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Résumé 

      L'un des enjeux des simulations numériques de propagation d’ondes par des méthodes 

numériques comme celle des éléments finis, est la modélisation des milieux infinis. Le moyen le 

plus simple est bien-sûr de considérer un très grand maillage étendu de sorte que les ondes 

réfléchies aux frontières du maillage ne viennent pas perturber la solution recherchée, mais cela 

peut conduire à des temps de calcul rédhibitoires, en particulier lors des excitations de longue durée. 

Par conséquent, des conditions aux limites absorbantes et non réfléchissantes, placées aux 

frontières du domaine tronqué, sont requises pour modéliser les milieux infinis. Le travail de thèse 

a pour objet de proposer de nouvelles formulations de couches absorbantes artificielles aux 

frontières des maillages éléments finis pour la simulation numérique de propagation d’ondes dans 

des milieux infinis 2D et 3D, afin de traiter des problèmes complexes d’interaction sol-structure en 

dynamique transitoire.  
      Trois couches absorbantes sont développées : les couches absorbantes basées sur les 

amortissements de Rayleigh ou de Kosloff et les PML (Perfectly Matched Layers). En étudiant 

analytiquement la forme forte de la propagation d’ondes dans chaque milieu, il est montré que les 

amortissements de Kosloff et ceux provenant de la PML sont indépendants de la fréquence, ce qui 

n’est pas le cas de l'amortissement de Rayleigh. Les problèmes de propagation d’ondes entre un 

milieu élastique non dissipatif et un milieu dissipatif sont aussi étudiés en prenant en compte la 

forme forte des équations de propagation d'ondes à l’interface. Des conditions optimales à 

l’interface permettant de calibrer les caractéristiques mécaniques des couches absorbantes en sont 

déduites afin de réduire les ondes parasites réfléchies. 

      La discrétisation spatiale des couches absorbantes est conduite via la méthode aux éléments 

finis, tandis que la discrétisation temporelle s’appuie sur le cadre performant et flexible des 

méthodes dites HATI (Heterogeneous Asynchronous Time Integrator), permettant de sélectionner, 

selon les caractéristiques des sous-domaines du problème et les phénomènes physiques qui s’y 

déroulent, les schémas d’intégration temporelle et les pas de temps les mieux adaptés. Ainsi, 

différentes possibilités offertes par l’approche HATI sont prospectées : les parties rigides d’un 

problème d’interaction sol-structure, comme les barrières d’ondes, sont intégrées dans le temps 

avec des schémas temporels implicites, la propagation d’ondes dans les sols avec des schémas 
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explicites, et enfin, les couches artificielles avec des schémas soit implicites soit explicites, en 

considérant des pas de temps potentiellement différents dans chaque sous-domaine.  
      L’efficacité des trois couches absorbantes hybrides asynchrones pour la modélisation de 

domaines non bornés a été illustrée dans diverses applications numériques, 2D et 3D, telles que le 

test de Lamb dans des milieux hétérogènes stratifiés ou des problèmes d’interaction sol-structure 

avec des barrières d’ondes. Les avantages et les inconvénients de chaque couche absorbante sont 

soigneusement analysés, de même que leur précision et leur efficacité en termes de temps de calcul. 

Finalement, des versions implicite ou explicite de PML asynchrone sont mises en place et testées 

pour des problèmes avec un nombre important de degrés de liberté. Elles s’avèrent être plus 

précises et performantes que les couches absorbantes basées sur des amortissements de Rayleigh 

et Kosloff. En particulier, la version de PML asynchrone explicite apparaît comme une excellente 

candidate à une implémentation future dans des codes matures de sismologie basés sur des éléments 

spectraux. 
      Ces développements ont conduit à trois publications à comité de lecture, dont deux publiées et 

une soumise. Une quatrième publication sera issue du dernier chapitre de cette thèse, portant sur 

une version explicite de PML hybride asynchrone et une application pour la simulation des effets 

filtrants de barrières d’ondes horizontales.   
“Three-dimensional hybrid asynchronous perfectly matched layer for wave propagation in 

unbounded domains”, S.Li, M.Brun, I.Djeran-Maigre, S.Kuznetsov, soumis à International 

Journal for Numerical Methods in Engineering, mars 2019 
“Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation 

in unbounded domains”, S.Li, M.Brun, I.Djeran-Maigre, S.Kuznetsov, Computers and 

Geotechnics, (109) 2019, 69-81 

“Explicit/Implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and 

application for wave barrier”, S.Li, M.Brun, I.Djeran-Maigre, S.Kuznetsov, European Journal of 

Environmental and Civil Engineering, 2018, http://dx.doi.org/10.1080/19648189.2018.1506826  

Mots-clefs : Couches absorbantes de Rayleigh ; Couches absorbantes de Kosloff ; Couches 

parfaitement adaptées (PML) ; Propagation d’ondes ; Milieux infinis ; Couplage sous-domaines ; 

Intégration Temporelle Hybride Asynchrone (HATI) ; Analyse transitoire ; Barrière d’ondes 
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Abstract 

      The purpose of this thesis is to propose novel designs and formulations of different absorbing 

layers at the boundaries of finite element meshes for the numerical simulation of wave propagation 

in unbounded 2D and 3D media, in order to deal with complex soil-structure interaction problems 

in transient dynamics.  

      Three absorbing layers are developed: Rayleigh Absorbing Layer, Kosloff Absorbing Layer 

and Perfectly Matched Layer (PML). By studying analytically the strong form of elastic wave 

propagation in each medium, the frequency-independent absorbing ability of Kosloff damping and 

PML is derived, whereas the attenuation due to Rayleigh damping turns out be frequency-

dependent. The interface problem between a non-dissipative elastic medium and a dissipative 

medium has been investigated by considering the wave propagation in the continuous setting, in 

order to establish optimal conditions to further reduce the spurious waves reflected at the interface.  

      The three absorbing layers are discretized in space by the finite element method, while the time 

discretization is based on the powerful and flexible HATI framework (Heterogeneous 

Asynchronous Time Integrator), enabling adopt the most suitable time integration schemes and 

time steps, depending on the characteristics and physical phenomena occurring in the different 

subdomains.  

      The efficiency of three asynchronous hybrid absorbing layers for modeling unbounded domains 

has been illustrated in various 2D and 3D numerical applications, such as Lamb’s test in stratified 

heterogeneous media or soil-structure interaction problems involving wave barriers. Finally, 

implicit and explicit versions of asynchronous PML are implemented and tested in problems with 

a large number of degrees of freedom. It is proved to be more accurate and efficient than the 

absorbing layers based on Rayleigh and Kosloff damping. 

Keywords: Wave propagation, Unbounded domains, Rayleigh absorbing layers, Kosloff absorbing 

layers, Perfect Matched Layers (PML), Multi-subdomain coupling, Heterogeneous asynchronous 

time integration, Hybrid formulation, Transient analysis, Wave barrier 
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Introduction  

 

      In order to reduce the tremendous loss caused by earthquake, the prediction of wave 

propagation in the soil is very important for the protection of the structures. Moreover, due to the 

increasing intensity of machine foundations or human activities such as railway and highway traffic, 

it is also necessary to improve the comfort for the people who live near the vibration sources against 

propagating waves by exhaustive analysis of wave motion on the ground.  Based on the theory of 

continuum mechanics, the analytical model can be established by elastodynamics governing 

equations for wave propagation. However, in most cases, the problem characterized by their 

complex geometry, boundary conditions, nonlinear material behavior laws for the soil and the 

structure, is too difficult to be dealt with an analytical method, requiring the use of well-established 

numerical methods such as the Finite Element Method (FEM), largely adopted to treat engineering 

problems in different fields. 

      Finite element method (FEM) is a widely used numerical method for solving partial differential 

equations corresponding to the governing equations of the physical problem. The main advantages 

of the FEM are its versatility and flexibility, able to deal with non-linear behavior, irregular 

geometry, material anisotropy and heterogeneity, in comparison to the other numerical methods. 

The main idea is the discretization of the physical problem into finite elements in the space 

dimension to obtain the approximate solutions. After the space discretization, the equation of wave 

propagation problem should be discretized in time for transient dynamic analysis and solved in 

every time step. Time integration schemes are classified as explicit time integration schemes, in 

which the critical time step is imposed by the Courant–Friedrichs–Lewy (CFL) condition, and 

unconditionally stable implicit methods. The mostly used time integration methods in commercial 

software such as ABAQUS, ANSYS, LS-DYNA and DIANA, are Newmark time integration 

schemes and Central Difference scheme.  
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      In the numerical simulation of wave propagation problems in unbounded domains using the 

finite element method, one of the critical points is how to simulate infinite media. The simplest 

way is to consider a very large extended numerical mesh, but it leads to important computation 

time, in particular when long time duration excitations are considered. Hence non-reflective 

boundary conditions are required for mimicking infinite or semi-infinite media in order to reduce 

unbounded domains to truncated domains. Several kinds of artificial boundaries in numerical 

methods have been studied to avoid spurious waves reflected at the boundary, such as Rayleigh 

absorbing layers, Kosloff absorbing boundary or Perfectly Matched Layers (PML). Because of its 

easy implementation and availability in many FE codes, Rayleigh absorbing layer is very 

convenient to apply in wave propagation simulation with the multi-layer strategy called as 

Absorbing Layers using Increasing Damping (ALID). However, the attenuation ability of Rayleigh 

damping depends on the frequency and the introduction of Rayleigh matrix will decrease the value 

of the critical time step in explicit time integration scheme. In Kosloff medium, the wave travels 

without changing shape and the wave amplitude decreases with distance at a frequency independent 

rate. Even though it is rarely studied, some similarities between Kosloff absorbing boundary and 

the PML have been proved have been proved in the literature and is thoroughly studied in this 

thesis. PML (Perfect Matched Layers) is very popular for modelling infinite media, because of its 

independency on frequency and non-reflecting feature at the interface. The only drawback is that 

PML is difficult to implement in FE codes. In most formulations, the complex-coordinate-stretched 

equations used to introduce the PML, also serve to describe the interior domain, resulting in 

increasing computational cost.  

      Generally, the numerical model of wave propagation problem includes different physical 

domains. For example, in the numerical simulation of wave propagation in soil–structure 

interaction (SSI), the numerical model is composed of at least four parts: the vibration source, the 

bounded soil, the structure and the absorbing layer. Taking into account the different characteristics 

of each part, hybrid time integration schemes, asynchronous time steps and non-matching meshes 

are desired to satisfy the requirement of each part and reach the best computation efficiency. As a 

result, the standard homogeneous synchronous time integration approach using the same time 

integration scheme and the same time step is far from being optimal. Heterogeneous (different time 

integration schemes) asynchronous (different time steps depending on subdomains) time 

integration (HATI), based on the dual approach and proposed by Combescure and Gravouil in 2001 
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(GC method) and extended later by Brun et al. in 2015 (BGC-macro and BGC-micro method) has 

been successfully carried out in various applications by coupling different subdomains 

independently, such as structure-structure interaction, soil-structure interaction and fluid-structure 

interaction. The BGC-micro method is an extended version of the GC method, enabling to use 

more modern time integrators than the ones from the Newmark family, endowed with high 

frequency filtering capabilities such as the 𝛼 – Generalized time integration schemes.  

      The thesis aims to propose novel designs and formulations of different methods for modeling 

2D and 3D infinite media in wave propagation simulation. Three absorbing layers (Rayleigh 

Absorbing Layer, Kosloff Absorbing Layer, and Perfect Matched Layer) are developed and 

implemented by the finite element method. Taking into account the different characteristics of each 

subdomain in the numerical model of wave propagation problem, the hybrid asynchronous 

formulations using the dual Schur approach, are implemented to enable the appropriate time 

integration scheme and independent time step in each subdomain, in the framework of 

Heterogeneous (different time integration schemes) Asynchronous (different time steps depending 

on subdomains) Time Integration (HATI). 

      The dissertation is organized in five chapters as follows: 

      Chapter 1 summarizes different aspects concerning the numerical simulation of wave 

propagation in unbounded domains. The principles of Finite Element method including the space 

discretization and time discretization are summarized. In the following, the previous researches for 

modelling unbounded domain relevant to Rayleigh absorbing layer, Kosloff absorbing boundary 

and Perfectly Matched Layers (PML) are presented, as well as a brief literature review on the 

development of heterogeneous (different time integration schemes) asynchronous (different time 

steps depending on subdomains) time integration (HATI).  

      Chapter 2 presents a simple and accurate method for modeling two-dimensional and three-

dimensional unbounded domains based on Rayleigh damping. Subdomain decomposition strategy 

is applied in order to couple physical medium with Rayleigh absorbing layers, based on the GC 

method, in the framework of HATI. The proposed absorbing region is called Hybrid (different time 

integrators) Asynchronous (different time steps) Absorbing Layers using Increasing Damping 

(HA-ALID Rayleigh), enabling to integrate the Rayleigh absorbing layer using independent time 

integrators and time steps, without affecting the critical time step in the domain of interest handled 
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with an explicit time integration.  In order to highlight the accuracy of the method, numerical 

applications including Lamb’s test and a wave barrier problem are considered to assess the HA-

ALID Rayleigh efficiency using multi-time step Abaqus Explicit/Implicit co-simulation and self-

developed FEM codes.  

      Chapter 3 investigates the capabilities of the Kosloff formulation to set up efficient HA-Kosloff 

ALID for modelling two-dimensional and three-dimensional unbounded domains, in comparison 

to Rayleigh formulation. Firstly, the design of Kosloff absorbing layer is proposed by using the 

strong form of elastic wave propagation in Kosloff medium. The absorbing ability, which is 

independent of frequency, is derived in the form of a logarithmic decrement, as well as optimal 

conditions to reduce the spurious waves reflected at the interface between physical domain and 

Kosloff absorbing layer domain. The weak formulation of the coupled problem, involving the 

interior domain and Kosloff absorbing layer, is given according to a dual coupling approach with 

the introduction of Lagrange multipliers, which enables integrate different subdomains in time with 

different time integrators associated with their own time step, according to HATI methods. Finally, 

numerical tests are carried out to illustrate the efficiency of HA-Kosloff ALID in terms of accuracy 

and CPU time, in comparison to HA-Rayleigh ALID and HA-PML. 

      Chapter 4 focuses on the development of one hybrid (different time integrators) asynchronous 

(different time steps) three-dimensional unsplit−field displacement-based PML formulation for 

three-dimensional problems in heterogeneous elastic infinite media. The frequency-independent 

absorbing ability and reflectionless feature at the interface between the non-dissipative interior 

domain and the PML are proved, on the basis of the strong form of wave propagation in PML 

media. The weak formulation leading to a novel efficient method for calculating the internal force 

in PML domain has been coupled with interior domain using the dual Schur approach, enabling 

unconditionally stable implicit time integration scheme in the PML with its own time step, whereas 

the interior domain is handled by the classical finite element formulation without complex-valued 

stretched coordinates, and explicit second-order accurate time integrator with a time step satisfying 

the CFL condition. Examples of three-dimensional semi-infinite bar, Lamb’s test, and one classical 

soil–structure interaction problem with PML-truncated semi-infinite heterogeneous media are 

investigated to illustrate the efficiency of the hybrid asynchronous formulation in terms of accuracy 

and CPU time. 
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      Chapter 5 deals with a more complex 3D SSI situation, such as the mitigation of ground surface 

vibration through Horizontal Wave Barrier (HWB), set up close to an excited plate, representing, 

for instance, the slab track excited by the tramway wheels. Contrarily to the previous chapters, an 

explicit version of PML is developed in order to reduce the computation time for large simulations 

and compared to HA-Rayleigh ALID and HA-Kosloff ALID for modelling three-dimensional 

unbounded domains. Moreover, it is shown that better accuracy can be achieved when considering 

fine time steps in the HA-PML and HA-Kosloff ALID. Finally, it is shown that explicit HA-PML 

is the most efficient option for three-dimensional absorbing layers. A 3D numerical study of the 

Horizontal Wave Barrier (HWB) is then carried out, in the context of vibration isolation against 

the ground surface wave propagation produced by trains and tramways. 

      Chapter 6 presents the overall conclusions for the development in the thesis, as well as the 

perspectives for further studies.  
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Chapter 1 

1. State of the Art 

 

      In this first chapter, the strong form of the wave propagation in elastic media is given with a 

view to introducing space and time discretization for the numerical simulation. First, strong forms 

for different damping formulations are reminded, including Rayleigh damping, Kosloff damping 

and Perfectly Matched Layers (PML). Second, we focus on finite element method for the space 

discretization, whereas the time integration uses the flexible and powerful framework of 

Heterogeneous (different time integration schemes) Asynchronous (different time steps) Time 

Integrator. Newmark time integration schemes are employed in this thesis, including the 

unconditionally stable implicit Newmark scheme, called also Constant Average Acceleration 

scheme in the literature, as well as the conditionally stable explicit Newmark scheme. The methods 

and damping formulations briefly presented in this chapter will be employed to set up 

Heterogeneous Asynchronous Rayleigh and Kosloff absorbing layers as well as Heterogeneous 

Asynchronous PML, in 2D and 3D finite element transient dynamic analyses, thoroughly detailed 

in the next chapters.  
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1.1 Wave propagation in elastic media 

      Wave propagation is a physical phenomenon which describes the evolution and progression of 

propagating waves in elastic media. Based on the theory of continuum mechanics, the linear 

elastodynamics governing equations for wave propagation in an homogeneous and isotropic 

medium Ω are shown below: 

𝜌𝜕𝑡
2𝑢 = 𝑑𝑖𝑣 (𝜎(𝑢))                                                                  (1.1) 

𝜎 = 𝜆tr (𝜀(𝑢)) + 2μ𝜀(𝑢)                                                             (1.2) 

𝜀 =
1

2
[𝑔𝑟𝑎𝑑(𝑢) + 𝑔𝑟𝑎𝑑(𝑢)

𝑇
]                                                       (1.3) 

where 𝑢 is the displacement vector field governed by before-mentioned equations,  𝜎 is the stress 

tensor, 𝜀 is strain tensor,  λ and μ are Lamé’s coefficients,   𝜌 is the density, respectively. The first 

equation is the equation of motion, the second equation represents Hooke’s law and the last 

equation is the deformation equation. Eqs. (1.1) to (1.3) constitute the strong form of wave 

propagation in an elastic medium. The Neumann conditions and Dirichlet conditions are given on 

the boundary 𝛤:  

{
𝜎 ∙ 𝑛 = 𝑔𝑁    on 𝛤𝑁

𝑢 = 𝑢𝐷    on 𝛤𝐷
                                                              (1.4) 

      Here, in the context of civil engineering problems, the wave propagation is produced by the 

ground vibration, including earthquake and human activities, such as railway and highway traffic 

(Semblat and Pecker, 2009). There are four types of waves propagating in the soil at the same time, 

involving P-wave, S-wave, Rayleigh wave and Love wave, as shown in Fig.1-1(Heirbrant, 2006). 

P-wave and S-wave are elastic body waves, which travel into the body of the soil. P-wave is the 

fastest wave and also called longitudinal wave or pressure wave, because the propagation direction 

is the same as the motion direction of particles in the medium. Similarly, S-wave is also called 

transverse wave or shear wave and the propagation direction is perpendicular to the motion 

direction of particles. 
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Figure 1-1   Waves propagating in the soil  

 

      Different from P-wave and S-wave, Love wave and Rayleigh wave are surface waves. Love 

wave is horizontally polarized and the result of the S-wave interference, which can be observed in 

case of a low-velocity layer overlying a high-velocity layer. The velocity of Love wave is smaller 

than P-wave and S-wave, but faster than Rayleigh wave. Rayleigh waves are surface waves 

propagating along the surface and include both longitudinal and transverse motions. With the 

increasing distance from the surface, the amplitude of Rayleigh waves decreases exponentially.  

      Based on the elastic wave theory, the P-wave and S-wave velocities are expressed as:  

𝑣𝑝 = √
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
                                                            (1.5) 

𝑣𝑆 = √
𝐸

2𝜌(1 + 𝜈)
                                                                  (1.6) 

where 𝐸 is Young’s modulus and 𝜈 the Poisson coefficient. A good approximation of the Rayleigh-

wave velocity is given by: 

𝑣𝑅 =
0.87 + 1.12𝜈

1 + 𝜈
𝑣𝑆                                                                  (1.7) 
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Figure 1-2   The time history of seismic waves recorded at an observation point  

      

      Due to the higher speeds, the P and S waves generated by an earthquake arrive before the 

surface waves, as shown in Fig.1-2 (Viora, 2017). However, the particle motion of surface waves 

is larger than that of body waves, the surface waves carry most of the energy and tend to cause 

more damage (Milsom, 2003).  

      In the case of one-dimension, the velocity 𝑣 of P-waves is equal to √
𝐸

𝜌
 and √

𝜇

𝜌
 for S-wave. The 

harmonic wave propagating in one-dimension elastic medium can be expressed in complex form 

which can greatly facilitate the calculation, as below: 

𝑢(𝑥, 𝑡) = 𝑢0 𝑒𝑥𝑝( 𝑖(𝜔0𝑡 − 𝑘0𝑥))                                               (1.8) 

      The prediction of wave propagation in the soil is very important for the protection of the 

buildings against propagating waves, in order to reduce the tremendous loss caused by earthquake 

and improve the comfort for the people who live near the vibration sources. However, in most 

cases, the problem characterized by their complex geometry, boundary conditions, nonlinear 

material behavior laws for the soil, is too difficult to be dealt with an analytical method, requiring 

P-wave S-wave Surface wave

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  11 

the use of well-established numerical methods such as the Finite Element Method (Hughes, 1987; 

Belytschko et al., 2000; Zienkiewicz, 2005; Smith et al., 2014).  

 

1.2 Finite element method  

      Finite element method (FEM) is a numerical method for solving partial differential equations 

which are the governing equations of the physical problem. The main idea is the discretization of 

the physical problem into small finite elements in the space dimension to obtain the approximate 

solutions. Firstly, the strong form (differential equation) should be transformed to the weak form 

(integral equation) by introducing test functions, according to the virtual power principle. Then, 

the continuum domain will be discretized into finite elements and appropriate shape functions 

depending on the element type are applied to discretize continuous quantities to discrete nodal 

quantities, leading to the global matrix equation, which can be assembled from the element-wise 

matrices. Finally, after taking into account the boundary conditions, the nodal solutions can be 

obtained. Today, FEM is widely used to treat engineering problems in different fields, including 

structural analysis, transient analysis, and fluid flow. Some commercial software for numerical 

simulation based on FEM are available, such as ABAQUS, ANSYS, LS-DYNA and Diana. The 

main advantages of the finite element method in comparison to the other numerical methods, are 

its versatility and flexibility, able to deals with non-linear behaviors, irregular geometry, material 

anisotropy and heterogeneity.  

 

1.2.1 Spatial discretization by finite element method 

      Here, we concentrate on the discretization of wave propagation in elastic media in space. Let 

Ω be a bounded domain with a regular boundary 𝛤. The domain Ω is characterized by its density 𝜌, 

Young’s modulus 𝐸, Poisson’s coefficient 𝜈, 𝑢𝐷 the Dirichlet prescribed displacement on 𝛤𝐷 and 

𝑔𝑁 the traction force at the Neumann condition on 𝛤𝑁. By introducing the test function 𝑣 belonging 

to the appropriate space  𝑣 ∈ 𝑊∗ = {𝑣 ∈ (𝐻(Ω))
𝑑
𝑎𝑛𝑑 𝑣 = 0 𝑜𝑛 𝛤𝐷} , where  𝑑 is the space 
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dimension, we seek the solution belonging to the space 𝑊 = {𝑢 ∈ (𝐻(Ω))
𝑑
𝑎𝑛𝑑 𝑢 = 𝑢𝐷𝑜𝑛 𝛤𝐷}, 

satisfying the following weak form: 

 

∫ 𝜌𝑣 ∙ 𝑢̈𝑑Ω
Ω

+∫ 𝜀(𝑣): 𝜎𝑑Ω
Ω

= ∫ 𝑣 ∙ 𝑔𝑁𝑑Γ
Γ

                                   (1.9) 

      The weak form is also called the principle of virtual power, where the stress tensor 𝜎 satisfies 

the behavior law given in Eq. (1.2). Then, we follow the classical lines of the finite element 

discretization with shape functions, the semi-discrete equation in space can be derived:  

𝐌𝐔̈ + 𝐊𝐔 = 𝐅𝐞𝐱𝐭                                                          (1.10) 

      The global mass matrix M and the global stiffness matrix K are assembled from their respective 

element-level matrices:  

𝐌𝐞 = ∫ 𝜌𝐍𝐓𝐍 dΩ
Ω𝑒

                                                           (1.11) 

𝐊𝐞 = ∫ 𝐁𝐓𝐃𝐁 dΩ
Ω𝑒

                                                      (1.12) 

      In the following, the two-dimensional case is detailed under the plane-strain assumption. The 

material constitutive matrix is expressed as: 

 𝐃 =
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 1

𝜈

1 − 𝜈
0

𝜈

1 − 𝜈
1 0

0 0
1 − 2𝜈

2(1 − 𝜈)]
 
 
 
 
 

                              (1.13) 

      The element-level matrices can be obtained in every 4-nodes rectangular element by using the 

following linear shape functions:  

{
 

 
𝑁1 = (1 − 𝜉)(1 − 𝜂)/4
𝑁2 = (1 + 𝜉)(1 − 𝜂)/4

𝑁3 = (1 + 𝜉)(1 + 𝜂)/4

𝑁4 = (1 − 𝜉)(1 + 𝜂)/4

                                                      (1.14) 
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      The approximation of the displacement is given by: 𝑢𝑒(𝑥, 𝑦) = 𝐍(𝑥, 𝑦)𝐔𝐞 , where 𝐔𝐞 gathers 

the nodal displacements of the 4 nodes, of size 8 × 1;  the matrix 𝐍(𝑥, 𝑦, 𝑧), of size 2 × 8, contains 

the nodal shape functions:  𝐍(𝑥, 𝑦, 𝑧) = [𝑁1𝐈 𝑁2𝐈   𝑁3𝐈 𝑁4𝐈], with 𝐈 the 2 × 2 identity matrix. 

The matrix B will be expressed as below,  

𝐁 = [𝐁𝟏 𝐁𝟐 𝐁𝟑 𝐁𝟒],      𝑩𝒊 =

[
 
 
 
 
 
 
𝜕𝑁𝑖
𝜕𝑥

0

0
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥 ]
 
 
 
 
 
 

                                                 (1.15) 

 

Figure 1-3   4-nodes rectangular finite element 

      Next, the matrices defined in the global coordinates  (𝑥, 𝑦) should be expressed in local (𝜉, 𝜂) 

coordinate systems to facilitate the calculation of the integrals.  If coordinate relation functions are 

the same as shape functions, the elements are called isoparametric elements. The relationship for 

coordinate transformation is shown in the following: 

𝑥 =∑𝑁𝑖(𝜉, 𝜂)𝑥𝑖

4

𝑖=1

                                                          (1.16) 

𝑦 =∑𝑁𝑖(𝜉, 𝜂)𝑦𝑖

4

𝑖=1

                                                         (1.17) 

      By using the above relationship, the matrices in the global coordinates are computed in local 

(𝜉, 𝜂) coordinate systems: 
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    𝐌𝐞 = ∫ 𝜌𝑁(𝑥, 𝑦)𝑇𝑁(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
Ω𝑒

= ∫ ∫ 𝜌𝑁(𝜉, 𝜂)𝑇𝑁(𝜉, 𝜂)det|𝐉(𝜉, 𝜂)|
1

−1

1

−1

𝑑𝜉 𝑑𝜂       (1.18) 

   𝐊𝐞 = ∫ 𝐵(𝑥, 𝑦)𝑇𝐷𝐵(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
Ω𝑒

= ∫ ∫ 𝐵(𝜉, 𝜂)𝑇𝐷𝐵(𝜉, 𝜂)det|𝐉(𝜉, 𝜂)|
1

−1

1

−1

𝑑𝜉 𝑑𝜂       (1.19) 

with J the Jacobian matrix:  

𝐉(𝜉, 𝜂) =

[
 
 
 
 
𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

𝜕𝑁1
𝜕𝜂

𝜕𝑁2
𝜕𝜂

     

𝜕𝑁3
𝜕𝜉

𝜕𝑁4
𝜕𝜉

𝜕𝑁3
𝜕𝜂

𝜕𝑁4
𝜕𝜂 ]

 
 
 
 

[

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

]                                                (1.20) 

      In most of the cases, the integrals in above matrices are difficult to calculate by analytical 

method. Therefore, in finite element implementation, they are usually evaluated by using Gauss–

Legendre quadrature (Irons, 1966). In two-dimensional full integration with linear shape functions, 

four Gauss points (±√1/3,±√1/3)  with the same weighting coefficients equal to 1 are required, 

giving the following elementary mass and stiffness matrices: 

𝐌𝐞 = ∫ ∫ 𝜌𝐍(𝜉, 𝜂)𝑇𝐍(𝜉, 𝜂)det|𝐉|
1

−1

1

−1

𝑑𝜉 𝑑𝜂 =∑∑𝑤𝑖𝑤𝑗𝜌𝐍(𝜉, 𝜂)
𝑇𝐍(𝜉, 𝜂)det|𝐉|

2

𝑗=1

2

𝑖=1

     (1.21) 

𝐊𝐞 = ∫ ∫ 𝐁(𝜉, 𝜂)𝑇𝐃𝐁(𝜉, 𝜂)det|𝐉|
1

−1

1

−1

𝑑𝜉 𝑑𝜂 =∑∑𝑤𝑖𝑤𝑗𝐁(𝜉, 𝜂)
𝑇𝐃𝐁(𝜉, 𝜂)det|𝐉|

2

𝑗=1

2

𝑖=1

     (1.22) 

 

1.2.2 Time discretization in transient dynamics   

      After the space discretization by finite element method, the matrix equation of wave 

propagation problem should be discretized in time for transient dynamics analysis and solved in 

every time step. Time integration schemes classified as explicit and implicit methods for transient 

dynamics are widely studied. Some famous time integration methods, such as Newmark scheme 

(Newmark, 1959), Runge–Kutta scheme (Demailly, 2006), and Hilber–Hughes–Taylor (Hilber et 

al., 1977) scheme have been developed and applied successfully in numerical simulations of 
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different fields by finite element method. Nowadays, the mostly used time integration methods in 

commercial software for numerical simulation based on FEM are Newmark schemes.  

      The classical approximate Newmark formulas in terms of the displacements and velocities at 

the end of this time step (a time step Δ𝑡 is defined by the beginning time 𝑡𝑛 and the end time 𝑡𝑛+1) 

are expressed in acceleration format as below:  

𝐔𝐧+𝟏 = 𝐔𝐧,𝐩 + 𝛽Δ𝑡2𝐔̈𝐧+𝟏                                                          (1.23)                                                     

𝐔̇𝐧+𝟏 = 𝐔̇𝐧,𝐩 + 𝛾Δ𝑡𝐔̈𝐧+𝟏                                                           (1.24)                                                       

𝛽 and γ are the classical parameters of the Newmark scheme. The predictor quantities are defined 

as: 

𝐔𝐧,𝐩 = 𝐔𝐧 + Δ𝑡𝐔̇𝐧 + Δ𝑡2 (
1

2
− 𝛽) 𝐔̈𝑛                                            (1.25)                                     

𝐔̇𝐧,𝐩 = 𝐔̇𝐧 + Δ𝑡(1 − 𝛾)𝐔̈𝐧                                                        (1.26)                                               

      By introducing the expressions of the kinematic quantities into Eq. (1.10), it leads to the 

equation of motion written in the form below:  

𝐌̃𝐔̈𝐧+𝟏 = 𝐅𝐞𝐱𝐭 − 𝐊𝐔𝐧,𝐩                                                         (1.27)                                              

 with the effective stiffness matrix defined by: 

𝐌̃ = 𝐌 + 𝛽∆𝑡2𝐊                                                               (1.28)                                                   

      When γ=0.5 and β=0.25, it is an implicit time integration scheme unconditionally stable. With 

γ=0.5 and β=0, it is an explicit time integration scheme, called Newmark explicit scheme where 

the mass matrix 𝐌 is lumped in order to avoid system solving in Eq. (1.28). In terms of stability, 

the critical time step in explicit scheme is imposed by the Courant–Friedrichs–Lewy condition 

(Courant et al., 1928). To ensure the stability the time step in explicit scheme must be smaller than 

the critical time step imposed by the CFL condition. An approximation of the CFL condition is 

written as the smallest transient time of a P wave across the smallest elements in the mesh: 

∆𝑡 ≤
𝐿min 

𝑣𝑝
                                                            (1.29) 
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      For 4-nodes rectangular element with dimension 𝐿1 and 𝐿2, Flanagan and Belytschko (1981) 

have shown that, the critical time step is:  

∆𝑡 ≤
1 

𝑣𝑝√(
1
𝐿1
)2 + (

1
𝐿2
)2
                                             (1.30) 

      In Abaqus/Explicit, the stable time increment chosen will be less than this estimate by a factor 

between 1/√2 and 1 in a two-dimensional model and between 1/√3 and 1 in a three-dimensional 

model.  It is important to note that stability of the explicit Newmark scheme with viscous terms in 

equation of motion can be affected in comparison to the case without damping. Indeed, when a 

velocity-dependent term is taken into account in the semi-discrete equation of motion, it is useful 

to write this term with a time lag in order to make the resolution completely explicit. As underlined 

by Belytschko et al. (2000), the introduced time lag for the velocity-dependent term decreases the 

stable time step. In the following, we will employ two slightly different versions of the explicit 

schemes: for a non-dissipative medium, the explicit Newmark scheme is employed, without the 

need to write the velocity at the mid-step, whereas, when damping is introduced into the equation 

of motion, Central Difference scheme is adopted with the time lag for the velocity-dependent term.  

 

1.3 Multi-time step subdomain coupling method  

      As shown in the Fig.1-4, let 𝛺 be a bounded domain belonging to ℝ2 with a regular boundary, 

which is composed of two subdomains 𝛺1  and  𝛺2 , 𝛺1⋂𝛺2 =⊘  and  ∂𝛺1⋂∂𝛺2 = 𝛤𝐼 , 𝛤𝐼  is the 

interface between the two subdomains. Based on the physical phenomena and computational 

considerations, the subdomain 𝛺1 needs to be integrated by explicit scheme in time, while the 

subdomain 𝛺2  requires the implicit time integration scheme. For example, in the numerical 

simulation of wave propagation in soil–structure interaction (SSI), the classical time discretization 

for wave propagation in soil is an explicit scheme for predicting in an accurate and efficient way 

the high-frequency propagating waves, while it uses an implicit scheme for the stiffer structure 

with non-linear mechanical behavior. In terms of time-stepping, the time step in subdomain 𝛺1 

should be enough small on the basis of the CFL condition, taking into account the material 

characteristics and the mesh. On the contrary, the implicit time integration scheme in subdomain 
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𝛺2 is unconditionally stable. Thus, it advocates for an asynchronous time integration which is 

beneficial to optimize the computation time, with a fine time step in subdomain 𝛺1  and an 

independent large time step in subdomain 𝛺2. In this case, the standard homogeneous synchronous 

time integration approach using the same time integration scheme and the same time step is no 

longer relevant. Therefore, many studies were carried out in the last years on developing subdomain 

approach in order to set up numerical methods for coupling different subdomains at the interface 

more independently. 

 

Figure 1-4   Subdomain Ω1 integrated by an explicit scheme with fine time step and subdomain Ω2 

integrated by an implicit scheme with large time step 

 

      Generally, the HATI in finite element calculations can be classified in two types.  The first is 

based on the primal approach, by imposing directly the continuity of subdomain kinematic 

quantities on nodes at the interface in a strong way. Hughes and Liu (1978) proposed one 

Explicit/Implicit mixed method, using the same time step in all the subdomains. Belytshko et al. 

(1979) developed one multi-time step algorithm for homogeneous time integration. However, by 

adopting asynchronous time step in subdomains, the main difficulty of the primal approach resides 

in the stability problem, produced by the interpolation of nodal values in the subdomain with large 

time step, in order to obtain the displacements, velocities or accelerations relative to the subdomain 

with fine time step (Belytshko and Lu, 1992; Klisinski and Mostrom, 1998; Daniel, 1998). The 

second type of coupling approach is the dual approach. Instead of imposing directly the continuity 

of subdomain kinematic quantities on nodes, the kinematic continuity at the interface between two 

non-overlapping subdomains is ensured in a weak way by means of Lagrange multipliers, which 

enable to couple different subdomains more independently. Based on the dual approach, Farhat 
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and Roux (1991), Farhat et al. (1994) proposed Finite Element Tearing and Interconnecting 

Method (FETI). Later, in the framework of the FETI method, Combescure and Gravouil (2001, 

2002) developed an extension of the method allowing different schemes and different time steps in 

each subdomain, called the GC coupling method. Using the continuity of velocities imposed at the 

interface, it was demonstrated that the coupling GC method is stable for any Newmark integrators 

(implicit and explicit) with their own time step depending on subdomains, according to the energy 

method (Hughes, 1987). When adopting the same time step, second order of accuracy is achieved. 

It leads to the first order of accuracy when different time steps are adopted due to a slight spurious 

dissipation at the interface. Recently, the GC method has been extended to couple other time 

integration schemes (Gravouil et al., 2015; Brun et al., 2015), leading to the proposition of a general 

framework, called Heterogeneous (different time integration schemes) Asynchronous (different 

time steps depending on subdomains) Time Integration (HATI). Co-simulations based on the GC 

coupling method have been successfully carried out in various applications by differently 

integrating in time partitions of a complex problem: structure-structure interaction problem in 

structural dynamics (Brun et al., 2012; 2014), soil-structure interaction (Brun et al., 2015), non-

smooth dynamics with impacts and contacts (Fekak et al. 2017), and fluid-structure interaction 

(Nunez-Ramirez et al., 2017).  

