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ABSTRACT

This dissertation, entitled "Power-index based Management of Fraud Detection Rules:
Supervised and Semi-supervised Approaches", deals with credit card fraud detection.
According to the European Central Bank, the value of fraud using cards issued in the

Single Euro Payments Area (SEPA) amounted to C1.8 billion in 2016 1. For financial institutions,
it is, therefore, a big challenge on how to reduce fraud on credit cards. In general, fraud detection
systems consist of an automatic system made by if-then-else rules which control any transaction
and trigger an alert when the transaction is considered as suspicious. Then human experts check
the alert and decide whether the alert is a true or false positive. The criteria used to select the
rules to be kept operational are traditionally based mostly on the performance of individual rules.
This approach indeed disregards the non-additivity of the rules.

We propose a novel approach using power indices developed within Coalitional Game Theory
(CGT). This approach assigns to the rules a normalized score which quantifies the rule influence
on the overall performance of the pool. As indices, we use Shapley Value (SV) and Banzhaf Value
(BV). The main applications of such scores are: 1) the support of the decision of whether to keep
or drop a rule from the pool; 2) the selection of the k top-ranked rules, so as to work with a
more compact rule-set. Using real-world credit card fraud data containing approximately 300
rules and 3.5×105 transaction records, we show that: 1) This approach fare better in granting
the performance of the pool than the one assessing the rules in isolation. 2) The performance of
the whole pool can be achieved, keeping only one-tenth of the rules. We then observe that the
latter application can be re-framed in terms of a Feature Selection (FS) task for a classifier: we
show that our approach is comparable w.r.t benchmark FS algorithms. Also, we observe that it
presents an advantage for the rule management, consisting of the assignment of a normalized
score to each rule. This is not the case for most FS algorithms, which only focus on yielding a
high-performance feature-set solution.

In another contribution, we propose a new version of Banzhaf Value, i.e., k-Banzhaf ; this new
version outperforms concerning the original one in term of computation time and has comparable
performance. While for a set N of N elements, the normal Banzhaf computes 2N −1 differences,
the k-Banzhaf computes only

(n−1
k−1

)
differences. Finally, we implement a self-training process ( a

kind of bootstrap) to reinforce the learning process in a machine learning algorithm (Random
Forest Classifier). We compare the latter with our three power indices to perform classification
on the real-world credit card fraud data used in the first part of the manuscript. As a result, we
observe that power indices-based feature selection has comparable results w.r.t benchmark FS
algorithms also in self-training process.

1https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html#toc1
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Résumé

Cette thèse, intitulée "Une approche basée sur la théorie des jeux pour la sélection de

fonctionnalités pour une prise de décision multicritère efficace: Quelques cas d’utilisation de la

classification", traite de la détection de fraude par carte de crédit. Selon la Banque Centrale

Européenne, la valeur des fraudes utilisant des cartes émises dans l’espace unique de paiements

en euros (SEPA) en 2016 s’élevait à 1,8 milliard d’euros. Ainsi le défis pour les institutions

financières est celui de réduire la fraude sur les cartes de crédit. En règle générale, les systèmes

de détection de la fraude sont consistués d’un système automatique construit à base de règles "si-

alors" qui contrôlent toutes les transactions en entrée et déclenchent une alerte si la transaction

est considérée suspecte. Ensuite, un groupe de personel expert vérifie l’alerte et décide si cette

dernière est un vrai posifit ou un faux positif. Les critères utilisés dans la sélection des règles

maintenues opérationnelles sont principalement basés sur la performance individuelle des règles.

Cette approche ignore en effet la non-additivité des règles.

Nous proposons une nouvelle approche utilisant des indices de puissance, concept développé

dans le cadre de la théorie des jeux cooperatifs (CGT). Cette approche attribue aux règles un score

normalisé qui quantifie l’influence de la règle sur les performances globales du groupe de règles.

Les indice que nous utilisons sont le Shapley Value (SV) et le Banzhaf Value (BV). Les principales

applications de ces indices sont: 1) l’aide à la décision de conserver ou de supprimer une règle

du groupe; 2) la sélection du nombre k de règles les mieux classées, afin de travailler avec un

ensemble de règles plus compact. En utilisant des données réelles de fraude par carte de crédit

contenant environ 300 règles et 3,5×105 transactions, nous montrons que: 1) Cette approche

permet de mieux exécuter les performances du groupe que celle qui évalue les règles isolément. 2)

La performance de l’ensemble des règles peut être atteinte en conservant un dixième seulement

des règles. Nous observons ensuite que cette application peut être comsidéré comme une tâche

de sélection de caractéristiques pour un classificateur: nous montrons que notre approche est

comparable aux algorithmes courants de référence en sélection des caractéristiques (FS). De

plus, il présente un avantage dans la gestion des règles, en ce sens qu’il attribue un score

normalisé à chaque règle. Ce qui n’est pas le cas pour la plupart des algorithmes de sélection des

caractéristiques, qui se concentrent uniquement sur une solution d’ensemble pour obtenir des

fonctionnalités hautes performances.

Dans une autre contribution, nous proposons une nouvelle version du Banzhaf Value, à savoir

le k-Banzhaf; cette nouvelle version surclasse la première en terme de temps de calcul et possède

des performances comparables. Alors que pour un ensemble de N éléments, le Banzhaf normal

calcule 2N −1 différences, le k-Banzhaf quant à lui calcule seulement
(n−1

k−1
)
. Enfin, nous mettons

en œuvre un processus d’auto-apprentissage (sorte de bootstrap) afin de renforcer le processus

d’apprentissage dans un algorithme d’apprentissage automatique (Random Forest Classifier).

Nous comparons ces derniers avec nos trois indices de puissance pour effectuer une classification

sur les données de fraude par carte de crédit du monde réel utilisées dans la première partie

iii
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du manuscrit. En conclusion, nous observons que la sélection de caractéristiques basée sur les

indices de puissance a des résultats comparables avec les algorithmes de référence en FS ainsi

que dans le processus d’auto-apprentissage.

Keywords: Détection de Fraud à la Carte, Théorie des Jeux de Coalition, Indice de Pouvoir,

Valeur de Shapley, Indice de Banzhaf, Indice de Banzhaf restreint, Apprentissage Semi-supervisé,

Apprentissage supervisé , Auto-apprentissage.
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INTRODUCTION

In the latest years, enterprises and financial institutions are facing the ever-growing pres-

ence of credit card payment fraudulent activities. Due to the massive volume of online

transactions and due to the high dimensionality of the corresponding records, human ex-

perts are not able to check for anomalies among the transactions. Systems for online automatic

fraud detection are used to contrast those corrupt activities. To achieve better results, fraud

detection systems should be fast and accurate. The less time it takes to identify the scam, the

more likely it is, indeed, to reduce the economic damage. This introductory chapter is structured

as follows: after discussing the statement of the problem (Section 1), we describe the rule gover-

nance context (Section 2); then, we define and describe the feature selection in the self-training

context (Section 3); finally, we decline the thesis contribution and outline (Section 4).

1.1 Statement of the problem

Generally, in automatic fraud detection systems, a specific engine scans all the incoming transac-

tions for suspected patterns. Such patterns are encoded under the form of rules, an example of

the rule can be: "If a cardholder runs a transaction for a given amount in a given country and,

within the next day, (s)he runs another transaction for another given amount in another given

country, then trigger an action". So, detecting such a pattern, the system would generate an alert.

Rules can be created by human experts or from historical data. Indeed there are two types of

rules: expert-driven rules, formulated by credit card fraud experts, that are meant to be specific

for a given fraud scenario; and data-driven rules, they are learned from historical data through

Machine Learning methods.

If at least one of the rules detects a suspicious transaction, then an alert is generated, i.e.,

the aggregator of the set of rules is the OR operator. After the alert generation, the system sends
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CHAPTER 1. INTRODUCTION

a record to expert investigators. Their task consist of choosing suspected transactions from the

set of received alarms, carrying on a rapid investigation and assessing the alert as a false or a

true one: in the latter case, the corresponding credit card is blocked.

The alert generation process is a specific kind of classification process geared towards provid-

ing a suitable input to the following investigation process. As such, it can afford to trade a higher

recall at the price of a lower precision since the investigators will complete the assessment using

human expert judgment: On the other hand, the volume of alerts has not to be exceedingly high.

Therefore, rules with high recall but a very low precision should be avoided. The trade-off among

the different requirements of the process needs to be managed through calibration, tuning and to

be continuously monitored.

For those reasons, in addition to the automatic alert generation process and the human

expert alarm investigation process, a further method has to be carried on in real operational

environments: the rule governance. Governance performs the maintenance of the rule pool to

keep the desired performance. In practice, the current method establishes that based on reports

about the performance of the rule (based on single rule precision and recall) human experts – the

rules managers – decide to remove/update an existing rule or to add a new one to cover a novel

fraudulent scenario. Rule governance is the focus of the present work.

1.2 The rule governance context

In this section, we describe a real-world fraud detection system similar to the one routinely used

by the industrial partner that produced the data set, and the corresponding rule governance

process.

1.2.1 The fraud detection process

The credit card payment process triggers the fraud detection system: in correspondence to a card

payment attempt, the detecting process of credit card fraud is activated in two situations: the

first situation is before each authorization for payment, and the second is after each authorization

for payment. In the first case, one speaks of real-time (RT) fraud detection context, and in the

second case of near-real-time (NRT) context (see Figure: 1.1).

By analyzing Figure 1.2, one can see that in the first raw of the main picture corresponding

to the real-time fraud detection, we have a little "Data Storage" which collects data coming from :

on one side the "Front-office" of the company (which role is to fight against fraud) and, on the

other side the "Front-office" of the "Issuer/Acquirer", in this case the platform or the payment

terminal of the merchant. These data are typically transactions; then, only "Expert Driven" rules

check each transaction and trigger an alert in the case of a suspicious transaction. If it is the

case, the transaction is blocked and the card also is blocked.
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1.2. THE RULE GOVERNANCE CONTEXT

Figure 1.1: Real time (RT) fraud detection : before the authorization is given (200ms to make
a decision) and Near-real-time (NRT) fraud detection : after the transaction completed (1mn to
make a decision).

While in the second raw corresponding to the near-real-time fraud detection, we have a

more prominent "Data storage", which means more data are collected. In the case of near-

real-time phase, the data are collected not only from the "Front-office" of the company and

the "Issuer/Acquirer", but also from the "Back-office", − data coming from the Back-office are

historical data. − These data/transactions would pass through an extra step (Data Management)

in which the transactions are categorized ( aggregates, profiles and segmentation). Then, in the

"Detection " phase, transactions are checked by "Expert Driven" rules and "Data-Driven" rules.

Each group of rules can generate an alert in the case of a suspicious transaction. Alerts generated

in this phase are potentially shown to the human experts through the "Case Management Tool"

for the final decision. But also, during the alert generation, the owner of the card can receive

either an email, a short message or a phone call to check if he is the author of that transaction.

By doing fraud detection before the authorization, one has the opportunity to block a fraudu-

lent payment before it is accepted. To allow effective use of RT fraud detection, the system must

be: i) fast (RT fraud detection must typically be done in ∼ 200ms) and ii) precise (a false positive

imply that we refuse a legitimate transaction, thus causing an inconvenience to the customer).

Rules in an RT fraud detection engine are typically if-then(-else) rules designed by the human

investigators to block payment requests that are fraud attempts. Due to speed constraint, these

rules use mainly information that is available at the time of the transaction request and do little

use of the cardholder profile. In practice, several RT rules are simultaneously executed, and a

transaction firing any of these rules is refused, i.e., rules are aggregated with an OR operator.

The card associated with an allegedly fraudulent transaction is also automatically blocked to

prevent future frauds.

All transactions passing the RT fraud detection system without an alert are authorized. The

fraud detection activity, however, proceeds beyond this point: all authorized transactions are

further analyzed by the NRT fraud detection engine ( see Figure: 1.2). In the NRT context, some
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Figure 1.2: The two main phases of the fraud detection process

of the stronger constraints can be relaxed. As the transaction is already accepted, the fraud

detection system is allowed more time to make a decision (typically ∼ 1 minute). The system can

enrich the transaction data with further features and match the current transaction with the

previous purchases and the profile of the cardholder; these can include, simple features, like the

average expenditure or the average number of transactions on the same day. It is also possible

to add more advanced features see [9], like for example features obtained by graph mining as

in [93]. All those aggregated features have the potential to be informative in determining if a

transaction is a fraudulent one or not. The features-based rules in NRT context can still be simple

if-then(-else) rules designed by human investigators; however, they can also be based on advanced

machine learning techniques. The NRT rules are simultaneously executed, and any transaction

firing at least one of these NRT rules produces an alert (they are aggregated in OR fashion), some

rules can also block the card. All alerts generated by the fraud detection system are submitted to

the attention of a human investigator, an expert in fraud detection. She estimates with a high

degree of confidence whether an alert is a true positive or a false positive. If an alert was a false

positive and blocked the card, the investigator can unblock it. To cover a new fraud scenario,

the system uses all the feedback from the investigators i) to automatically retrain the machine

learning models if needed, and ii) to generate governance oriented reports: these reports are used

by the investigators to manage the pool of rules.

1.2.2 The rule governance process

As mentioned in the previous paragraph, there are two main types of rules, expert driven

rules which are simple if-then(-else) rules and data driven rules, obtained by machine learning
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techniques applied on historical datasets. Both types of rules can be executed in near-real-time.

The fraud detection rules pool can contain hundreds of rules; thus, governance is an essential

component of the fraud detection process. Based on the governance reports, the investigators

can decide to modify/remove an existing rule or to add a new rule in production to cover a new

fraud scenario. Classical metrics used in assessing a rule are precision and recall. In particular,

other metrics are commonly used like the "speed-of-detection" (e.i. the number of fraudulent

transactions before an alert is produced) but they are not considered in this work since we cannot

compute these metrics with the data provided by our industrial partner. In the standard approach,

these metrics are used to assess the rules individually, i.e., in isolation, independently of the

performance of the other rules in the pool. We call this approach individual-rule oriented. Within

this approach one typically ranks rules according to their performance, measured in isolation

and takes removal/update/insertion decisions accordingly: low-rank rules are likely to be deleted,

high-rank rules, if already in the pool are preserved, if not in the pool are inserted. This approach

assumes implicitly that individual rule optimization obtains the best set of rules. As we are going

to demonstrate, this is often not the case.

Individual-level performance and pool-level performance are indeed correlated, but individual

rule performances do not add up to the pool-level performance, because a rule can be redundant

with another rule or a set of other rules. The point we pursue in this work is that one should not

require from a rule to be the best with respect to a performance metrics computed assessing the

rule in isolation: one should instead require the rule to best contribute to the rule-pool perfor-

mance metrics. If one can rank the rules according to their contribution to the pool performance,

the elimination of lower-ranked rules, and the insertion of higher-ranked rules will be more

effective in improving the pool performance. The fact that the rules that are individually best

do not add up to the best rule-pool is intrinsically tied to a fundamental property of the system:

the non-additivity of the contributions to the performance metrics, more specifically, in this case,

sub-additivity. Given a set of rules, different performance metrics may display different degrees

of non-additivity, however, in general, the performance metrics used in practical assessment

(precision, recall, F-score, ROC area, etc.) are all non-additive. But let first recall the primary

performance metrics.

1.2.3 Classification performance metrics

Given a set of instances that belong either to the class true or to the class false, and a classifier

that assigns to the instances either the class positive or the class negative,

• a true positive (TP) is an instance classified as positive that belongs to the class true,

• a true negative (TN) is an instance classified as negative that belongs to the class false,

• a false positive (FP) is an instance classified as positive that belongs to the class false,
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• a false negative (FN) is an instance classified as negative that belongs to the class true.

Given a set of instances with their class labels and with the classifier tag, one can count the

cardinality of each of the four categories:

• the number of true positives is denoted by #TP

• the number of true negatives by #TN

• the number of false positives by #FP

• the number of false negatives by #FN.

The total number of positively tagged instances is denoted by #P ≡ (#TP +#FP)

The total number of instances of the class true is denoted by #T ≡ (#TP +#FN)

The precision p of the classifier on a data set is defined by p ≡ #TP
#P

The recall r of the classifier on a data set is defined by r ≡ #TP
#T

The F-score f of the classifier on a data set is defined by the harmonic average of precision and

recall
1
f
≡ (1/p+1/r)

2
, i.e. f = 2pr

(p+ r)

By construction p, r and f take values in the interval [0,1].

By going further with F-score also called F-measure or F1-score we can say the general term

is fβ measure, and the general formula for positive real β is :

fβ = (1+β2)
p.r

(β2 p)+ r

fβ mesure reaches it best score with β= 1 and it worst score with β= 0. In term of errors of type

one and errors of type two we have:

fβ = (1+β2)TP
(1+β2)TP + (β2FN)+FP

Another F-measures are: F2 measure and F0.5 measure which respectively place more em-

phasis and attenuates the influence of false negatives (FN) .

1.2.4 Non-additivity

To fix the ideas, we focus initially on recall performance metrics. These metrics count the

proportion of true positives #TP identified and retrieved by the rule out of the total number #T

of instances of the true class observed by the rule. Suppose two rules; we call R1 and R2, are

presented with the same set of instances and that their recalls are respectively.

rR1 =
#TP(R1)

T
and rR2 =

#TP(R2)
T
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Consider now the aggregated rule R(1OR 2) ≡ (R1 ∪ R2), defined by the OR of the two. It is

straightforward to see that the recall of the aggregated rule is the sum of the two individual

rules recalls only in the special case in which the two sets of instances that were retrieved

independently by the two rules, do not intersect: in this case, the rules are said orthogonal. Since

in the general case for a generic pair of rules orthogonality is not granted, we have that in general,

the recall is non-additive, or more specifically sub-additive:

r(R1 ∪R2)≤ r(R1)+ r(R2)

We observe in passing, that recall is monotonically increasing: adding a rule in OR to a set of

rules cannot make the recall decrease: it can only stay the same or increase:

r(R1 ∪R2)≥ r(R1)

It is easy to show that non-additivity is also a property of precision. Furthermore precision is

non-monotonic: OR-ing into a well-performing rule set a poorly performing rule produces an

aggregated classifier that is less than well-performing. The non-additivity of r and p and the

non-monotonicity of p transfer to their harmonic average, the F-score f .

1.2.5 Quantifying individual contributions in non-additive contexts

The problem of quantifying the contribution of a rule to the performance of the pool is non-trivial

and admits several solutions. In an additive context, one could define this contribution as the

difference between the pool containing the rule and the pool without only that specific rule:

this difference is the added value of the rule with respect to the pool. However, in non-additive

contexts, this approach can lead to inconsistencies, as one can see, for instance from the following

stylized example. Consider a particular pool in which every rule is redundant with another

subset of rules and overall has a positive performance: removing one rule will not change the

performance of the pool; thus the rule contribution would be zero.

However, since this holds for all the rules, apparently the performance of the pool receives

no contributions from its composing rules, and yet it is positive. This inconsistency makes it

clear that the added values of individuals with respect to the whole pool is inappropriate metrics,

for non-additive contexts. The problem of quantifying the contribution of individuals to the

achievements of an ensemble in a way satisfying some necessary requirements has been faced

in Coalitional Game Theory as a part of the problem of assigning a fair share of the surplus

produced by coalitions (fair division problem), or as a part of the problem of quantifying the power

of individuals in coalitions (power assessment problem or power index problem). We will talk

widely about power index in chapter 2, but let say that a solution to the fair division problem

fulfilling a basic set of axioms was formulated in 1953 by Lloyd Shapley [80], then used also as a

power index, the Shapley-Shubik power index [81].
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The solution consists of quantifying the contribution of an individual to a grand-coalition (in

our case the contribution of a rule to the whole pool) by taking a weighted average of the added

values to all the possible coalitions, where a combinatorial factor weights each added value –

taking into account the size of the coalition – In the first part of the contribution, we propose the

use of the Shapley value, also known as Shapley-Shubik power index [81], for measuring the

contribution of each rule to the global performance of the OR-ed pool as a whole and show that

the management of the rules-based on this power index is more efficient than the one based on

the performance of the individual rules, assessed in isolation.

1.3 Self-training context and Feature Selection

Since we are in non-additive context, and we would like to reduce the number of operational

rules without reducing the performance in term of recall and precision, we have to select the best

set of features which in collaboration satisfy our requirement. For this purpose, in this section,

we introduce the feature selection activity. We also introduce the self-training concept used in the

second part of this dissertation. These two concepts are studied more in detail in Chapter 3. But

before, let spend some words saying that the goal is to implement a Shapley value-based feature

selection and then use it in the self-training process hopping to improve the result.

1.3.1 Feature Selection

Feature Selection is a process which selects a subset of features defined by one of three approaches:

the subset with a specified size that optimizes an evaluation measure, the subset of smaller

size that satisfies a specific restriction on the evaluation measure, and the subset with the best

compromise among its size and the value of its evaluation measure (general case). In recent years,

the application of feature selection methods in many data sets fields has dramatically increased.

So, the challenging task in feature selection is how to obtain an optimal subset of relevant and

non-redundant features which will give an optimal solution without increasing the complexity of

the modelling task.

A suitable feature selection process should not change the original feature set; instead, it

should select a subset by eliminating all features whose presence in the dataset do not affect the

learning model positively. Thus it preserves the semantics of the characteristics which makes it

easily interpretable. It is therefore imperative to select an optimal subset that will represent the

original set. Selecting a subset of optimal, relevant, and non-redundant features is a challenging

task. If too many features are selected, the classifier has a high workload that can decrease the

accuracy of the classification. On the other hand, if only a few features are selected, it is possible

to eliminate features that would have increased the accuracy of the classification. It is, therefore,

an objective obtain an optimal subset of relevant and non-redundant features that will provide

an optimal solution without, reducing the accuracy of the classification.
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1.3.2 Self-training

The selection of the best features can help improving the learning process. In the second part

of the thesis, we will apply feature selection considering a context in which one has a large

amount of data, but only a few percentage are labelled. In this case, one can think to learn from

his few labelled data by using self-training, a semi-supervised learning method. We know that

supervised learning methods are effective when there is a large number of labelled instances.

However, many applications, such as object detection, categorization of documents and Web

pages, have very few labelled instances. Those instances are difficult to find, costly or time-

consuming to obtain because they require empirical research or experienced annotators. Semi-

supervised learning algorithms use also unlabeled data to build a classifier. The goal of semi-

supervised learning is to use unlabeled instances and combine the information contained in

the unlabeled data with the explicit classification information of the tagged data to improve

the performance of the classification. The main difficulty of semi-supervised learning is how to

exploit the information from unlabeled data. Some Algorithms of semi-supervised learning have

been presented (the Expectation-Maximization (EM) based algorithms, self-training, co-training,

Transductive Support Vector Machine (TSVM), Semi-Supervised SVM, graph-based methods,

and boosting based semi-supervised learning methods).

Self-training is a method used for semi-supervised learning in many areas, such as object

detection and recognition, language processing. A self-training algorithm uses its predictions

to assign labels to unlabeled data. Then, a set of data such as the newly labelled ones, which

we call a set of high confidence predictions, is selected to be added to the learning set for the

next iterations. Self-training uses an iterative method for semi-supervised learning which wraps

around a base learner. The performance of the self-training algorithm strongly depends on the

newly labelled data selected at each iteration of the learning procedure. This selection strategy is

mostly based on a trust in predictions, and it is therefore vitally important for self-learning that

the confidence of the prediction is correctly measured.

There is a difference between learning algorithms that produce a probability distribution, such

as logistic regression, Bayesian methods, neural networks, margin classifiers, and algorithms

usually considered to produce only a classification model like decision trees. Therefore most

current approaches to self-training use learning algorithms that produce a probability distribution

as a primary learner.

1.4 Thesis contribution and outline

The contribution of the thesis hinges around the following points divided into two main parts:

In the first part:

• We show that a whole rule pool oriented approach can improve the individual rule-oriented
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approach. To an individual rule, it would better not ask what its performance in isolation

is, but rather, what is its contribution to the performance of the rule pool. A single rule

effect can be redundant concerning another rule or another subset of rules (other rules can

shade a rule), in which case the manager could take steps towards reducing redundancy,

thus improving performance.

• The contribution of the individual rule to the rule pool cannot be quantified employing the

added value to the pool – computed as the difference of the pool including that rule and the

pool obtained removing that rule – because the performance is non-additive (we develop

this point further in Chapter 2), thus a suitable metrics should be used for the assessment,

that takes into account rules interactions such as redundancy and complementarity: we

propose to use the Shapley Value, a power index developed in Coalitional Game Theory

and defined by a suitably weighted average of the added values of a rule concerning all the

possible coalitions of rules [80].

• Computing the exact value of Shapley is exponential, but we adopt an approximated method

proposed by Mann and Shapley itself: the Monte Carlo approximation method [62]. It is

also the first approximation method. The method is based on Monte Carlo simulation, and

it estimates the Shapley value from a random sample of coalitions. Shapley will be studied

in detail in chapters two and four.

• The rule managers adopting the Shapley value of a rule as a guide can increase the

efficiency of the overall rule pool: for instance, if instead of sorting the rules based on their

performance the rule managers sort the rules based on their Shapley value with respect to

the performance of the rule pool, and then remove the lowest ranking rules it can be shown

that both the performance of the rule pool (precision and recall) improves and the efficiency

of the overall process increases. Adopting the Shapley Value ranking allows reducing the

number of operational rules from about 300 to about 30, by achieving the same results in

terms of precision and recall. Also, it allows assigning a score to the individual rule, which

is useful in the monthly revision process, where the performance of each rule is considered

by the rule managers that have to make the decision keep/drop.

In the second part:

• We study another power index especially the Banzhaf power index [10]. It was introduced

around two decades after the Shapley Index by Jonh F. Banzhaf. While Shapley Index anal-

yses all possible permutations in a coalition, the Banzhaf index considers all combinations

into the coalition.

• We propose an improved version of the Banzhaf index called "restricted Banzhaf index"

(k-Banzhaf). Given the computation of the Banzhaf value is expensive when the cardinality
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1.4. THESIS CONTRIBUTION AND OUTLINE

of the set is large, we introduce this method to overcome the high complexity of the

Banzhaf value calculation. We verified that this much quicker approach preserves the

feature selection quality. For instance, given a set of N elements, one needs to compute 2N

combinations while our version is based on the cardinality of the subset of interest. Chapter

5 will go more in deep to the concept.

• We propose a power index-based feature selection procedure approach, using the three

power indexes studied in the dissertation and compare them with the greedy methods [16]

(greedy forward selection and greedy backward elimination)

• In the end, we apply our feature selection method to a self-training process [67, 98], self-

training is based on the idea of using few labelled data to improve the classification of

unlabelled data.

We observe in the first part that Shapley Value offers an advantage in the rule management

process, consisting of the assignment of a normalized score to the individual rule. This is not

the case for most Feature Selection algorithms. Also in the second part, we observe that power

indexes-based feature selection methods do allow to rank the rules and to select the top-k

rules, in analogy to feature selection and achieve performance comparable to other feature

selection techniques. Moreover, such power indexes can be interpreted as a summary score of the

usefulness of the rule that can be used to assess the rules individually during the periodic rule

assessment process. In particular, we observe that the performance of our restricted Banzhaf

index is comparable to other power indexes and that some times it is even better.

The remaining of the dissertation is structured as follows: after a review of the related work

on Coalitional Game Theory and power indexes in Chapter 2 and review of the related work

on Feature Selection and some Machine Learning techniques in Chapter 3, we study the first

well-known power index (the Shapley Value) in a real-world case for managing a pool of rule

for credit card fraud detection in Chapter 4; then, in Chapter 5, we study the second power

index (the Banzhaf Value), propose a modified version (the restricted Banzhaf index) and apply

these three power indexes (Shapley, Banzhaf and restricted Banzhaf) to a feature selection in the

self-training context. Finally, in Chapter 6 we conclude the dissertation summarizing the results.
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2
POWER INDEXES AND COALITIONAL GAME CONCEPTS

P roblems of decision making and cost-sharing are crucial issues in general, and particularly

in the industrial area (introduction of shareholding in a new market, questions about

a tactical or strategic decision regarding merging, acquisitions or firms’ control). Power

indexes are leading indicators for decision-making, at normative and operative levels. Hence in

this chapter, we will introduce some concepts and definitions to help to understand coalitional

games and power indexes; namely, Shapley index and Banzhaf index which are our focus in

this dissertation. We will come back on these two key concepts in the Chapters 4 and 5. But

before that, we can notice that coalitions are usually the result of human relationships, feelings,

aversions, external influences, and psychological attitudes than of pure strategic computations.

