4.4).

In this case, we have that as |k̃| → ∞, the two modes ω̃2 and ω̃3 overlap. Indeed, it can be checked
(numerically) that

lim
|k̃|→∞

|ω̃2(|k̃|)− ω̃3(|k̃|)| = 0.

Furthermore, we again see that the first, second and third modes have the same asymptote ω = cm|k̃|, a
fact which cannot be analytically shown due to the complicated expressions involved; however, numerically
we find that

lim
|k̃|→∞

|ω̃i(|k̃|)− cm|k̃|| = 0,

for i = 1, 2, 3.

Figures B.3 and B.4 show in more detail the oblique and horizontal asymptotes for different curves.

2We present the form such a matrix takes for the out-of-plane variables in the main text since it has a more
transparent form, being of smaller dimension.
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Figure B.3: (a) First mode with cut-off frequency ωp and second and third modes which overlap for

large values of |k̃|, all have the same asymptote cm, (b) The fourth mode has an asymptote with slope
cf .
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Figure B.4: The fourth mode has the horizontal asymptote ωt.
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B4. Appendix for the relaxed micromorphic model

How to find the horizontal asymptotes

In order to be sure that the horizontal asymptotes, computed before by splitting the whole problem of
the relaxed model in two uncoupled problems, are ωt and ωl, we follow what was done in [30].

We begin by constructing the following matrix:

A0 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

A1 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 A2

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, (B.35)

which is the full matrix of coefficients of the governing equations (3.34) after making the plane-wave
ansatz. Furthermore, we define the two auxiliary matrices

Â1 =

 A1 0

0 15

 , Â2 =

 17 0

0 A2

 . (B.36)

We immediately see that
A0 = Â1Â2, (B.37)

which implies that
detA0 = det Â1 det Â2 = detA1 detA2. (B.38)

Now, the polynomial p(|k|, ω) = detA0 is of degree 18 in |k| and only involves even powers of |k|. We
can write it as

p(|k|, ω) =
9∑

h=0

c2h(ω2)|k|2h. (B.39)

Following the same proof as found in [30], we find again the necessary condition a horizontal asymptote
has to satisfy is c18(ω2

∗) = 0.3 This gives us the two solutions

ω = ωt, ω = ωl. (B.40)

B4.5 Decompositions of A1 and A2

We recall that

A1 = |k|2AR1 − ω21− i|k|BR1 − CR1 , (B.41)

A2 = |k|2AR2 − ω21− i|k|BR2 − CR2 . (B.42)

3This result follows if we divide by |k|18 and let |k| → ∞.
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B

The matrices AR1 , B
R
1 , C

R
1 , A

R
2 , B

R
2 , C

R
2 , are presented here.

AR1 =



ξ21
λe+2µe

ρ
+ ξ22

µc+µe
ρ

ξ1ξ2
µe−µc+λe

ρ
0 0 0 0 0

−ξ1ξ2 µe−µc+λe
ρ

ξ21
µc+µe
ρ

+ ξ22
λe+2µe

ρ
0 0 0 0 0

0 0 (ξ21 + 3ξ22)
µeL

2
c

3η
ξ22
µeL

2
c

3η
(−2ξ21 + ξ22)

µeL
2
c

3η
−ξ1ξ2

µeL
2
c

3η
−ξ1ξ2

µeL
2
c

η

0 0 ξ21
µeL

2
c

3η
(ξ21 −+ξ22)

µeL
2
c

3η
(ξ21 − ξ22)

2µeL
2
c

3η
−ξ1ξ2

µeL
2
c

3η
ξ1ξ2

µeL
2
c

η

0 0 −ξ21
µeL

2
c

3η
−ξ22

µeL
2
c

3η

2µeL
2
c

3η
−ξ1ξ2

2µeL
2
c

3η
0

0 0 −ξ1ξ2
µeL

2
c

2η
−ξ1ξ2

µeL
2
c

2η
−ξ1ξ2

µeL
2
c

η

µeL
2
c

2η
(ξ21 − ξ22)

µeL
2
c

2η

0 0 −ξ1ξ2
µeL

2
c

2η
ξ1ξ2

µeL
2
c

2η
0 (ξ21 − ξ22)

µeL
2
c

2η

µeL
2
c

2η


,

(B.43)