      Here, one example of Explicit/Implicit co-simulation in accordance with Fig.1-4, is given to 

illustrate the GC coupling algorithm. An independent explicit integrator with the fine time step Δt1 

will be adopted for the elastic subdomain Ω1 and a different implicit integrator with the large time 

step Δt2 will be used for elastic subdomain Ω2 based on the subdomain strategy proposed by 

Gravouil and Combescure, Δ𝑡2 =  𝑚𝛥𝑡1, m is the time step ratio between two subdomains.  The 

velocity continuity condition is imposed at the fine time-scale, associated with the explicit time 

integration, whereas the implicit partition is integrated with the large time scale. In other words, 

the equilibrium of subdomain 2 is prescribed at time 𝑡𝑚 = Δ𝑡2, while the equilibrium of subdomain 

1 is prescribed at time 𝑡𝑗 = 𝑗Δ𝑡1 (𝑗 = 1, 2. . . 𝑚). The problem of subdomain Ω1 and subdomain Ω2 

can be written by the finite element method as below,  

      Subdomain Ω1 at the fine time step: 

𝐌𝟏𝐔̈𝟏
𝐣
+ 𝐊𝟏𝐔𝟏

𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐋𝟏

𝐓𝛌𝐣                                               (1.31)                                            
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      Subdomain Ω2 at the large time step: 

𝐌𝟐𝐔̈𝟐
𝐦 + 𝐊𝟐𝐔𝟐

𝐦 = 𝐅𝟐
𝐞𝐱𝐭,𝐦 − 𝐋𝟐

𝐓𝛌𝐦                                          (1.32)                                      

      At the interface, the continuity of velocities is imposed at time tj as: 

𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 0                                                           (1.33)                                                      

where 𝛌 is the Lagrange multiplier vector corresponding to the nodal forces at the interface, L1 and 

L2 are the boolean matrices, operating on nodal vectors associated with the two subdomains Ω1and 

Ω2. In the case of non-matching meshes, mortar approach has to be applied, leading to non-boolean 

constraint matrices 𝐋𝟏  and 𝐋𝟐 (Zuchowski et al., 2018). Mi and Ki are the mass and the stiffness 

matrices of subdomains Ω1and Ω2 respectively,  

𝐌̃𝟏𝐔̈𝟏
𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐊𝟏𝐔𝟏

𝐣−𝟏,𝐩
− 𝐋𝟏

𝐓𝛌𝐣                                            (1.34)                                        

𝐌̃𝟐𝐔̈𝟐
𝐦 = 𝐅𝟐

𝐞𝐱𝐭,𝐦 − 𝐊𝟐𝐔𝟐
𝟎,𝐩
− 𝐋𝟐

𝐓𝛌𝐦                                          (1.35)                                      

with the effective stiffness matrices defined for the two subdomains by: 

𝐌̃𝟏 = 𝐌𝟏                                                                   (1.36)                                                   

𝐌̃𝟐 = 𝐌𝟐 + 𝛽2∆𝑡2
2𝐊𝟐                                                      (1.37)                                                    

      The kinematic quantities are divided into two parts: the free and the linked quantities. The free 

quantities are calculated by taking into account the internal and external forces, whereas the linked 

quantities are obtained from the interface loads given by the Lagrange multiplier vector 𝛌. It was 

demonstrated (Combescure and Gravouil, 2001; 2002) that the kinematic continuity condition can 

be expressed as a reduced-size interface problem as follows:    

𝐇𝛌𝐣 = 𝒃𝒋                                                               (1.38)                                                                  

with the interface operator and the right-hand side member vector defined by: 

{
𝐇 = 𝛾1∆𝑡1𝐋𝟏𝐌̃𝟏

−𝟏𝐋𝟏
𝐓 + 𝛾2∆𝑡2𝐋𝟐𝐌̃𝟐

−𝟏𝐋𝟐
𝐓

𝒃𝒋  = 𝐋𝟏𝐔̇𝟏
𝐟𝐫𝐞𝐞,𝐣

+ 𝐋𝟐𝐔̇𝟐
𝐟𝐫𝐞𝐞,𝐣                                    (1.39)                                      

      The interface operator 𝐇 is called the Steklov-Poincaré operator which can be viewed as the 

condensed effective stiffness matrix on the degrees of freedom belonging to the interface between 
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the two subdomains. The right hand-side vector 𝒃𝒋 only depends on the free velocities computed 

in both subdomains without considering the interface forces; it can be seen as a predictor value 

projected to the degrees of freedom belonging to the interface.   

      Finally, once derived the Lagrange multiplier vector, the quantities related to the interface 

forces can be computed and the time step is completed by summing these linked quantities to the 

free quantities previously obtained.  

 

1.4 Absorbing layers for modeling unbounded domains  

      For the numerical simulation of wave propagation problems in unbounded domains using the 

finite element method, one of the critical points is infinite media modelling. The simplest way is to 

consider a very large extended numerical mesh, but it leads to important computation times, in 

particular when long time duration excitations are considered. Hence, non-reflective boundary 

conditions are required at the boundary of the truncated domain for mimicking infinite or semi-

infinite media, as shown in Fig.1-5. In the thesis, we focus on three artificial boundaries in 

numerical methods for modeling unbounded domains: Rayleigh absorbing layers, Kosloff 

absorbing boundary, and PML (Perfectly Matched Layers). 

 

Figure 1-5   The truncated domain in soil–structure interaction problem 
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1.4.1 Rayleigh damping  

      The Rayleigh matrix is one classical method for modelling damping in dynamic transient 

analysis by Finite Element method. The expression of the classical viscous Rayleigh damping 

matrix is denoted by: 

                                                      𝐂 = 𝛼𝑀𝐌+ 𝛼𝐾𝐊                                                           (1.40)                                                       

where 𝐌  and 𝐊  are the mass matrix and stiffness matrix, respectively. 𝛼𝑀 is the Rayleigh 

coefficient proportional to the mass matrix, and 𝛼𝐾 is the Rayleigh coefficient proportional to the 

stiffness matrix. Thus,  𝐂 is the sum of two terms: one is proportional to the mass matrix, the other 

to the stiffness matrix. The relationship between the damping ratio 𝜉 as a function of the angular 

frequency 𝜔  and the two coefficients of the Rayleigh absorbing layer is given below: 

𝜉 =
𝛼𝑀
2𝜔

+
𝛼𝐾𝜔

2
                                                          (1.41) 

      Because the Rayleigh damping has been integrated in many commercial FE software, it is very 

convenient to set absorbing layers by the Rayleigh matrix. Rayleigh absorbing layer was introduced 

first by Israeli and Orszag (1977). Then Semblat et al. (2011) and Rajagopal et al. (2012) 

introduced more convenient techniques for implementing efficient absorbing conditions into 

commercial finite element codes, called Absorbing Layers using Increasing Damping (ALID), 

based on Rayleigh viscous damping matrix associated with an increasing damping ratio in the 

thickness of the absorbing region. Analytical models enabling to select the ALID parameters are 

developed by the authors to provide quick and valuable results, satisfying a desired accuracy.  It 

was also noted that the introduction of the Rayleigh matrix decreases the value of the critical time 

step when using explicit scheme. A strong form for the wave propagation in the continuous 

dissipative medium, corresponding to the introduction of the classical viscous Rayleigh damping 

matrix into the classical semi-discrete equation of motion, has been given by Zafati et al. (2014, 

2015). A clear relationship between the parameters of the absorbing layer and its target efficiency 

in terms of attenuation was obtained.  Next, the strong form of the wave propagation in Rayleigh 

medium is employed to obtain optimal conditions at the interface so as to minimize the spurious 

wave reflections. The displacement vector field 𝑢  in the Rayleigh domain was given by the 

following equations: 
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𝜌𝜕𝑡
2𝑢 + 𝛼𝑀𝜌𝜕𝑡𝑢 = div (𝜎(𝑢))                                              (1.42) 

𝜎 = 𝜆tr (𝜀(𝑢)) + 2𝜇𝜀(𝑢) + 𝛼𝐾 (𝜆tr (𝜀(𝜕𝑡𝑢)) + 2𝜇𝜀(𝜕𝑡𝑢))                      (1.43)  

𝜀 =
1

2
[𝑔𝑟𝑎𝑑(𝑢) + 𝑔𝑟𝑎𝑑(𝑢)

𝑇
]                                             (1.44) 

      Eqs. (1.42) to (1.44) constitute the strong form of the wave propagation into a Rayleigh medium, 

𝜎 , 𝜀, 𝜆, 𝜇, 𝜌 being the stress matrix, strain matrix, Lamé coefficients and the density related to 

the Rayleigh domain, respectively. It was shown that the parameters 𝛼𝑀 and 𝛼𝐾 introduced in Eqs 

(1.42) and (1.43) correspond to the two classical parameters of the viscous Rayleigh damping 

matrix (Belytschko et al., 2000; Zafati et al., 2015).  

 

1.4.2 Kosloff absorbing boundary 

      Absorbing boundary based on a simple modification in the wave propagating equation, was 

proposed by Kosloff and Kosloff (1986). The governing equations in elastodynamics are modified 

in order to introduce a specific damping, called in the following Kosloff damping. The 

displacement vector field 𝑢 in the Kosloff medium is governed by the modified equations:  

𝜌𝜕𝑡
2𝑢 = div (𝜎(𝑢)) − 2𝜌𝛾𝜕𝑡𝑢 − 𝜌𝛾

2𝑢                               (1.45) 

𝜎 = 𝜆tr (𝜀(𝑢)) + 2μ𝜀(𝑢)                                              (1.46) 

𝜀 =
1

2
[𝑔𝑟𝑎𝑑(𝑢) + 𝑔𝑟𝑎𝑑(𝑢)

𝑇
]                                        (1.47) 

      Eqs. (1.45) to (1.47) constitute the strong form of the wave propagation in a Kosloff medium, 

𝜎, 𝜀, λ, μ,   ρ, γ  being the stress matrix, strain matrix, Lamé’s coefficients, the density and 

damping ratio, respectively. It can be seen that the strong form of the equation of motion, in Eq. 

(1.45), has been changed with two additional damping terms related to displacements and velocities. 

The other two equations correspond to the elastic constitutive relationship and the definition of the 

infinitesimal strain. In Kosloff medium, the wave travels without changing shape and the wave 
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amplitude decreases with distance at a frequency independent rate. On the contrary, one of the 

drawbacks of the viscous Rayleigh damping in FE software is its dependence with respect to 

frequencies in the problem. Some similarities between PML and Kosloff absorbing boundary have 

been discussed by Carcione and Kosloff (2013). It was shown that in the case of SH waves, a 

modified Kosloff formulation matches the split formulation of the PML, before the spatial and time 

discretization, highlighting the relation between the two approaches. Consequently, it is interesting 

to explore the capabilities of setting up efficient and convenient absorbing layers based on Kosloff 

damping for modelling infinite media, which could be independent of frequency and easy to be 

implemented with a convenient finite element expression.   

 

1.4.3 PML (Perfectly Matched Layers) 

      PML (Perfectly Matched Layers) proposed by Bérenger (1994) and reinterpreted by Chew and 

Weedon (1994) is becoming increasingly used for dealing with infinite media in the context of 

finite difference, finite element and spectral element methods. The PML medium is built by 

applying a complex-valued coordinate stretching to the elastic wave equation, providing the same 

attenuation for all frequencies and non-reflecting feature in continuous setting for all angles of 

incidence at the interface, and these properties make it more efficient than the other absorbing 

layers. The PML was originally developed for the electromagnetic waves by Bérenger (1994). The 

technique was then adapted to the elastodynamic equations. The first implementations of PML 

were carried out according to a velocity-stress format, using mainly the finite difference method 

and a split procedure for the components of velocities with respect to the interface (Chew and Liu, 

1996; Collino and Tsoga, 2001).  Then, the unsplit-formulation was developed by Wang et al. 

(2003), called C−PML, requiring the computation of convolution integrals. Next, Matzen (2011) 

extended the C-PML approach to the finite element method. Basu and Chopra (2003, 2004) 

proposed an unsplit straightforward displacement-based formulation without the need of 

convolution integrals calculation for time-domain elastodynamics by finite element method. Then, 

this work was extended to three-dimension and successfully implemented in the Finite Element 

software LS-DYNA and DIANA (Basu, 2009). In most formulations, the complex-coordinate-

stretched equations used to introduce the PML, also serve to describe the interior domain (reduced 
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to the original unstretched system), resulting in an unuseful complexity and additional 

computational cost. Kucukcoban and Kallivokas (2011,2013) derived a hybrid formulation 

coupling an unsplit mixed form PML with a standard displacement-only form in the interior domain, 

which has been extended to three-dimension by Fathi et al. (2015). The derived PML turns out to 

be very efficient, but the mixed formulation is more difficult to be implemented in FE context than 

a classical displacement-based approach. 

      The PML model is formulated by introducing the complex-valued stretching functions into the 

classical elastodynamic equations in the frequency domain. The main idea is to replace the real 

coordinates 𝑥𝑖 which denotes the 𝑥, 𝑦 and 𝑧 coordinates for the index equal to 1, 2 and 3, by the 

complex ones 𝑥̃𝑖 : ℝ → ℂ . The complex coordinates are defined by: 

𝜕𝑥̃𝑖
𝜕𝑥𝑖

= 𝜆𝑖(𝑥𝑖) = 1 + 𝑓𝑖
𝑒(𝑥𝑖) +

𝑓𝑖
𝑝(𝑥𝑖)

𝑖𝜔
                                         (1.48) 

      In the above, 𝜔 denotes angular frequency, the damping function 𝑓𝑖
𝑝

which is positive real-

valued as a function of 𝑥𝑖, serves to attenuate the propagating waves in the 𝑥𝑖 direction, and the 

damping function𝑓𝑖
𝑒 attenuates the evanescent waves. Here, we concentrate on the propagating 

waves, so the damping function 𝑓𝑖
𝑝
 will be used to control the attenuation intensity.  The PML 

formulation is obtained by modifying the governing equations defined in the frequency domain. 

The classical three-dimensional strong form in elastic medium has been changed as below: 

∑
1

𝜆𝑗(𝑥𝑗)

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
= −𝜔2𝜌𝑢𝑖

𝑗
                                                  (1.49) 

𝜎𝑖𝑗 =∑ 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙
𝑘,𝑙

                                                          (1.50) 

𝜀𝑖𝑗 =
1

2
[

1

𝜆𝑗(𝑥𝑗)

𝜕𝑢𝑖
𝜕𝑥𝑗

+
1

𝜆𝑖(𝑥𝑖)

𝜕𝑢𝑗

𝜕𝑥𝑖
]                                         (1.51) 

 

where 𝐶𝑖𝑗𝑘𝑙 are the components of the elastic constitutive tensor. 
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1.5 Conclusion  

      This chapter has summarized different aspects concerning the numerical simulation of wave 

propagation in unbounded domains. At the beginning, the basic knowledge of the wave propagation 

in elastic medium is presented. The prediction of wave propagation in the soil is very important for 

the protection of the people and the buildings against propagating waves produced by dynamic 

sources. However, it turns out to be difficult to solve the problem by analytical methods, due to the 

complexity of the model in engineering cases. For this reason, the principle of Finite Element 

method has been introduced. The space and time discretization of wave propagation problem in 

two-dimensional elastic media has been given, as an example, by using 4-node isoparametric 

rectangular elements and Newmark integration schemes for linear transient.  

      Generally, the numerical model of wave propagation problem includes different physical 

domains. Taking into account the different characteristics of each part, heterogeneous time 

integration schemes, based on domain decomposition method, are suitable to satisfy the 

requirement of each part and reach the best computational efficiency. Consequently, the framework 

of HATI (Heterogeneous Asynchronous Time Integrator) is briefly presented, based on the dual 

approach.   

      One of the critical points of wave propagation simulation in unbounded domains using the finite 

element method is how to simulate infinite media. Non-reflective boundary conditions are required 

at the boundary of the truncated domain for mimicking infinite or semi-infinite media. The previous 

research works on absorbing layers for modelling unbounded domain are briefly presented. In the 

following, novel designs and hybrid formulations of three absorbing layers, Rayleigh absorbing 

layers, Kosloff absorbing layers and PML (Perfect Matched Layers), will be developed and 

implemented by the finite element method for modelling two-dimensional and three-dimensional 

infinite media. Numerous numerical applications will be carried out to illustrate the efficiency of 

the hybrid approach for modeling unbounded domains.   
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Chapter 2 

2. Hybrid asynchronous Rayleigh 

absorbing layer 

 

      Absorbing Layers using Increasing Damping (ALID), based on Rayleigh viscous damping, are 

considered for modeling 2D and 3D infinite medium. The strong form of wave propagation in a 

Rayleigh medium is first briefly presented, enabling us to derive improved relationships for 

mechanical parameters of the absorbing layers in order to minimize the wave reflection at the 

interface between the elastic medium and the Rayleigh medium. An efficient ALID can be set up, 

whose design depends on the desired target absorbing accuracy. Secondly, the weak formulation 

of the decomposed problem based on the coupling GC method is obtained in order to derive the 

discretization in space and time algorithm able to couple Abaqus/Explicit with Abaqus/Implicit 

with their independent time steps. The proposed absorbing region is called Hybrid (different time 

integrators) Asynchronous (different time steps) Absorbing Layers using Increasing Damping 

(HA-ALID). In numerical applications, Lamb’s test is considered to assess the HA-ALID 

efficiency using Abaqus co-simulation: several profiles (linear, quadratic, square-root) of the 

damping ratio in the thickness of the HA-ALID are investigated so as to optimize the absorbing 

effect into the HA-ALID while minimizing the spurious wave reflection at the interface with the 

elastic domain. The efficiency of the proposed method is compared with non-reflective conditions 

available in Abaqus/Explicit, highlighting the very good behavior of the co-simulation strategy. In 

addition, a simulation of a wave barrier problem is carried out using the co-simulation and 

compared to an Abaqus/Explicit simulation with infinite elements with the same mesh for the 

domain of interest. Finally, hybrid asynchronous Rayleigh absorbing layers is extended for 
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modelling three-dimensional unbounded domains using explicit/implicit and explicit/explicit co-

simulations. The difference of two co-simulation strategies will be compared in terms of accuracy 

and computation time. The straightforward 3D extension of HA-Rayleigh ALID highlights the 

convenience of the Rayleigh damping layers for setting up absorbing layers. 

      The part of this work devoted to transient 2D analyses has been published in European Journal 

of Environmental and Civil Engineering: 

Li S, Brun M, Djeran-Maigre I, and Kuznetsov S (2018). Explicit/implicit multi-time step co-

simulation in unbounded medium with Rayleigh damping and application for wave barrier. 

European Journal of Environmental and Civil Engineering. 
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2.1 The design of ALID (Absorbing Layers using Increasing Damping) 

      Rayleigh absorbing layer aims at damping out all the incident waves from the domain of interest 

while minimizing the spurious waves reflected at the boundary of the truncated domain. For this 

purpose, the optimal conditions at the interface between a non-dissipative elastic medium Ω1 and a 

dissipative Rayleigh medium Ω2 can be established by considering the continuous problem of wave 

propagation. A strong form for the wave propagation in the continuous dissipative medium Ω2, 

corresponding to the introduction of the classical viscous Rayleigh damping matrix into the 

classical semi-discretized of the equation of motion in 3D medium, has been obtained by Zafati et 

al. (2014,2015). Indeed, the classical expression of the Rayleigh matrix can be derived from the 

weak form of the previous equations as it will be shown in section 2.2. The displacement vector 

field 𝑢 in the Rayleigh domain was given by the following equations: 

                                          𝜌2𝜕𝑡
2𝑢2 + 𝛼𝑀𝜌2𝜕𝑡𝑢2 = div (𝜎2 (𝑢2))                                           (2.1) 

𝜎2 = 𝜆2tr (𝜀2 (𝑢2)) + 2𝜇2𝜀2 (𝑢2) + 𝛼𝐾 (𝜆2tr (𝜀2 (𝜕𝑡𝑢2)) + 2𝜇2𝜀2 (𝜕𝑡𝑢2))       (2.2)  

𝜀2 =
1

2
[𝑔𝑟𝑎𝑑 (𝑢2) + 𝑔𝑟𝑎𝑑 (𝑢2)

𝑇

]                                              (2.3) 

      Eqs. (2.1) to (2.3) constitute the strong form of the wave propagation into a Rayleigh medium, 

𝜎2 , 𝜀2, 𝜆2, 𝜇2,  𝜌2 being the stress matrix, strain matrix, Lamé coefficients, the density, Young’s 

modulus and Poisson’s ratio related to the Rayleigh domain Ω2, respectively.  

      The strong form of the wave propagation in Rayleigh medium is employed to obtain optimal 

conditions at the interface between an elastic domain Ω1 and a dissipative Rayleigh medium Ω2 so 

as to minimize the spurious wave reflections. The argument is developed for 1D wave propagation 

problem by distinguishing the P-waves and the S-waves in their strong form, written as: 

𝜌2𝜕𝑡
2𝑢2 + 𝛼𝑀𝜌2𝜕𝑡𝑢2 = (𝜆2 + 2𝜇2)𝜕𝑥

2𝑢2 + 𝛼𝐾(𝜆2 + 2𝜇2)𝜕𝑥
2𝜕𝑡𝑢2   𝑃 − 𝑤𝑎𝑣𝑒               (2.4) 

𝜌2𝜕𝑡
2𝑢2 + 𝛼𝑀𝜌2𝜕𝑡𝑢2 = 𝜇2𝜕𝑥

2𝑢2 + 𝛼𝐾𝜇2𝜕𝑥
2𝜕𝑡𝑢2               𝑆 − 𝑤𝑎𝑣𝑒                (2.5) 
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      By introducing the harmonic solution 𝑢(𝑥, 𝑡) = 𝑢0exp (𝑖(𝜔0𝑡 − 𝑘𝑥)), the expression of the 

propagating wave in the 1D Rayleigh medium can be obtained, with the assumption between 

damping ratio 𝜉 and the dominant angular frequency ω0 as: 
𝛼𝑀

𝜔0
= 𝛼𝐾𝜔0 = 𝜉 (Zafati et al., 2015):  

𝑢2(𝑥, 𝑡) = 𝑢0 exp (
−𝜔0𝜉𝑥

𝑉2√1 + 𝜉2
) exp(𝑖 (𝜔0𝑡 −

𝜔0𝑥

𝑉2√1 + 𝜉2
))        (2.6) 

      After analytically solving the interface problem using the previous strong form, the relationship 

for minimizing the spurious reflections at the interface was obtained (Zafati et al., 2015): 

  {
𝐸2 =

𝐸1
1 + 𝜉2

            

 𝜈2 = 𝜈1                    
𝜌2 = 𝜌1                 

                                                     (2.7) 

where 𝐸1 and 𝐸2 are Young’s moduli, 𝜈1 and 𝜈2 are Poisson’s ratios, 𝜌1 and 𝜌2 are the densities of 

subdomains Ω1 and Ω2, respectively. The decay of the amplitude 𝛿 is expressed in a logarithmic 

form with respect to the thickness of the Rayleigh absorbing layer Δ𝑥 as follows:    

δ = ln (
|𝑢2(𝑥)|

|𝑢2(𝑥 + Δ𝑥)|
) =  

𝜔0𝜉Δ𝑥

𝑣𝜌
                                                (2.8) 

where Δ𝑥 denotes the thickness of the Rayleigh medium, 𝜉  the damping ratio of the Rayleigh 

absorbing layer and 𝑣𝜌 represents the velocity of P wave in the domain of interest. For achieving a 

target value of the logarithmic decrement, we can use the relationship in Eq. (2.8) to design the 

Rayleigh medium by choosing its damping ratio and thickness. The velocity of P waves is higher 

than the velocity of S waves in the same medium. In other words, based on the above relationships, 

in order to reach the same logarithmic decrement, the necessary layer thickness for damping out S 

waves is smaller than the one related to P waves. For the design of absorbing layer, the velocity of 

P waves will be chosen to make sure that all the waves can be attenuated according to the target 

decrement.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  31 

        

Figure 2-1   Absorbing Layers using Increasing Damping 

 

      The Absorbing Layers using Increasing Damping, called ALID, proposed by Semblat et al. 

(2011) and Rajagopal et al. (2012), are considered by tuning the elastic parameters of each layer 

depending on the selected damping ratio as given by the optimal conditions in Eq. (2.7). The main 

idea is to divide the Rayleigh absorbing medium into several uniform layers as shown in Fig.2-1, 

so that the decrements produced by each layer can be multiplied. Because of the logarithmic form 

of decrement, the total logarithmic decrement can be easily obtained. Due to the difference of 

damping ratio between subdomains Ω1 and Ω2, spurious waves will be produced, though optimal 

conditions given by Eq. (2.7) are applied. Indeed, it is important to note that non-reflective 

conditions between an elastic and a Rayleigh medium were obtained under the following 

assumptions: 1D wave propagation (normal incidence), continuous setting in space and in time, 

harmonic waves. Thus, in a more general problem with non-harmonic waves, after spatial and time 

discretization, Eq. (2.7) provides only approximate conditions used for the ALID design.   

      It is crucial to control the difference of damping ratios between subdomains. Indeed, the 

evolution of damping ratio in layers has an important influence on the efficiency of the ALID. Here, 

a nonlinear increase of damping ratio is adopted to achieve a better accuracy than a simple linear 

increase. The parameters of each layer satisfying the optimal conditions at each interface are given 

by: 
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{
 
 
 
 

 
 
 
 𝐸2

(𝑖+1)
=

1 + 𝜉𝑖
2

1 + 𝜉𝑖+1
2 𝐸2

(𝑖)

𝐸2
(1)
=

1

1 + 𝜉1
2 𝐸1

𝜈2
(𝑖)
= 𝜈1

𝜌2
(𝑖)
= 𝜌1

   𝜉𝑖 =  𝜉0 (
𝑥

𝐿
)
𝑛

    

                                                   (2.9) 

where  𝐸2
(𝑖)

 denotes Young’s modulus, 𝜉𝑖 the damping ratio, 𝜈2
(𝑖)

 Poisson’s ratio, 𝜌2
(𝑖)

 the density 

of each layer 𝑖 in the subdomain Ω2, 𝑛  the power of the damping function, 𝑥 the distance in the 

thickness of the ALID, 𝐿 the thickness of the ALID including all sublayers (i). The total logarithmic 

decrement 𝛿 is written as: 

{
 
 

 
 𝛿𝑖 = 

 𝜉0𝜔0
𝑣𝜌

(
𝑥

𝐿
)
𝑛

Δ𝑥                      

  𝛿 =∑ 𝛿𝑖 =
𝑁𝑒

𝑖=1
∫

 𝜉0𝜔0
𝑣𝜌

(
𝑥

𝐿
)
𝑛𝐿

0

𝑑𝑥 =
 𝜉0𝜔0𝐿

(𝑛 + 1)𝑣𝜌

                            (2.10) 

where 𝛿𝑖 represents the logarithmic decrement of each sublayer 𝑖, 𝑁𝑒 is the number of layers, Δ𝑥 

represents the thickness of each layer which is assumed to be constant. The reflection coefficient 

R is given by: 

𝑅 = 𝑒−2𝛿                                                                (2.11)   

      For example, if the goal is to reach a target logarithmic decrement δ=ln (10), this means that 

90% of the amplitude of the incident will be absorbed from the interface to the end of the damping 

layers. Next, the attenuation also occurs for the reflection process from the end of the damping 

layer towards the interface. Thus, the incident wave is attenuated by 99% in the ALID and the 

reflection coefficient R is theoretically equal to 1%, under the 1D harmonic wave propagation 

assumption and before the discretization in time and in space. By calculating Eq. (2.10) in the 

integral form, a new general design formula for the system of Rayleigh absorbing layers with 

reflection coefficient 𝑅 is derived: 

 𝜉0 =
(𝑛 + 1)

2𝐿𝜔0
× 𝑣𝜌 × ln (

1

𝑅
)                                                 (2.12) 
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2.2 Weak form and space discretization for HA-ALID 

      The elastic wave propagation from an elastic non-dissipative medium to a Rayleigh medium 

should be discretized in space and in time. Let 𝛺 be a bounded domain belonging to ℝ2 with a 

regular boundary. J= [0, T] is the time interval of interest. The domain 𝛺 is divided into two 

partitions 𝛺1 and  𝛺2, as shown in Fig.1-4, such as: 𝛺1⋂ 𝛺2 = ∅ and ∂𝛺1⋂∂𝛺2 = 𝛤𝐼. 𝛤𝐼 denotes 

the interface between the two subdomains, subdomain Ω1 representing the non-dissipative medium 

(the domain of interest) and subdomain  𝛺2 the Rayleigh medium. 

      The subdomain 𝛺1 is characterized by its density 1 , Young’s modulus E1 , Poisson coefficient

1 , 𝑏1 the body force, 𝑢1
𝐷the Dirichlet prescribed displacement on Γ1

𝐷 and 𝑔1
𝑁the traction force at 

the Neumann condition on Γ1
𝑁 . The subdomain Ω2 is characterized by its density 2 , Young’s 

modulus E2 , Poisson coefficient2 , 𝑏2 the body force , 𝑢2
𝐷 the Dirichlet prescribed displacement 

on  Γ2
𝐷 , 𝑔2

𝑁  the traction force at the Neumann condition on Γ2
𝑁  and the parameters 𝛼𝑀  and 𝛼𝐾 

introduced in the strong form of the wave equation in Eqs (2.1) and (2.2).  

      In order to write the weak form of the coupled problem in Ω divided into two partitions Ω1 and 

Ω2, test functions 𝑣1 and 𝑣2 belonging to the appropriate spaces 𝑊1
∗ and 𝑊2

∗ must be introduced:  

{
𝑣1 ∈ 𝑊1

∗ ,𝑊1
∗ = {𝑣1 ∈ (𝐻

1(Ω1))
𝑑
𝑎𝑛𝑑 𝑣1 = 0 𝑜𝑛 Γ1

𝐷} 

𝑣2 ∈ 𝑊2
∗ ,𝑊2

∗ = {𝑣2 ∈ (𝐻
1(Ω2))

𝑑
𝑎𝑛𝑑 𝑣2 = 0 𝑜𝑛 Γ2

𝐷} 
                      (2.13) 

      The solutions 𝑢1 and 𝑢2 belong to the appropriate spaces  𝑊1 and 𝑊2:   

   { 
𝑢1(𝑡) ∈ 𝑊1,𝑊1 = {𝑢1 ∈ (𝐻

1(Ω1))
𝑑
𝑎𝑛𝑑 𝑢1 = 𝑢1

𝐷 𝑜𝑛 Γ1
𝐷} 

𝑢2(𝑡) ∈ 𝑊2,𝑊2 = {𝑢2 ∈ (𝐻
1(Ω2))

𝑑
𝑎𝑛𝑑 𝑢2 = 𝑢2

𝐷 𝑜𝑛 Γ2
𝐷}   

              (2.14) 

where 𝑑 is the space dimension (equal to 1, 2 or 3). The introduction of the Lagrange multiplier 

field allows us to glue the velocities of the two subdomains at the interface 𝛤𝐼. They belong to the 

adapted dual trace space Q, defined at the interface. 
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      All the above considered space variables are assumed to be sufficiently smooth and regular. 

Using a dual Schur formulation, the principle of virtual power for transient dynamics can be written. 

Find the solution 𝑢1(𝑡) ∈ 𝑊1, 𝑢2(𝑡) ∈ 𝑊2 and 𝜆(𝑡) ∈ 𝑄, for which the following weak form is 

satisfied ∀𝑣1 ∈ 𝑊1
∗, ∀𝑣2 ∈ 𝑊2

∗ and ∀𝜇 ∈ 𝑄∗: 

∫ 𝜌1𝑣1 ∙ 𝑢̈1𝑑ΩΩ1
+ ∫ 𝜀(𝑣1): 𝜎1𝑑ΩΩ1

+ ∫ 𝜌2𝑣2 ∙ 𝑢̈2𝑑ΩΩ2
+ ∫ 𝜀(𝑣2): 𝜎2𝑑ΩΩ2

 + 𝛼𝑀 ∫ 𝜌2𝑣2 ∙Ω2

𝑢̇2𝑑Ω + ∫ 𝑣1 ∙ 𝜆𝑑ΓΓ𝐼
+ ∫ 𝑣2 ∙ 𝜆𝑑ΓΓ𝐼

+ ∫ 𝜇 ∙ (𝑢̇1 − 𝑢̇2)𝑑ΓΓ𝐼
= ∫ 𝑣1 ∙ 𝑏1𝑑ΩΩ1

+ ∫ 𝑣1 ∙ 𝑔1
𝑁𝑑Γ

Γ1
𝑁 +

∫ 𝑣2 ∙ 𝑏2𝑑ΩΩ2
+ ∫ 𝑣2 ∙ 𝑔2

𝑁𝑑Γ
Γ2
𝑁                                             (2.15)  

where the stress tensor 𝜀2 satisfies the behavior law given in Eq. (2.2). Then, we follow the classical 

lines of the finite element discretization. At the interface between the subdomains, the continuity 

of velocities is imposed by the following condition:  

𝐋𝟏𝐔̇𝟏 + 𝐋𝟐𝐔̇𝟐 = 𝟎                                                  (2.16)  

where L1 and L2 are the Boolean matrices in the case of matching meshes at the interface. They 

operate on nodal vectors associated with the two subdomains Ω1 and Ω2 and pick out the degrees 

of freedom belonging to the interface 𝛤𝐼 in order to ensure the kinematic continuity at the interface.  

      Thus, the restricted velocities at the interface can be obtained from the global nodal velocity 

vectors 𝐔̇𝟏 and 𝐔̇𝟐 by the relationships:  

{
𝐔̇𝟏
𝚪 = 𝐋𝟏𝐔̇𝟏

𝐔̇𝟐
𝚪 = 𝐋𝟐𝐔̇𝟐

                                                               (2.17) 

      Same relationships hold for the global virtual nodal velocities  𝐕𝟏 and 𝐕𝟐. Thus, interface terms 

involving the Lagrange multiplier field in Eq. (2.16) can be expressed as:  

{
 
 

 
 ∫ 𝑣1 ∙ 𝜆𝑑Γ

Γ𝐼

= 𝐕𝟏
𝐓𝐋𝟏

𝐓𝛌

∫ 𝑣2 ∙ 𝜆𝑑Γ
Γ𝐼

= 𝐕𝟐
𝐓𝐋𝟐

𝐓𝛌

                                                 (2.18) 
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2.3 Time discretization of HA-ALID 

      For the time discretization, the GC method proposed by Gravouil and Combescure (2001, 2002) 

is employed. Adopting the continuity of velocities at the interface, it was demonstrated that the 

coupling GC method is stable for any Newmark integrators (implicit and explicit) with their own 

time step depending on subdomains. When adopting the same time step, second order of accuracy 

is achieved. It leads to the first order of accuracy when different time steps are adopted due to a 

slight spurious dissipation at the interface. As illustrated in Fig. 1-4, an explicit time integrator with 

a fine time step Δt1 is adopted for the subdomain Ω1 and an implicit time integrator with a large 

time step Δt2 is used for subdomain Ω2, with Δt2 = mΔt1, m being the time step ratio between two 

subdomains. In this way, hybrid (different schemes associated) asynchronous (different time steps 

depending on subdomains) ALID can be obtained, called HA-ALID. The equilibrium of subdomain 

2 is prescribed at time tm at the end of the large time Δt2, while the equilibrium of subdomain 1 is 

prescribed at every time tj = jΔt1 (j =1, 2...m) at the fine time scale. The gluing of the velocity at 

the interface is written at the fine time scale. 

      Using the GC method, the wave propagation can be simulated using a time step satisfying the 

CFL condition, without being affected by the specific formulation adopted for the absorbing region 

at the boundary of the truncated mesh. Moreover, the multi-time step capabilities enable us to use 

a large time step in subdomain Ω2. Finally, the weak form given in Eq. (2.15) with the velocity 

continuity equation in Eq. (2.16), can be expressed in the following discrete form in space and time: 

𝐌𝟏𝐔̈𝟏
𝐣
+ 𝐊𝟏𝐔𝟏

𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐋𝟏

𝐓𝝀𝒋                    at time  𝑡 = 𝑡𝑗           (2.19) 

𝐌𝟐𝐔̈𝟐
𝐦 + (𝛼𝑀𝐌𝟐 + 𝛼𝐾𝐊𝟐)𝐔̇𝟐

𝐦 + 𝐊𝟐𝐔𝟐
𝐦 = 𝐅𝟐

𝐞𝐱𝐭,𝐦 − 𝐋𝟐
𝐓𝛌𝐦     at time 𝑡 = 𝑡𝑚         (2.20) 

𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 0                             at time 𝑡 = 𝑡𝑗           (2.21) 

where Mi and Ki are the mass and the stiffness matrices of subdomains Ω1 and Ω2  (i=1, 2). The 

first equation is the discrete equation of motion of subdomains Ω1 written at time tj (fine time scale), 

whereas the second equation is the discrete equations of motion of subdomains Ω2 written at time 

tm (large time scale). On right hand side of the above equations, the interface forces enable the 

subdomains to be glued at their interface 𝛤𝐼. The last equation is the velocity continuity.  
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      It is important to note that the expression of the classical viscous Rayleigh damping matrix, 

denoted by C2=𝛼𝑀M2+𝛼𝐾K2, is retrieved in the discrete equation of motion of subdomain Ω2 . As 

a result, the 𝛼𝑀 and 𝛼K parameters introduced in the strong form of the wave equation given in Eqs. 

(2.1) and (2.2) represent the classical constant parameters of the viscous Rayleigh damping matrix. 

In structural dynamics, this matrix is classically introduced in the discrete equation of motion, with 

parameters chosen so as to match two damping ratio values at two different frequencies.  

