
HAL Id: tel-02900661
https://theses.hal.science/tel-02900661

Submitted on 16 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sustainable metal extraction, steady-state good
production and cooperative wealth allocation among

nations and generations : a transdisciplinary approach
Fatma Zahra Rostom

To cite this version:
Fatma Zahra Rostom. Sustainable metal extraction, steady-state good production and cooperative
wealth allocation among nations and generations : a transdisciplinary approach. Economics and Fi-
nance. Université Panthéon-Sorbonne - Paris I, 2019. English. �NNT : 2019PA01E050�. �tel-02900661�

https://theses.hal.science/tel-02900661
https://hal.archives-ouvertes.fr


 
 
 

UNIVERSITÉ PARIS I PANTHÉON SORBONNE 
UFR D’ÉCONOMIE 

Laboratoire de rattachement : Centre d’Économie de la Sorbonne 
 

THÈSE 
Pour l’obtention du titre de Docteure en Économie 

Présentée et soutenue publiquement 
le 29 NOVEMBRE 2019 par 
Fatma Zahra ROSTOM  

 
 

Sustainable Metal Extraction, Steady-State Good 
Production and Cooperative Wealth Allocation Among 

Nations and Generations : A Transdisciplinary 
Approach 

 
 

Sous la direction de M. Gaël Giraud 
Directeur de Recherche CNRS, Centre d’Économie de la Sorbonne,  
co-directeur de la Chaire Énergie et Prospérité 
Et de M. Olivier Vidal (co-directeur) 
Directeur de Recherche CNRS, ISTerre, Université Grenoble Alpes 
 
Membres du Jury 
 

M. Raimund Bleischwitz, Rapporteur 
Professeur, University College London 
 
M. Mouez Fodha 
Professeur, Université Paris I Panthéon Sorbonne 
 
Mme. Céline Guivarch 
Directrice de Recherche, UMR CIRED, École des Ponts ParisTech 
Ingénieur en Chef des Ponts Eaux et Forêts 
 
M. Francesco Ricci, Rapporteur 
Professeur, Université de Montpellier 
 
M. Stéphane Zuber 
Directeur de Recherche CNRS, Centre d’Économie de la Sorbonne, 
Université Paris I Panthéon Sorbonne 





Remerciements

Jadis, je pensais le monde académique terne et dédaigneux, et j’imaginais les
Docteurs de l’Université en longue toge noire, se regardant (le nombril) du bout
de leurs lunettes pincées, l’auriculaire soulevé. Il m’a fallu cinq années et des
brouettes pour les observer et en conclure que finalement, un nombre non négli-
geable de ces spécimens du genre Homo se promènent également, comme d’autres,
avec leur âme d’enfant rayonnant dans leur poitrine. Cette thèse a été une très belle
promenade au bord du fleuve du temps, mais je ne serai jamais arrivée à l’estuaire
sans le soutien et l’amour de mes congénères. Le moment est venu de vous remer-
cier et, puisque cette thèse m’a fait réfléchir très fort – si fort que mes cheveux sont
devenus fous – au lien entre les générations, j’ai voulu faire des remerciements
générationnels – ils décideront peut-être enfin d’obéir à la pesanteur. En tunisien,
remercier un semblable en lui disant ���� revient littéralement à lui souhaiter
une longue vie, puisque rien n’est plus précieux que le temps, seule ressource sans
nul doute épuisable dans une vie. Par conséquent, si vous voulez une petite ral-
longe, il vous faudra apprendre le tunisien. Pour vous aidez – ma bonté est quant
à elle sans limite – j’ai écrit vos noms en tunisien – ce qui veut dire que vous ap-
prendrez un tunisien très personnel. Le reste est en français, parce que je souhaite
aussi très longue vie à la France, ma terre d’adoption. Je souhaite par contre une
très courte vie à ses frontières.

Alors, longue vie aux générations d’avant, celles qui ont peut-être connu un
monde sans Google, sans Starbucks à chaque coin de rue, sans drônes, sans GIEC.
Je souhaite d’abord très longue vie à mes deux guideurs de thèse, l’éclec(sias)tique
����� et le gé(nia)ologique �������. Très solennellement longue vie aux membres
de mon jury qui ont offert beaucoup de leur temps : les rapporteurs ������� et
��������, ��� qui a suivi l’évolution de mon travail tout au long de ma thèse,
et enfin ����� et ������ que j’admire beaucoup. Interminable vie sans arbre à
�����, et avec à ������, et toute la bande d’énergéticiens, pour m’avoir toujours
encouragée à poursuivre. Longue vie à ����, ������� ���, �����, �������

et ������ qui font comme tant d’autres intrépides administratifs un travail de
fourmi géante pour permettre aux profs de se la couler douce, et aussi à ������

et ������� pour leurs conseils au début de ma thèse. Longue vie à ������� et
�����, sans qui je n’aurais pas rencontré Olivier et Gaël, respectivement, ainsi
que tous mes profs pour leurs enseignements précieux, et mes maîtres de stage
pour la confiance qu’ils m’ont accordée. Longue vie à mes chargés de cours, qui
ont bien voulu que je plante des graines dans les esprits de mes étudiants. Pas
besoin de souhaiter une longue vie à ����, l’Immortel Dieu de la MSE.

i



Une éternelle vie à ma maman �����, qui a toujours été là pour tout donner,
y compris des menaces de coups de sabots pour que je fasse mes devoirs, je n’en
serais pas là sans ça. Une aussi longue pour toutes mes autres mamans : la kalaa-
grandoise �����, la turquoise ����, la marsoise ���� et la sétoise ����. Et bien
sûr une perpétuelle vie à mon unique papa ����, pour m’avoir légué son goût
pour l’aventure et son amour des grands éclats de rire. Longue vie à toute la �����,
pour m’avoir soutenue et encouragée, et en particulier à ��� et son amie pour la
relecture de mes calculs infernaux. Spéciale dédicace à ������ pour les cafés du
matin, et surtout à ses oreilles qui n’ont pas trop saignées pendant nos cours de
chant, et aussi à ������� et ����� pour avoir fait vivre des moments princiers à
de valeureux vétérans. Enfin, très longue vie à ������, que votre talent à sonder
l’âme et l’esprit puisse encore guérir de nombreux étudiants.

A ma génération, longue vie ! Je commence avec le merveilleux mathémato-
écono-pouète ������, et sa non moins merveilleuse ���. Sans vos lumières, je
ne serai jamais arrivée à bon port. Très longue vie également à l’autre couple de
ma vie, ���� et ����, pour votre amour bien sûr, et parce que vous maîtrisez
deux de mes grandes peurs, le feu et la machine. Longue vie au Tronc, mort à la
CES, et vive la caravane ! Cette fois, pas besoin de business plan ����. Ensuite,
longue, très longue vie à ������ et ������� (et ����� qui supporte ce dernier)
pour leurs encouragements et leur aide précieuse avec le chapitre 2 qui m’en a fait
baver un océan. Le beau Cyrano ����� m’a aussi bien aidé avec mes équilibres
pleins de panache, ���� avec son cours de compta, ainsi que le fanclub du cuivre,
������ et le licornesque �����. Très longue également à tous mes relecteurs intré-
pides : d’abord mes colocs d’amour et de toujours, comment faire le poids devant
tant de beauté et de cœur, ������� et ����� (et ����� qui le fait rire), les gas, je
vous aime d’amour ; ensuite au meilleur ex-voisin, le très sexy-bearded �������, à
ma meilleure amie de la Tunisie �����, à ma meilleure amie de la Fronce �����,
à ma meilleure amie de l’Éthiopie ���� et enfin au meilleur cousin ����. J’en
profite pour faire une spéciale dédicace à tous mes zincous du monde ! Longue vie
alcoolisée à tous les poteaux de la MSE, parce que vous êtes la joie de ce bâtiment
étrange. D’abord ceux du/que j’associe au cinquième avec qui j’ai fait mes pre-
miers pas dans l’aventure, entre autres à ma double italienne ������ et tous ses
vélos, à ������ et ses blind-tests (et son frère magicien des cervicales), à ma pro-
digieuse sirène ����� et nos délires existentiels, à mon frère capillaire ������� et
son accent ravageur, à ������ et ses rollers, à ����� et son île magique, à �����

et ses blagues russes, à ������ et son mac, à ���� et ses chaussures d’esca-
lade, et enfin à la blonde la plus intelligente de l’univers mais aussi la plus belle
������ (tu abuses meuf). Ensuite ceux du deuxième, entre autres mon bébé ����,
mon musicien fou ������, ma sociologue préférée ����, mon innefficient du
marché ���� et l’espionne iranienne la plus drôle de l’univers ����. Une longue

ii



vie syndicalisée aux Doctorant.e.s Mobilisé.e.s, qui m’ont valeureusement défen-
due contre l’infâmie administrative, en particulier ���� qui est toujours debout.
Longue vie à tous ceux que j’ai oublié de citer aussi, je fais tout à la dernière mi-
nute les gas ! Je pense d’un coup à ���� et notre fanclub de Joan Robinson, longue
vie à toi et à l’amour tuniso-libanais. Très longue vie à notre gang des doctorants
musiciens, philosophes mais avant tout gourmands : ������ et sa fondue, agapi
mou ����� et sa rhubarbe, ��� et son hamburger what else ?, ������ qui a tout
mangé mes sardines, et enfin mon futur ex-mari d’amour ������ et sa Normandie
toute entière. Spéciale dédicace aux mineurs de Paris pour nos rires cataphiles, et
surtout au gang des géologues de Lyon, j’ai tellement appris avec vous, ma bande
de vadrouilleurs géozoophytophiles.

Heureusement, il n’y a pas que la thèse dans une thèse, et celle-ci m’a fait dé-
couvrir une des choses les plus merveilleuses qui soit, la musique. Une vie de géant
à toi et aux tiens, ����, pour m’avoir ouvert cette porte que je pensais verrouillée
à jamais. Une vie toute aussi grande à la crew de notre Boat rêvé, que chacune de
nos journées soient baignées de sons magiques et de voiles féeriques. Spéciale dé-
dicace à mes chers amis du Gamelan, l’instrument qui vous donne la réponse à La
grande question sur la vie, l’univers, et le reste. Et puis bien sûr, vive la danse ! La
deuxième chose merveilleuse que j’ai découverte pendant cette thèse, c’est planter
des petits pois, entre autres miracles de la nature. Et pour ça, ma reconnaissance
éternelle aux super-héros paysans ����� et �����, qui personnifient pour moi le
courage, et qui ont fait d’une idée vague une réalité et un exemple à suivre. Encore
une spéciale dédicace aux non moins courageux fermiers de Villetaneuse, je prie
Tanit que cessent les manigances politiques et que vous puissiez continuer à semer
l’espoir au fil des saisons blanches et sèches.

Ma thèse m’a aussi fait réfléchir très fort à la notion de foyer. Et si je consi-
dère que la Terre entière est le foyer de tous, question d’échelle, il n’empêche
qu’il y a des endroits où le feu est plus chaud, où les personnes sont plus proches.
Longue vie d’abord à mes précieux ����� et �����, qu’elle vous fasse vivre plein
d’aventures. Longue vie aussi à ����� et ���, mes amitiés les plus vieilles,
ainsi qu’à ����� et ����� ���� , mes amitiés les plus délurées. Comme ce qui
compte, ce n’est pas la taille, et pas non plus la quantité, merveilleuse vie à toi
����, mon oiseau-chat des îles qui m’a emmenée, à bord d’un tapis de plumes
volant, découvrir les mondes enchantés par-delà la Ville, puis m’a déposée dans la
belle maison de St-Leu-La-Forêt. Là est mon actuel foyer, avec ses habitants : ����

la bleue, ���� la grise, ���� le noir-cuivré, ����� qui-vous-fait-fondre et ����

le presque-blanc. Je vous souhaite une chatte de vie ! Enfin, une resplendissante vie
à ��������, qui illumine mes jours et mes nuits de ses rires et mélodies. Quelque
soit l’île où on ira, je me sentirai chez moi avec toi.

En passant, longue vie aux inconnus connus, rencontrés grâce à ce phénomène

iii



fascinant du hasard, et qui m’ont fait apercevoir leur monde, différent du mien,
pourtant si proche.

Aux générations qui arrivent, bienvenue et courage pour ce qui vient ! Vous
serez, c’est mon espoir, plus informés et intelligents que nous. C’est en tout cas
ce que j’ai pu observer car durant ma thèse, j’ai adopté plusieurs petits humains –
chut, leurs parents vont être jaloux. Longue vie à mes apprentis sorciers stéphanois
����� et �����, coulannais ����, ���� et ������, crétois ����� et saintlupien
���. Longue vie aussi à tous mes Petits Débrouillards, vous êtes merveilleux !
Longue vie à mon petit bout de cuivre aussi, laissez-en au moins assez pour la
liberté sans hormone, les terriens. Pour finir, longue vie à mon vaillant petit ��� qui
va bien se promener désormais, pour ta tendresse dans mes moments de mélancolie
et la sérénité que ton espèce apporte à nous autres, pris dans une course folle.

Enfin, un long repos à ceux qui nous ont quitté. ����� ���� et ���� ����, la
bonté et la force, et ����, la paix. Vos souvenirs de joie sont dans mon cœur.

iv





Sustainable Metal Extraction,
Steady-State Good Production and

Cooperative Wealth Allocation
among Nations and Generations:

a Transdisciplinary Approach

Fatma Zahra Rostom
ED 465,

Centre d’Économie de la Sorbonne,
Université Paris I Panthéon-Sorbonne

Chaire Énergie et Prospérité

PhD Dissertation
November 2019



2



Contents

Résumé 7

Introduction 13
1 Are Metal Resources Exhaustible? On Geologic Scarcity and Economic Abun-

dance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Geology of Mineral Resources . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Extraction and Society . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Geological scarcity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Economic scarcity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Is Exhaustibility Compatible with a Sustained Growth of Production? On the
Origins of a Divide in the Economics of Sustainability . . . . . . . . . . . . . 19
2.1 Infinite or Limited Growth . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The Specific Case of Metals . . . . . . . . . . . . . . . . . . . . . . . 20

3 Why do Exhaustion and Disparity require efficient and fair international strate-
gies? On Intergenerational Inequity, Geographical Inequality and Trade . . . . 22
3.1 Generational Equity and Sustainability . . . . . . . . . . . . . . . . . 22
3.2 Geographical Distribution of Geological and Economic Wealth . . . . . 23
3.3 Sustainability and Trade, competition or cooperation? . . . . . . . . . 23

4 Contribution and Transdisciplinary Methodology . . . . . . . . . . . . . . . . 24
4.1 Research Questions and Methodologies: Time and Dynamics . . . . . 24
4.2 Variables and Parameters: the Construction of a Model . . . . . . . . . 26
4.3 Contribution to the on-going debates . . . . . . . . . . . . . . . . . . . 27

1 Sustainable Mineral Extraction:
Hard Facts and Possible Futures 35

2 Steady-State Extraction and Production Growth
in a Goodwin-Class Model 37
1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.1 Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2 Production of the final good . . . . . . . . . . . . . . . . . . . . . . . 42

3



1.3 Labour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.4 Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Stock-Flow consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3 Exploring possible futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Reduced form of the dynamics . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Long-term equilibrium analysis . . . . . . . . . . . . . . . . . . . . . 51

4 Past evolution of world demographic, macroeconomic and geologic variables:
dataset construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1 World demographic and macroeconomic dataset . . . . . . . . . . . . 54
4.2 World copper dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 World non-copper dataset . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Estimation of the K-L-M production function . . . . . . . . . . . . . . . . . . 63
5.1 The CES production function with three production factors . . . . . . . 63
5.2 Estimation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 A Dynamic Cooperative Game
for International and Intergenerational Allocation
with Exhaustible Natural Resources 79
1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.1 Static Cooperative Games . . . . . . . . . . . . . . . . . . . . . . . . 81
1.2 Dynamic Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.3 Maximum Under Convexity . . . . . . . . . . . . . . . . . . . . . . . 83

2 The Bronze Age Model: Intergenerational Market Game of Wealth Creation
from Traded Mineral Resources . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.1 Game Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.2 Optimal Action Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3 Efficient and Coalitionally Rational Distribution Policy . . . . . . . . . 86

3 The Capital Age Model: Optimal growth with Traded Mineral Resources and
Capital Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1 Game Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 Significant Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3 Coalitional and Intergenerational Worth . . . . . . . . . . . . . . . . . 92
3.4 Optimal Action Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5 Efficient and Coalitionally Rational Distribution Policy . . . . . . . . . 93

4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Conclusion 105

Summary 109

4



This thesis contains four separate articles in English :

• Global Trends in Metal Consumption and Supply: The Raw Material-Energy Nexus pub-
lished in Elements in 2017. This article is co-authored by Olivier Vidal 1, Cyril François,
Gaël Giraud 2 and myself.

• Prey-Predator Long-Term Modelling of Copper Reserves, Production, Recycling, Price
and Cost of Production published in Environmental Science and Technology in 2019, by
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• Steady-State Extraction and Production Growth in a Goodwin-Class Model co-authored
by Cheryn Ali 3, Gaël Giraud and myself.

• A Dynamic Cooperative Game for International and Intergenerational Allocation with
Exhaustible Natural Resources co-authored by Stéphane Gonzalez4 and myself.

A summary in French is first presented, a detailed introduction in English is further
available. The first chapter regroups the first two articles and focuses on the mining sector.
The next two chapters correspond to the other two articles.
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Résumé

Extraction Durable des Métaux, Production Stationnaire des Biens et Allocation Coopé-
rative des Richesses : une Approche Transdisciplinaire de la Modélisation

Les matières premières minérales constituent la substance des biens que nous consommons
et des infrastructures que nous utilisons. Ces richesses naturelles sont sources et conditions du
développement matériel des sociétés, que plusieurs indicateurs nous permettent de mesurer. Le
plus usité est le Produit Intérieur Brut ou PIB. Ce dernier a connu une progression extrême-
ment rapide ces cinquante dernières années, traduisant une amélioration significative du niveau
de vie mondial moyen, qui s’est cependant accompagnée de dégradations alarmantes des mi-
lieux naturels. Si les pressions environnementales les plus importantes sont liées au changement
climatique, il faut toutefois également citer l’effet des pollutions locales ainsi que les destruc-
tions d’habitats naturels qui font aujourd’hui craindre aux scientifiques une possible sixième
extinction de masse liée à l’activité anthropique. La notion de capacité de charge de notre pla-
nète prend quant à elle non seulement en compte les dommages liés au développement d’une
espèce, mais également les limites des ressources qu’elle puise. Le débat public autour de la
question de la compatibilité entre la croissance en volume (PIB) et cette capacité de charge
s’est intensifié, et la « croissance verte » est devenue le Leitmotiv de nombreuses études, ainsi
que l’objectif de plusieurs organisations internationales5.

Le développement matériel des sociétés modernes est directement lié à une consommation
exponentielle des ressources non renouvelables (voir Fig. 1). La première des ressources qui
vient à l’esprit est communément « l’or noir », c’est-à-dire le pétrole, l’accès aux matériaux, et
plus spécifiquement aux métaux, pouvant paraître moins cruciale. Pourtant, la question de leur
approvisionnement est aujourd’hui sujette, pour les décideurs6 comme pour les industriels7,

5Par exemple, l’objectif 8 de développement durable des Nations Unies.
6La Commission Européenne a publié un rapport conséquent sur les métaux critiques (Source :

Ad-Hoc Working Group On Defining Critical Raw Materials, Critical raw materials for the EU,
2010), et les États-Unis ont publié un « American Minerals Security Act » en mai 2019 (Source :
https ://www.reuters.com/article/us-usa-minerals-electric/u-s-senate-moves-forward-on-plan-to-develop-electric-
vehicle-supply-chain-idUSKCN1SK0L7)

7Voir par exemple le rapport PwC (Source : PwC, Minerals and metals scarcity in manufacturing : the ti-
cking timebomb, 2011) sur la perception de la rareté des ressources par les directeurs de grandes entreprises, ou
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FIGURE 1 : Evolution de l’extraction des matières premières minérales depuis 1900 (Source :
Krausmann et al., Growth in global materials use, GDP and population during the 20th century,
Ecological economics, 68 (2009), pp. 2696-2705).
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à des préoccupations grandissantes, quoique concernant des risques à court terme. La dispo-
nibilité au long terme de ces ressources non renouvelables est quant à elle débattue au sein
de la communauté académique, qui reste divisée sur ce sujet. Contrairement aux questions de
pressions environnementales citées précédemment, la possibilité d’une déplétion des ressources
non renouvelables et ses conséquences sur le développement ne font pas l’objet d’un consensus
clair, ni du côté des sciences de la Terre, ni de celui des sciences économiques.

Cette thèse examine d’abord les raisons des divisions sur ce sujet, entre et au sein des deux
communautés. En combinant des connaissances géologiques sur la distribution de ces métaux
dans la croûte terrestre, des données techniques sur l’industrie minière ainsi que la modélisation
d’indicateurs économiques, elle analyse la plausibilité d’une menace de déplétion de certains
métaux clés avant la fin du siècle. Elle explore ensuite ses possibles conséquences en termes de
croissance à long terme et d’allocation internationale et intergénérationelle des richesses, fruits
de l’extraction.

Nous adoptons pour cela le point de vue du Vaisseau Terre8. La planète y est considérée dans
son ensemble, c’est-à-dire comme un système fermé où ses habitants extraient, transforment et
échangent des ressources. Dès lors, les questions liées à la durabilité de ce système peuvent se
formuler de la manière suivante :

• Les connaissances que nous avons sur les processus de formation de la Terre peuvent-
elles nous éclairer sur l’existence d’éventuelles « limites planétaires » liées à l’épuisement
des ressources non renouvelables ?

• Les sociétés actuelles peuvent-elles poursuivre leur développement matériel (mesuré par
le PIB) au vu de ces limites planétaires ?

• Qu’impliquent ces limites planétaires en matière de gouvernance mondiale ?

Cette thèse propose une approche transdisciplinaire visant à nourrir le débat suscité par ces
questions, ce qui nécessite une attention particulière à la définition du temps de l’étude. La
notion de temps diverge en effet fortement entre les disciplines de la Géologie et de l’Écono-
mie. Pour cette dernière, la notion de long terme se réduit à l’échelle d’une vie humaine. Sur
les marchés financiers, les obligations durent en moyenne dix ans, celles dites de long terme
durent environ 30 ans, quelques rares exceptions allant jusqu’à 100 ans. L’échelle des « temps
géologiques » est d’une tout autre mesure, la Terre ayant environ 4,55 milliards d’années. Il est
important d’avoir ces ordres de grandeur à l’esprit. Les trois chapitres de cette thèse intègrent
le concept de temps à l’aide d’outils de modélisation dynamique appliqués différemment selon
les questions posées et les données disponibles. Le premier chapitre disposant de séries de don-
nées temporelles très longues, il est possible d’y quantifier l’unité de temps. En revanche, les
deuxième et troisième chapitres ne considèrent le temps que théoriquement, à la différence près
que le troisième chapitre ne se préoccupe pas de comment le long terme sera, mais de comment
il devrait être. Examinons maintenant plus en détail les questions précises posées par chaque
chapitre, la méthodologie développée pour y répondre, ainsi que leur contribution respective à
la littérature.

la récente annonce de Tesla sur le lithium : https ://www.reuters.com/article/usa-lithium-electric-tesla-exclusive-
int/exclusive-tesla-expects-global-shortage-of-electric-vehicle-battery-minerals-sources-idUSKCN1S81QI.

8Source : Kenneth E. Boulding, The economics of the coming spaceship earth, in Sixth Re- sources for the
Future Forum on Environmental Quality in a Growing Economy, 1966.
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Le premier chapitre est composé de deux articles se focalisant sur le secteur minier à
l’échelle mondiale et traitant de l’offre et de la demande des matériaux d’origine fossile, ainsi
que du fonctionnement de ce secteur.

Le premier article retrace l’évolution longue de l’approvisionnement en différents maté-
riaux de base comme l’acier, l’aluminium, le cuivre, le zinc et de nombreuses Terres Rares. Un
aspect crucial de leur disponibilité est l’interdépendance entre les secteurs miniers et énergé-
tiques. En effet, la demande pour ces matériaux dépend du type d’infrastructure énergétique
déployée. Si les énergies dites renouvelables sont souvent décrites comme étant des sources
« propres » du point de vue des émissions de gaz à effet de serre, elles sont bien plus inten-
sives en matériaux que celles issues de sources fossiles. Ce premier article traite de l’impact
de différents scénarios mondiaux de transition énergétique sur la consommation de matériaux.
Il montre que la consommation passée a suivi une tendance exponentielle depuis le début du
siècle dernier, et augmenterait d’autant plus dans le futur si l’ensemble du système énergétique
reposait sur des énergies renouvelables. L’autre pendant de l’interconnexion matériaux-énergie
comprend les besoins énergétiques du secteur minier nécessaires à l’extraction des éléments
des gisements et à l’obtention des concentrés. Nous montrons qu’il existe une relation empi-
rique entre la dilution des éléments dans les gisements et l’énergie nécessaire à leur extraction.
Cette relation se retrouve également avec les prix, possiblement par le canal des coûts.

Le deuxième article s’appuie sur l’exemple du cuivre pour conceptualiser le secteur mi-
nier d’un point de vue géologique et économique. Ce métal structurel possède en effet des
caractéristiques physico-chimiques particulières, qui en font un des métaux les plus impor-
tants et les moins remplaçables des économies passées et présentes. Le but de cet article est
de savoir si le taux d’extraction observé actuellement peut être soutenu jusqu’à la fin de ce
siècle, et dans le cas contraire, quelles seraient les conditions requises pour un maintien stable
de l’extraction. Pour ce faire, nous proposons un modèle assez simple pour décrire les stocks
et les flux de cuivre disponibles et extraits, ainsi que ceux de variables économiques comme
les profits du secteur minier. Nous modélisons par exemple l’évolution des réserves en cuivre.
Contrairement à de nombreuses études prédisant un pic de cuivre et se fondant sur la théorie
de Hubbert9, nous ne considérons pas ici les estimations actuelles de ressources disponibles
comme une limite absolue, dans la mesure où de nouveaux gisements sont découverts et où
la diminution des concentrations permise par l’amélioration technologique conduit à une aug-
mentation continuelle des stocks estimés. La rareté n’est plus alors une question d’épuisement
à proprement parler, mais une course entre l’augmentation des réserves et l’extraction. Nous
modélisons également la « richesse » du secteur minier, correspondant à ses profits cumulés.
Il s’agit de la capacité productive de ce secteur, c’est-à-dire de l’infrastructure déployée pour
transformer le cuivre d’un état de gisement à un concentré délivré sur le marché. Ce modèle,
inspiré de la dynamique des populations de proies et de prédateurs, a été calibré par de nom-
breuses séries de données et utilisé afin de simuler des scénarios de production de cuivre. Nos
résultats suggèrent que la consommation exponentielle de cuivre pourrait ne pas durer, même
avec des taux de recyclage très élevés. Le modèle nous permet cependant de trouver des condi-
tions nécessaires à l’établissement d’un plateau d’extraction plutôt qu’un pic, moyennant une
stabilisation de la demande en cuivre. Si l’hypothèse d’une saturation de la consommation de
cuivre pour des niveaux de développement élevés est correcte, alors une condition est que le
PIB mondial se stabilise après 2100. Un effort important sera également à fournir en matière

9M. K. Hubbert, Nuclear energy and the fossil fuel, 1956.
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de collecte et de recyclage : une deuxième condition est que le taux moyen atteigne 70% d’ici
la fin du siècle, contre 40 % aujourd’hui.

Le second chapitre place le secteur minier dans l’économie globale. Ce travail de recherche
a en effet pour but d’évaluer de manière théorique les conséquences à long terme de la dyna-
mique de ce secteur sur la croissance de la production. Nous construisons pour cela un modèle
de croissance stock-flux cohérent basé sur la dynamique proposée par Goodwin10. La rareté
des ressources naturelles non renouvelables y est explicitée par le modèle proie-prédateur dé-
crit précédemment : le secteur minier extrait des ressources pouvant être découvertes à une
vitesse donnée, et les vend au secteur final qui produit des biens à partir de ces ressources, de la
force de travail engagée et de sa capacité productive ou capital. Un des objectifs de ce chapitre
est d’expliciter plus en détail la notion de « richesse » du secteur minier, qui a la possibilité de
s’endetter pour financer son activité. Nous étudions ensuite analytiquement les équilibres de
long terme de cette dynamique globale et identifions les conditions nécessaires à un équilibre
désirable. Nous montrons que, dans cette configuration spécifique, un sentier désirable ne peut
émerger que si la croissance à long terme est nulle : l’unique équilibre désirable à long terme
est donc stationnaire. Nous montrons également que d’autres équilibres peuvent être atteints,
dont un équilibre déflationniste où il n’y a plus de production ni d’emploi, et où la dette prend
une valeur non finie. Dans ce deuxième chapitre, la production est donnée par une fonction de
production CES qui permet d’évaluer la substituabilité entre les différents facteurs de produc-
tion (capital, travail et ressources). Nous proposons d’estimer empiriquement les paramètres
de cette fonction, grâce à un proxy de l’économie mondiale qui agrège 37 pays comptant pour
83% du PIB mondial moyen entre 1990 et 2017. Nous montrons que trois formes fonctionnelles
sont envisageables et discutons des limites à l’utilisation d’une telle fonction pour modéliser la
production.

Le troisième chapitre explore les implications induites par la rareté des ressources non re-
nouvelables en matière de commerce et de coopération internationale. Nous cherchons ici à
savoir si une stratégie de coopération à long terme pourrait être mise en place à l’échelle mon-
diale si les ressources et les capacités de production étaient mises en commun. Pour cela, nous
nous plaçons dans le cadre d’un jeu coopératif où les pays peuvent former des coalitions afin
d’optimiser leur consommation sur le long terme dans les limites de leur stock de ressources et
de capital. Contrairement aux chapitres précédents, le stock de ressources est ici fini puisque
nous nous intéressons à des générations infinies. Une coalition décide de son plan d’inves-
tissement et d’extraction, et en déduit les quantités de ressources qu’elle souhaite échanger à
l’intérieur de ses frontières. Elle distribue ensuite les biens de consommation produits entre ses
membres. Notons que ni la forme fonctionnelle de la fonction de production, ni la détermina-
tion des prix, n’ont besoin d’être explicitées. De plus, le contrat n’est pas exécutoire dans ce jeu
coopératif : chaque membre peut décider de rompre une alliance si elle n’est pas à son avantage.
Nous recherchons donc la coalition la plus efficace et la plus stable, qui pourra allouer les biens
de consommation produits sur le court terme tout en garantissant une consommation suffisante
aux générations suivantes. Pour cela, nous utilisons le concept de « cœur récursif », qui satis-
fait des propriétés de stabilité coalitionelle et de consistance temporelle. Nous montrons que
cet ensemble contient au moins deux éléments. En d’autres termes, si les pays membres d’une
coalition suivent une stratégie de coopération pour leurs choix d’investissement, d’extraction
et d’échange de ressources, alors la meilleure manière d’optimiser leur propre consommation

10Richard M. Goodwin. A growth cycle. In Socialism, Capitalism and Growth, C.H. Feinstein (ed.). Cambridge
University Press, Cambridge, 1967
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tout en se souciant des générations futures est de former une coalition internationale. Le cœur
récursif est composé des sentiers de consommation à allouer à chaque pays de cette coalition
mondiale. Puisqu’il n’est pas réduit à un singleton, il sera possible de faire un choix entre toutes
les allocations envisageables. Ce choix pourra se faire par exemple en suivant certains critères
de justice. Le présent modèle peut donc être vu comme un outil permettant de porter un re-
gard nouveau sur notre manière d’appréhender l’opposition Nord-Sud. Il pose un cadre pour
l’exploration d’un partage juste des fruits de la croissance économique mondiale.

Cette thèse conclut que l’extraction du cuivre, l’un des métaux essentiels au développement
matériel des sociétés, ne pourra pas se poursuivre au taux observé aujourd’hui. Après avoir ex-
ploré les conséquences de cet argument sur la croissance à long terme, elle infirme la possibilité
d’un équilibre de long terme désirable avec une croissance positive, dans la configuration pro-
posée. Elle propose enfin une nouvelle manière de réfléchir au commerce dans un contexte de
ressources finies, et montre qu’une coalition mondiale où les richesses naturelles et productives
des pays sont mises en commun peut être à l’avantage de tous.
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Introduction

There is perhaps no better demonstration of the folly of
human conceits than this distant image of our tiny world.
To me, it underscores our responsibility to deal more
kindly with one another, and to preserve and cherish the
pale blue dot, the only home we’ve ever known.