BR1 =



0 0 −ξ1 2µe

ρ 0 −ξ1 3λe+2µe

ρ −ξ2 2µe

ρ −ξ2 2µe

ρ

0 0 0 −ξ2 2µe

ρ −ξ2 3λe+2µe

ρ −ξ1 2µe

ρ ξ1
2µe

ρ

ξ1
4µe

3η −ξ2 2µe

3η 0 0 0 0 0

−ξ1 2µe

3η ξ2
4µe

3η 0 0 0 0 0

ξ1
3λe+2µe

3η ξ2
3λe+2µe

3η 0 0 0 0 0

ξ2
µe

η ξ1
µe

η 0 0 0 0 0

ξ2
µc

η −ξ1 µc

η 0 0 0 0 0


, (B.44)

CR1 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 − 2(µe+µmicro)
η 0 0 0 0

0 0 0 − 2(µe+µmicro)
η 0 0 0

0 0 0 0 − (2µe+3λe)+(2µmicro+3λmicro)
η 0 0

0 0 0 0 0 − 2(µe+µmicro)
η 0

0 0 0 0 0 0 − 2µc

η


.

(B.45)
Finally, we have that

A1 = |k|2AR1 − ω21− i|k|BR1 − CR1 . (B.46)

As for A2, it can be written in a similar fashion. We have

AR2 =



µc+µe

ρ 0 0 0 0

0
µeL

2
c

η ( 1
2ξ

2
1 + ξ2

2)
µeL

2
c

2η ξ2
1 −µeL

2
c

2η ξ1ξ2
µeL

2
c

2η ξ1ξ2

0
µeL

2
c

2η ξ2
1

µeL
2
c

η ( 1
2ξ

2
1 + ξ2

2)
µeL

2
c

2η ξ1ξ2 −µeL
2
c

2η ξ1ξ2

0 −µeL
2
c

2η ξ1ξ2
µeL

2
c

2η ξ1ξ2
µeL

2
c

η (ξ2
1 + 1

2ξ
2
2)

µeL
2
c

2η ξ2
2

0
µeL

2
c

2η ξ1ξ2 −µeL
2
c

2η ξ1ξ2
µeL

2
c

2η ξ2
2

µeL
2
c

η (ξ2
1 + 1

2ξ
2
2)


, (B.47)
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B4. Appendix for the relaxed micromorphic model

BR2 =



0 − 2µe

ρ ξ1
2µc

ρ ξ1 − 2µe

ρ ξ2
2µc

ρ ξ2
µe

η ξ1 0 0 0 0

−µc

η ξ1 0 0 0 0

µe

η ξ2 0 0 0 0

−µc

η ξ2 0 0 0 0


, CR2 =



0 0 0 0 0

0 − 2(µe+µmicro)
η 0 0 0

0 0 − 2µc

η 0 0

0 0 0 − 2(µe+µmicro)
η 0

0 0 0 0 − 2µc

η


.

(B.48)
And then, we can write A2 as

A2 = |k|2AR2 − ω21− i|k|BR2 − CR2 . (B.49)

B4.6 Energy flux matrices

The expression for the energy flux in the relaxed micromorphic model for the case of in-plane motion is
given by

H1 = v1
,t · (H11 · v1

,1 +H12 · v1
,2 +H13 · v1),

where

H11 =



−2µe − λe 0 0 0 0 0 0

0 −µe − µc 0 0 0 0 0

0 0 −L2
cµe −L2

cµe L2
cµe 0 0

0 0 −L2
cµe −2L2

cµe 0 0 0

0 0 L2
cµe 0 −2L2

cµe 0 0

0 0 0 0 0 −L2
cµe −L2

cµe

0 0 0 0 0 −L2
cµe −L2

cµe


, (B.50)

H12 =



0 −λe 0 0 0 0 0

µc − µe 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 L2
cµe −L2

cµe

0 0 0 0 0 L2
cµe −L2

cµe

0 0 L2
cµe 0 L2

cµe 0 0

0 0 L2
cµe 0 L2

cµe 0 0


, H13 =



0 0 2µe 0 2µe + 3λe 0 0

0 0 0 0 0 2µe −2µc

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

(B.51)

In the case of out-of-plane motion, the expression for the energy flux in the relaxed micromorphic model
is given by

H1 = v2
,t · (H21 · v2

,1 +H22 · v2
,2 +H23 · v2),

where

H21 =



−µc − µe 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −L2
cµe L2

cµe

0 0 0 L2
cµe −L2

cµe


, H22 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 L2
cµe −L2

cµe 0 0

0 −L2
cµe L2

cµe 0 0


, (B.52)
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B

H23 =



0 2µe −2µc 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (B.53)
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Appendix C