      Newmark time integration schemes (Newmark, 1959) can be adopted for the time discretization, 

for example, characterized by the parameters γ2=0.5 and β2=0.25 for the implicit time integration 

and the parameters γ1=0.5 and β1=0 for the explicit time integration scheme. By introducing the 

approximate Newmark formulas, it leads to the equations of motion written as: 

𝐌̃𝟏𝐔̈𝟏
𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐊𝟏𝐔𝟏

𝐣−𝟏,𝐩
− 𝐋𝟏

𝐓𝛌𝐣                                        (2.22)                                  

𝐌̃𝟐𝐔̈𝟐
𝐦 = 𝐅𝟐

𝐞𝐱𝐭,𝐦 − 𝐂𝟐𝐔̇𝟐
𝟎,𝐩
− 𝐊𝟐𝐔𝟐

𝟎,𝐩
− 𝐋𝟐

𝐓𝛌𝐦                              (2.23)                            

where 𝐔𝟏
𝐣−𝟏,𝐩

 and 𝐔̇𝟐
𝟎,𝐩

 denote the predictor values in terms of displacement and velocity, 

classically introduced through the approximate Newmark formulae; they correspond to quantities 

known at the beginning of the fine step and of the large time step, respectively.   

The effective stiffness matrices 𝑴̃𝟏 and 𝑴̃𝟐 related to the two subdomains are defined by: 

𝑴̃𝟏 = 𝑴𝟏 + 𝛽1∆𝑡1
2𝑲𝟏                                                   (2.24)                                                 

𝐌̃𝟐 = 𝐌𝟐 + 𝛽2∆𝑡2
2𝐊𝟐 + 𝛾2∆𝑡2𝐂𝟐                                        (2.25)                                       

      The kinematic quantities are divided into two parts: the free and the linked quantities in the 

coupling GC method. The free quantities are calculated by taking into account the internal and 

external forces, without considering the interface forces, whereas the linked quantities are obtained 

from the interface loads given by the Lagrange multiplier vector 𝛌.  

      It was demonstrated that the kinematic continuity condition can be expressed as a reduced-size 

interface problem as follows: 

𝐇𝛌𝐣 = 𝐛𝐣                                                               (2.26)                                                       

with the interface operator and the right-hand side member vector defined by: 
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{
𝐇 = 𝛾1∆𝑡1𝐋𝟏𝐌̃𝟏

−𝟏𝐋𝟏
𝐓 + 𝛾2∆𝑡2𝐋𝟐𝐌̃𝟐

−𝟏𝐋𝟐
𝐓

𝐛𝐣 = 𝐋𝟏𝐔̇𝟏
𝐟𝐫𝐞𝐞,𝐣

+ 𝐋𝟐𝐔̇𝟐
𝐟𝐫𝐞𝐞,𝐣                                 (2.27) 

 

2.4 Effectiveness of Hybrid Asynchronous Absorbing Layers using 

Increasing Damping (HA-ALID)  

      In order to evaluate the effectiveness of HA-ALID, 2D Lamb’s test has been simulated using 

Abaqus Explicit/Implicit co-simulation. In Lamb’s test, the concentrated load applied to the surface 

of an infinite half space medium generates three types of waves propagating through the soil, 

involving P, S waves and Rayleigh waves (Lamb, 1903). So 2D Lamb’s test can be considered as 

a good test for assessing the performance of the HA-ALID using Abaqus co-simulation. Non-

harmonic waves are investigated by considering a Ricker incident waves defined by:  

 

𝑅𝑖𝑐(𝑡, 𝑡𝑝, 𝑡𝑠) = 𝐴(2𝜋2
(𝑡 − 𝑡𝑠)

2

𝑡𝑝2
− 1) exp(−𝜋2

(𝑡 − 𝑡𝑠)
2

𝑡𝑝2
)                         (2.28) 

 

 

 Figure 2-2   Waveform and Fourier transform of the Ricker wavelet 
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      The Ricker wave, plotted in time domain and in frequency domain in Fig.2-2, has three 

parameters: the fundamental period 𝑡𝑝, the time shift 𝑡𝑠 and the amplitude 𝐴. The chosen values 

are: 𝑡𝑝=3s, 𝑡𝑠=3s and A =1MN. In this section, the first example of 2D Lamb’s test is simulated 

with a single Rayleigh absorbing layer by using a homogeneous time step in both subdomains. 

Secondly, HA-ALID are tested so as to significantly reduce the scale of the absorbing medium at 

the boundary of the truncated mesh in comparison to the single-layer case. The effect of nonlinear 

increase of damping ratio and heterogeneous time steps on the accuracy will be investigated. 

Finally, a comparison will be carried out between results obtained by HA-ALID using Abaqus 

Explicit/Implicit co-simulation, infinite element using Abaqus Explicit, and reference results 

provided by an extended mesh using Abaqus Explicit. 

 

2.4.1 Single absorbing layer  

      Lamb’s test is set up considering a single absorbing layer as illustrated in Fig.2-3, composed 

of a bounded soil (subdomain 1) with a size of 𝜆 (wavelength of P-waves) and a single absorbing 

layer (subdomain 2) with the thickness of 3.6𝜆, designed to achieve a target logarithmic decrement 

𝛿 = ln (10).  

 

 Figure 2-3   2D Lamb’s test with a single absorbing layer using explicit/implicit co-simulation 
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      The soil is assumed to be linear elastic with the following material characteristics: 

𝜌1=1700kg/m3, 𝐸1=10MPa and 𝜈1= 0.24 for the density, Young’s modulus and Poisson’s ratio, 

respectively. The material characteristics of the Rayleigh absorbing layer are computed from the 

optimal conditions given in Eqs (2.7), by adopting a damping ratio ξ=0.1 and taking into account 

a dominant angular frequency corresponding to the fundamental period 𝑡𝑝 of the Ricker wave. It 

gives: 𝜌2=1700kg/m3, 𝐸2=9.9MPa,  𝜈2= 0.24 for the density, Young’s modulus and Poisson’s ratio, 

respectively. An homogeneous time step satisfying the CFL condition is taken in both subdomains. 

The subdomain soil is integrated in time with an explicit scheme, whereas the Rayleigh absorbing 

layer is integrated with an implicit scheme. An observation point is located at a distance equal to 

20m from the load point. The model is spatially discretized using 4-node bilinear plane strain 

quadrilateral elements with the size of λ/50 for both subdomains, guaranteeing a good quality of 

the numerical prediction for the wave propagation problem. The P-wave, S-wave and Rayleigh 

wave velocities are: VP =83.27m/s, VS=48.7m/s, VR=44.73m/s.  

 

Figure 2-4   Vertical displacements at observation point using a single layer  
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Figure 2-5   Horizontal displacements at observation point using a single layer  

 

      Figure 2-4 and 2-5 show the horizontal and vertical displacements in Lamb’s test with a single 

absorbing layer in comparison to the reference results obtained from an extended mesh, free of 

spurious reflected waves in the observation period. The horizontal and vertical displacements of 

the reflected spurious wave are less than 1.5% with respect to the horizontal and vertical amplitudes 

of the incident wave. By comparing these results to our target equal to 1% for the reflection 

coefficient R, small discrepancies are observed, due to the non-normal incidence of waves, non-

harmonic nature of the Ricker wavelet, and the space-time discretization of the problem. Results 

obtained by Abaqus Explicit/Implicit co-simulation with a single layer and an homogeneous time 

step in two subdomains are in good agreement with the reference results, highlighting the excellent 

behavior of the Rayleigh absorbing layer. Next, a multi-layer strategy (HA-ALID) will be used to 

reduce the scale of the absorbing region.  

 

2.4.2 HA-ALID in Lamb’s test 

      The HA-ALID for the Lamb’s test is depicted in Figure 2-6. The size and material parameters 

of the soil domain are the same as in the previous example. We consider 10 sublayers in the 

absorbing region and a size of λ/10 for each sublayer;  𝜉0 in Eqs (2.9) is chosen equal to 1. Thanks 
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to the multi-layer strategy, the thickness 𝐿 of the absorbing region can be reduced from 3.6λ for the 

previous one layer case to λ. The damping ratio of each layer depends on the selected profile of the 

damping ratio evolution in the thickness of the HA-ALID and three types of profile are investigated: 

linear, quadratic and square root. The other material parameters of layers can be calculated on the 

basis of the optimal conditions at the interface given in Eqs (2.9).  

 

Figure 2-6   2D Lamb’s test with the multi-layer strategy using explicit/implicit co-simulation 

 

 

2.4.2.1 Influence of the evolution of the damping ratio in the HA-ALID 

      Due to the difference of damping ratio, spurious waves are produced at the interface between 

subdomain Ω1 and Ω2, corresponding to the HA-ALID. In the same way, spurious waves are 

produced between different layers of the HA-ALID. Therefore, it is crucial to control the evolution 

of damping ratio in layers. Three kinds of evolution functions are tested to find out which kind has 

the best performance: 𝜉𝑖 =  𝜉0
𝑖

𝑁𝑒
 , 𝜉𝑖 =  𝜉0 (

𝑖

𝑁𝑒
)
2

, 𝜉𝑖 =  𝜉0√
𝑖

𝑁𝑒
. The values of damping ratio and 

the derived reflection coefficient corresponding to the ALID are given in Table 2-1. It can be noted 

that reflection coefficients are less than 1% for the three damping ratio profiles.  
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Table 2-1  Evolution of the damping ratio for different profiles (linear, quadratic, square-root) 

Functions 

 

i 

 𝜉0
𝑖

𝑁𝑒
  𝜉0 (

𝑖

𝑁𝑒
)
2

  𝜉0√
𝑖

𝑁𝑒
 

1 0.1 0.01 0.316 

2 0.2 0.04 0.447 

3 0.3 0.09 0.548 

4 0.4 0.16 0.632 

5 0.5 0.25 0.707 

6 0.6 0.36 0.775 

7 0.7 0.49 0.837 

8 0.8 0.64 0.894 

9 0.9 0.81 0.949 

10 1.0 1.0 1.0 

Reflection 
coefficient 

0. 1% 0.8% 0.01% 

 

      Figures 2-7 and 2-8 compare the results obtained at the observation point using different 

damping profiles and an homogeneous time step in comparison to the reference results obtained 

from the extended mesh. The horizontal and vertical displacements of the reflected spurious wave 

by using the quadratic function performs best: 0.3% with respect to the horizontal amplitude of the 

incident wave and 1% with respect to the vertical amplitude of the incident wave, even though its 

reflection coefficient based on Eq. (2.10) is the biggest as seen in Table.2-1 (0.8% in comparison 

to 0.1% and 0.01% for the two others).  

      The results obtained with the linear function are better than that of the square root function. It 

highlights that the evolution of damping ratio in layers has an important influence on the 

performance of HA-ALID. The difference of damping ratios between subdomain Ω1 and the first 

layers of the HA-ALID Ω2 is the smallest by using the quadratic function: this is certainly why the 
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best results are obtained by the quadratic function. The bigger the difference of damping ratios 

between subdomain Ω1 and Ω2 is, the bigger spurious waves are produced, even though Young’s 

modulus is modified so as to satisfy the optimal conditions in Eqs. (2.9) for harmonic waves with 

normal incidence. It can also be remarked that the difference of damping ratio for the last sublayers 

provided by the quadratic function grows bigger than that of linear function or square root function. 

However, the generated spurious waves from the last layers have little impact on the global results, 

because the spurious waves caused by these last layers are strongly attenuated by the others layers 

before coming back into the domain of interest.  

 

Figure 2-7   Vertical displacements at observation point using different damping ratio profiles 

 

Figure 2-8   Horizontal displacements at the observation point using different damping ratio profiles 
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2.4.2.2 Effect of the time step ratio on the accuracy of the HA-ALID 

      The subdomain soil and HA-ALID are integrated with an explicit scheme and an implicit 

scheme, respectively. An homogeneous time step can be adopted, which satisfies the CFL condition 

without damping. Indeed, using the implicit time integration for the HA-ALID, we avoid the 

decrease of the critical time step in the explicit framework due to the introduction of the Rayleigh 

damping into the discrete equation of motion, as it is noted in Abaqus/Explicit documentation 

(ABAQUS, 2013). Moreover, as explained in section 2.3, it is possible to use a larger time step in 

HA-ALID, because we use an unconditionally stable implicit scheme. In this part, the subdomain 

soil is integrated with Abaqus/Explicit with a fine time step, whereas the HA-ALID are dealt with 

Abaqus/Implicit associated with a large time step in order to reduce the computation time.  

 

  

Figure 2-9   Vertical displacements at the observation point using different time step ratios  
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Figure 2-10 Horizontal displacements at the observation point using different time step ratios  

 

      The horizontal and vertical displacements of the observation point with different time step 

ratios m (Δ𝑡2  =  𝑚Δ𝑡1) equal to 10, 20, and 30, are shown in Figures 2-9 and 2-10. The kinetic 

and internal energies are computed for different time step ratios as shown in Figure 2-11. In order 

to distinguish the difference between them, the 𝐿2 norm error in time is computed between energies 

of HA-ALID and those of extended mesh (reference results). Considering a quantity E over the 

time interval [0, T], the 𝐿2 norm is defined by:  

𝑒𝑟𝑟 =
‖𝐸(𝑚) − 𝐸ref‖𝐿2([0,𝑇])

‖𝐸ref‖𝐿2([0,𝑇])
                                                (2.29)  

      𝐸(𝑚) is the kinetic or internal energy obtained by Abaqus Explicit/Implicit co-simulation with 

the time step ratio m and 𝐸ref is the reference energy obtained from the extended mesh.  

      The reflected spurious waves recorded at the observation point grow bigger with the increase 

of the time step ratio m. It can be observed that in comparison to the displacements given by 

reference results, the vertical amplitude of the spurious wave varies from 1% to 2.57% with respect 

to the vertical amplitude of the incident wave, while the horizontal amplitude of the spurious wave 

varies from 0.3% to 5.8% with respect to that of the incident wave. From Table.2-2, it can be noted 

that the error in kinetic energy increases from 0.48% to 1.12% when the time step ratio increasing 

from 1 to 30, whereas the error in internal energy increases from 0.43% to 0.95%. It can be 

observed that the errors remain small and stable in terms of energy. 
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      Based on these results, the time step ratio m has to be chosen under 10 without significant 

influence on the accuracy of HA-ALID. The observed decrease of accuracy as the time step ratio 

increases can be explained by the following points. First, due to the increase of the time step in the 

implicit scheme, the numerical errors grow. Second, the GC coupling algorithm is known to be 

dissipative as soon as heterogeneous time steps are used between the subdomains, generating 

spurious waves at the interface.  

  

Figure 2-11 Kinetic and internal energies computed using different time step ratios  

 

Table 2-2  Relative energy errors of different time step ratio 

 Kinetic energy Internal energy 

m=1 0. 48% 0.43% 

m=10 0.67% 0.45% 

m=20 0.77% 0.63% 

m=30 1.12% 0.95% 
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2.5 Comparison between infinite elements and Rayleigh absorbing 

layers in Abaqus 

      Infinite elements available in Abaqus/Explicit allow to deal with unbounded media. To further 

validate the accuracy of the HA-ALID using Abaqus Explicit/Implicit multi-time step co-

simulation, we compare their performance with infinite elements available in Abaqus/Explicit. 

Thus, a numerical model is established using Abaqus/Explicit with the same mesh and materials 

as our previous explicit/implicit simulations: HA-ALID are just replaced with Abaqus infinite 

elements.   

      The horizontal and vertical displacements of three numerical models at the observation point 

are shown in Figures 2-12 and 2-13. We can observe that the results obtained by Abaqus 

Explicit/Implicit co-simulation and reference results are in a good agreement: the reflected spurious 

wave is 1.47 % in terms of the horizontal displacement, 1.14 % in terms of the vertical displacement 

when the time step ratio m is equal to 10. In comparison, the reflected spurious wave produced by 

infinite element is equal to 10.4 % with respect of the vertical amplitude of the incident wave and 

17.6% with respect of the horizontal amplitude of the incident wave. In conclusion, HA-ALID has 

a much better accuracy than Abaqus infinite elements. In the following section, the relevance of 

the proposed HA-ALID will be assessed in the case of a wave barrier problem.  

  

Figure 2-12 Vertical displacements at the observation point using different methods 
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Figure 2-13 Horizontal displacements at the observation point using different methods 

 

2.6 An application in wave barrier numerical simulation  

      Due to the increasing vibrations caused by human activities, the performance of wave barriers 

for reducing the distress to adjacent structures and annoyance to people, have been studied for more 

than 30 years. As illustrated in Figure 2-14, the wave barrier configuration studied by Beskos et al. 

(1991) and Al-Hussaini et al. (1986), is investigated. In this case, it was shown that the major part 

of the vibration energy is transferred by Rayleigh waves which may cause strong ground motions 

on nearby structures. An application of HA-ALID is carried out for this case of wave barrier.  

      In this soil-barrier configuration, D is the depth of the barrier, equal to 5 m, W is the width of 

the barrier, equal to 0.5m, L1 is the distance from the dynamic load to the barrier equal to 25m and 

L2 is the distance from the barrier to the point of interest equal to 25m. The total length of the model 

is 120m and the depth is 25m. The inclination angle U of the barrier is given as 90°. A dynamic 

load P with a width of r equal to 1.25 m is applied to the left top surface of the soil, producing a 

Rayleigh wave to simulate dynamic events such as the compaction, blasting and seismic waves. 

The dynamic periodic load in the numerical model is 𝑃 = 𝑃0cos (𝜔0𝑡), 𝜔0=100π, P=1000N, the 

material properties of soil and barrier are shown below. In the soil, the P-wave, S-wave and 

Rayleigh-wave velocities are: VP =475.7m/s, VS=274.64m/s, VR=252.62m/s. In order to achieve a 
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good accuracy in predicting the propagating waves into the soil, the finite element size is kept as 

λP/50 for both subdomains. 

     

 Figure 2-14 Investigated configuration of a 2D soil-barrier system 

 

Table 2-3  Material properties of soil and barrier     

  Material 

 

Density 

ρ(kg/m3) 

Poisson’s ratio 

ν 

Young’s modulus  

E(GPa) 

 Soil 1750 0.25 0.33 

Barrier 2397.5 0.25 11.30 

 

      HA-ALID adopts a quadratic evolution of damping ratio. Taking advantage of the partition 

strategy through Abaqus Explicit/Implicit co-simulation, the 2D soil-barrier system is divided into 

three partitions integrated in time with their own time integrator and time step: soil subdomain 

(explicit scheme), barrier subdomain (implicit scheme, with a large time step ratio m equal to 10), 

Rayleigh absorbing layers subdomain (implicit scheme, with a large time step ratio m equal to 10), 

as shown in Figure 2-15.  
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Figure 2-15 Wave-barrier model split in three partitions: soil, solid barrier, ALID.  

 

      In the solid barrier, the P-wave velocity is equal to 2378.21m/s. In a full explicit computation 

using Abaqus/Explicit, the time step must satisfy the smallest time step depending on finite element 

sizes and material characteristics. HA-ALID involve large values of damping ratios for absorbing 

the incident waves. In Abaqus/Explicit documentation, recommended values are provided so as to 

guarantee the stability of the explicit time integration scheme:  

∆𝑡 ≤
2

𝑤max
(√1 + 𝜉max2 − 𝜉max)                                        (2.30) 

𝜉max =
𝛼𝑀

2𝜔max
+
𝛼𝐾𝜔max

2
                                             (2.31) 

      Applying the above formulae to the layers composing the ALID leads to a strong decrease of 

the critical time step in a full explicit computation. Table 2-4 resumes the critical time steps 

depending on the partition under consideration (soil, barrier, ALID). It can be noted that ALID 

have a large impact on the time step size.  

Table 2-4  Critical time steps for each partition in full explicit computations 

Soil Barrier Rayleigh layers Time step adopted  

  269x10-6       53.8x10-6 27.5x10-6 27.5x10-6 
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      When adopting HA-ALID using Abaqus Explicit/Implicit multi time step co-simulation, the 

critical time step in the soil is unaffected by the models of the solid barrier and the HA-ALID. Time 

step sizes for the different partitions are given in Table 2-5, highlighting the interest of the co-

simulation. Using HA-ALID, a time step equal to 250x10-6s can be used in the soil, whereas a full 

explicit computation requires a value of 27.5x10-6s related to the absorbing layers.        

 

Table 2-5  Critical time steps for each partition in explicit/implicit multi time step co-simulations 

Soil Barrier Rayleigh layers 

  250x10-6       2500x10-6 2500x10-6 

 

      Figures 2-16 shows the vertical displacements of the observation point with HA-ALID, 

compared to the results obtained using infinite elements with the same configuration and the 

reference results obtained from an extended mesh free of spurious reflected waves from the 

boundary during the observation period. It turns out that the results of HA-ALID agree well with 

the reference results, contrary to the full explicit computation with infinite elements: the errors in 

terms of vertical displacements obtained using infinite elements can be greater than 10%, whereas 

the biggest error with HA-ALID is equal to 2.7% with respect to the amplitude of reference results.  
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Figure 2-16 Vertical displacements and local zoom at the observation point using HA-ALID with m=10 

and infinite elements in a full explicit computation 

 

      The isolation effect of the installation of the barrier can be assessed by the parameter 𝐴𝑟 

(amplitude reduction ratio), which provides a quantitative evaluation of the screening effect of the 

barrier. Its expression is given by: 𝐴𝑟  =𝐴𝑏/𝐴𝑠, where 𝐴𝑏 is the displacement amplitude with the 

barrier and 𝐴𝑠 the displacement amplitude without the barrier. For example, 𝐴𝑟 = 0.8 means that 

20% reduction of the vibration has been reached due to the installation of the barrier. The reduction 

ratio of vertical displacement on the surface beyond the barrier can be plotted in Figure 2-17, for 

the three computations. From this figure, it can be concluded that the reduction ratios obtained by 

HA-ALID have a better agreement with the reference results than those obtained by infinite 

elements. 
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Figure 2-17 Reduction ratio of vertical displacements using HA-ALID with m=10 and infinite elements in 

a full explicit computation 

 

 

2.7 Extension to three-dimensional unbounded domains modelling 

      In comparison with two-dimensional numerical simulation, three-dimensional numerical 

simulation can describe more details of the physical phenomena under certain circumstances and 

bring up more precise results. For instance, in the study of wave barrier shown in section 2.6, the 

depth and the width of the barrier are defined, without taking in account the length of the barrier in 

the third direction, due to the restrictions of two-dimensional simulation. Hence, in order to better 

simulate the wave propagation, it is necessary to extend our hybrid asynchronous Rayleigh 

absorbing layers for modelling three-dimensional unbounded domain, which is very 

straightforward due to the convenience of the Rayleigh damping in the FE context. On the other 

hand, three-dimensional models are always more complex, because more elements and degrees of 

freedom are needed to describe the physical problem. In previous 2D explicit/implicit co-

simulations, the subdomain Ω1 soil was integrated by explicit scheme and the critical time step was 

not affected by the introduction of Rayleigh matrix in the subdomain Ω2. For Rayleigh absorbing 

layers, because of the unconditionally stable implicit scheme, it was possible to use a larger time 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  54 

step. However, when adopting Newmark implicit scheme, system solving with the effective 

stiffness matrix in subdomain Ω2 is required, contrarily to the explicit case. This can be very costly 

in the three-dimensional case. As a consequence, besides the classical Newmark implicit scheme, 

the Central Difference scheme is also applied in subdomain Ω2, leading to explicit/explicit multi-

time step co-simulation. Multi-time step capabilities are needed because of the reduction of the 

critical time step by the introduction of Rayleigh damping (Belytschko et al., 2000). The difference 

between the two co-simulation strategies is analyzed in terms of accuracy and computation time.  

 

2.7.1 Space discretization in three-dimension 

      The space discretization for Rayleigh absorbing layers in two- dimension has been described 

in section 2.2 and 2.3.  In three-dimension space, the modification is only the 8-nodes cube element 

in place of the 4-nodes rectangular elements, as shown in Fig.2-18. 

 

Figure 2-18 8-nodes hexahedral element 

 

      We consider in the following the space discretization for a classical 8-nodes hexahedral element 

with linear shape functions. The approximation of the displacement is given by: 𝑢𝑒(𝑥, 𝑦, 𝑧) =

𝐍(𝑥, 𝑦, 𝑧)𝐔𝐞 , where 𝐔𝐞 gathers the nodal displacements of the 8 nodes, of size 24 × 1;  the matrix 

𝐍(𝑥, 𝑦, 𝑧), of size 3 × 24, contains the nodal shape functions:  𝐍(𝑥, 𝑦, 𝑧) = [𝑁1𝐈 𝑁2𝐈   ⋯ 𝑁8𝐈], 

with 𝐈 the 3 × 3 identity matrix. The linear shape functions are expressed as: 
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{
 
 
 
 

 
 
 
 
𝑁1 = (1 − 𝜉)(1 − 𝜂)(1 − 𝜇)/8

𝑁2 = (1 + 𝜉)(1 − 𝜂)(1 − 𝜇)/8

𝑁3 = (1 + 𝜉)(1 + 𝜂)(1 − 𝜇)/8

𝑁4 = (1 − 𝜉)(1 + 𝜂)(1 − 𝜇)/8

𝑁5 = (1 − 𝜉)(1 − 𝜂)(1 + 𝜇)/8

𝑁6 = (1 + 𝜉)(1 − 𝜂)(1 + 𝜇)/8

𝑁7 = (1 + 𝜉)(1 + 𝜂)(1 + 𝜇)/8

𝑁8 = (1 − 𝜉)(1 + 𝜂)(1 + 𝜇)/8

                                                  (2.32) 

      The element-level matrices can be obtained by adopting a quadrature formula in every 

hexahedral element. The matrix B will be expressed as below:  

𝐁 = [𝐁𝟏 𝐁𝟐 𝐁𝟑 𝐁𝟒 𝐁𝟓 𝐁𝟔 𝐁𝟕 𝐁𝟖] 

𝑩𝒊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖
𝜕𝑥

0 0

0
𝜕𝑁𝑖
𝜕𝑦

0

0 0
𝜕𝑁𝑖
𝜕𝑧

0
𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑧

0
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥

0
]
 
 
 
 
 
 
 
 
 
 
 
 

                                                             (2.33) 

      The material constitutive matrix 𝐃 is expressed as: 

𝐃 =

[
 
 
 
 
 
𝑘 + 4𝜇/3 𝑘 − 2𝜇/3 𝑘 − 2𝜇/3
𝑘 − 2𝜇/3 𝑘 + 4𝜇/3 𝑘 − 2𝜇/3
𝑘 − 2𝜇/3 𝑘 − 2𝜇/3 𝑘 + 4𝜇/3
       𝜇        0 0

0        𝜇       0
0 0         𝜇        ]

 
 
 
 
 

                                   (2.34) 

where 𝜇 is shear modulus, 𝑘 is bulk modulus. Next, the matrices defined in the global coordinates  

(𝑥, 𝑦, 𝑧) should be transformed in local (𝜉, 𝜂, 𝜇) coordinate systems, as demonstrated in Fig 2-18. 

The relationship for three-dimensional coordinate transformation in isoparametric elements is 

shown in the following: 
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𝑥 =∑𝑁𝑖(𝜉, 𝜂, 𝜇)𝑥𝑖

8

𝑖=1

                                                          (2.35) 

𝑦 =∑𝑁𝑖(𝜉, 𝜂, 𝜇)𝑦𝑖

8

𝑖=1

                                                         (2.36) 

𝑧 =∑𝑁𝑖(𝜉, 𝜂, 𝜇)𝑧𝑖

8

𝑖=1

                                                         (2.37) 

      By using the above relationship, the matrices in the global coordinates will be transformed in 

local (𝜉, 𝜂, 𝜇) coordinate system with J the Jacobian matrix:  

𝐉 = [

𝜕𝑥/𝜕𝜉 𝜕𝑦/𝜕𝜉 𝜕𝑧/𝜕𝜉
𝜕𝑥/𝜕𝜂 𝜕𝑦/𝜕𝜂 𝜕𝑧/𝜕𝜂
𝜕𝑥/𝜕𝜇 𝜕𝑦/𝜕𝜇 𝜕𝑧/𝜕𝜇

]                                           (2.38) 

 

2.7.2 Time discretization of explicit/explicit co-simulation  

      The time discretization for hybrid asynchronous Rayleigh absorbing layers using co-simulation 

explicit/implicit in two- dimension has been described in section 2.3. Here, we focus on the time 

discretization for explicit/ explicit co-simulation. As illustrated in Fig. 2-19, the subdomain 𝛺1 soil 

is integrated by Newmark explicit scheme and the critical time step is not affected by the 

subdomain 𝛺2. The subdomain 𝛺2 Rayleigh absorbing layer is integrated by the Central Difference 

explicit scheme with a smaller time step Δ𝑡2 reduced by the introduction of Rayleigh matrix. With 

respect to explicit/implicit co-simulation, the advantage of the proposed explicit/explicit co-

simulation is to be able to avoid system solving thanks to the diagonalized form of the lumped mass 

matrix, while the disadvantage is that the time step in subdomain 𝛺2  is reduced by Rayleigh 

damping.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  57 

 

Figure 2-19 Three-dimensional explicit/ explicit co-simulation  

 

      The approximate update formulas of the Central Difference explicit scheme in terms of the 

displacements and velocities at the end of the time step (a time step Δ𝑡 is defined by the beginning 

time 𝑡𝑛 and the end time 𝑡𝑛+1) are expressed using known values of velocities 𝐔̇𝐧−𝟏/𝟐 , which is 

the mid step velocity related to the previous time step, and of displacements 𝐔𝐧: 

𝐔̇𝐧+𝟏/𝟐 = 𝐔̇𝐧−𝟏/𝟐 + Δ𝑡𝐔̈𝐧                                              (2.39)  

𝐔𝐧+𝟏 = 𝐔𝐧 + Δ𝑡𝐔̇𝐧+𝟏/𝟐                                               (2.40)  

      Contrarily to the previously presented explicit/implicit co-simulations, in the explicit/explicit 

co-simulation, the equilibrium of subdomain 1 is prescribed at time tm at the end of the large time 

Δt2, while the equilibrium of subdomain 2 is prescribed at every time tj = jΔt1 (j =1, 2...m) at the 

fine time scale, because of the reduction of the critical time step by the introduction of Rayleigh 

damping. Finally, the weak form given in Eq. (2.15) with the velocity continuity equation in Eq. 

(2.16), can be expressed in the following discrete form in space and time: 

𝐌𝟏𝐔̈𝟏
𝐦 + 𝐊𝟏𝐔𝟏

𝐦 = 𝐅𝟏
𝐞𝐱𝐭,𝐦 − 𝐋𝟏

𝐓𝛌𝐦                      at time 𝑡 = 𝑡𝑗        (2.41) 

𝐌𝟐𝐔̈𝟐
𝐣
+ (𝛼𝑀𝐌𝟐 + 𝛼𝐾𝐊𝟐)𝐔̇𝟐

𝐣−𝟏/𝟐
+ 𝐊𝟐𝐔𝟐

𝐣
= 𝐅𝟐

𝐞𝐱𝐭,𝐣
− 𝐋𝟐

𝐓𝛌𝐣     at time 𝑡 = 𝑡𝑚     (2.42) 

𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 0                                   at time 𝑡 = 𝑡𝑗       (2.43) 

where Mi and Ki are the mass and the stiffness matrices of subdomains Ω1 and Ω2  (i=1, 2). The 

first equation is the discrete equation of motion of subdomain Ω1 written at time tm (large time 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  58 

scale), whereas the second equation is the discrete equations of motion of subdomains Ω2 written 

at time tj (fine time scale). On the right-hand side of the above equations, the interface forces enable 

the subdomains to be glued at their interface 𝛤𝐼. The gluing of the velocity at the interface is written 

at the fine time scale.   

      By introducing the approximate time integration schemes, it leads to the equations of motion 

written as: 

𝐌𝟏𝐔̈𝟏
𝐦 = 𝐅𝟏

𝐞𝐱𝐭,𝐦 − 𝐊𝟏𝐔𝟏
𝟎,𝐩
− 𝐋𝟏

𝐓𝛌𝐦                                                (2.44) 

𝐌𝟐𝐔̈𝟐
𝐣
= 𝐅𝟐

𝐞𝐱𝐭,𝐣
− 𝐂𝟐𝐔̇𝟐

𝐣−
𝟏

𝟐 − 𝐊𝟐𝐔𝟐
𝐣
− 𝐋𝟐

𝐓𝛌𝐣                                         (2.45)                                

      We can see that the effective stiffness matrices are now replaced with lumped mass matrices. 

With the use of diagonal (“lumped”) mass matrix, the computational efficiency in terms of inverse 

calculation will be optimized.  The kinematic quantities are divided into two parts: the free and the 

linked quantities in the coupling GC method. The free quantities are calculated by taking into 

account the internal and external forces, without considering the interface forces, whereas the 

linked quantities are obtained from the interface loads given by the Lagrange multiplier vector 𝝀.  

It is demonstrated that the kinematic continuity condition can be expressed as a reduced-size 

interface problem as follows: 

𝐇𝛌𝐣 = 𝐛𝐣                                                                     (2.46)                                                            

with the interface operator and the right-hand side member vector defined by: 

{
𝐇 =

1

2
Δ𝑡1𝐋𝟏𝐌𝟏

−𝟏𝐋𝟏
𝐓 +

1

2
Δ𝑡2𝐋𝟐𝐌𝟐

−𝟏𝐋𝟐
𝐓

𝐛𝐣 = 𝐋𝟏𝐔̇𝟏
𝐟𝐫𝐞𝐞,𝐣

+ 𝐋𝟐𝐔̇𝟐
𝐟𝐫𝐞𝐞,𝐣

                              (2.47)                                    

 

2.7.3 Numerical examples 

      In order to evaluate the effectiveness of three-dimensional HA-ALID, simple 3D Lamb’s test 

will be carried out using different co-simulation strategies. Non-harmonic waves are investigated 

by considering a Ricker incident wave. The Ricker wave, plotted in time domain and in frequency 
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domain in Figure 2-2, has three parameters: the fundamental period 𝑡𝑝, the time shift 𝑡𝑠 and the 

amplitude𝐴. The chosen values are: 𝑡𝑝=3s, 𝑡𝑠=3s and A =1MN. 

 

Figure 2-20 3D Lamb’s test using explicit/implicit and explicit/explicit co-simulation 

 

      The example of 3D Lamb’s test is simulated with one 3D element in the thickness direction as 

shown in Fig.2-20, so as to reduce the computation time in the case of implicit Rayleigh absorbing 

layers. The soil is assumed to be linear elastic with the dimension 250m x 250m x 5m (element 

size 5m x 5m x 5m) and the following material characteristics: 𝜌1=1700kg/m3, 𝐸1=10MPa and 𝜈1= 

0.24 for the density, Young’s modulus and Poisson’s ratio, respectively. The P-wave, S-wave and 

Rayleigh wave velocities are: VP =83.27m/s, VS=48.7m/s, VR=44.73m/s. The thickness of absorbing 

layers is 250m. A recording point is located at 20m from the loading point on the surface. The 

ALID design employed the following parameters based on Eq. (2.12): 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 0.01, n 

equal to 2 and a design frequency 𝑓0 equal to 0.33 Hz. The other material parameters of layers can 

be calculated on the basis of the optimal conditions at the interface given in Eq. (2.9).   

      In case of explicit/implicit co-simulation, the subdomain soil is integrated in time by an explicit 

scheme with a fine time step (Δt1=0.025s) imposed by the CFL condition, whereas the Rayleigh 

absorbing layer is integrated by an implicit scheme with larger time step Δt1=m Δt2, m= 1, 10, 20, 

30. In case of  explicit/explicit co-simulation, the subdomain soil is also integrated in time by 

Newmark explicit scheme with the time step (Δt1=0.025s) imposed by the CFL condition, but the 
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Rayleigh absorbing layer is integrated by Central Difference scheme with a smaller time step 

Δt2=1/10Δt1 , reduced due to the introduction of Rayleigh damping in the elastic  media. 

 

Figure 2-21 Horizontal displacements at observation point using different co-simulation strategies 

 

 

Figure 2-22 Vertical displacements at observation point using different co-simulation strategies 

 

      Figures 2-21 and 2-22 show the horizontal and vertical displacements in Lamb’s test for 

different co-simulations in comparison to the reference results obtained from an extended mesh, 

free of spurious reflected waves in the observation period. In the case of explicit/implicit co-

simulation, with respect to the amplitude of the incident wave, the horizontal reflected spurious 
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waves are 1.02%, 2.07%, 4.68%, 5.97% for m= 1, 10, 20, 30, respectively; the vertical reflected 

spurious waves are 1.84%, 2.09%, 2.43%, 3.52% for m= 1, 10, 20, 30, respectively. Similar to the 

2D Lamb’s test, the reflected spurious waves recorded at the observation point augment with the 

increasing time step ratio m, because the GC coupling algorithm is known to be dissipative as soon 

as heterogeneous time steps are used between the subdomains, generating spurious waves at the 

interface. The snapshots of displacement magnitude at different times for time ratio m= 1 are 

displayed in Figure 2-23.  No obvious reflections can be observed at the interface or from the 

boundaries, indicating very satisfactory performance of three-dimensional HA-ALID.  

 

Table 2-6  Reflections using different co-simulation strategies (Rayleigh) 

 Vertical displacement  Horizontal displacement 

  E/I m=1   1.84% 1.02% 

 

 

          E/I m=10   2.09% 2.07% 

    E/I m=20   2.43% 4.68% 

 

 

   E/I m=30   3.52% 5.97% 

 

 

 

 

 

          E/E   1.80% 0.58% 

 

 

 

 

(a) t = 5s                                                                     (b)  t = 7.5s 
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                    (c) t = 10s                                                            (d)  t = 12.5s 

 

                                                                 (e)  t = 15s 

Figure 2-23 Snapshots of displacement magnitude at different times for E/I (m=1) 

 

      In case of explicit/explicit co-simulation (Δt2=1/10Δt2), the horizontal reflected spurious wave 

is 0.58% and the vertical reflected spurious wave is 1.80%, with respect to the amplitude of the 

incident wave. The L2 norm error in time is computed between energies of HA-ALID and those of 

extended mesh (reference results). For explicit/implicit co-simulation, the error in kinetic energy 

increases from 0.06% to 0.32% when the time step ratio increasing from 1 to 30, whereas the error 
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in internal energy increases from 0.09% to 0.84%. For explicit/explicit co-simulation, the error in 

kinetic energy is 0.05%, and the error in internal energy increases from 0.08%. It can be observed 

that the accuracy in explicit/explicit co-simulation (Δt2=1/10Δt1) is at the same level of 

explicit/implicit co-simulation (m=1).  