— Carl Sagan, Pale Blue Dot

Mineral materials constitute the structural basis of the goods we produce and the infras-
tructures we use. This natural wealth is a source and condition to the material development of
societies. The latter can be measured, or at least approximated, by various indicators. Popula-
tion growth is the most obvious of them, and the most used nowadays is the Gross Domestic
Product, or GDP. The last half-century has witnessed an extremely rapid progression of both
indicators at the world scale, together with significant improvements in living standards. How-
ever, other features have accompanied this evolution, the most prominent being global warm-
ing. The average global temperature has increased by about 1°C above pre-industrial levels.
A significant part of the warming has occurred since 1975, and it currenlty increases at a rate
of roughly 0.20°C per decade (Intergovernmental Panel on Climate Change, 2018), which is
mostly explained by the exponential consumption of fossil energy (10 EJ/year in 1880, 70
EJ/year in 1950 and 450 EJ/year in 2010 (Court, 2016)). Society is indeed facing, at the dawn
of this third millennium, increasing environmental pressure. Over the last decades, a consensus
among natural scientists has emerged, raising concerns about the possibly irreversible damages
caused by anthropic activity. The environmental threats include, of course, the consequences of
climate change, but also the various forms of pollution and the destruction of species’ habitat,
leading to reversible or permanent biodiversity losses. As a consequence, the public debate
around the long-lasting compatibility between growth in volume and the planet’s carrying ca-
pacity has intensified. “Green growth” or “inclusive and sustainable growth”, as the United
Nations puts it11 , has become the Leitmotiv of many studies and the objective of many interna-
tional institutions.

The concept of carrying capacity of the planet also encompasses the natural sources we
draw, and material development is directly linked to the exponential consumption of non-
renewable resources (as an illustration, see Fig. 2). Of course, modern society’s dependency on

11Sustainable Development Goal Number 8
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Figure 2: Long-term trends in global mineral extraction (from (Krausmann et al., 2009))

fossil fuels or ‘black gold’ first comes to mind, and fossil materials are regarded with less atten-
tion. Though, the question of their limitation has always been a matter of concern throughout
modern history. A careful attention to the current public debate shows that it is still seriously
considered, be it by decision makers for geostrategic purposes12 or by the industry, the first to
be concerned by a supply shortage in materials13. But these concerns only consider short-term
risks. The long-run availability of these resources is debated within the academic community,
who remains divided on that matter. Unlike the environmental threats cited above, no clear
consensus on a plausible depletion threat and its possible consequences on development has
emerged neither from Earth sciences, nor from Economics.

This dissertation analyzes the reasons of this divide in both communities. By combining the
specific knowledge of Earth sciences on the distribution of metals in the Earth’s crust, technical
information on the evolution of mined ore grades and the modeling of economic variables, this
work investigates the plausibility of a depletion threat of key metal resources within the current
century. It further explores the consequences this would imply in terms of global long-term
growth and international allocation of wealth.

12The European Commission (Ad-Hoc Working Group on Defining Critical Raw Materials, 2010) published an
interesting report on criticality, and the U.S. introduced a new American Minerals Security Act in May, 2019.

13See for instance the PwC survey (PwC, 2011) on how resource scarcity is perceived by senior executives.
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1 Are Metal Resources Exhaustible? On Geologic Scarcity
and Economic Abundance

1.1 Geology of Mineral Resources
Natural resources can be classified according to the time needed for their renewal. Renewable
resources are the resources that can be replenished on a human timescale. They include food,
air, and some sources of energies, as well as some structural materials such as wood, fibers and
so on. Non-renewable or fossil resources can be replenished only on a geological timescale
and include fossil materials (metals, sand and other construction materials) and energy sources
(coal, oil, gas and nuclear). The latter are left apart here because they are consumed in the
production process and are partial substitutes to renewable energies.

An ore can be defined as “a naturally occuring solid material containing a useful commod-
ity that can be extracted at a profit” (Arndt and Ganino, 2012). An ore deposit is therefore an
accumulation of this commodity that is large and concentrated enough to render the extraction
profitable. Note that this definition already encompasses geologic and economic notions. Re-
call that apart from its main components, the content of most elements in the earth’s crust is
very small: 0.007 % of copper for instance. The grade and the tonnage of a rock are the princi-
pal characteristics used to describe an ore. The grade is the content by weight of an element in
an ore, while the tonnage is the total mass of rock. It is established that the relationship between
the grade and tonnage of different rock types is lognormal (Ahrens, 1954). This distribution
peaks at very low grades which correspond to common rocks, the tonnage of currently mined
ores being at the tail of the distribution. Geologists define the mineralogical barrier as the jump
in energy that separates the ore from the common rocks. This energy is necessary to extract
the element’s concentrate from the gangue made of an “enclosing mixture of valueless silicate
minerals” (Gordon et al., 1987). For copper, this barrier is established at 0.1 %. It should be
distinguished from the mine-specific cut-off grade identified by the mining industry that reflects
the ore’s profitability limit.

Observe that as far as mining is concerned, the geological and economic notions are en-
twined. Yet, the natural processes needed to obtain an ore are purely of geological nature: the
process of concentration is key and induces world geographical disparities (Fig. 3). The mod-
ern genetic classification of ore deposits is based on the ore-forming process. The first class is
magmatic: the ores form by accumulation of minerals that crystallize from magma. Copper ore
in carbonatites belong to that class. A second important class includes the deposits associated
with the circulation of hydrothermal fluids which mobilize the elements that further precipi-
tate ; porphyry copper of Chile is one of them. The last major class of interest encompasses
sedimentary deposits, including the copperbelt in sandstones in Central Africa.

Therefore, tectonic and geomorphological settings determine the location of deposits. This
non-uniform distribution strongly influences metal prices and global trade, and “lies at the heart
of many of the alliances and conflicts that govern relationships between countries around the
world” (Arndt and Ganino, 2012).

1.2 Extraction and Society
Early stages of mankind are named after the materials from which tools and weapons were
made of. For instance, the Bronze Age, which arose fully around 3000 BCE, was preceded by
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Figure 3: Copper and lead-zinc ore world distribution (from (Arndt and Ganino, 2012))
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the Chalcolithic or Copper Age. The Near East was the “kernel of the Age of Metals", but was
poorly endowed with these materials. The “valley urban societies" therefore had to exchange
with the “barbarians" (in the technical archaeological sense), and the search for metals lead
them to Oman, Pakistan or Cyprus among other regions. This often required sea shipments:
the transport and exchange of commodities established “trading posts, and even colonies". The
trade expanded from the Near East to Europe, mainly through Troy, by sea but also by land,
with caravans carrying important loads (up to 12 tons of tin in one caravan). The “first city
‘civilization’ in Europe" was founded in Crete, the Minoan culture resulting “from this activity
of exchange". Iron then progressively replaced bronze, as “difficulties in importing tin" ap-
peared. Iron was locally available and already “known as a workable metal", but was much
more labor-intensive, and therefore costly. Iron use increased significantly with the invention
of its carburized form which lowers its melting point. It is therefore the mastery of the ore
smelting process that resulted in large disparities between regions (Goody, 2012).

Modern extraction, trade and consumption are of much higher orders of magnitude and dif-
ferent structure. Mining techniques have completely changed in scale, even if they still rely on
quite similar principles. The ore is hauled from open-pit or underground mines, then processed
by milling, smelting and refining. Important improvements in technological efficiency have
significantly lowered the grade that can be worked economically, which in turn increases the
tonnage. New techniques have also been developed, such as in-situ leaching which consists
in dissolving the ore directly in the mine. The concentrates are produced by a limited number
of countries and are then available on the world market. Raw materials represented 22.5% of
the world total merchandise trade in 2008 (WTO, 2010). The development of trade is neces-
sary to meet an ever-growing demand. At the global scale, mineral resource consumption has
increased exponentially over the last century, with growth rates spanning from 3% for copper,
5% for aluminum to 6% for cement and steel. Indeed, the first stages of industrialization are
characterized by the construction of infrastructures in the sectors of heavy industry, housing,
transport and communication, and in the sectors of production, transport and use of energy.
This development phase consumes mainly ‘structural’ raw materials such as concrete, steel and
iron, aluminium, copper, manganese, zinc, chromium, lead, titanium, and nickel. The indus-
trialization of developing countries will therefore inevitably be associated with an increase in
the consumption of raw materials, as this has been the case since the late 90’s with the rapid
industrialization of China, which has doped the growing rate of global material extraction. In
parallel to the building of their base infrastructure, most economies move towards high tech-
nologies. At the beginning of the 20th century, metal consumption was limited mainly to Fe,
Cu, Pb, Zn, Ag and Au, which had the desired basic physical and chemical properties at this
time. High technologies now require new raw materials and metals since they use many addi-
tional properties, including the electronic structure, the catalytic, quantum or semi-conductive
properties specific to almost all elements of the periodic table.

1.3 Geological scarcity
The notion of scarcity is intrinsically linked to the natural processes that induce the concentra-
tion of elements in the Earth’s crust, but also to the technical conditions of extraction and its
profitability. The question of the inventory and the quantitative assessment of what is available
is subsequently raised. Indeed, several studies suggest that the future supply of raw materials
will not match the demand since the amount of mineable fossil resources theoretically de-
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creases with time, and production of several metals has either peaked already or will peak in a
foreseeable future (Sverdrup et al., 2014). This classical modeling of fossil resources assumes
that production follows a symmetric bell-shaped curve of normal distribution: it is the Hubbert
peak theory (Hubbert, 1956), which relies on the assumption that the Ultimately Recoverable
Resources (URR) are finite and quantifiable. It is true that the stock of fossil mineral resources
on Earth is finite and not renewable at a human scale. However, the whole continental crust is
composed of minerals that could eventually be extracted to produce metals. Improvements of
technology allow new discoveries and the exploitation at economically viable costs of resources
that were not exploitable with older technologies. It is the fundamental difference between re-
sources and reserves, the latter being the amount of resources that can be extracted at viable
cost, given the current state of technology. It follows that the reserves are larger now than they
were 50 or 100 years ago. For this reason, the time before exhaustion of the known reserves
at the current level of production has remained fairly constant since 70 years. These difficul-
ties in the quantitative assessement are well illustrated by the case of copper: the URR values
estimated in 2010 by calibrating logistic functions on the historical data of global production
ranged from about 1 Gt (The oil drum: Europe, 2010) to 3.8 Gt (Frimmel and Müller, 2011). In
2010, the identified copper resources ranged from 1.1 Gt (Raw Materials Database) to 1.5 Gt
(United State Geological Survey, USGS hereafter). Three years later, the USGS completed its
geology-based assessment of global copper resources and proposed that about 3.5 Gt of undis-
covered copper should be added to the 2.1 Gt identified resources (Johnson et al., 2014). USGS
geologists subsequently published an article where they fiercely criticized the use of such data
to predict future production (Meinert et al., 2016). More recently, Singer (Singer, 2017) has
estimated that 4.35 Gt of copper were present in undiscovered mineral deposits, and Henckens
et al. (Henckens et al., 2016) have reported an amount of extractable global resources equal to
7.5 Gt. Finally, based on geodynamic arguments, Kesler et al. (Kesler and Wilkinson, 2008) es-
timated that ultimate copper reserves in porphyry deposits could be as high as 1300 Gt, among
which 89 Gt would be exploitable if mining in the future could reach depths of around 3.3 km.
This non-exhaustive comparison of data published during the last decade clearly shows that
URR estimated from geological constraints or from historical data of production span a huge
range of values and increase with time. They only provide a crude estimate of the total amount
of available copper and cannot be used to produce robust estimates of future production.

1.4 Economic scarcity
In the field of Economics, the notion of scarcity is often reflected in relative prices. The debate
around this notion goes back to the controversy between Malthus and Ricardo, who had two
different views on this question. Malthus postulated absolute limits to resources, while Ricardo
looked at their decreasing quality (Hall and Hall, 1984). Hotelling’s seminal paper (Hotelling,
1931), for instance, considered a Malthusian scarcity, since resources are supposed to have an
ultimate limit. The reference work of Harold Barnett and Chandler Morse (Barnett and Morse,
1963), published in 1963, consisted in a measure of the Ricardian scarcity of minerals through
their unit costs. The authors concluded that technological change pushes unit costs downwards,
demonstrating the decreasing Ricardian scarcity of minerals.

The scarcity controversy continued though, and reflected an important philosophical break-
up, between on one hand the so-called ‘cornucopians’, represented by Julian Simon notably,
and the so-called ‘doomsters’ on the other hand, who counted among other advocates Paul
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Ehrlich. At the end of the 70’s, after a decade of fierce debates around the possibility for
societies to reach the Earth’s carrying capacity in a foreseeable future, a $ 10,000 bet was
published in the Social Science Quaterly Journal. Simon gambled on the decrease in price of a
basket of 5 metals in ten years, as a proof of their diminishing scarcity. Ehrlich took the bet and
lost ten years later. Had the bet been set on another ten-year period or had the basket contained
more commodities, Ehrlich would have won. This anecdote illustrates why that question cannot
be solved only by a price or cost analysis.

The mining sector corresponds to a small part of the economy, but metals constitute the
bones and nerves of the infrastructure and are essential to development. The issue of their
scarcity therefore raises an important concern on long term growth of production. The debate
of the impact of a possible depletion on future development is explored in the next section.

2 Is Exhaustibility Compatible with a Sustained Growth of
Production? On the Origins of a Divide in the Economics
of Sustainability

2.1 Infinite or Limited Growth

Growth theory pioneer Robert Solow exposes in 1992 his idea of “heaven” as "an occasion
when a piece of pretty economic theory turns out to suggest a program of empirical research
and to have implications for the formulation of public policy" (Solow, (1992). His pretty theory
became the bedrock of modern vision of economic growth. In 1956 (Solow, 1956) and dur-
ing the following years, he published, along with Trevor Swan, his famous exogenous growth
model. Production is described as a function of labor and capital. Agents save a given share
of their revenues to invest. Investment accumulates into the stock of capital. Production can
therefore grow in volume, at a rate given by technical change and population dynamics. A
key point of this model is that technological advances compensate capital diminishing return
effects. From the beginning, criticisms were addressed to the model for it disregarded the effect
of land and exhaustible natural resources. Swan concluded that technological change was nec-
essary to compensate diminishing returns of land (Swan, 1956). This theory provides the basic
structure of neoclassical conception of growth. Growth theorists subsequently endogenized the
exogenous variables of the model, giving birth to the endogenous growth theory (Romer, 1986)
and the micro-founded growth theory (Cass, 1965; Koopmans et al., 1963), among the most fa-
mous research programs. Solow’s model initiated a tremendous number of empirical research
(Mankiw et al., 1992).

In 1972, Donella and Dennis Meadows and colleagues published their famous report (Mead-
ows et al., 1972), whose conclusions were much more nuanced. Relying on non-linear dynam-
ical systems, the MIT team exhibited scenarios leading to a worldwide collapse due to the
exhaustion of non-renewable resources, as well as alternative narratives compatible with sus-
tained growth. The world model used in this report was based on the emerging science of
system dynamics, using computer simulations to better understand dynamic behaviors of the
complex non-linear “Nature-Capital” system. The point was to determine “broad behavior
modes” or the tendencies of global variables to change as time flows. The international suc-
cess of this book led Robert Solow to organize a symposium on the economics of exhaustible
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resources in 1974 (Couix, 2019). There, Solow presented a new version of his 1956 seminal
model (Solow, 1956), refining the workhorse production function with a flow of extracted re-
sources. His conclusion, however, was that substitution between capital and resources would
ensure a constant per-capita-consumption for future generations (Solow, 1974b). A similar
conclusion was reached by Joseph Stiglitz in (Stiglitz, 1974b), where “resource-augmenting
productivity” can overcome their exhaustibility. The debate, nevertheless, was not over as, in
1975 (Georgescu-Roegen, 1975) and 1979 (Georgescu-Roegen, 1979), these two models re-
ceived a fierce criticism by Nicholas Georgescu-Roegen, who stressed that thermodynamical
limits to efficiency might prevent progress in technology from compensating the exhaustion of
non-renewable resources. This controversy led the discipline to split up between environmental
and ecological economists. A confrontation was launched again in the 90’s by Herman Daly
(Daly, 1997) - prolonging Georgescu-Roegen’s criticism - followed by responses from Solow
(Solow, 1997) and Stiglitz (Stiglitz, 1997), but this renewed controversy did not lead to a con-
sensus either, not even to a common theoretical ground. Environmental economists, for whom
technological and natural capital are substitutes, recommend weak sustainability, whereas eco-
logical economists defend strong sustainability, emphasizing that technology and nature are
hardly substitutable. Each community has its own “heaven”, leading to conflicting theories,
empirical studies and policy implications.

2.2 The Specific Case of Metals
When it comes to applying non-renewable resource theories to metals, several points need to
be taken into account.

First, it is important to distinguish structural or base metals such as steel, copper or alu-
minum from high-technology metals. Base metals are essential to the building of infrastruc-
tures and therefore to the basic functioning of economies. Their use depends on their specific
physical and chemical properties. Copper, for instance, has a high electrical and thermal con-
ductivity, resists well to corrosion and is the base of many alloys. In 2010, 42 % of copper is
used in power grids and electronic appliances, 28 % in construction, 12 % in transport, 9 %
in industrial machinery and the rest in other applications such as coins, medecines or fungi-
cides (Arndt and Ganino, 2012). This feature constitutes an important limit to the substitution
argument (see Fig. 4).

Of course, a lot can be done to increase metal efficiency. The UNEP’s International Re-
source Panel has developed the concept of “decoupling” applied to material resource use (In-
ternational Resource Panel, 2011). Not only technological innovation should permit a reduction
of use, but also correct incentives towards policy makers, corporate leaders and consumers.

Moreover, in contrast to fossil fuels, primary metals are not lost when they are used and
metal-bearing goods manufactured today are the reserves for tomorrow’s recycling (see Fig.
5). Increasing the share of recycling is not sufficient to meet the demand in a period of growth
because we can only recycle some of the consumer goods and equipment that were created
several decades ago. In practice, the recycling potential is limited by economic factors, such as
the difference between the price of metals and the cost of their recycling. Only metals present in
sufficiently high concentrations in the end-of-life products are recycled, because the recycling
cost of more diluted metals remains uncompetitive compared to primary production. In that
sense, a future increase in price due to an eventual depletion of primary reserves would foster
recycling.
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Figure 4: The peridiodic table of substitute performance (from (Graedel et al., 2013))

Figure 5: The peridiodic table of end-of-life recycling rates (from (Reck and Graedel, 2012))
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Altogether, the overall stocks of all metals to be produced by 2050 and the metal flow into
use in 2050 could reach 5 to 10 times the current levels (Graedel, 2011). This means that
the cumulative amount of metals to be produced in the next 30 years would exceed the cu-
mulative amount that has been produced until today. In 1987, two Nobel-awarded economists
(Tjalling Koopmans and William Nordhaus) and two eminent geologists (Robert Gordon and
Brian Skinner) published a book that has gone quite unnoticed (Gordon et al., 1987). The au-
thors propose “a step toward resolving the debate between geologists ans economists” and an
answer to “whether economic growth will exhaust our precious heritage of fuels and nonfuel
minerals”. They focus on copper through “materials modeling”, considering copper’s distribu-
tion and average grade, but also substitution and recycling possibilities. The results obtained
for their base case suggest that the ores containing copper minerals could be mostly exhausted
by 2070. They open their discussion on the assumption that the globe’s economies would grad-
ually rely on geochemically abundant metals and might enter a “New Iron Age”. The authors
do not discuss the differential impacts this “Age” would have between, on one hand, modern
industrialized economies and, on the other, countries who still are at early stages of develop-
ment.

3 Why do Exhaustion and Disparity require efficient and
fair international strategies? On Intergenerational Inequity,
Geographical Inequality and Trade

3.1 Generational Equity and Sustainability

According to Solow, the question raised by the possible depletion of non-renewable natural
resources takes, at the “popular level”, the following form: “how much of the world’s - or a
country’s - endowment of nonrenewable resources is it fair for the current generation to use up,
and how much should be left for generations to come who have no active voice in contemporary
decisions?” (Solow, 1986). This formulation is “damaging” according to him, since it implies
that the current generation “owes” a share of resources to the following generations, whereas
it only owes a productive capacity. This shapes a particular definition of sustainability, that
can be viewed as weak, since natural resources are viewed as pure instruments of wealth that
can be combined to satisfy some needs. Therefore, and as long as these instruments of wealth
are substitutes, the question of ‘equity’ converts into a question of pure ‘efficiency’ of resource
allocation.

How to guarantee intergenerational justice in this view of sustainability? The choice of
a ‘fair’ criterion is key, and intensively debated (Chichilnisky, 1996; Asheim, 2017). Solow
originally focused on an egalitarian rule, based on the Rawlsian max-min principle, that “the
standard of consumption should be achieved by the least well-off generation” (Solow, 1986).
This criterion requires that consumption per-capita remains constant over time. He opposed
the utilitarian norm introduced by the Ramsey model (Ramsey, 1928), for whom social per-
formance is the sum over time of utilities of consumption. Optimal depletion issue is mostly
tackled in the intertemporal allocation framework. A large number of studies are based on the
DHSS growth model (Dasgupta and Heal, 1974; Solow, 1974a; Stiglitz, 1974a), but use either
of these criteria.
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Figure 6: The distribution of capital stocks (from (World Bank, 2013))

The discounted-utility approach has become a convention for these sets of questions. Recall
that in his original paper, Ramsey did not use a discount rate. He assumed instead that there
was an upper-bound to the level of “enjoyment” attainable by agents he calls “bliss”.

3.2 Geographical Distribution of Geological and Economic Wealth
Natural processes have resulted in an unequal distribution of resource wealth, as can be seen in
Fig. 3. But countries are also unequally endowed in productive capacity. It can be approximated
by the measure of capital stocks, calculated by the perpetual inventory method. Its distribution
in 2010 is displayed in Fig. 6. Since 1980, it has gradually expanded, mostly to Eastern Asia.
This is explained by the ever-growing share of global manufacturing investment (about 75 %
between 2005 and 2007 (World Bank, 2013)) devoted to this region.

We observe that the geographical distribution of extraction does not correspond to the geo-
graphic distribution of manufacturing capacity, with some exceptions like China, Australia or
the U.S.

3.3 Sustainability and Trade, competition or cooperation?
International trade structure is marked with complexity. Scholars analyze the value-added
chain, which is “the process by which technology is combined with material and labor in-
puts, and then processed inputs are assembled, marketed, and distributed" (Kogut, 1985). The
physical separation of different parts of a production process is called “fragmentation" (Arndt
and Kierzkowski, 2001), “desintegration of production" (Feenstra, 1998) or “global production
sharing" (Yeats, 1999). Most industrialized countries export high value-added manufactured
goods, while developing countries mostly export primary products. Latin America earned 40
% of its export revenues from mineral and fuels products, 70 % for Africa in 2006 (International
Resource Panel, 2011).

This considerable development of trade is directly linked to the institutional implementation
of free trade agreements in free trade areas. The “rationale for free trade" is over two centuries

23



old, and was formally defended by the “Ricardian analysis" of comparative advantages when
a free trade policy is “adopted in an institutional setting" (Bhagwati, 2003). Later, Samuelson
showed that free trade was Pareto-superior than autarky in static analysis (Samuelson, 1962).
In the 90’s, the benefits from free trade seemed to reach a strong consensus among economists.
Its effects on growth were the subject of rich theoretical and empirical literature (Ben-David
and Loewy, 1998; Frankel and Romer, 1999), but its social and environmental costs were also
fiercely criticized (Rodrik, 2017; Daly, 1993).

The debate on the “trade-environment divide" is mostly focused on pollution issues (Esty,
2001; Copeland and Taylor, 1994). The question of the interactions between trade and mate-
rially sustainable growth (Dupuy, 2014) was studied by Asheim (Asheim, 1986) who looked
at the effects of opening economies on the Hartwick rule. Other models focus on two-region
trade, the industrialized North versus the resource exporter South (Chichilnisky, 1993). The
relationship between optimal depletion theory and trade was also studied, but mostly between
two countries (Kagan et al., 2015; Tamasiga and Bondarev, 2014).

It is worth noticing that in a context of possible resource depletion, the question of spatial
justice has not been as studied as temporal equity. This is obviously due to the way trade was
historically designed and implemented, and international competition may seem to be a rule.
But competition is only one side of the coin. Free trade agreements can also be seen from a
cooperative point of view. In that sense, both natural and productive endowments are shared in
a common pool. This flip of a coin would renew the perspective on the convergence of living
standards between countries, and open a space for discussion on the equity of trade in times of
environmental threats.

4 Contribution and Transdisciplinary Methodology

4.1 Research Questions and Methodologies: Time and Dynamics
The three chapters of this dissertation aim at shedding light on specific aspects of the broad
issues raised by non-renewable resources depletion and its consequences on the long-run. For
that purpose, it adopts Boulding’s “Spaceship Earth” point of view (Boulding, 1966). Earth is
seen as a closed system whose inhabitants extract, transform and exchange natural resources
and goods. The broad questions, previously explored in this introduction, are:

• Does our knowledge of the Earth’s formation processes provide us any valuable infor-
mation on possible planetary boundaries induced by the exhaustibility of non-renewable
natural resources?

• Can this information shed light on the ability of societies to continue their material de-
velopment - measured through GDP - within these planetary boundaries?

• What would these planetary boundaries imply in terms of global governance?

This dissertation offers a transdisciplinary modeling approach to feed the debate revolving
around these questions, which have in common the imperative to delimit space and time scales.
The latter is crucial, especially when it comes to bridging two academic fields which have
radically different sense of time. The notion of long-term in Economics is limited to a human
timescale. In financial markets, bonds last 10 years on average. Long-term bonds last 30
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years, even if some countries and big companies can issue 100-year bonds. Geologists do have
a much wider definition of long-term, known as "geological times". Recall that the Earth is
4.55 billion years old. All three chapters use dynamic modeling, but this tool is applied very
differently according to the question and the available data. Since it uses very long-span data,
the first chapter is able to give a quantitative information on the time unit. The second and third
chapters only consider the long-term theoretically, with the difference that the third chapter
does not ask how the long-term could be, but how it should be. Let us now see in details what
specific questions these three chapters intend to tackle, and what dynamic methodology was
chosen.

The first chapter is composed of two articles dealing with the supply and demand of fossil
materials, and the functioning of the mining sector. It adopts a world scale, but it is restricted to
this specific sector. The first article is an overview of the hard facts on the past evolution of the
global supply of different base materials such as steel, aluminum, copper, zinc and more tech-
nological metals like Rare Earth Elements. The purpose is not to provide a conclusive answer
to the very complex issues raised by mineral resources consumption and supply, but rather to
identify some of the key points that seem important to consider. One is the inter-dependency
between the metal and energy sectors. Indeed, the demand for materials crucially depend on
the structure of our energy-providing system. If renewable resources are seen as ‘clean energy’
from the point of view of greenhouse gases, they are much more material intensive than fossil
sources. One issue tackled in this article is therefore the impact of different world energy tran-
sition scenarios on the future consumption of materials. The other side of the material-energy
nexus is the energy needed to extract materials from their ore deposit and obtain concentrates.
We ask whether there exists any empirical relationship between the dilution of elements in
the ore and the cumulative energy needed to extract them, and if this has an impact on their
price through a cost channel. The second article focuses on one metal, copper. We chose it as
an experimental case to have a clear conceptualization of mining, both geologically and eco-
nomically speaking. As we have seen, this structural metal presents a broad range of uses in
past and present economies. It is used for its specific chemical and physical properties, which
leaves little room for substitution. If long-term supply issues were to be encountered for this
metal, it would impact the economy as a whole. The goal of this article is to check whether
the current rates of copper extraction are sustainable until the end of this century, and if not,
what would be the condition for a sustained copper extraction. Note that ‘sustainable’ here has
its original sense of continuity with past trends, whereas ‘sustained’ has the sense of stability.
To answer this complex issue we propose a mind-sized model, giving a dynamic description of
stocks and flows of both geological and economic variables. The evolution of primary copper
reserves and production, recycling, price, revenues and costs of production are modeled with
a ‘prey-predator’ dynamics. The model was constrained with a wide variety of historical data
- including primary production and reserve, mass flow data, price, industrial revenue, cost of
production and profits - and was used to simulate a range of possible future paths of production.

The second chapter embeds the extracting sector, as modeled in the previous chapter, into
the whole economy. Indeed, this work aims at theoretically evaluating the long-term conse-
quences of mining dynamics on long-term growth. For that purpose, we construct a stock-flow
consistent continuous-time macro-dynamics built on (Grasselli and Lima, 2012) and (Bovari
et al., 2018), where the scarcity of natural resources is made explicit through the simple prey-
predator dynamics previously introduced. A mining sector extracts some natural resource that
can only be discovered at finite speed and sells it to the final good sector which produces the
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consumption good out of capital, labor and this natural resource. This model enables to assess
the ability of factor substitution to circumvent a collapse à la Meadows and to sustain an ever
growing path. As a proof of concept, we analytically examine the long-run steady states of our
vector field and identify conditions under which a stationary balanced path can be reached. We
further provide a proxy of the world economy by aggregating 37 countries, which account for
83% of the average world GDP between 1990 and 2017. We estimate the parameters of the
production function, and discuss factor’s substitution and weight.

The third chapter explores the implications of natural resource scarcity in terms of global
cooperation and trade. We investigate whether an international long-term cooperation strategy,
where natural resources and productive capacity are shared in a common pool, can be put in
place. For that purpose, we use a cooperative game framework, where countries can form
coalitions in order to optimize their discounted consumption stream in the long-run, within the
limits of their stock of natural resources. The coalition decides its extraction and investment
plan, and deduces the amounts of resources it wishes to trade. It then distributes consumption
goods to its members, following some criteria. Of course, members can break an alliance
according to their interest. In this work, we look for the most efficient and stable coalition, and
how it can allocate the consumption stream it produced among its members in the short run,
while taking into account the consumption left for future generations in the long run. For this
purpose, we use the concept of recursive core, that satisfies both coalitional stability and time
consistency.

4.2 Variables and Parameters: the Construction of a Model
The three models described in this dissertation present variables that may seem very similar at
first sight. If they do refer to the same notion, their detailed conception depends on the tackled
question, the methodology and the timescale.

Resources
In the first chapter, the definition of the variable R is key. Indeed, in the simplest model of
fossil resources proposed by Hubbert (Hubbert, 1956) and its derivatives, resources are viewed
as a finite and quantifiable stock (the URR) that can be depleted. It assumes that geology is the
sole driver of production while in reality, the main driver is the capacity of the industry to make
profit for a given level of demand. But the URR is not “all there is” (Meinert et al., 2016), new
reserves are discovered, and the decrease in ore grade allowed by technological change induces
a constant increase in the assessed stocks. That is why we chose to model reserves as opposed
to resources. The stock of reserves can regenerate with time in response to the discovery of
new copper deposits and the decrease of average grade and cut-off grade of exploited deposits.
Consequently, scarcity is not a depletion question per se, but a race between reserve increase
and extraction. The second chapter follows the same reasoning. In chapter 3 though, we chose
a finite stock ¯

�, because the study focuses on long-term strategies when time goes to infinity
and that ‘all there is’ might be reached.

Wealth
In the first chapter, the stock of wealth W is an aggregate of economic resources used to pro-
duce primary copper. It is the productive capacity of the copper sector. It encompasses the
industrial infrastructures and all other forms of capital, but also some public infrastructures
used by the different industrial sectors from mining to recoverable copper delivered on market.
It corresponds to cumulative profits, since its variation is obtained from the difference between
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revenues and costs. One of the goals of the second chapter is to give more details on the fi-
nancial dynamics behind this notion, synthesized now by the capital variable KR. Indeed, the
mining industry is able to finance its activity by leveraging and financial constraints are cap-
tured following accounting principles. The non-mining wealth or capital K follows the same
rules. In the third chapter, the mining industry does not need to be modeled and K aggregates
all sectors.

Production
Good production, in the first chapter, is exogenously fixed as a driver of copper demand. Pro-
duction there refers to copper production, as the model is sector-specific. In the second chapter,
it is given by a CES production function that encompasses non-mining capital K, labor L and
material flow M , which gives the opportunity to evaluate the possible substitution between fac-
tors, and discuss the limits of using a production function (Pottier, 2014). In the third chapter,
the functional form of the production function needs not to be fixed, it only needs to fulfill some
assumptions on continuity and concavity.

Price
The dynamics of prices is of course key in matter of scarcity. In the first chapter, copper price
reflects the trade-off between decreasing ore grades and technological advances. Its possible
future evolution depends on the scenario chosen. In the second chapter, both prices of copper
and goods follow a dynamics that depend upon their respective production costs. This is an
important departure from the conventional vision of market-clearing prices. The interesting
feature of the last chapter is that no notion of price is needed to obtain our results.

