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v

“... I can only say: je le vois, mais je ne le crois pas. ...”2

A Letter from Cantor to Dedekind, 29 June 1877 ([62] pp. 860)

It is with these terms that Georg Cantor announced his proof to Richard Dedekind of one

of the fundamental results in Set Theory. I wanted to start this dissertation with this Cantor

astonishment of his findings where I can imagine the euphoria he had when he started to

understand such things after years of effort. It is such a kind of euphoria I am looking for ...

2“... I can only say: I see it, but I don’t believe it. ...”
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INTRODUCTION

This monograph is entitled “An Order Theoretic Point-of-view on Subgroup Discovery” as

it primarily concerns understanding and investigating notions of SUBGROUP DISCOVERY

using the well-founded mathematical tools of ORDER THEORY.

SUBGROUP DISCOVERY (SD) falls into the quite large framework of Knowledge Discovery in

Databases (KDD), a phrase coined by Piatetsky-Shapiro at the first KDD workshop in 1989 [142].

According to Frawley and Piatetsky-Shapiro [71], “Knowledge discovery (in Data) is the nontrivial

extraction of implicit, previously unknown, and potentially useful information from data”. KDD

is a process that, as the term may suggest, starts from the data and is supposed to converge at

the end to some extracted knowledge. This process comprises the steps of data selection, data

preprocessing, data transformation, data mining and extracted “information” evaluation [64] (see

Fig. 1.1). In the last decades, many techniques have been proposed to automate this knowledge

extraction from databases. Subgroup Discovery, or equivalently Data Surveying, represents one

of these well-established techniques. Following Siebes [150], Subgroup discovery is the automatic

task of discovering interesting subgroups in databases. By subgroup, it is meant a subset of rows

in the database that is separable by a description using the attributes of the database, i.e. a query

on the database using its schema. By interesting it is meant that one needs a formal way to assess

the quality of the selected subgroup as for instance defining some quality measure that assigns

to each subgroup a real value: the higher is this value the more interesting the corresponding

subgroup is supposed to be. Before diving into more details, consider the following toy example.

Example 1.1. Let be some representative patient dataset where each patient (row) in the dataset

is described by various properties: age, gender, average number of cigarettes smoked per day,

average duration of moderate-intensity physical activity per day, etc. Along with these information,

a label is added to each patient indicating if a lung cancer has been diagnosed for the patient or

1
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Steps of a KDD process (from [64])

not. Imagine that the prevalence of the lung cancer in this representative population of patients

is 1 ◦/◦◦ (i.e. 1 per thousands). An analyst who wants to understand what are the factors of risks

of lung cancer from such a dataset can test many hypotheses using the properties of the patients

and may come by the end with the following hypothesis:

“While the prevalence of lung cancer in the studied population is 1 ◦/◦◦, the prevalence of lung

cancer for men, aged between 34 and 69 years, smoking more than 8 cigarettes per day during the

least 10 years and doing less than 20 minute per day of a moderate or vigorous intensity physical

activity is equal to 8 ◦/◦◦”

This latter hypothesis describes a subgroup where we have two parallel aspects: the intent

aspect of subgroups representing the description using the different attributes of the dataset and

the extent aspect representing no more than the patients falling under this description. Along,

what made us think that the subgroup was interesting is the fact that the prevalence was 8 times

higher than the normal prevalence when considering such a subgroup. One may suppose then

that this hypothesis is a risk factor of the lung cancer. 1

Rather than testing the different hypotheses manually which is clearly an impossible task

since the hypothesis space could be extremely huge, the analyst could use the automated tech-

nique of SUBGROUP DISCOVERY to find such subgroups as long as he2 provides the two following

parameters [150]:

1. The Description Language, or equivalently the pattern language or the hypothesis
space3, representing the space of hypotheses the analyst wants to explore in his study.

1The “�” signals the end of an example or a note.
2The “he" used in the manuscript is ungendered. It does hence not refer necessarily to a male person.
3Description Language, pattern language and hypothesis space will be used indistinguishably here.
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1.1. ON DESCRIPTION LANGUAGES 3

2. The Quality Measure representing the way the analyst assesses the interestingness of

the extracted hypotheses, e.g. the ratio between the prevalence in the dataset and the

prevalence in the subgroup.

1.1 On Description Languages

As said earlier, the description language represents the search space of all possible hypotheses

the analyst wants to explore to find interesting subgroups. We mean by a subgroup no more than

a portion of the dataset, i.e. a subset of rows, that can be selected, separated, by a description

in the considered description language. We have seen also in Example 1.1 a somehow realistic

application of subgroup discovery. In order to introduce other notions more simply, let us study

the following example.

Example 1.2. Consider the dataset depicted in Fig. 1.2 (a) of 10 elements {g i}1≤i≤10. Each row is

described by several properties: two numerical values x and y, a geometrical form in
{©,♦,�,M

}
and a color in

{
white, gray,black

}
.

Several description languages can be used here to select subgroups in the dataset, i.e. subsets

of elements from {g i}1≤i≤10. We give below some examples:

(1) We consider descriptions that select subgroups by shape, i.e.
{©,♦,�,M

}
. In such case,

possible subgroups are {g1, g2, g3}, {g4, g5}, {g6, g7, g8} and {g9, g10} which are respectively

induced by the following hypotheses: “ is a ©”,“ is a ♦”,“ is a �” and “ is a M”. Other

subsets of objects like for instance {g1} or {g1, g2, g4} are not subgroups since they cannot

be selected by the description language.

(2) If we add descriptions that combine properties of shapes rather than only the shapes them-

selves, other subsets of objects become separables. For instance, one can think about the two

additional descriptions “is a four-sided polygon” and “is a polygon”, the subsets of objects

{g4, g5, g9, g10} and {g4, ..., g10} become respectively separable by the language.

(3) If we combine properties of elements in the dataset, a lot more subsets of elements become

again separable by the hypothesis space. For instance, if the property color, descriptions

like the following one is added “is a black circle” which selects {g1, g2}. Such a language of

combining properties from a set of properties by conjunction is commonly called itemset
pattern language [4].

(4) Until now, we have ignored the numerical values x and y of each element of the database.

Again, there are several ways to consider descriptions using properties x and y. As a matter

of example, one can consider:

• Interval restrictions on x and y. For example, description “2 ≤ x ≤ 7 and 2 ≤ y ≤ 7”

depicted in Fig. 1.2 (b) selects subgroup {g2, g3, g4, g5, g6, g8, g9}. Language of all of

these restrictions is commonly called interval pattern language [104].
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Figure 1.2: (a) A dataset of 10 elements described by the following properties: shape, color, x
and y values. (b) A subgroup {g2, g3, g4, g5, g6, g8, g9} selected by “2 ≤ x ≤ 7 and 2 ≤ y ≤ 7”. (c)
A subgroup {g3, g4, g5, g6, g8, g9} selected by “x+ y ≥ 6”. (d) A subgroup {g1, g2, g7} selected by
“(x−2)2 + (y−2)2 ≤ 4”.

• Linear inequalities using x and y. For instance, description “x+ y ≥ 6” depicted in

Fig. 1.2 (c) selects subgroup {g3, g4, g5, g6, g8, g9}. One can see that such a subgroup

cannot be selected using only interval restrictions on both x and y. Generally, sub-

groups separable by such a language are said to be linearly separable.

• Neighborhoods on the plane. For example, description “On the vicinity of (2,2) by a

radius of 2” or more formally “(x−2)2 + (y−2)2 ≤ 4” depicted in Fig. 1.2 (d) selects

subgroup {g1, g2, g7}. The language regrouping all these disks is called neighborhood
pattern language [86].

One should however keep in mind that the description language should stay interpretable and

meaningful. This was well-explained by Boley4: “The ultimate purpose of the first (Machine Learn-

ing) is automatization. i.e., to use a machine to substitute human cognition (e.g., for autonomously

driving a car based on sensor inputs). In contrast, the purpose of the second (Subgroup Discov-

ery) is to use machine discoveries to synergistically boost human expertise.” Hence a description

4Boley realKD Blog (http://www.realkd.org/subgroup-discovery/) - Last access 05 June 2019.
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Figure 1.3: From an unordered description space (left) to an ordered description space using
implications (right).

language allowing the following form of description:

log(2 · x+ y3)−
√

2 · x · y+ y≤ 7621.1/e2·x2.3−y

should not be considered a priori as it is not comprehensible and thus violates the whole essence

of subgroup discovery.

The state-of-the-art abounds with descriptions languages of different kinds depending on

the analyzed dataset and the aim of the study. Indeed, besides the pattern languages that we

have presented earlier, i.e. itemset [4], interval [104] and neighborhood [86] patterns; other

languages were presented and investigated in the literature. We enumerate as a matter of

example: (complex) sequential patterns [5, 39, 45, 143], graph patterns [110, 164], trajectory

patterns [87], periodic patterns [74, 138], subgraph patterns in attributed graphs [23, 105].

1.2 Ordering Description Languages

Description languages can be seen just as a mere set of descriptions. However, such a point-of-view

is clearly not helpful as it does not provide any information about the relationships descriptions

may have between each other. Consider again Example 1.2 and the following questions:

(Q1) What is the relationship of being a “four-sided polygon” and being a “square (�)”?

(Q2) What is the relationship of being a “square (�)” and being a “rhombus (♦)”?

For question (Q1), it is easy to see that all “squares” are “four-sided polygons”. In other words,

there is a logical implication between these two properties. From the ORDER THEORY perspective,

implications form an order between elements of the description language5. Fig. 1.3 (right) shows

for instance how the description space
{©,♦,�,M, four-sided polygon,polygon,shape

}
is ordered

thanks to implications. It does represent a hierarchy of concepts. Going back to Fig. 1.2, it is

easy to see that these implications are simply represented by the inclusion relationship between

the depicted geometrical forms. For example, if a rectangle R1 is enclosed in rectangle R2 (i.e.

R1 ⊆ R2) then any point p falling into R1 falls also in R2 by definition (i.e. p ∈ R1 implies p ∈ R2).
5Technically speaking, this is only a pre-order. However, if logically equivalent descriptions are considered as the

same hypothesis, this pre-order becomes a partial order. Formal Definitions are found in Chapter 2.
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Figure 1.4: (left) The smallest enclosing rectangle [2,6]× [1,6] enclosing both [2,5]× [1,4] and
[3,6]× [3,6]. (right) The two squares [2,5]× [1,4] and [3,6]× [3,6] have not a unique smallest
square enclosing them but an infinite set of minimal ones given by: [1+ l,6+ l]× [1,6] for any real
number l ∈ [0,1].

For question (Q2), one can see that “squares” and “rhombuses” have in common the fact that

they are “four-sided polygons”. In this second question, we have composed two descriptions in the

hypothesis space to build a new description. Moreover, it is obvious that being a “square” or a

“rhombus” implies being a “four-sided polygon”. This second answer shows that by identifying

commonalities between descriptions, one can build new descriptions in the hypothesis space. If we

use the ORDER THEORY terminology, this can be formalized as follow: the hypothesis “four-sided

polygons” can be seen as the join (i.e. least common subsumer) of “square” and “rhombus” shapes

in the ordered description space {©,♦,�,M, four-sided polygon,polygon,shape
}

by implications.

Moreover, this latter ordered description space is said to be a join-semilattice as this least common

subsumer exists and is unique for each pair of descriptions. This latter property holds in many

description spaces but is not trivial as shown in the following example.

Example 1.3. Consider now the description language of rectangles structured by inclusion

or equivalently the language of interval restrictions over attributes x and y structured by

implications. Let be the two gray rectangles depicted in Fig. 1.4 (left). The smallest (w.r.t. ⊆)

rectangle (the join, the least common subsumer) enclosing both [2,5]×[1,4] and [3,6]×[3,6] exists,

is unique and is given by [2,6]× [1,6] depicted by the white enclosing rectangle in Fig. 1.4 (left).
Now, let be the description language of all squares structured by inclusion. The two gray

squares [2,5]× [1,4] and [3,6]× [3,6] depicted in Fig. 1.4 (right) have not a unique smallest

square enclosing them but an infinite set of minimal ones given by [1+ l,6+ l]× [1,6] for any real

number l ∈ [0,1] (i.e. the moving square in Fig. 1.4 (right)). Hence, we say that this language

does not form a join-semilattice.

One should note that ORDER THEORY provides techniques to transform ordered description

languages that are not join-semilattices to lattices by adding (missing) elements. Such transfor-

mations are usually called completions (e.g. Dedekind-MacNeille Completion [53]). For instance,
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“contains all words”

“no restriction”

“contains a” “contains b”

“contains ab” “contains ba”

“contains all words”

“no restriction”

“contains a” “contains b”

“contains a and b”

“contains ab” “contains ba”

Figure 1.5: A non-lattice description language ordered by implications (left) and its completion
to a lattice (right) thanks to adding the description “contains a and b”.

adding the intersections of squares in the description language of squares builds the description

language of rectangles. Another example of the completion of a finite description language is

provided below.

Example 1.4. Let be the description space ordered by implications depicted in Fig. 1.5 (left).
Imagine that these hypotheses are used in a dataset of words built over the alphabet {a,b}.

Obviously, if a word contains “ab” then it does contain both “a” and “b”. Clearly, one can see that

this ordered description language does not form a join-semilattice. Indeed, “containing ab” and

“containing ba” concepts do not have a least common subsumer, i.e. a join. They have however two

minimal common subsumers which are “containing a” and “containing b”.

Adding however the (missing) description “contains a and b” to the description space depicted

in Fig. 1.5 (left) allows to build the lattice depicted in Fig. 1.5 (right).

1.3 From Datasets to Interesting Subgroups

We have discussed earlier how description languages participate to select subgroups in datasets

intelligibly and how they can be structured. However, what is an interesting subgroup (or more

generally a hypothesis) in a dataset?

Consider again the dataset depicted in Fig. 1.2 and the following question:

(Q3) What is the relationship of being a “square (�)” and being “black”?

Independently from the dataset, it seems that there is no relationship between being a “square

(�)” and being “black”. However, one can see that particularly in this dataset, all rectangles

(g4 and g5) are black. This latter implication arises from the studied dataset rather than the

hypothesis space itself as it was the case for the two questions (Q1) and (Q2). We say that
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8 CHAPTER 1. INTRODUCTION

these implications are informative as they may provide relevant information on the potential

knowledge hidden in the dataset.

Identifying informative implications in datasets has been thoroughly studied in the literature

where it is somehow hard to trace back the beginning. For instance, analyzing implications

appearing in Boolean datasets representing surveys can be found in [69] published in 1965

where ORDER THEORY and LATTICE THEORY already played an essential role. Later, in 1982,

Wille [162] provided a new equivalent vision between Boolean datasets and complete lattices

and refered to Boolean datasets as formal contexts. Such a vision, dubbed Formal Concept

Analysis (FCA) [80], showed its potential as a tool for data analysis and data surveying. As a

matter of example, Duquennes and Guigues presented in 1986 [91] the smallest set of informative

implications existing in a Boolean dataset.

While this field of Formal Concept Analysis was flourishing, another field appeared from the

database community in the early nineties and is commonly identified as the seminal paper of

pattern mining (Agrawal et al. [4]). The aim of this work was to identify association rules in

Boolean datasets representing customer transactions in supermarkets. Association rules X ⇒Y

can be seen as relaxed informative implications in databases, that is if the premise X of the

association rule occurs on a row in the dataset then there is a high chance that Y occurs also

on the same row. For instance, if we consider the dataset depicted in Fig. 1.2 (a), “©⇒ black” is

not an implication. However, if the description “©” occurs in an element of the dataset, there

is 66% of chance that the element is also “black”. We say that the association rule “©⇒ black”

has a confidence of 66%. Implications are then just a “100%” confidence association rules. One

should note that association rules where called partial implications by Luxenburger in 1991

[124]. While the connection between formal concept analysis and pattern mining seem today

evident, the connection between these two fields was made independently by Zaki et. al [169] and

Pasquier et al. [139] in the late nineties when they popularized the notions of closed patterns
and Galois connections.

Beside exact and partial implications, the beginning of the era on pattern mining was often

related to frequent patterns as they played a crucial role to look for association rules. Frequent

patterns are simply pattern occurring in a non-negligible part of the dataset. Giacometti. et al.

[85] identified this enthusiasm (or craze) about frequent patterns as the “obsession of frequency”.

Later, other tasks attracted more attention. One of these tasks that we will investigate in more

details in this thesis is what we call discriminative subgroup discovery. This latter task

is defined as follow: “given a target population, i.e. a subset of elements in a given dataset (e.g.

patients having lung cancer in Example 1.2), identify subgroups where the target population is

significantly over-represented comparing to the whole dataset”. Different tasks falls under this

field, we enumerate: JSM6 methods [67, 68] , contrast pattern mining [13], emerging patterns

[57], and the particular task of subgroup discovery developed in Section 2.4 in [163]. Class

6JSM methods were named after the English philosopher John Stuart Mill, who introduced methods of inductive
reasoning in 19th century according to Kuznetsov [111].
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1.4. ENUMERATION AND SUBGROUP DISCOVERY 9

association rules (CAR) [121] and Inductive logic programming [133] are also tightly linked to

discriminative subgroup discovery as they aim to provide good and comprehensible rules for

classification. Please note that what we call here discriminative subgroup discovery was called

supervised descriptive rule discovery by Novak et al. [134]. We do prefer here using discriminative

subgroup discovery to emphasis the fact that this latter task falls under subgroup discovery and

not the converse.

Other pattern mining tasks have emerged since then. We cite for example: Exceptional Model

Mining (EMM) [117], Redescription Mining [75, 147] and High Utility Pattern Mining [70]. The

most important commonality in these different aforementioned tasks is the fact that someone

needs some quality measure to gauge the interestingness of the hypothesis following Siebes

[150] and Wrobel [163].

1.4 Enumeration and Subgroup Discovery

We have explained earlier that the analyst behind the subgroup discovery task needs to define

what is the description language he wants to explore and how he gauges the interestingness

of hypotheses using some quality measure. Once these two aspects are defined, the automation

of the subgroup discovery requires in its core enumeration algorithms.

1.4.1 Finding all Subgroups

Let us ignore for now the second aspect of subgroup discovery of how interestingness is gauged

and focus on the task of enumerating all subgroups in a given dataset for a pre-defined hypothesis

space. The easiest way is to exhaustively enumerate all elements of the hypothesis space and

then to see what are the objects matching each description. Such an enumeration technique

is potentially redundant and computationally expensive as it can output the same subgroup

twice. For instance, reconsider the dataset depicted in Fig. 1.2 (a) and consider a description

space where containing “black rectangle” and “rectangle”. These two descriptions induce the same

subgroup {g1, g2}. Hence, visiting these two hypotheses generate the same subgroup twice. The

only way to reduce the computational effort to look for all possible subgroups induced by some

description language is to consider some subset of descriptions in the pattern language where it

is guaranteed that all subgroups induced by the pattern language are also induced by this subset.

Closed patterns played an essential role to enumerate the set of all possible subgroups

exhaustively with less computational effort. Indeed, when we consider the language of itemsets

[4, 139], there is a one-to-one correspondence between all possible subgroups and the set of closed

patterns. Hence, for this kind of patterns, the closed patterns represent the smallest subset of

descriptions from which all subgroups can be induced. Therefore, enumerating exhaustively

and non-redundantly all subgroups induced by the hypothesis space becomes equivalent to

enumerating exhaustively and non-redundantly closed patterns. This later kind of enumeration

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



10 CHAPTER 1. INTRODUCTION

was thoroughly investigated in the literature since it is equivalent to enumerating fixpoints of

some closure operator. One can cite Ganter’s NEXTCLOSURE Algorithm [76], BORDAT’s Algorithm

[33] and CLOSE-BY-ONE (CBO) Algorithm [109, 110] among others. We invite the reader to see

Kuznetsov and Obiedkov [113] surveying such techniques. Following the same spirit, subgroups

induced by interval patterns can be enumerated exhaustively and non-redundantly using closed

interval patterns [104] thanks to an adaptation of CLOSE-BY-ONE (CBO) Algorithm [109, 110].

Closed patterns have then been generalized to other types of pattern languages as for instance

sequential patterns [166] and graph patterns [165]. Such closed patterns provide again a small

subset of description from which all subgroups can be deduced. However, it should be noted that

there is no longer a one-to-one correspondence between closed patterns and subgroups for these

two latter languages. In fact, this problem is tightly linked to the fact that these two pattern

languages are not lattices [168] as it is the case for itemset and interval patterns.

1.4.2 Finding Interesting Subgroups

Consider now the task of subgroup discovery where we aim to find a small subset of interesting

subgroups w.r.t. to some quality measure, say the top-k subgroups [163]. The naivest way is to

use the brute-force algorithm, that is: (1) explore and evaluate all hypotheses in the description

language, (2) output at the end the top-k subgroups. However, such a technique can be intractable

(if not impossible) when the hypothesis space grows. In order to do less effort to find the top-k

subgroup, someone needs to skip visiting some (unpromising) hypotheses while having some

information about them using the earlier visited descriptions. To do so, one needs to leverage

the properties of the considered descriptions language on the one hand and the properties that

the quality measures on the other hand. For instance, if the quality measure evaluation depends

solely on the subgroup and not on its description, one can consider only closed patterns as they

induce all possible subgroups (see Section 1.4.1). However, this may be not sufficient as someone

needs still to visit all subgroups to find the top-k ones.

Other approaches flourished in the literature to ensure finding the interesting subgroups more

efficiently. We cite, measures properties ((Anti-)Monotone, Convertible (Anti-)Monotone, Loose

(Anti-)Montone, Piecewise (Anti-)Monotone, etc.) [32, 47] and optimistic estimates [89, 90, 132]

as a matter of example.

These various techniques ensure finding the top-k possible subgroups and are said to be

exact. However, they may also become intractable when the considered search space are of

important size. In response to that, other types of algorithms emerged in the literature known to

be non-exact. We cite for example Beam Search Techniques [59, 115, 159, 160], Evolutionary

Algorithms [44], Sampling techniques [23, 30, 31] and Anytime algorithms [34].
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1.5 Contributions

1.5.1 Patterns as Ordered Sets

Modern order and lattice theory provide convenient mathematical tools for pattern mining.

Different formal tools have been proposed in the literature to model description languages. Among

them, Formal Concept Analysis (FCA) [80] provides a natural and a well-founded mathematical

tool to analyze binary datasets (i.e. contexts). However, since real-world datasets come in general

with various complex attributes (e.g. numerical or nominal ones) rather than only Boolean ones,

they need to be transformed to contexts (i.e. boolean datasets) before any manipulation using FCA.

This kind of transformation has been proposed by [79] under the term of (conceptual) scaling

(i.e. binarizing). Yet, even if scaling is a quite general tool, binarizing a dataset with regard to

some pattern search spaces is not always obvious [11, 20]. In response to that, some other more

natural tools to formalize complex description languages have been proposed. One could cite

Logical Concept Analysis (LCA) proposed by Ferré and Ridoux [66], Pattern Structures proposed

by Ganter and Kuznetsov [78] and Symbolic Data Analysis (SDA) [36, 37]. Pattern Structures

allow for instance to model in a quite natural way many description languages. Indeed, itemset

[4], interval [104], partition [12] pattern spaces among others [78, 112] can be modeled within

the pattern structure framework.

Nevertheless, since pattern structures rely on meet-semilattices7, some pattern spaces that

are only partially ordered sets (posets) cannot be “directly” defined using such a framework. For

instance, the “sequences of itemsets” pattern language [6] ordered by “is subsequence of” does

not form a meet-semilattice [48, 168]. The sequential meet-semilattice [39, 48], or equivalently

conjunctive sequence patterns [146] or the space of closed patrial orders [45] refer usually to

antichains (i.e. conjunction) of sequences rather than to the poset of sequences itself. Same holds for

the graph meet-semilattice from [78, 110]. In fact, these description languages are transformed to

lattices before manipulating them. An example of such a transformation is shown in Example 1.4

and Fig. 1.5.

Surprisingly, studying pattern languages as ordered sets without any additional property and

without transforming them to lattices have received a very little attention in the literature. In

2015, Lumpe and Schmidt [123] proposed such a framework under the name of pattern setup.

However, they have not investigated it in more details as the aim of their paper was to study

morphisms between pattern structures.

Contribution 1. In this first contribution, we endeavor to provide a better understanding of the

pattern setup framework. We show that while pattern structures demand a strong condition on

the posets of patterns (i.e. upper-bounded meet-semilattices), pattern setups do not require any

7We have presented earlier in Section 1.2 join-semilattices when the description languages were ordered by
implications. This notion is in fact dual to meet-semilattices since description languages are commonly ordered by
subsomptions which are the converse of implications.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



12 CHAPTER 1. INTRODUCTION

additional property on the description space, which makes them rather permissive. Simply put,

objects in a pattern setup could share some common descriptions in the pattern space but none

of them is maximal (or equivalently closed) w.r.t. the subsomption order. One direct resulting

problem of such an observation, is that closed descriptions do no longer induce all the subgroups

separable by the description language.

To solve this issue, we require that the set of maximal common descriptions resume prop-

erly the set of common descriptions of any subset of objects. This is done by introducing the

framework of pattern multistructure, a framework that demand the description language to

be a meet-multisemilattice [22, 50, 128] rather than a meet-semilattice. This framework is far

more permissive than pattern structures and allows to models the sequential and graph pattern

languages. Moreover, closed descriptions in pattern multistructures induce all the subgroups

separable by the pattern language.

We show also that the usual transformations used in the literature to transform pattern setups

to pattern structures, as it is the case for sequential and graph pattern languages [39, 78, 146],

are tightly linked to poset completions. For instance, enriching the description language with the

set of maximal common descriptions is basically an Antichain completion (see [27, 53]). Such a

transformation is applicable on a pattern setup, i.e. builds a pattern structure, if and only if the

pattern setup is a pattern multistructure.

A preliminary version of this contribution has appeared in the proceedings of the Concept

Lattices and their Applications conference (CLA’18) [18]. A longer and more detailed version has

been submitted to the International Journal of General Systems (IJGS) and is currently under

review [19].

1.5.2 Subgroup Exhaustive Enumeration

After modeling the pattern languages, we will focus in this work by the task of determining the set

of all possible subgroups induced by a description language. Particularly, we investigate pattern

languages which order induces a lattice and hence a pattern structure when finite datasets are

considered. We consider two particular problems.

The first problem is related in subgroup enumeration in numerical datasets. Often, for this

kind of datasets, the language of interval patterns is considered, i.e. the language of conjunction of

interval restrictions over the numerical attributes (e.g., pattern 50≤ age< 70∧smoke_per_day≥
3). Kaytoue et al. [104] proposed an algorithm for enumerating exhaustively and non-redundantly

all subgroups induced by the interval pattern language. However, exhaustive enumeration of

subgroups induced when considering other numerical pattern languages have surprisingly not

attracted much research interest.

Contribution 2. As a second contribution, we investigate the pattern language of conjunctions

of linear inequalities over the numerical attributes of the dataset (e.g. conjunctions of patterns of

the form 5 ·smoke_per_day+age≥ 3). This language is interestingly equivalent to the language
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of convex polytopes. We address the problem using pattern structures [78] and we present three

exhaustive and non-redundant algorithms to enumerate the set of all possible subgroups induced

by such a language. This contribution has appeared in the proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI’17) [20].

The second problem is related in subgroup enumeration when Boolean datasets (contexts)

are considered. We investigate particularly how the enumeration of subgroups or equivalently

closed itemsets in a context can be enhanced when the inherent implications between items are

considered. Inherent Implications between items can be seen in, but not only in, scaled contexts

[79], i.e. contexts that are the result of binarization of some complex attribute as numerical

ones. For instance, a numerical attribute whose values are {1,2,3} can be transformed to a set

of items {≤ 1,≤ 2,≤ 3,≥ 3,≥ 2,≥ 1} thanks to interordinal scaling where we can see the inherent

implications between items “≤ 1 implies ≤ 2”, “≤ 2 implies ≤ 3” and so on.

Many algorithms have been proposed to enumerate exhaustively and non-redundantly the set

of all possible subgroups [8, 33, 76, 109, 113, 136] by leveraging a closure operator. However, these

standard algorithms do not take advantage of the potential relationships between attributes

as for example “≤ 1 implies ≤ 2”. For such, they perform additional closure computations which

substantially degrade their performance. Particular instances of contexts with implications where

handled in the literature. For instance, interordinal scaled contexts are directly linked to interval

patterns as investigated by [104]. Analogously, ordinal scaled contexts are linked to datasets

augmented with a taxonomy (i.e hierarchy) between items (e.g. rectangles are four-sided polygons)

[17, 46]. Yet, when a context is provided with an arbitrary set of implications (i.e. forming some

directed graph between items), no generic algorithm is provided.

Contribution 3. As a third contribution, we propose a generic algorithm, named CBOI for

CLOSE-BY-ONE USING IMPLICATIONS, to enumerate subgroups using the inherent implications

between items provided as an input. In other words, provided a pair (context, directed graph of

implications between attributes), CBOI uses at its best the provided implications between items

to enumerate exhaustively and non-redundantly all subgroups. The proposed algorithm relies on

a Divide & Conquer scheme to enumerate closed sets in a strongly accessible set system [29, 83].

We show that, in fact, closed itemsets are upper ideals (i.e. upward closed) in an equivalent

poset of the input directed graph. We use then the fact that the set of these upper-ideals forms a

strongly accessible set system. Building on these notions, we elaborate algorithm CBOI. This

contribution has appeared in the proceedings of the International Conference on Formal Concept

Analysis (ICFCA’2019) [16].

1.5.3 Anytime Discriminative Subgroup Discovery

The third part of this work considers the problem of discovering patterns that accurately dis-

criminate one class label from the others in a labeled numerical dataset. This can be seen as
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14 CHAPTER 1. INTRODUCTION

a particular task of subgroup discovery [106, 150, 163] dubbed here discriminative subgroup

discovery.

As we have said earlier, when it comes to numerical attributes, a pattern is generally a con-

junction of interval restrictions over the attributes, e.g., pattern 50≤ age< 70∧smoke_per_day≥ 3

fosters lung cancer incidence. To look for such patterns (namely interval patterns), various ap-

proaches are usually implemented. Common techniques perform a discretization transforming

the numerical attributes to categorical ones in a pre-processing phase before using the wide

spectrum of existing mining techniques [10, 30, 122, 160]. This leads, however, to a loss of in-

formation even if an exhaustive enumeration is performed on the transformed data [10]. Other

approaches explore the whole search space of all restrictions either exhaustively [40, 89, 104] or

heuristically [34, 125]. While an exhaustive enumeration is generally unfeasible in large data,

the various state-of-the-art algorithms that heuristically explore the search space provide no

provable guarantee on how they approximate the top quality patterns and on how far they are

from an exhaustive search. Recent techniques set up a third and elegant paradigm, that is direct

sampling approaches [30, 31, 86]. Algorithms falling under this category are non-enumerative

methods which directly sample solutions from the pattern space. They simulate a distribution

which rewards high quality patterns with respect to some interestingness measure. While in

[30, 31], authors propose a direct two-step sampling procedure dedicated for categorical/boolean

datasets, authors in [86] devise an interesting framework which add a third step to handle the

specificity of numerical data. The proposed algorithm addresses the discovery of dense neighbor-

hood patterns by defining a new density metric. Nevertheless, it does not consider the discovery

of discriminant numerical patterns in labeled numerical datasets. Direct sampling approaches

abandon the completeness property and generate only approximate results. In contrast, anytime

pattern mining algorithms [34, 98] are enumerative methods which exhibits the anytime feature

[172], a solution is always available whose quality improves gradually over time and which

converges to an exhaustive search if given enough time, hence ensuring completeness. However,

there is no algorithm proposed so far for the particular task of discriminative subgroup discovery

that ensure some guarantees on the outputted subgroups upon interruption.

Contribution 4. In this fourth contribution, we tackle the problem of providing an anytime

algorithm that provide guarantees on the outputted subgroups upon interruption and ensures

completeness if enough time is given. The proposed anytime algorithm, namely REFINEANDMINE,

is tailored for discriminant interval patterns discovery in numerical datasets. It starts by mining

subgroups in a coarse discretization, followed by successive refinements yielding increasingly

finer discretizations highlighting potentially new interesting subgroups. Eventually, it performs

an exhaustive search, if given enough time. Additionally, REFINEANDMINE gives two provable

guarantees at each refinement. The first evaluates how close is the best found subgroup so far to

the optimal one in the whole search space. The second measures how already found subgroups are

diverse and cover well all the interesting regions in the dataset. This contribution has appeared
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in the proceedings of The European Conference on Machine Learning and Principles and Practice

of Knowledge Discovery in Databases (ECML/PKDD’2018) [15].

1.6 Structure of the Thesis

This work consists of three parts presented below.

The first part consists of two chapters (2 and 3). Chapter 2, entitled order-theoretic foundations,

presents and discusses the various mathematical tools provided by ORDER THEORY and LATTICE

THEORY to understand pattern languages. An interesting fact that we have discovered while

writing this section is the connection that exists between complete multilattices [22, 50, 128, 129],

antichain completions [27] and chain-complete posets. A reader who knows what is understood

by a lattice and order in mathematics may skip this chapter. We advise him however to take

a look on multilattices as it is a non commonly studied property. Next, Chapter 3 presents our

first contribution. We start by presenting formal concept analysis [80, 162] as a first point of

view on pattern languages. Then, we study the most generic tool that we will manipulate in

this thesis which is pattern setups [123]. Depending on the properties of the ordered sets of

descriptions, other structures stem and are discussed, i.e. pattern structures [78] and pattern

multistructures [18]. The writing of this chapter relies on [18] and its extended version submitted

to the International Journal of General System (IJGS’19) currently under review [19].

The second part consists of two chapters (4 and 5). Chapter 4 introduces the notion of

set systems and enumeration algorithms in a general way and Chapter 5 investigates some

techniques to enumerate exhaustively and non-redundantly subgroups induced by some pattern

languages. We discuss here also our second [20] and third [16] contributions.

The third and the last part of the thesis consists also of two chapters (6 and 7) where we will

be interested in the particular task of discriminative subgroup discovery. Chapter 6 presents this

task in a general way while Chapter 7 presents our fourth contribution. The writing of this last

chapter relies on [15].

Finally, Chapter 8 gives the conclusion and the future perspectives of this thesis.
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ORDER-THEORETIC FOUNDATIONS

This chapter is entitled “Order-Theortic Foundations” following exactly the title of the first

chapter in R. Wille and B. Ganter’s book on Formal Concept Analysis [80]. The aim here

is to provide the basic mathematical foundation to formalize and study pattern languages

and their properties. The writing of this chapter was inspired partly from [80, 144, 148] and is

organized as follow:

• Section 2.1 recalls some basic facts on set theory.

• Section 2.2 details the basic elements of order theory.

• Section 2.3 presents some particular properties on partially ordered sets. We investigate

in this section particularly the properties of lattices (subsection 2.3.4) and multilattices

(subsection 2.3.5). Multilattices are important structures that we will use later in Chapter 3.

We make also in this section a new connection between the property of chain-completeness

and the property of being a complete multilattice.

• Section 2.4 presents transformations of posets using morphisms. We will mainly be

interested here in Galois connections, closure and kernel operators on complete lattices as

they are important mappings for enumerating patterns. We take also the opportunity here

to discuss completions (e.g. Dedekind-MacNeille completion). Particularly, we study the

antichain embedding of posets and its relationship with the property of being a complete

multilattice in subsection 2.4.4.3. Such an embedding is usually used in Formal Concept

Analysis to transform non-lattice pattern languages to lattice-pattern languages that we

will study further in details in Chapter 3.

19
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20 CHAPTER 2. ORDER-THEORETIC FOUNDATIONS

2.1 Elements of Set Theory

2.1.1 Basic Definitions

A set X is an arbitrary collection of (distinct) elements. If an element x is in X , we denote x ∈ X ,

otherwise we denote x 6∈ X . For two sets S and X , S is said to be a subset of X and we denote

S ⊆ X iff (∀x ∈ S) x ∈ X . Sets could be finite or infinite, the size (cardinality) of a finite set X

is denoted |X | and consists in the number of its elements. Particularly, the empty set, denoted

;, is the unique set which size is 0. The powerset of X , is the set denoted ℘(X ) and given by the

set of all subsets of X :

℘(X ) = {S | S ⊆ X }

Let X and Y be two nonempty sets, the cartesian product is the nonempty set:

X ×Y = {(x, y) | x ∈ X and y ∈Y }

2.1.2 Binary Relations

Sets can be linked by relations. A binary relation between two sets X and Y is any subset

R⊆ X ×Y . If the pair (x, y) ∈R we say that x is in relation (in this direction) with y and we

denote x R y. Otherwise, we denote x 6R y (i.e. (x, y) 6∈R).

Functions. Important binary relations are functions or mappings. A function f from X to

Y is a binary relation in X ×Y that associates to each x ∈ X a unique element y ∈ Y which is

denoted f (x). We denote f : X →Y . For any subset S ⊆ X , we call the image of S, the set denoted

f [S] and given by:

f [S]= { f (x) | x ∈ S}

A function f is said to be surjective if f [X ] = Y , it is said to be injective if two distinct

elements are always associated to two distinct values (i.e. (∀x1, x2 ∈ X ) x1 6= x2 ⇒ f (x1) 6= f (x2)).

In case where f is injective and surjective, we say that f is a bijection (a one-to-one
correspondance) and that X and Y are isomorphic. The set of all possible functions from X

to Y is denoted Y X .

One should note that when we write for some set I, {xi | i ∈ I}. The set I is called an Index
set and there is technically a function from I to some set X that associates to each indice i ∈ I,

an element xi from X . Notice that for i 6= j ∈ I, one could have xi = x j.

Binary Relation on a Set. A binary relation R on a set X is any R ⊆ X × X . It is said to be:

• Reflexive if (∀a ∈ E) a R a.

• Transitive if (∀a,b, c ∈ E) if a R b and b R c then a R c.
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2.1. ELEMENTS OF SET THEORY 21

• Symmetric if (∀a,b ∈ E) if a R b then b R a.

• Anti-symmetric if (∀a,b ∈ E) if a R b and b R a then a = b.

Binary relations having two or more of these properties build special relations. We call:

• a Preorder any relation that is reflexive and transitive.

• a Tolerance any relation that is reflexive and symmetric.

• an Equivalence a relation that is reflexive, transitive and symmetric.

For an equivalence relation ↔ on X , we draw the reader’s attention to the two following

notions. The equivalence class of a ∈ X , denoted a, is the set of its equivalent element in X .

It is given formally by a := {b ∈ X | b ↔ a}. The quotient set of X by ↔, denoted X / ↔, is the

partition1 of X on equivalent classes; i.e. X /↔:= {a | a ∈ X }.

New Relations from the Old ones. One can also creates some relations from the others. Let

R be a binary relation on a set X and let S ⊆ X . We call:

• The restriction of R onto S, the binary relation R∩S×S. Relation R∩S×S is said to be

a sub-relation of R. The restriction preserves the four aforementioned properties.

• The dual relation or the inverse relation of R, denoted R−1, the following relation:

(∀a,b ∈ X ) a R−1 b ⇔ b R a. The dual relation preserves the four aforementioned properties.

• The reflexive closure of R, denoted R=, the smallest reflexive relation containing R.

Formally: R= := R∪ {(e, e) | e ∈ E}.

• The transitive closure of R, denoted RT , the smallest transitive relation containing R.

2.1.3 On the Axiom of Choice (AC)

Until now, we have presented tools using only the basic axiomatization of set theory (i.e. Zermelo-
Fraenkel set theory (ZF)). However, we will sometime require the usage of an additional

axiom named the axiom of choice (AC) which help us in general to prove the existence of some

elements without necessarily knowing how to build them.

Definition 2.1 (Axiom of Choice (AC)). Let F = {Si | i ∈ I} be a nonempty family of

nonempty sets. There exists a function:

f : F → ⋃
i∈I

Si

such that f (Si) ∈ Si for all i ∈ I. Such a function is called a choice function. Intuitively, it does

choose a single element from each subset Si.

The axiom of choice helps for instance to build the Cartesian product of any family of

nonempty sets and show that it will be not empty. The Cartesian product of a nonempty family

F = {Si | i ∈ I} of nonempty sets is given by:

×
i∈I

Si = {(xi)i∈I | (∀i ∈ I) xi ∈ Si}

1A partition P on X is a set P ∈℘(X ) such that ∀S1,S2 ∈ P: S1 ∩S2 =; and
⋃

P = X
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2.2 Partially Ordered Sets

2.2.1 Basic Definitions

Definition 2.2. A partial order on a set P is a binary relation ≤ on P that is reflexive,

transitive and anti-symmetric. The pair (P,≤) is called a partially ordered set or a poset. A

poset is said to be finite if P is finite. Otherwise, it is said to be infinite. Two elements x and y

from P are said to be comparable if x ≤ y or y≤ x; otherwise, they are said to be incomparable.

A subset S ⊆ P is said to be a chain (resp. an antichain) if all elements of S are pairwise

comparable (resp. incomparable). The set of all chains (resp. antichains) of P is denoted by C (P)

(resp. A (P)). If all elements of a poset are comparable (i.e. P is a chain) then the poset is said to

be a totally ordered set.

Notation. From now on, (P,≤) denotes an arbitrary poset and S is a subset of P.

In general other binary relations are induced from ≤:

• The strict order of ≤, denoted <, and given by:

(∀p, q ∈ P) p < q ⇐⇒ p ≤ q and p 6= q

The partial order ≤ is then the reflexive closure of < (i.e <= = ≤).

• The dual order of ≤, denoted ≥, and given by:

(∀p, q ∈ P) p ≥ q ⇐⇒ q ≤ p

The poset (P,≥) is called the dual poset of (P,≤). The strict dual order is denoted >.

Before going deeper into the order-theoretic notions, we present below some posets:

• The Powerset Poset. A basic example of a partial order is the powerset ℘(E) on some

set E ordered by set inclusion (i.e. (℘(E),⊆)). Indeed, the binary relation ⊆ induces a

partial order between subsets of E since it is reflexive (i.e. (∀A ∈℘(E)) A ⊆ A), transitive

((∀A,B,C ∈ ℘(E)) A ⊆ B and B ⊆ C then A ⊆ C and anti-symmetric (i.e. (∀A,B ∈ ℘(E))

A ⊆ B and B ⊆ A then A = B). It is also important to note that ⊆ does not induce a total

order. Indeed, for E = {a,b, c}, {a,b} and {b, c} are incomparable.

• A Poset on Natural Numbers. The set of natural numbers N is totally ordered by the ≤
relation. One can easily verify that (N,≤) is a partial order where every pair of elements

are comparable. This poset is clearly infinite.

• Another Poset on Natural Numbers. It is clear that for one set, one can create many

partial orders on it depending on the purpose. For instance, the set of natural numbers

N can also be partially ordered by the relation divides /: e.g. 2 divides 4 but 6 and 10 are

incomparable.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



2.2. PARTIALLY ORDERED SETS 23

;

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}(1)

1

35

15

2

610

30

4

1220

60(2)

0

1

...

n

...(3)

a b

c d

>
(4)

Figure 2.1: From left to right: (1) Poset (℘({a,b, c}),⊆). (2) Poset of divisors of 60 ordered by
divides. (3) The totally ordered set of natural numbers (N,≤) and (4) A Poset built on {a,b, c,d,>}
because we are free to think about other posets without giving any meaning to them.

Fig. 2.1 presents a diagrammatic representation of the aforementioned posets. We will also

see further in this section why these diagrams, namely Hasse Diagrams or Line Diagrams,

encompass all the information of a (finite) partial order.

We will now dive on some base definitions and operators on partially ordered sets.

Definition 2.3. Let p, q ∈ P, then:

• The principal ideal of p is the set of all elements below p: ↓ p = {x ∈ P | x ≤ p}.

• The principal filter of p is the set of all elements above p: ↑ p = {x ∈ P | p ≤ x}.

• The interval [p, q] is the set of elements between p and q: [p, q]=↑ p∩ ↓ q

Definition 2.4. Let p, q ∈ P, we say that p is a direct lower neighbor of q or q is a direct
upper neighbor of p and we write p ≺ q iff: [p, q]= {p, q}. In other words, p < q and there is no

elements strictly between p and q. The set of direct lower (resp. upper) neighbors of an element

p ∈ P is denoted lowers(p) (resp. uppers(p)) and is given by:

lowers(p)= {x ∈ P | x ≺ p} uppers(p)= {x ∈ P | p ≺ x}

The Hasse Diagram. Any finite poset (P,≤) can be represented by a Hasse diagram where:

• Elements of P are represented by small symbols in the plane.

• If a,b ∈ P and a ≺ b, the symbol corresponding to a is depicted below the symbol correspond-

ing to b (order is read bottom-up) and a segment of line is drawn between them.

It is clear that the partial order can be deduced from this diagram using reflexivity (i.e.

we know that all elements are below themselves) and transitivity (i.e. if a ≺ b ≺ ... ≺ c then

a ≤ c). More formally, the partial order ≤ related to the binary relation ≺ is then the reflexive and

transitive closure of the relation ≺, that is: < = ≺T and ≤ = <=. Fig. 2.1 depicts the Hasse diagram

of the three aforementioned posets. Consider, for instance the poset (℘({a,b, c}),⊆) depicted in

(1) (i.e. the powerset of {a,b, c} ordered by set inclusion). We have ;⊆ {a}⊆ {a,b}⊆ {a,b, c}. The

notions presented in the beforehand definitions are illustrated below.

• The principal filter of {a} is the set of supersets of {a}, that is: ↑ {a}= {{a}, {a,b}, {a, c}, {a,b, c}}.

• The principal ideal of {a,b} is the set of subsets of {a,b}, that is: ↓ {a,b}= {;, {a}, {b}, {a,b}}.
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• The interval [{a}, {a,b}] is the subsets that are between {a} and {a,b}, that is [{a}, {a,b}]=
{{a}, {a,b}}. Hence, we can say that {a} and {a,b} are direct neighbors.

• We have lowers({a})= {;} and uppers({a})= {{a,b}, {a, c}}.

Definition 2.5. A set S ⊆ P is said to be a lower ideal or a downset if:

(∀s ∈ S,∀x ∈ P) x ≤ s ⇒ x ∈ S

Dually, it is said to be an upper ideal or an upset if:

(∀s ∈ S,∀x ∈ P) x ≤ s ⇒ x ∈ S

The set of all lower (resp. upper) ideals of (P,≤) is denoted O(P) (resp. U (P)).

Definition 2.6. The down closure (resp. up closure) of S, denoted by ↓ S (resp. ↑ S), is

given by the set of elements in P that have at least one element s ∈ S above (resp. below) it. In

other words, it associates the smallest downset (resp. upset) enclosing S and it is given by:

↓ S = {x ∈ P | (∃s ∈ S) x ≤ s}= ⋃
s∈S

↓ s ↑ S = {x ∈ P | (∃s ∈ S) s ≤ x}= ⋃
s∈S

↑ s

Note 2.1. One can show that U (P)= {↑ S | S ⊆ P} and O(P)= {↓ S | S ⊆ P}.

Example 2.1. Reconsider Fig. 2.1 (1), the set S = {{a}, {a,b}, {a, c}} is not a lower ideal in

(℘({a,b, c}),⊆) since ; 6∈ S but ; is below {a}. It is also not a upper ideal since {a,b, c} 6∈ S.

We have ↓ S = {;, {a}, {a,b}, {a, c}} and ↑ S = {{a}, {a,b}, {a, c}, {a,b, c}} which are respectively lower

ideals and upper ideals.

Definition 2.7. An element x ∈ P is said to be a lower bound (resp. upper bound) of S if it

is below (resp. above) all elements of S. The set of lower (resp. upper) bounds of S in P, denoted

by S` (resp. Su), is given by:

S` = {x ∈ P | (∀s ∈ S) x ≤ s}= ⋂
s∈S

↓ s Su = {x ∈ P | (∀s ∈ S) s ≤ x}= ⋂
s∈S

↑ s

Example 2.2. Consider the poset of natural numbers ordered by division (N, /). For x, y ∈N, the

principal filters ↓ x and ↓ y will get respectively the set of their divisors while {x, y}` =↓ x∩ ↓ y

will get the set of their common divisors. For example, the set of divisors of 30 is given by

↓ 30= {1,2,3,5,6,10,15,30} while the set of divisors of 12 is given by ↓ 12= {1,2,3,4,6,12}. Hence,

the set of common divisors of 30 and 12 is given by: {12,30}` =↓ 30∩ ↓ 12= {1,2,3,6}.

Note 2.2. It is worth to notice that, particularly, for the empty set ;∈℘(P), ↑;=↓;=; and

;` =;u = P. Note also that S` (resp. Su) is a lower (resp. upper) ideal in (P,≤).
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2.2.2 Creating Partial Orders from Pre-orders

We will explore here in this section an interesting transformation that allows one to build an

equivalence relation and a partial order from any pre-order. Recall that given a set E, a binary

relation → on E is said to be a pre-order on E iff it is reflexive and transitive. The pair (E,→) is

said to be a pre-ordered set.

Proposition 2.1. Let the binary relation ↔ on E be defined as follow:

↔ := {(a,b) ∈ E×E | a → b and b → a}

The relation ↔ is an equivalence relation on E.

Proof. The proof is trivial for the three properties.

Note 2.3. Recall that the quotient set E\↔ forms a partition on E.

Theorem 2.1. Let the binary relation ≤ on the quotient set E\↔ be defined as follow:

≤ := {(A,B) ∈ (E\↔)× (E\↔) | (∃a ∈ A,∃b ∈ B) a → b}

The pair (E\↔,≤) is a poset called the quotient poset of →.

Proof. Recall that elements of E\ ↔ are not empty sets. Showing the reflexivity and

transitivity of ≤ is trivial. Let us show now that ≤ is anti-symmetric. Let A,B ∈ E\ ↔ s.t.

A ≤ B and B ≤ A. Hence ∃a ∈ A,∃b ∈ B s.t. a → b and ∃c ∈ A,∃d ∈ B s.t. d → c. By definition of

the quotient set we have a → c, c → a, b → d and d → b. Hence, b → d → c → a. We conclude

that a ↔ b or in other words A = B.

Example 2.3. Fig. 2.2 (left) presents a pre-ordered set (E,→) with E = {a,b, c,d, e, f }. Notice that

reflexivity and transitivity is omitted from the representation of the pre-order, i.e. the pre-order is

actually the result of the reflexive and transitive closure of the represented relation. The quotient

set of the related equivalence relation is the strongly connected component of the directed

graph and the quotient poset is represented via its Hasse diagram in Fig. 2.2 (right).

a b

c d

e f

{a,b, c}

{e, f }

{d}

Figure 2.2: A preorder on {a,b, c,d, e, f } (left) and its quotient poset (right)
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2.2.3 Minimal, Minimum, Infimum and their Duals

If we consider a subset S ⊆ P, informally speaking, not all elements in S or P\S have the same

position. Some elements x are in the “interior” of S, that is ∃y, z ∈ S such that y < x < z; while

some others are on its “border”, that is there is no element in S below (or above) them. These

elements in the border are called minimal and maximal elements (see Definition 2.8).

Definition 2.8. An element s ∈ S is said to be a minimal (resp. maximal) element in S if all

its strict lower (resp. upper) bounds are outside S. The set of minimal (resp. maximal) elements

of S is the set denoted by min(S) (resp. max(S)) and given by:

min(S)= {s ∈ S | ↓ s∩S = {s}} max(S)= {s ∈ S | ↑ s∩S = {s}}

Note 2.4. One should note that for any S ⊆ P, minimal (maximal) elements are incomparable.

In other words, min(S) and max(S) are antichains in (P,≤).

Example 2.4. Consider Fig. 2.1 (1), let be S = {{a}, {a,b}, {a, c}} . We have min(S) = {{a}} and

max(S)= {{a,b}, {a, c}}.

Before going further on characterizing the elements of a subset S, one important observation

is made in Lemma 2.1 on the relationship between minimal elements of a subset S and the

minimal elements of its up-closure ↑ S.

Lemma 2.1. We have:

min(↑ S)= min(S) max(↓ S)= max(S)

Proof. We prove by double inclusion the property min(↑ S)= min(S):

(⊆) Let x ∈ min(↑ S) and suppose that x 6∈ S. Since x ∈ min(↑ S) we have x ∈↑ S, that is

∃y ∈ S s.t. y≤ x but y 6= x since x 6∈ S. Thus, ∃y ∈↑ S s.t. y≤ x but y 6= x. Thus y ∈↓ x∩ ↑ S

with y 6= x which contradicts the fact that x ∈ min(↑ S) (i.e. ↓ x∩ ↑ S = {x}). We conclude

that x ∈ S. Suppose now that x 6∈ min(S), that ∃y ∈ S s.t. y ≤ x and y 6= x. Hence,

y ∈↑ S∩ ↓ x which contradicts the fact that x ∈ min(↑ S). Thus x ∈ min(S). We conclude

that min(↑ S)⊆ min(S).

(⊇) Let x ∈ min(S), thus x ∈↑ S. Suppose that x 6∈ min(↑ S) that is ∃y ∈↑ S such that y≤ x

and y 6= x. Thus ∃z ∈ S such that z ≤ y≤ x with z 6= x. Hence, z ∈↓ x∩S with z 6= x which

contradicts the fact that x ∈ min(S). We conclude that x ∈ min(↑ S) or more generally

min(S)⊆ min(↑ S).

One can follow the same steps to show that max(↓ S)= max(S).

We have seen in Example 2.4 that maximal elements of a subset S could be multiple and

in such case they are incomparable. On the same example, we have seen that the considered

subset S has a unique minimal element which at the same time is below all elements of S, this

particular element is said to be a minimum and is formally presented in Definition 2.9.
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⊥
a0

a1

...