We can also anticipate that Power index is a concept within cooperative game theory used to

measure someone’s a priori power in certain coalitional games. Moreover, Computing power

indexes turn to be a great challenge, so many researchers have been working on to propose an

efficient method either computing the exact value or computing an approximated value. In this

chapter, we provide some useful tools to better understand Coalitional Game Theory in general

and power indexes in particular.

2.1 Coalition analysis concepts in Game Theory

Coalitional (or cooperative) games are a branch of game theory in which one can model cooperation

or collaboration among agents. In a coalitional game, we focus on what groups of players can

achieve rather than on what individual players can do. Intuitively, stability of a coalitional game

means that the game outcome is immune to deviations by groups of players, i.e., no subset of

players can unilaterally improve their outcome.
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

2.1.1 Coalitional games with transferable utility (TU games)

Let a set N containing N = |N | agents. A coalition is defined as follows.

Definition 1 (coalition). A coalition C is a set of agents: C ∈ 2N where 2N notes all the subsets

of N .

In Coalitional Game Theory, two main classes of games are considered:

Transferable Utility Games and Non-Transferable Utility Games.

Definition 2 (Transferable Utility Game (TU game)). A Transferable Utility Game is a game

where

• Two agents can compare their utility

• Two agents can transfer some utility

• In the transferable utility assumption, the way of sharing the payout of the cooperation is

a central issue.

Definition 3 (Non Transferable Utility game (NTU game)). A Non Transferable Utility
Game is a game where

• It is not always possible to compare the utility of two agents

• It is not always possible to transfer the utility (e.g., no price tags) between two agents. Agents

have preference over coalitions.

A task allocation problem can be use as an informal example of NTU game:

• Consider a set of tasks which require different expertises to be performed

• In the case, tasks may be decomposed

• In the case Agents do not have enough resource on their own to perform a task

• In the case it is necessary to find complementary agents to perform the tasks

In this thesis, we focus on Transferable Utility (TU) games. In a TU game, it is assumed that

the earnings of a coalition can be expressed by one numerical value. One may think of this number

as an amount of value generated by the process, which can be distributed among the actors in

any conceivable way - including negative payments - if the grand coalition is actually formed. In

general terms, this number is an amount of utility and our assumption in the following is twofold:

(i) individual utilities of the business process participants can be expressed in monetary terms

(ii) it makes sense to transfer/share this utility among the participants.
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2.1. COALITION ANALYSIS CONCEPTS IN GAME THEORY

Definition 4 (Valuation). A valuation function µ (or characteristic function) is a set func-

tion that associates a real number µ(C) to any coalition, i.e.

µ : 2N →R

Definition 5 (TU game). A TU game is a pair (N ,µ), where N is a set of agents and µ is a

valuation function.

We are especially interested in games where the collaboration produces a surplus (in a sense

they are the non-trivial collaborative games). This idea is captured by the concept of essential

games.

Definition 6 (Essential game). A game (N ,µ) is essential if µ(N )>∑
i∈N µ(i).

In an essential game, there is a positive difference between the minimum values that each

player can attain individually and the total value that can be attained by the whole grand

coalition players: in a TU game this extra wealth is exactly the utility that can be allocated

among the players.

2.1.2 Issues in TU games

In coalitional game theory the following two main issues regarding TU games ave to be addressed:

• what coalitions will form or which, once formed, will be stable?

• how to reward each member of a coalition when a task is completed?

2.1.3 Definition and properties of valuations

In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a

function on a field that provides a measure of size or multiplicity of elements of the field. Here,

we will consider valuations over the lattice of subsets of a given set, also known as its Boolean or

power-set algebra.

2.1.3.1 Measure or capacity

Definition 7 (Measure or Capacity). A measure is a map from the power-set algebra of a set N

to a scalar field, in our case R,

µ : C ∈ 2N →R

vanishing at the empty set, i.e. such that

1) µ(;)= 0 ( 0-normalization)
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

Since no additivity or positivity is assumed, this map is more soundly called non-additive

signed measure, or capacity.

It is important to remark that a valuation in TU game theory is an example of such a

measure. Every measure can be taken to represent the characteristic function of a game, thus

define unequivocally a game.

In our application field we are mostly interested in non-negative measures.

Definition 8 (Non-negativity). A measure is said non-negative if

2) µ(S)≥ 0 ∀S ∈ 2N (non-negativity)

hereafter, when using the term measure or capacity, will always assumed the non-negativity

condition.

Definition 9 (Normalization). A measure is said normalized, or 1-normalized, if

3) µ(N )= 1 (normalization)

If a measure is both 0-normalized and 1-normalized, it is said (0,1)-normalized. For instance,

standard probability measures are (0,1)-normalized.

We are now ready for introducing a simplifying notion, i.e. the one of (0,1)-normalized games.

For essential games, it is always possible to transform a game (N ,µ) from the non-normalized

form to a (0,1)-normalized form, through the following transformation.

Proposition 2.1 ((0,1)−Normalization of an essential game). If (N ,µ) is an essential game, then

it is equivalent to a (0,1)-normal game (N ,µ∗) defined by

µ∗(C)= µ(C)−∑
i∈Cµ(i)

µ(N )−∑
j∈N µ( j)

2.1.3.2 Monotonicity

Definition 10 (Monotonicity). A measure is said to be increasing (decreasing) monotone if the

measure of a set cannot be smaller (larger) than the measure of one of its subsets.

4.a) S ⊆ T ⇒µ(S)≤µ(T) (increasing monotonicity)

4.b) S ⊆ T ⇒µ(S)≥µ(T) (decreasing monotonicity)

Strict monotonicity has the signs < and >.

A monotonic measure can be used as the seed for a parametric family of measures satisfying

probabilistic inequalities. For instance:

Example 1 (Monotonic measures).

• the max measure µ(S)≡maxi∈S(µ(i)) is monotonically increasing
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2.1. COALITION ANALYSIS CONCEPTS IN GAME THEORY

• the min measure µ(S)≡mini∈S(µ(i)) is monotonically decreasing

• Probability Measures are monotonically increasing

For monotonically increasing measures the following inequalities hold

• µ(A∪B)≥max(µ(A),µ(B)), since A∪B is a super-set of both A and B

• µ(A∩B)≥min(µ(A),µ(B)), since A∩B is a subset of both A and B

Definition 11 (Capacity). A capacity is a measure holding the following properties:

• (0,1)-normalized

• monotone

Example 2 (Capacities). For instance

• The "Glove Game" defined as:

Let L and R be two disjoint companies (players), who make gloves; the company (players) L

make only left gloves, while the company R make only right gloves. The value of a coalition

depends on the number of pairs the companies L and R are able to form. We assume that

each company endowed with a single glove. Supposing that L = {1, 2}; R = {3} and the value

of each pair is 1, the resulting game is:

– N = {1,2,3}

– µ(;)=µ(1)=µ(2)=µ(3)=µ(12)= 0,

– µ(13)=µ(23)=µ(123)= 1

• Similarly, the "Airport Runway Game" introduced by S. C. Littlechild and G. Owen [58] in

1973 is defined as

An airport who needs to build a runway for 4 different aircraft types, Hence the building cost

associated with each aircraft respectively A, B, C, D is 8, 11, 13, 18. In this case, we have:

– N = {A,B,C,D}

– µ(;)= 0,µ(1)= 8/18, µ(2)= 11/18, µ(3)= 13/18, µ(4)= 18/18

– and µ(S)=maxi∈Sµ(i)
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

2.1.3.3 Additivity, non-additivity, super- and sub-additivity

Definition 12 (Additivity). A measure is said to be additive if, for every disjoint pair of sets S,T,

it maps their union into the sum of their individual measures, i.e. if

5) µ(S∪T)=µ(S)+µ(T) ∀S,T s.t. S∩T =; (additivity)

A measure is said to be non-additive if at least for a pair of subsets the above condition does

not hold.

Example 3 (Additive and non-additive measures). For instance

• Let a measure count the number of pairs in a set µ(A)= |A|(|A|−1), then it is non-additive.

• The classical probability measures are examples of additive measures.

If a coalitional game is defined by an additive measure, then it is said additive or inessential,
since it is trivial from the game theoretic point of view (in an inessential game, forming a coalition

does not bring any benefit to the participants).

It is easy to see that additivity implies monotonicity, but not the other way round. Non-

additive monotonic measures generalize the additive ones.

The requirement of additivity (countable or finite) of classical measures are based on the

assumption that disjoint sets are non-interactive with respect to the measured property. This

assumption is too restrictive in some application contexts.

A monotone measure is able to capture the following situations relating to two disjoint sets A

and B:

a) µ(A∪B)>µ(A)+µ(B) (positive or cooperative interaction, synergy)

b) µ(A∪B)=µ(A)+µ(B) (non-interactivity of A and B)

c) µ(A∪B)<µ(A)+µ(B) (negative or inhibitory interaction)

An additive theory, such as probability theory, based on classical measure theory, is capable of

capturing only situation (b). The theory of monotone measures provides a considerably broader

framework.

The wide range of application of non-additive measures is due to the fact that in any situation

with more than minimal complexity the effect of the ensemble of parts is different from the sum

of the effects of the parts taken individually.

Notice that in a specific setting there could be at the same time positive interactions between

some sets and negative interactions between other sets. They allow representing interaction

among the distinct elements.

For example, we might have
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2.1. COALITION ANALYSIS CONCEPTS IN GAME THEORY

• µ(A∪B)>µ(A)+µ(B) (positive interaction between A and B) and

• µ(A∪C)<µ(A)+µ(C) (negative interaction between A and C).

Nonetheless, in some remarkable games, the interaction is always cooperative, while in other

remarkable games the interaction is always inhibitory.

Definition 13 (Super-additivity). A measure is said super-additive if for all the pairs of disjoint

sets the measure of the union is not smaller than the sum of the measures of the individual sets:

6) µ(S∪T)≥µ(S)+µ(T) ∀S,T s.t. S∩T =; (super-additivity)

Example 4 (Super-additive measures). For instance

• A measure counting the number of pairs in a set µ(A)= |A|(|A|−1).

• The Glove Game measure is super-additive.

Definition 14. A measure is said sub-additive
if for all the pairs of disjoint sets the measure of the union is not greater than the sum of the

measures of the individual sets:

7) µ(S∪T)≤µ(S)+µ(T) ∀S,T s.t. S∩T =; (sub-additivity)

Example 5 (Sub-additive measures). For instance

• The min function: µ(S∪T)≡min(µ(S),µ(T)).

• The max function: µ(S∪T)≡max(µ(S),µ(T)).

• The Airport Runway Game is sub-additive.

Sub-additive measures and super-additive measures are two special types of monotone

measures. Other special types include classical, additive measures (i.e. probability measures),

the classical (crisp) possibility and necessity measures. Each special type of monotone measures

can be used for formalizing a certain type of uncertainty. A remarkable type of uncertainty can

be formalized based on a property stronger than super-additivity: modularity.

2.1.3.4 Modularity, super- and sub-modularity

While additivity/non-additivity represent the behaviour of a measure with respect to the union of

disjoint sets, modularity, refers to the union of any pairs of sets.

Definition 15 (Modularity). A measure is said to be modular if the following inclusion-exclusion

equation holds for any pairs of sets
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

• µ(S∪T)=µ(S)+µ(T)−µ(S∩T) ∀S,T ∈ 2N (modularity)

It is easy to see that if a measure is additive it is also modular. We are now ready to define

super-modularity

Definition 16 (Super-modularity of order 2, a.k.a. convexity, a.k.a. 2-monotonicity). A measure

is said super-modular if in the inclusion-exclusion relation the = sign is replaced by ≥:

• µ(A∪B)≥µ(A)+µ(B)−µ(A∩B) ∀A,B ∈ 2N (super-modularity)

Since it involves pairs of sets it is also called super-modularity of order 2.

• For monotone measures, super-modularity is a condition stronger than super-additivity, i.e.

super-modular measures are monotone non-decreasing. Super-modular measures of order 2

are also called 2-monotone measures.

• Super-modularity, captures the increasing returns property: for any set X ⊆ Y ⊆N , and

any i ∈N , the inequality

µ(Y ∪ i)−µ(Y ) ≥ µ(X ∪ i)−µ(X )

expresses the fact that the marginal contribution of an element i to a set is a non-decreasing

function of the set. Rearranging the definition one gets µ(Y ∪ i) ≥ µ(Y )+µ(X ∪ i)−µ(X ),

i.e the previous expression if one takes A =Y and B = (X ∪ i).

• In Game Theory, the super-modularity of a game (a.k.a. convexity), captures the intuitive

notion that the game incentives for joining a coalition increase as the coalition grows.

Definition 17 (Sub-modularity (of order 2)). A measure is said Sub-modular if in the inclusion-

exclusion relation the = sign is replaced by ≤:

• µ(S∪T)≤µ(S)+µ(T)−µ(S∩T) ∀S,T ∈ 2N (sub-modularity)

• For monotone measures, sub-modularity is a condition stronger than sub-additivity, i.e.

sub-modular measures are monotone non-increasing.

• Sub-modularity, can be used to capture the diminishing returns property: for any set

A ⊆ B ⊆N , and any i ∈N , the inequality

µ(B∪ i)−µ(B) ≤ µ(A∪ i)−µ(A)

expresses the fact that the marginal value of an element i to a set A is a non-increasing

function of the set A.
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2.1. COALITION ANALYSIS CONCEPTS IN GAME THEORY

• In coalitional Game Theory, the sub-modularity of a game (a.k.a. concavity), captures the

intuitive notion that the game incentives for joining a coalition decrease as the coalition

grows.

This property can be easily generalized to higher orders. For instance, super-modularity of

order 3 is defined as follows.

Definition 18 (Super-modularity of order 3, also known as 3-monotonicity).

µ(A∪B∪C) ≥ µ(A)+µ(B)+µ(C)

−µ(A∩B)−µ(A∩C)−µ(B∩C)

+µ(A∩B∩C) ∀A,B,C ∈ 2N

Every super-modular measure of order 3 is also super-modular of order 2. The above expres-

sion can be rewritten more compactly by considering the families of 3 sets and denoting the

members of each family by A1, A2, A3 ∈ 2N

µ

(
3⋃

i=1
A i

)
≥ ∑

;6=I⊂{1,2,3}
(−1)(|I|+1)µ

(⋂
i∈I

A i

)
A1, A2, A3 ∈ 2N

where I is a set of indexes. The corresponding order 3 sub-modularity can be defined through the

above expressions, by changing ≥ into ≤.

All the property described above can be generalized to any order k ≤ n by considering the

families of k sets and denoting the members of each family by A1, A2, . . . , Ak ∈ 2N . For the sake

of brevity we consider only super-modularity, the corresponding sub-modularity definitions can

be obtained by changing ≥ into ≤.

Definition 19 (Super-modularity of order k, a.k.a. k-monotonicity). A non-additive measure is

said to be order k super-modular if for all collections of k subsets the following relation holds

µ

(
k⋃

i=1
A i

)
≥ ∑

;6=I⊂{1,2,...,k}
(−1)(|I|+1)µ

(⋂
i∈I

A i

)
A1, A2, . . . , Ak ∈ 2N

where I is a set of indexes.

Every k-monotone measure of order k > 2 is also of order k′ ≤ k, but, a capacity of order k is

not necessarily a measure of any higher order of monotonicity.

Definition 20 (Totally monotone measures). In a finite universe of size N = |N | a k-monotone

measure with k = N is said totally monotone (or ∞-monotone).
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

2.1.4 Coalition stability concepts

We are now ready to study allocations that determine stable coalitions. Specifically, let the

characteristic function µ of a game (the (2N−1) valuations for all the possible non-empty coalitions)

be given. Consider for the sake of simplicity the grand coalition N . We adopt the convention

that the valuation of such a coalition is equal to one: µ(N )= 1. This value represents the total

returns earned by the coalition in this specific game. One can assign to each player i ∈N of the

grand coalition as a payoff a share xi of the total returns, and ask if the proposed solution has

determinate properties.

Definition 21 (Feasibility). A solution is feasible if it does not exceed the total worth of the grand

coalition: ∑
i∈N

xi ≤µ(N )

Definition 22 (Efficiency). A solution is efficient if the payoff distribution is an allocation of the

entire worth of the grand coalition to all agents:

∑
i∈N

xi =µ(N )

Definition 23 (Anonymity). A solution is independent of the names of the players.

Definition 24 (Individual rationality). A solution is individually rational if each agent obtains

at least its self-value as a payoff.

∀i ∈N x(i)≥µ({i})

Definition 25 (Imputation). An imputation is a payoff distribution x that is

• efficient

• and individually rational

Definition 26 (Coalitional rationality/group rationality). A solution is group-wise rational if

each group obtains at least its self-value as the sum of its component’s payoffs

∀C ⊆N
∑
i∈C

xi ≥µ(C)

Indeed, on one hand, if
∑

i∈C xi <µ(C), no group would be ready to accept to be part of C.

Group rationality ensures individual rationality as a special case.

Occasionally, hereafter, we will use the shorthand notation x(C)≡∑
i∈C xi: in those terms efficiency

is expressed by the condition x(N)=µ(N), while group rationality is expressed by the condition

x(C)≥µ(C), ∀C ⊆N .
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2.1. COALITION ANALYSIS CONCEPTS IN GAME THEORY

2.1.5 The Core

Let us consider a TU game (N ,µ) and its grand coalition. The notion of Core, first introduced by

Gillies [32], is a natural way to define stability: a payoff distribution lies in the Core when no

sub-group of agents has any incentive to form a different coalition.

Definition 27 (Core). The core is the set of payoff allocations satisfying efficiency and coalitional

rationality. The core is a stability concept were no agents prefer to deviate to form a different

coalition.

Core(N ,µ)≡
{

x ∈RN

∣∣∣∣∣
( ∑

i∈N

xi =µ(N )

)
∧

(
∀C ⊆N

∑
i∈C

xi ≥µ(C)

)}
Equivalently one can say that the core is the collection of group-rational imputations.

Example 6 (Core of some 2-player games). For instance

• Let us consider the following two-player game ({1,2},µ) where

µ(1)= 5, µ(2)= 5, and µ(1,2)= 20. The core of the game is a segment defined as follows:

Core({1,2},µ)= {(x1, x2) ∈R2|x1 ≥ 5, x2 ≥ 5, x1 + x2 = 20}.

Notice incidentally that the segment contains the point (10,10): due to the symmetry of

the two players’ contributions this can be taken as a fair allocation, while all the other

allocations in the core are, to some degree, unfair.

• Let us consider the "glove game" ({1,2,3},µ) where

µ(1)=µ(2)=µ(3)= 0, µ(1,2)=µ(1,3)= 1, µ(2,3)= 0 and µ(1,2,3)= 1 . The core of the game

is defined by:

Core({1,2,3},µ) = {(x1, x2, x3) ∈ (
R+)3 | x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x2 + x3 = 1}= (1,0,0). Here

the core is a single point. Notice incidentally that the corresponding allocation is not fair.

The core condition for coalition stability is so strong (the condition
∑

i∈C xi ≥ µ(C) has to be

true for all the subsets C of N ), that some games may have an empty core: not all the players

and groups of players can be satisfied simultaneously. The Core is empty when at least one player

is dissatisfied by the payoff allocation. Such player can be said to "block" the coalition; in other

words, she can raise an objection against the formation of such coalition, or threaten to leave the

coalition if the coalition is already in place. When focusing on the grand coalition, the core is the

set of allocations such that the grand coalition cannot be blocked.

The literature on TU games provides several sufficient conditions for the core of a game to be

non-empty, or for the core of a game to be empty (for a summary see for instance Owen [37] or

Peleg and Sudhölter [71]). For instance, the core of inessential games, i.e. those games such that∑
i∈N µ(i)>µ(N ), is trivially empty; on the other hand convex games have a non-empty core. The

Bondareva and Shapley Theorem [79] provides a characterization of the non-empty core games

using the concept of balancedness of the game (see [71]).
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

2.1.6 Games with coalitional structure

So far we focused on the formation of the grand coalition, i.e. the one formed by all participants.

This corresponds to the practical situation in which the super-additivity of the valuation function

is either explicitly stated or implicitly assumed. However, when the valuation function is not super-

additive, players may have an incentive to form a different partition. Furthermore, sometimes

some coalitions are excluded by necessity (e.g. impossibility to measure or communicate) or due

to an exogenous choice.

To model these cases one has to consider coalitional structures (CS): the concept was intro-

duced by Auman and Dreze [4]. A coalitional structure S is a partition of the grand coalition: S is

a CS if S = {C1,C2, . . . ,Cm}, with ∪m
k=1Ck =N and ∀i 6= j Ci∩C j =;. e.g., {{1,2,4}, {3,6}, {4}, {5,8}}

is a coalition structure for n = 8 agents.

Definition 28 (Game with coalitional structure). A game with coalitional structure is a triplet

(N ,µ,S), where (N ,µ) is a TU game and S is a specific CS. In addition, transfer of utility is

allowed only within coalitions of S and not between coalitions of S.

Notice that the problems of deciding which coalition to form and how to share the coalition’s

revenue so as to achieve stability are independent and decoupled. Also in the previous section,

the CS was fixed: it consisted of the trivial partition defined by the grand coalition. As before,

here we address the problem of the stability of individual coalitions, by examining the payoff

distributions within each coalition and checking efficiency and group rationality conditions.

Definition 29 (Feasible payoff). Let (N ,µ,S), be a TU game with CS. The set of feasible payoff

distributions is

X(N ,µ,S) = {x ∈RN |∀C ∈ S, x(C)≤µ(C)}

In analogy to the previous definition of efficiency (where the condition was x(N)=µ(N)), but

restricted to the coalitions allowed by the CS we define the following.

Definition 30 (Efficiency with respect toa CS). A payoff distribution x is efficient with respect to

a CS S when

∀C ∈ S x(C)=µ(C)

In the context of CS, a payoff distribution is an imputation if it is efficient with respect to

the current CS and it fulfils individual rationality (i.e. ∀i ∈N , xi ≥µ(i)). We denote set of all the

imputations for a CS by Imp(S). The definition of the core in TU games with CS is the following.

Definition 31 (Core of a game with CS). Let (N ,µ,S), be a TU game with CS. The core of the

game is the set of imputations x ∈ Imp(S) that are group rationale for the coalitions of the CS.
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2.2. SOME DEFINITIONS RELATED TO THE SHAPLEY VALUE CONCEPT

2.2 Some definitions related to the Shapley Value concept

Actors in our coalitional setting are not only concerned with their individual economic advantage;

rather they are typically sensitive to comparative distributional justice. In other words they

value fairness, and their behaviour is negatively affected when they experience unfair treatment.

Lack of fairness can be considered as a cause for dysfunctional behaviour of an actor. We will

use perceived unfairness towards a group of actors to study also the possibility of dysfunctional

behaviour of coalitions. Thus we recall the main concepts and introduce the necessary extensions.

The definitions of fairness referring to revenue distributions are several. A specific set of require-

ments broadly accepted as a definition of fair redistribution, and taken as axioms has been shown

by Shapley [80] to correspond, given a game, to exactly one allocation: this allocation is called

Shapley Value. Hereafter we recall the axioms and the Shapley solution.

We point, in passing, to the fact that in general, the allocation x corresponding to the Shapley

Value is not in the core. It belongs to the core for particular classes of games, such as convex

games.

2.2.1 Quantifying individual contributions in non additive contexts

As we already discussed in Section 1.2.5, the problem of quantifying the contribution of a rule to

the performance of the pool is non-trivial and admits several solutions. In an additive context,

one could define this contribution as the difference between the pool containing the rule and the

pool without only that specific rule: this difference is the added value of the rule with respect to

the pool. However, in non-additive contexts, this approach can lead to inconsistencies, as one can

see, for instance from the following stylized example. Consider a particular pool in which every

rule is redundant with another subset of rules and overall has a positive performance: removing

one rule will not change the performance of the pool; thus the rule contribution would be zero.

We are interested in optimizing the performance of coalitions of rules, aggregated in OR. To

that purpose, we would like to assess the contribution of individual rules to the performance of

the coalition. The performance metrics we consider are precision, recall and Fβ-score.

2.2.2 Marginal contributions

The problem of quantifying the contribution of a rule to the performance of the pool is non-trivial

and admits several solutions. In an additive context one could simply define this contribution as

the marginal contribution (also known as added value) of the rule with respect to the pool, i.e.,

the difference between the pool containing the rule and the pool without only that specific rule.

However, in non-additive contexts, this approach can lead to inconsistencies, as one can see, for

instance, from the following stylized example. Consider a special rule pool, which, overall, has

a positive performance and in which every rule is made redundant by another subset of rules.

Removing one rule will not change the performance of the pool, thus the marginal value of each
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

individual rule would be zero; since this holds for all the rules, apparently the performance of

the pool receives no contributions from its composing rules: and yet the performance is positive.

This inconsistency makes it clear that the added values of individuals with respect to the whole

pool is an inappropriate metric, in non-additive contexts. Nonetheless, marginal contributions

are essential parts of the definition of more appropriate assessment metrics. We can define them

formally as follows.

Given a set function, or measure, µ : C ∈ 2R →µ(C ) ∈R, mapping any coalition C of rules into

a real value µ ∈R, representing a performance index (precision, recall or Fβ-score), we can define

the marginal contribution ∆[µ]
i (C ) of a rule i to a rule coalition (with respect to that measure) as

(2.1) ∆
[µ]
i (C )≡∆[µ] (C , {i})≡µ ({C ∪ i})−µ(C )

2.2.3 Fairness Axioms (Efficiency, Symmetry, Dummy player)

Given a super-additive game with characteristic function/measure µ, we look for an allocation of

values vi such that

• Efficiency – It must hold
n∑

i=1
vi =µ(N)

• Symmetry - If the two players i and j are interchangeable, i.e. if µ(S∪ i) = µ(S∪ j) for

every set not containing neither i nor j, it holds

vi = v j

• Dummy player – i is a dummy player if the amount that he contributes to any coalition

is exactly the amount that i is able to achieve alone: if i is a dummy player he has to get a

payment equal to exactly the amount that he would achieve on its own

vi =µ(i)

In other words, there is no synergy between the player i and the other players.

2.2.3.1 Linearity

Consider two different coalitional games, defined by two different characteristic functions µ1 and

µ2, involving the same set N of agents.

• Additivity – If we re-model the setting as a single game in which each coalition S achieves

a payoff of µ1(S)+µ2(S), the agents’ payments in each coalition should be the sum of the

32

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



2.3. POWER INDEXES

payments they would have achieved for that coalition under the two separate games.

vi(N,µ1 +µ2)= vi(N,µ1)+vi(N,µ2)

where the game (N,µ1 +µ2) is defined by

(µ1 +µ2)(S)= (µ1)(S)+ (µ2)(S)

for every coalition S

2.3 Power indexes

In this section, we discuss why power indexes are so important, why do we need them. We study

some power indexes that have been invented over time, formally, we expose the two well-known

power indexes used in the thesis.