Technological change
As we have just mentioned, technological change is partly captured in the evolution of copper
price in the first chapter. But it is also captured by the model parameter — associated to extrac-
tion that is the efficiency of wealth to produce copper. In chapter two, technological change is
given by the ‘Total Factor Productivity’ in the production function. A limit of the third chapter
is that no technological change is modeled. Countries have different technologies since their
production function is specific, but the relationship between capital and resources is fixed.

4.3 Contribution to the on-going debates
This dissertation provides a discussion on three dimension of non-renewable resources scarcity,
through original modeling methodologies and both physical and monetary database construc-
tion.

The first chapter shows that the consumption of fossil materials has followed an exponen-
tial evolution during the last century, and would grow even more if the entire energy system
was based on renewable sources. It further provides a strong empirical relationship between
dilution, extraction energy and commodity prices. The results of the second part of this chapter
suggest that the exponential consumption of copper is not sustainable, even with high recy-
cling rates. Business-as-usual scenarios assuming a constant growth of inelastic demand and
an evolution of model parameters in line with the 1900-2015 trends lead to a bell-shape cop-
per production that peaks by the mid-century. However, the model provides conditions under
which extraction can be sustained and can lead to a plateau instead of a peak and/or postpone
the eventual peak of production after 2200. In that purpose, the demand for copper should first
be stabilized. If the assumption on a stabilization of consumption of copper at high GDP is
correct, then world GDP should also be constant after 2100. The second important condition is
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on recycling rates: they should reach 70 % by the end of the century.
The second chapter shows that, when the previous dynamics is set into a Goodwin-class

model, no long-run balanced growth path can emerge with a positive growth rate of GDP. In
other words, as soon as due account is taken of the dependence of our economies on natural
resources, the unique meaningful long-run steady state must be stationary. The second finding
of this chapter is that this steady state is not an isolated zero of our vector field. Moreover,
our dynamics admit other equilibria, among which a debt-deflationary equilibrium with zero
production, employment and unbounded private debt. Our empirical estimation of the produc-
tion function provides three possible functional forms with different substitution elasticities
between capital, labor and copper.

The third chapter demonstrates that the recursive core of the cooperative game we propose
contains at least two elements. This means that, if the countries of a coalition follow an long-
term cooperation strategy in terms of extraction, investment and induced trade, then the best
way to optimize their own consumption stream while caring about future generations is to form
a global coalition. The recursive core is made of the streams of consumption to be allocated to
each country. Since this core is not reduced to a singleton, it leaves room to a choice among
these allocations, for instance by using fairness criteria. The presented model can therefore
be viewed as a tool to refresh the common look at the North-South opposition and sets the
conceptual framework for the exploration of a fair sharing of the fruits of global economic
growth.

This dissertation gives strong arguments that the extraction of one essential metal at present
rates is not sustainable within the current century. It consequently investigates the effects on
long-term growth and disproves the possibility, within our particular setting, of a desirable pos-
itive growth path. It finally proposes a new way of considering trade if a resource is exhaustible
and finds that a global coalition where natural and productive wealth are shared in common is
to the advantage of all countries.

28



Bibliography

Ad-Hoc Working Group on Defining Critical Raw Materials. Critical raw materials for the eu,
2010.

LH Ahrens. The lognormal distribution of the elements (2). Geochimica et cosmochimica acta,
6(2-3):121–131, 1954.

Nicholas Arndt and Clément Ganino. Metals and society, An introduction to economic geology.
Springer, 2012.

Sven W Arndt and Henryk Kierzkowski. Fragmentation: New production patterns in the world
economy. OUP Oxford, 2001.

Geir B Asheim. Hartwick’s rule in open economies. Canadian Journal of Economics, pages
395–402, 1986.

Geir B Asheim. Sustainable growth. Social Choice and Welfare, 49(3-4):825–848, 2017.

Harold J Barnett and Chandler Morse. Scarcity and Growth, volume 10. Johns Hopkins Press,
Baltimore, 1963.

Dan Ben-David and Michael B Loewy. Free trade, growth, and convergence. Journal of eco-
nomic growth, 3(2):143–170, 1998.

Jagdish N Bhagwati. Free trade today. Princeton University Press, 2003.

Kenneth E Boulding. The economics of the coming spaceship earth. In Sixth Resources for the
Future Forum on Environmental Quality in a Growing Economy, 1966.

Emmanuel Bovari, Gaël Giraud, and Florent Mc Isaac. Coping with collapse: a stock-flow
consistent monetary macrodynamics of global warming. Ecological economics, 147:383–
398, 2018.

David Cass. Optimum growth in an aggregative model of capital accumulation. The Review of
economic studies, 32(3):233–240, 1965.

29



Graciela Chichilnisky. North-south trade and the dynamics of renewable resources. Structural
Change and Economic Dynamics, 4(2):219–248, 1993.

Graciela Chichilnisky. An axiomatic approach to sustainable development. Social choice and
welfare, 13(2):231–257, 1996.

Brian R Copeland and M Scott Taylor. North-south trade and the environment. The quarterly
journal of Economics, 109(3):755–787, 1994.

Quentin Couix. Natural resources in the theory of production: the georgescu-roegen/daly ver-
sus solow/stiglitz controversy. The European Journal of the History of Economic Thought,
DOI: 10.1080/09672567.2019.1679210, 2019.

Victor Court. Énergie, EROI et croissance économique dans une perspective de long terme.
PhD thesis, Université Paris Nanterre, 2016.

Herman E Daly. The perils of free trade. Scientific American, 269(5):50–57, 1993.

Herman E Daly. Georgescu-roegen versus solow/stiglitz. Ecological Economics, 22(3):261–
266, 1997.

Partha Dasgupta and Geoffrey Heal. The optimal depletion of exhaustible resources. The review
of economic studies, 41:3–28, 1974.

Louis Dupuy. Sustainability and International Trade. PhD thesis, Université de Bordeaux,
2014.

Daniel C Esty. Bridging the trade-environment divide. Journal of Economic Perspectives, 15
(3):113–130, 2001.

Robert C Feenstra. Integration of trade and disintegration of production in the global economy.
Journal of economic Perspectives, 12(4):31–50, 1998.

Jeffrey A Frankel and David H Romer. Does trade cause growth? American economic review,
89(3):379–399, 1999.

Hartwig E Frimmel and Jürgen Müller. Estimates of mineral resource availability–how reliable
are they? Akademie für Geowissenschaften und Geotechnologien, Veröffentl, 28:39–62,
2011.

Nicholas Georgescu-Roegen. Energy and economic myths. Southern economic journal, pages
347–381, 1975.

Nicholas Georgescu-Roegen. Comments on the papers by daly and stiglitz. Scarcity and growth
reconsidered, pages 95–105, 1979.

Jack Goody. Metals, culture and capitalism: an essay on the origins of the modern world.
Cambridge University Press, 2012.

Robert Boyd Gordon, Tjalling C Koopmans, William D Nordhaus, and Brian J Skinner. Toward
a new Iron Age?: quantitative modeling of resource exhaustion. Harvard University Press,
1987.

30



TE Graedel. On the future availability of the energy metals. Annu. Rev. Mater. Res., 41:323–
335, 2011.

Thomas E Graedel, Ermelinda M Harper, Nedal T Nassar, and Barbara K Reck. On the mate-
rials basis of modern society. Proc. Natl. Acad. Sci., 112(20):6295–6300, 2013.

Matheus R Grasselli and B Costa Lima. An analysis of the keen model for credit expansion,
asset price bubbles and financial fragility. Mathematics and Financial Economics, 6(3):191–
210, 2012.

Darwin C Hall and Jane V Hall. Concepts and measures of natural resource scarcity with a
summary of recent trends. Journal of Environmental Economics and Management, 11(4):
363–379, 1984.

MLCM Henckens, EC Van Ierland, PPJ Driessen, and E Worrell. Mineral resources: Geo-
logical scarcity, market price trends, and future generations. Resources Policy, 49:102–111,
2016.

Harold Hotelling. The economics of exhaustible resources. Journal of political Economy, 39
(2):137–175, 1931.

M King Hubbert. Nuclear energy and the fossil fuel, 1956.

Intergovernmental Panel on Climate Change. Impacts of 1.5 °c global warming on natural and
human systems, 2018.

International Resource Panel. Decoupling natural resource use and environmental impacts from
economic growth, 2011.

Kathleen M Johnson, Jane M Hammarstrom, Michael L Zientek, and Connie L Dicken. Esti-
mate of undiscovered copper resources of the world, 2013, 2014.

Mark Kagan, Frederick Van der Ploeg, and Cees Withagen. Battle for climate and scarcity
rents: beyond the linear-quadratic case. Dynamic games and applications, 5(4):493–522,
2015.

Stephen E Kesler and Bruce H Wilkinson. Earth’s copper resources estimated from tectonic
diffusion of porphyry copper deposits. Geology, 36(3):255–258, 2008.

Bruce Kogut. Designing global strategies: Comparative and competitive value-added chains.
Sloan Management Review (pre-1986), 26(4):15, 1985.

Tjalling C Koopmans et al. On the concept of optimal economic growth, 1963.

Fridolin Krausmann, Simone Gingrich, Nina Eisenmenger, Karl-Heinz Erb, Helmut Haberl,
Marina Fischer-Kowalski, et al. Growth in global materials use, gdp and population during
the 20th century. Ecological economics, 68(10):2696–2705, 2009.

N Gregory Mankiw, David Romer, and David N Weil. A contribution to the empirics of eco-
nomic growth. The quarterly journal of economics, 107(2):407–437, 1992.

31



Donella H Meadows, Dennis Meadows, Jørgen Randers, and William W Behrens III. The limits
to growth - a report to the Club of Rome. Potomac Associates - Universe Books, 1972.

Lawrence D Meinert, Gilpin R Robinson, and Nedal T Nassar. Mineral resources: Reserves,
peak production and the future. Resources, 5(1):14, 2016.

Antonin Pottier. L’économie dans l’impasse climatique: développement matériel, théorie im-
matérielle et utopie auto-stabilisatrice. PhD thesis, Paris, EHESS, 2014.

PwC. Minerals and metals scarcity in manufacturing: the ticking timebomb, 2011.

Frank Plumpton Ramsey. A mathematical theory of saving. The economic journal, 38(152):
543–559, 1928.

Barbara K Reck and Thomas E Graedel. Challenges in metal recycling. Science, 337(6095):
690–695, 2012.

Dani Rodrik. Straight talk on trade: Ideas for a sane world economy. Princeton University
Press, 2017.

Paul Romer. Increasing returns and long-run growth. Journal of political economy, 94(5):
1002–1037, 1986.

Paul A Samuelson. The gains from international trade once again. Economic Journal, 72(288):
820–829, 1962.

Donald A Singer. Future copper resources. Ore Geol. Rev., 86:271–279, 2017.

Robert Solow. Georgescu-roegen versus solow-stiglitz. Ecological Economics, 22(3):267–268,
1997.

Robert M Solow. A contribution to the theory of economic growth. The quarterly journal of
economics, 70(1):65–94, 1956.

Robert M Solow. The economics of resources or the resources of economics. In Classic papers
in natural resource economics, pages 257–276. Springer, 1974a.

Robert M Solow. Intergenerational equity and exhaustible resources. The review of economic
studies, 41:29–45, 1974b.

Robert M Solow. On the intergenerational allocation of natural resources. The Scandinavian
Journal of Economics, pages 141–149, 1986.

Robert M Solow. An almost practical step toward sustainability, (1992)1994.

Joseph Stiglitz. Growth with exhaustible natural resources: efficient and optimal growth paths.
The review of economic studies, 41:123–137, 1974a.

Joseph E Stiglitz. Growth with exhaustible natural resources: the competitive economy. The
Review of Economic Studies, 41:139–152, 1974b.

Joseph E Stiglitz. Georgescu-roegen versus solow/stiglitz. Ecological Economics, 1997.

32



Harald U Sverdrup, Kristin Vala Ragnarsdottir, and Deniz Koca. On modelling the global
copper mining rates, market supply, copper price and the end of copper reserves. Resour.
Conserv. Recycl., 87:158–174, 2014.

Trevor W Swan. Economic growth and capital accumulation. Economic record, 32(2):334–361,
1956.

Phemelo Tamasiga and Anton Bondarev. Differential games approach to trade with exhaustible
resources, 2014.

The oil drum: Europe. Posted by l. de sousa, 2010. http://europe.theoildrum.com/
node/6307.

World Bank. Capital for the Future: Saving and Investment in an Interdependent World. World
Bank Publications, 2013.

WTO. Trade in Natural Resources - World Trade Report. World Trade Organization, 2010.

Alexander J Yeats. Just how big is global production sharing? The World Bank, 1999.

33



34



CHAPTER 1

Sustainable Mineral Extraction:
Hard Facts and Possible Futures

Vous confondez paperasse et capital, inspecteur. Une
erreur fréquente. [...] Non, je vous parle d’une richesse
arrachée à même la terre. Et comme pour toute
offrande... pour tout pacte infernal... ce genre de
transaction se paie avec du sang. Avez-vous entendu
parler du Cerro Rico?

— Jonathan Hickman, Tomm Cocker, The Black
Monday Murders (trad. Maxime Le Dain)

This first chapter investigates the functioning of the mining sector. It is composed of two
parts, corresponding to two articles. The goal of this chapter is to tackle the issue of ex-
haustibility from a sectoral point of view, in light of the current knowledge on the distribution
of minerals in the Earth’s crust, but also past trends in extraction, ore grade and mining finance.

The first part is an overview of the hard facts on the past evolution of the global supply of
different base materials such as steel, aluminum, copper, zinc and more high technology metals
like Rare Earth Elements. It further explores nexus between minerals and energy. Indeed,
the demand for materials crucially depend on the structure of energy-providing systems. If
renewable resources are seen as ‘clean energy’ from the point of view of greenhouse gases,
they are much more material-intensive than fossil sources, as we shall see. One issue tackled
in this article is therefore the impact of different world energy transition scenarios on the future
consumption of materials. We show that it would have major impacts in terms of mineral
consumption. The other side of the material-energy nexus is the energy needed to extract
materials from their ore deposit and obtain concentrates. We find a strong empirical relationship
between the dilution of elements in the ore and the cumulative energy needed to extract them,
and if this has an impact on their price through a cost channel.

The second part focuses on one metal, copper, since it presents a broad range of uses espe-
cially in infrastructures. The goal of this article is to check whether the current rates of copper
extraction are sustainable until the end of this century, and if not, what would be the conditions
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for a sustained copper extraction. ‘Sustainable’ here has to be understood in the sense of con-
tinuity with past trends, whereas ‘sustained’ has the sense of stability. To answer this complex
issue we propose a mind-sized model, giving a dynamic description of stocks and flows of
both geological and economic variables. We justified in the general introduction the choice of
our variables. The stock from which copper is extracted corresponds to its reserves R, which
can increase because the ore tonnage increases with lowering ore grade. There is therefore no
absolute and fixed limit. The extractive capacity corresponds to the wealth W of the mining
sector, and equals its cumulative profits, since its variation is obtained from the difference be-
tween revenues and costs. A much detailed dynamics will be presented in the next chapter. The
dynamics of prices is of course key in the matter of scarcity. The copper price is also modeled
in an original way. We calculate a ‘reference price’ of copper incorporating both the effects
of embodied energy increase with lowering ore grade and technological improvements. The
key question of recycling is also taken into account and the exogenous total demand can be
met either by primary or secondary production. The evolution of primary copper production is
modeled with a ‘prey-predator’ dynamics. These famous coupled system was introduced first
in the field of Ecology to understand the dynamics of two cohabiting populations linked by a
predation relationship. It was widely studied in the field of Mathematics and exhibits interest-
ing cyclical dynamics. It was used in different fields, including Economics as we shall see in
the next chapter. Using this analogy for renewable resources is quite intuitive. The harvesting
capacity can be seen as a predator to the resource: the ‘birth’ rate of resources is exogenous and
their ‘death’ depends on the size of the harvesting capacity. The ‘birth’ rate of the harvesting
capacity depends on the size of the stock to harvest, and its ‘death’ is independent. In this
model, we extend this view to non-renewable resources by interpreting the ‘birth’ of reserves
as the increase in ore tonnage when ore grade decreases. The model was actually constrained
with a wide variety of historical data - including primary production and reserve, mass flow
data, price, industrial revenue, cost of production and profits - and was used to simulate a range
of possible future paths of production. The results suggest that the exponential consumption of
copper is not sustainable, even with high recycling rates. Business-as-usual scenarios assum-
ing a constant growth of inelastic demand and an evolution of model parameters in line with
the 1900-2015 trends lead to a bell-shape copper production that peaks between by the mid-
century. However, the model provided conditions for which the extraction can be sustained and
that can lead to a plateau or postpone the eventual peak of production after 2200. The demand
in copper should first be stabilized. If the assumption on a saturation of consumption of copper
at high GDP is correct, then world GDP should also be constant after 2100. Then, recycling
rates should reach 70 % by the end of the century, as opposed to 40 % today. The question
of the energy price is also key: we assumed here a constant price. Ensuring a plateau or post-
poning the peak would enable smoother impacts on the productive sectors for whom copper is
crucial, which are themselves essential to the whole economy.
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10 ABSTRACT: The dynamics of copper production is modeled with a prey−
11 predator approach linking the evolution of reserves to that of industrial wealth.
12 Our model differs from earlier approaches in that it does not require a priori
13 knowledge of the initial stock of resources. The model variables and a long-term
14 reference price are estimated from historical data, taking into account the
15 combined effects on price and reserve of technological improvements and changes
16 in ore grade. The business-as-usual scenarios invariably lead to a peak of primary
17 production by the middle of the century. The peak of production is not the result
18 of the complete exhaustion of exploitable copper but of the combination of (1)
19 the deviation of growth of reserves from the exponential historical trend and (2)
20 the incapacity of technological improvements to offset the increase in production
21 costs. In the leveled-off-demand scenario for which future demand is simulated
22 based on assumed evolutions of world population and gross domestic product per
23 capita, no collapse of primary production is observed within the century for optimistic regeneration of reserves and a collection-
24 recycling rate reaching 70% by 2100, at constant energy prices.

25 ■ INTRODUCTION

26 The strong increase of demand for mineral resources and
27 metals observed since 100 years will be maintained in the
28 future decades to satisfy the needs from increasing global
29 population, economic growth, and urbanization.1−4 Many
30 studies raise concerns that the future supply will not keep up
31 with the demand because the exhaustion of fossil resources will
32 soon become a limiting factor to production. These studies
33 predict that production of many metals has already peaked or
34 will peak in a near future.5−13 Until now, technological
35 progress has allowed the exploitation of new resources that
36 were not exploitable with older technologies. Irrespective of
37 pressures on the mining industry, the metal reserves, the part
38 of global mineral resources that can be extracted at
39 economically viable conditions using the current technologies,
40 have grown at a rate comparable to that of consumption.14−19

41 On the medium run, historical trends seem to invalidate the
42 production peak theory, and so far, the only mineral
43 commodity that has experienced a decrease in production is
44 mercury, the demand for which has plummeted because of its
45 toxicity. However, reserves and production cannot keep
46 growing forever in a finite world, and on the long term,
47 exhaustion of easily accessible high-quality mineral deposits
48 leading to poorer-quality resources being available is a true
49 matter of concern.3,20−22 In addition to the question of

50availability, the increasing energy demand and environmental
51impacts of the extraction from low-grade ore deposits are
52worrying.23,24 These evolutions raise the question of how long
53the improvement of technology and market regulation forces
54will be sufficient to renew the future metal reserves at the same
55rate as in the past.
56Modeling the future of metal production at a global scale
57must incorporate the interdependencies among production,
58average ore grade (OG) and reserves, price and production
59costs, population, and average economic development. This
60requires dynamic models that describe the evolution of
61material stocks (resources, reserves, metals in the society)
62and flows (yearly primary production and recycling, flow of
63resources from reserves, and flows toward the stocks of end-of-
64life products), as well as their links with economic variables.
65Powerful and very complete dynamic models incorporating all
66of these dimensions have been already developed (e.g., the
67World model11). Unfortunately, their high level of complexity
68makes them difficult to understand for nonspecialists. The
69myriad of feedback loops complicates the identification of the
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70 most important variables controlling the evolution of
71 production, and the procedure used to constrain these
72 variables is not always straightforward.
73 In the present study, we propose a much simpler approach
74 than that adopted in the World and similar system dynamics
75 models. The evolutions of reserves, production, industrial
76 wealth, cost of production, and price are modeled with a prey−
77 predator approach involving only two differential equations
78 and four variables that can be constrained by historical data.
79 We show that two variables, the metal price and the average
80 ore grade of ore deposits, have a major impact on the outcome.
81 A range of possible scenarios is proposed for different
82 assumptions regarding the rates of recycling and regeneration
83 of reserves, for different imposed future demands. Our study
84 focuses on copper, a strategic metal with a myriad of
85 applications in the energy and ICT sectors. Copper is a vital
86 commodity for the transition toward low-carbon energies;25−27

87 it is mined as the sole or major metal in many deposits; and
88 there are rich historical records of production, reserves, and
89 price. Moreover, several forecasts of copper peak production
90 occurring in the near future have been recently pub-
91 lished.9,11,13,20,22,28

92 ■ BRIEF OVERVIEW OF PRIMARY PRODUCTION
93 MODELS ASSUMING A STATIC STOCK OF
94 ULTIMATE RECOVERABLE RESOURCE (URR)
95 Hubbert5,29 proposed a simple model of fossil resource
96 production and popularized the notion of “peak oil”. He
97 estimated the ultimate recoverable resource (URR) of oil in
98 the lower 48 US states using the historical annual oil
99 production data, modeled as a logistic equation. With this
100 formalism, production follows a bell-shaped curve, and if URR
101 is known, the date and magnitude of the production peak can
102 be determined.
103 An important weakness of Hubbert’s approach or its
104 derivatives30−32 lies in its empirical nature and the lack of
105 connection among demand, production, price, and reserves. It
106 assumes that geology is the sole driver of both reserves and
107 production, while in reality, the main driver for production is
108 the capacity of the industry to make a profit at a given level of
109 demand. For structural raw materials, the demand increases
110 with gross domestic product (GDP) per capita during the early
111 stages of economic development. Bleischwitz et al.33,34 argue
112 that this yearly consumption levels off when GDP per capita
113 reaches about 15 000 to 25 000 US-$. This would explain why
114 the global increase of consumption slowed down between
115 1970 and 2000, when presently developed countries had
116 achieved to build their base infrastructure, compared to the
117 period 1950−1970. The global slowdown of metal demand
118 and supply between 1970 and 2000 was in no way indicative of
119 reserve depletion, as this could have been erroneously
120 interpreted with Hubbert’s approach. This downturn in
121 demand triggered a drop in price, while reserve depletion
122 would have triggered an increase.
123 The use of a static initial stock of exploitable resources
124 (URR) is another important weakness. In the case of copper,
125 the values of URR estimated since 2010 range from about 1
126 Gt8 to 3.8 Gt.32 In 2010, the identified copper resources
127 ranged from 1.1 Gt (Raw Materials Database) to 1.5 Gt
128 (USGS). Three years later, the USGS completed its geology-
129 based assessment of global copper resources and proposed that
130 about 3.5 Gt of undiscovered copper should be added to the
131 2.1 Gt identified resources.35 More recently, Singer36 has

132estimated that 4.35 Gt of copper was present in undiscovered
133mineral deposits, and Henckens et al.18 have reported an
134amount of extractable global resources equal to 7.5 Gt. Finally,
135based on geodynamic arguments, Kesler et al.37 estimated that
136ultimate copper reserves in porphyry deposits could be as high
137as 1300 Gt, among which 89 Gt would be exploitable if mining
138in the future could reach depths of around 3.3 km. This
139nonexhaustive comparison of data published during the last
140decade clearly shows that URR estimated from geological
141constraints or from historical data of production span a huge
142range of values and increase with time. They only provide a
143crude estimate of the total amount of available copper and
144cannot be used to produce robust estimates of future
145production.
146Bell-shaped production curves are also obtained with
147nonempirical prey−predator-like models, which were devel-
148oped by Lotka and Volterra38,39 to describe the dynamics of
149competition in simple biological systems, such as between two
150species like wolves (W) and rabbits (R)

R
t

R WRd
d

α β= −
151(1)

W
t

RW Wd
d

δ γ= −
152(2)

153where α and β are the rabbits’ birth and death per wolf rates,
154respectively, and δ and γ are the wolves’ birth per rabbit and
155death rates, respectively. At constant values of α, β, δ, and γ,
156the equations have periodic solutions, the periodic variation of
157the predator population W(t) lagging behind the prey
158population R(t). Bardi and Lavacchi40 examined various
159situations where the production of a natural resource (the
160prey) depends on the capital stock (the predator) employed in
161its production. In all cases, the model generates a Hubbert-like
162curve. However, in contrast to Hubbert’s empirical approach,
163the reasons for growth and decline are explicit. The system
164dynamics is controlled by two internal feedbacks: a positive
165feedback that results from the reinvestment of profits
166generated by resource production and a negative feedback
167that results from the gradual depletion of resources. Another
168common feature of Bardi and Lavacchi40 and Hubbert-like
169approaches is that the stock of fossil resources is considered to
170be finite and must be known (number of prey at t0 = URR)
171because the rate of reserve regeneration was assumed to be
172zero for fossil resources. In the case of copper, reserves have
173been increasing from about 25 Mt in 1900 to about 700 Mt
174today at a rate sufficient to compensate for depletion due to
175extraction. The growth rate of fossil reserves is therefore an
176important variable to consider, and α should not be assumed
177to be zero as proposed in previous works. As we show below,
178the assumption of constant β, δ, and γ is also not consistent
179with the historical evolution of production, reserves,
180production cost, and price of copper, which change with the
181average concentration of exploited deposits and the improve-
182ment of technology.

183■ MATERIALS AND METHODS
184Stock-Flow Model with a Prey−Predator Dynamics
185Adapted to Fossil Resource Extraction. Our study focuses
186on primary production, but the contribution of recycling is
187included to compare the modeled future demand with total
188production (primary and secondary). The copper life-cycle is
189 f1modeled using the simplified stock-flow model shown in
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f1 190 Figure 1, in which the end-of-life flow of copper is proportional
191 to primary production with a lag of 20 years.
192 The production of primary copper is modeled with eqs 1
193 and 2, where the stock of predators W is now the wealth of the
194 mining industry and the stock of preys R represents the copper
195 reserves. A list of all variables and parameters of the present

t1 196 model, as well as their units, is available in Table 1. They are
197 compared to the original prey−predator model. The stock of
198 wealth W is an aggregation of economic resources used to
199 produce primary copper. It encompasses the industrial
200 infrastructures and all other forms of capital and also some
201 public infrastructures used by the different industrial sectors
202 from mining to recoverable copper delivered on market. The
203 stock of reserves is allowed to regenerate with time in response
204 to the discovery of new copper deposits and the decrease of
205 average grade and cut-off grade of exploited deposits.41,42 Both
206 these effects are captured in the first term αR of eq 1, where α
207 is the yearly rate of regeneration. It is clear that the renewal of
208 metal reserves is not regeneration in the sense applied to
209 renewable resources, mineral deposits cannot be renewed in
210 the way rabbits are born or forests are replanted, but we will
211 show that they can be modeled as such. The second term of eq
212 1 is the annual production, where β is equivalent to the
213 predator predation rate and represents the efficiency of wealth
214 to extract copper at given levels of reserves and wealth.
215 The evolution of industrial wealth with time is given by eq 2,
216 where the first term represents the annual revenues of the
217 mining industry and the second term represents the aggregated
218 costs of production, calculated as a fraction of W. The annual
219 revenues are proportional to δ, which describes how efficiently
220 the extracted copper is transformed into wealth. This efficiency
221 to transform copper into money is naturally demand- and
222 price-dependent. The revenues are also given by the copper
223 production Q multiplied by the price p, so that

RW pQ p RWrevenues δ β= = =224 (3)

225 eq 3 can be rearranged to express δ as a function of price and β

pδ β=226 (4)

227 The costs of production are an aggregation of all costs from
228 mining to recoverable copper delivered on market, deprecia-
229 tion and amortization, corporate overheads, royalties, and

230other financial interests. In the following, the share of costs f is
231set as the ratio of the unitary cost per tonne of copper cper‑tonne
232to price

f
c

p
m1per tonne= = −‐

233(5)

234where m is the net margin. The yearly total costs c and the per-
235tonne costs read

c W f fpQ f RWrevenuesγ δ= = = = 236(6)

c c
Q R

fpper tonne
γ

β= = =‐
237(7)

238Finally, the yearly profits of copper sales Π and the per-tonne
239profits Πper‑tonne read

f pQrevenues costs (1 )Π = − = − 240(8)

f p(1 )per tonneΠ = −‐ 241(9)

242Since prices of mineral resources vary with time, δ and/or β are
243also time-dependent. Similarly, α must be allowed to change
244with time because in the absence of predators (W = 0),
245reserves would grow forever for α ≠ 0, which does not make
246sense.
247The stock of copper embodied in goods (in-use-copper) can
248be estimated by integrating the difference between the inflow
249of produced copper QT (primary and secondary production)
250minus the outflow of copper in end-of-life products CuEOL
251(Figure 1)

QT t t t(in use copper) ( ( ) Cu ( ))d
T

EOL∫‐ ‐ = −
252(10)

253The outflow corresponds to the amount of copper
254incorporated in goods at the time they were produced, so that

t QT tCu ( ) ( LT)EOL = − 255(11)

256where LT stands for the average lifetime of goods. The yearly
257amount of copper recycled from old scrap today QEOLR is
258therefore equal to the amount produced LT years ago
259multiplied by a recycling rate CRRR synthesizing collecting,
260processing, and recycling rates

Figure 1.Modeled copper life-cycle. The boxes and pipes represent stocks and flows, respectively. WealthW varies by profit accumulation, the flow
Π being equal to revenues δRW minus costs c = γW. Reserves R increase by regeneration αR and are depleted by primary production Q = βRW.
This freshly extracted copper, as well as the recycled copper QEOL, is embodied in goods: the flow QT of total copper accumulates into the in-use
stock. At the end of its lifetime LT, the embodied copper (CuEOL) is either recycled (QEOLR) or lost (QEOLL).
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Q t t( ) CRRR Cu ( )EOLR EOL= *
261 (12)

262 and the yearly flow of lost copper is

Q t t( ) (1 CRRR) Cu ( )EOLL EOL= − *
263 (13)

264 CRRR involves the proportion of copper produced at time t
265 that will be recycled LT years later; it corresponds, modulo a
266 lag of LT years, to the end-of-life recycling rate EOL-RR
267 described in the literature.43 For a stock of copper in goods
268 equal to 20 Mt in 1900, the in-use, recycled, and lost stocks are
269 fairly well reproduced with a constant CRRR of 40% from

f2 270 1900 to 2015 and an average LT equal to 20−25 years (Figure
f2 271 2). The end-of-life recycling input rate (EOL-RIR) corre-

272 sponding to the proportion of metal produced from old scrap
273 (a metallurgical indicator) at time t is given by

Q t
Q t

EOL RIR
( )

( )
EOLR‐ =

274 (14)

275EOL-RIR is estimated to span between 18 and 20% from 1920
276to 2015 (Figure 2), in agreement with the values reported in
277the literature43,44 at the global scale. However, copper EOL-
278RIR is higher in rich countries than the world average. Soulier
279et al.45 estimated for instance that between 2005 and 2014,
28050% of the copper refined and remelted in the EU was from
281secondary sources.
282Estimation of the Future Global Copper Demand. The
283future demand for copper can be estimated from historical data
284of copper consumption versus GDP combined with assumed
285evolutions of population and GDP. The growth rates of
286population and GDP per capita from 1900 to 2015 are given
287by numerous long-time series.46−48 The United Nations
288foresee a growth of the world population from 7.3 billion
289individuals in 2015 to 11 billion in 2100 (medium scenario),
290and the GDP per capita is assumed to follow a similar trend
291 f3from 7000 US$1998 in 2015 to 12 500 US$1998 in 2100 (Figure
292 f33a). Both population and GDP per capita were assumed to be
293steady after 2100. The annual copper consumption increases

Table 1. List of Symbols and Abbreviations

symbols original prey−predator model present model units

t time time year
α preys birth rate rate of reserves regeneration year−1

β predation rate efficiency of wealth to produce copper ($1998 year)−1

δ predators birth rate per prey efficiency of copper exploitation to create wealth (tonne year)−1