>

b0

b1

Figure 2.3: there is a breach on the wall for S = {⊥,b0,b1}∪ {ai | i ∈N}, i.e. max(S)= {b1}.

Definition 2.9. An element m ∈ S is said to be:

• A minimum or a smallest element of S if it is below all elements of S. Formally:

m ∈ S and (∀s ∈ S) m ≤ s

• A maximum or a greatest element of S if it is above all elements of S. Formally:

m ∈ S and (∀s ∈ S) s ≤ m

The minimum (resp.maximum) does not necessarily exist. Moreover, if it exists then it is

unique. Formally, we say that:

• S has a minimum or S is minimum-handle2 if S`∩S 6= ;.

• S has a maximum or S is maximum-handle if Su ∩S 6= ;.

Example 2.5. Consider Fig. 2.1 (1), subset S = {{a}, {a,b}, {a, c}} is a minimum-handle since {a}

is a subset of all elements of S. However, S does not have a maximum since elements {a,b} and

{a, c} are incomparable and has no element above them in S (i.e. they are maximal elements).

Note 2.5. If the poset has a maximum, we call it the top element and we denote it >. Dually,

if the poset has a minimum, we call it the bottom element and we denote it ⊥.

It is important to understand the difference between maximal elements and the maximum

element. In fact, when a subset S has a maximum m then max(S)= {m}. In other words, “If S

has a maximum then S has a unique maximal element”. However, the converse (i.e. “If S has

a unique maximal element then S has a maximum”) is not true. In fact, this statement holds

for finite posets but does not necessarily hold for an arbitrary poset. Consider, for instance the

infinite poset (P,≤) depicted in Fig. 2.3 where P = {⊥,>,b0,b1}∪ {ai | i ∈N} with:

• ⊥≤ b0 ≤ b1 ≤>.

• (∀i ∈N) ⊥≤ ai, ai ≤ ai+1 and ai ≤>.

2The terms minimum-handle and maximum-handle used in Definition 2.9 and the terms minimal-handle
and maximal-handle used in Definition 2.10 come from Martinez et al’s. [129] paper on multilattices.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



28 CHAPTER 2. ORDER-THEORETIC FOUNDATIONS

Consider, the subset S = P\{>} = {⊥,b0,b1}∪ {ai | i ∈N}. It is clear that: max(S) = {b1}. That is,

S has a single maximal element. Yet, S has no maximum (i.e. is not a maximum-handle) since

b1 is incomparable with elements ai for all i ∈N. In fact, elements ai has no maximal elements

in max(S) above them (i.e. S 6⊆↓ max(S)). Definition 2.10 formalizes the following (intuitive)

property (i.e. every element in S has at least one maximal element above it).

Definition 2.10. We say that S is:

• A minimal-handle if ∀s ∈ S, ∃m ∈ min(S) such that m ≤ s. In other words:

S ⊆↑ min(S)

• A maximal-handle if ∀s ∈ S, ∃m ∈ max(S) such that s ≤ m. In other words:

S ⊆↓ max(S)

Note that for an upper ideal S ∈ U (S) (i.e. S =↑ S), saying that S is minimal-handle is

equivalent to say that S =↑ min(S). One should note also that in the case where S is minimal-

handle and S has a unique minimal element then S is minimum-handle. It is also worthwhile to

notice that, trivially, for any poset we have that ; is a minimal-handle and a maximal-handle

since ↑;=↓;=;. However, it is neither minimum-handle nor maximum-handle since the ; is

empty by its essence and does not contain any element.

Definition 2.11. We have:

• The largest lower bound of S (i.e. the maximum of S`) if it exists is called the infimum or

the meet of S and is denoted inf (S) or
∧

S. Moreover, we have S` =↓ (
∧

S), that is:

(∀p ∈ P) p ∈ S`⇐⇒ p ≤∧
S

• The smallest upper bound of S (i.e. the minimum of Su) if it exists is called the supremum
or the join of S and is denoted sup(S) or

∨
S. Moreover, we have Su =↑ (

∨
S), that is:

(∀p ∈ P) p ∈ Su ⇐⇒∨
S ≤ p

There is a tight relationship between the minimum and the infimum. In fact, it is easy to

see that if S has a minimum then the infimum of S is its minimum. In other words, having the

minimum is a stronger property than having an infimum. One important remark is the fact that

for any S ⊆ P, Su has an infimum if and only if it has a minimum. That is, having a minimum is

no longer a stronger property than having an infimum when a set of upper bounds is considered.

Lemma 2.2 formalizes and generalizes this observation and its dual.

Lemma 2.2. Let (P,≤) be a poset, S ⊆ P, we have:

• For any A ⊆ S`, if A has a join
∨

A ∈ P then
∨

A ∈ S`.

• For any A ⊆ Su, if A has a meet
∧

A ∈ P then
∧

A ∈ Su.
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Proof. Let A ⊆ S`, we have by definition: (∀s ∈ S ∀a ∈ A) a ≤ s, that is S ⊆ Au. Since
∨

A is

the least upper bound of A and all elements of S are upper bounds of A then: (∀s ∈ S)
∨

A ≤ s.

We conclude that
∨

A ∈ S`. Same steps can be followed to show the second part of the

Lemma.

Proposition 2.2. In case of existence, we have:∧
S =∨

S`
∨

S =∧
Su

Proof. Suppose that S has its infimum
∧

S. By definition,
∧

S is the maximum of S`. Let

us show now that this maximum is the join of S` that is the minimum of
(
S`

)u. Since
∧

S

is the maximum of S` then
∧

S is an upper bound of S` (i.e.
∧

S ∈ ∧(
S`

)u). Moreover, let

u ∈ (
S`

)u, then (∀x ∈ S`) x ≤ u. Hence, since
∧

S ∈ S`, we have for all u ∈ (
S`

)u :
∧

S ≤ u.

Since
∧

S ∈ ∧(
S`

)u then
∧

S is the minimum of
(
S`

)u (i.e.
∧

S = ∨
Su). One can prove the

other property dually.

Note 2.6. According to Proposition 2.2 and since for a poset (P,≤) we have ;` =;u = P, then

the empty set has a meet (resp. join) iff the poset is upper-bounded (resp. lower bounded):∧;=∨
P => ∨;=∧

P =⊥.

2.2.4 Summary

Table 2.1 resumes the different notations and properties on subsets we have learned so far.
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Notation Meaning with (P,≤) a poset, S ⊆ P and p, q ∈ P

℘(P) Powerset of P: ℘(P)= {A | A ⊆ P}
C (P) Set of chains on (P,≤)
A (P) Set of antichains on (P,≤)

↑ p Principal filter of p : ↑ p = {x ∈ P | p ≤ x}
↓ p Principal ideal of p : ↓ p = {x ∈ P | x ≤ p}

[p, q] Interval [p, q]=↑ p∩ ↓ q

p ≺ q p is a lower neighbor of q that is [p, q]= {p, q}
lowers(p) lower neighbors of p: lowers(p)= {x ∈ P | x ≺ p}= max(↓ p\{p})
uppers(p) upper neighbors of p: uppers(p)= {x ∈ P | p ≺ x}= min(↑ p\{p})

min(S) Set of minimal elements of S : min(S)= {s ∈ S |↓ s∩S = {s}}
max(S) Set of maximal elements of S : max(S)= {s ∈ S |↑ s∩S = {s}}

↑ S Up-closure ↑ S =⋃
s∈S ↑ s

↓ S Down-closure ↓ S =⋃
s∈S ↓ s

U (P) Set of upper ideals (upsets) : U (P)= {↑ S | S ⊆ P}
O(P) Set of lower ideals (downsets) : O(P)= {↓ S | S ⊆ P}

Su Set of upper bounds of S : Su =⋂
s∈S ↑ s

S` Set of lower bounds of S : S` =⋂
s∈S ↓ s

Property Meaning

S is maximum-handle S has a maximum m ∈ S, that is: S ⊆↓ m
S is minimum-handle S has a minimum m ∈ S, that is: S ⊆↑ m

S is maximal-handle S ⊆↓ max(S)
S is minimal-handle S ⊆↑ min(S)

S has an infimum S` is maximum-handle and this maximum is denoted
∧

S
S has a supremum Su is minimum-handle and this minimum is denoted

∨
S

Table 2.1: Base Order-theoretic notations and properties
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2.3 Partially Ordered Sets Properties

We explore in this section some properties of posets. The classification relies in general on the

properties that some subsets can have with regard to the existence of their maximum, minimum,

maximal elements, minimal elements, infimum or supremum.

2.3.1 Bounded Posets

A poset (P,≤) is said to be:

• Upper-bounded if it has a top element >∈ P such that:

(∀p ∈ P) p ≤>
• Lower-bounded if it has a bottom element ⊥∈ P such that:

(∀p ∈ P) p ≥⊥
• Bounded if it is both upper-bounded and lower-bounded.

It is clear that not all posets are lower-bounded. In fact, even finite posets can suffer from the

lack of the existence of a bottom element. For instance, Fig. 2.1 (4) depicts a finite poset that is

non lower bounded. If a poset (P,≤) is not lower-bounded, one can create simply an associated

lower-bounded poset (P⊥,≤) by adding a bottom element ⊥ to P (i.e. P⊥ = P ∪ {⊥}. This operation

is called lifting. A dual lifting is the operator of creating a upper-bounded poset (P>,≤) starting

from a non upper-bounded poset (P,≤).

For a bounded poset, an element p ∈ P is said to be an atom (resp. coatom) if p is a direct

upper (resp. lower) neighbor of the bottom (resp. top) element. Formally, the atoms and the

coatoms of a bounded poset are given by:

atoms(P)= uppers(⊥)= min (P\{⊥}) coatoms(P)= lowers(>)= max (P\{>})

Example 2.6. For any set E, the poset (℘(E),⊆) is a bounded poset where the bottom element is

; and the top element is E. The atoms are the singleton elements (i.e. atoms(E) = {{e} | e ∈ E})

and the coatoms are given by coatoms(E)= {E\{e} | e ∈ E}.

Interestingly, the poset of natural numbers ordered by division (N, /) is also bounded, the

bottom element is 1 and the top element is 0 (if we allow 0/0). The atoms of this infinite poset are

the prime numbers while there is no coatoms.

Note 2.7. Please note that:

• If (P,≤) is lower-bounded, and by recalling that ;u = P by definition, then:∨;=⊥
• If (P,≤) is upper-bounded, and by recalling that ;` = P by definition, then:∧;=>
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2.3.2 Chain-Finite Posets

A Bounded poset requires that the entire poset has both a maximum and a minimum or, equiva-

lently, the empty set has both a supremum and an infimum. Other class of posets require other

subsets of the poset to have their maximum or minimum.

A poset is said to be well-founded3 or has the minimal condition if all its subsets are

minimal-handles (cf. Definition 2.10). An equivalent statement to the minimal condition is that

the poset does not have infinite descending chains. That is, all chains in the poset have their

minimum. This condition is called the Descending Chain Condition (DCC).
Dually, a poset is said to be dually well-founded or has the maximal condition if all its

subsets are maximal-handles (cf. Definition 2.10). Again, this latter statement is equivalent to

say that the poset does not have infinite ascending chains. That is, all chains in the poset has

their maximum. This condition is called the Ascending Chain Condition (ACC).
A poset is then said to be chain-finite if it has both ACC and DCC condition, that is all chains

of the poset are finite. Analogically, a poset is said to be antichain-finite if all its antichains

are finite. Clearly, one can show that a poset is finite if and only if it is both chain-finite and

antichain-finite.

Example 2.7. Consider the poset depicted in Fig. 2.3. It is clear that the poset is DCC. However,

it does not has the ACC since it does have an infinitely ascending chain a0 < a1 < ...< an < ....

2.3.3 Chain-Complete Posets

We have seen in Section 2.2.3 that if a subset has a maximum then it has also a supremum.

However, requiring the existence of the maximum is much stronger than requiring the existence

of the supremum. Here lie a new structure of posets called chain-complete ones.

Definition 2.12. A poset (P,≤) is said to be:

• Chain-complete if all chains in P, including ;, has its supremum.

• Dually chain-complete if all chains in P, including ;, has its infimum.

• Doubly chain-complete if it is both chain-complete and dually chain-complete.

Note 2.8. It is clear that all chain-complete posets are lower-bounded since it is required

that the empty set has its supremum which is the bottom element (i.e.
∨; = ⊥). However, a

chain-complete poset does not necessarily have a top element. Dual observation can be made

about dually chain-complete posets. Hence, it is worthwhile to notice that finite posets are not

necessarily chain-complete because of the (hated) empty set. A chain-finite poset is then doubly

chain-complete if and only if it is bounded. More generally, posets having the ACC are chain-

complete if and only if they have a bottom element. Dually, posets having the DCC are dually

chain-complete if and only if they have a top element.

3A totally ordered set that is well-founded is said to be well-ordered

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



2.3. PARTIALLY ORDERED SETS PROPERTIES 33

Example 2.8. We have:

• The finite poset depicted in Fig. 2.1 (4) is dually chain-complete but not chain-complete due

to the lack of the bottom element.

• The poset depicted in Fig. 2.3 is doubly chain-complete even if it is not ACC. Indeed, the

infinitely ascending chain a0 < a1 < ... has a supremum which is the top element >.

• The totally ordered set of real numbers (R,≤) is not bounded hence not chain-complete.

However, the extended real line (R,≤) (i.e. R=R∪ {−∞,∞}) is doubly chain-complete.

• Consider the extended line of rational numbers (Q,≤) with Q = Q∪ {−∞,∞} is neither

chain-complete nor dually chain-complete. Consider for instance subsets A and B where:

A = {q ∈Q | q2 < 2 or q ≤ 0} B =Q\A = {q ∈Q | q2 ≥ 2 and q > 0}

Recall the positive element q ∈ Q such that q2 = 2 does not exist (i.e.
p

2 is irrational).

Hence, one can write:

A = {q ∈Q | q2 < 2 or q ≤ 0} B =Q\A = {q ∈Q | q2 > 2 and q > 0}

Therefore, A does not have a maximum and B does not have a minimum. Moreover, Au = B

and B` = A. Hence, the chain A does not have a supremum and the chain B does not have

an infimum. This makes (Q,≤) not (dually) chain complete. It is clear that {A,B} form a

partition on Q. In fact, the pair (A,B) is said to be a Dedekind’s Cut. Interestingly, this

cut characterizes uniquely the irrational number
p

2 separating A and B.

2.3.4 Lattices and Complete Lattices

We will now consider a very important structure in this manuscript which is the Lattice structure.

Definition 2.13. A poset (P,≤) is said to be:

• A meet-semilattice if for all nonempty finite subsets S ⊆ P, S has a meet (infimum).

• A join-semilattice if for all nonempty finite subsets S ⊆ P, S has a join (supremum).

• A lattice if it is both meet-semilattice and join-semilattice.

• A complete lattice if for all subsets S ⊆ P including ;, S has its meet and join.

Example 2.9. Below some examples of lattices and non-lattices:

• For any (finite or infinite) set E, the poset (℘(E),⊆) is a complete lattice and it is called

the powerset lattice. The meet is the set intersection while the join is the set union.

For instance, Fig. 2.1 (1) depicts the Hasse diagram of the powerset lattice (℘({a,b, c}),⊆).

We have {{a, c}, {a,b}}` = {;, {a}} and {{a, c}, {a,b}}u = {{a,b, c}}. Therefore
∧

{{a, c}, {a,b}}= {a}

while
∨

{{a, c}, {a,b}}= {a,b, c}.

• The set of natural numbers ordered by division relation (N, /) is a lattice where the meet is

the greatest common divisor gcd and the join is the least common multiple lcm. Fig. 2.1

depicts the Hasse Diagram of a portion of this lattice. For instance the meet of {12,30} is
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gcd(12,30)= 6 (i.e. recall that the common divisors are {12,30}` =↓ 12∩ ↓ 30= {1,2,3,6}). In

fact this lattice is a complete lattice which top element is 0 and bottom element is 1.

• The poset depicted in Fig. 2.1 (4) is neither a meet-semilattice nor a join-semilattice. Indeed,

we have {a,b}u = {c,d,>} which minimal elements are {c,d} (i.e. {a,b}u has no minimum).

Thus, {a,b} does not have a join. Moreover, we have {c,d}` = {a,b} which is an antichain.

Therefore, {c,d} does not have a meet.

Note 2.9. We have:

• All totally ordered sets (P,≤) are lattices. Indeed, for any nonempty finite set (i.e. chain)

S ⊆ P, the infimum is the minimum element while the supremum is the maximum one.

• Since complete lattices require that any subset of P has a meet and join, complete lattices

are by definition bounded.

• Finite lattices are trivially complete lattices.

We will now explore some important properties that (complete) lattices have.

2.3.4.1 Pairs as building blocks

There is a weaker, yet equivalent, definition of meet-semilattices and join-semilattices. In fact,

we have the following equivalences:

(P,≤) is a meet-semilattice⇐⇒ (∀p, q ∈ P) {p, q} has a meet

(P,≤) is a join-semilattice⇐⇒ (∀p, q ∈ P) {p, q} has a join

It is clear that (P,≤) is a meet-semilattice then all pairs of elements have a meet since pairs

are nonempty finite sets. For the converse, one can build the infimum of a nonempty finite set S

using pairs of elements as follow:

• If S = {p1} then its infimum is p1 since S` =↓ p1.

• If S = {p1, p2} then the infimum exists under the hypothesis.

• For larger finite sets {p1, p2, ..., pn}, one can show that:∧
{p1, p2, ..., pn}= {∧

{p1, p2}, p3, ..., pn
}

This operation is iterated until obtaining a pair of element which meet exists.

Therefore, rather than checking for all nonempty finite subsets S ⊆ P if S has a meet and a

join, one should check the existence of the meet and the join of only pair of elements to prove that

the considered poset is a lattice.

From an algebraic point of view, one can create two binary operators ∧ and ∨ on a lattice

based on the meet and the join:

(∀p, q ∈ P) p∧ q :=∧
{p, q} and p∨ q :=∨

{p, q}

These two operators are associative, commutative and idempotent.
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2.3.4.2 Complete semilattices are complete lattices

Again, there is a weaker, yet equivalent, definition of complete lattices: A poset is a complete

lattice if and only if all its subsets have a meet. Indeed, recall that (cf. proposition 2.2), in case of

existence of
∨

S, we have: ∨
S =∧

Su(2.1)

Hence, supposing that all subsets have a meet, we obtain that they have also a join too. It is clear

that the dual property is also true.

Note 2.10. After seeing equation 2.1, one could be tempted to say that all finite meet-

semilattices are finite lattices. This statement is false since, even if for all S the set Su is

finite, the set Su could be empty and thus there is no guarantee that it has its meet. Henceforth,

we have the two following observations:

• A finite meet-semilattice is a lattice if and only if it is upper-bounded.

• A finite join-semilattice is a lattice if and only if it is lower-bounded.

2.3.4.3 Complete lattices and chain-completeness

It is clear that complete lattices are (doubly) chain-complete by definition. Theorem 2.2 presents

a stronger statement.

Theorem 2.2 (Theorem 3.24, page 68 in [148]). A lattice is complete if and only if it is

chain-complete.

2.3.4.4 Suborders of sublattices

For any poset (P,≤) and any subset S ⊆ P, one can build a subposet (S,≤) (i.e. a restriction of

≤ onto S). However, subposets do not necessarily preserve the properties of its parent poset.

Definition 2.14 presents important subposets that preserve some properties of their parent

complete lattices.

Definition 2.14. Let (P,≤) be a complete lattice with
∧

P and
∨

P denote respectively the meet

and the join. Let S ⊆ P be a subset. Subposet (S,≤) is said to be a:

• Closure system or a meet-structure on (P,≤) if: (∀A ⊆ S)
∧

P A ∈ S. Subposet (S,≤) is

then a complete lattice where the meet
∧

S =∧
P . Note that >P ∈ S.

• Kernel system or a join-structure on (P,≤) if: (∀A ⊆ S)
∨

P A ∈ S. Subposet (S,≤) is then

a complete lattice where the meet
∨

S =∨
P . Note that ⊥P ∈ S.

• Sublattice of (P,≤) if for all nonempty and finite A ⊆ S we have
∧

P A ∈ S and
∨

P A ∈ S.

• Complete sublattice of (P,≤) if it is both closure and kernel system.

Example 2.10. Fig. 2.4 depicts examples of subposets of the powerset lattice (℘({a,b, c,d}),⊆).

Subposet (1) is neither a meet-semilattice nore a join-semilattice. Subposet (2) is a subposet of
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;

{b} {c}

{a,b, c} {b, c,d}

{a,b, c,d}(1)

;

{a,b} {b, c}

{a,b, c,d}(2)

;

{a,b} {b, c}

{b}

{a,b, c,d}(3)

;

{a,b} {b, c}

{a,b, c}

{a,b, c,d}(4)

;
{b}

{b,d}

{a,b,d} {b, c,d}

{a,b, c,d}(5)

Figure 2.4: From left to right: (1) A subposet of (℘({a,b, c,d}),⊆) that is neither a meet-semilattice
nor a join-semilattice. (2) A subposet of (℘({a,b, c,d}),⊆) that is a (complete) lattice but neither a
closure system not a kernel system. (3) A closure system of (℘({a,b, c,d}),⊆). (4) A kernel system
of (℘({a,b, c,d}),⊆). (5) A complete sublattice of (℘({a,b, c,d}),⊆).

powerset lattice (℘({a,b, c,d}),⊆) that is complete lattice. However, the meet and the join are

not preserved. Hence, it is neither a closure system nor a kernel system on (℘({a,b, c,d}),⊆).

Subposets depicted in (3) and (4) are respectively closure and kernel systems on (℘({a,b, c,d}),⊆)

but are not complete sublattices. Subposet (5) is clearly a complete sublattice since it does

preserve both set intersection and set union.

Example 2.11. For any poset (P,≤):

• The poset of upper ideals (U (P),⊆) and the poset of lower ideals (O(P),⊆) are complete

sublattices of the complete lattice (℘(P),⊆).

• The poset (DM(P),⊆) where DM(P) := {
S` | S ⊆ P

}
is a closure system on (℘(P),⊆) but not

necessarily a kernel system. The notation DM comes from Dedekind-MacNeille and it is

related to an important notion presented in Section 2.4.4.1.

Note 2.11. One should note that a sublattice could be a complete lattice but still not a complete

sublattice. For instance, consider a set E and an arbitrary proper subset S ( E. It is clear that

(℘(S),⊆) is a sublattice of (℘(E),⊆). Moreover, since (℘(S),⊆) is the powerset lattice it is a complete

lattice. However, this sublattice is still not a complete sublattice since the top element of (℘(S),⊆)

is not in (℘(E),⊆) (i.e. the meet of the emptyset is not preserved). In other words, (℘(S),⊆) is just

a kernel system but not a closure system because of the empty set.

2.3.4.5 Other properties on lattices

Some lattices have more properties than others with regard to their meet and their join. We will

not explore here exhaustively the different properties of lattices but just give a glimpse of some

notions that we will be using in this dissertation.

Definition 2.15. Let (P,≤) be a complete lattice, a subset D ⊆ P is said to be ∧-dense (i.e.

meet-dense) iff any p ∈ P can be seen as a meet of some S ⊆ D. Formally:

(∀p ∈ P ∃S ⊆ D) p =∧
S.
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The ∨-denseness is defined dually.

A meet-dense subset of a complete lattice is then a subset from which one can rebuild the

lattice based only on its element and the meet. However, what is the smallest subset dense in

(P,≤). To define this smallest subset, we need to define the notion of irreducibility.

Definition 2.16. Let (P,≤) be a complete lattice, we say that p ∈ P is:

• ∧-irreducible if it can not be represented as the infimum of strictly larger elements.

Formally: p 6=∧
{x ∈ P | p < x}. The set of all ∧-irreducible elements is denoted M(P).

• ∨-irreducible if it can not be represented as the supremum of strictly smaller elements.

Formally: p 6=∨
{x ∈ P | x < p}. The set of all ∨-irreducible elements is denoted J(P).

In fact, meet-irreducible elements are the elements that must appear in a dense subset since

someone cannot obtain them using the meet of other elements. Formally, for any complete lattice

(P,≤) and for D ⊆ P:

D is ∧ -dense⇒M(P)⊆ D D is ∨ -dense⇒J(P)⊆ D

Obviously, the set of coatoms of a complete lattice (i.e. lower neighbors of the top elements)

are meet-irreducible since the only element that strictly larger than them is the top element.

Formally, we have for any complete lattice (P,≤):

coatoms(P)⊆M(P) atoms(P)⊆J(P)

Theorem 2.3 show a strong link between denseness and irreducibility in finite lattices.

Theorem 2.3 (related to Proposition 12 in [80]). Let (P,≤) be a finite lattice, then M(P)

and J(P) are respectively the smallest ∧-dense and ∨-dense subsets in P.

Last but not least, a complete lattice is said to be atomistic if atoms(P) is join-dense. Dually,

it is said to be coatomistic if atoms(P) is meet-dense. Note that, we have J(P) = atoms(P) in

an atomistic lattice and M(P)= coatoms(P) in a coatomistic one.

Example 2.12. We have:

• For any arbitrary subset E, the powerset lattice (℘(E),⊆) is atomistic. Indeed, any subset

can be built using the union (i.e. join) of singleton sets (i.e. atoms). The powerset lattice

(℘(E),⊆) is also coatomistic.

• In a totally ordered set (T,≤), we have M(T)=J(T)= T.

• Consider the complete lattice of natural numbers ordered by division (N,≤). It is clear that

the lattice is not atomistic since 4 is join-irreducible (i.e. it has a unique lower neighbor). In

fact, one can verify that the set of join-dense elements is given by:

J(N)=
{

pi | i ∈N∗ and p ∈ atoms(N)
}

In fact, this is directly linked with the fact that any natural number has a (unique)

factorization using the prime numbers (i.e. the atoms here).
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Other particular lattices are studied in the literature, we draw here the reader attention to to

distributive lattices.

Definition 2.17. Let (P,≤) be a lattice. A lattice is said to be distributive iff the associated

infimum ∧ and supremum ∨ binary operator verify the following properties ∀p, q,w ∈ P:

p∧ (q∨w)= (p∧ q)∨ (p∧w) and p∨ (q∧w)= (p∨ q)∧ (p∨w)

Note 2.12. An example of a usual distributive lattice is the powerset lattice. Other variant

of lattices exists such as semi-distributive lattices and completely distributive lattices (see

[80, 148]). Note that if (Q,≤) is a sublattice of some distributive lattice (P,≤) then (Q,≤) is also

distributive.

2.3.5 Multilattices and Complete Multilattices

The term multilattice was introduced for the first time by Benado in [22]. This notion has not

received much interest for a long period, but has been unearthed and revisited in the beginning

of the 21st century [50, 128, 129] for other purpose. While this may seem illogical, we will start

by presenting multilattices following [50, 128, 129]. We will then understand the main difference

between Benado’s multilattices [22] and Martinez’s multilattices [50, 128, 129] afterward.

Multilattices, as their names imply, are related in their definition with lattices. Simply put,

multilattices are a relaxation of lattices where rather than demanding that the set of lower

(resp. upper) bounds of each nonempty finite subset is minimum-handle (resp. maximum-handle),

multilattices demand that the set of lower (resp. upper) bounds of each nonempty finite subset is

minimal-handle (resp. maximal-handle).

Definition 2.18. A poset (P,≤) is said to be:

• A meet-multisemilattice if for all nonempty finite S ⊆ P we have S` is maximal-handle,

that is:

S` = ↓ max
(
S`

)
(M)

The set max(S`) is called the multi-infimum of S and is denoted minf(S).

• A complete meet-multisemilattice if condition (M) holds for all S ⊆ P.

• A join-multisemilattice if for all non empty subsets S ⊆ P we have Su is minimal-handle,

that is:

Su = ↑ min
(
Su)

(J)

The set min(Su) is called the multi-supremum of S and is denoted msup(S).

• A complete join-multisemilattice if condition (J) holds for all S ⊆ P.

Note that when property (M) (resp. property (J)) holds for some subset S ⊆ P, we will say

that S has all its multi-infima (resp. S has all its multi-suprema).
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abc0

abc1

...

abcn

...

a b c

ab0 ab1 . . . abn . . . bc0bc1. . .bcn. . .ac0 ac1 . . . acn . . .

Figure 2.5: For all x, y in this poset, {x, y} has all its multi-infima. That is, this poset is a
multistructure following [22], however it is not a multilattice following definition 2.18.

Note 2.13. It is clear that all finite posets, or more generally chain-finite posets, are complete

multilattices. Hence, conversely to lattices, the notion of multilattices has no importance when

finite posets are considered. One should also note that all lattices are multilattices and all

complete lattices are complete multilattices.

Example 2.13. Rather than giving an example about a multilattice, we show here that the

property of being a multilattice does not trivially hold. Consider for instance the poset (P,≤)

depicted in Fig. 2.6 where P = {ci | i ∈N}∪ {a,b} s.t. (∀i ∈N) ci ≤ ci+1, ci ≤ a and ci ≤ b. It is clear

that {a,b}` = {ci | i ∈N}. Moreover, max({ci | i ∈N})=;. Hence, {a,b}` 6=↓ max({a,b}`). Therefore,

(P,≤) is not a meet-multisemilattice.

In the following of this section, we revisit some important differences between multilattices

and lattices. We will try to answer the three properties discussed on lattices:

1. Are pairs the building blocks of a multilattice?

2. Are complete meet-multisemilattice complete multilattices?

3. What is the relationship between complete multilattices and chain-completeness?

2.3.5.1 The pairs are no longer the building blocks

Recall that the pairs are the building blocks of lattices as we have seen in section 2.3.4.1. But

does this property remain for multilattices? Let us start by defining the two following conditions

for a given poset (P,≤):

(∀x, y ∈ P) {x, y}` =↓ max
(
{x, y}`

)
(MM2)

(∀x, y ∈ P) {x, y}u =↑ min
(
{x, y}u)

(MJ2)

In fact, Benado defined multilattices in the seminal paper [22] as posets for which condition

(MM2) and condition (MJ2) hold. Such posets will be called Benado’s multilattices in this paper.
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It is clear that all multilattices following definition 2.18 are Benado’s multilattices. However,

do we have an equivalence? The answer is negative as shown in [129] and in the following

counter-example.

Example 2.14. Let be the poset (P,≤) depicted in Fig. 2.5 where P = {abci | i ∈ N}∪ {abi | i ∈
N}∪ {aci | i ∈N}∪ {bci | i ∈N}∪ {a,b, c} and:

• (∀i ∈N) abci ≤ abi, abci ≤ aci and abci ≤ bci.

• (∀i ∈N) abi ≤ a and abi ≤ b.

• (∀i ∈N) aci ≤ a and aci ≤ c.

• (∀i ∈N) bci ≤ b and bci ≤ c.

One could verify that this poset is a Benado’s multilattice (i.e. both (MM2) and (MJ2) conditions

hold), however, this poset is still not a multilattice following definition 2.18. Indeed, considering

the non empty finite set {a,b, c}, we have {a,b, c}` = {abci | i ∈ N} while max({a,b, c}`) = ;. It

follows that {a,b, c}` 6=↓ max({a,b, c}`).

Hence, the pairs are no longer the building blocks of a multilattice (i.e. being a multilattice

following Definition 2.18 is a more restrictive property than being a Benado’s multilattice).

2.3.5.2 No more “Buy one, get one for free”

Again, another adage for lattices (P,≤) is the “Buy one, get one for free”. Indeed, if all subsets in

P have their meet then all subsets have also their joins. In other words, complete semilattices

are complete lattices. However, this adage does no longer hold for multilattices. In fact, a

complete join-multisemilattice could be not a meet-multisemilattice. Indeed, Fig. 2.6 presents

a complete join-multisemilattice since it has the Descending Chain Condition. Yet, it is not a

meet-multisemilattice (i.e. {a,b}` = {ci | i ∈N} with max({a,b}`)=;). It follows that the “buy one,

get one for free” adage does no longer hold for complete multilattices.

2.3.5.3 Chain-complete posets are complete meet-multisemilattice

We have seen that all chain-complete lattices are complete lattices and vice-versa. What is then

the relationship between complete multilattices and chain-complete posets? Theorem 2.5 gives

an answer to this question. However, the proof of this theorem requires the usage of the so called

Zorn’s Lemma4.

Definition 2.19 (Zorn’s Lemma). Let (P,≤) be a poset, if every chain in (P,≤) has an upper-

bound, then (P,≤) has a maximal element. Formally:

(∀C ∈C (P)) Cu 6= ; =⇒ max(P) 6= ;

A stronger statement, yet equivalent, of Zorn’s Lemma is stated in the following theorem:

4I am grateful to JOZEF PÓCS for attracting my attention to Zorn’s Lemma.
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a b

...

cn

...

c1

c0

Figure 2.6: A complete join-
multisemilattice but not a meet-
multisemilattice

c0

c1

...

cn

...

e0 e1

a0a1. . .an. . .

Figure 2.7: A complete multilattice that is
not chain-complete

Theorem 2.4 (Zorn’s Lemma II). Let (P,≤) be a poset, we have:

(∀C ∈C (P)) Cu 6= ; =⇒ P =↓ max(P)

Zorn’s Lemma need to be considered as an axiom since it is equivalent to axiom of choice
(AC) (see Definition 2.1).

Theorem 2.5. Under Axiom of Choice (AC) assumption, we have:

• All chain-complete posets are complete meet-multisemilattice.

• All dually chain-complete posets are complete join-multisemilattice.

• All doubly chain-complete posets are complete multilattices.

Proof. We show here the first statement of the theorem. Let (P,≤) be a chain-complete

poset and let S ⊆ P. We show here that S` =↓ max(S`). It is straightforward by definition

and independently from any assumption that ↓ max(S`) ⊆ S`. It remains to show that

S` ⊆↓ max(S`). Since (P,≤) is chain-complete, then every C ⊆ S` has its join
∨

C ∈ P. Hence,

according to Lemma 2.2 and since C ⊆ S` then
∨

C ∈ S`. Thus every chain C in the sub-poset

(S`,≤) has an upper bound
∨

C ∈ S`. According to Zorn’s Lemma, and by recalling that the

Axiom of choice is equivalent to Zorn’s Lemma , we have S` =↓ max(S`). Hence, (P,≤) is a

complete meet-multisemilattice. The other statements can be showed dually.

Note 2.14. Please note that double chain-completeness is only a sufficient condition (under

the Axiom of Choice) to have a complete multilattice but not a necessary one. Indeed, one can

show that the poset depicted in Fig. 2.7 is a complete multilattice (Remark that ∀i ∈N : ci ≤ ai,

ci ≤ ci+1, ai ≤ e0 and ai ≤ e1) but not chain-complete since the chain C = {ci | i ∈N} does not have

a join. Indeed, Cu = {e0, e1} which is an antichain (i.e. Cu has two minimal elements).
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2.3.6 Summary

Table 2.2 summarizes the different poset properties that we have learned so far. Please refer to

Table 2.1 of the different notations used here. Fig. 2.8 depicts different posets properties and

their relationship. One should note that some links are broken because of the empty set (i.e. the

non existence of the top and/or the bottom element). For instance, bounded chain-finite posets

are doubly chain-complete.

Last but not least, we invite the reader attention to the notion of the direct product between

posets that we will use in this manuscript.

Definition 2.20. The direct product of the two posets (P1,≤) and (P2,≤) is the poset denoted

(P1,≤)× (P2,≤) and given by:

(P1,≤)× (P2,≤) := (P1 ×P2,≤)

(x1, x2)≤ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≤ y2

More generally, let I be an arbitrary Index set and let (Pi,≤) be a poset for each i ∈ I. The

direct product of posets (Pi,≤) is the poset denoted by×i∈I (Pi,≤) and given by:

×
i∈I

(Pi,≤) :=
(×

i∈I
Pi,≤

)
(xi)i∈I ≤ (yi)i∈I ⇐⇒ (∀i ∈ I) xi ≤ yi

Interestingly, the direct product poset preserves all its properties from the starting posets.

For instance, if for all i ∈ I, poset (Pi,≤) are complete lattices then the direct-product poset is also

a complete lattice. Moreover:

(∀S ⊆×
i∈I

Pi)
∧

S = (∧
Si

)
i∈I and

∨
S = (∨

Si
)

i∈I with Si =
{
xi | (x j) j∈I ∈ S

}
Properties of being bounded, chain-finite, chain-complete or complete multilattices are also

transferred to the direct product poset.
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Property Meaning with (P,≤) poset

Finite P is finite

ACC or maximal condition (∀S ∈℘(P)) S is maximal-handle (i.e. S ⊆↓ max(C))
DCC or minimal condition (∀S ∈℘(P)) S is minimal-handle (i.e. S ⊆↑ min(C))

Chain-finite Both properties above (i.e. all chains are finite)

Chain-complete (∀C ∈C (P)) C has a supremum
Dually Chain-complete (∀C ∈C (P)) C has an infimum
Doubly Chain-complete Both properties above

Upper-bounded Set P has a maximum called the top and denoted >
Lower-bounded Set P has a minimum called the bottom and denoted ⊥

Bounded Both properties above

Complete Meet-multisemilattice (∀S ∈℘(P)) S` is maximal-handle
Complete Join-multisemilattice (∀S ∈℘(P)) Su is minimal-handle

Complete Multilattice Both properties above

Meet-multisemilattice (∀S ∈℘(P) | S nonempty and finite) S` is maximal-handle
Join-multisemilattice (∀S ∈℘(P) | S nonempty and finite) Su is minimal-handle

Multilattice Both properties above

Benado’s Multilattice (∀p, q ∈ P) {p, q}` is maximal-handle and
{p, q}u is minimal-handle

Complete lattice (∀S ∈℘(P)) S` is maximum-handle and
Su is minimum-handle

Meet-semilattice (∀p, q ∈ P) {p, q}` is maximum-handle
Join-semilattice (∀p, q ∈ P) {p, q}u is minimum-handle

Lattice Both properties above

Table 2.2: Partially ordered set properties
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finite

chain-finite

antichain-finite

ACC

doubly chain-complete

chain-complete

complete multilattice

complete meet-multisemilattice

meet-multisemilattice

multilattice

Benado’s multilattice

complete lattice

lattice

meet-semilattice

Under (AC) assumption

Implication

Figure 2.8: Posets properties and their relationships. The dual properties (DCC, join-
multisemilattices, etc.) and their relationships can be deduced analgeously.
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2.4 Morphisms on Partially Ordered Sets

In this section, we will deal with mappings between partially ordered sets and their properties.

We will particularly be interested on the behavior of the mappings when dealing with lattices

and complete lattices defined earlier in this chapter.

2.4.1 Basic Definitions

Definition 2.21. Let be the two posets (P,≤) and (Q,≤). A mapping f : P →Q is said to be:

• Order-preserving or monotone: (∀x, y ∈ P) x ≤ y⇒ f (x)≤ f (y).

• An Order-embedding: (∀x, y ∈ P) x ≤ y⇔ f (x)≤ f (y)

• An Order-isomorphism: if f is a surjective order embeddig (i.e. f [P]=Q).

• Order-reversing: (∀x, y ∈ P) x ≤ y⇒ f (y)≤ f (x)

• An Order anti-embedding: (∀x, y ∈ P) x ≤ y⇔ f (y)≤ f (x)

Note 2.15. Please note that:

• Order-preserving and order-reversing mappings present the following problem: even if

x, y ∈ P are incomparable, f (x) and f (y) can become comparable. This is not the case when

dealing with order embeddings and order anti-embeddings.

• Order-embedding and order-reversing mappings are injective mappings. Indeed:

f (x)= f (y)⇒ f (x)≤ f (y) and f (y)≤ f (x)⇒ x ≤ y and y≤ x ⇒ x = y

• If there exists an order-embedding f : P →Q we say that (Q,≤) is an embedding of (P,≤).

• If there exists an order-isomorphism f : P →Q we say that (P,≤) is order-isomorphic to

(Q,≤) and we denote (P,≤)∼= (Q,≤). Note that sets P and Q are isomorphic too since f is a

bijection. One should note also that order-isomorphic posets are technically indistinguish-

able in the sense that one can study the properties of a poset through some poset that is

order-isomorphic to it.

When dealing with mappings between complete lattices, order-preserving mappings does not

preserve necessarily the meet and the join. We have in fact the following proposition:

Proposition 2.3. Let be two complete lattices (P,≤) and (Q,≤) and an order-preserving

mapping f : P →Q, we have:

(∀S ⊆ P) f
(∧

S
)≤∧

f [S] (∀S ⊆ P) f
(∨

S
)≥∨

f [S]
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⊥1

a1 b1

>1

(P,≤)

⊥2

a2 b2

c2

>2

(Q,≤)f : P →Q

Figure 2.9: An order-embedding that is join-preserving but not meet-preserving

Proof. Let us show (∀S ⊆ P) f (
∧

S) ≤ ∧
f [S]. Let S ⊆ P, we have (∀s ∈ S)

∧
S ≤ s. Hence,

(∀s ∈ S) f (
∧

S)≤ f (s). It follows that: (∀s ∈ S) f (
∧

S)≤ f (s). Therefore: f (
∧

S)≤∧
f [S]. One

can follow exactly the same steps to show the other inequality.

Definition 2.22. Let be the two complete lattices (P,≤) and (Q,≤). A mapping f : P → Q is

said to be:

• Meet-preserving if: (∀S ⊆ P) f (
∧

S)=∧
f [S]

• Join-preserving if: (∀S ⊆ P) f (
∨

S)=∨
f [S]

One should note that if a mapping is meet-preserving or join-preserving then it is order-

preserving. The following proposition states an important property of order-isomorphismes.

Proposition 2.4. Let be two complete lattices (P,≤) and (Q,≤). if f : P → Q be an order-

isomorphism then it is both meet-preserving and join-preserving.

Proof. Let S ⊆ P. Since f is order-preserving then f (
∧

S)≤∧
f [S] as shown in Proposition

2.3. Let us show now that f (
∧

S)=∧
f [S]. Suppose that f (

∧
S)<∧

f [S]. since f is surjective,

we have (∃x ∈ P) f (x)=∧
f [S]. Hence, f (

∧
S)< f (x). Since f is an order-embedding, it follows

that
∧

S < x. On the other hand, we have (∀s ∈ S) f (x) < f (s). Using again the fact that f

is an order-embedding we conclude that (∀s ∈ S) x < s. In other words, x < ∧
S leads to a

contradiction with the fact that
∧

S < x and < is a strict order. One can follow the same steps

to show that f is also join-preserving.

Note 2.16. An order-embedding is not necessarily meet-preserving (or join-preserving). Con-

sider for instance the mapping f : P → Q depicted in Fig. 2.9. It is clear that f is not meet-

preserving. Indeed: ⊥2 = f (⊥1)= f (a1 ∧b1) 6= f (a1)∧ f (b1)= a2 ∧b2 = c2.

Proposition 2.5. Let (P,≤) be a complete lattice and (Q,≤) be an arbitrary poset. if f : P →Q

is an order-embedding then ( f [P],≤) is a complete lattice and for any X ⊆ P we have:∧
f [P]

f [X ]= f
(∧

P
X

) ∨
f [P]

f [X ]= f
(∨

P
X

)
Clearly, (P,≤) and ( f [P],≤) are order-isomorphic.
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Proof. Let X ⊆ P, we need to show that the meet f [X ] in f [P] is f (
∧

P X ). Formally:

(∀x ∈ X )
(
(∀p ∈ P) f (p)≤ f (x)⇐⇒ f (p)≤ f

(∧
P

X
))

Since f is an order embedding, the above expression is equivalent to:

(∀x ∈ X )
(
(∀p ∈ P) p ≤ x ⇐⇒ p ≤∧

P
X

)
which is true by definition. One can follow the same steps to proof the second part of the

proposition.

Note 2.17. Proposition 2.5 shows that order embeddings are still interesting in the sense that

they preserve the structures of the starting poset. However, one shoud keep in mind that even

if (Q,≤) and ( f [P],≤) are complete lattices, ( f [P],≤) is not a complete sublattice of (Q,≤). This

property demands to the embedding to be surjective (i.e. isomorphism).

2.4.2 Endomorphisms on Partially Ordered Sets

An endomorphism on a poset (P,≤) is a morphism f : P → P, i.e. a mapping from a poset to

itself. When dealing with such morphisms, other interesting properties arise and play an essential

role in lattice theory. Let us start by defining some notions around endomorphisms.

Definition 2.23. Let (P,≤) be a poset. An endomorphism f : P → P is said to be:

• Extensive (∀p ∈ P) p ≤ f (p)

• Contractive or Intensive: (∀p ∈ P) f (p)≤ p

• Idempotent: (∀p ∈ P) f ( f (p))= f (p).

Moreover, we say that p ∈ P is a fixpoint of f iff f (p)= p.

Note 2.18. The set of fixpoints of an idempotent mapping f is given by f [P]= { f (p) | p ∈ P}.

We have seen in Example 2.10 that if a poset (P,≤) is a complete lattice, not any subposet

(S,≤) of (P,≤) is a complete lattice. Interestingly, we have the following fact.

Proposition 2.6 (Lemma 1 and Proposition 3 in [77]). A subposet (S,≤) of a complete

lattice (P,≤) is a complete lattice if and only if there exists an order-preserving and idempotent

mapping f : P → P s.t. f [P]= S. Moreover, with
∨

P ,
∧

P denoting respectively the meet and join

in P and
∨

S,
∧

S denoting respectively the meet and join in S, we have:

(∀A ⊆ S)
∧
S

A = f
(∧

P
A

)
and

∨
S

A = f
(∨

P
A

)

Note 2.19. In fact, as stated in Corollary 1 in [77], a subposet (S,≤) of a complete lattice (P,≤)

is a complete lattice iff it is the set of fixpoints of some order-preserving mapping f : P → P.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



48 CHAPTER 2. ORDER-THEORETIC FOUNDATIONS

Hence order-preserving and idempotent endomorphism on complete lattices induce by their

image a complete lattice. However, such a complete lattice does not necessarily preserve the

meets or the joins.

Let us consider the following example.

Example 2.15. Consider, poset (S,⊆) (2) in Fig. 2.4 is a subposet of the complete lattice (℘(E),⊆)

with E = {a,b, c,d}. Clearly, (S,≤) is a complete lattice but does not preserve meet nor join, i.e.

consider {a,b} and {b, c} which meet in S is ; rather than {b} and join is {a,b, c,d} rather than

{a,b, c}. Following the proof of Lemma 1 in [77], one can create a mapping f :

f :℘(E)→℘(E), A 7→∨
S

{B ∈ S | B ⊆ A}

which is clearly order-preserving and idempotent with f [℘(E)] = S. For instance, we have

f ({a,b, c}) =∨
S{;, {a,b}, {b, c}} = {a,b, c,d} and f ({a,b,d}) =∨

S{;, {a,b}} = {a,b}. This shows that

f is neither extensive nor intensive.

Adding the property of extensivity or contractivity to an idempotent and order-preserving

mappings form well-known operators defined below.

Definition 2.24. Let (P,≤) be a poset, we have:

• A Closure operator φ : P → P is an order-preserving, idempotent and extensive mapping

on (P,≤). Intuitively, a closure operator φ associates to each element of P the smallest
fixpoint of φ above it. Formally: (∀x ∈ P ∀y ∈φ[P]) x ≤ y⇔φ(x)≤ y.

• A Kernel or Interior operatorψ : P → P is an order-preserving, idempotent and contractive

mapping on (P,≤). Intuitively, a kernel operator ψ associates to each element of P the

largest fixpoint of φ below it. Formally: (∀x ∈ P ∀y ∈ψ[P]) y≤ x ⇔ y≤ψ(x).

We have seen in Proposition 2.6 that the image of a complete lattice by an order-preserving

and idempotent operator form a complete lattice. Theorem 2.6 shows that adding the extensivity

(resp. intensivity) to the operator makes the image complete lattice a closure (resp. kernel)

system.

Theorem 2.6. Let (P,≤) be a complete lattice, we have:

• For any closure operator φ : P → P, Poset (φ[P],≤) is a closure system.

• For any kernel operator ψ : P → P, Poset (ψ[P],≤) is a kernel system.

Proof. Let us show that φ[P] is a closure system that is for C ⊆φ[P] we have
∧

C ∈φ[P]. Let

C ⊆φ[P], since φ is extensive then
∧

C ≤φ(
∧

C). On the other hand, we have (∀c ∈ C)
∧

C ≤ c.

Hence, since φ is order-preserving and idempotent (∀c ∈ C) φ(
∧

C) ≤ φ(c) = c. Therefore,

φ(
∧

C) ≤ ∧
C. We conclude that

∧
C = φ(

∧
C) or in other words,

∧
C ∈ φ[P]. One can follow

the same steps to show the second part of the theorem.
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Dually, one can build closure and kernel operators starting from an arbitrary subset of a

complete lattice as shown in Theorem 2.7.

Theorem 2.7. Let (P,≤) be a complete lattice and let S ⊆ P be an arbitrary subset:

• The mapping φS given below is a closure operator on (P,≤).

φS : P → P, p 7→φS(p)=∧
{s ∈ S | p ≤ s}

Poset (φS[P],≤) is the smallest closure system encapsulating S and φS[P]= {
∧

A | A ⊆ S}.

• The mapping ψS given below is a kernel operator on (P,≤).

ψS : P → P, p 7→ψS(p)=∨
{s ∈ S | s ≤ p}

Poset (ψS[P],≤) is the smallest kernel system encapsulating S and ψS[P]= {
∨

A | A ⊆ S}.

Proof. Let us show that φS has the three properties of a closure operator:

• φS is extensive. This property is trivial since p ∈ {s ∈ S | p ≤ e}` and the meet is the

greatest element. Thus: p ≤φS(p).

• φS is order-preserving. let p1 ≤ p2 be two elements in P. It is clear that:

{s ∈ S | p2 ≤ s}⊆ {s ∈ S | p1 ≤ s}

{s ∈ S | p1 ≤ s}` ⊆ {s ∈ S | p2 ≤ s}`

Thus φS(p1)≤φS(p2). Since the l.h.s. of the first is below the maximum of the r.h.s.

• φE is idempotent. In fact we have:

{s ∈ S |φS(p)≤ s}= {s ∈ S | p ≤ s}

Inclusion ⊆ holds since p ≤φS(p). The second inclusion ⊇ comes from the definition.

Indeed, since φS(p) is a lower bound for {s ∈ S | p ≤ s}, then for any s ∈ S such that

p ≤ s we have φS(p)≤ s. We conclude the idempotence:

φS(φS(p))=∧
{s ∈ S |φS(p)≤ s}=∧

{s ∈ S | p ≤ s}=φS(p)

Let us show now that φS[P]= {
∧

A | A ⊆ S} by double inclusion:

(⊆) Let c ∈ φS[P], that is ∃p ∈ P s.t. c = φS(p). Hence ∃A ⊆ S s.t. c = ∧
S. Thus c ∈ {

∧
A |

A ⊆ S}.

(⊇) We have ∀s ∈ S, φS(s)= s. Thus S ⊆φS[P]. Since (φS[P],≤) closure system, we have:

(∀A ⊆φS[P])
∧

A ∈φE[P]. Particularly, for A ⊆ S, we have
∧

A ∈φS[P]. We conclude

that {
∧

A | A ⊆ S}⊆φS[P].

One can follow the same steps to prove the second part of the theorem.

An important corollary of Theorem 2.7 is the following.
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Corollary 2.1. Let (P,≤) be a complete lattice and let (S,≤) be a subposet of (P,≤), we have:

• If (S,≤) is a closure system then φS[P]= S. Moreover, the join
∨

S is given by:

(∀A ⊆ S)
∨
S

A =φS

(∨
P

A
)

Intuitively, φS associates to each element in P the smallest element in S above p. One can

say that φS gives the closest approximation of p in S from above.

• if (S,≤) is a kernel system then ψS[P]= S. Moreover, the meet
∧

S is given by:

(∀A ⊆ S)
∧
S

A =ψS

(∧
P

A
)

Intuitively, ψS associates to each element in P the greatest element in S below p. One can

say that ψS gives the closest approximation of p in S from below.

Note 2.20. Analogously to Proposition 2.6, Corollary 2.1 and Theorem 2.6 together tell that a

subposet of a complete lattice is a closure (resp. kernel) system if and only if it is the image of a

closure (resp. kernel) operator.

Please note also that with the help of Theorem 2.7, one can define two others closure operator

Φ and Ψ on the complete lattice (℘(P),⊆) based respectively on φS and ψS. Intuitively, operator Φ

(resp. Ψ) associates to any subset S ⊆ P, the smallest closure system Φ(S) (resp. smallest kernel

system Ψ(S)) on the complete lattice (P,≤) enclosing it.

Φ :℘(P)→℘(P),S 7→φS[P]= {∧
A | A ⊆ S

}
Ψ :℘(P)→℘(P),S 7→ψS[P]= {∨

A | A ⊆ S
}

The fixpoints of Φ (resp. Ψ) are the set of all possible closure (resp. kernel) systems on (P,≤).

We have built several complete lattices starting from a morphism that is idempotent and

order-preserving. Yet, until now, neither of these complete lattices were complete sublattices. Let

us analyze the following example.

Example 2.16. Consider the closure system of (℘(a,b, c,d),⊆) depicted in Fig. 2.4 (3) which is

clearly not a complete sublattice of (℘(a,b, c,d),⊆). The associated closure operator φS is:

• not meet-preserving: we have: φS({a}∩ {c}) = φS(;) = ;. On the other hand, φS({a})∩
φS({c})= {a,b}∩ {b, c}= {c}. Hence: φS({a}∩ {c}) 6=φS({a})∩φS({c}).