2.3.1 Why Power indexes

More than two decades ago, power indexes have been massively applied to political institutions

[89], for instance, weighted voting has become popular. However, a widely shared intuition was

that voting weights are not a good proxy for the impact the various decision-makers have on

the outcome. Even if, weighted voting has been applied to the election of the president of the

United States [81], (1954), the United Nation’s Security Council [19, 81], (1954, 1971), and in

the board of Governors of International Monetary Fund [26, 78] , (1980, 1982), it is the Council

of Ministers of European Union and its status in the process of decision making that brought

weighted voting on the more general research agenda. Nowadays, if we talk about cost-sharing

and game-theoretic, Shapley value is proposed as a predominant solution (see [90, 92]). Moreover,

in the application of coalitional games, most the time, the players are persons or groups of

persons, for instance, nations, labour unions, Companies, towns, nations, etc. However, in some

game-theoretic models of economic problems the players may not be persons. They may be factors

of production, objectives of an economic project, or some other economic variables of the situation

of interest. Power indexes have been applied in the literature on feature selection in few cases (

see [17, 18]).

Power indexes can be divided into two main groups: the well-known power indexes which are

our focus in this thesis:

• the Shapley-Shubik index [82] (1954), introduced by Lloyd Shapley and Martin Shubik in

the 1950s based on the Shapley value introduced by Shapley [80] in 1953.

• the Banzhaf index [10], introduced by John F. Banzhaf in 1965

and the less well-known power indexes
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

• the Johnston index [48] published in 1978 by R.J. Johnston, the idea behind Johnston index

is quite similar to the one standardized by Banzhaf index. The difference between the two

indexes is the way they determine if a player is crucial in a group.

• Deegan-Packel index (1978) proposed by Deegan and Packel [49]. This power index account

only the coalitions in which each agent is critical, while Johnston includes the coalitions

in which at least one agent is critical. Both indexes divide the unitary power among the

coalitions considered; then the power assigned to each coalition is equally shared among its

critical agents.

• the Holler index or public good index (1982), first proposed in [45]. It introduces the Public

Good index, stating that the worth of a coalition is a public good. with this consideration,

the members of the winning decisive coalitions, (groups in which all the agents are critical),

have to enjoy the same relevance; so, the power of an agent is in proportion to the number

of winning decisive sets he belongs to.

• the Coleman index [19] (1971), proposed in the early 1970s by James S. Coleman. He

defined three different power indexes, one for voting a collectivity as a whole and two others

for individual voters.

2.4 The Shapley Value

Shapley Value, since its introduction in 1953, has generated a wide literature [65], where it

was alternatively interpreted as a solution of the fair division problem [80], as a power index

[81], as a centrality measure [85] or as a transform endowed of desirable properties within the

Dempster-Shafer evidence theory [86] (a.k.a. theory of belief functions).

Non-additive measures play a key role in several fields [36], for instance, in Game Theory, R

can take the meaning of the set of players, while 2R is the family of all coalitions and a measure

µ of a coalition C represents the worth of the coalition C . Any µ : 2R →R, with µ(;)= 0, defines a

distinct coalitional game.

The problem of quantifying the contribution of individuals to the achievements of an ensemble

– in a way satisfying some basic requirements – has been faced within Coalitional Game Theory,

as a part of the problem of assigning a fair share of the surplus produced by coalitions (the

so-called fair division problem), or as a part of the problem of quantifying the power of individuals

in coalitions (the so-called power assessment problem): the value associated to a player in the

former context is interpreted as the fair share to which that actor is entitled, in the latter context,

it is interpreted as the power of an actor in determining the achievements of the coalition.

A solution to the fair-division problem, fulfilling a basic set of axioms, has been formulated in

1953 by Lloyd Shapley [80] and then used also as a power index in voting games, the Shapley-

Shubik index [81]. The problem it solves can be formulated as follows.
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2.4. THE SHAPLEY VALUE

An appropriate definition for the importance of a rule should fulfil a set of desirable properties.

One such set of properties or axioms is the following: the whole value of the grand coalition

is redistributed among players, without losses (efficiency axiom); players who bring the same

contribution receive the same share (symmetry axiom); those who bring nothing (no added values)

receive no shares of the surplus (dummy player axiom); the more a player brings, the more he/she

gets (strong monotonicity axiom). The latter axiom can be stated as follows: suppose that there

are two games, played by the same set of players, and that a player in the second game brings to

each coalition a marginal contribution greater or equal to the contribution brought to the first,

then the player should receive in the second game an amount greater or equal than the one she

gets in the first game. Lloyd Shapley demonstrated in [80] that there is a unique value which

fulfils those desirable properties and provided the corresponding expression, a specific weighted

average over all the possible coalitions, later called Shapley Value.

Given a set R and a measure µ (i.e. given a game
(
R,µ

)
), the Shapley Value is defined as

an array of payoffs: a payoff Sha[µ]i for each actor i ∈ R. The value of Sha[µ]i is obtained by

computing a weighted average of the ∆[µ]
i (C ) over all the coalitions C ∈ 2R ; the combinatorial

weight w(C ), depends on the game size R ≡ |R| and on the coalition size C ≡ |C |

Sha[µ]i =
∑

C ∈2R

w(R,C)∆[µ]
i (C )

with

w(R,C)=
(

R!
(R−C)!(C−1)!

)−1

The same combinatorial weight can also be obtained by means of a procedure based on

the computation of the added values of players forming a permutation. Suppose, that all the

players are arranged in some order, all orderings being equally likely: each ordering of the actors

corresponds to a marginal value sequence, achieved by the members; for each order, one has

to take note of the marginal value introduced by the actor i; then the Shapley Value for the

actor i, with respect to the measure µ, is computed as the average of its added values over all

permutations

(2.2) Sha[µ]i =
1
R!

∑
π

∆
[µ]
i (π)

where π runs over the set Π of all the R! permutations of R objects and ∆[µ]
i (π) is the marginal

value of the player i with respect to the coalition made by the players that preceded him in the

permutation.

By analogy to its interpretation as a power index, it has been used to assess the importance

of components in a composite entity (a system or a process); among the recent examples, we can

mention its application in algorithm portfolio selection [30], tag sense disambiguation [54], neural
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

network pruning [88]. It has also been used in feature selection [7, 18] and model interpretation

[57, 60].

Theorem 1 (Shapley Theorem). There is a unique efficient payoff division (of the full payoff of

the grand coalition) that satisfies the Symmetry, Dummy player and Additivity axioms:

vShapley
i = 1

N!

∑
σ

(
µ ({C∪ i})−µ(C)

)
where the index σ runs over all the N! permutations of the N elements of N .

An alternative expression is the following.

(2.3) vShapley
i = ∑

C⊆N

c! (N − c−1)!
N!

(
µ ({C∪ i})−µ(C)

)

Where the C’s are the coalitions of N (the subsets of N , i.e. C ∈ 2N ) and c = |C|.
It is important to introduce here a remark on the Additivity axiom. In the words of Airiau [2],

the additivity axiom, or ADD, is harder to motivate in some cases. If the valuation function of

a TU game is interpreted as an expected payoff, then ADD is desirable (as you want to be able

to add the value of different states of the world). Also, if we consider cost-sharing games and

that a TU game corresponds to sharing the cost of one service, then ADD is desirable as the cost

for a joint-service should be the sum of the cost of the separate services. However, if we do not

make any assumptions about the games (N ,µ1) and (N ,µ2), the axiom implies that there is no

interaction between the two games. In addition, the game (N ,µ1 +µ2) may induce a behaviour

that may be unrelated to the behaviour induced by either (N ,µ1) or (N ,µ2), and in this case

ADD can be questioned.

For this reason, several other equivalent axioms have been considered. A parsimonious set

of axioms is due to Myerson [66] and it is based on a concept called balancing of contributions.

Myerson considers the N restrictions of the original game µ, each defined by a single player

leaving the game: a definition of value applied to each of those games has the balancing property

if for every pair of players the amount that each player wins or loses if the other leaves the game

is the same. Let us denote by µ\ i the game (N \ i,µ\i), where µ\i is the restriction of µ to N \ i.

Definition 32 (Balanced contribution axiom). A value function v satisfies the balanced contribu-

tion axiom if for all (i, j) ∈N 2

vi(µ)−vi(µ\ j) = v j(µ)−v j(µ\ i)

The new characterization of the Shapley Value due to Myerson is the following.

Theorem 2 (Shapley Value Theorem 2). The Shapley value is the unique value function that

satisfies the balanced contribution axiom.
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2.4. THE SHAPLEY VALUE

2.4.1 Shapley Value Computation

Methods for finding the Shapley Value can be divided into two types. The first type computes the

exact value when the second provides an approximation value. The approach and the computing

requirements vary with the method. Notice that none of the methods is universally ideal. Due to

the number of features of our use case, we are interested in approximation methods. Here we will

list some methods classified as exact and then we will see methods that have been proposed to

approximate the Shapley value; particularly the method used in this thesis.

2.4.1.1 Exact methods

Four main methods are classified as exact:

• Direct enumeration: this method uses equation 2.3 to compute the Shapley value for

the player i.

Given a set (N = {1,2, ...n}) of players the number of subset of players is 2n. So evaluating

the Shapley value for player i has time complexity O(2n). This method has the disadvantage

that time complexity is exponential.

• Generating functions [62]: this method finds the exact Shapley value based on the

coefficients of a polynomial generated by a function ( generating functions are more detailed

in [3]). The advantage of this method is that it has polynomial time complexity.

• Conitzer and Sanhom’s method [20]: This method is used only if the characteristic

function is represented in a specific form and it does not scale well.

• Ieong and Shohem’s method [46]: this proposed method assume that the value of

Shapley of a component for a given coalitional game is given by an oracle. Based on this

assumption, it aggregates these values to compute the value of the overall game. This

method has the advantage that his time complexity is polynomial, but to be used, the

coalitional game should be represented as "marginal contribution net".

Hence all these methods compute the exact Shapley value, but they also have important disad-

vantages. To overcome these issues, some approximation methods were developed.

2.4.1.2 Approximation methods

The main methods proposed to approximate the Shapley value are the following:

• The Multi-linear extension (MLE) method [37] was proposed by Owen, his advantage

is his linear time complexity. The interesting consequence of this result is the fact that

it is much easier to approximate the Banzhaf value. It requires evaluation of the partial

derivatives at just a single point. The Shapley value, for example, requires evaluation along

the entire diagonal, plus an integration.
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

• The modified MLE method [62] is the extension of the MLE method. In order to improve

the error of approximation, the modified MLE method trades-off computational time. More

specifically, the modified MLE method merges the essential features of direct enumeration

and MLE to improve the accuracy of the MLE method.

• The Random permutation method [101] was proposed by Zlokin, in this random

permutation mechanism, the players form the full coalition, one player after another,

choosing a random permutation. The utility of a player is equal to its contribution to the

coalition at the time of joining it. The requirement of this method is that the players should

agree on the all-or-nothing deal. The method’ time complexity is linear.

• Finally, The Monte Carlo simulation method: is the earliest approximation method,

the one used in the thesis, it was proposed by Mann and Shapley itself. Here we just

mention that the method is based on Monte Carlo simulation, and its estimates the Shapley

value from a random sample of coalitions. Then we develop it more in detail in the next

section.

2.4.2 Statistical estimate of the Shapley Value

The main drawback of computation of the Shapley value consists of its exponential complexity.

This was pointed out since the publication of the work by Shapley, and approximate computation

methods were soon devised. A review of the various methods used to compute the exact or the

approximate Shapley Value can be found in [8, 29, 61]. Among the simplest approximate methods

is the one proposed by Mann and Shapley [62], based on random sampling from the space of

permutations. Since, for our purposes, it is not necessary to compute the exact value of the

Shapley index, but rather an approximated value which allows us to find a ranking of the rules,

we can resort to one such sampling-based computations, whose time complexity is polynomial.

The rationale behind the use of this method is the following: the Shapley value is defined

as an expected value: it is the sum of terms consisting of the product of the marginal value of a

coalition times its probability (within the permutation-based process described above). Such a

probability can be modelled as a Bernoulli parameter and thus estimated by sampling and taking

the appropriate count ratios.

Consider the set Π of the R! permutations of the R elements in the set R. Consider a

subset Θ⊂Π of permutations, obtained by sampling Π uniformly at random, and let θ = |Θ| the

cardinality of the subset. We can compute an estimate of the Shapley value as follows:

Monte Carlo Estimate of the Shapley value.

• Consider the sample Θ consisting of θ¿ R! permutations
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2.5. THE BANZHAF VALUE

• For each permutation π ∈Θ compute the marginal contribution of each element i, with

respect tothe measure µ, using the expression

∆
[µ]
i (π) ≡ µ

(
π(1), . . . ,π(i−1),π(i)

)
− µ

(
π(1), . . . ,π(i−1)

)
where π(i) is the player at the i-th position of permutation π.

• Average over the sample Θ of permutations to obtain the estimate �Sha[µ]i of the Shapley

Value of each element �Sha[µ]i = 1
θ!

∑
π

∆
[µ]
i (π)

The quantity thus obtained is an unbiased estimator whose error decreases with 1/
p
θ . The

complexity of this algorithm (for estimating the Shapley Value of all the R elements of a set) is

O(Rθ), times the complexity of the computation of the measure µ.

2.5 The Banzhaf Value

It is normal to meet in our everyday life situations of decision-making where individuals or groups

of individuals must make collective decisions. In parliaments, for example, legislators collectively

decide whether a bill is accepted or not. It may not have specific rules for decision-making if

the electorate or decision-making body is informal. However, as a rule in the formal decision-

making bodies, there are particular rules for decision-making (in the case of parliaments for the

acceptance of laws). As a decision rule, the quota or voting threshold determines the number

of votes be in favour of a proposal that must be guaranteed acceptance. It exits a multiplicity

of majority rules according to the importance of a proposal of laws in the national parliaments.

Three well-known majority rules are the simple majority (more than half of the deputies), the

qualified majority of the 2/3, and more rarely one finds for important decisions, the unanimity

(the whole assembly).

2.5.1 Definitions

Definition 33 (voting body). A voting body is formally represented as a set N, which contains

every member in the voting body. The set W includes all winning subsets (i.e., that can ensure

acceptance of the proposal), some restrictions are applied to W , ( see [89])

(i) ; 6∈W

(ii) N ∈W

(iii) if S,T ⊂ N with S ∈W and S ⊂ T then T ∈W

A simple game, introduced by Von Neuman and Morgenstern [95] in 1944 is a n-person game

which can be define as a pair (N,W ) satisfying condition (i)- (iii)
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CHAPTER 2. POWER INDEXES AND COALITIONAL GAME CONCEPTS

Definition 34 (Weighted voting games). Weighted voting games are special classes of simple

game where each voter might not have the same amount of votes, for instance, party groups into a

parliament. A specified quota of votes is necessary to approve. We use the symbol [q : s1, s2, ..., sn]

to represent a weighted voting game where the numbers si are the voting "weights" of the n players

and q is the quota need to win. In mathematical terms, S ∈W ≡∑
i∈W si ≥ q

The idea behind voting power is that the weight of a voter is not a good measure of power

instead, voting power analyses what a voter can do with his weight.

Let just take a simple real-life example of voting power concerning the first Council of EU

(1958-1973). The Council consist of six members states, France, Germany, Italy, Belgium, the

Netherlands and Luxembourg. These countries had the following voting weights regarding

proposals which could be decided upon using a qualified majority [12 : 4,4,4,2,2,1] it is easy

to conclude slipping into a fallacy that the big three (4) had four times as much as the last (1)

or twice as much voting power as Belgium or Netherlands (2). Voting power theory analyses

what the countries can do with their votes. Three big countries or two big countries plus two

of the middle size ones can form a winning coalition and Luxembourg votes does not make any

difference in any winning coalition so he has no voting power at all, and we cannot conclude that

the ratio between the middle size countries and the three big ones is 1:2.

Definition 35 (Concept of Swing). We can analyze all possible voter combinations of i’s voter to

measure his voting power. using a characteristic function v, we say that a voter i has a negative

swing in a coalition C if v(C)= 1 but v(C \{i})= 0, i.e. without his support, i can turn (swing) a

winning coalition into a losing one. Positive swing is when v(C)= 0, but v(C+ {i})= 1, i.e., taking

into account her support i can turn a losing coalition into a winning one.

Banzhaf Index [10] was introduced after the Shapley index by lawyer John F. Banzhaf (1965).

The index calculates voter i’s swings like shapley. While Shapley-Shubik analyses all the possible

voter permutations, Banzhaf index considers each distinct coalition. So it concentrates on voter

combinations.

The absolute Banzhaf index value is the sum of voter i’s swings divided by the number of

subsets (2n−1).

βi = 1
2n−1

∑
S⊆N

[v(S)−v(S \{i})]

2.6 Summary

In this chapter, we provided definitions and conceptual tools for reasoning on coalitional games

and power indexes. After mentioning the importance of power indexes, we decline the most used

and well-known power indexes in coalitional games. We also define some less well-known power

indexes. We analyse in Section 2.1 the two main categories of cooperative games (Transferable
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Utility and Non-Transferable Utility games ) and their key concepts, providing also some proper-

ties issues. Then we focus on Shapley Value, one of the two power indexes of our interest going

through definitions, properties, some examples and computation methods.

In the end, Shapley Value, since its introduction in 1953, has generated a wide literature [65],

where it was alternatively interpreted as a solution of the fair division problem [80], as a power

index [81], as a centrality measure [85] or as a transform endowed of desirable properties within

the Dempster-Shafer evidence theory [86] (also known as theory of belief functions).

By analogy to its interpretation as a power index, it has been used to assess the importance

of components in a composite entity (a system or a process); among the recent examples, we can

mention its application in algorithm portfolio selection [30], tag sense disambiguation [54], neural

network pruning [88]. It has also been used in feature selection [7, 18] and model interpretation

[57, 60]. In Section 2.5, we define the second power index, the Banzhaf index with an example

and see the formula. All this will help on one hand to apply the Shapley Value in Chapter 4, and

on the other hand to develop more the Banzhaf index in Chapter 5.
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FEATURE SELECTION AND MACHINE LEARNING TECHNIQUES

In the two last decades, the dimensionality of datasets involved in data mining and machine

learning process has increased enormously. Data has become ubiquitous in many domains,

such as e-commerce, social media, bioinformatics, health care, transportation, etc. When

applying data mining and machine learning algorithms on high-dimensional data, a critical

issue is known as the curse of dimensionality [42]. Bellman coined this term in 1961; it refers to

the problems associated with the multivariate data analysis when the dimensionality increases.

Moreover, data of high dimensionality significantly increases the memory storage requirements

and computational costs for data analytics. Therefore, dimensionality reduction has become a

necessary step to make the analysis more manageable and to extract useful knowledge. The thesis

deal with a rule selection in credit card fraud data, we re-frame the problem in terms of Feature

Selection (FS) task for a classifier. For this reason, we study in this chapter the dimensionality

reduction or feature selection in the first part and some varieties of machine learning techniques

in the second part. We compare our method with some standard feature selection algorithms

from machine learning; the greedy methods.

3.1 Feature Selection

3.1.1 Dimensionality reduction

Feature extraction and feature selection are the two approaches available to reduce dimensional-

ity, and they are capable of improving learning performance, lowering computational complexity,

building better generalizable models, and decreasing required storage. Feature selection selects a

meaningful subset of the original features, hence discarding those irrelevant and redundant ones

[38]. Some well-known feature selection techniques include Greedy methods (Greedy forward
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CHAPTER 3. FEATURE SELECTION AND MACHINE LEARNING TECHNIQUES

Figure 3.1: Steps of feature selection

selection and greedy backward elimination) as refers by R. Caruana and D.Freitag in [16]. More-

over also by George H John et al. in [47]. We will refer to these methods as a benchmark in the

first part. On the other hand, feature extraction consists of mapping the original feature space

to a new space with lower dimensions [96]. The constructed feature space is usually a linear

(or nonlinear) combination of the original feature space. Some examples of feature extraction

methods include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),

Canonical Correlation Analysis (CCA). Feature selection, on the other hand, selects a meaningful

subset of the original features, hence discarding those irrelevant and redundant ones [38]. There

are other techniques such as Lasso - Least Absolute Shrinkage and Selection Operator, it was

first formulated by Robert Tibshirani [77] in 1996, Information Gain (2012) as refers in [6], and

Laplacian Score (2005) as refers by He et al. in [43]. Both the feature extraction and feature

selection have the advantages of improving learning performance, increasing computational

efficiency, decreasing memory storage requirements, and building more general models. Since

feature extraction builds a set of new features, further analysis is problematic as we cannot get

the physical meaning of these features in the transformed space. In contrast, by keeping some

original features, feature selection maintains physical meanings of the original features and

gives models better readability and interpretability. Therefore, feature selection is known to be

very effective in the context of high dimensional classification problems, enabling to improve

predictive performance as well as to obtain faster and more cost-effective predictors.

3.1.2 General categories of feature selection techniques

Feature selection methods are generally classified into three categories: supervised selection

[87, 97], unsupervised [27, 63], and semi-supervised selection [99]. The selection process of the

critical or essential features among all the features can be divided into five main steps described

in the following, see Figure 3.1 The decision made at each step is necessary for the performance

of the feature selection.
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• Step 1: Determine the search direction

The first step determines the starting point and the search direction. If the search process

starts with an empty set, then it is followed by iteratively adding new features into the

collection, then we have forward search strategy. If on the contrary, the search process

starts with the full set, then the features are iteratively eliminated from the collection,

the strategy refers to the backward elimination process. The alternative is to begin by

simultaneously adding and removing features in each iteration in this case; we have

bi-directional search.

• Step 2: Determine the search strategy

Given N the cardinality of the original feature set and M the cardinality of the target

feature subset (when it is known) with M < N, an exhaustive evaluation of feature subsets

involve
(N
M

)
combinations for a fixed value of M and 2N combinations if M must be optimized

as well. We know that this number of combinations is unfeasible for significant or even

moderated values of M and N. Therefore a search strategy must be used to direct the process

as it explores the space of the possible combination of features. A good search strategy

should provide a rapid convergence to a possible optimal solution, excellent computational

efficiency, and good search capability [31]. Search strategies are generally grouped into

three types (Exponential search or complete search [70], Randomized search [25, 33, 34, 84],

and sequential search or greedy hill-climbing search), we will develop the latest one in

the following section. It is the one we use for the comparison. Its complexity is polynomial

w.r.t the number of features; moreover, it is sensitive to feature iteration [31]. The common

sequential strategies are Sequential Forward Search also called Greedy Forward Search

(GFS) and Sequential backward Search a.k.a Greedy Backward Elimination (GBE).

• Step 3: Determine the objective function

The objective function intends to evaluate candidate subsets and returns an evaluation

of their "goodness," an indication used by the search strategy to select new candidates.

Originally, there are four types of objective functions in feature selection: filter, wrapper,

embedded and hybrid [55]. They are developed respectively in Sections 3.1.3.2, 3.1.3.3,

3.1.3.4, and 3.1.3.5.

• Step4: Define stopping criteria

This step defines when the feature selection process should stop. A good stopping criterion

typically leads to an efficient process, for example by avoiding over-fitting (the modelling

error observed when a function is too closely fit a limited set of data). By doing so it produces

a suitable feature subset with normal computational complexity. Some standard stopping

criteria are number of iterations, number of features.

• Step 5: Validate the result

There exist many error estimation methods for the evaluation of the effectiveness of a
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CHAPTER 3. FEATURE SELECTION AND MACHINE LEARNING TECHNIQUES

feature set in a context of classification or prediction. The most common is cross validation

and confusion matrix for performance measures. Others, less common are Jaccard Index

[52, 56] or Analysis of variance (ANOVA). In the cross-validation method, we have a

training set to train the classifier and a testing set for the final evaluation. The evaluation

is repeated on many samples so that the average error somehow approximates the expected

error across all possible samples [12].

3.1.3 Search strategies for feature selection

3.1.3.1 Greedy selection methods

The Greedy methods exploit an algorithmic paradigm based on the heuristic of intuitive judgment,

or merely common sense to seek answers which are hopefully close to the global optimum. In

this approach, the decision is made based on currently available information without worrying

about the effect of the current choice in the future. Greedy algorithms build a solution part by

part, choosing the next part in such a way, that it gives an immediate benefit. This approach

never reconsiders the choices taken previously. It is mainly used to solve optimization problems.

The greedy method is easy to implement and quite efficient in most of the cases. When a Greedy

Algorithm can solve a problem, then it is generally among the best methods to solve that problem

as it is in general, more efficient than other techniques like Dynamic Programming. There are

two main greedy selection methods: Greedy Forward Selection (GFS) and Greedy Backward

Elimination (GBE).

3.1.3.2 Filter methods

Filter methods rely on specific characteristics of data to assess the importance of features. They

are independent of any learning algorithms and they are also more efficient than wrapper

methods. The lack of a specific learning algorithm to guide the feature selection phase makes the

selected features not so useful for the target learning algorithms. Filter methods consist mainly of

two steps (see Figure 3.2): (1) feature importance is ranked by a feature score according to some

feature evaluation criteria. The feature importance evaluation process can either be univariate

or multivariate. In the univariate case, each feature is ranked individually regardless of other

features, while the multidimensional scheme ranks multiple features simultaneously. (2) The

lowly-ranked features are filtered out, and the remaining features are kept. Some advantages of

the filters: fast execution: generally, they involve a non-iterative computation on the dataset,

so the implementation is faster than a classifier training session; generality: the filter results

exhibit more generality since they evaluate the intrinsic properties rather than the interactions of

the data. A disadvantage of filters is the tendency of selecting large subsets: their objective

function is generally monotonic, so filters tend to output the full feature set as the optimal

solution.
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Figure 3.2: Filter Method

3.1.3.3 Wrapper methods

Wrappers are methods that rely on the predictive performance of a predefined learning algorithm

to evaluate the quality of the selected features. A wrapper method, given a specific learning

algorithm performs in two steps (see Figure 3.3): First, it searches for a subset of features;

then, it evaluates the selected features. It repeats the two steps until some stopping criteria

are satisfied or the desired performance is obtained. It can be observed on the workflow that

the searching component first generates a subset of features, and then the learning algorithm

acts as a black box to evaluate the quality of the features based on the learning performance.

The whole process goes on iteratively until the highest learning performance is achieved. The

feature subset with the most top learning performance is retained as the selected features.

Unfortunately, a known issue of wrapper methods is that the search space for d features is 2d,

which makes the exhaustive search impractical when d is large. Therefore, many different search

strategies such as sequential search [38], best first search [51], genetic algorithms [34] proposed

to yield a local optimum learning performance. However, the search space remains huge for

high-dimensional datasets. Consequently, wrapper methods are seldom used in practice. Wrapper

advantages: generalization ability: since wrappers typically use cross-validation measure

of predictive accuracy, they can avoid over-fitting; better accuracy: since they have specific

interaction between the classifier and the dataset, they achieve better recognition rates than

filters. Some drawback: no generalization: the solution of the wrapper is tied to the bias of the

classifier used in the evaluation function. Selected features are specific to the classifier under

consideration. Execution speed: if cross-validation is used, the wrapper must train several

classifiers for each feature subset, by doing so, the method can be unfeasible for some intensive

techniques.
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Figure 3.3: Wrapper Method

3.1.3.4 Embedded methods

Even if filter methods are computationally efficient, (they select features that are independent

of any learning algorithms), they fail to consider the bias of the learning algorithms, and the

selected features may not be optimal for specific learning tasks. Wrapper methods, on the

contrary, evaluate the importance of features for a given learning algorithm and can obtain

better predictive accuracy. Due to the exponential search space, however, it is computationally

intractable when the feature dimension is very high. Embedded methods are a sort of trade-off

solution between filter and wrapper methods. They embed the feature selection with model

learning (see Figure 3.4). Thus they inherit the merits of both wrapper and filter methods: first

by including the interactions with the learning algorithm; and then, they are also more efficient

than the wrapper methods since they do not need the iterative feature evaluation. The most

well-known used embedded methods are the regularization models ( LASSO (Least Absolute

Shrinkage and Selection Operator) [77] or Ridge Regression [44]) which target to fit a learning

model by minimizing the fitting errors and forcing the feature coefficients to be less or equal

than zero. Afterwards, both the regularization model and the selected feature sets represent the

results.
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Figure 3.4: Embedded Method

3.1.3.5 Hybrid methods

Hybrid and the ensemble methods can represent the latest developments in feature selection

methods. The hybrid method is formed by combining two different methods of the same criterion

such as filter and wrapper, or two feature selection approaches to inherit the advantages of both

methods (see Figure 3.5). In doing so, the hybrid method combines the complementary strengths

of both methods [64] and try to improve the efficiency and prediction performance by using

different evaluation criteria. A popular hybrid method is the combination of filter and wrapper

method [72].