γ predators death rate rate of wealth erosion year−1

R number of preys reserves tonnes (metric tons)
Mt = 106 tonnes
Gt = 109 tonnes

W number of predators wealth $1998
Q = βWR yearly number of killed preys yearly primary production tonnes/year
CuEOL copper embodied in end-of-life products tonnes/year
QEOLR yearly secondary production tonnes/year
QEOLL yearly lost copper tonnes/year
QT yearly total production tonnes/year
D yearly total demand tonnes/year
YACC yearly average consumption of copper per capita kg/capita/year
WP world population beings
GDP gross domestic product $1998/year
δRW yearly births of predators yearly revenues $1998/year
γW yearly deaths of predators yearly wealth erosion $1998/year
αR yearly births of preys yearly regeneration of reserves tonnes/year
CuOG yearly regeneration of reserves as a function of OG tonnes/year
p = δ/β unit price $1998/tonne
m net margin
f = 1 − m share of the costs of production in the revenues
c = fpQ yearly costs of production $1998/year
Π = mpQ yearly profits $1998/year
cper‑tonne per-tonne unit cost $1998/tonne (or simply $1998/t)
Πper‑tonne per-tonne profits $1998/tonne
OG ore grade %
OT ore tonnage Mt
αOG, βOG, δOG, γOG parameters derived from the evolution of OG
αFD, βFD, δFD, γFD parameters derived from the scenario of future demand
pCT reference price at constant technology $1998/tonne
pTI reference price with improving technology $1998/tonne
ETIP effect of technological improvement on price
CRRR collection rate-recycling rate %
EOL-RIR end-of-life recycling input rate %
EOL-RR end-of-life recycling rate %
LT lifetime year

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b03883
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D



294 with growing GDP per capita and levels off at about 10 kg/
295 capita/year for a GDP per capita above 15 000 US
296 $1998

33,34,49−51 (Figure 3b). By combining the evolution of
297 the world population (WP) and GDP per capita with the
298 copper intensity per capita, the yearly average consumption of
299 copper per inhabitant (YACC) is calculated to increase from 3
300 kg/capita/year in 2015 for an average GDP per capita of 7 000
301 US$1998 to 7 kg/capita/year in 2100 for 12 500 US$1998 (Figure

3023c). The total global demand for copper D (in Mt/year) is
303modeled with the following logistic function (Figure 3d)

D t( ) YACC(2100) WP

e
QT

t1 YACC(2100) WP
(1900) 1

( 1900)
= ×

τ+ ×
−

− −
304(15)

305where τ is the average rate of production growth and
306QT(1900) is the primary and recycled copper production in
3071900. The rate τ = 3.75% and QT(1900) = 0.45 Mt were

Figure 2. (a) Stocks of in-use and lost copper, (b) yearly end-of-life flows and recycled copper from old scraps, and (c) evolution of the different
recycling rates CRRR, EOL-RR, and EOL-RIR for the evolution of GDP per capita shown in Figure 3. The thin lines in (a) and (b) show the values
calculated for an average liftetime, LT, of 20 years (dashed) or 25 years (continuous) and CRRR of 40%. The gray areas and lines show the values
reported in the literature.43,44

Figure 3. (a) Evolution of population and GDP per capita, (b) yearly copper consumption per capita versus GDP per capita, (c) evolution of yearly
copper consumption per capita, and (d) historical and simulated total demand D, primary production (continuous lines and deep gray area), and
recycled production (dashed lines and light gray area). The future primary and secondary productions are labeled to separate scenarios for CRRR =
40 % or increasing to 70% in 2100.
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308 adjusted to fit the historical data of global production. Total
309 global copper demand is found to be 45 Mt/year in 2050, in
310 fair agreement with values estimated by Elshkaki et al. for the
311 MF and PF GEO-4 scenarios.3 It further increases to 75 Mt/
312 year in 2100 and stabilizes at 80 Mt/year in 2200, in agreement
313 with the values of the SSP4 scenario estimated by Schipper et
314 al.52 The amount of copper recycled from old scrap QEOLR is
315 obtained by eq 12, and the required primary production is
316 given by the difference between the total demand D and
317 QEOLR. The demands for primary and secondary copper were
318 estimated for the two evolutions of CRRR illustrated in Figure
319 3d, either at steady CRRR of 40% or assuming an increase to
320 70% in 2100. In the first case, the demand for primary copper
321 reaches 50 Mt/year in 2100, while in the second case, it peaks
322 at 26.5 Mt/year in 2060 and decreases to about 24 Mt/year
323 after 2100, in agreement with the scenario SSP4.52

324 Calibration of the Model for Primary Production.
325 Estimation of the Quantity of Exploitable Copper and
326 Reserve Regeneration. The value R1900 and the yearly
327 evolution of α were estimated from the 1900 to 2015 historical
328 data of reserves reported by numerous studies14,44,53 and the
329 compilation of Schodde.54 Copper reserves have grown
330 exponentially between 1900 and 2015, at an average rate of
331 2.85 %/year. From eq 1, the value of α from 1900 to 2015 can
332 therefore be approximated by

Q
R

ln(1.0285)α = +
333 (16)

334 with the values of production reported by the ICSG and the
335 USGS.44,55

336 However, a constant rate of growth of reserves cannot be
337 assumed to model the future availability of primary copper.
338 Indeed, the average ore grade (OG) of exploited copper
339 deposits is observed to decrease continuously since 1900,24,56

340 and the exponential increase in reserves is only valid for a
341 specific range of copper ore grades. The observed variation of
342 OG (in %) in time can be fitted by the following exponential
343 function (Figure 5a)

OG 8 10 e t10 0.0125= × −
344 (17)

345 Below OG = 0.5%, the uni- or bimodal nature of copper
346 distribution in natural rocks is still debated.19,41 The bimodal
347 hypothesis involves two distributions, one centered at the
348 average grade of copper in the crust (OG ≈ 30 ppm57) and
349 another centered at OG ≈ 0.3−0.5 % for ore deposits.41 The
350 OT-versus-OG relationship in ore deposits is log-Gaussian41,58

351 with OT being the ore tonnage given byikjjjjj y{zzzzzAOT
OG 2

exp
log(OG)

2

2

2σ π
μ

σ
= − −

352 (18)

353 where μ is the central tendency, σ is the dispersion, and A is
354 the scaling factor that determines the function amplitude. The
355 additional amount of copper CuOG that can be extracted from a
356 given OT at a given OG reads

Cu OT OG
100OG = ×

357 (19)

358 For the imposed variation of OG with time given by eq 17,
359 CuOG represents the yearly amount of additional available
360 copper, and a plot of the integral of CuOG with time shows the
361 evolution of reserves summed with cumulative production.
362 The future rate of reserve regeneration αOG reads

R
Cu

OG
OGα =

363(20)

364eq 20 must be used instead of eq 16 at low concentrations
365because the OT-versus-OG relationship in eq 18 implies that
366αOG is no longer constant. The historical data of ore tonnage,
367copper reserves, and production from 1900 to 2015 were best
368fitted with the parameters A1 = 6500 Mt, μ1 = −0.55, and σ1 =
3690.7 in eq 18. A second set of parameters was obtained from the
370highest possible evolution of reserves still in reasonable
371agreement with historical data (A2 = 9350 Mt, μ2 = −0.72,
372and σ2 = 0.75). Both sets of parameters lead to OT-versus-OG
373evolutions compatible with the range of values estimated by
374Gerst.41 They also reproduce the historical evolution of the
375integral of CuOG calculated as the sum of the reserves plus the
376cumulative production. The evolution of ore tonnage with time
377follows a bell-shaped curve. Cumulated CuOG in traditional
378deposits (volcanic massive sulfide and sediment-hosted ores,
379sulfide and oxide porphyry) is asymptotic to 5 Gt for the best
380 f4fit (curves 1 in Figure 4) or 7.5 Gt for the highest ore tonnage

381hypothesis (curves 2 in Figure 4). These amounts of copper
382are in the range of the 5 Gt of identified and undiscovered
383resources estimated by Johnson et al.35 and the 6.3−7.5 Gt of
384mineable copper estimated more recently.18,19,36

385Estimation of the Evolution of Wealth Creation in the
386Mining Industry. The stock of wealth was estimated from the
387cumulative yearly profits

W W t t( )d
t

1900
1900

∫= + Π
388(21)

389A discussion of the available literature59−61 and estimation
390procedure of the profits and costs of the copper sector from

Figure 4. Evolution of the ore tonnage, the additional amount of
copper that can be extracted CuOG and the integral of CuOG
(historical reserve and cumulative production), as a function of
time (lower scale) and ore grade (upper scale). The gray areas show
the range of possible values between curves (1) obtained from the
best fit of historical data and curves (2) obtained from the highest
possible evolution of reserves still in reasonable agreement with the
historical data. The white circles show different estimates of URR
from continental crust above 1 km depth. The gray circle is the
amount of reserves in 2200 estimated for the best-fit case.
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391 1900 to 2015, as well as the table of the database used in this
392 study, are provided in the Supporting Information. The costs
393 of copper production increased from 1500 US-$1998/tonne in
394 1930−4000 US-$1998/tonne in 1970. It then decreased to
395 about 1500 US-$1998/tonne in 2000 and increased again to
396 5000 US-$1998/tonne in 2010. This evolution is fairly
397 reproduced with constant average Πper‑tonne = 800 US-$1998/
398 tonne and f = 0.8. In the following, W was calculated for these
399 two situations, i.e., assuming either a constant Πper‑tonne of 800
400 US-$1998/tonne, in which case f varies with price while profits
401 vary with production (eqs 8 and 9)

Q800Π =402 (22)

f
p

1 800= −
403 (23)

404 or assuming f constant, in which case Πper‑tonne and cper‑tonne are
405 proportional to price.

406The remaining variables of the model were estimated using
407the prices listed in US-$1998 by the USGS for the period 1900−
4082015. The values of β(t), δ(t), and γ(t) are slightly different for
409the two assumptions but show the same variations in time.
410Strong oscillations of all variables between 1900 and 1950
411 f5(gray lines in Figure 5) are required to reproduce the equally
412huge variations of copper production within a few months,
413which cannot be due to abrupt changes in reserves or wealth
414 f6(Figure 6). Since 1900, the price of copper has shown strong
415short-time variations driven by global socioeconomic changes,
416oil crises, and wars. However, it remained on the long run fairly
417stable at around 3500 US-$1998/tonne, so that δ decreases with
418time proportionally to β (Figure 5). The rate of wealth erosion
419γ shows the same short-term variations as δ; it peaked during
420World War I, the seventies (oil crises), and in 2010, when the
421production costs were pulled up by investments in new
422operations.

Figure 5. (a) Evolution of the ore grade OG (% of copper), (b)−(d) the model parameters βOG, δOG, and γOG (for constant per-tonne profit Π or
constant share of costs f), (e) price at constant technology pCT and reference price pTI, and (f) the technological effect ETIP. The gray lines show
the historical data of prices in (e) or the model variables constrained by historical evolution. The black lines show fitted variables.
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423 The calculated wealth is similar for the two assumptions of
424 constant per-tonne profit and constant f (Figure 6a). In both
425 cases, the calculated wealth in 2010 is two times higher than
426 the total assets of the copper mining industry estimated from
427 the PwC data. Wealth considered in the present study
428 encompasses not only the private infrastructure but also the
429 part of public infrastructure used by the industry. A higher
430 value of calculated wealth compared to the total assets is
431 therefore not surprising. However, this difference suggests that
432 the per-tonne average profit of copper sales might be lower
433 than 800 US-$1998/tonne. Similar values of W and total assets
434 can be obtained for an average per-tonne profit of 500 US-
435 $1998/tonne or f > 0.8. The global revenues (=δRW) show a
436 strong increase at the beginning of the years 2000, in good
437 agreement with the revenues estimated from the PwC reports
438 (thick gray line in Figure 6d).

439 ■ RESULTS AND DISCUSSION
440 Ore Grade and Technological Improvement as
441 Drivers of the Model Variables. At given reserve and
442 wealth stocks, the yearly production is proportional to β, which
443 is the efficiency of wealth to produce copper, equivalent to the
444 predation rate of predators on preys in biological systems. The
445 effort that wolves must produce to catch the same number of
446 rabbits dispersed in a large area is higher than if the rabbits

447were concentrated in a small area. It follows that the predation
448rate is expected to decrease with dilution, corresponding to the
449decrease of the average ore grade (OG) of exploited deposits
450observed for hundreds of years.24,56 Like OG, β is also
451expected to decrease exponentially with time (Figure 5b). An
452exponential fit of β from historical data leads to

t( ) 2.97e t0.01564β = −
453(24)

454so that the evolution of β with ore grade reads

(OG) 6.77 10 OGOG
14 1.25β β= = × −

455(25)

456Decreasing the average ore grade of exploited deposits at
457constant technology also changes the embodied energy in
458production and the metal price, which both increase as a power
459law of dilution.23,56,62−68 If the same extraction technology had
460been used since 1900, the embodied energy and the price of
461copper would have increased exponentially. During the last
462century, the prices of base metals have not followed this
463expected exponential increase, which implies that the addi-
464tional energy required to mine metals from lower-grade
465deposits has been compensated by the improvements in energy
466efficiency of production. The price at constant technology pCT
467(in US-$1998/tonne) can be calculated as a function of ore
468grade from the following equation, which was derived from the

Figure 6. Evolution of (a) wealthW, (b) reserves R calculated for the two ore-tonnage-versus-ore-grade relationships, (c) per-tonne profit Πper‑tonne
and costs cper‑tonne, and (d) global revenues calculated with the values of α, β, δ, and γ estimated for the two assumptions of constant Πper‑tonne = 800
US-$1998/tonne or share of costs f = 0.8. The thick gray lines in (a) and (d) show the historical total assets and copper revenues, respectively. The
gray symbols in (b) show the observed historical reserves. The global revenues in (d) calculated for constant Πper‑tonne = 800 US-$1998/tonne or f =
0.8 are indistinguishable.
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469 original price-versus-dilution relationship proposed by John-
470 son65

p (OG) 4700 OGCT
0.7= × −

471 (26)

472 or as a function of time (Figure 5e)

p t t( ) 10CT
53 17.2= −

473 (27)

474 The effect of technological improvements on price ETIP

475
(Figure 5f) calculated as the ratio p

pCT
varies exponentially with

476 OG and time. The reference price of copper pTI (Figure 5e)
477 incorporating both the effects of embodied energy increase
478 with lowering ore grade at constant technology and
479 technological improvements can be calculated using pCT and
480 the exponential fit of ETIP (ETIPfit = 0.25 e−0.678OG) as

p p ETIPTI CT fit= ×
481(28)

482The results of the calculation show that pTI follows a classical
483U-shaped curve with a first period of decrease between 1900
484and 2010, when the improvements in technology overwhelm
485the negative effect of ore-grade drop (Figure 5e). During this
486period, pTI decreases from 6300 US-$1998/tonne in 1900 to
4872300 US-$1998/tonne in 2010, at a constant rate of −1%/year.
488This decay is of the same order of magnitude as the decay in
489embodied energy observed for steel and aluminum production
490from 1900 to 201066,69 and for refined copper produced from
491porphyry between 1963 (94.5 MJ/kg70) and 2013 (57 MJ/
492kg71). The situation is different after 2010, when the negative
493effect of dilution overwhelms the positive effect of techno-
494logical improvements. The combined effects of technological
495improvements and OG reduction result in a decrease in ETIP

Figure 7. Evolution of (a) the model variables β, δ, γ, and f, (b) reference price pTI, (c) and (d) production, and (e) and (f) wealth, reserve, and in-
use and lost stocks, for the business-as-usual scenarios. In (a) and (b), the evolutions of γ and f are shown by continuous and dashed lines, for
imposed reference price pTI or constant γ after 2030, respectively. (c) and (e) were computed using the low regeneration path for CuOG; (d) and
(f) were computed using the high regeneration path for CuOG. The gray areas in (c) to (f) show the differences in total production, recycling, in-
use, and lost copper when calculated for recycling rate CRRR = 40% or 70% in 2100, respectively.
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496 (Figure 5f), and after 2020, pTI does not decrease anymore but
497 increases at a rate of 0.6 to 0.8 %/year.
498 Naturally, pTI is a reference price that does not consider the
499 demand/supply variations or any other event such as oil crisis,
500 wars, economic competition, production monopoly, import
501 tariffs and quotas, export controls, cartels, nationalization, and
502 so forth. It also assumes that energy is available at a constant
503 price of about 25 US-$1998/Brent-oil barrel, as it was the case in
504 1910, 1925, 1950, 1995, and 2005, the dates at which pTI = p.
505 Exploring the Future Global Copper Production.
506 Having constrained the evolution of the model variables
507 (Figures 4 and 5), it is now possible to explore the future of
508 copper production depending on the constraints on demand.
509 In each set of scenarios, four cases are studied, which
510 correspond to the four combinations of higher and lower
511 regeneration of reserves with higher and lower CRRR.
512 The Business-as-Usual Scenarios (No Constraint on the
513 Demand Side). In this set of scenarios, the primary production

f7 514 is calculated with βOG, δOG, γOG (Figure 7a), and pTI (Figure
515 7b) derived from the above historical analysis, for the low and
516 high rates of reserve regeneration (Figure 7c,d). A per-tonne
517 profit of 600 US-$1998/tonne was assumed to reduce the
518 difference between the total assets reported in PwC reports
519 and the modeled wealth. The modeled reserves (Figure 7e,f)
520 follow the historical data and increase until the date of the
521 inflection point of the ore-tonnage-versus-time curve shown in
522 Figure 4. After this date, the growth of reserves with time is not
523 exponential anymore, and reserves are consumed faster than
524 they regenerate if production keeps growing at a constant rate.
525 The peak of reserves is followed 10 years later by the peak of
526 primary production at 37−45 Mt/year, in fair agreement with
527 the date and magnitude of production peaks estimated by
528 various authors.9−11,13,32 The production then declines to 4.3
529 Mt/year in 2200 (Figure 7c), while 445 Mt of reserves is still
530 available. The reserves in 2200 are thus equal to the reserves in
531 1992, when the production was close to 9 Mt/year. This
532 observed decline of the production/reserve ratio (=βOG*W)
533 indicates that the 7-fold increase in wealth from 1992 to 2200
534 does not balance the effect of lowering ore grade on βOG. The
535 necessary investment to cope with the decrease of ore grade
536 cannot be achieved for the expected evolution of pTI and future
537 costs of production.
538 Similar results are obtained for both the high and low
539 evolutions of CuOG: the exponential growth of total copper
540 production cannot be maintained for very long. For the low
541 CuOG evolution, the 80 Mt/year of estimated total demand in
542 2100 is not met by production if the recycling rate of copper
543 remains at the present value (CRRR = 40%). To satisfy the
544 demand, 50 Mt/year of primary copper is needed from 2100
545 onward, which is not compatible with the expected peak of
546 production at 37 Mt/year in 2070. About 50 Mt/year of
547 primary copper can be produced for the high CuOG evolution,
548 so that the total production in 2100 is close to the needed 80
549 Mt/year. However, the rapid decline of primary production
550 after this date would not compensate the losses of recycling,
551 which are significant for CRRR = 40%. This is illustrated in
552 Figure 7e and f, which shows that the cumulative amount of
553 lost copper becomes higher than the stock of copper in-use
554 after 2060-2070. The only way to reduce the amount of lost
555 copper and the demand for primary copper is to increase the
556 share of recycling. Increasing CRRR from 40 to 70% between
557 2015 and 2100 postpones the peak of total production by 40 to

55850 years. However, production decreases rapidly after the peak
559and tends to zero in the first half of the XIInd century.
560At constant per-tonne profit, the rate of wealth erosion γOG
561is calculated to decrease after 2030 (Figure 7a), which implies
562that the industry is able to decrease the proportion of its costs
563relative to the size of its wealth (γ = c/W in eq 6). The effect
564on price of a γOG assumed constant after 2030 is illustrated by
565the dashed line in Figure 7b. This case would reproduce a
566situation where energy price increase was compensated by
567labor cost cuts. A third situation can be modeled by forcing the
568price to follow pTI and γOG to remain constant after 2030. In
569that case, the calculated per-tonne profit becomes rapidly
570negative because the costs become higher than the revenues.
571The industrial wealth is consumed, which is equivalent to
572bankruptcy, and the peak of production occurs earlier and is
573lower than in the previous cases. Naturally, this last situation is
574very unlikely at the global scale, but it applies at the local scale,
575when the market price of copper is too low for mines to cover
576their local costs of production.
577These results suggest that irrespective of the increasing
578environmental consequences associated with copper produc-
579tion from more diluted sources, the business-as-usual primary
580production cannot be maintained long on historical trends.
581This conclusion is in line with numerous previous works,
582including those using Hubbert’s approach.9,11−13 The peak and
583later collapse of production are due to the departure of the ore-
584tonnage-versus-time curve from an exponential growth. The
585declining quality of reserves is the second reason. For ETIP
586shown in Figure 5f, the increasing costs of production after
5872020 are no longer compensated by technological improve-
588ments. If the mining industry is not able to reduce the rate of
589wealth erosion γOG, a collapse of production will result from
590the impossibility to maintain the conditions of an economically
591viable extraction without a huge increase of price.
592Leveled-off Demand Scenarios. In contrast with the
593previous scenarios where the production was estimated for a
594known evolution of βOG, the efficiency of wealth to produce
595copper at fixed demand βFD is now adjusted so that total
596production does not exceed the leveled-off demand. To reduce
597production for the same levels of reserves and wealth, βFD must
598 f8be lower than βOG (Figure 8a). As the regeneration of reserves
599is still constrained by eq 19, lower production results in a
600higher available copper stock than in the previous scenarios
601 f9(Figure 9). This situation lasts until the regeneration rate
602begins to decline, when the ore grade of exploited deposits falls
603below 0.3%. At this stage, the stock of reserves also begins to

Figure 8. Evolution of (a) the model variables βOG, βFD, δ, γ, and f
and (b) price where the gray, black, and dashed lines show historical
data, conditions used to follow the reference price pTI, and the case of
constant γOG after 2030, respectively.
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604 decline, as the consumption of reserves (primary production)
605 no longer balances its regeneration. To compensate for the
606 decrease in reserves while maintaining the level of production,
607 βFD becomes equal to and finally slightly higher than βOG
608 (Figure 8a). This evolution of βFD is possible because fewer
609 reserves were consumed between 2020 and 2100 than in the
610 business-as-usual scenarios, so the average OG of the
611 remaining reserves is slightly higher. As a result, βFD does
612 not have to decrease over time at the same rate as βOG.
613 However, βFD cannot remain larger than βOG for very long, it
614 eventually decreases rapidly and becomes equal to βOG when
615 the average OG and reserve stock are equal to those calculated
616 in the business-as-usual scenarios (Figure 8a). The rapid
617 decline of βFD is illustrated by the equally rapid decline of
618 primary production in 2120−2180 (Figure 9b,c) or 2240−
619 2280 (Figure 9d). After this phase of production decline,
620 production and reserve evolutions are controlled by the

621regeneration-versus-OG curve, as in the business-as-usual
622scenarios.
623The results of the modeling with the four possible
624combinations of CRRR and reserve regeneration show quite
625contrasted trends. At low reserve regeneration and constant
626CRRR of 40% (Figure 9a), the evolution of production is
627identical to that observed in Figure 7c because the production
628modeled with βOG did not exceed the leveled-off demand. At
629low reserve regeneration and high CRRR (70% in 2100, Figure
6309c), much less primary copper is needed, but primary
631production still collapses from 2140 onward. The only way
632to maintain total production at the level of the expected
633demand until 2260 is to combine a high level of recycling with
634a high regeneration of reserves (Figure 9d). In this case, the
635classical pattern of a sudden peak in primary production
636followed by a collapse before the end of the century is avoided.
637This does not mean that sustainable copper production is
638assured in the very long run, and even in this optimistic

Figure 9. Evolution of production, regeneration, and copper and wealth stocks for the four scenarios of leveled-off demand (different recycling rates
CRRR and regeneration CuOG).
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639 scenario, the rapid decline in traditional reserves (volcanic
640 massive sulfide and sediment-hosted ores, sulfide and oxide
641 porphyry) after 2200 leads to a collapse in production after
642 2260.
643 In the case of high recycling and regeneration rates, γFD is
644 found to decrease after 2030 to follow the reference price pTI at
645 constant per-tonne profit of 600 US-$1998/tonne. However, this
646 drop in γFD is less pronounced than in the business-as-usual
647 scenarios and the increase in price to keep γFD constant after
648 2020 is much lower. The price reaches 8000 US-$1998/tonne in
649 2100, half the price estimated in the business-as-usual
650 scenarios, a value probably acceptable without a strong impact
651 on demand if copper remains hardly substitutable by cheaper
652 metals for the same functionality.72

653 The comparison of Figure 9b,c shows that increasing CRRR
654 from 40 to 70 % has almost the same effect on total production
655 as a 50% increase in primary reserves. However, the
656 environmental impacts are very different in both cases, as
657 recycling is much less energy- and water-intensive than primary
658 production; these criteria will be of the utmost importance in a
659 context of climate change mitigation and adaptation. In
660 addition, the cumulative amounts of metal lost would be
661 significantly reduced, from 4000 Mt in 2100 or 7000 Mt in
662 2300 (Figure 9b) to 2500 or 4500 Mt (Figure 9c), respectively.
663 These considerations are an urgent call for the implementation
664 of an efficient metal collecting, processing, and recycling
665 infrastructure.
666 Interests and Limitations of the Prey−Predator
667 Dynamics. The prey−predator dynamics used in the present
668 study is able to reproduce the 1900−2015 evolutions of copper
669 production, reserves, price, costs of production, revenues, and
670 profits of the copper industry, as well as the cost- and price-
671 reducing effects of improved technologies and the cost- and
672 price-increasing effects of decreasing ore grade. The model
673 provides a simple way to link materials to monetary flows and
674 stocks, which is critical to estimate the future of natural
675 resources. All model parameters change with time, in response
676 to the exponential decay of the average grade of exploited ore
677 deposits. The ratio δ/β (prey death rate/predator birth rate) is
678 constant in biological systems, while it corresponds to the price
679 in our model. The price is therefore an adjustment variable
680 that stabilizes or increases wealth creation (predator birth),
681 while reserves (prey population) and production both
682 decrease. This dynamics contributes to decouple copper
683 production from the geological reality and the depletion of
684 high-quality reserves.
685 These differences between the original prey−predator and
686 the present reserve−wealth formalisms introduce complexity
687 and uncertainties, which are certainly large but difficult to
688 evaluate on the time horizon considered in the present study.
689 In particular, the demand was assumed to be inelastic, which is
690 not realistic and constitutes an obvious limitation of our
691 modeling. Moreover, all of the discussed scenarios assume a
692 constant long-term energy price, in the range of 25 US-$1998/
693 Brent-oil barrel. Should the price of energy increase
694 significantly in the future, the production costs and price of
695 copper would increase more rapidly, and this would naturally
696 affect the results.
697 Another important source of uncertainty concerns the rate
698 of reserve regeneration. In the long run, Arndt et al.19 recently
699 argued that the distribution of copper in the crust is not
700 bimodal but unimodal, in which case the OT-versus-OG
701 relationship used in the present study would underestimate the

702growth of reserves at OG < 0.5%. Copper from the oceanic
703crust as well as deep continental deposits might further expand
704the future reserves. However, exploiting such resources
705requires significant investments in new technologies. This
706challenges the traditional belief that the cost-cutting effects of
707technology improvements observed in the past will continue in
708the future. Further improvements of technology are obviously
709possible, but to ensure steady growth in primary production
710over the long term, the annual rate of technological
711improvement will have to be higher than it has been over
712the past 50 years. The transformation of resources into reserves
713also depends on many parameters not considered in the above
714equations, including the geopolitical situation of producing
715countries, the environmental impacts of extraction, and the
716need for additional resources such as water. The latter is
717essential in remote producing regions that may be affected by
718significant changes in precipitation due to global warming.
719A major source of uncertainty concerns future demand, for
720which we have assumed to follow past trends of per-capita
721consumption. Yet, new uses of copper and the shift to a
722numerical world where the share of renewable energy is
723increasing could deviate the trend. Similarly, there are
724uncertainties about future population and fertility rates, and
725the evolution of GDP is a matter of social choice.
726Finally, an important question concerns the expected price
727of primary copper in a context of high recycling. Currently, the
728price of recycled copper follows that of primary copper.
729However, this situation could change if recycled copper
730becomes the most abundant source. Copper recycling is
731significantly less demanding in energy, and the eventual
732competition between recycling and primary production leading
733to a stabilization or even a decrease in copper price after 2050
734could be detrimental for primary production.
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(45) 874Soulier, M.; Glöser-Chahoud, S.; Goldmann, D.; Espinoza, L.
875A. T. Dynamic analysis of European copper flows. Resour. Conserv.
876Recycl. 2018, 129, 143−152.

(46) 877World Bank. World Bank Indicators, 2015. http://www.
878worldbank.org.

(47) 879United Nations. UN Data, 2015. http://data.un.org/.
(48) 880Bolt, J.; Van Zanden, J. L. The Maddison Project: collaborative

881research on historical national accounts. Econ. Hist. Rev. 2014, 67,
882627−651.

(49) 883Rauch, J. N. Global mapping of Al, Cu, Fe, and Zn in-use stocks
884and in-ground resources. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
88518920−18925.

(50) 886Gordon, R. B.; Bertram, M.; Graedel, T. E. Metal stocks and
887sustainability. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1209−1214.

(51) 888Singer, D.; Menzie, W. D. Quantitative Mineral Resource
889Assessments: An Integrated Approach; Oxford University Press, 2010.

(52) 890Schipper, B. W.; Lin, H.-C.; Meloni, M. A.; Wansleeben, K.;
891Heijungs, R.; van der Voet, E. Estimating global copper demand until
8922100 with regression and stock dynamics. Resour. Conserv. Recycl.
8932018, 132, 28−36.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b03883
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

M



(53)894 Govett, G. World Mineral Supplies; Developments in Economic
895 Geology; Elsevier, 1976; Vol. 3, pp 343−376.

(54)896 Schodde, R. The Key Drivers Behind Resource Growth: An
897 Analysis of the Copper Industry over the Last 100 years, MEMS
898 Conference Mineral and Metal Markets over the Long Term;
899 Phoenix: USA, 2010.

(55)900 Copper Statistics; Edelstein, D. L., Ed.; U.S. Geological Survey,
901 2014.

(56)902 Norgate, T.; Jahanshahi, S. Low grade ores-smelt, leach or
903 concentrate? Miner. Eng. 2010, 23, 65−73.

(57)904 Rudnick, R. L.; Gao, S. Composition of the continental crust.
905 Treatise on Geochem 2003, 3, No. 659.

(58)906 Singer, D. A. The lognormal distribution of metal resources in
907 mineral deposits. Ore Geol. Rev. 2013, 55, 80−86.

(59)908 PwC, Mine: PwCs annual review of global trends in the mining
909 industry, 2003-2015. http://www.617pwc.com/cl/en/publicaciones.
910 html.

(60)911 Herfindahl, O. C. Copper Costs and Prices: 1870-1957; Johns
912 Hopkins Press, 1959.

(61)913 Schlesinger, M. E.; King, M. J.; Sole, K. C.; Davenport, W. G.
914 Extractive Metallurgy of Copper; Elsevier, 2011.

(62)915 Chapman, P. F. The energy cost of producing copper and
916 aluminium from primary sources. Met. Mater. 1974, 8, 107−111.

(63)917 Chapman, P. F. The energy costs of materials. Energy Policy
918 1975, 3, 47−57.

(64)919 Mudd, G. M.; Diesendorf, M. Sustainability of uranium mining
920 and milling: toward quantifying resources and eco-efficiency. Environ.
921 Sci. Technol. 2008, 42, 2624−2630.

(65)922 Johnson, J.; Harper, E.; Lifset, R.; Graedel, T. E. Dining at the
923 periodic table: Metals concentrations as they relate to recycling.
924 Environ. Sci. Technol. 2007, 41, 1759−1765.

(66)925 Gutowski, T. G.; Sahni, S.; Allwood, J. M.; Ashby, M. F.;
926 Worrell, E. The energy required to produce materials: constraints on
927 energy-intensity improvements, parameters of demand. Phil. Trans. R.
928 Soc. A 2013, 371, No. 20120003.

(67)929 Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing ore
930 grades in global metallic mining: a theoretical issue or a global reality?
931 Resources 2016, 5, No. 36.

(68)932 Vidal, O.; Rostom, F.; Franco̧is, C.; Giraud, G. Global trends in
933 metal consumption and supply: the raw material-energy nexus.
934 Elements 2017, 13, 319−324.

(69)935 Yellishetty, M.; Ranjith, P.; Tharumarajah, A. Iron ore and steel
936 production trends and material flows in the world: Is this really
937 sustainable? Resour. Conserv. Recycl. 2010, 54, 1084−1094.

(70)938 Rosenkranz, R. D. Energy Consumption in Domestic Primary
939 Copper Production, 1976.

(71)940 COCHILCO: Comision Chilena del Cobre, Statistical database
941 on production and energy use. http://www.cochilco.cl/estadisticas/
942 intro-bd.asp, 2014.