      In terms of the computation time, the CPU times are resumed in Table.2-8 in a normalized form 

divided by CPU time of the co-simulation explicit/implicit (m=1). We see that, with the increase 

of the time step ratio, the CPU time’s decrease. It implies that using explicit/implicit co-

computation, not only the critical time step in the soil partition is not affected by the introduction 

of damping layer, but also large time steps can be adopted in absorbing layer domain to reduce the 

computation time. When the time ratio is bigger than 20, the reduction for the computation time is 

not significant, this is because, in this case, the time stepping become one small part of the CPU 

time, most of the computation time is dedicated to the other procedure in finite element method, 

such as matrix assemblage. It can also be observed that in comparison with explicit/implicit co-

simulation, the computation time for co-simulation explicit/explicit is the least, thanks to the 

diagonalization of the effective stiffness matrix of absorbing layer subdomain, even though the 

time step in the absorbing layer is 10 times smaller than the time step in the subdomain soil. As a 

conclusion, in 3D Lamb’s test, HA-ALID using co-simulation explicit/explicit has the same 

precision level as co-simulation explicit/implicit (m=1), but less computation time than co-

simulation explicit/implicit (m=30), as shown in Table 2-8. 

 

Figure 2-24 Kinetic and internal energies computed using different co-simulation strategies 
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Table 2-7  Relative energy errors of different co-simulations (Rayleigh) 

 Kinetic energy Internal energy 

E/I m=1 0. 06% 0.09% 

E/I m=10 0.12% 0.18% 

E/I m=20 0.21% 0.40% 

E/I m=30 0.32% 0.84% 

E/E  0.05% 0.08% 

 

Table 2-8  Normalized CPU time of different co-simulations (Rayleigh) 

 m=1 m=10 m=20 m=30 E/E 

Normalized 

CPU time 
1 0.26 0.20 0.19 0.18 

 

 

2.8 Conclusion  

      Absorbing Layers with Increasing Damping (ALID) can be easily set up for damping out the 

incident waves at the boundary of a Finite Element mesh thanks to the availability of the viscous 

Rayleigh damping matrix in commercial FE codes. In this chapter, a simple and accurate method 

for modeling unbounded domains is proposed using co-simulation. Subdomain decomposition 

strategy is applied for problems coupling physical medium with Rayleigh absorbing layers, based 

on HATI method.  

      In order to highlight the accuracy of the method, 2D Lamb’s test and a wave barrier problem 

have been studied using HA-Rayleigh ALID with a quadratic profile of damping ratio in the 

thickness direction of the HA-Rayleigh ALID. Very satisfactory results have been achieved in 

terms of kinematic quantities and energies. The obtained results showed that spurious waves 

reflected at the boundary of the truncated mesh are much lower than the ones generated by non-

reflective conditions available in Abaqus/Explicit for modeling infinite medium (infinite elements). 

On the other hand, some interesting benefits of the HA-Rayleigh ALID can be underlined in 
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comparison to the classical ALID. First, large time steps can be adopted in the solid barrier and in 

the HA-Rayleigh ALID in comparison to the fine time step in the soil medium corresponding to 

the CFL condition. Second, the critical time step in the soil partition is unaffected by the choice of 

damping matrix in the layers of the HA-Rayleigh ALID, related to the stiffness or mass matrices, 

contrary to the case of a full explicit computation for which the critical time step can be 

significantly reduced.  

      Finally, hybrid asynchronous Rayleigh absorbing layers is extended for modelling three-

dimensional unbounded domains using explicit/implicit and explicit/explicit co-simulations. The 

difference between the two co-simulation strategies is compared in terms of accuracy and 

computation time by 3D Lamb’s test. Taking into account its advantages in accuracy and CPU time, 

HA-Rayleigh ALID using co-simulation explicit/explicit turns out to be more suitable for three-

dimensional wave propagation simulation.  
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Chapter 3 

3. Hybrid asynchronous Kosloff 

absorbing layer   

 

      One of the drawbacks of the viscous Rayleigh damping in FE software is its dependence with 

respect to frequencies in the problem. As a result, it is interesting to explore the capabilities of other 

damping formulations than Rayleigh damping, while remaining very simple to be easily set up in 

a general FE software. In this chapter, the capabilities of the Kosloff damping are investigated to 

set up efficient HA-Kosloff ALID and compared with Rayleigh formulation.  First, the design of 

Kosloff absorbing layer is proposed by using the strong form of elastic wave propagation in Kosloff 

medium. The absorbing ability of Kosloff absorbing layer associated with a performance criterion 

is derived in the form of a logarithmic decrement and proved to be independent of frequency. A 

general formula for designing Kosloff absorbing layers using a multi-layer strategy is derived. In 

addition, optimal conditions are obtained to avoid the spurious waves reflected at the interface 

between physical domain and Kosloff absorbing layer domain. In the case of non-harmonic waves, 

Kosloff absorbing layer is found to be less sensitive to the design parameters in comparison to 

Rayleigh absorbing layer. Secondly, the weak formulation of the decomposed problem is given in 

order to derive the space discretization. Kosloff formulation turns out to have a very simple finite 

element expression which corresponds to two new matrices, similar to the mass matrix, operating 

on velocities and displacements in semi-discrete equation of motion. For the time discretization, 

the GC method proposed by Gravouil and Combescure, belonging to more general HATI methods, 

is employed in order to integrate, in a decoupled manner, the domain of interest and the absorbing 

layer. Then, Lamb’s test illustrates the efficiency of HA-Kosloff ALID in terms of accuracy and 
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CPU time, in comparison to HA-Rayleigh ALID in Chapter 2 and the HA-PML (Brun et al., 2016). 

The differences among the approaches are analyzed to demonstrate the advantages and 

disadvantages of each approach. Finally, HA-Kosloff ALID is extended for modelling three-

dimensional unbounded domains using explicit/implicit and explicit/explicit co-simulations. The 

two co-simulation strategies are compared in terms of accuracy and computation time.  

      The main part of this chapter, devoted to 2D transient analysis, has been published recently in 

Computers and Geotechnics:   

Li S, Brun M, Zafati E, Djeran-Maigre I and Kuznetsov S (2019). Hybrid asynchronous absorbing 

layers based on Kosloff damping for seismic wave propagation in unbounded domains. Computers 

and Geotechnics, 109, 69-81. 
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3.1 Introduction 

      PML proposed by Bérenger (1994) is becoming increasingly used for dealing with infinite 

media in the context of finite difference method, as well as in the finite and spectral element 

methods. Although PML tends to be now considered as the most effective way to model infinite 

media, the PML implementation is not straightforward in a general purpose finite element software. 

Thus, more convenient techniques were recently developed in the finite element context, based on 

simple damping formulations such as the viscous damping Rayleigh matrix in Chapter 2. However, 

one of the drawbacks of the viscous Rayleigh damping in FE software is its dependence with 

respect to frequencies in the problem. Consequently, it is interesting to explore the capabilities of 

other damping formulations than Rayleigh damping, while remaining very simple to be easily set 

up in a general FE software. Absorbing boundary based on a simple modification in the wave 

propagating equation, was proposed by Kosloff and Kosloff (1986): in Kosloff medium, the wave 

travels without changing shape and the wave amplitude decreases with distance at a frequency 

independent rate. Some similarities between PML and Kosloff absorbing boundary have been 

discussed by Carcione and Kosloff (2013). It was shown that in the case of SH waves, a modified 

Kosloff formulation matches the split formulation of the PML, before the spatial and time 

discretization, highlighting the relation between the two approaches. Here, the Kosloff damping 

formulation is explored with a view to setting up efficient and convenient absorbing layers for 

modelling infinite media. The hybrid time integration capabilities are useful to integrate, in a 

decoupled manner, the domain of interest and the absorbing layer. The resulting absorbing layer 

will be called Hybrid Asynchronous-Kosloff Absorbing Layers using Increasing Damping (HA-

Kosloff ALID), making use of Heterogeneous (different time integrators, that is hybrid integration) 

Asynchronous (different time steps) Time Integrator developed by Combescure and Gravouil 

(2001, 2002). 

  

3.2 Strong form of the wave propagation in a Kosloff medium 

      The design of Kosloff absorbing layer aims at damping out all the incident waves from the 

domain of interest while minimizing the spurious waves reflected at the boundary of the truncated 
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domain. For this purpose, using the strong form for the wave propagation in the Kosloff medium, 

the absorbing ability of Kosloff absorbing layer related to a target performance criterion will be 

quantified in the form of logarithmic decrement. The optimal conditions at the interface between a 

non-dissipative elastic medium Ω1 and a dissipative Kosloff medium Ω2 will be analytically 

established by considering the continuous problem of wave propagation.  

 

3.2.1 Governing equations of a Kosloff medium 

      The governing equations in elastodynamics are modified by Kosloff and Kosloff (Kosloff & 

Kosloff, 1986) in order to introduce a specific damping, called in the following Kosloff damping. 

The displacement vector field 𝑢2 in the Kosloff medium Ω2 is governed by the modified equations:  

   𝜌2𝜕𝑡
2𝑢2 = div (𝜎2 (𝑢2)) − 2𝜌2𝛾𝜕𝑡𝑢2 − 𝜌2𝛾

2𝑢2                                   (3.1) 

𝜎2 = 𝜆2tr (𝜀2 (𝑢2)) + 2𝜇2𝜀2 (𝑢2)                                                   (3.2) 

𝜀2 =
1

2
[𝑔𝑟𝑎𝑑 (𝑢2) + 𝑔𝑟𝑎𝑑 (𝑢2)

𝑇

]                                                   (3.3) 

Eqs. (3.1) to (3.3) constitute the strong form of the propagation in a Kosloff medium, 

𝜎2 , 𝜀2, 𝜆2, 𝜇2,  𝜌2, γ  being the stress matrix, strain matrix, Lamé’s coefficients, the density and 

damping ratio, respectively. It can be seen that the strong form of the equation of motion, in Eq. 

(1), has been changed with two additional damping terms related to displacements and velocities. 

The other two equations correspond to the elastic constitutive relationship and the definition of the 

infinitesimal strain. It will be shown in the following that the induced damping enables us to damp 

out the amplitude of a propagating wave in a Kosloff medium, irrespective of its frequency.  
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3.2.2 1D wave propagation in a Kosloff medium 

      The argument is developed for 1D wave propagation problem by distinguishing the P-waves 

and the S-waves in their strong form, written as: 

𝜌𝜕𝑡
2𝑢 = (𝜆 + 2𝜇)𝜕𝑥

2𝑢 − 2𝜌𝛾𝜕𝑡𝑢 − 𝜌𝛾
2𝑢            P − 𝑤𝑎𝑣𝑒𝑠                    (3.4) 

𝜌𝜕𝑡
2𝑢 = 𝜇𝜕𝑥

2𝑢 − 2𝜌𝛾𝜕𝑡𝑢 − 𝜌𝛾
2𝑢                  S − 𝑤𝑎𝑣𝑒𝑠                    (3.5) 

      By introducing harmonic solutions in its complex form  𝑢(𝑥, 𝑡) = 𝑢0exp (𝑖(𝜔0𝑡 − 𝑘𝑥)) into 

the above wave propagation equations, the expression of the wave number k can be obtained: 

𝑘 =
𝜔0
𝑣
(1 − 𝑖

𝛾

𝜔0
)                                                             (3.6) 

with the velocity 𝑣  equal to √
𝜆+2𝜇

𝜌
 for P-wave and √

𝜇

𝜌
 for S-wave. The expression of the 

propagating wave in the 1D Kosloff medium is shown below, 

𝑢(𝑥, 𝑡) = 𝑢0 𝑒𝑥𝑝( 𝑖(𝜔0𝑡 − 𝑘0𝑥)) 𝑒𝑥𝑝 (−
𝛾𝑥

𝑣
)                                      (3.7) 

      The above expression confirms the fact that all the frequency components are equally 

attenuated due to the decay factor 𝛾/𝑣 which is frequency independent as underlined by Carcione 

and Kosloff (2013).   

      In order to design efficient absorbing layers based on the Kosloff damping, we assess the 

logarithmic decrement of the propagating wave. Using the previous expression in Eq. (3.7), the 

relationship between the logarithmic decrement is expressed as a function of the thickness Δ𝑥 and 

the damping ratio 𝛾 of the Kosloff absorbing layer: 

δ = ln (
|𝑢(𝑥)|

|𝑢(𝑥 + Δ𝑥)|
) =

𝛾Δ𝑥

𝑣𝑝
                                                 (3.8) 

      It can be seen that the frequency wave 𝜔0 has no influence on the absorbing ability of Kosloff 

absorbing layer with regard to the logarithmic decrement, which means that all waves with all 

frequencies can be attenuated in the same way. In other words, Kosloff damping turns out to be 

independent of frequency. The velocity of P waves is higher than the velocity of S waves in the 
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same medium. As a result, based on the above relationships, in order to reach the same logarithmic 

decrement, the necessary layer thickness for damping out S waves is smaller than the one related 

to P waves. In the following, the velocity of P waves 𝑣𝑝 will be adopted for the design of absorbing 

layer so as to ensure that all the waves are attenuated according to the target decrement. 

 

3.2.3 Optimal conditions at the interface between an elastic medium and a 

Kosloff medium 

      The wave propagation problem from an elastic medium to a Kosloff medium is considered 

below in the case of the 1D harmonic wave. Three components have to be taken into account: the 

incident wave 𝑢1, the transmitted wave 𝑢2, and the reflected wave 𝑢𝑅, as shown in Fig.3-1. 

 

Figure 3-1   Wave propagation from elastic medium to Kosloff medium. 

𝑢1(𝑥, 𝑡) = 𝐴 exp [𝑖𝜔0(𝑡 −
𝑥

𝑣1
)]                                                       (3.9) 

𝑢2(𝑥, 𝑡) = 𝑇 exp [𝑖𝜔0(𝑡 −
𝑥

𝑣2
)]exp [−

𝛾𝑥

𝑣2
]                                       (3.10) 

𝑢𝑅(𝑥, 𝑡) = 𝑅 𝑒𝑥𝑝 [𝑖𝜔0(𝑡 +
𝑥

𝑣1
)]                                                  (3.11) 

      Based on the continuity of displacements and equilibrium of stresses at the interface, we can 

write: 

𝑢2(𝑥 = 0, 𝑡) = 𝑢1 + 𝑢𝑅  (𝑥 = 0, 𝑡)                                          (3.12) 

𝑘2𝜕𝑥𝑢2(𝑥 = 0, 𝑡) = 𝑘1(𝜕𝑥𝑢1 + 𝜕𝑥𝑢𝑅)(𝑥 = 0, 𝑡)                           (3.13) 

with 𝑘1 equal to 𝜆1 + 2𝜇1 for P-waves or 2𝜇1 for S-waves while 𝑘2 equal to (𝜆2 + 2𝜇2) for P-

waves or 2𝜇2 for S-waves, where E1 and E2 are Young’s moduli, ρ1 and ρ2 are the densities of 
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subdomains Ω1 and Ω2, where 𝜆1, 𝜇1,𝜆2, 𝜇2  are Lamé’s coefficients in subdomain Ω1 and Ω2, 

respectively. The reflection coefficient 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 at the interface can be obtained as: 

𝑅

𝐴
=
−𝜌2𝑣2 (1 − 𝑖

𝛾
𝜔0
) + 𝜌1𝑣1

𝜌2𝑣2 (1 − 𝑖
𝛾
𝜔0
) + 𝜌1𝑣1

                                              (3.14) 

      By setting the ratio α =
𝜌2𝑣2

𝜌1𝑣1
, the interface refection coefficient can be written: 

𝑅

𝐴
=
1 − 𝛼 (1 − 𝑖

𝛾
𝜔0
)

1 + 𝛼 (1 − 𝑖
𝛾
𝜔0
)
                                                      (3.15) 

      If we want to reduce reflection at the interface, the modulus of the above complex valued 

reflection coefficient should be minimized. It leads to the following relationship: 

α =
1

√1 + (
𝛾
𝜔0
)2
                                                            (3.16) 

      Now, we can give a simple condition on material properties of the Kosloff medium so as to 

reduce the reflected waves in the case of harmonic waves for P-waves and S-waves in 1D medium: 

{
 
 

 
 𝐸2 =

𝐸1

1 + (
𝛾
𝜔0
)2

𝜌2 = 𝜌1
𝜈2 = 𝜈1

                                                       (3.17) 

where E1  and E2  are Young’s moduli, ρ1  and ρ2  are the densities of subdomains Ω1 and Ω2, 

respectively. The above relationships show that, though the Kosloff medium is independent of 

frequency in terms of decrement, the optimal conditions at the interface depend on the frequency. 

Therefore, in the case of non-harmonic waves, there will be still some reflections at the interface. 

This is why we thoroughly evaluate in the following the effect of the chosen 𝑓0 in terms of spurious 

reflections generated at the interface.  

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  74 

3.2.4 Design of Kosloff absorbing layer using a multi-layer strategy                     

      The Absorbing Layers using Increasing Damping (ALID), proposed by Semblat et al. (2011), 

Rajagopal et al. (2012) and improved by Zafati et al. (2014), as shown in Fig.3-2, is considered by 

tuning the elastic parameters of each layer depending on the selected absorbing parameters as given 

by the optimal conditions in Eqs. (3.17). The main idea is to divide the Kosloff absorbing medium 

into several uniform layers, so that the decrements produced by each layer can be multiplied. 

Because of the logarithmic form of decrement, the total logarithmic decrement can be easily 

obtained. The evolution of damping ratio in layers has an important influence on the efficiency of 

the ALID. Here, a nonlinear increase of damping ratio is adopted to achieve a better accuracy.  

 

Figure 3-2   Evolution of the damping ratios in multi-layer absorbing subdomain 

 

      The parameters of each layer, indexed by (i) varying from 1 to N, which satisfies the optimal 

conditions at each interface, are given by: 
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{
 
 
 
 
 

 
 
 
 
 
𝐸2
(𝑖+1)

=
1 + (

𝛾𝑖
𝜔0
)2

1 + (
𝛾𝑖+1
𝜔0

)2
𝐸2
(𝑖)

𝐸2
(1)
=

1

1 + (
𝛾1
𝜔0
)2
𝐸1

𝜈2
(𝑖)
= 𝜈1

𝜌2
(𝑖)
= 𝜌1

   𝛾𝑖 =    𝛾0 (
𝑥𝑖
𝐿
)
𝑛

    

                                                 (3.18) 

where  𝐸2
(𝑖)

 the Young’s modulus, 𝛾𝑖 the damping ratio, 𝜈2
(𝑖)

 Poisson’s ratio, 𝜌2
(𝑖)

 the density of 

each layer i in the subdomain Ω2, 𝜔0 the chosen frequency to design absorbing layers,   𝛾0 the 

damping ratio in the last layer,  𝑛  the power of the damping function, 𝑥𝑖  the distance of each 

sublayer (𝑖) from the interface of the ALID, varying according  𝐿 the thickness of the ALID 

including all sublayers (𝑖). By integrating the logarithmic decrement in Eq. (3.8) along the thickness 

of the ALID, and using the polynomial form of the damping parameter  𝛾𝑖 in Eq. (3.18), the total 

logarithmic decrement 𝛿 can be assessed as: 

{
 
 

 
 
𝛿𝑖 =    𝛾0 (

𝑥

𝐿
)
𝑛 Δ𝑥

𝑣𝜌
 √1 + (

𝛾1
𝜔0
)2   ≥   𝛾0 (

𝑥

𝐿
)
𝑛 Δ𝑥

𝑣𝜌
                          

𝛿 =∑ 𝛿𝑖 =
𝑁

𝑖=1
∫

𝛾0
𝑣𝜌
(
𝑥

𝐿
)
𝑛𝐿

0

𝑑𝑥 =
𝛾0𝐿

(𝑛 + 1)𝑣𝜌
                                  

    (3.19) 

      Here, we can see that the simple modification on material properties of the Kosloff medium for 

reducing the reflection at the interface also increases the absorbing ability of the Kosloff medium. 

In order to facilitate the integration, the absorbing ability obtained by the right side of the inequation 

is conservative. The attenuation coefficient 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛for the system of absorbing layers is defined 

by:  

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 = (
|𝑢(𝑥 + 𝐿)|

|𝑢(𝑥)|
)

2

= 𝑒−2𝛿                                          (3.20) 

      If the goal is to reach a target logarithmic decrement δ = ln (10), it means that 90% of the 

amplitude of the incident wave will be absorbed from the interface to the end of the ALID. Next, 

the attenuation also occurs for the reflection process from the end of the ALID towards the interface. 
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Hence, the incident wave is attenuated by 99% and the attenuation coefficient 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛  is 

theoretically equal to 1% before the space and time discretization.   

      Finally, we can propose the general formula to design Kosloff absorbing layers based on the 

1D harmonic wave problem in a Kosloff medium. After choosing the  𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 , the total 

thickness 𝐿 and the power m of the damping function,  𝛾0 can be obtained: 

  𝛾0 =
(𝑛 + 1)

2𝐿
× 𝑣𝜌 × ln (

1

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛
)                                         (3.21)  

      It is important to remark that the general formula to design Kosloff absorbing layers is similar 

to that of PML proposed by Collino and Tsogka (2001), based on one-dimensional wave 

propagation ideas, 𝛽0 being the damping parameter in the last PML layer: 

𝛽0 =
(𝑛 + 1)

2𝐿
× 𝑣𝜌 × ln (

1

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛
)                                          (3.22) 

      Indeed, the capabilities of the PML to damp out incident wave is very similar to the Kosloff 

damping but the behavior at the interface is different in the two cases, because it is well known the 

no reflection occurs at a PML interface for all the frequencies. This is not the case for Kosloff and 

Rayleigh damping as discussed in the next section.    

 

3.2.5 1D non-harmonic wave propagation at the interface between an elastic 

medium and ALID: comparison between Rayleigh and Kosloff damping  

      In order to establish optimal condition at the interface, harmonic waves have been previously 

considered. The relationship shows that, though the Kosloff medium is independent of frequency 

in terms of decrement, the optimal conditions at the interface depend on the frequency. Therefore, 

in the case of non-harmonic waves, different reflections will occur at the interface, quantified by 

the interface reflection coefficient 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒. We investigate the influence of the chosen frequency 

𝑓0  on the interface reflection coefficient 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  in the case of Kosloff damping. 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 

related to Kosloff layer for another frequency 𝑓, which is different from 𝑓0, has been derived from 

Eq. (3.15) as shown below: 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  77 

𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =
1 − 𝛼 (1 − 𝑖

𝛾
𝜔0

𝜔0
𝜔 )

1 + 𝛼 (1 − 𝑖
𝛾
𝜔0

𝜔0
𝜔 )

                                           (3.23) 

α =
1

√1 + (
𝛾
𝜔0
)2
                                                               (3.24) 

      For comparison purpose, the case of the Rayleigh damping is reminded and new insights will 

be provided for a relevant choice of the design frequency 𝑓0. The design of Rayleigh ALID is 

written as:  

 𝜉0 =
(𝑛 + 1)

2𝐿𝜔0
× 𝑣𝜌 × ln (

1

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛
)                                         (3.25) 

which is only valid for harmonic waves due to the dependence of the Rayleigh damping on 

frequency. As a result, the attenuation coefficient 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛  has also to be assessed in the case of 

non-harmonic waves as a function of the chosen design frequency 𝑓0. Here, it should be remarked 

that it is not the case of the Kosloff damping as shown by the previous design relation given in Eq. 

(3.21).   

      From the assumption adopted in Rayleigh damping (
𝛼𝑀

𝜔0
= 𝛼𝐾𝜔0 = 𝜉), the form of the complex 

wave number is given by: 

𝑘𝑝(𝜔) =
𝜔

𝑉𝑝
√

1 − 𝜉2 − 𝑖𝜉 (
𝜔0
𝜔 +

𝜔
𝜔0
)

1 + 𝜉2
𝜔2

𝜔02

                                    (3.26) 

      The dimensionless imaginary part of 𝑘𝑝(𝜔)  was proved to increase with increasing
𝜔

𝜔0
, 

corresponding to the increase of the amplitude of the reflected wave (Zafati et al., 2015). It means 

that the high frequencies decay more quickly than the low frequencies. In other words, the relatively 

small 𝑓0  can make more frequencies be attenuated over the 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 defined by 𝑓0 .Thus, it is 

beneficial to consider a relatively small 𝑓0, in terms of absorbing ability for non- harmonic waves 

in Rayleigh absorbing layer. 
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      For a given frequency  𝑓 , the interface reflection coefficient 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  between an elastic 

medium and a Rayleigh medium designed at 𝑓0 frequency is expressed as (Zafati et al., 2015): 

𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =

1 − α√1 + 𝜉2 − 𝑖𝜉 (
𝜔0
𝜔 −

𝜔
𝜔0
)

1 + α√1 + 𝜉2 − 𝑖𝜉 (
𝜔0
𝜔 −

𝜔
𝜔0
)

                                        (3.27) 

α =
1

√1 + 𝜉2
                                                                 (3.28) 

      The interface reflection coefficients 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  for Kosloff and Rayleigh cases are plotted in 

Figures 3-3 and 3-4 for a frequency ratio 𝑓/𝑓0. It can be remarked that, for the Kosloff damping, 

the interface reflection coefficient decreases when the frequency ratio increases. Thus, it advocates 

the choice of a design frequency 𝑓0 less than the dominant frequency present in the investigated 

problem so as the frequency ratio increases, leading to a very low reflection coefficient.  In the case 

of Rayleigh damping, same analysis can be conducted because small frequency ratio leads to much 

higher interface reflection coefficient than high frequency ratio. Consequently, taking into account 

the benefits of the relatively small frequency 𝑓0   in terms of decrement for Rayleigh layer and in 

terms of interface reflection for both Kosloff and Rayleigh layers, one method to reduce the 

reflection for the case of non-harmonic waves is to define the 𝑓0 relatively small. 

                           

            Figure 3-3   Kosloff Rinterface using different f / f 0 and   / 0 
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       Figure 3-4   Rayleigh Rinterface using different f / f 0 and  

      Secondly, the figures also show that, with 𝜉  and 𝛾/𝜔0 increasing, the interface reflection 

coefficient 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  increases in both figures. Due to the dependence of the absorbing ability on 

frequency in the case of Rayleigh damping, with a smaller chosen frequency 𝑓0, the damping ratio 

𝜉 of Rayleigh layer based on the general design formula Eq. (3.25) will be bigger, so it leads to the 

increase of reflection for all the frequencies. Regarding Kosloff layer, a decreased design frequency 

𝑓0 gives a higher frequency-dependent damping parameter   𝛾/𝜔0  . It implies that the chosen 

frequency should not be defined too small. As a result, a compromise has to be found to select a 

design frequency 𝑓0 sufficiently small in comparison to the dominant frequency, without affecting 

to much the reflection coefficient. This will be verified in the following numerical investigations. 

      Finally, from the comparison between Figures 3-3 and 4-4, in the high frequency range, it can 

be highlighted that 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  related to the Kosloff damping is much less affected by the increase 

of the frequency-dependent damping parameter   𝛾/𝜔0   than the one related to the Rayleigh 

damping with increasing damping ratio 𝜉. The interface reflection coefficient tends to very low 

values for Kosloff damping when frequency ratio increases, contrarily to Rayleigh damping.  It is 

important because it means a better interface behavior of the Kosloff ALID than the Rayleigh ALID.  
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3.3 The space and time discretization for HA-Kosloff ALID 

      The elastic wave propagation from an elastic non-dissipative medium to a dissipative medium 

should be discretized in space and time. In this section, the hybrid time integration of the ALID 

based on Kosloff damping is presented.   

      Let Ω be a bounded domain belonging to ℝ2 with a regular boundary. 𝐽 = [0, 𝑇] is the time 

interval of interest. The domain Ω is divided into two partitions 𝛺1 and 𝛺2, as shown in Fig.1-4, 

such as: 𝛺1⋂𝛺2 = ∅ and ∂𝛺1⋂∂𝛺2 = 𝛤. 𝛤 denotes the interface between the two subdomains, 

subdomain Ω1 representing the non-dissipative medium (the domain of interest) and subdomain Ω2 

the Kosloff medium. The goal is to integrate the domain of interest Ω1 using a conditionally stable 

explicit time integration scheme suitable for modeling the wave propagation, while integrating the 

Kosloff ALID with an unconditionally stable implicit time integration scheme in order to not 

decrease the size of the critical time step in Ω1.  

 

3.3.1 Weak form and space discretization  

      The subdomain Ω1 is characterized by its density  𝜌1 , Young’s modulus  𝐸1 , Poisson’s 

coefficient  𝜈1 , 𝑏1  the body force, 𝑢1
𝐷 the Dirichlet prescribed displacement on Γ1

𝐷  and 𝑔1
𝑁 the 

traction force at the Neumann condition on Γ1
𝑁. The subdomain Ω2 is characterized by its density 𝜌2, 

Young’s modulus 𝐸2 , Poisson’s coefficient  𝜈2 , 𝑏2  the body force,  𝑢2
𝐷  the Dirichlet prescribed 

displacement on  Γ2
𝐷 , 𝑔2

𝑁  the traction force at the Neumann condition on Γ2
𝑁  and the Kosloff 

damping parameter 𝛾 introduced in the strong form of the wave equation in Eq. (3.1) .  

      In order to write the weak form of the coupled problem in Ω divided into two partitions Ω1 and 

Ω2, test functions 𝑣1 and 𝑣2 belonging to the appropriate spaces 𝑊1
∗ and 𝑊2

∗ must be introduced:  

{
𝑣1 ∈ 𝑊1

∗ ,𝑊1
∗ = {𝑣1 ∈ (𝐻

1(Ω1))
𝑑
𝑎𝑛𝑑 𝑣1 = 0 𝑜𝑛 Γ1

𝐷} 

𝑣2 ∈ 𝑊2
∗ ,𝑊2

∗ = {𝑣2 ∈ (𝐻
1(Ω2))

𝑑
𝑎𝑛𝑑 𝑣2 = 0 𝑜𝑛 Γ2

𝐷}
                        (3.29)  

      The solutions 𝑢1 and 𝑢2 belong to the appropriate spaces  𝑊1 and 𝑊2:   
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   { 
𝑢1(𝑡) ∈ 𝑊1,𝑊1 = {𝑢1 ∈ (𝐻

1(Ω1))
𝑑
𝑎𝑛𝑑 𝑢1 = 𝑢1

𝐷 𝑜𝑛 Γ1
𝐷} 

𝑢2(𝑡) ∈ 𝑊2,𝑊2 = {𝑢2 ∈ (𝐻
1(Ω2))

𝑑
𝑎𝑛𝑑 𝑢2 = 𝑢2

𝐷 𝑜𝑛 Γ2
𝐷}   

                 (3.30) 

where 𝑑 is the space dimension (equal to 1, 2 or 3). According to a dual Schur approach, the 

introduction of the Lagrange multipliers allows us to glue the velocities of the two subdomains at 

the interface 𝛤 (Gravouil and Combescure, 2001; 2002). The Lagrange multipliers belong to the 

adapted dual trace space related to the interface between the two subdomains, denoted by 𝑄. All 

the considered space variables are assumed to be sufficiently smooth and regular.  

      Next, using a dual Schur formulation, the principle of virtual power for transient dynamics can 

be written. Find the solution 𝑢1(𝑡) ∈ 𝑊1, 𝑢2(𝑡) ∈ 𝑊2 and 𝜆(𝑡) ∈ 𝑄 , for which the following weak 

form is satisfied ∀𝑣1 ∈ 𝑊1 , ∀𝑣2 ∈ 𝑊2  and ∀𝜇 ∈ 𝑄  : 

∫ 𝜌1𝑣1 ∙ 𝑢̈1𝑑Ω
Ω1

+∫ 𝜀(𝑣1): 𝜎1𝑑Ω
Ω1

+∫ 𝜌2𝑣2 ∙ 𝑢̈2𝑑Ω
Ω2

+∫ 𝜀(𝑣2): 𝜎2𝑑Ω
Ω2

 + ∫ 2𝜌2𝛾𝑣2 ∙ 𝑢̇2𝑑Ω
Ω2

+∫ 𝜌2𝛾
2𝑣2 ∙ 𝑢2𝑑Ω

Ω2

+∫ 𝑣1 ∙ 𝜆𝑑Γ
Γ𝐼

+∫ 𝑣2 ∙ 𝜆𝑑Γ
Γ𝐼

+∫ 𝜇 ∙ (𝑢̇1 − 𝑢̇2)𝑑Γ
Γ𝐼

= ∫ 𝑣1 ∙ 𝑏1𝑑Ω
Ω1

+∫ 𝑣1 ∙ 𝑔1
𝑁𝑑Γ

Γ1
𝑁

+∫ 𝑣2 ∙ 𝑏2𝑑Ω
Ω2

+∫ 𝑣2 ∙ 𝑔2
𝑁𝑑Γ

Γ2
𝑁

                (3.31) 

where the stress tensor 𝜀2 satisfies the behavior law given in Eq. (3.2). Then, we follow the classical 

lines of the finite element discretization. At the interface between the subdomains, the continuity 

of velocities is imposed by the following condition:  

𝐋𝟏𝐔̇𝟏 + 𝐋𝟐𝐔̇𝟐 = 𝟎                                                      (3.32)  

where 𝐋𝟏 and 𝐋𝟐 are the Boolean matrices in the case of matching meshes at the interface; they 

operate on nodal vectors associated with the two subdomains Ω1 and Ω2; they pick out the degrees 

of freedom belonging to the interface 𝛤 in order to ensure the kinematic continuity at the interface.  

      Thus, the restricted velocities at the interface can be obtained from the global nodal velocity 

vectors 𝐔̇𝟏and 𝐔̇𝟐 by the relationships:  

{
𝐔̇𝟏
𝚪 = 𝐋𝟏𝐔̇𝟏

𝐔̇𝟐
𝚪 = 𝐋𝟐𝐔̇𝟐

                                                            (3.33) 
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      Same relationships hold for the global virtual nodal velocities 𝐕𝟏  and 𝐕𝟐. Finally, interface 

terms involving the Lagrange multiplier field can be expressed as:  

{
 
 

 
 ∫ 𝑣1 ∙ 𝜆𝑑Γ

Γ𝐼

= 𝐕𝟏
𝐓𝐋𝟏

𝐓𝛌

∫ 𝑣2 ∙ 𝜆𝑑Γ
Γ𝐼

= 𝐕𝟐
𝐓𝐋𝟐

𝐓𝛌

                                                   (3.34) 

      From the weak form of the global problem in Eq. (3.31), the semi-discrete equations in space 

can be derived, corresponding to the two equations of motion related to the two subdomains, 

completed with a kinematic condition. In the following, the hybrid integration of this set of 

equations will be carried out in order to propose a hybrid asynchronous Kosloff ALID.  

 

3.3.2 Time discretization of the Hybrid Asynchronous absorbing layers 

      As illustrated in Fig.1-4, an explicit time integrator with a fine time step Δt1 is adopted for the 

subdomain Ω1 and an implicit time integrator with a large time step Δt2 is used for subdomain Ω2, 

with Δt2 = mΔt1, m being the time step ratio between two subdomains. In this way, hybrid (different 

schemes associated) asynchronous (different time steps depending on subdomains) absorbing 

layers can be obtained. The equilibrium of subdomain 2 is prescribed at time tm at the end of the 

large time Δt2, while the equilibrium of subdomain 1 is prescribed at every time tj = jΔt1 (j =1, 

2...m) at the fine time scale. The gluing of the velocity at the interface is written at the fine time 

scale. 

      Finally, the weak form given in Eq. (3.31) with the velocity continuity equation in Eq. (3.32) 

and the expression of the interface terms as a function of the Lagrange multipliers in Eq. (3.34), 

can be expressed in the following discrete form in space and time: 

𝐌𝟏𝐔̈𝟏
𝐣
+ 𝐊𝟏𝐔𝟏

𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐋𝟏

𝐓𝛌𝐣                at time 𝑡 = 𝑡𝑗               (3.35) 

𝐌𝟐𝐔̈𝟐
𝐦 + 𝐂𝟏𝐔̇𝟐

𝐦 + 𝐂𝟐𝐔𝟐
𝐦 + 𝐊𝟐𝐔𝟐

𝐦 = 𝐅𝟐
𝐞𝐱𝐭,𝐦 − 𝐋𝟐

𝐓𝛌𝐦   at time 𝑡 = 𝑡𝑚            (3.36) 

𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                              at time 𝑡 = 𝑡𝑗              (3.37) 
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𝐂𝟏 =∑2∫ 𝜌𝛾 [𝐍𝐞]𝐓[𝐍𝐞]𝑑𝛺
Ω

                                               (3.38) 

𝐂𝟐 =∑∫ 𝜌𝛾2[𝐍𝐞]𝐓[𝐍𝐞]𝑑𝛺
Ω

                                                  (3.39) 

where 𝐍𝐞 is the shape function matrix associated with the element indexed by e, belonging to the 

subdomain Ω2. Here, we can see that Kosloff formulation turns out to have a very simple finite 

element expression which corresponds to two new matrices, similar to the mass matrix, operating 

on velocities and displacements in semi-discrete equation of motion. The first equation is the 

discrete equation of motion of subdomains Ω1 written at time tj (fine time scale), whereas the 

second equation is the discrete equations of motion of subdomains Ω2 written at time tm (large time 

scale). On right hand side of the above equations, the interface forces enable the subdomains to be 

glued at their interface 𝛤. The third equation is the velocity continuity.  

      Newmark time integration schemes (Newmark, 1959) are adopted for the time discretization, 

characterized by the parameters γ2=0.5 and β2=0.25 for the implicit time integration and the 

parameters γ1=0.5 and β1=0 for the explicit time integration scheme. By introducing the 

approximate Newmark scheme, it leads to the equations of motion written as: 

𝐌̃𝟏𝐔̈𝟏
𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐊𝟏𝐔𝟏

𝐣−𝟏,𝐩
− 𝐋𝟏

𝐓𝛌𝐣                                                (3.40)                                              

𝐌̃𝟐𝐔̈𝟐
𝐦 = 𝐅𝟐

𝐞𝐱𝐭,𝐦 − 𝐂𝟏𝐔̇𝟐
𝟎,𝐩
− 𝐂𝟐𝐔𝟐

𝟎,𝐩
− 𝐊𝟐𝐔𝟐

𝟎,𝐩
− 𝐋𝟐

𝐓𝛌𝐦                             (3.41)                              

where 𝐔𝟏
𝐣−𝟏,𝐩

 and 𝐔̇𝟐
𝟎,𝐩

 denote the predictor values in terms of displacement and velocity, 

classically introduced in approximate Newmark formula; they correspond to quantities known at 

the beginning of the fine step and of the large time step, respectively.   