Appendix for chapter 6

C1 The matrix Â

We present the matrix row-wise. We have

Â1 =



−
(
ρ+ k2

1(2η̄1 + η̄3) + k2
2

(
1
4 η̄2 + η̄∗1

))
ω2 + k2

1(λe + 2µe) + k2
2 (µc + µ∗e)

k1k2

(
1
4 η̄2 − η̄3 + η̄∗1

)
ω2 + k1k2(λe − µc + µ∗e)

i k1(λe + 2µe)

i k2(µc + µ∗e)

i k2(−µc + µ∗e)

i k1λe



T

,

Â2 =



k1k2

(
1
4 η̄2 − η̄3 − η̄∗1

)
ω2 + k1k2 (λe − µc + µ∗e)

−
(
ρ+ k2

2(2η̄1 + η̄3) + k2
1

(
1
4 η̄2 + η̄∗1

))
ω2 + k2

2(λe + 2µe) + k2
1 (µc + µ∗e)

i k2λe

−i k1(µc − µ∗e)

i k1(µe + µ∗e)

i k2(λe + 2µe)



T

,
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Â3 =



−i k1(λe + 2µe)

−i k2λe

−(2η1 + η3)ω2 + λe + λmicro + 2(µe + µmicro) + k2
2L

2
c

−k1k2L
2
c

0

−η3 ω
2 + λe + λmicro



T

,

Â4 =



−i k2(µc + µ∗e)

i k1(µc − µ∗e)

−k1k2L
2
c

−(η2 + η∗1)ω2 + µc + µ∗e + µ∗micro + k2
1L

2
c

(η2 − η∗1)ω2 − µc + µ∗e + µ∗micro

0



T

,

Â5 =



i k2(µc − µ∗e)

−i k1(µc + µ∗e)

0

(η2 − η∗1)ω2 − µc + µ∗e + µ∗micro

−(η2 + η∗1)ω2 + µc + µ∗e + µ∗micro + k2
2L

2
c

−k1k2L
2
c



T

,

Â6 =



−i k1λe

−i k2(λe + 2µe)

−η3 ω
2 + λe + λmicro

0

−k1k2L
2
c

−(2η1 + η3)ω2 + λe + λmicro + 2(µe + µmicro) + k2
1L

2
c



T

,

Then, the matrix Â is

Â =
(
Â1, Â2, Â3, Â4, Â5, Â6

)T

(C.1)

C2 Analytical expression of the flux for the relaxed micromorphic model when
Lc = 0

The flux H of the relaxed micromorphic model when Lc = 0 can be written as (using Lemma 1)

H =
1

2
Re
[(
α1ω(−2ω2A+ B) + α2ω(−2ω2C +D)

)
E? +

(
α1ω (F + ω G + ω2H) + α2ω(I + ωJ + ω2K)

)
L?
]
,

(C.2)
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C

with

A = k
(1)
1 φ

(1)
1

(
η1 +

1

2
η3

)
+ k0 φ

(1)
2 η3,

B = (λe + 2µe)
(
k

(1)
1 φ

(1)
1 − φ

(1)
3 ω

)
+ λe

(
k0 φ

(1)
2 − φ

(1)
6 ω

)
,

C = k
(2)
1 φ

(2)
1

(
η1 +

1

2
η3

)
+ k0 φ

(2)
2 η3,

D = (λe + 2µe)
(
k

(2)
1 φ

(2)
1 − φ

(2)
3 ω

)
+ λe

(
k0 φ

(2)
2 − φ

(2)
6 ω

)
,

E = α1φ
(1)
1 + α2φ

(2)
1 ,

F = k0 (µ∗e − µc)φ
(1)
1 + k

(1)
1 (µ∗e + µc)φ

(1)
2 , (C.3)

G = − (µ∗e − µc)φ
(1)
4 − (µ∗e + µc)φ

(1)
5 ,

H = k0 φ
(1)
1

(
1

4
η2 − η∗

)
− k(1)

1 φ
(1)
2

(
1

4
η2 + η∗

)
,

I = k0 (µ∗e − µc)φ
(2)
1 + k

(2)
1 (µ∗e + µc)φ

(2)
2 ,

J = − (µ∗e − µc)φ
(2)
4 − (µ∗e + µc)φ

(2)
5 ,

K = k0 φ
(2)
1

(
1

4
η2 − η∗

)
− k(2)

1 φ
(1)
2

(
1

4
η2 + η∗

)
,

L = α1φ
(1)
2 + α2φ

(2)
2 .
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[111] Säıd Zouhdi, Ari Sihvola, and Alexey P Vinogradov. Metamaterials and plasmonics: fundamentals, mod-
elling, applications. Springer Science & Business Media, 2008.