(72)943 Graedel, T. E.; Harper, E. M.; Nassar, N. T.; Reck, B. K. On the
944 materials basis of modern society. Proc. Natl. Acad. Sci. U.S.A. 2015,
945 112, 6295−6300.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b03883
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

N



CHAPTER 2

Steady-State Extraction and Production Growth
in a Goodwin-Class Model

INSUFFICIENT DATA FOR MEANINGFUL ANSWER.
— Isaac Asimov, The Last Question

The present chapter embeds the extracting sector, as modeled in the previous chapter, in
the whole global economy. It aims at evaluating the consequences on long-term growth of that
mining dynamics in a particular class of growth models.

Indeed, as neoclassical approaches based on the general equilibrium paradigm are subject
to serious criticisms in light of the financial crisis (Stiglitz, 2011; Lavoie, 2014; Romer, 2016;
Brancaccio and Saraceno, 2017), and as environmental constraints are gaining momentum in
the public debate, post-keynesian economists attempted to find a common ground with ecologi-
cal economists (Kronenberg, 2010). Some authors (Berg et al., 2015) proposed an input-output
production combined with a stock-flow consistent model to explore the effects of energy price
shocks in a monetary economy. Others (Dafermos et al., 2017) chose to combine the stock-flow
consistency approach with Georgescu-Roegen’s flow-fund model, building a tool that takes in
consideration accounting and thermodynamic principles. This model is calibrated and used
to analyze green finance policies. This literature is promising, yet still emerging and with no
specific attention given to the root controversy on exhaustible resources.

Another emerging branch of the literature revives Goodwin’s seminal model (Goodwin,
1967), which adapts the prey-predator dynamics to describe the interplay between the wage
share and employment. This intuition was brought up to date by van der Ploeg’s research
program who extended these income distribution issues to a neoclassical production function
(van der Ploeg, 1983, 1985, 1987). There, he describes Goodwin’s model as a “beautiful the-
ory” which “discusses the symbiotic contradictions of capitalism in one complete model of
economic growth and perpetual cycles”. It was later enriched (Keen, 1995) by adding with
the dynamics of private debt. The model then displays the possibility for the economy to be
trapped in the basin of a attraction of a deflationary long-run steady state. Various extensions
were proposed more recently (Grasselli and Lima, 2012; Grasselli and Nguyen-Huu, 2016),
including one version with a climate module that aims at assessing the effect of damages on
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long-term growth (Bovari et al., 2018). An interesting extension of this model describes the ef-
fect of factor substitution on the different basins of attraction (Bastidas et al., 2018). However,
this literature neglected to investigate the effects of mineral resources scarcity on the structure
of long-term equilibria, which is what we propose in this chapter.

For that purpose, we construct a stock-flow consistent continuous-time macro-dynamics
where the scarcity of natural resources is made explicit through the simple prey-predator dy-
namics previously introduced. The main departures, here, is that mineral “wealth" is much
more detailed and the mining industry is able to finance its activity by leveraging. Moreover,
the complex dynamics of the birth/death parameters is neglected for simplicity. The mining
sector extracts some natural resource that can only be discovered at finite speed and sells it
to the final good sector which produces the consumption good out of capital, labor and this
natural resource. At variance with the equilibrium-based approach, we consider a full-blown
non-linear macro-dynamics, where the conditions for long-run equilibria to be reached can be
made explicit. Apart from this departure with the tradition, we keep with most neoclassical fea-
tures: production factors are substitutable and a supply-driven axiom is adopted, even though
we acknowledge that the essential demand determination of output is missing and leave it for
further analysis. The aim is to assess the ability of factor substitution to circumvent a collapse à
la Meadows and to sustain an ever growing path. As a proof of concept, we identify conditions
under which a stationary balanced path can be reached. We show that, conversely, whenever
one of these conditions fails, the world economy may be attracted by a catastrophic long-run
steady state due to the interplay between the scarcity of natural resources and the dynamics of
debt. We further provide a calibration of the world production technology. For that purpose,
we construct a proxy of the world economy by aggregating 37 countries, which account for
83% of the average world GDP between 1990 and 2017. Then, we estimate the parameters
of the CES production function. There is an ongoing debate about the empirical measure of
the elasticity of substitution between capital, K, and labor, L. Here, this issue is reexamined
within a (K, L, M) framework, where production of the final consumption good also relies in
a non-trivial way on the flow, M , of ‘material’. We discuss factor’s substitution and weight.

The chapter is organized as follows. The next section sets the scene by describing the
fundamentals of our model. Section 3 is devoted to displaying its stock-flow consistency. The
following section contains the analysis of the long-run dynamics of our model: our main two
conclusions are presented there. Section 5 provides details about how we constructed our proxy
of the world economy using a long-span dataset of world demographic, macroeconomic and
geologic variables. A specific dataset for the mining industry is also constructed in order to
analyze past evolutions of this crucial sector. The last section presents our estimation of the
production function based on this data set.

1 The model
Consider a closed economy where a unique consumption good is produced out of materials,
capital and labour. A material is extracted by a specific mining sector, and then sold to the
rest of the economy. The material stands for any exhaustible natural resource entering into the
production process of the consumption good, such as oil, sand or any mineral. When going
to the data in section 5, we shall consider a more specific setting where the material will be
interpreted as copper. Apart from the extractive sector, there are three other sectors in our
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Figure 2.1: Sketch of the model engine. The boxes and pipes represent stocks and flows,
respectively. Clouds are exogenous creations or losses, depending on the direction of the flow.
Dots connectors represent actions (mining, worker or machine working). Dashed connectors
are sources of funds. Circles surrounds factor compensations.

economy: households, final good producing firms, and banks. The government is omitted in
order to keep the model as simple as possible.

Tab. 2.1 presents all variables and parameters used in the present model, along with their
corresponding units. These units are important for the graphical representation of the stocks,
flows and values in Fig. 2.1. Blue flows and stocks are consumption goods, orange ones are
materials, red ones are workers and green ones monetary stocks and flows.

Let us begin with the mining sector.

1.1 Mining
The dynamics of the extractive sector is similar to the one studied in Chapter 1. It is based on a
capital-intensive industry having at the starting time a capital stock, KR(0) > 0, and a reserve,
R(0) > 0. We call M(t) the quantity of materials extracted at a given point of time t Ø 0,
which is determined by an extraction function depending upon the current reserves, R(t), the
capital of mining firms, KR(t), and the (constant) extractive productivity, b > 0. For simplicity,
the time index will be suppressed when there is no risk of confusion. Instantaneous extraction
is given by:
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Table 2.1: List of symbols
Notation Variable/Parameter Units

Goods production
Y output consumption units/year
g output growth rate year≠1

M extracted raw materials tonnes/year
gR extraction growth rate year≠1

L total employed labor beings
Lú augmented labor beings
K installed capacity of production or capital consumption units

Kú material-capital aggregate aggregated units
– rate of unexplained change year≠1

A scaling parameter conversion units
◊, Â distribution parameters conversion units
flú , fl substitution parameters conversion units

¸ labor productivity consumption units/(beings ◊ year)
‹ material-capital-to-output ratio aggregated units
C consumption consumption units/year

Mineral extraction
R reserves tonnes

KR installed capacity of extraction or capital consumption units
a exploration efficiency year≠1

b extraction efficiency (consumption units ◊ year)≠1

Labor stabilization
N pool of people of working age beings

Nmax long-term number of people of working age beings
“ population logistic growth rate year≠1

—(N) population growth rate year≠1

Capital accumulation
I investment in the non-mining sector consumption units/year

IR investment in the mining sector consumption units/year
Ÿ(fi) investment ratio -

ŸR(fiR) mining investment ratio -
” depreciation rate year≠1

Factors valuation
p consumption price PPP/consumption unit
i consumption price growth rate year≠1

pR raw material price PPP/tonne
iR raw material price growth rate year≠1

Ï share of extraction costs in revenues -
Ï0 extraction cost parameter -

u, uR markups -
÷, ÷R relaxation coefficients year≠1

w wage PPP/(year ◊ being)
„(⁄) negotiated wage growth rate year≠1

r interest rate year≠1

’(fi), ’ú dividends payout ratio -
’R(fiR), ’ú

R mining dividends payout ratio -
Profits calculation

� profits before interests PPP/year
�n net profits PPP/year
�r remaining profits PPP/year
�R mining profits before interests PPP/year
�n

R mining net profits PPP/year
�r

R mining remaining profits PPP/year
� dividends PPP/year

�R mining dividends PPP/year
D debt stock PPP

DR mining debt stock PPP
Transactions

Oi deposits of sector i PPP
Li loans of sector i PPP
Ai equity of sector i PPP

NWi net worth of sector i PPP
Si savings of sector i PPP/year

Ratios
Ê wage share -
⁄ employment rate -
d debt-to-output ratio year

dR mining debt-to-output ratio year
m raw material share -

µR extraction-to-reserve ratio year≠1

µK extraction-to-capital ratio tonnes/(year ◊ consumption unit)
µKR

extraction-to-mining-capital ratio tonnes/(year ◊ consumption unit)
fi profit share -

fiR mining profit share -
rp price ratio consumption units/tonne
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M = bRKR. (2.1)

The stock of fossil reserves, R(t), increases with reserve discoveries and lowering ore grade
through parameter a > 0 (which reflects the reserve quality), and decreases with extraction:

˙R = aR ≠ M. (2.2)

For simplicity, we suppose that extractive firms are myopic, whereas the stock of extracting
capital is used at full capacity, whatever being the market price of the material resource.1 By
selling the material M(t) at price pR(t), extractive firms earn a profit before interest, �R(t):

�R := (1 ≠ Ï)pRM ≠ p”KR, (2.3)

where p(t) Ø 0 is the price of mining capital, Ï(t) > 0 is the share of the extracting cost of a
unit of matter, and ” > 0 is the (constant) depreciation rate. The net profit obtains after debt
servicing with a fixed short-run, nominal interest rate r > 0:

�

n
R := �R ≠ rDR, (2.4)

where DR(t) denotes the current private debt of the mining sector. This net profit is used to
compute the profit-to-revenue ratio,

fiR :=

�

n
R + ”pKR

pRM

= 1 ≠ Ï ≠ rdR, (2.5)

where dR :=

DR

pRM
is the debt-to-revenue ratio. The profit-to-revenue ratio will be the key

determinant of aggregate investment, IR, in the mining sector

IR := ŸR(fiR)rpM, (2.6)

for some function ŸR(·) taking values in (0, 1), and where rp :=

pR

p
is the price of natural

resources normalized by the consumption price. As for the mining capacity, KR, it varies
according to the standard accumulation equation:

˙KR = IR ≠ ”KR. (2.7)

Part of the net profit, �

n
R, is distributed to the shareholders of the mining sector in proportion

to the performance ratio, fiR, and the gross revenues, pRM . Dividends from the extractive field
are therefore given by

�R := ’R(fiR)pRM,

with ’R(·) taking value in [0, 1]. The remaining profits
1Adaptive and consistent expectations are introduced in (Dossetto and Giraud, 2019) in a model without ex-

haustible resources. There, it is shown that dropping myopia does not qualitatively modify the phase space of the
dynamics. A similar conclusion would presumably hold here but exploring this issue is left for further research.
The usage rate of producing capital will be made endogenous in a subsequent section at the world level. For
simplicity, we kept constant the utilization rate of mining capital in the extractive sector.
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�

r
R := �

n
R ≠ �R

=

1
1 ≠ Ï ≠ ’R(fiR)

2
pRM ≠ rDR ≠ ”pKR,

will provide self-financing to the mining sector. The possible gap between investment needs,
pIR, and self-financing is filled with additional debt:

˙DR = pIR ≠ (�

r
R + ”pKR). (2.8)

Depreciation is a cost in the net result but a source of liquidity in cash flows —hence its pres-
ence in the rhs of (2.8). Whenever ˙DR < 0, this means that the remaining cash after investment
has been financed is used by extractive firms to repay back the debt of the mining sector.

Let us now turn to the non-extractive world economy.

1.2 Production of the final good
At time t, the output on the final good market is Y (t). It has been produced courtesy of some
flow, M(t), of materials and labor, L(t), together with a capital stock, K(t). The aggregate
profit before interests, �, earned by the final good sector, results from the firms’ income minus
the wage bill, the intermediate consumption bill and depreciation costs:

� = pY ≠ wL ≠ (1 ≠ Ï)pRM ≠ ”pK, (2.9)

where p(t) is the final good price2 while w(t) stands for the unitary money wage, and ” is the
depreciation rate.3 Notice that the extraction cost, Ï(t)pR(t)M(t), is paid by the mining sector
to the rest of the world, hence enters positively in the profit of the non-extractive production
sector.

In a way similar to the mining sector, the net profit is calculated after interests have been
paid:4

�

n
= � ≠ rD, (2.10)

where D stands for the aggregate private debt of the final good production sector. The profit-
to-output ratio

fi :=

�

n
+ ”pK

pY

= 1 ≠ Ê ≠ (1 ≠ Ï)m ≠ rd (2.11)

can now be defined, where Ê := wL/pY 5, m := M/pY and d := D/pY are the wage-,
intermediate-consumption- and debt-to-output ratios respectively. The current level of aggre-
gate investment, I(t), is set according to some continuous function, Ÿ(·) of fi:

2We therefore extend the standard, neoclassical simplification by identifying the price of (mining and non-
extractive) capital with that of the final good.

3For simplicity, we assume the depreciation rates to be equal in the mining and final good sectors. Dropping
this restriction would just complicate notations without altering any results to follow.

4The same remark as for ” holds for r, see the previous footnote.
5The wage share, Ê, should not be confused with the unitary nominal wage, w.
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I = Ÿ(fi)Y.

As usual, capital evolves according to ˙K = I ≠ ”K. Part of the net profit is distributed to
shareholders of the final good production sector according to some continuous and increasing
function, ’ , of fi taking values in [0, 1]: � := ’(fi)pY. Remaining profits therefore write:

�

r
:= �

n ≠ �

= (1 ≠ ’(fi))pY ≠ wL ≠ (1 ≠ Ï)pRM ≠ rD ≠ ”pK.

Like in the mining sector, changes in the (private) debt of the final good production field
reflect the adjustment between investment needs, pI , and self-financing after having taken due
account of the remaining profits and depreciation:

˙D = pI ≠ (�

r
+ ”pK). (2.12)

It readily follows from (2.12), that ˙D = 0 if, and only if, p ˙K = �

r.

1.3 Labour
For the empirical assessment of our model, we shall assume that the workforce, N , follows
the UN demographic median scenario of the world population at working age6, which states
that working population should reach a plateau around 11 billion people before the end of
the century. Its dynamics will therefore be taken as following some exogenous “S-shaped”
function:

ˆN = “(1 ≠ N

Nmax

) = —(N), (2.13)

where, as usual, x̂ := ẋ/x.
The employment rate is defined as ⁄ :=

L
N

. The bargaining power of workers for wages
is assumed to depend upon the employment rate ⁄, according to some continuous short-run
Phillips curve, „:

ŵ = „(⁄). (2.14)

The final good sector maximizes its instantaneous profit taking as given the set of prices,
p(t), for the final good, wages w(t), the price pR(t) for the material resource and the short-run
nominal interest, r, on its debt, as well as the stock of capital, K(t), and the available flow of
matter, M(t). The final good sector chooses the quantity, L, of hired workers so as to maximize
its profit, i.e., solves maxL �

n. The first order condition yields

ˆY

ˆL
(t) =

w(t)

p(t)
, (2.15)

according to which firms set the optimal amount, Lú
(t), of hired labour. This is consistent

with (van der Ploeg, 1985) reinterpretation of Goodwin’s seminal dynamics. This profit-
maximization assumption on the final good sector is our main departure with the literature

6That is, from 16 to 64 years old.
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devoted to system dynamics and resource exhaustion, as well as with most of post-keynesian
literature.7

1.4 Consumption
Since Say’s law is assumed8, the level, C, of aggregate consumption will adjust so as to clear
the final good market:

Y = (I + IR) + C. (2.16)

The final good is sold on the consumption market, where it is given a price p. The price
dynamics is set so that, if the latter was constant, p would converge toward some long-term
value given by a markup u Ø 1 and a unit cost, Ê +

1
1≠Ï)m, capturing labor and intermediate

raw materials costs, with a relaxation time 1/÷ > 0. In other words, the inflation rate, i, is
given by

i := p̂ = ÷
3

u
Ë
Ê +

1
1 ≠ Ï)m

È
≠ 1

4
1{p>0}. (2.17)

Since, however, the unit cost of production,
Ë
Ê+

1
1≠Ï)m

È
, will endogenously vary across time,

(2.17) provides a potentially rich price dynamics. Whenever the markup satisfies u > 1, this
means that imperfect competition prevails on the consumption market. Since ÷ is finite, prices
do not adjust instantaneously to a change in the unitary cost, reflecting some stickiness which
is reminiscent of (Calvo, 1983). This modelling is consistent with the empirical body of work
on sticky prices provided by (Blinder, 1981), as well as with the view Classical economists of
the early nineteenth century shared on market prices. For simplicity, the zero boundary works
as an absorbing state: once it has been reached by p, inflation vanishes so that the price stays
at zero for ever. While Solow’s seminal model was a real economy, (2.17) is the main point of
departure of our model with a purely neo-classical approach, where prices would be assumed
to play the adjustment role for market clearing.

The extracted quantity of matter, M , is sold on the market for commodities, where it is
given a value which will follow a similar dynamics. The price, pR, of the resource R therefore
fluctuates according to

iR := p̂R := ÷R(uRÏ ≠ 1)1{pR>0}, (2.18)

where ÷R > 0 is the relaxation parameter, uR Ø 1 is the markup and Ï(t) is, as already said,
the unit cost of extraction which aggregates all operating costs.

2 Stock-Flow consistency
Tab. 2.2 spells out the stock-flow consistency of the model. The economy is made of four sec-
tors with households (subscript H), non-extractive firms dedicated to consumption and capital

7In (Meadows et al., 1972), for instance, prices and profits are absent from the modelling picture, whereas the
behaviour of the production sector is assumed to follow some rule-of-thumb. On the other hand, in most of the
literature devoted to Goodwin’s model (including (Bovari et al., 2018)), production is assumed to be Leontief, so
that no maximization program is needed to solve the trade-off between capital and labor.

8This restriction is dropped in (Grasselli and Nguyen-Huu, 2016). This turns out to deeply modify the phase
space of the resulting dynamical system. This extension to our setting is left for further research.
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goods production (subscript F if needed), mining firms (subscript R) and banks (subscript B).9
The net borrowing of each sector is the difference between its loans, L, and its deposits, O.

We assume that both types of firms as well as banks are privately owned by households. As
a consequence, the net worth of households is comprised of all equities AF +AR+AB as well as
their own saving stock OH ≠LH . All other net worths are therefore equal to zero, since equities
are balancing variables: AF = pK + OF ≠ LF , AR = pKR + pRR + OR ≠ LR (mining firms
own the extractive capital and mines as assets) and AB = (LH ≠OH)+(LF ≠OF )+(LR ≠OR)

(loans are the assets of the banking sector, deposits are its liabilities). Hence, the total net worth
or wealth of the economy, NW , is owned by households:

NW = NWH = p(K + KR) + pRR.

Notice that the households’ saving flow is given by:

SH := ≠ ˙DH =

˙OH ≠ ˙LH = (wL + � + �R + �B ≠ rDH) ≠ pC.

The savings of non-mining and mining firms are equal to their remaining profits, �

r and
�

r
R, respectively. Whenever investment needs turn out to exceed their remaining profits, they

contract loans from the banking sector:

p ˙K =

˙D + �

r

p ˙KR =

˙DR + �

r
R

Finally, the banking sector distributes all its profits (i.e., interests on net borrowings10 ) to
its shareholders through dividends:

�B := r(DH + D + DR).

Therefore,
SH =

1
wL + � + �R + r(D + DR)

2
≠ pC.

Note that SH + SF + SR + SB = SH + �

r
+ �

r
R = p(

˙K +

˙KR), so that savings always
equal net investments in the economy.

3 Exploring possible futures
Combining the neoclassical production function with the dynamics of its inputs leads to a
complex non-linear dynamical system. In this section, we discuss the long-term qualitative
behavior of this system by exploring possible steady states. The conditions for local stability
of these complex equilibria are left for further analysis.

9Observe that, for simplicity, both mining and non-mining capitals are built by the non-extractive production
sector.

10In words, net interest payments (the difference between interest received and interest paid) are equal to banks’
income, because banks also have to pay interest to customers, who hold money in their bank accounts. Fees and
commissions as further sources of income for banks are neglected.
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3.1 Reduced form of the dynamics
In order to make the analysis tractable, let us assume that the production function is of the form

Y = A
5
ÂKú≠fl

+ (1 ≠ Â)Lú≠fl
6≠1/fl

,

where Kú
:= K◊M1≠◊, called “material-capital” hereafter, Lú

:= e–tL, while Â, ◊ œ (0, 1)

and fl œ (≠1, +Œ), as usual. In words, we consider a Cobb-Douglas functional form between
K and M , nested in a constant-returns-to-scale CES production function together with labor-
augmenting technological progress, improving at rate – Ø 0.

Observe that the behavior of firms producing the final good is fully accommodating in the
sense that, given the flow, M , of materials extracted by the mining sector, it will be automat-
ically sold as an intermediate consumption for the final good sector, precluding more general
specifications of the relationships between both sectors. This obvious shortcoming is consistent
with the one that is common to almost all the literature dedicated to Goodwin’s seminal model,
where Say’s law is in force: households always accommodate their consumption to production.
Here, assuming Say’s law on the intermediate consumption market can be partially justified by
the fact that we want to find the simplest model of long-term growth with material constraints.

Motion equations

We first compute the motion of key variables of our economy. They will be useful when com-
puting the reduced system of our dynamics.

Labor productivity

By derivating the production function with respect to L, we obtain:

ˆY

ˆLú =

1 ≠ Â

Afl

3
Y

Lú

41+fl

.

Let ¸ := Y/L denote instantaneous labor productivity. The first order condition (2.15) leads
to11

¸ = Ae–t

A
Ê

1 ≠ Â

B1/fl

.

The growth rate of labor productivity is therefore equal to:

ˆ¸ =

1

fl
Ê̂ + –.

Output

By derivating the production function with respect to Kú, we get

ˆY

ˆKú =

3
Y

Kú

41+fl Â

Afl
.

11Remember that Ê := wL
pY refers to the wage share in the world output. Due to the partial substitutability

between capital, labor and matter, it is endogenously determined by the whole economic dynamics.
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Let ‹ designate the matter-capital-to-output ratio ‹ := Kú/Y. The CES production function
being homogeneous of degree one, the Euler equation gives:

ˆY

ˆKú =

1

‹
(1 ≠ Ê).

Combining both expressions leads to:

‹ =

1

A

A
1 ≠ Ê

Â

B≠1/fl

. (2.19)

To emphasize that, at variance with several Goodwin-class models dealing with a Leontieff
production function, the matter-capital-to-output ratio is a function of Ê, we shall denote it
‹(Ê). Its growth rate is:

‹̂(Ê) =

1

fl

Ê̇

1 ≠ Ê
, (2.20)

while the growth rate of matter-capital is given by:

ˆKú
= ◊ ˆK + (1 ≠ ◊)

ˆM.

Thanks to the capital accumulation dynamics, one gets:

ˆK =

Ÿ(fi)

‹(Ê)

µ1≠◊
K ≠ ”

= Ÿ(fi)A

A
1 ≠ Ê

Â

B1/fl

µ1≠◊
K ≠ ”,

where µK := M/K. Using (2.2), (2.6), and (2.7), we obtain the growth rate of the flow, M , of
matter defined by (2.1):

gR :=

ˆM =

ˆR +

ˆKR

= a ≠ µR + ŸR(fiR)rpµKR
≠ ” (2.21)

= a ≠ µR + µ̂R,

where µKR
:=

M
KR

= bR and µR :=

M
R

= bKR.

The output growth rate can now be written, courtesy of (2.20)

g :=

ˆY =

ˆKú ≠ ‹̂(Ê)

= ◊
5
Ÿ(fi)

‹(Ê)

µ1≠◊
K ≠ ”

6
+ (1 ≠ ◊)

5
a ≠ µR + µ̂R

6
≠ 1

fl

Ê̇

1 ≠ Ê

= ◊
Ÿ(fi)

‹(Ê)

µ1≠◊
K + (1 ≠ ◊)

5
a ≠ µR + ŸR(fiR)rpµKR

6
≠ ” ≠ 1

fl

Ê̇

1 ≠ Ê
. (2.22)

Note that g is a function of fi, fiR, Ê, µK , µKR
, rp and µR.
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Wage ratio

By definition of the wage share Ê, Ê̂ = ŵ ≠ ˆ¸ ≠ i. Therefore,

Ê̂ =

fl

1 + fl
(„(⁄) ≠ – ≠ i)

=

fl

1 + fl

3
„(⁄) ≠ – ≠ ÷

5
u

3
Ê +

1
1 ≠ Ï

2
m

4
≠ 1

64

Employment

By definition of ⁄, ˆ⁄ =

ˆY ≠ ˆ¸ ≠ ˆN . This leads to:

ˆ⁄ = g ≠ 1

fl
Ê̂ ≠ – ≠ —

= ◊
Ÿ(fi)

‹(Ê)

µ1≠◊
K + (1 ≠ ◊)

5
a ≠ µR + ŸR(fiR)rpµKR

6

≠ 1

fl

Ê̇

Ê(1 ≠ Ê)

≠ ” ≠ – ≠ —. (2.23)

Debt ratio

Let d :=

D
pY

be the private debt-to-output ratio. The debt dynamics is given by:

ˆD =

1

d

5
Ÿ(fi) ≠

1
1 ≠ Ê ≠

1
1 ≠ Ï

2
m ≠ ’(fi)

26
+ r, (2.24)

where m :=

pRM
pY

. As a consequence,

ˆd =

1

d

5
Ÿ(fi) + ’(fi) ≠ fi

6
≠ (g + i)

=

1

d

5
Ÿ(fi) ≠

1
1 ≠ Ê ≠

1
1 ≠ Ï

2
m ≠ ’(fi)

26
≠ ◊

Ÿ(fi)

‹(Ê)

µ1≠◊
K ≠ (1 ≠ ◊)

Ë
a ≠ µR + ŸR(fiR)rpµKR

È

+

1

fl

Ê̇

1 ≠ Ê
+ ” + r ≠ ÷

Ë
u(Ê +

1
1 ≠ Ï

2
m) ≠ 1

È
(2.25)

Remember that the debt of the extractive sector is not included in D. It will therefore follow a
specific dynamics, to be described below.

Resource share

By definition of m, we have

m̂ = gR ≠ g + iR ≠ i

= ◊
5
ŸR(fiR)rpµKR

+ a ≠ µR ≠ Ÿ(fi)

‹(Ê)

µ1≠◊
K

6
+

1

fl

Ê̇

1 ≠ Ê

+ ÷R

Ë
uRÏ ≠ 1

È
≠ ÷

5
u

3
Ê +

1
1 ≠ Ï

2
m

4
≠ 1

6
. (2.26)
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Mining debt ratio

Let dR :=

DR

pRM
be the debt ratio of the extractive sector. The debt dynamics is given by

ˆDR =

1

dR

S

UŸR(fiR) ≠
3

1 ≠ Ï ≠ ’R(fiR)

4T

V
+ r,

from which the dynamics of the debt ratio follows:

ˆdR =

1

dR

5
ŸR(fiR) + ’R(fiR) ≠ fiR

6
≠ (gR + iR)

=

1

dR

S

UŸR(fiR) ≠
3

1 ≠ Ï ≠ ’R(fiR)

4T

V ≠ ŸR(fiR)rpµKR
+ µR ≠ a + ” + r ≠ ÷R

Ë
uRÏ ≠ 1

È
.

(2.27)

The dynamical system

The dynamics boils down to a nine-dimensional system:

Ê̇ = Ê
fl

1 + fl

1
„(⁄) ≠ – ≠ i

2

˙⁄ = ⁄
5
g ≠ 1

fl
Ê̂ ≠ – ≠ —

6

˙d =

5
Ÿ(fi) + ’(fi) ≠ fi

6
≠ d(g + i)

ṁ = m
5
gR ≠ g + iR ≠ i

6

˙µK = µKgR ≠ µK

ËŸ(fi)

‹(Ê)

µ1≠◊
K ≠ ”

È
(2.28)

µ̇R = µR

5
ŸR(fiR)rpµKR

≠ ”
6

˙dR =

5
ŸR(fiR) + ’R(fiR) ≠ fiR

6
≠ dR(gR + iR)

˙µKR
= µKR

1
a ≠ µR

2

ṙp = rp

1
iR ≠ i

2
,

with the following auxiliary variables: the profit shares, fi and fiR, defined by (2.11) and
(2.5) respectively, the inflation rates, i and iR (cf. (2.17) and (2.18)), and the extraction and
production dynamics:

gR = a ≠ µR + µ̂R, (2.29)

g = ◊
5
Ÿ(fi)

‹(Ê)

µ1≠◊
K ≠ ”

6
+ (1 ≠ ◊)gR ≠ 1

fl

Ê̇

1 ≠ Ê
. (2.30)
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Observe that the price ratio rp is fundamental to understand the interplay between the min-
ing and the non-mining sector, and raises an interesting discussion on the limitations of trans-
disciplinary work. This variable was added to have a model consistent in units, adopting a
physicist’s viewpoint. Indeed, in equation (2.6), the left-hand side is expressed in units of fi-
nal good (or, equivalently, capital, as both are perfect substitutes), while M is expressed in
tonnes of matter. From an economist’s viewpoint, money is fungible, whatever its use. This is
the reason why he/she usually pays little attention to the units involved in equations. If rp is
not used in equation (2.6), then the dynamics can be disentangled into two coupled dynamical
subsystems:

Ê̇ = Ê
fl

1 + fl

1
„(⁄) ≠ – ≠ i

2

˙⁄ = ⁄
5
g ≠ 1

fl
Ê̂ ≠ – ≠ —

6

˙d =

5
Ÿ(fi) + ’(fi) ≠ fi

6
≠ d(g + i) (2.31)

ṁ = m
5
gR ≠ g + iR ≠ i

6

˙µK = µKgR ≠ µK

ËŸ(fi)

‹(Ê)

µ1≠◊
K ≠ ”

È

and

µ̇R = µR

5
ŸR(fiR)µKR

≠ ”
6

˙µKR
= µKR

1
a ≠ µR

2
(2.32)

˙dR =

5
ŸR(fiR) + ’R(fiR) ≠ fiR

6
≠ dR(gR + iR)

Indeed, the variables in (2.31) do not affect the variables of (2.32), so that the reduced system
(2.32) can be solved separately. Moreover, the trajectories of (µR, µKR

, dR) arising as solutions
of (2.32) can be treated as time-dependent coefficients for the differential equations of (2.31).
Our contention, here, is to show the kind of complication that arises when doing a (small) step
on the bridge of the disciplines. Going further in the direction of considering the difference
between tonnes of matter and units of final good would ultimately lead us to revisit part of
the Cambridge controversy, presumably forcing us to go beyond the modeling short-cut of a
production function.

3.2 Long-term equilibrium analysis
Our aim in this section is to characterize long-run equilibria of (2.31) and (2.32). For that
purpose, and to keep things tractable, we assume that the time-dependent function Ï(t) is such
that limtæ+Œ Ï(t) © Ï, where Ï is a constant function, with value

Ï >
1

uR

,

which ensures that iR(t) > 0 as time grows to infinity. This amounts to imposing a lower-bound
on extracting costs.
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Furthermore, to guarantee that the employment rate satisfies 0 Æ ⁄(t) Æ 1 at all times, we
make the following standard assumption on the short-run Phillips function „

„Õ
(⁄) > 0 on (0, 1), „(0) Æ –, and lim⁄æ1≠ „(⁄) = +Œ.

Finally, to ensure the existence of a balanced path, we shall also need two minor restrictions.
First,

u >
iR

÷
+ 1, (2.33)

where iR is given by (2.18) at the asymptotic value, Ï. This condition is satisfied for a wide
range of economically plausible parameters12. Second,

Ÿ(1) + ’(1) > 1, (2.34)

which amounts to requiring that investment and dividends in the final good sector be sufficiently
high whenever its profit share, fi, peaks at 100%. Otherwise stated, as follows from (2.12), final
good firms will feel sufficiently confident to borrow money for fi close enough to 1.

Later on, we shall refer to these restrictions as standing assumptions.

Balanced paths

First, observe that whenever there is non-zero employment in the long-run, the equilibrium
condition on ⁄ in (2.28) implies g = –13. In other words, the non-extractive part of the economy
must grow at the pace of labor productivity, as in every Solow-type model.

Second, as soon as µKR
> 0 in the long-run, the equilibrium condition on this matter-to-

mining-capital ratio in (2.28) implies µR = a: the matter-to-reserve ratio must equal the pace
at which new discoveries are made to increase available reserves. Equation (2.29) then implies
that gR = 0. At an interior equilibrium, the mining sector must remain stationary: the flow of
extraction, M , is exactly equal to aR, the quantity of reserves newly discovered (see (2.2)), so
that R remains constant as well.