Figure 3.5: Hybrid Method
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3.1.3.6 Ensemble methods

Ensemble methods are methods that aim to produce an aggregated result constructed from

a group of feature subsets [83]. The purpose of this method is to tackle perturbation and the

instability issues in many feature selection algorithms. Hence the method is based on different

sub-sampling strategies where a particular feature selection method is run on several sub-

samples, and the output features are merged to form a more stable subset see Figure 3.6. It is

more flexible and robust when dealing with high dimensional data giving that the performance

of feature selection no longer depends on a single selected subset. Moreover, ensemble methods

provide a better approximation to the optimal subset or ranking of features by aggregating the

outputs of several feature selectors. Further details on the ensemble feature selection can be

found in [5].

Figure 3.6: Ensemble Method

3.2 Some Machine Learning techniques

Machine learning is, at a high-level the study of teaching a computer program or algorithm how

to improve upon a set of a given task. While on the theoretical side, machine learning can be

viewed through the lens of the mathematical modelling of how the process works. In practical

terms, it is the study of how to build applications that exhibit an iterative improvement. In this

chapter, we expose the different types of machine learning algorithms before seeing in detail

the Semi-supervised machine learning (SSL). Machine Learning (ML) was born from pattern

recognition and the idea that computers can learn (without being programmed) to perform specific

tasks. As models are exposed to new data, the iterative behaviour of ML is essential because they

can independently adapt, earning from previous computations to produce repeatable, reliable

decisions and results. The interest in ML is due to some factors like availability of a massive

volume of data, more powerful and cheaper computational processing added to and affordable

data storage. Supervised learning and unsupervised learning are two of the most widely adopted
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machine learning methods, but there is also the Semi-Supervised Learning method (SSL) which

is the main object of our concern in the second part of this thesis.

3.2.1 Supervised Learning

The most popular paradigm for machine learning is Supervised Learning; It is easy to understand:

we feed a learning algorithm with a given data in the form of example-label pairs. So the learning

algorithm receives a set of inputs with their corresponding correct outputs. Through regression

or classification techniques, the algorithm will learn and find the exact nature of the relationship

between examples and their labels when fully trained. The supervised learning algorithm will

then be able to observe a new, never-before-seen example and predict the excellent label. It

is highly focused on a single task, feeding more cases to the algorithm until it can correctly

perform on that task; for this reason, it often characterized as task-oriented. This learning type is

mostly encountered for the reason that it is exhibited in many standard applications for instance

(Advertisement popularity, spam classification or face recognition).

3.2.1.1 Supervised feature selection

For classification or regression problems, supervised feature selection is generally used — this

for selecting a subset of features that are discriminative w.r.t the classes.- The feature relevance

is usually assessed due to the existence of class labels, via its correlation with class labels.

The training phase of the classification depends on feature selection. After splitting the data

into training and testing sets, classifiers are trained based on a subset of features selected

by supervised feature selection. The feature selection phase can be independent of learning

algorithms (filter methods), or it may take advantage of the learning performance of a classifier

to assess the selected features (wrapper methods). Finally, the trained classifier predicts class

labels of samples in the test set on the selected features.

3.2.2 Unsupervised Learning

Unsupervised learning is quite the opposite of the supervised learning; in this case, the algorithm

would be fed with a massive amount of data, there are no output categories based on which the

algorithm can model relationships. The algorithm uses some techniques on the input data to

mine for rules and try to detect patterns. This type of learning works well with transactional

data; for example, identifying segments of customers who have similar attributes. Given that

unsupervised learning is based on the data and its properties, we say that it is data-driven. Some

areas we might see unsupervised learning are: recommender systems, buying habits.
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3.2.2.1 Unsupervised feature selection

For clustering problems, unsupervised feature selection is generally used. Since acquiring la-

belled data is particularly expensive, unsupervised feature selection on unlabelled data has

recently gained considerable attention. Unsupervised feature selection methods seek alternative

criteria, due to the lack of label information to evaluate feature importance. Such alternatives

criteria are data similarity and local discriminative information to define feature relevance.

Unsupervised feature selection, differently from supervised feature selection, uses all instances

that are available in the feature selection phase. Also, the feature selection phase is independent

of the unsupervised learning algorithms (filter methods), or it relies on the learning algorithm to

better select the features (wrapper methods). After the feature selection phase, it outputs the

cluster structure of all data samples on the selected features by using a clustering algorithm.

3.2.3 Semi-supervised Learning (SSL)

Semi-supervised learning, as the name suggests, is somewhere between unsupervised and

supervised learning. The strategies of semi-supervised learning are based on either supervised or

unsupervised learning, including some additional information from the other learning paradigm.

Semi-supervised learning has tremendous value, in fact, in most of the situations, labelled

data are tough to collect, by contrast, in the real-world projects, unlabelled data are easier to

access than labelled ones because they require less expertise, effort and time- consumption.

Therefore semi-supervised learning is an extension of both supervised and unsupervised learning

by including additional information.

3.2.3.1 Semi-supervised feature selection

Unsupervised feature selection algorithms do not need any label information. We know that in

many real-world applications, we often have a small number of labelled samples and a large

number of unlabelled samples. In this context, both supervised and unsupervised feature selection

algorithms do not work very well. The small number of labelled samples in the supervised

methods may be insufficient to provide correlation information of features; while unsupervised

methods ignore class labels which could provide useful information to discriminate different

classes. So, it could be helpful to develop semi-supervised methods by exploiting both labelled and

unlabelled samples. A general framework of semi-supervised feature selection is similar to the

framework of supervised feature selection except that in semi-supervised methods only partial

label information is available.

3.2.4 Semi-Supervised learning problems

It comes natural asking the following question: is semi-supervised learning meaningful? In other

words: can we expect a more accurate prediction compared to a supervised algorithm using only
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labelled data, taking into account non-labelled points? The general answer is "yes" to an essential

prerequisite: the dissemination of examples, which untagged data will help to elucidate, will be

relevant to the classification problem. In a mathematical formulation, one could say that the

knowledge on p(x) that one gain through untagged data must carry useful information into the

inference of p(y|x), otherwise, semi-supervised learning will not produce any improvement over

supervised learning. Besides, it may even happen that the use of unlabelled data misleads the

inference thus degrading the accuracy of the forecast; One should not be too surprised that for

semi-supervised learning to work, certain assumptions need to be verified. Moreover, supervised

learning must also be based on assumptions. Some of the most popular assumptions are:

• The smoothing hypothesis: it can be formulated as follows: If two points x1, x2 are close,

it should be the same corresponding outputs y1, y2. The assumption is that the marking

function is smoother in high-density regions than in the low-density areas. By transitivity,

this hypothesis implies that if a path of high density connects two points, their outputs will

probably be close. If, on the other hand, they are separated by a region of low density, their

outputs do not necessarily have to be close.

• The cluster hypothesis: If the points belong to the same cluster, they are likely to be of the

same class. Note that the cluster assumption does not imply that each class forms a single

compact cluster: it merely means that we typically do not observe the objects of two distinct

classes in the same cluster. The equivalence of this assumption states that: the decision

limit must be in a low-density region. Moreover, this equivalence is easy to see: a decision

boundary in a high-density area would cut a cluster into two different classes; many objects

of different classes in the same cluster would require the decision limit to cut the cluster,

that is, to go through a high-density region.

• The different assumption: it is a different but related hypothesis which forms the ba-

sis of several semi-supervised learning methods. It can be formulated as follows: High

dimensionality data are (approximately) on a small variety.

Clearly, without such assumptions, it would never be possible to generalize from a finite

training set to a set of infinitely unseen test cases.

3.2.5 Self-training

Self-training is probably the earliest idea about using unlabelled data in classification; it is

also known as self-learning because the learning process uses its own predictions to teach itself

(see Figure. 3.7). Depending on the nature of his predictor, self-training can be either inductive

or transductive. Self-training can be considered as one way to address the scarcity of labelled

data. The main idea is to first train the predictor f on the labelled data (L). The function f is

then used to predict the labels for the unlabelled data (U). A subset S of the unlabelled data,
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those predicted with higher confidence, together with their predicted labels, are then selected to

augment the labelled data. Regularly, S consists of the few unlabelled instances. The function

f is then re-trained on the now more extensive set of labelled data, and the procedure repeats.

It is possible to S being the complete unlabelled dataset, and the assigned labels on unlabelled

instances can vary from iteration to iteration.

Figure 3.7: Self-training process.

The significant self-training advantages are due to his simplicity and the fact that it is a

wrapper method. It means that the choice of the learner for the predictor is entirely free. The

learner can be a simple SVM algorithm or another classifier. The procedure ’wraps’ around the
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learner without changing its inner workings. It is essential for many real-world tasks. On the

other hand, an early mistake made by the predictor can reinforce itself by generating incorrectly

labelled data with the consequence that re-training with this data will lead to an even worse

predictor in the next iteration. Some heuristics have been proposed for this problem. Semi-

supervised learning does not always help; it is at least what multiple researchers have informally

noted. Little is written about, except a few papers like [21]. ’Publication bias’ could be the reason:

given that negative results tend not to be published. So we need further study to understand

when semi-supervised learning works. A well-known early example of self-training is Yarowsky’s

word sense disambiguation algorithm [98]. For specific learning algorithms, there are some

theoretical analyses of self-training [22, 39]. However, in general, self-training is challenging to

analyze. Here are some example applications of self-training [74, 75].

3.3 Summary

In this chapter, we provided the different categories and methods of feature selection, providing

in the same occasion tools to better understand feature selection, which is one of the key concepts

of this thesis. Like we can expect, feature selection will come back in our discussion in Chapters

4 and 5. In these cases, we will apply it to our use case dataset on fraud detection.

We also define some machine learning techniques in order to introduce self-training, this

semi-supervised machine learning technique we will use in Chapter 5 to improve the classification

when ones have a large dataset with just a few proportions of this dataset annotated.
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Part III

Power Index and Feature Selection : Application
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4
MANAGING A POOL OF RULES FOR CREDIT CARD FRAUD

DETECTION BY A GAME THEORY BASED APPROACH

This chapter exposes the first contribution based on real credit card fraud transactions.

In general, fraud detection systems consist of an automatic system made by (if-then-

else rules) which control any transaction and trigger an alert in the case of suspicious

transaction. These automatic credit card transaction classification are divided into two phases

(the real-time phase and the near-real-time phase). In the Real-Time (RT) phase the system

decides quickly, based on the bare transaction information, whether to authorize the transaction;

in the subsequent Near-Real-Time (NRT) phase, the system enacts a slower ex-post evaluation,

based on a larger information context. The classification rules in the NRT phase trigger alerts

on suspicious transactions, which are transferred to human investigators for final assessment.

The management criteria used to select the rules, to be kept operational in the NRT pool, are

traditionally based mostly on the performance of individual rules, considered in isolation; this

approach disregards the non-additivity of the rules (aggregating rules with high individual

precision does not necessarily make a high-precision pool). In this work, we propose to apply,

to the rule selection for the NRT phase, an approach which assigns a normalized score to the

individual rule, quantifying the rule influence on the overall performance of the pool. As a score

we propose to use a power-index developed within Coalitional Game Theory, the Shapley Value

(SV) introduced in Chapter 2, summarizing the performance in collaboration. Such score has

two main applications: 1) it can be used, within the periodic rule assessment process, to support

the decision of whether to keep or drop the rule from the pool; 2) it can be used to select the k

top-ranked rules, so as to work with a more compact rule set. Using real-world credit card fraud

data containing approximately 300 rules and 3×105 transactions records, we show that: 1) this

score fares better – in granting the performance of the pool – than the one assessing the rules
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in isolation; 2) that the same performance of the whole pool can be achieved keeping only one

tenth of the rules – the top-k SV-ranked rules. We observe that the latter application can be

re-framed in terms of Feature Selection (FS) task for a classifier: we show that our approach is

comparable with respect to benchmark FS algorithms, but argue that it presents an advantage

for the management, consisting of the assignment of a normalized score to the individual rule.

This is not the case for most FS algorithms, which only focus on yielding a high-performance

feature-set solution.

4.1 Introduction

4.1.1 Context and problem

In the latest years, enterprises and financial institutions have been faced with an ever-growing

presence of credit card payment fraudulent activities. Since the huge volume of online transac-

tions, and the high dimensionality of the corresponding records, makes it unfeasible for human

experts to check for anomalies, systems for online automatic fraud detection are used to contrast

this phenomenon. In those systems, an automatic fraud detection engine scans all the incoming

transactions for suspicious patterns. Such patterns are encoded under the form of rules. Here is

an example of rule " if a cardholder runs a transaction for a given amount in a given country and,

within the next day, (s)he runs another transaction for another given amount in another given

country, then trigger an action".

In the typical online automatic fraud detection system there are two phases: the Real-Time

(RT) phase and the Near-Real-Time (NRT) phase. In the RT phase, the system decides quickly

whether to block a transaction based on the bare transaction information. In the subsequent

NRT phase, the system enacts a slower ex-post evaluation based on a larger information context,

including linked data. The classification rules in the NRT phase can trigger an alert on suspicious

transactions: those transactions are transferred to human investigators for final assessment. The

investigators’ task consists of 1) choosing those among the submitted transactions to investigate

and 2) carrying out a rapid investigation on them (this may include a phone call or a text message

to the card holder), so as to assess the alert as a legitimate transaction or a fraudulent one. If

the transaction is judged fraudulent, the corresponding credit card is blocked. We focus on the

management of the rules for the NRT phase.

The NRT phase rules can be created either on the basis of expert knowledge or on the basis of

historical data. Expert driven rules are formulated by credit card fraud experts and are meant to

be specific for a given fraud scenario, whereas data driven rules are learned from the historical

data, through Machine Learning methods. The rules that are operational at a given moment in

time are gathered in a rule-pool and run simultaneously on every incoming transaction. If at

least one of the rules detects a suspicious transaction, an alert is generated (in other words, the

set of rules are combined by means of the OR operator).
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It is very important to point out that, although the alert generation process is a classification

process, it is a peculiar one: it is not aimed at saying the final word on the transaction but is

rather geared towards providing a suitable input to the subsequent investigation process. As

such, it can afford unusual trade-offs: it will try to achieve a high recall level at the price of

a lower precision. Indeed the investigators will complete the assessment: using human expert

judgment, they will improve the precision up to very high levels. The traditional approach is

the following: try to build the rule pool with the rules that individually have high precision, and

aggregate them by an OR operator. The higher the number of rules, the higher, in general, the

coverage of the fraud cases, i.e. the higher the recall. Of course, the volume of alerts has not to be

too high, because it would exceed the processing capacity of the experts, hence rules with low

precision and too high recall should be avoided.

It is also intuitive that – due to the natural shift in the fraudulent patterns – the composition

of the rule pool needs to be continuously monitored and re-tuned. This pertains to the rule

management process and is enacted by human experts that periodically take care of rule assess-

ment, rule addition, rule removal, etc., so as to maintain or achieve the desired classification

performance and efficiency. The assessment is carried on considering a rule at a time. For this

reason, the number of rules should not be too high.

In short, the overall process requirements demand a good computational efficiency, agility

in the management and a peculiar trade-off in the classification performance of the OR-ed rule

pool, aimed at making the downstream expert assessment more effective. The equilibrium among

those different requirements can be maintained only by continuous monitoring and re-tuning.

4.1.2 Contributions

In this work, we focus neither on the design nor on the discovery of new rules, nor on the

computational efficiency of the individual rules, but rather on supporting the efficiency of the

process of rule management for the NRT phase.

The current praxis establishes that the rule-managers decide to remove an existing rule or

to add a new one to cover a novel fraudulent scenario based on reports about the rule precision

and recall computing using recent data. It is important to notice that in this assessment process

the managers consider the performance of the rule as if it were run in isolation: the fact that in

correspondence to a fraudulent transaction the rule was the only one triggering an alert or that

there were some other rules firing, is not taken into account.

We propose a rule evaluation and selection procedure that quantifies the performance of a

rule "in collaboration" with the others, taking into account possible redundancy. This kind of

performance is quantified by a score. Given the same performance, such score will be higher if

the rule is non-redundant, lower if it is redundant with other rules, or sets of rules.

Notice that the contribution of the individual rule to the rule pool cannot be quantified

correctly by means of the simple added value (a.k.a. marginal contribution) of the rule to the
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pool (defined as the difference between the performance of the pool including that rule and the

performance of the pool without that rule) because the performance is non-additive.

The relevant performance metric we propose is inspired by Coalitional Game Theory (CGT)

and interprets each rule of the pool as a player of a collaborative game: the metric quantifies the

contribution of the player in attaining the goal of the OR-ed pool (measured in terms of precision,

recall or F-score). Such a CGT inspired metric is the Shapley Value introduced in Chapter 2 and

is defined by a suitably weighted average of the added values of a rule with respect to all the

possible coalitions of rules (see Section 2.2.1) for the detailed definition.

Such score has several advantages. First, it provides the rule managers with a synthetic

account of the actual usefulness of the rule in the fraud detection process. Second, it can be used

to select the k top-ranked rules, so as to work with a performing and more compact rule set: a

lower number of operational rules requires a lower maintenance effort.

We observe that the problem of selecting the set of rules operational at a given time – then

to be OR-ed for flagging a transaction as suspicious – can be mapped into a special version of a

Feature Selection (FS) problem: if we consider that the OR aggregator acts as a fixed-by-design

classifier), each boolean rule can be considered a boolean-input feature for such classifier. To

this task, one could apply the state-of-the-art feature selection algorithms. We use the Greedy

Forward Selection (GFS) algorithm as a benchmark and show that our method has comparable

performance: we argue that the advantage of our method is that it associates a normalized score

to the individual "features", whereas, typically, FS algorithms focus on providing an optimal

feature set, and do not yield normalized importance scores.

Notice, in passing, that the exact computation of the Shapley value is exponential, and that

one can replace such a computation with a sampling-based estimate. We show that also the

computational cost of this approach is competitive even with respect to one of Greedy Forward

Selection.

We validate our approach on a real-world credit card fraud transaction dataset consisting of

about 3.5×105 transactions provided by an industrial partner (Atos Worldline) [1] . Each record

contains only a generic incremental ID for the transaction, its class (fraudulent/legitimate) and

a Boolean value for each rule telling whether it had been triggered. No other attributes of the

transactions were available.

4.1.3 Credit Card fraud detection

The automatic detection of frauds in credit card transactions has been subject to extensive

research. The literature mostly focuses on the discovery of new rules from data (see for instance

[11], or [23] and references therein). Even the data from our industrial partners were also used,

in other recent works, for studies oriented to the discovery of fraudulent patterns, for instance,

in the structure of transaction sequences [50], using Hidden Markov Models [59], exploiting

semantic knowledge, inserted using graph embedding [100], using active learning [15]. Most of
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these cited work above have been done by the members of our team. Also, looking for the optimal

fusion of classifiers [14]. The optimal fusion of classifiers in credit card fraud detection was also

investigated by Vergara et al. in [76, 94].

The contribution of the present work does not address the problem of fraud discovery, nor the

optimal fusion of the different discovered rules (in the NRT phase they are always aggregated

in OR), but rather the problem of supporting the rule management with suitable summary

information about individual rules. We are not aware of any research paper discussing such a

pool oriented approach to the process of rule management for credit card fraud detection.

4.1.4 Feature Selection

In the present work, we argue that power indexes can be used to rank the rules and help to reduce

the size of the rule pool. Selecting the rules is analogous to the problem of Feature Selection

(FS) for classifiers, provided that one assimilates a rule to a feature and the OR aggregator to a

classifier. Power indexes have been already used for supporting FS, in some works: the Shapley

Value was used for FS by Cohen, Dror and Ruppin [17, 18]. Their works, however, differ from

ours under several aspects. Their papers focus on the general task of FS, aimed at optimizing the

process of learning classifiers (they experiment with SVMs, random forest, Bayesian Classifiers

and so on), whereas our classifier is fixed (the OR of Boolean output rules); they do not use the

basic Shapley Value computation and ranking, but rather a Greedy Backward Selection algorithm,

the Contribution Selection Algorithm (a backward elimination algorithm); their algorithm works

by maximizing the Shapley Value of the accuracy, so as to achieve high accuracy in the final

classifier; on the contrary, we work with the Shapley Value with respect to the precision and, by

aggregation in OR, we build a high recall classifier. To reduce the computational complexity, they

make the apriori assumption that the size d of significant interactions between features is much

smaller than the number of features, n, i.e. they use d << n. We do not make such an assumption.

Variations around these ideas can be found in [35].

In this thesis, we compare the effect of the Shapley Value in supporting Feature Selection

to other standard FS algorithms to show that its results are comparable to those algorithms in

terms of performance, but stress that most FS algorithms do not provide a normalized score to

the feature, which could be used for feature management.

4.1.5 Interpretation of model prediction

The Shapley Value has been used also in the context of explanation and interpretation of predic-

tion models. The earliest work using the Shapley Value to address such problem of interpretability

is the one made by Lipovetsky and Conklin in [57], who use the SV to quantify the relative

importance of the predictors in linear regression and show that the approach is robust with

respect to the presence of collinearity.
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Lundberg and Lee in [60] address the problem of interpretability of the results of a prediction

model. They consider an explanation model g to be a simple approximation of a prediction

model f and focus on local additive explanation models: the local aspect corresponds to the

fact that they aim at explaining a prediction f (x) based on a single input x; the additivity

implies that the explanation model attributes an effect to each feature and summing the effect of

each feature attribution one gets the approximation of the original model; they show that the

Shapley Value allows deriving a class of additive importance measures fulfilling a set of desirable

requirements. The accent of the paper is on formulating explanation models: the authors define a

class of explanation models which unifies six major methods (the class is named additive feature

attribution methods) and they validate their work by means of a user study showing that the

approach is aligned with human intuition.

An earlier work by Strumbelj and Kononenko [91] also address the problem of the explanation

of prediction models. They focus on the situational importance of a feature: this is defined as the

difference between what a feature contributes in average and what it contributes when it takes a

specific value (the average contribution represents the contribution when the value of a feature

is not known or missing). Such a concept represents a useful explanation only if the prediction

model is additive. The authors find that a convenient explanation model for non-additive cases is

provided by a weighted average of the situational importance with respect to all the possible sets

of missing features. The solution turns out to correspond to the Shapley Value of the situational

importance.

Both the works by Lundberg and Lee and by Strumbelj and Kononenko are far from ours in

that they focus on local explanations (in our setting this would be equivalent to explaining the

predicted class of a single transaction based on the individual rules): we, on the contrary focus

on the average impact of the features on the overall performance (the impact on precision and

recall). The work by Lundberg and Lee does not address the problem of editing the set of input

features and has no explicit link with the fraud detection domain; no suggestion is made about

exploiting the explanation for feature selection purposes.

4.2 The fraud detection process and its management

In this section, we describe a real-world fraud-detection system – similar to the one routinely used

by the industrial partner that provided the dataset – and the corresponding rule management

process.

4.2.1 The fraud detection process

A credit card transaction involves mainly two actors: a cardholder and a merchant; for each of

them, third parties are responsible for managing the transactions. For instance, issuing banks

and acquiring banks are respectively involved at the cardholder side and the merchant side of
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the transactions. The detection of fraud is performed in two cases: fraud detection at the issuing

side aims at protecting the cardholder from misuse of information from his/her card and from an

unauthorized payment; fraud detection at the acquiring side aims at protecting merchants from

stolen and counterfeit card frauds. We focus on the issuing side, but the management strategy

proposed in this research could easily be applied in fraud detection by the acquiring side. The

fraud detection system is triggered by the credit card payment process: in correspondence to

a card payment attempt, the credit card fraud detection process is activated twice: before the

authorization for payment and after. In the first case, one speaks of real time (RT) fraud detection

phase, in the second of near real time (NRT) phase. (see Figure 1.1).

By running a fraud detection process before the authorization, one has the opportunity to

block a fraudulent payment before it is accepted. To allow effective use of RT fraud detection, the

system must be: i) fast (RT fraud detection must typically be done in ∼ 200ms) and ii) precise (a

false positive implies that we refuse a legitimate transaction, thus causing an inconvenience to

the customer).

Rules in an RT fraud detection engine are typically if-then(-else) rules designed by human

investigators to block payment requests that are clearly fraud attempts. Due to the speed

constraint, these rules use mainly information that is available at the time of the transaction

request and do little use of cardholder profiles. The card associated with an allegedly fraudulent

transaction is automatically blocked to prevent future frauds. All transactions passing the RT

fraud detection phase without an alert are authorized.

The fraud detection process, however, proceeds beyond this point: all authorized transactions

are further analyzed by the NRT fraud detection engine. As the transaction is already accepted,

the NRT fraud detection system is allowed more time to make a decision (typically ∼ 1 minute).

The system can augment the transaction data with further features and match the current

transaction with the previous purchases and the profile of the cardholder. The augmented

transaction data can include features like the average expenditure or the average number of

transactions on the same day. It is also possible to add advanced features [9] for instance obtained

by graph mining [53] or extracted from Long Short-Term Memory (LSTM) models [50].

The features-based rules in the NRT context can still be simple if-then(-else) rules designed

by human investigators, or they can be the result of data analytics/machine learning. The NRT

rules are simultaneously executed, and any transaction firing at least one of these NRT rules

produces an alert i.e., (they are aggregated in OR).

Each alert generated by the fraud detection system is submitted to the attention of a human

investigator, an expert in fraud detection. The experts estimate with a high degree of confidence

whether an alert is a true positive or a false positive.

All the feedback from the investigators is used by the system i) to automatically retrain the

machine learning models, if needed, and ii) to generate management oriented reports: these

reports are used by the investigators to manage the pool of rules.
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4.2.2 The management process for the NRT phase rules

As mentioned in Chapter 1, Section 1.2 , there are two main types of rules, expert driven

rules which are simple if-then(-else) rules and data driven rules, obtained by machine learning

techniques applied on historical data-sets. The fraud detection rule pool can contain hundreds of

rules, thus management is an important component of the fraud detection process. Based on the

management oriented reports, the investigators can decide to modify/remove an existing rule or

to add a new rule in production in order to cover a new fraud scenario.

Classical metrics used in assessing a rule are precision and recall and Fβ-score (a weighted

harmonic average of the former two). Other metrics are commonly used like the speed of detection

(i.e. the number of fraudulent transactions before we produce an alert), but they are not considered

in this paper, due to the fact that one cannot compute these metrics with the data provided by

our industrial partner.

In the standard approach, these metrics are used to assess the rules individually, i.e. in

isolation, independently of the performance of the other rules in the pool. Within this approach,

one typically ranks rules according to their performance, measured in isolation and takes the

removal/update/insertion decisions accordingly: low-rank rules are likely to be deleted, high-rank

rules, if already in the pool, are preserved, and if not in the pool, are inserted.

This approach implicitly assumes that the best set of rules is obtained by individual rule

optimization. As we are going to see, this is often not the case. Individual-level performance and

pool-level performance are indeed correlated, but individual rule performances do not add up to

the pool-level performance, because a rule can be redundant with respect to another rule or a set

of other rules.

We argue that one should not require from a rule to be the best with respect to a performance

metric computed assessing the rule in isolation: one should, rather, require the rule to best

contribute to the rule-pool performance metric. If one can rank the rules according to their

contribution to the pool performance, the elimination of lower ranked rules and the insertion of

higher ranked rules will be more effective in improving the pool performance.

The fact that the rules that are “individually best” do not add up to the “best rule-pool” is

intrinsically tied to a fundamental property of the system: the non-additivity of the contributions

to the different performance metrics. Given a set of rules, different performance metrics may

display different degrees of non-additivity; however, in general, the performance metrics used in

practical assessment (precision, recall, F-score, etc.) are all non-additive.