      The effective stiffness matrices 𝐌̃𝟏 and 𝐌̃𝟐 related to the two subdomains are defined by: 

𝐌̃𝟏 = 𝐌𝟏 + 𝛽1∆𝑡1
2𝐊𝟏                                                         (3.42)                                                         

𝐌̃𝟐 = 𝐌𝟐 + 𝛽2∆𝑡2
2(𝐊𝟐 + 𝐂𝟐) + 𝛾2∆𝑡2𝐂𝟏                                   (3.43)                                         

      The kinematic quantities are divided into two parts: the free and the linked quantities in the 

coupling GC method. The free quantities are calculated by taking into account the internal and 
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external forces, without considering the interface forces, whereas the linked quantities are obtained 

from the interface loads given by the Lagrange multiplier vector 𝛌.  

      It was demonstrated that the kinematic continuity condition can be expressed as a reduced-size 

interface problem as follows: 

𝐇𝛌𝐣 = 𝐛𝐣                                                                   (3.44)                                                                 

with the interface operator and the right-hand side member vector defined by: 

{
𝐇 = 𝛾1Δ𝑡1𝐋𝟏𝐌̃𝟏

−𝟏𝐋𝟏
𝐓 + 𝛾2Δ𝑡2𝐋𝟐𝐌̃𝟐

−𝟏𝐋𝟐
𝐓

𝐛𝐣 = 𝐋𝟏𝐔̇𝟏
𝐟𝐫𝐞𝐞,𝐣

+ 𝐋𝟐𝐔̇𝟐
𝐟𝐫𝐞𝐞,𝐣                                 (3.45)                                         

 

3.4 Numerical applications 

3.4.1 Numerical models with different chosen f0  

In order to explore the influence of the chosen frequency 𝑓0 on the effectiveness of absorbing 

layers based on Kosloff and Rayleigh damping, numerical models of a semi-infinite elastic bar 

subjected to horizontal displacement at the free end, are established as shown in Figure 3-5.  

 

Figure 3-5   Numerical model of a semi-infinite elastic bar subjected to horizontal displacement  

 

      It simulates the propagation of P waves from a non-dissipative elastic medium to a dissipative 

medium. The simulation is conducted by using a homogeneous time step in both subdomains, the 

elastic subdomain is integrated in time with an explicit scheme and the subdomain related to the 

absorbing layer with an implicit scheme. On the basis of the general design formulas given in Eqs. 

(3.21, 3.25), we set the following parameters:  𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 0.01 (1% of reflection coming 

from the end of the absorbing layer), n equal to 2, and the size of the absorbing layer is kept as a 
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constant, equal to 500m. As previously discussed in section 3.2.5, we will study the propagating 

P-wave for different chosen design frequencies 𝑓0, or equivalently, for design periods 𝑇0=1/𝑓0.  The 

soil is assumed to be linear elastic with the following material characteristics: 𝜌1=1700kg/m3, 

𝐸1=10MPa and 𝜈1= 0.24. The velocity of P-waves 𝐶𝑝 is 83m/s. The model is composed of a soil 

subdomain with a size of 2000m. The recording point is located at 1750m from the left end of the 

model in order to facilitate the distinction between the wave reflection at the interface and the wave 

reflection coming from the end of the absorbing layer. Non-harmonic waves are investigated by 

considering a Ricker incident wave. The Ricker wave has three parameters: the fundamental 

period 𝑡𝑝, the time shift 𝑡𝑠 and the amplitude 𝐴. The chosen values are: 𝑡𝑝=3s, 𝑡𝑠=3s and A =1. The 

fundamental period giving the dominant period of the present waves in the problem, the design 

period  𝑇0 should be chosen higher than the dominant period so as to improve the behavior of the 

absorbing layer in terms of wave reflections as discussed previously. It is equivalent to choose the 

design frequency 𝑓0 less than the dominant Ricker frequency 1/ 𝑡𝑝 equal to 0.33 Hz.  

 

Figure 3-6   Maximal numerical reflection with different chosen periods T0 (s) 

 

      The maximal numerical reflection coefficients for different design period 𝑇0 are compared in 

Figure 3-6 for Kosloff and Rayleigh layers. It is clearly highlighted that the numerical reflection of 

Kosloff absorbing layer is always acceptable with different period changing from 0.01s to 100 s. 

On the contrary, the choice of the design period in the case of Rayleigh damping is much more 

sensitive than the one in the case of Kosloff damping. For Kosloff damping, the best result 

corresponding to 0.4% of reflection is obtained for a design period of 15 s, which is much larger 
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than the Ricker dominant period equal to 3 s. For Rayleigh damping, the lowest value of the 

reflection coefficient equal to 0.4% is obtained at the design period 𝑇0 of 10s.  Here, it has been 

confirmed that the relatively smaller value 𝑓0 leads to better results.  

                      

Figure 3-7   Horizontal displacement at point C for Rayleigh with different chosen periods 

 

              Figure 3-8   Horizontal displacement at point C for Kosloff with different chosen periods     

 

      Next, we will investigate where the maximal reflection comes from. The complete time history 

of the wave propagation at the point of observation for the design periods 𝑇0 equal to 0.1s, 10s, 

100s is shown in Figure 3-7 for Rayleigh absorbing layer and Figure 3-8 for Kosloff absorbing 

layer. The observed wave reflection includes both the reflected waves coming from the interface, 
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characterized by the previously discussed ratio 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒, and from the end of the absorbing layer, 

characterized by the ratio 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 used for the design of the absorbing layers.   

      As shown in Figures 3-7 and 3-8, for a design period equal to 10s which is higher than the 

dominant period of the problem (𝑡𝑝 equal to 3s), or equivalently, for a design frequency 𝑓0 smaller 

than the the dominant frequency of the problem, both layers provide good results as expected. Next, 

we discuss the extreme cases: a very low value of the design period and a very high value of the 

design period.  

      For design period equal to 0.1s, corresponding to a frequency equal to 10 Hz which is much 

higher than the dominant frequency of the investigated problem (0.33 Hz), there will be more 

frequencies which will decay less than the 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 defined by 𝑓0. It leads to the increase of 

reflection from the end of absorbing layer. With the velocity of P-waves Cp equal to 83 m/s in this 

model, the reflection coming from the end of the ALID, arrives at the point of observation at 39 s, 

as observed in Fig. 3-7 for Rayleigh layer. With regard to Kosloff, the design frequency has no 

influence on the attenuation coefficient because of the independence of Kosloff in terms of 

decrement, with a high frequency, Kosloff layer still can obtain a good accuracy less than 1%, as 

shown in Figure 3-8. 

      For design period equal to 100 s, corresponding to a frequency equal to 0.01 Hz which is much 

lower than the dominant frequency of the problem, it leads to the increase of reflection at the 

interface 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒for all the frequencies. Taken into account the P-wave velocity of 83m/s in this 

model, the reflection coming from the interface arrives at the point of observation at 27 s, for both 

Kosloff and Rayleigh layers in Figures 3-7 and 3-8. However, it can be noted that the influence of 

chosen design frequency on the reflection at the interface for Kosloff is much less than for Rayleigh, 

as previously shown in section 3.2.5 by the 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒. As a conclusion, the interface behavior can 

be clearly improved by the introduction of the Kosloff damping in comparison to the Rayleigh 

damping when low design frequency is selected. 

      In brief, in the case of Rayleigh layer, if the spectrum range of the incident wave is close to the 

dominant frequency, with an appropriate design chosen frequency, the waves will penetrate the 

Rayleigh medium with small reflections from the interface and from the end. However, for the 

waves which have a broad frequency range, it is more difficult to choose an appropriate design 
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frequency 𝑓0 . It is explained first, by the fact that the absorbing ability of Rayleigh medium, 

characterized by 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛, depends on frequency, and second, by the sensitivity of the amount 

of spurious reflections at the interface, characterized by 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒, to the design frequency 𝑓0. On 

the contrary, the absorbing ability of the Kosloff damping is independent of frequency (𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛), 

and concerning the interface reflection (𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ), Kosloff damping is less sensitive than 

Rayleigh damping. Hence, Kosloff layer better deals with broad frequency range waves in 

comparison to Rayleigh layer. 

 

3.4.2 Lamb’s test 

      In order to evaluate the effectiveness of hybrid asynchronous Kosloff absorbing layers, Lamb’s 

test has been simulated. In Lamb’s test, the concentrated load applied to the surface of an infinite 

half space medium generates three types of waves propagating through the soil, involving P, S 

waves and Rayleigh waves (Lamb, 1903). Consequently, Lamb’s test can be considered as a good 

test for assessing the performance of absorbing layer. Non-harmonic waves are investigated by 

considering a Ricker incident waves as used in section 3.4.1 with the chosen values 𝑡𝑝=3s, 𝑡𝑠=3s 

and A =1MN.  

      In this section, Lamb’s test is conducted by setting up HA- Kosloff ALID. Results obtained 

from HA- Rayleigh ALID and HA-PML based on the PML formulation proposed by Basu and 

Chopra (Basu & Chopra, 2003; Basu & Chopra, 2004) are also calculated for comparison purpose. 

The soil subdomain is integrated in time with an explicit scheme and the subdomain related to the 

absorbing layer with an implicit scheme. As illustrated in Fig.2-6, the numerical model for three 

different absorbing layers is the same, composed of a bounded soil (subdomain 1) with a size of 

250m and absorbing layers (subdomain 2) with the thickness of 250m. The ALID design, given in 

Eq. (3.21), employed the following parameters: 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 0.01, n equal to 2 and a design 

frequency 𝑓0 equal to 0.1 Hz, chosen less than the Ricker dominant frequency equal to 1/𝑡𝑝=0.33 

Hz. A recording point is located at 20m from the loading point on the surface. 

      In the case that an homogeneous time step satisfying the CFL condition applied in both 

subdomains, the vertical and horizontal displacements of three numerical models at the observation 
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point are shown in Figures 3-9 and 3-10. We can observe that PML is the most precise, the reflected 

spurious wave being 0.27%, in terms of the vertical displacement, and 0.81% in terms of the 

horizontal displacement. In comparison, the reflected spurious waves of Kosloff and Rayleigh are 

in the same level with the chosen frequency 𝑓0  equal to 0.1Hz. With respect to the vertical 

displacement, the reflected spurious wave is 1.38% for Kosloff and 1.51% for Rayleigh. With 

respect to the horizontal displacement, the reflected spurious wave is 0.94% for Kosloff and 1.15% 

for Rayleigh. Thus, it has shown that behavior of the Kosloff absorbing layer is very satisfactory 

for 2D non-harmonic waves composed of body and surface waves. 

        

Figure 3-9   Vertical displacements at the observation point using different absorbing layers 

         

Figure 3-10 Horizontal displacements at the observation point using different absorbing layers 

 

      The kinetic and internal energies of the soil domain are computed for different absorbing layers 

as shown in Fig.3-11. The reference results are computed from an extended mesh by keeping the 

same characteristics of the previous models (finite element size, material and loading 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  90 

characteristics). All results are very close between each other. Then, in order to distinguish the 

difference between the different results, the L2 norm error in time is computed between energies 

for different absorbing layers, as shown in Eq. (2.29). From Table.3-1, it can be observed that the 

errors are small for three types of absorbing layers. The errors of Kosloff and PML are clearly 

smaller than the errors of Rayleigh, because their absorbing capabilities are independent of 

frequency and better behavior at the interface. 

Table 3-1  Relative energy errors of different absorbing layers 

 Kinetic energy Internal energy 

Kosloff 0. 12% 0.08% 

Rayleigh 0.58% 0.25% 

PML 0.15% 0.10% 

 

    

Figure 3-11 Kinetic and internal energies computed using different absorbing layers 

 

      Table 3-2  Normalized CPU Time for different absorbing layers 

 CPU time  

Kosloff 1.00 

Rayleigh 1.02 

PML 1.39 

      The CPU times are given in Table.3-2 in a normalized form divided by CPU time of Kosloff 

layers. It can be concluded that, for the same numerical model, Kosloff layers and Rayleigh layers 

require almost the same CPU time. PML is more complex, so it takes more CPU time.   
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3.4.3 Effect of the time step ratio  

      Using the implicit time integration for the absorbing subdomain, we avoid the decrease of the 

critical time step in the explicit framework due to the introduction of damping into the discrete 

equation of motion. Moreover, as explained in section 3.3, it is possible to use a larger time step in 

the absorbing subdomain, because we use an unconditionally stable implicit scheme. The influence 

of heterogeneous time steps on the accuracy is investigated. The subdomain soil is integrated with 

Newmark explicit scheme with a fine time step, whereas absorbing layers are dealt with Newmark 

implicit scheme associated with a large time step in order to reduce the computation time in the 

absorbing layers. The horizontal and vertical displacements of the observation point for different 

absorbing layers with different time step ratios m (Δt2 = m Δt1) equal to 1, 5 and 10, are shown 

from Fig.3-12 to Fig.3-17. In terms of vertical displacements, the reflections of Kosloff and 

Rayleigh remain low with an increasing time step ratio m. It is not the case for PML, for which we 

observe increasing spurious reflections with the increase of the time step ratio m, with, for example, 

the amplitude of the reflected wave varying from 0.27% to 2.5% with respect to the vertical 

amplitude of the incident wave.  

                                 

Figure 3-12 Vertical displacements for Kosloff using different time step ratios 
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Figure 3-13 Vertical displacements for Rayleigh using different time step ratios 

  

          

Figure 3-14 Vertical displacements for PML at the observation point using different time step ratios  

   

      For horizontal displacements, it can be observed that, in comparison to the displacements given 

by reference results, the vertical amplitude of the spurious wave for Kosloff varies from 0.94% to 

1.92% with respect to the horizontal amplitude of the incident wave. It can be seen that the HA-

Kosloff ALID performs slightly better than HA-Rayleigh ALID, with spurious wave amplitude 

varying from 1.15% to 2.06%. For PML, the reflections increase from 0.81% to 6.06%, confirming 

the sensitivity of the HA-PML with the time step ratio in comparison to the HA-Kosloff ALID and 

HA-Rayleigh ALID.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  93 

            

Figure 3-15 Horizontal displacements for Kosloff at the observation point using different time step ratios  

 

             

Figure 3-16 Horizontal displacements for Rayleigh at the observation point using different time step ratios  

 

             

Figure 3-17 Horizontal displacements for PML at the observation point using different time step ratios  
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      The CPU times are resumed in Table.3-3 in a normalized form, that is divided by CPU time of 

the HA- Kosloff ALID for different time step ratios m. It shows that, with increasing different time 

step ratio, the CPU times related to the different absorbing layers decrease significantly, 

highlighting the strong interest of the hybrid asynchronous time integration. It implies that using 

explicit/implicit co-computation, not only the critical time step in the soil partition is not affected 

by the introduction of damping layer, but also large time steps can be adopted in absorbing layer 

domain to reduce the computation time. 

Table 3-3  Normalized CPU Time for different methods using different time step ratios m 

 Kosloff Rayleigh PML 

m=1 1.00 1.02 1.39 

m=5 0.44 0.46 0.70 

m=10 0.36 0.40 0.58 

 

      The observed decrease of accuracy as the time step ratio increases, for all the previously 

investigated absorbing layers, can be explained by the following points. Firstly, the GC coupling 

algorithm is known to be dissipative as soon as heterogeneous time steps are used between the 

subdomains, generating spurious waves at the interface. It has been demonstrated that for GC 

method, when adopting the same time step, second order of accuracy is achieved and it leads to the 

first order of accuracy when adopting different time steps due to a slight spurious dissipation at the 

interface (Gravouil and Combescure, 2001; Brun et al., 2015). Secondly, the reason why the 

accuracy of PML decreases more strongly than in the cases of Rayleigh and Kosloff damping can 

be found in Basu and Chopra's formulation (Basu and Chopra, 2003; Basu and Chopra, 2004; Basu, 

2009), also adopted by commercial finite element codes LS-DYNA and Diana: one additional 

relationship was required to calculate the strain rate,  ε̇(𝑡𝑛) ≈ (𝜀𝑛 − 𝜀𝑛−1)/Δ𝑡2, Δ𝑡2 being the time 

step in PML subdomain. As the time step increases, the error produced by this assumption may 

increase. 

      In order to confirm this last point, additional implicit–implicit co-simulations with 

homogeneous time steps (same time step in both subdomains), have been carried out.  In such a 

way, the influence of heterogeneous time steps in the results is avoided and the time step can be 

increased while maintaining the stability of the co-simulation, because of the unconditional 
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stability of the implicit time integration scheme. Both subdomains (soil and absorbing layers) are 

integrated with a constant average acceleration scheme (CAA) associated with the same time step, 

increasing from 0.025s to 0.25s depending on co-simulations, that is from a value corresponding 

to the CFL condition to a value ten times bigger. Maximal horizontal and vertical reflections for 

different absorbing layers are plotted in Fig.3-18. It can be seen that the reflections of Kosloff and 

Rayleigh hardly grow, with an increasing homogeneous time step in both subdomains. On the 

contrary, the horizontal and vertical reflections of PML quickly grow and become bigger than the 

reflections of Kosloff and Rayleigh cases. It can be concluded that, when the time step increases, 

the PML based on Basu and Chopra's formulation turns out to be less precise.  

        

Figure 3-18 Maximal horizontal and vertical reflections for PML at the observation point for different 

homogeneous time steps using implicit-implicit co-simulations  

 

      Overall, PML is the most accurate absorbing layer for a time step size close to the CFL 

condition and has the strong advantage to not require a design frequency as done in Kosloff and 

Rayleigh absorbing layers. However, it is more complex to be implemented in finite element 

software and it is observed that HA-PML produces more reflection with the increase of the time 

step ratio m. Kosloff absorbing layer is independent of frequency in terms of decrement and less 

sensitive to the influence of the chosen frequency 𝑓0 at the interface in comparison to Rayleigh 

absorbing layer. In addition, the implementation of Kosloff damping in a finite element code is 

straightforward and the computation is quicker in comparison to the PML. Moreover, HA-Kosloff 

ALID is more accurate than HA-PML as the time step ratio increases. Therefore, Kosloff can be 

an alternative of PML to treat wave propagation problems.  
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3.5 Three-dimensional hybrid asynchronous Kosloff absorbing layer 

3.5.1 Space and time discretization in three-dimension 

      As done in Chapter 2 for HA-Rayleigh ALID, it is very straightforward to extend the 2D hybrid 

asynchronous Kosloff absorbing layers to the 3D case.  The space discretization for Kosloff 

absorbing layers in two- dimension and the time discretization for hybrid asynchronous Kosloff 

absorbing layers using explicit/implicit co-simulation in two- dimension have been described in 

section 3.3.  In three-dimension space, the modification in three-dimension is only the 8-nodes 

cube element in place of the 4-nodes rectangular elements. Here, we focus on the time discretization 

for explicit/ explicit co-simulation by using the GC coupling method (Combescure and Gravouil, 

2001; 2002). The subdomain Ω1 soil is integrated by Newmark explicit scheme with time step Δt1, 

and the Kosloff absorbing layers are integrated by Central Difference scheme with time step Δt2. 

Contrarily to Rayleigh absorbing layers, the introduction of Kosloff damping will not affect the 

time step in subdomain Ω2, as shown in the following. Therefore, in the context of matching meshes, 

the same time step imposed by the CFL condition can be applied in both subdomains. In the case 

of non-matching meshes, different time steps imposed by the CFL condition can be also defined in 

each subdomain independently.  

      Using the GC method, the wave propagation in the subdomain soil can be simulated, 

independently of the specific formulation adopted for the absorbing region at the boundary of the 

truncated mesh. Here, the same time step imposed by the CFL condition is applied in both 

subdomains for explicit/explicit co-simulation, the equilibrium of subdomain 1 and subdomain 2 

is prescribed at every time tj = jΔt1= jΔt2. Finally, the weak form given in Eq. (3.31) with the 

velocity continuity equation in Eq. (3.32), can be expressed in the following discrete form in space 

and time: 

𝐌𝟏𝐔̈𝟏
𝐣
+ 𝐊𝟏𝐔𝟏

𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐋𝟏

𝐓𝛌𝐣                                                    (3.46)                                

𝐌𝟐𝐔̈𝟐
𝐣
+ 𝐂𝟏𝐔̇𝟐

𝐣−𝟏/𝟐
+ 𝐂𝟐𝐔𝟐

𝐣
+ 𝐊𝟐𝐔𝟐

𝐣
= 𝐅𝟐

𝐞𝐱𝐭,𝐣
− 𝐋𝟐

𝐓𝛌𝐣                             (3.47)                           

𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                                                             (3.48)                                                    
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      By introducing the approximate time integration schemes, it leads to the equations of motion 

written as: 

𝐌𝟏𝐔̈𝟏
𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐊𝟏𝐔𝟏

𝐣−𝟏,𝐩
− 𝐋𝟏

𝐓𝛌𝐣                                               (3.49)                                        

𝐌𝟐𝐔̈𝟐
𝐣
= 𝐅𝟐

𝐞𝐱𝐭,𝐣
− 𝐂𝟏𝐔̇𝟐

𝐣−𝟏/𝟐
− 𝐂𝟐𝐔𝟐

𝐣
− 𝐊𝟐𝐔𝟐

𝐣
− 𝐋𝟐

𝐓𝛌𝐣                             (3.50)                            

      We can see that the effective stiffness matrix related to the absorbing layer in explicit/implicit 

co-simulation, is now replaced with diagonal lumped matrices, avoiding costly system solving.  

The kinematic continuity condition can be expressed as a reduced-size interface problem as follows: 

𝐇𝛌𝐣 = 𝐛𝐣                                                                (3.51)                                                         

with the interface operator and the right-hand side member vector defined by: 

{
𝐇 =

1

2
Δ𝑡1𝐋𝟏𝐌𝟏

−𝟏𝐋𝟏
𝐓 +

1

2
Δ𝑡2𝐋𝟐𝐌𝟐

−𝟏𝐋𝟐
𝐓

𝐛𝐣 = 𝐿1𝑈̇1
free,𝑗

+ 𝐿2𝑈̇2
free,𝑗

                                  (3.52)                                  

3.5.2 Numerical examples 

      In order to evaluate the effectiveness of three-dimensional Kosloff absorbing layers, simple 3D 

Lamb’s tests are carried out using different co-simulation strategies. Non-harmonic waves are 

investigated by considering a Ricker incident wave. The three parameters of Ricker wave are the 

fundamental period 𝑡𝑝, the time shift 𝑡𝑠 and the amplitude𝐴. The chosen values are: 𝑡𝑝=3s, 𝑡𝑠=3s 

and A =1MN. The example of 3D Lamb’s test is simulated with one 3D element in the thickness 

direction as shown in Fig.2-20. The soil is assumed to be linear elastic with the dimension 250m x 

250m x 5m (element size 5m x 5m x 5m) and the following material characteristics: 𝜌1=1700kg/m3, 

𝐸1=10MPa and 𝜈1= 0.24 for the density, Young’s modulus and Poisson’s ratio, respectively. The 

P-wave, S-wave and Rayleigh wave velocities are: VP =83.27m/s, VS=48.7m/s, VR=44.73m/s. The 

thickness of absorbing layers is 250m. The ALID design employed the following parameters based 

on Eq. (3.20): 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 0.01, n equal to 2 and a design frequency 𝑓0 equal to 0.1 Hz, 

chosen less than the Ricker dominant frequency equal to 1/𝑡𝑝=0.33 Hz. A recording point is located 

at 20m from the loading point on the surface.  
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      In case of explicit/implicit co-simulation, the subdomain soil is integrated in time by an explicit 

scheme with a fine time step (Δt1=0.025s) imposed by the CFL condition, whereas the Kosloff 

absorbing layer is integrated by an implicit scheme with lager time step Δt1=m Δt2, m= 1,10,20,30. 

In case of explicit/explicit co-simulation, the subdomain soil is integrated in time by Newmark 

explicit scheme with the time step (Δt1=0.025s), and the Kosloff absorbing layer is integrated by 

Central Difference scheme with the same time step Δt2=Δt1, imposed by the CFL condition.  

 

Figure 3-19 Horizontal displacements at the observation point using different co-simulation strategies 

 

Figure 3-20 Horizontal displacements at the observation point using different co-simulation strategies 
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      Figures 3-19 and 3-20 show the horizontal and vertical displacements in Lamb’s test with 

different co-simulations in comparison to the reference results obtained from an extended mesh, 

free of spurious reflected waves in the observation period. In the case of explicit/implicit co-

simulation, the reflected spurious waves, recorded at the observation point, grow with the increase 

of the time step ratio m, as explained in 2D. 

Table 3-4  Reflections using different co-simulation strategies (Kosloff) 

 Vertical displacement  Horizontal displacement 

  E/I m=1   0.82% 0.66% 

 

 

          E/I m=10   1.05% 1.80% 

    E/I m=20 1.60% 4.41% 

 

 

   E/I m=30   2.73% 6.13% 

 

 

 

 

 

          E/E   1.26% 0.98% 

 

 

 

 

Figure 3-21 Kinetic and internal energies computed using different co-simulation strategies  

 

      With respect to the amplitude of the incident wave, the horizontal reflected spurious waves are 

0.66%, 1.80%, 4.41%, 6.13% for m= 1, 10, 20, 30, respectively; the vertical reflected spurious 

waves are 0.82%, 1.05%, 1.6 %, 2.73% for m= 1,10,20,30, respectively. In case of explicit/explicit 

co-simulation (Δt1=Δt2), the horizontal reflected spurious wave is 1.26% and the vertical reflected 
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spurious wave is 0.98%, with respect to the amplitude of the incident wave. It can be noted that the 

accuracy in explicit/explicit co-simulation (Δt1=Δt2) is at the same level of explicit/implicit co-

simulation (m=1). From Table.3-5, it can be observed that the errors remain small and stable in 

terms of energy. 

Table 3-5  Relative energy errors of different co-simulations (Kosloff) 

 Kinetic energy Internal energy 

E/I m=1 0. 03% 0.07% 

E/I m=10 0.12% 0.17% 

E/I m=20 0.20% 0.39% 

E/I m=30 0.31% 0.83% 

E/E  0.08% 0.21% 

 

Table 3-6  Normalized CPU Time of different co-simulations (Kosloff) 

 m=1 m=10 m=20 m=30 E/E 

Normalized 

CPU time 
1 0.24 0.20 0.19 0.15 

 

      In terms of the computation time, the CPU times are resumed in Table.3-6 in a normalized form 

divided by CPU time of the co-simulation explicit/implicit (m=1). As in Chapter 2, we see that, 

with the increase time step ratio, the CPU time decreases, using explicit/implicit co-computation. 

It is observed that in comparison with explicit/implicit co-simulation, the computation time for co-

simulation explicit/explicit is the least.  

      The snapshots of displacement magnitude at different times for co-simulation explicit/explicit 

(Δt1=Δt2) are displayed in Figure 3-22. No obvious reflections can be observed at the interface or 

from the boundaries, indicating very satisfactory performance of three-dimensional Kosloff 

absorbing layers using explicit/explicit co-simulation. 
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(a) t = 5s                                                                   (b) t = 7.5s 

 

(c) t = 10s                                                                 (d) t = 12.5s 
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(e) t = 15s                                                                 (f) t = 17.5s 

Figure 3-22 Snapshots of displacement magnitude at different times for E/E 

 

 

3.6 Conclusion   

      In this chapter, a new version of absorbing layer for modeling unbounded domain using finite 

element approach has been proposed on the basis of a specific damping formulation proposed by 

D. Kosloff and R. Kosloff (1986). Indeed, an interesting feature of the Kosloff damping for setting 

up efficient absorbing layers lies in its frequency independence. From the strong form of the wave 

propagation problem, optimal conditions at the interface between two media (elastic and Kosloff 

media) have been given as well as design equations for setting up the Kosloff absorbing layers. 

The advantages of the Kosloff damping have been highlighted in comparison to the classical 

Rayleigh damping, commonly available in general purpose finite element codes. Then the 

absorbing region has been integrated independently of the domain of interest in time. It leads to the 

proposition of a new version of absorbing layers, called Hybrid Asynchronous – Kosloff Absorbing 

Layers with Increasing Damping (HA-Kosloff ALID), and that is much more convenient to 

implement in a finite element code than PML techniques. Moreover, HA-Kosloff ALID turns out 

to be more precise than HA-PML when the time step size increases in the absorbing layers. 
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      Results of 2D elastodynamics problems obtained from HA-Kosloff ALID have been compared 

with HA-Rayleigh ALID and HA-PML. HA-Kosloff ALID turns out to be a relevant tool for easily 

modelling the wave propagation in an unbounded domain. Its implementation in the finite element 

context is very easy, it behaves better than the HA-Rayleigh ALID and it requires less CPU time 

than a PML formulation in the same numerical model. Another advantage of the HA-Kosloff ALID 

with respect to the HA-PML is its straightforward extension to three-dimensional elastodynamics 

problems. Thus, 3D hybrid asynchronous Kosloff absorbing layers has been easily extended to the 

3D case using explicit/implicit and explicit/explicit co-simulation. The difference between the two 

strategies co-simulation is compared in terms of accuracy and computation time.  
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Chapter 4 

4. Three-dimensional hybrid 

asynchronous PML 

  

      In this chapter, we focus on the development of one hybrid (different time integrators) 

asynchronous (different time steps) three-dimensional unsplit−field displacement-based PML 

formulation for modelling heterogeneous elastic infinite media, extending previous works done in 

two dimension (Brun et al., 2016). The proposed unsplit 3D PML formulation is implemented in 

the framework of Hybrid Asynchronous Time Integrator (HATI), using a novel efficient method 

for calculating the internal force. Contrarily to Rayleigh and Kosloff absorbing layers, the 

extension of PML to three-dimensional elastodynamics problems is not straightforward, due to 

different formulations and additional unknowns introduced when the 3D PML is expressed in the 

time domain.   

       By studying the strong form of wave propagation in PML media, the classical design equation 

of the PML is derived, enabling us to choose appropriate parameters for the PML. The frequency-

independent absorbing capabilities of the PML turns out to be very similar to the case of absorbing 

layers with Kosloff damping (1986), but with the advantage of being reflectionless at the interface 

between the non-dissipative interior domain and the PML. The weak formulation leading to a novel 

efficient method for calculating the internal force in three-dimensional PML domain has been 

coupled with the interior domain using the dual Schur approach. It allows to avoid the introduction 

of complex-coordinate-stretched equations in the interior domain and enables the appropriate time 

integration scheme in the PML with its own time step to be chosen, independently of the choice of 
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the time scheme in the domain of interest. Examples of three-dimensional semi-infinite bar, Lamb’s 

test, and one classical soil–structure interaction problem with PML-truncated semi-infinite 

heterogeneous media are implemented to illustrate the efficiency of the hybrid asynchronous 

formulation in terms of accuracy and CPU time.   

      This chapter is a modified version of the article submitted to International Journal for 

Numerical Methods in Engineering: 

Li S, Brun M, Zafati E, Djeran-Maigre I and Kuznetsov S (2019). Three-dimensional hybrid 

asynchronous perfectly matched layer for wave propagation in unbounded domains. International 

Journal for Numerical Methods in Engineering.  
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4.1 Design of Perfectly Matched Layer  

      The PML model is formulated by introducing the complex-valued stretching functions into the 

classical elastodynamic equations in the frequency domain. The main idea is to replace the real 

coordinates 𝑥𝑖, which denotes the x, y and z coordinates for the index equal to 1, 2 and 3, by the 

complex ones 𝑥̃𝑖 : ℝ → ℂ . The complex coordinates are defined by: 

𝜕𝑥̃𝑖
𝜕𝑥𝑖

= 𝜆𝑖(𝑥𝑖) = 1 + 𝑓𝑖
𝑒(𝑥𝑖) +

𝑓𝑖
𝑝(𝑥𝑖)

𝑖𝜔
                                          (4.1) 

      In the above equation, 𝜔 denotes the circular frequency, the attenuation function 𝑓𝑖
𝑝
which is 

positive real-valued as a function of 𝑥𝑖, serves to attenuate the propagating waves in the 𝑥𝑖 direction, 

whereas the scaling function  𝑓𝑖
𝑒  attenuates the evanescent waves by stretching the coordinate 

variable 𝑥𝑖. It has to be noted that this expression is the same as the ones chosen by Kucukcoban 

and Kallivokas (2013) and Fathi et al. (2015).  It is slightly different from the one adopted by Basu 

and Chopra (2003, 2004) and Basu (2009) in order to avoid introducing a characteristic length of 

the problem under consideration. 

      In the following, we focus on the propagating waves in the 1D case, in order to design the PML 

attenuation performance by studying the effect of the damping function 𝑓𝑖
𝑝
 on the attenuation in 

the PML as well as on the wave reflection at the interface between a non-dissipative elastic medium 

and the dissipative PML. Indeed, the design of PML aims at damping out all the incident waves 

from the domain of interest while minimizing the spurious waves reflected at the boundary of the 

truncated domain. For this purpose, the strong form of wave propagation in 1D PML media is 

investigated in order to obtain the absorbing capabilities of PML. It will be shown that attenuation 

formulation proposed by Kosloff and Kosloff (1986), shares the same absorbing and frequency-

independent capabilities of the PML, as underlined by Carcione and Kosloff (2013). In addition, 

the non-reflecting characteristic at the interface between a non-dissipative elastic medium and PML 

medium will be analytically demonstrated by considering the continuous problem of wave 

propagation, contrarily to the Kosloff medium which is not reflectionless in theory at the interface. 
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4.1.1 1D Wave propagation in PML medium 

      The governing equations in elastodynamics are modified by the complex-coordinate-stretching. 

The displacement in one–dimensional PML medium is governed by the modified equations:  

1

𝜆(𝑥)

𝜕𝜎

𝜕𝑥
= −𝜌𝜔2𝑢                                                             (4.2) 

𝜀 =
1

𝜆(𝑥)

𝜕𝑢

𝜕𝑥
                                                                  (4.3) 

𝜎 = 𝐸𝜀                                                                       (4.4) 

Eqs. (4.2) to (4.4) constitute the strong form in frequency domain of one–dimensional PML 

medium, 𝜎, 𝜀,   𝜌,  being the scalar values, denoting the stress, the strain and the density, 

respectively. 𝐸 is Young’s modulus for P waves. For S waves, same equations hold by replacing 

Young’s modulus 𝐸  by shear modulus  𝐺 . It can be seen that the equation of motion and 

deformation equation have been modified with the introduction of complex-valued stretching 

function 𝜆(𝑥), the elastic constitutive relationship remains intact.  

      The deformation equation and the elastic constitutive relationship are used to replace the stress 

term in the equation of wave propagation as:  

𝐸
1

𝜆(𝑥)2
𝜕2𝑢

𝜕𝑥2
= −𝜌𝜔2𝑢                                                       (4.5) 

      We adopt the following scaling and attenuation functions  𝑓𝑒 = 0,  𝑓𝑝 = 𝛽,  𝛽 being a constant 

positive real value. It gives the expression of the complex-valued stretching function:   

𝜆(𝑥) = 1 −
𝑖𝛽

𝜔
                                                             (4.6) 

      Introduce 𝜆(𝑥) in the equation of motion:  

𝐸
𝜕2𝑢

𝜕𝑥2
= 𝜌(𝜔𝑖)2𝑢 + 2𝜌(𝜔𝑖)𝑢𝛽 + 𝜌𝑢𝛽2                                    (4.7) 

      The dependence of the complex coordinates on the factor 𝑖𝜔 allows for an easy application of 

the inverse Fourier transform when expressing the PML in the time domain. So, we apply the 
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inverse Fourier transform to obtain the wave propagation in the time domain of PML medium as 

follows: 

𝐸
𝜕2𝑢

𝜕𝑥2
= 𝜌𝑢̈ + 2𝜌𝑢̇𝛽 + 𝜌𝑢𝛽2                                                  (4.8) 

      Here, it can be remarked that the above equation of motion is the same as the Kosloff damping 

formulation originally proposed by Kosloff and Kosloff (1986) before the seminal paper of 

Bérenger (1994) on PML for electromagnetic waves. As a result, it will be shown in the following 

that same attenuation capabilities will be derived for Kosloff medium as the ones related to PML 

medium.      

      By introducing the harmonic solution 𝑢(𝑥, 𝑡) = 𝑢0exp (𝑖(𝜔0𝑡 − 𝑘𝑥)), the expression of the 

wave number 𝑘 can be obtained: 

𝑘 =
𝜔0
𝑣
(1 − 𝑖

𝛽

𝜔0
)                                                           (4.9) 

where 𝑣 denotes the velocity of P waves or S waves. The expression of the propagating wave in 

the 1D PML medium is shown below: 

𝑢(𝑥, 𝑡) = 𝑢0 𝑒𝑥𝑝( 𝑖(𝜔0𝑡 − 𝑘0𝑥)) 𝑒𝑥𝑝 (−
𝛽𝑥

𝑣
)                                (4.10) 

      Using the previous expression in Eq. (4.10), the absorbing capability of PML is given in form 

of logarithmic decrement as a function of the thickness and the constant attenuation scalar of the 

PML: 

𝛿 = ln (
|𝑢(𝑥)|

|𝑢(𝑥 + Δ𝑥)|
) =

𝛽Δ𝑥

𝑣
                                               (4.11) 

      It can be seen that the wave frequency 𝜔0 has no influence on the absorbing ability of PML 

with regard to the logarithmic decrement, which means that all waves with all frequencies can be 

attenuated in the same way. Thus, PML turns out to be independent of frequency. The velocity of 

P waves is higher than the velocity of S waves for the same medium. In other words, based on the 

above relationships, in order to reach the same logarithmic decrement, the layer thickness for 

damping out S waves is smaller than the one related to P waves. As a result, the velocity of P waves 

𝑣𝑝  will be adopted for the design of absorbing layer. Again, it should be remarked that PML 
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medium has the same wave propagation form in the time domain as in Kosloff medium because 

both media have the same equation of motion as given in Eq. (4.8). However, the behavior of the 

PML medium at the interface with the non-dissipative medium turns out to be better than the 

Kosloff medium. In comparison with Kosloff medium, the change in the deformation equation will 

lead PML to achieve a non-reflecting characteristic at the interface between elastic media and PML 

medium, as demonstrated in the following.  