Third, the condition for a non-slavery steady state (Ê ”= 0) is

⁄ = „≠1
(– + i). (2.35)

Our standing assumptions on „ guarantee that a solution, ⁄, to (2.35) exists, provided i Ø 0

14.
Fourth, the long-run value of the resource inflation is iR, given by (2.18) at the asymptotic

value, Ï.
Suppose – > 0. At an interior steady state, since M remains constant while Y keeps grow-

ing in the long run, then, as long as p remains bounded away from 0, m converges exponentially
to zero at speed – + i ≠ iR. An obvious candidate for a balanced long-run path is therefore
m = 0 and (Ê, ⁄, d, µK) such that

12For instance, for u ≥ 1.3 and iR ≥ 2%, (2.33) imposes ÷ > 6 ◊ 10≠2.
13Since —(N(t)) æ 0+ as t æ Œ, see (2.13).
14As an illustration, suppose – ≥ 1%, Ê ≥ 0.75, u ≥ 1.35 (as is often observed), then uÊ ≠ 1 > 0.
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Ê = 1 ≠ fi ≠ rd,

i = ÷
1
uÊ ≠ 1

2
,

d =

Ÿ(fi) + ’(fi) ≠ fi

– + i
, (2.36)

The long-run value of µK needs to be clarified. At an interior equilibrium,

ˆY = ◊ ˆK + (1 ≠ ◊)

ˆM ≠ ‹̂(Ê) = ◊ ˆK,

so that

ˆK =

–

◊
.

If – > 0, this means that K is exponentially growing at infinity. Therefore, µK æ 0

+ as time
goes. Observe that, at such a steady state, (2.22) would lead to g = ≠◊” < 0, in contradiction
with – > 0.

Suppose now – = 0. For such a stationary path, ⁄ is still given by (2.35). The equilibrium
condition on ⁄ in (2.31) becomes trivial (g = 0), so that the remaining 4-tuple (Ê, d, m, µK) is
determined by the 3 equilibrium conditions on d, m and µK only. This indeterminacy leaves us
with one degree of freedom, so that the manifold of stationary steady states can be indexed by
Ê œ (0, 1). Next, fix some provisional m, and solve the equilibrium condition on d for fi:

Ÿ(fi) + ’(fi) ≠ fi = id

=

i

r

1
1 ≠ Ê ≠ (1 ≠ Ï)m ≠ fi

2
.

The continuous mapping f(fi) := Ÿ(fi)+’(fi)≠fi≠ i
r

1
1≠Ê≠(1≠Ï)m≠fi

2
verifies f(1) > 0

because of (2.34), and f(0) < 0, provided 1 ≠ Ê ≠ (1 ≠ Ï)m > 0. Therefore, under the latter
condition, there exists some fi œ (0, 1) such that f(fi) = 0. The long-run debt ratio readily
follows

d =

1

i

1
Ÿ(fi) + ’(fi) ≠ fi

2
.

The matter-to-output ratio, m, obtains from iR = i (equilibrium condition on m),

m =

1

u(1 ≠ Ï)

3
iR

÷
+ 1 ≠ uÊ

4
,

while µK can be found from the equilibrium condition on µK :

µK =

5
”‹(Ê)

Ÿ(fi)

6 1
1≠◊

.
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Finally, the above stated condition, 1 ≠ Ê ≠ (1 ≠ Ï)m > 0, holds for m = m thanks to
(2.33). Therefore, there is a one-dimensional manifold of stationary steady states, indexed by
Ê œ (0, 1), compatible in the long run with the constraints imposed by the relative scarcity of
matter.

The argument exposed in this section also hold for (2.28): no balanced path with positive
growth is compatible with our equilibrium equations. Indeed, the mining sector would nec-
essarily be stationary, as before, so that µK æ 0

+, which would contradict the ever growing
assumption of Y and K. Therefore, a balanced path can only occur for – = 0.

Debt-deflationary equilibria

In order to ensure the existence of alternative equilibria to the curve of stationary balanced
paths examined in the previous section, we assume an innocuous restriction on Ÿ(·), namely
that limfiæ≠Œ Ÿ(fi) =: Ÿ(≠Œ) exists in R.15

Making the usual change of variable in each sector, d æ q := 1/d and dR æ qR := 1/dR

leads to a modified pair of dynamical systems for which (Ê2, ⁄2, q2, m2, µK2) = (0, 0, 0, 0, 0)

and (µR2, µKR2, qR2 = (0, 0, 0) turn out to be solutions, as can be readily checked.
Since the previous section has proven that a (stationary) balanced growth path is compatible

with the material constraints faced by the mining sector, hence also by the world economy, this
crash equilibrium cannot be interpreted as being solely due to the scarcity of matter. It is rather,
as in the previous papers inspired from (Keen, 1995), a combination of this scarcity and an
overhang of private debt.

4 Past evolution of world demographic, macroeconomic and
geologic variables: dataset construction

4.1 World demographic and macroeconomic dataset
A large dataset synthesizing demographic, macroeconomic and geologic data was constructed
from different sources. The data span mostly from 1980 to 2017 (precise time spans are in-
dicated in Tab. 2.3 and 2.4) and comprise 37 countries, for whom long-span reliable data are
available16. Tab. 2.3 presents the variables composing the dataset, their units and their sources.
Economic variables are all expressed in 2011 real terms, using the 2011 US$-PPP benchmark,
as compiled by the Penn World Table 9.1 research group. A long-span country-specific database
for paid dividends is missing to have accurate estimates of this variable. Hence, the U.S. pay-
out ratio, calculated from the FED data and substantiated by the literature, was chosen as a
benchmark. The real long-term interest rate is a cross-country median.

These 37 countries account for about 83 and 78 % of the 1990-2017 average world GDP and
copper production, respectively, but only 66% of the world population. This issue is even more
significant in the long run since their population is expected to decline from 2050 onward while

15Assuming that investment becomes negative as fi æ ≠Œ amounts to saying that the non-extractive sector
will divest in the hope of recovering some cash whenever its losses become too high.

16Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China, Czech Republic, Denmark, Finland,
France, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Italy, Japan, the Republic of Korea,
Luxembourg, Mexico, Netherlands, Norway, Poland, Portugal, the Russian Federation, Singapore, South Africa,
Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
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Figure 2.2: Evolution of the working age (purple) and employed population (red), for the 37
countries (dotted lines) and the world (plain lines).

total population should stabilize (Fig. 2.2) by the end of the century (medium fertility variant
UN scenario). Variables were therefore scaled in order to fill the gap of missing data while
keeping orders of magnitude in a correct range. Tab. 2.4 presents the variables composing the
global scaled dataset, their units and their sources. The aggregate employment rate of the 37
countries, calculated from PWT and UN databases, was used to derive the world labor force17.
All monetary flows were scaled by the 1990-2017 average ratio of the PWT world GDP to the
PWT 37 countries GDP. This ratio was roughly stable at about 1.21. The world capital was
deduced from the fundamental accumulation equation: K1980 is scaled by the 1.21 ratio, then
capital accumulates through scaled investment and the world average depreciation rate. Private
debt was calibrated so that the private-debt-to-output ratio be equal to that of the 37 countries.
Geologic data were extracted from the USGS and BGS databases (Fig. 2.3).

17A more relevant measure of unemployment would be the number of actual hours of work. It should take into
account the informal sector — a challenge for every statistics related to the labour market in the globalized South.
This refinement of the measure used here is left for further research.
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Figure 2.3: Evolution of the world copper reserves and extraction
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4.2 World copper dataset
A financial database for the copper sector was constructed courtesy of the long-span data of
production, price and costs, as well as the aggregate depreciation rate and the U.S. payout ratio
(Tab. 2.5). All data resulting from this process were substantiated with the partial data of
the PwC financial reports on the mining sector. The stock-flow consistent model described in
section 1 was used to link the variables. Note that data are in real terms, hence all corresponding
model variables must be divided by the consumption price p. In nominal terms, the revenues
are given by pRM , derived from the data of copper production and unit price. Production
costs are given by the unit cost C1, representing all costs incurred at mine level, from mining
through to recoverable copper delivered to market, minus net by-product credits. Depreciation
costs are recovered from the unit operating cost C2, which is the sum of C1 and depreciation
and amortization. Financial and other costs are deduced from the unit total cost C3, which is
the operating cost C2 plus corporate overheads, royalties, other indirect expenses and financial
interests (Fig. 2.4). Net profits are therefore deduced from revenues and total costs. Using the
U.S. payout ratio, the level of distributed dividends can be estimated. Remaining profits are
the difference between net profits and dividends (Fig. 2.5). The capital of the copper sector is
estimated from the depreciation costs and the aggregate depreciation rate. Note that the average
capital-to-revenue ratio is 2.88, which is quite consistent with the usual capital-to-output ratio
discussed in the literature. Moreover, the share of copper capital in the total world capital
is 0.07% on average, which is quite consistent with the 0.14% of copper production value
in the global GDP of our 37 countries in 2011. Investment is derived from the fundamental
accumulation equation. Changes in debt are deduced from the difference between investment
and the sum of remaining profits and provisions. The level of debt is obtained from the debt
dynamics and by estimating D1980 with the financial cost in 1980 divided by r=3%. The average
copper-to-world debt of 0.22 % is an acceptable order of magnitude.

4.3 World non-copper dataset
A financial database for the non-copper sector was constructed by using the scaled total pro-
ductive data and the financial variables from the copper sector (Tab. 2.6). The time evolution of
investments and profits is displayed on Fig. 2.6. Again, we relied on our stock-flow consistent
model to link the variables to one another. Note that like before, the data are in real terms, hence
all corresponding model variables must be divided by the consumption price p. The stock-flow
consistency is validated: the two ways to calculate the change in debt are of the same order of
magnitude.
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Figure 2.4: Evolution of copper unit prices and costs

Figure 2.5: Evolution of the revenues and spendings of the copper sector
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5 Estimation of the K-L-M production function

5.1 The CES production function with three production factors
The production technology in the final good sector through a CES production function with
three factors: mineral resources, M (the quantity of extracted resources, reduced to copper in
the present model, in tons), labor, L (the number of persons employed in this first version, or
the number of working hours) and the capital stock, K. The latter can be interpreted as a stock
of machines or the value of firms’ assets. This functional form was chosen in order to show all
substitution possibilities between inputs, following the Solovian line of thought.

Klump et al. (Klump et al., 2007) provide precious information on the sucCESs (sic) of
this function in neoclassical growth theory. Humphrey and Moroney (Humphrey and Moroney,
1975) estimate the function using the cost share of inputs and discuss capital, labor and natural
resources substitution. However, the cost share theorem is subject to strong criticisms (Frondel
and Schmidt, 2002; Felipe and McCombie, 2005; Kümmel et al., 2008; Giraud and Kahraman,
2014; Pottier, 2014), the estimation of parameters using this method could be “statistical arte-
facts" and cannot therefore be interpreted as technical constraints to production (Felipe and
McCombie, 2001). In the following, we propose an estimation of these parameters by directly
using data of input physical quantity.

The general form of an n-input CES production function is:

Y = Ae–t
3 nÿ

i=1
◊iX

≠fl
i

4≠1/fl

where Xi correspond to the inputs of the production function. Technological change is captured
by Ae–t, the time-dependent global factor productivity. ◊i œ [0, 1] correspond to the distribution
parameters which govern how much the input factor i contributes to output, and fl > ≠1

determines the elasticity of substitution.

5.2 Estimation procedure
The task we perform in this section is to estimate the parameters of the CES production func-
tion without relying on any assumption on the cost share of each input. Being not linear in its
parameters, the CES cannot be linearised analytically, which is why many papers “guesstimate"
its parameters or, at most, approximate them using the “Kmenta approximation" technique. We
choose to use a direct estimation approach proposed by the R package micEconCES (Hen-
ningsen and Henningsen, 2011).micEconCES proposes a non-linear least-square estimation
using different optimization algorithms. The Levenberg-Marquardt algorithm combines two
non-linear optimization algorithms in order to increase the probability of converence of the
approximation process.This method outperforms the others in estimating the distribution pa-
rameters, but it does as poorly in estimating the elasticity of substitution. By contrast, the
so-called PORT-routine is a gradient-based optimization algorithm that allows for constraints
on the parameter space. This package also allows for the estimation of Hicks-neutral techno-
logical change. Unfortunately, the current literature on factor-augmenting technological change
estimation did not reach a state-of-the-art approach, which prevents us from having a factor-
specific analysis of productivity. This task is left for further developments.
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Figure 2.6: Evolution of the investments and profits of the non-mining sector
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Figure 2.7: Plot of the data used for the estimation; Y is the dimensionied world output at factor
cost, K is the scaled world non-copper capital, L is the number of employed people and M is
the copper production.

Data were selected from the world dataset described in the previous section (Fig. 2.7). The
non-mining capital stock, K, was matched with non-copper capital at the world level, whereas
labor L is represented by the number of persons employed. Different options were tested for the
less common input M . In the theoretical model of section 1 and the analysis of its dynamics,
we chose to match M with the flow of extracted mineral resource (copper in our case). But
M could also stand for the cumulative in-use amount of copper in goods, or the production
weighted by the relative price of copper. Both output and inputs data were normalized by their
starting-year value in order to avoid unit biases. Convergence was achieved in all runs.

As showed by Sato (Sato, 1967), multiple-input CES production function imposes strict
conditions for the values of elasticities of substitution. We therefore chose a two-level nested
CES, and different nesting structures were tested. The output of the final good sector is modeled
by the following nested constant-returns-to-scale CES function with Hicks-neutral technologi-
cal change:

Y = Ae–t
Ë
Â

1
◊X≠flú

1 + (1 ≠ ◊)X≠flú

2
2fl/flú

+ (1 ≠ Â)X≠fl
3

È≠1/fl
(2.37)

where X1, X2 and X3 stand for K, L or M . Â and ◊ in [0, 1] are distribution parameters,
and fl and flú in [≠1, +Œ) determine the (constant) elasticities of substitution: ‡ú

=

1
1+flú is

the elasticity of substitution between X1 and X2, and ‡ =

1
1+fl

the elasticity of substitution
between the aggregate (X1, X2) and X3.

5.3 Results
Our findings using the PORT routine are presented in Fig.2.8 and Tab.2.7. All nesting struc-
tures present the same residual error, but the estimation is more significant for the (KL) + M
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Figure 2.8: Y observed and estimated for the three-input CES with PORT routine

structure. They all tend to exclude M from the estimation18.
In an attempt to prevent the optimization algorithm from systematically excluding M , the

estimation was also conducted with the Levenberg-Marquardt routine. The results are presented
in Tab.2.8. The structures (KL) + M and (KM) + L should be excluded from the analysis
since the substitution parameters are out of their economic boundaries (fl < ≠1 and flú < ≠1,
respectively). However, the (KM) + L structure exhibits the smallest residual standard error
and was therefore chosen to test different substitution possibilities between K and M , through
the parameter flú: flú

= ≠1 for the linear case, flú
= 0 for the Cobb-Douglas case and flú

= 100

(the upper-bound of the algorithm) to approximate the complementary case. Results are shown
in Tab. 2.9. The Cobb-Douglas and complementary configurations should be excluded from the
analysis since, again, the distribution parameters are out of their economic boundaries (◊ > 1

and Â < 0, respectively).
These results therefore lead us to two plausible structures for the three-input CES19: the free

(L, M) + K nesting (Tab.2.8) or the (KM) + L nesting with flú
= ≠1 (Tab. 2.9). The first

choice corresponds to the following function 20:

Y = Ane–t
Ë
Â

1
◊L≠flú

+ (1 ≠ ◊)M≠flú2fl/flú

+ (1 ≠ Â)K≠fl
È≠1/fl

(2.38)

The estimation of this structure shows quite high coefficients (flú = 14.244 and fl = 1.1489),
which implies a very low substitutability between L and M , and low substitutability between
the aggregate (L, M) and K. It gives a higher weight to L (◊ = 0.5729) compared to M and to
capital compared to the aggregate (1 ≠ Â = 0.5366). The total factor productivity is very low
compared to standard estimates (– = 0.66%).

The second option corresponds to the following production function, which is close to the
18That is, the distribution parameter associated to M is estimated to be equal to zero.
19All possible structures have not been explored however.
20An is a scaling coefficient since data were normalized.
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Table 2.7: CES estimation: three inputs - PORT
Run Residual Std Error Parameters Estimate Std Error P value
PORT 0.02599 A 0.9812 0.01194 ***
X1 = K – 0.008585 0.004214 *
X2 = L ◊ 0.5390 0.1376 ***
X3 = M Â 1.0000 0.1222 ***

flú 1.3172 0.3853 ***
fl 0.2312 5.824 1012

PORT 0.02599 A 0.9812 0.01175 ***
X1 = K – 0.008585 0.004280 *
X2 = M ◊ 1.0000 0.2624 ***
X3 = L Â 0.5390 0.1944 **

flú 0.2299 1.428 1013

fl 1.3172 0.4789 **
PORT 0.02599 A 0.9812 0.01126 ***
X1 = L – 0.008585 0.004013 *
X2 = M ◊ 1.0000 0.1727 ***
X3 = K Â 0.4610 0.1097 ***

flú 0.3448 1.582 1013

fl 1.3172 0.4403 **

Table 2.8: CES estimation: three inputs - Levenberg-Marquardt (LM)
Run Residual Std Error Parameters Estimate Std Error P value
LM 0.02448 A 0.9941 0.01543 ***
X1 = K – 0.001153 0.002523
X2 = L ◊ 0.7921 0.1063 ***
X3 = M Â 0.5025 0.2211 *

flú 1.9783 0.5820 ***
fl -20.464 21.41

LM 0.02301 A 1.0032 0.01325 ***
X1 = K – 0.003523 0.004259
X2 = M ◊ 0.3315 0.2650
X3 = L Â 0.7894 0.1831 ***

flú -8.740 10.434
fl 2.5139 1.097 *

LM 0.02570 A 0.9838 0.01201 ***
X1 = L – 0.006631 0.004265
X2 = M ◊ 0.5729 0.6235
X3 = K Â 0.4634 0.08105 ***

flú 14.244 42.202
fl 1.1489 0.3979 **
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Table 2.9: CES estimation: three inputs - Levenberg-Marquardt (LM) - Linear, Cobb-Douglas,
Complementary

Run Residual Std Error Parameters Estimate Std Error P value
LM 0.02582 A 0.9832 0.01299 ***
X1 = K – 0.006456 0.004265
X2 = M ◊ 0.8482 0.2724 **
X3 = L Â 0.6484 0.1877 ***
flú=-1 fl 1.6465 0.6591 *
LM 0.02596 A 0.9808 0.01249 ***
X1 = K – 0.009477 0.004317 *
X2 = M ◊ 1.7244 0.4155 **
X3 = L Â 0.4917 0.2021 *
flú=0 fl 1.2069 0.6012 *
LM 0.03337 A 0.9810 0.02090 ***
X1 = K – 0.03363 0.002333 ***
X2 = M ◊ 0.9987 0.8060 ***
X3 = L Â -0.5161 0.1627 **
flú=100 fl 0.1082 0.4845

one we adopted for our theoretical analysis in section 3:

Y = Ane–t
Ë
Â

1
◊K + (1 ≠ ◊)M

2≠fl
+ (1 ≠ Â)L≠fl

È≠1/fl
(2.39)

The relationship between K and M in this structure is linear: they are perfect substitutes —
which makes perfect sense economically since, actually, matter enters the production of capital.
The estimation exhibits a coefficient fl > 1, suggesting relatively low substitutability between
the aggregate (K, M) and L. It gives a very important weight to K compared to M (◊ = 0.8482)
and an important weight to the aggregate KM compared to the L (Â = 0.6484). The total factor
productivity is, as in the previous structure, very low (– = 0.65%).

These results should however be taken with due care. First, the capital series is built accord-
ing to the standard perpetual inventory method. The monetary aggregation implicit in this way
of proceeding does not answer the crucial questions raised by the famous Cambridge Capital
Controversy on the ambivalence of capital as a production capacity(Robinson, 1953; Cohen
and Harcourt, 2003). In particular, a simple unit homogeneity analysis results in a crucial in-
consistency in the combination of inputs of totally different natures such as infrastructure, real
estate, production machines, financial assets, land, etc. This unit inconsistency highlights the
lack of a proper modelling of the transformation process occurring from inputs to output. In
addition, the relevance of the substitution interpretation is disputable. One can imagine substi-
tuting labor services with machinery, but not materials with labor, as suggested by our results.
Last but most important, one crucial input is missing from our interpretation of M as copper,
namely energy, without which no transformation is possible (Stern, 2010). Setting a proper
analytical framework where these issues could be dealt with obviously goes beyond the scope
of the present paper.
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Discussion and Conclusion
We constructed a stock-flow consistent macro model where the scarcity of natural resources is
made explicit through the simple prey-predator dynamics introduced in the previous chapter.
As a proof of concept, we analytically examined the long-run stead states of our vector field
and identified conditions under which a stationary balanced path can be reached.

First, we showed that our model enables to reach an impossibility result: no long-run bal-
anced growth path can emerge with a positive growth rate of GDP. The strength of our finding
is that it does not depend on some ad hoc non-substitutability restriction: capital, labour and
natural resources can be made arbitrarily substitutable without restoring existence of an ever
growing steady state. In other words, as soon as due account is taken of the dependence of our
economies on natural resources, the unique desirable and meaningful long-run steady state is
stationary. We use the term stationary state to describe zero growth in GDP. A steady state is
a zero of the vector field, and refers to a long-run equilibrium of our macro-dynamics. Thus,
consistently with most of the literature, a “steady state growth” refers to a long-run equilibrium
with positive GDP growth (Solow, 1974). This terminology departs from (Daly, 1991) where
the word “steady state” is used in place of what we here call a stationary steady state.

The second finding of this chapter is that this steady state is not an isolated zero of our vector
field. Rather, indeterminacy is the rule: We show that there exists a continuum of stationary
states with a finite level of debt and strictly positive employment rate, which may be indexed
by the wage share in GDP.

Moreover, our dynamics admits other equilibria, distinct from this stationary attractor,
among which a debt-deflationary equilibrium with zero production, employment and unbounded
private debt. This feature opens the door to a renewed understanding of public policy based on
two dimensions: first, how to drive the economy into the basin of attraction of the attractor of
desirable equilibria? Second, once this basin has been reached, which point should we choose
among the continuum of stationary states? The latter question refers to the old debate on the
distribution of wealth between labor and capital: our indeterminacy result thus suggests that
stationarity also opens the door for a discussion in terms of social equity. We shall not develop
this public policy aspect in this paper but it should be kept in mind.

We further constructed a proxy of the world economy by aggregating 37 countries, and
estimated the parameters of the three-input CES production function. This empirical estimation
provides two possible functional forms with different substitution elasticities between capital,
labor and copper: either an (LM) + K structure with a low substitutability between L and M ,
and (LM) and K, or an (KM) + L structure with perfect substitutability between K and M ,
and relatively low between (KL) and L. We note however that the best fit excludes M from
the estimation.

Our main conclusion echoes the strong plea made in favour of a stationary state by Herman
E. Daly (Daly, 1991) and others. It therefore invites to address carefully the ‘post-growth
challenge’ it poses.
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Appendix: Estimation of the CES production function

Two-input CES
We tested a two-input CES with constant returns to scale, in the form:

Y = Ae–t
Ë
◊X≠fl

1 + (1 ≠ ◊)X≠fl
2

È≠1/fl
(2.40)

where X1 and X2 correspond to either K, L or M . ◊ is the distribution parameter and fl de-
termines the (constant) elasticity of substitution. Results are presented in Tab.2.10 and Fig.2.9.
The best fit with the best significance is obtained for K and L. The results of the estimation with
the series of cumulative copper production and copper revenues are presented in Tab.2.11 and
2.12. The best fit with the best significance obtains when M stands for cumulative production.

Three-input CES
The results using the PORT routine are presented in Tab.2.13 for free or imposed flú

= 0 (nested
Cobb-Douglas). The results of the estimation with the series of cumulative copper production
and copper revenues are presented in Tab.2.14.
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Table 2.10: CES estimation: two inputs
Run Residual Std Error Parameters Estimate Std Error P value
PORT 0.02599 A 0.9812 0.01114 ***
X1 = K, X2 = L – 0.008585 0.002404 ***

◊ 0.5390 0.08446 ***
fl 1.3172 0.3294 ***

PORT 0.04950 A 1.0147 0.02069 ***
X1 = K, X2 = M – -0.005961 0.002098 **

◊ 0.7532 0.1100 ***
fl 3.3712 1.5878 *

PORT 0.04276 A 0.9603 0.01218 ***
X1 = L, X2 = M – 0.02523 0.002321 ***

◊ 1.0000 0.1477 ***
fl 0.2818 1.021 1013

Table 2.11: CES estimation: two inputs (KM ) and different series of M
Run Residual Std Error Parameters Estimate Std Error P value
PORT 0.04950 A 1.0147 0.02069 ***
X1 = K, X2 = M – -0.005961 0.002098 **
Production ◊ 0.7532 0.1100 ***

fl 3.3712 1.5878 *
PORT 0.03419 A 0.94643 0.02741 ***
X1 = K, X2 = M – -0.02933 0.0008233 ***
Cumulative production ◊ 0.9555 0.02089 ***

fl -1.0000 0.2843 ***
PORT 0.09174 A 1.1060 0.03208 ***
X1 = K, X2 = M – -0.02102 0.001431 ***
Revenues ◊ 1.0000 0.03531 ***

fl -0.01339 2.673 1010

Table 2.12: CES estimation: two inputs (LM ) and different series of M
Run Residual Std Error Parameters Estimate Std Error P value
PORT 0.04276 A 0.9603 0.01218 ***
X1 = L, X2 = M – 0.02523 0.002321 ***
Production ◊ 1.0000 0.1477 ***

fl 0.2818 1.021 1013

PORT 0.04263 A 0.9602 0.03314 ***
X1 = L, X2 = M – 0.02522 0.001281 ***
Cumulative production ◊ 1.0000 0.03034 ***

fl 0.38991699 1.903 1013

PORT 0.02383 A 0.9863 0.009168 ***
X1 = L, X2 = M – 0.02180 0.0006321 ***
Revenues ◊ 0.9572 0.01353 ***

fl -1.0000 0.6082
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Figure 2.9: Y observed and estimated for the two-input CES

Table 2.13: CES estimation: three inputs - PORT - nested Cobb-Douglas
Run Residual Std Error Parameters Estimate Std Error P value
PORT 0.03203 A 0.9976 0.01364 ***
X1 = K – 0.01385 0.005044 **
X2 = L ◊ 0.2428 0.1480
X3 = M Â 1.0000 0.1288 ***
flú

= 0 fl 0.2245 4.901 1012

PORT 0.02599 A 0.9812 NA
X1 = K – 0.008585 NA
X2 = M ◊ 1.0000 NA
X3 = L Â 0.5390 NA
flú

= 0 fl 1.3172 NA
PORT 0.02599 A 0.9812 NA
X1 = L – 0.008585 NA
X2 = M ◊ 1.0000 NA
X3 = K Â 0.4610 NA
flú

= 0 fl 1.3172 NA
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Table 2.14: CES estimation: three inputs - different M series
Run Residual Std Error Parameters Estimate Std Error P value
PORT 0.02599 A 0.9812 0.01175 ***
X1 = K – 0.008585 0.004280 *
X2 = M ◊ 1.0000 0.2624 ***
X3 = L Â 0.5390 0.1944 **
Production flú 0.2299 1.428 1013

fl 1.3172 0.4789 **
PORT 0.02620 A 0.9811 0.02131 ***
X1 = K – 0.00874 0.004335 *
X2 = M ◊ 1.0000 0.03950 ***
X3 = L Â 0.5356 0.09219 ***
Cumulative production flú -0.1398 3.040 1012

fl 1.325 0.5598 *
PORT 0.01898 A 1.0068 0.008236 ***
X1 = K – 0.01790 0.001383 ***
X2 = M ◊ 0.5718 0.08925 ***
X3 = L Â 0.09275 0.03402 **
Revenues flú -0.3331 1.6606

fl -1.0000 0.5247
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CHAPTER 3

A Dynamic Cooperative Game
for International and Intergenerational Allocation

with Exhaustible Natural Resources

Mais le vrai voyage est intérieur. La musique se nourrit
à cette source intime, au creux du cœur, sous l’étoile, car
il n’y a pas d’ailleurs meilleur, ni d’âge d’or dans le
passé. Chaque jour, sous un ciel de cuivre, on reprend la
route, creusant un peu plus pour trouver le pain, le sel et
l’or du chant profond.

— Thierry “Titi” Robin, Alezane

The present chapter explores the implications of natural resource scarcity on global coop-
eration and trade.

The interaction between trade and materially sustainable growth (Dupuy, 2014) was studied
by Asheim (Asheim, 1986) who looked at the effects of opening economies on the Hartwick
rule. Other models focus on two-region trade, the industrialized North versus the resource
exporter South (Chichilnisky, 1993). A rich literature studies the so-called “resource curse"
(Gaitan and Roe, 2012) or the formation of cartels (Kemp and Van Long, 1984) through the
traditional Heckscher and Ohlin model (Heckscher and Ohlin, 1991). A strategic game theory
approach was also used to explore finite resources issues (Van Long, 2011), and the relationship
with trade was also studied with two countries (Kagan et al., 2015; Tamasiga and Bondarev,
2014). However, and despite the call of some game theorists to develop cooperative game
theory (Samuelson, 2016), the literature on material sustainability neglected to treat the issue
through cooperative lenses. Trade can indeed be analyzed through three concepts: “pure com-
petition", “coalitional power" and “fair division". Shapley and Shubik (Shapley and Shubik,
1969) provide a static market game for the three varieties of solution and show that, under
certain assumptions, the outcomes converge. In a distinct stream of literature of cooperative
games, the question of renewable and common-pool resources was studied (Funaki and Yam-
ato, 1999), mostly for fishery or river sharing (Ambec and Sprumont, 2002; Béal et al., 2013)
problems. However, these models do not take into account the dynamic aspects of the game.
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The goal of this chapter is to provide a dynamic cooperative framework to trade when
traded natural resources are limited, and therefore raise the issue of intergenerational equity.
The literature on dynamic cooperative game is quite limited. Recent papers tackle the issue of
dynamic core concepts (Predtetchinski et al., 2004; Kranich et al., 2005; Lehrer and Scarsini,
2013), but the first studies date back to the 70’s with the introduction of core concepts for
production economies (Boehm, 1974; Becker, 1982). In particular, the concept of recursive
core (Becker and Chakrabarti, 1995) is defined as a set of allocations for which no coalition
can improve upon its consumption stream at any time given its accumulation of assets up to
that period. Some dynamic cooperative approaches were used to tackle environment issues,
especially fisheries (Munro, 1979) and pollution (Jørgensen and Zaccour, 2001; Hoofe, 2019).
A model most closely related to our motivation is presented by d’Albis and Ambec (d’Albis
and Ambec, 2010), and studies fair allocations of overlapping generations depleting a natural
resource over an infinite future. But the authors do not include any international aspects in the
model.

Though, one key feature of natural resources is their geologic unequal distribution among
countries. The idea of our study is to take advantage of the disparities between a finite number
of countries to have a fresh view on the nexus between international trade and intergenerational
equity. We model the geographical heterogeneity of natural endowments that results from
geological processes, as well as the geographical heterogeneity of capital and technological
endowments that results from historical processes. Trade is viewed as a market cooperative TU
game à la Shapley-Shubik (Shapley and Shubik, 1969) where non-renewable natural resources
inputs are exchanged in such a way as to maximize the total value to be shared among the
coalition.

The question we intend to tackle is whether an international long-term cooperation strategy,
where natural resources and productive capacity are shared in a common pool, can be put in
place. For that purpose, we settle a cooperative game where countries can form coalitions in
order to optimize their discounted consumption stream in the long-run, within the limits of
their stock of natural resources. The game is cast into a traditional Ramsey-type model of
intergenerational equity, where the Bellman’s dynamic programming framework is used. An
international long-term policy is translated into:

• An action strategy taken by a coalition S. It consists in a quota of natural resources
extraction, a commercial quota and an investment plan decided for each country at each
time t. An action strategy is optimal for S if the commercial quota optimizes the current
collective production of S, and if the extraction quota and the investment plan ensure the
maximization of long-term consumption.

• A distribution policy of collectively produced consumption goods. Such a policy is said
to be efficient and coalitionally rational if, from some date t onward, a coalition cannot
block an international agreement by undertaking a policy increasing its own long-term
consumption.