4.3 The Shapley Value approach to the rule management
problem

We discussed the approach to quantifying individual contributions based on the simple marginal

contribution in section 2.2.2, hereafter we discuss the approach based on the Shapley Value,
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a computationally costly metrics, which, however, can be estimated accurately enough by a

permutation sampling method. Among the problems faced by rule managers during their activities

are those that can be epitomized in the comparison of a rule to the other rules in terms of some

assessment metrics, so as to take actions and edit the rule pool. For instance, if a newly created

rule – not yet operational – turns out to be – according to the chosen metric (computed on

historical data) – relatively good, the rule managers can consider inserting the rule into the pool.

On the other hand, monitoring the performance of the operational rules has a considerable time

cost, thus the pool should not be too extended: if an operational rule turns out to be worse than

other rules the managers can consider the possibility of removing it from the pool.

All those choices are based on relative comparisons among rules.

4.3.1 Traditional approach: individual performance ranking

According to the current practice, the rules are ranked according to their individual precision p,

individual recall r, and individual Fβ-score, the latter being defined by

Fβ = (1+β2)
p r

β2 p+ r

as introduce in Section 1.2.3, when β2 = 1, the same importance is attributed to precision and

recall (i.e., to type I and type II errors): this metric is called F1-score or simply F-score; by

convention when β2 = 2 or β2 = 0.5 one talks respectively of F2-score and F0.5-score.

Typically, thus, the rule is run on a representative historical transaction dataset and the

performance metrics are computed. After this assessment, decisions are taken about whether to

use the rule or not in the pool.

Wishing to create a performing rule pool with a subset of k rules, within the traditional

approach one would rank the rules based on the individual performance and then one would keep

the top-k performing rules. The algorithm 1R for such a pool-building prescription is illustrated

by the pseudo-code Algorithm 1. There, the base-metric µ represents either p, or r, or Fβ. The

algorithm simply computes the performance metrics of each rule (used in isolation), ranks the

rules based on such performance and keeps the set of k top-performing rules.

4.3.2 Shapley Value based ranking

The approach we propose is different in the following respects. We suggest

• to assess the performance of a rule not based on its individual rule performance, but rather

on its contribution to the pool performance

• to quantify such a contribution by means of the rule’s Shapley value with respect to the

pool performance

• to estimate such a Shapley Value by permutation sampling
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Algorithm 1: Algorithm 1R to build a pool of k rules by assessing of the rules perfor-
mance metric µ in isolation

function :1R (D,R,k,µ)
input :D the dataset with labels
input :R the rules
input :k the desired size of the pool
input :µ the reference metric

1 for i ∈ R do
2 µ[i]← compute the performance metric µ of rule i on D
3 . Computing the performance metrics of each rule
4 end
5 S ← sort the rule base on their µ . Ranking the rules on the base of the computed

performance metrics
6 T ← S[1..k] . keeping the set of k top-performing rules
7 return T
8 end function

• to rank the current operational rules according to the estimated Shapley Value

Once this is done, one can choose one of two options. The first consists of choosing the size k of the

pool by making a trade-off between the F-score of the OR-ed pool and the size k (by pruning rules

with the lowest Shapley Value). Alternatively one can set a predefined threshold k and keep only

the highest performance k rules. To demonstrate our approach we develop the latter alternative.

The algorithm, denoted by SV, is illustrated by the pseudo-code Algorithm 2. The algorithm

estimates for each rule, by means of permutation sampling, the Shapley Value with respect to

the performance metrics, ranks the rules based on their Shapley Value and keeps the set of k

top-performing rules.

4.3.2.1 Forward Selection based on the Shapley Value

A subtle point to consider with respect to the Shapley Value is the following. When the "game" is

played by a pool of n players/rules, a rule i is endowed with a given Shapley Value. However, if

we drop from the pool the rule endowed with the least Shapley Value, the game changes: at that

point, in general, also does so the Shapley Value of rule i in the new game. If this is the case, also

the ranking of the rules may change: the set of the top-k Shapley Value rules in the whole n-rule

pool, is not the same that one would obtain, by dropping the least-SV rules one at a time and

recomputing every time the SV.

Since we are aiming at creating the best-SV team of k rules, to be conservative, we can replace

the one-time estimate of the SV by a repeated re-computation of the SV and dropping of the

rule with lowest SV, i.e. by a backward elimination algorithm, based on SV. Similarly, we could

replace the one-time estimate of the SV by an incremental construction of the pool structured as
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Algorithm 2: Algorithm SV to build the rule pool based on the Shapley Value of the
rules with respect to performance metric µ

function :SV (D,R,k,µ, N)
input :D the dataset with labels
input :R the rules
input :k the desired size of the pool
input :µ the reference metric definition
input :N number of permutations used in the sampling

output : T list of original rules indexes, sorted by their Sha
output :Y Sha values for the rules in T

1 for l ∈ 1..N do
2 π← a random Permutation of R . Permutation sampling (for random permutation

generation, see algorithm 3)
3 for i ∈ 1..R do
4 total_score_of [i]← 0
5 end
6 oldscore ← 0
7 U ←;
8 for j ∈ 1..R do
9 i ←π[ j]

10 U ←U ∪ i

11 newscore ← compute the classification score µU . Computing classification
score for each permutation

12 ∆← newscore− oldscore
13 tot_score_of [i]← tot_score_of [i]+∆ . Computing marginal contribution of

each rule in each permutation
14 oldscore ← newscore
15 end
16 end
17 for i ∈ 1..R do
18 Sha[i]← tot_score_of [i]/N . Computing the Shapley for each rule
19 end

20 S ← sort the rules based on their Sha . Ranking the rules on the base of the computed
performance metrics

21 T ← S[1..k] . Sorting rules indexes by their performance metrics
22 Y ← Sha[T] . Sorting performance metrics of the rules
23 return T,Y
24 end function

69

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



CHAPTER 4. MANAGING A POOL OF RULES FOR CREDIT CARD FRAUD DETECTION BY A
GAME THEORY BASED APPROACH

a forward selection process. We focus on the latter procedure. This procedure, denoted by SVFS

(Shapley Value based Forward Selection), is formalized in Algorithm 4. Notice that the algorithm

has the same general structure that of the Greedy Forward Selection (GFS) algorithm described

below, in Algorithm 5, except that in SVFS, at each round, the chosen rule is not the one that

determines the highest increase in pool performance, but rather the one that has the highest

Shapley Value in the game determined by the current rule pool.

Computing the random permutation We use the Knuth shuffle algorithm [69] for generat-

ing random permutation in the range [1..n]

Algorithm 3: RandomPermutation (n)
function :RandomPermutation(n)

input : n number of elements in the permutation

output :a random permutation

1 P ← [1, ...,n]

2 for i ∈ [1,n−1] do
3 j ← RandomInteger(i,n) . Generation of random integer in the range i..n

4 swap(Pi, P j)

5 end
6 return P

7 end function

Our findings, reported in the next section, show that the results obtained using SV (Algorithm

2) and those obtained using SVFS (Algorithm 4) on our dataset, yield essentially the same results,

whereas they perform generally better than 1R (Algorithm 1).

4.3.3 Computational complexity and execution time

In terms of computational complexity and actual execution time, the above-described algorithms

are very different. We will see that SV is not the fastest algorithm. However, execution times are

less important for this kind of application, since, in practical settings, the reassessment of the

rules in the pool is typically performed once or twice a month.

Let us denote by Cµ(k) the cost for evaluating the performance µ of an OR-ed k feature set.

We list the algorithms in increasing order of complexity.

1R The algorithm based on the ranking by performance computed in isolation (Algorithm 1)

has the lowest complexity among the considered algorithms. Its complexity C1R(k,n) is

C1R(k,n)∝ nC(1)+n logn

where n logn is the complexity of a single sort, typically negligible with respect to other component,

therefore in first approximation the complexity is C1R(k,n)∝ nC(1), i.e. in practice, it does not

depend on k.
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Algorithm 4: Incremental construction of the rule pool based on the Shapley value with
respect to performance metric µ

function :SVFS (D,R,k,µ, N)
input :D the dataset with labels
input :R the rules
input :k the desired size of the pool
input :µ the reference metric definition
input :N number of permutations used in the sampling

1 U ←; . indexes vector
2 V ← R . Rules vector
3 for l ∈ 1..k do
4 max ←−1
5 for i ∈V do
6 X ←U ∪ i
7 T,Y = SV (D, X ,µ, N)← Computed metric µ for OR− ed pool X . Computing

the performance metrics for X
8 t ← position of i in T
9 Sha[i]=Y [t]← Extracting from Y the Shapley Value of i in the game U ∪ i .

Extracting the Shapley of the rule i in X
10 if Sha[i]> max then
11 imax ← i
12 max ← Sha[i]
13 end
14 U ←U ∪ imax
15 V ←V \ imax

16 end
17 return U
18 end function

GFS Greedy Forward Selection (Algorithm 4) has complexity CGFS(k,n) given by

CGFS(k,n)∝ nC(1)+ (n−1)C(2)+·· ·+ (n−k+1)C(k)

If we assume that the complexities for evaluation are approximately the same, i.e.

C(1)≈ C(2)≈ ·· · ≈ C(k), and call that value C,

then the complexity of GFS is proportional to CGFS(k,n)∝ C×k(n+ (n−k))/2, which for k << n

is approximately CGFS(k,n)∝ k n.

SV The complexity of SV is proportional to the number of evaluations made during the

processing of a permutation, times the number N of permutations, plus the cost for sorting the

values, i.e.

CSV (k,n)=CSV (n)∝ (C(1)+C(2)+·· ·+C(n))N +n logn

disregarding the latter and assuming the costs of the evaluation independent of k, we have

CSV (k,n)∝ n N.
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SVFS The complexity of SVFS results from the addition of the different calls to SV by

the Forward Selection algorithm. Adopting again, for the sake of simplicity, the assumption

C(k)≈ C ∀k we have

CSV FS(k,n)∝CSV ×k(n+ (n−k))/2

i.e.

CSV FS(k,n)∝ n Nk (n+ (n−k))/2' Nkn2

so, while SV is linear in n, SVFS is quadratic.

Exhaustive Search We also mention for reference the exhaustive search algorithm: finding

the best feature-set of size k out of n features has complexity

CEshaustive ∝
(
n
k

)
C(k)'

(
n
k

)
C

Comparison Clearly, in typical conditions, i.e. 1¿ k ¿ n, the ordering of the complexities is

the following

C1R <CGFS <CSV <CSV FS ¿CExhaustive

4.4 Validation of the method

Hereafter, first, we describe our contributions, then describe the real world data set used for the

investigation, and finally report the results of the validation: we compare our rule-pool-based

approach relying on the Shapley Value 1) first to the individual-rule-based approach (Section

4.4.3), then 2) to the Greedy Forward Selection feature selection approach (Section 4.4.4). The

results confirm the validity of the proposed approach. We will show the data support the following

two contributions:

1. The SV-based approach fares better than the traditional individual-rule-based 1R in build-

ing the OR-ed rule pool;

2. The SV-based approach is comparable to other feature selection techniques (we use the

Greedy Forward Selection for comparison).

The Greedy Forward Selection approach for rule pool building – which is formalized by the

pseudo-code in Algorithm 5 – proceeds building the pool incrementally: the algorithm starts from

the empty set, and adds to the current rule set one rule at time: each time it chooses, among

the rules not yet selected, the one yielding the largest increase in pool performance (where the

performance µ can be precision, recall or F-score); the algorithm stops when the target size k of

the pool is reached.
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Algorithm 5: Rule pool building by Greedy Forward Selection
function :GFS (D,R,k)
input :D the dataset with labels
input :R the rules
input :k the desired size of the pool
input :µ the reference metric

1 U ←; . indexes vector
2 V ← R . Rules vector
3 for l ∈ 1..k do
4 max ←−1
5 for i ∈V do
6 X ←U ∪ i
7 current =µ(X ) . Computing the performance metric for X
8 if current > max then
9 imax ← i

10 max ← current
11 end
12 U ←U ∪ imax
13 V ←V \ imax

14 end
15 return U
16 end function

4.4.1 The dataset

For the experiments, we consider a real-world data-set composed of N = 359,862 observation-

s/rows made available by our industrial partner. It concerns a set of cases in credit card fraud

detection generated in a specific business line where 288 rules are in production (this represents

a subset of the actual operational rules: for confidentiality purposes, the complete collection

of rules was not made available). Each observation represents a transaction and consists of a

vector (X ,Y ) of 289 binary values where X ∈ {0,1}288 and Y ∈ {0,1}. Each column variable X j in

the vector X (with j ∈ [1, . . . ,288]) correspond to a rule. The value of this variable tells whether

the transaction has triggered this rule: a "1" (Resp. "0") means that the corresponding rule has

(Resp. "has not") generated an alert for this transaction. The binary variable Y equals 1 if the

transaction was actually a fraudulent (Y = 1) transaction. In our data-set, we have a total of

136,223 fraudulent transactions.

The 288 rules are aggregated by the OR operator. Let X be the output of the fraud detection

system, the output of the system is X ≡maxi(X i). In other words, if at least an alert has been

produced on this transaction by the fraud detection system X = 1, while if no alert has been

generated X = 0. Under this settings, we can define respectively the true positives (TP) as

those for which (X = 1,Y = 1), the false positives (FP) as those for which (X = 1,Y = 0) and
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the false negatives (FN) those for which (X = 0,Y = 1). Note that in our data-set we have no

information about the true negative cases (non-fraudulent transactions which generated no alerts).

The cardinality of the three available categories was found to be the following: #TP = 42210,

#FP = 219390 and #FN = 94013.

As each individual rule is an if-then(-else) rule specific to a given fraud scenario, most of

the rules are designed to have individually a good precision, but tend to have a low recall. We

computed the average individual rule performance: the average individual rule precision is equal

to 0.29 and the average recall is equal to 0.0016.

The performance measures of the whole OR-ed rule-pool containing the n = 288 rules turned

out to be the following: precision p = 0.16, recall r = 0.31, F-score f = 0.21. Notice that a low

precision is not uncommon in this phase, since, in the following phase, the investigators will

improve the performance of the overall system by taking into account further domain knowledge.

The real goal of the system is to have a high recall, and precision not to low (so that the experts

do not spend too much time investigating cases that turn out to be false positives).

During the explorative analysis, we noticed that the original dataset contained rules that

had very little impact on our results since they were triggered very few times. For instance, 5

rules were triggered only once. Only 51 rules were triggered more than 360 times: this fraction

corresponds approximately to 1/1000th of the dataset size. We limited our analysis to those 51

rules.

Execution times The actual execution time of the algorithms implemented in Python, on a

6-core +HT host (Intel i7 8850H, 2.6GHz, 64Gb RAM) using the whole ' 360000 record dataset

and ' 50 rules is of the order of one minute for 1R, same for GFS, about ten minutes for SV ,

about one hour for SV FS, using N = 250 permutations. As we show below, there is essentially no

difference in the outputs of SV , and SV FS. In any case, the execution time of the algorithms is

affordable even using higher N and longer historical records, if, as it happens in practice, the

typical frequency of the rule assessment procedure is of the order of once a month.

4.4.2 Preliminary observations and findings

In order to assess the generality of the results, we used 3-fold cross-validation: i.e. we split the

dataset, by choosing the transactions at random, into three chunks of 119,954 records and in

turn used two of them as the Training set and the remainder as a Test set. The performance

values, shown in Figures 4, 5 and 6, are obtained averaging the test set performance of the three

folds.

The estimate of the Shapley Value to be used for ranking the rules has been carried on using

the permutation sampling method described in the previous section and formalized by Algorithm

2.
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4.4. VALIDATION OF THE METHOD

A first observation We have set the number of permutations to use for the estimate to N = 250

on the account that, adopting a much larger N does not change the results significantly. This

is demonstrated in Figure 4.1: Performance of the OR-ed top-k rules classifier. We have from

left to right: precision (left), recall (center) and F-score (right). The composition of the top-k set

was established based on the top-k Shapley Values of the F-score, respectively estimated using

N = 250 permutations (blue lines) and estimated using N = 1000 permutations (red lines). One

can observe that the using only N = 250 does not influence significantly the curve: for this reason

we used N = 250 in the following experiments.
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Figure 4.1: Performance of the OR-ed top-k rules classifier

A second observation The SV-based ranking and the SVFS-based ranking yield the same

performance of the rules, as can be seen in Figure 4.2. Performance of the OR-ed top-k rules

classifier using as rule ranking metric the Shapley Value with respect to same metric computed on

the pool (red lines) and the SVFS with respect to same metric computed on the pool (green lines).

Left: the comparison of the ranking metric SV with respect to precision and SVFS with respect to

precision in terms of assessment metric: top-k classifier precision. Center: the comparison of the

ranking metric SV with respect to recall and SVFS with respect to recall in terms of assessment

metric: top-k classifier recall. Right: the comparison of the ranking metric SV with respect to

F-score and SVFS with respect to F-score in terms of assessment metric: top-k classifier F-score.

One can observe that the use of the (more costly) incremental method SVFS does not bring any

significant improvement: for this reason we used the SV method.

Thus, for comparison with 1R and GFS, we use only the SV-ranking, which has a comparatively

much lower complexity with respect to SVFS-ranking.

4.4.3 Validation of the first contribution

In this section we show that the rule-pool-based approach – assessing the rules based on their

contribution to the performance of the OR-ed pool, quantified by the Shapley Value – fares
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Figure 4.2: Performance of the OR-ed top-k rules classifier using as rule ranking metric the
Shapley Value with respect to same metric computed on the pool (red lines) and the SVFS with
respect to same metric computed on the pool (green lines).

better than the traditional individual-rule-based one – where rules are assessed based on their

performance in isolation.

For the sake of clarity, we recall and highlight the distinction between (1) the metric, say

ν, used for ranking the rules and (2) the metric, say µ to evaluate the performance of the

OR-aggregated ensemble of rules:

1. the first kind of metric, ν, is used by an algorithm as a reference for establishing a ranking,

we call it the rule-ranking metric; it allows to evaluate the usefulness of the rule, and,

optionally, to extract, from the whole pool of n rules, the k top-ranked rules (e.g. SV, added

value...)

2. the second kind of metric, µ, is used as a pool assessment metric for the OR-aggregated rule

pool classifier (the one obtained aggregating in OR the set of rules in the highest k ranks

according to a given rule-ranking metric) (e.g. precision, recall ...).

Pool-assessment metric The choice of the second metric, µ, is dictated by the business case.

The one at hand dictates that pool assessment metric should privilege high recall over high

precision, still not disregarding precision: it could be defined as a weighted average of the two,

the Fβ-score, however, in practice, there is no fixed relative weight that can be used as a sharp

reference. The rule managers evaluate the trade-off case by case. We considered also another

performance metric, a variant of the Area Under the Precision-Recall Curve: in the NRT-phase

application context it is customary to compute the area under such a curve at the point where

the recall reaches the 20% level, which is more representative of the processing capacity of the

subsequent expert investigator assessment. We denote this metrics by AUC-PR0.2.

Rule-ranking metric The choice of the rule ranking metric, ν, ought to be made so as to

maximize the pool performance in terms of the pool assessment metrics µ. Traditionally, the

rule-ranking metric used was the individual rule precision, ν= p, and one would count on the fact
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that a large set of moderately-high precision rules OR-ed in a pool, would – all together, – provide

also a high recall. We propose to use not the individual rule precision but of the contribution of

the rule to the overall pool precision as a rule-ranking metric: such contribution is quantified by

the Shapley Value of the rule with respect to the pool precision, i.e. by Sha[p].

In our experimentation we made the following comparisons of rule ranking metrics ν:

a) individual rule precision vs. SV of the rule in contributing to the pool precision, i.e. [p] vs.

Sha[p] (see Figure 4.3)

b) individual rule recall vs. SV of the rule in contributing to the pool recall, i.e. [r] vs. Sha[r]

(see Figure 4.4)

c) individual rule F-score vs. Shapley Value of the rule in contributing to the pool F-score, i.e.

[ f ] vs. Sha[ f ] (see Figure 4.5)

From each pair of ranking criteria, we obtained the corresponding pair of top-k rules; we put the

rules in OR and obtained a pair of rule-pool classifiers; then we compared the performances of the

two elements of the pair by a pool assessment metric; the assessment metric µ considered were

precision, recall, F-score (they correspond to distinct columns of the figures) and AUC-PR0.2.

The overall results of the comparisons of the pairs of rule ranking metrics are shown in

Figures 4.3, 4.4 and 4.5: the 1R performance is represented in blue, the SV performance is

represented in red.

In Figure 4.3, one can observe that the performance of the SV-based ranking, in the case

of the pool assessment metrics recall and F-score, is remarkably higher than the traditional

one for the OR-ed top-k rules until k ' 30. On the contrary, in the case of the pool assessment

metric precision, it is the traditional approach that prevails. However, as mentioned above, in

the business case at hand, it is preferable to have a large recall or a large F-score than a large

precision at the expense of recall. Further inspection of the data confirmed that the high-precision

points corresponded to irrelevant or negligible pool recall.

In Figure 4.4 one can observe that the performance of the different ranking criteria (recall and

SV with respect to recall) are almost identical. In fact, by closer inspection of the rule rankings

(not shown here), one would observe that the two metrics produce nearly co-monotonic rankings

for the rules. The substantial equivalence of the ranking with the recall, and the Shapley value

of the recall can be explained by the particularly small recall of individual rules as designed in

this application domain: each rule is made to detect a specific kind of fraud. As a consequence

rules have little overlap in terms of true detections, but a large overlap in terms of false alerts.

The first fact makes the recall set function nearly additive: as a consequence, recall, SV of recall

– and as we observe later, Greedy Forward Selection based on recall – rank the rules nearly in

the same way. On the other hand, the observed overlap in terms of false alerts, makes the rules

interact with one another: this is the reason why the precision is remarkably not-additive and we
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observe differences between the ranking based on precision and one based on the Shapley Value

with respect to the pool precision.

In Figure 4.5 one can see that the SV-based rule ranking yields much better pool precision

and F-score than the 1R rule ranking, whereas for recall the results are comparable.

The AUC-PR0.2 achieved respectively by ranking the rules based on individual rule perfor-

mance (Algorithm 1), and by ranking the rules based on the Shapley Value of the performance

(Algorithm 2) are the following: when the base performance metric is precision we have 0.25 for

1R and 0.24 for SV; when the base performance metrics is recall we have 0.20 for both; when the

base performance metrics is the F-score we have 0.20 for 1R and 0.24 for SV.

In short, by ranking the rules by the Shapley Value of a performance metric, one fulfills the

business requirements better than by ranking them by the performance metrics itself.

4.4.4 Validation of the second contribution

To compare the SV- based rule ranking to other Feature Selection algorithms we chose as

a reference the Greedy Forward Selection (GFS) algorithm (Algorithm 5). The results of the

comparisons are shown in Figures 4.3, 4.4 and 4.5: the performance of the SV-based rule ranking

in represented in red, the one of GFS is represented in green.

In Figure 4.3, where the base metric is the precision, one can see that in terms of pool

precision GFS prevails over SV, but in terms of recall and F-score SV outperforms GFS. We have:

Precision (left), recall (center) and F-score (right) of the classifier defined by the OR-ed top-k rules;

different line colors correspond to different rule ranking metrics based on precision: individual

rule precision (blue lines), Shapley Value with respect to the pool precision (red lines) and Greedy

Forward Selection (GFS) based on precision (green lines). One can see that sorting the rules

according to the SV of the precision provides better performance for the recall for k ≤ 30 and

for the F-score over all the values of k: this meets the requirements of the NRT fraud detection

phase, where one looks for good recall and moderate precision (the precision will be improved by

human experts in the subsequent investigation phase).

In Figure 4.4, where the base metric is the recall, SV and GFS have nearly the same perfor-

mance. As already noted, this can be explained by the fact that the rule recall is nearly additive.

we have: Precision (left), recall (center) and F-score (right) of the classifier defined by the OR-ed

top-k rules; different line colors correspond to different rule ranking metrics based on recall:

individual rule recall (blue lines), Shapley Value with respect to the pool recall (red lines) and

Greedy Forward Selection (GFS) based on recall (green lines). All the methods based on recall

yield approximately the same results, since their rankings are nearly co-monotonic. Indeed,

individual rules are designed to capture specific fraud cases, so the true detections have little

overlap, which makes the recall nearly additive. For an additive set function, the value of the

function at the atom and the SV of the atom coincide, furthermore, the ranking by SV and by

GFS would be the same.
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4.4. VALIDATION OF THE METHOD
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Figure 4.3: Precision (left), recall (center) and F-score (right) of the classifier defined by the OR-ed
top-k rules

In Figure 4.5, where the base metric is the F-score, SV and GFS are not too far from one

another: GFS provides better pool precision and F-score, SV provides better pool recall. The pool

F-scores provided by the two algorithms are remarkably close. We have: Precision (left), recall

(center) and F-score (right) of the classifier defined by the OR-ed top-k rules; different line colors

correspond to different rule ranking metrics based on the F-score: individual rule F-score (blue

lines), Shapley Value with respect to the pool F-score (red lines) and Greedy Forward Selection

(GFS) based on F-score (green lines). Here the SV rule ranking yields much better pool precision

and F-score than 1R rule ranking, whereas for recall the results are comparable. Also the pool

recall and F-score determined by the GFS rule ranking and the SV rule ranking are comparable.

In terms of AUC-PR0.2, we found that the two ranking methods provide nearly identical

results. Rounding the values to the second decimal figure we have the following: when the base

performance metrics is precision both algorithms yield a metric value of 0.24; when the base

performance metric is recall both algorithms yield a metric value of 0.20 (as expected); when the

base performance metrics is F-score SV yields 0.24; and GFS 0.23.

In short, Shapley Value ranking and Greedy Forward Selection ranking are nearly equivalent.

However, as remarked in a previous section, the SV-based ranking has the advantage of providing

a normalized score which summarizes the performance of the rule in terms of contribution to the

pool and is suitable to support rule management decisions one rule at a time.
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CHAPTER 4. MANAGING A POOL OF RULES FOR CREDIT CARD FRAUD DETECTION BY A
GAME THEORY BASED APPROACH
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Figure 4.4: Precision (left), recall (center) and F-score (right) of the classifier defined by the OR-ed
top-k rules;
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Figure 4.5: Precision (left), recall (center) and F-score (right) of the classifier defined by the OR-ed
top-k rules
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4.5. CONCLUSIONS

4.5 Conclusions

The management of a pool of classification rules for credit card fraud detection takes care of

updating the set of member rules based on their performance. In the Near-Real-Time (NRT) the

classification aims at high recall and moderate precision since the latter is later improved by the

human experts. The continuous shift in fraud patterns requires the continuous revision of the set

of rules present in the pool. This key activity represents a considerable overhead to the process.

In this work, we addressed the following points: the criteria used to select which rules to

keep operational in the NRT pool are traditionally based on the historical performance of the

individual rules, considered in isolation. This approach disregards the non-additivity of rule

composition within the pool. We proposed to use an approach based on estimating the individual

rule contribution to the overall pool performance through the Shapley Value (SV). We validated

our approach using real-world credit card fraud data containing approximately 3×105 records

of transactions. The analysis shows that the SV ranking based approach is more effective and

efficient than the traditional one. The effectiveness of the approach, when considered as a

Feature Selection method, is comparable to other standard FS algorithms. We demonstrated

this point using the Greedy Forward Selection algorithm. The assignment of a "performance

in collaboration" score to the rule distinguishes this approach to rule management from other

approaches aimed at Feature Selection: the latter methods can indeed provide good coalitions

rules of a given size k, but are not designed to assign a normalized score to the rules, summarizing

their performance in collaboration. This score allows to assess the rule individually, which is

useful in the periodic rule assessment process.

This power-index based approach has originated a patent application [13] and has been

adopted, in the management of the rules for the NRT phase, by our industrial partners.