• not join-preserving: we have: φS({a}∪{c})=φS({a, c})=φS({a,b, c,d}). On the other hand,

φS({a})∪φS({c})= {a,b}∪ {b, c}= {a,b, c}. Hence: φS({a}∪ {c}) 6=φS({a})∪φS({c}).

Same remarks hold for the kernel operator ψS associated to the kernel system depicted in

Fig. 2.4 (4).

Hence, the image of a complete lattice by a closure operator is not necessarily a complete

sublattice. Interestingly, to obtain a complete sublattice with a closure operator, one need a

join-preserving closure operator as stated in Theorem 2.8.
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Theorem 2.8 (Theorem 4.2 in [54]). Let (P,≤) be a complete lattice. We have:

• If φ is a join-preserving closure on (P,≤) then (φ[P],≤) is a complete sublattice of (P,≤).

• If ψ is a meet-preserving kernel on (P,≤) then (ψ[P],≤) is a complete sublattice of (P,≤).

• If (S,≤) is complete sublattice of (P,≤) then φS and ψS are respectively a join-preserving

closure operator and meet-preserving kernel operator.

Note 2.21. To sum up, Let (P,≤) be a complete lattice. Subposet (S,≤) of (P,≤) is:

• A complete lattice iff it is the image of P with an order-preserving and idempotent operator.

• A closure system iff it is the image of P with a closure operator.

• A kernel system iff it is the image of P with a kernel operator.

• A complete sublattice iff it is the image of P with a join-preserving closure operator and/or

a meet-preserving kernel operator.

Before leaving this section, let us analyze a usual closure operator on posets.

Proposition 2.7. For any poset (P,≤), we have:

• Up-closure ↑ is a join-preserving closure operator on (℘(P),⊆).

• Down-closure ↓ is a join-preserving closure operator on (℘(P),⊆).

Proof. Let us show that ↑:℘(P) →℘(P) is a closure operator on (℘(P),⊆). It is clear that

S ⊆↑ S (i.e. ↑ is extensive) by definition (see Definition 2.6). For S ⊆ T in ℘(P), we have if

x ∈↑ S, then ∃y ∈ S ⊆ T s.t. y ≤ x. That is, x ∈↑ T. Thus, (∀S,T ∈℘(P)) ↑ S ⊆ T =⇒ ↑ S ⊆↑ T

(i.e. ↑ is order-preserving). Let us show that ↑ is idempotent. It is clear that ↑ S ⊆↑↑ S since ↑
is extensive. It remains to show that ↑↑ S ⊆↑ S. Let x ∈↑↑ S, that is ∃y ∈↑ S such that y≤ x.

That is ∃z ∈ S such that z ≤ y≤ x. We conclude that x ∈↑ S.

Let us show now that ↑ is also join-preserving. According to Proposition 2.3 and since ↑ is

order-preserving then: ↑ (
⋃

S∈SS)⊇⋃
S∈S ↑ S. Let us show inclusion ⊆. Let p ∈↑ (

⋃
S∈SS) then

∃q ∈⋃
S∈SS s.t. p ≥ q. By definition of the union, ∃S ∈S s.t. q ∈ S. Therefore, ∃S ∈S ∃q ∈ S

p ≥ q. In other words, ∃S ∈S s.t. p ∈↑ S. Hence, p ∈⋃
S∈S ↑ S. Therefore, ↑ is join-preserving.

One can follow the same steps to show that ↓:℘(P)→℘(P) is also a join-preserving closure

operator on (℘(P),⊆).

Note 2.22. According to proposition 2.7 and Theorem 2.8 and since U (P) is the set of fixpoints

of ↑ then (U (P),⊆) is a complete sublattice of (℘(P),⊆) i.e. (U (P),⊆) is closed under both arbitrary

intersections and arbitrary unions. Same goes with subposet (O(P),⊆). Moreover, since (℘(P),⊆)

are completely distributive (see [80] for the definition), then posets (U (P),⊆) and (O(P),⊆) are

completely distributive complete lattices.
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2.4.3 Galois Connections

Galois connections are mappings that were studied thoroughly in the literature (see for example

[61, 137]). In this thesis, they provide another way to create closure operators. We define this

notion below.

Definition 2.25 (from [137]). Let (P,≤) and (Q,≤) be two posets, let f : P →Q and g : Q → P

be two mappings. The pair ( f , g) is said to be a Galois Connection iff:

• f and g are order-reversing.

• f ◦ g and g ◦ f are extenstive.

Equivalently (cf. proposition 4 in [80]), the pair ( f , g) is said to be a Galois Connection iff:

(∀p ∈ P,∀q ∈Q) q ≤ f (p) ⇐⇒ p ≤ g(q)

Whenever a Galois connection is formed between two posets, two closure operators can be

built as shown in the following theorem.

Theorem 2.9 (Proposition 5 and Proposition 8 in [80]). Following the notation of Defi-

nition 2.25 and for ( f , g) a Galois connection, mappings f ◦ g and g ◦ f are respectively closure

operators on (P,≤) and (Q,⊆). Moreover, we have f = f ◦ g ◦ f and g = g ◦ f ◦ g.

Note 2.23. Please note that the set of fixpoints of f ◦ g is given by g[Q] and the set of fixpoints

of g ◦ f is given by f [P]. Hence, if (P,≤) and (Q,≤) are complete lattices, ( f [P],≤) and (g[Q],≤)

are respectively closure systems in (Q,≤) and (P,≤) (see Theorem 2.6).

We have seen in Proposition 2.7 that up-closure ↑ and down-closure ↓ are join-preserving

closure operators. The proposition below states also an important fact about the pair of operators(
`,u

)
(see Definition 2.7).

Proposition 2.8. For any poset (P,≤), the pair
(
`,u

)
forms a Galois connection on (℘(P),⊆).

Proof. We need to show the different properties of a Galois connection. Let A,B ∈℘(P) s.t.

A ⊆ B. Let x ∈ B`, hence (∀b ∈ B) x ≤ b. Since A ⊆ B, then (∀b ∈ A) x ≤ b. Therefor, x ∈ A`.

In other words, ` is order-reversing. Same steps can be followed to show that u is also

order-reversing. Let us show now that for any A ∈℘(P), we have A ⊆ (A`)u. This property is

trivial for the bottom element ;. Suppose now that A 6= ; and let a ∈ A. By definition, we

have (∀b ∈ A`) b ≤ a, in other words, a ∈ (A`)u. Same proof can be done to show that u◦` is

also extensive. This concludes the proof.

Since
(
`,u

)
is a Galois connection on (℘(P),⊆). Fixpoints of the related closure operators u◦`

and `◦u form closure systems. Such closure systems are very important ones in Lattice theory

and will be discussed in the following section.
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2.4.4 Poset Completions

Let (P,≤) and (Q,≤) be two posets. We say that (Q,≤) is an embedding of (P,≤) iff there exists

an order-embedding f : P →Q. Moreover, since order-embeddings are injective mappings, we say

that (P,≤) is smaller5 than (Q,≤).

Definition 2.26 (from [149]). Let (P,≤) be a poset and (L,≤) be a complete lattice, if (L,≤) is

an embedding of (P,≤) then (L,≤) is said to be a completion of (P,≤).

The most basic completion of a poset (P,≤) is the complete lattice (℘(P),⊆) where the order-

embedding is ϕ : P → ℘(P),P 7→↓ p. We will present now other usual completions which are

the Dedekind MacNeille Completion and the Alexandrov completion. We will investigate

after in more details the Antichain completion and its relationship with multilattices.

2.4.4.1 Dedekind-MacNeille completion

Definition 2.27. The Dedekind-MacNeille Completion of (P,≤) is the poset (DM(P),⊆)

where: DM(P) := {S` | S ⊆ P}. The order-embedding ϕ is given by: ϕ : P → DM(P), p 7→↓ p.

Interestingly, the Dedekind-MacNeille completion is the smallest completion of a poset (cf.

Theorem 5.3.8 in [149]). By smallest, we mean that for any other completion (L,≤) of a poset, one

can embeds the Dedekind-MacNeille completion (DM(P),≤) into the completion (L,≤). Therefore,

if (P,≤) is a complete lattice then it is order-isomorphic to (DM(P),≤). Which is a clear statement

since in a complete lattice (P,≤), S` are principal ideals for any S ⊆ P, i.e. DM(P)=φ[P].

One should notice also that since
(
`,u

)
form a Galois connection on (℘(P),⊆) (see Proposi-

tion 2.8), DM(P) represents simply the set of fixpoints of the mapping (·)u`.

2.4.4.2 Alexandrov completion

Definition 2.28. The Alexandrov Completion of (P,≤) is the poset (O(P),⊆) where O(P) is

the set of lower-ideals of (P,≤). The order-embedding ϕ is given by: ϕ : P →O(P), p 7→↓ p.

Please notice that since (O(P),⊆) is a complete sublattice of (℘(P),⊆) then it is completely

distributive. Hence, the Alexandrov completion provides a completely distributive completion of

a given poset rather than the Dedekind-MacNeille one which is not necessarily distributive. But,

as said beforehand, Dedekind-MacNeille completion is smaller than the Alexandrov one.

5The relationship smaller is a preorder between sets. Moreover, if P is smaller than Q and Q is smaller than P
then P and Q are isomorphic thanks to Schröder–Bernstein theorem.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



54 CHAPTER 2. ORDER-THEORETIC FOUNDATIONS

2.4.4.3 Antichain completion

Definition 2.29. The antichain embedding of (P,≤) is the poset (A (P),5) s.t.:

• A (P) is the set of all antichains of (P,≤).

• The order 5 is given by (∀A,B ∈A (P)) A5B ⇔↓ A ⊆↓ B.6

• The order embedding ϕ from (P,≤) to (A (P),5) is given by

ϕ : P →A (P),a 7→ {a}

Conversely to the aforementioned completions, the antichain embedding is not necessarily

a completion. Works [27] and [51] had discussed the properties of such an embedding. In fact,

when P has the ACC, (A (P),≤) is a distributive lattice, where the meet and the join are given

by S1 ∧S2 = max(↓ S1∩ ↓ S2) and S1 ∨S2 = max(S1 ∪S2), respectively. Moreover, (A (P),5) is

always a ∨-semilattice whatever the nature of the poset (P,≤), but not necessarily a lattice.

Paper [27] formulated a sufficient and necessary condition in order to have (A (P),5) be a lattice:

∀A,B ∈A (P) ∃C ∈A (P) ↓ A∩ ↓ B =↓ C.

We take the opportunity here to underline an important link between the antichain embedding

and multilattices. Before expliciting this link, let us take a close look to the following Lemma.

Lemma 2.3. Let (P,≤) be a poset and let A (P) be the set of its antichain. We have ∀S ⊆ P :

(∃C ∈A (P)) S =↓ C ⇒ C = max(S)

Proof. The case of S = ; is trivial since ↓ ; = ; and max(;) = ;. Let be a nonempty set

S ⊆ P s.t. (∃C ∈A (P)) S =↓ C. Let us show that C = max(S):

• C ⊆ max(S): let c ∈ C ⊆ S, suppose that c 6∈ max(S) that is ∃x ∈ S s.t. c < x. Since S =↓ C

then ∃c2 ∈ C s.t. x ≤ c2. Thus ∃c2 ∈ C such that c > c2 which is a contradiction with the

fact that C is an antichain.

• C ⊇ max(S): Suppose ∃a ∈ max(S) s.t. a 6∈ C. We have a ∈ S =↓ C, that is: ∃c ∈ C s.t.

a < c (since a 6∈ C). However, since S =↓ C then C ⊆ S. Thus, ∃c ∈ S s.t. a < c which is in

contradiction with the fact that a ∈ max(S).

This concluds the proof.

Proposition 2.9. Let (P,≤) be a poset and let (A (P),5) be its antichain embedding:

• If (A (P),5) is a lattice then (P,≤) is a meet-multisemilattice. Moreover, if (A (P),5) has a

top element then P =↓ max(P).

• if (A (P),5) is a complete lattice, i.e. a completion of (P,≤), then (P,≤) is a complete

meet-multisemilattice.

6Note that 5 does not induce an order in ℘(P), but just a pre-order, since the anti-symmetry does not hold
(see [51]). Indeed, consider poset ({a,b},≤) where a ≤ b. Since ↓ {a,b}=↓ {b}= {a,b}, we have {a,b}5 {b} and {b}5 {a,b}.
Yet, {a,b} 6= {b}. Therefor, 5 is not antisymmetric on ℘({a,b}) but it is still reflexive and transitive.
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c0

c1

...

cn

...

>
a0a1. . .an. . .b0 b1 . . . bn . . .

Figure 2.10: The Antichain embedding of this complete lattice is not even a meet-semilattice

Proof. Let us start by showing the first property that is if (A (P),5) is a lattice then (P,≤)

is meet-multisemilattice. We have (A (P),5) is a lattice. Then we have:

∀S⊆A (P) finite and nonempty ∃C ∈A (P)
⋂

A∈S
↓ A =↓ C

Since C is an antichain, we have C = max (
⋂

A∈S ↓ A) (Lemma 2.3), that is:

∀S⊆A (P) finite and non empty
⋂

A∈S
↓ A =↓ max

( ⋂
A∈S

↓ A

)
(2.2)

Let be S ⊆ P be a non empty finite subset. We need to show that S` =↓ max(S`). We have

S` =⋂
s∈S ↓ {s}. Since, (A (P),5) is a lattice we have according to equation (2.2):

S` = ⋂
s∈S

↓ {s}=↓ max(S`)

If A (P) is also upper-bounded, that is ∃C ∈A (P) P =↓ C. Hence, we have P =↓ max(P)

since C is an antichain (Lemma 2.3). In other words, ; has all its multi-infima.

One can follow the same steps to show the second statement of the theorem where S in

Equation 2.2 become now an arbitrary set.

Note 2.24. One should note that the converse of Proposition 2.9 is not true. In fact, one

can create complete lattices for which the antichain completion is not even a lattice. Fig. 2.10

depicts such a complete lattice. Indeed, for antichains A = {ai | i ∈N} and B = {bi | i ∈N}, we have

↓ A
⋂ ↓ B = {ci | i ∈N}, i.e. an infinitely ascending chain. Hence, max (↓ A

⋂ ↓ B)=;.
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PATTERNS AS ORDERED SETS

Pattern mining is a general data mining task which aim to discover useful and actionable

patterns in databases. Different subtasks can be identified in this field: Frequent Pattern

Mining [94], (Class) Association Rule Mining [4, 121], Discriminative Subgroup Discovery

[106, 134, 163], Exceptional Model Mining [58, 117], Redescription Mining [75, 147] and High

Utility Pattern Mining [70] among others. These different tasks share in their core definition

common settings as for instance the pattern language they need to explore: Itemsets [4], Intervals

[104], Convex polygons [20], Neighborhood patterns [86], (Complex) Sequential patterns [5, 39, 45,

143], Graph patterns [110, 164], Trajectory patterns [87], Periodic patterns [74, 138], Subgraph

patterns in attributed graphs [23, 105], etc. More generally, one should answer the following

questions in order to instantiate a pattern mining task:

(1) What is the initial representation, the schema, of the provided database? That is: What are

the objects (rows) and what are the descriptive attributes (columns)?

(2) What is the considered pattern language used to describe objects in the database w.r.t. the

pattern mining task and the provided information?

(3) How to check whether a pattern holds for some object in the database?

(4) How to evaluate the “interestingness” of the findings (i.e. a quality measure, constraints

that patterns or the pattern set need to have, etc.)?

Several formal tools are proposed in the literature to formalize pattern languages or more

generally the settings of a pattern mining task. For instance, Formal Concept Analysis (FCA)

[80, 162], Symbolic Data Analysis (SDA) [3, 36], Inductive Database [100, 127], Logical Concept

Analysis (LCA) [66], Pattern Structures [78, 112] and Relational Concept Analysis (RCA) [93]

are frameworks designed to formalize a elements of a pattern mining task. These frameworks

rely in general on the fact that they consider pattern languages as partially ordered sets (posets).

57
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Based on the preceding, this chapter aims to provide a better understanding of pattern languages

from an order-theoritic point of view. We will not address a particular pattern mining task in this

chapter. The study of a particular one, namely discriminative subgroup discovery, is left to the

third and last part of the dissertation. This chapter is organized as follow:

• Section 3.1 presents a small introduction on pattern languages.

• Section 3.2 presents a first broad framework, namely Formal Concept Analysis (FCA),
to models pattern languages. Such a framework has been proposed in [162] to provide

a conceptual vision on lattices and showed a great utility to formalize itemset pattern

language [4] or other more complex ones thanks to conceptual scaling [79].

• Section 3.3 presents a large framework, namely pattern setups defined in [123] which

model pattern languages as partially ordered sets. We proposed in [18] a more detailed

investigations on this framework that we will develop in this section.

• Section 3.4 presents the framework of pattern structures proposed in [78]. In a nutshell,

this framework requires the existence of the “closed” patterns. While this framework models

technically the same kind of languages as Formal Concept Analysis does, its usage is more

natural to model a plethora of pattern languages that are lattice-bases such as interval

patterns [104], convex polygon patterns [20], sequence sets [39], graph sets [110] and

partition pattern language [49] among others.

• Section 3.5 explores particularly the notion of closed descriptions when generalized to

other kind of pattern languages than lattice-based ones, i.e. usage of maximal common

patterns. We show that pattern setups have several issues with them when no additional

condition is required on the partially ordered set of patterns.

• Section 3.6 presents the new framework of pattern multistructure proposed in [18]

under the name of pattern hyper-structure and named so in [19]. This framework lies

between pattern setups which rely on arbitrary posets and pattern structures which rely

on lattices. Pattern multistructures rely in fact on multilattices (see Section 2.3.5) and

guarantee that the “closed” patterns induces all subsets separable by the pattern language.

This latter property does not necessarily hold in an arbitrary pattern setup. Sequential

[6, 166] and graph patterns [165] induce pattern multistructures but not pattern structures.

• Section 3.7 presents how other pattern setups can be built starting from base ones. We will

mainly investigate the following tasks: (1) the task of transforming pattern setups to pattern

structures, namely completions [39, 78], (2) the task of simplifying pattern languages

thanks to projections [78] and (3) the task of combining many pattern languages by

conjunction using the direct product. We will also show some important results linked to

these three tasks when pattern multistructures are considered.

• Section 3.8 sums up the notions presented in this chapter and provide concluding remarks.

The writing of this chapter relies principally on paper [19] currently under review. A prelimi-

nary version of this chapter had appeared in paper [18].
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3.1 Elements on Pattern Languages

Knowledge Discovery in general or pattern mining in particular starts from a dataset which

formal definition is presented below.

Definition 3.1. A dataset is a pair (G ,M ) where G is a set of objects (i.e rows) and M is a

set of attributes (i.e columns)1. An attribute m ∈ M is a mapping m : G → Rm, g 7→ m(g) that

takes each object g to its value m(g). A dataset is said to be finite iff sets G and M are finite.

Note 3.1. Different nature of attributes are considered in a dataset. For instance, an attribute

m ∈ M is said to be:

• Ordinal if its range Rm is assumed to be totally ordered by some order ≤.

• Numerical if it is ordinal with Rm =R.

• Nominal or categorical if no order is assumed between the different values of Rm.

• Boolean if Rm = {true, f alse}.

Example 3.1. Table 3.1 depicts a finite dataset where G = {g1, g2, g3, g4, g5} represents trans-

actions and M = {Cheese,Bread, Apple,Wine} representing products. There is a cross on a cell

(g,m) if m(g)= true, i.e. the transaction g ∈ G has the product m ∈ M . Otherwise, m(g)= f alse.

This dataset is typically the type of dataset studied in the seminal paper [4] on pattern mining.

Let us now give a first definition on what a pattern is.

Definition 3.2. Let (G ,M ) be a dataset. A pattern or a description p(x) is a first-order

predicate with one non-quantified (i.e. free) variable representing the object, i.e. the domain of x

is G . The predicate is expressed using the attributes in M .

An object g ∈ G matches a pattern p(x) if p(x) is valued to true when x is assigned to g. The

extent of a pattern p is then the set of objects in G matching the pattern p, i.e.

ext(p)= {g ∈ G | p(g)= true}

Example 3.2. Consider again the dataset depicted in Table 3.1. The following pattern

p(x) := (
Cheese(x) ∧ Wine(x)

)
has for extent ext(p)= {g3, g4}. That is only g3 and g4 matches pattern p.

Example 3.2 presents an example of a pattern. Clearly, not all possible predicates are consid-

ered in a pattern mining tasks. It is in general reduced to a well-identified subset of patterns

said to be the pattern language of the task. For instance patterns like the ones presented in

Example 3.2 and Example 3.3 are conjunction of “attribute is equal to a value” constraints. Such

a pattern language is generally identified under the name of itemset pattern language [4].

1G and M comes respectively from the German words Gegenst’́ande and Merkmale for objects and attributes.
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Transactions Cheese Bread Apple Wine

g1 × ×
g2 ××× ×××
g3 × × ×
g4 × ×
g5 ×

Table 3.1: A sample of some supermarket database. All attributes in this dataset are Boolean.

A plethora of other pattern languages has been identified in the literature. One can cite for

instance: Interval patterns [104], Convex polygons [20], Neighborhood patterns [86], (Complex)

Sequential patterns [5, 39, 45, 143], Trajectory patterns [87], Periodic patterns [74, 138], Sub-

graph patterns [23, 105] among others. Some examples has been presented earlier in the general

introduction (see Example 1.2 and Fig. 1.2). Clearly, choosing a pattern language depends on the

provided dataset and the targeted task.

Pattern language can be seen simply as a set of predefined patterns. A stronger way to

organize it is to see it as a an ordered set. This can be done using the implications existing

between the different patterns and considering equivalent patterns as the same one. Consider for

instance the following example:

Example 3.3. Let be the following predicate:

q(x) :=Wine(x)

It is clear that we have p(x)→ q(x) where p(x) is the pattern presented in Example 3.2. We will

say that p(x) is more restrictive than q(x). Notice that every object matching p matches q but

not the converse, i.e. ext(p)⊆ ext(q).

Example 3.3 shows that patterns can be ordered via the implications existing between them.

Following this observation, we will consider pattern languages as ordered sets.

Our aim in this chapter is to provide an order-theoritic point of view on pattern languages. This

point of view helps to understand what are the commonalities and the differences between pattern

languages. We will start by presenting Formal Concept Analysis (FCA) framework [80, 162] then

explore more generic frameworks: pattern setups [18, 123], pattern structures [78, 112] and

pattern multistructures [18]. Often, we will invoke without better explanations definitions and

notations introduced in Chapter 2. Some of these notations are resumed in Table 2.1.
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3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) was introduced by Wille in [162] as a mathematical field that

provided a conceptual vision on complete lattices. It proved then its usefulness as a tool to analyze

Datasets. We present here a small overview on FCA. More details can be found in [80].

3.2.1 Basic Definitions

Formal Concept Analysis (FCA) starts by a formal context defined below.

Definition 3.3. A (formal) context is a triple K = (G ,M ,I ) where G is a set of objects, M

is a set of attributes and I is a binary relation on G ×M called the Incidence relation. For

(g,m) ∈ G ×M , g I m holds iff g has attribute m.

From the dataset perspective (see Definition 3.1), a formal context can be seen as a dataset

where all the attributes are Booleans.

Example 3.4. Fig. 3.1 depicts a formal context (G ,M ,I ). The incidence relation I is represented

by the crosses in the table. For instance, we have g4 I b, i.e. g4 has attribute b.

Two base derivation operators stem from a formal context and are defined below.

Definition 3.4. The extent operator, denoted ext, associates to each itemset B ⊆ M the set

of objects g ∈ G having all items in B. Formally, it is given by:

ext :℘(M )→℘(G),B 7→ {g ∈ G | (∀m ∈ B) g I m}

The set of all possible extents of a context K is denoted Kext and is given by Kext = ext[℘(M )].

Definition 3.5. the intent operator, denoted int, associates to each subset of objects A ⊆ G

the set of items m ∈ M common to the objects in A. Formally, it is given by:

int :℘(G)→℘(M ), A 7→ {m ∈ M | (∀g ∈ A) g I m}

The set of all possible intents of a context K is denoted Kint and is given by Kint = int[℘(G)].

Proposition 3.1. The pair (ext, int) forms a Galois connection between (℘(M ),⊆) and (℘(G),⊆)

Proof. We show the four properties (see Definition 2.25) below:

• ext is order-reversing: let B1 ⊆ B2 ∈ ℘(M ). Let us show that ext(B2) ⊆ ext(B1). Let

g ∈ ext(B2) then (∀m ∈ B2) gI m. Since B1 ⊆ B2 then (∀m ∈ B1) gI m. Hence, g ∈ ext(B1).

• int ◦ ext is extensive: Let B ∈℘(M ), we need to show that B ⊆ int(ext(B)). Let m ∈ B,

we have: (∀g ∈ ext(B)) gI m. Therefore, m ∈ int(ext(B)).

One can follow the same steps to show that int is order-reversing and ext◦int is extensive.
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G a b c
g1 × × ×
g2 ×
g3 ×
g4 × × ({g1}, {a,b, c})

({g1, g2, g3}, {a}) ({g1, g4}, {b, c})

({g1, g2, g3, g4},;)

Figure 3.1: Formal Context (G ,M ,I ) and its concept lattice B(G ,M ,I )

Since (ext, int) is a Galois connection. Mappings ext◦ int and int◦ ext are closure operators

(see Theorem 2.9). Fixpoints of the closure operator ext◦ int, given by Kext = ext[℘(M )], are called

extents. Dually, fixpoints of the closure operator int◦ ext, given by Kint = int[℘(G)], are called

intents or closed itemsets in pattern mining literature [139]. Moreover, using the fact that the

image of closure operators creates closure systems (i.e. complete lattices preserving the meet, the

intersection), posets (Kext,⊆) and (Kint,⊆) are complete lattices where the meet is set intersection.

An isomorphic lattice to the complete lattice (Kext,⊆) is called the concept lattice.

Definition 3.6. The concept lattice associated to the formal context (G ,M ,I ) is the com-

plete lattice denoted by B(G ,M ,I )= (B(G ,M ,I ),≤). Elements of B(G ,M ,I ) are called (formal)
concepts and are given by:

(A,B) ∈℘(G)×℘(M ) s.t. A = ext(B) and B = int(A)

The concepts are ordered by ≤ as follows:

(A1,B1)≤ (A2,B2)⇔ A1 ⊆ A2 ⇔ B2 ⊆ B1

Example 3.5. Fig. 3.1 (right) depicts the Hasse Diagram of the concept lattice B(G ,M ,I ). For

instance ({g1, g4}, {b, c}) is a formal concept, i.e. objects in {g1, g4} have in common attributes in

{b, c} and attributes b and c hold both for g1 and g4.

Note 3.2. One should notice that by definition we have:

(∀B1,B2 ⊆ M ) ext(B1 ∪B2)= ext(B1)∩ ext(B2)

(∀A1, A2 ⊆ M ) int(A1 ∪ A2)= int(A1)∩ int(A2)

For ease of notation, for any g ∈ G , we call object intent of g, the set denoted by int(g) and

given by int({g}), i.e. the set of attributes holding for g. Analogously, for any m ∈ M , we call

attribute extent of m, the set denoted by ext(m) and given by ext({m}), i.e. the set of objects for

which attribute m hold. We have:

(∀B ⊆ M ) ext(B)= ⋂
m∈B

ext(m) and (∀A ⊆ G) int(A)= ⋂
g∈A

int(g)
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Note 3.3. Please note that we have ext(;)= G and int(;)= M .

Another important notion in FCA tightly linked to formal concepts and closed itemsets are

implications.

Definition 3.7. Let be two itemsets B1,B2 ∈ M , we say that B1 implies B2 and we denote

B1 → B2 iff ext(B1)⊆ ext(B2). In other words, if an object has all items in the set of attributes B1

then it has all items in itemset B2. If we have B1 → B2 and B2 → B1 we say that B1 and B2 are

equivalent and we have ext(B1)= ext(B2).

Implications and equivalence between sets of object can be defined analogously.

Example 3.6. In the formal context considered in Fig. 3.1, itemset {a,b} implies {c} since

ext({a,b}) = {g1} ⊆ {g1, g4} ⊆ ext({c}). We write {a,b} → {c}. Notice also that item(set)s {b} and

{c} are equivalent since they have the same extent.

From this notions of equivalence between itemsets, one can notice that each extent A ∈Kext

has many itemsets generating it, i.e. itemsets B ∈℘(M ) s.t. B = ext(A).

Definition 3.8. Let A ∈Kext. An itemset B ∈℘(M ) is said to be a generator of A iff ext(B)= A.

It is said to be a minimal generator iff:

(∀B′ (B) ext(B′)( ext(B)

Example 3.7. Consider the extent A = {g1, g4} in the formal context considered in Fig. 3.1. The

generators of A are given by {b}, {c} and {b, c}. It is clear that A has two minimal generators given

by {b} and {c}.

Note 3.4. There is always a maximum generator for A ∈Kext in a formal context. It is given

by the closed itemset int(A). Indeed, ext(int(A))= A since A is a fixpoint for the closure operator

ext◦ int. And for any B ∈℘(M ) s.t. ext(B)= A (i.e. generators of A), it is clear B ⊆ int◦ ext(B)=
int(A) by extensivity of the closure operator int◦ ext.

As shows in Example 3.7, there may by many minimal generators for the same extent A.

These minimal itemsets can be seen as minimal generators for the closure operator int ◦ ext

following Definition 4.5 in Chapter 4. Interestingly, while the set of all maximum generators

forms a closed-under-intersection set system Kint, the set of all minimal generators forms an

independent set system as noticed by [151] (see Proposition 4.9).

3.2.2 Context Clarification

We have seen in Example 3.6 that attributes b and c have the same extent. Hence, attributes b

and c could be considered indistinguishably as a single attribute d := b∧ c. Same remarks hold

for some row in the context depicted in Fig. 3.1. Indeed, we can say that objects g2 and g3 are

equivalent since they have the same intent.
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G {a} {b, c}
g1 × ×
g2 ×
g3 ×
g4 ×

G a b c
{g1} × × ×
{g2, g3} ×
{g4} × ×

G {a} {b, c}
{g1} × ×
{g2, g3} ×
{g4} ×

Figure 3.2: From left to right. a column clarification, a row clarification and a clarification of the
context (G ,M ,I ) depicted in Fig. 3.1

Definition 3.9. A context (G ,M ,I ) is said to be:

• column clarified iff ∀m1,m2 ∈ M , if ext(m1)= ext(m2) then m1 = m2.

• row clarified iff ∀g1, g2 ∈ G , if int(g1)= int(g2) then g1 = g2.

• clarified iff it is both column clarified and row clarified.

Example 3.8. The formal context depicted in Fig. 3.1 is neither column clarified nor row clarified

since ext(b)= ext(c) and int(g2)= int(g3).

The action of transforming a non-clarified context to a clarified one is called clarification
and is defined formally below.

Definition 3.10. Let (G ,M ,I ) be a context and let ↔M be the equivalence relation on M

defined as follow:

(∀m1,m2 ∈ M ) m1 ↔M m2 iff ext(m1)= ext(m2)

The column clarification of (G ,M ,I ) is the column-clarified formal context (G ,M ′,I ′) where

M ′ is given by the quotient set M /↔M and I ′ is given by:

(∀g ∈ G ,∀S ∈ M ′) g I ′ S iff (∀m ∈ S) g I m

The row clarification of (G ,M ,I ) is defined analogously. The clarification of (G ,M ,I ) is

then given by the column clarification of the row clarification of (G ,M ,I ).

Example 3.9. Fig. 3.2 depicts the context resulting from : column clarification (left), row clarifi-

cation (center) and clarification (right) of the formal context depicted in Fig. 3.1.

It should be noticed that for any formal context and after any type of clarification the concept

lattice of the clarified context is order-isomorphic to the concept lattice of the base formal context.

Proposition 3.2 shows that if K′ is the column-clarification of K then K′
ext and Kext are equal.

Indeed, dual results can be obtained for the row-clarification and the set of intents.

Proposition 3.2. Let K be a context which column-clarification is K′. We have: K′
ext =Kext.
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Proof. Recall that Kext and K′
ext are closed under arbitrary intersection. We prove the

double inclusion:

• K′
ext ⊆Kext: Let A ∈K′

ext, that is ∃S⊆ M ′ s.t. extK′(S)= A, that is: A =⋂
S∈S extK′({S}).

However, it is clear that: extK′({S})= {g ∈ G | g I ′ S}= {g ∈ G | (∀m ∈ S) g I m}= extP(S).

Hence, A =⋂
S∈S extK(S). In other words, A ∈Kext since it is the intersection of some

elements in Kext.

• Kext ⊆K′
ext: Let A ∈Kext, that is: ∃B ⊆ M s.t. extP(B)= A, that is: A =⋂

m∈B extK({m}).

For m ∈ B, let Sm ∈ M ′ be the unique set containing m. We have extK′ ({Sm})= extK({m}).

Hence, A = ⋂
m∈B extK′({Sm}); that is A ∈K′

ext since it is an intersection of some ele-

ments in K′
ext.

This conclude the proof.

Note 3.5. Further reduction of the context can be operated for a certain class of formal context

(i.e. finite or doubly-founded ones). This can be done by removing also attributes/objects that can

be seen as conjunction of other attributes/objects of the context. See [80] for more details.

3.2.3 Handling Complex Attributes

Real world datasets do not come as formal contexts, i.e. all attributes are Boolean. Therefore,

since (basic) FCA gives a tool to analyze datasets in a form of formal context, datasets with more

complex attributes (eg. numerical or nominal attributes) need to be transformed to such a form

before any manipulation. Such a transformation is called conceptual scaling (i.e. binarizing) [79].

In this section (G ,M ) denotes a dataset following Definition 3.1.

In order to perform a conceptual scaling on a dataset someone need to tell how each value

of each attribute will be transformed to one or many boolean values. This is done using a scale.

Definition 3.11. Let m be an attribute which range of values is Rm. A scale on m is any

formal context (Rm,Bm,Im) where Bm is an arbitrary set and Im is a binary relation.

The nominal scale of an attribute m is the formal context (Rm,Rm,=).

Example 3.10. Fig. 3.3 (center) depicts the nominal scale of the attribute “hair color” given

by
(
{brown,blond,black}, {brown,blond,black},= )

.

Once a scale is defined on an attribute, one can perform a (conceptual) scaling in order to

get the associated formal context.

Definition 3.12. The (conceptual) scaling of a dataset (G , {m}) using the scale (Rm,Bm,Im)

is the formal context (G ,Bm,I ) where:(∀(g,b) ∈ G ×Bm
)

g I b ⇐⇒ m(g)Im b

The scaling of a dataset (G ,M ) with more than one attribute is simply the apposition (i.e.

concatenation) of the contexts resulting from the scaling of each attribute m ∈ M .
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G hair color
g1 brown
g2 blond
g3 brown
g4 black

brown blond black
brown ×
blond ×
black ×

G brown blond black
g1 ×
g2 ×
g3 ×
g4 ×

Figure 3.3: (Left) a dataset with a categorical attribute “hair color”. (Center) A nominal scale
on “hair color” values. (Right) The conceptual scaling using the nominal scale on “hair color”.

Example 3.11. Fig. 3.3 (right) depicts the conceptual scaling of the dataset presented left-side

using the nominal scale presented in center.

We have presented beforehand the most basic scale which is the nominal scale. Other types

of scales exist and are thoroughly discussed in [80]. We present below some usual scales.

3.2.3.1 Discretization scalings

A usual scaling on a numerical attribute is discretization. Fig. 3.4 gives an example of a numerical

dataset where the attribute age is discretizated into two buckets: [0,30) representing young

people and [30,+∞) representing the others.

G age
g1 16
g2 20
g3 31
g4 47

age ∈ [0,30) age ∈ [30,+∞)
16 ×
20 ×
31 ×
47 ×

G age ∈ [0,30) age ∈ [30,+∞)
g1 ×
g2 ×
g3 ×
g4 ×

Figure 3.4: (Left) a dataset with a numerical attribute “age”. (Center) A scale for discretization.
(Right) The resulting conceptual scaled context.

3.2.3.2 Interordinal scalings

Another, more expressive, scaling for numerical attributes is interordinal scaling. Fig. 3.5 presents

the interordinal scaling of the dataset depicted in Fig. 3.4 (left). It is clear that itemsets in an

interordinal scaled dataset represent interval restrictions on the attribute (see [104]).

G age ≤ 16 age ≤ 20 age ≤ 31 age ≤ 47 age ≥ 16 age ≥ 20 age ≥ 31 age ≥ 47
g1 × × × × ×
g2 × × × × ×
g3 × × × × ×
g4 × × × × ×

Figure 3.5: Interordinal scaled context of the dataset depicted in Fig. 3.4 (left).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



3.2. FORMAL CONCEPT ANALYSIS 67

3.2.3.3 Ordinal scalings

Such a type of scaling is useful when dealing with datasets where there is a hierarchy between

items. Consider for instance the dataset depicted in Fig. 3.6 (top-left) where objects are places

and each place is tagged. The tags are organized under a taxonomy, i.e. a hierarchy presented

in the Fig. 3.6 (top-right). This taxonomy can be seen as a poset (T,≤) where T represents the

set of all possible tags (i.e. T = {Any,Hotel, ...}) and ≤ represents the order “is a specialization

of”. For instance, Italian Restaurant ≤ Restaurant. The ordinal scale is then simply given by

(T,T,≤). The ordinal scaled context is depicted in Fig. 3.6 (bottom).

G tag
place1 Hotel
place2 Chinese Restaurant
place3 Italian Restaurant

Any

Hotel Restaurant

Chinese Restaurant Italian Restaurant

G Any Hotel Restaurant Chinese Restaurant Italian Restaurant
place1 × ×
place2 × × ×
place3 × × ×

Figure 3.6: (top-left) Point-of-interests annotated with tags. (top-right) a taxonomy of tags.
(bottom) an ordinal-scaled context

3.2.4 Discussion

Even if Formal Concept Analysis provides a broad framework to handle binary datasets or

datasets with more complex attributes thanks to conceptual scaling. Binarizing a dataset with

regard to the patterns we want to look for could be sometime tricky.

In response to that, a more natural way to handle complex datasets was introduced in [78]

under the name of pattern structures (see Section 3.4). Objects in a pattern structure have

descriptions (e.g. the equivalent notion to itemsets in ℘(M ) in a formal context) with a meet-

semilattice operation on them (e.g. equivalent to set intersection in (℘(M ),⊆) in a formal context).

This framework proved its usefulness in many data analysis tasks (see [112]).

However, pattern structures require the description space to be a (upper-bounded) meet-

semilattice which is not the case for all description spaces such as sequence of itemsets patterns

[48]. Pattern setups were introduced in [123] to generalize pattern structures by demanding

only a partial order on descriptions. This latter framework will be studied in the next section.
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3.3 Pattern Setups

Pattern setups model pattern search spaces simply as partially ordered sets. This makes them a

very broad framework as they do not require additional properties on the pattern languages. The

term “pattern setup” and its definition was proposed in [123]. Later, we proposed in [18] a more

detailed investigation on this new framework in the aim of better understanding it. This section

presents the basic notions related to pattern setups introduced in [18].

3.3.1 Basic Definitions

Let us start by defining what is a description space in general.

Definition 3.13. A description space; also called description language, pattern space
or pattern language; is any poset D := (D,v). Elements of D are called descriptions or pat-
terns. For any c,d ∈ D, c v d should be read as “c is less restrictive than d” or “c subsumes d”.

We define below the notion of pattern setup following [123].

Definition 3.14. A pattern setup is a triple P= (G ,D,δ) where G is a set (of objects), D is a

description space and δ : G → D defines a mapping that takes each object g ∈ G to its description

δ(g) ∈ D. Let g ∈ G and d ∈ D be an object and a description, respectively. We say that object g

realizes description d or description d hold for or cover object g iff d v δ(g).

We present below two examples of pattern setups.

Example 3.12. Consider the pattern setup P= (G ,D,δ) in Fig. 3.7. We have G = {g i}1≤i≤4. The

description space is the set of nonempty words on the alphabet {a,b, c} (i.e. {a,b, c}+) ordered by

the relationship “is substring of” v. The mapping δ associates to each objects in G its word in

the description space. For instance δ(g1)= “cab”. The diagram in the center of Fig. 3.7 depicts

the Hasse Diagram of the poset (↓ δ[G],v) with δ[G]= {“cab”,“cbba”,“a”,“bbc”}. In other words,

it depicts the set of descriptions d ∈ D holding for at least one object in G . It is clear that

the description “ca” holds for g1 since “ca” v “cab”. However, description “cb” does not hold

for g1 since “cb” is not a substring of “cab”. More generally, descriptions holding for g i is the

principal filter of δ(g i) (i.e. ↓ δ(g i)). For instance, the set of descriptions holding for g1 is given by

↓ δ(g1)= {“a”,“ca”,“ab”,“cab”}.

Example 3.13. Consider the pattern setup P = (G ,D,δ) presented in Fig. 3.9 (left). The set of

objects is G = {g i}1≤i≤4 and the description space D is the powerset ordered by set inclusion

(℘(M ),⊆) (i.e. itemsets) with M = {a,b, c}. Again descriptions holding for g4 are all itemsets

included in δ(g4)= {b, c} (i.e. ↓ δ(g4)= {;, {b}, {c}, {b, c}}).

We have seen that the relation “realizes” builds a binary relation between objects and

descriptions (see Definition 3.14). Based on this binary relation, two key operators, namely

extent and cover are derived (see Definition 3.15 and 3.16).
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G δ(·)
g1 “cab”
g2 “cbba”
g3 “a”
g4 “bbc”

b c a

bc bb cb ba ab ca

bbc cbb bba cab

cbba

;

{g1} {g2} {g4}

{g1, g2, g3}

{g2, g4}

{g1, g2, g4}

Figure 3.7: The table (left) represents the mapping function δ of the pattern setup considered in
example 3.12. The diagram (center) represents the set of substrings in {a,b, c}+ holding for at
least one object in G . The diagram (right) represents the poset of definable sets (Pext,⊆).

Definition 3.15. The extent operator, denoted by ext, is the operator that takes each

description d ∈ D to the subset of objects in G realizing it:

ext : D →℘(G),d 7→ {g ∈ G | d v δ(g)}

The size of ext(d) is called the support of d, i.e. support : d 7→ |ext(d)|.
Note 3.6. Please note that for any S ⊆ D, we denote ext[S]= {ext(d) | d ∈ S}.

Definition 3.16. The cover operator, denoted by cov, takes each subset of objects A ⊆ G to

the set of common descriptions in D covering all of them:

cov :℘(G)→℘(D), A 7→ δ[A]` = ⋂
g∈A

↓ δ(g)= {d ∈ D | (∀g ∈ A) d v δ(g)}

Example 3.14. Consider the pattern setup presented in Example 3.12. We have: ext(“bb”) =
{g2, g4} and cov({g2, g4})=↓ δ(g2)∩ ↓ δ(g4)= {“b”,“bb”,“c”}.

Definition 3.17. A subset A ⊆ G is said to be:

• Definable, Separable or an Extent if there exists at least one description d ∈ D isolating

A from the other objects in G , i.e. A = ext(d).

• Coverable if objects in A share at least one common description, i.e. cov(A) 6= ;.

The set of definable sets is denoted Pext and given by: Pext := ext[D]= {ext(d) | d ∈ D}.

Please note that poset (Pext,⊆) forms a subposet of (℘(G),⊆), that is definable sets are naturally

ordered by ⊆. The set of coverable sets is naturally given by ↓Pext. In other words, any subset of a

coverable set is coverable. Conversely, any superset of a non-coverable set is a non-coverable set.

Example 3.15. The poset of definable sets (Pext,⊆) associated to the pattern setup presented in

Example 3.12 is depicted in Fig. 3.7 (right). It is clear that {g2, g4} is definable since ext(“bb”)=
{g2, g4}. However, there is no description which extent is exactly {g1, g2}, hence {g1, g2} will be said

non-definable. Still, {g1, g2} is coverable since g1 and g2 share at least one common descritpion

(i.e. cov({g1, g2} = {“a”,“b”,“c”} 6= ;). One should note also that {g3, g4} is non-coverable since

they share no common symbol and the empty string is excluded from the pattern space.
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An important property arising directly from the definition of both ext and cov is given in

Proposition 3.3. It tells that: on the one hand, the more restrictive is a description, the less

it covers objects in the database. On the other hand, the bigger is a set of objects the less its

elements share descriptions in common.

Proposition 3.3. Operators ext and cov are order-reversing:

(∀c,d ∈ D) c v d ⇒ ext(d)⊆ ext(c) (∀A,B ⊆ G) A ⊆ B ⇒ cov(B)⊆ cov(A)

Proof. We have:

1. Let A ⊆ B ⊆ G , let d ∈ cov(B), thus (∀g ∈ B) d v δ(g). Since A ⊆ B, we conclude that

(∀g ∈ A) d v δ(g) that is d ∈ cov(A). Thus cov(B)⊆ cov(A).

2. Let c,d ∈ D such that c v d. Let g ∈ ext(d), that is d v δ(g) thus c v δ(g); that is

g ∈ ext(c). We conclude that ext(d)⊆ ext(c).

This concludes the proof.

We have seen in Proposition 3.3 that mappings ext and cov are order reversing. Hence, one

could think that (ext, cov) may form some Galois connection. However, it is not the case since ext

associates an extent to one description while cov outputs a set of descriptions rather than one. In

other words, these two mappings are not compatibles. Yet, we will see in next section that ext

will be involved into a Galois connection when the considered pattern setup verifies additional

properties (i.e. the pattern setup is a pattern structure [78]). Mapping cov will also be involved

in another Galois connection in Section 3.7.

Definition 3.18. For c,d ∈ D, the pattern implication c → d holds if ext(c) ⊆ ext(d). That

is, every object realizing c realizes d. Dually, for A,B ⊆ G , the object implication A → B holds

if cov(A)⊆ cov(B). That is, every description covering all object in A covers also all objects in B.

We say that c,d ∈ D are equivalent if c → d and d → c and we have ext(c) = ext(d). Dual

definition can be given for the equivalence between object sets.

It is clear that if d v c and since ext is an order-reversing mapping, we have c → d. Regarding

this observation, there is two types of implications between descriptions: (i) implications deduced

directly from v and (ii) implications that are dependent on the pattern setup. While the former

implications are intrinsic to the description space, the latter are more informative since they

are those enclosing the knowledge hidden in the pattern setup.

Example 3.16. In the pattern setup presented in Example 3.12 and Fig. 3.7, we have ext(“bb”)=
{g2, g4} and ext(“c”) = {g1, g2, g4}. Hence, we have “bb” → “c” or in other words in every string

containing “bb” in the pattern setup contains also “c”.

Proposition 3.4 gives characterizations of the set ext[cov(A)] and cov(ext(d)) for A ⊆ G and

d ∈ D. This proposition will be useful later in this chapter.
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Proposition 3.4. For A ⊆ G and d ∈ D:

ext[cov(A)] = {E ∈Pext | A ⊆ E}=↑ A∩Pext

cov(ext(d)) = {c ∈ D | ext(d)⊆ ext(c)}= {c ∈ D | d → c}

Proof. We show the two equations separately:

(1) Let E ⊆ G , we have: E ∈ ext[cov(A)] ⇔ (∃d ∈ cov(A)) E = ext(d) ⇔ (∃d ∈ D∀g ∈ A) d v
δ(g) ⇔ (∃d ∈ D) A ⊆ ext(d)= E ⇔ E ∈Pext∩ ↑ A. Therefore, ext[cov(A)]= {E ∈Pext | A ⊆ E} =
↑ A∩Pext.

(2) Let c ∈ D, we have: c ∈ cov(ext(d)) ⇔ (∀g ∈ ext(d)) c v δ(g) ⇔ (∀g ∈ ext(d)) g ∈ ext(c)

⇔ ext(d)⊆ ext(c). We conclude that cov(ext(d))= {c ∈ D | ext(d)⊆ ext(c)}= {c ∈ D | c → d}.

Example 3.17. Consider the pattern setup presented in Example 3.12 and its associated (Pext,⊆)

depicted in Fig. 3.7 (right). We have: ext(“bb”)= {g2, g4} and cov({g2, g4})= {“b”,“bb”,“c”}. Hence:

• ext[cov({g2, g4})]= {ext(“b”), ext(“bb”), ext(“c”)}= {{g1, g2, g4}, {g2, g4}}.

• cov(ext(“bb”)]= cov({g2, g4})= {“b”,“bb”,“c”}.

3.3.2 A Minimal Representation of a Pattern Setup

An important notion analogous to what is called representation context in pattern structures

(see [41, 78]) is introduced in Theorem 3.1. Technically, such a representation does not provide

a practical way to explore definable sets of an arbitrary pattern setups, but helps to simulate

definable sets search space of a pattern setup independently from the description space. Before

introducing the Theorem, we shall state Lemma 3.1 and Proposition 3.5.

Lemma 3.1. For any object g ∈ G , the smallest definable set in Pext enclosing it is given by

ext(δ(g)). Formally:

(∀g ∈ G) ext(δ(g))=⋂
(↑ {g}∩Pext)

Proof. Recall that ext[cov({g})] =↑ {g}∩Pext (See proposition 3.4). Let g ∈ G , we have

δ(g) ∈ cov({g}), thus ext(δ(g)) ∈ ext[cov({g})]. Let us show that ext(δ(g)) is a lower bound of

ext[cov({g})]. We have: cov({g}) = {d ∈ D | d v δ(g)}. Thus, ∀d ∈ cov({g}) : d v δ(g). Since ext

is an order reversing operator, we obtain: ∀A ∈ ext[cov({g})] : ext(δ(g))⊆ A. Thus, ext(δ(g))

is the smallest element of ext[cov({g})]. That is
⋂

(↑ {g}∩Pext)= ext(δ(g)).

Proposition 3.5. Let G be a non empty finite set and let S ⊆℘(G). We have

∃P a pattern setup such that S =Pext ⇐⇒ (∀g ∈ G)
⋂

(↑ {g}∩S) ∈ S
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{g1, g2} {g1, g3}

{g1, g2, g3}

{g1, g2, g3, g4}

Figure 3.8: A family S ⊆℘({g1, g2, g3, g4}) for which there is no pattern setup P s.t. Pext = S

Proof. We show now the two implications independently:

(⇒) Let S =Pext for some pattern setup P. Using Lemma 3.1,
⋂

(↑ {g}∩S) ∈ S.

(⇐) Let S ⊆℘(G) for which ∀g ∈ G we have
⋂

(↑ {g}∩S) ∈ S. Let us now define the following

pattern setup:

P= (
G , (S,⊇),δ : g 7→⋂

(↑ g∩S)
)

Let A ∈ S be a description, we have: ext(A) = {g ∈ G | ⋂(↑ {g}∩S) ⊆ A}. Let us show

that ext(A) = A by showing double inclusion: (1) Let g ∈ A, thus A ∈ (↑ {g}∩S). It

follows that
⋂

(↑ {g}∩S) ⊆ A. We conclude that g ∈ ext(A). Therefor A ⊆ ext(A). (2)
Let g ∈ ext(A), thus

⋂
(↑ {g}∩ S) ⊆ A. Since ∀B ∈↑ {g}∩ S we have g ∈ B, we have

g ∈⋂
(↑ {g}∩S), that is g ∈ A. We conclude that ext(A)⊆ A. Both inclusion leads us to

have (∀A ∈ S) ext(A)= A. We conclude that ext[S]= S. In other words, Pext = S.

This concludes the proof.

Proposition 3.5 tells that not all families of subsets of G could be seen as a set of extents of

some pattern setup. Example 3.18 and Fig. 3.8 illustrate this claim.

Example 3.18. Consider the poset depicted in Fig. 3.8 where G = {g1, g2, g3, g4} and S =
{{g1, g2}, {g1, g3}, {g1, g2, g3}, {g1, g2, g3, g4}} can never be seen as a Pext for some pattern setup P.

Indeed, ↑ {g1}∩S = {{g1, g2}, {g1, g3}} whose intersection is not in S.

Theorem 3.1. For any pattern setup P, the pattern setup R(P) given by

R(P)= (
G , (Pext,⊇), g 7→⋂

(↑ {g}∩Pext)
)

is called the minimal representation of P and we have R(P)ext =Pext.

Proof. Theorem 3.1 is a corollary of Proposition 3.5. Indeed, the pattern setup R(P) is the

same as the one built in the proof of Proposition 3.5 (⇐) since Pext is a set system verifying the

property (∀g ∈ G)
⋂

(↑ {g}∩Pext) ∈Pext (i.e. implication (⇒)). We have R(P)ext =Pext. Moreover,

this representation is said to be minimal since any proper subposet of (Pext,⊇) will drop at

least one definable set.
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3.4 Pattern Structures

Pattern structures were introduced in [78]. They require that every set of objects has a greatest

common description. A formal definition is given in Definition 3.19. Pattern structures provide a

very strong tool to formalize a large class of pattern languages [112]. For instance, pattern setups

over the language of itemsets [4, 80], intervals [104], convex polygons [20], sequence sets [39]2,

and graph sets[110]2 are all pattern structures.

Definition 3.19. A pattern setup P = (G ,D,δ) is said to be a pattern structure iff every

subset of objects has a greatest common description. Formally: (∀S ⊆ δ[G]) S has a meet ⊔ S.

Example 3.19. The pattern setup presented in Example 3.13 and Fig. 3.9 is a pattern structure.

Indeed, since the description space (D,v) is the powerset lattice (℘({a,b, c}),⊆) (i.e a complete

lattice) then every subsets S ⊆ δ[G]⊆ D does have a meet which is the set intersection
⋂

S.