In other words, the coalition decides its extraction and investment plan, and deduces the
amounts of resources it wishes to trade. It then distributes consumption goods to its members.
Of course, members could break an alliance according to their interest at any point in time.
In this work, we look for the most efficient and stable coalition. For this purpose, we use the
concept of recursive core.
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Traditionally, the core is the set of allocations which cannot be improved upon by any
coalition of agents. The core allocations defined in this way, however, do not deal with the
dynamic issues relevant to the intergenerational sharing of benefits from resource extraction
and economic growth. In such a dynamic framework, the twin issues of coalitional stability
and time consistency have to be handled at once. First, it is a question of designing a policy
that no coalition of the present generation has an incentive to refuse. Second it is a question of
ensuring that at no time the policy initiated then departs from the one planned originally. We
therefore look for the streams of consumption allocated to agents which are coalitionaly stable
on one hand, and furthermore satisfy the time consistency property. That is, the core allocations
must be such that at no moment will coalitions of agents ever want to block or break a contract
in the core. The core concept that satisfies this property is called the recursive core.

The first section of this chapter states the mathematical bricks used to build the model.
Then, two versions are presented. The Bronze Age model is a simplified version where extrac-
tion and trade are the only considered actions. This model is presented in the second section,
as a pedagogical tool for the reader to have a easier understanding of the reasoning. In section
3, the Capital Age model, which is the heart of the chapter, is presented. In this version, the
dynamics of capital accumulation is set through an investment strategy. All proofs are based
on the same reasoning as section 2, and are available in the appendix. The last section is a
discussion on the model, its possible refinements and the research avenue it opens.

1 Preliminaries

1.1 Static Cooperative Games
Let N denote a fixed finite nonempty set with n members, who will be called agents or players.
Coalitions of players are nonempty subsets of N .

A transferable utility (TU) game on N is a pair (N, v) where v is a mapping v : 2

N æ R
satisfying v(ÿ) = 0. We denote by G(N) the set of all games over N . For any coalition S, v(S)

represents the worth of S, i.e., what coalition S could earn regardless of other players.
A payoff vector is a vector x œ RN that assigns to agent i the payoff xi. A payoff vector is

efficient with respect to (N, v) if
q

iœN xi = v(N); it is coalitionally rational if
q

iœS xi Ø v(S)

for every possible coalition S.
The core of (N, v), denoted by C(N, v), is the set, possibly empty, of efficient and coali-

tionally rational payoff vectors:

C(N, v) =

I

x œ RN
: ’S ™ N,

ÿ

iœS

xi Ø v(S) and
ÿ

iœN

xi = v(N)

J

.

The interpretation of the core is that no group of agents has an incentive to split from the
grand coalition N and form a smaller coalition S since they collectively receive at least as much
as what they can obtain for themselves as a coalition.

The so-called Bondareva-Shapley theorem (Bondareva, 1963; Shapley, 1967) provides a
sufficient and necessary condition under which the core of a TU-game is nonempty. First, we
introduce the concept of balanced maps. A balanced map ⁄ : 2

N ≠æ [0, 1] is such that:

⁄(ÿ) = 0, and ’i œ N,
ÿ

S–i

⁄(S) = 1.
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Denote by B(N) the set of balanced maps over N .

Proposition 1. (Bondareva-Shapley Theorem)
For each TU-game (N, v), C(N, v) ”= ÿ if and only if for each balanced map ⁄ œ B(N), the
following inequality holds: ÿ

S™N

⁄(S)v(S) Æ v(N). (3.1)

The following proposition is a direct consequence of Corollary 1 in (Gonzalez and Gra-
bisch, 2015).

Proposition 2. If, for each balanced map ⁄ œ B(N) such that ⁄(N) ”= 1 the following strict
inequality holds: ÿ

S™N

⁄(S)v(S) < v(N),

then C(N, v) is not reduced to a singleton.

1.2 Dynamic Set-Up
Definition 1. (Discounted dynamic programming problem: the Bellman framework) A station-
ary discounted dynamic programming problem is specified by a tuple {S, A, �, f, r, ”}, where
for some n, S ™ Rn is the state space with generic element s ; for some k, A ™ Rk is the
action space with generic element a ; � : S ‘æ 2

A is the feasible action correspondence ;
f : S ◊ A ‘æ S is the transition function ; r : S ◊ A ‘æ R is the reward function ; ” œ [0, 1)

is the discount factor. The value function V of this dynamic programming problem takes the
following form:

V (s0) = max
(at)tœN

ÿ

tœN
”tr(st, at)

subject to
at œ �(st) t œ N
st+1 = f(st, at)

The following proposition is a well-established theorem of existence (see for instance The-
orem 12.19 in Sundaram (1996, p.298)).

Proposition 3. (Existence of an optimal path) Suppose that {S, A, �, f, r, ”} satisfies the fol-
lowing conditions:

(i) r : S ◊ A ‘æ R is continuous and bounded on S ◊ A,

(ii) f : S ◊ A ‘æ S is continuous on S ◊ A,

(iii) � : S ‘æ 2

A is a continuous compact-valued correspondence.

Then, there exists an optimal path (aú
t )tœN such that V (s0) =

q
tœN ”tr(st, aú

t ).

Definition 2. (The recursive core) Let (N, vt) be a TU game. Suppose that for each t œ N,
vt(N) = r(sú

t (N), aú
t (N)) where (aú

t (N))tœN is an optimal solution taken by N , and (sú
t (N))tœN

82



the associated state. A distribution policy, fi, is a mapping which associates with each initial
state I a payoff stream (fii,t(I))iœN,tœN such that ’t œ N:

ÿ

iœN

fii,t(I) = vt(N)

A policy fi is dominated by S at date T if there exists an initial state I such that:

+Œÿ

t=0
”t

ÿ

iœS

fii,t+T (I) < V (sú
S,T (N))(S),

where for each t œ N, sú
S,t(N) is the projection (sú

i,t(N))iœS and, for each state s, V (s)(S) is
the value function of the dynamic programming problem for coalition S.

The recursive core C(I) is the set of undominated policies when the initial state is I.

1.3 Maximum Under Convexity
We state the following version of Berge’s Maximum Theorem under Convexity (Sundaram,
1996, p.237).

Proposition 4. (Maximum Theorem under Convexity) For some k and l, if f is a continuous
and strictly concave function on S ◊ � ( Rk ◊ Rl and D is a compact-valued continuous
correspondence on � with a convex graph then f ú

(◊) = max{f(x, ◊), x œ D(◊)} is strictly
concave and Dú

(◊) = argmax

xœD(◊)
f(x, ◊) is a continuous function1.

2 The Bronze Age Model: Intergenerational Market Game
of Wealth Creation from Traded Mineral Resources

2.1 Game Set-Up
Let N be a fixed and finite non-empty set of countries, who are the game players. Countries
have the possibility to form a coalition which can be viewed as a free-trade area. Each country
i œ N has a natural resource2 that can be exploited by successive generations indexed by their
birth date t œ N. We denote by �i,t the stock of resources available to the country i œ N
at generation t œ N. The cost of extraction ci(ei,t, �i,t) of i œ N , expressed in consumption
units, is represented through a continuous convex function depending both on the quantity �i,t

available to the country i and the quantity ei,t œ [0, �i,t] extracted at date t. The dynamics of
i’s resource stock is given by the following law of motion:

�i,t+1 = �i,t ≠ ei,t

Each generation t and each country i uses the resource as an input to produce consumption
units through a production function fi. We assume that fi is continuous, strictly increasing

1In particular, Dú(◊) is single-valued everywhere.
2Note that this model could be extended to a finite number of resources
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and strictly concave with respect to the quantity of resource used. Furthermore, we assume
that resources are freely tradable with consumption units within all nonempty coalition S ™ N
with no transaction costs. After the commercial exchange, each country i has a quantity zi,t of
resource input.

Let �(S) = (�i)iœS (or simply � if there is no danger of confusion) be the vector of natural
resource stocks. The state space S(S) is defined by:

S(S) := {�(S) œ [0, ¯

�]

S| ÿ

iœS

�i < ¯

�},

where ¯

� is the total amount of resources on Earth. Let e(S) = (ei)iœS (or simply e if there is
no danger of confusion) be the vector of extraction. The action space A(S) is defined by:

A(S) := {e(S) | e(S) œ [0, ¯

�]

S},

We define the set of couples (�, e) describing the extractive sector as:

O(S) := S(S) ◊ A(S).

The set of feasible vectors of extraction e(S) for a coalition S with a stock described by
�(S) is

E�
(S) := {e(S) œ (R+)

S, ei Æ �i}.

The set of available resource input after the exchange z(S) = (zi)iœS (or simply z if there
is no danger of confusion) is

Ze
(S) := {z(S) œ (R+)

S,
ÿ

iœS

zi =

ÿ

iœS

ei}.

It follows that the output - expressed in consumption units - of the countries belonging to S
when the stock is �(S) and the extraction is e œ E�

(S) shall not be more than:

v�,e
(S) = max{ÿ

iœS

(fi(zi) ≠ ci(ei, �i)), (zi)iœS œ Ze
(S)}.

Let ” œ (0, 1) represent the discount factor. The intergenerational worth V �0
(S) of S is

defined as the value of the following dynamic programming problem:

maximize
(et)tœN

ÿ

tœN
”tv�t,et

(S)

subject to
�i,t+1 = �i,t ≠ ei,t, i œ S t œ N
ei,t Æ �i,t, i œ S, t œ N.

(3.2)

2.2 Optimal Action Strategy
We first show that, given a flow of resource extracted by each country, there exists a unique
optimal way to trade that can be interpreted as an optimal commercial quota.
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Proposition 5. The function (�, e) ‘æ v(�,e)
(S) is continuous and strictly concave over O(S).

Furthermore, for each (�, e) œ O(S), there exists a unique zú œ Ze
(S) – continuously varying

with (�, e) – such that
v�,e

(S) =

ÿ

iœS

(fi(z
ú
i ) ≠ ci(ei, �i)).

Proof. Let g : O(S) ◊ RS
+ æ R+ be the function defined as

g((�, e), z) =

ÿ

iœS

(fi(zi) ≠ ci(ei, �i)),

and C : O(S) ◆ R+ be the correspondence defined as

C(�, e) = Ze
(S).

By continuity and strict concavity of fi and ≠ci for each i œ S, function g is continuous
and strictly concave on O(S)◊RS

+. Clearly, C is a compact-valued continuous correspondence
on O(S) and has a convex graph. We have the needed conditions to apply Proposition 4. We
conclude that v�,e

(S) = max{g((�, e), z), z œ C(�, e)} is a continuous and strictly concave
function on O(S) and Cú

(�, e) = argmax { g((�, e), z), z œ C(�, e)} is a continuous single-
valued function.

We now show that, given an initial resource stock, there exists a unique optimal way to
extract that can be interpreted as an optimal extraction quota.

Proposition 6. For each nonempty coalition S ™ N , and each (�i,0)iœS œ [0, ¯

�]

S , there exists
a unique optimal path of extraction to the dynamic programming problem (3.2).

Proof. Existence. The existence of an optimal path of extraction is a direct application of
Proposition 3. Indeed,

(i) By Proposition 5, (�, e) ‘æ v�,e is continuous on O(S). It follows, from the compacity
of O(S), that (�, e) ‘æ v�,e is also bounded.

(ii) It is clear that (�, e) ‘æ � ≠ e is continuous from O(S) to RS
+.

(iii) It is straightforward to see that � ‘æ E�
(S) is a compact-valued, continuous correspon-

dence.

Uniqueness. Assume by way of contradiction that there exist two different optimal paths of
extraction (e0

t )tœN and (e1
t )tœN when the initial stock vector is �0. We denote by (�

0
t )tœN and

(�

1
t )tœN the respective sequence of stock vectors defined for each t œ N by �

0
t+1 = �

0
t ≠ e0

t and
�

1
t+1 = �

1
t ≠ e1

t .
For each – œ [0, 1], we define the path of extraction (e–

t )tœN as follows:

’t œ N, e–
t = –e1

t + (1 ≠ –)e0
t .

Let (�

–
t )tœN be the sequence of stock vectors defined by �

–
0 = �0 and for each t œ N by

�

–
t+1 = �

–
t ≠ e–

t . A simple induction leads to �

–
t = –�

1
t + (1 ≠ –)�

0
t .
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It is clear that
e–

0 Æ �0,

and for each t œ N,

e–
t+1 = –e1

t+1 + (1 ≠ –)e0
t+1 Æ –(�

1
t ≠ e1

t ) + (1 ≠ –)(�

0
t ≠ e0

t ) = �

–
t ≠ e–

t .

Hence, (e–
t )tœN is a feasible path of extraction. It follows that

V �0
(S) Ø ÿ

tœN
”tv�–

t ,e–
t
(S)

>
ÿ

tœN
”t

(–v�1
t ,e1

t
(S) + (1 ≠ –)v�0

t ,e0
t
(S))

= –V �0
(S) + (1 ≠ –)V �0

(S)

= V �0
(S).

The strict inequality, deduced from Proposition 5, leads to a contradiction.

2.3 Efficient and Coalitionally Rational Distribution Policy
By Proposition 6, for each initial stock vector � œ [0, ¯

�]

N , there exists a unique optimal path
of extraction (eú

t (N))tœN to the dynamic programming problem (3.2) for the grand coalition
N . Denote by (�

ú
t (N))tœN the sequence of stock vectors defined by �

ú
0(N) = � and for each

t œ N, �

ú
t+1(N) = �

ú
t (N) ≠ eú

t (N). We denote by �

ú
S,t(N) the projection (�

ú
i,t(N))iœS of

�

ú
t (N). As traded quantities are also unique, we can conclude that there exists a unique path

for collective production in the coalition N . Note that the consumption path of each country,
for its part, is not unique and depends upon the sharing rule decided by the coalition.

An international distribution policy, fi, is a mapping which associates with each initial state
� œ [0;

¯

�]

N a path of consumption vector (fii,t(�))iœN,tœN such that ’t œ N:
ÿ

iœN

fii,t(�) = v�ú
t (N),eú

t (N)
(N).

A policy fi is dominated by S at date T if there exists an initial state � such that:

+Œÿ

t=0
”t

ÿ

iœS

fii,t+T (�) < V �ú
S,T (N)

(S).

The recursive core C(�) is the set of undominated policies when the initial state is �.

Theorem 1. For each � œ [0, ¯

�]

N , C(�) contains at least two elements.

Proof. We proceed in two steps.
Step 1: For each �0(N) œ [0, ¯

�]

N , C(N, V �0(N)
) ”= ÿ and C(N, V �0(N)

) is not reduced to a
singleton.
By Proposition 6, for each nonempty coalition S ™ N , and each initial stock vector �0(S) œ
[0, ¯

�]

S , there exists a unique optimal path of extraction (eú
t (S))tœN to the dynamic programming

problem (3.2). For each nonempty coalition S ™ N , denote by (�

ú
t (S))tœN the sequence of

stock vectors defined by �

ú
0(S) = �0(S) and for each t œ N, �

ú
t+1(S) = �

ú
t (S) ≠ eú

t (S).
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Let ⁄ œ B(N) be a balanced system of N . If ⁄(N) = 1, it is clear that

V �0(N)
(N) =

ÿ

S™N

⁄(S)V �0(S)
(S).

Assume ⁄(N) ”= 1. We define (

˜

�t(N))tœN œ (RN
+ )

N and (ẽt(N))tœN œ (RN
+ )

N as follows:

’i œ N, ’t œ N, ˜

�i,t(N) =

ÿ

S–i

⁄(S)�

ú
i,t(S),

’i œ N, ’t œ N, ẽi,t(N) =

ÿ

S–i

⁄(S)eú
i,t(S),

Observe that for each i œ N and each t œ N, we have ˜

�i,t+1(N) =

˜

�i,t(N) ≠ ẽi,t(N) and
˜

�i,t(N) œ [0, ¯

�] because
q

S–i ⁄(S) = 1. It follows that ẽt(N) œ E�̃t(N) for each t œ N.
Since (�

ú
t (S), eú

t (S)) œ O(S), by Proposition 5, for each t œ N and each nonempty coalition
S ™ N there exists a unique zú

t (S) œ Zeú
t (S)

(S) such that

v�ú
t (S),eú

t (S)
(S) =

ÿ

iœS

(fi(z
ú
i,t) ≠ ci(e

ú
i,t, �

ú
i,t)).

Define (z̃t(N))tœN œ (RN
+ )

N as follows:

’i œ N, ’t œ N, z̃i,t(N) =

ÿ

S–i

⁄(S)zú
i,t(S)

The following equalities hold:
ÿ

iœN

ẽi,t(N) =

ÿ

iœN

ÿ

S–i

⁄(S)eú
i,t(S)

=

ÿ

S™N

⁄(S)

ÿ

iœS

eú
i,t(S).

Since zú
t (S) œ Zeú

t (S)
(S), it follows that

ÿ

S™N

⁄(S)

ÿ

iœS

eú
i,t(S) =

ÿ

S™N

⁄(S)

ÿ

iœS

zú
i,t(S)

=

ÿ

iœN

ÿ

S–i

⁄(S)zú
i,t(S)

=

ÿ

iœN

z̃i,t(N).

from which we deduce that z̃t(N) œ Z ẽt
(N) for each t œ N.

By definition of v�̃t(N),ẽt(N)
(N), for each t œ N, we have

v�̃t(N),ẽt(N)
(N) Ø ÿ

iœN

3
fi(z̃i,t(N)) ≠ ci(ẽi,t(N), ˜

�i,t(N))

4
.

The hypothesis of strict concavity ensures that

ÿ

iœN

3
fi(z̃i,t(N)) ≠ ci(ẽi,t(N), ˜

�i,t(N))

4
>

ÿ

iœN

ÿ

S–i

⁄(S)

3
fi(z

ú
i,t(S)) ≠ ci(e

ú
i,t(S), �

ú
i,t(S))

4
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because for each i œ N and t œ N, z̃i,t(N) (resp. (ẽi,t(N), ˜

�i,t(N))) is a convex combination
of (zú

i,t(S))S–i (resp. (eú
i,t(S), �

ú
i,t(S))S–i). Combining the two last inequalities, we have

v�̃t(N),ẽt(N)
(N) >

ÿ

iœN

ÿ

S–i

⁄(S)

3
fi(z

ú
i,t(S)) ≠ ci(e

ú
i,t(S), �

ú
i,t(S))

4

=

ÿ

S™N

⁄(S)

ÿ

iœS

3
fi(z

ú
i,t(S)) ≠ ci(e

ú
i,t(S), �

ú
i,t(S))

4

=

ÿ

S™N

⁄(S)v�ú
t (S),eú

t (S)
(S)

Since (ẽt(N))tœN is a feasible path and ˜

�0(N) = �0(N), the definition of V �0(N)
(N)

ensures that

V �0(N)
(N) Ø ÿ

tœN
”tv�̃t(N),ẽt(N)

(N)

>
ÿ

tœN
”t

ÿ

S™N

⁄(S)v�ú
t (S),eú

t (S)
(S)

=

ÿ

S™N

⁄(S)

ÿ

tœN
”tv�ú

t (S),eú
t (S)

(S)

=

ÿ

S™N

⁄(S)V �0(S)
(S).

By Proposition 1 stating the Bondareva-Shapley theorem, C(N, V �0(N)
) ”= ÿ and by Propo-

sition 2, C(N, V �0(N)
) is not reduced to a singleton.

Step 2: Existence and non uniqueness of the solution.
Step 1 states that for each state � œ [0;

¯

�]

N , the core C(N, V �
) is nonempty. Hence, for each

initial state � œ [0;

¯

�]

N we can build a sequence ((Xi,t(�))iœN)tœN - or simply ((Xi,t)iœN)tœN
- such that for each t œ N:

(i)
q

iœN Xi,t = V �ú
t (N)

(N),

(ii)
q

iœS Xi,t Ø V �ú
S,t(N)

(S),

where (�

ú
t (N))tœN is the sequence of stock vectors associated with the optimal extraction path

of N when the initial state is �.
Let the instantaneous allocation path for each country be (xi,t(�))iœN,tœN - or simply (xi,t)iœN,tœN

- defined for each initial state � œ [0;

¯

�]

N such that for each t œ N, xi,t = Xi,t ≠ ”Xi,t+1.
Let us first show that (xi,t)iœN,tœN is an international distribution policy. For each t œ N,

ÿ

iœN

xi,t =

ÿ

iœN

Xi,t ≠ ”
ÿ

iœN

Xi,t+1

= V �ú
t (N)

(N) ≠ ”V �ú
t+1(N)

(N)

and the Bellman equation ensures that:

V �ú
t (N)

(N) = v�ú
t (N),eú

t (N)
(N) + ”V �ú

t+1(N)
(N)

Therefore, we have for each t œ N,
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ÿ

iœN

xi,t = v�ú
t (N),eú

t (N)
(N).

Let us now prove that (xi,t)iœN,tœN is an undominated policy. For each T œ N, we have

ÿ

iœS

Œÿ

t=0
”txi,t+T =

ÿ

iœS

Œÿ

t=0

1
”tXi,t+T ≠ ”t+1Xi,t+T +1

2

=

ÿ

iœS

Xi,T

Ø V �ú
S,T (N)

(S)

We can therefore conclude that the set C(�) of undominated policies when the initial state
is � is nonempty. Since we established in Step 1 that for each state � œ [0;

¯

�]

N , C(N, V �
) is

not reduced to a singleton, we deduce by construction of (xi,t)iœN,tœN that C(�) is not reduced
to a singleton.

3 The Capital Age Model: Optimal growth with Traded Min-
eral Resources and Capital Accumulation

3.1 Game Set-Up
In the previous section, growth was constrained by natural resource availability and costs of
extraction, as well as the country-specific form of the production function. In the present
section, we add a new growth engine: capital accumulation. Countries have three decisions to
make at each period: resource extraction, resource trade and investment level through savings
that will increase the production capacity of the next period. The remaining created flow of
wealth is consumed, and generations seek to maximize their present consumption as well as
the discounted consumption of their successors. The present model is therefore a cooperative
games adaptation of Ramsey’s benchmark model with traded mineral resources.

At period t and for coalition S, consider an amount y̆t(S) of a single final good, which
can be viewed as Ricardo’s metaphorical corn in neoclassical theory. The coalition chooses the
amount ÷i,t each country i will invest for tomorrow (the seeds to be sowed next year) to increase
the country’s stock of capital Ki,t. This leaves y̆t(S) ≠ q

iœS ÷i,t to the present consumption
of the coalition. The dynamics of i’s capital stock is given by the following law of motion, ·
being the depreciation rate:

Ki,t+1 = Ki,t + ÷i,t ≠ ·Ki,t

The coalition also chooses the quantity ei,t of resources each country will extract from its
available stock �i,t. The dynamics of i’s resource stock is given by the following law of motion:

�i,t+1 = �i,t ≠ ei,t
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Extracted resources are exchanged in a free-trade area (no transaction costs), and country i
ends up with a quantity zi,t of input for its domestic production. The country’s productive sector
then uses its production capacity Ki,t and zi,t to produce fi(zi, Ki) through a raw production
function fi (to be seen as the gross production of Leontief’s input-output theory). We assume,
for each i œ S, fi : R+ ◊ R+ ‘æ R+ satisfies:

(i) fi is continuous, non-decreasing, strictly concave,

(ii) fi(zi, 0) = 0 for each zi œ R+,

(iii) fi is differentiable with respect to Ki,

(iv) lim

Kiæ0

ˆfi(zi, Ki)

ˆKi

> · for each zi œ R+,

(v) lim

KiæŒ

ˆfi(zi, Ki)

ˆKi

< · for each zi œ R+.

Note that these conditions are weaker than the Inada conditions. The cost of extraction
ci(ei,t, �i,t) of i œ N , expressed in consumption units, is represented through a continuous
convex function depending both on the quantity �i,t available to the country i and the quantity
ei,t œ [0, �i,t] extracted at date t. This cost can be viewed as intermediary consumption lost
in the production process (international stock-flow coherence to be checked). We consider that
each country i has an initial endowment y̆i,0 and that

y̆0(S) =

ÿ

iœS

y̆i,0.

The production process takes one period to be achieved, since time is necessary for natural
resources transportation and capital usage.3. The choice of the trading strategy is made such
that the total net production y̆t+1(S) of each coalition S is maximized through the following
static optimization problem:

maximize
(zi,t)iœS

ÿ

iœS

fi(zi,t, Ki,t) ≠ ci(ei,t, �i,t)

subject to
ÿ

iœS

zi,t =

ÿ

iœS

ei,t.

Fig. 3.1 presents a scheme of the model at t and t + 1.

3.2 Significant Sets
We define ¯

� œ R+ as the total and finite amount of resources on Earth. Following neoclassical
arguments, the assumptions on the function fi as well as the dynamics of Ki ensure that there
exists ¯K œ R+ such that for each i œ S and for each t œ N, Ki,t Æ ¯K. As a consequence, there
exists ¯y̆ œ R+ such that for each t œ N, y̆t(S) Æ ¯y̆.

3Therefore, unlike the previous section, t must now be viewed as a period and not a generation.
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Figure 3.1: Scheme of the state and action dynamics

Let �(S) = (�i)iœS (or simply � if there is no danger of confusion) be the vector of natural
resources stocks and K(S) = (Ki)iœS (or simply K if there is no danger of confusion) be the
vector of capital stocks. The state space S(S) is defined by:

S(S) := {(�(S), K(S), y̆(S)) œ RS
+ ◊ RS

+ ◊ R+, y̆(S) Æ ¯y̆ and ’i œ S, �i Æ ¯

�, Ki Æ ¯K}.

Let e(S) = (ei)iœS (or simply e if there is no danger of confusion) be the vector of extraction
and ÷(S) = (÷i)iœS (or simply ÷ if there is no danger of confusion) be the vector of investment.
The action space A(S) is defined by:

A(S) := {(e(S), ÷(S)) œ RS
+ ◊ RS

+, ’i œ S, ei Æ ¯

�, ÷i Æ ¯y̆}.

As in the previous section, the set of feasible vectors of extraction e(S) for a coalition S
with a stock described by �(S) is

E�
(S) := {e(S) œ (R+)

S, ei Æ �i}.

We now define the set of feasible vectors of investment ÷(S) for a coalition S by

I y̆(S)
(S) := {÷(S) œ (R+)

S,
ÿ

iœS

÷i Æ y̆(S)}.

We can therefore define the set of couples (e(S), ÷(S)) of feasible actions by:

�

�,y̆(S)
(S) := {(e(S), ÷(S)) | e(S) œ E�

(S), ÷(S) œ I y̆(S)
(S)},

Now, the set of available resource input after the exchange z(S) = (zi)iœS (or simply z if
there is no danger of confusion) is:

Ze
(S) := {z(S) œ (R+)

S,
ÿ

iœS

zi =

ÿ

iœS

ei}.
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3.3 Coalitional and Intergenerational Worth
At each period, countries belonging to a coalition S when the production is y̆(S) and the in-
vestment is ÷ œ I y̆(S)

(S) will earn a worth that shall not be more than their consumption:

’y̆(S) œ R+, ’÷ œ I y̆(S)
(S) vy̆(S),÷

(S) = y̆(S) ≠ ÿ

iœS

÷i.

Let us now zoom up in the time scale, and describe the behavior of countries from an in-
tertemporal viewpoint. Let ” œ]0, 1[ be the discount factor. The intertemporal worth V �0,K0,y̆0(S)

(S)

of S is defined as the value of the following dynamic programming problem:

maximize
(et,÷t)tœN

ÿ

tœN
”tvy̆t(S),÷t

(S)

subject to
�t+1 = �t ≠ et, t œ N
Kt+1 = (1 ≠ ·)Kt + ÷t, t œ N

y̆t+1(S) = max

I
ÿ

iœS

fi(zi,t, Ki,t) ≠ ci(ei,t, �i,t), (zi,t)iœS œ Ze
(S)

J

, t œ N

(et, ÷t) œ �

�t,y̆t(S)
(S), t œ N

(3.3)

3.4 Optimal Action Strategy
We first show that, given a flow of resource extracted by each country, there exists a unique
optimal way to trade that can be interpreted as an optimal commercial quota.

Proposition 7. The function (�, e, K) ‘æ max

I
q

iœS fi(zi, Ki)≠ci(ei, �i), (zi)iœS œ Ze
(S)

J

is continuous and strictly concave over [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S . Furthermore, for each
(�, e, K) œ [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S , there exists a unique zú œ Ze
(S) – continuously

varying with (�, e, K) – such that

max

I
ÿ

iœS

fi(zi, Ki) ≠ ci(ei, �i), (zi)iœS œ Ze
(S)

J

=

ÿ

iœS

fi(z
ú
i , Ki) ≠ ci(ei, �i).

Proof. Let g : [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S ◊ RS
+ æ R+ be the function defined as

g((�, e, K), z) =

ÿ

iœS

3
fi(zi, Ki) ≠ ci(ei, �i)

4
,

and C : [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S ◆ RS
+ be the correspondence defined as

C(�, e, K) = Ze
(S).

By continuity and strict concavity of fi and ≠ci for each i œ S, function g is continuous and
strictly concave on [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S ◊RS
+. Clearly, C is a compact-valued continuous
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correspondence on [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S and has a convex graph. We have the needed
conditions to apply Proposition 4. We conclude that max{g

1
(�, e, K), z

2
, z œ C(�, e, K)} is

a continuous and strictly concave function on [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S and Cú
(�, e, K) =

argmax { g
1
(�, e, K), z

2
, z œ C(�, e, K)} is a continuous single-valued function.

We now show that, given the initial endowments of each country, there exists a unique
optimal way to extract and to invest that can be interpreted as an optimal extraction quota and
investment plan.

Proposition 8. For each nonempty coalition S ™ N , and each (�i,0)iœS œ [0, ¯

�]

S , (Ki,0)iœS œ
[0, ¯K]

S and y̆0(S) œ [0, ¯y̆], there exists a unique optimal path of extraction and investment to
the dynamic programming problem (3.3).

3.5 Efficient and Coalitionally Rational Distribution Policy
By Proposition 8, for each initial state (�, K, y̆) œ [0;

¯

�]

N ◊ [0, ¯K]

N ◊ [0, ¯y̆] of the grand coali-
tion N , there exists a unique optimal extraction and investment solution

1
eú

t (N), ÷ú
t (N)

2

tœN
to the dynamic programming problem (3.3). Let

1
�

ú
t (N), Kú

t (N), y̆ú
t (N)

2

tœN
be the state

evolution corresponding to the optimal path when the initial state is (�, K, y̆). Denote by1
�

ú
S,t(N), Kú

S,t(N), y̆ú
S,t(N)

2
the projection

1
�

ú
i,t(N), Kú

i,t(N), y̆ú
i,t(N)

2

iœS
of

1
�

ú
t (N), Kú

t (N), y̆ú
t (N)

2
.

Note that the consumption path, for its part, is not unique. An international distribution policy,
fi, is a mapping which associates with each initial state (�, K, y̆) a path of consumption vector
(fii,t(�, K, y̆))iœN,tœN such that ’t œ N:

ÿ

iœN

fii,t(�, K, y̆) = y̆ú
t (N) ≠ ÿ

iœN

÷ú
i,t(N)

A policy fi is dominated by S at date T if there exists an initial state (�, K, y̆) such that:

+Œÿ

t=0
”t

ÿ

iœS

fii,t+T (�, K, y̆) < V �ú
S,T (N),Kú

S,T (N),y̆ú
S,T (N)

(S).

The recursive core C(�, K, y̆) is the set of undominated policies when the initial state is
(�, K, y̆).

Theorem 2. For each (�, K, y̆) œ [0;

¯

�]

N ◊ [0, ¯K]

N ◊ [0, ¯y̆], C(�, K, y̆) contains at least two
elements.

We showed that there exists a unique optimal path of extraction and investment for each
country, which could be interpreted as quotas imposed by a social planner. This leads to a
unique path of resource and capital stocks. As traded quantities are also unique, we can con-
clude that there exists a unique path for collective production in a coalition S. The consumption
path of each country, for its part, is not unique and depends upon the sharing rule decided by
the coalition.

This view corresponds to a benevolent planner interpretation, and one could object that
imposing commercial quotas is not consistent with a common definition of free trade. This
objection is fully anchored in the socialist calculation debate (O’Neill, 2004; Lavoie, 1985;
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Stiglitz, 1996; Bardhan and Roemer, 1992; Nove, 2003; Hahnel, 2013) and is not the subject
of this study. Note however that, by definition of optimality, agents should not deviate from
these quotas even in a free market interpretation. Another alternative interpretation would be
the construction of a negotiation procedure between countries. In all cases, no countries would
have the incentive to refuse a core allocation. Note that the question of a strategic behavior is
neglected by this study, and an implementation of this cooperative game leading to a strong-
Nash solution could be the subject of a subsequent paper.