4.6 Summary

In this chapter, we introduce the power-index-based approach into the field of credit card fraud

detection, that, by providing a synthesis of the usefulness of the rule, that supports the rule-

by-rule periodic assessment process. In particular, we apply a Coalitional Game Theory (CGT)

concept introduced in Chapter 2 and feature selection task introduced in Chapter 3, on a real

transaction dataset coming from a fraud detection context. By doing this, we show that the

novel approach we proposed i.e., the Shapley Value based approach support much better the

rule management process. Our proposed process focuses on the overall performance of each rule,

considering one rule at time and periodically revising the usefulness of the rule (it chooses either

to keep or to drop the rule). The Shapley value score provides a synthesis of the rules usefulness

through a normalized rule score. The assignment of the normalized score to the rule distinguishes

the proposed approach from the other approaches, used for feature selection: for instance, the

greedy forward selection used as benchmark can provide good coalition rules of size k, but it
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CHAPTER 4. MANAGING A POOL OF RULES FOR CREDIT CARD FRAUD DETECTION BY A
GAME THEORY BASED APPROACH

does not assign a score to the rule, summarizing its performance in collaboration. Moreover,

in principle, the application of the Greedy forward selection during the monthly reassessment

could allow the important changes in the composition of the pool, while the Shapley Value score

supports a fine-grained control over the composition of such pool. But, first, going from credit

card fraud detection, we describe the process and its management in Section 4.2; then, in Section

4.3, we analyze the Shapley Value and its properties. The Section 4.4 validate the results and,

finally, the section 4.5 conclude the chapter.
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RESTRICTED BANZHAF INDEX (K-BANZHAF) AND FEATURE

SELECTION

The chapter provides tools and concepts to understand the second power index under our

analysis in this dissertation, namely the Banzhaf index. The latter brings us to a new

power index developed form the original one. From the original Banzhaf index, we propose

a new version called the restricted Banzhaf index (k-Banzhaf) and argue that our version is more

efficient than the original one. The chapter is composed into two main parts: in the first part, we

propose to look into the Banzhaf index, then from its properties, we develop and implement a new

power index. The main advantage of the new version of Banzhaf is its reduced computational cost.

We are going to see why k-Banzhaf is computationally less expensive than the normal Banzhaf.

In the second part, we implement different power indexes-based feature selection using

( Shapley Value, Banzhaf Index and k-Banzhaf Index) and two greedy method-based feature

selection (greedy forward selection and greedy backward elimination). We build a self-training

process (a variant of bootstrap) based on a selected machine learning classifier, namely Random

Forest Classifier (RFC). We make three scenarios of machine learning classification to compare

our five feature selection performance (Three power indexes- based and two greedy-based ). The

performance metric we choose for the comparison is the accuracy.

5.1 Introduction

We wish to extend our study of coalitional game theory approach on credit card fraud detection by

including a new power index; the one chosen is the Banzhaf index, the second well-known power

index. We discuss Banzhaf index approximation, propose a variant of Banzhaf index (k-Banzhaf)

and implement the k-Banzhaf-based feature selection method which we compare with Shapley
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CHAPTER 5. RESTRICTED BANZHAF INDEX (K-BANZHAF) AND FEATURE SELECTION

and Banzhaf-based feature selection ones. So in this chapter, we provide tools and expressions to

understand the approximation of the Banzhaf index, the demonstrations provided in the following

sections shows that Banzhaf Index is, in general the best approximation based on the mean

square error.

A pseudo-boolean function (i.e. a real-value set function) µ : S ∈ 2N −→ R, as shown by

Hammer and Rudeanu in [40] can be represented univocally by the following multi-linear

polynomial

µ=µ(S)= ∑
T∈2N

aT
∏
i∈T

xi

where x = xS = (x1, x2, ..., xn) is the boolean characteristic function of a set S (xi = 1 if the element

i is contained in S, otherwise xi = 0). The aT are known as the Moëbius coefficients (or, in

Coalitional Game Theory, as Harsanyi dividends).

The element
∏

i∈T xi form the so called Unanimity Game basis. We call this expansion the

Moëbius representation of µ, and the basis will be called Moëbius basis. The expression of the

function µ of a set S in terms of the Moëbius basis is called Moëbius expansion of µ(S). For

functions P such that µ(N)= 1, the aT ’s are normalized to 1, i.e.
∑

T∈2N aT = 1. The degree of µ is

defined as the size of the largest set S with a nonzero coefficient. Notice that the coefficient aT

contributes to the sum of µ(S) if and only if the monomial
∏

i∈T evaluates to 1, which happens

only if T is a subset of S, so that for a set S ∈ 2N one has µ(S)=∑
T⊆S aT . The Moëbius expansion

of µ(S) involves all the subsets of S; no super-sets of S are involved.

The pseudo-Boolean functions with domain 2N form a linear space, that we denote by P Bn

(since we can point-wise add two functions and we can multiply a function by a real scalar to

get another function of the same space). On this space one can define the scalar product of two

functions f and g by 〈 f , g〉 ≡ 1
2n

∑
T∈2N f (x)g(x).

Let us denote by Sk = Sk(N) the family of sets consisting of exactly k elements from N (it

represents the k-th level of the Boolean lattice 2N ), i.e.

Sk = Sk(N)≡ {T ∈ 2N : |T| = k}

and let S≤
k be the family of sets with at most k elements, i.e.

S≤
k = S≤

k (N)≡ {S ∈ N : |S| ≤ k}=∪k
j=0S j.

The family contains the empty set. The pseudo-boolean functions on S≤
k form the subspace P B≤k

of P Bn.

We assume the coefficients aT to be known, and consider the problem of approximating µ by

another pseudo-boolean function g given by a first degree polynomial:

g = g(1) ≡ g(1)(x1, x2, ..., xn|α0,β1,β2, ...,βn)=α0 +
∑
i∈N

βixi
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5.2. THE BEST LINEAR APPROXIMATION

We look for the βi ’s that minimize the sum of the squared differences over a chosen family Q ⊆ 2N

of relevant sets. We consider few important cases

• the case Q = 2N already studied in [41]

• the case Q = Sk

• the case Q = Skmin ∪Sk1 ...∪Sk j ...∪Skmax

For practical purposes it is useful to consider also another family, related to Q: the family of

all the subsets of the sets in Q. Indeed, in order to express the measure µ of a set S, one needs in

general all the subsets of that set from ;; to S itself. Specifically, let S ∈ 2N : the family of sets

which are subsets of S will be called the down-family (or the down-set) 1 of S and denoted by

DS. Sometimes one does not need only the down-family of a set but rather to consider all the

down-families of a collection of sets. Given the collection Q, the union of all the down-families of

its sets is called down-family generated by Q, and denoted by DQ :

DQ = {T ∈ 2N : ∃S ∈Q s.t. T ⊆ S}

The down-family generated by Q, for the considered cases, corresponds to the following:

• in the case Q = 2N , we have DQ = 2N =Q

• in the case Q = Sk, we have DQ = S≤
k

• in the case Q =∪kmax
k=kmin

Sk, we have DQ = S≤
k

5.2 The best linear approximation

We are looking for the linear approximation that minimizes the sum of the squared differences.

An important fact is that, once found, we can exploit some special properties of such function.

Consider the following. The space V =P Bn of the pseudo-boolean functions on N is a Hilbert

space (isomorphic to R2n
). Hilbert spaces generalize the properties of the Euclidean space. Linear

approximations of functions are projections of this space onto the subspace U = P B1 of the

functions of degree one (of dimension n+1). Among those projections, the projection with minimal

distance is the orthogonal projection 2. Orthogonal projections grant linearity, i.e.

g(η1 f 1+η2 f 2)= η1g( f 1)+η2g( f 2).
1If a down-set is nonempty and closed under ∪, it is called an ideal. Similar definitions can be adopted for the

families of super-sets of a set S, called upsets: an upset closed under ∩ is called filter.
2Indeed, the orthogonal projection provides the minimal distance and is unique. Let v ∈ V and u ∈U, and let

π(v) the orthogonal projection of v on u. The vector v−u is the hypotenuse of a right-angled triangle. Then for the
Pythagorean theorem

‖v−u‖2 = ‖v−π(v)‖2 +‖u−π(v)‖2 ≥ ‖v−π(v)‖2

Recall that projections are idempotent and notice that in the new space π(v−π(v)) = π(v)−π(v) = 0, which is the
minimum distance
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CHAPTER 5. RESTRICTED BANZHAF INDEX (K-BANZHAF) AND FEATURE SELECTION

Thanks to the linearity we can look individually for the best approximation to elements of the

basis, then combine them linearly to get the best approximation of any f ∈P Bn. Let z1, ..., zq

a sequence of q real numbers. Let c be a real number to be determined. It is easy to show that

the expression
∑q

j=1(z j − c)2 is minimized by qc =∑q
j=1 z j. Now, suppose we have found g( f ) the

best linear approximation of f and suppose c is a real value to be determined. The expression∑
Q(( f (x)− g(x))− c)2 is minimized by c = 0. Hence 0=∑

Q( f (x)− g(x)) or

(5.1)
∑

Q∈Q

f (x) = ∑
Q∈Q

g(x)

Next, for i ∈ N the function g(x)+ cxi is a linear function: the expression

∑
Q∈Q

( f (x)− g(x)+ cxi)2

is minimized by c = 0, but c affects only the terms for which xi = 1, i.e. i ∈Q, so we can say that

∑
Q∈Q:i∈Q

( f (x)− g(x)+ c)2

is minimized for c = 0, hence

∑
Q∈Q:i∈Q

g(x)= ∑
Q∈Q:i∈Q

f (x)

from the two previous equalities, follows also the one for the case xi = 0

∑
Q∈Q:i 6∈Q

g(x)= ∑
Q∈Q:i 6∈Q

f (x)

and taking the difference of the latest two equalities one gets

(5.2)
∑

Q∈Q:i∈Q
∆i g(x)= ∑

Q∈Q:i∈Q
∆i f (x)

Now for g(x = α0)+∑
i∈N βixi one has ∆i g(x) = βi, so that equation (5.2) can be used to

determine βi after which equation (5.1) is used to determine α0. For practical purposes, in the

latter equation, it is useful to write Q ∈Q : i ∈Q as Q = (X ∪ i) : X ∈Qi, where we denote by Qi

the family of those of Q that do not contain i.

(5.3)
∑

X∈Q−i

∆i g(x)= ∑
X∈Q−i

∆i f (x)
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5.2. THE BEST LINEAR APPROXIMATION

We will denote the cardinality of a set by the corresponding lower case letter e.g. t = |T|,
x = |X |. We will often use m = (n−1), h = (k−1).

In the following, besides 2N the power set of the reference set N, a few families of sets will

appear repeatedly: we will be interested to their cardinality in special cases. They are summarized

here (we use calligraphic letters):

• Q ⊆ 2N the family on which we wish to approximate the function f using g

• Q−i ⊂Q the family of sets of Q that do not contain i

• Qi ⊂Q the family of sets of Q that contain the element i (a.k.a the family of supersets of i

in Q, upper cone of i in Q) : Q−i =Q \Qi

• QT the family of supersets of a given set T in Q (upper cone of T in Q)

• (Q−i)(T\i) the family of supersets of a set (T \ i) in Q−i (the filter of T in (Q−i)

• Q−i j ⊂Q the family of Q that do not contain i j

• (Q−i j)(T\i j) the family of a given set (T \ i j) in Q−i j

In the relevant cases, their cardinalities are the following:

• If Q = 2N

|Q| = 2n |Q−i| = |Qi| = 2n−1

|QT | = 2n−t ∣∣(Q−i)(T\i)
∣∣= 2(n−1)−(t−1) = 2n−t

|Q−i j| = |Qi j| = 2n−2 ∣∣(Q−i j)(T\i j)
∣∣= 2(n−2)−(t−2) = 2n−t

• If Q = Sk

|Q| =
(
n
k

)
|Q−i| = |Qi| =

(
n−1
k−1

)

|QT | =
(
n− t
k− t

)
|(Q−i)(T\i)| =

(
(n−1)− (t−1)
(k−1)− (t−1)

)
=

(
n− t
k− t

)

|Q−i j| = |Qi j| =
(
n−2
k−2

)
|(Qi j)(T\i j)| =

(
(n−2)− (t−2)
(k−2)− (t−2)

)
=

(
n− t
k− t

)

• If Q =∪kmax
k=kmin

|Q| =
kmax∑

k=kmin

(
n
k

)
|Q−i| = |Qi| =

kmax∑
k=kmin

(
n−1
k−1

)
=

kmax−1∑
h=kmin−1

(
m
h

)
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|QT | =
kmax∑

k=kmin

(
n− t
k− t

) ∣∣(Q−i)(T\i)
∣∣= kmax∑

k=kmin

(
n− t
k− t

)

|Q−i j| = |Qi j| =
kmax∑

k=kmin

(
n−2
k−2

) ∣∣(Q−i j)(T\i j)
∣∣= kmax∑

k=kmin

(
n− t
k− t

)

Notice the useful fact that, for all the special families under the scope of this work, the following

equality holds

|QT | =
∣∣(Q−i)(T\i)

∣∣= ∣∣(Q−i j)(T\i j)
∣∣

5.2.1 Determination of βi

Now in view of using linearity to approximate any f , let us choose

f = f T = eT (x)= ∏
j∈T

s j

i.e. an element of the Moëbius basis, as a function to approximate. We look for the best linear

approximator gT (x)≡ g( f T ) to the function f T (x) with

gT (x)=αT
0 + ∑

i∈N
βT

i xi

Let us consider equation (5.3) that relates the sums of the first derivatives.

5.2.1.1 Left side

The left side (since ∆i gT (x)=βT
i ) is

∑
Q∈Q:i∈Q

∆i gT (x)= ∑
Q∈Q:i∈Q

βT
i = ∑

X∈Q−i

βT
i = |Q−i|βT

i

5.2.1.2 Right side

Now let us consider right side. If i 6∈ T, the derivative ∆i is zero: ∆ f T (x)= 0. Instead for i ∈ T

∆ f T (x)= ∏
j∈T

x j

⌋
xi=1 −

∏
j∈T

x j

⌋
xi=0

= ∏
j∈T\{i}

x j −0= ∏
j∈T\{i}

x j

hence,

∑
Q∈Q:i∈Q

∆ f T (x)= ∑
Q∈Q−i

∆ f T (x)= ∑
X∈Q−i

∏
T\{i}

x j = #(supersets of (T \{i}) in Q−i)=
∣∣(Q−i)(T\i)

∣∣
because the chain product is evaluated to 1 only on the superset of (T \{i}).
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5.2. THE BEST LINEAR APPROXIMATION

5.2.1.3 Two sides

Using the two sides of (5.2) for f T one has the equation for the βT
i ’s:

|Q−i|βT
i = ∣∣(Q−i)(T\i)

∣∣
We get

(5.4) βT
i =

∣∣(Q−i)(T\i)
∣∣

|Q−i|
= |QT |

|Q−i|

We observe that, in the considered approximations of fT , the value of βT
i does not depend

on T directly, but only on its size, i.e. βT
i is a level dependent coefficient: below we will use

occasionally βT
i =β(t).

• If Q = 2N , the equation becomes

(5.5) βT
i = 1

2t−1

• If Q = Sk, we have

βT
i =

(n−t
k−t

)(n−1
k−1

)
This ratio of binomial coefficients can be written as follows

(5.6) βT
i =

(n−t
k−t

)(n−1
k−1

) = (k−1)t−1

(n−1)t−1

where (m)r denotes the (r-factors) falling factorial. Thus

(5.7) βT
i = (k−1)t−1

(n−1)t−1

• If Q = Skmin ∪Sk1 ...∪Sk j ...∪Skmax , the # (supertsets of (T \ {i}) in Q−i) is the sum of the

number of supersets at all the levels k j involved; we have
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kmax∑
k=kmin

(
n−1
k−1

)
βT

i =
kmax∑

k=kmin

(
n− t
k− t

)
and

βT
i =

∑kmax
k=kmin

(n−t
k−t

)
∑kmax

k=kmin

(n−1
k−1

)
Notice that those terms k such that t > k (i.e. x > h) give zero contribution to the sum.

• In passing, we observe the following. Consider the limiting case kmin = 0 and kmax = n. The

sum at the denominator, setting m = (n−1), h = (k−1), p = (m− x) and j = (h− x)

(boundaries k = 0=⇒ h =−1, k = n =⇒ h = n−1= m) becomes

|Q−i| =
kmax∑

h=kmin

(
m− x
h− x

)
=

n∑
k=0

(
n−1
k−1

)
=

m∑
h=−1

(
m
h

)
=

m∑
h=0

(
m
h

)
= 2m = 2n−1

To evaluate the numerator, set p = (m− x) and j = (h− x)

(boundaries kmin = 0=⇒ h =−1=⇒ j =−(x+1) and

kmax = n =⇒ h = n−1= m =⇒ j = m− x = p). The numerator becomes

(Q−i)(t\i) =
m+1∑
h=−1

(
m− x
h− x

)
=

p∑
j=−(x+1)

(
p
j

)
=

p∑
j=0

(
p
j

)
= 2p = 2m−x = 2(n−1)−(t−1)

Overall

βT
i =

∑n
k=0

(m−x
h−x

)∑n
k=0

(n
k
) = 2m−x

2m = 1
2x = 1

2t−1

i.e., we recover the Banzhaf coefficient of T.

5.2.2 Determination of α0

To determine α0 we use equation (5.1), i.e. the equality of the sums of gT (x) and f T (x)

∑
Q∈Q

(
αT

0 +β(t)
∑
i∈T

xi

)
= ∑

Q∈Q

f T (x)

∑
Q∈Q

αT
0 +β(t)

∑
i∈T

∑
Q∈Q

xi = ∑
Q∈Q

∏
j∈T

(x j)

|Q|αT
0 +β(t)

∑
i∈T

#(supersets of {i} in Q)= #(supersets of T in Q)

|Q|αT
0 + tβ(t)|Qi| = |QT |
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5.2. THE BEST LINEAR APPROXIMATION

|Q|αT
0 + t

∣∣(Q−i)(T\i)
∣∣

|Q−i|
|Qi| = |QT |

|Q|αT
0 + t

∣∣(Q−i)(T\)
∣∣= |QT |

|Q|αT
0 =−t

∣∣(Q−i)(T\i)
∣∣+|QT |

and finally, since
∣∣(Q−i)(T\i)

∣∣= |QT |

(5.8) |Q|αT
0 =−(t−1)|QT |

i.e.

(5.9) αT
0 =−(t−1)

|QT |
|Q|

Hereafter the symbol α(t) is often used in place of αT
0 because the latter does not depend

directly on T, but rather on T ’s size t. In other words also αT is a level dependent coefficient.

• If Q = 2N , we have

(5.10) αT
0 = α(t) =− t−1

2t

• If Q = Sk, we have

αT
0 =−(t−1)

(n−t
k−t

)(n
k
)

and finally

(5.11) αT
0 = α(t) = −(t−1)

(k)t

(n)t

• If Q = Skmin ∪Sk1 ...∪Sk j ...∪Skmax , we have

(5.12) αT
0 =−(t−1)

∑kmax−1
h=kmin−1

(m−x
h−x

)
∑kmax+1

h=kmin−1

(m+1
h+1

)
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CHAPTER 5. RESTRICTED BANZHAF INDEX (K-BANZHAF) AND FEATURE SELECTION

5.2.3 Wrap up

All together

gT (x)=α(t)+β(t)
∑
i∈T

xi

where

αT
0 =α(t) = −(t−1)

|QT |
|Q|

(5.13) βT
i =β(t)= |QT |

|Q−i|

5.2.4 General expression of the linear approximation in the Moëbius basis

The expression for a general function f follows from the above one by linearity, summing over all

the subsets of the members of Q, i.e. summing over DQ (in the Moëbius basis a set S is univocally

determined by the Moëbius coefficients of its subsets). The expression for f is

f (x)= ∑
T∈DQ

aT

[∏
j∈T

x j

]

(5.14) f (x)= ∑
T∈DQ

aT f T

The equation for the approximator is

g(x)= ∑
T∈DQ

aT gT (x)

= ∑
T∈DQ

aT

[
α(t)+β(t)

∑
i∈T

xi

]
= ∑

T∈DQ

α(t)aT + ∑
T∈DQ

β(t)aT
∑
i∈T

xi

(5.15) g(x)= ∑
T∈DQ

α(t)aT + ∑
i∈N

[ ∑
T∈DQ :i∈T

β(t)aT

]
xi

i.e.
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5.2. THE BEST LINEAR APPROXIMATION

(5.16) α0 =
∑

T∈DQ

α(t)aT =− 1
|Q|

∑
T∈DQ

(t−1)|QT |aT

(5.17) βi =
∑

T∈DQ :i∈T
β(t)aT = 1

|Q−i|
∑

T∈DQ :i∈T
|QT |aT

For the cases considered by substituting α(t) and β(t) one has the following

• If Q = 2N we have

g(x)=− ∑
T∈2N

t−1
2t aT + ∑

i∈N

[ ∑
T∈2N :i∈T

aT

2t−1

]
xi

i.e.

(5.18) α0 =− ∑
T∈2N

t−1
2t aT βi =

∑
T∈DQ :i∈T

1
2t−1 aT

Notice that the βi above coincide with the Banzhaf coefficients of the i’s

• If Q = Sk we have

g(x)=− ∑
T∈S≤

k

[
(t−1)

(k)t

(n)t

]
at +

∑
i∈N

 ∑
T∈S≤

k :i∈T

(k−1)t −1
(n−1)t−1

aT xi

(5.19) α0 =− ∑
T∈S≤

k

[
(t−1)

(k)t

(n)t

]
aT βi =

∑
T∈S≤

k :i∈T

[
(k−1)t−1

(n−1)t−1

]
aT

by analogy we indicate the above as the k-restricted Banzhaf coefficients.

• If Q = Skmin ∪Sk1 ...∪Sk j ...∪Skmax , the derivation of the expression is equally straightfor-

ward.

5.2.5 General expression of α and β in terms of f and ∆i f

5.2.5.1 Expression of βi in terms of ∆i f

We recall from equation (5.3) that ∑
X∈Q−i

∆i g(x)= ∑
X∈Q−i

∆i f (x)
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CHAPTER 5. RESTRICTED BANZHAF INDEX (K-BANZHAF) AND FEATURE SELECTION

On the other hand, by the definition of the linear approximator ∆i g(x) = βi, so the left side is

|Q−i|βi. It follows that

(5.20) βi = 1
|Q−i|

∑
X∈Q−i

∆i f (x) = 1
|Q−i|

∑
X∈Q−i

[ f (X ∪ i)− f (X )]

• If Q = 2N , then Q−i = 2N\i

(5.21) βi = 1
2n−1

∑
X∈2N\i

∆i f (x) = 1
2n−1

∑
X∈2N\i

[ f (X ∪ i)− f (X )]

i.e. we recover the alternative definition of the Banzhaf value.

• If Q = Sk, then Q−i = (Sk)−i

(5.22) βi = 1(n−1
k−1

) ∑
X∈(Sk)−i

∆i f (x) = 1(n−1
k−1

) ∑
X∈(Sk)i

[ f (X ∪ i)− f (X )]

• If Q = Skmin ∪Sk1 ...∪Sk j ...∪Skmax , then |Q−i| =∑kmax
k=kmin

(n−1
k−1

)

(5.23) βi = 1∑kmax
k=kmin

(n−1
k−1

) ∑
X∈Q−i

∆i f (x) = 1∑kmax
k=kmin

(n−1
k−1

) ∑
X∈Q−i

[ f (X ∪ i)− f (X )]

Notice that in equation (5.20), singling out the case X =;, if we additionally assume f (;)= 0,

we can write

βi = f (i)
|Qi|

+ 1
|Q|

∑
X∈Q−i :X 6=;

∆i f (x)

5.2.5.2 Expression of α in terms of f

As to α, it can be obtained from the equality of the sums (5.1):

∑
S∈Q

g(xS)= ∑
S∈Q

f (xS)

∑
S∈Q

[
α+ ∑

i∈N
βixi

]
= ∑

S∈Q

f (xS)
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5.2. THE BEST LINEAR APPROXIMATION

|Q|α+ ∑
S∈Q

[ ∑
i∈N

βixi

]
= ∑

S∈Q

f (xS)

|Q|α= ∑
S∈Q

f (xS)− ∑
S∈Q

[ ∑
i∈N

βixi

]

|Q|α= ∑
S∈Q

[
f (xS)− ∑

i∈N
βixi

]

α= 1
|Q|

∑
S∈Q

[
f (xS)− ∑

i∈S
βixi

]
where the βi are those given in (5.20)

5.2.6 Example on the Moëbius basis

Consider the function µ(x) = 8− x1 +5x2 − x1x5 +4x3x5 −6x2x4x5 +2x1x2x3x4. We would like to

approximate the function µ of degree n = 5 at the level k = 3, i.e. at approximating by a linear

function g(x) the function f (x)= f (k)(x) obtained by truncation

f (x)= f (k) = 8− x1 +5x2 − x1x5 +4x3x5 −6x2x4x5

We are interested in comparing the Banzhaf coefficients and the k-Banzhaf coefficients.

Monomial f T Banzhaf approx. g(µ)
T (x) k-Banzhaf approx. g( f )

T (x) n=5, k=3

− t−1
2t + 1

2t−1

∑
i∈T

xi −
[
(t−1)

(k)t

(n)t

]
+ (k−1)(t−1)

(n−1)(t−1)

∑
i∈T

xi t

x1x5 −1
4
+ 1

2
(x1 + x5) − 3

10
+ 1

2
(x1 + x5) 2

x3x5 −1
4
+ 1

2
(x3 + x5) − 3

10
+ 1

2
(x3 + x5) 2

x2x4x5 −1
4
+ 1

4
(x2 + x4 + x5) − 2

10
+ 1

6
(x2 + x4 + x5) 3

x1x2x3x4 − 3
16

+ 1
8

(x1 + x2 + x3 + x4) n.a. 4

Table 5.1: Table of comparison between Banzhaf and k-Banzhaf coefficients

gBanzhaf (x)= 8− x1 +5x2 −
[
−1

4
+ 1

2
(x1 + x5)

]
+4

[
−1

4
+ 1

2
(x3 + x4)

]
−6

[
−1

4
+ 1

4
(x2 + x4 + x5)

]
+2

[
− 3

16
+ 1

8
(x1 + x2 + xx3 + x4)

]
= 67

8
− 5

4
x1 + 15

4
x2 + 9

4
x3 − 5

4
x4
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CHAPTER 5. RESTRICTED BANZHAF INDEX (K-BANZHAF) AND FEATURE SELECTION

gk−Banzhaf (x)= 8− x1 +5x2 −
[
− 3

10
+ 1

2
(x1 + x5)

]
+4

[
− 3

10
+ 1

2
(x3 + x5)

]
−6

[
− 2

10
+ 1

6
(x2 + x4 + x5)

]
= 8+ 3

10
− 12

10
+ 12

10
+ x1(−1+ 1

2
)+ x2(5−1)

+ x3(2)+ x4(−1)+ x5(−1
2
+ 4

2
−1)

= 8+ 3
10

− 1
2

x1 +4x2 +2x3 − x4 + 1
2

x5

In terms of common denominators

gBanzhaf (x)= const.− 25
20

x1 + 75
20

x2 + 45
20

x3 + 25
20

x4

gk−Banzhaf (x)= const.− 10
20

x1 + 80
20

x2 + 40
20

x3 − 20
20

x4 + 10
20

x5

The ordering of the coefficients has changed: in the first case we have

β2 >β3 >β5 = 0>β1 >β4

β2 >β3 >β5 > 0>β1 >=β4

In the first case there are two positive coefficients, in the second there are three positive

coefficients.