However, the pattern setup P presented in Example 3.12 and Fig. 3.7 is not a pattern structure.

Indeed, the set of common descriptions cov({g2, g4})= {“b′′, “bb′′, “c′′} does not have a maximum

(i.e. {δ(g2),δ(g4)} does not have a meet) since {“b′′, “bb′′, “c′′} has two maximal elements.

Thanks to the existence of the meet, we define a new operator below.

Definition 3.20. The intent operator, denoted by int, takes each subset of objects A ⊆ G to

the greatest common description in D covering them (i.e. the maximum of cov(A)). Formally:

int :℘(G)→ D, A 7→ inf δ[A]=⊔ δ[A]

Interestingly, analogously to Proposition 3.1, we have the following property:

Proposition 3.6. Let P be a pattern structure, then the pair (ext, int) forms a Galois connec-

tion between posets (D,v) and (℘(G),⊆) (see Definition 2.25).

Proof. We have ext and cov are order-reversing (see proposition 3.3). Let A,B ⊆ G s.t. A ⊆ B,

we have cov(B)⊆ cov(A). Since int(B) is the maximum of cov(B) and int(A) is the maximum

of cov(A) then int(B)v int(A). Let us show that ext◦ int and int◦ ext are extensive:

• ext ◦ int is extensive: Let A ⊆ G and let us show that A ⊆ ext(int(A)). The case

A =; is trivial since the ; is the bottom element of ℘(G). Let A 6= ; and g ∈ A, since

int(A)=⊔g∈Aδ(g) then int(A)v δ(g). Hence, by definition g ∈ ext(int(A)).

• int◦ext is extensive: Let d ∈ D, we have ext(d)= {g ∈ G | d v δ(g)}. Hence, int(ext(d))=⊔S where S = {δ(g) | g ∈ G and d v δ(g)}. It is clear that d ∈ S` and since int(ext(d))=⊔S is the maximum of S` we obtain that d v int(ext(d)).

This concludes the proof.

2Sequence and graph patterns do not induce pattern structures directly, but the sets of incomparable patterns do.
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According to Proposition. 3.6 and Theorem. 2.9, mappings ext◦ int and int◦ ext form closure

operators on the two posets (℘(G),⊆) and (D,v) respectively. Thanks to this Galois Connection,

one can define a complete lattice based on the closed elements.

Definition 3.21. The (pattern) concept lattice associated to the pattern structure P =
(G ,D,δ) is the complete lattice denoted by B(P)= (B(P),≤). Elements of B(P) are called (pattern)
concepts and are given by:

(A,d) ∈℘(G)×D s.t. A = ext(d) and d = int(A)

The concepts are ordered by ≤ as follows: (A1,d1)≤ (A2,d2)⇔ A1 ⊆ A2 ⇔ d2 v d1.

Two complete lattices isomorphic to the concept lattice can be derived:

1. The poset of definable sets (Pext,⊆) which is a closed under intersection. Note that definable

sets are the fixpoints of the closure operator ext◦ int.

2. The poset of closed patterns (Pint,w) with Pint = int[℘(G)]= {⊔δ[A] | A ⊆ G} is a complete

lattice. Elements of Pint are called closed patterns since they are fixpoints of the closure

operator int◦ ext.

Example 3.20. Consider again the pattern structure P= (G , (℘({a,b, c}),⊆),δ) presented in Fig. 3.9.

Since the meet is the set intersection we have: int({g1, g4})= δ(g1)∩δ(g4)= {a,b, c}∩ {b, c}= {b, c}.

Concept lattice B(P) is depicted in Fig. 3.9 (right). Note that Pext (resp. Pint) can be obtained

directly from the concept lattice by taking the extent (resp. intent) of each pattern concept.

We draw the reader attention to the fact that the closure operator ext◦ int takes each subset

of object A ⊆ G to the smallest definable set ext◦ int(A) ∈ Pext enclosing it. This observation is

formally stated in the proposition below.

Proposition 3.7. We have:

ext◦ int :℘(G)→℘(G), A 7→⋂{
E ∈Pext | A ⊆ E

}=⋂
(↑ A∩Pext)

Proof. This result is straightforward from the fact that ext◦ int is a closure operator. Indeed,

according to Theorem 1 in [80] (page 8), we have Pext = {ext◦ int(A) | A ⊆ G} is closure system.

By application of the theorem we have: ext◦ int : A 7→⋂
{E ∈Pext | A ⊆ E}.

It is important to highlight the fact that for any formal context (G ,M ,I ), the pattern structure

P= (G , (℘(M ),⊆),δ) where δ : g 7→ {m ∈ M | g I m} hold exactly the same concepts, i.e. B(G ,M ,I )=
B(P). Interestingly, the converse holds also, that is any pattern structure P can be seen as a

formal context, called representation context. The representation context is built over the

same set of objects and have the same set of extents Pext. For more details about how this context

is built, please read [41, 78].
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G δ(·)
g1 {a,b,c}
g2 {a}
g3 {a}
g4 {b,c} ;

{a} {b} {c}

{a,b} {a, c} {b,c}

{a,b,c}

({g1}, {a,b, c})

({g1, g2, g3}, {a}) ({g1, g4}, {b, c})

({g1, g2, g3, g4},;)

Figure 3.9: The table (left) represents the pattern setup P = (
G ,D,δ

)
with G = {g i}1≤i≤4, D =

(℘({a,b, c}),⊆) depicted by the Hasse Diagram (center) and δ maps an object to its itemset. The
diagram (right) depicts the concept lattice B(P).

One could revisit the definition of implication between set of objects given in Definition 3.18

in a pattern structure. Indeed, for any subset of objects A,B ∈℘(G), we have cov(A)⊆ cov(B) iff

int(A) v int(B). Hence, A → B iff int(A) v int(B). Proposition 3.8 states the most informative

implications for a given premise.

Proposition 3.8. Let d ∈ D and A ⊆ G , we have:

(∀c ∈ D)
(
d → c iff c v int(ext(d))

)
and (∀B ⊆ G)

(
A → B iff B ⊆ ext(int(A))

)

Proof. Let d ∈ D. Let us show that (∀c ∈ D)
(
d → c iff c v int(ext(d))

)
:

• (⇐) Let c ∈ D s.t. c v int(ext(d)). Since ext is order-reversing, we have ext(int(ext(d)))⊆
ext(c). Moreover, since (ext, int) form a Galois connection, we have ext(int(ext(d)))=
ext(d). Therefore, ext(d)⊆ ext(c) or in other words d → c.

• (⇒) Let c ∈ D s.t. d → c, we have ext(d)⊆ ext(c). Hence, int(ext(c))v int(ext(d)). Since

int◦ ext is extensive, we have c v int(ext(c))v int(ext(d)).

Similar proof can be done for the second part of the proposition.

Definition 3.19 presents pattern structures following [123]. The original equivalent definition

of pattern structure [78] requires that the description space (D,v) must be a meet-semilattice

for which
{⊔ δ[S] | S ⊆ G

}
forms a complete subsemilattice of (D,v). Theorem 3.2 builds a bridge

between meet-semilattices and pattern structures over finite set of objects or more generally

between pattern structures and complete lattices.

Theorem 3.2. Let D = (D,v) be a poset, the following properties are equivalent:

• For any finite set G 6= ; and any δ ∈ DG , (G ,D,δ) is a pattern structure3.

• D is a an upper-bounded meet-semilattice (i.e. ; has also a meet).

More generally, the following properties are equivalent:

• For any set G 6= ; and any δ ∈ DG , (G ,D,δ) is a pattern structure.

• D is a complete lattice.

3Set DG denotes the set of all mappings δ : G → D
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Proof. Let us show both implications for a finite G :

⇒ The empty set has a meet in D since δ[;]=; has a meet. Thus D has a top element

>=⊔
D =⊔;. Moreover, let S ⊆ D be a finite set, one can build a finite set G such that

δ[G]= S. Since P is a pattern structure then S = δ[G] has a meet. We conclude that D

is an upper-bounded meet-semilattice.

⇐ Let P= (G ,D,δ) be a pattern setup. Any subset of δ[G] is finite subset of D and thus

has a meet (including the ; since D has its top element).

Let us now consider the case of arbitrary set G :

⇒ Let S ⊆ D, one can build G such that δ[G] = S. Since P is a pattern structure then

δ[G]= S has a meet. We conclude that D is a complete lattice.

⇐ Let P= (G ,D,δ) be a pattern setup. Any subset of δ[G] is a subset of D and thus has a

meet (including the ; since D has its top element).

This concludes the proof.

The state-of-the-art abounds with examples of descriptions spaces that are complete lattices

that someone can use to build pattern structures:

• Itemset pattern structure [80]. The description space is the Boolean lattice (℘(M ),⊆) where

M is a non empty finite set of attributes.

• Interval pattern structure [104]. The description space is the complete lattice of all axis-

parallel m-dimensional hyperrectangles ordered by ⊇. See Section 5.4 for more details.

• Convex sets pattern structure [20]. The description space is the complete lattice of all convex

sets in Rm ordered by inclusion (C(Rm),⊇)4. See Section 5.5 for more details.

• Partition pattern structure [49]. The description space is the complete lattice of all partitions

(B(E),v) of some finite set E. The order v is finer-than order relation between partitions.

That is for P1,P2 ∈B(E) two partitions, P1 v P2 if and only (∀E1 ∈ P1 ∃E2 ∈ P2) E1 ⊆ E2.

Before finishing this section, let us highlight some key differences between arbitrary pattern

setups and pattern structures:

• The set of definable sets (Pext,⊆) is not necessarily closed under intersection in an arbitrary

pattern setup as shown in Fig. 3.7.

• In a pattern setup, not all subsets of objects are coverable as shown in Example 3.15.

However, in a pattern structure, all subsets A ⊆ G are coverables since cov(A)⊇ cov(G) 6= ;.

In fact, G is always definable in a pattern structure since ext
(⊔δ[G]

)= G .

• The most important difference is the fact that, by definition, the greatest common descrip-

tion covering a set of objects does not necessarily exist in an arbitrary pattern setup. Gener-

ally, the notion of greatest common descriptions is relaxed to the notion of support-closed

patterns [29] in arbitrary pattern setups (e.g. closed sequences in [166]). The following

section has for aim to study support-closed patterns in arbitrary pattern setups.

4C(Rm) is the set of all convex subsetes of Rm.
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3.5 Support-closedness in Pattern Setups

Let P = (G ,D,δ) be a pattern setup. Two descriptions c,d ∈ D may be equivalent, i.e. ext(c) =
ext(d). If c v d we will say that d is more informative than c on the instances that they cover.

Hence, d may be preferred than c for some descriptive task. Conversely, c may also be pre-

ferred than d if someone need more generic descriptions. Definition 3.22 presents two kinds of

descriptions.

Definition 3.22. A description d ∈ D is said to be:

• a maximal generator or (support-)closed5 iff any more restrictive description d .v c

covers strictly less instances than d, i.e.:

(∀c ∈ D) d .vc =⇒ ext(c)( ext(d).

• a minimal generator iff for any less restrictive description c .vd covers strictly more

instances than d, i.e.:

(∀c ∈ D) c .vd =⇒ ext(c)( ext(d).

Example 3.21. Consider the pattern setup depicted in Fig. 3.7. The description d = “bb′′ is

support-closed. Indeed, we have ext(d) = {g2, g4} and any more restrictive description d .v c

covers strictly less instances than d (i.e. check the extents of “bbb′′, “bbc′′, “cbb′′, “abb′′, “bba′′).
Description d = “bb′′ is also a minimal generator since ext(“b′′)= {g1, g2, g4}) ext(“bb′′).

We have ext(“cb′′) = ext(“cbb′′) = ext(“cbba′′) = {g2}. Hence “cbb′′ is neither support-closed

not a minimal generator. Clearly “cb′′ is a minimal generator but not support-closed (ext(“c′′)=
ext(“b′′)= {g1, g2, g4}). Conversely, ext(“cbba′′) is support-closed but not a minimal generator.

We will now investigate further the notion of support-closed patterns and will show that this

notion is tightly linked with the notion of maximal covering descriptions in pattern setups

or more particularly closed descriptions in pattern structures.

3.5.1 On Maximal Covering Descriptions

In pattern structures, support-closed patterns coincide exactly with closed descriptions (i.e.

fixpoints of int◦ext) since int takes a subset of objects to the greatest common description. Hence,

any more restrictive description will cover strictly less instances. However, when we consider an

arbitrary pattern setup, such a maximum common description may not exist (see Example 3.19).

One straightforward generalization is to associate to a subset of objects the set of its maximal

common descriptions (see Definition 3.23).

5The term support-closed was introduced in [29].
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Definition 3.23. The set of maximal covering (common) descriptions of a subset A ⊆ G ,

denoted by cov∗(A), is given by:

cov∗ : A 7→ max(cov(A))= max
(
δ[A]`

)=minf(δ[A])

We show in Theorem 3.3 that support-closed patterns are maximal common descriptions.

Theorem 3.3. A description d ∈ D is support-closed iff (∃A ⊆ G) d ∈ cov∗(A). The set of all

support-closed descriptions is denoted Pint
6 and is given by:

Pint =
⋃

A⊆G
cov∗(A)

Proof. We prove the two implications:

(⇒⇒⇒) Let d ∈ D be a support-closed description and let A = ext(d). Hence, according to

proposition 3.4 we have d ∈ cov(A). Let us show now that d ∈ cov∗(A). Suppose that

d 6∈ cov∗(A) that is ↑ d∩ cov(A) 6= {d}. Since d ∈ cov(A), there is then at least c ∈ cov(A)

such that d .vc. Thus, in one hand and according to proposition 3.3, ext(c) ⊆ ext(d).

And since c ∈ cov(A), according to proposition 3.4, ext(c)⊇ ext(d). Thus ext(c)= ext(d).

This is contradictory with the fact that d is support-closed (∃c ∈ D s.t. d .v c and

ext(c)= ext(d)). Therefore, (∃A ⊆ G) d ∈ cov∗(A).

(⇐⇐⇐) Suppose that ∃A ⊆ G s.t. d ∈ max(cov(A)). According to proposition 3.4 and since

d ∈ cov(A), we have A ⊆ ext(d). Let now be c ∈ D such that d .vc, we have c 6∈ cov(A)

since d is maximal in cov(A). According to proposition 3.3 we have ext(c) ⊆ ext(d).

Moreover, using proposition 3.4 and since c 6∈ cov(A) we have A 6⊆ ext(c). Since A ⊆
ext(d) then ext(c) 6= ext(d). Thus ∀c ∈ D such that d .vc we have ext(c)( ext(d); that

is d is support-closed.

The formula of Pint is deduced directly. Please notice also that if there exists A s.t. d ∈
cov∗(A) then d ∈ cov∗(ext(d)) (use (⇐⇐⇐) then (⇒⇒⇒)). Hence, d ∈ D is support-closed iff d ∈
cov∗(ext(d)).

Example 3.22. Reconsider Example 3.12, we have cov({g2, g4}) = {“b′′, “bb′′,′′ c′′}. Hence, the

maximal covering ones are given by cov∗({g2, g4})= {“bb′′, “c′′}.

Note 3.7. According to the proof, a description d ∈ D is support-closed iff d ∈ cov∗(ext(d)).

Maximal covering descriptions are the generalization of closed patterns in a pattern setup.

However, someone need to be cautious when using them. We will now investigate some eventual

problem that we can have when dealing with maximal covering descriptions.

6Even if the intent operator does not exist in a pattern setup, we use the notation Pint for support-closed
descriptions since they coincide with closed patterns in a pattern structure, i.e. cov∗ :℘(G)→℘(D), A 7→ {int(A)}.
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3.5.1.1 Maximal covering descriptions of an extent do not have the same extent

In a pattern structure P, if a subset A is definable (A ∈ Pext) then we have ext(int(A)) = A.

However, for arbitrary pattern setup P, maximal covering descriptions for A ∈Pext could have

different extents as the following example demonstrates.

Example 3.23. Reconsider Example 3.12, we have {g2, g4} ∈Pext and cov∗({g2, g4})= {“bb′′, “c′′}.
However, we have ext(“bb′′)= {g2, g4} 6= ext(“c′′)= {g1, g2, g4}. In fact, since “c′′ is support-closed,

we have “c′′ ∈ cov∗({g1, g2, g4}) (see Note 3.7)

The example above shows also that a support-closed pattern could appear in the set of

maximal covering descriptions of more than one definable set [45].

3.5.1.2 Support-closed descriptions may induce the same extent

In pattern structures, there is a one-to-one correspondence between intents in Pint and extents in

Pext. In pattern setups, two distinct support-closed patterns in Pint may induce the same extent

as shown in the following Example.

Example 3.24. Reconsider Example 3.12, we have cov∗({g1, g2, g4}) = {“b′′, “c′′}. Therefore, ac-

cording to Theorem 3.3, descriptions “b′′ and “c′′ are support-closed. It is clear that ext(“b′′) =
ext(“c′′)= {g1, g2, g4} In other words, two support-closed descriptions may be equivalent, i.e. have

the same extent.

3.5.1.3 Maximal covering descriptions do not induce all the definable sets

Often, support-closed descriptions are used as a condensed representation for all (frequent)

patterns. In other words, with Pint denoting the set of all support-closed patterns, we have:

ext[Pint]=Pext(3.1)

While this equation holds for any pattern structure. This property does no longer hold for an

arbitrary pattern setup as Example 3.25 shows.

Example 3.25. Let be the description language (D,v) presented in Fig. 3.10 (right) and given by:

• D = {a,b}∪ {ci | i ∈N},

• (∀i ∈N) ci v ci+1, ci v a and ci v b.

Let be the pattern setup P= (G , (D,v),δ) presented in Fig. 3.10 where G = {g1, g2}, δ(g1)= a

and δ(g2)= b. Since cov({g1, g2})= {ci | i ∈N} is an infinitely ascending chain, there is no maximal

common description covering both g1 and g2, i.e. cov∗({g1, g2})=;. However, it is clear that for

any i ∈N, ext(ci)= {g1, g2}. Hence, two objects in a pattern setup could have no maximal common

descriptions even if they share common descriptions. Furthermore, it is easy to see that we have:

Pext = ext[D]= {{g1}, {g2}, {g1, g2}}
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a b

...

cn

...

c1

c0

g1g2

δ
δ

Figure 3.10: A problematic pattern setup (G , (D,v),δ) with G = {g1, g2}, (D,v) is the poset depicted
right and the δ is depicted by dashed arrows (see Example 3.25).

However, since the set of support-closed patterns is given by Pint = {a,b} we have:

Pint = {a,b} ⇒ ext[Pint]= {{g1}, {g2}}(Pext

In other words, Equation 3.1 does no longer hold.

3.5.2 On Upper-Approximation Extents

Going back to pattern structures, the closure operator ext ◦ int takes any subset A ⊆ G to the

smallest definable set ext(int(A)) enclosing it as stated by Proposition 3.7. This fact is used to

enumerate all definable sets via the closure operator (see Section 5.3) when considering pattern

structure with finite set of objects. From Rough Set Theory [140] perspective, the set ext(int(A))

can be seen as the upper approximation of an arbitrary and potentially non definable set A in

Pext. However, when it comes to an arbitrary pattern setup, a non-definable set A may have

many minimal definable sets enclosing it or no one if it is non-coverable (see Example 3.26).

Definition 3.24 formalizes this second generalization.

Definition 3.24. The set of upper-approximation extents of a subset A ⊆ G , denoted by

A, is given by the set of minimal definable sets in Pext enclosing A:

A = min({E ∈Pext | A ⊆ E})= min(↑ A∩Pext).

Example 3.26. Consider Example 3.12, the upper approximations of subset A = {g2, g4} is given

by A = {A} since A is definable. For the set B = {g1, g2}, we have B = {{g1, g2, g3}, {g1, g2, g4}} that

is B has two upper-approximation extents. For C = {g3, g4}, it is clear that there is no definable

set in Pext enclosing C (see Fig. 3.7 (right)), thus C =;.
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It should be noticed that, according to Proposition 3.4, we have (∀A ⊆ G) A = min(ext[cov(A)]).

Moreover, in a pattern structure, we have A = {ext(int(A))} for all A ⊆ G .

3.5.3 Linking Upper-Approximation Extents to Support-closed Patterns

An important question to investigate now is: “What is the relationship between upper-approximation

extents and support-closed patterns?”

We have seen before that on the one hand cov∗ operator is somehow a generalization of

pattern structure int operator in a pattern setup and on the other hand, upper-approximation

extents operator is a generalization of pattern structure closure operator ext◦ int. Indeed, in a

pattern structure we have for A ⊆ G , cov∗(A)= {int(A)} and A = {ext(int(A))}. That is:

A = ext[cov∗(A)]

One judicious question is that, does this property still hold for an arbitrary pattern setup? The

answer is negative. Indeed, we have seen in Example 3.23 and Example 3.26 that for A = {g2, g4},

we have on the one hand A = {A} and on the other hand:

ext[cov∗(A)] = {ext(“bb′′), ext(“c′′)}= {{g2, g4}, {g1, g2, g4}} 6= A

The problem is even worse as shown in Example 3.25 where for A = {g1, g2} we have A =
{{g1, g2}} since A is definable. However, cov∗(A)=; making ext[cov∗(A)]=;.

The latter observation is directly linked with the fact that in an arbitrary pattern setup

we do not have the fact that any common description subsumes at least one maximal common

description. Formally, the property that for any subset A ⊆ G , we have cov(A) =↓ cov∗(A) (i.e.

δ[A]` =↓ max(δ[A]`) does not hold in an arbitrary pattern setup but holds in a pattern structure

(i.e. int(A) is the maximum of the lower-ideal cov(A)). We will see that requiring this property is

directly linked to the notion of multilattices presented in Section 2.3.5. The next section will

introduce the notion of pattern multistructures that rely on multilattices.
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3.6 Pattern Multistructures

In Section 3.5, we have seen that arbitrary pattern setups may have some issues regarding the

maximal common descriptions and their expressiveness with regard the extents they induce

(see Section 3.5.1.3). This is due to the fact that pattern setups are too permissive. On the other

hand, while pattern structures provide rather strong and useful properties, they are somehow too

restrictive since they cannot model some usual pattern spaces as the one of sequential patterns.

We propose a new structure, dubbed Pattern Multistructure, that lies between pattern setups

which rely only on arbitrary posets and pattern structures which rely on lattices. We will see that

pattern multistructures solve many of the aforementioned issues including the ones presented in

section 3.5.1.3 and section 3.5.3.

3.6.1 Basic Definitions and Properties

Definition 3.25. A pattern setup P= (G , (D,v),δ) is said to be a pattern multistructure if

for any A ⊆ G , cov(A) is maximal-handle (cf. definition 2.10). In other words:

(∀A ⊆ G) cov(A)=↓ cov∗(A)

Note 3.8. Note that in a pattern multistructure, we have cov(;)=;` = D is maximal-handle.

Hence, we have D =↓ max(D) or equivalently every chain in (D,v) is upper-bounded.

A pattern multistructure adds an additional condition on a pattern setup which is the

following: knowing maximal common descriptions covering all elements of a set of objects A

allows us to deduce using the order v every single covering description.

It is clear that all pattern structures are by definition pattern multistructures. Graphs

ordered by subgraph isomorphism relation introduced in [110] induce a pattern multistructure

on the set of graphs, but not a pattern structure (a pattern structure is induced on sets of

graphs incomparable w.r.t. subgraph isomorphism). Same remark holds for sequential patterns

[39, 48]. This is under the assumption of the existence of a largest element > subsumed by all

sequences/graphs (see Example 3.27).

Example 3.27. Reconsider the pattern setup presented in Example 3.12. Since only finite

sequences are considered in the description space, we have: cov∗(;)=; even if cov(;)= D. Thus,

the considered pattern setup in Example 3.12 is not a pattern multistructure due to the empty set.

The common trick to handle the empty set is to enrich D with a largest element >,∨
D if it does

not exist, i.e. apply a dual lifting of D (cf. Section 2.3.1). In such a case, we have cov∗(;)= {>}.

Another less common pattern language is presented below.

Example 3.28. Consider Ds := {
[a,a+ l]× [b,b+ l] | a,b ∈ R, l ∈ R+}∪R2 the pattern language

of closed squares in R2. This language can be seen as a neighborhood pattern language [86]

where the used norm is the ∞-norm. Let P := (
{g1, g2}, (Ds,⊇),δ

)
be a pattern setup where
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δ(g1) = [2,5]× [1,4] and δ(g2) = [3,6]× [3,6] (i.e. the dark gray rectangles depicted in Fig. 1.4).

We have, cov∗({g1, g2}) = {[1+ l,6+ l]× [1,6] | l ∈ [0,1]} is infinite (see Fig. 1.4). Still, for any

d ∈ cov({g1, g2}) one can always find d∗ ∈ cov∗({g1, g2}) s.t. d ⊇ d∗ making pattern setup P a

pattern multistructure.

Let us reconsider the question: “What is the link between maximal covering descriptions and

upper-approximations extents in a pattern multistructure?”. Before answering this question, we

shall start by stating the following Lemma.

Lemma 3.2. Let (P,≤) and (Q,≤) be two posets and let f : P → Q be an order-reversing

mapping. We have for any S ⊆ P that ↑ f [↓ S]=↑ f [S].

Proof. Recall that ↑ and ↓ are closure operators (cf. Proposition 2.7). Let us start by showing

that ↑ f [S] ⊆↑ f [↓ S]. Since S ⊆↓ S, we have f [S] ⊆ f [↓ S]. Since ↑ is monotone, we have

↑ f [S]⊆↑ f [↓ S]. It remains to show that ↑ f [↓ S]⊆↑ f [S]. Let u ∈↑ f [↓ S], that is ∃v ∈ f [↓ S]

s.t. v v u. Since v ∈ f [↓ S], then ∃x ∈↓ S s.t. v = f (x). Hence ∃y ∈ S s.t. x ≤ y. Using the fact

that f is an anti-embedding, we obtain that f (y) v f (x) v u. In other words, ∃w ∈ f [S] s.t.

w v u. This is equivalent to say that u ∈↑ f [S]. We conclude hence that ↑ f [↓ S]⊆↑ f [S].

Theorem 3.4 links between maximal common descriptions and upper-approximation extents

in pattern multistructures.

Theorem 3.4. For any pattern multistructure P we have: (∀A ⊆ G) A = min(ext[cov∗(A)])

Proof. The proof of the theorem is a straightforward application of Lemma 2.1 and Lemma

3.2. Let A ⊆ G , since P is a pattern multistructure, then:

cov(A)=↓ max(cov(A)) ⇒ ext[cov(A)]= ext[↓ max(cov(A))]

⇒↑ ext[cov(A)]=↑ ext[↓ max(cov(A))]

Since ext : D →℘(G) is an order reversing, then using Lemma 3.2 we have:

↑ ext[↓ max(cov(A))]=↑ ext[max(cov(A))]⇒↑ ext[cov(A)]=↑ ext[max(cov(A))⇒
min(↑ ext[cov(A)])= min(↑ ext[max(cov(A)])

Using Lemma 2.1 we obtain A = min(ext[cov(A)])= min(ext[max(cov(A))).

Another important observation related to Example 3.25 is the fact that the support-closed

patterns in a pattern setup does not hold all the information about the definable sets. Theorem 3.5

states that this is no longer the case for pattern multistructures.

Theorem 3.5. Given a pattern multistructure P for which the set of support-closed patterns

is Pint (cf. Theorem 3.3), we have: Pext = ext[Pint].
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Proof. Recall that Pint =⋃
B⊆G ext[cov∗(B)]. Since Pint ⊆ D and by definition Pext = ext[D]. It

is clear that ext[Pint]⊆Pext. It remains to show that Pext ⊆ ext[Pint]. Let A ∈Pext, then ∃d ∈
cov(A) s.t. A = ext(d). Since P is a pattern multistructure, we have cov(A)=↓ cov∗(A). Then,

we have a support-closed pattern d∗ ∈ cov∗(A) ⊆ Pint s.t. d v d∗. Hence, ext(d∗) ⊆ ext(d).

Moreover, since cov∗(A)⊆ cov(A), we have d∗ ∈ cov(A). Therefore, A = ext(d)⊆ ext(d∗). We

obtain thus A = ext(d)= ext(d∗), that is A ∈ ext[Pint].

Similarly to Theorem 3.2 for pattern structures, Theorem 3.6 connects multilattices (see

Definition 2.18) with pattern multistructures. It states that (complete) meet-multisemilattices

are to pattern multistructures what (complete) lattices are to pattern structures.

Theorem 3.6. Let D = (D,v) be a poset, the following properties are equivalent:

• For any finite set G 6= ; and any δ ∈ DG , (G ,D,δ) is a pattern multistructure.

• D is a meet-multisemilattice having all its maximal elements (i.e. D =↓ max(D))

More generally, the following properties are equivalent:

• For any set G 6= ; and any δ ∈ DG , (G ,D,δ) is a pattern multistructure.

• D is a complete meet-multisemilattice.

Proof. Recall that P = (G ,D,δ) is a pattern multistructure iff for any subset S ⊆ δ[G],

S` is maximal-handle. The proof of this theorem follows the same spirit of Theorem 3.2’s

proof where the existence of the meet (i.e. S` is maximum-handle) is replaced by S` is

maximal-handle.

Note 3.9. Pattern multistructures are named so since they rely on meet-multisemilattices.

3.6.2 Some Issues with Pattern Multistructures

We have seen earlier in this section that some issues related to pattern setups no longer exists

for pattern multistructures. However, it should be noticed that the two issues presented in

section 3.5.1.1 and section 3.5.1.2 still exist as the examples used rely on the pattern setup

presented example 3.12 which induce a pattern multistructure (see example 3.27). We will

investigate now two additional issues that pattern multistructures may have.

3.6.2.1 Maximal covering descriptions of an extent could be infinite

The following Example shows that even with pattern multistructures with finite set of objects,

upper-approximations extents are not computable using Theorem 3.4 as the set of maximal

covering descriptions may be infinite.

Example 3.29. Consider the description space (D,v) depicted in Fig. 3.11 and let be the pattern

multistructure (G , (D,v),δ) where G = {g1, g2}, δ(g1)= aα and δ(g2)= aβ. We have cov({g1, g2})=
{bi | i ∈N} and since cov({g1, g2}) is an antichain, we conclude that cov∗({g1, g2})= {bi | i ∈N}.
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a0a1. . .an. . .aαaβ

b0b1. . .bn. . .

Figure 3.11: A complete multilattice with an infinite antichain. We have (∀i, j ∈N) i ≤ j ⇔ bi v a j
and (∀i ∈N) bi v aα and bi v aβ

3.6.2.2 Definable sets do not form a join-multisemilattice

Last but not least, we have seen in Section 3.4 that in the case of a pattern structure, (Pext,⊆) is

a complete lattice since it is closed under arbitrary intersections. One can say that the property

of having the infimum in the description space has been transferred to the poset of definable sets

thanks to extent operator. When it comes to a pattern setup on finite set of objects, it is clear that

(Pext,⊆) is a complete multilattice since it is finite. However, does this property still holds for the

case of infinite set of objects? Unfortunately, the answer is negative as stated in Proposition 3.9.

This proposition tells also that not all definable sets above A in a pattern multistructure are

above at least one upper-approximation of A.

Proposition 3.9. There exists a pattern multistructure P= (G , (D,v),δ) such that (Pext,⊆) is

not a join-multisemilattice and in which (∃A ⊆ G) ↑ A∩Pext 6=↑ A∩Pext.

Proof. Consider the pattern setup P= (G , (D,v),δ) where (D,v) is the complete multilattice

depicted in Fig. 3.11. Since (D,v) is a complete multilattice (i.e. it is chain-finite), then P is a

pattern multistructure. Consider now an infinite set G = {g i | i ∈N}∪ {gα, gβ}. The mapping δ

is given by: δ(gα) = aα, δ(gβ) = aβ and (∀i ∈N) δ(g i) = ai. To show that the poset (Pext,⊆)

is not a join-multisemilattice we need to consider two definable sets in Pext and show that

the set of their common upper-bounds in Pext does not have all its minimal elements. Let us

compute ext for every d ∈ D:

• ext(aα) = {gα} and ext(aβ) = {gβ}.

• (∀i ∈N) ext(ai) = {g i} and (∀i ∈N) ext(bi) = {gα, gβ}∪ {g j | j ≥ i}.

Consider now the set of definable sets {{gα}, {gβ}}, it is clear that the set of their common

upper-bounds (in Pext) is given by: {{gα}, {gβ}}u = {{
gα, gβ

}∪{
g j | j ≥ i

} | i ∈N}
.

The set of upper bounds is hence an infinitely descending chain and hence does not

have a minimal element, in other words: min({{gα}, {gβ}}u) = ;. Hence, (Pext,⊆) is not a

join-multisemilattice. The proof of the second part of the proposition is straightforward.

Indeed, consider the non-definable set A = {gα, gβ}. We do have: ↑ A∩Pext = ext[cov(A)] ={{
gα, gβ

}∪{
g j | j ≥ i

} | i ∈N}
. Hence, A = min(↑ A∩Pext)=;. That is ↑ A∩Pext 6=↑ A∩Pext.
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3.7 New Pattern Setups from Old Ones

In this section, we will explore three usual ways used in the literature to build new pattern setups

from other. The first investigated transformation, called completion, allows to build pattern

structures starting from pattern setups (Section 3.7.1). The next discussed transformation,

called projection, allows to build simpler pattern setups starting from a more complex one

(Section 3.7.2). Finally, we present the notion of combining pattern setups to build a more complex

one thanks to the direct product of posets (Section 3.7.3).

3.7.1 Pattern Setup Completions

Example 3.12 presents a pattern setup which is not a pattern structure. However, in FCA and

pattern structure literature, it is recurrent to talk about sequential pattern structures [39, 48]. In

fact, instead of sequences, sets of incomparable sequences are considered which induce a richer

description space. Same trick has been even used in the first paper introducing pattern structures

[78] concerning graph description space ordered by subgraph isomorphism. Transforming pattern

setups to pattern structures allow in general to use results from pattern structures to handle

other pattern languages as for instance enumeration algorithms.

From the order-theoretic point of view, techniques embedding a poset into a complete lattice

are called completions (see Definition 2.26). Different natural completions exist in the literature.

For instance, the Dedekind-MacNeille completion [53] takes an arbitrary poset to the smallest

complete lattice containing it. The usual trick used in FCA and Pattern Structure literature to

augment a base pattern setup to a pattern structure is tightly linked to the antichain embeding

presented in Section 2.4.4.3.

3.7.1.1 Pattern setup completion by antichain embedding

We define below the most common trick used in the FCA literature which can be called pattern

setup antichain embedding.

Definition 3.26. Let P= (G ,D,δ) be a pattern setup, the antichain embedding of P is the

pattern setup denoted by PO and given by:

PO = (
G , (A (D),5),δO : g 7→ {δ(g)}

)
where (A (D),5) is given in Definition 2.29.

In Section 2.4.4.3, we have mentioned that (A (D),5) is a lattice when (D,v) is a finite poset

(i.e. a sufficient condition). However, given an arbitrary pattern setup on an infinite description

space, PO is not always guaranteed to be a pattern structure. We show in Theorem 3.7 a necessary

and sufficient condition on P that makes PO a pattern structure. Here extO and intO denote

extent and intent of PO, respectively.
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Theorem 3.7. Let P= (G ,D,δ) be a pattern setup. The antichain embedding of P is a pattern

structure, i.e. a completion, if and only if P is a pattern multistructure. In this case:

(∀S ∈A (D)) extO(S)=⋂
ext[S] (∀A ⊆ G) intO(A)=minf(δ[A])= cov∗(A)

and we have POext = {
⋂

S | S ⊆Pext} and
⋂;= G ∈POext.

Proof. Let us show that: P is a pattern multistructure ⇔ PO is a pattern structure.

Recall that PO is a pattern structure iff every subset of δO[G] has a meet in (A (D),≤).

For A ⊆ G we have: δO[A]` = {S ∈A (D) | (∀g ∈ A)S ⊆↓ δ(g)}= {S ∈A (D) | S ⊆ δ[A]`}. where

δ[A]` and δO[A]` denote respectively the lower bounds of δ[A] w.r.t. v and the lower bounds

of of δO[A] w.r.t. ≤ (recall that δ[A]` =⋂
g∈A ↓ δ(g)). In this proof ↓ refers to the down-closure

related to v.

We show each implication independently:

• (⇒) Let A ⊆ G : δ[A]` =↓ max(δ[A]`). Thus δO[A]` = {S ∈ A (D) | S ⊆↓ max(δ[A]`)} =
{S ∈A (D) | S ≤ max(δ[A]`)}. Since max(δ[A]`) ∈A (D), so max(δ[A]`) is the meet of

δO[A] in A (D).

• (⇐) PO is a pattern structure is equivalent to say: ∀A ⊆ G , δO[A] has a meet M ∈
A (D). That is, ∃M ∈ δO[A]` for A ⊆ G : ∀S ∈A (D) : S ⊆ δ[A]` ⇔ S ⊆↓ M. Particularly,

for S = {d} with d ∈ D, we deduce that ∀d ∈ δ[A]` : d ∈↓ M. Thus, δ[A]` ⊆↓ M. Moreover,

since M ⊆ δ[A]` (M ∈ δO[A]`) and ↓ is a closure operator on (℘(D),⊆) we have by

monotony ↓ M ⊆ δ[A]` ⊆↓ M (note that ↓ δ[A]` = δ[A]`). We conclude that we have

δ[A]` =↓ M. Using Lemma 2.3 we obtain δ[A]` =↓ max(δ[A]`).

We conclude the equivalence.

Let us now determine intO and extO. The previous proof has shown that for A ⊆ G the

meet of δO[A] is max(δ[A])`. i.e.:

intO(A)= max(δ[A]`)= cov∗(A)

For extO operator, let S ∈A (D). We have:

extO(S) = {g ∈ G | S ≤σ(g)}= {g ∈ G | S ⊆↓ δ(g)}

= {g ∈ G | (∀d ∈ S)d v δ(g)}= ⋂
d∈S

ext(d)=⋂
ext[S]

Let us show that POext = {
⋂

S | S ⊆Pext}. The property POext ⊆ {
⋂

S | S ⊆Pext} holds by defi-

nition of extO. For the inverse inclusion, it is sufficient to show that Pext ⊆POext (since (POext,⊆)

is closed under intersection). Let A ∈ Pext. ∃d ∈ D s.t. A = ext(d). Since {d} ∈ A (D), and

extO({d})= ext(d)= A. We conclude that A ∈POext. Hence, POext = {
⋂

S | S ⊆Pext}.
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3.7.1.2 Pattern setup direct completion

We show here that there is a completion that transforms any pattern setup to a pattern structure

without demanding any additional property.

Theorem 3.8. The direct completion of P= (G ,D,δ) is the pattern structure:

PH = (G , (℘(D),⊆),δH : g 7→ ↓ δ(g))

where (∀S ⊆ D) extH(S) = ⋂
ext[S] and (∀A ⊆ G) intH(A) = cov(A) = δ[A]`. The set of definable

sets is given by PHext = {
⋂

S | S ⊆Pext}.

Proof. Let us show that the pattern setup PH is a pattern structure. Let A ⊆ G . We need to

show that δO[A] has a meet in (℘(D),⊆). We have:

δO[A]` = {S ⊆ D | (∀g ∈ A) S ⊆↓ δ(A)}= {S ⊆ D | S ⊆ δ[A]`}

Since δ[A]` ∈ δO[A]`, we conclude δ[A]` is the meet of δO[A]`, Hence:

intH(A)= δ[A]` = cov(A)

For the extent operator extH, let S ∈℘(D). We have

extH(S)= {g ∈ G | S ⊆↓ δ(g)}= {g ∈ G | (∀d ∈ S)d v δ(g)}=⋂
ext[S]

Let us show that PHext = {
⋂

S | S ⊆Pext}. Thanks to the definition of extH, property POext ⊆
{
⋂

S | S ⊆Pext} holds. For the inverse inclusion, it is sufficient to show that Pext ⊆PHext (since

(PHext,⊆) is closed under intersection). Let A ∈Pext, ∃d ∈ D s.t. A = ext(d). We have extH({d})=
{g ∈ G | {d} ⊆↓ δ(g)} = {g ∈ G | d v δ(g)} = ext(d) = A. We conclude that A ∈ PHext and PHext =
{
⋂

S | S ⊆Pext}.

Example 3.30. Fig. 3.12 depicts the concept lattice B(PO) of the antichain completion of the

pattern multistructure P considered in Fig. 3.7 (i.e., the description space is augmented with

the top element >). For any concept (A,B), descriptions d ∈ B in bold are those for which

ext(d)= A. Please notice that while description “c” has for extent {g1, g2, g4}, description “c” does

belong to the concept related to the extent {g2, g4}. One should also notice that the underlined

concepts represent those related to the non definable sets in P but definable in PO, i.e. {g1, g2}

and {g1, g2, g3, g4} in POext\Pext. For instance, consider the intent of {g1, g2} in the completion,

each pattern d has extent ext(d)) {g1, g2}. Extent {g1, g2, g3, g4} is non-coverable in P and thus

intO({g1, g2, g3, g4})= max(cov({g1, g2, g3, g4}))= max(;)=;.
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(;;;, {>>>})

({g1}, {“cab"}) ({g2}, {“cbba"}) ({g4}, {“bbc")}

({g1, g2}, {“a",“b",“c"}) ({g2,g4}, {“bb", “c"}

({g1,g2,g3}, {“a"}) ({g1,g2,g4}, {“b",“c"})

({g1, g2, g3, g4},;)

Figure 3.12: Concept lattice B(PO).

Note that while in Example 3.30, the size difference between the set of definable sets in the

base pattern setup Pext and the set of definable sets in the antichain completion POext is not large

(i.e. |POext\Pext| = 2). In some cases, the size of POext can be exponentially larger than Pext. Consider,

for instance, the following example.

Example 3.31. Let n ∈ N with n ≥ 3. We denote by [n] the subset [n] = {1,2, ...,n}. Let be the

pattern setup P= (G , (D,⊆),δ) with G = {g i}i∈[n],

D = {{i} | i ∈ [n]}∪ {[n]\{i} | i ∈ [n]}

and the mapping δ : g i 7→ [n]\{i} for all i ∈ [n]. One can verify that we have Pext = {{g i} | i ∈
[n]}∪ {G\{g i} | i ∈ [n]}. Indeed, we have:

• (∀i ∈ [n]) ext([n]\{i})= {g j | [n]\{ j}⊆ δ(g j)}= {g j | [n]\{ j}⊆ [n]\{i}}= {g i}.

• (∀i ∈ [n]) ext({i})= {g j | {i}⊆ δ(g j)}= {g j | {i}⊆ [n]\{ j}}= G\{g i}.

Hence, we have |Pext| = 2n. However, according to Theorem 3.7, we have

POext =
{⋂

S | S ⊆Pext
}=℘(G)

since Pext contains all the coatoms of ℘(G) (i.e. (∀g ∈ G) G\{g} ∈ Pext) and the powerset lattice

is coatomistic. It follows that |POext| = 2n. In other words, POext is exponentially larger than Pext.

One should notice that the new description space associated to PO is (order-)isomorphic to

(℘([n]),⊆).

3.7.2 Pattern Setup Projections

Projections has been proposed in the seminal paper on pattern structure [78]. They have for

aim to simplify the pattern structure someone deals with, i.e. create a less expressive descrip-

tion language. They have been then revisited in [41]. While this notion has been defined for

pattern structures, we extend here this notion in the more general framework of pattern setups

following [41]. Please note that what we call here projections were called o-projections [41].
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Definition 3.27. Let P= (G , (D,v),δ) be a pattern setup and ψ be a kernel operator on (D,v)

(cf. Definition 2.24). The kernel operator is then said to be a projection on P and the resulting

projected pattern setup is denoted ψ(P) and given by:

ψ(P) := (G , (ψ[D],v),ψ◦δ)

The associated operators of ℘(P) will be indexed by ψ, e.g. extψ, covψ, cov∗ψ.

Note 3.10. Since ψ is a kernel operator, recall that we have from Definition 2.24:

(∀c ∈ D ∀d ∈ψ[D]) d v c ⇔ d vψ(c)(3.2)

We will see now that projected pattern setups have a tight relationship with their parent

pattern structures. Let us start by the following proposition.

Proposition 3.10. A description d ∈ψ[D] holds for an object g ∈ G in ψ(P) iff it does hold for

g in P. Formally:

(∀d ∈ψ[D] ∀g ∈ G) d vψ◦δ(g)⇐⇒ d v δ(g)

Proof. The proof is a straightforward application of Equation 3.2 where c ∈ δ[G].

Many other properties stem from this basic property. Let us start by investigating the

expressions of the different operators associated to the projected pattern setup.

Proposition 3.11. We have:

extψ :ψ[D]→℘(G), d 7→ ext(d) covψ :℘(G)→℘(ψ[D]), A 7→ψ[cov(A)]

Proof. By definition, we have: extψ :ψ[D]→℘(G),d 7→ {g ∈ G | d vψ(δ(g))}. Using Proposi-

tion 3.10, we conclude that extψ(d)= ext(d) for all d ∈ψ[D].

By definition, we have: covψ :℘(G) →℘(ψ[D]), A 7→ {d ∈ψ[D] | (∀g ∈ A) d vψ(δ(g))}. On

the other hand, we have: ψ[cov(A)] = {ψ(d) | d ∈ D and (∀g ∈ A) d v δ(g)}. Let us show by

double inclusion that covψ(A)=ψ[cov(A)]:

(⊆) Let d ∈ covψ(A), then d ∈ψ[D] with (∀g ∈ A) d vψ(δ(g)). Using Proposition 3.10, we

obtain (∀g ∈ A) d v δ(g). Hence, d ∈ cov(A), since ψ(d)= d we obtain d ∈ψ[cov(A)].

(⊇) Let c ∈ ψ[cov(A)], then ∃d ∈ D s.t. c = ψ(d) and (∀g ∈ A) d v δ(g). Since ψ is order-

preserving we obtain (∀g ∈ A) c vψ(δ(g)). With c ∈ψ[D] we conclude that c ∈ covψ(A).

This conclude the theorem.

An important corollary of the Proposition 3.11 is given below:
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Corollary 3.1. If A ⊆ G is an extent in P then it is also an extent in ψ(P). Formally:

ψ(P)ext ⊆ Pext

Proof. The proof is straightforward: ψ(P)ext = extψ[ψ[D]]= ext[ψ[D]]⊆ ext[D]=Pext.

In other words, Corollary 3.1 creates a less expressive pattern setup.

3.7.2.1 Projections on pattern structures

As presented in [78], Theorem 3.9 formalizes the fact that the projections preserve pattern

structures. Before presenting the theorem, we state the following Lemma.

Lemma 3.3. Let (D,v) be a poset and ψ be a kernel operator on (D,v). If S ⊆ D has a meet⊔S on D, then ψ[S] has also a meet in (ψ(D),v) which is given by:

⊔ψψ[S] = ψ [⊔S]

Proof. Since ⊔S is the meet of S in (D,v), we have:

(∀c ∈ D) ((∀s ∈ S) c v s ⇔ c v⊔S)

Using Equation 3.2 for c ∈ψ[D] we have both equations:

(∀c ∈ψ[D])
(
c v⊔S ⇔ c vψ [⊔S]

)
(∀c ∈ψ[D])

(
(∀s ∈ S) c v s ⇔ (∀s ∈ S) c vψ(s)

)
Using the three above equations, we obtain:

(∀c ∈ψ[D])
(
(∀s ∈ S) c vψ(s) ⇔ (∀s ∈ S) c v s ⇔ c v⊔S ⇔ c vψ [⊔S]

)
We have then equivalently:

(∀c ∈ψ[D])
((∀s′ ∈ψ[S]

)
c v s′ ⇔ c vψ [⊔S]

)
The last statement is equivalent to say that the meet of ψ[S] in (ψ[D],v) exists and is given

by ψ [⊔S].

Theorem 3.9. Let P be a pattern structure and ψ a projection on P. The projected pattern

setup ψ(P) is also a pattern structure whose intent intψ is given by:

intψ :℘(G)→ψ[D], A 7→ψ(int(A))
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Proof. Let A ⊆ G . since P is a pattern structure, then int(A)=⊔δ[A] exists in (D,v). Hence,

using Lemma 3.3, the meet of ψ ◦ δ[A], i.e. intψ(A) exists in (ψ(D),v) and is given by

ψ(int(A)).

Note 3.11. Theorem 3.9 states also the same property as the one stated in Proposition 1 in

[41], that is if d is an intent in P then ψ(d) is an intent in ψ(P). Moreover, we have:

ψ(P)int = ψ[Pint]

Further discussion about projections of pattern structures can be found in [41] as for instance

the fact that not all projections are meet-preserving since they are just simple kernel operators.

3.7.2.2 Projections on pattern multistructures

We have seen earlier that projections preserve pattern structures. However, we show here that

projections do not preserve pattern multistructures.

Proposition 3.12. There exists a pattern multistructure P and a projection ψ on P such that

ψ(P) is not a pattern multistructure.

Proof. Let P= (G , (D,v),δ) be a pattern setup where (D,v) is depicted in Fig. 3.13 (left):

• (∀i ∈N) ci v ci+1.

• (∀i ∈N) ci v ai.

• (∀i ∈N) ai v e0 and ai v e1.

The set of objects G is given by G = {g0, g1} and the mapping delta is given by: δ(g j) = e j

for j ∈ {1,2}. One can check that (D,v) is a complete multilattice. Hence, According to

Theorem 3.6, the pattern setup P is a pattern multistructure.

Let be ψ : D → D the mapping depicted by dashed arrows in the Fig. 3.13 (left) where:

• (∀i ∈N) ψ(ai)= ci.

• (∀i ∈N) ψ(ci)= ci.

• (∀ j ∈ {0,1}) ψ(e j)= e j.

One can check that ψ is a kernel operator on (D,v) since it is idempotent, contractive

and order-preserving. Hence, ψ is a projection on P and ψ(P)= ({g0, g1}, (ψ[D],v),δ). Poset

(ψ[D],v) is depicted on the right side of Fig. 3.13 while ψ◦δ= δ since elements of δ[G] are

fixpoints of ψ. It is clear that ψ(P) is not a pattern multistructure since: covψ(G)= {ci | i ∈N}

which is an infinitely ascending chain. Hence, max(covψ(G))=;.
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cn
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a0a1. . .an. . .
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...

e0e1

ψ

Figure 3.13: A kernel operator ψ on a complete multilattice (D,v) where dashed arrows represent
the image of non fixpoints (left) and its image (ψ[D],v) (right).

3.7.3 Pattern Setups Direct Product

When dealing with datasets with heterogeneous attributes (e.g. categorical, numerical, boolean),

we manipulate in general various pattern languages built over one or a subset of attributes. A

way to combine these pattern languages is to use “conjunctions” of their elements. We formalize

these new pattern languages built by “conjunctions” by the mean of pattern setups direct product

defined below.

Definition 3.28. Let I be an index set and Pi = (G , (Di,v),δi) be pattern setups built over G

for all i ∈ I. The direct product of {Pi | i ∈ I} is denoted×i∈I Pi and is given by:

×
i∈I
Pi :=

(
G ,×

i∈I
(Di,v) ,δ

)
with δ : g 7→ (δi(g))i∈I

where×i∈I (Di,v) is the direct product of posets (Di,v) (see Definition 2.20).

Proposition 3.13. We have:

ext : ×i∈I Di →℘(G), (di)i∈I 7→
⋂
i∈I

exti(di)

cov : ℘(G)→×i∈I Di, A 7→×
i∈I

covi(A)

cov∗ : ℘(G)→×i∈I Di, A 7→×
i∈I

cov∗i (A)

Where exti (ext), covi (cov) and cov∗i (cov∗) denote respectively the extent operator, cover

operator, maximal common descriptions operator for pattern setup Pi (×i∈I Pi).
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Proof. We show the three expressions below:

1. ext: We have ext ((di)i∈I )= {g ∈ G | (di)i∈I v (δi(g)i∈I } which is equivalent by definition

to {g ∈ G | (∀i ∈ I) di v δi(g)}. This last set is equal to
⋂

i∈I exti(di).

2. cov: We have (di)i∈I ∈ cov(A) is equivalent to ∀i ∈ I and ∀g ∈ G we have di v δi(g).

The later is equivalent to (∀i ∈ I) di ∈ covi(A), i.e. (di)i∈I ∈×i∈I cov(A).

3. cov∗: We have (di)i∈I ∈ cov∗(A) is equivalent to ↑ (di)i∈I ∩ cov(A)= {(di)i∈I }. The latter

is equivalent to (∀i ∈ I) ↑ di ∩ covi(A)= {di} which is equivalent to (∀i ∈ I) di ∈ cov∗i (A),

i.e. (di)i∈I ∈×i∈I cov∗i (A).

This concludes the demonstration.

Interestingly, analogously to the direct product of posets, the direct product of pattern setups

preserve the different properties. This observation is expressed formally in the two following

theorems.

Theorem 3.10. Pattern setup×i∈I Pi is a pattern structure if and only if for all i ∈ I, pattern

setup Pi is a pattern structure. Moreover, with inti (resp. int) denoting the intent operator

associated to Pi (resp.×i∈I Pi), we have:

int :℘(G)→×
i∈I

Di, A 7→ (inti(A))i∈I

Proof. All the pattern setups Pi are pattern structures is equivalent to say that for all

A ⊆ G , the meet inti(A)=⊔δi[A] exists in Di for all i ∈ I. This is equivalent to say:

(∀A ∈ G ,∀i ∈ I,∀di ∈ Di) (di ∈ covi(A) ⇐⇒ di v inti(A))

This is equivalent to:

(∀A ∈ G ,∀(di)i∈I ∈ D
) (

(di)i∈I ∈ cov(A) ⇐⇒ (di)i∈I v (inti(A))i∈A
)

Hence all pattern setups are pattern structures iff×i∈I Pi is a pattern structure.