4 Discussion and Conclusion
The present model is not exhaustive and allows for a multitude of refinements. First, techno-
logical progress is not taken into account, and should be through a time-dependent produc-
tion function or an endogenous knowledge capital accumulation. An interesting question is to
characterize technological catch-up effects between countries and how it affects the balance of
power. In order to better take into account this balance of power, and in view of the geostrategic
nature of natural resources, a major refinement to this model would be to add the risk for war
(Martin et al., 2008). Studying monetary and/or ecological debt in this context is also a lead to
explore, as well as the notion of trust in a monetary economy (Gale, 1978). Another possible
refinement is to dig more into environmental issues. Modeling recycling, or the effects of pollu-
tion can be easily implemented. The model also offers an interesting tool to study the effects of
a bliss point on intergenerational allocations and the depletion of exhaustible resources. Coop-
eration costs can also be introduced in this model. In the original market game, they entail core
vacuity. However, in an infinite horizon model, costs can be allocated throughout generations,
ensuring the existence of core distribution policies.

A more profound analysis of the short-run efficient and coalitionaly rational policies is also
required. In fact, the instantaneous cores can be empty even if the overall core is not (Lehrer and
Scarsini, 2013). A characterization of the distribution policies is therefore needed. This could
be implemented by numerically simulating specific examples, and would help to highlight the
effects of the different variables and parameters on the solution.

This third chapter demonstrates that the recursive core of the cooperative game we propose
contains at least two elements. This means that, if the countries of a coalition follow a long-term
cooperation strategy in terms of extraction, investment and induced trade, then the best way
to optimize their own consumption stream while caring about future generations is to form a
global coalition. The recursive core is constituted of the streams of consumption to be allocated
to each country. Since this core is not reduced to a singleton, it leaves room for a choice among
these allocations, for instance by using some fairness criteria. The important missing step is
now the proposition of an axiomatic for core allocations, exploring possible ethic consumption
paths. An interesting lead is to study the nucleolus solution concept (Serrano, 1995), which
maximizes recursively the ‘welfare’ of the worst treated coalitions and can be understood as
an application of the Rawlsian social welfare function. Another lead would be to study the
Shapley value. The presented model can therefore be viewed as a tool to refresh the common
look at the North-South opposition and sets the conceptual framework for the exploration of a
fair sharing of the fruits of global economic growth.
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Appendix

Proposition 8
Proof. Existence. The existence of an optimal path of extraction and investment is a direct
application of Proposition 3. Indeed,

(i) The reward function (y̆(S), ÷) ‘æ vy̆(S),÷
(S) is continuous and bounded on [0, ¯y̆]◊[0, ¯y̆]

S .

(ii) It is clear that (�, e) ‘æ � ≠ e is continuous from [0, ¯

�]

S ◊ [0, ¯

�]

S to [0, ¯

�]

S . In addition,
(K, ÷) ‘æ (1 ≠ ·)K + ÷ is continuous from [0, ¯K]

S ◊ [0, ¯y̆]

S to [0, ¯K]

S . By Proposi-

tion 7, (�, e, K) ‘æ max

I
q

iœS fi(zi, Ki) ≠ ci(ei, �i), (zi)iœS œ Ze
(S)

J

is continuous

on [0, ¯

�]

S ◊ [0, ¯

�]

S ◊ [0, ¯K]

S . Hence, the transition function is continuous.

(iii) The feasible action correspondence (�, y̆(S)) ‘æ �

�,y̆(S)
(S) is compact-valued and con-

tinuous.

Uniqueness. Assume by way of contradiction that there exist two different optimal paths
(e0

t , ÷0
t )tœN and (e1

t , ÷1
t )tœN when the initial vector is (�0, K0, y̆0(S)) for a coalition S.

We denote by (�

0
t )tœN and (�

1
t )tœN the respective sequence of resource stock vectors defined

by �

0
0 = �0, �

1
0 = �0 and for each t > 0, �

0
t+1 = �

0
t ≠ e0

t and �

1
t+1 = �

1
t ≠ e1

t . We denote
by (K0

t )tœN and (K1
t )tœN the respective sequence of capital stock vectors defined by K0

0 = K0,
K1

0 = K0 and for each t > 0, K0
t+1 = (1 ≠ ·)K0

t + ÷0
t and K1

t+1 = (1 ≠ ·)K1
t + ÷1

t . For each
– œ [0, 1], we define the path of extraction (e–

t )tœN as follows:

’t œ N, e–
t = –e1

t + (1 ≠ –)e0
t ;

the path of investment (÷–
t )tœN is defined as:

’t œ N, ÷–
t = –÷1

t + (1 ≠ –)÷0
t .

Let (�

–
t )tœN be the sequence of resource stock vectors defined by �

–
0 = �0 and for each

t œ N by �

–
t+1 = �

–
t ≠ e–

t . A simple induction leads to �

–
t = –�

1
t + (1 ≠ –)�

0
t for each t œ N.

Let (K–
t )tœN be the sequence of capital stock vectors defined by K–

0 = K0 and for each t œ N
by K–

t+1 = (1 ≠ ·)K–
t + ÷–

t . A simple induction leads to K–
t = –K1

t + (1 ≠ –)K0
t for each

t œ N.
We set y̆–

0 (S) = y̆0(S) and for each t > 0,

y̆–
t (S) = max

I
ÿ

iœS

fi(zi,t≠1, K–
i,t≠1) ≠ ci(e

–
i,t≠1, �

–
i,t≠1), (zi,t≠1)iœS œ Ze–

t≠1
(S)

J

.

We define for each t œ N the following vectors4:

(zú0
i,t)iœS = argmax

(zi,t)iœSœZ
e0

t (S)

ÿ

iœS

fi(zi,t, K0
i,t) ≠ ci(e

0
i,t, �

0
i,t),

4It follows from Proposition 7 that both vectors are uniquely defined.
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and
(zú1

i,t)iœS = argmax

(zi,t)iœSœZ
e1

t (S)

ÿ

iœS

fi(zi,t, K1
i,t) ≠ ci(e

1
i,t, �

1
i,t).

We also define (z–
t )tœN as follows:

’t œ N, z–
t = –zú1

t + (1 ≠ –)zú0
t .

It is straightforward to see that
ÿ

iœS

÷–
i,0 Æ y̆0 = y̆–

0 , (3.4)

and for each t œ N,
ÿ

iœS

÷–
i,t+1 = –

ÿ

iœS

÷1
i,t+1 + (1 ≠ –)

ÿ

iœS

÷0
i,t+1

Æ –
ÿ

iœS

3
fi(z

ú1
i,t , K1

i,t) ≠ ci(e
1
i,t, �

1
i,t)

4
+ (1 ≠ –)

ÿ

iœS

3
fi(z

ú0
i,t , K0

i,t) ≠ ci(e
0
i,t, �

0
i,t)

4
.

By concavity of fi and ≠ci, we therefore have
ÿ

iœS

÷–
i,t+1 Æ ÿ

iœS

3
fi(z

–
i,t, K–

i,t) ≠ ci(e
–
i,t, �

–
i,t)

4
. (3.5)

Since for each t œ N, (z–
i,t)iœS œ Ze–

t
(S), it follows that

ÿ

iœS

3
fi(z

–
i,t, K–

i,t) ≠ ci(e
–
i,t, �

–
i,t)

4
Æ max

I
ÿ

iœS

fi(zi,t, K–
i,t) ≠ ci(e

–
i,t, �

–
i,t), (zi,t)iœS œ Ze–

t
(S)

J

= y̆–
t+1. (3.6)

By combining Eqs 3.4, 3.5 and 3.6, we deduce that for each t œ N,
ÿ

iœS

÷–
i,t Æ y̆–

t . (3.7)

On the other hand, it is clear that
e–

0 Æ �0,

and for each t œ N,

e–
t+1 = –e1

t+1 + (1 ≠ –)e0
t+1 Æ –(�

1
t ≠ e1

t ) + (1 ≠ –)(�

0
t ≠ e0

t ) = �

–
t ≠ e–

t . (3.8)

Therefore, from Eqs 3.7 and 3.8, we can conclude that (e–
t , ÷–

t )tœN is a feasible path. It
follows that

V �0,K0,y̆0(S)
(S) Ø ÿ

tœN
”tvy̆–

t (S),÷–
t
(S)

=

ÿ

tœN
”t

3
y̆–

t (S) ≠ ÿ

iœS

÷–
i,t

4

Ø
3

y̆0(S) ≠ ÿ

iœS

÷–
i,0

4
+

ÿ

t>0
”t

Q

a
ÿ

iœS

3
fi(z

–
i,t≠1, K–

i,t≠1) ≠ ci(e
–
i,t≠1, �

–
i,t≠1)

4
≠ ÷–

i,t

4R

b.

(3.9)
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By strict concavity of fi and ≠ci, we have for each t > 0:

ÿ

iœS

3
fi(z

–
i,t≠1, K–

i,t≠1) ≠ ci(e
–
i,t≠1, �

–
i,t≠1)

4
> –

ÿ

iœS

3
fi(z

ú1
i,t≠1, K1

i,t≠1) ≠ ci(e
1
i,t≠1, �

1
i,t≠1)

4

+ (1 ≠ –)

ÿ

iœS

3
fi(z

ú0
i,t≠1, K0

i,t≠1) ≠ ci(e
0
i,t≠1, �

0
i,t≠1)

4
.

(3.10)

Combining Eqs 3.9 and 3.10 leads to:

V �0,K0,y̆0(S)
(S) > –

Q

a
3

y̆0(S) ≠ ÿ

iœS

÷1
i,0

4
+

ÿ

t>0
”t

ÿ

iœS

3
fi(z

ú1
i,t≠1, K1

i,t≠1) ≠ ci(e
1
i,t≠1, �

1
i,t≠1)

4
≠ ÷1

i,t

4R

b

+ (1 ≠ –)

Q

a
3

y̆0(S) ≠ ÿ

iœS

÷0
i,0

4
+

ÿ

t>0
”t

ÿ

iœS

3
fi(z

ú0
i,t≠1, K0

i,t≠1) ≠ ci(e
0
i,t≠1, �

0
i,t≠1)

4
≠ ÷0

i,t

4R

b

= –V �0,K0,y̆0(S)
(S) + (1 ≠ –)V �0,K0,y̆0(S)

(S)

= V �0,K0,y̆0(S)
(S).

The strict inequality leads to a contradiction.

Theorem 2
Proof. We proceed in two steps.
Step 1: For each �0(N) œ [0, ¯

�]

N , K0(N) œ [0, ¯K]

N and y̆0(N) œ [0, ¯y̆], C(N, V �0(N),K0(N),y̆0(N)
) ”=

ÿ and is not reduced to a singleton.
By Proposition 8, for each nonempty coalition S ™ N , and each initial stock vector3

�0(S), K0(S), y̆0(S)

4
œ [0, ¯

�]

S◊[0, ¯K]

S◊[0, ¯y̆], there exists a unique optimal path
3

eú
t (S), ÷ú

t (S)

4

tœN
to the dynamic programming problem (3.3). For each nonempty coalition S ™ N , denote by
(�

ú
t (S))tœN the sequence of resource stock vectors defined by �

ú
0(S) = �0(S) and for each

t œ N, �

ú
t+1(S) = �

ú
t (S) ≠ eú

t (S). Denote as well by (Kú
t (S))tœN the sequence of capital stock

vectors defined by Kú
0(S) = K0(S) and for each t œ N, Kú

t+1(S) = (1≠ ·)Kú
t (S)+÷ú

t (S). Fi-
nally, denote (y̆ú

t (S))tœN the sequence of production flow vectors defined by y̆ú
0(S) = y̆0(S) and

for each t œ N, y̆ú
t+1(S) = max

I
q

iœS fi(zi,t(S), Kú
i,t(S)) ≠ ci(eú

i,t(S), �

ú
i,t(S)), (zi,t(S))iœS œ

Zeú
t (S)

(S)

J

.

Let ⁄ œ B(N) be a balanced system of N . If ⁄(N) = 1, it is clear that

V �0(N),K0(N),y̆0(N)
(N) =

ÿ

S™N

⁄(S)V �0(S),K0(S),y̆0(S)
(S).

Assume ⁄(N) ”= 1. We define (e⁄
t (N))tœN œ (RN

+ )

N and (�

⁄
t (N))tœN œ (RN

+ )

N as follows:

’i œ N, ’t œ N, e⁄
i,t(N) =

ÿ

S–i

⁄(S)eú
i,t(S),
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’i œ N, ’t œ N, �

⁄
i,t(N) =

ÿ

S–i

⁄(S)�

ú
i,t(S).

Observe that for each i œ N and each t œ N, we have �

⁄
i,t(N) œ [0, ¯

�] since
q

S–i ⁄(S) = 1

and �

⁄
i,t+1(N) = �

⁄
i,t(N) ≠ e⁄

i,t(N). We also can assert that for each i œ N and each t œ N,

e⁄
i,t(N) Æ �

⁄
i,t(N). (3.11)

We define as well (÷⁄
t (N))tœN œ (RN

+ )

N and (K⁄
t (N))tœN œ (RN

+ )

N as follows:

’i œ N, ’t œ N, ÷⁄
i,t(N) =

ÿ

S–i

⁄(S)÷ú
i,t(S),

’i œ N, ’t œ N, K⁄
i,t(N) =

ÿ

S–i

⁄(S)Kú
i,t(S).

Observe that for each i œ N and each t œ N, we have K⁄
i,t(N) œ [0, ¯K]. We set y̆⁄

0 (N) =

y̆0(N) and for each t > 0,

y̆⁄
t (N) = max

I
ÿ

iœN

fi(zi,t≠1(N), K⁄
i,t≠1(N))≠ci(e

⁄
i,t≠1(N), �

⁄
i,t≠1(N)), (zi,t≠1(N))iœN œ Ze⁄

t≠1(N)
(N)

J

.

Observe that for each i œ N and each t œ N, we have y̆⁄
i,t(N) œ [0, ¯y̆]. It is straightforward

to see that ÿ

iœN

÷⁄
i,0(N) Æ y̆0(N) = y̆⁄

0 (N), (3.12)

and for each t œ N,
ÿ

iœN

÷⁄
i,t+1(N) =

ÿ

iœN

ÿ

S–i

⁄(S)÷ú
i,t+1(S)

=

ÿ

S™N

⁄(S)

ÿ

iœS

÷ú
i,t+1(S) (3.13)

Æ ÿ

S™N

⁄(S)y̆ú
i,t+1(S)

=

ÿ

S™N

⁄(S)

ÿ

iœS

3
fi(z

ú
i,t(S), Kú

i,t(S)) ≠ ci(e
ú
i,t(S), �

ú
i,t(S)

4

=

ÿ

iœN

ÿ

S–i

⁄(S)

3
fi(z

ú
i,t(S), Kú

i,t(S)) ≠ ci(e
ú
i,t(S), �

ú
i,t(S)

4
,

where we define, for each t œ N,

zú
t (S) = argmax

(zi,t(S))iœSœZ
eú

t (S)

ÿ

iœS

fi(zi,t, Kú
i,t) ≠ ci(e

ú
i,t, �

ú
i,t).

By concavity of fi and ≠ci, we therefore have
ÿ

iœN

÷⁄
i,t+1(N) Æ ÿ

iœN

3
fi(z

⁄
i,t(N), K⁄

i,t(N)) ≠ ci(e
⁄
i,t(N), �

⁄
i,t(N))

4
(3.14)

where (z⁄
t (N))tœN œ (RN

+ )

N is defined as

’i œ N, ’t œ N, z⁄
i,t(N) =

ÿ

S–i

⁄(S)zú
i,t(S).
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The following equalities hold:
ÿ

iœN

e⁄
i,t(N) =

ÿ

iœN

ÿ

S–i

⁄(S)eú
i,t(S)

=

ÿ

S™N

⁄(S)

ÿ

iœS

eú
i,t(S).

Since zú
t (S) œ Zeú

t
(S), it follows that

ÿ

S™N

⁄(S)

ÿ

iœS

eú
i,t(S) =

ÿ

S™N

⁄(S)

ÿ

iœS

zú
i,t(S)

=

ÿ

iœN

ÿ

S–i

⁄(S)zú
i,t(S)

=

ÿ

iœN

z⁄
i,t(N),

from which we deduce that z⁄
t (N) œ Ze⁄

t (N)
(N) for each t œ N. It follows that

ÿ

iœN

3
fi(z

⁄
i,t(N), K⁄

i,t(N)) ≠ ci(e
⁄
i,t(N), �

⁄
i,t(N))

4
Æ max

I
ÿ

iœN

fi(zi,t(N), K⁄
i,t(N))

≠ ci(e
⁄
i,t(N), �

⁄
i,t(N)), (zi,t(N))iœN œ Ze⁄

t (N)
(N)

J

= y̆⁄
t+1(N). (3.15)

By combining Eqs 3.12, 3.14 and 3.15, we deduce that for each t œ N,
ÿ

iœN

÷⁄
i,t(N) Æ y̆⁄

t (N). (3.16)

We can conclude from Eqs 3.11 and 3.16 that (e⁄
t (N), ÷⁄

t (N))tœN is a feasible path.
By definition of y̆⁄

t (N) for each t œ N, and since z⁄
t (N) œ Ze⁄

t (N)
(N) for each t œ N, we

have
y̆⁄

t+1(N) Ø ÿ

iœN

3
fi(z

⁄
i,t(N), K⁄

i,t(N)) ≠ ci(e
⁄
i,t(N), �

⁄
i,t(N))

4
. (3.17)

The hypothesis of strict concavity ensures that
ÿ

iœN

3
fi(z

⁄
i,t(N), K⁄

i,t(N)) ≠ ci(e
⁄
i,t(N), �

⁄
i,t(N))

4
>

ÿ

iœN

ÿ

S–i

⁄(S)

3
fi(z

ú
i,t(S), Kú

i,t(S)) ≠ ci(e
ú
i,t(S), �

ú
i,t(S))

4

(3.18)

because for each i œ N and t œ N, z⁄
i,t(N) (resp. K⁄

i,t(N), e⁄
i,t(N), �

⁄
i,t(N)) is a convex

combination of (zú
i,t(S))S–i (resp. (Kú

i,t(S))S–i, (eú
i,t(S))S–i, (�

ú
i,t(S))S–i).

Combining Eqs. 3.17 and 3.18, we have:

y̆⁄
t+1(N) >

ÿ

iœN

ÿ

S–i

⁄(S)

3
fi(z

ú
i,t(S), Kú

i,t(S)) ≠ ci(e
ú
i,t(S), �

ú
i,t(S))

4

=

ÿ

S™N

⁄(S)

ÿ

iœS

3
fi(z

ú
i,t(S), Kú

i,t(S)) ≠ ci(e
ú
i,t(S), �

ú
i,t(S))

4

=

ÿ

S™N

⁄(S)y̆ú
t+1(S). (3.19)
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Since (e⁄
t (N), ÷⁄

t (N))tœN is a feasible path, and that �

⁄
0(N) = �0(N), K⁄

0 (N) = K0(N)

and y̆⁄
0 (N) = y̆0(N), the definition of V �0(N),K0(N),y̆0(N)

(N) ensures that

V �0(N),K0(N),y̆0(N)
(N) Ø ÿ

tœN
”t

3
y̆⁄

t (N) ≠ ÿ

iœN

÷⁄
i,t(N)

4
.

Moreover, observe that
y̆0(N) =

ÿ

S™N

⁄(S)y̆0(S). (3.20)

Indeed,
ÿ

S™N

⁄(S)y̆0(S) =

ÿ

S™N

⁄(S)

ÿ

iœS

y̆i,0

=

ÿ

iœN

ÿ

S–i

⁄(S)y̆i,0

=

ÿ

iœN

y̆i,0
ÿ

S–i

⁄(S)

=

ÿ

iœN

y̆i,0.

Using Eqs. 3.20, 3.13 and 3.19, we obtain

V �0(N),K0(N),y̆0(N)
(N) =

Q

ay̆0(N) ≠ ÿ

iœN

÷⁄
0 (N)

R

b
+

ÿ

t>0
”t

3
y̆⁄

t (N) ≠ ÿ

iœN

÷⁄
i,t(N)

4

>

Q

a
ÿ

S™N

⁄(S)y̆0(S) ≠ ÿ

S™N

⁄(S)

ÿ

iœS

÷ú
i,0(S)

R

b

+

ÿ

t>0
”t

3 ÿ

S™N

⁄(S)y̆ú
t (S) ≠ ÿ

S™N

⁄(S)

ÿ

iœS

÷ú
i,t(S)

4

=

ÿ

S™N

⁄(S)

ÿ

tœN
”t

3
y̆ú

t (S) ≠ ÿ

iœS

÷ú
i,t(S)

4

=

ÿ

S™N

⁄(S)V �0(S),K0(S),y̆0(S)
(S).

The strict inequality holds by strict concavity and since ⁄(N) ”= 1.
By Proposition 1 stating the Bondareva-Shapley theorem, C(N, V �0(N),K0(N),y̆0(N)

) ”= ÿ
and by Proposition 2, C(N, V �0(N),K0(N),y̆0(N)

) is not reduced to a singleton.
Step 2: Existence and non uniqueness of the solution.
Step 1 states that for each state (�, K, y̆), the core C(N, V �,K,y̆

) is nonempty. Hence, for each
initial state (�, K, y̆) we can build a sequence ((Xi,t(�, K, y̆))iœN)tœN - or simply ((Xi,t)iœN)tœN
- such that for each t œ N:

(i)
q

iœN Xi,t = V �ú
t (N),Kú

t (N),y̆ú
t (N)

(N),

(ii)
q

iœS Xi,t Ø V �ú
S,t(N),Kú

S,t(N),y̆ú
S,t(N)

(S),

where (�

ú
t (N), Kú

t (N), y̆ú
t (N))tœN is the sequence of state vectors associated with the optimal

extraction and investment path of N when the initial state is (�, K, y̆).
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Let the instantaneous allocation path for each country be (xi,t(�, K, y̆))iœN,tœN - or simply
(xi,t)iœN,tœN - defined for each initial state (�, K, y̆) such that for each t œ N, xi,t = Xi,t ≠
”Xi,t+1.

Let us first show that (xi,t)iœN,tœN is an international distribution policy. For each t œ N,

ÿ

iœN

xi,t =

ÿ

iœN

Xi,t ≠ ”
ÿ

iœN

Xi,t+1

= V �ú
t (N),Kú

t (N),y̆ú
t (N)

(N) ≠ ”V �ú
t+1(N),Kú

t+1(N),y̆ú
t+1(N)

(N)

and the Bellman equation ensures that:

V �ú
t (N),Kú

t (N),y̆ú
t (N)

(N) = vy̆ú
t (N),÷ú

t (N)
(N) + ”V �ú

t+1(N),Kú
t+1(N),y̆ú

t+1(N)
(N).

Therefore, we have for each t œ N,
ÿ

iœN

xi,t = vy̆ú
t (N),÷ú

t (N)
(N).

Let us now prove that (xi,t)iœN,tœN is an undominated policy. For each T œ N, we have

ÿ

iœS

Œÿ

t=0
”txi,t+T =

ÿ

iœS

Œÿ

t=0

1
”tXi,t+T ≠ ”t+1Xi,t+T +1

2

=

ÿ

iœS

Xi,T

Ø V �ú
S,T (N),Kú

S,T (N),y̆ú
S,T (N)

(S).

We can therefore conclude that the set C(�, K, y̆) of undominated policies when the initial
state is (�, K, y̆) is nonempty. Since we established in Step 1 that for each state (�, K, y̆),
C(N, V �,K,y̆

) is not reduced to a singleton, we deduce by construction of (xi,t)iœN,tœN that
C(�, K, y̆) is not reduced to a singleton.
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Conclusion

Charos mourait à chaque instant pour renaître aussitôt,
comme la vie. Il y a des milliers d’années que filles et
garçons dansent sous les arbres au feuillage neuf –
peupliers, sapins, chênes, platanes, palmiers élancés –,
et ils danseront des milliers d’années encore, dévorés de
désir. Les visages se perdent sous terre, changent tous
les vingt ans, laissent la place à d’autres. Mais l’essence
restera toujours, unique, identique à elle-même, dansant
dans ses vingt ans, amoureuse, immortelle.
— Nikos Kazantzaki, Alexis Zorba (trad. René Bouchet)

This dissertation offers a perspective on the long-run availability of the materials that con-
stitute the bones and nerves of every infrastructure. It provides different methodologies to
analyze non-renewable natural resource scarcity and its consequences. This work is rooted in
very old debates, which have been revived throughout the history of economic thought, making
Economics such a living science. I looked at it with the eyes of a geologist first, who is some-
one with a completely different sense of time an space compared to an economist. However,
both are amazed by complexity, whether this wonder comes from the observation of natural
processes or from the scrutiny of human development.

The first part of this work spotlights Earth sciences, but also shows that the scarcity issue
cannot be disentangled from its economic side. It adopts a world scale, but restricted to the
specific sector of mining. We show that the consumption of fossil materials has followed an
exponential evolution during the last century, and would grow even more if the entire energy
system was based on renewable sources. This work further provides a strong empirical relation-
ship between dilution, extraction energy and commodity prices. The modeling of the copper
sector suggests that its exponential consumption is not sustainable, even with high recycling
rates and optimistic assessment of copper Earth’s crust distribution. Business-as-usual scenar-
ios assuming a constant growth of inelastic demand and an evolution of model parameters in
line with the 1900-2015 trends lead to a bell-shape copper production that peaks between by
the mid-century. However, the model provided conditions for which the extraction can be sus-
tained and that can lead to a plateau instead of a peak and/or postpone the eventual peak of
production after 2200. The demand in copper should first be stabilized. If the assumption on a
stabilization of consumption of copper at high GDP is correct, then world GDP should also be
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constant after 2100. The second condition is that recycling rates should reach 70% by the end
of the century, as opposed to 40% today.

These results give strong arguments that the extraction of one essential metal at present
rates is not sustainable within the current century. However, it is worth reminding that, like any
other model, its relies in a certain number of assumptions, which only give an approximation of
reality. For instance, one key assumption of our model is that energy prices are constant, and a
potential change would certainly affect the results. Moreover, the wealth of the productive sec-
tor is only its cumulative profits, and do not encompasses other sources of financing. Moreover,
from the empirical point of view, the financial data taken as reference points do not correspond
to this variable. These two points are explored in the second chapter. The question of the ‘ref-
erence price’ is also crucial, and even though it is an empirical finding, the economic theory
behind should be deepened. Finally, an extensive sensitivity analysis should be conducted on
this model to show its robustness. Even though most variables are controlled by historical data,
non-linear dynamical system tend to be very sensitive. However, note that an initial analysis
can already be drawn from the available scenarios we propose, and suggests that we can be
quite confident of our results.

The second part embeds the mining model in a world economy to investigate the effects
of its dynamics on long-term growth. We show that, when the mining sector is set into a
Goodwin-class model, no long-run balanced growth of production can emerge with a positive
growth rate of GDP. Moreover, the dynamics admits other equilibria, among which a debt-
deflationary equilibrium with zero production, employment and unbounded private debt. In
other words, the unique desirable long-run steady state is stationary. We further provide an
empirical estimation of the production function, giving three possible functional forms with
different substitution elasticities between capital, labor and copper.

As for the previous model, due caution needs to be taken on these results. First, the
Goodwin-class model, as many other macroeconomic models, relies on a assumptions that
are difficult to check. There is for instance a large debate in Economics on the existence of a
Phillips curve. Moreover, this model misses an important feature of mineral resource scarcity
for the question of recycling was here neglected. Last but not least, the production function is
key in this model and still presents important weaknesses that prevents from giving a definitive
answer on the matter of long-term growth. Not only the Cambridge controversy issues has not
been resolved, but they appear even more clearly when materials are taken into account. The
substitution of capital and material for instance may seem absurd, since capital is made out
of materials. The production function, as it is, do not incorporate all the complexity of the
transformation process. The flow-fund model is more adapted to that purpose. The long-span
dataset we constructed is also to be taken with due precaution since it is a simplistic aggregate
of a limited number of countries. A promising avenue for research is therefore to develop the
input-output theory, and to combine it with material flow analysis in a dynamic framework.
Such a consideration of physical and monetary data would interestingly bridge many weak-
nesses of the neoclassical production function. Unfortunately, a global long-span dataset is
missing, and we call for an effort to build it.

The last part explores the implications of natural resource scarcity through cooperative
lenses. We show that an international long-term cooperation strategy, where wealth derived
from natural resources and productive capacity is shared in a common pool, can be put in place.
We build for that purpose a dynamic cooperative game, and look for its recursive core. We show
that it contains at least two elements, which means that, if the countries of a coalition follow

106



an long-term cooperation strategy in terms of extraction, investment and induced trade, then
the best way to optimize their own consumption stream while caring about future generations
is to form a global coalition. Since this core is not reduced to a singleton, it leaves room to a
choice among these allocations, for instance by using fairness criteria. The presented model
can therefore be viewed as a tool to refresh the common look at the North-South opposition.
This change of perspective opens a space for discussion on the equity of trade in times of
environmental threats.

Indeed, mineral scarcity and environmental damages are entwined. First because the ex-
traction process has strong local environmental (and social) impacts. Water use and pollution
are of the most worrying issue. But the extraction is also energy-intensive. It consequently
strongly contributes to the extensive use of fossil fuels, and therefore to global warming. At the
same time, the essential transition to low carbon energy structure will increase the demand for
these materials.

This dissertation calls for an urgent large-scale development of an efficient collecting and
recycling infrastructure. Another crucial leverage is the increase in the lifetime of goods, that
will reduce depreciation effects. It calls as well for explicit policies to reduce material intensity.
However, these policies should take into consideration the geographical inequalities in terms
of material development. A significant part of the developing world is still at earlier stages and
do not have a full access to proper essential infrastructures like water or electricity. In 1930,
in times of extreme economic pessimism, John Maynard Keynes had colorful visions of the
future5. According to him, if only “our willingness to entrust to science the direction of those
matters which are properly the concern of science” and “our determination to avoid wars and
civil dissensions” was achieved, we would attain an “economic bliss”. Maybe time has come
for societies to decide what this bliss is made of.

5John Maynard Keynes, Economic Possibilities for our Grandchildren,1930
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Summary

Keywords: Non-renewable natural resources, Metals, Mining Sector, Growth Theory, Cooperative Games, Sus-
tainability.

This dissertation offers a transdisciplinary modeling approach to feed the debates raised by the long-run
availability of mineral materials. It investigates the plausibility of a depletion threat posed to key metal resources
within the current century. The first chapter studies the supply and demand of fossil materials at a global scale
and further focuses on the functioning of the copper mining sector. Our work provides conditions under which
the extraction of copper can be sustained and lead to a plateau instead of a peak, among which the stabilization of
the demand for copper and the significant increase in collecting and recycling rates. The second chapter embeds
the extracting sector into the whole global economy and evaluates theoretically the consequences of the mining
dynamics on the long-run growth of output. We demonstrate that the unique desirable long-run steady state is
stationary. The third chapter explores the implications of natural resource scarcity in terms of global trade and
international cooperation. We show that if the countries of a coalition follow a long-term cooperation strategy in
terms of extraction, investment, and resource trade, then the best way to optimize their own consumption while
caring about future generations is to form a global coalition. This dissertation proposes a new way of considering
global trade in the setting of an exhaustible resource and demonstrates that a global coalition where natural and
productive wealth is commonly shared is to the advantage of all countries.

Mots-Clés : Ressources Naturelles Non Renouvelables, Métaux, Secteur Minier, Théorie de la croissance,
Jeux Coopératifs, Soutenabilité.

Cette thèse propose une approche transdisciplinaire visant à nourrir les débats suscités par la disponibilité à
long terme des matières premières minérales. Elle analyse la plausibilité d’une menace de déplétion de certains
métaux clés avant la fin du siècle. Le premier chapitre se focalise sur le fonctionnement du secteur minier et traite
de l’offre et de la demande des matériaux fossiles à l’échelle mondiale, en s’appuyant sur l’exemple du cuivre.
Nos résultats nous permettent de poser des conditions nécessaires à l’établissement d’un plateau d’extraction plutôt
qu’un pic, moyennant une stabilisation de la demande totale en cuivre. Le second chapitre place le secteur minier
dans l’économie globale et évalue de manière théorique les conséquences à long terme de la dynamique de ce
secteur sur la croissance de la production. Nous montrons que, dans la configuration proposée, l’unique équilibre
désirable à long terme est stationnaire. Le troisième chapitre explore les implications induites par la rareté des
ressources non renouvelables en matière de coopération et de commerce international. Nous montrons que si les
pays membres d’une coalition suivent une stratégie de coopération pour leurs choix d’investissement, d’extraction
et d’échange de ressources, alors la meilleure manière d’optimiser leur propre consommation tout en se souciant
des générations futures serait de former la coalition la plus large. Cette thèse propose une nouvelle manière de
réfléchir au commerce international dans un contexte de ressources finies, et montre qu’une coalition mondiale où
les richesses naturelles et productives des pays sont mises en commun peut être à l’avantage de tous.
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