5.2.7 Comparison with Shapley Value and Banzhaf Value

Value of β(t) in
∑

T∈Qi β(t)aT Weight of ∆i(X ) in
∑

X∈Q−i β(t)∆i(X )

Shapley Value
1
t

1
n

1(n−1
t−1

)
Banzhaf Value

1
2t−1

1
2n−1

k-Banzhaf

(n−t
k−t

)(n−1
k−1

) = (k−1)t−1

(n−1)t−1

1(n−1
k−1

)
Table 5.2: Advantage of k-Banzhaf

The k-Banzhaf Value has the advantage that his computational cost is reduced. For each

i, one has to compute
(n−1

k−1
)

differences, whereas for both the Banzhaf and the Shapley Value

96

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



5.3. IMPLEMENTED ALGORITHMS

one has to compute 2n −1 differences. Consider also that normally one would like to use a k

considerably lower than n
2 : this makes the evaluation in practice very advantageous. Moreover,

several methods for Feature Selection use a greedy forward selection or a backward elimination

approach, which implies computing Shapley or Banzhaf repeatedly (for different games) as the

selected candidate set is increased/decreased, until a coalition of size k is found. Clearly, the

k-Banzhaf is less expensive computationally, than those methods.

5.3 Implemented Algorithms

We implement some algorithms and compare them to k-Banzhaf. As power index-based algo-

rithms, we have (Shapley Value and Banzhaf Value). As greedy-based algorithms, we have

(Greedy Forward Selection and Greedy Backward Elimination).

5.3.1 For generation of random subsets

This is the procedure to generate a random subset, consider a set N = {0,1, ...,n−1}, mapping a

bit sequence, we consider an element i as part of the set if the corresponding bit position is set to

1, and that the element is not part of the set otherwise. We generate a sequence of n bits where

each bit is set to 1 with probability 1
2 and set to 0 with probability 1

2 , so probability of a sequence

with n bits will be 1
2n with 2n equal the number of subsets for a set of n elements.

Algorithm 6: RandomSubset(n, k)
function :RandomSubset(n, k)
input : n the number of elements in the set
input : k the cardinality of the subset
output : S a random set of cardinality k

1 S ←;
2 i ← RandomInteger(1,n)
3 while |S| 6= k do
4 r ← RandomReal()
5 if r ≥ 1

2 then
6 S ← S∪ {i}
7

8 i ← 1+ (i mod n)
9 end

10 return S
11 end function
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5.3.2 The Greedy approach

Greedy approaches are discussed in Section 3.1.3, they are those choosing the search path based

on the direction that seems best at the time in order to achieve the best benefit immediately. This

can be an effective strategy; in fact, it may show immediate benefits in a predictive performance

that stall out at a locally best setting. A non-greedy approach unlikely would re-evaluate previous

feature combinations and would have the ability to change direction, to move in a way that was

initially unfavourable if it appears to have a potential benefit the current step. With this behavior

the non-greedy approach would escape being trapped in a local optimum.

• Sequential Forward Selection Algorithm: It is the classic greedy forward selection.

The algorithm selects the best feature to add to the set which will increase the score of the

set by the maximum value (see Algorithm 5). His main limitation is that it is not possible

to remove obsoleted features after the addition of the new features.

• Sequential Backward Selection Algorithm: It is the classic greedy backward elimina-

tion. Starting from the full set, the algorithm sequentially remove the feature which has

minor importance, so that the score of the set will be reduce by the minimum value. His

limitation is its impossibility/inability to reevaluate the usefulness of a discarded feature.

5.3.3 Power indexes

Regarding power indexes-based algorithms, the following approaches can be used:

1. By computing the power index for each feature once and ordering them in ascending or

descending order. The exact score is not necessary and it is also expensive: It would need to

analyze in the case of n features all the 2n subsets for Banzhaf and all the n! permutations

for Shapley. Sampling is used in practice to approximate (Monte Carlo), the number of sets

or permutations used depend on the goodness of the approximation.

2. Power index is in general, a weighted average of the marginal contributions. Hence com-

puting the marginal contribution of each feature can allow us to order the features based

on their partial value. By doing so, the order of the most important features become stable

after a moment. So if the user is interested in some number of features let say k, it turns

useful to compute the partial power index, just until the order of the first k features is

stable. The order among the features is not so important in this case, just the stability of

the whole set k is important.

• Shapley Value Algorithm: we use the same Shapley Value algorithm used in Chapter

4; Algorithm 2). So it remain Banzhaf Value and k-Banzhaf value to be discussed in the

following section.
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5.3. IMPLEMENTED ALGORITHMS

• Banzhaf Value Agorithm: uses the approach 1) with the Banzhaf Value as power index

(see Algorithm 7)

• K-Banzhaf Value Algorithm: uses the k-Banzhaf Value as power index where k is the

number of features to select (see Algorithm 8)

5.3.3.1 Banzhaf Index

As we have seen in Section 2.5 of Chapter 2, the Banzhaf index was introduced after the Shapley

Value, the former index considers each distinct coalition in a set while the latter analyses all the

possible permutations of the element s of the set. Here is the Banzhaf value-based algorithm (see

Algorithm 7), his computation is based on subsets. So the approximation of the Banzhaf Value is

done by uniformly sampling the subsets of the set of n elements. The user can choose the number

of subset to use.

Algorithm 7: Banzhaf Value(µ,n,m)
function :Banzhaf (µ,n,m)
input :µ the reference metric definition
input : n the number of elements in the set
input : m the number of subsets
output : the vector of Banzhaf Value

1 v ← 0 ∈Rn . Vector of Banzhaf value
2 c ← 0 ∈Zn . Counter vertor
3 for t ∈ [1,m] do
4 T ← RandomSubset(n) . Generating the random subsets in the range 1..n
5 for i ∈ T do
6 S ← T \ i

7 vi ← vi +µ(S∪ i)−µ(S) . Computing marginal contribution
8 ci ← ci +1
9 end

10 end

11 b ← 0 ∈Rn

12 for i ∈ [0,n−1] do
13 bi ← vi/ci . Computing the normalized Banzhaf value
14 end
15 return b
16 end function

5.3.3.2 k-Banzhaf Index

We develop the k-Banzhaf index from Banzhaf as shown in Section 5.2. We show in Section 5.2.7,

that k-Banzhaf, with respect to the shapley Value and Banzhaf Value has reduced computational
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cost. The k-Banzhaf-based algorithm (see Algorithm 8), derive from the Banzhaf Value, the level

k of the computation is chose by the user.

Algorithm 8: k-Banzhaf Value(µ,n,m,k)
function :k-Banzhaf (µ,n,m,k)
input :µ the reference metric definition
input : n the number of elements in the set
input : m the number of subsets
input : k the subset cardinality
output : the vector of k-Banzhaf Value

1 v ← 0 ∈Rn . Vector of k-Banzhaf value
2 c ← 0 ∈Zn . Counter verctor
3 for t ∈ [1,m] do
4 T ← RandomSubset(n, k) . Generatingg the random subsets in the range 1..k
5 for i ∈ T do
6 S ← T \ i

7 vi ← vi +µ(S∪ i)−µ(S) . Computing marginal contribution
8 ci ← ci +1
9 end

10 end

11 b ← 0 ∈Rn

12 for i ∈ [1,n] do
13 bi ← vi/ci . Computing the normalized k-Banzhaf value
14 end
15 return b
16 end function

5.4 Power indexes-based feature selection applied to
self-training

In this section, we compare the performance metric (namely the accuracy of many (five) feature

selection-based methods in a classification process using the same dataset used in the previous ex-

periment. The feature selection methods are: (Greedy Forward Selection (GFS), Greedy Backward

Elimination (GBE), Shapley Value (Shap), Banzhaf Value (Banz) and k-Banzhaf Value (k-Banz) ).

To achieve this goal, we build three classification scenarios, in each of them, we compare the five

feature selection methods also with a benchmark method; a "no feature selection" method (noFS).

In the following section, we begin by the experimental protocol.
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5.4. POWER INDEXES-BASED FEATURE SELECTION APPLIED TO SELF-TRAINING

Figure 5.1: No Feature Selection process

5.4.1 Experimentation protocol and classification methods

In this section, we describe the entire process, for each of our three scenarios (the simple training

and testing process, the bootstrap process, and the self-training process), we provide step by

step, information regarding the experimental protocol. Also, we provide information about the

classification methods or feature selection methods we use in the experimentation.

5.4.1.1 Experimentation protocol

Our experiment compares three main scenarios, in each of these scenarios, we split, in the same

manner, the data set; for more details on the dataset, (see section 4.4.1). The dataset splitting

process has two variants: in the first variant, we split the data set (DS) respectively into 10%

for the training set and 90% for the testing set, in the second variant we split it into 5% for the

training set and 95% for the testing set. Each of the three scenarios implements six different sub-

scenarios divided mainly into two groups: the first group ( No Feature selection) is made by only

the first sub-scenario, and it is also the benchmark, the second group (Feature Selection) is made

by the remaining five sub-scenarios. In the first group (like the name indicates) we do not apply

feature selection as opposed to the second group in which we apply different feature selection

algorithms to chose the best features which optimize the learning process. In the following, we

present the description of the scenarios followed by the description of the sub-scenarios:

• The first scenario : Simple training and testing process (1)

In the first group of the sub-scenario (No Feature Selection), we leave out the feature

selection step, so we just split the data set (DS) respecting the indicated proportion, build a

model using the selected classifier, predict the labels on the testing set and compute the

performance metrics.
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In the case of the second group of the sub-scenarios (Feature Selection), we use the corre-

sponding algorithm/method to choose the most critical features, (as we said before, each

sub-scenario uses his own algorithm). We use those features to create a new version of the

dataset containing only the most important features (DS-v) then split it (DS-v1) into the

training set (TS, TS=P1) and the testing set (Testset) observing the proportions indicated

in the previous section, e.g.: (TS=10% and Testset = 90%). Then we build a model on the

training set with one of the selected classifiers (Random Forest, Linear SVM), and use that

model to predict the labels on the test set. In the end, we compute for all the sub-scenarios

the performance metrics ( in this case the accuracy).

• The second scenario : Simple bootstrap process (2)

Definition 36 (Bootstrap). The bootstrap process is characterized by the successive reinser-

tion of all the predicted labels (and their corresponding records) into the previous training

set to form the next training set and then build the next model (see Figure 5.2).

This scenario consists of: using the corresponding algorithm to chose the most important

features and created with those features a new version of the data set (DS-v) then split

the new version data set into the training and testing set according to the proportions

indicates before. After splitting the dataset as in the first scenario, in this second scenario

we split again the testing set part (Testset) into four parts/chunks (P2, P3, P4, P5) so that

Pi ∩P j =; and P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 = DS. Differently, with respect to the first scenario,

in this scenario, we make four predictions using four different models. This is how we

construct the models: the first model (model1) is built on the initial training set (P1), using

the same classifier as in the first scenario, then we use the model1 to predict the labels on

the first part of the testing set (P2), the predicted labels and their corresponding records

are appended to the initial training set to form the training set 2 (TS2). This TS2 is used to

build the model2 following the same process. We use the model2 to predict the labels of P3.

The predicted labels on the P3 will be appended with their corresponding records to the

TS2 to form the training set 3 (TS3), the TS3 will be used to build the model3, this model3

is used to predict the labels on third part (P4) and so on, until the model4 which is used to

predict labels on the last part (P5). In the end, we compute for all the sub-scenarios the

chosen performance metrics ( in this case, the accuracy).

• The third scenario : Self-training process (3)

Definition 37 (Self-training). Self-training as define by Ningam in [67] "is an incremental

algorithm that initially builds a single classifier using a small amount of labelled data.

Then it iteratively predicts the labels of the unlabelled examples, rank the examples by
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Figure 5.2: A step of the Bootstrap scenario

the confidence in their prediction and permanently add the most confident examples into

the labelled training set. It retrains the underlying classifier with the augmented training

set and the process is repeated for a given number of iterations or until some heuristic

convergence criterion is satisfied".

Only in the case the initial and subsequent classifiers correctly label most of the unlabelled

examples, then the classification accuracy can be improved over iterations. Unfortunately,

adding mislabeling noise is not avoidable. When self-training is applied on linear classifier

such as SVM, one drawback is that the majority confident examples often lie away from the

target decision boundary (non-informative examples).

This scenario is quite similar to the second, the unique difference is that while in the

second scenario the predicted labels are all appended to the previous training set with

their corresponding records to form the new training set, in this scenario, only the labels

predicted with a certain confidence threshold and their corresponding records are appended

to the previous training set (In this specific case, base on the experiments, we notice that

the better threshold confidence is 80%. So we chose the labels with a confidence greater

than 80%) (see Figure 3.7). More details in Section 5.4.1.1.

5.4.1.2 Classification methods

As we said before, each of the above mentioned scenarios implements the same six methods or sub-

scenarios : No feature selection (No-FS), Greedy Forward Search-based Feature Selection (GFS),

Greedy Backward Elimination-based Feature Selection (GBE), Shapley Value-based Feature

Selection (Shap), Banzhaf Index-based Feature Selection (Banz), Restricted-Banzhaf Index-based

Feature Selection (k-Banz) let have a look at each of the sub-scenario.

• No Feature Selection (1-0, 2-0, 3-0):

103

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



CHAPTER 5. RESTRICTED BANZHAF INDEX (K-BANZHAF) AND FEATURE SELECTION

This method uses all the 288 features of the dataset (DS). After splitting the DS into the

training set (TS) and testing set (Test-set) it uses respectively the Random Forest Classifier

(RFC) and the Linear Support Vector Machine Classifier (SVM) to build a model on the

training set make predictions on the testing set and compute all the the chosen performance

metrics ( in this case, the accuracy).

• Greedy Forward Search-based Feature Selection (1-GFS, 2-GFS, 3-GFS):

This classification method uses Greedy Forward Search (GFS) to select the 150 most

essential features, it builds a new data set version (DS-v1) using only the selected features

splits this latest data set according to the indicated proportions so that we have P1 as the

training set, (only for the scenarios 2 and 3) the remaining testing set is then split equally

into four parts P2, P3, P4, P5. The classification process uses these training and testing

parts to build models and then predict the labels.

• Greedy Backward Elimination-based Feature Selection(1-GBE, 2-GBE, 3-GBE ):

The feature selection algorithm used in this case is the Greedy Backward Elimination

(GBE). Therefore, based on this greedy selection method we select the most 150 essential

features and build with them a new data set version (DS-v2) and using only the selected

features, splits this latest data set according to the indicated proportions so that we have

P1 as the training set, (only for the scenarios 2 and 3) the remaining testing set is then

split equally into four parts P2, P3, P4, P5. The classification process uses these training

and testing parts to build models and then predict the labels.

• Shapley Value-based Feature Selection(1-Shap, 2-Shap, 3-Shap):

In this sub-scenario, the feature selection method used is the Shapley Value. Consequently,

based on the Shapley Value algorithm we select the 150 most important features and use it

to build a new data set version (DS-v3) using only those critical features. The new version

of the data set is then split according to the indicated proportions so that we have P1 as the

training set, (only for the scenarios 2 and 3) the remaining testing set is split equally into

four parts P2, P3, P4, P5. The classification process uses these training and testing parts to

build models and then predict the labels.

• Banzhaf Index-based Feature Selection(1-Banz, 2-Banz, 3-Banz):

Using the Banzhaf Index algorithm in this method, we select the most 150 essential features

and use them to build a new version of our data set (DS-v4). The new version of data set

is then split according to the indicated proportions so that we have P1 as the training set,

(only for the scenarios 2 and 3) the remaining testing set is then split equally into four

parts P2, P3, P4, P5. The classification process uses these training and testing parts to

build models and then predict the labels.
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Figure 5.3: Performance of the top-k rules using "Random forest" as ML algorithm and "Decision-
Tree" as splitting criteria

• Restricted-Banzhaf Index-based Feature Selection(1-k-Banz, 2-k-Banz, 3-k-Banz):

Like in the method using the Banzhaf index, this latter method uses the restricted Banzhaf

index algorithm to select the 150 most essential features. The process of building a new

version of the data set (DS-v5) is the same as in the previous sub-scenarios. The new version

of data set is split according to the indicated proportions so that we have P1 as the training

set, (only for the scenarios 2 and 3) the remaining testing set is then split equally into four

parts P2, P3, P4, P5. The classification process uses these training and testing parts to

build models and then predict the labels.

5.4.2 Results with Random Forest Classifier (RFC) as ML algorithm

In this section, we use Random Forest Classifier (RFC) to build, train and test the model from

our dataset, then compute the performance metrics, namely the accuracy.

5.4.2.1 Results using "RFC" as ML algorithm and "Decision Tree" as splitting criteria

Here we have the performance of the top-k rules using Decision Tree classifier and using as rule

ranking metric the k-Banzhaf value with respect to the same metric computed on the pool(k-

Banz) ( red lines ), the Banzhaf value with respect to the same metric computed on the pool

(Banz)(black lines), Shapley value with respect to the same metric computed on the pool (Shap)

(brown lines), the Greedy Backward Elimination with respect to the same metric computed on

the pool (GBE) (cyan lines), the Greedy Forward Selection computed on the pool (GFS) (green

lines with square), and the benchmark with no feature selection (noFS) (blue lines ). From the

left to the right respectively: the comparison of the ranking metric with respect to (k-Banzhaf,

Banzhaf, Shapley, GFS, GBE and noFS) in term of assessment metric into the first, the second

and the third scenario, top-k classifier accuracy.
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Figure 5.4: Performance of the top-k rules using Random forest as ML algorithm and "OR
operator" as splitting criteria

5.4.2.2 Result using "RFC" as ML algorithm and "OR-operator" as splitting criteria

Here we have the performance of the top-k rules using the "OR classifier" classifier and using

as rule ranking metric the k-Banzhaf value with respect to the same metric computed on the

pool(k-Banz) ( red lines ), the Banzhaf value with respect to the same metric computed on the

pool (Banz)(black lines), Shapley value with respect to same metric computed on the pool (Shap)

(brown lines), the Greedy Backward Elimination with respect to the same metric computed on

the pool (GBE) (cyan lines), the Greedy Forward Selection computed on the pool (GFS) (green

lines with square), and the benchmark with no feature selection (noFS) (blue lines ). From the

left to the right respectively: the comparison of the ranking metric with respect to (k-Banzhaf,

Banzhaf, Shapley, GFS, GBE and noFS) in term of assessment metric into the first, the second

and the third scenario, top-k classifier accuracy.

5.4.3 Results with support-vector machine (SVM) as ML algorithm

In this section, we use a support-vector machines to build, train and test the model from our

dataset, then compute the performance metrics, namely the accuracy.

5.4.3.1 Result using "SVM" as ML algorithm and "OR-operator" as splitting criteria

Here we have the performance of the top-k rules using the "OR operator" and using as rule

ranking metric the k-Banzhaf value with respect to the same metric computed on the pool(k-

Banz) ( red lines ), the Banzhaf value with respect to the same metric computed on the pool

(Banz)(black lines), Shapley value with respect to the same metric computed on the pool (Shap)

(brown lines), the Greedy Backward Elimination with respect to same metric computed on the

pool (GBE) (cyan lines), the Greedy Forward Selection computed on the pool (GFS) (green lines

with square), and the benchmark with no feature selection (noFS) (blue lines ). From the left to
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Figure 5.5: Performance of the top-k rules using "SVM" as ML algorithm and "OR operator" as
splitting criteria

the right respectively: the comparison of the ranking metric with respect to (k-Banzhaf, Banzhaf,

Shapley, GFS, GBE and noFS) in term of assessment metric into the first, the second and the

third scenario, top-k classifier accuracy.

5.4.3.2 Result using "SVM" as ML algorithm and "Decision Tree" as splitting criteria

Here we have the performance of the top-k rules using Decision Tree classifier and using as rule

ranking metric the k-Banzhaf value with respect to the same metric computed on the pool(k-Banz)

( red lines ), the Banzhaf value with respect to the same metric computed on the pool (Banz)(black

lines), Shapley value with respect to the same metric computed on the pool (Shap) (brown lines),

the Greedy Backward Elimination with respect to the same metric computed on the pool (GBE)

(cyan lines), the Greedy Forward Selection computed on the pool (GFS) (green lines ), and the

benchmark with no feature selection (noFS) (blue lines ). From the left to the right respectively:

the comparison of the ranking metric with respect to (k-Banzhaf, Banzhaf, Shapley, GFS, GBE

and noFS) in term of assessment metric into the first, the second and the third scenario, top-k

classifier accuracy.

5.5 Interpretations and Conclusions

In Section 5.2 we presented the approximation of the Banzhaf Value, then from its properties,

we proposed and developed a new version called the restricted Banzhaf index (k-Banzhaf). We

compared the latter with the original one and also with the Shapley Value. From this comparison,

we showed that the restricted Banzhaf value is better with respect to the Banzhaf Value and

Shapley. In Section 5.4, we used all the three power indexes to build power indexes-based feature

selection and compare them to the greedy-based feature selection (Greedy Forward Selection
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Figure 5.6: Performance of the top-k rules using "SVM" as ML algorithm and "Decision Tree" as
splitting criteria

(GFS) and Greedy Backward Elimination (GBE)). We used as a benchmark a model without

feature selection. We made all this using three different scenarios: in the first scenarios we train

and test our model, in the second scenario we included a bootstrap process, and, in the third

scenario we include a self-training process. We used the same dataset from the first part of the

dissertation (see Section 4.4.1). We implemented all this using two machine learning algorithms:

the Random forest classifier (RFC) and the support vector machine (SVM).

From the results we can see that there is almost no difference between the two machine

learning algorithms, apart from that, with the RFC, the performance metrics of the GFS and

Banzhaf Value are a little bit lower with respect to the others whereas with SVM it is the GBE

and Shapley which fare a little bit less than the others. From our purpose to see how the different

methods of Feature Selection influence the accuracy, we observed that in most cases, the accuracy

obtained with k-Banzhaf is among the best results. On the other hand, we have seen in 2.5 that

the time computation of k-Banzhaf index is more advantageous with respect to the Shapley and

the Banzhaf index. So we can conclude that it is better to use restricted Banzhaf than index

Banzhaf index.

5.6 Summary

In this chapter, we analyzed another power index and its properties; the Banzhaf index, and

propose a new version called the restricted Banzhaf Index (k-Banzhaf); developed from the

original one (see Section 2.5). This new version outperforms concerning the normal one in term

of computation time and has comparable results. Indeed, given a set N of N elements with

|N | = N, while the normal Banzhaf computes 2N −1 differences, the k-Banzhaf computes only(n−1
k−1

)
differences. We implemented a self-training process ( a kind of bootstrap) to reinforce the

learning process in a Machine Learning algorithm (Random Forest Classifier or Support Vector
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Machines), (see Section 5.4.1.1). We use all the following components (Shapley Value, Banzhaf

Value, k-Banzhaf Value, Self-training) in a classification process in which we build different

features selections algorithms (power index-based features selection) and compare them to greedy-

based feature selection (see 5.4.1.2). On the other part, we compare the performance metric,

namely the accuracy of each features selection method ( Shapley Value-based, Banzhaf Value-

based, k-Banzhaf Value-based, Greedy forward selection-based, Greedy backward elimination-

based) in the self-training process. The experimentation dataset is the one used in the first part

of the dissertation.We presented the results in Section 5.4.2 and Section 5.4.3. We observed

that power indexes-based feature selection methods do allow to rank the rules and to select the

top-k rules, in analogy to feature selection and achieve performance comparable to other feature

selection techniques. Moreover, such power indexes can be interpreted as a summary score of

the usefulness of the rule that can be used to assess the rules individually during the periodic

rule assessment process. The implemented self-training has a comparable result with respect

to the bootstrap process and even with respect to a simple training and testing process. So the

improvement in the case of the self-training is not significant. But, observed that the performance

of our restricted Banzhaf index is comparable to other power indexes and in some cases, it is even

better.
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Part IV

Conclusion and Future Work
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CONCLUSION

Joined to the conclusion of this dissertation, let start by summarizing his content and his

workflow. In the first chapter, we started observing that financial institutions are facing an

ever-growing presence of credit card payment fraudulent activities. Underlining that there

already exist automatic fraud detection systems to tackle such activities, we first describe the

fraud detection and the rule management process used by our industrial partner (Atos Worldline).

We then aimed at proposing an approach which improves the fraud detection systems based on our

use case, and using a power index, a concept inspired by Coalitional Game Theory (CGT). Finally,

we introduce some concepts as feature selection and self-training, to be used in the following

parts of the thesis. In chapters two and three, we presented the related work; briefly, in chapter

two, we introduce the game theoretic-concepts, going from definitions to properties of games

theory in general, we analyzed in particular coalitional games with transferable utility. Then,

we focus on the two power indexes ( Shapley Value and Banzhaf Value) explored in the thesis.

In chapter three, we discussed some feature selection methods, insisting on greedy methods

used as a benchmark in our experiments. We discussed also some machine learning techniques,

especially semi-supervised machine learning, from which we implemented a self-training process.

In chapters four and five, we presented two experiments using power indexes in the context of

fraud detection and based on a real-world dataset. We also propose in chapter five, a new power

index (the restricted Banzhaf value (k-Banzhaf)), derived from the Banzhaf Value. Chapter six

concludes the dissertation. Regarding the contributions of the thesis, we summarized them in the

following paragraphs.
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CHAPTER 6. CONCLUSION

6.1 Summary

Reducing the number of operational rules

In the first experiment based on a real-world dataset made available by our industrial partner

containing approximately 300 rules and N = 359,862 observations, we conducted some experi-

ments in which we implemented a novel approach ( the Shapley Value-based approach). This

approach proposes a rule evaluation and selection procedure that quantifies the performance of

the rule "in collaboration" with the others, taking into account possible redundancy. It brings us

to achieve the goal of reducing the number of operational rules from about 300 rules to about

30, by achieving the same result in terms of precision and recall. We showed that our proposed

approach fares better than the traditional one; more specifically, we prove that the rule-pool-based

approach − assessing the rules based on their contribution to the performance of the OR-ed pool,

quantified by the Shapley Value − fares better than the traditional individual rule-based one.

The Shapley Value ranking lightens and makes more effective the rule management process.

Assigning a score to the individual rule

The score is useful in the monthly revision process, where the performance of each rule is con-

sidered by the rule managers that have to make the decision keep/drop. So, the Shapley Value

score provides a synthesis of the rule usefulness. We showed that our approach is comparable

to other feature selection techniques, but with the advantage that the assignment of the nor-

malized score to the rule distinguishes the proposed approach (to rule management ) from other

approaches, used for feature selection. For instance, the Greedy Forward Selection method (used

as the benchmark) can provide good coalitions rules, but it does not assign a score to the rule,

summarizing its performance in collaboration. Furthermore, in principle, the application of the

Greedy Forward Selection during the periodical assessment could allow important changes in the

composition of the pool, while the Shapley Value score supports a fine-grained control over the

composition of such pool.

The restricted Banzhaf Value

In the second experiment, we studied another power index, the Banzhaf index; then we proposed a

modified version called the restricted Banzhaf Index (k-Banzhaf). The new version proposed

outperforms the normal one in term of computation time and has comparable performance

metrics. While for a set N of N elements with |N | = N, the normal Banzhaf computes 2N −1

differences, the k-Banzhaf computes only
(n−1

k−1
)

differences. The Banzhaf index and the k-Banzhaf

Value are then implemented in the experiment to be compared not only with the Shapley index

but also with two greedy approaches: the greedy forward selection and the greedy backward
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6.1. SUMMARY

elimination. We included the k-Banzhaf index in three scenarios of which two feature selection

scenarios and one without feature selection, each scenario comparing five algorithms (Shapley,

Banzhaf, k-Banzhaf, GFS, and GBE). We observed that k-Banzhaf is always among the best

results.

For the same experiment, we implement also a self-training process ( a kind of bootstrap

process) to reinforce the learning process in two Machine Learning algorithms (Random Forest

Classifier or Support Vector Machines). We use all these components (Shapley Value, Banzhaf

Value, k-Banzhaf Value, Self-training) in a classification process in which we build different

features selections algorithms (power index-based features selection) and compare them with

greedy-based feature selection on the base of their performance metrics. In the same time, we

compare the score of these feature selection methods in the self-training process.

The experimentation dataset is the one used in the first part of the dissertation. We observe

that power indexes-based feature selection methods do allow to rank the rules and to select the

top-k rules, in analogy to feature selection and achieve performance comparable to other feature

selection techniques. Moreover, such power indexes can be interpreted as a summary score of the

usefulness of the rule. In particular, we observe that the performance of our restricted Banzhaf

index is comparable to other power indexes and that some times it is even better.