Theorem 3.11. Pattern setup×i∈I Pi is a pattern multistructure if and only if for all i ∈ I,

pattern setup Pi is a pattern multistructure.

Proof. Let A ∈ G . Description (di)i∈I ∈ cov(A) has a description (ci)i∈I ∈ cov∗(A) such that

(di)i∈I v (ci)i∈I iff (∀i ∈ I) di v ci. Recalling that cov∗(A) =×i∈I cov∗i (A) concludes the

proof.
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3.8 Conclusion

In this chapter, we have provided an order-theoritic point-of-view on pattern languages. We

have presented different frameworks stemming out from Formal Concept Analysis: (1) Formal
Concept Analysis allows to handle directly Boolean datasets and provides the tool of conceptual

scaling for handling more complex attributes. (2) More naturally, Pattern Structures model

pattern languages as ordered sets but require that every set of objects must have a maximum

common description. We have seen that this condition is rather too limiting to model some pattern

search spaces as sequential ones [6]. (3) Pattern Setups model pattern languages just as posets

without no additional properties making them too permissive. (4) The new framework of Pattern
Multistructures lies between pattern setups and pattern structures and requires the weaker

condition that the set of maximal common descriptions resumes properly the set of common

descriptions of any subset of objects. Similarly to pattern structures that are tightly linked to

(complete) lattices (Theorem 3.2), we have seen that pattern multistructures are tightly linked to

(complete) meet-multisemilattices (Theorem 3.6).

While Pattern Multistructures provide many properties as the fact that support-closed

descriptions is a correct condensed representation (Theorem 3.5), they still suffer from some issues

as for instance the fact that the set of definable sets is not necessarily a join-multisemilattice

(Proposition 3.9) or the fact that a projection of a pattern mutlistructure is not necessarily a

pattern multistructure (Proposition 3.12). Another important result is that the usual antichain

embedding used in the literature to build a pattern structure starting from a pattern setup (e.g.

sequence of itemsets ones [39, 48]) is applicable if and only if the considered pattern setup is a

pattern multistructure (Theorem 3.7). Still, one should be careful when using such a completion

since the number of new definable sets in the completion could be exponential regarding the

initial number of definable sets (see Example 3.31).

While the aim of this chapter is to understand the different properties a pattern language may

provide, this chapter paves also the way to design algorithms to enumerate the set of definable

sets of a pattern setup on a finite set of objects without completing it. The notion of enumeration

will be investigated in the next chapters.
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4
SET SYSTEMS AND ENUMERATION

This chapter has for aim to present a small overview on the so-called set systems. A set
system is formally any family of sets F on some ground set E, i.e. F ⊆℘(E). In fact, any

partially ordered set (P,≤) can be embedded in (℘(P),⊆) via, for instance, the following

order-embedding:

f : P →℘(P), p 7→↓ p = {q ∈ P | q ≤ p}

This makes (P,≤) order-isomorphic to ( f [P],⊆). One can see that (P,≤) is a complete lattice iff

( f [P],⊆) is closed under arbitrary intersections. Other well-known relationship between finite set

systems and finite distributive lattices is provided by the Birkhoff ’s Representation Theorem [25].

Understanding set systems is in general helpful to design efficient algorithms to enumerate
particular elements of F as for instance closed elements of some closure operator φ : F → F . This

chapter is inspired from [56], [29] and [130], and is organized as follows:

• Section 4.1 presents basic notions on set systems and details the different properties that

set systems can have. We study in detail at the end the particular set system built using

the upper-ideals U (P) or lower-ideals O(P) on finite posets. Such a set system will be used

in Chapter 5.

• Section 4.2 presents particularly the notion of closure operator from set system perspective

and how it does behave when we manipulate what is called convex geometries. An important

structure that we will re-use in Chapter 5.

• Section 4.3 presents the notion of enumeration problem and enumeration algorithm,

a central notion in this dissertation for enumerating patterns. Particularly, we will be

interested in enumerating closed elements in a set system. We study at the end two

algorithms, namely D&C (subsection 4.3.3) and ExR (subsection 4.3.4).
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100 CHAPTER 4. SET SYSTEMS AND ENUMERATION

4.1 Basic Definitions and Properties

Let us start by defining formally what a set system is.

Definition 4.1. Let E be a nonempty set and let F ⊆℘(E) be a nonempty family of sets. The

pair (E,F ) is called a set system (or equivalently, a hypergraph) where E is called the ground
set and elements of F are called feasible sets (or equivalently hyperedges). A set system (E,F )

is said to be finite if the ground set E is finite. An element e ∈ E is said to be isolated if e 6∈⋃
F ,

i.e. there is no feasible set enclosing it.

Note 4.1. Unless otherwise mentioned, we will consider here finite set systems (E,F ) with

no isolated elements, that is E =⋃
F . Henceforth, (E,F ) could be abbreviated with its family of

feasible sets F .

Example 4.1. Fig. 4.3 presents some set systems on the ground set E = {1,2,3,4} with no isolated

elements.

Definition 4.2. The dual set system of a finite set system F is the set system F δ where:

F δ := {⋃
F \S | S ∈ F

}
Note 4.2. Please note that

(
F δ

)δ = F .

Example 4.2. In Fig. 4.3, set systems (2) and (3), (7) and (8); and (10) and (11) are dual set

systems.

4.1.1 On Set Systems Properties

We present now some properties on finite set systems. The terminology here follows [56] and [29].

Definition 4.3. A finite set system F (i.e. the ground set E =⋃
F ) is said to have the

Accessibility property. if ∀S ∈ F \{;}, ∃e ∈ S such that S\{e} ∈ F .

Smoothness property. if ∀S,T ∈ F s.t S ( T, ∃e ∈ T\S s.t. S∪ {e} ∈ F .

Exchange property. if ∀S,T ∈ F s.t |S| < |T|, ∃e ∈ T\S s.t. S∪ {e} ∈ F .

Transfer property. if ∀S,T ∈ F s.t T 6⊆ S, ∃e ∈ T\S s.t. S∪ {e} ∈ F .

Hereditary property. if (∀S ∈ F ) T ⊆ S ⇒ T ∈ F .

Extendability property. if ∀S ∈ F \{E}, ∃e ∈ E\S such that S∪ {e} ∈ F .

Closed-under-union property. if (∀S,T ∈ F ) S∪T ∈ F and ;∈ F .

Closed-under-intersection property. if (∀S,T ∈ F ) S∩T ∈ F and E ∈ F .

Before going deeper into other properties of set systems, we start by analyzing the implications

between these different properties. All the implications that we prove in the following part of

this section are synthesized in Fig. 4.1. Please recall that the set systems here are finite (i.e.

there ground sets are finite). These implications do not necessarily hold for the case of infinite set
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systems. Moreover, Exchange property definition does not have a meaning when infinite sets are

considered. Let (E,F ) be a finite set system with E =⋃
F .

Proposition 4.1. We have:

transfer property=⇒ exchange property

exchange property=⇒ smoothness property

hereditary property=⇒ smoothness property

Proof. The proof is straightforward for the two first implications since |S| < |T| ⇒ T 6⊆ S

and S ( T ⇒ |S| < |T|. For the third implication, suppose that S ( T, we have T\S 6= ;.

Moreover, ∀e ∈ T\S we have S∪ {e}⊆ T. By Hereditary property we obtain S∪ {e} ∈ F .

Proposition 4.2. We have:

transfer property and the emptyset is feasible=⇒ closed-under-union property

Proof. Let be (E,F ) a finite set system where ;∈ F and that has the Transfer property and

let S,T ∈ F . It is clear that if |T\S| = 0 (i.e. T ⊆ S) then S∪T = S ∈ F . Suppose now that

T 6⊆ S, if |T\S| = 1 (i.e. T\S = {e}) then since the set system has the antimatroid, we have

S∪T = S∪ {e} ∈ F .

For a natural n ≥ 2, if |T\S| = n, there exist e ∈ T\S s.t. S1 = S∪ {e} ∈ F . It is clear that

|T\S1| = n−1. One can follow the same reasoning until showing that T ∪S ∈ F .

Proposition 4.3. We have:

accessiblity property=⇒; is feasible

extendibilty property=⇒ E is feasible

Proof. Let S ∈ F , |S| = n for some natural number n ≥ 1. Using accessibility property, there

exist e ∈ S s.t. S1 = S\{e} ∈ F (i.e. |S1| = n−1). The same reasoning can be followed by

induction until n = 0 (i.e. ;∈ F ). One can follow analogously the same steps to prove that if

F is extendable then E ∈ F

It is clear that the set system (E,F ) with E = {e1, e2} and F = {{e1}, {e1, e2}} has the smoothness

property but not accessible since {e1} 6= ; but yet there is no element in it that we can remove to

create a new feasible set. The following proposition link both notions.

Proposition 4.4. Let (E,F ) be a finite set system with E =⋃
F and having the smoothness

property. We have:

• (E,F ) has accessibility if and only if ;∈ F .

• (E,F ) has extendability if and only if E ∈ F .
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Proof. We have seen that ; ∈ F is a necessary condition for accessibility. Let us show

now that this condition is a sufficient one for the case of smooth set systems. Let T ∈ F ,

since we have ;∈ F , then, by using the smoothness property, there exists e1 ∈ T such that

T1 =;∪ {e1} ∈ F (i.e. |T1| = 1). If T1 = T then the proof is done. Otherwise, one can continue

by creating feasible sets T0,T1,T2, ..., T|T|−1,T|T| with T|T| = T, T0 =; and for all 1≤ i ≤ |T|
: Ti−1 = Ti\{e i}. Hence, ∃e|T| ∈ T s.t. T|T|−1 = T\

{
e|T|

} ∈ F .

The second part of the proposition is trivial, i.e. use proposition 4.3 and the definition 4.3

for smoothness where T = E and S is an arbitrary feasible set.

Proposition 4.5. We have:

accessiblity property and closed-under-union property=⇒ transfer property

Proof. Let S,T ∈ F s.t. T 6⊆ S. We need to show that ∃e ∈ T\S s.t. S ∪ {e} ∈ F . Using

accessibility, one can create feasible sets by removing successively elements e from T until

creating some feasible set T ′ ⊆ T s.t. |T ′\S| = 1 (i.e. T ′\S = {e}). Since the set system is closed

under union then T ′∪S = S∪ {e} ∈ F .

Proposition 4.6. We have:

extendability property and closed-under-intersection property=⇒ smoothness property

Proof. Let S,T ∈ F s.t. S ( T, we need to show that ∃e ∈ T\S such that S∪ {e} ∈ F . Using

the extendability of F , one can create feasible sets by adding successively elements to S until

creating some feasible set S′ ⊇ S s.t. |S′∩T| = |S|+1 (i.e. S′∩T = S∪ {e}). Using the fact that

F is closed-under-intersection and S′,T ∈ F we conclude that S∪ {e} ∈ F .

Two properties P1 and P2 on set systems are said to be dual properties iff a set system has

property P1 iff its dual set system has property P2 and vice-versa (See Definition 4.2).

Proposition 4.7. For a finite set system (E,F ) with E =⋃
F , the following pairs of properties

are dual:

• ;∈ F and E ∈ F .

• accessible and extendable.

• closed-under-intersection and closed-under-union.
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Proof. Recall that F δ = {E\S | S ∈ F }, we show below the three statements:

• ;∈ F , then E\;∈ F δ and vice-versa.

• Suppose that F is accessible. Let S ∈ F δ\{E}. We have E\S ∈ F . Since F is accessible

and E\S 6= ; we have ∃e ∈ E\S s.t. (E\S)\{e} = E\ (S∪ {e}) ∈ F . Therefore, ∃e ∈ E\S

s.t. S∪ {e} ∈ F δ, i.e. F δ is extendable.

• Suppose that F is closed under union. We have ;∈ F then E ∈ F δ. Moreover, let S,T ∈
F δ, we have E\S ∈ F and E\T ∈ F , thus (E\S)∪ (E\T) ∈ F . Hence, (E\ (S∩T)) ∈ F .

Thus S∩T ∈ F δ. In other words, F δ is closed-under-intersection.

Fig. 4.1 synthesizes the different relationships between set systems properties for the case of

finite set systems (E,F ) with E =⋃
F .

Accessibility Extendibility

;∈ F E ∈ F

Smoothness

Exchange

Transfer

Closed-under-union Closed-under-intersection

Hereditary

Implies

Implies if ;∈ F

Implies if E ∈ F

Dual properties

Figure 4.1: Implications between properties of finite set systems.
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4.1.2 On Set Systems Structures

Definition 4.4. A finite set system F is said to be:

Accessible if it has the accessibility property.

Extendable if it has the extendability property.

Strongly Accessible if ;∈ F and it has smoothness property1.

an Independence System if it has the hereditary property. In such case, elements of F are

said to be independent sets. Otherwise, they are said to be dependent.

a Greedoid if ;∈ F and it has the exchange property.

a Matroid if it has the exchange and the hereditary property.

an Antimatroid if it is closed under union and is accessible.

a Convex Geometry if it is closed under intersection and is extendable.

Distributive if is is closed both under intersection and union.

Fig. 4.2 synthesizes the different relationships between finite set systems structures. One

should notice that according to the different implication between properties that:

• A finite set system F is an antimatroid iff ;∈ F and has the transfer property.

• A finite set system F is an antimatroid iff its dual set system F δ is a convex geometry.

• A finite convex geometry is strongly accessible.

• A finite set system is distributive and accessible iff it is a convex geometry and an antima-

troid.

Example 4.3. Fig. 4.3 give various example on set systems on {1,2,3,4}. We invite the reader to

check the properties of each set system for the purpose of familiarization.

matroid

greedoid independence system

antimatroidconvex geometry

extendable

strongly accessible

accessible

accessible and distributive

powerset set system (E,℘(E))

Figure 4.2: Structures on finite set systems (E,F ) with E =⋃
F and their relationships

1The term “strong accessibility” was introduced in [28].
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;

{1,3} {1,4}

{1,2,3} {1,2,4}

{1,2,3,4}(1)

;
{1} {3}

{1,2}

{1,2,3}

{1,2,3,4}(2)

;
{4}

{3,4}

{2,3,4} {1,2,4}

{1,2,3,4}(3)

;
{1} {3}

{1,2}

{1,2,3}

{1,2,3,4}

{3,4}

{1,3,4}

(4)

;
{1}

{1,2} {1,3} {1,4}

(5)

;
{1} {2} {3} {4}

{1,2} {2,3} {3,4} {1,4}

(6)

;
{1} {2} {3} {4}

{1,2} {2,3} {3,4}

{1,2,3} {2,3,4}

{1,2,3,4}(7) {1,2,3,4}

{2,3,4} {1,3,4} {1,2,4} {1,2,3}

{3,4} {1,4} {1,2}

{4} {1}

;

(8)

;
{1}

{1,2}

{1,2,3}

{1,2,3,4}(9)

;
{1} {2} {3} {4}

{1,2} {2,3} {3,4} {1,4}

{1,2,3,4}(10) {1,2,3,4}

{2,3,4} {1,3,4} {1,2,4} {1,2,3}

{3,4} {1,4} {1,2} {2,3}

;

(11)

Figure 4.3: Some set systems on {1,2,3,4}: (1) A set system that is neither accessible nor extend-
able. (2) A set system that is accessible but not extendable. (3) A set system that is extendable
but not accessible. (4) A set system that is accessible and extendable but not strongly accessible
(consider S1 = {1} and S2 = {1,2,3})). (5) A greedoid but not an independence system since not all
subsets of {1,4} are into the set system. (6) A matroid. (7) A convex geometry. It does represent
the set of all intervals of poset ({1,2,3,4},≤). (8) An antimatroid. (9) An accessible and distributive
set system, it does represents the set of lower ideals of poset ({1,2,3,4},≤). (10) A set system that
is closed under intersection but neither accessible nor extendable. (11) A set system that is closed
under union but neither accessible nor extendable. Notice that set systems (2) and (3), (7) and
(8); and (10) and (11) are dual set systems.
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4.1.3 Lower and Upper Ideals over Finite Posets as Set Systems

In this section, our purpose is to study the particular set system of upper-ideals U (P) built

over an arbitrary finite poset (P,≤). The aim of the section is to show that set system U (P) is

distributive and accessible. Let us start by the following lemma.

Lemma 4.1. Let (P,≤) be a finite poset, we have:

(∀S ∈U (P),∀a ∈ P\S) S∪ {a} ∈U (P) iff a ∈ max(P\S)

Proof. Let S ∈U (P) and let a ∈ P\S. We show below both implications:

• (⇐) Let a ∈ max(P\S), that is: (↑ a)∩ (P\S)= {a}. Hence, ↑ a ⊆ S∪ {a}. We have ↑ (S∪
{a})=↑ S∪ ↑ {a}= S∪ ↑ {a}. Since, ↑ {a}⊆ S∪{a}, then S∪ ↑ {a}⊆ S∪{a}. By extensivity of

↑ we have S∪ {a}⊆ S∪ ↑ {a}. Thus, ↑ (S∪ {a})= S∪ {a} or in other words S∪ {a} ∈U (P).

• (⇒) Let a 6∈ max(P\S), that is ∃b ∈ P\S such that a ≤ b and a 6= b. Hence, b ∈↑ (S∪ {a})

(since b ∈↑ a) but in the same time b 6∈ S∪{a}. In other words ↑ (S∪{a}) 6= S∪{a}. Hence,

S∪ {a} 6∈U (P).

This concludes the proof.

Proposition 4.8. For any finite poset (P,≤), the set system of upper ideals U (P) is distributive

and accessible.

Proof. According to Note 2.22, we do have the fact that set system U (P) is distributive. Let

us show that it has the transfer property (i.e. stronger than accessibility since ;∈U (P)).

Let be two upsets A,C ∈U (P) s.t. C 6( A, we need to show that: ∃a ∈ C\A s.t. A∪ {a} ∈
U (P). Let us show before that max(C\A) ⊆ max(P\A). Let e ∈ max(C\A), hence e ∈ P\A.

Let f ∈ P s.t. e ≤ f and e 6= f . In one hand, since e ∈ C we have f ∈ C since C ∈U (P). In the

other hand, since e ∈ max(C\A) then f 6∈ C\A. Therefore, f ∈ A or in other words f 6∈ P\A.

We conclude that e ∈ max(P\A). Thus max(C\A)⊆ max(P\A).

According to Lemma 4.1, ∀a ∈ max(P\A), we have A∪ {a} ∈ U (P). Moreover, we have

max(C\A) 6= ; since P is finite and C\A 6= ; (since C 6⊆ A). Since ; 6= max(C\A)⊆ max(P\A)

then ∃a ∈ C\A s.t. A∪ {a} ∈U (P).

Note 4.3. Dual statements can be shown for set system O(P).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



4.2. CLOSURE OPERATOR ON FINITE SET SYSTEMS 107

4.2 Closure Operator on Finite Set Systems

According to Proposition 2.6 and Corollary 2.1, we know that a finite set system (E,F ) with

E =⋃
F is closed-under-intersection if and only if there is a closure operator φF :℘(E)→℘(E) for

which we have φF [℘(E)]= F . Formally:

φF :℘(E)→℘(E), A 7→⋂
{S ∈ F | A ⊆ S}(4.1)

That is, φF takes each subset in B to the smallest subset in F enclosing it. Hence, there is a

characterization of set systems closed-under-intersection through closure operators.

From now on, F denotes a finite set system closed-under-intersection with no isolated elements

(i.e. E :=⋃
F ) and φF denotes its associated closure operator. The aim of this section is to study

the properties of a closure operator associated to a closure system from a set system perspective.

Definition 4.5. Let S ∈ F be a closed set. A subset B ⊆ S is said to be a basis or a generator
of S iff: φF (B)= S. A basis B ∈℘(E) is said to be minimal iff:

(∀B′ (B) φF
(
B′)(φF (B)

An interesting property identified by [151] and was crucial for designing an enumeration

algorithm is formulated in the following proposition.

Proposition 4.9. If B is a minimal basis then all subsets of B are also minimal basis.

Proof. Let B be a minimal basis, i.e.:

(∀B′ (B) φF
(
B′)(φF (B)

If B =; the proof ends here. Suppose now that B 6= ; and suppose that ∃C (B s.t. C is not a

minimal basis. In other words:

(∃D (C) φF (D)=φF (B)

Let now be B′ = (B\C)∪D (B. Since φF is order-preserving then φF (B′)⊆φF (B).

On the other hand, we have D ⊆ B′. Hence, φF (D) = φF (C) ⊆ φF (B′) since φF is order-

preserving. By extensivity, we conclude that C ⊆φF (B′). Since (B\C)⊆φF (B′) we conclude

that B ⊆ φF (B′). Therefore, by idempotence and monotonicity we obtain φF (B) ⊆ F (B′).
Hence, φF (B) = φF (B′). This final statement is contradictory with the fact that B is a

minimal basis.

Note 4.4. According to Proposition 4.9, the set of minimal generators related to φF form an

independent set system.
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Another property identified by [153] shows also that one can build all minimal basis for some

closed element using its lower neighbors fix-points thanks to minimal transversals [24]. Another

important notion related to closure operator in set system is the notion of extreme points.

Definition 4.6. Let S ∈ F be a closed set. An element e ∈ S is said to be an extreme point of

S iff: e 6∈φF (S\{e}). The set of all extreme points of S is denoted ex(S).

Proposition 4.10. Let S ∈ F be a closed set and let e ∈ S. We have:

S\{e} ∈ F ⇐⇒ e ∈ ex(S)

Proof. We show both implications below:

(⇒) Suppose that for e ∈ S we have S\{e} ∈ F . Hence, φF (S\{e}) = S\{e}. Therefore, e 6∈
φF (S\{e}), i.e. e ∈ ex(S).

(⇐) Let e be an extreme point, we need to show that S\{e} ∈ F . We have S\{e}⊆ S. Hence,

φF (S\{e})⊆φF (S)= S. However, since e 6∈φF (S\{e}) then φF (S\{e})( S. Since φF is

extensive we obtain φF (S\{e})= S\{e}. In other words, S\{e} ∈ F .

This concludes the demonstration.

Extreme points have a tight relationship with basis as formulated in the proposition below.

Proposition 4.11. Let S ∈ F and let B ⊆ S, if φF (B) = S then ex(S) ⊆ B. In other words, all

basis of S enclose ex(S).

Proof. Let B ⊆ S s.t. φF (B)= S and let e ∈ ex(S). Suppose that e 6∈ B, hence B ⊆ S\{e}. Thus,

using Proposition 4.10, we obtain φF (B) ⊆ φF (S\{e}) = S\{e}. Hence, φF (B) 6= S which is a

contradiction with the hypothesis that B is a basis of S.

Another important properties on extreme points is the following.

Proposition 4.12. Let S ∈ F with non empty ex(S) and let e ∈ ex(S). We have:

ex(S)\{e}⊆ ex(S\{e})

In other words, all extreme points remain extreme points after an extreme point removal.

Proof. If ex(S)= {e}, the proof ends here. Suppose now that |ex(S)| > 1 and let e′ ∈ ex(S)\{e}.

We need to show that e′ ∈ ex(S\{e}). Since S\{e′} and S\{e} are in F and since set system F

is closed under intersection we conclude that S\{e, e′}= S\{e}∩S\{e′} ∈ F . Hence, according

to Proposition 4.10 (⇐), we obtain e′ ∈ ex(S\{e}).
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When dealing with a finite convex geometry F , the closure operator φF is called a convex
hull [158]. Interestingly, the convex hull has additional properties as detailed in [60]. Among

them, we draw the reader’s attention to the equivalent properties that characterize the closure

operator of a convex geometry.

Theorem 4.1 (A subset of Theorem 2.1 in [60]). Let F be a finite set system that is closed

under intersection with ;∈ F . The following properties are equivalent:

• F is extendable, i.e. F is a convex geometry.

• For any S ∈ F , S has a unique basis.

• For any S ∈ F , φF (ex(S))= S, i.e ex(S) is the unique minimal basis of S.

• For any S ∈ F and e 6∈ S then e ∈ ex(φF (S∪ {e})).

• The closure operator φF has the anti-exchange property given below (with E =⋃
F ):

(∀S ∈ F ,∀e1, e2 ∈ E) e1 ∈φF (S∪ {e2})⇒ e2 6∈φF (S∪ {e1})

Example 4.4. Consider the set system (10) depicted in Fig. 4.3 that we will denote here F .

It is easy to see that this set system is closed under intersection but not extendable, i.e. it is

not a convex geometry. Clearly, according to Proposition 4.10, {1,2,3,4} have no extreme points.

Moreover, it has 4 distinct basis: {1,2,3}, {1,2,4},{1,3,4} and {2,3,4} (i.e. use the associated closure

operator φF presented in eq. 4.1 to check if these sets are basis).

Consider now the convex geometry depicted in Fig. 4.3 (7). One can see that extreme points

of each set is the minimum and the maximum w.r.t. ≤. For instance, ex({1,2,3,4})= {1,4} which is

the unique basis of {1,2,3,4}.

Before leaving this section, let us reconsider the set system of upper-ideals and lower-ideals

of a finite poset (P,≤) studied in Section 4.1.3. Since these two set systems U (P) and O(P) are

distributive and accessible then they are convex geometries (cf. Fig. 4.2). Therefore, the associated

closure operator ↑ and ↓ are convex hulls. Moreover, one can show the following fact:

(∀S ∈U (P)) exU (P)(S)= min(S) and (∀S ∈O(P)) exO(P)(S)= max(S)

Where exU (P) (resp. exO(P)) denotes the extreme points mapping in set system U (P) (resp. O(P)).
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4.3 Enumeration Algorithms on Set Systems

In this section, we will be interested particularly in the enumeration of fixpoints of a closure

operator on an arbitrary finite set system (see Problem 4.1). We take the opportunity in this

section, to explain “enumeration” problems and the different notions around it. Next, we will

present two important algorithms solving Problem 4.1, two algorithms that will be useful next in

this dissertation. For more details about enumeration problems, please refer to the thesis [130]

which presents the different notions about enumerations problems and algorithms in a didactic

way.

4.3.1 Enumeration Problem and Algorithms

Let us start by defining formally in a general way what is an (enumeration) problem .

Definition 4.7. A problem is a triple (P,S,R) where P is an arbitrary set called problem
sets, S is an arbitrary set called the solution set and R⊆ P ×S be a binary relation over P and

S. We say that an element s ∈ S solves a problem instance p ∈ P iff p R s. For each problem

p ∈ P, we denote by R (p) the set of solutions of p. It is given by: R (p) := {s ∈ S | p R s}. We state

the additional condition that for every p ∈ P, the set of its solutions R (p) is finite.

Example 4.5. Consider for instance the problem of finding maximal cliques of an undirected

graphs. The set P is the set of all possible finite undirected graphs (V ,E) and the set of solutions

S are finite sets. An element s ∈ S is a solution of a problem instance (V ,E) if s ⊆V and s is the

set of vertex of a maximal clique on (V ,E).

Following Definition 4.7, an enumeration problem is the task of listing for each problem

instance p ∈ P its set of solutions R (p) (which is finite). To solve an enumeration problem, one

should build a listing algorithm. In a nutshell, a listing algorithm could also be seen as a

mapping A that associates to each instance p ∈ P a sequence A (p) of outputs on S. A sequence

of outputs A (p) can be seen as a pair (n, s) where n is the size of sequence and s : {1, ...,n}→ S

with s(i) designates the ith element. Definition 4.8 states three properties that a listing algorithm

should have to solve an enumeration problem.

Definition 4.8. Given a problem (P,S,R). The listing algorithm A is said to be:

• Sound: if ∀p ∈ P, algorithm A outputs only solutions in R (p). In other words, for the

sequence of outputs A (p) := (n, s), we have s[{1, ...,n}]⊆R (p).

• Complete or Exhaustive: if ∀p ∈ P, all solutions in R (p) are output at least once. In

other words, for the sequence of outputs A (p) := (n, s), we have s[{1, ...,n}]⊇R (p).

• Non-redundant: if ∀p ∈ P, all outputs of A are output exactly once. In other words, for

the sequence of outputs A (p) := (n, s), we have s injective, i.e. |s[{1, ...,n}]| = n.

If the listing algorithm A verifies the three aforementioned properties, we say that it is a

correct enumeration algorithm for the enumeration problem (P,S,R).
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4.3.1.1 Enumeration algorithm time complexity

Given an enumeration problem (P,S,R), there are many correct enumeration algorithms A that

solve the problem correctly. Yet, one should evaluate the complexity of the enumeration algorithm

in order to compare them. In order to explain the notion of time complexity, suppose now

that we have some function size that associates to each p ∈ P its size size (p) ∈N∗. It does also

associate to each solution s ∈ S, a size size (s) ∈N∗. The size of the set of solutions size (R (p)) is

then given by the sum of the sizes of each solution, i.e. size (R (p))=∑
s∈R(p) size(s).

Example 4.6. Consider again the problem presented in Example 4.5. For an input instance

p := (V ,E), the size could be given by size (p)= |V |+ |E| = O
(|V |2)

. The size of a solution s ⊆V is

given by size (s)= |s| = O (|V |). One should note however, that the number of solutions | R (p)| can

goes up to 3|V |/3 [131].

As shown in Example 4.6, the number of outputs of a correct enumeration algorithm could be

exponentially larger than the size of its input. The complexity of an enumeration algorithm is

evaluated as a function of the input and the output sizes (output-sensitive complexity) since

the algorithm needs to output all the solutions anyway [102, 130].

We distinguish two time complexities:

• The Total Complexity gives a bound (using big O notation) on the total enumeration

time, i.e. the instant when the algorithm announces it ends, as a function of the input and

the output sizes.

• The Delay Complexity gives a bound on the delay between two successive outputs, the

beginning of the algorithm and the first output or the last output of the algorithm and the

end of the algorithm, as a function of the input size.

If the total complexity of algorithm A is polynomial to size (p)+ size (R (p)), we say that A

is POLY-OUTPUT. If the delay complexity of algorithm A is polynomial to size (p), we say that A

is POLY-DELAY. Clearly, all POLY-DELAY algorithms are POLY-OUTPUT. There are other classes of

complexity of enumeration algorithms that are left out of the scope of this thesis.

4.3.1.2 Enumeration algorithms space complexity

Beside the time complexity, the space complexity required by an enumeration algorithm A

has also to be evaluated. the space complexity gives a bound on the total space that can be

used by algorithm A at the same time as a function of size (p)+ size (R (p)).

An algorithm A is said to be PSPACE if its space complexity is polynomial to the input size

size (p). For instance, a basic algorithm that stores all solutions in order to ensure for example

non-redundancy is rarely PSPACE since the output could be exponentially larger than the input

(see Example 4.6).
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4.3.2 Listing Fixpoints of a Closure Operator Problem

Now that we have understood what are the notions around enumeration problems and algorithms,

we consider now the particular problem of enumerating fixpoints of a closure operator on a set

system. We formulate the problem below.

Problem 4.1. Let (E,F ) be a finite set system with no isolated elements, i.e. E =⋃
F . Let σ

be a closure operator on (F ,⊆). List all fixpoints σ[F ].

Note 4.5. Before diving deeper, please note that this problem is more generic than listing all

sets of an arbitrary finite set system F . Indeed, it suffices to consider the closure operator σ as

the identity operator, i.e. σ : F → F , f 7→ f .

Please notice also that if F =℘(E) then σ[F ] is closed under intersection. However, this is not

necessarily the case for an arbitrary set system (E,F ). For instance, if (E,F ) is not closed under

intersection, the identity operator id : F → F is a closure operator which fixpoints id[F ] = F .

Hence, id[F ] is not a Moore family.

For a given enumeration algorithm solving Problem 4.1, we will often distinguish (informally)

between two general types of traversal.

• Bottom-up Traversal: Such a traversal starts from the minimal elements in σ[F ] (w.r.t ⊆)

then enumerates higher elements (w.r.t ⊆). An algorithm doing such a traversal is presented

in Section 4.3.3.

• Top-down Traversal: Such a traversal starts from the maximal elements in σ[F ] (w.r.t

⊆) then enumerates smaller elements (w.r.t ⊆). An algorithm doing such a traversal is

presented in Section 4.3.4.

In fact, suppose that we have some constraints on S ∈σ[F ] s.t. if it does hold for S it does hold

for all T ∈σ[F ] s.t. T ⊆ S and we want to output solely elements σ[F ] for which the constraint

hold. For instance, the constraint |S| ≤ n with n ∈N verifies such a property. Algorithms with

a Bottom-up traversal can be adapted easily to outputs solely elements σ[F ] for which the

constraint hold. Indeed, whenever a subset T ∈σ[F ] does not verify the constraint, one should

not visit its super-sets. Dual remark can be done for top-down traversal.

4.3.3 D&C Algorithm - An Algorithm for Strongly Accessible Set Systems

Algorithm 1, dubbed Divide & Conquer Closed Set Listing (D&C for short), tackles Problem 4.1. It

was shown that Algorithm 1 is correct if and only if the considered set system (E,F ) is finite and

strongly accessible [29], i.e. it solves the following subproblem of Problem 4.1.

Problem 4.2. Let (E,F ) be a finite strongly accessible set system with no isolated elements,

i.e. E =⋃
F . Let σ be a closure operator on (F ,⊆). List all fixpoints σ[F ].

One should note that this algorithm draws its roots from various works in the litterature that

solves Problem 4.1 when the considered set system is the powerset set system (i.e.F :=℘(E)).
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Algorithm 1: D&C (Divide & Conquer Closed Set Listing) Algorithm

Input: Finite strongly accessible set system (E,F ) and
a closure operator σ on (F ,⊆).

Output: Elements of σ[F ]
1 procedure D&C(C,B)
2 for e ∈ E\(B∪C) s.t. C∪ {e} ∈ F do
3 Cnew ← σ(C∪ {e}) // Compute the new closed element Cnew
4 if Cnew ∩B =; then
5 D&C(Cnew,B)

6 B ← B∪ {e} // Update the set of banned elements B

7 Print(C) // Output the closed element C ∈σ[F ]

8 D&C(σ(;), ;) // Enumeration starts here on σ(;)

One can cite [33, 76, 109, 110] among others. It was however Gély [83] who showed that many

of those algorithms can be seen as an instance of a more general divide-&-conquer which was

revisited then by [29] to enlarge it scope to finite strongly accessible set system rather that only

the trivial set systems (i.e. powersets).

Algorithm 1 performs a bottom-up and depth-first traversal of σ[F ]. It starts from the

smallest element σ(;) in σ[F ] (Line 8) then enumerates in depth-first fashion elements in σ[F ]

by performing closure computations (Line 3) then checking, thanks to canonicity test (Line 4), if

the closed set is already generated making D&C non-redundant. We gave here a simpler version of

Algorithm 1, a memory efficient algorithm equivalent to Algorithm 1 in its behavior has been

also presented in [29].

Theorem 4.2. Algorithm 1 solves the problem of the exhaustive and non-redundant enumera-

tion of the fixpoints of the closure operator σ on a finite strongly accessible set system F with the

following complexities:

delay O
(|E| · (Tσ+TF +|E|)) , and

total O
(|E| · (Tσ+TF +|E|) · |σ(F )|) , and

space O
(|E|2 +Sσ+SF

)
Where Tσ (TF ) and Sσ (SF ) are respectively the time and space complexity of computing the

closure (checking if an element is in F ).
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Proof. To see the delay complexity, one should notice that the algorithm cannot backtrack

more that |E| times without printing an element. Each call of D&C costs one closure computa-

tion Tσ, one membership checking TF and manipulation (intersection, union) of sets of size

O(|E|). The formula of delay complexity follows. The total complexity is directly deducted

from the delay complexity. For the space complexity follow also from the fact that there is no

more than |E|+1 nested call of D&C algorithm. Notice that in each call D&C manipulates a

constant set of variable of size O(|E|).

Note 4.6. One should note that the total complexity is not always equal to the delay complexity

multiplied by the number of solutions, i.e. the total complexity could be better. For instance,

Sergei O. Kuznetsov attracted our attention to the (fun) fact that if Algorithm D&C outputs the

closed element before the loop, its delay complexity becomes O
(|E|2 · (Tσ+TF +|E|)) while the

total complexity remains obviously the same.

4.3.4 ExR Algorithm - An Algorithm for Convex Geometries

We present here a second algorithm in order to show that when the closure operator has additional

properties, someone need to leverage them in order to enumerate its fixpoints more efficiently.

We consider here for instance the following subproblem of Problem 4.1.

Problem 4.3. Let E be a finite set and let σ be a closure operator on (℘(E),⊆) having the

anti-exchange property:

(∀S ∈σ[℘(E)],∀e1, e2 ∈ E) e1 ∈σ(S∪ {e2})⇒ e2 6∈σ(S∪ {e1})

List all fixpoints σ[℘(E)].

Note 4.7. Please note that according to Theorem 4.1, Problem 4.3 is equivalent to enumerate

all elements of a convex geometry F . Indeed, set system (E,σ[℘(E)]) is a convex geometry and

any convex geometry can be induced by a closure operator having the anti-exchange property.

Algorithm 2, namely Extreme points Removal Closed Set Listing or ExR for short, is a correct

enumeration algorithm for Problem 4.3. It performs a top-down and depth-first traversal of

σ[F ]. It starts from the top element E which is always closed by extensivity of σ (Line 7) then

enumerates in depth-first fashion the convex sets in σ[℘E]. Rather than performing closures,

Algorithm 2 relies on Proposition 4.10, i.e. to create new closed set, it does successive extreme

points removal (Line 4). To ensure non-redundancy, Algorithm 2 maintains a set of banned

elements (Line 6), i.e. whenever an extreme point is removed from a closed set C, it is forbidden

to remove it in the next iterations.
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Algorithm 2: ExR (Extreme points Removal Closed Set Listing) Algorithm

Input: A finite set E and
a closure operator σ on (℘(E),⊆) having the anti-exchange property

Output: Elements of the convex geometry σ[℘(E)]
1 procedure ExR(C,B)
2 Print(C) // Output the convex set φ[℘(E)]
3 for e ∈ ex(C)\B do
4 Cnew ← C\{e} // generate a new convex set Cnew since e ∈ ex(C)
5 ExR(Cnew,B)
6 B ← B∪ {e} // Element e can not be removed in the next iterations

7 ExR(E, ;) // Enumeration starts here on E

Theorem 4.3 provide the computation and space complexities of Algorithm 2.

Theorem 4.3. Algorithm 2 solves Problem 4.3 with the following complexities:

delay O (|E| · (Tex +|E|)) , and

total O (|E| · (Tex +|E|) · |F |) , and

space O
(|E|2 +Sex

)
Where Tex and Sex are respectively the time and space complexity of computing the extreme

points of a given convex set.

Proof. To see the delay complexity, one should notice that the algorithm cannot backtrack

more that |E| times without printing an element. Each call of ExR costs one extreme points

computation Tex and manipulation (union, difference) of sets of size O(|E|). The formula of

delay complexity follows. The total complexity is directly deducted from the delay complexity.

For the space complexity follow also from the fact that there is no more than |E|+1 nested

call of ExR algorithm. Notice that in each call ExR manipulates a constant set of variable of

size O(|E|), adding the space cost of extreme points computation Sex at each call, the formula

of space complexity follows..
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5
ENUMERATION IN PATTERN SETUPS

We have seen in Chapter 3 that pattern languages can be seen as ordered sets. Partic-

ularly, we considered the general case of pattern setups to model pattern languages

over a dataset. The aim of this chapter is to investigate the following problem:

Problem 5.1. Let P= (G , (D,v),δ) be a finite pattern setup (i.e. set of objects G is finite). List

all definable sets in Pext non-redundantly.

It is clear that Pext is a set system on G . Moreover, when the considered pattern setup P is

a pattern structure, the set system Pext is closed-under-intersection which associated closure

operator is ext◦ int. Therefore, we will often use here results from Chapter 4 to propose correct

algorithms solving Problem 5.1. The following of this chapter is organized as follow:

• Section 5.1 investigates a sub-problem of Problem 5.1 when the considered pattern setup

is a pattern structure over itemsets (or equivalently a formal context).

• Section 5.2 extends the state-of-the-art by proposing a new algorithm for enumerating

definable sets of a formal context by leveraging the implications existing inherently between

its attributes. This contribution had appeared in [16].

• Section 5.3 considers the larger problem of enumerating definable sets of an arbitrary

pattern structure.

• Section 5.4 considers Problem 5.1 for the particular pattern structure of interval patterns

in numerical datasets.

• Section 5.5 considers the convex set pattern language and three algorithms solving Prob-

lem 5.1 for finite pattern structures induced by this language. The results presented in this

section were introduced in [20].

• Section 5.6 concludes this chapter by discussing Problem 5.1 for the general case of pattern

setups. Recall that sequential patterns [6] does not induce a pattern structure [48].
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5.1 Enumeration in Formal Contexts

In this section, we will consider Problem 5.1 where the inputs are restricted to formal contexts

P= (G ,M ,I ) with finite set of objects G and finite the set of attributes M . All the notations we

use here follow Section 3.2 on formal contexts. The new sub-problem is formulated below:

Problem 5.2. Let P= (G ,M ,I ) be a formal context with a finite set of objects G and a finite

the set of attributes M . List all definable sets in Pext non-redundantly.

Solving Problem 5.2 is tightly linked to enumerating fixpoints of a given closure operator

that was thoroughly investigated in the literature. We have seen in Section 4.3.2 that many

algorithms solving this later problem (e.g. [33, 76, 109, 110]) follows the same enumeration

scheme, i.e. divide-&-conquer scheme, as stated by Gély [83] and later by [29] for a further

generalization. The general Algorithm is dubbed D&C and is presented in Algorithm 1. We will

present here two particular algorithms solving Problem 5.2 in formal contexts which is CLOSE-BY-

ONE (CBO) [109, 110]. Both algorithms rely on the fact that the pair of operators (ext, int) form

a Galois connection between posets (℘(G),v) and (℘(M ),v) (Proposition 3.1). Hence, mappings

ext◦ int and int◦ ext are closure operators on (℘(G),v) and (℘(M ),v) respectively. Hence, one

can rely on Algorithm 1 to enumerate all extents in Pext using two different approaches.

• Algorithm CLOSE-BY-ONE BOTTOM-UP enumerate extents in a Depth-first search and

bottom up fashion, i.e. from small extents to bigger ones. It uses the closure operator

ext◦ int on the powerset set system ℘(G).

• Algorithm CLOSE-BY-ONE TOP-DOWN enumerate extents in a Depth-first search and top

down fashion, i.e. from bigger extents to smaller ones. It uses the closure operator int◦ ext

on the powerset set system ℘(M ) and the fact that there is a one-to-one correspondance

with the set of fixpoints of int◦ ext given by Pint and the extents Pext, i.e. Pext = ext[Pint].

5.1.1 Algorithm CLOSE-BY-ONE BOTTOM-UP

Algorithm 3, dubbed CLOSE-BY-ONE BOTTOM-UP or CBO-BU for short, does enumerate ele-

ments of Pext using Algorithm 1 where the considered set system is (G ,℘(G)) and σ := ext◦ int.

Algorithm 3 is useful when someone wants to enumerate definable sets in increasing support.

This allows for instance to look for rare subgroups/patterns efficiently [2, 152].

Theorem 5.1. Algorithm 3 solves Problem 5.2 with:

delay O
(|G |2 · |M |) , and

total O
(|G |2 · |M | ·Pext

)
, and

space O
(|G | · (|G | · |M |))

That is Algorithm 3 is POLY-DELAY and PSPACE.
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Algorithm 3: Algorithm CLOSE-BY-ONE BOTTOM-UP (CBO-BU)
Input: P= (G ,M ,I ) a formal context
Output: Elements of Pext

1 procedure CBO-BU(A,C,B)
2 for g ∈ G\(B∪ A) do
3 Cnew ← C∩ int(g) // Compute the new intent Cnew
4 Anew ← ext(Cnew) // Compute the new extent Anew
5 if Anew ∩B =; then
6 CBO-BU(Anew,Cnew,B)

7 B ← B∪ {g} // Update the set of banned objects B

8 Print(A) // Output extent A

9 CBO-BU(ext(M ), M , ;)

Proof. One can use directly Theorem 4.2 where Sσ = Tσ = O
(
G ·M )

and TF = SF = O(1).

5.1.2 Algorithm CLOSE-BY-ONE TOP-DOWN

Algorithm 4, dubbed CLOSE-BY-ONE TOP-DOWN or CBO-TD for short, enumerates elements

of Pext using Algorithm 1 where the considered set system is (M ,℘(M )) and σ := int ◦ ext but

outputs at line 7 the extent of the closed elements. Conversely to CBO-BU, Algorithm CBO-TD

enumerates the definable sets in decreasing support. Hence, this algorithm is fashioned for

enumerating frequent patterns first since it is easy to integrate pruning strategies of order-

reversing (anti-monotonic) quality measure.

Theorem 5.2. Algorithm 3 solves Problem 5.2 with:

delay O
(|G | · |M |2)

, and

total O
(|G | · |M |2 ·Pext

)
, and

space O
(|M | · (|G | · |M |))

That is Algorithm 4 is POLY-DELAY and PSPACE.

Proof. One can use directly Theorem 4.2 where Sσ = Tσ = O
(
G ·M )

and TF = SF = O(1).

Note 5.1. We called here both algorithms CBO (CLOSE-BY-ONE) [109, 110]. In fact, the only

difference between the algorithms presented here and the base CBO is the canonicity test (Line 5

in both algorithms) used to ensure the non-redundancy of the enumeration. The base canonicity

test used in [109, 110] depends on the order introduced in [76]. That is rather than keeping a

set of banned objects (resp. attributes), the set of objects (resp. attributes) is totally ordered and
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Algorithm 4: Algorithm CLOSE-BY-ONE TOP-DOWN (CBO-TD)
Input: P= (G ,M ,I ) a formal context
Output: Elements of Pext

1 procedure CBO-TD(A,C,B)
2 for m ∈ M \(B∪C) do
3 Anew ← A∩ ext(m) // Compute the new extent Anew
4 Cnew ← int(Anew) // Compute the new intent Cnew
5 if Cnew ∩B =; then
6 CBO-TD(Anew,Cnew,B)

7 B ← B∪ {m} // Update the set of banned attributes B

8 Print(A) // Output extent A

9 CBO-TD(G , int(G), ;)

whenever the ith object (resp. attribute) is added, no object (resp. attribute) which index is strictly

below i is allowed to be added to the newly generated set of objects (resp. attributes) after closure.

We invite the reader to see [76] or Section 2.1 in [80] for more details. For a more memory efficient

algorithm, please see Algorithm 2 in [29].

5.1.3 Conclusion

We have presented here two basic and simple, yet fast and efficient, algorithms to enumerate

definable sets of a formal context. These algorithms can further be enhanced. One can think for

instance about FAST CBO (FCBO) [107, 136] to reduce the number of canonicity test fail or the

series of INCLOSE Algorithms [8]. Moreover, it is important to note that while these algorithms

aim to enumerate exhaustively all extents of a formal context, they can be easily adapted to

output only a subset of extents w.r.t. additional constraints. For instance, it is easy to integrate

the constraint “extent size is higher than minsup ∈N” in Algorithm 4 or “extent size is lower than

maxsup ∈ N” in Algorithm 3. Other type of constraints have widely been investigated in the

literature (see [32, 132]). Last but not least, while these algorithms are defined for datasets that

come as formal contexts, one can consider a larger set of datasets with more complex attributes

(e.g. numerical, categorical) thanks to conceptual scaling (see Section 3.2.3). In the perspective of

enhancing these algorithms on scaled contexts, Section 5.2 presents a new algorithm, dubbed

CBOI for CLOSE-BY-ONE USING IMPLICATIONS [16].
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5.2 Enumeration in Formal Contexts using Implications

Formal Concept Analysis (FCA) provides a mathematical tool to analyze and discover concepts in

Boolean datasets (i.e. Formal contexts). It does also provide a tool to analyze complex attributes

by transforming them into Boolean ones (i.e. items) thanks to conceptual scaling (see see Sec-

tion 3.2.3.2). For instance, a numerical attribute whose values are {1,2,3} can be transformed to

the set of items {≤ 1,≤ 2,≤ 3,≥ 3,≥ 2,≥ 1} thanks to interordinal scaling. Such transformations

allow us to use standard algorithms like CLOSE-BY-ONE (CBO) to look for concepts in complex

datasets by leveraging a closure operator (see Algorithm 3 and Algorithm 4). However, these

standard algorithms do not use the relationships between items to enumerate the concepts as for

example the fact that ≤ 1 implies ≤ 2 and so on. For such, they can perform additional closure

computations which substantially degrade their performance. We propose in this section a generic

algorithm, named CBOI for CLOSE-BY-ONE USING IMPLICATIONS, to enumerate concepts (or

equivalently extents) in a formal context using the inherent implications between items provided

as an input. We show that using the implications between items can reduce significantly the

number of closure computations and hence the time effort spent to enumerate the whole set of

concepts. This contribution appeared in paper [16] on which the writing of this section rely.

As the proposed algorithm CBOI relies on the notion of item-implications, we will recall

below the definition of this notion.

Definition 5.1 (Item-Implications). Let A,B ⊆ M be two itemsets. We say that A implies

B and we denote A → B iff: ext(A)⊆ ext(B). In other words, if an object has all items in the set

of attributes A then it has all items in itemset B. For two items a,b ∈ M , we call an implication

{a}→ {b} item-implication and we denote it a → b for ease of notation.

Example 5.1. Consider the dataset depicted in Fig. 5.1 (left) and its associated interordinal

scaling (right) (see Section 3.2.3.2). One should notice that inherently, we have the following

item-implications x ≥ 2 → x ≥ 1, x ≥ 3 → x ≥ 2 and so on. By, inherently, we mean we do have

logically x ≥ 2 → x ≥ 1 independently from the scaled context. In fact, these implications are

item-implications existing in the (interordinal) scale (see Definition 3.11).

5.2.1 Problem Statement

In order to understand how item-implications can be used to enumerate the extents with less

effort comparing to Algorithm 4, let us consider the following execution of Algorithm 4 when the

formal context depicted in the right hand side of Fig. 5.1 is considered:

1. Begins: C0 = int(G)= {x ≥ 1, x ≤ 3, y≥ 2, y≤ 4} and B =; (Line 9).

2. Add item x≥ 2 to C0: Cnew = {x ≥ 1,x≥ 2, x ≤ 3, y ≥ 2, y ≤ 4} at Line 4. The canonicity

test does not fail since B =; and algorithm continues by enumerating all subconcepts of

(ext(Cnew),Cnew). Further, at line 7, we have B = {x≥ 2}.
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G x y
g1 1 4
g2 2 2
g3 2 2
g4 3 2

G x ≥ 1 x ≥ 2 x ≥ 3 x ≤ 3 x ≤ 2 x ≤ 1 y≥ 2 y≥ 4 y≤ 4 y≤ 2
g1 × × × × × × ×
g2 × × × × × × ×
g3 × × × × × × ×
g4 × × × × × × ×

Figure 5.1: (left) A numerical dataset with 2 numerical attributes. (right) A formal context that
is the result of an interordinal scaling of the numerical dataset.

3. Add item x≥ 3 to C0: Cnew = {x ≥ 1, x ≥ 2,x≥ 3, x ≤ 3, y ≥ 2, y ≥ 4, y ≤ 4} at Line 4. Since

B = {x ≥ 2}, canonicity test fails since Cnew ∩B = {x ≥ 2}. The enumeration continues.

The problem shown beforehand after adding x ≥ 3 is the fact that there was a useless closure

computation that led to a certain failure. One could avoid this closure computation if the inherent

implication x ≥ 3→ x ≥ 2 is used. Indeed, since x ≥ 3→ x ≥ 2, any closed itemset containing x ≥ 3

contains x ≥ 2. This shows that one can avoid some closure computations if implications are

used properly. Moreover, such implications are sometime known from the user since they are

inherent to the attributes and not derived from the incidence relation of the context. This is

the case of interordinal and ordinal scaled datasets for example (see Section 3.2.3). While some

state-of-the-art algorithms try to use this knowledge (i.e. implications between some items of the

context) in some particular datasets as it is the case of numerical datasets (interordinal scaled

contexts) [104] or datasets augmented with a taxonomy of items (ordinal scaled contexts) [17, 46];

no general algorithm has been proposed to enumerate concepts in a context while taking benefit

from an arbitrary provided set of item-implications (cf. Definition 5.1).

5.2.2 From Item-Implications to an Enumeration Algorithm

Based on the beforehand observation, we present here a new algorithm dubbed Close-by-One

using Implications or CBOI for short. This algorithm has for aim to solve Problem 5.2 using

the additional knowledge of implications between items.

5.2.2.1 User inputs

Definition 5.2. The item-implication basis of a context P is denoted → and is given by:

→ := {(a,b) ∈ M ×M | a → b}= {(a,b) ∈ M ×M | ext(a)⊆ ext(b)}

The definition given beforehand regroups all item-implications existing in the context. More-

over, → induces a pre-order on M , that is a reflexive and transitive binary relation.

We model now the item-implication basis known/provided by the user. We can say informally

that such a set of implications are those that are inherent to the attributes (not necessarily

derived) from the incidence relation.

Definition 5.3. A valid Item-Implication basis for P is any sub relation I of →.
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The user input is then a pair (P,I) where P is a finite formal context and I is a valid item-

implication basis for P. Figure 5.2 (left) depicts an example of the input pair (P,I). It is clear

that I provides a partial information about a pre-order. Relation I can be augmented to a sub

pre-order →I of → thanks to reflexive closure (i.e. adding (m,m) to I for all m ∈ M ) and transitive

closure (i.e. the smallest transitive relation containing I). Thus we will be dealing from now on

with an equivalent pair (P,→I) where (M ,→I) is a pre-ordered set.