 

4.1.2 Wave propagation from elastic media into PML medium 

      The wave propagation problem from an elastic medium to a PML medium is considered below 

in the case of the 1D harmonic waves. Three components have to be taken into account: the incident 

wave 𝑢1, the transmitted wave 𝑢2, and the reflected wave 𝑢𝑅, as shown in Fig.4-1. 

 

 

Figure 4-1   Wave propagation from elastic medium to PML medium 

 

𝑢1(𝑥, 𝑡) = 𝐴exp [𝑖𝜔0(𝑡 −
𝑥

𝑣1
)]                                                   (4.12) 

𝑢2(𝑥, 𝑡) = 𝑇exp [𝑖𝜔0(𝑡 −
𝑥

𝑣2
)]exp [−

𝛽𝑥

𝑣2
]                                         (4.13) 

𝑢𝑅(𝑥, 𝑡) = 𝑅𝑒𝑥𝑝 [𝑖𝜔0(𝑡 +
𝑥

𝑣1
)]                                                  (4.14) 

      Based on the continuity of displacements and equilibrium of stresses at the interface, we can 

write: 

𝑢2(𝑥 = 0, 𝑡) = 𝑢1 + 𝑢𝑅(𝑥 = 0, 𝑡)                                             (4.15) 
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𝐸2
𝜆(𝑥)

𝜕𝑥𝑢2(𝑥 = 0, 𝑡) = 𝐸1(𝜕𝑥𝑢1 + 𝜕𝑥𝑢𝑅)(𝑥 = 0, 𝑡)                                (4.16) 

      From the continuity of displacements at the interface Eq. (4.15), we have  

𝑇 = 𝐴 + 𝑅                                                                  (4.17) 

      By substituting Eqs. (4.12-4.14) in Eq. (16) and using the definition of the complex stretching 

function given in Eq. (4.6), the continuity of stresses can be expressed as:   

𝐸2

1 +
𝛽
𝑖𝜔0

[(−
𝑖𝜔0
𝑣2
)𝑇 + (−

𝛽

𝑣2
) 𝑇] = 𝐸1(

𝑖𝜔0
𝑣1

𝑅 −
𝑖𝜔0
𝑣1

𝐴)                      (4.18) 

      Assuming the same Young modulus and wave velocities in both media, and using the definition 

of the complex stretching function given in Eq. (4.6), the continuity of stresses at the interface can 

be simplified as: 

𝑇 = 𝐴 − 𝑅                                                                    (4.19) 

      Finally, taken into account the Eq. (4.17), we derive the remarkable property of the PML: 

𝑇 = 𝐴, 𝑅 = 0                                                                (4.20) 

      This means that the incident wave is equal to the transmitted wave; no reflected wave will be 

produced at the interface. In other words, the PML is completely reflectionless in theory and this 

is true for all constant attenuation parameters 𝛾. As underlined before, the difference between the 

two formulations lies in the interface behavior, which is reflectionless in the case of the PML in 

contrast to the Kosloff medium. The introduction of the complex-valued stretching function in the 

deformation equation leads PML to achieve a non-reflecting characteristic at the interface. 

Nonetheless, this property is only valid in the absence of discretization. We note that, although 

there is no reflection at the interface analytically, the spatial discretization will introduce spurious 

reflections at the interface, so optimal PML’s parameters need to be applied in order to minimize 

these numerical reflections. The real-valued positive functions should be monotonically increasing 

and vanish at the interface so that the contrast is minimized, in the discrete setting, between the 

physical domain and the unphysical PML. Classically, the damping function  𝑓𝑝  is written as a 

polynomial of degree 𝑛 as shown below:  
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𝛽(𝑥) = 𝛽0 (
𝑥 − 𝑥0
𝐿

)
𝑛

                                                   (4.21) 

where 𝛽0 is user-tunable scalar parameters. In fact, the larger 𝛽0 is, the larger the discretization 

errors become. In other words, more spurious reflected waves will be produced at the interface 

with larger 𝛽0, as it will be shown in the following numerical investigations.                     

      The logarithmic decrement of PML domain 𝛿  is obtained by integrating Eq. (4.11) in the 

thickness of the PML: 

𝛿 = ∫
𝛽0
𝑣𝜌
(
𝑥 − 𝑥0
𝐿

)
𝑛𝐿

𝑥0

𝑑𝑥 =
𝛽0𝐿

(n + 1)𝑣𝜌
                                       (4.22) 

      We define the attenuation coefficient 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 from the logarithmic decrement:   

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = (
|𝑢(𝑥 + 𝐿)|

|𝑢(𝑥)|
)

2

= 𝑒−2𝛿                                         (4.23) 

      For instance, if the goal is to reach a target logarithmic decrement δ=ln (10), it means that 90% 

of the amplitude of the incident wave will be absorbed from the interface to the end of PML. Next, 

the attenuation also occurs for the reflection process from the end of the PML towards the interface. 

Hence, the incident wave is attenuated by 99% and the attenuation coefficient 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛  is 

theoretically equal to 1% before the space and time discretization.  

      Finally, we can propose the general formula to design PML based on the presented 1D 

harmonic wave problem in PML medium. After choosing the 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛, the total thickness 𝐿 

and the power 𝑛 of the damping function,  𝛽0 can be obtained: 

𝛽0 =
(𝑛 + 1)

2𝐿
× 𝑣𝜌 × ln (

1

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛
)                                         (4.24) 

 

4.2 Three-dimensional PML  

      In this section, the discrete formulation of the PML for three-dimensional elastodynamics will 

be presented, leading to the novel efficient method for calculating the internal force in PML domain. 
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The main steps of the PML development will be resumed and the details about matrices related to 

the derivatives of the shape functions of the hexahedral element, combined with attenuation and 

scaling functions of the PML, can be found in Appendix A.  

 

4.2.1 Strong form of the three-dimensional PML 

      As shown in section 4.1, the PML formulation is obtained by modifying the governing 

equations defined in frequency domain. The frequency-domain equations for PML is obtained by 

applying the complex-valued stretching functions related to the three directions: 

∑
1

𝜆𝑗(𝑥𝑗)

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
𝑗

= −𝜔2𝜌𝑢𝑗                                                   (4.25) 

𝜎𝑖𝑗 =∑ 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗
𝑘,𝑙

                                                         (4.26) 

𝜀𝑖𝑗 =
1

2
[

1

𝜆𝑗(𝑥𝑗)

𝜕𝑢𝑖
𝜕𝑥𝑗

+
1

𝜆𝑖(𝑥𝑖)

𝜕𝑢𝑗

𝜕𝑥𝑖
]                                           (4.27) 

where 𝐶𝑖𝑗𝑘𝑙  are the components of the elastic constitutive tensor. 

      Then, we introduce the following notations for the PML region: 𝛺𝑃𝑀𝐿 is the region of the PML, 

bounded by the 𝛤𝑃𝑀𝐿 = 𝛤𝑃𝑀𝐿
𝐷 + 𝛤𝑃𝑀𝐿

𝑁 , where 𝛤𝑃𝑀𝐿
𝐷 ∩ 𝛤𝑃𝑀𝐿

𝑁 = ∅, defining the decomposition of the 

boundary conditions into Dirichlet and Neumann conditions. In addition, 𝑔𝑁 denotes the prescribed 

tractions on 𝛤𝑃𝑀𝐿
𝑁  and 𝐽 = [0, 𝑇]  is the time interval of interest.  

      Thanks to the introduction of the stretching functions expressed in Eq. (4.1), the inverse Fourier 

transform can be easily applied to the previous frequency-domain equations, leading to the 

following equations in time domain: 

 

𝑑𝑖𝑣 (𝜎 𝐹̃𝑒𝑒 + 𝛴  𝐹̃𝑒𝑝 + 𝛴̃  𝐹̃𝑝𝑝) = 𝜌𝑓𝑀𝑢̈ + 𝜌𝑓𝐶𝑢̇ + 𝜌𝑓𝐾𝑢 + 𝜌𝑓𝐻𝑈                    (4.28) 

𝜎 = 𝐶: 𝜀                                                                     (4.29) 
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 𝐹𝑒𝑇𝜀̇ 𝐹𝑒 + ( 𝐹𝑝𝑇𝜀  𝐹𝑒 +  𝐹𝑒𝑇𝜀  𝐹𝑝) + 𝐹𝑝𝑇𝐸  𝐹𝑝

= 
1

2
[ 𝐹𝑒𝑇(∇ 𝑢̇) + (∇ 𝑢̇)

𝑇
 𝐹𝑒] +

1

2
[ 𝐹𝑝𝑇(∇ 𝑢) + (∇ 𝑢)

𝑇
 𝐹𝑝]                          (4.30) 

 

      The first equation of the above system is the equation of motion in the PML, complemented 

with clamped Dirichlet conditions and zero traction forces at the Neumann conditions: 

{
𝑢 = 0                                                  𝑜𝑛  Γ𝑃𝑀𝐿

𝐷  

(𝜎 𝐹̃𝑒𝑒 + 𝛴 𝐹̃𝑒𝑝 + 𝛴̃ 𝐹̃𝑝𝑝)𝑛 = 0  𝑜𝑛  Γ𝑃𝑀𝐿
𝑁                                 (4.31) 

      In addition to the stress tensor, the time-domain PML involves the time-integral of the stress 

tensor and the time-integral of the time-integral stress tensor, defined by:  

 

 Σ = ∫ 𝜎 d𝑡
𝑡

0

,   Σ̃ = ∫ Σd𝑡 
𝑡

0

                                                   (4.32) 

      It is also noted that the equation of motion is now a third-order differential equation, with four 

fields: the classical displacement, velocity and acceleration fields, complemented with the time 

integral of the displacement expressed as: 𝑈 = ∫ 𝑢 d𝜏
𝑡

0
. Same equation of motion has been obtained 

by Basu (2009) with one multiplicative factor coming from a slightly different choice of the 

stretching function as previously discussed. The second equation represents the classical 

constitutive relationship for an elastic medium. The third equation is the PML strain-deformation 

relationship, identical to Basu’s formulation, which involves the time-integral of the displacement 

and the time integral of the strain tensor given by:  

𝑈 = ∫ 𝑢 d𝑡
𝑡

0

,   𝐸 = ∫ 𝜀 d𝑡
𝑡

0

                                                  (4.33) 

      All the matrices involved in Eqs (4.28) and (4.30) depend on scaling functions 𝑓𝑖
𝑒(𝑥𝑖) and 

attenuation functions 𝑓𝑖
𝑝(𝑥𝑖). Their expressions are given in Appendix A.  
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4.2.2 Weak form of the three-dimensional PML 

      The space discretization is displacement-based, following a standard finite element formulation 

as proposed by Basu (2009). The space and time discretization is summarized in the following, 

before presenting the time coupling of hybrid multi-time step PML with the physical domain. Let 

𝜐 be the test function belonging to an appropriate space, the weak formulation is obtained by 

integrating over the computational domain:  

∫ 𝜌𝑓𝑀𝜐 ∙ 𝑢̈dΩ
Ω

+∫ 𝜌𝑓𝐶𝜐 ∙ 𝑢̇dΩ
Ω

+∫ 𝜌𝑓𝐾𝜐 ∙ 𝑢dΩ
Ω

+∫ 𝜌𝑓𝐻𝜐 ∙ 𝑈dΩ
Ω

+∫ 𝜀̃𝑒𝑒: 𝜎dΩ
Ω

+∫ 𝜀̃𝑒𝑝: 𝛴dΩ
Ω

+∫ 𝜀̃𝑝𝑝: 𝛴̃dΩ
Ω

= ∫ 𝜐 ∙ (𝜎  𝐹̃𝑒𝑒 + 𝛴 𝐹̃𝑒𝑝 + 𝛴̃ 𝐹̃𝑝𝑝) ∙ 𝑛dΓ
Γ𝑁

(4.34) 

with the expression of the modified strain tensors, taking into account the scaling and damping 

functions:  

{
 
 

 
 𝜀̃𝑒𝑒 =

1

2
[(∇𝜐) 𝐹̃𝑒𝑒 +  𝐹̃𝑒𝑒𝑇(∇𝜐)

𝑇
]

𝜀̃𝑒𝑝 =
1

2
[(∇𝜐) 𝐹̃𝑒𝑝 +  𝐹̃𝑒𝑝𝑇(∇𝜐)

𝑇
]

𝜀̃𝑝𝑝 =
1

2
[(∇𝜐) 𝐹̃𝑝𝑝 +  𝐹̃𝑝𝑝𝑇(∇𝜐)

𝑇
]

                                        (4.35) 

      The internal force is expressed as: 

𝑝𝑖𝑛𝑡
𝑒 = ∫ 𝜀̃𝑒𝑒: 𝜎𝑑𝛺

𝛺

+∫ 𝜀̃𝑒𝑝: 𝛴𝑑𝛺
𝛺

+∫ 𝜀̃𝑝𝑝: 𝛴̃𝑑𝛺
𝛺

                           (4.36) 

 

4.2.3 Finite element discretization 

      We consider in the following the space discretization for a classical 8-node hexahedral element 

with linear shape functions. The approximation of the displacement is given by: 𝑢𝑒(𝑥, 𝑦, 𝑧) =

𝐍(𝑥, 𝑦, 𝑧)𝐔𝐞 , where 𝐔𝐞 gathers the nodal displacements of the 8 nodes, of size 24 × 1;  the matrix 

𝐍(𝑥, 𝑦, 𝑧), of size 3 × 24, contains the nodal shape functions:  𝐍(𝑥, 𝑦, 𝑧) = [𝑁1𝐈 𝑁2𝐈   ⋯ 𝑁8𝐈], 

with 𝐈 the 3 × 3 identity matrix.  
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      Introducing the finite element discretization into the weak form of the equation of motion in 

Eq. (34), the semi-discrete equation of motion can be derived:  

𝐌𝐔̈ + 𝐂𝐔̇ + 𝐊𝐔 + 𝐊̅𝐔̅ + 𝐏𝐢𝐧𝐭 = 𝐏𝐞𝐱𝐭                                            (4.37) 

      The inertial system matrices M, C, K and 𝐊 are assembled from their respective element-level 

matrices. The element-level matrices are obtained by adopting a quadrature formula in every 

hexahedral element: 

𝑴𝐞 = ∫ 𝜌𝑓𝑀𝐍
𝐓𝐍 dΩ

Ωe
                                                         (4.38) 

𝐂𝐞 = ∫ 𝜌𝑓𝐶𝐍
𝐓𝐍 dΩ

Ω𝑒
                                                          (4.39) 

𝐊e = ∫ 𝜌𝑓𝐾𝐍
𝐓𝐍 dΩ

Ω𝑒
                                                         (4.40) 

𝐊
𝐞
= ∫ 𝜌𝑓𝐻𝐍

𝐓𝐍 dΩ
Ω𝑒

                                                         (4.41) 

      Taking into account Eq. (4.35), the internal force term 𝐏𝐢𝐧𝐭
𝐞  can be written as: 

𝐏𝐢𝐧𝐭
𝐞 = ∫ 𝐁̃𝐞𝐞𝐓𝛔̂dΩ

Ω𝑒
+∫ 𝐁̃𝐞𝐩𝐓𝚺̂dΩ

Ω𝑒
+∫ 𝐁̃𝐩𝐩𝐓𝚺̂̃dΩ

Ω𝑒
                                (4.42) 

where the matrices 𝐁̃𝐞𝐞, 𝐁̃𝐞𝐩 and 𝐁̃𝐩𝐩 depend on the derivatives of the shape functions and the 

scaling and attenuation functions of the PML. Their expressions are placed in Appendix A. In Eq. 

(4.42), we use the Voigt notation, with 𝛔̂ representing the 6-component vector of stresses and 𝚺̂, 𝚺̂̃ 

the successive time integrals of stresses.  

      For the time stepping procedure over the time step  [𝑡𝑛; 𝑡𝑛+1], additional relationships are 

assumed:   

𝐄̂𝐧+𝟏 = 𝐄̂𝐧 + 𝛆̂𝐧∆𝑡,     𝚺̂𝒏+𝟏 =  𝚺̂𝒏 + 𝛔̂𝐧∆𝑡, 𝚺̂̃𝐧+𝟏 = 𝚺̂̃𝒏 + 𝚺̂̃∆𝑡                     (4.43) 

𝛆̂̇𝐧+𝟏 =
𝛆̂𝐧+𝟏 − 𝛆̂𝐧

∆𝑡
                                                              (4.44) 
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      Using the assumptions given in Eq. (4.44), the third equation of the system in Eq. (4.30) leads 

to the expression of the strain 𝛆̂𝐧+𝟏 at the end of the time step: 

𝛆̂𝐧+𝟏 =
1

Δ𝑡
[
1

Δ𝑡
𝐅̂𝛆𝛆̂𝐧 − 𝐅̂

𝐐𝐄̂𝐧 + 𝐁
𝛆𝐔̇𝐧+𝟏 + 𝐁

𝐐𝐔𝐧+𝟏]                             (4.45) 

      The matrices 𝐅̂𝛆 and 𝐅̂𝐐, 𝐁𝛆, 𝐁𝐐 depending on derivatives of shape functions as well as scaling 

and attenuation functions are defined in Appendix A. It has to be noted that the above strain-

deformation relationship in the three-dimensional case is the same as in the two-dimensional case 

(Brun et al., 2016). 

      Here, the internal force is decomposed into two parts. A first part of the internal force will 

contain only known quantities at the time 𝑡𝑛, whereas the remaining part will contain the unknown 

quantities at the time 𝑡𝑛+1. Thus, the element-wise internal force vector 𝐏𝐧+𝟏
𝐞  can be written in 

terms of the element velocity and displacement vectors (𝐔̇𝐧+𝟏
𝐞  and 𝐔𝐧+𝟏

𝐞 ) as well as a term, denoted 

𝐏(𝛆𝐧
𝐞 , 𝐄𝐧

𝐞 ,  𝚺𝐧
𝐞 ,  𝚺̃𝐧

𝐞) , depending only on known quantities at the beginning of the time step. The 

element-wise internal force 𝐏𝐧+𝟏
𝐞  is written as: 

𝐏𝐧+𝟏
𝐞 = (∫ 𝐁̃𝐓

Ωe

1

𝛥𝑡
𝐃𝐁𝛆𝑑𝛺) 𝐔̇𝐧+𝟏 + (∫ 𝐁̃𝐓

Ωe

1

𝛥𝑡
𝐃𝐁𝐐𝑑𝛺)𝐔𝐧+𝟏 + 𝐏(𝛆𝐧

𝐞 , 𝐄𝐧
𝐞 ,  𝚺𝐧

𝐞 ,  𝚺̃𝐧
𝐞)   (4.46) 

with the matrix 𝐁̃ defined as a function of the previous matrices 𝐁̃𝐞𝐞, 𝐁̃𝐞𝐩 and 𝐁̃𝐩𝐩 and the time 

step as follows: 

𝐁̃ = 𝐁̃𝐞𝐞 + Δ𝑡𝐁̃𝐞𝐩 + Δ𝑡2 𝐁̃𝐩𝐩                                                  (4.47) 

      The known part of the internal force at the beginning of the time step is given by:  

𝐏(𝛆𝐧
𝐞 , 𝐄𝐧

𝐞 ,  𝚺𝐧
𝐞 ,  𝚺̃𝐧

𝐞) = (∫ 𝐁̃𝐓

Ω𝑒

1

Δ𝑡2
𝐃𝐅𝛆𝛆𝐧𝑑𝛺) − (∫ 𝐁̃𝐓

Ω𝑒

1

Δ𝑡
𝐃𝐅𝐐𝐄𝐧𝑑𝛺) 

+(∫ 𝐁̃𝐞𝐩
𝐓
𝚺𝐧

Ω𝑒

𝑑𝛺) + (∫ 𝐁̃𝐩𝐩
T

Ωe

𝚺̃𝐧𝑑𝛺) + (∫ 𝐁̃𝐩𝐩
𝐓
𝛥𝑡

Ω𝑒

𝚺𝒏𝑑𝛺)                (4.48) 

      In order to express the part of the internal force which has to be computed at the end of the time 

step given by the two first terms in Eq. (4.46), the element-level matrices are defined by:  
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𝐂̃𝐞 = ∫ 𝐁̃𝐓

Ω𝑒

1

Δ𝑡
𝐃𝐁𝛆𝑑𝛺                                                      (4.49) 

𝐊̃𝐞 = ∫ 𝐁̃𝐓

Ω𝑒

1

Δ𝑡
𝐃𝐁𝐐𝑑𝛺                                                     (4.50) 

      These two matrices can be viewed as one viscous matrix operating on velocities and one 

additional stiffness matrix operating on displacements. Finally, after assembling the element 

matrices given in Eqs. (4.38-4.41) and Eqs. (4.49-4.50), the space and time discrete equation of 

motion is obtained at the end time 𝑡𝑛+1: 

𝐌𝐔̈𝐧+𝟏 + (𝐂 + 𝐂̃)𝐔̇𝐧+𝟏 + (𝐊 + 𝐊̃)𝐔𝐧+𝟏 + 𝐊̅𝐔̅𝐧+𝟏 + 𝐏(𝛆𝐧, 𝐄𝐧, 𝚺𝐧, 𝚺̃𝐧) = 𝐅𝐞𝐱𝐭             (4.51) 

      The above equation is third-order in time, requiring specific time integration procedure. 

Analogous third-order discrete form in time has been derived by Fathi et al. (2015) by following a 

mixed approach in the PML, with unknown kinematic quantities at the time 𝑡𝑛+1  as above, 

completed with unknown stress quantities. Then, the authors opted for a hybrid treatment, initially 

developed by Kucukcoban et al. (2013) in 2D problems, where the domain of interest is classically 

dealt with a displacement-only formulation, coupled with the mixed displacement-stress 

formulation in the PML region. The coupling between the partitions belongs to primal coupling 

technique, with some degrees of freedom shared by the two partitions.   

      Here, a dual approach is preferred for coupling the elastic domain and the PML. Indeed, the 

elastic domain and the PML will be integrated in time, using the powerful and flexible framework 

of Hybrid Asynchronous Time Integrator (HATI), in order to be able to choose in each partition 

the appropriate time integrator with its own time step, while conserving classical finite element 

formulation in other subdomains.  
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4.3 Hybrid multi-time step coupling between the physical domain and 

PML   

      Let Ω be a bounded domain belonging to ℝ3 with a regular boundary. J= [0, T] is the time 

interval of interest. The domain Ω is divided into two partitions 𝛺1 and 𝛺2, as shown in Fig.1-4, 

such as: 𝛺1⋂𝛺2 = ∅ and ∂𝛺1⋂∂𝛺2 = 𝛤𝐼. 𝛤𝐼 denotes the interface between the two subdomains, 

subdomain 𝛺1 representing the non-dissipative medium (the domain of interest) and subdomain 

𝛺2 the PML medium. The subdomain 1 is related to a linear elastic behavior and the subdomain 2 

is related to the PML region previously presented. The subdomain 𝛺1  is characterized by its 

density 𝜌1 , Young’s modulus 𝐸1 , Poisson’s coefficient 𝜈1 , 𝑏1  the body force, 𝑢1
𝐷 the Dirichlet 

prescribed displacement on 𝛤1
𝐷 and 𝑔1

𝑁the traction force at the Neumann condition on 𝛤1
𝑁. The 

subdomain Ω2 is characterized by its density 𝜌2, Young’s modulus 𝐸2, Poisson’s coefficient 𝜈2, 𝑏2 

the body force,  𝑢2
𝐷  the Dirichlet prescribed displacement on 𝛤2

𝐷 , 𝑔2
𝑁  the traction force at the 

Neumann condition on 𝛤2
𝑁. 

 

Figure 4-2   Domain Ω divided into two subdomains Ω1 (Explicit) and Ω2 (Implicit). 

 

      As already done in previous chapters for Rayleigh and Kosloff damping, we write writing the 

weak form of the coupled problem. Find the solution 𝑢1(𝑡) ∈ 𝑊1, 𝑢2(𝑡) ∈ 𝑊2 and 𝜆(𝑡) ∈ 𝑄 , for 

which the following weak form is satisfied ∀𝑣1 ∈ 𝑊1
∗, ∀𝑣2 ∈ 𝑊2

∗ and ∀𝜇 ∈ 𝑄: 
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∫ 𝜌1𝑣1 ∙ 𝑢̈1𝑑Ω
Ω1

+∫ 𝜀(𝑣1): 𝜎1𝑑Ω
Ω1

+∫ 𝜌𝑓𝑀𝑣2 ∙ 𝑢̈2dΩ
Ω2

+∫ 𝜌𝑓𝐶𝑣2 ∙ 𝑢̇2dΩ
Ω2

+∫ 𝜌𝑓𝐾𝑣2 ∙ 𝑢2dΩ
Ω2

+∫ 𝜌𝑓𝐻𝑣2 ∙ 𝑈2dΩ
Ω2

+∫ 𝜀̃𝑒𝑒: σdΩ
Ω2

+∫ 𝜀̃𝑒𝑝: ΣdΩ
Ω2

+∫ 𝜀̃𝑝𝑝: Σ̃dΩ
Ω2

+∫ 𝑣1 ∙ 𝜆𝑑Γ
Γ𝐼

+∫ 𝑣2 ∙ 𝜆𝑑Γ
Γ𝐼

+∫ 𝜇 ∙ (𝑢̇1 − 𝑢̇2)𝑑Γ
Γ𝐼

= ∫ 𝑣1 ∙ 𝑏1𝑑Ω
Ω1

+∫ 𝑣1 ∙ 𝑔1
𝑁𝑑Γ

Γ1
𝑁

+∫ 𝑣2 ∙ (𝜎𝐹̃
𝑒𝑒 + Σ𝐹̃𝑒𝑝 + Σ̃𝐹̃𝑝𝑝)𝑛dΓ

Γ2
𝑁

     (4.52) 

      Then, we follow the classical lines of the finite element discretization. At the interface between 

the subdomains, the continuity of velocities is imposed by the following condition:  

𝐋𝟏𝐔̇𝟏 + 𝐋𝟐𝐔̇𝟐 = 0                                                                  (4.53)               

where 𝐋𝟏  and 𝐋𝟐 are the constraint matrices of boolean type in the case of matching meshes at the 

interface ΓI. They operate on nodal vectors associated with the two subdomains Ω1 and Ω2; they 

pick out the degrees of freedom belonging to the interface 𝛤 in order to ensure the kinematic 

continuity at the interface. 𝐋𝟏 can be viewed as a restricted operator, from the subdomain Ω1 to the 

interface 𝛤𝐼, whereas the transpose operator 𝐋𝟏
𝐓  is a prolonged operator from the interface 𝛤𝐼 to the 

subdomain Ω1.  In the case of non-matching meshes, mortar approach has to be applied, leading to 

non-boolean constraint matrices 𝐋𝟏 and 𝐋𝟐. (Zuchowski et al., 2018). The interface terms in the 

weak form in Eq. (4.52), involving the Lagrange multiplier field, can be expressed as:  

{
 
 

 
 ∫ 𝑣1 ∙ 𝜆𝑑Γ

Γ𝐼

= 𝐕𝟏
𝐓𝐋𝟏

𝐓𝛌

∫ 𝑣2 ∙ 𝜆𝑑Γ
Γ𝐼

= 𝐕𝟐
𝐓𝐋𝟐

𝐓𝛌

                                                   (4.54) 

      From the weak form of the global problem in Eq. (4.52), the semi-discrete equations in space 

can be derived, corresponding to the two equations of motion related to the two subdomains, 

completed with a kinematic condition. In the following, the hybrid integration of this set of 

equations will be carried out in order to propose a hybrid asynchronous PML. For the time 

discretization, the GC method proposed by Gravouil and Combescure is employed. Adopting the 

continuity of velocities at the interface, it was demonstrated that the coupling GC method is stable 
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for any time integrators (implicit and explicit) belonging to the Newmark family (Newmark, 1959) 

with their own time step depending on subdomains. Different time integrators with their own time 

step can be adopted depending on the considered subdomain, making the proposed framework very 

useful to couple complex PML formulations while conserving classical finite element formulations 

and time integrators in other subdomains.  

      Here, the subdomain Ω1 is integrated independently in time with a second-order accurate 

Newmark explicit time integration scheme, whereas the subdomain Ω2 is handled by an extended 

third-order accurate Newmark implicit time integration scheme (Fathi et al., 2015). As illustrated 

in Fig.1-4, an explicit time integrator with a fine time step Δt1 imposed by the CFL condition is 

adopted for the subdomain Ω1 and an implicit time integrator with a large time step Δt2 is used for 

subdomain Ω2, because implicit scheme is unconditionally stable, with Δt2 = mΔt1, m being the 

time step ratio between two subdomains. In this way, hybrid (different schemes) asynchronous 

(different time steps depending on subdomains) absorbing layers can be obtained. The equilibrium 

of subdomain 2 is prescribed at time 𝑡𝑚 at the end of the large time step ∆𝑡2 = [𝑡0; 𝑡𝑚] while the 

equilibrium of subdomain 1 is prescribed at the end of every fine time step ∆𝑡1 = [𝑡𝑗−1; 𝑡𝑗]. The 

gluing of the velocity at the interface is written at the fine time scale. 

      Finally, the weak form given in Eq. (4.52) with the velocity continuity equation in Eq. (4.53) 

and the expression of the interface terms as a function of the Lagrange multipliers in Eq. (4.54), 

can be expressed in the following discrete form in space and time: 

𝐌𝟏𝐔̈𝟏
𝐣
+ 𝐊𝟏𝐔𝟏

𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐋𝟏

𝐓𝛌𝐣                                                        (4.55) 

𝐌𝟐𝐔̈𝟐
𝐦 + (𝐂𝟐 + 𝐂̃𝟐)𝐔̇𝟐

𝐦 + (𝐊𝟐 + 𝐊̃𝟐)𝐔𝟐
𝐦 + 𝐊̅𝟐𝐔̅𝟐

𝐦 + 𝐏𝟐(𝛆𝟎, 𝐄𝟎, 𝚺𝟎, 𝚺̃𝟎) = 𝐅𝟐
𝐞𝐱𝐭,𝐦 − 𝐋𝟐

𝐓𝛌̂𝐦 (4.56) 

𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                                                                 (4.57) 

      The first equation is the discrete in space equation of motion of the subdomain Ω1 written at 

the end of the fine time step ∆𝑡1 = [𝑡𝑗−1; 𝑡𝑗], whereas the second equation is the discrete equation 

of motion of the subdomain Ω2, corresponding to the PML medium, written at the end of the large 

time step ∆𝑡2 = [𝑡0; 𝑡𝑚 ]. The third equation is the discrete in space velocity continuity at the 

interface. Subdomain 𝛺1 is integrated in time with a Newmark explicit scheme (𝛽1 = 0 and 𝛾1 =
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1/2), with a lumped mass matrix 𝑀1. We define  𝐔𝟏
𝐣−𝟏,𝐩 

as the predictor displacement and  𝐔̇𝟏
𝐣−𝟏,𝐩

 

as the predictor acceleration, classically introduced in approximate Newmark formula:  

𝐔𝟏
𝐣−𝟏,𝐩 

= 𝐔𝟏
𝐣−𝟏

+ 𝛥𝑡𝐔̇𝟏
𝐣−𝟏

+ (
1

2
− 𝛽1)𝛥𝑡

2𝐔̈𝟏
𝐣−𝟏
                                   (4.58) 

𝐔̇𝟏
𝐣−𝟏,𝐩

= 𝐔̇𝟏
𝐣−𝟏
 + Δ𝑡(1 − 𝛾1)𝐔̈𝟏

𝐣−𝟏
                                               (4.59) 

      The classical approximate Newmark formulas in terms of the displacements and velocities at 

the end of this time step  𝑡𝑗 are expressed in acceleration format as below: 

 𝐔𝟏
𝐣
= 𝐔𝟏

𝐣−𝟏,𝐩
+ 𝛽1Δ𝑡

2𝐔̈𝟏
𝐣
                                                   (4.60) 

𝐔̇𝟏
𝐣
= 𝐔̇𝟏

𝐣−𝟏,𝐩
+ 𝛾𝟏Δ𝑡𝐔̈𝟏

𝐣
                                                      (4.61) 

      Concerning the subdomain 𝛺2, we use an implicit third-order extended Newmark scheme, as 

proposed by Fathi et al. (2015). For the implicit third-order extended Newmark scheme, β2 and γ𝟐 

are usual Newmark parameters related to the classical constant average acceleration scheme, equal 

to 1/4 and 1/2, respectively. 𝛼2 is an additional parameter required for the third-order extended 

Newmark scheme, equal to 1/12. Velocities, displacements and time-integrals of displacement are 

expressed as a function of predictors as follows: 

𝐔̅𝟐
𝐦 = 𝐔̅𝟐

𝟎,𝐩
+ 𝛼2Δ𝑡

3𝐔̈𝟐
𝐦                                                 (4.62) 

𝐔𝟐
𝐦 = 𝐔𝟐

𝟎,𝐩
+ β2Δ𝑡

2𝐔̈𝟐
𝐦                                                 (4.63) 

𝐔̇𝟐
𝐦 = 𝐔̇𝟐

𝟎,𝐩
+ γ𝟐Δ𝑡𝐔̈𝟐

𝐦                                                   (4.64) 

with predictors 𝐔̇𝟐
𝟎,𝐩
 , 𝐔̅𝟐

𝟎,𝐩
, 𝐔̅𝟐

𝟎,𝐩
 defined by: 

𝐔̅𝟐
𝟎,𝐩
= 𝐔̅𝟐

𝟎 + Δ𝑡𝐔𝟐
𝟎 +

Δ𝑡2

2
𝐔̇𝟐
𝟎 + (

1

6
− α𝟐) Δ𝑡

3𝐔̈𝟐
𝟎                        (4.65) 

𝐔𝟐
𝟎,𝐩
= 𝐔𝟐

𝟎 + Δt𝐔̇𝟐
𝟎 + (

1

2
− 𝛽𝟐) Δ𝑡

2𝐔̈𝟐
𝟎                                   (4.66) 

𝐔̇𝟐
𝟎,𝐩
= 𝐔̇𝟐

𝟎 + (1 − 𝛾𝟐)Δ𝑡𝐔̈𝟐
𝟎                                             (4.67) 
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      By introducing the above approximate Newmark formulas into Eqs. (4.55-4.56), it leads to the 

equations of motion whose unknowns to be solved are the acceleration, written as: 

{

          𝐌𝟏𝐔̈𝟏
𝐣
= 𝐅𝟏

𝐞𝐱𝐭,𝐣
− 𝐊𝟏𝐔𝟏

𝐣−𝟏,𝐩
− 𝐋𝟏

𝐓𝛌𝐣                             

𝐌𝟐̃𝐔̈𝟐
𝐦 = −𝐏𝟐(𝛆𝟎, 𝐄𝟎, 𝚺𝟎, 𝚺̃𝟎) − (𝐂𝟐 + 𝐂̃𝟐)𝐔̇𝟐

𝟎,𝐩
− (𝐊𝟐 + 𝐊̃𝟐)𝐔𝟐

𝟎,𝐩
− 𝐊̅𝟐𝐔̅𝟐

𝟎,𝐩
− 𝐋𝟐

𝐓𝛌𝐦

                              𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                                                        

     (4.68) 

where effective stiffness matrices 𝑀̃2 in the PML subdomain is defined by: 

𝐌̃𝟐 = 𝐌𝟐 + 𝛾𝟐𝛥𝑡(𝐂𝟐 + 𝐂̃𝟐) + 𝛽𝟐𝛥𝑡
2(𝐊𝟐 + 𝐊̃𝟐) + 𝛼𝟐𝛥𝑡

3𝐊̅𝟐                          (4.69) 

      Then, the kinematic quantities are divided into two parts: the free and the linked quantities. The 

free quantities are calculated by taking into account the internal and external forces, without 

considering the interface forces, whereas the linked quantities are obtained from the interface loads 

given by the Lagrange multiplier vector  𝛌 . As a result, the equation of motion of the PML 

subdomain is split into two equations:  

𝐌𝟐̃𝐔̈𝟐
𝐟𝐫𝐞𝐞,𝐦 = −𝐏𝟐(𝛆𝟎, 𝐄𝟎, 𝚺𝟎, 𝚺̃𝟎) − (𝐂𝟐 + 𝐂̃𝟐)𝐔̇𝟐

𝟎,𝐩
− (𝐊𝟐 + 𝐊̃𝟐)𝐔𝟐

𝟎,𝐩
− 𝐊̅𝟐𝐔̅𝟐

𝟎,𝐩
           (4.70) 

𝐌𝟐̃𝐔̈𝟐
𝐥𝐢𝐧𝐤,𝐦 = −𝐋𝟐

𝐓𝛌𝐦                                                            (4.71) 

      The complete accelerations are obtained by summing the two parts as: 

𝐔̈𝟐
𝐦 = 𝐔̈𝟐

𝐟𝐫𝐞𝐞,𝐦 + 𝐔̈𝟐
𝐥𝐢𝐧𝐤,𝐦                                                     (4.72) 

      The same procedure is applied to the subdomain Ω1 at each time 𝑡𝑗. Furthermore, the kinematic 

quantities of the subdomain Ω2 at 𝑡𝑗  are interpolated between the free quantities at the beginning 

and at the end of the large time step. Then, by decomposing the velocities into free and linked 

velocities, we can write the velocity continuity at the interface as:  

𝐋𝟏𝐔̇𝟏
𝐥𝐢𝐧𝐤,𝐣

+ 𝐋𝟐𝐔̇𝟐
𝐥𝐢𝐧𝐤,𝐣

= −𝐋𝟏𝐔̇𝟏
𝐟𝐫𝐞𝐞,𝐣

− 𝐋𝟐𝐔̇𝟐
𝐟𝐫𝐞𝐞,𝐣

                                      (4.73) 

      Following the lines of the coupling GC method, it can be shown that the above velocity 

continuity leads to reduced-size interface problem whose unknowns are the Lagrange multipliers: 

𝐇𝛌𝐣 = 𝐛𝐣                                                                    (4.74) 

with the interface operator and the right-hand side member vector defined by: 
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{
𝐇 = 𝛾1Δ𝑡1𝐋𝟏𝐌̃𝟏

−𝟏𝐋𝟏
𝐓 + 𝛾2Δ𝑡2𝐋𝟐𝐌̃𝟐

−𝟏𝐋𝟐
𝐓

𝐛𝐣 = 𝐋𝟏𝐔̇𝟏
𝐟𝐫𝐞𝐞,𝐣

+ 𝐋𝟐𝐔̇𝟐
𝐟𝐫𝐞𝐞,𝐣                                        (4.75) 

      Finally, once derived the Lagrange multiplier vector, the quantities related to the interface 

forces in the first equation of the set of equations (4.68) can be computed and the fine time step 

∆𝑡1 = [𝑡𝑗−1; 𝑡𝑗] is completed by summing these linked quantities to the free quantities previously 

obtained. Same procedure is applied for every fine time steps ∆𝑡1, by looping over the large time 

step ∆𝑡2 = [𝑡0; 𝑡𝑚]. The last Lagrange multiplier 𝝀𝒎 over the large time step allows to complete 

the large time step and we can then proceed to the next large time step ∆𝑡2. The algorithm for multi-

subdomain coupling has been summarized in Fig. 4-3. 