6.1.1 First contribution

In detail, regarding the first part of the thesis, we investigated the fraud detection process,

particularly on the near-real-time fraud detection scenario. In that scenario, the system enacts

ex-post evaluation based on broader information context with respect to the real-time scenario,

including linked data. Afterwards, the transactions triggered by the systems are then presented

to human investigators for final assessment. The investigators first chose among the submitted

transactions those to investigate and decide whether the transaction is fraudulent or legitimate.

Cards corresponding to fraudulent transactions are blocked.

We focused on supporting the efficiency of the process of rule management, observing that

managers consider the performance of the rule as if it were run in isolation. We proposed a rule

evaluation and selection procedure that quantifies the performance of a rule in collaboration with

the others, taking into account possible redundancy. The contribution of the rule to the rule pool

cannot be quantified correctly through the simple marginal contribution of the rule to the pool

because the performance is non-additive.

We mapped the problem of selecting the set of rules operational at a given time for flagging a

transaction as suspicious into a version of Feature Selection problem. Applying a state-of-the-art

feature selection algorithm, (in this case Greedy Forward Selection) we showed that our method

has comparable performance. Also, we argue that our method has the advantage that it associates

a normalized score to the individual "feature"/rule whereas typically, feature selection algorithms

focus on providing an optimal feature set and do not yield normalized importance scores.
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CHAPTER 6. CONCLUSION

6.1.2 Second Contribution

The second part of the thesis is devised into two main sections: in the first one, the leading

power indexes (Shapley Value and Banzhaf Value) are discussed, in particular, the Banzhaf Value

is analyzed through an analytical approach. From the properties of the latter, we deduced a

new power index which is an improved version of the Banzhaf. We called the new version the

(restricted Banzhaf index (k-Banzhaf)). In this section, we showed that our improved version

fares at least as other power indexes methods (Shapley and Banzhaf index) but also as reference

methods used as a benchmark (greedy methods). In terms of computation time, the k-Banzhaf

has the advantage to be faster than the two other power indexes.

The second section is about using power indexes to build the power indexes-based features

selection algorithms and compare them with the greedy-based feature selection, using the same

dataset we used in the first part of the dissertation. For this second experiment, we implemented

five feature selection methods (three power index-based and two greedy-based methods). Then

we build three scenarios: the first one is a simple scenario (two steps) in which we train a

model on the training set, predict on testing set and compute the accuracy score (see Figure

5.1); we called this first scenario (No feature selection). The second scenario, called Simple
Bootstrap (see Figure 5.2) consist of building many models (four), reinserting the prediction

obtained into the training set. The third scenario, the Self-training (see Figure 3.7) scenario

is like the second but characterized by the fact that only predictions which confidence is more

than 80% are reinserted into the training set. We observed from the results that the classification

performances are comparable in all the three scenarios; so there is no significant difference

between the self-training scenario and the other two scenarios. This can be due to the quality of

our dataset, on the other hand, an important observation is that the performance of our proposed

power index is always among the best one. So the k-Banzhaf -based feature selection is not only

comparable to the other power index-based feature selection, but also it is comparable to the

traditional feature selection method (greedy-based methods), and some times it even fares better.

6.2 Future improvements

6.2.1 Limitations

The well-known advantage of the Shapley Value over solution concepts such as kernel and core is

that the solution provided by Shapley Value is both fair and unique: the former relates to the way

the gains from cooperation are distributed to the coalition members. The latter is quite clear (no

ambiguity) for a game, there is only one possible solution, and players know what is the payoff

of the game if they play. Despite the uniqueness and the fairness of the Shapley Value, some

drawbacks are known; the main ones are: first, for certain classes of games (the weighted voting

game), the problem of determining the Shapley Value is # P-complete as shown by X. Deng and

C. Papadimitriou in [24]. The class of # P-complete problems are those that, although nobody
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6.2. FUTURE IMPROVEMENTS

has been able to prove, they seem intractable1. This means computing the Shapley Value for the

voting game will be in general intractable. As second drawback, Shapley Value provides a solution

with a limited degree of certainty like shown by A. Roth in [28], the uniqueness characteristic of

Shapley Value is associated with the risk neutrality. Moreover, Shapley Value is an entailment

of the normalization of the utility function used to define the considered game. Therefore, this

uncertainty provides an additional dimension for evaluating a player.

6.2.2 Possible solutions

We have seen that the computation of Shapley is at least # P-complete, as well as the Banzhaf

index from computational perspective as proved in [73]. Given the computational hardness of

finding the exact value of Shapley Value and Banzhaf Value, researchers have developed some

approximation methods to overcome the problem as introduced in Section 2.4.1. These methods

include the Monte Carlo simulation method [29], the multilinear extension (MLE) method [37],

the modified MLE method [62, 68], the random permutation method [101]. Most of these methods

are efficient for majority voting games and they vary in terms of their approximation errors and

their time complexities. The aim can be to find methods that minimize approximation errors and

time complexities in the already existing methods; or finding new efficient methods that fulfill

these expectations. For example it may be possible to find good deterministic methods or even

good approximation algorithms to achieve better quality of computed values.

1A problem is said to be intractable if it takes unreasonably long to solve it. This is the case, for example, if the
time taken to solve it increases exponentially in the size of the input to the problem.
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APPENDIX A

Main notation used in the dissertation

S A coalitional structure

C A coalition

µ The characteristic function , Performance metrics

µ(C) A value of the coalition, where µ is the characteristic function

Shap The Shapley Value

N A set

N The cardinality of the set N : N = |N |
2N The power set of N

R The set of real numbers

Z The set of integers

Π A set of permutation

π A permutation

Θ A subset of Π

θ The cardinality of Θ, θ = |Θ|
P Bn A Hilbert space (Space of psoeudo-boolean function on N)

∆
[µ]
i (C ) The marginal contribution of a rule i to a rule coalition w.r.t the measure µ

119

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[1] https://worldline.com/.

[2] http://www.lamsade.dauphine.fr/ airiau/teaching/index.html.

[3] Copyright, in Generatingfunctionology, H. S. Wilf, ed., Academic Press, 1990, p. iv.

[4] R. J. AUMANN AND J. H. DREZE, Cooperative games with coalition structures, International

Journal of Game Theory, 3 (1974), pp. 217–237.

[5] W. AWADA, T. KHOSHGOFTAAR, D. DITTMAN, R. WALD, AND A. NAPOLITANO, A review of

the stability of feature selection techniques for bioinformatics data, 08 2012, pp. 356–363.

[6] B. AZHAGUSUNDARI AND A. S. THANAMANI, Feature selection based on information gain,

in International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN, pp. 2278–3075.

[7] S. B. COHEN, E. RUPPIN, AND G. DROR, Feature selection based on the shapley value., 01

2005, pp. 665–670.

[8] Y. BACHRACH, E. MARKAKIS, E. RESNICK, A. D. PROCACCIA, J. S. ROSENSCHEIN,

AND A. SABERI, Approximating power indices: theoretical and empirical analysis,

Autonomous Agents and Multi-Agent Systems, 20 (2010), pp. 105–122.

[9] A. C. BAHNSEN, D. AOUADA, A. STOJANOVIC, AND B. OTTERSTEN, Feature engineering

strategies for credit card fraud detection, Expert Systems with Applications, (2016).

[10] J. BANZHAF, Weighted voting doesn’t work: A mathematical analysis, Rutgers Law Review,

19 (1965), pp. 317–343.

[11] S. BHATTACHARYYA, S. JHA, K. THARAKUNNEL, AND J. C. WESTLAND, Data mining for

credit card fraud: A comparative study, Decision Support Systems, 50 (2011), pp. 602–

613.

[12] U. M. BRAGA-NETO, R. F. HASHIMOTO, E. R. DOUGHERTY, D. V. NGUYEN, AND R. J.

CARROLL, Is cross-validation better than resubstitution for ranking genes?, Bioinfor-

matics, 20 2 (2004), pp. 253–8.

121

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[13] O. CAELEN, G. GIANINI, AND E. DAMIANI, Fr3065558a1, system and method to manage

the detection of fraud in a system of financial transactions.

[14] F. CARCILLO, Y.-A. L. BORGNE, O. CAELEN, Y. KESSACI, F. OBLÉ, AND G. BONTEMPI,

Combining unsupervised and supervised learning in credit card fraud detection, Infor-

mation Sciences, (2019).

[15] F. CARCILLO, Y.-A. LE BORGNE, O. CAELEN, AND G. BONTEMPI, Streaming active

learning strategies for real-life credit card fraud detection: assessment and visualization,

International Journal of Data Science and Analytics, 5 (2018), pp. 285–300.

[16] R. CARUANA AND D. FREITAG, Greedy attribute selection, in Machine Learning Proceedings

1994, W. W. Cohen and H. Hirsh, eds., Morgan Kaufmann, San Francisco (CA), 1994,

pp. 28 – 36.

[17] S. COHEN, E. RUPPIN, AND G. DROR, Feature selection based on the shapley value, in Pro-

ceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05,

San Francisco, CA, USA, 2005, Morgan Kaufmann Publishers Inc., pp. 665–670.

[18] S. B. COHEN, G. DROR, AND E. RUPPIN, Feature selection via coalitional game theory,

Neural Computation, 19 (2007), pp. 1939–1961.

[19] J. S. COLEMAN, Control of Collectivities and the Power of a Collectivity to Act.., 1968.

[20] V. CONITZER AND T. SANDHOLM, Computing shapley values, manipulating value division

schemes, and checking core membership in multi-issue domains., 01 2004, pp. 219–225.

[21] F. G. COZMAN, I. COHEN, AND M. C. CIRELO, Semi-supervised learning of mixture models,

in Proceedings of the Twentieth International Conference on International Conference

on Machine Learning, ICML’03, AAAI Press, 2003, pp. 99–106.

[22] M. V. CULP AND G. MICHAILIDIS, An iterative algorithm for extending learners to a

semi-supervised setting, 2008.

[23] A. DAL POZZOLO, G. BORACCHI, O. CAELEN, C. ALIPPI, AND G. BONTEMPI, Credit card

fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions

on neural networks and learning systems, 29 (2017), pp. 3784–3797.

[24] X. DENG AND C.-T. H. PAPADIMITRIOU, On the complexity of cooperative solution concepts,

Mathematics of Operations Research - MOR, 19 (1994), pp. 257–266.

[25] J. DOAK, An evaluation of feature selection methods and their application to computer

security, 1992.

122

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[26] J. S. DREYER AND A. SCHOTTER, Power relationships in the international monetary fund:

The consequences of quota changes, The Review of Economics and Statistics, 62 (1980),

pp. 97–106.

[27] J. G. DY AND C. E. BRODLEY, Feature selection for unsupervised learning, J. Mach. Learn.

Res., 5 (2004), pp. 845–889.

[28] A. E. ROTH, The expected utility of playing a game, (1988).

[29] S. S. FATIMA, M. WOOLDRIDGE, AND N. R. JENNINGS, A linear approximation method

for the shapley value, Artificial Intelligence, 172 (2008), pp. 1673 – 1699.

[30] A. FRÉCHETTE, L. KOTTHOFF, T. MICHALAK, T. RAHWAN, H. H. HOOS, AND K. LEYTON-

BROWN, Using the shapley value to analyze algorithm portfolios, in Proceedings of

the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, AAAI Press, 2016,

pp. 3397–3403.

[31] I. GHEYAS AND L. SMITH, Feature subset selection in large dimensionality domains,

Pattern Recognition, 43 (2010), pp. 5–13.

[32] D. GILLIES, Some Theorems on n-Person Games, PhD thesis, Princeton University, 1953.

[33] F. GLOVER, Tabu search—part i, ORSA Journal on Computing, 1 (1989), pp. 190–206.

[34] D. E. GOLDBERG, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st ed., 1989.

[35] S. GORE AND V. GOVINDARAJU, Feature selection using cooperative game theory and

relief algorithm, in Knowledge, Information and Creativity Support Systems: Recent

Trends, Advances and Solutions, A. M. Skulimowski and J. Kacprzyk, eds., Cham, 2016,

Springer International Publishing, pp. 401–412.

[36] M. GRABISCH, Set Functions, Games and Capacities in Decision Making, Springer Pub-

lishing Company, Incorporated, 1st ed., 2016.

[37] O. GUILLERMO, Game theory, Emerald Group Publishing Limited, 3rd ed ed., october 1995.

Original copyright 1995.

[38] I. GUYON AND A. ELISSEEFF, An introduction to variable and feature selection, J. Mach.

Learn. Res., 3 (2003), pp. 1157–1182.

[39] G. HAFFARI AND A. SARKAR, Analysis of semi-supervised learning with the yarowsky

algorithm, in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial

Intelligence, UAI’07, Arlington, Virginia, United States, 2007, AUAI Press, pp. 159–166.

123

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[40] P. HAMMER AND S. RUDEANU, Boolean methods in operations research and related areas,

Ökonometrie und Unternehmensforschung, Springer-Verlag, 1968.

[41] P. L. HAMMER AND R. HOLZMAN, Approximations of pseudo-boolean functions; applica-

tions to game theory, ZOR - Meth. Mod. of OR, 36 (1992), pp. 3–21.

[42] T. HASTIE, R. TIBSHIRANI, AND J. FRIEDMAN, The Elements of Statistical Learning,

Springer Series in Statistics, Springer New York Inc., New York, NY, USA, 2001.

[43] X. HE, D. CAI, AND P. NIYOGI, Laplacian score for feature selection, in Proceedings of the

18th International Conference on Neural Information Processing Systems, NIPS’05,

Cambridge, MA, USA, 2005, MIT Press, pp. 507–514.

[44] A. E. HOERL AND R. W. KENNARD, Ridge regression: Biased estimation for nonorthogonal

problems, Technometrics, 12 (1970), pp. 55–67.

[45] M. J. HOLLER, Forming coalitions and measuring voting power, Political Studies, 30 (1982),

pp. 262–271.

[46] S. IEONG AND Y. SHOHAM, Multi-attribute coalitional games, vol. 2006, 01 2006, pp. 170–

179.

[47] G. H. JOHN, R. KOHAVI, AND K. PFLEGER, Irrelevant features and the subset selection

problem, in Machine Learning Proceedings 1994, W. W. Cohen and H. Hirsh, eds.,

Morgan Kaufmann, San Francisco (CA), 1994, pp. 121 – 129.

[48] R. J. JOHNSTON, On the measurement of power: Some reactions to laver, Environment and

Planning A: Economy and Space, 10 (1978), pp. 907–914.

[49] J. JR DEEGAN AND E. PACKEL, A new index of power for simple n-person games, Interna-

tional Journal of Game Theory, 7 (1978), pp. 113–123.

[50] J. JURGOVSKY, M. GRANITZER, K. ZIEGLER, S. CALABRETTO, P.-E. PORTIER, L. HE-

GUELTON, AND O. CAELEN, Sequence classification for credit-card fraud detection,

Expert Systems with Applications, (2018).

[51] R. KOHAVI AND G. H. JOHN, Wrappers for feature subset selection, Artif. Intell., 97 (1997),

pp. 273–324.

[52] S. KOSUB, A note on the triangle inequality for the jaccard distance, Pattern Recognition

Letters, 120 (2019), pp. 36 – 38.

[53] B. LEBICHOT, F. BRAUN, O. CAELEN, AND M. SAERENS, A graph-based, semi-supervised,

credit card fraud detection system, in Complex Networks & Their Applications V,

H. Cherifi, S. Gaito, W. Quattrociocchi, and A. Sala, eds., Cham, 2017, Springer Inter-

national Publishing, pp. 721–733.

124

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[54] M. LEGESSE, G. GIANINI, AND D. TEFERI, Selecting feature-words in tag sense disam-

biguation based on their shapley value, 01 2016, pp. 236–240.

[55] Y. LEUNG AND Y. HUNG, A multiple-filter-multiple-wrapper approach to gene selection

and microarray data classification, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 7

(2010), pp. 108–117.

[56] M. LEVANDOWSKY AND D. WINTER, Distance between sets, Nature, 234 (1971), pp. 34– 35.

[57] S. LIPOVETSKY AND M. CONKLIN, Analysis of regression in game theory approach, Applied

Stochastic Models in Business and Industry, 17 (2001), pp. 319–330.

[58] S. C. LITTLECHILD AND G. OWEN, A simple expression for the shapley value in a special

case, Management Science, 20 (1973), pp. 370–372.

[59] Y. LUCAS, P.-E. PORTIER, L. LAPORTE, S. CALABRETTO, O. CAELEN, L. HE-GUELTON,

AND M. GRANITZER, Multiple perspectives hmm-based feature engineering for credit

card fraud detection, in Proceedings of the 34th ACM/SIGAPP Symposium on Applied

Computing, ACM, 2019, pp. 1359–1361.

[60] S. M. LUNDBERG AND S.-I. LEE, A unified approach to interpreting model predictions, in

Advances in Neural Information Processing Systems, 2017, pp. 4765–4774.

[61] S. MALEKI, L. TRAN-THANH, G. HINES, T. RAHWAN, AND A. ROGERS, Bounding the esti-

mation error of sampling-based shapley value approximation with/without stratifying,

(2013).

[62] I. MANN AND L. S. SHAPLEY, Values of Large Games, IV: Evaluating the Electoral College

by Montecarlo Techniques, Santa Monica, Calif.: RAND Corporation, 1960.

[63] P. MITRA, C. A. MURTHY, AND S. K. PAL, Unsupervised feature selection using feature

similarity, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), pp. 301–312.

[64] M. MONIRUL KABIR, M. MONIRUL ISLAM, AND K. MURASE, A new wrapper feature

selection approach using neural network, Neurocomput., 73 (2010), pp. 3273–3283.

[65] S. MORETTI AND F. PATRONE, Transversality of the shapley value, TOP, 16 (2008), p. 1.

[66] R. B. MYERSON, Conference structures and fair allocation rules, International Journal of

Game Theory, 9 (1980), pp. 169–182.

[67] K. NIGAM AND R. GHANI, Analyzing the effectiveness and applicability of co-training,

in Proceedings of the Ninth International Conference on Information and Knowledge

Management, CIKM ’00, New York, NY, USA, 2000, ACM, pp. 86–93.

125

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[68] G. OWEN, Multilinear extensions of games, Management Science, 18 (1972), pp. P64–P79.

[69] D. O’CONNOR, A historical note on shuffle algorithms, 2014.

[70] D. PA AND J. KITTLER, Pattern recognition: A statistical approach, (1982).

[71] B. PELEG AND P. SUDHÖLTER, Introduction to the Theory of Cooperative Games, vol. 34,

01 2007.

[72] Y. PENG, Z. WU, AND J. JIANG, A novel feature selection approach for biomedical data

classification, Journal of biomedical informatics, 43 (2009), pp. 15–23.

[73] K. PRASAD AND J. S. KELLY, Np-completeness of some problems concerning voting games,

International Journal of Game Theory, 19 (1990), pp. 1–9.

[74] E. RILOFF, J. WIEBE, AND T. WILSON, Learning subjective nouns using extraction pattern

bootstrapping, in Proceedings of the Seventh Conference on Natural Language Learning

at HLT-NAACL 2003 - Volume 4, CONLL ’03, Stroudsburg, PA, USA, 2003, Association

for Computational Linguistics, pp. 25–32.

[75] C. ROSENBERG, M. HEBERT, AND H. SCHNEIDERMAN, Semi-supervised self-training of

object detection models, in Proceedings of the Seventh IEEE Workshops on Application

of Computer Vision (WACV/MOTION’05) - Volume 1 - Volume 01, WACV-MOTION ’05,

Washington, DC, USA, 2005, IEEE Computer Society, pp. 29–36.

[76] A. SALAZAR, G. SAFONT, A. SORIANO, AND L. VERGARA, Automatic credit card fraud

detection based on non-linear signal processing, in 2012 IEEE International Carnahan

Conference on Security Technology (ICCST), IEEE, 2012, pp. 207–212.

[77] F. SANTOSA AND W. SYMES, Linear inversion of band-limited reflection seismograms,

SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 1307–1330.

[78] A. SCHOTTER, The paradox of redistribution: Some theoretical and empirical results, in

Power, Voting, and Voting Power, M. J. Holler, ed., Heidelberg, 1982, Physica-Verlag

HD, pp. 324–338.

[79] SHAPLEY, n balanced sets and cores.

[80] L. S. SHAPLEY, Additive and non-additive set functions, Princeton University, 1953.

[81] L. S. SHAPLEY AND M. SHUBIK, A method for evaluating the distribution of power in a

committee system., American political science review, 48 (1954), pp. 787–792.

[82] L. S. SHAPLEY AND M. SHUBIK, A method for evaluating the distribution of power in a

committee system, The American Political Science Review, 48 (1954), pp. 787–792.

126

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[83] Q. SHEN, R. DIAO, AND P. SU, Feature selection ensemble, 06 2012, pp. 289–306.

[84] D. B. SKALAK, Prototype and feature selection by sampling and random mutation hill

climbing algorithms, in Machine Learning Proceedings 1994, W. W. Cohen and H. Hirsh,

eds., Morgan Kaufmann, San Francisco (CA), 1994, pp. 293 – 301.

[85] O. SKIBSKI, T. P. MICHALAK, AND T. RAHWAN, Axiomatic characterization of game-

theoretic centrality, Journal of Artificial Intelligence Research, 62 (2018), pp. 33–68.

[86] P. SMETS, The Transferable Belief Model for Quantified Belief Representation, Springer

Netherlands, Dordrecht, 1998, pp. 267–301.

[87] L. SONG, A. SMOLA, A. GRETTON, K. M. BORGWARDT, AND J. BEDO, Supervised feature

selection via dependence estimation, in Proceedings of the 24th International Conference

on Machine Learning, ICML ’07, New York, NY, USA, 2007, ACM, pp. 823–830.

[88] J. STIER, G. GIANINI, M. GRANITZER, AND K. ZIEGLER, Analysing neural network

topologies: a game theoretic approach, Procedia Computer Science, 126 (2018), pp. 234 –

243.

Knowledge-Based and Intelligent Information and Engineering Systems: Proceedings of

the 22nd International Conference, KES-2018, Belgrade, Serbia.

[89] P. D. STRAFFIN, Power Indices in Politics, Springer New York, New York, NY, 1983, pp. 256–

321.

[90] P. D. STRAFFIN AND J. P. HEANEY, Game theory and the tennessee valley authority,

International Journal of Game Theory, 10 (1981), pp. 35–43.

[91] E. ŠTRUMBELJ AND I. KONONENKO, Explaining prediction models and individual pre-

dictions with feature contributions, Knowledge and information systems, 41 (2014),

pp. 647–665.

[92] M. SUZUKI AND M. NAKAYAMA, The cost assignment of the cooperative water resource

development: A game theoretical approach, Management Science, 22 (1976), pp. 1081–

1086.

[93] V. VAN VLASSELAER, C. BRAVO, O. CAELEN, T. ELIASSI-RAD, L. AKOGLU, M. SNOECK,

AND B. BAESENS, Apate: A novel approach for automated credit card transaction

fraud detection using network-based extensions, Decision Support Systems, 75 (2015),

pp. 38–48.

[94] L. VERGARA, A. SORIANO, G. SAFONT, AND A. SALAZAR, On the fusion of non-independent

detectors, Digital Signal Processing, 50 (2016), pp. 24–33.

127

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY

[95] J. VON NEUMANN, O. MORGENSTERN, AND A. RUBINSTEIN, Theory of Games and Eco-

nomic Behavior (60th Anniversary Commemorative Edition), Princeton University

Press, 1944.

[96] X. WANG AND K. K. PALIWAL, Feature extraction and dimensionality reduction algorithms

and their applications in vowel recognition, Pattern Recognition, 36 (2003), pp. 229–239.

[97] J. WESTON, A. ELISSEEFF, B. SCHÖLKOPF, AND M. TIPPING, Use of the zero-norm with

linear models and kernel methods, Journal of Machine Learning Research, 3 (2003),

pp. 1439–1461.

[98] D. YAROWSKY, Unsupervised word sense disambiguation rivaling supervised methods, in

Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics,

ACL ’95, Stroudsburg, PA, USA, 1995, Association for Computational Linguistics,

pp. 189–196.

[99] Z. ZHAO AND H. LU, Semi-supervised feature selection via spectral analysis, Proceedings

of the 7th SIAM International Conference on Data Mining, (2007), pp. 641–646.

[100] K. ZIEGLER, O. CAELEN, M. GARCHERY, M. GRANITZER, L. HE-GUELTON, J. JURGOVSKY,

P.-E. PORTIER, AND S. ZWICKLBAUER, Injecting semantic background knowledge into

neural networks using graph embeddings, in 2017 IEEE 26th International Conference

on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),

IEEE, 2017, pp. 200–205.

[101] G. ZLOTKIN AND J. ROSENSCHEIN, Coalition, cryptography, and stability: Mechanisms for

coalition formation in task oriented domains, Proceedings of the National Conference

on Artificial Intelligence, 1 (2000).

128

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI079/these.pdf 
© [L. Ghemmogne Fossi], [2019], INSA de Lyon, tous droits réservés


	Notice XML
	Page de titre
	Abstract
	Résumé
	Table of contents
	List of Tables
	List of Figures
	Introduction
	Introduction
	Statement of the problem
	 The rule governance context
	The fraud detection process
	The rule governance process
	Classification performance metrics
	Non-additivity
	Quantifying individual contributions in non-additive contexts

	Self-training context and Feature Selection
	Feature Selection
	Self-training

	Thesis contribution and outline


	Related literature
	Power indexes and Coalitional Game Concepts
	 Coalition analysis concepts in Game Theory
	Coalitional games with transferable utility (TU games)
	Issues in TU games
	Definition and properties of valuations
	Coalition stability concepts
	The Core
	Games with coalitional structure

	Some definitions related to the Shapley Value concept
	Quantifying individual contributions in non additive contexts
	Marginal contributions
	Fairness Axioms (Efficiency, Symmetry, Dummy player)

	Power indexes
	Why Power indexes

	The Shapley Value
	Shapley Value Computation
	Statistical estimate of the Shapley Value

	The Banzhaf Value
	Definitions

	Summary

	Feature Selection and Machine Learning Techniques
	Feature Selection
	Dimensionality reduction
	General categories of feature selection techniques
	Search strategies for feature selection

	Some Machine Learning techniques
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning (SSL)
	Semi-Supervised learning problems
	Self-training

	Summary


	Power Index and Feature Selection : Application
	Managing a pool of rules for credit card fraud detection by a Game Theory based Approach 
	Introduction
	Context and problem
	Contributions
	Credit Card fraud detection
	Feature Selection
	Interpretation of model prediction

	The fraud detection process and its management 
	The fraud detection process
	The management process for the NRT phase rules

	The Shapley Value approach to the rule management problem
	Traditional approach: individual performance ranking
	Shapley Value based ranking
	Computational complexity and execution time

	Validation of the method
	The dataset
	Preliminary observations and findings
	Validation of the first contribution
	Validation of the second contribution

	Conclusions
	Summary

	Restricted Banzhaf Index (k-Banzhaf) and Feature Selection
	Introduction
	The best linear approximation
	Determination of βi
	Determination of α0
	Wrap up
	General expression of the linear approximation in the Moëbius basis
	General expression of α and β in terms of f and ¢if
	Example on the Moëbius basis
	Comparison with Shapley Value and Banzhaf Value

	Implemented Algorithms
	For generation of random subsets
	The Greedy approach
	Power indexes

	Power indexes-based feature selection applied to self-training
	Experimentation protocol and classification methods 
	Results with Random Forest Classifier (RFC) as ML algorithm
	Results with support-vector machine (SVM) as ML algorithm

	Interpretations and Conclusions
	Summary


	Conclusion and Future Work
	Conclusion
	Summary
	First contribution
	Second Contribution

	Future improvements
	Limitations
	Possible solutions



	Appendix A
	Bibliography