5.2.2.2 Building a partial order

Pre-order →I could contain some cycles (i.e. not anti-symmetric). One can define an equivalence

relation ↔I on M such that (∀a,b ∈ M ) a ↔I b iff a →I b and b →I a. Please note that if a ↔I b

then ext(a)= ext(b). With M ′ = M /↔I the quotient set of M on ↔I and the following relation ≤I:

(∀S1,S2 ∈ M ′) S1 ≤I S2 iff (∃a ∈ S1,∃b ∈ S2) a →I b

One can show that (M ′,≤I) does form a partially ordered set called the quotient poset (see

Section 2.2.2). Accordingly, context P= (G ,M ,I ) is also transformed to P′ = (G ,M ′,I ′) where:

(∀g ∈ G ,∀S ∈ M ′) g I ′ S iff (∀m ∈ S) g I m

Figure 5.2 gives an example of such a transformation from P to P′ and from (M ,→I) to

(M ′,≤I). Note that this transformation is a partial column-clarification (see Definition 3.10) in

the sense that it does concern only the item-implication basis →I provided by the user since we

want to use only the user inputs. If the total item-implication basis → associated with the context

is used, the beforehand transformation will be equivalent to a column clarification. Proposition

5.1 shows that looking for extents in P is equivalent to look for extents in the partially clarified

context P′. As such, from now on, we will consider the pair (P,≤I) such that (M ,≤I) is a partial

order. If not so, the context and the item-implication basis are transformed as shown beforehand.

Proposition 5.1. We have Pext =P′
ext.

Proof. Recall that Pext and P′
ext are closed under arbitrary intersection, i.e. Moore families.

• Proof of P′
ext ⊆ Pext: Let A ∈ P′

ext, that is ∃S ⊆ M ′ s.t. extP′(S) = A, that is: A =⋂
S∈S extP′ ({S}). Moreover, we have: extP′ ({S})= {g ∈ G | g I ′ S}= {g ∈ G | (∀m ∈ S)g I m}=

extP(S). Hence, A =⋂
S∈S extP(S). Therefore, A ∈Pext since Pext is a Moore family.

• Proof of Pext ⊆ P′
ext: Let A ∈ Pext, that is: ∃B ⊆ M s.t. extP(B) = A, that is: A =⋂

m∈B extP({m}). For m ∈ B, let Sm ∈ M ′ be the unique set containing m. We have

extP′({Sm}) = extP({m}). Hence, A = ⋂
m∈B extP′({Sm}); that is A ∈ P′

ext since P′
ext is a

Moore family.

This conclude the proof.
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G a b c d e f
g1 × × × ×
g2 × × × × ×
g3 × ×
g4 × a b

c d

e

f G {a,b} {c} {d} {e} { f }
g1 × × ×
g2 × × × ×
g3 × ×
g4 × {a,b}

{c} {d}

{e}

{ f }

Figure 5.2: (left) Input context P= (G ,M ,I ), the input-item implications I (continuous arrows)
and the item-implications of the context that are valid but not provided (dashed arrows). (right)
The result of transformation to the context P′ = (G ,M ′,I ′) and the Hasse diagram of the poset
(M ′,≤I) (continuous arrows).

5.2.2.3 Closed patterns are upper ideals

Consider now the obtained pair (P,≤I) where P= (G ,M ,I ) is a context and (M ,≤I) is a poset s.t.

∀a,b ∈ M , we have if a ≤I b then ext(a)⊆ ext(b).

Lemma 5.1. ∀C ⊆ M :↑ C ⊆ int◦ ext(C)

Proof. Let m ∈↑ C, thus ∃c ∈ C such that c →I m or in other words, ext(c) ⊆ ext(m). Since

int is order-reversing ((ext, int) is a Galois connection (see Proposition 3.1)), int◦ ext(m)⊆
int◦ ext(c). Since int◦ ext is monotonous then int◦ ext(c)⊆ int◦ ext(C). Hence, int◦ ext(m)⊆
int ◦ ext(C). By extensivity of int ◦ ext we conclude that m ∈ int ◦ ext(C); that is ↑ C ⊆
int◦ ext(C).

A straightforward corollary of Lemma 5.1 is given in Proposition 5.2 below.

Proposition 5.2. Closed patterns are upper ideals on (M ,≤I) that is Pint ⊆ U (M ) where

U (M )= {S ⊆ M |↑ S = S} is the set of upper ideals on (M ,≤I).

Proof. Let C ∈ Pint, we have C ⊆↑ C by extensivity of ↑. In the other hand, we have ↑ C ⊆
int◦ ext(C)= C according to Proposition 5.1 and by using the impotence of int◦ ext. Hence,

C =↑ C or in other words C ∈U (M ).

Note 5.2. It should be noticed that in a column-clarified context P= (G ,M ,I ), the relation →
(see Definition 5.2) induces a partial order on M . Moreover, we have (∀m ∈ M ) int◦ ext(m)=↑ m,

that is principal filters in poset (M ,→) are closed.

5.2.2.4 Algorithm CLOSE-BY-ONE USING IMPLICATIONS

We have shown in Proposition 5.2 that, for a (P,≤I) with P= (G ,M ,I ) s.t. (M ,≤I) is a poset, all

closed patterns in Pint are upper ideals in U (M ). Since (M ,U (M )) is strongly accessible (see

Proposition 4.8), we can use Algorithm 1 (D&C) to enumerate concepts in P using closure operator
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Algorithm 5: Algorithm CLOSE-BY-ONE USING IMPLICATIONS (CBOI)

Input: Pair (P,≤I) with P= (G ,M ,I ) a formal context and
(M ,≤I) is a poset s.t. if m1 ≤I m2 then ext(m1)⊆ ext(m2).

Output: Elements of B(P)
1 procedure CBOI(A,C,B)
2 for m ∈ addables(C)\B do
3 Anew ← A∩ ext(m) // Compute the new extent Anew
4 Cnew ← int(Anew) // Compute the new intent Cnew
5 if Cnew ∩B =; then
6 CBOI(Anew,Cnew,B)

7 B ← B∪ {m} // Update the set of banned attributes B

8 Print(A) // Output extent A

9 CBOI(G , int(G), ;)

int◦ext on (M ,U (M )) rather than on (M ,℘(M )) as Algorithm 4 does. Algorithm 5 dubbed CLOSE-

BY-ONE USING IMPLICATIONS (CBOI for short) is then a straightforward implementation of

Algorithm 4 where only line 2 is modified according to Lemma 4.1, i.e. For C ∈ Pint, the set

addables(C) denotes the set of items to add to build the next closed itemsets and is given by:

addables(C) := max(M \C)= {a ∈ M \C | uppers(a)⊆ C}

Example 5.2. Figure 5.3 depicts for C ∈U (M ) the set max(M \C). Hence, the only direct upper

neighbors of C = {a,c,d} in (U (M ),⊆) according to Lemma 4.1 are {a,c,d,b}, {a,c,d, e} and

{a,c,d, f } since max(M \C)= {b, e, f }.

In the next section, we show that some optimizations can be made to compute and maintain

efficiently the set of addable items for each generated closed sets (Line 2). Moreover, one can

partially compute the closure (Line 3-4) in order to perform canonicity test (Line 5).

5.2.3 Empirical Evaluation and Technical Details

We start by explaining some technical details around CBOI provided in the following link :

https://github.com/BelfodilAimene/CbOImplications

5.2.3.1 Implementation details

Computing the Partial Order from the Input Item-Implications. As explained in Sec-

tion 5.2.2.2, the user input is a pair (P(0),I(0)) where context P(0) = (G ,M (0),I (0)) a finite context

and I ⊆ M (0) ×M (0) such that for all (m1,m2) ∈ I we have ext(m1) ⊆ ext(m2) (i.e. valid item-

implication basis). One can model this provided item-implication basis as a directed graph

(M (0),I(0)). The aim at the beginning, is to compute the associated partial order and the partial
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a b

c d

e f
g

h

Figure 5.3: Poset (M ,≤I) with M = {a,b, c,d, e, f , g,h}. The set contoured
with two lines C = {a,c,d} ∈U (M ) is an upset and min(C) = {c,d}. The
set contoured with one line addables(C)= max(M \C)= {b, e, f } regroups
addable items. Indeed, all upper neighbors of items b, e and f are in C
(note that item b has no upper-neighbor). The set contoured with one
dashed line potential_addables(C) = {g} contains potential addable
items. Indeed, uppers(g)= {b,d} contains at least one element in C.

scaling of the context w.r.t. to the item implication basis. To do so we start by computing the set of

strongly connected components M on the directed graph (M (0),I(0)). This can be done for instance

using Tarjan’s Algorithm [155] whose complexity is O(|M (0)|+ |I(0)|). Once done, we can build the

associated Directed Acyclic Graph (DAG) (M ,I(1)) where there is an arc (S1,S2) in I(1) iff ∃m1 ∈ S1

and m2 ∈ S2 such that (m1,m2) ∈ I(0). Such an operation is called graph condensation. Once

M computed, the context P(0) is transformed to an equivalent context P= (G ,M ,I ) (i.e. Pext =P(0)
ext

according to Proposition 5.1). Notice that the obtained DAG (M ,I(1)) represents the partial order

≤I (i.e. a reflexive and transitive closure of I creates ≤I). A more usual and efficient way to

store ≤I is to compute the transitive reduction of (M ,I(1)) [7] to obtain the Hasse Diagram of

≤I. We obtain then (M ,I) where we store for each m ∈ M both sets of its direct lower and upper

neighbors (i.e. lowers(m) and uppers(m)) w.r.t. (M ,≤I).

Computing and Maintaining Addable Items. Now that the partial order ≤I is encoded by

the list of lower and upper neighbors for each item m ∈ M (i.e. the Hasse Diagram). One solution

is that at each step of the algorithm, for a closed itemset C, we computed the set addables(C)

using its formula {a ∈ M \C | uppers(a) ⊆ C}. Such a way of computation has a complexity of

O(G2) and hence could lessen the performances of the implementation of CBOI. To address

this drawback, we propose to keep for each generated itemset C ∈U (M ), the set of its addable

items addables(C), the set of potential addable items potential_addables(C) and its minimal

elements min(C) (only if we want to output them). An item p ∈ M is said to be potentially

addable if p ∈ M \ (C∪addables(C)) and it has at least one element of its direct upper neighbors

uppers(p) in C. Formally: potential_addables(C)= (
⋃

c∈min(C) lowers(c))\addables(C).

Example 5.3. Figure 5.3 gives an example about addable and potential addable items for a

closed itemset C = {a, c,d}.

The three sets of addable items, potential addable items and minimal items can be maintained

incrementally as follow. Given an up-set C ∈U (M ) and an item a ∈ addables(C), the following

steps are performed to compute the three sets associated to the up-set C∪ {a}:

1. min(C∪ {a}) := (min(C)\uppers(a))∪ {a}.

2. potential_addables(C∪ {a}) := potential_addables(C)∪ lowers(a)

3. Initialize addable items addables(C∪ {a}) by addables(C)\{a}.
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4. For each item p in the computed potential_addables(C∪ {a}), if we have uppers(p) ⊆
min(C∪{a}) then remove it from potential_addables(C∪{a}) and add it to addables(C∪
{a}). This can be further optimized by maintaining for each potentially addable item the

number of direct upper neighbors that are not already in C. Whenever element a is added,

we subtract 1 from the values associated to elements in lowers(a). Once a potentially

addable element sees its value become 0, he is considered as addable item and no longer

potentially addable.

Example 5.4. Going back to Figure 5.3, adding item b updates the different sets as follow:

• Cnew = {a,c,d,b},

• min(Cnew)= {c,d,b},

• addables(Cnew)= {e, f , g} and

• potential_addables(Cnew)=;.

Computing Next Closure and Performing Canonicity Test. Line 3-5 in Algorithm 5 are

dedicated to closure computation of the newly generated set and checking if such a closed pattern

is already generated. Some optimizations can be made here. For instance, vertical representation

of the context (i.e. keeping for each item, its extent) can be held in memory in order to compute

efficiently the new pattern extent (Line 3). For closure computation (Line 4) and canonicity test

(Line 5), one can use the optimizations explained below:

1. We have a canonicity test fail (i.e. int◦ ext(C∪ {m})∩B 6= ;) iff ∃b ∈ B∩addables(C) such

that ext(C∪ {m})⊆ ext(b). Hence, we do not need to compute the closure int◦ ext(C∪ {m})

to perform the canonicity test. Note that to ensure a fair comparison between CBOI and

CBO-TD, this same optimization has been used for CBO-TD implementation.

2. To maintain both sets of addable and potential addable items as explained beforehand,

closure computation is computed incrementally by adding item per item until there is no

addable item a s.t. ext(C∪ {m})⊆ ext(a).

Outputting Minimal Elements. If the item-implications in ≤I are well-known by the user, one

should output only minimal element of a closed pattern C w.r.t. ≤I (i.e. min(C)) since C contains

some redundant information [46, 104].

5.2.3.2 Empirical evaluation

Experiment Settings. Experiments were conducted in a machine with an Intel Core i7-7700HQ

2.80GHz CPU and 7.7 GiB memory space and the implementation was done using Python

2.7.12. Table 5.1 reports the benchmark input contexts and their associated item-implications

basis. Europarl1 and Yelp2 are datasets augmented with a taxonomy. Hence, their corresponding

contexts P1 and P2 are obtained via an ordinal scaling and their associated implication basis are

1EPD8 (last accessed on 04 Octobre 2018): http://parltrack.euwiki.org/
2Yelp (last accessed on 25 April 2017): www.yelp.com/dataset/challenge
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context P= (G ,M ,I ) implications I
(P,I) Name |G | |M | |Pint| |→∗

I | |→∗ | density

(P1,I1) Europarl 4 742 357 1 307 709 1 034 68.57%
(P2,I2) Yelp 127 162 1 174 63 300 1 514 2 111 71.72%

(P3,I3) Basketball 40 272 272 223 4 716 13 724 34.36%
(P4,I4) Iris 150 246 6 516 292 3 964 11 704 33.87%
(P5,I5) Airport 135 1 348 82 467 125 90 182 313 432 28.77%

(P6,I6) Mushrooms 8 124 119 238 710 0 949 0.00%

Table 5.1: Benchmark Inputs and their characteristics: the number of objects |G |, the number
of attributes |M |, the size of the concept lattice |Pint| of the context P, the number of strict
(irreflexive) item-implications | →∗

I | in the pre-order associated to the corresponding input
implication basis, the number of strict item-implications in the context |→∗ | (see Definition 5.2)
and the density given by |→∗

I |/|→∗ |.

derived from the hierarchy of items induced by the provided taxonomy. Basketball3, Airport3 and

Iris4 are numerical datasets. Analogously, their corresponding contexts P3, P4 and P5 are the

result of an interordinal scaling and the associated implication basis are constituted with two

chains of implications per attribute (i.e. if the domain of the numerical attribute is {1,2,3} then

the item implications basis associated to the inter-ordinal scaling is given by ≤ 1→≤ 2→≤ 3 and

≥ 3→≥ 2→≥ 1). Mushroom4 features only nominal attributes. Hence, its associated context P6

represents the result of nominal scaling of all attributes. Note that the set of implications I6 is

empty, yet there are some implications between items that are context-dependent and obviously

not inherent to the attributes (i.e. → is not empty).

Evaluation Results. Table 5.2 reports the number of closures and the performance of CBO-TD

and CBOI on the different benchmark inputs. For each benchmark context Pi, we run both

algorithms on the provided implication basis (i.e. input (Pi,Ii)) as well as on the total one

that is associated to the context (i.e. (Pi,→)). For a fair comparison, we report the context

load/preparation time into the memory for CBO-TD as well as the load/preparation time of the

pair (context, implication basis) for CBOI. When → implication basis is used, the load time

includes the time spent to compute it.

It is clear that the number of closures performed by CBOI is much less than the ones

performed by CBO-TD in all tests excepts when no implications are provided. This corresponds to

the case (P6,I6) where the number of closures performed by CBOI is supposed to be equivalent

to the number of closures performed by CBO-TD if the same order of choice of items to add is

followed.

Concerning the execution time, it is clear that the load time for CBO-TD is lesser than the

load/compute time for CBOI since CBOI does load and prepare additionally the item-implication

basis. However, even if CBOI has this drawback, one can see that the enumeration time is much

3Bilkent repository: http://funapp.cs.bilkent.edu.tr/
4UCI repository: https://archive.ics.uci.edu/ml/index.php
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CBO-TD CBOI
(P,I) nb closure load (ms) enum (ms) total (ms) nb closure load (ms) enum (ms) total (ms)

(P1,I1) 185 418 86 184 270 17 020 220 48 268
(P1,→) 13 409 191 46 237

(P2,I2) 24 437 659 8 715 30 360 39 075 3 317 590 18 084 16 107 34 191
(P2,→) 2 974 130 19 976 15 030 35 006

(P3,I3) 13 340 233 3 57 286 57 289 703 999 20 3 628 3 648
(P3,→) 445 735 39 9 114 9 153

(P4,I4) 170 615 166 10 709 517 709 527 9 618 493 26 77 586 77 612
(P4,→) 8 383 741 73 141 016 141 089

(P5,I5) NA 53 > 12h > 12h 122 717 962 268 1 496 175 1 496 443
(P5,→) 106 409 230 1 400 8 221 648 8 223 048

(P6,I6) 4 363 487 155 13 800 13 955 4 363 511 184 15 985 16 169
(P6,→) 4 363 487 155 13 800 13 955 1 338 245 244 10 003 10 247

Table 5.2: CBO-TD and CBOI performance comparison on the benchmark inputs

faster than CBO-TD (i.e. up to 15× faster for input (P3,I3) or even more for input (P4,I4)). This

compensates the overhead induced by the implication-basis load time in CBOI. One could notice

that CBO-TD performs better than CBOI when no implication is provided as it is the case in

test (P6,I6). This is due to the fact that CBOI manages more structures than CBO-TD during

enumeration. It is worth noting that even if the implication basis is computed then used to

enumerate concepts (see tests (Pi,→)), CBOI performs faster than CBO-TD (up to 6× faster for

input (P3,I3)). Still, we can observe that CBOI is less efficient when the underlying implication

basis is huge (case (P3,→), (P4,→) and (P5,→)). This can be explained by the fact that CBOI

spends more time to handle a huge and complex system of item-implications but the gain obtained

from these base of implications does not compensate this effort.

5.2.4 Conclusion

In this section, we have investigated how to incorporate and leverage the inherent implications

between items in some given context so as to enumerate more efficiently its extents. Experimental

studies demonstrated that algorithm CBOI for CLOSE-BY-ONE USING IMPLICATIONS is far more

efficient than its concurrent CBO-TD in most configurations even if the implication basis between

attributes are computed in the pre-processing phase. Indeed, many aspects of the devised

algorithm can be considerably improved. For instance, including FCbO optimizations [107, 136]

during the enumeration process can significantly reduce the number of falsely generated closed

patterns, i.e. canoncity test fails. Moreover, the load/preparation time of CBOI can be more

enhanced by, for example, computing more efficiently the transitive reduction of the implication

basis [116].
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5.3 Enumeration in Pattern Structures

In Section 5.1 and Section 5.2, we have investigated the problem of enumerating extents when a

formal context is considered. We have seen also that, thanks to conceptual scaling, the proposed

algorithms can be easily used on other kind of datasets/patterns. As it is more natural to consider

pattern languages directly as ordered set, we will investigate in this section the following Problem:

Problem 5.3. Let P= (G , (D,v),δ) be a finite pattern structure (i.e. set of objects G is finite).

List all definable sets in Pext non-redundantly.

Note 5.3. All the notations used here follow Section 3.4 on pattern structures.

Problem 5.3 is again a subproblem of Problem 5.1 where Pext is a closed under intersection

set system which associated closure operator is ext◦ int. Hence, Algorithm 3 can directly be used

to solve Problem 5.3. Indeed, the only difference is to replace the intersection in Line 3 by the

meet u operator. Algorithm 6 rewrites Algorithm 3 for pattern structures which follow the same

spirit of CBO proposed in [109, 110].

Theorem 5.3. Algorithm 6 solves Problem 5.3 with:

delay O
((

Tu+|G | ·Tv
) · |G |) , and

total O
((

Tu+|G | ·Tv
) · |G | ·Pext

)
, and

space O
(
Su+Sv+|G | · (|G |+SD

))
Where Tu (Tv) and Su (Sv) are respectively the time and space needed to perform u (v) operation.

SD is the space needed to store the largest description in Pint.

Proof. The proof follows the same idea of the proof of Theorem 4.2. To see the delay

complexity, one should notice that the algorithm cannot backtrack more that |G | times

without printing an element. Each call of CBO-PS costs one meet computation Tu, |G |
subsomption v checking to compute the extent Tv and manipulation (intersection, union) of

sets of size O(|G |). The formula of delay complexity follows. The total complexity is directly

deducted from the delay complexity. The space complexity proof follows also from the fact

that there is no more than |G | +1 nested call of CBO-PS algorithm. Notice that in each

call CBO-PS manipulates a constant set of variable of size O(|G |) and description which

representation size is below the maximum possible size SD . We add to that the space size

needed to compute both Su and Sv. The formula of space complexity follows.

It is clear that Algorithm 6 solves Problem 5.3 whenever we do know how to compute the meet

u and how to check v. Moreover, its complexity highly depends on the complexity of u and v.

Such a task could be polynomial to the input size for the case of Interval pattern structure [104],

convex polygon pattern structure [20], partition pattern structure [49] among other. However, it
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Algorithm 6: Algorithm CLOSE-BY-ONE for pattern structures (CBO-PS)

Input: P= (G , (D,v),δ) a pattern structure
with u is the meet and > is the top element of D.

Output: Elements of Pext
1 procedure CBO-PS(A,d,B)
2 for g ∈ G\(B∪ A) do
3 dnew ← duδ(g) // Compute the new intent dnew
4 Anew ← ext(dnew) // Compute the new extent Anew
5 if Anew ∩B =; then
6 CBO-PS(Anew,dnew,B)

7 B ← B∪ {g} // Update the set of banned objects B

8 Print(A) // Output extent A

9 CBO-PS(ext(>), >, ;)

could also be NP-hard as it is the case for graph pattern structure [110] and sequence pattern

structure [39, 48] making the algorithm not even POLY-DELAY.

Algorithm 6 enumerates element of Pext in a depth-first search (DFS) and bottom up fashion.

Hence, extents are enumerated in increasing support making the algorithm well-suited for

enumerating rare patterns, i.e. patterns with low support [2, 152] but not well-fashioned for the

task of enumerating frequent patterns. Creating a general algorithm for Problem 5.3 enumerating

extents in a top-down depends on how a closed pattern need to be refined to a less permissive

one, i.e. equivalent to adding one item to the closed pattern for formal contexts in Algorithm 4.

In the following of this chapter and in order to propose top-down algorithms to solve Prob-

lem 5.3, we will investigate two particular instances of pattern structures on numerical data.

Namely, Interval Pattern Structure proposed in [104] and Convex Polygon Pattern Structure

proposed in [20]. We will often use the term closed pattern enumeration in these both language.

This task is in fact equivalent to Problem 5.3 since there is a one-to-one correspondence between

the set of intents Pint and the set of extents Pext.
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5.4 Enumeration in Interval Pattern Structures

Before introducing interval patterns, let us recall first what a numerical dataset is (see Defini-

tion 3.1 for the definition of a dataset), we define below the notion of numerical dataset.

Definition 5.4. A numerical dataset is a dataset (G ,M ) where attributes m ∈ M has for

range of value R, i.e. m : G →R.

As we will deal only with finite numerical datasets, from now on the set of numerical attributes

M is given by {mi | i ∈ 1≤ i ≤ |M |}. We will also see the set M as a mapping:

M : G →R|M |, g 7→ (mi(g))1≤i≤|M |

Example 5.5. Fig. 5.4 (left) depicts a numerical dataset (G ,M ) with two attributes and five

objects. We have for instance M (g3)= (2,3).

When dealing with numerical domains, we generally consider for intelligibility interval

patterns [104]. An Interval pattern is a conjunction of restrictions over the numerical attributes;

i.e. a set of conditions attribute≷ v with ≷∈ {=,≤,<,≥,>}. Geometrically, interval patterns are

axis-parallel hyper-rectangles.

Example 5.6. Fig. 5.4 (center) depicts an interval pattern d = (1≤ m1 ≤ 2)∧ (1≤ m2 ≤ 4) which

can be seen as a subset of R2 given by [1,2]× [1,4].

Intuitively, if we reconsider pattern [1,2]× [1,4] in Fig. 5.4 (center), its extent will be

{g1, g2, g3}. We seek now to define the pattern structure related to interval patterns. In order to

do that we start by studying the Interval pattern language.

5.4.1 Interval Pattern Language

Definition 5.5. An interval (in R) I ⊆R is a convex subset of R, that is:

∀x, y ∈ I,∀z ∈R : x ≤ z ≤ y =⇒ z ∈ I

The set of all intervals in R is denoted C(R). This set can be ordered by the standard set inclusion

order ⊆ to from poset (C(R),⊆).

Theorem 5.4. The poset (C(R),⊆) is a closure system on the powerset lattice (℘(R),⊆). That is,

the intersection of an arbitrary set of intervals S ⊆C(R) is an interval.
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Proof. Let S ⊆C(R), we need to show that
⋂

S ∈C(R). For S =;, it is clear that it is the case

since the top element R is an interval by definition. Let us show now that
⋂

S is an interval

when S 6=. If
⋂

S =; then it is an interval by definition. Suppose that
⋂

S 6= ;. Let x, y ∈⋂
S,

then ∀I ∈ S, we have [x, y]⊆ S. Therefore [x, y]⊆⋂
S.

Hence, (C(R),⊆) is a complete lattice where the top element is R and the bottom element is ;.

The meet of S ⊆C(R) in this complete lattice is given by
⋂

S while the join is given by the smallest

interval enclosing
⋃

S, i.e. its convex hull. Let us investigate now the space of p-dimensional

hyper-rectangles.

Definition 5.6. Let p ∈ N∗, an axis-parallel p-dimensional hyper-rectangle d ⊆ Rp is

the result of the product of p non-empty intervals in C(R). Formally:

d =
p×

k=1
Ik with ∀k ∈ {1..p} : Ik ∈C(R)\{;}

By considering ; also an axis-parallel p-dimensional hyper-rectangle, the set Dp denotes

the set of all possible axis-parallel p-dimensional hyper-rectangles in Rp and can be naturally

ordered by ⊆.

Note 5.4. Another characterization of Dp is that d ⊆ Rp is a axis-parallel p-dimensional
hyper-rectangle iff:

(∀(xi)1≤i≤p ∈ d, (yi)1≤i≤p ∈ d
) p×

i=1
[inf {xi, yi}, sup{xi, yi}]⊆ d

Theorem 5.5. For any p ∈ N∗, poset (Dp,⊆) is a closure system on the powerset lattice

(℘ (Rp) ,⊆). That is, the intersection of an arbitrary set of axis-parallel p-dimensional hyper-

rectangle S ⊆ Dp is also a p-dimensional hyper-rectangle.

Proof. Let S ⊆ Dp, we need to show that
⋂

S ∈ Dp. For S =;, it is clear that it is the case

since the top element Rp is in Dp. Let us show now that
⋂

S belongs to Dp when S 6= ;. If⋂
S =; then it is in Dp by definition. Suppose that

⋂
S 6= ; and let (xi)1≤i≤p, (yi)1≤i≤p ∈ S

then using Note 5.4 and since×p
i=1[inf {xi, yi}, sup{xi, yi}] ⊆ d for every single description

d ∈ S then×p
i=1[inf {xi, yi}, sup{xi, yi}]⊆⋂

S.

Hence, we conclude that for any p ∈N∗, poset (Dp,⊆) is a complete lattice which top and bottom

elements are respectively Rp and ;. Moreover, the meet of a subset S ⊆ Dp is
⋂

S while the join

is given by the smallest axis-parallel p-dimensional hyper-rectangle enclosing it. Particularly, for
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G m1 m2
g1 1 1
g2 2 2
g3 2 3
g4 3 4
g5 3 1
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Figure 5.4: 2-dimensional numerical dataset with 5 objects (left), Non-closed interval pattern d
(center) and closed interval pattern int◦ ext(d) (right).

2 non-empty axis-parallel hyper-rectangles d j =×p
k=1 I j

k with j ∈ {1,2} and I j
k =

[
a j

k,b j
k

]
we have:

d1 ∧d2 =
p×

k=1

(
I1

k ∧ I2
k
) =

p×
k=1

[
sup

{
a1

k,a2
k
}
, inf

{
b1

k,b2
k
}]

d1 ∨d2 =
p×

k=1

(
I1

k ∨ I2
k
) =

p×
k=1

[
inf

{
a1

k,a2
k
}
, sup

{
b1

k,b2
k
}]

We have seen that in pattern setups, patterns are ordered from the less restrictive to the

most restrictive ones, we define the interval pattern language formally as follow:

Definition 5.7. Let p ∈N∗, the interval pattern language is the complete lattice (Dp,v)

where the order v is given by the dual inclusion ⊇.

Note 5.5. It is clear (Dp,v) is a complete lattice since it is the dual poset of a complete lattice.

Hence, the meet and the join are reversed. Particularly, the meet ⊔ and the join
⊔

for two

non-empty descriptions d j =×p
k=1 I j

k with j ∈ {1,2} and I j
k =

[
a j

k,b j
k

]
we have:

d1 ud2 =
p×

k=1

[
inf

{
a1

k,a2
k
}
, sup

{
b1

k,b2
k
}]

d1 td2 =
p×

k=1

[
sup

{
a1

k,a2
k
}
, inf

{
b1

k,b2
k
}]

The meet and the join of other types of interval patterns (i.e. semi-open and open) can be

deduced accordingly.

Example 5.7. Fig. 5.5 depicts the meet and join of two interval patterns d1,d2 in (D2,v). We

have d1 = [1,5]× (1,4], d2 = [0,4)× [2,6]. d1 ud2 = [0,5]× (1,6] is the smallest rectangle enclosing

both d1 and d2 and d1 td2 = [1,4)× [2,4] is the intersection of the two rectangles d1 and d2.

5.4.2 Interval Pattern Structure

Now that we have seen that interval pattern language (Dp,v) is a complete lattice. One can build

a pattern structure using it according to Theorem 3.2.
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Figure 5.5: The meet and join of two interval patterns d1,d2 in (D2,v). We have d1 = [1,5]× (1,4],
d2 = [0,4)× [2,6]. d1 ud2 = [0,5]× (1,6] is the smallest rectangle enclosing both d1 and d2 and
d1 td2 = [1,4)× [2,4] is the intersection of the two rectangles d1 and d2.

Definition 5.8. Let (G ,M ) be a finite numerical dataset , the associated interval pattern

structure is given by P= (G , (D,v),δ) with D := D|M | (see Definition 5.7) and δ is given by:

δ : G → D, g 7→ {M (g)}=
|M |×
i=1

[mi(g),mi(g)]

The extent and the intent can be formulated as follow:

ext :D →℘(G),d 7→ {g ∈ G | M (g) ∈ d}

int :℘(G)→ D, A 7→
|M |×
i=1

[min (mi[A]) ,max (mi[A])]

with mi[A]= {mi(g) | g ∈ A}.

Example 5.8. Consider the numerical dataset presented in Fig. 5.4 (left). For g3 ∈ G , we have

δ(g3) = [2,2]× [3,3]. Consider now the pattern d = [1,2]× [1,4] depicted in Fig. 5.4 (center), it

is clear that ext(d)= {g1, g2, g3}. Moreover, d is not closed since int◦ ext(d)= int ({g1, g2, g3})=
[1,2]× [1,3] 6= d. The closed pattern int◦ ext(d) is depicted in Fig. 5.4 (right).

Note 5.6. An equivalent formalization of the interval pattern structure is the use of the notion

of the direct product of other m base pattern structure (G , (C(R),⊇),δ) (see Section 3.7.3).

5.4.3 Closed Interval Pattern Enumeration

It is clear that someone can directly use Algorithm 6 to enumerate in a bottom-up fashion the

set of all extents in Pext since P is a pattern structure. We will now explore how to enumerate

closed interval patterns in Pint and equivalently elements of Pext in a top-down fashion, i.e. in

decreasing support.

It is important here to notice that the interval pattern language (D,v) considered here in this

section is infinite. However, [104] considered a finite subset of this description language (DG ,v)
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Figure 5.6: Enumerating exhaustively and non-redundantly closed intervals in R using only
elements in {1,2,3} in top-down depth-first fashion.

where the considered axis-parallel hyper-rectangles are built over closed intervals using only the

values appearing in the dataset. In other words, DG regroups all closed rectangles fitting the grid

using the different values of the dataset on each axis. It is formally given by:

DG :=
{|M |×

i=1
[ai,bi] | (∀i ∈ {1, ..., |M |}) ai,bi ∈ mi[G]

}
Technically, (DG ,v) is a (complete) sublattice of (D,v) containing all closed patterns in Pint.

[104] proposed an algorithm to enumerate all elements DG exhaustively and non-redundantly in

a top-down fashion.

5.4.3.1 Enumerating elements of DG

We start here to explain how someone can enumerate exhaustively all closed intervals built

using values in {1,2,3} in a top-down fashion. The algorithm proposed in [104] starts from the top

interval [1,3]. Then, as shown in Figure 5.6, at every step of the algorithm two minimal changes

are applied: minimal left change (minLeftChange) and minimal right change (minRightChange).

To ensure a non-redundant generation, a minLeftChange is not allowed after minRightChange.

Interestingly, this Algorithm can be see as an implementation of Algorithm ExR presented in

Section 4.3.4 for enumerating convex sets in a convex geometry.

Consider now the task of enumerating all elements of DG where we have |M | numerical

attributes. The algorithm is quite the same with two main differences to ensure non-redundancy:

(1) It considers a total order on the set of attributes M using the index of attributes; (2) When

a minimal change is applied to the attribute of index i, only attributes of index j >= i can be

refined in further steps from the generated pattern.

5.4.3.2 MININTCHANGE - Enumerating extents in a top-down fashion

Since all the intents of the interval pattern structure P are in DG , Algorithm 7 [104], namely

MININTCHANGE, uses the algorithm explained beforehand along with the closure operator

int◦ ext in the same spirit of CLOSE-BY-ONE (CBO). Algorithm 7 starts from int(G) (Line 18)

then Follows the same schema explained beforehand to enumerate elements of DG . One should
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Algorithm 7: Algorithm MININTCHANGE

Input: (G ,M ) a finite numerical datasets
Output: Elements of Pext with P is the interval pattern structure (see Definition 5.7)

1 procedure MININTCHANGE(A,d, i, f )
// extent A, intent d, last argument i and f for minChange

2 for j ∈ {i, ..., |M |} do
3 fstart ← 0 if j > i else f
4 for fnew ∈ { fstart,1} do
5 d′ ← minChange(d, j, fnew)
6 Anew ← ext(d′)
7 dnew ← int(Anew)
8 if (∀k ∈ {1, ..., j−1}) dnew.Ik = d.Ik then
9 MININTCHANGE(Anew,dnew, j, fnew)

10 print(A) // Output extent A

11 function minChange(d, j, f )
// minLeftChange (minRightChange) on the jth interval of d, i.e. d.I j if f = 0 ( f = 1)

12 d′ ← d // copy d =×1≤i≤k [ak,bk] on d′

13 if f = 0 then
14 d′.I j ← [next(a j,m j[G]),b j] // next(a j,m j[G])= inf {v ∈ m j[G] | a j < v}

15 else
16 d′.I j ← [a j, prev(b j,m j[G])] // prev(b j,m j[G])= sup{v ∈ m j[G] | v < b j}

17 return d′ // if d′.I j is empty return ;
18 MININTCHANGE(G , int(G), 1, 0) // Start from the closed pattern int(G)

notice that after each minLeftChange or minRightChange on the pattern d (Line 5) on attribute

j, the algorithm creates a new pattern d′ then performs the closure int◦ ext(d′) to create dnew

(Line 6-7). It performs then the canonicity test on the newly created pattern dnew (Line 8) to

check if the closed pattern dnew and equivalently its extent Anew has been already visited. If the

closed pattern dnew differs from d on the interval of some attribute of index k coming before the

last altered interval index j then the canonicity test fail. Otherwise, the algorithm continues the

enumeration starting from dnew (Line 9).

Note 5.7. As explained in [104], another way to enumerate closed interval patterns in a

top-down fashion is to use an interordinal scaling then using Algorithm 4. Authors of [104]

showed that such a technique is not competitive comparing to using MININTCHANGE. However,

one should notice that one can use Algorithm CBOI [16] presented in Section 5.2 to take benefit

from the inherent implications existing in an interordinal scaled context (i.e. ≤ a implies ≤ b

and ≥ b implies ≥ a if we have a ≤ b). In fact, Algorithm CBOI behaves almost as Algorithm

MININTCHANGE does to enumerate closed interval patterns.
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5.5 Enumeration in Convex Set Patterns Structures

We have seen in Section 5.4 that when we consider numerical datasets, we deal in general with

interval patterns, i.e. axis-parallel hyper-rectangles. However, the choice of of the type of patterns

on a dataset should depend on the knowledge we want to extract from a given dataset. Consider

for instance the following example:

Example 5.9. Let be the toy dataset depicted in Fig. 5.7 (Left) describing 6 representative

individuals with two numerical attributes, i.e. the age and the number of cigarettes smoked

per week, and one boolean attribute saying if the individual has a lung cancer or not. The

representation of the dataset in the Euclidean Plane is depicted in Fig. 5.7 (right) where white

(resp. black) dots represents individuals having (resp. not having) lung cancer.

It is easy to see that individuals having cancer, i.e. {g4, g5, g6} are not separable by an interval

pattern. Indeed, the smallest interval description enclosing them is given by: “20 ≤ age ≤
70 and 2 ≤ nb cig./week ≤ 14”. However and clearly, the set {g4, g5, g6} is linearly separable.

For instance the linear inequality “5 ·(nb cig./week)+age≥ 60” depicted in Fig. 5.7 (right) clearly

isolates only individuals having lung cancer.

This example shows that other pattern languages than interval patterns should be considered

to extract other useful information from a numerical dataset. To this aim, we propose in this

section a new language on numerical datasets which is the language of conjunctions of linear
inequalities. As a linear inequality is a halfspace and any (topologically) closed convex set can

be seen as the intersection of halfspaces [35] (i.e. conjunction of linear inequalities). The language

of conjunctions of linear inequalities is equivalent to the language of (closed) convex sets. We

propose hence here to study the more general language of convex sets from pattern structure

perspective. Next, we propose three algorithms to enumerate separable sets induced by this

language when considering finite numerical datasets. This contribution had appeared in paper

[20] on which the writing of this section partly rely.

G age nb cig. / week lung cancer
g1 20 2 no
g2 20 6 no
g3 40 2 no
g4 20 14 yes
g5 40 10 yes
g6 70 2 yes x

y

0 1 2 3 4
0
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2

3

4

4 8 12 16

20

40

60

80

nb cig
per week
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g3
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Figure 5.7: Dataset on 6 individuals (left) and its representation on the plane (right).
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5.5.1 Convex Set Pattern Language

5.5.1.1 Convex Sets

We will now start to deal with convex sets in Rp with p ∈N∗.

Definition 5.9. Let a,b ∈Rp, the segment linking a and b is denoted ab and is given by:

ab := {λ ·a+ (1−λ) ·b |λ ∈ [0,1]}

Where for a = (ai)1≤i≤p we have λ ·a = (λ ·ai)1≤i≤p.

Definition 5.10. A convex set S ⊆ Rp iff (∀a,b ∈ S) we have ab ⊆ S. The set of convex sets

in Rp is denoted C (Rp).

Example 5.10. Fig. 5.8 (left) depicts an open disk D = {(x−3)2 + (y−3)2 < 4} which center is

c = (3,3) and radius is 2. One can check that D is a convex set. For a = (1,3) and b = (5,3), all sets

D∪ {a}, D∪ {b} and D∪ {a,b} are also convex sets in R2.

Fig. 5.8 (right) depicts a polygonal shape S which is non convex. Clearly, a = (4,4.5) and

b = (4,1.5) belong to S however an element m = (4,3) on the segment ab is not in S.

Note 5.8. The convex sets in R are intervals (see Definition 5.5).

Theorem 5.6. For any p ∈ N∗, poset (C(Rp),⊆) is a closure system on the powerset lattice

(℘ (Rp) ,⊆). That is, the intersection of an arbitrary set of convex sets is also a convex set.

Proof. Let S ⊆C(Rp), we need to show that
⋂

S ∈C(Rp). For S =;, it is clear that it is the

case since the top element Rp is convex by definition. Let us show now that
⋂

S is convex

when S 6= ;. If
⋂

S =; then it is convex by definition. Suppose that
⋂

S 6= ;. Let a,b ∈⋂
S,

then ∀C ∈ S, we have ab ⊆ C. Therefore ab ⊆⋂
S. Hence,

⋂
S is convex.

Note 5.9. Since (C(Rp),⊆) is a closure system on the powerset lattice (℘ (Rp) ,⊆) then its has an

associated closure operator which fixpoints is C(Rp). This closure operator is called the convex
hull, denoted ch, given by:

ch :℘
(
Rp)→℘

(
Rp)

, A 7→⋂{
C ∈C(

Rp) | A ⊆ C
}

Notice also that (C(Rp),⊆) is a complete lattice where the meet is the set intersection and the

join of a set S ⊆C(Rp) is given by ch (
⋃

S) (see Corollary 2.1).

Definition 5.11. Let S ⊆C(Rp) be a convex set. A point e ∈ S is said to be an extreme point
of S iff S\{e} is convex. The set of extreme points of S is denoted ex(S). A subset B ⊆ S is said to

be a basis of S iff ch(B)= S.

Example 5.11. In the convex set S = D ∪ {a,b} depicted in Fig. 5.8 (see Example 5.10 for the

notations) we have ex(S)= {a,b}.
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Figure 5.8: A convex set (left) a non convex set (right).

Proposition 5.3. Let S be a convex set and let B be a basis of S, i.e. ch(B) = S. Then

ex(S)⊆ B.

Proof. Suppose that ∃B ⊆ S s.t. S = ch(B) but ∃e ∈ ex(S) s.t. e 6∈ B. We have by definition

S\{e} is convex, i.e. a fix-point of ch operator. Since B ⊆ S\{e} and since ch is order-preserving

we obtain that ch(B)⊆ ch(S\{e})= S\{e} which contradicts the fact that ch(B)= S.

5.5.1.2 Convex Polytopes

Definition 5.12. A set S ⊆ Rp is said to be a convex polytope iff ex(S) is finite and it is a

basis of S, i.e. S = ch(ex(S)). If p = 2, we say that S is a convex polygon.

Note 5.10. In fact, any set S ⊆Rp having a finite basis E is a convex polytope.

There are two ways to represent a non-empty convex polytope S ∈C(Rp):

• The V -representation or the Vertex representation. The convex polytope S is repre-

sented via its extreme points (i.e. the vertices).

• The H -representation or the Half-space representation. The convex polytope S is

seen as the solution of a system of linear inequalities S = {x ∈Rp | A · x ≤ b} with b ∈Rn and

A is a matrix n× p and n represents the number of linear inequalities.

The existence of both representations is guaranteed by the Minkowski-Weyl’s Theorem [72].

Converting one representation to another is a well known problem. The conversion from the

former to the latter representation is known as the facet enumeration problem and the dual

conversion is known as the vertex enumeration problem.

5.5.1.3 Convex Polygons

Particularly, when dealing with convex polygons, i.e. convex polytopes in R2, traversing extreme

points (i.e. vertices) in a counter-clockwise order (ccw) allows to build the H -representation from

the V -representation. To explain this observation, we present now both notions of signed area
and oriented segment.
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Definition 5.13. Let a,b, c ∈R2 be three points where a = (xa, ya), b = (xb, yb) and c = (xc, yc).

The signed area of the planar triangle a,b, c (in this order) is given by:

∆(a,b, c)= 1
2
·

∥∥∥∥∥∥∥∥
xa ya 1

xb yb 1

xc yc 1

∥∥∥∥∥∥∥∥= 1
2

((y1 − y2) · x3 + (x2 − x1) · y3 − (x2 · y1 − x1 · y2))

We distinguish three cases:

• If ∆(a,b, c)= 0 : points a,b and c are colinear.

• If ∆(a,b, c)> 0 : points a,b and c form a non-empty triangle and are ordered in a counter-

clockwise order.

• If ∆(a,b, c)< 0 : points a,b and c form a non-empty triangle and are ordered in a clockwise

order.

Note that |∆(a,b, c)| gives the area of the triangle.

Definition 5.14. Let a,b ∈ R2 s.t. a 6= b, a = (xa, ya) and b = (xb, yb). The oriented segment−→
ab subdivides R2 into four regions:

• The open upper half-plane
−→
ab+ given by the set of points p ∈ R such that abp form a

non-empty triangle which vertices are ordered in counter-clockwise order, i.e. ∆(a,b, p)> 0.

It is given by:
−→
ab+ = {

(x, y) ∈R2 | (yb − ya) · x+ (xa − xb) · y< x1 · y2 − x2 · y1
}

• The open lower half-plane
−→
ab− given by the set of points p ∈ R such that abp form a

non-empty triangle which vertices are ordered in clockwise order, i.e. ∆(a,b, p)< 0.
−→
ab− = {

(x, y) ∈R2 | (ya − yb) · x+ (xb − xa) · y< x2 · y1 − x1 · y2
}

For any p ∈−→
ab−, we will say that p sees the oriented segment

−→
ab or

−→
ab is visible from p.

• The set of points on the segment ab given by Definition 5.9.

• The set of points that are colinear to {a,b} but outside ab: It is given by the set of

points p ∈R2 s.t. ∆(a,b, p)= 0 but p 6∈ ab.

Example 5.12. Consider the polygon (triangle) c ∈ C(R2) depicted in Fig. 5.9 (right). The set

of its extreme points is given by {g1, g5, g4}. This set is said to be the V -representation of c, i.e.

c = ch({g1, g5, g4}). As we have said beforehand, a counter-clockwise traversal of vertices of the

triangles allow us to enumerate the oriented edges of the triangle −−−→g1 g5, −−−→g5 g4 and −−−→g4 g1. One can

check that a point p ∈ R2 falls into triangle c iff it does not sees any of its oriented edges. This

allow us for instance to build the H -representation. For instance, the triangle c can be seen as

the solution of the following linear inequations (use Definition 5.14 with g1 = (1,1), g5 = (3,1) and

g4 = (3,4)): 
0 −2

3 0

−3 2

 ·
(
x

y

)
≤


−2

9

−1


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G m1 m2
g1 1 1
g2 2 2
g3 2 3
g4 3 4
g5 3 1
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c := ext(int(d))
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Figure 5.9: 2-dimensional numerical dataset with 5 objects (left), Non-closed convex (polygon)
pattern d (center) and closed convex (polygon) pattern int◦ ext(d) (right).

Equivalently, the set of points (x, y) falling into the triangle verifies the following inequalities:

y≥ 1 and x ≤ 3 and 3 · x−2 · y≥ 1

One can check indeed that g2 = (2,2) verifies the three inequations while g3 = (2,3). One can see

that g3 sees the oriented edge −−−→g4 g1 but still verifies the two first inequations.

Convex Polygon Representation. Regarding the last example, a convex polygon d ∈C(R2) will

be seen as a sequence of extreme points in counter-clockwise order (e i)1≤i≤|ex(d)|. This allows as

presented in Example 5.12 to rebuild quickly both V -representation ex(d)= {e i}1≤i≤|ex(d)| and its

H -representation following Example 5.12. It is clear that there is |ex(d)| representations. But we

will keep in mind only one representation of the polygon at a time. We denote by |d| := |ex(d)|
the number of extreme points of the convex polygon d, namely its shape complexity (i.e. it

represents also the number of linear inequalities in the H -representation). For ease of notation

and when the representation (e i)1≤i≤|d| is fixed, we denote by d[i] := e i the ith extreme points in

the chosen representation.

5.5.2 Convex Set Pattern Structure

Given p ∈N∗, we have seen that poset (C(Rp),⊆) is a complete lattice (Theorem 5.6). Again, as

patterns are ordered from the less restrictive (i.e. Rp) to the most restrictive one ;. We will

consider the dual complete lattice (C(Rp),v) where v:=⊇. Poset (C(Rp),v) is called convex set
pattern language. As the considered pattern language is a complete lattice, one can build now

the pattern structure defined below.

Definition 5.15. Let (G ,M ) be a finite numerical dataset , one can build its associated convex
set pattern structure P= (G , (D,v),δ) with D :=C(R|M |) and δ is given by:

δ : G → D, g 7→ {M (g)}

The extent and the intent can be formulated as follow:

ext :D →℘(G),d 7→ {g ∈ G | M (g) ∈ d}

int :℘(G)→ D, A 7→ ch (δ[A])= ch(M [A])
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As we are dealing with finite numerical datasets, it is clear that closed patterns are convex
polytopes (i.e. they are the convex hull of a finite set of points). Hence, this language is equivalent

the language induced by a finite conjunction of linear inequalities, in the sense that the pattern
structure of conjunctions of linear inequalities associated to a finite numerical dataset has

for set of extents Pext (see Example 5.12).

Note 5.11. Without loss of generality, we will consider from now on a numerical dataset

(G ,M ) where two distinct objects g1, g2 ∈ G s.t. g1 6= g2 have distinct values, i.e. M (g1) 6= M (g2).

Interestingly, in such a case the set system Pext form a convex geometry (see Definition 4.4)

which associated closure operator is ext◦ int, called again the convex hull. Since objects never

coincides (i.e. they are not equivalent in the sens of object implication), for ease of notation, g i and

M (g i) will be used interchangeably. Notice that for A ∈Pext, the objects associated to the extreme

points of int(A) are extreme points of A for the ext◦ int closure in the convex geometry Pext.

Example 5.13. Consider the numerical dataset presented in Fig. 5.9 (left). It is clear that the

convex polygon d depicted in Fig. 5.9 (center) is not closed w.r.t. its ext(d)= {g1, g2, g4, g5}. The

closure of d is given by c = int ◦ ext(d) = ch(δ[{g1, g2, g4, g5}]) and is depicted Fig. 5.9 (right).
Notice that c can be represented by the sequence (g1, g4, g5) in order to output easily both

representations (see Example 5.12).

5.5.3 Convex Set Pattern Structure and Interval Pattern Structure

Before presenting algorithms enumerating extents induced by the language of convex polygons,

we drive the reader attention to the fact that the language of interval patterns is less expressive

than the language of convex sets. Moreover, we have the following proposition:

Proposition 5.4. The poset of axis-parallel p-dimensional hyper-rectangles (Dp,v) (see Defi-

nition 5.7) is a kernel system of the poset of convex sets (C(Rp),v).

Proof. It is easy to see that Dp ⊆ C(Rp). Moreover, recall that (Dp,v) and (C(Rp),v) are

kernel systems (see Definition 2.14) on (Rp,⊇), i.e. they preserve arbitrary set intersection
⋂

which is here the join. We conclude that (Dp,v) is a kernel system on (C(Rp),v).

Proposition 5.4 is important since it tells also that there is a kernel operator ψ on (C(Rp),v)

which fixpoints is Dp, i.e. ψ associates in fact the largest interval pattern w.r.t. v subsuming the

convex set pattern (see Note 2.1). Hence, the interval pattern structure (see Definition 5.7) can

be seen as a projected pattern structure by ψ (see Section 3.7.2) of the convex set pattern

structure (see Definition 5.15) when the same numerical dataset is considered.
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5.5.4 Closed Convex Pattern Enumeration

From now on we will consider only two-dimensional numerical datasets. They represents for

example points described by their geo-coordinates. We will use the same notations given in

Definition 5.15 and the observation given in Note 5.11, i.e. two points never collides.

5.5.4.1 EXTCBO - Using CBO-PS again

Since the convex set pattern structure P is a pattern structure, it is clear that someone can

directly uses Algorithm 6 (CBO-PS) to enumerate exhaustively and non redundantly all elements

of Pext. Again, this algorithm enumerates extents in bottom-up fashion. That is, it enumerates

patterns in increasing support and it is well suited for rare pattern enumeration for instance.

Notice that, Algorithm EXTCBO needs to compute the convex hull of a set of points at each

step, i.e. computing the intent of A ⊆ G (Line 3). This has for cost O(|A|·log(|A|)) when considering

2 dimensional dataset. This algorithm is clearly generalizable to any number of attributes.

5.5.4.2 DELAUNAYENUM - Enumerating using Delaunay triangulation

Algorithm 8, namely DELAUNAYENUM, enumerates closed convex polygon patterns in a Top-down

fashion. This algorithm is well-fashioned for pruning search space w.r.t. minimal support, minimal

perimeter, minimal area. Notice that the area, permiter and support are order-reversing

mappings from (D,v) to R.