 

 

Figure 4-3   The algorithm for multi-subdomain coupling in the initialization stage and over a large time  

step 
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4.4 Numerical examples 

4.4.1 Numerical test of a semi-infinite 3D elastic bar  

      Numerical models of a semi-infinite elastic bar subjected to horizontal displacement at the free 

end are established as shown in Figure 4-4. Thus, it simulates the propagation of P waves from a 

non-dissipative elastic medium to a PML medium. The soil subdomain is assumed to be linear 

elastic with the following material characteristics: 𝜌1=1700 kg/m3, 𝐸1=10 MPa and 𝜈1= 0.24. The 

velocity of P-waves  𝐶𝑝  is 83m/s. The same material characteristics are applied in the PML 

subdomain.  

 

Figure 4-4   Numerical model of a semi-infinite elastic 3D bar subjected to horizontal displacement 

 

      To investigate the influence of 𝛾0 on the accuracy, the model is composed of a soil subdomain 

of 300m and a PML subdomain with  𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 equal to 0.01,  𝑛 equal to 2. Different lengths 

from 10m to 300m are investigated, leading to different 𝛽0, on the basis of the general design 

formulae given in Eq. (4.24). The observation point C is located at 20m from the left end of the 

model. The simulation is conducted by using a homogeneous time step in both subdomains and 

will be compared to the reference results using extended mesh.  

      In order to distinguish the difference between the PML results and reference results, the error 

in the PML solution is computed with respect to the reference results from the extended mesh as:  

 error(%) =
max𝑛|𝑢𝑝(𝑡𝑛) − 𝑢𝑟𝑒𝑓(𝑡𝑛)|

max𝑛|𝑢𝑟𝑒𝑓(𝑡𝑛)|
                                          (4.76) 
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where 𝑢𝑟𝑒𝑓 and 𝑢𝑝 are the displacements of the extended mesh model and the PML model. In fact, 

one part of the error comes from the reflections at the interface between the soil and the PML 

subdomain because of the spatial discretization, the other part comes from the end of the PML 

model, depending on 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛. Therefore, the error in the PML solution is the maximal reflection 

between the two parts with respect to the amplitude of the incident wave, which can be called 

maximal numerical reflection coefficient. 

      Non-harmonic waves are investigated by considering a Ricker incident wave defined by the 

chosen values: 𝑡𝑝=3s, 𝑡𝑠=3s and A =1. Thus, the finite element size of the 8-node hexahedral 

elements in the longitudinal direction composing the mesh displayed in Figure 4-4, has to be 

designed to accurately reproduce the propagation of the input Ricker wave. The minimal period for 

the Ricker input can be assessed by the relationship: 𝑇𝑚𝑖𝑛 = 2.5 𝑡𝑝. To reach a sufficient accuracy, 

the FE size for linear finite elements, should respect the following relationship:  𝐿𝐸𝐹 <
𝜆𝑚𝑖𝑛

20
, with 

the minimal wavelength equal to 𝑐𝑃 𝑇𝑚𝑖𝑛.   

 

Figure 4-5    𝛽0 and maximal numerical reflection as a function of PML length 

 

      On the left-hand side of Figure 4-5, the value of attenuation coefficient  γ0, given in the design 

equation of the PML in Eq. (4.24), is plotted as a function of the PML length, for 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 

equal to 0.01 and  𝑛 equal to 2. On the right-hand side of Figure 4-5, the maximum numerical 

reflection is plotted as a function of the PML length as well. It is obvious that the longer the PML 

subdomain is, the smaller the necessary 𝛽0 is. It is also clearly highlighted that, with a larger length, 

maximal numerical reflection coefficient decreases and better accuracy can be achieved. It is 
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because that the larger the length is, the more elements there are in the PML region and the smaller 

discretization error becomes, so that less spurious reflections will be produced at the interface 

between the soil and the PML subdomain.  

      The time history of wave propagation at the observation point C with PML length equal to 

200m is shown in Figure 4-6. The first reflection from the interface is 0.99%, and the second 

refection from the end of PML subdomain defined by the 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 0.01, is 0.78%.  In 

short, the principle for the design of PML subdomain is to control the reflections from the interface 

and the end of the model. The reflections from the end can be easily controlled by 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛. In 

terms of the reflections at the interface, appropriate length should be applied to obtain satisfactory 

results.  

 

Figure 4-6   The time history of wave propagation at the observation point C with PML length equal to 

200m 

 

 

4.4.2 3D Lamb’s test  

      In order to evaluate the effectiveness of hybrid asynchronous PML, 3D Lamb’s test has been 

simulated. In Lamb’s test, the concentrated load applied to the surface of an infinite half-space 

medium generates three types of waves propagating through the soil, involving P, S waves and 

Rayleigh waves. Consequently, Lamb’s test can be considered as a good test for assessing the 

performance of PML. Non-harmonic waves are investigated by considering a Ricker incident 

waves as used in section 4.4.1 with the chosen parameters 𝑡𝑝=3s, 𝑡𝑠=3s and A =2MN.  
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Figure 4-7   3D Lamb’s test modeled using PML: quarter model of a PML-truncated semi-infinite 

homogeneous media subjected to a concentrated force 

 

      As illustrated in Figure 4-7, the numerical model is a quarter model of a PML-truncated semi-

infinite homogeneous media subjected to a concentered force. It is composed of a bounded soil 

(subdomain 1) with a size of 50m and PML (subdomain 2) with the thickness of 50m. The same 

material characteristics are adopted as in the previous numerical model of the semi-infinite elastic 

bar. The size of eight-node hexahedral element of 5m x 5m x 5m has been taken into account so as 

to control the inherent wave dispersion. The reference results are computed from an extended mesh. 

The PML design employed the following parameters: 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 0.01, 𝑛 equal to 2. A 

recording point is located on the surface of the subdomain soil at 20m from each symmetric side. 
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Figure 4-8   Displacements recorded at the observation point using different time step ratios 

          

      In the case of a homogeneous time step, the time step satisfying the CFL condition imposed by 

the mechanical properties in the soil subdomain and the finite element size, is applied in both 

subdomains, that is m=1, and Δt1 =Δt2 =0.025s. We can observe that the displacements obtained 

by the PML agree with the reference results: the reflected spurious wave is 1.15% in X and Z 

directions, 2.82% in Y direction, as shown in Table 4-1. In this numerical example, the bounded 

soil subdomain and PML is limited to a size of 50m, corresponding only to 1/5 of the P wavelength. 

With larger model, better accuracy can be achieved. Using the GC method, classical second-order 

Newmark explicit time integration scheme is conserved in soil subdomain without introducing 

complex-coordinate-stretched equations in interior domain. Moreover, thanks to the versatility and 

the stability of the HATI, it is possible to use a larger time step in the PML domain, as done in the 

following.  

      In the case of heterogeneous time steps, the subdomain soil is integrated with a fine time step 

Δt1=0.025s, whereas the PML subdomain is dealt with a large time step Δt2 =mΔt1 in order to 

reduce the computation time. The time histories of displacements in the three directions at the 

observation point with different time step ratios m (Δt2 =mΔt1) equal to 1, 3 and 5, are shown in 

Figure 4-8. The errors in comparison to the reference results are given in Table 4-1. It can be noted 

that the different curves are quite close and reflections increase as the time step ratio increases. In 

X and Z direction, in comparison to the reference results, the amplitude of the spurious wave varies 
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from 1.15% to 5.31% with respect to the amplitude of the incident wave. In Y direction, the 

maximal reflection increases from 2.82% to 7.70%. The observed decrease of accuracy as the time 

step ratio increases can be explained by the following points. First, it is thought that the loose of 

accuracy can mainly be explained by the additional first-order accurate assumptions assumed in 

Eqs. (4.43-4.44), in order to perform the time integration of the complex strain-deformation relation 

in Eq. (4.30). With a bigger time step, more numerical errors will be introduced due to the 

approximation. Fathi et al. (2015) employed a mixed formulation, expressed in terms of kinematic 

and stress quantities, avoiding the use of the first order approximations previously pointed out. It 

leads to a significant gain in terms of accuracy in comparison to displacement-based formulation.  

The price to pay for this improved accuracy is the increasing size of the systems to be solved as 

well as a greater complexity for the implementation in time-domain elastodynamic codes. Secondly, 

the GC coupling algorithm is known to be dissipative as soon as heterogeneous time steps are used 

between the subdomains, generating spurious waves at the interface. It has been demonstrated that 

for GC method, when adopting the same time step, the second order of accuracy is achieved and it 

leads to the first order of accuracy when adopting different time steps due to a slight spurious 

dissipation at the interface (Combescure et al., 2002; Gravouil et al., 2001). 

 

Table 4-1  Displacement errors using different time step ratios 

 Displacement X Displacement Y Displacement Z 

m=1 1.15% 2.82% 1.15% 

m=3 3.18% 5.24% 3.18% 

m=5 5.31% 7.70% 5.31% 
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 Figure 4-9   Time histories of kinetic and internal energies computed using different time step ratios 

 

Table 4-2  Energy errors using different time step ratios 

 Kinetic energy Internal energy 

m=1 0.343% 0.126% 

m=3 0.554% 0.213% 

m=5 0.772% 0.300% 

 

      The kinetic and internal energies of the soil subdomain are computed for different time step 

ratios m as shown in Fig.4-9. The errors in comparison to the reference results are computed using 

Eq. (4.76) and shown in Table.4-2. It can be observed that the errors are small for different time 

step ratios and the errors increase with time step ratios. The CPU times for time-stepping using 

different time step ratios m are resumed in Table.4-3 in a normalized form divided by CPU time of 

the homogeneous time step case. It shows that, with the time step ratio increasing, the CPU times 

decrease significantly, highlighting the interest of the hybrid asynchronous time integration. It 

implies that using explicit/implicit co-computation, not only classical Newmark explicit time 

integration scheme can be conserved in soil subdomain without introducing complex-coordinate-

stretched equations, but also large time steps can be adopted in the PML subdomain in order to 

reduce the computation time. 
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Table 4-3  Normalized CPU Time for different time step ratios 

 m=1 m=3 m=5 

Normalized 

CPU time 

1 0.334 0.189 

 

 

4.4.3 3D rigid foundation on a layered heterogeneous elastic half-space 

      The classical soil-structure interaction problem of a rigid foundation on a heterogeneous half-

space is considered, as displayed in Figure 4-10. The load is defined by a Ricker wave with the 

same parameters as in Lamb’s test. Three different subdomains are considered: the soil medium 

(subdomain 1), the PML medium (subdomain 2), and rigid foundation (subdomain 3). The soil 

subdomain is assumed to be linear elastic and composed of two layers. The thickness of each layer 

is 25m with a surface 50m x 50m. A recording point is located on the surface of the subdomain soil 

at 20m from each symmetric side in order to assess the efficiency of the PML layers to model an 

infinite heterogeneous half-space medium. The common material parameters of soil layers are 

𝜌1=1700kg/m3, 𝜈1= 0.24. The second layer is characterized by Young’s modulus which is two 

times bigger than the first one (10MPa). Similarly, in order to match the soil subdomain, the 

interface between the layers has to be taken into account in the PML subdomain around the soil 

with the thickness of 50m in three directions, leading to two PMLs with the same material 

properties as the two soil layers. The PML is designed by the following parameters: 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 

equal to 0.01, 𝑛 equal to 2.   
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Figure 4-10 Rigid foundation on a layered soil: quarter model of a PML-truncated semi-infinite 

heterogeneous media subjected to a uniform force 

 

      The rigid foundation on the soil is characterized by a thickness of 5m, a surface of 10m x 10m, 

𝜌3=1700kg/m3, 𝜈3= 0.24 and 𝐸3=1000MPa which is 100 times bigger than Young’s modulus in 

soil subdomain. Consequently, the time step satisfying the CFL condition imposed by the 

mechanical properties of the rigid foundation is 0.0025s which is 10 times smaller than the time 

step required in soil subdomain. If the same explicit time integration scheme is adopted for the soil 

subdomain as well as for the rigid foundation subdomain, the time step in soil subdomain will be 

reduced and lead to additional computational time. As a result, it is of great interest to couple soil 

subdomain and the rigid foundation by coupling algorithm and adopt implicit time integration 

scheme for the rigid foundation subdomain. Finally, by using the subdomain coupling strategy, 

three different subdomains are coupled within the multi time step explicit/implicit co-simulation. 

The soil medium is integrated with a time step Δt1, whereas the rigid foundation is integrated using 

classical second-order Newmark implicit scheme and the PML is integrated using extended third-

order Newmark implicit scheme, with a time step Δt3=Δt2 =mΔt1, m denoting the time step ratio.  
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                        (a) t = 3.875s                                                       (b)  t = 4.35s  

 

                        (c) t = 5.05s                                                        (d)  t = 5.9s 

Figure 4-11 Snapshots of displacement magnitude at different times 

          

      First, we consider the case with the time step ratio m = 1, Δt1=0.025s satisfying the CFL 

condition imposed by the mechanical properties of the soil subdomain, the displacements recorded 

at point C are compared with the reference results obtained with an extended mesh. Here, the 

coupling is only between different time integrators because the same time step size is adopted in 

all the subdomains. From Figure 4-12 and Table 4-4, it can be seen that good agreement is achieved 

in comparison to the reference results. The reflected spurious wave is 1.11% in X and Z directions, 

2.97% in Y direction. The snapshots of displacement magnitude at different times are displayed in 
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Figure 4-11. The first snapshot at time 3.875s shows the propagation of the maximal peak of Ricker 

incident waves. The second snapshot at time 4.35s shows that the maximal peak of the Ricker 

incident waves begins to be absorbed in the PML region, followed by an additional smaller peak 

produced in the soil subdomain. The third snapshot at time 5.05s shows that the maximal peak has 

been absorbed by PML and smaller peak begins to be absorbed. The last snapshot at 5.9s 

demonstrates that the absorption of waves in the PML region is almost completed. No obvious 

reflections can be observed at the PML interface or from the boundaries, indicating very 

satisfactory performance of the PML. 

 

  

Figure 4-12 Displacements recorded at the observation point using different time step ratios and time steps  
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Table 4-4  Displacement errors using different time step ratios and time steps 

 

      In the case of heterogeneous time steps, two examples are considered. The first one is carried 

out by using a time ratio m=3 and time step Δt1 =0.025s. As shown in Table 4-4, the accuracy 

decreases with increasing time step ratio, similar to Lamb’s test. The other computation is with a 

finer time step size Δt1 =0.0025s and time ratio m=3. In other words, the time step Δt1 is taken as 

the CFL critical time step in the rigid foundation, corresponding to the time step of a full explicit 

computation. As shown in Figures 4-12, the PML results have good agreement with respect to the 

reference results, achieving an error of 1.51% in direction X and Z, 1.87% in direction Y. In 

comparison to the first case with the time step size Δt1 =0.025s and the same time ratio m=3, it 

demonstrates that PML accuracy mainly depends on the size of the time step and not on the time 

step ratio, as previously discussed. In short, the size of time step has an important influence on the 

accuracy of PML. The smaller is the time step in the PML, the better is the accuracy.  

Table 4-5  Normalized CPU Time for different time step ratios and time steps 

 m=1, Δt1=0.025 m=3, Δt1=0.025 m=3, Δt1=0.0025 

Normalized 

CPU time 
1 0.287 3.53 

 

      In terms of computation times normalized by CPU time of the case with the time step size Δt1 

=0.025s and the time ratio m=1, given in Table.4-5, an important reduction in computation time 

can be obtained by using the time step size Δt1 =0.025s and the time ratio m=3.  With a finer time 

step size Δt1 =0.0025s corresponding to the time step of a full explicit computation, more time 

steps should be calculated in the numerical simulation, resulting in a longer computation time. 

 

 

 Displacement X Displacement Y Displacement Z 

m=1, Δt1=0.025  1.11% 2.97% 1.11% 

m=3, Δt1=0.025 6.55% 5.26% 6.55% 

  m=3, Δt1=0.0025 1.51% 1.87% 1.51% 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  137 

4.5 Conclusion 

      A novel 3D PML, suitable for finite element implementation, has been proposed in this chapter 

for transient elastodynamics. The displacement-based PML making use of the unsplit formulation 

for calculating the internal force in PML domain is integrated into the Heterogeneous (different 

time integrators) Asynchronous (different time steps) Time Integrator framework. First, by 

studying the strong form of wave propagation in PML media, its design equation is derived as well 

as non-reflecting characteristics between the interior domain and PML domain. Then, the weak 

formulation leading to a novel efficient method for calculating the internal force in PML domain 

is developed and has been coupled with interior domain using the dual Schur approach, in order to 

avoid the introduction of complex-coordinate-stretched equations in interior domain and enable the 

appropriate time integration scheme in the PML with its own time step to be chosen, independently 

of the choice of the time scheme in the domain of interest.  

      Examples of three-dimensional semi-infinite bar, Lamb’s test, and classical soil–structure 

interaction problem with PML-truncated semi-infinite heterogeneous media are implemented to 

illustrate the efficiency of the hybrid formulation in terms of accuracy and CPU time. The proposed 

3D Hybrid Asynchronous PML turns out to be efficient in terms of accuracy and CPU time thanks 

to the versatility of the employed HATI framework.  
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Chapter 5 

5. Three-dimensional explicit 

asynchronous Perfectly Matched 

Layer for wave propagation and 

wave barriers 

      

      In this chapter, we focus on explicit time integration with Central Difference (CD) method, in 

order to reduce the computation time in three-dimensional PML. For comparison purposes, by 

taking advantage of the versatility of the HATI framework, ALID based on Rayleigh and Kosloff 

damping are also considered. In numerical application, a first simple 3D Lamb’s problem, 

including only one hexahedral element in the thickness, is investigated; results obtained from PML 

are compared with results obtained from Rayleigh and Kosloff ALID, demonstrating the 

superiority of the PML in terms of accuracy and computation time. A 3D Lamb’s test with same 

dimensions in the two horizontal directions is then simulated with the proposed PML as well as a 

more complex case, including two plates lied on the ground, the first one corresponding to the 

excited plate at a frequency 30 Hz and the second one corresponding to the Horizontal Wave 

Barrier (HWB).  Influence of the design parameters, such as the length, width and depth of the 

HWB, is assessed in terms of reduction of ground displacement.  

      The main part of this chapter is planned to be submitted to Computers and Geotechnics. 
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5.1 Introduction 

      Three-dimensional complex wave propagation problems are considered in this chapter, such as 

the mitigation of ground surface vibration through Horizontal Wave Barrier (HWB), set up close 

to an excited plate, representing, for instance, the slab track excited by the tramway wheels (Grau 

and Laulagnet, 2015). For this purpose, a full explicit three-dimensional PML with a novel efficient 

method for calculating the internal force is developed using the HATI framework, enabling us to 

adopt the Central Difference (CD) method with a fine time step in the PML. Meanwhile, the 

classical finite element formulation is kept in the interior domain, without complex-valued 

stretched coordinates, and Newmark explicit scheme is adopted with a time step satisfying the CFL 

condition. Using the proposed HATI framework, other absorbing layers, more convenient to be 

implemented in FE software, are also investigated and compared with PML: Absorbing Layers 

with Increasing Damping (ALID) using viscous Rayleigh damping and ALID with Kosloff 

damping, detailed in Chapters 2 and 3. In the case of Rayleigh damping, it was widely known that 

introducing Rayleigh damping reduces the critical time step (Belytschko et al., 2000). As a 

consequence, fine time steps can be employed in the ALID based on Rayleigh damping thanks to 

the proposed HATI framework, while the interior domain is integrated with a time step satisfying 

the CFL condition, not affected by the introduction of Rayleigh damping. Moreover, in the cases 

of PML and Kosloff ALID, the critical time step in explicit dynamics is unchanged but employing 

fine time steps can improve the accuracy of the absorbing layers.   

 

5.2 Space and time discretization for explicit asynchronous PML 

      Here, the coupling between two explicit time integrators is considered, with two different time 

scales, the large time step ∆𝑡1 = [𝑡0; 𝑡𝑚] for the interior domain and the fine time step ∆𝑡2 =

[𝑡𝑗−1; 𝑡𝑗] for the absorbing layers. This choice is imposed by the fact that we want to keep explicit 

time integrators in both subdomains for the calculation efficiency in three-dimensional complex 

modelling and the use of different damping formulations in the absorbing layers. For instance, it is 

well known that the introduction of Rayleigh damping matrix reduces the critical time step size of 

the Central Difference scheme (Belytschko et al., 2000). Secondly, it was shown in Brun et al. 
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(2016) and Li et al. (2019) that PML accuracy of Basu’s formulation is very sensitive to the time 

step size, advocating for a fine time step in the PML.    

 

Figure 5-1   Domain Ω divided into two subdomains Ω1 (interior domain) and Ω2 (PML region) 

 

      From the weak form in Eq. (4.52), we write the equation of motion related to the interior 

subdomain Ω1, at the time 𝑡𝑚, that is the end of the large time step ∆𝑡1 = [𝑡0; 𝑡𝑚]: 

 

𝐌𝟏𝐔̈𝟏
𝐦 + 𝐊𝟏𝐔𝟏

𝐦 = 𝐅𝟏
𝐞𝐱𝐭,𝐦 − 𝐋𝟏

𝐓𝛌𝐦                                                   (5.1) 

      Concerning the PML subdomain, we write the equation of motion at the time 𝑡𝑗 , at the end of 

the fine time step ∆𝑡2 = [𝑡𝑗−1; 𝑡𝑗]: 

 

𝐌𝟐𝐔̈𝟐
𝐣
+ (𝐂𝟐 + 𝐂̃𝟐)𝐔̇𝟐

𝐣−𝟏/𝟐
+ (𝐊𝟐 + 𝐊̃𝟐)𝐔𝟐

𝐣
+ 𝐊̅𝟐𝐔̅𝟐

𝐣
+ 𝐏𝟐(𝛆𝐣−𝟏, 𝐄𝐣−𝟏, 𝚺𝐣−𝟏, 𝚺̃𝐣−𝟏) 

= 𝐅𝟐
𝐞𝐱𝐭,𝐣

− 𝐋𝟐
𝐓 𝛌̂𝐣                                                       (5.2) 

where the inertial system matrices 𝐌𝟐, 𝐂𝟐, 𝐊𝟐 and 𝐊̅𝟐are assembled from their respective element-

level matrices. The derivation and expression of all previous PML matrices and the internal force 

are detailed in Chapter 4.The element-level matrices are obtained by adopting a quadrature formula 

in every hexahedral element. In Eq. (5.2), the other PML matrices 𝐂̃𝟐 and 𝐊̃𝟐 come from the space 

and time discretization of the internal force corresponding to the terms ∫ 𝜀̃𝑒𝑒: σdΩ
Ω2

+
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∫ 𝜀̃𝑒𝑝: ΣdΩ
Ω2

+ ∫ 𝜀̃𝑝𝑝: Σ̃dΩ
Ω2

  in the weak form in Eq. (4.52). Indeed, the internal force can be 

decomposed in two parts: the first part is related to the previous PML matrices 𝐂̃𝐞  and 𝐊̃𝐞 , 

operating on velocities and displacements and the second part, 𝐏𝟐(𝛆𝐣−𝟏, 𝐄𝐣−𝟏, 𝚺𝐣−𝟏, 𝚺̃𝐣−𝟏). The 

equations of motion in Eq. (5.1) and Eq. (5.2) are complemented with the velocity continuity 

condition written at the fine time scale: 

𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                                                                 (5.3) 

      Subdomain 𝛺1 is integrated in time with a Newmark explicit scheme (𝛽1 = 0 and 𝛾1 = 1/2), 

with a lumped mass matrix 𝑀1. We define  𝐔𝟏
𝟎,𝐩 

as the predictor displacement and  𝐔̇𝟏
𝟎,𝐩

 as the 

predictor acceleration, classically introduced in approximate Newmark formulas:  

𝐔𝟏
𝟎,𝐩 

= 𝐔𝟏
𝟎 + 𝛥𝑡𝐔̇𝟏

𝟎 + (
1

2
− 𝛽1)𝛥𝑡

2𝐔̈𝟏
𝟎                                      (5.4) 

𝐔̇𝟏
𝟎,𝐩
= 𝐔̇𝟏

𝟎  +
1

2
Δ𝑡(1 − 𝛾1)𝐔̈𝟏

𝟎                                                  (5.5) 

      The classical approximate Newmark formulas in terms of the displacements and velocities at 

the end of this time step 𝑡𝑗  are expressed in acceleration format as below: 

𝐔𝟏
𝐦 = 𝐔𝟏

𝟎,𝐩
+ 𝛽1Δ𝑡

2𝐔̈𝟏
𝐦                                                             (5.6) 

𝐔̇𝟏
𝐦 = 𝐔̇𝟏

𝟎,𝐩
+ 𝛾𝟏Δ𝑡𝐔̈𝟏

𝐦                                                               (5.7) 

      In Newmark explicit computation, the final displacement 𝐔𝟏
𝐦 is known at the beginning of the 

time step because 𝛽1 = 0. The final acceleration vector 𝐔̈𝟏
𝐦 has to be computed in order to update 

the final velocity vector 𝐔̇𝟏
𝐦 . Concerning the subdomain 𝛺2, we use a central difference scheme 

with the terms related to velocities written at the mid step (𝐂𝟐 + 𝐂̃𝟐)𝐔̇𝟐
𝐣−𝟏/𝟐

, in order to avoid 

system solving and keeping a diagonal mass matrix. The explicit approximate update formulas of 

the central difference explicit scheme for subdomain 𝛺2  are expressed as: 

𝐔̇𝟐
𝐣−𝟏/𝟐

= 𝐔̇𝟐
𝐣−𝟑/𝟐

+ Δt 𝐔̈𝟐
𝐣−𝟏
                                                 (5.8) 

𝐔𝟐
𝐣
= 𝐔𝟐

𝐣−𝟏
+ Δt 𝐔̇𝟐

𝐣−𝟏/𝟐
                                                   (5.9) 
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𝐔̅𝟐
𝐣
= 𝐔̅𝟐

𝐣−𝟏
+ Δt𝐔𝟐

𝐣
                                                      (5.10) 

      All the above quantities are known at the beginning of the time step, at the time 𝑡𝑗−1. It remains 

to compute the acceleration 𝐔̈𝟐
𝐣
 at the end of the time step, the following mid step velocity being 

computed by:  𝐔̇𝟐
𝐣+𝟏/𝟐

= 𝐔̇𝟐
𝐣−𝟏/𝟐

+ Δt 𝐔̈𝟐
𝐣
. Finally, by introducing the above approximate formulas 

for time integration into Eqs. (5.1) and (5.2), it leads to the set of equations of motion, 

complemented with the velocity continuity relationship, whose unknowns to be solved are the 

acceleration, written as: 

{
 
 

 
           𝐌𝟏𝐔̈𝟏

𝐦 = 𝐅𝟏
𝐞𝐱𝐭,𝐦 − 𝐊𝟏𝐔𝟏

𝟎,𝐩
− 𝐋𝟏

𝐓𝛌𝐦                             

𝐌𝟐𝐔̈𝟐
𝐣
= −𝐏𝟐(𝛆𝐣−𝟏, 𝐄𝐣−𝟏, 𝚺𝐣−𝟏, 𝚺̃𝐣−𝟏) − (𝐂𝟐 + 𝐂̃𝟐)𝐔̇𝟐

𝐣−
𝟏

𝟐 − (𝐊𝟐 + 𝐊̃𝟐)𝐔𝟐
𝐣
− 𝐊̅𝟐𝐔̅𝟐

𝐣
− 𝐋𝟐

𝐓𝛌𝐣

                              𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                                                        

(5.11)       

      It can be remarked that the effective stiffness matrix in PML subdomain only corresponds to 

the mass matrix. As classically done for the explicit interior subdomain  𝛺1, we also assume a 

lumped mass matrix in the PML subdomain 𝛺2. It enables us to carry out a complete explicit 

computation in the PML region leading to important gain in terms of computation time in 

comparison to an implicit solving in the PML region, although large time steps larger than the CFL 

condition can be adopted in the case of an implicit time integration. This reduction of computation 

time is particularly suitable for 3D problems. It will be shown in numerical applications that the 

CFL condition related to the interior subdomain is also valid for the PML region without stability 

problems. In Eq. (5.11), it is important to note that the velocity continuity is prescribed at the end 

of the fine time step, whereas the velocity is computed at the mid step in the PML subdomain. As 

a consequence, the final velocity in the velocity continuity equation is calculated as: 

𝐔̇𝟐
𝐣
= 𝐔̇𝟐

𝐣−𝟏/𝟐
+
1

2
Δt 𝐔̈𝟐

𝐣
                                                            (5.12) 

      To solve the set of coupled equations in Eq. (5.11), we first determine the Lagrange multipliers 

ensuring the velocity continuity at the interface and second, we solve the accelerations in both 

subdomains. Following the lines of the coupling GC method, the kinematic quantities are divided 

into two parts: the free and the linked quantities. The free quantities are calculated by taking into 

account the internal and external forces, without considering the interface forces, whereas the 
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linked quantities are obtained from the interface loads given by the Lagrange multiplier vector 𝝀.         

It can be demonstrated that the kinematic continuity condition can be expressed as a reduced-size 

interface problem as follows: 

𝐇𝛌𝐣 = 𝐛𝐣                                                                (5.13) 

with the interface operator and the right-hand side member vector defined by: 

{
𝐇 =

1

2
Δ𝑡1𝐋𝟏𝐌𝟏

−𝟏𝐋𝟏
𝐓 +

1

2
Δ𝑡2𝐋𝟐𝐌𝟐

−𝟏𝐋𝟐
𝐓

𝐛𝐣 = 𝐋𝟏𝐔̇𝟏
𝐟𝐫𝐞𝐞,𝐣

+ 𝐋𝟐𝐔̇𝟐
𝐟𝐫𝐞𝐞,𝐣

                                        (5.14) 

      Finally, once derived the Lagrange multiplier vector 𝛌𝐣, the quantities related to the interface 

forces in the second equation of the set of equations (5.11) can be computed and the fine time step 

∆𝑡2 = [𝑡𝑗−1; 𝑡𝑗] is completed by summing these linked quantities to the free quantities previously 

obtained. Same procedure is applied for every fine time steps ∆𝑡2, by looping over the large time 

step ∆𝑡1 = [𝑡0; 𝑡𝑚]. The last Lagrange multiplier 𝝀𝒎 over the large time step allows to complete 

the large time step and we can then proceed to the next large time step ∆𝑡1.  

 

5.3 Absorbing Layers with Increasing Damping using Rayleigh and 

Kosloff damping 

      In the finite element setting, it can be much more convenient to employ different damping 

formulations from the PML. For instance, Rayleigh damping is classically available in FE code. In 

Chapter 3, Kosloff damping was investigated and turned out to be suitable for modelling 

unbounded domains, due to its frequency independent feature. Here, the explicit PML discussed 

previously will be compared to the cases of Absorbing Layers with Increasing Damping (ALID) 

using Rayleigh and Kosloff damping.  

      As done in section 2.7, in the case of Rayleigh damping, the coupling problem, discretized in 

space and time, can be written as: 
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{

        𝐌𝟏𝐔̈𝟏
𝐦 = 𝐅𝟏

𝐞𝐱𝐭,𝐦 − 𝐊𝟏𝐔𝟏
𝟎,𝐩
− 𝐋𝟏

𝐓𝛌𝐣                                 

𝐌𝟐𝐔̈𝟐
𝐣
= −𝐂𝟐,𝐑𝐚𝐲𝐥𝐞𝐢𝐠𝐡𝐔̇𝟐

𝐣−𝟏/𝟐
− 𝐊𝟐𝐔𝟐

𝐣
− 𝐋𝟐

𝐓𝛌𝐣      

    𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                                                          

                    (5.15)       

where the Rayleigh matrix is linearly dependent on the mass matrix and the stiffness matrix, as: 

𝐂𝟐,𝐑𝐚𝐲𝐥𝐞𝐢𝐠𝐡 = 𝛼𝑀𝐌𝟐 + 𝛼𝐾𝐊𝟐                                                              (5.16) 

      In the case of Kosloff damping, the governing discrete coupling problem is given by: 

{

 𝐌𝟏𝐔̈𝟏
𝐦 = 𝐅𝟏

𝐞𝐱𝐭,𝐦 − 𝐊𝟏𝐔𝟏
𝟎,𝐩
− 𝐋𝟏

𝐓𝛌𝐣                                       

       𝐌𝟐𝐔̈𝟐
𝐣
= −𝐂𝟐,𝐊𝐨𝐬𝐥𝐨𝐟𝐟𝐔̇𝟐

𝐣−𝟏/𝟐
− 𝐊̃𝟐,𝐊𝐨𝐬𝐥𝐨𝐟𝐟𝐔𝟐

𝐣
− 𝐊𝟐𝐔𝟐

𝐣
− 𝐋𝟐

𝐓𝛌𝐣

  𝐋𝟏𝐔̇𝟏
𝐣
+ 𝐋𝟐𝐔̇𝟐

𝐣
= 𝟎                                                                   

     (5.17)       

where the Kosloff matrices are defined by: 

𝐂𝟐,𝐊𝐨𝐬𝐥𝐨𝐟𝐟 =∑2∫ 𝜌𝛾 [𝐍]𝐓[𝐍]𝑑𝛺
Ω

                                            (5.18) 

𝐊̃𝟐,𝐊𝐨𝐬𝐥𝐨𝐟𝐟 =∑∫ 𝜌𝛾2[𝐍]𝐓[𝐍]𝑑𝛺.  
Ω

                                             (5.19) 

 

5.4 Design of the PML and of the ALID using Rayleigh and Kosloff 

damping 

      The general formula to design PML has been proposed in section 4.1. After choosing 

the 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛, the total thickness 𝐿 and the power 𝑛 of the damping function,  𝛽0 can be obtained: 

𝛽0 =
(𝑛 + 1)

2𝐿
× 𝑣𝜌 × ln (

1

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛
)                                            (5.20) 

When  𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 is equal to 1%, it means that the incident wave is attenuated by 99% theoretically 

before the space and time discretization.  
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Figure 5-2   Evolution of the damping functions in PML subdomain 

 

      Concerning Kosloff damping, it was shown in section 3.2 that the scalar-valued 𝛾  parameter 

in Eqs. (5.18) and (5.19) can be defined in the same manner as the damping function  𝑓𝑝  in Fig.5.2, 

that is: 𝛾(𝑥) = 𝛾0 (
𝑥−𝑥0

𝐿
)
𝑛

. It leads to the same design relationship given by:  

 

  𝛾0 =
(𝑛 + 1)

2𝐿
× 𝑣𝜌 × ln (

1

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛
)                                         (5.21) 

      It is important to remind that the capability of the ALID with Kosloff damping to damp out 

incident wave is independent of frequency and very similar to the PML. All waves with different 

frequencies can be attenuated in the same way. Nonetheless, at the interface, the behavior is 

different in the two cases. Indeed, it is well known that no reflection occurs at the PML interface 

for all the frequencies. This is not the case for Kosloff damping. Even though the optimal conditions 

are applied to minimize the spurious reflections at the interface, Kosloff ALID is not reflectionless 

for all the frequencies, as shown in Chapter 3. The parameters of each layer, indexed by (i) varying 

from 1 to N, which satisfies the optimal conditions at each interface, are given by: 
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{
 
 
 
 
 

 
 
 
 
 
𝐸2
(𝑖+1)

=
1 + (

𝛾𝑖
𝜔0
)2

1 + (
𝛾𝑖+1
𝜔0

)2
𝐸2
(𝑖)

𝐸2
(𝑖)
=

1

1 + (
𝛾𝑖
𝜔0
)2
𝐸1

𝜈2
(𝑖)
= 𝜈1

𝜌2
(𝑖)
= 𝜌1

   𝛾𝑖 =    𝛾0 (
𝑥

𝐿
)
𝑛

    

                                                           (5.22) 

      Finally, concerning Rayleigh damping, the same polynomial profile for the damping ratio can 

be considered, that is 𝜉(𝑥) =  𝜉0 (
𝑥−𝑥0

𝐿
)
n

. For a design angular frequency 𝜔0  , the design 

relationship for the ALID based on Rayleigh damping is given by: 

 

 𝜉0 =
(n + 1)

2𝐿𝜔0
× 𝑣𝜌 × ln (

1

𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛
)                                                 (5.23) 

      Here, it can be observed that the design of the Rayleigh ALID introduces a design angular 

frequency 𝜔0. In fact, the absorbing ability of Rayleigh damping is dependent of frequency, which 

is different from PML and Kosloff damping, as discussed in section 3.2.  At the interface, optimal 

conditions should be applied, as in the case of Kosloff damping: 

{
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                                                    (5.24) 
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5.5 Numerical examples 

5.5.1 Pseudo-3D Lamb’s test for PML and ALID comparisons  

      In order to evaluate the effectiveness of three-dimensional PML, 3D Lamb’s test is carried out. 