144

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI073/these.pdf 
© [A. Aivaliotis], [2019], INSA Lyon, tous droits réservés


	Notice XML
	Page de titre
	Acknowledgments
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	General introduction
	Notation

	Classical and enriched continuum mechanics
	Classical continuum mechanics
	Conservation of energy and energy flux for the classical Cauchy model
	Enriched continuum theories

	The relaxed micromorphic model
	Energy formulation of the relaxed micromorphic model
	Strain energy density
	Kinetic energy density

	Variation of the action functional
	The governing equations of the anisotropic relaxed micromorphic model
	The isotropic governing equations

	Variation of the action functional and the governing equations of the classical Cauchy model
	The constitutive tensors in the Mandel-Voigt notation
	Invariance conditions
	Tetragonal symmetry and isotropy

	Conservation of energy and energy flux for the relaxed micromorphic model
	An equivalent macroscopic Cauchy model

	Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface
	Boundary conditions
	Boundary conditions on an interface between two classical Cauchy media
	Boundary conditions on an interface between a classical Cauchy medium and a relaxed micromorphic medium

	Wave propagation, reflection and transmission at an interface between two Cauchy media
	Wave propagation in Cauchy media
	Interface between two Cauchy media
	The particular case of propagative waves

	Basics on dispersion curves analysis for bulk wave propagation in relaxed micromorphic media
	In-plane variables
	Out-of-plane variables

	Reflective properties of a Cauchy/isotropic relaxed micromorphic interface
	Determination of the reflection and transmission coefficients in the case of a relaxed micromorphic medium

	Results
	Cauchy medium which is ``stiffer'' than the relaxed micromorphic one
	Cauchy medium which is ``softer'' than the relaxed micromorphic one

	Conclusions

	Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures
	The plane-strain tetragonal symmetry case
	Dispersive properties of a band-gap metamaterial with tetragonal symmetry 
	Bloch-Floquet dispersion diagram
	Relaxed micromorphic model: identification of the constitutive parameters and the plane wave ansatz 
	Dispersive properties of the metamaterial and of the equivalent continuum

	 Description of transient pulse propagation in metastructures via the relaxed micromorphic model 
	Computational domains
	Definition of the concentrated and modulated pulse 

	Results and discussion 
	Low frequency regime 
	Medium frequency regime
	Band-gap regime
	High frequency regime

	Conclusions

	Broadband scattering of finite-size anisotropic metastructures via the relaxed micromorphic model
	Boundary Conditions
	Boundary conditions at an interface between a Cauchy continuum and a relaxed micromorphic continuum with vanishing characteristic length Lc=0
	Boundary conditions for a micromorphic slab embedded between two Cauchy media

	Bulk wave propagation in Cauchy and relaxed micromorphic continua
	Isotropic Cauchy continuum
	Relaxed micromorphic continuum

	Reflection and transmission at the single interface
	Reflection and transmission at a relaxed micromorphic slab
	Reflective properties of a micro-structured slab
	Bloch-Floquet conditions
	Reflectance

	Results and discussion
	Scattering at a relaxed micromorphic slab
	Scattering at a single relaxed micromorphic interface

	Conclusions

	Conclusions and further perspectives
	Appendix for chapter 3.
	Variation of the strain energy
	Variation of the kinetic energy
	Energy flux for the anisotropic relaxed micromorphic model
	Derivation of expression (3.76)


	Appendix for chapter 4
	Calculation of the determinant of A
	Lemma 1
	Conditions for the appearance of Stoneley waves
	Appendix for the relaxed micromorphic model
	Governing equations in component-wise notation
	Governing equations with new variables
	The matrices A1 and A2
	Dispersion curves analysis of the relaxed micromorphic model
	Decompositions of A1 and A2
	Energy flux matrices


	Appendix for chapter 6
	The matrix A
	Analytical expression of the flux for the relaxed micromorphic model when Lc=0

	Bibliography