Algorithm 8 is in fact a direct instance of Algorithm 2, namely Extreme points Removal

Closed Set Listing or ExR for short, i.e. It relies on the following procedure : to build new extents

Algorithm 8: DELAUNAYENUM

Input: (G ,M ) a finite numerical datasets with (∀g i, g j ∈ G) if g i 6= g j then M (g i) 6= M (g j)
Output: Elements of Pext with P is the convex set pattern structure (see Definition 5.15)

1 procedure DELAUNAYENUM()
2 dt ← DT(G)
3 d ← extreme points in ccw order from dt
4 enumerate(G ,d,dt,1)

5 procedure enumerate (A,d,dt,pos)
6 Print(A) // Output extent A
7 for i ∈ pos, ..., |d| do
8 dtnew ← Delaunay_remove(dt,d[i]) // use Algorithm in [55]
9 dnew ← extreme points in ccw order from dtnew by replacing only the ith extreme

point of d with the new ones
10 Anew ← A\d[i] // More generally remove all objects g s.t. M (g)= d[i]

11 enumerate(Anew,dnew, dtnew, i)
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Figure 5.10: DELAUNAYENUM extreme point deletion.

from an old one A ∈Pext since A\{e} iff e ∈ ex(A) (i.e. extreme point w.r.t ext◦ int closure).

However, after deleting one extreme point, someone needs to recompute the new extreme

points of the new extent (Line 3 in Algorithm 2). The easy, but slow, way, is to recompute the

convex hull. However, for more a efficient update of the set of extreme points after one extreme

point removal, DELAUNAYENUM uses Delaunay triangulation (DT) [170]. The DT builds in

fact a mesh (graph) between objects/points in A, after a deletion of an extreme point g i ∈ ex(A),

only its neighbors in the DT could become extreme points. Hence, one should maintain the DT
after each extreme point deletion. This can be done using the algorithm proposed in [55] which

time complexity is O(k · log(k)) where k is the number of neighbors of the deleted extreme point.

Algorithm 8 enumerates Delaunay triangulations and maintains at each step the sequence

of extreme points in counter-clockwise order, i.e. one representation. It starts by computing

the DT of G (line 2) and then obtain the polygon representation d of G (line 3). At a step in

the enumeration where d is the current representation, dt the current triangulation and A

the current extent of d. We remove successively extreme points p ∈ ex(d) and we update the

Delaunay triangulation dtnew based on dt (line 8), the new representation dnew (sequence of

extreme points) (line 9) and the new extent Anew by removing objects with value p from A (line

10). To avoid redundancy (avoid visiting the same pattern twice), removal of extreme points before

the last removed extreme point d[pos] are not allowed (argument pos in Algorithm 8) in further

steps, i.e. equivalent to Line 6 in Algorithm 2. In order to do that simply, when the extreme point

sequence d is updated upon extreme point d[i] removal, we only insert the new extreme points

(extreme points not in d) at the position i while keeping the same order (counterclockwise).

Example 5.14. Fig. 5.10 (from left to right) shows an example of how the algorithm updates the

description d whose representation is (g1, g2, g3) upon removal of the extreme point g3 (position

3) and produces the description dnew whose representation is (g1, g2, g4, g5) where g4 and g5

denote the new extreme points that replaced g3. The enumeration continues by removing g4. The

edges in the both patterns represents the Delaunay Triangulation graph between points.
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Figure 5.11: Convex polygon and candidate points

5.5.4.3 EXTREMEPOINTSENUM - Enumerating simpler shapes first

Algorithm 9, namely EXTREMEPOINTSENUM, Enumerates closed convex polygon patterns in a

bottom-up fashion. Unlike EXTCBO Algorithm, this algorithm allows to prune the search space

w.r.t. the shape complexity of the description d ∈ D, that is its number of edges or equivalently

the number of linear inequalities in its H -representation. Indeed, the simpler the form of d the

better by principle of parsimony.

In order to enumerate all the polygons from simpler shapes to more complex ones, one needs

to ensure that if a point g ∈ G\A is added to the current extent A ∈Pext, the extreme points of

the new extent ext◦ int(A∪ {g}) need to verify the following property:

ex(ext◦ int(A∪ {g}))= ex(A)∪ {g}

An object g 6∈ A verifying the aforementioned property is said to be a candidate point for

A ∈Pext. In what follows, for two distinct objects g i, g j ∈ G , we denote by −−−→g i g j
+, −−−→g i g j

− and −−−→g i g j
0

elements of G falling in these regions rather than the regions themselves (see Definition 5.14).

Computing the candidate points. Consider a closed convex polygon pattern d = (pi)1≤i≤|d|.
We define a same-size tuple nd called candidate points sequence where nd[i] gives the set

of points that are visible from and only from the edge −−−−−→pi pi+1 (see Definition 5.14). Formally, if

|d| ≥ 2:

nd[i]=−−−−−→pi pi+1
−∩

(⋂
j 6=i

−−−−−→p j p j+1
+
)

(5.1)

Notice that here the + and − on the index of extreme points are done in a cyclic way i.e. if

i = |d| then i+1= 1, i+2= 2. If i = 1 then i−1= |d| (i.e. (a+b = (a+b) mod |d|)+1). Note also

that if |d| = 1 then nd[1]= G\{p1}. A simpler formula nd[i] when |d| ≥ 2 is given below:

nd[i]=−−−−−→pi pi+1
−∩−−−−−→pi−1 pi

+∩−−−−−−−→pi+1 pi+2
+(5.2)

Extending a pattern and candidate points maintenance. As we have said before, adding a

candidate point will add only one extreme points. Interestingly, for d = (pi)1≤i≤d which extent is
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Figure 5.12: EXTREMEPOINTSENUM algorithm step-by-step enumeration.

A the representation of the new polygon after adding candidate q ∈ nd[i], i.e. c = int(A∪ {q}), is

given by: (p1, ..., pi, q, pi+1..., p|d|). That is no effort is demanded to get the representation of the

new created pattern. Still, one need to recompute the newly covered objects, i.e. ext(c). To do so,

one can follow the following steps:

ext(c) = ext(d)∪ ext((pi, q, pi+1))

ne[i] = nd[i]∩−−→pi q−∩−−−−→qpi+1
+

ne[i+1] = nd[i]∩−−−−→qpi+1
−∩−−→pi q+

ne[i−1] = nd[i−1]∩−−→pi q+

ne[i+2] = nd[i+1]∩−−−−→qpi+1
+

ne[i+k] = nd[i+k−1] for 3≤ k ≤ |d|− i+1

ne[i−k] = nd[i−k] for 2≤ k < i

Note that ext((pi, q, pi+1)) is given by the set of objects enclosed in the area formed by the trian-

gle (pi, q, pi+1). Formally: ext((pi, q, pi+1))=−−→pi q0 ∪−−−−→qpi+1
0 ∪−−−−−→pi pi+1

0 ∪ (−−−−−→pi pi+1
−∩−−→pi q+∩−−−−→qpi+1

+)
.

Example 5.15. Fig. 5.11 shows a convex polygon d = (g1, g2, g3, g4, g5, g6) with candidate points

given by nd = (;,;, {g8}, {g9},;,;). More generally, every point that falls in the gray zones is a

candidate point for the oriented segment −−−→g3 g4 or −−−→g4 g5. However, the point g10 is not a candidate

point. Indeed, g10 sees two edges −−−→g3 g4 and −−−→g4 g5.
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Algorithm 9: EXTREMEPOINTSENUM

Input: (G ,M ) a finite numerical datasets with (∀i, j ∈ G) if i 6= j then M (i) 6= M ( j),
Objects in G = {1, ..., |G |} totally ordered with ≤

Output: Elements of Pext with P is the convex set pattern structure (see Definition 5.15)
1 procedure enumerate (A,d,n,pos,S)
2 Print(A) // Output extent A
3 for k ∈ 1, ..., |d| do
4 for j ∈ n[k] and j >= pos do
5 s1 ← S[d[k]][ j] // first new segment

−−−→
d[k] j

6 s2 ← S[ j][d[k+1]] // second new segment
−−−−−−−→
jd[k+1]

7 dnew ← (d[1], ...,d[k], j,d[k+1], ...,d[|d|])
8 Anew ← A∪ s0

1 ∪ s0
2 ∪

(
n[k]∩ s+1 ∩ s+2

)
9 nnew ← (n[1], ...,n[k],n[k],n[k+1], ...,n[|d|])

10 nnew[k] ← n[k]∩ s−1 ∩ s+2
11 nnew[k+1] ← n[k]∩ s−2 ∩ s+1
12 nnew[k−1] ← n[k−1]∩ s+1
13 nnew[k+2] ← n[k+1]∩ s+2
14 enumerate(Anew,dnew, nnew, j+1,S)

15 procedure EXTREMEPOINTSENUM()
16 Print(;) // Output ;∈Pext
17 Enumerate in BFS-fashion all singleton {g}⊆ G
18 Compute segment index S
19 for i ∈ 1, ..., |G |−1 do
20 for j ∈ i+1, .., |G | do
21 s ← S[i, j] // S[i, j] :=−→

i j
22 enumerate(ext(s),(i, j), (s−, s+), j+1,S)

Algorithm EXTREMEPOINTSENUM. Algorithm 9, namely The algorithm EXTREMEPOINTSENUM,

follows almost the same enumeration principle as that of EXTCBO. The difference lies in main-

taining the list of object candidates that can be added to a pattern d. The other difference

is that the two first levels are enumerated in Breadth-first search (BFS) fahsion (Lines 16-17).

This allows one to build the segment index S that for each object pair (i, j) ∈ G ×G s.t. i 6= j

stores the extent
−→
i j0, its candidates

−→
i j− and

−→
i j+. The algorithm continues in a DFS-fashion to

enumerate higher levels, i.e. patterns with more than 2 extreme points. To prevent redundancy,

when extending a pattern d with a candidate j, only candidate points l s.t. j < l are allowed to be

added in the next steps (see pos parameter in line 4).

Example 5.16. Fig. 5.12 gives a detailed step-by-step partial enumeration. In each subfigure,

black points belong to the extents, white points are candidate points and gray points are not

candidates (points located in the white zones).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



5.5. ENUMERATION IN CONVEX SET PATTERNS STRUCTURES 149

5.5.5 Empirical Evaluation

We report an experimental study of the different algorithms, carried out on a machine equipped

with Intel Core i7-2600 CPUs 3.4 Ghz machine with 16 GB RAM. All materials are available on

https://github.com/BelfodilAimene/MiningConvexPolygonPatterns.

5.5.5.1 Mining polygon patterns

We compare the three algorithms without any constraint: EXTCBO, DELAUNAYENUM and

EXTREMEPOINTSENUM. Figure 5.13 plots for each one their run times and the number of

pattern candidates they generated. Datasets consist of n objects drawn from the IRIS dataset

uniformly from the three different classes for the attributes sepal-length and sepal-width (or

petal-lentgh and petal-width). First, notice that EXTCBO generates a lot of candidates discarded

by the canonicity test (redundant), while the two others generate each pattern only once. This

implies that EXTCBO is from one to two orders of magnitude slower (it is the only one computing

closures). Interestingly, EXTREMEPOINTSENUM is faster than DELAUNAYENUM as it does not

require to compute and update a Delaunay triangulation (even when the state-of-the-art [156] is

used).

5.5.5.2 Impact of the constraints

EXTCBO enumerates convex polygons in a bottom-up fashion w.r.t. inclusion. It can thus only

handle maximum perimeter and area constraints that are monotone (the proof is given, e.g. by

[26]): when a pattern is generated and does not satisfy the constraint, the algorithm backtracks

(a well-known property in pattern mining). DELAUNAYENUM enumerates convex polygons in a

top-down fashion w.r.t. inclusion. It can thus naturally prune w.r.t. minimal support, area and

perimeter. EXTREMEPOINTSENUM enumerates patterns by inclusion but also from simpler to

more complex shapes (extreme points inclusion). It can thus handle maximum shape complexity,

perimeter and area constraints.

Figure 5.13: Polygon pattern enumeration performance comparison. IRIS sepal-length × sepal-
width (left). IRIS petal-length × petal-width (right).
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(a) Max Shape variation (b) Min Support variation

(c) Max Perimeter variation (d) Min Perimeter variation

(e) Max Area variation (f) Min Area variation

Figure 5.14: Run time and generated patterns count for our three algorithms when introducing
constraints.

Figure 5.14 reports the run time of our three algorithms on the IRIS Sepal length vs. Sepal

Width dataset when introducing each constraint separately and varying the associated threshold

(min. and max. perimeter are computed as they have the same behavior as min. and max. area,

respectively). It also reports the number of generated patterns: The lower, the better. Some

algorithms output more patterns as they cannot efficiently handle the constraints (such invalid

patterns need to be removed during post-processing). As such, depending on the constraints the

user is interested in, one algorithm may be preferred to another.
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Figure 5.15: (Left) Comparing interval and convex polygon top-3 patterns. (Right) Comparing
interval (red) and convex polygon patterns (green) gini, area and density (represented by points
diameter).

5.5.5.3 Intervals vs. convex polygons

Our main motivation for introducing convex polygon patterns is to discover shapes with high

density and area, and possibly with high class homogeneity (e.g., low Gini). Figure 5.15 (left)

considers the IRIS dataset (Sepal length vs. Sepal Width). It presents the three most frequent

polygons that have null Gini, and either 3 or 4 extreme points for a fair comparison: convex

polygons better stick to the data without extremely over-fitting.

We also compare interval and polygon patterns in several datasets and plot their area, density

and Gini. Figure 5.15 (right) plots all discovered patterns area (Y), Gini (X), and density (point

diameter). It appears that convex polygons enable to find shapes with higher density, yet smaller

area, over the same Gini range. Rectangles with high area are exactly those that we want to

avoid for spatial data: they have high chances to enclose both zones of high and low density, and

high impurity (high gini).

5.5.6 Conclusion

In this section we have investigated the problem of enumerating exhaustively and non redun-

dantly separable sets by the language of convex sets, or more particularly convex polygons.

We have seen that this language is equivalent to the language of finite conjunction of linear

inequalities making the language fare more expressive than the language of intervals discussed

in the precedent section. However, the expressivity of this pattern language comes with a cost,

its intelligibility. Indeed, in d-dimensional finite numerical datasets (G ,M ), while the vertex

representation has a maximal size of |G |, the size of the halfspace representation (the number of

the linear inequalities) has the order of magnitude of |G |bd/2c making the intelligibility of such

kind of patterns questionable. Moreover, the number of extents could be 2|G | when the points

are co-spherical. Other simplifications of the language could be investigated as for instance the

language of neighborhood patterns [86] which, sadly, does not induce a pattern structure.
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5.6 Conclusion

In this chapter, we have investigated the problem of enumerating definable sets in a finite

pattern setup for the particular case of pattern structures and formal contexts. We have extended

the state-of-the-art of enumeration techniques by proposing: (1) Algorithm CBOI for concepts

enumeration in formal context that leverages existing (inherent) implications between the

context attributes [16] and (2) Three algorithms for enumerating definable sets for the particular

language of convex sets [20].

However, in this chapter, we have still not discussed Problem 5.1 when non pattern structures

are considered. Let us investigate for instance the sequential pattern language [6]. This language

does not induce a pattern structure [48] but still induces a pattern multistructure. Hence, accord-

ing to Theorem 3.5, all definable sets can be obtained from support-closed patterns. Therefore, a

first approach to enumerate all possible definable sets is to enumerate support-closed patterns

[166]. However, since two support-closed patterns can have the same extent (see Section 3.5.1.2),

such algorithms are complete and sound but potentially redundant. A second approach used

in the literature when dealing with pattern setups that are not pattern structures is to use

completions in order to transform them to pattern structures (see section 3.7.1). The common

used technique is the antichain completion as it is the case for sequential patterns [39, 48] and

graph patterns [78]. After such a transformation, algorithms solving Problem 5.3 (e.g Algorithm 6)

can be used. However, one needs to keep in mind that the considered language after completion

is no longer the same, i.e. it is the logical conjunction of the basic patterns. Hence, using such a

technique makes it possible to produce algorithms that are complete and non redundant but not

necessarily sound, i.e. some output definable sets are not induced by the basic pattern language.

Whether the first or the second approach is used to tackle the general Problem 5.1, one can

correct the different algorithms by:

• Obtaining non-redundancy for the first approach by storing in memory all the already

generated extents then checking before an output if the extent has already been output.

Such a solution is costly in memory.

• Obtaining soundness for the second approach by checking before an output of a set A if

there exists at least one maximal common description cov∗(A) which extent is A. If not so,

the algorithm does not output the set A. Such a solution can be costly in time since the

number of extents in the completion can be exponential to the number of extent in the basic

language (see Example 3.31).

Proposing a better algorithm solving Problem 5.1 remains an open problem that we are

thoroughly investigating currently. Our main intuition is to use upper-approximation extents to

jump between definable sets. Moreover, when the number of maximal covering descriptions is not

infinite and the considered pattern setup is a pattern multistructure, the computation of upper-

approximations can be done using only maximal covering descriptions thanks to Theorem 3.4.
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6
DISCRIMINATIVE SUBGROUP DISCOVERY

There is a large set of definitions of the task of subgroup discovery in the literature

[96, 106, 150, 163]. In a very general way, we define here subgroup discovery as follows:

“The task of finding a small subset of interesting patterns in a given dataset”.

There is four important terms in this definition. The notions of dataset and pattern has

been presented in Chapter 3 and Chapter 5. The two remaining terms are interpreted below:

Intersting. In the sense that someone needs a formal way to say if a pattern is more interest-
ing than another, an order relation. Often, the evaluation of the interestingness of a pattern

is made through the usage of some quality measure, that is a mapping that associates to

each pattern a value. The higher is this value, the more interesting is the pattern.

Small. In the sense that someone needs a way to select a small set of interesting patterns from

the set of all interesting ones.

While the definition of subgroup discovery is quite large, we will consider here a particular

task on subgroup discovery which we call Discriminative Subgroup Discovery. The following

of this chapter is organized as follows:

• Section 6.1 presents the task of discriminative subgroup discovery.

• Section 6.2 presents the notion of relevance theory introduced in [81].

• Section 6.3 presents the common way used in the literature to evaluate subgroup interest-

ingness via a quality measure.

• Section 6.4 gives an idea about the different approaches existing in the literature tackling

the problem of discriminative subgroup discovery.
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6.1 Introduction by Examples

From now on, we will make an abstraction on the pattern language that was discussed in

Chapter 3 and the provided dataset. We consider then as an input an arbitrary pattern setup

P= (G , (D,v),δ). In Discriminative Subgroup Discovery, the set of objects G is partitioned

into two sets: the set of positive or target instances G+ and the set of negative instances G−.

Informally, Discriminative Subgroup Discovery strives out to find subgroups that discrim-

inate/separate positive instances from the negative ones. We call subgroup any extent S ∈Pext.

Example 6.1. Fig. 6.1 (left) depicts a formal context P (or equivalently a pattern structure) where

G+ = {g1, g2, g3} and G− = {g4, g5, g6}. The set of all possible subgroups is given Pext depicted on

Fig. 6.1 (right). Recall that each extent A ∈ Pext, has at least one description inducing it. In

pattern structure, one could choose the intent int(A).

G m1 m2 m3 label

g1 × × +
g2 × × +
g3 × × +
g4 × × −
g5 × × −
g6 × × − ;

{g1,g2,g3, g4, g5, g6}

{g1,g2,g3, g4, g5} {g1,g2, g4, g5, g6} {g3, g6}

{g1,g2, g4, g5} {g6}{g3}

Figure 6.1: Formal Context P= (G ,M ,I ) (left) and its subgroups Pext (right). Objects in bold
are positive instances.

Example 6.2. Consider now the numerical dataset depicted in Fig. 6.2. The set of subgroups

depends on the hypothesis space, i.e. the description language. If we consider the interval pattern

structure, the set {g1,g2,g3} is a subgroup whose intent is [1,2]× [1,3]. If the language of convex

set pattern language is considered, then G+ = {g1,g2,g3,g4} is an extent.

m1 m2 label

g1 1 2 +
g2 1 3 +
g3 2 1 +
g4 3 5 +
g5 3 4 −
g6 2 5 − x

y

0 1 2 3 4 5
0
1
2
3
4
5
6

g1

g2

g3

g4

g5

g6

m1

m2

Figure 6.2: A labeled numerical dataset (G ,M ) (left) and its representation in plane (right)
where Black (resp. white) dots represent positive (resp. negative) instances.
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6.2. RELEVANCE THEORY 157

6.2 Relevance Theory

Relevance theory has been introduced by [81, 82] to compare between subgroups based on the

positive and negative instances they cover in the aim of reducing the number of the considered

subgroups. Before defining formally what relevance is. Let us start by a toy example.

Example 6.3. Consider the formal context depicted in Fig. 6.1, Let S = {g1,g2, g4, g5} and

T = {g1,g2, g4, g5, g6}. If someone aims to find subgroups that discriminate positive instances in

G+ from negative ones G−, he should prefer S than T since all positive instances isolated by S

are also isolated by T. However, S covers less negative instances than T. We will say that S is

more relevant than T and introduce formally this notion in Definition 6.1.

6.2.1 Basic Definitions

Definition 6.1. A subgroup S ∈Pext is said to be more relevant than T ∈Pext iff:

S∩G+ ⊇ T ∩G+ and S∩G− ⊆ T ∩G−

In other words S encloses all positive instances in T while it does enclose less negative instances.

One could see that “more relevant than” induces a partial order on Pext. The maximal

elements in Pext w.r.t. this order are said to be relevant.

Definition 6.2. A subgroup S ∈ Pext is said to be relevant iff: if there exists a subgroup

T ∈Pext that is more relevant than S ∈Pext then T = S.

Example 6.4. Consider the formal context considered in Fig. 6.1. One can check that the relevant

subgroups are those surrounded by a continuous rectangle on the right hand side of the figure,

i.e. {g1,g2,g3, g4, g5} and {g3}.

Consider now the numerical dataset considered in Fig. 6.2, if the interval pattern language is

considered then relevant subgroups are {g1,g2,g3} and G . If the convex polygon pattern language

is considered, only G+ is relevant.

Note 6.1. Without loss of generality, we have targeted here positive instances. One can define

the same notions of relevance toward negative instances analogously.

6.2.2 Relevance in Pattern Structures

We have defined relevant subgroups in the general case of pattern setup. We will now investigate

some properties that relevant subgroups have when the considered pattern setup P is a pattern
structure. From now on, the pattern setup P is a pattern structure. This section can be seen as

a small generalization of works of [82] and [88] for the general case of pattern structures rather

than only the language of itemsets.

Let us start by the first important observation formulated in the following proposition.
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158 CHAPTER 6. DISCRIMINATIVE SUBGROUP DISCOVERY

Proposition 6.1. Subgroup ext◦ int
(
G+)

is relevant.

Proof. Suppose now that A ∈Pext is more relevant than ext◦ int
(
G+)

. Then we have:

ext◦ int
(
G+)∩G+ ⊆ A∩G+ and ext◦ int

(
G+)∩G− ⊇ A∩G−

Since ext◦int is extensive, we obtain that A∩G+ = ext◦int
(
G+)∩G+ = G+. Hence G+ ⊆ A. On

the other hand, since A ∈Pext then it is a fixpoint of ext◦int. Since ext◦int is order-preserving

then ext ◦ int(G+) ⊆ A. Hence, ext ◦ int
(
G+)∩G− ⊆ A∩G−. Therefore, ext ◦ int

(
G+)∩G− =

A∩G−. We conclude that A = ext◦ int
(
G+)

, i.e. ext◦ int
(
G+)

is relevant.

Another important property is the fact that a subgroup is relevant then it is also closed-on-
the-positives. Let us define first this notion.

Definition 6.3. A subgroup S ∈Pext is said to be closed-on-the-positives or cotp for short

iff it is the smallest extent covering its positive instances. Formally, S = ext◦ int
(
S∩G+)

. The

set of cotp is given then by ext◦ int
[
℘

(
G+)]

.

Note 6.2. Please note that the mapping S 7→ ext ◦ int(S ∩G+) is technically not a closure

operator on (℘(G),⊆). However, this mapping is still idempotent and order-preserving but not

extensive. However and interestingly, this mapping is a kernel operator on (Pext,⊆). The term

closed-on-the-positive is used for elements in ℘(G) s.t. S = ext ◦ int(S∩G+) since: (1) they are

closed w.r.t. ext◦ int, i.e. they are extents and (2) they have a basis on G+, i.e. they are generated

only by their positive instances.

Proposition 6.2. If a subgroup S ∈Pext is relevant then it is cotp.

Proof. Suppose that S is relevant but not cotp, then S 6= ext ◦ int
(
S∩G+)

. We have S ∩
G+ ⊆ ext ◦ int

(
S∩G+)

since ext ◦ int is extensive. Moreover, since S ∈ Pext is a fixpoint

of ext ◦ int, S ∩G+ ⊆ S and ext ◦ int is order-preserving, we obtain ext ◦ int
(
S∩G+)

( S.

Hence, ext◦ int
(
S∩G+)∩G+ = S∩G+ but at the same time ext◦ int

(
S∩G+)∩G− ( S∩G−.

Therefore, ext◦ int
(
S∩G+)

is strictly more relevant than S which contradicts the fact that

S is relevant.

Proposition 6.2 shows that all relevant subgroups are necessarily cotp. The converse is

however not true as shown in the example below.

Example 6.5. One can verify that the subgroups that are cotp are those surrounded by continuous

or dashed rectangle. One can check that subgroups that are surrounded by dashed rectangles

are cotp but not relevant. For instance subgroup S1 = {g1,g2, g4, g5} is cotp, since int({g1,g2})=
{m1,m2} which extent is S1. However, S1 is still strictly less relevant than R1 = {g1,g2,g3, g4, g5}

which covers the same negative instances of S1 but encloses an additional positive instance g3.
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G m1 . . . mn label

g1
... 6= +
gn

gn+1
... 6= −
g2n

Table 6.1: A formal context (G ,M ,I ) which is the subposition of two contranominal scales of
size n ∈ N [80], i.e. n ≥ 2, G = {g i}1≤i≤2·n, G+ = {g i}1≤i≤n, G− = {g i}n+1≤i≤2·n, M = {mi}1≤i≤n and
(∀i ∈ {1...2 ·n},∀ j ∈ {1, ...,n}) g i I m j ⇔ j 6∈ {i, i−n}.

Following the test of relevance in [88]. The theorem below gives a characterization of relevant

patterns in pattern structures.

Theorem 6.1. A subgroup S ∈Pext is relevant iff S is cotp and the following property holds:

(∀g+ ∈ G+\S) S∩G− 6= ext◦ int
(
S∪{

g+})∩G−

Proof. Let us show both implications independently.

Suppose that S is relevant, then according to Proposition 6.2, S is cotp. Suppose now that

the given property does not hold. That is ∃g+ ∈ G+\S s.t. S∩G− = ext◦ int
(
S∪{

g+})∩G−.

Moreover, it is clear that S ∩G+ (
(
S∪ {g+}

)∩G+ ⊆ ext ◦ int
(
S∪{

g+})∩G+. Hence, ext ◦
int

(
S∪{

g+})
is strictly more relevant than S which contradicts the fact that S is relevant.

Suppose now that both properties hold but S is not relevant. Hence, there exists at least

one T ∈Pext that is cotp and strictly more relevant than S. Using the fact that S and T are

cotp and S∩G+ ⊆ T ∩G+ we obtain S = ext◦ int
(
S∩G+)⊆ ext◦ int

(
T ∩G+)= T.

If S∩G+ = T ∩G+ then S = T which is contradictory since T is strictly more relevant

than S. Hence, S∩G+ ( T∩G+. Moreover, we have T∩G− = S∩G− since S ⊆ T and T∩G− ⊆
S∩G−. Let g+ ∈ (T\S)∩G+ (note that (T\S)∩G+ is not empty). We have S ⊆ S∪ {g+} ⊆ T.

Hence, since T,S are fixpoints of ext ◦ int we obtain: S ⊆ ext ◦ int
(
S∪ {g+}

) ⊆ T. Thus,

ext◦ int
(
S∪ {g+}

)∩G− = S∩G−. This contradicts the fact that S has the second property.

6.2.3 Discussion

We have seen that the notion of relevance (to the positive label) allows to reduce the number of

considered subgroups when the task is to find subgroups separating positive instances from the

negative ones. Interestingly, when the positive instances are separable by the pattern language,

i.e. G+ ∈Pext, there is a unique relevant subgroup given by G+. Still, as observed in Example 6.6,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI078/these.pdf 
© [A. Belfodil], [2019], INSA de Lyon, tous droits réservés



160 CHAPTER 6. DISCRIMINATIVE SUBGROUP DISCOVERY

someone need to keep in mind that, in some cases, all closed-on-the-positives are relevant making

the number of relevant subgroups possibly exponential to the size of G .

Example 6.6. Table 6.1 depicts a formal context (or equivalently a pattern structure) where one

could check that there is 2n cotp subgroups and all these cotp subgroups are relevant.

6.3 Discriminative Subgroups Evaluation

We have seen a way to compare between subgroups through relevance theory. However, the

number of relevant subgroups could be still exponential to the number of objects as stated in

Example 6.6. Quality measure is another tool to compare between subgroups regarding the

number of positive and negative instances covered by them.

Since discriminative subgroups to the positive class can be seen as class association rules

(CARs) [121] where the consequent is fixed to the positive class, the quality measures evaluating

them comes directly from association rules evaluation literature. A plethora of quality measures

has been proposed and studied in the literature for such a purpose [14, 52, 73, 84, 95, 101, 120,

154].

6.3.1 Basic Definitions

From now on, P= (G , (D,v),δ) denotes a finite pattern setup, i.e. G is finite and the set of objects

G is partitioned into {G+,G−}. We call positive prevalence, the quantity denoted α and given

by the proportion of positive instances α= |G+|/|G |. The negative prevalence is defined dually

and is given by 1−α. Let us define now what a quality measure is.

Definition 6.4. We call a quality measure any mapping ϕ : D → R that associate to each

pattern in D a value in R. A quality measure ϕ : D →R is said to be extent-based iff:

(∀c,d ∈ D) ext(c)= ext(d)=⇒ϕ(c)=ϕ(d)

We will be interested here by extent-based quality measures. The most basic extent-based

measure is the support, i.e. d 7→ |ext(d)| that associate to each pattern the size of its extent.

Generally, extent-based measures can be defined by the help the relative support defined below.

Definition 6.5. The relative support measure is given by:

relsup :℘(G)×℘(G)→R, (S,R) 7→ |S∩R|
|R|

Given a set of objects S ⊆ G and reference set of objects R ⊆ G , relsup(S,R) evaluates the

presence of S in R.

If we are interested only by judging if a subgroup is better than another by the mean of

quality measure, then two distinct quality measures ordering in the same way the set of all
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subgroups should be considered indistinguishably. We talk here about the notion of measure

compatibility [73] defined below.

Definition 6.6. Two quality measures φ1,φ2 are said to be compatible iff:

(∀c,d ∈ D) φ1(c)<φ1(d)⇐⇒φ2(c)<φ2(d)

Note 6.3. As stated in [73], Compatible quality measures φ1,φ2 are equality-preserving,

i.e. (∀c,d ∈ D) φ1(c)=φ1(d)⇐⇒φ2(c)=φ2(d).

There are many ways to express the formula of quality measure φ. Following [73, 84], common

quality measures depend on the contingency table, the number of covered positive and negative

instance in and outside the subgroup. Such measures are said to be probability-based quality
measures [84]. They can be expressed hence as function on the Receiver Operating Characteristic

(ROC) space (see for example [73, 101]). In other words, the quality measures can be expressed

using the true positive rate and the false positive rate defined below.

Definition 6.7. The true positive rate (resp. false positive rate) measure, is the quality

measure denoted tpr (resp. f pr) and given by:

tpr : d 7→ relsup
(
ext(d),G+)= ∣∣ext(d)∩G+∣∣∣∣G+∣∣ f pr : d 7→ relsup

(
ext(d),G−)= ∣∣ext(d)∩G−∣∣∣∣G−∣∣

Now that we have defined both true positive rate and false positive rate. Let us define formally

what is probability-based quality measures.

Definition 6.8. A quality measure φ is said to be probability-based iff:

(∀c,d ∈ D) tpr(c)= tpr(d) and f pr(c)= f pr(d) then φ(c)=φ(d)

That is φ can be seen as a function of tpr and f pr when G and its partition {G+,G−} is fixed.

Note 6.4. From now on and for the sake of brevity, when we say φ is a quality measure we

mean probability-based quality measures. Moreover, it is clear that any probability-based quality

measure is also extent-based. Therefore, depending on the context, we will use interchangeably

(1) φ : D →R as a mapping which domain is the description space, (2) φ :℘(G)→R as a mapping

which domain is set of objects, i.e. evaluates subgroups and (3) φ : [0,1]× [0,1]→R as a mapping

in the ROC space where the x-axis (resp. y-axis) represents the false (resp. true) positive rate. In

other words, φ(d)=φ(ext(d))=φ( f pr(d), tpr(d)).

We give in Table 6.2 different (probability-based) quality measures expression. Note that each

block of measure represents compatible measures following Definition 6.6. For instance there is

13 measures stated in Table 6.2 that are compatible with the precision/confidence (including the

growth rate) as observed in [97]. We draw also the reader attention to the parametric Klösgenω
measure where the parameter ω ∈ [0,+∞). This measure is equal to the Weighted relative accuracy

(WRAcc) [114] if ω= 1, equal to the added value if ω= 0 and equal to the binomial test if ω= 0.5

[126]. Notice that sometimes measures are not defined when the true positive rate or the false

positive rate are equal to the extreme values 0 or 1.
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6.3.2 Measure Properties

The literature abounds with axiomatization of the properties that a measure can have [84, 120,

141]. We will not explore in this sections in details all the measure properties, we will state two

important ones that we will use in Chapter 7.

Definition 6.9. A probability-based quality measure φ : [0,1]× [0,1]→R is said to have:

(W) The Weak Dominance Property. iff ∀x1, x2, y1, y2 ∈ [0,1], we have:

x1 ≥ x2 and y1 ≤ y2 =⇒ φ(x1, y1)≤φ(x2, y2)

(S) The Strong Dominance Property. iff ∀x1, x2, y1, y2 ∈ [0,1], we have:

(x1 ≥ x2 and y1 < y2) or

(x1 > x2 and y1 ≤ y2) =⇒ φ(x1, y1)<φ(x2, y2)

Please recall that x (resp. y) represents the false (resp. true) positive rate, i.e. (∀d ∈ D) φ(d) :=
φ( f pr(d), tpr(d)). The word dominance is used here to refer to the fact that if a point (x2, y2)

dominates another point (x1, y1) in the ROC-space then the quality of (x2, y2) with a measure

having a dominance property is better than the quality of (x1, y1).

Note 6.5. Clearly, a probability-based quality measure having the strong dominance property

has also the weak one. Moreover, compatible-measures have the same dominance properties.

A discriminative pattern d can be seen as a class association rule where the premise is d and

the conclusion is fixed to the positive class, i.e. d ⇒+. Piatetsky-Shapiro axiomatized association

rules properties in [141]. We recall below properties (P2) and (P3) for our particular case.

Definition 6.10. Let α := ∣∣G+∣∣/∣∣G∣∣ be the (fixed) positive prevalence, a probability-based

quality measure φ : [0,1]× [0,1]→R is said to have:

(P2) The Piatetsky-Shapiro (P2) property iff φ increases whenever the true positive rate

increases and the support of the pattern remains the same. Formally, ∀x1, x2, y1, y2 ∈ [0,1],

we have:

α · y1 + (1−α) · x1 =α · y2 + (1−α) · x2 and y1 ≤ y2 =⇒ φ(x1, y1)≤φ(x2, y2)

(P3) the Piatetsky-Shapiro (P3) property iff φ decreases whenever the support of the pattern

increases and the true positive rate remains the same. Formally, ∀x1, x2, y1, y2 ∈ [0,1], we

have:

α · y1 + (1−α) · x1 ≥α · y2 + (1−α) · x2 and y1 = y2 =⇒ φ(x1, y1)≤φ(x2, y2)

Note 6.6. Please notice that α · y+ (1−α) · x represents the support of a description whose true

positive rate is y and false positive rate is x.

Proposition 6.3. If a probability-based quality measure has the weak dominance property

then it has both the the Piatetsky-Shapiro (P2) and (P3) properties.
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Proof. Let be a quality measure φ having the weak dominance property. Let us show that φ

has both Piatetsky-Shapiro (P2) and (P3) properties. Let x1, x2, y1, y2 ∈ [0,1] :

• Suppose that α · y1 + (1−α) · x1 =α · y2 + (1−α) · x2 and y1 ≤ y2. It is easy to see that

under this hypothesis, we have x1 ≥ x2. Using the the weak dominance property, we

conclude φ(x1, y1)≤φ(x2, y2). Thus, φ has the Piatetsky-Shapiro (P2) property.

• Suppose that α · y1 + (1−α) · x1 ≥α · y2 + (1−α) · x2 and y1 = y2. It is easy to see that

under this hypothesis, we have x1 ≥ x2. Using the the weak dominance property, we

conclude φ(x1, y1)≤φ(x2, y2). Thus, φ has the Piatetsky-Shapiro (P3) property.

This concludes the proof.

Note 6.7. Please note that the converse of Proposition 6.3 is not true. Indeed, consider the

following measure: φ : x, y 7→ 1− α
2 · y− (1−α) · x. One could easily show that φ has both Piatetsky-

Shapiro (P2) and (P3) properties by noticing that φ : x, y 7→ 1− (
α · y+ (1−α) · x)+ α

2 · y. Yet, φ has

not the the weak dominance property.

We give in Table 6.2 the dominance property for each quality measure. We have:

• The parametric Klösgenω measure has even not the weak dominance property when ω> 1.

• All measures having the weak dominance property in Table 6.2, have, a priori, the strong

one when the true positive rate range or the false positive rate range is modified. For

instance, the Fβ score has the strong dominance property when the true positive rate is

strictly positive. Discriminativity measure has the strong dominance property when the

true positive rate is strictly positive and the false positive rate is strictly below 1.

• There is two common measures in the literature, Gini Index and the Chi-Squared
measures that have not the weak dominance property. These measures do not target only

subgroups with a high coverage on positive instance and a small coverage on the negative

instances, but evaluate the purity of the subgroup or equivalently the deviation from the

independent case, i.e. tpr = f pr.

Last but not least, Proposition 6.4 presents a tight link between relevance theory and the

dominance property.

Proposition 6.4. Let c,d ∈ D be two patterns and let φ be a probability-based quality measure

having the weak dominance property. If ext(c) is more relevant than ext(d) then φ(c)≥φ(d)

Proof. The proof is trivial using Definition 6.1 and Definition 6.9.
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Measure Definition Domi.
False Positive Rate x
True Positive Rate y W

Prevalence α W

Support/Coverage [4] s :=α · y+ (1−α) · x
Precision/Confidence [4] p :=α · y/s W

Growth Rate/Odd Multiplier [57] [(1−α)/α] · [p/(1− p)]= y/x W

Ganascia index [97] 2p−1 W

Sebag-Schoenaur [97] p/(1− p) W

Example/counter-example rate [97] 2−1/p W

Ohsaki’s Conviction [135] (1−α)2/(1− p) W

Brin’s Interest/Lift/Strength [97] p/α W

Mutual information [97] log(p/α) W

One way support [84] p · log(p/α) W

Added Value [114] p−α W

Certainty Factor/Loevinger [97] (p−α)/(1−α) W

Brin’s Conviction [97] (1−α)/(1− p) W

Zhang [171]
(
1− α

p

)
/
(
max

(
α
p ,1

)
−α

)
= (y− x)/max(y, x) W

Guillaume-Khenchaff [65] (p−α)/α IF p <α ELSE (p−α)/(1−α) W

Odds Ratio [154] Ω := [y · (1− x)]/[x(1− y)] W

Yule’s Q [154] (Ω−1)/ (Ω+1) W

Yule’s x [154]
(p
Ω−1

)
/
(p
Ω+1

)
W

Least contradiction [84] [α · y− (1−α) · x]/α S
Accuracy [84] α · y− (1−α) · x+ (1−α) S
Weighted Relative Accuracy [114] α · (1−α) · (y− x) S
Informedness [15] y− x S
Binomial Test [125] α · (1−α) · (y− x)/

p
s S

Klösgenω (ω ∈ [0,1]) [101] α · (1−α) · sω−1 · (y− x) S
Klösgenω (ω ∈ (1,+∞)) [101] α · (1−α) · sω−1 · (y− x)
Linear correlation coefficient [154] φ :=

√
[(α · (1−α)) / (s · (1− s))] · (y− x) S

Cohen’s kappa (κ) [154] κ := 2α · (1−α)(y− x)/[α+ (1−2α) · s] S
Cosine/G-Measure [84] y/

√
[y+ ({1/α}−1) · x] S

m-estimate (m ∈ (0,+∞)) [73] α · [y+m/n]/[α · y+ (1−α) · x+m/n] S
Discriminativity [30] n2 ·α · (1−α) · y · (1− x) W

Fβ score (β ∈ [0,+∞)) [101] [(1+β2) · y]/[y+ ({1/α}−1) · x+β2] W

Gini Index [1] 2 ·α · (1−α) ·φ2

Chi-Squared (χ2) [1] χ2 := n ·φ2

Table 6.2: Quality of a subgroup S using its false positive rate x, its true positive rate y, positive
prevalence α, size of the set of objects |G | = n. The Domi. column shows if the measure have the
weak dominance property (W), the strong one (S) or no property (nothing).
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6.4 Discriminative Subgroups Enumeration

Several algorithms have been proposed in the literature to explore the pattern search space

in order to provide a concise set of interesting subgroups, for example Top-k subgroups w.r.t. a

quality measure φ. There are two main categories of subgroup discovery algorithms:

1. Exact Algorithms which rely in general on a complete enumeration of the subgroups [10,

89, 103, 118, 119, 125, 163] to output exact solutions of the targeted subgroup discovery task.

Several techniques are used to enhance the performance of these exhaustive algorithms as

for instance: (1) enumerate only closed (or closed-on-the-positives) patterns rather than all

possible patterns to avoid visiting redundantly the same subgroups, i.e the same extents

and (2) leverage the properties of the quality measure to prune uninteresting parts of the

search space [89, 90, 118].

2. Non-Exact Algorithms which propose approximate solutions for the subgroup enu-

meration task. The literature abounds with such algorithms: Beam Search Techniques

[59, 115, 159, 160], Evolutionary Algorithms [44], sampling techniques [23, 30, 31] and

anytime algorithms [34].

Note 6.8. One sad fact is that the (exhaustive) enumeration of relevant subgroups has received

less interest while at the same time the set of interesting discriminative subgroups is always

a subset of the relevant ones. For instance, the best known existing algorithms when dealing

with formal contexts were proposed by Grosskreutz in [88]: (1) a POLY-OUTPUT but not PSPACE

Algorithm and (2) a PSPACE but not POLY-OUTPUT one. Guyet et al. [92] investigated also lately

the problem of relevant subgroups enumeration when the interval patterns are considered. The

existence of a POLY-OUTPUT and PSPACE algorithm, or better a POLY-DELAY one, for relevant

subgroup enumeration remains an open problem.

6.4.1 Finding the Top-quality Subgroup

We have seen in Chapter 5 several algorithms that enumerate exhaustively and non-redundantly

the set of all extents of a formal context or a pattern structure. We have seen also that, depending

on the order of traversal of the search space, e.g. top-down or bottom-up, some constraints could

be incorporated easily in the algorithms to avoid visiting some subgroups that does not verify the

constraints. We will show here for instance, how a top-down algorithm for enumerating extents

in a pattern setup can be easily adapted to a branch-and-bound algorithm to look for the best

quality subgroup (or the top-k subgroups) thanks to optimistic estimates [90, 161]. For instance

Algorithm 4 (CBO-TD), Algorithm 5 (CBOI) for formal contexts, Algorithm 7 (MININTCHANGE)

for interval pattern structure and Algorithm 8 (DELAUNAYENUM) for convex polygon pattern

structure can be adapted to such a branch-and-bound scheme presented in Algorithm 10. Suppose

now that we have some finite pattern setup P= (G , (D,v),δ) where G is partitioned into {G+,G−}.
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6.4.1.1 Optimistic estimates

Definition 6.11. Let φ be an extent-based quality measure (see Definition 6.4), we call

optimistic estimates of φ any extent-based quality measure φoe :℘(G)→R s.t.

(∀S,T ∈℘(G)) T ⊆ S =⇒ φ(T)≤φoe(S)

An optimistic estimates is said to be tight iff: (∀S ∈℘(G),∃T ⊆ S) φoe(S)=φ(T).

Note 6.9. Please note that is a quality measure φ is order-preserving, i.e:

(∀S,T ∈℘(G)) T ⊆ S =⇒φ(T)≤φ(S)

then φ is its own tight optimistic estimates.

Interestingly, the following proposition shows that there is an easy way for build a tight

optimistic estimates for measures having the weak dominance property.

Proposition 6.5. Let φ be a probability-based quality measure having the weak dominance

property then φoe :℘(G)→R,S →φ(S∩G+) is a tight optimistic estimates of φ.

Proof. Let S ∈ ℘(G) and let T ⊆ S. We have tpr(T) ≤ tpr(S) = tpr(S ∩G+) and f pr(T) ≥
0= f pr(S∩G+). Hence, using the weak dominance of φ we have: (∀T ⊆ S) φ(T)≤φ(S∩G+)

making φoe : S 7→φ(S∩G+) a tight optimistic estimates since S∩G+ ⊆ S.

Note 6.10. There are other ways to build optimistic estimates. For instance, Morishita et al.

[132] leverages the convexity of the χ2 measure to obtain a tight optimistic estimates.

We have seen in Table 6.2 many quality measures that are extent-based (since they are

probability based). We give in Table 6.3 the optimistic estimates of the quality measures having

a non-trivial tight optimistic estimates thanks to Proposition 6.5. Please note that the tight

optimistic estimates is obtained for the measures having the weak dominance property by

replacing the false positive rate by 0 and keeping the true positive rate the same.

6.4.1.2 Branch-and-Bound scheme

Algorithm 10 starts from the top subgroup G ∈Pext and suppose that top already found is also

G (Line 8). In some step of the algorithm, the call BRANCH-AND-BOUND(S, topS) outputs the

top possible subgroups w.r.t. φ in the sub-search space of subgroups enclosed in S if it exists,

otherwise it does output topS. To do so, it does rely on the notion of optimistic estimates
φoe associated to φ [90] (see Definition 6.11): If the optimistic estimates of the quality on S is

lower than the top-quality already found then the sub-search space is unpromising (Line 2).

Otherwise, update the top-quality if S is better than the best already found subgroup (Line 3-4)

and explore further subgroups (Line 5-6). Please note that when P is a pattern structure, one can
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Algorithm 10: Brand-and-bound scheme for top-down subgroup enumeration
Input: P a pattern setup where G ∈Pext, φ an extent-based quality measure, φoe an

optimistic estimates of φ.
Output: One element topS ∈ argmaxS∈Pextφ(S)

1 function BRANCH-AND-BOUND(S, topS)
2 if φoe(S)>φ(topS) then
3 if φ(S)>φ(topS) then
4 topS ← S

5 for all next refinements S′ ( S s.t. S′ ∈Pext do
6 topS ← BRANCH-AND-BOUND(S′, topS)

7 return topS

8 print BRANCH-AND-BOUND(G , G)

visit only the cotp subgroups to find the top-quality subgroup as there exist at least one element

in argmaxS∈Pextφ(S) that is relevant.

Note 6.11. This algorithm can be further extended to look for top-k subgroups w.r.t. a quality

measure. However, and often, the top-k subgroups are very similar, i.e. they cover almost the

same objects. Several attempts have been made in the literature to reduce this redundancy of the

subgroup set: (1) limit the scope to relevant subgroups [82, 119], (2) diversification of the sub-

groups using a measure evaluating the redundancy of a subgroup set [160], or (3) diversification

of the subgroup set using some similarity measure between subgroups [34, 145].

Measure Tight Optimistic Estimates
Least contradiction [84] y
Accuracy [84] α · y+ (1−α)
Weighted Relative Accuracy [114] α · (1−α) · y
Informedness [15] y
Binomial Test [125] (1−α) ·pα · y
Klösgenω (ω ∈ [0,1]) [101] (1−α) · (α · y)ω

Linear correlation coefficient [154]
√

(1−α)·y
1−α·y

Cohen’s kappa (κ) [154] ((2−2 ·α) · y)/(1+ (1−2α) · y)
Cosine/G-Measure [84]

py
m-estimate (m ∈ (0,+∞)) [73] (α · [y+m/n])/(α · y+m/n)
Discriminativity [30] n2 ·α · (1−α) · y
Fβ score (β ∈ [0,+∞)) [101] [(1+β2) · y]/[y+β2]

Gini Index [1] 2 ·α · (1−α) · sup
{

(1−α)·y
1−α·y , α·x

1−(1−α)·x
}

Chi-Squared (χ2) [1] n · sup
{

(1−α)·y
1−α·y , α·x

1−(1−α)·x
}

Table 6.3: Tight optimistic estimates on some quality measures of Table 6.2 using the true positive
rate y, the positive prevalence α and the size of the set of objects |G | = n.
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7
ANYTIME DISCRIMINATIVE SUBGROUP DISCOVERY

This chapter can be seen as an application of the different notions we presented in the

precedent chapters in this dissertation. We address here the problem of discovering

subgroups that accurately discriminate one class label from the others in the particular

case of the interval pattern language, i.e. axis-parallel hyper-rectangles. We have seen in Sec-

tion 6.4 the different approaches existing in the literature to solve the aforementioned problem.

In this chapter, we will present an anytime algorithm, namely REFINEANDMINE, tailored for

discriminative interval patterns discovery in numerical data. It starts by mining interval pat-

terns in a coarse discretization, followed by successive refinements yielding increasingly finer

discretizations highlighting potentially new interesting patterns. Eventually, it performs an

exhaustive search, if given enough time. Additionally, REFINEANDMINE gives two provable

guarantees when interrupted. The first evaluates how close is the best found subgroup so far to

the optimal one in the whole search space. The second measures how already found subgroups

are diverse and cover well all the interesting regions in the dataset. These two guarantees makes

algorithm REFINEANDMINE first of its kind when the task of discriminative subgroup discovery

is considered. The following of the chapter is organized as follow:

• Section 7.1 presents formally the problem we are investigating here in this chapter.

• Section 7.2 introduces Algorithm REFINEANDMINE and shows that discretizations induce

in fact complete sublattices of the complete lattice of interval patterns.

• Section 7.3 presents the different guarantees provided by REFINEANDMINE.

• Section 7.4 evaluates the performance of Algorithm REFINEANDMINE.

• Section 7.5 provide a discussion on the possible future works to extend REFINEANDMINE.

The results presented in this chapter were introduced in paper [15] on which the writing of

this chapter rely.

169
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7.1 Problem Statement

In a general way, let P= (G , (D,v),δ) be a pattern structure over a finite set of objects G where G

is partitioned into {G+,G−}. Let Pext be the set of all subgroups and R⊆Pext be the set of relevant

subgroups towards the positive class. Let φ be a probabilistic based quality measure that has the

weak dominance property (see Definition 6.9 and Table 6.2).

We want to design an anytime enumeration algorithm such that:

1. given enough time, outputs all relevant extents in R (only completeness is required),

2. when interrupted, provides a guarantee bounding the difference of quality between the

top-quality found subgroup and the top possible quality w.r.t. φ; and

3. outputs a second guarantee ensuring that the resulting patterns are diverse.

Formally, let Si ⊆Pext be the set of outputted solutions by the anytime algorithm at some step

(or instant) i (at i+1 we have Si ⊆Si+1). We want that (1) when i is big enough, Si ⊇R. For (2)

and (3), we define two metrics 1 to compare the results in Si with the ones in R. The first metric,

called accuracy (eq. ACC), evaluates the difference between top subgroup quality φ in Si and R

while the second metric, called speci f icity (eq. SPE), evaluates how diverse and complete are

subgroups in Si.

accuracyφ(Si,R)= sup
A∈R

φ(A)− sup
B∈Si

φ(B)(ACC)

speci f icity(Si,R)= sup
A∈R

inf
B∈Si

(|A∆B|/|G |)(SPE)

The idea behind speci f icity is that each extent A in R is “approximated” by the most

similar extent in Si; that is the set B ∈Si minimizing the metric distance (A,B) 7→ |A∆B|/|G | in

℘(G). The speci f icity is then the highest possible distance (pessimistic). More formally it is the

directed Hausdorff distance [99] from R to Si. Note that speci f icity(Si,R)= 0 is equivalent to

Si ⊇R. Clearly, the lower these two metrics are, the closer we get to the desired output R. While

accuracyφ and speci f icity can be evaluated when a complete exploration of R is possible, our

aim is to bound the two aforementioned measures independently from R providing a guarantee.

In other words, the anytime algorithm need to output additionally to Si, the two following

measures accuracyφ(Si) and speci f icity(Si) s.t.

accuracyφ(Si,R)≤ accuracyφ(Si)

speci f icity(Si,R)≤ speci f icity(Si)

It is clear by definition that for all i ∈N we have:

accuracyφ(Si+1,R) ≤ accuracyφ(Si,R)

speci f icity(Si+1,R) ≤ speci f icity(Si,R)

1The metric names fall under the taxonomy of [172] for anytime algorithms.
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We want also that the two bounds on both these measures decrease overtime providing better

information on R through Si, i.e.:

accuracyφ(Si+1) ≤ accuracyφ(Si)

speci f icity(Si+1) ≤ speci f icity(Si)

7.2 Anytime Interval Pattern Mining

In this section, the pair (G ,M ) refers to a finite numerical dataset the considered pattern

structure P= (G , (D,v),δ) refers to the finite interval pattern structure associated to (G ,M )

(see Definition 5.7). The set of objects G is partitioned into {G+,G−} and the set of subgroups

relevant to the positive class is denoted by R ⊆ Pext. Fig. 7.1 (left) depicts and example of a

labeled numerical dataset (G ,M ). The algorithm that we will present later in this section for

solving the problem in Section 7.1 for the particular case of interval pattern structures relies on

the enumeration of a chain of discretizations from the coarsest to the finest. We start by defining

the notion of discretization which, interestingly, induces a complete sublattices of the interval

pattern language.