Non-harmonic waves are investigated by considering a Ricker incident wave, defined by:  

the fundamental period 𝑡𝑝, the time shift 𝑡𝑠 and the amplitude 𝐴. The chosen values are: 𝑡𝑝=3s, 

𝑡𝑠=3s and A =1MN.  

 

Figure 5-3   3D Lamb’s test using PML and Rayleigh/Kosloff ALID 

 

      The example of 3D Lamb’s test is simulated with only one 3D element in the thickness direction 

as shown in Fig.5-3. This simple 3D mesh is considered in this first numerical application so as to 

reduce the computation time in comparison to a full 3D case and to easily compare the performance 

of the different approaches, the PML, ALID with Rayleigh damping and ALID with Kosloff 

damping. The Ricker load is applied vertically at the top left edge of the 3D mesh. One observation 

point is located on the soil surface, at 20m from the applied load. The soil is assumed to be linear 

elastic with the dimension 250m x 250m x 5m. All hexahedral finite elements are of dimension 5m 

x 5m x 5m. The material characteristics for the interior subdomain 𝛺1 and the PML subdomain 𝛺2 

are: 𝜌1=1700kg/m3, 𝐸1=10MPa and 𝜈1= 0.24 for the density, Young’s modulus and Poisson’s ratio, 

respectively. The P-wave, S-wave and Rayleigh wave velocities are: VP =83.27m/s, VS=48.7m/s, 
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VR=44.73m/s. The minimal period for the Ricker input can be assessed by the relationship: 𝑇𝑚𝑖𝑛 =

2.5 𝑡𝑝. To reach a sufficient accuracy, the FE size for linear finite elements, should respect the 

following relationship:  𝐿𝐸𝐹 <
𝜆𝑚𝑖𝑛

20
, with the minimal wavelength 𝜆𝑚𝑖𝑛 equal to 𝑐𝑃  𝑇𝑚𝑖𝑛 . The 

length 𝐿 of the PML is taken as equal to 50m, corresponding to 10 finite elements in the length. 

The other parameters for the PML design, given in Eq. (5.20), are the power of polynomial function 

representing the damping function of the PML and the target attenuation coefficient, given by: n =

2 and 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 = 0.01. The subdomain soil is integrated in time by the Newmark explicit 

scheme without damping and with the time step Δt1=0.025s, imposed by the CFL condition, 

whereas the PML is integrated by the Central Difference scheme, with damping terms written at 

the mid step, with the same time step Δt1= Δt2.  

      The efficiency and accuracy of Rayleigh and Kosloff ALID in modeling three-dimensional 

unbounded domain are compared with the PML. The ALID is established with a length of 250m, 

in order to reduce the reflection at the interface between the interior subdomain and the absorbing 

subdomain. As shown in Fig.3-3 and Fig.3-4, Rayleigh and Kosloff ALID are not reflectionless for 

all the frequencies. Larger length is mandatory to reduce the damping ratio, based on the design 

formulas in Eqs. (5.21) and (5.23). The number of elements in the length of the ALID is thus five 

times bigger than the one of the PML, in order to reach a sufficient good accuracy. From this point 

of view, it is clear that PML is much more efficient than Rayleigh and Kosloff ALID. 

      The multi-time step capability of the proposed approach is employed in the case of the Rayleigh 

damping, because the stability of the Central Difference scheme with the viscous damping terms 

is altered by the introduction of Rayleigh damping, leading to the reduction of the critical time step 

size.  As a consequence, it is particularly convenient to adopt an explicit multi-time step strategy 

in order to satisfy the reduced CFL condition in the Rayleigh ALID while keeping the unchanged 

CFL condition in the interior subdomain. Here, we adopt a fine time step given by: 

Δt1=10Δt2=0.025s. For Kosloff ALID, the introduction of Kosloff damping does not alter the 

critical time step, leading to same time step in the Kosloff ALID as in the interior subdomain Δt1 

=Δt2.  

      In order to assess the accuracy of the PML and ALID methods, the error with respect to the 

reference results obtained from an extended mesh, free of spurious reflected waves coming from 

the truncated mesh, is computed as:  
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 error(%) =
max𝑛|𝑢𝑝(𝑡𝑛) − 𝑢𝑟𝑒𝑓(𝑡𝑛)|

max𝑛|𝑢𝑟𝑒𝑓(𝑡𝑛)|
                                                  (5.25) 

where 𝑢𝑟𝑒𝑓 and 𝑢𝑝 are the displacements of the extended mesh model and the PML model. The 

above error allows to quantify the spurious reflections.  

 

     

Figure 5-4   Vertical and horizontal displacements at the observation point using different absorbing layers 

(PML length equal to 50m , Rayleigh and Kosloff ALID length equal to 250m) 

 

      In Fig.5-4, three absorbing layers are compared in terms of horizontal displacement and vertical 

displacement. It can be observed that all the displacements obtained by the three kinds of absorbing 

layers agree very well with the reference results. Nonetheless, as shown in Table 1, PML is the 

most accurate one, with both vertical and horizontal reflections under 1%. The CPU times are 

resumed in Table 5-1 in a normalized form divided by the CPU time of Rayleigh absorbing layer, 

corresponding to the less efficient method. Indeed, Rayleigh ALID costs higher computation time 

than Kosloff ALID, because the time steps in the absorbing region are reduced due to the 

introduction of the Rayleigh matrix in Central Difference method. The computation time of PML 

is about 4 times less than the Rayleigh and Kosloff ALID, mainly due to its reduced length of 50m 

in comparison to 250m. In more complex three-dimensional numerical simulations, this advantage 

is significantly important.  
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Table 5-1  Displacement errors using different absorbing layers 

 Vertical displacement  Horizontal displacement 

             PML 

 (Δt1= Δt2)  
   0.46% 0.82% 

       

        Rayleigh-ALID      

         (Δt1= 10Δt2) 

 

   1.80% 0.58% 

    Kosloff-ALID  

(Δt1= Δt2) 
  1.26% 0.98% 

 

Table 5-2  Normalized CPU Time using different absorbing layers 

 Rayleigh-ALID Kosloff-ALID PML 

Normalized 

CPU time 
1 0.76 0.26 

 

 

Figure 5-5   Vertical and horizontal displacements at the observation point using different absorbing layers 

(Δt1=10 Δt2, PML length equal to 50m, Rayleigh and Kosloff ALID length equal to 250m) 

 

      It is also interesting to decrease the time step in the PML and in the Kosloff ALID (Δt1=10 Δt2), 

so as to improve the accuracy of the absorbing layers. The time histories of the horizontal 

displacement and vertical displacement at the interest point are shown in Fig.6, using Δt1=10 Δt2 

in three absorbing layers. It is obvious, as observed in Table 5-3, that a better accuracy is achieved 

at the expense of the computation time as given in Table 5-4. Using a fine time step, the PML takes 
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longer time than Rayleigh and Kosloff ALID, because the computation time related to one FE, 

integrated over one time step in the PML, is bigger than the one in Rayleigh and Kosloff ALID. 

Table 5-3  Displacement errors using different absorbing layers (Δt1=10Δt2) 

 Vertical displacement  Horizontal displacement 

PML 

 (Δt1= 10Δt2) 
   0.29% 0.32% 

       Rayleigh-ALID 

       (Δt1= 10Δt2) 
   1.80% 0.58% 

   Kosloff-ALID 

(Δt1= 10Δt2) 
  0.82% 0.21% 

 

Table 5-4  Normalized CPU Time for different absorbing layers (Δt1=10Δt2) 

 Rayleigh-ALID Kosloff-ALID PML 

Normalized 

CPU time 
1 0.84 1.59 

 

 

Figure 5-6   Vertical and horizontal displacements at the observation point using different absorbing layers 

(the length of three absorbing layers equal to 50m) 
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      Owing to the frequency-independence of the damping in the PML and its reflectionless feature 

at the interface, the PML achieves the best accuracy and computation efficiency when adopting the 

same time step as the interior domain, confirming that it is the most efficient method to model 

unbounded domain in three-dimensional simulation among the three investigated absorbing layers. 

Finally, to further illustrate the advantage of the reflectionless feature of the PML at the interface, 

Rayleigh and Kosloff absorbing layers are established with a length of 50m, that is the same as 

PML (10 elements in the length). In Fig.5-6, it can be seen that significant reflections are produced 

at the interface between the soil subdomain and the Rayleigh and Kosloff ALID. Although optimal 

conditions at the interface were employed to reduce the reflection at the interface for Rayleigh and 

Kosloff ALID, the size of the ALID still needs to be defined longer than PML, because they are 

not reflectionless for all the frequencies.  

 

Table 5-5  Pros and cons of the three absorbing layers based on Rayleigh, Kosloff damping and PML 

 Rayleigh Kosloff PML 

Absorbing ability  Frequency -

dependent 

Frequency-

independent 

Frequency-

independent 

Behavior at the interface Optimal conditions Optimal conditions Reflectionless 

Time step in explicit scheme  Reduced No influence No influence 

Difficulty in implementation Easy Easy Difficult 

Size of the absorbing region Large Large Small 

Computation time Long Long Short 

 

      Table 5-5 summarizes the different characteristics of the tree absorbing layers.  Even though 

PML is more complex to be implemented, the size of the absorbing region and the calculation time 

of three-dimensional needed for PML is much less than Rayleigh and Kosloff absorbing layers, 

because of the reflectionless characteristic at the interface and the same attenuation for all 
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frequencies. Taking into account both accuracy and computation efficiency, PML turns out to be 

the most efficient method to model unbounded domain in three-dimensional simulation among the 

three investigated absorbing layers. As a consequence, for the following application focused on 

wave barrier, only PML strategy with a time step ratio m equal to 1, is considered.  

 

5.5.2 Lamb’s test with explicit 3D PML 

      In order to further evaluate the effectiveness of the proposed PML, more realistic Lamb’s test 

has been simulated with same dimensions in the two horizontal directions as done in section 4.4.2 

and displayed in Fig.4-7. The numerical model is a quarter model of a PML-truncated semi-infinite 

homogeneous media subjected to a concentered force. It is composed of a bounded soil (subdomain 

1) with a size of 100m and PML (subdomain 2) with the thickness of 50m. Same material 

characteristics as before are adopted. Non-harmonic waves are investigated by considering a Ricker 

incident waves with the chosen parameters 𝑡𝑝=3s, 𝑡𝑠=3s and A =2MN. The PML design employed 

the previous parameters: 𝑛 equal to 2 and 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 0.01. A recording point is located 

on the surface of the subdomain soil at 20m from each symmetric side. The subdomain soil is 

integrated in time by Newmark explicit scheme with the time step (Δt1=0.025s), and the PML is 

integrated by the Central Difference scheme with the same time step Δt2=Δt1, imposed by the 

condition CFL. 
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Figure 5-7   Displacements recorded at the observation point using explicit 3D PML (soil length equal to 

50m) 

 

      We can observe that the displacements obtained agree very well with the reference results: the 

reflected spurious wave is 1.32% in X and Z directions, 2.64% in Y direction, as shown in Table 

5-7. The reflections are at the same level as the most precise case using co-simulation 

explicit/implicit (m=1) in section 4.4.2. In terms of the computation time, in comparison with co-

simulation explicit/implicit (m=5), the computation time for co-simulation explicit/explicit is even 

quicker, thanks to the diagonalization of the effective stiffness matrix of PML subdomain.  

Table 5-6  Normalized CPU Time for different co-simulation strategies (PML) 

 E/I (m=5) E/E 

Normalized 

CPU time 

1 0.6868 

 

Table 5-7  Displacement errors in different directions using explicit/explicit co-simulation (PML) 

 Displacement X Displacement Y Displacement Z 

PML 1..32% 2.64% 1.32% 
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      Secondly, the numerical model of Lamb’s test is established with a bounded soil (subdomain 

1) with a size of 100m, twice larger than the size in the first example, and the PML (subdomain 2) 

with the same thickness of 50m. The same material characteristics are adopted as in the previous 

numerical model. In this case, we can observe that the displacements are in very good agreement 

with respect to the reference result as shown in Fig.5-8. The reflected spurious wave is 0.68% in X 

and Z directions, 1.24% in Y direction, as shown in Table 5-8. We can see that the results have 

been improved, in comparison to the first example with a smaller soil bounded domain. It means 

that not only the length of the PML affects the accuracy as shown in section 4.4.1, but also the size 

of the soil subdomain has an influence on the accuracy of the PML. In fact, when the bounded soil 

subdomain is larger, there will be more elements at the interface of the soil subdomain and the 

PML and spurious reflections at the interface introduced by the spatial discretization will decrease.  

      Thanks to explicit-explicit co-simulation, in the framework of HATI, the interior domain is 

handled by the classical finite element formulation and Newmark explicit time integrator, instead 

of introducing complex-coordinate-stretched equations, whereas the PML subdomain is handled 

by the Central Difference scheme, in order to make use of the diagonal lumped mass matrix of the 

subdomain Ω2. Taking into account its advantages in accuracy and CPU time, the proposed three-

dimensional explicit PML is efficient for complex three-dimensional wave propagation simulation. 

In next section, it will be applied in the study of the screening effect provided by an horizontal 

wave barrier in mitigating ground surface vibration generated by an excited plate.   
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Figure 5-8   Displacements recorded at the observation point using explicit 3D PML (soil length equal 

100m) 

 

Table 5-8  PML displacement errors in different directions with larger soil subdomain  

 Displacement X Displacement Y Displacement Z 

PML     0.68% 1.24% 0.68% 

     

 

5.5.3 Horizontal Wave Barrier efficiency with explicit 3D PML  

      Due to the increasing vibrations caused by human activities, the performance of wave barriers 

for reducing the distress to adjacent structures and annoyance to people, have been studied for more 

than 30 years. To further demonstrate the efficiency of the proposed approach for modeling 

unbounded domains, a three-dimensional application is carried out concerning an Horizontal Wave 

Barrier (HWB), in the context of vibration isolation against the ground surface wave propagation 

produced by trains and tramways. In this case, the major part of the vibration energy is transferred 

by Rayleigh waves which may cause strong ground motions on nearby structures (Al-Hussaini and 

Ahmad, 1991; Beskos et al., 1986). 
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      As illustrated in Figure 5-9, the numerical model is composed of the bounded soil, the PML, 

the rigid foundation and the horizontal wave barrier. The bounded soil (40m x 8m x 8m) is assumed 

to be linear elastic with the following material characteristics: 𝜌1=1200kg/m3, 𝐸1=187.5MPa and 

𝜈1 = 0.25. In the soil, the P-wave, S-wave and Rayleigh-wave velocities are: VP =433m/s, 

VS=250m/s, VR=230m/s. The PML region is established with the thickness of 4m in the three 

directions around the bounded soil, following the parameters: 𝑛 equal to 2 and 𝑅𝑎𝑡𝑡𝑒𝑛𝑢𝑡𝑖𝑜𝑛 equal to 

0.01. The rigid foundation on the soil is characterized by a thickness of 0.5m, a surface of 2m x 

2m, 𝜌3=1200kg/m3, 𝜈3= 0.25 and 𝐸3=100𝐸1, that is 100 times bigger than Young’s modulus in soil 

subdomain. The dynamic periodic load, imposed on every node of the rigid foundation surface in 

the numerical model, is defined by:  𝑃 = 𝑃0sin (𝜔0𝑡) , 𝜔0 =2π𝑓0 , 𝑃0 =500kN,  𝑓0 =30Hz. The 

wavelength for P-wave, S-wave and Rayleigh-wave are 14.43m, 8.33m, 7.67m, respectively.  

 

Figure 5-9   Configuration of the numerical model of three-dimensional wave barrier problem  

 

      For the horizontal wave barrier, D represents the depth of the barrier, W is the width of the 

barrier, L is the length of the barrier. The horizontal wave barrier is installed behind the rigid 

foundation with the distance equal to 2m. The distance from the rigid foundation to the point of 

interest is 30m. The material parameters of the HWB is the same as the rigid foundation. The 

isolation effect of the installation of the HWB can be assessed by the parameter 𝐴𝑟 (amplitude 

reduction ratio), which provides a quantitative evaluation of the screening effect of the barrier. Its 

expression is given by: 𝐴𝑟 =𝐴𝑏/𝐴𝑠, where 𝐴𝑏 is the displacement amplitude with the barrier and 
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𝐴𝑠  the displacement amplitude without the barrier. For example, 𝐴𝑟  = 0.8 means that 20% 

reduction of the vibration has been reached due to the installation of the barrier. The screening 

effect of HWB is studied by considering various geometric parameters, such as the length L, the 

width W and the depth of the barrier D. In the following, the screening effect of the horizontal 

wave barrier with various geometric parameters in Table.5-9 will be studied with PML absorbing 

region around the bounded soil by using co-simulation strategy. 

Table 5-9  Different geometric parameters of horizontal wave barriers  

        (m) 

      i 

L W D 
        (m) 

      i 

L W D 

1 2       2 0.5   13 10       4 0.5 

2 4 2 0.5 14 12 4 0.5 

3 6 2 0.5 15 14 4 0.5 

4 8 2 0.5 16 16 4 0.5 

5 10 2 0.5 17 2 2 1.0 

6 12 2 0.5 18 4 2 1.0 

7 14 2 0.5 19 6 2 1.0 

8 16 2 0.5 20 8 2 1.0 

9 2 4 0.5 21 10 2 1.0 

10 

 

 

4 4 0.5 

 

 

 

22 

23 

 

12 2 1.0 

 

 

 

11 

 

 

6 4 0.5 

 

 

 

23 

 

 

14 2 1.0 

 

 

 

12 

 

 

8 4 0.5 

 

 

 

24 

 

 

16 2 1.0 

 

 

 

 

      Because of the different material characteristics of the coupled problem, the co-simulation 

strategy will be applied to satisfy the requirement of each part so as to achieve the best computation 

efficiency. The numerical model is divided into four subdomains:  the bounded soil subdomain, 

the PML subdomain, the rigid foundation subdomain and the HWB subdomain. The explicit 

scheme is used to simulate the wave propagation in the soil and PML subdomains as explained 

previously.  Here, Young’s modulus of the rigid foundation and the horizontal wave barrier is 100 
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times bigger than the one in soil subdomain. Consequently, the time step satisfying the CFL 

condition imposed by the mechanical properties of the rigid foundation should be 10 times smaller 

than the time step required in soil subdomain. As a result, it has been chosen to treat the rigid 

foundation and HWB subdomains with an unconditionally stable implicit Newmark time 

integration scheme (Constant Average Acceleration scheme. 

 

Figure 5-10 Different time integrations scheme for different subdomains  

 

      The four subdomains are coupled by GC coupling algorithm to execute explicit/implicit co-

simulation. Fig.5-10 shows the discretization of the numerical model. Taking advantage of the 

partition strategy, the three-dimensional horizontal wave barrier problem is divided into four 

partitions integrated in time with their own time integrator in the most efficient way: soil 

subdomain (Newmark explicit scheme), barrier subdomain (Newmark implicit scheme), rigid 

foundation domain (Newmark implicit scheme), and PML (Central Difference scheme). In order 

to achieve a good accuracy in predicting the propagating waves into the soil, the finite element size 

is kept as 0.4m x 0.4m x 0.4m for the soil and PML subdomains, 0.4m x 0.4m x 0.1m for the 

horizontal wave barrier and soil foundation subdomains.  
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      The snapshots of displacement magnitude at different times for the wave propagation 

simulation are displayed in Fig.13-15, in the case of HWB with the dimension 0.5m x 4m x 10m. 

It is observed that the installation of the horizontal wave barrier reduces efficiently the wave 

intensity. No obvious reflection can be observed at the interface between the soil subdomain and 

the PML or from the end of the PML, indicating very satisfactory performance of the PML.  

 

Figure 5-11 Snapshots of displacement magnitude at 0.05s 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  162 

 

Figure 5-12 Snapshots of displacement magnitude at 0.1s 

 

Figure 5-13 Snapshots of displacement magnitude at 0.15s 
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      Fig.5-14 displays the time histories of displacement at the observation point with different 

lengths L, compared to the results obtained without barrier. No obvious spurious waves are 

observed, highlighting the accuracy of the proposed three-dimensional PML. A length L of the 

HWB equal to 4m is insufficient to provide a significant screening effect, whereas 10m and 16m 

provide significant reductions in displacement. In terms of the influence of the wave barrier width, 

which cannot be studied in a simple 2D simulation, we can observe in Fig.5-15 that with the same 

length and depth, the wave barriers with the width equal to 4m can reduce the wave amplitude more 

efficiently than the wave barriers with the width equal to 2m. It shows that it is necessary to carry 

out three-dimensional simulations to thoroughly investigate the isolation effect of wave barrier in 

realistic situations. In the end, the influence of the wave barrier depth on the isolation effectiveness 

is also studied. Fig.5-16 shows the time histories of displacement at the observation point with two 

different depths, compared to the results obtained without barrier. With a length equal to 10m, the 

HWB is able to provide a significant effect with a depth equal to 0.5m. The depth parameter seems 

less sensitive than the length and width of the HWB.  

 

Figure 5-14 Time histories of displacement at the observation point in case of wave barriers with different 

lengths, compared to the results obtained without barrier. 
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Figure 5-15 Time histories of displacement at the observation point in case of wave barriers with different 

widths, compared to the results obtained without barrier 

 

Figure 5-16 Time histories of displacement at the observation point in case of wave barriers with different 

depths, compared to the results obtained without barrier. 
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      Finally, the screening effect of the horizontal wave barrier is investigated with various 

geometric parameters by plotting, in Fig.5-17, the reduction ratio of the vertical displacement 

versus the length of the HWB. It can be seen that for the amplitude reduction ratio 𝐴𝑟 decreases 

with the length L increasing. For a length L equal to about 8m, the reduction is optimal. Increasing 

the length L after this point does not seem to provide further reduction. In addition, it can be 

remarked that the width of the HWB plays also an important role, contrarily to the depth of the 

HWB which does not provide significant reduction when the depth is increased from 0.5m et 1m. 

It has to be reminded that the Rayleigh wave length is equal to 7.67 m which corresponds 

approximately to the optimal length observed. As remarked in the literature (Grau and Laulagnet, 

2015), it is well known that the length of HWB should be chosen a little longer than the Rayleigh 

wavelength to obtain a good isolation effectiveness. 

 

Figure 5-17 Reduction ratios of the horizontal wave barrier with various geometric parameters 

 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI042/these.pdf 
© [S. Li], [2019], INSA Lyon, tous droits réservés



  166 

5.6 Conclusion 

      This chapter presents an explicit asynchronous three-dimensional PML for modeling 

unbounded domains through a standard displacement-based finite element method, using a novel 

efficient method for calculating the internal force. The coupled problem, including the interior 

subdomain and the PML, is implemented in the framework of Heterogeneous Asynchronous Time 

Integrator (HATI), enabling the interior domain to be handled by the classical finite element 

formulation without complex-valued stretched coordinates, whereas the PML is dealt with an 

explicit Central Difference scheme, with fine time steps, independently from the time stepping 

procedure adopted in the interior subdomain. Simple 3D Lamb’s tests are considered by using 

different kinds of absorbing layers: the proposed PML and Absorbing Layers with Increasing 

Damping based on Rayleigh and Kosloff damping formulations. The superiority of the PML in 

terms of accuracy and computation time is highlighted. Finally, realistic 3D applications are 

investigated, such as Lamb’s test and study of the screening effect provided by an horizontal wave 

barrier in mitigating ground surface vibration generated by an excited plate.   
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Conclusion and perspectives 

 

      The thesis aims to propose novel designs and formulations of different methods for modeling 

2D and 3D infinite media in wave propagation simulation. Three absorbing layers (Rayleigh 

Absorbing Layer, Kosloff Absorbing Layer, and Perfectly Matched Layer) are developed and 

implemented by the finite element method. Taking into account the different characteristics of each 

subdomain in the numerical model of wave propagation problem, the hybrid asynchronous 

formulations using the dual Schur approach, are developed to enable the appropriate time 

integration scheme and independent time step in each subdomain, in the framework of 

Heterogeneous (different time integration schemes) Asynchronous (different time steps depending 

on subdomains) Time Integration (HATI). 

 Firstly, a simple and accurate Absorbing Layers with Increasing Damping (ALID) based 

on Rayleigh damping is presented. Thanks to the availability of the viscous Rayleigh 

damping matrix in commercial FE codes, it can be easily set up for damping out the incident 

waves at the boundary of a Finite Element mesh. In order to not reduce the critical time step 

in the domain of interest handled with an explicit time integration by the introduction of 

Rayleigh damping, Hybrid (different time integrators) Asynchronous (different time steps) 

Absorbing Layers using Increasing Damping (HA-ALID), is proposed, allowing for 

coupling different finite element codes with different time integrators and time-scales 

depending on the partitions of the domain. Very satisfactory results have been achieved in 

Lamb’s test and a wave barrier problem, using Abaqus co-simulation and self-developed 

FEM codes.  

 Secondly, the capabilities of the Kosloff damping formulation are investigated to set up 

efficient HA-Kosloff ALID and compared with Rayleigh formulation. The design of 

Kosloff absorbing layer is proposed by studying analytically the strong form of elastic wave 

propagation in Kosloff medium. The absorbing ability independent of frequency is derived 

in the form of a logarithmic decrement, as well as optimal conditions to reduce the spurious 
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waves reflected at the interface between physical domain and Kosloff absorbing layer 

domain. The weak formulation of the coupled problem, involving the interior and Kosloff 

absorbing layer, is given according to a dual coupling approach with the introduction of 

Lagrange multipliers, which enables integrate different subdomains in time with different 

time integrators associated with their own time step, belonging to more general HATI 

methods. Kosloff formulation turns out to have a very simple finite element expression 

which corresponds to two new matrices, similar to the mass matrix, operating on velocities 

and displacements in semi-discrete equation of motion. Numerical tests are carried out to 

illustrate the efficiency of HA-Kosloff ALID in terms of accuracy and CPU time, and the 

advantages of the Kosloff damping have been highlighted in comparison to Rayleigh 

damping and PML.  

 Thirdly, a novel three-dimensional PML, suitable for finite element implementation, has 

been proposed for transient elastodynamics. The displacement-based PML making use of 

the unsplit formulation and efficient method for calculating the internal force in PML 

domain is integrated into the Hybrid (different time integrators) Asynchronous (different 

time steps) Time Integrator framework. The frequency-independent absorbing ability and 

reflectionless characteristic at the interface between the non-dissipative interior domain and 

the PML are proved by the analytical method, on the basis of the wave propagation strong 

form in PML media. The weak formulation has been coupled with interior domain using 

the dual Schur approach proposed by Gravouil and Combescure, enabling the appropriate 

time integration scheme in the PML with its own time step to be chosen, whereas the interior 

domain is handled by the classical finite element formulation and explicit second-order 

accurate time integrator with a time step satisfying the CFL condition, instead of 

introducing complex-coordinate-stretched equations. Examples of three-dimensional semi-

infinite bar, Lamb’s test, and one classical soil–structure interaction problem with PML-

truncated semi-infinite heterogeneous media are implemented to illustrate the efficiency of 

the hybrid asynchronous formulation, complemented by the comparison to HA-Rayleigh 

ALID and HA-Kosloff ALID. It turns out that the PML is the most efficient method for 

modelling three-dimensional unbounded domains in terms of accuracy and CPU time.  

 Finally, in order to further demonstrate the efficiency of the hybrid approach for modeling 

unbounded domains, a three-dimensional application is considered for the numerical study 
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of the Horizontal Wave Barrier (HWB), in the context of vibration isolation against the 

ground surface wave propagation produced by trains and tramways. Taking advantage of 

the partition strategy, the four subdomains, that is to say the two concrete plates, the soil 

interior domain and the PML, are coupled by GC coupling algorithm and integrated in time 

with their own time integration in the most efficient way. In this complex SSI situation, 

involving a large number of degrees of freedom, PML is integrated using a Central 

Difference scheme in order to reduce the computation time, as well as the interior soil 

domain, whereas the stiffer plates, on the soil ground, are handled with an implicit time 

integrator. Compared to the results obtained without barrier, it turns out that explicit-

implicit co-simulation can well simulate the isolation effect of the horizontal wave barrier. 

        

      In the last years, the Spectral Element Method (SEM) is becoming more and more popular for 

wave propagation problems. So it will be meaningful to implement the explicit version of HA PML 

using spectral elements in order to be available for very large-scale wave propagation simulations. 

In addition, the coupling between SEM and FEM will be useful for soil-structure integration 

problems.  

      The numerical simulations in the thesis, are always carried out in the context of matching 

meshes. In the case of non-matching meshes, mortar approach has to be applied to treat the interface 

problem. It will be interesting to investigate the efficiency of the proposed hybrid approach for 

modeling unbounded domains in the context of non-matching meshes.  

      The wave propagation problems studied here is elastic. The further work will take into 

consideration non-linear mechanical behaviors and uncertain mechanical parameters of the soil, in 

order to further investigate the efficiency of the proposed hybrid approaches for modeling realistic 

complex soil structure interaction situations. 
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Appendix A 

 

      In the following, we summarize the matrices expressed as a function of scaling and attenuation 

functions 𝑓𝑒 and 𝑓𝑝 related to the PML.  

𝐹𝑒 = [

1 + 𝑓1
𝑒(𝑥1) 0 0

0 1 + 𝑓2
𝑒(𝑥2) 0

0 0 1 + 𝑓3
𝑒(𝑥3)

]   𝐹𝑝 = [

𝑓1
𝑝(𝑥1) 0 0

0 𝑓2
𝑝(𝑥2) 0

0 0 𝑓3
𝑝(𝑥3)

]              

𝐹̃𝑒𝑒 = [

𝑓23
𝑒𝑒 0 0

0 𝑓13
𝑒𝑒 0

0 0 𝑓12
𝑒𝑒
]  𝐹̃𝑒𝑝 = [

𝑓23
𝑒𝑝 0 0

0 𝑓13
𝑒𝑝 0

0 0 𝑓12
𝑒𝑝

]  𝐹̃𝑝𝑝 = [

𝑓23
𝑝𝑝 0 0

0 𝑓13
𝑝𝑝 0

0 0 𝑓12
𝑝𝑝

]          (𝐴. 1) 

with  

{

𝑓𝑖𝑗
𝑒𝑒 = [1 + 𝑓𝑖

𝑒(𝑥𝑖)][1 + 𝑓𝑗
𝑒(𝑥𝑗)]                               

𝑓𝑖𝑗
𝑒𝑝
= [1 + 𝑓𝑖

𝑒(𝑥𝑖)]𝑓𝑗
𝑝
(𝑥𝑗) + [1 + 𝑓𝑗

𝑒(𝑥𝑗)]𝑓𝑖
𝑝(𝑥𝑖)

𝑓𝑖𝑗
𝑝𝑝 = 𝑓𝑖

𝑝(𝑥𝑖)𝑓𝑗
𝑝(𝑥𝑗)                                                    

                              (𝐴. 2) 

      The scalar values involved in the right member of the equation of motion (28) are given below:  

{
 
 
 

 
 
 
𝑓𝑀 = [1 + 𝑓1

𝑒(𝑥1)][1 + 𝑓2
𝑒(𝑥2)][1 + 𝑓3

𝑒(𝑥3)]                                                        

𝑓𝐶 = [1 + 𝑓1
𝑒(𝑥1)][1 + 𝑓2

𝑒(𝑥2)]𝑓3
𝑝(𝑥3) + [1 + 𝑓1

𝑒(𝑥1)][1 + 𝑓3
𝑒(𝑥3)]𝑓2

𝑝(𝑥2)

+[1 + 𝑓2
𝑒(𝑥2)][1 + 𝑓3

𝑒(𝑥3)]𝑓1
𝑝(𝑥1)                                                      

𝑓𝐾 = 𝑓1
𝑝(𝑥1)𝑓2

𝑝(𝑥2)[1 + 𝑓3
𝑒(𝑥3)] + 𝑓2

𝑝(𝑥2)𝑓3
𝑝(𝑥3)[1 + 𝑓1

𝑒(𝑥1)]                     

+𝑓1
𝑝(𝑥1)𝑓3

𝑝(𝑥3)[1 + 𝑓2
𝑒(𝑥2)]                                                                

𝑓𝐻 = 𝑓1
𝑝(𝑥1)𝑓2

𝑝(𝑥2)𝑓3
𝑝(𝑥3)                                                                                      

        (𝐴. 3) 

      Then, we introduce the element-wise finite element discretization for the weak form of the 

internal force terms in Eq. (4.42). The matrices containing shape function derivatives of 8-node 

hexahedral element combined with the previous scaling and attenuation functions are expressed as 

below: 
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𝐁̃𝐈
𝐞𝐞 =

[
 
 
 
 
 
 
𝑁̃𝐼1
𝑒𝑒 0 0

0 𝑁̃𝐼2
𝑒𝑒 0

0 0 𝑁̃𝐼3
𝑒𝑒

𝑁̃𝐼2
𝑒𝑒 𝑁̃𝐼1

𝑒𝑒 0

𝑁̃𝐼3
𝑒𝑒 0 𝑁̃𝐼1

𝑒𝑒

0 𝑁̃𝐼3
𝑒𝑒 𝑁̃𝐼2

𝑒𝑒]
 
 
 
 
 
 

                                                          (𝐴. 4) 

𝐁̃𝐞𝐞 = [𝐁̃𝟏
𝐞𝐞 𝐁̃𝟐

𝐞𝐞    ⋯ 𝐁̃𝟖
𝐞𝐞]                                                        (𝐴. 5) 

      The components of the above derivatives matrix are given for an index 𝑖 = 1,2,3, without the 

summation convention: 

𝑁̃𝐼𝑖
𝑒𝑒 = 𝐹̃𝑖𝑖

𝑒𝑒𝑁𝐼,𝑖, 𝑁̃𝐼𝑖
𝑒𝑝 = 𝐹̃𝑖𝑖

𝑒𝑝𝑁𝐼,𝑖, 𝑁̃𝐼𝑖
𝑝𝑝 = 𝐹̃𝑖𝑖

𝑝𝑝𝑁𝐼,𝑖                                 (𝐴. 6) 

 𝐁̃𝐞𝐩 and 𝐁̃𝐩𝐩 are defined similarly, by replacing  𝑁̃𝐼𝑖
𝑒𝑒 with 𝑁̃𝐼𝑖

𝑒𝑝
and 𝑁̃𝐼𝑖

𝑝𝑝
, respectively. 

      The Voigt notation is adopted for the stress and strain tensors, giving the following vectors: 

𝛔̂ =

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23}

 
 

 
 

         𝛆̂ =

{
 
 

 
 
𝜀11
𝜀22
𝜀33
2𝜀12
2𝜀13
2𝜀23}

 
 

 
 

                                                   (𝐴. 7) 

with the constitutive relationship for an isotropic elastic medium:  

𝛔̂ = 𝐃 𝛆̂                                                                       (A. 8) 

      𝐃 is the material constitutive matrix expressed as: 

𝐃 =

[
 
 
 
 
 
𝑘 + 4𝜇/3 𝑘 − 2𝜇/3 𝑘 − 2𝜇/3
𝑘 − 2𝜇/3 𝑘 + 4𝜇/3 𝑘 − 2𝜇/3
𝑘 − 2𝜇/3 𝑘 − 2𝜇/3 𝑘 + 4𝜇/3
       𝜇        0 0

0        𝜇       0
0 0         𝜇        ]

 
 
 
 
 

                                       (𝐴. 9) 

      Further, additional matrices have to be defined for the strain-deformation relationship given in 

Eq. (45). We express the 𝐅̂𝛆 and 𝐁𝛆 matrices depending on shape function derivatives as well as 

scaling and attenuation functions: 
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𝑭̂𝜺 =

[
 
 
 
 
 
 
(𝐹11

𝜀 )2 0 0

0 (𝐹22
𝜀 )2 0

0 0 (𝐹33
𝜀 )2

   
    0        0          0    
    0        0          0    
    0        0          0    

     0          0         0   
    0         0         0   
    0         0         0   

   

𝐹11
𝜀 𝐹22

𝜀 0 0

  0 𝐹11
𝜀 𝐹33

𝜀 0

  0 0 𝐹22
𝜀 𝐹33

𝜀 ]
 
 
 
 
 
 

                           (𝐴. 10) 

𝑩𝜺 =

[
 
 
 
 
 
 
𝐹11
𝜀 𝑁𝐼1

𝑙 0 0

0 𝐹22
𝜀 𝑁𝐼2

𝑙 0

0 0 𝐹33
𝜀 𝑁𝐼3

𝑙

𝐹11
𝜀 𝑁𝐼2

𝑙 𝐹22
𝜀 𝑁𝐼1

𝑙 0

𝐹22
𝜀 𝑁𝐼3

𝑙 0 𝐹33
𝜀 𝑁𝐼1

𝑙

0 𝐹22
𝜀 𝑁𝐼3

𝑙 𝐹33
𝜀 𝑁𝐼2

𝑙 ]
 
 
 
 
 
 

                                                (𝐴. 11) 

with the matrices: 

 𝐹𝑙  = [𝐹𝑝 +
𝐹𝑒

Δ𝑡
]

−1

  𝐹𝜖  = 𝐹𝑒𝐹𝑙                                                     (𝐴. 12) 

      And the component in 𝑩𝜺 matrix given by:  𝑁𝐼𝑖
𝑙 = 𝐹𝑖𝑖

𝑙𝑁𝐼,𝑖, for 𝑖 = 1,2,3. Finally, 𝑭̂𝜺𝑸 and 𝑩𝑸 

are defined similarly, by replacing 𝐹𝜖 with  𝐹𝑄, defined by 𝐹𝑄  = 𝐹𝑝𝐹𝑙 . 
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