7.2.1 Discretizations as Complete Sublattices

A discretization of R is any partition of R using intervals. In particular, let C = {ci}1≤i≤|C| ⊆R
be a finite set with ci < ci+1 for i ∈ {1, ..., |C|−1}. Elements of C are called cut points or cuts. We

associate to C a finite discretization denoted by dr(C) and given by:

dr(C)= {
(−∞, c1)

}∪{
[ci, ci+1) | i ∈ {1, ..., |C|−1]}

}∪{
[c|C|,+∞)

}
Generally speaking, let C = (Ck)1≤k≤|M | ∈℘(R)|M | representing sets of cut points associated

to each dimension k (i.e. Ck ⊆R finite ∀k ∈ {1, ..., |M |}). The partition dr(C) of R|M | is given by:

dr(C)=
{ |M |×

k=1
Ik | Ik ∈ dr(Ck)

}
Fig. 7.1 (right) depicts two discretizations. Discretizations are ordered using the natural

order between partitions2. Moreover, cut-point sets are ordered by ≤ as follows:

C1 ≤ C2 ≡ (∀k ∈ {1, ..., |M |}) C1
k ⊆ C2

k with C i =
(
C i

k

)
1≤k≤|M |

Clearly, if C1 ≤ C2 then discretization dr(C1) is coarser than dr(C2).

2Let E be a set, a partition P2 of E is finer than a partition P1 (or P1 is coarser than P2) and we denote P1 ≤ P2 if
any subset in P1 is a subset of a subset in P2.
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Let C = (Ck)1≤k≤|M | be the cut-points. Using the elementary hyper-rectangles (i.e. cells) in the

discretization dr(C), one can build a (finite) subset of descriptions DC ⊆ D which is the set of all

possible descriptions that can be built using these cells. Formally:

DC := {⊔S | S ⊆ dr(C)
}

Note that >=;∈ DC since ⊔;=⊔
D => by definition. Proposition 7.1 states that (DC,v) is a

complete sublattice of (D,v).

Proposition 7.1. For any finite set C = (Ck)1≤k≤|M | ∈ ℘(R)|M | of cut points, the description

space (DC,v) with DC := {⊔S | S ⊆ dr(C)
}

is a finite (complete) sublattice of (D,v) that is:

(∀d1,d2 ∈ DC) d1 td2 ∈ DC and d1 ud2 ∈ DC

Moreover, if C1 ≤ C2 are two cut-point sets, then (DC1 ,v) is a (complete) sublattice of (DC2 ,v).

Proof. By construction, (DC,v) is a closure system (preserve meet) on (D,v). Indeed, let

d1 and d2 be in DC we have ∃S1,S2 ⊆ dr(C) such that d1 =⊔S1 and d2 =⊔S2. Thus:

d1 ud2 = (⊔S1)u (⊔S2)=⊔(
S1 ∪S2

)
∈ DC

since S1 ∪S2 ⊆ dr(C).

Let us show now that (DC,v) is also a kernel system (preserve join) on (D,v). We have

C = (Ck)1≤k≤|M |. Consider the following case of d1 and d2:

d j =
|M |×
k=1

I j
k with I j

k = [a j
k,b j

k), j ∈ {1,2} and a j
k < b j

k ∈ Ck

We have:

d1 td2 =
|M |×
k=1

[sup(a1
k,a2

k), inf (b1
k,b2

k))

Clearly, d1td2 ∈ DC, since the left bound sup(a1
k,a2

k) and the right bound inf (b1
k,b2

k) remains

in Ck for all k ∈ |M |. Note that if sup(a1
k,a2

k)> inf (b1
k,b2

k) for at least one k ∈ {1..|M |}, then

d1 td2 =>=;∈ DC. The two remaining cases of interval where we use +∞ and −∞ can be

handled in, almost, the same way.

We conclude that (DC,v) is a finite (complete) sublattice of (D,v) (since any finite lattice

is by definition complete).

The second part of the proposition is straightforward since both posets (DC1 ,v) and

(DC2 ,v) are complete sublattices of the same complete lattice (D,v) and DC1 ⊆ DC2 (dr(C1)≤
dr(C2) since C1 ≤ C2).
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m1 m2 label

g1 1 2 +
g2 1 3 +
g3 2 1 +
g4 3 5 +
g5 2 4 −
g6 2 5 −
g7 3 4 −
g8 4 4 −
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Figure 7.1: From left to right: A 2-dimensional numerical dataset, its representation on the
Cartesian plane where black dots represent positive instances, discretization dr((C1,C2)) in
R2 with C1 = {2,3} and C2 = {4,5} and (right) discretization dr((C2)) in R representing the one
associated with the relevant cuts of attribute m2, i.e. C2 = Crel

2 .

Note 7.1. Since according to Proposition 7.1, for any set of cutpoints C, the poset (DC,v) form

a complete sublattice of the interval pattern language (D,v), there exists a meet-preserving kernel

operator ψC : D → D which fixpoints is ψ[D]= DC according to Theorem 2.8. This kernel operator

is given by:

ψC : D → D,d 7→⊔{
dc ∈ DC | dc v d

}
Hence, one can create for each set of cutpoints C a projected pattern structure PC :=ψC(P) (see

Definition 3.27):

PC := (G , (DC,v),ψ◦δ)

7.2.2 Finest Discretization for a Complete Enumeration of Relevant Extents

There exists cut points C ⊆ ℘(R)|M | such that the space (DC,v) holds all relevant extents (i.e.

ext[DC] ⊇ R). For instance, if we consider values appearing in the dataset as cut-points, i.e.

C = (mk[G])1≤k≤|M |, the description space (DC,v) holds all relevant extents since it does hold

all extents. However, is there coarser discretization that holds all the relevant extents? The

answer is affirmative. One can show that the only interesting cuts are those separating between

positive and negative instances (called boundary cut-points by [63]). We call such cuts, relevant
cuts. They are denoted by Crel = (Crel

k )1≤k≤|M | and we have ext[DCrel ] ⊇R. Formally, for each

dimension k, a value c ∈ mk[G] is a relevant cut in Crel
k for attribute mk iff:(

c ∈ mk
[
G+]

and prev(c,mk
[
G

]) ∈ mk
[
G−]

) or (c ∈ mk
[
G−]

and prev(c,mk
[
G

]
) ∈ mk

[
G+]

)

where for any c ∈R and A ⊆R, we have:

next(c, A)= inf{a ∈ A | c < a} and prev(c, A)= sup{a ∈ A | a < c}

Finding relevant cuts Crel
k is of the same complexity of sorting mk[G] [63].
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Example 7.1. In the dataset depicted in Fig. 7.1 (left), relevant cuts are given by Crel =
({2,3,4,5}, {4,5}). Discretization dr(Crel

2 ) is depicted in Fig. 7.1 (right).

7.2.3 Anytime Enumeration of Relevant Extents

We design an anytime and interruptible algorithm dubbed REFINEANDMINE. This method, pre-

sented in Algorithm 11, relies on the enumeration of a chain of discretizations on the data space,

from the coarsest to the finest. It begins by searching relevant cuts in pre-processing phase (line 2).

Then, it builds a coarse discretization (line 3) containing a small set of relevant cut-points. Once

the initial discretization built, cotp patterns are mined thanks to MININTCHANGE Algorithm

(line 4) [104]. Then as long as the algorithm is not interrupted (or within the computational bud-

get), we add new cut-points (line 6) building finer discretizations. For each added cut-point (line 8),

only new interval patterns are searched for (mined descriptions d are new but their extents

ext(d) are not necessarily new) . That is cotp patterns which left or right bound is cut on the con-

sidered attribute attr (i.e. d.Iattr ∈ {[cut,a), [cut,+∞), [a, cut), (−∞, cut) | a ∈ Ccur
attr} with d.Iattr is

the attrth interval of d). This can be done by a slight modification of MININTCHANGE method

(see Algorithm 7). REFINEANDMINE terminates when the set of relevant cuts is exhausted (i.e.

Ccur = Crel) ensuring a complete enumeration of relevant extents R.

The initial discretization (Line 3) can be done by various strategies (see [167]). A simple,

yet efficient, choice is the equal frequency discretization with a fixed number of cuts. Other

strategies can be used, e.g. [63]. Adding new cut-points (Line 6) can also be done in various

ways. One strategy is to add a random relevant cut on a random attribute to build the next

discretization. Section 7.3.3 proposes another more elaborated strategy that heuristically guide

REFINEANDMINE to rapidly find good quality patterns (observed experimentally).

Algorithm 11: REFINEANDMINE

Input: (G ,M ) a numerical datasets with {G+,G−} partition of G
1 procedure REFINEANDMINE()
2 Compute relevant cuts Crel

3 Build an initial set of cut-points Ccur ≤ Crel

4 Mine cotp patterns in DCcur (and their extents) using MININTCHANGE

5 while Ccur 6= Crel and within computational budget do
6 Choose the next relevant cut (attr, cut) with cut ∈ Crel

attr\Ccur
attr

7 Add the relevant cut cut to Ccur

8 Mine new cotp pattern in (G , (DCcur ,v),δ)

Note 7.2. Algorithm REFINEANDMINE can be seen as an instance of a more general algorithm

that traverse a chain of meet-preserving projected pattern structures. This is somehow quite

similar to the methods proposed by Buzmakov et al. under the name of Σoφια [40, 42, 43].
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7.3 Anytime Interval Pattern Mining with Guarantees

Algorithm REFINEANDMINE starts by mining patterns in a coarse discretization. It continues

by mining more patterns in increasingly finer discretizations until the search space is totally

explored (final complete lattice being (DCrel ,v)). According to Proposition 7.1, the description

spaces built on discretizations are complete sublattices of the total description space. This

complete sublattices induce projected pattern structures as observed in Note 7.1.

For the sake of generality, in the following of this section (D,v) denotes a complete lattice, and

for all i ∈N∗, (Di,v) denotes complete sublattices of (D,v) such that Di ⊆ Di+1 ⊆ D. For instance,

in REFINEANDMINE, the total complete lattice is (DCrel ,v) while the (Di,v) are (DCcur ,v) at each

step. Before giving the formulas of accuracyφ(Si) and speci f icity(Si), we give some necessary

definitions and underlying properties. At the end of this section, we instanciates the different

general results on the particular case of REFINEANDMINE for interval patterns.

7.3.1 Approximating Descriptions in a Complete Sublattice

7.3.1.1 Upper and lower approximations of patterns

We start by approximating each pattern in D using two patterns in Di. Before presenting the

formal definition, let us consider the following example.

Example 7.2. Consider for instance Fig. 7.2 where D is the space of interval patterns in R2

while DC is the space containing only rectangles that can be built over discretization dr(C)

with C = ({1,4,6,8}, {1,3,5,6}). Since the hatched rectangle d = [3,7]× [2,5.5] ∈ D does not belong

to DC, two descriptions in DC can be used to encapsulate it. The first one, depicted by a gray

rectangle, is called the upper approximation of d. It is given by the smallest rectangle in DC

enclosing d. Dually, the second approximation represented as a black rectangle and coined lower

approximation of d, is given by the greatest rectangle in DC enclosed by d.

The two denominations of lower and upper approximation used in Example 7.2 come from

Rough Set Theory [140] where lower and upper approximations form together a rough set and try

to capture the undefined rectangle d ∈ D\DC. Definition 7.1 formalizes these two approximations

in the general case.

Definition 7.1. The upper approximation mapping ψi and lower approximation mapping ψi

are the mappings defined as follows:

ψi : D → Di,d 7→⊔{
c ∈ Di | c v d

}
ψi : D → Di,d 7→⊔{

c ∈ Di | d v c
}

The existence of these two mappings is ensured by the fact that (Di,v) is a complete sublattice

of (D,v). Proposition 7.2 states an important property.
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Proposition 7.2. We have (∀d ∈ D) ψi(d)v d vψi(d).

Proof. Proposition 7.2 is a small result from Theorem 2.8. Since (Di,v) is a complete

sublattice of (D,v), then the mappings ψ∗
i and ψ∗

i defined below

ψ∗
i (d) : D → D,d 7→ψi(d) and ψ∗

i (d) : D → D,d 7→ψi(d)

are respectively join-preserving closure (thus extensive d v ψ∗
i (d)) and meet-preserving

kernel (thus contractive ψ∗
i (d) v d) operators on (D,v) with ψ∗

i [D] =
{
ψ∗

i (d) | d ∈ Di

}
= Di

and ψ∗
i [D]= Di. Recalling that ext is order-reversing concludes the proof.

Another useful Lemma is presented here.

Lemma 7.1. The richer (Di,v) is, the more constraining are the surrounding approximations.

Formally:

(∀d ∈ D) ψi(d)vψi+1(d)v d vψi+1(d)vψi(d)

Generally speaking: ψi ◦ψi+1 =ψi and ψi ◦ψi+1 =ψi.

Proof. Without loss of generality, let i = 1. Let us show before that ψ1
(
ψ2(d)

)=ψ1(d) and

ψ1
(
ψ2(d)

)=ψ1(d) for all d ∈ D.

Since D1 ⊆ D2 then for all x ∈ D1 and for all d ∈ D we have (since ψ2 and ψ2 come respectively

from kernel and closure operators):

x vψ2(d)⇔ x v d and ψ2(d)v x ⇔ d v x

Thus:

ψ1
(
ψ2(d)

)=⊔{
x ∈ D1 | x vψ2(d)

}=⊔{
x ∈ D1 | x v d

}=ψ1(d)

ψ1
(
ψ2(d)

)=⊔{
x ∈ D1 |ψ2(d)v x

}=⊔{
x ∈ D1 | d v x

}=ψ1(d)

The first part of the proposition is a straight-forward corollary of the first properties. Indeed,

since ψ2 and ψ2 are respectively contractive and extensive, we conclude:

ψ1(d)=ψ1
(
ψ2(d)

)vψ2(d) and ψ2(d)vψ1
(
ψ2(d)

)=ψ1(d)

Thus: ψ1(d)vψ2(d)v d vψ2(d)vψ1(d).
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Figure 7.2: Description d = [3,7]× [2,5.5] in D (hatched) and C = ({1,4,6,8}, {1,3,5,6}). Upper
approximation of d in DC is ψC(d)= [1,8)× [1,6) (gray rectangle) while lower approximation of d
is ψC(d)= [4,6)× [3,5) (black rectangle). ψC(d) represents also the coreC of ψC(d) in DC.

7.3.1.2 Encapsulating patterns using their upper-approximations.

We want to encapsulate any description d ∈ D by knowing only its upper-approximation in Di. For-

mally, we want some function f : Di → Di such that (∀d ∈ D)ψi(d)v d v f (ψi(d)). Definition 7.2

defines the notion of core mapping and Proposition 7.3 shows that such a mapping core is the

tightest function f (w.r.t. v) that we want to build.

Definition 7.2. The mapping core i associated to Di is given by:

core i : Di → Di, c 7→ core(c)=ψi

(⊔{
d ∈ D |ψi(d)= c

})
Proposition 7.3. For any mapping f : Di → Di we have:

(∀d ∈ D) d v f (ψi(d)) ⇐⇒ (∀c ∈ Di) core i(c)v f (c)

Proof. Let f : Di → Di be a function. We want to show the following property:

(∀d ∈ D) d v f (ψi(d)) ⇐⇒ (∀c ∈ Di) core i(c)v f (c)

We start by implication (⇐). Let d ∈ D, since from the hypothesis core i(ψi(d))v f (ψi(d)) and

since d v core i(ψi(d)) (Proposition 7.4), we conclude that d v f (ψi(d)).

It remains to show the other implication (⇐). Let c ∈ Di and let Sc := {x ∈ D |ψi(x) = c}.

Since, from the hypothesis, (∀x ∈ Sc) x v f (ψi(x))= f (c) then ( f (c) is an upper bound of Sc

and the join is the smallest upper bound by definition, i.e.:
⊔

Sc v f (c). Since f (c) ∈ Di we

have ψi( f (c)) = f (c). We obtain by monotonicity of ψi: core i(c) =ψi (
⊔

Sc) vψi( f (c)) = f (c)

This concludes the demonstration.

Proposition 7.4 shows that the core of the upper approximation is always less restrictive than

the lower approximation.
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Proposition 7.4. We have:

(∀d ∈ D) ψi(d)v d vψi(d)v core i(ψi(d))

Proof. We have from Proposition 7.2 that (∀d ∈ D) ψi(d)v d vψi(d). Let us show now that:

(∀d ∈ D) ψi(d)v core i(ψi(d))=ψi

(⊔{
x ∈ D |ψi(x)=ψi(d)

})
Clearly, we have d ∈

{
x ∈ D |ψi(x)=ψi(d)

}
. We obtain hence that

d v⊔{
x ∈ D |ψi(x)=ψi(d)

}
We conclude the proof using monotonicity of ψi.

Note that, while the core operator definition depends clearly on the complete lattice (D,v),

its computation should be done independently from (D,v).

Another important property of the core is presented in the following Lemma.

Lemma 7.2. ∀d ∈ D : core i+1(ψi+1(d))v core i(ψi(d)). That is, the core of the upper approxi-

mation is less restrictive in richer spaces.

Proof. Without loss of generality, let i = 1. Let d ∈ D, we need to show that core2(ψ2(d))v
core1(ψ1(d)). According to Lemma 7.1 we have ψ1 ◦ψ2 =ψ1, thus:

{
x ∈ D |ψ2(x)=ψ2(d)

} ⊆ {
x ∈ D |ψ1(x)=ψ1(d)

}=⇒⊔{
x ∈ D |ψ2(x)=ψ2(d)

} v ⊔{
x ∈ D |ψ1(x)=ψ1(d)

}
Since ψ2 is monotonic, we obtain:

ψ2
(⊔{

x ∈ D |ψ2(x)=ψ2(d)
}) v ψ2

(⊔{
x ∈ D |ψ1(x)=ψ1(d)

})
Since ψ1 is extensive and ψ1 ◦ψ2 =ψ1, we obtain:

ψ2
(⊔{

x ∈ D |ψ2(x)=ψ2(d)
}) v ψ1

(⊔{
x ∈ D |ψ1(x)=ψ1(d)

})
We conclude that:

core2(ψ2(d)) v core1(ψ1(d))

This ends the demonstration.
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7.3.2 Bounding accuracy and specificity Metrics

We consider now the pattern structure P= (G , (D,v),δ) associated to the complete lattice (D,v)

where the set of G is partitioned into {G+,G−}. Since (Di,v) are complete sublattices of (D,v).

One can create for each i ∈N∗, the projected3 pattern structure Pi :=ψi(P) given by:

Pi := (G , (D,v),ψi ◦δ)

Moreover, the associated extent exti and intent inti operators of Pi are given by (see Proposi-

tion 3.11 and Theorem 3.9).

exti : Di →℘(G),d 7→ ext(d) and inti :℘(G)→ Di, A 7→ψi(int(A))

Please note that, thanks to the fact that ext is order-reversing and Proposition 7.2, we have:

(∀d ∈ D) ext(ψi(d))⊆ ext(d)⊆ ext(ψi(d))

Following REFINEANDMINE, we consider that at the ith step the algorithm visiting the

projected pattern structures outputs extents Si which corresponds to the cotp extents of Pi, i.e.:

Si := ext◦ inti[℘(G+)]= ext[ψi[int[℘(G+)]]]

The next sections provide the bounds accuracyφ and speci f icity given a probability based

quality measure φ that has the weak dominance property (see Definition 6.8 and Definition 6.9).

Please read Note 6.4 for the different notations we use to manipulate a probabiliy based quality

measure φ.

7.3.2.1 Bounding the accuracy metric

Before giving the general formula of accuracyφ, we state below the following Lemma.

Lemma 7.3. We have:

(∀d ∈ D) φ(d)≤φ
(
f pr

(
core i

(
ψi(d)

))
, tpr

(
ψi(d)

))

Proof. By application of Proposition 7.3 we have with c =ψi(d) ∈ Di: c v d v core i(c). Thus,

since ext operator is order-reversing we obtain ext(core i(c)) ⊆ ext(d) ⊆ ext(c) Thus, since

tpr and f pr increase with the extent. We conclude that tpr(core i(c))≤ tpr(d)≤ tpr(c) and

f pr(core i(c))≤ f pr(d)≤ f pr(c). Since φ has the weak dominance property we conclude that:

φ(d)≤φ( f pr(core i(c)), tpr(c)). This ends the proof.

Theorem 7.1. The accuracy metric is bounded by:

accuracyφ(Si) = sup
c∈inti[Si]

[
φ

(
f pr

(
core i(c)

)
, tpr

(
c
))−φ ( f pr(c), tpr(c))

]
3There is a slight misuse of the term projection with the mapping ψi since its codomain is ψi[D]= Di rather than

D. If the codomain is D, the mapping is a kernel operator.
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Proof. According to lemma 7.3 and by considering d ∈ int[℘(G+)], a cotp pattern we have:

φ(d) ≤ φ
(
f pr

(
core1

(
ψ1(d)

))
, tpr

(
ψ1(d)

))
Since ψ1(d) is a cotp pattern induced by (D1,v), we have:

sup
int[℘(G+)]

φ(d)≤ sup
c∈ψ1[int[℘(G+)]]

φ
(
f pr

(
core1

(
c
))

, tpr
(
c
))

The set ψ1[int[℘(G+)]] represent sthe set of cotp patterns in D1, that is int1[S1] (S1 repre-

sents the set of cotp extents induced by D1), we obtain:

sup
d∈int[℘(G+)]

φ(d)≤ sup
c∈int1[S1]

φ
(
tpr

(
c
)
, f pr

(
core1

(
c
)))

Thus, since the left quantity is the same as supA∈R φ(A), we subtract from both side the

quantity supB∈S1
φ(B)= supc∈int1[S1]φ( f pr(c), tpr(c)). Hence:

sup
A∈R

φ(A)− sup
B∈S1

φ(B) ≤ sup
c∈int1[S1]

[
φ

(
f pr

(
core1(c)), tpr

(
c
))−φ (c)

]
That is: accuracyφ(S1)= supc∈int1[S1]

[
φ

(
f pr

(
core1(c)), tpr

(
c
))−φ ( f pr(c), tpr(c))

]
.

Proposition 7.5. We have accuracyφ(Si+1)≤ accuracyφ(Si).

Proof. From Lemma 7.1 and Lemma 7.2 we have for all d ∈ D:

ψ1(d)vψ2(d)v d v core2(ψ2(d))v core1(ψ1(d))

Thus, since φ has the weak dominance property, we have for all d ∈ D:

φ
(
f pr

(
core2

(
ψ2(d)

))
, tpr

(
ψ2(d)

))
≤φ

(
f pr

(
core1

(
ψ1(d)

))
, tpr

(
ψ1(d)

))
Particularly, for c ∈ D2 (c is a fixpoint for ψ2) we have:

φ
(
f pr

(
core2

(
c
))

, tpr
(
c
))

≤φ
(
f pr

(
core1

(
ψ1(c)

))
, tpr

(
ψ1(c)

))
We conclude that:

sup
c∈int2[S2]

φ
(
f pr

(
core2(c)

)
, tpr

(
c
)) ≤ sup

c∈int1[S1]
φ

(
f pr

(
core1(c)

)
, tpr

(
c
))

Moreover, since D1 ⊆ D2, we have −supc∈D2
φ(c)≤−supc∈D1

φ(c). Therefore, we obtain that

−supc∈int2[S2]φ(c)≤−supc∈int1[S1]φ(c). We conclude accuracyφ(S2)≤ accuracyφ(S1)
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7.3.2.2 Bounding the specificity metric

Before giving the general formula of speci f icity, we state below the following Lemma.

Lemma 7.4. We have:

(∀d ∈ int[℘(G+)]) inf
c∈inti[Si]

( |ext(d)∆ ext(c)|
|G |

)
≤ |ext(ψi(d))|− |ext(core+i (ψi(d)))|

2 · |G |

where core+i : c 7→ inti
(
ext(core i(c))∩G+)

the closure on the positives of core i(c).

Proof. Since the upper approximations (which is a cotp in Pi and thus is in inti[Si]) and

the closure on the positives of the core (it is in inti[Si]) are already good approximations

for d (but not necessarily the bests), let u = ψi(d), we have ext(d) ⊆ ext(u). On the other

hand, since d v core i(u)v core+i (u) (Proposition 7.3), we have ext(core+i (u))⊆ ext(d). Thus,

we have |ext(d)∆ ext(u)| = |ext(u)|− |ext(d)| and in the other hand |ext(d)∆ ext(core+i (u))| =
|ext(d)|− |ext(core+i (u))|. We obtain:

inf
c∈inti[Si]

|ext(d)∆ ext(c)| ≤ |ext(u)|− |ext(d)|
inf

c∈inti[Si]
|ext(d)∆ ext(c)| ≤ |ext(d)|− |ext(core+i (u))|

We conclude:

2× inf
c∈inti[Si]

|ext(d)∆ ext(c)| ≤ |ext(u)|− |ext(core+i (u))|

Since |G | is a constant, we obtain (with u =ψi(d)):

inf
c∈inti[Si]

( |ext(d)∆ ext(c)|
|G |

)
≤ |ext(u)|− |ext(core+i (u))|

2 · |G |

This ends the demonstration.

Theorem 7.2. The speci f icity metric is bounded by:

speci f icity(Si) = sup
c∈inti[Si]

( |ext(c)|− |ext(core+i (c))|
2 · |G |

)
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Proof. Without loss of generality, let i = 1. According to Lemma 7.4, we have for a relevant

(thus cotp) extent A ∈ R (int1(A) ∈ int1[℘(G+)]] and thus int1(A) ∈ int1[S1]):

inf
B∈S1

( |A∆B|
|G |

)
≤ |ext(int1(A))|− |ext(core+1 (int1(A)))|

2 · |G |
We conclude thus:

sup
A∈R

inf
B∈S1

( |A∆B|
|G |

)
≤ sup

c∈int1[S1]

|ext(c)|− |ext(core+1 (c))|
2 · |G |

That is to say:

speci f icity(S1) = sup
c∈int1[S1]

|ext(c)|− |ext(core+1 (c))|
2 · |G |

This ends the demonstration.

Proposition 7.6. We have speci f icity(Si+1)≤ speci f icity(Si).

Proof. Let us show that speci f icity is order reversing. From Lemma 7.1 and Lemma 7.2

we have for all d ∈ D:

ψ1(d)vψ2(d)v d v core2(ψ2(d))v core1(ψ1(d))

We can conclude directly using Lemma 7.4 (recall that ext is an order reversing) that for all

d ∈ D:

|ext(ψ2(d))|− |ext(core2(ψ2(d)))|
2 · |G | ≤ |ext(ψ1(d))|− |ext(core1(ψ1(d)))|

2 · |G |

Particularity, for c ∈ D2 (c is a fix-point for ψ2) we obtain:

|ext(c)|− |ext(core2(c))|
2 · |G | ≤ |ext(ψ1(c))|− |ext(core1(ψ1(c)))|

2 · |G |
We conclude that:

sup
c∈int2[S2]

|ext(c)|− |ext(core+2 (c))|
2 · |G | ≤ sup

c∈int1[S1]

|ext(c)|− |ext(core+1 (c))|
2 · |G |

In other word:

speci f icity(S2) ≤ speci f icity(S1)

This conclude the demonstration.
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7.3.3 Instanciation on REFINEANDMINE

We show below how the different steps of the method REFINEANDMINE (see Algorithm 11)

should be updated in order to compute the two bounds accuracy and speci f icity. For the sake

of simplicity, we explain here a naive approach as we intend to provide an overview of the

algorithm. Note that here, core (resp. core+) refers to coreCcur (resp. core+Ccur ).

7.3.3.1 Computing the core

In each step and for cut-points C = (Ck)⊆℘(R)|M |, the finite lattice (DC,v) is a sublattice of the

finest finite lattice (DCrel ,v) (since C ≤ Crel). Thereby, the core is computed according to this

latter as follows: Let d ∈ DC with d.Ik = [ak,bk) for all k ∈ {1, ..., |M |}. The left (resp. right) bound

of coreC(d).Ik for any k is equal to next(ak,Ck) (resp. prev(bk,Ck)) if next(ak,Crel
k ) 6∈ Ck (resp.

prev(bk,Crel
k ) 6∈ Ck). Otherwise, it is equal to ak (resp. bk).

Example 7.3. Consider the step C = ({2,3}, {4,5}) in REFINEANDMINE (its associated discretiza-

tion is depicted in Fig. 7.1 (left)) and recall that the relevant cuts set is C rel = ({2,3,4,5}, {4,5}).

The core of the bottom pattern ⊥ = R2 at this step is coreCcur (⊥) = (−∞,3)×R. Indeed, there

is three descriptions in DCrel which upper approximation is ⊥, namely ⊥, c1 = (−∞,4)×R and

c2 = (−∞,5)×R. Their lower approximations are respectively ⊥, (−∞,3)×R and (−∞,3)×R. The

join (intersection) of these three descriptions is then coreCcur (⊥)= (−∞,3)× (−∞,+∞).

7.3.3.2 Computing the initial bounds (line 4)

As MININTCHANGE enumerates all cotp patterns d ∈ DCcur , REFINEANDMINE stores in a key-

value structure (i.e. map) called BoundPerPosExt the following entries:

ext(d)∩G+ :
(
φ(d),φ

(
f pr

(
core(d)

)
, tpr

(
d
))

,
|ext(d)|− |ext(core+(d))|

2 · |G |
)

The error-bounds accuracyφ and speci f icity are then computed at the end by a single pass on

the entries of BoundPerPosExt using Theorems 7.1 and 7.2.

7.3.3.3 Updating the bounds after adding a new cut-point (line 8)

In order to compute the new error-bounds accuracyφ and speci f icity which decrease according

to propositions 7.5 and 7.6, one need to add/update some entries in the structure BoundPerPosExt.

For that, only two types of patterns should be looked for:

1. The new cotp patterns mined by REFINEANDMINE, that is those which left or right bound

on attribute attr is the added value cut. Visiting these patterns will add potentially new

entries in BoundPerPosExt or update ancient ones.

2. The old cotp which core changes (i.e. becomes less restrictive) in the new discretization.

One can show that these patterns are those which left bound is prev(cut,Ccur
attr) or right
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bound is next(cut,Ccur
attr) on attribute attr. Visiting these patterns will only update ancient

entries of BoundPerPosExt by potentially decreasing both second and third value.

7.3.3.4 Adding a new cut-point (line 7)

We have implemented a strategy which aims to decrease the accuracyφ. For that, we search in

BoundPerPosExt for the description d having the maximal value φ
(
f pr

(
core(d)

)
, tpr

(
d
))

. In or-

der to decrease accuracyφ, we increase the size of core(d) (to potentially increase f pr
(
core(d)

)
).

This is equivalent to choose a cut-point in the border region Crel
attr\Ccur

attr for some attribute attr

such that cut ∈ d.Iattr\core(d).Iattr. Consider that we are in the step where the current dis-

cretization Ccur is the one depicted in Fig. 7.1. Imagine that the bottom pattern ⊥=R2 is the one

associated to the maximal value φ
(
tpr

(⊥)
, f pr

(
core(⊥)

))
. The new cut-point should be chosen

in {4,5} for attr = 1 (recall that core(⊥)= (−∞,3)× (−∞,+∞)). Note that if for such description

there is no remaining relevant cut in its border regions for all attr ∈ {1, ..., |M |} then core(d)= d

ensuring that d is the top pattern.

7.4 Empirical Evaluation

In this section we report quantitative experiments over the implemented algorithms. For repro-

ducibility purpose, the source code is made available in:

https://github.com/Adnene93/RefineAndMine

Experiments were carried out on a variety of datasets (Tab. 7.1) involving ordinal or continu-

ous numerical attributes from the UCI repository. More extensive experiments are provided in

the technical report https://hal.archives-ouvertes.fr/hal-01874949/document.

First, we study the effectiveness of REFINEANDMINE in terms of the speed of convergence to

the optimal solution, as well as regarding the evolution over time of the accuracy of the provided

bounding quality’s guarantee. To this end, we report in Fig. 7.3, the behavior of REFINEANDMINE

(i.e. quality and bounding guarantee) according to the execution time to evaluate the time/quality

trade-off of the devised approach. accuracy as presented in Theorem 7.1 is the difference

Dataset num rows intervals class α

HABERMAN_03_2 3 306 47×106 2 0.26
GLASS_04_1 4 214 5×1015 1 0.33
ABALONE_02_M 2 4177 56×106 M 0.37
CREDITA_02_+ 2 666 1×109 + 0.45

Table 7.1: Benchmark datasets and their characteristics: number of numerical attributes, number
of rows, number of all possible intervals, the considered class and its prevalence (α)
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Figure 7.3: Evolution over time of top pattern quality and its bounding guarantee provided by
REFINEANDMINE. Execution time is reported in log scale.

between the quality and its bounding measure. The experiments were conducted by running

both REFINEANDMINE and the exhaustive enumeration algorithm (MININTCHANGE performed

considering DCrel ) on the benchmark datasets using informedness measure. The exhaustive

algorithm execution time enables the estimation of the computational overhead incurred by

REFINEANDMINE. We interrupt a method if its execution time exceeds two hours. Note that,

in the experiments, we choose to disable the computation of specificity since the latter is only

optional and does not affect the effectiveness of the algorithm. This in contrast to the quality

bound computation which is essential as it guides REFINEANDMINE in the cut-points selection

strategy. The experiments give evidence of the effectiveness of REFINEANDMINE both in terms of

finding the optimal solution as well as in providing stringent bound on the top quality pattern in

a prompt manner. Two important milestones achieved by REFINEANDMINE during its execution

are highlighted in Fig. 7.3. The first one, illustrated by the green dotted line, points out the

required time to find the best pattern. The second milestone (purple line) is reached when the

quality’s and the bound’s curves meet, this ensures that the best quality was already found by

REFINEANDMINE. Interestingly, we observe that for most configurations the second milestone is

attained by REFINEANDMINE promptly and well before the exhaustive method termination time.

This is explained by the fact that the adopted cut points selection strategy aims to decrease as

early as possible the accuracy metric. Finally, REFINEANDMINE requires in average 2 times

of the requested execution time (red dotted line) by the exhaustive algorithm. This overhead is

mostly incurred by the quality guarantee computation.

We illustrate in Fig. 7.4 the behavior of REFINEANDMINE in terms of finding diverse set

of high quality patterns covering different parts of the dataset. To evaluate how quickly the

devised approach finds a diverse patterns set, we run the exhaustive approach over the benchmark

datasets to constitute a top-k diverse patterns set heuristically as following: the patterns extracted

by the exhaustive search algorithm are sorted according to the quality measure and the best

pattern is kept in the returned top-k list. Next, the complete patterns list are iterated over, and
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Figure 7.4: Efficiency of REFINEANDMINE in terms of retrieving a diverse patterns set. Execution
time is reported in log scale. The ground-truth for each benchmark dataset corresponds to the
obtained Top10 diversified patterns set with a similarity threshold of 0.25 and a minimum tpr of
15% .

the top-k list is augmented by a pattern if and only if its similarity with all the patterns of

the current content of the top-k list is lower than a given threshold (a Jaccard index between

extents). This process is interrupted if the desired number of patterns of the top-k list is reached

or no remaining dissimilar pattern is available. Similar post-processing techniques were used by

[34, 160]. Once this ground truth top-k list is constituted over some benchmark dataset, we run

REFINEANDMINE and measure the specificity quantity of the obtained results set Sol with the

top-k list. specificity metric is rewritten in eq. 7.1 to accommodate the desired evaluation objective

of these experiments. Still, it remains upper-bounded by the general formula of speci f icity given

in Theorem 7.2. This in order to evaluate at what extent the visited patterns by REFINEANDMINE

well-cover the ground-truth patterns which are scattered over different parts of some input

dataset. We report in Fig. 7.4 both specificity and its bounding guarantee speci f icity, as well as,

a diversity metric defined in eq. 7.2. Such a metric was defined in [34] to evaluate the ability of

an approximate algorithm to retrieve a given ground-truth (i.e. diversified top-k discriminant

patterns set). This diversity metric relies on a similarity rather than a distance (as in specificity),

and is equal to 1 when all patterns of the top-k list are fully discovered.

speci f icity(top-k,Sol) = sup
d∈top-k

inf
c∈Sol

(|ext(d)∆ ext(c)|/|G |)(7.1)

diversity(top-k,Sol) = avg
d∈top-k

sup
c∈Sol

(Jaccard(ext(d), ext(c)))(7.2)

Where the measure Jaccard is given by:

Jaccard :℘(G)×℘(G)→ [0,1], A,B 7→ |A∩B|
|A∪B|

In most configurations, we notice that REFINEANDMINE is able to uncover approximately

80% (given by diversity) of the ground truth’s patterns in less than 20% of the time required
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Figure 7.5: Comparative experiments between REFINEANDMINE (R&M) and MCTS4DM. Exe-
cution time is reported in log scale. The ground-truth for each benchmark dataset corresponds to
the obtained Top10 diversified patterns set with a similarity threshold of 0.25 and no minimum
support size threshold.

by the exhaustive search algorithm. For instance, in ABALONE_02_M, we observe that after

2 seconds (12% of the required time for the exhaustive algorithm), the patterns outputted by

REFINEANDMINE approximate 92% of the ground truth. Moreover, we observe that the specificity

and speci f icity decrease quickly with time, guaranteeing a high level of diversity.

For a comparative study, we choose to compare REFINEANDMINE with the closest approach

following the same paradigm (anytime) in the literature, that is the recent MCTS4DM tech-

nique [34]. MCTS4DM is depicted by the authors as an algorithm which enables the anytime

discovery of a diverse patterns set of high quality. While MCTS4DM ensures interruptibility

and an exhaustive exploration if given enough time and memory budget, it does not ensures any

theoretical guarantees on the distance from optimality and on the diversity. We report in Fig. 7.5

a comparative evaluation between the two techniques. To realize this study, we investigate the

ability of the two methods in retrieving the ground truth patterns, this by evaluating the quality

of their respective diversified top-k lists against the ground truth using the diversity metric

(eq. 7.2). We observe that REFINEANDMINE outperforms MCTS4DM both in terms of finding the

best pattern, and of uncovering diverse patterns set of high qualities. This is partially due to the

fact that our method is specifically tailored for mining discriminant patterns in numerical data,

in contrast to MCTS4DM which is agnostic of the interestingness measure and the description

language. Note that, to enable a fair comparison of the two approaches, we report the full time

spent by the methods including the overhead induced by the post-computation of the diversified

top-k patterns set.
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7.5 Conclusion

We studied here in this chapter a novel anytime pattern mining technique for uncovering dis-

criminant subgroups in numerical data. By leveraging the properties of the quality measures, we

defined a guarantee on the accuracy of REFINEANDMINE in approximating the optimal solution

which improves over time. We also presented a guarantee on the specificity of REFINEANDMINE

–which is agnostic of the quality measure– ensuring its diversity and completeness. Empirical

evaluation gives evidence of the effectiveness both in terms of finding the optimal solution (w.r.t.

the quality measure φ) and revealing local optima located in different parts of the data.

This work paves the way for many improvements. REFINEANDMINE can be initialized

with more sophisticated discretization techniques [63, 108]. Moreover, one can accelerate the

algorithms by investigating other cut-points selection strategies.

While we considered here discriminative subgroup discovery, the enumeration process (i.e.

successive refinement of discretizations) can be tailored to various other quality measures in

subgroup discovery. For example, the accuracy bound guarantee definition can be easilly extended

to handle several other traditional measures such as Mutual Information, χ2 and Gini split

by exploiting their (quasi)-convexity properties w.r.t. tpr and f pr variables [1, 132]. Other

improvements include the adaptation of REFINEANDMINE for high-dimensional datasets and its

generalization for handling additional types of attributes (categorical, itemsets, etc.). The latter

is facilitated by the generic notions from Section 7.3 and the recent works of Buzmakov et al.

under the name of Σoφια [40, 42, 43].

Last but not least, a more interesting anytime algorithm for discriminative subgroup discovery

would only output a small set of discriminative subgroups. Providing a form of guarantee on the

small set of discriminative subgroups depends on the formalization of the problem and need to be

thoroughly investigated.
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8
CONCLUSION AND FUTURE DEVELOPMENTS

8.1 Summary

8.1.1 Understanding Pattern Languages

The starting point of this thesis was to investigate other description languages than intervals

when numerical attributes are considered. To this aim, we have studied and proposed the pattern

language of conjunction of linear inequalities [20] which was formally more expressive. However,

this pattern language showed some issues: (1) first, the number of subgroups induced by this

pattern language is extremely huge and (2) second, the lack of interpretability of the pattern

language. Indeed, a subgroup separable with a conjunction of 500 linear inequalities cannot be

considered as intelligible. To address these problems, we have suggested that one should limit the

number of linear inequalities to control the intelligibility of the pattern language while loosing

some expressivity. However, once the number of linear inequalities was limited, we lost the lattice

structure. Indeed, let us consider for instance the language Dh given by all singletons in ℘(R2)

and the half-planes in ℘(R2), formally:

Dh :=
{
{z} | z ∈R2

}
∪

{{
(x, y) ∈R2 | a · x+b · y≤ c

} | a,b, c ∈R
}

Poset (Dh,⊇) does not form a meet-semilattice. Same observation can be made on neighborhood

pattern language [86] Dn given by the set of all possible closed disks in R2, formally:

Dn :=
{{

(x, y) ∈R2 | (x−a)2 + (y−b)2 ≤ c2} | a,b, c ∈R
}

If we consider that objects are described by points in R2, subgroups separable by Dh (resp.

Dn) are said to be linearly (resp. circularly) separable.
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Since these languages are not meet-semilattices, they do not induce pattern structures and

therefore one cannot use usual algorithms based on closure to enumerate exhaustively and non-

redundantly the set of all possible subgroups separable by these languages. After investigating

how non-lattice languages are considered in the formal concept analysis literature, we found

that, often, they are transformed to pattern structures thanks to completions as it is the case for

sequential patterns [39, 146] and graph patterns [78]. However, one can show that a finite set of

points is separable by a convex set if and only if it is separable by an intersection of elements in

Dh since convex polygons are intersection of half-planes. Same observation holds for the space Dn

since (1) intersection of an arbitrary set of disks is convex and (2) if a finite set of points is linearly

separable then it also circularly separable. In other words, completions of finite pattern setups

induced by these languages build the convex set pattern structure making such a technique of

transformation not an option.

We needed hence to study these languages from an order-theoretic point of view rather than

systematically transform them to lattices. We drafted then what we called pattern contexts since

then. Interestingly, SERGEI O. KUZNETSOV told us that pattern contexts was by definition

pattern setups coined by LARS LUMPE and STEFAN SCHMIDT [123] but sadly not studied. In

response, we started a preliminary study on this formalism under the name of pattern setups

and their completions [18]. One of the important result in this latter paper is that using the

antichain embedding [39, 78] to transform pattern setups to pattern structures was not always

applicable unless we deal with what we called hyper-lattices1. Interestingly, after discussing

our work with the CLA community, STEFAN SCHMIDT attracted our attention to the work of

MIHAIL BENADO on multilattices [22] which, indeed, were tightly linked with what we called

hyper-lattices. Connection to multilattices and multisemilattices [128] were made after. Later

discussions with JOZEF PÓCS helped us to establish also connections between chain-complete

posets and complete multilattices.

8.1.2 Tackling Subgroup enumeration in Interval Pattern Structures

Beside understanding pattern languages, we were interested by the exhaustive enumeration of

subgroups. Particularly, for the interval pattern language, KAYTOUE ET AL. [104] showed that

algorithm MININTCHANGE outperformed even the fastest known implementation of CLOSE-BY-

ONE (CBO), namely LCMV2 [157], when enumerating closed interval patterns in interordinal

scaled contexts [79]. When analyzing what make MININTCHANGE faster, we found that MIN-

INTCHANGE avoids generating some closed itemsets comparing to CBO by reordering them. This

reordering is directly linked to leveraging inherent implications between items in the interordinal

scaled context. We proposed then Algorithm CLOSE-BY-ONE USING IMPLICATIONS (CBOI) [16]

that enumerate closed itemsets (and equivalently subgroups) in contexts using the inherent

implications existing between attributes. CBOI behaves in the interordinal scaled context as

1The term “Hyper-lattice” was introduced in [168] and is linked to the antichain completion of a poset.
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MININTCHANGE does in the interval pattern structure. Moreover, CBOI can be seen as a gen-

eralization of other algorithms like CELLIER ET AL.’s [46] algorithm for mining closed itemsets

when an attribute taxonomy is provided.

8.1.3 Investigating Discriminative Subgroup Discovery

The main target application that we have considered when formalizing pattern languages was

the task of discriminative subgroup discovery.

We have been tempted in the beginning to investigate the problem in an exact way, i.e. find

the best subgroup optimizing some quality measure, a priori a probability-based measure having

the weak dominance property (cf. Definition 6.9). Connections to Garriga’s relevant patterns

[82] became evident2. However, even if using relevance theory allows to reduce significantly

the number of subgroups, the problem remained intractable. Henceforth, the necessity of using

approximate algorithm to handle bigger datasets revealed to be unavoidable.

Several heuristic algorithms have been proposed in the literature to solve the problem of

discriminative subgroup discovery. We cite as a matter of example Beam Search Techniques

[59, 115, 159, 160], Evolutionary Algorithms [44], Sampling techniques [23, 30, 31] and Anytime

algorithms [34]. However, while these algorithms showed their effectiveness and efficiency to solve

this problem, the user cannot have any idea of how the already best found subgroup approximates

the best quality subgroup hidden in the dataset. We argued then, perhaps naively3, that the

best trade-off between exact algorithms and non-exact ones are anytime algorithms providing

guarantees on the output subgroups upon interruption. A first attempt of such an anytime

algorithm, namely REFINEANDMINE, have been proposed and presented in ECML/PKDD’18 [15].

The algorithm was tailored for interval patterns in dataset with exclusively numerical attributes.

It does provide two guarantees on the output subgroups upon interruption. The first evaluates

how close is the best found subgroup so far to the optimal one in the whole search space. The

second measures how already found subgroups are diverse and cover well all the interesting

regions in the dataset.

8.2 Perspectives and Open Problems

The different investigations made in this work suggest diverse questions that, to the best of our

knowledge, remain open.

8.2.1 On Pattern Setups Transformations

Projections are a well-founded tool to transform pattern setups to simpler ones. However, we find

such a tool rather limiting. For instance, if we consider the pattern setup induced by neighborhood

2It was THOMAS GUYET presentation’s at ICFCA’2017 [92] that drew our attention to Garriga’s relevant patterns.
3Is it intractable to find a good approximate solution?
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patterns and the convex set pattern structure, it is clear that any subgroup separable in the former

pattern setup is also separable in the latter one. Since projections maintain pattern structures,

convex set pattern structures can not be projected to the pattern setup of neighborhood patterns.

Moreover, recall that interval pattern structure can be seen as a projection of the convex set

pattern structure (see Section 5.5.3). To do that, it was necessary that the language of interval

patterns form a suborder on the language of convex set patterns which is rather limiting. Indeed,

if we used a different formalism to model the interval pattern structure (see Note 5.6), the

interval pattern structure can longer be seen as a projection of the convex set pattern structure.

Following our previous observations, we argue that a more permissive formal tool is needed to

simplify pattern setups. Interestingly, BUZMAKOV [38] formulated somehow the same perspective.

LUMPE AND SCHMIDT [123] provide an initial unifying view on pattern setup transformations.

8.2.2 On Enumerating Subgroups

As we have discussed earlier in the conclusion of Chapter 5, elaborating better techniques to

enumerate subgroups exhaustively and non-redundantly for a given pattern setup is needed. Such

techniques will be useful to enumerate subgroups induced by pattern languages like sequential

patterns [6], graph patterns [110] or neighborhood patterns [86].

The particular instance of sequence over itemsets. One should note that, even if we con-

sider the well-investigated language of “sequence over itemsets” pattern language [6], the existence

of a POLY-DELAY algorithm enumerating all subgroups induced by such a language remains open.

Another question that we find important is the following one: “Let G be a finite set of objects

and let S be a set-system on G s.t. the right-hand side of Proposition 3.5 holds. Is there a pattern

setup P over the description language of sequences over itemsets s.t. S =Pext?”. A negative answer

to this question allows us to understand if the space of subgroups induced by sequences over

itemsets language has some structure or not. Such a structure can be potentially leveraged for

the enumeration of subgroups induced by this language.

8.2.3 On Enumerating Relevant Subgroups in Labeled Datasets

One important problem arising when dealing with labeled datasets is the problem of enumerating

relevant subgroups exhaustively and non-redundantly as they represent, objectively, the minimal

set of subgroups to be looked for when labeled datasets are considered. The best algorithms

proposed in the literature was proposed by HENRIK GROSSKREUTZ [88] when itemset pattern

language is considered. He proposed particularly two enumeration techniques. The first one is

POLY-OUTPUT but not PSPACE while the second one is PSPACE but not POLY-OUTPUT. The existence

of a POLY-OUTPUT and PSPACE algorithm, or better a POLY-DELAY one, for relevant subgroup

enumeration remains an open problem.
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8.2.4 On Finding the Best Quality Subgroups in Labeled Datasets

Given a pattern language and a quality measure, particularly a probability-based measure having

the weak dominance property (cf. Definition 6.9), what is the complexity of the problem of finding

the best-quality subgroup? Surprisingly, even with the myriad of algorithms that have been

proposed in the literature to tackle this problem, its complexity remains open. Showing the

tractability or the intractability of the problem brings a solid justification for why elaborating

better non-exact algorithms is crucial.

Interestingly, ANGLUIN AND LIARD [9] showed that, particularly for the accuracy measure

(see Table 6.2) and the language of itemsets, this problem is NP-Complete (see Theorem 4

in [9]). BEN-DAVID [21] showed that this same problem is even hard to approximate when a

certain minimal ratio is desired for several pattern languages including itemset and interval

pattern languages. These works give a good starting point to tackle other quality measures

in discriminative subgroup discovery literature as for instance the weighted relative accuracy

(WRAcc) measure [114].

8.2.5 On Elaborating Anytime Subgroup Discovery Techniques

We argued that the best trade-off between exact algorithms and non-exact algorithms for subgroup

discovery in labeled datasets are anytime algorithms that provide guarantees upon interruption.

We tackled the only problem of finding subgroups induced by the interval pattern language in

[15]. Extending this algorithm to handle other pattern languages like the itemset one is one of

our main preoccupation currently.

Moreover, Subgroup Discovery is not only about finding best-quality subgroups. It is also

about finding several subgroups covering different regions in the dataset, i.e. a diverse subgroup

set. Designing anytime algorithms that provide form of guarantees on an output diverse subgroup

set is also an important problem that should be thoroughly investigated.
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ABSTRACT

As the title of this dissertation may suggest, the aim of this thesis is to provide an order-
theoretic point of view on the task of subgroup discovery. Subgroup discovery is the au-
tomatic task of discovering interesting hypotheses in databases. That is, given a database,

the hypothesis space the analyst wants to explore and a formal way of how the analyst gauges
the quality of the hypotheses (e.g. a quality measure); the automated task of subgroup discovery
aims to extract the interesting hypothesis w.r.t. these parameters. In order to elaborate fast and
efficient algorithms for subgroup discovery, one should understand the underlying properties of
the hypothesis space on the one hand and the properties of its quality measure on the other. In
this thesis, we extend the state-of-the-art by: (i) providing a unified view of the hypotheses space
behind subgroup discovery using the well-founded mathematical tool of order theory, (ii) propos-
ing the new hypothesis space of conjunction of linear inequalities in numerical databases and the
algorithms enumerating its elements and (iii) proposing an anytime algorithm for discriminative
subgroup discovery on numerical datasets providing guarantees upon interruption.

Keywords: Knowledge Discovery in Databases, Subgroup Discovery, Discriminative Subgroup Discovery,
Order Theory, Set Systems, Formal Concept Analysis, Pattern Setups

RÉSUMÉ

Comme le titre pourrait le suggérer, l’objectif principal de cette thèse est de fournir une
meilleure compréhension de la tâche de la découverte de sous-groupes à travers la théorie
de l’ordre. La découverte de sous-groupes (Subgroup Discovery - SD) est la tâche au-

tomatique dont le but est la découverte d’hypothèses intéressantes dans les bases de données.
Autrement dit, étant donnée une base de donnée, l’espace de recherche de toutes les hypothèses
que l’analyste voudra tester ainsi qu’un moyen formel pour évaluer la qualité de ces hypothèses ;
la tâche automatique de la découverte de sous-groupe s’efforce de trouver les meilleurs hypothèses
quant à ces trois paramètres. Afin d’élaborer des algorithmes efficaces et efficients pour cette
tâche, il est important de comprendre les propriétés des espaces de recherche d’une part et les
propriétés de la mesure de qualité d’autre part. Dans cette thèse, nous étendons l’état de l’art
par: (i) fournir une vue unifiée sur les espaces d’hypothèses derrière la tâche de découverte de
sous-groupes en utilisant la théorie de l’ordre, (ii) proposer l’espace d’hypothèses de conjonctions
d’inégalités linéaires dans les bases de données numériques ainsi que différents algorithmes
permettant de les énumérer et (iii) proposer un algorithme anytime - fournit progressivement
des résultats - pour la tâche particulière de fouille de sous-groupe discriminants dans les bases
de données numériques. Ce dernier fournit des garanties sur la qualité des sous-groupes extraits
même si l’algorithme est interrompu.

Mots-clés: Découverte de connaissances dans les données, Fouille de Sous-groupes, Fouille de
Sous-groupes Discriminants, Théorie de l’ordre, Familles d’ensembles, Analyses de Concepts
Formels, Contexte de Patrons
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